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Abstract

The dissertation presents different solutions to cater the increasing demand of mobile
data traffic in access and backhauling networks, taking into account real usage
profiling and human mobility patterns.

Using real mobile phone data, we study human trajectories and behaviors. We
show that these trajectories can be estimated at good accuracy levels, using specific
mobility metrics, namely the radius of gyration and the centroid. Then, motivated
by the fact that crowded spot positions change as a function of time and the occur-
rence of special events in real networks, we propose two crowded spot estimators
based on these user mobility metrics. From an empirical evaluation, we show that
they appear as excellent crowd detection solutions for cellular backhauling network
management. Crowded spot detection can also be of high utility in the optimization
of the access network under the resulting resource contention situations.

Our interests move in the second part of the dissertation into finding good of-
floading solutions to adequately solve resource contention situations around crowded
spots. In particular we study two offloading approaches: traffic offloading and con-
tent offloading. In the former one, we present two solutions: horizontal offload-
ing over small-cell networks and vertical offloading over Wi-Fi certified Passpoint
hotspots. We study benefits and limitations of each solution. We propose a new
algorithm based on cooperative game theory for resource allocation and interference
management in small-cell networks. The results show important improvements and
emphasize the necessity of referring to cooperative game theory concepts in the
definition of spectrum contention situations. Furthermore, we show the benefits of
using the newly released WiFi Passpoint solution in increasing spectrum capacity
gain and decreasing user energy consumption. Finally, we also investigate how re-
source contention can be solved in Information Centric Networking in terms of cache
allocation to multiple content providers. Also in this context, coalitional game ap-
proaches improve legacy solutions, by decreasing the content access latency in high
contention situations.
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Résumé en Langue Française

La thèse présente différentes solutions qui tiennent compte de la mobité humaine,
pour faire face à la croissance de la demande du trafic de données mobiles dans les
réseaux d’accès et de collecte.

En utilisant des données réelles de téléphonie mobile, nous étudions les trajec-
toires et les comportements humains. Nous montrons que ces trajectoires peuvent
être estimées à haute précision, en utilisant des indices spécifiques de mobilité: le
rayon de giration et le centre de gravité. Ensuite, motivé par le fait que les positions
des cellules surchargées (i.e., les points chauds) changent, dans les réseaux réels, en
fonction du temps et de la survenance des événements spéciaux, nous proposons
deux estimateurs de cellules surchargées basés sur les mêmes indices de mobilité.
Par une étude empirique, nous montrons que nos estimateurs apparaissent comme
des excellentes solutions de détection de congestion pour la gestion du réseau de
collecte cellulaire. La détection de congestion peut être aussi de haute utilité pour
le réseau d’accès surtout dans les situations de contention de ressources.

Nos intérêts s’orientent dans la deuxième partie de la thèse vers la recherche des
solutions de déchargement pour résoudre les situations de contention de ressources
dans les cellules surchargées. En particulier, nous étudions deux approches de
déchargement: le déchargement de trafic et de contenu. Dans la première ap-
proche, nous présentons deux solutions: le déchargement horizontal du trafic sur les
réseaux de petites cellules (femtocells par exemple) et le déchargement vertical sur
les points d’accès WiFi certifiés Passpoint. Nous étudions les avantages et les limites
de chaque solution. Nous proposons un nouveau algorithme basé sur la théorie de
jeux coopératifs pour l’allocation de ressources et la gestion des interférences dans
les réseaux de petites cellules. Les résultats montrent des améliorations importantes
et soulignent la nécessité de se référer aux concepts de théorie de jeux coopératifs
pour la gestion des situations de contention du spectre. En outre, nous montrons les
avantages de l’utilisation de la nouvelle technologie, WiFi-certifié Passpoint, pour
l’augmentation du gain de capacité du spectre et la diminution de la consommation
énergétique de l’utilisateur. Enfin, nous étudions comment les conflits de ressources
peuvent être résolus dans Information Centric Networking en termes d’allocation
de mémoire cache pour plusieurs fournisseurs de service. Dans ce cadre aussi, on
utilise les approches par théorie de jeux coopératifs qui améliorent les performances
du réseau en minimisant la latence d’accès aux contenus dans les situations de con-
tention.
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Chapter 1
Introduction

Human mobility analysis has long been a prominent research topic for social sci-
entists, urban planners, geographers and telecommunication researchers. It has
traditionally been relying on expensive data-collection methods (such as surveys
and empirical observations) to sense the way people move. This high cost typi-
cally leads to seldom data collection and too small sample sizes; for example, the
United States national census produces a lot of information about where hundreds
of millions of people live and work only once every 10 years [15].

Nowadays, the pervasiveness of information and communication technologies is
offering ideal vehicles to study human mobility cheaply, frequently, and on a global
scale. Billions of people worldwide keep a phone near them most of the time. Since
cellular networks need to know the approximate location of all active phones to
provide them voice and data services, location information from these networks can
strongly favor the emergence of advanced device and network applications.

Figure 1.1: Mobile Internet users growth in France - Médiamétrie: L’audience de
l’Internet mobile en France. Source: [16].

1
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Figure 1.2: Fixed vs mobile Internet usages - Boston Consulting Group, Mary
Meeker, Kleiner Perkins, Morgan Stanley Research, Berg Insight. Source: [18].

As a matter of fact, the Internet was initially conceived to serve fix and seden-
tary usages, while current socio-technological trends clearly show that future In-
ternet users will be increasingly mobile and nomadic. For example, as of Institut
Mediametrie [16], the number of mobile Internet users has increased by 75% from
2011 to 2014 as shown in Figure 1.1. Moreover, another research study by Morgan
Stanley [17] in the United States, reports that the number of people accessing the
Internet through fixed computers is expected to shrink from 240 million consumers
in 2012 to 225 million in 2016. At the same time, the number of mobile users is
expected to increase from 174 million to 265 million. In 2015, for the first time ever,
it is expected to have more U.S. consumers accessing the Internet through mobile
devices than through fixed computers. Figure 1.2 shows the scale of the change
coming. As we see, mobile data usage is rising at an accelerated pace and the pro-
jections show it will soon surpass the fixed internet with an even more impressive
growth in the range of mobile applications as augmented reality, video and voice
recognition applications.

On the other hand, mobile phones are frequently used in everyday life for rather
simple digital services, yet requiring increasing download volumes and resiliency
levels [19]. At present, the rapid pace at which this evolution is taking place, and
the often-inadequate management of broadband access networks, practically man-
ifests with poor service availability, which represents a major bottleneck to the
development of advanced services. According to the technical report [20], mobile
data traffic will grow at a compound annual growth rate of 66% from 2012 to 2017,
reaching 11.2 Exabytes per month by 2017 as shown in Figure 1.3. The exponential
growth of mobile Internet usage is a relevant indicator of the overall bandwidth
provisioning needed at the access networks, which have to be geographically and
temporally distributed. Nevertheless, the dynamics of content consumption is very
little known today, also because of the insufficient coordination between traffic en-
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Figure 1.3: Global mobile data traffic growth - Cisco VNI global mobile data traffic
forecast, 2012-2017. Source: [21].

gineering procedures and user mobility detection in nowadays telecommunication
networks.

It is quite well known that the networks of many cell-phone operators recently
collapsed after the release of mobile equipment software updates [22]. Moreover,
cell-phone networks generally suffer during special events aggregating large masses
of individuals sharing similar interests (e.g., sport events, conferences, city-wide
cultural events, mass manifestations), hence accessing similar content in the same
time and in the same places. In order to solve these problems and to meet mo-
bile Internet demand, while addressing the scarcity of available mobile spectrum
and minimizing capital expenditures for new infrastructure, service providers are
severely challenged. They need to master the needed capacity expansion in their
backhauling network, otherwise the data traffic will sooner or later clog their net-
works. Next-generation network deployments promise to deliver higher bandwidth
and speed, but they often imply high capital and operational expenditures [23].

An alternative economically and technically viable way is represented by mobile
offloading solutions. Such solutions can alleviate radio spectrum congestion and
lower the operating load on base stations and the backhauling network. They can
also represent a business opportunity for service providers, for example offering
small cell offloading solutions, while helping customers to reduce their costs and
increasing network performance. The most common offloading solutions used thus
far are femtocells (i.e., used for example by Vodafone in UK and by SFR in France)
and Wi-Fi hotspots representing a very significant part of the iPhone traffic at
Orange France, O2 in UK and AT&T in the USA [24]. According to the technical
report [20] and as shown in Figure 1.3, mobile data traffic grew 81% in 2013, and
Cisco says it would have grown 98% if operators had not been able to offload traffic
to Wi-Fi connections and femtocells. Globally, 45% of total mobile data traffic was
offloaded onto the fixed network through Wi-Fi or femtocells in 2013 and carriers
offload around 1.2 Exabytes of mobile data traffic onto the fixed network each month.
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The purpose of this dissertation is, by providing a deep understanding of human
mobility patterns of anonymous aggregates of individual, to propose novel mobile
offloading solutions for telecom access networks. The technical scope, depicted in
Figure 1.4, ranges from mobile data mining and usages cartography to wireless
resource management and content distribution.

Figure 1.4: Scope of the dissertation

Structure of the dissertation

The first part of the dissertation, Chapters 2 and 3, is dedicated to human mobility
analysis and content cartography distributions, while in the second part, Chap-
ters 4, 5 and 6, we concentrate on resource contention and offloading solutions.
The third part, Appendix A, contains additional complementary information on
cooperative game theory.

Chapter 2 investigates the opportunity to use human trajectories as an ap-
proach to address the qualification of mobility patterns. We evaluate different in-
terpolation methods to model user movements between two places. We qualify
compact mobility metrics, such as the radius of gyration and user centroid, showing
the dependency of user’s trajectory accuracy with respect to these metrics.

According to the mobility metrics described in Chapter 2, we study in Chap-
ter 3 the content consumption cartography of users in three cities in France for
different days. Moreover, we propose two estimators of crowded spots, that is,
those places and groups of antennas absorbing a large portion of mobile traffic. We
compare a territory-based estimator and a trajectory-based estimator. We show
that the proposed methods appear as efficient crowd detection solutions for cellu-
lar and backhauling network management, their errors strictly decrease with the
cell load, they become very small for highly loaded cells while following different
regimes.
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After determining the highly loaded cells in the network, and in order to satisfy
users’ demands in those cells while ensuring a good quality of service, our interest
moves, in the next part of the dissertation, to finding offloading solutions to lower
traffic and solve resource contention around crowded spots. This part is composed
of three chapters. In Chapter 4, we tackle the case of small-cell offloading solu-
tion. We propose a new resource allocation and interference management solution
for small-cells deployed within the macro-cell coverage zone. We rely on game-
theoretical approaches for the allocation scheme. After a comparison with two state
of the art allocation schemes, we show that the proposed approaches outperform the
other approaches and provide a fair and efficient resource allocation for small-cell
networks.

Under the same motivation to offload mobile data traffic from crowded cells to
other networks, we study in Chapter 5 the capacity gain of offloading mobile data
through WiFi-certified Passpoint hotspots. As a matter of fact, the new Passpoint
program aims to make the WiFi network a “true extension of service provider net-
works”, letting users to roam from one hotspot to another with no manual action,
just like cell phone networks switching seamlessly from one cell tower to another.
We compare different offloading policies and hotspot placement schemes, showing
that the usage of Passpoint control-plane information leads to a significant radio
spectrum capacity gain.

Finally, in Chapter 6, our attention moves to the mobile backhauling network.
We propose a content offloading algorithm for cache allocation in Information Cen-
tric Networking based on game-theoretical approaches. We show that the proposed
solution improves legacy solutions, by decreasing the content access latency in high
contention situations.

Chapter 7 concludes the dissertation and contains perspectives for further
work.

Appendix A presents principles of cooperative game theory, some of which are
recalled across the dissertation.
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Mobility Estimation
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Chapter 2
Human Mobility Assessment

A deep understanding of human-mobility patterns can yield interesting insights into
a variety of important societal issues. As a matter of fact, evaluating the effect of
human displacements on the environment maps to determining how large popu-
lations move in their daily lives. Likewise, understanding the spread of a disease
requires a clear picture of how humans move and interact [25]. Other examples
abound in such fields as urban planning, where knowing how people come and go
can help determining where to deploy infrastructure and how to reduce traffic con-
gestion [26]. Moreover, cloud and content delivery networks [27], and location-based
recommender systems [28] [29], can all benefit from quantitative and qualitative
knowledge of users’ mobility patterns.

Nowadays, the huge worldwide mobile-phone penetration is increasingly turning
the mobile network into a gigantic ubiquitous sensing platform, enabling large-scale
analysis and applications. The objective of this chapter is to check the appropriate-
ness of using mobile phone data in estimating the trajectory of people across urban
areas and to assess the pertinence of different conceivable trajectory estimation
approaches in terms of deviation from real human trajectories.1 After reviewing
related work from the literature and describing the dataset used in our study, we
define an appropriate, compact and easy to compute mobility metric to qualify
user mobility, the “radius of gyration”. Then we present the different interpolation
methods used to model user trajectories and we compare them together in terms of
deviation from real trajectories. The results highlight the dependence of mobility
characteristic with the radius of gyration.

2.1 Related Work on Macro-Mobility Analysis

In recent years, mobile data-based research reached important conclusions about
various aspects of human characteristics, such as human mobility and calling pat-
terns [30] [31], virus spreading [32] [33], social networks [19] [34] [35], urban and
transport planning [36] [37] and network design [38].

Nevertheless, in such user displacement sampling data, a high uncertainty is
related to users movements, since available samples strongly depend on the user-

1The contents of this chapter are presented in [1], [5] and [6].

9
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network interaction frequency. For instance, Call Data Records CDRs (i.e., data
records containing information related to phone calls, such as the origination and
destination addresses of the calls, the starting time and the duration of the calls,
etc.) alone do not provide a sufficient fine granularity and accuracy, exhibiting a vast
uncertainty about the periods when the user is not active, i.e., not communicating.
This represents a challenge for applications and analysis assuming ubiquitous and
continuous user-tracking capability.

Some modeling techniques have been proposed in the literature to predict user
movement between two places.

Authors in [39] and [40] infer the top-k routes traversing a given location se-
quence within a specified travel time from uncertain trajectories; they use check-in
datasets from mobile social applications.2 The proposed methods permit to identify
the most popular travel routes in a city, but they do not allow constructing time-
sensitive routes, i.e., the proper visiting time of places as well as the transit time
between two places cannot be determined.

Authors in [41] propose a space-time prism approach, where the prism represents
reachable positions as a space-time cube, given user’s origin and destination points
– i.e., the assumption of knowing the location of a user at one time and then again
at another time fits well mobile phone data in which we only know users’ position
during their communication events – as well as time budget and maximum speed.
Spatial prisms so allow evaluating binary statements, such as the encounter potential
between two moving users. However, the maximum speed that cannot be set for all
users in general, is considered as a major limitation of the model applicability.

Similarly, the authors in [42] propose a probabilistic extension of the space-time
approach, applying a non-uniform probability distribution within the space-time
prism. A strong assumption made therein is that users move linearly over time.
This hypothesis is in a high contrast with the results obtained in [43] that show the
tendency of users to stay in the vicinity of their call places.

Authors in [43] propose a probabilistic inter-call mobility model, using a finite
Gaussian mixture model to determine users’ position between their consecutive
communication events (call or SMS) using CDRs. The model evaluates the density
estimation of the spatio-temporal probability distribution of users position between
calls, but it does not give an approximation of the fine-grained trajectory between
calls.

User displacements using GPS traces have been analyzed in [44]; the authors find
that the displacement behavior shows Levy walk properties (i.e., random walk with
pause and flight lengths following truncated power laws). While very interesting in
order to model inter-contact time distributions and general massive mobility, such
random-based approaches cannot give precise approximations between given points
on a per-user basis.

In this chapter, we assess the pertinence of different conceivable trajectory es-
timation approaches in terms of deviation from real available trajectories, via the
analysis of real mobile network data for the state of Massachusetts in USA.

2In recent years, mobile social applications have become so popular that they generate huge
volume of social media data, such as check-in records or geo-tagged photos. In a check-in service,
users note their locations via a mobile phone to share photos, activities etc.
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2.2 Airsage Dataset Description

We use a dataset consisting of anonymous cellular phone signaling data collected
by AirSage [45], which converts cellular network signaling data into anonymous
locations over time for cellular devices. The dataset consists of location estimations
- latitude and longitude - for about one million devices from July to October 2009 in
the state of Massachusetts. These data are generated each time the device connects
to the cellular network including:

• when a call is placed or received (both at the beginning and end of a call);

• when a short message is sent or received;

• when the user connects to the Internet (e.g., to browse the web, or through
email synchronization programs).

The location estimations3 not only consist of identifiers of the mobile phone towers
that the mobile phones are connected to, but also an estimation of their positions
generated through triangulation, using the AirSage’s Wireless Signal Extraction
technology [45]. This technology aggregates and analyzes wireless signaling data4

from mobile phones to securely and privately monitor the location and movement of
populations in real-time, while guaranteeing acceptable user anonymity and privacy.
We note that the observation period is limited to one day because the anonymized
user identifiers change from one day to another to ensure user privacy.5

2.3 Mobility Metrics

People do not behave similarly; each person has different mobility habits and be-
haviors. Many studies have been conducted to find mobility patterns from network
data sampling, from very complex and complete ones able to determine precise mo-
tifs (e.g., [46]), to more aggregated and synthetic ones extracting a single parameter
to characterize user mobility. A sufficiently precise, synthetic and easy to compute
parameter is the radius of gyration. In [30], authors show that the radius of gyra-
tion is defined as the deviation of user positions from the corresponding centroid
position.

Given a user u ∈ U (i.e., U represents the set of all users) who has been located
at nu(t) locations until time t, its radius of gyration can be thus computed as:

rug (t) =

√

√

√

√

1

nu(t)

nu(t)
∑

i=1

|~rui (t)− ~rucm(t)|2 (2.1)

where ~rui (t) represents the ith position recorded for the user u and ~rucm(t) repre-
sents its centroid defined as the center of mass of the user’s recorded displacements.

3Each location measurement is characterized by a position expressed in latitude and longitude
and a timestamp.

4The location measurements are generated based on signaling events, i.e., when a cellphone
communicates with the cellular network’s elements through control channel messages.

5The results of this study have been validated for many days.
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Figure 2.1: Cumulative Distributive Function of the radius of gyration.

It is obtained as:

~rucm(t) =
1

nu(t)

nu(t)
∑

i=1

~rui (t) (2.2)

To explore the statistical properties of the population’s mobility patterns, the
cumulative distribution function (CDF) of the radius of gyration for the smartphone
users is represented in Figure 2.1 using the dataset described in Section 2.2. It is
easy to distinguish four main user categories6 based on steep changes in the CDF
slope.

• Users with rg ≤ 3km, who can be identified as the most sedentary people.

• Users with 3km ≤ rg ≤ 10km. They might be identified as urban mobile
people as the diameter of the Boston metropolitan area is very approximately
around 10 km.

• Users with 10km ≤ rg ≤ 32km. They might be identified as peri-urban mobile
people as the diameter of the Boston peri-urban area is very approximately
around 32 km.

• Users with rg ≥ 32km, who can be identified as commuters spanning the
whole Massachusetts state area.

This ranking seems appropriate as the total traveled length increases with the
radius of gyration, as displayed in Figure 2.27. Moreover, this correlation may
be interpreted by the fact that the radius of gyration can be viewed as a proper
“territory” of each user, and thus increasing the territory area means that the person
is able to move over longer distances.

6This classification depends on city size, economic degree and other parameters.
7The absolute length is of course overestimated with respect to the real one. After looking into

details, we discover that this is due to handover flipping among close antennas. The important
aspect here remains the relative (and not the absolute) increasing trend.
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Figure 2.2: Correlation between trajectory length and radius of gyration.

2.4 Trajectory Interpolation Methods

Different interpolation methods have been proposed in the literature to describe
moving object trajectories. We present in the following a selection of classical
ones, showing how they approximate the real trajectory; referring to the example
in Figure 2.3.

• the Linear Interpolation, is a popular interpolation used for moving objects [47].
It is presented in Figure 2.3(b). It is obtained by joining straight interpolating
lines between each pair of consecutive samples. Users are supposed to move at
a constant speed along the straight lines. One limitation of the linear interpo-
lation is that it can fail in some situations where the interval of time between
interpolated points is high. For example, suppose there are two points A and
B in the road network with a curved path connecting them: with the linear
interpolation we always assume the user drives along a straight line.

• the Nearest-neighbor Interpolation, is an interpolation often used in mapping
programs [48], also known as proximal interpolation. It consists of taking, for
each position, the value of the nearest sampling position in time (not plotted
in Figure 2.3 because of the simplistic decision). Therefore, if we detect the
same user in two different instants, at point A and point B respectively, the
nearest interpolation attaches the user to position A for the first half period
of time, and to position B for the second half.

• the Piecewise Cubic Hermite Interpolation is often used in image processing
studies (see [49]). It is depicted in Figure 2.3(c). It is a third-degree spline that
interpolates the function by a cubic polynomial using values of the function
and its derivatives at the ends of each subinterval. This method interpolates
the samples in such a way that the first derivative is continuous, but the
second derivative is not necessary continuous. The slopes are chosen in a way
that the function is “shape preserving” and respects monotonicity. Suppose a
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(a) Real Trajectory

(b) Linear Interpolation

(c) Cubic Interpolation

Figure 2.3: Real and estimated trajectories with different interpolation techniques.
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subinterval [x1, x2], with the function values: y1 = f(x1), y2 = f(x2) and the
derivative values d1 = f ′(x1) and d2 = f ′(x2) are given. The cubic polynomial
function in this subinterval is given by:

C(x) = a+ b(x− x1) + c(x− x1)
2 + d(x− x1)

2(x− x2) (2.3)

satisfying C(x1) = y1, C(x2) = y2, C
′(x1) = d1 and C ′(x2) = d2 This inter-

polation determines the coefficients a, b, c and d noting that:

C ′(x) = b+ 2c(x− x1) + d[(x− x1)
2 + 2(x− x1)(x− x2)] (2.4)

is also continuous. The solution to this system is given by: a = y1; b = d1;

c =
y′1−d1
x2−x1

and d =
d1+d2−2y′1
(x2−x1)2

, where y′1 =
y2−y1
x2−x1

.

2.5 Trajectory Modeling

In order to qualify the precision of different interpolation methods, we have to de-
termine the deviation of the estimated trajectory from the real one. To determine
real user trajectories, we fine-select data of those smartphone holders with a lot of
samplings, typically those data-plan users with persistent Internet connectivity due
to applications such as e-mail synch. By selecting users with more than 1000 con-
nections (position samplings) during a given day, we can filter out 707 smartphone
users from the whole dataset.

In order to reproduce “normal-phone user” sampling, we subsample8 real trajec-
tories (i.e. smartphone user trajectories) according to the experimental inter-event
time distribution (i.e., the inter-event time is defined as the time between two con-
secutive connections, done by the same user, to the mobile network), extracted
from the same dataset and given in Figure 2.4. We determine it by analyzing real
normal-phone user samplings (for which the real trajectory is unknown), available
in the Airsage original dataset. Therefore, we extract, from the real trajectory, a
first random position Pi(longitudei, latitudei, timei), then the corresponding next
positions are extracted according to the inter-event time distribution. Hence, given
a real trajectory with a high number of positions, and its subsampling that repro-
duces normal user’s activity, we apply an interpolation method (as of Section 2.4)
to estimate the trajectory between the subsampled points. Given a real user’s
position Pi(longitudei, latitudei, timei), we estimate its corresponding position P ′

i

(longitude′i, latitude
′
i, timei). Then we determine the deviation between the two

points Pi and P ′
i as the distance separating the exact position Pi to the estimated

position P ′
i in the interpolating curve joining the samples.

2.6 Results

In this section, we present the main results obtained by applying the interpolation
methods introduced in Section 2.4. We first define the Trajectory Error of a user

8The ratio between the number of the sampled positions to the total number of known positions
(data-plan smartphone user) is defined by the subsampling ratio. The subsampling process is
independent and identically distributed.
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Figure 2.4: Probability density of the inter-event time.

at time ti, TE(ti), as the ratio of the deviation between its real position from its
estimated position at time ti, ∆(ti), (computed as described in Section 2.5) over its
radius of gyration, i.e., for a given user u:

TE(ti) =
∆(ti)

rug
(2.5)

Then we evaluate the TE distributions for different interpolation methods and
for different radii of gyration. We further investigate the statistical distribution
of TEs with respect to mobility parameters in order to understand which method
performs better for each particular category of users.

2.6.1 Interpolation Error

Figure 2.5 reports the boxplots9 as well as the average (the blue star) statistics
of the TEs for different interpolation methods. We note that the red lines in the
boxplots represent the median values. At a first view, looking at the TE averages,
we can assess that:

• The TE decreases with the increase of the subsampling ratio, for whatever
interpolation, which is reasonable as one can get more accurate computations
with more samples.

• The gap between the three interpolation methods decreases with the increase
of the radius of gyration, especially for those users with a radius of gyration
higher than 10 km, i.e., those who could be considered as peri-urban users
and commuters (see Section 2.3).

• The lowest mean TE among different interpolation methods depends on the
category to which the user belongs. Indeed, for those users having a radius of
gyration less than 3 km, i.e., sedentary users, the linear interpolation method

9i.e., first quartile, median, third quartile, maximum, minimum and outliers. It is worth noting
that some maximum and outliers are cut in the figure for the sake of readability.



2.6. RESULTS 17

(a) rg <=3km (Sedentary Users) (b) 3km< rg <=10km (Urban Users)

(c) 10km< rg <=32km (Peri-urban Users) (d) rg >32km (Commuters)

Figure 2.5: Boxplots of the trajectory errors with different interpolation methods.

presents the smallest mean TE when compared to other methods. Instead, for
those users having a higher radius of gyration, especially for commuters (i.e.,
those with a radius of gyration of more than 32 km), the cubic interpolation
presents the smallest mean TE. Finally, for urban users with a radius of gy-
ration between 3 and 10 km, the linear and cubic interpolations show close
performance.

Further looking into the whole statistics of the TEs, including median and quar-
tile lines, we can determine that:

• The median is always lower than the average, which indicates that the pop-
ulation contains an important part of users with much higher TEs than the
rest of the population.

• Overall, the nearest interpolation shows better median statistics than all the
other interpolations for all user categories with different radii of gyration.
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Figure 2.6: Correlation between the mean deviation and the radius of gyration.

• The median TE becomes very low for subsampling ratio of more than 0.1 for
peri-urban and commuter users.

Based on these results, we see that the best interpolation method depends on
the mobility category, i.e., the user radius of gyration. In order to determine the
correlation function between the deviation and the radius of gyration, Figure 2.6
shows for each user (one point), the correlation between the radius of gyration and
the mean trajectory deviation (just for the linear interpolation case, knowing that
other interpolation methods give a very similar trend). The trend being generally
increasing, we have thus a positive correlation between the mean deviation and the
radius of gyration. Indeed, with the increase of the radius of gyration, users are
able to move over longer distances, the distance between two samples increases,
hence finding a good interpolation method that accurately approximates the real
trajectory traversed by the user gets more challenging.

2.6.2 Interpolations’ Probability Density Function

How to explain the huge gap between averages and medians, and the performance
inversion indicating that nearest interpolation is on median the best interpolation,
whatever the user category and the subsampling ratio are, is a matter of discussion.

We interpret it with the fact that the median does not weight, as the average
does, the TEs of those users’ moves for which a trajectory interpolation, whatever
the type is, is not appropriate; that is, those extraordinary moves that deviate too
much from conventional paths. For example, the moves of users having a backward
path behavior (e.g., tourists moving back to already visited places, etc.) can hardly
be modeled by intuitive interpolations. The majority of ordinary moves, with long
stops at visited places, are instead captured by the median. For ordinary moves,
the nearest interpolation (introducing long stops at each sample and instantaneous
displacement) appears as the best approximation.

The presence of a subset of the population which behaves very differently than
the rest is confirmed by the fact that the average is often close and sometimes higher
than the third quartiles in Figure 2.5, and by the presence of many outliers especially
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for high subsampling ratios. The ordinary moves represent more than 75% of the
whole moves, while the extraordinary ones having so high TEs are around 25% of
the whole moves.

(a) linear

(b) nearest

(c) cubic

Figure 2.7: Probability Density Function of the trajectory error - (subsampling
ratio: 0-0.05).



20 CHAPTER 2. HUMAN MOBILITY ASSESSMENT

Figure 2.8: Joint probability between the trajectory error and the distance to cen-
troid.

In order to further explore the statistical properties of the TE distribution,
Figure 2.7 shows the probability density function (PDF) of the TE for the linear,
cubic and nearest interpolations respectively. It is easy to notice that there are
two regimes. The distribution of TEs over all users’ positions is well approximated
by a combination of two power law distributions joined by a breakpoint. It is
surprising to notice that the breakpoint is the same (approximately equal to 2.2)
for the different interpolation methods.

In practice, what does this power law breakpoint really mean? We interpret it as
the point after which the trajectory error properties change abruptly. As a matter
of fact, Figure 2.7 shows that, using our interpolation methods, it is highly probable
to obtain TEs of less than 2.2 while the probability of having high TEs of more than
2.2 decreases rapidly (i.e., the slope of the curve after the breakpoint is higher in
absolute value than that before the breakpoint). An important research question
shows up here: is there any dependency between user’s position (i.e., around the
centroid) and its TE? Does the user located inside its “territory” (the circle of radius
equal to the radius of gyration) have low TE?

In order to evaluate this dependency, we first define the Distance to Centroid
(DtC) parameter of a user u located at position Pi at time Ti as the normalized
user’s position with respect to its radius of gyration given as follows:

DtC = Distance(Pi, ~r
u
cm)/rg

u (2.6)

We note that if DtC is lower than 1, it means that the user is inside its territory
while for DtC above 1, the user is outside its territory. We then plot in Figure 2.8
the joint probability distribution between TE and DtC.

The figure shows that for small TEs, it is highly probable that the user is within
its territory (i.e., DtC lower than 1); while for high TEs, it is highly probable that
the user is outside its territory.

These values can alternatively be analyzed by the conditional cumulative density
distribution of the two variables, TE and DtC, as presented in Figure 2.9. We can
determine therein that:
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(a) TE ≤ 2.2

(b) TE ≥ 2.2

Figure 2.9: Conditional Cumulative Density Function of the distance to centroid.

• when small TEs occur, we have a high probability (81%) that the user is inside
its territory, and a low probability (19%) that the user is outside it.

• When big TEs occur, we have a probability of 40% that the user is inside its
radius of gyration and a probability of 60% that the user is outside its radius.

Therefore, we have an empirical evidence that the trajectory error increases and
its characteristics change when the user moves beyond the territory area roughly
approximated by the radius of gyration.
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2.7 Summary

Motivated by recent research on human mobility characterization based on cellular
network log and probe data, we study in this chapter the appropriateness of using
such data for estimating the trajectory of people across urban areas. The applica-
tions are manifold, ranging from content delivery network design to urban planning,
yet this study is application independent and is of a fundamental nature.

Using data for millions of users from the state of Massachusetts in USA, we
select data-plane smartphone users to get very precise localization data for a few
hundreds of users. Then, we subsample these paths following the experimental
normal user inter-event distribution, and apply to the subsampled position different
interpolation methods. Finally, we analyze their errors to better understand the
appropriateness of the different methods in detail, and of interpolation methods in
general, for different mobility classes.

The major findings of our work can be summarized as follows:

• The radius of gyration is an appropriate, compact and easy to compute pa-
rameter to qualify user mobility in a urban area network scope.

• The linear interpolation is the best approximation for sedentary users, linear
and cubic interpolations work well for urban users, and the cubic interpolation
is the best for peri-urban users and commuters.

• Separating ordinary moves following conventional paths from the minority of
user moves with unpredictable displacements, the nearest interpolation ap-
pears as the best approach whatever the mobility class is.

• Interpolation methods clearly work better and have lower errors when applied
within the territory of the user defined by its radius of gyration.

As already mentioned, we believe the applications are manifold. We are in
particular interested in determining how content and Cloud delivery points in an
urban and peri-urban environments can be identified and adapted online by inferring
basic user mobility properties from big data log coming from cellular networks.
These experimental findings constitute the pillars of the next chapter.



Chapter 3
Estimation of Mobile Crowded Spots

An important question in the evolution of mobile cellular networks consists of deter-
mining whether, how and where to deploy adaptive content and cloud distribution
solutions at the access and backhauling network level. Intuitively, an adaptive place-
ment of content and computing resources in the most crowded regions can grant
important traffic offloading, improve network efficiency and decrease content access
latency. As a matter of fact, one of the main challenges of the 5G is to reduce
delivery costs and latency and to reach an end-to-end latency of less than 1 ms [50].
In this chapter1 we further investigate this issue and propose two crowded spot
estimators computed using the predefined mobility metrics in Section 2.3. Firstly,
we characterize the content consumptions habits as a function of time, space and
applications and review the state of the art on cell load estimation techniques.

3.1 Introduction

The exponential growth of mobile Internet usage is a relevant indicator of the overall
bandwidth provisioning needed at the access networks, which has to be geographi-
cally and temporally distributed. Nevertheless, the dynamics of content consump-
tion are very little known today and there is an insufficient coordination between
traffic engineering procedures and user mobility detection in nowadays telecommu-
nication networks.

It is quite well known that the networks of many cell-phone operators have re-
cently collapsed after the release of mobile equipment software updates [22]. More-
over, cell-phone networks generally suffer during special events aggregating large
masses of individuals sharing similar interests (e.g., sport events, conferences, city-
wide cultural events, mass manifestations), hence accessing similar content in the
same time and in the same places.

For these reasons, the detection of crowded spots in access networks is con-
sidered to be nowadays a necessary step towards 5G as it can be of great benefit
for many use-cases. From the one hand, a dynamic placement of contents (in the
“Cloud”) close to the dense access points could allow a seamless service provisioning
to the users, without performance degradation across the network. Moreover the

1The contents of this chapter are presented in [1], [4], [6], [7], and [12].
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service resiliency could be also further enhanced with lower connection latency and
data loss. On the other hand, a dynamic resource allocation among access points
taking into account their loads can enhance users’ quality of service and network
performances. In this chapter, we analyze user content consumption habits from
the Orange cellular network in the Paris metropolitan area. Moreover, we propose
two crowded spot estimators: a “trajectory-based” and a “territory-based” estima-
tion techniques. We evaluate these techniques using the Airsage data [45] (already
presented in Section 2.5, and Orange cellular network data in France (i.e., explained
in Section 3.2).

We show that the proposed estimators appear as excellent crowd detection solu-
tions for cellular backhauling network management; their errors decrease with the
cell load, and they become almost negligible for the most crowded spots.

3.2 Orange Dataset Description

The Orange dataset used in our study comes from network management tickets,
generated each time a mobile device uses wireless mobile network for Internet data
exchange (i.e., what is commonly referred to as “mobile Internet” service). The
network probe data exploited in the study provide information on the protocol
used for the communication, so it is possible to categorize the traffic by application
(Web, VoIP, P2P, streaming etc.). Data are individual, so all user identifiers were
irreversibly anonymized before we could access the data to protect user’s privacy.
The probe collects 6-minute spaced data session information, assigning the session
to the cell identifier of the last used antenna. Data are recorded on a per-user basis
and cover all mobile phone users of the Orange network in France.

3.3 Content Consumption Cartography

In this section, we synthetically characterize content consumption habits from the
Orange cellular network using the dataset described in Section 3.2, as a function of
time, place and applications in different city topographies: Paris, situated within a
large metropolitan area, Lyon a large business city in the central part of the country
with a lower population density than Paris, and Nice, the fifth most populous city
in France, located on the Mediterranean coast, with a horizontal topography rather
than circular one as in Paris and Lyon and a population density close to Paris.

We consider datasets of two days, one “normal day” with standard content con-
sumption activity (Tuesday, December 10th, 2013), and one “special day” where a
particular content consumption is expected (New year’s eve on Tuesday, December
31st, 2013).

The data cover about 1 million mobile phone users from Paris, Lyon and Nice
regions (we study the mobility of around 650,000 users in Paris; 250,000 in Lyon
and 100,000 in Nice). We decompose the considered regions into Voronoi cells based
on base station positions, each base station being composed of few antennas able to
host up to roughly 1200 users.2

2Since we do not have the real cell structures, we use the Voronoi cells to determine the coverage
zone of the base stations.
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(a) Normal day: December 10, 2013 - Paris (b) New year’s eve December 31, 2013 - Paris

(c) Normal day: December 10, 2013 - Lyon (d) New year’s eve December 31, 2013 - Lyon

(e) Normal day: December 10, 2013 - Nice (f) New year’s eve December 31, 2013 - Nice

Figure 3.1: Traffic volume distribution in different days and different cities.

3.3.1 Content Consumption Spatial Distributions

Looking for differences in users’ behavior in normal and special days is a first nat-
urally arising research question. Figure 3.1 shows the traffic volume (i.e., in bytes)
of each cell in the three regions, while Figure 3.2 shows user volume defined as the
number of users attached to each cell in the considered regions. We can notice that
the number of cells is not the same in all regions (i.e., Paris has the highest number
of cells since it has the highest population density. We remark also that in the same
region and the same day, a few cells are clearly more crowded than others presenting
a large number of users and a large traffic volume; the reason is that they cover
clearly identifiable content consumption spots. They are likely the public spaces
where people use to gather together. The crowded spots are clearly not the same in
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(a) Normal day: December 10, 2013 - Paris (b) New year’s eve December 31, 2013 - Paris

(c) Normal day: December 10, 2013 - Lyon (d) New year’s eve: December 31, 2013 - Lyon

(e) Normal day: December 10, 2013 - Nice (f) New year’s eve: December 31, 2013 - Nice

Figure 3.2: User volume distribution for different days and different cities.

the two considered days; while in the normal working day, the loaded cells seem to
be the places where companies and enterprises are located, the touristic places are
the most loaded ones in terms of traffic and user volume during the new year’s eve.

3.3.2 Application Usages Distributions

Upon the detection of the content consumption cells, it is worth evaluating the
applications that are mostly used during the special day (i.e., the new year’s eve) so
as to provide a basic traffic model for these situations and draw some observations.

Figure 3.3(a) reports the usage proportion of applications (i.e., the number of
users connected to each application to the total number of users), while Figure 3.3(b)
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(a) Application usage ratios (b) Application traffic ratios

Figure 3.3: Application usage and traffic distributions.

represents the proportion of traffic generated from each application (i.e., the number
of bytes generated from each application to the total number of bytes).3 The appli-
cation classification is based on network-level and transport-level protocol header
information. We can notice that:

• Web applications are the most used ones in terms of number of clients, at-
tracting around 46% of the usages. This happens as people increasingly use
social networks (e.g., Twitter, Facebook), using HTTP. However the traffic
generated from these applications is not the majority (i.e., 26% of the total
traffic) because they do not require much bandwidth.

• The trend toward social communications is also confirmed by the large usage of
chat and messaging applications covering together around 17% of the usages.
However, as seen in Figure 3.3(b), this sort of applications has a negligible
contribution to the total traffic since their required bandwidth is very limited.

• A third class of applications is the one of bulk transfers, file and mail download
applications (e.g., relying on the POP, SMTP, FTP protocols), which cover
around 26% of the usages and contribute in 24% of the total traffic.

• Real-time applications, video streaming, gaming and VoIP, represent only
7% of the usages, they are the most bandwidth consuming applications (i.e.,
contributing in 50% of the total traffic) as shown in Figure 3.3(b).

We can clearly affirm that there are important differences in the geographical
location and application distribution of content consumption spots. As evidenced,
their location can temporarily change. Moreover, a large majority of the traffic
volume is related to bulk transfers and web services whose content could be partially
cached or whose Cloud server could be located closer to the crowded spots. Users
could indeed be better served if delivery facility could be located closely to the
dense cells. The backhauling network performance could also benefit from traffic

3It is worth mentioning that a user connected to two different applications at the same time, is
counted in both applications.
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offloading and traffic engineering techniques aware of user mobility and content
consumption point deflections.

3.4 Crowded Spot Estimators

In this section, after reviewing the state of the art on cell load estimation, we present
the two possible crowded spot estimation techniques.

3.4.1 Related Work on Cell Load Estimation

A limited amount of work exists in the literature on the estimation of crowded
spots and rendez-vous points in access networks. E.g., in [51] vehicular data is
exploited to determine accident-risk points. Authors in [52] propose a framework
that discovers regions of different functions in a city using both human mobility
among regions and points of interests located in a region. Many other works, such
as [38], [53], [54] and [55], while assuming the availability of mobility information,
focus on user-profile aware QoS provisioning, load balancing and network signaling
improvement techniques.

Traffic load forecasting has also been investigated from an analytical and mathe-
matical modeling perspective. For example, authors in [56] show how under certain
conditions periodic sinusoidal functions can be used as cellular traffic profile. Un-
fortunately, the simplicity and the too theoretical properties of these approaches
fail from precisely matching with the actual real traffic load, which is a strict re-
quirement of our investigation. In the same context of modeling the spatial cell
density of a mobile network, authors in [57] propose a stochastic model to compute
the probability of staying in a given location for a given period of time as well as
the probability of moving from a given location to another one, using a random
waypoint-based mobility pattern. Also, relevant works targeting mobility pattern
detection from real cellular network data have been studied e.g., [19] [30] [31].

3.4.2 Trajectory-based Crowded Spot Estimator

Motivated by the usage of Airsage signaling mobile phone data (please refer to
Section 2.2 for more details about data structure) that give real trajectories of
smartphone users, we extract the real positions of crowded spots and compare them
with the estimated positions that one can get by applying the interpolation methods
defined in Section 2.4. Decomposing the state of Massachusetts into census blocks4

[58], we compute the real load of each block in the region (i.e., expressed as the
users’ number of visits to each block) as shown in Figure 3.4.

The small map in the upper right corner is a zoom in of the Boston urban area,
the state’s largest city where small blocks exist. The figure clearly shows the load
difference among the blocks and the existence of crowded blocks that define the
most visited places where large masses of people usually visit.

We estimate the load of each of these blocks by choosing for each user category
the best interpolation method obtained from results of Section 2.6.1 (i.e. for seden-

4A census block is the smallest geographic unit used by the United States Census Bureau. Blocks
are typically bounded by streets, roads or creeks.
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Figure 3.4: Real block load.

Figure 3.5: Estimated block load.

tary and urban mobile users, we use the linear interpolation method to join the
samples, while for peri-urban mobile users and the commuters we follow the cubic
interpolation).

Evaluation

The results of the trajectory-based estimator are presented in Figure 3.5. We notice
that the load is overestimated especially for the less crowded blocks. What about the
crowded blocks? How does the estimation error vary in the most crowded places?

Figure 3.6 represents the variation of the load estimation error with respect to
the real load. We can state that:
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Figure 3.6: Load estimation error.

• The estimation error is very high for the less visited blocks in the region.

• The estimation error rapidly decreases with the increase of the real load.

• For the most crowded blocks, we notice that the estimation error is signifi-
cantly smaller.

By choosing different thresholds beyond which we identify the crowded blocks
(i.e., if a block has a load, expressed by the total number of users’ visits during the
day, that exceeds the chosen Crowd Selection Threshold, CST, it is considered as
a crowded block), we note that a CST of xth percentile refers to the selection of
blocks having a load higher than the load of x% of the blocks. We plot for each case
the cumulative distribution function of the block load estimation error. The results
are shown in Figure 3.7. We can state that:

• The median estimation error decreases with the increase of CST.

• The median estimation error is equal to 37% if we select all the blocks; while
for those having a load higher than the load of 50th of blocks, the median
estimation error reaches 25%. With stricter definition of CST to 70th, the
median reaches 10% and finally by selecting the blocks having a load higher
than 90th of blocks we get a median estimation error of 5.5%.

As a conclusion we can clearly confirm that using the trajectory interpolation
methods as a crowded spot estimation method, we can obtain very high accuracy.

Implementation Complexity

We should note here that the “trajectory-based crowded spot estimator” is scalable
in the sense that taking a sample of users instead of the whole population enables us
to find the crowded spot positions in a relatively accurate way. For each new user
position, Equations (2.1) and (2.2) are updated handling only a limited arbitrary
number N of last positions during a time interval T . Hence the user’s category
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Figure 3.7: Cumulative Distribution Functions of the load estimation error for dif-
ferent CSTs.

as well as the best interpolation method suitable for that user change. All these
operations have a O(N ∗ |Um(T )|) time complexity, Um(T ) ⊂ U being the subset of
users moving in the time interval T .

3.4.3 Territory-based Crowded Spot Estimator

Alternatively to the trajectory-based crowded spot estimator, we investigated other
options not dependent on the trajectory but rather on the characterization of users’
territory. In the following, we use the centroid and the radius of gyration to account
for user’s spatial coverage, parameters already defined in Section 2.3. Indeed, the
‘territory’ of a user can be defined as the area covered by the circle centered at the
user’s centroid having a radius equal to the user’s radius of gyration.

This second estimator we propose, takes into account the non-negligible intersec-
tions of different users’ territories to estimate the cellular user density. For example,
in Figure 3.8, based on the centroid and radius of gyration of the two users, it is rea-
sonable to account for the possibility that the two users pass by site A. As already
argued, the efficiency of the estimator should be evaluated toward its capability of
estimating crowded cells rather than lightly loaded cells.

Let m[rug (t), ~r
u
cm, c, u, t] be a spatial mapping counter equal to 1 if the circle of

user u, with radius rug (t) around the centroid ~rucm at time t, covers at least 10%
of cell c, 0 otherwise (i.e., the 10% is actually 10% of the area of each cell); other
thresholds than 10% could certainly be considered, depending also on the way the
environment is architected, its aim being to avoid the small overlaps since not all
the cells covered by one user’s radius will reasonably be visited.

Such a spatial mapping counter is the core metric of our estimator. Simply
counting the number of intersections significantly covering a given cell would cer-
tainly lead to an over counting that needs to be appropriately scaled. A simple
scaling could be, e.g., to divide it by the average number of users per cell during
the past measurements, yet this does not prevent from high deviations. We propose
to scale it by the scale factor that would generate null estimation error in an arbi-
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Figure 3.8: Illustration of the territory-based estimator.

trary instant t − RTW in the recent past, with a regression time window (RTW )
adequately set.

Then, as an estimator of the number of users per cell c, we propose:

ê(c, t) =

∑

u∈U m[rug (t), ~r
u
cm, c, u, t]

∑

u∈U m[rug (t−RTW ), ~rucm, c, u, t−RTW ]
∗ n(c, t−RTW ) (3.1)

It uses therefore a linear regression over past measurements to adequately weight
the spatial mapping counter. Intuitively, the smaller RTW is, the closer ê(c, t) is
to the unknown n(c, t), i.e., the more accurate the estimation is. However, RTW
should be big enough to allow network management system to retrieve the real
number of users in cell c at time t − RTW , i.e., n(c, t − RTW ). Depending on
network management tickets, session duration, network latency and network size,
this parameter RTW could range from a few dozens of minutes to a few hours.

Evaluation

We evaluate our estimator using the available network management dataset of the
Orange France cellular network (i.e., please refer to Section 3.2 for more details on
data structure) for the new year’s eve, by computing centroid and radius of gyration
of all users passing by the three regions: Paris, Lyon and Nice. We set a RTW to
1 hour, which is a quite pessimistic value (in practice, in carrier grade networks, it
could even be set to a few minutes, hence allowing a higher accuracy; later we show
the influence of varying the RTW on the estimator’s performance). We consider
the user position samples from the whole day in the computation of users’ centroids
and radius of gyration.

To qualify the accuracy of the proposed crowded spot detection method, we
analyze the estimation error (i.e., the difference between the real and the estimated
number of users, to the real number of users) for all the cells in the Paris, Lyon
and Nice metropolitan area network. Figure 3.9 depicts the CDFs of the estimation
error in the three considered cities for different possible load thresholds CSTs. The
CDFs show that including all cells, and for all the considered regions, the median
estimation error is lower than 8%. Including only cells having a CST of 70% (i.e.,
having a load higher than the load of 70% of the cells), the median estimation
error is always inferior to 7%. With stricter definitions of CST (90% percentile),
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(a) Paris

(b) Lyon

(c) Nice

Figure 3.9: Estimation error distribution in the three regions.
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(c) Nice

Figure 3.10: Load estimation error in different regions.

the median estimation error becomes inferior to 6%. It is worth stressing that
the estimator’s performances seem to be city-independent because it shows similar



3.4. CROWDED SPOT ESTIMATORS 35

results in different regions.

Figure 3.10 represents the log-log scatter representations of the estimation error
as a function of the real number of users per cell for each region. We can observe
that, for all regions, the estimation error is high for low-loaded cells and it decreases
more than linearly as the real cell load increases, which is, as already argued, a very
desirable behavior.

Implementation complexity

With our estimator, for each new user position, Equations (2.1) and (2.2) could be
updated handling only a limited arbitrary numberN of last positions, then Equation
(3.1) can be updated. Hence, all these operations have a O(N ∗ |Um(t)|) time com-
plexity, Um(t) ⊂ U being the subset of users moving and sampled in the sampling
interval (t − RTW, t). Thus from an implementation complexity, both trajectory-
based and territory-based crowded spot estimators have the same complexity.

As already mentioned, the regression time window RTW should be chosen so
that it is sufficiently higher than the computation time of the estimator. However
from a more practical perspective, in very high mobility environments, the above
complexity could become quadratic, which may raise scalability concerns. Scalabil-
ity concerns could also rise from the volume of the data to mine in order to extract
estimator’s metrics. The larger the sample temporal window is, the larger the data
volume is and the higher the computation complexity is. Hence the last questions
we want to answer are: does the crowded spot detection accuracy decrease as a
function of time? What happens at different times of the day? In order to answer
these questions, we test our estimator in the same period interval (between 3 pm of
December 31, 2013 till 11 am of the January 1, 2014) in the three selected regions.
We note that we do not have access to data of January 1, after 11 am.

Figure 3.11 shows our evaluation results with a RTW of 1 hour and a step
of 1 hour starting by 3 pm for the three considered regions. For example, when
performing the crowded spot estimation at 9 pm, we exploit the data collected from
3 pm to 9 pm. These results highlight two important aspects: firstly, the accuracy of
our estimator is time-independent and thus mobility-independent because it shows
a constant behavior at different times of the day. Another important aspect is that
the percentage of crowded spots decreases when the overall user mobility decreases,
and vice versa. The percentage of crowded spots is thus mobility-dependent; the
maximum percentage is obtained at midnight (19% for Paris, 17% for Lyon and 15%
for Nice) when likely people gather together to celebrate the new year’s eve, then
this ratio decreases when people start to split up and return back to their home
locations.

As a last analysis, we look at the influence of the regression time window on the
accuracy of the estimator. For simplicity, and in order to minimize the computation
time, we select 5% of the most active users in the regions and we compute the
estimation error by varying the RTW as shown in Figure 3.12.

We clearly notice that the estimator’s accuracy increases with smaller RTW
(i.e., in Paris for example, the median error is 18% when RTW=1 hour, 12% for
RTW=48 min and less than 5% with a RTW=12 min; we have similar results also
for the other two regions).
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(a) Paris

(b) Lyon

(c) Nice

Figure 3.11: Crowded spot estimator accuracy and percentage of crowded spots as
a function of time in different regions.

As a summary, we can affirm that the territory-based crowded spot estimator,
evaluated on real data for the three cities, appears as an excellent crowd cell de-
tection solution of cellular and backhauling network management. Its error strictly
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(a) Paris

(b) Lyon

(c) Nice

Figure 3.12: CDF of the load estimation error for different RTWs.



38 CHAPTER 3. ESTIMATION OF MOBILE CROWDED SPOTS

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Load Estimation Error

Probability Density Function

 

 
Cells above 70th Perc.− Trajectory Based

Cells above 90th Perc.− Trajectory Based

Cells above 70th Perc.− Territory Based

Cells above 90th Perc.− Territory Based

Figure 3.13: Probability Density Function of the load estimation error for both
estimators and for different CSTs.

decreases with the cell load, and it becomes very small for highly loaded cells. It is
also quite scalable against mobility data volume and against time variations.

3.4.4 Comparison between Estimators

The above-evaluated estimators have shown quite close median load estimation
errors especially for high CST values; however the advantages of one estimator over
the other are still not straightforward. In this section, we conduct a comparative
study of the behavior of both estimators: Trajectory-based and Territory-based
crowded spot estimators. Figure 3.13 shows the probability density function of the
load estimation error for both estimators and for different CST values (i.e., 70% and
90%). It is easy to notice that the trajectory-based estimator has the highest load
estimation errors, for both values of CST, with respect to the territory-based one
(i.e., for the trajectory-based estimator, some cells have an estimation error higher
than 30% while for the territory-based estimator, all cells have an error lower than
30%). So as a conclusion, we can affirm that the territory-based estimator seems
more suitable and more accurate in determining the load of crowded spots than the
trajectory-based estimator.
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3.5 Summary

A present matter in mobile access network management is to find scalable and
effective ways to offload the backhauling and cellular networks as a function of user
mobility and consumption patterns. The motivation is the arising weight of mobile
Internet traffic taken over legacy wireline access traffic in todays Internet Service
Provider networks. Different offloading techniques are currently studied, to cope
with this evolution, some of which are presented in the next chapters. In this scope,
the contribution of this chapter is twofold.

Firstly, working on real network probe data from the Orange cellular network, we
show how content consumption spots spatially move as a function of the occurrence
of special events. We provide useful user, traffic volume and traffic type experimental
distributions to the research community.

Secondly, motivated by the experimental findings, we propose two crowded spot
estimation techniques based on two compact and easy-to-compute user mobility
metrics, i.e. the user’s centroid and radius of gyration. Results on real data show
that the error of our estimators decreases with the cell load and that, for the crowded
spots, the estimation errors are quite small.

Upon the determination of highly loaded cells and in order to satisfy users
demand in those cells, while ensuring a good quality of service, our interest moves
now to find suitable solutions to cater the high traffic volume in those crowded cells.
This is in fact the main goal of the next part of this dissertation.
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Chapter 4
Horizontal Traffic Offloading with

Small-Cell Networks: Cooperative

Resource Allocation Approaches

The increasing need of offloading solutions is caused by the explosion of Internet
data traffic, especially the growing portion of traffic going through mobile networks.
In order to meet mobile Internet demand while addressing the lack of available mo-
bile spectrum and the expense of new infrastructure, service providers are severely
challenged. They need to master the needed capacity expansion in their access
network; otherwise the data traffic will sooner or later clog their networks. Next-
generation network deployments promise to deliver higher bandwidth and speed,
but they often imply high capital and operational expenditures.

An alternative economically and technically viable way is represented by mobile
offloading solutions. Such solutions aim to optimize the resource utilization, to
reduce the traffic on operator’s licensed spectrum, and to lower the traffic load
on base stations. Wi-Fi and small-cell technologies are considered the primary
offloading technologies used today by the industry stakeholders. In this chapter, we
tackle mobile traffic offloading over small-cell networks, while the next chapter is
dedicated for the study of mobile data traffic offloading over Wi-Fi access points. In
particular, in this chapter, we propose a strategic self-organization solution among
small-cell networks (i.e, femtocell networks in our study) to cooperatively manage
interference and resource allocation in urban crowded environments.1

4.1 Introduction

The femtocell technology [59] [60], a promising small-cells technology, aims to offer
better indoor voice and data services for cellular networks via the deployment of
tiny cellular repeaters, differently backhauled and synchronized. Instead of redimen-
sioning macro-cells at the base station level, the modular installation of short-range
and little mobile access points can grant multiple benefits [61] as explained in Ta-

1The contents of this chapter are presented in [2], [8], and [9].
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Table 4.1: Major benefits and advantages of femtocell deployment.

Technical Aspects Material Aspects

improve throughput extremely simple installation

improve indoor coverage very low equipment cost

offload outdoor cells hardware already in the market

handset compatibility energy savings

ble 4.1. Strategically, femtocells are attractive solutions because they are easy to
install, inexpensive, with no real-estate cost, and with already present handset de-
vices and hardware components. Moreover, they can grant energy saving, especially
to the user’s terminal, thanks to a lower required power. Technically, femtocells can
drastically increase the download capacity, with a much higher throughput, while
offloading the macro-cells.

Femtocells work on the same licensed spectrum as the macro-cells of cellular
networks and thus do not require special hardware support on mobile phones, thus
simplifying data offloading procedures [62]. However, despite the benefits of fem-
tocells networks in offloading data traffic via horizontal handovers from macro to
femto cells and vice versa, one should not forget the inherent constraints of such net-
works due to cross-tier2 and co-tier3 interferences that should be taken into account
when installing femtocells [64], especially in suburban and urban environments. Un-
der certain assumptions, cross-layer interference with the macro-cell is manageable,
while co-layer interference among femtocells requires forms of explicit coordination
and signaling among neighboring femtocells.

In this context, we can refer to these networks as collaborative femtocell networks
since coordination or cooperation mechanisms are needed between independent and
opportunistic femtocells to manage reciprocal interferences and resource allocation.
The independence of femtocells resides in the fact that the installation of a femtocell
for residential or enterprise usages is expected to be subject to separate billing, while
the opportunistic behaviour can be motivated by the attempt of each femtocell to
satisfy its users, by acquiring the maximum number of resources. Therefore, inter-
femto resource allocation needs to be managed via collaborative approaches that
have as motivation the performance improvement for all the participating femtocells.

In this chapter, we envision a strategic resource allocation among independent
subscribers in collaborative femtocell networks. This is especially needed in dense
urban environments, with a high density of femtocells, and where femtocells have
different levels of interference and resource demands, and the overall demand exceeds
the available bandwidth. The motivation behind our approach is that femtocell’s in-
terference level and demands volume, femtocell subscriber independence from other
subscribers, as well as opportunistic behaviour of those femtocells, should all be
factors taken into account when allocating resources to users. We model such situa-

2The cross-tier interference [63] is defined as the decrease in signal quality of macro-cell users
due to the presence of femto users sharing the same spectrum and vice versa.

3The co-tier interference occurs when all femtocells share the same spectrum.
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tions using cooperative game theory, whose principles are resumed in Appendix A,
which guarantees that interference management and resource allocation solutions
are strategically and rationally justified. We show that our approach grants impor-
tant improvements in throughput and fairness.

4.2 Related Work on Resource Allocation in Femtocell

Networks

Resource allocation in OFDMA femtocell networks has been considered in recent
research works. The general objective of these works is the computation of efficient
allocation of time-frequency resource slots, called ‘tiles’, while accounting for cross-
layer interference (interference between macro-cell and femtocell users) and co-layer
interference (interference between femtocells’ users) [65]. In the following, we discuss
a selection of relevant approaches proposed to solve these types of interferences.

Authors in [65] present an overview of possible approaches to manage cross-layer
and co-layer interferences. Two main directions are outlined: shared spectrum and
split-spectrum schemes. In the first, co-channel assignment mitigates the capacity
problems of both femtocells and macro-cells thanks to the use of larger spectrum,
but cross-layer interference needs to be managed. A proposal in this direction is [66],
where the authors propose a distributed utility-based non cooperative SINR adap-
tation approach for femtocells to alleviate the cross-tier interference. Their solution
relies on a channel-dependent SINR equilibrium at each femtocell that strongly dis-
courages interferer femtocells to use large transmit powers. In the second scheme,
an orthogonal channel assignment eliminates cross-layer interference by dividing
the spectrum into two independent fragments, one used by the macro-cells and the
other by the femtocells. For both cases of shared spectrum and split-spectrum, the
authors in [65] outline the requirements of centralized approaches, called C-DFP
(Centralized−Dynamic Frequency Planning), and distributed approaches, called D-
DFP (Distributed−Dynamic Frequency Planning). For C-DFP, a subchannel bro-
ker receives demands and interference information from the femtocells and/or the
macro-cells, so as to compute the best resource allocation considering a tradeoff
between optimality and computational complexity. For D-DFP, each femtocell, or
cluster of femtocells, independently creates subchannel priority lists starting by the
least interference subchannel and periodically allocates the resources in a distributed
fashion. Some of the relevant works in this direction are discussed below.

4.2.1 Split-Spectrum Distributed Schemes

Split-spectrum schemes appear particularly interesting for urban environments with
a dense deployment of femtocells since they offer a good tradeoff between spectral
efficiency and network management simplicity. In this chapter, we propose a split-
spectrum approach. A number of related proposals have been made in the literature.

In [67], the authors show that with a dynamic spectrum splitting among femto-
cell and macro-cell, the area spectral efficiency can be optimized. In their framework,
within the femtocell layer, an adapted version of ALOHA (for the time-frequency
domain, called Frequency ALOHA, F-ALOHA is proposed to schedule the femtocell
access to the co-tier shared spectrum. However, the pseudo-random characteristic
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of this method can generate irrational resource allocations, because they are not
strategically computed.

In [68], each femtocell determines its set of interferer neighbors and uses a hash-
ing scheme in order to determine its allocation in a fully distributed manner. Then,
for collided tiles, rehashing is performed again in order to solve contention in the
subsequent frames. A fractional frequency reuse technique that adjusts the fre-
quency reuse factor to alleviate inter-femto interference is presented in [69]. In this
case, femtocells are grouped depending on the amount of reciprocal interference by
a femtocell gateway that determines the minimum number of orthogonal subchan-
nels for each group, and adjusts the transmit power of each femtocell based on the
received signal strength.

A similar approach is proposed in [70], where to exploit cooperation among
neighboring femtocells and to improve resource allocation and throughput satisfac-
tion, a hybrid centralized/distributed approach is proposed. First, femtocells are
grouped in a distributed fashion into disjoint clusters with respect to interference
maps. Then, within each cluster, resource allocation is centralized at a cluster-head
that periodically optimizes the throughput satisfaction. Finally, possible resource
contention among neighboring femtocells is locally solved.

4.2.2 Game-Theoretic Approaches

Extending the femtocell cooperation assumption made in [69] and [70], it appears
appealing to formally model rational strategies among independent femtocells or
groups of femtocells. As already mentioned, when accounting for strategic interac-
tions and network agents independency, it is appropriate to adopt game-theoretic
approaches, as practical solutions or as benchmarks. Recently, there has been sig-
nificant interest in applying game theory to the analysis of collaborative commu-
nication networks, with the aim to identify rational strategic solutions for multiple
decision-maker situations. Indeed, as opposed to mono-decision maker approaches,
game-theoretic approaches adopt a multi-agent perspective to account for differ-
ent objective functions and/or counter objections to rationally non justified solu-
tions [71].

When the collaboration among network agents does not imply binding agree-
ments and need just coordination, non-cooperative game theory can identify strate-
gic solutions as a function of various types of game equilibrium [72]. For example,
the already-mentioned work in [66] relies on game equilibrium. Similarly, the au-
thors in [73] propose a solution for resource allocation in K-user fading multiple
access channels (MAC) based on a Bayesian game modeling, with incomplete infor-
mation about the fading channel gains and unilateral utility functions.

When binding agreements are required to motivate cooperation, coalitional (co-
operative) game theory allows solutions with the desirable properties of efficiency
and rationality (among others) [74]. Specifically, the authors in [75] model the
femtocell spectrum sharing problem as a coalitional game in partition function
form [76] [77], using signal-to-noise ratio utility functions. In this approach, femto-
cell networks are topologically partitioned into disjoint clusters so that the overall
performance is increased, outperforming selfish solutions where femtocells access a
shared spectrum in an uncoordinated manner. Then, within a network partition, a
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Figure 4.1: Example of a 6-femtocell network.

joint online scheduling is adopted among cooperating femtocells [78].
In this chapter, while taking similar hypothesis on the independency of femto-

cells, we focus on related yet different issues. Differently than in [75], our objective
is to define cyclic spectrum allocation rules. Rather than partitioning the femtocell
network topology in disjoint clusters as in [69] [70] [75], we allow femtocells negotiate
resources in multiple femtocell groups, where groups are locally detected as func-
tion of interferer femtocell neighbors. As in dense urban environments, joint online
scheduling among groups of femtocells as [78] may be counterproductive in terms of
signaling overhead, we target a solution in which the resource allocation is periodi-
cally pre-computed, based on changing femtocell resource demands and interference
maps. In particular, we consider dense environment situations in which the overall
demand is quite often higher than the available bandwidth on the shared media,
which mathematically corresponds to a bankruptcy game situation [79] (please refer
to Appendix A for more details on bankruptcy game and coalitional game model-
ing), representable in canonical form [77]. We investigate two solution concepts: the
well-known Shapley value [80] (already adopted in a variety of situations in network-
ing such as inter-domain routing [81] and network security [82]), and the less-known
Nucleolus [83] (used, for instance, in strategic transmission computation [84] [77]),
which shows additional interesting properties in bankruptcy situations.

4.3 Context and Problem Formulation

We consider a network composed of a macro-cell area with several femtocell access
points (FAPs) that represent residential or enterprise networks. As in [65] and [67],
we assume an orthogonal channel assignment that eliminates the cross-layer interfer-
ence. The femtocells and the macro-cell are assumed to operate using the OFDMA
technology (e.g., WiMAX or LTE) whose frame structure can be viewed as time-
frequency slots, also called tiles. A certain number of users attach to each femtocell;
user demands represent the required bandwidth, expressed in number of required
tiles.

As already mentioned, in urban dense environment, we expect that the sum
of demands of the femtocells often exceeds the available resources. Therefore, our
objective is to find, for such congestion situations, a strategic resource allocation
that satisfies throughput expectations while controlling the interference between
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femto-femto users.

In the following, we first present the corresponding optimization problem, then,
we highlight possible alternative solutions, and finally describe the properties of
bankruptcy games along with possible solutions.

4.3.1 Notations

Let F be the set of femtocells in the network, di the demand of Fi ∈ F , and xi
the number of allocated resources to Fi. Also, let Ii be the interference set of
Fi, which corresponds to the set of femtocells composed of Fi and the femtocells
causing interference to Fi. This interference set is computed based on the SINR, the
path loss model4 given in the A1 scenario for indoor small office and residential of
WINNER for the frequency range 2−6 GHz [85]. It is worth noting that interference
is not symmetric since it depends on user positions, and therefore Ii ∈ P(F), where
P(F) is the set of different subsets of femtocells in the network. We note here that
for all i 6= j, Ii and Ij do not form necessarily two disjoint subsets.

For example, consider the situation depicted in Figure 4.1, with six femtocells
where arrow’s direction indicates the femtocell whose users suffer from a neighboring
femtocell interference. The interference relationships are reported in Table 4.2.

Table 4.2: Interference relationships.

Femtocell Interferers

F1 {F2, F3}

F2 {F1, F4}

F3 {F1}

F4 {F2, F5}

F5 {F4, F6}

F6 {F4}

4.3.2 Related Centralized Optimization Problem

For the sake of clarity, we model here the resource allocation problem as a cen-
tralized mono decision-maker optimization problem, i.e., as the C-DFP approaches
mentioned in Section 4.2. The problem can be formulated as:

objective f(di, xi)

subject to 0 ≤ xi ≤ di, ∀Fi ∈ F
∑

j|Fj∈Ii

xj ≤ E, ∀Ii

xi ∈ Z+, ∀Fi ∈ F

4The path loss model depends on the number of floors, traversed walls and users’ positions.
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where E is the number of tiles in an OFDMA frame (also referred to in the follow-
ing as ‘estate’). The objective typically depends on the demand and the allocated
resources; in our case it is the minimization of the maximum gap between demand

and allocation, minmax
i

(
di − xi

di
). The constraints are integrity constraints, on the

allocated tiles to individual femtocells and to femtocells belonging to same interfer-
ence sets. Later, we compare our approaches to this C-DFP solution highlighting
the interest in strategic approaches and stressing the tradeoffs between them.

4.3.3 Possible Distributed Approaches

For each interference set, we have therefore a situation in which a group of femtocells
can either: (i) randomly access the spectrum hoping that collision will not occur
(e.g., as in F-ALOHA [67] which is an application of ALOHA in time-frequency
domain); or (ii) self-organize to define an online joint scheduling (as in [78]); or (iii)
divide the available spectrum proportionally, (iv) rationally adapt the allocation to
each femtocell claim and interference situation.

Clearly, (i) excludes any form of coordination and would favor opportunistic
wealth-aversive behaviors (e.g., setting a minimum waiting time upon collision in F-
ALOHA) that other femtocells cannot control. Approaches like (ii) risk to generate
enormous signaling for large interference sets (likely in urban dense environments).
Under (iii), inefficiency can arise whether many demands are less than the pro-
portional share, and a weighted proportional share would favor cheating demands
(higher claims than what is really needed).

The path forward is therefore towards cooperative approaches that dissuade
malicious behaviors in setting demands, under an adequate binding agreement fix-
ing common rules on shared information and allocation scheme. Before detailing
our algorithmic approach, let us introduce the bankruptcy game that can model
interactions among femtocells belonging to the same interference set.

4.3.4 Bankruptcy Game Modeling

In urban environments, a dense deployment of femtocells is expected, so that situ-
ations in which the overall resource tile claim (i.e., sum of the demands) surpasses
the number of available tiles (E) in the shared spectrum are likely. Assuming that
femtocells belonging to the same interference set, share information about respec-
tive demands, the interaction can be modeled as a cooperative coalitional game.
The game-theoretical model we propose is composed of two main phases:

1. Interference Set Detection phase.

2. Bankruptcy Game Iteration phase.

Formally, our proposed game represents a binding agreement between cooperating
femtocell subscribers.

Interference Set Detection

Upon each significant change in demands or in network topology (femtocells can be
freely moved inside a residential space or office), each femtocell determines the set of
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interferer femtocells (i.e., the femtocells that cause interference to its users) based on
the minimum required Signal to Interference plus Noise Ratio (SINR).5 Femtocells
are able to share their interference set with other femtocells in the network.6

Next, the list of interference sets are sorted, firstly with respect to their car-
dinality, and secondly with respect to the overall demands, both in a decreasing
fashion (i.e., first the largest sets with highest overall demands).

Bankruptcy Game Iteration

In the second phase, resources are eventually allocated, proceeding by solving a
cooperative coalitional game (see Appendix A) for each interference set, following
the order in the sorted list from the first phase. Note that, since a femtocell can
belong to many interference sets, if it has already participated to a game in a
previous game iteration, it is excluded from the next game iteration in which it
appears. Each game iteration therefore includes only the femtocells for which an
allocation has not been computed yet. This corresponds in iterating a game differing
in that:

• N includes only the unallocated femtocells in the set;

• the estate E is decreased by the amount already allocated to the set’s femto-
cells.

In order to solve this game we need to define its characteristic function, that rep-
resents the profit attributed to each coalition of players. In the most pragmatic
case, each coalition of players is able to share what the other femtocells have left
after getting what they claimed. That is, E −

∑

i∈N\S

di, where N ≡ Ii. Such a

characteristic function corresponds, in fact, to what is known as ‘bankruptcy game’
precisely defined hereafter.

Definition 4.3.1. A bankruptcy situation is defined by a pair (E, d) where E ≥ 0
is an estate that has to be divided among the members of N (the claimants) and

d ∈ R
|N |
+ is the claim vector such that:

E <
∑

i∈N

di (4.1)

Definition 4.3.2. A bankruptcy game [79] is defined asG(N , v) whereN represents
the claimants of the bankruptcy situation and v is the characteristic function that
associates to each coalition its worth, defined as the part of the estate not claimed
by its complement:

v(S) = max(0, E −
∑

i∈N\S

di) , ∀S ⊆ N\{∅} (4.2)

5In LTE networks, user feedback reports can include interferer femtocell identifiers (Physical
Cell Identity) [86].

6In LTE networks, this can be aggregated at, or relayed by, Home-enhanced Node B (i.e.,
femtocell) gateways (i.e., HeNB-GW) [87].
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Equation (4.2) has been proven to be superadditive [71]. Moreover, it satisfies the
supermodularity property [80] [88], stronger than the superadditivity, which means
that the marginal utility of increasing a player’s strategy rises with the increase in
other player strategies:

v(S1 ∪ S2) + v(S1 ∩ S2) ≥ v(S1) + v(S2), ∀S1, S2 ⊂ N . (4.3)

Supermodular games are also called convex games. For more details on bankruptcy
games and their characteristics, please refer to Appendix A.

4.3.5 Possible Imputation Schemes

Solutions to cooperative games are essentially qualified with respect to the sat-
isfaction of rationality constraints, desirable properties and existence conditions.
Namely, the Core of a game is the set of imputations that satisfies individual and
collective rationality (one or a coalition gets at least what it would get without
cooperating), and efficiency (all the estate is allocated). Another interesting set of
imputations is the Kernel, which contains those imputations that nullify the bar-
gaining power of the players.

A commonly adopted solution for cooperative games in networking is the Shap-
ley value, because it shows desirable properties in terms of null player, symmetry,
individual fairness, and additivity [80]. It is defined as:

Φi(v) =
∑

S⊂N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i} − v(S)] (4.4)

i.e., computed by averaging the marginal contributions of each femtocell in the
network in each strategic situation i.e., (players’ permutation). In convex games as
the bankruptcy games, the Shapley is the Core center. Nevertheless, the Shapley
value is not consistent [79], in the following sense.

Definition 4.3.3. An allocation x = (x1, x2, ...., xN ) is consistent if ∀i 6= j the
division of xi + xj , prescribed for claims di and dj , is (xi;xj).

This means that no player or group of players can gain more by unilaterally
deviating from a consistent solution since it will always obtain the same profit. For
cooperative femtocell networks, this discourages clustering-like solutions inside an
interference set. Another appealing solution concept, the Nucleolus, is not only
consistent, but also the unique consistent solution in bankruptcy games, and is in
the Core [83]. The Nucleolus is the imputation that minimizes the worst inequity.
It is computed by minimizing the largest excess e(x, S), expressed as:

e(x, S) = v(S)−
∑

j∈S

xj , ∀S ⊂ N (4.5)

The excess e(x, S) measures the amount by which the coalition S falls short of its
potential v(S) in the allocation x; the Nucleolus corresponds to the lexicographic
minimum imputation of all possible excess vectors. For more details on Shapley
value and Nucleolus computation, please refer to Appendix A.



52

CHAPTER 4. HORIZONTAL TRAFFIC OFFLOADING WITH SMALL-CELL NETWORKS:

COOPERATIVE RESOURCE ALLOCATION APPROACHES

4.3.6 An Illustrative Example

We consider a femtocell network composed of six FAPs as shown in Figure 4.1,
where the interference relationships are represented by the arrows in the graph and
reported in Table 4.2. The corresponding interference sets are reported in Table 4.3.

Table 4.3: Interference sets.

Steps Femtocell Sets

1 {F1, F2, F3}

2 {F1, F2, F4}

3 {F4, F5, F6}

4 {F2, F4, F5}

5 {F1, F3}

6 {F4, F6}

To each femtocell, we associate a value representing the demand of attached
users (expressed in number of tiles). The OFDMA frame is composed of E = 100
frequency/time slots (tiles). We recall that the interference is asymmetric between
femtocells because it depends on the positions of attached users.

The interference set list is presented in Table 4.3; the first step includes the
players of a bankruptcy game G(N , v) where N = {F1, F2, F3}, and the coalitional
payoffs are given in Table 4.4; v(N ) = E = 100 since no femtocell has participated
to any previous game.

Table 4.5 reports the Shapley values (rounded) as well as the details on each
femtocell’s marginal contributions (columns).

For the Nucleolus, one starts at an arbitrary point such that x1 + x2 + x3 =
100, e.g., (50, 30, 20), as in Table A.3. Then, one minimizes the largest excess,
corresponding to coalition F3 in our case; but, this coalition can claim that every
other coalition is doing better than it is. So, one tries to improve this coalition by
making x3 larger or, equivalently, x1+x2 smaller since x3 = 100−x1−x2 (feasibility
property); but, decreasing the excess of F3, the excess of F1 ∪ F2 increases at the
same rate and these excesses then meet at −30, when x3 = 30. Clearly, no allocation
x can make the excess smaller than −30 since at least one of the coalitions F3 or
F1 ∪ F2 can have at least an excess of −30. Hence, x3 = 30 is the first component
of the Nucleolus. Proceeding in the same manner, one finally obtains the Nucleolus
allocation (35, 35, 30).

We move now to the second step. In this situation we have three femtocells, F1,
F2 and F4, and among them F1 and F2 have already taken their required resources;
the remaining resources are assigned to F4.

Then, at the third step, the total estate to distribute among femtocells is not
100 tiles any longer since F4 has already participated to a game and obtained its
resources; thus the new game is formed of two players, F5 and F6, and the total
payoff v(N ) is then equal to E − x4 = 100− 26 = 74 tiles, as reported in Table 4.7.
The Shapley value computation for this second game is illustrated in Table 4.8.
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Table 4.4: Coalitional payoffs.

Coalition v(S)

∅ 0

F1 0

F2 0

F3 0

F1 ∪ F2 40

F1 ∪ F3 30

F2 ∪ F3 10

F1∪F2∪F3 100

Table 4.5: Shapley Value computation.

Permutation F1 F2 F3

F1,F2,F3 0 40 60

F1,F3,F2 0 70 30

F2,F1,F3 40 0 60

F2,F3,F1 90 0 10

F3,F1,F2 30 70 0

F3,F2,F1 90 10 0

Average 42 32 26

Table 4.6: Nucleolus computation.

Coalition e(x, S) (50, 30, 20) (38, 32, 30) (35, 35, 30)

F1 −x1 -50 -38 -35

F2 −x2 -30 -32 -35

F3 −x3 -20 -30 -30

F1 ∪ F2 40-x1-x2 -40 -30 -30

F1 ∪ F3 30-x1-x3 -40 -38 -35

F2 ∪ F3 10-x2-x3 -40 -52 -55

Moreover, for the Nucleolus, we obtain the Table 4.9. The algorithm stops at this
point since all femtocells have received their resources. As it can be noticed, the
Nucleolus smoothes the maximum and the minimum allocation, preventing from
extremely low and extremely high allocations for femtocells that interfere a lot and
interfere a little, respectively.
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Table 4.7: Coalitional payoffs.

Coalition Payoff

∅ 0

F5 0

F6 24

F5 ∪ F6 74

Table 4.8: Shapley Value computation.

Permutations F5 F6

F5, F6 0 74

F6, F5 50 24

Average 25 49

Table 4.9: Nucleolus computation.

Coalition e(x, S) (40, 34) (25, 49)

F5 -x5 -40 -25

F6 24-x6 -10 -25

4.4 Performance Evaluation

In this section, we evaluate the performance of the proposed game-theoretic ap-
proaches (i.e., Shapley value and Nucleolus) on large instances. C-DFP and F-
ALOHA schemes, presented in Section 4.2, are used as benchmarks.

We simulate realistic scenarios with two different network sizes, with 100 and 200
FAPs, where for each simulation FAPs are randomly distributed in a 400m×400m
area. We consider two interference level scenarios, a low-level one and a high-level
one, based on two SINR thresholds, 10 and 25 dB, to show the impact of the
interference degree on the performance metrics. Based on the SINR, the path loss
model given in the A1 scenario for indoor small office and residential of WINNER for
the frequency range 2−6 GHz [85] where the path loss depends upon the number of
floors and traversed walls, and with static user positions; each femtocell determines
the set of its interferer femtocells depending on the received signal strength. Users
are uniformly distributed within the femtocells with a maximum number of four
users per femtocell. Each user uniformly generates its traffic demand that can be
directly translated to a certain number of tiles, with a maximum value of 25 tiles per
user. As in [67], the analysis is achieved using a typical OFDMA frame (downlink
LTE frame) consisting of E = 100 tiles.

Before delving into the exploration of the results, Figure 4.2 gives an idea about
the topologies obtained for the four datasets, with the femtocell interference degree
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(a) SINR=10 dB / 100 FAPs (b) SINR=25 dB / 100 FAPs

(c) SINR=10 dB / 200 FAPs (d) SINR=25 dB / 200 FAPs

Figure 4.2: Interference degree distribution for the different datasets.

distribution (corresponding to the number of neighboring femtocells causing inter-
ference). As it can be noticed, 100-FAP topologies present a majority of isolated
femtocells that do not suffer from interference, while this is no longer the case for
200-FAP topologies; both present a slight increase in the high degrees with the
25 dB SINR threshold.

Let us now focus on the comparison among the different strategies based on the
offered throughput, the allocation fairness and the computation time. The results
are obtained over many simulation instances for each dataset, with a margin error
less than 3%; we do not plot corresponding confidence intervals for the sake of
presentation.

4.4.1 Throughput Analysis

Figure 4.3 reports the mean normalized throughput (i.e., mean ratio of the number
of allocated tiles to the total demand; in the following referred to as throughput)
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(a) SINR=10 dB / 100 FAPs (b) SINR=25 dB / 100 FAPs

(c) SNIR=10 dB / 200 FAPs (d) SNIR=25 dB / 200 FAPs

Figure 4.3: Throughput Cumulative Distribution Function (CDF) for the four
datasets.

for the four considered datasets.
For 100-FAP networks, Figs. 4.3(a) and 4.3(b), the game-theoretic approaches

outperform the other schemes, for both interference levels. We can here appreciate
how much the strategic constraints, and in particular the individual and collective
rationality, contribute in avoiding low throughputs. This is further evidenced for
larger instances as shown in Figs. 4.3(c) and 4.3(d). In particular, we can assess
that:

• At low throughputs, F-ALOHA and C-DFP offer very low performance, espe-
cially in dense environments; e.g., in the 200-FAP case with high interference,
around 3% of the femtocells obtain null throughput, and about 30% obtain a
throughput less than 30%, while these numbers (percentage of femtocells) are
roughly halved with game-theoretic approaches.

• The median throughput is always higher for the Nucleolus; e.g., in the 200-FAP
case with high interference, 55% for the Nucleolus, 47% for the Shapley value,
45% for F-ALOHA and 41% for C-DFP, and the gap between the Nucleolus
and the other methods decreases at lower interference and femtocell density
levels.

• At high throughputs, F-ALOHA shows a small benefit over the Nucleolus, but
in all cases the median throughput of the Nucleolus is still the highest among
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Table 4.10: Mean fairness indexes.

FAPs SINR Nucleolus Shapley Value C-DFP F-ALOHA

100 10 dB 0.96744 0.95742 0.95499 0.94248

25 dB 0.90070 0.89288 0.85736 0.88003

200 10 dB 0.92465 0.91511 0.88741 0.90291

25 dB 0.81668 0.78391 0.71604 0.72324

all approaches.

• Among the game-theoretic approaches, the Nucleolus persistently outperforms
the Shapley value, with relevant differences at medium-low throughputs.

All in all, the Nucleolus seems the most appropriate approach with respect to
the offered throughput, especially in high femtocell density and high interference
environments as, e.g., in urban environments with a dense deployment of femtocells.
Moreover, the C-DFP approach appears as the most inadequate one, and the F-
ALOHA offers low throughputs to a significant portion of femtocells.

4.4.2 Fairness Analysis

We evaluate the fairness of the solutions using three aspects.

(i) with respect to the Jain’s fairness index [89], defined as:

JI =

(

N
∑

i=1

(xi/di)

)2

/

(

N
N
∑

i=1

(xi/di)
2

)

(4.6)

and reported in Table 4.10. It is easy to notice that game-theoretic approaches
give the highest fairness, thanks to the strategic constraints that avoid penalizing
femtocells presenting low interference degree and those with lower demands. Again,
game-theoretic approaches outperform the others, with important differences with
the 25 db / 200-FAP dataset.

(ii) Figure 4.4 further investigates how femtocell interference degree is taken
into account, illustrating the mean normalized throughput as a function of the
interference degree (recall that the interference degree of each femtocell corresponds
to the cardinality of its interference set, minus one). We can assess that:

• The Nucleolus always outperforms the other methods, especially for femtocells
with high interference degrees.

• The Shapley value behaves similarly to F-ALOHA and C-DFP, especially
for small networks, while in large networks it shows a roughly 5% better
throughput than F-ALOHA and C-DFP.

• Globally, C-DFP appears as the less efficient solution.
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(a) SINR=10 dB / 100 FAPs (b) SINR=25 dB / 100 FAPs

(c) SINR=10 dB / 200 FAPs (d) SINR=25 dB / 200 FAPs

Figure 4.4: Throughput distribution as a function of the interference degree.

It seems appropriate to conclude that the interference degree is taken into ac-
count in a significantly different way with the Nucleolus, showing an interesting
fairness performance certainly, especially desirable for urban dense environments.

(iii) in order to assess how the allocated resource is affected by the demand
volume, Figure 4.5 plots the throughput as a function of the femtocell demand (just
for the 200-nodes and 25 dB SINR threshold case as the other cases show little
variations). Globally, the ALOHA and C-DFP approaches show a roughly constant
behavior, and on the other hand, game-theoretic approaches decrease with growing
demands. The results show that the Nucleolus favors low demands with respect to
high demands significantly more than the Shapley value. This may be interpreted
as unfair for high demands. However, under a network management standpoint,
it might be seen a positive behavior as the Nucleolus can discourage too greedy
demands at the benefit of lower ‘normal’ demands.

4.4.3 Time Complexity Analysis

Last but not least, it is important to assess if the overall good performance of
game-theoretic approaches comes at the expense of a higher time complexity.

Figure 4.6 reports boxplots (i.e., quartile boxes plus maximum, minimum and
outliers) of the computation time for the three pre-computation approaches.

It is easy to notice that C-DFP has quite high computation times, on the order
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Figure 4.5: Throughput as a function of the demand (SINR=25 dB / 200 FAPs).

of seconds for 100-FAP networks and dozens of seconds for 200-FAP networks. A
stronger dependence on the interference set size (higher for high interference levels)
appears for the Shapley value, which is not surprising since the number of marginal
contributions equals the factorial of the interference set size. In turn, the Nucleolus
does not show any important dependence neither on the network size nor on the
interference level, with a median computation time of roughly 2s for very dense
high-interference environments.

4.5 Wireless Mesh Networks Use-Case

Another small-cells context for which the proposed approach is appealing is the one
of residential Wireless Mesh Networks (WMNs). WMNs are emerging as a key so-
lution to provide broadband and mobile wireless connectivity in a flexible and cost
effective way.7 In this section, we investigate user cooperation path to implement
strategic resource allocation in WMNs, under the assumption that users want to
control their interconnections. The mesh networks rely on OFDMA communications
so the resources can be expressed in the time-frequency domain and are organized
in subchannels. For the sake of conciseness, we just report the results as the math-
ematical model is similar to the one presented in Section 4.3.4. We note that the
players of this game are the Mesh Routers (MRs), and the estate that needs to be
distributed among the players is the number of subchannels in an OFDMA frame.

4.5.1 Performance Evaluation

We compare the proposed approach to two state-of-the-art OFDMA allocation
schemes: the centralized C-DFP and the distributed Frequency-ALOHA. We sim-
ulate realistic scenarios with three different network sizes (25, 50 and 100 nodes)
representing respectively low, medium and large densities. MRs are randomly dis-
tributed in a 5km×5km area. Each MR determines the set of its interferers, inside

7Please refer to [2] and [9] for more details.
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(a) SINR=10 dB / 100 FAPs (b) SINR=25 dB / 100 FAPs

(c) SINR=10 dB / 200 FAPs (d) SINR=25 dB / 200 FAPs

Figure 4.6: Computation time comparison for the four datasets.

its coverage area. Mesh clients are uniformly distributed within a MR radius of
275m, and each one of them uniformly generates its traffic demand that can be di-
rectly translated to a certain number of subchannels. We consider a typical downlink
OFDMA frame consisting of E = 60 subchannels. Figure 4.7 reports the mean nor-
malized throughput (i.e., mean ratio of the number of allocated subchannels to the
total demand) for the three considered datasets. We can here appreciate, as before,
how much the strategic constraints in game theory approach, and in particular the
individual and collective rationality, contribute in avoiding low throughputs. In
particular, we can assess that:

• At low throughputs, F-ALOHA and C-DFP offer very low performance, es-
pecially in dense environments; e.g., the 100-node case, in F-ALOHA around
6% of the MRs obtain null throughput, and about 23% in C-DFP obtain
a throughput less than 30%, while these numbers (percentage of nodes) are
roughly halved with game-theoretical approaches.

• The median throughput is always higher for the Nucleolus; e.g., in the 100-
node case, 47% for the Nucleolus, 39% for the Shapley value, 37% for F-
ALOHA and 29% for C-DFP.

• At high throughputs, F-ALOHA shows a small benefit over the Nucleolus, but
in all cases the median throughput of the Nucleolus is still the highest among
all approaches.

• Among the game-theoretic approaches, the Nucleolus persistently outperforms
the Shapley value, with relevant differences at medium-low throughputs.
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(a) 50 nodes

(b) 100 nodes

Figure 4.7: Throughput Cumulative Distribution Function (CDF) for the three
cases.

All in all, the Nucleolus seems the most appropriate approach with respect to
the offered throughput, especially in high-density environments. Moreover, the C-
DFP approach appears as the most inadequate one, and the F-ALOHA offers low
throughputs to a significant portion of the MRs.

4.6 Dealing with Cheating Behaviors

We note that in the proposed approaches, we may face the problem of cheating
behaviors by some small-cell nodes (MRs or femtocells) as an effect of the demand-
allocation approach, i.e. the small-cell nodes could end up with higher allocations if
they claim higher demand. While in non-cooperative game theory cheating behav-
iors can be undetectable due to the uncoordinated nature of the decision-making
process, we can manage this problem in cooperative games by a binding agreement
that fixes the rules of the cooperation, i.e., our algorithm to compute the alloca-
tion, and possibly also the implementation of node blacklisting mechanisms. Such
a mechanism should be operated upon explicit automated signaling by spectrum
sensing nodes, detecting that allocated slots to other neighboring nodes are finally
not used enough (since the channel is shared, this sort of operation is easily imple-
mentable by nodes’ antennas during idle periods). A result of the blacklisting is the
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isolation of the cheating node in the collaborative resource allocation and/or the
systematic dropping of its traffic to be relayed in the small-cell network.

4.7 Summary

On the way toward fixed-mobile convergence, modern telecommunication networks
are introducing novel technologies that better meet user requirements in terms of
experienced quality. Small-cell offload is a promising direction to enable broad-
band access via legacy mobile handsets. For example, femtocells are expected to be
commercialized as an added-value service subject to separate billing; strategic self-
organization among femtocells is needed to cooperatively manage interference and
resource allocation. In this chapter, we have investigated novel resource allocation
approaches based on the theory of cooperative games, motivated by the fact that
such approaches allow accounting for strategic interactions among independent fem-
tocells, and by the intuition that they shall offer better performance in small-scale
urban and dense environments.

In particular, we proposed a game-theoretic approach for strategic resource al-
location in cooperative small-cell OFDMA networks. Upon distributed detection
of interference maps, our approach iterates bankruptcy games from the largest in-
terference set with highest demand to the lower sets. We motivated the adoption
of solutions from coalitional game theory, the Nucleolus and the Shapley value,
highlighting how their properties can help meeting performance goals. Through
extensive simulations using realistic datasets, we compared our game-theoretic ap-
proaches to state-of-the-art proposals. With respect to throughput and fairness, our
approaches outperform the others. In particular, the Nucleolus solution is strictly
superior to all the others, achieving higher throughputs also for low-demand and
high-interference femtocells. Moreover, computationally, the Nucleolus is far more
competitive than the other approaches. The Nucleolus approach represents there-
fore a promising approach for resource allocation in future femtocell network de-
ployments.



Chapter 5
Vertical Traffic Offloading over

Passpoint Access Points

In the previous chapter, we have investigated the traffic offloading solutions over
small-cell networks. Despite the promising results therein in terms of achievable
performance, the explicit coordination and signaling among femtocells add a certain
level of complexity and therefore significant investments need to be undertaken in
order to implement this type of traffic offloading. In this chapter, a much simpler,
inexpensive and lightweight solution consisting of using Wi-Fi hotspots for data
traffic offloading is discussed and evaluated.1

5.1 Introduction

Wi-Fi technology has always been an attractive solution for catering the increasing
data demand in mobile networks because of the ubiquity of Wi-Fi networks, the
high bit rates they provide, the simplicity in deployment and maintenance, and the
lower CAPEX [90] [91]. However, the legacy WiFi technology lacks of seamless
interworking between Wi-Fi and mobile cellular networks on the one hand, and
between Wi-Fi hotspots on the other hand.

Nowadays, the recently released Wi-Fi Certified Passpoint Program (also known
as ‘Hotspot 2.0’ and referred to in the following shortly as ‘Passpoint’) [92] provides
the necessary control-plane for these operations. It aims to make the WiFi net-
work a “true extension of service provider networks”, letting users roam from one
hotspot to another with no manual effort, just like cell phone network that already
switches seamlessly from one cell tower to another. The Passpoint technology pro-
vides all control-plane functionalities for automated and seamless connectivity to
Wi-Fi hotspots.

Service providers can henceforth look to such Wi-Fi systems as a viable way to
seamlessly offload mobile traffic and deliver high-bandwidth services. At the same
time, subscribers no longer have to face the frustration and service degradation
typically experienced when connecting to legacy Wi-Fi hotspots.

1The contents of this chapter are presented in [3] and [13].
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Figure 5.1: Passpoint hotspot association.

In this chapter, we evaluate the capacity as well as the energy saving gains
that one can get by offloading cellular data traffic over Wi-Fi Passpoint hotspots
as a function of different hotspot placement schemes and of access point selection
policies.

In the beginning of the chapter, we give an insight on the hotspot-device signal-
ing information exchanged with Passpoint and moreover we review the state of the
art on Wi-Fi data traffic offloading.

5.2 Passpoint Hotspot-Device Signaling

Passpoint can work in any network and overcomes the limitations of proprietary,
non-interoperable solutions offered by some providers today. Devices certified in
the Passpoint program are able to manage network association, authentication,
sign-up, and security in the background, in a way that is completely transparent
to the subscriber and that consistently works in any Passpoint network [93] [94].
When a user with a “Hotspot 2.0” (HS2.0) capable mobile device (i.e., based on
IEEE 802.11u) comes within the range of a HS2.0 capable hotspot, it automatically
opens up a dialog with that hotspot to determine its capabilities before proceeding
to authentication. It is worth noting that Passpoint logic is already implemented
in many mobile devices, such as Android-based ones. Moreover, since Passpoint
discovery is based on pre-authentication, there are considerable savings of time and
battery life compared to existing methods [92].

Figure 5.1 illustrates the four different required steps for Passpoint hotspot as-
sociation. The Access Network Query Protocol (ANQP) is used for device-hotspot
signaling [92].

1. The 802.11u-capable access point broadcasts its HS2.0 support, so that HS2.0-
enabled devices can recognize such support.

2. The 802.11u-capable device is able to process ANQP messages, containing
useful information such as the ‘reachable’ authenticators, and various hotspot
capabilities. The 802.11u-capable device requests full authenticators list.

3. The hotspot responds to the ANQP query with the requested information.

4. Device compares provisioned network-selection policy with HS2.0 data from
hotspots and associates itself to the best hotspot suitable for its needs.
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Table 5.1: Beacon and probe response information elements in Passpoint.

Access Network Type identifies whether hotspot is for public,
private or guest access.

Internet Bit indicates if the hotspot can be used
for Internet access.

Advertisement Protocol indicates if the hotspot supports GAS/ANQP

Roaming Consortium element provide a list of up to 3 names
of reachable service providers.

Venue Information describes the venue where the hotspot
is situated.

Load Element provides information on channel utilization and
the current number of associated devices.

Table 5.1 shows some of the information elements provided by the hotspot to
the mobile devices. In the specifications, those six elements are mentioned to date.
Most elements provide simple configuration and network reachability and locality
information. The most interesting element for efficient Passpoint selection is the
Load Element, which allows a mobile device to be informed about hotspot channel
utilization and the current number of associated devices to a Passpoint hotspot.

5.3 Related Work on WiFi Traffic Offloading

Because of its recent specification, the scientific papers from the literature discussed
in this section do not consider the Passpoint technology explicitly along with its
hotspot selection capabilities. We present thereafter a selection of Wi-Fi offloading
strategies available in the literature.

Authors in [95] measure the offloading potential of the public WiFi based on city
wide vehicular traces. Compared to the vehicle based high mobility scenario in [95],
the authors in [91] study the performance of 3G mobile data offloading through
Wi-Fi networks in a more general mobile scenario with empirical pedestrian traces.
They distinguish two different types of Wi-Fi offloading: on-the-spot and delayed
offloading. The first type consists of spontaneous connectivity to Wi-Fi and transfer
data on the spot; when users move outside the Wi-Fi coverage area, the offloading is
stopped and all the unfinished transfers are transmitted back to cellular networks.
In the delayed offloading, each data transfer is associated with a deadline and as
users come in and out of Wi-Fi coverage areas, their data transfer is repeatedly
resumed until the transfer is complete or the deadline is reached. Based on a study
done over some smartphone users and on the statistical distributions of their Wi-Fi
connectivity, the authors evaluate the Wi-Fi offloading efficiency for various amount
of Wi-Fi deployment, different deployment strategies, different traffic intensity and
delay deadlines, showing that Wi-Fi in such configurations can offload up to 65%
of the total mobile data traffic. Similarly, the authors in [96] explore the benefits
in terms of energy savings that can be achieved by offloading traffic loads to Wi-Fi
networks. Using different traffic types, they show that a saving of up to 70% is
reached by opportunistically powering down cellular radio network equipment to
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Figure 5.2: The considered region: La Défense.

offload users traffic to Wi-Fi hotspots.

In [97], a WiFi offloading scheme is proposed from a transport layer perspective.
A multipath protocol called oSCTP is proposed to offload the 3G traffic via WiFi
networks and maximize the user’s benefit. The philosophy of oSCTP is to use WiFi
and 3G interfaces simultaneously if necessary, and schedule packets transmitted in
each interface every schedule interval. By modeling user utility and cost both as a
function of the 3G and WiFi network usage, the user’s benefit, i.e., the difference
between the utility and the cost, is maximized through an optimization problem.
Following the same direction, the authors in [98] propose a framework for 3G traffic
offloading based on the idea of motivating mobile users with high delay tolerance to
offload their traffic to Wi-Fi networks. A feasible approach consists of delaying all
delay tolerant applications until their maximum delay tolerance, and then resorting
to the cellular networks if the applications can not finish. However, this approach
does not appear much effective, considering that the user has to wait even when
there is actually no available Wi-Fi connection. To solve this problem, the authors
in [99] propose an adaptive approach that computes an offload handing-back time,
after which the user stops waiting for offloading through Wi-Fi connections, hence
resorting to the cellular network service. This allows achieving a better trade-off
between offloaded volume and user satisfaction.

5.4 Cellular Network Dataset

The dataset used in our study consists of Orange probe’s data explained in details
in Section 3.2. We limit the study in the chapter to the“La Défense” region, a major
business district in the northwest of Paris. The region is decomposed as shown in
Figure 5.2 at base station level, where red dots represent the base stations and the
surrounding polygons represent the Voronoi cells. The size of a Voronoi cell depends
on two basic factors: the geographical position and the coverage area (determined
according to power level) of the corresponding base station. We analyze the data in
a normal working day from 8 am to 10 am when people make their regular home-
to-work travel. We choose this period to capture users mobility in the region. Upon
this selection, we extract data consumption of about 20000 users.
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5.5 Data Traffic Offloading over Passpoint Hotspots:

Methodology

Given a sample geographical distribution of Passpoint hotspots, we extract user
displacement information from the data. Along its trajectory, a mobile device en-
countering a Passpoint hotspot, or a number of Passpoint hotspots at one location,
can learn about the service providers available via each of them, as well as other
characteristics of the hotspot, via the ANQP protocol. Thanks to this signaling, the
mobile device can discover a comprehensive profile of the hotspot before association,
so it can quickly identify, prioritize hotspots suitable for its needs and select the best
match while still in the user’s pocket. We draw the whole offloading procedure in
the flow chart presented in Figure 5.3.

The hotspot selection policy is therefore of paramount importance for both the
user, able to associate to the best access point, and the network, which should avoid
hotspot and backhauling link congestion. We compare three different hotspot selec-
tion policies, each taking into consideration one different parameter, as described in
the following:

1. Number of Associated Devices: the user is attached to the hotspot with the
least number of associated devices (this information is provided by the hotspot
in its response to the ANQP query as presented in Table 5.1).

2. Channel Utilization: the user is attached to the hotspot with the least Channel
Utilization defined as the percentage of time the hotspot senses the medium
busy (this information is also provided by the hotspot in its response to the
ANQP query).

3. Signal Quality : the user is attached to the hotspot with the best received
signal power.

While the first two are retrievable information via the ANQP Passpoint signal-
ing, the latter instead does not strictly depend on Passpoint and can be considered
as a policy that could easily be implemented with a relatively limited programming
of mobile device’s drivers ignoring hotspot capabilities.

After selecting the suitable hotspot, the mobile device is automatically authenti-
cated. In Passpoint, this is done using Extensible Authentication Protocols (EAP)
based on a Subscriber Identity Module (SIM) authentication, an authentication
that is widely used in cellular networks today [93]. This procedure is specified in
such a way that the process is completely transparent to the subscriber and that
consistently works in any Passpoint network.

Then, the offloading process starts; only delay-tolerant traffic is offloaded to
Passpoint hotspots, while retaining delay-sensitive traffic in mobile cellular net-
works. The delay-tolerant traffic is nothing else than TCP traffic. If the user moves
out of the coverage of the Passpoint hotspot and finds no other hotspots in the
environment, it returns back to the cellular network transparently.
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Figure 5.3: Offloading algorithm.

5.6 Data Traffic Offloading over Passpoint Hotspots:

Simulation Results

In this section we describe the simulation framework we used to evaluate different
offloading policies. For each simulation, the Passpoint hotspots are distributed in
the selected region presented in Figure 5.2 of approximately 1 km2. The results
are obtained over many simulation instances, with a margin error lower than 3%;
we do not plot corresponding confidence intervals for the sake of presentation. In
the following, we first present the radio model then we compare different offloading
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Figure 5.4: OFDMA frame structure.

policies and hotspot placement strategies.

5.6.1 Radio Model

The macro-cells are assumed to operate using the OFDMA technology (e.g., in
LTE) whose frame structure is based on time-frequency slots (see Figure 5.4), also
called tiles or resource blocks (RBs). A set of parameters for typical transmission
bandwidths for LTE in the downlink is shown in Table 5.2, where the subcarrier
spacing is ∆f = 15 kHz. We select 20 MHz as the transmission bandwidth, therefore
the number of resource blocks per frame is equal to 100 RBs, e.g., allowing a max
throughput of 100.8 Mb/s for the 64 QAM modulation.

Table 5.2: Typical parameters for downlink transmission.

Transmission bandwidth [MHz] 20

Number of resource blocks 100

OFDMA symbols per 1 ms 14

Modulation symbol rate (Mb/s) 16.8

QPSK Bit Rate (Mb/s) 33.6

16QAM Bit Rate (Mb/s) 67.2

64QAM Bit Rate (Mb/s) 100.8

These parameters are used to compute user demands in terms of RBs knowing
only the volume in bytes. We note here that the modulation used by each user
depends on its Signal to Noise plus interference (SINR) level and the path loss.
We use the COST-231 Hata path loss model [100], devised as an extension to the
Okumura-Hata model, which is the most widely used radio frequency propagation
model for predicting the behavior of cellular transmissions in urban areas [101].

For the Passpoint hotspots, we employ a SINR interference model [102]. Each
hotspot is assigned one channel from the 13 available channels in France on the
2.4 GHz frequency range. If the hotspot j transmits signals to user i, the SINR
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Table 5.3: Channel overlapping degree.

Channel Distance 0 1 2 3 4 5 6 ≥7

Overlapping Degree 1 0.7272 0.2714 0.0375 0.0054 0.0008 0.0002 0

computed by user i is expressed as follows:

SINRi =
Pd(i, j)−α

N +
∑

k∈A,k 6=j Pλ(i, k)d(i, k)−α
(5.1)

where:
P is the transmission power of the hotspot (i.e., for simplicity we assume all hotspots
use the same transmission power P of 20 dBm);
d(i, j) is the distance between user i and the hotspot j;
α is the path loss index (a value typically between 2 and 4);
N is the background noise (i.e., we set this value to -96 dBm);
A is the group of the hotspots existing in the network;
λ(i, k) is the channel overlapping degree between the channels used by i and k;
it decreases when the channel distance between i and j increases. The channel
overlapping degree is computed by [103] and shown in Table 5.3. We note that
when the channel distance is 5 or above, the overlapping degree becomes negligible.
The maximum achievable capacity of access points is set to 54 Mbps.

In the following, we compare various scenarios with respect to the capacity gain
(CG) that we can get by offloading users traffic to Passpoint hotspots. The CG is
defined as:

CG = RBfreed/RBtotal (5.2)

where RBfreed is the total number of RBs freed from the cellular mobile after
offloading data traffic over Passpoint hotspots, and RBtotal is the total number of
RBs required by users before offloading data traffic over Passpoint hotspots.

5.6.2 Achievable Gain with different Hotspot Selection Policies

Figure 5.5 illustrates the capacity gain (in percentage) that we get for the three
different selection policies with a random distribution of hotspots in the selected
region. We can clearly notice that:

• the capacity gain increases with the Passpoint density, as the probability of
encountering a Passpoint while moving increases;

• the capacity gain with the Passpoint-agnostic Signal Quality policy gives re-
sults similar to those at the state of the art only for very high hotspot density,
over 120 hotspots per square km;

• the Channel Utilization offloading policy outperforms the other ones and offers
the highest capacity gain. A reasonable justification of this behavior is that
this policy equally distributes the users to hotspots taking into account traffic
volume and hence allowing hotspot resources to be efficiently utilized;
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Figure 5.5: Capacity gain for different Passpoint hotspot selection policies.

• with the Signal Quality offloading policy, all users in a close location are
assigned to the same hotspot because they will all receive AP signals with the
same power. As a result, there will be a larger number of users competing for
limited resources in the unilaterally best hotspot whereas the resources in the
other hotspots remain free and hence wasted;

• The Number of Associated Devices offloading policy does not take into account
the traffic volume required by each user and thus inefficiently distributes the
users to hotspots.

Figure 5.6: CDF of the number of attached users per Passpoint hotspot (density of
80 hotspots/km2).

Furthermore, Figure 5.6 and 5.7 show, respectively, the cumulative distribu-
tion function of the number of users attached as well as the traffic volume per
Passpoint hotspot using the three offloading policies (for a hotspot density of 80
hotspots/km2). We notice that the percentage of low-loaded hotspots is higher in
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Figure 5.7: CDF of offloaded traffic volume per Passpoint hotspot (density of 80
hotspots/km2).

the Signal Quality offloading policy than the other two policies. More precisely,
with this Signal Quality offloading policy, approximately 80% of Passpoint hotspots
have less than four attached users while 73% of hotspots have this value in the other
two policies. Also 77% of hotspots offloading each less than 1 MB of traffic in Signal
Quality while 71% and 72.5% in Channel Utilization and Number of Associated De-
vices respectively. Moreover, the percentage of highly-loaded hotspots is bigger in
Signal Quality offloading policy than the other two: 5% of hotspots with more than
52 users in Signal Quality while 3.5% in Channel Utilization and 1.5% for Number
of associated devices; 11.5% of hotspots offloading each more than 30 MB in Signal
Quality and Number of Associated Devices policies to 13% in Channel Utilization
offloading policy. These results confirm the previous findings and emphasize the
more efficient usage of resources and distribution of traffic among different hotspots
in the Channel Utilization offloading policy.

All in all, starting from a discrete Passpoint hotspot density, the gain of using
the best among Passpoint offloading policies (i.e., the Channel Utilization one) and
the offloading policy implementable without Passpoint (the Signal Quality one) is
of roughly 15%. These results are obtained for a random distribution of Passpoint
hotspots, so the next question to answer is what is the most appropriate hotspot
placement scheme.

5.6.3 Passpoint Placement Schemes

We compare different Passpoint placement schemes in order to assess the impact of
Passpoint positions on the offloading system performance.

Given the base station antenna-centric nature of cellular access, and more gen-
erally of wireless access, we consider different placement schemes depending on a
parameter expressing the Distance To Borders (DTB) defined as:

DTBi,j =
distance(Pi,3j)

distance(Mj ,3j)
(5.3)
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where:
Pi is the ith Passpoint and Mj is the jth macro-cell in the region.
3j is the polygon that surrounds the coverage area of Macro-cell j.
distance(Pi,3j) is the minimal distance from the Passpoint Pi to all ribs of 3j .
Based on the DTB parameter, we select four different placement schemes, presented
in Figure 5.8 where the colored zone represents the region of installing the Passpoint
hotspots.

We consider the placement of Passpoint hotspots in the:

• outer annulus (i.e., zone close to the edge) of the macro-cell coverage, with a
DTB between 0 and 0.33, as in Figure 5.8(a);

• middle annulus (i.e., central zone) of the macro-cell coverage, with a DTB
between 0.33 and 0.66, as in Figure 5.8(b);

• inner annulus (i.e., zone closest to the base station) of the macro-cell coverage,
with a DTB between 0.66 and 1, as Figure 5.8(c);

• whole macro-cell zone, randomly distributed, with a DTB between 0 and 1,
as in Figure 5.8(d).

Figure 5.9 illustrates the results obtained by varying the hotspot placement
schemes. We consider here the Channel Utilization policy which appears as the
best Passpoint offloading policy. We can clearly notice that:

(a) DTB between 0 and 0.33 (b) DTB between 0.33 and 0.66

(c) DTB between 0.66 and 1 (d) DTB between 0 and 1

Figure 5.8: Illustration of different hotspot placement schemes.
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Figure 5.9: Capacity gain for different hotspot placement schemes under the best
hotspot selection policy.

• the hotspot placement with DTB between 0 and 0.33 (i.e., installing Passpoint
hotspots in the outer annulus of the macro-cell coverage) is the best placement
scheme, which guarantees the highest capacity gain. The interpretation is
straightforward as users located at the edge of the macro-cell base station
suffer from a low SINR; therefore, the modulation chosen for those users is the
one that requires the least number of bits per symbol (i.e., QPSK modulation
in our case) to reduce the symbol error rate. Those users have low bit rates and
thus require more time and more RBs to transmit their traffic. By offloading
their traffic to Passpoint hotspots, we free a big number of RBs from the
cellular networks.

• The topology corresponding to DTB between 0.66 and 1 (i.e., inner annulus) is
the worst among others. Differently than for the outer annulus case, users close
to the macro-cell base station use the modulation that requires the highest
number of bits per symbol: those users have a high bit rate and require less
time and RBs. So offloading their traffic is not very beneficial for cellular
networks.

• The topology corresponding to DTB between 0 and 0.33 overcomes the random
one (DTB between 0 and 1) with a mean capacity gain of roughly 5%, and
that with DTB between 0.33 to 0.66 (i.e., central annulus) with a mean gain
of roughly 3%.

Finally, we evaluate different offloading policies under the best hotspot place-
ment scheme, i.e., the case where Passpoint hotspots are placed only in the outer
annulus. Figure 5.10 illustrates the obtained results, where the dotted lines refer to
the random hotspot placement replicated from Figure 5.5. The figure shows that
the gap between Passpoint policies and the signal quality policy is further increased
when placing the hotspot in the outer annulus only. We notice a mean difference
between the outer and random placement schemes of around 11% for low hotspots
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Figure 5.10: Capacity gain for different Passpoint hotspot selection policies under
the best placement scheme.

density and this difference decreases for high hotspots density with a mean differ-
ence of around 3%. Overall, with hotspot placement in the outer annulus, the gain
increases when using the Passpoint-enabled offloading policies rather than the signal
quality one and this gain is around 15%.

5.6.4 Energy Saving Gain

Yet we have studied the capacity gain that an operator can get by offloading data
traffic over Passpoint hotspots but what about the gain from users’ point of view?
Does this offloading solution increase the battery lifetime of mobile phones?

We therefore study whether offloading mobile data traffic over Passpoint hotspots
is worthwhile, in terms of energy. As we know, marcocells cover a relatively large
area compared to Passpoint hotspots. Therefore the long range radio communica-
tion between the mobile phone and the macrocell have high energy per MB require-
ment compared to shorter-range wireless technologies (i.e., Passpoint hotspots in
our case). To estimate the energy consumption in both technologies, we use the
parameters of Table 5.4 reported from [104] and [105]. The first column refers to
the energy cost for transferring 1 MB of data for both macrocells and WiFi tech-
nologies; it is easy to notice that the transfer energy of 1 MB of data over macrocells
is 20 times higher than that of WiFi. The second column refers to the additional
energy cost of maintaining a connection alive independently of the traffic volume; it
is equal to zero for macrocells since we assume that the phone is always connected
to the cellular network. The third column refers to the energy cost for connection
establishment.We define the Energy Saving Gain (ESG) as follow:

ESG = 1−
Energy Consumption after Offloading

Energy Consumption before Offloading
(5.4)

Figure 5.11 shows the average energy saving in % (i.e., average energy saving
of all users in the region) that one can get by offloading mobile data traffic over
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Table 5.4: Energy consumption of smartphone networking interfaces.

Transfer (Joule/MB) Idle (Watt) Scan (Watt)

Cellular 100 0 0

WiFi 5 0.77 1.29
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Figure 5.11: Energy saving of offloading mobile data traffic over Passpoint hotspots
for different offloading policies.

Passpoint hotspots for different offloading policies. The same dataset of previous
simulations is used. As before, the hotspots are randomly distributed. We can
clearly notice that:

• The energy is better saved when the number of Passpoint hotspots increases, as
the user’s probability to encounter a Passpoint and thus offload its data traffic
over Passpoint increases (WiFi communications are 20 times more energy-
efficient than macrocells, indeed).

• The Signal Quality offloading policy is less energy-efficient than the other
two and tends to be stable after a density of 100 hotspots per km2, this can
be explained by the higher percentage of highly-loaded hotspots in Signal
Quality offloading policy compared to the other two policies as reported in
Figure 5.6 and Figure 5.7. Thus with the Signal Quality offloading policy,
users compete more with each others to get access to the selected hotspot
and end up sometimes without being able to transfer their traffic over that
hotspot, which results in a waste of energy.

• The Channel Utilization offloading policy outperforms the other policies in
terms of energy consumption and saves from 28% of energy in low hotspots
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density to 54% in high hotspots density. It saves up to 4% and 13% of energy
comparing to the Number of Associated Devices and Signal Quality policies.

All in all we can emphasize the strength of offloading mobile data traffic over
Wifi-certified Passpoint hotspots in terms of both user’s device and spectrum ca-
pacity gain from the cellular network operator.
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5.7 Summary

Traffic growth is outstripping the capacity of cellular mobile networks, especially
in urban and densely populated zones. Moreover, operators are under pressure to
find solutions to keep up with their customers’ insatiable demand for data intensive
applications. Data traffic offloading to Wi-Fi hotspots has always been an attractive
solution for catering the increasing data demand in mobile networks, despite the
existence of some drawbacks that limit their usage. Nowadays, with the advent of
the Passpoint Certified Program [92], offloading data traffic to Passpoint hotspots
is back to the forefront. The Passpoint Certified Program was created to address
critical business needs for mobile data, streamline access and to help ease operator
data traffic offload to Wi-Fi networks in a completely transparent way for the user.

In this chapter, we compare different conceivable mobile data traffic offloading
approaches over Passpoint hotspots, using real mobile consumption data gathered
from the Orange mobile network in Paris. First, we provide a brief analysis of mobile
data consumption and characteristics. Then, we compute the capacity gain as well
as the energy saving gain that one can get by offloading users traffic while taking into
account different offloading policies and hotspot placement schemes. In particular,
we show that offloading using Passpoint control-plane information can grant up to
15% capacity gain and 13% energy saving gain with respect to Passpoint-agnostic
ones based on signal quality information.



Chapter 6
Content Offloading in Information

Centric Networking

In the previous two chapters, we have investigated solutions for cellular radio over-
loading situations using small-cell networks and Wi-Fi certified Passpoint hotspots.
Traffic overloading can also manifest in cellular backhauling wire-line links. In this
context, a new solution appears to the forefront to manage traffic overload: Infor-
mation Centric Networking (ICN), that allows offloading content distribution from
content service providers by means of in-network caching. In this chapter, we focus
on high cache contention involving multiple Content Providers (CPs) and one ICN
provider having to give them access to its caches. We propose a resource alloca-
tion and pricing framework to support the network provider in the cache allocation
to multiple CPs, for situations where CPs have non-overlapping sets of files and
untruthful demands need to be avoided.1

6.1 Introduction

With the advent of broadband and social networks, the Internet became a world-
wide content delivery platform [106] [107], with high bandwidth and low latency
requirements. To meet the always increasing demand, contents are pushed as close
as possible to their consumers and Content Providers (CPs) install dedicated storage
servers directly in the core of Internet Service Provider (ISP) networks [108].

Conscious of the mismatch between the network usage and its conception, the re-
search community recently proposed the concept of Information Centric Networking
(ICN) [108] [109]. With ICN, content objects can be accessed and delivered natively
by the network according to their name rather than relying on IP addresses [107].
By naming information directly at the network layer, ICN favors the deployment of
in-network caching, and therefore each content can be found potentially anywhere
in the network, moved or replicated at different locations [110] [111].

ISP networks then become native distributed storage systems, i.e., ICN providers
can directly sell caching capabilities to content providers instead of hosting their

1The contents of this chapter are presented in [14].

79
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Figure 6.1: Representation of segmented and unsegmented caches with many con-
tent providers (CPs).

servers. However, it is most probable that the storage demand exceeds the total ISP
storage offer, at least for those content caching locations the closest to the users.
So far, the contention is solved by considering each storage as one autonomic and
self managed cache (e.g., using LRU, least-recently-used, mechanism), as depicted
in the bottom of Figure 6.1.

In this chapter, we propose to address this contention situation by segmenting
the storage on a per-content provider basis, as depicted in the top of Figure 6.1. Each
content provider receives a portion of the storage space depending on its storage
demand. For this, based on mechanism design theory [112] [113], we propose a
2-step game-theoretic design that computes a fair and rational sharing of resources
between CPs. The first step relies on a ICN cache allocation algorithm where, as
a function of content cache demands coming from CPs, the ICN provider decides
the imputation of cache spaces to CPs. The second step uses a predefined payment
rule by auctions to decide the selling price of the storage unit in the network; its
purpose is to prevent content providers from lying about their true demand.

As cache imputations to CPs need to be fair and robust against over-claiming,
we evaluate in this chapter common proportional and max-min fairness (PF, MMF)
allocation rules, as well as coalitional game rules, the Nucleolus and the Shapley
value. Results show that that the naive least-recently-used-based ICN approach
provides proportional fairness. Moreover, the game-theoretic rules outperform in
terms of content access latency the naive ICN approach as well as PF and MMF
approaches, while sitting in between PF and MMF in terms of fairness.

6.2 Related Work on Cache Allocation in ICN

Several researches have recently proposed various cache allocation solutions for ICN.
In this section, we review a selection of them.

Authors in [114] compare the in-network caching performance in homogeneous
(i.e., where the routers have the same overall cache size) and heterogeneous cache
deployments (i.e., where the routers have not the same cache size). In the latter
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case, they propose to allocate cache capacity proportionally to the router’s cen-
trality metric measured according to different criteria: degree, stress, betweenness,
closeness, graph and eccentricity centrality. They show that allocating cache ca-
pacity across the network in a heterogeneous manner slightly improves network
performance compared to the homogeneous manner; however, the benefits of het-
erogeneous deployments become apparent with larger networks (e.g., more than 100
nodes). Moreover, authors in [115] study the influence of content popularity distri-
bution on network performance, showing that (i) for uniformly distributed content
demands (e.g., catch-up TV), pushing caches into the core yield better performance
while (ii) highly skewed popularity request patterns (e.g., YouTube, mobile VoD
system or Vimeo) are better served by edge caching. (ii) is also confirmed in [116].

Recently, there has been significant interest in applying game theory to the anal-
ysis of communication networks, with the aim to identify rational strategic solutions
for multiple decision-maker situations. Indeed, as opposed to mono-decision maker
problems, game-theoretic approaches adopt a multi-agent perspective to account for
different objective functions and counter objections to rationally non justified solu-
tions [71]. Thus far, many papers from the literature have tackled game-theoretic ap-
proaches in ICN using non-cooperative game theory. These papers consider servers
or routers or networks as selfish entities seeking to maximize their own profit at
the expense of globally optimum behavior. For example, authors in [117] study a
non-cooperative game to characterize the problem of replication of contents by a set
of selfish routers aiming to minimize their own costs. In the same context, authors
in [118] characterize the caching problem among selfish servers without any central
coordination using a non-cooperative game. For each content in the network, selfish
servers have two possible actions: either caching the content if all its replicas are
located too far away or not caching it if one of its replicas is located at a nearby
node. As in [117], they show the existence of pure strategy Nash equilibrium of
the caching game. Motivated by the intuition that forms of collaboration between
different ICN nodes could yield an enhancement in network performance, authors
in [119] propose a game whereby the routers behave as rational selfish agents that
seek to minimize their aggregate content access cost. Going beyond routers, authors
in [120] describe how content providers could shape their content access prices and
discounts to favor the emergence of ICN distribution overlays across independent
networks, toward the formation of incentive-prone ICN overlay equilibrium.

Under a similar rationale, yet a broader context, in this chapter we investigate
how the ICN provider, modeling CPs as players of a game, can design an ICN cache
allocation framework so that cache imputations to CPs are strategically fair and
robust against cache space over-claiming, while outperforming legacy approaches in
terms of content access latency. Up to our knowledge, there are no other works
precisely addressing this problem, despite the above-cited works do share similar
concerns in cache allocation and ICN component sharing. As detailed in the fol-
lowing, we propose various cache allocation rules, including coalitional game theory
rules for bankruptcy situations [79] (please refer to Appendix A for more details on
bankruptcy games) to solve the atomic cache contention problem, motivated by the
fact that a similar algorithmic approach has shown high performances in strategic
shared spectrum allocation problems (i.e., Wireless Mesh Networks [2] and femtocell
networks [8]) as presented in Chapter 4.
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6.3 ICN Cache Allocation Framework and Rules

In the context of an ICN network provider, ICN cache capacity is used to host
content files in order to enhance users’ quality of experience by decreasing content
access latency. Assuming contents are owned by external CPs, the ICN provider
would need to offer a neutral interface to access its caches, guaranteeing a fair allo-
cation of caches with respect to cache space demands, which are in turn a function
of content popularity. In this section, we formulate the problem, and then we detail
the cache allocation algorithm and the corresponding ICN pricing framework.

6.3.1 Problem Formulation

Let us assume that there are n Content Providers (CPs), and each CP owns a given
number of files. With the possibility to cache some files in the network between
them and the users (by renting cache space from the ICN provider), the CPs can
enhance their users’ quality of experience by decreasing content access latency. Since
different files can have different popularity, depending on how much cache space each
provider is willing to pay for, the demand for a cache space by each content provider
would not cover all its catalog’s size. Let di be the cache space demand of the ith

CP, indicated in the following as CP-i, and ~d the vector of all demands.
Since the ICN provider’s global cache space, denoted by E, is limited, we target

the expected situation for an economically viable ICN deployment in which the ICN
provider receives more demands than what it can satisfy, i.e.,

∑n
i=1 di ≥ E. If this

was not the case, i.e., if the total demand is less than the available space, then the
ICN provider would be able to allocate for every CP the exact space demanded, yet
contention would likely still manifest for at least those few best nodes that are at
the most attractive cross-points of users’ demands (as far as these few best nodes
would not be able alone to satisfy the whole demand).

In this context, there is a competition in accessing the ICN nodes’ caches. From
an ICN provider perspective, the risk is that CPs partially ally between each other,
forming sub-coalitions when designing their respective demands. In order to master
this behavior and avoid the formation of oligopolies, the ICN provider shall take into
account the possible sub-coalitions in the allocation of cache sizes to CPs, designing
an appropriate pricing framework. More precisely, the ICN provider has to:

1. decide on the allocation rule, i.e., how to assign cache space to which CP based
on CPs’ individual content cache size demands.

2. decide on the payment rule, i.e., how to fix prices for the allocated space given
by step 1.

To emphasize the need of these two separate ICN provisioning rules, let us consider
first the (unrealistic) case where the ICN provider announces that the space is
given for free for the highest demand: every CP would then have an incentive to
announce a very high demand, lying on the value of their real needs, to get free
space. Suppose now another (more realistic, but naive) case with an announced
fixed price per unit of cache: also in this case, because the space is limited, each CP
has an incentive to announce a higher untruthful demand so that it can get more
space. In order to avoid these situations, the ICN provider should design both steps
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in advance to make sure that the outcome of the overall scheme is a desired one.
For this purpose, we propose to adopt mechanism design theory’s concepts [112]. In
particular, we refer to approaches for single-dimensional environments to make sure
that the allocation scheme provides strong performance guarantees (as explained
hereafter, performance guarantees are based on fairness criteria), and at the same
time it provides strong incentives for the CPs to be truthful in communicating their
real demand.

The allocation and payment rules are interrelated in general. However, the
mechanism design theory successfully deals with the two steps in a consecutive
manner. First we suppose that the CPs are communicating their truthful demand.
Based on these demands, we design a cache allocation scheme giving each CP its
share of the limited resource E. Then, we design a payment rule for the CPs such
that the dominant strategy for the CPs is to send their real demand (i.e., with no
incentives to lie about it). Under this approach, the ICN provider can shape a
strategic allocation making its ICN provisioning architecture rationally acceptable
and attractive for additional CP customers.

6.3.2 Cache Allocation to Content Providers

An allocation rule is a function f having as an input the demands of the CPs (the
demand vector ~d ∈ R

n
+) and the total available cache space E ∈ R+, and giving as

output an imputation vector ~x ∈ R
n
+ containing the cache space portion to allocate

to each CP (i.e., the values in ~x ranges between 0 and E such that
∑n

i=1 xi = E),

i.e., f : (~d,E) → ~x.

Let ~d−i be the vector of demands of all the CPs other than i, so with a little
abuse of notion, let us indicate the imputation for CP i as xi = fi(di, ~d−i, E).
For convenience, we also define x̄i = xi/E as the normalized imputation, i.e., the
proportion of E allocated to CP-i. Let us give the following definition.

Definition 6.3.1. (Monotone Allocation Rule) An allocation rule is monotone if
for each (~d,E) and for each CP-i having d′i > di, we have:

fi(d
′
i,
~d−i, E) ≥ fi(di, ~d−i, E), ∀~d−i (6.1)

In other words, fixing all the other CPs’ demands ~d−i, if the demand of CP i
increases from di to d′i, then the imputation xi should not decrease. Monotonicity
plays an important role in designing the payment rule (we get back to this issue in
Section 6.3.4).

The allocation of resources to those claiming higher demands than what is avail-
able is referred to in the literature as a bankruptcy problem (the term derives from
the evident connection with the problem of bankruptcy where a person or other
entity cannot repay the debts claimed by creditors). For this reason, we sometimes
refer to the CPs as claimants, or the total available cache space to partition as the
estate.

There are different possible approaches from the literature that can be used as
allocation rules for a bankruptcy situation. We present thereafter the most common.
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Allocation by Proportional Fairness (PF)

PF distributes the resources proportionally to the demands subject to total space
constraint [121], i.e.,

fi(~d,E)

di
=

fj(~d,E)

dj
for any pair of CPs (i, j).

It is straightforward to note that PF is monotone.

Allocation by Max-Min Fairness (MMF)

MMF maximizes the profit of the lowest claimant, then it maximizes the second
lowest demand in the game, and so on [122]. Formally, if we order the CPs according
to their increasing demand, i.e., d1 ≤ d2 ≤ · · · ≤ dn, then MMF allocates the
available space E as follows:

fi(~d,E) = min

(

di,
E −

∑i−1
j=1 fj(

~d,E)

n− i+ 1

)

for i = 1, . . . , n.

Intuitively, MMF gives the lowest claimant (assuming di < E ∀i) its total de-
mand and evenly distributes unused resources to the other users. It is also straight-
forward to note that MMF is monotone.

Both MMF and PF allow computing fair imputations without considering the
possibility that CPs could ally when formulating their demands. Alternatively, game
theoretic allocation rules can be attractive toward the computation of a strategi-
cally fair imputation. Before presenting some game-theoretic allocation rules, let us
formally define the bankruptcy game for our settings where the CPs are the players.

Allocation by Shapley Value

The Shapley Value [80], computed by averaging the marginal contributions of each
player in the game in each strategic situation, is given by:

fi(~d,E) =
∑

S⊂N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i} − v(S)] (6.2)

The Shapley value allocation rule is monotone since Eq. (A.12) can be rewritten
as follows:

fi(bi,~b−i, E) =
∑

S⊂N\{i}

αSφS(bi), (6.3)

where αS = |S|!(|N |−|S|−1)!
|N |! and:

φS(bi) =

{

bi if bi ≤ max(0, E −
∑

j∈N\{S,i} bj)

max(0, E −
∑

j∈N\{S,i} bj) otherwise.
(6.4)

so by fixing ~b−i, φS(bi) is non-decreasing function in bi for any set S. Thus the
Shapley value allocation is monotone.
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Allocation by Nucleolus

The Nucleolus [83] that is computed by minimizing the largest excess of different
coalitions of the game. The excess is expressed as:

e
(

f(~d,E), S
)

= v(S)−
∑

j∈S

xj , ∀S ⊆ N (6.5)

This excess measures the amount by which the coalition S falls short of its potential
v(S) in the imputation ~x (Please refer to Appendix A for more details on Shapley
value and Nucleolus computation). It is worth noting that Nucleolys is monotone
thanks to the intrinsic consideration of individual rationality constraints.

6.3.3 Cache allocation algorithm

The total cache space in the network is formed from the collection of the routers’
caches. These caches are distributed in heterogeneous locations in the network. For
example, it might be more convenient for CPs to be allocated a cache space closer
to the end users (thus their contents are closer to clients reducing content access
latency). Therefore, it is important that the ICN network provider distributes a
homogeneous cache space to CPs (every unit of cache space should have the same
value from the content providers’ perspective). In this respect, it should cluster
routers that have similar properties for CPs. According to [114] and [115], three
commonly accepted criteria for grouping the routers are: the proximity to the user-
network edge, the router degree, and the router centrality (betweenness). More
precisely, the contention metrics that we investigate are defined as follows:

• Router Proximity to network edge (RP): the number of hops separating a
router from network edge.

• Router Degree (RD): the number of links incident to a router.

• Router Betweenness (RB): the number of times a node is along the shortest
path between two other nodes.

Upon ranking routers according to the contention metric, we propose the fol-
lowing allocation algorithm:

Algorithm 1 ICN Cache Allocation Algorithm

1: Form clusters of ICN routers with the same contention metric, and order them
from the highest importance (in CPs’ perspective) to the lowest one;

2: Take the cluster with the highest importance and apply the allocation rule to
routers of the cluster;

3: Decrease the demand of each CP by the amount allocated in the cluster;
4: Take the next cluster and apply the allocation rule;
5: Stop when all clusters are treated or there is no remaining demand.

For the game-theoretic allocation rules, this corresponds in iterating a game
G(N , v) differing in that, at each iteration:
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• N includes all the CPs, but with different demands di.
2

• The available cache size (E), varies as a function of the cluster size and the
capacities of routers in the cluster. For instance, if the cache capacity of each
router is given by Cr, the corresponding estate is given by: E =

∑

r∈Rc
Cr

where Rc is the set of routers in the cluster c.

It is worth noting that since the routers within the same cluster have the same
contention metric, the allocated cache space to each CP in a cluster can be evenly
allocated from any cache among the routers in that cluster.

Algorithmic game theory adds one more requirement to the design of the sys-
tem: the complexity of obtaining the allocation should be computationally efficient.
Polynomial time algorithms should be used for finding the allocation. Even though
the complexity for calculating the Nucleolus or the Shapley values can be computa-
tionally hard (in particular the Shapley value), in our instance this does not cause
a real problem because the number of CPs asking for the resource in a network is
typically low (less than 10) and the complexity of the allocation scheme is a function
of the number of CPs (and not a function of the potentially huge number of content
files). So we can relax in our design the polynomial time algorithms requirement
for computing the cache allocation and allow to use exponential time algorithms.

6.3.4 Pricing Framework

As already argued, a robust pricing framework needs to be designed by the ICN
network provider to ensure true demands are formulated by CPs. Actually, the
same unit of cache space can have different values for the different CPs (e.g., those
with higher traffic consider a unit storage space to be more valuable). We assume
that the value of a unit of cache space for a CP is proportional to its demand (e.g.,
a CP having a demand di evaluates the price of its unit of cache to be di/E).

Along with the fairness of the allocation scheme, the payment rule should be
designed to give strong guarantees that the CPs are truthful in communicating their
real demand. Under this perspective, it becomes natural to think of the demands
as bids (as in auctions), and the cache partitioning as the allocation outcome from
an auction. The demand vector is given by ~d where di is the (truth) demand by
CP-i (also considered as the private value of i). The bid vector is given by ~b where
bi is the value communicated by CP-i to the ICN provider (could be equal to di if
i declares the truth).

The truthful communication of demands should be a dominant strategy. This
is known as the dominant-strategy incentive-compatible (DSIC) property [113]. The
normalized allocation x̄i is the proportion of the full available cache space allocated
to content provider i (i.e., x̄i ranges in the interval [0, 1]). The payment rule is given
by ~p, where pi is the price of the allocation paid by CP-i. The utility of a content
provider is given by:

Ui = Vi(di, fi(bi,~b−i, E))− pi(bi,~b−i, E) (6.6)

2As opposed to the algorithm presented in Chapter 4, all the players participate in every game
while in Chapter 4, the number of players varies as a function of the interference level.
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where Vi(di, fi(bi,~b−i, E)) = dix̄i is the value of the allocated space from the CP-i
perspective, and pi(bi,~b−i, E) is the price paid. Every CP has the incentives to
maximize its utility.

Definition 6.3.2 (DSIC). The tuple (~x, ~p) is DSIC if: 1) each truth-telling CP
is guaranteed a non-negative utility and 2) each CP has as dominant strategy the
communication of its truthful demand, i.e., for all CPs, and for any bi,

Vi(di, fi(di,~b−i, E))− pi(di,~b−i, E)

≥ Vi(di, fi(bi,~b−i, E))− pi(bi,~b−i, E).

Then, the tuple (~x, ~p) is DSIC if when bi = di, this strategy maximizes the utility
of CP-i no matter what the other CPs do. Being that the utility Ui = dix̄i − pi, for
example with the pricing rule pi = bix̄i, no one has an incentive to communicate the
true demand. Because with that pricing rule, the utility would be Ui = 0 for truth-
tellers while it can be increased if everyone declared a slightly lower demand. This
would lead to a situation where everyone declares a lower demand than their real
one. On the other hand, for a fixed price per storage space (i.e., pi = αx̄i for a given
α ∈ R+) every CP having di > α has an incentive to increase its communicated
demand (bi) to receive more space increasing its utility. The question that can be
raised here: what pricing rule should we select so that the CPs have no incentives
to lie (given the Shapley and the Nucleolus-based allocation rules)? It turns out
that by Myerson’s Lemma [123] from mechanism design theory we can design the
prices to meet our objective:

Theorem 6.3.3 (Myerson’s Lemma [123]). If ~x is monotone, then there is a unique
payment rule ~p such that the mechanism (~x, ~p) is DSIC.

The monotonicity is given by Definition 6.3.1, and the four presented allocation
rules are monotone as already discussed.

Finding this payment rule requires a bit more analysis. Since for a given CP i,
the characteristic function of the game (Eq. (4.2)) is piece-wise linear as function a
demand bi, then it follows directly for Shapley value that the allocation fi(bi,~b−i, E)
(given by Eq. (A.12)) is piece-wise linear as function of bi. Similar argument for
Nucleolus shows that it is piece-wise linear as a function of bi. This means that the
allocation as function of the demand looks as in Fig. 6.2. The price can be then
given by Myerson’s Lemma [123] as follows:

pi(bi,~b−i, E) = bifi(bi,~b−i, E)−

∫ bi

0
fi(z,~b−i, E)dz (6.7)

The price can be interpreted as an area above the curve (as given by Fig. 6.2).
Notice that by considering this pricing rule, each content provider maximizes its
utility Ui by communicating its true demand no matter what others do, i.e., Ui is
maximized when bi = di for every ~b−i.

In fact, for the Shapley value allocation, we can identify precisely the points
where the curve changes its slope, in order to determine the price; equation (6.3)
can be reformulated using (6.4) as follows:

fi(z,~b−i, E) = g(~b−i) +

(

∑

T∈T

αT

)

z (6.8)
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Figure 6.2: The blue curve is the piecewise-linear allocation function x̄i given by
x(z) for CP i when varying its demand from 0 to bi (z axis). The red area is the
payment rule (price to pay by the CP).

where g(~b−i) is a scalar function independent of z and T is a relevant set of the
sets T ⊆ N\{i}. Define the vector Φ(~b−i) having in decreasing order the elements
max(0, E −

∑

j∈N\{S,i} bj) for all sets S ⊆ N\{i}. For a given value z ∈ [0, bi],

let us define the index k to be the first index in Φ(~b−i) such that Φk(~b−i) > z and
Φk+1(~b−i) ≤ z. Therefore, for a given z, T contains the sets S1, . . . , Sk corresponding
to the top k elements in Φ. The slope at any value z is then given by

∑k
j=1 αSj

,
and so it is non-increasing when increasing z. The points where the curve changes
its slope are the values of z for which a transition in the index k takes place.

As a result of the discussion in this section, the ICN provider can declare a
pricing accordingly to (6.7) to all the CPs, so that none of the CPs has an incentive
to declare a different demand than their real one, and based on these (truthful dec-
larations) the allocation using the proposed ICN allocation algorithm is carried out.
It is important to note that this pricing framework does not necessarily maximize
the profit for the ICN provider, but it is the unique pricing rule [123] that provides
strong incentives for truthful declaration of demands by the CPs. Any other pricing
rule can cause the CPs to communicate false demands to maximize their utilities.

6.4 Performance Evaluation

We consider a network composed of 25 routers of same caching capacity C (i.e.,
homogeneous cache size). We considered two networks with a tree (where there
is only one path from an end-user to a CP) and a partial mesh (where there can
be multiple paths from an end-user to a CP), having both an edge-to-CP shortest
path length up to 6 hops. In the tree topology, the CPs are connected to the root
router of the tree, and the end-users are connected to its leaves. In the partial
mesh, the CPs are all connected to one router in the network, while the end users
are connected randomly to some of the other router nodes of the network.

We include 5 CPs, denoted CP-i for i = 1, . . . , 5, connected all to the same
router and each supplying different contents/files. We assume that each content j
has a uniform size (1 MB for example) and a popularity Pj ∈ [0; 1] reflecting the
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request’s frequency made by end-users for the content (i.e., the number of times end
users issue ‘interest’ messages to retrieve the content) [107]. Contents are always
delivered via a shortest path. In the simulations, the popularity is chosen uniformly
at random such that the sum of all files’ priorities in the network is equal to 1, i.e.,
∑

j Pj = 1. We recall we assume that each content is offered by only one CP.
To take into account network cases with a heterogeneous set of demands, we

suppose that, among the five CPs, the CP-1 has the lowest demand d1, and that
CP-2, CP-3, CP-4, and CP-5 have, respectively, three, five, seven and nine times the
demand of CP-1. The overall demand of CP-1 is set to 80 files (i.e., 80 MB). The
Contention Level in the network is then computed as: CL = 1− (25C/

∑5
i=1 di).

The popularity of contents in the network is modeled using the Zipf’s law [124]
that determines its frequency of occurrence. Each CP runs the LRU cache replace-
ment policy that we approximate using the Che approximation [125].

We do compare the results under different allocation rules also for the case
of a network without in-network caching, i.e., in which end user requests need
to go all the way up from the edge to the CP containing the needed file at the
network provider CP edge. Moreover, for the in-network caching cases, we include
a naive ICN case in which there is no router clustering and there is no CP-specific
cache allocation [109]; instead, contents are delivered following the shortest path
and cached on-the-fly by the LRU caches collocated on the traversed routers. As a
reminder, we evaluate the four allocation schemes listed in Section 6.3.2: PF, MMF,
Shapley Value, and Nucleolus. The following evaluation focuses on a performance
analysis based on content access latency reduction and on a fairness analysis based
on cache imputations.

6.4.1 Content Access Latency

We evaluate the performance of different approaches with respect to the most im-
portant user’s quality of experience metric for ICN technologies, i.e., the content
access latency. We compute the average content access latency (expressed in num-
ber of hops) as a function of the edge-to-content path, and the average hit ratio on
each router along the path as given by the Che approximation [125]. To model the
case of high cache contention situation, we set CL to 80% (i.e., the total cache space
is equal to only 20% of the total CPs demands).

Fig. 6.3 and Fig. 6.4 show the boxplot statistics (max, min, quartiles, median
as a red line, average as a star) of the content access latency for the network’s
contents using the above mentioned metrics for the tree and partial mesh topology,
respectively. We can notice that:

• Comparing in-network caching approaches to the one without caching, the
former outperform the latter one for all the cases; e.g., for the partial mesh
topology and using the RD metric, the median content access latency de-
creases, from the approach without caching, by 9% with the game-theoretic
approaches, 8% for the MMF, 4% with PF, and 2.5% for the basic ICN case.

• Comparing the basic ICN approach to the router aggregation case with the
four allocation rules, the content access latency decreases with the latter one
for all the cases (e.g., for the partial mesh topology and RD metric, the median
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(a) Router Proximity to network edge (RP)

(b) Router Degree (RD)

(c) Router Betweenness (RB)

Figure 6.3: Content access latency distributions for a tree topology and with differ-
ent ICN router clustering metrics.
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(a) Router Proximity to network edge (RP)

(b) Router Degree (RD)

(c) Router Betweenness (RB)

Figure 6.4: Content access latency distributions for a partial mesh topology and
with different ICN router clustering metrics.
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access latency decreases from basic ICN by 3% with PF, 5.6% with MMF and
6.5% for game-theoretic approaches).

• The game-theoretic approaches, Nucleolus and Shapley value, give very close
performances for the different cases. They outperform the PF and MMF
approaches for all the cases; e.g., for the tree topology and using the RB
metric, the median content access latency is lower by 2.5% with respect to
PF, and by 1.6% with respect to MMF.

• The partial mesh topology outperforms the tree one, likely because it allows
multiple paths between network’s routers differently than the tree topology
with a single path from each router to the root.

• The RD router clustering metric outperforms the other metrics for all the in-
network caching cases; e.g., in the mesh topology, the content access latency
for the Nucleolus decreases from the RP by 3% and 1.25% to the RD and RB
metrics, respectively. This somehow confirms previous findings of [114] where
RD was shown to be superior to all other metrics. As a new insight, the gain
of RD with respect to RB is less important than with respect to RP.

All in all, these highlights show that game-theoretic approaches increase content
access performance. It is also worth mentioning that even if naive LRU driven in-
network caching permits to reduce latency, it does not accomplish as much one
could expect, mostly because of the potentially high replication of contents in the
network [126].

6.4.2 Fairness of Cache Imputations

In order to further investigate on the cache allocation results, Figure 6.5 shows the
imputation distribution (i.e., the ratio of the cache each CP obtains as a function of
the total available cache) as well as the satisfaction rate (i.e., the ratio of the cache
each CP obtains as a function of its demand), for the different allocation cases
(PF, MMF, Nucleolus, Shapley value, and naive ICN). The partial mesh topology
with the RD metric case is considered (similar results are obtained for the tree
topologies). We can observe that the Nucleolus and Shapley value give the lowest
claimant (i.e., CP-1) an imputation in-between those obtained by PF and MMF:
CP-1 gets by Nucleolus and Shapley value 18% and 11% respectively of the total
estate, while PF and MMF give respectively 5% and 20% of the total estate (20%
corresponds actually to the totality of its demand, indeed the satisfaction rate of
CP-1 is 100% with MMF). The same behavior can be seen also for the highest
claimant (CP-5) whose imputation by Nucleolus and Shapley value is in-between
those of MMF and PF. This indicates that game-theoretic approaches do not favor
low demands as MMF does, or high demands as PF does, but instead distribute
the estate in a way that discourages too greedy demands at the benefit of lower
demands.

It is also worth noting that the naive approach with ICN is closer to the PF
approach than the others. Intuitively, this can be explained by the fact that as
the claim increases, the probability of finding claimant’s files in the network likely
proportionally increases.
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(a) Cache size distribution

(b) Satisfaction rates

Figure 6.5: Cache size distribution and satisfaction rates, as a function of the CP
demand, for a partial mesh topology using the RD metric.

Furthermore, in order to qualify the fairness of the solutions, we evaluate them
with respect to two notable fairness indexes: the Jain’s fairness index (JI) [89] that
rates the fairness of a set of values and defined as:

JI =

(

n
∑

i=1

(xi/di))
2

)

/

(

n
n
∑

i=1

(xi/di)
2

)

(6.9)

which in fact has been conceived to be better the closer the solution is to the PF,
and the Atkinson’s index (AI) [127] which is one of the commonly used measure of
inequality, computed as follows:
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Figure 6.6: Fairness indexes as a function of the contention level (the lower the
contention level, the higher the available cache size with respect to demands), for
different allocation rules.

AI = 1−
n

n
∑

i=1
xi

(

1

n

n
∑

i=1

x
(1−ǫ)
i

)1/(1−ǫ)

(6.10)

which conversely has been conceived to be better the closer the solution is to an
even division (AI = 0 means perfect equality while AI = 1 expresses maximal
inequality). ǫ is chosen in practice between 0.5 and 1.5 (we set a value of 1.5 in our
case). Figure 6.6 shows the fairness index results, as a function of the contention
level CL. We can state that:

• Fairness indexes confirm the close behavior between naive ICN and PF. Both
appear as independent of the contention level - PF gives the best for the
Jain’s index and the worst for the Atkinson’s one, and naive ICN gives better
Atkinson’s index values than PF.

• Comparing the Nucleolus and the Shapley value for both metrics, the latter
is strictly the closer one to the PF, while the former is closer to MMF. The
gap between them, PF and MMF strictly decreases as the contention level
decreases.

Overall, depending on the desired fairness behavior, PF or MMF, the network
provider can refer to the Shapley as the one closer to PF, and the Nucleolus closer
to MMF, being reassured about the fact that they bring a gain in terms of content
access latency. Simply using the naive ICN approach would be a good approximation
of the PF rule, with however a lower content access performance.

6.5 Summary

Novel technologies are difficult to adopt as it has to be proven that they are incentive
compatible for all the involved stakeholders. In this chapter, we address a multi-
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stakeholder situation (i.e., involving more than one provider) that appears as a win-
win setting toward ICN deployment, i.e., the case of an Internet Network Service
Provider deploying ICN for external content providers, offering a neutral interface
and pricing to multiple content providers. The ICN provider hence allocates to
external content providers spaces in its ICN routers’ caches for content delivery.

In this context, we argue that the proper way the ICN provider shall design
the ICN cache allocation framework and model the behavior of external content
providers is game theory, so as to qualify and counter-balance their natural ten-
dency to form oligopolies and to ally to have a stronger position in getting the
available caching resources. We investigate the application of well-known concepts
from cooperative game-theory showing desirable properties, the Nucleolus and the
Shapley value, as well as other principles commonly adopted in networking research,
the proportional fairness (PF) and the max-min fairness (MMF). We propose an
ICN cache allocation algorithm able to incorporate these different allocation rules
applying them to clusters of routers ordered with respect to centrality metrics sug-
gested in the literature. Moreover, we propose a pricing framework that, taking
advantages of the monotonicity of the presented cache allocation rules, correctly
nullifies the threat of malicious behaviors in formulating content caching demands.

Results from simulations show that the game-theoretic approaches offer a (not
so straightforward) sensible access latency gain with respect to both PF and MMF,
and the naive ICN approach (without cache allocations and using least-recently-used
cache management) to content providers. Among the Nucleolus and the Shapley
value approaches, the former could be considered more interesting given its lower
time complexity (asymptotically with the number of content providers). In terms of
fairness the Nucleolus and the Shapley value sit in-between PF and MMF allocation
rules, balancing their well-known weaknesses and strengths, so that the Shapley
value is close to PF and the Nucleolus very close to MMF. It is also valuable to
report that the naive ICN approach permits to approximate PF without having
to compute cache imputation (at the expense, however, of worse content access
performance).
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Chapter 7
Conclusion and Perspectives

At present, mobile phones provide the best means of gathering information about
user movements and content consumption behavior on a large scale. This disser-
tation aims to find solutions at the edge (frontier) between resource and traffic
management, usage profiling and user mobility detection.

Using some mobility properties from big data log coming from cellular networks,
we evaluate in Chapter 2 the appropriateness of using mobile data for estimating
human mobility and behavior patterns. Overall this chapter clearly shows that the
use of such mobility metrics allows an efficient qualification of user mobility pat-
terns. Using the same mobility metrics, we characterize in Chapter 3 the correlation
between mobility and usages in mobile networks and we present an in-depth study
on how content and Cloud delivery points in an urban and peri-urban environments
can be identified and estimated online. This study permits to estimate, with a high
precision, the position of crowded cells in a cellular network, thus allowing to opti-
mize the placement of content and computing resources and grant important traffic
offloading, improve network efficiency and user quality of experience.

In this context, in order to enhance traffic offloading and better meet the increas-
ing mobile Internet demand, while addressing the lack of available mobile spectrum
and the expense of new infrastructure, we study in Chapter 4 and Chapter 5 two
traffic offloading solutions, one based on small-cell networks and the other on WiFi-
certified Passpoint hotspots. We study benefits and limitations of each solution and
we propose a new algorithm based on cooperative game theory for resource alloca-
tion and interference management in small-cell networks. The results of Chapter 4
show important improvements and emphasize the necessity of referring to coop-
erative game theory concepts in the definition of spectrum contention situations.
Furthermore, Chapter 5 clearly identifies the benefits of using the newly released
WiFi Passpoint solution in increasing the spectrum capacity gain and decreasing
the user energy consumption.

We also investigate methods to offload the backhauling wireline network in Chap-
ter 5, where we propose an advanced approach to solve contention situations in

97
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Information Centric Networking. This chapter shows the benefits of relying on
coalitional game approaches to improve legacy solutions, by decreasing the content
access latency in high contention situations.

Each proposition brings novelties to the corresponding research area. Chapters 2
and 3 find novel, scalable and effective ways to spot where to offload the access
network as a function of user mobility and consumption patterns. Chapters 4, 5
and 6 brings original offloading solutions, horizontal and vertical wireless traffic
offloading, and content offloading in backhauling network using pioneering solutions
from cooperative game theory.

Despite the benefits of our proposed approaches in solving the current network-
ing problems of traffic overloading and mobile data services quality, many open
questions come to mind. Are these long-term solutions? Should mobile operators
and vendors rely on such solutions for future networks?

As a matter of fact, to cater the explosive data traffic growth in 5G mobile
networks while ensuring a high quality mobile data services, there exists nowadays
a critical need for increased service flexibility. In order to enhance the system
performance and reduce the cost associated with it, mobile operators started to
shift their mindsets from the traditional Radio Access Network (RAN) architecture
to the Cloud RAN architecture [128] using virtualization solutions with forms of
centralization of the control plane and virtualization of the data plane.

Indeed, if virtualization is used for base station systems, service providers can
dynamically allocate processing resources within a centralized baseband pool to dif-
ferent virtualized base stations and different air interface standards. This leads to
multiple benefits: from one hand, it allows the operator to efficiently support the
variety of air interfaces and to adjust to the tide effect in different areas and fluctu-
ating demands; on the other hand, the common hardware platform can provide cost
effectiveness to manage, maintain, expand and upgrade the base station [129] [130].
C-RAN is typically thought of as a large-scale urban macro solution, but the concept
of pooled baseband serving a number of radio access nodes can also be applied to a
variety of scenarios, such as small-cell underlays (using micro Remote Radio Units
(RRUs), so-called Super Cells. These models, identified and defined partly through
the Next Generation Mobile Networks (NGMN) Alliance, could prove an attractive
way to introduce and develop C-RAN technology [131]. In the context of finding
attractive solutions for catering the increasing data demand in mobile networks,
we are interested in cloud-based access network solution, emerging nowadays as an
important platform for next-generation radio access networks.

Furthermore, as mobile systems have limited resources such as battery life, net-
work bandwidth, storage capacity and processor performance, we are interested in
investigating cloud (computation) offloading solutions (e.g., CloudLet [132] [133]),
enabling a significant saving of energy in mobile devices and adaptive virtual ma-
chine migration solutions enabling the migration of a virtual machine (VM) from
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one physical server to another hence leading to more efficient resource utilization
and load balancing. Besides these new technologies, the trend nowadays is moving
towards a new digitalized world where users are associated with virtual resources,
able to move and to resize, as a function their mobility habits.

It is worth mentioning that I passed more than sixteen months in different
laboratories as a visiting researcher: nine months at MIT, six months at TU Berlin,
almost one month at INRIA Sophia Antipolis, and many days at Orange labs. These
visits allowed me to profit from the expertise of many persons for my researches,
who helped in the preparation of the related works and publications. Therefore,
my papers often include a high number of co-authors, to correctly acknowledge the
contribution and time spent on my research of each co-author, while noting that the
main contributions were originally proposed by myself for the first time, represented
my own original contribution, which is formally confirmed by the first authorship
accordingly to common international best practice in networking research.

Last words are needed to further acknowledge the researchers, and their respec-
tive teams, for their high added-value comments and suggestions to the dissertation.
In order of content exposition:

Stanislav Sobolevsky and Carlo Ratti from Massachusetts Institute of Technol-
ogy MIT on mobile data mining, presented in Chapter 2 and Chapter 3; Adam
Wolisz from the Technical University of Berlin on traffic offloading over Passpoint
hotspots presented in Chapter 5; Mahmoud el Chamie and Damien Saucez from
INRIA Sophia Antipolis on the content distribution solution in ICN, presented in
Chapter 6.



100 CHAPTER 7. CONCLUSION AND PERSPECTIVES



References

Related Own References

International Journals with peer review

[1] S. Hoteit, S. Secci, S. Sobolevsky, C. Ratti and G. Pujolle, “Estimating Hu-
man Trajectories and Hotspots through Mobile Phone Data”, Elsevier Computer
Networks, Vol. 4, pp. 296-307, 2014.

[2] S. Hoteit, S. Secci, R. Langar and G. Pujolle, “A Nucleolus-based Approach for
Resource Allocation in OFDMA Wireless Mesh Networks”, IEEE Transactions
on Mobile Computing, Vol. 12, pp. 2145-2154, 2013.

International conferences with peer review

[3] S. Hoteit, S. Secci, G. Pujolle, S. Wietholter, A. Wolisz, C. Ziemlicki and Z.
Smoreda, “Quantifying the Achievable Cellular Traffic Offloading Gain with Pass-
point Hotspots”, in Proc. of the ACM International Workshop on Wireless and
Mobile Technologies for Smart Cities, Philadelphia, PA, USA, 2014.

[4] S. Hoteit, S. Secci, G. Pujolle, V. Hoa LA, C. Ziemlicki and Z. Smoreda,
“Mobility-Aware Estimation of Content Consumption Hotspots for Urban Cel-
lular Networks”, in Proc. of IEEE/IFIP Network Operations and Management
Symposium NOMS, Krakow, Poland, 2014

[5] S. Hoteit, S. Secci, S.Sobolevsky, G. Pujolle and C. Ratti, “Mobility-Aware
Estimation of Content Consumption Hotspots for Urban Cellular Networks”, in
Proc. of Int. conference on the Analysis of Mobile Phone Datasets (NetMob),
Cambridge, MA, USA, 2013.

[6] S. Hoteit, S. Secci, S.Sobolevsky, G. Pujolle and C. Ratti, “Estimating Human
Trajectories through Mobile Phone Data”, in Proc. of IEEE Int. Conf. Mobile
Data Management- Human Mobility Computing Workshop, Milan, Italy, 2013.

[7] S. Hoteit, S. Secci, G. Pujolle, Z. He, C. Ziemlicki, Z. Smoreda and C. Ratti,
“Content Consumption Cartography of the Paris Urban Region using Cellular
Probe Data”, in Proc. of ACM URBANE 2012, CoNext Workshop, Nice, France,
2012.

[8] S. Hoteit, S. Secci, R. Langar, G. Pujolle and R. Boutaba, “Bankruptcy Game
Approach for Resource Allocation in Cooperative Femtocell Networks”, in Proc.
of IEEE Global Communications Conference (IEEE GLOBECOM), Anaheim,
CA, USA, 2012.

101



102 REFERENCES

[9] S. Hoteit, S. Secci, R. Langar and G. Pujolle, “Subchannel Resource Alloca-
tion for Cooperative OFDMA Wireless Mesh Networks”, in Proc. of IEEE Int.
Conference on Communications (IEEE ICC), Ottawa, Canada, 2012.

Thesis

[10] S. Hoteit, “Strategic Resource Allocation in Cooperative Femtocell Networks”,
Master Thesis, Sept. 2011. Advisors: Stefano Secci and Guy Pujolle.

[11] S. Hoteit, “MaxMin Clusterisation Algorithm for Wireless Sensor Networks”,
Engineering Diploma Graduate Thesis, July 2010. Advisors: Mahmoud Doughan,
Michel Marot and Monique Becker.

Submitted

[12] S. Hoteit, M. Premoli, S. Secci, G. Pujolle, C. Ziemlicki and Z. Smoreda,
“Territory-based Hotspot Estimation for Urban Cellular Networks”, submitted
to Journal of Network and Systems Management http://www-phare.lip6.fr/
~hoteit/jnsm2014.pdf

[13] S. Hoteit, S. Secci, G. Pujolle, S. Wietholter, A. Wolisz, C. Ziem-
licki and Z. Smoreda, “Mobile Data Traffic Offloading over Passpoint
Hotspots”, submitted to Computer Networks. http://www-phare.lip6.fr/
~hoteit/computernetworks2014.pdf

[14] S. Hoteit, M. El Chamie, D. Saucez and S. Secci, “Strategic Cache Allocation
in Information Centric Networking”, submitted to IEEE Infocom 2015. http:
//www-phare.lip6.fr/~hoteit/infocom2015.pdf



REFERENCES 103

Other References

[15] R. Becker, R. Caceres, K. Hanson, S. Isaacman, J.M. Loh, M. Martonosi,
J. Rowland, S. Urbanek, A. Varshavsky, C. Volinsky, “Human Mobility Charac-
terization from Cellular Network Data”, Magazine Communications of the ACM,
Vol.56, pp.74-82, 2013.

[16] “L’audience de l’Internet mobile en France”, Mediame-
trie, http://www.mediametrie.fr/internet/communiques/
l-audience-de-l-internet-mobile-en-france-en-mars-2014.php?id=
1070#.U6Kh35S1Z3t, 2014.

[17] M. Meeker, S. Devitt and L. Wu, “Morgan Stanley”, http:
//www.morganstanley.com/institutional/techresearch/pdfs/Internet_
Trends_041210.pdf, 2011.

[18] J. Denny, “Search, Social and the Digital Marketing Revolution”, http://
johnhdenny.com/1474/primer-on-the-state-of-the-internet-2012, 2012.

[19] F. Calabrese, F. Pereira, G. Di Lorenzo, L. Liu and C. Ratti, “The Geog-
raphy of Taste: Analyzing Cell-Phone Mobility and Social Events”, In Proc. of
International Conference Pervasive, Helsinki, Finland, 2010.

[20] Cisco, San Jose, CA, “Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2012-2017, http: // www. cisco. com/ en/ US/
solutions/ collateral/ ns341/ ns525/ ns537/ ns705/ ns827/ white_ paper_
c11-520862. pdf , Feb. 2013.

[21] Cisco Visual Networking Index Forecast Projects “Cisco Press Release”, http:
//newsroom.cisco.com/release/1135354, 2013.

[22] J. Giles, “Smartphone use makes cellular networks: collapse a real possibil-
ity”, The Washington Post, http://www.washingtonpost.com/wpdyn/content/
article/2010/11/29/AR2010112904854.html, 2010.

[23] D. Srinivasan, J. Dey, S. Kumar and R.N. Mukherjee, “Data Offload Approches
for Mobile Operators: Improving Network Efficiency And Strengthening Quality
Of Service”, Wipro Technologies 2012.

[24] Femto Forum, “Femtocells- Natural Solution for Offload”, www.femtoforum.org

[25] S. Eubank, H. Guclu, VS. Anil Kumar, MV. Marathe MV and
A. Srinivasan, “Modelling disease outbreaks in realistic urban social net-
works”, http://www.washingtonpost.com/wpdyn/content/article/2010/11/
29/AR2010112904854.html, 2010.

[26] EL. Glaeser and ME. Kahn, “Sprawl and urban growth”, Handbook of Regional
and Urban Economics. Elsevier, pp. 2481-2527, 2004.

[27] T.Leighton, “Improving performance on the internet”, Communications Mag-
azine of the ACM, Vol.52, pp. 44-51, 2009.

[28] Q. Hao, R. Cai, C. Wang, R. Xiao and JM. Yang, “Equip tourists with knowl-
edge mined from travelogues”, in Proc of the international conference on World
Wide Web WWW, New York, USA, 2009.

[29] Y. Zheng, L. Zhang, X. Xie and Y. Ma, “Mining interesting locations and
travel sequences from gps trajectories”, in Proc of the international conference
on World Wide Web. WWW, New York, USA, 2009.



104 REFERENCES

[30] M. Gonzalez, CA . Hidalgo and Al. Barabasi, “Understanding individual human
mobility patterns”, Nature, Vol. 458, pp. 238-238, 2008.

[31] H. Hohwald, E. Frias-Martinez and N. Oliver “User modeling for telecom-
munication applications: Experiences and practical implications”, in Proc. of
the international conference on User Modeling, Adaptation and Personalization,
UMAP, Berlin, Germany, 2010.

[32] R. Huerta and L. Tsimring, “Contact tracing and epidemics control in social
networks”, Physical Review E.66 , 056115, 2002.

[33] P. Wang, MC. Gonzalez, CA . Hidalgo and Al. Barabasi, “Understanding the
spreading patterns of mobile phone viruses”, Science Vol. 324, no. 5930, pp.
1071-1076, 2009.

[34] M. Turner, S. Love and M. Howell, “Understanding emotions experienced
when using a mobile phone in public: The social usability of mobile (cellular)
telephones”, Telematics and Informatics, Vol. 25, no. 3, pp. 201-215, 2008.

[35] R.C. Nickerson, H. Isaac and B. Mak, “A multi-national study of attitudes
about mobile phone use in social settings”, International Journal of Mobile Com-
munications, Vol. 6, no.5, pp. 541-563, 2008.

[36] M. R. Vieira, V. Frias-Martinez, N. Oliver and E. Frias-Martinez, “Character-
izing dense urban areas from mobile phonecall data: Discovery and social dynam-
ics”, in Proc. of the international conference on Social Computing - SocialCom,
2010.

[37] H. Wang, F. Calabrese, G. Di Lorenzo and C. Ratti, “Transportation mode in-
ference from anonymized and aggregated mobile phone call detail records”, Proc.
of IEEE international Conference on Intelligent Transportation Systems (ITSC),
2010.

[38] H. Zang and J. Bolot, “Mining call and mobility data to improve paging effi-
ciency in cellular networks”, in Proc. of ACM Int. Conf. on Mobile Computing
and Networking (ACM MOBICOM), New York, USA, 2007

[39] L. Wei, Y. Zheng and W. Peng, “Constructing Popular Routes from Uncertain
Trajectories”, in Proc. of the international conference on Knowledge discovery
and data mining SIGKDD, New York, USA, 2012.

[40] K. Zheng, Y. Zheng, X. Xie and X. Zhou “Reducing Uncertainty of
LowSampling-Rate trajectories”, In IEEE International Conference on Data En-
gineering, ICDE, 2012.

[41] T. Hagerstrand, “What about people in regional science?”, Papers in Regional
Science, Vol. 24, no. 1, pp. 6-21, 1970.

[42] S. Winter and Z.C. Yin, “Directed movements in probabilistic time geography”,
International Journal of Geographical Information Science, Vol. 24, no. 9, pp.
1349-1365, 2010.

[43] M. Ficek and L. Kencl, “Inter-Call Mobility Model: A Spatio-temporal Refine-
ment of Call Data Records Using a Gaussian Mixture Model”, In Proc. of IEEE
INFOCOM, Orlando, FL, USA, 2012

[44] I. Rhee, M. Shin, S. Hong, K. Lee, S.J. Kim and S. Chong, “On the levy-walk
nature of human mobility”, in Proc. of INFOCOM, Phoenix, AZ, USA, April
2008.

[45] Airsage: Airsage WISE technology, http://www.airsage.com.



REFERENCES 105

[46] C. Schneider, T. Couronne, Z. Smoreda and M. Gonzalez, “Are we in our travel
decisions self-determined?”, Bulletin of the American Physical Society, APS, 2012.

[47] R. H. Guting and M. Schneider, Moving Objects Databases, Morgan Kaufmann,
2005.

[48] C. S. Yang, S. P. Kao, F. B. Lee and P . S . Hung, “Twelve different interpo-
lation methods: A case study of Surfer 8.0”, in Proc. of the ISPRS, 2004.

[49] F.N. Fritsch and R. E Carlson, “Monotone piecewise cubic interpolation”, SIAM
Journal of Numerical Analysis, Vol. 17, no. 2, pp. 238-246, 1980.

[50] 5GPPP Association “What will the 5G-Infrastructure-PPP deliver?” http:
//5g-ppp.eu/kpis/.

[51] TK. Anderson, “Kernel density estimation and K-means clustering to profile
road accident hotspots”, Accident Analysis and Prevention, Vol. 41, no. 3, pp.
359-364, 2009.

[52] J. Yuan, Y. Zheng and X. Xie, “Discovering regions of different functions in a
city using human mobility and POIs.”, In Proc. of the ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, New York, 2012.

[53] K. Seada, “Rendez-vous regions: a scalable architecture for service location
and data-centric storage in large-scale wireless networks”, in Proc. of Parallel
and Distributed Processing Symposium, 2004.

[54] S.K. Das and S.K.S. Jayaram, “A novel load balancing scheme for the tele-
traffic hot spot problem in cellular networks”, Wireless Networks, Vol. 4, no. 4,
pp. 325-340, 2004.

[55] D. Ghosal and B. Mukherjee, “Exploiting user profiles to support differentiated
services in next-generation wireless networks ”, IEEE Networks, Vol. 18, no. 5,
pp. 40-48, 2004.

[56] E. Oh and B. Krishnamachari, “Energy Savings through Dynamic Base Station
Switching in Cellular Wireless Access Networks”, in Proc. of IEEE Globecom,
Miami, FL, USA, 2010.

[57] B. Nunes and K. Obraczka, “Modeling Spatial Node Density in Waypoint
Mobility”, in Proc. of International Conference on Mobile Ad-hoc and Sensor
Systems, MASS, Las Vegas, NV, USA, 2012.

[58] US census Bureau, http://www2.census.gov/

[59] Femto forum, “Femtocell - Natural Solution for Offload”, White paper, June,
2010.

[60] Femto forum, “Challenges in Deployment of UMTS/HSPA Femtocell”, White
paper, 2008.

[61] M.C. Reed, “Femtocells: Opportunities and Challenges”, IEEE ComSoc tuto-
rial, 2010.

[62] D. Calin, H. Claussen and H. Uzunalioglu, “On femto deployment architec-
tures and macrocell offloading benefits in joint macro-femto deployments”, IEEE
Communications Magazine, Vol. 48, no. 1, pp. 26-32, 2010.

[63] D. Lopez-Perez , A. Ladanyi, A. Juttner and J. Zhang, “OFDMA femto-
cells: Intracell Handover for Interference and Handover Mitigation in Two-Tier
Networks”, in Proc. of Wireless Communications and Networking Conference
WCNC, Sydney, NSW, 2010.



106 REFERENCES

[64] J. Roh, Y. Ji, Y.G. Lee, I. Rhee and T. Ahn, “Femtocell Traffic Offload Scheme
for Core Networks”, 4th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), Paris, France, 2011.

[65] D. Lopez-Perez, A. Valcarce, G. de la Roche and J. Zhang, “OFDMA femtocells:
A roadmap on interference avoidance” IEEE Comm. Magazine, Vol.47, no. 9, pp.
41-48, 2009.

[66] V. Chandrasekhar, J.G. Andrews, T. Muharemovic, Z. Shen and A. Gatherer,
“Power control in two-tier femtocell networks”, IEEE Trans. on Wireless Com-
munications, Vol. 8, no. 8, pp. 4316-4328, 2009.

[67] V. Chandrasekhar, J. Andrews, “Spectrum allocation in tiered cellular net-
works”, IEEE Trans. Communications, Vol. 57, no. 10, pp. 3059-3068, 2009.

[68] K. Sundaresan, S. Rangarajan, “Efficienty resource management in OFDMA
femtocells ”, in Proc. of ACM international symposium on Mobile ad hoc net-
working and computing (Mobihoc), 2009.

[69] H.C. Lee, D.C Oh, Y.H. Lee, “Mitigation of Inter-Femtocell Interference with
Adaptive Fractional Frequency Reuse”, in Proc. of IEEE International Conference
on Communications ICC, Cape Town, 2010.

[70] A. Hatoum, N. Aitsaadi, R. Langar, R. Boutaba, and G. Pujolle, “FCRA:
Femtocell Cluster-based Resource Allocation Scheme for OFDMA Networks”, in
Proc. of IEEE International Conference on Communications ICC, Kyoto, 2011.

[71] G. Owen, Game Theory, 3rd ed. London, U.K.:Academic, 1995.

[72] T. Basar and G. J. Olsder, “Dynamic Noncooperative Game Theory”, SIAM
Classics in Applied Mathematics, end edition, 1999.

[73] G. He, M. Debbah and E. Altman, “A Bayesian game-theoretic approach for
distributed resource allocation in fading multiple access channels”, EURASIP
Journal on Wireless Communications and Networking, Vol. 2010, no. 8, 2010.

[74] R.B. Myerson, Game Theory, Analysis of Conflict, Cambridge, Harvard
Univ.Press, 1991.

[75] F. Pantisano, M. Bennis, W. Saad, R. Verdone, M. Latva-aho, “Coalition forma-
tion games for femtocell interference management: a recursive core approach”, in
Proc. of IEEE Wireless Communications and Networking Conference (WCNC),
Cancun, Quintana Roo, 2011.

[76] R. Thrall and W. Lucas, “N-person games in partition function form”, Naval
Res. Logistics Quart, Vol. 10, no. 1, pp. 281-298, 1963.

[77] W. Saad, Z. Han, M. Debbah, A. Hjrungnes and T. Basar, “Coalitional Game
Theory in Wireless and Communications Networks”, IEEE Signal Processing
Magazine, Vol. 26, no. 5, pp. 77-97, Sept. 2009.

[78] F. Pantisano, K. Ghaboosi, M. Bennis and M. Latva-Aho, “Interference Avoid-
ance via Resource Scheduling in TDD Underlay Femtocells”, in Proc. of IEEE
nternational Symposium on Personal, Indoor and Mobile Radio Communications
Workshops (PIMRC Workshops), Instanbul, 2010.

[79] R. J Aumann and M. Maschler, “Game Theoretic Analysis of a Bankruptcy
Problem from the Talmud”, Journal of Economic Theory, 1985.



REFERENCES 107

[80] L. Shapley, “A value for n-person games”, H Kuhn and A Tucker, eds, Con-
tributions to the Theory of Games, Vol. 2 of Annals of Mathematics Studies,
Princeton U Press., 1953.

[81] M. Mycek, S. Secci, M. Pioro and J. Rougier, A. Tomaszewski, and A. Pat-
tavina, “Cooperative Multi-Provider Routing Optimization and Income Distribu-
tion”, in Proc. of International Workshop on Design of Reliable Communication
Networks-DRCN, Washington, DC, USA, 2009.

[82] T. Alpcan and T. Basar, “A game theoretic approach to decision and analysis
in network intrusion detection”, in Proc. of Conference on Decision and Control,
2003.

[83] D. Schmeidler, “The Nucleolus of a Characteristic Function Game”, SIAM
Journal on Applied Mathematics, Vol. 17, No. 6, 1969.

[84] Z. Han and V. Poor, “Coalition Games with Cooperative Transmission: A
Cure for the Curse of Boundary Nodes in Selfish Packet-Forwarding Wireless
Networks”, IEEE Trans. on Communications, Vol. 57, no. 1, pp. 203-213, 2009.

[85] D. WINNER II, “Winner II Channel models”, IST-4-027756 WINNER II,
D1.1.2 V1.2, Tech. Rep., Sept. 2007.

[86] 3rd Generation Partnership Project, “3GPP TS 32.500 V10.0.0 (2010-06) spec-
ification”, 2010.

[87] 3rd Generation Partnership Project, “3GPP TS 32.781 V9.1.0 (2010-03) spec-
ification”, 2010.

[88] T. Driessen, Cooperative Games, Solutions and Applications, Kluwer Academic
Publishers, 1988.

[89] R. Jain, W. Hawe and D. Chiu, “A Quantitative measure of fairness and dis-
crimination for resource allocation in Shared Computer Systems”, DEC Research
Report TR-301, 1984.

[90] W. Lehr and L.W. Mcknight, “Wireless Internet access: 3G vs. WiFi?”,
Telecommunications Policy, Vol. 27, no. 5, pp. 351 - 370, 2003.

[91] K. Lee , J. Lee, Y. Yi, I. Rhee and S. Chong, “Mobile Data Offloading: How
Much Can Wi-Fi Deliver?”, IEEE/ACM Transactions on Networking, Vol. 21,
no. 2, pp. 536 -550, 2013.

[92] “Wi-Fi Certified Passpoint Architecture for Public Access,” White Paper,
Aruba Networks, 2012.

[93] Wi-Fi Alliance, “Launch of Wi-Fi CERTIFIED Passpoint Enables a New Era
in Service Provider Wi-Fi Austin, TX, June, 2012.

[94] A. Schumacher and J. Schlien, “WLAN Traffic Offload in LTE White Paper,
November 2012.

[95] A. Balasubramanian, R. Mahajan and A. Venkataramani, “Augmenting mo-
bile 3G using WIFI”, inProc. of the international conference on Mobile systems,
applications, and services ACM MOBISYS, 2010.

[96] A. Aijaz, O. Holland, P. Pangalos and H. Aghvami, “Energy savings for
cellular access network through Wi-Fi offloading”, in Proc. of IEEE International
Conference on Communications - ICC, Ottawa, Canada, 2012.



108 REFERENCES

[97] X. Hou, P. Deshpande and S.R. Das, “Moving bits from 3G to metro-scale WiFi
for vehicular network access: An integrated transport layer solution”, inProc.
of IEEE International Conference on Network Protocols (ICNP), Vancouver,
Canada, 2011.

[98] X. Zhuo, W. Gao, G. Cao and Y. Dai, “Win-coupon: An incentive framework
for 3G traffic offloading”, in Proc. of IEEE International Conference on Network
Protocols (ICNP), 2011.

[99] D. Zhang and C.K. Yeo, “Optimal handing-back point in mobile data offload-
ing,” in Proc. of IEEE Vehicular Networking Conference (VNC), Seoul, 2012.

[100] COST Action 231, “Digital mobile radio towards future generation systems,
annual report,” tech. rep., European Communities, EUR 18957, 1999.

[101] M. Hata, “Empirical formula for propagation loss in land mobile radio ser-
vices,” IEEE Transactions on Vehicular Technology, vol. 29, pp. 317-325, 1981.

[102] Y. Cui, W. Li, X. Cheng, “Partially overlapping channel assignment based on
node orthogonality for 802.11 wireless networks,” in Proc. of IEEE INFOCOM,
Shanghai, 2011.

[103] M. Burton, “Channel overlap calculations for 802.11b networks,”White Paper,
Cirond Technologies Inc., 2002.

[104] A. Rahmati and L. Zhong “Context-for-wireless: context-sensitive energy-
efficient wireless data transfer,” in MobiSys, 2007.

[105] N. Ristanovic, J.-Y. L. Boudec, A. Chaintreau, and V. Erramilli “Energy
Efficient Offloading of 3G Networks” In Proc. of IEEE MASS, 2011., 2007.

[106] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian,
“Internet Inter-domain Traffic,” SIGCOMM Comput. Commun. Rev., Vol. 40, no.
4, pp. 75 - 86, 2010.

[107] G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasi-
lakos, K.V. Katsaros, and G.C. Polyzos, “A Survey of Information-Centric Net-
working Research,” IEEE Communications Surveys and Tutorials, Vol. 16, no.
99, pp. 1024 - 1049, 2014.

[108] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A platform
for high-performance internet applications,” SIGOPS Oper. Syst. Rev., Vol. 44,
no. 3, pp. 2 - 19, 2010.

[109] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Briggs and R. Bray-
nard, “Networking Named Content”, in Proc. of the international conference on
Emerging networking experiments and technologies CoNEXT, New York, NY,
USA, 2009

[110] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano and A. Bragagnini,
“Offloading cellular networks with Information-Centric Networking: The case of
video streaming”, In Proc. of the Int. Symp. on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), San Francisco, CA, USA, 2012.

[111] G. Zhang, Y. Li and T. Lin, “Caching in Information Centric Networking: A
survey,” Computer Networks, Vol. 57, no. 16, pp. 3128 - 3141, 2013.

[112] J. Bulow and J. Roberts. “The Simple Economics of Optimal Auctions,”
Journal of Political Economy, Vol. 97, no. 5, pp. 1060 - 1090, 1989.



REFERENCES 109

[113] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. “Algorithmic Game
Theory,” Cambridge University Press, New York, NY, USA, 2007.

[114] D. Rossi and G. Rossini, “On sizing ccn content stores by exploiting topological
information” in Proc. of IEEE Infocom Nomen Workshop, Orlando, Florida, USA,
2012.

[115] Y. Wang, G. Tyson, S. Uhlig and G. Xie, “Optimal Cache Allocation for
Content-Centric Networking” in Proc. of IEEE ICNP, Gottingen, Germany, 2013.

[116] S. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs,
K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain: Incrementally
deployable ICN” in Proc. of ACM SIGCOMM, Hong Kong, China, 2013.

[117] V. Pacifici and G. Dan ,“Selfish content replication on graphs” inProc of IEEE
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Appendix A
Cooperative Game Theory

This appendix is used mainly for the resource allocation modeling in Chapter 4 and
for cache allocation modeling in Chapter 6.

A.1 Introduction

Game theory is a decision-making approach considering the strategic interaction
between participants as a key aspect to take into account in problem solving. It can
be divided into two branches: non cooperative [134] and cooperative games [74] [71],
differing in the presence or not of binding agreements among the players. Non-
cooperative game theory studies the strategic choices resulting from the interaction
among competing players while cooperative theory describes the outcomes that
result when the players come together in different combinations. In this appendix,
we only focus on cooperative game theory, the algorithms in Chapter 4 and 6 are
based on.

A.2 Cooperative Game: Definition

A cooperative or coalitional game is uniquely defined by the pair (N ,v) where:

• N=1, 2, . . . , n, a finite set of players who seek to form cooperative groups
or coalitions,

• v is the coalition value that quantifies the worth of a coalition or a group S of
players in a game when they cooperate and interact together.

The most common form of a coalitional game is the characteristic form with the
transferable utility (TU) property [135], whereby the value of a coalition S depends
solely on the members of that coalition, with no dependence on how the players in
N\S are structured [77].

The value of a game in characteristic form with TU can thus be seen as a
function that associates with every coalition S of N a real number interpreted as
the gain created when the members of S ally. The TU property implies that the
total utility represented by this amount can be divided in any manner between the
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coalition members [77]. The characteristic function with TU can thus be seen as:
v : 2N → R.

We note that there are coalitional games with non-transferable utility (NTU)
property [74] [136] where the payoff or the profit that each player in a coalition S
receives is dependent from the joint actions that the players of coalition S select.
This sort of games is out of the scope of this appendix. The games studied in
Chapter 4 and Chapter 6 are TU coalitional games.

A.3 Some Definitions

Definition A.3.1. For a given cooperative game (N , v), a payoff allocation is the
vector x = (x1, x2, ...xi) ∈ R|S| where xi is the amount of utility that a player i ∈ S
receives from the division of v(S), xi is called the player’s payoff. |S| represents the
cardinality of the coalition S.

Definition A.3.2. An allocation (x1, x2, ..., xn) is individually rational if no
player receives less than what he could get on his own:

xi ≥ v({i}), ∀ i ∈ N (A.1)

In other terms, the division of the overall value must give each player as much value
as that player receives without interacting with the other players.

Definition A.3.3. An allocation is collectively rational if the sum of the players’
payoffs is at least equal to the payoff of the grand coalition formed by all the players
in the game:

∑

i∈N

xi ≥ v(N ) (A.2)

Definition A.3.4. An allocation is feasible if the sum of the players’ payoffs is at
most equal to the grand coalition utility v(N ):

∑

i∈N

xi ≤ v(N ) (A.3)

Definition A.3.5. An allocation is efficient if the payoff vector exactly splits the
total value:

∑

i∈N

xi = v(N ) (A.4)

We note that if an allocation is feasible and collectively rational at the same time,
automatically it is efficient.
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Definition A.3.6. An allocation is symmetric if it allocates equal payoffs xi = xj
to symmetric players i, j ∈ N where:

v(S ∪ {i}) = v(S ∪ {j}), ∀ S ⊆ N \ {i, j} (A.5)

In other terms, by exchanging one player i by the other j in any coalition containing
only one of the players, we do not change the payoff of that coalition.

Definition A.3.7. An allocation is additive if the payoff of each player in a sum
of two games is the sum of the allocations to the player in each individual game.
Mathematically, if v and ω are games, the game (v + ω) simply assigns to any
coalition the sum of the payoffs the coalition would get in the two individual games.

Definition A.3.8. An allocation is called a zero allocation if it attributes to a
null or a dummy player a payoff equal to zero. A null player i that satisfies:

v(S ∪ {i}) = v(S), ∀ S ⊆ N \ {i} (A.6)

gets a payoff xi = 0.

We note that an efficient payoff vector is called a pre-imputation, and an indi-
vidually rational pre-imputation is called an imputation.

Definition A.3.9. An allocation is consistent if ∀i 6= j the division of xi + xj ,
prescribed for claims di and dj is (xi;xj).

This means that no player or group of players can gain more by unilaterally
deviating from a consistent solution since it will always obtain the same profit.

Definition A.3.10. The marginal contribution of player i in a coalition S,
denoted by MCi,S is the amount by which the overall profit value created for the
coalition would shrink if the player i leaves it:

MCi,S = v(S)− v(S \ {i}) (A.7)

Definition A.3.11. A coalitional game is said to be superadditive [71] if it guar-
antees the formation of the grand coalition (formed by all the players in the game).
The motivation under this formation is the assumption that by forming large coali-
tions, the profit obtained by each player is enhanced. The mathematical formula
reflecting this definition is given by:

v(S1 ∪ S2) ≥ v(S1) + v(S2), ∀S1 ⊂ N , S2 ⊂ N , s. t. S1 ∩ S2 = ∅. (A.8)

We note that the characteristic function of the coalitional game should always
satisfy the superadditivity property if the desired goal is the formation of a grand
coalition grouping all players. Otherwise, if Equation (A.8) is not satisfied, the
coalitional game should be modeled as a game in partition form [77].
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Definition A.3.12. A coalitional game is said to be supermodular [80] [88], if
the marginal utility of increasing a player’s strategy rises with the increase in other
players’ strategies:

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), ∀ S, T ⊆ N (A.9)

The authors in [88] show that the supermodularity of v is equivalent to:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ), ∀ S ⊆ T ⊆ N \ {i}, ∀ i ∈ N ; (A.10)

We note that a game is said to be convex if it adopts this supermodularity property.
Moreover, the supermodularity property is stronger than the superadditivity one, so
a game satisfying the supermodularity implies that it satisfies the superadditivity.

A.4 Solutions for Coalitional Games

In this section, we present the main solution concepts of coalitional games, proposed
so far in the literature.

A.4.1 Core

The core [74] [71] is considered as a key concept for coalitional games, it is related
directly to the grand coalition’s stability. In a coalitional game (N , v), due to
superadditvity property, the players have an incentive to form the grand coalition
N . Thus, the core is the set of payoff allocations which guarantees that no group
of players has an incentive to leave N in order to form another coalition S ∈ N .

C(v) =

{

x ∈ R
N :

∑

i∈N

xi = v(N );
∑

i∈S

xi ≥ v(S), ∀ S ⊆ N

}

. (A.11)

The core of coalitional game is not always guaranteed to exist since in many
games the core is empty and hence the grand coalition cannot be stabilized. In
convex games that satisfy the supermodularity property, the core is always non
empty [71].

For example, let us consider the following game in the characteristic form, where
the players are: N = A,B,C and the payoff values are given in Table A.1

The core of this game C(v) can thus be computed using Equation (A.11):

C(v) =
{

x ∈ R
N
}

s.t. x1 ≥ 0; x2 ≥ 0; x3 ≥ 0; x1 + x2 ≥ 40; x1 + x3 ≥ 30;
x2 + x3 ≥ 10; x1 + x2 + x3 = 100. Where x1, x2 and x3 are the profits of players A,
B, C respectively. The group of imputations in the core is illustrated in Figure A.1.

A.4.2 Shapley Value

As stated before, the core of a coalitional game does not always exist and sometimes
it can be quite large hence relying on the core concept is not a good option. This
motivated the researchers to look for another solution concept that can associate
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Table A.1: Coalitional payoffs.

Coalition v(S)

∅ 0

A 0

B 0

C 0

A ∪B 40

A ∪ C 30

B ∪ C 10

A∪B∪C 100
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Figure A.1: The set of imputations in the core.

to every coalitional game (N , v) a unique payoff vector known as the value of the
game. Shapley [74] [80] approached this problem axiomatically by defining a set
of desirable properties and by characterizing a unique mapping that satisfies these
axioms, later known as the Shapley value.

The Shapley value satisfies the efficiency (i.e, Def. A.3.5), the symmetry (i.e,
Def. A.3.6, the dummy (i.e, Def. A.3.8) and the additive (i.e, Def. A.3.7) axioms.
It is calculated as follows:

1. We first consider all the possible permutations of the players in the grand
coalition (e.g., if we have three players as before A, B, C the permutations are
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ABC, ACB, BAC, BCA, CAB, CBA). In general, in a game with N , we have
N ! permutations.

2. For each permutation and each player, we calculate the marginal contribution
that the player grants if he joins the coalition formed by the predecessor players
(i.e, Def. A.3.10).

3. For each player, we calculate the average of its marginal contributions on all
the permutations. The obtained results give the Shapley value solution having
a time complexity of O(N!).

Let us take again the same example of Section A.1, the Shapley value solution
is reported in Table A.2.

Table A.2: Shapley Value computation.

Marginal Marginal Marginal

Permutations Contribution Contribution Contribution

of A of B of C

A, B, C v({A}) − v(∅) = 0 v({A,B}) − v({A}) = 40 v({A,B,C}) − v({A,B}) = 60

A, C, B v({A}) − v(∅) = 0 v({A,B,C}) − v({A,C}) = 70 v({A,C}) − v({A}) = 30

B, A, C v({A,B}) − v({B}) = 40 v({B}) − v(∅) = 0 v({A,B,C}) − v({A,B}) = 60

B, C, A v({A,B,C}) − v({B,C}) = 90 v({B}) − v(∅) = 0 v({B,C}) − v({B}) = 10

C, A, B v({A,C}) − v({C}) = 30 v({A,B,C}) − v({A,C}) = 70 v({C}) − v(∅) = 0

C, B, A v({A,B,C}) − v({B,C}) = 90 v({B,C}) − v({C}) = 10 v({C}) − v(∅) = 0

Average 41.67 32.67 26.66

The formula for calculating the Shapley value is given by:

Φi(v) =
∑

S⊂N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i} − v(S)] (A.12)

In general the Shapley value is unrelated to the core; however for convex games
that satisfy the supermodularity property, the Shapley value lies in the core and it
is considered as the barycenter of this core [137] [138].

A.4.3 Kernel

The “Kernel” solution concept groups the imputations such that no player has bar-
gaining power over another one. It states that if players i and j are in the same
coalition, then the highest excess that player i can make in a coalition without
player j is equal to the highest excess that player j can make in a coalition without
player i.

By definition we say that a player i has more bargaining power than player j
with respect to an imputation x = (x1, x2, ..., xn) if the maximum surplus he has
on j is bigger than the maximum surplus that a player j has on him.

The maximum surplus si,j(x) is defined as the maximal amount that a player i
can gain without the cooperation of player j , it is given by:

sij(x) = max

{

ν(S)−
∑

k∈S

xk : S ⊆ N \ {j}, S ∋ i

}

. (A.13)
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Intuitively, player i has more bargaining power than player j with respect to impu-
tation x if the maximum surplus he has on j is bigger than the maximum surplus
j has on him [i.e., if sνij(x) > sνji(x)].

As a conclusion, the kernel is computed by:

[sνij(x)− sνji(x)][xj − ν(j)] ≤ 0 ∧ [sνji(x)− sνij(x)][xi − ν(i)] ≤ 0, ∀i, j ∈ N (A.14)

In the case of a convex game that satisfies the supermodularity property, the
kernel consists of a single point that is denoted thereafter as Nucleolus [139].

A.4.4 Nucleolus

Finally, another concept is worth being mentioned: the “Nucleolus”. It is the im-
putation that minimizes the worst inequity. The Nucleolus is computed on the
imputation set as follows:

1. For each coalition S ∈ N , we determine the inequity of an imputation x as the
coalitional surplus also called the excess that measures the amount by which
coalition S falls short of its potential v(S) in the allocation x. The excess is
computed as the difference between the coalition worth v(S) and the received
payoff

∑

j∈S xj ;

e(x, S) = v(S)−
∑

j∈S

xj , ∀S ⊂ N . (A.15)

2. We order the coalitions with respect to their excesses, decreasingly.

3. The Nucleolus is the lexicographic minimum of all possible excess vectors, it
is the solution that minimizes the largest excess.

We note that a game has a unique nucleolus that is always in the kernel. If the
core is non-empty, the nucleolus belongs to the core and can be used for selecting a
core element.

If we return back to the example above with three players N = A,B,C, with
the coalition payoffs of Table A.1, the Nucleolus solution is obtained in Table A.3
and computed as follows:

1. We start at an arbitrary allocation vector such that x1 + x2 + x3 = 100, e.g.,
(50, 30, 20).

2. After computing the excesses of the different coalitions, we determine the
largest excess, corresponding to coalition C in our case. Our goal is to mini-
mize the largest excess, but we notice that by making x3 larger, the excess of
A ∪B increases at the same rate and these excesses then meet at −30, when
x3 = 30. Clearly, no other allocation x can make the excess smaller than −30
since at least one of the coalitions C or A ∪ B can have at least an excess of
−30. Hence, x3 = 30 is the first component of the Nucleolus.

3. Proceeding in the same manner, one finally obtains the Nucleolus allocation
(35, 35, 30) for the considered game.
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Table A.3: Nucleolus computation.

Coalition e(x, S) (50, 30, 20) (38, 32, 30) (35, 35, 30)

F1 −x1 -50 -38 -35

F2 −x2 -30 -32 -35

F3 −x3 -20 -30 -30

F1 ∪ F2 40-x1-x2 -40 -30 -30

F1 ∪ F3 30-x1-x3 -40 -38 -35

F2 ∪ F3 10-x2-x3 -40 -52 -55

Visibly, the computation of the nucleolus is not trivial. Another way of comput-
ing it is to model the problem as mixed linear programming problem. The objective
is to minimize the maximal excess α such that:

ν(S)−
∑

i∈S

xi ≤ α, ∀S ⊂ N (A.16)

And the grand coalition has always null surplus:
∑

i∈N

xi = ν(N) (A.17)

Solving this LP, many optimum solutions might be obtained for the same minimum
α0. If this is not the case, the solution vector x∗ is the nucleolus, and α0 is the
maximal excess. Otherwise, one extracts the set of binding coalitions S0 and iterates
the optimization changing (A.16) with:

ν(S) +
∑

i∈S

xi = α0, ∀S ∈ S0 (A.18)

when a coalition belongs to S0. S0 is to be built as set of coalitions that are likely
to oscillate the least, typically one takes the least surplus set of coalitions. After at
most n iterations the solution is unique and it is the nucleolus of the game.

A.5 Bankruptcy Game

The story of begins astonishingly enough with the Babylonian Talmud! The Talmud
is a collection of commentaries on the (Hebrew) Bible that originated as an oral
tradition and eventually was codified into written form. The Talmud discusses the
bankruptcy problem in the context of a man offering debts to his three wives in
excess of his assets. The Talmud answer is not immediately obvious, and in fact,
the answer baffled academics for over almost 2,000 years [140].

A.5.1 Talmud Mystery

One problem discussed in the Talmud is the so called marriage contract problem: a
man has three wives whose marriage contracts specify that in the case of this death
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Figure A.2: Talmud answers.

they receive 100, 200 and 300 respectively. The Talmud offers answers through
three examples. The text does not contain a general rule, which is what makes
these answers seemingly contradictory. The three cases are when the estate size is
100, 200, and 300.

• When the man dies leaving an estate of only 100, the Talmud awards 33 1/3
to each wife, it seems an equal division of the estate but strangely this is not
the same division used in the other cases.

• When the estate is 300, the Talmud recommends a proportional division of
50, 100 and 150 to the wives.

• For an estate of 200, the estate is supposed to be divided as 50, 75, and 75.
The division does not seem an equal division nor a proportional division, but
it is simply a curious decision altogether. Why should the second and third
wives be given the same amount of money? And where do the numbers come
from?

We summarize the Talmus answers in Figure A.2; the rows are the estate sizes,
the columns are the claims or demands, and the table entries are the division size
recommended by the Talmud. The answers defied a proper explanation for almost
2,000 years, filling volumes of critical review. Some scholars have essentially given
up and suggested the 200 case might be an issue of faulty transcription.

A.5.2 Talmud Solution and Bankruptcy Game

In the 1980s the mystery has been cracked [79], the authors demonstrate that the
Talmud solution is computed by the following seven steps algorithm:

1. Order the claimants from lowest to highest claims.

2. Divide the estate equally among all parties until the lowest claimant receives
one half of the claim.

3. Divide the estate equally among all parties except the lowest claimant until
the next lowest claimant receives one half of the claim.

4. Proceed until each claimant has reached one-half of the original claim.
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5. Now, work in reverse. Start giving the highest-claim money from the estate
until the loss, the difference between the claim and the award, equals the loss
for the next highest claimant.

6. Then divide the estate equally among the highest claimants until the loss of
the highest claimant is equal the loss of the next highest.

7. Continue until all the estate has been awarded.

They also demonstrate that the Talmud answer can be viewed as a consistent ap-
plication of a game theory principle and that the Talmud answer is the solution of a
properly defined coalitional game, called thereafter: Bankruptcy Game and defined
as follows:

Definition A.5.1. A bankruptcy game [79] is defined as G(N , v) where N repre-
sents the claimants of the bankruptcy situation and v is the characteristic function
that associates to each coalition its worth defined as the part of the estate not
claimed by its complement:

v(S) = max(0, E −
∑

i∈N\S

di) , ∀S ⊆ N\{∅} (A.19)

where E ≥ 0 is an estate that has to be divided among the members of N (the

claimants) and d ∈ R
|N |
+ is the claim vector such that E <

∑

i∈N
di.

Equation (A.19) has been proven to be superadditive [71]. Moreover, it satisfies
the supermodularity property [80] [88].

The Nucleolus defined in Section A.4.4 has been shown [79] as the unique
consistent solution (i.e., please refer to Definition A.3.9) in bankruptcy game.
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