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PRÉSENTÉE À
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Abstract

A general goal of systems biology is to acquire a detailed understanding of the dynamics of
living systems by relating functional properties of whole systems with the interactions of their
constituents. Often this goal is tackled through computer simulation. A number of different
formalisms are currently used to construct numerical representations of biological systems,
and a certain wealth of models is proposed using ad hoc methods. There arises an interesting
question of to what extent these models can be reused and composed, together or in a larger
framework.

In this thesis, we propose BioRica as a means to circumvent the difficulty of incorporating
disparate approaches in the same modeling study. BioRica is an extension of the AltaRica
specification language to describe hierarchical non-deterministic General Semi-Markov pro-
cesses. We first extend the syntax and automata semantics of AltaRica in order to account for
stochastic labeling. We then provide a semantics to BioRica programs in terms of stochastic
transition systems, that are transition systems with stochastic labeling. We then develop nu-
merical methods to symbolically compute the probability of a given finite path in a stochastic
transition systems.

We then define algorithms and rules to compile a BioRica system into a stand alone C++
simulator that simulates the underlying stochastic process. We also present language exten-
sions that enables the modeler to include into a BioRica hierarchical systems nodes that use
numerical libraries (e.g. Mathematica, Matlab, GSL). Such nodes can be used to perform
numerical integration or flux balance analysis during discrete event simulation.

We then consider the problem of using models with uncertain parameter values. Quantita-
tive models in Systems Biology depend on a large number of free parameters, whose values
completely determine behavior of models. Some range of parameter values produce similar
system dynamics, making it possible to define general trends for trajectories of the system (e.g.
oscillating behavior) for some parameter values. In this work, we defined an automata-based
formalism to describe the qualitative behavior of systems’ dynamics. Qualitative behaviors
are represented by finite transition systems whose states contain predicate valuation and
whose transitions are labeled by probabilistic delays. We provide algorithms to automatically
build such automata representation by using random sampling over the parameter space and
algorithms to compare and cluster the resulting qualitative transition system.

Finally, we validate our approach by studying a rejuvenation effect in yeasts cells population
by using a hierarchical population model defined in BioRica. Models of ageing for yeast cells
aim to provide insight into the general biological processes of ageing. For this study, we
used the BioRica framework to generate a hierarchical simulation tool that allows dynamic
creation of entities during simulation. The predictions of our hierarchical mathematical model
has been validated experimentally by the micro-biology laboratory of Gothenburg.

Keywords: Systems biology, Discrete event systems, AltaRica, Cell ageing, General semi-
Markovian processes, Qualitative abstraction
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General introduction

Over the last decade, availability of large-scale technologies and high-throughput experi-
ments have resulted in an unprecedented accumulation of biological data. In its turn, this
accumulation of data has increased the gap between human capacity to generate data and
that to analyze it. To complement usual “low-throughput” experiments, it is now possible to
sequence complete genomes [HKKH91], to obtain gene expression data at the scale of an or-
ganism [LW00] and to characterize the possible gene/protein and protein/protein interactions
[LRR+02, UGC+00]. This progress in the measurements of rates of molecular mechanisms
as well as the characterization of possible interactions between cellular processes implied a
paradigm shift in life sciences. Indeed, the growing number of possible combinations of molec-
ular interactions at the system scale results in a range of possible explanations for any observed
behavior that far exceeds the human capacity to evaluate them one by one [FMW+03]. In
this context, the combination of mathematical biology and computational tools to analyze
such systems (for example to a priori rule out some seemingly reasonable hypothesis) in silico
is getting more and more accepted by the cell biologists and neurobiologists community.

Not only our knowledge of possible interactions is increasing, it is also now widely accepted
that biological processes can not be seen statically. Models, in their broadest sense, have
always been used by biologists, e.g. when drawing a metabolic pathway or when considering
a graph of protein/protein interactions. However, we cannot deduce from such static repre-
sentations alone the function of the process under consideration. For example, although the
nutritional stress response of the model organism E.Coli and several metabolic pathways of the
yeast Saccharomyces Cerevisiae have been characterized since decades, we yet to have a clear
understanding of how these interactions result in biological functions [DHP04, BRDJ+05].
Biologists emphasize now the need for mathematical and dynamic models to describe time
dependent molecular processes. Indeed, living cells are inherently dynamic: cells grow, divide,
communicate, move and respond to the evolution of their environment.

Let us consider two examples of biological dynamic phenomena, the electrical activity in
cells and the membrane transport mechanism.

Electrical activity in cells is one of the earliest dynamic behavior of cells that has been
studied. Hodgkin and Huxley studied action potentials along a giant squid axon in 1939 and
modeled it in 1952 [HH52, HH39]. The electrical activity of the squid giant axon has been
studied through the response of the axon to a small positive current. As the current propagates
along the axonal membrane as a pulse, it results in a single spike of electrical activity (an action
potential). Hodgkin and Huxley model is empirical, since they used experimental results that
were suitable to be represented without consideration of any underlying physiological and
cellular mechanisms. In fact, only thirty years after this seminal work, this observed behavior
was explained by a “realistic cartoon” of ionic currents in cells [Hil01].

Another dynamic biological process of interest is the membrane transport mechanism. The
osmotic balance in cells is maintained by pumping Ca2+ and Na+ ions from the cell and K+

ions back into the cell. The maintenance of this balance is for example essential to give red
cells their characteristic and functional shape.
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The two previous biological processes are in fact coupled, and any system level analysis
of membrane transport should account for the electrical activity in cells. In fact, Chay and
Keizer have shown with a mathematical model in 1983 [CK83] that the increase of blood
glucose level induces insulin secretion, which in its turn induces regular bursts of electrical
activity in pancreatic cells. The action potentials occurring at the membrane of pancreatic
cells are caused by rapid influx of Ca2+ and slower efflux of K+ that result in oscillations of
Ca2+ concentration within the cytoplasm.

These two biological processes exhibit characteristics common to most biological processes:
they are complex, can be seen at different levels of abstraction, and moreover they exhibit
a non linear response and their interactions are essential for higher-level behavior. In order
to study such complex networks of processes, the contribution of mathematical models and
computing tools has been invaluable to understand their dynamics.

The combination of mathematical biology, experimental biology, biochemistry and com-
puter science in order to unveil the behavior of biological systems lead to the “new” discipline
of Systems Biology. Systems biology is a field that aims at elucidating the relationships
between biological components and how these interactions result in complex system-wise be-
havior. The dogma at the base of Systems Biology is that due both to the presence of non
linear responses and to multiple interactions between processes, the behavior of the whole
system cannot be reduced to the behavior of its components. Furthermore, as the size and
complexity of biological networks increase and will soon cross the threshold of manually
understandable models [SRT06], one of the most important challenges for Systems Biology
is to develop computational tools that ease the manipulation and analysis of huge systems
[SHK+06].

Strikingly, the same complexity also appeared during the last decade in the analysis of
engineered systems, and that in the both cases of software or hardware systems. Especially in
the case where the system is deemed as being critical, the vast amount of possible interactions
between disparate components imposed the need for formal methods to help the validation and
analysis phase. One striking similarity between Systems Biology and engineering is that both
fields are based on the compositional approach. Most biologists now agree that we will never
be able to comprehend cellular networks in their whole, due to their “complexity” [SHK+06]
and their growing size [SRT06]. As engineers have been faced with a similar limitation, their
solution was to decompose large system into subsystems performing distinct, well defined and
well understood functions. The reason behind this approach is that a complex system can be
rationalized by considering it compositionally.

Composition in biological systems is however inherently different from the composition of
engineered systems. First, we do not know how to decompose a cellular network functionally
and thus what could be the definition of a biological “module”. Second, biological processes
can operate at various time scales and be modeled at different levels of abstractions. Thus,
a single modeling formalism to represent any biological module seems out of reach within
our current conceptions of Systems Biology. However, from the previous observations, any
modeling formalism adapted for Systems Biology should be hierarchical, compositional and
should allow for different modeling approaches.

Currently the most widely used modeling formalism is certainly that of systems of ordinary
differential equations that represent the time dependent evolution of molecular concentrations.
Under some conditions of homogeneity of the medium and of presence of chemical species at
high concentration, systems of ODE have been shown to produce extremely precise predic-
tions, that have been validated experimentally (e.g see the evolution of a cell cycle model
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[Tys91b, TKA+00, TCC+04]). Still, not only ODE models are flat, they are also completely
deterministic and thus can neither faithfully represent any stochastic behavior in cells, nor
can they model adequately discrete timed behavior. For example, the model of [TCC+04]
is a continuous differential equation model, built by accounting for the interactions between
molecular species that control the budding yeast cell cycle. Although the mechanisms of reg-
ulation of the cell cycle are detailed, the authors completely abstract the cytokinesis process
by representing it by a single discrete assignment that divides the mass of the cell by half,
and that is triggered at a certain amount of time after a threshold is crossed. This example
illustrates that although ODEs are powerful enough to concisely and adequately model non
linear interactions between molecular species, they are not adequate to model more abstract
processes for which little is known about the underlying mechanism or little is desired to be
represented in the model. When considering other type of modeling formalisms, although a
wide range of formalisms have been used (Petri Nets, constraint automata, differential equa-
tions, stochastic pi-calculus), it is a humbling observation that the most widely used tools in
this technically sophisticated field remain for the modeling step PowerPoint and Excel, and
for model analysis step Matlab [KLH+07]. We propose to circumvent these limitations by
considering multi-level and multi-formalism models.

Multi-level and multi-formalism models may be used when different levels of detail and ab-
straction are possible within a hierarchical system [UDZ05]. That is, when a system accounts
for multiple molecular processes, for example happening at different time or concentration
scale, the level of details may be adapted in order to account for available knowledge and
kinetics information. Existing simulation tools [TKHT04, BBHT06] can account for mod-
els where molecular processes involving small concentrations are simulated with a variant of
Stochastic Simulation Algorithm. In both cases, exact knowledge of the biochemical reactions
is required. In the case where biochemical information is missing (e.g. kinetic constants) some
of the dynamics of a metabolic network can still be evaluated using pathway or genome scale
approaches such as dynamic flux balance analysis [MED02] or structural analysis [SGSB06].

Accounting for unknown gene functions and/or interactions, is hard [vDMMO00]. We may
then consider that the qualitative behavior is essential in order to understand the system as
a whole, while the accurate values of the kinetic parameters are of secondary importance.
Indeed, the whole research community starts to accept this idea [SHK+06], which means
that the time is ripe for moving from simulation only towards more symbolic model analysis
methods. Behavioral analysis of models has been extensively studied in the context of formal
verification of hardware and software systems. Here, models are usually non-deterministic
automata with variables over finite or infinite domains. Formal verification does not face the-
oretical limitations (i.e. it is decidable) for finite-state models. However, this approach is in
practice limited by the so-called state explosion problem: the size of the model’s state space,
that must be explored by the verification tool, is (at least) exponential in the number of vari-
ables. The introduction of symbolic techniques [BCM+92] was a major breakthrough in this
field, and nowadays models with a few hundreds of variables can be verified. Approximation
techniques have been developed in order to extend the reach of formal verification to larger
models, that can be finite-state (but with too many states) or infinite-state, such as automata
with (unbounded) integer variables. A wide class of techniques of approximation are based
on the notion of model abstraction. Model abstraction is based on the following observation:
given a property under check, there are surely many details in the model that are not relevant
to the property, and these details could therefore be abstracted away. Behavioral properties
are preserved from an abstraction to its original model [DGG97], and abstractions can be
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computed automatically from the original model [GS97]. Model abstraction is an approxi-
mation technique that have recently received a lot of attention since it permits automatic
verification of software directly from the source code.

Another advantage of a multi-level hierarchical approach is clear when noticing how bio-
logical processes take place at different time-scales. For example, transforming metabolites
is fast, while synthesizing an enzyme is slow. If modeled by ODEs, this multi-scale problem
leads to the stiffness problem. It is the fast time-scaled reactions that are stable, but it is
the slow reactions that determine the trajectory of the system. If done naively, a simulation
will have to use extremely short time steps (which implies long simulation times) due to the
fast time scales. Hierarchy can be seen as a way to overcome this issue. Indeed, simulation of
hierarchical systems can be done efficiently by having dedicated solvers for processes at dif-
ferent granularities. Whenever a multi-component system is modeled, a semantics for module
composition has to be provided. In particular, a mathematical programming language known
as the stochastic pi-calculus allows the components of a biological system to be modeled in-
dependently [Pri95]. In particular, large models can be constructed by composition of simple
components [BCP06]. The calculus also facilitates mathematical analysis of systems using a
range of established techniques. Various stochastic simulators have been developed for the
calculus, in order to perform virtual experiments on biological system models.

Objectives and outline of this thesis

Due to the availability of more and more data and possible mechanisms to explain observed
emergent behavior, Systems Biology approaches require compositional modeling tools able to
cope with multiple formalisms and admitting efficient analysis tools. The challenges under
these requirements are both conceptual and computational. The conceptual difficulty is to
provide a modeling language that is compositional and expressive enough to reuse existing
models. The computational difficulty is to analyze models described in this language, either
analytically / symbolically or by numerical simulation. The goal of this thesis is to provide an
automata based framework to describe and analyze stochastic processes in the field of systems
biology.

The BioRica framework we present and analyze in this thesis can combine different for-
malisms within a single framework and can efficiently simulate the resulting model. BioRica
is a high-level modeling framework integrating discrete and continuous multi-scale dynamics
within the same semantics domain, while offering an easy to use and computationally efficient
numerical simulator. It is based on a generic formalism that captures a range of discrete and
continuous formalism and admits a precise operational semantics.

We first recall the background material and the domain of this work in the chapters Chap.
1 and Chap. 2. The objectives of these two chapters is to define the methodology and the
tools already available for the mathematical modeling of biological processes.

In the chapter Chap. 3, we define the BioRica language and its automata compositional
semantics. BioRica is extension of the AltaRica specification able to specify non deterministic
stochastic automata with timed transitions distributed arbitrarily. More precisely, we will take
as a starting point for BioRica the work done on the AltaRica specification language, and
specifically that on the AltaRica Dataflow subset([Rau02]), and we will extend its syntax and
automata semantics in order to account for probabilistic descriptions. We will then define
composition operations in order to describe hierarchical systems with BioRica.
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In the following chapter Chap. 4, we provide the semantics of BioRica programs in terms
of stochastic transition systems and we establish gradually a symbolic computation scheme
to compute the formula denoting the probability of a finite path with deadlines in such a
stochastic transition system. This analytical scheme is based on the computation of linear
combinations of random variables denoting timer values of discrete events. We also show that
by using this approach, computations with numerical values are only performed at the very
end if needed.

We then consider the problem of simulating a BioRica hierarchical system, and we provide
in chapter Chap. 5 the rules and algorithms to compile a BioRica system into a C++ program
that simulates the underlying stochastic process. Our approach is based on on the automatic
generation of a set of C++ classes mapping the BioRica system hierarchy. We then adapt
the variable-time advance simulation schema to non deterministic hierarchical discrete event
systems. The approach developed in this chapter were published in [SSN07].

In chapter 6, we provide abstraction based algorithms to build automata based representa-
tion of transient behavior of continuous systems and show that high level emergent behavior
such as oscillations are preserved by our abstractions. In fact, given a range of possible qual-
itative values represented as abstraction functions, we show how to compute from the time
series generated by numerical integrators a stochastic transition system. This approach has
been presented and published in [SSN09].

Finally, we define and analyze in the chapter Chap. 7 a hierarchical and hybrid model of
a yeast cells population that explains the rejuvenation effect in symmetrically dividing yeast
cultures by a retention factor. To this end, we describe how to incorporate continuous systems
into a discrete BioRica system by using composition. From a differential continuous model,
we describe a “hybrid system” accounting for cell division, and then build a population model
by parallel composition. We then interpret the predictions of this model with literature results
concerning damage segregation in asymmetrically and symmetrically dividing yeast cells. The
results presented in this chapter were published in [CSS+08].
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The Blind Men and the Elephant

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
“God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here
So very round and smooth and sharp?
To me tis mighty clear
This wonder of an Elephant
Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
“I see,” quoth he, “the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee.
“What most this wondrous beast is like
Is mighty plain,” quoth he;
“ Tis clear enough the Elephant
Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: “Een the blindest man
Can tell what this resembles most;
Deny the fact who can
This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,
“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

So oft in theologic wars,
The disputants, I ween,
Rail on in utter ignorance
Of what each other mean,
And prate about an Elephant
Not one of them has seen!

John Godfrey Saxe (1816–1887)
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Chapter 1

From truth to lies: A journey
through mathematical modeling for
biology

The aim of this chapter is to show what is meant by a model, the nature and objectives of
the modeling process and finally to discuss how models and especially mathematical models
can be used within a scientific study in the case of biology. In particular, we will try to
show how different, competing models represented in different formalisms may be useful. In
essence, our objective is to show that new biological knowledge is “created” by the process
of abduction, which is itself a logical fallacy. In order to reduce the impact of this fallacy,
multiple hypothesis must be confronted on the basis of observations. Consequently, to bridge
between observations and explanation or prediction, models are a fundamental (if not the
only) way to test a hypothesis.

1.1 What is modeling? What is a system?

Systems and models are primitive concepts (like those of a set or a structure) that are used
with so many meanings and in so many domains that it might be impossible to give an exact,
consensual definition. Although their understanding could thus be left to intuition alone, we
nonetheless provide some (in our sense) representative definitions found in literature.

• A system is a regularly interacting or interdependent group of items forming an unified
whole (Webster).

• A system is a combination of components that act together to perform a function not
possible with any of the individual parts.(IEEE Standard dictionary of Electrical and
Electronic terms).

• A model is a simplified description of a system or process, or even of another model. The
most common uses of models are to assist calculations, predictions and design choices.

• model (n): a miniature representation of something; a pattern of something to be made;
an example for imitation or emulation; a description or analogy used to help visualize
something (e.g., an atom) that cannot be directly observed; a system of postulates, data

3



Chapter 1. From truth to lies: A journey through mathematical modeling for biology

and inferences presented as a mathematical description of an entity or state of affairs
[Dym04].

As it is usually pointed out for example in [Hae05], these definitions of model and systems
imply that virtually everything can be understood as a system and that models are present
in every facet of human activity.

Nevertheless, what can be observed from these different definitions is that a system is made
of interacting components, and that a model is an abstraction of a system. But more impor-
tantly, these definitions suggest that modeling is a cognitive activity in which we think and
make models to describe how “real life” systems, processes or objects behave, by accounting
for their components; and that we use models to communicate a view of the world.

1.1.1 Scientific method and modeling: the principle of abduction

Scientific method may be rudimentarily outlined as opposing two a priori distinct worlds, a
“real world” and a “conceptual world”. In the real world, we observe various phenomena and
behaviors, whether produced artifacts or natural. On the contrary, in the conceptual world
we try to understand and explain what is going on in that real, external world.

Dym and Ivey [Dym04], describe the scientific method as a body of techniques existing in the
conceptual world in order to reason about the real world. They identify three activities that
take place in the conceptual world when faced with a phenomenon: (1) we gather observations,
(2) we analyze these observations by means of models, (3) we use the results of the analysis
to describe precisely the phenomenon, to predict what would happen in a yet to be conducted
experience or to or explain the phenomenon. Let us discuss the mode of inference used in
this scientific method with holding to section Sec. 1.2 the details of these three possible uses
of mathematical models. The base of the scientific method is the use of empirical data to
form new body of knowledge. The mathematician Charles Sanders Peirce in “Deduction,
Induction, and Hypothesis” (1878) (see [Nii99]) proposed different modes of inference proper
to the scientific method and that explain how empirical evidence can be used to form theories.
Peirce compared deduction, induction and abduction. Consider the following syllogisms:

Rule All philosophers wear a toga,

Case These humans are philosophers,

Result Therefore these humans wear a toga.

The result is obtained via deduction. On the contrary, induction can be used to explain
how hypothesis and consequences are related.

Case A random sample of philosophers is selected.

Result All these philosophers wear a toga.

Rule All philosophers wear a toga.

However, experimental methods in a science like biology (and thus its use of models) rely
on the use of abduction.

Rule All the philosophers wear a toga.
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Result These humans wear a toga.

Case These humans are philosophers.

Indeed, the goal of abduction is to explain a “surprising” result. The surprising result is:
seeing a group of humans wearing a toga. We must then seek an hypothesis that would make
this surprising result not surprising. It is true that if these humans are philosophers then they
would wear a toga, hence there is evidence to suspect that these humans are philosophers. By
the observation of a surprising result, we seek a hypothesis that would explain this surprising
result (and thus make it less surprising). Abduction thus seeks the most plausible hypothesis
that would explain a result, given accepted knowledge.

Note that abduction is a logical fallacy. Let a and b be two logical propositions. Deduction
allows us to derive b as a consequence of a. Induction allows us to derive a ⇒ b by a set of
samples of a and b. Abduction allow us to infer a from the observation of b. Abduction is the
post hoc ergo propter hoc fallacy (affirming the consequent) since we do not account for all
the possible explanations of b. In order to reduce the impact of this logical fallacy, we would
have to consider all the possible explanation for an observed phenomenon, which is clearly
impossible.

1.1.2 From abduction to soundness: Chamberlain’s multiple hypothesis
testing

Abduction is the only possible means to form a new body of knowledge by observation, but
it is a mode of inference that is inherently wrong, since all the possible explanations of the
observation are not accounted for. However, by encompassing a wide range of possible expla-
nations, one can hope to compare multiple explanations on the basis of empirical evidence.
In order to cover and on the same time to limit the universe of explanations, we are forced
to simplify our view of reality and to keep only what we think is relevant for the observed
phenomenon. In other words, we build models, and the possible explanations of an observed
phenomenon are confronted by the use of multiple, competing models.

Thomas Chamberlain (1843-1928) advocated in a series of papers [Cha31](as cited by
[And08]) that scientific investigation should focus on a set of alternative plausible scientific
hypotheses that must be confronted. Each plausible hypothesis forms an explanation that
should be evaluated with respect to its empirical support. In this sense, the core objective of
the modeling process is to provide systematic and mathematical tools to aid in this evaluation.

As an example of a carefully shaped set of plausible hypotheses, Anderson [And08] high-
lights the process and methodology Caley and Hone [CH02] followed while they were studying
bovine tuberculosis transmission in feral ferrets. Before performing any data collection, Caley
and Hone derived from literature review 20 hypotheses relating the instant of transmission
with the age of the animal. As an example we provide here 5 of their hypotheses ([And08]):

• Transmission occurs until the 1.5 ∼ 2.0 months of age, via suckling, from mother to
offspring,

• Transmission occurs from the age of 10 months, via mating or fighting, during the
breeding season,

• Transmission occurs from the age of 2∼3 months, via routine social activities (e.g.
sharing dens),
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• Transmission occurs from the age of 1.5 ∼ 2 months, via hunting,

• Transmission occurs from birth, via environmental contamination.

Each of the hypotheses targets at least two variables: the age of transmission and the
medium of transmission; furthermore, these hypotheses are not mutually exclusive. Thus,
evaluating and comparing each hypothesis with respect to empirical support should answer
questions about the“how”and“when”of contamination (i.e. “What is the size of the effect?”),
which should be contrasted with the “what” of contamination (i.e. “Is there an effect?”).

From Anderson’s point of view, which follows closely Chamberlain’s and Francis Bacon’s
approach, the usual paradigm of investigation based on null hypothesis testing results most
of time (Anderson is in the field of ecology and population biology) in the rejection of a
faulty and hardly plausible null hypothesis. Anderson concludes the tuberculosis example by
challenging the reader to devise a plausible null hypothesis and ironizes by suggesting that
H0 should be one of : “No transmission occurs”, “Transmission is random”, “Bears do no go
in the woods”.

Given a phenomenon, multiple models must be assessed. Although Anderson’s work aims
exclusively at providing tools and strategies for confronting multiple hypotheses in the field of
statistical modeling, our approach of systems modeling starts with the same principle: each
hypothesis should be supported by empirical data via the use of a model that is specific to
the hypothesis under scrutiny. Since we need multiple models, one of the objectives of this
thesis is to provide a modeling language that is able to describe models of different nature
and to provide a mathematical interpretation of these models.

1.2 Utility of mathematical models

General definitions of models all agree on the fact that models represent reality with some
required degree of approximation. Given that models are approximations and thus inherently
“wrong”, why is this approximation required? What is exactly the purpose of the modeling
activity?

The general objective of the modeling process is to manage complexity. The overall com-
plexity of technical systems is increasing. In several technical fields - telecommunication,
information systems, logistics - the number of components involved in an object under design
makes it impossible to manage and predict the global effect of local decisions [Zim08]. Simi-
larly, as our understanding of living systems increases, we witness an increase of complexity
as we wish to understand how the possible interactions between thousands of molecules form
the basis of living organisms and their functional properties. In both of the technical and
biological fields, models offer a way to deal with this complexity. We will now consider in more
detail the attributes of this complexity in biology, then characterize the possible purposes of
models.

1.2.1 Models as means to deal with biological complexity

The nature of biological systems we wish to model in systems biology or in physiology are
characterized by their complexity [CC08]. Yates [Yat78] identified five features of biological
processes that give birth to their complexity: the number of components, their interactions,
non linearity, asymmetry and nonholonomic constraints.
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The number of components in the system is immediately related to its complexity. But
Flood et al. (1993) refined this point of view and have shown that it is from possible interac-
tions between components that complexity emerges.

Nonlinear systems occur when one element of the system varies in a non linear manner with
respect to another. Non linearity is ubiquitous in biological processes [CC08]. However, from
a modeling perspective, it can be reasonable to consider systems as being linear under some
conditions.

Asymmetry in organisms is fairly usual and is a key property of cellular processes such a
cellular differentiation. Without the presence of asymmetry in one of the processes of growth,
the successive divisions of a single cell would yield a population of identical cells and no
specialized organs would emerge.

Holonomic constraints are global constraints that are expressible as a function of the state
of the system and time. A system is said to be holonomic if all of its constraints are holo-
nomic. Nonholonomy of biological processes appears whenever part of a system exhibits local
regulation and control. At the unicellular level, consider for example glucose metabolism
and cell cycle regulation of yeast cells. Even if these two processes are related (since they
are parts of the same system) and that they interact indirectly, there is no global constraint
that can express both processes, or equivalently, one of the processes as a function (in the
mathematical sense) of the other. Nonholonomy implies that some parts of a system exhibit
a high degree of freedom, and it is this absence of constraints that implies complexity. This
implies that the state of the system is not a function of the state of some of the parts of the
system.

In other words, complexity arises in biology through the nature of interactions of the com-
ponents of a system where non linear effects and control appear at multiple organizational
levels. As a consequence of this “real-life” complexity, it is often not possible to measure in
vivo with sufficient precision the values of the quantities of interest, since they may be at the
molecular level. Often, only indirect measures about the quantities of interest may be ob-
tained, implying at least the need for some model to be able to infer the value of the quantity
of interest.

1.2.2 Use of mathematical models

Model[er]: A device for turning assumptions into conclusions Schimel (2002) (as
cited by [Hae05])

The degree of detail that is incorporated in a model is determined by its purpose. Karplus
in 1983 [Kar83] provided a conceptual framework to define the possible use of a mathematical
model. In Karplus’s framework, a model is a triple 〈S, E, R〉 where S is a black box system
with an input E and an output response R (see figure Fig. 1.1)

Considering all the possible pairs of elements of 〈S, E, R〉 as problem statements, the use
of the model is to characterize the third missing component.

• If E and R are given, the modeling process aims at determining the system S. By
inferring the system given its input and output, we solve a synthesis problem that arises
whenever we want to use a model to understand a process.

• If E and S are given, the modeling process aims at characterizing the output response
R. By using the knowledge of the component (modeled as the system S) and available
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S RE

Type of Problem Given To Find Uses of models

Synthesis E,R S Understand

Analysis E,S R Predict

Instrumentation S, R E Control

Figure 1.1: Systems and the uses of models. Top: General system presented as a triple
〈S, E, R〉 relating the input E to the output R by the mean of a model S [Kar83].

experimental data (the input E) we solve an analysis problem that arises whenever we
want to use a model to predict the response of the system.

• If S and R are given, the modeling process aims at finding an input E such that the
response of the system S is R. After describing some degree of freedoms in S, we solve a
control problem that arises whenever we want to use a model to instrument the system.

Mathematical models can also be used to coordinate research, summarize data, detect
logical inconsistencies and perform scenario based testing. By giving a single and non am-
biguous interpretation of a system in a mathematical language, large organizations (teams,
companies) can coordinate experimental research and communicate upon a common ground.
Summarizing experimental data in terms of a mathematical model can be used when a large
set of experimental data needs to be compared, classified or searched. For example, a linear
regression on the model of the equation y = ax + b can summarize a set of data points in
terms of two parameters a and b. Logical inconsistencies between hypothesis, experimental
conclusions and assumptions can be be detected for example by using a logical language to
specify each item. For example, Kam et al. in [KKM+08, KHK+04] modeled all experimental
results related to the cell fate acquisition of the worm C. Elegans using the formalism of
live sequence charts. Finally, a model can be used to perform scenario based testing where
multiple models are compared in order to elect a model to concretize.

1.2.3 Misuse of mathematical models

Levins[Lev66] identified three properties of models related to the purpose of using a model:
realism, precision and generality.

Realism is a property of the model structure characterizing the degree to which the model
simulates the real world. Physical models of airplanes used to interpret results of wind tunnel
experiments often include the maximal level of detail possible.

Precision is a property of the model response characterizing the degree to which the model’s
prediction is the same as the observed real world response.

Generality is a property of the model characterizing the degree to which the model is
applicable to a large number of systems.

Levins argued that these three properties cannot be maximized by the same model, and
that at most two of these properties may be maximized in a single model. For instance,
maximizing realism cannot be performed without trading off for generality.

However, Orzack and Sober [OS93] argued that Levins argument should be clarified, since
he does not define exactly the terms realism, precision and generality in his original work.
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Orzack and Sober thus refined Levins thesis and have shown that when a model A is a special
case of another model A′, there is no trade-off between the three properties. They claimed
that for any model with n independent variables, we can add an additional variable and obtain
a model that is more realistic, precise and general that the first one.

Models are tools used to solve a specific problem, and nothing in the model itself forbids an
inappropriate application. Holling [Hol78] and Karplus [Kar77a, Kar77b, Kar83] especially
discussed the problem of the use of quantitative models and illustrated how highly precise
models can be used in domains providing poor data or small understanding of the domain’s
dynamics and mechanisms.

Karplus went further and identified domains in which the poor quality of the available data
and shallow understanding of the mechanisms led to inappropriate models. He positioned
social science, economics and political science at the lower end of applicability of models. As an
example, Karplus cited Jay Forrester’s World Dynamics model which, more or less, accounted
for everything [For71]. Essentially, inappropriate use of models is one of the consequences of
the possibility to simulate (or solve) quantitative models with an arbitrary number of digits,
and that regardless of the accuracy of the premises used to build the model. Thus, although
the results are extremely precise with respect to the model (in the mathematical sense), this
precision can be semantically skewed towards the precision of the model relative to the system,
via an effect that Haefner [Hae05] qualified as “numbers which often acquire a reality of their
own”. Such semantic drift may be harmless, at best.

1.3 How do we model?

When using mathematics to model, two separate approaches to modeling are possible de-
pending on the intended use of the model. These two approaches are data driven models and
system oriented models.

When models are solely based on experimental data, we can apply a data driven modeling
process that aims at building black-box models. In essence, data-driven models describe an
input output relationship between experimental data collected on the system. Data driven
models are mathematical descriptions of data, and have only an implicit correspondence with
the underlying biological process [CCB01].

The second modeling approach is system oriented modeling, with the goal to represent
the underlying biological process explicitly, up to a level of approximation and resolution
dependent on the intended use of the model and on the availability of a priori knowledge and
assumptions. Once the degree of approximation has been chosen, a mathematical formulation
can be built.

An important decision at the first step of the modeling process is to decide the level of
abstraction of the model. Deciding on the right level of abstraction is equivalent to deciding
on what should be part of the model and what should be part of the environment. This step
requires careful thinking, since by identifying initially what should be accounted for in the
model, we also immediately delimit its application and purpose.

The result of this first step is a conceptual model. The conceptual model is usually not
formalized and covers all the assumptions and approximations that are made before building
the mathematical model. In [CCB01], the authors identify three classes of possible approxi-
mations: aggregation, abstraction and idealization. Approximation by aggregation considers
a complex structure as an unified entity by lumping together its constituents. For exam-
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ple, the proteins in a mitochondria may be lumped together in five classes defined by the
proteins’ function, or conversely they can be carefully modeled by accounting for the exact
concentration of each possible protein present in the mitochondria matrix. Approximation
by abstraction matches a complex structure to its functional role. A mitochondria may be
abstracted as an ATP producing unit. Approximation by idealization aims at simplifying
dynamics that are not considered as pertinent. For example, the response of a cell population
to oxidative stress implies the mitochondria of each cell. The response of the mitochondria
may be modeled either as being instantaneous and affecting all the mitochondria or modeled
by accounting for the dynamics of the diffusion.

Once enough approximations are described in the conceptual model, the conceptual model
is translated into mathematical equations describing the relationships between the variables
of the model. A general hypothesis we have to apply to the system we wish to study by using
mathematical modeling is to consider that it is always in some state. A state of a model
fully describes the quantities we wish to measure with the model. This implies that the first
step when translating the conceptual model in mathematical equations is to define the set of
measurable variables that are chosen and associated with a given system.

Once state variables are defined, a general way to describe the behavior of a system is to
describe the structure of its state as well as how the system changes its state over time.

We will now introduce a simple classification based on the mathematical structure used to
represent the variables, the time and the dynamics.

1.3.1 Mathematical model formulation

A simple basis for the classification of models can rely on the structure of the underlying
mathematical theory used in the model. We consider that models can be:

• Process oriented when the mechanistic processes are explicited in the model. Otherwise,
we say that the model is descriptive and phenomenological.

• Dynamic, when the state of the model evolves over time. Otherwise, we say that the
model is static.

• Continuous time, when the evolution over time is supported by a continuous variable.
Otherwise, we say that the model is discrete time.

• Continuous, when the possible configurations of the model are real valued. Otherwise,
we say that the model is discrete. For models over a discrete state space, we further
distinguish between finite and unbounded state space.

• Non deterministic, when the model is under-specified and allows for a set of possible
executions instead of a single execution. Otherwise, we say that the model is determin-
istic.

• Stochastic, when an execution of a model depends on random variables. Otherwise we
say that the model is non random.

This classification of models serves as a methodological guideline during the modeling pro-
cess.

We will review in the next chapter 2 instances of the previous classes and give an overview
of the analysis that can be performed on them.
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In this thesis, we consider models that have a discrete state space, that evolve under con-
tinuous time, by means of instantaneous transitions with random fluctuations. This choice is
backed up by the following reasons. The type of the state values and of passage of time is not
a property of the system under consideration, but a property of the model we want to use
to gain a better understanding of the system. This implies that this choice is independent of
the question whether real systems are inherently continuous or not. When the state space is
discrete and when time evolves continuously, the dynamic behavior of a model is described by
timed activities. The start of a timed activity is triggered by a precondition on the state of the
model, and their finishing events happen after some delay. Once the finishing event happens,
the model evolves to its next state, where subsequent activities may start. By simply mod-
eling the causality of activities within a model, one can use this model to answer qualitative
questions such as whether a given state of the model can ever be reached. However, when
quantitative properties are of interest, the model has to include additional information. As we
saw, the environment and the inner part of a model are subject to uncertainty. The process
of modeling itself relies on abstracting some part of the system. This implies that whatever
the level of abstraction chosen for the model, there will always be some level of detail that is
not part of the model. This results in events that are unpredictable at this level, and that are
therefore modeled as being random. Note that this is independent of the question of whether
there is true randomness or not. For example, conflicts between activities or events are a
source of unpredictable behavior. Such conflicts can occur whenever two activities that are
competing may alter the system’s state. Whenever the outcome of a conflict is not known at
the level of abstraction chosen for the model, we can still describe how the outcome should be
distributed by using probabilities. Another source of uncertainty in modeling arises when the
exact time of an event is unknown. In this situation, we can consider the delay of an event
as a random variable following a given probability distribution function.

1.3.2 Hierarchical systems: from molecular to systems biology

Systems biology is a new field of biology that aims to develop a system-level
understanding of biological systems. [Kit01].

The objective of systems biology is to relate functional properties of whole systems with
the interactions of their constituents (Alberghina, 2005). The system’s behavior is often
considered as an emerging behavior, that is a qualitative property that emerges from non
linear interactions between components. This emergent behavior is often important for the
survival of living organisms. The classical example is oscillation in networks of components
that would not oscillate on their own [GGH+01]. This implies that living systems should
be studied at multiple levels, between the molecular level and the systems level, and that
we should explain the behavior of the whole system as emerging from the behavior of its
constituents. According to [BBHW07], this leads to an apparent paradox inherent to systems
biology: living systems are composed of nothing but molecules, but the functional properties
of living systems cannot be understood by molecular biology alone. In essence, the paradox
can be resolved by stressing the word “understood”. Bruggeman et al., 2002 advocate that
there is no systematic choice between a purely reductionist approach (microscopic “nothing
but” statements) and an antireductionist approach (macroscopic “all or nothing”) approach,
but rather a pragmatic choice of a middle position, with the aim to explain the system’s
behavior in terms of its functional organization.

11



Chapter 1. From truth to lies: A journey through mathematical modeling for biology

In order to explain the emerging behavior of complex living systems, hierarchical decomposi-
tion is a modeling practice that decreases the complexity of the task. The simpler hierarchical
structure of a system is based on the “part-of” relationship. For example, our perception of
the human organism can be described in such terms: from genes, through cellular subsystems,
cells, organelles and organs to the complete physiological organism [KS98]. In fact, this can
be said about systems in general, as hierarchy is deeply ingrained in the way we perceive
nature and thus in the way we model it as a system:

Whether nature is truly organized hierarchically is moot. Men’s perception of
nature is hierarchical.[Web79]

By decomposing a system into its components, a top-down or bottom-up approach can be
applied to the modeling process, and this increases the “manageability” of a complex system
[KE03]. However, as implied by the definition of the systems biology approach, the behavior of
the whole system can not be expressed as a linear function of the behavior of its constituents,
and thus a model of a system must account for non linear interactions.

Not only the complexity of the modeling task is decreased by decomposing a system, this
decomposition is essential in order to exhibit regularity and patterns. When a system is de-
composed in its parts (for a given relationship), it offers the possibility of detecting similarities
between two different systems. As an example, the stress response circuitry of a prokaryotic
organism Escherichia Coli is present (albeit slightly modified) even in eukaryotic cells [Kit01].
This implies that the model of the heat shock stress response in E.Coli may be reused to build
a more complex machinery adapted to eukaryotic cells. By decomposing the E.Coli cell as a
system of interacting networks, some networks may be uncovered to be part of other systems.

Hierarchical modeling aims at decomposing a system into components that have enough
local regulation and control to be analyzed in isolation and such that they produce emergent
effects when analyzed within a system. As such, hierarchy is not a characteristic of a system,
but a characteristic of the modeling process used to model the system. When a system is
analyzed, the objective is to explain the behavior at any level in terms of the level below, and
how this behavior explains the level above.[Web79]

1.3.3 Randomness in biology

The role of random fluctuations in biology can be seen in three conditions: limitations of the
mass action modeling assumption, accounting for uncertainties that concern the experimental
data and finally as a necessary condition for explaining some biological patterns, like gene
expression or neuron firing.

In biochemical kinetics, the law of mass action states that the rate of a single reaction is pro-
portional to the product of the concentrations of the reactants. This law is a key assumption
when deriving a set of differential equations from a network of biochemical reactions (see 2.7.2
for an application and a discussion of this assumption). However, the stochastic approach to
biochemical kinetics is by far the methodology that is the most justified by statistical physics
considerations [Wil06]. Indeed, the conventional approach of modeling biochemical reaction
networks by using continuous, deterministic rate equations can not be applied to systems
with multi-protein complexes or to systems where the dynamics depend on a species that is
present in very low concentrations [Kit01, Gil77]. For example, behavior induced by signaling
pathways is known to be sensitive to operations and reactions that happen for a small num-
ber of molecules [GHLG03, Hal89]. For neutrophil signaling pathways, the study of Hallet
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[Hal89] showed that only the behavior of 200 K+ and Na+ ionic channels is responsible for
the intracellular concentration of Ca+.

Probabilistic models can be used in the modeling methodology and we will argue that this
is particularly useful in the case where a biochemical model covers a range of possible be-
haviors and where little is known about the parameters used in the derivation of ODEs from
biochemical networks. The translation of a biochemical reaction network into a deterministic
continuous equation requires at least the rate laws for all parameters. Once rate laws have
been determined, the parametrized system obtained by the application of the mass action law
can be studied, analyzed and solved. However, mass action kinetics fails to correctly capture
the saturation of enzymes, which is a common phenomenon. In order to account for enzymatic
saturation, more realistic kinetics can be applied (e.g. Michaelis Menten) which requires addi-
tional parameters (e.g. the dissociation constant) and additional knowledge (functional form
of the enzyme kinetics). But this approach is severely hampered by the the lack of available
enzymatic data, either concerning the value of the kinetic parameter or the functional form
of the enzymatic rate equations. In the best case where both are available, parameter values
may have been obtained under different experimental conditions (temperature, physiological
conditions) or for different strains or tissue type, which leads to thermodynamic errors when
used in the same model. To overcome this limitation, a probabilistic kinetics that accounts
for thermodynamic constraints has been proposed in [LK06b, LK06a]; [SGSB06] proposes a
statistical exploration of the comprehensive parameter only requiring stoichiometric informa-
tion. In both approaches, authors consider the parameters as being random variables and
they both provide techniques to characterize the plausible distribution of the parameters,
thus leading to models that are not random, once initial conditions and parameter values
have been selected by a randomized mechanism.

Finally, the behavior of a system can be explained by a high variability in its constituents
and this variability can be easily modeled by random variables. In the field of neurobi-
ology, several studies outlined that the pattern of firing of individual nerve cells, and most
importantly the range of possible patterns in a population of nerve cell, is explained by a prob-
abilistic gating model of voltage-dependent ion channels[WRK00, SZ96]. In the case of black
box models, data models using stochastic functions have been shown to be essential to cap-
ture important unmeasurable disturbances in the field of neurophysiology [MN72]. Stochastic
fluctuations are also abundant in gene regulation mechanisms, and McAdams [MA99] has
shown that some regulatory mechanisms do rely on variability induced by low intracellular
concentrations.

1.4 Model (in)validation for biology

Model validation is a problem specific process where we compare a set of competing model
by measuring their validity with respect to their intended purpose [CCB01] and deduce their
domain of validity. In [CCB01], the author states that within a necessary domain of validity,
the output of the model should “correspond sufficiently” to the experimental data, and he
further states that “an acceptably small difference” is usual. This approach can be facilitated
for parametric models by parameter estimation tools such as [ZK06]. Basically, given a set of
data and a parametric model, tools can reduce the least square difference between a numerical
solution of an ODE and the initial data.

For models built using experimental data, Anderson [And08] emphasizes the need to define
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the impact of stochasticity in the initial data and thus the need to formalize any statistical
assumptions before comparing the output of the model with the experimental data. If the
purpose of the model is to have a perfect correspondence with the experimental data, it
is always possible to perform a fit by using high order Fourier series or polynomial terms.
Goodness of fit of n data points is always perfect when we use a polynomial of order n. This
implies that the objective of the modeling process is not to fit the data, but the information
in the data. Thus, defining for a specific modeling task what is the “signal” and what is
the “noise” should be equivalent to the definition of the model. The model is supposed to
parsimoniously represent the information contained in the data.

In the case of Chamberlain’s approach, the goal is to build a one-to-one correspondence
between the set of hypothesis and the set of competing models. We loosely used the notion
of “a set of competing models” up to now and we now clarify what it means for two model to
be competing and link this notion with parametric models. In order to have two competing
models, the notion of difference between models needs to be defined. As we saw in section Sec.
1.3.1, different mathematical formalisms may underly the model and we can safely assume
that two models described in different formalisms are different. However, for models in the
same formalism the notion of different models can not be based on structural differences,
but should be refined to account for parameters. Consider for example the logistic growth
equation

dN/dt = rN(1−N/K)

As N decreases to 0, the limit of this model is the exponential growth equation

dN/dt = rN.

Although the exponential and logistic growth models are usually considered as being “differ-
ent” since they exhibit different equations and structure, the exponential model is the limit
case of the logistic growth model. In other words if the parameter N is free, the logistic and
exponential model may be equivalent. Thus, the non equivalence between two (parametric)
models can only be evaluated once the parameters are set; the structure and equations of
the models can not be used as a basis. Even in the case of more complex models, such as
the one obtained when deriving ODEs from a biochemical reaction network, the limit case
when one of the parameter is 0 is a structurally different model. Thus, when building the
set of competing models, each hypothesis should be mapped to a parametric model and its
parameter values. In other words, model identification and parameter estimation are exactly
the same process.

In the case where validation relies on experimental data, we are facing the task of selecting
among a set of competing models (or equivalently competing hypotheses), the “best model”.
Anderson further recommends that one restate the problem as follows:

The issue becomes the evidence of each model, given the data.[...] So now we may
ask if hypothesis C is 10 times as likely as hypothesis A ? (from [And08])

The theory presented in detail in [And08] defines exactly what is a good fitted model, given
the data. Anderson provides statistical tools that can be used to rank the models by using
the Kullback-Leibler information principle and its restatement by Akaike in terms entropy
maximization principle. The beauty of Akaike’s information criterion is that it formally links
the Kullback-Leibler principle, Boltzman entropy and Fischer maximum likelihood [And08].
By using this criterion as a basis for model ranking and estimation of the quality of models,
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Anderson provides a framework where quality of models is made relative to competing models
and in which parsimony and goodness-of-fit are accounted for. Contrary to the approach of
Levins and of Orzack, in Anderson’s framework blindly adding free variables and parameters
does not provide a better model.

In the case where validation can not be performed against experimental data, validation
must be made on the basis of qualitative results. The same biological system is described in
multiple formalisms. Indeed, as we saw in section Sec. 1.3.1 , there is a wealth of possible
formulations, and except when a formulation requires assumptions that are obviously false
for the modeled system (such as the assumption of high number of reactants for the law of
mass action), the same system can be described by multiple models, each having their own
set of assumptions and specific abstractions.

Richard Levins [Lev66] suggested determining whether the predictions of the model result
from its specificities or from the details in the simplifying assumptions, by the use of a tech-
nique he called robustness analysis. Robustness analysis is defined as searching for common
predictions among multiple models of the same system [WR08]. In the case where the same
result holds for each of these models, Levins qualifies the result as a robust theorem. Weisberg
and Forber [WR08] applied this robustness analysis to the Lotka-Volterra model of prey pre-
dation (that we study in more details in section Sec. 2.7.2). The author used four different
models: one is the original formulation in terms of ODEs, the three others being stochastic
models based either on population dynamics, individual based dynamics, or density depen-
dent individual based dynamics. They explored each model in order to validate the following
property

Ceteris paribus, if the abundance of predators is controlled mostly by the growth
of the prey and the abundance of the prey controlled mostly by the death of
predators, then a general biocide will increase the abundance of the prey and
decrease the abundance of predators.

The authors have shown that this property holds for all their possible model formulations,
while other simpler properties don’t (stating e.g. that the average number of predators and
prey corresponds to a stable equilibrium point). The authors refer to [CD89] for an illustration
of a “real life” application of this principle: by using the DDT pesticide as a treatment against
Icerya purchasi, a scale insect, orchardists in fact have aggravated the pest invasion since the
insecticide has also killed the pest’s main predator.

1.5 Concluding remarks

In this chapter we have defined the terms and concepts that underly the work done during
this thesis. We gave an overview of how the modeling process may fit in the scientific method,
why models are required for biological sciences, what are the inherent limitations of models,
and provided some guidelines for the modeling process and for model validation.

In summary, mathematical models are abstractions that depict reality. When the experi-
mental data is present, the use of mathematical models can be seen as that of maximizing
the information that can be gained by measurements, by a formalization of the impact of
noise and random fluctuations. When measures of quantities of interests are not available,
mathematical models can be used to infer plausible values from the experimental data. In
the extreme case where experimental data is not available, mathematical models may still be
used to exhibit general principles about the behavior of complex systems.
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In any case, models are means to increase our understanding of complex systems, by the
relying on approximation. In this sense, models are never “true”, they always reflect only the
parts of reality that we conceptually think are relevant to explain the observed behavior. To
have a true model, such as a perfect model for the whole cell, would require an extraordinary
quantity of experimental data to estimate its parameters, and an extraordinary amount of
time to understand and interpret its output behavior.

In order to build hierarchical systems, models should not be reused directly without inter-
pretation or further approximations. Model reuse is a major research effort in modeling and
simulation [UDLK05]. In the field of systems biology, the complexity of the modeling process
makes reuse of existing models extremely appealing. The challenges currently faced by the
systems biology community include the interpretation of such composed models, the technical
interoperability of the corresponding simulation systems, and modeling and simulation that
accounts for multi-formalisms and hierarchical systems . This problem has been identified as a
grand challenge in the systems biology community[SHK+06]. As illustrated by the BioModels
database [LNBB+06], the output of the modeling process is often reduced to its mathematical
artifact, namely the model itself, without all the assumptions, experimental data, conceptual
considerations and validation methods that have been used to elect a candidate model as the
“true” model. Even if technical and mathematical tools provide a framework where model
composition is possible (and this thesis indeed provides one of them), a complex model built
by reusing existing models that have been obtained with different assumptions seems hardly
plausible.
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Chapter 2

Modeling formalisms

The aim of this chapter is to present the preliminary notions and modeling formalisms used
thorough this thesis. After introducing the discrete model of finite state automata and of
transition systems, we recall the definitions of constraints automata and their extension that
serve as a basis for the semantics of the AltaRica formalism. Afterwards, we recall some
definition of probability theory and present two widely used stochastic processes class: discrete
time discrete state Markov chain and continuous time discrete state Markov chains. We then
finish this preliminary section by presenting the notion of discrete event systems and by
introducing model formalisms widely used in mathematical biology.

2.1 Discrete and finite models

2.1.1 Finite Automata, transition systems

The first model of behavior we present is the model of an automaton, also called a finite state
machine. An automaton is a directed graph with labeled edges. Each node of the graph is
meant to represent a possible state of the system, while edges represent transitions that are
discrete steps that can change the state of the system. A transition has a source and a target
state. The source state represents the state before “executing” (or “firing”) the transition, and
the target state is the state reached after executing the transition. A self explaining example
is given in Fig. 2.1.

In[17]:= Q= 8" Light off ", " Light on " <;
S = 8" switch " <;
rel = 8
8" Light off " ® " Light on ", " switch " <,
8" Light on " ® " Light off ", " switch " <
<;

GraphPlot @rel, DirectedEdges ® True, VertexLabeling ® True D

Out[20]=

switch

switch

Light offLight on

Figure 2.1: The structure of a simple two state automaton with labeled edges, displayed as a
graph over Q.

Automata are probably the most used formalism to model the behavior of discrete sys-
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tems. See, for example, the automata representation of programming languages semantics
[Plo81, Win93], and model checking [QS82, CE81]. By using automata as the mathematical
representation of the possible behaviors of a system, model checking algorithms and tech-
niques based on relations over automata such as language inclusion [HMU06] or bisimulation
[Mil82] can be used to validate the compliance of a system with respect to a set of behaviors
described using an appropriate logic (e.g. LTL, CTL [CE81, Pnu77]).

While the structure of an automaton is always described as a graph structure, automata
are usually decorated graphs, giving rise to many different subclasses. To begin with, we recall
the definition of labeled transition systems that are automata whose edges are labelled with
events.

Definition 2.1 (Labeled transition system). A finite labeled transition system (LTS) is
a triple 〈Q,Σ,→〉 where

• Q is a finite set of states {q, q′, q0, . . . , qn} called the state space,

• Σ is a finite alphabet of events {e, e0, . . . , em},

• →⊆ (Q× Σ×Q) is a (finite) set of labeled transitions.

To simplify the notations, a transition (q, e, q′) ∈→ is written q
e−→ q′. For a given LTS

L = 〈Q,Σ,→〉, we write q��
e−→q′ if (q, e, q′) /∈→.

The LTS structure 〈Q,Σ,→〉 from the example in figure Fig.2.1 is Q = {“Light on”,“Light off”} ,Σ =
{switch} with the transition relation defined by

→= {(“Light on”,“switch”,“Light off”), (“Light off”,“switch”,“Light on”)} .

In order to introduce some terminology, let us consider the example of figure Fig. 2.2.
In the LTS defined in Fig. 2.2, it should be noted that not all events are enabled in

every state. For example, there is no outgoing transition from the state y labeled with the
event c. We say that the event c is inactive in y. Furthermore, note that in state x, there
are two outgoing transitions labeled with the same event a, we say that this state is non
deterministic, in the sense that whenever the event a happens, the model does not provide
sufficient information to decide on a single successor state, and thus all the possible successors
can potentially be reached by a single transition.

2.1.2 Composition of labeled transition systems

Labeled transition systems can be composed by using the synchronized product of Arnold-
Nivat [Arn94, Arn92]. Let {Si} be a set of LTS with Si = 〈Qi, Σi,→i〉 and consider a
synchronization constraint I ⊆ ∏i Σi. The synchronized product of the Si with respect to
the synchronization constraint I is the LTS S = 〈Q,Σ,→〉 where Q =

∏
i Qi, Σ =

∏
i Σi, and

where

(s1, . . . , sn)
(e1,...,en)−−−−−−→ (s′1, . . . , s

′
n)⇔ (e1, . . . , en) ∈ I, si

ei→i s′i,∀i, 1 ≤ i ≤ n.

In the case where I =
∏

i Σi, the synchronized product is equivalent to the free product.
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In[25]:= Q= 8x, y, z<;
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Figure 2.2: Example of a non deterministic LTS.

2.1.3 Semantics

An important notion we use in this manuscript is the notion of semantics associated with a
class of models. We (loosely) define a semantics as a function mapping a model in a given
modeling formalism to a model in another formalism (in this we follow [NN92]). For example,
for the LTS we can provide a semantics in terms of languages. A language over an alphabet Σ
is a set of words that are finite sequences (ei)i≤n where ei ∈ Σ. Given an LTS L = 〈Q,Σ,→〉,
the semantics of L in terms of languages is the set of words denoted JLK such that for any

word (ei)i≤n ∈ JLK, there exists a sequence of states (qi)i≤n+1 such that qi
ei−→ qi+1 for all

i ≤ n. Note that the semantics of a structured object such as an LTS is given in terms of less
structured objects: sets generated by application of the binary operation of concatenation.
In this sense, this implies that all the semantics defined in this thesis are not necessarily
surjective. For instance, for the semantics of an LTS in terms of languages, it is known that
there is no finite transition system or finite automaton whose semantics is language {anbn} for
some integer n [HMU06]. In other words, there exist (in fact an infinite number of ) languages
that do not represent the semantics of any LTS.

2.1.4 Variables, Logic

The core limitation of using LTS to model a dynamic system is that the state space and the
transition relation are explicit. In order to ease the description of complex systems with LTS,
we can use a higher level (i.e. more structured) formalism the semantics of which will be
given in terms of LTS. We will introduce the notion of constraint automata [BR94], that are
automata with an implicit transition relation and state space, that manipulate variables by
means of assignments whenever the current valuation of the automaton satisfies a constraint.
In order to formally define this object we first need a logical language to define the notions
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of variable, valuation and constraint. We only give here an overview of the logic, for a more
thorough treatment, see [LC03, HR04].

A constraint automaton manipulates variables that are defined over a finite domain limiting
the possible valuations. More formally, we have domains and variables as provided in the
following definition.

Definition 2.2 (Domains and variables). The domains, variables, domain of variables
and valuations are defined as follows.

• Z = {a, b, c, . . .} is a finite set called the domain the elements of which are called
constants. We consider for constraint automata that Z is a finite subset of Z.

• X = {x, y, z, . . .} is a finite set of variables.

• An application dom : X → P(Z), such that for any x in X, dom(x) 6= ∅. The application
dom(x) is called the domain of the variable x, i.e. this is the set of possible values for
the variable x.

• The set extension of dom, i.e. for any Y ⊆ X, dom(Y ) =
∏

y∈Y

dom(y).

• A valuation v is an application X → Z that assigns a variable x to its value v(x) ∈
dom(x).

• For any variable x ∈ X, for any valuation v, for any value a in dom(x), we define v[a/x]
to be an updated valuation of v where v[a/x](x) = a and where v[a/x](y) = v(y) if
x 6= y.

The expressions and formulas used in constraint automata are terms and formulas of a
quantifier free first order language. The elements of Z are the constants of our language
and these elements are considered as being nullary functions. Let F be a set of functions
containing at least Z, the terms over F are defined inductively with the following Backus
Normal Form grammar:

t ::= x | c | f(t, . . . , t)

where x ranges over the set of variables X, c over nullary function symbols in F , and f over
the elements of F with arity n > 0.

Let P be a set of predicate symbols, the formulas of a constraint automaton are defined by
the following Backus Normal Form grammar:

φ ::= 1 | 0 | p(t1, . . . , tn) | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ

where 1 and 0 are symbols denoting the usual boolean constants true and false, p ∈ P is a
predicate symbol of arity n ≥ 1 and ti are terms over the functions F . Let Y ⊆ X be a set
of variables, we will denote by T Y and FY the set of terms and formulas built with variables
in Y . In the case where Y = X, we omit the superscript and simply write T and F .

We will denote by vars(φ) or vars(t) the set of variables occurring in the formula φ or in the
term t.1 Any formula φ(x, y, z, . . . ) is intended to be interpreted with respect to the finite set
of variables X. Thus, the semantics JφK of a formula φ is a subset of dom(X). We define the

1For first order language with quantifiers, this is usually the set of free variables occurring in a formula.
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semantics of the boolean constants 1 and 0 by J1K = dom(X) and J0K = ∅. Finally, given a
formula φ, a variable x and a term t, we define φ[t/x] to be the formula obtained by replacing
each occurrence of the variable x with t. In the following, we fix the functions and predicates
to be F = {+,−, ∗, /} and P = {=, <,>,≤,≥}.

Example 2.1. Suppose n, f and g are function symbols respectively nullary, unary and
binary. Then g(f(n), n) and f(g(n, f(n))) are terms, but not g(n) (it violates the arity).
Suppose 0, 1, . . . are nullary, s is unary and +,− are binary. Then −(2,+(s(x), y)) is a term.
Usually, binary symbols are written in the infix manner rather than in the prefix manner;
thus, the term is written 2 − (s(x) + y). For a set of variables X = {x, y, z} with domains
Z = dom(x) = dom(y) = dom(z) = {0, . . . , 10}, the formula φ(x, y, z) = x+ y +3 ≤ 4 admits
the semantics JφK = 〈0, 0, Z〉∪〈0, 1, Z〉∪〈1, 0, Z〉∪〈1, 1, Z〉 where 〈a, b, Z〉 = {〈a, b, c〉 | c ∈ Z}.

2.2 Constraint automata

A constraint automaton ([BR94] as cited by [Pag04] and [FP93]) is defined as follows.

Definition 2.3 (Constraint automaton, not interfaced version). A constraint automa-
ton is a tuple A = 〈S, Σ, A,M〉 where

• S is a set of variables called state variables,

• Σ is a finite alphabet,

• A ∈ FS is a formula over variables called the global assertion,

• M ⊂ F × Σ× (S → T ) is a set of macro transitions 〈g, e, a〉 where:

– g ∈ FS is called the guard,

– e ∈ Σ is the label of the event representing the transition,

– a : S → T S maps every state variable to a term denoting its value after the
transition. This mapping is called the assignment of the transition. Note that this
application is complete, therefore every state variable is related to a term, that can
be reduced to the variable itself if it is not affected by the transition.

In the next section we will formally define the semantics of a variant of constraint au-
tomata called interfaced constraint automata. Since we reuse most of the construction of
the semantics of constraint automata, here we only provide an intuition of their LTS seman-
tics. Consider a constraint automaton A = 〈S, Σ, A,M〉 where S = {x}, F = ∅, Σ = {e},
A = 1, M = {(x ≤ 3, e, x→ x + 1), (x > 3, e, x→ x + 2)}, we will manually build the LTS
JAK = 〈Q,Σ,→〉. The set Q is the domain of the variables, that is Q = dom(x) that we set
to Q = {1, 2, . . . , 6}. An element of Q is called a configuration in order to distinguish easily
between a state and state variables. Consider the configuration 〈3〉 corresponding to the val-
uation x : 3. The set of macro-transitions that have a guard satisfied by this configuration is
(x ≤ 3, e, x → x + 1). Therefore, in the underlying LTS, we have the transition 〈3〉 e−→ 〈4〉.
The configuration 〈5〉 of the LTS corresponds to the valuation x : 5, for this valuation, the
set of macro-transitions that have a guard satisfied is {(x ≥ 3, e, x→ x + 2)}, however the
assignment x→ x + 2 is forbidden since it will cause an overflow for the variable x. The set
of transitions of this LTS is depicted in figure Fig. 2.3.
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Figure 2.3: Semantics of a constraint automaton in terms of an LTS.

2.3 The AltaRica formalism

Although the constraint automata described in the previous section provide a more concise
description of systems than LTS by means of variables and arithmetic operations, they are
not a priori adapted to describe systems of interacting components. The AltaRica formalism
[AGPR00, Poi00] has been designed to describe the possible interactions between components.
AltaRica is a hierarchical specification language based on interfaced constraint automata and
in which compositions are performed by the synchronized product of interfaced constraint
automata.

An interfaced constraint automaton, also called a component, is defined as follows.

Definition 2.4 (Constraint automaton, interfaced version). An interfaced constraint
automaton is a tuple A = 〈S, F, Σ, A,M〉 where

• S is a set of variables called state variables,

• F is a set of variables called flow variables,

• Σ is a finite alphabet containing at least the letter ǫ; the letter ǫ denotes the label of
the invisible event,

• A ∈ FS∪F is a formula over variables called the global assertion,
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2.3. The AltaRica formalism

• M ⊂ F × Σ× (S → T ) is a set of macro transitions 〈g, e, a〉 where:

– g ∈ FS∪F is called the guard,

– e ∈ Σ is the label of the event representing the transition,

– a : S → T S∪F maps every state variable to a term denoting its value after the
transition. This mapping is called the assignment of the transition. Note that this
application is complete, therefore every state variable is related to a term, that can
be reduced to the variable itself if it is not affected by the transition.

The macro transitions M always contain the macro transition 〈1, ǫ, Id〉 where Id is the
identity function.

The main differences between the interfaced and not interfaced version of a constraint
automaton are the set of flow variables and the presence of a specific event ǫ denoting an
invisible event. These two additions are the basis for hierarchical composition, and this is
illustrated in the semantics of a constraint automaton is terms of LTS. This semantics is
defined as follows.

Definition 2.5 (Semantics of a constraint automaton in terms of LTS [Poi00] ). The
semantics of a constraint automata A = 〈S, F, Σ, A,M〉 is the LTS JAK = 〈Q,Σ,→〉 where
Q = {(s, f) ∈ dom(S ∪ F ) | (s, f) ∈ JAK} and where (s, f)

e−→ (s′, f ′) if (s, f, e, s′) ∈M and if
(s′, f ′) ∈ JAK.

For a component in isolation, the other components in the system are abstracted by flow
variables (representing variables visible by many components) and by the epsilon invisible
event (representing external transitions updating the flow variable). This is implied by the
LTS semantics since after each transition of a component, the flow variables are allowed to take
any value within their domain, as long as the global assertion is respected. For a component
in isolation, each transition triggers non deterministically an update of the valuation of flow
variables. In the case where the transition of a component is guarded by a flow variable,
the semantics in terms of LTS allows the component to make a empty transition 1

ǫ−→ Id in
order to always allow an update of the value of this flow variable. By this construction, the
possible behavior of a component with flow variables uses non determinism to encompass all
the possible behaviors of other components, even if they are not yet specified.

Flow variables are not assigned but constrained via the global assertion of a component.
According to the definition of macro-transitions, it is not possible to assign a value to a flow
variable as a result of a transition. In fact, the only possible way to “assign” a value to a flow
variable is to constrain it by the use of the global assertion. For example, in a component
with a state variable x and a flow variable f , the flow variable can be constrained to always
have f = x + 1.

Hierarchical models in AltaRica are defined in terms of AltaRica nodes that are structures
that contain other AltaRica nodes or components. An AltaRica node specifies synchronization
constraints that are used when giving its semantics in terms of LTS. Basically, the semantics
of an AltaRica node is defined as the synchronized product of the LTS that are the semantics
of the components of the AltaRica node. The synchronization constraints are used to model
events that should always occur simultaneously in the hierarchical model, while a global
assertion is used to represent how flow variables should be coordinated in the hierarchy. We
will come back to these notions in the next chapter, when we define the syntax and semantics
of a BioRica node.
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The AltaRica formalism also accounts for priorities between events and for scoping of event
and flow variable visibility in the hierarchy. Priorities are a partial order < over events
specifying that if events e and e′ are enabled in the same state and if e < e′, then only the
transitions labeled with e′ are effective. Events and flow variables can be scoped. This permits
one to restrict an event synchronizability to its parent node or to restrict the visibility of a
flow variable to itself.

2.4 Probabilities and measure

This section presents some notions of probabilities which are necessary for this thesis. The
following brief introduction is based on a synthesis of [Haa02], [FF98],[Zim08],[Gut05] and
[F+57].

Let Ω be a set, called the sample space, that represents the possible outcome of a random
probabilistic experiment. A subset A ⊆ Ω is called a (probabilistic) event. An event A occurs
whenever the outcome of a probabilistic experiment is in A. In order to model the set of
possible events, a σ-field (also called a σ-algebra) F is associated with Ω. The σ-field F is a
collection of events such that

• ∅, ω ∈ F ,

• for a subset A ⊆ Ω, A ∈ F , we have Ac ∈ F , where Ac = Ω−A = {ω ∈ Ω | ω /∈ A},

•
(⋃+∞

i=1 Ai

)
∈ F whenever Ai ∈ F for all i ≥ 1.

The σ−field generated by a collection A ⊆ F is the smallest σ-field containing A, it is the
intersection of all σ-fields containing A.

We can then define a probability measure P over F as a non negative real-valued function
such that

• P (∅) = 0,

• P (Ω) = 1,

• P (
⋃

Ai) =
∑

P (Ai),

whenever (Ai) is a (finite or countably infinite) collection of disjoint sets in F . Then we
immediately have for any A, B ∈ F ,

• 0 ≤ P (A) ≤ 1,

• P (Ac) = 1− P (A),

• A ⊆ B implies P (A) ≤ P (B).

In particular, if there exists a countable set A ∈ F such that P (A) = 1 then P is said to
be a discrete probability measure and 〈Σ,F , P 〉 is called a discrete probability space.

The support set [Rud74] of a probability measure is the smallest subset of the sample space
whose measure is 1. Formally, the support set of f is the set

supp(f) = Ω−
⋃
{A ∈ F | A is open and P (A) = 0} .
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Definition 2.6 (Measurable and probability space). The pair 〈Ω,F〉 is called a mea-
surable space, the triple 〈Ω,F , P 〉 is called a probability space.

Definition 2.7 (Measurable functions). Let 〈Ω,F〉 and 〈Ω′,F ′〉 be two measurable spaces,
a function f : Ω→ Ω′ is said to be measurable if the set f−1(A) = {a | f(a) ∈ A} is in F , for
any set A ∈ F .

In order to push forward a measure P , we have the following result.

Proposition 2.1. If f is a measurable function as before and if 〈Ω,F , P 〉 is a probability
space, then P ◦ f−1 is a probability measure on 〈Ω′,F ′〉 and the triple

〈
Ω′,F ′, P ◦ f−1

〉
is a

probability space.

For an event B such that P (B) > 0, the probability of an event A conditional on B, denoted
P (A | B) is defined as

P (A | B) =
P (A ∩B)

P (B)
.

The mapping PB from Fto [0, 1] with PB(A) = P (A | B) defines a probability measure PB

on F .

Definition 2.8 (Countable partition). A collection of events (Bi)i∈I is called a (countable)
partition of Ω if

1. I is countable,

2. i 6= j implies that Bi ∪Bj = ∅,

3. P (Bi) 6= 0 for all i ∈ I,

4. Ω =
⋃

i∈I Bi.

Theorem 2.2 (Law of total probability). Let (Bi) be a partition of Ω and A ∈ F be an
event, we have

P (A) =
∑

i∈I

P (A | Bi)P (Bi).

We say that the events A, B are independent if P (A ∩ B) = P (A)P (B). We say that the
events {A0, . . . , An} are mutually independent if

P (Ai1 ∩ . . . Aik) = P (Ai1)× . . .× P (Aik)

for 2 ≤ k ≤ n and for 0 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n.

2.4.1 General measures and Borel spaces

For a σ-field F , a non negative real valued function µ over F is a general measure if µ is a
probability measure without the constraint that µ(ω) = 1. If µ(A) > 0 for some A ∈ F , µ is
said to be non trivial.

Let ℜ be the σ-field generated by the set of open intervals of the real line (a, b), the elements
of ℜ are called the Borel sets. Then let µ be the unique measure on the measurable space
〈R,ℜ〉 such that µ((a, b)) = b−a for each interval (a, b). This measure µ is called the Lebesgue
measure.
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Let R
n be the n-dimensional real space, and let ℜn be the σ-field generated by the class of

rectangle sets of the form (a1, b1) × . . .× (an, bn), then the n-dimensional Lebesgue measure
µn is the unique measure such that

µn(A) =
n∏

i=1

(bi − ai).

In this thesis, we consider only probability spaces that are either countable or isomorphic
to some Borel space defined on a real hyperspace.

2.4.2 Random variables and Probability distribution functions

Definition 2.9 (Random variable). A random variable (r.v.) X on a probability space
〈Ω,F , P 〉 is a real-valued function defined on Ω and measurable with respect to F , that is
{ω ∈ Ω | X(ω) ≤ x} ∈ F for x ∈ R.

The previous definition is usually generalized for n dimensional r.v. that are measurable
functions from a probability space to 〈Rn,ℜn〉.

The σ-field σ 〈X〉 generated by a r.v. X is the smallest σ-field containing all sets of the
form {ω | X(ω) ≤ x}. We always have σ 〈X〉 ⊆ F .

Note that in the definition of a random variable, the probability measure of the initial
probability space is not used at all. In fact, we can dispose completely of this initial probability
space and only consider the probability measure induced by a random variable, as stated by
the following proposition.

Proposition 2.3. Let X from 〈Ω,F , P 〉 to 〈Rn,ℜn〉 be a r.v., then the function PX from ℜn

to [0, 1] defined by
PX(B) = P (X−1(B))

for any borel set B is a probability measure on 〈Rn,ℜn〉.

The distribution of a r.v. X is the probability measure µX defined on the measurable space
〈R,ℜ〉 such that µX(A) = P ({ω ∈ Ω | X(ω) ∈ A}) for A ∈ ℜ. We note by P {X ∈ A} the
value P ({ω ∈ Ω | X(ω) ∈ A}). The right continuous function FX defined by

FX(x) = P {X ≤ x} = µX((−∞, x])

for x ∈ R is called the cumulative distribution function (CDF) of X. For a proper FX we
have

lim
x→+∞

FX(x) = 1.

Given µX , we have an immediate and unique CDF FX . Conversely, given a function F , µ
is the unique measure on 〈R,ℜ〉 that satisfies µ((a, b)) = F (b)− F (a) for each interval (a, b].
This implies that given F , we have an immediate and unique measure µ and thus a r.v. X.

The probability density function (PDF) fX of a r.v. X is given by the derivative of FX if
it exists.

∀x ∈ R : fX(x) =
d

dx
FX(x) and FX(x) =

∫ x

−∞
fX(y)dy.

Continuous random variables are used in this thesis to describe random delays of timed
activities. Delays being obviously greater than or equal to 0, we restrict ourselves to distri-
butions that have a support that is a subset of [0, +∞). We define the set of non negative

26



2.4. Probabilities and measure

probability distribution functions F+ as

F
+ = {FX | ∀x ∈ R, x < 0⇒ FX(x) = 0} .

Discrete, continuous and mixed delays are described uniformly by using generalized distri-
butions and density functions. A discrete probability mass at a point x leads to a step in the
distribution function. The step function s(x) (also called Heaviside function) is defined for
any x ∈ R as

s(x) =

{
0 if x ≤ 0

1 otherwise.

The Dirac impulse δ0 is defined by a rectangular function with constant area of one,
for which the length of the basis is taken as zero. That is, δ0(x) denotes a (generalized)
function with an area of size one at 0, and represents a generalized derivative of the step
function[Zim08]. Both the step function and the Dirac impulse can be translated by b ∈ R

and scaled by a ∈ R
+ to be combined with other parts of PDF or of a CDF as follows

d

dx
(a× s(x− b)) = a× δ0(x− b) and

∫ x

−∞
a× δ0(y − b)dy = a× s ∗ x− b.

By using a weighted sum of step functions, distribution functions of discrete random vari-
ables can be captured.

2.4.3 Joint distribution functions

We now consider probability statements concerning two or more random variables. Let X
and Y be two (real-valued) r.v., then the joint cumulative distribution function of X and Y
is defined by

F (a, b) = P{X ≤ a, Y ≤ b},−∞ < a, b, < +∞.

The marginal distribution FX of X is defined by FX(a) = limb→∞ F (a, b).
In the case where X and Y are continuous, we consider their joint probability density

functions. We say that X and Y are jointly continuous if there exists a function f(x, y)
defined on R

2 such that for every set C ⊆ R
2, we have

P{(X, Y ) ∈ C} =

∫ ∫

(x,y)∈C

f(x, y)dxdy,

in which cases the function f is called the joint probability density function of X and Y . In
order to compute such double integrals, we can apply the theorem of Fubini.

Theorem 2.4 (Fubini’s Theorem [Gut05]). Let 〈Ω1,F1, P1〉 and 〈Ω1,F1, P1〉 be probability
spaces and consider the product space 〈Ω1 × Ω2,F1 ×F2, P 〉 where P = P1×P2 is the product
measure as defined above. Suppose that X = 〈X1, X2〉 is a two dimensional r.v., and that g
is F1 ×F2 measurable and (1) non-negative or (2)-integrable. Then

∫

Ω
g(X)dP =

∫

Ω1×Ω2

g(X1, X2)d(P1 × P2) =

∫

Ω1

(∫

Ω2

g(X)dP2

)
dP1.
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Therefore, in the case where the previous subset C can be decomposed so that C =
{(x, y) | x ∈ A, y ∈ B}, we have

P{X ∈ A, Y ∈ B} =

∫

B

∫

A
f(x, y)dxdy.

In the case where the r.v. are independent, we can further decompose the previous integrals.
Indeed, in the case where X and Y are independent, we have P{X ≤ a, Y ≤ b} = P{X ≤
a}P{Y ≤ b}, which implies (for the jointly continuous case) that we have

F (a, b) = FX(a)FY (b)

f(a, b) = fX(a)fY (b).

The previous definitions and properties hold for n r.v. and will be mainly used in this thesis
to describe the probability of subsets of R

n in chapter 4. For an example of how we use these
results, consider that X and Y are independent r.v. that have uniform distributions over the
range [0, 60]. Then the probability P{X + 10 < Y } is obtained as follows,

∫ ∫

x+10<y

f(x, y)dxdy

=

∫ ∫

x+10<y

fX(x)fY (y)dxdy

=

∫

−∞<x<+∞

∫

−∞<y<10−x
fX(x)fY (y)dydx

=

∫ 60

0

∫ 10−x

0
fX(x)fY (y)dxdy

=

∫ 60

0
fX(x)FY (10− x)dxdy.

2.5 Stochastic processes

When observing a random experiment over time there is usually a (random) sequence of state
changes. This is captured by the notion of a stochastic process. A stochastic process is a
collection of r.v. {X(t) | t ∈ T} that are indexed by the time t. The index set T may either
be the set of natural numbers N or the set of real numbers R. In the case where the state
space of the process is discrete, we say that the stochastic process is discrete state process.
Otherwise, we call it a continuous-state process. We now review two important classes of
stochastic processes, namely,

1. Discrete Time Markov chains (DTMCs), that are discrete-state and discrete-time stochas-
tic processes satisfying the Markov memoryless property for state transitions;

2. Continuous Time Markov chains (CTMCs), that are discrete-state continous-time stochas-
tic process with exponentially distributed inter-event time.

We will further detail in chapter Chap. 4 the class of Generalized Semi-Markov processes.
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2.5.1 Discrete Time Markov Chains

The simplest model of the stochastic processes that we consider are discrete-time Markov
chains (DTMCs). A DTMC is a discrete time and discrete space process characterized by
the Markov (memoryless) property. Let Q be a finite or countably infinite set called the state
space.

Definition 2.10 (Markov Chain). A sequence (Xn)n∈N of r.v. is called a Markov chain if

P(Xn = qn | Xn−1 = qn−1, Xn−2 = qn−2, . . . , X0 = q0) = P(Xn = qn | Xn−1 = qn−1).

An intuitive interpretation of a DTMC is that the probability of the next state only depends
on the current state and not on any past history. We further consider time-homogeneous
Markov chains where for any i, j ∈ S, we have P(Xn = i | Xn−1 = j) = P(Xn+1 = i | Xn = j)
for all n ≥ 0. Time homogeneity implies that probabilities are not dependent on the time
to reach a state and this implies that we can represent a Markov chain by its transition
probability Pij that is usually represented as a Q ×Q matrix. In the case where Q is finite,
we can define a DTMC as follows.

Definition 2.11 (Discrete Time Markov Chain). A discrete-time Markov chain is a tuple
〈Q, q0, M〉 where

1. Q is finite set of states,

2. q0 ∈ Q is the initial state,

3. M : Q×Q→ [0, 1] is the transition probability matrix.

We further require M to be a stochastic matrix, that is for any state q, we have
∑

q′∈Q M(q, q′) =
1. An element M(q, q′) of the transition probability matrix gives the probability of making a
transition from the state q to the state q′.

We now show how to give a semantics to a DTMC in terms of paths. A path of a DTMC
is a non empty sequence ω = q0q1q2, . . . where qi ∈ Q and M(qi, qi+1) > 0 for all i ≥ 0. We
say that a finite path ω of length n is a prefix of an infinite path ω′ if the first n states of
ω′ are exactly the sequence ω. We build a probabilistic measure on the set of finite paths
by using the cylinder set construction ([KSK66], as cited by [Par02b], see also [BKH99]).
Let q be a state of a DTMC M = 〈Q, q0, M〉. The probability measure Probq on the set of
paths Pathq starting from q is defined inductively by P(q) = 1,P(qq1q2 . . . qn) = M(q, q1) ·
M(q1, q2) · · · · ·M(qn−1, qn). The cylinder set Cyl(ω) is then the set of all paths with prefix
ω. Then, let Σq be the smallest σ-field on Pathq which contains Cyl(ω) where ω are all the
the finite paths starting in q. The probability measure Probq is then the unique measure
Probq(Cyl(ω)) = P(ω).

2.5.2 Exponential distribution

Before moving to the continuous time Markov chains, we first review in this subsection the
properties of an important family of distributions called the exponential distribution. Consider
a r.v. X, we say that X has an exponential distribution of parameter λ ∈ [0,∞) (called the
rate) if its PDF is given by

fX(x) =

{
λe−λx, x ≥ 0

0, x < 0

29



Chapter 2. Modeling formalisms

or equivalently

FX(x) =

∫

−∞,x
fX(y)dy =

{
1− e−λx, x ≥ 0

0, x < 0.

The main characteristic of the exponential distribution is its memoryless property, that is

P (X > s + t | X > t) = P (X > s), for all s, t ≥ 0. (2.1)

Equation Eq. 2.1 implies immediately that we have

P(X > s + t) = P(X > s)P(X > t).

Furthermore, the minimum of several independent exponentially distributed r.v. is again a
random variable with a rate equal to the sum of rates[Ros96].

2.5.3 Continuous time Markov chains

Let Q be a set of states. A continuous-time Markov chain is a stochastic process {X(t)} such
that

P(X(tn) = qn | X(tn−1) = qn−1, X(tn−2) = qn−2, . . . , X(0=q0) = P(X(tn) = qn | X(tn−1) = qn−1)

for any increasing sequence t0 ≤ t1 ≤ · · · ≤ tn. Similarly to discrete space discrete-time
Markov chains, if the current state xn is known, the value taken after the next transition
depends only on xn and not on any past history. Analogously to the discrete time case, we
consider time homogeneous CTMCs and define one step stationary transition probabilities
from the state i to the state j in less than time t as P (i, j, t) = P(X(s + t) = j | X(s) =
i) = P(X(t) = j | X(0) = i). Unfortunately, continuous transition probabilities can not be
represented by a finite real-valued matrix, and CTMCs are thus not usually defined by their
stationary transition probabilities. We will instead show that a higher level structure inspired
by discrete event systems admits a semantics in terms of continuous time Markov chains.

Let S = 〈Q,Σ,→,Λ〉 be a decorated LTS where Q ⊂ N, Σ is a finite alphabet and Λ is a
mapping from Q×Q to R that maps to each pair of states (i, j) a rate Λ(i, j) called the rate
of transition from state i to state j . We further suppose that → is deterministic, that is for

all state q ∈ Q, for all label e ∈ Σ, the set of states
{

q′ ∈ Q | q e−→ q′
}

has zero or one element.

If needed, Σ and ⇒ can be built from an unlabeled transition relation (q, q′) = Q × Q by
setting →= {(q, qq′, q′)} and Σ as the second coordinate projection.

Suppose that movement from the state i to the state j is determined by “competing” clocks
that go off at random, exponentially-distributed times. Such clock are usually called timers.
For each state i, there is a timer associated with every event enabled in i, and the process
moves from state i to the state associated with the first expiring timer. let Ci be the set of
events active in state i, equivalently this is the set of active timer in state i. As a consequence
of the assumptions that the timers follow an exponential distribution, the probability that
two timers expire at the same time is 0. Let Ti be the time at which the first timer goes off
in state i and let Ni be the index of the first timer that goes off. That is

Ti ∼ minjTi,j ,

Ni ∼ argminjTi,j .
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By the property of the exponential distribution that states that the minimum of independent
exponential r.v. is itself an exponential r.v., the distribution of Ti is immediate

P(Ti ≤ t) = 1− e−λitt ≥ 0,

where λi is the sum of the rates Λ(i, j) for j in the possible successor of i, that is

λi =
∑

j∈Q|∃e∈Σ,i
e−→j

Λ(i, j). (2.2)

Furthermore, we have

P(Ni = j) =
Q(i, j)

λi
for i 6= j.

Finally, Ti and Ni are independent random variables, and thus we have

P(Ti ≤ t, Ni = j) = P(Ti ≤ t)P(Ni = j) = (1− e−λit) ∗ Q(i, j)

λi
.

From this characterization, the continuous time process defined by {X(t)} satisfies the
continuous time Markov property.

This construction of the CTMC exhibits that the Markov “memoryless property” is in fact
two fold: First, all past state information is irrelevant (no state memory), and second, how
long the process has been in the current state is irrelevant (no state age memory needed). In
fact, it is mostly the second characterization that restricts the CTMC to have exponentially
distributed inter-event time, and we will discuss in chapter 4 the class of Semi Markov pro-
cesses that relax the second property and the class of generalized semi-Markov processes that
relax both properties.

2.6 Discrete Event Systems

In this section, we present the framework of Discrete Event Systems by following the presen-
tations made in [Zim08] and [CL08].

A discrete event system (DES) is a system which stays in a state during some time after
which an atomic event might happen that changes the state immediately. Just like for the
constraint automata, the possible states of the system are described by state variables. A
state of the system is then characterized by the association of a certain value with each of the
state variables, which is called a valuation.

DES are studied because they model both the static and dynamic information about a
system, thus making them useful for evaluating the behavior of dynamic system. In DES, the
behavior of a system is represented by the visited states and the events transitioning from one
state to the next. Events may change the values of some state variables and thus represent a
set of possible transitions. Such events are meant to represent activities, that might become
enabled once their conditions are satisfied, start, take some time to complete and are finally
fired resulting in a immediate transition from one state to another.

The time between two subsequent transitions depends on the time that the corresponding
events have been enabled. Whenever an event becomes newly enabled, a delay is sampled
from a delay distribution and represents the time before this event fires. When the time is
used up, the event fires which results in an immediate transition from one state to another.
In this new state, the remaining events delays yields the next event to fire. The time that is
spent in one individual state is called the sojourn time.
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2.7 Mathematical modeling of biological systems

Mathematical and computational techniques are essential for systems biology [Kit01] as they
provide the foundations for describing formally models of systems with interacting compo-
nents.

2.7.1 Biochemical reaction networks

Among all the possible representations of a biological mechanism, a biochemist will tend
to view systems as networks of biochemical reactions, and it appears that most biological
processes “exist” at this level of detail [Wil06].

A network of biochemical reactions is a set of general chemical reactions of the form

∑

i≤r

miRi →
∑

j≤p

njPj

where r is the number of reactants, p the number of products, Ri represents a reactant
molecule, Pi a product molecule, mi is the number of molecules of Ri consumed in a single re-
action step, ni the number of molecules Pi produced in a single reaction step. The coefficients
mi and nj are called stochiometries. The stochiometries are usually (but not necessarily)
assumed to be natural numbers. Furthermore, there is no assumption that the Ri and Pi

are disjoint, and it is possible for a molecule to be both consumed and produced in a single
reaction step.

2.7.2 Kinetics

Biochemical kinetics is a field aimed at studying the dynamics of a biochemical reaction net-
works. Essentially, biochemical kinetics is concerned with the time-evolution of a chemical
mixture whose substances react according to a biochemical reaction network. In other words,
biochemical kinetics aims at determining the reaction rates of each biochemical reaction pos-
sible in the system.

Law of mass action Given a set of biochemical reactions, the law of mass action states
that the rate of a single reaction is proportional to the product of the concentrations of the
reactants. For example, consider the following set of biochemical reactions, known as the
Lotka-Volterra system (LV) ([Vol31] as cited by [Hae05]):

A → 2A

A + B → 2B

B → ∅

This system of biochemical reactions represents a predator-prey dynamics, where A is the
prey and B is the predator. Here, we assume an open system, where prey reproduces “out
of nothing” (unlimited food is available) while predators reproduce while eating prey and can
also die.

This model admits an intuitive interpretation where the amount of prey and predators are
non negative integer amounts, that change only by a discrete amount when a reaction event
occurs. This picture is correct, and will be used in the next subsection 2.7.3. However, we
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will introduce here the dynamics of this system with a classical macroscopic setting. In this
setting, the amount of each reactant and product is measured as real-valued concentrations,
measured in (say) moles per liter, M , which can vary continuously as the reactions occur.
Conventionally, the concentration of a species X is denoted [X].

According to the law of mass action, the instantaneous rate of a reaction is directly pro-
portional to the concentration of each reactant raised to the power of its stoichiometry. So
for the Lotka-Volterra system, the second reaction will proceed at the rate k2[A][B] where
k2 ∈ R+ is the constant of proportionality of this reaction. Since this reaction consumes one
reactant A, [A] will also decrease at the instantaneous rate k2[A][B]; and [Y ] will increase at
the same rate. When all three equations are considered, we can obtain for the Lotka-Volterra
system a dynamic model in terms of ordinary differential equations:

d[A]

dt
= k1[A]− k2[A][B],

d[B]

dt
= k2[A][B]− k3[B].

In order to solve this system numerically, the three rate constants, k1, k2, k3 and the initial
conditions A(0), B(0) must be specified. Once this has been done, the complete dynamics
of the system of ODEs is specified and can be revealed by numerically approximating the
solution using iterative methods (e.g. Euler, Runge-Kutta, see [PTVF02] for a more thorough
treatment on numerical approximation of solutions of ODEs).

Properties of the ODE system The solutions depicted in figure Fig. 2.4 as ǫ decreases
to 0 exhibit two properties of the Lotka-Volterra system when modeled using continuous
deterministic dynamics in terms of ODE. First, the system exhibits periodic solutions for any
value of ǫ > 0. Second, the system is at a stable equilibrium when ǫ = 0. It can be shown
that indeed A = k3/k2, B = k1/k2 is an equilibrium solution, that is for which A(t), B(t)
are constants. Furthermore, by studying the Jacobian of the system, we can characterize the
nature of this equilibrium point and see that it is stable and not attractive. This implies
that for any value of ǫ > 0, the system will never reach this equilibrium point. More detailed
explanation on the qualitative analysis of equilibrium points can be found in [Mur03] and in
the specialized monograph [Fra04].

2.7.3 Mass action stochastic kinetics

The interpretation of a biochemical reaction network in terms of ODEs is based on a macro-
scopic assumption where discrete quantities (number of molecules) are approximated by con-
tinuous quantities (concentrations). This implies for the example of the Lotka-Volterra system
that a population never really goes extinct, since small residuals (due both to the system and
to its numerical approximation) will imply that A(t) 6= 0 almost surely for any t ≥ 0. This
is illustrated in the following analysis where extreme values are sought. In the simulation
presented in Fig 2.5, the value of the species A ranges from 10−11 to 1011, but is never 0.

The extreme cases for the macroscopic approach to kinetics fail to capture the discrete and
stochastic nature of chemical kinetics when the number of some of interacting molecules are
very low. As many intra-cellular processes involve extremely low concentrations, such discrete
stochastic effects are often relevant for systems biology models. For example, this effect has
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been shown to have a qualitative impact on a model of the circadian clock where stochastic
effects enhance the resistance of a chemical oscillator [VKBL02].

We will follow the presentation given in [Wil06] of the approach initiated by Gillespie in
[Gil77]. We suppose that the biochemical reactions under study happen in a container of fixed
volume where reactants are well stirred. In such a container, the position of the molecules in
the system can be modeled as uniformly distributed random variables; and this distribution
does not depend on time. Furthermore, since we assume thermal equilibrium, the probability
that two molecules are within a reaction distance is also independent of time, and thus only
dependent on the quantity of each reactant. Just like in the study of stochastic processes, we
now seek to compute the probability that a reaction will occur within t time units given the
current state of the system. More formally, let ~x(t) denote the state of the system at time t,
i.e. ~x(t) is a vector of integers representing the quantities of each reactant in the biochemical
reaction network. We now define the probability hi(~x) that, conditional on ~x(t), a reaction
Ri occurs within dt time unit. This probability is called the stochastic rate law.

Suppose that we are considering a zeroth-order reaction of the form Ri : ∅ → P . Then,
the probability that such a reaction occurs is given by ci where ci is a constant called the
stochastic rate constant. In the case of a first order reaction we have Ri : Xj →? where ?
can be anything. The probability hi(~x) that such a reaction happens in the state ~x is ci~xj ,
where ci is interpreted as the probability that 1 molecule will undergo this reaction. In the
case of a second order reaction Ri : Xj + Xk →?, suppose that the hazard that a particular
pair of molecules will react is denoted by ci, then since there are ~xj~xk possible pairs of these
particular molecules, we have hi(~x) = ci~xj~xk. For the second kind of second order reactions
Ri : 2Xj∅?, we have hi(~x) = ci ∗ 1/2 ∗ ~xj(~xj − 1) since there are 1/2 ∗ ~xj(~xj − 1) possible pairs
of the same molecule Xj .

We now consider the system as a stochastic process. Since the reaction hazards are de-
pendent on the current state of the system and that they are time homogeneous, the time
evolution of the system’s state is seen as a continuous-time discrete-state Markov process,
namely a CTMC. In fact, we have from [Gil77] that the time before one of the reactions hap-
pens is an exponentially distributed r.v. of rate h0(~x) =

∑
hi(~x), while the probability that

this next reaction is Ri is given by hi(~x)/h0(~x). This gives us the direct and exact stochastic
simulation algorithm presented by the original author, of which an implementation is given
in figure Fig. 2.6.
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In[108]:= LV : = 8
A' @t D � k1 * A@t D - k2 *A@t D*B@t D,
B' @t D � k2 * A@t D*B@t D - k3 *B@t D,
A@0D � initA , B@0D � initB
<

In[115]:= conditions = 8k1 ® 1, k2 ® 0.1, k3 ® 0.1, initA ® 0.1 �0.1 + Ε,
initB ® 1 �0.1 + Ε<

Out[115]= 8k1 ® 1, k2 ® 0.1, k3 ® 0.1, initA ® 1. + Ε, initB ® 10. + Ε<

In[119]:= Table @
sol = NDSolve @LV �. conditions �. 8Ε ® 1<, 8A, B<, 8t , 0, 100 <D;
Plot @8A@t D, B@t D< �. sol, 8t , 0, 100 <D,
8Ε, 1, 0, -0.2 <
D

Out[119]= :
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Figure 2.4: Lotka-Volterra dynamics for the rates k1 = 1, k2 = 0.1, k3 = 0.1 and initial
conditions A(0) = k3/k2 + ǫ, B(0) = k1/k2 + ǫ as ǫ ∈ R ranges over [0, 1] by step of 0.2.
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In[309]:= conditions = 8k1 ® 1, k2 ® 0.0000000001, k3 ® 0.1, initA ® 1 + Ε,
initB ® 10 + Ε<

sol = NDSolve @LV �. conditions �. 8Ε ® 10<, 8A, B<, 8t , 0, 100 <D;
Plot @8A@t D, B@t D< �. sol, 8t , 0, 100 <, PlotRange ® All D

Out[309]= 9k1 ® 1, k2 ® 1.´10-10, k3 ® 0.1, initA ® 1 + Ε, initB ® 10 + Ε=

Out[311]=

20 40 60 80 100

5.0´1010

1.0´1011

1.5´1011

2.0´1011

2.5´1011

In[328]:= FindMinimum @A@t D �. sol, 8t , 50 <D
FindMaximum @A@t D �. sol, 8t , 20 <D

Out[328]= 93.82574´10-11, 8t ® 56.353<=

Out[329]= 92.13992´1011, 8t ® 23.7395<=

Figure 2.5: Simulation of the LV system with extreme parameter value for k2.
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In[194]:= UpdateState @state_, reactionIndex_D : = Switch @reactionIndex,
1, 8stateP1T + 1, stateP2T<,
2, 8stateP1T - 1, stateP2T + 1<,
3, 8stateP1T, stateP2T - 1<
D

In[238]:= StepSystem @8t_, state_<D : = Module @8hazards , nextT , reactionIndex <,
If @state � 80, 0 <, Return @8t, state<DD;
hazards = 8

rates @@1DD*state@@1DD,
rates @@2DD*state@@1DD*state@@2DD,
rates @@3DD*state@@2DD<;

nextT = RandomReal@ExponentialDistribution @Total @hazards DDD;
reactionIndex = RandomChoice @hazards -> Range@3DD;
8t + nextT , UpdateState @state, reactionIndex D<
D

In[248]:= t0 = 0; state0 = 8200, 100 <;
rates = 81, 0.005, 0.6 <;

In[235]:= res = FixedPointList @StepSystem, 8t0, state0 <, 50 000 D;
timeSeries = Partition @Flatten @res D, 3 D;
ListLinePlot @8timeSeries PAll, 81, 2 <T, timeSeries PAll, 81, 3 <T<D

Out[237]=
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Figure 2.6: A single realization of a stochastic Lotka-Volterra system for the stochastic rate
constants (1, 0.005, 0.6) and initial conditions (200, 100). This realization is obtained with the
function Step, implementing the Gillespie direct method.
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Chapter 3

The BioRica language

In this chapter, we define the syntax and transition semantics of the BioRica language. The
BioRica language is a hierarchical and declarative language to describe discrete dynamic
systems. A discrete dynamic system is a system in which a component may only change due
to a discrete step called a transition.

In BioRica the transitions are declarative. That is, the transitions express the logic of
a computation and not necessarily its control flow. To this end, the possible dynamics of
the system are described via macro transitions. Macro transitions are guarded transitions
indicating both the constraints that must be met for a transition to occur and how they affect
the variables of the system.

The mathematical foundation of this approach is the notion of guarded automata. Guarded
automata are like non deterministic finite automata except that the state and transitions are
kept implicit, i.e. are described by constraints and assignments over variables. This generalizes
both finite state machines and Petri Nets with bounded places. One of the key advantages of
such a declarative language is that it can shorten the description of complex dynamics.

This chapter is organized as follows. Constraints being fundamental in our language, we
will first define how they can be described with first order formulas denoting the conditions
under which an event can occur. We will then introduce BioRica nodes, that are the base
unit of our systems. We then give the semantics of BioRica nodes in terms of stochastic mode
automata, a generalization of transition systems with private and public variables, and with
a stochastic labeling. Finally, we introduce composition operations that can be used to build
a system by reusing components. The composition operation we will consider are the parallel
product, flow connections and event synchronization. We will then show that our semantics
is compositional, in the sense that a BioRica system made of composed nodes can be flattened
into a single BioRica node.

Comparison with the AltaRica formalism

The notable differences between BioRica and AltaRica are the following. In BioRica, variables
and transitions can only be defined at the leaves of the hierarchy; while in AltaRica, variables
and transitions can appear at any level in the hierarchy. Assertions in BioRica are restricted to
equality between an output variable and a term of state or input variables. As such, they are
used to constraint to value of output flows. In AltaRica, assertions can be arbitrary quantifier
free formulas and can be used to model complex dependencies between variables. Furthermore,
we used a new approach for the flow connections and synchronization mechanism. Finally,
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the main difference between BioRica and AltaRica is the stochastic labeling associated to
some events.

3.1 BioRica node

3.1.1 Abstract syntax

BioRica nodes are structures denoting the abstract representation of a BioRica program
containing a single node. This structure follows closely the concrete syntax of the BioRica
language, and each component of this structure corresponds to a possible clause in the concrete
declaration of a node.

Definition 3.1 (BioRica Node). A BioRica node is an 9-uple B = 〈S, F in, F out, dom, Σ,
A, M , ΓC , W 〉 where:

• S, F in, F out are disjoint sets of variables respectively called state variables, input flow
variables, and output flow variables.

• dom : S ∪ F in ∪ F out → P(Z) is an application that maps each variable of the node to
its domain.

• Σ is a finite alphabet containing at least the letter ǫ. The letter ǫ denotes the label of
the invisible event.

• A : F out → T S∪F in

is a total application denoting the node assertion. The node
assertion maps every output flow variable o to a term A(o) s.t. vars(A(o)) ⊂ S ∪ F in.

• M ⊂ F × Σ× (S → TS∪F in

) is a set of macro transitions 〈g, e, a〉 where:

– g ∈ FS∪F in

is called the guard,

– e ∈ Σ is the label of the event representing the transition,

– a : S → T S∪F in

maps every state variable to a term denoting its value after the
transition. This mapping is called the assignment of the transition. Note that this
application is complete, therefore every state variable is related to a term, that can
be reduced to the variable itself if it is not affected by the transition.

The macro transitions M always contain the macro transition 〈1, ǫ, Id〉 where Id is the
identity function.

• ΓC : Σ→
(
T S∪F in

)n
× (Rn → F

+), where n ∈ N and where F+ is the set of probability

distributions which support is included in [0,∞). The application ΓC maps every event
e to a vector of terms and a constructor of delay distributions.

• W : Σ → N ∪ {♯} maps to any event e a strictly positive value or an indefinite value
called the weight.

The difference in nature between state and flow variables is that the values of the state
variables are purely local and the environment (i.e. other components of the system) can
never access directly to their values. On the contrary, the flow variables are precisely used to
exchange information between the component and its environment.
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The configuration of a component may only change due to discrete steps called transitions.
These transitions are caused by events that are of two types. The first type are called local
events. Local events are events that the component know about, and may alter the value of
state variables. These are the events that are declared in the alphabet Σ and whose macro
transitions are defined in the macro transition set M . The second type of events is called
invisible events, and are all represented by the same symbol, noted ǫ. For these invisible
events, the configuration is modified because of an external event, e.g. a modification in the
configuration of the environment. Such events may only alter the value of flow variables and
are kept implicit in the model.

Two different stochastic labeling are possible in a BioRica node. The first stochastic labeling
ΓC , maps each event to a probabilistic distribution f ∈ Ψ denoting the delay of the event.
The elements of Ψ are distributions over [0,∞). These distributions can be either degenerate,
discrete or continuous distributions. We thus consider (with an abuse of notation) that
Ψ contains functions from [0, inf) to [0, 1], although some elements of Ψ are not functions
(e.g. the Dirac delta distribution). As such, an event may be modeled as instantaneous by
associating it with a delay following a Dirac distribution δ0 centered around 0 or (equivalently)
by a discrete degenerate distribution.

The second stochastic labeling W is a partial mapping from events to N, that associates
event labels with an integer denoting the weight of the event. The weight of an event is used
to assign a probability to an event in the case where multiple events are concurring.

3.1.2 Transition semantics

In order to define the semantics of a BioRica node, we first detail the semantics of the macro-
transitions as an unfolding in terms of labeled transition systems. As we stated earlier, each
macro-transition describes the set of configurations that enables a transition as well as the
assignments that are performed after a transition has been fired. Following the work done on
AltaRica [AGPR00], macro transitions in BioRica are unfolded by accounting both for their
preconditions (stated in the guard) and their postconditions (domain or assertion violation).

Example 3.1. As a starting simple example, we consider the following non stochastic bounded
counter described in BioRica.

1 node counter
state

3 val :[0,10];
flow

5 working :[0,10]: i ;
result :[0,2]: o;

7 event

incr ,decr;
9 trans

(working≥1) ⊢incr →val:=val+1;
11 (working≥1) ⊢decr →val:=val−1;

assert
13 result=working+val;

edon

This program defines a single BioRica node counter, with an integer state variable val ranging
from the 0 to 10. The node counter also uses two flow variables, working that is an input
variable, and result that is an output variable. The two events incr and decr label two
guarded macro transitions that results resp. in an incrementation and in a decrementation of
the variable val. Finally, an assertion indicates how the value of the output variable result is
determined given the value of the variables working and val.

The transition system semantics of this model is depicted in the fig. 3.1. This transition
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system illustrates four characteristics of the transition system semantics of BioRica: 1) pre-
conditions, 2)post-conditions, 3)state space reduction by assertion, and 4)non deterministic
fluctuations.

First, as explicitly stated in the model, the two events labeled incr and decr can only happen
when working ≥ 1. Thus, no transitions labeled with incr or decr appear in the transition
system when working = 0. This is called the pre-condition of the macro transition.

Second, the decr macro transition (line 11) does not explicitly forbid a decrementation
to occur when the counter val is 0. Such a decrementation would yield a configuration
where val = −1. However, since we want to ensure that each state of the transition system
corresponds to a valuation of the variables that respects the domains of each variable, the
decr event is not enabled in any state where val = 0, or more generally, is not enabled in
any state where the assignments would lead to a configuration violating the domain of the
variable val. In other words, a macro-transition is only possible if it reaches a state respecting
the domain invariant of the system. This is called the post-condition of a transition.

Third, notice that although the domain of the variables indicates that the state space
of the model should be the discrete set {0, . . . , 10} × {0, 1} × {0, 2}, the assertion result =
working+val reduces this state space to the six valuations satisfying result = working+val.
Those are the six states depicted in fig. 3.1.

Fourth, we stated earlier that state and flow variables are inherently different: the former
can only be modified via assignments while the latter can only be modified by the environment
during an invisible transition. This is illustrated in all the transitions of the transition system
that are labeled with “()”. However, the transition system also includes the transition val =

0, working = 1
incr−−→ val = 1, working = 0, which is not invisible and where the value of

working changes. In fact, we consider that input variables can be modified at any time by
the environment, and thus that they can be modified during a transition. In other words, the
possible states after an assignment is the set of states obtained by applying the assignments
to the state variables, and where all the input variables can fluctuate in their domain, as long
as the resulting valuation does not violate the assertion of the node.

We can now formalize the previous remarks to define the transition system semantics of
a BioRica node. We first show how the formula denoting the pre and post-condition of a
transition can be built. Let B = 〈S, F in, F out, dom, Σ, A, M , ΓC , W 〉 be a BioRica node,
the pre- and post-conditions are defined as follows.

Definition 3.2 (Pre and post-conditions of a macro transition). Let D be the first
order formula representing the domain of the variables defined as JDK = dom(S∪F in∪F out).
The pre and post-conditions Pre(t),Post(t) of a macro-transition t = 〈g, e, a〉 are the first
order formulas defined by

Pre(t) = g ∧D ∧
∧

o∈F out

(o = A(o)) ,

and by
Post(t) = D[a(s1)/s1, . . . , a(sn)/sn, si ∈ S]

where D[a(s1), . . . , a(sn)/s1, . . . , sn, si ∈ S] represents the substitution of every si ∈ S by the
term a(si).

The pre- and post-conditions formulas denote the conditions under which a transition is
enabled. More formally, we have s

e−→ s′ ⇔ s ∈ JPre(t) ∧ Post(t)K for a macro-transition
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Figure 3.1: Transition system of a bounded counter.

m = 〈g, e, a〉. We now characterize the result of an assignment by a first order formula.

Definition 3.3 (formulas denoting assignments). The formula Aff(t, X) denoting the
assignments of a macro-transition t = 〈g, e, a〉 from the state X ∈ dom(V ) is the formula
built with

Aff(〈g, e, a〉 , X) =
∧

v∈S

(v = (a (v) [X]))

where a(v)[X] is the term a(v) where variables are substituted by their values taken from X.

By using the pre, post-conditions and the logical characterization of an assignment, the
transition relation is straightforward. Let Q be the set of state defined by

Q = dom(S ∪ F in ∪ F out) ∩ J
∧

o∈F out

o = A(o)K.

We construct the labeled transition relation as follows.

Definition 3.4 (Labeled transition relation). The labeled transition relation of a BioRica
node B = 〈S, F in, F out, dom, Σ, A, M , ΓC , W 〉is the relation →⊆ Q×Σ×Q defined by

src
e−→ tgt⇔

{
∃t = 〈g, e, a〉 ∈M

tgt ∈ JPre(t)[src] ∧ Post(t)[src] ∧Aff(t, src)[tgt] ∧A[tgt]K

The labeled transition system S = (Q,→,Σ) is called the transition system of the node B.
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Example 3.2. We consider again the bounded counter (see example 3.1). We will explicitly
build the transition relation for the unique macro transition m labeled by incr. For brevity
of the following formulas, we resp. abbreviate the name of the variables val, working, and
result by the letters v, w, and r. The domain formula is defined by

D = (0 ≤ v ≤ 10) ∧ (0 ≤ w ≤ 10) ∧ (0 ≤ r ≤ 2).

The assertion A is defined by A(r) = w + v. Thus we have

Pre(m) = 0 ≤ r ≤ 2 ∧ 0 ≤ v ≤ 2 ∧ 0 ≤ w ≤ 2 ∧ r = v + w ∧ w ≥ 1

Post(m) = 0 ≤ r ≤ 2 ∧ 0 ≤ v + 1 ≤ 2 ∧ 0 ≤ w ≤ 2

The state space Q is defined by Q = J0 ≤ v ≤ 10 ∧ 0 ≤ w ≤ 10 ∧ 0 ≤ r ≤ 2 ∧ r = w + vK
and thus we have Q = J((0 ≤ w < 2 ∧ 0 ≤ v ≤ 2 − w) ∨ (w = 2 ∧ v = 0)) ∧ r = v + wK.
Let X = 〈v,w, r〉 be a configuration, the formula denoting the assignments of incr from X is
Aff(m, X) = v = v + 1. Finally, for the configuration X = 〈0, 1, 1〉, and for any configuration

X ′ ∈ Q we have X
incr−−→ X ′ iff X ′ ∈ Jv = 1K, that is X ′ ∈ J(r = 1 ∧ v = 1 ∧ w = 0) ∨ (r =

2 ∧ v = 1 ∧ w = 1)K.

The computation of the semantics of a BioRica node can be automatized as follows. We
model a BioRica node as follows.

In[714]:= domainMapping = 8w -> 0 £ w £ 10, v -> 0 £ v £ 10, r ® 0 £ r £ 2<
assertionTerms = 8r ® v + w<
epsTrans = 8True, " Ε", 8v ® v<<;
Trans = 8

epsTrans,
8w ³ 1, " incr ", 8v ® v + 1<<,
8w ³ 1, " decr ", 8v ® v - 1<<
<

Out[714]= 8w ® 0 £ w £ 10, v ® 0 £ v £ 10, r ® 0 £ r £ 2<

Out[715]= 8r ® v + w<

Out[717]= 88True, Ε, 8v ® v<<, 8w ³ 1, incr, 8v ® 1 + v<<, 8w ³ 1, decr, 8v ® -1 + v<<<

The domain, assertion, pre and post-conditions of the transition labeled with “incr” are the
following conjunctions and substitutions.

In[718]:= domain = r ß v ß w �. domainMapping
assertion = r == Hr �. assertionTerms L
Pret = domain ì assertion ì Trans @@2, 1 DD
Postt = Hdomain �. Trans @@2, 3 DDL

Out[718]= 0 £ r £ 2 && 0 £ v £ 10 && 0 £ w £ 10

Out[719]= r � v + w

Out[720]= 0 £ r £ 2 && 0 £ v £ 10 && 0 £ w £ 10 && r � v + w && w ³ 1

Out[721]= 0 £ r £ 2 && 0 £ 1 + v £ 10 && 0 £ w £ 10
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Then let SolveFO be a function mapping a first order quantifier free formula to the set of
valuations satisfied by this valuation. We compute the set of transitions labeled with “incr”
as follows.

In[712]:= srcs = SolveFO @Postt ì Pret D
Out[712]= 88v ® 0, w ® 1, r ® 1<, 8v ® 0, w ® 2, r ® 2<, 8v ® 1, w ® 1, r ® 2<<

In[713]:= Flatten @
Map@

Function @src,
nextStateFormula = Map@ð@@1DD ® Hð@@2DD �. srcL &, trans @@3DDD;
nextVals = SolveFO @Hdomain ì assertion �. nextStateFormula L ì

domain ì assertion D;
8src ® ð, trans @@2DD< & �� nextVals
D, srcs D

, 1 D
Out[713]= 888v ® 0, w ® 1, r ® 1< ® 8v ® 1, w ® 0, r ® 1<, incr<,

88v ® 0, w ® 1, r ® 1< ® 8v ® 1, w ® 1, r ® 2<, incr<,
88v ® 0, w ® 2, r ® 2< ® 8v ® 1, w ® 0, r ® 1<, incr<,
88v ® 0, w ® 2, r ® 2< ® 8v ® 1, w ® 1, r ® 2<, incr<,
88v ® 1, w ® 1, r ® 2< ® 8v ® 2, w ® 0, r ® 2<, incr<<

3.2 Node semantics in terms of stochastic mode automata

When a BioRica model only contains a single node, the transition system semantics defined
in the previous section unambiguously defines its non stochastic behavior. In order to define
the semantics of interacting nodes, we first define in this section an intermediate structure
called the Stochastic Mode Automata (hereafter SMA). SMA are partial unfoldings of BioRica
nodes, in which we preserve information about the type and domain of variables. By defining
composition operators at the SMA level instead of the transition level (as it is done in the
original Arnold-Nivat formalism), we can perform semantical checks before the applying the
compositions. As we will see in section 3.3, we can use the types of variables and the assign-
ments of macro transitions to verify the soundness of a connection or of a synchronization
before applying it. We can thus restrict composition operations to the ones producing non
empty transition systems. The structure of an SMA is defined as follows.

Definition 3.5 (Non deterministic stochastic mode automata). A non deterministic
stochastic mode automata (hereafter SMA) is a tuple A = (S, F in, F out,dom,Σ, δ, σ, W, Γ)
where

• S, F in, F out are mutually disjoint sets of variables called resp. state variables, input
variables, output variables,

• dom : S ∪ F in ∪ F out → P(Z) is an application that maps each variable of the node to
its domain,

• Σ is a finite alphabet,
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• δ is a mapping from dom(S) × dom(F in) × Σ to P(dom(S) × dom(F in)) that maps a
configuration and event to the set of successor configurations,

• σ is a partial mapping dom(S)× dom(F in) to dom(F out) that maps a configuration to
the value of output variables,

• W is a mapping Σ → N ∪ {♯} called the weight of the even that maps every e ∈ Σ to
a real number or an undefined value. In the case where W (e) = ♯, we say that e is not
weighted,

• Γ is a mapping from Σ × dom(V ) to F
+ that maps every event e and configuration v

to a probability distribution Γ(e, v) that has a support included in R+. For the special
event ǫ we have, for any valuation v ∈ dom(V ), Γ(ǫ, v) = δ0. The distribution Γ(e, v) is
called the delay of the event e in the configuration v.

The semantics of a BioRica node is the SMA built using the following construction.

Definition 3.6 (BioRica node semantics). Let B be a BioRica node and let → be the
labeled transition relation associated with B (see def. 3.4). The semantics JBK of a BioRica
node B = 〈S, F in, F out, dom, Σ, A, M , ΓC , W 〉 is the SMA JBK = 〈S, F in, F out, dom, Σ, δ,
σ, W , Γ〉 defined as follows.

• Let X = 〈〈v1, ..., vn〉 , 〈vin1 , ..., vinm〉〉 ∈ dom(S) × dom(F in) be a configuration and
let 〈x1, ..., xn〉 and 〈y1, ..., ym〉 be state and input variables of this configuration. The
formula f characterizing X is

fX =




∧

i∈{1,...,n}

xi = vi



 ∧




∧

i∈{1,...,m}

yi = vini



 ,

the global assertion of the node is

A = D ∧
∧

o∈F out

(o = A(o)) ,

and the mapping σ, from dom(S) × dom(F in) to dom(F out) is the partial application
defined by

σ(v, vin) = πF out(JA∧fXK) if JA∧fXK 6= ∅.

where πX() is the projection of a valuation on a set of variables V onto the set of
variables X.

• The mapping δ from dom(S)×dom(F in)×Σ to P(dom(S)×dom(F in)) is the application
defined by

δ(v, vin, e) =




〈u, uin〉

∣∣∣∣∣∣

u ∈ dom(S), uin ∈ dom(F in),
σ(u, uin), σ(v, vin) are defined,

〈v, vin, σ(v, vin)〉 e−→ 〈u, uin, σ(u, uin)〉




 .
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3.2. Node semantics in terms of stochastic mode automata

• The mapping Γ from Σ× dom(V ) to F
+ is built with ΓC and is defined for every e ∈ Σ

and for every v ∈ dom(V ) by considering the distribution constructor Ce = ΓC(e)
defined by

Ce =
〈−→

t ,K
〉
∈
((
T S∪F in

)n
×
(
R

n → R
[0,1]
))

, Ce = ΓC(e)

and by accounting for the delay parameters, i.e. the vector of terms obtained after
substitution of variables by their values in a given configuration. We thus have

Γ(e, v) = K(
−→
t [v]) where

〈−→
t , K

〉
= ΓC(e).

Notice that in the previous definition, the application σ is a partial application, since not
every valid valuation of state and input flow variables correspond to a valid valuation of
output flow. Indeed, consider the following pathological example.

Example 3.3. The following program partially defines a BioRica node in which the domain
of the output flow variables outp constraints the possible valuations of the state variable s
and of the input flow variable inp. Indeed, the possible values for the variables 〈s, inp〉 are
restricted to the set {〈0, 0〉 ; 〈0, 1〉 ; 〈1, 0〉}. Although other valuations are valid w.r.t. the
domains of s and inp, they would violate the node assertion.

/∗ .... ∗/

2 state
s :[0,100];

4 flow
inp :[0,100]: i ;

6 outp :[0,1]: o;
assert

8 outp=s∗s∗s∗s∗s∗inp∗inp∗inp;
/∗ .... ∗/

Given an SMA, rebuilding the transition relation (and thus the transition system semantics
of a node) is immediate, as stated by the following property.

Property 3.1 (From SMA to transition systems). Let C be a BioRica node, let S =
(Q,→,Σ) be the transition system of C and let JCK = 〈S, F in, F out, dom, Σ, δ, σ, W , Γ〉 be
the SMA denoting the semantics of C. We have

〈v, vin, vout〉 e−→
〈
v′, v′in, v′out

〉
⇔






δ(v, vin, e) = 〈v′, v′in〉
σ(v, vin) = vout

σ(v′, v′in) = v′out.

Example 3.4. We describe here how the semantics of a BioRica node can be described in
terms of a SMA. Let B = 〈S, F in, F out, dom, Σ, A, M , ΓC , W 〉 be a BioRica node with
S = {s}, F in = {working}, F out = ∅, Σ = {incr, decr}, A = 1, P (e) = ♯ and Γ(e) = ∆0 for
any e ∈ Σ. The macro transitions of B are defined by

M = {(working, incr, s := s + 1); (working, decr, s := s− 1); (1, ǫ,1)}
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Chapter 3. The BioRica language

The semantics JBK of this node is given by the SMA 〈S, F in, F out, dom, Σ, δ, σ, W , Γ〉
defined with dom(s) = {0, 1, 2}, dom(working) = {0,1} and where the transition relation δ
is defined by

δ =






(vs,1, incr) → (vs + 1) if vs ∈ [0, 1]

(vs,1, decr) → (vs − 1) if vs ∈ [1, 2]

(vs, vw, ǫ) → (vs)

3.3 Compositions

An important feature of a modeling language from a practical perspective is the possibility to
define hierarchical systems. This allows for example to substitute a subsystem with a more
detailed or more abstract one one without changing the global system. In order to describe
systems as hierarchies of components, we define in this section three composition operators,
namely parallel composition, flow connections and synchronization.

3.3.1 Parallel composition

The parallel composition of two SMA we define here is an adaptation of the free product (or
interleaving composition [CGP99]). The parallel composition of two SMA produces a SMA
in which each transition is a transition originating from one of the two SMA.

Definition 3.7 (Parallel composition of SMA). The parallel composition of the n SMA
(A1 ‖ A2 ‖ ... ‖ An) whose alphabets and sets of variables are disjoints is the SMA A =
(S, F in, F out,dom,Σ, δ, σ, W, Γ), where

S =

n⋃

i=1

Si, F in =

n⋃

i=1

F in
i ,

F out =

n⋃

i=1

F out
i , Σ =

n⋃

i=1

Σi,

and where W (e) = WAi
(e), and Γ(e) = ΓAi

(e) for the unique Ai where ei ∈ Σi, and where
dom(v) = domi(v) for the unique Ai where v ∈ Si ∪ F in

i ∪ F out
i and for any configuration

s = 〈s1, ..., sn〉 of dom(S), for any configuration in = 〈in1, ..., inm〉 of dom(F in), we define for
any ei ∈ Σi

δ(〈s, in, e〉 = {〈s1, ...., si−1, v, si+1, ..., sn〉 | v ∈ δi 〈si, ii, e〉} ,

σ(〈s, in〉 = 〈σ1 (s1, in1) , ..., σn (sn, inn)〉 .

At the BioRica node level, parallel composition can be performed by glueing together all
the clauses of the nodes we wish to compose. To avoid any name conflict (and to force the
alphabet to be disjoints), we prefix each event and variable of the resulting SMA by a unique
name.

Example 3.5. This example illustrate the result of a parallel composition performed at the
syntax level by the altatools [Poi00]. Consider the BioRica system
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1 node counter
state

3 s :[0,2];
flow

5 working:BOOL;
event

7 incr ,decr;
trans

9 working ⊢ incr →s:=s+1;

working ⊢decr →s:=s−1;
11 edon

13

node System
15 sub

c1,c2:counter;
17 edon

in which a system is defined by the parallel composition of two nodes counter. The syntactical
composition produces the following program

1 node System
flow

3 c1.working : bool;
c2.working : bool;

5 state
c1.s : [0,2];

7 c2.s : [0,2];
event

9 ’<c1.e,c2.e>’,
’<c1.e,c2.decr>’,

11 ’<c1.e,c2. incr>’,
’<c1.decr,c2.e>’,

13 ’<c1.incr ,c2.e>’;
trans

15 1

⊢ ’<c1.e,c2.e>’ →;
17

c1.working
19 ⊢ ’<c1.incr ,c2.e>’ →

c1.s:=((c1.s) + (1));
21

c1.working
23 ⊢ ’<c1.decr,c2.e>’ →

c1.s:=((c1.s) − (1));
25

c2.working
27 ⊢ ’<c1.e,c2. incr>’ →

c2.s:=((c2.s) + (1));
29

c2.working
31 ⊢ ’<c1.e,c2.decr>’ →

c2.s:=((c2.s) − (1));
33

edon

3.3.2 Flow connections

Flow connection are defined to model sharing of variable value between two nodes, by con-
necting an output flow variable to an input flow variable. This imply that in any configuration
of the resulting SMA, the input variable value is always equal to the output variable value.
This process is illustrated in fig. 3.2.

o1 = i1 + 1

o1i1

N1

o2i2

N2

o2 = i2 + 1

N3

i3 o3

o3 = i3 + 1

Figure 3.2: Illustration of connections between three BioRica nodes. Input variables i2 and i3
are made always equal to the output variable o1. Furthermore, in each of the nodes B1,B2,B3,
an output variable value is dependent of the input variable.
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In order for a connection to be valid, it must introduce no loop. Consider for example the
connection between the three nodes depicted in fig. 3.2 and suppose that we want to add a
connection between o3 and i1. All configurations of the resulting system will be a solution of
the system of equation

o1 = i1 + 1 ∧ i2 = o1 ∧ i3 = o1 ∧ o2 = i2 + 1 ∧ o3 = i3 + 1 ∧ i1 = o3,

admitting no solutions. In order to avoid these problematic connections, we adapt the notion
of causality between variables from [Rau02].

Causality

A variable o is said to be causally independent of a variable i if the value of i cannot be used
to determine the value of o. In other words, the variable i can be constant while the variable
o ranges over its full domain. More formally we have:

Definition 3.8 (Causality between input and output variables). Consider two vari-
ables i ∈ F in, o ∈ F out of a given SMA. The variables i and o are said to be causally
independent if, for any valuation v in dom(S) and for any valuation vin in dom(F in) we have

∀x ∈ dom(i), σ(v, vin)(o) = σ(v, vin[x/i])(o)

Semantics

For variables that are not causally dependent, we can define the connection composition
operation in the following way.

Definition 3.9 (Connection between causally independent variables). Let B be a
BioRica node, A connection I = (i1, ..., in; o) is a list of flow variables, s.t. for every input
variables ik ∈ F in, ik and o ∈ F out are causally independent.

Once a connection is established from an output to an input variable, it is possible to
completely remove the input variable from the resulting system. However, since we restrict
the guards of macro transitions to be formulas whose variables can only be input and state
variables, it is not possible to simply replace each occurrence of an input variable by the
connected output variable. However, since an output variable must be constrained by a term
over state or input variables, it is possible to replace each occurrence of an input variable by
this term.

Let A = (S, F in, F out,dom,Σ, δ, σ, W, Γ) be an SMA, let o ∈ F out be an output variable
and i1, . . . , in ∈ Fin be a sequence of input variables such that o is causally independent of
i1, . . . , in ∈ Fin.

The new set of input variables F in
∗ is defined as F in

∗ = F in − {i1, . . . , in}. Then let ~x ∈
dom(()S) be a valuation of state variables and let~i ∈ dom(F in

∗ ) be a valuation of the new set
of input variables, then the updated valuation ~iS,i1,...,in is defined by

IS,i1,...,in(v) =

{
I(v) if v ∈ F in

∗

σ(S, I ′)(o) otherwise

where I ′ is any extension of I into a valuation of dom(F in). Since the variables are assumed
as being causally independent, σ(S, I ′)(o) is the same, no matter how I ′ is built [Rau02]. We
can now build the SMA A ∝ I implementing the connection I.

52



3.3. Compositions

Definition 3.10 (Application of a connection). The application A ∝ I of a connection
I = (i1, ..., in; o) on a SMA A = 〈S, F in, F out, dom, Σ, δ, σ, W , Γ〉 is the SMA A ∝ I =
(S, F in

∗ , F out, dom∗,Σ, δ∗, σ∗, W, Γ) where dom∗, σ∗ and δ∗ are defined as follows:

• ∀x ∈ {S ∪ F in
∗ ∪ F out}, dom∗(x) = dom(x)

• For all valuation ~v ∈ dom(S), for all valuation ~i ∈ dom(F in
∗ ), for any event e ∈ Σ,

δ∗(~v,~i, e) = σ(~v,~iS,i1,...,in)

• For all valuations ~x ∈ dom(()S), for all valuations ~i ∈ dom(F in
∗ ),

σ∗(~x,~i) = σ(~x,~iS,i1,...,in)

Although implanting a connection modifies the set of variables of a node, the order in which
successive connections are applied does not change the resulting SMA.

Proposition 3.2. Let A be an SMA, let I, I ′ be connections I = (i1, ..., in; o), I ′ = (i
′

1, ..., i
′

n; o′)
such that I, I ′ are valid connections for A, I ′ is a valid connection for A ∝ I, and such that
I is a valid connection for A ∝ I ′ we have,

(A ∝ I) ∝ I ′ = (A ∝ I ′) ∝ I.

A connection can be used to import the value of one variable into another node. Previous
definition used assertions and substitutions to apply a connection on a SMA. As a result, in
the transition system of the SMA with connection, states violating the assertion are forbidden.
This approach is the one advocated in the original AltaRica formalism, which did not distin-
guished between assertions and connections, and is only feasible when analysis of a system
is preceded by a flattening operation. However, in the context of hierarchical simulation of
a BioRica system, which avoid completely the flattening operation, the semantics of connec-
tions must be interpreted differently. Instead, we present here a sequential interpretation, in
which connections are interpreted functionally as propagation of the value of output variables
in the hierarchy in order to update the value of input variables. We first determine the order
in which such updates must be made.

Let C1 = (S1, F
in
1 , F out

1 ,Σ1, A1, M1, W1,Γ1) and C2 = (S2, F
in
2 , F out

2 , Σ2, A2, M2, W2, Γ2) be
two BioRica nodes, and suppose that we wish to connect JC1K and JC2K by using the connection
I. We suppose that this connection is valid and that it verifies the causality independence
property. Let V be the set of variables of the two nodes, that is

V = S1 ∪ F in
1 ∪ F out

1 ∪ S2 ∪ F in
2 ∪ F out

2 .

And consider now the binary relation ⊲ over V defined by

x ⊲ y ⇔






either ∃i ∈ {1, ..., n}, Ii = 〈v1, ..., y, ...vj ;x〉
or x ∈ vars(A1(y)) ∩ F in

1

or x ∈ vars(A2(y)) ∩ F in
2 .

We have the following property.
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Property 3.3 (Absence of cycle in the connections). If I is valid then the directed graph
G = 〈V, ⊲〉 is bipartite and acyclic.

Proof. We suppose that I is valid. The fact that the graph is bipartite is straightforward
from the definition of a connection. We can have x ⊲ y only if one is an input variable and
the other an output variable.

We will show that the graph is acyclic by contraposition. Suppose that V, ⊲ admits a cycle
and let a1, . . . , an, a1 be an elementary cycle in G. Without loss of generality, we will suppose
that a1 is an input flow variables and that all the terms appearing in the assertions A1 and
A2 do not use any arithmetic operation. In other words, the connections are simply equality
between one output and one input variable. Since this cycle is elementary, no variable appears
twice in the prefix a1, . . . , an. The semantics of connections imply that every configuration in
the state space of the underlying transition system is solution of the system of equations

a1 = a2 ∧ a3 = a2 ∧ · · · ∧ an−1 = an−2 ∧ an−1 = an.

Consider some valuations ~x ∈ dom(S),~i ∈ dom(F in), and c ∈ dom(a1), we have

σ(~x,~i)(an) =~i(an−1) = σ(~x,~i)(an−1) = ... =~i(a1),

and thus a1 and an are not causally independent. Hence, the connection is invalid.

We can now use the previous relation ⊲ to determine in which order variables must be
updated when propagating flow variables values. Let G = 〈V, ⊲〉 be the bipartite acyclic
graph defined previously. The relation ⊲ induces a partial order over flow variables. By
linearizing G, we can build a total order ≺. Let ≺ be any total order built via linearization
and let pre be an application that maps a variable x ∈ V to a term in T V

(resp. minimal) element of any subset of V with respect to ≺. For any input variable i, let
Ii be the output flow variable connected to i. In the case where i is not connected, we set
Ii = i. Finally, let D = dom(S ∪ F in ∪ F out) be the set of possible valuations. We can now
define the flow propagation function as follows.

Definition 3.11 (Flow propagation function). For any pair (~v, V ) ∈ (D × P(V )) where
~v is a valuation in D and V is a set of variables, the flow propagation function fp maps (~v, V )
to a valuation in D and is recursively defined

fp(~v, V ) =






~v′[~v′(IM̂ )/M̂ ] if M̂ ∈ F in

~v′[JA(M̂)K~v′/M̂ ] if M̂ ∈ F out

~v if V = ∅.

where ~v′ = fp
(
~v, V −

{
M̂
})

, and where JtK~v is the value of the term t when interpreted in

the valuation ~v and where M̂ = max≺(V ) is the greatest element of the set V w.r.t. to the
total order ≺.

Example 3.6. This example illustrates the result of applying the flow propagation function
to update a valuation. Let V = S∪F in∪F out = {v1, v2}∪{i1, i2}∪{o1, o2} be variables from
a BioRica node B with the assertion A defined as

A(o1) = v1 + i1

A(o2) = v2 + i2,
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and suppose we want to implement the connection I = 〈i2, o1〉, in order to yield a system
with the connections i1 → o1 → i2 → o2. One of the complete order ≺ over V (in fact for
this example, it is the single) obtained by linearizing the relationship ⊲ is

i1 ≺ o1 ≺ i2 ≺ o2,

and thus we have for the valuation ~v = {w1 : 8, w2 : 7, i1 : 3, i2 : •, o1 : •, o2 : •} where • is
any value,

fp (~v, ∅) = ~v = {w1 : 8, w2 : 7, i1 : 3, i2 : •, o1 : •, o2 : •}
and ~v1 = fp (~v, {i1}) = ~v[~v(i1)/i2] = {w1 : 8, w2 : 7, i1 : 3, i2 : •, o1 : •, o2 : •}
and ~v2 = fp (~v, {i1, o1}) = ~v1[11/o1] = {w1 : 8, w2 : 7, i1 : 3, i2 : •, o1 : 11, o2 : •}
and ~v3 = fp (~v, {i1, o1, i2}) = ~v2[~v2(o1)/i2] = {w1 : 8, w2 : 7, i1 : 3, i2 : 11, o1 : 11, o2 : •}
and ~v4 = fp (~v, {i1, o1, i2, o2}) = ~v3[18/o2] = {w1 : 8, w2 : 7, i1 : 3, i2 : 11, o1 : 11, o2 : 18}

We now state that it is sufficient to apply this function once to update all the functionally
dependent variables.

Property 3.4. The flux propagation function is idempotent when applied to the set of all
variables of a SMA. That is, for any valuation ~v ∈ D

fp(fp(~v, V ), V ) = fp(~v, V ).

Finally, we have to relate the two semantics we have defined for the connections. Indeed,
we have the following property.

Property 3.5. Let A be a SMA, AI = A ∝ (I1...In) be the SMA obtained by implanting the
connections (I1...In) as defined in definition 3.10. Let fp be the flow propagation function
defined previously. We have for any valuation ~v ∈ dom(S ∪ F in

∗ ) of state of input flow
variables,

σ∗(~v) = fP (~v, V )

where V is the set of variables V = S ∪ F in ∪ F out.

Example 3.7. This example shows the result of a flow connection performed at the syntac-
tical level.

node not connected
2 state

s :BOOL;
4 flow

o 1:BOOL:o;
6 o 2:BOOL:o;

i 1 :BOOL:i;
8 event

calc ;
10 trans

i 1 ⊢ calc →;
12 assert

o 1:=¬i 1;
14 o 2:=¬ s;

edon

Once the connection between i1 and o1 is applied at the syntactical level, we obtain the
following BioRica node.
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1 node connected
state

3 s :BOOL;
flow

5 o 1:BOOL:o;
o 2:BOOL:o;

7 /∗ The input flow is removed ∗/

/∗ i 1 :BOOL:i; ∗/

9

event
11 calc ;

trans
13

/∗ i 1 ⊢ calc → ; ∗/

15 /∗ Each occurrence of

i 1 should be replaced by the output flow ∗/

17

/∗ o 2 ⊢ calc → ; ∗/

19

/∗ Still , output flow cannot appear in the guard ∗/

21 => we replace it by the terms constraining it ∗/

23 ¬( s) ⊢ calc →;

25 assert
o 1:=¬(¬ s);

27 o 2:=¬ s;
edon

3.3.3 Event synchronization

Synchronization semantics

Events in BioRica are considered to occur independently and therefore not simultaneously.
In some cases, two distinct events occurring in two distinct nodes have to be simultaneous, or
they model the same physical event but occurring in two different places. This leads to the
notion of synchronization of events.

Synchronization between events is a mechanism to force the simultaneous occurrence of
two separated events. The synchronization of two events modifying the same set of variables
would lead to an incoherent transition. In order to avoid such synchronization, we define
events’ incompatibility and restrict the definition of synchronization to compatible events.

Definition 3.12 (Incompatible events). Let v, vin ∈ dom(S)×dom(F in) and v a valuation
v = 〈v, vin〉, we say that the events e1, e2 ∈ Σ are incompatible w.r.t. the valuation v if

∃v′ ∈ δ(v,vin, e1),∃v′′ ∈ δ(v, vin, e2),∃s ∈ S, vs 6= v′s 6= v′′s .

Definition 3.13 (Synchronization vector for A). A synchronization vector for A is a
list 〈e1, ...., en〉, where for any i, j ∈ {0...n} , we have ei, ej ∈ Σ, ΓC(ei) = ♯, and ei, ej are
compatible.

The semantics of synchronization is given by the following definition.

Definition 3.14 (Synchronization). The SMA A = 〈S, F in, F out, dom, Σ, δ, σ, W , Γ〉
synchronized with ~e = 〈e1, ...., en〉 is the SMA A | ~e =

〈
S, F in, F out, dom,Σs, δs,σ,W ,Γs

〉

defined by

• Σs = Σ− ~e∪ ė, where ė = (e1 · e2· ... ·en) is a new label built with the concatenation of
the synchronized events

• For any v, vin, e resp. in dom(S),dom(F in),ΣS , we define δS : dom(S)×dom(F in)×ΣS

by

δS(v, vin, e) =

{
δ(v, vin, e) if e 6= ė

δ(δ(...δ(v, vin, en), ...)e2)e1) otherwise.
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In the case where synchronization is applied on events having stochastic weights, the weight
of the resulting synchronized event is arbitrarily set as follows.

Definition 3.15 (Weight of a synchronized event). Let ~e = 〈e1, ...., en〉 be a synchro-
nization vector, and let ė = (e1 · e2· ... ·en) be the label of the new event denoting the
synchronization of (e1, e2, ... , en) in (A | ~e), we arbitrarily set the weight of ė by

W (ė) =





♯ if ∃i ∈ {1, ..., k} |W (ei) = ♯
∏

ei∈v
W (ei) otherwise.

3.4 BioRica systems syntax and semantics

Now that we defined the possible composition operators, we can now define how the operations
and node semantics put together results in are hierarchical systems, called BioRica systems.

Definition 3.16 (BioRica systems). A BioRica system is a tuple S =
〈
(A1...An), (~S1...~Sn),

(C1...Cn)
〉

where every Ai is either a node or a system whose sets of variables and alphabets

are disjoints, every Ci is a connection, and every ~Si is a synchronization vector.

Contrary to the general AltaRica formalism [AGPR00], the controller of a BioRica system
is reduced to a set of connections between flow variables. The semantics of a BioRica system
is finally defined by applying the operations defined in the previous sections.

Definition 3.17 (Semantics of a BioRica system). The semantics JSK of a BioRica
system S =

〈
(A1...An), (~S1...~Sn), (C1...Cn)

〉
is the SMA JSK = (S, F in, F out, dom, Σ, δ, σ,

P , Γ) defined by

JSK = ((JA1K ‖ ... ‖ JAnK) ∝ (C1...Cn)) | (~S1...~Sn).

By the previous constructions, we showed that we can define nodes and hierarchical systems
in BioRica, and that those two elements admits an equivalent semantics. This imply that any
property or construction valid for a non hierarchical node also apply to hierarchical systems.
This property fulfills the requirements of a compositional semantics.

3.5 Concluding remarks

In this chapter, we defined the syntax, the transition semantics and the compositional seman-
tics of the BioRica language. This approach is based on the AltaRica DataFlow language
defined in [Rau02, Rau01].

By extending the AltaRica formalism to account for stochastic information, we defined the
abstract syntax of BioRica nodes, and their semantics in terms of stochastic mode automata.
Stochastic mode automata embed a number of interesting features that are borrowed from
existing formalisms.

• They are state/events based formalism, like finite state machines and reactive language,

• They are data flow oriented, like block diagrams,

• They can represent under-specified systems by non determinism, like finite automata,
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• They can be defined by using a high level declarative language, like AltaRica systems,

• They can represent hierarchical systems via composition operations,

• They account for stochastic labeling of events, like discrete event systems.

We gave two alternative definitions of flow connections. The first definition is functional and
is based on a node transformation. The second definition is operational and is based on a flow
propagation function. The first definition is meant to be used when working at the semantical
level of biorica, while the second is meant to be used for the simulation of hierarchical biorica
systems. We defined an event synchronization mechanism, and which events are incompatible
w.r.t. synchronization. We showed that we can verify events’ compatibility either on the
syntactical or semantical level. We showed that each of our composition operations can be
applied either on the syntactical or on the semantical level.

Compared to AltaRica, variables and transitions in BioRica can only appear at the leaves
of the hierarchy. Furthermore, assertions in BioRica are restricted to equality between an
output variable and a term of state or input variables. As such, they are used to constraint
to value of output flows. In AltaRica, assertions can be arbitrary quantifier free formulas
and can be used to model complex dependencies between variables. Furthermore, the flow
connections is specific to BioRica and the synchronization mechanism is defined as a binary
operation on a SMA and a vector that yield a SMA. In AltaRica, these operations are applied
on a transition system, and yields a transition system. Lastly, stochastic information can be
associated with events in BioRica.

Finally in this chapter, we showed that this semantics is fully compositional, i.e. that
a hierarchy of BioRica nodes can be flattened into a single node, and that this flattening
operation preserves the transition semantics.
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Stochastic semantics

In this chapter, we introduce a transition system model that allows us to represent finite
discrete state stochastic processes with arbitrary distributions. We call it Stochastic Transition
System (hereafter STS) and is inspired by the Generalized Semi-Markov Processes[Whi80].
A STS is a transition system that have edges decorated with timed events and with a non
deterministic transition relation.

A STS is a transition system extended with random timers. A random timer is simply
a random variable that have a distribution specified by the stochastic labeling of the STS.
To each enabled timed event is thus associated a timer whose value is a random variable
denoting the inter event time, that is the duration in which the system must stays idle before
this event fires. Once the event with the smallest inter-event time is fired, the system evolves
instantaneously to a new state. Once the system reach a new state, a set of events are newly
enabled and their timer are sampled in accordance to the probability distribution associated
with the event.

In order to define the semantics of STS in terms of probabilities over possible executions,
we determine the probability of a finite path as the joint distribution of the next state, next
event and maximum sojourn time. This probability of finite paths formalize of the notion of
race condition between continuous and discrete random variables.

Furthermore, the STS may be non deterministic transition systems for two reasons. First,
given one state and one label, the transition relation may indicate more than one possible
successors. Second, since we allow timers that are discrete random variables, the probability
that two timer expire at the same time is not zero.

The transition system model we define in this chapter is based on the definitions of proba-
bilistic transitions systems that dealt with discrete probabilities (e.g.[Seg96, VGSST95, LS89,
PZ93, Var85]) and on the model of López et al. based on kripke structure representing Semi-
Markov chains [LHK01]. In the case of continuous and discrete probabilities, our transition
system is similar to the stochastic automaton of [DKB98], at the notable difference that we
associate to STS a finite semantics.

Furthermore, we adapt the notion of scheduler [Seg96, Var85, D’A99] to resolve the non-
determinism in a probabilistic way.
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4.1 Stochastic Transition System

In this section, we define stochastic transition systems (hereafter STS) that are transitions
systems with additional event labeling carrying probabilistic information. This probabilistic
information is two fold: first, delays for firing of events, second, instantaneous probability of
choosing an event in case of competing events.

With this two fold probabilistic information, stochastic transition systems can represent
discrete state formalisms with both untimed and timed events. This generalizes both discrete
Markov chains and continuous time Markov chains [Ros96]. Furthermore, we do not put any
restrictions on the kind of probability distribution that can be associated with a transition, and
thus STS are transition systems which stochastic semantics is in the semi Markov processes
class.

Stochastic transition systems are obtained by unfolding the probabilistic information of
SMA 3.5 and are defined here below.

Definition 4.1 (Stochastic Transition System). A Stochastic Transition System (here-
after STS) is a tuple S = 〈Q,−→,Σ, W, Γ〉where :

• Q is a finite set of states,

• −→⊆ (Q× Σ×Q) is the set of labeled edges,

• Σ is a finite alphabet containing the letter ǫ,

• W : Σ 7→ N>0 is the weight function,

• Γ : Q× Σ 7→ F
+ is the clock distribution function.

Notice that in the previous definition, the transition relation −→ is non deterministic. This
implies that for a given state, multiple successor states are accessible via the same labeled
transition. Furthermore, as we will detail in section 4.3, even if the transition relation −→ is
deterministic, the stochastic information may not be sufficient to decide on a single successor
state. We illustrate this non determinism and the semantics of STS in the following example.

For any event e ∈ Σ, we say that e is active in a state q if and only if there exists a state
q′ such that q

e−→ q′. Otherwise, we say that e is inactive in q. We will denote by En(q) the
set of events that are active in the state q.

4.1.1 Stochastic Mode Automata Semantics

In the chapter Chap. 3, we have defined the semantics of BioRica nodes in terms of SMA.
An SMA is a partial unfolding of a BioRica node where information about variables types
is preserved. To compute the probability of executions of a SMA, such an information is no
longer useful, and thus we unfold completely an SMA in terms of STS. This unfolding captures
the stochastic information contained in the SMA by mapping a probabilistic distribution to
each state-label pair of the STS.

Definition 4.2 (Stochastic Mode Automata Semantics). The semantics JAK of a stochas-
tic mode automata A = 〈S, F in, F out, dom, Σ, δ, σ, W , Γ〉 is the Stochastic Transition system
S = 〈Q,−→,Σ, W, Γ〉where 〈Q,−→,Σ〉 is the labeled transition system associated with A (see
definition 3.4).
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4.2 Underlying stochastic process

The underlying stochastic process of a STS records the state of the STS as it evolves over
continuous time. We define here the stochastic process in terms of a general state space
Markov chain, that is a Markov chain taking values in an uncountably infinite set. [Dur05].
To prepare for this characterization, we first give a brief introduction to general state space
Markov chains based on the presentation of [Haa02] and [Whi80].

4.2.1 General state space Markov chains

Consider a stochastic process where the future evolution of the process only depends on the
past and present only through the current state. When the process evolves in discrete time
and takes values in a finite of countably infinite space Ω, then the process is called a Discrete
Time Markov Chain (see preliminaries for a discussion of DTMCs chap. 2). Whenever the
DTMC is time homogeneous, that is that the probabilities of transitions do not depend on
the time, then the DTMC is characterized by an initial distribution and a transition matrix
M such that M(i, j) denotes the probability starting in state i that the process next hit the
state j.

When the state space Ω is uncountably infinite, the probability that the process hits a
specified element of Ω typically is equal to 0, and a characterization in terms of transition
matrix is not useful. The generalization of DTMCs to the uncountable case relies on the
notion of transition kernel. A transition kernel P is an application that maps a state z and a
set A to the probability that starting in state z, the chain then hits a state in A. Given an
initial distribution and a transition kernel, we can define a stochastic process as follows.

Definition 4.3 (General state-space Markov chain). A general state space Markov
chain with initial distribution µ and transition kernel P taking values in Ω is a discrete time
stochastic process {Zn}n≥0 where

Pµ{Z0 ∈ A} = µ(A)

and
Pµ{Zn+1 ∈ A | Zn, . . . , Z0} = P (Zn, A) almost surely

for n ≥ 0 and A ⊆ Ω.

Typically, given a finite or countably finite set S of discrete state, the state space Ω has a
product form S × R

k for some k ≥ 1 and have A ∈ A where the collection A of subsets of Ω
is defined as all the sets

A = {s} × [0, a1]× [0, a2]× . . .× [0, ak]

where s ∈ S and (ai)0≤i≤k ∈ R
+.

Then, the finite dimensional distributions of the chain are computed by

Pµ{Z0 ∈ A0, Z1 ∈ A1, . . . , Zn ∈ An}

=

∫

A0

µ(dz0)

∫

A1

P (z0, dz1) · · ·
∫

An−1

P (zn−2, dzn−1)P (zn−1, An)

for n ≥ 0 and Ai ⊆ Ω.
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The use of a transition kernel simplifies the description of discrete time stochastic processes
that do not satisfy any memorylessness property. Indeed, the definition of a transition kernel
is sufficiently generic to encode a non memory less process into a memory less process: It is
sufficient to encode in an augmented state via supplementary variables the complete infor-
mation that is necessary for the further behavior. The a general state-space Markov chain
process is defined over the set of augmented states. In other words, by using additional vari-
ables ranging over infinite state space, a non Markov process can be converted in a Markov
process.

In the case of discrete event systems, a calendar is required to determine a successor and this
calendar is updated after each discrete transition. In order to model discrete event systems
where such calendar queues are required, Matthes [Mat62] defined the class of generalized
semi-Markov processes (GSMP). A GSMP is a stochastic process evolving via events over
a finite or countably finite state space. In a GSMP, the destination and duration of each
transition depends on which of the several possible events associated with the current state
occurs first. GSMP are stochastic processes with memory, and in order to define a transition
kernel (originally called a Markov Kernel), a general state space is defined over the possible
discrete state of the system and the possible calendar values. The operations performed on
the calendar in order to sample new delays, select the minimum, update the system global
etc. are all encoded in a transition kernel. This is the approach followed e.g. by [Haa02]
for stochastic petri nets, by Cassandras [CL08] and Zimmermann [Zim08] for stochastic timed
automata (although both definitions differs). These approach are inherited by the original
work of Whitt [Whi80] and surely by Matthes.2

With regards to probabilistic systems evolving through discrete transitions, the Markov
property allows immediate derivation of an infinite state space DTMC. Indeed, for models
satisfying the Markov property (and thus for general state space Markov chains), a small step
semantics is immediate: Given an augmented state z, the probabilities of the successors after
one step are immediately given by application of the transition kernel.

Still, as Asmussen and Glynn point out in [AG07],

The transition structures of [GSMPs] are messy to write down. Nevertheless, the
very fact that GSMPs can be viewed as Markov processes is conceptually impor-
tant from a simulation standpoint, since this means that any methodology devel-
oped for Markov processes on a general state space applies (at least in principle)
to discrete-event simulations.

However, although approaches based on transition kernel adequately define the semantics
of GSMP (and thus of discrete event systems with constant clock rate [CL08]), this approach
has not yet yielded automatic computation of the probability of a path. To this end, we
give in this chapter an alternate definition of STS, not based on transition kernels but on the
probability of finite paths decorated with timing information.

4.2.2 Paths and sojourn paths

Basically, given an initial configuration or initial state, a path of a STS is a path obtained by
traversing the transition relation. We further consider paths decorated with timing informa-
tion on transitions. This additional information represent the sojourn time in the successive
states visited during the traversal following the path.

2The original Matthes’ article published in 1967 could not have been translated.
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Definition 4.4 (Path, sojourn path of a STS). Let S = 〈Q,−→,Σ, W,Γ〉 be a STS. An
path of S is a finite sequence w = (q0, e0, q1, . . . , qn−1, en−1, qn) such that for all i ≥ 0, we have

qi
ei−→ qi+1. A sojourn path of S is a sequence ω = (q0, (e0, t0), q1, (e1, t1), . . . , qn−1, (en−1, tn−1), qn)

such that for all i ≥ 0, we have qi
ei−→ qi+1 and ti ∈ R

+∪{∞}. The length card(ω) of a sojourn
path ω is the number of transitions of ω, for instance we have here card(ω) = n.

We will denote by ω | i the prefix of ω of length card(ω | i) = i and by ω | −i the prefix of
ω of length card(ω | −i) = card(ω)− i. Finally for two sojourn path ω1 and ω2 such that the
last state of ω1 is the first state of ω2, we will denote by ω1.ω2 the concatenation of the two
sequences with the the first and last state merged.

Sojourn paths are a finite representation of an infinite number of execution of a STS. Let
ω = (q0, (e0, t0), q1, (e1, t1), . . . , qn−1, (en−1, tn−1), qn) be a sojourn path of a STS S, the set
JωK of executions of S that are represented by the sojourn path ω is the set defined by

JωK =
{
w = q0, (e0, t

′
0), q1, (e1, t

′
1), . . . , qn−1, (en−1, t

′
n−1), qn | ∀0 ≤ i ≤ n, t′i ≤ ti

}
.

In words, it is the set consisting of all executions whose sojourn time are less than the corre-
sponding sojourn time of the sojourn path.

The distinction between sojourn paths and executions is essential with regards to measure
theory and how to characterize the stochastic process underlying a STS. Indeed, since the
random variables Ti representing the sojourn in a state before the event ei fire can be a

continuous r.v., the probability of the specific execution qi
ei,t−−→ qi+1 will be zero almost

surely for any value of t. Therefore we are not interested in measuring the probability of a
specific execution but the probability of all the executions represented by a sojourn path. We
formalize this approach by defining a stochastic process whose finite realizations are exactly
the executions of a STS.

4.2.3 Paths as realizations of a stochastic process

We now define in stochastic process theory terms the relationships between STS, the under-
lying stochastic process and sojourn path.

Given a STS S = 〈Q,−→, Σ, W, Γ〉, we define the underlying stochastic process of S as a
discrete time stochastic process P = 〈Qn, Tn, En〉n∈N

, where

• Qn is a r.v. taking values in Q called the state of the process at the nth step,

• Tn is a r.v. taking values in R+ called the sojourn time of the process in the nth state
after n steps,

• En is a r.v. taking values in Σ called the event label of the transition from the nth state
to the (n + 1)th state.

We first impose that the finite realizations of P are exactly the executions S. That is, if

for some (q, e, q′) ∈ Q×Q×Σ, we have q��
e−→q′ then for any t ∈ R

+ ∪{+∞}, for any n ≥ 0, we
set P(Qn+1 = q′ | Qn = q, En = e, Tn ≤ t) = 0.

Consider now a sojourn path ω of length n in the STS S, that is

ω = (q0, (e0, t0), q1, (e1, t1), . . . , qn−1, (en−1, tn−1), qn)
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then the nth finite dimensional measure of P is used to compute the probability of ω (in the
space of P ) as

PP (Q0 = q0, E0 = e0, T0 ≤ t0, Q1 = q1, E1 = e1, T1 ≤ t1, . . . , Qn = qn, En = en, Tn ≤ tn).

We define the probability P(ω) of a sojourn path in STS S as

PP (ω) = PS(ω).

That is, the semantics of S is the law of the stochastic process P . With this approach, we
have a direct correspondence between the set of executions satisfying a sojourn path and the
finite dimensional probability measures of the stochastic process 〈Qn, Tn, En〉.

4.3 Finite dimensional measures of the underlying stochastic
process

4.3.1 Overview of the method

In the definitions of the previous subsection (Sec. 4.2.3), we merely specified the stochastic
process P without giving any method to build it (or equivalently to build its finite dimensional
measure). Although the stochastic process may be built directly with a transition kernel (e.g.
see [Haa02] for a completely defined GSSMC over markings of stochastic petri nets), we
motivate here our alternative approach on a small STS example. Consider a three state STS.

Suppose that Γ(e) is absolutely continuous for any e ∈ Σ, and consider the variable time
advance simulation algorithm[She93] given in Alg. 1. This simulation algorithm is a mean
to generate executions of the STS S, or equivalently, finite realizations of the underlying
stochastic process.

The algorithm Alg. 1 can be used to generate a set R of sample realizations of the underlying
stochastic process of S and thus can be used to estimate the probability of a sojourn path ω
as the ratio PS(ω) = card({r ∈ R | r ∈ JωK})/ card(R).

Furthermore in algorithm Alg. 1, given a probability distribution P, the function Sample(P)
returns a value x such that P(X ≤ x) = P(Sample(P) ≤ x) where X ∼ P. Repeated
calls to Sample(P) are supposed to be (probabilistically) independent. In other words,
the sequence (Γ(P),Γ(P), . . . ) is a sequence of independent and identically distributed r.v.
(X0, X1, . . . ) such that Xi ∼ P. Suppose now that with Alg. 1, we generate the realiza-

tion X
a,2.2−−−→ X

b,0.2−−−→ Y
c,1.09−−−→ Z. During the execution of the algorithm that yielded this

realization, the sequence of calls to Sample were

(Sample(Γ(a)), Sample(Γ(b)), Sample(Γ(a)), Sample(Γ(c)))

and this call sequence returned the values (2.2, 2.4, 9.2, 1.09).
Suppose now that we modify the function Sample such that, for a given distribution, it

always returns the same sequence of values. Then, since the algorithm is deterministic and
fully determined by the values returned by successive calls to Sample, this algorithm will
always return the same realization. That is, then if we modify Sample such that

• Sample(Γ(a)) = (2.2, 2.2, . . . ),

• Sample(Γ(b)) = (2.4, 2.4, . . . ),
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Algorithm 1 Variable time advance simulation algorithm for the STS S. The variable Clock
is a dictionary like data structure.

Require: MAX ∈ N

epoch := 0, state := X, result := (X)

E :=
{

e ∈ Σ | ∃q′ ∈ Q, state
e−→ q′

}

for all e ∈ E do
clock(e) := Sample(Γ(e))

end for
while card(result) < MAX ∧ state 6= Z do

event′ := argmin(clock), epoch′ := min(clock)
E′ := E − {event′}
state′ :=

{
q′ ∈ Q | state

e−→ q′
}

result = result.(epoch′ − epoch, event′).(state′)
for all e ∈ E′ do

clock′(e) := clock(e)
end for
E :=

{
e ∈ Σ | ∃q′, state′

e−→ q′
}

for all e ∈ E − E′ do
clock′(e) := epoch′ + Sample(Γ(e))

end for
E := E′, epoch := epoch′, state := state′, clock′ := clock

end while
return result

• Sample(Γ(c)) = (1.09, 1.09, . . . ),

then the algorithm will always return the realization X
a,2.2−−−→ X

b,0.2−−−→ Y
c,1.09−−−→ Z. In other

words, the simulation algorithm is deterministic and probabilistic.
Consider now the inverse problem, given a sojourn path ω = (X, a, 2.2, b, 0.2, Y, c, 1.09, Z),

what are the possible sequence of calls to Sample and their returned values that yields a
realization in JωK? Given the fact that the first state of the system is X, the algorithm will
always start with the call sequence (Sample(Γ(a)), Sample(Γ(b)). Let the sequence of r.v.
(A0, B0) represents the values return by Sample. We know that if {A0 ≤ B0 ∧ A0 ≤ 2.2},
then the system will step from X to X via the event a before the epoch 2.2. Once the system
hits the state X again, a new value is sampled via a call to Sample(Γ(a)). Let A1 be a r.v.
representing the value returned by this call. We know that if {B0 ≤ A0+A1∧B0 ≤ 2.2+0.2},
then the system will choose the event b and will step out of the state X after sojourning in
X for less than 0.2 time units. Once the system hits the state Y , a call to Sample(Γ(c)) is
made and the system will step out of state Y in less than 1.09 t.u. if C0 ≤ 1.09. Finally, the
realization r returned by the algorithm is in JωK if and only if

{A0 ≤ B0 ∧A0 ≤ 2.2 ∧B0 ≤ A0 + A1 ∧B0 ≤ 2.2 + 0.2 ∧ C0 ≤ 1.09}

which is equivalent to the set D =

{(0 ≤ A0 ≤ 2.2) ∧ (A0 ≤ B0 ≤ A0 + 0.2) ∧ (B0 ≤ A1 ≤ +∞) ∧ (0 ≤ C0 ≤ 1.09)}.
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Now given that {A0, A1, B0, C0} are independent, given that Ai ∼ Γ(a), Bi ∼ Γ(b), Ci ∼ Γ(c),
we have

PP (ω) = PS(ω) = PR4(D)

=

∫

D
fABAC(a0, b0, a1, c0)

=

∫

D
fA(a0) · fB(b0) · fA(a1) · fC(c0)

=

(∫ 2.2

0
fA(a0)

∫ a0+0.2

a0

fB(b0)

∫ +∞

b0

fA(a1)da1db0da0

)
·
∫ 1.09

0
fC(c0)dc0.

where fA, fB, fC are resp. the probability density functions of Γ(a),Γ(b) and Γ(c).
The rest of this section generalizes this construction. To this end, we start with the simplest

STS we can think of: finite state discrete time Markov Chains. We then gradually introduce
more complicated cases as follows. The subclasses of STS that we consider are:

1. STS1 are STS that have a DTMC like semantics

2. STS2 are non-deterministic STS

3. STS3 are STS that have a single state with timed transitions whose delay follows a
continuous distribution

4. STS4 relax the continuous restriction of delays of STS3

5. STS5 are STS that have only one regeneration state

6. STS6 are STS without restrictions.

4.3.2 Probability of a sojourn path in STS1: Accounting for immediate
transitions

The first subclass STS1 of STS that we consider are STS where the stochastic delay associated
with every event is a delay following a degenerate distribution. We will show that STS1 is
exactly the class of DTMC.

Definition 4.5 (STS1). A STS S = 〈Q,−→,Σ, W,Γ〉 is in STS1 if

1. for every event e ∈ Σ, we have supp(Γ(e)) = {0},

2. for every event e ∈ Σ, the weight W (e) is defined,

3. the transition relation → is deterministic, that is for any state q, any event e, the set of

states
{

q′ | q e−→ q′
}

is either empty or a singleton.

The probability of a sojourn path ω depends on the events that are competing at each
successive state (qi). Let En(q) be the subset of events of Σ that are enabled in q. That is,

En(q) =
{

e | ∃q′ ∈ Q, q
e−→ q′

}
.
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4.3. Finite dimensional measures of the underlying stochastic process

Definition 4.6 (Measure P1). For a STS S = 〈Q,−→, Σ, W, Γ〉 in STS1, for any sojourn
path ω = (q0, (e0, t0), q1, (e1, t1), . . . , qn−1, (en−1, tn−1), qn) of length greater or equal than 1,
the probability P1(ω) is

P1(ω) =
∏

ei∈ω

W (ei)∑
e∈En(qi)

W (e)
.

If ω has a length of 0, we set P1(ω) = 1.

Simulation

Generating sample timed paths from a STS in STS1 by simulation fundamentally consists
of selecting the successor of a state by accounting for the weight of competing events. We
illustrate the simulation algorithm on the STS defined by the following code.

S = 8a, b, c, d<;
W= 8a ® 5, b ® 2, c ® 1, d ® 4<;
Q= 81, 2, 3, 4, 5, 6 <;
G = 8a ® 0, b ® 0, c ® 0, d ® 0<;
S = 8
81 ® 2, a<, 81 ® 3, b<, 81 ® 4, c<,
82 ® 6, b<, 82 ® 5, d<, 82 ® 4, c<,
83 ® 4, b<,
85 ® 6, a<, 85 ® 1, d<, 84 ® 1, b<,
86 ® 6, a<
<;

GraphPlot @S, DirectedEdges ® True, VertexLabeling ® True D
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b
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In order to select the successor of the current state q, we map each of the event that are en-
abled in q to a normalized weight and then use this normalized weight as the probability
of selecting this event in a non uniform discrete distribution. Given a function Choice to
perform non uniform discrete sampling, computation of the successor state is illustrated by
the following code.
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In[7]:= EnabledIn @s_D : = Select @S, ð@@1, 1 DD � s &DPAll, 2 T
TransitionFrom @s_, e_D : = Select @S, MatchQ @ð, 8s ® _, e<D &DP1T

In[9]:= EnabledIn @1D
Out[9]= 8a, b, c<

In[10]:= TransitionFrom @1, bD
Out[10]= 81 ® 3, b<

In[15]:= Step @s_D : = Module B8enabled , totalWeight , nextE <,
enabled = EnabledIn @sD;
totalWeight = Total @enabled �. WD;

nextE = RandomChoice Benabled �. W

totalWeight
® enabled F;

Return @TransitionFrom @s, nextE DP1, 2 TD
F

NestList @Step, 1, 4 D
NestList @Step, 1, 4 D
NestList @Step, 1, 4 D

Out[16]= 81, 2, 5, 6, 6<

Out[17]= 81, 3, 4, 1, 2<

Out[18]= 81, 2, 4, 1, 2<

The function Step can be nested n times on an initial state to generate samples execu-
tions of length n + 1. We use this function to estimate the probability of the sojourn path
ω = (1, a,+∞, 2, d,+∞, 5, d,+∞, 1, b,+∞, 3). Compared to the exact probability 5/126, af-
ter 10000 samples, the difference between the estimate and the exact value is approximately
3.10−4.
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4.3. Finite dimensional measures of the underlying stochastic process

In[95]:= samples = Table @NestList @Step, 1, 4 D, 810 000 <D;
Ω@p_D : = p � 81, 2, 5, 1, 3 <
Length @Select @samples, ΩDD

Length @samples D

Out[97]=
429

10 000

In[98]:=
a �. W

Total @Ss@1D �. WD
*

d �. W

Total @Ss@2D �. WD
*

d �. W

Total @Ss@5D �. WD
*

b �. W

Total @Ss@1D �. WD

Out[98]=
5

126

In[99]:= NBNormB 5

126
-

429

10 000
FF

Out[99]= 0.00321746

Properties of STS in STS1

We show here that our stochastic semantics is sound with regard to the usual interpretation
of discrete-time Markov chains. Let M = 〈Q, M〉 be a DTMC with n states (see sec. 2.5).
The STS interpretation ofM is the STS1 S = 〈Q,−→, Σ, W, Γ〉 built with

1. Σ = {eij |1 ≤ i ≤ n, 1 ≤ j ≤ n},

2. Γ(e) = δ0,

3. W (eij) = mij ,

4. qi
eij−−→ qj iff mij 6= 0.

The idea behind the construction is to map each possible transition of M to an event in S.
We now show that both process are probabilistically equal.

Property 4.1 (Soundness of P1). For this DTMC M and this STS S, for any finite path
ω = q0q1 . . . qn of M such that PM(ω) > 0 we have

PM(ω) = P1(q0
e01−−→ q1

e12,0−−−→ q2 . . .
en−1n,0−−−−−→ qn)

Similarly, for any sojourn path ω of S such that P1(ω) > 0, then there exists a corresponding
path ω′ in M such that P1(ω) = PM(ω).

Proof. For a path of length 1, both measure yields a probability of 1. Suppose that for a path
ω of M that has a length k − 1, we build a path ω′ of S as stated in the property, we have
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PM(ω) = P1(ω
′). Let qk be the kth state of ω. We have PM(ω ·qk) = PM(ω)∗mk−1,k, while

on the other hand we have

P1(ω
′ ek−1,k−−−−→ qk) = P1(ω

′)× W (ek−1,k)∑
e∈En(qk−1) W (e)

.

By construction, En(qk−1) = {ek−1,j | mk−1,j 6= 0}. Furthermore, we know by definition of

a DTMC that
∑

j∈Q mk−1,j = 1, therefore W (ek−1,k)/
(∑

e∈En(qk−1) W (e)
)

= W (ek−1,k) =

mk−1,k, and thus PM(ω · qk) = P1(ω
′ ek−1,k−−−−→ qk).

4.3.3 Probability of a sojourn path of STS2: Accounting for non determin-
ism

The probabilistic labeling is not always enough to completely determine the next state of an
execution. In the case where the execution of a STS ends in such a non deterministic state, we
need to rely on an additional mechanism to resolve conflicts in competing events. To this end,
we define an additional variable weighting mechanism: weight schedulers. Weight schedulers
are required to compute the probability of a path in a STS with non-deterministic transition
relation or whose weight labeling is not defined for each event. More formally the class STS2

is defined as follows.

Definition 4.7 (STS2). A STS S = 〈Q,−→,Σ, W, Γ〉 is in STS2 if for every event e ∈ Σ, we
have supp(Γ(e)) = 0.

In order to compute the probability of a sojourn path of a STS in STS2, we require a weight
scheduler that assign a weight to every enabled events in a given state.

Definition 4.8 (Weight scheduler). Let S be a STS. A weight scheduler W for S is an

application from {(qi, ei)i∈N}N to (Σ × Q)N that maps a path q0
e0−→ q1

∗−→ qn of S to an
application (W ) that maps a pair of label and state to a (integer) weight value.

Let w = q0
∗−→ qn−1 be a path of S such that there exists at least one outgoing transition

qn−1
e−→ qn from the state qn−1 (i.e. it is not a deadlock state). A weight scheduler is said to

be valid with regards to Sif for every path w, we have

• W(ω, e, qn) = 0 if qn−1��
e−→qn,

• W(ω, e, qn) = W (e) if W (e) is defined for every e in En(qn−1),

• There exists at least a pair (e, qn) of label and state such that W(ω, e, qn) 6= 0.

In the following, we will only consider valid schedulers. We can now extend the definition of
P1 to account for the non-deterministic choices.

Definition 4.9 (Measure P2). For a STS S = 〈Q,−→,Σ, W, Γ〉 in STS2, for a weight
scheduler W, for any sojourn path ω = (q0, (e0, t0), q1, (e1, t1), . . . , qn−1, (en−1, tn−1), qn) of
length greater or equal than 1, the probability P2W(ω) is

P2W(ω) =
∏

qi∈ω

W(ω | i, ei, qi+1)∑
e∈En(qi)

∑
n

q′|q
e−→q′

oW(ω | i, e, q′) ,

If card(omega) = 0, we set P2W(ω) = 1.
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4.3. Finite dimensional measures of the underlying stochastic process

Simulation in STS2

To generate sample execution of a STS in STS2, we select the successor of a state according to
both the weights of competing events and the weights returned by a given weight scheduler.

In[28]:= Step @Ω_, W_D : = Module B8sfin , enabled , newWeights , totalWeight , nextE <,
sfin = Ω@@-1, 2 DD;
enabled = EnabledIn @sfin D;
newWeights =W@Ω, ðD & �� enabled ;
totalWeight = Total @newWeights D;

nextE = RandomChoice B newWeights

totalWeight
® enabled F;

Return @Append@Ω, 8sfin , TransitionFrom @sfin , nextE DP1, 2 T, nextE <DD
F

W1@Ω_, Σ_D : = If @W@ΣD =!= Û, W@ΣD, 1 D
Step1 @Ω_D : = Step @Ω, W1D

Nest @Step1, 881, 1, " init " <<, 5 D
Nest @Step1, 881, 1, " init " <<, 5 D
Nest @Step1, 881, 1, " init " <<, 5 D

Out[31]= 881, 1, init<, 81, 2, a<, 82, 6, b<, 86, 6, a<, 86, 6, a<, 86, 6, a<<

Out[32]= 881, 1, init<, 81, 3, b<, 83, 4, b<, 84, 1, b<, 81, 2, a<, 82, 6, b<<

Out[33]= 881, 1, init<, 81, 2, a<, 82, 6, b<, 86, 6, a<, 86, 6, a<, 86, 6, a<<

With a sample size of 10000, we compute the most and less probable paths.
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In[34]:= samples = Table @Nest @Step1, 881, 1, " init " <<, 10 D, 810 000 <D;

In[35]:= Ωlow = SortBy @Tally @samples D, ð@@2DD &D@@2, 1 DD
Ωhigh = SortBy @Tally @samples D, ð@@2DD &D@@-1, 1 DD

Out[35]= 881, 1, init<, 81, 2, a<, 82, 4, c<, 84, 1, b<, 81, 2, a<,
82, 4, c<, 84, 1, b<, 81, 2, a<, 82, 4, c<, 84, 1, b<, 81, 4, c<<

Out[36]= 881, 1, init<, 81, 2, a<, 82, 6, b<, 86, 6, a<, 86, 6, a<,
86, 6, a<, 86, 6, a<, 86, 6, a<, 86, 6, a<, 86, 6, a<, 86, 6, a<<

In[37]:= :
Length @Select @samples, ð == Ωlow & DD

Length @samples D
,

Length @Select @samples, ð � Ωhigh & DD
Length @samples D

>

N@%D

Out[37]= :
1

10 000
,

639

5000
>

Out[38]= 80.0001, 0.1278<

The probability of path can be computed exactly, since it only involves multiplication of
rational numbers.

In[39]:= Prob2 @Ω_, W_D : = Module B8<,

MapIndexed B

Module B8Ωi , prefix , qi , Σi , conflicting , currentWeights , totalWeight <,
Ωi = ΩPFirst @ð2DT;
prefix = ΩP ;; First @ð2DT;
Σi = Ωi P3T;
qi = Ωi P1T;
conflicting = EnabledIn @qi D;
currentWeights =W@prefix , ðD &�� conflicting ;
totalWeight = Total @currentWeights D;
W@prefix , Σi D

totalWeight

F &, ΩF

F

In[40]:= 8Times �� HProb2 @Ωlow P2 ;; T, W1DL, Times �� HProb2 @Ωhigh P2 ;; T, W1DL<
N@%D

Out[40]= :
1

16 384
,
1

8
>

Out[41]= 80.0000610352, 0.125<

As we saw, this probability depends on the weight scheduler. For example, we can modify
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4.3. Finite dimensional measures of the underlying stochastic process

the previous model by using a weight scheduler that disables the event d whenever it has been
fired more than 2 times.

In[42]:= W2@Ω_, Σ_D : = If @W@ΣD =!= Û, W@ΣD,
With @8dcount = Hd �. HðP1T ® ðP2T &�� Tally @Ω@@2 ;;, 3 DDD LL<,

If @dcount =!= d ì dcount ³ 2 ì ΩP-1, 1 T � 2, 0, 100 DDD

8Times �� HProb2 @Ωlow P2 ;; T, W2DL, Times �� HProb2 @Ωhigh P2 ;; T, W2DL<
N@%D

Out[43]= :
1

279 738 112
,

1

206
>

Out[44]= 93.57477´10-9, 0.00485437=

In[45]:= Step2 @Ω_D : = Step @Ω, W2D
samples = Table @Nest @Step2, 881, 1, " init " <<, 10 D, 810 000 <D;

:Length @Select @samples, ð == Ωlow & DD
Length @samples D

,

Length @Select @samples, ð � Ωhigh & DD
Length @samples D

>

N@%D

Out[47]= :0,
59

10 000
>

Out[48]= 80., 0.0059<

Properties of STS in STS2

We consider first the problem of characterizing the STS that are deterministic. For such STS,
the probability of a sojourn path is independent of a weight scheduler.

Definition 4.10 (Deterministic STS). A STS S in STS2 is said to be deterministic if for
every weight schedulersW andW ′, for every sojourn path ω, we have P2(ω,W) = P2(ω,W ′).

Let B be a BioRica node and S = JJBKK be the underlying STS. We can decide if S is in
STS1 and thus if it is deterministic by a syntactical check on B.

Property 4.2 (Characterization of deterministic nodes). The STS S = JJBKK is in
STS1 if its set of input flow is F in = ∅ and if for every event e in Σ, the weight W (e) is
defined, the delay Γ(e, q) = δ0 for any configuration q, and there is only one macro-transition
labeled with e.

Note that this condition is sufficient but not necessary. Consider for example a BioRica
node that have two macro-transitions m and m′ sharing the same label. If JPre(mt) ∧
Post(mt)K ∩ JPre(m′

t) ∧ Post(m′
t)K = ∅ then both macro-transitions are never enabled in the

same configuration, hence the transition relation is deterministic and S is in STS1.

Property 4.3 (Equivalence between P1 and P2). For a STS in STS1, for any sojourn
path ω, for any weight scheduler W, we have P2W(ω) = P1(ω).
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Proof. Let S = 〈Q,−→, Σ, W, Γ〉 be a STS in STS1. By definition, S is deterministic, and
W is defined for all the events in Σ. Let W and W ′ be two weight schedulers. Since W is
defined over Σ, we always have W(ω, e, q) = W ′(ω, e, q) = W (e) for any state q and for any
sojourn path ω. Thus, P1(ω) = P2W(ω) = P2W ′(ω).

For the following STS classes, the results are meant to be interpreted with regards to a
weight scheduler.

4.3.4 Probability of a sojourn path of STS3: Accounting for one step timed
transitions with continuous delays

We consider here the probability of making a timed transition. Let S be a STS and W a
weight scheduler for S. We consider in this subsection the subclass of STS that have a single
state with timed transitions whose delay follows a continuous distribution. More formally, we
define the class STS3 as follows.

Definition 4.11 (A). STS S = 〈Q,−→,Σ, W, Γ〉 is in STS3

1. if there exists a unique, distinguished state qT ∈ Q such that for every event e in En(qT ),
Γ(e) is a continuous distribution (see 2.4 for the definition),

2. and if for every other state q′ 6= qT in Q, for every event e in En(q′), we have Γ(e) = δ0.

Consider a sojourn path ω = q0, (e0, t0), q1, (e1, t1), . . . , qn−1, (en−1, tn−1), qT of S ∈ STS3

where qT do not appear except as the final state. Since qT is the only state where timed
transitions are enabled, the probability P3(ω) is

P3(ω) = P2(q0, (e0, 0), q1, (e1, 0), . . . , qn−1, (en−1, 0), qT ).

In other words, we reach qT within 0 time unit almost surely with the probability given by
the underlying discrete time Markov chain.

However the the next transition qT
e,t−→ q′ implies that t will be non zero almost surely.

Since the probability distribution of t depends on the event e that wins the race condition in
qT , we will compute the probability that a given event e wins the race condition in qT in less
that t time units. Let E be a r.v. taking values in Σ and representing the event winning the
race condition, and let T be a r.v. taking values in R and representing the sojourn time in
qT .

In the case where a realization of E is not enough to uniquely determine the next state
q′ (e.g. for a non-deterministic STS), we suppose that a weight scheduler will elect the next
state after the race between En(qT ) is over. Therefore, we characterize first the distribution
of the random vector 〈E, T 〉.

By definition of STS3 every the events En(qT ) are labelled with an absolutely continuous
distribution, thus the outcome of the race condition is fundamentally described by the prob-
ability that a specific event e of En(qT ) wins the race condition in less than time t when
competing with events in En(qt), i.e. we have to compute P(〈E = e, T ≤ t〉) for e and t given.
We will establish that

P(〈E = e, T ≤ t〉) =

∫ t

0




∏

e′∈En(qT )−{e}

(1− Fe′(t))



 ∗ fe(t)dt (4.1)
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Proof. The proof is carried out explicitly for three events En(qT ) = {e1, e2, e3}, but the gen-
eralization is easy. Let {X, Y, Z} be the r.v. denoting the delays of {e1, e2, e3} respectively.
Each r.v. X, Y, Z follows the distribution Γ(e1), Γ(e2) and Γ(e3) respectively. We first for-
malize the meaning of the probabilistic event “the event e1 wins before time t”. By using
conditional probabilities, we observe that

P(E = e1, T ≤ t | X ≤ t, X < Y, X < Z) = 1,

P(E = e1, T ≤ t | X ≤ t, X > Y ∨X > Z) = 0,

P(E = e1, T ≤ t | X ≤ t, X = Y,X < Z) = a,

P(E = e1, T ≤ t | X ≤ t, X = Z, X < Y ) = b,

P(E = e1, T ≤ t | X ≤ t, X = Z = Y ) = c

where a = W(e1)
W(e1)+W(e2) , b = W(e1)

W(e1)+W(e3) , c = W(e1)
W(e1)+W(e2)+W(e3) are real-valued constants.

Since the collection of sets {X < Y, X < Z}, {X = Y, X < Z}, {X = Z, X < Y },{X = Y = Z}
and {X > Y ∨X > Z} forms a partition of R

3, we can apply the law of total probability and
hence

P(E = e1, T ≤ t) = P(X ≤ t, X < Y, X < Z)

+a×P(X ≤ t, X = Y, X < Z)

+b×P(X ≤ t, X = Z, X < Y )

+c×P(X ≤ t, X = Z = Y ).

However since

P(X = Y ) =

∫ ∫

{x=y}
fX(x)fY (y)dxdy =

∫ +∞

−∞
fX(x)

∫ x

x
fY (x)dx = 0,

and therefore P(X = Y ) = P(X = Z) = P(X = Y = Z) = 0, we have

P(E = e1, T ≤ t) = P(X ≤ t, X < Y, X < Z).

This probability can be expressed as follows

P(X ≤ t, X < Y, X < Z) =

∫ ∫ ∫

{x≤t,x<y,x<z}
fXY Z(x, y, z)dxdydz

=

∫ ∫ ∫

{x≤t,x<y,x<z}
fX(x)fY (y)fZ(z)dxdydz

=

∫ ∫ ∫

{x≤t,x<y}
fX(x)fY (y)

∫ +∞

x
fZ(z)dzdydx

=

∫ ∫

{x≤t,x<y}
fX(x)fY (y)× (1− FZ(x))dydx

=

∫

{x≤t}
fX(x)× (1− FY (x))× (1− FZ(x))dx

=

∫ t

0
(1− FY (x))× (1− FZ(x))× fX(x)dx.

The steps are similar for P(Y ≤ t, Y < X, X < Z),P(Z ≤ t, Z < X,Z < Y ). In fact, one can
obtain the corresponding probabilities by performing substitutions in the last formula.
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Property 4.4 (Marginals, Exit rate). We have for any e ∈ En(qT )

P(E = e) =

∫ +∞

−∞




∏

e′∈Σs

(1− Fe′(t))



 ∗ fe(t)dt, (4.2)

and

P(T ≤ t) = 1−
(
∏

e∈Σs

(1− Fe(t))

)
. (4.3)

Proof. The proof of equation (4.2) is immediate by the definition of the marginal. As for
equation (4.3), we have by the definition of the marginal and by equation (4.1):

P(T ≤ t) =
∑

e∈En(qT )

P(E = e, T ≤ t)

=

∫ t

0
(1− FY (x))× (1− FZ(x))× fX(x) + (1− FX(x))× (1− FZ(x))× fY (x)

+ (1− FX(x))× (1− FY (x))× fz(x)dx.

Consider the substitutions: u(x)← (1−FX(x)), v(x)← (1−FY (x)), w(x)← (1−FZ(x)). We
have u′(x) = −fX(x), v′(x) = −fY (y), and w′(x) = −fZ(x). By performing this substitution
in the last formula, we obtain

P(T ≤ t) = −1 ·
∫ t

0
v(x)×w(x)×u′(x)+ u(x)×w(x)× v′(x) +u(x)× v(x)×w′(x)dx. (4.4)

Since (u(x)× v(x)×w(x))′ = v(x)×w(x)×u′(x)+u(x)×w(x)× v′(x)+u(x)× v(x)×w′(x),
we can integrate equation (4.4) and thus

P(T ≤ t) = lim
b→−∞

(
u(b)× v(b)× w(b)− u(x)× v(x)× w(x)

)
.

Since limb→−∞ u(b)× v(b)× w(b) = 1, we have

P(T ≤ t) = 1− (1− FX(x))× (1− FY (x))× (1− FZ(x)). (4.5)

One could also obtain the same result without considering equation (4.3). Indeed, the com-
plementary probabilistic event of {T ≤ t}, is the probabilistic event {T > t} = {min {X, Y, Z} > t}.
In order to realize this event, we must have all the delays strictly greater than t. More formally,
we have

1−P(T ≤ t) = P(”all delays are greater than t”)

= P(X > t, Y > t, Z > t) = P(X > t)×P(Y > t)×P(Z > t)

= (1− FX(t))× (1− FY (t))× (1− FZ(t)),

and thus P(T ≤ t) = 1− (1− FX(t))× (1− FY (t))× (1− FZ(t)).

We can now use this probability to define the probability of a sojourn path of STS3. To
this end, given a sojourn path ω in which qT appears more than once, we decompose ω
into probabilistically independent sojourn sub paths. More formally, for any sojourn path
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ω in which the distinguished state qT appears, the decomposition of ω in probabilistically
independent sub paths is the sequence of sojourn paths (ωi)i≤k such that

ω = ω0.(qT , (e0, t0), qT1).ω1.(qT , (e1, t1), qT2). . . . .(qT , (ek−1, tk−1), qTk).ωk.

Note that by definition of the concatenation operation (see Def. 4.4), the sojourn path ωi

must start with the state qT i. Furthermore, the length of ωi can be zero, and in the case
where qT does not appear in ω, the decomposition of ω is not defined. Finally, if qT is the
last state but one of ω, then the decomposition of ω is ω itself.

Decomposition of a sojourn path ω into probabilistically independent sub paths allows
us to decompose the computation of P(ω). However in the case where the STS S is not
deterministic, the outcome of a weight scheduler W is dependent on the full prefix. That is,
we cannot assume for any decomposition ω = ω1.ω2 that

P2W(ω) = P2W(ω1)×P2W(ω2),

and thus cannot decompose a priori the probability of ω by reusing P2 on sub paths. How-
ever, consider for example a sojourn path ω = (X, (e0, 0), qT , (e1, t1), Y ) of a STS S =
〈Q,−→,Σ, W, Γ〉 with the non deterministic transition relation defined by

{
X

e0−→ qT, X
f−→ X, qT

e1−→ Y, qT
e1−→ Z, qT

j−→ X

}

We have by definition

P2W(ω) =
∏

qi∈ω

W(ω | i, ei, qi+1)∑
e∈En(qi)

∑
n

q′|q
e−→q′

oW(ω | i, e, q′)

=
W((X), e0, qT )

W((X), f,X) +W((X), e0, Y )

× W((X, e0, qT ), e1, Y

W((X, e0, qT ), e1, Y ) +W((X, e0, qT ), e1, Z) +W((X, e0, qT ), j, X)
.

In order to express P3(ω) in terms of P2W(ω), we have to correct P2W(ω) to account for
the outcome of the race condition in qT between {e1, j} that elected e1 as the winner. That
is, we have to apply the weight scheduler not to select between all the transitions of the events
{e1, j} but solely between the transitions that are labeled with the winning event e1. Thus
we have

P3(ω) = P2W(ω)×P(E = e1, T ≤ t1)

×W((X, e0, qT ), e1, Y ) +W((X, e0, qT ), e1, Z) +W((X, e0, qT ), j, X)

W((X, e0, qT ), e1, Y ) +W((X, e0, qT ), e1, Z)

Definition 4.12 (Measure P3). For a STS S = 〈Q,−→, Σ, W, Γ〉 in STS3, for a weight
schedulerW, for any sojourn path ω of length greater or equal than 1 with the decomposition
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(ωi)i≤k then we define

P3(ω) = P2W(ω)×
∏

0≤i≤k

P(〈E = ei, T ≤ ti〉)×

∑
e∈En(qT )

∑
n

q′|qT

e−→q′
oW(ω | i, e, q′)

∑


q′|qT

ei−→q′
ffW(ω | i, ei, q′)

where

P(〈E = ei, T ≤ ti〉) =

∫ ti

0




∏

e′∈En(qT )−{ei}

(1− Fe′(t))



 ∗ fei
(t)dt.

For sojourn paths where qT does not appear (and thus that does not admit a decomposition),
we define

P3(ω) = P2W(ω).

Property 4.5 (Relation with P1). For a STS S = 〈Q,−→,Σ, W, Γ〉 with a deterministic
transition relation and for which each event e enabled in a state q 6= qT , the weight W (e) is
defined, then we have for any sojourn path ω,

P3(ω) = P1(ω)×
∏

0≤i≤k

P(〈E = ei, T ≤ ti〉).

Numerical validation We verify the formulas 4.12 and 4.1 by using numerical integra-
tion and sampling. Let X, Y and Z be three continuous r.v. whose distributions are X ∼
N(12, 1), Y ∼ U([8, 13]), and Z ∼ Exp(1/12). We first sample realizations of the r.v. 〈X, Y, Z〉
and then compare the numerical approximation of the integral 4.1 with its empirical estima-
tor. Comparison is made for values of t in the range [7, 14] with a step of 0.5. For the three
integrals, we get a total error less than 10−2. This is done with the following program.
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4.3. Finite dimensional measures of the underlying stochastic process

In[1]:= X = NormalDistribution @12, 1 D;
Y = UniformDistribution @88, 13 <D;
Z = ExponentialDistribution @1 �12D;

In[4]:= rvSamples = Table @RandomReal �� 8X, Y, Z <, 8100 000 <D;

In[5]:= XisSmallestAndLessThanT @t_D : =
Select @rvSamples, Ordering @ðD@@1DD � 1 ì ð@@1DD £ t &D;

YisSmallestAndLessThanT @t_D : =
Select @rvSamples, Ordering @ðD@@1DD � 2 ì ð@@2DD £ t &D;

ZisSmallestAndLessThanT @t_D : =
Select @rvSamples, Ordering @ðD@@1DD � 3 ì ð@@3DD £ t &D;

XWins@t_D : = NIntegrate @
H1 - CDF@Y, xDL*H1 - CDF@Z, xDL*PDF@X, xD, 8x, 0, t<D

YWins@t_D : = NIntegrate @
H1 - CDF@X, yDL*H1 - CDF@Z, yDL*PDF@Y, yD, 8y, 0, t<D

ZWins@t_D : = NIntegrate @
H1 - CDF@Y, zDL*H1 - CDF@X, zDL*PDF@Z, zD, 8z, 0, t<D

totalErrorOnX = Total BTable BNormB

XWins@t D - Length @XisSmallestAndLessThanT @t DD
Length @rvSamples D

F, 8t , 7, 14, 0.5 <FF

totalErrorOnY = Total BTable BNormB

YWins@t D - Length @YisSmallestAndLessThanT @t DD
Length @rvSamples D

F, 8t , 7, 14, 0.5 <FF

totalErrorOnZ = Total BTable BNormB

ZWins@t D - Length @ZisSmallestAndLessThanT @t DD
Length @rvSamples D

F, 8t , 7, 14, 0.5 <FF

Out[11]= 0.011851

Out[12]= 0.0234978

Out[13]= 0.0200618

In order to compare the results of the marginals, we follow as similar scheme of sampling
and numerical integration.
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In[19]:= XisSmallest = Select @rvSamples, Ordering @ðD@@1DD � 1 &D;
YisSmallest = Select @rvSamples, Ordering @ðD@@1DD � 2 &D;
ZisSmallest = Select @rvSamples, Ordering @ðD@@1DD � 3 &D;

In[22]:= NormBLength @XisSmallest D
Length @rvSamples D

- XWins@+¥DF

NormBLength @YisSmallest D
Length @rvSamples D

- YWins@+¥DF

NormBLength @ZisSmallest D
Length @rvSamples D

- ZWins@+¥DF

Out[22]= 0.00182082

Out[23]= 0.00299586

Out[24]= 0.00117505

The distribution of the exit rate can also be obtained by mapping each realization of the
random vector 〈X, Y, Z〉 to its minimum and then bin the results. Here, we binned the mini-
mum in bins of length 0.1 and obtained the following distribution.

In[35]:= quantum = 0.1;
Histogram @Min �� rvSamples, 8quantum <, " ProbabilityDensity " D

Out[36]=

2 4 6 8 10 12

0.05

0.10

0.15

The theoretical CDF of the minimum of the three r.v. is given by the marginal P(T ≤ t).
In order to compare this theoretical distribution to the previous empirical PDF, we perform
a discrete derivation of successive values of the theoretical CDF obtained with a step of 0.1.
We obtain the following PDF.
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In[27]:= ExitRate @t_D : = 1 - H1 - CDF@X, tDL*H1 - CDF@Y, tDL*H1 - CDF@Z, tDL
quantum = 0.1;
ExitRateCDF = Table @8t , ExitRate @t D<, 8t , 0, 15, quantum <D;
ListLinePlot @ExitRateCDF, PlotStyle ® 8Red, Thick <D

Out[30]=
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In[31]:= ExitRatePDF = Transpose @8
ExitRateCDF @@2 ;;, 1 DD,
Differences @ExitRateCDF @@All, 2 DDD*1 �quantum <

D;
ListLinePlot @ExitRatePDF, PlotStyle ® 8Red, Thick <D

Out[32]=
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And we finally compare the theoretical and empirical distributions by plotting them on the
same graph. On this graph, the red line denote the value of the PDF of the theoretical exit
rate, while the histogram bars represent the empirical PDF of the exit rate.
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In[34]:= Show@
Histogram @Min �� rvSamples, 8quantum <, " ProbabilityDensity " D,
ListLinePlot @ExitRatePDF, PlotStyle ® 8Red, Thick <D
D

Out[34]=

2 4 6 8 10 12 14

0.05

0.10

0.15

Simulation of STS in STS3

Simulation of a STS in STS3 consists of running the simulation according to the algorithm
given for a STS in STS2 up to arriving at the state qT . Once in qT , we sample a realization of
the random vector corresponding to the delays of the events in En(qT ). The next transition is
then chosen by selecting the event scheduled at the smallest epoch. We modify the previous
STS by adding three timed events bt, ct and dt enabled in the state 2.
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In[37]:= S = 8a, b, c, d, dt , bt , ct <;
W@Σ_D : = Switch @Σ , " init ", 1, a, 1, b, 2, c, 1, d, 5 D
Q= 81, 2, 3, 4, 5, 6 <;
G@Σ_D : = Switch @Σ , " init ", 0, a, 0, b, 0, c, 0, d, 0,

dt , NormalDistribution @12, 1 D,
bt , ExponentialDistribution @1 �12D,
ct , UniformDistribution @88, 13 <DD

S = 8
81 ® 2, a<, 81 ® 3, b<, 81 ® 4, c<,
82 ® 6, bt <, 82 ® 5, dt <, 82 ® 4, ct <,
83 ® 4, b<,
85 ® 6, a<, 85 ® 1, d<, 84 ® 1, b<,
86 ® 6, a<
<;

GraphPlot @S, DirectedEdges ® True, VertexLabeling ® True D

Out[42]= a

b

c
bt

dt

ct

b
b
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a

d
1
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5

Simulation of such STS is carried out as follows. Once the set of enabled events in the current
state is computed, we associate each event to a sample from the delays distribution. From
this sample list, we select the set of events that are associated with the smallest delay, then in
the case of ties (i.e. in STS3, for delays following a Dirac distribution), we apply the weight
scheduler W1 to elect the winning event.
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In[43]:= EnabledIn @s_D : = Select @S, ð@@1, 1 DD � s &DPAll, 2 T
TransitionFrom @s_, e_D : = Select @S, MatchQ @ð, 8s ® _, e<D &DP1T

In[45]:= Sample @f_D : =
If @Head@fD === Integer, f,

RandomReal@fD
D

In[46]:= Step @Ω_, W_D : = Module B8
sfin , enabled , newWeights , totalWeight , nextE ,
clocks , winners , nextT , winnerLabels , currentT <,

sfin = ΩP-1, 2 T;
currentT = ΩP-1, 4 T;
enabled = EnabledIn @sfin D;
clocks = Hð1 -> Sample @G@ð1DDL & �� enabled ;
clocks = GatherBy @clocks , ðP2T &D;
winners = SortBy @clocks , ðP1, 2 T &DP1T;
8nextT , winnerLabels < = 8winners P1, 2 T, winners PAll, 1 T<;
nextE = If BLength @winnerLabels D == 1, winnerLabels P1T,

newWeights =W@Ω, ðD & �� winnerLabels ;
totalWeight = Total @newWeights D;

RandomChoice B newWeights

totalWeight
® winnerLabels F

F;

Return @Append@Ω, 8sfin , TransitionFrom @sfin , nextE DP1, 2 T, nextE ,
currentT + nextT <DD

F
W1@Ω_, Σ_D : = If @W@ΣD =!= Û, W@ΣD, 1 D
Step1 @Ω_D : = Step @Ω, W1D

In[49]:= Nest @Step1, 881, 1, " init ", 0 <<, 20 D
Nest @Step1, 881, 1, " init ", 0 <<, 20 D
Nest @Step1, 881, 1, " init ", 0 <<, 20 D

Out[49]= 881, 1, init, 0<, 81, 3, b, 0<, 83, 4, b, 0<, 84, 1, b, 0<, 81, 4, c, 0<,
84, 1, b, 0<, 81, 2, a, 0<, 82, 4, ct, 9.88599<, 84, 1, b, 9.88599<,
81, 3, b, 9.88599<, 83, 4, b, 9.88599<, 84, 1, b, 9.88599<,
81, 3, b, 9.88599<, 83, 4, b, 9.88599<, 84, 1, b, 9.88599<,
81, 2, a, 9.88599<, 82, 6, bt, 11.7483<, 86, 6, a, 11.7483<,
86, 6, a, 11.7483<, 86, 6, a, 11.7483<, 86, 6, a, 11.7483<<

Out[50]= 881, 1, init, 0<, 81, 4, c, 0<, 84, 1, b, 0<, 81, 3, b, 0<,
83, 4, b, 0<, 84, 1, b, 0<, 81, 4, c, 0<, 84, 1, b, 0<,
81, 3, b, 0<, 83, 4, b, 0<, 84, 1, b, 0<, 81, 4, c, 0<,
84, 1, b, 0<, 81, 4, c, 0<, 84, 1, b, 0<, 81, 3, b, 0<,
83, 4, b, 0<, 84, 1, b, 0<, 81, 4, c, 0<, 84, 1, b, 0<, 81, 2, a, 0<<

Out[51]= 881, 1, init, 0<, 81, 3, b, 0<, 83, 4, b, 0<, 84, 1, b, 0<, 81, 3, b, 0<,
83, 4, b, 0<, 84, 1, b, 0<, 81, 2, a, 0<, 82, 6, bt, 5.3873<,
86, 6, a, 5.3873<, 86, 6, a, 5.3873<, 86, 6, a, 5.3873<, 86, 6, a, 5.3873<,
86, 6, a, 5.3873<, 86, 6, a, 5.3873<, 86, 6, a, 5.3873<, 86, 6, a, 5.3873<,
86, 6, a, 5.3873<, 86, 6, a, 5.3873<, 86, 6, a, 5.3873<, 86, 6, a, 5.3873<<
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4.3. Finite dimensional measures of the underlying stochastic process

Suppose that we want to compute P3(ω) for ω being one of
{
(1

a,0−−→ 2
dt,10−−−→ 5

a,0−−→ 6),

(1
a,0−−→ 2

bt,6−−→ 6
a,0−−→ 6), (1

a,0−−→ 2
ct,20−−−→ 5

a,0−−→ 6), (1
a,0−−→ 2

bt,14−−−→ 5
a,0−−→ 6)

}
The empirical

estimators of the probabilities of these sojourn paths is computed as follows.

In[52]:= samples = Table @Nest @Step1, 881, 1, " init ", 0 <<, 3 D, 850 000 <D;

In[71]:= Untime @w_D : = w@@All, 1 ;; 3 DD

IsIn Ω@s_D : = Untime @sD �
881, 1, " init " <, 81, 2, a<, 82, 5, dt <, 85, 6, a<< ì s@@3, 4 DD £ 10

IsIn Ω2@s_D : = Untime @sD �
881, 1, " init " <, 81, 2, a<, 82, 6, bt <, 86, 6, a<< ì s@@3, 4 DD £ 6

IsIn Ω3@s_D : = Untime @sD �
881, 1, " init " <, 81, 2, a<, 82, 4, ct <, 84, 1, b<< ì s@@3, 4 DD £ 20

IsIn Ω4@s_D : = Untime @sD �
881, 1, " init " <, 81, 2, a<, 82, 6, bt <, 86, 6, a<< ì s@@3, 4 DD £ 14

In[76]:= emp =
Length @Select @samples, ðDD

Length @samples D
& �� 8IsIn Ω, IsIn Ω2, IsIn Ω3, IsIn Ω4<

N@%D

Out[76]= :
7

25 000
,

61

625
,

2161

25 000
,

359

2500
>

Out[77]= 80.00028, 0.0976, 0.08644, 0.1436<

We compare the empirical estimators with the theoretical probability.
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In[60]:= Prob2 @Ω_, W_D : = Module B8<,

MapIndexed B

Module B8Ωi , prefix , qi , Σi , conflicting , currentWeights , totalWeight <,
Ωi = ΩPFirst @ð2DT;
prefix = ΩP ;; First @ð2DT;
Σi = Ωi P3T;
qi = Ωi P1T;
conflicting = EnabledIn @qi D;
currentWeights =W@prefix , ðD &�� conflicting ;
totalWeight = Total @currentWeights D;
W@prefix , Σi D

totalWeight

F &, ΩF

F

In[61]:= ProbDWinsBeforeT @t_D : =
NIntegrate @H1 - CDF@G@bt D, dDL*H1 - CDF@G@ct D, dDL*PDF@G@dt D, dD, 8d, 0, t<D

ProbBWinsBeforeT @t_D : =
NIntegrate @H1 - CDF@G@dt D, bDL*H1 - CDF@G@ct D, bDL*PDF@G@bt D, bD, 8b, 0, t<D

ProbCWinsBeforeT @t_D : =
NIntegrate @H1 - CDF@G@dt D, cDL*H1 - CDF@G@bt D, cDL*PDF@G@ct D, cD, 8c, 0, t<D

In[67]:= theo = 8
Times �� Prob2 @881, 2, a<<, W1D * ProbDWinsBeforeT @10D *

Times �� Prob2 @885, 6, a<<, W1D,
Times �� Prob2 @881, 2, a<<, W1D * ProbBWinsBeforeT @6D *

Times �� Prob2 @886, 6, a<<, W1D,
Times �� Prob2 @881, 2, a<<, W1D * ProbCWinsBeforeT @20D *

Times �� Prob2 @884, 1, b<<, W1D,
Times �� Prob2 @881, 2, a<<, W1D * ProbBWinsBeforeT @12D *

Times �� Prob2 @886, 6, a<<, W1D
<

Out[67]= 80.000287621, 0.0983673, 0.0851965, 0.143219<

In[70]:= theo - emp

Out[70]= 97.62069´10-6, 0.000767335, -0.00124353, -0.000380768=

86



4.3. Finite dimensional measures of the underlying stochastic process

4.3.5 Probability of a sojourn path of STS4: Accounting for one step timed
transitions with general delays

We now remove the continuous restrictions on the r.v.. In this case, since the distributions
Γ(e) can be either continuous or discrete, the probability of two epochs being equal may be
non null. More formally, we define the class STS4 as follows.

Definition 4.13 (A). STS S = 〈Q,−→, Σ, W, Γ〉 is in STS4 if there exists a unique, distin-
guished state qT ∈ Q such that for every other state q′ 6= qT in Q, for every event e in En(q′),
we have Γ(e) = δ0 and for every event e in En(q),Γ(e) is defined.

Following similar arguments as for the case of STS3, the probability measure P4 is fun-
damentally defined by the outcome of a race condition between events competing in En(qT ).
This implies that we have to compute P(〈E = e, T ≤ t〉) for e and t given. We will establish
that

P(〈E = e, T ≤ t〉) = (4.6)
∑

E∈P(En(qT )−{e})

(
we,e′ ×

∫ t
0

(∏
e′∈En(qT )−E−{e}(1− Fe′(x))×∏e′∈E∪e fe′(x)

)
dx
)

.

where we,E is a weight value dependent on the conflict between e and the set E .

Proof. The proof is again carried out explicitly for three events En(qT ) = {e1, e2, e3}. The
beginning of the proof follows the same principle as before, and thus we start with the equation
(4.2), that is

P(E = e1, T ≤ t) = P(X ≤ t, X < Y, X < Z) (4.7)

+ a×P(X ≤ t, X = Y,X < Z)

+ b×P(X ≤ t, X = Z, X < Y )

+ c×P(X ≤ t, X = Z = Y ).

We will prove that each of the four terms of the sum in equation (4.7) corresponds to a
term of the sum of the equation (4.7). Let E be one of the subsets of P(En(qT ) − {e1}) =
P({e2, e3}) = {∅, {e2} , {e3} , {e2, e3}}.

By equation (4.1), we can compute that the first term of (4.2) is

P(X ≤ t, X < Y, X < Z) =

∫ t

0
(1− FY (x))× (1− FZ(x))× fX(x)dx. (4.8)

Consider the terms of the sum in equation (4.7). When E = ∅ we have En(qT )−E −{e1} =
{e2, e3} and En(qT ) ∪ {e1} = {e1}. Hence the term of the sum corresponding to E = ∅ yields
equation (4.8).

Consider now the second term of equation (4.2). We have

P(X ≤ t, X = Y, X ≤ Z) =

∫ t

0
(1− FZ(x))× fY (x)× fX(x)dx.

In the case of E = {e2}, we have En(qT ) − E − {e1} = {e3} and En(qT ) ∪ {e1} = {e1, e2}.
Therefore, the second term of the sum (4.7) yields equation (4.9).
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Similarly,

P(X ≤ t, X = Y = Z) =

∫ t

0
fZ(x)× fY (x)× fX(x)dt (4.9)

is the last term of the sum (4.7) and of the sum (4.7).

Property 4.6 (Exit rate). In the case where the r.v. denoting the delays of the events in
En(qT ) can be either continuous or discrete, we have the marginal distribution

P(T ≤ t) = 1−
(
∏

e∈Σs

(1− Fe(t))

)
. (4.10)

This marginal distribution does not depends on the weight function W and hence does not
depend on a weight scheduler W.

Proof. (Sketch) Since we built a mapping between each terms of equation (4.2) and (4.7), we
will work on (4.2). In the case of three variables {X, Y, Z}, notice that the terms P(X ≤ t, X =
Z = Y ),P(Y ≤ t, X = Y = Z),P(Z ≤ t, X = Y = Z) of (4.2) are measures of the same set.
These terms appears with different weights in the sum P(T ≤ t) =

∑
e∈En(qT ) P(E = e, T ≤ t).

These weights sums to 1. Therefore we can factorize these three terms, and sum the weights
to 1. Hence, W does not appear in the marginal distribution.

Simarly as the case for P3, we decompose a sojourn path ω into probabilistically indepen-
dent sub paths (ωi)i≤k and reuse P2 whenever possible.

Definition 4.14 (Measure P4). For a STS S = 〈Q,−→,Σ, W, Γ〉 in STS4, for a weight
schedulerW, for any sojourn path ω of length greater or equal than 1 with the decomposition
(ωi)i≤k then we define

P4(ω) = P2W(ω)×
∏

0≤i≤k

P(〈E = ei, T ≤ ti〉)×

∑
e∈En(qT )

∑
n

q′|qT

e−→q′
oW(ω | i, e, q′)

W(ω | i, ei, qT i)

where

P(〈E = ei, T ≤ ti〉) =

∑

E∈P(En(qT )−{ei})



wei,E ×
∫ ti

0




∏

e′∈En(qT )−E−{ei}

(1− Fe′(x))×
∏

e′∈E∪ei

fe′(x)



 dx



 .

where

wei,E =
W(ω | i, ei, qT i)∑

e′∈E∪{e}

∑


q′|qT

e′−→q′
ffW(ω | i, e, q′) .

For the border cases where ω has a length 0, we set P4(ω) = 1.
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Properties of STS in STS4

We can relate the measure P4 with the measure P2 and P3 as follows.

Property 4.7 (Relation with P2 and P3). For a STS S, for a weight scheduler W, if S
is in STS2, then for any sojourn path ω, we have P2,W(ω) = P4(ω). If S is in STS3, then
for any sojourn path ω, we have P3(ω) = P4(ω).

Proof. Let S be a STS in STS2, by definition, Γ(e) = δ0 for e ∈ Σ. Let qT be any state of
S, we have S in STS4. Without loss of generality, assume that ω is a sojourn path where qT

is the one last state but one, and that it ends with (qT , (e1, t1), qT1. Thus, the decomposition
of ω is ω itself. We have by definition Def. 4.14

P4(ω) = P2(ω)×P(E = e1, T ≤ t1)×

∑
e∈En(qT )

∑
n

q′|qT

e−→q′
oW(ω, e, q′)

W(ω, e1, qT1)

with

P(〈E = e1, T ≤ ti〉) = (4.11)

∑

E∈P(En(qT )−{e1})



we1,E ×
∫ t1

0




∏

e′∈En(qT )−E−{e1}

(1− Fe′(x))×
∏

e′∈E∪e1

fe′(x)



 dx



 .

with

we1,E =
W(ω, e1, qT1)∑

e′∈E∪{e1}

∑


q′|qT

e′−→q′
ffW(ω, e, q′)

.

Since Γ(e) = δ0 for each e ∈ Σ, P(X < Y ) = 0 and P(X = Y,X ≤ t) = 1 for X and X
being two r.v. distributed as δ0. Thus any term in the sum of the equation Eq. 4.12 where
E 6= En(qT )− e1 is null, and thus equation Eq. 4.12 reduces to we1,En(()qT )−ei

. We have

we1,En(qT )−ei
=

W(ω, e1, qT1)∑
e′∈En(qT )

∑


q′|qT

e′−→q′
ffW(ω, e′, q′)

. (4.12)

Hence, we have

P4(ω) = P2W(ω)× W(ω, e1, qT1)∑
e′ En(qT )

∑


q′|qT

e′−→q′
ffW(ω, e, q′)

×

∑
e∈En(qT )

∑
n

q′|qT

e−→q′
oW(ω, e, q′)

W(ω, e1, qT1)

= P2W(ω).

The case for P3(ω) = P4(ω) follows similar arguments: The probability P(X = Y ) for two
r.v. with continuous distribution is equal to P(X = Y ) = 0, thus terms appearing in the sum
P(〈E = e, T ≤ t〉) reduces to 0 except for the case when E = ∅, and thus we have

we1,∅ =
W(ω, e1, qT1)∑

e′∈{e1}

∑


q′|qT

e′−→q′
ffW(ω, e, q′)

=
W(ω, e1, qT1)∑



q′|qT

e1−→q′
ffW(ω, e1, q′)

,
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and thus

P4(ω) = P2W(ω) ×
∫ t1

0




∏

e′∈En(qT )−{e1}

(1− Fe′(t))



 ∗ fe1(t)dt

× (((((((W(ω, e1, qT1)∑


q′|qT

e1−→q′
ffW(ω, e1, q′)

×

∑
e∈En(qT )

∑
n

q′|qT

e−→q′
oW(ω, e, q′)

(((((((W(ω, e1, qT1)
= P3(ω).

Property 4.8 (Instantaneous weighted transitions). Let S = 〈Q,−→,Σ, W, Γ〉 be a
STS, W be a weight scheduler for S, and ω be a sojourn path of S ending in a state q. If the
set En(q) of events enabled in q contains an event e ∈ Σ such that Γ(e) = δ0, then for every
e′ ∈ En(q) where P(X = 0) = 0 for a random variable X ∼ Γ(e′), we have P(E = e′) = 0.

Proof. Immediate by application of the marginal 4.4. For a random variable X ∼ δ0, we have
for any t ≥ 0, FX(t) = 1, and thus P(E = e) = 0 for any delay distribution Γ(e) such that
0 /∈ supp(Γ(e)).

Numerical validation To validate numerically the definition 4.14, we merely have to val-
idate the formula (4.7). To this end, we compute the probability that a random variable
T that is distributed along a discrete uniform distribution over [5, 14] wins a race against
three random variables {X,Y, U} such that X is normally distributed, Y is distributed along
a (continuous) uniform distribution over [8, 13] and U is distributed along a poisson distri-
bution with rate 25. In order to resolve ties, we have W (T ) = 5 and W (U) = 7. When
comparing the theoretical value with an empirical estimator over 30000, we obtain a total
error of less than 0.03.
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In[56]:= X = NormalDistribution @12, 1 D;
Y = UniformDistribution @88, 13 <D;
T = DiscreteUniformDistribution @85, 14 <D;
U = PoissonDistribution @25D;

In[23]:= rvSamples = Table @Join @RandomReal �� 8X, Y<, RandomInteger �� 8T, U<D,
830 000 <D;

In[60]:= wT = 5;
wU= 7;

In[62]:= ElectWinner @s_D : = Module @8winnerIdx , winnerLbl <,
winnerIdx = Ordering @sD@@1DD;
winnerLbl = winnerIdx �. 81 ® " X", 2 ® " Y", 3 ® " T", 4 ® " U" <;
winnerLbl = If @winnerLbl � " T" ì s@@3DD � s@@4DD,

RandomChoice @8wT, wU< ® 8" T", " U" <D, winnerLbl D;
8winnerLbl , s@@winnerIdx DD<
D

In[63]:= winners = ElectWinner �� rvSamples;

In[64]:= XisSmallestAndLessThanT @t_D : =
Select @winners, ð@@1DD � " X" ì ð@@2DD £ t &D;

YisSmallestAndLessThanT @t_D : =
Select @winners, ð@@1DD � " Y" ì ð@@2DD £ t &D;

TisSmallestAndLessThanT @t_D : =
Select @winners, ð@@1DD � " T" ì ð@@2DD £ t &D;

UisSmallestAndLessThanT @t_D : = Select @winners, ð@@1DD � " U" ì ð@@2DD £ t &D;

In[68]:= TWins@t_D : = NB
Sum@H1 - CDF@X, tv DL*H1 - CDF@Y, tv DL*H1 - CDF@U, tv DL*PDF@T, tv D,
8tv , 0, t<D
+ Sum@H1 - CDF@X, tv DL*H1 - CDF@Y, tv DL*PDF@U, tv D*PDF@T, tv D,
8tv , 0, t<D* wT

wU+ wT

F

In[71]:= Total BTable BNormBTWins@t D - Length @TisSmallestAndLessThanT @t DD
Length @rvSamples D

F,

8t , 2, 14, 0.5 <FF

Out[71]= 0.0232144

Similarly to the numerical validation performed for STS3, we compute the theoretical
marginal distribution as follows.
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In[50]:= ExitRate @t_D : =
1 - H1 - CDF@X, tDL*H1 - CDF@Y, tDL*H1 - CDF@T, tDL*H1 - CDF@U, tDL

In[51]:= ExitRateCDF = Table @8t , ExitRate @t D<, 8t , 0, 15, quantum <D;
ListLinePlot @ExitRateCDF, PlotStyle ® 8Red, Thick <D

Out[52]=

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

In[53]:= ExitRatePDF = Transpose @8
ExitRateCDF @@2 ;;, 1 DD,
Differences @ExitRateCDF @@All, 2 DDD*1 �quantum <

D;
ListLinePlot @ExitRatePDF, PlotStyle ® 8Red, Thick <, PlotRange ® All D

Out[54]=

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

And we can compare the theoretical marginal distributions with the empirical one by plot-
ting both on the same plot.
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In[55]:= Show@
Histogram @Min �� rvSamples, 8quantum <, " ProbabilityDensity ",

PlotRange ® All D,
ListLinePlot @ExitRatePDF, PlotStyle ® 8Red, Thick <, PlotRange ® All D
D

Out[55]=

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2
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4.3.6 Probability of a sojourn path in STS5: Accounting for elapsed time
since regeneration

We suppose that we want to compute the probability of a sojourn path (Q, a, t0, R, b, t1, S).
In the initial state of this path, the process is at the global epoch 0, the process hits Q a first
time and the timers of events enabled in Q are sampled accordingly to the probability laws
defined by Γ. Suppose that we have En(()Q) = {a, b, c}. At the epoch where the process hits
the state Q, we say that the state Q regenerates the events {a, b, c} (or equivalently that Q
is regenerative for the events a, b, c). Let A, B,C be three r.v. representing the timers of the
events a, b, c at the epoch 0.

The probability of the prefix sojourn path (Q, a, t0, R) is given by P4. Once in R, the

probability of taking the transition R
b−→ S while sojourning in R less than t1 time units

depends on the outcome of the race condition between the events {b, c}. However, contrary
to the race condition in Q, we do not resample the timers of these events and thus the race
condition in R must account for time that was elapsed since the epoch where the timers of b
and c were sampled. This implies that the outcome of the race condition in R is dependent
on the outcome of the race condition in Q, and more precisely of the sojourn time in Q.

Suppose that in Q, the sampled clocks were 〈A : a, B : b, C : c〉. The sojourn time in the
state Q is thus a t.u., and the epoch of arrival in state R is also a. In order for the event
b to wins the second race with a sojourn time in the state R less than t1, we must have
b < t1 + a ∧ b < c. This implies that the probability of the sojourn path (Q, a, t0, R, b, t1, S)
is given by

P(A < t0, A < B, A < C,B < t1 + A, B < C) = P(A < t0, A < B < t1 + A, B < C),

and since all these (probabilistic) events are dependent, this probability cannot be decom-
posed in a product of probabilities. However the subset of R3 satisfying the inequalities
a < t0 ∧ a < b < t1 + a ∧ b < c is a c, b, a-simple domain, and we can thus evaluate this prob-
ability by repeated integration as follows

P (A < t0, A < B < t1 + A, B < C) =

∫

{a<t0,a<b<t1+a,b<c}
fA(a) · fB(b) · fC(c)

=

∫ t0

0
fA(a)

∫ t1+a

a
fB(b)

∫ +∞

b
fC(c)dcdbda

=

∫ t0

0
fA(a)

∫ t1+a

a
fB(b) ∗ (1− FC(b)) dbda.

We now generalize the previous construction and formally define the class STS5 that are
STS5 where all the timers of the timed events are always regenerated at the same epoch. We
will then express a sojourn path as a conjunction of constraints over n r.v. variables, where n is
the number of events. We will then show that the region of R

n satisfying this conjunction is a
simple domain of R

n and thus that we can use repeated integration to measure its probability.
In order to compute the probability that the sojourn time in a state q is less that an

threshold value t when taking a transition labeled by the event e, we must account for the
time elapsed since the regeneration of the clock of the event e. This regeneration happens
when the event e became enabled for the first time when reaching a state. More formally, we
have :
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4.3. Finite dimensional measures of the underlying stochastic process

Definition 4.15 (Events regenerated by a transition). Let q
e−→ q′ be a transition of a

STS S = 〈Q,−→,Σ, W, Γ〉. The events regenerated by this transition are

Reg(q
e−→ q′) = (En(q′)− En(q)) ∪ (En(q′) ∩ {e})

And thus, we can define the class STS5 as follows.

Definition 4.16 (STS5). Let S = 〈Q,−→,Σ, W, Γ〉 be a STS. It is in STS5 if for any
transition q

e−→ q′ we have either Reg(q
e−→ q′) = ΣT or we have Reg(q

e−→ q′) ∪ ΣT = ∅, where
ΣT = {e ∈ Σ | Γ(e) 6= δ0} is the set of timed events in S.

Regenerative steps corresponds to a probabilistic reset in the underlying stochastic process.
In other words, once a regenerative step is taken, the future state of the stochastic process
does not depends on what happened before the regenerative step. In order to define the finite
probability of a sojourn path, we will first assume that the sojourn path starts with a state
where timed events are enabled, then remove this restriction and show that we can decompose
a sojourn path into probabilistically independent sub-paths where each sub-path starts with
a state where timed events are enabled.

Definition 4.17 (Non regenerative sojourn paths). Let ω = (q0, (ei, ti, qi)i≤n) be a
sojourn path of a STS S = 〈Q,−→,Σ, W, Γ〉 in STS5. We say that ω is not regenerative if

we have En(q0) ∩ ΣT 6= ∅ and if Reg(qi
ei−→ qi+1 = ∅ for all i ≥ 0.

We first characterize the probability of non regenerative paths. To this end, we first have :

Lemma 4.9. If ω is not regenerative, then

• no event in ω appears more than once,

• {ei} ⊆ En(q0),

• En(qi+1) ⊂ En(qi).

Since no event appears more than once in ω and since all the clocks of the (timed) events
in ω are sampled at the same state and at the same epoch, we can consider a single r.v. C(e)
denoting the value of the clock of the event e. We can already model the fact that the event
e has an activity delay following Γ(e) by setting C(e) ∼ Γ(e).

Let qi be a state appearing in ω and let the r.v. Epoch(qi) denotes the epoch when the
process reach the state qi. The state qi is reached after firing the event ei−1 during the

transition qi−1
ei−1−−−→ qi. Since the clock C(ei−1) is sampled only once at epoch 0, we have

Epoch(qi) = C(ei−1).
In any state qi of ω, the sojourn time Ti must be less that ti. This sojourn time in the

state qi is the r.v. Epoch(qi+1)−Epoch(qi). Since Epoch(qi) = C(ei−1), the sojourn time Ti

is Ti = C(ei)− C(ei−1) for i > 1. For the first sojourn time T0, we have T0 = C(e0).
Finally, in order for an event ei to win the race condition between the competing events in

En(qi), we must have
∧

e∈En(qi)

C(ei) ≤ C(e).

Thus we have P(ω) =

P(Q0 = q0, E0 = e0, T0 ≤ t0, Q1 = q1, E1 = e1, T1 ≤ t1, . . . , Qn = qn, En = en, Tn ≤ tn) =
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P(C(e0) ≤ t0 ∧
∧

e∈En(q0)

C(e0) < C(e) ∧
∧

i≤n

C(ei)− C(ei−1) ≤ ti ∧
∧

e∈En(qi)

C(ei) ≤ C(e)).

In order to compute this probability via integration, we express it as a n + 1-dimensional
region of R

n+1
+ with axes labeled in order by c0, . . . , cn. Since every events in ω appears only

once, let ind(e) be the index value i such that ind(e) = i if e = ei. Let R be the region defined

by the inequalities R =

{
c0 ≤ t0 ∧

∧

e∈En(q0)

c0 ≤ cind(e) ∧
∧

i≤n
ci − ci−1 ∧

∧

e∈En(qi)

ci ≤ cind(e)

}
.

Since all the clocks r.v. Ci are independent, we have

P(ω) =

∫

〈c0,c1,...,cn〉∈R

∏

0≤i≤n

fi(ci), (4.13)

where fi is the probability density function of Γ(ei).

Property 4.10 (Simplicity of R). The region R is equal to the (cn, . . . , c0)-simple domain
D represented by the inequalities

D = {c0 ≤ t0 ∧ c0 ≤ c1 ≤ c0 + t1 ∧ · · · ∧ cn−1 ≤ cn ≤ cn−1 + tn} .

Proof. Since
∧

i≤n
ci − ci−1 ≤ ti is one of the terms in the inequalities of R, we have R ⊆ D.

Let 〈c0, . . . , cn〉 be an element of D. By transitivity, we know that for every index i, we have
ci ≤ cj if j > i. Since we have En(qi+1) ⊂ En(qi), we have ind(e) > i for e ∈ En(qi). Thus,
we have ci < cind(e) for all e ∈ En(qi).

We now restrict the following formulas to the case where all r.v. are absolutely continuous.
Since R and D are the same subset of R

n+1
+ , since D is (cn, . . . , c0)-simple, we can repeatedly

integrate the right hand side of 4.13 and thus we have P(ω) =

∫ t0

0

(
f0(x0) ·

∫ x0+t1

x0

(
f1(x1) ·

∫ x1+t2

x1

(
f2(x2) · · ·

∫ xn−1+tn

xn−1

fn(xn)dxndxn−1 . . .

)
dx2

)
dx1

)
dx0.

(4.14)
We now remove the restriction on ω and consider paths with multiple regeneration points.

Let ω be a sojourn path in a STS S = 〈Q,−→,Σ, W, Γ〉. The decomposition of ω into
probabilistically independent sub paths ω = ω1ω2ω3 . . . ωn is the sequence of sub paths (ωi)i≤n

where ωi ends with a transition q
e−→ q′ such that Reg(q

e−→ q′) = ΣT . Since all clocks are
regenerated at the end of a sub-path ωi, two consecutive sub paths are probabilistically
independent and any sub-path ωi is not regenerative.
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Simulation of STS in STS5

We consider a STS with non regenerative paths of length 2.

S = 8a, b, c, d, dt , bt , ct <;
W@Σ_D : = Switch @Σ , " init ", 1, a, 10, b, 2, c, 1, d, 5 D
Q= 81, 2, 3, 4, 5, 6 <;
G@Σ_D : = Switch @Σ , " init ", 0, a, 0, b, 0, c, 0, d, 0,

bt , NormalDistribution @12, 3 D,
ct , UniformDistribution @89, 12 <D,
dt , NormalDistribution @8, 1 D
D

S = 8
81 ® 2, a<, 81 ® 3, b<, 81 ® 4, c<,
82 ® 6, bt <, 82 ® 5, dt <, 82 ® 4, ct <,
83 ® 4, b<,
85 ® 6, bt <, 85 ® 1, ct <, 84 ® 1, b<,
86 ® 6, a<
<;

GraphPlot @S, DirectedEdges ® True, VertexLabeling ® True D

a

b

c
bt

dt

ct

b
b

a

bt

ct
1

2

3

4

6

5

In order to simulate this STS, we implement the variable time advance algorithm [She93] that
was described in section sec. 4.3.1. To this end, we first define a function Regenerate(q,e,q’)

that returns the set of event that should be regenerated after the transition q
e−→ q′. Note

that for STS in STS5, this function always return one of the sets: all the timed events, a set
of untimed events, the empty set.
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In[52]:= SetDiff @X_, Y_D : = Complement @X, Intersection @X, YDD

In[62]:= Regenerate @q_, e_, qp_D : =
Union @SetDiff @EnabledIn @qpD, EnabledIn @qDD,

Intersection @EnabledIn @qpD, 8e<DD

Step @8Ω_, clocks_<, W_D : = Module B8
sfin , enabled , newWeights , totalWeight , nextE ,
minclocks , winners , nextT , nextS , winnerLabels , currentT ,
nextClock , toRemove <,

sfin = ΩP-1, 2 T;
currentT = ΩP-1, 4 T;
If @Length @clocksD � 0, Return @8Ω, 8<<DD;
minclocks = GatherBy @clocks, ðP2T &D;
winners = SortBy @minclocks , ðP1, 2 T &DP1T;
8nextT , winnerLabels < = 8winners P1, 2 T, winners PAll, 1 T<;
nextE = If BLength @winnerLabels D == 1, winnerLabels P1T,

newWeights =W@Ω, ðD & �� winnerLabels ;
totalWeight = Total @newWeights D;

RandomChoice B newWeights

totalWeight
® winnerLabels F

F;
nextS = TransitionFrom @sfin , nextE DP1, 2 T;
toRemove = SetDiff @EnabledIn @sfin D, EnabledIn @nextS DD;
nextClock = Union @

Select @clocks, ð@@1DD =!= nextE ì Not @MemberQ@toRemove , ð@@1DDDD &D,
Hð1 ® nextT + Sample @G@ð1DDL &�� Regenerate @sfin , nextE , nextS D
D;

Return @8Append@Ω, 8sfin , nextS , nextE , nextT <D, nextClock <D
F

W1@Ω_, Σ_D : = If @W@ΣD =!= Û, W@ΣD, 1 D
Step1 @8Ω_, clock_<D : = Step @8Ω, clock<, W1D

In[66]:= Ω = 881, 1, " init ", 0 <<
nextClock = Hð1 ® Sample @G@ð1DDL &�� EnabledIn @Ω@@-1, 2 DDD
Step1 @8Ω, nextClock <D

Out[66]= 881, 1, init, 0<<

Out[67]= 8a ® 0, b ® 0, c ® 0<

Out[68]= 8881, 1, init, 0<, 81, 2, a, 0<<, 8bt ® 15.7947, ct ® 9.44422, dt ® 7.44469<<

We now compare the exact probability (as given by Eq. (4.14)) with an empirical estimation.
The empirical estimation of the path

1
a,0−−→ 2

dt,d1−−−→ 5
ct,d2−−−→ 1

a,0−−→ 2
dt,d1−−−→ 5

ct,d2−−−→ 1
a,0−−→ 2

dt,d1−−−→ 5

is given by the following code.
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In[96]:= IsInL1TimedWithDeadlines @s_, d1_, d2_D : =
Untime @sD � exPath && VectorLessEqual @Time @sD, 80, d1, d2, 0, d1, d2, 0, d1<D

In[97]:= NBLength @Select @samples, IsInL1TimedWithDeadlines @ð, 8, 4 D &DD
Length @samples D

F

Out[97]= 0.01645

while the theoretical value is given by

In[92]:= d1 = 8;
d2 = 4;

In[94]:= 10 �13 *
NIntegrate @H1 - CDF@G@bt D, cDL*PDF@G@ct D, cD*PDF@G@dt D, dD,
8d, 0, d1 <, 8c, d, d + d2<D*

10 �13 *
NIntegrate @H1 - CDF@G@bt D, cDL*PDF@G@ct D, cD*PDF@G@dt D, dD,
8d, 0, d1 <, 8c, d, d + d2<D*

NIntegrate @H1 - CDF@G@bt D, dDL*H1 - CDF@G@ct D, dDL*PDF@G@dt D, dD,
8d, 0, d1 <D

Out[94]= 0.0195693
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4.3.7 Probability of a sojourn path in STS6: General case

In the general case, we must account for regeneration of clocks that do not happen at the same
epoch. This implies that in a given state, the clocks of competing events account for elapsed
time since regeneration (like in STS5) but also for a delay between regeneration epochs. We
illustrate this on the following example.

Example 4.1.

In[25]:= S = 8
8X ® Y, a<, 8X ® Æ, b<, 8X ® Æ, c<,
8Y ® Z, b<, 8Y ® Æ, c<, 8Y ® Æ, d<, 8Y ® Æ, a<,
8Z ® U, c<, 8Z ® Æ, a<, 8Z ® Æ, e<,
8U® fWin , f <, 8U® eWin , e<, 8U® aWin , a<
<;

G@Σ_D : = Switch @Σ ,
a, NormalDistribution @15, 3 D,
b, NormalDistribution @24, 3 D,
c, UniformDistribution @815, 18 <D,
d, NormalDistribution @8, 1 D,
e, NormalDistribution @10, 2 D,
f , ExponentialDistribution @1 �3D
D

TreePlot @S, Left, X, DirectedEdges ® True, VertexLabeling ® True D

a

b
c

b

c da

c

a
e

f

e

a

X Y

Æ

Z U

fWin

eWin

aWin

We will follow the clocks and regenerations as we step trough the path X
a−→ Y

b−→ Z
c−→ U

e−→
eWin in this STS. As we did for STS5, we will express this sojourn path as a conjunction of
constraints over n clock variables, show that this conjunction yields a simple domain of R

n

and use repeated integration to measure the probability of this domain.
Starting from state X, the initial clock structure is 〈A : a, B : b, C : c〉. Suppose that a

is the minimal epoch, the first step in S is thus X
a−→ Y . Once in Y , the global epoch is

set to a, the clocks of the events {a, d} are regenerated and thus the new clock structure is
〈A : a + a′, B : b, C : c, D : d + a〉. Suppose now that the minimal epoch in the clock structure

is b. After the transition Y
b−→ Z, the global epoch is set to b, and since the set of newly enabled

events is {e}, we update the clock structure and obtain 〈A : a + a′, C : c, E : e + b〉. If c is the
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minimal epoch, after the transition Z
c−→ U , the global epoch is set to c, and the clock structure

is updated to 〈A : a + a′, E : e + b, F : f + c〉. For this example, the race condition in the state
U involves three events whose delays are r.v. following a sum of independent and non identical
r.v.. Furthermore, in the state U , we must account for the elapsed time since regeneration
and (equivalently) the races already lost, i.e. we have a + a′ > b ∧ a + a′ > c ∧ e + b > c.

In order to compute the probability of the sojourn path

ω = X
a,tX−−−→ Y

b,tY−−→ Z
c,tZ−−→ U

e,tU−−→ eWin

where tX, tY, tZ, tU are real valued constants, we have to determine the regeneration epoch
of each event racing in each state of ω as well as all the races that has been lost. Consider
for example the sojourn time T4 in the last state. The sojourn path specify that T4 ≤ tU .
The sojourn r.v. T4 is equal to Epoch(eWin)−Epoch(U). The r.v. Epoch(eWin) is defined
as the sum Ce + Epoch(last regeneration of e) where Ce ∼ Γ(e). Since the event e has been

regenerated after the transition Y
b−→ Z, we have Epoch(last regeneration of e) = Epoch(Z).

The r.v. Epoch(Z) is defined as Epoch(Z) = Cb −Epoch(last regeneration of b). Since b has
been regenerated when reaching the initial state X, we have Epoch(last regeneration of b) =
Epoch(X) = 0, and thus Epoch(Z) = Cb and thus Epoch(eWin) = Ce + Cb. Similarly, we
have

Epoch(U) = Cc + Epoch(last regeneration of c) = Cc + Epoch(X) = Cc

and thus we have {T4 ≤ tU} = {Ce + Cb − Cc < tU}. Furthermore, in the state U , the
r.v. representing the epoch of firing the event e is Ce + Cb. For the event a, it is Ca +
Epoch(last regeneration of a), with Epoch(last regeneration of a) = Epoch(Y ) = C ′

a and
thus the epoch of firing the event a is Ca + C ′

a. Finally, for the event f , the epoch of
firing is Cf + Epoch(U) = Cf + Cc. This implies that in the state U , the sojourn time is less
than tU and the event e wins if

Cb + Ce < Ca + C ′
a ∧ Cb + Ce < Cc + Cf ∧ Cb + Ce − Cc < tU.

which can be restated as the following a, b, c, e, d, f, a′-simple domain

Ce < tU − Cb + Cc ∧ Cf > Cb − Cc + Ce ∧ a′ > −Ca + Cb + Ce

where each Cl is a r.v. following Γ(l).
By performing similar computation, the event c wins in state Z in less than tZ t.u. if

Cc < Cb + tZ ∧ Ce > Cc − Cb ∧ C ′
a > Cc − Ca.

In state Y , the event b wins in less than tY t.u. if

Cb < Ca + tZ ∧ Cc > Cb ∧ Cd > Cb − Ca ∧ C ′
a > Cb − Ca.

In state X, the event a wins in less than tX t.u. if

Ca < tX ∧ Cb > Ca ∧ Cc > Ca.

Finally, the probability P(ω) of the sojourn path ω is

P( 0 < Ca < tX ∧ Ca < Ca < Ca + tY ∧ Ca < Cc < Ca + tZ ∧ Cc − Ca < Ce < −Ca + Cc + tU

∧Cd > Ca − Ca ∧ Cf > Ca − Cc + Ce ∧ C ′
a > −Ca + Ca + Ce).
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We now generalize this construction. Given a sojourn path ω, we want to express the
constraints over Q, E, T present in ω by constraints over Ce and t which are resp. r.v.
denoting the value of the remaining activity delay of some event e and real valued constants.

Since STS6 are the general case, an event may be regenerated or appear multiple times
in ω. Let Σω be the multiset over Σ defined by Σω = Reg(qi

ei−→ qi+1)i≤n. An event e has
multiplicity k if its timer is regenerated k times during a realization going trough the states
of ω. All these regenerated timers are different independent and identically distributed r.v.
Ci(e) following Γ(e). Thus, even if n events appears in ω, its probability will involve card(Σω)
different random variables. In order to avoid explicitly stating which r.v. represent the timer
of the ith regeneration of e, we impose without loss of generality that all the multiplicities in
Σω are 1. If it is not the case and since all the regeneration of a timer are independent and
identically distributed, we can augment Σ with unique labels e1, e2, . . . and update Γ and W
accordingly by setting Γ(ei) = Γ(e), W (ei) = W (e). We will then denote by C(e) the timer
random variable associated with the event e and by χ the set of the timer r.v. of all the
events in Σω. Note that with the assumption that Σω has a multiplicity of 1 for each event,
we have card(χ) = card(ω).

Given a sojourn path ω and an event e, the last regenerative state Regω(e) is the last state
of ω where the event e is regenerated. That is, Regω(e) maps an event e ∈ Σω to a state
q ∈ ω and is defined by

Regω(e) = qi, s.t e ∈ Reg(qi
ei−→ qi+1), and s.t. ∀j > i, e /∈ Reg(qj

ej−→ qj+1),

where Reg(q
e−→ q′) is the function defined in Def. 4.15.

The r.v. Epochω(qi) representing the epoch at which the state qi is reached in the path ω
is a linear combination of timer random variables. The function Epochω(qi) thus map a state
qi ∈ ω to a term over χ, and is defined recursively by

Epochω(qi) =

{
0 if |ω| = 0

C(e) + Epochω|i(Regω|i−1(e)) otherwise

where e is the event in Σω for which we have qi−1
e−→ qi in ω. In the definition of Epochω(qi),

the term Epochω|i(Regω|i−1(e)) is a linear combination of timer r.v. representing the epoch
of regeneration of the event e.

By using Epochω(qi+1) we can describe the sojourn time in the state qi as being the dif-
ference between the two successive epoch. More formally, the r.v. Sojournω(qi) representing
the sojourn time in state qi is a linear combination of timer r.v. and is defined by

Sojournω(qi) = Epochω(qi+1)− Epochω(qi).

Finally, the epoch at which a given event e fires can also be expressed in terms of timer
random variables. For any event e in ω, we define the r.v. FiringEpochω(e) as

FiringEpochω(e) = C(e) + Epochω|−1(Regω(e)).

Both functions Sojourn and Epoch maps a state visited in ω to a linear combination of
timer random variables, while the function FiringEpoch maps an event fired in ω to a linear
combination of timer random variables. We now use these three functions to express the prob-
abilistic event {e wins the race in state qn before time tn} as constraints over the realizations
of the timer random variables.
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In the last state qn of ω, the sojourn time of the process is bounded by tn. Therefore, we
already must impose that

Sojournω(qn) ≤ tn.

Futhermore, for the event en to win the race condition in state qn, we must have
∧

e′∈En(qn),e′ 6=en

FiringEpochω(en) ≤ FiringEpochω(e).

Then, for any sojourn path ω, we must have

∧

ei∈ω

(
Sojournω|i(qi) ≤ ti ∧

∧

e∈En(qi),e′ 6=ei

(
FiringEpochω|i(ei) ≤ FiringEpochω|i(e)

))
.

(4.15)
However the region of R

card(χ) satisfying this inequality is not simple and thus not amenable
to measure with integration. Still, we can remark that Σω can be partitioned in the three
partitions:

• Winners(ω) = {e | e ∈ ω},

• Delayed(ω) = {e | e /∈ ω, e ∈ En(qn)},

• Loosers(ω) = {e | e /∈ ω, e /∈ En(qn)},
where Winners represent the set of events that won a race condition, Delayed the set of
events that did not win any race condition but are still enabled and may thus win a future
race condition, and where Loosers is the set of event that lost all race conditions and were
deactivated in some state visited by ω. For any event ei ∈ Winners, we know that in state
qi the event must fire before the deadline ti, ti being relative to the time at which the process

reached qi. Consider again the STS of the example Ex. 4.1, the sojourn path ω = X
a,tX−−−→

Y
b,tY−−→ Z

c,tZ−−→ U
e,tU−−→ eWin, and particularly the three transitions Y

b−→ Z
c−→ U

e−→ eWin.
In the following, we omit the subscript ω. The sojourn in Z is given by

Sojourn(Z) = Epoch(U)− Epoch(Z)

C(c) + Epoch(Reg(c))− C(b)− Epoch(Reg(b)),

and the term

C(c)− Sojourn(Z) = C(c)−
(
C(c) + Epoch(Reg(c))− C(b)− Epoch(Reg(b))

)

C(c)− C(c)− Epoch(Reg(c)) + C(b) + Epoch(Reg(b))

C(b) + Epoch(Reg(b))− Epoch(Reg(C))

represent the firing epoch of b relatively to the regeneration of c. Since the system reached
the state Z exactly at the firing epoch of b, we must have

C(b) + Epoch(Reg(b))− Epoch(Reg(C)) ≤ C(c) ≤ C(b) + Epoch(Reg(b))− Epoch(Reg(C)) + tZ

⇔ C(c)− Sojourn(Z) ≤ C(c) ≤ C(c)− Sojourn(Z) + tZ .

More generally, for any event ei such that qi
ei,ti−−→ qi+1 ∈ ω, we have

C(ei)− Sojourn(qi) ≤ C(ei) ≤ C(ei)− Sojourn(qi) + ti,
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where the term C(ei) − Sojourn(qi) does not involve C(ei) and is a linear combination of
timer r.v. of the events that won the i first race.

For a delayed event e ∈ Delayed, we know that it lost all n race conditions, and thus that
for every event ei ∈ ω, we have FiringEpochω|i(e) ≥ FiringEpochω|i(ei). However, for any i,
we have FiringEpochω|i(ei) ≤ FiringEpochω|i+1(ei+1), and thus it is sufficient to impose for
any delayed event e ∈ Delayed that

FiringEpochω(e) ≥ FiringEpochω(en).

Finally, for any event e ∈ Loosers, let Last(e) = qi be the state such that qi
ei−→ qi+1 and

e ∈ En(qi) and e /∈ En(qi+1). In words, Last(e) is the last state where e was active, and is
the state where it lost its last race. We must have

FiringEpochω|i(e) ≥ FiringEpochω|i(ei).

Now let Dω be the set of inequality over timer r.v. defined by

Dω =
∧

ei∈Winners(ω)

(
C(ei)− Sojourn(qi) ≤ C(ei) ≤ C(ei)− Sojourn(qi) + ti

)
∧

∧

e∈Delayed(ω)

(
FiringEpochω(e) ≥ FiringEpochω(en)

)
∧

∧

e∈Loosers(ω),qi=Last(e)

(
FiringEpochω|i(e) ≥ FiringEpochω|i(ei)

)
. (4.16)

Recall that we are given a rewriting such that all events appears with multiplicity one in
Σω. Then the sequence ≺= ce0 , ce1 , . . . , cen , (ce)e∈Σω ,e/∈ω where we enumerate first the events
appearing in ω in order, then all the events regenerated in ω in any fixed order is a complete
order over Σω. Label the axes of R

card(Σω) by ≺, then for a sojourn path ω, we have the
following property.

Property 4.11 (Simplicity of Dω). The region {Dω} ⊆ R
card(χ) is a ≻-simple domain.

Proof. Consider in order the axes of ≺ and recall that each axis is associated to an unique
event e, and thus to a unique timer r.v. C(e). Let e be an event.

If e ∈ Winners(ω), then there exists i s.t. e = ei. Let j be the index of i in ≺, then the
range in Dω of the variable cj associated with the r.v. C(ei) is constrained by

C(ei)− Sojourn(qi) ≤ C(ei) ≤ C(ei)− Sojourn(qi) + ti.

Since Sojourn(qi) is a linear combination over some timer r.v. in {C(ek)} such that k ≤ i
and where C(ei) appears only once, the term C(ei)− Sojourn(qi) is a linear combination of
timer r.v. in {C(ek)}, and thus the variable cj is bounded by variables of lower index.

If e ∈ Delayed, for the index j of e in ≺, the variable cj is constrained by

FiringEpochω(e) ≥ FiringEpochω(en)

and since by construction j is greater than the index of the axis associated with en, then the
variable cj is only dependent by variables of lower index.

Finally, if e ∈ Loosers, for the index j of e in ≺, the variable cj is constrained by

FiringEpochω|i(e) ≥ FiringEpochω|i(ei)

104



4.3. Finite dimensional measures of the underlying stochastic process

for some (event) index i. Since by construction j is greater than the index of the axis associated
with ei, then the variable cj bounded by variables of lower index.

Since for any axis of R
card(χ) appearing as a variable in {Dω} we have lower and upper

constraints that are dependendent of variables of lower index w.r.t to the order ≺, D is a
≻-simple domain.

We can now express the probability of a sojourn path in terms of a probability over clock
r.v..

Definition 4.18 (Probability of a sojourn path). Let S = 〈Q,−→, Σ, W, Γ〉 be a STS
where all delay distributions in Γ(Σ) are continuous and where → is deterministic, then for
any sojourn path ω of S, the probability of ω is defined by

PW(ω) = P(
∧

ei∈ω

ei wins the race in state qi before time ti).

Let Σω be a set of r.v. {Ce} such that Ce ∼ Γ(e), then we have

P(
∧

ei∈ω

ei wins the race in state qi before time ti) =

∫

D

∏

{cei
|Cei

∈Σω}
fei

(cei
)

where Dω is the (ce(n−i)
)i≤n-simple domain with n = card(ΣΩ) defined in Eq. 4.16

General distributions We now consider that the delays of events in the STS can follow
any kind of probabilistic distribution with positive support. As it was the case for P4, we
need to consider all the possible ties and weight them by using a weight scheduler. We will
fully express the probability of a sojourn path on an example.

S = 8
8X ® X, a<, 8X ® Y, a<, 8X ® Z, c<,
8Y ® U, b<, 8Y ® Z, c<
<;

TreePlot @S, Left, X, DirectedEdges ® True, VertexLabeling ® True D
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U

Consider the sojourn path ω = X
a,tX−−−→ Y

b,tY−−→ U in S. By applying the definition 4.18, the
clock constraints associated with ω representing the clock values for which b wins the second
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race condition before tU is Dω = {0 ≤ a < 8 ∧ 0 ≤ b < 12 ∧ c ≥ a + b}. In the case where
the clock r.v. can be either discrete or continuous, we have to account for all the possible
ties. To this end, we decompose Dω into disjoint subsets by considering that any inequality
of the form a ≤ b is equivalent to the disjunction (a < b) ∨ (a = b). Therefore we have the
decomposition of Dω into 23 disjunct domains,

Dω = {a = 0 ∧ b = 0 ∧ c = a + b}
∪ {a = 0 ∧ b = 0 ∧ c > a + b}
∪ {a = 0 ∧ 0 < b < 12 ∧ c > a + b}
∪ {a = 0 ∧ 0 < b < 12 ∧ c = a + b}
∪ {0 < a < 8 ∧ b = 0 ∧ c = a + b}
∪ {0 < a < 8 ∧ b = 0 ∧ c > a + b}
∪ {0 < a < 8 ∧ 0 < b < 12 ∧ c = a + b}
∪ {0 < a < 8 ∧ 0 < b < 12 ∧ c > a + b}.

Each of these sub-domains are simple domain and can be measured with formulas similar to
the one in definition Def. 4.18.

To each of this sub-domain, we associate a tie sequence. A tie sequence {Σq}q∈ω is a
sequence of subset of Σ indexed by the successive states in the sojourn path. Two events are
in the same subset if their associated firing epoch are equals. In other words, each element of
a tie sequence {Σq} associated to a simple domain Di is a subset of the events En(q) in q for
which the clock constraints in Di are not sufficient to determine an unique successor state.

Consider the first sub-domain D1 = {a = 0 ∧ b = 0 ∧ c = a + b}. The firing epoch of
the event a is 0, the firing epoch of the event c is 0, the firing epoch of the event b is 0.
Therefore, this sub-domain is mapped to the tie sequence ({a, c}X , {b, c}Y ). For the sub-
domain D4 = {a = 0 ∧ 0 < b < 12 ∧ c = a + b}, we know that the firing epoch of the event a
is 0, the firing epoch of the event b is the r.v. b, the firing epoch of the event c is the r.v. b.
Therefore we have the tie sequence ({∅}X , {b, c}Y ). The other tie sequences are given in the
following table.

D1 {a = 0 ∧ b = 0 ∧ c = a + b} ({a, c}X , {b, c}Y )
D2 {a = 0 ∧ b = 0 ∧ c > a + b} ({∅}X , {∅}Y )
D3 {a = 0 ∧ 0 < b < 12 ∧ c > a + b} ({∅}X , {∅}Y )
D4 {a = 0 ∧ 0 < b < 12 ∧ c = a + b} ({∅}X , {b, c}Y )
D5 {0 < a < 8 ∧ b = 0 ∧ c = a + b} ({a, c}X , {∅}Y )
D6 {0 < a < 8 ∧ b = 0 ∧ c > a + b} ({∅}X , {∅}Y )
D7 {0 < a < 8 ∧ 0 < b < 12 ∧ c = a + b} ({∅}X , {b, c}Y )
D8 {0 < a < 8 ∧ 0 < b < 12 ∧ c > a + b} ({∅}X , {∅}Y )

We now map each tie sequence to the appropriate call to the weight scheduler. Since for
the first sub-domain, the events a and c tie in the state X, the weight scheduler is applied to
associate a weight to all the conflicting transitions in X. Similarly, the events b and c tie in
the state Y , and the tie is resolved with a weight scheduler. Therefore For the sojourn path
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ω = X
a,tX−−−→ Y

b,tY−−→ U , for a weight scheduler W, we associate the weight

WW(ω, D1) = W(ω|0,X
a−→Y )

W(ω|0,X
a−→Y )+W(ω|0,X

a−→X)+W(ω|0,X
c−→Z)

× W(ω|1,Y
b−→U)

W(ω|1,Y
b−→U)+W(ω|1,Y

c−→Z)
,

to the first sub domain. We finally have for the sojourn path ω and for general distributions

P6(ω) =
∑

Di∈D

WW(ω,Di) ∗P(Di)

where D is the decomposition of D into disjoint domains Di previously illustrated.
Notice that in the case where Γ(a) = Γ(b) = Γ(c) = δ0, the only sub-domain that has a non

zero measure is the sub domain 1 and hence we have PW2(ω) = P6(ω).

Numerical validation

We consider again the STS S of the example Ex. 4.1. Given a sojourn path ω of S, we can
derive the constraints over clocks with the functions Epoch and Sojourn.
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In[117]:= EnabledIn @s_D : = Select @S, ð@@1, 1 DD � s &DPAll, 2 T
TransitionFrom @s_, e_D : = Select @S, MatchQ @ð, 8s ® _, e<D &DP1T
SetDiff @X_, Y_D : = Complement @X, Intersection @X, YDD

Regenerate @q_, e_, qp_D : =
Union @SetDiff @EnabledIn @qpD, EnabledIn @qDD,

Intersection @EnabledIn @qpD, 8e<DD

LastRegenerativeState @p_, e_D : =
With @8Ω = Append@Reverse @pD, 8"", "", 0, p@@1, 1 DD<D<,

Select @Ω, MemberQ@Regenerate @ð@@1DD, ð@@2DD, ð@@4DDD, eD &D@@1, -1DDD

Epoch@p_, q_D : = Module @8i , ev , found <,
If @Length @pD � 0, Return @0DD;
found = Position @Reverse @pD, 8_, _, _, q<D;
If @Length @found D � 0, Return @0DD;
i = Length @pD + 1 - found @@1, 1 DD;
If @i � 1, Return @0DD;
ev = p@@i , 2 DD;
ev + Epoch@p@@ ;; i DD, LastRegenerativeState @p@@ ;; i - 1DD, evDD
D

Sojourn @p_, q_D : = Module @8i , tgt <,
If @Length @pD � 0, Return @0DD;
i = Length @pD + 1 - Position @Reverse @pD, 8q, _, _, _ <D@@1, 1 DD;
If @i � 1, Return @0DD;
tgt = p@@i , -1DD;
Epoch@p, tgt D - Epoch@p@@ ;; i DD, qD
D

ClockRVInLastStateOfp @p_, e_D : =
e + Epoch@p@@ ;; -2DD, LastRegenerativeState @p, eDD

ConditionForWinningInLastStateOfP @p_, e_D : = Module @8en, Φ, clockRvs <,
en = EnabledIn @p@@-1, 1 DDD;
clockRvs = Hð ® ClockRVInLastStateOfp @p, ðDL &�� en;
Φ = And �� Hð@@1DD < ð@@2DD &�� Tuples @88e<, Complement @en, 8e<D<DL �.

clockRvs
D

EventWinsBeforeDeadlineInLastStateOfP @Ω_, e_D : =
ConditionForWinningInLastStateOfP @Ω, eD ì

Sojourn @Ω, Ω@@-1, 1 DDD < Ω@@-1, 3 DD

We will compute the probability of the sojourn path defined as ω in the following code.

In[208]:= TX = 9; TY = 8; TZ = 5; TU = 2;
Ω = 88"", "", 0, X<, 8X, a, TX, Y<, 8Y, b, TY, Z<, 8Z, c, TZ, U<, 8U, e, TU, eWin<<

Out[209]= 88, , 0, X<, 8X, a, 9, Y<, 8Y, b, 8, Z<, 8Z, c, 5, U<, 8U, e, 2, eWin<<

We can derive constraints over all the clocks that are regenerated during an execution in ω.
Basically, we derive first constraints for each transition in ω. For a given transition q

e−→ q′,
the winning clock Ce must be smaller than all the clocks of the events in En(q).

108



4.3. Finite dimensional measures of the underlying stochastic process

In[137]:= EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 2 DD, aD �. H2 a ® a + apL
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 3 DD, bD �. H2 a ® a + apL
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 4 DD, cD �. H2 a ® a + apL
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 5 DD, eD �. H2 a ® a + apL

Out[137]= a < b && a < c && a < 9

Out[138]= b < a + ap && b < c && b < a + d && -a + b < 8

Out[139]= c < a + ap && c < b + e && -b + c < 5

Out[140]= b + e < a + ap && b + e < c + f && b - c + e < 2

Since in ω, the clock of the event a is regenerated twice (once at the beginning and once when
the system transition from X to Y ), we use two r.v. a and ap to differentiate the two clocks.
These constraints are exactly the one obtained in the example Ex. 4.1. We can now build a
constraint over all the clocks regenerated in ω, i.e. the conjunction of the one step constraint
and reduce it to a simple domain.

In[143]:= And@
And �� HH0 < ðL &�� SL ì 0 < ap,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 2 DD, aD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 3 DD, bD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 4 DD, cD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 5 DD, eD
D �. H2 a ® a + apL

Out[143]= 0 < a && 0 < b && 0 < c && 0 < d && 0 < e && 0 < f && 0 < ap && a < b &&
a < c && a < 9 && b < a + ap && b < c && b < a + d && -a + b < 8 && c < a + ap &&
c < b + e && -b + c < 5 && b + e < a + ap && b + e < c + f && b - c + e < 2

In[144]:= CylindricalDecomposition @%, 8a, b, c, e, d, f , ap<D
Out[144]= 0 < a < 9 && a < b < 8 + a && b < c < 5 + b &&

-b + c < e < 2 - b + c && d > -a + b && f > b - c + e && ap > -a + b + e

We now compare empirical estimators of P(ω) with the exact probability as defined in def-
inition Def. 4.18. Empirical estimators are based on the same step function than the one
used to simulate STS in STS5. The most frequent paths of S are obtained by tallying with
un-timed paths.
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In[155]:= samples = Table @
Nest @Step1, 8Ω, Hð1 ® Sample @G@ð1DDL &�� EnabledIn @XD<, 4 D
@@1, 2 ;; DD, 820 000 <D;

SortBy @Tally @Untime �� samples D, ð@@2DD &D �� MatrixForm

Out[156]//MatrixForm=

88X, Y, a<, 8Y, Æ, d<< 6

88X, Æ, c<< 19

88X, Y, a<, 8Y, Z, b<, 8Z, U, c<, 8U, eWin, e<< 145

88X, Y, a<, 8Y, Z, b<, 8Z, U, c<, 8U, fWin, f<< 2989

88X, Æ, b<< 3733

88X, Y, a<, 8Y, Æ, c<< 4891

88X, Y, a<, 8Y, Z, b<, 8Z, U, c<, 8U, aWin, a<< 8217

The real probability is computed via integration. We first consider the probability of the

prefix X
a,12−−→ Y of ω. The realizations of S that are in JωK are selected with a predicate IsInω

over realizations. Then the empirical estimator of P(ω) is card(()IsInω(samples))/ card(()samples).

In[167]:= TX = 12;
deadlines = 8TX<;
Ω = 88"", "", 0, X<, 8X, a, TX, Y<<;

In[170]:= IsIn Ω@realization_D : =
If @Length @realizationD < Length @ΩD, False,

With @8s = TimedRunWithEpochsToSojourn @realizationD@@ ;; Length @ΩD - 1DD<,
Untime @sD === Ω@@2 ;;, 81, 4, 2 <DD ì

VectorLessEqual @Time @sD, deadlines D
D
D

In[171]:= NBLength @Select @samples, IsIn ΩDD
Length @samples D

F

Out[171]= 0.80395

We now derive from this prefix the set of constraints over the 3 clock random variables.

In[172]:= And@
And �� HH0 < ðL &�� 8a, b, c<L ì

EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 2 DD, aD
D �. H2 a ® a + apL

ineqs = CylindricalDecomposition @%, 8a, b, c, ap, e, d, f <D
Out[172]= 0 < a && 0 < b && 0 < c && a < b && a < c && a < 12

Out[173]= 0 < a < 12 && b > a && c > a

Which are constraints of the same kind than the one in STS3. Since these constraints de-
fine a simple domain, we can perform repeated integration to obtain the real probability

P(X
a,12−−→ Y ) and compare it with the estimator.

110



4.3. Finite dimensional measures of the underlying stochastic process

Out[173]= 0 < a < 12 && b > a && c > a

In[174]:= NIntegrate @
PDF@G@aD, avD*PDF@G@bD, bvD *PDF@G@cD, cvD,
8av, 0, 12 <, 8bv, av, 100 <, 8cv , av, 100 <,
Method ® Automatic
D

AbsB% - NBLength @Select @samples, IsIn ΩDD
Length @samples D

FF

Out[174]= 0.804729

Out[175]= 0.000779215

Computing the probability of the prefix X
a,12−−→ Y

b,8−→ Z follows the same method. The
estimator and domain are first computed.

In[176]:= TX = 12; TY = 8;
deadlines = 8TX, TY<;
Ω = 88"", "", 0, X<, 8X, a, TX, Y<, 8Y, b, TY, Z<<;

In[179]:= NBLength @Select @samples, IsIn ΩDD
Length @samples D

F

Out[179]= 0.56335

In[182]:= And@
And �� HH0 < ðL &�� 8a, b, c, d<L ì 0 < ap,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 2 DD, aD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 3 DD, bD
D �. H2 a ® a + apL;

ineqs = CylindricalDecomposition @%, 8a, b, c, ap, e, d, f <D
Out[183]= 0 < a < 12 && a < b < 8 + a && c > b && ap > -a + b && d > -a + b

The probability of this domain is given by

∫

{a<12∧a<b<a+8∧c>b∧ap>b−a∧d>b−a}

fA(a) ∗ fB(b) ∗ fC(c) ∗ fD(d) ∗ fA(ap),

however since we have c > b, ap > b−a and d > b−a we can rewrite this integration by using
cumulative distribution functions as follows

∫ 12

0

∫ a+8

a
fA(a) · fB(b) · (1− FA(b− a)) · (1− FC(bv)) · (1− FD(b− a)).

We can now compute the error between the empirical estimator and the real probability of

P(X
a,12−−→ Y

b,8−→ Z).
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In[184]:= NIntegrate @
PDF@G@aD, avD*PDF@G@bD, bvD *H1 - CDF@G@cD, bvDL*H1 - PDF@G@aD, bv - avDL*
H1 - PDF@G@dD, bv - avDL,
8av, 0, TX <, 8bv, av, av + TY<,
Method ® Automatic
D

Out[184]= 0.563575

In[185]:= AbsB% - NBLength @Select @samples, IsIn ΩDD
Length @samples D

FF

Out[185]= 0.00022491

We consider now a longer sojourn path ω = X
a,12−−→ Y

b,8−→ Z
c,5−→ U

a,5−−→ aWin. We first
compute the constraints over the clocks random variables.

In[204]:= And@
And �� HH0 < ðL &�� SL ì 0 < ap,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 2 DD, aD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 3 DD, bD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 4 DD, cD,
EventWinsBeforeDeadlineInLastStateOfP @Ω@@ ;; 5 DD, aD
D �. H2 a ® a + apL;

ineqs = CylindricalDecomposition @%, 8a, b, c, ap, e, d, f <D
Out[205]= 0 < a < 12 && a < b < 8 + a && b < c < 5 + b &&

-a + c < ap < 5 - a + c && e > a + ap - b && d > -a + b && f > a + ap - c

Even if on domain of this kind, the numerical integration converges too slowly or the numer-
ical error is too large, we do get the same value as the empirical estimator.

In[197]:= NIntegrate @
PDF@G@aD, avD*PDF@G@bD, bvD *PDF@G@cD, cvD*PDF@G@aD, apv D*
H1 - CDF@G@eD, av + apv - bvDL*
H1 - CDF@G@f D, av + apv - cvDL*
H1 - CDF@G@dD, -av + bvDL,
8av, 0, TX <, 8bv, av, TY + av<, 8cv , bv, TZ + bv<, 8apv , -av + cv , -av + cv + TU<
D
NIntegrate ::slwcon :

Numerical integration converging too slowly ; suspect one of the following : singularity ,

value of the integration is 0, highly oscillatory

integrand , or WorkingPrecision too small .�

Out[197]= 0.109661

However, we can also approximate this value by using a rejection sampling scheme[RC04],
which yields here the same probability for a sample of 50000.
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4.3. Finite dimensional measures of the underlying stochastic process

In[208]:=
1

50 000
Tally @

Table @ineqs �. Join @Hð -> RandomReal@G@ðDDL &�� S,
8ap ® RandomReal@G@aDD<D, 850 000 <DD@@2, 2 DD

Out[208]=
663

6250

In[209]:= N@%D
Out[209]= 0.10608

Note that the rejection sampling approach is order of magnitude faster than the simula-
tion.
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In[210]:= res = Table @
8sampleSize ,

Timing @
Table @ineqs �. Join @Hð -> RandomReal@G@ðDDL &�� S,

8ap ® RandomReal@G@aDD<D, 8sampleSize <D; D@@1DD,
Timing @

Table @Nest @Step1, 888X, X, " init ", 0 <<,
Hð1 ® Sample @G@ð1DDL &�� EnabledIn @XD<, 4 D, 8sampleSize <D; D@@

1DD
<,
8sampleSize , 100, 10 000, 500 <D

Out[210]= 88100, 0.017953, 0.096681<, 8600, 0.088656, 0.56145<,
81100, 0.162167, 1.04673<, 81600, 0.23777, 1.51933<,
82100, 0.310356, 2.02132<, 82600, 0.384909, 2.50856<,
83100, 0.459148, 2.98657<, 83600, 0.530181, 3.43778<,
84100, 0.605146, 3.91626<, 84600, 0.678839, 4.40132<,
85100, 0.755065, 4.94655<, 85600, 0.825433, 5.38994<,
86100, 0.900914, 5.8806<, 86600, 0.974816, 6.36457<,
87100, 1.04842, 6.8615<, 87600, 1.1241, 7.30769<,
88100, 1.19152, 7.8162<, 88600, 1.28615, 8.29468<,
89100, 1.33933, 8.77442<, 89600, 1.41744, 9.26613<<

In[211]:= ListLinePlot @8res PAll, 81, 2 <T, res PAll, 81, 3 <T<D

Out[211]=

2000 4000 6000 8000

2

4

6

8

4.4 Concluding remarks and related work

In this chapter, we have defined stochastic transition systems, a general model of transition
systems with probabilistic behavior. We gave a semantics of stochastic mode automata (cf
Chap. 3) in terms of STS. In order to account for the non determinism implied either by the
transition relation or by the use of discrete distributions, we defined weight schedulers and
described how the probability of sojourn paths are dependent of weight schedulers.

Although the stochastic behavior of our model may be interpreted in terms of general Semi-
Markov processes, we chose a different characterization in terms of probabilities of sojourn
paths. Contrary to the usual definition of the stochastic process underlying a GSMP by using
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transition kernels, our semantics is adapted to compute probabilities of finite paths, and we
showed how to represent these probabilities in terms of inequalities over random variables.
Once the probability of a sojourn path has been reduced to such inequalities, we showed that
it can be computed either by (numerical or symbolic) integration or by rejection sampling.

Note that when we are only interested in the probability of a given path, there is no need to
build the full transition system. Indeed, as the semantics of SMA with pre and post-conditions
enable us to compute the set of enabled events of the successive state of a sojourn path, we
do not need additional information than the sequence of states described by a sojourn path.

In contrast to existing approaches, the most similar probabilistic transition system is the
stochastic automaton of Zimmermann [Zim08] which, in turn, is very similar to the (similarly
named but different) stochastic automaton of Cassandras [CL08]. The notable difference with
their approach is that we explicitly allow non determinism and account for it in the semantics,
while Zimmermann and Cassandras assume that the system is deterministic. Furthermore,
they both give the semantics of stochastic automaton in terms of continuous space stochas-
tic process by the use of a transition kernel, and thus completely discard the possibility of
computing simple probabilities. Similarly, the formalism of generalized stochastic petri nets
described in details in [KBD+94] and [Haa02] is also based on the same discrete event scheme
and is defined with a semantics in terms of continuous-space stochastic process. In general,
the definition of semantics in terms of continuous state stochastic process basically encode in
a transition kernel the advance time simulation algorithm of [She93].

Concerning analysis of systems that admits a general Semi-Markov process semantics, the
authors of [LHK01] devised a model checking[CES86] algorithm to verify properties expressed
in CSL [BHHK00, ASSB96] against semi-Markov chains (SMC). Semi-Markov chains (well
described in [Cin75, Kul95]) are extensions of the continuous time Markov chains (cf Chap.
2) in which the sojourn time in a state is determined by a general continuous distributions.
Thus, similarly as in STS and in GSMP, the second Markovian property that states that
the elapsed sojourn time is irrelevant does not hold for SMC. However, once a transition
is fired (and thus that the sojourn timed has elapsed), there is no past state memory and
this corresponds in our setting of STS to a regeneration of all the clocks. Kwiatkowska et
al. [KNSS00] refined the approach based on the region graph [ACD93] that is classical in
verification of timed automata [AD94]. Although the region graph approach was successfully
adapted to timed automata with discrete probabilities [KNSS02], the extension to continuous
probability involved a subdivision of the region graph into subintervals of equal size, thus
leading to 1) an algorithm infeasible in practice and 2) an approximation of the probabilities.

Another approach presented in [YS05] is based on approximations of general distributions
by using phase type distributions[Neu81, Neu75]. Phase type distributions are generalization
of the exponential distribution that allows memory dependence in the form of phases, and
once a general distribution has been approximated by a phase type distribution, states are
added in the transition systems to denote the elapsed phase of the distribution. The resulting
continuous time process satisfies the Markov property and can thus be analyzed with the
same techniques as CTMCs.
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Chapter 5

Dynamic analysis

A model description in BioRica is both functional and quantitative. In order to evaluate the
impact of the stochastic delays on measures such as probabilistic reachability or response time,
the model is analyzed using the computations described in the previous chapter. However,
since arbitrary distributions are allowed, analysis can only be performed on restricted cases,
e.g. models with a small state space [CL08] or models where all delays follow an exponential
distribution (see [Par02a] for an overview).

For the models that are too complex to be analyzed we take a more general approach
by using discrete event simulation. In discrete event simulation state changes take place
at discrete points in time, although the time is considered to be continuous. The simulation
algorithm that we introduce for discrete event is a variant of a variable time-advance procedure
[She93]. A variable time advance procedure is a simulation algorithm in which the simulation
logical time is advanced at each step to the time of the next scheduled event, thus skipping
intervening time.

One advantage of using simulation is that there is no requirement to generate the stochastic
transition system. Therefore, simulation do not suffer from the main problem of analytical
techniques: state explosion problem. To perform analysis by using simulation, simulation
runs (also called sample paths) are generated, and are analyzed to determine the measures of
interest by using statistical estimators.

This chapter is organized as follows. We first review a general discrete event simulation
scheme then describe how BioRica clauses are translated to C++ code. We then consider three
important points of the discrete event simulation of hierarchical systems, namely how to adapt
the next time advance algorithm to a tree, then consider the specificities of non determinism
and randomness for hierarchical systems. We finally present some languages extensions that
can be used to incorporate in a generated simulator constructions not declarable in (pure)
BioRica.

5.1 Overview of discrete event simulation

The simulation of a BioRica system is based on a discrete event simulation scheme. A discrete
event system functions in the following way: at the time t it is in a state during some time
interval ∆t. After this delay of ∆t time unit, an atomic event happens and changes the state
of the system immediately. In other words, it is a system where transitions are instantaneous,
are driven by event, and their occurrence date are real values. It is important to note that
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contrary to differential system (for example), the state of the system does not change between
two subsequent events.

We consider our system at a time t, and in a state s that gives a valuation to each variable
of the system. These values are used to determine the set of fireable events by evaluating the
truth value of all of the guards associated with all of the events of the system. Then, the
stochastic labeling of the system is used in order to associate to each fireable event a random
occurrence date, thus yielding a schedule for the system at time t and state s.

Such a schedule is a function associating to each event a real number representing the
waiting time before this event will fire. Note that this duration can be undefined or infinite
for impossible events (for which the guard constraint doesn’t hold) or that this duration can
be zero for immediate events, which is always the case for events without stochastic labeling.

The next event to fire will be one of the events that have the minimal waiting time tm. We
consider for the moment that only a single event should fire at time t + tm. If all the waiting
times are infinite, we consider the system to be in its final state and deadlocked, therefore the
simulation is finished. If not, we fire the event with minimal waiting time tm and the system
state is updated according to the assignments of the event. Afterwards, the waiting time of
all the events that have not been fired is decreased by tm, thus giving them a chance to be
the next fireable event.

This discrete stepping evolution is very close to the one described by [Gly89]. However, our
models can take into the account untimed events and durations following discrete probabilistic
distributions. This added expressivity introduces non deterministic behavior such as when
multiple events with discrete probabilistic distributed timing should fire at the same time3.
In these situations, the specification of the model doesn’t provide enough information to be
able to infer which of the events should be fired first, and so every possible order of events
has to be taken into the account to simulate the possible behaviors.

5.2 Code generation

A compiler from BioRica to C++ has been developed in order to automatically generate
a stand-alone discrete event simulator from a BioRica system description. The simulators
implementing a discrete event simulation scheme of a BioRica system consists of two parts:
a compiler and a simulation framework. The output of simulation is meant to be analyzed
separately by feeding simulation results into trace analysis scripts. The software architecture
of BioRica is depicted in Fig. 5.1.

The first set of classes concerns the implementation of the simulation algorithms, data
structures, and pseudo-random number generators. These classes are generic and are linked
statically to the system specific classes during the C++ linking phase. These classes and
algorithms are detailed in section sec. 5.3.

The second set of C++ classes is made of all the classes that are specific to the BioRica
system under consideration. These C++ classes are automatically generated by a compiler
from a BioRica system description. The BioRica to C++ compiler uses a data structure
representing the abstract syntax of a BioRica node and BioRica systems that was detailed in
chapter 3.

The semantical checks performed before this compilation phase verify the conformity of the

3Notice that having multiple event scheduled at the same could not happen in previous discrete event
formalism that only considered continuous distributions
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Figure 5.1: BioRica software architecture.

declaration and use of each state variable, event label, and subnode. Importantly, there is no
need to build the transition relation, to flatten the domains of the variables, or to apply the
composition operators.

5.2.1 Overview of the generated code

Each node of the BioRica system is analyzed by a BioRica compiler. This compiler generates
the source code of a C++ class for each node. In these classes, the composition operations
are described by object aggregation. One of the objective of this code generation procedure
is to code readable by a person, that can be thus further modified if including construction
not expressible in BioRica is required. Consider the following simple BioRica node,

node simple
2 state

x,y :[0,100];
4 event

1 ⊢ incr x →x:=x+1;
6 1 ⊢ incr y →y:=y+1;

edon

The interface of the associated generated C++ class is the following.

1 class simple:public Node{

3 private:
string∗ name;

5 Node∗ parent;
int x;

7 int y;
bool incr x is synched;

9 bool incr y is synched;

11 public:
simple(char∗ a name,

13 Node∗ parent=NULL);
virtual ¬simple();

15

17 void incr x();
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bool incr x eval ();
19 int incr x weight ();

float incr x delay ();
21 std :: vector<int>∗ incr x parameters();

void incr x set synched(bool s);
23

25 void incr y();
bool incr y eval ();

27 int incr y weight ();
float incr y delay ();

29 std :: vector<int>∗ incr y parameters();
void incr y set synched(bool s);

31

void
33 storeAllPossibleTrans(vector<TransitionTuple∗>

∗store );
35

37 void display variables () const;
friend ostream∧

39 operator<<(ostream∧ os, const simple∧ c);
void display(ostream∧) const;

41 void display hierarchy(ostream∧ out) const;
std :: string∗ get name() const;

43

45 static bool in x domain(const int val);
static bool in y domain(const int val);

47

void update flows();
49 };

In order to simulate the previous node, it is dynamically linked to a simulation framework
implementing the variable time-advance advance algorithm. The generated simulator can
then be executed on any POSIX compatible platform to obtain simulation traces describing
the state of the system and the system transitions, such as the following, describing the state
of the system at each step, until a deadlock is reached.

1 #>time a.cpt b.cpt c.cpt
0 0 0 0

3 #?(s:3)
#!a.incr

5 0 1 0 0
#?(s:2)

7 #!c.incr
0 1 0 1

9 #!b.incr
0 1 1 1

11 #Deadlock
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5.2.2 BioRica clauses to C++ code

Each node declaration in the BioRica system is compiled into a class that inherits from the
abstract class Node. This class contains the following clauses.

Variables Each variable is compiled into a int instance variable and a domain method. The
domain method receives an integer value as input and returns a boolean value indicating if
the given value is in the domain of the variable. For flow variables, read or write accessor
methods are generated according to the direction of the flow.

Events Each event is compiled into four methods: one representing the weight label, one
representing the stochastic delay label, a synchronization setter, and a parameter accessor.

The method representing the weight label returns the integer weight associated with the
event. The method representing the stochastic delay is an arithmetic expression which terms
are state variables of the instance and function calls to one of the Distribution class. This
method returns a floating point number denoting the inter-event time. The synchronization
setter sets a boolean variable indicating that this event is synchronized in an upper node.
This method is called after for each synchronized events after the instantiation of a node.
The parameter accessor returns an std::vector of integer numbers representing the value of
all the state variables appearing in the terms in the stochastic delay. This vector is used to
detect whenever a change in one of the values of the state variable should trigger a resampling
of the delay associated with this event.

Macro-transitions Each macro-transition is compiled into two methods, one correspond-
ing to the assignments, the other to the conditions under which the transition is enabled.

For the assignment method the assignments in the BioRica node are translated to C++
assignments whose right hand side are arithmetic expressions over variables of the instance.
To simulate the semantics of a parallel assignment, values of state variables are copied into
temporary local variables at the beginning of the method call.

The method representing conditions that enable an event is built with a conjunction of
the pre- and post- conditions. The post-conditions are translated into a boolean formula by
substituting the assignment expressions into the domain formula. For each variable modified
by the assignment, this expression is used to verify that its next value lies in the domain the
variable.

Hierarchies The hierarchy of the system is mapped to a tree data structure. The root of
the tree is the root of the BioRica system hierarchy. Each node of the tree corresponds to an
instance of a node in the BioRica hierarchy. Each instance uses a std::vector<Node*> to
store pointers to its sub-nodes instances.

Flow variables Flow connections are implemented by using the flow propagating function3.11.
This function is computed at translation time by linearizing the partial order represented by
the graph of connections. During simulation, each node is responsible of updating the flow
variables of its sub-nodes.

Active event computation Computation of the set of possible events follows a tree visitor
pattern. An std::vector is transmitted recursively to each node of the tree. Each node is
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responsible for evaluating if one of its events admits a transition that is possible in the current
state. Each enabled event is inserted into the std::vector.

Synchronized events One particularity we must account for concerns event synchroniza-
tion. The synchronization of two events is specified in a system node. In this system node,
multiple instances of the same node may have different synchronization declarations. For
example, two events may be synchronized only in one of the instances of the node, as in the
following example.

1 node simple
[...]

3 edon

5 node sys

sub
7 a,b,c:simple;

sync
9 <a.incr x,b.incr y>;

edon

We see that out of the three instances of the node simple, only two are synchronized. In
such cases, a single class is generated for the node simple, and a boolean instance variable
indicating which event of which instance is synchronized is set at the instantiation by the
node sys.

To determine if a synchronized event is enabled in the current state, the system node checks
if all the events in the synchronization vector are enabled. If all the events of the vector admit
a transition which pre- and post- conditions are valid in the current state, the synchronized
event is inserted in the vector of possible event.

The C++ class associated with a BioRica node is self contained, and the same class can
be used either separately or incorporated in a system. This approach makes it possible to
generate a single class that is independent of the system in which it is used; and thus a library
of pre-compiled models can be built.

5.3 Next event time advance simulation algorithm

A simulation algorithm for a discrete event system computes a sequence of states, events,
and events occurrence date. Contrary to the path semantics described in the chapter 4, here
we provide an operational approach where the complete information needed to determine the
next state is updated at each step of the simulation. Although a BioRica system is equivalent
to a BioRica node by flattening, the discrete event simulation scheme we use is based on a
tree-traversal algorithm and can thus be used to simulate a BioRica system or a BioRica node
indiscriminately.

The variable time-advance simulation scheme informally described in section 5.1 is given
by the following algorithm.

This algorithm relies on a visitor pattern, who visits each node in the system tree with the
following function

At each step of the next event time advance algorithm 2, the update of the list of enabled
events is delegated to the sub-nodes of the system. Consequently the flow of information is
top-down and mirror the BioRica system hierarchy.
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Algorithm 2 Variable time-advance stepping algorithm. At each iteration in the inner loop,
the set of possible events is updated, and new delays are associated to newly enabled events.

Require: MAXTIME ∈ R
+; MAXROUND ∈ N;

Require: Schedule = ∅
Require: topNode a BioRica system or a BioRica node

while t ≤MAXTIME and r ≤MAXROUND do
for all e ∈ Schedule do

Remove if guard doesn’t hold
Remove if post-conditions doesn’t hold
Remove if parameter were modified

end for
schedule← possibleTransitions(topNode)
if length(schedule) = 0 then

end while
end if
sort schedule by scheduled date
t← mine∈schedule {date(e)}
r ← r + 1
Firing ← {e ∈ schedule | date(e) = t}
firing ← pick(Firing)
update state variables accordingly to firing
schedule← schedule− {firing}
update flows

end while

5.4 Randomness

Usually in C++, pseudo random number generation (hereafter RNG) is done via the standard
library. The generator implemented in this library relies on a global variable called seed
denoting the initial state of the generator. The successive states of the random number
generator are determined by this initial seed.

However, having a global shared RNG is not well suited for the simulation of hierarchical
non deterministic systems.

Indeed consider for example a node with stochastic transitions and an input flow i that is
not connected. The values of the input flow variable can be chosen randomly after each step
of the system. Suppose that there is only one global RNG, the state of which is determined
by a single global seed. Varying this seed will modify the behavior of the node, the values
assigned to i as well as the random delay associated with each event. Thus it is not possible
to vary the behavior of the input flow independently of the behavior of the node and of the
random delays associated with each event.

In order to be able to vary independently these behaviors, the random number generation
is implemented via a random generator class. Each instance of this class is completely in-
dependent and has a private seed. At minimum, three RNGs are instantiated: one for the
environment, one for the system and one for the delays.

For systems composed of a large number of nodes, it can be useful to make independent
the randomness of particular set of nodes. In such cases, more than three RNG can be
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Algorithm 3 Algorithm to compute the set of possible transitions in a hierarchy. Called as
“possibleTransitions” in Alg. 2

Require: node, a BioRica node
Require: schedule = ∅

for all e ∈ event(node) do
t′ ← sampleRandomDelay(e, params(e))
if guard(e) and post condition(e) then

schedule← schedule
⋃ {〈e, t′, params(e)〉}

end if
end for
for all n ∈ subnodes(node) do

schedule← schedule
⋃

possibleTransitions(n)
end for
return schedule

instantiated. In particular, it is possible to have a RNG associated with each node of the
system, and thus the randomness of each node is independent.

This separation of randomness is implemented in the simulation framework via an object
oriented random number generation library implementing the Mersenne twister algorithm
[MN98].

5.5 Non determinism

Non determinism is useful at the design phase for under specifying a system. For example, the
information about the frequency (hence probability) of an event outcome might be unavailable
at early steps of modeling. To evaluate measures such as probabilistic reachability or response
time of non deterministic systems, we reuse the notion of scheduler [Seg95, Var85, D’A99].

A scheduler is an additional model used to resolve non determinism. In each state where
the system is in a non deterministic state, the choice between all the possible next states is
delegated to the scheduler. As a consequence, the results of simulation should be considered
with respect to a given scheduler.

In the chapter 4, we defined a scheduler as a function returning the next transition based
on the history of the system. This functional definition of a scheduler is used for the static
analysis of the stochastic transition semantics of a BioRica model. In the context of discrete
event simulation, schedulers are used to resolve non determinism on the fly. Although the
definition of stochastic transition systems 4 considered a single characterization of non de-
terminism, we consider for simulation two kind of under-specification. The first kind is the
non determinism inherent to the environment. This under-specification is due to dangling
input flows and represent an under-specified context for the system. The second kind is the
non determinism inherent to the system. This under-specification arises in some state when
the system description do not contain enough information to uniquely determine the next
transition.

For simulation purpose, these schedulers can be implemented separately. The interface of a
scheduler is defined in a Scheduler virtual class. This interface is reduced to a virtual method.
The signature of this method follows the functional definition given in chapter 4. Three classes
inherit from this virtual class. The first class is a generic scheduler used by default. This
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scheduler selects the next state by assigning equal probabilities to all the possible successors.
The second class specifies the interface of an environment scheduler. This scheduler resolves
the non determinism relative to the input flows, and assigns a value to each input flow variable
after each step of the system. Finally, the third scheduler is a system scheduler and it decides
between multiple events and transitions which one will be the next. This scheduler is a friend
class of BioRica nodes and can thus access all state variables of the system.

We illustrate the advantages for two separate schedulers on the following example. Consider
the following BioRica node Cell.

node Cell
2 state

alcohol :[0,100];
4 alive :BOOL;

init
6 alive :=1;

flow
8 temperature :[0,100]: i ;

event
10 ferment,die ;

trans
12

alive ∧ temperature > 50 ⊢
die →alive:=0;

14 alive ∧ alcohol > 10 ⊢die →
alive:=0;

16 alive ∧ temperature > 15 ⊢
ferment →alcohol:=alcohol+1;

alive ⊢ ferment →;
18 extern

Law<ferment>:Exponential{1};
20 edon

The node Cell models a fermenting cell. Depending on the temperature of the medium,
this cell can either undergo a fermentation process that produces one unit of alcohol or can
stay in an idling phase. Moreover, whenever the temperature or the alcohol level are above
limit values, the cell undergoes necrosis and is considered as dead. This node has two different
source of non determinism. On one hand, the temperature is a dangling input flow, on the
other hand, each time the temperature is above 15, the outcome of the ferment event can
either be the production of alcohol (line 16 ) or be void (line 17). Although the die event is
also non deterministic since the two guards of the two transitions can be satisfied at the same
time, the assignment of those transitions are identical and thus there is no need to distinguish
the two transitions.

By default, the same scheduler is used for updating the value of the temperature flow
variable and for choosing which transition to apply whenever the event ferment is the next
event. The selection mechanism of this default scheduler is based on a random choice between
uniformly distributed outcomes. This selection is performed at two point of the simulation,
during the update of the flow variables and whenever the ferment event is the winning event.
By default, the following C++ code is generated for this non deterministic resolution4.

% \begin{source cpp}
2 // [...]

void Cell :: ferment(){
4 if (this→alive ∧(this→temperature > 15) ∧in alcohol domain(this→alcohol+ 1))

possible++;
6

if (this→alive ∧(this→temperature≤ 25))
8 possible++;

10 //Ask for the system scheduler to choose which transition to follow

4The generated code has been slightly simplified for readability purpose
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choosed=Scheduler::general instance()→choose(possible);
12 if (choosed==1){

//Real fermentation

14 int local alcohol =alcohol;
alcohol=((( local alcohol ) + (1)));

16 return;
}else if (choosed == 2){

18 //Stay idle

return;
20

}else{
22 abort();

}
24 }

26 // [...]

void Cell ::update flows(){
28 //Ask for the default environment scheduler to update the temperature

//By default return a sample from an uniform distribution

30 this→temperature=Scheduler::general instance()→choose(100);
}

A typical simulation runs is as follows.

1 #>seed:2773155
#?(e:100→36)

3 #>time alcohol alive temperature
0 0 1 36

5 #!ferment
#Real fermentation

7 #?(e:100→50)
0.117368 1 1 50

9 #!ferment
#Real fermentation

11 #?(e:100→5)
1.15054 2 1 5

13 #!ferment
#Real fermentation

15 #?(e:100→8)
1.94106 3 1 8

17 #!ferment
#Stay idle

19 #?(e:100→14)
2.64544 3 1 14

21 #!ferment
#Real fermentation

23 #?(e:100→75)
3.66174 4 1 75

25 #!die
#?(e:100→79)

27 3.66174 4 0 79
#Deadlock

The mechanism for solving the non determinism resolution mechanism can be made more
specific in order to model a less random evolution of the temperature. For example, the
following environment scheduler models a strictly increasing temperature.

// Increasing temp scheduler

2

class IncreasingTemp:public EnvironmentScheduler{
4 public:

int setFlow(int maxVal);
6 IncreasingTemp(int seed):lastTemp(0),EnvironmentScheduler(seed) {};

private:
8 int lastTemp;
};

10 [...]
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12 extern int env seed;

14 int IncreasingTemp::setFlow(int maxVal){
int choosed = rg→IRandom(this→lastTemp,this→lastTemp+5);

16 if (choosed>maxVal){
choosed=maxVal;

18 }
this→lastTemp=choosed;

20 return choosed;
}

When simulated, the same model but with this new environment scheduler produces the
following output.

1 #>seed:1831963
#>env seed:725031083

3 #>sys seed:775198903
#>time alcohol alive temperature

5 0 0 1 2
#!ferment

7 #?(s:1→1)
#Real fermentation

9 0.503281 1 1 5
#!ferment

11 #?(s:1→1)
#Real fermentation

13 0.693249 2 1 7
#!ferment

15 #?(s:1→1)
#Real fermentation

17 2.57803 3 1 7
#!ferment

19 #?(s:1→1)
#Real fermentation

21 2.78362 4 1 9
#!ferment

23 #?(s:1→1)
#Real fermentation

25 3.33836 5 1 10
#!ferment

27 #?(s:1→1)
#Real fermentation

29 4.18309 6 1 10

#!ferment
31 #?(s:1→1)

#Real fermentation
33 4.48096 7 1 15

#!ferment
35 #?(s:1→1)

#Real fermentation
37 5.37614 8 1 18

#!ferment
39 #?(s:2→1)

#Real fermentation
41 5.5048 9 1 18

#!ferment
43 #?(s:2→2)

#Fake fermentation
45 5.88346 9 1 20

#!ferment
47 #?(s:2→1)

#Real fermentation
49 6.05959 10 1 22

#!ferment
51 #?(s:2→1)

#Real fermentation
53 7.19132 11 1 25

#!die
55 #?(s:1→1)

7.19132 11 0 25
57 #Deadlock

With this model and scheduler, the average lifespan (i.e. time before triggering the “die”
event) is 10.89. We can now add a system scheduler to the model. The following scheduler
implements a strategy where the production of alcohol is rarified as the amount of alcohol
increase.

1 class StrategicProduction:public SystemReferee{
public:

3 virtual int choose(Cell ∗node, int n);
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StrategicProduction(int seed):SystemReferee(seed){};
5 };

[...]
7 int StrategicProduction::choose(Cell ∗node, int n){

int choosed = Referee::choose((int)node→alcohol+1);
9 if (choosed>node→alcohol){

choosed=1;
11 }else{

choosed=2;
13 }

return choosed;
15 }

With this non uniform system scheduler, the average lifespan is 20.12. The complete source
code of this example is available in the appendix in sec. 8.

The scheduler mechanism and non determinism can be used to model arbitrary complex
computations outside of the model. However, as the previous example illustrated, schedulers
are eventually implemented in C++. This implies that they are inherently finite state (with
bounded memory). Hence, they can always be specified as a BioRica node and thus the
scheduler mechanism does not add any expressivity to the language. Thus, the distinction
between what should be specified in the model and what should be specified in schedulers
is based on the purpose of the model. System schedulers can be used to force the behavior
of a model to mimic the observed behavior of a biological process when all the biological
mechanisms underlying the process are not known. In order to obtain a gross model prototype
of a biological process, the scheduler mechanism can be used to build a model with partial
biological knowledge: known biological mechanisms are specified in the model, while imposed
mechanisms are specified in the schedulers.

5.6 Language extensions

Escaped code The definition of BioRica nodes (see chapter 3) restricts atoms in the terms
of formulas to be either integer constants or variables. This restriction permits the unfolding
of a BioRica system in terms of a finite transition system.

On the theoretical level, any computation over variables with finite domains (e.g. int
or float) can be represented as a finite state machine. It is thus possible to represent the
numerical algorithm to compute a mathematical function (e.g. sin or cos) in a finite state
machine (and hence in a BioRica node). However, such a representation will dramatically
increase the number of states of the final transition system.

In order to ease the description of models relying on mathematical functions, the compiler is
parametrized and can generate code using either integer or floating point values for the state
variables. Furthermore, we implemented a back quote mechanism that makes it possible for
BioRica nodes to contain expressions that should not be interpreted as BioRica constructions.
These expressions are eventually inserted verbatim in the generated code. This mechanism
permits BioRica nodes to contain calls to user provided C++ functions. These external
functions can be evaluated in guards, used in assignments, as weight labels, and as stochastic
delays.
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Hybrid systems and external computations Physical and biological systems may be
modeled as evolving continuously over time, thus leading to continuous systems, most of
the time modeled by differential equations. Events may happen and change discretely the
dynamics of the continuous system. A model containing both continuous dynamics and
discrete transitions is called a hybrid system [ACH+95].

A typical example is the bouncing ball. The motion of a bouncing ball is characterized by
two variables: height and velocity direction. The ball moves continuously between bounces,
whereas discrete changes happen at bounce times and invert the direction of the velocity. The
motion of the ball is modeled by equations relating height, velocity direction and acceleration
caused by the gravitational force. The bounce of the ball is modeled by a discrete event, the
assignment of which uses the elasticity coefficient to compute the new value of the velocity
vector. This discrete event is triggered whenever the height of the ball is low enough to be
considered as hitting the ground.

By definition, a BioRica model is inherently discrete and thus can not model the dynamic
of the ball between bounces. For simulation purposes, we can use the non determinism and
flow connection constructions to simulate a hybrid model. The (discrete) BioRica node is
reduced to the discrete transitions of the hybrid bouncing ball model.

1 #define g 9.81
#define e 0.9

3 node BouncingBall
state

5 v :[0,1]
flow

7 h :[0,100]: i
event

9 bounce
transitions

11 h≤ 0.1 ⊢bounce →v:=v∗−e
init

13 v=1
law

15 bounce: Diff(h’=v,v’=−g,v)
edon

Note that in this model, the current height of the ball is completely non specified, and con-
sidered as evolving non deterministically. When this model is simulated, the height of the
ball is transmitted to the node using an environment scheduler.

In fact, an external simulator (or CAS in this case) is responsible for transmitting the correct
value of the height variable by integrating the differential equations height′ = v, v′ = g. This
external simulator is called at each step of the system when evaluating the delay before the
next bounce. This delay is computed by integrating the differential equations up to the point
where the h becomes less than 0.1. In other words, given initial conditions specified by the
value of the velocity, we can associate a delay corresponding to the date at which the height
becomes less than 0.1 with the bounce event. After this delay expires, the bounce event is
fired, and the new value for the velocity parameter is sent to the external solver via the call
to the Diff law.

Note that the BioRica node BouncingBall is perfectly valid and that it can be simulated
without integrating the differential equation. In this case, the value associated with the height
variable evolves randomly, and the delays between bounces are arbitrary values.

5.7 Discussion and concluding remarks

In this chapter, we have shown how a system specified in the BioRica language can be compiled
into a discrete event simulator.
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The advantages of using the BioRica language are similar to other domain specific languages
[VDV00]. In particular, having a high level language for model description results in faster
model prototyping. Indeed, there is no need to implement the simulation algorithm for each
new model or after each iteration of the modeling process. This has to be contrasted with using
non specialized computer algebra systems (e.g. Mathematica, Matlab) for model simulation.

Usually, increasing the abstraction of a formalism implies a decrease in performance. How-
ever, since with BioRica the model is not interpreted but compiled into C++ code, the whole
abstraction layer represented by the BioRica constructions is removed. This has to be con-
trasted with the approach based on interpreted languages used for example by Copasi or
E-Cell [TIS+03, THT+99, Men93, HSG+06].

Having a high level language and a generator for executable simulators, the whole life cycle
of model development is accelerated. To this end, we clearly separate in BioRica what is
specific to the simulation (coming from BioRica semantics) and what is specific to the model.
The parts specific to the simulation are implemented in our simulation framework, while the
parts specific to the model are generated automatically.

Since we generate human readable C++ code, generated models can be manually modified
to account for constructions not present in the core BioRica language. For example, we have
shown here that by using a simple back quote mechanism, existing mathematical functions
can be used in a discrete BioRica model. Furthermore, we have shown in this chapter that
the flexibility of non determinism makes it possible to represent a hybrid system in BioRica.
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Chapter 6

Representation of continuous
systems by discretization

This chapter explores approximations of differential equations (and more generally of systems
whose state space is continuous) where time discretization is replaced by a quantization of the
state variables. We will first explore classical quantization techniques used for the simulation
of differential equations by means of discrete event systems. We will see that the stochastic
labeling of the BioRica node associated with a continuous system can be further used to
describe continuous systems with random perturbations. We then see an alternative approach,
where the continuous part of a system is simulated separately by using a numerical integrator.
Finally, we describe an approach based on abstraction, and show how we can represent an
arbitrary trajectory of a continuous as a simple stochastic system, that can later be composed
with existing BioRica nodes.

We then introduce Qualitative Transition Systems (QTS) and define their probabilistic
semantics. A novel abstraction operation is defined in section 3 with the goal of building
QTSs from simulation results. We then show in section 4 that when constructing a QTS from
an ODE, the QTS construction can be made independent of the numerical integration scheme.
In section 5, we show that trajectory comparison using QTS can be made more resistant to
noise by detecting points of interest (extremums and inflection) through the construction of
a piecewise linear approximation (PLA). In section 6, we validate our approach on models
from literature.

6.1 Quantization techniques

We show here how ordinary differential equation systems can be described in BioRica nodes
and can have randomized perturbation or random parameter switches added to them. Instead
of trying to determine the value that the system state can take at any point in time (as
in numerical integration), we rather try to determine at what time some continuous state
variable will deviate from its current value by more than a threshold value ∆. Hence, we
wish to compute the smallest time step h, such that x(tk + h) = x(tk) ±∆. This approach
allows us to consider that an ODE system is potentially an hybrid system, that is, a system
whose internal state flows continuously while having discrete jumps. The discrete jump is
modeled by constrained events while the internal state is kept hidden in a timing function,
which outputs the time delay before a constrained event will happen.
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6.1.1 Discretization of numerical integration

As we stated earlier, one of the main goal of the BioRica Formalism was to allow easy in-
corporation of continuous dynamics into discrete models. Such a translation relies on a
discretization of the continuous system, following the methods to solve and simulate these
systems using numerical algorithms.

Numerical integration overview

An ODE system can be seen as the system

d[x1]

dt
= f1(x1, x2, . . . , xn)

d[x2]

dt
= f2(x1, x2, . . . , xn)

. . .
d[xn]

dt
= fn(x1, x2, . . . , xn)

where xi are state variables while t is called the control variable and usually represents the
time. Each fi is a R

n → R function, whose values are fully determined by the n xi variables.
In the most simpler scheme, the numerical solving of such a system can be seen as a

function s(−→x , t, h), from R
n × R → R

n, where −→x denotes the values of the xi at time t in
a given simulation and h is a real variable denoting the stepsize of the algorithm. Then,

s(−→x , t, h) =
−→
x′ is the real vector denoting the value of the n variables at time t + h. With

such an approach, a complete simulation of an ODE system from time t0 to tn can be seen
as the generation of the real vector list

[(t0,
−→x0);

(t1,
−→x1) = (t0 + h, s(−→x0, t0, h));

. . .

(tn,−−→xn/h) = (t(n− h) + h, s(−−−−→xn/h−1, t(n− h), h))]

Here, the smaller the step size, the more accurate the solution is, while being more computa-
tionally costly, thus this simple method allows some control over the computation time.

However, such a simple method is inappropriate when, for a given fixed time step h, the
solution is roughly affine on any interval of length greater than h, and less straight on some
intervals of length lesser than h. To overcome such limitations, adaptive methods are inten-
sively used when solving ODEs. These methods implements some estimation of the error
made over an interval, thus providing sufficient information to extend (resp. reduce) the step
size when the error is less (resp. greater) than a fixed threshold. An adaptive stepsize function

is a function sa(
−→x , t, ǫ) = (

−→
x′ , h) from Rn × R× R to R

n × R, where the new parameter ǫ is
the error threshold and where h is the computed time step. When simulating an ODE, the
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resulting data points can be seen as the list

[(t0,
−→x0);

(t1,
−→x1) = (t0 + sa(

−→x0, t0, ǫ)h, sa(
−→x0, t0, ǫ)−→x );

; . . . ;

(tn,−→xk) = (tk + sa(
−−→xk−1, tk−1, ǫ)h

, sa(
−−→xk−1, tk−1ǫ)−−−→xk−1

where k is the optimal number of steps given the accuracy threshold ǫ.

Discrete event representation of a real-vector valued function

From now on, we’ll see the discretization problem as a translation problem. In other words,
given a list of real-valued tuple

[(t0,
−→x0, (tn,−→xn]

where the ti are time valuation and the −→xi are components of R
k, we need to compute a set of

discrete event E such that the discrete simulation of a model with events E will show similar
dynamics.

The first step of the translation is to convert the real-valued state variables −→xi into integer
valued ones by classical fixed point conversion by truncating float variables to integer ones,
building the list

[(t0,
−→y0 = ⌊−→x0 ∗H⌋), . . . , (tn,−→yn = ⌊−→xn ∗H⌋)]

where H is the desired scale factor and each yi is an integer vector.
As we can see, between ti and ti+1, we need to generate n = ⌊xi+1 ∗H⌋−⌊xi−1 ∗H⌋ events,

uniformly spaced on a real interval of length h = ti+1 − ti. For this example, let’s assume
that n is positive. Thus, the system will generate the timed trace (ti + h/n, incx); (ti + h/n ∗
2, incx); . . . ; (ti + h/n ∗ n, incx). This approach can be generalized to case when n is negative
by also considering the macro transitions true| − decx− > x := x− 1.

For this, we interpolate the difference between a state and it’s successor to build the list

[(td0,
−→z0), . . . , (tdm,−→zm)]

such that

∀i ∈ {0, . . . ,m} , ‖−−→zi+1 −−→zi ‖∞ = 1

∀i ∈ {0, . . . , n} ,∃j ∈ {0, . . . ,m} , (ti,
−→yi ) = (tj ,

−→zj )

This list can be built by adapting the Bresenham line drawing algorithm in a vectorial
space. Let n be the maximum variation on a time interval of length h, and j the index of the
corresponding variable. By considering a discrete line of length n, we can place each events
for the jth variable on each step of the line. For the other variables, who by construction
needs less events, we distribute their events uniformly on this line.

Then, we translate this integer-values evolution into discrete timed event, by considering
timed incrementation or decrementation macro transitions for each variable, such as

true| − incx− > x := x + 1;
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, with a delay function defined by

d(v,−→x , [(tdk,
−→zk), . . . , (tdm,−→zm)]) =

{
tdk if (−→zk −−→x )v = 1

∞
who try to schedule non deterministically an increment for each variable at the same time.

Still, by considering the ODE d[x]
dt = 10 ∗ x, we can see that the algebraic solution x(t) =

e10∗t + K (where K is a constant depending on the initial conditions) is a rapidly grow-
ing function. Therefore, by considering a scale factor of 103, between t = 1 and t = 2,
we have to generate approx. 1012 events, which is clearly inefficient. In fact, we can
consider a set of accelerated k-iteration of our base incrementation event, as for example

1
inc x 10−−−−−→ x := x + 10; . . . ;1

inc x 10k

−−−−−−→ x := x + 10k thus allowing the incrementation to
adapt large scale functions. Semantically, the largest possible value for the model constant k
could be computed by considerations on the discrete behavior of the model, so as to preserve
reachability properties when accelerating transitions built from a continuous function. This
question is actually one research point when considering general accelerations schemes for this
class of process.

A node can only try to schedule an event, without any guarantee nor feedback on the
effective occurrence of the event. In fact between the scheduling time and the date at which
the event should fire, this delay function can be called any number of time or it can have a
previously scheduled event cancelled, due to the occurrence of other events in the system.

As such, we need to associate to our delay function a control function to determine if the
event did fire or not, if it is still scheduled or cancelled, and accordingly advance in the next
discrete value list by popping the front value. Furthermore, this control function must take
in account external modifications to the node variables, who can occur in any other event.
Our control function is defined by the following algorithm

Require: t ∈ R; r ∈ N; −→x ∈ N
n;
−→
dx ∈ N

n; lr ∈ N

Require: L = [(tdk,
−→zk), . . . , (tdm,−→zm)] ∈ (R× R

n)m

if ‖−→x −−→zk inf‖∞=0 && t = tk then
{We’ve attained our goal, we can advance one step}
pop top val

else if lr ≤ r then
{Some events were fired since last call}
if (tdk − t,−→zk −−→x ) is a successor of

−→
dx then

{At least one variable was updated by our scheduled events}
dx← −→tk −−→x

else
{External modification happened}
{Recompute discrete value list}−−−−−−−−−→
nearestState← fixedStepper(tdk, t,

−→zk)−−−−−−−−−−−→
perturbedState← −−−−−−−−−→nearestState−−→zk −−→x
L← adaptativeStepper(t,

−−−−−−−−−−−→
perturbedState)

end if
end if
lr ← r
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δ ← tk − t
dx← −→tk −−→x
return front(L)

where we use the R× N
n × N

n predicate defined by

succ(∆1,
−→x ,
−→
x′ )⇔






−→x =
−→
x′

or ∆1 = 0

and ∀i ∈ {1, ..., n},
−→x i = 0 or −→xi =

−→
x′

i

who accounts for the non deterministic evolution of multiple variables at the same date. By

considering
−→
x′ = 〈10, 10, 20〉 and ∆1 = 0, all the following vector are in the same equivalence

class

〈0, 10, 20〉 ; 〈10, 0, 20〉 ; 〈10, 10, 0〉 ;
〈0, 0, 20〉 ; 〈0, 10, 0〉 ; 〈10, 0, 0〉 ; . . .

Note that between two computed values of the adaptive step integrator, we schedule a sequence
of events interpolating the evolution of the function between these two states. As such, if
an external perturbation arose at time t∆ between these two “ckeckpoints”, the algorithm
advances the continuous solution up to t∆ to compute the vector nearestState, apply the
perturbation to compute the vector perturbedState and compute the next checkpoint by
taking in account the perturbation.

Furthermore, when simulating multiple ODE evolving in parallel, this algorithm computes
exactly the numerical solution that could have been computed sequentially, but requires
slightly more computation time when compared with traditional simulation techniques (a
constant factor). Moreover, when simulating an hybrid system where discrete transition oc-
curs and interrupt the continuous solver without modifying the continuous variables, this
algorithm still computes exactly the same solution as the corresponding purely continuous
system.

6.2 Incorporation of a numerical integrator

daughters=0
dead=false

daughters=1
dead=false

daughters=2
dead=false ...

daughters=0
dead=true

daughters=1
dead=true

daughters=2
dead=true

divide divide divide

diediedie

Figure 6.1: A cell division cycle modeled as a transition system built with two variables
“daughters” and “dead” respectively denoting the number of daughters and the state of the
cell (e.g. dead or alive). It is defined in BioRica by a node containing those variables and the

constrained events: dead = false
divide−−−−→ daughters := daughters+1; true

die−−→ dead := true.

In the cell cycle example described in figure 6.1, the dynamics of the cycle can be described
by variation of protein concentrations, described by using differential equations. Constrained
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events triggered by crossing protein concentration threshold can describe what precisely hap-
pens at division time (mass is divided, certain proteins are transmitted to the bud, etc.).
The visible part of this system, defined by choice of discrete variables in the topmost BioRica
node, can be the number of division, the current phase of the cell division cycle, etc.

At a higher level, consider now a cell population system, where each cell is represented by
a node having its dynamics described by an ODE system. Since ODE systems are inherently
deterministic, once initial conditions and parameters are set, every cell will behave exactly like
its neighbor, thus leading to an artificially synchronized population[MK01]. In BioRica, since
ODE systems are translated in timing functions, we can easily add random perturbations to
timing functions by adding to the numerical integration result an exponentially distributed
random variable. Thus, each node can be slightly shifted in time while preserving the quali-
tative properties of its ODE system. Such a cell population can be described from a cell node
in BioRica by using composition.

BioRica systems are hierarchical and modular descriptions: each node can use the most
suitable modeling approach and may interact with nodes that use different modeling ap-
proaches. This allows for great flexibility in describing complex models. This unified view
also allows a simple and efficient simulation scheme.

Multiscale integration. The BioRica framework can simulate systems having nodes
whose underlying ODE systems use different time scales. This is done by assigning to each
node a private numerical integrator, which can use a local step size and thus can be adapted
to the node local configuration and ODE stiffness. The multi scale problem arise mostly when
composing ODE nodes whose time scale range over different order of magnitudes.
Furthermore, the BioRica simulator can speed up simulation involving similar ODEs by using
a memoization scheme. This is done by reusing previously stored ODE integrations when
detecting that two ODE systems have reached the same trajectory or that an ODE system
has reached an oscillatory state. This approach is mathematically sound since solutions to
ODE systems enjoy a memory-less property. Basically, for a given set of parameters, the
solution of an ODE system is completely determined by its initial conditions. This implies,
among other properties, that once an ODE node reaches a state that was previously seen
(either in the same node or in another node having the same ODE and parameters), then it
will behave exactly in the same way. More formally, consider an ODE system of dimension n
and its solution, the trajectory function f from R (time) to R

n (variables values). Let t and
t′ be two points in time, with t < t′. We can prove that whenever f takes the same value in
two separate point of time, then it will take the same value for every corresponding successive
point. That is, if there exists two real numbers t and t′ such that we have f(t) = f(t′), then
for any real number ǫ, we have f(t + ǫ) = f(t′ + ǫ).

6.3 Multi scale parallel oscillator performance study

The benchmark shows the efficiency of the BioRica solver relative to a classical pure ODE
solver. BioRica results were compared to the results obtained with a C ODE solver built with
the Gnu Scientific Library[Gal06].
The system used is a multi scale uncoupled oscillator built with multiple parallel composition
of oscillatory “predator-prey” Lotka-Volterra systems (x′

i, y
′
i). The amount of preys is classi-

cally given by the ODE x′
i = p · xi − (p · xi · yi) while the amout of predators is described

by y′i = (p · yi · xi)− (2p · yi). Each system (xi, yi) represents a “sub population” and has an

138



6.3. Multi scale parallel oscillator performance study

unique p parameter, ranging from 3.10−05 to 280, leading to a specific period that shorten
as p increase. Since these sub population are not coupled, independant simulation of each
sub population leads to the same results than the simulation of the whole system. The re-
sults shown in figure 6.2 shows that the overhead needed by the BioRica solver is lessened
when simulating parallel systems. This advantage is further leveraged when exploiting the
memoisation.

Figure 6.2: Comparison of computationnal time needed to simulate a multi scale uncoupled
system between GSL and BioRica. In BioRica, simulation were performed with and without
memoisation. For example, simulation from 0 to 100 t.u. of the coupled system with 124
ODEs (62 sub-populations) took 8.6s with the GSL while the equivalent system of 62 BioRica
nodes took 0.7s without memoisation and 0.02s with memoisation.
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6.4 Stochastic transition system representation of continuous
trajectories

Quantitative models in Systems Biology depend on a large number of free parameters, whose
values completely determine behavior of models. These parameters are often estimated by
fitting the system to observed experimental measurements and data. The response of a model
to parameter variation defines qualitative changes of the system’s behavior. The influence of
a given parameter can be estimated by varying it in a certain range. Some of these ranges
produce similar system dynamics, making it possible to define general trends for trajecto-
ries of the system (e.g. oscillating behavior) in such parameter ranges. Such trends can be
seen as a qualitative description of the system’s dynamics within a parameter range. In this
work, we define an automata-based formalism to formally describe the qualitative behavior of
systems’ dynamics. Qualitative behaviors are represented by finite transition systems whose
states contain predicate valuation and whose transitions are labeled by probabilistic delays.
Biochemical system’ dynamics are automatically abstracted in terms of these qualitative tran-
sition systems by a random sampling of trajectories. Furthermore, we use graph theoretic
tools to compare the resulting qualitative behaviors and to estimate those parameter ranges
that yield similar behaviors. We validate this approach on published biochemical models and
show that it enables rapid exploration of models’ behavior, that is estimation of parameter
ranges with a given behavior of interest and identification of some bifurcation points. Dy-
namic models in System Biology rely on kinetic parameters to represent the range of possible
behaviors when enzymatic information is incomplete. Analysis of these parametrized models
aims at the identification of parameter ranges yielding similar qualitative behaviors, or of
parameter values yielding a given behavior of interest. Qualitative transient behavior can be
successfully analyzed by model checking algorithms applied to models admitting a computable
path semantics. However, in Systems Biology state explosion and negative decidability results
limit the scope of model checking to a certain subset of models. Moreover, some published
and curated Systems Biology models lack explicit semantics. Little can be assumed for these
“black box” models, except the possibility of simulation. Mining these simulation results to
identify parameter regions yielding similar behaviors is hindered by the size of the parameter
space to explore, numerical artifacts and the lack of formal definition of what it means for
simulation results to be similar. In this section, we propose the new formalism of qualitative
transition systems for abstracting simulation results in terms of discrete objects that admit
efficient similarity measures. Indeed, simulation results for ODEs are obtained using numeri-
cal integration schemes operating on floating point numbers. The resulting approximation is
problematic for the identification of precise transient properties since transient properties of
interest are mathematically by equality between real numbers (e.g. f ′(x) = 0 is necessary for
a local maximum) which is inconsistent in floating point arithmetic[Che94]. Consequently,
even analysis of basic properties ( like the detection of the first time a deterministic system is
in a previously visited state) fail in practice due to this inconsistency. Furthermore, different
integration schemes (n-th order, implicit/explicit) yield different and incomparable numerical
approximations of the same trajectory. Although using normalized sampling and fixed preci-
sion decimal numbers seem to solve this problem, the multiplicity of time scales in ODEs show
that this solution is not completely satisfying. For dynamic models admitting a computable
path semantics, the impact of numerical artifacts is absent. Indeed, it is possible to compute
a finite description of the set of trajectories of the model. Consequently, for these models,
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model checking algorithms can decide if a logical representation of a behavior holds, and if
not, can provide a counter example. Recently, a probabilistic model checking approach was
successfully used to solve the inverse problem: given a logical representation of a transient
behavior, return a parameter space in which any trajectory satisfies the specified behavior
with sufficiently high probability[RBFS08]. For dynamic models suitable for model checking,
the intuitive notion of “similar behavior” is thus fully formalized and generally decidable.

6.5 Qualitative Transition Systems

Given a set Σ, we denote by Σ∗ the set of all (finite) words s0 · · · sk over Σ. A (finite) timed
word over Σ is any word W = (t0, s0) · · · (tk, sk) ∈ (R≥0×Σ)∗ such that ti < ti+1 for i ∈ [0, k).
The nonnegative real numbers ti are interpreted as the absolute observation times and the si

are the observed values. We will focus in the paper on the particular case of Σ = R
n, where

observed values are vectors of reals. In this case, timed words are called (multivariate) time
series, and are denoted S = (t0, ~x0) · · · (tk, ~xk).

We define a Qualitative Transition System (QTS) in the following way.

Definition 6.1 (A). qualitative transition system is a tuple A = 〈Q, E, µ, σ, w〉 where Q is a
finite set of set of qualitative states, E ⊆ Q×Q is a finite set of transitions, µ, σ : E → R are
mean and standard deviation labelings, and w : E → N is a weight labeling.

For any transition e ∈ E, µ(e) and σ(e) are respectively interpreted as being the mean
and the standard deviation of a normal distribution that is followed by a random variable
called sojourn time. The weight labeling w induces probabilities for transitions. Formally,
the transition probability labeling p : E → [0, 1] induced by w is defined by

p(q, q′) =
w(q, q′)∑

(q,q′′)∈E w(q, q′′)
.

A QTS is thus a transition system where each transition is labeled with the amount of
time the system is idle before moving to another state. The delay between two state changes
follows a parametrized normal distribution. This has to be contrasted with continuous Markov
chains, where the sojourn time in a state must be exponentially distributed (see e.g. [KNP02]
for a complete definition).

Suppose that a QTS is in the state q, and that there exists an outgoing transition e = (q, q′).
The probability of moving from state q to state q′ is p(e), the transition probability of e.
Suppose that the transition e is selected in favor of other outgoing transitions; the system will
stay in the state q for a delay that is normally distributed with mean µ(e) and with standard
deviation σ(e). Let X be such a normally distributed random variable that denotes the sojourn
time in the state q, and let FX be its cumulative distribution function. The probability to
move from q to q′ between t1 and t2 time units is thus given by FX(t2) − FX(t1). Contrary
to the standard semantics of continuous time Markov chains, our semantics does not involve
a race condition. That is, in a given state, the probability for the successor state is not
conditioned by the delays but solely by the transition weights, similarly to a discrete time
Markov Chain.
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6.5.1 Timed semantics

Let A = 〈Q, E, µ, σ, w〉 be a QTS. An infinite sequence q0
δ0−→ q1

δ1−→ q2
δ2−→ · · · with qi ∈ Q,

(qi, qi+1) ∈ E and δi ∈ R≥0 is called a path in A. Let PathA denote the set of all paths in A,
and PathA(q) the set of paths in A starting at state q. The superscript A is omitted when
understood. For a path π, let π[i] = qi denote the ith state of π and δ(π, i) = δi the time
spent in π[i].

A probability measure Pr on sets of paths in a QTS can be defined using the standard cylin-
der set construction [BKH99] as follows. Let q0, . . . , qk ∈ S with (qi, qi+1) ∈ E and I0, . . . , Ik−1

nonempty intervals in R≥0. Then C(q0, I0, . . . , Ik−1, qk) denotes the cylinder set consisting
of all paths π of Path(q0) such that π[i] = qi and δ(π, i) ∈ Ii for all i < k. Let F (Path) be
the smallest σ-algebra on Path which contains all cylinder sets C(q, I0, . . . , Ik−1, qk) where
q0, . . . , qk range over all state sequences with q = q0, (qi, qi+1) ∈ E, and I0, . . . , Ik−1 range
over all sequences of non-empty intervals in R. The probability measure Pr on F (Path) is
the unique measure defined by induction on k with Pr(C(q0)) = 1 and for k ≥ 0:

Pr(C(q0, I0, ..., qk, I
′, q′)) = Pr(C(q0, I0, ..., qk)) ∗ Lp(qk, q

′) ∗
1

2

(
Erf

[
b− Lµ(qk, q

′)√
2Lσ(qk, q′)

]
− Erf

[
a− Lµ(qk, q

′)√
2Lσ(qk, q′)

])

where Erf is the Gauss error function, a is inf(I ′), b is sup(I ′). With this definition, a path
corresponds to a sequence of bivariate random variables satisfying the properties of Markov
renewal sequences.

Contrary to the standard semantics of continuous time Markov chains (see e.g. [KNP02]
for a complete definition), our semantics does not involve a race condition. That is, in a given
state, the probability for the successor state is fully conditioned by the transition weights and
not by the delays.

6.6 Abstraction of a time series in terms of Qualitative Tran-
sition Systems

6.6.1 Abstraction of a time series in terms of timed words

In order to represent a real-valued trajectory as an abstract-valued trajectory, each concrete
observation (t, ~x) of a time series S is transformed into an abstract observation (t, a) where
the observation time t is unchanged and a is an abstract value in a finite domain A called
the abstract domain. The rationale behind abstraction is that two concrete observations
that are transformed into the same abstract observation are assumed indistinguishable w.r.t.
qualitative properties.

Formally, an abstraction function is any function α : R
n → A where A is a finite domain.

For any time series S = (t0, ~x0) · · · (tk, ~xk) in (R≥0 × R
n)∗, the abstraction of S is the timed

word α(S) = (t0, α( ~x0)) · · · (tk, α( ~xk)) in (R≥0 × A)∗. Note that abstraction functions may
be combined by the cartesian product. In practice, it is often desirable to use multiple-arity
abstraction functions that are defined on a fixed-width“window”of observations, i.e, functions
(Rn)d+1 → A where d ∈ N is the window width.

For such a function α, the abstraction of S would be defined as the timed word α(S) =
(td, α( ~x0, . . . , ~xd)) · · · (tk, α( ~xk−d, . . . , ~xk)). Observe that α(S) = α(S′) where S′ = (td, ( ~x0, . . . , ~xd)) · · · (tk, ( ~xk−
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x ≤ y, x ≤ 0, y ≥ 0
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x ≤ y, x ≥ 0, y ≥ 0

x ≤ y, x ≤ 0, y ≥ 0

x ≥ y, x ≥ 0, y ≥ 0

x ≥ y, x ≥ 0, y ≤ 0

x ≥ y, x ≥ 0, y ≤ 0

x ≥ y, x ≤ 0, y ≤ 0

Figure 6.3: Decomposition of a limit cycle of a two variables (x, y) system. By considering the
sign and rank of the variables, we map an abstract value (here denoted by a formula) to each
point of the trajectory. Boxes in the figure encompass successive points that are mapped to
the same abstract value. Successive points of the trajectory are collapsed whenever they have
the same abstract value, that is whenever they have the same sign and rank. This trajectory
can thus be abstracted as a seven state QTS.

is a time series over R
nd. For simplicity, and without loss of generality, we only formalize our

approach for unary abstraction functions (with zero width).
For example, the sign function can abstract a time series into a timed word over the domain

domain {−, 0,+}. The rank function can abstract a timed word over the domain {1, ..., n!}
by mapping to each component of a vector its index in the corresponding sorted vector. For
example, sort(11,−2, 1, 2) = (−2, 1, 2, 11) therefore rank(11,−2, 1, 2) = (4, 1, 2, 3). In the
same way, the sign of the first (resp. second) derivative can distinguish between intervals
where the time series is increasing (resp. rapidly increasing) or decreasing (resp. rapidly
decreasing). Abstracting the value of first derivative (resp. second derivative) requires two
points (resp. three points).

Since the abstract domain is finite, it is often the case that the abstract time series α(S) has
successive observations that are equal. These repeated observations are removed by collapsing
them. Formally, for any timed word W = (t0, a0) · · · (tk, ak), let collapse(W ) be the timed
word (ti0 , ai0) · · · (tih , aih) where i0 < · · · < ih are such that i0 = 0 and aij = aij+1 = · · · =
aij+1−1 6= aij+1 for every 0 ≤ j < h. Observe that collapsing is idempotent: for any timed
word W , it holds that collapse(W ) = collapse(collapse(W )). The reduced abstraction of any
time series S is then defined as the timed word collapse(α(S)).

6.6.2 Abstraction of a timed word in terms of Qualitative Transition Sys-
tem

The abstraction of a time series in terms of timed words abstracts the value component of the
time series. In order to adequately compare two timed words, we also need to abstract the time
of observations. Consider a timed word W = (t0, a0) · · · (tk, ak) over an abstract domain A. To
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qualitatively abstract this timed word, it is represented as a transition system by considering
that for any i ∈ [0, k), the pair ((ti, ai), (ti+1, ai+1)) of successive abstract observations of W
is induced by a timed transition ai → ai+1 between two states of a transition system with a
delay of ti+1 − ti. We can then consider the set of all transitions between two given states.
From such a set of transitions with identical source and target, we suppose that the delays are
approximately normal, and thus estimate the mean and standard deviation of the supposed
underlying normal distribution. In this way, the set of concrete transitions can be abstracted
by a single stochastic transition in a qualitative transition system. Formally, a timed word is
abstracted in terms of QTS with the following definition. For any finite subset X ⊆ R, we
denote by E[X] the mean of X and by V[X] its variance.

Definition 6.2 (T). he QTS abstraction of a timed word W = (t0, a0) · · · (tk, ak) over A is
the qualitative transition system A = 〈Q, E, µ, σ, w〉 with

Q = {ai | 0 ≤ i ≤ k} µ(q, q′) = E[∆(q, q′)]

E = {(ai, ai+1) | 0 ≤ i < k ∧ ai 6= ai+1} σ(q, q′) =
√

V[∆(q, q′)]
w(q, q′) = |Γ(q, q′)|

where for any (q, q′) ∈ E, Γ(q, q′) is the set of pairs (i, j) with 0 ≤ i < j ≤ k such that
ai = q, aj = q′, and ai−1 6= ai = ai+1 = · · · = aj−1, and ∆(q, q′) is the multiset defined by
∆(q, q′) = {tj − ti | (i, j) ∈ Γ(q, q′)}.

Note that in the definition, the set Γ(q, q′) contains pairs of indices (i, j) such that all
observations between i and j are removed by collapsing. Therefore, any two timed words W
and W ′ over A satisfying collapse(W ) = collapse(W ′) have the same QTS abstraction.

6.7 Abstraction of the Transient Behavior of Deterministic
Parametrized Models

Deterministic parametrized models, such as ODE systems, can exhibit different qualitative
behaviors depending on the value of the parameters. When these systems admit a simulation
algorithm (e.g. numerical integration), they generate time series. We show in this section
that under assumptions concerning the simulation algorithms, the properties of interest of a
given system are preserved by the abstraction in terms of qualitative transition systems.

Sampling independence

In the context of time series obtained by sampling, the definition of QTS obviously depends
on the precision of the sampling. However, we show that for convex abstraction functions if
the sampling is “precise enough” then the QTS obtained from any oversampling has the same
transitions (but with more precise delay distributions). We first introduce additional nota-
tions. For any two vectors ~x, ~y ∈ R

n, we denote by ~x ~y the open line segment between ~x and
~y, formally ~x ~y = {λ~x + (1− λ) ~y | λ ∈ R, 0 < λ < 1}. A time series S = (t0, ~x0) · · · (tk, ~xk) is
a sampling of a (partial) function f : R≥0 → R

n if ~xi = f(ti) for every i ∈ [0, k]. Given a time
series S = (t0, ~x0) · · · (tk, ~xk), we denote by ΛS : [t0, tk]→ R

n its linear interpolation, defined
by: ΛS(ti) = ~xi for each 0 ≤ i ≤ k, and ΛS(t) = t−ti

ti+1−ti
~xi+1 + ti+1−t

ti+1−ti
~xi for each 0 ≤ i < k

and ti < t < ti+1. Given an abstraction function α : R
n → A, we say that α is convex if

α−1(a) is a convex subset of R
n for every a ∈ A.
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We consider for the remainder of this section a convex abstraction function α : R
n → A.

When the sampling is precise enough, the linear interpolation ΛS is often used in practice,
in place of the “real trajectory”. We formalize this notion of precision with respect to the
abstraction function. A time series S = (t0, ~x0) · · · (tk, ~xk) is called α-adequate if α(~x) ∈
{α(~xi), α( ~xi+1)} for every i ∈ [0, k) and ~x ∈ ~xi ~xi+1. It is called α-loose otherwise. Intuitively,
when S is α-adequate, the abstraction function α along ~xi ~xi+1 is either constant, or is first
equal to α(~xi) on ~xi ~z and then equal to α( ~xi+1) on ~z ~xi+1, for some ~z ∈ ~xi ~xi+1. Indeed,
if α(~xi ~xi+1) ⊆ {a, b} with a = α(~xi) and b = α( ~xi+1) being distinct, then, by convexity of
α, the segment ~xi ~xi+1 is partitioned into the two convex sub-segments ~xi ~xi+1 ∩ α−1(a) and
~xi ~xi+1 ∩ α−1(b), and ~z is at the boundary between these two sub-segments. Therefore, an
α-adequate time series S captures all changes of α along its linear interpolation ΛS . However,
these changes are captured up to the precision ti+1− ti of the sampling, which leads us to the
following definition. The α-fitting of an α-adequate time series S = (t0, ~x0) · · · (tk, ~xk) is the
abstract timed word Ŝ = (t̂0, â0) · · · (t̂k, âk) defined by âi = α(~xi), t̂0 = t0, and

t̂i+1 =

{
ti+1 if α(~xi) = α( ~xi+1)

inf {t | t ≥ ti ∧ α(ΛS(t)) = α( ~xi+1)} otherwise.

Proposition 6.1. For any α-adequate time series S = (t0, ~x0) · · · (tk, ~xk), the respective
QTS abstractions 〈Q, E, µ, σ, w〉 and 〈Q̂, Ê, µ̂, σ̂, ŵ〉 of α(S) and Ŝ satisfy Q = Q̂, E = Ê,
w = ŵ. Moreover, letting ∆ = max

{
ti − t̂i | 0 ≤ i ≤ k

}
, |µ(e) − µ̂(e)| ≤ ∆ and σ2(e) ≤

σ̂2(e) + 4∆2 + 4∆σ̂(e)
√

ŵ(e) for every e ∈ E.

Proof. Observe that α(S) = (t0, a0) · · · (tk, ak) and Ŝ = (t̂0, â0) · · · (t̂k, âk) satisfy ai = âi =
α(~xi) for each i ∈ [0, k]. By Definition 6.2, it follows that Q = Q̂, E = Ê. Moreover, we also
get Γ(e) = Γ̂(e) for every e ∈ E, hence, w = ŵ. Notice that (ti − t̂i) ≥ 0 for all i ∈ [0, k]. We
derive that |(tj − ti) − (t̂j − t̂i)| = |(tj − t̂j) − (ti − t̂i)| ≤ ∆ for every 0 ≤ i < j ≤ k, which
entails that |µ(e)− µ̂(e)| ≤ ∆ and σ2(e) ≤ σ̂2(e) + 4∆2 + 4∆σ̂(e)

√
ŵ(e) for every e ∈ E.

Note that in the above proposition, we have ∆ ≤ max {ti+1 − ti | 0 ≤ i < n}. Hence, the
error on µ (w.r.t. to the α-fitted one) is bounded by the sampling period.

An oversampling of S is any sampling U = (u0, ~y0) · · · (ul, ~yl) of ΛS such that t0 · · · tk is a
subsequence of u0 · · ·ul. It follows from the definitions that any oversampling of an α-adequate
time series S is also α-adequate. Note that, informally, the α-fitting of an oversampling of
S is an “abstract oversampling” of the α-fitting of S. According to Proposition 6.1, the QTS
obtained by oversampling S is equal to the QTS obtained from S, except for the imprecision on
µ and σ. This shows that for qualitative analysis there is little to be gained by oversampling:
α-adequate time series are sufficient.

Periodic orbits detection

Oscillations are ubiquitous qualitative behaviors found in systems with a feedback loop. Al-
though bifurcation analysis provides numerical methods to establish the presence of periodic
orbits for ODEs, these methods cannot be applied to a general deterministic system such as
an ODE with events. However, we show in this section that a QTS can be used efficiently to
estimate the likelihood of a periodic orbit in a time series.

Under an adequate abstraction function, a QTS that abstracts the transient behavior of a
system with a periodic orbit has cycles in its transition relation. Consider a QTS obtained by
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applying the abstraction function α to an α-adequate time series S obtained by sampling a
continuous function f : t→ R

n. By definition, f admits an orbit if and only if there exists a
time point t and a period π such that f(t) = f(t + π). Furthermore, f admits a periodic and
non constant orbit if and only if there exists an intermediate time step t′ < t + π such that
f(t′) 6= f(t + π). Since S is adequately sampled for α, there exists at least three successive
different values in collapse(α(S)) and consequently the resulting QTS has at least a cycle of
length 1.

Since equality between the real numbers and their floating point approximation is not
coherent, detection of periodic orbits for a time series must rely on estimations. To find a
periodic orbit in a time series S it is sufficient to find a period π ∈ R≥0 such that there exist
two elements (ti, ~xi), (tj , ~xj) ∈ S such that (tj , ~xj) ≈ (ti+π, ~xi) for an adequate approximation
relation ≈. However, for ODE systems integrated with an adaptive time step algorithm this
scheme produces mainly false positives (successive integration steps in a quasi steady region
of an ODE) and false negatives (regions with high variability).

The existence of a periodic orbit of period π also implies that for any value k ∈ N, f(t) =
f(t + k ∗ π). Thus, if the system reaches a periodic orbit at point l, then the nearest points
(according to an euclidean distance on R

n) of l contain points from all possible periods.
Therefore, we estimate the likelihood of a periodic orbit by considering a point l = (tl, ~xl)

of S that we suppose being in the periodic orbit, and a set of sample points P from S
such that for any point p′ = (tp′ , ~xp′) in S − P , for any point p = (tp, ~xp) in P , we have
| xp′ − xl |>| xp − xl |. Less formally, P is a set containing the points that are the nearest
to l w.r.t. the euclidean distance. The likelihood L((tl, xl), π, P ) of π being the period of the
orbit of xl given a sample P of neighbors of xl is then defined by

L((tl, xl), π, P ) =

(
∑

δ∈∆

([δ]− δ)2

)−1

with ∆ = {(tp − tl) /π | tp ∈ P} and [δ] being the integer part of δ.
Finding the period π that maximizes L is difficult in practice, since this function admits

local maxima that are far from the global maximum. However, the sum of the mean of the
longest cycle containing the last observation in a QTS provides a good initial guess of this
period. (See the case study 6.9.2).

6.8 Accounting for noise by comparing critical points

Qualitative transition systems can capture the dynamics of a time series, even if the time series
contains numerical errors that are only local. In the case of time series admitting global noise,
abstraction functions that were adequate for a smooth time series may not be resistant to
noise and can generate a QTS that inadequately captures the dynamics of noise. For example,
abstracting with the sign of the first derivate can adequately detect oscillations[RBFS08] but
fails for time series even with little noise. Although moving average can smooth a time series
and seem to circumvent this problem, the size of the window must be fixed a priori and this
approach is thus neither general nor adaptive.

We propose here an adaptive approach to capture the most important points w.r.t. the
shape of a time series. The critical points of continuous function f : R → R are the set of
points where f ′(x) = 0. These are points where the function f either has a peak and changes
direction (local or global extremum) or presents a curvature change (inflection points). In
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both cases the shape of f changes around the point. We generalize this definition to time
series in the following way.

Definition 6.3 (T). he critical point of a time series S = (t0, ~x0) · · · (tk, ~xk) is the point
(tc, ~xc) ∈ S maximizing the function Λ(tc, ~xc) = |~xc − ~x0|+ (tc − t0) ∗ ( ~xk − ~x0)/(tk − t0).

The critical point of a time series is the point of maximal distance with the linear inter-
polation between the first and last points of the series. In a numerical context, this point is
uniquely defined.

A critical point splits the time series in two time series. Since a critical point is also defined
for these series, we can recursively approximate a time series by considering a piecewise
function which is linear between critical points.

Definition 6.4 (T). he piecewise linear approximation of order i (hereafter PLA) of a time
series is the piecewise linear function on the intervals I0, ..., Ik where any interval Ij has a
lower bound (resp. upper bound) corresponding to the location of the jth (resp. j +1) critical
point.

In order to compute the PLA of a time series, we define the piecewise linear interpolations
of a set of points as the union of the linear interpolation between two successive points. The
computation of the PLA of order i is then performed as follows.

PLA(S, i) returns a list of critical points of S = (t0, ~x0) · · · (tk, ~xk) for each dimension of S.

1. For each dimension d ∈ [0,dim(~x)],

(a) Initialize the critical points with the first and the last point of S projected on the
dimension d : Cd ← {(t0, πd(x0)), (tk, πd(xk))}.

(b) While | Cd |< i,

i. Compute the linear interpolation between each successive pair of Cd: Let
Λj(t) =

t−tj
tj+1−tj

~xj+1 +
tj+1−t
tj+1−tj

~xj ,where (tj , ~xj) and (tj+1, ~xj+1) are two suc-

cessive points in Cd

ii. Build the piecewise linear interpolation: let Λ(t) = Λj(t) for t ∈ [tj , tj+1],

iii. Let (tc, ~xc) = argmax {πd(xc)− Λ(tc) | (tc, ~xc) ∈ S},
iv. Insert (tc, πd(~xc)) in Cd s.t. Cd remains sorted w.r.t. the first component

2. Return {Cd | d ∈ [0,dim(~x)]}
The previous algorithm cannot append a point twice to the list of critical points. Indeed,

once a point is appended to the list it becomes a bound of the piecewise linear interpolation
that is used for determining the next critical point. Consequently, at this point the distance
between the next piecewise linear interpolation and the time series is 0, and the distance can
not be maximized. Note that this does not hold for the piecewise linear regression. Which
implies that, for any unidimensional time series, the segmented linear regression of i intervals
minimizing the residuals with the time series can be obtained by considering the critical points
as bounds of the interval.

Examples of critical points

Critical points are highly related to the shape of the time series. Consider for example the
sigmoid shape: a simple shape descriptor may simply specify that we start from a low plateau,

147



Chapter 6. Representation of continuous systems by discretization

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

Figure 6.4: Example of piecewise linear approximation applied to two randomly generated
noisy time series. The first of the three successive plots represents the time series while the
last two plots represent the result of the first two iterations of the PLA algorithm. After two
iterations, the PLA algorithm selects two points (as well as the first and last point) that are
considered as being representative of the global shape of the time series.

follow an almost vertical increase before reaching another high plateau. Such a sigmoid shape
exhibits two critical points, one at the end of the first (low) plateau, and one at the start
of the second (high) plateau. Similarly, consider an oscillatory time series such as the one
depicted in figure 6.4: its critical points contain the successive highest local maximum and
the lowest local minimum.

6.9 Case Studies and experimental results

In this section we show how our approach can be used in practice by solving four problems
related to qualitative behavior analysis. Although each problem and solution is illustrated
on a specific model, the methods that are used are general-purpose. All the models used in
this section were downloaded from the BioModels database[LNBB+06] in the SBML V2 L1
format[FHS+01], simulated using MathSBML[SHFD04] and were used without any modifi-
cation. Simulations were performed on an Intel Core2 3,2GH personal computer and each
algorithm was allowed to run for at most five minute. If parameter values are not specified
in the case studies, it means that those provided in the SBML file were used.

6.9.1 Searching a trajectory with a given periodic orbit

The first model we consider is a model of the cell cycle based on the interactions between the
cyclin dependent kinase cdc2 and cyclin [Tys91a]. The model is comprised of six variables
and ten parameters. We consider the following problem. Given the representative trajectory
and its associated parameters described in the original article (left in figure 6.5), what kind
of similar trajectories can be found in the whole parameter space ?

Abstracting the behavior of the left figure with a rank abstraction function yields the QTS
depicted in the right part of figure 6.5. Notice the highlighted non deterministic states. These
states and transitions are due to numerical errors and happen while the system reaches its
periodic orbit. Consequently, the weights of the outgoing highlighted transitions are 1 while
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Figure 6.5: Dynamic behavior of the cell cycle model for default parameter values. Left:
an example of trajectory obtained by numerical integration of the Tyson cell cycle model
[Tys91a]. Right: abstraction of this trajectory in terms of QTS by using the rank function
as the abstraction function (transition labels are omitted). The total standard deviation of
this QTS is 0.07. The states and transitions highlighted by the circle correspond to stochastic
transitions and represent numerical integration errors.

the incoming transitions are 17. All other transitions in the single cycle of the QTS have a
weight of 18.

We obtained 500 random samples for the six parameters considered as being critical by
the original author. For each parameter sample, we computed the trajectory, abstracted it
in terms of QTS by applying the rank function and computed the Sorensen similarity index
over the set of transitions to compare the sampled QTS with the representative QTS. Figure
6.6 depicts a subset of the results. Note that we chose parameter values exhibiting “similar”
sustained oscillations, but of different transient behaviors. We then compared these results
with the one obtained with a stochastic simulation algorithm. For each simulation result, we
used the PLA algorithm to reduce each noisy trajectory to its 50 most critical points, and
abstracted these points in terms of QTS by applying the rank function. Trajectories similar to
the one simulated with numerical integration were found for comparable parameters values.

6.9.2 Estimating the period of orbits

The model of MAPK cascade from [Kho00] describes the effect of negative feedback and ultra-
sensitivity on the emergence of oscillations. We investigated the dynamics of the period of
the orbits under parameter changes. To estimate these periods, we considered the parameters
{k4, v5} as random variables following an uniform distribution over the intervals [0, 1] and
[0, 0.1]. For parameters’ sample of size 500, we abstracted the corresponding time series
in terms of QTS. These QTS were then reduced by removing transitions whose probability
decreased as the simulation advanced. We then approximated the orbit’s period with the sum
of means of the transitions of the longest cycle of the QTS. This approximation was then
used in a local maximization procedure to identify the exact period value maximizing the
likelihood function. In our tests, providing this initial “educated guess” of the period value to
the maximization procedure yielded the global maximum in 98% of cases.

We can see from the results (figure 6.7) that, for this parameter subspace, oscillating be-
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Figure 6.6: Trajectory comparison for the Tyson cell cycle model. For 500 randomly sampled
parameter spaces, we abstracted the simulated trajectory in terms of QTS by using the rank
function. Trajectories were clustered in 9 bins by measuring the Sorensen similarity index
between each of the 500 QTS with the QTS of the figure 6.5. From each of the nine clusters,
a representative trajectory is depicted here together with its QTS and similarity value. These
trajectories are sorted (column wise, increasing) by their similarity value.

havior is very common and that the dynamics of the period does not exhibit abrupt changes.

6.9.3 Searching for any periodic orbits

We consider again the MAPK cascade model [Kho00] but with a more general objective. We
consider the problem of detecting the possible oscillating behaviors and of computing the
probability of finding an oscillating behavior in a larger parameter subspace. The parameters
of interest are {k3, k4, k7, k8, V5, V6, V9, V10} and are considered as random variables following
an uniform probability over the interval [0, 1] ⊂ R. We built a QTS as in previous sections.
In this study, only periods in the range [200, 5000] with a likelihood greater than 10 were
considered genuine. Although all the resulting trajectories exhibit transient or limit cycle
oscillations, they follow different transient dynamics. The four example trajectories of fig-
ure 6.8 show a subset of the possible dynamics: each of these time series admits a specific
alternation of species at their maximum concentration. Multiple instances of each of these
dynamics were successfully identified by applying the method from section 6.9.1. The number
of samples needed before finding an oscillating behavior was 57 on average. For comparison,
when k3, k4, k7 and k8 were sampled in the interval [0, 0.1], the average number of samples
needed dropped to 10.6.

6.9.4 Searching for given transient behavior in a parameter subspace

The extracellular signal regulated kinase (ERK) pathways plays a role in a hidden oncogenic
positive feedback loop via a crosstalk with the Wnt pathway [KRKC07]. The pathological
cases identified by the authors involve “an irreversible response leading to a sustained ac-
tivation of both pathways”. Applying our QTS construction with random samples of the
β-catenin synthetic rate (V12) yields results depicted in figure 6.9.

This model involves 28 species, 58 parameters, and 2 discrete events. Applying the rank
abstraction yields transition systems with a state space of 600 states on average out of the
possible 28! state configurations.
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Figure 6.7: Oscillation period for the MAPK cascade model. Left: contour plot representing
the period of oscillations. The bottom axis (resp. left axis) represents values of the k4 (resp.
v5) parameter. The contour plot was built with 500 simulations with random parameters.
Regions with comparable periods are represented by a region with uniform color. Right:
Two example trajectories exhibiting oscillations of minimal and maximal period A:1094 time
units and B:2236 time units.
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Figure 6.8: Example trajectories of the MAPK cascade exhibiting oscillating behavior found
with a random sampling of ten parameters of the MAPK cascade model [Kho00]. On the
right of each plot, the associated QTS reduced to its periodic form; under it, the period value
with maximum likelihood.
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Figure 6.9: ERK Crosstalk simulation results. From top left to bottom right, simulation
results are sorted by similarity with the non pathological case (reversible activation). The
sampled value of v12 and the similarity index with the non pathological case are under each
plot.

6.10 Concluding remarks

In this chapter, we have described two techniques that allows a continuous model described
by ODE to be interpreted as a discrete event system. The first approach is similar to the
quantization-based integration used in coupled DEVS models [CK05]. The second approach
is based on the formalism of qualitative transition systems. A QTS is a transition system
where each transition is labeled with the amount of time the system requires before moving
to another state. The delay between two state changes follows a parametrized normal distri-
bution. We have shown how QTS can be used to study qualitative properties of parametrized
models. This is achieved by defining an appropriate abstraction function. By representing
the characteristic qualitative features of a trajectory in an abstract domain that is countable,
qualitative similarity can be detected by a simple equality test. The limits of our approach as
compared to model checking is the lack of exhaustivity. This has to be counterbalanced by the
fact that our method is applicable to a large panel of formalisms, even those lacking a precise
semantics. Consequently, we can avoid any model transformation. Finally, our approach can
be applied independently to the data and to the model.

152



Chapter 7

Case study: Inheritance of damaged
proteins

In this chapter, we model a yeast population as a hierarchical model with dynamic instantia-
tion. Yeasts mitosis imply a rejuvenation process by which the aged mother cell generates a
daughter cells enjoying full replicative potential. Here we show how a hierarchical simulation
tool that allow dynamical creation of cells can be used to expand a single cell model of pro-
tein damage to a cell population model. By explicitly tracking mother-daughter relations, this
population model establish required conditions for exhibiting a rejuvenation effect consistent
with experimental results.

Thorough knowledge of the model organism S. cerevisiae has fueled efforts in developing
theories of cell ageing since the 1950s. Models of these theories aim to provide insight into the
general biological processes of ageing, as well as to have predictive power for guiding experi-
mental studies such as cell rejuvenation. Current efforts in in silico modeling are frustrated
by the lack of efficient simulation tools that admit precise mathematical models at both cell
and population levels simultaneously.

We developed a hierarchical simulation tool based on BioRica that allows dynamic creation
of entities. We used it to expand a single-cell model of protein damage segregation to a cell
population model that explicitly tracks mother-daughter relations. Large-scale exploration of
the resulting tree of simulations established that daughters of older mothers show a rejuvena-
tion effect, consistent with experimental results. The combination of a single-cell model and
a simulation platform permitting parallel composition and dynamic node creation has proved
to be an efficient tool for in silico exploration of cell behavior.

7.1 Introduction

A recurring challenge for in silico modeling of cell behavior is that hand-tuned, accurate
models tend to be so focused in scope that it is difficult to repurpose them. Hierarchical
modeling [AIK+03] is one way of combining specific models into networks. Effective use of
hierarchical models requires both formal definitions of the semantics of such compositions,
and efficient simulation tools for exploring the large space of complex behaviors. In this study,
we propose the use of a hierarchical model to reduce the complexity of analyzing cell ageing
phenomena such as cell rejuvenation. To this end, we extend a single-cell model of inheritance
of protein damage to a structured population where mother-daughter relations are tracked.
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Unlike most microorganisms or cell types, the yeast Saccharomyces cerevisiae undergoes
asymmetrical cytokinesis, resulting in a large mother cell and a smaller daughter cell. The
mother cells are characterized by a limited replicative potential accompanied by a progressive
decline in functional capacities, including an increased generation time [SMG98]. Accumula-
tion of oxidized proteins, a hallmark of ageing, has been shown to occur also during mother
cell-specific ageing, starting during the first G1 phase of newborn cells [AGRN03]. Both
asymmetric and symmetric division exist in different yeast species. In particular, S. cere-
visiae is known to divide asymmetrically, although symmetrical division is observed in about
30% of cells at the end of their replicative lifespan [KJG94]. Another yeast model organism,
Schizosaccharomyces pombe, divides symmetrically by fission (see [Nur94] for review). The
following is a mathematical model we have developed to explain how the accumulation of
damaged proteins influences fitness and ageing in yeast. In this paper we consider the two
theoretically possible scenarios, namely asymmetrically and symmetrically dividing cells in
different damaging environments. To explore any and all branches of the pedigree tree of a cell
population, we will use a hierarchical model that allows us to track mother-daughter relations.
We can therefore explore lineage-specific properties, such as the rejuvenation property.

7.2 From single cell to population model

Single cell model A minimal single-cell model of inheritance of damaged proteins can be
formalized by the following three equations:

dPint

dt
=

k1

ks + Pint + Pdam
− k2Pint − k3Pint (7.1)

dPdam

dt
= k3Pint − k4Pdam (7.2)

dP

dt
=

k1

ks + Pint + Pdam
− k2Pint − k4Pdam (7.3)

The size of the cell is the sum (P ) of intact (Pint) and damaged (Pdam) proteins, P = Pint +
Pdam. We assume that cells grow until they have attained a critical cell size, Pdiv, which
triggers a cell division. A cell may divide symmetrically (halving its mass) or asymmetrically,
as defined by size coefficients smother and sdaughter . The proportion of damaged proteins
that are transmitted to the daughter cell after division is defined by retention coefficient re.
Protein temporal dynamics are determined by five rate constants k1, k2, k3, k4, and ks. Protein
production rate, k1, has been adjusted by hand allowing for a steady state to be reached and
has been assigned a final value of 107. We choose values of k2 and k4, the degradation rates
of Pint and Pdam, respectively, so that k2 < k4. Degradation rates are computed using the
half-life formula t1/2 = ln 2/k, where k is the degradation rate; setting the half-life of intact
proteins to be 1 time unit, k2 = ln 2. Since degradation of damaged proteins is faster, k4 needs
to be greater than k2 and it has been set to ln 5. To simulate different rates of conversion, k3

has been given a range of values, from 0.1 to 2.3. The retention coefficient, re, has also range of
values, simulating different proportions of damage proteins that are retained by progenitor.
The maximum value for retention is re = 1, meaning that the mother keeps all damaged
proteins, while for re = 0 the distribution of damage is simply proportional to the size of
each cell. We simulated the equation systems for different types of divisions (symmetrical
vs. asymmetrical) as described in Methods. In the case of symmetrical division, the size of
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Table 7.1: Parameters of the single-cell model, their default values, and assumptions made in
their estimation.
Parameter Description Values Notes
Pdiv division threshold 1500
k1 rate maximal protein production 107

k2 rate degradation of intact proteins ln 2
k3 rate of damaging of intact proteins [0.1, 2.3]
k4 rate of degradation of damaged proteins ln 5 k4 > k2

ks half-saturation constant 1
re coefficient of retention damaged proteins [0, 1]
smother size of progenitor after division 0.5 or 0.75 smother + sdaughter = 1
sdaughter size of progeny after division 0.5 or 0.25 smother + sdaughter = 1

both progeny and progenitor is equal, so smother = sdaughter = 0.5. In asymmetrical division,
cells in the next generation will have different sizes. We consider here the exemplary case that
smother = 0.75 and sdaughter = 0.25. Finally, ks is a half-saturation constant in the model,
not used in this study. In the following study, smother and sdaughter were given two pairs of
values representing symmetric and asymmetric growth strategies, namely 〈smother , sdaughter 〉
being 〈0.5, 0.5〉 or 〈0.75, 0.25〉.

The proteins distribution between the progenitor and the progeny after division is described
by the following set of transition assignments: For progenitors:

Pint := Pint · smother − Pdam · re · (1− smother ) (7.4)

Pdam := Pdam · (smother + re · (1− smother )) (7.5)

P := Pint · smother + Pdam · smother (7.6)

For progeny:

Pint := Pint · sdaughter + Pdam · sdaughter · re (7.7)

Pdam := Pdam · sdaughter · (1− re) (7.8)

P := Pint · sdaughter + Pdam · sdaughter (7.9)

where sP is smother for the progenitor and sdaughter for the progeny.
All the parameters of the model and their values in this study are synthesized in Table 7.1.

In previous work, simulations carried out with Mathematica allowed us to follow the fate of
the progenitor and the progeny, separately, through a number of generations. We could thus
draw a “mother-only lineage” and a “daughter-only lineage”, whereby we would, after every
division, follow respectively the next generation of mothers only, or the next generations of
daughters only. These are external branches of the pedigree tree.

In this study, we use a hierarchical model that allows us to explore any and all branches
of the pedigree tree, and precisely track mother-daughter relations. We can therefore explore
lineage-specific properties, such as the rejuvenation property studied in this work.

Population Model Based on this single-cell model, we first define a hierarchical model
of a structured population where complete mother-daughter relations are recorded, using the
BioRica formalism.
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Figure 7.1: Three level hierarchical model, showing the discrete cell population and cell
division controllers, and the continuous single-cell model. This model generates pedigree
trees during simulation, instantiating new single-cell models for each cell division. Infinite
width and depth are represented finitely by relaxing the tree constraints to permits loops
from the leaves. These fixed points represents immortal cells or immortals lineages.

In this work each cell is encoded by a BioRica node that has a 2-level hierarchy: a discrete
controller and a continuous system. The former determines the distribution of proteins at
division time using the discrete transition assignments (4–6), while the latter determines the
evolution of protein quantities during one cell cycle and is realized by the equations (1–3).
More precisely, the discrete controller is encoded by a BioRica node (cf chap. 3) defining
the discrete transitions between states. A state of a cell ci is a tuple 〈P i

int, P
i
dam, Di〉, where

P i
int and P i

dam are protein quantities as before, and Di is a single dimension array of integers
representing the identifiers of every daughter of ci. A transition between states is a tuple
〈G, e,A〉, where G is a guard, e is an event, and A is a parallel assignment. For this model,
the discrete transitions are atomic operations and consequently take zero time. In our case
we have: for mitosis (event e), if the threshold of the cell size is attained Pint = 1500 (guard
G), then create a new BioRica node cj for the daughter of the current cell ci, append cj to the
vector Di, and perform the assignments (4–6) (assignments A of state variables). A second
discrete event representing clonal senescence is triggered whenever protein production reaches
zero, that is ∂Pint < 0.

The cell population is encoded by a BioRica node using the mechanism of parallel com-
position. This node contains the population array Pop, the root of the lineage tree R and
the parameter vector ~P. Since our model focuses on the division strategy, we consider the
growth medium as a non limiting factor, and consequently we do not account for cell to cell
interactions. This absence of interaction is directly modeled by parallel composition of in-
dependently evolving cell nodes. For illustration see figure 7.1. The algorithmic challenges
related to dealing with multiple time scales and event detection, and our solutions, are de-
scribed in section 7.3.
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7.3 Algorithm

We now describe our method for simulation of the cell population model (section 7.2), starting
with an overview of the general simulation schema (algorithm 4) followed by a concrete
specialization for damage segregation. The simulation schema for a given cell is by a hybrid
algorithm that deals with continuous time and allows for discrete events that roll back
(see figure 7.2) the time according to these discrete interruptions. Time advances optimally
either by the maximal stepsize defined by an adaptive integration algorithm [PTVF07], or by
discrete jumps defined by the minimal delay necessary for firing a discrete event. As shown in
algorithm 4, the simulation advances in a loop that is interrupted when either the simulation
time expires, or the alive flag indicates that this node has died in the current or previous
state. The node evolves continuously by calling advance numerical integration, after which
we check whether any guard G of some event 〈G, e,A〉 was satisfied. In which case a number
of updates is performed: the time is set to the firing time of e, e is stored in the trace database,
the current state S is set according to the algebraic equation A, and the numerical integrator
is reset to take into the account the discontinuity.

Algorithm 4 General simulation schema

Require: current state S, current simulation time t, maximal simulation time tmax

1: S′ = S

2: while alive(S, S′) = 1 and t < tmax do
3: S′ = S

4: t, S = advance numerical integration()
5: if e = discrete events() then
6: t = get discrete event time()
7: store event(e)
8: S = update(S, e)
9: reset numerical integrator()

10: end if
11: store state(S)
12: end while

As illustrated in figure 7.2, we assume that the step size proposed by the numerical inte-
grator guarantees that the continuous function is linear between the current time t and the
maximal step size. In this way the location of discrete events whose guards have been satisfied
in this interval is reduced to computing the first intersection (see figure 7.2). It is the event
e with the smallest firing time that is retained for the next discrete transition. After this
transition the numerical integrator must restart from the point defined by A.

Correction of the stepping algorithm For asynchronous simulation of multi-agent hy-
brid systems, the correctness of a stepper algorithm concern mainly numerical stability and
event detection [EK04], both being in general very difficult problems [SGB91]. For this spe-
cific model, numerical stability of the stepper described in algorithm 4 has been checked by
evaluating the stiffness of the single cell ODE system by comparing the accumulated integra-
tion error between various order explicit and implicit methods. For the final implementation,
the embedded Runge-Kutta-Fehlberg was retained, giving good tradeoff between efficiency
and precision.

Failure of an event detection can be caused either when sub systems are coupled but not
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Figure 7.2: The numerical integrator advances between t (point 1) and the maximal stepsize
(2). The guards of events e1, e2 are satisfied. The regions where these guards are satisfied are
shaded. The firing time of e1 (3) is used to reset the simulator after the discrete transition A

(4).

correctly synchronized or when a guard is falsely assumed as monotonic between two successive
simulation step. For the former, since the clonal senescence and the mitosis events only refer
to the state and derivative of the currently integrated cell, the composed population model
remains uncoupled and we do not need to synchronize any of the states.

Failure of an event detection can be caused when a guard is falsely assumed as monotonic
between two successive simulation step. In BioRica, since the guard of an event can not refer to
the current simulation time, detecting the occurrence of an event is reduced to an intersection
test between an n + 1 dimensional segment and a n dimensional region or polytope, where
n is the number of state variables of the integrated node. More specifically for the guards
of the cell population model, only intersection between the interpolated segment between
two successive integration step and a downward closed region is used, and is performed by
evaluating the guard at the end point.

Once the event detection is performed, exact location of the event is computed by numer-
ically solving the equation built with the conjunction of the equation given by the linear
interpolation and the guard logical formula.

Specialization The generic simulation algorithm 4 was specialized for the damage segre-
gation study. In particular, alive and update had to be redefined in a specific way. The alive
predicate verifies three conditions. First, the cell is checked for immortality, which is realized
by fixed point detection. Second, we verify whether the cell is in the state of clonal senescence,
by evaluating the two guards described in section 7.2. Update has the role of managing new
cell creation. For the current cell c it updates its state variables, according to the algebraic
equations (4-6 for progenitors), and its statistics (fitness, generation time, etc). It creates a
new cell node (daughter of c) according to the equations (4-6 for progeny) and inserts it into
the population array Pop.

Population simulation On top of this specific stepping algorithm, another algorithm
drives the whole population simulation by selectively starting simulations for pending cells in
Pop. Given a depth n, a root cell c and an extent value e, this algorithm first selects pending
nodes required to get a complete binary pedigree tree of depth n rooted at cell c. Afterwards,
e leftmost and e rightmost leaves are used as root cells in recursive calls of this algorithm with
a decremented value of e. Fix points are detected by testing before simulation if a candidate
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cell’s initial values Pint and Pdam are equal to a previously simulated cell, in which case we
get a pedigree graph by adding a loop edge.

Determining parameter values that exhibit optimal population fitness is based on averaging
individual cell statistics (defined in section 7.5) to compute the mean fitness. In fact, this
averaging maps a real value denoting the population fitness to each parameter vector. A
coarse computation of this mapping is then built by varying the parameter vector using fixed
step size. This coarse estimation is used to determine initial guess of optima position, that
are then established by using Brent’s Principal Axis[Bre02] method on the mapping.

7.4 Implementation

Simulation results are stored in a relational database. In the context of the damage segregation
model, the requirement is to be able to store lineage trees. This implies a serialization step
that flattens the tree topology in order to represent it as a vector of pairs of cells ids. These are
then directly encoded as a database table, in relation with the table storing the model-specific
parameters. The latter enables fixed point detection, as well as provides the possibility to
pause and restart batches of simulation at any time and at any node during the exploration
of the model.

A set of Python scripts performs simulation trace analysis, permitting in particular gen-
eration of graphical output using the graphviz package [EGK+01], interactive visualization
with the Tulip software [Aub03], and statistical analysis with R and Mathematica.

7.5 Results

Initial calibration We assume that cells grow until they have attained a critical cell size,
Pdiv, which triggers a cell division. A cell may divide symmetrically (halving its mass) or
asymmetrically, as defined by size coefficients smother and sdaughter . The proportion of dam-
aged proteins that are transmitted to the daughter cell after division is defined by retention
coefficient re. To calibrate and validate the system, complete simulations were run to depth 4
in the pedigree tree for an exhaustive range of parameter values (Table 7.1). Rate constants
k1, k2, and k4 received fixed values, k3 and re were given a range of values with small step
sizes, and smother and were given sdaughter two pairs of values representing symmetric and
asymetric growth strategies. A total of 625 simulations were run summing to 9375 different
initial conditions and parameters values. Sample results for pedigree tree are illustrated on
figure 7.3. In previous results on the single-cell model, simulations carried out with Mathe-
matica allowed us to follow the fate of progenitor and progeny through several generations.
Back-to-back comparisons with these previous results were performed (ignoring pedigree) to
validate the new simulator. Successful comparisons with a small number of experimental cell
growth results were also performed (data not shown).

Simulation to depth 30. For each of the four scenarios studied here, a representative
simulation was chosen by inspecting properties of the initial mother. From the whole param-
eter space, we selected simulations where the mother cell produces a number of daughters
that is both finite and large enough (20-24 divisions depending on the case, since the average
life span of wild type budding yeast is 24 divisions).

For each of these simulations, the pedigree tree was calculated up to depth 30, and for
each cell in the tree we calculated five values: initial damage and terminal damage levels
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Figure 7.3: Sample pedigree tree results for asymmetrical (Top) and symmetrical (Bottom)
division strategies. Pedigree tree (Left) showing mother-daughter relations; and simulation
results (Right) showing single cell protein amounts over time: normal proteins (blue), dam-
aged proteins (pink), total proteins (dashed). For example, in the asymmetrical case with
high damage, from time zero, the amount of normal proteins (blue) in the mother eventually
cross the division threshold at time approx. 0.15. At this time, the proteins repartition is
approx. 250 damaged proteins for 1750 total proteins. Once division is triggered, the progeny
separates, and a new simulation is started for the mother (resp. the daughter) with initial
normal proteins set at 1500 × 0.75 = 1125 (resp. 1500 × 0.25 = 375) and damaged proteins
set at 250×0.75 = 187.5 (resp. 250×0.25 = 62.5). Since in this case the mother accumulates
damage over divisions (compare damaged proteins amount between time 0.15 and 3.0), it will
eventually reach a senescence point after 27 divisions. Comparison of its life span with the
life span of each of its daughter and the life span of each daughter of its daughters (as tracked
by the upper pedigree tree) shows a rejuvenation effect.
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(corresponding respectively to the amounts of damage Pdamat the beginning of cell cycle, and
at the end of the cycle when division is about to occur), generation time (time between two
divisions), absolute date of birth (in arbitrary time units, measured from the moment when
mother starts its first division) and the fitness (defined as number of divisions during first
time unit).

Parameter Exploration. Using parameter exploration (section 7.3) we identified sets of
parameters that exhibited a given emerging high-level behavior, both at the single-cell and
whole pedigree tree levels. For example, for the former we are interested in detecting cells that
have a certain number of daughters (say, 24), and for the latter we are looking for parameters
giving high rejuvenation value across the whole population. These two values are computed
by a trace simulation analysis script.

Thus, for each of scenarios studied here, a representative simulation was chosen by inspect-
ing properties of the initial mother. From the whole parameter space, we selected simulations
where the mother cell produces a number of daughters that is both finite and large enough
(20-24 divisions depending on the case, since the average life span of wild type budding yeast
is 24 divisions). For each of these simulations, the pedigree tree was calculated up to depth
30, and for each cell in the tree we calculated five values: initial damage and terminal dam-
age levels (corresponding respectively to the amounts of damage Pdamat the beginning of cell
cycle, and at the end of the cycle when division is about to occur), generation time (time
between two divisions), absolute date of birth (in arbitrary time units, measured from the
moment when mother starts its first division) and the fitness (defined as number of divisions
during first time unit).

Model analysis. The hierarchical model we have defined explicitly tracks mother-daughter
relations in pedigree trees of simulations. This allows us to study lineage-specific properties,
which are properties associated with connected subgraphs of the pedigree tree. Pedigree trees
and typical simulation results are shown in Figure 7.3.

In the pedigree tree, a given mother cell generates a series of daughter cells; these siblings
are ordered in time, and the younger a sibling, the older the mother at the time of division.
We observe in simulation results that younger siblings have higher damage, consistent with
inheritance from an older mother that has accumulated more damaged proteins, and these
younger siblings are thus born “prematurely old.” This increase in damage accumulation is
reflected in the decrease of fitness values, shown in the first level of Figure 7.4.

Extending this analysis one level further in the pedigree tree shows, expectedly, that daugh-
ters born early to the same mother have low damage, and their daughters have normal fitness.
Daughters born late to the same mother have high damage and lower fitness, but remarkably,
in simulations with either retention or with asymmetric division, their own daughters are born
with lower damage and higher fitness. This increase in fitness in the second generation is a
rejuvenation effect, in part explaining how populations maintain viability over time despite
inheritance of protein damage.

The testable hypothesis is thus that there exists a mechanism for retention of damaged
proteins during cell division, that attenuates the accumulation of such proteins in descendants,
and that a combination of the precise value of the corresponding retention coefficient (re) and
the asymmetry coefficients (smother and sdaughter ) in the model determines the scale of the
rejuvenation effect.

These predictions are consistent with in vivo experimental results reported in the literature:
Kennedy, et al. [KJG94] report that daughter cells of an old mother cell are born prematurely
old, with lower replicative potential, but that the daughters of these daughters have normal
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life spans. It should therefore be possible to experimentally estimate the value of the retention
coefficient through indirect measures of cell lifespan and replicative potential.

As a control, we also inspected the case of no retention and symmetric division. We would
not expect a rejuvenation effect, since inheritance of damaged proteins should be proportional
in both mother and daughter cells, and indeed this is what is observed. We conclude that the
hierarchical model is an accurate representation of protein damage inheritance.

We then investigated changes in generation time for a given mother cell as a function of
cell age. In the case of retention and symmetric division, we observe in simulation results
an exponential increase in generation time. This prediction is consistent with experimental
observations of Egilmez et al. [EJ89].

In the case of no retention and asymmetric division, we observe a linear increase in genera-
tion time. Intuitively, without retention the inheritance of damaged protein increases linearly
with age (equations 5 and 8), and generation time is linearly dependant on the proportion of
intact to total proteins (equation 1). This prediction is consistent with experimental results
for a ∆Sir2 mutant (Nyström, personal communication).

Finally, in simulations we observe that fitness and viability are sensitive to precise values of
k3, the rate by which proteins are damaged (see figure 7.5). This provides a series of testable
hypotheses that could be investigated experimentally in different damaging environments,
such as oxidative damage or radiation damage.

7.6 Conclusions

Although purely continuous systems such as ODEs have long been used for quantitative mod-
eling and simulation of biological systems (for example [Men97]) and are commonly thought
to be powerful enough, they do not suffice for highly structured models where emerging prop-
erties result from dynamic changes to the model.

For this study, the BioRica hybrid formalism and the related framework proved to be
powerful enough to model, simulate and analyze the rejuvenation property of a hierarchical
damage segregation process, by extending an existing continuous cell model to a population
model. Since our hybrid formalism allows a BioRica node to describe and import an ODE
system, we maintain the low computational cost and biological soundness of ODEs.

Hybrid simulation in BioRica scheme enjoys the traditional advantages of numerical in-
tegration, since the computational overhead for the hybrid stepper is proportional to the
number of discrete events in the model; thus hybrid simulation of a purely continuous model
is as fast as integrating it. For hybrid models mixing both continuous and discrete dynamics,
our clear semantics permits concise description and reproducibility of simulation results in
other simulation frameworks. For example, while the division strategy could be described in
a continuous model by adjusting sigmoid functions, it is more naturally described by alge-
braic equations and their description in the model ought to be kept algebraic. The resulting
gain in clarity has been observed elsewhere, for example in the complete cell cycle model of
[CCCN+04]. While most existing simulation tools admit a programming interface that allows
for the modeler to simulate discrete events, the lack of a precise semantics renders the simula-
tion predictions questionable and merely reproducible, since allowing such discrete events in
a model has semantics issues5. Indeed, two discrete events can be enabled at the same time,
but nothing defines whether in such cases the simulator should fire neither event, both events,

5See for example http://www.sys-bio.org/sbwWiki/compare/themysterysolved
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or some random choice; and different strategies imply radically different simulation results.
In BioRica, we use the mathematical definition of non-determinism already used in discrete

formalisms, thus giving any BioRica models a precise mathematical and unambiguous se-
mantics. Furthermore, while not explicitly used in this study, BioRica leverages and extends
the compositional operators initially defined in the AltaRica languages family [AGPR00] to
allow for parallel, partially synchronous and data sharing compositions of hybrid, stochas-
tic, multi-models and external abstract processes. Furthermore, since such compositions are
mathematically defined in BioRica, we can exactly identify subclasses of programs admitting
modern model analysis such as model checking, compositional reasoning, functional module
decomposition and automatic simplification; all of which were spotted as grand challenges for
modeling and simulation in system biology [SHK+06]. For compatibility with other systems
biology software, BioRica imports SBML files through libSBML [HFS+03]. In addition to
SBML support, BioRica exports the model as software independent C++ code, that can be
compiled on any POSIX compliant system. This approach allows initial model prototyping
in user friendly workbenches such as xCellerator [SLMW03], followed by use of optimized
command line simulators for large scale analyses.

More specifically for population studies, since discrete variables and dynamic node creation
are allowed in BioRica, our cell model can explicitly track a dynamic mother-daughter rela-
tionship. A realistic population model needs such a dynamic topology. Even when restricting
ourselves to the biologically realistic case of dying cells, the number of daughters that any
cell can have is a priori unbounded; thus, simply replicating the ODE equations to get a
continuous population model as in [HMR02] is not scalable. Furthermore, when simulations
were carried up to depth 30, approximately 230 cells were evolving in parallel, adding up to a
232-variable differential system that is untractable using a classical ODE approach. Instead,
our population model clearly separates each cell behavior from the population by using hierar-
chical composition, and uses this modularity to provide a hierarchical simulation scheme, thus
ensuring that each individual cell continuous part will be integrated with the most efficient
step size.

Furthermore, the properties of parallel composition render study of population model with
up to 230 individuals still partially tractable by our scheme since we can linearize this pop-
ulation tree to simulate each cell independently. This approach is efficient since the cost of
simulating a population is linearly proportional to the cost of simulating an individual, while
flat and unstructured models have a quadratic complexity [EK04]. Finally, since we use
discrete variables to track the mother-daughter relationships, we can directly estimate the
rejuvenation effects, which would otherwise be buried in a flat and unstructured model.

Large scale exploration to detect the rejuvenation effect required a tree coverage that is
out of reach of naive exploration algorithms such as breadth-first or depth-first. In fact,
neither the population tree width nor its height are bounded, and thus these algorithms do
not terminate. An ad hoc exploration algorithm partially solves this problem by alternating
evaluation of first born daughters and evaluation of late born daughters, but does not provide
the required coverage to detect significant rejuvenation. However, substantial acceleration
is provided by the fix point detection scheme encoded in our tree visitor pattern, whose
soundness is ensured by the deterministic nature of a cell behavior. In the continuous model,
initial values of Pintand Pdamfor given parameter values entirely determine a unique single
cell behavior.
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Figure 7.4: Sample parameter exploration result showing the high sensitivity and non linearity
of the rejuvenation effect w.r.t. precise values of the damage rate k3. Only some ranges of the
parameter value (approx. between 1.53 and 1.59) exhibits an increase of both the maximal
and the mean fitness difference between every mother and daughter of a population. Top:
Estimation of the maximal and mean rejuvenation amount for damage rate ranging from 1.2
to 1.7 for the asymmetrical and symmetrical case. The higher the values, the fitter some cells
of the lineage are compared to their direct mother. Bottom: Close up of a lineage tree used
to compute one point of the previous rejuvenation plot. Each node (yellow box) is labeled with
an numeric id and the floating-point fitness value of the cell, and each edge (white label) is
labeled with the index of the daughter relatively to its mother and labeled with the difference
of fitness between daughter and mother. For such a given tree, we can compute the mean
and max value of the edges, which is represented as one point on the rejuvenation plot. The
rejuvenation effect in young daughters of old mothers (right blue colored branch) is consistent
with the experimental results of [KJG94].
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Figure 7.5: Contour plot of mean of cell fitness from one generation level to the next (viability)
over a pedigree tree, for a series of simulations in the symmetry case. X axis: rate of damage
of intact proteins (k3), Y axis: coeff. of retention (re). The lighter the color, the higher
the mean, except for white regions, where the value is negative. This contour plot represents
structured simulation results for approx. 5, 120, 000 cells.
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Chapter 8

Concluding remarks and future
research directions

In this thesis, we have discussed automata based models for the description of biological
processes modeled as hierarchical systems with stochastic timing.

To summarize, we have presented the BioRica language, its stochastic semantics and a
translation scheme that generates stand-alone simulators. This framework is able to capture
a range of existing time and state driven formalisms, while providing clear ways to combine
disparate units into a bigger view. The associated simulation toolkit provides easy of use and
computationally efficient simulations, able to cope with multi-scale and multi-models systems
by the use of hierarchical modeling. In this way, the best paradigm for a given model can
be chosen by the experimentalist who can thus follow a problem-specific approach and be
assured that his model will remain usable in higher-order ones, even when those are described
by a radically different method. The hope is that modeling can become more local and thus
increasingly accessible to non specialists, and that stronger coupling between experimentation
and modeling becomes more prevalent.

More precisely, we took as a starting point for BioRica the work done on the AltaRica
specification language, and specifically that on the AltaRica Dataflow subset, and we extended
its syntax and transition system semantics in order to account for probabilistic descriptions.

We considered the problem of analyzing the dynamics of such models. For this purpose, we
defined stochastic transition systems that are transition systems with probabilistic labels. We
sketched how the semantics of an STS could be given in terms of a stochastic process by using
continuous state space process. However, in order to provide analytical results, we presented
an alternative semantics based on probabilities of a sojourn path. One interesting point of
this semantics is that the probability of a path can be computed without exploring the state
space and that this probability is expressed as linear combinations of random variables. This
implies that computations with numerical values are only performed at the very end if needed.

Furthermore, we have considered the problem of simulating hierarchical discrete event sys-
tems. To this end, we presented an implementation of a simulator generator from BioRica
systems to C++ programs. Given a hierarchical system described in BioRica, we have indeed
implemented a tool to compile this system into a set of C++ classes that are ultimately
linked with a hierarchical discrete event simulator. By following this approach, simulation of
a BioRica system avoids completely the costly process of flattening and state unfolding. Fur-
thermore, by providing a compilation into an expressive target programming language (here
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C++) extending a BioRica system with model specific constructions is reduced to inserting
escaped expressions in a BioRica model. While we did not detail this approach here, the cur-
rent implementation of the BioRica compiler is distributed with a Matlab and Mathematica
bridge. This extension enables the use of the advanced numerical and symbolic algorithms
present in computer algebra systems during simulation, either to perform complex computa-
tions in the model or to speed up numerical approximations.

We have then considered the problem of incorporating continuous models described by
Ordinary Differential Equations into a BioRica system. We considered three separate com-
plementary approaches: quantization, qualitative abstraction and flow variables with syn-
chronizations. The first approach is classical in the domain of Discrete Event Systems and
is based on a regular quantization of the state space and uses the expressivity of the delay
mechanism to encode the numerical integrator in a BioRica node.

The second approach is based on an automated analysis of the transient behavior of the
continuous system. Given a range of possible qualitative values represented as abstraction
functions, we compute from the time series generated by numerical integrators a stochastic
transition system. To this end, we introduced the model of qualitative transition systems
(QTS). A QTS is a transition system where each transition is labeled with the amount of time
the system requires before moving to another state. The delay between two state changes
follows a parametrized normal distribution. We have shown how QTS can be used to study
qualitative properties of parametrized models. This is achieved by defining an appropriate
abstraction function. By representing the characteristic qualitative features of a trajectory
in an abstract domain that is countable, qualitative similarity can be detected by a simple
equality test. We have shown that the soundness of this approach depends on the adequacy
of sampling with respect to the abstraction function. In particular, we have shown that for
convex abstraction functions, if the sampling is “precise enough”, then the QTS obtained
from any oversampling has the same transitions. Finally, we applied this approach to some
well known models. QTS were used to explore the parameter space and to detect uniform
behaviors (oscillations etc.). The limits of our approach as compared to model checking is the
lack of exhaustivity. This has to be counterbalanced by the fact that our method is applicable
to a large panel of formalisms, even those lacking a precise semantics. Consequently, we can
avoid any model transformation. Finally, our approach can be applied independently to the
data and to the model.

Finally, the third approach of incorporating continuous systems into a discrete formalism
is based on the flow variables and synchronization mechanism. This approach has been used
in the last chapter of this thesis, where we applied our methodology to study a model of the
process of cell ageing in a population of yeast. To this end, we considered a single cell model
based on ODEs, built a “hybrid system” by composing it with a discrete controller modeled
in BioRica, and then built a population model by parallel composition. The dynamics of
the population (death and birth) is modeled by a BioRica node, while an external integrator
solves the differential system of individual cells. The “hybrid model” is then built by using the
mechanisms of flow composition and of synchronization. In this case of yeast population, the
proposed model integrates the fact that a cell does not interact with the population except at
birth, death and when it gives birth to a daughter cell. Furthermore, these interactions are
unilateral (i.e. there is no feedback from the population to the cell) and thus, simulation of
a population evolving in parallel and successive simulations of individuals are equivalent. We
used this property to analyze parts of the population for which biological data were available.
Had we limited ourselves to non hierarchical ODE systems, the same simulation would have
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required solving a continuous system of approximately 230 variables.
Biological interpretation of the simulation results concerns mostly damage segregation strat-

egy for yeasts population. The uneven distribution of damaged proteins may seem intuitive
for organisms displaying markedly asymmetrical cytokinesis such as budding yeast; less so
when there is no apparent distinction between the two sister cells. However, Stewart et al.
[SMPT05] demonstrated that E.Coli cells enriched with old pole material displayed a longer
generation time than their new pole enriched siblings. This result indicates that asymmetry
is also present in systems dividing by binary fission. Although the measured differences in
generation times are small in absolute terms, such asymmetry may be of significance for the
robustness and fitness of the population. Our model suggests that even very low retention
coefficients, e.g. a scenario where one cell receives 58% and the other 42% of the damage, may
have a great impact on the systems ability to escape clonal senescence, at least at moderate
damage rates. As the damage rate increases, the damage retention, or size asymmetry, needs
to be more pronounced to allow the survival of the population.

Furthermore, one common assumption when modeling asymmetrical division is that the
establishment of age asymmetry is linked to damage segregation. However, such segregation
of damage has, as far as we know, only been shown in the asymmetrically dividing budding
yeast. One of the somewhat surprising predictions of the model presented here is that a
system dividing symmetrically by size (binary fission) display a higher fitness if damage is
segregated regardless of the damage accumulation rate. This suggests that damage retention
may be more common than previously anticipated and prompted Marija Cvijovic and her
colleagues to analyze the distribution of oxidatively carbonylated proteins during cytokinesis
in the fission yeast S. pombe. Her results (not shown in this thesis) showed that S.pombe
displays an uneven distribution of carbonylated proteins between siblings, which correlates
with their longevity and fitness. This result can explain why growth in the presence of minor
stressors results in a higher mortality of the siblings with more birth scars, i.e. the ones
inheriting more damage. Even though partitioning of damaged proteins to the older sibling
is not as pronounced as that of the budding yeast, it appears to be sufficient to entrust the
younger sibling with a significantly longer replicative potential and shorter generation time.
As stated above, our modeling approach predicts exactly this, i.e. that a small bias towards
damage asymmetry has profound consequences on the population’s fitness and propagation.

Future research directions

The growing complexity of the fields dealing with biology highlights the need for an unam-
biguous and fixed framework into which new experimental results can be fitted, turned into
predictions, tested, and communicated. In the past, new problems have often led to adopt-
ing different paradigms, definitions, and simulation algorithms for each part of the system.
This has made it difficult to combine existing and curated sub-models into a communicating
system, making it even harder to model or comprehend higher level emerging properties.

On the methodological plan, having a unifying framework for multi-formalism models en-
courages us to develop new modeling methodology that can account for better integration
between experimental data and modeling. The tools we provide in this thesis thus allows one
to compose models originating from different mathematical formulation. Executable models,
as defined by Fisher in [FH07] can coexists with biologically sound models by describing them
in a single formalism of compositional, hierarchical, stochastic and non deterministic discrete
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event systems. Such an an approach providing an unifying semantics and tools for contin-
uous, discrete and stochastic models have received numerous attention recently in the field
of Systems Biology. Indeed, having the possibility to build complex models by composing
almost automatically existing models from the literature is very appealing. However, as we
have discussed in the introduction of this thesis, a model is not inherently “true” or even
“good”, since it has been built with a specific purpose and thus a specific set of assumption
and validation methods. However, the focus is still on the model and not on the methodology
used to build it. Therefore, a general future plan of research would be to develop the set of
tools required to build complex models by using the wealth of available experimental data.
That is, instead of following the interpretation of modeling for Systems Biology that suggest
that models should be of increased realism, we consider that model can be kept simple while
a great deal of complexity has been solved in the conceptual modeling process. By delimiting
models and by formalizing the assumptions and validation scheme used during the modeling
process, existing model could be reused and readapted. Instead of incorporating as much
biological knowledge and data as possible in a model, as illustrated by the various genome
scale models of microbial organisms [RVSP03, FSP+06, DHP04] or of simple multicellular
organisms [Har03, Har05], an alternative approach would be to consider that the increased
“realism” should be in the modeling process, and not necessarily in the model itself.

On more technical plans, the BioRica language is just a very first approach to applying a
declarative specification language to model biological systems. In order to adapt the language
and its hierarchical semantics to the needs of mathematical biologist, collaboration with some
of the authors of the SBML language [HFS+03] has actually started. The general plan is that
SBML already provide a widely used syntax for flat continuous model description. However,
SBML being a machine readable language, it is not per se a modeling language and it thus do
not provide a semantics. This has not been problematic since SBML v2 is restricted to purely
continuous models that admits an non ambiguous interpretation by using numerical integra-
tion methods. However, the next iteration of SBML, namely SBML v3, plan on incorporating
syntactical construct to declare timed events and hierarchical compositions. This extension
requires an non ambiguous interpretation, namely, a mathematical semantics and we wish to
propose one semantics that is close to the one established in this manuscript. Importance
of an unambiguous semantics has been illustrated by the actual interpretation of the (nearly
finished) proposal in state of the art simulators that can handle events. A set of “compatible”
simulators yielded incomparable simulation results for the same model.

Concerning stochastic transition systems, the current analysis that are possible (and thus
on the subset of GSMP they represent) are hindered by the complexity implied by the non de-
terminism. Although we limit ourselves to finite path (and thus by definition we do not suffer
from any “state explosion” problems), the presence of discrete distributions associated with
event time implies that we must account for an exponential number of different “ties” to com-
pute the probability of a single path under a given scheduler. However, this conclusion may
hold only because we considered general weight scheduler without restrictions, and specific
sub classes of schedulers (like memory less scheduler for instance) may reduce this complexity.
Furthermore, we did not exactly built a stochastic process but rather characterized its finite
dimensional probabilities. Although the Kolmogorov extension theorem may apply immedi-
ately, the existence of limit state probabilities is more delicate and needs to be characterized.
For instance, their existence is already not guaranteed for finite state semi-Markov chains,
which are a subclass of STS. However, characterizing the conditions under which these limit
state probabilities would open the possibility to evaluate steady state distributions. Addi-
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tionally, an immediate step would be to adapt the scheme of [LHK01] to verify time bounded
formula instead of the finite step based formula we proposed. Note however that the best
algorithm in our knowledge to evaluate a time bounded formula on a semi-Markov chain has
a worst state complexity of O(N4) where N is the number of state of the SMC [LHK01].

The areas of future research for qualitative transition systems can be declined on the both
technical and practical plans. As for the former, we envision a more thorough study of
similarity measures of QTS and how QTS similarity relates to language equivalence. As for
the latter, we plan to develop clustering techniques in order to detect the resulting behavior
similarity in an experimental context.

Concerning the model of cell ageing, when the total fitness (number of cells produced
per time unit) of the systems is considered, damage retention may be a mixed blessing.
For example, when considering a different cell-size organism like budding yeast, our model
predict that damage retention will push the upper limits for how much damage the system can
endure before entering clonal senescence but become a selective disadvantage at low damage
production rates. This raises the question of whether the efficiency of damage segregation
could be adjusted with changing environmental demands. Interestingly, damage segregation in
budding yeast becomes more pronounced following increased oxidative stress, suggesting that
this unicellular organism, indeed, enjoys the capacity to increase damage segregation upon
conditions elevating such damage. In addition, unusually difficult growth conditions elicit a
switch from a morphologically symmetrical to a more asymmetrical type of division in fission
yeast indicating that also this organism display a dynamic ability to break up symmetry upon
environmental demands. Finally, Cvijovic’s experimental results and her interpretation with
our model suggests the hypothesis that sibling-specific aging and rejuvenation in unicellular
systems may have evolved as by-products of a strong selection for damage segregation during
cytokinesis. A question of interest is whether such division of labor between cells undergoing
division is retained also in multicellular organisms, for example during the generation of germ
line cells or differentiation.
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C++ code

Specialized schedulers

/∗∗∗∗∗∗ Cell .h ∗∗∗∗∗∗∗∗/

2 class Cell :public Node{
private:

4 string∗ name;
Node∗ parent;

6 friend class StrategicProduction;
[...]

8 };

10 class IncreasingTemp:public Referee{
public:

12 int choose(int n);
IncreasingTemp(int seed):lastTemp(0),Referee(seed) {};

14 private:
int lastTemp;

16 };

18

class StrategicProduction:public SystemReferee{
20 public:

virtual int choose(Cell ∗node, int n);
22 StrategicProduction(int seed):SystemReferee(seed){};
};

24 /∗∗∗∗∗∗ Cell . cpp ∗∗∗∗∗∗∗∗/

#include ”Cell.h”
26 extern int env seed;

extern int sys seed;
28

int IncreasingTemp::choose(int n){
30 int choosed = rg→IRandom(this→lastTemp,this→lastTemp+5);

if (choosed>n){
32 choosed=n;

}
34 this→lastTemp=choosed;

return choosed;
36 }

38 int StrategicProduction::choose(Cell ∗node, int n){
int choosed = Referee::choose((int)node→alcohol+1);
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40 if (choosed>node→alcohol){
choosed=1;

42 }else{
choosed=2;

44 }
return choosed;

46 }

48 Referee ∗environment scheduler=NULL;
StrategicProduction ∗system scheduler=NULL;

50

Cell :: Cell(char∗ a name, Node ∗a parent){
52 environment scheduler=new IncreasingTemp(env seed);

system scheduler=new StrategicProduction(sys seed);
54

this→name=new string(a name);
56 this→laws = new Cell Laws();

this→parent=a parent;
58 /∗ initVal ∗/

alive=1;
60 this→update flows();
}

62 [...]

64 void Cell :: ferment(){
int possible=0;

66 int choosed=−1;

68 if (((( alive ) ∧ (((temperature) > (15)))) ∧∧
in alcohol domain(((alcohol) + (1))) ∧∧ 1))

70 possible++;

72 if (((( alive ) ∧ (((temperature) ≤(25)))) ∧∧ 1))
possible++;

74

// Ask for the system referee to choose which transition to follow

76 // choosed=Referee :: system instance ()→choose( possible );

78 // Delegate the choice to the systemscheduler

choosed=system scheduler→choose(this,possible);
80 if (choosed==1){

// Alcohol producing fermentation

82 float local alcohol =alcohol;
alcohol=(int)((( local alcohol ) + (1)));

84 return;
}else if (choosed == 2){

86 //no production

return;
88

}else{
90 abort();

}
92 }
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94 [...]
void Cell ::update flows(){

96 //Ask for the default environment referee to update the temperature

// this →temperature=Referee :: environment instance ()→choose (100);

98

//Ask for the specific environment scheduler

100 this→temperature=environment scheduler→choose(100);
}
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