
HAL Id: tel-01086142
https://theses.hal.science/tel-01086142

Submitted on 22 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Genomic to Functional models
Macha Nikolski

To cite this version:
Macha Nikolski. From Genomic to Functional models. Computer Science [cs]. Université Sciences et
Technologies - Bordeaux I, 2009. �tel-01086142�

https://theses.hal.science/tel-01086142
https://hal.archives-ouvertes.fr

Numéro d’ordre : 448

UNIVERSITÉ BORDEAUX I
ÉCOLE DOCTORALE MATHÉMATIQUES ET INFORMATIQUE

Laboratoire Bordelais de Recherche en Informatique

From Genomic to Functional models
mémoire présenté par

Macha Nikolski

en vue d’obtention du diplôme de

L’HABILITATION À DIRIGER DES RECHERCHES

Thème : Bioinformatique

Soutenance le 6 octobre 2009

Rapporteurs Thierry Colin Professeur à l’Université de Bordeaux, France
Betül Kirdar Professeur à l’Université de Bogazici, Turquie
Jens Stoye Professeur à l’Université de Bielefeld, Allemagne

Examinateurs Michel Aigle Professeur à l’Université de Lyon, France
Serge Dulucq Professeur à l’Université de Bordeaux, France
Guy Melançon Professeur à l’Université de Bordeaux, France
Pascal Weil Directeur de recherche au CNRS, France

2

Nous aimons la chaleur glaciale des nombres
Et la beauté des dons divins,
Nous comprenons l’esprit gaulois, comme le sombre
Génie orageux des Germains.

Les Scythes par Alexandre Blok

3

4

Contents

Synopsis . 7

1 Introduction 9
1.1 Did you say ’models’? . 9
1.2 Comparative genomics . 11
1.3 Modeling of biological processes . 13

2 Algorithms for comparative genomics 17
2.1 Protein families . 17

2.1.1 Background . 17
2.1.2 Results . 20
2.1.3 Application and Discussion . 24

2.2 Gene fusions and fissions . 26
2.2.1 Materials and Methods . 28
2.2.2 Fusion / fission metric . 29
2.2.3 Results . 32
2.2.4 Discussion . 34

3 Uncovering evolutionary events by rearrangement analysis 37
3.1 Introduction . 37
3.2 Rearrangement scenarios revisited . 38

3.2.1 Preliminaries . 39
3.2.2 Optimal capping . 42

3.3 Ancestral architectures and super-blocks . 43
3.3.1 Preliminaries . 45
3.3.2 Dependent adjacencies . 46
3.3.3 From adjacencies to final assemblies . 48
3.3.4 A Median Genome for non-WGD yeasts . 51
3.3.5 Discussion . 52

3.4 Efficient meta-heuristic for the Median Genome Problem 56
3.4.1 An original population-based local search for MGP 57
3.4.2 Experiments . 59
3.4.3 Conclusion . 63

4 BioRica: dynamic modeling formalism and platform 65
4.1 Introduction . 65
4.2 The BioRica platform . 66

4.2.1 Systems description . 66
4.2.2 System simulation . 68

5

6 CONTENTS

4.3 Transient Behavior in Parametrized Dynamic Models 69
4.3.1 Qualitative Transition Systems . 70
4.3.2 Abstraction of a time series in terms of Qualitative Transition Systems 71
4.3.3 Accounting for noise by comparing critical points 74
4.3.4 Case Studies and experimental results . 75
4.3.5 Discussion and conclusions . 79

4.4 Exploratory simulation of cell ageing . 81
4.4.1 From single cell to population model . 82
4.4.2 Algorithm . 83
4.4.3 Results . 86
4.4.4 Conclusions . 90

Bibliography 92

5 Curriculum vitae 105

7

This document encapsulates the research that I have pursued since 2003 and recaptures the main
results during this period that were obtained by myself and the students that I have supervised. It
has benefited from strong collaboration with fellow researchers, as can be seen in the complete list
of publications (see page 105). It is organized in four chapters having distinct objectives, and thus
varying in form and style.

The first chapter – bearing a quite original title Introduction – has in mind an ingenuous reader
who is not necessarily familiar with the general research domain of bioinformatics and systems
biology. There is absolutely no claim to provide an introduction to these fields, but rather to set some
common reference points that determine the boundaries of my own work.

The second chapter treats a classical but essential topic in bioinformatics, that of uncovering the
common points between related genomes. Precisely, here we study the question of building high-
quality protein families in a computationally efficient way. We then address the question of detecting
gene fusion and fission, a case where alignment-based computation of families will fail.

The third chapter concerns a slightly less classical approach for studying evolution by means of
rearrangement analysis. Here we first revisit the theory of computation of rearrangement analysis,
second propose a new method of analysis of ancestral architectures that reconciles both breakpoint
and rearrangement analyses, and third introduce optimization algorithms that can address this prob-
lem in practice.

In the last chapter I describe the work in construction of dynamic models of living organisms that
exhibits my enduring interest in systems biology. I do not consider the boundary between bioinfor-
matics and systems biology by any means a rigid one: both disciplines essentially being concerned
with building models of living organisms. We propose here a novel high-level modeling framework
integrating discrete and continuous multi-scale dynamics within the same semantics domain. I con-
clude with experimental results using a software implementation of this framework.

A curriculum vitae and a publication list can be found at the end on page 105.

8

Chapter 1

Introduction

1.1 Did you say ’models’?

Everyone knows that computational and information technology has spread like wildfire
throughout academic and intellectual life. But the spread of computational ideas has
been just as impressive.

Biologists not only model life forms on computers; they treat the gene, and even whole
organisms, as information systems. Philosophy, artificial intelligence, and cognitive
science don’t just construct computational models of mind; they take cognition to be
computation, at the deepest levels.

Physicists don’t just talk about the information carried by a subatomic particle; they
propose to unify the foundations of quantum mechanics with notions of information.
Similarly for linguists, artists, anthropologists, critics, etc. Throughout the university,
people are using computational and information notions – such as information, digital-
ity, algorithm, formal, symbol, virtual machine, abstraction, implementation, etc. – as
fundamental concepts in terms of which to formulate their theoretical claims.

Brian Cantwell Smith on "The Wildfire Spread of Computational Ideas", 2003

Erwin Schrödinger pioneered the search for a modern definition of life with his 1943 book “What
Is Life?”. The main question that is addressed in this work is how life defies the laws of physics and
creates order even on the molecular level, while general physics laws on the contrary tend to entropy.
Crick was inspired by Schrödinger’s book for his work on the structure of DNA. Crick’s own work
can be seen as a search for understanding of how a small set of repeating elements can give rise to
a large number of combinatorial products, a mathematical relationship that Schrödinger illustrated
using the Morse Code.

In turn, Erwin Chargaff postulated his famous rules, and in particular on the variability of DNA
composition from one species to another. Chargaff’s rules enabled the grand discovery by Watson and
Crick. Combining these rules with Schrödinger’s code script made it possible for them to conclude
their work by stating lapidarily: "It has not escaped our notice that the specific pairing we have
postulated immediately suggests a possible copying mechanism for the genetic material.”

To this day there is no definition of what life is, as Radu Popa states; indeed, he has found at
least three hundred definitions when researching for his book “Between Probability and Necessity:
Searching for the Definition and Origin of Life” [154]. Nevertheless, at least some consensus is
emerging as to what are necessary features for any living entity: a container, a way to encode and
replicate information, and a way to capture and use energy. Moreover, each one of these features

9

10 CHAPTER 1. INTRODUCTION

relies on the two others. DNA can only exist within a cell membrane, and it depends on metabolism to
get energy for replication. In its turn DNA produces proteins that are building blocks of membranes.
The energy and the genes are stored within the cell, so that the metabolism becomes possible. In its
turn metabolism provides the raw ingredients for genes and membranes.

This example of the definition of what is a living system illustrates the fact that the biological
sciences fundamentally differ from the other physical sciences by a lack of unifying, universally
applicable theories. This results in such features of biological knowledge, as the predominance of
mechanistic and functional explanations over other forms of explanation. At the risk of stating the
obvious, I would like to emphasize that in biology and in its in silico sister sciences such as bioinfor-
matics and systems biology, the effort of modeling is necessarily skewed since in these subjects we
do not fully know what is a model.

Modeling strategies themselves are extremely varied in both the form that they take, which may
be diagrammatic, computational, or mechanistic; and the way in which they bridge between theories
and data. When this modeling is done in silico the models are often said to be formal. With respect
to all the previous observations we can summarize the challenges related to this formal modeling
approach as follows.

• We do not possess complete knowledge of any biological phenomenon.

• Each of the possible modeling approaches represents the phenomenon from a particular point
of view, is necessarily partial, and has the potential to bring answers to questions only in the
frame of this point of view.

• Even worse, here “formal” is a poorly defined term. Depending on the context it can mean
precise, pictorial, abstract, syntactic, digital, etc.

Nevertheless, a common trend towards an increased focus on the formal description of relation-
ships between biological entities, has clearly become predominant in the last decade. These de-
scriptions concern such different objects as evolutionary relationships providing evidence for protein
function, interactions encoding cellular processes, kinetic relationships in the form of rate equations
used to simulate dynamic behaviors of cellular processes, and many others.

Modeling is a process of abstraction and representation of the phenomenon of interest from a
certain point of view, pertinent to the modeler and susceptible to answer the questions that interest
him. The living world is too complex to be modeled in sufficiently accurate detail. Thus we call
for techniques (for example from statistics and machine learning) to detect signals in the data and
separate them from noise. Here “signal” is used in a very general sense and can mean anything
of biological interest – from a sequence alignment exhibiting the evolutionary relationship of two
proteins, to the co-expression of two genes under certain experimental conditions.

The methods of analysis are inexact, and so are the results. This is fundamentally different
from theoretical computer science, where the term “optimum” has a precise definition and you are
either required to compute the optimum solution or, at least calculate the distance from the given
solution to the optimum if the absolute optimal solution is not reached. However, cost functions in
computational biology themselves are inexact. Indeed, notions such as evolutionary distance or free
energy are much too complex to be reflected adequately by easy to define cost functions.

Validating models in biology is also tricky, the main loophole being whether the model can use
the knowledge of the intended outcome, either on purpose or inadvertently. The ultimate test of any
computational biology methods and models is blind prediction without previous knowledge of the
outcome.

Faced with these challenges and inexactitudes, should we stop? The answer is an emphatic
“no”. Perversely, one can argue that the sheer scale of problems we are faced with, is a guarantee of

1.2. COMPARATIVE GENOMICS 11

employment for the years to come. More constructively, the current “mess” is an extremely fertile
ground on which novel techniques and methods for computational and systems biology are about to
blossom. In the rest of this chapter I will go over the particular computational models I have worked
with over the past years, ranging from comparative genomics to modeling of dynamic behaviour.
The same topics will be reconsidered in detail in the chapters that follow.

1.2 Comparative genomics

Fundamentally, the biological sciences address questions of function and of history of living sys-
tems. By function we mean how components of these systems act, and act together, to realize bio-
logical processes; by history, we mean how and by what means these components and their functions
arose through evolution. The goal of comparative genomics is to understand the history and function
of genomes through the comparison of related species. While this goal is inherently biological, the
techniques brought into play are inherently informatic and comprise a domain of scientific study in
their own right.

Genome annotation is the process of associating biological knowledge to sequences. This in-
volves identification of the genes through analysis of the sequence, clustering the genes and other
elements into phylogenetic and functional groups, and integrating heterogeneous data sources into
efficient software tools for exploration, analysis, and visualization. References [175] and [178] pro-
vide an overview of our work.

Sequence analysis using probabilistic models, notably hidden Markov models, are used for syn-
tactic analysis of macromolecular sequences, applying rules derived from models of how the cell’s
transcriptional machinery recognizes and interprets the DNA sequence to predict whether a given
sequence codes for protein, is intronic, participates in gene regulation, etc. Sequence analysis is
also used for alignment, looking for homologous regions in different sequences [3], and can also
look for motifs, common subsequences whose similarity within and between species provides clues
about common mechanisms [188]. Such approaches are essentially statistical and the key chal-
lenges revolve around the gap between knowing the primary structure of the sequence itself, and
understanding the derivative structures such as 3D and 4D conformation that confer true function in
physiological conditions. Sequence analysis is largely studied elsewhere and provides tools that we
use and adapt.

Combinatory analysis, including algorithms for permutations and other word problems, and
graph algorithms are widely used for biological data. Our own work involves combinatorial methods
for reconstructing ancestral genomes inspired by [84, 153, 193], but including biologically-inspired
constraints such as centromere position and a cost model adapted to our models of yeast genome
evolution. Ancestral reconstruction requires three basic steps: identification of common markers in
contemporary genomes, construction of comparative genome maps, and reconciliation of these maps
using parsimony criteria to construct ancestral maps. Common markers can be identified by cyto-
genic methods [167] (such as chromosomal painting) or through genome sequencing and sequence
analysis to find conserved segments of chromosomal homology (an approach pioneered by Pevzner
and others, intuitively similar to the identification of syntenic blocks e.g. [203, 153, 105]). Mathe-
matically, comparative maps are constructed by representing each genome as a signed permutation
of the common markers. Computational reconciliation of comparative maps is formulated as the
multiple genome rearrangement problem [163, 84]: given a set of N contemporary genomes and a
distance d, find a tree T with the N genomes as leaf nodes and assign permutations (plausible ances-
tral architectures) to internal nodes such that the sum of the pairwise rearrangement distances along
the branches is minimized. When N = 3 this is called the median genome problem. Methods using

12 CHAPTER 1. INTRODUCTION

the breakpoint distance [133] and the rearrangement distance [84] were developed respectively by
Sankoff and Blanchette [162], and Bourque and Pevzner [23]. In either case the problem has been
shown to be NP-complete ([28, 152] for the breakpoint distance, [33, 34] for the rearrangement dis-
tance), leading to the need for approaches that treat this as an optimization problem in the space of
genome rearrangements. A key advantage of my approach is that it gives the means to explore rear-
rangement scenarios that are suboptimal with regard to the mathematical formulation, but possibly
more reasonable with regard to biological constraints.

Through structured comparisons of contemporary genomes, it is possible to project a network
defined on the genome of a reference species to the genome of a new species using a variety of
mathematical techniques. Metabolic reconstruction typically starts with a database of biochemical
pathways, where the metabolic network is decomposed into a a set of reactions linking enzyme and
substrate nodes of the graph. An annotated genome is then used to determine which reactions may
be present in the given species, first by assigning homologous genes identified by gene conservation
to enzyme nodes, then by gap filling to find unassigned genes that may play missing roles in the
reconstructed reactions. Gap filling typically uses the connectivity of the upstream and downstream
reactions to search for likely candidate genes, then filters them using a machine learning approach
or manual curation [103, 76, 5]. The resulting reactions can be represented as a stoichiometric
matrix, where each column is a substrate that may appear in a reaction, and each row describes the
quantitative relationship between substrates defined by a reaction. The set of equations defined by
this matrix can then be submitted to a number of analyses, including elementary modes [169] and
extreme pathways [168] (see [148] for review), and flux balance analysis [204, 21].

A central element of our approach is the use of homology relations between genes supported
by consideration of a large number of genomes and a wide range of evolutionary distances, which
permits the extrapolation of approximate networks from those of a reference organism (in this case
Saccharomyces cerevisiae). Resulting networks are then post-processed using genome coherency
rules and gap-filling, and analyzed using graph theoretic techniques[97].

Consensus clustering Broadly speaking, data-mining methods seek to find meaningful patterns
in volumes of data, ideally patterns that are both previously unknown and useful for some applica-
tion. We can contrast this with data integration, where the goal is to link related information in a
semantically coherent way.

Clustering is a widely used data-mining technique whose goal is to learn a set of classes or cate-
gories for the given data, without an predetermined idea of what those classes will be. Its utility for
applications in computational biology stems from widespread use of “guilt by association” reason-
ing: phenomena that appear under the same conditions in a experiment often take part in a common,
unknown mechanisms of biological interest. Many varieties of clustering algorithms for biological
data have consequently been developed, and in large numbers (see [12] for review), which leads to
an important practical problem: how to decide which algorithms, or which learning parameters, to
use for a given application?

We have addressed one part of this problem through the development of techniques for cluster-
ing ensembles, where the goal is to combine the strengths of a chosen set of different (presumably
complementary) clustering techniques. This can be formulated as a search for a median partition Π
that minimizes S =

�k
i=1

d(Πi,Π), given k partitions Π1, . . . ,Πk and a distance function d. The
first mathematical treatment goes back to Régnier [157], and [14] shows that the general problem is
NP-complete. If the partition Π of the dataset D, |D| = n to discover is not necessarily one of the
original partitions Π1, ...,Πk, then the size of the potential search space corresponds to the Bell num-
bers [17]. Heuristic approaches have been developed for this inherently intractable problem: exact
methods using cutting planes [77], co-association methods [63], voting approach [197], information-

1.3. MODELING OF BIOLOGICAL PROCESSES 13

theoretic approach [126], hypergraph partitioning methods [190] and using mixture models [196].
The solution we have developed [143] is tailored to the specific problem of consensus clustering

for protein families, where in our application n = 50 000 but singleton families (containing only one
protein) are allowed. The approach uses a compact bipartite graph encoding of the confusion matrices
of pairwise comparisons between two input partitions Π1 and Π2, where nodes are clusters in one
or the other inputs, and edges indicate that the two clusters have an element in common. Choice
of a consensus among the k partitions can be made by choosing within the connected components
of the confusion matrix, in such a way as to cover all the initial elements. Such a choice can be
formulated as an instance of minimum exact cover (MDC), also NP-complete [68]. Since we allow
singleton families we can further relax the problem to minimum inexact cover. In [143] we define an
efficient heuristic running in low-order polynomial time that uses a Condorcet election procedure to
choose an inexact cover that minimizes inter-partition distance while maximizing cluster similarity.
Through collaboration with the UniProt consortium (Georgetown) we have evaluated our results
through comparison with the PIR-SF curated classification of proteins; very high agreement was
obtained for families conserved across phyla, and the other differences could be reconciled with a
refinement into lineage specific families. In additional to refining these classification methods, it is
necessary to develop new ones that take into account relations between genes that are not ‘tree-like’,
arising for example from gene fusion and fission events. We studied these events using an approach
based on multiple alignments in [52]

1.3 Modeling of biological processes

Hierarchical models. A recurring challenge for in silico modeling of cell behavior is that hand-
tuned, accurate models tend to be so focused in scope that it is difficult to repurpose them. Hierarchi-
cal modeling [4] is one way of combining specific models into networks. Effective use of hierarchical
models requires both formal definition of the semantics of such composition, and efficient simulation
tools for exploring the large space of complex behaviors. The major difficulty in applying hierarchi-
cal modeling to biological systems is the definition of criteria for demarcating components in order
to guarantee a certain level of autonomy. Even though a multitude of methods for decomposition
of networks into modules has been suggested, the specification of these functional units is a chal-
lenge. As of today, they are most often defined from textbook-driven decomposition into components
realizing a certain function.

Biological processes take place at different tim -scales, for example, transforming metabolites is
fast, while synthesising enzymes is slow. If modelled by ODEs, this multi-scale problem in time is
known as stiffness [27]. It is the fast time-scaled reactions that are stable, but it is the slow reactions
that determine the trajectory of the system. If done naively, a simulation will have to use extremely
short time steps (which implies long simulation times) due to the fast time scales. Hierarchy can
be seen as a way to overcome this issue. Indeed, simulation of hierarchical systems can be done
efficiently by having dedicated solvers for processes at different granularities. Whenever a multi-
component system is modelled, a precise semantics for module composition has to be provided in
order for the model to hold as a whole.

Stochastic models. Recognizing conditions when stochastic effects in cellular processes are im-
portant is a challenge. While the deterministic representations such as ODEs may be appropriate for
some systems, it has been recognized that stochastic kinetics can produce significant variations in
gene expression, especially considering the typically low concentrations of reactants [125, 6]. How-
ever, simulating stochastic kinetics comes at a great computational cost since the exact procedure

14 CHAPTER 1. INTRODUCTION

simulates every reaction [72], and even taking into the account recent improvements [71, 31, 32]
real-sized systems can not be treated by this approach. A related observation is that in a cell quanti-
ties of different molecules vary greatly, and while it is reasonable to model processes involving small
quantities of molecules by stochastic processes, when large quantities are involved, ODE models
provide a solution that can be efficiently simulated. Pragmatically speaking, the question is then,
how to switch for a given process from one kind of model to another, when the quantities of involved
molecules reach certain thresholds.

Two possible directions for solving the inefficiency of the simulation of stochastic systems can be
considered. First, design more efficient numerical algorithms for simulating large stochastic systems.
Second, use formal methods model analysis techniques that circumvent simulation altogether.

The behavior of a stochastic system is generally studied from a transient or a steady-state point
of view [198, 122, 10]. Transient analysis aims at providing measures like the state distribution
given a timed horizon, the mean time to reach a subset of states characterized by some property,
etc. Steady-state analysis aims at deciding whether one or more steady state behaviors exist, what
are the probabilities to reach a particular steady-state behavior, what are the associated steady state
distributions, etc. In the last decade, these two approaches have been unified and extended by the
introduction of quantitative temporal logics equipped with model-checking algorithms. Besides ex-
pressing the above properties, such logics also specify path properties that are of particular interest
in the framework of this project. For instance, one can determine the probability that event “fermen-
tation stop” occurs in some interval after certain previous events related to the environment [9, 47].

Among the techniques developed to obtain quantitative measures, simulation [161] presents ad-
vantages (no special requirement on the stochastic process, reduced space complexity, etc.) and
drawbacks (time complexity, inability to efficiently manage the steady-state behaviors, etc.). Thus it
is critical to design alternative methods as a complementary way for the analysis of dynamic systems
[70, 117, 118, 81, 80]. However such design has to deal with the following verification challenges,
that can be seen as combinatorial explosion problems arising from the complexity of the qualita-
tive behavior of the system, from the multiple time-scales of the events, and from the fact that the
distributions associated with the events may require enlarging the state description.

Qualitative behavior. Accounting for unknown gene functions and/or interactions, is hard as was
shown by [206]. The authors speculated that genetic regulatory networks have evolved their connec-
tivity to become robust to alterations in kinetic parameters. This means that the qualitative behavior
is essential in order to understand the system as a whole, while the accurate values of the kinetic
parameters are of secondary importance. Indeed a consensus on this point is forming in the research
community [165], which suggests that the time is ripe for moving from simulation only towards more
symbolic model analysis methods.

Behavioral analysis of models has been extensively studied in the context of formal verification
of hardware and software systems. In this context, models are usually non-deterministic automata
equipped with variables ranging over finite or infinite domains. Formal verification does not face
theoretical limitations (i.e. it is decidable) for finite-state models. However this approach is in
practice limited by the so-called state explosion problem: the size of the model’s state space, which
must be explored by the verification tool, is (at least) exponential in the number of variables. The
introduction of symbolic techniques [29] was a major breakthrough in this field, and today models
with several hundreds of Boolean variables can be verified.

Approximation techniques have been developed in order to extend the reach of formal verification
to larger models that are not amenable to standard symbolic verification. These models might be
finite-state (but with too many states) or infinite-state, such as automata with (unbounded) integer
variables. The two main approaches are abstract interpretation, which reduces reachability problems

1.3. MODELING OF BIOLOGICAL PROCESSES 15

to the least fixpoint of some operator on the state space, and simplifies the computation by lifting this
operator to some abstract, simpler domain; and abstraction refinement, which, for a given property
to verify, abstracts away from details that are not relevant to that property.

BioRica modeling platform Instead of modeling individual processes individually de novo, we
claim that a sustainable effort in building efficient behavioral models must proceed incrementally. In
order to leverage existing models when building new ones, it is necessary to provide reliable means
for connecting them. Connections must be on the basis of biologically pertinent elements (such
as metabolites or signalling), must respect a formal semantics so that the meaning of the combined
model is sensible, and must avoid when possible an explosion in complexity. The goal of the BioRica
platform is provide modeling middleware that meets these requirements in a pragmatic way.

A central point of model merging is the semantics of the models, both in the biological and
computational senses. When biologists combine models by hand, they are aware of the meanings
of the variables and parameters for individual models. A computer program of course needs this
information in an explicit form via controlled vocabularies and biological ontologies. But more
importantly, these models have to be compiled into an unique operational semantics in order for
the whole model to have a meaning. Defining and simulating such models represent a significant
challenge. Most biological models are described using ODEs and, in practice, combining uncoupled
ODEs is not obvious. Co-existence of different kinds of ODEs can lead to multi-scale models, that
are computationally inefficient. Composition of models that use discrete formalisms can lead to
semantic incompatibility.

BioRica [79] is a high-level modeling framework integrating discrete and continuous multi-scale
dynamics within the same semantics domain, while offering an easy to use and computationally
efficient numerical simulator. It is based on a generic formalism that captures a range of discrete
and continuous formalisms and admits a precise operational semantics. BioRica models have a
corresponding compositional semantics in terms of an extension of Generalized Markov Decision
Processes. This semantics allowed us to prove that BioRica models admit an operational semantics
in terms of continuous stochastic processes, and that this operational semantics is correctly simulated
by the discrete event stepper used during numerical simulation.

BioRica programs are hierarchical and are built by connecting and composing simple units called
nodes. Nodes are basically a set of variables and a set of events, that can modify the content of
variables. The dynamics of a node is described by a set of events. It is also possible to describe
more complex behavior by associating to any event timing and stochastic information. Systems are
built when connecting and composing nodes, following the object-oriented paradigm. Three different
kinds of composition are possible in BioRica: parallel composition, synchronized composition and
flow connections.

Biological process dynamics as found in the literature are mostly described using sets of Ordinary
Differential Equations. A BioRica node containing ODEs relies on the separation of discrete events
from the timing functions that trigger these events. The latter rely on classical numerical integration.
These functions solve internally the ODE system and output the time delay before the next discrete
event. This allows for direct composition of BioRica nodes with ODE systems.

In a collaboration with M. Cvijovic and E. Klipp, we demonstrated the advantage of the BioRica
hierarchical approach[42]. In this study, a continuous single-cell ODE model of inheritance of oxida-
tively damaged proteins was hierarchically combined with two levels of discrete controllers, main-
taining mother-daughter cell relations and cell-population relations. Large-scale simulation up to cell
senescence revealed lineages with a cell rejuvenation effect, experimentally verified by M. Cvijovic
in the lab of T. Nyström (article in press).

While combination of discrete and continuous ODE models is a significant step forward, fu-

16 CHAPTER 1. INTRODUCTION

ture work must address combinations with other kinds of continuous process such as metabolic flux
analysis.

Chapter 2

Algorithms for comparative genomics

2.1 Protein families

Reliable identification of protein families is key to phylogenetic analysis, functional annotation and
the exploration of protein function diversity in a given phylogenetic branch. As more and more com-
plete genomes are sequenced, there is a need for powerful and reliable algorithms facilitating protein
families construction. In fact, the diversity and complementarity of existing clustering algorithms
forms a challenge when choosing an effective method

We have formulated the problem of protein family construction as an instance of consensus clus-
tering, for which we designed a novel algorithm that is computationally efficient in practice and
produces high quality results. Our algorithm uses an election method to construct consensus families
from competing clustering computations.

Our consensus clustering algorithm is tailored to serve the specific needs of comparative ge-
nomics projects. First, it provides a robust means to incorporate results from different and com-
plementary clustering methods, thus avoiding the need for an a priori choice that may introduce
computational bias in the results. Second, it is suited to large-scale projects due to the practical ef-
ficiency. And third, it produces high quality results where families tend to represent groupings by
biological function.

2.1.1 Background

Overview

When confronted with computation of protein families, one must decide which algorithm to use,
evaluate the quality of the result, and decide which computed families–if any–correspond to real
protein families. We argue that it is the comparison of different results that produces the set of the
most plausible families.

Algorithmic means for establishing protein families on a large scale are based on a notion of
similarity. Often the only available similarity is sequence similarity; some authors go so far as to
define the notion of a protein family itself via the similarity of sequences [48]. Use of structural
similarities [89] is currently limited by the relatively small number of structures available in PDB
[19], but by studying sequence variation among members of such families [110] one can guide the
use of sequence similarity information.

To perform similarity-based detection of families one first selects the pairwise similarities to
be used and then applies an algorithm that uses these similarities to group proteins into families.
Algorithms for detection of protein families are unsupervised (see for example [201]) or supervised

17

18 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

(see for example [78, 16]) learning procedures. Pairwise similarities can be provided by sequence
alignments (BLAST [3], Smith-Waterman [183]) or by more sophisticated approaches using domain
architecture databases [15, 171, 132]. Other approaches use domain order as a fingerprint for the
protein [69].

Methods that quantify similarity by using some attribute of the best BLAST hit and use single-
linkage clustering are not always successful. Such straightforward approaches may group together
dissimilar multidomain proteins that share a common domain [194], and can be fooled by promiscu-
ous domains [49, 121]. Several graph-based methods have been proposed to overcome some of these
limitations of single-linkage clustering [124, 57, 56].

Reliability of computed clusters has been assessed by e.g. Zhang and Zhao, who study the
reliability of hierarchical clusters from gene expression data [216] and propose a resampling algo-
rithm for building a consensus tree; and Van Dongen in [202] who introduces criteria for evaluating
clustering results using a novel inter-cluster distance. It must be noted that the quality of a protein
family computation cannot be truly assessed in the absence of an objective external criteria based on
biological knowledge.

Here we describe a method that integrates results of multiple classifications in a single scheme,
using an election algorithm. First, we formulate the problem as an instance of consensus clustering.
We propose a heuristic that efficiently realizes the computation in practice. Finally, we compare our
method to others, and illustrate the quality of results in the case of protein families computed for
Génolevures Hemiascomycetous yeasts.

Agreement between clusterings

Definition 1 A clustering Π is a partition of a data set D = {di} into disjoint subsets Π1, ...,Πk

called clusters, such that D =
�k

1
Πi.

In what follows we will use the terms clustering and partition, and cluster and subset, interchange-
ably.

Let the number of elements in D and in cluster Πi be n and ni respectively. Let Π� be a second
partition of D, Π� = {Π�

1
, ...,Π�

k�}, with cluster sizes n�i.
Most criteria for comparing clusterings are based on the confusion matrix [111] which measures

the size of the intersection between the clusterings.

Mii� = |Πi ∩Π�
i� |

Traditional measures of the proportion of agreements between two clusterings are the Rand index
[156] and the Jaccard index [98]. As the expected value of the Rand index does not take a constant
value1, the adjusted Rand index [92] it preferred; it assumes the generalized hypergeometric distribu-
tion as the model of randomness, and provides an index bounded above by 1 with constant expected
value 0.

A well-known measure on the space of partitions is the equivalence mismatch coefficient emc
([129] p. 241), which is precisely the Hamming distance for binary vectors if the set of all pairs
�di, dj� is enumerated, and a partition is represented by a characteristic vector defined on this enu-
meration. One may interpret emc in terms of edge numbers of complete graphs, where it represents
the number of node moves needed to convert one partition into another.

Another category of criteria for comparing clusterings is based on set cardinality. The projection
number π of Π onto Π�, defined as πΠ(Π�) =

�
i maxi� Mii� , is an asymmetric index of the degree

1When the cluster size is small, the Rand index tends towards 1 as the number of clusters increases

2.1. PROTEIN FAMILIES 19

of refinement of one partition versus another. The same index normalized by n is introduced in [18],
and a symmetric version is defined in [126]. Laresen and Aone [115] use the following asymmetric
criterion:

L(Π,Π�) =
1
k

�

i

max
i�

2Mii�

ni + ni�
.

Based on the projection number van Dongen introduces a distance [201] between two partitions Π
and Π�:

d(Π,Π�) = 2n− πΠ(Π�)− πΠ�(Π) . (2.1)

This gives the shortest distance between Π and Π� in a certain undirected weighted graph constructed
on the set of all partitions of D, where two partitions are connected by an edge if one can be obtained
from the other by joining two of its sets. The weight of the edge is the size of the smallest of two
sets. In this construction d(Π,Π�) is the length of the shortest (weighted) path between Π and Π�.

Consensus clustering

Combining the strengths of different clustering algorithms is the focus of research on clustering
ensembles. This problem can be seen as finding the median partition with respect to given partitions.
Consensus clustering (CC): Given k partitions, Π1, ...,Πk, find a consensus partition Π that mini-
mizes S =

�k
i=1

d(Πi,Π) where d is a distance.
The first mathematical treatment goes back to Régnier [157], where the problem was transformed

into an integer problem and a branch and bound solution was proposed. The problem is proven to be
NP-complete [14]. Wakabayashi gives an in-depth analysis of the median partition problem in [208]
and concludes that approximating relations with a transitive one is NP-complete in general.

CC is NP-complete in general, yet it is not known whether it is NP-complete for any particular
k. The case of k = 1 is trivial. The case of k = 2 is also simple since any of the partitions solves the
problem optimally. Nothing is known for k ≥ 3.

If the partition Π of the dataset D, |D| = n to discover is not necessarily one of the original
partitions Π1, ...,Πk, then the size of the potential search space corresponds to the Bell numbers [17]
or equivalently to the sum of Stirling numbers of second kind for all m, 1 ≤ m ≤ n (see [109] on
[189]).

In light of its hardness, exactly solving large instances of CC is intractable. Even so, exact
methods have been implemented. Grötschel and Wakabayashi [77] give a cutting planes solution,
which works well for n in the hundreds.

A variety of approximations have been applied to this problem. For example Filkov [61] proposes
a simple approximation that works by dramatically reducing the search-space.
Factor-2 approximation: Given an instance of CC, select a partition Π among partitions Π1, ...,Πk

that minimizes S =
�k

i=1
d(Πi,Π).

The time complexity is O(k2n) since it takes O(n) to compute the distance between any two
partitions, and there are O(k2) pairs. This algorithm is a factor-2 approximation to CC.

Many heuristics based on local search have been studied in application to CC, such as simulated
annealing that explores the search space by one-element moves, and a greedy algorithm [61].

The problem of finding a consensus clustering can be approached from a graph-based, combina-
torial or statistical perspective. Several methods exist for discovering a consensus clustering solution
from many multiple partitions: co-association methods [63], voting approach [197], information-
theoretic approach [126], hypergraph partitioning methods [190] and using mixture models [196].

20 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

2.1.2 Results

Comparing protein families

Given a set of m proteomes P1, ..., Pm, we are interested in computing the protein families. A
proteome P = {pi} is defined as a set of proteins. The universe of proteins P is defined over the
proteomes under study as P =

�
Pi. In what follows we suppose that a protein p can appear only in

one proteome, and that only once2.
As described earlier any method for protein family computation first selects the support data, then

computes the families. We suppose that the filtering algorithm3, α, defines a subset Pα =
�

Pα
i ⊆

P , the set of proteins over which a family computation will be performed.

Distance and similarity

Definition 2 A family computation F over Pα defines a partitioning of Pα into disjoint subsets
F = {f1, ..., fk} such that Pα =

�
fi. The subsets fi are called families.

Given two family computations F 1 = {f1

1
, ..., f1

k1
} over P α1 and F 2 = {f2

1
, ..., f2

k2
} over Pα2 ,

the confusion matrix can be used to measure the similarity:

Mij = |f1

i ∩ f2

j |, f1

i ∈ F 1, f2

j ∈ F 2.

Note that the fact that relative complements P α1 \ Pα2 and Pα2 \ P α1 may not be empty is not
a problem since the only implication is that certain Mij values will be 0.

The confusion matrix can be equivalently represented by a bipartite graph in a straightforward
manner. Let FRel = �V,E�, where the vertex set V = V 1 ∪ V 2 is labeled by family names in F 1

and F 2 respectively, and the E is the set of edges weighted by the values in Mij where Mij > 0.
That is, for two families f1

i ∈ F 1 and f2

j ∈ F 2 with an element in common, two vertices with labels
f1

i and f2

j are created as well as an edge e = �f1

i , f2

j � such that w(e) = Mij .
Given a graph FRel, its strongly connected components {c1, ..., cm} represent relationships be-

tween families in F 1 and F 2.

Definition 3 The similarity score of a strongly connected component c = �V 1
c ∪ V 2

c , Ec�, where
V 1

c ⊂ V 1, V 2
c ⊂ V 2 and Ec ⊂ E is

s(c) = max
e∈Ec

w(e). (2.2)

The similarity score for FRel is defined as

s(FRel) =
1
n

�

1≤i≤m

s(ci). (2.3)

This measure is symmetric and provides information on what is preserved between two family com-
putations.

2Since we are only interested in families, we do not introduce any information about the genes coding for these proteins
(chromosomes, relative positions, etc.), in this way, a simple set-based approach is sufficient

3Even if the filtering criteria are not the subject of this study, it must be noted that they have a great impact in practical
applications since they affect the distance/similarity values

2.1. PROTEIN FAMILIES 21

Making a choice The basic case we have just considered consists of two family computations F 1

and F 2. Connected components {c1, ..., cm} define all the local distances between families in two
original partitions. Let us suppose that the comparison FRel1,2 has exactly k non-singletons (indices
[1..k]): {c1, ..., ck, ...cm}.

Having made the comparison FRel1,2 how do we choose the families that will form the solution?
We propose to consider solutions locally, connected component by connected component, using
exclusively families in F 1 or in F 2. That is for a non-singleton component c = �V 1

c ∪ V 2
c , Ec� we

are only allowed to pick either V 1
c or V 2

c . The rationale behind this choice strategy is that we are not
allowed to invent classifications ab initio, but only to choose between the existing.

Definition 4 A family choice F c is defined by {V c1
1

, ..., V ck
k } ∪ {Vk+1, ..., Vm}, where c is a vector

of size k with elements taking values in [1, 2].

A family choice F c defines a partition of a certain subset of the protein set P, namely the partition
containing proteins of the families in F c. The number of family choices is equal to the number of
different vectors c of size k, that is 2k.

Lemma 1 For any two family choices F c�
, F c�� their cumulative distances to the original partitions

F 1 and F 2 are the same, that is d(F c�
, F 1) + d(F c�

, F 2) = d(F c��
, F 1) + d(F c��

, F 2).

Proof: For any family choice F c the cumulative distance is d(F c, F 1) + d(F c, F 2) =
�m

1
d(ci)

where m is the number of connected components in the family relationship graph FRel1,2.

Definition 5 A reference set is the set of connected components C used as the choice basis for the
final partition.

Lemma 1 indicates that all the consensus choice partitions are equivalent wrt. the reference set.
This implies that the concrete choice is dependent on the needs of the application (see for a discussion
section 2.1.3).

Consensus for families

Let us consider n family computations {F 1, ..., Fn} over their respective support sets of proteins
Pα1 , ..., Pαn . We denote by F =

�
F i the set of all families.

Rules of the game Having made all the n(n − 1)/2 possible comparisons FReli,j , how do we
exploit this result for families computation?

As CC is NP-complete, the key to the approximation algorithm is to reduce the search-space.
We propose to do so by only considering the families belonging to F in the manner analogous to the
discussion in section 2.1.2.

Then any acceptable solution F is composed only of the families from F that are disjoint, that is
∀f i, f j ⊂ F, f i ∩ f j = ∅. In this manner an acceptable solution defines a partition of some subset
of P. The set of all acceptable solutions F is a subset of the powerset of F, F ⊂ 2F. The inclusion is
strict since only empty intersections are accepted. Thus we have |F| < |2F| = 2|F|.

While the size of F is dramatically smaller than the whole search-space (whose size is equal to
the n-th Bell number), this reduction of search-space is not sufficient and the corresponding exact
algorithm remains NP-complete.

22 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

!!""""""#$"%"&"'(""#)"*"+",(""#-"."/"0(""#1"2"3"4(

!5""""""#$"%"+",(""#&"'(""#)"*(""#-"."1"2(""#/"0(""#3"4((

!6""""""#$"%(""#&"'(""#+",(""#-".(""#1"2(""#/"0"3"4"7(

89)0!"#

89)0!"$

89)0#"$

#$"%"&"'(#)"*"+",(#-"."/"0(#1"2"3"4(

#$"%"+",(#&"'(#)"*(#-"."1"2(#/"0(#3"4(

#$"%(#-".(#1"2(#/"0"3"4"7(

#$"%"&"'(#-"."/"0(#1"2"3"4(

#&"'(

#$"%"+",(#&"'(#)"*(#-"."1"2(#/"0(#3"4(

#$"%(#+",(#-".(#1"2(#/"0"3"4"7(#&"'(

#$"%"&"'(#)"*"+",(#-"."/"0(#1"2"3"4(

#$"%"+",(#&"'(#)"*(#-"."1"2(#/"0(#3"4(

#$"%(#+",(#-".(#1"2(#/"0"3"4"7(

#$"%"&"'(#)"*"+",(#-"."/"0(#1"2"3"4(

#&"'(

#$"%"+",(#&"'(#)"*(#-"."1"2(#/"0(#3"4(

#$"%(#+",(#-".(#1"2(#/"0"3"4"7(#&"'(

"! "5

#+",(

#)"*"+",(

#! #5

#6

#:

#;

#<
#=

#> #? #!@

#! #5

#6

#:

#;

#<
#=

#> #? #!@

(a) family computation F 1, F 2, F 3

(b) Pairwise comparison FReli,j

(c) Maximal conflict region Rj

∀F i, F j compute FReli,j

∀ components
{ci} compute
maximal conflict
region Rj

Figure 2.1: (a) Family computations
F 1, F 2 and F 3 are first compared pairwise
and (b) comparison graphs FRel1,2,FRel1,3

and FRel2,3 are built. In the second step,
(c) maximal conflict regions R1 and R2 in-
volving all the connected components ci of
graphs FRelij are constructed.

2.1. PROTEIN FAMILIES 23

Definitions
Definition 6 A protein p ∈ P belongs to at most n distinct families in F defined by function ϕ:

ϕ : P → 2F, ϕ(p) = Fp = {f ∈ F i | p ∈ f}, |Fp| ≤ n.

Let us now consider all pairwise comparisons FReli,j . A comparison graph FReli,j can be de-
composed into its mi,j connected components as defined in section 2.1.2, Ci,j = {ck}, k ≤ mi,j .
The set of connected components over all of the comparison graphs is defined as

C =
n(n−1)/2�

1

Ci,j = {ck}, k ≤
�

mi,j .

Definition 7 A family f can appear in at most n(n − 1)/2 distinct connected components in C
defined by function κ.

κ : F → 2C, κ(f) = {c | f ∈ c}.
We call the set Cp the set of p-components.

Then, for a protein p we can define by composition the set of p-components as the set of all
connected components where p is a member. We will denote this function σ = ϕ ◦ κ.

σ : P → 2C, σ(p) = {c | ∃ f ∈ c s.t. p ∈ f}
Note that for Cp, the inverse image given by σ induces a set of proteins P = {pi} = σ−1(Cp) such
that all pi ∈ P belong to some family f that itself belongs to a component c ∈ Cp. We will call this
set of proteins a support set for a given p-component.

We say that two sets of p-components Cp and Cq have an intersection, noted by Cp ∩Cq �= ∅, if
their corresponding support sets have an intersection, that is σ−1(Cp) ∩ σ−1(Cq) �= ∅.

Definition 8 For a given FReli,j , we say that a set R ⊂ 2C is a conflict region if and only if ∀ ck, cl ∈
R, ck ∩ cl �= ∅. We say that a conflict region R is maximal if and only if ∀ cm ∈ C such that cm /∈ R
and ∀ ck ∈ R, cm ∩ ck = ∅.

Consensus Let R be the set of all maximal conflict regions. A conflict region R has a support
set of proteins PR ∈ P, PR =

�
c∈PR

σ−1(c). PR has n subsets (n being the number of family
computations) defined by P i

R = {ϕ−1(f) | ∃ c ∈ R s.t. f ∈ c and f ∈ F i}, each corresponding to
the proteins belonging to families of a particular family computation F i.

Consensus clustering over the reduced search space defined in section 2.1.2 can be reformulated,
using the definitions of section 2.1.2, in terms of minimum set cover. The idea is to cover exactly
one of the sets among PR and {P i

R} with the support sets of the connected components constituting
a given conflict region. A cost function w on C can be given by the van Dongen distance (equation
2.1) or our similarity score (equation 2.2), for example.

Minimum exact cover (MDC): Let R be a maximal conflict region. Let PR and {P i
R} be the

support set of proteins of R and the family computation-specific sets of proteins, respectively. We
denote by Pc = σ−1(c) the support set of proteins for a connected component that is included in the
region R. Find a subset of connected components C ⊆ R such that: (i) every protein from

�
Pc, c ∈

C appears in one and only one of Pc
4, (ii) there exists P among PR and {P i

R} entirely covered by
the support sets in C, that is P =

�
Pc, c ∈ C, and (iii) C minimizes S =

�
c w(c), c ∈ C.

The consensus family computation can then be defined as a MDC solution for all R ∈ R. This
problem is a variant of minimum cover problem with an additional condition for the sets to be dis-
joint, and is known to be NP-complete [68].

4That is for any ci, cj ∈ C, their intersection is empty.

24 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

Efficient heuristic Two further relaxations make the problem tractable. First, we do not require to
have all the n(n − 1)/2 comparisons. Second, we do not require to have an exact cover. It is the
second criterion that allows our heuristic to run in polynomial time. The obvious consequence of
this relaxation is that not all of the proteins in P will be found in the result. This is not an issue in
the context of protein families since there is no reason to suppose that all proteins from P belong to
families of cardinality higher than 1.

Let us consider n family computations and m ≤ n(n − 1)/2 family comparisons FReli,j . Each
element ci ∈ C has a distance (say, van Dongen distance) value di and a similarity value si. Starting
from the maximal conflict regions in R we build a conflict graph.

Definition 9 For family comparisons FReli,j we define a conflict graph G = �V,E� as follows.

• The vertex set V is labeled by elements from C, and we have |V | = |C|.

• The edge set E is defined by all non-empty intersections between connected components
ci, cj ∈ C, that is e = �ci, cj� ∈ E if and only if ci ∩ cj �= ∅.

We distinguish two disjoint classes of edges E = Ep ∪ Ef , those that are only based on proteins Ep

and those that correspond to families Ef . The latter means that there is a non-empty intersection on
the level of families, that is κ−1(ci)∩ kappa−1(cj) �= ∅, while the former is the complement E \Ef .

By construction the set of connected components of G is exactly the set of conflict regions R.
The consensus computation works by resolution of conflicts for all connected components of a

conflict graph G and is given in the algorithm 1. The conflict resolution is done by a voting procedure
vote.

Complexity The complexity for computing strongly connected components is known to be O(V +E)
for a graph G = �V,E� [192]. The Condorcet election complexity is O(p2) for p voters (that is the
number of proteins in a given conflict region). Let us denote by m the largest set out of n family
computations: m = maxi |F i|. The largest possible conflict region will involve all proteins in P.
The worst-case complexity of algorithm 1 is then n2O(m2) + O(|P|2).

2.1.3 Application and Discussion

Algorithm 1 has been used to calculate protein families for Saccharomyces cerevisiae and the 8 fully
sequenced species of Hemiascomycetous yeasts in the context of the Génolevures project [51, 178].
The following is a summary of the key steps in this application.
Data, alignments and filtering The data consists of 5 proteomes of S. cerevisiae, Candida glabrata,
Kluyveromyces lactis, Debaryomyces hansenii and Yarrowia lipolytica. These proteomes taken to-
gether comprise the total set of proteins |P| = 49145. We produced complementary alignments using
Blast and Smith-Waterman filtered according to scoring criteria5 and an approximation to homeomor-
phy (see [214]). These criteria produce four datasets of pairwise similarity: PSH corresponding to
Smith-Waterman homeomorphic alignments, PSNH to Smith-Waterman alignments without the re-
striction of homeomorphy, PBH corresponding to Blast homeomorphic alignments and PBNH to Blast
non-homeomorphic alignments.
Clustering TribeMCL software [56] was used for clustering. Three different inflation coefficients
(1.2, 2.4 and 4.0) have been applied to each dataset, thus resulting in 12 different clustering results.
Parameter tuning Four parameters were added to the algorithm 1 in order to make it efficient in
practice. The first three parameters help to break too large conflict regions. The last one realizes the
choice policy.

5Based on statistical analyses not detailed here

2.1. PROTEIN FAMILIES 25

Algorithm 1 Family computation algorithm by weak consensus
Require: G = �V,Ec ∪ Ef � the conflict graph, a voting procedure vote

Let L be an empty list of components
for all C connected component of G do

First, determine Di and Si scores for all components of this conflict region
for all ci vertex in C do

Let Di = 0, Si = 0, n = 0
for all �ci, cj� such that �ci, cj� ∈ Ef do

Di += dj , Si += sj , n++
end for
Di = di + Di/n
Si = si + Si/n

end for
Second, determine votes for all proteins of this conflict region
for all p protein of σ−1(C) do

Let Vp be the set of votes for p that is equal to σ(p) ordered by Di � and by Si �
end for
Let Cw be the result in order of vote(Vp1 , ...,Vpk), where k = |σ−1(C)|
Third, compute the most consensual cover
Let P = ∅ be the set of covered proteins
for all c ∈ Cw in winning order do

if σ−1(c) ∩ P = ∅ then
P = P ∪ σ−1(c)
push L, c

end if
end for

end for
return L

1. Smax is the maximal allowed size of the support protein set for conflict regions.

2. fmax is the maximal number of families allowed in a conflict region.

3. p is the percentile above which families are removed from R; it is determined based on the
distribution of family sizes in a given conflict region R.

4. A choice strategy (c.f. section 2.1.2). Given a connected component c = �V 1
c ∪V 2

c , Ec�, either
systematically choose V i

c such that |V i
c | = max(|V 1

c |, |V 2
c |) or systematically choose V i

c such
that |V i

c | = min(|V 1
c |, |V 2

c |).

The voting procedure vote has been implemented as Condorcet election [45].

Consensus families Various parameter ranges were tested resulting in 256 family computations.
The final result contains 7927 protein families (including singletons). Evaluation of the result was
performed by comparison to manually-curated literature standards, to reciprocal best hit partitions
(RBH) [158], and to Biofacet [73] single-linkage clustering. Results using our consensus method
were qualitatively and quantitatively more satisfying, and have been adopted by the Consortium.

26 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

The first example is provided by families GL3C0253 and GL3R1049, respectively homologs
to RPL24 ribosomal-like protein 24, and homologs to ribosomal protein L30 of the large (60S)
ribosomal subunit. Instead of producing two groups of homologs, RBH clustering produces three
groups corresponding to three species groups.

A second example illustrates the too-large families that are typically produced by blind MCL
or RBH clustering, in this case an impossible family over 500 members. Our consensus algorithm
splits this group into 30 families which are in fact different sets of protein kinases, annotated as
“BCK1 ser/thr protein kinase” (GL3C0408, 18 members), “PKC1 protein Kinase C” (GL3C2603, 9
members), “cytoplasmic serine/threonine protein kinase” (GL3R0210, 21 members), “protein kinase
involved in morphogenesis and septin checkpoints” (GL3C0403, 18 members), “PSK1 and PSK2
proteins, PAS domain containing S/T protein kinases” (GL3R0626, 11 members), etc.

These families were used in a variety of specific studies by the Génolevures Consortium and
were recently expanded as new yeast genomes sequenced [40].

2.2 Gene fusions and fissions

Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose ef-
fects are visible in protein architecture when they occur in coding sequences. Until now, the detection
of fusion and fission events has been performed at the level of protein sequences with a post facto
removal of supernumerary links due to paralogy, and often did not look for events defined only in
single genomes. We propose a method for the detection of these events, defined on groups of par-
alogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes
of 12 fungal species. We collected an inventory of 1680 elementary fusion and fission events. In half
of the cases, both composite and element genes are found in the same species. Per-species counts of
events correlate with the species genome size, suggesting a random mechanism of occurrence. Some
biological functions of the genes involved in fusion and fission events are slightly over- or under-
represented. As already noted in previous studies, the genes involved in an event tend to belong to
the same functional category. We inferred the position of each event in the evolution tree of the 12
fungal species. The event localization counts for all the segments of the tree provide a metric that
depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as
distance in adaptation space is proposed.

As the number of complete genome sequences increases, comparative genomics unveils the
mechanisms of gene and genome evolution. Duplication, sequence divergence, and recombination
are the major mechanisms at work in gene evolution [53]. Recombinational events such as translo-
cation, inversion or segmental duplication can create accidental fusion of DNA sequences associated
with different genes, or conversely the fission of a gene into several parts. Potentially, these events
can create new genes from already existing parts, or reciprocally shuffle genes into sub-parts across
a genome. These rare events participate in the evolutionary history of the species, and must be
taken into account in genome rearrangement models. Methods to inventory gene fusion and fission
events on a large biological scale can provide insights about the multimodular architecture of proteins
[55, 215, 149], as well as a metric between genomes independently of the mutation rate [55, 184, this
work]. Computational detection of fusion and fission events uses sequences from several species,
usually proteome sequences. This implies that the detection is only performed in the coding regions,
a reasonable approximation as non-coding regions evolve faster. After a recombinational event, gene
fusion can occur and is situated either in coding or non-coding sequences. In non-coding sequences,
gene fusion can give rise to the misregulation of the expression of a gene now under the control of
the cis-regulatory sequence of another gene. For instance, the cells in the majority of human prostate

2.2. GENE FUSIONS AND FISSIONS 27

cancers bear a gene fusion where the regulatory sequence of the TMPRSS2 gene controls the coding
sequence of a transcription factor, either ERG or ETV1, resulting in over-expression of this factor
and hence anarchic growth [195]. In coding sequences, gene fusion results in the assembly of a new
gene, thereby allowing the emergence of new functions by the accretion of peptide modules into
multidomain proteins. As an example, the Tre2 (USP6) oncogene emerged from the fusion of the
USP32 and TBC1D3 genes in the hominoid lineage of primates, and it has been proposed that this
has contributed to hominoid speciation [151]. Gene fission splits a gene into several parts and can
be produced by either recombinational events or single base events, such as frameshift and nonsense
mutations. The outcome can be the misregulation of the expression of a gene when a cis-regulatory
sequence is concerned. Due to the fast evolution of non-coding sequences, the detection of fission
events involving such sequences will be out of reach when comparing the genomes of distant species.
Loss of continuity in the coding sequences, produced by any of the above events, can give rise to a
less complex protein by domain depletion, as, for instance, in the monkey king family of genes in
Drosophila species [209]. Gene fission events can also produce pseudogenes [43].

In completely sequenced prokaryotic genomes, fusions occur more frequently than fissions, and
there is no striking bias in the functions of the genes that have undergone these events [184]. The
same conclusions hold true in the three kingdoms of the tree of life, by considering the structural
domains of the proteins [113]. In mammalian genomes, the close evolutionary distances make it
possible to detect fusion and fission events in coding and non-coding sequences; the events between
coding sequences involve genes whose protein products have a significant propensity to interact
[217]. Fusion events between proteomes have been used to predict protein-protein interactions [54,
121] with some degree of success, in particular metabolic enzymes for which stable protein-protein
interactions in one species could be advantageously substituted by the products of fusion events in
other species. Altogether, such large-scale comparisons of proteomes revealed that about 4% of
the proteins are the products of fused genes and 9% are encoded by genes which are fused in other
genomes [55]. These methods work at the level of individual genes, which is an appropriate approach
in prokaryotes as the number of duplicated genes is low.

We present here a large scale computation method for detecting gene fusion and fission events in
eukaryote genomes, even when they have a noticeable amount of internal gene redundancy. Contrary
to the methods published so far, we directly worked at the level of groups of paralogs. We applied
the method to the proteomes of a coherent phylogenetic group of species over a large evolutionary
range. We chose to focus our study on 12 species covering the phylum of fungi in which a number
of complete or near complete genomes are currently available, especially in the group of hemiasco-
mycetes (yeasts). Nonetheless we also chose other ascomycete species as well as basidiomycete and
zygomycete species (table 2.2.1). As the evolutionary distances between genomes are large, even
inside the group of hemiascomycetes [51], the divergence of non-coding sequences is too high [39]
to search for fusion events in them. Since our study is restricted to coding sequences, we employed
complete proteomes to track fusion and fission events. In whole we detected 1103 fusion/fission
events; the number of events in which a species is involved is correlated with the genome size of the
species.

We chose to focus on genome evolution rather than individual domain structure of fusion pro-
teins. Thus we computed the localization of each event in the evolution tree of the 12 fungal species,
on the parsimonious assumption that a fusion or fission event happens once during evolutionary his-
tory [113]. The weighted counts of events localized in each segment of the phylogenetic tree provided
a metric between species, independently of the mutation rate of the genes. From this perspective, it
is apparent that some species have undergone massive genome shuffling.

The events relative to the hemiascomycetes is available in the Genolevures database [178] (http:
//cbi.labri.fr/Genolevures/).

28 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

Phylum Sub-phylum Species Database Reference
Ascomycota Hemiascomycota Saccharomyces cerevisiae SGD [11]

Candida glabrata Génolevures [178]
Kluyveromyces lactis Génolevures [178]
Eremothecium gossypii AGD [87]
Candida albicans CandidaDB [46]
Debaryomyces hansenii Génolevures [178]
Yarrowia lipolytica Génolevures [178]

Euascomycota Neurospora crassa Broad Institute [67]
Aspergillus nidulans Broad Institute [66]

Archeascomycota Schizosaccharomyces pombe Wellcome Trust [213]
Sanger Institute

Basidiomycota Cryptococcus neoformans Stanford Genome [119]
Technology Center

Zygomycota Rhizopus oryzae Broad Institute Rhizopus seq. project(2005)

Table 2.1: The species are listed in order from the Saccharomyces cerevisiae reference and according
to the phylogenetic tree computed by [62].

2.2.1 Materials and Methods

Proteomes The detection of fusion and fission events was performed on the proteomes of species
belonging to the group of fungi, with some emphasis in hemiascomycetes as several complete geno-
mes are available. Only complete, or near complete, genomes can provide sets of protein sequence
data exhaustive enough to allow precise counts of events. Thus we restricted our study to genomes
which were highly covered by sequences (table 2.2.1). When the sequence of a single protein is split
into several entries in the proteome file, we deduced that these were sequences of exons and merged
these entries to avoid false positive artifacts. A small number of sequences were omitted as they were
too short (10 amino-acids or less) to be treated. In some proteomes, a part of the detected events may
nonetheless be spurious, due to the quality of sequences and the accuracy of the gene models used to
predict introns and coding sequences.

Algorithm As stated above, the algorithm works at the level of groups of paralogous proteins and
extracts simultaneously fusion and fission events in several proteomes :

(i) For each proteome, we built a set of paralogous groups (hereafter named P-groups), based
on sequence similarities between proteins. The set of P-groups is thus a partition of the protein set.
Note that a P-group may consist only of one protein. Each P-group has a unique name made with an
acronym of the species and a number; the acronym is built from the first two letters of the genus and
the first two letters of the species, e.g. ASNI-1004 is a P-group of Aspergillus nidulans.

(ii) We then compared all proteomes using an all-against-all comparison of protein sequences.
We filtered out the alignment results and converted each valid similarity relation between two proteins
to a relation between two P-groups. Note that there are relations between P-groups belonging to
different proteomes as well as relations between P-groups of the same proteome.

(iii) The detection of a fusion/fission event requires knowing the extent of the similarity regions
between the relevant P-groups. We thus converted each P-group into a multiple alignment, which was
in turn converted into a Hidden Markov Model (HMM); in the case of a P-group containing a single
sequence, the multiple alignment step was skipped. As HMM-HMM comparisons are very compu-
tationally intensive, we restricted these comparisons to the relation between P-groups determined in
step (ii), and extracted the coordinates of the aligned regions.

(iv) We define an Event as an n-ary relation between P-groups, at least one composite P-group
(hereafter named C-group) and at least two element P-groups (named E-groups), which fulfill three
constraints: the E-groups belong to the same proteome, they align on the C-group, the alignment

2.2. GENE FUSIONS AND FISSIONS 29

regions have no or reduced overlap on the C-group. Obviously, there could be more than one C-
group in an event, as well as more than two E-groups. In [54] the term component was used for
elements.

We considered all the P-groups and their relations, computed in steps (i) and (ii), as a directed
graph where P-groups are nodes and each alignment relation is a pair of edges in opposite orienta-
tions. Using the above definition of an event, we recursively deleted edges of the graph according
to the constraints; when two E-groups had overlapping alignment regions on a C-group, these two
E-groups were merged with regard to their relation with the C-group. The events are extracted from
the resulting graph as connected components (the term component here is used as defined in graph
theory).

(v) At this stage, a parsimonious interpretation of the events from a phylogenetic point of view,
led us to distinguish five types: Fusion events, where a single C-group is linked to E-groups issued
from at least two species (figure 2.2, A); Fission events, where several C-groups are linked to a set
of E-groups coming from a single species (figure 2.2, B); Multiple events, where several C-groups
are all linked to several sets of E-groups (figure 2.2, C); Undecidable events, where a single C-group
is linked to one set of E-groups coming from a single species, this case can neither be interpreted as
a fusion event nor a fission one (not shown); Complex events, where several C-groups are linked to
different sets of E-groups (figure 2.2, D).

(vi) Considering that complex events come from ubiquitous protein domains that are found in
several protein architectures, we split these events into events of the four other types, at the expense
of doubling some nodes in the graph.

The outcome of this method is an inventory of elementary events.
NOTES: The algorithm can find events inside a single proteome. Tandem duplication of the same

domain within one protein is ignored by the algorithm. The P-groups that are neither C-groups nor
E-groups are called O-groups, for Other. The software packages used and relevant parameters are
provided in the original paper [52].

2.2.2 Fusion / fission metric

For each event, we mapped the species which contained E-groups or C-groups (figure 2.3) onto the
phylogenetic tree underlying the 12 species [62]. Under the parsimonious assumption that any event
occurred once during evolution, the event should be localised on the tree in one of the edges between
the species containing E-groups and the species containing C-groups. Thus, we extrapolated the
status of the internal, i.e. ancestral, nodes of the tree as either E-group containing node or C-group
containing node: (i) all internal nodes belonging to a shortest path between two E-group containing
species, are extrapolated as E-group containing nodes, i.e. the nodes 1, 2, 4, 5, 6, 7, 9 in figure 2.3
example; (ii) likewise, the status C-group containing node applies to internal nodes between C-group
containing nodes, i.e. none in the example; (iii) the event is inferred to be localised on the shortest
path between E-group containing nodes/species and C-group containing nodes/species, i.e. either on
the edge [node7-node8] or on the edge [node8-A. nidulans] in the example; (iv) if a given species
without status is connected to this last path and if it contains P-groups equivalent to some of the
E-groups which defined the event, then the species is assimilated to an E-group containing species
and the path can be shortened, i.e. N. crassa in the example shortens the path, leaving the [node8-A.
nidulans] edge as the remaining path; (v) each of the n remaining edges receives a score of 1/n, i.e.
the [node8-A. nidulans] edge receives a score of 1 in the example.

In 4 of the 15 cases of multiple events, the mapping onto the tree brought about internal nodes
in which the probable ancestral content in C-groups or E-groups could not be inferred, leading us
to suppose that a particular fusion or fission occurred more than once over time. Here, we ordered

30 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

Figure 2.2: A: Fusion event, B: Fission event, C: Multiple event, D: Complex event, see Algorithm
section for definitions. P-groups are drawn to scale and oriented clockwise. Colored areas repre-
sent alignment domains, white areas are non-aligned regions. Arcs symbolize relations of similarity
between C-groups and E-groups.

2.2. GENE FUSIONS AND FISSIONS 31

Figure 2.3: Event localization. This event is also represented in figure 2.2, A. Grey circle: species
having a C-group. Grey diamond: species having E-groups as listed in the event. Open diamond:
species having a P-group similar to one of the E-groups. Grey star: parsimonious localization of the
event in the phylogeny.

32 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

the involved species in decreasing order of the number of uncertain internal nodes that were resolved
when the species was removed. We then used each of these species in this order as the starting point
of a shortest path, see preceding paragraph, and removed species until no uncertain internal nodes
remained and all of the species were treated. At the end, we identified the minimal number of events
necessary to take into account all the species which defined the multiple event and attributed scores
to the relevant segments.

2.2.3 Results

We identified gene fusion/fission events in a coherent phylogenetic group of fungi, where completely
sequenced and annotated genomes are available, especially in the hemiascomycete yeasts. This
method only identified events which occurred inside protein coding genes, but, given the evolutionary
distances between species [50], trying to detect events in intergenic regions would have certainly have
been worthless.

We expected gene redundancy since we worked with eukaryotic genomes. If duplicated genes
were involved in a fusion / fission event, this event could accordingly be counted several times. To
counter this redundancy, we built a set of paralogous groups (P-groups) for each proteome. The
clustering of several protein sequences inside a P-group was based on sequence similarity and the
length of the alignment, to ensure that the proteins shared the same architecture. The set of P-groups
is thus a partition of the protein set in a given species (see Dataset S1, online Supplementary Material
for [52]). Our method is designed to detect events at the level of groups of paralogs (P-groups) and in
several proteomes simultaneously (see Material and Methods). The method also finds events which
contain E-groups and C-groups belonging to the same species. We detected 1103 events, 176 of
them being complex events were subsequently split, giving altogether 1680 elementary events (table
2.2.3). These events only involve 12% of the P-groups over all the species, either as E-groups or
C-groups. The Euascomycota and Zygomycota species happen to be the species the most involved in
events; these species are those with the larger proteomes and hence the larger genomes. Indeed, we
found a correlation between the genome size of a species and the number of events where it appears
(figure 2.4), a relation also found in a large genome survey [102].

We estimated the value of the fusion over fission ratio to be 1.28 from the number of events clas-
sified either as fusion events or as fission events (see Material and Methods), although undecidable
events (995 events, 2.2.3) could not be included in this calculation. This ratio is slightly in favor for
fusion events which is in accordance with earlier studies [184, 113].

We then assessed the robustness of the events by removing all the P-groups of one species at a
time and then by checking how many events remained (table 2.2.3, column Exc.). The number of
events exclusive to one species ranged between 31 to 800, suggesting that the set of events is not
saturated and that it will increase upon the addition of new species. These numbers, along with the
manual curation of the events, indicated that A. nidulans and R. oryzae genomes were likely to have
undergone a large-scale reshuffling.

Our method allowed us to retrieve well-known fusion examples, such as the event involving S.
cerevisiae TRP1, TRP3 genes [30] and their homologs in other species (event GFE-1104, see Dataset
S2, online Supplementary Material for [52]), in which the corresponding polypeptides are separated
entities in Hemiascomycota and fused in a single protein in Euascomycota, Archeascomycota, Ba-
sidiomycota and Zygomycota. Another well known example is the one which includes S. cerevisiae
URA2 gene [185]. This very ancient event is thought to have happened before the branching of the
fungus phylum, but is still visible as every species kept E-groups and C-groups (event GFE-0970).

Instead of focusing on the individual domain structure of fusion proteins, we chose to consider
each event from an evolutionary perspective of genome rearrangement. We thus needed to distin-

2.2. GENE FUSIONS AND FISSIONS 33

Species Genome Prot. P C E Inv. Fus. Fis. Mul. Und. Exc. Loc. Rec.
S. cerevisiae 12.1 6710 5431 172 312 323 124 151 8 40 54 106 23
C. glabrata 12.3 5210 4377 152 251 299 124 138 8 29 36 88 2
K. lactis 10.7 5331 4601 150 330 334 127 161 9 37 64 102 15
E. gossypii 9.2 4725 4180 146 257 289 124 133 7 25 31 84 3
C. albicans 15.0 6165 5152 125 599 428 161 158 11 98 181 144 33
D. hansenii 12.2 6277 5114 194 379 405 178 150 11 66 72 123 12
Y. lipolytica 20.5 6431 5187 162 401 382 192 149 7 34 45 83 9
N. crassa 43.0 10427 9321 213 592 510 245 130 12 123 175 87 21
A. nidulans 31.0 9536 7404 514 671 664 298 149 10 207 459 95 171
S. pombe 14.0 4990 4078 152 304 318 155 112 7 44 61 68 4
C. neoformans 19.1 6578 5502 173 351 354 158 118 10 68 92 84 14
R. oryzae 46.1 17461 10349 682 2046 1062 244 184 12 622 800 220 554
Total 245.2 89841 70696 2835 5683 1680 376 294 15 995 1665 365 847

Table 2.2: Event statistics. Prot.: proteins; P: P-groups; C: C-groups; E: E-groups. Inv.: events
where a species is involved; Fus.: fusion events; Fis.: fission events; Mul.: multiple events; Und.:
undecideable events; Exc.: events which no longer exist if a species is removed from the dataset;
Loc.: events where there are adjacent proteins between E-groups; Rec.: events with contain at least
C-groups and E-groups of the same species. Genome sizes are given in Mbases. An event can
concern several species, therefore the numbers of events on the Total line are not the sums of the
counts per species. All E-groups are counted, even if they can be subsequently merged in events (see
Material and Methods).

Figure 2.4: Density of events. Scatterplots of the number of fusion/fission events against (A) genome
size in megabases, and (B) proteome size in number of proteins. Straight lines indicate the coeffi-
cients determined by bootstrap estimates of robust linear models.

34 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

guish two types of event. (i) The 365 events where at least one pair of E-groups correspond to
adjacent genes on a chromosome, are likely to derive from nonsense or frameshift mutations which
transform one coding sequence into two coding sequences or more. We did not take these events
into consideration as they a priori do not involve genome rearrangement (table 2.2.3, column Loc.).
(ii) The 1315 other events, which contained nonadjacent E-group members, have likely occurred
through a recombination event and were therefore the basis of our computation. We then, computed
the position of each of these latter events in the evolution tree of the 12 fungal species, derived from
the study of [62], with the parsimonious assumption that a fusion or fission event might happen once
during evolutionary history [113]. This tree is based on the comparison of the protein sequences
translated from families of orthologous genes, and thus was called, in the framework of our study,
the “mutation tree” (figure 2.5, A). Keeping the same topology, we computed the weighted counts
of events positioned in each segment of the tree (see Material and Methods), and we changed the
length of each tree segment accordingly to make a “recombination tree” (figure 2.5, B). The use of
the event localization weighted counts as a metric dramatically changed the aspect of the tree, mak-
ing it obvious that some species (N. crassa, A. nidulans and R. oryzae) underwent massive genome
shuffling.

2.2.4 Discussion

Until now, the detection of fusion and fission events has been performed at the level of protein
sequences with a post facto removal of supernumerary links due to paralogy. Also, earlier reports
often did not look for events only defined in a single genome. We designed a large scale computation
method to detect gene fusion and fission events in eukaryotes genomes taking into account their
internal gene redundancy and thus operated at the level of groups of paralogs in the proteomes,
named P-groups. The method basically consisted in building a graph of similarity relations between
the protein sequences of several species and then pruning this graph according to rules specific to the
definition of gene fusion/fission events. The method works simultaneously between every species as
well as within species.

We obtained a set of 1680 elementary fusion and fission events in the coding sequences of 12
fungal species. The number of detected events for a species is related to its genome and proteome
size, as it appears to be the case in any species of the tree of life, with few exceptions typically as-
sociated with parasitic or infectious lifestyle [184, 102]. The numbers of gene fusion/fission events
confirm that these events are relatively rare [55, 184], albeit these numbers are provisional and un-
derestimated as they are not saturated. Thus, the roster of detected events will very likely increase
upon the addition of new species into the study.

The fusion/fission ratio of 1.28 was less large than in comparable studies [184, 113], but was
still in favor of the fusions. From a phylogeny point of view, we can expect such a tendency, as
its beneficial effect would be to permit either the gathering of several biochemical functions into a
single polypeptide molecule, thereby reducing the regulation burden of the cell, or the creation of
new functions in a scenario which congregates gene duplication, gene fusion and sequence mutation.
In the evolution from prokaryotes through lesser eukaryotes and up to higher eukaryotes, a witness of
this fusion rate propensity is the observation that proteins have more different domains per protein,
along with a larger repertoire of domain combinations [112, 205].

As some of the genomes we used are thoroughly annotated, we could search for biases in the
biological functions of the genes involved in fusion and fission events (see the original manuscript
[52] for details). Only a few were found. Similar findings were reported in other studies [215, 102,
199, 91] although these functions do not appear to be the same in each report. This variation is not
surprising since the different works were done on different sets of species, covering one or several

2.2. GENE FUSIONS AND FISSIONS 35

Figure 2.5: Fungal distance trees. A: Maximum likelihood tree based on accumulated mutations
in 153 universally distributed fungal genes (excerpt from [62]). B: Rearrangement tree based on
the topology of the mutation tree with a modification of branch lengths according to parsimonious
localisations of fusion and fission events; the scale bar corresponds to weighted occurences of events.

36 CHAPTER 2. ALGORITHMS FOR COMPARATIVE GENOMICS

kingdoms. In addition, the sets had unequal sizes and, as stated above, the number of events depends
on the number of species. Nevertheless, the genes involved in an event in the fungal phylum tend to
belong to the same functional category, a feature already found in other contexts [55, 215, 102].

Each event which does not involve adjacent genes on a chromosome, can be interpreted as a
landmark of a recombinational event giving rise to gene fusion or fission. We positioned each of
such events in the evolution tree of the 12 fungal species on the parsimonious assumption that each
happens once during evolutionary history [113]. We only found 7 cases where two independent fis-
sions were necessary for the event to be compatible with the phylogenetic tree (data not shown).
For each segment of the tree, the weighted counts of positions provided a metric between the 12
fungal species. This metric is independent of the gene mutation rate, and hence of the “mutation”
phylogenetic tree. Rather, the metric depends on another aspect of genome evolution, recombina-
tion and gene shuffling. Under this perspective, some species underwent massive genome shuffling,
compared to species with more stable chromosome architecture. Other metrics have been proposed
to account for a recombinational distance between species, such as a metric based on synteny break-
points [25]. However this last metric can only be applied on relatively narrow evolutionary distances
where synteny exists, such as the vertebrates phylum. In contrast, the fungi phylum encompasses
larger distances, for instance even in the Hemiascomycota sub-phylum, synteny blocks shared by
Saccharomyces cerevisiae and Yarrowia lipolytica are too few and far between [51]. The metric we
propose deals with traces of recombination events which can persist even if a genome has been totally
shuffled.

Several mechanisms of genome recombination could be put forward to explain the appearance
of gene fusion and fission. Translocation or inversion can potentially fuse or split genes at their
boundaries [35, 44]. Segmental duplication can potentially fuse or split gene at their boundaries, as
well as put next to each other exon containing sequences of different origin [41]. Horizontal gene
transfer in bacteria can account for 3% of the fused or split genes [113]. Horizontal gene transfer is
a minor mechanism in fungi [82], but cannot be ruled out as a contributor for fusion/fission events.
Partial copies of genes could be inserted in ectopic sites through retrotransposons, potentially creating
chimerical genes at the insertion points [166]. Other plausible mechanisms would be transcription
mediated gene fusion [22] or retroposition of trans-spliced genes [2]. Whatever the recombination
mechanism, it is genetically easier to make a gene fusion than a gene fission [113], because in gene
fusion one partner could bring its promoter and the other its terminator, whereas in gene fission, one
of the offspring has to come under the control of a new promoter in order to be expressed.

During evolutionary time, genomes underwent recombinational events, some of which gave rise
to gene fusion or fission, hence new genes and new proteins. Gene fusion and fission can abruptly
change the length and composition of a gene, as opposed to point mutations which can alter gene con-
tent at a more continuous pace. Evolutionary pressure caused some of the genes produced by fusion
or fission to be maintained and propagated until present time. Such genes could thus be considered
as participating to the overall fitness and adaptation of a species. If we speculate that a species could
be considered as a point in an “adaptation space,” and ecological niches as regions of this space, we
could propose the metric we defined as an indirect, or approximate, measure of distance between
species in this space. The fact that there is no striking bias in the biological functions of the genes in-
volved in gene fusion or fission, suggests that the recombinational events are basically random. This
hypothesis has already been put forward, considering versatility and domain abundance in proteins
[205]. Under this consideration, we could also propose that the metric we defined, does not need to
be normalized for biological functions, as there is little bias.

The events relative to the hemiascomycetes are available in the Genolevures database [178]
(http://cbi.labri.fr/Genolevures/).

Chapter 3

Uncovering evolutionary events by
rearrangement analysis

3.1 Introduction

The large scale study of molecular evolution through the comparison of contemporary genomes is
frustrated by the impossibility of knowing with certainty the architecture of the common ancestral
genomes. Constructing plausible hypotheses about the structural characteristics of these ancestral ar-
chitectures is a computational task whose results may provide deep insight both into the past histories
of particular genomes and the general mechanisms of their formation. This task has two important
difficulties: how can we guarantee that the solution is biologically plausible? how can we find these
solutions in an efficient manner?

Analysis of genome rearrangements provides a measure for the evolutionary distance between
species. Two closely related problems are considered in the study of genome rearrangements. The
first problem is to find, by parsimony criteria and for a defined set of rearrangement operations, the
exact number of such operations needed to rewrite one genome into another. The second problem is
to compute a most parsimonious rearrangement scenario.

In the considered model (see section 3.2.1), two genomes defined on the same set of gene markers
without duplications, are represented by signed permutations. Thus, the analysis of genomes leads to
a combinatorial problem of transforming one signed permutation into another. The underlying theory
is proposed by Hannenhalli and Pevzner [84, 172] for unichromosomal genomes based on reversals
only; their main results consist in an exact formula for reversal distance, and the first polynomial time
algorithm for computing a parsimonious reversal-based scenario between two signed permutations.

This theory was further adapted by the same authors to the multichromosomal case, taking into
consideration a larger set of rearrangement operations: translocations, fusions and fissions as well
as reversals. In [85], Hannenhalli and Pevzner devise a method that mimics all multichromosomal
rearrangements by reversals operating on an unique permutation.

Ancestral reconstruction methods require three basic steps: identification of common markers
in the contemporary genomes, construction of comparative maps of the genomes, and reconciliation
of these maps using a criterion of maximum parsimony to reconstruct ancestral maps. Common
markers can be identified using cytogenetic methods such as chromosomal painting [210] or through
complete genome sequencing and subsequent search for chromosomal homology [203]. Mathemat-
ically, comparative maps are constructed by representing each genome as a signed permutation of
the common markers. The goal of this encoding is not to align one genome against the other, but
rather to compare the order of gene markers. Two main approaches to compare marker orders exist:

37

38CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

counting the differences between two genomes in terms of breakpoints [133, 162], and counting the
minimal number of edit operations that transform one genome into another [84]. Both of these ap-
proaches define a distance function on the space of signed permutations. In this work we will follow
the Hannenhalli and Pevzner approach [84] where the allowed edit operations are fusion, fission,
reciprocal translocation and reversal. It was originally established that this rearrangement distance
can be computed in polynomial time [84, 172]. Later work has improved these results establishing a
linear-time algorithm for the rearrangement distance computation [8]. Minimizing this distance is a
fundamental step in computing plausible ancestors.

Computational reconciliation is most often formulated as the multiple genome rearrangement
problem [163, 83]: given a set of N contemporary genomes and a distance d, find a tree T with
the N genomes as leaf nodes and assign permutations (plausible ancestral architectures) to internal
nodes such that D(T) =

�
(π,γ)∈T d(π, γ) is minimized. When N = 3 this is called the median

genome problem. Sankoff and Blanchette [162] developed a method based on the breakpoint dis-
tance in [133], while Bourque and Pevzner used the rearrangement distance [84] to find an ancestral
genome [23]. In both cases the median genome problem was proved to be NP-hard (see [28, 152]
for breakpoint distance and [33, 34] for reversal distance). Although these two distance measures are
closely related (see [164]), the corresponding methods are devised without considering the impact of
the other distance on results.

A wider debate exists between the proponents of the in silico approach cited above and the pro-
ponents of the cytogenetic approach. Exemplified by Froenicke et al. [65], the latter group argues
essentially that under-sampling in the in silico approach combined with the tendency of closely re-
lated genomes to attract the median M , leads to non-unique results that diverge from those found
using cytogenetic methods. Bourque et al. in their response [24] argue that under-sampling will
disappear with time and that the distinction between strong and weak adjacencies identified in the in
silico method permits reliable comparison between the different approaches. Rocchi et al. in their
perspective [160] suggest that a combination of the two approaches should lead to more realistic
ancestral architectures, but furthermore that it is necessary to better model biological considerations,
especially centromere repositioning and segmental duplication.

A considerable drawback to formulating the problem as the search for a single complete assembly
that minimizes the sum of genome distances, is that the set of mathematically equivalent solutions is
quite large: in [25] more than 3000 solutions are found for the human-murid ancestor, and indeed a
statistical study of the variance between minimal solutions by [58] suggests that reporting an unique
median architecture is misleading. A more realistic approach is to consider what common structural
features of ancestral genomes might be found. Partial reconciliation of comparative maps identifies
permutations of markers as above but does not necessarily provide a total order between segments.
In [120], for example, contiguous ancestral regions (CARs) are found by assigning to each node
of a given phylogenetic tree a set of adjacencies that represent a consensus between those found
in contemporary genomes, computed using a method analogous to Fitch parsimony and relying on
knowledge of the phylogenetic tree.

3.2 Rearrangement scenarios revisited

Hannenhalli and Pevzner have devised a method that mimics all multichromosomal rearrangements
by reversals operating on an unique permutation [85]. This is achieved by a conversion to the unichro-
mosomal model, which requires an optimal capping to cleverly delineate chromosomes of a given
genome, as well as an optimal concatenate in order to assemble them into a single permutation. The
computed parsimonious scenario relies on the structure of this permutation.

3.2. REARRANGEMENT SCENARIOS REVISITED 39

However, both the formula for rearrangement distance and the algorithm for computing a par-
simonious sequence of operations given by Hannenhalli and Pevzner [85] present errors. Tesler in
[193] partially corrected the rearrangement distance formula. In the same paper, the algorithm that
leads to optimal concatenates was completed by a proper bonding step. Ozery-Flato and Shamir in
turn redefined some notions and suggest further corrections essentially for the rearrangement dis-
tance formula [147]. Nevertheless, the algorithm that is supposed to construct an optimal capping,
fails.

Various definitions and their relationships presenting incoherences between papers by different
authors, we first propose a single and coherent classification of interleaving graph components based
on relevant literature. This classification permits a better understanding of what is wrong in the
existing algorithm for determining optimal capping. We present cases for which Ozery-Flato and
Shamir’s algorithm fails and provide a counterexample for each case. Finally, we introduce a correct
algorithm for optimal capping with a proof of its correction. This whole work was published in [99].

3.2.1 Preliminaries

Let Π = {π1, ...,πNΠ} be a multichromosomal genome defined as a set of NΠ chromosomes. The ith

chromosome πi = πi
1
...πi

ni
is a sequence of ni gene markers where each gene marker is represented

by a signed ordinal. The sign indicates the direction of a given marker.
Let Π and Γ be two multichromosomal genomes defined over the same set of gene markers Ng.

We define adjacencies and breakpoints in the way analogous to Nadeau and Taylor [133].

Definition 10 Two consecutive elements πi and πi+1 of a chromosome π are said to be adjacent in
Π. If two elements πi and πi+1 are adjacent in Π but neither πi.πi+1 nor −πi+1.πi are present in Γ,
then the pair πi.πi+1 forms a breakpoint in Π.

The notions of adjacencies and breakpoints are transferred to the breakpoint graph defined in
[84]. The breakpoint graph G(π, γ) is an edge-colored graph built from unsigned representations of
two signed permutations. A signed permutation π = π1 .. πn over n elements is transformed into an
unsigned representation u(π) = π0 .. π2n+1 over 2n+2 elements. Each positive element +x from π
is replaced by two vertices 2x−1 and 2x while each negative element−x is replaced by two vertices
2x and 2x − 1. Vertices π0 = 0 and π2n+1 = 2n + 1 are added for taking into account adjacencies
with the first and the last elements. Edges represent adjacencies either in Π (edges {π2i,π2i+1},
drawn with solid lines), or in Γ (edges {γ2i, γ2i+1}, drawn with dashed lines) for i = 0, ..n (see for
an example figure 3.2).

Two steps are needed to encode a multichromosomal genome as an unique permutation: capping
and concatenation. A capping of Π consists in adding two ordinals called caps to the extremities of
each chromosome. Let {c0, c1, .., cn} with n = 2NΠ−1 be the set of distinct caps different from the
Ng gene markers in Π. We denote by Π̂ = {π̂1, ..., π̂NΠ} a capping of Π where the ith chromosome
is π̂i = c2(i−1) πi

1
...πi

ni
c2(i−1)+1. A concatenation π̂ of Π̂ is a signed permutation π̂ obtained by

choosing an orientation and order for each chromosome.
The breakpoint graph for multichromosomal genomes is built from permutations π̂ and γ̂. The

distance value computed on G(π̂, γ̂) depends on the chosen capping and concatenation. Let G(Π,Γ)
be the graph obtained by removing all edges that involve concatenation and capping from G(π̂, γ̂).
Then we can distinguish three types of vertices: isolated vertices called tails, cap vertices of degree
1 called Π-caps, and other vertices of degree 1 called Γ-tails.

The graph G(Π,Γ) can be decomposed into cycles and paths. If a path starts and finishes with
Π-caps (two Γ-tails, or one Π-cap and one Γ-tail, respectively) then it is a ΠΠ-path (ΓΓ-path or
ΠΓ-path, respectively).

40CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Connected components

Oriented
Unoriented
U(G)

Interchromosomal
Intrachromosomal

IU(G)

Unreal
Real
RU(G)

Intrinsic classification

Hurdles

Non hurdles

Simple

Super

Minimal

The greatest

Minimal

The greatest

Knots

Non Knots

Simple

Super

Minimal

The greatest

Minimal

The greatest

Real knots

Non real knots

Simple

Super

Minimal

The greatest

Minimal

The greatest

E
xtrinsic

classification

Figure 3.1: Double classification of connected components. The children nodes form a partition of
the component set represented by their parent node. Intrinsic classification is read from top to bottom
while extrinsic classification is read from left to right.

An interleaving graph I(G) is a graph where each vertex represents a non trivial path or cycle
(with more than 2 edges) of the breakpoint graph G = G(Π,Γ) [84]. Two vertices are linked by
an edge if the spans of corresponding cycles or paths overlap, but none of their intervals contain the
other.

Definition 11 The span of a cycle or a path C of G(Π,Γ) is an interval [i, j] such that ∀π̂k ∈ C we
have i ≤ k ≤ j and ∃ π̂i, π̂j ∈ C.

We propose a coherent and unambiguous classification for the connected components of an inter-
leaving graph that is the result of a synthesis of previously cited references. In fact, the components
can be classified in two different and complementary ways, as shown in figure 3.1.

We call intrinsic classification the way to discriminate between components based on the prop-
erties of their edges. It is represented by the vertical hierarchy of filled nodes in figure 3.1. A

3.2. REARRANGEMENT SCENARIOS REVISITED 41

dashed edge (representing an adjacency in Γ) {π̂i, π̂j} in G(Π,Γ) is oriented if |j − i| is even, oth-
erwise it is unoriented. The same edge is intrachromosomal if the vertices π̂i and π̂j belong to the
same chromosome, and interchromosomal otherwise. A connected component K of I(G) is ori-
ented (interchromosomal, respectively) if any cycle or path belonging to K has at least one oriented
(interchromosomal, respectively) dashed edge, otherwise K is unoriented (intrachromosomal, re-
spectively). Within unoriented and intrachromosomal components, we distinguish real components
from unreal components.

Definition 12 A connected component K of I(G) is real if K is intrachromosomal, unoriented and
if it has no Π-cap or Γ-tail in its span.

Let U(G) be the set of unoriented components of I(G), IU(G) the set of unoriented and intra-
chromosomal ones and RU(G) the set of real components.

We call extrinsic classification the way to describe a component by its relationship with surround-
ing components. It is represented horizontally by dashed lines in figure 3.1. U(G) is partitioned into
non hurdles and hurdles, where a hurdle is a component of U(G) that does not separate two other
components in the same set. The notion of separation defines in the same way the partitions of
IU(G) and RU(G): knots and non knots for the former, and real knots and non-real knots for the
latter. A hurdle is super if it protects a non hurdle, otherwise it is simple. A hurdle can be the greatest
one if its span contains all the spans of the others hurdles, otherwise it is a minimal hurdle. These
notions are defined similarly for knots and real knots. We can also extend the notion of fortress in
U(G) in fortress of knots in IU(G) and a fortress of real knots in RU(G).

Within the set of unreal components we can distinguish those called semi-real knots that are
characterized by their potential of becoming real knots.

Definition 13 A semi-real knot is a component in IU(G)\RU(G) that does not contain a ΓΓ-path
in its span and that becomes a minimal real knot or the greatest simple real knot after closing its
ΠΓ-paths.

We say that a graph G is a weak fortress of real knots if (a) G has an odd number of real knots,
(b) there exists the greatest real knot in G, (c) all real knots are super except the greatest one and (d)
the number of semi-real knots in G is > 0. Note that a weak fortress of real knots becomes a fortress
of real knots by closing the ΠΓ-paths in a semi-real knot.

A simple component is defined as a component with at least one ΠΓ-path and which is not a
semi-real knot. Example 1 gives the intrinsic and extrinsic classifications for the breakpoint graph of
the figure 3.2.

Example 1 Figure 3.2 presents a breakpoint graph G(Π,Γ). The intrinsic classification is as fol-
lows: K1 is intrachromosomal oriented, U = {K2,K3,K4, K5}, IU = {K2,K3,K4} and RU =
{K2,K3}. The extrinsic classification is: K3 is a super hurdle while K4 and K5 are simple hurdles,
and K3 and K5 are super knots. However, K2 and K3 are real knots (K2 is the greatest one), while
K5 is a minimal semi-real knot and K1 is a simple component.

Denote by Ḡ(Π,Γ) the graph obtained by closing all the ΠΓ-paths in simple components of
G(Π,Γ). Ozery-Flato and Shamir [147] give an exact formula for distance between two multichro-
mosomal genomes Π and Γ as shown in theorem 1.

Theorem 1 (Ozery-Flato [147]) d(Π,Γ) = b− c + pΓΓ + r + � s�−gr�
+fr�

2
�.

The parameters of the formula are defined as:

42CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

A

E

B

C D F

T T T T T TΠ Π Π ΠΓ Γ

0 27 28 2 1 3 4 7 8 13 14 11 12 9 10 15 16 5 6 17 18 29 30 31 32 19 20 21 22 25 26 23 24 33 34 35
14 -1 2 4 7 6 5 8 3 9 15 16 10 11 13 12 17

G(Π, Γ)

Figure 3.2: Breakpoint graph G(Π,Γ) for Π = {1 2 4 7 6 5 8 3 9, 10 11 13 12} and Γ =
{1 2 3 4 5 6 7 8 9 10 11 12 13}. Tails vertices are marked by T, Π-caps by Π and Γ-tails by Γ. Non
trivial cycles and paths are denoted by letters from A to F . The interleaving graph I(G) correspond-
ing to G(Π,Γ) is composed of 5 connected components: K1 = {A}, K2 = {B}, K3 = {C,D},
K4 = {E} and K5 = {F}.

- b is the number of solid edges in G(Π,Γ) (b = Ng + max(NΠ, NΓ)),

- c is the number of cycles and paths,

- pΓΓ is the number of ΓΓ-paths,

- r is the number of real knots,

- s� is the number of semi-real knots in G(Π,Γ),

- gr� is equal to 1 if Ḡ has the greatest real-knot and s� > 0, and is 0 otherwise,

- fr� is equal to 1 if either (i) Ḡ is a fortress of real knots and the greatest semi-real knot does
not exist in Ḡ, or (ii) Ḡ is a weak fortress of real knots.

Computing the distance between two multichromosomal genomes is independent of capping
and concatenation. However, computing a parsimonious scenario consists in finding a sequence
of reversals mimicking multichromosomal rearrangements that satisfy the minimal distance. Thus,
optimal capping and optimal concatenation lead to a parsimonious scenario.

3.2.2 Optimal capping

Optimal capping Π̂ and Γ̂ is finding positions and signs for caps in the genome Γ such that d(Π̂, Γ̂) =
d(Π,Γ) (see lemma 3 in [85]). This is done for any arbitrary capping in Π. In the breakpoint graph,
it consists in adding 2NΓ edges linking a Π-cap to a Γ-tail and NΠ −NΓ edges between two Π-caps
if NΠ > NΓ.

Ozery-Flato and Shamir [147] give an algorithm for construction of an optimal capping. How-
ever, their algorithm is incorrect. The case for which the algorithm fails is described as follows: (i)
s� is even and s� > 2, (ii) G is a fortress of real knots and (iii) G has the greatest semi-real knot. If
G is a fortress of real knots and there exists the greatest semi-real knot then fr� = 0. Moreover, the
greatest semi-real knot and the greatest real knot can not exist simultaneously, so gr� = 0. Hence,
the genomic distance is d = b− c+ pΓΓ + r + � s�

2
� = b− c+ pΓΓ + r + s�

2
since s� is even. The step

5 of the optimal capping algorithm in [147] joins any two semi-real knots. Suppose that the greatest
semi-real knot is joined by an interchromosomal or oriented edge to another semi-real knot. The
obtained graph is still a fortress of real knots, but the greatest semi-real knot does not exist anymore,

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 43

T T T T T T T T T T

K1

Π Γ ΠΓ

K2

K5

K3

K6

K4

K7

Π Γ

K8

Γ Π Π Γ

K9

Γ Π Π Γ

K10

Γ Π

0 31 2 4 6 5 7 3 8 10 12 11 13 9 14 16 18 17 19 15 20 1 21 32 33 23 22 24 34 35 26 25 27 36 37 29 28 30 38 39

Figure 3.3: Counterexample of Ozery-Flato and Shamir’s algorithm [147]
for building an optimal capping. Breakpoint graph G(Π,Γ) with Π =
{2 4 6 5 7 3 8 10 12 11 13 9 14 16 18 17 19 15 20 1 21, 23 22 24, 26 25 27, 29 28 30}
and Γ = {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21, 22 23 24, 25 26 27, 28 29 30}.
The connected components K5, K6 and K7 are super real knots that protect respectively K2, K3

and K4. G has the greatest semi-real knot K1 and three minimal semi-real knots K8, K9 et K10.

so fr� = 1. Thus, we get d = b− (c− 1) + pΓΓ + r + � (s�−2)+1

2
� = b− c + 1 + pΓΓ + r + s�

2
. See

figure 3.3 and example 2 for a counterexample.

Example 2 The breakpoint graph G = G(Π,Γ) in figure 3.3 is a fortress of real knots with fr� = 0.
The distance is d(Π,Γ) = 34 − 14 + 0 + 3 + �4−0+0

2
� = 25. Step 5 of Ozery-Flato and Shamir’s

algorithm allows joining the greatest semi-real knot K1 to K8 by a interchromosomal edge (dashed
line), which results in a new graph G�. G� is still a fortress of real knots, but fr� = 1. So d =
34− 13 + 0 + 3 + �2−0+1

2
� = 26, which does not respect the minimal distance.

In what follows we propose a new algorithm for optimal capping and the proof of its correction
(theorem 2). The proof is based on two technical lemmas from [85] (lemmas 4 and 5).

Theorem 2 Let d = d(Π,Γ) be the distance between two multichromosomal genomes Π and Γ.
Algorithm 2 constructs an optimal capping Γ̂ for any arbitrary capping Π̂, such that d(Π̂, Γ̂) = d.

For proof, see the original manuscript [99].

3.3 Ancestral architectures and super-blocks

The study of evolutionary mechanisms is made more and more accurate by the increase in the num-
ber of fully sequenced genomes. One of the main problems is to reconstruct plausible ancestral
genome architectures based on the comparison of contemporary genomes. Current methods have
largely focused on finding complete architectures for ancestral genomes, and, due to the computa-
tional difficulty of the problem, stop after a small number of equivalent minimal solutions have been
found. Recent results suggest, however, that the set of minimum complete architectures is very large
and heterogeneous. In fact these solutions are collections of conserved blocks, freely rearranged.
In this work, we identify these conserved super-blocks, using a new method of analysis of ancestral
architectures that reconciles both breakpoint and rearrangement analyses, as well as respects biologi-
cal constraints. The resulting algorithms permit the first reliable reconstruction of plausible ancestral
architectures for several non-WGD yeasts simultaneously, a problem hitherto intractable due to the
extensive map reshuffling of these species.

In this study, we propose an approach for identifying common ancestral features for the gen-
eral, N -genome instance, that builds a bridge between breakpoint and rearrangement methods and

44CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Algorithm 2 Correct_Optimal_Capping
1: Construct the graph G = G(Π,Γ)
2: while there is a ΓΓ-path in G do
3: Find an interchromosomal or oriented edge joining this ΓΓ-path with a ΠΠ-path (lemma 4

[85]) and add it to G
4: end while
5: Close all remaining ΠΠ-paths in G
6: Close all ΠΓ-paths in simple components in G
7: if s� is even and s� ≥ 2 and G is a fortress of real knots then
8: if G has the greatest semi-real knot then
9: Close all ΠΓ-paths in the greatest semi-real knot

10: else
11: Close all ΠΓ-paths in any one semi-real knot
12: end if
13: end if
14: while G has more than one semi-real knot do
15: Find an interchromosomal or oriented edge joining ΠΓ-paths in any two semi-real knot

(lemma 5 [85]) and add it to G
16: end while
17: Close all remaining ΠΓ-paths in G
18: Find a capping Γ̂ defined by the graph G(Π̂, Γ̂)

additionally permits the use of biological constraints. The main contribution is the computation of
super-blocks, sequences of markers chosen in function of the frequency of the corresponding adjacen-
cies without any use of phylogeny. Here we follow the hypothesis that adjacencies having support in
two or more contemporary genomes constitute the semantic basis of an ancestral architecture [162].
Super-blocks can of course be joined to produce final assemblies. Algorithmically, it is an optimiza-
tion problem in terms of rearrangement distance of the sequence of fusions of super-blocks. The
solution space of genome median is thus reduced, and only architectures respecting the adjacency
semantics are returned. Although the mathematical model does not make possible the consideration
of segmental duplication, centromere positions are introduced and constrain the final assemblies by
allowing only one active centromere in each chromosome of the ancestral architecture.

We show that in theory our method allows for solutions that are either minimal or reasonably
close to the minimal in mathematical model. Even though the addition of biological constraints can
lead to non-optimal mathematical solutions, our method decreases the number of mathematically
equivalent solutions by using biological constraints as a filter on the solution space.

This section is organized as follows. Section 3.3.1 gives the necessary preliminaries. In section
3.3.2, we introduce the notion of dependency for the adjacencies and show the relationship between
adjacencies and distances. Section 3.3.3 gives the methodology to construct super-blocks from adja-
cencies, and the strategy for building final assemblies by an optimal sequence of fusions1. In section
3.3.4 we apply our method to a set of non-WGD2 Hemiascomycete genomes in the Kluyveromyces
and related clades provided by the Génolevures Consortium, with divergence similar to that of mam-
mals [50]. For this phylogenetic branch, our method shows a high convergence in the structure of
different versions of super-blocks (16 in all), reinforcing the intuition that super-blocks encode the

1All supplementary materials (figures and proofs) can be found at http://www.genolevures.org/supplementary/Jean2008/super-blocks/.
2Whole-Genome Duplication, an unique polyploidization event proposed in the ancestral Saccharomyces lineage; non-

WGD yeasts from the other branches of the phylogenetic tree are not affected by this catastrophic event.

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 45

(a) πi is positive

2πi − 1 2πi
+πi

(b) πi is negative

2πi 2πi − 1
−πi

Figure 3.4: Vertices of the breakpoint graph corresponding to the element πi.

semantics of the ancestral genome. We can thus perform a reconstruction, despite extensive map
reshuffling. Additional evaluation wrt. existing method as well as more detailed theoretical develop-
ments can be found in the original paper [101].

3.3.1 Preliminaries

Let Π = {π1, ..,πNΠ} be a multichromosomal genome defined as a set of NΠ chromosomes. A
chromosome π = π1, ...,πn is a sequence of n gene markers represented by signed ordinals. The
sign indicates the direction of a given marker.

We define adjacencies and breakpoints in the way analogous to Nadeau and Taylor [133] (see
definition 10).

The number of breakpoints b between two genomes is a distance such that for 2 multichromo-
somal genomes Π and Γ with NΠ < NΓ, the number of breakpoints is b = {(πi,πi+1)|πi.πi+1 is a
breakpoint in Π}+ (NΓ −NΠ) or b = {(γi, γi+1)|γi.γi+1 is a breakpoint in Γ}.

Let G1, ..., GN be N multichromosomal genomes defined over the same set of distinct gene
markers G. We denote by u(g.h) the frequency of the adjacency g.h in the N genomes. We denote
by A the set of all adjacencies in G1, .., GN .

Following Hannenhalli and Pevzner [84], we will use the non-signed representation of a signed
genome in terms of breakpoint graph. The signed permutation for a chromosome π over n elements
is transformed into a permutation over 2n + 2 elements. Two vertices 2πi − 1 and 2πi are created
for each element πi, and the sign of πi determines the order of these vertices in the new permutation
as shown on figure 3.4. Two additional vertices 0 et 2n + 1 delimit the extremities of the new
permutation.

The notions of adjacencies and breakpoints are transferred to the breakpoint graph quite naturally.
Choice of adding vertices at the extremities of each chromosome being arbitrary, we denote by 0 any
telomere without taking into the account its chromosome. Hence, for a chromosome π = π1...πn

we introduce two supplementary adjacencies denoted by 0.π1 and πn.0. In what follows, we will
systematically use greek letters to denote elements of a signed permutation and latin letters to denote
elements of a non-signed permutation: we will note by (gi hi).(gj hj) the adjacency corresponding
to πi.πj except for adjacencies with telomeres that will be noted (0).(g1 h1) and (gn hn).(0). For
any adjacency a = πi.πj = (gi hi).(gj hj) its reversal −a is defined by −πj . − πi in the signed
permutation, and by (hj gj).(hi gi) in the non-signed permutation.

Example 3 Let us consider four genomes G1 = {1 2 3 4, 5 6}, G2 = {1 2 34, −5, −6}, G3 =
{2 1 3 4, −6 5} and G4 = {3 1 4 2 − 5, 6}. Their adjacencies can then be partitioned according to
frequency of occurrence in Gi as shown in table 3.1.

46CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

frequency adjacency
4 6.0
3 3.4, 0.5, 4.0
2 0.1, 1.2, 0.6, 5.0,2.3
1 5.6, 0.2, 2.1, 1.3, 4.2, 3.1, 1.4, 0.3, −5.6, 2.− 5

Table 3.1: Adjacencies for genomes G1, G2, G3 and G4 sorted by frequency.

3.3.2 Dependent adjacencies

The construction of super-blocks is based on the study of adjacencies. This study consists in defining
the frequency of adjacencies in the genomes and the adjacency relationships.

The intuition behind our approach is that an adjacency of higher frequency should be preferen-
tially present in a median genome. Mathematically, we are looking for an ancestral architecture that
represents a compromise between the rearrangement distance and the number of breakpoints under
the parsimony criterion.

In what follows, the considered rearrangement distance is expressed in terms of reversals, fusions,
fissions and translocations and is computed according to Hannenhalli and Pevzner’s theory [84].

Pairwise adjacency relationships

Let A be a subset of the set of all adjacencies A for genomes G1, ..., GN . We build the adjacency
graph G = (V,E) for A in the following way. For any adjacency (gi hi).(gj hj), we create four
vertices (gi, hi, gj and hj) and three edges. Two of the edges represent elements of the original
permutation: e1 = (gi, hi) and e2 = (gj , hj). One of the edges represents the adjacency itself:
e3 = (hi, gj).

Two adjacencies are dependent if their elements are related, either by completing or by contra-
dicting each other. Let a and b be two adjacencies a = (ga

1
ha

1
).(ga

2
ha

2
) and b = (gb

1
hb

1
).(gb

2
hb

2
), and

G = (V,E) the adjacency graph for {a, b}.

Definition 14 We say that a and b complement each other if either (i) ∃ v1, v2 ∈ V such that d(v1) =
d(v2) = 1 and ∀v �= vi, i ∈ [1, 2] we have v �= 0 and d(v) = 2, or (ii) ∃v ∈ V such that v = 0 and
∀v ∈ V we have d(v) = 2. We say that a and b contradict each other if either (i) ∃ v ∈ V such that
d(v) > 2, or (ii) ∀v ∈ V we have v �= 0 and d(v) = 2.

For example, adjacencies (1 2).(3 4) and (6 5).(4 3) complement each other. Indeed, we can form
the sequence 1 2 3 4 5 6. On the contrary, (1 2).(3 4) and (6 5).(2 1) are in contradiction as well as
(1 2).(3 4) and (2 1).(3 4). As can be seen on figure 3.5, the two contradictions are slightly different.
Indeed, the latter involves the presence of a cycle (cycle contradiction), while the former does not
(vertex contradiction).

When adjacencies complement each other there is no problem to put them together in order to
form a coherent chromosome. However, when two adjacencies a and b are in contradiction, we need
to choose one or the other. The intuition given in the beginning of this section is to prefer adjacencies
with higher frequencies. However, it is possible to have a median genome in terms of rearrangement
distances with an adjacency of lower frequency that is in contradiction with an adjacency of higher
frequency as illustrated in the example 4. Notice that the adjacency 3.2 that is present in M1 has
frequency 2, while the adjacency 2.3 present in M2 is of frequency 1. Because of a better global
number of common adjacencies (13 breakpoints against 14 for M2), M1 appears as the best median

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 47

(a) (1 2).(3 4) and (6 5).(4 3)

1 2 3 4 5 6

(b) (0).(1 2) and (1, 2).(3 4)

0 1 2 3 4

(c) (0).(1 2) and (1, 2).(0)

0 1 2

(d) (1 2).(3 4) and (6 5).(2 1)

1 2
3 4

5 6

(e) (1 2).(3 4) and (3 4).(2 1)

1 2 3 4

(f) (1 2).(3 4) and (2 1).(3 4)

1 2 3 4

Figure 3.5: Adjacency graphs showing (a), (b) and (c) two adjacencies that complement each other,
(d), (e) and (f) two adjacencies that contradict each other. Element edges are represented by solid
lines; adjacency edges are represented by dashed lines.

genome in terms of rearrangement distances and breakpoint number but M2 is also a good candidate
for ancestral gene order in terms of rearrangement distances.

Example 4 Consider three genomes G1 = {1 2 3 4 5 6 7}, G2 = {1 3 2 4 5, 6 7} and G3 = {1 4 3 2 5 6, 7}.
Their pairwise rearrangement distances are: d(G1, G2) = 4, d(G1, G3) = 4 and d(G2, G3) = 5.
Two optimal (median) solutions M1 and M2 are possible for these genomes: M1 = {1 -2 -3 4 5, 6 7}
and M2 = {1 -3 -2 4 5, 6 7}. The rearrangement distances from M1 and M2 to G1, G2 and G3 are
shown below.

G1 G2 G3

M1 3 1 4
M2 2 2 4

Notice that the adjacency 3.2 that is present in M1 has frequency 2, while the adjacency 2.3
present in M2 is of frequency 1.

Adjacencies and distances

Example 4 is in apparent contradiction with the intuition that the adjacencies of higher frequencies
should be preferred. In this section, we analyze in more detail in which cases it is appropriate to
follow this intuition.

Bounds for rearrangement distances and breakpoints If two genomes Π and Γ are not equal,
then d(Π,Γ) is at least 1. If d(Π,Γ) = 1, then there are exactly two breakpoints in Π (say a and c),
and two in Γ (say b and d). See figure 3.6 for illustration. We say then that Π and Γ are identical up
to a, c (symmetrically b, d).
In [101] we establish two following results. Let A be the adjacency set of genomes G1, ..., GN , and
let C be the set of all pairs of contradictory adjacencies from A.

Theorem 3 For any pair of adjacencies {a, b} ∈ C and two genomes Ma and Mb identical up to 2
adjacencies with a ∈ Ma and b ∈ Mb, it holds that

�N
i d(Ma, Gi)−

�N
i d(Mb, Gi) ≤ N.

48CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

(a) breakpoints in Π
π1 ... πk πk+1 ... πl πl+1 ... πn

a c

(b) breakpoints in Γ
π1 ... πk −πl ...−πk+1 πl+1 ... πn

b d

Figure 3.6: Π and Γ are identical up to a, c (or b, d). This implies (a) the existence of 2 breakpoints
a = πk.πk+1 and c = πl.πl+1 in Π, and (b) of 2 breakpoints b = πk.−πl and d = −πk+1.πl+1 in Γ.

Theorem 3 can be transposed to breakpoints as shown in theorem 4. Let us denote Na the number
of genomes with adjacency a, Nb the number of genomes with adjacency b and No the number of
genomes without adjacencies a or b.

Theorem 4 For any pair of adjacencies {a, b} ∈ C such that u(a) > u(b) and two genomes Ma

and Mb identical up to 2 adjacencies with a ∈ Ma and b ∈ Mb, it holds that

Na − 2Nb −No ≤
N�

i

b(Mb, Gi)−
N�

i

b(Ma, Gi) ≤ 2Na −Nb + No.

Moreover, in the same work [101] we show that while theorems 3 and 4 provide general theoretical
bounds, the worst cases are rarely met, especially in practice.

3.3.3 From adjacencies to final assemblies

Section 3.3.2 implies that we can choose adjacencies for higher frequencies because they lead to a
reasonable compromise between the breakpoint and the rearrangement distance approaches. Based
on the adjacencies we propose to build super-block assemblies of median genomes.

The construction of super-blocks is done in two steps. First, we build a partition P of adjacencies
where each part is composed of inter-dependent adjacencies. P is partially ordered by adjacency
frequency of the parts’ elements. Second, P is inspected in decreasing order of its parts, and the
super-block sets are constructed by favoring adjacencies with higher frequency.

Finally, to find adjacencies unresolved before, the last part of our method looks for a sequence of
fusions of super-blocks that minimizes the rearrangement distances.

Groups of dependent adjacencies

We have seen previously that there exist different relationships between adjacencies. They can com-
plement each other and, in this case, we can assemble them together in order to form a coherent
chain of elements. When two adjacencies are in contradiction, then either there are different pos-
sibilities to complement the same element (vertex contradiction), or these two adjacencies have the
same elements up to their order and/or their orientation (cycle contradiction).

Let P(A) be a partition of A. We define P0(A) by the membership in the same elementary cycle
without 0(that is a cycle containing 2 adjacencies). Parts of P0(A) are either singletons or sets of
adjacencies where every pair is in cycle contradiction. For a given set of adjacencies A, the highest

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 49

frequency of its elements is denoted u(A) = maxa∈A u(a) and is called set frequency. We denote
by G the adjacency graph containing all the adjacencies of A.

We define the merging of parts � : P(A) → P(A) as follows.

Definition 15 �(P(A)) is a partition of A such that for any p ∈ �(P(A))

• ∃ p1 ∈ P(A) s.t. p = p1 or

• ∃ p1, p2 ∈ P(A) s.t. p = p1 ∪ p2 and moreover ∃ a ∈ p1 and ∃ b ∈ p2 s.t. u(a) = u(b) =
u(p1) = u(p2) and either a and b are dependent or a and b participate in a cycle c ∈ G
without vertex v = 0 s.t. ∀v ∈ c we have u(v) ≥ u(a).

Starting fromP0(A), merging of parts� defines a sequence of partitionsPi(A) where ∀i > 0,Pi(A) =
�(Pi−1(A)). Obviously, there exists an n for which � reaches its fixed point denoted by �n(P(A)),
that is Pn(A) = �(Pn(A)).

Definition 16 A group g is a part of �n(P(A)).

Example 5 The adjacencies of the example 3 are partitioned into groups as shown in table 3.2.

grp. freq. adjacencies
4 6.0(4)
3 3.4(3), 4.0(3)
3 0.5(3)
2 0.1(2), 1.2(2), 2.1(1), 2.3(2)
2 0.6(2)
2 5.0(2)

Table 3.2: Partition of adjacencies from example 3 into groups. The adjacencies are noted with their
frequency in parenthesis, and the groups are sorted by decreasing group frequency. Only groups with
u(g) > 1 are represented.

Super-blocks and partial assemblies

Definition 17 A super-block is a set S of n ≥ 1 adjacencies such that ∀a, b ∈ S, a does not
contradict b, and there exists an order over S such that ∀i ∈ [1, n), ai complements ai+1, and a1, an

are either independent or a1 = an = 0. A partial assembly P = {Sk} is a set of super-blocks such
that ∀k, l with k �= l if Sk ∩ Sl �= ∅ ⇒ Sk ∩ Sl = {0}.

Super-blocks, and thus partial assemblies, are formed by going through the groups of adjacencies
by decreasing order of their frequencies. For a given partial assembly P = {Sk} and a current group
g, any adjacency b ∈ g is removed from it if there exists an adjacency a ∈ Sk ∈ P in contradiction
with b. This operation is called clean and produces a gc ⊆ g, gc = clean(g,P). However, when
inspecting the current group gc we do not have any means to prefer some of its adjacencies over the
others.

Let us denote the operation of adding a group g to P by ⊕. This operation produces all possible
partial assemblies {Pi} = P ⊕ g and can be realized by the algorithm add_group (algorithm 3). The
complexity of this algorithm is bounded by the research of maximal independent sets over gc (for
details see [101]).

50CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Algorithm 3 add_group(g,P)
Require: a group g, a partial assembly P
Ensure: P is a set of partial assemblies
1: let GP be the adjacency graph for P
2: let P = ∅ and gc = clean(g,P)

3: let M be the set of all maximal independent sets over gc

4: for all µ ∈M do
5: let Gµ be the adjacency graph for µ
6: let T be the set of all connected components of G0

µ
7: let Gnew = {VP ∪ Vµ, EP ∪ Eµ}
8: let C = ∅
9: while G0

new has a cycle c do
10: let V = ∅ be the set of adjacencies from µ participating in c
11: for all t ∈ T do
12: if t ∩ c �= ∅ then
13: let V = V ∪ adjacencies(t)
14: let Gnew = {Vnew\{t[0]}, Enew}
15: end if
16: end for
17: let C = C ∪ {V }
18: end while
19: let G = {VP ∪ Vµ, EP ∪ Eµ}
20: let Gµ = {G}
21: for all c ∈ C do
22: G = ∅
23: for all a ∈ c do
24: for all Gµ ∈ Gµ do
25: G = G ∪ {{Vµ, Eµ\{a}}}
26: end for
27: end for
28: Gµ = G
29: end for
30: let P = P ∪ partial_assemblies(Gµ)
31: end for
32: return P

The construction of all partial assemblies for genomes G1, ..., GN proceeds as shown in algo-
rithm 4. Notice that we do not consider groups where u(g) = 1 since these adjacencies do not have
any additional support in any other genome.

Fusions of super-blocks

Algorithm 4 builds all partial assemblies by resolving conflicts between adjacencies up to group
frequency 2. Groups of frequency 1 are excluded since there is no evidence if they are present by
chance or not.

Definition 18 A fusion of super-blocks S1 = (a1, ..., an) and S2 = (b1, ..., bm) is a super-block
S such that the order of definition 17 is either S = (a1, ..., an, b1, ..., bm), or S = (a1, ..., an,
−bm, ...,−b1), or S = (b1, ..., bm, a1, ..., bn), or S = (b1, ..., bm, −an, ...,−a1).

This definition implies that a super-block S such that a1 = 0.πi and an = πj .0 can not participate
in a fusion. Indeed, such a super-block already forms a chromosome telomere to telomere.

Let {P} be the set of all partial assemblies up to group frequency 2 for genomes G1, ..., GN

and P ∈ {P} a partial assembly. The number of super-blocks in P can be relatively high. This is
due to the fact that some elements can not be inter-connected because of the low frequency (equal
to 1) of corresponding adjacencies. Such elements are located at the extremities of the super-blocks.
We connect them in order to form chromosomes by fusions of super-blocks without worsening the
distance and breakpoint bounds (see theorem 5).

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 51

Algorithm 4 partial_assemblies(G1, ..., GN)
Require: G1, ..., GN genomes over the same set of gene markers
Ensure: P is a set of partial assemblies
1: let A be the set of all adjacencies for G1, ..., GN

2: let G = {g} be the set of all groups for A
3: let n = maxGu(g)

4: let P = {∅}
5: for all gi s.t. n ≥ i ≥ 2 do
6: let P�

= ∅
7: for all P ∈ P do
8: PP = P ⊕ gi

9: P�
= P� ∪ PP

10: end for
11: P = P�

12: end for
13: return P

Theorem 5 For any P ∈ {P} of G1, ..., GN such that P = {Sk}, there exists a genome M such
that for any chromosome π of M either ∃Sk ∈ P such that π = Sk, or ∃ {Sk} ⊆ P such that π is
formed by a series of fusions π = S1...Sk. Moreover,

�N
i d(M,Gi)−

�N
i d(P,Gi) ≤ 0 and

�N
i b(M,Gi)−

�N
i b(P,Gi) ≤ 0.

To find an optimal sequence of fusions, we classify them by their effect on global rearrangement
distance (the sum of rearrangement distances between median genome and G1 . . . GN). A greedy
randomized algorithm is used to find ancestral candidates obtained after a limited number of fusions.
By parsimony criterion, solutions that minimize global rearrangement distance are conserved.

3.3.4 A Median Genome for non-WGD yeasts

We have applied our method to analyze ancestral architectures for Génolevures project ([51]) in the
case of non-WGD Hemiascomycete yeasts. The data consists in 5 completely sequenced yeasts
the Kluyveromyces and related clades: Kluyveromyces lactis, Saccharomyces kluyveri, Zygosaccha-
romyces rouxii, Ashbya (Eremothecium) gossypii and Kluyveromyces thermotolerans3. These geno-
mes have little genome redundancy and a relatively high (for yeasts) conservation of synteny.

Signed permutations representing each genome were computed using pairwise syntenic blocks
obtained by i-ADHoRE method [181] from orthology and synteny relations identified using Génole-
vures protein families [143]. These syntenic blocks contain 8–200 genes (mean size 14 genes, esti-
mated) and cover roughly 60% of each genome. Basing these permutations only on protein-coding
genes is sufficient, since yeast genomes are highly compact (protein-coding genes cover approxi-
mately 80% of the genome), and gene relics are quite rare (approximately 4%) [50]. By combining
pairwise syntenies, each genome was factored into a sequence of ordered syntenic blocks, from which
a set of distinct blocks common to all genomes was determined. An arbitrary reference genome was
chosen, and all the blocks forming this genome were numbered by unique sequential identifiers from
1 to n.

The permutations computed by this in silico chromosomal painting contained 487 blocks (mean
size 51 genes, estimated); keeping the longest blocks brought the permutations to 120 identifiers4

(mean size, 94 genes, estimated). We were able to place active and inactive centromeres in each
genome permutation by locating the flanking genes (personal communication by Jacky de Montigny).

3Abbreviations: Klla, K. lactis; Sakl, S. kluyveri; Zyro, Z. rouxii; Ergo, A. gossypii; Klth, K. thermotolerans.
4The number of retained markers does not allow one to obtain an ancestral permutation candidate by using the public

version of MGR.

52CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Each of 9 contemporary centromeres was encoded by two successive identifiers, resulting in 15
additional blocks. Thus, each genome was represented as a signed permutation of 135 elements
(see [101]), in which chromosomal rearrangements (fusion, fission, translocation, inversion) were
studied. The pairwise rearrangement distances between these genomes are shown in table 3.3.

Zyro Klth Sakl Klla Ergo
Zyro 0 84 79 115 101
Klth 0 45 105 88
Sakl 0 98 85
Klla 0 109
Ergo 0

Table 3.3: Pairwise rearrangement distances between non-WGD Hemiascomycete genomes as cal-
culated from common synteny blocks representing 135 major conserved segments.

Comparative genome maps were painted (see figure 3.7) with K. thermotolerans as reference.
Active centromeres are represented by red ovals, telomeres are represented by triangles. The as-
signed letter indicates the agreement of this centromere across the five species. Markers are well
distributed on the chromosomes, so the choice of these markers is representative of the architecture
of the contemporary genomes. A high degree of synteny, and a limited number of large-scale re-
arrangements, is observed between K. thermotolerans and S. Kluyveri; they share many common
adjacencies and their rearrangement distance is half of that seen between other pairs of genomes.
Note that K. lactis presents two syntenic breaks in centromere areas: the centromere of Klla0F is
located between the flanking genes of centromeres h and b, and the centromere of Klla0A is located
between the flanking genes of centromeres h and e. Moreover, S. kluyveri has an active centromere
(the centromere i), that was disabled in all the other studied genomes.

We computed 16 sets of super-blocks each containing either 34 or 35 super-blocks. These super-
block sets are highly similar. Indeed, 29 super-blocks are common among all of the sets, and there
are only 4 conflicts (see figure 3.8). A given partial assembly of super-blocks P represents a potential
structure of an ancestral architecture. Finally, it is possible to construct a final assembly from these
super-blocks by successive fusions. Two sets of assemblies were computed: with and without the
constraint on centromere position. For both of these cases 90 final assembly candidates were gener-
ated. In the first case the global sum of distances

�
(M,Gi) varies between 281 and 285 (283,4 on

average); in the second case it varies between 281 and 283 (282,2 on average). The latter represents
biologically plausible architectures whose rearrangement distances are close to minimal. The whole
set of solutions shows a high convergence in terms of rearrangement distances reinforcing the intu-
ition that the computation of ancestral architectures by super-blocks assembly results in a reduced
neighborhood in the search space. Further filtering of the results was done by studying distributions
of chromosome sizes and of centromere locations on the chromosome. Figure 3.7 shows the candi-
date for ancestral architecture which has the best compromise between these parameters and minimal
value for

�
(M,Gi) = 284.

3.3.5 Discussion

Computing the median for a given set of genomes is informative when the sample set of genomes is
carefully chosen and the interpretation of the common features that are so identified is performed with
caution. As with any statistical study, if the sample is too small or not representative of the population
under study, then the median may be biased. It is not the object of this work to provide guidance into

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 53

Figure 3.7: Reconstructions of genome-scale homology from common synteny blocks representing
major conserved segments. Med is the proposed ancestral architecture with

�
d(Med, Gi) = 284.

Each unique numbered synteny block is given a color indicating its chromosome in the reference
genome (Klth), and a diagonal bar indicating its relative position on the chromosome. Other genomes
are signed permutations of these colored blocks; a change of slope in the diagonal bar indicates an
inversion. Block widths are to scale and the size of interleaving nonsyntenic regions is shown by
large grey lines. Red circles: centromeres; gray triangles: telomeres.

54CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

30 113 114 {g} 115
116 117
119 120

-8 -7 121 122 123 124 125 126 127 128 129 112
39 130 131 {h} 132 133 134

135

83
89

-105 -104 -103 -102 97 98 99
100
101

106 107
90 108 109 110 111

31 32 33 {c} 34 35 36
40 41 42 {d} 43 44

45 46
62

-6 -5 63 64 65 94 {f} 95 96
66 67 68 {e} 69 70

71
72 73 74 75 76 77 78 79

1 {a} 2 3 4 118
10 {b} 11

12 -22
13 -29 -28 -27

47 14 15 16 17 18 19 20
21

23 9
24 25

48 49 50 51 52 53 54 55 56 {i} 57 58 59 60 61 48 49 50 51 52 53 54 55 56 {i} 57 58 59 60 -61

84
82 -88 -87 -86 85

84 85 86 87 88 -82
84

82 -88 -87 -86 85
84 85 86 87 88 -82

26
92 93 91 -81 -80

80 -26
92 93 91 -81

26
92 93 91 -81 -80

80 -26
92 93 91 -81

26
92 93 91 -81 -80

80 -26
92 93 91 -81

26
92 93 91 -81 -80

80 -26
92 93 91 -81

-37 38

328

37 38

326

-37 38

328

37 38

326

-37 38

324

37 38

323

-37 38

325

37 38

323

-37 38

327

37 38

325

-37 38

327

37 38

325

-37 38

325

37 38

322

-37 38

324

37 38

322

Figure 3.8: Sharing tree of super-blocks from the 16 sets of super-blocks obtained from non-WGD
Hemiascomycete yeasts genomes. The root contains the super-blocks shared among all the 16 sets.
Each path from the root to a leaf represents a set of super-blocks. The number inside the leaf nodes
indicates the sum of the distance between this set of super-blocks and the contemporary genomes.
Colors and marker numbers were chosen using Klth as a reference. The diagonal line in each box
indicates the relative position and orientation of the marker on the reference genome.

3.3. ANCESTRAL ARCHITECTURES AND SUPER-BLOCKS 55

sampling strategies for genome comparisons, but to provide robust mathematical tools for performing
the comparisons. Practical studies ([58], [74], for example) concur that the set of plausible medians
is quite large and that it is misleading to present just one as “the” ancestral architecture of a set of
genomes.

The focus of this work is on the identification of common structural features that are likely to be
inherited from ancestral genomes. These super-blocks can be seen as complex traits in the sense of
Dollo parsimony, whose conservation and possibly loss from a common ancestor is more likely than
independent gain in separate lineages. They are identified without use of a hypothesized phylogeny,
and indeed nothing suggests that recombinatory evolution coincides with mutational evolution.

This use of phylogeny is an important feature of the work of [120]. Super-blocks share certain
aspects of the motivation behind CARs: that is assembling only adjacencies having sufficient support
in contemporary genomes.

The sharing tree of super-blocks (such as seen in figure 3.8) encodes all the possibilities of an-
cestral genome architectures by including in the super-blocks the adjacencies common to at least 2
genomes, and leaving the super-block extremities as the only places where no semantically sound
assembly is possible. This final assembly is then just a question of optimization under some metric,
and in this work we use the Hannenhalli-Pevzner rearrangement distance.

The super-blocks themselves implement a compromise between the rearrangement and break-
point distances, and thus, thanks to the latter, encode the ancestral semantics, while leaving room for
optimization thanks to the former.

In practice, our method realizes two successive search-space reductions. First, the super-blocks
themselves diminish the number of unresolved adjacencies (left for the optimization step). Second,
we rely on the biological constraints for further search-space reduction, as well as solution filtering.
In particular, in our application to the non-WGD yeasts we use the centromere positions, yielding
biologically plausible solutions only.

Gene and Segmental Duplication

Accounting for gene and segmental duplication is an important challenge, that we do not address in
this work. In [123] Martin et al. use the interleaving patterns of gene orders to study rearrangements
before and after the hypothesized whole genome duplication (WGD) event in the Saccharomyces
lineage [212]. Interestingly, they claim that a series of partial genome duplications leads to more
parsimonious rearrangement scenarios that does a single whole genome duplication. In their study
they combined rearrangement events with duplication and deletion events; during a preprocessing
step their method renumbers duplicated elements in gene orders to produce a permutation compatible
with the Hannenhalli-Pevzner rearrangement algorithms that they use. For computational reasons,
only a single chromosome of A. gossypii is studied in detail. For this example our results agree;
indeed, the segments in their figure 5 (and supplemental file S1 provided by reviewer 2) are found in
our adjacent markers 52 and 51 (Figure 3.7), conserved in our median and all genomes we consider
except Z. rouxii. Our study is otherwise quite different. Since we deliberately only consider species
outside of the WGD lineage, we are not concerned with the large-scale duplications and deletions
that mask the underlying rearrangement events. Our method works efficiently on complete genomes,
and is not reliant on the Hannenhalli-Pevzner method, but rather proposes a partial reconciliation
between it and the breakpoint method. Our super-blocks method does not take duplications into
account, since it is not obvious how to weigh duplicated adjacencies when counting their frequency.
This is a direction for future work.

56CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Towards Ancestor Construction in Yeasts

Comparative genomics in the hemiascomycete yeasts has proven extremely informative about the
basic mechanisms of eukaryotic molecular evolution, both using genetic tools and computer analy-
sis. These species represent a homogeneous phylogenetic group with small and compact genomes,
but nonetheless a large diversity at the physiological and ecological levels, and an evolutionary range
comparable to the Chordate phylum [51, 50]. They provide a kind of ‘evolutionary playground’ in
which various genome-modifying mechanisms have been tested over and over. Building a mathe-
matical description of this rich history will provide important insight.

In this work we have used our super-block method to construct a plausible ancestral architecture
for a phylogenetically circumscribed group of non-WGD yeasts, using ordered markers derived from
all-against-all search for conserved syntenic segments. Surprisingly, highly similar sets of super-
blocks are constructed from these markers, reinforcing the idea that the ancestral semantics can be
recovered using adjacencies observed in contemporary genomes. Final assemblies of these super-
blocks were constructed by an optimization procedure using the Hannenhalli-Pevzner rearrangement
distance as a metric. A strength of our method is that such final assemblies can be made to respect
biological constraints on chromosome architecture, in this work centromere position.

Since our method can efficiently handle hundreds of markers in dozens of genomes simultane-
ously, these results open the way to a more in-depth study of the rearrangement history of the yeasts.
This will require technical advances, for detecting synteny in the presence of segmental duplication,
for masking the effects of highly mobile elements, and for improved respect of biological constraints.

3.4 Efficient meta-heuristic for the Median Genome Problem

In this section we present a novel population-based local search algorithm for the median genome
problem. The primary result is the improvement of the performance of ancestral genome reconstruc-
tion compared to existing methods, making it possible to tackle problems where the contemporary
genomes may contain many hundreds of markers. Moreover, our method is not limited to triples of
genomes, and thus solves the median genome problem in its generality. We show that in real applica-
tion cases the computational results are highly robust, suggesting that we can interpret the computed
median genomes as candidates carrying the semantics of ancestral architectures.

Two computational approaches for construction of ancestral genome architectures were pro-
posed. They were formulated as the Median Genome Problem (MGP) and the Multiple Genome
Rearrangement Problem (MGRP). Given a set of genomes {Πi}, the former consists in computing
a permutation Π minimizing the sum of distances to {Πi}, while the latter aims at computing the
Steiner tree thus minimizing the sum of distances along its edges. The Median Genome Problem
has been shown to be NP-hard for both of distance functions even in the case of only 3 genomes
(see [28, 152] for breakpoint distance and [33, 34] for rearrangement distance). Nevertheless, exact
resolution of MGP have been attempted, yielding optimal solutions for very small instances [180].

Approximate algorithms for MGP have been proposed for both distances. In the breakpoint
case, Sankoff and Blanchette formulated the solution through a reduction to the Travelling Salesman
Problem [162]. These authors proposed an algorithm that guarantees a reasonable lower bound on
the sum of distances.

In the case of rearrangement distance, MGP and MGRP have been tightly linked since for real-
sized cases the proposed solutions for the latter rely on successive triangulations, and thus on the
solving of the former in the 3-genome case. Two existing software packages MGR [23] and rEvoluzer
[20] implement partial solutions of MGP. Indeed, MGR solves the problem for triples of multichro-
mosomal genomes, while rEvoluzer can treat more than 3 genomes, but only in the unichromosomal

3.4. EFFICIENT META-HEURISTIC FOR THE MEDIAN GENOME PROBLEM 57

case. Both of the proposed solutions are heuristics based on the detection of “good” reversals, op-
erations that are guaranteed to improve the solution. The genomes {Πi} are re-written step by step
by applying reversals until two (or three) of them become equal. There are two differences in the
proposed solutions. First, the definition of what constitutes a good reversal is not exactly the same.
Second, when no good reversals remain, MGR performs a k-depth search to find a best reversal,
while rEvoluzer allows for backtracking.

In this study, we present FAUCILS, a new approximate algorithm for MGP in the general case,
that is, for an unrestricted number of multichromosomal genomes, while improving performances of
existing approaches on restricted instances. The mainly originality of our approach is the definition
of a probabilistic neighborhood which evolve within a population-based local search according to
observations made on the population. This mechanism allows us to greatly accelerate the search and
ensures more convergence, especially for real or structured instances.

We consider multichromosomal genomes over the set of n markers, and we say that such a
genome is of size n. For example, {(5,−8), (1, 2,−10, 6, 4), (9), (−3, 7)} is a genome of size 10.
Given a set of size-n genomes {Πi} and a genome distance function d, an instance of the combina-
torial minimization problem MGP is defined by two elements �τn,φ�:

1. a search space, τn, composed of the set of all possible size-n genomes, and

2. an objective function φ : τn → N (score) defined by φ(Π) =
�

Πi
d(Π,Πi).

A median genome for a given set of genomes {Πi} is a genome Π that minimizes φ(Π). Every
optimal solution to MGP is a median genome.

3.4.1 An original population-based local search for MGP

For addressing NP-complete problems like MGP in the general case and reaching acceptable solu-
tions in reasonable time, approximate algorithms provide the most practical approach. We present
a population-based local search algorithm using an original and evolutive neighborhood reduction
mechanism for the resolution of MGP in the case of rearrangement genome distances. It gives ex-
cellent results in terms of the quality of the solutions it obtains, the speed of the computation, its
robustness, and its scalability.

A descent algorithm for MGP

Stochastic Local Search (SLS) [90] is a well-known class of metaheuristics, used for the resolu-
tion of many difficult combinatorial optimization problems. SLS algorithms are iterative methods
which start from an initial configuration (candidate solution of the search space) and improve it by
successive local modifications. In this section we define a simple descent algorithm to MGP, where:

1. the initial configuration is taken from {Πi},

2. the evaluation function is the same as the objective function φ: the rearrangement distance d,

3. the neighborhood relation we callR1 is a 1-step rearrangement: R1(Π) = {Π� ∈ τn, d(Π,Π�) =
1},

4. the move strategy is a first-improve selection (FI) which accepts better and equivalent configu-
rations (side-walk mechanism, SW [170]), given a specified number of iterations nbit.

58CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

?

Initial configurations
candidates

Search space

Π1

Π2

Π3

Π4

Π∗

Π7

Π6

Π5

Figure 3.9: Geometric analogy of MGP: median genomes are within the convex hull of {Πi} in the
space of genomes. Starting the search from a Πi on the perimeter greatly reduces the search space.

The performance of a descent algorithm essentially depends on the neighborhood relation used
[131]. In order to avoid slow processes and local optima difficulties, we use the FI+SW selection
strategy combined with the large and straightforward neighborhood R1.

Figure 3.9 shows that configurations taken from {Πi} may be interesting initial candidates for
the beginning of the search. Considering the evaluation function and the neighborhood relation R1,
the descent will explore only configurations from the schematic area delimited by the Πi. If the Πi

are close (for example in the case of real applications), then the resulting search space is significantly
reduced.

Probabilistic population-based local search

Traditionally, descent algorithms are sensitive to either stochastic factors or initial configurations and
consequently may not be sufficiently robust – that is, different executions may diverge – although the
SW mechanism and the use of a large neighborhood can reduce this drawback. A commonly used
solution is to perform several descents from different initial configurations (different replications
in a multi-start descent process). In genetic local search algorithms, local search processes and
crossovers between elements (individuals) of a set or multiset of current configurations (population)
provide intensification and diversification phases.

A local search process applied to many independent replications is sometimes called a population-
based local search even though there is no interaction between individuals [150]. Here we do not
use any crossover operations, but simulate an alternative evolutionary process in order to accelerate
the searches and to make multi-start descents more convergent.

We introduce a probabilistic population-based local search algorithm which favours, at each step
of the search, the selection of most pertinent neighbors [75] with respect to the population. Structural

3.4. EFFICIENT META-HEURISTIC FOR THE MEDIAN GENOME PROBLEM 59

information about each individual is used to estimate a selection probability at each step of the search.
In this process, all replications are dependant, while the descents are carried out simultaneously.

In this section we present a multi-start descent for MGP. We use the descent mechanism presented
in section 3.4.1, adding to each neighbor a selection probability.

Let P be the population of our population-based descent, which initially contains individuals
taken from {Πi}. Now let us consider a probabilistic function p : τn × τn × τ |P|−1

n → [0, 1], such
that p(Π,Π�,P \ {Π}) gives a selection probability of Π� ∈ R1(Π). Such a probabilistic function is
quite similar to the one used for simulated annealing move strategy. The difference here is that only
better or equivalent neighbors are accepted by the move strategy, whereas neighbors are generated
by a probability distribution (probabilistic neighborhood [131]). The aim is not to escape to local
optima, but to favour neighbors which share properties with other individuals in P .

This probabilistic function is connected to the notion of adjacencies, that we define in the way
analogous to Nadeau and Taylor [133].

Definition 19 Two consecutive elements πi and πi+1 of a chromosome π ∈ Π are said to be adjacent
in Π. We note this adjacency by (πi.πi+1).

We consider additional adjacencies at the extremities of each chromosome by introducing marker
0. For a chromosome (π1, . . . ,πm), two adjacencies are added: (0.π1) and (πm.0). Notice that
(πi.πj) = (−πj .− πi) and (0.πi) = (−πi.0). Finally, we note A(Π) the set of all adjacencies in Π.
We have |A(Π)| = n + N (n is the number of markers and N the number of chromosomes).

Each move (rearrangement) breaks one (fission) or two (reversal, fusion, reciprocal translocation)
adjacencies. The probabilistic neighborhood encourages adjacencies which are not, or are less, rep-
resented in the population to be broken. The probabilistic neighbor selection operates as follows: let
Π� ∈ R1(Π); if φ(Π�) � φ(Π), then Π� replaces Π in P in function of the proportional representation
of the broken adjacencies in P \ {Π}:

p(Π, Π�,P \ {Π}) = 1−
|{Π�� ∈ P \ {Π}, (A(Π) \ A(Π

�
)) ∩A(Π

��
) �= ∅}|

|P|− 1

Algorithm 5 provides an overall view of our probabilistic population-based descent we called
FAUCILS for Fast Ancestor (inference) Using Convergent and Intelligent Local Search.

3.4.2 Experiments

For experiments we use different kinds of instances: real and random ones, with different numbers
of genes and chromosomes by genome.

Real instances

First we assess our algorithm FAUCILS on two sets of 10 triplets of yeast genomes. The data,
provided by Génolevures Consortium5 (GDR CNRS 2354), consists in five sequenced yeasts from the
Kluyveromyces clade: Kluyveromyces lactis (Klla), Saccharomyces kluyveri (Sakl), Zygosaccharo-
myces rouxii (Zyro), Ashbya gossypii (Ergo) and Kluyveromyces thermotolerans (Klth). From these
data, two sets of permutations have been computed: the first one with 135 markers (K135), and
the second one with 499 markers (K499). For the comparison with MGR, which calculates only 3-
genomes medians (N = 3), we separate in ten instances each possible triplet of genomes: Klla-Sakl-
Zyro is K135-1 and K499-1, Klla-Sakl-Ergo is K135-2 and K499-2, . . . These five genomes have

5http://www.genolevures.org

60CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Algorithm 5
Require: {Π1, . . . Πk}: a set of k multichromosomal genomes of size n; l.k: the size of the popula-

tion; nbit: the number of descent iterations.
Ensure: an approximate median genome set P̂

let P be the multiset of the current genomes population, which initially contains l copies of each
Πi.
let numit ← 0 be the number of performed local search iterations
while numit < nbit do

for all Π ∈ P do
loop

randomly select Π� ∈ R1(Π)
break with probability p(Π,Π�,P \ {Π})

end loop
if φ(Π�) � φ(Π) then

Π ← Π�

end if
end for
numit ← numit + 1

end while
return P̂ = argminΠ∈P φ(Π)

Instance k n
FAUCILS MGR MGR-H1

∆
φb f φm φw σ CPU φ CPU φ CPU

K135 5 135 281 7/20 281.7 282 0.5 42m - - - - -
K135-1 3 135 168 1/20 170.6 172 1.1 15m 177 355m 178 44m -9
K135-2 3 135 115 5/20 116.1 117 0.8 14m 119 188m 120 6m -4
K135-3 3 135 150 1/20 151.9 153 0.7 15m 157 348m 160 60m -7
K135-4 3 135 132 14/20 132.3 133 0.5 14m 135 377m 136 13m -3
K135-5 3 135 166 1/20 168.0 169 0.9 15m 173 400m 175 48m -7
K135-6 3 135 110 5/20 111.1 112 0.8 15m 112 148m 114 8m -2
K135-7 3 135 160 1/20 161.7 164 0.9 13m 162 300m 172 26m -2
K135-8 3 135 185 4/20 186.6 188 1.1 13m 193 527m 194 197m -8
K135-9 3 135 145 3/20 146.6 148 1.0 13m 154 296m 154 45m -9
K135-10 3 135 159 2/20 160.6 163 0.9 15m 167 355m 165 30m -6

K499 5 499 564 6/20 565.9 568 1.7 98m - - - - -
K499-1 3 499 407 5/20 408.1 410 0.9 44m / max 413 457m -6
K499-2 3 499 234 1/20 235.0 236 0.3 38m / max 233 105m +1
K499-3 3 499 338 6/20 339.1 341 0.9 43m / max 339 297m -1
K499-4 3 499 263 4/20 263.9 265 0.6 39m / max 262 106m +1
K499-5 3 499 372 2/20 373.7 375 1.0 43m / max 375 391m -3
K499-6 3 499 181 10/20 181.6 183 0.6 38m 179 2 days 179 74m +2
K499-7 3 499 375 1/20 377.1 379 1.0 37m / max 381 317m -6
K499-8 3 499 476 3/20 479.2 481 1.6 40m / max 484 823m -5
K499-9 3 499 307 2/20 310.3 310 0.9 35m / max 309 230m -2
K499-10 3 499 338 3/20 340.0 343 1.4 42m / max 338 251m =

HCM 3 114 48 20/20 48.0 48 0 <1m 48 10m 48 <1m 0

Table 3.4: Comparison between FAUCILS and MGR on real instances.φb is the best score returned
by FAUCILS, f is its frequency, φm is the mean score, φw is the worst score, σ is the standard
deviation based on 20 different executions.

respectively 6, 8, 7, 6 and 8 chromosomes. We add a real test instance composed by the genomes of
Human, Cat and Mouse, and available on the MGR web page6.

6http://nbcr.sdsc.edu/GRIMM/mgr.cgi

3.4. EFFICIENT META-HEURISTIC FOR THE MEDIAN GENOME PROBLEM 61

Table 3.4 shows performances of FAUCILS and MGR on these real instances. FAUCILS is a
stochastic algorithm, and two executions may return different results; for each instance we perform
multiple executions. Table 3.4 indicates the best results φb of 20 executions, their frequency f, the
mean scores φm, the worst scores φw, the standard deviations σ and the mean computation times of
one execution. FAUCILS was run with its default parameters: l = 3 (i.e. a population size of 9 when
k = 3), and one million LS iterations (nbit); MGR was first run with its default parameters, and
secondly with the heuristic option H1 (MGR-H1) for speeding up the search. Each execution was
performed on a node of Grid’50007 and the computational time limit per compute node was fixed to
one week. In all tables, ∆ gives the difference between the best score returned by MGR and the best
score returned by FAUCILS.

From Table 3.4 one observes that FAUCILS computes better median genomes than MGR. For all
the K135 instances, FAUCILS performs better than MGR with 5.9 rearrangements less per instance
for the bests runs, and 4.4 rearrangements less in the mean for all the 200 runs (10 × 20) with low
computation times (about 15 minutes against hours for MGR). The MGR H1 heuristic does speed
up the program, but the returned solutions are less competitive (except for K135-10 where MGR-H1
beats MGR with default settings). When the number of markers is big (499), MGR needs to be
used with its speed resolution heuristic to complete the search, and for these instances FAUCILS and
MGR are more comparable in term of scores, although FAUCILS remains better in mean and faster.

Finally, FAUCILS is also robust with more than three genomes (instances K135 and K499) since
the returned solutions have very close scores. The increase of the computation time mainly depends
on the population size parameter, which can be reduced.

Random instances

Instance n N
FAUCILS MGR MGR-H1

∆
φb f φm φw σ CPU φ CPU φ CPU

R50-1 50 1 79 2/20 80.6 82 0.8 4m 82 6m 83 2m -3
R50-2 50 1-9 80 1/20 81.5 82 0.6 6m 87 5m 87 2m -7
R50-3 50 3-7 80 6/20 80.8 82 0.6 6m 84 7m 85 1m -4
R50-4 50 5-5 79 5/20 80.2 81 0.8 6m 83 8m 84 1m -4

R100-1 100 1 171 1/20 173 175 1.0 8m 175 801m 177 126m -4
R100-2 100 2-10 166 1/20 168.8 170 1.1 10m 176 250m 178 226m -10
R100-3 100 3-7 170 2/20 171.9 174 1.2 10m 174 310m 179 139m -4
R100-4 100 5-5 166 1/20 169.8 172 1.5 10m 169 464m 171 170m -3
R200-1 200 1 354 1/20 357.2 362 1.9 16m / max / max -
R200-3 200 10 351 1/20 356.1 360 2.0 19m / max / max -
R200-4 200 11-20 344 2/20 347 350 1.7 21m / max 366 4 days -22
R500-1 500 1 924 1/20 928.2 932 2.1 37m / max / max -
R500-2 500 10 942 2/20 945.4 950 2.3 42m / max / max -
R500-2 500 18-44 936 1/20 942.7 947 3.1 40m / max / max -

Table 3.5: Comparison between FAUCILS and MGR on random instances

In order to assess the performance of our population-based local search algorithm with respect to
the structure and the size of the instance, we generate two types of random instances.

First, we use completely random instances (R) containing a specified number of markers, and
a minimum and maximum number of chromosomes by genome (N). On these instances of size
50 and 100, FAUCILS obtains better results than MGR systematically (see Table 3.5). For larger
instances, only one MGR run ended, with an uncompetitive result (∆ = −22). These instances
seem to be difficult because of their structure: each genome is a random point of τn, and the MGR

7https://www.grid5000.fr

62CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Instance n N div FAUCILS MGR MGR-H1
∆

φb f φm φw σ CPU φ CPU φ CPU
S100-10-1 100 1 10 10 20/20 10.0 10 0 <1m 10 <1m 10 <1m =
S100-10-2 100 5 10 10 20/20 10.0 10 0 <1m 10 <1m 10 <1m =
S100-10-3 100 10 10 10 20/20 10.0 10 0 <1m 10 <1m 10 <1m =
S100-50-1 100 1 50 50 20/20 50.0 50 0 <1m 50 8m 51 <1m =
S100-50-2 100 5 50 49 20/20 49.0 49 0 <1m 49 8m 49 <1m =
S100-50-3 100 10 50 49 20/20 49.0 49 0 <1m 49 13m 49 1m =
S100-100-1 100 1 100 95 7/20 95.7 97 0.6 <1m 97 190m 98 2m -2
S100-100-2 100 5 100 95 2/20 96.4 98 0.7 <1m 96 55m 98 2m -1
S100-100-3 100 10 100 96 4/20 96.9 98 0.5 <1m 99 70m 99 4m -3
S100-200-1 100 1 200 155 1/20 158.6 160 1.4 5m 163 978m 166 65m -8
S100-200-2 100 5 200 145 1/20 146.6 148 0.7 5m 151 331m 151 67m -6
S100-200-3 100 10 200 143 1/20 145.7 154 2.2 5m 150 114m 154 78m -7

Table 3.6: Comparison between FAUCILS and MGR on simulated instances

algorithm seems very dependent on the structure of each instance (see the divergences between all
computational times on tables 3.4, 3.5 and 3.6).

In order to estimate the impact of the structure of the instance, we generate simulated instances
(S), for which distances between genomes are bounded. An arbitrary ancestral genome is generated
from which a specified number of random rearrangements are applied to give three genomes. We
specify the number of genes (n) and chromosomes (N), and the number of rearrangements done
during the simulation (r); this parameter is an upper bound of the optimal median genome score.

The results are given in table 3.6. We can see that, with r = 10 or r = 50, instances are very
easy to solve. But when the distances between genomes increase (r = 100 and r = 200), FAUCILS
is very competitive and can find in short computation time solutions considerably better than MGR.
Moreover, the algorithm is robust as small values of σ show. For these instances (S), we have to
reduce the number of local search iterations to 2000.r for an equivalent efficiency.

The evolution of the ratio φ/r gives an empirical indication of the structure of the search space.
Indeed, for r = 200, the minimal number of rearrangements required for reconstructing an evolu-
tionary scenario is about 25% lower than the number of rearrangements made during the simulation.
Adding to the relative difficulty to find near-optimal genomes for these instances, we can presume
that this ratio represents the quantity of lost information and can be a good indicator for comparing
the difficulty of simulated instances.

Finally, we have executed rEvoluzer [20] on each unichromosomal instance: S100-10-1, S100-
50-1, S100-100-1, S100-200-1, R50-1, R100-1, R200-1, R-500-1. Except for the three first instances,
where rEvolzer founds in few seconds or minutes the sames scores as FAUCILS (10, 50, 95), the
program did not return any solution for the five other instances, even given one week of computation.

Influence of the probabilistic neighborhood One of the main originalities of FAUCILS is that
neighbors are selected with a non-uniform probability. The foremost aim is to select more pertinent
neighbors as a function of the similarities between individuals in the current population. In [74]
we show that since the population is initialized by the given genomes (instance), the probabilistic
selection will have a larger impact on structured instances, that is when genomes share adjacencies;
it is notably the case of real data instances. On the contrary, on completely random instances both
mechanisms have the same efficiency. Indeed, such instances have insignificant numbers of shared
adjacencies, and the probabilistic selection has no effect.

3.4. EFFICIENT META-HEURISTIC FOR THE MEDIAN GENOME PROBLEM 63

3.4.3 Conclusion

In this work we proposed a new efficient algorithm for the resolution of the Median Genome Prob-
lem (MGP) in the general case. We have notably introduced an novel way for speeding up and
making more convergent multi-start descents for the resolution of MGP, especially for real struc-
tured instances. The key idea is to use a probabilistic neighborhood which evolves during the search
according to the partial results of all descents performed simultaneously.

Experiments realized both on real and random instances show that our software FAUCILS is able
to find largely better solutions than MGR, the current reference in the domain. Moreover, this local
search approach is very fast and scalable: contrary to other existing techniques, FAUCILS can treat
an unbounded number of multichromosomal genomes, which may contain hundreds or thousands of
markers. Future work will involve finding ways to evaluate the quality of solutions in the case of
big instances, and to extend this MGP algorithm for the resolution of MGRP. The Median Genome
Rearrangement Problem is a very hard computational problem for the resolution of which existing
algorithms calculate multiple median genomes.

64CHAPTER 3. UNCOVERING EVOLUTIONARY EVENTS BY REARRANGEMENT ANALYSIS

Chapter 4

BioRica: dynamic modeling formalism
and platform

4.1 Introduction

A general goal of systems biology is to acquire a detailed quantitative understanding of the dynamics
of living systems. Often this goal is tackled through computer simulation. Quite a number of different
formalisms and simulation techniques are currently used to construct numerical representations of
biological systems, and a certain wealth of models is proposed using specific and ad hoc methods.

There arises an interesting question of whether these models are reusable and composable be-
tween themselves or in a larger framework. As a means to circumvent the difficulty of incorporat-
ing disparate approaches in the same numerical study, ae propose BioRica, a high-level modeling
method coupled with an underlying unified efficient simulator (for a complete paper refer to [79]).
On the practical level, BioRica models are compiled into a discrete event formalism capable of cap-
turing discrete, continuous, stochastic, nondeterministic and timed behaviors in an integrated and
non-ambiguous way.

Recent advances in biological experimentation have increased the gap between data collec-
tion and information extraction. To understand biological systems corresponding to these collected
datasets, bottom up approaches in systems biology aim at building mathematical models whose emer-
gent properties mimic in vivo observable properties. For example, integration of molecular interac-
tions predicts and models yeast cell cycle control [37]. At a higher level, integration of cell to cell
variability in cell cycle predicts evolution of a yeast culture.

Building these integrative models is a challenge since most systems biology models concentrate
on only one well defined cellular process. In a higher-level system, such models become sub-systems.
For example, these models could form a logical hierarchy, such as a yeast culture that is composed
of yeast cells, that are in turn composed of a plasma membrane, a nucleoid and multiple regulation
processes that are in turn composed of specific regulation processes... Each sub model interacts and
cooperates with its siblings and contained sub models, and these interactions have themselves to be
modeled.

Furthermore, for the far-off goal of building a comprehensive whole cell model would ideally
re-use already published and verified models of sub-systems. However, since different authors use
different and apparently incompatible formalisms, such an approach requires a framework for hybrid
models able to combine and capture inherently different phenomena (e.g. continuous, discrete and
stochastic models).

However, defining and simulating such hybrid models presents three challenges. Most biologi-

65

66 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

cally precise models are described using ODEs and in practice, combining uncoupled ODEs is not
obvious. The first difficulty arises since multiple identical ODE systems evolving in parallel result
in biologically unrealistic total time synchronicity [128]. Second, co-existence of different kinds of
ODEs can lead to a multi-scale model, that is computationally inefficient [59]. Third, composition
of models that use discrete formalisms leads to semantic incompatibility.

Facing this heterogeneity, what can be a solution for such integrative analysis? The BioRica
framework we present here can combine different formalisms within a single framework that can
efficiently simulate the resulting model. BioRica is a high-level modeling framework integrating
discrete and continuous multi-scale dynamics within the same semantics domain, while offering a
easy to use and computationally efficient numerical simulator. It is based on a generic approach that
captures a range of discrete and continuous formalisms and admits a precise operational semantics.

Related work The E-Cell package [191] is a multi-algorithm simulation framework, where each
component is associated with a distinct stepping function. This function is chosen according to the
simulation algorithm for the component’s model. Time is advanced using a dependency order that
designates the next stepping function that is allowed to advance.

T.R. Kiehl et al. integrate both discrete and continuous cellular processes under the assumption
that continuous events can occur between two discrete events [107]. Discrete events such as tran-
scription, translation and molecular signaling are allowed to be stochastic, which is not the case for
their continuous counterparts. In a way analogous to K. Takahashi, more than one solver co-exist
[191]. The existence of multiple solvers allows each solver to automatically adapt to the most ap-
propriate time-scale, as described by J.M. Esposito where the system is integrated asynchronously
one component at a time [59]. The issue of uniform behavior for multiple instances of the same
process modeled by ODEs has been initially studied in [128] where the authors use pre-processing
to generate models where the base unit is repeated in fixed topologies by varying parameters. Such
an approach differentiates each unit but leads to varying qualitative properties since parameters play
a predominant role in the dynamics of a continuous process (see e.g. in application to cell cycle
[200, 37, 36]). That in turn can fundamentally alter the average behavior of the population.

4.2 The BioRica platform

In order to provide an unified and efficient analysis framework for multi models systems, the BioRica
approach (see figure 4.1) is based on an initial modeling step that expresses each model as a BioRica
node; these latter are the main units of a system. The nodes are then hierarchically composed and
connected to build a BioRica system that is itself transformed by our simulation toolkit into a native
and optimized computer program, that can be run to simulate the system.

4.2.1 Systems description

BioRica nodes are the base description unit of our models and are designed to have the capacity of
modeling phenomena of different natures, from discrete instantaneous transition systems to random-
ized continuous processes. Based on the level of detail needed for the study, one can gradually move
from a simple and abstract view to a more refined model, as will be illustrated in the following by
the successive refinement of a cell division cycle example.

Discrete systems. Nodes in BioRica are composed of a finite number of states and of transitions
between those states. They are described in BioRica by constrained events of the type G

e−→ A where
G is a constraint denoting the conditions activating this transition and A is an assignment to state

4.2. THE BIORICA PLATFORM 67

Existing Models BioRica System

BioRica Node

Discrete Systems

alive

aa:=aa
+1

!alive
∆15

ε(λ1)

Kinetic Models

M
B
F

P, t

P, t P, t

P, t

P, t

P, t

Native code simulator

Simulation Results

Translation

Generation

Simulation

Translation

Figure 4.1: The BioRica framework. Existing hetergeneous models are expressed as BioRica nodes,
consisting of constrained events. These nodes comprise a BioRica system which is then simulated.

daughters=0
dead=false

daughters=1
dead=false

daughters=2
dead=false ...

daughters=0
dead=true

daughters=1
dead=true

daughters=2
dead=true

divide divide divide

diediedie

Figure 4.2: A cell division cycle, modeled as a transition system built with two variables “daughters”
and “dead” respectively denoting the number of daugthers and the state of the cell (e.g. dead or
alive). It is defined in BioRica by a node containing those variables and the constrained events:
dead = false

divide−−−−→ daughters := daughters + 1; true
die−−→ dead := true.

variables. Since two events need not have disjoint constraints, they could be activated for the same
configuration of variables and thus describe non deterministic behavior. This construction captures
a vast range of existing discrete formalisms (Petri nets, finite automata etc.). The semantics of these
nodes can be given in terms of transition systems, such as the one shown in figure 4.2. that depicts a
gross and discrete abstraction of a cell division cycle.

Stochastic behavior can be added to a BioRica node to describe the likelihood that an event fires
when it is activated concurrently with another event. This is done via optional probability measures
attached to events. Since a probability measure can be omitted for some (or all) events, Markov
chains or Markov decision processes can be concisely described in BioRica. The previous cell cycle
example could thus be refined by assigning to the event die the probability (1 − 1/daughters) to
describe a cell whose probability of dying increase with the numbers of division it went through.

Timed behavior can be added to a BioRica node to describe the delay between an event’s acti-
vation and the moment its transition occurs. This is done via timing functions attached to events,
which can be of three kinds. First, they can be normal functions from node’s variables configurations
to the real numbers; second, probability distributions parametrized by the current configuration; and
third, linear combinations of timing functions. Given the current node’s variables values, these tim-
ing functions output the delay needed for the associated event to complete. Note that two events
can race since two events can be activated concurrently and since the firing of an event can lead to
the deactivation of another pending event. This enables the description of subtle concurrency issues.
These timing functions can be omitted for some events, thus allowing a node to mix different types of
randomness (event likelihood and delays) with non deterministic behaviors. Furthermore, we make
no restriction on the kind of probability distribution that can be used (e.g. discrete Dirac comb, ex-

68 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

ponential, binomial etc.).This allows for flexible and concise description of a vast range of models
coming from control theory (stochastic Petri nets, generalized Markov decision processes etc.). The
cell cycle example can be refined by attaching to the divide event a delay of 1 time unit while the die
event can have a random delay following an exponential distribution parametrized by the number the
division, such as ε(1/daughters), that consequently shortens as the number of divisions increases.

Continuous systems. ODEs systems can be described in BioRica nodes and can have randomized
perturbation or random parameter switches added to them. This is done by considering that every
ODE system is potentially an hybrid system, that is, a system whose internal state flows continuously
while having discrete jumps. The discrete jump is modeled by constrained events while the internal
state is kept hidden in a timing function, which outputs the time before a constrained event will
happen. For convenience, ODE systems can be directly described into a BioRica node or can be
imported from a SBML file.

In the cell cycle example, the dynamics of the cycle can be described by the variation of protein
concentrations, described by using differential equations. Constrained events triggered by crossing
protein concentration thresholds can describe what precisely happens at division time (cell mass is
divided, some proteins are transmitted to the daughter etc.). The visible part of this system (and thus
the discrete variables of the BioRica node describing it) can be the number of division or the current
phase of the cell division cycle.

At a higher level, consider now a cell population system, where each cell is represented by a node
having its dynamics described by an ODE system. Since ODE systems are inherently deterministic,
once initial conditions and parameters are set, every cell will behave exactly like its neighbor, thus
leading to an artificially synchronized population [128]. In BioRica, since ODE systems are trans-
lated in timing functions, we can easily add random perturbations to timing functions by adding to
the numerical integration result an exponentially distributed random variable. Thus, each node can
be slightly shifted in time while preserving the qualitative properties of its ODE system. Such a cell
population can be described from a cell node in BioRica by using node composition.

Node composition. Complex and multi models systems can be described in BioRica via hierarchi-
cal descriptions, denoting composition and interactions relation between any kind of nodes. In a
hierarchical description, some nodes will interact and cooperate, for example by being in the same
compartment and thus sharing the same source of product. To this end, flow connections between
nodes can be established to allow exchange of information. Another kind of node interaction taken
into account in BioRica is event synchronization, which can impose that events in different nodes
have to happen simultaneously. By default, if no node interactions are defined, nodes will just evolve
independently in an asynchronous way, that is evolve one component and one event at a time.

4.2.2 System simulation

BioRica systems are hierarchical and modular descriptions: each node can use the most suitable
modeling approach and may interact with nodes using other modeling approaches. This results
in great flexibility to describe complex models, and also enables a simple and efficient simulation
scheme.

Numerical simulation of a BioRica system is based on a discrete event approach, where changes
occur only when an event is fired. To this end, the system is initially fully scanned for initially active
events. These events are then scheduled either immediately (for untimed events) or in the future
(when a timing function is associated to the event). Afterwards, the stepper chooses randomly or
non deterministically one of the events whose scheduled time is the nearest, and updates the system
accordingly to the chosen event’s assignments. Since these assignments can alter variables occurring

4.3. TRANSIENT BEHAVIOR IN PARAMETRIZED DYNAMIC MODELS 69

in the constraints or timing functions of other events, some scheduled or inactive events need to be
reexamined and, if needed, rescheduled. This step does not involve a full system exploration since
we can infer from the system’s description a static relationship between events and variables, and
therefore only examine the set of events affected by the assignment. Afterwards, the system steps
and chooses the next event.

Multiscale integration. The BioRica framework can simulate systems having nodes whose under-
lying ODEs systems use different time scales. This is done by assigning to each node a private
numerical integrator, which can use a local step size and thus can be adapted to the node local con-
figuration and ODE stiffness. The multi scale problem arises mostly when composing ODE nodes
whose time scales range over different order of magnitudes.

Furthermore, the BioRica simulator can speed up simulation involving similar ODEs by using a
memoization scheme. This is done by reusing previously stored ODE integrations when detecting
that two ODE systems have reached the same trajectory or that an ODE system reached an oscillatory
state. This approach is mathematically sound since solutions to ODE systems enjoy a memory-less
property. Basically, for a given set of parameters, the solution of an ODE system is completely
determined by its initial conditions. This implies, among other properties, that once an ODE node
reaches a state that was previously seen (either in the same node or in another node having the same
ODE and parameters), then it will behave exactly in the same way. More formally, consider an ODE
system of dimension n and its solution, the trajectory function f from R (time) to Rn (variables
values). Let t and t� be two point in time, with t < t�. Whenever f takes the same value in two
separate point of time, then it will take the same value for every corresponding successive point.
That is, if there exist two real numbers t and t� such that we have f(t) = f(t�), then for any real
number �, we have f(t + �) = f(t� + �).

4.3 Transient Behavior in Parametrized Dynamic Models

Quantitative models in Systems Biology depend on a large number of free parameters, whose values
completely determine behavior of models. These parameters are often estimated by fitting the system
to observed experimental measurements and data. The response of a model to parameter variation
defines qualitative changes of the system’s behavior. The influence of a given parameter on the sys-
tem’s behavior can be estimated by varying it in a certain range. Some of these ranges produce similar
system dynamics, making it possible to define general trends for trajectories of the system (e.g. oscil-
lating behavior) in such parameter ranges. Such trends can be seen as a qualitative description of the
system’s dynamics within a parameter range. In this work, we define an automata-based formalism
to formally describe the qualitative behavior of systems dynamics. Qualitative behaviors are repre-
sented by finite transition systems whose states contain predicate valuations and whose transitions are
labeled by probabilistic delays. Biochemical system dynamics are automatically abstracted in terms
of these qualitative transition systems by a random sampling of trajectories. Furthermore, we use
graph theoretic tools to compare the resulting qualitative behaviors and to estimate those parameter
ranges that yield similar behaviors. We validate this approach on published biochemical models and
show that it enables rapid exploration of models’ behavior, that is, estimation of parameter ranges
with a given behavior of interest and identification of some bifurcation points.

Dynamic models in System Biology rely on kinetic parameters to represent the range of possible
behaviors when enzymatic information is incomplete. Analysis of these parametrized models aims
at identifying either parameter ranges yielding similar qualitative behaviors, or parameter values
yielding a given behavior of interest. Qualitative transient behavior can be successfully analyzed by
model checking algorithms applied on models admitting a computable path semantics. However, in

70 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

Systems Biology, state explosion and negative decidability results limit the scope of model checking
to a certain subset of models. Moreover, some published and curated Systems Biology models lack
explicit semantics, and for these “black box” models not much can be assumed, except the possibility
of generating simulation results. Mining these simulation results to identify parameter regions yield-
ing similar behaviors is hindered by the size of the parameter space to explore, numerical artifacts
and the lack of formal definition of what it means for simulation results to be similar.

In this section, we propose the new formalism of qualitative transition systems for abstracting
simulation results in terms of discrete objects that admit efficient similarity measures.

Indeed, simulation results for ODEs are obtained using numerical integration schemes operat-
ing on floating point numbers. The resulting approximation is problematic for the identification of
precise transient properties since transient properties of interest are mathematically characterized by
using equality between real numbers (e.g. f �(x) = 0 is necessary for a local maximum), which is
inconsistent in floating point arithmetic[38]. Consequently, even analysis of basic properties, like
the detection of the first time a deterministic system is in a previously visited state, fails in practice
due to this inconsistency. Furthermore, different integration schemes (n-th order, implicit/explicit)
yield different and incomparable numerical approximations of the same trajectory. Although using
normalized sampling and fixed precision decimal numbers would seem to solve this problem, the
multiplicity of time scales in ODEs show that this solution is not completely satisfying.

For dynamic models admitting a computable path semantics, the impact of numerical artifacts is
absent. Indeed, it is possible to compute a finite description of the set of trajectories of the model.
Consequently, for these models, model checking algorithms can decide if a logical representation of
a behavior holds, and if not, can provide a counter example. Recently, a probabilistic model checking
approach was successfully used to solve the inverse problem: given a logical representation of a tran-
sient behavior, return a parameter space in which any trajectory satisfies the specified behavior with
sufficiently high probability[159]. For dynamic models suitable for model checking, the intuitive
notion of “similar behavior” is thus fully formalized and generally decidable.

Contributions In the next section we introduce Qualitative Transition Systems (QTS) and define
their probabilistic semantics. A novel abstraction operation is defined in section 3 with the goal of
building QTSs from simulation results. We then show in section 4 that when constructing a QTS
from an ODE, the QTS construction can be made independent of the numerical integration scheme.
In section 5, we show that trajectory comparison using QTS can be made more resistant to noise by
detecting points of interest (extremums and inflection) through the construction of a piecewise linear
approximation (PLA). In section 6, we validate our approach on models from the literature.

4.3.1 Qualitative Transition Systems

Given a set Σ, we denote by Σ∗ the set of all (finite) words s0 · · · sk over Σ. A (finite) timed word
over Σ is any word W = (t0, s0) · · · (tk, sk) ∈ (R≥0 × S)∗ such that ti < ti+1 for all 0 ≤ i < k.
The non-negative real numbers ti are interpreted as the absolute observation times and the si are the
observed values. We will focus in the paper on the particular case of Σ = Rn, where observed values
are vectors of reals. In this case, timed words are called (multivariate) time series, and are denoted
S = (t0, �x0) · · · (tk, �xk).

We define a Qualitative Transition System (QTS) in the following way.

Definition 20 A qualitative transition system A is a tuple A = �Q,E, µ,σ, w� where Q is a finite
set of set of qualitative states, E ⊆ Q×Q is a finite set of transitions, µ,σ : E → R are mean and
standard deviation labelings, and w : E → N is a weight labeling.

4.3. TRANSIENT BEHAVIOR IN PARAMETRIZED DYNAMIC MODELS 71

For any transition e ∈ E, µ(e) and σ(e) are respectively interpreted as being the mean and
the standard deviation of a normal distribution that is followed by a random variable called sojourn
time. The weight labeling w induces transition probabilities for transitions. Formally, the transition
probability labeling p : E → [0, 1] induced by w is defined by

p(q, q�) =
w(q, q�)�

(q,q��)∈E w(q, q��)
.

A QTS is thus a transition system where each transition is labeled with the amount of time
the system needs before moving to another state. The delay between two state changes follows a
parametrized normal distribution. This has to be contrasted with continuous Markov chains, where
the sojourn time in a state must be exponentially distributed.

Suppose that a QTS is in the state q, and that there exists an outgoing transition e from q to q�

(i.e., e = (q, q�)). The probability of moving from state q to state q� is p(e), the transition probability
of e. Suppose that the transition e has been selected in favor of other outgoing transitions; then
the system will stay in the state q for a delay that is normally distributed with mean µ(e) and with
variance σ(e). Let X be such a normally distributed random variable that denotes the sojourn time
in the state q, and let FX be its cumulative distribution function. The probability to move from the
state q to the state q� between t1 and t2 time units is thus given by FX(t2)−FX(t1). Contrary to the
standard semantics of continuous time Markov chains (see e.g. [114] for a complete definition), our
semantics does not involve a race condition. That is, in a given state, the probability for the successor
state is not conditioned by the delays but solely by the transition weights, similarly to a discrete time
Markov Chain.

4.3.2 Abstraction of a time series in terms of Qualitative Transition Systems

Abstraction of a time series in terms of timed words

By representing the characteristic qualitative features of a trajectory in an abstract domain that is
countable, qualitative similarity can be detected by a simple equality test over integers or integer
vectors. To this end, each concrete observation (t, �x) of a time series S is transformed into an
abstract observation (t, a) where the observation time t is unchanged and a is an abstract value in
a finite domain A called the abstract domain. The rationale behind abstraction is that two concrete
observations that are transformed into the same abstract observation are assumed indistinguishable
with respect to qualitative properties.

Formally, an abstraction function is any function α : Rn → A where A is a finite domain.
For any time series S = (t0, �x0) · · · (tk, �xk) in (R≥0 × Rn)∗, the abstraction of S is the timed
word α(S) = (t0,α(�x0)) · · · (tk,α(�xk)) in (R≥0 × A)∗. Note that abstraction functions may be
combined by cartesian product. In practice, as in the following example, it is often desirable to use
multiple-arity abstraction functions that are defined on a fixed-width “window” of observations, that
is, functions from (Rn)d+1 to A where d ∈ N is the width. For such a function α, the abstraction of S
would be defined as the timed word α(S) = (td,α(�x0, . . . , �xd)) · · · (tk,α(�xk−d, . . . , �xk)). Observe
that α(S) = α(S�) where S� = (td, (�x0, . . . , �xd)) · · · (tk, (�xk−d, . . . , �xk)) is a time series over Rnd.
For simplicity, and without loss of generality, we only formalize our approach for unary abstraction
functions (with zero width).

As examples of abstraction function, the sign function can abstract a time series into a timed
word over the domain Plus, Zero, Negative. The rank function can abstract a timed word over the
domain N by mapping to each component of a vector its index in the corresponding sorted vector.
For example, sort((11,−2, 1, 2)) = (−2, 1, 2, 11) therefore rank((11,−2, 1, 2)) = (4, 1, 2, 3). In

72 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

x ≤ y, x ≤ 0, y ≥ 0

2 4 6 8 10

�2

�1

0

1

2

x ≤ y, x ≥ 0, y ≥ 0

x ≤ y, x ≤ 0, y ≥ 0
x ≥ y, x ≥ 0, y ≥ 0

x ≥ y, x ≥ 0, y ≤ 0

x ≥ y, x ≥ 0, y ≤ 0

x ≥ y, x ≤ 0, y ≤ 0

Figure 4.3: Decomposition of a trajectory of a two variables (x, y) oscillator. By considering the
sign and rank of the variables, we map to each point of the trajectory an abstract value (here denoted
by a formula). Boxes in the figure encompass successive points that are mapped to the same abstract
value. Successive points of the trajectory are collapsed whenever they have the same abstract value,
that is whenever they have the same sign and rank. This trajectory can thus be abstracted as a seven
state QTS.

the same way, the sign of the first (resp. second) derivative can distinguish between increasing
(resp. rapidly increasing) and decreasing (resp. rapidly decreasing) intervals. The evaluation of this
abstraction function requires two points (resp. three points).

Since the abstract domain is finite, it is often the case that the abstract time series α(S) has
successive observations that are equal. These repeated observations are removed by collapsing
successive abstract observations having the same abstract value. Formally, for any timed word
W = (t0, a0) · · · (tk, ak) over A, we write collapse(W) the timed word (ti0 , ai0) · · · (tih , aih)
where i0 < · · · < ih are such that i0 = 0 and aij = aij+1 = · · · = aij+1−1 �= aij+1 for ev-
ery 0 ≤ j < h. Observe that collapsing is idempotent: for any timed word W , it holds that
collapse(W) = collapse(collapse(W)). The reduced abstraction of any time series S is then
defined as the timed word collapse(α(S)).

4.3. TRANSIENT BEHAVIOR IN PARAMETRIZED DYNAMIC MODELS 73

Abstraction of a timed word in terms of Qualitative Transition System

The abstraction of a time series in terms of timed words abstracts the value component of the time
series. In order to adequately compare two timed words, we also need to abstract the time of obser-
vations. Consider a timed word W = (t0, a0) · · · (tk, ak) over an abstract domain A. To qualitatively
abstract this timed word, it is represented as a transition system by considering that for any integer
0 ≤ i < k, the pair ((ti, ai), (ti+1, ai+1)) of successive abstract observations of W is induced by a
timed transition ai → ai+1 between two states of a transition system with a delay of ti+1 − ti time
units. We can then consider the set of all transitions between two given states. From such a set of
transitions with identical source and target, we suppose that the delays are approximately normal, and
thus estimate the mean and variance of the supposed underlying normal distribution. This way, the
set of concrete transitions can be abstracted by a single stochastic transition in a qualitative transition
system. Formally, a timed word is abstracted in terms of QTS with the following definition. For any
finite subset X ⊆ R, we denote by E[X] the mean of X and by V[X] its variance.

Definition 21 The QTS abstraction of any timed word W = (t0, a0) · · · (tk, ak) over A is the quali-
tative transition system A = �Q,E, µ,σ, w� with

Q = {ai | 0 ≤ i ≤ k} µ(q, q�) = E[∆(q, q�)]
E = {(ai, ai+1) | 0 ≤ i < k ∧ ai �= ai+1} σ(q, q�) = V[∆(q, q�)]

w(q, q�) = |Γ(q, q�)|

where for any (q, q�) ∈ E, Γ(q, q�) is the set of pairs (i, j) with 0 ≤ i < j ≤ k such that ai = q,
aj = q�, and ai−1 �= ai = ai+1 = · · · = aj−1, and ∆(q, q�) = {tj − ti | (i, j) ∈ Γ(q, q�)}.

Note that in the definition, the set Γ(q, q�) contains pairs of indices (i, j) such that all observations
between i and j are removed by collapsing. Therefore, any two timed words W and W � over A
satisfying collapse(W) = collapse(W �) have the same QTS abstraction.

Deterministic parametrized models, such as ODE systems, can exhibit different qualitative be-
haviors depending on the value of the parameters. When these systems admit a simulation algorithm
(e.g. numerical integration), they generate time series. We show in [187] that, under assumptions
concerning the simulation algorithms, properties of interest of a given system are preserved by the
abstraction in terms of qualitative transition systems.

Periodic orbits detection Oscillations are ubiquitous qualitative behaviors found in systems ad-
mitting a feedback loop. Although bifurcation analysis provide numerical methods to establish the
presence of periodic orbits for ODEs, these methods cannot be applied to a general deterministic sys-
tem such as an ODE with events. However, we show in this section that a QTS can be used efficiently
to estimate the likelihood of a periodic orbit in a time series.

Under an adequate abstraction function, a QTS that abstracts the transient behavior of a system
with a periodic orbit has cycles in its transition relation. Consider a QTS obtained by applying the
abstraction function α to an α-adequate time series S obtained by sampling a continuous function
f : t → Rn. By definition, f admits an orbit if and only if there exists a time point t and a period π
such that f(t) = f(t+π). Furthermore, f admits a periodic and non constant orbit if and only if there
exists an intermediate time step t� < t+π such that f(t�) �= f(t+π). Since S is adequately sampled
for α, there exists at least three successive different values in collapse(α(S)) and consequently the
resulting QTS has at least a cycle of length 1.

Since equality is not coherent between the real numbers and their floating point approxima-
tion, detection of periodic orbits for a time series must rely on estimations. To find a periodic orbit
in a time series S it is sufficient to find a period π ∈ R≥0 such that there exist two elements of

74 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

(ti, �xi), (tj , �xj) ∈ S such that (tj , �xj) ≈ (ti + π, �xi) for an adequate approximation relation ≈.
However, for ODE systems integrated with an adaptive time step algorithm, this scheme produces
mainly false positives (successive integration steps in a quasi steady region of an ODE) and false
negatives (regions with high variability).

The existence of a periodic orbit of period π also implies that for any value k ∈ N, f(t) =
f(t+k ∗π). Thus, if the system reaches a periodic orbit at point l, then the nearest points (according
to an euclidean distance on Rn) of l contain points from all possible periods.

Therefore, we estimate the likelihood of a periodic orbit by considering a point l = (tl, �xl) of S
that we suppose being in the periodic orbit, and a set of sample points P from S such that for any
point p� = (tp� , �xp�) in S − P , for any point p = (tp, �xp) in P , we have | xp� − xl |>| xp − xl |.
Less formally, P is a set containing the points that are the nearest of l with regard to the euclidean
distance. The likelihood L((tl, xl),π, P) of π being the period of the orbit of xl given a sample P of
neighbors of xl is then defined by

L((tl, xl),π, P) =

�
�

δ∈∆

([δ]− δ)2
�−1

with ∆ = {(tp − tl) /π | tp ∈ P} and [δ] being the integer part of δ. In other words, we seek
a period π as to minimize the distance between an integer sequence and the sequence of delays
between neighbors of l.

Finding the period π that maximizes L is difficult in practice, since this function admits local
maxima that are far from the global maximum. However, the sum of the mean of the longest cycle
containing the last observation in a QTS provides a good initial guess of this period. (See the case
study 4.3.4).

4.3.3 Accounting for noise by comparing critical points

Qualitative transition systems can capture the dynamics of a time series, even if the time series
contains numerical errors that are only local. In the case of time series admitting global noise,
abstraction functions that were adequate for a smooth time series may not be resistant to noise and
can generate a QTS that inadequately captures the dynamics of noise. For example, abstracting with
the sign of the first derivative can adequately detect oscillations[159] but fails for time series even
with little noise. Although a moving average can smooth a time series and seem to circumvent this
problem, the size of the window must be fixed a priori and this approach is thus neither general nor
adaptive.

We propose here an adaptive approach to capture the most important points w.r.t. the shape of
a time series. The critical points of continuous function f : R → R are the set of points where
f �(x) = 0. These are points where the function f either has a peak and changes direction (local or
global extremum) or presents a curvature change (inflection points). In both cases, the shape of f
changes around the point. We generalize this definition to time series in the following way.

Definition 22 The critical point of a time series S = (t0, �x0) · · · (tk, �xk) is the point (tc, �xc) ∈ S
maximizing the function Λ(tc, �xc) = |�xc − �x0|+ (tc − t0) ∗ (�xk − �x0)/(tk − t0).

The critical point of a time series is the point of maximal distance with the linear interpolation
between the first and last points of the series. In a numerical context, this point is uniquely defined.

A critical point splits the time series into two time series. Since a critical point is also defined for
these series, we can recursively approximate a time series by considering a piecewise function which
is linear between critical points.

4.3. TRANSIENT BEHAVIOR IN PARAMETRIZED DYNAMIC MODELS 75

Definition 23 The piecewise linear approximation of order i (hereafter PLA) of a time series is the
piecewise linear function on the intervals I0, ..., Ik where any interval Ij has a lower bound (resp.
upper bound) corresponding to the location of the jth (resp. j + 1) critical point.

In order to compute the PLA of a time series, we define the piecewise linear interpolations of a
set of points as the union of the linear interpolation between two successive points. The computation
of the PLA of order i is then performed as follows.

PLA (S, i) returns a list of critical points of S = (t0, �x1) · · · (tk, �xk)

1. For each dimension of dim(�x)

(a) Initialize the critical points with the first and the last point of S projected on the current
dimension

(b) While the number of critical points is less than i

i. Build a piecewise linear interpolation between each pair of successive critical points
ii. Append to critical points the unique point of the time series maximizing the distance

with the piecewise linear interpolation

The previous algorithm cannot append a point twice to the list of critical points. Indeed, once
a point is appended to the list it becomes a bound for the piecewise linear interpolation that is used
for determining the next critical point. Consequently, at this point the distance between the next
piecewise linear interpolation and the time series is 0, and the distance can not be maximized. Note
this does not hold for the piecewise linear regression. Which implies that, for any unidimensional
time series, the segmented linear regression of i intervals minimizing the residuals with the time
series can be obtained by considering the critical points as bounds of the interval.

Examples of critical points Critical points are highly related to the shape of the time series. Con-
sider for example the sigmoid shape: a simple shape descriptor may simply specify that we start
from a low plateau, follow an almost vertical increase before reaching another high plateau. Such a
sigmoid shape exhibits two critical points, one at the end of the first (low) plateau, and one at the start
of the second (high) plateau. Similarly, consider an oscillatory time series such as the one depicted
in figure 4.4: its critical points will contains the successive highest local maximum and the lowest
local minimum.

4.3.4 Case Studies and experimental results

In this section we show how our approach cab be used in practice by solving four problems related
to qualitative behavior analysis. Although each problem and solution is illustrated on a specific
model, the methods that are used are general purpose. All the models used in this section were
downloaded from the BioModels database[145] in the SBML V2 L1 format[93], simulated using
MathSBML[173] and were used without any modification. Simulations were performed on an Intel
Core2 3,2GH personal computer and each algorithm was allowed to run for at most five minute. In
the case where parameter values are not specified in the case studies, we used the parameter values
provided in the SBML file. For each of the simulation results, we compared the

76 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

2 4 6 8 10

1

2

3

4

5

6

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

20 40 60 80

9.85

9.90

9.95

10.00

10.05

10.10

10.15

Figure 4.4: Example of piecewise linear approximation applied to two randomly generated noisy
time series. The first of the three successive plots represent the time series while the last two plot
represent the result of the first two iterations of the PLA algorithm. With two iterations, the PLA
algorithm choose two points (and the first and last point of the time series) that are considered as
being representative of the global shape of the time series.

Searching a trajectory with a given periodic orbit

The first model we consider is a model of the cell cycle based on the interactions between the cyclin
dependent kinase cdc2 and cyclin [200]. The model is comprised of six variables and ten parameters.
We consider the following problem: Given the representative trajectory and its associated parameter
described in the original article (left in figure 4.5), what kind of similar trajectory can we find in the
parameter space ?

Abstracting the behavior of the left figure with a rank abstraction function yields the QTS de-
picted in the right part of figure 4.5. Notice the non deterministic states zoomed by a circle. These
states and transitions are due to numerical errors and happen while the system reaches its periodic
orbit. Consequently, the weights of the outgoing highlighted transitions are 1 while the incoming
transitions are 17. All other transitions in the single cycle of the QTS have a weight of 18.

We obtained 500 random samples for the six parameters considered as being critical by the orig-
inal author. For each parameter sample, we computed the trajectory, abstracted it in terms of QTS
by applying the rank function and computed the Sorensen similarity index over the set of transitions
to compare the sampled QTS with the representative QTS. Figure 4.6 depicts a subset of the results.
Note that we chose parameter values exhibiting “similar” sustained oscillations, but of different tran-
sient behaviors. We then compared these results with the one obtained with a stochastic simulation
algorithm. For each simulation result, we used the PLA algorithm to reduced each noisy trajectory
to its 50 most critical points, and abstracted these points in terms of QTS by applying the rank func-
tion. Trajectory similar to the one simulated with numerical integration were found for comparable
parameters values.

Estimating the period of orbits

The model of MAPK cascade from [106] describes the effect of negative feedback and ultra-sensitivity
in the emergence of oscillations. We thus investigated the dynamic of the period of the orbits under

4.3. TRANSIENT BEHAVIOR IN PARAMETRIZED DYNAMIC MODELS 77

20 40 60 80 100 120 140

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4.5: Dynamic behavior of the cell cycle model for default parameter values. Left: An ex-
ample of trajectory obtained by numerical integration of the Tyson cell cycle model [200]. Right:
Abstraction of this trajectory in terms of QTS by using the rank function as the abstraction func-
tion. Transition labels are omitted. The total variance of this QTS is 0.07. The states and transitions
highlighted under the circle correspond to stochastic transitions and represent numerical integration
errors.

50 100 150 200

0.1

0.2

0.3

0.4

0

50 100 150 200

0.05

0.10

0.15

0.20

0.10

50 100 150 200

0.05

0.10

0.15

0.20

0.25

0.30

0.13

50 100 150 200

0.2

0.4

0.6

0.8

0.52

50 100 150 200

0.5

1.0

1.5

2.0

0.52

50 100 150 200

0.1

0.2

0.3

0.4

0.5

0.72

50 100 150 200

0.1

0.2

0.3

0.92

50 100 150 200

0.2

0.4

0.6

0.8

1.0

0.96

50 100 150 200

0.05

0.10

0.15

0.20

0.25

0.30

1

Figure 4.6: Result of trajectory comparison on the Tyson cell cycle model. For 500 randomly sam-
pled parameter spaces, we abstracted the simulated trajectory in terms of QTS by using the rank
function. Trajectory were clustered in 9 bins by measuring the Sorensen similarity index between
each of the 500 QTS with the QTS of the figure 4.5. From each of the nine clusters, a representa-
tive trajectory was chosen and represented here, alongside of its QTS and similarity value. These
trajectory are sorted (column wise, increasing) by their similarity value.

78 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000 12000 14000
0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000 14000
0

50

100

150

200

250

300

B

A

A

B

Figure 4.7: Oscillation period for the MAPK cascade model. Left: Contour plot representing the
period of oscillations. The bottom axis (resp. left axis) represents values of the k4 (resp. v5)
parameter. The contour plot was built with 500 simulations with random parameters. Regions with
comparable periods are represented by a uniform region. Right: Two example trajectories exhibiting
oscillations of extreme period A:1094 time units and B:2236 time units.

parameter changes. To estimate these periods, we considered the parameters {k4, v5} as random
variables following an uniform distribution over the intervals [0, 1] and [0, 0.1]. For 500 parameters
sample, we abstracted the corresponding time series in terms of QTS. These QTS were then reduced
by removing transitions whose probability decreased as the simulation advanced. We then approx-
imated the orbit’s period with the sum of means of the transitions of the longest cycle of the QTS.
This approximation was then fed in a local maximization procedure to identify the exact period value
maximizing the likelihood function. In our tests, providing this initial “educated guess” of the period
value to the maximization procedure yielded the global maximum in 98% of cases.

We can see from the results (figure 4.7) that, for this parameter subspace, oscillating behavior is
very common and that the dynamics of the period does not exhibit abrupt changes.

Searching for any periodic orbits

We consider again the MAPK cascade model but with a more general objective. We consider the
problem of detecting the possible oscillating behaviors and of computing the probability of finding
an oscillating behavior in a larger parameter subspace. The parameters of interest are {k3, k4, k7, k8,
V5, V6, V9, V10} and are considered as random variables following an uniform probability over the
interval [0, 1] ⊂ R. We built a QTS as in previous sections. In this study, only periods in the range
[200, 5000] with a likelihood greater than 10 were considered genuine. Although all the resulting
trajectories exhibit transient or limit cycle oscillations, they follow different transient dynamics. The
four example trajectories of figure 4.8 show a subset of the possible dynamics: each of these time
series admits a specific alternation of species at their maximum concentration. Multiple instances of
each of these dynamics were successfully identified by applying the method from section 4.3.4. The

4.3. TRANSIENT BEHAVIOR IN PARAMETRIZED DYNAMIC MODELS 79

2000 4000 6000 8000 10000

50

100

150

200

250

,

2248.03

2000 4000 6000 8000 10000

50

100

150

200

250

300

,
2415.58

2000 4000 6000 8000 10000

50

100

150

200

250

,

1428.1

2000 4000 6000 8000 10000

50

100

150

200

250

,

2427.49

Figure 4.8: Example trajectories of the MAPK cascade exhibiting oscillating behavior found with
a random sampling of ten parameters of the MAPK cascade model. On the right of each plot, the
associated QTS reduced to its periodic form; under it, the period value with maximum likelihood.

number of samples needed before finding an oscillating behavior was 57 on average. For comparison,
when k3, k4, k7 and k8 were sampled in the interval [0, 0.1], the average number of samples needed
dropped to 10.6.

Searching for given transient behavior in a parameter subspace

The extracellular signal regulated kinase (ERK) pathways plays a role in a hidden oncogenic positive
feedback loop via a crosstalk with the Wnt pathway [108]. The pathological cases identified by
the authors involve “an irreversible response leading to a sustained activation of both pathways".
Applying our QTS construction with random samples of the β-catenin synthetic rate (V12) yields
results depicted at figure 4.9.

This model involves 28 species, 58 parameters, and 2 discrete events. Applying the rank abstrac-
tion yields transition systems with a state space of 600 states on average out of the possible 28! state
configurations.

4.3.5 Discussion and conclusions

In this work, we have described the formalism of qualitative transition systems. A QTS is a transition
system where each transition is labeled with the amount of time the system needs before moving to
another state. The delay between two state changes follows a parametrized normal distribution. The
probabilistic timed semantics of QTS has been defined by using a cylinder set construction. We have
shown how QTS can be used to study qualitative properties of parametrized models. This is achieved
by defining an appropriate abstraction function. By representing the characteristic qualitative features
of a trajectory in an abstract domain that is countable, qualitative similarity can be detected by a
simple equality test.

We have shown that the soundness of this approach depends on the adequacy of sampling with
respect to the abstraction function. In particular, we have shown that for convex abstraction functions,
if the sampling is “precise enough”, then the QTS obtained from any oversampling has the same
transitions.

Finally, we applied this approach to some well known models. QTS were used to explore the
parameter space and to detect uniform behaviors (oscillations etc.).

80 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

200 400 600 800 1000 1200

50

100

150

200

250

300

1.56236

0.

200 400 600 800 1000 1200

50

100

150

200

250

300

1.09994

0.00222469

200 400 600 800 1000 1200

50

100

150

200

250

300

1.33694

0.00222717

200 400 600 800 1000 1200

50

100

150

200

250

300

1.97217

0.00223464

200 400 600 800 1000 1200

50

100

150

200

250

300

1.61776

0.00224972

200 400 600 800 1000 1200

50

100

150

200

250

300

0.68521

0.0275716

200 400 600 800 1000 1200

50

100

150

200

250

300

0.644303

0.0456432

200 400 600 800 1000 1200

50

100

150

200

250

300

0.522772

0.159928

200 400 600 800 1000 1200

50

100

150

200

250

300

0.50661

0.198556

200 400 600 800 1000 1200

50

100

150

200

250

300

0.294261

0.208914

200 400 600 800 1000 1200

50

100

150

200

250

300

0.292192

0.214286

200 400 600 800 1000 1200

50

100

150

200

250

300

0.349974

0.288754

Figure 4.9: ERK Crosstalk simulation results. From top left to bottom right, simulation results are
sorted by similarity with the non pathological case(reversible activation). The sampled value of v12

and the similarity index with the non pathological case are under each plot.

4.4. EXPLORATORY SIMULATION OF CELL AGEING 81

The limits of our approach as compared to model checking is the lack of exhaustivity. This has
to be counterbalanced by the fact that our method is applicable to a large panel of formalisms, even
those lacking a precise semantics. Consequently, we can avoid any model transformation. Finally,
our approach can be applied independently to the data and to the model.

The areas of future research for qualitative transition systems can be declined on the both techni-
cal and practical plans. As for the former, we envision a more thorough study of similarity measures
of QTS and how QTS similarity relates to language equivalence. As for the latter, we plan to develop
clustering techniques in order to detect the resulting behavior similarity in an experimental context.

4.4 Exploratory simulation of cell ageing

Thorough knowledge of the model organism S. cerevisiae has fueled efforts in developing theories
of cell ageing since the 1950s. Models of these theories aim to provide insight into the general bi-
ological processes of ageing, as well as to have predictive power for guiding experimental studies
such as cell rejuvenation. Current efforts in in silico modeling are frustrated by the lack of ef-
ficient simulation tools that admit precise mathematical models at both cell and population levels
simultaneously. We developed a novel hierarchical simulation tool that allows dynamic creation of
entities while rigorously preserving the mathematical semantics of the model. We used it to expand
a single-cell model of protein damage segregation to a cell population model that explicitly tracks
mother-daughter relations. Large-scale exploration of the resulting tree of simulations established
that daughters of older mothers show a rejuvenation effect, consistent with experimental results. The
combination of a single-cell model and a simulation platform permitting parallel composition and
dynamic node creation has proved to be an efficient tool for in silico exploration of cell behavior.

A recurring challenge for in silico modeling of cell behavior is that hand-tuned, accurate models
tend to be so focused in scope that it is difficult to repurpose them. Hierarchical modeling [4] is one
way of combining specific models into networks. Effective use of hierarchical models requires both
formal definitions of the semantics of such compositions, and efficient simulation tools for exploring
the large space of complex behaviors. In this study, we propose the use of a hierarchical model to
reduce the complexity of analysing cell ageing phenomena such as cell rejuvenation. To this end,
we extend a single-cell model of inheritance of protein damage to a structured population where
mother-daughter relations are tracked. This requires definition and implementation of an exploratory
simulation software system. Using this system we validate the model, discover a cell rejuvenation
effect consistent with the experimental literature, and derive testable hypotheses on cell ageing.

Unlike most microorganisms or cell types, the yeast Saccharomyces cerevisiae undergoes asym-
metrical cytokinesis, resulting in a large mother cell and a smaller daughter cell. The mother cells
are characterized by a limited replicative potential accompanied by a progressive decline in func-
tional capacities, including an increased generation time [182]. Accumulation of oxidized proteins, a
hallmark of ageing, has been shown to occur also during mother cell-specific ageing, starting during
the first G1 phase of newborn cells [1]. Both asymmetric and symmetric division exist in different
yeast species. In particular, S. cerevisiae is known to divide asymmetrically, although symmetrical
division is observed in about 30% of cells at the end of their replicative lifespan [104]. Another
yeast model organism, Schizosaccharomyces pombe, divides symmetrically by fission (see [146] for
review). The following is a mathematical model we have developed to explain how the accumulation
of damaged proteins influences fitness and ageing in yeast. In this paper we consider the two the-
oretically possible scenarios, namely asymmetrically and symmetrically dividing cells in different
damaging environments. To explore any and all branches of the pedigree tree of a cell population,
we will use a hierarchical model that allows us to track mother-daughter relations. We can therefore

82 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

explore lineage-specific properties, such as the rejuvenation property.

4.4.1 From single cell to population model

Single cell model A minimal single-cell model of inheritance of damaged proteins can be formalized
by the following three equations:

dPint

dt
=

k1

ks + Pint + Pdam

− k2Pint − k3Pint (4.1)

dPdam

dt
= k3Pint − k4Pdam (4.2)

dP

dt
=

k1

ks + Pint + Pdam

− k2Pint − k4Pdam (4.3)

The size of the cell is the sum (P) of intact (Pint) and damaged (Pdam) proteins, P = Pint + Pdam.
Protein temporal dynamics are determined by five rate constants k1, k2, k3, k4, and ks. Protein
production rate, k1, has been adjusted by hand allowing for a steady state to be reached and has
been assigned a final value of 107. We choose values of k2 and k4, the degradation rates of Pint

and Pdam, respectively, so that k2 < k4. Degradation rates are computed using the half-life formula
t1/2 = ln 2/k, where k is the degradation rate; setting the half-life of intact proteins to be 1 time unit,
k2 = ln 2. Since degradation of damaged proteins is faster, k4 needs to be greater than k2 and it has
been set to ln 5. To simulate different rates of conversion, k3 has been given a range of values, from
0.1 to 2.3. Finally, ks is a half-saturation constant in the model, not used in this study. We assume
that cells grow until they have attained a critical cell size, Pdiv, which triggers a cell division. A
cell may divide symmetrically (halving its mass) or asymmetrically, as defined by size coefficients
smother and sdaughter . These different types of divisions are modeled by varying the two coefficients
smotherand sdaughter . In the case of symmetrical division, the size of both progeny and progenitor
is equal, so smother = sdaughter = 0.5. In asymmetrical division, cells in the next generation will
have different sizes such as when smother = 0.75 and sdaughter = 0.25. In the following study, rate
constants k1, k2, and k4 received fixed values, k3 was given a range of values with step size 0.1, and
smother and sdaughter were given two pairs of values representing symmetric and asymmetric growth
strategies, namely �smother , sdaughter � being �0.5, 0.5� or �0.75, 0.25�.

The proteins distribution between the progenitor and the progeny after division is described by
the following set of transition assignments:

Pint := Pint · sP (4.4)
Pdam := Pdam · sP (4.5)

P := Pint · sP + Pdam · sP , (4.6)

where sP is smother for the progenitor and sdaughter for the progeny.
Population Model Based on this single-cell model, we first define a hierarchical model of a

structured population where complete mother-daughter relations are recorded, using the BioRica
formalism. BioRica [79] is a high-level modeling framework integrating discrete and continuous
multi-scale dynamics within the same semantic domain. It is in this precise sense of mixing different
dynamics that BioRica models are hybrid following the classical definitions [4]. Moreover, BioRica
models are built hierarchically. In [4] two types of hierarchy are defined: architectural and behav-
ioral. While BioRica admits both, in this paper we are only concerned with the former. This type of
hierarchy allows for both concurrency and parallel composition.

In this work each cell is encoded by a BioRica node that has a 2-level hierarchy: a discrete con-
troller and a continuous system. The former determines the distribution of proteins at division time

4.4. EXPLORATORY SIMULATION OF CELL AGEING 83

Figure 4.10: Three level hierarchical model, showing the discrete cell population and cell division
controllers, and the continuous single-cell model. This model generates pedigree trees during sim-
ulation, instantiating new single-cell models for each cell division. Infinite width and depth are
represented finitely by relaxing the tree constraints to permits loops from the leaves. These fixed
points represent immortal cells or immortal lineages.

using the discrete transition assignments (4–6), while the latter determines the evolution of protein
quantities during one cell cycle and is realized by the equations (1–3). More precisely, the discrete
controller is encoded by a constraint automaton [64] defining the discrete transitions between states.
A state of a cell ci is a tuple �P i

int
, P i

dam
, Di�, where P i

int
and P i

dam
are protein quantities as be-

fore, and Di is a single dimension array of integers representing the identifiers of every daughter of
ci. A transition between states is a tuple �G, e, A�, where G is a guard, e is an event, and A is a
parallel assignment. For this model, the discrete transitions are atomic operations and consequently
take zero time. In our case we have: for mitosis (event e), if the threshold of the cell size is attained
Pint = 1500 (guard G), then create a new BioRica node cj for the daughter of the current cell ci,
append cj to the vector Di, and perform the assignments (4–6) (assignments A of state variables).
A second discrete event representing clonal senescence is triggered whenever protein production
reaches zero, that is ∂Pint < 0.

The cell population is encoded by a BioRica node using the mechanism of parallel composition.
This node contains the population array Pop, the root of the lineage tree R and the parameter vector
�P . Since our model focuses on the division strategy, we consider the growth medium as a non
limiting factor, and consequently we do not account for cell to cell interactions. This absence of
interaction is directly modeled by parallel composition of independently evolving cell nodes. For
illustration see figure 4.10. The algorithmic challenges related to dealing with multiple time scales
and event detection, and our solutions, are described in section 4.4.2.

4.4.2 Algorithm

We now describe our method for efficient simulation of the cell population model (section 4.4.1),
starting with an overview of the general simulation schema (algorithm 6) followed by a concrete
specialization for damage segregation. The simulation schema for a given BioRica node is given
by a hybrid algorithm that deals with continuous time and allows for discrete events that roll back
(see figure 4.11) the time according to these discrete interruptions. Time advances optimally either

84 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

by the maximal stepsize defined by an adaptive integration algorithm [155], or by discrete jumps
defined by the minimal delay necessary for firing a discrete event. As shown in algorithm 6, the
simulation advances in a loop that is interrupted when either the simulation time expires, or the alive
flag indicates that this node has died in the current or previous state. The node evolves continuously
by calling advance_numerical_integration, after which we check whether any guard G of some event
�G, e, A� was satisfied. In which case a number of updates is performed: the time is set to the firing
time of e, e is stored in the trace database, the current state S is set according to the algebraic equation
A, and the numerical integrator is reset to take into the account the discontinuity.

Algorithm 6 General simulation schema
Require: current state S, current simulation time t, maximal simulation time tmax

1: S� = S
2: while alive(S, S�) = 1 and t < tmax do
3: S� = S
4: t, S = advance_numerical_integration()
5: if e = discrete_events() then
6: t = get_discrete_event_time()
7: store_event(e)
8: S = update(S, e)
9: reset_numerical_integrator()

10: end if
11: store_state(S)
12: end while

As illustrated in figure 4.11, the step size proposed by the numerical integrator guarantees that
the continuous function is linear between the current time t and the maximal step size. In this way the
location of discrete events whose guards have been satisfied in this interval is reduced to computing
the first intersection (see figure 4.11). It is the event e with the smallest firing time that is retained
for the next discrete transition. After this transition the numerical integrator must restart from the
point defined by A.

Correction of the stepping algorithm For asynchronous simulation of multi-agent hybrid sys-
tems, the correctness of a stepper algorithm mainly concerns numerical stability and event detec-
tion [60], both being in general very difficult problems [26]. For this specific model, numerical
stability of the stepper described in algorithm 6 has been checked by evaluating the stiffness of the
single cell ODE system by comparing the accumulated integration error between various order ex-
plicit and implicit methods. For the final implementation, the embedded Runge-Kutta-Fehlberg was
retained, giving good tradeoff between efficiency and precision.

Failure of an event detection can be caused either when sub systems are coupled but not correctly
synchronized or when a guard is falsely assumed as monotonic between two successive simulation
steps. For the former, since the clonal senescence and the mitosis events only refer to the state and
derivative of the currently integrated cell, the composed population model remains uncoupled and
we do not need to synchronize any of the states. For the latter, failure of an event detection can
be caused when a guard is falsely assumed as monotonic between two successive simulation step.
In BioRica, since the guard of an event can not refer to the current simulation time, detecting the
occurrence of an event is reduced to an intersection test between an n + 1 dimensional segment
and a n dimensional region or polytope, where n is the number of state variables of the integrated
node. More specifically for the guards of the cell population model, only intersection between the
interpolated segment between two successive integration step and a downward closed region is used,

4.4. EXPLORATORY SIMULATION OF CELL AGEING 85

1

2

4

time

5
6

t Maximal stepsize

e1 e2

3

A

e1 firing time

Minimal delay

e2 firing time

e3

�x

Figure 4.11: The numerical integrator advances between t (point 1) and the maximal stepsize (2).
The guards of events e1, e2 are satisfied. The regions where these guards are satisfied are shaded.
The firing time of e1 (3) is used to reset the simulator after the discrete transition A (4).

86 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

Execution specific

Model specific Static part

Model Compiler C++ Classes

Native code
simulatorDB

Trace output

Biorica Library

Random generator

Launcher

Solver

Gnu Scientific Library

Discrete event detector

Stepper

Simulation analysis MySQL client Library

Figure 4.12: BioRica software architecture.

and is performed by evaluating the guard at the end point.
Specialization The generic simulation algorithm 6 was specialized for the damage segregation

study. In particular, alive and update had to be redefined in a specific way. The alive predicate
verifies three conditions. First, the cell is checked for immortality, which is realized by fixed point
detection. Second, we verify whether the cell is in the state of clonal senescence, by evaluating the
two guards described in section 4.4.1. Update has the role of managing new cell creation. For the
current cell c it updates its state variables, according to the algebraic equations (4-6 for progenitors),
and its statistics (fitness, generation time, etc). It creates a new cell node (daughter of c) according to
the equations (4-6 for progeny) and inserts it into the population array Pop.

Population simulation On top of this specific stepping algorithm, another algorithm drives the
whole population simulation by selectively starting simulations for pending cells in Pop. Given a
depth n, a root cell c and an extent value e, this algorithm first selects pending nodes required to get
a complete binary pedigree tree of depth n rooted at cell c. Afterwards, e leftmost and e rightmost
leaves are used as root cells in recursive calls of this algorithm with a decremented value of e. Fix
points are detected by testing before simulation if a candidate cell’s initial values Pint and Pdam are
equal to a previously simulated cell, in which case we get a pedigree graph by adding a loop edge.

Determining parameter values that exhibit optimal population fitness is based on averaging in-
dividual cell statistics (defined in section 4.4.3) to compute the mean fitness. In fact, this averaging
maps a real value denoting the population fitness to each parameter vector. A coarse computation
of this mapping is then built by varying the parameter vector using fixed step size. This coarse esti-
mation is used to determine initial guess of optima position, that are then established by using Brent
Principal Axis method on the mapping.

4.4.3 Results

Initial calibration To calibrate and validate the system, complete simulations were run to depth 4
in the pedigree tree for a large range of parameter values. Rate constants k1, k2, and k4 received
fixed values, k3 was given a range of values with step size 0.1, and smother and sdaughter were
given two pairs of values representing symmetric and asymmetric growth strategies. A total of 625
simulations were run, summing to 9375 different initial conditions and parameters values. Sample
results for pedigree tree are illustrated on figure 4.13. Successful comparisons with a small number

4.4. EXPLORATORY SIMULATION OF CELL AGEING 87
L

o
w

 D
a

m
a

g
e

H
ig

h
 D

a
m

a
g

e

DaughterMother

Out[317]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

Out[291]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

75
25

75
25

75
25

75
25

75
25

75
25

75
25

50
50

50
50

50
50 50

50

50
50

50
5050

50

Asymmetrical (75-25%) Symmetrical (50-50%)

Out[291]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

Mother or Daughter

Figure 4.13: Sample pedigree tree results for asymmetrical (left) and symmetrical (right) division
strategies. Pedigree tree (Top) showing mother-daughter relations; and simulation results (Bottom)
showing single cell protein amounts over time: normal proteins (blue), damaged proteins (pink),
total proteins (dashed). For example, in the asymmetrical case with high damage (lowest left plot),
from time zero, the amount of normal proteins (blue) in the mother eventually cross the division
threshold at time approx. 0.15. At this time, the proteins repartition is approx. 250 damaged proteins
for 1750 total proteins. Once division is triggered, the progeny separates, and a new simulation is
started for the mother (resp. the daughter) with initial normal proteins set at 1500 × 0.75 = 1125
(resp. 1500 × 0.25 = 375) and damaged proteins set at 250 × 0.75 = 187.5 (resp. 250 × 0.25 =
62.5). Since in this case the mother accumulates damage over divisions (compare damaged proteins
amount between time 0.15 and 3.0), it will eventually reach a senescence point after 27 divisions.
Comparison of its life span with the life span of each of its daughter and the life span of each daughter
of its daughters (as tracked by the upper pedigree tree) shows a rejuvenation effect.

88 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

of experimental cell growth results were also performed (data not shown).
Parameter Exploration. Using parameter exploration (section 4.4.2) we identified sets of pa-

rameters that exhibited a given emerging high-level behaviour, both at the single-cell and whole
pedigree tree levels. For example, for the former we are interested in detecting cells that have a
certain number of daughters (say, 24), and for the latter we are looking for parameters giving high
rejuvenation value across the whole population. These two values are computed by a trace simulation
analysis script.

Thus, for each of scenarios studied here, a representative simulation was chosen by inspecting
properties of the initial mother. From the whole parameter space, we selected simulations where
the mother cell produces a number of daughters that is both finite and large enough (20-24 divisions
depending on the case, since the average life span of wild type budding yeast is 24 divisions). For
each of these simulations, the pedigree tree was calculated up to depth 30, and for each cell in the tree
we calculated five values: initial damage and terminal damage levels (corresponding respectively to
the amounts of damage Pdamat the beginning of cell cycle, and at the end of the cycle when division
is about to occur), generation time (time between two divisions), absolute date of birth (in arbitrary
time units, measured from the moment when mother starts its first division) and the fitness (defined
as number of divisions during first time unit).

Model analysis. The hierarchical model we have defined explicitly tracks mother-daughter re-
lations in pedigree trees of simulations. This allows us to study lineage-specific properties, which
are properties associated with connected subgraphs of the pedigree tree. Pedigree trees and typical
simulation results are shown in Figure 4.13.

In the pedigree tree, a given mother cell generates a series of daughter cells; these siblings are
ordered in time, and the younger a sibling, the older the mother at the time of division. We observe
in simulation results that younger siblings have higher damage, consistent with inheritance from
an older mother that has accumulated more damaged proteins, and these younger siblings are thus
born “prematurely old.” This increase in damage accumulation is reflected in the decrease of fitness
values, shown in the first level of Figure 4.14.

Extending this analysis one level further in the pedigree tree shows, expectedly, that daughters
born early to the same mother have low damage, and their daughters have normal fitness. Daughters
born late to the same mother have high damage and lower fitness, but remarkably, in simulations
with asymmetric division, their own daughters are born with lower damage and higher fitness. This
increase in fitness in the second generation is a rejuvenation effect, in part explaining how populations
maintain viability over time despite inheritance of protein damage.

The testable hypothesis is thus that there exists a mechanism for segregation of damaged proteins
during cell division, that attenuates the accumulation of such proteins in descendants, and that the
asymmetry coefficients (smother and sdaughter) in the model determines the scale of the rejuvenation
effect.

These predictions are consistent with in vivo experimental results reported in the literature:
Kennedy, et al. [104] report that daughter cells of an old mother cell are born prematurely old,
with lower replicative potential, but that the daughters of these daughters have normal life spans.

However, this rejuvenation effect is not present in symmetric division case, since inheritance of
damaged proteins should be proportional in both mother and daughter cells, and indeed is what is
observed.

Finally, in simulations we observe that fitness and viability are sensitive to precise values of
k3, the rate by which proteins are damaged (see figure 4.14). This provides a series of testable
hypotheses that could be investigated experimentally in different damaging environments, such as
oxidative damage or radiation damage.

4.4. EXPLORATORY SIMULATION OF CELL AGEING 89

Figure 4.14: Sample parameter exploration result showing the high sensitivity and non linearity
of the rejuvenation effect w.r.t. precise values of the damage rate k3. Only some ranges of the
parameter value (approx. between 1.53 and 1.59) exhibits an increase of both the maximal and the
mean fitness difference between every mother and daughter of a population. Top: Estimation of the
maximal and mean rejuvenation amount for damage rate ranging from 1.2 to 1.7 for the asymmetrical
and symmetrical case. The higher the values, the fitter some cells of the lineage are compared to
their direct mother. Bottom: Close up of a lineage tree used to compute one point of the previous
rejuvenation plot. Each node (yellow box) is labeled with an numeric id and the floating-point fitness
value of the cell, and each edge (white label) is labeled with the index of the daughter relatively to
its mother and labeled with the difference of fitness between daughter and mother. For such a given
tree, we can compute the mean and max value of the edges, which is represented as one point on
the rejuvenation plot. The rejuvenation effect in young daughters of old mothers (right blue colored
branch) is consistent with the experimental results of [104].

90 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

4.4.4 Conclusions

Although purely continuous systems such as ODEs have long been used for quantitative modeling
and simulation of biological systems (for example [127]) and are commonly thought to be powerful
enough, they do not suffice for highly structured models where emerging properties result from
dynamic changes to the model.

For this study, the BioRica hybrid formalism and the related framework proved to be powerful
enough to model, simulate and analyze the rejuvenation property of a hierarchical damage segre-
gation process, by extending an existing continuous cell model to a population model. Since our
hybrid formalism allows a BioRica node to describe and import an ODE system, we maintain the
low computational cost and biological soundness of ODEs.

Hybrid simulation in BioRica scheme enjoys the traditional advantages of numerical integration,
since the computational overhead for the hybrid stepper is proportional to the number of discrete
events in the model; thus hybrid simulation of a purely continuous model is as fast as integrating
it. For hybrid models mixing both continuous and discrete dynamics, our clear semantics permits
concise description and reproducibility of simulation results in other simulation frameworks. For
example, while the division strategy could be described in a continuous model by adjusting sigmoid
functions, it is more naturally described by algebraic equations and their description in the model
ought to be kept algebraic. The resulting gain in clarity has been observed elsewhere, for example in
the complete cell cycle model of [36]. While most existing simulation tools admit a programming
interface that allows for the modeler to simulate discrete events, the lack of a precise semantics
renders the simulation predictions questionable and merely reproducible, since allowing such discrete
events in a model has semantics issues1. Indeed, two discrete events can be enabled at the same time,
but nothing defines whether in such cases the simulator should fire neither event, both events, or
some random choice; and different strategies imply radically different simulation results.

In BioRica, we use the mathematical definition of non-determinism already used in discrete
formalisms, thus giving any BioRica models a precise mathematical and unambiguous semantics.
Furthermore, while not explicitly used in this study, BioRica leverages and extends the composi-
tional operators initially defined in the AltaRica languages family [7] to allow for parallel, partially
synchronous and data sharing compositions of hybrid, stochastic, multi-models and external abstract
processes. The class of formalism that can be composed this way ranges from constraint automata
to hybrid stochastic differential systems. Furthermore, since such compositions are mathematically
defined in BioRica, we can exactly identify subclasses of programs admitting modern model analysis
such as model checking, compositional reasoning, functional module decomposition and automatic
simplification; all of which were spotted as grand challenges for modeling and simulation in system
biology [165]. For compatibility with other systems biology software, BioRica imports SBML files
through libSBML [93]. In addition to SBML support, BioRica exports the model as software inde-
pendent C++ code, that can be compiled on any POSIX compliant system. This approach allows
initial model prototyping in user friendly workbenches such as xCellerator [174], followed by use of
optimized command line simulators for large scale analyses.

More specifically for population studies, since discrete variables and dynamic node creation are
allowed in BioRica, our cell model can explicitly track a dynamic mother-daughter relationship. A
realistic population model needs such a dynamic topology. Even when restricting ourselves to the
biologically realistic case of dying cells, the number of daughters that any cell can have is a priori
unbounded; thus, simply replicating the ODE equations to get a continuous population model as in
[86] is not scalable. Furthermore, when simulations were carried up to depth 30, approximately 230

cells were evolving in parallel, adding up to a 232-variable differential system that is untractable using

1See for example http://www.sys-bio.org/sbwWiki/compare/themysterysolved

4.4. EXPLORATORY SIMULATION OF CELL AGEING 91

a classical ODE approach. Instead, our population model clearly separates each cell behavior from
the population by using hierarchical composition, and uses this modularity to provide a hierarchical
simulation scheme, thus ensuring that each individual cell continuous part will be integrated with the
most efficient step size.

Furthermore, the properties of parallel composition render study of population model with up to
230 individuals still partially tractable by our scheme since we can linearize this population tree to
simulate each cell independently. This approach is efficient since the cost of simulating a population
is linearly proportional to the cost of simulating an individual, while flat and unstructured models
have a quadratic complexity [60]. Finally, since we use discrete variables to track the mother-
daughter relationships, we can directly estimate the rejuvenation effects, which would otherwise be
buried in a flat and unstructured model.

Large scale exploration to detect the rejuvenation effect required a tree coverage that is out of
reach of naive exploration algorithms such as breadth-first or depth-first. In fact, neither the popu-
lation tree width nor its height are bounded, and thus these algorithms do not terminate. An ad hoc
exploration algorithm partially solves this problem by alternating evaluation of first born daughters
and evaluation of late born daughters, but does not provide the required coverage to detect signifi-
cant rejuvenation. However, substantial acceleration is provided by the fix point detection scheme
encoded in our tree visitor pattern, whose soundness is ensured by the deterministic nature of a cell
behavior. In the continuous model, initial values of Pintand Pdamfor given parameter values entirely
determine a unique single cell behavior, and we proved that this property is preserved in the hybrid
model. In fact, this is a special case of a more general result stating needed and sufficient conditions
for this determinism to be preserved when adding discrete transitions to a continuous model. These
conditions, beyond the scope of this paper, are not stringent and thus this acceleration can be used in
most dynamic populations models built upon individuals.

92 CHAPTER 4. BIORICA: DYNAMIC MODELING FORMALISM AND PLATFORM

Bibliography

[1] H. Aguilaniu, L. Gustafsson, M. Rigoulet, and T. Nystrom. Asymmetric inheritance of oxidatively
damaged proteins during cytokinesis. Science, 299(5613):1751–1753, 2003.

[2] P. Akiva, A. Toporik, S. Edelheit, Y. Peretz, A. Diber, R. Shemesh, A. Novik, and R. Sorek.
Transcription-mediated gene fusion in the human genome. Genome Research, 16:30–36, 2005.

[3] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. J.
Mol. Biol, 215:403–410, 1990.

[4] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokilsky. Generating embedded software from heirarchical
hybrid models. In Proceedings of LCTES, pages 171–82, 2003.

[5] K. Arakawa, Y. Yamada, K. Shinoda, Y. Nakayama, and M. Tomita. Gem system: automatic prototyping
of cell-wide metabolic pathway models from genomes. BMC Bioinformatics, 7, 2006.

[6] A. Arkin, J. Ross, and H.H McAdams. Stochastic kinetic analysis of developmental pathway bifurcation
in phage lambda-infected escherichia coli cells. Genetics, 149:1633–1648, 1998.

[7] A. Arnold, A. Griffault, G. Point, and A. Rauzy. The altarica formalism for describing concurrent
systems. Fundamenta Informaticae, 40:109–124, 2000.

[8] D.A. Bader, B. Moret, and M. Yan. A linear-time algorithm for computing inversion distances between
signed permutations with an experimental study. Journal of Computational Biology, 8(5):483–491,
2001.

[9] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking algorithms for continuous time
markov chains. IEEE TSE, 29(6):524–541, 2003.

[10] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, M. Siegle, and F. Vaandrager. Validation of Stochas-
tic Systems: A Guide to Current Research Springer. Lecture Notes in Computer Science 2925. Springer-
Verlag, 2004.

[11] R. Balakrishnan, K. R. Christie, M. C. Costanzo, K. Dolinski, S. S. Dwight, S. R. Engel, D. G. Fisk,
J. E. Hirschman, E. L. Hong, and R. Nash. Saccharomyces genome database, 2005.

[12] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. Adaptive Computation and
Machine Learning Series. MIT Press, Cambridge, Massachusetts, 1998.

[13] A. Barre, V. Jouffe, C. Lartigue, M. Nikolski, A. Blanchard, and P. Sirand-Pugnet. Annotation transfert
based on orthology relationships: reannotation of mycoplasma genomes from the pneumoniae group.
JOBIM’06 poster, 2006.

[14] J.-P. Barthélemy and B. Leclerc. The median procedure for partitions. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1995.

[15] A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S.R. Eddy, S. Griffiths-Jones, K.L. Howe,
M. Marshall, and E.L. Sonnhammer. The Pfam protein families database. Nucleic Acids Res., 30:276–
280, 2002.

[16] G. Bejerano and G. Yona. Variations on probabilistic suffix trees: statistical modeling and prediction of
protein families. Bioinformatics, 17(1):23–43, 2001.

93

94 BIBLIOGRAPHY

[17] E.T. Bell. Exponential numbers. Amer. Math. Monthly, 41:411–419, 1934.

[18] A. Ben-Hur and I. Guyon. Detecting stable clusters using principal component analysis. Methods Mol
Biol., 224:159–82, 2003.

[19] H.M. Berman, J. Westbrook, Z. Feng, G. Gillil, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne.
The Protein Data Bank. Nucleic Acids Res., 28:235–242, 2000.

[20] M. Bernt, D. Merkle, and M. Middendorf. Genome rearrangement based on reversals that preserve
conserved intervals. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(3):275–
288, 2006.

[21] H.P.J. Bonarius, G. Schmid, and J. Tramper. Flux analysis of underdetermined metabolic networks: the
quest for the missing constraints. Trends in Biotechnol., 15(8):308–14, 1997.

[22] L. Bonen. Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J., 7:40–46, 1993.

[23] G. Bourque and P.A. Pevzner. Genome-Scale Evolution: Reconstructing Gene Orders in the Ancestral
Species. Genome Research, 12:26–36, 2002.

[24] G. Bourque, G. Tesler, and P.A. Pevzner. The convergence of cytogenetics and rearrangement-based
models for ancestral genome reconstruction. Genome Res., 16(3):311–313, 2006.

[25] G. Bourque, E.M. Zdobnov, P. Bork, P.A. Pevzner, and G. Tesler. Comparative architectures of mam-
malian and chicken genomes reveal highly variable rates of genomic rearrangements across different
lineages. Genome Res., 15:98–110, 2005.

[26] R. Brankin. Reliable solution of special event location problems for odes. ACM Transactions on
Mathematical Software, 17:11–25, Jan 1991.

[27] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. Classics in Applied Mathematics 14. Elsevier, 1989.

[28] D. Bryant. The complexity of the breakpoint median problem. Technical Report CRM2579, Centre de
Recherches Mathematiques, Universite de Montreal, 1998.

[29] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking: 1020

states and beyond. Inf. Comput., 98(2):142–70, 1992.

[30] D.M. Burnst, V. Horn, J. Paluh, and C. Yanofsky. Evolution of tryptophan synthetase in fungi. J. Biol.
Chem., 265:2060–2069, 1990.

[31] Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation algorithm for chemically
reacting system. J. Chem. Phys., 121:4059–67, 2004.

[32] Y. Cao and L. Petzold. Slow scale tau-leaping method. Computer Methods in Applied Mechanics and
Engineering, 97:3472–3479, 2008.

[33] A. Caprara. Formulations and Complexity of Multiple Sorting by Reversals. In S. Istrail, P. Pevzner,
and M. Waterman, editors, Proceedings RECOMB’3, pages 84–93, Lyon, 1999. acmp.

[34] A. Caprara. The Reversal Median Problem. INFORMS J. on Computing, 15(1):93–113, 2003.

[35] M. Carapeti, R.C. Aguiar, A.E. Watmore, J.M. Goldman, and N.C. Cross. Consistent fusion of MOZ
and TIF2 in AML with inv(8)(p11q13). Cancer Genet. Cytogenet., 113:70–72, 1999.

[36] K.C. Chen, L. Calzone, A. Csikasz-Nagy, F.R. Cross, B. Novak, and J.J. Tyson. Integrative analysis of
cell cycle control in budding yeast. Mol. Biol. Cell, 15(8):3841–62, 2004.

[37] K.C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak, and J.J. Tyson. Kinetic analysis of a
molecular model of the budding yeast cell cycle. Molecular Biology of the Cell, 11:369–391, Jan. 2000.

[38] J. Chesneaux. The equality relations in scientific computing. Numerical Algorithms, 7(2):129–143, Jan
1994.

BIBLIOGRAPHY 95

[39] P. Cliften, P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton, J. Majors, R. Waterson, B. A. Cohen,
and M. Johnston. Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Science, 301:71–76, 2003.

[40] The Genolevures Consortium. Comparative genomics of protoploid genomes of saccharomycetaceae
defines the orthologous gene set and basic yeast proteome repertoire. accepted for publication in
Genome Research, 2009.

[41] A. Courseaux and J. L. Nahon. Birth of two chimeric genes in the hominidae lineage. Science,
291:1293–1297, 2001.

[42] M. Cvijovic, H. Soueidan, D. Sherman, E. Klipp, and M. Nikolski. Exploratory simulation of cell
ageing using hierarchical models. In Genome Informatics Series, ISSN: 0919-9454, volume 21, pages
114–125, 2008.

[43] A.C. Darby, N.-H. Cho, H.-H. Fuxelius, J. Westberg, and S. G. E. Andersson. Intracellular pathogens
go extreme: genome evolution in the rickettsiales. Trends in Genetics, 23:511–520, 2007.

[44] I.J. Davis, B.L. Hsi, J.D. Arroyo, S.O. Vargas, Y.A. Yeh, G. Motyckova, P. Valencia, A.R. Perez-
Atayde, P. Argani, M. Ladanyi, J.A. Fletcher, and D.E. Fisher. Cloning of an Alpha-TFEB fusion in
renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc. Natl. Acad. Sci. U S A,
100:6051–6056, 2003.

[45] Jean-Antoine-Nicolas de Caritat marquis de Condorcet. Essai sur l’application de l’analyse à la prob-
abilité des décisions rendues à la pluralité des voix. The French Revolution research collection, 1995.
Reprod. of édition de l’Impr. royale, 1785.

[46] C. d’Enfert, S. Goyard, S. Rodriguez-Arnaveilhe, L. Frangeul, L. Jones, F. Tekaia, O. Bader, A. Al-
brecht, L. Castillo, A. Dominguez, et al. Candidadb: a genome database for Candida albicans
pathogenomics. Nucleic Acids Research, 33:D353–D357, 2005. Sequence data for Candida albicans
was obtained from the Stanford Genome Technology Center website at http://www-sequence.
stanford.edu/group/candida. Sequencing of Candida albicans was accomplished with the
support of the NIDR and the Burroughs Wellcome Fund.

[47] S. Donatelli, S. Haddad, and J. Sproston. CSLTA: an expressive logic for continuous-time markov
chains. In Proc. 4th Int. Conf. Quantitative Evaluation of Systems (QEST’07), pages 31–40, Edinburgh,
Scotland, 2007. IEEE Computer Society.

[48] R.F. Doolittle. Similar amino acid sequences: chance or common ancestry? Science, 214:149–59, Oct
1981.

[49] R.F. Doolittle. The multiplicity of domains in proteins. Annu. Rev. Biochem., 64:287–314, 1995.

[50] B. Dujon. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends in
Genetics, 22:375–387, 2006.

[51] B. Dujon, D. Sherman, and G. Fischer et al. Genome evolution in yeasts. Nature, 430(6995):35–44,
July 2004.

[52] P. Durrens, M. Nikolski, and D. Sherman. Fusion and fission of genes define a metric between fungal
genomes. Plos Computational Biology, 4(10), 2008.

[53] E.E. Eichler. Recent duplication, domain accretion and the dynamic mutation of the human genome.
Trends in Genetics, 17:661–669, 2001.

[54] A. J. Enright, I. Iliopoulos, N. C. Kyrpides, and C. A. Ouzounis. Protein interaction maps for complete
genomes based on gene fusion events. Nature, 402:86–90, 1999.

[55] A. J. Enright and C. A. Ouzounis. Functional associations of proteins in entire genomes by means of
exhaustive detection of gene fusions. Genome Biology, 2:00341–00347, 2001.

[56] A.J. Enright, S. Van Dongen, and C.A. Ouzounis. An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res., 30:1575–1584, 2002.

96 BIBLIOGRAPHY

[57] A.J. Enright and C.A. Ouzounis. Generage: A robust algorithm for sequence clustering and domain
detection. Bioinformatics, 16:451–457, 2000.

[58] N. Eriksen. Reversal and transposition medians. Theoretical Computer Science, 374(1-3):111–126,
2007.

[59] J. Esposito and V. Kumar. Efficient dynamic simulation of robotic systems with hierarchy. In Pro-
ceedings IEEE International Conference on Robotics and Automation, volume 3, pages 2818–2823,
2001.

[60] J. Esposito and V. Kumar. An asynchronous integration and event detection algorithm for simulating
multi-agent hybrid systems. ACM Transactions on Modeling and Computer Simulation, 14:363–388,
2004.

[61] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In Proc. 15th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’03), pages 418–425, 2003.

[62] D.A. Fitzpatrick, M.E. Logue, J.E. Stajich, and G. Butler. A fungal phylogeny based on 42 complete
genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology, 6:99–114,
2006.

[63] A. Fred and A.K. Jain. Data clustering using evidence accumulation. In In Proc. of the 16th Intl.
Conference on Pattern Recognition (ICPR 2002), pages 276–280, 2002.

[64] L. Fribourg and M. Veloso Peixoto. Concurrent constraint automata. In international symposium on
Logic programming (ILPS), page 656, 1993.

[65] L. Froenicke, M.G. Caldés, A. Graphodatsky, S. Muller, L.A. Lyons, J.T. Robinson, M. Volleth, F. Yang,
and J. Wienberg. Are molecular cytogenetics and bioinformatics suggesting diverging models of ances-
tral mammalian genomes? Genome Res., 16(3):306–310, March 2006.

[66] J. E. Galagan, S. E. Calvo, C. Cuomo, L. J. Ma, J. R. Wortman, S. Batzoglou, S. I. Lee, M. Batürkmen,
C. C. Spevak, J. Clutterbuck, et al. Sequencing of Aspergillus nidulans and comparative analysis with
A. fumigatus and A. oryzae. Nature, 438:1105–1115, 2005.

[67] J.E. Galagan, S.E. Calvo, K.A. Borkovich, E.U. Selker, N.D. Read, D. Jaffe, W. FitzHugh, L.J. Ma,
S. Smirnov, S. Purcell, et al. The genome sequence of the filamentous fungus Neurospora crassa.
Nature, 422:859–868, 2003.

[68] M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., 1979.

[69] L.Y. Geer, M. Domrachev, D.J. Lipman, and S.H. Bryant. CDART: Protein homology by domain
architecture. Genome Res., 12:1619–1623, 2002.

[70] R. German and C. Lindemann. Analysis of stochastic petri nets by the method of supplementary vari-
ables. Performance evaluation, 20:317–35, 1994. Special issue: Performance’93.

[71] M.A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with many species
and many channels. J. Phys. Chem., 104:1876–1889, 2000.

[72] S. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry,
81:2340–2361, 1977.

[73] E. Glemet and J. J. Codani. LASSAP, a large scale sequence comparison package (note: LASSAP is
now biofacet). Comput Appl Biosc, 13(2):137–43, 1997.

[74] A. Goëffon, M. Nikolski, and D. Sherman. An efficient probabilistic population-based descent for the
median genome problem. In Proceedings of GECCO 2008, pages 315–321, 2008.

[75] A. Goëffon, J.-M. Richer, , and J.-K. Hao. Progressive tree neighborhood applied to the maximum
parsimony problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5(1):136–
145, 2008.

BIBLIOGRAPHY 97

[76] M.L. Green and P. Karp. A bayesian method for identifying missing enzymes in predicted metabolic
pathway databases. BMC Bioinformatics, 5(76), 2004.

[77] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem. Mathematical
Programming B, 59–96, 1989.

[78] W.N. Grundy, T.L. Bailey, C.P. Elkan, and M.E. Baker. Meta-MEME: Motif-based hidden markov
models of protein families. Computer Applications in the Biosciences, 3(4):397–406, 1997.

[79] D.J. Sherman H. Soueidan and M. Nikolski. Biorica: A multi model description and simulation system.
In Proceedings of the 2nd Foundations of Systems Biology in Engineering (FOSBE), pages 279–287,
Sttugart, 2007. Fraunhofer IRB Verlag. ISBN 978-3-8167-7436-5.

[80] S. Haddad, L. Mokdad, and P. Moreaux. A new approach to the evaluation of non markovian stochastic
petri nets. In Proc. 27th Int. Conf. Application and Theory of Petri Nets and Other Models of Con-
currency (ICATPN 2006), Lecture Notes in Computer Science 4024, pages 221–40. Springer-Verlag,
2006.

[81] S. Haddad and P. Moreaux. Approximate analysis of non-markovian stochastic systems with multiple
time scale delays. In Proc. 12th IEEE Int. Symp. Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2004), pages 23–30. IEEE Computer Society, 2004.

[82] C. Hall, S. Brachat, and F. S. Dietrich. Contribution of horizontal gene transfer to the evolution of
Saccharomyces cerevisiae. Eukaryot. Cell, 4:1102–1115, 2005.

[83] S. Hannenhalli, C. Chappey, E.V. Koonin, and P.A. Pevzner. Genome sequence comparison and scenar-
ios for gene rearrangements: a test case. Genomics, 30(2):299–311, November 1995.

[84] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial algorithm for sorting
signed permutations by reversals). Proceedings of twenty-Seventh Annual ACM Symposium on Theory
of Computing, pages 178–189, 1995.

[85] S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polynomial algorithm for genomic dis-
tance problem). In FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pages 581–592, 1995.

[86] M. Henson, D. Muller, and M. Reuss. Cell population modelling of yeast glycolytic oscillations.
Biochem. J., 368(Pt 2):433–446, Jan 2002.

[87] L. Hermida, S. Brachat, S. Voegeli, P. Philippsen, and M. Primig. The Ashbya genome database (AGD)–
a tool for the yeast community and genome biologists. Nucleic Acids Research, 33:D348–D352, 2005.

[88] H. Hermjakob, L. Montecchi-Palazzi, G. Bader, J. Wojcik, L. Salwinski, A. Ceol, S. Moore, S. Or-
chard, U. Sarkans, C. von Mering, B. Roechert, S. Poux, E. Jung, H. Mersch, P. Kersey, M. Lappe,
Y. Li, R. Zeng, D. Rana, M. Nikolski, H. Husi, C. Brun, K. Shanker, SG. Grant, C. Sander, P. Bork,
W. Zhu, A. Pandey, A. Brazma, B. Jacq, M. Vidal, D. Sherman, P. Legrain, G. Cesareni, I. Xenarios,
D. Eisenberg, B. Steipe, C. Hogue, and R. Apweiler. The hupo psi’s molecular interaction format–a
community standard for the representation of protein interaction data. Nature Biotech, 22(2):177–83,
Feb 2004.

[89] H.L. Holm and S. Sander. Mapping the protein universe. Science, 273:595–602, 1996.

[90] H. H. Hoos and T. Stützle. Stochastic Local Search : Foundations & Applications (The Morgan Kauf-
mann Series in Artificial Intelligence). Morgan Kaufmann, 2004.

[91] S. Hua, T. Guo, J. Gough, and Z. Sun. Proteins with class α/β fold have high-level participation in
fusion events. J. Mol. Biol., 320:713–719, 2002.

[92] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985.

98 BIBLIOGRAPHY

[93] M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B.J. Bornstein,
D. Bray, A. Cornish-Bowden, A A. Cuellar, S. Dronov, E.D. Gilles, M. Ginkel, V. Gor, I.I. Goryanin,
W.J. Hedley, T.C. Hodgman, J.-H. Hofmeyr, P.J. Hunter, N.S. Juty, J.L. Kasberger, A. Kremling,
U. Kummer, N. Le Novere, L.M. Loew, D. Lucio, P. Mendes, E.D. Mjolsness, Y. Nakayama, M.R.
Nelson, P.F. Nielsen, T. Sakurada, J.C. Schaff, B.E. Shapiro, T.S. Shimizu, H.D. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems biology markup language (SBML): A
medium for representation and exchange of biochemical network models. Bioinformatics, 19(4):524–
31, 2003.

[94] F. Iragne, M. Bertrand, M. Nikolski, D. Auber, and D. Sherman. ProViz: Protein internation vizualisa-
tion and exploration tool. Poster, European Conference on Computational Biology 2003.

[95] F. Iragne, M. Nikolski, B. Mathieu, D. Auber, and D. Sherman. ProViz: protein interaction visualization
and exploration. Bioinformatics, 21(2):272–274, 2005.

[96] F. Iragne, M. Nikolski, and D. Sherman. Extrapolation of metabolic pathways as an aid to modelling
completely sequenced non-saccharomyces yeasts. FEMS Yeast Res., 8:132–139, 2007.

[97] F. Iragne, M. Nikolski, and D. Sherman. Extrapolation of metabolic pathways as an aid to modelling
completely sequenced non-saccharomyces yeasts. FEMS Yeast Res., 8(1):132–9, February 2008. Epub
August 22, 2007.

[98] P. Jaccard. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 1908.

[99] G. Jean and M. Nikolski. Genome rearrangements: a correct algorithm for optimal capping. Information
Processing Letters, 104(1):14–20, 2007.

[100] G. Jean, D. Sherman, and M. Nikolski. Reconstruction and visualization of genome rearrangements
within the kuyveromyces. Proceedings of the ESF-EMBO Symposium on Comparative Genomics of
Eukariotic Microorganisms, Poster, 2008.

[101] G. Jean, D. Sherman, and M. Nikolski. Mining the semantics of genome super-blocks to infer ancestral
architectures. accepted for publication in the Journal of Computational Biology, 2009.

[102] A. Kamburov, L. Goldovsky, S. Freilich, A. Kapazoglou, V. Kunin, A.J. Enright, A. Tsaftaris, and C.A.
Ouzounis. Denoising inferred functional association networks obtained by gene fusion analysis. BMC
Genomics, 8:460, 2007.

[103] P.D. Karp, S. Paley, and P. Romero. The pathway tools software. Bioinformatics, 18, 2002.

[104] B.K. Kennedy, N.R. Austriaco Jr., and L. Guarente. Daughter cells of saccharomyces cerevisiae from
old mothers display a reduced life span. J Cell Biol, 127(6 part 2):1985–93, 1994.

[105] WJ. Kent, R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler. Evolution’s cauldron: duplication, dele-
tion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA., 100(20):11484–
9, 2003.

[106] B.N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen
-activated protein kinase cascades. FEBS Journal, 267(6):1583–1588, 2000.

[107] T.R. Kiehl, R.M. Mattheyses, and M.K. Simmons. Hybrid simulation of cellular behavior. Bioinfor-
matics, 20(3):316–322, 2004.

[108] D. Kim, O. Rath, W. Kolch, and K. Cho. A hidden oncogenic positive feedback loop caused by crosstalk
between wnt and erk p athways. Oncogene, 26(31):4571–9, Jan 2007.

[109] D.E. Knuth. Two notes on notation. Amer. Math. Monthly, 99:403–422, 1992.

[110] P. Koehl and M. Levitt. Sequence variations within protein families are linearly related to structural
variations. J Mol Biol., 323(3):551–62, Oct 2002.

[111] R. Kohavi and F. Provost. Glossary. Mach. Learning J., 30:271–274, 1998.

[112] E.V. Koonin, L. Aravind, and A.S. Kondrashov. The impact of comparative genomics on our under-
standing of evolution. Cell, 101:573–576, 2000.

BIBLIOGRAPHY 99

[113] S.K. Kummerfeld and S.A. Teichmann. Relative rates of gene fusion and fission in multi-domain pro-
teins. Trends in Genetics, 21:25–30, 2005.

[114] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker. Lecture
Notes in Computer Science, 2324:200–204, 2002.

[115] B. Larsen and H. Aone. Fast and effective text mining using linear-time document clustering. In Proc.
of the 5th ACM SIGKDD International Conference, pages 16–22, 1999.

[116] I. Lesur, M. Chiaverini, M. Nikolski, and D. Sherman. Malako, a system for type-safe comparison of
microarray data from multiple sourcessaccharomyces siliceus. In proc. International Meeting of the
Microarray Gene Expression Data Society, pages 127–129, 2003.

[117] C. Lindemann. Performance modelling with Deterministic and Stochastic Petri Nets. John Wiley and
Sons, 1998.

[118] C. Lindemann, A. Thommler, A. Klemm, M. Lohmann, and O. Waldhorst. Quantitative system evalu-
ation with dspnexpress 2000. In Proc. 2nd Int. Workshop on Software and Performance (WOSP, pages
12–17. ACM, 2000.

[119] B. J. Loftus, E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, D. Bruno, J. Vamathevan, M. Miranda,
I. J. Anderson, J. A. Fraser, et al. The genome of the basidiomycetous yeast and human pathogen
Cryptococcus neoformans. Science, 307:1321–1324, 2005.

[120] J. Ma, L. Zhang, B.B. Suh, B.J. Raney, R.C. Burhans, W.J. Kent, M. Blanchette, D. Haussler, and
W.Miller. Reconstructing contiguous regions of an ancestral genome. Genome Research, 6:1557–1565,
2006.

[121] E.M. Marcotte, M. Pellegrini, N.Ho-Leung, D.W. Rice, T.O. Yeates, and D. Eisenberg. Detecting
protein function and protein-protein interactions. Science, 285:751–753, 1999.

[122] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with General-
ized Stochastic Petri Nets. John Wiley and Sons, 1995.

[123] N. Martin, E. Ruedi, R. LeDuc, F.-J. Sun, and G. Caetano-Anollés. Gene-interleaving patterns of
synteny in the saccharomyces cerevisiae genome: are they proof of an ancient genome duplication
event? Biology Direct, 2(1):23, 2007.

[124] H. Matsuda, T. Ishihara, and A. Hashimoto. Classifying molecular sequences using a linkage graph
with their pairwise similarities. Theor. Comput. Sci., 210:305–325, 1999.

[125] H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. In Proceedings National
Academy of Science, USA, volume 94, pages 814–819, 1997.

[126] M. Meila. Comparing clusterings by the variation of information. In Proceeding of COLT’2003, pages
173–187, 2003.

[127] P. Mendes. Biochemistry by numbers: simulation of biochemical pathways with gepasi 3. Trends in
Biochemical Sciences, 22(7):361–363, 1997.

[128] P. Mendes and D.B. Kell. Meg (model extender for gepasi): a program for the modelling of complex,
heterogeneous, cellular systems. Bioinformatics, 17:288–289, 2001.

[129] B. Mirkin. Mathematical classification and clustering. Kluwer Academic Press, 1966.

[130] M.Nikolski, E. Beyne, P. Durrens, and D. Sherman. Learning rules for predicting homologues in hemi-
ascomycetous yeasts using genolevures manually-curated alignments. In Proc. of XXI International
Conference on Yeast Genetics and Molecular Biology, pages 22–37, June 2003.

[131] H. Muhlenbein and J. Zimmermann. Size of neighborhood more important than temperature for stochas-
tic local search. In C. Cotta and J. I. van Hemert, editors, Proceedings of the 2000 Congress on Evolu-
tionary Computation, volume 2, pages 1017–1024, 2000.

100 BIBLIOGRAPHY

[132] N.J. Mulder, R. Apweiler, T.K. Attwood, A. Bairoch, D. Barrell, A. Bateman, D. Binns, M. Biswas,
P. Bradley, P. Bork, and et al. The InterPro database, 2003 brings increased coverage and new features.
Nucleic Acids Res., 31:315–318, 2003.

[133] J.H. Nadeau and B.A. Taylor. Lengths of Chromosomal Segments Conserved since Divergence of Man
and Mouse. Proceedings of the National Academy of Sciences of the United States of America, Part 1:
Biological Sciences, 81(3):814–818, 1984.

[134] M. Nikolskaia. A systematic study of heuristic analysis. In Proc. of Mathematical Methods in Reliability
Conference, MMR 2000, pages 203–206, 2000.

[135] M. Nikolskaia and L. Nikolskaia. Size of OBDD representation of 2-level redundancies functions.
Theoretical Computer Science, 255(1-2):615–625, 2001.

[136] M. Nikolskaia and A. Rauzy. Heuristics for BDD Handling of Sum-of-products Formulae. In Balkema,
editor, Proceedings of the European Safety and Reliability Association Conference, ESREL’98, June
1998.

[137] M. Nikolskaia and A. Rauzy. Fine-tuning of boolean formulae preprocessing techniques. In Balkema,
editor, Proceedings of the European Safety and Reliability Association Conference, ESREL’99, June
1999.

[138] M. Nikolskaia and A. Rauzy. Application des diagrammes binaires d’expression au traitement d’arbres
de défaillance. In Proc. Lambda-Mu 2000, pages 363–367, 2000.

[139] M. Nikolskaia, A. Rauzy, and D. Sherman. Almana: A BDD Minimization Tool Integrating Heuristic
and Rewriting Methods. In Springer Verlag, editor, Proceedings of the Formal Methods for Computer
Aided Design Conference, FMCAD’98, volume 1522 of LNCS, pages 100–114, November 1998.

[140] M. Nikolski. Gene regulatory networks : Hybrid models vs. timed automata. JOBIM’2001 poster,
2001.

[141] M. Nikolski and P. Durrens. Gene accretion and fission events in hemiascomycete genomes. ESF-
EMBO Symposium on Comparative Genomics of Eukaryotic Microorganisms, Poster, 2005.

[142] M. Nikolski, P. Ferraro, P. Durrens, and M. Aigle. Saccharomyces siliceus. In Proc. of the International
Workshop on Systems Biology of Yeast, pages 55–56, 2003.

[143] M. Nikolski and D. Sherman. Family relationships: should consensus reign? - consensus clustering for
protein families. Bioinformatics, 23(2):e71–e76, 2007.

[144] M. Nikolski, D. Sherman, and P. Williams. Unifying two formula rewriting techniques for circuit
verification and risk assessment. Tech. Report TR-1293-03, LaBRI, University of Bordeaux-1, 2001.

[145] N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H. Sauro,
M. Schilstra, and B. Shapiro et al. BioModels Database: a free, centralized database of curated,
published, quantitati ve kinetic models of biochemical and cellular systems. Nucleic Acids Research,
34(Database Issue):D689, 2006.

[146] P. Nurse. Fission yeast morphogenesis–posing the problems. Mol. Biol. Cell., 5(6):613–616, June 1994.

[147] M. Ozery-Flato and R. Shamir. Two notes on genome rearrangement. J. Bioinformatics Comput. Biol.,
1(1):71–94, 2003.

[148] J.A. Papin, J. Stelling, N.D. Price, S. Klamt, S. Schuster, and B.O. Palsson. Comparison of network-
based pathway analysis methods. Trends in Biotechnol., 22(8):400–5, August 2004.

[149] S. Pasek, J.-L. Risler, and P. Brézellec. Gene fusion/fission is a major contributor to evolution of multi-
domain bacterial proteins. Bioinformatics, 22:1418–1423, 2006.

[150] J.M. Pasia, K.F. Doerner, R.F. Hartl, and M. Reimann. A population-based local search for solving a
bi-objective vehicle routing problem. In C. Cotta and J. I. van Hemert, editors, Proceedings of EvoCOP,
volume 4446 of Lecture Notes in Computer Science, pages 166–175. Springer, 2007.

BIBLIOGRAPHY 101

[151] C. A. Paulding, M. Ruvolo, and D. A. Haber. The tre2 (USP6) oncogene is a hominoid-specific gene.
Proc Natl Acad Sci U S A, 100:2507–2511, 2003.

[152] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete. Electronic Colloquium
on Computational Complexity (ECCC), 5(071), 1998.

[153] P. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution: Lessons from human and
mouse genomes. Genome Research, 13:37–45, 2003.

[154] R. Popa. Between Necessity and Probability: Searching for the Definition and Origin of Life. Springer-
Verlag, Heidelberg, Germany, 2004.

[155] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 3rd Edition: The
Art of Scientific Computing. Cambridge University Press, third edition, 2007.

[156] W.M. Rand. Objective criteria for evaluation of clustering methods. J. of the American Statistical
Association, 66:846–850, 1971.

[157] S. Régnier. Sur quelques aspects mathématiques des problèmes de classification automatique. ICC
Bulletin, 4:175–191, 1965.

[158] M.C. Rivera, R. Jain, J.E. Moore, and J.A. Lake. Genomic evidence for two functionally distinct gene
classes. Genetics, 95(11):6239–6244, May 1998.

[159] A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree of satisfaction of temporal logic
formulae with applications to systems biology. Lecture Notes in Computer Science, 5307:251–268,
2008.

[160] M. Rocchi, N. Archidiacono, and R. Stanyon. Ancestral genomes reconstruction: an integrated, multi-
disciplinary approach is needed. Genome Res., 16(12):1557–65, 2006.

[161] R.Y. Rubinstein and B. Melamed. Modern Simulation and Modeling. Wiley Series in Probability and
Statistics. John Wiley and Sons, 1998.

[162] D. Sankoff and M. Blanchette. The median problem for breakpoints in comparative genomics. In
COCOON ’97: Proceedings of the Third Annual International Conference on Computing and Combi-
natorics, pages 251–264, London, UK, 1997. Springer-Verlag.

[163] D. Sankoff, G. Sundaram, and J. D. Kececioglu. Steiner points in the space of genome rearrangements.
International Journal of Foundations of Computer Science, 7(1):1–9, 1996.

[164] D. Sankoff and P. Trinh. Chromosomal breakpoint reuse in genome sequence rearrangement. J Comput
Biol, 12(6):812–821, 2005.

[165] H.M. Sauro, D. Harel, M. Kwiatkowska, C.A. Shaffer, A.M. Uhrmacher, M. Hucka, P. Mendes,
L. Stromback, and J.J. Tyson. Challenges for modelling and simulation methods in systems biology
(panel discussion). In Proceedings of the 38th Conference on Winter Simulation, pages 1720–30, 2006.

[166] J. Schacherer, Y. Tourette, J. L. Souciet, S. Potier, and J. de Montigny. Recovery of a function involving
gene duplication by retroposition in Saccharomyces cerevisiae. Genome Res., 14:1291–1297, 2004.

[167] H. Scherthan, T. Cremer, U. Arnason, H.U. Weier, A. Lima de Faria, and L. Fronicke. Compara-
tive chromosome painting discloses homologous segments in distantly related mammals. Nat Genet.,
6(4):342–7, 1994.

[168] C.H. Schilling, D. Letscher, and B.O. Palsson. Theory for the systemic definition of metabolic pathways
and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol.,
203(3):229–48, April 2000.

[169] S. Schuster, D.A. Fell, and T. Dandekar. A general definition of metabolic pathways useful for system-
atic organization and analysis of complex metabolic networks. Nat. Biotechol., 18(3):326–32, March
2000.

102 BIBLIOGRAPHY

[170] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pages 440–446,
1992.

[171] F. Servant, C. Bru, S. Carrere, E. Courcelle, J. Gouzy, D. Peyruc, and D. Kahn. Prodom: Automated
clustering of homologous domains. Brief Bioinform., 3:246–251, 2002.

[172] J.S. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing,
1997.

[173] B. Shapiro, M. Hucka, A. Finney, and J. Doyle. Mathsbml: a package for manipulating sbml-based
biological models. Bioinformatics, 20(16):2829–31, Jan 2004.

[174] B. Shapiro, A. Levchenko, E. Meyerowitz, and B. Wold. Cellerator: extending a computer algebra
system to include biochemical arrows for signal transduction simulations. Bioinformatics, 19(5):677–
678, Jan 2003.

[175] D. Sherman, P. Durrens, E. Beyne, M. Nikolski, and J.-L. Souciet. Génolevures: comparative ge-
nomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Research, 32 Database
issue:D315–D318, 2004.

[176] D. Sherman, P. Durrens, E. Beyne, M. Nikolski, and J.-L. Souciet. Génolevures: comparative ge-
nomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Research, 32 Database
issue:D315–D318, 2004.

[177] D. Sherman, P. Durrens, E. Beyne, M. Nikolski, and J.-L. Souciet. Genolevures complete genomes
provide data and tools for comparative genomics of hemiascomycetous yeasts. Nucleic Acids Research,
34(Database Issue):D432–D435, 2006.

[178] D. Sherman, P. Durrens, F. Iragne, E. Beyne, M. Nikolski, and J.-L. Souciet. Génolevures complete
genomes provide data and tools for comparative genomics of hemiascomycetous yeasts. Nucleic Acids
Research, 34(Database issue):D432–D435, 2006.

[179] D. Sherman, T. Martin, M. Nikolski, C. Cayla, J.-L. Souciet, and P. Durrens. Genolevures: protein
families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids
Research (NAR), Database Issue:D550–D554, 11 2009.

[180] A.C. Siepel and B.M.E. Moret. Finding an optimal inversion median: Experimental results. In 1st Int’l
Workshop on Algorithms in Bioinformatics, volume 2149, pages 189–203. Lecture Notes in Computer
Science, Springer-Verlag, 2001.

[181] C. Simillion, K. Vandepoele, Y. Saeys, and Y. Peer. Building genomic profiles for uncovering segmental
homology in the twilight zone. Genome Res., 14(6):1095–106, 2004.

[182] D.A. Sinclair, K. Mills, and L. Guarente. Molecular mechanisms of yeast aging. Trends Bioch. Sci.,
23(4):131–4, April 1998.

[183] T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195–
197, 1981.

[184] B. Snel, P. Bork, and M. Huynen. Genome evolution. gene fusion versus gene fission. Trends in
Genetics, 16:9–11, 2000.

[185] J.L. Souciet, M. Nagy, M. Le Gouar, F. Lacroute, and S. Potier. Organization of the yeast URA2
gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphos-
phate synthetase-aspartate transcarbamylase complex. Gene, 79:59–70, 1989.

[186] H. Soueidan, G. Sutre, and M. Nikolsi. Model checking alltl properties over set automata. In Proceed-
ingds of MOdelling and VErifying parallel Processes (MOVEP), pages 377–383, 2006.

[187] H. Soueidan, G. Sutre, and M. Nikoski. Qualitative transition systems for the abstraction and compari-
son of transient behavior in parametrized dynamic models. In accepted for publication in Lecture Notes
in Bioinformatics (CMSB), 2009.

BIBLIOGRAPHY 103

[188] R. Staden. Screening protein and nucleic acid sequences against libraries of patterns. DNA Seq.,
1(6):369–74, 1991.

[189] J. Stirling. Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium.
English translation by J. Holliday, The differential method: A treatise of the summation and interpola-
tion of infinite series. London, 1730, 1749.

[190] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combining multiple
partitions. The Journal of Machine Learning Research archive, 2003.

[191] K. Takahashi, K. Kaizu, B. Hu, and M. Tomita. A multi-algorithm, multi timescale method for cell
simulation. Bioinformatics, 20(4):538–546, 2004.

[192] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1:146–160, 1972.

[193] G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci.,
65(3):587–609, 2002.

[194] Smith T.F. and Zhang X. The challenges of genome sequence annotation or "the devil is in the details".
Nat. Biotechnol., 15:1222–1223, 1997.

[195] S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra, X. W. Sun, S. Varambally,
X. Cao, J. Tchinda, R. Kuefer, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor
genes in prostate cancer. Science, 310:644–648, 2005.

[196] A. Topchy, A.K. Jain, and W. Punch. A mixture model for clustering ensembles. In Proc. SIAM Conf.
on Data Mining, pages 379–390, 2004.

[197] A. Topchy, M. Law, A.K. Jain, and A. Fred. Analysis of consensus partition in cluster ensemble. In
Proc. IEEE International Conference on Data Mining (ICDM’04), pages 225–232, 2004.

[198] K.S. Trivedi. Probability and statistics with reliability, queuing and computer science applications.
John Wiley and Sons Ltd., 2002.

[199] S. Tsoka and C.A. Ouzounis. Prediction of protein interactions: metabolic enzymes are frequently
involved in gene fusion. Nature Genetics, 26:141–142, 2000.

[200] J.J. Tyson. Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl. Acad. Sci. USA,
88(16):7328–32, 1991.

[201] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, May 2000.

[202] S. van Dongen. Performance criteria for graph clustering and markov cluster experiments. Technical
Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Nether-
lands, 2000.

[203] K. Vandepoele, Y. Saeys, C. Simillion, J. Raes, and Y. Van De Peer. The automatic detection of homol-
ogous regions (ADHoRe) and its application to microcolinearity between arabidopsis and ric. Genome
Res., 12(11):1792–801, 2002.

[204] A. Varma and B.O. Palsson. Metabolic flux balancing: Basic concepts, scientific and practical use.
Bio/Technology, 12:994–8, 1994.

[205] C. Vogel, S. A. Teichmann, and J. Pereira-Leal. The relationship between duplication and recombina-
tion. J. Mol. Biol., 346:355–365, 2004.

[206] G. von Dassow, E. Meir, E.M. Munro, and G.M. Odell. The segment polarity network is a robust
developmental module. Nature, 406:188–92, 2000.

[207] N. Vyahhi, A. Goeffon, M. Nikolski, and D. Sherman. Swarming along the evolutionary branches sheds
light on genome rearrangement scenarios. In accepted for publication in GECCO, 2009.

[208] Y. Wakabayashi. The complexity of computing medians of relations. Resenhas IME-USP, 3:323-349,
1998.

104 BIBLIOGRAPHY

[209] W. Wang, H. Yu, and M. Long. Duplication-degeneration as a mechanism of gene fission and the origin
of new genes in Drosophila species. Nature Genetics, 36:523–527, 2004.

[210] D. G. Wilkinson. In Situ Hybridization: A Practical Approach. IRL Press, 1993.

[211] P.F. Williams, M. Nikolskaïa, and A. Rauzy. Bypassing BDD construction for reliability analysis.
Information Processing Letters, 75(1–2):85–89, 2000.

[212] K. Wolfe and D. Shields. Molecular evidence for an ancient duplication of the entire yeast genome.
Nature, 387(6634):708–713, 1997.

[213] V. Wood, R. Gwilliam, M. A. Rajandream, M. Lyne, R. Lyne, A. Stewart, J. Sgouros, N. Peat, J. Hayles,
S. Baker, et al. The genome sequence of Schizosaccharomyces pombe. Nature, 415:845–848, 2002.

[214] C. Wu, A. Nikolskaya, H. Huang, L. Yeh, D. Natale, C.R. Vinayaka, Z.-Z. Hu, R. Mazumder, S. Kumar,
P. Kourtesis, R. Ledley, B. Suzek, L. Arminski, Y. Chen, J. Zhang, J. Cardenas, S. Chung, J. Castro-
Alvear, G. Dinkov, and W. Barker. PIRSF: family classification system at the protein information
resource. Nucleic Acids Research, 2004.

[215] I. Yanai, A. Derti, and C. DeLisi. Genes linked by fusion events are generally of the same functional
category: a systematic analysis of 30 microbial genomes. Proc Natl Acad Sci U S A, 98:7940–7945,
2001.

[216] K. Zhang and H. Zhao. Assessing reliability of gene clusters from gene expression data. Funct. Integr.
Genomics, 2000.

[217] Z. Zhang, H. Sun, Y. Zhang, Y. Zhao, B. Shi, S. Sun, H. Lu, D. Bu, L. Ling, and R. Chen. Genome-wide
analysis of mammalian dna segment fusion/fission. J Theor Biol., 240:200–208, 2006.

