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Chapter 1

Introduction

State of the art approaches in computer vision and medical image analysis
are intricately tied to recent advances in machine learning. In order to over-
come the inherent variability of visual data, statistical learning techniques
are widely applied to extract semantic information from images, and are
central to increases in accuracy of systems for image categorization, image
retrieval, object detection, and scene analysis. Similarly, analogous learning
techniques are beginning to drive advances in areas such as medical image
processing, diagnosis, and functional brain image analysis.

A core property of learning algorithms is expressed through the “no free
lunch” theorem of machine learning [172]: no given algorithm will have
the best possible performance across all problem domains. It is therefore
necessary to empirically determine the algorithms that give the best pos-
sible performance in specific applications. The problems considered in this
manuscript have some commonalities, but also some differences. In com-
puter vision, a common subdomain of problems comes from the desire to
perform semantic image analysis, e.g. to specify the key objects in a scene
and to possibly infer something about their spatial relationship or functional
interactions [123, 27, 112, 113, 28, 30, 29, 25, 24, LB09, BVZ10, VBZ11,
RKB11, MBZT12, BKR13, BL09, Blall, BZG13, MKR"13]. In functional
brain imaging, we may be interested in identifying regions of the brain impli-
cated in addiction [GHS*13a, GHST13b, 92, 164, 165] or visual processing
and memory [ZKGB13, BSB09, BSB*11, 11, 14, 37]. These problems have
inherently different goals, but are nevertheless unified by the common goal
of analysis of images where we expect spatial regularity. It is in this con-
text that the research described in this manuscript applies, specializes, and
extends the state-of-the-art in machine learning for visual data.
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The unifying framework for analysis used here is that of empirical risk
minimization (ERM). ERM informs the organization of the work and its
grouping into chapters. After a section overviewing the scientific foundations
on which my contributions are based (Chapter 2), Chapter 3 details my work
on the development of novel risk objectives for learning with visual data,
largely in the structured output prediction framework [9]. Subsequently,
Chapter 4 presents my advances in the subject of regularization methods
for statistical learning. As my work frequently makes use of the structured
output prediction setting, Representation and Inference is a central theme of
tractable instantiations of learning systems, which is covered in Chapter 5.

1.1 Composition of the Thesis

This thesis is composed of a number of scientific publications preceded by
an extended introduction. These articles are approximately partitioned by
their primary methodological contribution, each of which forms a chap-
ter in this thesis. Chapter 3, Empirical Risk, describes advancements in
methodology for a component of empirical risk minimization primarily ad-
dressed in publications [LB09, BVZ10, RKB11, VBZ11, MBZT12, ZKGB13,
BKRI13]. Chapter 4, Function Classes and Regularization, is based primar-
ily on [BSB09, BSB*11, GHS"13a, GHS™13b, GDB"13, Blal3]. Chap-
ter 5, Representation and Inference, addresses a component of empirical
risk minimization for which contributions are published in [BL09, Blall,
FB12, BZG13, MKR*13].

Papers published after my doctorate are distinguished from papers pub-
lished during or before my doctorate by citation style. Papers published
after my doctorate make use of alphabetical citations and are listed at the
beginning of the manuscript, while those published during or before my
doctorate are numerical and are listed in the bibliography at the end of the
manuscript.



Chapter 2

Scientific Foundations

In this chapter, I present the scientific foundations preceeding the contribu-
tions made in publications after my doctorate.

The unifying theme of this thesis is the application of empirical risk
minimization (ERM) to problems in computer vision, medical imaging, and
machine learning. A central concept in ERM is risk [157]. We use the
following definition

R(f) = / 0(f (x), y)dP(z, ) (2.1)

where £ : Y x Y — R, is a task specific loss function, f : X — Y is the
prediction function we are evaluating, X is the space of observed variables,
and ) is the output space to be predicted. P(z,y) is a distribution that
governs the probability that x and y are jointly observed in a correctly
labeled data sample. An optimal prediction function within a function class
F is one that achieves
* :
fr= arggcrél}r__lR(f). (2.2)

Direct minimization of the risk is impossible in practice, as the true distri-
bution P is generally unknown.

Empirical risk minimization substitutes an approximation to R based on
a finite sample S := {z;, ¥; }1<i<n drawn from P. The most basic assumption
is that the sample is independent and identically distributed (i.i.d.), though
it is possible to account for deviations from this assumption [135]. Under
the i.i.d. assumption, the empirical risk takes the form

n

Zg(f(wi)ayi)' (2.3)

=1

1
n

R(f) ~ R(f) ==



Direct mimization of the empirical risk, i.e. computation of

arg min R(f), (2.4)

can lead to overfitting to the training sample S, necessitating the use of reg-
ularization to penalize complex functions [85]. Typical choices of regularizer
are L; or Ly norms of linear function classes [151, 153], or reproducting
kernel Hilbert space (RKHS) regularization [140].

The function class F to be employed plays a key role in the expressiveness
and accuracy of the optimal solution and tractability of optimization. An
overly expressive function class carries inherent risk [156]. Certain function
classes based on kernels are beneficial due to the existance of a representer
theorem [101, 137, 50] leading to efficient optimization strategies based on
convex optimization in the case of a finite data sample [43, 157, 140, 39,
32, 33]. Other function classes, such as multi-layer neural networks, do not
lead to convex objective functions, but nevertheless have shown promising
results in recent benchmark competitions [19, 41, 90, 136, 54, 48, 109]. In
this thesis, we will exploit favorable properties of specific function classes
where appropriate or necessary, but we note that many central principles
of the learning theory extend to a wide array of function classes and opti-
mization strategies. It is generally the case that the advances reported in
this manuscript are widely applicable to a range of function classes beyond
those which are demonstrated in the experiments.

The output space ) itself can play an important role. The most studied
output spaces are those corresponding to scalar regression [117, 71, 60, 85],
in which ) = R, or binary classification [57, 58, 157, 140, 51|, in which
Y = {—1,+1}. In this latter setting, simple necessary and sufficient condi-
tions on convex loss functions are known for statistical consistency [15]. In
the context of computer vision and medical imaging, key application areas
explored in this thesis, a promising paradigm is to learn prediction functions
for complex and interdependent output spaces, a theme that is discussed in
more detail in Section 2.3 and Chapter 3.

In the remainder of this chapter, we discuss specific methods and frame-
works employed in the subsequent chapters.

2.1 Semi-supervised Learning

In semi-supervised learning, in addition to a training sample S, we have an
additional sample {z;},t1<j<p drawn from the marginalized distribution



P(z) = [ P(z,y)dy. A number of approaches for addressing this setting are
described in [40].

In this thesis, we focus on the approach of semi-supervised Laplacian
regularization [17]. Semi-supervised Laplacian regularization is a data de-
pendent regularization approach that (i) non-parametrically estimates the
manifold structure of a data sample as a finite graph, (ii) constructs a
discrete version of the Laplace operator on the graph, and (iii) penalizes
functions that have large variation along the manifold. A semi-supervised
Laplacian regularized learning objective has the form

J(f) = AF) + A lf, L) + R(f) (2.5)

where L is a graph Laplacian estimated from the supervised and unsuper-
vised samples from X, A\;, € Ry is a scalar controling the degree of Laplacian
regularization, € is another regularizer (e.g. Q(f) = ||f||?), and A € R, a
scalar controling the degree of regularization by €.

2.2 Sparsity Regularization
We consider a regularized risk objective

J(f) = AQ(f) + R(f). (2.6)

One may interpret such an objective as the Lagrangian of a constrained
optimization problem

arg 1}1612 R(f) (2.7)
s.t. Q(f)=C. (2.8)

From this interpretation, one can see that for every constant C' € R there
exists a A € Ry such that an f that minimizes Equation (2.6) also minimizes
the optimization problem in Equation (2.7). It is therefore the case that the
solution to Equation (2.6) is at a point where a level set of R(f) is equal to

a level set of Q(f) [21].
We will assume that X = R% and f is linearly parametrized as

f(z) = (w,z) (2.9)

for some w € R%. Under these assumptions, one measure of the complexity
of f is the number of non-zero coefficients of w. We may be tempted to set



the regularizer to the Ly pseudo-norm

d

Qf) = wllo =D _[wi #0]. (2.10)

=1

We use the Iverson bracket notation here [104]. If ¢(f(x),y) is convex in
its first argument, we have that J(f) is convex in w if Q(f) is convex in
w, a property not satisfied by the Lo pseudo-norm. An additional problem
with the Lo regularizer is that it does not penalize large values of w; # 0.
A standard approach in sparsity regularization is to take the norm whose
unit ball is the convex relaxation of the Ly unit ball, the L; norm. The
L1 regularizer is convex, penalizes large values of w;, and leads to sparse
solutions [151].

More general conditions for a convex regularizer to result in sparse solu-
tions have been explored, such as that the gradient be bounded away from
zero [22, 4]. That the optimum is at a point where a level set of R(f) is
equal to a level set of Q(f) indicates that this is more likely to occur at a
point of the level set where there is a discontinuity in the gradient, and we
may construct regularizers that have discontinuities in the gradient around
solutions with a large number of zero coefficients. Such observations lead
to the development of structured sparsity regularizers, which prefer certain
configurations of the non-zero components [95, 62, 96, 6, 5]. We explore
the application of such regularizers to a number of learning objectives and
application areas in Section 4.2.

2.3 Structured Output Prediction

A central question of empirical risk minimization is the output space ) of the
prediction function f. In application to visual data, common output spaces
may be an image segmentation, a taxonomic classification of an image, or
a bounding box surrounding an object or region of interest. It is clear
that if we are faced with the task of predicting an element in such a space,
optimizing a regularized risk objective of the form in Equation (2.6) with a
binary output will not optimize the true risk of the form in Equation (2.1)
for the final prediction task.

Setting ) to a more general output space, such as a bounding box or
segmentation, brings to question the form of f : X — ). We may address
this by specifying a compatibility function g : X x Y — R and defining

f(z) := arg ryneayxg(x, Y). (2.11)



If g(z,y) has some tractable form, e.g.

9(x,y) = (w, ¢(x,y)) (2.12)

for some parameter vector w € R? and feature function ¢ : X x Y — R%, we
may then develop a regularized risk framework analogous to that developed
for binary classification or scalar regression [9]. We will develop here one

such framework, the structured output support vector machine [149, 154,
155, 97].

2.3.1 Structured Output Support Vector Machine

The structured output support vector machine (SOSVM) makes the assump-
tions in Equations (2.11) and (2.12). Furthermore, the framework assumes
access to a loss function A : ) x Y — R, that measures the loss between
the ground truth labeling for a given training sample and an incorrect pre-
diction. As above, we assume a training set S, and for each training input
x; we will use the notation g; € Y\ {y;} to denote some incorrect prediction.
The learning objective has two variants, margin rescaling

A e T,
weéﬁ;}gnemgllw\l + - Z& (2.13)
st (w, d(xs, vi) — d(xi, s) > Ay, 0i) — & Vi, 0 € Y\ {wi} (2.14)

and slack rescaling

A e 1 |
we@l}émi”w” +nzi:£z (2.15)
st (w, (i, yi) — ¢(xi, i) > 1 — A(;Zgz) Vi, g € Y\ {y:}. (2.16)

The two variants are different piecewise linear convex upper bounds to a
step function that pays a penalty of A(y;, 9;) if (w, ¢(z4,y5)) < (w, ¢(x4, ;)
and 0 otherwise (Figure 2.1).

Optimization of the SOSVM objectives is not straightforward, as the
number of constraints (Equations (2.14) and (2.16)) is proportional to the
size of the output space |Y|. A general framework for optimizing these
objectives is therefore based on a cutting plane approach [155, 97]. These
approaches rely on an iterative method in which an active set of constraints
is maintained. At each iteration in the algorithm, the objective is optimized
using only the active constraints, and given a fixed w, the most violated
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Figure 2.1: Margin rescaling and slack rescaling define different piecewise-
linear convex upper bounds to a scaled step loss in two variants of a struc-
tured output support vector machine (SOSVM). In this example, we use a
scaled 0-1 loss A(y,9) = %



constraint is determined and added to the set of active constraints. Finding
the most violated constraint consists of the following two subproblems:

arg  max (w, ¢(zi, i) + Avi, i) (2.17)
g€\ {wi}

for margin rescaling, and

Fi€V\{vi}

for slack rescaling. We refer to the optimization in Equation (2.11) as the
inference problem, and the optimization in Equations (2.17) and (2.18) loss-
augmented inference problems.

2.3.2 Inference and Loss-augmented Inference

There is typically a non-linear interaction between x and y in the joint fea-
ture function ¢, meaning that the optimizations in Equations (2.11), (2.17)
and (2.18) may be non-trivial or even NP-hard.

To illustrate the construction of a joint kernel map for a structured out-
put problem, we may consider a family of log-linear Markov random-field
models consisting of unary and pairwise energies [103]. We will denote unary
energies as fy,(z%,y") for site i, and pairwise energies f,(y%,y?) for an edge
in the set of edges defining the model (i,7) € £&. We may define a vector
representation of a site label in a discrete domain as an indicator vector
oy (y') € {0,1}, ||¢y(y")|| = 1. Similarly, we may define a vector representa-
tion of an observation at a specific site as ¢, (2%) € H for some Hilbert space
‘H. Given these representations, we may define feature representations for
log-linear unary and pairwise features as

du('y") = dy(y') @ ¢u(a"), (2.19)
oy y) = by(y) ® oy (y), (2.20)

respectively, where ® represents the Kronecker product [125]. With these
representations, our model assigns probabilities and energies

p(qj7 y) = E H efu(ff ") H efp(y Y7) (221)
i (i.5)€€

for some normalization constant, Z, and a corresponding compatability func-



tion (cf. Equation (2.12))

g(z,y) = logp(z,y)+logZ (2.22)
= Y L@ y)+ YD R (2.23)
i (i,5)€€
= (wu, Y u(@y)) + (wp, Y Gy YY) (2.24)
i (i,5)€€

We may therefore represent the parameter vectors in the optimization prob-
lems described in Equations (2.13)-(2.16) as

w = <ZZ> (2.25)

and the joint feature map

(523

It is clear from this construction that a seemingly simple assumption of
parametrization by a joint feature map ¢ : X x Y — H leads to a very
expressive class of functions, incorporating the rich literature of graphical
models [105, 116, 99, 166, 61].

From this construction, we observe that the inference problems in Equa-
tions (2.11), (2.17) and (2.18) may have polynomial time algorithms, e.g.
based on the forward-backward algorithm for tree-structured graphical mod-
els [8, 163]. The exact form of optimization, however, is dependent on the
topology of the graph, and on the form of the pairwise constraints, e.g.
whether they are submodular [124, 141, 65, 131, 106]. The assumption of
submodular pairwise potentials in a discriminative learning setting such as a
SOSVM means that the optimization problem must impose additional con-
straints on the model, such as was proposed by [3, 148]. In the absence of
such constraints, the learned objective may not be in a tractable form, and
may lead to NP-hard inference [46].

One must also consider modifications to the inference problem to incor-
porate the loss function as in Equations (2.17) and (2.18). For simplicity,
we will presently assume that A(y, 7) is the Hamming loss [81, 149, 155]. In
these cases, it is possible to modify the loss-augmented inference problems
to incorporate the loss, resulting in a similar problem that may take advan-
tage of existing inference algorithms, e.g. [155]. While the presentation here
has used a general family of graphical models to describe the expressiveness



of the family of models, in Chapter 5, we extend this to cases where the
form of a graphical model describing the problem is not immediately clear.
We develop specialized inference algorithms for important computer vision
problem settings that enable discriminative training of the form described
in this section.






Chapter 3
Empirical Risk

This chapter addresses our contributions in the definition and training of
models with novel risk formulations. Our contributions have included novel
learning objectives and efficient optimization strategies [LB09, BVZ10, RKB11,
VBZ11, MBZT12, BMR14]. We have applied novel ranking objectives in
several works as strategies for learning cascaded object detectors [RKB11,
BKRI13]. Additionally, we have employed discriminative latent variable
models, and have used such models for weakly supervised data and discrim-
inative alignment of M/EEG recordings [BVZ10, ZKGB13]. This chapter
focuses in detail on two contributions for novel structured prediction objec-
tives: (i) joint kernel support estimation, and (ii) structured output ranking.

3.1 Joint Kernel Support Estimation

This section is based on [LB09].

Discriminative techniques, such as conditional random fields (CRF's) or
structure aware maximum-margin techniques (maximum margin Markov
networks (M3N), structured output support vector machines (S-SVM)), are
state-of-the-art in the prediction of structured data. However, to achieve
good results these techniques require complete and reliable ground truth,
which is not always available in realistic problems. Furthermore, training
either CRF's or margin-based techniques is computationally costly, because
the runtime of current training methods depends not only on the size of the
training set but also on properties of the output space to which the training
samples are assigned.

We propose an alternative model for structured output prediction, Joint
Kernel Support Estimation (JKSE), which is rather generative in nature as

13



it relies on estimating the joint probability density of samples and labels
in the training set. This makes it tolerant against incomplete or incorrect
labels and also opens the possibility of learning in situations where more
than one output label can be considered correct. At the same time, we
avoid typical problems of generative models as we do not attempt to learn
the full joint probability distribution, but we model only its support in a
joint reproducing kernel Hilbert space. As a consequence, JKSE training
is possible by an adaption of the classical one-class SVM procedure. The
resulting optimization problem is convex and efficiently solvable even with
tens of thousands of training examples. A particular advantage of JKSE
is that the training speed depends only on the size of the training set, and
not on the total size of the label space. No inference step during training
is required nor do we have calculate a partition function. Experiments on
realistic data show that, for suitable kernel functions, our method works
efficiently and robustly in situations that discriminative techniques have
problems with or that are computationally infeasible for them.

We follow the common language of the field [9] and treat structured
prediction in probabilistic terms as a MAP-prediction problem. Let X be
the space of observations and ) be the space of possible labels. Note that for
our setup it is not required that X or ) decompose into smaller entities like
nodes or edges in a graph. We assume that sample-label pairs (z,y) follow
a joint-probability density p(z,y), and that a set of i.i.d. samples (z;,y;)
is for ¢ = 1,...,n is available for training. The task is to learn a mapping
f: X = Y that minimizes the expected loss in a classification sense, i.e. for
a new sample z € X', we have to determine the label y € Y that maximizes
the posterior probability p(y|x).

It is well known that, mathematically, the discriminative approach of
directly modelling p(y|z) and the generative approach of modelling p(z,y)
are equivalent, because Bayes rule allows one to use either quantity for
optimal prediction:

arg max r) = argmaxp(x,y). 3.1
gmax p(y|z) = argmax p(z, y) (3.1)

In joint-kernel support estimation we follow the generative path and
model an expression for p(x,y) from the given training data. However,
density estimation in high dimensional spaces is notoriously difficult. We
therefore simplify the problem by assuming that the posterior probability
is the feature space is distinctive, i.e. p(y|z) > 0 for correct predictions y
and p(y|lz) ~ 0 for incorrect y. Consequently, p(z,y) > 0 only if y is a
correct label for z, and it suffices to estimate the support of p(z,y) instead



of the full density. Afterwards, we can still use f(z) := arg max p(z,y) for
prediction. Note that we do not require p(y|z) to be unimodal. Different
y € Y could be “correct” predictions for z € X, as occurs quite commonly
in realistic structured prediction tasks.

The generative setup limits JKSE’s ability to extrapolate, because p(x,y) =
p(y|z)p(z) and for a test sample x € X this vanishes not only for wrong pre-
dictions y but also if x lies an area of X that has not been observed during
training. On the other hand, the setup also has certain advantages, e.g.,
it opens the possibility to perform adaptive and online learning, building
a smaller model of p(x,y) first and later extending the label set without
having to retrain for the previous labels.

3.1.1 Representation

Like most other structured prediction methods, we model probabilities by
log-linear models [9]. Since our central quantity of interest is p(z,y), we set

pla,y) = 5 exp( (w, (2, 1)) (32

where Z = 37, exp({(w,¢(z,y))) is a normalization constant (or partition
function). Since our model is generative, Z does not depend on y and we
can essentially ignore it during training as well as during inference. Conse-
quently, the prediction step reduces to

f(z) = argmax(w, ¢(z,y)). (3.3)
yeY

In the following, we will assume access to some form of inference algorithm
for calculating the arg max in (3.3) or a suitable approximation to it. We
do not require a method to calculate or approximate Z at any time.

The feature map ¢(x,y) in Equation (3.2) is completely generic. While
in many situations, such as sequence labeling or image segmentation, it is
natural to form ¢(x,y) by a concatenation or summation of per-site proper-
ties and neighborhood features, we do not require such a decomposition for
our consideration. In fact, ¢(z,y) does not have to be an explicit mapping
at all, and in the following we will only study the case where it is induced by
a suitable positive definite joint kernel function & : (X x ) x (X x V) — R.
The case of an explicitly known ¢(x,y) can be included in this framework

by setting k((z,y), (z',¢/)) = (¢(z,y), 6(«', ¢/))-



3.1.2 Parameter Learning

Assuming a fixed kernel or feature map, learning consists only of finding
a suitable weight vector w such that the right hand side of (3.2) reflects
p(z,y) over the training set. Since we are only interested in the support of
p(z,y), we can use a one-class support vector machine (OC-SVM) for this
purpose, see Section 3.1.3 for a review of this technique. The result of OC-
SVM training is a representation of p(x,y) as a linear combination of kernel
evaluations with the training samples. Thus, the JKSE prediction function
can be written as

n

f([IJ) = arg mal))( (67} k( (JJ, y)a (‘riv yl) ) (34)
ver o

Note that this expansion is generally sparse, i.e. most a; have the value 0.

In its training procedure, JKSE reduces the basically generative task of
learning p(x,y) to a maximum margin learning problem of estimating the
support of p(z,y).

The JKSE training procedure works for arbitrary Mercer kernels [157]
and the resulting optimization problem is convex. Furthermore, only the
matrix of joint-kernel values is required, and thus the training time depends
only on the size of the training set, not on the structure of the output space.
This is in contrast to many other techniques for structured prediction.

3.1.3 One-Class SVM Training

The one-class support vector machine (OC-SVM) was originally introduced
to robustly estimate the support and quantiles of probability densities in
high dimensional spaces [138]. In the case of JKSE, we replace the orig-
inal samples by sample-label pairs and consider them as embedded into
the latent Hilbert space H that is induced by the joint kernel function
k((z,y), (i yi) )-

The OC-SVM works by estimating a hyperplane in H that best separates
the training samples from the origin, except for a set of outliers which are
determined implicitly by the training procedure. A parameter v € (0,1]
acts as an upper bound to the percentage of outliers, i.e. the larger v, the
more freedom the method has to disregard any of the training samples. By
this, v simultaneously acts as a regularization parameter.! JKSE training

'For support estimation, it is generally more intuitive to study the problem of finding
the ball of smallest radius in the feature space that encloses all training points except
for the outliers. Both concepts are in fact equivalent for the common class of kernels



using OC-SVM can be written in primal form as the quadratic optimization
problem

1 9 1
i - — ;i — 3.5
weH,gimelIgtpeR 2Hw|| + - ;fz p (3.5)
subject to
<w)¢(x1)yl) >7‘l Zp_é-l fori:]—v"‘vna (36)

where (.,.)y denotes the scalar product in the Hilbert space H. To actu-
ally solve the minimization (3.5), one applies the representer theorem [140].
Consequently, all references to (., .)% and ¢ disappear and kernel evaluations
are required. We solve the dual problem:

ij
subject to
0<a; < ! ;=1 fori=1 3.8
_az_%, Zal— ori=1,...,n. (3.8)
7

This allows us to reuse existing OC-SVM implementations for JKSE learn-
ing: we provide the algorithm with the joint kernel matrix between pairs
(x4,y;) instead of the ordinary kernel matrix measuring similarity between
samples z;. OC-SVM training will then learn coefficients, «;, that can di-
rectly be used in the context of Equation (3.4).

Note that in the training procedure, only comparisons between training
sample pairs are required. At no time do we have to evaluate a function over
the space of all possible target labels, which would make learning dependent
not only on the size of the training set, but also on the label space.

The many theoretical studies of OC-SVMs in the machine learning lit-
erature immediately carry over to the training of JKSE. One interesting
aspect of this is that —at least for suitable kernels functions— one can
prove consistency results for the approximation of p(z,y), see [160]. Note
that because of the additional arg max operation, this, however, does not
imply consistency of JKSE’s prediction step.

function where every sample has the same length in feature space, e.g. Gaussian kernels
and generalizations (see [150]).



3.1.4 Large Scale Training

Disregarding the time to calculate the kernel matrix, training JKSE is identi-
cal to training a OC-SVM. In principle this requires the same computational
effort as training an ordinary two-class SVM and one should therefore expect
that both methods can be applied to problem of similar size and complexity.
However, because OC-SVMs are less popular for pattern recognition tasks,
significantly less effort has been spend on developing fast training routines
and on optimizing the implementations. Existing packages such as 1ibSVM
can handle thousands of examples, but not tens of thousands. In the follow-
ing, we therefore discuss possibilities to implement JKSE independently of
the existing OC-SVM packages: by reformulating it as a binary classification
problem and employing fast stochastic online training techniques.

In their original analysis, Scholkopf et al. showed that, for datasets
that can be linearly separated from the origin and in the case without slack
variables, the weight vector found by optimizing the OC-SVM problem (3.5)
is equivalent to solving the optimization problem of a regular support vector
machine for binary classification with only positive training examples, but
additionally imposing that the hyperplane found has to pass through the
origin [138, 21]. Alternatively, one can allow arbitrary hyperplanes, but add
a mirrored copy of the training set with a negative training label. This will
learn the same weight vector as the previous construction and the hyperplane
in a symmetric problem automatically passes through the origin.

Linear separability can always be enforced by the right choice of kernel,
e.g. any kernel with non-negative values. When generalizing the result to
the case of slack variables, one and two-class training are still equivalent in
the sense that for each v, a corresponding regularization parameter C' exists
that results in the same hyperplane. However, the relationship between v
and C' becomes non-explicit [138, 140].

However, we are not interested in equivalence for a specific v, but intend
to perform model selection over this parameter anyway. We can therefore
make use of the equivalence result and train a two-class SVM with model
selection over C instead.

3.1.5 Stochastic Online Training

With the availability of larger and larger data collections, machine learning
research has focussed increasingly on the creation of methods that not only
achieve high prediction accuracy, but that can also be trained efficiently on
large datasets, see e.g. [33]. As a result, several fast learning algorithms for



support vector machines have been developed, many of them limited to linear
kernels, e.g. [94, 98, 122, 142], but some also applicable to arbitrary Mercer
kernels ([31, 32]). Typically, these method rely on ideas from online learning,
such as stochastic gradient descent (see e.g. [20]). Using such approximate
larger scale SVM learners in combination with the reformulation of OC-SVM
as a regular SVM, we can train JKSE with dataset of tens of thousand of
examples or more. For linear kernels, even millions of examples are in reach.

3.1.6 Experimental Evaluation

We evaluate the performance of JKSE on a real-life task from computer
vision. The setup allows us to demonstrate the two major claims that we
made: robustness of JKSE against high amounts of label noise, and the
computational efficiencies of training without iterated inference. We com-
pare JKSE to a structured regression method based on S-SVM that has
been shown to achieve state-of-the-art performance for similar object local-
izationon tasks [29] .

3.1.7 Object Localization in Images

We adopt the setup from [29] to perform object localization by structured
prediction: the observations are natural images, and the labels are the co-
ordinates of the bounding box of an object. If an image contains more than
one object, any of their bounding boxes is considered a correct label. For the
dataset we use the UIUCcars set,? choosing the multiscale part for training
and the singlescale part for testing. This leave us with 108 images showing
139 cars for training, which is close to the upper limit that the S-SVM in
this situation can handle in reasonable time. The test set consists of 170
images containing 200 cars. Example images of the dataset are shown in
Figure 3.1.

An additional part of the dataset consists of 1050 smaller images which
were pre-cropped to show either a car or background region. This makes
them useless for the task of object localization, but as we will see later, we
can make use of them for fast model selection. All images are represented by
densely sampled image SURF image descriptors [16], which are quantized
into 1000 visual word clusters, see [113] for details. As a joint-kernel function
we choose the localization kernel from [29]: given two sample-label pairs
(x,y) and (2/,y'), it forms a 4-level spatial pyramid bag-of-words histograms
of those feature points within z and z’ that fall into the box regions y and 7/

2http://12r.cs.uiuc.edu/" cogcomp/Data/Car/



Figure 3.1: Examples images of the UIUCcars dataset for object localization.
The task is to predict tight bounding boxes for the car objects. Images are
of different sizes and can contain more than one car, i.e. more than one
output label can be correct.

respectively. The resulting histograms are combined into a kernel values by
either a linear scalar product or a y?-kernel. The former has the advantage
that a very fast MAP-inference is possible using an integral-image trick.
This makes exact S-SVM training feasible. The latter is generally accepted
as a better kernel for computer vision tasks, but MAP-inference has to
be done by exhaustively scanning over all image locations and is therefore
computationally very costly.

We are interested in the performance of JKSE and S-SVM for training
sets with different amounts of label noise. To simulate this, we artificially
introduce label errors into the dataset by swapping bounding box coordi-
nates between different training images. While this preserves the overall
label statistics, the image contents at the positions given by the swapped
labels will not necessarily show cars and therefore obstruct the learning pro-
cess. The percentage of swapped labels is a free parameter, r, that we vary
between 0% (perfect labels) and 100% (random labels).

3.1.8 Model Selection

Training JKSE in the situation described takes only a few seconds. Evalua-
tion takes also in the order of seconds for the linear kernel function, whereas
for the x? kernel it takes a several minutes per image. This is because within
each image there are tens of thousands of possible object locations, and for
each, a high-dimensional non-sparse histogram has to be formed and the
classifier evaluated.

The S-SVM has identical evaluation time, as it solves the same inference
problem. However, training requires iterative solution of the MAP estimate,
each corresponding to a full evaluation of the prediction function over many
images. This procedure is only feasible for the linear kernel, and even with



the fast integral image trick, the total training duration was approximately 5
hours. Within this time, on average close to 3,500 calls to the MAP-estimate
were performed accounting for 97% of total training time.

For method with very long training time, as the S-SVM in our case,
model selection is always a difficult issue. Except in special cases, it is not
practical to perform full cross-validation runs even for a single value like
the regularization parameter C'. We therefore rely on a simplified criterion:
we train S-SVM using values C' € {1073,1072,...,10%}. For testing, we
use the weight vector of the value that achieves the highest area under
curve when used as a classifier on the set of small additional images that
we left out during training because they were pre-cropped. In order to
facilitate comparability, we follow the same procedure for JKSE to select
v € {0.05,0.1,...,1.0}. Note, however, that JKSE is in fact fast enough
to perform full cross-validation, and this could be expected to improve the
localization performance to a certain extent.

3.1.9 Results

The localization performance of S-SVM and JKSE are measured by precision-
recall curves which are depicted in Figures 3.2 and 3.3. The former shows
the results of S-SVM and JKSE with linear kernels. As one can see, S-SVM
achieves higher precision and recall than JKSE for noiseless data as well as
when 10% and 30% of labels are scrambled. One can assume that it is the
S-SVM'’s Tikhonov regularization that successfully compensates the distur-
bance introduced by the label errors. However, when the label error rate
reaches 50% or more, S-SVM performance takes a huge dive, and at 90%
label errors, performance is basically random. A notable anomaly is that
the 50%-curve lies below the 70%-curve. As there is no fundamental reason
for this, we believe it to be an artifact of the model selection procedure. In
fact, S-SVM in this setup has proven rather sensitive to a good choice of C.

In contrast, JKSE with a linear kernel starts from a lower precision
level, but its performance decreases more continuously when the amount of
label errors increase. Even for 90% label noise, JKSE achieves non-trivial
localization performance. We attribute this somewhat surprising behavior
to a successful application of the v-formalism, as v = 0.95 was chosen at
this level, thereby correctly treating a large amount of the training data as
outliers. Furthermore, our analysis showed that JKSE is rather insensitive
to the choice of v.

Figure 3.3 shows results for JKSE with the x? kernel function. In com-
parison with Figure 3.2 one can clearly see that JKSE’s localization accuracy



r=0.0 | r=0.1|r=03 | r=05 | r=0.7 | r=09 | r=1.0
S-SVM (linear) 18% 16% 27% 76% 55% 92% 91%
JKSE (linear) 36% 35% 43% 60% 68% 79% 91%
JKSE (x?) 8% | 1% | 12% | 14% | 37% | 62%| 91%

Table 3.1: Equal-Error Rates for S-SVM and JKSE at different noise levels
T.

is improved, even increasing it over the results achieved by S-SVM. Adding
up to 30% label noise hardly decreases the accuracy compared to perfect
labels. For higher noise levels the performance decreases, however always
staying clearly above the results for S-SVM. Even when 90% of training
labels are modified compared to the original dataset, JKSE reaches a recall
level of 50% and over most of the plot precision lies above 40%.

Clearly, the improved performance is a direct consequence of the use of
a better kernel function. It is likely that S-SVM based localization would
profit from a using a x? localization kernel as well. However, as mentioned
above, training S-SVM with such a kernel is not computationally feasible
with current techniques.

3.2 Structured Output Ranking

This section is based on [BVZ10, RKB11, MBZT12, BMR14] with a partic-
ular focus on [BMR14].

Learning to rank is a core task in machine learning and information
retrieval [126]. We consider here a generalization to structured output pre-
diction of the pairwise ranking SVM introduced in [89]. Similar extensions
of ranking to the structured output setting [9] have recently been explored
in [BVZ10, RKB11, 174]. In these works, pairwise constraints were intro-
duced between elements in a structured output space, enforcing a margin
between a lower ranked item and a higher ranked item proportional to the
difference in their structured output losses. These works consider only bipar-
tite preference graphs. Although efficient algorithms exist for cutting plane
training in the bipartite special case, no feasible algorithm has previously
been proposed for extending this approach to fully connected preference
graphs for arbitrary loss functions.

Our work makes feasible structured output ranking with a complete pref-
erence graph for arbitrary loss functions. Joachims previously proposed an
algorithm for ordinal regression with 0-1 loss and R possible ranks in O(nR)
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Figure 3.2: Precision-recall plots of localization performance of S-SVM
(3.2(a)) and JKSE (3.2(b)) for different levels of label noise (percentage
indicated by r, i.e. 7 = 1.0 means completely randomized input data). At
low noise levels, S-SVM clearly dominates JKSE in terms of accuracy. When
the noise reaches 50% or more, S-SVM'’s performance drops sharply, whereas
JKSE’s only gradually decreases. At 90% randomized labels, JKSE is still
able to achieve better than random performance.



100
H "llllllllllllll - e
R L B A
B -NE;\ '-_'l
== KT -,
< ' "!!nnl}}"-g‘"un\,.."_"_‘l: ‘:I'i
80 |- ‘ln\-\“u.r -
1|‘
=
S
"ty
60 | H E
5 ™
k2] B
o
o
a
40 E
1=0.0  e—
20 1=0.] mmms |
r=0.3 sumn
”“ll. r=0.5 1
» r=0.7
4}" 1=0.9
r=1.0 sm mm
0 1 1 1 1
0 20 40 60 80 100
Recall

Figure 3.3: Precision-recall plots of localization performance of JKSE with
x2-kernel. Precision and recall are clearly improved over the linear kernel.
The resulting accuracy is also higher than with discriminatively trained S-
SVM training (Fig. 3.2). Even if 90% of the training data is mislabeled
(r =0.9), localization performance is reasonable.



time for n samples [98]. This effectively enables a complete preference graph
in this special setting. In practice, however, for structured output predic-
tion with a sufficiently rich output space, the loss values may not be dis-
crete, and may grow linearly with the number of samples. In this case, R
is O(n). Mittal et al. have extended Joachims’ O(nR) result to the struc-
tured output ranking setting in the case that there are a discrete set of loss
values [MBZT12]. A direct extension of these approaches to the structured
output setting with a fully connected preference graph and arbitrary loss
functions results in a O(n?) cutting plane iteration. One of the key contri-
butions of our work is to show that this can be improved to O(nlogn) time.
This enables us to train an objective with 5 x 107 samples on standard hard-
ware (Section 3.2.4). Furthermore, straightforward parallelization schemes
enable e.g. O(n) computation time on O(logn) processors (Section 3.2.2).
These results hold not only for the structured output prediction setting, but
can be used to improve the computational efficiency of related ranking SVM
approaches, e.g. [98].

Analogous to the structured output SVM [149, 154], we formulate struc-
tured output ranking in slack rescaling and margin rescaling variants. We
show uniform convergence bounds for our ranking objective in a unified
setting for both variants. Interestingly, the bounds for slack rescaling are
dependent on the range of the loss values, while those for margin rescal-
ing are not. Further details are given in Section 3.2.3. Structured output
ranking is a natural strategy for cascade learning, in which an inexpensive
feature function, ¢, is used to filter a set of possible outputs y. We show
empirical results in the cascade setting (Section 3.2.4) supporting the effi-
ciency, accuracy, and generalization of the proposed solution to structured
output prediction.

3.2.1 Structured Output Ranking

The setting considered here is to learn a compatibility function g : X x Y —
R that maps an input-output tuple to a real value indicating the prediction
of how suitable the input is to a given output. We assume that there is an
underlying ground truth prediction for a given input so that every z; € X in
a training set is associated with a y; corresponding to the optimal prediction
for that input. Additionally, we assume that a loss function A : Y x Y — R
is provided that measures the similarity of a hypothesized output to the
optimal prediction A(y},y) > 0. A training set will consist of input-ground
truth-output tuples, where the input-ground truth pairs may be repeated,
and the outputs are sampled over the output space: S = {(z, ¥}, vi) hi<i<n



and (z;,y;) may equal (x;,y;) for j # i (cf. Section 3.2.4). We will use the
notation A; to denote A(y}, yi).

In structured output ranking, we minimize with respect to a compatibil-
ity function, g, a risk of the form [1]

R(g) = E((x,vi),x,v;) 1Ay, — Ay, |- ([(Ay, — Ay,)
(9(Xi,Y;) — 9(X;,Y;)) < 0]

+ 5 lo(Xe ¥ = 9(X,, )], (39)

where we again have used Iverson bracket notation [104], and the term
penalizing equality is multiplied by % in order to avoid double counting
the penalty over the expectation. Here Ay, is the structured output loss
associated with an output, Y;. In contrast to other notions of risk, we take
the expectation not with respect to a single sample, but with respect to pairs
indexed by the structured output. Given two possible outputs sampled from
some prior, the risk determines whether the samples are properly ordered
according to the loss associated with predicting that output, and if not pays
a penalty proportional to the difference in the losses. This risk penalizes
pairs for which sample 7 has lower loss than sample j and also lower ranking
score, i.e. we would like elements with low loss to be ranked higher than
elements with high loss.

Two piecewise linear convex upper bounds are commonly used in struc-
tured output prediction: a margin rescaled hinge loss, and a slack rescaled
hinge loss. The structured output ranking objectives corresponding to reg-
ularized risk minimization with these choices are

in AQ 3.10
S (w)+¢ (3.10)

margin rescaling

st Y v ((w, (@i, 00) — (w,d(xj, 7)) + A = Aj) > =€ (3.11)

(i,9)€€

or Z vij ((w, (i, i) — ¢xj,5)) — 1) (B; — Ay) 2 =¢ (3.12)
(i,j)€€ slack r;rscaling
£>0 Vv e {0,1}1 (3.13)

where € is the edge set associated with a preference graph G, and Q is
a regularizer monotonically increasing in some function norm applied to

3An edge from ¢ to j in G indicates that output ¢ should be ranked above output j. It
will generally be the case that A; > A; for all (¢,j) € €.



w [110]. We have presented the one-slack variant here [97]. For a finite
sample of (x;,y},y;), such objectives can be solved using a cutting plane
approach [98, MBZT12, RKB11, VBZ11].

The form of G defines risk variants that encode different preferences
in ranking. If an edge exists from node i to node j, this indicates that
1 should be ranked higher than j. Of particular interest in this work are
bipartite graphs, which have efficiencies in computation, and fully connected
graphs, which attempt to enforce a total ordering on the samples. Structured
output ranking with bipartite preference graphs was previously explored
in [RKB11], in which a linear time algorithm was presented for a cutting
plane iteration. The algorithm presented in that work shares key similarities
with previous strategies for cutting plane training of ranking support vector
machines [98], but extends the setting to rescaled structured output losses.
A linear time algorithm for fully connected preference graphs was presented
in [MBZT12] in the special case that the loss values are in a small discrete set.
Previous algorithms all degenerate to O(n?) when applied to fully connected
preference graphs with arbitrary loss values.

3.2.2 O(nlogn) Cutting Plane Algorithm

Cutting plane optimization of (3.10)-(3.13) consists of alternating be-
tween optimizing the objective with a finite set of active constraints, finding
a maximally violated constraint of the current function estimate and adding
it to the active constraint set [97]. Algorithm 1 gives a linear time proce-
dure for finding the maximally violated constraint in the case of a complete
bipartite preference graph [98, RKB11] and slack rescaling.* This algorithm
follows closely the ordinal regression cutting plane algorithm of [98], and
works by performing an initial sort on the current estimate of the sample
scores. The algorithm subsequently makes use of the transitivity of violated
pairwise constraints to sum all violated pairs in a single pass through the
sorted list of samples.

In the case of fully connected preference graphs, Algorithm 2 is a recur-
sive function that ensures that all pairs of samples are considered. Algo-
rithm 2 uses a divide and conquer strategy and works by repeatedly calling
Algorithm 1 for various bipartite subgraphs with disjoint edge sets, ensuring
that the union of the edge sets of all bipartite subgraphs is the edge set of
the preference graph. The set of bipartite subgraphs is constructed by par-
titioning the set of samples into two roughly equal parts by thresholding the

4An analogous algorithm for margin rescaling was given in [RKB11] and has the same
computational complexity.



Algorithm 1 Finding maximally violated slack-rescaled constraint for structured
output ranking with a complete bipartite preference graph.

Require: A, a list of loss values sorted from lowest to highest; s, a vector of the
current estimate of compatibility scores (s, = (w, ¢(Ty,yy))%) in the same
order as A; p, a vector of indices such that s,, > s,, whenever v > u; t, a
threshold such that (u,v) € £ whenever u <t and v >t

Ensure: Maximally violated constraint is

6 —(w, > ip(wi, yi)) <&

L pt = D{ulp.<t}> P = P{o|p,>t}
2i=1,0=A;,=0,A"=0,a0=0
3: Ag““g = A -
4: for k=n— t — 1 to 1 descending do
5. Acum = A + Acum

Py, Prta
6: end for
7: for j=1ton—tdo
8: whlles_+1>s+/\z<t+1do
9: Oz+—a++A;um—(n—t—j+1)A+
10: A+—A++A+ Z—Z+1
11: end while
12: a_—a_—((j—l)Ap__—A+)
14: end for
15: return (o, 0)




Algorithm 2 An O(nlogn) recursive algorithm for computing a cutting plane

iteration for fully connected ranking preference graphs.

Require: A, a list of loss values sorted from lowest to highest; s, a vector of the
current estimate of compatibility scores (s, = {(w, ¢(xy,yy))%) in the same
order as A; p, an index such that s, > s,, whenever v > u

Ensure: Maximally violated constraint is

8 —(w, > aip(wi, yi)) <&

1: n = length(A)

2: if A; = A,, then

3:  return (0,0)

4: end if

5 1t %

6: p* = Plulp.<t}

7: (aq,01) = Algorithm 2(Aq., $1.¢, p*)

8: P’ = Plojpy>t}

9: p* = p® —t (subtract ¢ from each element of p®)
10: (g, 62) = Algorithm 2(Ay 1 1., St41:m, ")
11: (e, dp) = Algorithm 1(A, s, p,t)

12: o = g+ a1 + ag,d = dg + 61 + 2

—
w

: return (o, )

loss function. As the samples are assumed to be sorted by their structured
output loss, we simply divide the set by computing the index of the median
element. In the event that there are multiple samples with the same loss,
the partitioning (Algorithm 2, line 5) may do a linear time search from the
median loss value to find a partitioning of the samples such that the first set
has strictly lower loss than the second. The notation p® = pyp, <4} indicates
that p® contains the elements satisfying the condition in the subscript in the
same order that they occured in p.

Complexity

Prior to calling either of the algorithms, the current data sample must be
sorted by its structured output loss. Additionally an index vector, p, must
be computed that encodes a permutation matrix that sorts the training
sample by the current estimate of its compatibility scores, (w,¢;). Each
of these operations has complexity O(nlogn). The serial complexity of
computing the most violated 1-slack constraint is O(nlog, n), matching the
complexity of the sorting operation. To show this, we consider the recursion
in Algorithm 2. The computational costs of each call consist of (i) the
processing needed to find the sorted list of scores for the higher ranked



Figure 3.4: The recursion
tree for Algorithm 2. Each
node in the tree corresponds o. @
to a set of constraints result-

ing from a bipartite prefer- 1. @ @

ence graph. The cost of com-

puting these constraints is la- 2: @ @ @ @

beled in each of the nodes.

and lower ranked subsets in the bipartite graph, (ii) the cost of calling
Algorithm 1, and (iii) the cost of recursion. We will show that items (i) and
(ii) can be computed in time linear in the number of samples.

That item (i) is linear in its complexity can be seen by noting that an
index p already exists to sort the complete data sample. Rather than pay
O(nlogn) to re-sort the subsets of samples, we may iterate through the
elements of p once. As we do so, if p; < ¢, we may add this element to the
index that sorts the higher ranked subset. If p; > ¢, we may add p; —t to
the index that sorts the lower ranked subset. Item (ii) is also linear as the
algorithm loops once over each data sample, executing a constant number
of operations each time.

We calculate the complexity of Algorithm 2 by a recursive formula R,, =
Cn + 2Rz where Cy is the O(n) cost of processing items (i) and (ii). It
follows that

logoy
Ry= > Cux2. (3.14)
i=0

m‘:

Examining the term C§2i, we note that C% is O(g;) and must be paid

2! times, resulting in a cost of O(n) per summand. As there are O(log, n)
summands, the total cost is O(nlogn). Graphically, the recursion tree is a
binary tree in which the cost of each node is proportional to 2%, where d is
the depth of the node (Figure 3.4). A C implementation of the algorithm
takes a fraction second for 10° samples on a 2.13 GHz processor.

A straightforward parallelization scheme can be achieved by placing each
recursive call in its own thread. Doing so results in O(n) computation
on O(logn) processors: each level of a tree at depth ¢ can be computed
independently in C%T instructions, and there are O(logn) levels of the
tree. Each of logn pQrocessors can be assigned the nodes corresponding to a
given level of the tree.



3.2.3 Generalization Bounds

In this section, we develop generalization bounds based on the uniform con-
vergence bounds for ranking algorithms presented in [1]. For A € [0,1) we
have tighter bounds for slack rescaling as compared to margin rescaling. For
A € [0,0] where o > 1 bounds are tighter for margin rescaling.

Definition 3.2.1 (Uniform loss stability (3)). A ranking algorithm which is
trained on the sample S of size n has a uniform loss stability S with respect
to the ranking loss function ¢ if,

10(S) —6(SH)| < B(n), YneN,1<k<n (3.15)

where S* is a sample resulting from changing the kth element of S, i.e.,
changing the input training sample by a single example leads to a difference
of at most S(n) in the loss incurred by the output ranking function on any
pair of examples. Thus, a smaller value of 5(n) corresponds to a greater loss
stability.

Definition 3.2.2 (Uniform score stability (v)). A ranking algorithm with
an output gs on the training sample S of size n, has a uniform score stability
v if

lgs(x) — gsr(x)] <v(n), Yne N,1<k<nVreX (3.16)

i.e., changing an input training sample by a single example leads to a dif-
ference of at most v(n) in the score assigned by the ranking function to any
instance z.

The hinge losses for margin and slack rescaling formulations are given
by:
b =(18; = Ail = (w, (i, yi) — d(x5,y5)) - sign(A; — Aq)) 4, (3.17)
U =(1A5 = Al - (1 = (w, @@, yi) — ¢, 95)) - sign(A; — Ai)))4. (3.18)
Theorem 3.2.3. Let A be a ranking algorithm whose output on a training
sample S € (X, V)" we denote by fs. Let v : N — R be such that A has

uniform score stability v. A has uniform loss stability 8 with respect to the
slack rescaling loss Ls, where for alln € N

B(n) = 20v(n) (3.19)

where o > A is an upper bound on the structured output loss function.



Proof. Without loss of generality we assume that £4(S) > £5(S¥). There are
two non-trivial cases.
Case (i): Margin is violated by both gs and ggx.

105(S) — £s(S™)| =|A; — Ai| - (1= (gs(@:) — gs(x;)) - sign(A; — A))—
(3.20)

|A; — Al - (1 = (gsr(w3) — gsr(z5)) - sign(A; — Ay))

<o(|gs(xi) — gsr(xi)| + |gs(xj) — gsr(x5)]) < 20v(n)
(3.21)

Case (ii): Margin is violated by either of gs or ggr. This is a symmetric
case, so we assume that the margin is violated by gs.

[€5(S) — £5(S) =127 — Ail - (1 — (gs(x) — gs(a))) - sign(A; — Ay))

—~

3.22)
<IA; = Al (1 = (9s() — gs(@5)) - sign(Aj — Aq))—
(3.23)
1A — Al - (1 — (gsk (i) — gsr(z;)) - sign(A; — Ay))

<o(|gs(xi) — gsr(xi)| + |gs(xj) — gsr(x5)]) < 20v(n)
(3.24)

O]

Theorem 3.2.4 (Slack Rescaling Generalization Bound). Let H be a« RKHS
with a joint-kerneP k such that V(x,y) € X x Y, k((x,y), (z,y)) < k% < 00.
Let A > 0 and £, be a rescaled ramp loss. The training algorithm trained on
sample S of size n outputs a ranking function gs € H that satisfies gs =
arg mil’lge’,l.[{RgS (9;8) + Allgll3,}. Then for any 0 < & < 1, with probability
at least 1 — 0 owver the draw of S, the expected ranking error of the function
1 bounded by:

; 320%k%  (160°K 21n(1/5
R(gs) < R, (95;S) + “—— +< or +g> ngl/)

2
n A (3.25)

Proof. From [1, Theorem 11|, v(n) = 8"” . Substituting this value of v(n)

in Equation (3.19) B(n) = 16?:’“2. Inequahty (3.25) then follows by an
application of [1, Theorem 6] which gives the generalization bound as a
function of S(n). O

"We assume a joint kernel map of the form given in [149, 154].



The proof of [1, Theorem 6] follows closely that of [34] for regression and
classification, relying at its core on McDiarmid’s inequality [130].

Theorem 3.2.5 (Margin Rescaling Generalization Bound). Under the con-
ditions of Theorem 8.2.4, and a ranking function fs € H that satisfies
fs = argminfeH{Rgm(f;S) + AM|fl13,}. Then for any 0 < § < 1, with
probability at least 1 — & over the draw of S, the expected ranking error of
the function is bounded by:

N 2 2
R(fs) < Re, (f:8) + 5 +(1i"“ +a> 2R (300

The proof of Theorem 3.2.5 follows the outline given in [1, Section 5.2.1].

3.2.4 Experimental Results

Results are presented as an evaluation of a cascade architecture [162], fol-
lowing the evaluation protocol of Rahtu et al. [RKB11]. The experiments
are presented on the VOC 2007 dataset [52]. The images are annotated with
ground-truth bounding boxes of objects from 20 classes. VOC 2007 train
and validation sets are used only to construct the distribution for the ini-
tial window sampling, and the ranking function is learned using the dataset
presented in [2]. This is done in order to obtain results comparable to those
in [2, RKB11].

The performance is measured using a recall-overlap curve, which indi-
cates the recall rate of ground truth boxes in the VOC 2007 test set for a
given minimum value of the overlap score [158]

o(y,9) = Arealy N9) (3.27)

~ Area(yuUj)’
where y and ¢ denote the ground truth and predicted bounding box, re-
spectively. We also report the area under the curve (AUC) between overlap
scores 0.5 and 1, and normalize its value so that the maximum is 1 for per-
fect recall. The overlap limit 0.5 is chosen here since less accurately localized
boxes have little practical importance.

Our framework for creating the set of predicted bounding boxes broadly
follows that of [RKB11]. This setting has three main stages: (i) construction
of the initial bounding boxes, (ii) feature extraction, and (iii) window selec-
tion. In the first stage we generate a pool of approximately 100,000 initial
windows per image using random sampling and superpixel bounding boxes.
The random samples are drawn from a distribution learned using the ground
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corresponds to “Allpairs slack, in parentheses (a higher number at a given number of re-
1000” in Fig. (b). turned windows indicates better performance).

Figure 3.5: Example detections and overlap vs. recall for an object detection
task. See Section 3.2.4 for a complete description of the experimental setting.
This figure is best viewed in color.

truth object boxes in the training and validation sets. The superpixels are
computed by a graph based method [55], which is selected for its computa-
tional efficiency. At overlap 0.5, the initial windows achieve approximately
98% recall.

In the second stage, the tentative bounding boxes are scored using several
publicly available features. These features are window symmetry (WS),
boundary edge distribution (BE), superpixel boundary integral (BI), color
contrast (CC), superpixel straddling (SS), and multiscale saliency (MS). The
WS, BE, and BI features are described in [RKB11] and SS, CC, and MS are
from [2]. The joint feature map, ¢(x;,y;), applied in learning is the feature
vector corresponding to the bounding box ;.

In the last stage, we select the final set of bounding boxes (10, 100
or 1000) based on the learned score. The feature weights for the linear
combination are learned by using the structured output ranking framework
presented in this section and the loss function proposed in [29]. This loss is
based on the overlap ratio (3.27) and is defined as A; =1 — o(y, y;).



In order to run the proposed algorithm, we further need to define the
structure of the preference graph G. Three variants were considered: a
bipartite graph in which 1000 best samples per image are ranked higher than
all other initial windows (as in [RKB11]), a fully connected graph (denoted
“Allpairs” in the legend of Figure 3.5(b)) where full ranking is pursued, or a
bipartite graph in which only ground truth windows are to be ranked higher
than all sampled windows (denoted “Star” in the legend, as the topology of
a bipartite graph with one singleton set is a star graph). Finally, we have
trained a standard structured output SVM (labeled “SOSVM”) in the same
manor as [29]. To ensure a diverse set of predictions, we have applied the
non-maximal suppression approach described in [158].

The overlap-recall curves are shown in Figure 3.5. The legend in Fig-
ure 3.5 encodes the experimental setting for each curve. First, the structure
of the preference graph, G, is specified. The second component of the legend
indicates whether slack rescaling or margin rescaling was employed. The
third component states the number of top ranked windows used for evalu-
ating the recall. Finally, the fourth component (in parentheses) gives the
AUC value.

3.2.5 Discussion

The experiments described in Section 3.2.4 show that structured output
ranking is a natural objective to apply to cascade detection models.

On average, a bipartite preference graph performs best if we require 1000
windows as output, which matches the training conditions. The bipartite
graph was constructed such that constraints were included between the top
1000 sampled windows, and the remaining 99000 windows. However, when
the number of returned windows deviates from 1000, the relative perfor-
mance of the bipartite ranking decreases and other preference graphs give
better performance. The objective is tuned to give the highest performance
under a single evaluation setting, at the expense of other settings.

The complete preference graph ranking, labeled “Allpairs” in Figure 3.5,
gives good performance and tends to have higher performance at high over-
lap levels. While the difference between slack rescaling and margin rescaling
was minimal when using a bipartite preference graph, a much more notice-
able difference is present in the case of a complete preference graph. While
the bipartite preference graph performs better at certain overlap levels when
1000 windows are returned, the complete preference graph is much more sta-
ble across a wide number of windows, and gives the best performance at all
overlap levels if 10 windows are returned per image. Finally, the standard



structured output SVM (labeled “SOSVM”) performs substantially worse
than all ranking variants.

In this section, we have explored the use of ranking for structured output
prediction. We have analyzed both margin and slack rescaling variants of
a ranking SVM style approach, showing better empirical results for slack
rescaling, and proving generalization bounds for both variants in a unified
framework. Furthermore, we have proposed an efficient and parallelizable
algorithm for cutting plane training that scales to millions of data points
on a single core. We have shown an example application of object detec-
tion in computer vision, demonstrating that ranking methods outperform a
standard structured output SVM in this setting, and that fully connected
preference graphs give excellent performance across a range of settings, par-
ticularly at high overlap with the ground truth.

The O(nlogn) algorithm presented here can be adapted to a wide variety
of settings, improving the computational efficiency in a range of ranking
approaches and applications. In the setting of [98, MBZT12], the O(nR)
approach for ranking with a complete preference graph and a fixed number,
R, of loss values can be improved in an analogous manner to O(nlog R).

3.3 Discussion

In this chapter, we have provided an overview of our contributions in novel
risk formulations for structured prediction. We have given a specific focus to
two contributions based on joint kernel support estimation and structured
output ranking. In the next chapter, we present some of our contributions
to the use of expressive function classes and regularization techniques.



Chapter 4

Function Classes and
Regularization

This chapter outlines work that I have done contributing to the development
of novel function classes and applications of semi-supervised and sparsity
regularizers. These topics are naturally grouped in defining the notion of
complexity of a prediction function. The chapter first discusses applications
and contributions in semi-supervised Laplacian regularization (Section 4.1).
Subsequently, in Section 4.2, structured sparsity regularization based on the
k-support norm is presented. Finally, the development of a novel graph ker-
nel for continuous and vector-valued node labels is presented in Section 4.3.

4.1 Semi-supervised Laplacian Regularization

This section is based in part on [BSB09, BSB*11] which in turn built
upon [30]. In this section, we present the application of semi-supervised
Laplacian regularization to canonical correlation analysis, and the applica-
tion of the resulting statistical technique to fMRI analysis.

Canonical correlation analysis (CCA) is a fundamental technique in
statistics and dimensionality reduction that relies on paired data to learn
directions that maximize correlation between the projected representations
in each space [93]. It is readily kernelized (KCCA), enabling a straightfor-
ward non-linear generalization [121, 111, 7, 82]. Dimensionality reduction
techniques that rely on only one modality are incapable of distinguishing
semantically meaningless noise directions, and are not discriminative in na-
ture. In contrast, KCCA is able to learn relevant directions by requiring that
embedded data be correlated with embeddings of data in other modalities,
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and has been shown to increase class separability when compared to single
modality dimensionality reduction [28].

While KCCA often gives superior results to dimensionality reduction
techniques that work on a single modality, it does not directly estimate the
data manifold in any given modality. Additionally, it is only able to uti-
lize data for which correspondence is known to the other modalities. In
order to more robustly learn the relevant directions in the feature space, we
can modify our objective to favor directions that lie along the data mani-
fold. In this section, we describe a method that incorporates these two goals
by employing semi-supervised Laplacian regularization [17]. This method
gives an embedding of the data that makes use of the information between
modalities, as well as the information within each single modality. By us-
ing Laplacian regularization, we are able to learn directions that tend to
lie along the data manifold estimated from a much larger set of data [17].
This gives us greater confidence that the learned directions represent the
underlying statistical structure of the data and that we have not been mis-
led by small sample effects. We show experimentally that learning along
the manifold results in increased performance, even in the fully supervised
setting, in that the learned embeddings give better hold out correlations
for a human fMRI task. Additionally, we show that the learned projection
vectors are interpretable as representing brain regions that are implicated
in the corresponding visual processing task.

4.1.1 A Review of Kernel Canonical Correlation Analysis
Canonical Correlation Analysis

Canonical correlation analysis (CCA) utilizes datasets where samples are
available in more than one modality. CCA projects the data samples from
each modality into a subspace such that the empirical correlation of the
projected data is maximized [93]. Given a sample from a paired dataset
{(x1,91), -y (Tn,yn)} € (X x Y)™, CCA simultaneously finds directions w
and w, that maximize the correlation of the projections of x onto w, with
the projections of y onto w,. This is expressed as

o Bl e wa){y — gy (1)

Wa, Wy \/E[<a: — Mz, wxﬁ]E[(y =y, wy)?]

where F denotes the empirical expectation, and p, and p, the empirical
means in each of the modalities. We may view the general assumptions



of CCA as being that samples from X and ) are generated from some
underlying process which induces a dependence between our paired samples.

We introduce the notation C' to represent the covariance matrix of sam-
ples in X x ), and note that C' decomposes into auto-covariance matries,
and cross-covariance matrices

Cre C
C= ( o zy) 4.2
Cye Cyy (42)

where U, and Cy, are auto-covariance matrices, and Cyy, = CZ; are Cross
covariance matrices. Using this notation, we may rewrite Equation (4.1) to
obtain

T
max e Cay 0y (4.3)

Wz 7wy T T
\/wx CrzWy wy Cyywy

This Rayleigh quotient can be optimized as a generalized eigenvalue prob-
lem, or by decomposing the problem as described in [82].

Kernel Canonical Correlation Analysis

We denote H, the reproducing kernel Hilbert space (RKHS) associated with
k., and denote the associated feature map ¢, : X — H, ie. ky(x;,z;) =
(pz(xi), p2(x5)). We note that in general ¢,(x;) may no longer have an
interpretation in a finite dimensional vector space, but can be viewed as an
element in a function space. We analogously define k,, H,, and ¢,.

We may adapt the representer theorem [102, 140] to the case of multi-
modal data to state that minimizers of the risk functional

flrnlnfk C((ZE%, s awllcvfl(x%)? o 7fk($lf))7 SERE)
(75711’ ... ,xfb,fl(xrll), .. ,fk(a:fl))) +
k
>l fill3), (4.4)
i=1

where ¢ is an arbitrary loss function and €2 a strictly monotonic increasing
function, admit representations of the form

filx) = Zaék‘i(x;,x), (4.5)
j=1

where CL‘; represents the jth sample in the th modality and f; € H; a function
that maps a sample in the ith modality to the reals. This follows directly



from the representer theorem by considering each modality individually (f;)
while holding all other parameters fixed (f; where [ # ).

As a result, we may consider a kernelized version of CCA (KCCA). We
replace vectors w; in our previous linear formulation with functions f;, and
replace covariance matrices with the covariance operator

O
C= = (¢(mi) — o) (d(xs) — pip) " (4.6)

n -
1=1

a linear operator that maps f € H to - >°7 | ¢(x:)((w;), f) [139]. As we are

n

working with multimodal data, we may consider H = @le H; and f to be
the concatenation of each f;. We have used the notation pg here to denote
the empirical mean of our data sample in the Hilbert space. Analogously
to Section 4.1.1, we may also define cross-covariance and auto-covariance
operators C’zy and C’m

Restricting ourselves for the present to the two modality case, we may
write the KCCA objective as

2 Cuyfy oTK,K,B

max = max (4.7)

oo \[[TCoafo fTCyfy, ™7 \JaTK2a BTK2

where fo = >, iga(xi), fy = D2, Bidy(yi), Kz is the kernel matrix such
that [K.]ij = ke(z4, ;) and K, = HK,H where H is a centering matrix

H=1- leeT (4.8)
n
e € R™ being a vector of all ones. As discussed in [121, 7, 82] this opti-
mization leads to degenerate solutions in the case that either K, or K, is
invertible so we maximize the following regularized expression

TK,K
max c 0 , (4.9)

B \/aT (K2 +e,K;)aBT (K§ +eyKy) B

which is equivalent to Tikhonov regularization of the norms of w, and w,
in the denominator of Equation (4.3). In the limit case that £, — oo and
€y — 00, the algorithm maximizes covariance instead of correlation.

4.1.2 Semi-supervised Kernel Canonical Correlation Analy-
sis

Semi-supervised learning is usually presented in the setting of regression or
binary classification [40]. In this setting, the task is to learn a mapping f :



X — Y, where training data are of the form {(x1,91), ..., (Zn,yn)}, with ad-
ditional unlabeled training data available in the X domain, {zp41, ..., Tnip, }-
We will use the variable m, = n + p, for notational convenience.

Semi-supervised Laplacian Regularization

Laplacian regularization introduces an additional term into a regularized risk
function. One may still regularize using a standard function norm on f, as in
Tikhonov regularization, but an additional term penalizes deviations from
the data manifold [17]. The representation of the data manifold is estimated
empirically from training data, and the additional samples {@,41,...,Zm, }
allow us to obtain a much more robust estimate.
In the classic setting, we wish to solve
fHélrLl C((l’l, Y1, fm(xl))7 SRR (:Env Yn, fcc(xn))) (4'10)
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where 7, is the regularization parameter controlling the degree of Laplacian
regularization, P, is the marginal distribution of x, and V 5, is the gradient
of f, along the manifold M. We do not directly observe M or P, so we
must estimate these from the data. As the graph Laplacian converges to
the Laplace-Beltrami operator under appropriate conditions [87], we can
approximate the integral using the graph Laplacian [17]

fnél’,{[l C((xla Y1, fx(xl))a RN (xna Yn, fz(xn))) (411)
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where Z denotes that the empirical graph Laplacian £ was estimated from
both labeled and unlabeled data. One may also prove a representer theorem
for this form of optimization, in which the minimizer lies in the span of the
combined labeled and unlabeled training data [17].

The Two-modality Case

We now have all the necessary ingredients to apply semi-supervised Lapla-
cian regularization to kernel canonical correlation analysis. KCCA deviates
from the classic setting in that modalities X and ) are symmetric, and we
wish to simultaneously optimize functions that act on each of them. Con-
sequently, we develop notation for kernel matrices with and without semi-
supervised data over both the X and ) domains. We denote the design



matrix X = (z1,...,x,) where each column represents a data sample that
has a correspondence to an observation in . We denote the extended design
matrix X = (1,...,@m,), in which all data with and without correspon-
dences are stored. We similarly define matrices Y and Y. We now denote
the kernel matrix computed only using the data in X as K., € R™" the
matrix computed using X and X as K;, € R™X" the matrix computed
using X with itself as Kz € RM=xMz otc. Kernel matrices for ) are de-
fined analogously. The following is a semi-supervised Laplacian regularized
generalization of Equation (4.9)

max o K Ky (4.12)
B /ol (KsuKus + Re) afT (Kgy Ky + Ry) B

where Ry = €, K33 + %Kf@ﬁff{@@ and Rg = €ng@ + %K@gﬁgK@g

4.1.3 Experimental Results
Data

fMRI data of one human volunteer was acquired using a Siemens 3T TIM
scanner, and consisted of 350 time slices of 3-dimensional fMRI brain vol-
umes. Time-slices were separated by 3.2 s (TR), each with a spatial res-
olution of 46 slices (2.6 mm width, 0.4 mm gap) with 64x64 pixels of 3x3
mm, resulting in a spatial resolution of 3x3x3 mm. The subject watched 2
movies of 18.5 min length, one of which had labels indicating the continuous
content of the movie (i.e. degree of visual contrast, or the degree to which
a face was present, etc.). The imaging data were pre-processed using stan-
dard procedures using the Statistical Parametric Mapping (SPM5) toolbox
before analysis [64]. This included a slice-time correction to compensate for
acquisition delays between slices, a spatial realignment to correct for small
head-movements, a spatial normalization to the SPM standard brain space
(near MNI), and spatial smoothing using a Gaussian filter of 6 mm full
width at half maximum (FWHM). Subsequently, images were skull-and-eye
stripped and the mean of each time-slice was set to the same value (global
scaling). A temporal high-pass filter with a cut-off of 512 s was applied, as
well as a low-pass filter with the temporal properties of the hemodynamic
response function (hrf), in order to reduce temporal acquisition noise.

The label time-series were obtained using two separate methods, using
computer frame-by-frame analysis of the movie [14], and using subjective
ratings averaged across an independent set of five human observers [11].



The computer-derived labels indicated luminance change over time (tempo-
ral contrast), visual motion energy (i.e. the fraction of temporal contrast
that can be explained by motion in the movie). The human-derived labels
indicated the intensity of subjectively experienced color, and the degree to
which faces and human bodies were present in the movie. In prior studies,
each of these labels had been shown to correlate with brain activity in par-
ticular and distinct sets of areas specialized to process the particular label
in question [11, 14].

Evaluation Methodology

In order to evaluate the effect of semi-supervised Laplacian regularization
on the performance of KCCA, we have evaluated three variants of the al-
gorithm. In the first variant, we have run KCCA without any Laplacian
regularization. This is achieved by setting v, = v, = 0. The second variant
consists of Laplacian regularization where the empirical Laplacian matrix
was computed using only data for which correspondences between X and
Y were known. In the final variant, we used full semi-supervised Laplacian
regularization, where the manifold was estimated using all available train-
ing data. We have not applied Laplacian regularization on the ) modality
in any of the variants, though this may improve performance in that the
statistical properties and dependencies of the different image variables may
be better modeled. As we are primarily interested in the neuroscientific in-
terpretation of f,,, we have chosen not to exploit these dependencies in this
way.

We also evaluate the performance of the algorithms quantitatively. We
have run five fold cross validation in which we hold out a portion of the data
with correspondences at each fold. As KCCA attempts to maximize Pearson
correlation, we first project the held out data using the learned regressors,
and then measure their empirical correlation.

In all cases, we have used linear kernels on both the input and output
spaces. This is so we may interpret the regressor, f,, as a learned map of the
brain regions implicated in various visual processing. The Laplacian matrix
was computed using a Gaussian kernel with the bandwidth parameter set
to the median distance between all pairs of training data (with and without
correspondences). We have used the symmetric normalized Laplacian £ =
D2 (D— W)D%, where D is the diagonal matrix whose entries are the row
sums of the similarity matrix, W.



Table 4.1: Mean holdout correlations across the six variables in all exper-
iments with five-fold cross-validation. Experiment 1 consists of KCCA us-
ing only data for which correspondences are known. Experiment 2 employs
Laplacian regularization where the Laplacian matrix is estimated using only
data for which correspondences are known. Finally, experiment 3 employs
full semi-supervised Laplacian regularization. Semi-supervised Laplacian
regluarization gives the best performance in all cases.

Motion Temporal Contrast Human Body Color Faces Language
Exp 1 -0.012 + 0.081 0.042 + 0.065 0.095 + 0.086 -0.075 £+ 0.069 0.173 £ 0.073 0.172 + 0.070
Exp 2 0.065 £ 0.066 0.088 + 0.084 0.274 £ 0.093 -0.002 £ 0.079 0.203 £ 0.075 0.231 + 0.074
Exp3 0.170 £ 0.074 0.116 + 0.101 0.340 £ 0.043  0.128 £ 0.089  0.303 + 0.054 0.365 %+ 0.057

Model Selection

We have used two model selection criteria to optimize over the variables
€ and . Both criteria are used as the inner loop of a grid search. In
the first variant, we select the model parameters that maximize a five fold
cross validation estimate of the empirical correlation (using only the training
data). As this is both computationally and statistically inefficient, we have
also evaluated a model selection criterion proposed in [82]. This consists
of creating a random permutation of the correspondences and running the
eigenproblem with the unpermuted data and with the permuted data. The
parameter setting with the maximum norm of the difference of the spectra
of the two eigenproblems is taken to be the optimum.

Results

The visual content of the stimulus is quantified in six variables: Motion,
Temporal Contrast, Human Body, Color, Faces, and Language. We have
repeatedly run all three variants of the experimental setup (Section 4.1.3)
setting our output space to each individual variable. The results for the cross
validation model selection are shown in Table 4.1, and the results for the
spectral model selection are shown in Table 4.2. We have additionally run
experiments with multi-variate output by grouping several of the variables
into three groups: {Visual motion energy, Body, Color}; {Motion, Faces};
and {Motion, Visual motion energy, Color, Faces}. The results of these
experiments using the spectral model selection are shown in Table 4.3.

As we have used linear kernels in all cases, we can interpret the output of
the model by analyzing the weights assigned to different spatially localized
brain regions. We show results for visual stimulus consisting of Faces in



Table 4.2: Mean holdout correlations across the six variables in all exper-
iments with the spectral model selection criterion of [82]. Experiment 1
consists of KCCA using only data for which correspondences are known.
Experiment 2 employs Laplacian regularization where the Laplacian matrix
is estimated using only data for which correspondences are known. Finally,
experiment 3 employs full semi-supervised Laplacian regularization. Semi-
supervised Laplacian regluarization gives the best performance in all cases.

Motion Temporal Contrast Human Body Color Faces Language
Exp1 -0.012 + 0.081 0.042 + 0.065 0.095 + 0.086 -0.075 £+ 0.069 0.173 + 0.073 0.172 + 0.070
Exp 2 0.065 £ 0.066 0.088 + 0.084 0.274 £ 0.093 -0.002 £ 0.079 0.203 + 0.075 0.231 + 0.074
Exp 3 0.170 £+ 0.074 0.116 + 0.101 0.340 + 0.043  0.128 £ 0.089 0.303 + 0.054 0.365 £ 0.057

Table 4.3: Mean holdout correlations across the 3 multi-variate sets in all
experiments with the spectral model selection criterion of [82]. Experiment
1 consists of KCCA using only data for which correspondences are known.
Experiment 2 employs Laplacian regularization where the Laplacian matrix
is estimated using only data for which correspondences are known. Finally,
experiment 3 employs full semi-supervised Laplacian regularization. Semi-
supervised Laplacian regluarization gives the best performance in all cases.

Visual motion energy, Body, Color Motion, Faces Motion, Visual motion energy, Color, Faces
Experiment 1 0.1596 + 0.0807 -0.0827 £ 0.0460 0.1167 £ 0.0785
Experiment 2 0.1873 + 0.0879 0.0602 + 0.0908 0.1498 + 0.0827
Experiment 3 0.2844 + 0.0716 0.1898 + 0.0636 0.2528 £ 0.0579



Figure 4.1, Human body in Figure 4.2, Color in Figure 4.3, and Motion in
Figure 4.4. In Figure 4.5 we show results from multivariate output consisting
of Motion and Faces. We provide a neuroscientific evaluation in the next
section.

4.1.4 Discussion

We observe several trends in Tables 4.1, 4.2 and 4.3. First, our major hy-
potheses were confirmed: for every variate label, the performance improved
with the Laplacian regularization on the labeled data, and performance was
best in the semi-supervised condition. In the semi-supervised conditions
(Experiment 3 as shown in Tables 4.1, 4.2 and 4.3) the additional data
without correspondences is sufficiently close to the marginal distribution
over X to improve results significantly, thus the additional data improves
the results without any information about the correspondences of the data.
Second, the model selection criterion worked very well; the criterion sug-
gested by [82] performed equally as well as the five-fold cross-validation.
Additionally, some variables can be better predicted than others, namely
the presence of faces or human bodies in the viewing content, while some
elicited relatively poorer performance in all experiments.

Figures 4.1 through 4.5 show slices taken through the anatomical image
of one subject, with weight maps obtained from the different analyses of its
functional data superimposed in red, wherein the maps were thresholded at
2 standard deviations in most cases, but had to be lowered in some cases to
reveal any localized activity. We show examples of four of the single-variate
labels for each of the three experiments, as well as one of the sets of multi-
variate experiments. In the multi-variate label example, we show the same
weight map but at different brain volume coordinates in order to visualize
the expected brain activations for each of the lables involved. The maps
corresponding well to the known functional anatomy, and to activations
obtained in the previous regression studies of free-movie-viewing data [11].
Faces obtained high weights in the fusiform cortex (fusiform face area, FFA)
(Figure 4.1); Human Bodies dorso-lateral and ventral parts within the lat-
eral occipital cortex (extrastriate body area (EBA) and fusiform body area
(FBA)) (Figure 4.2); Color obtained high weights in the medial fusiform
cortex where human V4 is located (Figure 4.3). The spatial layout of the
weights thus corresponds well to the previous literature, and indicates that
some of the analyses applied here yield results that are neuroscientifically
meaningful and that can identify distinct cortical regions involved in the
distinct tasks. Semi-supervised Laplacian regularization worked well in that
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(c) KCCA without Laplacian regularization.

Figure 4.1: Faces: activation in the cortical region responsive to the vi-
sual perception of faces, the fusiform face area (FFA). Weight vectors are
plotted over an anatomical image of the volunteers brain. Note that the
semi-supervised Laplacian regularization led to the most specific and most
significant weights in FFA.
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(a) Semi-supervised Laplacian regularized solution.
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(¢) KCCA without Laplacian regularization.

Figure 4.2: Human Body: activation in the cortical region responsive to the
visual perception of human bodies, in the extrastriate body area (EBA) and
in the fusiform body area (FBA). Same observation as in Figure 4.1.
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(c) KCCA without Laplacian regularization.

Figure 4.3: Color: activation in the color responsive cortex (human visual
area 4, hV4). Same observation as in Figure 4.1.
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(b) Laplacian regularized solution.
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(¢) KCCA without Laplacian regularization.

Figure 4.4: Motion: activation in the visual motion complex, area
V54 /MT+. Same observation as in Figure 4.1.



colorranae: >2 SD e color ranae: >2

2

(c) KCCA without Laplacian regularization.

Figure 4.5: Multivariate - Motion and Faces: activations in the visual mo-
tion complex, area V5+/MT+ (left), and activation in the cortical region
responsive to the visual perception of faces, the fusiform face area (FFA)
(right). Same observation as in Figure 4.1.



weight maps thresholded at >2SD show relatively well defined activity of
the regions previously shown to be involved with the features. For other
analyses, e.g. KCCA without Laplacian regularization, we had to reduce
the threshold to 0.5 or 1 (faces and color in the single-variate cases, re-
spectively) to obtain activity in the areas in question, and the maps show
additional, unspecific activity as well.

4.2 k-support Norm Regularization

This section is based on [GHST13a, GDB*13, Blal3] and covers the appli-
cation of the k-support norm as a regularizer for fMRI data, followed by its
application to discrimination between neuromuscular dystrophies.

Functional magnetic resonance imaging (fMRI) is a wide spread modality
within the field of neuroimaging, that measures brain activity by detecting
associated changes in blood flow. The goal of fMRI data analysis is to de-
tect correlations between brain activation and a task the subject performs
during the scan. Many statistical methods have been proposed for analyz-
ing fMRI data, including generalized linear model [14, 12], support vector
machines [145], independent component analysis [11, 13] and kernel canon-
ical correlation analysis [83, BSBT11]. All these methods have to deal with
(a) data that lie in a high-dimensional space, with ten of thousands of vox-
els, (b) a small number of samples, due to the high cost and time consuming
nature of the fMRI acquisition procedure, and (c¢) high levels of noise that
arise from different sources, such as system noise and random neural activity.

Sparsity regularizers are key statistical methods for improving predictive
performance in the event that the number of observations is substantially
smaller than the dimensionality of the data, as is the case in fMRI analysis.
The main methods considered here are the LASSO [151], the elastic net [176],
and the k-support norm [5]. The former two are frequently applied sparsity
regularizers developed in the statistics literature, while the latter is a recently
introduced method that is mathematically related to the elastic net. The
former two have previously been applied to fMRI analysis [37], while we are
the first to apply the k-support norm to the best of our knowledge. We apply
these methods to two different real data sets, the first consists of a healthy
subject viewing a movie [11, 14, BSB09] while the second one consists of
both cocaine addicted and healthy non-drug-using subjects performing a
monetary reward task [75, 92]. Previous works that have explored sparsity
regularization in fMRI are numerous and include [37, 133].



Table 4.4: A summary of the regularizers considered in this section.

Regularizer ‘ Q(w)
LASSO [151] A1]|wl|1
Elastic net [176] AlJwl]lr + Xolw||?

k-support [5] | Al|lwl[} (see Equation (4.13))

4.2.1 Sparsity Regularization and the k-support Norm

Sparsity regularization is a key family of priors over linear functions that
prevents overfitting, and aids interpretability of the resulting models [151,
176, 5, 37, 133]. Key to the mathematical understanding of sparsity regular-
izers is their interpretaion as convex relaxations to quantities involving the
{o norm, which simply counts the number of non-zero elements of a vector.
Two of the most important sparsity regularizers, the LASSO [151] and the
elastic net [176], are achieved by setting €2 to be the ¢; norm of w or a linear
combination of the ¢; and squared ¢ norms, respectively (Table 4.4). The
elastic net has been employed in situations where there may be multiple
correlated signals that should be combined to improve prediction accuracy,
a case where the LASSO would yield a higher variance predictor.

While the LASSO can be interpreted as employing the convex hull of
the ¢y sparsity regularizer, the elastic net is looser than the convex hull of a
norm that combines ¢y regularization with sparsity [5]. However, one may
employ the k-support norm, which is exactly the convex hull of that hybrid
norm. The k-support norm can be computed as

1
2

k—r—1 1 d 2
lw|[y” = Z (Jwl)? + 1 ( Z |w[§> (4.13)
=k—r

=1

‘2

where |w|li is the 7th largest element of the vector and r is the unique integer
in {0,...,k — 1} satisfying

d
1
Wiy > g 2 el > el (4.14)

i=k—r

The k-support norm is closely related to the elastic net, in that it can be
bounded to within a constant factor of the elastic net, but leads to slightly
different sparsity patterns. One can see from Equation (4.13) that the norm
trades off a squared ¢ penalty for the largest components with an ¢; penalty



for the smallest components. While initial experiments have shown promis-
ing results with the k-support norm for a range of machine learning prob-
lems [5], to the best of our knowledge this study is the first to apply the
approach to fMRI.

4.2.2 fMRI Analysis of Cocaine Addiction

The neuropsychological experiment for cocaine addiction data set has a block
design, that included six sessions, with each of them having different condi-
tions. The two varying conditions are the monetary reward (50¢, 25¢ and
0¢) and the cue shown (drug words, neutral words). The session consists
of an initial screen displaying the monetary reward and then presenting a
sequence of forty words in four different colors (yellow, blue, red or green).
The subject was instructed to press one of four buttons matching the color
of the word they had just read. The subjects were rewarded for correct
performance depending on the monetary condition. In this paper, we focus
on the monetary conditions only, and more specifically the session of 50¢
following [92]. The dataset consists of 16 cocaine addicted individuals and
17 control subjects. These were the subjects that complied to the following
requirements: motion < 2mm translation, < 2° rotation and at least 50%
performance of the subject in an unrelated task [75]. For each subject a con-
trast map was computed using the statistical parametric mapping package
SPM2 (http://www.fil.ion.ucl.ac.uk/spm/).

4.2.3 Results

Results are presented on two fMRI datasets. The first consists of a healthy
subject in a free-viewing setting. Data collection was previously described
in [11, 14], while the pre-processing followed [BSB09]. The discriminative
task is the prediction of a “Temporal Contrast” variable computed from the
content of a movie presented to the subject [BSB*11]. This dataset was
employed for the quantitative evaluation due to its larger sample size. The
second dataset consists of control and cocaine addicted subjects [75, 92].
The performance of the different sparse regularization techniques, shown
in Figure 4.6, is evaluated as the mean correlation over 100 trials of random
permutation of the data described in [BSB09]. In each trial, 80% of the data
are used to train the method, while the remaining 20% are used to evaluate
the performance. More specifically, Figure 4.6(a) shows the mean correlation
between LASSO and elastic net against the number of non-zero variables (i.e
voxels), while Figure 4.6(b) shows the mean correlation for the k-support
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Figure 4.6: Mean Pearson correlations between the label and prediction on
the hold-out data over 100 trials for the dataset described in [BSB09] (higher
values indicate better performance). Error bars show the standard deviation.
The LASSO achieves its best performance with a sparsity level substantially
lower than the elastic net, as it suppresses correlated voxels (Figure 4.6(a)).
The k-support norm performs better than the LASSO, elastic net, or Lapla-
cian regularization reported in [BSB'11], and is a promising candidate for
sparsity in fMRI analysis (Figure 4.6(b)). (Figure best viewed in color.)



norm against different k£ values—which are correlated with the number of non-
zero coefficients. LASSO achieves a maximum mean correlation of 0.1198 for
44 non-zero variables, elastic net a maximum mean correlation of 0.1189 for
866 non-zero variables, while k-support norm a maximum of 0.129 for k =
800. This is substantially higher than was previously reported in [BSB*11].

We have additionally visualized the brain regions predicted when ap-
plying the LASSO and the k-support norm to the data from [75, 92]. For
each, we have selected slices through the brain that maximize the sum of the
absolute values of the weights predicted by the respective methods. These
results are presented in Figure 4.7.

The main area of activity shown in Figure 4.7(b) is the rostral anterior
cingulate cortex (rostral ACC). It has been shown to be deactivated during
the drug Stroop as compared to baseline in cocaine users vs. controls even
when performance, task interest and engagement are matched between the
groups [75] and that its activity is normalized by oral methylphenidate [76]—
which similarly to cocaine blocks the dopamine transporters increasing ex-
tracellular dopamine—an increase that was associated with lower task-related
impulsivity (errors of commission). This region was responsive (showed
reduction in drug cue reactivity) to pharmacotherapeutic interventions in
cigarette smokers [45, 59], and may be a marker of treatment response
in other psychopathology (e.g., depression). The LASSO does not show
a meaningful sparsity pattern (Figure 4.7(a)).

4.3 Graph Kernels

This section is based in part on [GHS™13b] and contains material previ-
ously included in the thesis of Katerina Gkirtzou, a doctoral student that I
supervised [73].

Graphs are a powerful and natural way to represent complex data with
integrated structure. Graphs have been used in numerous applications in
a number of different fields, such as (i) computer vision and biomedi-
cal imaging analysis, (ii) bioinformatics, (iii) social networks analysis and
(iv) chemoinformatics. In many applications, the exploration of the data
requires the ability to efficiently compare graphs and to provide a similarity
measurement, a problem known as graph comparison.

A first approach towards this problem is to quantify whether two graphs
are identical, i.e. isomorphic. This leads to a binary similarity measure,
which equals to 1 when the two graphs are isomorphic, otherwise it equals
to 0. Although this idea is intuitive no efficient algorithm is known, as



(b) k-support norm

Figure 4.7: A visualization of the areas of the brain selected by the LASSO
and by the k-support norm applied to the data described in [75]. The LASSO
leads to overly sparse solutions that do not lend themselves to easy inter-
pretation (Figure 4.7(a)), while the k-support norm does not suppress cor-
related voxels, leading to interpretable and robust solutions (Figure 4.7(b)).



neither a proof of NP-completeness nor membership in the class of poly-
nomial time problems are known for the graph isomorphism problem [69,
Chapter 7]. Other similarity measures are based on concepts related to iso-
morphism, such as subgraph isomorphism or the largest common subgraph.
Subgraph isomorphism is analogous to graph isomorphism but it could be
used also when two graphs have different sizes. Unlike, the graph isomor-
phism problem, the subgraph isomorphism problem has been proven to be
NP-complete [69, Section 3.2.1]. A similarity measure can also be defined
based on the size of the largest common subgraph in two graphs. Unfortu-
nately, this problem is also known to be NP-hard [69, Section 3.3].

Despite being intuitive, these approaches suffer from intractable compu-
tational time. Another family of approaches, graph kernels, have been found
to be useful across a wide range of applications in recent studies. They tackle
both the problem of graph representation and graph comparison through
the exploitation of the graph topology by decomposing the graph into sub-
structures and aggregating statistics over these substructures. This strategy
considers a measure of similarity between the graphs as a form of inner prod-
uct. Graph kernels are commonly derived as an instance of the family of the
R-convolution kernels [86], which are a generic way of constructing kernels
of complex objects by decomposing them into discrete structures and com-
paring all pairs of decompositions. Every new decomposition would yield
a new kernel. A first approach would be to decompose the graphs into all
possible subgraphs. However, calculating all subgraphs is at least as hard
as deciding whether two graphs are isomorphic [70]. So it is necessary to
limit the decomposition of the graphs only into specific types of subgraphs
that are computable in polynomial time [161, 143].

Although efficient graph kernels have been developed that have good
performance on discretely labeled graphs, the literature on continuously or
vector labeled graphs is still relatively undeveloped. We help to address
this gap in the literature by proposing a framework for kernel construction
that converts continuous labeled graphs into a sequence of discretely labeled
graphs using a pyramid quantization strategy.

We define a graph as a triplet G = (V, E, L), where V is the vertex set, F
is the edge set and £ : V +— X is a function assigning a label from an alphabet
¥ to each vertex in the graph. The neighborhood N (v) = {v'|(v,v’) € E} of
a vertex v is the set of all vertices adjacent to v, i.e. all vertices connected
with a single edge. The degree d(v) of a vertex v is the number of edges
incident with v. Every graph has at most v vertices, e edges and a maximum
degree of d. A walk in a graph is a sequence of adjacent vertices. A path is
a walk that contains only distinct vertices, while a cycle is a closed walk. A



rooted tree is an acyclic graph with a specified root vertex. A subtree is a
connected subset of distinct vertices that contains no cycles. The height of
a rooted tree or subtree is the maximum distance between the designated
root vertex and any other vertex in the tree or subtree respectively. Subtree
patterns are labeled trees extracted from a labeled graph G for a given depth
h and a given vertex v. Repetition of the same vertex is allowed in subtree
pattern, but it is treated as distinct vertices, allowing a cyle-free pattern.

4.3.1 The Weisfeiler-Lehman test of isomorphism

Our proposed algorithm uses the discretly labeled subtree pattern features
introduced by the Weisfeiler-Lehman kernel [143], which exploits the key
concepts from the one dimensional variant of the Weisfeiler-Lehman test of
isomorphism [171].

A key feature of the Weisfeiler-Lehman algorithm is its fast runtime,
O(he) where h is the maximum number of iterations of the test (effectively
a chosen parameter), and e the maximum number of edges [143].

4.3.2 The pyramid quantization strategy

The Weisfeiler-Lehman algorithm is efficient precisely because it makes use
of a discrete labeling over nodes, which enables an efficient hashing scheme
in order to scale linearly in the number of edges and in the height of subtree
patterns. A problem occurs when extending this method to continuous
labeled graphs: we no longer have a notion of an exact match of a discrete
label, and a hash function that counts approximate matches would implicitly
define a single quantization of the vector space to a discrete set of labels.
A single quantization is inexact, and gives only a weak relationship to the
potentially rich geometry of the original label space. It is also not clear what
the resolution of the quantization should be to maximize performance. To
overcome this, we propose a pyramid quantization strategy similar to the one
used by [78, 77| to determine a logarithmic number of discrete labelings with
increasing granularity for which we run the Weisfeiler-Lehman algorithm. In
other words, we approximate a graph representation with continuous valued
labels as a sequence of graphs with discrete labels of increasing granularity.

Given a vector labeled graph G = (V, E, L), where £ : V + R? is the
function assigning a d-dimensional vector label to each vertex, we want
to derive a hierarchical decomposition of R? as multi-resolution quanti-
zations. The multi-resolution quantizations will then be used to deter-
mine the discrete labeling of increasing granularity. This can be expressed



as a two step process, first we construct a set of quantization functions
QW : R E(()l),() < [ < L that will encode the continuous labels into a
quantization of a given resolution \Eél) | = 2. The quantization function QW
is generated for [ € {0,..., L} to determine multi-resolutions of increasing
granularity, where L = [logy D], D < |V| = v is the number of unique values
in the image of the vertex set V under the label function £. Note that the
single quantization bin for Q) is big enough so that all vertices receive the
same discrete label, while as the quantization resolution moves from coarser
to finer, we end up with Q%) that contains quantization bins that are small
enough so each unique data point from the image of the set V under £ falls
into its own quantization bin. To achieve this hierarchical quantization in
the experiments performed here, we have uses an agglomerative hierarchical
clustering with Ward’s minimum variance method [168].

The second step is to compose the quantization function Q) with the
labeling function £, VI € {0,..., L}, so we can approximate our initial vector
labeled graph G as a sequence of graphs with discrete labels of increasing
granularity:

(OFS
G=(V,E L) %=~ (6,....a®)

- ((v, E,LO) ... (V,E, ,C(L))) : (4.15)

where £0) : V — Z‘((]l) is defined to be QW o £, and E(()l) is the discrete label
alphabet for a given level | of quantization. Note that the topology of the
graph does not change in the sequence of graphs, only the continuous vector
labels are discretized.

We note that quantization schemes of this type, when paired with a his-
togram intersection kernel and an appropriately weighted linear combination
of kernel values across quantization levels, results in a multiplicative error
bound on the optimal graph matching [78, Proposition 3]. We may therefore
interpret the pyramid quantized Weisfeiler-Lehman graph representation as
a function space that enables tight approximations to cost of the optimal
matching over vector representations of subtree patterns.!

4.3.3 Cocaine addiction dataset

We evaluate the approach on a dataset [75, 92, GHST13a, GHS'13b] that
contains an approximately equal number of cocaine addicted individuals and

n practice, we do not use the fixed weighting across quantization levels proposed by
Grauman and Darrell [78], but instead discriminatively optimize over the function space.



control subjects performing a neuropsychological experiment of block design,
called a drug Stroop experiment. The classification task is to discriminate
cocaine from control subjects. The data were preprocessed using statistical
parametric mapping SPM2 [63] and a contrast map for each subject was
produced. Only the subjects that complied to motion < 2mm translation,
< 2° rotation and at least 50% performance of the subject in an unrelated
task [75] were kept.

4.3.4 Graph construction

As our statistical estimator, we have made use of the Elastic Net [176]. This
method is particularly appropriate in fMRI where nearby voxels are likely to
be correlated, and regions responsible for a given function or behavior dis-
tributed across multiple voxels. Furthermore, it is typical that the majority
of voxels in the brain are not discriminative of a specific output. We make
use of the Elastic Net twice in our learning pipeline. In the first instance, we
use the Elastic Net on the raw voxel values to determine a subset of voxels
on which we build a graph representation. Our model selection step has
typically chosen approximately 10% voxels for this stage. We subsequently
compute subgraph statistics over this graph to generate a feature vector,
qSEQ)(G(l)) for a given height A of subtree patterns and a given quantization
level [ for a graph G. Finally, we use the Elastic Net on these subgraph
statistics over all quantization level, in order to determine our final predic-
tion function, with a model selection step to determine appropriate values
for )\1 and )\2.

To construct the graph representation, we have made use of k-nearest
neighbor graphs on the voxels that were selected by an initial training of
the Elastic Net. We symmetrize the k-nn relationship by considering the
edges to indicate an undirected graph structure. While other models of
connectivity are of interest [146, 169], we have found that the use of k-
nearest neighbors to determine the graph topology yields good performance
in general and illustrates the advantages of the pyramid Weisfeiler-Lehman
approach. Furthermore, the subtree statistics considered here implicitly
account for longer distance connections for sufficiently deep subtree patterns.
We set the number of neighbors £ = 5 in all experiments.

To enrich our graph representations of the fMRI contrast maps, we take
advantage of the activation information. At each voxel selected by the
Elastic Net for the construction of the graph, we label it with its activa-
tion. Since the activation has continuous values, our graph representation
is transformed to a continuous labeled graph. Finally, since the initial f{MRI
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Figure 4.8: A visualization of the areas of the brain selected by Elastic Net
as well as a visualization of the learned functions on the quantized Weisfeiler-
Lehman representation. The selected regions correspond to areas previously
implicated as being related to addiction [75].

contrast maps are now represented as graphs with continuous labels on the
vertices, we quantized the continuous activation labels and run the efficient
Weisfeiler-Lehman algorithm in each quantization level to aggregate statis-
tics of subtree patterns of different depth h.

4.3.5 Results

We use the same experimental setup, a random splitting scheme with 50 tri-
als, to estimate the classification performance of pyramid quantized Weisfeiler-
Lehman graph representation and the baseline method on the cocaine addic-
tion dataset. In each trial, a random selection of 80% of the data are used
for training, while the remaining 20% are used to estimate the performance.



Table 4.5: Mean accuracy over the hold-out data of 50 trials of the pyramid
quantized Weisfeiler-Lehman graph representation for four different subtree
pattern depths, h € {0,1,2,3}. Maximum performance is achieved with
subtree patterns up to depth two.

’ Pyramid Quantized Weifeiler-Lehman ‘

h 0 1 2 3
Accuracy | 54.00% | 57.14% | 64.28% | 63.42%

In Table 4.5 we show the performance of the pyramid quantized Weisfeiler-
Lehman graph representation for four different depths of subtree patterns,
while Figure 4.8 shows a visualization of the learned function. Our ap-
proach achieves a mean accuracy of 64.28% for subtree patterns up to depth
two, a significant improvement over the bag of words kernel (h = 0). We
also compare our proposed technique with three other methods on the same
dataset: (i) Gaussian kernel ridge regression, (ii) the Elastic Net with raw
voxels as features, and (iii) the Elastic Net with raw voxels and pyramid
quantized Weisfeiler-Lehman subtree features concatenated in a joint fea-
ture vector. In Figure 4.9 we show the mean accuracy of the final system
and the standard error. Pyramid quantized Weisfeiler-Lehman graph repre-
sentation outperforms the rest of the methods. With a Wilcoxon signed rank
test between the Elastic Net with raw voxels (the best performing baseline
system) and the pyramid quantized Weisfeiler-Lehman graph representation
we determine that our proposed method is statistically significantly better
(p = 0.02). Additionally, a reduction of over 14% in classification error is
recorded between the Elastic Net on the raw voxels and our method.

Figure 4.8(a) shows the areas selected by the Elastic Net, while Fig-
ure 4.8(b) and Figure 4.8(c) show the visualizations of the learned functions
for control and cocaine addicted subjects, respectively. Note that Elastic
Net on the raw voxels selected the rostral anterior cingulate cortex (rostral
ACC), an important region for addictive behavior [GHST13a, GHS™13b].

Although our method works in an implicitly high dimensional space, we
empirically observe that Elastic Net regularization controls the complexity
at each stage of the pipeline. The first learning step selects approximately
1100 voxels. Using the pyramid quantized Weifeiler-Lehman graph represen-
tation, we generate a feature vector of length 6 x 10°, but with a sparsity of
~ 2%. The second application of Elastic Net selects only ~ 2K dimensions.
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Figure 4.9: Mean accuracy and standard error on the cocaine addiction
dataset. The compared methods are (left to right) Gaussian kernel ridge
regression (GKRR), the Elastic Net on raw voxels, pyramid quantized
Weisfeiler-Lehman (WLpyramid), and the Elastic Net with a concatena-
tion of the raw voxels and the pyramid quantized Weisfeiler-Lehman fea-
tures (Combined EN+WL). The horizontal red line indicates chance perfor-
mance. The pyramid quantized Weisfeiler-Lehman features perform better
than Gaussian kernel ridge regression and the Elastic Net on raw voxels with
statistical significance.

In each step, the method retains complexity much lower than a “simple”
linear function over tens of thousands of voxels as has been proposed in
previous works.

Several broad observations are apparent from our quantitative results.
From Table 4.5, we note that subtree patterns up to depth two seem to
perform best, and that deeper subtree patterns begin to reduce average per-
formance. This indicates that the big-O complexity of the graph representa-
tion is only slightly higher than using a simple linear function. The proposed
method performs significantly better than the Gaussian kernel ridge regres-
sion and the Elastic Net baselines (see Table 4.5 and Figure 4.9). In our
final experiment of combining the raw voxel values with the subtree pattern
features, we found that performance decreased slightly from that of only
considering subtree pattern features.



4.4 Discussion

In this chapter, we have discussed three contributions unified by their re-
lationship to regularization and function classes, as well as their applica-
tion to fMRI analysis. In Section 4.1 we discussed the application of semi-
supervised Laplacian regularization to kernel canonical correlation analysis.
Subsequently, in Section 4.2, we demonstrated the novel application of the
k-support norm to the problem of fMRI analysis. Finally, we developed
a pyramid quantization strategy for adapting kernels on discretely labeled
graphs to the case of continuous labeled graphs in Section 4.3. In the next
chapter, we discuss our contributions to representation and inference in the
regularized risk framework.






Chapter 5

Representation and Inference

Inference is an essential step to achieving good prediction with a struc-
tured output model. Not all models are tractable, and the balance between
an expressive yet tractable model whose parameters can be learned is the
essence of modeling in this setting. The selection of an expressive model
class that maintains efficient inference can result in high quality results, e.g.
as demonstrated in [OB14] (Figure 5.1). Our contributions to efficient infer-
ence strategies include [BL09, Blall, FB12, BZG13, OB14]. In this chapter,
we highlight in particular contributions in branch-and-bound inference for
object detection, and efficient inference in taxonomic prediction by the ex-
ploitation of computational advantages of a tensor product decomposition
of the joint feature map.

5.1 Branch-and-Bound for Object /ROI Detection

One of the results of my doctoral research was the development of a branch-
and-bound framework for object detection with bounding boxes [27, 113,
114, 24]. Subsequent to that work, I have extended this framework in several
directions, including the incorporation of context and the efficient detection
of multiple object instances [BL09, Blall]. In this section, I focus on this
latter aspect, which was presented in [Blal1].

Non-maximal suppression has been employed in many settings in vision
and image processing. In image processing, objectives for edge and cor-
ner detection have been specified in terms of the eigenvalues of a matrix
containing local oriented image statistics [84], while more recently general
objectives for object detection have been trained discriminatively [162, 47,
115, 29, BL09, BVZ10, 67]. Often, an objective function specifies a property

67



Figure 5.1: Examples of results obtained on healthy (top) and pathological
(bottom) images from the benchmark DRIVE dataset [147]. From left to
right: original images, ground truth labelings, 2nd human observer labelings,
the segmentations achieved using the method described in [OB14].

of interest in image coordinates, but it is the arg maximum of the objective
rather than scalar values that is of importance. From this perspective, an
ideal objective would place all its mass on the true location and give zero
output elsewhere. In practice, this is rarely the case, and the function out-
put consists instead of hills and valleys characterizing intermediate belief in
the fitness of a given location. Discriminative training of detection models
can lead to the need for non-maximal suppression as more confident detec-
tions will have higher peaks than less confident ones. Without non-maximal
suppression the next best-scoring detections will almost certainly be located
on the upper slope of the peak corresponding with the most confident de-
tection, while other peaks may be ignored entirely. One may interpret this
as maximizing the log-likelihood of the detections assuming that they are
independent, while in fact there is a strong spatial dependence on the scores
of the output.

Here, we interpret commonly applied non-maximal suppression strategies
as the maximization of a random-field model in which energies describing
the joint distribution of detections are included. This insight enables us
to characterize in general terms the maximization problem, and to make
use of existing theoretical results on maximizing submodular (minimizing
supermodular) functions. As a result, we can adopt an efficient optimiza-



tion strategy with strong approximation guarantees. This is of particular
interest as maximizing a submodular function is in general NP-hard. The
resulting optimization problem can be solved by a series of inter-related op-
timizations. Here, we follow Lampert et al. and approach the optimization
using a branch-and-bound strategy that enables fast detections of typically
tens of milliseconds on a standard desktop machine [113].

The branch-and-bound strategy we consider here is a best first search
that makes use of a priority queue to manage which regions of the space of
detections to explore. Furthermore, the inter-related optimizations resulting
from branch-and-bound have a very benign structure in that each problem
can use intermediate results stored in the priority queue by the previous
optimization. We show empirically that, while reuse of these results does not
always give an optimal increase in speed, that there is a very simple strategy
for the selective reuse of intermediate results that does give optimal empirical
performance. This is further illuminated by several theoretical results that
motivate the strategy.

5.1.1 Related Work

Viola and Jones developed one of the best studied and widely used generic
detection algorithms [162]. A key step in their algorithm can be interpreted
as non-maximal suppression, in which they cluster highly overlapping de-
tections and represent clusters by only one detection. Thus, peaks in the
detection landscape are compressed to a single detection, suppressing other
output.

A key question in such strategies is which metric to use when suppressing
detections that are too close. A common approach in the recent object
detection literature (e.g. [56, 158, 159]) is to make use of a detection specific
overlap measure, such as the one used in the PASCAL VOC object detection
challenge [52]. It has been noted that this overlap measure has several
favorable properties compared to other measure such as invariance to scale
and translation [88].

Desai et al. have taken an interesting approach in which the joint distri-
bution between object detections is modeled linearly given features captur-
ing statistics of the joint distribution of objects [49]. The model is trained
discriminatively, but without approximation guarantees due to the greedy
optimization employed in a cutting plane training algorithm. Their sub-
problem shares key characteristics with our random field characterization
of non-maximal suppression, and the explicit characterization of a tractable
family of models is a key contribution of the work described in this section.



The approaches cited above largely work by employing sliding windows
or other window subsampling strategies, but alternatively, variants on Hough
transform detections have also been used. Leibe et al. proposed a widely
adopted model in which visual words vote for an object center [120]. Gall
and Lempitsky have developed a state of the art detection framework us-
ing Hough forests [67]. Lehmann et al. have presented a line of work that
extends these models to efficient detection [118, 119] where the second ci-
tation uses branch-and-bound for optimization of detection. The present
work in contrast is agnostic to the exact model employed, and the branch-
and-bound framework we employ has been applied to several variants of
non-linear models that cannot be represented using Hough transforms [114].

Barinova et al. have proposed a principled method of non-maximal sup-
pression that can be interpreted as an explicit approximation to a full prob-
abilistic model [10]. Their work is to our knowledge the first to couple
approximation results for the maximization of submodular functions with
object detection. Their work, however, is (i) restricted to models for which
one can build a Hough image whereas the class of functions for which we
can design a practical bound is more general, and (ii) their approach is re-
stricted to very low dimensional detection parametrizations because Hough
images are expensive to build for more than a few dimensions. Such an
approach additionally must recompute a Hough image after each detection,
while the proposed non-maximal suppression model can reuse the same data-
structures (such as integral images [162, 114]) for subsequent detections.

Maximization of a submodular function with monotonic properties is
common to many problems in computer science, from robotics [91] to social
network analysis [100] and sensor networks [80, 108], and has been stud-
ied extensively in the operations research literature (a toolbox by Andreas
Krause contains many of the algorithms developed there [107]). Branch and
bound has been employed to find optimal solutions to the (in general) NP-
hard problem [74], but has not, to our knowledge, been applied to greedy
optimization of supermodular functions with optimal approximation guaran-
tees, as in this work. The variety of problems that share the same structure
promises that analogous optimization approaches to that proposed in this
work may have wider application across computer science domains.

5.1.2 The Energy

We consider a very general class of joint energy functions that contains
both an appearance model of the object class of interest, as well as terms
incorporating beliefs about the joint distribution of object detections. These



latter terms may be the result of a learning procedure, a prior over the joint
positions of objects [49], or a set of constraints chosen a priori to disallow
detections that have high overlap. We consider energies of the form

max Y (£, 6(a. )} — ). (5.1)

Here we consider € that factorizes into pairwise terms as well as higher
order terms

Q(:l/) - ZQ<yiayj) + ZQC(yC) (5'2)

ij ceC
N—_——
higher order terms

where z is an image, v; is an object detection,! y is a collection of detections,
¢ is a joint kernel map, f is a function living in the RKHS defined by ¢,
Q) is a penalization term for detections that overlap too closely, and ¢ € C
is a clique in the set of cliques contributing to the energy. In principle,
higher order terms that are supermodular (see Section 5.1.3) do not affect
the anaylsis in this paper. For simplicity, we will not treat them explicitly
in the sequel.

We note that this form of energy for the detection of multiple objects
may occur in diverse settings, such as object detection test time inference,
detection cascades, and inference for cutting plane training of structured
output learning [29, 97].

5.1.3 Minimization of a Supermodular Function

Many optimization approaches to random field models, such as graph cuts,
rely on the submodularity of a function to be minimized. In the context of
image segmentation, this is reflected in a general principle that neighboring
pixels are likely to share the same label. Non-maximal suppression, however,
enforces the exact opposite effect: neighboring detections are likely to have
different labels, at least when the appearance term indicates an object is
likely to be present in the vicinity.

In particular Equation (5.1) is the maximization of a submodular (min-
imization of a supermodular) function. Submodularity holds for a set func-
tion if for any two subsets of detections, A and B such that

ACB (5.3)

'In the sequel we pay particular attention to detections parametrized by bounding
boxes.



the following holds

fLAU{y}) — f(A) = f(BU{y}) — f(B). (5:4)

This is easy to show as

FAU{y) = F(A) = (fo@y)n—> Qusy) (55)

i€A

(foo(@y)n =D Qyiy) = (fo@y))n—Y QUyiy)  (5.6)
i€A i€EB

0 > — > Quiy) (5.7)

i€B\A

Supermodular higher order terms in Equation (5.2) will be negated, result-
ing in submodularity. Equation (5.1) is therefore very difficult to optimize
globally for multiple detections as maximizing a submodular (minimizing a
supermodular) function is in general NP hard.

As our proposed optimization methodology is based on branch-and-
bound, the practical constraints of its application to global optimization
are key. Branch and bound ceases to be efficient due to curse of dimen-
sionality for approximately 6 or more dimensions. While a bounding box
provides a low (four) dimensional parametrization for single object detec-
tion, joint optimization of even two boxes leads to a combinatoric explosion
of the complexity of the algorithm and is infeasible already for relatively
small images. However, as has been exploited by Barinova et al. [10], strong
theoretical results about the maximization of submodular functions indi-
cates that a greedy approach gives optimal approximation guarantees for
submodular energies [132]. Consequently, our optimization strategy will be
to find the best detection without taking into account the non-maximal sup-
pression terms, and then iteratively find subsequent detections, taking into
account non-maximal suppression terms only with previously selected detec-
tions. The next section addresses the specific implications of this approach
for branch and bound strategies, in particular how the structure of the prob-
lem can be exploited to improve the computational efficiency of subsequent
detections.

5.1.4 Branch and Bound Implementations

Efficient subwindow search (ESS) is a branch and bound framework for ob-
ject detection that works by storing sets of windows in a priority queue [113,
114]. Sets of windows are specified by intervals indicating the minimum and



maximum coordinates of the four sides of the bounding box, and are ordered
by an upper bound on the maximum score of any window within the set.
This upper bound, f , must satisfy two properties in order to guarantee the
optimality of the result:

J¥) = ) ey (58)
fwh) = f) (5.9)

where Y is a set of bounding boxes specified by intervals for the sides of
the box, and y is an individual window. The first property states that the
upper bound is a true bound, while the second states that the score for a set
containing exactly one window should be the true score of the window. Given
these properties, when a state containing only one window is dequeued, we
are guaranteed that this window has the maximal score of all windows in
the image.

As we are pursuing a greedy optimization strategy, we wish to be able
to compute upper bounds of the augmented quality function that contains
both the unary terms, and the pairwise non-maximal suppression terms.
Here, we discuss how to do so for a class of pairwise terms that are mono-
tonic functions of the ratio of the areas of intersection and union of the two

windows [52]
Qyi,y5) =g ( (5.10)

where ¢ is any non-negative monotonic function. Consequently, for the kth
detection we require an upper bound for

Area(y; Ny;)
Avea(y; U )

E—1
(fr (@, ur))m — > Ui, i) (5.11)
i=1
where detections are ordered by their selection by the greedy optimization
strategy. We may do so by taking the sum of two bounds, that of the unary
terms, the construction of which is discussed for a number of linear and
non-linear function classes in [114], and that of the non-maximal suppression
term. The bound on the non-maximal suppression terms can be computed
as

Area(y; Ny) mingey Area(y; Ny)
maXx —g\ —————~ || = —9g
yey Area(y; Uy) maxycy Area(y; Uy)
mingcy Area(y; Ny) >

=-9 ((maxyey Area(y)) + Area(y;) — (minyey Area(y; Ny))
(5.13)

(5.12)




The computation of the bounds for area of overlap require only constant
time given sets of windows specified by intervals.

A key property of greedy optimization of bounds of this form is that
the objective for subsequent detections differs only by the subtraction of
one additional € term. Since {2 is non-negative, this means that any valid
bound for an earlier detection remains a valid upper bound for a subsequent
detection (Equation (5.8)). This suggests that the computation required
to find an earlier detection may be leveraged to more efficiently discover
subsequent detections by keeping the priority queue expanded by an earlier
detection. We also note, however, that Equation (5.9) may be violated if we
simply continue the ESS branch-and-bound procedure without modification.
This is because a state may be pushed into the priority queue containing
only one window, but that does not consider non-maximal suppression terms
resulting from detections discovered after that state was pushed into the
queue. We can account for this by modifying the ESS algorithm in two
ways: (i) we augment a state in the priority queue to store not only the
upper bound and intervals specifying the set of bounding boxes, but also to
store the number of previous detections considered in the computation of
the upper bound, and (ii) we modify the termination criterion to check that
the number of detections used for computation of the upper bound is equal
to the number of detections found up to that point. If not, the bound is
recalculated using all previous detections, and the state is re-inserted into
the queue. We make a further assumption on the form of g for the purposes
of subsequent analysis:

0 ifzx<y
g(x) = . (5.14)
oo otherwise

where v is a threshold on the overlap score (e.g. 0.5) above which multiple
detections are disallowed. This results in the same non-maximal suppression
criterion as used in recent state of the art detection strategies [56, 158, 159].

With these modifications, we can define a family of branch-and-bound
strategies for multiple object detections. For each subsequent detection, a
strategy may either reset the priority queue to contain a single state contain-
ing all possible windows in an image, or it may use a priority queue expanded
from a previous detection (Figure 5.2). Each of these strategies will result in
the same set of detections. Consequently, the goal is to determine a strategy
or subset of strategies that reduces the expected computation time? of all
detections. We fix the number of detections to 10 in this work and note that

2We use here the number of dequeuing operations required as a platform independent



Figure 5.2: Mapping of the selection of an optimal strategy to a shortest
path problem. The resulting graph is constructed here for four detections.
Horizontal moves correspond to keeping an existing priority queue for a sub-
sequent detection, while diagonal moves correspond to resetting the priority
queue to the root node containing the set of all bounding boxes. Cj; corre-
sponds to the cost of computing the jth detection using the priority queue
carried on from the ith detection. Cp; corresponds to the cost when resetting
the priority queue prior to computing the jth detection. All edges pointing
towards a given node have the same cost. This construction demonstrates
that the complexity of computing the optimal strategy given the branch-
and-bound costs are O(n?) for n detections (see text). These costs are not
known at test time, but we show empirically that optimal strategies have a
very simple form (Section 5.1.6).



a strong pattern is apparent in the empirically observed computation times
indicating that results are likely to generalize to other numbers of detections
in real data.

5.1.5 Theoretical Results

Branch and bound can be characterized as a best-first search strategy over a
DAG whose nodes are isomorphic to a Hasse diagram with direction assigned
by set inclusion. We use the notation ) to indicate the maximal (root)
element of the Hasse diagram containing all possible windows, Y to indicate
a set of windows (Y C Y, |Y| > 1), and y to indicate an individual window
(y € V). In practice, a subset of possible edges are considered corresponding
to those such that Y can be represented by intervals. Furthermore, we
consider a deterministic rule for splitting ¥ into two subsets following [113].
We denote the set of nodes visited by the best-first search from the root
node with an upper-bound f as S C P(Y), where P()) denotes the power
set of V.

Theorem 5.1.1. For valid upper bounds fl and fg,
HY) = oY) W = §; C5; (5.15)

Proof. Best first search expands all no@es with upper boun(j greater than
the value of the true detection f(y*). fo(Y) > f(y*) = fi(Y) > f(y*),

~

but there may be additional Y for which fo(Y) < f(y*)Af1(Y) > f(y*). O

Corollary 1. SAk - Sf_, where k > i and fy, is a bounding function for the
greedy optimization subproblem corresponding to detection k.

Corollary 1 implies that there is a strict ordering of the number of nodes
expanded by different objectives. As any priority queue expanded up to
the point of an earlier detection will contain elements computed with a lose
upper bound, we conclude that there is a potential computational advantage
to resetting the priority queue to the root node for a subsequent detection.
However, we also note that if the values of the function change only slightly,
there will be a computational overhead to expanding the same nodes over
again. Consequently, there may instead be a computational advantage to
keeping an existing priority queue.

Stated simply, if we reset the queue to the root node we may have to
re-expand nodes that had already been expanded in the previous round. If

measure of the computation time. We note in particular that the bound computation is
constant for the family of Q considered here, making this a natural unit of measurement.



we don’t reset the queue, we may have to go through a large number of
nodes that have been expanded, but violate the non-maximal suppression
condition in Equation (5.14).

Theorem 5.1.2. The number of nodes to be re-expanded on reset of a queue
for detection k is upper bounded by the sum of nodes expanded by other
strategies up to that point.

Proof. Nodes that have been previously expanded in round ¢ can be cat-
egorized as belonging to one of two groups: A(i) those for which fz(Y) >
Fy)AFe(Y) = F(y*) and (if) those for which fi(V) > F(y)Af(Y) < F(y").
All nodes in the first case will be expanded by both strategies, while nodes
in the second case will be expanded by the previous detections, but not by
the current detection. ]

The proof of Theorem 5.1.2 also indicates that in subsequent rounds after
a reset, the marginal number of nodes to be expanded is strictly ordered,
the older the priority queue, the more nodes will need to be expanded.
This implies that once a priority queue has been reset and expanded until a
subsequent detection is found, it will be superior to keep using that priority
queue rather than one expanded from a previous set of detections.

These theoretical results indicate that for n detections, there are at most
271 possible strategies of interest: for each detection after the first, we may
either keep the existing priority queue with all expanded states, or we may
reset the queue to the root node. If we were to know ahead of time all costs
associated with a given choice, we could use a single-source shortest path
algorithm to determine the optimal strategy. Figure 5.2 shows a mapping
of the problem to a graph for four detections. As the graph is a DAG, the
complexity of this procedure is O(V'), where V is the number of vertices.
For our graph construction, V = w + 2 = O(n?) resulting in an overall
complexity of O(n?) for n detections. This allows us post hoc to efficiently
determine the optimal strategies in our empirical analysis.

This result unfortunately does not allow us to determine the lowest cost
approach without precomputing all costs. Possible approaches would be
to compute the empirical costs of these strategies for a sample of data, or
to use a branch-and-bound strategy in the shortest path algorithm to avoid
computing all edge costs. However, we show in Section 5.1.6 that all optimal
strategies selected by this analysis on the PASCAL VOC data set have a
simple form. This form consists of resetting the queue for a fixed number
of initial detections, and then keeping the resulting priority queue without



Table 5.1: Statistics of the number of resets to the root node required by
optimal strategies. Statistics are reported across classes.

|7v=025 =050 ~=0.75

min 3 2 1
median 4 3
max 4 4 3

any resets for all subsequent detections. In practice, this indicates that only
n — 1 of the possible 2"~ strategies are of interest.

5.1.6 Empirical Results

We present results for a modified implementation of the publicly available
ESS code described in [114]. We use the feature extraction and trained
models downloaded from the author’s webpage. All results are reported on
the test set of the PASCAL VOC 2007 data set [52], with a different objective
trained for each of the 20 classes. Figure 5.3 shows the number of splits
required for several selected classes, as well as the average across all classes
for varying values of v (Equation (5.14)). Figure 5.4 shows the number of
splits conditioned on the presence or absence of the class of interest averaged
across all classes. Table 5.1 shows statistics of the optimal strategy found
by a shortest path search. For all classes, the optimal strategy consists of
resetting the priority queue to the root node for a number of initial detections
followed by re-using the existing priority queue for all subsequent detections.
Table 5.2 shows the ratio of the amount of computation required by two
simple strategies compared to the optimal strategy.

5.1.7 Discussion

Several broad conclusions can be drawn from the experiments reported in
Section 5.1.6. The first, and most important for practical application of
branch-and-bound to object detection with non-maximal suppression, is that
there is a regime in which resetting the priority queue is more efficient than
keeping an existing queue. However, after a few detections, ranging from
one to four depending on the class of interest (Table 5.1), it is better to
keep an existing priority queue for all subsequent detections. The proof of
Theorem 5.1.2 indicates that more recently reset priority queues are always
preferable to older queues. This has advantages, both in terms of the sim-
plicity of the set of useful strategies, as well as in terms of reducing memory
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Figure 5.3: Number of splits per subsequent detection when resetting the
priority queue at different detections vs. keeping an existing priority queue.
x-axis: detection number, y-axis: average number of splits across all images

in the VOC2007 test set.



Table 5.2: Ratios of the amount of computation required by two simple
strategies to the optimal strategy. The first, naive strategy consists of reset-
ting the priority queue to the root node at each subsequent detection. The
second strategy consists of keeping a single priority queue for all detections
without any resets to the root node. Statistics are reported across classes.

v=0.25| all reset no reset v =0.50 | all reset no reset
min 1.36 1.17 min 1.38 1.16
median 1.48 1.22 median 1.52 1.20
max 1.94 1.28 max 2.19 1.28
~v=0.75| all reset no reset

min 1.59 1.14

median 2.04 1.16

max 3.15 1.20

(d) =, y=0.25 (e) —, v=0.50 (f) =, v=0.75
Figure 5.4: Number of splits per subsequent detection when resetting the
priority queue at different detections vs. keeping an existing priority queue.
x-axis: detection number, y-axis: average number of splits across all images

and classes in the VOC2007 test set conditioned on the presence or absence
of an object of interest (denoted + and —, respectively).



usage.

Varying behaviors were found when using differing values for ~. In gen-
eral, the lower the value of 7 (more strict non-maximal suppression) the
more likely resetting the priority queue is beneficial. As 7 increases from
0.25 to 0.75 the median number of resets taken by the optimal strategy for
a given class decreases from 4 to 2. This makes intuitive sense as lower val-
ues of  result in strictly higher numbers of nodes in the search graph that
will be suppressed in subsequent branch-and-bound optimizations. A large
number of expanded nodes around a peak will result in wasted computation
as they are subsequently pruned by non-maximal suppression. Conversely,
the higher the overlap threshold (less strict non-maximal suppression), the
more likely keeping the existing priority queue is helpful.

Conditioning on the class label does not seem to show a large difference
in the average number of splits per detection (Figure 5.4). This supports
the idea that strategies may be fixed ahead of time.

The marginal cost of the first detection after resetting the priority queue
to the root node is not strictly increasing (see e.g. Figure 5.3(d)), but is
empirically observed to do so for many classes, and in the average perfor-
mance across all classes (Figures 5.3(j)-5.3(1)). This result is in line with
Theorem 5.1.2 which says that the upper bound on subsequent detections
is increasing. This is especially apparent after the first few detections.

Finally, Table 5.2 indicates that of the simple strategies consisting of ei-
ther always resetting the priority queue or never resetting the priority queue,
it is preferable to never reset the priority queue. Our experiments showed
that the amount of required computation for 10 detections was higher for
each class and overlap threshold when using the resetting strategy than the
simple strategy of always keeping the same priority queue.

Commonly applied non-maximal suppression strategies can be inter-
preted as optimization of a random field model in which non-maximal sup-
pression is captured by pairwise terms encoding the joint distribution of
object detection. We have shown in this work how to adapt a branch-
and-bound strategy to optimize jointly over multiple detections with non-
maximal suppression terms. An optimal approximation result allowed us to
frame this as the subsequent application of inter-related branch-and-bound
optimizations, enabling us to reuse computations across multiple detections.
It is possible to frame the search for a computationally optimal strategy as
a shortest path problem on a DAG with O(n?) vertices, resulting in effi-
cient post hoc computation of the optimal strategies. We have observed
that these strategies have a very simple form: although every length n — 1
bit string encodes a valid strategy resulting in 27! possible strategies, all



empirically optimal strategies consisted of first resetting the priority queue
for a small number of detections, followed by keeping an existing priority
queue. Furthermore, simply keeping a single priority queue for all detections
resulted in only a modest increase in the total amount of required compu-
tation over the optimal strategy. This indicates that simple strategies can
significantly improve computational performance over the naive application
of branch-and-bound in serial.

5.2 Taxonomic Multi-class Prediction

This section is based on [BZG13|.

In many fields where large numbers of objects must be categorized, in-
cluding computer vision, bioinformatics, and document classification, an
underlying taxonomic structure is applied. While such taxonomies are use-
ful visualization tools to organize data, and to talk about inter-relationships
between (sub)categories, it is less clear whether taxonomies can help to per-
form structured learning, or whether learned taxonomies outperform those
imposed by domain experts.

Several learning algorithms have been developed that make use of user-
imposed taxonomies, with the main goal being to improve discriminative
performance by using hierarchical structure. For example, [177] proposed
a learning framework that incorporated semantic categories, and [23] im-
plemented structured output prediction based on a fixed taxonomic struc-
ture. For the most part, these previous works have have found that taxo-
nomic structure results in slight improvements in performance at best, while
sometimes decreasing performance. The empirical results in this paper give
strong evidence that this may be the result of the user-imposed taxonomy
not being aligned to the feature similarities in the data.

In this paper, we make use of a non-parametric dependence measure, the
Hilbert-Schmidt Independence Criterion (HSIC), to learn taxonomies. We
establish the equivalence between taxonomies and tree structured covariance
matrices, and show that the latter constitute a natural way to encode tax-
onomies in structured prediction problems (indeed, the HSIC is a regularizer
for structured output SVM when taxonomies are used). Moreover, we use
this tree structured covariance representation to develop a highly efficient
algorithm for structured prediction with taxonomies, such that it can be
used in large scale problems.

A number of approaches have been proposed for the discovery of taxo-
nomic structure and relationships between classes. Dependency graphs and



co-occurrences were modeled in [25, 112]. [152] proposed to perform a top-
down greedy partitioning of the data into trees. Hierarchical clustering has
been employed in [53, 79]. Marszatek and Schmid first made use of a se-
mantic hierarchy [127], and later proposed to do a non-disjoint partition
into a “relaxed hierarchy” which can then be used for prediction [128]. [175]
assume a given taxonomy and then uses a group lasso structured sparsity
regularizer with overlapping blocks conforming to the taxonomic structure.
In contrast, we do not make the assumption implicit in the group lasso that
individual features are exactly aligned with category concepts. [MBZT12]
perform hierarchical categorization using a taxonomic feature map and loss,
but perform an explicit feature map and do not gain the computational ad-
vantages arising from the use of tree structured covariance matrices. [129]
consider structured prediction of hierarchically organized image labels using
a latent variable method to estimate missing annotations in a weakly super-
vised setting. None of these methods has identified the relationship between
hierarchical prediction and tree-structured covariance matrices. [23] made
use of a learning framework that is perhaps the most similar to that em-
ployed here, based on structured output prediction. However, they did not
learn the taxonomy using a non-parametric dependence measure as we do,
but instead used a fixed taxonomic structure.

While these works all make use of some clustering objective distinct from
the learning procedure, in contrast, this work employs the Hilbert-Schmidt
Independence Criterion, which interestingly is coupled with the learning
algorithm in its interpretation as a direct optimization of the function prior
in /5 regularized risk with a taxonomic joint kernel map (cf. Equation (5.28)
and Section 5.2.5).

Recent works addressing the machine learning aspects of taxonomic pre-
diction include [170], which embeds a taxonomic structure into Euclidean
space, while in contrast our method can efficiently learn from taxonomic
structures without this approximation. [18] learn a tree structure in order
to improve computational efficiency by only evaluating a logarithmic num-
ber of classifiers, while [68] relax this tree structure to a directed acyclic
graph. Such greedy methods are advantageous when the number of cate-
gories is too large to evaluate exactly, while the current paper addresses the
problem of efficient learning when exact evaluation is desired.

In experiments on the PASCAL VOC [52], Oxford Flowers [134], and
WIPO-alpha [173] datasets, we show that learned taxonomies substantially
improve over hand-designed semantic taxonomies in many cases, and never
perform significantly worse. Moreover, we demonstrate that learning using
taxonomies is widely applicable to large datasets, thanks to the efficiency of



our algorithm.

Our paper is organized as follows: in Section 2, we review structured
output SVMs, following [154]. We proceed in Section 3 to establish the
equivalence of taxonomies and tree structured covariance matrices. In Sec-
tion 4, we show how tree structured covariance matrices may be incorpo-
rated into a structured output learning algorithm, and in particular that
this representation of taxonomic structure results in substantial computa-
tional advantages. In Section 5, we determine how to learn edge lengths of
a taxonomy given a fixed topology using the Hilbert-Schmidt Independence
Criterion. Finally, Section 6 contains our experimental results.

5.2.1 Taxonomic Prediction

Given a training set of data & = {(x1,y1),..-, (Tn,yn)} € (X x )", a
structured output SVM with slack rescaling [154, 97] optimizes the following
learning objective

R S
= +C 5.16
w€%12€R2||w]\ ¢ (5.16)

s.t. Z%?gi}(«w@(%yi) = ¢(xi, ¥i)) — 1) Ay, 93) = =& (5.17)

£€=>0 (5.18)

where ¢ is a joint feature map, and A(y;, §;) measures the cost of the erro-
neous prediction g; when the correct prediction should be y;.

Cai and Hofmann proposed a special case of this learning framework in
which ) is taxonomically structured [36]. In that setting, ¢(z;,y;) decom-
poses as ¢y (yi) @ ¢z (x;) and ¢y (y;) is a binary vector that encodes the hier-
archical relationship between classes. In particular, a taxonomy is defined
to be an arbitrary lattice (e.g. tree) whose minimal elements (e.g. leaves)
correspond to the categories. ¢, (y;) is of length equal to the number of
nodes in a taxonomy (equal to the number of categories plus the number of
ancestor concepts), and contains non-zero entries at the nodes correspond-
ing to predecessors of the class node. It is straightforward to extend this
concept to non-negative entries corresponding to the relative strength of the
predecessor relationship. The loss function employed may depend on the
length of the shortest path between two nodes [167], or it may be the length
of the distance to the nearest common ancestor in the tree [36].

We show in the next two sections that structured prediction with tax-
onomies is intimately tied to the concept of tree-structured covariance ma-
trices.



(a) A binary rooted tree. Edges (b) Rerooting the tree by

are annotated by their length. setting node “b” to the
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sum of the path lengths between leaf nodes are preserved re-
two leaf nodes. gardless of the rooting.

Figure 5.5: An arbitrarily rooted binary tree may be rerooted without chang-
ing the pairwise distances between leaf nodes. Furthermore, rerooting has
no effect on the value of HSIC.q (Section 5.2.5 and Theorem 5.2.5).

5.2.2 Tree-structured Covariance Matrices

Here we consider the structure of a covariance matrix necessary to encode
taxonomic structure [38, 42].

Definition 5.2.1 (Partition property). A binary matrix V of size kx (2k—1)
has the partition property for trees of size k (i.e. having k leaves) if it satisfies
the following conditions:

1. V contains the vector of all ones as a column

2. for every column w in V with more than one non-zero entry, it contains
two columns u and v such that v+ v = w.

We now use this definition to construct a tree structured covariance
matrix

Definition 5.2.2 (Tree covariance representation). A matrix B is a tree-
structured covariance matrix if and only if B = VDV” where D is a diagonal
matrix with nonnegative entries and V' has the partition property.

This definition is chosen to correspond to [42, Theorem 2]. Such an
encoding of tree-structured covariance matrices separates the specification



of the topology of the tree, which is encoded in V, from the lengths of the
tree branches, which is specified in D. As a concrete example, the tree
structured covariance matrix corresponding to Figure 5.5(a) is

1101000
1100100
=lio1001 0] (519
1010001
D = diag[0, M (a,b), M(a,c), M(b,d), M(b,e), M(c, f), M(c,g)]”,
M (a,b) + M(b, d) M (a, b) 0 0
B M (a,b) M (a,b) + M(b,e) 0 0
- 0 0 M(a,c) + M(c, f) M(a,c)
0 0 M(a,c) M(a,c)+ M(c,g)

Section 5.2.3 derives a mapping between tree structured covariance matrices
and tree metrics, giving a one-to-one relationship and implicitly showing the
NP-hardness of optimizing over tree-structured covariance matrices with
arbitrary topology.

5.2.3 Properties of Tree-structured Covariances and Tree Met-
rics

In the sequel, the following lemma will be useful

Lemma 1. B;; contains the weighted path length from the root to the nearest
common ancestor of nodes © and j.

Proof. Each column of V' can be associated with a node in the tree. Each row
of V' contains a set of binary variables that are equal to 1 iff a corresponding
node in the tree is on the path to the leaf associated with that row. As
V' is binary, B;; = VZDV;T sums over those elements, m, of D for which
Vim = Vjm = 1. These elements are exactly the lengths of the branches
leading to the common ancestors of nodes ¢ and j. O

Definition 5.2.3 (Four point condition). A metric M satisfies the four
point condition if the following holds

M(a,b) + M(c,d) < max(M(a,c) + M(b,d), M(a,d) + M(b,c)) Va,b,c,d
(5.20)

Theorem 5.2.4 (Equivalence of the partition property and the 4 point
condition). The following statements are equivalent



1. M is a tree metric.
2. M satisfies the four point condition.

3. M(i,j) = By + Bj; — 2B;; where B = VDVT is a tree-structured
covariance matrix.

Proof. 1 <= 2 is shown in [35].

3 = 1: Using Lemma 1, M (i, j) is the length of the path from the
root to node ¢ (B;;) plus the length of the path from the root to node j (Bj;)
minus two times the length of the path to the nearest common ancestor of
nodes i and j (Byj). Bji — Bjj is therefore the length from node i to the
nearest common ancestor of ¢ and j, and Bj; — B;; is the length from node
j to their nearest common ancestor. M (7, j) is simply the sum of the two
subpaths.

1 = 3 is a consequence of [42, Theorem 2]. O

We note that [35] considered unrooted trees while Definition 5.2.1 and
Lemma 1 makes use of the root of a tree. This can be rectified by choosing a
root arbitrarily in an unrooted tree (Figure 5.5). Such a choice corresponds
to a degree of freedom in the construction of B that is customarily eliminated
by data centering, or by working in a canonical basis as in Definition 5.2.1.
This is formalized in Theorem 5.2.5.

Theorem 5.2.5 (Centering trees with different roots but identical topol-
ogy). Trees with different roots but identical topology project to the same
covariance matrix when centered:

HyBHy = Hy,BoHy, (5.21)

where By and Bs have identical topology and edge weights, but different roots,
and Hp, = I — %ekez s a centering matriz, e; being the length k vector of
all ones.

Proof. We first note that the linear operator defined in part 3 of Theo-
rem 5.2.4, By + Bj; — 2B;;, projects to the same metric all tree structured
covariance matrices with identical topology and edge weights, but poten-
tially different roots. This is clear as M (i,7) is simply the sum of weights
along the unique path from node ¢ to node j. Consequently, this opera-
tor applied to By — Bs yields the zero matrix, yielding a system of linear
equations describing the null space of the operator. The null space can be
summarized in compact matrix notation as follows

Cepel + epel C (5.22)



where C' is an arbitrary diagonal matrix. We can consequently write any
matrix with a fixed topology and edge weights as the summation of the
component that lies in the null space of the operator, and the component
that is orthogonal to the null space

By =B + Clekeg + ekegCl, (5.23)

where B is the component that is orthogonal to the null space, and is
identical for all matrices with the same tree topology and edge weights.

We have that erkeg = ekesz = 0, which yields Hk(C’ekeZ—l—ekegC)Hk =
0. This in turn implies that

Hy(By — Bo)Hy =Hy(By + Chrepel + epel C1— (5.24)
B, — CQeke;‘g — eke;‘gCg)Hk =0

H,BH}, =H},, By Hj,. (5.25)

O

5.2.4 Structured Prediction with Tree-structured Covariances

Given the concepts developed in Section 5.2.2, we find now that the speci-
fication of joint feature maps and loss functions for taxonomic prediction is
much simplified. We may assume that a taxonomy is specified that encodes
the loss function A for a given problem, which need not be the same as a
taxonomy for specifying the feature map ¢. For the minimal path distance,
A(y,y) = M(y,y) for M defined as in Theorem 5.2.4. For A equal to the dis-
tance to the nearest common ancestor, we may use Bg; — By;. We have used
the minimal path distance in the experimental section whenever taxonomic
loss has been employed. The standard taxonomic structured loss functions
therefore only require as an input a tree-structured covariance matrix Bjygs,
which need not be the same matrix as the one used to define a feature map
(0-1 loss is recovered by using the identity matrix).

We now turn to the tree-structured joint kernel map (cf. Section 5.2.1).
Given a tree-structured covariance matrix B and its decomposition into
B =VDVT, we may compactly define Oy Y R2+—1 a5 the function that
selects the kth column of D2 V7 when y specifies that the sample belongs
to the kth class.®> Making use of the representer theorem for structured
prediction with joint kernel maps [110], we know that the solution to our
structured prediction objective lies in the span of our training input data

3A rooted tree with k leaves can be encoded with at most 2k — 1 nodes (Figure 5.5).



X C X crossed with the output space, . Assuming a kernel matrix K,
with associated reproducing kernel Hilbert space F such that the ¢, jth entry
of K, corresponds to (¢z(xi), dz(x;))r, we have that the solution may be

written
S Y anleny) (5.26)

1<i<n yey

and that the corresponding joint kernel matrix decomposes as K, ® B. Al-
though the size of the joint kernel matrix is n -k X n -k, we may make use of
several properties of the Kronecker product to avoid high memory storage
and costly matrix operations.

Looking specifically at Tikhonov regularized risk:

min \||g||3, + £(g,S) = min \a” (K, @ B)a + £(a, S) (5.27)
g «

where £ is some loss function (we have overloaded the notation in the kernel-
ized case). Interestingly, we may use the identity from Theorem 2.3 of [125]

ol (K, ® B)a = Tr[K,a' Ba] (5.28)

where & € R™* ig the matrix such that vec & = a.

In the case of a structured output SVM, where we have a quadratic
regularizer with linear constraints, we can make use of many optimization
schemes, that, e.g. require repeated efficient multiplication of a vector with
the Hessian:

(K, ® B)a = vec BaK,. (5.29)

Using the popular SVMstruct framework [154, 97] in this case generates a
large number of non-sparse constraints and is very memory inefficient, re-
quiring the storage of a number of kernel values proportional to the number
of tuples in X x Y x X x Y.# This indicates that the resulting memory re-
quirements for such a scheme are O(n?k?), while making use of optimization
with Equation (5.29) requires only O(n? + k? + nk) memory, and standard
large scale kernel learning methods may be applied off-the-shelf to reduce the
dominating O(n?) component [33]. We have used a cutting plane training
to efficiently train our taxonomic predictors, giving the same convergence
guarantees as SVMstruct, but with substantially less expensive computation
for cutting plane inference.

4This follows from an analogous argument to the one used in binary classification that
the storage requirements of a SVM are proportional to the Bayes rate, and therefore linear
in the number of i.i.d. training samples.



Cutting plane optimization requires finding a setting of § that minimizes
the right hand side of Equation (5.17). In the kernelized setting, we substi-
tute for w as in Equation (5.27), and search for parameters 8 € R™*! and
6 € R that give the kernel coefficients and offset of the linear constraint

§—aol(K,® B)B >¢. (5.30)

Using Equation (5.29) enables us to solve this cutting plane iteration effi-
ciently, both in terms of computation and memory usage.

In the next section, we discuss how to learn taxonomies from data that
are suitable for learning in this structured prediction model.

5.2.5 Optimizing Tree-structured Covariances with the Hilbert-
Schmidt Independence Criterion

In this section, we show how a non-parametric dependence test may be
employed to learn taxonomies that can then be employed in the construction
of a joint feature map for taxonomic prediction.

The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel statisti-
cal measure that may be used to measure the dependence between empiri-
cal data observations and matrices that encode the hypothesized taxonomic
structure of a data set [25]. The HSIC is defined to be the Hilbert-Schmidt
norm of the cross covariance operator Ca;y between mappings from the input
space X and from the label space ). For characteristic kernels [66],% this is
zero if and only if X and Y are independent. Given a finite sample of size
n from Pry y, the HSIC is

HSIC := Tr[H, K H, L] (5.31)

where K is the Gram matrix for samples from Prx with (¢, 7)th entry
k(z;,z;), and L is the Gram matrix with kernel I(y;, y;).

To define our kernel matrix on the output space, we consider a family of
functions proposed several times in the literature in the context of HSIC [25,
144]. In particular, we define the kernel in terms of a label matrix II €
{0,1}%*"_and a covariance matrix, B € R¥** that encodes the relationship
between classes. Given these matrices, L = II” BII. The HSIC with this
kernel over Y is

HSIC.o, = Tr[H, K H,IIT BII]. (5.32)

As pointed out by [26], HiIIH, = IIH,, which in conjunction with Theo-
rem 5.2.5 indicates that HSIC.y is identical regardless of how the tree is

%e.g. the Gaussian Kernel on R,



rooted (cf. Figure 5.5). We note that L is characteristic over ) whenever
rank[B] > k — 1 and the null space of B is empty or contains ey.

When K, is centered, the functional form of Equation (5.28) is identical
to Equation (5.32), indicating that the regularizer is HSIC., with & in
place of II. While our derivation has focused on tree-structured covariance
matrices, this novel theoretical result is applicable to arbitrary covariances
over ), indicating a tight coupling between non-parametric dependence tests
and regularization in structured prediction.

With this fundamental relationship in place, we consider in turn op-
timizing over tree structured covariance matrices with fixed and arbitrary
topology. The learned taxonomies may then be employed in structured pre-
diction.

Optimization Over Tree-structured Covariance Matrices

Theorem 5.2.2 gives a convenient decomposition of a tree structured covari-
ance matrix into a binary matrix encoding the topology of the tree and a
positive diagonal matrix encoding the branch lengths. One such consequence
of the existence of this decomposition is

Theorem 5.2.6. The set of trees with identical topology is a convex set.

Proof. [42] Given two tree structured covariance matrices with the same
topology, B = VDVT and B = VDV”, any convex combination can be
written

0B+ (1—nmB=V (nD +(1- n)[)) V7 (5.33)
for arbitrary 0 < n < 1. O

Optimization of such covariance matrices with fixed topology is conse-
quently significantly simplified. For D* maximizing the HSIC subject to a
norm constraint, a closed form solution is given by

D* « diag [VTII" H, K, H,11V] . (5.34)

We note that this optimization is analogous to that in [25] for tree struc-
tured covariance matrices with arbitrary topology. In that work, a closed
form solution for arbitrary positive definite matrices was found, which was
later projected onto the space of tree-structured matrices using a numerical
tazonomy algorithm with tight approximation bounds. We have employed
the method of [25] for comparison in the experimental results section. The-
orems 5.2.4 and 5.2.5 justify the equivalence of our procedures for learning
tree-structured covariance matrices with both fixed and arbitrary covariance
matrices.



5.2.6 Experimental Results

We perform an empirical study on two popular computer vision datasets,
PASCAL VOC [52] and Oxford Flowers [134], and on the WIPO text dataset [173].

PASCAL VOC

We evaluate the performance of semantic vs. visual taxonomies on the PAS-
CAL VOC 2007 dataset. To construct features for this data, we have em-
ployed results from the best performing submission to the 2007 classifica-
tion challenge, INRIA Genetic, which won all but one category. Our feature
vector is constructed by concatenating variance normalized class prediction
scores, after which a Gaussian kernel is applied, setting the ¢ parameter to
the median of the pairwise distances in the feature space. As the parameters
of the prediction functions were trained on data separate from the test im-
ages, this is a proper kernel over the test data set. By construction, we are
certain that the relevant visual information is contained within this feature
representation, indicating that it is appropriate to use it to optimize the tax-
onomic structure. Furthermore, the INRIA_Genetic method did not make
use of taxonomic relationships, meaning that no imputed class relationships
will influence the taxonomy discovery algorithm.

The semantic taxonomy was transcribed from the one proposed by the
competition organizers [52]. As they do not provide edge lengths for their
taxonomy (i.e. relative similarities for each subclass), we have learned these
optimally from data using Equation (5.34). We have also learned a taxonomy
with unconstrained topology, which is presented in Figure 5.6. Interestingly,
the semantic topology and the learned topology are very close despite the
learning algorithm’s not having access to any information about the topology
of the semantic taxonomy.

We have performed classification on the PASCAL VOC data set using
the taxonomic prediction method described in Section 5.2.1. We trained
on the first 50% of the competition test set, and report results as ROC
curves on the second 50%. We emphasize that the results are designed for
comparison between semantic and learned visual taxonomies, and are not
for comparison within the competition framework. We additionally compare
to the multi-class prediction method proposed by [44]. Results are shown in
Figure 5.7.
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(a) Semantic taxonomy from [52].

(b) Learned visual taxonomy.

Figure 5.6: The semantic and learned taxonomies for the PASCAL VOC
dataset. The semantic and visual taxonomies are very close, despite that
the construction of the visual taxonomy made no use of the semantic rela-

tionships.
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Figure 5.7: ROC curves for the PASCAL VOC dataset. The learned visual
taxonomy performs consistently better than the semantic taxonomy. Multi-
class classification was performed with a multi-label generalization of [44].
Only the first four classes are shown. The other classes show qualitatively
the same relationship between methods.

Oxford Flowers

In the second set of experiments, we have compared semantic to visual
taxonomies on the Oxford Flowers data set. To construct a rich image rep-
resentation, we have made use of the features designed by the authors of the
dataset. The image representations consist of information encoding color,
shape, (local) gradient histograms, and texture descriptors [134]. These fea-
tures have resulted in high performance on this task in benchmark studies.
We have constructed kernel matrices using the mean of Gaussian kernels as
described in [72].

The topology of the semantic taxonomy was constructed using the Lin-
naean biological taxonomy, while edge distances were computed by opti-
mizing D according to Equation (5.34). The topologies of the semantic
taxonomy and the learned visual taxonomy are given in Figure 5.8.

We have additionally performed classification using the semantic and
learned visual taxonomies. We have applied the taxonomic prediction method
described in Section 5.2.1. The results are presented in Table 5.3. In line
with previous results on taxonomic prediction, the performance of the tax-
onomic method with a visual taxonomy performs comparably to 1-vs.-rest
classification (here we report the results from [72], which use an identical
kernel matrix to our method). However, we note that the semantic tax-
onomy performs very poorly, while the learned taxonomy maintains good
results. We hypothesize that this is due to the strong mismatch between
the semantic relationships and the visual ones. In this case, it is inappro-
priate to make use of a semantic taxonomy, but our approach enables us to
gain the benefits of taxonomic prediction without requiring an additional
information source to construct the taxonomy.



(a) Semantic taxonomy constructed using biological informa-
tion.

(b) Learned taxonomy.

Figure 5.8: Semantic and visual taxonomies on the Oxford Flowers dataset.
The topologies of the two taxonomies differ significantly, indicating a strong
mismatch between the semantic hierarchy and visual similarity.

Table 5.3: Classification scores for the Oxford Flowers data set. The seman-
tic taxonomy (Figure 5.8(a)) gives comparatively poor performance, likely
due to the strong mismatch between the biological taxonomy and visual
similarity. The learned visual taxonomy (Figure 5.8(b)), however, main-
tains good performance compared with one-vs.-rest classification.

One vs. rest [72] Semantic Taxonomy Learned Taxonomy
849+1.9 56.3 £6.3 87.7+2.6




Table 5.4: Losses on the WIPO data set (lower is better). The columns
correspond to varying covariance structures, while the rows correspond to
different loss functions. For the covariance structures, I corresponds to
a standard multi-class feature map [44], B* is learned using the method
proposed in [25] for learning taxonomies without fixed topology, and D* is
learned from Equation (5.34). Each system was trained with a structured
output support vector machine optimizing the loss on which it is evaluated.

I | B* | H,VD*'V'H, | vDVT
0-1 0.281+0.027 | 0.278 +0.042 | 0.284 +0.037 | 0.362 £ 0.028
taxonomic | 0.950 +0.100 | 0.833 £0.179 | 1.125+0.071 | 1.120 £ 0.028

Text Categorization

We present timing and accuracies on the WIPO data set [173], a hierar-
chically structured document corpus that is commonly used in taxonomic
prediction [36]. Kernel design was performed simply using a bag of words
feature representation combined with a generalized Gaussian y? kernel with
the bandwidth parameter set to the median of the pairwise y? distances.
The topology, V, of the tree structure was constructed using the taxonomy
provided by the data set organizers. The loss function, A, was either set to
0-1 loss, or the taxonomic distance between two concepts. The taxonomic
distance between two concepts was measured as the unweighted path length
between the two leaves in the taxonomy (i.e. not making use of the learned
taxonomy but instead fixing edge lengths to 1).

We have computed results using a number of covariance structures, as
well as a number of loss functions. Table 5.4 lists these settings and shows
their numerical accuracies. We emphasize that the results correspond to
the learning setting proposed by [36] when the covariance matrix is tree-
structured. Any differences in performance for this column are due to our
using a more recent version of the data set with a comparatively naive feature
representation, while Cai and Hofmann made use of an unspecified kernel
function computed using a proprietary software system [36].

We focus on the efficiency of the optimization using our strategy, and
the kernelized variant of SVMstruct [154, 97]. We compare the empirical
time per cutting plane iteration in Figure 5.9. We note that timing re-
sults are presented as a fraction of the first training iteration to account



m— SV/M struct
70 == tree-structured-covariance

time

M.
1 2 3 4 5 6
training iteration

Figure 5.9: Computation time for constraint generation using the pro-
posed method of optimization vs. the popular SVMstruct optimization pack-
age [154, 97]. The proposed optimization is several orders of magnitude
faster than SVMstruct for this problem, and has constant computation time
per iteration, while SVMstruct has computation that grows linearly with
the training iteration.

for differences in vector and matrix libraries employed in our implementa-
tion vs. SVMstruct. Nevertheless, our implementation was several orders
of magnitude faster than SVMstruct at all iterations of training due to the
avoidance of naive looping over cached kernel values as employed by their
general purpose framework. In the SVMstruct implementation of taxonomic
prediction, the joint kernel function was implemented by multiplying K;; by
By,y;, which were both kept in memory to optimize computation time. The
computation time of our algorithm is constant per iteration, in contrast
to SVMstruct, which grows approximately linearly with high slope as the
number of support vectors grows. In later training iterations, a single ker-
nelized cutting plane iteration of SVMstruct can take several minutes, while
our method takes only several milliseconds. The number of cutting plane
iterations required by both methods is identical.

5.2.7 Discussion

In this section, we have compared taxonomies learned from data with se-
mantic taxonomies provided by domain experts, where these taxonomies are
used to impose structure in learning problems. While a semantic taxonomy
provides a measure of prior information on class relationships, this may be
unhelpful to the desired learning outcome when the features available are
not in accord with this structure. Indeed, in such cases, we have shown that



the imposition of prior taxonomic information may result in a significant
performance penalty.

By contrast, we have observed that learned taxonomies based on feature
similarity can do significantly better than hand-designed taxonomies, while
never performing significantly worse than alternatives. Moreover, we have
shown that the taxonomic structure may be encoded in a tree-structured
covariance: as a result, we were able to develop a highly computationally
efficient learning algorithm over taxonomies.

5.3 Discussion

In this chapter we have presented contributions to the use of inference tech-
niques in the structured prediction setting. We have focused on two contri-
butions. The first makes use of branch-and-bound inference for the detection
of multiple objects in an image. We have shown in a very general presen-
tation that this leads to a supermodular minimization problem, which is
NP-hard in general. We therefore employ an iterative algorithm for efficient
inference that has known approximation guarantees. The second contri-
bution is focused on taxonomic multi-class prediction. We have shown that
the joint kernel matrix decomposes as a Kronecker product between a kernel
over the input space, and a kernel over the output space. We substantially
increase the speed of inference over a naive application of a joint kernel rep-
resentation by application of [125, Theorem 2.3]. In the next chapter we
conclude the manuscript.



Chapter 6

Conclusions

In this manuscript, I have summarized my contributions to empirical risk
minimization for learning from visual data since my doctorate. Visual data
are characterized by the spatial coherence of the solution. This manifests it-
self in several related ways depending on the specific setting and application.
In bounding box based detection of visual objects, we may exploit the spatial
structure of the problem to increase the efficiency of inference (Chapter 5)
and to appropriately define learning objectives that maximize performance
based on representations that account for spatial structure (Chapter 3). In
fMRI analysis, structured sparsity regularization can account for correlated
signals, which are frequently spatially contiguous, or we may employ a graph
representation that incorporates spatial relationships explicitly in the func-
tion space (Chapter 4). In medical image segmentation, we may incorporate
sophisticated spatial priors that capture the complex patterns present in bi-
ological structures (Chapter 5 and [OB14]).

The presentation of our contributions is unified through the principle
of regularized empirical risk minimization. We have used the language of
empirical risk minimization to categorize our contributions into those of
risk, regularization, and inference. These concepts have been presented in
the chapters entitled Empirical Risk, Function Classes and Regularization,
and Representation and Inference.

We have demonstrated a range of methodological contributions with ap-
plication to high-level object category recognition and detection, medical
image segmentation, and fMRI analysis. Methodological contributions have
included the development of novel structured output prediction training ob-
jectives, efficient algorithms for their optimization, regularization techniques
for semi-supervised canonical correlation analysis and structured sparsity
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regularization, branch-and-bound optimization strategies for object detec-
tion, and efficient optimization of taxonomic structured prediction.

In future work, we plan to make further contributions to the development
of tractable structured output prediction algorithms. We plan to further
contribute to the theoretical characterization of structured prediction algo-
rithms, in particular their statistical properties. Contributions to medical
image analysis are planned, including a strong focus on fMRI analysis and
medical image segmentation. We plan to make use of structured prediction
frameworks to improve the accuracy of medical image analysis systems in
these application areas. An additional research area that we plan to work on

is non-parametric statistical tests for the discovery of statistical structures
in data [ZGB13, BGB14].
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