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Abstract

The visual servoing control approach is formulated for the flow control of the plane
Poiseuille flow. Generally, the flow control can lead the flow from its current state to
a desired state. In transition to turbulence, the growth of kinetic energy density can
lead the flow to turbulence. Moreover, the drag reduction is a potential application in
the engineering applications. Therefore, this thesis aims to minimize the kinetic energy
density and the skin friction drag.

The governing equations of the plane Poiseuille flow are modeled to a standard form
in the automatic control. More precisely, the partial differential equations of the plane
Poiseuille flow are transformed to a state space representation by using the spectral
method. The streamwise and spanwise directions are discretized based on the Fourier
series while the wall-normal direction is discretized based on the Chebyshev polynomi-
als. The state vector involves the wall-normal velocity and vorticity. The control signals
depend on the inhomogeneous Dirichlet boundary conditions which correspond to blow-
ing/suction boundary control. The number of independent control signals is called the
number of the degree of freedom. Moreover, the skin-friction drag and the kinetic en-
ergy density are modeled as a function of the state vector. The goal is to minimize both
the skin-friction drag and the kinetic energy density by appropriate methods.

The linear feedback control, in general, is designed for the plane Poiseuille flow based
on its linearized model.

The dimension of linearized plane Poiseuille flow is large, therefore, we need to
reduce the order of controller. We demonstrate that the control law based on a mode
reduction can be applied for the full system. Moreover, the kinetic energy density almost
will monotonically decreases in time even using two degrees of freedom when the visual
servoing control is designed based on the model order reduction.

Key words: flow control, visual servoing control, optimal control, model order
reduction, Navier-Stokes equation, plane Poiseuille flow, spectral method.
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Résumé

Cette thèse a pour but l’étude de la mise en œuvre de commandes par asservissement
visuel pour le contrôle actif d’un écoulement de Poiseuille. D’un point de vue général, le
contrôle d’écoulements vise à modifier ou à maintenir l’état de l’écoulement, malgré une
éventuelle perturbation extérieure. Une des situations d’intérêt concerne par exemple la
transition vers la turbulence où l’écoulement peut devenir turbulent avec la croissance de
sa densité d’énergie cinétique. La réduction de la traînée est également une application
potentielle dans des problèmes d’ingénierie. Un des buts applicatifs de cette thèse
cherchera ainsi à minimiser à la fois la densité d’énergie cinétique et la traînée.

Des modèles numériques peuvent être utilisés pour générer un modèle d’état des
équations aux dérivées partielles d’un écoulement de Poiseuille. Le modèle d’état con-
sidéré dans cette thèse s’appuie sur une représentation spectrale afin de transformer
les équations aux dérivées partielles originelles en un système d’équations différentielles
ordinaires. Le vecteur d’état rassemble dans notre cas la vitesse et la vorticité. Les
signaux de commande dépendent eux de conditions aux limites de type Dirichlet non
homogènes qui correspondent à des actions de soufflage/aspiration. Le nombre de degrés
de liberté commandé du problème correspond à la dimension du signal de commande.
La densité d’énergie cinétique et la traînée sont modélisées en fonction du vecteur d’état
et du signal de commande.

Dans cette thèse nous avons plus particulièrement considéré un asservissement visuel
partitionné. Celui-ci est appliqué au modèle d’état de l’écoulement avec deux degrés
de liberté afin de minimiser simultanément la densité d’énergie cinétique et la traînée.
La trainée, contrairement à l’énergie cinétique, diminue de façon monotone en fonction
du temps. Une augmentation du nombre de degrés de liberté permet d’améliorer la
décroissance de la densité d’énergie cinétique. Lorsque le nombre de degré de liberté
correspond à la dimension du vecteur d’état, et en s’appuyant sur une commande par
asservissement visuel, nous montrons que la densité d’énergie cinétique décroit de façon
monotone au cours du temps.

Le modèle d’état de l’écoulement de Poiseuille vit dans un espace de très grande
dimension. Par conséquent, il est nécessaire d’un point de vue pratique de réduire la
dimension du contrôleur. Nous démontrons que la loi de commande s’appuyant sur
un modèle réduit peut être appliquée au système complet. Dans ce cas la densité
d’énergie cinétique décroit presque de façon monotone au cours du temps en utilisant
une commande par asservissement visuel à deux degrés de liberté.

Mots clés : contrôle des écoulements, asservissement visuel, commande optimale,
modèle réduit, équations de Navier-Stokes, écoulement de Poiseuille, méthode spec-
trale.
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Résumé de la thèse en français

La commande par l’asservissement visuel est utilisée pour le problème du contrôle actif
de l’écoulement de Poiseuille. Nous avons développé des contrôleurs qui obtiennent la
stabilité de l’écoulement de Poiseuille basée sur l’information visuelle.

Ce résumé est architecturé comme suit. Tout d’abord, nous présentons le contrôle
des écoulement et l’asservissement visuel. Ensuit, nous donnons l’état de l’art où nous
considérons les travaux précédents et l’objectives. Et puis, nous modélisons l’écoulement
de Poiseuille où le problématique existe. Après, toutes les contributions de cette thèse
sont montrées: commande par asservissement visuel partitionné, commande par as-
servissement visuel, modèle d’ordre réduit de commande par asservissement visuel et
commande robuste. Enfin, la conclusion est donnée pour terminer ce résumé.

Contrôle des écoulements et Asservissement visuel

Contrôle des écoulements

Le contrôle des écoulements permet de changer l’état actuel à un autre état ou maintenir
son état actuel, quelque soit la perturbation extérieure. Nous pouvons agir partout à
l’intérieur de l’écoulement ou uniquement aux frontières. Les applications potentiels du
contrôle des écoulements sont la réduction de la traînée, l’augmentation de la portance,
la réduction de bruit, etc.

Le contrôle des écoulements peut être effectué de manière passive ou active. Le
contrôle passif consiste à agir de manière constante sur le système. Le plus souvent
il s’agit en fait d’optimiser des formes ou d’utiliser certains revêtements de surface
particuliers. Par contre, la contrôle actif, quant à lui, nécessite un apport d’énergie
extérieur pour agir sur l’écoulement. Par exemple, le contrôle actif d’écoulement de
Poiseuille est par les techniques de soufflage et d’aspiration [Joshi, 1996].

Asservissement visuel

L’asservissement visuel, une approche de contrôle en comité robotique, permet de con-
trôler les mouvements d’un robot à l’aide des données fournies par un capteur de vision
[Chaumette and Hutchinson, 2006]. Pour réaliser une tâche d’asservissement visuel, un
ensemble d’informations visuelles s(t) est choisi à partir de l’image de la scène visualisée
par un dispositif optique. Une loi de commande est ensuite élaborée de telle sorte que le
vecteur d’informations visuelles s(t) atteigne la consigne s∗ correspondante à l’ensemble
désiré d’informations visuelles et donc à un état désiré du système dynamique. Générale-
ment une partie de l’image est utilisée pour définir un difféomorphisme entre la scène
observée et l’ensemble d’informations visuelles s(t). Le principe de la commande est
donc de réguler le vecteur d’erreur e(t) = s(t) − s∗ à zéro. La dynamique du vecteur
erreur est alors donnée par

ė(t) =
∂e(t)

∂t
+ Le(t)u(t), (1)
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où u(t) est vecteur d’entrées de commande du système, Le(t) est la matrice jacobienne
qui définit la variation des informations visuelles par rapport à la variation de la com-
mande [Espiau et al., 1992], et ∂e(t)/∂t exprime la variation propre des informations
visuelles.

Si nous souhaitions, par exemple, d’assurer une décroissance exponentielle du vecteur
erreur

ė(t) = −λe(t). (2)

Nous obtenons

u(t) = −λL+
e (t)e(t)− L+

e (t)
∂e(t)

∂t
, (3)

où L+
e est la matrice pseudo inverse de Moore Penrose Le. La commande est donnée

par

u(t) = −λL−1e (t)e(t)− L−1e (t)
∂e(t)

∂t
. (4)

Notons que la matrice Le peut être non-carré mais de plein rang. Donc, la matrice
pseudo inverse de Moore Penrose est L+

e .
En appliquant les techniques d’asservissement visuel au contrôle actif des écoule-

ments, s(t) peut être égale à la densité d’énergie cinétique ou la traînée ou le vecteur
d’état. Une commande sera conçue pour obtenir les objectifs de commande en assurant
le forme ė(t) = −λe(t).

État de l’art

Description du problème

Quelques écoulements sont étudiés, e.g. l’écoulement de cavité, profils d’ailles, l’écoulements
autour des cylindres bidimensionels, vectorisation de jet, l’écoulement de canal. Nous
choisissions d’étudier l’écoulement de Poiseuille parce que

• Il est plus adapté à la théorie du contrôle que les autres écoulements

• Il contient des propriétaires fondamentaux des écoulements

• Il illustre un grand nombre des problèmes importants non résolus du contrôle des
écoulements

• Cet écoulement est un bon exemple de l’application de l’asservissement visuel au
contrôle des écoulements

Ensuite, nous présentons l’équation dynamique de l’écoulement de Poiseuille. Les
équations de Navier-Stokes sont données par{ ∇.V = 0

∂V

∂t
+ (V.∇)V = −∇P +

1

R
∆V.

(5)
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Figure 1: Écoulement de Poiseuille

où V est la vitesse, P est la pressure et R le nombre de Reynolds, ∇ est le gradient et
∆ est le laplacien. Son profile est donné par la figure 1.

Pour déterminer l’état de l’écoulement et sa stabilité, la densité d’énergie cinétique
est définie par [Bewley and Liu, 1998]

ε(t) =
1

Vo

∫
Vo

v2dVo, (6)

où v = (u, v, w) = V −Ve est la perturbation entre la vitesse V et la solution stable
Ve et Vo est le volume. Si ε̇(t) ≤ 0, alors la solution V de l’équation (5) est dite
monotone stable [Schmid and Henningson, 2001].

En plus, la traînée est définie par [Aamo et al., 2003]

d(t) =

∫ Lx

x=0
(
∂u(y = +1)

∂y
− ∂u(y = −1)

∂y
)dx (7)

L’écoulement de Poiseuille devient turbulent si le nombre de Reynolds est grand
(R > 5772) et/ou la croissance de la densité d’énergie cinétique (1000<R<5772). Donc,
nous avons besoin d’une commande qui obtient la stabilité de l’écoulement. À notre
connaissance, dans la littérature scientifique, le problème du contrôle de l’écoulement
en boucle fermée existe déjà

• Il existe dans la littérature une commande nonlinéaire [Balogh et al., 2001] et
[Aamo et al., 2003] qui permet de garantir ε̇(t) ≤ 0 mais cette commande est
conçue pour le nombre de Reynolds R < 1/4; toutefois nous n’avons pas besoin
de commander si R < 49.6. Aucune autre commande garantit ε̇(t) ≤ 0 dans les
travaux précédents.

• Aucune commande garantit ḋ(t) ≤ 0.

• La commande basée sur un modèle linéaire suffit pour stabiliser l’écoulement.
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• L’idée de cette thèse est de donner une approche de commande basée
sur le modèle linéaire qui garantit ε̇(t) ≤ 0 et/ou ḋ(t) ≤ 0. En plus,
cette commande peut appliquer pour tout le nombre de Reynolds. Par
conséquent, l’écoulement devient monotone stable.

Solution proposée

Le contrôle de l’asservissement visuel va être appliqué au contrôle actif des écoulements.
Basé sur le contexte du contrôle de l’asservissement visuel, nous allons concevoir une
approche de commande qui garantit{

ε̇(t) = −2λε(t)

ḋ(t) = −λd(t)
(8)

Modélisation de l’écoulement de Poiseuille

Les méthodes numériques peuvent être utilisées pour générer un modèle d’état des
équations aux dérivées partielles (EDP). Un modèle linéaire a été développé en utilisant
une méthode spectrale qui pourrait transformer EDP dans un ensemble des équations
différentielles ordinaire (EDO).

Obtention d’un modèle d’état

L’approche classique consiste à linéariser les équations de Navier-Stokes autour de
l’écoulement en régime établi. Il est alors possible d’obtenir une formulation en vitesse-
vorticité [Butler and Farrell, 1992] :

∂(∆v)

∂t
+ U

∂(∆v)

∂x
− d2U

dy2

∂v

∂x
− 1

R
∆2v = 0 (9)

∂η

∂t
+ U

∂η

∂x
− 1

R
∆η = −dU

dy

∂v

∂z
, (10)

dans lesquelles v est la composante normale de la vitesse de la perturbation v(x, y, z, t)
définie comme étant la différence entre la vitesse courante V(x, y, z, t) et la vitesse en
régime établi Vb = (1−y2, 0, 0). η est la composante normale de la vorticité. U = 1−y2

est la composante suivant x de Vb, x étant la direction d’écoulement, y la direction
normale aux parois et z la direction perpendiculaire à la direction d’écoulement et aux
parois. R est le nombre de Reynolds.

En cherchant des solutions complexes (vc, ηc) aux equations (9-10) sous la forme
d’une série de Fourier tronquée dans les directions x et z conformément au modèle
conceptuel proposé par [Joshi et al., 1997] et en ne considérant qu’un seul couple de
nombre d’onde (nst, nsp) (où nst = 0 · · ·Nst et nsp = 0 · · ·Nsp), il vient :

vc(x, y, z, t) = ṽ(y, t)ej(αx+βy), ηc(x, y, z, t) = η̃(y, t)ej(αx+βy), (11)
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où α = 2πnst
Lx

et β =
2πnsp
Lz

avec Lx la période dans la directions x, et Lz celle dans la
direction z.

En injectant (11) dans (9-10), une approximation à (9-10) est obtenue en résolvant
(12-13) (avec k2 = α2 + β2, voir le Chapitre 5 en anglais pour plus amples details) :

(−k2U − d2U

dy2
− k4

jRα
)ṽ + (U +

2k2

jRα
)
∂2ṽ

∂y2
− 1

jRα

∂4ṽ

∂y4
=

j

α
(
∂3ṽ

∂y2∂t
− k2∂ṽ

∂t
) (12)

(jαU +
k2

R
)η̃ − 1

R

∂2η̃

∂y2
+ jβ

dU

dy
ṽ = −∂η̃

∂t
. (13)

Dans le cas de l’écoulement de Poiseuille, une commande aux frontières est possible.
Cette façon de faire conduit aux conditions de Dirichlet non homogènes de ṽ(y = ±1, t)
et η̃(y = ±1, t) suivantes : 

ṽ(+1, t) = q̃v,u(t)
ṽ(−1, t) = q̃v,l(t)
η̃(+1, t) = q̃η,u(t)
η̃(−1, t) = q̃η,l(t)

(14)

les conditions de Neumann restant homogènes aux frontières. Nous pouvons noter

φ̃(y = ±1, t) = q̃φ,ψ(t) (15)

où φ est v ou η et ψ est u ou l. Néanmoins, comme proposé dans [Boyd, 2001], le change-
ment de variables suivant permet de rétablir des conditions de Dirichlet homogènes :{

ṽ(y, t) = ṽh(y, t) + Fv(y)qv(t)
η̃(y, t) = η̃h(y, t) + Fη(y)qη(t),

(16)

dans lesquelles nous avons introduit les vecteurs Fv(y) =
[
fv,u(y) fv,l(y)

]
, qv(t) =[

q̃v,u(t)
q̃v,l(t)

]
, Fη(y) =

[
fη,u(y) fη,l(y)

]
, et qη(t) =

[
q̃η,u(t)
q̃η,l(t)

]
, où les conditions suiv-

antes doivent être vérifiées :{
fv,u(+1) = fv,l(−1) = 1, fv,u(−1) = fv,l(+1) = 0, f

′
v,u(±1) = f

′
v,l(±1) = 0

fη,u(+1) = fη,l(−1) = 1, fη,u(−1) = fη,l(+1) = 0,
(17)

ainsi que ṽh(±1, t) = ṽ
′
h(±1, t) = η̃h(±1, t) = 0 (les conditions de Dirichlet et Neumann

homogènes). Nous pouvons noter fφ,ψ(y).
L’obtention du modèle de l’état reverché s’obtient alors par le bais de la discrétisation

suivante :

ṽh(y, t) =
N∑
n=0

av,n(t)Ξn(y), η̃h(y, t) =
N∑
n=0

aη,n(t)Θn(y), (18)

où les polynômes Ξn(y) et Θn(y) vérifient à la fois les conditions de Dirichlet et Neumann
(voir le Chapitre 5 en anglais pour plus amples détails). Dans la suite, en utilisant (18)
dans (16) et en injectant le résultat dans (12-13) nous obtenons un système d’équations



vi

ordinaires qui, une fois évalué en N + 1 points de Gauss-Lobatto yi = cos(iπ/(N +
1))), 0 ≤ i ≤ N conduit à la représentation recherchée :

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t), (19)

où x(t) est le vecteur d’état: x(t) =
[
av,0(t) · · · av,N (t) aη,0(t) · · · aη,N (t)

]>,
u(t) est le signal de commande: u(t) =

[
q>v (t) q>η (t)

]>. Les matrices L, A, B et
E s’expriment de façon complexe. Toutefois, il est important de noter dès à présent
que les matrices B et E dépendent fortement des vecteurs Fv(yi) et Fη(yi) ainsi que de
leurs dérivées suivant y jusqu’à l’ordre 4 au plus.

Le nombre de degré de liberté (DDL) est le nombre du signal de com-
mande. Nous utilisons u(t) =

[
q>v (t) q>η (t)

]>, nous avons 4 DDL. Si nous pren-
drons u(t) = qv(t), nous ne considérons que 2 DDL.

En effet, la trainée d(t) s’exprime de la façon suivante :

d(t) = D1x(t) + D2u(t), (20)

où la matrice D1 est calculée par les polynômes Ξn(y) et Θn(y) et la matrice D2 est
calculée par les vecteurs Fv(yi) et Fη(yi). L’énergie cinétique ε(t) s’écrit quant à elle
de la façon suivante :

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t), (21)

où la matrice Q11 est calculée par les polynômes Ξn(y) et Θn(y) tandis que les matrices
Q12, Q21 et Q22 sont aussi calculées par les polynômes Ξn(y) et Θn(y) et les vecteurs
Fv(yi) et Fη(yi).

Introduisons tout d’abord les grandeurs intéressantes. L’énergie synchronique εs(t)
est définie comme l’énergie cinétique maximum à l’instant t pour la pire condition
initiale sur l’état telle que ε(0) = 1, soit

εs(t) = max
ε(0)=1

ε(t) (22)

L’énergie diachronique εd est définie comme le maximum de l’énergie synchronique

εd = max
t≥0

εs(t) (23)

De plus, pour une condition initiale, l’énergie maximale εmax est définie comme le max-
imum de l’énergie cinétique

εmax = max
t≥0

ε(t) (24)

Comportement du système en boucle ouverte

On considère le système en boucle ouverte ou noté l’équation de Orr-Sommerfeld. Si la
matrice L est invertible, l’équation (19) devient

ẋ(t) = L−1Ax(t), (25)

ensuite, le comportement du vecteur d’état et de la densité d’énergie cinétique décrit le
problème du contrôle des écoulements.
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Comportement du vecteur d’état

Notons que les écoulements 2D et 3D de Poiseuille contiennent les valeurs propres
instables. Afin d’enquêter sur les valeurs propres instables, nous avons seulement besoin
de considérer l’écoulement 2D de Poiseuille.

Tout d’abord, nous considérons l’écoulement 2D de Poiseuille avec Lx = 4π. Tous
les multiples entiers de nombre d’onde fondamentale (α0) existent dans cet écoulement

α = nstα0 = nst
2π

Lx
= 0.5nst avec nst = 0 . . . Nst. (26)

Sur la base du diagramme de Orzag dans la figure 2(a) (obtenu à partir de l’équation
de Orr-Sommerfeld), nous trouvons que la valeur propre instable de l’écoulement de
Poiseuille est une fonction du nombre de Reynolds R et le nombre d’onde α. Certains
modes sont des modes instables. Dans ce cas, seul le nombre d’onde α1 = 2α0 = 1
est le nombre d’onde instable (sa partie réelle est positive), alors que α0 = 0.5 et
α = 1.5 · · ·+∞ sont des nombres d’onde stable. En particulière, dans le cas α = 1 , β = 0
et R = 10 000, les modes instables sont λ = 0.003739670622977± 0.237526488820464i
[Orszag, 1971]. La densité d’énergie cinétique tend vers l’infini dans la figure 2(b).
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Figure 2: Comportement du vecteur d’état.

Comportement de la densité d’énergie cinétique

Dans [Orszag, 1971], le modèle linéaire contient les modes instables lorsque le nombre
de Reynolds R > 5 772. Le fait que le modèle linéaire n’a pas de modes instables
au nombre de Reynolds 1 000 < R < 5 772, l’écoulement est encore turbulent. Plus
précisément, la croissance de la densité d’énergie cinétique rend l’écoulement turbulent.
Par exemple, l’écoulement est turbulent au nombre de Reynolds R ≈ 1 000 à partir des
études expérimentales [Patel and Head, 1969]. Notons qu’il n’y a pas de croissance de
la densité d’énergie cinétique si le nombre de Reynolds est inférieur à R = 49.6, comme
indiqué dans [Joseph and Carmi, 1969] par les méthodes de l’énergie.
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Dans l’écoulement 3D de Poiseuille [Butler and Farrell, 1992], [Bewley and Liu, 1998],
[McKernan et al., 2007], la densité d’énergie cinétique est souvent étudiée au nombre de
Reynolds R = 5 000 et au nombres d’ondes α = 0 et β = 2.044, la valeur pour laquelle
nous obtenons la valeur maximale de l’énergie diachronique εd, vue dans la figure 3.
L’énergie diachronique εd est la fonction des nombres d’onde α et β, donnée dans la
figure 3(a). Sa valeur maximale est à α = 0 et β = 2.044. L’énergie synchronique εs(t)
et l’énergie diachronique εd sont données dans la figure 3(b).
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Remarques

Bien que le modèle linéaire de l’écoulement de Poiseuille contient toutes les valeurs
propres négatives, le vecteur d’état diminue de façon monotone dans le temps, mais
l’écoulement devient encore turbulent. Afin de déterminer l’état de l’écoulement et sa
stabilité, nous nous concentrons sur le comportement de la densité d’énergie cinétique.

À partir des éléments théoriques décrits ci-dessus, nous allons concevoir les con-
trôleurs qui garantissent {

ε̇(t) = −2λε(t)

ḋ(t) = −λd(t),
(27)

autrement dit, si ε̇(t) = −2λε(t), l’écoulement est toujours monotone stable. Dans les
sections suivantes, nous allons présenter des approches de commandes qui représentent
les contributions de cette thèse.

Commande par asservissement visuel partitionné

Objectif

Lorsque le nombre de DDL est 2. Nous utilisons l’asservissement visuel partitionné
(AVS) comme suit

• Un DDL est utilisé afin d’obtenir ḋ(t) = −λd(t)



ix

• Un DDL est utilisé pour minimiser ε(t)

Conception de la commande

On considère le système suivant{
Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t),
d(t) = D1x(t) + D2u(t),

(28)

pour 2 DDL. Si nous utilisons la commande u(t) = Kx(t), la traînée est donnée par
d(t) = (D1 + D2K)x(t). Nous voulons ḋ(t) = −λd(t), c’est-à-dire

(D1 + D2K)ẋ(t) = −λ(D1 + D2K)x(t)⇒ ẋ(t) = −λx(t) (29)

Avec 2 DDL, nous ne pouvons pas d’obtenir ẋ(t) = −λx(t). Dans la section suivante,
nous montrons une façon d’obtenir ẋ(t) = −λx(t) quand la dimension du vecteur d’état
est égal au nombre de DDL.

Nous utilisons la commande U(t) = u̇(t), (voir [Aamo, 2002], [Bewley and Liu, 1998],
[Joshi, 1996], [McKernan, 2006]), le système (28) est décrit[

ẋ(t)
u̇(t)

]
=

[
L−1A L−1B

0 0

] [
x(t)
u(t)

]
+

[
L−1E

I

]
u̇(t), (30)

ou nous proposons
Ẋ (t) = AX (t) + BU(t), (31)

où le vecteur d’état est X (t) =

[
x(t)
u(t)

]
. Les matrices A et B sont définies

A =

[
L−1A L−1B

0 0

]
, B =

[
L−1E

I

]
. (32)

Donc, la densité d’énergie cinétique est réécrite en fonction de X (t)

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)

=
[
x>(t) u>(t)

] [ Q11 Q12

Q21 Q22

] [
x(t)
u(t)

]
= X>(t)QX (t),

(33)

où la matrice Q est définie par

Q =

[
Q11 Q12

Q21 Q22

]
. (34)

De la même manière, la traînée est également réécrite par

d(t) = D1x(t) + D2u(t) = DX (t), (35)
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où D =
[
D1 D2

]
. Par conséquent, le modèle linéaire de l’écoulement de Poiseuille

est donné par 
Ẋ (t) = AX (t) + BU(t)

ε(t) = X>(t)QX (t)

d(t) = DX (t)

(36)

En utilisant la commande par asservissement visuel partitionné [Espiau et al., 1992],
nous avons besoin de la dynamique de la traînée

ḋ(t) =
∂d(t)

∂t
+ LdU(t), (37)

où
∂d(t)

∂t
exprime la variation propre de la traînée et Ld définit la variation de la traînée

par rapport à la variation de la commande.
À partir de l’équation (36), nous obtenons

ḋ(t) = DẊ (t) = D (AX (t) + BU(t)) . (38)

Donc, grâce à (37) et (38), nous obtenons Ld = DB
∂d(t)

∂t
= DAX (t)

(39)

Introduisons à présent les composantes de la matrice d’interaction relative aux com-
posantes du signal de commande (2 DDL)

Ld =
[
Ldu Ldl

]
=
[
D1 D2

] [ L−1E
I

]
. (40)

L’asservissement visuel partitionné repose sur une formulation partitionnée de la matrice
d’interaction. Grâce à (40), la variation temporelle de la traînée (38) devient

ḋ(t) = LduUu(t) + LdlUl(t) +
∂d(t)

∂t
, (41)

où U(t) =
[
Uu(t) Ul(t)

]>. Il est tout à fait possible d’imposer une décroissance
souhaitée de la traînée. Imposons par exemple une décroissance exponentielle

ḋ(t) = −λd(t) (42)

où λ est un gain positif permettant d’ajuster la vitesse de décroissance. Par suite, de
(41) et (42), nous avons

− λd(t) = LduUu(t) + LdlUl(t) +
∂d(t)

∂t
. (43)
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À ce stade, l’une ou l’autre des composantes de U(t) peut être utilisée pour réduire la
traînée, choisissons arbitrairement Ul(t). Il vient alors

Ul(t) = − 1

Ldl

(
λd(t) + LduUu(t) +

∂d(t)

∂t

)
. (44)

Cette grandeur sera effectivement connue si le signal de commande Uu(t) est connu
aussi. La phase suivante consiste donc à en trouver une expression.

Pour ce faire, nous considérons classiquement une commande LQR sur un horizon
infini afin de minimiser la densité d’énergie cinétique (36) et l’énergie nécessaire à sa
minimisation. Le critère à minimiser s’écrit comme suit

J =

∫ ∞
0

(
X>(t)QX (t) + γ2U2

u(t)
)

dt. (45)

Cela peut être fait en exprimant la variation temporelle de l’état en fonction du signal
de commande Uu(t). Pour ce faire, réécrivons (44) grâce à (36)

Ul(t) = − 1

Ldl
((λD +DA)X (t) + LduUu(t)) , (46)

que nous injectons dans (36) pour obtenir

Ẋ (t) = A1X (t) + B1Uu(t), (47)

où les matrices suivantes ont été introduites: A1 = A − Bl
Ldl

(λD + DA) et B1 = Bu −
Ldu
Ldl
Bl avec B =

[
Bu Bl

]
.

Il devient alors très aisé de calculer le gain K impliqué dans la commande optimale
Uu(t) = KX (t) en considérant (47) et en résolvant l’équation algébrique de Ricatti. Ce
gain est donné par

K = − 1

γ2
B>1 P, (48)

où P est la solution de l’équations algébrique de Ricatti

A>1 P + PA1 +Q− 1

γ2
PB1B>1 P = 0. (49)

Il est important de noter que, à notre connaissance, contrairement aux travaux ren-
contrés dans la littérature de la commande des écoulements fluides, nous exploitons ici
pleinement les DDL.

Résultat de Simulation

Nous comparons à présent notre approche avec les approches les plus pertinentes de la
littérature, il s’agit des travaux relatés dans [Joshi et al., 1997], [McKernan et al., 2007],
[Cortelezzi and Speyer, 1998]. Nous notons respectivement ces approches P, LQR1,
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LQR2, et notons AVP la nôtre. Rappelons brièvement ces travaux. Dans le travail
de [Joshi et al., 1997], un retour proportionnel à la mesure du frottement pariétal est
utilisé conduisant à la réduction de la traînée. Dans ce travail la réduction de la densité
d’énergie cinétique n’est pas considérée. Dans le travail de [McKernan et al., 2007]
la densité d’énergie cinétique est minimisée via une commande LQR. Notons qu’il
s’agit là d’une façon indirecte de minimiser la traînée. En effet, la traînée due à la
perturbation s’annule si la densité d’énergie cinétique est nulle aussi. Finalement, dans
[Cortelezzi and Speyer, 1998], le frottement pariétal est minimisé également par une
approche LQR.

Nous testons le cas où α = 1, β = 0 et R = 10 000. La figure 4 décrit la comparaison
entre notre approche et les autres. Seulement notre approche a donnée un bon résultat.
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Figure 4: Comportement de la traînée et de l’énergie cinétique en fonction du temps.

Remarques

Quelques remarques sont donnés. Si DDL est 2

• AVP obtient ḋ(t) = −λd(t)

• AVP ne peut pas garantir ε̇(t) ≤ 0. Nous avons besoin de plus de nombres de
DDL. Dans la section suivante, nous allons chercher une solution à ce problème.

Augmenter le nombre de dégrée de liberté

Pourquoi et comment d’augmenter le nombre de dégrée de liberté ?

Pourquoi ?

Dans cette section, nous allons donner une condition nécessaire pour obtenir la stabilité
monotone. On considère le système suivant

ż(t) = Azz(t) + Bzu(t) (50)
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aver la commande u(t) = Kz(t). L’énergie cinétique est définie par

εz(t) = z>(t)Qzz(t), (51)

où Qz est une matrice Hermitienne. Dans [Whidborne and McKernan, 2007], la condi-
tion nécessaire pour garantir ε̇z(t) ≤ 0 est donnée par

(Az + BzK)>Qz + Qz(Az + BzK) ≤ 0 (52)

Pour que cette inégalité ait une solution K, nous avons besoin de BzB
>
z > 0. Par

conséquent, la matrice Bz doit être une matrice de plein rang. Cette cause explique
pourquoi nous voulons augmenter le nombre de DDL dans le système en boucle fermée
du des écoulements.

Comment ?

Si nous utilisons fφ,ψ,m(y) (voir la façon d’utiliser fφ,ψ(y)), nous obtenons l’équation de
l’état

Lẋ(t) = Ax(t) + Bmum(t) + Emu̇m(t) (53)

Quand nous utilisons fφ,ψ,m(y) où m = 1 · · ·M , de même façon, nous obtenons

Lẋ(t) = Ax(t) + B1u1(t) + E1u̇1(t)
Lẋ(t) = Ax(t) + B2u2(t) + E2u̇2(t)

...
...

Lẋ(t) = Ax(t) + BMuM (t) + EM u̇M (t)

(54)

C’est facile de voir que nous pouvons obtenir

Lẋ(t) = Ax(t) +
M∑
m=1

Bmum(t) +
M∑
m=1

Emu̇m(t)

= Ax(t) + [B1 · · · BM ]

 u1(t)
· · ·
uM (t)]

+ [E1 · · · EM ]

 u̇1(t)
· · ·
u̇M (t)]


(55)

Si fφ,ψ,1(y), fφ,ψ,2(y), · · · , fφ,ψ,M (y) sont indépendant, nous pouvons augmenter DDL,
montré dans [Joshi, 1996]. Donc, nous supposons qu’il existe une façon de faire conduit
aux conditions de Dirichlet non homogènes de φ̃(y = ±1, t) suivante:

φ̃(y = ±1, t) =
M∑
m=1

q̃φ,ψ,m(t) (56)

les conditions de Neumann restant homogènes aux frontières. L’équation (16) devient

φ̃(y, t) = φ̃h(y, t) +
M∑
m=1

Fφ,m(y)qφ,m(t) (57)
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dans lesquelles nous avons introduit les vecteurs Fφ,m(y) =
[
fφ,u,m(y) fφ,l,m(y))

]
,

qφ,m(t) =

[
q̃φ,u,m(t)
q̃φ,l,m(t)

]
où les conditions suivantes doivent être vérifiées :


fv,u,m(+1) = fv,l,m(−1) = 1, fv,u,m(−1) = fv,l,m(+1) = 0,
fη,u,m(+1) = fη,l,m(−1) = 1, fη,u,m(−1) = fη,l,m(+1) = 0,

f
′
v,u,m(±1) = f

′
v,l,m(±1) = 0

(58)

Comme le cas précédent, l’équation (19) est modifiée

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t), (59)

où u(t) =
[
q>v,1(t) · · · q>v,M (t) q>η,1(t) · · · q>η,M (t))

]> est le nouveau signal de
commande. Toutes les matrices B, E, Q12, Q21, Q22 et D2 sont modifiées.

Avantages d’augmenter le nombre de dégrée de liberté

Nous montrons les avantages obtenus en augmentant le nombre DDL dans le cas où
α = 0, β = 2.044 et R = 5 000 (les résultats dans le cas α = 1, β = 0 et R = 10 000
sont le même). La figure 5(a) rapporte le comportement des énergies synchronique et
diachronique en boucle ouverte. Comme on s’y attendait, l’énergie cinétique présente
un pic responsable d’une transition potentielle vers la turbulence. La figure 5(a) mon-
tre qu’une commande LQR avec 2 DDL permet de diminuer la valeur de l’énergie
diachronique sans toutefois éviter le pic d’énergie. La figure 5(b) montre clairement le
bénéfice d’augmenter le nombre DDL.
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Figure 5: Bénéfice d’augmenter le nombre de dégrée de libertés.

Remarque

Malgré le fait d’avoir démontré lorsque le nombre de DDL est augmenté, le bénéfice est
décrit par la commande LQR, nous avons aussi besoin d’une commande qui garantit
ε̇(t) ≤ 0.
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Commande par asservissement visuel

Objectif

Lorsque le nombre de DDL est augmenté, nous proposons une approche de commande
qui satisfait ε̇(t) = −2λε(t), ḋ(t) = −λd(t) et u̇(t) = −λu(t).

Conception de la commande

Considérons le système suivant
Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t),
ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)
d(t) = D1x(t) + D2u(t),

(60)

Le système (60) n’est pas à la formulaire standard. Nous pouvons réécrire l’équation (60)
par le changement des variables x(t) = z(t)+L−1Eu(t), dans [Cortelezzi and Speyer, 1998],
[Cortelezzi et al., 1998a], [Cortelezzi et al., 1998b]. Nous obtenons

ż(t) = Azz(t) + Bzu(t), (61)

où les matrices sont définies{
Az = L−1A
Bz = L−1B + L−1AL−1E,

(62)

La densité de l’énergie cinétique est réécrite par

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)
= (z(t) + L−1Eu(t))>Q11(z(t) + L−1Eu(t)) + (z(t) + L−1Eu(t))>Q12u(t)
+u>(t)Q21(z(t) + L−1Eu(t)) + u>(t)Q22u(t)

(63)
ou plus simplement

ε(t) = z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t), (64)

où les matrices Nzu, Nuz et Rz sont définies
Qz = Q11

Nzu = Q12 + Q11L
−1E

Nuz = Q21 + (L−1E)>Q11

Rz = Q22 + (L−1E)>Q12 + Q21L
−1E + (L−1E)>Q11L

−1E.

(65)

De même façon, la traînée est réécrite par

d(t) = D1x(t) + D2u(t) = D1z(t) + (D1L
−1E + D2)u(t), (66)

ou plus simplement
d(t) = Dz1z(t) + Dz2u(t), (67)
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où les matrices Dz1 and Dz2 sont définies{
Dz1 = D1

Dz2 = D1L
−1E + D2.

(68)

Nous obtenons le système
ż(t) = Azz(t) + Bzu(t)

ε(t) = z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t)

d(t) = Dz1z(t) + Dz2u(t)

z(0) = z0

(69)

Par conséquent, en supposant une commande par retour d’état u(t) = Kz(t) et en
supposant qu’il soit possible de calculer une matrice K assurant une décroissance ex-
ponentielle du vecteur d’état ż(t) = −λz(t), il est aisé d’établir les relations suivantes:
u̇(t) = −λu(t), ḋ(t) = −λd(t) et ε̇(t) = −2λε(t). Cette façon de faire assuré le com-
portement recherché.

Dans l’asservissement visuel, la dynamique du vecteur erreur est alors donnée par

ė(t) =
∂e(t)

∂t
+ Le(t)u(t) (70)

Nous voulons stabiliser le vecteur d’état z(t) par une décroissance exponentielle. Donc,
le vecteur d’état est choisie à être l’ensemble d’informations visuelles z(t) = s(t). Grâce
à (69), nous obtenons Le(t) = Bz

∂e(t)

∂t
= Azz(t).

(71)

Nous souhaitions d’assurer une décroissance exponentielle du vecteur erreur

ė(t) = −λe(t). (72)

Nous obtenons
u(t) = −λL−1e (t)e(t)− L−1e (t)

∂e(t)

∂t
. (73)

Dans ce cas, la commande peut être réécrite par u(t) = Kz(t) où

K = −L−1e (t)(λI + Az) (74)

Résultat de Simulation

Les résultats suivants concernent la loi de commande que nous proposons. Nous avons
fixé λ = 0.25. Les figures 6(a) et 7(a) montrent que notre loi de commande permet
effectivement de découpler les composantes du vecteur d’état. Par suite, la commande
(figures 6(b) et 7(b)), l’énergie cinétique (figures 6(c) et 7(c)) et la traînée (figures 6(d)
et 6(d)) sont bien des exponentielles décroissantes comme il était attendu. Ce résultat
est de toute importance car il garantit que les grandeurs physiques observées ne peuvent
que décroitre.
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Figure 6: Comportement de l’écoulement 2D de Poiseuille en boucle fermée en fonction
du temps.
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Figure 7: Comportement de l’écoulement 3D de Poiseuille en boucle fermée en fonction
du temps.
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Remarques

• Commande par asservissement visuel obtient ż(t) = −λz(t), par conséquent nous
obtenons ε̇(t) = −2λε(t), ḋ(t) = −λd(t) et u̇(t) = −λu(t). Ces résultats sont les
résultats souhaités en boucle fermée du contrôle des écoulements.

• DDL est égale au nombre du vecteur d’état. Et il s’agit des conditions très fortes.
Nous devons réduire cette condition car le nombre du vecteur d’état peut être trop
grand.

Modèle d’ordre réduit

Objectif

Objectif de cette section est de chercher une approche de commande qui garantit ε̇(t) ≈
−2λε(t) et u̇(t) = −λu(t) alors même que nous utilisons 2 DDL.

Conception de la commande

Considérons le système suivant{
ż(t) = Azz(t) + Bzu(t)
ε(t) = z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t)

(75)

Lorsque le nombre de DDL est inférieur au nombre du vecteur d’état. Nous ne pouvons
pas de utiliser la commande par asservissement visuel pour le système (75). Afin de
garantir ε̇(t) ≈ −2λε(t), nous cherchons une approche de commande qui assure

• u̇(t) = −λu(t)

• żr(t) = −λzr(t) où z(t) = Vz

[
zr(t)
zn−r(t)

]
, r est le nombre de DDL.

Basé sur les résultats dans [Cortelezzi and Speyer, 1998], [Cortelezzi et al., 1998a],
et [Cortelezzi et al., 1998b], nous utilisons le forme canonique de Jordan. (75) devient[

żr(t)
żn−r(t)

]
=

[
Λr 0
0 Λn−r

] [
zr(t)
zn−r(t)

]
+

[
Br,m

Bn−r,m

]
u(t) (76)

où les matrices sont

Bz = Vz

[
Br,m

Bn−r,m

]
,Az = Vz

[
Λr 0
0 Λn−r

]
V−1
z (77)

et Vz est la matrice des vecteurs propres qui transforme Az en forme canonique de Jor-
dan. Notons que Λr contient toutes les valeurs propres positives si elles existent. L’idée
est de déterminer żr(t) = −λzr(t). Nous pouvons facilement trouver une commande

u(t) = −B−1
r,m(λIr + Λr)zr(t) (78)
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Donc, la commande est ensuite donnée par

u(t) = −B−1
r,m(λIr + Λr)

[
Ir [0]r,n−r

]
V−1
z z(t) (79)

qui garantit u̇(t) = −λu(t).

Résultat de Simulation

Nous ne considérons que 2 DDL. Quand DDL est assez grand, nous assurons ε̇(t) ≈
−2λε(t). Si DDL est 2, nous trouvons que nous pouvons assurer ε̇(t) ≈ −2λε(t) si nous
cherchons λ pour assurer ε(t) ≈ u>(t)Rzu(t).

Pour le cas où α = 1, β = 0 et R = 10 000, par exemple, les fonctions fφ,ψ(y) sont
choisies

fv,l(y) =
y3 − 3y + 2

4
, fv,u(y) =

−y3 + 3y + 2

4
(80)

Les résultats sont donnés dans la figure 8. Malgré 2 DDL sont utilisé avec ε(t) ≈
u>(t)Rzu(t), l’énergie cinétique est une approximation de la décroissance exponentielle
(où λ = 0.25). Ces résultats valident l’approche proposée.
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du temps.
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Pour le cas où α = 0, β = 2.044 et R = 5 000. L’énergie cinétique est une ap-
proximation de la décroissance exponentielle, illustrée dans la figure 9 (où λ = 250).
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Remarques

La commande par asservissement visuel est d’assurer ε̇(t) ≈ −2λε(t) pour tout DDL,
si l’énergie de régulation est admissible.

Notre travail ouvre les perspectives pour le futur. S’il existe une commande pour
assurer ε̇(t) ≤ 0 pour tout DDL, nous avons la condition

(Az + BzK)>(Qz + K>Nuz + NzuK + K>RzK)
+(Qz + K>Nuz + NzuK + K>RzK)(Az + BzK) ≤ 0

(81)

où les paramètresRz, Nuz etNzu sont variés. Mais l’inégalité est trop difficile à trouver.
Notons que l’inégalité

(Az + BzK)>Qz + Qz(Az + BzK) < 0 (82)

a une solution K si Bz est une matrice de plein rang. Il s’agit de notre "challenge".

Conclusion

Dans cette thèse, nous avons appliqué l’asservissement visuel au contrôle actif des écoule-
ments. L’énergie cinétique est minimisée par une décroissance exponentielle qui assure
la stabilité des écoulements.
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Fη,m =

[
fη,u,m fη,l,m

]
I identity matrix
k k =

√
α2 + β2

j j =
√
−1
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Roman Symbols

Dn matrix of nth derivative of Chebyshev polynomials, n = 0, 1, 2, 3, 4
DnD modified Dn with Dirichlet boundary conditions
DnDN modified Dn with Dirichlet and Neumann boundary conditions

d(t) skin friction drag

x(t) state vector
z(t) state vector
y(t) the output signal
u(t) control signal

A state matrix
L state matrix
B input matrix
E input matrix
Az state matrix, Az = L−1A
Bz input matrix, Bz = L−1B + L−1AL−1E
C output matrix
D feedforward matrix
D1 transfer matrix from the state vector x(t) to the skin friction drag d(t)
Dz1 transfer matrix from the state vector z(t) to the skin friction drag d(t)
D2 transfer matrix from the control signal u(t) to the skin friction drag d(t)
Dz2 transfer matrix from the control signal x(t) to the skin friction drag d(t)

K gain of control law
Ko gain of observer
Klqr gain of LQR control
Kr gain of control law based on the model reduction

Le interaction matrix
Ler interaction matrix

[ṽn(t)] [ṽn(t)] = [ṽ(y0, t) . . . ṽ(yN , t)]
>

[η̃n(t)] [η̃n(t)] = [η̃(y0, t) . . . η̃(yN , t)]
>

Tav transfer matrix from the state vector x(t) to velocity [ṽn(t)]
Taη transfer matrix from the state vector x(t) to vorticity [η̃n(t)]
Tqv transfer matrix from the control singal u(t) to velocity [ṽn(t)]
Tqη transfer matrix from the control signal u(t) to vorticity [η̃n(t)]
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Q quadrature weight

Q11 Q11 =
1

8k2
(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y) + T>aηQTaη)

Q12 Q12 =
1

8k2
(T>avQTqv + (∂Tav/∂y)>Q(∂Tqv/∂y) + T>aηQTqη)

Q21 Q21 =
1

8k2
(T>qvQTav + (∂Tqv/∂y)>Q(∂Tav/∂y) + T>qηQTaη)

Q22 Q22 =
1

8k2
(T>qvQTqv + (∂Tqv/∂y)>Q(∂Tqv/∂y) + T>qηQTqη)

Qz Qz = Q11

Nzu Nzu = Q12 + Q11L
−1E

Nuz Nuz = Q21 + (L−1E)>Q11

Rz Rz = Q22 + (L−1E)>Q12 + Q21L
−1E + (L−1E)>Q11L

−1E

Greek Symbols

∇ Gradient operator, ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )

∆ Laplacian operator, ∆ = ( ∂2

∂x2
, ∂

2

∂y2
, ∂

2

∂z2
)

Γ Chebyshev polynomial
Ξ modified Chebyshev polynomial
Θ modified Chebyshev polynomial

ρ density
τ shear stress or response time
µ viscosity
ν dynamic viscosity
η vorticity
α, β pair wavenumber (α = 2πnst

Lx
and β =

2πnsp
Lz

)
γ control weight of LQR control

ε kinetic energy density
εz kinetic energy density
εx kinetic energy density
εmax maximum kinetic energy density
εs synchronic transient energy
εd diachronic transient energy
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Calligraphic Symbols

X (t) state vector, X (t) =

[
x(t)
u(t)

]
U(t) control signal, U(t) = u̇(t)

A state matrix, A =

[
L−1A L−1B

0 0

]
B input matrix, B =

[
L−1E

I

]
D output matrix, D =

[
D1 D2

]
Q Q =

[
Q11 Q12

Q21 Q22

]
K gain of control law

Acronyms

CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
LED Large Eddy Simulation

NSE Navier Stokes Equations
PDE Partial differential Equations
ODE Ordinary Differential Equations

PID Proportional Integral Derivative
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LQE Linear Quadratic Estimator
LMI Linear Matrix Inequality
PVS Partitioned Visual Servo
VS Visual Servoing

MIMO Multiple Inputs Multiple Outputs
MOR Model Order Reduction
TMOR Truncation Model Order Reduction
POD Proper Orthogonal Decomposition
BPOD Balanced Proper Orthogonal Decomposition
DOF Degree Of Freedom

CCD Charge Coupled Device
MEMS Micro-Electro-Mechanical-Systems
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Acronyms

A/D Analog to Digital converter
D/A Digital to Analog converter
DSP Digital Signal Processor
ASP Analog Signal Processing







Chapter 1

Introduction

1.1 Why flow control

The flow control has many applications in aerospace (improve lift, reduce drag and
noise). We consider the motion of an aircraft in the air. The aircraft can fly due to
four forces in Figure 1.1: weight, drag, lift and thrust. The weight is a force due to
the gravity of the earth and is always toward the center of the earth. The drag, an
aerodynamic force, is the resistance force generated by the motion of the aircraft in the
air. The lift, an another aerodynamic force to overcome the weight, is generated by
the aircraft’s wing. And the thrust is a force created by a power source which gives
the aircraft forward motion. In the level flight at constant speed, the thrust exactly

Figure 1.1: Four forces on an aircraft.

equals the drag and the lifts exactly equals the weight. In order to economize the power
source, we want to reduce the drag and enhance the lift. In all cases, there are many
research in the drag reduction and lift enhancement.

1



2 Visual servoing control

For instance, Airbus expects in 2020 to decrease by 50% the CO2 emissions compared
to a standard aircraft in 2000, and 20% of this decrease being expected from the airframe
by diminishing the fuel consumption of their aircrafts through aerodynamic drag reduc-
tion and structural weight savings [Flaig, 2008]. In the aerospace drag reduction, the
flow control such as laminar flow control and turbulence & separation may achieve 15%
of the drag reduction as shown in Figure 1.2 (taken from [Schrauf and Golling, 2006]).
The main question is how to reduce the drag and enhance the lift in the motion of air-

Figure 1.2: Drag reduction potential.

craft or vehicle ? In order to reduce the drag and enhance the lift, we must know when
the fluid flow has the minimum value of the drag and the maximum value of the lift.
Therefore, the objective is minimizing the drag and enhancing the lift. More precisely,
we need to control the fluid flow from its current state to a desired state.

In the next section, we present the visual servoing control which will be applied to
the flow control.

1.2 Visual servoing control

The visual servoing or visual servo control aims to control the motions of a robot by
using data provided by a vision sensor [Chaumette and Hutchinson, 2006]. It is now
a well established technique in the robotics community. More precisely, to achieve a
visual servoing task, a set of visual features s(t) is selected from the image of the scene
being observed. A control law is then designed so that this set of visual features s(t)
reaches a desired value s∗ corresponding to a desired state of the system. The dynamic
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of the error vector e(t)= s(t)− s∗ is then given by

ė(t) =
∂e(t)

∂t
+ Le(t)u(t), (1.1)

where u(t) is the system control inputs assumed to be velocities, Le(t) is the so-called
interaction matrix, see previous works in [Espiau et al., 1992] or the image Jacobian
that links the time variation of the visual features to the variation of the control signal
acting on the system and ∂e(t)/∂t expresses the variation of the error vector due to
the free motion of the visual features. The control goal is of course to regulate the
error vector e to zero. The control law is built from (1.1) using the knowledge or an
approximation of the interaction matrix and an approximation of the free motion of
the visual features. Visual servoing has shown impressive results in numerous complex
contexts such as underwater, medical and aerial (helicopters, blimps) robotic as shown
in [Bonin-Font et al., 2008].

If we would like for instance to try to ensure an exponential decoupled decrease of
the error

ė(t) = −λe(t). (1.2)

We now obtain
u(t) = −λL+

e (t)e(t)− L+
e (t)

∂e(t)

∂t
, (1.3)

where L+
e is the Moore Penrose pseudo-inverse matrix of Le. If Le were a square and

invertible matrix, the control law could be

u(t) = −λL−1e (t)e(t)− L−1e (t)
∂e(t)

∂t
. (1.4)

Note that the interaction matrix Le may be not a square matrix but must be full rank
matrix, therefore we use the Moore Penrose pseudo-inverse matrix L+

e .
We shall apply this technique to control the fluid flow. The visual feature s(t) may

be equal to the velocity, the skin friction drag and the kinetic energy density.

1.3 Plane Poiseuille flow

The plane Poiseuille flow is chosen to study in this thesis because this flow is more
adapted to the control theory than the other flows, contains a fundamental character of
the flow control and illustrates many of the important unsolved issue of the flow control.

The active control, more precisely the visual servoing control in the closed loop
system of the plane Poiseuille flow is proposed to obtain the stability of this flow. Since
the governing equations of the plane Poiseuille flow are the Navier-stokes Equations,
a popular partial differential equation in fluid dynamics, we use spectral method to
convert the partial differential equations of Navier-Stokes Equations to a set of ordinary
differential equations. A standard formulation in automatic control is presented for
the plane Poiseuille flow where the control inputs are the boundary conditions, more
precisely the velocity at the walls. The visual servoing control is applied on the standard
formation in automatic control to achieve the stability of the flow.

In the next section, we present the outline of the thesis.



4 Outline of the thesis

1.4 Outline of the thesis

This thesis aims to study the implementation of the visual servoing control for the active
control of the plane Poiseuille flow. Transition to turbulence is one of interests where
the flow becomes turbulent with the growth of its kinetic energy density. The reduction
of the skin friction drag is also a potential application in engineering problems. The
goal of this thesis is to minimise both the kinetic energy density and the skin friction
drag. By using the visual servoing control, we show in this thesis that the kinetic energy
density and the skin friction drag are monotonically decreasing over time to ensure the
stability of the flow.

The outline of this thesis is as follows.
Chapter 2 presents some fundamentals of flow control. The basic definitions of the

fluid flow are given such as the density, the viscosity, the Reynolds number, the kinetic
energy density. Indeed, the kinetic energy density is a physical quantity to study the
stability of the fluid flow. Therefore, we want to minimize the kinetic energy density.

Chapter 3 introduces some fundamentals of automatic control. This chapter allows
us to understand the process of control system based on simple examples. The control
theory of linear and nonlinear systems is derived. The stability and stabilization of
systems are also discussed in detail.

Chapter 4 presents previous works and the objectives of this thesis. Here we intro-
duce the problem of flow control and propose the solutions. The goal of this thesis is to
use the visual servoing control to apply to the plane Poiseuille flow in order to improve
the stability of flow control and reduce the skin-friction drag.

Chapter 5 gives a modeling of the plane Poiseuille flow where the Navier-Stokes
equations are modeled to a standard model in the automatic control. We control the
plane Poiseuille flow by using the blowing/suction boundary control. The number of
degrees of freedom is the number of independent control signals.

The originalcontribution is in Chapter 6 where the partitioned visual servoing control
is applied to obtain an exponential decrease of the skin-friction drag. The next con-
tributions concern how to obtain an exponential decrease of the kinetic energy density
in the controlled flow. Since the minimization of the kinetic energy density relates the
degrees of freedom, Chapter 7 shows how to increase the number of degree of freedom.
The minimization of kinetic energy density is improved as the function of increasing
the number of degrees of freedom. In particular, Chapter 8 presents a design of the
visual servoing control in order to obtain an exponential decrease of the kinetic energy
density. Chapter 9 introduces a reduced order controller where an approximation of the
exponential decrease of the kinetic energy density is obtained even using two degrees of
freedom.

Finally, Chapter 10 gives conclusions from the work described in this thesis and
suggests possible directions for future work.



Chapter 2

Fundamentals of Flow Control

This chapter is fundamentals of flow control. The fluid mechanics is briefly presented.
Some definitions and some physical quantities are considered in the fluid mechanics
such as the viscosity, the Reynolds number, laminar and turbulence. As well known,
the Navier Stokes equations are the governing equations of the flow. The kinetic energy
density is introduced as a physical quantity which is necessary used to study the stability
of flow. The general flow control is given in the end of this chapter where the first views
of the flow control are brought out.

2.1 Fluid mechanics

In this section, the fluid mechanics and its basic quantities are presented. The viscosity,
the Reynolds number, laminar and turbulent flows are focused. This summary is taken
from previous works, especially [Schlichting and Gersten, 2000]. It must be noted that
the flow can be change its state, laminar or turbulent state. Therefore, the ideal of this
thesis is to control the flow from its current state to a desired state.

2.1.1 Introduction

The fluid mechanics is the science of the study of fluids and the forces on it such as
the friction forces, the inertial forces and the gravitational forces. It is a branch of
physics which studies the statics and dynamics of liquids and gases. It contains two
main sub-branches:

• Fluid statics studies fluids at rest.

• Fluid dynamics studies fluids in motion.

The fluid dynamics is distinguished by two sub-branches: aerodynamics and hydrody-
namics. Aerodynamics studies the motion of air and gases while hydrodynamics studies
the motions of liquids. But it is very difficult to distinguish the aerodynamics and the
hydrodynamics when the liquids can change its state from liquid state to gases state
due to the temperature.

5



6 Fluid mechanics

The fluid mechanics, especially the fluid dynamics, is an active field of research with
many unsolved or partly solved problems. The analysis of the behavior of fluids is based
on the fundamental laws of physics that relate the conservation of mass, momentum
and energy. With the help of computer, the fluid mechanics can be solved by numerical
methods where the computational fluid dynamics (CFD) is an approach to solving the
fluid mechanics problem. The direct numerical simulation (DNS) and the large eddy
simulation (LED) are two of many tools of CFD which are usually used to study
the fluid mechanics problems. In engineering applications, the fluid mechanics has
many applications in various fields such as marine engineering, aeronautics, meteorology,
climatology and oceanography.

2.1.2 Types of fluid

The fluids may also be classified into two families by their relative viscosity. The
viscosity is one of their physical chemical characteristic that is defined later in the next
section. The two large families are:

• Newtonian fluid, a fluid whose stress at each point is linearly proportional to its
strain rate at that point, such as water, air and most of gases.

• Non-Newtonian fluid is a fluid whose flow properties differ in any way from those of
Newtonian fluids, such as the blood, gels, sludges, pastes, suspensions, emulsions.

Note that in physics, the shear stress is a physical quantity that expresses the internal
forces. In a solid, the shear stress is a function of strain. Nut in a fluid, the shear stress
is a function of strain rate. In this thesis, only the Newtonian fluid is considered and
classified by

• Ideal fluid is a fluid whose movement can be described without taking into account
the effects of friction.

• Real fluid is a fluid whose movement are taking into account the effects of friction.

• Compressible fluid is a fluid whose volume is a function of variation of pressure.
Gases are considered as a compressible fluids, such as the air, hydrogen, methane
in the gaseous state.

• Incompressible fluid is a fluid whose volume is not changed by a variation of
pressure. Liquids can be considered as an incompressible fluids, such as water,
oil.

2.1.3 Physical characteristics

2.1.3.1 Density

The density is defined as an objects mass par unit volume. The density is calculated by

ρ =
m

Vo
, (2.1)
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where ρ is density (kg/m3), m is the mass (kg) and Vo is the volume (m3). We give
some examples of density, for the benzene ρ = 0.88 103kg/m3, water ρ = 103kg/m3, air
ρ = 0.001205 103kg/m3 and methane ρ = 0.00717 103kg/m3.

2.1.3.2 Viscosity

The viscosity is a quantity that characterizes the internal friction of the fluid. In other
word, the viscosity is a measure of a fluid’s resistance to flow, e.g. molasses is highly
viscous, water is medium viscous and gases are low viscous. In order to give a form of
viscosity, the flow between two parallel plane plates is studied, see Figure 2.1 (taken
from [Schlichting and Gersten, 2000]). The shear stress τ is the force per unit surface

y

U

h

Figure 2.1: Velocity distribution in a viscous fluid between two parallel plane plates,
plane Couette flow. U is the maximum velocity, the velocity u at y is calculated by
u = yU/h.

area of the plates

τ = µ
du

dy
, (2.2)

this equation is Newton’s law of friction and can be interpreted as the defining equation
of the viscosity. Note that the dynamic viscosity is in general a function of the temper-
ature and the pressure, e.g. for water µ = 1.787 10−3Pa.s at 0oC, µ = 1.002 10−3Pa.s
at 20oC and µ = 0.2818 10−3Pa.s at 100oC. The kinematic viscosity is the ratio of
dynamic viscosity to density and is given by

ν =
µ

ρ
. (2.3)

It must be noted that if the relation between the shear stress τ and the velocity gradient
du/dy is nonlinear, the the fluids will be called non-Newtonian fluids.

2.1.4 Reynolds number

The Reynolds number is one of fundamental important numbers in the fluid dynamics.
This number helps us to distinguish a laminar or turbulent state of the flow. In order
to give a form of the Reynolds number, we consider the forces on a volume element
in the fluid, as shown in Figure 2.2 (taken from [Schlichting and Gersten, 2000]). The
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following forces generally act on a volume: friction forces (proportional to the viscosity
µ), inertial forces (proportional to the density ρ), pressure forces and volumes forces
(e.g. gravitational force) but we only consider the ratio of the inertial forces to the
friction forces. This ratio allows us to give a definition of the Reynolds number.

VR

dy

dx
dz

τ + ∂τ
∂ydy

τ

d

Figure 2.2: Friction forces acting on a fluid particle.

For motion which is mainly in the x directions, the inertial force per unit volume
is ρdu/dt where u is the velocity component in the x direction. Therefore, we can give
the inertial force (see [Schlichting and Gersten, 2000], p.13)

Fi = ρ
du

dt
= ρ

∂u

∂x

dx

dt
= ρu

∂u

∂x
. (2.4)

While the shear force is given from (2.2) by the following expression

(τ +
∂τ

∂y
dy)dxdz − τdxdz =

∂τ

∂y
dxdydz. (2.5)

Consequently, the friction force per unit volume is thus given by

Ff =
∂τ

∂y
= ρ

∂2u

∂y2
. (2.6)

Indeed, the ratio of inertial to friction forces is given by

inertial force
friction force

=
ρu∂u/∂x

µ∂2u/∂y2
. (2.7)

When we consider the sphere in the flow illustrated in Figure 2.2. It is now necessary
to investigate how these forces are changed when the magnitudes which determined the
flow are varied. The latter includes the density ρ, the viscosity µ, a respectively velocity,
e.g. the free stream velocity VR, and a characteristic linear dimension of the body, e.g.
the diameter d of the sphere. The velocity u at some points in the velocity field is
proportional to the maximum velocity VR, the velocity gradient ∂u/∂x is proportional
to VR/d, and similarly ∂2u/∂y2 is proportional to VR/d2. Therefore, we get

inertial force
friction force

=
ρu∂u/∂x

µ∂2u/∂y2
=

ρV 2
Rd

µVRd2
=
ρVR
µd

. (2.8)
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The Reynolds number is a dimensionless number and expresses the ratio of inertial force
to friction force as calculated by

R =
VRd

υ
. (2.9)

And the critical Reynolds number is the Reynolds number where the flow can change its
state, from laminar to turbulent state. In the next section, the laminar and turbulent
flows are presented.

2.1.5 Laminar and turbulent flows

The process by which turbulent flow develops and replaces laminar flow is known as
transition. This process is emphasized in Figure 2.3 (taken from [Durst, 2008]). It is
noted that the laminar flow is characterized by the layers moving parallel to others
while the fluid motion in the turbulent flow is highly random and unpredictable. The
transitional flow is a process between the laminar and turbulence, this flow contains
both laminar and turbulent characteristics.

Figure 2.3: Subsonic open jet with areas of laminar, transitional and turbulent flow.

Since laminar to turbulent transition is specified based on the critical Reynolds
number, we must be determined this number. Fortunately, in linear theory, the critical
Reynolds number is given based on the stability theory as linear stability analysis and
energy methods. An example of linear stability analysis or energy methods is found in
[Orszag, 1971] or [Trefethen et al., 1993], [Butler and Farrell, 1992], respectively.

The idea of this thesis is to control the flow in order to change its state from the
current state to a desired state to satisfy our goals, e.g. the flow is controlled from the
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turbulent flow to the laminar flow due to the potential application of laminar flow. To
do that, both the passive and active controls will be presented in the next sections and
the following of this thesis. The subject of this thesis is precisely in the next chapters,
especially in the state of the art.

The basic physical quantities have been presented in the fluid dynamics, and the
laminar and turbulent flows have been focused. In the next section, the governing
equations of the fluid flow are the conservation of mass and momentum.

2.2 Governing Navier-Stokes Equations

The governing equations of the fluid flow are introduced. Note that only the impor-
tant equations of Navier-Stokes equations are recalled (see [Bird et al., 1960] for more
details).

Consider the behavior of a fluid in 3D cartesian coordinates illustrated in Figure
2.4. The velocity field is denoted V = (U(x, y, z, t), V (x, y, z, t),W (x, y, z, t)) where
(U(x, y, z, t), V (x, y, z, t), W (x, y, z, t)) are the velocity components in the x, y and z
directions. We recall the works of Aamo [Aamo, 2002].

(x,y,z) x

z
y

W |z

W |z+∆z

U |x U |x+∆x

V |y

V |y+∆y

Figure 2.4: Control volume for derivation of the governing equations.
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2.2.1 Conservation of mass

We use a mass balance over the volume in Figure 2.4. The equation of conservation of
mass is given

rate of mass accumulation = rate of mass in - rate of mass out, (2.10)

where

rate of mass in = (ρU)|x∆y∆z + (ρV )|y∆x∆z + (ρW )|z∆x∆y
rate of mass out = (ρU)|x+∆x∆y∆z + (ρV )|y+∆y∆x∆z + (ρW )|z+∆z∆x∆y

(2.11)
Therefore, we obtain

∂ρ

∂t
∆x∆y∆z = [(ρU)|x − (ρU)|x+∆x]∆y∆z + [(ρV )|y − (ρV )|y+∆y]∆x∆z

+[(ρW )|z − (ρW )|z+∆z]∆x∆y
(2.12)

or we can rewrite the above equation by dividing the volume ∆x∆y∆z

∂ρ

∂t
=

[(ρU)|x))− (ρU)|x+∆x]

∆x
+

[(ρV )|y − (ρV )|y+∆y]

∆y
+

[(ρW )|z − (ρW )|z+∆z]

∆z
(2.13)

When ∆x→ 0, ∆y → 0 and ∆z → 0, we get

∂ρ

∂t
= −∂(ρU)

∂x
− ∂(ρV )

∂y
− ∂(ρW )

∂z
(2.14)

We can have a compact form of the equation of conservation of mass

∂ρ

∂t
+∇.(ρV) = 0, (2.15)

where V is the velocity, ρ is the fluid density, and the gradient operator is given by

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
). If an incompressible flow is considered, the fluid density ρ is a

constant, the equation of conservation of mass will become the equation of continuity

∇.V = 0. (2.16)

2.2.2 Conservation of momentum

The equation of conservation of momentum is given

rate of momentum accumulation = rate of momentum in - rate of momentum out
+ sum of force acting on system. (2.17)

We calculate the momentum in the x-direction

rate of momentum in = (ρU2)|x∆y∆z + (ρUV )|y∆x∆z + (ρUW )|z∆x∆y
rate of momentum out = (ρU2)|x+∆x∆y∆z + (ρUV )|y+∆y∆x∆z + (ρUW )|z+∆z∆x∆y

(2.18)
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And we calculate the sum of forces acting on system

sum of forces acting on system = (τxx|x − τxx|x+∆x)∆y∆z + (τyx|y − τyx|y+∆y)∆x∆z
+(τzx|z − τzx|z+∆z)∆x∆y + (P |x − P |x+∆x)∆y∆z

(2.19)
where τij denotes the viscous force acting in the direction of f on a face normal to the
i-direction. Therefore, we obtain

∂(ρU)

∂t
∆x∆y∆z = [(ρU2)|x − (ρU2)|x+∆x]∆y∆z + [(ρUV )|y − (ρUV )|y+∆y]∆x∆z

+[(ρUW )|z − (ρUW )|z+∆z]∆x∆y + (τxx|x − τxx|x+∆x)∆y∆z
+(τyx|y − τyx|y+∆y)∆x∆z + (τzx|z − τzx|z+∆z)∆x∆y
+(P |x − P |x+∆x)∆y∆z

(2.20)
We can rewrite the above equation by dividing the volume ∆x∆y∆z and letting ∆x→ 0,
∆y → 0 and ∆z → 0, we get

∂(ρU)

∂t
+
∂(ρU2)

∂x
+
∂(ρUV )

∂y
+
∂(ρUW )

∂z
= −∂P

∂x
− ∂τxx

∂x
− ∂τyx

∂y
− ∂τzx

∂z
(2.21)

When ρ = constant, we have

ρ
∂U

∂t
+ρ(U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
) + ρU(

∂U

∂x
+
∂V

∂y
+
∂W

∂z
)

= −∂P
∂x
− ∂τxx

∂x
− ∂τyx

∂y
− ∂τzx

∂z

(2.22)

Using (2.16), it means
∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0, we get

ρ
∂U

∂t
+ ρ(U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
) = −∂P

∂x
− ∂τxx

∂x
− ∂τyx

∂y
− ∂τzx

∂z
(2.23)

Therefore, by using the similar way for the momentum in the y and z directions, we get
the complete set of equations

ρ
∂U

∂t
+ ρ(U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
) = −∂P

∂x
− ∂τxx

∂x
− ∂τyx

∂y
− ∂τzx

∂z
(2.24)

ρ
∂V

∂t
+ ρ(U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
) = −∂P

∂y
− ∂τxy

∂x
− ∂τyy

∂y
− ∂τzy

∂z
(2.25)

ρ
∂W

∂t
+ ρ(U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
) = −∂P

∂z
− ∂τxz

∂x
− ∂τyz

∂y
− ∂τzz

∂z
(2.26)
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The viscous forces τij is a function of the fluid motion V = (U, V,W ). We consider the
Newtonian fluids, we have

τxx = −2µ
∂U

∂x
, τyy = −2µ

∂V

∂y
, τzz = −2µ

∂W

∂z
(2.27)

τxy = τyx = −µ(
∂U

∂y
+
∂V

∂x
) (2.28)

τyz = τzy = −µ(
∂V

∂z
+
∂W

∂y
) (2.29)

τxz = τzx = −µ(
∂U

∂z
+
∂W

∂x
) (2.30)

Substituting ((2.27)-(2.30)) into ((2.24)-(2.26)), we get

ρ
∂U

∂t
+ ρ(U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
) = (2.31)

− ∂P

∂x
− µ(

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
) + µ

∂

∂x
(
∂U

∂x
+
∂V

∂y
+
∂W

∂z
) (2.32)

ρ
∂V

∂t
+ ρ(U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
) = (2.33)

− ∂P

∂y
− µ(

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
) + µ

∂

∂y
(
∂U

∂x
+
∂V

∂y
+
∂W

∂z
) (2.34)

ρ
∂W

∂t
+ ρ(U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
) = (2.35)

− ∂P

∂z
− µ(

∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
) + µ

∂

∂z
(
∂U

∂x
+
∂V

∂y
+
∂W

∂z
) (2.36)

Using
∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0, the Navier-Stokes equation of motion is given by

ρ
∂U

∂t
+ ρ(U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
) = −∂P

∂x
− µ(

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
) (2.37)

ρ
∂V

∂t
+ ρ(U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
) = −∂P

∂y
− µ(

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
) (2.38)

ρ
∂W

∂t
+ ρ(U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
) = −∂P

∂z
− µ(

∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
)(2.39)

We can get a compact form

∂V

∂t
+ (V.∇)V = −1

ρ
∇P +

µ

ρ
∆V, (2.40)

where µ = ρυ is the dynamic viscosity, and and the Laplacian operator is given by

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.
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2.2.3 The Dimensionless Navier Stokes Equations

The Navier-Stokes equations can be written in dimensionless. We can rewrite the Navier
Stokes in dimensionless form by introducing a characteristic length d and the charac-
teristic velocity VR. The new variables are dimensionless

V∗ = (U∗, V ∗,W ∗) =
V

VR
= (

U

VR
,
V

VR
,
W

VR
) (2.41)

P ∗ =
P

ρV 2
R

, x∗ =
x

d
, y∗ =

y

d
, z∗ =

z

d
, t∗ =

VR
d
t (2.42)

Therefore, we get a change of variable

∂U

∂t
= VR

∂U∗

∂t∗
∂t∗

∂t
=
V 2
R

d

∂U∗

∂t∗
(2.43)

∂U

∂x
= VR

∂U∗

∂x∗
∂x∗

∂x
=
VR
d

∂U∗

∂x∗
(2.44)

∂P

∂x
= ρV 2

R

∂P ∗

∂x∗
∂x∗

∂x
=
ρV 2

R

d

∂P ∗

∂x∗
(2.45)

∂2U

∂x2
=

∂

∂x∗
(
∂U∗

∂x∗
)
∂x∗

∂x
=
VR
d2

∂2U∗

∂x∗2
(2.46)

Using the new variables, we have
∂U∗

∂x∗
+
∂V ∗

∂y∗
+
∂W ∗

∂z∗
= 0

∂U∗

∂t∗
+ (U∗

∂U∗

∂x∗
+ V ∗

∂U∗

∂y∗
+W ∗

∂U∗

∂z∗
) = −∂P

∗

∂x∗
− 1

R
(
∂2U∗

∂x∗2
+
∂2U∗

∂y∗2
+
∂2U∗

∂z∗2
)

∂V ∗

∂t∗
+ (U∗

∂V ∗

∂x∗
+ V ∗

∂V ∗

∂y∗
+W ∗

∂V ∗

∂z∗
) = −∂P

∗

∂y∗
− 1

R
(
∂2V ∗

∂x∗2
+
∂2V ∗

∂y∗2
+
∂2V ∗

∂z∗2
)

∂W ∗

∂t∗
+ (U∗

∂W ∗

∂x∗
+ V ∗

∂W ∗

∂y∗
+W ∗

∂W ∗

∂z
) = −∂P

∗

∂z∗
− 1

R
(
∂2W ∗

∂x∗2
+
∂2W ∗

∂y∗2
+
∂2W ∗

∂z∗2
)

where the Reynolds number R = ρdVR/µ. We skip the superscript ∗ for notational
convenience, we get

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 (2.47)

∂U

∂t
+ (U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
) = −∂P

∂x
− 1

R
(
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
) (2.48)

∂V

∂t
+ (U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
) = −∂P

∂y
− 1

R
(
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
) (2.49)

∂W

∂t
+ (U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
) = −∂P

∂z
− 1

R
(
∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
) (2.50)

Finally, the Navier-Stokes equations for an incompressible fluid flow are{ ∇.V = 0
∂V

∂t
+ (V.∇)V = −∇P +

1

R
∆V.

(2.51)
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2.3 Kinetic energy density

In order to determine the state flow and its stability, we have to give a quantity which
is to capture the change of the state flow. The kinetic energy density of an object will
be the energy if it possesses due to its motions. Indeed, this quantity can capture the
stability of the flow. In the fluid dynamics, the kinetic energy density is given by

ε(t) =
1

Vo

∫
Vo

v2dVo, (2.52)

where v = V − Ve is the perturbation between the velocity V and the steady solu-
tion Ve, Vo is volume. On the other hand, the kinetic energy density is a physically
interesting measure of perturbation magnitude.

In the hydrodynamics, the stability theory is used to investigate the behavior of the
fluid flow. Note that the kinetic energy density has a similar role with respect to the
Lyapunov function in control theory. This function will be defined later in the next
chapter. Therefore, the kinetic energy density is not only a measure of the stability of
the dynamic system but also is the actual energy of the flow.

The transient energy growth is the growth of the kinetic energy density in time.
In previous works, the transient energy growth is a function of the Reynolds num-
ber. In [Butler and Farrell, 1992], [Reddy and Henningson, 1993], the transient en-
ergy growth could grow up to O(R2) in the transient time period, which is propor-
tional to O(R) in the transient time period (see section E.1 for more detail). In
[Bamieh and Dahleh, 1999], [Bamieh and Dahleh, 2001], if the streamwise wavenumber
is constant, the transient energy growth could grow up to O(R3) in the transient time
period. The transient energy growth gives the informations when the Reynolds number
becomes the critical Reynolds number which specifies laminar and turbulent flows.

The definitions of stability and the critical Reynolds numbers are presented in the
following, these results are taken from [Schmid and Henningson, 2001]. It is noted that
V is the velocity of the Navier Stokes equations (2.51).

Definition 2.3.1 Stability
A solution V to the Navier-Stokes equations (2.51) is stable to perturbation if the per-
turbation energy satisfies

limt→∞
ε(t)

ε(0)
→ 0. (2.53)

Definition 2.3.2 Conditional stability
If there exists a threshold energy δ > 0 such that V is stable when ε(0) < δ then solution
V is said to be conditionally stable.

Definition 2.3.3 Global stability
If the threshold energy is infinite, i.e. δ →∞, the solution is said to be globally stable.

Definition 2.3.4 Monotonically stable
If

dε(t)

dt
= ε̇(t) ≤ 0, (2.54)
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then the solution is said to be monotonically stable.

Based on the definitions of stability, it is appropriate to introduce the following
critical Reynolds numbers

Definition 2.3.5 For R < RE the flow is monotonically stable

Definition 2.3.6 For R < RG the flow is globally stable

Definition 2.3.7 For R < RT the flow will relaminearize

Definition 2.3.8 For R > RL the flow is linearly unstable or not conditionally stable

The critical Reynolds number is given for the plane Poiseuille and Couette flows in
Table 2.1 (taken from [Joshep, 1976], [Drazin and Reid, 1981]), see Figure 2.5 for its
profile.

Flow RE RG RT RL
Plane Poseuille 49.6 - 1000 5772
Plane Couette 20.7 125 360 ∞

Table 2.1: Critical Reynolds numbers from the literature.

(a) plane Poiseuille flow (b) plane Couette flow

Figure 2.5: Plane Poiseuille and Couette flows and its profile.

Based on the kinetic energy density, the path of transition to turbulence will be
briefly presented in the next section.

2.4 Path of transition to turbulence

This section briefly presents the path of transition to turbulence. Indeed, it must be
noted that it is very difficult to explain the path of transition to turbulence and it is



Fundamentals of Flow Control 17

not the subject of this thesis. Therefore, our goal is to demonstrate that it exists some
paths of transition to turbulence. Consequently, the path of transition to turbulence is
generally classified in Figure 2.6 (taken from [Morkovin et al., 1994]). Some definitions
must be given before considering the details of the paths.

The process of a laminar flow becoming turbulent is known as laminar-turbulent
transition (or called transition to turbulence). This is an extraordinary complicated
process which at present is not fully understood.

Note that the stability theory is used to investigate the behavior of the fluid flow
and the numerical methods are used to give a solution. The flow is modeled to a model
by numerical methods such as a spectral method and a finite element method. An
approximation solution is derived. The Navier Stokes equations are transformed to
the Orr-Sommerfeld and Squire equations. In order to determine the stability of the
flow, we study the eigenmodes and eigenfunctions of the Orr-Sommerfeld and Squire
operators. We will present these operators in the next chapters. The behavior of
approximation solution is based on considering the eigenmodes which are considered as
the eigenfunction of a system. The eigenmode will be presented in the next chapter.
The role of eigenfunction of operator is considered as the eigenvector of a matrix, the
eigenmode growth corresponds to the eigenfunction with the positive eigenvalue. The
problem of transient energy growth is called as the non-normality problem, the transient
energy growth appears even though the negative eigenvalues. These problems will be
precisely in the next chapters.

Tollmien-Schlichting mechanic is the streamwise instability, more precisely if we
consider the 2D flow, the approximation model contains positive eigenvalues. Therefore,
the transient energy growth is infinity. Therefore, we only need to consider the positive
eigenvalues. The eigenmode growth is called in this case.

We consider the transition to turbulence. The five paths of transition to turbulence
are clarified in [Morkovin et al., 1994], [Reshotko, 2001], [Reshotko et al., 2006], from
path A to path E, as shown in Figure 2.6.

Definition 2.4.1 Path of transition to turbulence (taken from [Reshotko, 2001])

• Path A corresponds to the situation where transient growth is insignificant and
transition is due to traditional Tollmien-Schlichting or Gortler mechanisms.

• Path B indicates some transient growth providing a higher amplitude to the eigen-
mode growth upon crossing into an exponentially unstable region.

• Path C is the case where eigenmode growth is absent or else that the transient
growth is large enough to directly excite secondary instabilities and mode interac-
tions.

• In Path D, the result of the transient growth is that the spectrum of disturbances
is full it looks like a turbulent spectrum.

• Path E represents the case of very large amplitude forcing where there is no linear
regime.
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Figure 2.6: Path from receptivity to laminar-turbulent transition.

Some special cases where the path of transition to turbulence correspond to the
critical Reynolds number are given. The path A corresponds to the Reynolds number
R > RL (e.g. R > 5772 for the plane Poiseuille flow) while the path C corresponds
to the Reynolds number RG < R < RL (e.g. 49.6 < R < 5772 for the plane Poiseuille
flow).

2.5 General flow control

The flow control techniques allow to modify a current state of a flow to another state or
maintain its current state whatever external disturbance. We can act everywhere inside
the flow or only at the walls (by modifying the boundary conditions). The potential
benefits of the flow control are in engineering applications, e.g. in transportation domain
(aircraft and vehicle water), environment domain (combustion, bioengineering) and
chemical industry: drag reduction, lift enhancement in aerospace, aerodynamic noises
reduction, enhance mixing etc.

The flow control is based on the boundary layer theory, transitional and turbulent
shear flow theory. And the flow control may be passive or active such as natural laminar
flow, laminar flow control, polymer drag reduction, chaos control and networks control.
The passive or active strategy can be considered to control a flow with common control
objectives [Gad-el Hak, 2000]: delaying or advancing transition from laminar to tur-
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Figure 2.7: Interrelation between flow control goals.

bulent flow, suppressing or enhancing turbulence, preventing or provoking separation.
And their goals are: reducing the drag, enhancing the lift, augmenting the mixing of
mass, momentum or energy, suppressing the flow induced noise and a combination of
all above. The interrelation of flow control goals is shown in Figure 2.7 (taken from
[Gad-el Hak, 2000]). The most control applications are found in the scientific literature
such as control of jets, transition control, separation control, wake vortex control and
drag reduction.

In this thesis, a feedback control is focused on the flow control. This technique is
based on the frontier of flow, or more precisely the boundary conditions, as the technique
blowing and suction [Wygnanski, 1997], when the sensors and actuators are available.
An example of this technique is applied to the airfoil [Schlichting and Gersten, 2000].
Bewley [Bewley, 1999], [Bewley, 2001] has discussed the future of feedback flow control
and the need for a renaissance approach. Therefore, we must understand the fundamen-
tal flow physics and the requirements and limitations of control algorithms to achieve a
feedback control schemes. The flow control is a combination of fluid mechanics, math-
ematics and control theory.

In this chapter, some basic definitions about the fluid flow have been given. In the
next chapter, the detail of feedback control for a dynamic system will be presented,
especially a linear feedback control for the nonlinear dynamic system.
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Chapter 3

Fundamentals of Automatic Control

Automatic control is a science at the intersection of engineering and applied mathemat-
ics. Its aim is to control a dynamic system and consider the evolution of the dynamic
system in time. In the controlled system, the action is required to achieve a desired state
x∗ from any initial state and maintain the desired state with any external disturbances
to the system. The fundamental concepts in automatic control will be introduced:
stability, controllability, observability and stabilization.

3.1 Definition of open-loop control, forcing and closed-loop
control

The difference between the open-loop system and the closed-loop system is introduced
through a simple example.

3.1.1 Problem description

In this example, our goal is to regulate the temperature of a room from a radiator. A
boiler provides the hot water in the radiator, the flow of the radiator is controlled by
a valve. We want to act on this valve to achieve the desired temperature whatever the
external disturbances: the presence or absence of sunlight, the opening of a window and
the change of shape of radiator or valve.

3.1.2 Open-loop control

Figure 3.1: Open loop control case.

21
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This approach is based on a complete modeling of the real system. It leads to a
relationship (usually very complex) between the flow of hot water volume and the room
temperature. Note that this relationship depends on many parameters, such as building
materials of the room and the radiator, the shape of the valve which controls the flow of
hot water volume, the surface of windows. This model is very complex. An open-loop
approach is proposed to write this model, and we must calculate the flow of hot water
volume via the valve to obtain the desired temperature in the room. Assuming that such
as a model can be obtained, the reader suspect that it will be robust to a variation of
one of the component parameters. Indeed, this approach is only done if everything has
been properly modeled. It seems illusory in practice, it will be very difficult for example
to take into account the consequence of the opening of the window or the appearance of
the sunlight or any other provision of unmodeled temperature. Therefore, this approach
is systematically avoided in automatic control.

3.1.3 Closed-loop control

Figure 3.2: Closed loop control case.

This approach is completely different from the open-loop control. This approach
is always based on a model linking the actuator to the quantity to be controlled but
this model is now very rough. It may be for example sufficient to say that the room
temperature will be an increasing function of the opening of the valve. This approach
requires a measurement of the ambient temperature. A device will compare the ambient
temperature and the desired temperature, then actuates the opening of the valve. Such a
device could be for example a proportional control where the action will be proportional
to the difference between two temperatures. This approach will depend on less external
disturbances: the opening of the window or the presence or absence of the sunlight.

3.2 Benefits of using closed-loop control

In the following section, we clearly prove the benefits of using a closed-loop approach
through simple examples.
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3.2.1 First example: water tank

In this example, we provide a way of closed loop control for a dynamic system. Moreover,
we demonstrate some advantages of the closed loop control with respect to the open
loop control

3.2.1.1 Problem description

We want to regulate the depth water h to the desired depth water h∗ in a water tank
as described in Figure 3.3. The water tank is filled by the flow in qi while the flow out
is qo. And the surface is denoted S.

Figure 3.3: Open loop control in the water tank.

The dynamic equation of the water tank is the equation of the volume variation

volume variation = flow in - flow out, (3.1)

that is
S
dh(t)

dt
= qi(t)− qo(t), (3.2)

where qo(t) = αh(t) where α is unknown parameter, however this parameter depends
on the geometry of the water tank and the way of the flow out. Therefore, we get the
dynamic equation of the depth water

S
dh(t)

dt
= qi(t)− αh(t) (3.3)

Providing the flow in qi(t) in order to achieve the desired depth water, we give two
approaches to do it in the next section.

3.2.1.2 Behavior of the system in the open loop control case

This approach does not use any measurement and the flow in qi(t) is proposed to be
constant

qi(t) = q∗i = αh∗. (3.4)

Note that in practice, it is difficult to regulate qi(t) to the exact value because qi(t)
depends on the unknown parameter α. We have

S
dh(t)

dt
= q∗i − αh(t)⇒ dh(t)

dt
=
q∗i
S
− α

S
h(t)⇒ h(t) =

q∗i
α

(1− e−
αt
S ) (3.5)
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We denote h∞ =
q∗i
α

and τ =
S

α
. We get

h(t) = h∞(1− e−
αt
S ) (3.6)

It is clear that the system is stable without the control signal. It means that the depth
water h tends toward the desired value h(t)→ h∞, in theory after an infinite time and
in practice a time t = 3τ (the error between the depth water and its desired value is
5%). However, we cannot give the exact time t = 3τ because the parameter τ depends
on the surface S and the unknown parameter α.

We consider the behavior of the system when the measurement error occurs. When
the surface occurs an error S′ and the response time depends on the parameter τ ′

τ
′

=
S
′

α
=
S
′

S
τ, (3.7)

therefore we cannot give the exact value of response time. And when the flow in occurs
an error q′i, the depth water is given

h
′∗ =

q
′
i

α
=
q
′
i

q∗i
h∗ ⇒ h∗ − h′∗

h∗
= 1− q

′
i

q∗i
, (3.8)

we have an error on the desired value of the depth water. Another case, when the
unknown parameter α occurs an error α′ . The response time has an error

τ
′

=
S

α′
=

α

α′
τ, (3.9)

and the desired value of the depth water has an error

h
′∗ =

q∗i
α′

=
α

α′
h∗ ⇒ h∗ − h′∗

h∗
= 1− α

α′
(3.10)

Conclusion, the above results allow us to ensure that the system behavior is not
robust to the measurement error when the open loop control case is used. Furthermore,
the behavior of the system depends on the system parameters. Therefore, we need an
approach which is robust to the measurement error and leads the system behavior to
be independently on the system parameters.

3.2.1.3 Behavior of the system in the closed loop control case

In this section, we consider the system behavior when we use the closed loop control
case as described in Figure 3.4. To do it, we use a sensor to capture the depth water
h(t) and regulate the flow in qi(t) to achieve the desired value h∗. A feedback control
law is proposed as a function of h(t)

qi(t) = Kp(hp − h(t))−Kdḣ(t), (3.11)
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Figure 3.4: Closed loop control in a water tank.

where Kp and Kd are the gain of control law while hp is a fixed parameter. We have
the closed loop of dynamic equation

Sḣ(t) = qi(t)− αh(t) = Kp(hp − h(t))−Kdḣ(t)− αh(t) (3.12)

(1 +
Kd

S
)ḣ(t) =

Kp

S
hp −

Kp + α

S
h(t) (3.13)

ḣ(t) =
Kp

Kd + S
hp −

Kp + α

Kd + S
h(t) (3.14)

h(t) =
Kp

Kp + α
hp(1− e

−Kp+α
Kd+S

t
) (3.15)

Solving the dynamic equation, we obtain h(t), we must find hp to achieve the desired
value h(t) = h∗ at the infinite time. We propose the depth water

h(t) = h∗(1− e−
t
τ ) (3.16)

therefore, we get 
h∗ =

Kp

Kp + α
hp ⇒ hp =

Kp + α

Kp
h∗

τ =
Kd + S

Kp + α

(3.17)

Consequently, the control signal is given by

qi(t) = Kp(hp−h(t))−Kdḣ(t) = Kp(hp−
Kp

Kp + α
hp(1−e

−Kp+α
Kd+S

t
))+

Kp

Kd + S
hpe
−Kp+α
Kd+S

t

(3.18)
and we get

qi(t) = αh∗ + h∗
Kpτ −Kd

τ
e−

t
τ (3.19)

qi(0) =
Kp + α

Kd + S
Sh∗ (3.20)

qi(∞) = αh∗ (3.21)
qi(0)

qi(∞)
=

Kp + α

Kd + S
Sh∗

1

αh∗
=
Kp + α

Kd + S

S

α
=
τol
τcl

(3.22)
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where τcl = Kd+S
Kp+α and τol = S

α . Indeed, we can adjust the response time to achieve
the reference through τcl. Note that this time only does not depend on any more the
system’s parameter. Furthermore, we can also dispense the precise knowledge of the
surface S and α when we impose Kp >> α and Kd >> S, therefore we get τa =

Kd

Kp
≈ Kd + S

Kp + α
= τcl

hpa = h∗ ≈ Kp+α
Kp

h∗ = hp

(3.23)

Indeed, the behavior of the system in the closed loop case does not depend on the
system’s parameter and we can set the response time τ . Furthermore, we can write the
control input

qi(t) = αh∗ + h∗
Kpτ −Kd

τ
e−

t
τ = αh∗ − αh∗Kp

Kd
Kp
− S

α

Kd + S
e−

t
τ =

Kp

Kp + α
hp(α− βe

− t
τcl )

(3.24)
where 

τcl =
ατol +Kpτa
α+Kp

β = αKp
τa − τol

Kpτa + ατol

(3.25)

If we can set τa = τol by imposing Kd
Kp

= S
α or obtain a constant flow β = 0 and

τcl = τol = τa, we obtain qi(t) = αh∗ as the open loop case does. Note that when
Kp >> α and Kd >> S, the behavior of the system is robust to the system’s parameter.
The results allow us to emphasize the advantages of the closed loop control case with
respect to the open loop control case.

In the following section, we introduce another important issue in automatic control:
the stability of the controlled system, still through a simple example

3.2.2 Second example: pendulum

3.2.2.1 Problem description

We want to regulate the position θ(t) of a pendulum, as described in Figure 3.5. More
precisely, we want to act on the torque Γ(t) to achieve the desired position θ∗. The length
and mass of pendulum are denoted by l and m, respectively while the gravitational
acceleration is denote by g. The dynamic equation of this pendulum is given by

θ̈(t) +
k

ml2
θ̇(t) +

g

l
sin(θ) = Γ(t). (3.26)

By using the change of variable, x1(t) = θ(t) and x2(t) = θ̇(t) = ẋ1(t), 2λ =
k

ml2
,

ω2
0 =

g

l
and u(t) = Γ(t). Therefore, the nonlinear pendulum (3.26) becomes{

ẋ1(t) = x2(t)
ẋ2(t) = −ω2

0sin(x1(t))− 2λx2(t) + u(t)
(3.27)
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Figure 3.5: Model of pendulum.

Note that since sin(θ(t)) ≈ θ(t) when−π/9 ≤ θ(t) ≤ +π/9, we obtain an approximation
model {

ẋ1(t) = x2(t)
ẋ2(t) = −ω2

0x1(t)− 2λx2(t) + u(t)
(3.28)

And we can rewrite (3.28) by{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(3.29)

where x(t) =

[
x1(t)
x2(t)

]
, y(t) = θ(t) and the matrices are defined by

A =

[
0 1
−ω2

0 −2λ

]
,B =

[
0
1

]
,C =

[
1 0

]
3.2.2.2 Behavior of the system in the closed loop control case

We propose a proportioned and derive control law u(t) = q −Kx(t) = q − k1x1(t) −
k2x2(t) for the nonlinear pendulum (3.27), where q is a precompensator and k1, k2 are
given based on studying the behavior of the system (3.28). The pendulum is not only
considered around θ∗ = 0, therefore we consider the precompensator. Note that the
precompensator is calculated from the desired position, q = Hy∗ with y∗ = θ∗. We
give the way where H is calculated. The closed loop of the system (3.27) becomes{

ẋ1(t) = x2(t)
ẋ2(t) = −ω2

0sin(x1(t))− 2λx2(t) + q − k1x1(t)− k2x2(t)
(3.30)

Therefore, the closed-loop system of (3.26) becomes

θ̈(t) +
k

ml2
θ̇(t) +

g

l
sin(θ) = q − k1θ(t)− k2θ̇(t). (3.31)

When the pendulum is at the equilibrium point, we have θ̈(t) = θ̇(t) = 0 and θ(t) = θ∗.
From (3.31), it is easy to see that

H =
ω2

0sin(θ∗) + k1θ
∗

θ∗
(3.32)
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Therefore, the control law is control law u(t) = ω2
0sin(θ∗) + k1θ

∗ − k1x1(t)− k2x2(t)
In the approximation model, the closed-loop system (3.28) becomes{

ẋ1(t) = x2(t)
ẋ2(t) = −ω2

0x1(t)− 2λx2(t) + ω2
0θ
∗ + k1θ

∗ − k1x1(t)− k2x2(t)
(3.33)

We use ω0 = 4, λ = 1 and k1 = −14, k2 = 0, the closed-loop system (3.33) becomes{
ẋ1(t) = x2(t)
ẋ2(t) = −2x1(t) + 2θ∗

(3.34)

The solution of (3.34) is given by{
x1(t) = θ∗ + [(x10 − θ∗)cos(t) + (x10 + x20 − θ∗)sin(t)]e−t

x2(t) = [x20cos(t) + (−2x10 − x20 + 2θ∗)sin(t)]e−t
(3.35)

where x10 and x20 are the initial conditions of x1(t) and x2(t), respectively. When
the time is large enough, the position θ(t) becomes the desired position θ∗. We must
emphasize that k1 and k2 are calculated based on the analysis of the behavior of the
system (3.28). However, we do not give the way to calculate k1 and k2, we give this
way in the next sections.

Indeed, the most important problem is to know the behavior of the true system,
that is where the control law is injected in (3.26). The close-loop true system is

θ̈(t) + (2λ+ k2)θ̇(t) + k1θ(t) + ω2
0sin(θ) = ω2

0sin(θ∗) + k1θ
∗. (3.36)

The behavior of the system (3.36) is depicted in Figure (3.6). The green area corresponds
to the initial conditions (θ, θ̇) where the system (3.36) effectively reaches the desired
value (θ∗, 0) in contrast to the red area where the system (3.36) is not able to reach
it. Two blue lines corresponds to the interval [−π/9, π/9] where the approximation
sin(θ) = θ is considered to be true. Firstly, we can see that the system converges for a
large domain outside the validity domain for which the control law has been designed. It
also shows that even in the domain for which the assumption is validated the control law
does not systematically converge. Four trajectories have been pointed out to illustrate
this result.

The goal of automatic control is to design the simplest control law that will ensure
that largest convergence area of the control law. This domain is called the stability
domain. It is recovered though a stability analysis as will be detailed in section 3.4.2.

3.3 Representation of a dynamic system

A natural choice to represent a dynamic system consists in describing the link between
the action and its consequence on the system to control, that is between the input
signal and the output one provided from measurements. In the example of the control
water depth a model could be given by the relation (3.2). On other hand, in the case of
the pendulum the relation (3.26) could be also a model. This kind of representation is
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Figure 3.6: Behavior of the pendulum.

known in automatic control as an internal representation. An external representation
also exists, in this case, the goal is to emphasize the relevance of other variables that
are not input or outputs while taking into account the whole dynamics of the system.
The state space representation is the most popular one.

3.3.1 State space representation

A state space representation is a mathematical model of a physical system as a set of
input, output and state variables related by first-order differential equations. We shall
give the definitions of state, state variable, state space.

Definition 3.3.1 State, state variable, state vector, state space

• State: the state of a dynamic system is the smallest possible subset of system
variables or quantities such as knowledge of the set at time t = t0, as well as the
input signal for t ≥ t0, is sufficient completely to determine the behavior of the
system for t ≥ t0.

• State variables: these are variables or quantities that constitute the state of the
system.
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• State vector: more mathematical, it represents the state of system by a concate-
nation of all the state variables in a vector, a priori real dimension n, which is
denoted by x(t) =

[
x1(t) x2(t) . . . xn(t)

]>.
• State space: this is simply the vector space in which the state vector x is likely to
change every instance of x is associated with a point in this space. This space is
Rn.

Therefore, a dynamic system can be represented by a state space representation
ẋ(t) =


ẋ1(t)
ẋ2(t)
...

ẋn(t)

 = f(x(t),u(t), t) =


f1(x(t),u(t), t)
f2(x(t),u(t), t)

...
fn(x(t),u(t), t)


y(t) = g(x(t),u(t), t)

(3.37)

where x(t), y(t) and u(t) are the state vector, the output vector and the input (or
control) vector, respectively. The dimension of the state vector, the output vector and
the input vector are n, m and p, respectively that we can denote x(t) ∈ Rn, y(t) ∈ Rm
and u(t) ∈ Rp. The functions f and g are linear or nonlinear functions.

Therefore, we can give the state space representation of the nonlinear pendulum
(3.26) by 

ẋ1(t) = x2(t)
ẋ2(t) = −ω2

0sin(x1(t))− 2λx2(t) + u(t)
y(t) = x1(t)

(3.38)

However, note that the specific physical quantities that define the state are not unique,
although their number is unique. We can use x1(t) = θ(t) and x2(t) = θ̇(t) = ẋ1(t)
or x1(t) = θ(t) + π and x2(t) = θ̇(t) = ẋ1(t) but the dimension of the state vector is
always two.

3.3.2 Stability of dynamic systems

Stability of a system is a fundamental issue. Indeed, an unstable system could be dan-
gerous to use in practice since its behavior is not fully predictable. However, providing
a precise definition is not so simple. We give here some basic definitions.

3.3.2.1 BIBO stability

This definition is the most intuitive one.

Definition 3.3.2 BIBO (Bounded Input Bounded Output) stability

• A system is defined to be BIBO stable if and only if, for all the initial state
x0 = x(0), every input u(t) is bounded, the output y(t) is also.
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• Another definition of BIBO stability, more mathematical and " philosophically "
somewhat different, may be given: noting y∗(t) the impulse response of the model,
it is BIBO stable if and only if, there exists a scalar k satisfying 0 < k <∞ and∫ ∞

0
| y∗(τ) | dτ ≤ k (3.39)

A BIBO-stable model can be interpeted in this second definition as a model whose
impulse response is of finite energy signal. It is not easy to directly exploit this last
formulation. However, the study of stability of a system is through the concept of
stability of equilibrium states, especially in the state space.

In the next section the stability is defined through the state representation leading
to an “internal” definition of the stability [Sastry and Bodson, 1989].

3.3.2.2 Stability of an equilibrium state

We first have to define what is an equilibrium state. To do it, we consider the system{
ẋ(t) = f(x(t), t)
x(t0) = x0

(3.40)

Definition 3.3.3 A system is said to be in equilibrium state if its state is not modified
when the system is not controlled. That is if f(x(t), t) = 0 for all t ≥ 0.

By translating the origin to an equilibrium point x0, we can make the origin 0 an
equilibrium point. This is of great notational help, and we shall assume henceforth 0 is
an equilibrium point of (3.40).

3.3.2.3 Stability definitions

Informally, x = 0 is a stable equilibrium point, if the trajectory x(t) remains close to 0
if the initial condition x0 is close to 0. More precisely, we say

Definition 3.3.4 Stability in the Sense of Lyapunov
x = 0 is called a stable equilibrium point of (3.40), if, for all t0 ≥ and ε > 0, there exists
δ(t0, ε) such that

| x0 |< δ(t0, ε)⇒| x(t) |< ε for all t ≥ t0 (3.41)

where x(t) is the solution of (3.40), starting from x0 at t0.

Definition 3.3.5 Asymptotic stability
x = 0 is called an asymptotically stable equilibrium point of (3.40), if,

• x = 0 is a stable equilibrium point of (3.40),
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• x = 0 is attractive, that is, for all t0 ≥ 0, there exists δ(t0), such that

| x0 |< δ(t0, ε)⇒ lim
t→∞

| x(t) |= 0 (3.42)

Definition 3.3.6 Global asymptotic stability
x = 0 is called a globally asymptotically stable equilibrium point of (3.40), if it is asymp-
totically stable and limt→∞ | x(t) |= 0 for all x0 ∈ Rn.

Global uniform asymptotic stability is defined likewise. Note that the speed of
convergence is not quantified in the definitions of asymptotic stability. In the following
definition, the convergence to zero is required to be at least exponential.

Definition 3.3.7 Exponential stability, rate of convergence
x = 0 is called an exponetially stable equilibrium point of (3.40), if there exists m, α > 0
such that the solution x(t) satisfies

| x(t) |≤ me−α(t−t0) | x0 | (3.43)

for all x0 ∈ Rn, t ≥ t0 ≥ 0. The constant α is called the rate of convergence.

The main problem in automatic control is to synthetize a control law that ensures
that the closed loop system is stable. To analyze the stability of a dynamic system a
powerful tools is used : the Lyapunov Stability Theory.

3.3.2.4 Lyapunov stability theory

The so-called Lyapunov second method enables one to determine the nature of stability
of an equilibrium point of (3.40) without explicitly integrating the differential equation.
This approach is based on the use of a so-called Lyapunov candidate function.

Definition 3.3.8 Lyapunov function
A Lyapunov function is a Lyapunov candidate function, denoted V (x) such that

V (x) > 0 ∀x 6= 0, V (0) = 0, (3.44)

and
V̇ (x) ≤ 0 ∀x 6= 0, V̇ (x) = 0 x = 0, (3.45)

We present the theorem of the local stability based on the analysis of the Lyapunov
function. The local stability is concerned around the equilibrium point. We present
the following theorems which give the stability of a system based on the analysis of the
Lyapunov function.

Theorem 3.3.1 If there exists Ω ∈ Rn such that

• V (x) > 0 ∀x 6= 0 ∈ Ω, V (0) = 0
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• V̇ (x) ≤ 0 ∀x ∈ Ω

then the equilibrium point x = 0 is stable. In addition, if V̇ (x) < 0 ∀x 6= 0, then x = 0
is asymptotically stable.

Theorem 3.3.2 So that we can ensure that the Lyapunov theorem can conclude the
global stability of a system, it is necessary that all the hypotheses of this theorem are
satisfied, but it also requires that the radial boundedness condition exists, that is to say

‖x‖ → ∞⇒ V (x)→∞ (3.46)

The following theorem summarizes the conditions

Theorem 3.3.3 If there exists a function V such that

• V (x) > 0 ∀x 6= 0, V (0) = 0

• ‖x‖ → ∞⇒ V (x)→∞

• V̇ (x) < 0 ∀x 6= 0

then x = 0 is globally asymptotically stable.

3.3.3 Observability and controllability

Even if stability issues are very important, observability and controllability issues are
also very important.

Definition 3.3.9 Controllability
A system is controllable if for any x0 and x1, there exists an input signal u(t) (finite
energy) that allows the system pass from the state x0 to the state x1 in a finite times.

Definition 3.3.10 Observability
A system is observable if, for any time t0, there exists a finite time interval [t0, t1] such
that the state x(t0) can be determined using the input signal u(t) and the output signal
y(t).

3.4 Linearized and linear systems

Of course, dealing with nonlinear equations is rarely a simple task. Thus, very often a
linearization around an equilibrium point is considered. The first observation is often
annoying that the differential algebraic equations are not linear in terms of the involved
quantities and their successive derivatives. Or, the nonlinear models are inherently
difficult to handle. This means in practice that these nonlinear equations make difficult
the analysis of system behavior and, more importantly, the control law. Therefore, even
if it is a violation of the principle of accurate description of the system dynamics, we
often decide to work in a range value of quantities around a central value constituting
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what is agreed call a function point. When the system is considered to be not too far
from the function point, we can approach the nonlinear equation by an approximation
but certainly linear equations. Without repeating the known concepts which can be used
to obtain this approximation, the nonlinear system is usually approximated by using
limited development or first order Taylor development of some mathematical functions.
So, we call the nonlinear system and its "linearized tangent" which is linearized. As
the previously example, the results in Figure 3.6 allows us to ensure that we have no
problem when we use the linear model to give a control law.

3.4.1 Representation of linear or linearized systems

As in the case of nonlinear system, we can define a state space representation. However,
as we shall show in section 3.4.1.2, another powerful representation exists

3.4.1.1 State space representation

We shall give the state space representation of the nonlinear system around its equi-
librium point. Therefore, we calculate the equilibrium point of the nonlinear system
(3.37) {

f(xe(t),ue(t), t) = 0
ye(t) = g(xe(t),ue(t), t).

(3.47)

The linearization of the nonlinear system (3.37) around the equilibrium point (xe(t),ue(t))
is given by {

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)
ỹ(t) = C(t)x̃(t) + D(t)ũ(t)

(3.48)

where x̃(t) = x(t) − xe(t), ũ(t) = u(t) − ue(t), ỹ(t) = y(t) − ye(t). A(t) is the state
matrix, B(t) is the input matrix, C(t) is the output matrix and D(t) is the feedforward
matrix. These matrices are defined by

A(t) =


∂f1

∂x1
(xe(t),ue(t), t) . . .

∂f1

∂xn
(xe(t),ue(t), t)

...
. . .

...
∂fn
∂x1

(xe(t),ue(t), t) . . .
∂fn
∂xn

(xe(t),ue(t), t)



B(t) =


∂f1

∂u
(xe(t),ue(t), t)

...
∂fn
∂u

(xe(t),ue(t), t)


C(t) =

[
∂g

∂x1
(xe(t),ue(t), t) . . .

∂g

∂xn
(xe(t),ue(t), t)

]
D(t) =

∂g

∂u
(xe(t),ue(t), t).

(3.49)
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For simplicity and without loss of generality, it is assumed that xe(t) = ue(t) = ye(t) =
0, the linearization of the nonlinear system (3.37) is simplified{

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t).

(3.50)

If the system matrices are independent on time, a linear time invariant system will be
given by {

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t).

(3.51)

We can distinguish between the linear system and the linearized system by considering
the matrices A, B, C and D. The system matrices of the linear system are always
constant and independent on time while the system matrices of the linearized system
may contain the time t and is always considered around an equilibrium point.

3.4.1.2 Transfer matrix

As the previously figures 3.1 and 3.2, a dynamic system can be represented by an exter-
nal representation which concerns an input/output representation. The input/output
relation is called a transfer function. At this step, we have some benefits of using the
Laplace transform. We have some ways to get the transfer function but there exists one
based on the state space representation. From (3.51), we get{

pX(p) = AX(p) + BU(p)⇔ X(p) = (pI−A)−1BU(p)
Y (p) = CX(p) + DU(p),

(3.52)

where p is the Laplace operator and X(p), Y (p), U(p) are the Laplace transform of x(t),
y(t), u(t), respectively. Note that we are not taking into account the initial condition
in the transfer function G(p). We get the relation between the input signal and the
output signal

G(p) =
Y (p)

U(p)
= C(pI−A)−1B + D (3.53)

The transfer function D(p) is used to investigate the system behavior and provides
a basic for determining important system respones characteristics without solving the
complete differential equation. This function is usually used in SISO system (single
input single output system). The transfer function G(p) can be decomposed by the
denominator D(p) and the numerator N(p)

G(p) =
N(p)

D(p)
=
bmp

m + bm−1p
m−1 + . . .+ b1p+ b0

anpn + an−1pn−1 + . . .+ a1p+ a0
(3.54)

Definition 3.4.1 Pokes and zeros

• Roots of the transfer function denominator D(p) are called poles of the system
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• Roots of the transfer function numerator N(p) are called zeros of the system

The influence of zeros to the system behavior is difficult to estimate, however the influ-
ence of poles to system behavior is easy to recognize, especially the stability. Therefore,
the denominator D(p) of the transfer function is characteristic function. It is very easy
to see that D(p) is calculated by

D(p) = det(pI−A) (3.55)

Note that the roots of the denominator, it means the poles of the system, are the
eigenvalues of the state matrix A.

We recall that G(p) = C(pI−A)−1B+D, such matrices are called a realization for
G(p). Any restricted realizationn to the controllable and observable part of system is
called minimal. It must be clear to the reader’s mind that a transfer function whose roots
of the denominator are strictly negative real part may suggest that the described system
is asymptotically stable, whereas it contains an unstable mode which is uncontrollable
and unobservable. Such a mode appears in the state space representation.

3.4.2 Stability analysis

Firstly, let us consider an autonomous system

ẋ(t) = Ax(t) (3.56)

In this case, to recover the equilibrium points we have to solve the following equation :

Ax(t) = 0, (3.57)

from this equation, we have one or some equilibrium points that depends on the rank
of the state matrix A. In the case of rank(A) = n ⇔ det(A) 6= 0 (it means that
A has not zero eigenvalue), only one equilibrium point xe = 0 exists. Other case,
rank(A) < n ⇔ det(A) = 0 (A has at least one zero eigenvalue), there exists infinite
equilibrium points.

The stability of (3.56) depends on the eigenvalues λj of the state matrix A. We give
some cases of the system behavior.

In the case of rank(A) = n, the system (3.56) has one equilibrium point, we have

• R(λi) < 0, ∀i the system is asymptotically stable

• ∃j | R(λj) > 0 the system is unstable

• ∃j | R(λj) = 0 and R(λi) ≤ 0, ∀i

– λj = 0 we cannot conclude

– λj,I = ±jω the system is stable
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In the case of rank(A) < n, the system (3.56) has infinite equilibrium points, we
have at least one zero eigenvalue of the state matrix A, the asymptotical stability is
impossible. Note that any matrix A can be transformed into Jordan form with the
eigenvalues λi of A. The Jordan block is given by

Jk(λi) =


λi 1 0
0 λi 1

. . . . . .
. . . 1

0 λi

 (3.58)

Therefore, the Jordan matrix is given in the form
Jk1(λ1) 0 0

0 Jk2(λ2)
. . .

0 Jkn(λn)

 (3.59)

For an eigenvalue λi, its algebraic multiplicity is the multiplicity of λi as a root of the
characteristic polynomial. Its geometric multiplicity is the maximal number of linearly
independent eigenvectors corresponding to it. The algebraic multiplicity is larger or
equal than the geometric multiplicity. We have

• ∃j | R(λj) > 0 the system is unstable

• @j | R(λj) > 0

– the Jordan blocks corresponding to each eigenvalue with zero real part are
scalar blocks (the geometric multiplicity of these eigenvalues equals its alge-
braic multiplicity), the system is stable

– there exists a Jordan block corresponding to eigenvalue with zero real part
which is not scalar (the geometric multiplicity of these eigenvalues is strictly
lower than its algebraic multiplicity), the system is unstable.

For example, we consider the matrix

A =


−5 1 2 10
0 0 −1 −1
−1 −1 0 0
1 1 0 0

 (3.60)

And the Jordan block and the Jordan matrix are given by

J =

 J2(0) 0 0

0 J1(−5
2 −

1
2

√
57) 0

0 0 J1(−5
2 + 1

2

√
57)

 =


0 1 0 0
0 0 0 1

0 0 −5
2 −

1
2

√
17 0

0 0 0 −5
2 + 1

2

√
17


(3.61)
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Due to λ = −5
2 + 1

2

√
57 > 0 and J2(0) =

[
0 1
0 0

]
is not a scalar, therefore A is

unstable. Note that

det(λI−A) = λ2(λ+
5

2
+

1

2

√
17)(λ+

5

2
− 1

2

√
17) (3.62)

the algebraic multiplicity of λ = 0 is 2 while the geometric multiplicity is 1.
In conclusion, we have

• ∃j | R(λj) > 0 the system is unstable

• @j | R(λj) > 0

– R(λi) < 0, ∀i the system is asymptotically stable

– the geometric multiplicity of zero eigenvalues equals its algebraic multiplicity,
the system is stable

– the geometric multiplicity of one zero eigenvalue is strictly lower than its
algebraic multiplicity, the system is unstable.

We recall that the poles of the transfer function correspond to the eigenvalues of the state
matrix A, therefore, the stability of the system is investigated based on the eigenvalues
of the state matrix A.

To conclude on the stability of a linear system, the Lyapunov theory can also be
used (see section 3.3.2.4). The system (3.56) is asymptotically stable if and only if,
there exists a Lyapunov function V (x) = x>Px > 0(↔ P = P> > 0) such that

V̇ (x) < 0, ∀x 6= 0
⇔ x>(A>P + PA)x < 0,∀x ∈ Rn,x 6= 0
⇔ A>P + PA < 0
⇔ ∃Q = Q> < 0,P = P> > 0 | A>P + PA = Q

(3.63)

Therefore, the system (3.56) is asymptotically stable if and only if there exists any
symmetric negative definite matrix Q, the unique solution of the equation

A>P + PA = Q (3.64)

is definite-positive matrix.
When the system (3.56) is the linearized tangent of a nonlinear system, the result

allows us to ensure that the nonlinear system is asymptotically stable in a neighborhood
around the function point (the equilibrium point of the linear system is the function point
of the nonlinear system). Indeed, without detailing these concepts, when the linearized
tangent has rank(A) = n, so the function point is hyperbolic equilibrium point. We
have a topological equivalence between the linearized tangent and the nonlinear system.
Therefore, the stability of linearized tangent is of the nonlinear system in the neigh-
borhood of the function point. The nonlinear system will be asymptotically stable in
neighborhood of the function point if its linearized system is asymptotically stable.
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Or all linear system asymptotically stable corresponds to a hyperbolic equilibrium
point that the nonlinear system is also asymptotically stable in neighborhood of the
function point.

Because we do not have an unique realization, we must consider the influence of
minimal realization on the stability. A minimal realization can be presented based on
the system matrices. For the system (3.51), A, B, C, D is minimal if and only if A,
B is controllable and A, C is observable. For a system, we have infinite realization but
only one transfer function. It means that we have another realization A′, B′, C′, D′ of
the system (3.51), we always have

G(p) = C(pI−A)−1B + D = C′(pI−A′)−1B′ + D′ (3.65)

even if the dimension of A and A′ is different. Therefore, the stability of A and A′

may be different. If the realization A, B, C, D is minimal, the stability of A is
equivalent to the stability of A′ if and only if the realization A′, B′, C′, D′ is minimal.
In conclusion, the asymptotically stability of a realization is equivalent to the BIBO
stability of associated system if and only if the realization is minimal.

3.5 Observers

Consider the dynamic system{
ẋ(t) = Ax(t) + Bu(t) + Mwd
y(t) = Cx(t) + Du(t) + wn

(3.66)

where wd and wn are the disturbance (process noise) and measurement noise inputs re-
spectively, which are usually assumed to be uncorrelated zero-mean Gaussian stochastic
processes with constant covariance matrices Wd and Vn respectively. wd and wn are
white noise processes with covariances

E{wd(t)w>d (τ)} = Wdδ(t− τ)
E{wn(t)w>n (τ)} = Wnδ(t− τ)
E{wd(t)w>n (τ)} = E{wn(t)w>d (τ)} = 0,

(3.67)

where E is the expectation operator and δ(t− τ) is a delta function.
In practice, recovering the state of a system is not a simple task since we only have

access to the input u(t) and the output of the system y(t). The problem is thus to
construct a dynamic system to be able to provide an estimate x̂(t) of the true state
x(t). The final goal is to act on the system from its estimate state. In the linear case,
an observer writes as follows:

˙̂x(t) = (Ax̂(t) + Bu(t)) + Ko(y(t)−Cx̂(t)−Du(t)), (3.68)

where Ko is the gain of filter. We recognize in the first term of the second member
of this equation, the term Ax̂(t) + Bu(t) is used to prediction of the evolution of
the state vector of system from the current state vector x̂(t). Indeed, this prediction
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is actually an online simulation of the model of system. If the model is wrong, this
prediction is readjusted a function of the error between the measurement y(t) and the
predict measurement ŷ(t) = Cx̂(t) + Du(t) and of the gain of filter Ko. The output
error signal y(t) − ŷ(t) is also called the innovation. The diagram corresponding to
the estimator (in the case D = 0) is represented in Figure 3.7. This structure ensures
that the estimator is unbiased whatever the system matrices A, B, C, D and the gain
Ko such that A−KoC is stable (note that the presence of unstable and unobservable
modes does not allow to find the gain Ko and construct the unbiased estimator).

Figure 3.7: Kalman filter diagram

Basically, two main approaches exist. We recall them in the next sections.

3.5.1 Luenberger observer

Either we simply minimize the estimation error, that is ε(t) = x(t)− x̂(t) such that the
observer is stable. In that case, we simply ensure:

lim
t→∞

ε(t) = 0 (3.69)

The classic structure of observers is given{
˙̂x(t) = Ax̂(t) + Bu(t) + Ko(y(t)− ŷ(t))
ŷ(t) = Cx̂(t) + Du(t)

(3.70)

The observer error satisfies the equation

ε̇(t) = (A−KoC)ε(t) (3.71)

The observer gain Ko is chosen such that A−KoC is stable, it can made Hurwitz, so
the observer error ε(t) → 0 when t → ∞. Note that we can choose the observer gain
Ko when the pair A, C is observable.
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3.5.2 Kalman observer

As in the previous case, we also want to ensure that the observer is stable but also: we
desire that the observer is unbiased, it means that

• whatever the input signal u(τ) applied to τ ∈ [t0, t],

• whatever the initial condition x̂(t0)

we desire that the average error of estimator tends toward to 0 when t tends toward to
infinite.

The noises wd and wn are centered, we can write

E[ε̇(t)] = E[ẋ(t)− ˙̂x(t)] = E[Ax(t) + Bu(t) + wd(t)−Ax̂(t)−Bu(t)
−Ko(Cx(t) + Du(t) + wn(t)−Cx̂(t)−Du(t))]
= E[Ax(t)−Ax̂(t)] + E[Mwd(t)]− E[Ko(Cx(t)−Cx̂(t))]− E[Kown(t)]
= (A−KoC)E[ε(t)]

(3.72)
Therefore, we have

E[ε(t)] = e(A−KoC)(t−t0)ε(t0) (3.73)

and limt→∞E[ε(t)] = 0 when A −KoC is stable. The observer gain Ko is calculated
by a function of confidence in the model (expressed by the spectral density Wd) with
regard to in the measurement (expressed by the spectral density Wn). If the model is
very good (Wd is very small) and the measurement is very noise (Wn very large), the
observer gain Ko is very small, among all gains Ko satisfying that A−KoC is stable, we
shall choose the gain Ko that minimizes the variance of the estimation error ε(t),∀t. We
recall that ε(t) is a centered Gaussian random vector. The Gaussian character of this
variable allows that the variance of estimation error is effectively minimized, therefore
x̂(t) is the best estimate of x(t).

We find Ko that minimizes the cost function

J(t) =
∑n

i=1E[ε2i (t)] = E[ε>(t)ε(t)]
= traceE[ε(t)ε>(t)]
= traceP (t)

(3.74)

where P(t) = E[(x(t)− x̂(t))(x(t)− x̂(t))>] is the covariance matrix of the estimation
error. We recall the dynamic equation of estimation error

ε̇(t) = Ax(t)−Ax̂(t) + Mwd(t)−Ko(Cx(t)−Cx̂(t))−Kown(t)

= (A−KoC)ε(t) +
[
M −Ko

] [ wd(t)
wn(t)

]
(3.75)

The differential equation of the covariance matrix of the estimation error is given by

Ṗ(t) = (A−KoC)P(t) + P(t)(A−KoC)> + MWdM
> + KoWnK

>
o (3.76)
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In order to minimize traceP(t), it is simple to minimize traceṖ(t)

∂(traceṖ(t))

∂Ko
= −P(t)C> −P(t)C> + 2KoWn

⇒ Ko(t) = P(t)C>W−1
n

(3.77)

Substituting (3.77) into (3.76), we obtain the Riccati differential equation

Ṗ(t) = AP(t) + P(t)A> −P(t)C>W−1
n CP(t) + MWdM

> (3.78)

In order to obtain a solution of the Riccati differential equation, we must consider the
initial condition

P(t0) = E[(x(t0)− x̂(t0))(x(t0)− x̂(t0))>] (3.79)

The Kalman filter is usually used in the LQG control described in the next section to
determine the estimate of the state vector.

3.6 Closed-loop control

In control theory, the most accepted approach used to the synthesis of multivariable
control law is an approach known as "state feedback control". The idea of this approach
is to act on the controlled system based on its measured state. It is different to the open
loop control, we use the sensor to give the feedback information of controlled variable
in the closed-loop control. In this section, we focus on various important aspects of this
approach. To do it, we first focus on linear systems then non-linear systems

3.6.1 Linear systems

The goal of design of control law is to determine the gain of control law which stabilizes
the system. The stabilization can place the eigenvalue and the eigenvector of system or
generally reconstruct the structure of system with our aims. In control theory, we use
the proportional integral derivative control, the optimal control, the robust control, etc.

Let us consider the dynamic system{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

(3.80)

and the control law is proposed as

u(t) = Hyref (t) + Kx(t), (3.81)

which leads to the output reference yref (t).
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3.6.1.1 Pole assignment

This technique is presented based on the result in [Kautsky et al., 1985]. The problem
description of pole assignment can be given such as: we have the real matrices (A,B), of
orders (n×n, n×m), respectively, and a set of n complex numbers , L = {λ1, λ2, . . . , λn},
closed under complex conjugation, our problem is to find a real matrix K such that the
eigenvalues of A−BK are λj .

We consider the first condition to determine K. Indeed, we find the real matrix
K for every set L of self-conjugate complex numbers if and only if the pair (A,B) is
controllable.

In the pole assignment design, we have mn components of K (m degrees of freedom
(DOF)), n components of K must be used to place the eigenvalues. Therefore, we still
have n(m − 1) components of K to reconstruct the eigenstructure. It is properly to
exploit and identify these DOF.

To determine the real matrix K, we consider the characteristic polynomial of closed
loop system described by

P (p) =
n∏
i=1

(p− λi) = pn + βn−1p
n−1 + . . .+ β1p+ β0, (3.82)

and therefore, the real matrix K is given by solving the equation

det(pI−A + BK) = P (p) = pn + βn−1p
n−1 + . . .+ β1p+ β0. (3.83)

For more detail, the numerical solution of this equation is detailed in [Kautsky et al., 1985].

3.6.1.2 Eigenstructure assignment

For the system (3.80), we recall that the problem of eigenstructure assignment consist
to determine the gain control K in (3.81) such that Ac = A−BK coincides with a set
of desired specified value.

In the case of the system is single input, it means that the matrix K contains
n components and we want to place n poles. Therefore, we do not have anymore
components of K and the solution of K is unique. However, in the case of the system
is multiple inputs, the matrix K contains mn components and therefore, we still have
n(m − 1) additional components of K. Indeed, these additional DOF can be used to
reconstruct the eigenstructure.

3.6.1.3 Optimal control

LQR control The approaches in section 3.5.1 and section 3.5.2 allow us to stabilize
the closed loop system with the presence of disturbance. These approaches are very
interesting when we want to specially eliminate the influence of disturbance.

While the optimal control technique consists to a differential problem, this technique
is to find a control law which minimizes a certain criterion J reflecting a desired behavior.
For example, in order to determine the control law which moves the closed loop system
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from state A to state B in minimum time or minimizes the energy actuators. We first
restrict to the case of LQ (also called LQR for linear quadratic regulator) in order to
introduce LQG control. Indeed, we shall see section (4.3.2.4), LQG control is extremely
popular in flow control.

The general problem of optimal control is given as follows: determine the control law
u(t) which makes the minimal criterion J tacking account the initial and final conditions
and the constraint defined by the state equation.

In the case of LQ control, a linear system is considered, the criterion J is quadratic
and aims to minimize the error between the current state and the desired state while
minimizing the energy actuators. This problem is thus formalized: the quadratic cost
function is defined as

J(t) =

∫ ∞
0

(x>(t)Qx(t) + u>(t)Rx(t)), (3.84)

where the matrices Q and R are positive definite and positive-semidefinite, respec-
tively. Note that we shall see section (6.4), the term x>(t)Qx(t) is defines as the
kinetic energy of perturbation in flow control while the term u>(t)Rx(t) is the en-
ergy actuators. The control law is given by u(t) = Klqrx(t) where Klqr is given by
([Skogestad and Postlenthwaite, 2007])

Klqr = −R−1B>Xr, (3.85)

and Xr is found by solving the continuous time Riccati differential equation

A>Xr + XrA−XrBR−1B>Xr + Q = 0. (3.86)

In order to find the gain control, the pair (A,B) must be stabilizable. By using the
decomposition Q = N>r Nr and BR−1B> = MrM

>
n , when the pair (A,Mr) is con-

trollable and the pair (A,Nr) is observable, the positive definite solution of the Riccati
differential equation always exists and is always unique. Moreover, A − BR−1B>Xr

always has negative eigenvalues.
One of the advantages of LQ control is to ensure a good robustness toward the

error of the gains on the inputs channels. However, it is not possible to imposer a
priori dynamic of closed loop system corresponding to the optimality of the quadratic
criterion.

LQG control Like the LQR problem itself, the LQG problem is one of the most
fundamental problems in control theory. In practice, the state vector is not most often
known so that the LQR control cannot be used. In that case, an observer has to be
used. Therefore, the control law is given by u(t) = Klqrx̂(t) where x̂(t) is the estimate
of x(t) from using the Kalman filter. We recall the system (3.66){

ẋ(t) = Ax(t) + Bu(t) + Mwd
y(t) = Cx(t) + Du(t) + wn

(3.87)
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Indeed, the LQG control is designed based on two steps. First step is determine
an optimal control u(t) = Klqrx(t), LQR problem (see the above results to deter-
mine Klqr). And the second step is to find an optimal estimate x̂(t) of the state
x(t), Kalman filter problem, so that E{[x(t) − x̂(t)]>[x(t) − x̂(t)]} is minimized (see
section 3.5.2). The diagram of the LQG control shown in Figure 3.8 (taken from
[Skogestad and Postlenthwaite, 2007] in the case D = 0).

Figure 3.8: LQG controller and noise plant.

In practice, the control law u(t) = Klqrx(t) is changed by u(t) = Klqrx̂(t) where
x̂(t) is an estimate of the state vector x(t). We recall the dynamic system of estimator
or observer given by

˙̂x(t) = Ax̂(t) + Bu(t) + Ko(y(t)−Cx̂(t)−Du(t)). (3.88)

If (A,C) is detectable, the optimal choice ofKo, which minimizes E{[x(t)−x̂(t)]>[x(t)−
x̂(t)]}, is given by

Ko = PC>W−1
n , (3.89)

When the linear system is considered and often convergence of the state covariance
matrix P, we have Ṗ(t) = 0, the solution of (3.78), the unique positive-semidefinite
solution of the algebraic Riccati differential equation P = P> ≥ 0 is

PA> + AP−PC>W−1
n CP + MWdM

> = 0. (3.90)

The closed loop system is given by
ẋ(t) = Ax(t) + Bu(t) + Mwd
˙̂x(t) = Ax̂(t) + Bu(t) + Ko(y(t)−Cx̂(t)−Du(t))
u(t) = Klqrx̂(t)
y(t) = Cx(t) + Du(t) + wn.

(3.91)
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Therefore, the LQG control is the combination of the optimal state estimation and the
optimal state feedback control[

˙̂x(t)
u(t)

]
=

[
A + BKlqr −KoC−KoDKlqr Ko

Klqr 0

] [
x̂(t)
y(t)

]
. (3.92)

3.6.2 Nonlinear systems

Some methods can be used for the nonlinear system, but we choose the Lyapunov
synthesis to illustrate the concept of the design of nonlinear system.

3.6.2.1 Direct Lyapunov analysis

This method is simple to determine the control law which guarantees the stability of
the closed loop system. The following example illustrates this method.

Let us to consider the system

ẋ(t) = x2(t) + u(t) (3.93)

The problem is to regulate the state vector x(t) around the reference xc(t). By using
the change of variable z(t) = x(t)− xc(t), we have the dynamic error

ż(t) = x2
c(t) + 2xc(t)z(t) + z2(t) + u(t) (3.94)

The Lyapunov function is V =
1

2
z2(t)z(t), we have

V̇ = z(t)ż(t) = z(t)(x2
c(t) + 2xc(t)z + z2(t) + u(t)) (3.95)

A control law which guarantees the stability of the closed loop system is

u(t) = −x2
c(t)− 2xc(t)z(t)− z2(t)− cz(t) (3.96)

where c > 0. Therefore, the dynamic error is final given by

ż(t) = −cz(t) (3.97)

which is linear and exponential stable.
In the next section, we present the integrator Backstepping.

3.6.2.2 Integrator Backstepping

Integrator Backstepping was develop by Petar V. Kokotovic [Kokotovic, 1992], this
method becomes popular method in the control theory. Consider the system{

ẋ(t) = f(x(t)) + h(x(t))ξ(t)

ξ̇(t) = u(t)
(3.98)
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We suppose that it exists a control law ξ(t) = φ(x(t)) (φ(0) = 0) that can asymptotically
stabilize the system. This implies that the system

ẋ(t) = f(x(t)) + h(x(t))φ(x(t)) (3.99)

is asymptotically stable. Furthermore, we can suppose that we know a Lyapunov func-
tion V (x(t)) that satisfies the inequality

∂V

∂x
[f(x(t)) + h(x(t))φ(x(t))] ≤ −W (x(t)) (3.100)

where W (x(t)) is positive definite. By adding and subtracting the term h(x(t))φ(x(t)),
we obtain{

ẋ(t) = f(x(t)) + h(x)ξ(t) = [f(x(t)) + h(x(t))φ(x(t))] + h(x(t))[ξ(t)− φ(x(t))]

ξ̇(t) = u(t)
(3.101)

By using the change of variables, z(t) = ξ(t) − φ(x(t)), which generates the following
system{

ẋ(t) = f(x(t)) + h(x)ξ(t) = [f(x(t)) + h(x(t))φ(x(t))] + h(x(t))z(t)

ż(t) = u(t)− φ̇(x(t))
(3.102)

Since f , h and φ are known, the derivative can be written as

φ̇(x(t)) =
∂φ

∂x
[f(x(t)) + h(x(t))φ(x(t)) + h(x(t))z(t)] (3.103)

Let’s us to use v(t) = u(t)− φ̇(x(t)) which reduces our system to{
ẋ(t) = f(x(t)) + h(x)ξ(t) = [f(x(t)) + h(x(t))φ(x(t))] + h(x(t))z(t)
ż(t) = v(t)

(3.104)

This modular property of backstopping will be exploited to stabilize the overall system
with the control law v(t). This is done by considering the Lyapunov function

Vc(x(t), ξ(t)) = V (x(t)) +
1

2
z2(t) = V (x(t)) +

1

2
(ξ(t)− φ(x(t)))2 (3.105)

The derivate of Vc is

V̇c(x(t), ξ(t)) =
∂V

∂x
[f(x(t)) + h(x(t))φ(x(t))] +

∂V

∂x
h(x(t))z(t) + z(t)v(t)

≤ −W (x(t)) +
∂V

∂x
h(x(t))z(t) + z(t)v(t)

(3.106)

We can choose
v(t) = −∂V

∂x
h(x(t))− cz(t) (3.107)

where c > 0. This implies that

V̇c(x(t), ξ(t)) ≤ −W (x(t))− cz2(t) (3.108)



48 Closed-loop control

which implies the closed loop system is asymptotically stable. Finally, the control law
u(t) is given by

u(t) = −∂φ
∂x

[f(x(t)) + h(x(t))ξ(t)]− ∂V

∂x
h(x(t))− c[ξ(t)− φ(x(t))] (3.109)

We can conclude that the closed loop system is asymptotically stable.

Lemma 3.6.1 Backstepping lemma
Consider the system

ẋ(t) = f(x(t)) + h(x(t))ξ(t) (3.110)
ξ̇(t) = u(t) (3.111)

Let φ(x(t)) be a stabilizing stable feedback law for the system (3.110) where φ(0) = 0.
Let V (x(t)) be a Lyapunov functions such that

∂V

∂x
[f(x(t)) + h(x(t))φ(x(t))] ≤ −W (x(t)) (3.112)

for some positive definite W (x(t)). Then the feedback law

u(t) = −∂φ
∂x

[f(x(t)) + h(x(t))ξ(t)]− ∂V

∂x
h(x(t))− c[ξ(t)− φ(x(t))] (3.113)

for c > 0 stabilize the origin with the Lyapunov function

V (x(t)) =
1

2
[ξ(t)− φ(x(t))]2 (3.114)

In order to illustrate this method, we consider a simple example. Consider the
following system

ẋ(t) = x2(t)) + x3(t)) + ξ(t) (3.115)
ξ̇(t) = u(t) (3.116)

Firstly, consider the system

ẋ(t) = x2(t)) + x3(t)) + ξ(t) (3.117)

with the control law ξ(t). The Lyapunov function V (x(t)) can be chosen

V (x(t)) =
1

2
x2(t)→ V̇ (x(t)) = x(t)ẋ(t) = x(t)[x2(t)) + x3(t)) + ξ(t)] (3.118)

Therefore, the control law is chosen by

ξ(t) = φ(x(t)) = −x(t)− x2(t)− 2x3(t) (3.119)

The Lyapunov function V (x(t)) satisfies

V (x(t)) = −x2(t))− x4(t)) ≤ −x2(t) (3.120)
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which implies that x(t) = 0 is asymptotically stable. Now we use the backstopping
change of variables,

z(t) = ξ(t)− φ(x(t)) = ξ(t) + x(t) + x2(t) + 2x3(t) (3.121)

to transform our system to

ẋ(t) = −x(t)− x3(t) + z(t) (3.122)
ż(t) = u(t)− (1 + 2x(t) + 6x2(t))(−x(t)− x3(t) + z(t)) (3.123)

and let
Vc(x(t), ξ(t)) = V (x(t)) +

1

2
z2(t) =

1

2
x2(t) +

1

2
z2(t) (3.124)

Therefore, the derivate of Vc(x(t), ξ(t)) is

V̇c = x(t)(−x(t)− x3(t) + z(t))

+z(t)[u(t)− (1 + 2x(t) + 6x2(t))(−x(t)− x3(t) + z(t))]

= −x2(t)− x4(t) + z(t)[u(t) + x(t)− (1 + 2x(t) + 6x2(t))(−x(t)− x3(t) + z(t))]

(3.125)

and choose

u(t) = −x(t)− (1 + 2x(t) + 6x2(t))(−x(t)− x3(t) + z(t))− z(t) (3.126)

This implies that
V̇c(x(t), ξ(t)) = −x2(t)− x4(t)− z2(t) (3.127)

guarantees the closed loop system to be asymptotically stable.
The actual control is given

u(t) = −x(t)− (1 + 2x(t) + 6x2(t))(−x(t)− x3(t) + ξ(t) + x(t) + x2(t) + 2x3(t))

−ξ(t)− x(t)− x2(t)− 2x3(t)

= −x(t)− (1 + 2x(t) + 6x2(t))(ξ(t) + x2(t) + x3(t))− ξ(t)− x(t)− x2(t)− 2x3(t)

(3.128)

3.7 Conclusion

Since the fluid flow is infinite dimension and nonlinear model. The results in the control
theory allow us to ensure that the controller based on the linearization and model
reduction can be applied to the fluid flow. In the next chapters, we shall apply the
control theory to the flow control.
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Chapter 4

State of the art

In this chapter, a review of previous works is presented where the active flow control is
particularly emphasized. The case study considered in this thesis is the plane Poiseuille
flow. This will be introduced in Section 4.3 and discussed in more detail in the next
chapter. Section 4.4 will present the objectives of our works.

4.1 Classification of flow control

The flow control is classified by energy expenditure and control loop system, as shown
in Figure 4.1 (taken from [Gad-el Hak, 2000]).

Flow control
strategies

Passive Active

Reactive

Feedback Feedforward

Predetermined

Figure 4.1: Classification of flow control strategies.

The passive control, see the reviews in [Bushnell and Hef, 1990], [Gad-el Hak, 2000],
[Gad-el Hak et al., 1998], is affected without requiring an energy expenditure and no
control loop. The devices of passive control are usually such as vortex generators, riblets,
and steady suction or blowing. The passive techniques usually include a geometric
shaping to manipulate a pressure gradient, a use of fixed mechanical vortex generators
for separation control, a placement of riblets on a surface to reduce the drag. An
example of the passive control, the wing of aircraft is designed to decrease the drag and
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enhance the lift [Chatto, 2006]. For more examples, the design of riblets for the drag
reduction is found in [Choi et al., 1993a], [Garcia-Mayoral and Jimenez, 2011]. Indeed,
the majority of the passive control is the shape optimization.

In contrast to the passive control, the active control requires an energy expenditure.
The recent reviews of the active flow control were described in [Moin and Bewley, 1994],
[Gad-el Hak, 1996], [Gad-el Hak, 2000], [Bewley, 2001], [Collis et al., 2004]. The active
flow control contains both predetermined and reactive controls. The energy expenditure
may be a power of the actuator which provides a force to act the flow.

The passive flow control is simple, less expensive to design and manufacture, and
easier to maintain than the active flow control. Thus, the passive flow control is usually
used in real-world applications, especially in aircraft. However, the passive flow control
is only applied to simple flows and is limited since the most engineering flows contain
complex unsteady motions (instabilities, turbulence). This reason makes the active flow
control more attention than the passive flow control in the currently.

The detail of the active control will be presented in the next section.

4.2 Active flow control

The active flow control triad contains the phenomena, the actuators-sensors and the
control method. These problems are shown in Figure 4.2 (taken from [Kral, 2000]). As
a result, the flow phenomena is listed along with the actuators, the sensors and the
methods of control.

4.2.1 Sensors

The sensors are an equipment which provides a feedback information to help us to con-
trol the flow. In the fluid flow, the measured variables are usually pressure and velocity.
The sensors are a conventional sensor or a Micro-Electro-Mechanical-System(MEMS)
sensor or an optical sensor. For the conventional and MEMS sensors, the measured
variable is the wall pressure and/or skin friction such as floating element sensors, hot
films and shear stress crystals while the optical sensors measure all field of velocity
such as Charge-Coupled Device (CCD) camera. The optical sensors are very useful in
the image processing where the velocity is directly obtained from the CCD camera.
The recent reviews of hot film sensors are found in [Comte-Bellot, 1976] and the sensor
techniques are presented in [Monsma et al., 1995].

4.2.2 Actuators

The actuators are an equipment to controlling the flow. There are many types of actu-
ators which are listed in Figure 4.2, e.g. piezoelectric, synthetic jets, electromagnetic
and MEMS actuators, specifically MEMS actuators. The recent reviews of actuators
for the flow control were in [Cattafesta III and Sheplak, 2011], which clearly illustrate
the advantages and inconveniences of each actuator. Two actuators: synthetic jet and
MEMS are emphasized for instance in the following.
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Flow Phenomenon

AFC Triad
Controls & SensorsActuators

Controls
Neural Networks
Adaptive Control
Physical Model-Based
Dynamical Systems-Based
Optimal Control Theory

Sensors
Conventional
Optical
MEMS

Actuators
Fluidic
Thermal
Acoustic
Piezoelectric
Synthetic Jets
Electromagnetic
Shape Memory Alloys
MEMS

Flow Phenomena
Vortex Flows
Forebody Vortex Control
Blade-Vortex Interaction
Wing-Tip Vortex Dynamics
Vortex Generation/Alleviation

Boundary Layers
Separation Control
Drag Reduction
Noise Suppression
Virtual Surface Shaping

Jets, Wakes, Mixing Layers
Mixing Enhancement
Jet Vectoring
Noise Suppression
Wake Modification

Figure 4.2: Active flow control (AFC) triad.

Figure 4.3: Synthetic jet actuator and flow patterns: (a) schematic and (b) schlieren
flow visualization.

The synthetic jet actuator was developed at Georgia Institute of Technology. A
schematic of this actuator was described in [Smith and Glezer, 1998], as shown in Fig-
ure 4.3 (Courtesy B. L. Smith and A. Glezer, Georgia Tech Research Institute, taken
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Figure 4.4: AMEMS tile integrating sensors, actuators and control logic for distributed
flow control application, developed by Prof. Chih-Ming Ho (UCLA) and Yu-Chong Tai
(Caltech).

from [Glezer and Amitay, 2002]). This actuator is applied to thrust-vectoring, mix-
ing enhancement, separation control and virtual surface shaping, for more details of
its applications, see previous works in [Amitay et al., 1997], [Smith and Glezer, 1998],
[Amitay et al., 1999], [Amitay et al., 2001]. The recent reviews of synthetic jet actuator
and its applications were given in [Glezer and Amitay, 2002].

TheMEMS actuators are largely used in the active flow control, [Ho and Tai, 1996],
[Ho and Tai, 1998]. A concept of MEMS arrays of sensors and actuators is shown
in Figure 4.4 (taken from [Bewley, 2001]). Note that MEMS sensors measure the
shear stress and MEMS actuators are blowing/suction actuators. For more technol-
ogy of MEMS, the recent MEMS handbook was presented in [Gad-el Hak, 2010a],
[Gad-el Hak, 2010b].

Both the sensors and the actuators have been presented, we next discuss about the
methods of reactive flow control.

4.2.3 Methods of reactive flow control

In [Moin and Bewley, 1994], the reactive feedback control strategies were categorized
by four categories: adaptive, physical model-based, dynamical systems-based, optimal
control, as shown in Figure 4.5.

First strategy is adaptive flow control technique which concerns models and con-
trollers without regarding to the detail of the flow physics. Note that a model for
the adaptive control is identified independently of the Navier-Stokes equations. The
adaptive schemes are based on the feedback control theory such as linear and nonlinear
control theories, neural networks control. An example, the nonlinear adaptive control
technique has been successfully applied to control the transition process in turbulent
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Reactive
flow control

Adaptive
control

Physical
model-based

Dynamical
systems-based

Optimal
control

Figure 4.5: Methods of reactive flow control.

boundary layers [Fan et al., 1993] while the neural networks technique was used in tur-
bulence control for the drag reduction.

Second strategy is physical model-based, this technique is used when the domi-
nant physics are well understood. An example of this strategy is to reduce the drag
by mitigating the effect of near wall vortices in [Gad-el Hak and Blackwelder, 1989],
[Choi et al., 1994]. Although this strategy can be applied to the flow, it is limited to
simple flows.

Third strategy is dynamical systems-based which supposes that the flow is controlled
based on a reduced model. The nonlinear dynamical system theory allows turbulence to
be decomposed into a reduced model where the control theory is applied. An example of
this strategy is Proper Orthogonal Decomposition (POD) method which gives a model
reduction based on the analysis of turbulent flows, in [Berkooz et al., 1993]. A Balanced
Model Reduction is usually used inPODmethod, as shown in [Willcox and Peraire, 2002],
[Rowley, 2005].

Finally, the optimal control theory is used to apply directly the Navier-Stokes equa-
tions to minimize a cost function. The controller is designed based on the Navier-Stokes
equations such as sub-optimal control [Choi et al., 1993b] or linear feedback control:
PID control [Joshi et al., 1997], LQR control [Joshi et al., 1999]. This strategy is the
ideal of controller in this thesis.

In the next section, we consider some types of flow in the closed loop control.

4.2.4 Types of flow

Some types of flow are often studied in the flow control such as: the cavity flow, flow
around a cylinder and plane channel flow.

The flow over a cavity, as shown in Figure 4.6, mainly produces acoustic waves
which contain many problematic sources in aircraft. The recent reviews of the cavity
flow were given in [Cattafesta et al., 2003], [Rowley and Williams, 2006]. An example
of the active closed loop control of the cavity flow has been studied and developed
at the Ohio State University. A shallow cavity flow is as shown in Figure 4.7 (taken
from [Samimy et al., 2007]). The shallow cavity flow was studied at low Mach num-
ber. In previous works such as [Yan et al., 2004], [Yuan et al., 2005], [Yan et al., 2006],
[Samimy et al., 2007], the linear feedback controls such as H∞, PID, and Smith pre-
dictor based on controllers were designed and tested. POD technique and synthetic
jet actuators were used to obtain a model reduction and control the flow, respectively.



56 Active flow control

Figure 4.6: Cavity flow is an acoustic sources.

Figure 4.7: Scaled drawing of the experimental set up showing the test section with the
cavity and the actuator.

More studies about the cavity flow are found [Caraballo et al., 2008], [Kim et al., 2008],
[Kim et al., 2009].

The flow around a cylinder is classical active flow control. The configuration of
flow around a cylinder is shown in Figure 4.8 for both laminar and turbulent flows. In

Figure 4.8: Flow around a cylinder and the phenomenas.
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[Min and Choi, 1999], a suboptimal feedback control was studied and applied to the
flow behind a circular cylinder. The sensors and actuators are located on the cylin-
der, as shown in Figure 4.9 (taken from [Min and Choi, 1999]). The control signal is
blowing/suction and the feedback control is developed based on minimizing the cost
functions to reduce the drag and vortex shedding. The recent reviews of this flow
were described in [Choi et al., 2008] for the problem of 3D forcing, the active feedback
control, the control based on local and global instability, and the control with syn-
thetic jet actuators. More examples of this flow are found in [Lauga and Bewley, 2002],
[Bergmann and Brancher, 2005].

Figure 4.9: Schematic of the sensing and actuation for vortex shedding.

The plane Poiseuille flow, as shown in Figure 4.10 (taken from [Joshi et al., 1997]),
is easier to consider in the context of classical control theory than the others. Joshi was

Figure 4.10: Plane Poiseuille flow.

the first person who designed a linear feedback control based on the linear model for the
full nonlinear process. A simple PID control was used to stabilize the plane Poiseuille
flow. Since the success of Joshi’s work [Joshi et al., 1997], a LQG control was devel-
oped for the 2D plane Poiseuille flow in [Joshi, 1996], [Joshi et al., 1999], it contains a
LQR regulator and a LQE estimator. In order to reduce the order of the controller,



58 Plane Poiseuille flow

in [Cortelezzi and Speyer, 1998], [Cortelezzi et al., 1998a], [Cortelezzi et al., 1998b], a
LQR control was applied to a reduced model. The control of the 3D plane Poiseuille flow
was extensively studied and developed in [Kang et al., 1999], [Bewley and Liu, 1998].
When the 3D plane Poiseuille flow was considered, the transient energy growth was
focused. Therefore, in [Bewley and Liu, 1998], H2/H∞ controls were used to stabi-
lize the 3D plane Poiseuille flow and minimize the kinetic energy density. The re-
cent reviews of linear feedback control for the plane Poiseuille flow were introduced in
[Kim and Bewley, 2007]. On the other hand, a feedback control based on the analysis
of Lyapunov function stabilized the 2D plane Poiseuillel flow in [Balogh et al., 1999],
[Balogh et al., 2000], [Balogh et al., 2001], [Aamo et al., 2003].

The subject of this thesis in the next section is studying the problem of the plane
Poiseuille flow.

4.3 Plane Poiseuille flow

The plane Poiseuille flow is chosen as academic case study in this thesis due to the fact
that it is traight torward to obtain a model to be used for controller design. A list
of control approaches includes: opposition control, adjoint-based suboptimal control,
neural networks control, linear control and also nonlinear control. In particular, we can
model the plane Poiseuille flow to a state space representation, whose control approach
is easy to be designed. Furthermore, it contains fundamental difficulties encountered in
all flow control applications such as the problem of distributed sensor and actuators. In
addition, many important unsolved issues of flow control can be studied, for instance,
drag reduction and kinetic energy minimization. Finally, in our opinion, this flow is a
good example of the application of the visual servoing control in the context of flow
control.

4.3.1 Problem description

The governing equations of the plane Poiseuille flow are the Navier-Stokes Equations.
In order to study the behavior of this flow, we use numerical methods to convert PDE
of small perturbation to a set of ODE. The linearized Navier-Stokes equations are
converted to a state-space representation

ẋ(t) = L−1Ax(t), (4.1)

where the vector x(t) involves the velocity. And the operator L−1A is given by

L−1A =

[
LOS 0
LC LSq

]
, (4.2)

where the operators LOS,LSq,LC are Orr-Sommerfeld, Squire, and coupling operators,
respectively or we simply call Orr-Sommerfeld operators. Note that these operators are
defined later.
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From previous works in the scientific literature, we can classify the active control of
plane Poiseuille flow into several important problems which are: stabilization, kinetic
energy density minimization and drag reduction. We illustrate these problems through
a simple example in order to explain these concepts more clearly. Considering the
following systems

ẋ1(t) =

[
0.1 0
0.5 −0.11

]
x1(t) (4.3)

ẋ2(t) =

[
−0.1 0
0.5 −0.11

]
x2(t) (4.4)

ẋ3(t) =

[
−0.1 0

0 −0.1

]
x3(t). (4.5)

The behavior of uncontrolled plane Poiseuille flow is equivalent to the systems x1(t) and
x2(t). The kinetic energy density of three systems can be denoted ε1(t) = x>1 (t)x1(t),
ε2(t) = x>2 (t)x2(t) and ε3(t) = x>3 (t)x3(t), respectively. As a result, the behavior of
the three systems are shown in Figure 4.11 with the initial condition x10 = x20 =
x30 = (1, 1). In this example, the system x1(t) has an unstable eigenvalue (positive
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Figure 4.11: Behavior of the kinetic energy density versus time.

eigenvalue), therefore the kinetic energy density is infinite and insignificant. Hence,
the system x1(t) must be stabilized. For the system x2(t), although all eigenvalues
are stable (negative eigenvalue) but the eigenvectors are nonorthogonal, therefore the
kinetic energy density increases and obtains the maximum value before decreasing and
tending toward to zero, this problem is called a non-normality problem. Note that
the plane Poiseuille flow becomes turbulent when the kinetic energy density increases,
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for this reason, the maximum kinetic energy density must be reduced. In brief, this
example illustrates the behavior of the plane Poiseuille flow because the form of the
Orr-Sommerfeld operators is similar to the systems x1(t) and x2(t). In contrast to
the systems x1(t) and x2(t), the system x3(t) contains all stable eigenvalues and its
eigenvectors are orthogonal. The kinetic energy density has an exponential decrease.
For this reason, the main aim of this thesis is to obtain the closed loop system of the
plane Poiseuille flow as the system x3(t).

On the other hand, the problems of the plane Poiseuille flow can be distinguished
based on the Reynolds number (see section 2.3). More precisely, the plane Poiseuille flow
contains the unstable modes at the high Reynolds number R > RL = 5772, which means
we have a problem of stabilization. In addition, this flow has the non-normality at the
Reynolds number RG = 49.6 < R < RL, we have a problem of kinetic energy density
minimization. Note that when the flow is laminar, the drag reduction is significant,
therefore the drag reduction is investigated at the low Reynolds number R < RT = 1000.
Previous works on the control of the plane Poiseuille flow will be presented in the
following.

4.3.2 Previous works

4.3.2.1 Stabilization

A linear model of the plane Poiseuille flow was first proposed by Joshi [Joshi, 1996]. He
used the Galerkin method to form a linear model system from the linearized 2D plane
Poiseuille flow. The linear model contains unstable modes [Orszag, 1971], [Joshi, 1996],
[Joshi et al., 1997] (R > RL = 5772) which lead the flow to turbulence. Therefore, a
simple controller as aPID control was used to stabilize the unstable modes [Joshi, 1996],
[Joshi et al., 1997]. Another way to stabilize the unstable modes was to use a LQR
control in [Joshi, 1996], [Joshi et al., 1999] where the shear stress energy was chosen as
the cost function of the LQR criteria. The LQR control is a state feedback control
which needs an estimation of the state vector. Therefore, a LQG control was used in
[Joshi, 1996], [Joshi et al., 1999] to provide the estimation of the state vector from the
measurement of the shear stress. In the Joshi’s work, he demonstrated that the
linear feedback control based on the linear model could be applied to the
full nonlinear plane Poiseuille flow. Hence, these results are the fundamental
result for the channel flow control based on a linear model.

Although the controller was designed based on the linear model, the order of con-
troller was still large because numerical method needs a large dimension. In order
to reduce the order of controller, the dimension of linear model was reduced to a
reduced order model by using a Jordan Canonical Form. This technique was stud-
ied in [Cortelezzi and Speyer, 1998], [Cortelezzi et al., 1998a], [Cortelezzi et al., 1998b]
and the LQR control like in [Joshi et al., 1999] was applied to the reduced order model.
Hence, Cortelezzi and co-workers have given a very good drag reduction in their non-
linear simulation. Once again, these results demonstrated that the linear control based
on the linearized plane Poiseuille flow could give a good result for the nonlinear plane
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Poiseuille flow.
Since the 2D plane Poiseuille flow does not fully represent turbulence, the 3D plane

Poiseuille flow was extensively developed in [Bewley and Liu, 1998], [Lee et al., 2001].
Although the linear model contains all stable modes, the flow may become turbulent
due to the appearance of the transient energy growth (RE = 49.6 < R < RL = 5772),
see the experiments in [Patel and Head, 1969] and [Lundbladh and Johansson, 1991].
This problem is called the non-normality problem of the flow. So that, the transient
energy growth of the flow must be minimized.

4.3.2.2 Kinetic energy density minimization

The operators or matrices are said to be normal if their condition numbers equal one
[Kato, 1976], [Trefethen, 1992], they have a set of orthogonal eigenfunctions or orthog-
onal eigenvectors which can be diagonalized by an unitary similarity transformation
[Trefethen and Embree, 2005]. In numerical methods, the non-normality of operators
or matrices may be investigated based on methods such as matrix exponential, resolvent
(or ε−pseudospectra), numerical abscissa, transfer function norm in component form,
and the impulse response (see recent reviews in [Schmid, 2007]).

In the fluid flow, the non-normality problem occurs due to the non-normality of
the Orr-Sommerfeld operators. In fact, linear terms of Navier Stokes equations main-
tain turbulence [Kim and Lim, 2000], [Kim, 2003], and [Kim, 2011] while nonlinear
terms only redistribute the energy [Högberg and Bewley, 2000]. Therefore, Orr-
Sommerfeld operators are sufficient enough for investigating the transient
energy growth.

Previous works in the scientific literature showed that the plane Poiseuille flow
becomes turbulent even though their linear model contains all stable modes. More
precisely, the eigenfunctions are nonorthogonal, the transient energy growth occurs
[Butler and Farrell, 1992], [Henningson et al., 1993], [Reddy and Henningson, 1993] and
[Trefethen et al., 1993], [Henningson, 1991], [Gustavsson, 1991]. When the transient
energy growth is large enough, the flow becomes turbulent. Note that the small per-
turbations to the smooth flow may be amplified by a factors on the order of 105 by a
linear mechanism even though all the states of the linear model monotonically decay
[Trefethen et al., 1993].

The eigenvalues and eigenfunctions of an operator are still defined as a matrix
[Trefethen and Embree, 2005]. Indeed, the eigenvalue problems for the matrices often
come out through the discretizations of linear operators [Lanczos, 1950]. Therefore, the
nonorthogonal eigenfunctions become the nonorthogonal eigenvectors [Reddy et al., 1993],
[Reddy and Henningson, 1993]. In the plane Poiseuille flow, the non-normality prob-
lem of Orr-Sommerfeld operators becomes the nonorthogonality of the eigenvectors in
[Bewley and Liu, 1998]. With the purpose of limitation of the transient energy growth,
Bewley used optimal (H2) and robust (H∞) controls to achieve a closed loop system
whose nonorthogonality of eigenvectors are reduced. The H2 and H∞ controls modify
all of the eigenvectors, and thus these controls reduce the nonortohognality but the
eigenvectors of the closed loop system are still nonorthogonal. Of course, the transient
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energy growth is only reduced. In the same way, a PID control was used but provided
less performance than the H2 and H∞ controls.

The cause of the nonorthogonality of eigenvectors is due to the nearly identical
pairs of eigenvalues [Bewley and Liu, 1998]. Indeed, this cause comes from the cou-
pling term of Orr-Sommerfelds operators [Kim and Lim, 2000]. Motivated by these
results, a LQR control was designed to minimize this coupling term [Lim, 2003]. An
interesting result is that the LQR control could reduce the coupling term but could
not completely eliminate it, in contrast to the virtual flow, where the coupling term
was artificially removed and a better result obtained from the nonlinear simulations
[Kim and Lim, 2000], [Kim, 2003]. In addition, the similar LQR control was also de-
veloped in [Högberg and Bewley, 2000], [Högberg et al., 2001], [Högberg et al., 2003],
[Högberg and Henningson, 2002] to reduce the nonorthogonality.

On the other hand, a LMI approach [Whidborne and McKernan, 2007] was also
applied to the plane Poiseuille flow [McKernan, 2006], [Whidborne et al., 2008] in or-
der to find the minimum value of the transient energy growth. Although this approach
could reduce the energy bound to the minimum value in their model but it is the
same thing as with above control approaches (H2, H∞ and LQR). This control ap-
proach was just verified in the lineari and nonlinear models of the plane Poiseuille flow
[Martinelli et al., 2009], [Martinelli et al., 2011]. And again, a linear control is a good
choice for the nonlinear plane Poiseuille flow.

Using the nonlinear theory, [Balogh et al., 2001], [Aamo, 2002], [Aamo et al., 2003],
the standard Lyapunov-based approach was applied to the 2D plane Poiseuille flow. The
energy of perturbation could decay exponentially in time, therefore we have no problem
of non-normality any more but this control approach depends on the low Reynolds num-
ber (in this case R < 1/4, note that R < RE = 49.6, the flow is always monotonically
stable). Although the author gave the good simulation results at R = 7500, however
this problem must be extended to the 3D plane Poiseuille flow and the control law does
not depend on the Reynolds number since the Reynolds number may be an uncertain
number.

The plane Poiseuille flow is different to general nonlinear systems, the
flow still becomes turbulent even if its linearization contains all negative
eigenvalue. Therefore, we must minimize the kinetic energy density (ε(t))
which captures the stability of the flow. Our core aim of this thesis is trying
to guarantee ε̇(t) ≤ 0 in the closed loop system of the plane Poiseuille flow.

4.3.2.3 Drag reduction

General reviews of the drag reduction were recently reported in [Kim, 2011]. When the
Reynolds number is low, we do not have the problem of transient energy growth, the
drag reduction becomes important.

The controllers for drag reduction are opposition control, neural networks control,
adjoint-based suboptimal control and linear control which are based on a linear model
as PID and LQR controls, see [Kim, 2003].

In [Choi et al., 1994], [Hammond et al., 1998], the drag reduction was obtained by



State of the art 63

using opposition control, an interesting result with 25%−30% drag reduction. However,
this technique used blowing/ suction at the wall y+ = 10, therefore this technique is
not available in practice.

A neural networks control [Fan et al., 1993], [Lee et al., 1997] was applied to a tur-
bulent channel flow at low Reynolds number, 20% drag reduction.

An adjoint-based suboptimal control approach has been proposed in previous works
[Bewley et al., 1993], a drag reduction, approximately 17%, have been obtained. How-
ever, this way of process leads to a very high computation cost, not compatible with in
a real time control scheme. Moreover, it is not possible to implement this approach in
practice.

A PID control was used to suppress the wall shear stress (WSS) leading conse-
quently to a drag reduction. While in [Cortelezzi et al., 1998a], [Cortelezzi et al., 1998b],
[Cortelezzi and Speyer, 1998], a LQR control was used in which the cost function to
minimize includes the drag reduction, the reported result of drag reduction to 50%
below the laminar level.

A Lorentz force actuator was used to reduce skin friction drag, 40% drag reduction
at the low Reynolds number R = 100. This actuator was also applied to high Reynolds
number R = 200 and R = 400.

In drag reduction, some control approaches are opposition control, neural networks
control, adjoint-based suboptimal control and linear control but only the linear control
is significant in practice due to the limitation of the other approaches [Kim, 2003]. The
linear control approaches in previous works are PID, LQR and LMI controls, however,
these control approaches do not minimize directly the skin-friction drag, therefore we
need a control approach which can minimize directly the skin-friction drag.

4.3.2.4 Measurement of flow

How can we determine the state flow. In [Bewley and Protas, 2004], the measurement of
WSS and pressure are sufficient to determine the state of turbulent flow while theWSS
alone is sufficient to determine the state of linearized flow. In [Hoepffner et al., 2005],
[Chevalier et al., 2006], an estimation of the state flow was designed based on the
Kalman filter, the linearized Navier-Stokes equations were used.

We use the active control, more precisely a feedback control. To do it, we must
determine the state vector estimation (when a state feedback control is used, e.g. a
LQR control in [Joshi et al., 1999])) or the output estimation (when output feedback
control is used, a proportional control [Joshi et al., 1997]) from the output informa-
tion. From the information of WSS, the LQG control is used to construct the state
vector estimation, see previous works in [Joshi et al., 1997], [Bewley and Liu, 1998],
[Högberg et al., 2003], [Hoepffner et al., 2005] and [Chevalier et al., 2006].

In the fluid flow, WSS is often measured by using sensors such as MEMS sensors
in [Ho and Tai, 1996] and [Xu et al., 2003]. This technique is limited due to the limited
surface of the sensing element, thus limiting the applicability of these devices in physic
relevant geometries.

Another way can be used to estimate the state vector, the velocity map is directly
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measured by using Charge Coupled Device (CCD) camera in [Heitz et al., 2010]. We
use a CCD camera to estimate the state vector, of course a great advantage with
respect to a sensor at the walls, see [Tatsambon Fomena and Collewet, 2011b]. The
optical sensor was used, the state vector can be directly calculated from the velocity.
Concerning the visual servoing control, the optical flow technique is used to estimate
the state vector from the visual measurement that is shown in Figure 4.12.
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Figure 4.12: Fronto-parallel visualization of a 2D flow using laser sheet which role is to
enlighten the particles seeded in the fluid.

A laser sheet is used to enlighten the particles for which the velocities are computed,
see Figure 4.12. As a result, from this visualization process, it is possible to compute
the dense flow which can be defined as the apparent velocity vector field representing
the motion of photometric pattern (pixels brightness) in successive image sequences in
[Heitz et al., 2010] in three steps ([Tatsambon Fomena and Collewet, 2011b]):

• Perspective projection of a flow particle

• Estimation of the flow velocity particle from its image

• Estimation of the state vector

4.3.2.5 Validation of linear feedback control on nonlinear simulation

In order to answer to the question: can a feedback control based on the linear model
be applied to the full nonlinear flow. In previous works, the feedback controller based
on the linear model was tested on the full flow. DNS toolbox was used to simulate
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the result for the full nonlinear flow. A first DNS was developed in [Kim et al., 1987]
and the recent reviews of DNS tool is found in [Moin and Mahesh, 1998]. Some feed-
back controllers based on the linear model were applied to DNS toolbox such as the
PID control in [Joshi, 1996], [Joshi et al., 1997], the LQR control in [Lim, 2003],
[Kim, 2003], [Högberg et al., 2003], [McKernan et al., 2007] and the LMI control in
[Martinelli et al., 2011]. Indeed, a linear feedback controller based on linear model can
be applied to the full nonlinear flow. This is why a linear feedback control is chosen to
obtain the stability of the flow.

4.4 Objectives

In this thesis, we denote the kinetic energy density ε(t) and the skin-friction drag d(t).
Our objectives concern both the kinetic energy density and the skin-friction drag to be
minimized.

In previous works, PID, H2/H∞, LQR, and LMI controls make the set eigen-
vectors more orthogonal through minimizing the shear stress or the kinetic energy
density but these control approaches cannot directly eliminate the nonorthogonality.
Hence, the limitation of these control approaches are due to the number of the de-
gree of freedom (DOF) (the independent control signals). The number of DOF is one
for the linear model in [Joshi et al., 1997], two for the linear model in [Aamo, 2002],
[Bewley and Liu, 1998], [Högberg et al., 2003], [McKernan, 2006]. Therefore, the non-
normality still exists with these control schemes, more precisely, the transient energy
growth still occurs and the flow becomes turbulent. Thus, some control schemes al-
ways achieve an exponential decrease of kinetic energy density must be proposed. It
means that the non-normality or the problem of nonorthogonality of eigenfunctions of
the Orr-Sommerfeld operators is completely solved.

We recall previous important works. A controller was designed to ensure ε̇(t) ≤ 0
in [Balogh et al., 2001], [Aamo, 2002], [Aamo et al., 2003] but these control approaches
depend on the Reynolds number and are only applied when R < 1/4. To our knowledge,
the previous controllers have never been able to ensure ε̇(t) ≤ 0 and ḋ(t) ≤ 0 for all the
Reynolds number.

Our main aim of this thesis is to design a controller which is capable
to ensure ε̇(t) ≤ 0 or/and ḋ(t) ≤ 0 in the closed loop system of the plane
Poiseuille flow and our approach can be applied for all the Reynolds number.
In the context of the visual servoing control, the kinetic energy density and
the skin-friction drag achieve:{

ε̇(t) = −λε(t)
ḋ(t) = −λd(t),

(4.6)

it means that the kinetic energy density and skin friction drag monotonically decrease in
time. Based on the above points of view, the objectives of this thesis are contributions
as follows
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• The first objective is to demonstrate the benefits of the partitioned visual servoing
control to the plane Poiseuille flow for drag reduction. The partitioned visual ser-
voing control exploits two DOF to simultaneously minimize the skin friction drag
and the kinetic energy density. The skin-friction drag monotonically decreases
in time but the behavior of the kinetic energy density does not monotonically
decrease in time.

• The next objective is to obtain multiple inputs multiple outputs (MIMO) model
of the plane Poiseuille flow. The number of DOF increase and is very large than
the exist models in the scientific literature. The behavior of the kinetic energy
density in the closed system is improved since increasing the number of DOF.

• A further objective is to design a feedback control which leads the state vector
to monotonically decrease in time. Certainly, the kinetic energy density, the skin
friction drag and the velocity component also monotonically decrease in time. The
visual servoing control is used when the number of DOF is equal to the number
of the state vector. The non-normality of the plane Poiseuille flow is solved, and
the result allows us to ensure that the flow always remains laminar state.

• Another objective is to design a controller based on a reduced model when the
dimension of the linearized plane Poiseuille flow is large. Indeed, we use the
model reduction to design a controller which leads the kinetic energy density to
almost monotonically decrease. We demonstrate that the kinetic energy density
will almost monotonically decrease in time even using two DOF.

• The final objective is to show the robustness of the controller to measurement
noise. Since the optical flow is used to estimate the state vector, our control
approach is robust to measurement noise.
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Chapter 5

Modeling of Plane Poiseuille Flow

In this chapter, a linear model is proposed for the plane Poiseuille flow. We first present a
steady solution of the Navier Stokes equations, then the "wall-normal velocity vorticity"
desired formulation is chosen to use in this thesis. We are interested in the control
principle which is based on the distributed actuation. The plane Poiseuille flow is
solved by using the spectral method based on the Fourier series and the Chebyshev
polynomials leading to the linear model, a state-space representation. We describe
a linear model of the plane Poiseuille flow based on previous works in [Joshi, 1996],
[Bewley and Liu, 1998], [Aamo et al., 2003] and [McKernan, 2006].

5.1 Formulation of plane Poiseuille flow

5.1.1 Navier Stokes equations for incompressible, viscous flow

The Navier-Stokes equations for an incompressible fluid flow are{ ∇.V = 0
∂V

∂t
+ (V.∇)V = −∇P +

1

R
∆V.

(5.1)

where P and V are pressure and velocity, respectively. The gradient operator is given

by∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) and the Laplacian operator is given by ∆ =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
. The

Reynolds number is denoted R. The Navier-Stokes equations are rewritten in Cartesian
coordinates where the velocity is denoted by V = (U, V,W ), the equations (5.1) are
rewritten by

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
= −∂P

∂x
+

1

R
(
∂2U

∂x2
+
∂2U
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∂2U

∂z2
)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
= −∂P

∂y
+

1

R
(
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
)

∂W

∂t
+ U

∂W

∂x
+ V

∂U

∂y
+W

∂W

∂z
= −∂P

∂z
+

1

R
(
∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
).

(5.2)
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5.1.2 Steady solution of Navier-Stokes equations

The steady solution is given by

(
∂U

∂t
,
∂V

∂t
,
∂W

∂t
,
∂P

∂t
) = (0, 0, 0, 0), (5.3)

therefore, substituting (5.3) into (5.2), we get


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U
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1

R
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∂z2
)

U
∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
= −∂P

∂y
+

1

R
(
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
)

U
∂W

∂x
+ V

∂U

∂y
+W

∂W

∂z
= −∂P

∂z
+

1

R
(
∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
).

(5.4)

Now, a steady solution of Navier-Stokes equations is solved for the plane Poiseuille

Figure 5.1: Steady solution of the plane Poiseuille flow and its profile.

flow where its profile is as shown in Figure 5.1. The domain of this flow is given by
Ω = {(x, y, z) ∈ [0, Lx)× [−1,+1]× [0, Lz)} and the boundary conditions are assumed
as (U, V,W ) = (0, 0, 0) at the walls y = ±1.

It is assumed that the velocity is independent on the streamwise and spanwise di-
rections, the steady solution is (U, V,W = U(y), V (y),W (y)). The steady solution of
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Navier-Stokes equations in (5.4) becomes
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∂y
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V
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∂y
= −∂P

∂x
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1

R
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V
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1

R
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V
∂W

∂y
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∂z
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1

R

∂2W

∂y2
.

(5.5)

From
∂V

∂y
= 0, it is easy to see that V (y) = constant, since V (y = ±1) = 0 leads to

V (y) = 0. Finding (U,W,P ) is the next step, therefore, (5.5) becomes

∂P

∂x
=

1

R

∂2U

∂y2

∂P

∂y
= 0

∂P

∂z
=

1

R

∂2W

∂y2
,

(5.6)

this equation leads to P = P (x, z). It is assumed that the order of U(y) and W (y) is
maximal two, (5.6) becomes 

∂P

∂x
= c1 =

1

R

∂2U

∂y2

∂P

∂z
= c2 =

1

R

∂2W

∂y2
,

(5.7)

where c1 and c2 are constant. Therefore, (5.7) becomes
P = c1x+ c2z + c3

U =
c1R

2
y2 + c4y + c5

W =
c2R

2
y2 + c6y + c7,

(5.8)

where c3, c4, c5, c6, c7 are constant. Note that c3 may be arbitrarily chosen, so c3 = 0.
The other coefficients are given based on the boundary conditions at the walls.

For the plane Poiseuille flow, the boundary conditions at the walls (y = ±1) are
given by (U(y = ±1) = 0,W (y = ±1) = 0), we get

c1R

2
+ c4 + c5 = 0,

c1R

2
− c4 + c5 = 0

c2R

2
+ c6 + c7 = 0,

c2R

2
− c6 + c7 = 0,

(5.9)

so that
c4 = c6 = 0, c1 = −2c5

R
, c2 = −2c7

R
. (5.10)
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We assume that U(y = 0) = 1,W (y = 0) = 0, we have c5 = 1, c7 = 0, therefore we

obtain c1 = − 2

R
, c2 = 0. The steady solution of Navier-Stokes equations in the plane

Poiseuille flow is (U, V,W,Pe = 1− y2, 0, 0,− 2

R
x).

5.1.3 Linearized Navier-Stokes equations

The linearized Navier-Stoke equations of small perturbation will be given. By using the
change of variables (V, P ) = (u + U, v + V,w + W,p + Pe) where (U, V,W,Pe) are the
steady solution and (u, v, w, p) are the perturbation. The equations (5.1) become
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(5.11)
By using (5.3) and (5.4), the perturbation equations become


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(5.12)
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The linearized equations are now obtained by omitting the second order terms in the
perturbation equations
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(5.13)
The linearized equations (note that (U, V,W ) = U(y), 0, 0) are given by
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(5.14)

These equations are the linearized equations of the plane Poiseuille flow. These results
will be used in the next section to convert PDE to ODE.

5.1.4 Wall-normal velocity vorticity formulation

We can rewrite (5.14) by the velocity pressure formulation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (5.15)

∂u

∂t
+ U

∂u

∂x
+
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dy
v = −∂p

∂x
+

1

R
∆u (5.16)

∂v
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+ U
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∂y
+

1

R
∆v (5.17)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

R
∆w. (5.18)

The no-slip condition for viscous fluid is imposed at a solid surface as a boundary
condition, the fluid flow has a zero velocity relative to the boundary v(x,±1, z, t) = 0

∂v(x,±1, z, t)

∂y
= 0.

(5.19)

Taking the derivative of (5.16-5.18) and using (5.15) yields an equation for the pressure

∆p = −2
dU

dy

∂v

∂x
. (5.20)
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Next, (5.20) is used with (5.17) to eliminate the pressure p, the wall-normal velocity is
given by

∂(∆v)

∂t
+ U

∂(∆v)

∂x
− d2U

dy2

∂v

∂x
− 1

R
∆2v = 0. (5.21)

To describe the complete three-dimensional flow field, we need to use a second equation
with the most conveniently wall-normal vorticity

η =
∂u

∂z
− ∂w

∂x
, (5.22)

where η satisfies
∂η
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∂η
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R
∆η = −dU

dy

∂v
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. (5.23)

The wall-normal velocity vorticity formulation is

∂(∆v)
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+ U

∂(∆v)

∂x
− d2U

dy2

∂v

∂x
− 1

R
∆2v = 0 (5.24)

∂η

∂t
+ U

∂η

∂x
− 1

R
∆η = −dU

dy

∂v

∂z
. (5.25)

These equations are also called the Orr-Sommerfeld and Squire equations. Note that
(5.24) can be solved independently on (5.25). Therefore, (5.24) is first solved, plug-
ging then v(x, y, z, t) into (5.25), we can solve for η(x, y, z, t). The no-slip boundary
conditions concern the wall-normal velocity and the vorticity, they are given as

v(x, y = ±1, z, t) = 0
η(x, y = ±1, z, t) = 0
∂v(x, y = ±1, z, t)

∂y
= 0,

(5.26)

An homogeneous Dirichlet boundary condition is imposed on the vorticity η(x, y =
±1, z, t) = 0 while for the wall-normal velocity simultaneous homogeneous Dirichlet

and Neumann boundary conditions, v(x, y = ±1, z, t) = 0 and
∂v(x, y = ±1, z, t)

∂y
=

0 are respectively. The wall normal velocity vorticity formulation was used in pre-
vious works [Bewley and Liu, 1998], [Kang et al., 1999], [Högberg and Bewley, 2000],
[Schmid and Henningson, 2001], [Chughtai and Werner, 2010], [McKernan, 2006] and
[Aamo, 2002], [Tatsambon Fomena and Collewet, 2011a] for both 2D and 3D cases of
the plane Poiseuille flow, for the plane Couette flow in [Schmid and Henningson, 2001]
and [Butler and Farrell, 1992].

Note that we have another formulation: vorticity stream function. However, this for-
mulation is only used in the 2D case in [Joshi et al., 1995], [Cortelezzi and Speyer, 1998].

5.1.5 Control principle

5.1.5.1 Boundary control

PDE are controlled by modifying the boundary conditions. The plane Poiseuille flow
can be controlled via boundary control at the walls. Hence, the boundary control
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consists in modifying the upper (y = +1) and lower (y = −1) boundary conditions
[Joshi et al., 1995], [Joshi, 1996].

Using the wall-normal velocity vorticity formulation, in the controlled flow, an
inhomogeneous Dirichlet boundary condition is on the wall-normal velocity and the
vorticity. Based on the previous results in [Joshi et al., 1997], [McKernan, 2006] and
[Martinelli et al., 2011], the boundary conditions on v(x, y, z, t) and η(x, y, z, t) are given
by 

v(x, y = +1, z, t) = qv,u(x, z, t), v(x, y = −1, z, t) = qv,l(x, z, t)

η(x, y = +1, z, t) = qη,u(x, z, t), η(x, y = −1, z, t) = qη,l(x, z, t)
∂v(x, y = ±1, t)

∂y
= 0.

(5.27)

where qv,u(x, z, t), qv,l(x, z, t), qη,u(x, z, t) and qη,l(x, z, t) are the control signals.
The control law is a feedback control in Fourier space. The control principle is given

in Figure 5.2 by some steps

Plane Poiseuille flow

Velocity in
physical space

Optical flow

Velocity in Fourier space

Fast Fourier Transform

State vector = function
of velocity excepted the
boundary conditions

Boundary conditions =
function of control signals

Control signals = function of state vector

Boundary conditions
in physical space

Inverse Fast Fourier Transform

Act on the flow

Figure 5.2: Boundary control schema: .

• First step, the velocity is calculated in physical space by using the optical flow

• Second step, the velocity is obtained in Fourier space by using Fast Fourier Trans-
form

• Third step, the state vector is a function of the velocity in Fourier space excepted
the boundary conditions
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• Fourth step, the control signals are a function of the state vector

• Fifth step, the boundary conditions in Fourier space are function of the control
signals

• Sixth step, the boundary conditions in Fourier space are transformed to the bound-
ary conditions in physical space

• Final step, the control signals in physical space are acted on the flow

At the moment, we have introduced the control principle but we need to present
the actuators used to physically modify the flow state. This problem is presented in the
next section.

5.1.5.2 Actuators

In this study, we shall use MEMS as in [Ho and Tai, 1996], [Tsao et al., 1997] and
[Ho and Tai, 1998] which have demonstrated that spatially distributed actuation pos-
sible. One way to implement MEMS based control schemes, we use online Fast
Fourier Transform (FFT) and its inverse along the streamwise and spanwise direc-
tions as previous works in [Bewley and Liu, 1998], [Joshi et al., 1997], [Aamo, 2002],
[Högberg et al., 2003], [McKernan, 2006]. It means that the Navier Stokes equations in
physical space are transformed to a linear model in Fourier space by using FFT. We
design a controller based on the linear model in Fourier space. And the control signals
in Fourier space are then transformed into physical space by using Inverse Fast Fourier
Transform (IFFT). An algorithm of implementation of controller into DNS code is
presented in Appendix A.

Figure 5.3: Controller architecture using camera
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We extend the controller architecture presented in [Cortelezzi et al., 1998b] and
[Lee et al., 2001] which also provided the basic architecture for the implementation of
the controller in practical engineering applications. We use a CCD camera to estimate
the state vector instead of using the sensors at the walls. More importantly, the camera
is used to estimate the state vector, we do not need to use the LQE control because
the state vector is estimated by the motion measurement technique. Analog to digital
converters (A/D), digital signal processors (DSP), analog signal processing (ASP) and
digital to analog converter (D/A) are necessary hardware to convert from the analog
signal to the digital signal and inverse.

Figure 5.3 provides the architecture for the implementation of the present controller
in engineering applications. The camera provides the velocity maps which is computed
from the optical flow techniques. From the velocity map, the estimation of the state
vector is given. Finally, the necessary hardware is provided. A simple procedure is

• Use the camera to compute the velocity map which gives the estimation value of
the state vector. The state vector estimation is converted from the analog signal
to the digital signal by the A/D and DSP.

• Compute the control law in a microprocessor

• From control signal, the ASP and D/A produce the actuating signal on blow-
ing/suction actuators.

In the next section, we motivate the use of a linear model of controlled flow.

5.2 Linear model

In order to convert from the system of PDE to the system of ODE, several methods
of spatial discretization can be used, e.g. spectral, finite difference, finite element, and
finite volume methods. We use the spectral collocation discretization method similar
to that used by McKernan [McKernan, 2006] where the weight residual from evaluating
PDE using an approximate solution is set to zero.

5.2.1 Homogeneous formulation

5.2.1.1 Streamwise and spanwise discretizations

The solution in the streamwise and spanwise directions is assumed to be periodic and
approximated by the terms from a truncated Fourier series. The streamwise direction
is periodic in [0, Lx], we have

∂nu(x = 0, y, z, t)

∂xn
=
∂nu(x = Lx, y, z, t)

∂xn
, n = 1, 2, 3, . . . (5.28)

The complex solutions of the wall-normal velocity and the vorticity are denoted vc
and ηc, respectively, therefore the real solutions v and η are given by{

v(x, y, z, t) = R(vc(x, y, z, t))

η(x, y, z, t) = R(ηc(x, y, z, t)).
(5.29)
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Thus the complex solutions of the wall-normal velocity and the vorticity are approxi-
mated by 

vc(x, y, z, t) =

Nst∑
nst=0

Nsp∑
nsp=0

ṽ(y, t, nst, nsp)e
2πj(

nstx
Lx

+
nspz

Lz
)

ηc(x, y, z, t) =

Nst∑
nst=0

Nsp∑
nsp=0

η̃(y, t, nst, nsp)e
2πj(

nstx
Lx

+
nspz

Lz
),

(5.30)

where nst and nsp are the streamwise harmonic number and spanwise harmonic number,
respectively. Lx and Lz are a fundamental wavelenghts in the streamwise and spanwise
directions. Nst and Nsp are finite and represent the truncation of the series.

The linearized equations can be decoupled by wavenumber pairs and thus it is pos-
sible to treat each wavenumber pairs separately, therefore the single wavenumber pair
system is considered. The velocity and vorticity are approximated at each wavenumber
pair by {

vc(x, y, z, t) = ṽ(y, t)ej(αx+βz)

ηc(x, y, z, t) = η̃(y, t)ej(αx+βz),
(5.31)

where α = 2πnst
Lx

and β =
2πnsp
Lz

. ṽ(y, t) and η̃(y, t) are the wall-normal velocity and the
vorticity perturbation Fourier coefficients which are calculated by

ṽ(y, t) =
1

Lx

1

Lz

∫ Lx

0

∫ Lz

0
vc(x, y, z, t)e

−j(αx+βz)dzdx

η̃(y, t) =
1

Lx

1

Lz

∫ Lx

0

∫ Lz

0
ηc(x, y, z, t)e

−j(αx+βz)dzdx.

(5.32)

Substituting the assumed solution of velocity and vorticity (5.31) into (5.24-5.25), the
wall-normal velocity and vorticity perturbation Fourier coefficients in ṽ(y, t) and η̃(y, t),
are respectively

(−k2U − d2U

dy2
− k4

jRα
)ṽ + (U +

2k2

jRα
)
∂2ṽ

∂y2
− 1

jRα

∂4ṽ

∂y4
=
j

α
(
∂3ṽ

∂y2∂t
− k2∂ṽ

∂t
)

(jαU +
k2

R
)η̃ − 1

R

∂2η̃

∂y2
+ jβ

dU

dy
ṽ = −∂η̃

∂t
,

(5.33)
where k2 = α2 + β2. The no-slip boundary conditions are

ṽ(x, y = ±1, z, t) = 0
η̃(x, y = ±1, z, t) = 0
∂ṽ(x, y = ±1, z, t)

∂y
= 0.

(5.34)

By the same way, the assumed solution of streamwise and spanwise velocities are
given {

u(x, y, z, t) = R(uc(x, y, z, t)) = R(ũ(y, t)ej(αx+βz))

w(x, y, z, t) = R(wc(x, y, z, t)) = R(w̃(y, t)ej(αx+βz)).
(5.35)
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Substituting the assumed solution of streamwise and spanwise velocities (5.35) into the
continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (5.36)

yields

jαũ+
∂ṽ

∂y
+ jβw̃ = 0, (5.37)

and into the vorticity η =
∂u

∂z
− ∂w

∂x
, yields

η̃ = jβũ− jαw̃. (5.38)

Therefore, the streamwise and spanwise velocity components are calculated from
ũ =

j

k2
(α
∂ṽ

∂y
− βη̃)

w̃ =
j

k2
(β
∂ṽ

∂y
+ αη̃).

(5.39)

5.2.1.2 Wall-normal discretization

Discretization in the wall-normal direction is based on the Chebyshev polynomial series
at Gauss-Lobatto collocation points yk = cos(kπ/N), 0 ≤ k ≤ N . Using the Chebyshev
polynomial series to discretize in the wall-normal direction, the wall-normal velocity
ṽ(y, t) and the vorticity η̃(y, t) are given by

ṽ(y, t) =

N∑
n=0

av,n(t)Γn(yk), 0 ≤ k ≤ N

η̃(y, t) =

N∑
n=0

aη,n(t)Γn(yk), 0 ≤ k ≤ N,
(5.40)

The Chebyshev polynomials Γ(y) are definite as Γn(y) = cos(n arcos(y)), where −1 ≤
y ≤ +1.

5.2.1.3 State-space representation

When the wall-normal discretization is used, the solution of (5.33) can be written (as
in [Schmid and Henningson, 2001], p.488)

(−k2U − d2U

dy2
− k4

jRα
)
N∑
i=0

av,n(t)Γn(y) + (U +
2k2

jRα
)
N∑
i=0

av,n(t)Γ
′′
n(y)

− 1

jRα

N∑
i=0

av,n(t)Γ
′′′′
n (y) =

j

α

[
N∑
i=0

ȧv,n(t)Γ
′′
n(y)− k2

N∑
i=0

ȧv,n(t)Γn(y)

]
,

(5.41)
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and

(jαU +
k2

R
)
N∑
i=0

aη,n(t)Γn(y)− 1

R

N∑
i=0

aη,n(t)Γ
′′
n(y)

+jβ
dU

dy

N∑
i=0

av,n(t)Γn(y) = −
N∑
i=0

ȧη,n(t)Γn(y).

(5.42)

After the evaluation of (5.41) and (5.42) at each of the collocation points yk, we obtain
a system as following

Lẋ(t) = Ax(t), (5.43)

where the state vector x(t) =
[
av,0(t) · · · av,N (t) aη,0(t) · · · aη,N (t)

]>. The
state matrices are given as

L =

[
L11 L12

L21 L22

]
, A =

[
A11 A12

A21 A22

]
(5.44)

where
L11 = j(−k2D0(Γ) + D2(Γ)), L12 = [0], L21 = [0], L22 = jD0(Γ)

A11 = (−αUk2 − αU
′′
− k4I

jR
)D0(Γ) + (αU +

2k2I

jR
)D2(Γ)− 1

jR
D4(Γ)

A12 = [0], A21 = βU
′
D0(Γ), A22 = (αU +

k2I

jR
)D0(Γ)− 1

jR
D2(Γ).

(5.45)

or we can simplify to

L =

[
L11 0
0 L22

]
, A =

[
A11 0
A21 A22

]
(5.46)

The element of derivative matrices is calculated from

D0(Γ)kn = Γn(yk) D2(Γ)kn = Γ
′′
n(yk) D4(Γ)kn = Γ

′′′′
n (yk) (5.47)

where n = 0 . . . N and k = 0 . . . N . And the diagonal base flow matrices U , U
′
, U

′′
are

diag(1− y2
k), diag(−2yk) and diag(−2), respectively. The dimension of the matrices L

and A, the state vector x(t) are (N + 1)× (N + 1), (N + 1)× (N + 1) and (N + 1)× 1,
respectively.

If L−1 exists, (5.43) could be given in the canonical form

ẋ(t) = L−1Ax(t), (5.48)

where the Orr-Sommerfeld, Squire, and coupling matrices are give as follows
LOS = L−1

11 A11

LC = L−1
21 A21

LSq = L−1
22 A22.

(5.49)
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5.2.2 Inhomogeneous formulation with boundary control

5.2.2.1 Boundary control

Boundary control consists in modifying the upper and lower boundary conditions. We
know that in the uncontrolled flow, the homogeneous Dirichlet and Neumann boundary
conditions on the wall-normal velocity ṽ(y = ±1, t) = 0 and ṽ′(y = ±1, t) = 0, respec-
tively. But in the controlled case, the inhomogeneous Dirichlet boundary condition and
the homogeneous Neumann boundary condition on the wall-normal velocity applies

ṽ(y = +1, t) = q̃v,u(t)

ṽ(y = −1, t) = q̃v,l(t)

ṽ
′
(y = ±1, t) = 0.

(5.50)

where q̃v,u(t) and q̃v,l(t) are the Fourier coefficients of the upper and lower control signals
on the wall-normal velocity (qv,u(x, z, t) and qv,l(x, z, t) at pair wavenumbers (α, β)).

And based on previous works in [Martinelli et al., 2011], the inhomogeneous Dirich-
let boundary condition on the vorticity is proposed{

η̃(y = +1, t) = q̃η,u(t)

η̃(y = −1, t) = q̃η,l(t).
(5.51)

where q̃η,u(t) and q̃η,u(t) are the Fourier coefficients of the upper and lower control
signals on the vorticity (qη,u(x, z, t) and qη,l(x, z, t) at pair wavenumbers (α, β)).

In order to convert from the inhomogeneous formulation to the homogeneous formu-
lation, the change of variable described in [Boyd, 2001] can be used. The inhomogeneous
solution (ṽ(y, t), η̃(y, t)) is combined with the homogeneous solution (ṽh(y, t), η̃h(y, t))
and the particular solution (ṽp(y, t), η̃p(y, t)). A new variable of wall-normal velocity
vorticity formulation are proposed{

ṽ(y, t) = ṽh(y, t) + ṽp(y, t)

η̃(y, t) = η̃h(y, t) + η̃p(t, t),
(5.52)

where the wall-normal velocity and vorticity perturbation Fourier coefficients for the
homogeneous solution are 

ṽh(y, t) =

N∑
n=0

av,n(t)Γn(y)

η̃h(y, t) =

N∑
n=0

aη,n(t)Γn(y).

(5.53)

The wall-normal velocity and vorticity boundary Fourier coefficients for the particular
solution are {

ṽp(y, t) = fv,u(y)q̃v,u(t) + fv,l(y)q̃v,l(t)

η̃p(y, t) = fη,u(y)q̃η,u(t) + fη,l(y)q̃η,l(t),
(5.54)
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where the functions fv,u(y), fv,l(y), fη,u(y) and fη,l(y) satisfy the conditions

fv,u(y = +1) = fv,l(y = −1) = 1

fv,u(y = −1) = fv,l(y = +1) = 0

f
′
v,u(y = ±1) = f

′
v,l(y = ±1) = 0

fη,u,(y = +1) = fη,l(y = −1) = 1

fη,u(y = −1) = fη,l(y = +1) = 0.

(5.55)

The wall-normal velocity and the vorticity can be rewritten in a more compact form
by {

ṽ(y, t) = ṽh(y, t) + Fv(y)qv(t)

η̃(y, t) = η̃h(y, t) + Fη(y)qη(t),
(5.56)

where we denote

qv(t) =

[
q̃v,u(t)
q̃v,l(t)

]
,qη(t) =

[
q̃η,u(t)
q̃η,l(t)

]
(5.57)

and
Fη(y) =

[
fη,u(y) fη,l(y)

]
,Fv(y) =

[
fv,u(y) fv,l(y)

]
(5.58)

5.2.2.2 State-space representation

By plugging (5.56) into (5.41) and (5.42), the system of ODE is given by

(−k2U − d2U

dy2
− k4

jRα
)

N∑
n=0

av,n(t)Γn(y) + (U +
2k2

jRα
)

N∑
n=0

av,n(t)Γ
′′
n(y)− 1

jRα

N∑
n=0

av,n(t)Γ
′′′′
n (y)

+(−k2U − d2U

dy2
− k4

jRα
)Fv(y)qv(t) + (U +

2k2

jRα
)F
′′
v(y)qv(t)−

1

jRα
F
′′′′
v (y)qv(t)

=
j

α

[
N∑
n=0

ȧv,n(t)Γ
′′
n(y)− k2

N∑
n=0

ȧv,n(t)Γn(y)

]
+
j

α

[
F
′′
v(y)q̇v(t)− k2Fv(y)q̇v(t)

]
,

(5.59)
and

(jαU +
k2

R
)
N∑
n=0

aη,n(t)Γn(y)− 1

R

N∑
n=0

aη,n(t)Γ
′′
n(y) + jβ

dU

dy

N∑
n=0

av,n(t)Γn(y)

+(jαU +
k2

R
)Fη(y)qη(t)−

1

R
F
′′
η(y)qη(t) + jβ

dU

dy
Fv(y)qv(t)

= −
N∑
n=0

ȧη,n(t)Γn(y)− Fη(y)q̇η(t).

(5.60)

After the evaluation of (5.59) and (5.60) at each of the collocations points yk, a system
with control signals is obtained

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t), (5.61)
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where the control signals are u(t) =
[
q̃v,u(t) q̃v,l(t) q̃η,u(t) q̃η,l(t)

]>. And the input
matrices are

E =

[
E11 E12

E21 E22

]
, B =

[
B11 B12

B21 B22

]
(5.62)

where
E11 = j(k2D0(Fv)−D2(Fv)), E12 = [0], E21 = [0], E22 = −jD0(Fη)

B11 = (−αUk2 − αU
′′
− k4I

jR
)D0(Fv) + (αU +

2k2I

jR
)D2(Fv)−

1

jR
D4(Fv)

B12 = [0], B21 = βU
′
D0(Fv), B22 = (αU +

k2I

jR
)D0(Fη)−

1

jR
D2(Fη).

(5.63)
or we can simplify to

E =

[
E11 0
0 E22

]
, B =

[
B11 0
B21 B22

]
(5.64)

The element of derivative matrices is calculated from

D0(Fv)k = Fv(yk) D2(Fv)k = F
′′
v(yk) D4(Fv)k = F

′′′′
v (yk)

D0(Fη)k = Fη(yk) D2(Fη)k = F
′′
η(yk),

(5.65)

where k = 0 . . . N . The dimension of the matrices E and B are (N +1)×4, (N +1)×4,
respectively. Note that the matrices L and A have been given in (5.43).

5.3 Modification of the Chebyshev polynomials

The homogeneous Dirichlet and Neaumann boundary conditions without the control
signals are

ṽ(y = −1, t) =
N∑
n=0

av,n(t)Γn(y0) = ṽ(y = +1, t) =
N∑
n=0

av,n(t)Γn(yN ) = 0

η̃(y = −1, t) =
N∑
n=0

aη,n(t)Γn(y0) = η̃(y = +1, t) =
N∑
n=0

aη,n(t)Γn(yN ) = 0

ṽ
′
(y = −1, t) =

N∑
n=0

av,n(t)Γ
′
n(y0) = ṽ

′
(y = +1, t) =

N∑
n=0

av,n(t)Γ
′
n(yN ) = 0

(5.66)

or these conditions become {
Γn(y0) = Γn(yN ) = 0

Γ
′
n(y0) = Γ

′
n(yN ) = 0.

(5.67)

However, some Chebyshev polynomials and their first derivatives are given

Γ0(y) = 1 Γ1(y) = y Γ2(y) = 2y2 − 1 Γ3(y) = 4y3 − 3y

Γ
′
0(y) = 0 Γ

′
1(y) = 1 Γ

′
2(y) = 4y Γ

′
3(y) = 12y2 − 3.

(5.68)
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It is easy to see that the Chebyshev polynomials do not satisfy the homogeneous Dirich-
let and Neumann boundary conditions. Therefore, we must modify the Chebyshev
polynomials to satisfy the homogeneous Dirichlet and Neumann boundary conditions.

In this section, we describe the modification of the Chebyshev polynomials pro-
posed by McKernan in [McKernan, 2006] that allows satisfying directly the homoge-
neous Dirichlet and Neumann boundary conditions.

5.3.1 Discretization on wall-normal direction

In the spectral collocation polynomial function method, the wall-normal velocity and
vorticity perturbation Fourier coefficients, ṽ(y, t) and η̃(y, t) are approximated by

ṽ(yk, t) =

N∑
n=0

av,n(t)Γn(yk)

η̃(yk, t) =

N∑
n=0

aη,n(t)Γn(yk),

(5.69)

at Gauss-Lobatto collocation points yk = cos(kπ/N), 0 ≤ k ≤ N .
By evaluating ṽ(y, t) at the collocation points yk, the discretized form of ṽ(y, t) is

the values at the collocation points ṽ(y0, t)
...

ṽ(yN , t)

 =

 Γ0(y0) . . . ΓN (y0)
...

. . .
...

Γ0(yN ) . . . ΓN (yN )


 av,0(t)

...
av,N (t)

 = D0(Γ)av(t) (5.70)

and by evaluating η̃(y, t) at the collocation points, the discretized form η̃(y, t) is the
values at the collocation points η̃(y0, t)

...
η̃(yN , t)

 =

 Γ0(y0) . . . ΓN (y0)
...

. . .
...

Γ0(yN ) . . . ΓN (yN )


 aη,0(t)

...
aη,N (t)

 = D0(Γ)aη(t). (5.71)

We have defined D0(Γ), therefore D2(Γ) and D4(Γ) are defined by the same way. The
linear model of the plane Poiseuille flow (5.61) is rewritten as{

j
(
−k2D0(Γ) + D2(Γ)

)
ȧv = (c1D0(Γ) + c2D2(Γ) + c3D4(Γ))av

jD0(Γ)ȧη = (c4D0(Γ) + c3D2(Γ))aη + c5D0(Γ)av,
(5.72)

where the coefficients are given by
c1 = (−αUk2 − αU

′′
− k4I

jR
), c2 = (αU +

2k2I

jR
)

c3 = − 1

jR
, c4 = αŪ +

k2I

jR
), c5 = βU

′
.

(5.73)
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It is well known that this model is not a canonical form. However, some control ap-
proaches design a controller based on the canonical form, therefore it must be transferred
to a canonical form{

ȧv = −j
(
−k2D0(Γ) + D2(Γ)

)−1
(c1D0(Γ) + c2D2(Γ) + c3D4(Γ))av

ȧη = −jD0−1(Γ)(c4D0(Γ) + c3D2(Γ))aη − jc5av.
(5.74)

Therefore,
(
−k2D0(Γ) + D2(Γ)

)
and D0(Γ) are invertible and have a good condition

number. Note that
(
−k2D0(Γ) + D2(Γ)

)
has the column 1 being Γ0(y) − Γ′′0(y) = 1

for k = 1 therefore
(
−k2D0(Γ) + D2(Γ)

)
is singular matrix, as in the previous work

[Bewley, 2001]. We have det(L) = 0, therefore we have no change to invert this matrix
to obtain a canonical form.

We must modify the Chebyshev polynomials to ensure the homogeneous Dirichlet
and Neumann boundary conditions and the good condition number of the state matrix
L.

5.3.2 Boundary conditions and basis modification

Ξ(y) and Θ(y) are modified Chebyshev polynomials and are chosen to satisfy the homo-
geneous Dirichlet and Neumann boundary conditions. Therefore (5.72) may be modified
to{

j(−k2D0DN (Ξ) + D2DN (Ξ))ȧv = (c1D0DN (Ξ) + c2D2DN (Ξ) + c3D4DN (Ξ))av
jD0D(Θ)ȧη = (c4D0D(Θ) + c3D2D(Θ))aη + c5D0DN (Ξ)av

(5.75)
where D and N show matrices where the Dirichlet and Neumann boundary conditions
are required respectively.

We must determine the conditions on Ξ(y) and Θ(y). For the vorticity, the homo-
geneous Dirichlet boundary conditions are

η̃(y0, t) = 0
η̃(y1, t)
...
η̃(yN−1, t)
η̃(yN , t) = 0

 =


Θ0(y0) . . . ΘN (y0)
Θ1(y2) . . . ΘN (y1)
...

. . .
...

Θ0(yN−1) . . . ΘN (yN−1)
Θ0(yN ) . . . ΘN (yN )




aη,0(t)
aη,1(t)
...
aη,N−1(t)
aη,N (t)

 . (5.76)

whereas for the wall-normal velocity, the homogeneous Dirichlet boundary conditions
are 

ṽ(y0, t) = 0
ṽ(y1, t)
...
ṽ(yN−1, t)
ṽ(yN , t) = 0

 =


Ξ0(y0) . . . ΞN (y0)
Ξ0(y1) . . . ΞN (y1)
...

. . .
...

Ξ0(yN−1) . . . ΞN (yN−1)
Ξ0(yN ) . . . ΞN (yN )




av,0(t)
av,1(t)
...
av,N−1(t)
av,N (t)

 , (5.77)
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and the homogeneous Neumann boundary conditions are
ṽ
′
(y0, t) = 0

ṽ
′
(y1, t)

...
ṽ
′
(yN−1, t)

ṽ
′
(yN , t) = 0

 =


Ξ
′
0(y0) . . . Ξ

′
N (y0)

Ξ
′
0(y1) . . . Ξ

′
N (y1)

...
. . .

...
Ξ
′
0(yN−1) . . . Ξ

′
N (yN−1)

Ξ
′
0(yN ) . . . Ξ

′
N (yN )




av,1(t)
av,2(t)
...
av,M−1(t)
av,M (t)

 . (5.78)

Therefore, we have the conditions on Ξ(y) and Θ(y)
Θ0(y0) = . . . = ΘN (y0) = Θ0(yN ) = . . . = ΘN (yN ) = 0
Ξ0(y0) = . . . = ΞN (y0) = Ξ0(yN ) = . . . = ΞN (yN ) = 0

Ξ
′
0(y0) = . . . = Ξ

′
N (y0) = Ξ

′
0(yN ) = . . . = Ξ

′
N (yN ) = 0

(5.79)

In order to respect such constraints, one solution is find to a Chebyshev polynomials
basis modification Ξ(y) and Θ(y) that enables satisfying directly the requirement of
homogeneous Dirichlet and Neumann boundary conditions.

5.3.3 Methods of basis modifications

Two different methods have been proposed by McKernan ([McKernan, 2006], pp.73-
106) to modify the Chebyshev polynomials, we accessibly present both of them. Note
that McKernan’s method has solved problem of the "spurious" modes with respect to
Bewley’s model [Bewley and Liu, 1998]. The "spurious" eigenvalues (unwanted eigen-
values) move significantly when N is modified slightly, this is a way to determine the
"spurious" modes.

The simplest method to ensure that Chebyshev polynomials respect the homoge-
neous Dirichlet and Neumann boundary conditions was proposed by Heirichs, as de-
scribed in [Heinrichs, 1989] and [Heinrichs, 1991]. The modified Chebyshev polynomials
Ξn(y) and Θn(y) satisfying those conditions are given by{

Ξn(y) = (1− y2)2Γn(y)

Θn(y) = (1− y2)Γn(y).
(5.80)

Another method was proposed by Joshi [Joshi, 1996]

Ξn(y) = aΓn(y) + bΓn+1(y) + cΓn+3(y) + Γn+4(y), (5.81)

where the coefficients a, b, c and d are determined to satisfy the simultaneous homoge-
neous Dirichlet and Neumann boundary conditions.

Although Heinrichs’s method and Joshi’s method gave both modified Chebyshev
polynomials which satisfy the homogeneous Dirichlet and Neumann boundary condi-
tions, the condition number of the state matrix L is not good enough (see section
5.3.3.3). To alleviate those deficiency McKernan ([McKernan, 2006], pp.73-106) pro-
posed a novel method. We now briefly summarize McKernan’s method to modify the
Chebyshev polynomials.
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McKernan’s methods are proposed to satisfy the homogeneous boundary conditions
and have a good condition number of the state matrix L. We first present these meth-
ods, then discussing the advantages of each methods in section 5.3.3.3. We choose
the modified Chebyshev polynomials Ξ(y) and Θ(y) which satisfy (5.79), we obtain
ṽ(y0, t) = ṽ(yN , t) = η̃(y0, t) = η̃(yN , t) = 0.

5.3.3.1 Combined method 1

We use the Combined method 1, as described in Figure 5.4, we only consider the
collocation points from y2 to yN−2 for the velocity ṽ(y) and from y1 to yN−1 for the
vorticity η̃(y). Note that we do not mention ṽ(y1) and ṽ(yN−1) while ṽ(y0), ṽ(yN ),
η̃(y0) and η̃(yN ) are the control signals in the controlled flow.

O

y

x

yk

ṽ(yN−2, t)

ṽ(yk, t)

ṽ(y2, t)

η̃(yk, t)

η̃(y1, t)

η̃(yN−1, t)

y0 = −1

y1

y2

yN−2

yN−1

yN = +1

Figure 5.4: Combined method 1: collocation points in y-discretization (yk).

The modified Chebyshev polynomials Ξ(y) and Θ(y) are given by


Θ0(y) = 1, Θ1(y) = y

Θn≥2,odd(y) = Γn(y)− Γ0(y)

Θn≥2,even(y) = Γn(y)− Γ1(y)

Γn(y) = cos(n arcos(y)),

(5.82)
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and 

Ξ0(y) = Γ0(y)

Ξ1(y) = Γ1(y)

Ξ2(y) = Γ2(y)− Γ0(y)

Ξ3(y) = Γ3(y)− Γ0(y)

Ξn≥4,odd(y) = Γn(y)− Γ0(y)− n2

(n− 2)2
(Γn−1(y)− Γ0(y))

Ξn≥4,even(y) = Γn(y)− Γ1(y)− n2 − 1

(n− 2)2 − 1
(Γn−1(y)− Γ0(y)).

(5.83)

Note that Ξn≥4(y) and Θn≥2(y) satisfy
Θ2(y0) = . . . = ΘN (y0) = Θ2(yN ) = . . . = ΘN (yN ) = 0
Ξ4(y0) = . . . = ΞN (y0) = Ξ4(yN ) = . . . = ΞN (yN ) = 0

Ξ
′
4(y0) = . . . = Ξ

′
N (y0) = Ξ

′
4(yN ) = . . . = Ξ

′
N (yN ) = 0

(5.84)

In addition, Ξn≥4(y1) ≈ Ξn≥4(yN−1) ≈ 0, we do not mention ṽ(y1) and ṽ(yN−1).
Therefore, the wall-normal velocity ṽ(y, t) and the vorticity η̃(y, t) are given by

ṽ(yk, t) =
N∑
n=4

av,n(t)Ξn(yk), 2 ≤ k ≤ N − 2

η̃(yk, t) =

N∑
n=2

aη,n(t)Θn(yk), 1 ≤ k ≤ N − 1.

(5.85)

Consequently, the discretized form ṽ(yk, t) is given by the values at the collocation
points ṽ(y2, t)

...
ṽ(yN−2, t)

 =

 Ξ4(y2) . . . ΞN (y2)
...

. . .
...

Ξ4(yN−2) . . . ΞN (yN−2)


 av,4(t)

...
av,N (t)

 = D0DN (Ξ)av(t),

(5.86)
and the discretized form η̃(y, t) is given by the values at the collocation points η̃(y1, t)

...
η̃(yN−1, t)

 =

 Θ2(y1) . . . ΘN (y1)
...

. . .
...

Θ2(yN−1) . . . ΘN (yN−1)


 aη,2(t)

...
aη,N (t)

 = D0D(Θ)aη(t).

(5.87)

5.3.3.2 Combined method 2

In the Combined method 2, as described in Figure 5.5, we consider the collocation
points from y1 to yN−1 for the velocity ṽ(y) and from y1 to yN−1 for the vorticity η̃(y)
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Figure 5.5: Combined method 2: collocation points in y-discretization (yk).

A second method has been proposed, the modified Chebyshev polynomials Ξ(y) and
Θ(y) are given by 

Θ0(y) = 1

Θ1(y) = y

Θn≥2,odd(y) = Γn(y)− Γ0(y)

Θn≥2,even(y) = Γn(y)− Γ1(y)

Ξn(y) = (1− y2)Θn(y)

Γn(y) = cos((n arcos(y)).

(5.88)

Note that Ξn≥2(y) and Θn≥2(y) satisfy
Θ2(y0) = . . . = ΘN (y0) = Θ2(yN ) = . . . = ΘN (yN ) = 0
Ξ2(y0) = . . . = ΞN (y0) = Ξ2(yN ) = . . . = ΞN (yN ) = 0

Ξ
′
2(y0) = . . . = Ξ

′
N (y0) = Ξ

′
2(yN ) = . . . = Ξ

′
N (yN ) = 0

(5.89)

The wall-normal velocity ṽ(y, t) and vorticity η̃(y, t) are given by
ṽ(yk, t) =

N∑
n=2

av,n(t)Ξn(yk), 1 ≤ k ≤ N − 1

η̃(yk, t) =
N∑
n=2

aη,n(t)Θn(yk), 1 ≤ k ≤ N − 1,

(5.90)

Therefore, the discretized form ṽ(y, t) is given by the values at the collocation points ṽ(y1, t)
...

ṽ(yN−1, t)

 =

 Ξ2(y1) . . . ΞN (y1)
...

. . .
...

Ξ2(yN−1) . . . ΞN (yN−1)


 av,2(t)

...
av,N (t)

 = D0DN (Ξ)av(t),

(5.91)
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and the discretized form η̃(y, t) is given by the values at the collocation points η̃(y1, t)
...

η̃(yN−1, t)

 =

 Θ2(y1) . . . ΘN (y1)
...

. . .
...

Θ2(yN−1) . . . ΘN (yN−1)


 aη,2(t)

...
aη,N (t)

 = D0D(Θ)aη(t).

(5.92)
We have defined D0DN (Ξ) and D0D(Θ), therefore D2DN (Ξ), D4DN (Ξ) and D2D(Θ)
may be given by the same way.

5.3.3.3 Condition number of the state matrix

In order to convert to the canonical form, we must invert the matrices (−k2D0DN (Ξ)+
D2DN (Ξ)) and D0D(Θ). The condition number helps us to estimate how numerically
difficult will invert a matrix. The condition number is given as the ratio of the maximum
and minimum singular values

Cond(L) =
σ1(L)

σNo(L)
, (5.93)

where L is a square matrix of dimension No and σ1(L), σNo(L) are the maximum and
minimum singular values, respectively.

The condition number of the state matrix L is of particular interest, we can de-
termine it through the condition number of the matrices (−k2D0DN (Ξ) + D2DN (Ξ))
and D0D(Θ). Therefore, we need to determine the condition number of the matrices
D0DN (Ξ), D2DN (Ξ) and D0D(Θ). The comparison of the condition number between
McKernan’s methods [McKernan, 2006] and Heirichs’s method [Heinrichs, 1989] is given
in Table 5.1 where N is the order of Chebyshev polynomials (see Table 3.2, Table 3.3,
p.97 and Table 3.5, p.99 in [McKernan, 2006]). Note that the result provided Joshi’s
method [Joshi, 1996] is the midst of the others, see [McKernan, 2006].

Table 5.1: Condition number of element matrices

Method D0D D0DN D0DN −D2DN
Heinrichs 0.14×N2.1 0.011×N4.1 0.026×N3.8

Combined method 1 1×N0.5 0.25×N1.1 0.0077×N3

Combined method 2 1×N0.5 0.042×N2.6 0.18×N1.9

For the condition number of the matrix D0D(Θ), both Method 1 and Method 2
have a good result and the identical result. As can be observed, the Method 1 has the
lowest conditioning for D0DN (Ξ) while the Method 2 has the lowest conditioning for
D0DN (Ξ)−D2DN (Ξ). It is very difficult to give the best method since −k2D0DN (Ξ)+
D2DN (Ξ) depends on k2 = α2 + β2. We choose McKernan’s method which provided a
better results than other ones.
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5.3.4 Modification of the linear model

When we use the modified Chebyshev polynomials Ξ(y) and Θ(y), all elements of the
derivative matrices are modified to

D0DN,km(Ξ) = Ξm(yk) D2DN,km(Ξ) = Ξ
′′
m(yk) D4DN,km(Ξ) = Ξ

′′′′
m (yk)

D0D,hn(Θ) = Θn(yh) D2D,hn(Θ) = Θ
′′
n(yh)

(5.94)

and

D0DN,k(Fv) = Fv(yk) D2DN,k(Fv) = F
′′
v(yk) D4DN,k(Fv) = F

′′′′
v (yk)

D0D,h(Fη) = Fη(yh) D2D,h(Fη) = F
′′
η(yh),

(5.95)

where m = po . . . N , n = 2 . . . N , k = qo . . . N − qo and h = 1 . . . N − 1. We have
(po = 4, qo = 2) for the Method 1 and (po = 2, qo = 1) for the Method 2. The linear
model is modified by

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t), (5.96)

where the state vector is x(t) =
[
av,po(t) · · · av,N (t) aη,2(t) · · · aη,N (t)

]> and
the control signals are u(t) =

[
q̃v,u(t) q̃v,l(t) q̃η,u(t) q̃η,l(t)

]>. The state and input
matrices are

L11 = j(−k2D0DN (Ξ) + D2DN (Ξ)), L12 = [0], L21 = [0], L22 = jD0D(Θ)

A11 = (−αUk2 − αU
′′
− k4I

jR
)D0DN (Ξ) + (αU +

2k2I

jR
)D2DN (Ξ)− 1

jR
D4DN (Ξ)

A12 = [0], A21 = βU
′
D0DN (Ξ), A22 = (αŪ +

k2I

jR
)D0D(Θ)− 1

jR
D2D(Θ).

(5.97)
and

E11 = j(k2D0DN (Fv)−D2DN (Fv)), E12 = [0], E21 = [0], E22 = −jD0D(Fη)

B11 = (−αUk2 − αU
′′
− k4I

jR
)D0DN (Fv) + (αU +

2k2I

jR
)D2DN (Fv)−

1

jR
D4DN (Fv)

B12 = [0], B21 = βU
′
D0DN (Fv), B22 = (αU +

k2I

jR
)D0D(Fη)−

1

jR
D2D(Fη).

(5.98)
However, if we consider the 2D plane Poiseuille flow, the state vector becomes x(t) =[

av,po(t) · · · av,N (t)
]> and the control signals become u(t) =

[
q̃v,u(t) q̃v,l(t)

]>.
The state and input matrices becomeL = j(−α2D0DN (Ξ) + D2DN (Ξ))

A = (−α3U − αU
′′
− α4I

jR
)D0DN (Ξ) + (αU +

2α2I

jR
)D2DN (Ξ)− 1

jR
D4DN (Ξ),

(5.99)
andE = j(α2D0DN (Fv)−D2DN (Fv))

B = (−α3U − αU
′′
− α4I

jR
)D0DN (Fv) + (αU +

2α2I

jR
)D2DN (Fv)−

1

jR
D4DN (Fv).

(5.100)
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5.4 Modeling of the kinetic energy density

The kinetic energy density of flow perturbation was given by [Bewley and Liu, 1998]

ε(t) =
1

V0

∫
V0

‖V(x, y, z, t)‖2

2
dV0, (5.101)

where V0 is the volume of a period of the domain under consideration. We expand
(5.101) at pair wavenumbers (α, β)

ε(t) =
αβ

8π2

∫ y=+1

y=−1

∫ 2π/β

z=0

∫ 2π/α

x=0

u2 + v2 + w2

2
dxdzdy, (5.102)

where V0 = 8π2/(αβ). From the complex velocity components are
u = R(ũ(y, t)ej(αx+βz))

v = R(ṽ(y, t)ej(αx+βz))

w = R(w̃(y, t)ej(αx+βz))

(5.103)

we have ([McKernan, 2006], pp. 110)
u2 =

2ũ(y, t)ũ>(y, t) + ũ(y, t)ũ(y, t)e2j(αx+βz)) + ũ>(y, t)ũ>(y, t)e−2j(αx+βz))

4

v2 =
2ṽ(y, t)ṽ>(y, t) + ṽ(y, t)ṽ(y, t)e2j(αx+βz)) + ṽ>(y, t)ṽ>(y, t)e−2j(αx+βz))

4

w2 =
2w̃(y, t)ṽ>(y, t) + w̃(y, t)ṽ(y, t)e2j(αx+βz)) + w̃>(y, t)w̃>(y, t)e−2j(αx+βz))

4
(5.104)

and 

∫ 2π/β

z=0

∫ 2π/α

x=0

u2

2
dxdz =

π2ũ(y, t)ũ>(y, t)

αβ∫ 2π/β

z=0

∫ 2π/α

x=0

v2

2
dxdz =

π2ṽ(y, t)ṽ>(y, t)

αβ∫ 2π/β

z=0

∫ 2π/α

x=0

w2

2
dxdz =

π2w̃(y, t)w̃>(y, t)

αβ

(5.105)

So, the kinetic energy density ε(t) becomes

ε(t) =
αβ

8π2

∫ y=+1

y=−1

π2(ũ(y, t)ũ>(y, t) + ṽ(y, t)ṽ>(y, t) + w̃(y, t)w̃>(y, t))

αβ
dy (5.106)

or

ε(t) =
1

8

∫ y=+1

y=−1

(
ũ(y, t)ũ>(y, t) + ṽ(y, t)ṽ>(y, t) + w̃(y, t)w̃>(y, t)

)
dy (5.107)

By using 
ũ(y, t) =

j

k2
(α
∂ṽ(y, t)

∂y
− βη̃(y, t))

w̃(y, t) =
j

k2
(β
∂ṽ(y, t)

∂y
+ αη̃(y, t)).

(5.108)
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we get

ũ(y, t)ũ>(y, t) + w̃(y, t)w̃>(y, t) =
1

α2 + β2

(
∂ṽ>(y, t)

∂y

∂ṽ(y, t)

∂y
+ η̃>(y, t)η̃(y, t)

)
(5.109)

Therefore, the kinetic energy density ε(t) is given by

ε(t) =
1

8k2

∫ y=+1

y=−1

(
ṽ(y, t)ṽ>(y, t) +

∂ṽ>(y, t)

∂y

∂ṽ(y, t)

∂y
+ η̃>(y, t)η̃(y, t)

)
dy (5.110)

where k2 = α2 + β2. In [Boyd, 2001], [McKernan, 2006], Curtis-Clenshaw quadrature
was used for approximate evaluation of the integral∫ y=+1

y=−1
ṽ(y, t)ṽ>(y, t)dy ≈

N∑
0

ṽ(yn, t)ṽ
>(yn, t)ωn (5.111)

where the weights ωn are

ωn =
2

N

√
1− y2

n

N−1∑
m=1

1

m
sin(

mπn

N
)(1− cos(mπ)), n = 1 · · ·N (5.112)

Therefore, in discretized form ε(t) is rewritten by

ε(t) =
[ṽn(t)]>Q[ṽn(t)] + (∂[ṽn(t)]/∂y)>Q(∂[ṽn(t)]/∂y) + [η̃n(t)]>Q[η̃n(t)]

8k2
, (5.113)

where the vectors [ṽn(t)] = [ṽ(y0, t) . . . ṽ(yN , t)]
>, [η̃n(t)] = [η̃(y0, t) . . . η̃(yN , t)]

> and Q
contains the quadrature weights (see eq.(4.20), pp.111 in [McKernan, 2006])

Q =

 ω0 0
. . .

0 ωN

 . (5.114)

The kinetic energy density is modeled by a function of the state vector x(t) and
the control signal u(t). Since the kinetic energy density is a function of the velocity,
therefore the velocity is first calculated by a function of the state vector x(t) and the
control signal u(t). From (5.56), the velocity and the vorticity may be recovered from
the state variables via[
ṽ(yk1 , t)
η̃(yk2 , t)

]
=

[
Ξn1(yk1) 0

0 Θn2(yk2)

] [
av,n1(t)
aη,n2(t)

]
+

[
Fv(yk1) 0

0 Fη(yk2)

] [
qv(t)
qη(t)

]
,

(5.115)
where k1 = 0 . . . N , k2 = 0 . . . N , n1 = p0 . . . N , n2 = 2 . . . N (see eq.(2.105), p.36 in
[McKernan, 2006]). Therefore, the velocity and the vorticity are rewritten as{

[ṽn(t)] = Tavx(t) + Tqvu(t)

[η̃n(t)] = Taηx(t) + Tqηu(t)
(5.116)
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where the transfer matrices are defined by

Tav =
[

[Ξn(yk1)] [0]
]
,Taη =

[
[0] [Θn(yk2)]

]
(5.117)

and
Tqv =

[
Fv(yk1) [0]

]
,Tqη =

[
[0] Fη(yk2)

]
. (5.118)

The dimension of matrices Tav and Taη are (N + 1)× (2N − p0) while the dimension
of matrices Tqv and Tqη are (N + 1)× 4.

Therefore, from (5.116), the kinetic energy density becomes

ε(t) =
1

8k2
x>(t)(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y) + T>aηQTaη)x(t)

+
1

8k2
x>(t)(T>avQTqv + (∂Tav/∂y)>Q(∂Tqv/∂y) + T>aηQTqη)u(t)

+
1

8k2
u>(t)(T>FvQTav + (∂Tqv/∂y)>Q(∂Tav/∂y) + T>qηQTaη)x(t)

+
1

8k2
u>(t)(T>qvQTqv + (∂Tqv/∂y)>Q(∂Tqv/∂y) + T>qηQTqη)u(t) (5.119)

We define the matrices Q11, Q12, Q21 and Q22

Q11 =
1

8k2
(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y) + T>aηQTaη)

Q12 =
1

8k2
(T>avQTqv + (∂Tav/∂y)>Q(∂Tqv/∂y) + T>aηQTqη)

Q21 =
1

8k2
(T>qvQTav + (∂Tqv/∂y)>Q(∂Tav/∂y) + T>qηQTaη)

Q22 =
1

8k2
(T>qvQTqv + (∂Tqv/∂y)>Q(∂Tqv/∂y) + T>qηQTqη).

(5.120)

Therefore, the kinetic energy density is calculated from the state vector x(t) and the
control signal u(t)

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t) (5.121)

The synchronic transient energy bound at a given time t is defined as the maximum
value of the kinetic energy at time t:

εs(t)= max
ε(0)=1

ε(t). (5.122)

The diachronic transient energy bound or the maximum transient energy growth is the
maximum value of the synchronic transient energy bound over all time, thus it is defined
by

εd= max
t≥0

εs(t). (5.123)
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5.5 Modeling of the skin friction drag

The skin friction drag d(t) due to the perturbation is given by (see [Aamo et al., 2003])

d(t) =

∫ Lx

x=0
(−∂u(x,+1, z, t)

∂y
+
∂u(x,−1, z, t)

∂y
)dx (5.124)

where u(x,+1, z, t) and u(x,−1, z, t) are the streamwise components of the perturbation
velocity V(x, y, z, t) at the walls. Note that ∂u(x,−1, z, t)/∂y and ∂u(x,+1, z, t)/∂y
are the components of the wall shear stress s(t) due to the perturbation:

s(t) =
1

R

[
∂u(x,+1, z, t)

∂y

∂u(x,−1, z, t)

∂y

∂w(x,+1, z, t)

∂y

∂w(x,−1, z, t)

∂y

]>
.

(5.125)
We expand the skin friction drag by

d(t) =

∫ Lx

x=0
R(−∂ũ(x,+1, z, t)ej(αx+βz)

∂y
+
∂ũ(x,−1, z, t)ej(αx+βz)

∂y
)dx

=

∫ Lx

x=0
(−∂ũ(x,+1, z, t)

∂y
+
∂ũ(x,−1, z, t)

∂y
)ej(αx+βz)dx (5.126)

Therefore, the skin friction drag at pair wavenumbers (α, β) can be considered

d(t) = −∂ũ(y = +1, t)

∂y
+
∂ũ(y = −1, t)

∂y
(5.127)

Note that the wall shear stress in the streamwise and spanwise discretizations are

s̃(t) =
1

R

[
∂ũ(+1, t)

∂y

∂ũ(−1, t)

∂y

∂w̃(+1, t)

∂y

∂w̃(−1, t)

∂y

]>
. (5.128)

We recall that ũ =
j

k2
(α
∂ṽ

∂y
− βη̃) and w̃ =

j

k2
(β
∂ṽ

∂y
+ αη̃). Therefore, s̃(t) becomes

s̃(t) =
j

k2R



α
∂2ṽ

∂y2
− β∂η̃

∂y
|y=+1

α
∂2ṽ

∂y2
− β∂η̃

∂y
|y=−1

β
∂2ṽ

∂y2
+ α

∂η̃

∂y
|y=+1

β
∂2ṽ

∂y2
+ α

∂η̃

∂y
|y=−1


. (5.129)
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The wall-normal discretization is used by the Chebyshev polynomials, we have

ṽ(y = +1, t) =
N∑

n=p0

av,n(t)Ξn(y = +1)

ṽ(y = −1, t) =
N∑

n=p0

av,n(t)Ξn(y = −1)

η̃(y = +1, t) =
N∑
n=2

aη,n(t)Θn(y = +1)

η̃(y = −1, t) =
N∑
n=2

aη,n(t)Θn(y = −1)

(5.130)

Therefore, s̃(t) becomes

s̃(t) =
j

k2R



α
N∑

n=p0

av,n(t)Ξ
′′
n(y = +1)− β

N∑
n=p0

Θ
′
naη,n(t)(y = +1)

α

N∑
n=p0

av,n(t)Ξ
′′
n(y = −1)− β

N∑
n=p0

Θ
′
naη,n(t)(y = −1)

β
N∑
n=2

av,n(t)Ξ
′′
n(y = +1) + α

N∑
n=2

Θ
′
naη,n(t)(y = +1)

β
N∑
n=2

av,n(t)Ξ
′′
n(y = −1) + α

N∑
n=2

Θ
′
naη,n(t)(y = −1)


, (5.131)

and can be given by
s̃(t) = S1x(t), (5.132)

where the matrix S1 is given by

S1,11 = +
jα

k2R

[
Ξ
′′
p0(y = +1) . . . Ξ

′′
N (y = +1)

Ξ
′′
p0(y = −1) . . . Ξ

′′
N (y = −1)

]

S1,21 = +
jβ

k2R

[
Ξ
′′
p0(y = +1) . . . Ξ

′′
N (y = +1)

Ξ
′′
p0(y = −1) . . . Ξ

′′
N (y = −1)

]

S1,12 = − jβ

k2R

[
Θ
′
2(y = +1) . . . Θ

′
N (y = +1)

Θ
′
2(y = −1) . . . Θ

′
N (y = −1)

]

S1,22 = +
jα

k2R

[
Θ
′
2(y = +1) . . . Θ

′
N (y = +1)

Θ
′
2(y = −1) . . . Θ

′
N (y = −1)

]
.

(5.133)

The skin friction drag is modeled by

d(t) = D1x(t), (5.134)
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where D1 = R
[
−1 +1 0 0

]
S1. In the controlled flow, the velocity and vorticity

are 

ṽ(y = +1, t) =

N∑
n=p0

av,n(t)Ξn(y = +1) + Fv(y = +1)qv(t)

ṽ(y = −1, t) =
N∑

n=p0

av,n(t)Ξn(y = −1) + Fv(y = −1)qv(t)

η̃(y = +1, t) =
N∑
n=2

aη,n(t)Θn(y = +1) + Fη(y = +1)qη(t)

η̃(y = −1, t) =
N∑
n=2

aη,n(t)Θn(y = −1) + Fη(y = −1)qη(t)

(5.135)

Therefore, the shear stress is calculated by

s̃(t) = S1x(t) + S2u(t), (5.136)

where
S2,11 = +

jα

k2R

[
F
′′
v(y = +1)

F
′′
v(y = −1)

]
, S2,21 = +

jβ

k2R

[
F
′′
v(y = +1)

F
′′
v(y = −1)

]

S2,12 = − jβ

k2R

[
F
′
η(y = +1)

F
′
η(y = −1)

]
, S2,22 = +

jα

k2R

[
F
′
η(y = +1)

F
′
η(y = −1)

]
.

(5.137)

Therefore, the skin friction drag is modeled by

d(t) = D1x(t) + D2u(t), (5.138)

where D2 = R
[
−1 +1 0 0

]
S2.

5.6 Behavior of the open-loop system

5.6.1 Behavior of the state vector

The open-loop system is
Lẋ(t) = Ax(t), (5.139)

where the state matrix A for all wavenumber pairs is given by (see [Joshi et al., 1997],
p.167, eq.(4.2))

A =


Anst=0,nsp=0 0 · · · 0

0 Anst=1,nsp=0 0 0
... 0

. . .
...

0 0 0 ANst,Nsp

 . (5.140)

We recall that the linear model can be decoupled by wavenumber pairs and thus it
is possible to treat each wavenumber pair separately as can be seen from the matrix
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A. Therefore, we see that the eigenvalues and eigenvectors of the entire matrix A are
simply the eigenvalues and eigenvectors of each sub-matrix block Anst,nsp . As a result,
we only consider the open-loop system with one wavenumber pair. We determine the
wavenumber pairs where the open-loop system contains the unstable eigenvalues.

Note that both the 2D and 3D plane Poiseuille flows contain unstable eigenvalues
but in order to investigate the unstable eigenvalues, we only need the 2D plane Poiseuille
flow.

α

R

 

 

4000 6000 8000 10000 12000

0.5

1

1.5

2

Unstable

Stable

Figure 5.6: Channel model: R = 10 000 and Lx = 4π. The fundamental wavenumber
2π
Lx

= 1
2 . All integral numbers of this fundamental wavenumber exist in the channel.

Only 2α0 = 1 leads to unstable mode.

Firstly, we consider the 2D plane Poiseuille flow with Lx = 4π, all integral multiples
of the fundamental wavenumber exist in the plane Poiseuille flow

α = nstα0 = nst
2π

L
= 0.5nst with nst = 0 . . . Nst. (5.141)

Based on the curve obtained from the Orr-Sommerfeld equation and is denoted Orzag’s
diagram, as shown in Figure 5.6, we see that the unstable mode of the plane Poiseuille
flow is a function of the Reynolds number R and the wavenumber α. Only some
modes are unstable modes. In this case, only wavenumber α1 = 2α0 = 1 is un-
stable wavenumber, while both α0 = 0.5 and α = 1.5 · · · +∞ are stable wavenum-
ber. In the case α = 1, β = 0 and R = 10 000, the unstable modes are λ =
0.003739670622977± 0.237526488820464i [Orszag, 1971].

5.6.2 Behavior of the kinetic energy density

In [Orszag, 1971], the linear model contains unstable modes when the Reynolds number
R > 5 772. And the linear model has no unstable modes at the Reynolds number
1 000 < R < 5 772 but the flow may be turbulent. More precisely, the appearance of
transient energy growth leads the flow to turbulent, as shown at the Reynolds number
R ≈ 1000 from the experimental studies [Patel and Head, 1969]. Note that there is no
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transient energy growth if the Reynolds number is less than R = 49.6, as shown in
[Joseph and Carmi, 1969] by the energy methods. Indeed, the unstable modes do not
fully represent turbulence, therefore we need to investigate the transient energy growth
of the flow (see section 2.3).

We recall that the problem of transient energy growth is the problem of non-
orthogonality of the eigenvectors of the linear model (see section 4.3.2.2). In the 3D
plane Poiseuille flow, the transient energy growth was investigated at the Reynolds
number R = 5 000 and the wavenumbers α = 0, β = 2.044 where εd is the highest value
[Butler and Farrell, 1992], as shown in Figure 5.7. The behavior of the kinetic energy
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Figure 5.7: Behavior of the diachronic transient energy growth εd versus α and β
(R = 5 000).

density is as shown in Figure 5.8. The diachronic transient energy growth is εd = 4897.

Although the linearization of the model of the plane Poiseuille flow contains all
negative eigenvalues, all state vector monotonically decreases in time but the flow still
becomes turbulent. In order to determine the state of the flow and its stability, we are
interested in the behavior of the kinetic energy density.

5.7 Conclusion

In this chapter, we have presented a linear model of the plane Poiseuille flow with the
boundary control, given by blowing/suction boundary. The skin friction drag and the
kinetic energy density are modeled as a function of the state vector. Since the linear
model of the plane Poiseuille flow is reached, a control scheme is next step. A Matlab
code used for flow simulation which is developed based on the code and the result
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Figure 5.8: Behavior of the synchronic transient energy versus time (R = 5 000, α = 0,
β = 2.044).

provided by McKernan [McKernan, 2006], Bewley [Bewley and Liu, 1998] and Schmid
[Schmid and Henningson, 2001].

In the next chapter, we use the partitioned visual servoing control to simultaneously
minimize the skin friction drag and the kinetic energy density.



Chapter 6

Partitioned Visual Servoing Control

The goal of this chapter is to obtain the behavior of the skin friction drag d(t) = e−λtd0

in the closed loop system of the plane Poiseuille flow. However, this chapter only
considers two degrees of freedom (DOF) and it demonstrates what can be obtained
with them. The idea is to fully exploit two DOF to minimize, simultaneously, the skin
friction drag and the kinetic energy density. Although there exist methods such as PID
control, LQR control, H2/H∞ control and LMI control to minimize the skin friction
drag in the literature but these are indirectly. It means that the skin friction drag was
usually minimized by minimization of the shear stress or the state vector.

6.1 State space representation

In the chapter, we only consider two DOF on the wall-normal velocity, it means
v(x, y = +1, z, t) = qv,u(t)

v(x, y = −1, z, t) = qv,l(t)

η(x, y = ±1, z, t) = 0

(6.1)

therefore, the input matrices B and E become
E11 = j(k2D0DN (Fv)−D2DN (Fv)), E12 = [0], E21 = [0], E22 = 0

B11 = (−αUk2 − αU
′′
− k4I

jR
)D0DN (Fv) + (αU +

2k2I

jR
)D2DN (Fv)−

1

jR
D4DN (Fv)

B12 = [0], B21 = βU
′
D0DN (Fv), B22 = 0.

(6.2)
When the state matrix L is invertible, L−1 exists and (5.96) is rewritten under the

following form
ẋ(t) = L−1Ax(t) + L−1Bu(t) + L−1Eu̇(t)
ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)
d(t) = D1x(t) + D2u(t).

(6.3)

101
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If we use the control law u(t) = Kx(t), the skin friction drag will be calculated by

d(t) = (D1 + D2K)x(t), (6.4)

Therefore, the derivate of skin friction drag is given by

ḋ(t) = (D1 + D2K)ẋ(t), (6.5)

In order to ensure ḋ(t) = −λd(t), this implies that

(D1 + D2K)ẋ(t) = −λ(D1 + D2K)x(t)⇒ ẋ(t) = −λx(t) (6.6)

Indeed, we do not have a chance to obtain ẋ(t) = −λx(t) with two DOF. Thus, we
only obtain ẋ(t) = −λx(t) when the number of DOF must be equal to the dimension
of the state vector (see B).

In order to exploit two DOF and ensure ḋ(t) = −λd(t), we use the control signal
U(t) = u̇(t) as in [Aamo, 2002], [Bewley and Liu, 1998], [Joshi, 1996], [McKernan, 2006].
It is easy to show that the system (6.3) becomes[

ẋ(t)
u̇(t)

]
=

[
L−1A L−1B

0 0

] [
x(t)
u(t)

]
+

[
L−1E

I

]
u̇(t), (6.7)

and is rewritten by
Ẋ (t) = AX (t) + BU(t), (6.8)

where the state vector is X (t) =

[
x(t)
u(t)

]
. The state matrix A and the input matrix B

are given by

A =

[
L−1A L−1B

0 0

]
, B =

[
L−1E

I

]
. (6.9)

According to the state vector X (t), the kinetic energy density is rewritten

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)

=
[
x>(t) u>(t)

] [ Q11 Q12

Q21 Q22

] [
x(t)
u(t)

]
= X>(t)QX (t),

(6.10)

where the matrix Q is given by

Q =

[
Q11 Q12

Q21 Q22

]
. (6.11)

In the same way, the skin friction drag is also is given by

d(t) = D1x(t) + D2u(t) = DX (t), (6.12)

where D =
[
D1 D2

]
. Therefore, the linear model of the plane Poiseuille flow is given

by 
Ẋ (t) = AX (t) + BU(t)

ε(t) = X>(t)QX (t)

d(t) = DX (t)

X (0) = X0.

(6.13)
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6.2 Our goal of the control law

Considering here a state feedback control

U(t) = KX (t), (6.14)

and suppose that this control is able to achieve an exponential decrease of the skin
friction drag

ḋ(t) = −λd(t), (6.15)

and simultaneously minimize the kinetic energy density

ε(t) = X>(t)QX (t). (6.16)

Note that this chapter only considers twoDOF. Due to the limitation of the number
of DOF, the partitioned visual servoing control is chosen to simultaneously minimize
the skin friction drag and the kinetic energy density. This approach is a well known
approach in the robotics community used to decouple the rotational motions from the
translational ones. To do that, it needs to compute the interaction matrix Ld related
to the skin friction drag.

6.3 Computation of the interaction matrix related to the
drag

Indeed, according to the definition of the interaction matrix [Espiau et al., 1992], this
approach needs to express the total time variation of the skin friction drag

ḋ(t) = LdU(t) +
∂d(t)

∂t
. (6.17)

Ld encodes the variation of the skin friction drag due to the actions, while ∂d(t)/∂t
expresses the variation of the skin friction drag due to the flow itself.

This computation can be done by deviating the skin friction drag in (6.13) and using
the equation of the state space representation, therefore we obtain

ḋ(t) = DẊ (t) = D (AX (t) + BU(t)) . (6.18)

Therefore, by comparing (6.17) and (6.18), we get Ld = DB
∂d(t)

∂t
= DAX (t).

(6.19)

Let us introduce the components of the interaction matrix related to the components
of the control signals U(t)

Ld =
[
Ldu Ldl

]
=
[
D1 D2

] [ L−1E
I

]
. (6.20)

This expression will be useful in the next section to introduce the partitioned visual
servo control.
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6.4 Design of the control law

The partitioned visual servoing control relies on the partition of the interaction matrix.
From (6.20), the time variation of the skin friction drag (6.17) becomes

ḋ(t) = LduUu(t) + LdlUl(t) +
∂d(t)

∂t
. (6.21)

where U(t) =
[
Uu(t) Ul(t)

]>. Since a decrease of the drag is desired, a particular
behavior is chosen for the drag. An exponential decrease is imposed

ḋ(t) = −λd(t) (6.22)

where λ is a positive gain able to tune the decrease rate. Thereafter, from (6.21) and
(6.22), we have

− λd(t) = LduUu(t) + LdlUl(t) +
∂d(t)

∂t
. (6.23)

Any of the two components of U(t) can be used to reduce the skin friction drag, we
arbitrarily choose Ul(t). We thus have

Ul(t) = − 1

Ldl

(
λd(t) + LduUu(t) +

∂d(t)

∂t

)
. (6.24)

Since the lower boundary control law Ul(t) is known if the upper boundary control law
Uu(t) is known, the next step is to express Uu(t).

In order to minimize the kinetic energy density (6.13) and the energy consumption
of actuators, a LQR control scheme over an infinite time horizon is used by considering
the following cost function

J =

∫ ∞
0

(
X>(t)QX (t) + γ2U2

u(t)
)

dt. (6.25)

This can be done by expressing the time variation of the state vector with respect to
the control signal Uu(t). To do that, we first rewrite (6.24) from (6.19) to exhibit the
state vector

Ul(t) = − 1

Ldl
((λD +DA)X (t) + LduUu(t)) , (6.26)

that we have to plug in (6.13) leading to

Ẋ (t) = A1X (t) + B1Uu(t), (6.27)

with the matrices A1 = A− Bl
Ldl

(λD+DA) and B1 = Bu−
Ldu
Ldl
Bl with B =

[
Bu Bl

]
.

Note that Ldl is always non null in the case α 6= 0.
Thereafter, the LQR gain K involved in the optimal control Uu(t) = KX (t) is

computed by considering (6.27) and solving the Algebraic Ricatti Equation (see LQR
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control for more details, we only use K = −lqr(A,B,Q, γ2I) in Matlab). The gain K
is given by

K = − 1

γ2
B>1 P, (6.28)

where P is the solution of the Algebraic Ricatti Equation

A>1 P + PA1 +Q− 1

γ2
PB1B>1 P = 0. (6.29)

Note that here, contrary to previous works involved in flow control, this approach has
fully exploited two DOF of control signal.

Due to the fact that the linear model of the plane Poiseuille flow is used, it must
consider the behavior of the nonlinear system. The next section is dedicated to the
stability analysis of the exponential decrease of skin friction drag since the skin friction
drag is a nonlinear system.

6.5 Stability analysis

The stability of skin friction drag is discussed. It is assumed that a nonlinear model of
the skin friction drag can be obtained in a certain domain of variation of X (t) and U(t):

ḋ(t) = f(X (t),U(t)). (6.30)

According to (6.22), it is clear that d = 0 is an exponentially stable equilibrium
point for the linearized system (6.17) and for the control law derived in section 6.4.
Therefore, d = 0 is also an exponentially stable equilibrium point for the nonlinear
system (6.30).

The next section is dedicated to the study of the behavior of the closed loop system
when the measurement noise is considered.

6.6 Robustness to measurement noise

Of course, when measurement noise occurs, the main problem is the stability analysis
of (6.27). In that case, the upper control signal becomes

Ûu = KX̂ (t). (6.31)

According to previous work [Tatsambon Fomena and Collewet, 2011a], we also use
here a vision-based approach to estimate x(t). This is done concretely through the
computation of the optical flow, as proposed in [Heitz et al., 2010] for example. A
visualization system, like a CCD camera, is thus required. In that case, we have (see
[Tatsambon Fomena and Collewet, 2011a])

X̂ (t) = X (t) +
1

Nx
ex(t), (6.32)
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where Nx is the number of pixels of the camera in the streamwise direction of the flow
and ex(t) is related to the measurement noise ([Tatsambon Fomena and Collewet, 2011a]
for more details). It is clear from (6.32), that the larger the value of Nx the closer X̂ (t)
is to X (t). Consequently, plugging (6.31) and (6.32) into (6.27), it is very easy to show
that (6.27) becomes

Ẋ (t) = (A1 + B1K)X (t) + B1K
1

Nx
ex(t). (6.33)

When Nx is large enough (it is always the case in practice), the estimation error tends
toward 0, and, consequently the closed loop system (6.33) is written as

Ẋ (t) ≈ (A1 + B1K)X (t), (6.34)

which is stable. The state vector is robust to measurement noise.
The other issue concerns the skin friction drag. Indeed, we have to verify that it is

still a decreasing function. To do that, we examine (6.21) by considering Ûu, Ûl and
∂d̂(t)/∂t. From (6.26), we have

Ûl(t) = − 1

Ldl

(
(λD +DA) X̂ (t) + LduÛu(t)

)
(6.35)

that is written in function of X (t) by considering (6.31) and (6.32)

Ûl(t) = − 1

Ldl
(λD +DA− LduK)

(
X (t) +

1

Nx
ex(t)

)
. (6.36)

The last step is the computation of ∂d̂(t)/∂t, it can easily be done from (6.19) and
(6.32). All computations done, (6.21) becomes

ḋ(t) = −λd(t)− λD +DA
Nx

ex(t). (6.37)

leading to
ḋ(t) ≈ −λd(t). (6.38)

Here again, since Nx is a large value, the skin friction drag follows the desired
behavior ḋ(t) = −λd(t). The simulation result is given in the next section for validation
of the proposed approach.

6.7 Simulation Results

In the following P is the proportional control [Joshi et al., 1997], LQR2 is the LQR con-
trol in [Cortelezzi and Speyer, 1998], LQR1 is the LQR control in [McKernan et al., 2007]
and PVS is the partitioned visual serving control [Dao and Collewet, 2012], the pro-
posed approach. Note that we cannot exactly compare the proposed approach with the
other mentioned results since none of them simultaneously minimizes the skin friction
drag and the kinetic energy density. The simulation results are given based on a Matlab
code.
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6.7.1 Initial condition:

It is well known that the highest transient energy growth is unbounded for an unstable
system but for a stable system, it exists a method for computing the highest transient
energy growth. The worst initial condition is the initial condition to achieve the highest
diachronic transient energy growth. Hence, the initial conditions are chosen the worst
initial condition which generate the diachronic transient energy density as given in
[Bewley and Liu, 1998], [McKernan, 2006].

In the uncontrolled flow, the synchronic transient energy growth corresponding to
this initial condition is given by

εs(t) = σ̄2(eQ
1/2
11 L−1AQ

−1/2
11 t), (6.39)

The worst initial condition is defined as

x0 = xworst,ε0=1(t = 0), (6.40)

since the transient energy growth is the synchronic transient energy growth

εs(t) = ε(t) (6.41)

and the diachronic transient energy growth at time t = τ

εd = max
ε0=1

εs(t = τ). (6.42)

The worst initial condition of the uncontrolled flow is x0 = xworst,ε0=1, the initial
value of the uncontrolled kinetic energy density is

ε0 = x>worst,ε0=1Q11xworst,ε0=1 = 1. (6.43)

However, the initial value of the controlled kinetic energy density is

ε0,c = x>worst,ε0=1Q11xworst,ε0=1 + x>worst,ε0=1Q12u0 + u>0Q21xworst,ε0=1 + u>0 Q22u0,
(6.44)

this value may be different to ε0 = 1. This is very important thing, the initial condition
x0 = xworst,ε0=1 is the worst initial condition of the uncontrolled flow but is not the
worst initial condition of the controlled flow.

The maximum kinetic energy density is defined as the maximum value of the kinetic
energy density over time, thus it is defined by

εmax = max
t≥0

ε(t), (6.45)

this value at time t = τ and we do not need to impose the condition ε0 = 1. Note that
since ε(t) = εs(t), then εd = εmax. An example is given in Figure 6.1, we have one
diachronic transient energy growth corresponding to one synchronic transient energy
growth.

Due to the variety of the approaches, we have four worst initial conditions for each
corresponding control approach. We set the same condition for all four control ap-
proaches. Therefore, the initial condition is chosen as the worst initial condition of the
uncontrolled flow, X0 =

[
x>worst,ε0=1 0 0

]>, in order to facilitate the comparison of
the results.
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Figure 6.1: Behavior of the kinetic energy density versus time. εs is the synchronic tran-
sient energy growth, εd is the diachronic transient energy growth, εmax is the maximum
of the kinetic energy density.

6.7.2 Case I: 2D plane Poiseuille flow

6.7.2.1 Behavior of the 2D uncontrolled plane Poiseuille flow

We set α = 1, β = 0 and R = 10 000 (see section 5.6) which presents an unstable mode
as proven by the solutions of the classical Orr-Sommerfeld equation [Orszag, 1971]. We
set N = 100 for the simulation results. The instability can be seen through the poles of
the state matrix L−1A, obtained by selecting the linear model of plane Poiseuille flow
with α = 1, β = 0 and R = 10 000. The Table 6.1 gives the detail of the eigenvalues of
matrix L−1A. And it contains the unstable eigenvalues λ = 0.00373967± i0.23752649.

Table 6.1: Eigenvalues λ, R = 10 000, α = 1, β = 0

Mode i Eigenvalue λ
1 0.003739670622977 - 0.237526488820464i
2 -0.035167277631026 - 0.964630915450592i
3 -0.035186583792445 - 0.964642510039284i
4 -0.050898727256974 - 0.277204343808815i
5 -0.063201495839922 - 0.936316535881319i
6 -0.063251569074270 - 0.936351781164718i
7 -0.091222735433638 - 0.907983054629456i
8 -0.091312861779036 - 0.908056334492060i
9 -0.119232852619757 - 0.879627292207361i
10 -0.119370731008601 - 0.879755695814655i

7
...

The eigenvalues are depicted in Figure 6.2(a) which shows three branches: the center,
upper (mode 1 and mode 4) and lower branches (modes 2, 3 and modes 5, 6). We can
know the unstable eigenvalues based on the results in this figure, but we do not know



Partitioned Visual Servoing Control 109

the controllability of each eigenvalues. Therefore, we consider the velocity eigenvector.
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Figure 6.2: Eigenvalues and eigenvectors of velocity component (real part (dashed line),
imaginary part (solid line)). The wal-normal velocity eigenvectors are plotted as a
function of y from y = −1 to y = +1 (vertical axis) and corresponding to the modes
i = 1, 2, 3, . . . (horizontal axis).

The wall-normal velocity eigenvectors corresponding to the modes in Table 6.1
are shown in Figure 6.2(b) (Bewley and Liu [Bewley and Liu, 1998] and McKernan
[McKernan, 2006]). Note that the profile of velocity is calculated by

velocity (t) =
∑

ith velocity eigenvector× eith eigenvalue t. (6.46)

Therefore, based on the velocity eigenvector, we can predict the velocity profile. This is
the cause we do not use the eigenvectors of L−1A. The real (dashed line) and imaginary
(solid line) parts of the wall-normal velocity eigenvectors are plotted as a function of y
from the lower wall to the upper wall. Note that mode 1 is the unstable mode, and thus
it should be stabilized to stable mode. The result shown in Figure 6.2(b), the modes
corresponding to the lower branch of Figure 6.2(a) (modes 2, 3 and 5, 6) are various
in the center of the flow while the modes corresponding to the upper branch of Figure
6.2(a) (modes 1 and 4) which are various at the boundary of the flow. Therefore, in
the case of using the boundary control at y = ±1, the lower branch of eigenvalues is
less controllable than the upper branch of eigenvalues, the similar result as reported by
Bewley and Liu [Bewley and Liu, 1998].

We depict the streamwise and wall-normal velocity components, the kinetic energy
density and the velocity field of the flow in Figure 6.3. As can be seen in Figure 6.3(a)
(similar results for (b)-(d)), at the left subfigure is the kinetic energy density and the
velocity component at the point O(x = 0 and y = 0), the left upper subfigure is the
kinetic energy density and the left lower subfigure is the velocity component with the
streamwise velocity component (dashed line) as compared with the wall-normal velocity
component (solid line). The velocity field is shown at the right subfigure. Fom Figure
6.3(a) to Figure 6.3(d), the evolution of the uncontrolled flow is versus time. The kinetic
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Figure 6.3: Shape of the flow perturbation in the uncontrolled flow versus time, τ ≈ 25.
We give the result at the times t = 0, t = τ/2, t = τ and t = 4τ .

energy density of the uncontrolled flow is unbounded. The flow becomes turbulent due
to the unstable mode.

6.7.2.2 Behavior of the 2D controlled plane Poiseuille flow

The eigenvalues of the open loop system are depicted in Figure 6.4(a) which shows three
branches: the center, upper (1, 2, 3 and 6) and lower (modes 4, 5) branches and the
corresponding velocity eigenvectors are depicted in Figure 6.4(b). We have two novel
modes (modes 2, 3) with respect to the uncontrolled flow. Mode 1 is the unstable
mode while modes (2, 3) are associated with the integrators in (6.13), each representing
steady-state transpiration from the upper and lower walls respectively, as shown by the
non-zero wall velocities reported in [McKernan, 2006].

Comparison of the eigenvalues between the open loop system and the closed loop
system in Figure 6.5(a), the unstable mode of the open loop system is relocated by the
stable mode. And the result allows us to ensure that the modes corresponding to the
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Figure 6.4: Eigenvalues and eigenvectors of velocity component (real part (dashed line),
imaginary part (solid line)). The wal-normal velocity eigenvectors are plotted as a
function of y from y = −1 to y = +1 (vertical axis) and corresponding to the modes
i = 1, 2, 3, . . . (horizontal axis).

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−1

−0.8

−0.6

−0.4

−0.2

0

Real part

Im
a

g
 p

a
rt

Modes 1,., 4

Modes 5, 6

i=1 i=2 i=3 i=4 i=5 i=6

(a) eigenvalues (b) eigenvectors

Figure 6.5: Eigenvalues (open loop system (×), closed loop system (∗)) and eigenvectors
of velocity component (real part (dashed line), imaginary part (solid line)). The wal-
normal velocity eigenvectors are plotted as a function of y from y = −1 to y = +1
(vertical axis) and corresponding to the modes i = 1, 2, 3, . . . (horizontal axis).

center and lower branches of Figure 6.5(a) are less controllable than the upper branch
of Figure 6.5(a) due to the modes corresponding to the center and lower branches of
Figure 6.5(a) are remained while the modes corresponding to the upper branch of Figure
6.5(a) are relocated.

The kinetic energy density, the velocity component and the velocity field are given
in Figure 6.6. As can be seen in Figure 6.6(a) (similar results for (b)-(d)), at the right
subfigure the vertical arrows at the upper and lower boundaries are the control signal.
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Figure 6.6: Shape of the flow perturbation in the controlled flow versus time, τ = 16.

From Figure 6.6(a) to Figure 6.6(d), the evolution of controlled the flow is versus time.
By applying the boundary control, the kinetic energy density is minimized and tends
toward zero, the velocity component tends toward the steady solution (1− y2, 0). The
flow becomes the laminar flow from turbulence .

6.7.2.3 PVS control for the 2D plane Poiseuille flow

The variation of maximum kinetic energy density with control weights kp (the propor-
tional control) or γ (the LQR and PVS controls) is shown in Figure 6.7 (the similar
result for the LQR1 was given by McKernan [McKernan, 2006], p.130, Figure 4.9). We
set kp = γ2 to be able to illustrate all results on the same axis. Let’s look first at the
proportional control, the maximum kinetic energy density for the P control is minimum
value at kp ≈ 16. In contrast to the proportional control, the LQR and PVS controls,
the maximum kinetic energy density obtains the minimum value at the smallest value
of γ. As can be seen in Figure 6.7, γ ≤ 0.25 (the best case of parameter γ = 0.25 in
[McKernan et al., 2007]), both the LQR1 and PVS controls provide an almost constant
of maximum kinetic energy density.
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Next, we consider the behavior of the closed loop system. We set kp = 16 for the P
control, γ = 0.25 for the LQR1 and PVS controls and γ = 0.01 for the LQR2 control.
And we set λ = 0.5 for the PVS control.
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Figure 6.8: Behavior of the closed loop system.

As expected, our approach provides better results than the other approaches. A nice
decrease of the skin friction drag and the kinetic energy density are observed. The skin
friction drag is shown in Figure 6.8(a) and only our approach obtains a nice decrease of
skin friction drag.

The LQR1 control leads also to a nice minimization of the kinetic energy density but
the (indirect) minimization of the skin friction drag is not satisfactory. Both methods
based on the minimization of the shear stress (the P and LQR2 controls) lead to a
worse behavior than the LQR1 and PVS controls as shown in Figure 6.8(b). The
maximum kinetic energy density for four control approaches are given εmax,PV S =
2.9537, εmax,LQR1 = 2.9544, εmax,P = 11.0916 and εmax,LQR2 = 15.2652.

Next, we discuss the influence of parameter λ of the PVS control. In the PVS
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control, λ decides the convergence velocity of skin friction drag. As shown as, only
our approach is able to control directly the convergence velocity of skin friction drag in
Figure 6.9(a). The other ones (the P and LQR controls) can only control indirectly
the convergence velocity through the convergence of shear stress or the kinetic energy
density.
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Figure 6.9: Behavior of the closed loop system versus time with various choices of λ.

Figure 6.9(b) describes the variation of kinetic energy density for various choices of
λ, as can be seen in this figure, this kinetic energy density almost has a small dependence
on this value. It means that the way the skin friction drag is reduced does not influence
the way the kinetic energy density is reduced in this case.
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Figure 6.10: White Gaussian noise versus time.

The next simulation concerns the behavior of the closed loop system when mea-
surement noise is considered. The measurement noise is depicted in Figure 6.10 where
σ = 0.3 is chosen. We set Nx = 2048 the number of pixels of camera. As can be seen in
this figure, a good result is obtained in Figures 6.11 where the results with and without
measurement noise are depicted to compare the sensitivity due to noisy measurement.
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Figure 6.11: Behavior of the closed loop system with measurement noise.

In this case, our approach provides a better result than the other approaches. Both
the skin friction drag and the kinetic energy density are reduced and we obtain better
transitory behavior. The minimization of the skin friction drag is improved and directly
controlled. This is an impressive result. Note that a similar result was presented in
[Dao and Collewet, 2012].

6.7.3 Case II: 3D plane Poiseuille flow

6.7.3.1 Behavior of the 3D uncontrolled plane Poiseuille flow

We set α = 0, β = 2.044 and R = 5 000 (see section 5.6) which was shown to have
the highest value of the transient energy growth in [Farrell and Ioannou, 1993]. We set
N = 50 for the simulation results. The flow becomes turbulent due to the transient
energy growth occurs, this problem is an interesting problem of uncontroleded flow and
flow control. Due to the non-orthogonality of eigenvector, the kinetic energy density
increases in time and the transient energy growth occurs.

In [Bewley and Liu, 1998], the authors gave the cause of transient energy growth is
due to the similar value of eigenvalue pairs, the eigenvectors are parallel, therefore the
transient energy growth occurs. We consider the eigenvalues in Table 6.2 and plotted
in Figure 6.12(a), we have the similar value of eigenvalue pairs, i.e modes (10 and 11),
(12 and 13), the eigenvectors are parallel shown in Figure 6.12(b). As can be seen in
Figure 6.12(b), the imaginary (solid line) part of the vorticity eigenvectors and the real
(dashed line) part of the wall-normal velocity eigenvectors (scaled by 1/550 between
solid and dashed curves) are plotted as a function of y from the lower wall to the upper
wall.

We consider the behavior of the uncontrolled flow with the worst initial condition,
like the above case, we depict the streamwise, wall-normal and spanwise velocity com-
ponents, the kinetic energy density and the velocity field of the flow in Figure 6.13. As
can be seen in 6.13(a) (similar results for (b)-(d)), at the left subfigure is the kinetic
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Table 6.2: Eigenvalues λ, α = 0, β = 2.044.

Modes (iodd,ieven) λodd λeven λodd − λeven
(1) -0.001329067420059
(3,2) -0.002809508080207 -0.002051722077213 -0.000757786002994
(5,4) -0.005276909180495 -0.004449707797102 -0.000827201383394
(7,6) -0.008731270720869 -0.007947340738985 -0.000783929981884
(9,8) -0.013172592701346 -0.012333250161689 -0.000839342539656
(11,10) -0.018600875121961 -0.017813122399373 -0.000787752722589
(13,12) -0.025016117982696 -0.024173705097527 -0.000842412885169
(15,14) -0.032418321283488 -0.031629292169515 -0.000789029113972
(17,16) -0.040807485024363 -0.039963840723070 -0.000843644301293

...
...

...
...
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Figure 6.12: Eigenvalues and eigenvectors of velocity and vorticity components (real
wall-normal velocity (dashed-line), imaginary vorticity (solid line), solid line scaled by
1/550).

energy density and the velocity component at the point O(x = 0, y = 0 and z = 0),
the left upper subfigure is the kinetic energy density and the left lower subfigure is the
velocity component with the streamwise velocity component (dashed line) as compared
with the spanwise velocity component (dashed-dot line), the wall-normal velocity com-
ponent (solid line) (dashed line scaled by 1/50). The cross-flow velocity is shown in the
right subfigure at x = 0. The contours are the streamwise velocity. The arrows are the
velocity field of the spanwise and wall-normal velocities. As can be seen from Figure
6.13(a) to 6.13(d), the evolution of the uncontrolled flow is versus time. At t = 0, the
kinetic energy density is 1 and the contours are from 0.1 to 1. The diachronic transient
energy growth εd = 4897 is at τ = 379. At the peak magnitude of kinetic energy den-
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Figure 6.13: Shape of the flow perturbation in the uncontrolled flow versus time, τ =
379.

sity, the contours of the streamwise velocity obtain the maximum value, the contours
are from −150 to +150. The flow is very high turbulent.

6.7.3.2 Behavior of the 3D controlled plane Poiseuille flow

The eigenvalues of the open loop system are depicted in Figure 6.14(a) and the velocity
and vorticity eigenvectors are depicted in Figure 6.14(b). The first and second modes
are associated with the integrators in (6.13).

Comparison of the eigenvalues between the open loop system and the closed loop sys-
tem are given in Figure 6.15(a), as can be seen in this figure the eigenvalues (nearly pairs)
of the open loop system are relocated by the different value, is not similar pair value.
The wall-normal velocity and vorticity eigenvectors are depicted in Figure 6.15(b), the
orthogonality of these eigenvectors is improved.

The kinetic energy density, the velocity component and the cross velocity are de-
picted in Figure 6.16. As can be seen in Figure 6.16(a) (similar results for (b)-(d)), at
the right subfigure the vertical arrows at the upper and lower boundaries are the con-
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Figure 6.14: Eigenvalues and eigenvectors of velocity and vorticity components (real
wall-normal velocity, dashed-line; imaginary vorticity, solid line, scaled by 1/550).

0 5 10 15 20 25 30
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Mode i

λ
i

Modes 10,...,14

Modes 1,...,5

i=1 i=2 i=3 i=4 i=5 i=10 i=11 i=12 i=13 i=14

(a) eigenvalues (b) eigenvectors, modes i = 1 · · · 5, 10 · · · 14

Figure 6.15: Eigenvalues (open loop system (x), closed loop system (*)) and eigenvectors
of velocity and vorticity components (real wall-normal velocity (dashed-line), imaginary
vorticity (solid line), scaled by 1/550).

trol signals. From Figure 6.16(a) to Figure 6.16(d), the evolution of the flow is versus
times. At the left upper subfigure is the kinetic energy density of closed loop system.
At the peak magnitude of kinetic energy density, the countours are from −80 to +80
with respect to −150 and +150 of uncontrolled flow. The flow becomes laminar and
the velocity component becomes the steady solution (1− y2, 0, 0).
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Figure 6.16: Shape of the flow perturbation in the controlled flow versus time, τ = 180.
Velocity profile at O, dashed line scaled by 1/50.

6.7.3.3 PVS control for the 3D plane Poiseuille flow

In this case, we only compare our approach and the LQR1 control because this was
shown to have better results than the P control and the LQR2 control.

• We set α = 1, β = 1 and R = 5 000, the oblique wave.

The variation of maximum kinetic energy density is in Figure 6.17. The maximum
kinetic energy density obtains the minimum value at γ ≈ 1 for the LQR1 control and
at γ ≈ 1.4125 for the PVS control. We set γ = 1 for the LQR1 control and γ = 1.4125
for the PVS control. Again, a nice decrease of skin friction drag is only obtained
in our approach in Figure 6.18(a). Both the LQR1 control and our control are able
to limit the kinetic energy density as compared to the open-loop system see Figure
6.18(b). The diachronic transient energy growth for uncontrolled flow is εd = 187.379,
is very large with respect to the maximum kinetic energy density for the controlled flow
εmax,LQR1 = 14.9991 and εmax,PV S = 14.9993.
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Figure 6.17: Maximum kinetic energy density versus control weight γ.
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Figure 6.18: Behavior of the closed loop system.

• We set α = 0, β = 2.044 and R = 5 000, the streamwise vortex.

In the case of α = 0 and using the boundary control on the wall normal velocity, we
see Ldl = 0. Note that we shall ensure Ldl 6= 0 if we use the boundary control on the
wall normal vorticity. In order to have Ldl 6= 0 and use the boundary control on the
wall normal velocity, the skin friction drag d(t) is modified and considered as

d(t) = −∂w(x,+1, z, t)

∂y
+
∂w(x,−1, z, t)

∂y
. (6.47)

The variation of maximum kinetic energy density is in Figure 6.19 (similar result
for the LQR1 was given by McKernan [McKernan, 2006], p.131, Figure 4.11). As can
be seen in this figure, γ ≤ 128, the maximum kinetic energy density is almost constant
versus γ.

We set γ = 128 for the LQR1 control (the best value of parameter γ in previous
works [McKernan et al., 2007]) and the PVS control, as shown in Figure 6.19, the same
maximum kinetic energy density is given.
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Figure 6.20: Behavior of the closed loop system.

As expected, our approach provides a nice result, see Figure 6.20. This is similar
result to the result of the previous case. A nice decrease of skin friction drag is only
obtained in our approach, see Figure 6.20(a). Once again, both the LQR1 control and
our control are able to limit the kinetic energy density as compared to the open-loop
system in Figure 6.20(b). As the above result, the diachronic transient energy growth
for the uncontrolled flow εd = 4897 is very large with respect to the maximum kinetic
energy density for the controlled flow εmax,LQR1 = 821.6032 and εmax,PV S = 811.7179.

6.8 Conclusion

In this chapter, the partitioned visual servoing control has been exploited for the plane
Poiseuille flow. This technique allows us to minimize, simultaneously, the skin friction
drag and the kinetic energy density. As expected, the PVS approach provides the better
results than the existing ones (PID and LQR controls), the skin friction drag being
minimized and controlled. This approach only needs one DOF to minimize directly the
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skin friction drag. Furthermore, the PVS approach not only obtains an exponential
decrease of the skin friction drag in time but also decides the convergence velocity of
the skin friction drag.

Because the number of DOF is limited (two in this model), the transient energy
growth still occurs when we use the partitioned visual servoing control. Therefore,
we need to increase the number of DOF to improve the behavior of the kinetic energy
density in the closed loop system. In the next chapters, we shall present how to increase
the number of DOF. And we shall also show how to achieve a monotonic decrease of
kinetic energy density in time (ε(t) = e−2λtε0).



Chapter 7

Increase the number of Degrees of
Freedom

This chapter shows how to increase the number of degree of freedom (DOF). In the
previous chapter, with two DOF, the positive results for the skin friction drag mini-
mization (d(t) = e−λtd0) have been obtained by the application of the partitioned visual
servoing control. However, the behavior of the kinetic energy density in the closed loop
system must be improved because we do not ensure ε̇(t) ≤ 0. Note that this problem
ε̇(t) � 0 can lead the flow to turbulence. In order to improve the behavior of the kinetic
energy density, we give the way how to increase the number of DOF increases. Noted
that we only increase the number of DOF in the Fourier space. As expected, the be-
havior of the kinetic energy density is improved as a function of increasing the number
of DOF.

7.1 Why to increase the number of DOF in a general sys-
tem

7.1.1 Improve the stability

Firstly, we consider the simple example{
ẋ1(t) = x1(t) + 2x2(t)
ẋ2(t) = x2

1(t) + x2(t) + u(t)
(7.1)

Then we calculate the equilibrium point for the nonlinear system (7.1) with ue(t) = 0{
ẋ1e(t) = 0
ẋ2e(t) = 0

→
{

x1e(t) + 2x2e(t) = 0
x2

1e(t) + x2(t) + ue(t) = 0
(7.2)

We have two equilibrium points (x1e(t) = 0,x2e(t) = 0) and (x1e(t) = 0.5,x1e(t) =
−0.25). However, we only consider the linearization of the nonlinear system (7.1) around
the equilibrium point (x1 = 0,x2 = 0). We have the linear model{

ẋ1(t) = x1(t) + 2x2(t)
ẋ2(t) = x2(t) + u(t)

(7.3)

123
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We use a feedback control to the nonlinear system. It means that we use the linear
control u(t) = Kx(t) = −k1x1(t) − k2x2(t) for the nonlinear system (7.1) where the
gain of control law K is designed based on its linearization (7.3). Therefore, the linear
model of the closed loop system of (7.3) is given by{

ẋ1(t) = x1(t) + 2x2(t)
ẋ2(t) = −k1x1(t) + (1− k2)x2(t)

(7.4)

Note that k1 and k2 are designed based on the stability of the system (7.4) and we
use LQR control to give the control law. The nonlinear model of the closed loop system
of (7.1) is given by {

ẋ1(t) = x1(t) + 2x2(t)
ẋ2(t) = −k1x1(t) + x2

1(t) + (1− k2)x2(t)
(7.5)

We compare the behavior of the closed loop systems (7.4) and (7.5) with various
values of the initial conditions. We choose three initial conditions x10,1 = 0.5, x20,1 =
0.5; x10,2 = 1, x20,2 = 0.01 and x10,3 = −1, x20,3 = −1. From the LQR control
(Q = I2, R = I), we have k1 = 3.1300 and k2 = 4.8105. We give the results in the
x1 − x2 plane.

Based on the phase portraits in Figure 7.1, the closed loop system of the linear
model (7.4) is asymptotically stable, all the trajectories tend toward to the equilibrium
point (0, 0). However, we only obtain the local stability for the nonlinear system (7.5)
as shown in Figure 7.1(b). Note that Figure 7.1(b) distinguishes two areas, (∗) pink
area is stable and another area is unstable. Two initial conditions (x10,1,x20,1) and
(x10,3,x20,3) are in the (∗) pink area, the blue solid line and the black dashed dot line
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Figure 7.1: Behavior of the phase portraits. Blue solid line is the trajectory of x10,1 =
0.5, x20,1 = 0.5, red dashed line is the trajectory of x10,2 = 1, x20,2 = 0.01 and black
dashed dot line is the trajectory of x10,3 = −1, x20,3 = −1.
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tend toward to the equilibrium point (0, 0) while the red dashed line does not tend
toward to the equilibrium point and tends toward to the infinity.

With one DOF, we only obtain the local stability. How to improve the stability, we
can improve the stability by increasing the number of DOF. To do it, we consider the
modified nonlinear system{

ẋ1(t) = x1(t) + 2x2(t) + u1(t)
ẋ2(t) = x2

1(t) + x2(t) + u2(t)
(7.6)

and its linearization around the equilibrium point (x1 = 0,x2 = 0) is{
ẋ1(t) = x1(t) + 2x2(t) + u1(t)
ẋ2(t) = x2(t) + u2(t)

(7.7)

As the previous case, the feedback control is u(t) = Kx(t) with u1(t) = −k11x1(t)−
k12x2(t) and u2(t) = −k21x1(t) − k22x2(t). Therefore, the closed loop system of (7.7)
is given by {

ẋ1(t) = (1− k11)x1(t) + (2− k12)x2(t)
ẋ2(t) = −k21x1(t) + (1− k22)x2(t)

(7.8)

And the closed loop system of (7.6) is given by{
ẋ1(t) = (1− k11)x1(t) + (2− k12)x2(t)
ẋ2(t) = −k21x1(t) + x2

1(t) + (1− k22)x2(t)
(7.9)

In comparison to the results in Figure 7.1, from the LQR control (Q = I2, R = I2),
we have k11 = 1.8058 k12 = 1.1622 k21 = 1.1622 and k22 = 3.3018. The stability in
Figure 7.2 for the nonlinear model is improved, we do not have unstable area. The closed
loop system of the nonlinear model is asymptotically stable. This example demonstrates
the benefits of increasing the number of DOF.
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Figure 7.2: Behavior of the phase portraits. Blue solid line is the trajectory of x10,1 =
0.5, x20,1 = 0.5, red dashed line is the trajectory of x10,2 = 1, x20,2 = 0.01 and black
dashed dot line is the trajectory of x10,3 = −1, x20,3 = −1.
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7.1.2 Kinetic energy density is monotonically decreased in time

In this section, we give the necessary condition of the input matrix to ensure the mono-
tonic stability of the kinetic energy density. We consider the linear system

ż(t) = Azz(t) + Bzu(t) (7.10)

with the control law u(t) = Kz(t) and the kinetic energy density is defined by

εz(t) = z>(t)Qzz(t), (7.11)

where Qz is a Hermitian matrix. In previous works [Whidborne and McKernan, 2007],
the necessary condition to ensure ε̇z(t) ≤ 0 is

(Az + BzK)>Qz + Qz(Az + BzK) < 0 (7.12)

and this inequality has a solution K, we need BzB
>
z > 0. Hence, the matrix Bz must

be a full rank matrix. This cause explains why we want to increase the number of DOF
in the closed loop system of the plane Poiseuille flow.

7.2 How to increase the number of DOF

In order to improve the stability or the kinetic energy density minimization, it means
that we want to ensure ε̇(t) ≤ 0, we increase the number of DOF. Based the results
in [Joshi, 1996] about the multiple inputs multiple outputs system, we assume that we
have M independent control signals in the Fourier space. It must be noted that we
only increase the number of DOF of control signal in the Fourier space, we do not
increase the number of DOF of control signal in the physical space. Therefore, we
always increase the number of DOF of control signal in the Fourier space. If we have
the M independent boundary conditions ṽm(y = −1, t), ṽm(y = +1, t), η̃m(y = +1, t)
and η̃m(y = −1, t), the control signals will be chosen by{

ṽm(y = +1, t) = q̃v,u,m(t) ṽm(y = −1, t) = q̃v,l,m(t)

η̃m(y = +1, t) = q̃η,u,m(t) η̃m(y = −1, t) = q̃η,l,m(t),
(7.13)

where m = 1 . . .M . Note that for each ṽm(y = −1, t), ṽm(y = +1, t), η̃m(y = +1, t) and
η̃m(y = −1, t), as previous results in Chapter 5, the plane Poiseuille flow is modeled by

Lẋ(t) = Ax(t) + Bmum(t) + Emu̇m(t), (7.14)

where Bm and Em are given by the same way in Chapter 5. More precisely, Bm and
Em are calculated from fv,l,m(y), fv,u,m(y), fη,l,m(y) and fη,u,m(y). Therefore, if we
consider M DOF, we shall have

Lẋ(t) = Ax(t) +

M∑
m=1

(Bmum(t) + Emu̇m(t))

= Ax(t) + Bu(t) + Eu̇(t)) (7.15)
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where the input matrices are B =
[
B1 B2 . . . BM

]
, E =

[
E1 E2 . . . EM

]
and the control signals are u(t) =

[
u>1 (t) u>2 (t) . . . u>M (t)

]>.
In order to give the input matrices B and E, when we useM DOF, the wall-normal

velocity and vorticity boundary Fourier coefficients for the particular solution in (5.54)
are 

ṽp(y, t) =
M∑
m=1

fv,u,m(y)q̃v,u,m(t) +
M∑
m=1

fv,l,m(y)q̃v,l,m(t)

η̃p(y, t) =
M∑
m=1

fη,u,m(y)q̃η,u,m(t) +
M∑
m=1

fη,l,m(y)q̃η,l,m(t),

(7.16)

where the functions fv,u,m(y), fv,l,m(y), fη,u,m(y) and fη,l,m(y) satisfy the conditions
fv,u,m(y = +1) = fv,l,m(y = −1) = fη,u,m(y = +1) = fη,l,m(y = −1) = 1

fv,u,m(y = −1) = fv,l,m(y = +1) = fη,u,m(y = −1) = fη,l,m(y = +1) = 0

f
′
v,u,m(y = ±1) = f

′
v,l,m(y = ±1) = 0.

(7.17)

The wall-normal velocity and the vorticity is rewritten in a more compact form by
ṽ(y, t) = ṽh(y, t) +

M∑
m=1

Fv,m(y)qv,m(t)

η̃(y, t) = η̃h(y, t) +
M∑
m=1

Fη,m(y)qη,m(t),

(7.18)

where we denote

qv,m(t) =

[
q̃v,u,m(t)
q̃v,l,m(t)

]
,qη,m(t) =

[
q̃η,u,m(t)
q̃η,l,m(t)

]
(7.19)

and

Fη,m(y) =
[
fη,u,m(y) fη,l,m(y)

]
,Fv,m(y) =

[
fv,u,m(y) fv,l,m(y)

]
(7.20)

By plugging (7.18) into (5.41) and (5.42), the system of ODE is given by

(−k2U − d2U

dy2
− k4

jRα
)
N∑
n=0

av,n(t)Γn(y) + (U +
2k2

jRα
)
N∑
n=0

av,n(t)Γ
′′
n(y)

− 1

jRα

N∑
n=0

av,n(t)Γ
′′′′
n (y) + (−k2U − d2U

dy2
− k4

jRα
)
M∑
m=1

Fv,m(y)qv,m(t)

+(U +
2k2I

jRα
)
M∑
m=1

F
′′
v,m(y)qv,m(t)− 1

jRα

M∑
m=1

F
′′′′
v,m(y)qv,m(t)

=
j

α

[
N∑
n=0

ȧv,n(t)Γ
′′
n(y)− k2

N∑
n=0

ȧv,n(t)Γn(y)

]

+
j

α

[
M∑
m=1

F
′′
v,m(y)q̇v,m(t)− k2

M∑
m=1

Fv,m(y)q̇v,m(t)

]
,

(7.21)
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and

(jαU +
k2

R
)
N∑
n=0

aη,n(t)Γn(y)− 1

R

N∑
n=0

aη,n(t)Γ
′′
n(y) + jβ

dU

dy

N∑
n=0

av,n(t)Γn(y)

+(jαU +
k2

R
)
M∑
m=1

Fη,m(y)qη,m(t)− 1

R

M∑
m=1

F
′′
η,m(y)qη,m(t) + jβ

dU

dy

M∑
m=1

Fv,m(y)qv,m(t)

= −
N∑
n=0

ȧη,n(t)Γn(y)−
M∑
m=1

Fη,m(y)q̇η,m(t).

(7.22)
After the evaluation of (7.21) and (7.22) at each of the collocations points yk, a system
with control signal is obtained

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t), (7.23)

where the control signal is u(t) =
[
q>v,1(t) · · · q>v,M (t) q>η,1(t) · · · q>η,M (t)

]> and
the input matrices are

E11 = j(k2D0(Fv)−D2(Fv)), E12 = [0], E21 = [0], E22 = −jD0(Fη)

B11 = (−αUk2 − αU
′′
− k4I

jR
)D0(Fv) + (αU +

2k2I

jR
)D2(Fv)−

1

jR
D4(Fv)

B12 = [0], B21 = βU
′
D0(Fv), B22 = (αU +

k2I

jR
)D0(Fη)−

1

jR
D2(Fη).

(7.24)
The element of derivative matrices is calculated from

D0(Fv)km = Fv,m(yk) D2(Fv)km = F
′′
v,m(yk) D4(Fv)km = F

′′′′
v,m(yk)

D0(Fη)km = Fη,m(yk) D2(Fη)km = F
′′
η,m(yk),

(7.25)

where m = 1 . . .M and k = 0 . . . N . Note that the model is modified from k = 0 . . . N
to k = 2 . . . N − 2 (Combined method 1) or k = 1 . . . N − 1 (Combined method 2) (see
section 5.3). We have shown how the number of DOF increased. In the next section,
the benefit of this procedure is emphasized.

7.3 Benefits of increasing the number of DOF

In this section, we answer for the question why do we want to increase the number of
DOF in the plane Poiseuille flow. The answer of this question is increasing the number
of DOF, the behavior of state vector is improved and consequently the behavior of the
kinetic energy density will be improved.

7.3.1 Design of the control law

Note that, LQR control can apply to one or any DOF. Therefore, we choose the LQR
control approach because we can use it with any M DOF. Taking into account that
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the kinetic energy density depends on u(t) = q(t) but does not depend on U(t) = q̇(t),
therefore we use the control signal U(t), so it is very easy to compare the behavior of
the kinetic energy density with various values of M .

The system (7.23) is rewritten[
ẋ(t)
u̇(t)

]
=

[
L−1A L−1B

0 0

] [
x(t)
u(t)

]
+

[
L−1E

I

]
u̇(t), (7.26)

It must be noted that the dimension of the input matrices B and E change. We use the

state vector X (t) =

[
x(t)
u(t)

]
. The state matrix A and the input matrix B are given by

A =

[
L−1A L−1B

0 0

]
, B =

[
L−1E

I

]
. (7.27)

Therefore, we consider the following system
Ẋ (t) = AX (t) + BU(t)

ε(t) = X (t)TQX (t)

X (0) = X0

(7.28)

We consider here a state feedback control law

U(t) = KX (t). (7.29)

In order to minimize the kinetic energy density and the energy combustion of actuators,
a LQR control scheme over an infinite time horizon is used by considering the following
cost function

J =

∫ ∞
0

(X (t)>QX (t) + γ2U(t)>U(t))dt. (7.30)

Thereafter, the LQR gain K involved in the optimal control U(t) = KX (t) is computed
taking into account (7.28) and solving the Algebraic Ricatti Equation (see LQR control
for more details, we only use K = −lqr(A,B,Q, γ2I) in Matlab). The gain K is given
by

K = − 1

γ2
B>P, (7.31)

where P is the solution of the Algebraic Ricatti Equation

A>P + PA+Q− 1

γ2
PBB>P = 0. (7.32)

Because the control matrix B is not full rank, we do not ensure ε̇(t) ≤ 0 with the control
signal U(t). It must be note that LQR control cannot guarantee ε̇(t) ≤ 0.

In the next section, the simulation result will validate our proposed approach.
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7.3.2 Simulation results

We give an example about choosing the functions fv,u,m(y), fv,l,m(y), fη,u,m(y) and
fη,l,m(y). With one DOF, only the lower boundary condition was used, Joshi proposed
the polynomials fv(y) at the lower wall (see [Joshi, 1996], p.15)

fv(y) =
2y4 + 3y − 4y2 − 3y + 4

4
, (7.33)

And for two DOF, the simultaneous upper and lower boundary conditions were used,
McKernan proposed the polynomials fv,l(y) and fv,u(y) (see [McKernan, 2006], p.32)

fv,l(y) =
y3 − 3y + 2

4

fv,u(y) =
−y3 + 3y + 2

4

(7.34)

In order to increase the number of DOF, we have to find the independent polyno-
mials fv,l,m(y), fv,u,m(y) which satisfy the simultaneous inhomogeneous Dirichlet and
homogeneous Neumann boundary conditions, and fη,l,m(y), fη,u,m(y) which satisfy the
inhomogeneous Dirichlet boundary condition.

We see that the polynomials proposed by McKernan satisfy the inhomogeneous
Dirichlet and homogeneous Neumann boundary conditions but we only have two inde-
pendent functions. Therefore, we may propose the polynomials Fv,m(y) and Fη,m(y)
as

fv,l,m(y) = (1− y2)hvΞm(y) +
y3 − 3y + 2

4

fv,u,m(y) = (1− y2)hvΞm(y) +
−y3 + 3y + 2

4

fη,l,m(y) = (1− y2)kηΘm(y) +
−y + 1

2

fη,u,m(y) = (1− y2)kηΘm(y) +
y + 1

2
,

(7.35)

where hv ≥ 1 and kη ≥ 1 are entire number. These polynomials satisfy the inho-
mogeneous Dirichlet and homogeneous Neumann boundary conditions (the conditions
(7.17)). It must be noted that we have given an example of the polynomials Fv,m(y)
and Fη,m(y). However, there exist other methods too, e.g. we shall use the Hermite
interpolating polynomials in the Appendix C.

When we use the various values of M , the dimension of the state vector X (t) is
changed. Indeed, we only want to compare the kinetic energy density minimization
when M varies. In order to compare the minimizing of the kinetic energy density,
we need to set the same initial condition of ε(t). Therefore, we use the same initial
conditions x0 and ε0. The initial condition is chosen as X0 =

(
x>0 0 · · · 0

)> where
x0 = xworst,ε0=1(t = 0) is the worst initial condition of the uncontrolled flow. Note that
in this case, the initial condition is not the worst initial condition X0 6= Xworst,ε0=1(t = 0)
of the controlled flow.
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7.3.2.1 Case I: 2D plane Poiseuille flow

The case of α = 1, β = 0 and R = 10 000 is considered (see section 5.6). We fix
the value of N and use the various values of M . For LQR control, we set γ = 0.25
as in [McKernan, 2006], [McKernan et al., 2007]. We set fv,l,m(y) = (1− y2)2Ξm(y) +
y3−3y+2

4 . We use the Combined method 1 (see section 5.3.3 for more detail), the di-
mension of the state matrix A and the input matrix B are (N − 3) × (N − 3) and
(N −3)×M , respectively. Therefore the dimension of the state matrix A and the input
matrix B are (N + M − 3) × (N + M − 3) and (N + M − 3) × (M), respectively. We
set N = 100.

In order to study the behavior of the closed loop system, we first consider the
eigenvalues of the closed loop system which are depicted in Figure 7.3. Indeed, it can
be observed in this figure that we have more the number of DOF, we have more the
number of relocated poles. A comparison between the open loop system and the closed
loop system, the number of relocated poles is increased versus the ratio of M/(N − 3),
as can be seen in Figure 7.3, shown from Figure 7.3(a) to Figure 7.3(d).
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Figure 7.3: Eigenvalues of the open loop system (×) and closed loop system (∗). � is
the sixth eigenvalues of the closed loop system.

In addition, the maximum kinetic energy density εmax versus the ratio ofM/(N−3)
is depicted in Figure 7.4. The result shows that increasing of the number of DOF is of
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Figure 7.4: Behavior of the maximum kinetic energy density versus the ratio ofM/(N−
3). y-axis is the maximum kinetic energy density and x-axis is the ratio of the number
of DOF and the number of states.

great interest since the maximum kinetic energy density εmax is a decreasing function
of M .
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Figure 7.5: Behavior of the kinetic energy density versus time.

More detail, the behavior of kinetic energy density is shown in Figure 7.5. As can be
seen in this figure, the kinetic energy density minimization is improved versus the ratio
of M/(N − 3). In Figure 7.5(d), the nice configuration is obtained where the kinetic
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energy density minimization is monotonically decreasing.

7.3.2.2 Case II: 3D plane Poiseuille flow

We consider the case of α = 0, β = 2.044 and R = 5 000 (see section 5.6). For
LQR control, we set γ = 128 as in [McKernan, 2006], [McKernan et al., 2007]. We set
fv,l,m(y) = fη,l,m(y) = (1− y2)2Ξm(y) + y3−3y+2

4 . We use the Combined method 1 (see
section 5.3.3 for more detail), the dimension of the state matrix A and the input matrix
B are (2N −4)× (2N −4) and (2N −4)× (2M), respectively. Therefore, the dimension
of the state matrix A and the input matrix B are (2N + 2M − 4)× (2N + 2M − 4) and
(2N + 2M − 4)× (2M), respectively. We set N = 50.

As the previous case, the eigenvalues of the closed loop system are depicted in Figure
7.6, only the real part is shown (all real part of eigenvalues are negative, we do not need
to consider the image part of eigenvelue), the imaginary part of being negligible. We
obtain the same results in the previous case, the number of relocated poles is improved
versus the ratio of M/(N −2). When we use two DOF (M/(N −2) = 2/96), just a few
eigenvalues are relocated. As before, we have more DOF, we have more the number of
relocated eigenvalues.
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Figure 7.6: Eigenvalues of the open loop system (×) and closed loop system (∗). � is
the eighth eigenvalues of the closed loop system.
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Figure 7.7: Behavior of the maximum kinetic energy density versus the ratio ofM/(N−
2). y-axis is the maximum kinetic energy density and x-axis is the ratio of the number
of DOF and the number of states.

Considering the kinetic energy density minimization, the maximum kinetic energy
density εmax versus the ratio of M/(N − 2) is depicted in Figure 7.7. Once again we
note that increasing the number of DOF proves to be desirable since the maximum
kinetic energy density εmax is a decreasing function of M/(N − 2).
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Figure 7.8: Behavior of the kinetic energy density versus time.

As before, the behavior of kinetic energy density is depicted in Figure 7.8 versus the
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ratio of M/(N − 2). A very strong decrease of kinetic energy density is versus the ratio
of M/(N − 2). The case M/(N − 2) = 1 shows the nice behavior of the kinetic energy
density.

7.4 Conclusion

When we increase the number of DOF, the behavior of the closed loop system is in
general improved. Based on this result, we propose the way where the number of DOF
increases in the plane Poiseuille flow. Our goal is to improve the behavior of the kinetic
energy density in the closed loop system which concerns the stability of the flow control.

When the number of DOF increases, with the LQR control, the number of relocated
poles is increased, so the behavior of the state vector is improved. As a result, the
behavior of the kinetic energy density is improved since increasing the number of DOF.
An interesting result of kinetic energy density minimization is obtained when the number
of states x(t) is equal to the number of DOF. However, we still do not ensure that the
kinetic energy density always decreases (ε̇(t) ≤ 0) in time because the fact that the
LQR control can minimize the kinetic energy density but does not ensure the strict
monotonic decrease of kinetic energy density. Therefore, in the next chapter, we shall
propose a control approach which can achieve an exponential decrease of kinetic energy
density.
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Chapter 8

Visual Servoing Control

The goal of this chapter is to ensure the nice behavior of kinetic energy density, skin
friction drag and control signals in the closed loop system of the plane Poiseuille flow
such as ε(t) = e−2λtε0, d(t) = e−λtd0 and u(t) = e−λtu0, respectively.

As shown in previous chapters, in the context of LQR control, increasing the number
of the degree of freedom (DOF) of control signals is of great interest since the behavior
of the kinetic energy density is a decreasing function of DOF. Unfortunately, the LQR
control approach does not ensure that the kinetic energy density monotonically decreases
in time. Therefore, we need to find a control approach to ensure that the kinetic energy
density monotonically decreases in time, ε̇(t) ≤ 0. This problem becomes easier when
the state vector has an exponential decoupled decrease (see Appendix B). More precisely,
we use the visual servoing control to obtain an exponential decoupled decrease of the
state vector for the linearized plane Poiseuille flow.

8.1 State space representation

When the state matrix L is invertible, (7.23) is rewritten under the following form

ẋ(t) = L−1Ax(t) + L−1Bu(t) + L−1Eu̇(t), (8.1)

and by the change of variable z(t) = x(t)− L−1Eu(t) in [Cortelezzi and Speyer, 1998,
Cortelezzi et al., 1998a, Cortelezzi et al., 1998b, Kang et al., 1999, Lee et al., 2001], it
is easy to show that (8.1) becomes

ż(t) = Azz(t) + Bzu(t), (8.2)

where the state and input matrices are presented{
Az = L−1A

Bz = L−1B + L−1AL−1E.
(8.3)

137
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The kinetic energy density is rewritten as a function of z(t)

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)
= (z(t) + L−1Eu(t))>Q11(z(t) + L−1Eu(t)) + (z(t) + L−1Eu(t))>Q12u(t)
+u>(t)Q21(z(t) + L−1Eu(t)) + u>(t)Q22u(t)
= z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t),

(8.4)
where the matrices Nzu, Nuz and Rz are given by

Qz = Q11

Nzu = Q12 + Q11L
−1E

Nuz = Q21 + (L−1E)>Q11

Rz = Q22 + (L−1E)>Q12 + Q21L
−1E + (L−1E)>Q11L

−1E.

(8.5)

The corresponding skin friction drag is also given by

d(t) = D1x(t) + D2u(t) = D1z(t) + (D1L
−1E + D2)u(t), (8.6)

and is rewritten by
d(t) = Dz1z(t) + Dz2u(t), (8.7)

where the matrices Dz1 and Dz2 are given by{
Dz1 = D1

Dz2 = D1L
−1E + D2.

(8.8)

Therefore, the linearized plane Poiseuille flow is given by
ż(t) = Azz(t) + Bzu(t)

ε(t) = z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t)

d(t) = Dz1z(t) + Dz2u(t)

z(0) = z0

(8.9)

8.2 Our goal of the control law

We consider here a state feedback control law

u(t) = Kz(t), (8.10)

and suppose that this control is able to achieve an exponential decoupled decrease of
the state vector

ż(t) = −λz(t). (8.11)

The derivative of kinetic energy density and skin friction drag are calculated from
(8.9) as 

ε̇(t) = 2z>(t)Qzż(t) + ż>(t)Nzuu(t) + z>(t)Nzuu̇(t)
+u̇>(t)Nuzz(t) + u>(t)Nuzż(t) + 2u>(t)Rzu̇(t)

ḋ(t) = Dz1ż(t) + Dz2u̇(t)

(8.12)
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And taking into account (8.10) and (8.11), it is very easy to show that we have
u̇(t) = −λu(t)

ḋ(t) = −λd(t)

ε̇(t) = −2λε(t).

(8.13)

Finally, looking at the temporal evolution of closed loop system, we obtain
z(t) = e−λtz0

u(t) = e−λtu0

d(t) = e−λtd0

ε(t) = e−2λtε0,

(8.14)

where z0, u0, d0 and ε0 are the initial conditions. It is of course a very interesting
result. This result shows that the initial condition does not influence to the behavior of
the closed loop system, whose kinetic energy density becomes exponentially decreasing
which is a highly desired result in linear control theory.

The velocity and vorticity are calculated as a function of the state vector and the
control signals [

[ṽn(t)]
[η̃n(t)]

]
=

[
Tav

Taη

]
x(t) +

[
Tqv

Taη

]
u(t), (8.15)

where [ṽn(t)] = [ṽ(y0, t) . . . ṽ(yN , t)]
>, [η̃n(t)] = [η̃(y0, t) . . . η̃(yN , t)]

>. The derivatives
of velocity and vorticity are given by[ [

˙̃vn(t)
][

˙̃ηn(t)
] ] =

[
Tav

Taη

]
ẋ(t) +

[
Tqv

Tqη

]
u̇(t)

=

[
Tav

Taη

]
ż(t) +

([
Tav

Taη

]
L−1E +

[
Tqv

Tqη

])
u̇(t),

(8.16)

Using (8.11) and (8.13), it is easy to show that the we have:{ [
˙̃vn(t)

]
= −λ[ṽn(t)][

˙̃ηn(t)
]

= −λ[η̃n(t)],
(8.17)

leading to an exponential decoupled decrease of the velocity component. When the
state vector has an exponential decrease, the velocity also has an exponential decoupled
decrease. This is a new result in the context of our work.

In the next section, we use the visual servoing control to obtain an exponential
decoupled decrease of the state vector.

8.3 Design of the control law

In the visual servoing control, the dynamic equation of the error is given by

ė(t) =
∂e(t)

∂t
+ Le(t)u(t) (8.18)
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In order to stabilize the state vector by an exponential decrease, the state vector is
chosen to be the visual feature z(t) = s(t). By comparing (8.9) and (8.18), we obtainLe(t) = Bz

∂e(t)

∂t
= Azz(t).

(8.19)

If we would like for instance to try to ensure an exponential decoupled decrease of the
error

ė(t) = −λe(t). (8.20)

We now obtain
u(t) = −λL+

e (t)e(t)− L+
e (t)

∂e(t)

∂t
, (8.21)

where L+
e is the Moore Penrose pseudo-inverse matrix of Le. Note that the interaction

matrix Le may not be a square matrix but must be full rank matrix, therefore we use
the Moore Penrose pseudo-inverse matrix L+

e . If Le were a square and invertible matrix,
the control law could be

u(t) = −λL−1e (t)e(t)− L−1e (t)
∂e(t)

∂t
. (8.22)

In this case, the control law can be rewritten by u(t) = Kz(t) where

K = −L−1e (t)(λI + Az) (8.23)

The control law K = −Le
−1(t)(λI + Az) is based on the inverse of the interaction

matrix Le. Therefore, we shall study the condition number of the interaction matrix
Le which gives the ability of inverting a matrix in the next section.

8.4 Condition number of the interaction matrix

A matrix is said to be an invertible matrix, the necessary and sufficient conditions are
that it must be a square matrix and has full rank. However, the result will be not good
enough if the condition number is very high. So, the condition number of Le is an
interesting problem.

We give the form of the interaction matrix Le. From the system in sections 5.3.4
and 7.2, the state space representation is rewritten by{

ȧv = L−1
11 A11av + L−1

11 B11qv + L−1
11 E11q̇v

ȧη = L−1
22 A22aη + L−1

22 A21av + L−1
22 B22qη + L−1

22 B21qv + L−1
22 E22q̇η,

(8.24)

where x(t) =
[
a>v (t) a>η (t)

]> and u(t) =
[
q>v (t) q>η (t)

]>. The element matrices
have been given in previous sections 5.3.4 and 7.2. By the change of variable{

av,z = av − L−1
11 E11qv

aη,z = aη − L−1
22 E22qη,

(8.25)
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(8.24) becomes
ȧv,z = L−1

11 A11av,z + (L−1
11 B11 + L−1

11 A11L
−1
11 E11)qv

ȧη,z = L−1
22 A22aη,z + L−1

22 A21av,z
+(L−1

22 B22 + L−1
22 A22L

−1
22 E22)qη + (L−1

22 B21 + L−1
22 A21L

−1
11 E11)qv

(8.26)

It is very easy to see that the form of the interaction matrix Le is given by

Le =

[
L−1

11 (B11 + A11L
−1
11 E11) 0

L−1
22 (B21 + A21L

−1
11 E11) L−1

22 (B22 + A22L
−1
22 E22)

]
, (8.27)

which is rewritten by

Le =

[
Le,11 0
Le,21 Le,22

]
, (8.28)

where the element matrices Le,11, Le,21 and Le,22 are given by
Le,11 = L−1

11 (B11 + A11L
−1
11 E11)

Le,21 = L−1
22 (B21 + A21L

−1
11 E11)

Le,22 = L−1
22 (B22 + A22L

−1
22 E22).

(8.29)

Therefore, the inverse of the interaction matrix Le is given by

L−1
e =

[
L−1
e,11 0

L−1
e,22Le,21L

−1
e,11 L−1

e,22

]
, (8.30)

where the element matrices L−1
e,11 and L−1

e,22 are given by{
L−1
e,11 = (B11 + A11L

−1
11 E11)−1L11

L−1
e,22 = (B22 + A22L

−1
22 E22)−1L22.

(8.31)

The condition number of the matrices L11 = j(−k2D0DN (Ξ) + D2DN (Ξ)) and L22 =
D0D(Θ) are discussed in section 5.3.3.3. Although the interaction matrix Le is very
complex in order to know its condition number, it is necessary and sufficient to consider
the condition number of two matrices L11Le,11 = (B11 + A11L

−1
11 E11) and L22Le,22 =

(B22 + A22L
−1
22 E22). Therefore, we have

L11Le,11 = (c1D0DN (Fv) + c2D2DN (Fv) + c3D4DN (Fv))
−(c1D0DN (Ξ) + c2D2DN (Ξ) + c3D4DN (Ξ))(k2D0DN (Ξ)−D2DN (Ξ))−1

(k2D0DN (Fv)−D2DN (Fv))
L22Le,22 = (c4D0D(Fη) + c3D2D(Fη))

−(c4D0D(Θ) + c3D2D(Θ))(D0D(Θ))−1D0D(Fη).
(8.32)

where c1, c2, c3 and c4 were defined in section 5.3.1. The condition number of the
interaction matrix Le is simplified by considering the condition number of two smaller
matrices (B11 + A11L

−1
11 E11) and (B22 + A22L

−1
22 E22), however, it is still very complex

to compute.
Once again, we use the linear model of the plane Poiseuille flow, it must be consider

the behavior of the nonlinear system. The next section introduces the stability analysis
of the exponential decrease of error since the dynamic of error is a nonlinear system.
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8.5 Stability analysis

We analyze the stability of the closed loop nonlinear system. We first assume that a
nonlinear model can be obtained in a certain domain of variation of e and u:

ė(t) = f(e(t),u(t)). (8.33)

According to (8.20), it is clear that e = 0 is an exponentially stable equilibrium
point for the linearized system (8.18) and for the control law (8.22). Therefore, e = 0
is also an exponentially stable equilibrium point for the nonlinear system (8.33).

8.6 Robustness to measurement noise

Recall that in our case, the state vector is directly obtained from the computation of the
optical flow through a visualization system (see [Tatsambon Fomena and Collewet, 2011a]).
More precisely, the optical flow is the apparent velocity vector field representing the mo-
tion of photometric pattern (pixels luminance) in successive image sequences. Optical
flow techniques can be used to estimate instantaneous velocities of a fluid flow from
any image sequences as detailed in [Heitz et al., 2010]. In practice, the control law is
calculated by

u(t) = −λL̂e
+

(t)ê(t)− L̂e
+

(t)
∂ê(t)

∂t
, (8.34)

where L̂e
+

(t) and
∂ê(t)

∂t
are an estimation or an approximation of Le

+(t) and
∂e(t)

∂t
,

respectively (see [Chaumette and Hutchinson, 2006]). In this case, we use the linear
model, thus we can choose L̂e

+
(t) = Le

+(t). In [Tatsambon Fomena and Collewet, 2011a]
it has been shown that in our vision-based approach the state estimation writes as

ẑ(t) = z(t) +
1

Nx
ex(t), (8.35)

where Nx is the number of pixels of the camera in the stream wise direction of the flow
and ex(t) is related to the measurements noise ([Tatsambon Fomena and Collewet, 2011a]

for more detail). Thus the estimation of
∂ê(t)

∂t
can be given by

∂ê(t)

∂t
=
∂e(t)

∂t
+

Az

Nx
ex(t). (8.36)

The closed loop system of error is written as

ė(t) = −λe(t)− (λI + Az)
1

Nx
ex(t), (8.37)

leading to
ė(t) ≈ −λe(t), (8.38)

when Nx is large enough (it is always the case in practice), the estimation error tends
toward 0, and, consequently the error has the desired decreasing profile.

In the next section, we shall present simulation results and the related condition
numbers of the interaction matrices.
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8.7 Simulation results

Due to the fact that the kinetic energy density depends on the control signals u(t), the
initial value of the kinetic energy density is calculated by

ε0 = z>0 [Qz + NzuK + K>Nuz + K>RzK]z0. (8.39)

where K = −Le
−1(λI + Az). The initial condition z0 is chosen as the worst initial

condition for the normalized initial value of the kinetic energy density ε0 = 1 with
z0 = zworst,ε0=1(t = 0).

8.7.1 Case I: 2D plane Poiseuille flow

We set R = 10 000, α = 1, β = 0 and fv,l,m(y) = (1− y2)2Ξm(y) +
y3 − 3y + 2

4
.

The condition numbers of the state matrix L (see section 5.3.3.3) and the interaction
matrix Le are given in Table 8.1. The comparison between the condition numbers of the
state matrix L and the interaction matrix Le is given in Figure 8.1. This result shows
that the interaction matrix has a high condition number, Cond(Le) ≈ 103Cond(L). It
is noted that we only give an example of functions fv,l,m(y) but another choice.

Table 8.1: Condition numbers of the state matrix L and the interaction matrix Le

N 50 100 150 200 250 300
L 914.9901 7.1238 103 2.3836 104 5.6260 104 1.0960 105 1.8908 105

Le 5.2396 105 1.4987 107 9.7477 107 4.1557 107 1.2898 109 3.2405 109
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Figure 8.1: Variation of the condition numbers of L, B, E and Le with respect to N .

For N = 100 and we set λ = 0.25 for the control law (8.22), we give the behavior
of the closed loop system. The behavior of the error e(t) is given in Figure 8.2(a),
an exponential decoupled decrease of error e(t) is obtained. Consequently the control
signal, the kinetic energy density and the skin friction drag have also an exponential
decoupled decrease as can be seen in Figures 8.2(b), 8.2(c) and 8.2(d), respectively.



144 Simulation results

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1
x 10

−3

t

e
(t

)

0 5 10 15 20 25 30
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t

u
(t

)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

t

 

 
ε
s
(t)

ε
d
=1,t=0

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

t

d
(t

)

(a) e(t) versus time (b) u(t) versus time (c) εs(t) versus time (d) d(t) versus time

Figure 8.2: Behavior of the closed loop system.

Figure 8.3 illustrates the behavior of the velocity components. All elements of the
velocity components monotonically decrease in time. Indeed, the visual servoing control
always ensure the exponential decrease of the velocity components when the interaction
matrix is square and has full rank. Note that only our approach can do it, this result
allows us to guarantee that the perturbation tends toward zero by the best way.

−1
−0.5

0
0.5

1

0

10

20

30
0

0.05

0.1

0.15

0.2

ytime

re
a
l 
w

a
ll
−

n
o

rm
a
l 
v
e
lo

c
it

y

−1
−0.5

0
0.5

1

0

10

20

30
−0.04

−0.03

−0.02

−0.01

0

0.01

ytime

im
a
g

e
 w

a
ll
−

n
o

rm
a
l 
v
e
lo

c
it

y

−1
−0.5

0
0.5

1

0

10

20

30
−2

−1

0

1

2

ytime

re
a
l 
s
tr

e
a
m

w
is

e
 v

e
lo

c
it

y

−1
−0.5

0
0.5

1

0

10

20

30
−2

−1

0

1

2

ytime

im
a
g

e
 s

tr
e
a
m

w
is

e
 v

e
lo

c
it

y

Figure 8.3: Behavior of the velocity components versus time and y direction.

The behavior of the kinetic energy density, the velocity profile and the velocity field
are shown in Figure 8.4. The vertical arrows at the lower boundary is the control signal.
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Figure 8.4: Shape of the flow perturbation in the controlled flow.

Although we only use the lower boundary condition but the control signal is assumed to
be blowing/suction on the lower boundary. The proposed control law leads the velocity
component to an exponential decoupled decrease. The velocity profile becomes the
steady solution (1− y2, 0). The flow becomes laminar.

In the presence of measurement noise appears and using the optical flow provided
in [Tatsambon Fomena and Collewet, 2011a], the behavior of the error is very robust to
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Figure 8.5: Behavior of the error versus time with measurement noise.
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measurement noise as observed in Figure 8.5.
In the next section, we will present the result in the 3D plane Poiseuille flow.

8.7.2 Case II: 3D plane Poiseuille flow

We setR = 5 000, α = 0, β = 2.044 and fv,l,m(y) = fη,l,m = (1−y2)2Ξi(y)+
y3 − 3y + 2

4
.

The condition numbers of the state matrix L and the interaction matrix Le are
given in Table 8.2 and depicted in Figure 8.6.

Table 8.2: Condition number of the state matrix L and the interaction matrix Le

N 50 100 150 200 250 300
L 1.9365 104 1.5066 105 5.0408 105 1.1898 106 2.3179 106 3.9985 106

Le 1.9039 109 1.2052 1010 9.7056 1010 5.4836 1011 2.2376 1012 7.0906 1012
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Figure 8.6: Variation of the condition numbers of L and Le with respect to N .

We set N = 50 and λ = 0.25. As in the above case, the similar results are obtained.
The behavior of the error vector, the control signal, the kinetic energy density and the
skin friction drag are shown in Figure 8.7. Next, Figure 8.8 shows the behavior of the
velocity components. Once again, we obtain an exponential decoupled decrease for the
error vector, the control signal, the skin friction drag, the kinetic energy density and
velocity components.

All observed physical quantities do not increase any more. Furthermore, the visual
servoing control is easy to directly decide the convergence velocity of skin friction drag
and kinetic energy density minimizations.

The behavior of the kinetic energy density, the velocity profile and the velocity
field are illustrated in Figure 8.9. Once again, the velocity profile becomes the steady
solution (1− y2, 0, 0). The proposed control law ensures the way that the flow becomes
laminar state.

As similar to the 2D plane Poiseuille flow, our approach is very robust to noise
measurement as shown in Figure 8.10.
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Figure 8.7: Behavior of the closed loop system.

Figure 8.8: Behavior of the velocity components versus time and y direction.

We have given an example of functions fv,l,m(y) and fη,l,m(y). However, we can
choose another functions fv,l,m(y) and fη,l,m(y). Another example is the Hermite in-
terpolation which helps us to eliminate the problem of the condition number in the
Appendix C.
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Figure 8.9: Shape of the flow perturbation in the controlled flow.
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Figure 8.10: Behavior of the error versus time with measurement noise.

8.8 Conclusion

When the number of state vector is equal to the number of DOF, the interaction Le

may become a square and full rank matrix. Therefore, we can design a visual servoing
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control to achieve an exponential decoupled decrease of the state vector. Through
the state vector, the skin friction drag, the kinetic energy density and the velocity
component have also an exponential decoupled decrease in time. The non-normality is
solved, the kinetic energy density monotonically decreases in time. It emphasizes that
the visual servoing control not only has an exponential decrease of skin-friction drag and
kinetic energy density but also directly decides the convergence velocity of skin-friction
drag and kinetic energy density minimizations. The visual servoing control gives better
results than other control approaches in this case.

However, the order of controller in the flow control is always large because the
dimension of linearized plane Poiseuille flow is very large (e.g. the order of the full
system is 8000 in [Cortelezzi et al., 1998b]). Therefore, the order of controller need to
be reduced. In the next chapter, we present a reduced model which is used to design a
reduced controller for the closed loop system of the plane Poiseuille flow.
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Chapter 9

Model Order Reduction

By using the spectral method, the dimension of the states is large (e.g. the dimension
of states is 8000 in [Cortelezzi et al., 1998b]), the dimension of gain of the control law
becomes large. Therefore, we want to reduce the order of controller. In addition, this
goal in this chapter is to ensure that the kinetic energy density ε(t) ≈ e−2λtε0 in the
closed loop system of the plane Poiseuille flow even using two degrees of freedom (DOF).

Model order reduction is fundamental in control design, especially for systems with
large dimension. In previous chapters, we have demonstrated the advantage of increas-
ing the number of DOF. We also have obtained a good result for minimizing the kinetic
energy density, ε(t) = e−2λtε0 due to x(t) = e−λtx0 but the visual servoing control needs
a strong condition on the number of DOF. It is very hard in the flow control when the
dimension is infinite, therefore an idea of design of control law based on the reduced
model is proposed. By using the visual servoing control based on the reduced model,
we ensure that the control signal has an exponential decrease in time, u(t) = e−λtu0.
In particular, the kinetic energy density also has an approximation of the exponential
decrease, ε(t) ≈ e−2λtε0 due to u(t) = e−λtu0, even using two DOF.

In the last years, many different reduced model methods have been developed in
computational fluid dynamics and control design. Indeed, the reduced model methods
are good enough when the behavior of reduced model is equivalent to the behavior of
the full system. The Navier-Stokes equations in computational fluid dynamics and the
Maxwell equations in electromagnetics are just few examples of reduced model.

In control theory, some methods of Model Order Reduction (MOR) are Trun-
cated Balanced Realization (TBR) [Moore, 1981], Hankel-Norm Reduction (HNR)
[Glover, 1984] and Proper Orthogonal Decomposition (POD) [Berkooz et al., 1993].
Especially in [Rowley, 2005], the analysis of the plane Poiseuille flow is studied by using
Balanced Proper Orthogonal Decomposition (BPOD).

Why we use a reduced model instead of the full system. To answer this question,
we begin by considering the advantage of reduced model in the next section.
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9.1 General model order reduction

Let us consider the full nonlinear system{
ẋ(t) = f(x(t),u(t), t)
y(t) = g(x(t),u(t), t)

(9.1)

which is reduced to the reduced model (see references in [Chen, 1999]){
ẋr(t) = fr(xr(t),u(t), t)
y(t) = gr(xr(t),u(t), t)

(9.2)

where xr(t) is a function of x(t): xr(t) = h(x(t)).
In MOR, the behavior of the full system (9.1) is equivalent to the behavior of

reduced reduction (9.2), it means g(x(t),u(t), t) ≈ gr(xr(t),u(t), t), the control design
of reduced model is easier. It is noted that the dimension of x(t) is larger than the
dimension of xr(t). On the other hand, the control approach depends on the relationship
between the number of states and the number of DOF. Some control approaches can
apply to the reduced model but cannot be applied to the full system. For example, the
full system has n states and the number of control signal are m (m < n). In the ideal
case, the full system is reduced to a model with m states. When the number of control
signal equals the number of the states, we can apply the visual servoing control to the
reduced model. Another example, the number of DOF and the number of states also
decide the pole assignment and the eigenstructure assignment. Moreover, the dimension
of the full system may be infinite (the flow control case), it is better when we use the
reduced model and increase DOF based on the reduced model.

We give the advantage of reduced model with respect to the full nonlinear system
via a simple example. Let us consider the system

ẋ1(t) = x1(t) + x2
1(t) + x2(t) + u(t)

ẋ2(t) = x1(t)− 100x2(t)
y(t) = x1(t) + 10x2(t)

(9.3)

and we limit to consider the equilibrium point x1e = x2e = 0. Therefore, the linear
model is given by 

ẋ1(t) = x1(t) + x2(t) + u(t)
ẋ2(t) = x1(t)− 100x2(t)
y(t) = x1(t) + 10x2(t)

(9.4)

From the system (9.4), we see that the input matrix does not have full rank. Therefore,
we cannot design a control law which satisfies ẋ1(t) = −λx1(t) and ẋ2(t) = −λx2(t).
Therefore, we use a reduced model.

The eigenvalues of (9.4) are λ1 = 1.0099 and λ2 = −100.0099. It is very easy to
see that the mode corresponding to the eigenvalue λ2 = −100.0099 is a fast mode (high
eigenvalue). Therefore, we can consider ẋ2(t) = 0, we get the reduced model{

ẋ1(t) = 101
100x1(t) + x2

1(t) + u(t)
y(t) = 1.1x1(t)

(9.5)
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and its linearization is {
ẋ1(t) = 101

100x1(t) + u(t)
y(t) = 1.1x1(t)

(9.6)

The control design aims at ẋ1(t) = −λx1(t), which is given by u(t) = −(λ +
101
100)x1(t). The behavior of the closed loop system of the reduced model is

{
ẋ1(t) = −λx1(t) + x2

1(t)
y(t) = 1.1x1(t)

⇒


x1(t) =

λ

1 + λ−x10
x10

eλt

y(t) =
1.1λ

1 + λ−x10
x10

eλt

(9.7)

where x10 is the initial condition. When t is large enough and λ >> x10, we get the
behavior of reduced model

x1(t) =
λ

1 + λ−x10
x10

eλt
≈ x10e

−λt, y(t) =
1.1λ

1 + λ−x10
x10

eλt
≈ 1.1x10e

−λt (9.8)

Note that the behavior of the full system is{
ẋ1(t) = −(λ+ 1

100)x1(t) + x2
1(t) + x2(t), ẋ2(t) = x1(t)− 100x2(t)

y(t) = x1(t) + 10x2(t)
(9.9)

We first compare the behavior of the state vector x1(t) of the reduced model (9.8)
and the full nonlinear system (9.9) described in Figure 9.1. Although the control law

0 0.2 0.4 0.6 0.8 1
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

x
1
(t

)

 

 

full system

model reduction

Figure 9.1: Comparison of full nonlinear system and reduced model: behavior of the
closed loop system versus time.

u(t) = −(λ + 101
100)x1(t) is designed based on its linearization of the reduced model.

We have a similar result for the behavior of the state vector x1(t). Then, we compare
the behavior of the output between the full nonlinear system and the reduced model
as shown in Figure 9.2. When the time t is large enough, we do not see the difference
between the reduced model and the full nonlinear system.

The advantage of reduced model has been emphasized. In the next section, we shall
consider a reduced model of the plane Poiseuille flow.
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Figure 9.2: Comparison of full nonlinear system and reduced model: behavior of the
closed loop system versus time. We have the same result in this case.

9.2 Reduced order of controller

The goal is to ensure {
u(t) = e−λtu0

ε(t) ≈ e−2λtε0
(9.10)

in the closed loop system of the plane Poiseuille flow. In the flow control, the system
may be of infinite dimension while the number of DOF cannot be increased to infinite
dimension. Therefore, the idea is to design a reduced model in which we can use the vi-
sual servoing control to obtain a good result of minimizing the kinetic energy density. In
[Cortelezzi et al., 1998a], [Cortelezzi and Speyer, 1998], [Cortelezzi et al., 1998b], the Jor-
dan Canonical Form was used to obtain a reduced model and the LQR control was
applied to stabilize this reduced model. We also use the Truncated Model Order Re-
duction (TMOR) to demonstrate that the visual servoing control can be used for the
reduced model.

9.2.1 Design of the reduced model

As shown in previous chapters, we consider the dynamic equation of linearized plane
Poiseuille flow

ż(t) = Azz(t) + Bzu(t)

ε(t) = z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t)

d(t) = Dz1z(t) + Dz2u(t)

z(0) = z0

(9.11)

In order to obtain a reduced model, we only consider{
ż(t) = Azz(t) + Bzu(t)
εz(t) = z>(t)Qzz(t)

(9.12)

which is reduced to {
żr(t) = Arzr(t) + Bru(t)
εr(t) = z>r (t)Qrzr(t)

(9.13)
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whereAr, Br andQr will be given in the next step. The system (9.12) is rewritten under
the Jordan Canonical Form, it means that Az = VzΛV−1

z . By using w(t) = V−1
z z(t),

the Jordan Canonical Form is given by

ẇ(t) = Λw(t) + V−1
z Bzu(t) (9.14)

We denote w(t) =
[
z>r (t) z>n−r(t)

]> where zr(t) is the state vector of the reduced
model and Br,m only contains r first rows of V−1

z Bz as following

V−1
z Bz =

[
Br,m

Bn−r,m

]
(9.15)

Next, we define Qr,r which only contains contains r first rows and columns of V>z QzVz,

V>z QzVz =

[
Qr,r Qn−r,r

Qn−r,r Qn−r,n−r

]
, (9.16)

this matrix is need to design a LQR control. Therefore, (9.14) is rewritten by
[

żr(t)
żn−r(t)

]
=

[
Λr 0
0 Λn−r

] [
zr(t)

zn−r(t)

]
+

[
Br,m

Bn−r,m

]
u(t)

εz(t) = z>r (t)Qr,rzr(t) + z>r (t)Qr,n−rzn−r(t)
+z>n−r(t)Qn−r,rzr(t) + z>n−r(t)Qn−r,n−rzn−r(t)

(9.17)

where Λn−r contains the reduced eigenvalues. Note that Λr must contain all positive
eigenvalues. By using the TMOR, we obtain a reduced model{

żr(t) = Λrw(t) + Br,mu(t)
εr(t) = z>r (t)Qr,rzr(t)

(9.18)

We design a control law u(t) = Krzr(t) based on the system (9.18) for the system
(9.11). By comparing (9.13) and (9.18), we get Ar = Λr, Br = Br,m and Qr = Qr,r.

In order to ensure u = e−λtu0, the visual servoing control will be used in the next
section.

9.2.2 Desired performance

We consider here a state feedback control u(t) = Krzr(t), and suppose that this control
law is able to achieve an exponential decoupled decrease of the state vector zr(t), that
is

żr(t) = −λzr(t) (9.19)

Therefore, we have
u̇(t) = Krżr(t) = −λKrzr(t) = −λu(t) (9.20)
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9.2.3 Design of the control law

We recall the dynamic equation of the error given by

ėr(t) =
∂er(t)

∂t
+ Ler(t)u(t) (9.21)

In order to stabilize the state vector zr(t) by an exponential decrease, the state vector
is chosen to be the visual feature zr(t) = s(t). By comparing (9.18) and (9.21), we getLer(t) = Br,m

∂er(t)

∂t
= Λrzr(t).

(9.22)

If we would like for instance to try to ensure an exponential decoupled decrease of the
error

ėr(t) = −λer(t). (9.23)
If Ler were a square and invertible matrix, the control law could be

u(t) = −λL−1
er (t)er(t)− L−1

er (t)
∂er(t)

∂t
. (9.24)

In this case, the control law can be rewritten by u(t) = Krzr(t) where

Kr = −L−1
er (t)(λIr + Λr) (9.25)

9.2.4 Behavior of the closed loop system

9.2.4.1 Stability analysis

However, our goal is to study the behavior of the closed loop system of (9.11) with
the control gain Kr which is designed on the reduced model (9.18). The control law is
u(t) = Kr

[
Ir [0]r,n−r

]
V−1
z z(t) and the closed loop system is given as following

[
żr(t)

żn−r(t)

]
=

[
Λr + Br,mKr 0
Bn−r,mKr Λn−r

] [
zr(t)

zn−r(t)

]
K = Kr

[
Ir [0]r,n−r

]
V−1
z

ε(t) = z>(t)(Qz + K>Nuz + NzuK + K>RzK)z(t)

(9.26)

We must consider the stability of (9.26). To do this, we only need to consider the
equation [

żr(t)
żn−r(t)

]
=

[
Λr + Br,mKr 0
Bn−r,mKr Λn−r

] [
zr(t)

zn−r(t)

]
(9.27)

We know that Λr + Br,mKr and Λn−r are stable, therefore the system (9.26) also
becomes stable. Although the control law is designed based on the reduced model but
the full system is always stable. Indeed, the stability of (9.26) is always guaranteed.

The closed loop system of the plane Poiseuille flow is rewritten by
K = Kr

[
Ir [0]r,n−r

]
V−1
z

u(t) = Kz(t)
ż(t) = Azz(t) + Bzu(t)
ε(t) = z>(t)(Qz + K>Nuz + NzuK + K>RzK)z(t)

(9.28)
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9.2.4.2 Visual servoing control

Since L−1
er (t) = B−1

r,m exists (Br,m has full rank), we use the visual servoing control based
on the reduced model (9.18), we obtain the closed loop system

Kr = −B−1
r,m(λIr + Λr)

żr(t) = −λzr(t)
u(t) = Krzr(t)
żn−r(t) = Bn−r,mKrzr(t) + Λn−rzn−r(t)

(9.29)

And the behavior of the state vector is{
zr(t) = e−λtzr,0

zn−r(t) = − 1

λ
Bn−r,mKre

−λtzr,0 + eΛn−rtzn−r,0
(9.30)

where zr,0 and zn−r,0 are the initial conditions of zr(t) and zn−r(t), respectively. It is
very interesting that zr(t) has an exponential decrease, the control signal u(t) = Krzr(t)
also has an exponential decrease.

Moreover, the kinetic energy density and the skin friction drag are given by
z(t) = Vz

[
zr(t)

zn−r(t)

]
K = Kr

[
Ir [0]r,n−r

]
V−1
z

ε(t) = z>(t)(Qz + K>Nuz + NzuK + K>RzK)z(t)
d(t) = (D1 + D1L

−1EK + D2K)z

(9.31)

The behavior of the kinetic energy density is given by

ε(t) = z>(t)(Qz + K>Nuz + NzuK + K>RzK)z(t)

=

[
zr(t)

zn−r(t)

]>
V>z

(
Qz + K>Nuz + NzuK + K>RzK

)
Vz

[
zr(t)

zn−r(t)

]
(9.32)

We denote[
Pr,r Pr,n−r

Pn−r,r Pn−r,n−r

]
= V>z (Qz + K>Nuz + NzuK + K>RzK)Vz (9.33)

Therefore, the behavior of the kinetic energy density is rewritten as

ε(t) =

[
zr(t)

zn−r(t)

]> [
Pr,r Pr,n−r

Pn−r,r Pn−r,n−r

] [
zr(t)

zn−r(t)

]
= z>r (t)Pr,rzr(t) + z>r (t)Pr,n−rzn−r(t) + z>n−r(t)Pn−r,rzr(t)
+z>n−r(t)Pn−r,n−rzn−r(t)

= z>r,0e
−λt(Pr,r −

1

λ
Pr,n−rBn−r,mKr −

1

λ
K>r B

>
n−r,mPn−r,r

+
1

λ2
K>r B

>
n−r,mPn−r,n−rBn−r,mKr)e

−λtzr,0

+z>r,0e
−λt(Pr,n−r −

1

λ
K>r B

>
n−r,mPn−r,n−r)e

Λn−rtzn−r,0

+z>n−r,0e
Λn−rt(Pn−r,r −

1

λ
Pn−r,n−rBn−r,mKr)e

−λtzr,0

+z>n−r,0e
Λn−rtPn−r,n−re

Λn−rtzn−r,0

(9.34)
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When r is large enough, we obtain

z>r,0e
−λt(Pr,r −

1

λ
Pr,n−rBn−r,mKr −

1

λ
K>r B

>
n−r,mPn−r,r

+
1

λ2
K>r B

>
n−r,mPn−r,n−rBn−r,mKr)e

−λtzr,0

>> z>r,0e
−λt(Pr,n−r −

1

λ
K>r B

>
n−r,mPn−r,n−r)e

Λn−rtzn−r,0

+z>n−r,0e
Λn−rt(Pn−r,r −

1

λ
Pn−r,n−rBn−r,mKr)e

−λtzr,0

+z>n−r,0e
Λn−rtPn−r,n−re

Λn−rtzn−r,0

(9.35)

The kinetic energy density is approximated by

ε(t) ≈ z>r,0e
−λt(Pr,r −

1

λ
Pr,n−rBn−r,mKr −

1

λ
K>r B

>
n−r,mPn−r,r

+
1

λ2
K>r B

>
n−r,mPn−r,n−rBn−r,mKr)e

−λtzr,0
(9.36)

Therefore, the kinetic energy density has an approximation of the exponential decrease

ε(t) ≈ e−2λtε0 (9.37)

where we denote

ε0 = z>r,0(Pr,r − 1
λPr,n−rBn−r,mKr − 1

λK
>
r B
>
n−r,mPn−r,r

+
1

λ2
K>r B

>
n−r,mPn−r,n−rBn−r,mKr)zr,0

(9.38)

Indeed, we obtain ε(t) ≈ e−2λtε0 when r is large enough, the similar result for the
skin friction drag. Generally, the kinetic energy density and the skin friction drag almost
have an exponential decrease when r is large enough.

9.2.4.3 Influence of the control signal on the kinetic energy density

In the previous section, we showed that it is possible to minimises the kinetic energy
density if r is large enough. We could still have a good result if r were small ? In
order to assure that the kinetic energy density has an approximation of the exponential
decrease when we use the visual servoing control. We shall study the influence of the
control signal on the kinetic energy density in order to give a good choice of the functions
fv,l(y), fv,u(y), fη,u(y) and fη,l(y) and the parameter λ.

As well known, the kinetic energy density is a combination of the state vector energy
and the control energy

ε(t) = z>(t)Qzz(t) + z>(t)Nzuu(t) + u>(t)Nuzz(t) + u>(t)Rzu(t) (9.39)

where Nuz, Nzu and Rz are constructed from the functions fv,l(y), fv,u(y), fη,u(y) and
fη,l(y).

We recall that the flow is monotonically stable if

ε̇(t) ≤ 0 (9.40)
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Generally, if ε(t) ≈ u>(t)Rzu(t), it is easy to see that

ε̇(t) ≈ 2u>(t)Rzu̇(t) (9.41)

By using the visual servoing control based on the reduced model, we can give

ε̇(t) ≈ 2u>(t)Rzu̇(t) = −2λu>(t)Rzu(t) ≈ −2λε(t)⇒ ε(t) ≈ e−2λtε0 (9.42)

We always obtain a nice result of ε(t) if ε(t) ≈ u>(t)Rzu(t) even for small r.
We conclude that the kinetic energy density has an approximation of the

exponential decrease when r is large enough. If r is not large enough, we
shall have ε(t) ≈ u>(t)Rzu(t).

We shall give the simulation result to validate our proposed control approach in the
next section.

9.3 Simulation Result

We use both LQR control and visual servoing control to validate our approach. We
recall that the synchronic transient energy growth is the maximum value of the kinetic
energy density over time. If the synchronic transient energy has an exponential decrease,
all kinetic energy density will have an exponential decrease. We only consider small
value of r (for large value of r, see Appendix D).

9.3.1 Reduced model

In this section, we consider the behavior of the uncontrolled flow. We compare between
the reduced model εr(t) and the full model ε(t) (ε(t) = εz(t) in this case).

9.3.1.1 2D plane Poiseuille flow

In the case of α = 1, β = 0 and R = 10 000, for N = 50, we have n = 94. The initial
condition is the worst initial condition. Figures 9.3 shows the behavior of εr(t) and ε(t).
Because we use TMOR method to obtain the reduced model, when the time is large
enough (t > 40 for r = 2, 3, 4; t > 6 for r = 37; and t ≈ 0 for r > 45), the behavior
of reduced model is equivalent to the behavior of the full system. Moreover, TMOR
method obtains a good reduced model with only r = 2. It means that the reduced
model

Λ2 =

[
0.00373 + j0.23752 0

0 0.00373− j0.23752

]
(9.43)

can almost capture the kinetic energy density in the uncontrolled flow. Note that
Λ1 = 0.00373 + j0.23752 is not good enough because this reduced model does not
contains all positive eigenvalues. In the 2D plane Poiseuille flow, we only need the
reduced model Λ2 which captures the behavior of unstable modes of the system.
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Figure 9.3: Comparison of the reduced model (εr(t)) with r states and the full model
(ε(t)) with n states: behavior of the kinetic energy densitys εr(t) and ε(t) versus time.

9.3.1.2 3D plane Poiseuille flow

In the case of α = 0, β = 2.044 and R = 5 000, for N = 50, we have n = 96. As the 2D
plane Poiseuille flow, Figure 9.4 shows the behavior of εr(t) and ε(t). This result allows
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Figure 9.4: Comparison of the reduced model (εr(t)) with r states and the full model
(ε(t)) with n states: behavior of the kinetic energy densitys εr(t) and ε(t) versus time.

us to ensure that we only need the reduced model Λ8 which can capture the behavior
of full system

Λ8 =


−0.0013 0 · · · 0

0 −0.0021
...

...
. . . 0

0 · · · 0 −0.0123

 (9.44)

The above reduced order models will be used for controller design. In the next
section, results for LQR control are presented.

9.3.2 LQR control

In this section, we use LQR control to demonstrate that the control law can be designed
based on the reduced model for the full system. Therefore, we consider here a state
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feedback control law

u(t) = Kr

[
Ir [0]r,n−r

]
V−1
z z(t) = Krzr(t). (9.45)

In order to minimize the kinetic energy density εr(t) and the energy combustion of
actuators, a LQR control scheme over an infinite time horizon is used by considering
the following cost function

J =

∫ ∞
0

(z>r (t)Qrzr(t) + γ2u>(t)u(t))dt. (9.46)

Thereafter, the LQR gain Kr involved in the optimal control u(t) = Krzr(t) is com-
puted taking into account (9.18) and solving the Algebraic Ricatti Equation (see LQR
control for more details). The gain Kr is given by

Kr = − 1

γ2
B>r P, (9.47)

where P is the solution of the Algebraic Ricatti Equation

A>r P + PAr + Qr −
1

γ2
PBrB

>
r P = 0. (9.48)

In Matlab, we can use Kr = −lqr(Ar,Br,Qr, γ
2I). Note that we can design a

LQR control based on the system (9.12), which is Kf = −lqr(Az,Bz,Qz, γ
2I). We

will compare the behavior of the closed loop system (9.28) with the control law K =
Kr

[
Ir [0]r,n−r

]
V−1
z and the control law Kf in the case of LQR control.

9.3.2.1 2D plane Poiseuille flow

We use

Λ2 =

[
0.00373 + j0.23752 0

0 0.00373− j0.23752

]
(9.49)

and we only use one DOF with fv,l(y) =
y3 − 3y + 2

4
, more precisely, we only use lower

boundary q̃v,l(t). The initial condition is the worst initial condition of the uncontrolled
flow. It means that we set similar initial condition for simulation results for Kf and
K. The behavior of the closed loop system is illustrated in Figure 9.5, Figure 9.6 and
Figure 9.7 for various choices of γ.

This result shows that we have similar results for both K and Kf . Indeed, we can
use the reduced model (9.18) to design a control law for the system (9.11). Note that,
TMOR method is to reduce high eigenvalues, therefore the behavior of the system
(9.28) is similar for K and Kf when t is large enough. When γ decreases, the behavior
of the closed loop system (9.28) is improved as shown from Figure 9.5 to Figure 9.7.
Although the behavior of the closed loop system is improved since decreasing of γ but
the control energy also increases. Therefore, the initial value of kinetic energy density
increases.
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Figure 9.5: Behavior of the closed loop system versus time, γ = 100.
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Figure 9.6: Behavior of the closed loop system versus time, γ = 10.
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Figure 9.7: Behavior of the closed loop system versus time, γ = 1.

The kinetic energy density has an approximation of the exponential decrease if ε(t) ≈
u>(t)Rzu(t) and u(t) = e−λtu0. Therefore, we choose γ to ensure ε(t) ≈ u>(t)Rzu(t).
When γ = 0.1, the maximal value of kinetic energy density is the initial value, as shown
in Figure 9.8. When γ = 0.01, the LQR control provides a nice result in Figure 9.9.
Although z>(t)Qzz(t) does not have an exponential decrease but ε(t) always behaves
like an exponential decrease.



Model Order Reduction 163

0 20 40 60 80 100
0

5

10

15

20

25

30

 

 
z

T
Q

z
z

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

t

 

 
ε
s
(t)

ε
d

z
T
Q

z
z

u
T
R

z
u

z
T
N

zu
u+u

T
N

uz
z

Figure 9.8: Behavior of the closed loop system versus time, γ = 0.1.
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Figure 9.9: Behavior of the closed loop system versus time, γ = 0.01.

9.3.2.2 3D plane Poiseuille flow

We use two DOF in this case with fv,l(y) =
y3 − 3y + 2

4
and fv,u(y) =

−y3 + 3y + 2

4
As in the 2D plane Poiseuille flow, Figure 9.10, Figure 9.11 and Figure 9.12 provide a
comparison between the control law based on the reduced model and the control law
based on the full system. Once again, these results allow us to ensure that we can design
a control law based on the reduced model instead of the full system.
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Figure 9.10: Behavior of the closed loop system versus time, γ = 100.
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Figure 9.11: Behavior of the closed loop system versus time, γ = 10.
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Figure 9.12: Behavior of the closed loop system versus time, γ = 1.

Note that when γ = 10, we have εmax = 812.4963. We have a similar result in
Chapter 6. And we can get better result in the case of γ = 1, εmax = 778.5630. This
result emphasizes the advantage of the reduced order controller.

We decrease γ to obtain the nice behavior of the kinetic energy density. As expected,
Figure 9.13 and Figure 9.14 give a desired result.
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Figure 9.13: Behavior of the closed loop system versus time, γ = 0.1.

The fact LQR control can minimize u(t) but does not guarantee u̇(t) = −λu(t).
Therefore, we use the visual servo control in the next section.
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Figure 9.14: Behavior of the closed loop system versus time, γ = 0.01.

9.3.3 Visual servoing control

9.3.3.1 2D plane Poiseuille flow

One DOF We recall the test case of α = 1, β = 0, R = 10 000 and N = 50. We
compare the result between the visual servo control and the LQR control. We use
λ = 1 for the visual servo control and the initial condition is the worst initial condition
of the uncontrolled flow. Figure 9.15 provides ε(t) ≈ u>(t)Rzu(t) and u(t) = e−λtu0.
As expected, this result is better than the result in Figure 9.9 (εmax ≈ 5.104 < 4.105).
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Figure 9.15: Behavior of the closed loop system.

We recall that if the synchronic transient energy has an exponential decrease, all
kinetic energy density will have an exponential decrease. Therefore, the initial condition
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Figure 9.16: Variation of εd with respect to the parameter λ of the visual servoing
control.

is next chosen as the worst initial condition of the controlled flow. Figure 9.16 shows the
behavior of the diachronic transient energy with respect to λ (λ = 0.05 : 0.05 : 4). When
λ > 1.31, we have εd = 1. The diachronic transient energy growth is the initial value
of kinetic energy density. This condition is necessary to ensure that the kinetic energy
density behaves like an exponential decrease. The behavior of synchronic transient
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(a) λ = 0.41 (b) λ = 1.30
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Figure 9.17: Behavior of the synchronic transient energy versus time for variation of λ.

energy growth is illustrated in Figure 9.17. When λ > 1.31, we have nice result but we



Model Order Reduction 167

do not ensure ε(t) ≈ u>(t)Rzu(t) at t = 20. We use TMOR, Λ4 is always better than
Λ2, therefore we use Λ4 and two DOF.

Two DOF We use Λ4

Λ4 =


0.00373 + j0.23752 0 0

0 0.00373− j0.23752 0 0
0 0 −0.1828 + 0.1901i 0
0 0 0 −0.1828− 0.1901i


(9.50)

and both upper and lower boundaries with
fv,l(y) =

y3 − 3y + 2

4

fv,u(y) =
−y3 + 3y + 2

4

(9.51)

Figure 9.18 shows the behavior of the diachronic transient energy versus λ (λ = 0.05 :
0.05 : 4). We obtain εd = 1 for all λ.It is noted that the Again, we demonstrate the
benefits of increasing the number of DOF.
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Figure 9.18: Variation of εd with respect to the parameter λ of the visual servoing
control.

In the next result, we ensure ε(t) ≈ u>(t)Rzu(t). We use λ = 0.25. As expected,
Figure 9.19 shows ε(t) ≈ u>(t)Rzu(t) and z>(t)Qzz(t) << u>(t)Rzu(t). Indeed, we
have an interesting result u>(t)u(t) << u>(t)Rzu(t), it means that the influence of
the control signal to the flow is larger than the needed control energy. We have desired
result with two DOF in this case.
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Figure 9.19: Behavior of the closed loop system versus time.

9.3.3.2 3D plane Poiseuille flow

We recall the test case of α = 0, β = 2.044, R = 5 000 and N = 50. We use

Λ2 =

[
−0.0013 0

0 −0.0021

]
(9.52)

and two DOF. As the 2D plane Poiseuille flow, we consider the diachronic transient
energy versus the parameter λ in the visual servoing control, as shown in Figure 9.20.
When λ ≥ 40.5, we have εd = 1. The behavior of the synchronic transient energy is
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Figure 9.20: εd versus λ.

illustrated in Figure 9.21. It improves when we increase the parameter λ.
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(a) λ = 0.5 (b) λ = 37.5
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(c) λ = 38 (d) λ = 200

Figure 9.21: Behavior of the synchronic transient energy versus time for variation of λ.

We set λ = 250, the behavior of the closed loop system is given in Figure 9.22. As
expected, we have a nice result as in the 2D plane Poiseuille flow.
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Figure 9.22: Behavior of the closed loop system versus time.

In this section, we have demonstrated that we almost obtain an approximation of
the exponential decrease of the kinetic energy density even using two DOF, it means
that the flow is almost monotonically stable. We recognize that we must give a lot of
control energy. In practice, if the condition of control energy is satisfied, the flow could
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be almost monotonically stable. However, we still have the problem of nonorthogonality
of the plane Poiseuille flow in this case. It means that we do not ensure ε̇(t) ≤ 0 because
we use the reduced model to design the control law.

9.4 Conclusion

Because the dimension of the linearized plane Poiseuille flow may be very large. There-
fore, the problem of the flow control will become very easier when a control law is
designed based on a reduced model instead of the full nonlinear system. The result
of LQR control and visual servoing control allow us to ensure that the good result
obtained even using the TMOD. Moreover, this chapter obtained a good result of the
kinetic energy density when the visual servoing control is designed based on the reduced
model. When the number of DOF is only equal to the number of the state vector of the
reduced model. If the condition of control energy is satisfied, the kinetic energy density
behaves like an exponential decrease by applying the visual servoing control even using
two DOF.



Chapter 10

Conclusions and Future Work

This chapter describes the maiming findings from the work carried out in this thesis,
and suggests future work that might be performed.

Conclusions

In this thesis, we have developed feedback controllers that assured the stability of the
plane Poiseuille flow from visual information. Several conclusions about the flow control
can be drawn.

Chapter 5

The numerical method is not used to generate a state-space model of PDE. A linear
model is developed by using a spectral collocation method which could transform PDE
to a set of ODE. More precisely, the spectral collocation method with the use of Fourier
series in the streamwise and spanwise directions and the Chebyshev polynomials in
the wall-normal direction could decouple the modeled system by wavenumber pairs.
Therefore it is possible to treat each wavenumber pairs separately.

When the wall-normal velocity vorticity formulation is used, the state vector of the
linear model involves the wall-normal velocity and vorticity. Moreover, the skin-friction
drag and the kinetic energy density are modeled by a function of the state vector. The
control approaches will be designed in order to minimize the skin-fricition drag and the
kinetic energy density. Indeed, the skin-friction drag is a linear function of the state
vector while the kinetic energy density always is a quadratic function of the state vector.

The plane Poiseuille flow is controlled by boundary conditions. In the controlled
flow, the homogeneous Dirichlet boundary conditions become the inhomogeneous Dirich-
let boundary conditions, therefore we must use the modified Chebyshev polynomials.
We have used McKernan’s method [McKernan, 2006] to modify the Chebyshev polyno-
mials and we have obtained a linear model which has no "spurious" modes as Bewley’s
model [Bewley and Liu, 1998].

We also consider the two test cases. These test cases are usually used in previous
works. The first test case is in the 2D plane Poiseuille flow with α = 1, β = 0 and
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R = 10 000, this case illustrates the unstable eigenvalues. While the second test case
is in the 3D plane Poiseuille flow with α = 0, β = 2.044 and R = 5 000, the diachronic
transient energy growth reaches its highest value in this test case.

Chapter 6

When the number of the degree of freedom (DOF) is two, the partitioned visual ser-
voing control shows a positive result for drag reduction. The skin friction drag has an
exponential decrease with one DOF. In contrast to the existing controllers, this con-
troller exploited two DOF to minimize, simultaneously, the skin friction drag and the
kinetic energy density. Indeed, the partitioned visual servoing control only needs one
DOF to minimize the skin friction drag but more than oneDOF to minimize the kinetic
energy density. This approach is compared to the other approaches: PID and LQR
controls and obtains a better result than them. In contrast to the other approaches,
the partitioned visual servoing control not only obtains an exponential decrease of skin
friction drag minimization but also directly decides the convergence velocity of skin
friction drag minimization.

Chapter 7

Although the kinetic energy density is minimized by the use of two DOF, the kinetic
energy density does not monotonically decrease in time. Therefore, the stability of the
controlled flow needs to be improved. Consequently, the number of DOF is increased
to improve the stability.

Chapter 7 has shown the way of increasing of the DOF based on Joshi’s result
[Joshi, 1996]. For the 2D plane Poiseuille flow, we only use the wall-normal boundary
condition but for the 3D plane Poiseuille flow, we use both the wall-normal boundary
condition and the tangential (spanwise or streamwise direction) boundary condition.

When we have more DOF, we have more relocated eigenvalues. It means that
the component of the state vector is improved, consequently the minimizing of kinetic
energy density becomes better. It shows a significant decrease of kinetic energy density
as DOF increase.

Chapter 8

Chapter 8 aims to answer the question how to obtain the monotonic decrease of kinetic
energy density. The idea is to decouple the state vector, therefore the skin friction drag,
the kinetic energy density and the components of the velocity have an exponential
decoupled decrease. When the number of the state vector is equal to the number of
DOF and the interaction matrix is a full rank matrix, we use the visual servoing control
to obtain an exponential decrease of the state vector. All observed physical quantities
also have an exponential decrease such as the components of the velocity, the skin
friction drag, the kinetic energy density and the control signal. This result has not been
obtained before by other approaches. Furthermore, the visual servoing control not only
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obtains an exponential decoupled decrease of the state vector but also directly decides
the convergence velocity of minimizing of the state vector.

Chapter 9

The dimension of linearized plane Poiseuille flow is large. Therefore, we usually use a
model order reduction method to obtain a smaller dimension model of the linearized
plane Poiseuille flow. The design of controller based on the model reduction becomes
easier.

In this chapter, the visual servoing control is designed based on the model reduction.
Hence, the visual servoing control can be applied to any DOF but always ensures the
exponential decrease of the control signal. The important result is to demonstrate that
if the control energy is satisfied, the behavior of the kinetic energy density in time
will have an approximation of the exponential decrease. As a result, the flow may be
monotonically stable even using only two DOF.

Future Work

In this section, we give future directions

Short Term Work

In Chapter 9, we want to ensure ε̇(t) ≤ 0 when the control matrix Bz is not full rank
matrix. Indeed, we have the inequality

(Az + BzK)>(Qz + K>Nuz + NzuK + K>RzK)
+(Qz + K>Nuz + NzuK + K>RzK)(Az + BzK) ≤ 0

(10.1)

and it is very difficult to solve this inequality. However, it is a new challenge in the
future work. Could we have a solution if the control matrix Bz were not full rank matrix
? Although the inequality [Whidborne and McKernan, 2007]

(Az + BzK)>Qz + Qz(Az + BzK) ≤ 0 (10.2)

has the solution K, we need the control matrix Bz to be full rank matrix.

Medium Term Work

As PID, LQR, LMI controls, we shall validate our control approaches to DNS. Due
to limitation of time and non availability of DNS, we have not given the nonlinear
results yet. However, an algorithm is proposed to apply the controller in the DNS,
see Apprendix A. In our case, we use the optical flow to estimate the state vector.
Therefore, the state vector is directly calculated based on the velocity in our algorithm.
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Long Term Work

The channel flow control is extended to the other flows as the magnetohydrodynamic
channel flow ([Xu et al., 2008], [Vazquez et al., 2009]) or the plane channel flow with the
temperature ([Pinarbasi and Liakopoulos, 1995]). In the magnetohydrodynamic chan-
nel flow, the governing equations of the plane channel flow are a combination of the
Navier-Stokes equations and the Maxwell equation, we consider the influence of the
magnetohydrodynamic field to the flow. While in the real flow, the motion of the flow
depends on the conservation of energy, therefore the temperature needs to be studied.
In these flows, the stability does not only depends on the Reynolds number but also
depends on the other numbers such as Hartmann number for the magnetohydrodynamic
channel flow or Prandtl number for the plane channel flow with heat transfer.



Appendix A

Implementing the Controller in the
Navier-Stokes Solver

We can implement the controller in a Navier-Stokes Solver by considering the steps
required in outline. The procedure is given in Figure A.1.

Load the gain K,
the initial condition V0(x, y, t)

Give V(x, y, t)(t) at the grid-
point (xnx , y): u(xnx , y), v(xnx , y)

Calculate ṽαn(y, t)
DNS Integrator

V(x, y, t) → V(x, y, t + ∆t)

Calculate xαn(t) and then x(t)

Calculate u(t) = Kx(t)

Set the boundary conditions
v(x, y = ±1, t)

FFT

FFT−1

Figure A.1: Implement the controller in DNS solver. FFT is Fast Fourier Transform
on x direction.

The steps are presented in the following:
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A.1 Beforehan, off-line:

Make a linear model of the system, and generate matrices L, A, B, E, D1, D2, Q11,
Q12, Q22. All system matrices contain all wavenumber pairs as follow

L =


Lα0 0 0 . . . 0

0 Lα1 0 . . . 0
0 0 Lα2 . . . 0
...

...
...

. . .
...

0 0 0 . . . LαNst/2

 (A.1)

We have (Nst/2 + 1) sub-system Lαn , the system with one wavenumber pair αn. The
other matrices A, B, E, D1, D2, Q11, Q12, Q22 are given by the same way.

Synthesize the controller matrix K, note that we also have

K =


Kα0 0 0 . . . 0

0 Kα1 0 . . . 0
0 0 Kα2 . . . 0
...

...
...

. . .
...

0 0 0 . . . KαNst/2

 (A.2)

where Kαn is the controller of system with one wavenumber pair αn. Note that Kαn

is calculated from the linearization (a feedback control law, e.g. LQR, PID, visual
servoing control, partitioned visual servoing control, etc.).

Write the controller matrix K in a file.
Write DDN (Ξ) and DDN (Fv) in a file.

A.2 On startup of the Navier-Stokes solver:

Read the matrices into the Navier-Stokes solver and store and then read the initial
velocity field.

A.3 On each solver step-time:

A.3.1 Calculate the state variable x(t) from the velocity field V(x, y, t)

Note that the state variable x(t) is given by

x(t) =


xα0(t)
xα1(t)

...
xαNst/2(t)

 (A.3)

where xαn is the state variable of system with one wavenumber pair αn. From the
velocity V(x, y, t) = (u(x, y, t), v(x, y, t)) where u(x, y, t), v(x, y, t), are the streamwise
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(x-direction), wall normal (y-direction) velocity components. We use the Fast Fourier
Transform to convert the physical space v(x, y, t) to the Fourier space, ṽαn(y, t) and its
inverse, see [Canuto et al., 2007] for more detail. By using the Chebyshev polynomials
to discretize the y-direction, xαn(t) depends on from ṽαn(y2, t) to ṽα(yN−2, t).

A.3.1.1 x-direction

For the domain x ∈ [0, Lx], the gridpoints and stepsizes are defined by xnx = nx∆x;
∆x = Lx/Nst. Fast Fourier Transform is illustrated in Figure A.2.

O

y

∆x

x
Lx = Nst∆xxnx

yk
V(xnx , yk, t)

FFT
Ṽαn(yk, t)

nx = 0 nx = 1 nx = Nst − 1

y0 = −1

yN = +1

Figure A.2: Fast Fourier Transform at the gridpoint (xnx , yk).

The velocity component v(xnx , y, t) at the grid point (xnx , y) is calculated by

v(xnx , y, t) =

Nst/2−1∑
kx=−Nst/2

ṽαn(y, t)e2πjkxnx/Nst

=

Nst/2−1∑
kx=0

ṽαn(y, t)e2πjkxnx/Nst +
−1∑

kx=−Nst/2

ṽαn(y, t)e2πjkxnx/Nst

=

Nst/2−1∑
kx=0

ṽαn(y, t)e2πjkxnx/Nst +

Nst/2∑
kx=1

ṽ−αn(y, t)e−2πjkxnx/Nst

nx = 0 . . . Nst − 1

(A.4)

where αn = 2πkx
Lx

. Note that the wavenumbers are (0,±1,±2, · · · )α0 where α0 = 2π
Lx

is
the fundamental wavenumber. We haveNst girdpoints v(0, y, t), v(∆x, y, t), . . . , v(Lx, y, t).
To calculate v(xnx , y, t), we must have ṽαn(y, t) and ṽ−αn(y, t). Because we only con-
sider the positive value of αn, we do not calculate ṽ−αn(y, t). Therefore, we give the
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way where v(xnx , y, t) only depends on ṽαn(y, t) (αn is positive). This way leads us to
simplify calculations.

From the velocity v(xnx , y, t), we calculate ṽαn(y, t) based on x-Fourier transform
ṽαn(y, t) =

1

Nst

Nst−1∑
nx=0

v(xnx , y, t)e
−2πjkxnx/Nst

αn = 2πkx
Lx

, kx = −Nst/2, . . . , Nst/2− 1

(A.5)

We haveNst modes: ṽ0(y, t), ṽ 2π
Lx

(y, t), . . . , ṽ 2π(Nst/2−1)
Lx

(y, t), ṽ− 2π
Lx

(y, t), . . . , ṽ− 2πNst/2
Lx

(y, t).

From (A.5), we have

ṽαn(y, t) =
1

Nst

Nst−1∑
nx=0

v(xnx , y, t)e
−2πjkxnx/Nst

=
1

Nst

Nst−1∑
nx=0

v(xnx , y, t)(cos(−2πjkxnx/Nst) + jsin(−2πjkxnx/Nst))

ṽ−αn(y, t) =
1

Nst

Nst−1∑
nx=0

v(xnx , y, t)e
−2πj(−kx)nx/Nst

=
1

Nst

Nst−1∑
nx=0

v(xnx , y, t)(cos(−2πjkxnx/Nst)− jsin(−2πjkxnx/Nst))

αn = 2πkx
Lx

, kx = −Nst/2, . . . , Nst/2− 1

(A.6)
Therefore, ṽ−αn(y, t) = ṽ∗αn(y, t) where ṽ∗αn(y, t) is the complex conjugate of ṽαn(y, t).
Consequently, if we have ṽ0(y, t), ṽ 2π

Lx

(y, t), . . . , ṽ 2π(Nst/2−1)
Lx

(y, t), we can give the follow-

ing equation 
ṽ− 2π

Lx

(y, t) = ṽ∗2π
Lx

(y, t)

. . .

ṽ− 2π(Nst/2−1)
Lx

(y, t) = ṽ∗2π(Nst−1)/2
Lx

(y, t)

(A.7)

And we have ṽ− 2πNst/2
Lx

(y, t) = ṽ∗2πNst/2
Lx

(y, t) or ṽ 2πNst/2
Lx

(y, t) = ṽ∗
− 2πNst/2

Lx

(y, t) .

From Nst girdpoints: v(0, y, t), v(∆x, y, t), . . . , v(Lx, y, t), we change from the phys-
ical space to the Fourier space, Nst/2 + 1 modes: ṽ0(y, t),ṽ 2π

Lx

(y, t) ,. . ., ṽ 2π(Nst/2−1)
Lx

(y, t)

and ṽ 2π(Nst/2)
Lx

(y, t). Its inverse may be given by

v(xnx , y, t) =

Nst/2−1∑
kx=0

ṽαn(y, t)e2πjkxnx/Nst +
−1∑

kx=−Nst/2

ṽαn(y, t)e2πjkxnx/Nst

=

Nst/2−1∑
kx=0

ṽαn(y, t)e2πjkxnx/Nst +

Nst/2∑
kx=1

ṽ∗αn(y, t)e−2πjkxnx/Nst

xnx = nx∆x, nx = 0 . . . Nst − 1

(A.8)
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O

y

α0

α

yk

ṽαn(yN−2, t)

ṽαn(yk, t)

ṽαn(y2, t)

y0 = −1

y1

y2

yN−2

yN−1

yN = +1

Figure A.3: y-discretization (αn, yk).

A.3.1.2 y-direction

By using Fast Fourier Transform, we obtain ṽαn(t), and then how can to obtain xαn(t)
? We continue use the y-discretization, see Figure A.3, we use the Chebyshev poly-
nomials for the y-discretization. We have (N +1) points in y-direction from ṽαn(y0)(t)
to ṽαn(yN )(t). Note that we use the Combined method 1 [McKernan, 2006], we discard
the collocation points ṽαn(y1)(t) and ṽαn(yN−1)(t), the state vector xαn(t) depends on
from ṽαn(y2)(t) to ṽαn(yN−2)(t).

Note the velocity ṽαn(t) is calculated by (we omit αn in writing) ṽ(y0, t)
...

ṽ(yN , t)

 =

 Ξ4(y2) . . . ΞN (y2)
...

. . .
...

Ξ4(yN−2) . . . ΞN (yN−2)


 av,4(t)

...
av,N (t)


+

 Fv,0(y0) . . . Fv,M (y0)
...

. . .
...

Fv,0(yN ) . . . Fv,M (yN )


 qv,0(t)

...
qv,M (t)

 , (A.9)

where qv,m(t) =
[
q̃v,l,m(t) q̃v,u,m(t)

]>. We recall that q̃v,l,m(t) and q̃v,u,m(t) are the
control signals or the boundary conditions. Or we can rewrite by using x(t) and u(t). ṽ(y0, t)

...
ṽ(yN , t)

 =

 Ξ4(y2) . . . ΞN (y2)
...

. . .
...

Ξ4(yN−2) . . . ΞN (yN−2)

x(t)+

 Fv,0(y0) . . . Fv,M (y0)
...

. . .
...

Fv,0(yN ) . . . Fv,M (yN )

u(t)

(A.10)
By using the combined method 1; and ṽ(y0, t), ṽ(yN , t) are the controlled signals. There-
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fore, we only calculate ṽ(y2, t)
...

ṽ(yN−2, t)

 =

 Ξ4(y2) . . . ΞN (y2)
...

. . .
...

Ξ4(yN−2) . . . ΞN (yN−2)

x(t)+

 Fv,0(y2) . . . Fv,M (y2)
...

. . .
...

Fv,0(yN−2) . . . Fv,M (yN−2)

u(t)

(A.11)
or we can rewrite (note that DDN (Ξ) is square and invertible, we use ṽαn(yk, t) instead
of ṽ(yk, t) )  ṽαn(y2, t)

...
ṽαn(yN−2, t)

 = DDN (Ξ)xαn(t) + DDN (Fv)uαn(t)

= [DDN (Ξ) + DDN (Fv)Kαn ]xαn(t) (A.12)

The state variable is given by

xαn(t) = [DDN (Ξ) + DDN (Fv)Kαn ]−1

 ṽαn(y2, t)
...

ṽαn(yN−2, t)

 (A.13)

This formulation requires [DDN (Ξ) + DDN (Fv)Kαn ]−1. For approximation, note that
we may calculate the state vector by

xαn(t) = D−1
DN (Ξ)DDN (Fv)uαn(t− dt) + D−1

DN (Ξ)

 ṽαn(y2, t)
...

ṽαn(yN−2, t)

 (A.14)

Note that uαn(t− dt) is the control signals in the previous step.

A.3.2 Calculate the actuation u(t) = Kx(t) from xαn(t) and Kαn.

A.3.3 Set the boundary conditions for the next step using the actu-
ation u(t)

We set the boundary condition from the control signals u(t) = Kx(t). For the one
wavenumber αn, we determine q̃v,l,m,αn(t) and q̃v,u,m,αn(t) by

uαn(t) =

 qv,1,αn(t)
...

qv,M,αn(t)

 =



[
q̃v,l,1,αn(t)
q̃v,u,1,αn(t)

]
...[

q̃v,l,M,αn(t)
q̃v,u,M,αn(t)

]
 (A.15)



Implementing the Controller in the Navier-Stokes Solver 181

From q̃v,l,m,αn(t) and q̃v,u,m,αn(t), we calculate q̃∗v,l,m,αn(t) and q̃∗v,u,m,αn(t) (complex
conjugate). The boundary conditions are updated by

v(xnx , y = −1, t) =
M∑
m=1

Nst/2−1∑
kx=0

q̃v,l,m,αn(t)e2πjkxnx/Nst +
M∑
m=1

Nst/2∑
kx=1

q̃∗v,l,m,αn(t)e−2πjkxnx/Nst

v(xnx , y = +1, t) =
M∑
m=1

Nst/2−1∑
kx=0

q̃v,u,m,αn(t)e2πjkxnx/Nst +
M∑
m=1

Nst/2∑
kx=1

q̃∗v,u,m,αn(t)e−2πjkxnx/Nst

xnx = nx∆x, nx = 0 . . . Nst − 1

(A.16)

A.4 Implementation Code:

The algorithm is given by

• Fast Fourier Transform is used to convert from the physical space: Nst girdpoints
v(0, y, t), v(∆x, y, t), . . . , v(Lx, y, t) to Fourier spaceNst/2+1 modes: ṽ0(y, t),ṽ 2π

Lx

(y, t)

,. . ., ṽ 2π(Nst/2−1)
Lx

(y, t) and ṽ 2π(Nst/2)
Lx

(y, t) (this mode is calculated through ṽ 2π(−Nst/2)
Lx

(y, t)).

• A Matlab function gives the matrices: K 2πkx
Lx

, DDN (Ξ) and DDN (Fv). For sim-
plicity in programming. The inputs are kx, Lx, N .

• The state variable is calculated through

x 2πkx
Lx

(t) = D−1
DN (Ξ)DDN (Fv)u 2πkx

Lx

(t−dt)+D−1
DN (Ξ)


ṽ 2πkx

Lx

(y2, t)

...
ṽ 2πkx

Lx

(yN−2, t)

 (A.17)

where kx = 0 . . . Nx/2.

• The control signal is calculated u 2πkx
Lx

(t) =



[
q̃v,l,1, 2πkx

Lx

(t)

q̃v,u,1, 2πkx
Lx

(t)

]
...[

q̃v,l,M, 2πkx
Lx

(t)

q̃v,u,M, 2πkx
Lx

(t)

]


= K 2πkx

Lx

x 2πkx
Lx

(t)

• We calculate q̃v,l, 2πkx
Lx

(t) and q̃v,u, 2πkx
Lx

(t) by
q̃v,l, 2πkx

Lx

(t) =
M∑
m=1

q̃v,l,m, 2πkx
Lx

(t)

q̃v,u, 2πkx
Lx

(t) =
M∑
m=1

q̃v,u,m, 2πkx
Lx

(t)

(A.18)
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And we then update the boundary condition

v(xnx , y = −1, t) =

Nst/2−1∑
kx=0

q̃v,l, 2πkx
Lx

(t)e2πjkxnx/Nst +

Nst/2∑
kx=1

q̃∗
v,l, 2πkx

Lx

(t)e−2πjkxnx/Nst

v(xnx , y = +1, t) =

Nst/2−1∑
kx=0

q̃v,u, 2πkx
Lx

(t)e2πjkxnx/Nst +

Nst/2∑
kx=1

q̃∗
v,u, 2πkx

Lx

(t)e−2πjkxnx/Nst

xnx = nx∆x, nx = 0 . . . Nst − 1

(A.19)

• Update the time t→ t+ dt



Appendix B

Reducing of Non-orthogonality

We want to determine the necessary condition to have no non-orthogonality. We assume
that we design a feedback control u(t) = Kx(t). Therefore, we have

ẋ(t) = Ax(t) + Bu(t) = (A + BK)x(t) = ACLx(t), (B.1)

where ACL = A + BK. The kinetic energy density can be considered by

ε(t) = x>(t)Qxx(t), (B.2)

where Qx is a Hermitian matrix. The idea is to obtain the kinetic energy density to
monotonically decrease in time.

In previous works [Whidborne and McKernan, 2007], the necessary condition to en-
sure ε̇(t) < 0, the input matrix B must be a full rank matrix.

B.1 Kinetic energy density has an exponential decrease

We assume that the kinetic energy density has an exponential decrease. Therefore, it
means

ε̇(t) = −2λε(t) (B.3)
ẋ>(t)Qxx(t) + x>(t)Qxẋ(t) = −2λx>(t)Qxx(t) (B.4)

2x>(t)Qxẋ(t) = −2λx>(t)Qxx(t) (B.5)

⇒

{
x(t) = 0 (is not considered)
ẋ(t) = −λx(t).

(B.6)

Therefore, the kinetic energy density has an exponential decrease if and only if the state
vector has an exponential decrease. The gain K is given by

ẋ(t) = −λx(t) (B.7)
(A + BK)x(t) = −λx(t) (B.8)

(A + BK) = −λI (B.9)
K = −B−1(λI + A) (B.10)

(B.11)
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this result shows that the input matrix B must be full rank.

B.2 Kinetic energy density monotonically decreases in time

We determine the necessary condition to satisfy that the kinetic energy density mono-
tonically decreases in time. We can rewrite the kinetic energy density by

ε(t) = x>(t)Qxx(t) = x>(t)C>Cx(t) = (Cx(t))>(Cx(t)) = y>(t)y(t), (B.12)

where y(t) = Cx(t) and Qx = C>C. Consequently, we obtain the system with the
state vector y(t)

ẏ(t) = CACLC
−1y(t). (B.13)

The evolution in time of the state vector y(t) is calculated by

y(t) = Vye
ΛtV−1

y y0 (B.14)

where the matrix Vy contain the eigenvectors and the matrix Λ is given by

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN

 (B.15)

where λk is the eigenvalue. If the eigenvectors of CACLC
−1 are orthogonal and ap-

propriately normalized, then V−1
y = V>y , and decomposing λk = λk,R + iλk,I of the

eigenvalues, it follows from y(t) = Vye
ΛtV−1

y y0 that the kinetic energy density may be
written

ε(t) = y>y = [Vye
ΛtV−1

y y0]>Vye
ΛtV−1

y y0 (B.16)

= y>0 (V−1
y )>eΛ>tV>y Vye

ΛtV−1
y x0 = y>0 Vye

Λ>t+ΛtV>y y0. (B.17)

where

eΛ>t+Λt =


e2tλ1,R 0 . . . 0

0 e2tλ2,R . . . 0
...

...
. . .

...
0 0 . . . e2tλN,R

 . (B.18)

Defining z0 = V>y y0 and due to the orthogonal eigenvectors Vy, it follows that

ε(t) = e2tλ1,R |z10|2 + e2tλ2,R |z20|2 + · · ·+ e2tλN,R |zn0|2, (B.19)

always decays in time. The kinetic energy density is not growth any more. Therefore,
the control law is calculated by{

CACLC
−1 = VyΛV−1

y

VyV
>
y = I.

(B.20)
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or by using V = C−1Vy, we can rewrite{
ACL = C−1VyΛV−1

y C = (C−1VyΛ(C−1Vy)
−1

VV> = C−1VyV
>
y (C−1)> = Q−1.

(B.21)

The control law u = Kx is based on{
BK = VΛV−1 −A

VV> = Q−1.
(B.22)

Therefore, the gain of control law is

K = −B−1(−VΛV−1 + A) (B.23)

we find the same necessary condition for the input matrix B with respect to the above
case.
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Appendix C

Decoupling Feedback Control by
Hermite Interpolation Polynomials

As discussed in the previous chapters, methods such as the proportional control, the
LQR control (include the optimal control H2/H∞), the partitioned visual servoing
control and the visual servoing control make us of the inversion of the state matrix L
(see section 5.3.3.3). Although in the literature there exists methods of improving the
condition number of a matrix (e.g. in the plane Poiseuille flow the condition number
of the state matrix L was improved in the works of Heincrichs [Heinrichs, 1989] and
McKernan [McKernan, 2006]) but there are not still sufficient in practice. Therefore,
we propose an alternate solution of control which is not sensible to the numerical issues
raised by the inversion of matrices with bad condition numbers.

To avoid inverting the state matrix L, we propose a control approach based on the
model

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t)
ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t)
d(t) = D1x(t) + D2u(t)
x(0) = x0.

(C.1)

Our control approach achieves an exponential decoupled decrease of the state vec-
tor. Consequently the skin friction drag, the kinetic energy density and the velocity
component have also an exponential decoupled decrease.

C.1 Our goal of the control law

We consider here a state feedback control law

u(t) = Kx(t), (C.2)

and suppose that this control law is able to achieve an exponential decoupled decrease
of the state vector, that is

ẋ(t) = −λx(t). (C.3)

187
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We calculate the derivative of kinetic energy density and skin friction drag from
(C.1) by 

ε̇(t) = 2ẋ>(t)Q11x(t) + ẋ>(t)Q12u(t) + x>(t)Q12u̇(t)
+ u̇>(t)Q21x(t) + u>(t)Q21ẋ(t) + 2u>(t)Q22u̇(t)

ḋ(t) = D1ẋ(t) + D2u̇(t).

(C.4)

By plugging (C.2) and (C.3) into (C.4), it is easy to show that the we have
u̇(t) = −λu(t)

ḋ(t) = −λd(t)
ε̇(t) = −2λε(t),

(C.5)

leading to an exponential decrease of the control signals, the skin friction drag and the
kinetic energy.

The velocity and vorticity are calculated as a function of the state vector and the
control signals [

[ṽn(t)]
[η̃n(t)]

]
=

[
Tav

Taη

]
x(t) +

[
Tqv

Taη

]
u(t), (C.6)

where [ṽn(t)] = [ṽ(y0, t) . . . ṽ(yN , t)]
>, [η̃n(t)] = [η̃(y0, t) . . . η̃(yN , t)]

>. Therefore it is
very easy to show that the derivative of velocity and vorticity is given by[ [

˙̃vn(t)
][

˙̃ηn(t)
] ] =

[
Tav

Taη

]
ẋ(t) +

[
Tav

Taη

]
u̇(t). (C.7)

By plugging (C.3) and (C.5) into the derivative of velocity and vorticity (C.7), it is easy
to show that the we have: { [

˙̃vn(t)
]

= −λ [ṽn(t)][
˙̃ηn(t)

]
= −λ [η̃n(t)] ,

(C.8)

leading to an exponential decoupled decrease of the velocity component. It is of course
a very interesting result.

Obtaining an exponential decoupled decrease of the state vector is the goal of the
next section.

C.2 Design of the control law

In this section we want to express the matrix K involved in (C.2) such that (C.3) is
verified. By plugging (C.2) and (C.3) into (C.1) we obtain

− λLx(t) = Ax(t) + BKx(t)− λEKx(t)

A + BK− λEK = −λL
(B− λE)K = −(λL + A). (C.9)

Since we are able to set the number of the controlled degrees of freedom (see Chapter
7), the number of DOF is imposed to equal the number of state vector. In that special
case, K is simply obtained by inverting the square matrix B− λE.
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However, as shown in section 5.3.3.3, not only the matrices L and A are very bad
conditioned but also the matrices B, E. In fact, it is not really a problem since these
matrices depend on the vectors Fv,n(yi) and Fη,n(yi) for each n and yi. Therefore, as
will be shown in section C.4, by imposing suitable constraints on these vectors, the
following equality can be obtained

B− λE = −µ(λL + A), (C.10)

leading simply to

K =
1

µ
I, (C.11)

where µ is a scalar that has to be set to limit the amplitude of the control signals at
t = 0.

C.3 Robustness to measurement noise

Another important problem is the robustness of our control law with respect to the
measurement noise. In that case, the control law becomes

u(t) =
1

µ
x̂(t), (C.12)

where x̂(t) is an approximation of the true state value.
The problem is to verify that x = 0 is still an exponentially stable equilibrium point

when the measurement noise appears.
From previous works [Tatsambon Fomena and Collewet, 2011a], we recall that the

state vector is estimated by

x̂(t) = x(t) +
1

Nx
e(t), (C.13)

where Nx is the number of pixels of the camera in the streamwise direction of the flow
and e(t) is related to the measurements noise ([Tatsambon Fomena and Collewet, 2011a]).
Therefore, (C.12) becomes

u(t) =
1

µ

(
x(t) +

1

Nx
e(t)

)
. (C.14)

By plugging this control law into (C.1) and taking into account (C.10), the state evo-
lution equation becomes

Lẋ(t) = Ax(t) + Bu(t) + Eu̇(t)

Lẋ(t) = Ax(t) +
λE− µ(λL + A)

µ
x̂(t) +

E

µ
˙̂x(t)

(L− E

µ
)ẋ(t) = −λ(L− E

µ
)x(t) +

λE− µ(λL + A)

µNx
e(t)

+
E

µNx
ė(t). (C.15)
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If L− E

µ
is a regular matrix, we obtain

ẋ(t) = −λx(t) +
a

µNx
e(t) +

b

µNx
ė(t), (C.16)

with 
a = (L− E

µ
)−1 (λE− µ(λL + A))

b = (L− E

µ
)−1E

(C.17)

Since in practice Nx is a large value, the term
a

µNx
e(t) is also in practice small.

However, due to ė(t),
b

µNx
ė(t) may be potentially high. Therefore, to ensure that this

term remains small whatever ė(t), we set E = 0 from a suitable choice of the Fm(yi)
vectors as will be shown in section C.4. Consequently, (C.16) becomes

ẋ(t) = −λx(t)− λI + L−1A

Nx
e(t) (C.18)

leading to
ẋ(t) ≈ −λx(t). (C.19)

Therefore, our approach is again very robust to measurement noise.
The next section describes the way to proceed to ensure both B = −µ(λL+A) and

E = 0.

C.4 Use of Hermite interpolation to ensure B = −µ(λL+A)
and E = 0

It is well known that the Lagrange interpolation is a technique that allows to compute
coefficients of a polynomial according to constraints on the function we want to inter-
polate at a set of points. The Hermite interpolation extends the Lagrange interpolation
by taking into account additional constraints on the derivatives of the function.

The Hermite interpolation is here constructed to not only ensure the condition
B = −µ(λL + A) and E = 0 but also reduce the influence of the control signals on the
kinetic energy density and the skin friction drag.

In our case, we are looking for the constraints that the functions fv,l,n(y), fv,u,n(y),
fη,l,n(y) and fη,u,n(y) have to satisfy. We denote fφ,ψ,n(y) where φ = v or φ = η and
ψ = l or ψ = u.

Note that the dimension of the state matrices L and A are reduced (see the section
5.3.4) only from the collocation point y1 to the collocation point yN−1 for the Com-
bined method 2 and from the collocation point y2 to the collocation point yN−2 for the
Combined method 1. For our convenience in writing, we use the Combined method 2,
from the collocation point y1 to the collocation point yN−1.
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C.4.1 2D plane Poiseuille flow

The state and input matrices are L = j(−α2D0DN (Ξ) + D2DN (Ξ))

A = (−α3U − αU
′′
− α4I

jR
)D0DN (Ξ) + (αU +

2α2I

jR
)D2DN (Ξ)− 1

jR
D4DN (Ξ)

(C.20)
and E = j(α2D0DN (Fv)−D2DN (Fv))

B = (−α3U − αU
′′
− α4I

jR
)D0DN (Fv) + (αU +

2α2I

jR
)D2DN (Fv)−

1

jR
D4DN (Fv).

(C.21)
According to (C.21) and to the definitions of the matrices involved in these equations,

the constraints to ensure B = −µ(λL + A) are straightforward

(−α3U − αU
′′
− α4I

jR
)D0DN (Fv) + (αU +

2α2I

jR
)D2DN (Fv)−

D4DN (Fv)

jR

= −µ
[
(−jλα2I− α3U − αU

′′
− α4I

jR
)D0DN (Ξ) + (jλI + αU +

2α2I

jR
)D2DN (Ξ)− D4DN (Ξ)

jR

]
.

(C.22)
According to (C.21) and to the definitions of the matrices involved in these equations,

the constraints to ensure E = 0 are straightforward

α2D0DN (Fv)−D2DN (Fv) = 0. (C.23)

Concerning B = −µ(λL + A) the constraints are given by (C.22) that can be
rewritten as follows

(−α3U(yi)− 2αU
′′
(yi)−

α4

jR
)fv,ψ,n(yi) + (αU(yi) +

2α2

jR
)f
′′
v,ψ,n(yi)

− 1

jR
f
′′′′
v,ψ,n(yi) = −µ

[
(−jλα2 − α3U(yi)− 2αU

′′
(yi)−

α4

jR
)Ξn(yi)

+(jλ+ αU(yi) +
2α2

jR
)Ξ
′′
n(yi)−

1

jR
Ξ
′′′′
n (yi)

]
,

(C.24)

which must hold also for i = 1 . . . N − 1 and n = 2 . . . N .
Concerning E = 0 the constraints are given by (C.23) that can be rewritten as

follows
α2fv,ψ,n(yi)− f

′′
v,ψ,n(yi) = 0, (C.25)

which must hold for i = 1 . . . N − 1 and n = 2 . . . N .
In order to reduce the influence of the control signals on the kinetic energy density,

we give the condition for fv,ψ,n(yi) and f
′
v,ψ,n(yi). Remark that the kinetic energy

density is calculated by

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t) (C.26)
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where 

Q11 =
1

8k2
(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y))

Q12 =
1

8k2
(T>avQTqv + (∂Tav/∂y)>Q(∂Tqv/∂y))

Q21 =
1

8k2
(T>qvQTav + (∂Tqv/∂y)>Q(∂Tav/∂y))

Q22 =
1

8k2
(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y)).

(C.27)

We want to set (∂Tqv/∂y) = 0, this condition is straightforward by setting

f
′
v,ψ,n(yi) = 0, (C.28)

which holds for i = 0 . . . N and n = 2 . . . N . Note that we can set f ′v,ψ,n(yi) = 0 at the
collocation points y0 and yN due to the homogeneous Neumann boundary condition.
Therefore, we have

Q11 =
1

8k2
T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y)

Q12 =
1

8k2
T>avQTqv ,Q21 =

1

8k2
T>qvQTav ,Q22 =

1

8k2
T>qvQTqv .

(C.29)

Furthermore, the influence of the control signals on the kinetic energy density still may
be reduced more by setting Tqv(yi) = 0 which holds for i = 1 . . . N − 1, except at the
collocation points y0 and yN due to the inhomogeneous Dirichlet boundary condition.
This condition is straightforward by setting

fv,ψ,n(yi) = 0, (C.30)

which hold for i = 1 . . . N − 1 and n = 2 . . . N .
Therefore, by plugging (C.30) into (C.25) and (C.24), the conditions on fv,ψ,n(y) at

the collocation points from y1 to yN−1 can be chosen by setting

fv,ψ,n(yi) = 0

f
′′
v,ψ,n(yi) = 0

f
′′′′
v,ψ,n(yi) = jµR

[
(−jλα2 − α3U(yi)− 2αU

′′
(yi)−

α4

jR
)Ξn(yi)

+(jλ+ αU(yi) +
2α2

jR
)Ξ
′′
n(yi)−

1

jR
Ξ
′′′′
n (yi)

]
.

(C.31)

And for our convenience, we propose f ′′′v,ψ,n(yi) = 0 for i = 1 . . . N − 1 and n =
2 . . . N . This condition is condition to which we can assign any value that we want.
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Next, we have to determine the condition at the collocation points y0 = −1 and yN =
+1. These conditions are given by the inhomogeneous Dirichlet boundary condition and
the homogeneous Neumann boundary condition

fv,ψ=l,n(y0) = 1, fv,ψ=u,n(y0) = 0
fv,ψ=l,n(yN ) = 0, fv,ψ=u,n(yN ) = 1

f
′
v,ψ,n(y0) = 0

f
′
v,ψ,n(yN ) = 0

n = 2 . . . N.

(C.32)

In order to reduce the influence of the control signals on the skin friction drag, we
give the condition for f ′′v,ψ,n(y0) and f ′′v,ψ,n(yN ). Remark that the skin friction drag is
calculated by

d(t) = D1x(t) + D2u(t), (C.33)
where D2 =

[
−1 +1

]
S2 and the shear stress from the control signals is given by

S2 = +
jα

k2R

[
F
′′
v,2(y = +1) . . . F

′′
v,N (y = +1)

F
′′
v,2(y = −1) . . . F

′′
v,N (y = −1)

]
. (C.34)

The influence of the control signals on the skin friction drag is reduced by setting
D2 = 0, furthermore S2 = 0. This condition is straightforward by setting{

f
′′
v,ψ,n(y0) = 0

f
′′
v,ψ,n(yN ) = 0.

(C.35)

And for our convenience, we propose f (i)
v,ψ,n(y0) = f

(i)
v,ψ,n(yN ) = 0 for i = 3 . . . 4,

n = 2 . . . N .
Finally, the conditions on fv,ψ,n(y) at the collocation points from y1 to yN−1 are

chosen by setting

fv,ψ,n(yi) = 0

f
′
v,ψ,n(yi) = 0

f
′′
v,ψ,n(yi) = 0

f
′′′
v,ψ,n(yi) = 0

f
′′′′
v,ψ,n(yi) = jµR

[
(−jλα2 − α3U(yi)− 2αU

′′
(yi)−

α4

jR
)Ξn(yi)

+(jλ+ αU(yi) +
2α2

jR
)Ξ
′′
n(yi)−

1

jR
Ξ
′′′′
n (yi)

]
i = 1 . . . N − 1
n = 2 . . . N,

(C.36)

and at the collocation points from y0 to yN are chosen by setting

fv,ψ=l,n(y0) = 1, fv,ψ=u,n(y0) = 0

f
′
v,ψ,n(y0) = f

′′
v,ψ,n(y0) = f

′′′
v,ψ,n(y0) = f

′′′′
v,ψ,n(y0) = 0

fv,ψ=l,n(yN ) = 0, fv,ψ=u,n(yN ) = 1

f
′
v,ψ,n(yN ) = f

′′
v,ψ,n(yN ) = f

′′′
v,ψ,n(yN ) = f

′′′′
v,ψ,n(yN ) = 0

n = 2 . . . N.

(C.37)
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We can thus construct the function fφ,ψ,n(y) (with φ = v) from the condition
f

(j)
φ,ψ,n(y) in (C.36) and (C.37) based on the Hermite interpolating polynomials (P = 4
for φ = v)

fφ,ψ,n(y) =
N∑
i=0

P∑
j=0

f
(j)
φ,ψ,n(yi)Hφ,ij(y), (C.38)

where the polynomials Hφ,ij(y) are given by (see e.g. [Berezin and Zhidkov, 1973])

Hφ,ij(y) =
1

j!

P−j∑
k=0

1

k!

(
(y − yi)P+1

Ωφ(y)

)(k)

y=yi

Ωφ(y)

(y − yi)P+1−j−k , (C.39)

with Ωφ(y) =
N∏
i=0

(y − yi)P+1.

C.4.2 3D plane Poiseuille flow

The state and input matrices are

L11 = j(−k2D0DN (Ξ) + D2DN (Ξ))
L12 = [0]
L21 = [0]
L22 = jD0D(Θ)

A11 = (−αUk2 − αU
′′
− k4I

jR
)D0DN (Ξ) + (αU +

2k2I

jR
)D2DN (Ξ)− 1

jR
D4DN (Ξ)

A12 = [0]

A21 = βU
′
D0DN (Ξ)

A22 = (αU +
k2I

jR
)D0D(Θ)− 1

jR
D2D(Θ).

(C.40)
and

E11 = j(k2D0DN (Fv)−D2DN (Fv))
E12 = [0]
E21 = [0]
E22 = −jD0D(Fη)

B11 = (−αUk2 − αU
′′
− k4I

jR
)D0DN (Fv) + (αU +

2k2I

jR
)D2DN (Fv)−

1

jR
D4DN (Fv)

B12 = [0]

B21 = βU
′
D0DN (Fv)

B22 = (αU +
k2I

jR
)D0D(Fη)−

1

jR
D2D(Fη).

(C.41)
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According to (C.41) and to the definitions of the matrices involved in these equations,
the constraints to ensure B = −µ(λL + A) are straightforward

βU
′
D0DN (Fv) = −µβU

′
D0DN (Ξ)

(−αk2U − αU
′′
− k4I

jR
)D0DN (Fv) + (αU +

2k2I

jR
)D2DN (Fv)−

D4DN (Fv)

jR

= −µ
[
(−jλk2I− αk2U − αU

′′
− k4I

jR
)D0DN (Ξ) + (jλI + αU +

2k2I

jR
)D2DN (Ξ)− D4DN (Ξ)

jR

]
(αU +

k2I

jR
)D0D(Fη)−

1

jR
D2D(Fη) = −µ

[
(jλI + αU +

k2I

jR
)D0D(Θ)− 1

jR
D2D(Θ)

]
,

(C.42)
Concerning B = −µ(λL + A) the constraints are given by (C.42) that can be

rewritten as follows (C.43)

fv,ψ,n(yi) = −µΞn(yi)

(−αk2U(yi) + 2αU
′′
(yi)−

k4

jR
)fv,ψ,n(yi) + (αU(yi) +

2k2

jR
)f
′′
v,ψ,n(yi)−

1

jR
f

(4)
v,ψ,n(yi)

= −µ
[
(−jλk2 − αk2U(yi)− 2αU

′′
(yi)−

k4

jR
)Ξn(yi) + (jλ+ αU(yi) +

2k2

jR
)Ξ
′′
n(yi)−

1

jR
Ξ
′′′′
n (yi)

]
(αU(yi) +

k2

jR
)fη,ψ,n(yi)−

1

jR
f
′′
η,ψ,n(yi) = −µ

[
(jλ+ αU(yi) +

k2

jR
)Θn(yi)−

1

jR
Θ
′′
n(yi)

]
.

(C.43)
which must hold also for i = 1 . . . N − 1 and n = 2 . . . N .

According to (C.41) and to the definitions of the matrices involved in these equations,
the constraints to ensure E = 0 are straightforward{

k2fv,ψ,n(yi)− f
′′
v,ψ,n(yi) = 0

fη,ψ,n(yi) = 0,
(C.44)

which must hold for i = 1 . . . N − 1 and n = 2 . . . N .
Therefore, based on (C.44) and (C.43), the conditions on fv,ψ,n(y) and fη,ψ,n(y) at

the collocation points from y1 to yN−1 can be chosen by setting

fv,ψ,n(yi) = −µΞn(yi)

f
′′
v,ψ,n(yi) = −µk2Ξn(yi)

f
′′′′
v,ψ,n(yi) = jµR

[
(−jλk2 − αk2U(yi)−

2k4

jR
)Ξn(yi)

+(jλ+ αU(yi) +
2k2

jR
)Ξ
′′
n(yi)−

1

jR
Ξ
′′′′
n (yi)

]
fη,ψ,n(yi) = 0

f
′′
η,ψ,n(yi) = µjR(jλ+ αU(yi) +

k2

jR
)Θn(yi)− µΘ

′′
n(yi).

(C.45)

In order to reduce the influence of the control signals on the kinetic energy density,
we give the condition for f ′v,ψ,n(yi). Remark that the kinetic energy density is calculated
by

ε(t) = x>(t)Q11x(t) + x>(t)Q12u(t) + u>(t)Q21x(t) + u>(t)Q22u(t),(C.46)
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where

Q11 =
1

8k2
(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y) + T>aηQTaη)

Q12 =
1

8k2
(T>avQTqv + (∂Tav/∂y)>Q(∂Tqv/∂y) + T>aηQTqη)

Q21 =
1

8k2
(T>qvQTav + (∂Tqv/∂y)>Q(∂Tav/∂y) + T>qηQTaη)

Q22 =
1

8k2
(T>qvQTqv + (∂Tqv/∂y)>Q(∂Tqv/∂y) + T>qηQTqη).

(C.47)

We want to set (∂Tqv/∂y) = 0. This condition is straightforward by setting

f
′
v,ψ,n(yi) = 0, (C.48)

which holds for i = 0 . . . N and n = 2 . . . N . Note that we can set f ′v,ψ,n(yi) = 0 at the
collocation points y0 and yN due to the homogeneous Neumann boundary condition.
Therefore, we have

Q11 =
1

8k2
(T>avQTav + (∂Tav/∂y)>Q(∂Tav/∂y) + T>aηQTaη)

Q12 =
1

8k2
(T>avQTqv + T>aηQTqη),Q21 =

1

8k2
(T>qvQTav + T>qηQTaη)

Q22 =
1

8k2
(T>qvQTqv + T>qηQTqη),

(C.49)

And for our convenience, we propose f ′′′v,ψ,n(yi) = f
′
η,ψ,n(yi) = 0 for i = 1 · · ·N − 1

and n = 2 · · ·N . These conditions are condition to which we can assign any value that
we want.

Next, we have to determine the conditions fv,ψ,n(yi) and fη,ψ,n(yi) at the collocation
points y0 = −1 and yN = +1. These conditions are given by the inhomogeneous
boundary condition and the Neumann boundary condition

fv,ψ=l,n(y0) = 1, fv,ψ=u,n(y0) = 0
fv,ψ=l,n(yN ) = 0, fv,ψ=u,n(yN ) = 1

f
′
v,ψ,n(y0) = 0

f
′
v,ψ,n(yN ) = 0

fη,ψ=l,n(y0) = 1, fη,ψ=u,n(y0) = 0
fη,ψ=l,n(yN ) = 0, fη,ψ=u,n(yN ) = 0
n = 2 . . . N

(C.50)

In order to reduce the effect of the control signals on the skin friction drag, we give
the condition for f ′′v,ψ,n(yi) and f ′′η,ψ,n(yi) at the collocation points y0 and yN . Remark
that the skin friction drag is calculated by

d(t) = D1x(t) + D2u(t), (C.51)
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where D2 =
[
−1 +1 0 0

]
S2 and the shear stress from the control signals is given

by 

S2,11 = +
jα

k2R

[
F
′′
v,2(y = +1) . . . F

′′
v,N (y = +1)

F
′′
v,2(y = −1) . . . F

′′
v,N (y = −1)

]

S2,21 = +
jβ

k2R

[
F
′′
v,2(y = +1) . . . F

′′
v,N (y = +1)

F
′′
v,2(y = −1) . . . F

′′
v,N (y = −1)

]

S2,12 = − jβ

k2R

[
F
′
η,2(y = +1) . . . F

′
η,N (y = +1)

F
′
η,2(y = −1) . . . F

′
η,N (y = −1)

]

S2,22 = +
jα

k2R

[
F
′
η,2(y = +1) . . . F

′
η,N (y = +1)

F
′
η,2(y = −1) . . . F

′
η,N (y = −1)

]
.

(C.52)

The influence of the control signals on the skin friction drag is reduced by setting
D2 = 0, furthermore S2 = 0. This condition is straightforward by setting

{
f
′′
v,ψ,n(y0) = f

′′
v,ψ,n(yN ) = 0

f
′′
η,ψ,n(y0) = f

′′
η,ψ,n(yN ) = 0.

(C.53)

And for our convenience, we propose f (i)
v,ψ,n(y0) = f

(i)
v,ψ,n(yN ) = 0 for i = 3 . . . 4 and

f
′
η,ψ,n(y0) = f

′
η,ψ,n(y0) = 0 and n = 2 . . . N . These conditions are condition to which

we can assign any value that we want.

Finally, the conditions on fv,ψ,n(y) and fη,ψ,n(y) at the collocation points from y1

to yN−1 can be chosen by setting



fv,ψ,n(yi) = −µΞn(yi)

f
′
v,ψ,n(yi) = 0

f
′′
v,ψ,n(yi) = −µk2Ξn(yi)

f
′′′
v,ψ,n(yi) = 0

f
′′′′
v,ψ,n(yi) = jµR

[
(−jλk2 − αk2U(yi)−

2k4

jR
)Ξn(yi)

+(jλ+ αU(yi) +
2k2

jR
)Ξ
′′
n(yi)−

1

jR
Ξ
′′′′
n (yi)

]
fη,ψ,n(yi) = 0

f
′
η,ψ,n(yi) = 0

f
′′
η,ψ,n(yi) = µjR(jλ+ αU(yi) +

k2

jR
)Θn(yi)− µΘ

′′
n(yi)

i = 1 . . . N − 1
n = 2 . . . N

(C.54)
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and at the collocation points y0 and yN can be chosen by setting

fv,ψ=l,n(y0) = 1, fv,ψ=u,n(y0) = 0

f
′
v,ψ,n(y0) = f

′′
v,ψ,n(y0) = f

′′′
v,ψ,n(y0) = f

′′′′
v,ψ,n(y0) = 0

fv,ψ=l,n(yN ) = 0, fv,ψ=u,n(yN ) = 1

f
′
v,ψ,n(yN ) = f

′′
v,ψ,n(yN ) = f

′′′
v,ψ,n(yN ) = f

′′′′
v,ψ,n(yN )0

fη,ψ=l,n(y0) = 1, fη,ψ=u,n(y0) = 0

f
′
η,ψ,n(y0) = f

′′
η,ψ,n(y0) = 0

fη,ψ=l,n(yN ) = 0, fη,ψ=u,n(yN ) = 1

f
′
η,ψ,n(yN ) = f

′′
η,ψ,n(yN ) = 0

n = 2 · · ·N

(C.55)

We can thus construct the functions fφ,ψ,n(y) (with φ = v or φ = η) from the con-
ditions f (j)

φ,ψ,n(y) in (C.54) and (C.55) based on the Hermite interpolating polynomials
(P = 4 for φ = v and P = 2 for φ = η)

fφ,ψ,n(y) =
N∑
i=0

P∑
j=0

f
(j)
φ,ψ,n(yi)Hφ,ij(y), (C.56)

where the polynomials Hφ,ij(y) are given by (see e.g. [Berezin and Zhidkov, 1973])

Hφ,ij(y) =
1

j!

P−j∑
k=0

1

k!

(
(y − yi)P+1

Ωφ(y)

)(k)

y=yi

Ωφ(y)

(y − yi)P+1−j−k , (C.57)

with Ωφ(y) =

N∏
i=0

(y − yi)P+1.

C.5 Simulation results

C.5.1 Case I: 2D plane Poiseuille flow

We set α = 1, β = 0 and R = 10 000 (see section 5.6). We set N = 100. We choose
λ = 0.25 and µ = 1. We simulate the behavior of the closed loop system with and
without measurement noise.

The behavior of the state vector versus time is shown in Figure C.1. The state
vector is of course an exponential decoupled decrease in Figure C.1(a). In the presence
of measurement noise appears and using the optical flow, the behavior of the state vector
is very robust to measurement noise as observed from Figure C.1(b) to Figure C.1(d).
Results for the kinetic energy density and the skin friction drag are depicted in Figure
C.2 and Figure C.3, respectively. Note that the proposed approach allows us to ensure
that the exponential decoupled decreases of the state vector, the skin friction drag and
the velocity component are −λt while for the kinetic energy density it is −2λt.

The behavior of velocity component is given in Figure C.4. The kinetic energy
density, the velocity profile and the velocity field are also given. As shown from Figure
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Figure C.1: Behavior of the state vector versus time.
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Figure C.2: Behavior of kinetic energy density versus time.
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Figure C.3: Behavior of the skin friction drag versus time.

C.4(a) to Figure C.4(d), the evolution of the controlled flow is versus time. The proposed
control law leads the velocity component to an exponential decoupled decrease, this is
very nice result. By applying the control, the velocity component becomes the steady
solution (1− y2, 0) by an exponential decoupled decrease.

C.5.2 Case II: 3D plane Poiseuille flow

C.5.2.1 3D plane Poiseuille flow, the stream vortex, α = 0 and β = 2.044

The uncontrolled flow of this case is interesting, the transient energy density has a
maximal value with respect the other cases.

We set α = 0, β = 2.044 and R = 5 000 (see section 5.6). And we set N = 50. We
choose λ = 0.25 and µ = 1. Similar results like the 2D plane Poiseuille flow are reported
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Figure C.4: Shape of the flow perturbation with measurement noise, Nx = 256

in Figure C.5, Figure C.6 and Figure C.7 for the state vector, the kinetic energy density
and the skin friction drag, respectively.
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Figure C.5: Behavior of the state vector versus time.

The behavior of the kinetic energy density, the velocity profile and the velocity field
are given in Figure C.8. As shown from Figure C.8(a) to Figure C.8(a), the evolution
of the controlled flow is versus time. In contrast to the uncontrolled flow or the LQR
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Figure C.6: Behavior of the kinetic energy density versus time.
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Figure C.7: Behavior of the skin friction drag versus time.

control, an exponential decoupled decrease achieves a very small value of contours, the
level contours are only from 0 to 1, the maximal value is 1, while 150 for the uncontrolled
flow and 80 for the LQR control (note that the levels of contour at t = 0 are from 0 to
1). The way that the flow becomes laminar is not turbulent. The velocity component
becomes the steady solution (1− y2, 0, 0) by an exponential decoupled decrease.

C.5.2.2 3D plane Poiseuille flow, the oblique wave, α = 1 and β = 1

We also consider the oblique wave system. We set α = 1, β = 1, R = 5 000 and N = 50.
We choose λ = 0.25 and µ = 1. The results are reported in Figure C.9. Again, we have
a nice result of the controlled flow.

C.6 Conclusion

In this chapter, we use the Hermite interpolating polynomials to design a controller
which achieves an exponential decoupled decrease without inverting a matrix. Using
this method, the state vector, the kinetic energy density, the skin friction drag and the
velocity component have also an exponential decoupled decrease. So, not only does the
proposed method solve the non-normality but it also solves the bad condition number
issue. The way of setting the Hermite interpolating polynomials is not only such that
an exponential decoupled decrease of state vector is ensured but also such that influence
of the control signals on the skin friction drag and the kinetic energy density is reduced.
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Figure C.8: Shape of the flow perturbation with measurement noise, Nx = 256

Concerning the measurement noise, by using the optical flow to estimate the state
vector, the proposed control is very robust to measurement noise.
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Figure C.9: Behavior of the oblique wave system: (a) uncontrolled flow, (b)-(d) con-
trolled flow.
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Appendix D

Model reduction, r is large enough

D.1 2D plane Poiseuille flow

Once again, we talk about the advantage of increasing DOF in the next results. We
try to use the visual servoing control based on the model reduction (9.18). Indeed, we
increase DOF to ensure that we can use the visual servoing control u(t) = Krzr(t)
which guarantees żr(t) = −λzr(t)→ ε̇r(t) = −2λεr(t). Note that the way of increasing
DOF has been given in Chapter 7.

The initial condition is chosen as the worst initial condition of each closed loop
system (9.28). The behavior of the system (9.28) is given in Figure D.1 in the case of
r = 50 < n = 94. Note that żr(t) = −λzr(t), therefore u(t) = Krzr(t) always has an
exponential decrease. However, we still have żn−r(t) = Bn−r,mKrzr(t) + Λn−rzn−r(t),
therefore the state vector has not an exponential decrease. Although the control law is
designed based on the model reduction, the behavior of the synchronic transient energy
growth and the skin friction drag are very good. This result allows us to see that even
ż(t) 6= −λz(t) but ε̇(t) ≈ −2λε(t) when the important modes are remained.

The behavior of the synchronic transient energy growth εs(t) is depicted in Figure
D.2 versus the variation of r with λ = 0.25. We choose the model reduction (9.18) with
r = 20, r = 30, r = 40 and r = 50. We also obtain a good result for the synchronic
transient energy growth εs(t) even in the case of r = 20, the model reduction only
contains 20% of the full state vector. When r is large enough, the behavior of the
model reduction is equivalent to the full system.

In the case of r = 40, the influence of the parameter λ is on the behavior of the
system (9.28) is depicted in Figure D.3. We can choose parameter λ to have a good
result.

205
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Figure D.1: Behavior of the closed loop system (n = 94, r = 50, λ = 0.125).
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Figure D.2: Behavior of the synchronic transient energy growth versus time with the
visual servoing control law designed on the model reduction (n=94) for various values
of r.

D.2 3D plane Poiseuille flow

The behavior of the state vector, the control signal, the synchronic transient energy
growth and the skin friction drag are depicted in Figure D.4, respectively. As in the 2D
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Figure D.3: Behavior of the synchronic transient energy growth versus time with the
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plane Poiseuille flow, we have a good result for the synchronic transient energy growth
even all state vectors have not an exponential decrease.
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Figure D.4: Behavior of the closed loop system (n = 96, r = 62, λ = 0.25).

Because we only use the visual servoing control based on the model reduction, there-
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fore one question is that we still have good result in the case of ε(t) ≈ z>(t)Qzz(t) ? Fig-
ure D.5 provides a good result of minimizing the synchronic transient energy growth. In-
deed, r = 64 is large enough, we always can have a good result even ε(t) ≈ z>(t)Qzz(t).
However, we must give a lot of control signal energy u>(t)Rzu(t) < z>(t)Qzz(t) <<
u>(t)u(t). Therefore, we need to use another functions fv,l,i(y), fv,u,i(y), fη,u,i(y) and
fη,l,i(y).
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Figure D.5: Behavior of the synchronic transient energy growth and components versus
time (α = 0, β = 2.044, R = 5 000, n = 96, r = 62, λ = 0.25).

In order to obtain a better result. We find the new functions fnew,v,l,i(y), fnew,v,u,i(y),
fnew,η,u,i(y) and fnew,η,l,i(y). We assume that the new functions are 100fv,l,i(y), 100fv,u,i(y),
100fη,u,i(y) and 100fη,l,i(y). The result in Figure D.6 is better than the result in Figure
D.5 when u>(t)u(t) < u>(t)Rzu(t).
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Appendix E

Uncertain Plane Poiseuille Flow

In this chapter, we consider an uncertain system for the plane Poiseuille flow. The
flow may be not known exactly or it parameter is varying in evolution of this flow.
Furthermore, we approximate the flow by a reduced linear model. Therefore, an uncer-
tain model is necessary in [Farrell and Ioannou, 2002a], [Farrell and Ioannou, 2002b],
[Farrell and Ioannou, 2002c] and usually known as an uncertain operator. An uncer-
tain model of the plane Poiseuille flow was proposed in [Schmid, 2007]. On the other
hand, the uncertain system of the plane Poiseuille flow is also interesting in the control
based on reduced order system.

Because we consider a linear model of the plane Poiseuille flow, we need to know
that an uncertain system could be reduced to a model reduction. Fortunately, in
[Beck and Bendotti, 1997], [Beck et al., 1996], there exist a control law to apply to the
reduced uncertain order model instead of the full uncertain system.

In the next section, we consider the uncertain Reynolds number R and its effect on
the transient energy growth. Of course, there are also other uncertain parameters in a
flow which should be take into account.

E.1 Uncertain Reynolds number

In this section, we consider the effect of the uncertain Reynolds number R on the tran-
sient energy growth. The behavior of the transient energy growth versus the uncertain
Reynolds number is a very interesting problem. Furthermore, we also consider the ef-
fect of the uncertain Reynolds number R and the variation of the wavenumbers α, β on
the transient energy growth. For the plane Poiseuille flow, the Reynolds number R is
considered as a parameter uncertainty in [Joshi et al., 1997]. From a practical point of
view, the Reynolds number R may not be known exactly or may change frequently as
in the flight of an airplane.

Talking into account the uncertain Reynolds number, we first determine the di-
achronic transient energy growth versus the Reynolds number at time t = τ{

εd = Pε,p(R)
τ = Pτ,p(R).

(E.1)

209
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We then propose the functions Pε,p(R) and Pτ,p(R) which are approximated by
Pε,p(R) =

p∑
i=0

aiR
i/2

Pτ,p(R) =

p∑
i=0

biR
i/2,

(E.2)

where p is the degree of the polynomial. We use the function polyfit in Matlab to
compute the coefficients ai and bi.

E.1.1 Case I: 2D plane Poiseuille flow

Due to the critical Reynolds number RT ≈ 5772, when the Reynolds number R > 5772,
the transient energy growth is unbounded. In order to examine the diachronic transient
energy growth, we only consider R < 5 000. We set α = 1, β = 0, 150 ≤ R ≤ 5 000 and
N = 100.
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Figure E.1: Diachronic transient energy growth εd at time τ versus the Reynolds num-
ber.

We use the data R = 150 : 50 : 5 000. The behavior of the diachronic transient
energy growth εd for various choices of the Reynolds number R is depicted in Figure
E.1(a) while the time τ is depicted in Figure E.1(b). The diachronic transient energy
growth εd is an increasing function of the Reynolds number R, the same is valid for the
time τ . We want to determine the degree of this function. We use these polynomials
Pε,p(R) and Pτ,p(R) to do it. We use the approximation polynomials Pε,p(R) and
Pτ,p(R) from (E.2) and we choose p = 2, 3, 4, 6. The comparison between εd, τ and their
approximations are given in Figure E.1. As can be seen in this figure, the approximation
is very good for Pε,p(R) with p ≥ 3, while for Pτ,p(R) with p ≥ 4. The corresponding
coefficients of the approximations for Pε,p(R) and Pτ,p(R) are given in Table E.1 and
Table E.2, respectively. As shown in Table E.1, these results allow us to ensure that



Uncertain Plane Poiseuille Flow 211

the diachronic transient energy growth εd grows approximately as O(R), as can be seen
from p = 3, a3 ≈ 0. While as shown in Table E.2, the diachronic transient energy
growth εd is achieved at time O(R3/2), as can be seen from p = 4, b4 ≈ 0.

Table E.1: Polynomial Pε,p(R) = a0 +a1

√
R+a2R+a3R

√
R+a4R

2 +a5R
2
√
R+a6R

3

p a0 a1 a2 a3 a4 a5 a6

2 -1.1412 0.0719 0.0058

3 0.3954 -0.0618 0.0092 ≈ 0

4 1.1330 -0.1526 0.0130 -0.0001 ≈ 0

6 1.8151 -0.2704 0.0206 -0.0003 ≈ 0 ≈ 0 ≈ 0

Table E.2: Polynomial Pτ,p(R) = b0 + b1
√
R+ b2R+ b3R

√
R+ b4R

2 + b5R
2
√
R+ b6R

3

p b0 b1 b2 b3 b4 b5 b6
2 -0.5293 0.4142 -0.0022
3 -4.6380 0.7715 -0.0113 0.0001

4 -8.9791 1.3062 -0.0333 0.0004 ≈ 0

6 -18.3136 2.9532 -0.1435 0.0041 -0.0001 ≈ 0 ≈ 0
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Figure E.2: Diachronic transient energy growth εd versus the Reynolds number R and
the wavenumber α.

Next we analyze the behavior of the diachronic transient energy growth εd versus
the Reynolds number R and the wavenumber α. We use the data α = 0.1 : 0.5 : 10
and R = 150 : 50 : 5 000. The diachronic transient energy growth εd is depicted as a
function of the Reynolds number R and the wavenumber α in Figure E.2. The result
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allows us to observe that the diachronic transient energy growth εd firstly increases,
then achieves the maximum value and after that decreases when the wavenumber α
increases. We want to determine the zone of the transient energy growth εd and also
the value of Reynolds number R and the wavenumber α where the diachronic transient
energy growth εd achieves the maximum value. The contours of the diachronic transient
energy growth εd are depicted versus the Reynolds number R and the wavenumber α in
Figure E.3. With the selected data, the diachronic transient energy growth εd obtains
the maximum value at the wavenumber α ≈ 1.6 in the case of 500 < R ≤ 5 000 (α ≈ 2.1
in the case of 150 ≤ R ≤ 500).
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Figure E.3: Contours of diachronic transient energy growth εd versus the Reynolds
number R and the wavenumber α. Dashed-line represents the value of wavenumber α
where the diachronic transient energy growth obtains the maximum value.

E.1.2 Case II: 3D plane Poiseuille flow

• We consider the streamwise vortex and set α = 0, β = 2.044, 100 ≤ R ≤ 20 000
and N = 50.

We use the data R = 100 : 500 : 20 000. The behavior of the diachronic transient
energy growth εd for various choices of the Reynolds number R is depicted in Figure
E.4(a) while the time τ is depicted in Figure E.4(b). The comparison between εd, τ
and their approximations are given in Figure E.4. As can be seen in this figure, the
approximation is very good for Pε,p(R) with p ≥ 4 while for Pτ,p(R) with p ≥ 2. The
corresponding coefficients of the approximations for Pε,p(R) and Pτ,p(R) are given in
Table E.3 and Table E.4. As shown in Table E.3, these results allow us to ensure that
the diachronic transient energy growth grows approximately as O(R2), as can be seen
from p = 6, a5 ≈ 0. While as shown in Table E.4, the diachronic transient energy growth
is achieved at time O(R), as can be seen from p = 3, b3 ≈ 0. This result corresponds to
the one presented in [Butler and Farrell, 1992] and [Trefethen et al., 1993].
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Figure E.4: Diachronic transient energy growth εd at time τ versus the Reynolds number
R.

Table E.3: Polynomial Pε,p(R) = a0 +a1

√
R+a2R+a3R

√
R+a4R

2 +a5R
2
√
R+a6R

3

p a0 a1 a2 a3 a4 a5 a6

2 1.4359 104 -732.3934 8.0686
3 -2.5717 103 241.6969 -6.2544 0.0605
4 0.3670 -0.0034 0.0001 ≈ 0 0.0002
6 0.4075 -0.0093 0.0003 ≈ 0 0.0002 ≈ 0 ≈ 0

Table E.4: Polynomial Pτ,p(R) = b0 + b1
√
R+ b2R+ b3R

√
R+ b4R

2 + b5R
2
√
R+ b6R

3

p b0 b1 b2 b3 b4 b5 b6
2 -0.7970 0.0180 0.0757
3 -1.4306 0.0544 0.0752 ≈ 0

4 -2.0473 0.1124 0.0737 ≈ 0 ≈ 0

6 -2.6339 0.1961 0.0700 0.0001 ≈ 0 ≈ 0 ≈ 0

We use the data β = 0.044 : 0.5 : 12.044 and R = 100 : 500 : 20 000. We
give the behavior of the diachronic energy density εd versus the Reynolds number R
and the wavenumber β. The diachronic transient energy growth εd is depicted as a
function of the Reynolds number R and the wavenumber β in Figure E.5. The contours
of the diachronic transient energy growth εd versus the Reynolds number R and the
wavenumber β are depicted in Figure E.6. As can be seen in this figure, we can determine
the level of transient energy growth versus the Reynolds number R and the wavenumber
β, e.g. the level diachronic transient energy growth εd ≤ 1 000 is associated to the left
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Figure E.5: Diachronic transient energy growth εd versus the Reynolds number R and
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zone of the line 1 000 and the diachronic transient energy growth εd = 4897 ≈ 5 000 at
R = 5 000 and β = 2.044, see the line 5 000. With the selected data, the diachronic
transient energy growth obtains the maximum value at the wavenumber β = 2.044 for
all the Reynolds numbers 100 ≤ R ≤ 20 000. The wavenumber β = 2.044 is again a
very important wavenumber.
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Figure E.6: Contours of diachronic transient energy growth εd versus the Reynolds
number R and the wavenumber β. Dashed-line represents the value of the wavenumber
β where the diachronic transient energy growth obtains the maximum value.

• We consider the oblique wave and set α = 1, β = 1, 150 ≤ R ≤ 5 000 and N = 50.

We consider the oblique wavenumber α = 1 and β = 1. We use the data R =
150 : 50 : 5 000. The analysis is done as in the previous two cases. The behavior of
the diachronic transient energy growth εd for various choices of the Reynolds number
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R is depicted in Figure E.7(a) while the time τ is depicted in Figure E.7(b). The
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Figure E.7: Diachronic transient energy growth εd at time τ versus the Reynolds number
R.

comparison between εd, τ and their approximations are given in Figure E.7. As can
be seen in this figure, the approximation is very good for Pε,p(R) with p ≥ 4 while for
Pτ,p(R) with p ≥ 4. As shown in Table E.5, these results allow us to ensure that the
diachronic transient energy growth εd grows approximately as O(R3/2), as can be seen
from p = 4, a4 ≈ 0. This result corresponds to the results in [Farrell and Ioannou, 1993].
While as shown in Table E.6, the diachronic transient energy growth εd is achieved at
time O(R3/2), as can be seen from p = 4, b4 ≈ 0.

Table E.5: Polynomial Pε,p(R) = a0 +a1

√
R+a2R+a3R

√
R+a4R

2 +a5R
2
√
R+a6R

3

p a0 a1 a2 a3 a4 a5 a6

2 1.2567 -0.5742 0.0456
3 8.1934 -1.1775 0.0609 -0.0001
4 3.9866 -0.6594 0.0395 0.0002 ≈ 0

6 1.9340 -0.3289 0.0201 0.0008 ≈ 0 ≈ 0 ≈ 0

Since the effect of the Reynolds number R on the transient energy growth is inves-
tigated, finding an appropriate uncertain model of the system is discussed in the next
section.
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Table E.6: Polynomial Pτ,p(R) = b0 + b1
√
R+ b2R+ b3R

√
R+ b4R

2 + b5R
2
√
R+ b6R

3

p b0 b1 b2 b3 b4 b5 b6
2 1.7121 0.5162 -0.0027
3 -1.2353 0.7725 -0.0092 0.0001
4 -5.1676 1.2568 -0.0291 0.0004 ≈ 0

6 -11.5329 2.3578 -0.1009 0.0027 ≈ 0 ≈ 0 ≈ 0

E.2 Uncertain model

The plane Poiseulle flow is considered as an uncertain system
ż(t) = Az(t)z(t) + Bz(t)u(t)

ε(t) = z>(t)Qz(t)z(t) + z>(t)Nzu(t)u(t) + u>(t)Nuz(t)z(t) + u>(t)Rz(t)u(t)

d(t) = Dz1(t)z(t) + Dz2(t)u(t)

z(0) = z0

(E.3)
The underlying system matrix should hence be modeled as a stochastic matrix op-

erator, as proposed by Schmid in [Schmid, 2007]

Az(t) = Az + ςµ(t)S1, (E.4)

where Az denotes the statistically steady part of Az(t), and S1 the matrix containing
the terms influenced by uncertainty. The stochastic process is µ(t) and the amplitude
of the stochastic perturbations is ς (see [Schmid, 2007] for more details).

In [Khargonekar et al., 1990], [Zhou et al., 1996], an internal uncertainty can be im-
posed using a standard uncertainty{

∆Az = ςµ(t)S1 = ΠΣ(θ(t))Ω
∆Bz = ςµ(t)S2 = ΠΣ(θ(t))Φ,

(E.5)

where Σ(θ(t)) is an uncertain matrix, ‖Σ(θ(t))‖ is assumed to be bounded and Π, Φ
and Ω are well known matrices. Therefore, the uncertain model becomes

ż(t) = (Az + ∆Az)z(t) + (Bz + ∆Bz)u(t), (E.6)

this is a standard uncertainty form.
However, the uncertain system may be a polytopic uncertain system. The ideal is

to design one controller for all wavenumber pairs by considering all subsystems which
are in a polytopic uncertain system. In this case, the uncertain system is given by

ż(t) = Az(t)z(t) + Bz(t)u(t),

{
Az(t) ∈ Co{Az1,Az2, · · · ,AzNstNsp}
Bz(t) ∈ Co{Bz1,Bz2, · · · ,BzNstNsp}.

(E.7)

Note that, each subsystem (Azi,Bzi) corresponds to one wavenumber pair (αi, βi).
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E.3 H∞ control theory

We design a control law u(t) = Kz(t) which stabilize the uncertain system (E.6). By
using the H∞ control theory in [Khargonekar et al., 1990], as shown that it exists a
control law for the system (E.6).

We suppose that rank(Φ) = io ≤ jo. Define Σ2 ∈ Rio×mo such that rank(Σ2) = io,
and Φ>Φ = Σ>2 Σ2. Let Ψ ∈ Rmo−io×mo be chosen such that{

ΨΣ>2 = 0
ΨΨ> = I,

(E.8)

or, if io = mo {
ΨΣ>2 = 0
Ψ = 0.

(E.9)

Let Υ = Σ>2 (Σ2Σ>2 )−2Σ2. Note, if Φ = 0, then Σ2 = 0,Ψ = 0, and Υ = 0. Also, note
that if rank(Φ) = mo, the Σ2 is square and nonsingular, and Υ = (Σ>2 Σ2)−1 = (Φ>Φ)−1

and Ψ = 0.
The theorem E.3.1 is taken from [Khargonekar et al., 1990] (see theorem 2.3 in

[Khargonekar et al., 1990]).

Theorem E.3.1 The uncertain system (E.6) is quadratically stabilizable via linear con-
trol if there exists ρ > 0 such that the following Algebraic Riccati Equation(

Az −BzΥΦ>Ω
)>

P + P
(
Az −BzΥΦ>Ω

)
+ P

(
ΠΠ> −BzΞB

>
z −

1

ρ
BzΨ

>ΨB>z

)
P

+Ω>
(
I−ΠΞΠ>

)
Ω + ρI = 0,

(E.10)
has a positive definite symmetric solution P. In this case, a stabilizing state-feedback
control law is given by

K = −
[(

1

2ε
Ψ>Ψ + Υ

)
B>z P + ΥΦ>Ω

]
. (E.11)

Conversely, if the uncertain system (E.6) is quadratically stabilizable via linear con-
trol, then exists ρ∗ > 0 such that for all ρ in (0, ρ∗), the Riccati equation (E.10) admits a

symmetric solutionP0 such that
(
Az −BzΥΦ>Ω

)
+

(
ΠΠ> −BzΥB>z −

1

ρ
BzΨ

>ΨB>z

)
P0

is asymptotically stable and this solution P0 is positive definite.

E.4 LMI control theory

By using the LMI control for the uncertain system (E.6), the control law u(t) = Kz(t)
is designed based on

K = YP−1. (E.12)
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E.4.1 Standard form

If the uncertain system is in a standard form, we use the theorem E.4.1 which is taken
from the result of Lam et al. in [Lam and Xu, 2006] (see the Corollary 4.3, p.62 proposed
in [Lam and Xu, 2006]).

Theorem E.4.1 The uncertain system (E.6) is quadratically stabilizable via linear con-
trol if and only if there exists matrices P = P> > 0, Y and a scalar ρ > 0 such that
the LMI hold[

PA>z + AzP + BzY + Y>B>z + εΠΠ> PΩ> + Y>Φ>

ΩP + ΦY −ρI

]
< 0 (E.13)

E.4.2 Polytopic form

If the uncertain system is in a polytopic uncertain system, we use the following theorems
E.4.2 and E.4.2 which are taken from Boyd in [Boyd et al., 1994] (see the LMI synthesis
was given in [Boyd et al., 1994], p.100 - p.104, eq.(7.5), eq.(7.12) and eq.(7.16)).

Theorem E.4.2 The uncertain system (E.7) is quadratically stabilizable via linear con-
trol if and only if there exists P = PT > 0 and Y such that the LMIs hold

AziP + PA>zi + BziY + Y>B>zi < 0, i = 1, 2 · · · , NstNsp. (E.14)

For a practical design of a controller, it is necessary to limit the expenditure of the
control effort, we have:

Theorem E.4.3 The uncertain system (E.7) is quadratically stabilizable and the con-
trol effort is limited via linear control if and only if there exists P = P> > 0 and Y
such that the LMIs hold

AziP + PA>zi + BziY + Y>B>zi < 0, i = 1, 2 · · · , NstNsp

P ≥ I[
P Y>

Y µ2I

]
≥ 0

(E.15)

where µ is the constraint of the control effort ‖u(t)‖t≥0 ≤ µ.

We want to minimize ‖z(t)‖, we use the theorems E.4.4 and E.4.5 which are based on
the combination of the results in [Boyd et al., 1994] and [Whidborne and McKernan, 2007],
[Whidborne et al., 2008].

Theorem E.4.4 The uncertain system (E.7) is quadratically stabilizable, the control
effort is limited and the upper bound of the transient energy density is minimized via
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linear control if and only if there exists P = P> > 0 and Y such that the LMIs hold

min γ subject to


AziP + PA>zi + BziY + YTB>zi < 0, i = 1, 2 · · · , NstNsp

I ≤ P ≤ γI[
P Y>

Y µ2I

]
≥ 0

(E.16)

Or we want to minimize the kinetic energy density z>(t)Qz(t), we have:

Theorem E.4.5 The uncertain system (E.7) is quadratically stabilizable, the control
effort is limited and the upper bound of the kinetic energy density is minimized via
linear control if and only if there exists P = P> > 0 and Y such that the LMIs hold

[
AziP + PA>zi + BziY + Y>B>zi PC>

CP µ2I

]
≤ 0, i = 1, 2 · · · , NstNsp

P ≥ I[
P Y>

Y µ2I

]
≥ 0

(E.17)

where the weight matrix of kinetic energy density is decomposed by Q = C>C.

The kinetic energy density is limited by the upper value z>0 P
−1z0.

E.5 Simulation results

Based on the above results, we consider the Reynolds number as a parameter uncer-
tainty. Note that this is similar case where we consider the multiple wavenumber pairs
(αi, βi). The uncertain system can be given as follows

{Az(R),Bz(R)} =


(Az1,Bz1) R = 10 000,

(Az2,Bz2) R = 7 500,

(Az3,Bz3) R = 12 500.

(E.18)

and we have three subsystems. We must design a robust controller like LMI for the
uncertain system. Note that in previous works, we need three LQR controllers with
respect to one LMI controller.

For the simulation result, we set α = 1, β = 0 and N = 50. Although one LMI
controller is used but it stabilizes the uncertain system where all poles are stabilized
in Figure E.8. The behavior of the closed loop uncertain system is given in Figure E.9
where the kinetic energy density is minimized.
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Figure E.8: Uncertain system: poles map for R = 7 500, R = 10 000 and R = 12 500
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Figure E.9: Uncertain system: kinetic energy density versus time for R = 7 500, R =
10 000 and R = 12 500

E.6 Conclusion

When the flow changes the state, the parameter is unknown or varying. In addition, we
want to consider a control law for the multiple wavenumber. Therefore the uncertain
model is required for the flow control. We have given an example where the uncertain
model of the plane Poiseuille flow with uncertain parameter given by the Reynolds
number was considered. It effects on the transient energy growth was given. We have
chosen the Reynolds number due to its role in transient to turbulence. In the case of
the wavenumber pairs α = 1 and β = 0, for R > 5772, the transient energy growth is
unbounded and insignificant. However, for R < 5772, the transient energy growth is
bounded, and it has been concluded that it grows as O(R) over the time O(R3/2). In
the case of the wavenumber pairs α = 0 and β = 2.044, the diachronic transient energy
growth grows as O(R2) over the time O(R). In the case of the wavenumber pairs
α = 1 and β = 1, the diachronic transient energy growth grows as O(R3/2) over the
time O(R3/2). In conclusion, we also have proposed an robust control for the uncertain
model of the plane Poiseuille flow. The robust control is proposed such as H2/H∞ or
LMI control.
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