
HAL Id: tel-01086964
https://theses.hal.science/tel-01086964

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feeding a data warehouse with data coming from web
services. A mediation approach for the DaWeS

prototype
John Samuel

To cite this version:
John Samuel. Feeding a data warehouse with data coming from web services. A mediation approach for
the DaWeS prototype. Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2014. English.
�NNT : 2014CLF22493�. �tel-01086964�

https://theses.hal.science/tel-01086964
https://hal.archives-ouvertes.fr

N◦ d’ordre : D.U: 2493
EDSPIC : 669

Université Blaise Pascal - Clermont II
ECOLE DOCTORALE

SCIENCES POUR L’INGENIEUR DE CLERMONT-FERRAND

THÈSE
Presentée par

John SAMUEL
pour obtenir le grade de

Docteur d’Université
Spécialité : Informatique

Feeding a Data Warehouse with Data coming from
Web Services. A Mediation Approach for the DaWeS

prototype.

Thèse dirigée par Farouk Toumani, Christophe Rey

préparée au LIMOS - UMR CNRS 6158
soutenue publiquement le

6 Octobre, 2014
Devant le jury:

Rapporteurs : Pr. Omar Boucelma (Président du jury) Aix-Marseille Université
Pr. Jérôme Darmont Université Lumière Lyon 2

Examinateurs: Dr. Emmanuel Coquery Université Claude Bernard Lyon 1
Pr. Farouk Toumani (Directeur de thèse) Université Blaise Pascal
Dr. Christophe Rey (Co-directeur de thèse) Université Blaise Pascal

Invité: M. Franck Martin Rootsystem, Vichy

N◦ d’ordre : D.U: 2493
EDSPIC : 669

Feeding a Data Warehouse with Data coming from
Web Services. A Mediation Approach for the DaWeS

prototype.

by

John SAMUEL
A Thesis

submitted to the Graduate School of Engineering Sciences

of the Blaise Pascal University - Clermont II
in fulfilment to the requirements for the degree of

Doctor of Philosophy
in Computer Science

Supervised by Farouk Toumani, Christophe Rey

at the LIMOS laboratory - UMR CNRS 6158
publicly defended on

October 6, 2014

Before the jury:

Reviewers : Pr. Omar Boucelma (President of jury) Aix-Marseille Université
Pr. Jérôme Darmont Université Lumière Lyon 2

Examinators: Dr. Emmanuel Coquery Université Claude Bernard Lyon 1
Pr. Farouk Toumani (Directeur of thesis) Université Blaise Pascal
Dr. Christophe Rey (Co-directeur de thesis) Université Blaise Pascal

Invitee M. Franck Martin Rootsystem, Vichy

Abstract

The role of data warehouse for business analytics cannot be undermined for any enter-
prise, irrespective of its size. But the growing dependence on web services has resulted
in a situation where the enterprise data is managed by multiple autonomous and het-
erogeneous service providers. We present our approach and its associated prototype
DaWeS [Samuel, 2014; Samuel and Rey, 2014; Samuel et al., 2014], a DAta warehouse
fed with data coming from WEb Services to extract, transform and store enterprise
data from web services and to build performance indicators from them (stored enter-
prise data) hiding from the end users the heterogeneity of the numerous underlying
web services. Its ETL process is grounded on a mediation approach usually used in
data integration. This enables DaWeS (i) to be fully configurable in a declarative man-
ner only (XML, XSLT, SQL, datalog) and (ii) to make part of the warehouse schema
dynamic so it can be easily updated. (i) and (ii) allow DaWeS managers to shift from
development to administration when they want to connect to new web services or to
update the APIs (Application programming interfaces) of already connected ones. The
aim is to make DaWeS scalable and adaptable to smoothly face the ever-changing and
growing web services offer. We point out the fact that this also enables DaWeS to be
used with the vast majority of actual web service interfaces defined with basic tech-
nologies only (HTTP, REST, XML and JSON) and not with more advanced standards
(WSDL, WADL, hRESTS or SAWSDL) since these more advanced standards are not
widely used yet to describe real web services. In terms of applications, the aim is to
allow a DaWeS administrator to provide to small and medium companies a service to
store and query their business data coming from their usage of third-party services,
without having to manage their own warehouse. In particular, DaWeS enables the easy
design (as SQL Queries) of personalized performance indicators. We present in detail
this mediation approach for ETL and the architecture of DaWeS.

Besides its industrial purpose, working on building DaWeS brought forth further
scientific challenges like the need for optimizing the number of web service API opera-

2

tion calls or handling incomplete information. We propose a bound on the number of
calls to web services. This bound is a tool to compare future optimization techniques.
We also present a heuristics to handle incomplete information.

Keywords Web Services, Application Programming Interface (API), Data Integra-
tion, Incomplete Information, Datalog Query, Limited Access Patterns, Adaptability,
Data Warehouse, Conjunctive Query

Acknowledgement

First of all, I would like to thank the Region of Auvergne and FEDER for funding our
research project. I am extremely grateful to Christophe Rey and Farouk Toumani for
their guidance and direction. The research work under their direction has helped me
to further expand my horizons in the fields of data integration and web services. I
am especially thankful to Christophe Rey for the very fruitful day-long discussions on
several scientific challenges encountered during the research period. His guidance also
enabled me to explore the DaWeS development from various points of view. I am also
thankful to Frank Martin and Lionel Peyron of Rootsystem, Vichy, France for their
feedback during the development of DaWeS.

I also express my gratitude to all the other members of the LIMOS laboratory, espe-
cially Alain Quillot, Béatrice Bourdieu, Martine Caccioppoli and Pascale Gouinaud for
their technical and administrative support. I am especially thankful to my colleagues
Benjamin Momège, Karima Ennaoui, Lakhdar Akroun and Salsabil Grouche for their
active participation in several scientific discussions. I would also like to express my
gratitude to various past and current colleagues of LIMOS especially Hicham Reguieg,
Jonathan Passerat-Palmbach, Kahina Gani, Li Haizhou, Pierre-Antoine Papon and
Yahia Chabane.

I would like to express my sincere gratitude to Mathieu d’Aquin (Knowledge Media
Institute, The Open University, United Kingdom) and Steffen Staab (Institute for
Web Science and Technologies - WeST, Universität Koblenz-Landau, Germany) for
their feedback during 11th ESWC PhD Symposium, Crete, Greece. I would also like to
acknowledge various anonymous reviewers of the conference papers and the respective
attendees for their reviews and comments. I also acknowledge the reviewers of the
thesis report for their feedback.

I would specially like to thank all my past teachers and professors since my child-
hood for their guidance. I am extremely grateful to Vineeth Paleri and Vinod Pathari

4

for their inspiration that encouraged me to pursue research and development as a career
path.

I am thankful to Anthony for enabling me to be who I am. I am also thankful to
my family members especially my parents and grandfather (and my late grandmother)
for all their love and care. In particular, I would like to thank my sister Sheeba for her
utmost support and being the bridge for communication.

I would like to thank Alice, Amélie, Anne-Lise, Annick, Anthony, Aurélie, Barbara,
Betty, Charlotte, Delphine, Elise, Elsa, Elvire, Frédérique, Gegemon, Jisha, Joe, Joel,
Matylda, Morgaine, Nicolas, Patrice, Prathaban, Romain, Sophie, Swathy, Tiphaine,
Victor and Zélie for their support, love and care.

Last, but not the least, I am thankful to my friends from the animal kingdom:
Odin, Lilith and Simone who made everyday special to me.

5

To
Anthony, for helping me discover myself through lines and colors

transcending bits and bytes
Sheeba, my sister for being the pillar of support in all times of need,
Samuel and Leelamma, my parents for implanting in me the desire to

explore and fulfill my dreams
and Simone, the cute little cat for being so gentle and sweet.

Contents

1 Introduction 21

2 Problem Statement 27

2.1 Industrial Problem . 27

2.2 DaWeS: Data warehouse fed with data coming from Web Services . . . 28

2.3 Constraints . 30

3 State of the Art 37

3.1 DaWeS and Data Warehousing . 38

3.2 Integrating Data coming from the Web Services 42

3.3 DaWeS and Mediation . 44

3.3.1 Describing Data Sources . 46

3.3.2 Query Rewriting . 47

3.3.3 Optimization . 49

3.4 DaWeS and Web Standards . 50

4 Preliminaries 55

4.1 Theoretical Preliminaries . 55

4.1.1 Relational Model Recalls . 55

4.1.2 Relational Model with Access Patterns 58

8 Contents

4.2 ETL of Data coming from Web Services 60

4.2.1 ETL in Classical Data Warehouse 60

4.2.2 Web Services as Data sources 60

4.2.3 Recalls about Data Integration 61

4.2.4 Mediation as ETL . 62

4.2.5 Inverse Rules Query Rewriting 64

4.3 Generic Wrapper for Web Services . 70

5 DaWeS: Data Warehouse fed with Web Services 73

5.1 Two Tiered Architecture of DaWeS . 73

5.2 Architecture and Development . 75

5.2.1 Overview . 75

5.2.2 Detailed Architecture . 79

5.2.3 Development . 98

6 Optimizing Query Processing in DaWeS 101

6.1 Handling Incomplete Information . 101

6.2 Bounding the Number of Accesses . 107

6.2.1 Motivation . 107

6.2.2 CQα Queries Operational Semantics 111

6.2.3 CQα Queries Accesses . 119

6.2.4 Bounding the Number of CQ Query Answers 120

6.2.5 Bounding the Number of CQα Query Accesses 122

6.2.6 Bounding the Number of Accesses for the Inverse-Rules Algo-
rithm Output . 123

6.2.7 Discussion . 129

Contents 9

7 Using DaWeS 131

7.1 DaWeS Features . 131

7.1.1 Administrators . 131

7.1.2 Enterprise Users . 132

7.2 Methodology for Modeling Web Service Interfaces in a Data Integration
Approach . 134

7.2.1 Global Schema Relations . 134

7.2.2 Local Schema Relations and LaV Mapping 135

7.2.3 Enterprise Record Definitions and Performance Indicator Queries 142

7.3 Experiments . 144

7.3.1 Experiment Description . 144

7.3.2 Experiment Results . 149

8 Future Works and Conclusion 159

Bibliography 163

A Glossary 181

B Analysis of Web Service API 183

B.1 Web services Analyzed . 183

B.2 Criteria of Analysis . 185

B.2.1 Category (Domain) of web services 185

B.2.2 Use of Web Service Definition Languages 185

B.2.3 Conformance to the REST . 186

B.2.4 Support of Versions . 186

B.2.5 Authentication Methods . 187

10 Contents

B.2.6 Resources Involved . 188

B.2.7 Message Formats for Communication 189

B.2.8 Service Level Agreement/ Terms and Conditions of Use 190

B.2.9 Interface Details . 190

B.2.10 Data Types . 192

B.2.11 Dynamic Nature of the Resources 193

B.2.12 Operation Invocation Sequence 193

B.2.13 Pagination . 194

B.3 Conclusion . 194

C DaWeS: Examples 199

C.1 Global Schema . 199

C.2 Web Service API Operations . 202

C.2.1 HandlingPagination . 263

C.3 Enterprise Records . 264

C.4 Performance Indicators . 267

C.5 Test Data for Web Services . 289

D DaWeS: Manual 293

D.1 Syntax for writing Datalog query . 293

D.2 Relations . 294

D.2.1 Web Service . 296

D.2.2 Web Service API . 298

D.2.3 Global and Local Schema Relations 300

D.2.4 Record Definitions and Performance Indicator Queries 301

Contents 11

D.2.5 Enterprises, Enterprise Records and Enterprise Performance In-
dicators . 304

D.2.6 Tags and Ratings . 306

D.2.7 Calibration Status and Error Details 308

D.3 DaWeS: Command Line Manual . 309

D.3.1 Name . 309

D.3.2 Synopsis . 309

D.3.3 Description . 309

D.3.4 Options . 309

D.3.5 Examples . 310

D.3.6 Files . 311

D.4 DaWeS: Java Interfaces for Developers 312

D.4.1 Interfaces . 312

D.4.2 Options . 315

List of Figures

2.1 DaWeS for Enterprises using Web Services 29

3.1 Query Rewriting Considered under Various Dimensions 48

3.2 Languages for Describing Web Service Description 51

4.1 LAV based Data Integration . 62

4.2 Mediation as ETL . 63

4.3 Inverse Rules Query Rewriting Algorithm 65

5.1 DaWeS: Overall Picture of Two Tiered Architecture 74

5.2 DaWeS: Two Tiered Architecture . 75

5.3 Basic Architecture . 77

5.4 DaWeS: Detailed Architecture . 80

5.5 Web Service . 81

5.6 Web Service API . 81

5.7 Local and Global Schema . 82

5.8 Record Definitions and Performance Indicators 82

5.9 Organization, its authentication params and interested Record Defini-
tions and Performance Indicator . 83

5.10 Organization Data . 83

14 List of Figures

5.11 DaWeS: Query Evaluation Engine . 91

5.12 DaWeS: Generic HTTP Web Service API Handler 92

6.1 The adapted Inverse-Rules Algorithm 105

6.2 Heuristics to handle Incomplete Information 108

7.1 Role of DaWeS Administrator . 132

7.2 Role of DaWeS Enterprise User . 133

7.3 Screenshot of Basecamp Project . 138

7.4 DaWeS: Help . 149

7.5 DaWeS: Searching a web service . 149

7.6 DaWeS: Searching a record definition 150

7.7 DaWeS: Searching a Performance Indicator 150

7.8 DaWeS: Performing Calibration of Record Definitions 151

7.9 DaWeS: Performing Calibration of Performance Indicators 151

7.10 DaWeS: Fetching a Record: Daily New Projects 151

7.11 DaWeS: Fetching a Record: Daily Open Tasks 152

7.12 DaWeS: Fetching a Record: Daily Open Tickets 152

7.13 DaWeS: Computing a Performance Indicator: Monthly Forwards of
Campaign . 153

7.14 DaWeS: Computing a Performance Indicator: Total high priority tickets
Registered in a month . 153

7.15 DaWeS: Computing a Performance Indicator: Percentage of high prior-
ity tickets Registered in a month . 153

7.16 DaWeS: Running the scheduler . 153

7.17 DaWeS: Scheduler performing Query Evaluation using web service API
Operations . 154

List of Figures 15

7.18 DaWeS: Analysis of Query Evaluation of All Queries 155

7.19 DaWeS: Analysis of Various Components of Generic HTTP Web Service
Wrapper . 156

7.20 DaWeS: Performance Indicator Computation 157

D.1 Organization Tags and Ratings . 295

D.2 Organization Tags and Ratings . 295

D.3 Details of SQL Tables Related to Web Service 297

D.4 Details of SQL Tables Related to Web Service API 299

D.5 Details of SQL Tables Related to Local and Global Schema 300

D.6 Details of SQL Tables Related to Record Definitions and Performance
Indicators . 302

D.7 Details of SQL Tables Related to Organization, its authentication params
and interested Record Definitions and Performance Indicator 304

D.8 Details of SQL Tables Related to Organization Data 305

D.9 Details of SQL Tables Related to Organization Tags and Ratings 307

D.10 Details of SQL Tables Related to Calibration 309

List of Tables

2.1 Web Service API Analysis on Project Management Services 33

2.2 Web Service API Analysis on Email Marketing services 34

2.3 Web Service API Analysis on Support/Helpdesk Services 35

3.1 DaWeS and Data Warehousing . 39

3.2 DaWeS and Integration with Web Services 43

3.3 Data Integration and Web Services: State of the Art 45

4.1 Helpdesk web services and their operations 68

5.1 Development Environment . 98

6.1 Tables: Volumes and Publication . 110

7.1 DaWeS Experiments: Setup . 145

7.2 Total Web Service API Operations considered for the Tests 145

B.1 Web services . 184

B.2 Web Service API Information Template 185

B.3 Web services and their Conformance to REST 187

B.4 Web services and the Support for Versions 188

B.5 Web services and the Authentication Mechanisms 189

18 List of Tables

B.6 Web services and the Resources . 190

B.7 Web services and the Message Formats 191

B.8 Web services and the Service Level Agreement 192

B.9 Web Service API Analysis on Project Management Services 195

B.10 Web Service API Analysis on Email Marketing services 196

B.11 Web Service API Analysis on Support/Helpdesk Services 197

C.1 Global Schema Relations and Attributes 199

C.2 Primary Key for Global Schema Relations 201

C.3 Local Schema Relations . 203

C.4 Records from Web Services . 265

C.5 Performance Indicators . 268

List of Algorithms

6.1 The ExecTransform algorithm . 117

6.2 Operational Semantics of DatalogαLast translated as a naive DatalogαLast

query evaluation algorithm . 118

Chapter 1

Introduction

General Context

In order to reach a wider audience, many major service providers have switched from
the traditional desktop software model to making services available over the internet.
This trending approach, also known as Software as a Service (SaaS) has enabled the
service providers to reach a large number of potential customers. The growing use of
internet has fueled a complete new generation of web service providers and users. While
the desktop software model limits the usage of the software to a particular operating
system, services over the internet, particularly those that are accessible using the HTTP
[Berners-Lee et al., 1996; Fielding et al., 1999] protocol, help the customers to easily
access them over their web browsers using any operating system.

Many small and medium scale enterprises have started using the web services for
their daily transactions. Enterprises are now moving from the traditional bloated
one-software-fits-all model to the more specialized web services suiting their specific
needs. These enterprises have now been able to focus on their core business rather
than involving themselves to the cumbersome task of maintaining their own internal
softwares.

But the internal softwares and applications have the benefit that the entire business
data is within the reach of individual business owners. In spite of being managed by
different departments of the enterprise, the enterprise owners have the ability to have
direct control over their entire data infrastructure and hence over their own business
data.

Enterprises using web services have no direct control over the underlying data in-

22 Introduction

frastructure of the service providers and thereby over their own business data. The only
convenient mechanism for enterprises to access and manipulate their data is through
application programming interface (API) exposed by service providers to allow the
clients to build their own internal applications and dashboards. A majority of web
service providers expose the API so that both the clients and third party users autho-
rized by the clients can access and manipulate the client data. APIs of several service
providers can be used together to create interesting new web services [Thakkar et al.,
2004] often called service mashups [Benslimane et al., 2008]. A lot of service mashups
have appeared in the market during past several years offering various interesting ser-
vices to the web service users making use of their user data.

Web services APIs differ among each other significantly with respect to the use of
different message formats, authentication mechanisms, service level agreements (SLA),
access limitations, data types, and the choice of input, output and error parameters.
APIs are mostly described using human readable (HTML) web pages. Therefore it
requires a significant amount of development effort to read these web pages and create
service mashups. Thus most of these mashups are limited to a very few web service
APIs. Taking this into account, the research and industrial community had previously
proposed various machine readable standards to describe the web service APIs, partic-
ularly WSDL [W3C, 2001] and WADL [Hadley, 2006]. But the lack of their widespread
industrial adoption still poses a major challenge.

Furthermore service providers often make updates to their services like addition
and deprecation of resources, change in the API or SLA. They deprecate the older
versions of the API making them no longer available to the external world. Sometimes
these changes force the clients to change their service providers due to various business
reasons (e.g., financial). In some cases, web service providers may shutdown. All the
above situations may lead to the loss of past enterprise data and also requires changes
in the internal applications and dashboards created with the older web service API.
Though the use of web services have helped a lot for the small and medium scale
enterprises in reducing their workload, it has made it difficult for them with lesser
human resources and expertise to seamlessly integrate with numerous web services.

Business analytics form the prime pillars for every enterprise willing to track its
growth and performance. Integration of enterprise data spread across various data
sources (like various department databases) is important towards this goal. Indeed a
(central) data warehouse [Inmon, 1992; Kimball, 1996] helps the enterprises to have
an integrated view of all the relevant enterprise data obtained from the various de-
partments (or business sub-units) using wrappers [Roth and Schwarz, 1997]. But the

Introduction 23

dependence on web services has resulted in a situation where seamless integration with
these heterogeneous, autonomous and ever-evolving data sources poses a major prob-
lem.

Problem Studied and Contributions

Our work focuses on creating a solution able to easily provide an online and per-
sonalized data warehouse for small and medium scale enterprises using web services.
The purpose is two fold: first, providing a store for past historical enterprise data and
second, enabling the easy computation of business performance indicators hiding from
them the underlying intricacies and heterogeneity of the web services.

Scientifically speaking, the first and important problem is how to feed a data ware-
house with data coming from web services. Also we have constraints like having very
few developers and the need to work with real web services. We would like to ease the
burden of developers by shifting the focus from development to administration, i.e. ev-
ery new web service API or any change in web service API (operation) is declaratively
described in the platform. Towards this objective, we propose to address the entire
ETL (extraction, transformation and loading) of relevant web service enterprise data
to the data warehouse by choosing the mediation approach, a well-known virtual data
integration approach. Fully automating ETL from web services is a very complex task
especially given the lack of usage of machine readable web service description languages.
Mediation enables the use of declarative languages to handle the update/adding of new
web services as data sources to data warehouse.

From an industrial point of view, we designed and developed DaWeS, a DAta ware-
house fed with data coming from WEb Services [Samuel, 2014; Samuel and Rey, 2014;
Samuel et al., 2014]: a complete multi-enterprise data warehouse platform to be fed
with the enterprise data from the web services. We designed and implemented a com-
plete ETL module based on mediation along with a generic HTTP Web Service API
wrapper to extract and transform data from the web services using their API. The
result is a data warehouse with a partly dynamic global schema able to store relevant
enterprise data and compute user-defined performance indicator queries using these
data.

From a research perspective, we validated our approach by using actual web services
from three different domains. Certain web service operations require input arguments,
the values of which must be obtained from other web service operations. We consider
web service operations as relations with access patterns (an access pattern characterizes
the input and output arguments of a relation). We defined the precise operational

24 Introduction

semantics of conjunctive query with access patterns and use it to define an upper
bound on the number of accesses for conjunctive query with access patterns. Since
every access corresponds to one web service API operation call, this bound allows to
have a measure on the number of accesses (i.e. calls) during ETL. Web service API
operation calls are expensive since they are both priced and also made over the internet
(thereby consuming internet bandwidth). The goal of this measure is to help future
efforts to reduce the number of these (expensive) API operation calls made over the
internet; thereby it plays an important role in comparing various query optimization
algorithms. Besides we face another problem: not every web service provides us all
the information required to answer the queries formulated over the data warehouse
schema. We thus propose a heuristics to handle the incomplete information arising out
of such web services.

Outline

Chapter 2 presents the problem statement, describing the industrial problem and
the various constraints. In particular, it gives an analysis of API of actual web ser-
vices from three different domains: project management, email marketing and support-
/helpdesk.

In chapter 3, we present the state of art and compare our work with various other
works that aimed to integrate with the web services. We position our work with other
very closely related domains.

Chapter 4 presents the preliminaries. It first introduces the notion of ETL (ex-
traction, transformation and loading), a classical approach to feed the data warehouse
and discusses how the mediation approach can be used as an ETL tool to feed the
data warehouse with the web service data. Traditionally in data integration, wrappers
are used to extract data from the data sources. We discuss how this idea has been
extended to the domain of web services to build a generic wrapper using only basic
web service technologies that fits well with mediation.

Chapter 5 describes in detail how the mediation approach is used to build DaWeS.
DaWeS architecture is discussed in detail along with its development.

We discuss in Chapter 6 various open problems encountered during the study and
development of DaWeS. We present the study on how to obtain the upper bound on
the number of accesses for conjunctive query with access patterns. We also discuss
heuristics to handle incomplete information coming from web services.

We then move on to discussing how DaWeS can be used. Chapter 7 discusses its

25

usage both from the point of view of a DaWeS administrator and a DaWeS (client
enterprise) user. We discuss the methodologies to be followed in deciding the relevant
enterprise data to be stored, describing web service API operations and performance
indicators. We also present qualitative and quantitative experiments done using real
web services from three domains and discuss the obtained results.

In chapter 8, we describe the future course of actions from an industrial and scientific
context. We also discuss how advancements in the closely related domains can be used
to extend the capabilities of DaWeS. Finally we conclude our work.

In addition to these, Appendix A gives the glossary. Appendix B describes the
analysis of the API of web services in detail. Various examples explaining how to add
a new web service, how to formulate queries to extract relevant data from web services,
and how to create a performance indicator query are described in Appendix C. DaWeS
manual has been summarized in Appendix D, also describing the various relational
tables used in DaWeS for storing web service description, performance indicators and
enterprise data.

Chapter 2

Problem Statement

Web services are heterogeneous, autonomous and ever-evolving. Small and medium
scale enterprises are dependent on numerous such web services for their various day
to day requirements. Integrating with multiple such web services with lesser human
resources is currently a daunting task. But such an integration is important not only to
get an integrated view of the enterprise data spread across numerous web services but
also to be able to perform various business analytics over this integrated data. In this
chapter, we will first present the industrial problem and discuss how it can be related
to a data warehouse fed with web services. We will discuss the various constraints
especially the fact that the current generation of web services do not use advanced web
service description languages.

2.1 Industrial Problem

The initial problem was given by Rootsystem [Rootsystem, 2014], an enterprise based
in Vichy, France. Their product LittleCrowd [LittleCrowd, 2014] wants to be one-
place portal for all the quality management requirements of enterprises. Business
performance measure is a key aspect. They specially target small and medium scale
enterprises using web services for their daily requirements. The requirements are sum-
marized below:

• Periodically or on trigger of events (manual or automated), collect relevant in-
formation (records or periodic snapshots) of the client data from various web
services and store them (if permitted by the clients) in a local database.

28 Chapter 2. Problem Statement

• Compute business performance measures periodically or on trigger of events
(manual or automated) using the client records stored in the the database.

• In addition to default performance indicators, enable clients to easily define and
compute new ones using their available records.

• Integrate easily with a large number of web services.
• Take into account the evolution of web services.
• Cater to the fact that clients change their web services from time to time and

must still have access to their old enterprise data from their previous web services
and achieve continuity with the new web service data.

• Periodically verify and guarantee the process of accurate fetching of the enterprise
web service data.

• Periodically verify accurate computation of performance indicators.
• Support searching of supported web services and performance indicators and

incorporate the popularity and folksonomies related to the search results.

2.2 DaWeS: Data warehouse fed with data coming
from Web Services

A data warehouse is commonly used in the industry for the purpose of business data
analytics. It provides an integrated view of the relevant enterprise data obtained from
various departments (or business sub-units) and is later used for computing business
indicators. In our case, the data sources are the web services. Therefore the goal of
our work is to build a DAta warehouse fed with data coming from WEb Services. We
call it DaWeS.

The aim of DaWeS is captured in the Figure 2.1. While an enterprise user continues
to use the web services for the daily transactions, DaWeS periodically extracts relevant
enterprise data from these web services using their API and with the authorization
of the enterprise owner. Apart from storing the historical enterprise data, it also
computes some default (and popular) performance indicators using these data and also
enable the enterprise user to easily define and compute new performance indicators (for
performance dashboards). A DaWeS administrator periodically watches and manages
API of various supported web services for any announced changes (eg., official blogs
and forums of the service providers) and add support for new web services considering
the client demand.

A typical business use case of DaWeS can be described as follows. Alice, a small

2.2. DaWeS: Data warehouse fed with data coming from Web Services 29

������

�	
������
��������	�������
�������	
��������

��������	��
��������

��������	

����	������

���������������	�	

�����

��	
�
�����

������	�����
���������������

�	���

������	��
�����	����

 ������	��!��
������	
�"�������������

����������	���
�����	����

��������
���

#	�	$��������
����������������

%	�������&������	
�&
'��	���(

Figure 2.1: DaWeS for Enterprises using Web Services

scale enterprise owner has just begun her enterprise and is currently using a project
management service P1 to manage her several different projects. Her second product
will be released in a couple of months. She wants to track the progress of various tasks
in the different projects, especially the open tasks. She periodically checks the website
of P1, but the website doesn’t offer her any statistics on the number of open tasks. She
checks every project and verifies the individual task status and counts the open tasks
to finally get the number she wants. Being a small company, she also manages on her
own various email campaigns to study the market demand of her upcoming product.
For this purpose, she is using two email marketing web services E1, a free service and
E2, a premium service. She wants to compare the performance of her various trial
campaigns on both these services. She manually checks the website of E1 and E2 to
know the latest campaign statistics and later compares them using a spreadsheet. She
had recently set up a team for getting customer feedback and feature requests and was
using a support/helpdesk service S1. She was happy with the services provided by S1

until recently when they changed their prices. She heard about S2, another helpdesk

30 Chapter 2. Problem Statement

service and decided to give it a try. But she wonders how she can get a one-portal
view of all her enterprise data spread across P1, E1, E2, S1 and S2. Then she heard
about DaWeS, a solution to her requirements: a one-portal view for business analytics
from web service enterprise data. With DaWeS, she can not only get a consolidated
statistics of all the campaigns, projects and complaints (feature requests) across web
services P1, E1, E2, S1 and S2., but also create her own business performance measures
like the monthly number of clicks she had received for her campaign. Thanks to DaWeS,
she can have a snapshot of the data from her previous web service (eg. S1) and continue
using them even with a new web service (eg. her trial with S2).

For DaWeS to be a generic solution for all the enterprises, it cannot assume working
with a couple of services from selected domains like email marketing, project manage-
ment or support (helpdesk) services. It must not only be able to support any increasing
number of domains but it must also be possible to easily integrate with any number
of web services from these domains. In a nut shell, DaWeS must provide the following
features:

• Scalable and Adaptable platform: DaWeS must be scalable, that is it must
be easily possible to integrate with numerous web services. It must also be
adaptable, that is when a web service changes its interface, it must be very easy
to make this update to DaWeS.

• Historical Data Storage and Performance Indicators: DaWeS must give
an option to the enterprises to periodically store selected enterprise data from
web services and allow them to create interesting business measures using the
stored enterprise data.

• Continuity of Enterprise Data: Enterprises may change their web service
providers or the web services may shut down. Enterprises must be able to easily
work with their past enterprise data along with the data coming from the new
web service (from the same domain). Accordingly the performance indicators
must continue to work even with the change of web services.

2.3 Constraints

We also have the following constraints to solving the above industrial problem

1. Very few developers to manage thousands of web services
2. Consider actual web services

2.3. Constraints 31

A very small enterprise doesn’t have a lot of developers to write programs to in-
tegrate with thousands of ever-evolving web services. Therefore it must be simpler
to add and update new web service API to the underlying platform1. This explains
constraint 1.

Constraint 2 is quite natural. As a third party user, the only available interface to
access the enterprise data stored by the web services is by the application programming
interface (API) of these services. We now focus our attention to the characteristics of
API of the web services. The main conclusion of our analysis is that the use of advanced
web service description languages cannot be assumed.

We present in this section a summary of the survey of seventeen web services be-
longing to three business domains to establish the mostly used web service standards
that are effectively used by service providers. The complete analysis is given in Ap-
pendix B (pages 183-194). The three studied domains are email marketing, project
management and helpdesk (support). Email marketing is a form of direct marketing
which uses email campaigns as a means for communicating to a wide (subscribed) au-
dience about new products and technologies. Project management encompasses many
activities: planning and estimation of projects, decomposing them to several tasks and
tracking their progress. Helpdesk is focused on managing customers’ (intended or cur-
rent) problems, complaints and suggestions on an online web portal internally tracked
using tickets. Each of the previous service may propose many operations, each of which
has a callable API. Refer page 183 for the complete description of the three domains.

The 17 surveyed web services are2: project management (Basecamp, Liquid Plan-
ner, Teamwork, Zoho Projects, Wrike and Teambox), email marketing (MailChimp,
Campaign Monitor, iContact, Constant Contact and AWeber) and helpdesk (Zendesk,
Desk, Zoho Support, Uservoice, FreshDesk and Kayako). We summarize our analysis
with these web services in Tables 2.1, 2.2 and 2.3. The web services are classified ac-
cording to: the language in which APIs are described (i.e., documented), their REST
compliance [Fielding, 2000], their (current analyzed) version of the API, their authen-
tication method, the resources they deal with (e.g. task or todo in a project manage-
ment service, ticket in an helpdesk service), their message format, the used service level

1This constraint also comes from Rootsystem that has only 2 permanent employees
2http://www.basecamp.com, http://www.liquidplanner.com, http://www.teamworkpm.net,

http://www.zoho.com/projects, http://www.wrike.com/, http://www.teambox.com,
http://www.mailchimp.com, http://www.campaignmonitor.com, http://www.icontact.com,
http://www.constantcontact.com, http://www.aweber.com, http://www.zendesk.com,
http://www.desk.com, http://www.zoho.com/support, http://www.uservoice.com,
http://www.freshdesk.com, http://www.kayako.com

32 Chapter 2. Problem Statement

agreement (constraints on the operations usage) their HTTP access method, the used
data types, their handling of dynamic resources (resources whose value can evolve),
mandatory constraints during operation invocation (e.g. to get all the tasks, it first
requires in Teamwork to get all the projects, following retrieving all the task lists in
all the projects and finally followed by obtaining the tasks from all the task lists), and
their pagination features (i.e., one or many same API operation call(s) with different
parameters to retrieve all data).

From these characteristics, an average profile of web services emerges: describing
services with HTML, (a limited) following of the REST architecture style, using basic
HTTP authentication with a GET access, XML or JSON as message format, strings,
enumeration and date as data types, dynamic resources and sequence of operation
invocation. This average profile clearly focuses on simplicity. The consequence is
a low level of service management automation. For example, none of these services
are described using a computer-oriented language (with or without semantic features)
like WSDL [W3C, 2001], SA-WSDL [Kopecký et al., 2007], DAML-S [Burstein et al.,
2002], OWL-S [Martin et al., 2007], hRESTS [Kopecký et al., 2008]. This situation
is also confirmed by ProgrammableWeb [ProgrammableWeb, 2012], a directory which
documents 10,555 APIs and in which a vast majority (around 69%) are REST based
web services.

So the existing standards aiming at a better automation of web services management
are not really used and widely spread yet. It thus seems important to investigate
a semi-automated approach to build a web service fed data warehouse, keeping the
requirement of reducing the code burden needed to maintain such a system.

The solution we describe in chapter 5 is to manually achieve the connection between
DaWeS and web services in a two-fold manner: (i) dedicating the greatest part of the
manual effort to establish the semantic connection between data in DaWeS and data
coming from the web services, and (ii) trying to reduce the daily coding effort to deal
with syntactic mismatches. (i) will be obtained via a mediation approach, and (ii) via
the building of a generic wrapper and the use of only declarative languages for every
manual task.

2.3. Constraints 33

Table 2.1: Web Service API Analysis on Project Management Services

Web Service Basecamp Liquid
Planner

Teamwork Zoho
Projects

Wrike Teambox

1. API De-
scription

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

2. Confor-
mance to
REST

REST like REST like REST like Not REST Not REST REST like

3. Version v1 3.0.0 N.A. N.A. v2 1
4. Authentica-
tion

Basic
HTTP,
OAuth 2

Basic
HTTP

Basic
HTTP

Basic
HTTP

OAuth 1.0 OAuth 2.0

5. Resources
Involved

Project,Todo
List, Todo

Project,
Task

Project,
Task List,
Task

Project,
Task List,
Task

Task Project,
Task

6. Message
Formats

JSON JSON XML,
JSON

XML,
JSON

XML,
JSON

JSON

7. Service
Level Agree-
ment

Max 500
requests
/10s from
same IP
address
for same
account

Max 30
requests
/15s for
same
account

Max 120
requests
/1min

Error
code:6403
on exceed-
ing the
limit

N.A N.A.

8. HTTP Re-
source Access

GET GET GET POST POST GET

9. Data Types
(dt)

Enumerated
dt
(Project
and Todo
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

Enumerated
dt (Task
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

10. Dynamic
nature of the
resources

Yes
(Project
and Todo
Status)

Yes
(Project
and Task
Status)

Yes
(Project
and Task
Status)

Yes(Project
and Task
Status)

Yes (Task
Status)

Yes
(Project
and Task
Status)

11. Operation
Invocation
Sequence
Required

Yes No Yes Yes Yes Yes

12. Pagination No No No Yes Yes No

34 Chapter 2. Problem Statement

Table 2.2: Web Service API Analysis on Email Marketing services

Web Service Mailchimp Campaign
Monitor

iContact Constant
Contact

AWeber

1. API De-
scription

HTML page HTML page HTML page HTML page HTML page

2. Confor-
mance to
REST

Not REST REST like REST like REST REST

3. Version 1.3 v3 2.2 N.A. 1.0
4. Authentica-
tion

Basic HTTP Basic
HTTP,
OAuth 2

Basic HTTP
(with Sand-
box)

OAuth 2.0 OAuth 1.0

5. Resources
Involved

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

6. Message
Formats

XML,
JSON, PHP,
Lolcode

XML, JSON XML, JSON XML JSON

7. Service
Level Agree-
ment

N.A. N.A. 75,000 re-
quests /24h,
with a max
of 10,000
requests /1h

N.A 60 requests
per minute

8. HTTP Re-
source Access

GET GET GET GET GET

9. Data Types
(dt)

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

10. Dynamic
nature of the
resources

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

11. Operation
Invocation
Sequence
Required

Yes Yes No Yes Yes

12. Pagination Yes No No Yes Yes

2.3. Constraints 35

Table 2.3: Web Service API Analysis on Support/Helpdesk Services

Web Service Zendesk Desk Zoho
Support

Uservoice Freshdesk Kayako

1. API De-
scription

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

2. Confor-
mance to
REST

REST
like

REST Not
REST

REST
like

REST
like

REST

3. Version v1 v2 N.A. v1 N.A. N.A.
4. Authentica-
tion

Basic
HTTP

Basic
HTTP,
OAuth
1.0a

Basic
HTTP

OAuth
1.0

Basic
HTTP

Basic
HTTP

5. Resources
Involved

Forum,
Topic,
Ticket

Case Task Forum,
Topic,
Ticket

Forum,
Topic,
Ticket

Ticket,
Topic

6. Message
Formats

XML,
JSON

JSON XML,
JSON

XML,
JSON

JSON XML

7. Service
Level Agree-
ment

Limit
exists
(but un-
known)

60 re-
quests
per
minute

250 calls
/day /org
(Free)

N.A. N.A. N.A.

8. HTTP Re-
source Access

GET GET GET GET GET GET

9. Data Types
(dt)

Enumerated
dt
(Ticket
Status),
Date

Enumerated
dt (Case
Status),
Date

Enumerated
dt (Task
Status),
Date

Enumerated
dt (Ticket
Status),
Date

Enumerated
dt (Ticket
Status),
Date

Enumerated
dt
(Ticket
Status),
Date

10. Dynamic
resources

Yes
(Ticket
Status)

Yes (Case
Status)

Yes (Task
Status)

Yes
(Ticket
Status)

Yes
(Ticket
Status)

Yes
(Ticket
Status)

11. Operation
Invocation
Sequence
Required

Yes Yes Yes Yes Yes Yes

12. Pagination Yes Yes Yes Yes No Yes

Chapter 3

State of the Art

DaWeS is a data warehouse fed with the enterprise data from the web services using
web service API. It uses the mediation approach coming from the data integration field
to describe the web service API operations and their access patterns (to distinguish
between input and output attributes). The mediation approach chosen by us allows
us to expose to the end users a mediated (or global) schema hiding from them the
underlying heterogeneity of the numerous web services. The end user formulates the
queries using only the global schema. There are several ways of describing sources in
mediation based data integration systems (section 3.3.1). DaWeS uses Local as View
Mapping (LaV) mapping to describe the web service API operations given its scalable
nature. DaWeS internally uses query rewriting algorithm to translate query formulated
over the global schema to query formulated using the web service API operations. This
translated query is evaluated to extract data from the web services and store them to
the underlying relation database of DaWeS. This enables DaWeS to use the DBMS
capabilities to compute performance indicators (written as SQL queries) using the
stored enterprise data.

In this chapter, we discuss various related works associated with integrating data
coming from the web services. We also position our work with respect to other closely
related domains.

38 Chapter 3. State of the Art

3.1 DaWeS and Data Warehousing

In this section we locate DaWeS with respect to three main dimensions in data ware-
house: the schema (data organization), the ETL process and the wrappers. There are
two very popular approaches commonly used for building a data warehouse: bottom
up approach and top down approach. In a bottom-up approach, data marts (depart-
mental view of information) are used (or created) first and later combined to build
a data warehouse. Therefore a data warehouse in this context is a union of all the
data marts. A top-down approach starts from the overall data warehouse schema and
then goes down to the design of individual data marts. We discuss two popular in-
dustrial data warehouse approaches: Kimball approach and Inmon approach. Kimball
approach [Kimball, 1996] considers a data warehouse as a copy of transaction data
specifically structured for query and analysis. It is a bottom up approach and use fact
(metrics) tables and dimension tables to store the data. A fact table stores the numer-
ical performance measurements of a business and the data is obtained from a business
process. Dimension tables have numerous attributes giving the detailed information
(textual descriptors) of the business. Inmon approach [Inmon, 1992] is a top down ap-
proach and uses 3NF (third normal form) tables to store extracted (and transformed)
data from the data sources. Inmon considers a data warehouse is a subject-oriented,
integrated, time-varying, non-volatile collection of data in support of the management’s
decision-making process. We consider DaWeS as a top-down approach since we start
with designing the global schema and then link the sources to it. Though global
schema (or the data warehouse schema) is created only after understanding the client
requirements, performing the market study and understanding the API operations (lo-
cal schema) of the web services, we first build it and later map the API operations
to it. But DaWeS doesn’t materialize the global schema instead use it for querying.
DaWeS doesn’t employ any star schema as seen in the Kimball approach. Instead the
global schema relations are simply table entries (section 5.2). On one side, this is very
convenient for the user to be able to quickly define new global schema relations making
DaWeS partly dynamic. On the other side, it is less straightforward to applying the
above popular data warehouse storage approaches. For example, handling of advanced
performance indicators like the CUBE operators (used along with the star schema)
needs to be further explored.

Xyleme [Xyleme, 2001] is another closely related work to DaWeS. It proposes build-
ing a data warehouse using a large number of crawlable XML web pages. After crawling,
it proposes to keep a complete copy of these XML pages and to provide a view mech-
anism (abstract DTD [Bosak et al., 1998]) where a single schema is used for querying

3.1. DaWeS and Data Warehousing 39

hiding the heterogeneity of the underlying heterogeneous XML pages. It also supports
change control [Mignet et al., 2000]. DAWAX [Baril et al., 2003] presents a working
prototype related to building a data warehouse using view model for XML sources.
The data warehouse is defined as a set of views. A view serves the purpose of selecting
various XML sources and building composite views out of them. Another purpose of
a view is to aid the building of a global integrated schema. DAWAX presents graph-
ical tools to build such views and manage the data warehouse. Unlike DaWeS, both
DAWAX and Xyleme store the data obtained from XML sources for the purpose of
querying them later. They don’t use mediation for the purpose of extraction and trans-
formation of relevant information to a standard internal format (RDBMS) and to deal
with access patterns. DAWAX though stores XML data into relational database to
make use of the querying capabilities of the RDBMS. DaWeS only stores the query
response obtained after the query evaluation in RDBMS and doesn’t keep a local copy
of entire enterprise data. Also the enterprise data on the web services are not easily
crawlable sources. The complete discussion on DaWeS and other data warehousing
approaches has been summarized in Table 3.1.

Table 3.1: DaWeS and Data Warehousing

Name Primary Data
Source

Warehousing
Approach

Warehouse
Schema

Local Copy of
External Data
Sources

Kimball Ap-
proach [Kimball,
1996]

Enterprise Opera-
tional data

Bottom-up Star
Schema

Yes

Inmon Approach
[Inmon, 1992]

Enterprise Opera-
tional data

Top-down 3NF Nor-
malized
tables

Yes

Xyleme [Xyleme,
2001]

Crawlable XML
Data Sources

Bottom-up Abstract
DTD

Yes

DAWAX [Baril
et al., 2003]

XML Data
sources specified
by user

Bottom-up Mediated
Schema

Yes

DaWeS Web Services
API (XML and
JSON) autho-
rized by users

Top-down Mediated
Schema

No (Limited, only
query responses)

40 Chapter 3. State of the Art

There are several other works [Berti-Equille and Moussouni, 2005; Calvanese et al.,
1998, 1999, 2001a; Guérin et al., 2005; Hammer et al., 1995; Zhou et al., 1995] that
deal with warehousing using data integration. DWQ (Data Warehouse Quality) Project
[Calvanese et al., 1998, 1999, 2001a] is closely related to DaWeS. They also suggest a
declarative approach to the overall problem of integrating data from various sources
to feed the data warehouse. They employ wrappers and mediators and also use Local
as View mapping for describing the external data sources with access patterns. Unlike
DaWeS, they also take into consideration interschema correspondences of the various
schemas (source schema and data warehouse schema) involved. These are done by vari-
ous programs that perform the matching, conversion and the reconciliation of the data.
Another major difference is that DaWeS doesn’t materialize any warehouse schema re-
lation but only the responses of the queries formulated over the warehouse schema.
The reason comes from the fact since DaWeS aims to be a platform for a warehouse
service for multiple enterprises. Enterprises may not be willing to entrust DaWeS with
their complete (confidential corporate) data, but only certain selected data (current
generation of services have started offering API that allows third party users only cer-
tain selected data authorized by their owners). Secondly, complete materialization of
warehouse schema relations is also expensive for the enterprises from cost perspective.
But the reader may also note that it is possible to materialize the warehouse schema
relation by creating a conjunctive or datalog query with the warehouse schema relation
in the body of the query.

Another key requirement of the data warehouse is the incremental update of the
warehouse. When new data are added into the sources, the warehouse must also reflect
it. In DaWeS, we make use of scheduler that periodically evaluates the queries to ex-
tract information from the web services. H20 [Zhou et al., 1996, 1995] is another data
warehousing approach that aims to deal with the incremental update of the sources.
But they assume ’active’ modules, i.e., softwares whose behavior can be defined using
rules. This enables them to manipulate both the sources and the warehouse whenever
a new update is made to any data source. In the current version of DaWeS, we only
make use of the API operations that can be used to access the enterprise data. H20,
based on object-model also uses a declarative data integration approach to build a
data warehouse using Global as View (GAV) mapping. Mediators are generated using
Integration Specification Language (ISL). ISL is used to specify the source schema rela-
tions, various criteria for matching objects from various source classes and the derived
classes from the mediator. GEDAW (Gene Expression Data Warehouse) [Berti-Equille
and Moussouni, 2005; Guérin et al., 2005], a specialized warehouse to store and manage
relevant information for analyzing gene expression measurement also utilizes GAV map-

3.1. DaWeS and Data Warehousing 41

ping to define XML sources and in-house database. WHIPS, the Stanford Warehousing
Project [Hammer et al., 1995] also stresses the need for warehousing approach to the
information integration for the purpose of collection of scientific data, maintenance of
enterprise historical data and caching of frequently requested information.

Webhouse [Kimball and Merz, 2000; Lopes and David, 2006; Zorrilla et al., 2005] is
a data warehouse that stores user clickstream on a website and other contextual infor-
mation. Webhouses play a significant role for site owners to improve user experience.
They store the user behavior on a website, like how a user navigates a web page, clicks
various links, web browsers used by the users, the underlying operating system and
various other information corresponding to a user session on a website.

Another closely related work associated to handling web pages over the internet
are the web warehouses [Bhowmick et al., 1999, 2003; Cheng et al., 2000; Vrdoljak
et al., 2003; Yu et al., 2008], data warehouses to store hyperlinked web documents. In
most of the above works, the prime sources of information were in-house databases and
crawlable HTML/XML pages. DaWeS only targets the web services with API exposed
to third party users. We target those web services where the message format used for
the communication is XML/JSON.

Data warehouses are fed with data from the sources using ETL tools. We recall
from [Trujillo and Luján-Mora, 2003] the main tasks characterizing the conceptual
UML model of the ETL process: selection of the sources, transformation of the data
from the sources, joining the sources to load the data for a target, finding the target,
mapping the data source attributes to the target attributes and loading the data in
the target. Clearly, DaWeS closely follows these requirements: the query rewriting
algorithm ensures the selection and joining of the sources, the wrapper uses the XSLT
files to perform data transformation in accordance to the target (global) schema, and
the query response constitutes the data for the target. These are currently automated
in DaWeS. But there are several manual steps. Take for example: the XSLT files used
for the transformation of the operation response is manually created. Similarly, the
local schema relations are manually described and mapped using the target (global)
schema with LAV mapping.

Active data warehouses are updated frequently to reflect the latest changes in the
sources. ETL queues [Karakasidis et al., 2005] have been suggested for real-time data
warehousing. Any changes in the source is collected as blocks and propagated to the
warehouse. The ETL workflow consists of activities called ETL queues, each of them
pipelining blocks of tuples to subsequent activities. Once the ETL processing (cleaning

42 Chapter 3. State of the Art

and transformation) is over, a receiving web service for every table or materialized view
is used for populating the warehouse. DaWeS doesn’t assume the availability of such
sources (or web services) that can inform the warehouse about the changes in the
source. DaWeS works in an offline fashion i.e., it periodically extracts enterprise data
from the web services by evaluating queries and not at real-time. It polls the web
services periodically to obtain the latest information (e.g. tasks that were created
yesterday).

The data wrappers [Roth and Schwarz, 1997] encouraged the enterprises not to
scrap their legacy data stores but rather wrap them with the help of data wrappers in
order to make use of their (historical or legacy) data sources. Wrapping a data source
corresponds to querying these legacy data stores and inferring various information
from them in a desired format. Wrappers for web services can also be automatically
generated with the help of advanced web service description languages. Examples
include Axis [Axis, 2012] for SOAP web services and Jersey [jersey, 2012] for REST
web services. Generic wrapper (section 5.2.2.6) for web services in DaWeS is to handle
the ability to work with numerous web services in a declarative manner under the
absence of advanced description languages.

[Benatallah et al., 2005; van den Heuvel et al., 2007] have discussed configurable
adapters (wrappers) before to deal with web services replacement and evolution. But
their primary audience was the services using business standards like BPEL. DaWeS
however targets any web service using the basic web standards (HTTP, XML, JSON,
Resource-oriented) to expose their API. Response validation and calibration in DaWeS
help the administrators to detect any unannounced API changes.

3.2 Integrating Data coming from the Web Services

[Hansen et al., 2002] study data integration using web services built over web standards
like XML, HTTP, SOAP [Box et al., 1999], WSDL, UDDI [McKee et al., 2001] for the
purpose of aggregation. They define an aggregator as an entity that transparently col-
lects and analyzes information from different data sources, resolves the semantic and
contextual differences in the information, addresses one or more of the following aggre-
gation purposes: content aggregation, comparison aggregation, relationship aggregation,
process aggregation. DaWeS can be seen as an implementation addressing more specif-
ically the content aggregation (i.e., DaWeS extracts information from various sources
on a specific topic and provides analytics) and relationship aggregation (i.e., DaWeS

3.2. Integrating Data coming from the Web Services 43

provides a single point of contact between the user and various business services) issues
using standards like XML and HTTP.

We classify various approaches to integration of data from web services on two
dimensions: whether they use virtual or materialized approach and whether they follow
a centralized architecture or a decentralized one. Materialized data integration is often
called data warehouse. In a virtual data integration, the warehouse schema is used only
for querying and is not materialized (i.e., they have no associated database extension).
In a centralized integration approach, there’s a single point of contact for the end
users to get an integrated view of numerous heterogeneous data sources. But in a
decentralized setting, integration is performed by all the participating entities. We
compare various works with DaWeS in Table 3.2. [Pérez et al., 2008] surveys various
works on integrating data warehouses with web data.

Table 3.2: DaWeS and Integration with Web Services

Name Virtual or Materialized
Integration

Centralized or Decen-
tralized Integration

[Zhu et al., 2004] Virtual (Federated) Centralized
ActiveXML [Abiteboul
et al., 2002]

Materialized Decentralized

[Barhamgi et al., 2008;
Thakkar et al., 2003]

Virtual Centralized

ActiveXML Warehouse
[Salem et al., 2013]

Materialized Centralized

Kimball Approach
[Kimball, 1996]

Materialized Centralized

Inmon Approach [In-
mon, 1992]

Materialized Centralized

Xyleme [Xyleme, 2001] Virtual Centralized
DAWAX [Baril et al.,
2003]

Virtual Centralized

DaWeS Virtual Centralized

ActiveXML [Abiteboul et al., 2002] is a language that extends XML to allow the
embedding of web services calls. It has been proposed to develop a dynamic and
powerful data oriented scheme for distributed computation (e.g. peer-to-peer data
integration). Active XML has also been proposed [Salem et al., 2013, 2010] for building

44 Chapter 3. State of the Art

a (centralized) data warehouse. Indeed, DaWeS is a centralized system, since it is in
fine a data warehouse for enterprise records and performance indicators and uses virtual
data integration approach to obtain them.

[Barhamgi et al., 2008] makes use of semantic web standards like RDF and SPARQL
and the mediation approach with (ontological) query rewriting to provide on-demand
automated integration of data providing web services. IBHIS (Integration Broker for
Heterogeneous Information Sources) project [Zhu et al., 2004] is built using the web
services in the healthcare domain. It employs a federated database system [Sheth and
Larson, 1990]. It exposes a federated schema. In a federated query, the user must
explicitly specify the data sources. The query decomposer module decomposes the
query formulated over the federated schema into a set of local queries which are then
executed. Web mashups [Benslimane et al., 2008] compose two or more web services to
create interesting new web services. They are created using graphical composition tools
or are dependent on advanced web standards for their automated generation. These
works are dependent on advanced standards (WSDL, UDDI, DAML-S [Burstein et al.,
2002], SOAP, RDF, SPARQL), an assumption that we cannot make. But mashups
can also manipulate the resources. [Thakkar et al., 2003] uses the inverse rules query
rewriting algorithm to creating mediator as a web service and mediator as a web service
generator. Similar to [Thakkar et al., 2003], we chose inverse rules algorithm given its
capability to automatically compose data providing web services.

We analyzed some of these approaches based on their primary aim and targeted
audience, their underlying approach, the use of standards, API operations handled,
algorithms used and the schema and summarized in Table 3.3.

3.3 DaWeS and Mediation

Mediation is a virtual data integration approach that provides a uniform query interface
to autonomous and heterogeneous data sources. In this section, we locate DaWeS with
respect to three main dimensions in mediation: describing the data sources, query
rewriting algorithms and query evaluation optimization.

3.3. DaWeS and Mediation 45

Table 3.3: Data Integration and Web Services: State of the Art
Characteristics DaWeS [Zhu et al.,

2004]
[Benslimane
et al., 2008]

[Thakkar
et al., 2003]

[Barhamgi
et al., 2008]

1. Primary
aim

Building
Data ware-
house fed
with WS

Large scale
data inte-
gration from
autonomous
organiza-
tions

Mashups or
Composi-
tion of two
or more WS
to generate
new service

Mediator As
a Web Ser-
vice Genera-
tor

Automatic
composi-
tion of data
providing
WS

2. Primary
Targeted au-
dience

Business en-
terprises us-
ing WS

Health ser-
vices

Internet
users

Service
providers
and internet
users

Bioinformatics
and health-
care systems

3. Under-
lying mecha-
nism

Mediation
approach
(query
rewriting)

Federated
Database
System

Web service
composition
using au-
tomated or
graphical
composition
tools

Mediation
approach
(query
rewriting)

Mediation
approach
(query
rewriting)

4. Use of
standards

HTTP,
XML,
JSON, XSD
and XSLT

WSDL,
UDDI,
XML,
DAML-S

XML,
JSON,
HTTP,
WSDL,
hRESTS

XML,
SOAP

RDF,
SPARQL

5. API Op-
erations Han-
dled

Resource ac-
cess

Resource ac-
cess

Resource ac-
cess and ma-
nipulation

Resource ac-
cess

Resource Ac-
cess

6. Algo-
rithms used

Inverse
Rules algo-
rithm

Federated
Query Ser-
vices (query
decomposer
and query
integrator)

Usually
manual
intervention
to create the
composition
of services

Modified In-
verse Rules
algorithm

RDF query
rewriting
algorithm

7. User
Schema

Dynamic
warehouse
schema

Schema
generated
on the fly

No schema
(not needed)

Global
schema

Mediated
Ontology

46 Chapter 3. State of the Art

3.3.1 Describing Data Sources

In mediation systems, we recall that there are three ways by which the sources (the
local schema relations) can be mapped to the global schema relations: Global-as-
View(GAV) mapping [Adali et al., 1996; Chawathe et al., 1994; Halevy, 2001], Local as
view(LAV) mapping [Duschka and Genesereth, 1997; Ullman, 2000] and Global-Local
as view mapping (GLAV) [Friedman et al., 1999; Koch, 2004]. In GAV, each relation of
the global schema is defined as a query over the source relations. In LAV, each source
relation is defined as a query over the global schema relation. GAV mediators are known
to offer good query answering properties, while facing an evolution in the sources may
be difficult (e.g., adding a new source implies to potentially updating many relation
definitions in the global schema). LAV mediators are known to easily handle source
changes, while query answering is algorithmically more difficult. Indeed, the user query
posed to the global schema must be rewritten into queries that can be posed to the
source. And rewriting algorithms have a high complexity (NP-Complete at least). In
GLAV, the global and local schema relations are mapped using a set of tuple generating
dependencies (TGDs). LAV is easier than GLAV with respect to an algorithmic point
of view. In DaWeS, we chose LAV because we want to integrate with a large number of
web services that are not only ever-evolving but also new players come to the market
on a frequent basis. Choosing GAV would amount to changing the mappings on a
frequent basis. Whereas in case of LAV, a new web service API operation will simply
require a new LAV mapping and no change in the existing mappings are required.

There are several information systems like Infomaster [Genesereth et al., 1997],
Infosleuth [Bayardo et al., 1997], EMERAC [Kambhampati et al., 2004], Ariadne
[Knoblock et al., 2001], TSIMMIS [Chawathe et al., 1994] and Information Mani-
fold[Kirk et al., 1995]. Infomaster also integrates data from various sources using
wrappers. It uses rules and constraints to describe the various data sources. Infosleuth
uses a network of computing agents and mediation to answer user queries. EMERAC
uses optimized inverse rules algorithm. Ariadne uses query rewriting approach. TSIM-
MIS uses GAV mapping whereas Information manifold considers the query planning
under the LAV settings.

Enosys XML Integration Platform (EXIP) [Papakonstantinou et al., 2003; Papakon-
stantinou and Vassalos, 2002] is an XQuery-based integration platform. [Gardarin
et al., 2002; Manolescu et al., 2001] also use XML and XQuery to integrate hetero-
geneous data sources. [Cautis et al., 2011b] deals with querying XML data sources
exporting large set of views. A view in their context is a set of possible queries exposed

3.3. DaWeS and Mediation 47

as web services. They take into consideration how to handle queries when the number
of views exposed is exponential in the size of the schema or even infinite. In DaWeS,
we considered those XML (and JSON) data sources whose output can be transformed
using XSLT to a set of tuples that can be later fed to the datalog query engine. A
detailed discussion on data integration, data warehousing, working with XML docu-
ments, data validation with XSD schemas, querying XML documents using XPath and
XQuery and transforming XML documents to any other document format has been
done in [Abiteboul et al., 2012].

In DaWeS, we used the manual approach to perform the mappings. But there
have been research efforts to automate the generation of these mappings. Automated
schema matching has been surveyed in [Rahm and Bernstein, 2001].

3.3.2 Query Rewriting

Query rewriting [Calvanese et al., 2000b, 2001b; Levy, 1999; Levy et al., 1996a; Ull-
man, 2000] involves translating a query formulated over the global schema relations to
queries formulated over the local schema relations. The classical query rewriting algo-
rithm includes the bucket algorithm [Ullman, 2000], minicon algorithm [Pottinger and
Halevy, 2001; Pottinger and Levy, 2000] and the inverse rules algorithm [Duschka and
Genesereth, 1997; Duschka et al., 2000]. A modified form of the bucket algorithm called
the shared variable bucket algorithm [Mitra, 2001] enhances the bucket algorithm by
using some extra buckets to avoid the conjunctive query containment test. The com-
plexity of answering queries using materialized views is discussed in [Abiteboul and
Duschka, 1998]. In DaWeS, we chose the inverse rules algorithm since it can generate
a query rewriting in polynomial time, handle access patterns, handle recursive datalog
queries and also support various integrity constraints on the global schema. Recent
advancements in ontological query answering [Gottlob and Schwentick, 2012] can be
used to support additional tuple generating dependencies (TGDs). There are various
researches related to query rewriting as shown in Figure 3.1. We will postpone the
discussion related to query rewriting under access patterns to the next section 3.3.3.

Incomplete Information: Incomplete information [Abiteboul et al., 1995, 1991;
Imieliński and Lipski, 1984; van der Meyden, 1998; Vardi, 1986] is an important aspect
that needs to be considered in the context of query rewriting. There are several ways by
which the incomplete information is represented: using Codd nulls, marked nulls and
horn tables. Even though horn tables are shown [Grahne, 1989] to be an efficient tool
for handling incomplete information in databases, they are difficult to be used along

48 Chapter 3. State of the Art

����������	
	��
��
����
����
	���

���������		�
��

���
���	��
���

�
	���	�
���
�	���

��������	�
����
��	��

����
	��	�
��	��
	�

����	
��	�

Figure 3.1: Query Rewriting Considered under Various Dimensions

with the current relational databases. Codd nulls do not cover various interesting
information (when two unknowns are known to have the same values). [Li et al., 2001]
brings the notion of p-containment showing that the traditional query containment
[Chandra and Merlin, 1977] is not useful in while answering queries using views. Prior
to that the tableau techniques for querying information sources through global schemas
has been discussed in [Grahne and Mendelzon, 1999]. Unlike relation tables that are a
set of facts, tableaus are used to store a set of atoms. Marked nulls are useful and they
have been used for the purpose of query rewriting [Grahne and Kiricenko, 2002, 2003,
2004] by bringing in the notion of p-containment, under the LAV settings. [Grahne and
Kiricenko, 2002] also introduces a modified form of the bucket algorithm: the p-bucket
algorithm to handle conjunctive queries. Our heuristic in DaWeS (section 6.1) handles
datalog queries and needs to be further examined towards a formal proof.

Integrity Constraints in the global schema relations We considered query
rewriting under two sets of dependencies on the global schema relations: the functional

3.3. DaWeS and Mediation 49

dependencies and full dependencies. Various other dependencies like the inclusion
dependencies, join dependencies exist. More recently, a lot of interest has been on
query rewriting under various constraints [Afrati and Kiourtis, 2008; Calì et al., 2002,
2004, 2013, 2003; Calvanese et al., 2000a; Christiansen and Martinenghi, 2004; Gottlob
et al., 2011a,b; Gryz, 1999], especially for the different classes of tuple generating
dependencies. [Bai et al., 2006] proposes a bucket based approach to query rewriting
in the presence of inclusion dependencies.

Handling Arithmetic Operations In DaWeS, we didn’t consider any LAV map-
ping that involved the arithmetic comparison operations. Query answering using views
with arithmetic (comparison) operations [Afrati et al., 2002] is also another area of
research and algorithms based on shared-variable buckets[Mitra, 2001] and minicon
algorithm have been proposed.

Uncertainity When data from multiple heterogeneous sources are integrated, there
is a high possibility that there some sources do not provide the latest or accurate
information. During query answering, an additional field may be useful explaining
the data provenance and the probability that the information is accurate. Various
researches [Agarwal et al., 1995; Wolf et al., 2009] in this direction is also being currently
done.

3.3.3 Optimization

Optimizations have been proposed for conjunctive queries using sources with access
patterns [Calì and Martinenghi, 2008] by making use of the optimized dependency
graph in order to reduce the number of accesses to the external data sources. [Calì
et al., 2009a] suggests dynamic query optimization under the functional dependencies
existing among the attributes of the relation, especially considering the case where a
relation have multiple access patterns. In DaWeS, we consider relation with single
access pattern. If there are multiple access patterns, we rename the relations so that
each relation has only one access pattern.

Going beyond the classical access patterns [Cautis et al., 2011a; Halevy, 2000,
2001; Kwok and Weld, 1996; Levy et al., 1996b; Millstein et al., 2003; Rajaraman
et al., 1995] involving input and output attributes, [Yerneni et al., 1999] considered
additional adornments like unspecifiable and optional attributes. DaWeS currently
considers only input and output attributes of API operations.

[Duschka et al., 2000; Li and Chang, 2000] use domain rules to handle access pat-

50 Chapter 3. State of the Art

terns. [Li and Chang, 2000] also optimizes the query answering problem by removing
any useless accesses to the sources that don’t contribute to the query’s answer. [Li,
2003; Li and Chang, 2001b] compute complete answers to queries in the presence of
limited access patterns. A complete answer is an answer obtained to a query when all
the tuples of the relation could be obtained. It is studied by considering the stabil-
ity of the various classes of queries. A query is considered to be stable when for any
instance of the relation, the complete answer can be computed under the considered
access patterns.

[Nash and Ludäscher, 2004a] considers first order queries under limited access pat-
terns whereas [Nash and Ludäscher, 2004b] considers union of conjunctive queries with
negation under limited access patterns. In this work, we do not handle the adornment
for the query predicate or the intensional predicates. [Yang et al., 2006] discusses about
the feasible binding pattern for the intensional predicates and the ordering of the sub-
goals. Query rewriting using views with access patterns under integrity constraints is
discussed in [Deutsch et al., 2007].

[Thakkar et al., 2005] proposes the use of inverse rules algorithm to perform web
service composition and suggest the use of two optimizations one in the form of tuple-
level filtering and an algorithm that transforms the query plan into dataflow-style
streaming execution plan in order to reduce the number of calls to the web services and
executing the generated query plan efficiently. Source selection during query answering
is an interesting problem and access to sources that are not useful for query evaluation
need not be considered. In case of semantic web, the reformulation trees [Li and Heflin,
2010] have been proposed to optimize queries over distributed heterogeneous sources.

Most of the previous works have worked on optimizing the number of accesses
under various conditions. We cannot find any work in the literature that directly work
on the defining the semantics of CQαLast , DatalogαLast and CQα. By considering the
operational semantics of these, we are able to define an upper bound on the number
of accesses. In the field of static optimization, this upper bound aims at being a tool
to evaluate and compare any query evaluation algorithm with respect to the number
of accesses they imply.

3.4 DaWeS and Web Standards

Two popular architecture styles employed by the industry for the web services are
SOA (Service oriented Architecture) [He, 2003] and REST (Representational State

3.4. DaWeS and Web Standards 51

����

����	
	���

���

����

������

����

���

����

�����

���������

�����������

����

������

�������

����

����

����

��������

�������

������

�����

������

�������	�
���	
������	

�������	
������	����������
	������������	�����	���	��������	

���	���	��������

����������������	
�	�
���	�������	����
�	���	����	��	���������

�	�������������	
�	�
���	�������	�����
�	���	����	��	���������

����

����

��� !�!"#�

�$	%$�!"� 	

�$	%$�!"� 	

�$	%$�!"� 	

�$	%$�!"� 	

�&�&

�&�&

!�&���#�&

!�&���#�&

�&�&

�&�&

'����

'����

�� &
	��&

&�����"	

&�����"	

'����

�� &
	��&

�&"�

��� !�!"#�

!�&���#�&

() ��#"���� 	%	*� () ��#"���� 	%	*�"�&�!"� "�����

Figure 3.2: Languages for Describing Web Service Description

Transfer) [Fielding, 2000]. ProgrammableWeb [ProgrammableWeb, 2012], a directory
of vast number of web service APIs have approximately documented 10,555 Web Service
APIs (December, 2013), a vast majority of which (around 69%) are REST based web
services.

Web services can be described in two ways: in a machine readable way or in a
human readable way. They are mainly described in human readable web pages that
are later used by the developers to develop client (programs) to integrate with the
web services. Besides the primary aim of the machine readable interface descriptions
is to create self-describing web services that can be used for web service discovery
and composition without any (or least) human-intervention. Web services based on
SOAP [Box et al., 1999] use WSDL [W3C, 2001] for web service interface description.
WSDL describes the service, the service endpoint, the interface (the operations) and
the data types of the input and output using XSD (XML Schema). WSDL have been

52 Chapter 3. State of the Art

quite popular for SOAP based web services. Extensions to WSDL like SAWSDL (Se-
mantic Annotations for WSDL and XML Schema) [Kopecký et al., 2007] (evolved from
WSDL-S [Akkiraju et al., 2005]) have been proposed to WSDL in order to semantically
annotate WSDL with additional information like the description of various elements
used in the services and their relation to ontology, semantics of the various operations,
describing the semantics of the quality of the service and the verification of the pro-
cess (execution semantics). Web services must sharing these additional information
beyond the regular interface descriptions are useful when they register themselves to
web service registry. They are very useful for data mediation, web service discovery,
composition and orchestration especially in a dynamic SOA environment [Sheth, 2003;
Sheth et al., 2008]. SAWSDL supports XSLT transformation, that allows the transla-
tion between the source schema and the target schema, thereby proving useful in the
data mediation. Other proposals include OWL-S [Martin et al., 2009], WSMO [Lausen
et al., 2005] and WSMO-Lite [Vitvar et al., 2008]. Another study [Maleshkova et al.,
2010] takes a survey about the different authentication mechanisms used by the web
services and suggests enhancement to add semantics to represent different authenti-
cation mechanisms. WADL [Hadley, 2006; W3C, 2009] is another proposal catered
towards describing resource-oriented HTTP-based web applications.

Microformats are additional attributes used along with the existing HTML tags.
Microformats [Microformats, 2012] are designed for humans first and machines second,
microformats are a set of simple, open data formats built upon existing and widely
adopted standards hRESTS [Kopecký et al., 2008] (evolved from SA-REST [Gomadam
et al., 2010]) is a microformat to describe the RESTful web services by annotating
service descriptions in HTML. hRESTS seems to be an interesting proposal since it
makes use of the current manner of describing the web service interface using HTML
(human-readable) pages and microformats to make the web page machine-readable.

We see that in general the web services considered in the Table B.7 use XML [Bray
et al., 1997] and JSON [Crockford, 2006] formats for the communication. Compared
to XML, JSON is a much recent player in the field of communication and is gaining
popularity given its light-weight nature. XML has been well researched and has been
in use for more than a decade. In order to define the possible content in a given XML
document, XSD [Gao et al., 2009] is used to define the schema. To query the XML doc-
uments, various standards like XPath [Berglund et al., 2007] and XQuery [Fernández
et al., 2002] have been proposed. XSLT [Kay et al., 2007] is used to transform an XML
document to another XML or any other format (like HTML). In DaWeS, we use XSD
to define the schema of the API operation response and use it to validate the operation

3.4. DaWeS and Web Standards 53

responses. We also make use of XSLT to transform the response obtained from the
web services to a set of tuples (understood by the IRIS datalog engine). Our choice of
XML, XSD and XSLT is due to the maturity in this field. In case of the web services
using JSON, we first transform the JSON response to XML and use XSD and XSLT
like the other XML based web service API responses. There are some proposals within
the JSON community like JSON-Schema [Zyp et al., 2010] to describe the schema of
JSON documents, JSONT [Goessner, 2006] to transform the JSON documents to any
desired format and JSONPath [Goessner, 2007] to query the JSON documents. Inspite
of the above limitations, JSON is also a good choice to be considered as an intermediate
format given its lightweight nature. These web technologies has been summed up in
the Figure 3.2 highlighting as well the technologies used in DaWeS.

Chapter 4

Preliminaries

4.1 Theoretical Preliminaries

We now recall basic concepts of the relational model, and then focus on the notion of
access and associated concepts.

4.1.1 Relational Model Recalls

These recalls are mainly taken from [Abiteboul et al., 1995; Grahne and Kiricenko,
2004]. Consider dom to be a countably infinite set of values (a.k.a. constants). These
constants are noted with small lettres a, b and c, with or without indices. Small letter p,
q and r, with or without indices, are set to be relation names. Other small letters names
may be given to relation names. We may also use “relation” instead of “relation name”.
Each relation name r is associated to an arity arity(r) which is an integer. We note this
r(arity(r)). A relational schema is a finite set of relation names. Relation arities may
not be noted when writing a relational schema. For instance {r1, r2, . . . , rn}, where
n ∈ N , is a possible relational schema. {r

(arity(r1))
1 , r

(arity(r2))
2 , . . . , r(arity(rm))

m }, where
m ∈ N is another. From dom and the relation names, we built up a universe consisting
of all expressions of the form r(c1, c2, . . . , carity(r)) where r is a relation name and the
ci’s are constants. This is the Herbrand universe. Such expressions are called facts.
A database instance D for a schema schema(D) = {r1, r2, . . . , rn} is a finite set of
facts which relation names are taken in schema(D). We may use "database" instead of
"database instance". The instance of a relation r belonging to schema(D) is the set of
all facts which relation name is r. This set is noted r(D).

56 Chapter 4. Preliminaries

Consider now V a countably infinite set of variables. We mainly use capital letters
X, Y and Z, with or without indices, to denote variables. Other capital letters may
be used (like V and T for instance). We use the same capital letters with an overline
to denote tuples of variables, like X for example. The function var applied to a
tuple of variables returns the set of all variables that are in this tuple. An expression
of the form r(d1, d2, . . . , darity(r)) where r is a relation name and the dj’s are either
variables or constants is called an atom. A valuation is a mapping from V into dom,
straightforwardly extended to tuples of variables, and extended to be the identity on
dom.

Definition 4.1.1 (Conjunctive Query Syntax). A conjunctive query ψ is an expression
of the following form, defined according to the database instance D

ψ : q(Z) ← r1(X1), . . . , rn(Xn)

where ri ∈ schema(D), ∀i ∈ {1, . . . , n} and Z, X1, . . . , Xn are tuples of variables and
constants from V ∪ dom.

The atom on the left side of ← is called the head, referred to as head(ψ) and
the right hand side consisting of atoms r1(X1), . . . , rn(Xn) is called the body of the
conjunctive query, referred to as body(ψ). The set {r1, . . . , rn, q} is called the schema
of ψ, also noted schema(ψ). We only consider safe conjunctive queries in which all the
variables that are present in the head are also present in the body, i.e. Z ⊆ X1∪· · ·∪Xn.
We call CQ the set of conjunctive queries.

Definition 4.1.2 (Conjunctive Query Semantics). Consider a conjunctive query ψ :
q(Z) ← r1(X1), . . . , rn(Xn) and a database instance D, the semantics of ψ with respect
to a database instance D is given by

ψ(D) = {q(ν(Z))|ν is a valuation and ri(ν(Xi)) ∈ D, ∀i ∈ {1, . . . , n}}.

Example 4.1.3. Consider the following conjunctive query

q(pid, tid) ← project(pid, pname, pstatus), task(pid, tid, tname, tstatus)

where project(pid, pname, pstatus) and task(pid, tid, tname, tstatus) are two relations
and constitute the body. The head is q(pid, tid). The conjunctive query returns the
tuples with project identifiers pid and their associated task identifiers tid for which
there are not only an associated project name pname and project status pstatus, but
also a task name tname and task status tstatus.

4.1. Theoretical Preliminaries 57

It is now well-known [Abiteboul et al., 1995] that conjunctive query are monotonic,
i.e. for two database instances D1,D2 over the same schema such that D1 ⊆ D2, then
q(D1) ⊆ q(D2) for q a conjunctive query..

A Datalog query Ψ is a finite set of conjunctive queries. One relation name among
the head atoms is defined to be the query predicate. The schema of Ψ is the union
of the schema of each conjunctive query composing Ψ. It is noted schema(Ψ). Due
to space limitations, we refer to [Abiteboul et al., 1995] for the precise semantics of
Datalog query. Each answer of a Datalog query is a fact which relation name is the
query predicate.

Example 4.1.4. Consider the following datalog query

q(x, y) ← edge(x, y)
q(x, z) ← edge(x, y), q(y, z)

This datalog query describes the transitivity of the relation edge between vertices in
a graph. It is recursive, since q, present in the first conjunctive query is also present
in the body of the second conjunctive query.�

Let dom contains a infinite number of subsets called domains. Examples of domains

include string, integer, floating point numerals, dblp publication identifier, project iden-
tifier, etc. Each argument i (or position i) in a relation is associated to a name Ai,
which is called an attribute. By convention, attributes will be represented by capital
letters A, B and C with or without indices. Overlined capital letters A, B and C, with
or without indices denote tuples of attributes. Each attribute Ai takes its value in one
domain, denoted as dom(Ai), which is a subset of dom. Each relation r is associated to
a tuple of attribute

〈
A1, . . . , Aarity(r)

〉
which is called its schema, given by schema(r).

We also note this as the following expression r(A1, . . . , Aarity(r)). Thus, for a n−ary
relation name r, and a database instance D, there is:
∀r(c1, . . . , ck) ∈ D, if schema(r) = 〈A1, . . . , Ak〉, then ∀i ∈ {1, . . . , k}, ci ∈ dom(Ai) ⊆
dom.
Let t ∈ r(D) for a database instance D with schema(r) = 〈A1, . . . , An〉. Then
t[Ai1 , . . . , Aij

], with Aik
∈ schema(r), ∀k ∈ {1, . . . , j}, is called the projection of t

onto attributes Ai1 , . . . , Aij
. Moreover r[

〈
Ai1 , . . . , Aij

〉
] is defined as the set of all dif-

ferent tuples t[Ai1 , . . . , Aij
] for t ∈ r(D). r[

〈
Ai1 , . . . , Aij

〉
] is called the projection of r

onto attributes Ai1 , . . . , Aij
.

Data Dependencies: Data dependencies [Abiteboul et al., 1995]. are used to
specify constraints on the various relations. A functional dependency on r, noted A →

58 Chapter 4. Preliminaries

B, exists between two tuples of attributes A = 〈A1, . . . , Am〉 and B = 〈B1, . . . , Bn〉,
with Ai ∈ schema(r), ∀i ∈ {1, . . . , m} and Bj ∈ schema(r), ∀j ∈ {1, . . . , n}, if

∀(t1, t2) ∈ r(D)2, if t1[A1, . . . , Am] = t2[A1, . . . , Am], then t1[B1, . . . , Bn] = t2[B1, . . . , Bn]

Example 4.1.5. Consider a relation project(pid, pname, pstatus). If there’s a func-
tional dependency pid → pname, it signifies that if there are two tuples with same
project identifiers, the values for the attribute pname in the two tuples will also be the
same.

The above functional dependency can also be expressed by a full dependency

project(pid1, pname1, pstatus1), project(pid2, pname2, pstatus2), pid1 = pid2

⇒ pname1 = pname2 �

4.1.2 Relational Model with Access Patterns

Now we consider the relational model with access patterns. We define the notions of
access patterns and accesses for relations. We recall that in this thesis we study rela-
tions which access is constrained by input and output attributes, since they represent
web services API operations. That is, each input position in a relation having an access
pattern corresponds to an input argument of the associated web service operation and
must be valuated before accessing the relation.

Definition 4.1.6 (Access Pattern [Ullman, 1989b]). Let r be a relation name with
schema(r) = 〈A1, . . . , An〉. An access pattern α of r is a string made up with letters i

and o which length is n such that if the kth letter of the access pattern is an i, then Ak

is an input attribute of r, otherwise (i.e. the letter is o) it is an output attribute of r.
We then note rα to say α is the access pattern of r.

In the litterature, letters b and f are also used for i and o respectively. We define
input(rα) (resp. output(rα)) the function that returns the tuple of input (resp. out-
put) attributes of rα. input(rα) is called the input tuple, and output(rα) the output
tuple of rα. For a precise atom rα(X), we define inV ar(rα) (resp. outV ar(rα)) the
functions that return the tuple of variables for the input (resp. output) attributes of
rα. Moreover, a variable which corresponds to an input (resp. output) attribute is
called an input (resp. output) variable.

Definition 4.1.7 (Instance of a relation with acccess pattern). Consider a database
instance D. Let rα ∈ schema(D) with Ai the input tuple of rα and Ao the output tuple

4.1. Theoretical Preliminaries 59

of rα. We suppose rα corresponds to a web service operation oper. The instance of rα

in D denoted by rα(D) is the set of facts r(c), with |c| = |Ai| + |Ao| and c is the tuple
of constants obtained as a result when calling oper with the constants of c that are in
input attributes in rα as inputs of oper.

Each conjunctive query can be seen as a conjunctive query having access patterns
on its relations since a relation having no access pattern can be considered as having
one access pattern with only o’s (i.e. all attributes are output attributes).

Definition 4.1.8 (Access). An access to a relation rα with Ai = 〈A1
i , . . . , An

i 〉 its input
tuple is any tuple of constants c = 〈c1, . . . , cn〉 such that |Ai| = |c| and ck ∈ dom(Ak

i),
∀k ∈ {1, . . . , n}.

If α is made up with o’s only, then the only access is the empty tuple.

The first definition of access is given in [Calì et al., 2009a]. Despite it is defined using
a query with one atom in the body, it is basically the same notion as our definition.
Now we focus on the subclass of CQ we work on in this thesis: the class of conjunctive
queries that have access patterns and are executable.

Definition 4.1.9 (Executable Conjunctive Query - CQα syntax). Let ψ be in CQ
having access patterns on its body relations. ψ is an executable conjunctive query if,
for every relation ri, ∀i ∈ {1, . . . , n}, and for every term t (i.e. variable or constant)
associated to an input attribute of ri, t is either a constant or a variable associated to
an output attribute of one or more rk, for k ∈ {1, . . . , i − 1}.

We note CQα the set of all safe executable conjunctive queries expressed with rela-
tions having access patterns.

Thus, each element ψ of CQα has the following form: ψ : q(Z) ← rα1
1 (X1), . . . , rαn

n (Xn)
where Z,X1, . . .Xn are tuples of variables from V or constants from dom linked to the
domain of the associated attributes of q and ri, i ∈ {1, . . . , n }. α1, . . . , αn corresponds
to the access patterns of the relations r1, . . . , rn respectively.

The notion of executable conjunctive query reflects the notion of ordered calls of a
sequence of operations, in which some values which are outputs of some operations are
used as inputs for others.

60 Chapter 4. Preliminaries

4.2 ETL of Data coming from Web Services

The only interface available to us as a third party user to get the enterprise data from
the web services is through the API. Our analysis of the web service API in section 2.3
showed that the API of web services are significantly different from each other. Our
goal is to extract, transform and load relevant enterprise data to the data warehouse
using the APIs with minimum development effort.

4.2.1 ETL in Classical Data Warehouse

A typical data warehouse is able to generate summarized and aggregated data from
detailed records. Therefore a data warehouse plays a significant role in the perfor-
mance measurement requirements of an enterprise. Obtaining the business analytics
(often using the data warehouses) is referred to as online analytical processing (OLAP)
[Chaudhuri and Dayal, 1997]. To this purpose, a data warehouse uses certain tools for
extracting data from various sources, often referred to as ETL(extract-transform-load)
tools. ETL program [Vassiliadis and Simitsis, 2009] is "any kind of data processing
software that reshapes or filters records, calculates new values, and populates another
data store than the original one". ETL process [Trujillo and Luján-Mora, 2003] in-
volves selection of the sources, transformation of the data from the sources, joining
the sources to load the data for a target, finding the target, mapping the data source
attributes to the target attributes and loading the data in the target. Various meth-
ods involved during the process of extraction, transformation and loading have been
extensively studied in [Vassiliadis, 2011].

4.2.2 Web Services as Data sources

For DaWeS, we consider the web service APIs as the data sources since they are the
only authorized interfaces available to us. The crucial point is to view every web
service API operation as a relation with access pattern. For a web service API, an
access pattern describes:

• input and output parameters of every API operation.
• and data types of both the input and output parameters.

4.2. ETL of Data coming from Web Services 61

4.2.3 Recalls about Data Integration

In the data integration field, mediation is a virtual approach in which a uniform query
interface is provided to a multitude of heterogeneous and autonomous data sources.
Every data source has its own schema. There is a mediated or global schema over
which the user queries are formulated. Global schema relations and the local schema
relations are linked with the help of mappings which are relation definitions expressed
with respect to either global schema relations or source schema relations. Any query
posed over the global schema is translated to a query involving the source schemas.

The data source relations constitute the local schema. The data sources are the
original sources of information. Every data source has its own schema. The users of
a data integration system may or may not have direct control over the schema of the
data sources.

Every data source must be mapped to the global schema. There are various mapping
mechanisms like Global as View, Local as View and Global-Local as View Mapping.
We consider here the local as view mapping given its scalable nature that is the data
integration system can easily work when a new data source is added. In a local as view
mapping, the local schema is defined using the global schema. There are several ways
to do this mapping. But we consider here the mapping using conjunctive query.

Recall that the queries are formulated over the global schema. But the actual data
is situated in the data source. Therefore a query using the global schema must be trans-
lated to a query using the local schema. This query translation is called query rewriting.
Classical query rewriting algorithms include bucket algorithm, minicon algorithm [Pot-
tinger and Halevy, 2001] and inverse rules algorithm [Duschka and Genesereth, 1997].
A detailed analysis of these algorithms and various other data integration mechanisms
has been done in [Halevy, 2001].

Example 4.2.1. LAV based data integration is shown in the Figure 4.1. Consider two
sources source 1 with relations Article, Ref and source 2 with relations BiblioAuthor.
These relations cannot be directly accessed but by rather four views V 1, V 2, V 3 and V 4
defined in SQL. Only the source relations are materialized and not the view definitions.
We have two virtual global schema relations Cite and SameTopic, hence they have no
materialized data. The end user is exposed only to the global schema and formulates
her query over it. In LAV mapping, the views are defined using the global schema
relations. We assume open world assumption (OWA) where any data not present in the
database may be true unlike close world assumption (CWA) where such absent data are
assumed to be false. We are only interested in certain answers, i.e., the query response

62 Chapter 4. Preliminaries

��

�

�
�������

									

���������

�����������

���

���

							

������

������

��������

�����������

			
���

������������

�������
��

�����

��������

��

�

�

�	

�

��

�

���������
�����������������
����������
��������� !"������
��"#��������� !"��������"#���
$����
�%��������!"���������!"�&
�����%��������!"���������!"�&
�����%��������!"���������!"�&
�����%��������!"���������!"�&'

�	�
������
������������������

����������
��������� !"�������

�"#������ !"�����
$����
�%��������!"����"#����!"�&
�����%��������!"����"#����!"�&'

���������
����������
���(���
��������� !"'

����������
�������������� !"�����

��������� !"�����
�������)!�(���*(������ ��
��)!�(���*(�����
$����������(+� ���
�����(+� '

��"

,,,,

-.

�/�"�(+�

,,,,

0$

1

1

������������

����� �� �! �"#�

$����%���%���&�'&��

���(%�$%)

*������������

*��+��� ���������#�

$����%���%���&,�'&,����

�%(%�$%)

����������������
��������� !�"�!#�!�

���������2���"%���&���"%���&�
�	�
�����2���"%���&�

���������2��/�"�(+� %��&�

��

�

�

��

�

�

��

�

1

1

1

��!$�%!&��������
���'"�

�$��

�'&,)
�������

(�!#�)�!#*�"

����������2�
��"%���&���"%���&��/�"�(+� %���&�

/34�

�

� 1

��������

���	����
����

�������������

Figure 4.1: LAV based Data Integration

is true in all the data sources that check LAV mappings. Queries formulated over the
global schema (here, ans(A, B) : −Cite(A, B), Cite(B, A), SameTopic(A, B).) must be
translated or rewritten using the view definitions. ? signifies that the associated relation
is virtual (i.e., there is no associated extension). The query rewriting thus obtained is
evaluated to obtain the certain answers. �

4.2.4 Mediation as ETL

To deal with ETL for data coming from web services, we propose to use mediation.
For every web service, each API operation can be viewed as a relation with an access
pattern, then mediation can be adopted to these sources provided access patterns can
be handled in the rewriting process. We recall that it is possible in the next section.
So this proposition is a virtual approach for data materialization to implement the first
tier of DaWeS.

4.2. ETL of Data coming from Web Services 63

Access Pattern: A relation can also be associated to an access pattern [Ullman,
1989b] whose size is equal to the number of attributes in a relation. Syntactically,
the access pattern is represented by an adornment being a tuple of i (or b) and o (or
f) letters written besides the relation name. In this tuple, i (or b for “bound”) in ith
position says the ith attribute is an input ; o (or f for “free”) says it is an output.

Executable Conjunctive Query: A conjunctive query is called an executable
conjunctive query if, for every relation with access pattern in the body of the query, the
input parameters are present as an output parameters in one or more previous relation
(while checking from left to right of the body) or are themselves constants.

Example 4.2.2. In Figure 4.2, we consider the domain Project Management that
manages mainly two resources, Project and Task; hence two global schema relations:

�������

���

���

���	

�������

	
��

���

���

��	

�������

�����

��������	
���

������	
����

����������������

���	
����

��������

��������	
���

����	
���������

��	����������

�
��������
	��

������������
��������������
�������

����������������������
����
���������������

��	
����������
���������������������

��	
�������������������� ��
���������������������

	!����������������������
����
���������������

	!	
�������������������� ��
��������������������

� !"#

"���� �#�$���������
�
��������
���

�����������%
����
������������

���

�

�

�

������
��

��

�

�

������

�

�

������
��

�

������
��

���

�

�

�

������

����

�

��

��
�

������������
����	���
����
�$�
��%������	�&���
	$��'%������	�&���

�������������������
����
&�'� �#
�
�
!��
�����
"
�����

�
#�
�$��
%�&�����
��
����#�����'

(������'
	�

)���

����(�"�)�������"

����
������������*�����������
������
��+��,������

����
���������������
������
��+���,��������

�����������
����
������������

� !"#

������
��

������

������

��

�

������
��

������

-�%�
������

�

������

�

�

��

��

�

�������

����

�������

.

.

.

.

.

.

.

Figure 4.2: Mediation as ETL

Project(pid, src, pname, pstatus) and Task(tid, src, name, tstatus, tcdate).

We consider two web services: Basecamp and Teamwork. We consider here a sim-
plified version of their API operations. Basecamp has one operation BCProject that

64 Chapter 4. Preliminaries

returns all the projects taking no input attributes. It also provides two operations re-
lated to task: the first operation BCTasks provides all the task identifiers and the
second BCTask requires the task identifier as input to give the complete task de-
tails. This information is captured by the access patterns. Consider LAV mapping
BCTaskiooo(t, tn, ts, td) ← Task(t,′ BC ′, tn, ts, td). It corresponds to the fact that the
operation BCTask takes as input the task identifier t and gives the details of the task
(name, status and creation date). The operation has been mapped to the global schema
relation Task with source value as BC to signify Basecamp, its source. Now consider
a record definition q: Get all Projects, (a conjunctive query formulated over the global
schema).

q(p, s, n) ← Project(p, s, n, ps).

This query must be rewritten using the source relations. Here is an example query
rewriting (obtained by inverse rules query rewriting discussed below). This is a simpli-
fied rewriting and detailed version will be discussed in example 4.2.3.

Project(p,′ BC ′, n, fBCP,4(p, n)) ← BCProjectoo(p, n).
P roject(p,′ TW ′, n, s) ← TWProjectooo(p, n, s).
q(p, s, n) ← Project(p, s, n, ps). �

Query answering under limited access patterns has also been studied in [Rajaraman
et al., 1995], [Li and Chang, 2001a], [Duschka et al., 2000], [Deutsch et al., 2007]. We
choose the inverse rules algorithm given its unique capability [Duschka et al., 2000] to
handle at the same time recursive datalog query, limited access patterns in the database
and full and functional dependencies in the mediated schema.

4.2.5 Inverse Rules Query Rewriting

Inverse Rules query rewriting algorithm computes the maximally contained rewriting
that has the property of computing the certain answers. Certain answers signifies
those answers that are true for any database instance of the global schema that is
compatible with LAV mappings (i.e., local schema relations that can be defined using
the global schema relations). Certain answers follow very strict semantics. The steps
of the algorithm has been described in Figure 4.3.

We consider an example to explain the steps of inverse rules query rewriting.

Example 4.2.3. Consider a record definition q: Get all Projects from Teamwork, (a

4.2. ETL of Data coming from Web Services 65

�������	
��

���������

�	��

�������������

���������

��
������

�	������
	�����

������	���	�������

�����

���������
����	
�����

������
�����
�������������

���	
���

������
���
��	����

��������

��	

�
������
�����	����

��������

�����
!��
"�������� �#�
	
��

� ������	��	
�
�����	�
�����#��

�������	
������

 �������	
��

���������

!�������	
���

���������

$����
	
�����

%&'�(���
���
�"��)���	
�����
��#
	��

��������		���������������

��������	��	
����	�����	

�����	����������	
		�����	��	������

*���������
��	�� �+,��	���

"��)���	
�����
��

����
������
��	�� �+,��	���

"��)���	
�����
��

""" ���� �#� ���	��
���������

�# � ���	�������������

Figure 4.3: Inverse Rules Query Rewriting Algorithm

conjunctive query formulated over the global schema) continuing with the same sources
as in example 4.2.2.

q(p, n, ps) ← Project(p,′ TW ′, n, ps).

Consider the Figure 4.3, Inverse Rules generation generates the following rules (set
of executable conjunctive queries). For every LAV mapping, it generates rules with
every body atom in the LAV mapping as the head atom and the head of the LAV
mapping as the body of the new rules. The unsafe variables in the head of the rule so
created are replaced by functional terms. But the rules so generated may be unexecutable
and hence domain rules (discussed below) are used to generate an executable query plan.

Project(p,′ BC ′, n, fBCP,4(p, n)) ← BCProjectoo(p, n).

66 Chapter 4. Preliminaries

Project(p,′ TW ′, n, ps) ← TWProjectooo(p, n, ps).

Note that the two above rules are executable (since they don’t have any input at-
tribute). See example 4.2.4 that demonstrates a query plan with input attributes.

Domain Rules generation generates the following rules:

domp(p) ← BCProjectoo(p, n).
domn(n) ← BCProjectoo(p, n).
domp(p) ← TWProjectooo(p, n, ps).
domn(n) ← TWProjectooo(p, n, ps).
domps(ps) ← TWProjectooo(p, n, ps).

If we have the following functional dependencies over the global schema relation
Project:

Project : p, s → n

Project : p, s → ps,

they are used by Chase Rules Generation to generate generalized chase rules.

e(n1, n2) ← Project(p1, s1, n1, ps1), P roject(p2, s2, n2, ps2), e(p1, p2), e(s1, s2)
e(ps1, ps2) ← Project(p1, s1, n1, ps1), P roject(p2, s2, n2, ps2), e(p1, p2), e(s1, s2)

where e, the equality predicate is a binary relation whose intended meaning is =
i.e., e(p1, p2) signifies p1 = p2.

The transitive rule is e(X, Z) ← e(X, Y), e(Y, Z). This rule signifies the transitivity
of the equality predicate.

The user query is then rectified:

q(p1, n1, ps1) ← Project(p1, s1, n1, ps1), e(p1, p), e(n1, n), e(ps1, ps), e(s1,′ TW ′).

Therefore the complete rewriting of the user query is

Project(p,′ BC ′, n, fBCP,4(p, n)) ← BCProjectoo(p, n).
P roject(p,′ TW ′, n, ps) ← TWProjectooo(p, n, ps).
domp(p) ← BCProjectoo(p, n).
domn(n) ← BCProjectoo(p, n).
domp(p) ← TWProjectooo(p, n, ps).
domn(n) ← TWProjectooo(p, n, ps).

4.2. ETL of Data coming from Web Services 67

domps(ps) ← TWProjectooo(p, n, ps).
e(n1, n2) ← Project(p1, s1, n1, ps1), P roject(p2, s2, n2, ps2), e(p1, p2), e(s1, s2)
e(ps1, ps2) ← Project(p1, s1, n1, ps1), P roject(p2, s2, n2, ps2), e(p1, p2), e(s1, s2)
e(X, Z) ← e(X, Y), e(Y, Z)
q(p1, n1, ps1) ← Project(p1, s1, n1, ps1), e(p1, p), e(n1, n), e(ps1, ps), e(s1,′ TW ′).

Datalog query must not contain any functional terms. So the predicate splitting
step [Duschka et al., 2000] is used to remove the functional terms. Then the resulting
datalog program is evaluated by a datalog engine to get the query response (certain
answers). �

In the above example, the domain rules are not used since the domain predicates
dom didn’t appear in the body of any executable conjunctive query. In the following
example, we see how domain rules and executable conjunctive queries can be used to
handle pagination (for the sake of simplicity, we don’t show any query rectification,
generalized chase rules and transitive rule). Operations that require pagination signifies
that the same operation call must be repeated multiple times (with different parameters
like page number and page size) to obtain the complete details of the resource. An
example for this is the search engine results page. The search engine returns the
total number of results and splits the results into multiple pages. To get all the search
results, one must check every individual page. Following example shows how we handle
pagination in DaWeS for such operations. The example also shows how query responses
can be further used to build performance indicators.

Example 4.2.4. : Let us consider three web services in the helpdesk domain: Zendesk,
Uservoice and Desk. They allow customers to submit their complaints. These are
tracked by tickets. Every ticket has an associated priority and status. Some need
immediate attention and therefore have high priority. When a ticket is created, its
status is open and when resolved, its status is completed (or closed).

Here are attribute names given to ticket related information. A page is an answer
of an API call. pgno is a page number, pgsize is a number of tickets in one page, limit

is a number of results in a page, tkid is a ticket identifier, tkn is a ticket name, tkcd is
a ticket creation date, tkdd is a ticket due date, tkcmpd is a ticket effective completion
date, tkp is a ticket priority and tks is a ticket current status. src is a web services
name, and operation is an operation name.

We want to be connected to these services so that customers can get performance
indicators about the handling of their complaints. Towards this purpose, each web ser-
vices offers at least one operation callable through its API (see table 4.2.4). The global

68 Chapter 4. Preliminaries

Table 4.1: Helpdesk web services and their operations
Service Operation name Inputs Outputs
Desk Deskv2TotalCases

(D2TC)
None Total nb of tickets: pgno,

pgsize

v2 API Deskv2Case (D2C) pgno,
pgsize

One page tickets details:
tkid, tkn, tkcd, tkp, tks

Zendesk Zendeskv1Ticket (ZT) None All ticket id: tkid

v1 API Zendeskv1SolvedTicket
(ZST)

None All closed tickets id: tkid

Zendeskv1TicketDetails
(ZTD)

tkid One ticket details: tkn,
tkcd, tkdd, tkcmpd, tkp,
tks

Uservoice Uservoicev1TotalTickets
(UTT)

None Total nb of tickets: pgno,
pgsize

v1 API Uservoicev1Ticket (UT) pgn,
pgs

One page tickets details:
id, tkn, tkcd, tkp, tks

schema must contain relations that describe the domain. Here are the two relations
extracted from the global schema that describe everything linked to the notion of ticket:

Ticket(tkid, src, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus)
Page(pgno, src, operation, limit)

Now, the following queries define the LAV mappings between each operation and the
global schema (these are conjunctive queries written in the rule-style syntax):

D2TCoo(pgno, pgsize) ← Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize).

D2Ciiooooo(pgno, pgsize, tkid, tkn, tkcd, tkp, tks) ←
Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize),
Ticket(tkid,′ Desk v2 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

ZTo(tkid) ← Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

ZSTo(tkid) ← Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp,′ Closed′).

ZTDioooooo(tkid, tkn, tkcd, tkdd, tkcmpd, tkp, tks) ←
Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

UTToo(pgno, pgsize) ← Page(pgno,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgsize).

UTiiooooo(pgn, pgs, id, tkn, tkcd, tks, tkp) ←
Page(pgn,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgs),
Ticket(id,′ Uservoice v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks).

4.2. ETL of Data coming from Web Services 69

In the context of example 4.2.4, we now consider a record definition. Note that we
use a special function here called yesterday(), which is executed before the query eval-
uation, to obtain yesterday’s date. The record we define is called Daily New Tickets
(DNT): it is the number of tickets that were created yesterday.
DNT(tkid, src, tkn, tkp, tks) ←

Ticket(tkid, src, tkn,′ yesterday()′, tkdd, tkcmpd, tkp, tks).
The following program is the query plan which is the rewriting of query DNT .
Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize) ← D2TCoo(pgno, pgsize).
DPgNo(pgno) ← D2TCoo(pgno, pgsize).
DPgSize(pgsize) ← D2TCoo(pgno, pgsize).
Page(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize) ←

DPgNo(pgno), DPgNo(pgsize), D2Ciiooooo(pgno, pgsize, tkid, tkn, tkcd, tkp, tks)
Ticket(tkid,′ Desk v2 API′, tkn, tkcd, fD2C,5(pgno, pgsize, tkid, tkn, tkcd, tkp, tks),

fD2C,6(pgno, pgsize, tkid, tkn, tkcd, tkp, tks), tkp, tks) ←
DPgNo(pgno), DPgSize(pgsize), D2Ciiooooo(pgno, pgsize, tkid, tkn, tkcd, tkp, tks)

Ticket(tkid,′ Zendesk v1 API′, fZT,3(tkid), fZT,4(tkid), fZT,5(tkid),
fZT,6(tkid), fZT,7(tkid), fZT,8(tkid)) ← ZTo(tkid).

Ticket(tkid,′ Zendesk v1 API′, fZST,3(tkid), fZST,4(tkid), fZST,5(tkid), fZST,6(tkid),
fZST,7(tkid), Closed′) ← ZSTo(tkid).

ZTID(tkid) ← ZSTo(tkid).
Ticket(tkid,′ Zendesk v1 API′, tkn, tkcd, tkdd, tkcmpd, tkp, tks) ←

ZTID(tkid), ZTDioooooo(tkid, tkn, tkcd, tkdd, tkcmpd, tkp, tks).
Page(pgno,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgsize) ← UTToo(pgno, pgsize).
UPgNo(pgno) ← UTToo(pgno, pgsize).
UPgSize(pgsize) ← UTToo(pgno, pgsize).
Page(pgn,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgs) ←

UPgNo(pgno), UPgSize(pgsize), UTiiooooo(pgn, pgs, id, tkn, tkcd, tks, tkp)
Ticket(id,′ Uservoice v1 API′, tkn, tkcd, fUT,5(pgn, pgs, id, tkn, tkcd, tks, tkp),

tkcmpd, tkp, tks) ←
UPgNo(pgno), UPgSize(pgsize), UTiiooooo(pgn, pgs, id, tkn, tkcd, tks, tkp).

This rewriting is a bit long, but we emphasize the fact that it is a real case which
is described here.

Now, from the previous records DNT , we can define with SQL queries the following
performance indicators: Total New Tickets Registered in a month, Total High Priority
Tickets Registered in a month and Percentage of High Priority Tickets Registered in a
month. For example the performance indicator Total High Priority Tickets Registered

70 Chapter 4. Preliminaries

in a month definition will be:
SELECT count(tkid) FROM DNT WHERE tkcdate < sysdate and tkcate > sysdate -
interval ’30’ day AND tkpriority=’High’;

DNT when executed daily for a period (like 30 days) can be used to extract all the
tickets that were created on the previous day on various web services for the specified
period (like 30 days). The above performance indicator when executed gives the count
of the tickets that were created during the past 30 days using the query responses from
DNT. �

4.3 Generic Wrapper for Web Services

Mediation traditionally uses wrappers to make sources appear as relations. Wrappers
[Roth and Schwarz, 1997] encouraged the enterprises not to scrap their legacy data
stores but to rather wrap them to make use of them. Wrapping a data source cor-
responds to querying these legacy data stores and inferring various information from
them in a desired format. Thus we require a wrapper for our web services. For a single
enterprise working with ten different web services, developing a wrapper for each of
the different web service is feasible, but in the multi-enterprise and multi-web service
context, this is not feasible except if some advanced languages (WSDL) are used to
automatically generate wrappers. Thus we need a generic wrapper that is able to wrap
the different web services in the most declarative manner. Wrappers are the place
where some heterogeneity can be handled (e.g., date formats, enumerations).

Thus our proposal for the generic data wrapper must make use of the web service
interface (web service API) to extract the data from these web services.

So we require a generic wrapper for extracting data from various web services
using their API with features like declarative approach and easier handling of the
web services and their heterogeneous and autonomous nature. It is possible since web
services are less heterogeneous compared to the classical mediation systems which has
to deal with various diverse sources like relational, semi-structured and textual sources.
Web services are already computer operational sources (and not human language only
sources). That’s why we talk about a ‘Generic Wrapper’. We can’t generate them
automatically since web services are not described with advanced languages. So we
study a manual solution:

• one wrapper that is configurable for each web service.

4.3. Generic Wrapper for Web Services 71

• to make it feasible to configure a lot of web services, this configurable step must be
done using declarative languages and not (imperative) programming languages.

To configure the generic wrapper, we consider the services that use XML (or JSON)
as message formats for the web service API communication. To validate the response
obtained from the web services, we require the expected schema of the operation re-
ponse generally available as XSD [Gao et al., 2009]. To extract desired information
from the operation response, we also need a transformer using XQuery [Fernández
et al., 2002] or XSLT [Kay et al., 2007].

Conclusion Our goal is to shift ETL from development to administration by using
declarative languages to link sources to the global schema and to configure the generic
wrapper.

Chapter 5

DaWeS: Data Warehouse fed with
Web Services

A data warehouse is fed with the data coming from different data sources using various
ETL (Extraction, Transformation and Loading) tools. In a classical data warehouse
settings, the data sources are the legacy databases of various departments (or business
units), textual documents, spreadsheets and sometimes web pages. Wrappers are used
to extract data from these sources. Our data sources are the web services used by the
enterprises whose data can be accessible using the respective web service APIs.

Mediation approach in data integration field provides a uniform query interface
to heterogeneous and autonomous data sources. We use the mediation approach to
feed DaWeS. In this chapter, we will discuss how the mediation approach along with
a generic wrapper can be used as an ETL for the data coming from the web services.
We will also discuss the detailed architecture and development of DaWeS.

5.1 Two Tiered Architecture of DaWeS

DaWeS employs a two-tiered architecture as shown in Figure 5.1. There are primarily
two main categories of users: DaWeS administrators and DaWeS users (enterprises).
DaWeS administrator looks for new web service APIs to integrate them with DaWeS.
She also defines new record definitions which when executed using the ETL tool gives
the (historical) enterprise data from the web services. These enterprise data form
the enterprise records. She also defines new performance indicators using the record

74 Chapter 5. DaWeS: Data Warehouse fed with Web Services

schema (record definitions). The performance indicator definitions are evaluated by
the Query processing making use of the enterprise records. It produces enterprise
performance indicators (aggregated data). The ETL component makes the web service
API operation calls, receives the operation responses, transforms them to a desired
format and store the result to the enterprise record database.

Record schema and enterprise records are managed in the Record Tier and perfor-
mance indicators schema and values (enterprise performance indicators) are managed
by the Performance indicator Tier.

��������	
	�

�����������	�

��������������
����	���	
	��

������	
	�

�����������	
�������	�����	
����	
	��

���

����	

���������

������	����

�����	
����

�	�����

������	����

�����	
��

������
�����

������

������
�����

����
����
�����	���
��������	
����

���������

�������	
 ���� ������
� !������"��

���

#�
���������	
	

�����

����

����������

��������
����

������������������

�����	�
�

�����	

������
�������
�

�����	�
�����	

��	
	

�����	 �����	� ������

��������	�

���

������

� �
���������
����

 !��

������
�����

�����	
	��
������ �

�������
��
�

��� !��

����

�������

�������

�������

�	$�$�
������
�	
��

�	$�$�
%���

���

�	
	����

&���	��'	
����

(��)��������*�
$�+�$�������
���

�����	��	
	 �
���
��
���

������	
	�

&���	��'	
���

Figure 5.1: DaWeS: Overall Picture of Two Tiered Architecture

A DaWeS user makes use of the GUI (Graphical User Interface) to visualize the
performance indicators and records of her enterprise. She can also define new perfor-
mance indicators using the record schema. She (and DaWeS administrator) can also
define new performance indicator definitions using the already defined performance in-
dicator definitions. In the upcoming sections, we will take a detailed look at all these
components.

5.2. Architecture and Development 75

5.2 Architecture and Development

Before delving deep into the architecture of DaWeS, we first present the basic overview
of its architecture (see Figure 5.2). Then we go into a detailed analysis of its individual
components.

5.2.1 Overview

��������	
	�

�����������	�

����������

����������

�	
����������
����

��������		�
	��

�����	

�����

�	�	

�	
��
���	�

�������
������	��

�	
��
���	�

�������

�	��������

�	��
�

�	��������

���
	�����	��������� ���	
��

�������	
 ���� �����	�� �����	�����

���

�����
����������

�����

����

����������

��������
����

������	��	������

��� 	���
�

��� 	��

��������
	�����

��� 	���
��� 	��

�����

��� 	�� ��� 	��� ������

������ 	���

���

������

� �
�������������

����

��������
	��

���������
������ �

������������

�������

����

Figure 5.2: DaWeS: Two Tiered Architecture

Records and Performance indicators constitute the two-tiered architecture of DaWeS.

Two-Tiered Architecture Tier One, also referred to as the Records Tier manages
the (historical) enterprise data obtained from the web services API. Tier two (Perfor-
mance Indicators Tier) uses the enterprise records to compute business performance
indicators. Mediation is used as an ETL approach to obtain data from the web ser-
vice API. Mediation handles query rewriting, web service API operation calls using a

76 Chapter 5. DaWeS: Data Warehouse fed with Web Services

generic wrapper (section 5.2.2.6) and query evaluation. The two tiered architecture is
shown in Figure 5.2.

The two tiered architecture is further explained by Fig. 5.3 that shows the basic
architecture of DaWeS. The figure also differentiates between various automated and
manual efforts. Web service API operations are manually defined. For every web service
API operation, DaWeS administrator refers the API documentation to get the details
of the operation like HTTP information (HTTP url, body and header of operation
request), the expected response schema (XSD) and the transformation (XSLT) required
to extract the relevant information from the operation response. DaWeS administrator
also creates record definitions and some (default) performance indicator queries. All
of these constitute the manual effort. Handling of queries (both record definitions
and performance indicator queries) and their responses and making web service API
operation calls are automated.

Query rewriter rewrites the query formulated over the global schema relations to
query plan with web service API operations using inverse rules algorithm. Mediation
as an ETL is achieved by the generic HTTP web services wrapper and answer builder.
The answer builder executes the query plan and makes API operation calls using the
generic wrapper. The query responses constitute the enterprise records (e.g., Daily New
Tickets in example 4.2.4). The records so computed are used to compute the perfor-
mance indicators. Query evaluator uses the underlying DBMS to evaluate performance
indicator queries (or SQL queries) to compute enterprise performance indicators (e.g.
Total High Priority Tickets Registered in a month in example 4.2.4).

DaWeS Tier One: Record Tier - Extracting relevant information from
web services) When DaWeS has all the information required (e.g., authentication
parameters) from an enterprise to fetch the relevant information from the web services,
DaWeS executes every query formulated over the global schema. The query evaluation
engine performs various tasks given below:

1. Reads the query (datalog query formulated over the global schema) from the
DaWeS database

2. Rewrites this query formulated over the global schema relations into a query
expressed with respect to web service API operations using the inverse rules
query rewriting algorithm

3. During the process of query evaluation (more precisely, the query evaluation step
is the evaluation of the rewriting), the following steps are performed for every
local schema relation (web service API operation):

5.2. Architecture and Development 77

��������	
�����
��
��	���

����	����	����������������
��

���������	
���

�
���������

�
������	
���

�
�������

����������

�������	
���

�
���������������

������	
���

�
�
���������
���
���
������
�

����
�� ���
�

"
!�
���
�

"���
�
� �
��

��#���	�$�

"
!�
��� ���"����

�	
���%�$�

��������
���	
�	�������

�������

������������������

��������
���	
�	�����

���	
	�	�
��� ������	����

!���������	
	�	�
��

������������	����

�������� ��

 ���"����
���������

����	����

������������

��#������������

��������

���� �
�����$%�����������

��������

��������������

��#�������	
���
���

�������� �
������	
���
�������������
�
������������

&��$&��'��	����

 ���"������
��

����������������

�

(''��	
������	�

�������	
)))� *����
�
��

&'�

��	�����	
���

+�	
����������
�

�������

��	���������	
��

��������
�������

�����

������� ��������

&'�� �
��	��	
����

���*,��

��	���������

	
��������
&'�&'� �

��	���������

���*,��
��

��	����
����"�

�-��	
��� ��

��	���������	����"�

���������

Figure 5.3: Basic Architecture

(a) On receiving the operation name, the generic wrapper performs the following
tasks:

i. Check the cache to see whether the operation call is recently made. If
the result is available, return the cached response.

ii. Read the authentication and authorization parameters of the corre-
sponding enterprise

iii. Form the HTTP request call (the HTTP URL, headers and body)
iv. Make the request and wait for the response (or error)

(b) A non-error response is validated using the expected operation response
schema

(c) A validated response is transformed to a format understood by the query
evaluation engine using transformers

(d) The transformed response is stored in the cache for future use
(e) Return the transformed response for the query evaluation

4. The query response (or error) is stored in the database as an enterprise record

78 Chapter 5. DaWeS: Data Warehouse fed with Web Services

DaWeS Tier 2: Performance Indicator Tier- Computing business perfor-
mance measures The records obtained from the evaluation of the query formulated
over the global schema are used to compute the business performance measures. Busi-
ness performance measures are SQL queries and are evaluated by making use of the
enterprise records. The business performance measures are computed in the following
manner

1. Read the business performance query definition from the DaWeS database
2. For every enterprise record required to compute this business performance

(a) Read the corresponding enterprise records for the given period from the
database

(b) Make sure that the enterprise records for the given period are available
(c) Ensure that none of the enterprise records for the given period have errors

(every enterprise record have an associated field that tells whether the record
computation was a success or a failure)

3. Compute the performance measure and store the result (error) in the DaWeS
database

Configuring DaWeS

There are two types of users: DaWeS administrators and enterprise users. DaWeS
administrators decide which web services they want to integrate DaWeS with. They
find the corresponding domain of these web services. For every domain, they decide
the relevant global schema relations (considering the various interesting business mea-
sures that an enterprise may be interested in). Once the global schema relations and
the relevant attributes are created, every relevant web service operation (operation
request and operation response) are mapped to the global schema using the LAV map-
ping. Queries are formulated over the global schema. Using only these queries, various
business measures (queries) are created and exposed to the end users.

Enterprise users search for the available web services and authorize DaWeS to query
the web services. Authorization and authentication parameters are stored in DaWeS.
Enterprise users also decide what information they want to extract from the web ser-
vices and store in the DaWeS database. Precisely it means that they choose what record
definitions they authorize DaWeS to execute. They also choose interesting business
measure queries from the default offer or create new ones that suit their requirements.

5.2. Architecture and Development 79

5.2.2 Detailed Architecture

We now discuss the detailed architecture of DaWeS. Figure 5.4 shows the various
modules and also differentiates between automated and manual efforts. The main
modules involved concern DaWeS Database, scheduler, enterprise business performance
measure computation, rewriting generator, answer builder, generic web service wrapper
(response validation, valid response transformation, response cache, generic HTTP Web
Service API Handler, failure handling), calibration and search.

5.2.2.1 DaWeS Database

DaWeS Database is used for storing web service description, global (mediated) schema,
record schema, performance indicators queries, enterprise authentication parameters,
enterprise records and performance and indicators. They are shown in the Figures 5.5,
5.6, 5.7, 5.8, 5.9 and 5.10. In all these tables ID is the primary key. A detailed look
at the various relational tables is discussed in section D.2. Here we present a quick
overview of these tables.

Figure 5.5 shows the information related to the web service. For every web service,
we collect the information regarding the various categories (or domains) it belongs to.
Examples of categories include Project Management, Email Marketing etc. The admin-
istrator also registers the various API of the web services and the details of the service
providers. Figure 5.6 describes the various information that is essential to describe
the web service API. For every API, the administrator must collect the information
related to the message formats, state (current, deprecated or active), authentication
parameters required from the enterprises and from DaWeS Administrator (for OAuth
1.0). It also shows the various details captured for every API operation like the ex-
pected response schema (XSD), the desired transformation (using XSLT) and HTTP
details of request. Every API operation has an associated local schema relation as
shown in Figure 5.7. Local schema relations are described using the global schema re-
lations using LAV mapping (conjunctive query). Both local schema and global schema
relations have their attributes and the corresponding data types described. Figure 5.8
shows how records (datalog queries) and performance indicator queries are stored.
Records definitions are (recursive) datalog queries. Every record definition and every
performance indicator has an associated frequency of execution that tells the sched-
uler (section 5.2.2.2) how often they must be computed. They also have associated
calibration test data (section 5.2.2.3) to ensure their proper computation. Figure 5.9

80 Chapter 5. DaWeS: Data Warehouse fed with Web Services

��������	
��
��
��
��	�������	���

�	����������������
��

��������������

������������
��������������

�������� �

!"#"������
!"#"��������

!��#"�	
�	������� �

�!#��������

��
��	��$%%!�&���'���	�����!#�$�
�����

�
�������	�����

(���)�����	����

	
������������

�����	�����

(���)����������

#��������� *'��

!��#����
���

	
�	��������������

��������

!��#����
���

	
�	������'(��
����	����

��������
������������	����

�!#��������

(���)����
�
������������	����

�

�!#�������
�����#�������

����� �
�����+,������
�����#�������

��

�!#�������
	
���
���#�������������

�
������
	
���
���#�������

�
�����#������
.'�%�#	����

(���)������
��

����������������

��

$%%!�	
#�����	�
�

���	�������
���%��
�#�����	�
�

�
�������	�����

�����
���/����

0�	�����$�
��	
� �����
������	���	�

'��������

/��	����	�
 '�����

�����
���
.*���

�����
��

%��
�#�����������
��

�����
���'������

.'��#	����

�!#�0�	����

/��	����	�

'�������

���������������

�������	
 """� /����
�
��

���

��	����#	
���

1�	
����������
� ��	���������	
��

��������

�����

������� �������
�

���� ���	��	
����

�#�/2��

��	���������	
�

�������

������ � ��	���������

�#�/2��

��
��	����
����)�

����	
��� ��

��	���������	����)�

���������

�

��
��������� /2�	
��3���

/4��

����	
������������	�
����

�	����	

/2�����

���������������
�

��
���

%��
�#�����	�
�0�	����

���	���	�
�

0�	����

5����6�%����

�
�����	
���

��������
������

�

����������

�
5

1���
��������

Figure 5.4: DaWeS: Detailed Architecture

5.2. Architecture and Development 81

WEBSERVICEANDCATEGORY

ID
WEB_SERVICE_ID
WS_CATEGORY_ID

WEBSERVICECATEGORY

ID
NAME

DESCRIPTION

WEBSERVICE

ID
WS_PROVIDER_ID

NAME
DESCRIPTION
LOGOURL

WEBSERVICEAPI

ID
WEB_SERVICE_ID

NAME
VERS
URL

WEBSERVICEPROVIDER

ID
NAME

DESCRIPTION

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure 5.5: Web Service

WEBSERVICEAPI

ID
WEB_SERVICE_ID

NAME
VERS
URL

WSAPIMESSAGEFORMAT

ID
WS_API_ID

MESSAGE_FORMAT_ID

MESSAGEFORMAT

ID
NAME

DESCRIPTION

WEBSERVICEAPIOPERATION

ID
WS_API_ID
NAME
URL

HTTP_METHOD_ID
HTTP_HEADER
HTTP_BODY

WSAPIOPSCHEMA

ID
WS_API_OP_ID
XMLSCHEMA

WSAPIOPTRANSFORM

ID
WS_API_OP_ID
XMLSCHEMA

WSAPIOAUTH1PARAM

ID
WS_API_ID

KEY
SECRET

REQUEST_URL
ACCESS_TOKEN_URL
AUTHORIZATION_URL

WSAPIREQPARAMS

ID
WS_API_ID
NAME

DESCRIPTION
AUTH_METHOD_ID

WEBSERVICEAPISTATE

ID
WS_API_ID
STATE

AUTHMETHOD

ID
NAME

DESCRIPTION

HTTPMETHOD

ID
NAME

DESCRIPTION

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure 5.6: Web Service API

82 Chapter 5. DaWeS: Data Warehouse fed with Web Services

GSCONSTRAINTS

ID
CONJUNCTIVE_QUERY

GLOBALSCHEMARELATION

ID
NAME

DESCRIPTION

GSRELATIONATTRIBUTE

ID
GS_RELATION_ID

NAME
DESCRIPTION
DATA_TYPE_ID

LOCALSCHEMARELATION

ID
WS_API_OP_ID

NAME
LAVMAPPINGCQ

LSRELATIONATTRIBUTE

ID
LS_RELATION_ID

NAME
BOUND
IDX

DATA_TYPE_ID

DATATYPE

ID
NAME

DESCRIPTION

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure 5.7: Local and Global Schema

LCINDICATORCALIBRATIONTESTDATA

ID
LCINDICATOR_ID

INPUT
RESULT

LCRECORDCALIBRATIONTESTDATA

ID
LCRECORD_ID

INPUT
RESULT

LCRECORD

ID
NAME

DESCRIPTION
DATALOGQUERY
FREQUENCY_ID

LCRECORDATTRIBUTE

ID
LCRECORD_ID

NAME
IDX

LCINDICATOR

ID
NAME

DESCRIPTION
SQL_QUERY

FREQUENCY_ID

LCINDICATORATTRIBUTE

ID
LCINDICATOR_ID

NAME
DATA_TYPE_ID

DATATYPE

ID
NAME

DESCRIPTION

UPDATEFREQUENCY

ID
NAME

DESCRIPTION

LCINDICATORDEPRECORDS

ID
LCI_ID

LCRECORD_ID
QUERY

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure 5.8: Record Definitions and Performance Indicators

5.2. Architecture and Development 83

ORGREQPARAMS

ID
WS_API_RP_ID

ORG_ID
VALUE

WSAPIREQPARAMS

ID
WS_API_ID
NAME

DESCRIPTION
AUTH_METHOD_ID

ORGINTDRECS

ID
ORG_ID
LCR_ID

ORGINTDPIS

ID
ORG_ID
LCI_ID

LCRECORD

ID
NAME

DESCRIPTION
FREQUENCY_ID
DATALOG_QUERY

LCINDICATOR
ID

NAME
URL
EMAIL

LCINDICATOR

ID
NAME

DESCRIPTION
FREQUENCY_ID
SQL_QUERY

ORGANIZATION

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure 5.9: Organization, its authentication params and interested Record Definitions
and Performance Indicator

LCINDICATOR

ID
NAME

DESCRIPTION
SQL_QUERY

FREQUENCY_ID

ORGRECORDVAL

ID
ORG_RECORD_ID

IDX
LCR_ATTR_ID

VALUE

ORGINDICATORVAL

ID
ORG_IND_ID

IDX
LCI_ATTR_ID

VAL

ORGRECORD

ID
ORG_ID

LCRECORD_ID
TIME

ERROR_ID

ORGINDICATOR

ID
ORG_ID

LCINDICATOR_ID
TIME

ERROR_ID

ID
NAME
URL
EMAIL

ORGANIZATION

LCRECORD

ID
NAME

DESCRIPTION
DATALOGQUERY
FREQUENCY_IDLCRECORDATTRIBUTE

ID
LCRECORD_ID

NAME
IDX

LCINDICATORATTRIBUTE

ID
LCINDICATOR_ID

NAME
DATA_TYPE_ID

ID
ERROR_MESSAGE

QUERY

ERROR

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure 5.10: Organization Data

captures every information required from the enterprise (or organization), i.e., organi-
zation details, authentication parameters for the web services, the interested records
and performance indicators. Figure 5.10 shows how enterprise records and performance

84 Chapter 5. DaWeS: Data Warehouse fed with Web Services

indicators are stored. In some cases, record or performance indicator may result in fail-
ures. This information is also captured. In addition, there are tables that deal with
tags, ratings and calibration status of record definitions and performance indicator
definitions. Figure D.1 shows how organization can tag and rate the web services,
the records and performance indicators. Figure D.2 shows how the current calibration
(section 5.2.2.3) status and performance indicators are handled.

Discussion: In Tables 5.7 and 5.8, the readers may have noticed how we handle
the global schema relations, record definitions and performance indicator queries. In a
classical data warehouse settings, every data warehouse schema relation is a table in it-
self. Since we are using the virtual data integration, where the global schema (here data
warehouse schema) is not materialized, every global schema relation is a table entry
(with details of its attributes stored in another table). GLOBALSCHEMARELATION
is used to store the relation name and description. GSRELATIONATTRIBUTE is
used to store the global schema relation attributes. Thus it makes it easier to add new
global schema relations when new domains are identified. It also makes the data ware-
house partly dynamic. The impact of update and deletion of global schema relations
is currently handled with the help of triggers and needs to be further explored.

Record definitions are stored in two tables LCRECORD and LCRECORDAT-
TRIBUTE. The former is used to store the query predicate name, description and
the frequency of execution (like in example 4.2.4, Daily New Tickets(DNT) has an
associated frequency: Daily to signify that this record definition or datalog query must
be evaluated daily). The latter is used to stored the details of the query attributes
(like tkid, src, tkn, tkp, tks for DNT). The organization (or enterprise) records are
stored in two tables ORGRECORD and ORGRECORDVAL, with the former storing
the details concerning the record definition (identifier), the timestamp, the organiza-
tion (identifier) and the error (identifier) occurred during the query evaluation and the
latter storing the tuples of query response.

The same two table idea is used to handle the performance indicator, i.e., LCINDI-
CATOR and LCINDICATORATTRIBUTE to store the details of the performance
indicator query name, description, frequency and attributes. ORGINDICATOR and
ORGINDICATORVAL are used to store the enterprise performance indicator values.

Example 5.2.1. In example 4.2.4, we saw that the record definition Daily New Tickets
or DNT was seen as a relation and used to create performance indicator (or SQL
query). But with this table design, the (Oracle) SQL query needs to reflect this idea
and the new SQL query takes the following form:

5.2. Architecture and Development 85

SELECT count (*) FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkp’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
)

AND
value LIKE ’’’High’’’

We now analyse the above query in detail. Note in the above query $orgID is
replaced by the identifier of the respective organization before query evaluation. The
following SQL query excerpt ensures that the enterprise records of last 30 days corre-
sponding to the record definition Daily New Tickets are taken into consideration:

...
SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
AND

org_id = $orgID
...

Following SQL query excerpt ensures that we take into consideration tkp, an at-
tribute of Daily New Tickets and check whether it’s value (in the enterprise record) is

86 Chapter 5. DaWeS: Data Warehouse fed with Web Services

High:

...
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkp’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
)

AND
value LIKE ’’’High’’’

The following SQL query excerpt makes the count of the tuples of enterprise records
satisfying the above conditions:

SELECT count (*) FROM OrgRecordVal
WHERE org_record_id IN
......

Thus we make use of record definitions to formulate performance indicator defini-
tions. �

5.2.2.2 Scheduler

Both the record definitions (query formulated over the global schema) and the per-
formance indicator queries have an associated frequency of evaluation that determines
the periodicity of computation of the corresponding queries. Frequency values include
daily, fortnightly, monthly, quarterly, yearly. In example 4.2.4, DNT has the frequency
value: Daily and the performance indicator query Total High Priority Tickets Regis-
tered in a month has the frequency value: Monthly. Scheduler does the following:

1. Get all the organizations currently using DaWeS.
2. For every organization, perform the following steps:

(a) First compute or form the enterprise records. Find the relevant (or inter-
esting) record definitions for the organization. For every record definition,

i. Get the corresponding frequency of evaluation.

5.2. Architecture and Development 87

ii. If the desired record is already computed for the specified period, skip
and move on to the next enterprise record definition.

iii. Invoke the record computation module for evaluating the query.
(b) Now compute the enterprise performance measures. Find the relevant (or

interesting) performance measure queries. For every performance measure
query:

i. Get the corresponding frequency of evaluation.
ii. If the desired performance measure is already computed for the specified

period, skip and move on to the next enterprise performance measure
query and

iii. Invoke the performance indicator computation module for evaluating
the query.

3. Sleep and wait till the next invocation.

5.2.2.3 Calibration

There are primarily two major computations: computation of records (after fetching
data from the web services) and computation of performance indicators from records.
While fetching data from web services, there are various internal and external factors
that can lead to the corruption of data. So measures must be taken to ensure that
there is no data corruption and every record computation or performance indicator is
computed as expressed by its definition. Record computation involves fetching the data
from the web services, validating the web service response, transforming the validated
response and finally compute the value of the record. We split this whole process into
three levels of calibration steps:

1. Level 1 Ensuring valid response from Web services: For every web service API
operation, there is an associated (XSD) schema that ensures whether all the
required information is present in the web service API response and there is no
change in their data types. (example: refer section 5.2.2.7).

2. Level 2 Ensuring a record computes what it is defined to do: For every record
definition, there is an associated calibration test data that has both the input
and the desired result. Both the input data and desired output data are stored in
the DaWeS database. Every record definition can have one or more calibration
test data. A record passes the calibration test if the computation of the record
produces the expected response. This is to capture any undesired (accidental)
changes to the record definitions.

88 Chapter 5. DaWeS: Data Warehouse fed with Web Services

3. Level 3 Ensuring integrating Web service and record computation also performs
the desired computation: This is another level of test where calibration is per-
formed on every record after integrating with the web services. For this level of
test, every calibration test data has a desired result and there is no input speci-
fied. Unlike the previous level, where both the input and desired output data are
stored in the database, in this level the input data is not stored in the database,
but rather they come from the web services. This is an end to end calibration of
the overall Records Tier.

All the above three levels are used to perform the calibration of records

We take a look at Level 2 calibration with an example. It means we have both
the input test data and the expected query response. We feed the test data and the
record definitions to the answer builder. The response so obtained is compared with
the expected response. If it passes, we say that one calibration test passed. If all the
calibration test for a record definition passes, the (most recent) status of the calibration
is considered as passed, else failed.

Example 5.2.2. This is the Input of a Calibration test Data for the Record Daily New
Projects defined by the following datalog query

q(pid,src,pname,pstatus):-Project(pid,src,pname,’yesterday()’, pstatus).

The input for the calibration is the following

Project(’1’,’a’,’project 1’,’yesterday()’,’Open’).
Project(’2’,’a’,’project 2’,’yesterday()’,’Open’).
Project(’2’,’a’,’project 2’,’yesterday(3)’,’Open’).

yesterday() is transformed before query evaluation to yesterday’s date and yesterday(3)
is transformed to date three days before yesterday. And the desired output is the fol-
lowing

q(’1’,’a’,’project 1’,’Open’).
q(’2’,’a’,’project 2’,’Open’).

�

5.2. Architecture and Development 89

We store both the input and output calibration test data to the DaWeS database
(level 2 as discussed above). When there is no input specified for the record definition
calibration (level 3), it corresponds to the situation where web service API operation
calls have to be made to obtain the result. The result thus obtained is checked with
the desired output.

Calibration of Indicators is performed in the similar manner. A performance indi-
cator is defined using the records. Like the records, for every performance indicator,
there are a set of calibration test data with input and desired result specified. The
calibration check computes the performance indicator using the specified input data
and compares it with the desired result. When all the calibration test data result
matches, a performance indicator can be said to pass the calibration test. Calibration
of performance indicator may seem to be not as important as calibration of records
due to the lack of external factors (web services) but they are also important to catch
any unexpected changes to the performance indicator queries due to human errors.

Example 5.2.3. This is the calibration test data for Total Monthly New Projects The
input for the calibration is the following

DailyNewProjects(’yesterday()’,’1’,’a’,’project 1’,’Open’).
DailyNewProjects(’yesterday()’,’2’,’a’,’project 2’,’Open’).
DailyNewProjects(’yesterday(3)’,’3’,’a’,’project 3’,’Open’).

And the desired output is the following

q(’3’).

Note that the first term in the input test data for the calibration test data corresponds
to the time (to imitate the time when a record was saved in the database). Also note
that the name used for the relation name is the record name with all spaces removed �

Calibration test data are stored in the database and they remain unchanged until
when some API operation change and it results in calibration test failure(s). The ad-
ministrator will then change web service description in DaWeS and also the calibration
test data to reflect the API changes. Thus calibration also plays an important role to
detect the evolution of web services.

90 Chapter 5. DaWeS: Data Warehouse fed with Web Services

5.2.2.4 Rewriting Generator

Rewriting generator performs the query rewriting, that is translating the query for-
mulated over the global schema relations to a query formulated over the local schema
relations (or web service api operations). The rewriting generator gives the following
output (datalog query plan) corresponding to the given record identifier.

1. Rectified Query
2. Inverse Rules (for the LAV Mapping)
3. Domain Rules
4. Generalized Chase rules (for full and functional dependencies defined over the

global schema relation)
5. Transitive rule

The above steps are done in accordance with the Inverse rules algorithm. Also see
Figure 5.11 for the role of rewriting generator in query evaluation. Refer example 4.2.3
for the query rewriting generated by inverse rules algorithm.

5.2.2.5 Answer Builder

Answer builder plays a significant role in the evaluation of the record definition. The
inputs to the answer builder consists of the record definition identifier and the orga-
nization identifier. The main constituent of the answer builder is the datalog engine
which evaluates the (recursive) datalog query using the query rewritings. The answer
builder performs the following tasks

1. It reads the concerned record definition from the database.
2. Any translation of in-built functions used by DaWeS for the record definitions is

performed (Example: yesterday(), see section C.2).
3. It requests for the query rewritings from the rewriting generator (section 5.2.2.4).
4. It loads the query rewritings and the rectified query (record definition) into the

datalog engine.
5. Datalog engine during query evaluation on encountering a local schema, request

the generic http web service wrapper (section 5.2.2.6) to make the web service
API operation call. providing it the values for input parameters. Datalog engine
during query evaluation makes available the values for these input parameters.

5.2. Architecture and Development 91

6. If no errors occurred during the web service API operation calls and during the
query evaluation, the datalog engine computes the answer and returns the query
result.

7. Store the query response (or error result) to the database.

Figure 5.11 illustrates the role of answer builder in the query evaluation.

��������	
�����
��
��	���

����	����	����������������
��

���������	
���

�
���������

�
������	
���

��������	
�

�������������������������
����

�������������

�����������

�������������
������	��

�������	�
��������

�����������������

�������������������������

������

�������������������

������

�������������������

������ �����������������
������
�������
�����

�� 	�� !"�
�����

#���$���������

���������%�������

&""����
�������

#���$�������������������$��
� ����
����#���$�'
� ��%�����������'
� 	������������'
� (�������)���*�����������'
� "������%������

�������	
 +++� *��������

 !�
"������"���

 !�� �
�����������
�

*,��

�����������

���"�����
 !� !� �

����������

�
�*,��

(��-��� ������*��������

�.��������.���������	�������������

*,������"�������"������

!�
 !�

Figure 5.11: DaWeS: Query Evaluation Engine

5.2.2.6 Generic HTTP Web Service API Handler

One of the main components in generic wrapper is Generic HTTP web service API
handler that is described in Figure 5.12. The purpose of the generic http web service
API handler is to be able to make API calls to any web service. The generic API
handler takes as input the organization identifier, the web service operation identifier
(name) and the required input parameters for making the web service operation call.
The API handler performs the following steps

92 Chapter 5. DaWeS: Data Warehouse fed with Web Services

1. It forms the HTTP URL, HTTP header and the HTTP body using the authen-
tication parameters and the given input parameters. (Example:
https : //basecamp.com/$orgID/api/v1/projects.json is transformed to
https : //basecamp.com/12345/api/v1/projects.json replacing orgID by the
organization identifier in Basecamp service)

2. It makes the web service API operation call and waits for the response.
3. When it receives an error/response from the web service, it modifies it to a desired

intermediate format (Done for web service operation responses in JSON; such
messages are transformed to XML since XML has been well researched for years
and several packages associated to schema validation (XSD) and transformation
(XSLT) are present).

During any of the above steps, if the API handler encounters an error, it sends the
corresponding information to the failure handling module (section 5.2.2.10).

���������		
��������������
����������

�
���������

����������	
����

�������

��������������

���������

	�������������

����������

	����������������

���������������

��������	�����

�������	
 ���� ��������� �������
��������!����

 "��
������ �

������!��!����

 "��

�����������

���������������

�������������������

�
���������

��#!���

��������

��#!������������

�		

���������������
���!�

����������

�
�� ��������

�������
���!�

����������

�		

���������������

! "�	�

#$%����������

&������

�������

$����

����

 "�!����'��'
�

��
���

������������'����

$����������

����������

Figure 5.12: DaWeS: Generic HTTP Web Service API Handler

5.2. Architecture and Development 93

5.2.2.7 Response Validation

The response obtained after making a web service operation call has then to be vali-
dated. For this purpose, XSD is used. While defining every API operation, it is also
required to define the (expected) schema of the operation response. In this step, it is
made sure that the obtained response is in accordance to the expected response schema.
If the response is not valid (i.e., the obtained response schema doesn’t match with the
expected response schema), this module sends the corresponding information to the
failure handling module (section 5.2.2.10). In DaWeS, when the response schema is
not given in the web service API documentation (in our experience, mostly an example
web service API response is given), we make use of the given examples to create the
expected schema manually or using online tools like [XSD Generator: FreeFormatter,
2012].

5.2.2.8 Valid Response Transformation

If the response obtained from the web service API operation call is valid, we perform the
transformation of the response to a desired format understood by the datalog engine.
For this purpose, we use XSLT files created manually by the DaWeS administrators.
The output of the this module is a list of tuples having comma separated values. On
encountering a failure, failure handling module (section 5.2.2.10) is invoked.

Example 5.2.4. In this example, we see how the operation response for UTT con-
sidered in the example 4.2.4 is validated using XSD and the total number of tickets
so obtained from the operation response is transformed to (page number, page size)
combination.

XSD: We are only interested to validate whether there exists a field total_records

whose XPath is given below:

1. Total Tickets (response/response_data/total_records)

The XSD for the operation UTT response is given below:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="response">
<xs:complexType>

<xs:all>
<xs:element name="response_data">

94 Chapter 5. DaWeS: Data Warehouse fed with Web Services

<xs:complexType>
<xs:all>

<xs:element name="total_records">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

Note how we aren’t interested in any other fields in the operation response. This
XSD is used by Response Validation (section 5.2.2.7) to validate the response obtained
after making the call to UTT . Next we see the transformation using XSLT.

XSLT: The obtained response from UTT contains the total number of tickets. We
are interested in extracting the page number, entries per page from the operation re-
sponse. The default number of entries per page is set as 25. We transform the total
number of tickets to tuples of (page number, 25) as shown below. The idea behind the
following program is to start from the total number of tickets, produce a page number
starting from 1, decrease page size from the total number of tickets and repeat the whole
process until the total number of tickets is less than or equal to zero. (For e.g., 100 will
give values (1,25),(2,25),(3,25),(4,25)).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template name="for-loop">

<xsl:param name="total" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="page" select="1"/>
<xsl:if test="$total > 0">

<xsl:value-of select="$page"/>,
<xsl:value-of select="$increment"/>
<xsl:text>
</xsl:text>
<xsl:call-template name="for-loop">

5.2. Architecture and Development 95

<xsl:with-param name="total" select="$total - $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="page" select="$page+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template match="/">

<xsl:variable name="default">25</xsl:variable>
<xsl:variable name="page">

<xsl:copy-of select="$default"/>
</xsl:variable>
<xsl:variable name="total">

<xsl:value-of select="response/response_data/total_records"/>
</xsl:variable>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total"/>
<xsl:with-param name="increment" select="$default"/>
<xsl:with-param name="page" select="1"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

This XSLT is used by Valid Response Transformation (section 5.2.2.7) to transform
the response obtained after making the call to UTT to tuples of (page number, page
size). �

5.2.2.9 Response Cache

Response cache is used by the generic wrapper to store the transformed responses
for later use. The response cache is checked before making any new web service API
operation calls. The cache is a key-value storage mechanism, where for every key, there
is an associated value. In our case, the operation name, operation parameters and the
organization identifier together forms the key. The transformed operation response is
the value. Every key-value constitutes an entry. Therefore the main operations of the
cache is to create new entries, update the existing entries and get the value of the
existing entries. On obtaining the key, the corresponding value is given. Whenever
an operation call is made, the response cache is checked whether any transformed
response is cached for that operation and organization along with the given set of
input parameters.

5.2.2.10 Web Service API Operation Failure Handling

Following are the possible failures encountered during the web service API operation
calls and the associated processes: web service internal error, operation request time-

96 Chapter 5. DaWeS: Data Warehouse fed with Web Services

out, account revoked permission, API deprecation, service enforced policies (breach
of quality contract), API operation response Changes, incorrect passage of operation
request(input) parameters, permission denied, internal web service temporarily un-
available, change in message formats (XML, JSON, plain-text, signed content) other
than previously supported ones., operation deprecation etc. Any error above leads to
the abortion of the current evaluation of the query (record definition) and error status
is recorded for the corresponding record of the organization.

5.2.2.11 Enterprise Business Performance Indicators Computation

Performance measure computation works in the similar manner as records are com-
puted. Following are the steps involved in the performance measure computation. It
takes as input the performance measure query identifier and the organization identifier.

1. Verify whether both the performance measure query identifier and the organiza-
tion identifier are valid.

2. Check the latest calibration (section 5.2.2.3) status of the performance measure
query.

3. If the performance measure query is well calibrated (section 5.2.2.3),

(a) Get the corresponding frequency of evaluation.
(b) If the desired performance indicator is already computed for the specified

period, return this result.
(c) For every enterprise record required to compute this business performance.

i. Read the corresponding enterprise records for the given period from the
database.

ii. Make sure that the enterprise records for the given period are available.
iii. Make sure that none of the enterprise records for the given period have

errors (web service API error response or failure to compute the enter-
prise record). Recall that every enterprise record in ORGRECORD has
an attribute called ERROR_ID to signify this.

(d) Compute the performance measure and store the result (error) in the DaWeS
database. This computation of SQL query is handled by the underlying
DBMS.

(e) Save the query response (or error status) to the database.

5.2. Architecture and Development 97

5.2.2.12 Search

Every web service has an associated web service category. Users(organizations) can
also rate a web service or tag the service based on their usage pattern. Rating values
range from 1 to 10 (10 being the best rating). Tags are (popular) labels that users
use to label the web services. Take for example, a DaWeS administrator tagged a
project management service as Project Management. But regular users of such services
may often refer such services as PM. Such popular terms are useful for search since a
user search like PM in DaWeS will return all project management services taking into
account the user tag PM for one such service. Rating values can be used in conjunction
to return the most popular web service(s) at the top.

Similarly a performance indicator and a record can have associated tags and rating
defined by the users(organizations). When an application user searches for a web ser-
vice, record or performance indicator, (s)he must be shown other relevant information
that can enable him/her to see other options available in the DaWeS (such results are
popularly known as search suggestions). Search works in the following manner. It takes
two options: type and the pattern to search. Type can be web service, performance
indicator or record. The pattern to search can be a string of characters or use spe-
cial characters like regular expression pattern. We explain the search procedure with
the type web service below. It can be extended to record and performance indicator
search with the exception that records and performance indicators have no associated
category. Following are the steps:

1. First look for the web services with the exact name or has the given pattern in
its name.

(a) Get the rating for each web service and arrange the web service in the
descending order of rating with top rated web service at the top.

(b) Get the web services having the same tag and category as the web service(s)
found in 1.a.

2. Search for web service category that match the user pattern.

(a) Get the rating for each web service and arrange the web service in the
descending order of rating with top rated web service at the top.

(b) For each matching category, get all the web services

3. Search for tags that match the user pattern. For each matching tag, get all the
web services that have the same tag.

4. For every web service obtained in 1.b, 2.b and 3.b, find the category and tag.

98 Chapter 5. DaWeS: Data Warehouse fed with Web Services

(a) Get the web services belonging to this category and tag.
(b) Get the rating of all the web services and their rating and arrange them in

the descending order.

5.2.3 Development

Table 5.1: Development Environment

System details
Processor Intel(R) Pentium(R) Dual CPU @ 2.16GHz

System Memory 3GiB
Operating System Ubuntu [Ubuntu, 2012] 13.04 (32 bits)

Database details
Database Oracle 11g [Oracle Database, 2012] (11.2.0.1.0)

SQL Interface Oracle SQL Developer [SQL Developer, 2012] v3.1.07
Development details

IDE Eclipse IDE [Eclipse, 2012] Version 3.8
Programming Language Java [Java SE, 2012] (Version: Java 1.7.0_25)

XSD and XSLT
XSD 1.1 [Gao et al., 2009]
XSLT 2.0 [Kay et al., 2007]

Libraries Used and their Versions
IRIS [IRIS, 2008] v0.60

Ehcache [ehcache, 2012] 2.6.5
Hibernate [hibernate, 2012] 4.1.9

Scribe [Fernandez, 2013] 1.3.5

Table 5.1 summarizes the development environment. The system was developed and
tested in Ubuntu 13.04 (32 bits) operating system using Java 1.7.0_25 and Oracle 11g
database. We chose IRIS (Integrated Rule Inference System) [IRIS, 2008] as the datalog
engine considering its capability to handle adornments (to specify access patterns in
the relations) and functional terms (generated by the inverse rules algorithm for the
LAV mappings). IRIS also has various built-in predicates like EQUAL to specify the
equality predicates. It can also be configured to refer external data sources during
query evaluation. It also supports a lot of optimization techniques that can be used to

5.2. Architecture and Development 99

optimize the datalog query evaluation. Following are the IRIS configurations used by
us:

1. We enabled standard rule safety in IRIS so as to receive an exception whenever
an unsafe conjunctive query is encountered.

2. For the purpose of optimizations, we enabled rule filters along with magic sets
[Abiteboul et al., 1995]. This ensures that only those rules that are useful for the
query evaluation are taken into consideration and the remaining are removed.

3. In addition to the support for pre-loading of facts (tuples of constants) to IRIS, it
also supports configuring external sources so that the facts can be loaded during
the query evaluation. In our case, we don’t have any preloaded facts from the web
services and the generic wrapper (section 5.2.2.6) is the only external source that
can give access to the enterprise data over the web services. Hence we configured
IRIS to make use of the generic wrapper during query evaluation.

4. For the evaluation of the datalog queries, we configured IRIS to use bottom-
up evaluation strategy along with semi-naive evaluation. Bottom up evaluation
(along with magic sets) performs better than top down evaluation [IRIS, 2008;
Ullman, 1989a] and so is the semi-naive evaluation compared to the naive ap-
proach.

During development, we used Hibernate (an object-relational mapping library for
Java) to easily work with the various SQL tables used in DaWeS. We used the scribe
library for the web services using OAuth 1.0 to access the enterprise data. Ehcache
is used to cache transformed API operation responses. We use [Json-lib, 2012] Java
library to convert JSON responses to XML messages. For the XML serialization,
validation and transformation use use the Javax.xml library [javax.xml, 2012].

Chapter 6

Optimizing Query Processing in
DaWeS

In this chapter, we present two open problems that have arisen while implementing
DaWeS. The first problem is related to the management of incomplete information,
which means unknown information in the context of DaWeS. The second is related to
the bounding of the number of API operation calls, which can be expensive both in
time and money. In section 4.1, we recall theoretical elements needed to understand
our proposals to these problems. These are then studied in section 6.1 and 6.2.

In [Rajaraman et al., 1995], semantics of executable conjunctive queries has been
defined intuitively in the following manner: make accesses to every relation in body(ψ)
from left to right. While accessing a relation with input attributes, make accesses with
the values of output attributes obtained by making accesses to the previous relations
in body(ψ). Precisely defining the semantics of CQα is the aim of section 6.2.2.

6.1 Handling Incomplete Information

As seen in chapter 5, using mediation with LAV mappings is convenient since it allows
to easily add, remove and update API operations. However, the semantics it relies on,
the certain answer semantics, is quite constraining. One of the implied constraints is
that incomplete tuples (that is tuples in which some data would be missing) are not
considered as answers. This means that potentially many data cannot be exploited
because the lack of a few others. We illustrate this point in the following example

102 Chapter 6. Optimizing Query Processing in DaWeS

(where access patterns have not been taken into account, for a sake of clarity).

Example 6.1.1. Consider the case given in the Figure 4.1. We recall the following
elements:

• the global schema is {cite(2), sameTopic(2)}
• the LAV mappings are (v3 is not used here):

v1(A, B) ← cite(A, B), cite(B, A)
v2(E, F) ← cite(E, F)
v4(C, D) ← sameTopic(C, D)

• the query is ans(A, B) ← cite(A, B), cite(B, A), sameTopic(A, B)

Suppose that the extensions of v1, v2 and v4 are the following (given in a tabular style):

v1
2 4
3 6

v2
3 4
1 3
1 2

v4
1 2
3 4
2 4

Since the database instances of the global schema must be compatible with the source
extensions, the they must contain at least the following tuples:
cite

3 4
1 3
1 2
2 4
4 2
3 6
6 3

sameTopic

1 2
3 4
2 4

It means that each database instance for the global schema contains at least these tuples,
but may contain other tuples. The rewriting given by the inverse-rules algorithm is the
following Datalog query (the first rule is the original query, and the other ones are the
inverse-rules):
ans(A, B) ← cite(A, B), cite(B, A), sameTopic(A, B)
cite(A, B) ← v1(A, B)
cite(A, B) ← v1(B, A)
cite(E, F) ← v2(E, F)
sameTopic(C, D) ← v4(C, D)
In this configuration, evaluating this rewriting does not imply any problem. The obtain
answers, which are the certain answers, are:

6.1. Handling Incomplete Information 103

ans

2 4
We recall the certain answers are the intersection of all sets of answers obtained by
evaluating the query on all database instances of the global schema that contain the
tuples of the source relations.

Let’s now suppose that we change the LAV mappings (keeping the same global schema
and query):

• the global schema is {cite(2), sameTopic(2)}
• the LAV mappings is:

v5(A, B) ← cite(A, C), cite(C, B), sameTopic(B, C)

with the following extension
v5

1 4
3 3

• the query is ans(A, B) ← cite(A, B), cite(B, A), sameTopic(A, B)

Then the instances of the global schema must contain at least the following tuples:
cite

1 f(1,4)
f(1,4) 4

3 f(3,3)
f(3,3) 3

sameTopic

4 f(1,4)
3 f(3,3)

The functional terms express the existential variable C used in the LAV mapping. For
example, since the tuple 〈1, 4〉 is in the extension of v5, it means that there exists
some C which depends functionaly from 〈1, 4〉 (that’s why we note it f(1, 4)) such that
〈1, f(1, 4)〉 and 〈f(1, 4), 4〉 are in the extension of cite and 〈4, f(1, 4)〉 is in the ex-
tension of sameTopic. Due to the presence of functional terms, database instances
are not database instances any more (since there is no functional terms in a database
instance). These are "more general" instances. Since it expresses an existential vari-
able, each functional term may replace many values (at least one). So this is a sort of
generic description of many possible databases. [Grahne and Kiricenko, 2004] call it
an incomplete database. Strictly speaking the evaluation of the rewriting given by the
inverse-rules algorithm, which is the following Datalog query:
ans(A, B) ← cite(A, B), cite(B, A), sameTopic(A, B)
cite(A, f(A, B)) ← v5(A, B)
cite(f(A, B), B) ← v5(A, B)

104 Chapter 6. Optimizing Query Processing in DaWeS

sameTopic(B, f(A, B)) ← v5(A, B)
cannot use these functional terms. It means in our case that the set of certain answers
is empty. But what a pity not to be able to use the tuples in the sources ! Indeed, it
would still be interesting to return to the user the following answers:
ans

3 f(3,3)

As in [Grahne and Kiricenko, 2004], the solution we adopted in DaWeS is a relax-
ation of the certain answers semantics to allow dealing with functional terms. It is
well-known [Ullman, 1989b] how to evaluate a Datalog program with functions. Here
the fact that functional terms can only arise in the head of inverse-rules (which are
non recursive) ensures that the naive bottom-up evaluation always stops. And then,
results from [Grahne and Kiricenko, 2004] ensure that the obtain answers contain both
the certain answers and the answers built with functional terms.

Concretely, to handle incomplete values:

• the last step of the inverse-rules algorithm called "predicate splitting", which aims
at getting rid of functional terms, is removed,

• the rewriting with functional terms is evaluated by the IRIS reasoner which is
able to handle functional terms during datalog evaluation,

• and functional terms in answers are then replaced by marked null [Ullman, 1989b]
because marked nulls are null values seen as (special) constants and are used to
represent unknown values. We remove functional terms by marked nulls because
they can be easily handled with relational databases by treating them as con-
stants.

This is illustrated in figure 6.1

The last step is the adding of a heuristics to take advantage of generalized chase
rules on marked nulls. Indeed take the following example:

Example 6.1.2. Consider three sources BCOtherProject, BCMoreProject and BCSomeProject

having the details of projects. The three of them have some common projects. Take for
example we consider the following tables

BCSomeProject

1 Design Open
2 Development Open

BCOtherProject

1 Design
4 Testing

6.1. Handling Incomplete Information 105

�������	
��
���

��������

�������
��������

���������	
�	����	����
�����	�������	�������

�������	
������

�����
���

�������

����������
�����

�����������

������
���

���	
������
�����	����	������	����

�

����������	���

���	��������
 "!�"������	������	����	

������	�������	
�	����	!���#

���������	��	
����	����		

����	���������	
		�����	��	
������

 ���� !"� ���	��
������
���

!" � ���	�������������

�������	
��
���

��#���

�����	����	!�	����!�	�����!���	�����

!�
���#����

$����
���

�����

#�����
���

 ��������#	
$����!�

%���	����

���������
 ��������#	$����!�

%���	����

��������&��	
"����	����

%��
��#����

$����
���

��	�����#�����

$����
��� '������	����
 ���	!�	()����*��

"!�"������	������#

$!����	����
 ���	!�	()����*��

"!�"������	������#

���	���	
�����!���	

$�����������	
�	
��!*��	-�����	

������!��

Figure 6.1: The adapted Inverse-Rules Algorithm

BCMoreProject

1 Design

Consider the following rewriting (simplified, without domain rules). Note how
we use the EQUAL builtin predicate of IRIS to specify the functional dependencies
and query rectification in the body and use ‘e’ in the head. This is because adding
IRIS builtin function EQUAL in the head will lead to infinite query evaluation (i.e.,
f(f(f(f...))) terms will be generated because of generalized chase rules). Rather we are
interested in extension of ‘e’ by making use of the modified generalized chase rules to
use them later for removing functional terms.

Project(p,′ BC ′, n, fBCOP,4(p, n)) ← BCOtherProjectoo(p, n).
P roject(p,′ BC ′, n, fBCMP,4(p, n)) ← BCMoreProjectoo(p, n).
P roject(p,′ BC ′, n, ps) ← BCSomeProjectooo(p, n, ps).

106 Chapter 6. Optimizing Query Processing in DaWeS

e(n1, n2) ← Project(p1, s1, n1, ps1), P roject(p2, s2, n2, ps2), EQUAL(p1, p2),
EQUAL(s1, s2)

e(ps1, ps2) ← Project(p1, s1, n1, ps1), P roject(p2, s2, n2, ps2), EQUAL(p1, p2),
EQUAL(s1, s2)

q(p1, n1, ps1) ← Project(p1, s1, n1, ps1), EQUAL(p1, p),
EQUAL(n1, n), EQUAL(ps1, ps), EQUAL(s1, s).

After the query evaluation of the above query rewriting, we get the following

q

1 Design Open
2 Development Open
1 Design fBCMP,4(1 , Design)
1 Design fBCOP,4(1 , Design)
3 Documentation fBCOP,4(3 , Documentation)
4 Testing fBCOP,4(4 , Testing))

Next we make generate the equality predicates (predicate name as ‘e’) using the
generalized chase rules.

e

Open Open
Open fBCMP,4(1,Design)
Open fBCOP,4(1,Design)

fBCMP,4(1,Design) Open
fBCMP,4(1,Design) fBCMP,4(1,Design)
fBCMP,4(1,Design) fBCOP,4(1,Design)
fBCOP,4(1,Design) Open
fBCOP,4(1,Design) fBCMP,4(1,Design)
fBCOP,4(1,Design) fBCOP,4(1,Design)

fBCOP,4(3,Documentation) fBCOP,4(3,Documentation)
fBCOP,4(4,Testing) fBCOP,4(4,Testing)

Design Design
Development Development

Documentation Documentation
Testing Testing

The e predicates are used to remove the functional terms and marked nulls or con-
stant are generated for every functional term. Take for example fBCOP,4(4,Testing) gen-
erates a marked null ⊥2. When we encounter fBCOP,4(1,Design) or fBCMP,4(1,Design),

6.2. Bounding the Number of Accesses 107

we generate ‘Open’.

This is the final output

q

1 Design Open
2 Development Open
3 Documentation ⊥1

4 Testing ⊥2

�

Our heuristics that simplifies the result as in the previous example is given in figure
6.2:

We have four major components

1. e Predicate Generation: This component generates the facts with predicate name
‘e’ using the generalized chase rules defined in the manner in example 6.1.2.

2. Marked Null Generation: This component consists of a function that returns a
new marked null for every functional term

3. Removal Of Functional Terms: This component takes facts with functional terms
and facts with predicate names as ‘e’ to generate facts with marked nulls or facts
without functional terms.

4. Facts Generation ensures that no facts are repeated. It takes both the facts
without functional terms and facts with marked null and generates set of facts
(with marked nulls or without functional terms). This step is important since
replacing of functional terms with marked nulls or constants may lead to a fact
already generated.

6.2 Bounding the Number of Accesses

6.2.1 Motivation

Apart from dealing with incomplete information, a second problem arises in DaWeS
due to the online context of our mediation. Since each API operation call can be
expensive, reducing the number of these is important. When generating the domain
rules (the ones that will imply API operation calls), the inverse rules algorithm does
not try to minimize the number of implied calls. For example, functional dependencies

108 Chapter 6. Optimizing Query Processing in DaWeS

�����������
�	
����
�������

�
������������
�	��

��������	
�

�����	
��

�	���������

�����	
��

�	
����
������

�������	��

���������������
��������
��

�����������
�������������	������������	��

�	
����
��������

����	�

�������
��	�������

�����������	���	
����
�������

�	�
�

�����	
��

������������������	���
��������������	���	
����
�������

������
�����	��������������
�������	
��

��� ���� !� ���	��
������
���

 ! � ���	�������������

Figure 6.2: Heuristics to handle Incomplete Information

existing among attributes are not taken into account while some useful information
can be exploited from them to optimize domain rules so that the number of implied
calls is reduced.

Example 6.2.1. Consider a relation Y earlyPublication(Y ear, T itle) with attributes
Y ear and Title which contains couples (Y, T) such that the paper having title T has
been published in year Y . A query like

ans(Y, T) ← Y earlyPublication(Y, T)

can be used to get all the publications. A single access thus gives all the tuples of the
relation. This access is the empty tuple since there is no input attribute.

But if the relation Y earlyPublication has access limitation like Year as an input
attribute, noted Y earlyPublicationio(Y ear, T itle), it signifies that the user must specify

6.2. Bounding the Number of Accesses 109

a year to get the publications of the corresponding year. Thus, to obtain all publication
titles, we have to make use of the following query:

ans(T) ← Y =?, Y earlyPublication(Y, T)

meaning that values must be given to Y to obtain values for T . An access is one such
value. One possible way is to specify a range of years, e.g. 1900-2014, which implies
115 different accesses. Restricting to a particular range may not yield all the results, if
for example the publisher might be publishing long before 1900. Another possible prob-
lem is that if the publisher might have only started publishing since 1980, it results in 80
spurious accesses (i.e., values of years between 1900-1979). Such spurious accesses are
wasteful, especially in our context where an access corresponds to a remote API opera-
tion call that is priced by the SLA of the service provider. Such queries could be avoided
if for example, the publisher also exposes another relation V olumesoo(Y ear, V olno)
with attributes year and volno without any access limitations. volno corresponds to the
volume number. Thus we can obtain all the publications with the query:

ans(T) ← V olumes(Y, V), Y earlyPublication(Y, T)

Here the domain of values for the input attribute Y ear of Publication is given by the
first atom of the query. It is easy to see that the number of accesses to Y earlyPublication

is the same as the number of different values for the attribute Y ear in V olumes since
it is the only input attribute. So the number of accesses implied in ths query is bounded
by |V olumes| + 1, i.e. the total number of tuples in V olumes plus one access to query
V olumes. Here V olumes is said to be the domain of the input Y . �

For relations with more than one input, the basic approach is to find the domain
of all the input attributes and take the cartesian product of them, in order to create
all possible input tuples.

Example 6.2.2. Let’s consider the relation Publicationiio(Y ear, V olno, T itle), with
three attributes Y ear, V olno and Title. The two input attributes (Y ear and V olno)
are to be specified to obtain all the titles published in a volume of a publication. There-
fore we have two domains year and volume number, which can be obtained from the
relation V olumesoo(Y ear, V olno). Let’s consider the following table of values shown
in Table 6.1. Note however that the values of Publication without specifying the cor-
responding input values cannot be obtained. The query:

110 Chapter 6. Optimizing Query Processing in DaWeS

ans(Y) ← V olumes(Y, V)

gives all the publication years (2010, 2011 and 2012). The query:

ans(V) ← V olumes(Y, V)

gives all the volume numbers (v1,v2,v3,v4,v5,v6). Thus we have three years and six

Table 6.1: Tables: Volumes and Publication

Volumes
Year Volno
2010 v1
2010 v2
2011 v3
2011 v4
2012 v5
2012 v6

Publication
Year Volno Title
2010 v1 a
2010 v2 b
2011 v3 c
2011 v4 d
2012 v5 e
2012 v6 f
2012 v7 g

volume numbers, which are used to build the following set of accesses to Publication:
{(2010,v1), (2010,v2), (2010,v3), (2010,v4), (2010,v5), (2010,v6), . . . (2012,v6)}. The
query to obtain all the publication details is

ans(Y, V, T) ← V olumes(Y, V 1), V olumes(Y 1, V), Publication(Y, V, T)

The number of accesses for the above query is bounded by 36 + 2 (i.e. |V olumes| ×
|V olumes|+2).If the query is executed, the real number of accesses is 18+2 (since same
accesses are not used many times). However, here, it is easy to see that the following
query:

ans(Y, V, T) ← V olumes(Y, V), Publication(Y, V, T)

returns the same answers for only 6 accesses. �

As shown in the previous example, a simple optimization on the query itself can
drastically reduce the value of both the upper bound on the number of accesses and the
number of really executed accesses. Our aim in this section is not to study this kind
of query optimizations, but rather to define a theoretical upper bound on the number
of accesses that will be used to compare these optimizations. The kind of queries

6.2. Bounding the Number of Accesses 111

that are concerned by this bound are both the queries that are outputs of the inverse-
rules algorithm (thereafter called DatalogαLast queries), and also executable conjunctive
queries (called CQα queries). Studying CQα queries, and not only DatalogαLast queries,
is a way to generalize a bit this work, knowing that these two languages are really close.
Indeed, as shown in the next section, CQα semantics is defined in terms of DatalogαLast

semantics.

6.2.2 CQα Queries Operational Semantics

We now focus on defining a semantics for CQα queries. Since our aim is to bound the
number of accesses needed when evaluating a CQα query, we focus on an operational
semantics which gives a model of the query evaluation process, especially by precising
when accesses are done (i.e. when operations are called). Our aim here is to formalize
what has been previously intuitively enounced (eg. in [Rajaraman et al., 1995]) con-
cerning the semantics of CQα queries. Let’s explain the idea underlying the operational
semantics with an example.

Example 6.2.3. Suppose we have to evaluate the following CQα query:
φ : ans(X, Y) ← p1

o(X), p2
ioo(X, Y, Z1), p6

io(Z1, Z3), p2
ioo(Z3, Z2, X), p4

o(V),
p5

o(V), p3
iiio(Y, Z1, V, T).

This query is executable since, each variable in an input attribute appears in an output
attribute of a previous atom, when reading the body from left to right. This means
that a first access (the empty tuple) is needed for p1

o(X) to get values for X. Then
each singleton tuple containing a value for X is an access for p2

ioo(X, Y, Z1) to get
couples for (Y, Z1). Then values for Z1 are used to build accesses for p6

io(Z1, Z3) to
get values for Z3, and so on. The process is recursive since from values for Z3 and
p2

ioo(Z3, Z2, X), we can get new values for X, which can lead to new values for Y

and Z1 via p2
ioo(X, Y, Z1), and so on. However this recursive process will eventually

stops because no new constant is ever generated and because instances of relations are
all finite. This query is equivalent to the following Datalog query, having ans as its
query predicate:

domX(X) ← p1
o(X).

domY(Y) ← domX(X), p2
ioo(X, Y, Z1).

domZ1(Z1) ← domX(X), p2
ioo(X, Y, Z1).

domZ3(Z3) ← domZ1(Z1), p6
io(Z1, Z3).

domZ2(Z2) ← domZ3(Z3), p2
ioo(Z3, Z2, X).

domX(X) ← domZ3(Z3), p2
ioo(Z3, Z2, X).

112 Chapter 6. Optimizing Query Processing in DaWeS

domV(V) ← p4
o(V).

domV(V) ← p5
o(V).

domT(T) ← domY(Y), domZ1(Z1), domV(V), p3
iiio(Y, Z1, V, T).

p′
1(X) ← po

1(X).
p′

2(X, Y, Z1) ← domX(X), p2
ioo(X, Y, Z1).

p′
6(Z1, Z3) ← domZ1(Z1), p6

io(Z1, Z3).
p′

2(Z3, Z2, X) ← domZ3(Z3), p2
ioo(Z3, Z2, X).

p′
4(V) ← p4

o(V).
p′

5(V) ← p5
o(V).

p′
3(Y, Z1, V, T) ← domY(Y), domZ1(Z1), domV(V), p3

iiio(Y, Z1, V, T).
φ′ : ans(X, Y) ← p′

1(X), p′
2(X, Y, Z1), p′

6(Z1, Z3), p′
2(Z3, Z2, X), p′

4(V),
p′

5(V), p′
3(Y, Z1, V, T).

In this query, the rules with head predicates dom... are called the domain rules: their
purpose is to store every possible value obtainable for the associated variable (the one
in subscript). From these dom... relations and from the inital relations pi, the set of p′

i

relations are obtained by applying the process discussed above. The purpose of these p′
i

relations is to be a materialized copy of pi relations, so that they can be queries with-
out needing any call to any remote operation. Then the initial query can be evaluated
from p′

i relations with a classical conjunctive query evaluation process since p′
i relations

have no access pattern. This is the purpose of the last rule φ′. The full set of rules is
a Datalog query because of the recursive process discussed above. We remark however
that each rule in this Datalog query is simpler than a query in CQα in the sense that
either they have no access pattern, or they have a single access pattern for their last
atom (i.e. the right outermost atom). �

The evaluation process examplified above is intuitively based on an operational
semantics for CQα queries. Up to our knowledge, this semantics has not been precisely
defined in the literature [Duschka et al., 2000; Rajaraman et al., 1995]. This is the
purpose of the rest of this section.

We begin by defining the operational semantics of safe conjunctive queries having
at most one access pattern on their last (i.e. right outermost) atom. Thus, this set
of queries includes safe conjunctive queries without any access pattern. This set is
noted CQαLast . It is clear that CQ ⊆ CQαLast ⊆ CQα. Then we define the operational
semantics of DatalogαLast queries which are Datalog queries which rules are all in
CQαLast . At last we show how CQα semantics is defined using DatalogαLast semantics.

Definition 6.2.4 (CQαLast syntax). A CQαLast query is a CQα query with its last

6.2. Bounding the Number of Accesses 113

atom only having an access pattern. Thus, it is an expression of the following form:
φ : ans(Z) ← r1(X1), ..., rq(Xq), rα

q+1(X, Y)
such that:

• var(X) ⊆ (
q⋃

i=1
var(Xi)) and var(Z) ⊆ (

q⋃
i=1

var(Xi)) ∪ var(Y),
• α is the access pattern of the last atom with X, the input variables tuple and Y

the output variables tuple
• and there is no access pattern for atoms r1, . . . , rq.

In the previous definition, since the last body atom is written rα
q+1(X, Y), we may

think the input attributes always come before the output attributes. In fact this is not
the case: input and output attributes can be found at any position in this atom. This
notation is just a convenient shortcut to use the input and output tuples names.

Definition 6.2.5 (DatalogαLast syntax). A DatalogαLast query is a Datalog query
which rules are all in CQαLast.

In the following, we consider a DatalogαLast query Φ as a set {φj} where each φj

is a rule of Φ. For a DatalogαLast query Φ, we note schema(Φ) the set of all relations
used in Φ. We now define the semantics of CQαLast . The idea is simple: we just extend
the classical CQ semantics by making a special focus on the last atom (the one with
an access pattern) so that a naive evaluation procedure can easily be derived.

Definition 6.2.6 (CQαLast semantics). Consider a CQαLast query φ using the notations
of definition 6.2.4, ie. φ : ans(Z) ← r1(X1), ..., rq(Xq), rα

q+1(X, Y). Let D be a database
instance such that schema(D) = {r1, . . . , rq, rα

q+1}. Let ri(D) be the extension of ri in
D, for each i ∈ {1, . . . , q} and rα

q+1(D) be the extension of rα
q+1 in D. The operational

semantics of φ is defined as follows:
φ(D) := {ans(v(Z))|v valuation on

(q⋃
i=1

var(Xi)
)

∪ var(Y) such that(
∀i ∈ {1, . . . , q} ri(v(Xi)) ∈ ri(D)

)
and

(
rα

q+1(v(X), v(Y)) ∈ rα
q+1(D)

)
}

This semantics can be considered as operational since we can derive a basic way
to evaluate such queries: first valuations are found for the same query without its last
atom (the one with an access pattern), then these valuations are tested on the inputs
of the last atom. Each valuation is extended by each output tuple it generates from
the last atom. At last each extended valuation gives one answer of the initial query.
The application of the valuations computed during the first step on input attributes of
the last atom defines the so-called set of accesses implied in the evaluation of a CQαLast

query φ over a database instance D.

114 Chapter 6. Optimizing Query Processing in DaWeS

Definition 6.2.7 (Set of accesses). Consider a CQαLast query φ using the notations
of definition 6.2.4, ie. φ : ans(Z) ← r1(X1), ..., rq(Xq), rα

q+1(X, Y). Let D be a
database instance. The set of accesses implied in the evaluation of φ over D, noted
Accesses(φ, D) is defined as follows:

Accesses(φ, D) = {v(X) | v valuation on
(q⋃

i=1
var(Xi)

)
such that(

∀i ∈ {1, . . . , q} ri(v(Xi)) ∈ ri(D)
)
}

Defining φ′ the CQ query as ans′(Z) ← r1(X1), ..., rq(Xq), it is straightforward to
see that:

Accesses(φ, D) = φ′(D)

Since this operational semantics encompasses CQ and CQαLast queries, in the rest
of this thesis, we will assume the use of this semantics for both kinds of queries. Since
CQαLast queries are just a slight extension of CQ queries, then it is natural that they
are still monotonous.

Lemma 6.2.8. CQαLast queries are monotonous.

Proof. Consider two database instances D1,D2 over the same schema, such that D1 ⊆
D2. Let φ be a CQαLast query with the same notation as in definition 6.2.4. Consider a
fact t ∈ φ(D1). According to definition 6.2.6, there exists v valuation on

(q⋃
i=1

var(Xi)
)

∪
var(Y) such that(
∀i ∈ {1, . . . , q} ri(v(Xi)) ∈ ri(D1)

)
and

(
rq+1(v(X), v(Y)) ∈ rα

q+1(D1)
)
.

Since D1 ⊆ D2 then ∀i ∈ {1, . . . , q + 1} ri(D1) ⊆ ri(D2) and then:(
∀i ∈ {1, . . . , q} ri(v(Xi)) ∈ ri(D2)

)
and

(
rq+1(v(X), v(Y)) ∈ rα

q+1(D2)
)
.

And thus t ∈ φ(D2). This shows the monotonicity of φ.

It is now possible to define the operational semantics of DatalogαLast queries. As
for Datalog queries [Abiteboul et al., 1995], we define it as the fixpoint of an immediate
consequence operator.

Definition 6.2.9 (Immediate consequence of a DatalogαLast query). Let Φ be a DatalogαLast

query such that Φ = {φ1, . . . , φn}, each φj belonging to CQαLast. Let D be a database
instance with schema(D) = schema(Φ). A fact f is an immediate consequence of Φ
and D if

6.2. Bounding the Number of Accesses 115

• ∃ri ∈ schema(Φ) such that f ∈ ri(D) (or f ∈ rα
i (D) if ri has an access pattern

α)
• and/or f ∈ φj(D) for some rule φj, j ∈ {1, . . . , n} of Φ.

Definition 6.2.10 (Imm. consequence operator for a DatalogαLast query). Let Φ be
a DatalogαLast query such that Φ = {φ1, . . . , φn}, each φj belonging to CQαLast. Let
D be a database instance with schema(D) = schema(Φ). The immediate consequence
operator of Φ, noted TΦ is a mapping defined as follows:
TΦ :
{db instances on schema(Φ)} → {db instances on schema(Φ)}

D → TΦ(D) = {immediate consequences of Φ and D}

By definition 6.2.9, it is easy to see that we have:

• D ⊆ TΦ(D),
• ∀φj ∈ Φ, φj(D) ⊆ TΦ(D)
• and there isn’t anything else in TΦ(D).

This proves the following lemma.

Lemma 6.2.11. Let Φ be a DatalogαLast query such that Φ = {φ1, . . . , φn}, each φj

belonging to CQαLast. Let D be a database instance with schema(D) = schema(Φ). We
have: TΦ(D) = D ∪ n⋃

j=1
φj(D)

We can now show this operation is monotonous.

Lemma 6.2.12. The immediate consequence operator for a DatalogαLast query is
monotonous.

Proof. Let Φ be a DatalogαLast query such that Φ = {φ1, . . . , φn}. Let D be a database
instance with schema(D) = schema(Φ). To prove that the operator TΦ is monotonous,
we need to prove that for each database instance couple (D1, D2) on schema(Φ), if
D1 ⊆ D2, then TΦ(D1) ⊆ TΦ(D2).

We have TΦ(D1) = D1 ∪ n⋃
j=1

φj(D1) and TΦ(D2) = D2 ∪ n⋃
j=1

φj(D2). We assume

D1 ⊆ D2. We have ∀i ∈ {1, . . . , n}, φi(D1) ⊆ φi(D2) thanks to lemma 6.2.8. The
results follows straightforwardly.

116 Chapter 6. Optimizing Query Processing in DaWeS

Lemma 6.2.13. Let Φ be a DatalogαLast query such that Φ = {φ1, . . . , φn}. Let D
be a database instance with schema(D) = schema(Φ). There exists a fixpoint for the
operator TΦ containing D.

Proof. Φ contains a finite number of CQαLast queries. By definition, D contains a finite
number of facts. Since no new constant is ever generated during the evaluation of a
CQαLast query (see definition 6.2.6), then the set of all different facts of which φj(D) is
a subset if finite, ∀φj ∈ Φ.

We have seen that TΦ(D) = D ∪ n⋃
j=1

φj(D). Thus D ⊆ TΦ(D). Since TΦ is

monotonous, then there is TΦ(D) ⊆ TΦ(TΦ(D)). And thus D ⊆ T n
Φ(D) ⊆ T n+1

Φ (D), for
all integer n ≥ 1.

From the last argument of the previous two paragraphs, we derive easily that there
exists an integer n0 such that T n0

Φ (D) = T n0+1
Φ (D), i.e. T n0

Φ (D) is a fix point of TΦ.
Last argument of the previous paragraph shows this fixpoint contains D. Obviously,
we can suppose n0 is minimum, i.e. T n0−1

Φ (D) � T n0
Φ (D).

We can now define the semantics of DatalogαLast queries.

Definition 6.2.14 (DatalogαLast operational semantics). Let Φ be a DatalogαLast

query. Let D be a database instance with schema(D) = schema(Φ). The semantics
of Φ is defined as follows: Φ(D) = T n0

Φ (D) with (i) TΦ is the immediate consequence
operator of Φ, and (ii) n0 is the least integer such that T n0

Φ (D) = T n0+1
Φ (D) (which

always exists as shown in lemma 6.2.13).

Algorithm 6.2 is the algorithmic translation of the previous definition. It is struc-
tured as follows:

• Lines 1 to 4 and 31 to 35 describe the iterative process associated to the operator
TΦ.

• Lines 5 to 30 describe the computation of TΦ(Dnew) (one iteration of the process)
according to the formula given in lemma 6.2.11.

– Line 5: Dnew is saved into TΦ(Dnew) to keep the result of the previous
iteration.

– Lines 6 to 26: for each φ ∈ Φ, with φ ∈ CQαLast and φ �∈ CQ, we compute
φ(Dnew). Following definition 6.2.6, the idea is to "materialize" the relation
with an access pattern by first computing all possible inputs and then by

6.2. Bounding the Number of Accesses 117

calling the associated operation for each of them (lines 7 to 20). Once the
relation is materialized by storing the returned results, it can be used in
standard conjunctive query evaluation (lines 21 to 25).

– Lines 27 to 29: for each φ ∈ Φ, with φ �∈ CQαLast and φ ∈ CQ, we compute
φ(Dnew).

– Line 30: this is the replacement of the old database instance Dnew by the
newly computed one TΦ(Dnew).

Now, we can define the semantics of a CQα query φ as the semantics of a DatalogαLast

query Φ built from φ as it is done in example 6.2.3. A generalization of the construction
explained in this example is given in the algorithm that generates Φ from φ. This is
algorithm 6.1. It is clear that algorithm 6.1 generates a DatalogαLast program since
every generated rule is either a CQαLast query or a CQ query. We now end this section
by giving the semantics of CQα queries in definition 6.2.15.

Data: A CQα query φ

Result: A DatalogαLast query Φ with which the semantics of φ is defined.
Φ := ∅;
for f ∈ body(φ) do

for output variable Y in f do
Φ := Φ ∪ {domY (Y) ← (∧

X input variable in f
domX(X)) ∧ f} ;

for f ∈ body(φ) with f = rα(X) do
Φ := Φ ∪ {r′(X) ← (∧

X input variable in f
domX(X)) ∧ f} ;

Φ := Φ ∪ {φ′ : head(φ) ← (∧
f∈body(φ) with f=rα(X)

r′(X))} ;

Replace all "∧" symbols in Φ by "," to respect the rule notation ;
Return Φ;

Algorithm 6.1: The ExecTransform algorithm

Definition 6.2.15 (CQα operational semantics). Let φ be a CQα query. Let D be a
database instance. The semantics of φ is defined as follows:

φ(D) = (ExecTransform(φ)) (D)

118 Chapter 6. Optimizing Query Processing in DaWeS

Data: A database instance D, a DatalogαLast query Φ = {φ1, . . . , φn} such that
schema(D) = schema(Φ) and ∀r ∈ schema(Φ), r(D) �= ∅ if r has an
access pattern, and r(D) = ∅ otherwise.

Result: Φ(D) according to definition 6.2.14.
1 Dnew := D ;
2 stop := false ;
3 while stop = false do
4 Dold := Dnew ;
5 TΦ(Dnew) := Dnew ;
6 for φ : ans(Z) ← r1(X1), . . . , rq(Xq), rα

q+1(X, Y) ∈ Φ do
7 if φ is such that

. α has at least one "i"

. and oper is the callable operation associated to rα
q+1

8 then
9 φ(Dnew) := ∅ ;

10 φ′ := ans′(X) ← r1(X1), . . . , rq(Xq) ;
11 Accesses(φ, Dnew) := φ′(Dnew) ;
12 r∗

q+1(Dnew) := ∅ ;
13 for c ∈ Accesses(φ, Dnew) do

14

r∗
q+1(Dnew) := r∗

q+1(Dnew)∪ {r∗
q+1(d)| d = ce and

e is obtained by calling oper with input c} ;

15 if φ is such that
. α is made up with "o"’s only
. and oper is the callable operation associated to rα

q+1

16 then
17 r∗

q+1(Dnew) := {r∗
q+1(d)|d is obtained by calling oper with no input} ;

18 if r∗
q+1(Dnew) �= ∅ then

19 φ∗ := ans(Z) ← r1(X1), . . . , rq(Xq), r∗
q+1(X, Y) ;

20 φ(Dnew) := φ∗(Dnew) ;
21 TΦ(Dnew) := TΦ(Dnew) ∪ φ(Dnew) ;

22 for φ ∈ Φ with φ ∈ CQ do
23 TΦ(Dnew) := TΦ(Dnew) ∪ φ(Dnew) ;

24 Dnew := TΦ(Dnew) ;
25 if Dnew = Dold then
26 stop := true ;

27 return Snew;
Algorithm 6.2: Operational Semantics of DatalogαLast translated as a naive
DatalogαLast query evaluation algorithm

6.2. Bounding the Number of Accesses 119

6.2.3 CQα Queries Accesses

In the previous section, we have proposed a definition for the operational semantics
of CQα queries, and we have given an algorithm to evaluate such queries according
to this semantics. Now we want to determine an upper bound on the number of
accesses implied in the evaluation process. Indeed, in DaWeS, we want to use this
upper bound to compare future algorithms or heuristics made to optimize queries so
that their evaluation implies less accesses. Since during evaluation, calling web services
can have a major impact on the overall evaluation time, then it is natural to try to
limitate the number of such calls, i.e. accesses. We have chosen to express this bound
wrt the sizes of the relations having access patterns, i.e. wrt the maximum number of
tuples the associated web service operations can return. In fact, we do not know their
precise values, but we do not need to know them. We just define our bound according
to them, so that two bounds corresponding to two differently optimized queries can be
compared wrt the same parameters.

Since the semantics of a CQα query Ψ is based on the semantics of its associated
DatalogαLast query Φ (with Φ = ExecTransform(Ψ)), we define the set of accesses
implied in the evaluation of Ψ over a database instance D as the set of accesses implied
in the evaluation of Φ over D.

Definition 6.2.16 (Set of accesses for a DatalogαLast query). Consider a DatalogαLast

query Φ = {φj, j ∈ {1, . . . , m}}. Let D0 be a database instance. Let n0 be the num-
ber of iteration needed to reach the fixpoint during the evaluation of Φ over D0. Let
D1, . . . , Dn0 be databases instances obtained at the end of iteration 1, . . . , n0, respec-
tively. The set of accesses implied in the evaluation of Φ over D0, noted Accesses(Φ, D0)
is defined as follows:

Accesses(Φ, D0) =
n0⋃
i=0

m⋃
j=1

{Accesses(φj, Di)}

This definition implies Accesses(Φ, D0) may contain many times the same access if
this one is generated at many iterations. A maybe more precise, but a bit less intuitive,
definition could have been:
Accesses(Φ, D0) =

m⋃
j=1

{ n0⋃
i=0

Accesses(φj, Di)}.
Anyway, we are especially interested in bounding the cardinality of this set. And in
both cases, we can easily state the following lemma.

Lemma 6.2.17. Consider a DatalogαLast query Φ = {φj, j ∈ {1, . . . , m}}. Let D0 be
a database instance. Let n0 be the number of iterations needed to reach the fixpoint

120 Chapter 6. Optimizing Query Processing in DaWeS

during the evaluation of Φ over D0. Let D1, . . . , Dn0 be databases instances obtained at
the end of iteration 1, . . . , n0, respectively. We have:

|Accesses(Φ, D0)| ≤ n0∑
i=0

m∑
j=1

|Accesses(φj, Di)|

Now we can define the set of accesses for a CQα query over a database instance D.

Definition 6.2.18 (Set of accesses for a CQα query). Consider a CQα query Ψ. Let
D be a database instance. The set of accesses implied in the evaluation of Ψ over D,
noted Accesses(Ψ, D) is defined as follows:

Accesses(Ψ, D) = Accesses(ExecTransform(Ψ), D)

Lemma 6.2.17 is the starting point of our study of how to bound the size of the
number of accesses. This study folllows on the three following sections. In section 6.2.4,
we see how to bound the size of the result (i.e. the number of tuples in the result) of a
CQ query (without access pattern) evaluated on a database instance. In section 6.2.5,
we study how to use the previous bound to bound the number of accesses of a CQα

query and of a DatalogαLast query. To this purpose, by looking at algorithm 6.2, two
steps are necessary:

• computing a bound on the number of accesses necessary at each iteration
• and computing a bound on each relation in the database instance on which the

operator TΦ is applied, at each iteration.

At last, in section 6.2.6, we apply our results to obtain a precise upper bound for the
number of accesses of the output of the inverse-rules algorithm which is a DatalogαLast

query with special properties.

6.2.4 Bounding the Number of CQ Query Answers

Let D be a database instance. Let φ : q(X1, X2, X3) ← r1(X1, X2), r2(X2, X3), r3(X3)
be a conjunctive query (cf. definition 4.1.1). We suppose {r1, r2, r3} ⊆ schema(D).
According to definition 4.1.2, evaluating φ on D amounts to finding all valuations v

such that r1(v(X1), v(X2)) ∈ r1(D), r2(v(X2), v(X3)) ∈ r2(D) and r3(v(X3)) ∈ r3(D).
Then for all these valuations v, q(v(X1), v(X2), v(X3)) is an answer of φ. It is quite
obvious that the number of these answers depends on the size of the relations, i.e. on
|r1(D)|, |r2(D)| and |r3(D)|. In our example, the value of X1 can only come from a

6.2. Bounding the Number of Accesses 121

tuple of r1, so there are at most |r1(D)| different values for X1. The value of X2 can
come from r1 or r2. Since there is a join, each value for X2 must be in both relations.
So there are at most Min(|r1(D)|, |r2(D)|) possible values for X2. Similarly, there are
at most Min(|r2(D)|, |r3(D)|) possible values for X3. Thus, a first bound would be:

|φ(D)| ≤ |r1(D)| ∗ Min(|r1(D)|, |r2(D)|) ∗ Min(|r2(D)|, |r3(D)|)

This bound is however a bit rough. Indeed we have not taken into account that
values for X1 and X2 that come from r1 are linked (inside tuples of r1). Thus the pre-
vious bound may count these values twice. In fact, it appears that we have considered
each variable independently. In other words, we have only considered the following
partition of the variables of the head of φ:

{{X1}, {X2}, {X3}}

For each element of this partition, we have taken the minimum cardinality of all re-
lations that contain this element. So, to be complete, we have to envision all partitions
of these variables and take the cardinality of all relations that contain this element.
For example, let’s take the following partition:

{{X1, X2}, {X3}}

Couples of values for both X1 and X2 can only come from r1 (since X1 is not in
r2(X2, X3)). Since values for X3 still come from r2 or r3, we can derive the following
bound:

|φ(D)| ≤ |r1(D)| ∗ Min(|r2(D)|, |r3(D)|)

This bound is better than the first. If we generalized the process to all partitions,
and keep only the minimal bound (more precisely, one of the minimal bounds since
there may be many), then we have a still better upper bound to the number of answers.
By generalizing the previous reasoning, it is possible to prove the following lemma.

Lemma 6.2.19. Let D be a database instance. Let φ : q(X) ← r1(X1), . . . , rq(Xq) ∈
CQ. Let B(φ, D) be defined as follows:

B(φ, D) = min
X partition of var(X) such that

∀x∈X ,∃i∈{1,...,q}|x⊆var(Xi)

⎛
⎜⎜⎝

∏
x∈X

⎛
⎜⎜⎝ min

i∈{1,...,q}|
x⊆var(Xi)

|ri(D)|

⎞
⎟⎟⎠

⎞
⎟⎟⎠

Then we have: |φ(D)| ≤ B(φ, D)

122 Chapter 6. Optimizing Query Processing in DaWeS

6.2.5 Bounding the Number of CQα Query Accesses

We now see how to use the previous bound to bound the number of accesses needed
during the evaluation of a CQα query or a DatalogαLast one. We recall that there are
two steps to evaluate a CQα query Ψ: first it needs to be transformed with algorithm
6.1 into a DatalogαLast query Φ (which is a set of CQαLast queries), and then this
DatalogαLast query is evaluated using algorithm 6.2. During algorithm 6.2, for any φ

in Φ that has an access pattern α on its last atom, we have:

• Either there is at least one input in α, and then the accesses needed when evaluat-
ing φ on D are the answers of φ′ evaluated on D (see line 10 for the definition of φ′

and line 11 for the evaluation of φ′ in algorithm 6.2). I.e. Accesses(φ, D) = φ′(D)
(cf. definition 6.2.7). Since φ′ ∈ CQ, then |φ′(D)| ≤ B(φ′, D) according to lemma
6.2.19. So |Accesses(φ, D)| ≤ B(φ′, D).

• Or there is no input in α and then there is only one access needed during the
evaluation of φ on D (see line 19 of algorithm 6.2).

• Or there is no relation having an access pattern. In this case there is no access.

However, this is not sufficient to define the researched bound since all B(φ′, D)
bounds are expressed using relations used to define φ′ queries, and these relations
(thereafter called temporary relations) are not the original relations (those that define
Ψ and that have access patterns).

Fortunately, algorithm 6.2 gives a way of linking temporary and original relations.
In the iterative process implemented in algorithm 6.2, for each iteration, we can bound
the cardinality of temporary relations by the sum of the same cardinality obtained
at the previous iteration and the number of new tuples for these relations computed
at the current iteration. More precisely, at line 6, for one φ ∈ Φ, we can see that
{ans, r1, . . . , rq} is the set of temporary relations and rα

q+1 is the only original relation.
The computation for new tuples for ans is achieved at line 22, after the materialization
of rα

q+1 into r∗
q+1 (i.e. after doing all needed calls to the corresponding web service

operation and saving the returned results). This materialization step transforms φ

into φ∗ which is a CQ query. So, according to lemma 6.2.19, we can bound |φ∗(D)|
by B(φ∗, D). If we suppose that Di is the database instance obtained after the ith

iteration, and Di+1 the instance obtained after the i + 1th iteration, then we have, for
any temporary relation ans:

ans(Di+1) = ans(Di) ∪ ⋃
φ∈Φ such that

ans is the head relation of φ

φ∗(Di)

6.2. Bounding the Number of Accesses 123

Using lemma 6.2.19, it is easy to derive:

|ans(Di+1)| ≤ |ans(Di)| + ∑
φ∈Φ such that

ans is the head relation of φ

|φ∗(Di)|

|ans(Di+1)| ≤ |ans(Di)| + ∑
φ∈Φ such that

ans is the head relation of φ

B(φ∗, Di)

Let’s summary what we’ve seen in the next lemma.

Lemma 6.2.20. Consider a DatalogαLast query Φ = {φj, j ∈ {1, . . . , m}}. Let D0

be a database instance. Let n0 be the number of iteration needed to reach the fixpoint
during the evaluation of Φ over D0. Let D1, . . . , Dn0 be databases instances obtained at
the end of iteration 1, . . . , n0, respectively.
We suppose for each φj ∈ Φ we have built (cf. algorithm 6.2) two queries φ′

j and φ∗
j . φ′

j

is the same as φj without its last atom, and φj∗ is the same as φj with a materialized
relation for its last atom (and not the relation with an access pattern).

After the ith iteration we have, for each φj ∈ Φ, and for each temporary relation
ans:

(i) |Accesses(φj, Di)| ≤ B(φ′
j, Di),

or |Accesses(φj, Di)| = 1 if there is no input in the access pattern,
or |Accesses(φj, Di)| = 0 if there is no relation with an access pattern in φ.

(ii) |ans(Di+1)| ≤ |ans(Di)| + ∑
φ∈Φ such that

ans is the head relation of φ

B(φ∗, Di)

In the next section, we see how to use this lemma in the special case of the inverse-
rules algorithm output to obtain an upper bound expressed wrt original relations only.

6.2.6 Bounding the Number of Accesses for the Inverse-Rules
Algorithm Output

We now focus on using the previous result to the special case of the DatalogαLast

query obtained as the result of the inverse-rules algorithm. As for DatalogαLast queries
obtained after applying algorithm 6.1 to a CQα query, the query obtained as the output
of the inverse-rules algorithm has the following properties:

• temporary relations (ie. domain relations) are unary relations

124 Chapter 6. Optimizing Query Processing in DaWeS

• and CQαLast rules (inside the DatalogαLast query) have only one variable in their
head.

These characteristics of the output of the inverse-rules algorithm allow to express
the bound on the number of accesses wrt the cardinalities of the original relations (ie.
relations having an access pattern). This is the objective of this section.

In lemma 6.2.20, in (i), B(φ′, Di) is expressed with cardinalities of temporary re-
lations only. These relations are bounded by (ii) at each iteration. Besides, in (ii),
B(φ∗, Di) is also expressed with cardinalities of temporary relations but also with the
cardinality of one original (materialized) relation. Since the iterative process manda-
torily stops after a finite number n0 of iterations (this comes from lemma 6.2.13) and
since at the beginning ans(D0) = ∅ (thus |ans(D0)| = 0) for all temporary relation ans,
then it is possible to bound the number of accesses needed when evaluating Φ on D by
an expression using only the cardinalities of the original relations, i.e. the maximum
number of tuples that are obtainable from the corresponding web service operations.

Example 6.2.21. Suppose we have the following CQα query Ψ:

q(X1, X3, X5) ← ro
1(X2), ro

2(X1), riioo
3 (X1, X2, X3, X4), rioo

4 (X4, X5, X1)

After algorithm 6.1, we obtain the DatalogαLast query Φ (q is the query predicate):
φ1 : domX1(X1) ← ro

2(X1)
φ2 : domX2(X2) ← ro

1(X2)
φ3 : domX3(X3) ← domX1(X1), domX2(X2), riioo

3 (X1, X2, X3, X4)
φ4 : domX4(X4) ← domX1(X1), domX2(X2), riioo

3 (X1, X2, X3, X4)
φ5 : domX5(X5) ← domX4(X4), rioo

4 (X4, X5, X1)
φ6 : domX1(X1) ← domX4(X4), rioo

4 (X4, X5, X1)
φ7 : rr1(X2) ← ro

1(X2)
φ8 : rr2(X1) ← ro

2(X1)
φ9 : rr3(X1, X2, X3, X4) ← domX1(X1), domX2(X2), riioo

3 (X1, X2, X3, X4)
φ10 : rr4(X4, X5, X1) ← domX4(X4), rioo

4 (X4, X5, X1)
φ11 : q(X1, X3, X5) ← rr1(X2), rr2(X1), rr3(X1, X2, X3, X4), rr4(X4, X5, X1)

Here, the original relations are:
{ro

1, ro
2, riioo

3 , rioo
4 },

and the temporary relations are:
{domX1 , domX2 , domX3 , domX4 , domX5 , rr1, rr2, rr3, rr4}.

6.2. Bounding the Number of Accesses 125

During algorithm 6.2, the following CQαLast queries are build to generate the accesses
sets:
φ′

3 : ans′
3(X1, X2) ← domX1(X1), domX2(X2)

φ′
4 : ans′

4(X1, X2) ← domX1(X1), domX2(X2)
φ′

5 : ans′
5(X4) ← domX4(X4)

φ′
6 : ans′

6(X4) ← domX4(X4)
φ′

9 : ans′
9(X1, X2) ← domX1(X1), domX2(X2)

φ′
10 : ans′

10(X4) ← domX4(X4)

Moreover, for each j ∈ {1, . . . , 10}, φ∗
j queries are built. These are the same as φj

queries except that each relation with access pattern rα
q+1 has been materialized into

r∗
q+1. After the end of the ith iteration, we have (according to (i)):

|Accesses(φ1, Di)| = 1
|Accesses(φ2, Di)| = 1
|Accesses(φ3, Di)| ≤ B(φ′

3, Di) = |domX1(Di)| ∗ |domX2(Di)|
|Accesses(φ4, Di)| ≤ B(φ′

4, Di) = |domX1(Di)| ∗ |domX2(Di)|
|Accesses(φ5, Di)| ≤ B(φ′

5, Di) = |domX4(Di)|
|Accesses(φ6, Di)| ≤ B(φ′

6, Di) = |domX4(Di)|
|Accesses(φ7, Di)| = 1
|Accesses(φ8, Di)| = 1
|Accesses(φ9, Di)| ≤ B(φ′

9, Di) = |domX1(Di)| ∗ |domX2(Di)|
|Accesses(φ10, Di)| ≤ B(φ′

10, Di) = |domX4(Di)|
|Accesses(φ11, Di)| = 0

and also (according to (ii)):
|domX1(Di+1)| ≤ |domX1(Di)| + B(φ∗

1, Di) + B(φ∗
6, Di)

≤ |domX1(Di)| + |ro
2(Di)| + |rioo

4 (Di)|
≤ |domX1(Di)| + |ro

2(D0)| + |rioo
4 (D0)|

|domX2(Di+1)| ≤ |domX2(Di)| + |ro
1(D0)|

|domX3(Di+1)| ≤ |domX3(Di)| + |riioo
3 (D0)|

|domX4(Di+1)| ≤ |domX4(Di)| + |riioo
3 (D0)|

|domX5(Di+1)| ≤ |domX5(Di)| + |riioo
4 (D0)|

Now, according to the previous bounds of |Accesses(φj, Di)|, we only need to precise
|domX1(Di)|, |domX2(Di)| and |domX4(Di)| to express these bounds with a few |rα(Di)|
only, with the rαs some original relations. We recall that since these relations are

126 Chapter 6. Optimizing Query Processing in DaWeS

accessed, then no tuple can be added to them during any iteration of the evaluation. So
|rα(Di)| = |rα(D0)| for all iteration i. Let’s focus on |domX1(Di)|. For n0 the number
of the last iteration (during which the fixpoint is generated), we have:
|domX1(D0)| = 0
|domX1(D1)| ≤ 0 + |ro

2(D0)| + |rioo
4 (D0)|

|domX1(D2)| ≤ 2 ∗ (|ro
2(D0)| + |rioo

4 (D0)|)
. . .

|domX1(Di)| ≤ i ∗ (|ro
2(D0)| + |rioo

4 (D0)|)
. . .

|domX1(Dn0)| ≤ n0 ∗ (|ro
2(D0)| + |rioo

4 (D0)|)

Similarly, we have:
|domX2(Di)| ≤ i ∗ |ro

1(D0)|
|domX4(Di)| ≤ i ∗ |riioo

3 (D0)|

So, the total number of accesses, for all iterations and all query φj is:
|Accesses(Φ, D0)| =

n0∑
i=0

11∑
j=1

|Accesses(φj, Di)|

≤ n0∑
i=0

(4 + 3 ∗ (|domX1(Di)| ∗ |domX2(Di)|) + 3 ∗ |domX4(Di)|)
≤ n0∑

i=0
(4 + 3 ∗ (i ∗ (|ro

2(D0)| + |rioo
4 (D0)|) ∗ i ∗ |ro

1(D0)|) + 3 ∗ i ∗ |riioo
3 (D0)|)

since i≤n0≤ n0(4 + 3 ∗ (n0 ∗ (|ro
2(D0)| + |rioo

4 (D0)|) ∗ n0 ∗ |ro
1(D0)|) + 3 ∗ n0 ∗ |riioo

3 (D0)|)
≤ 4n0 + 3n3

0 ∗ (|ro
2(D0)| + |rioo

4 (D0)|) ∗ |ro
1(D0)|) + 3 ∗ n2

0 ∗ |riioo
3 (D0)|)

If we consider n0 as a parameter, we can conclude that:
|Accesses(Φ, D0)| = O ((|ro

2(D0)| + |rioo
4 (D0)|) ∗ |ro

1(D0)| + |riioo
3 (D0)|) �

We generalize the reasoning developed in the previous example with the following
lemma.

Lemma 6.2.22. Consider a DatalogαLast query Φ = {φj, j ∈ {1, . . . , m}}. Let D0 be
a database instance. We assume that Φ has the following properties:

(P1) in the CQαLast rules of Φ, the body atoms without access pattern (ie. all body
atoms except the last one) are made up with unary relations only

(P2) and the head of CQαLast\CQ rules of Φ has only one variable.

We have:

6.2. Bounding the Number of Accesses 127

|Accesses(Φ, D0)| ≤ O(
∑

φj∈Φ | there
is at least one
input in the

access pattern
on the last
atom of φj

(
∏

atom p(Y) |
p(Y)∈body(φj)

with p(Y)
without any

access pattern

(
∑

φk∈Φ |
p is the head

predicate
of φk

and rα
k

is the only
relation of φk

having an
access
pattern

|rα
k (D0)|)))

Proof. As stated in lemma 6.2.17:
|Accesses(Φ, D0)| ≤ n0∑

i=0

m∑
j=1

|Accesses(φj, Di)|
with n0 be the number of iterations needed to reach the fixpoint during the evaluation
of Φ over D0, and D1, . . . , Dn0 be databases instances obtained at the end of iterations
1, . . . , n0, respectively.

Now, since in lemma 6.2.20 there is (i), we have:
|Accesses(φj, Di)| ≤ B(φ′

j, Di) when there is at least one input in the access pattern of
the last atom of φj

|Accesses(φj, Di)| = 1 when there is no input in the access pattern of the last atom of
φj

|Accesses(φj, Di)| = 0 when there is no access pattern in φj

According to lemma 6.2.19, and since (P1) is verified, we have:
B(φ′

j, Di) = ∏
atom p(Y) |

p(Y)∈body(φj)
with p(Y)

without any
access pattern

|p(Di)|

Thus:
|Accesses(Φ, D0)| ≤ n0∑

i=0
(∑

φj∈Φ | there
is at least one
input in the

access pattern
on the last
atom of φj

(∏
atom p(Y) |

p(Y)∈body(φj)
with p(Y)

without any
access pattern

|p(Di)|) + ∑
φj∈Φ | there
is no no input
in the access

pattern
on the last
atom of φj

1)

Now, since in lemma 6.2.20 there is (ii), we have:
|p(Di)| ≤ |p(Di−1)| + ∑

φk∈Φ such that
p is the head relation of φk

B(φ∗
k, Di−1)

with φ∗
k is built from φk as in algorithm 6.2 (ie. φ∗

k is the same as φk except that the
last atom relation has been materialized).
Let φk : p(X) ← r1(X1), . . . , rq(Xq), rα

q+1(Xq+1).
So φ∗

k : p(X) ← r1(X1), . . . , rq(Xq), r∗
q+1(Xq+1).

128 Chapter 6. Optimizing Query Processing in DaWeS

Since φ∗
k is a rule in the output of the inverse-rules algorithm, we have: (a) the head

atom of each φ∗
k has all its variables present in its last atom (ie. X ⊆ Xq+1), and (b)

all other atoms (other than the last one) have only one variable. So there is always a
partition of var(X), which is the singleton {var(X)}, such that ∀x ∈ {var(X)}, ∃h =
q + 1 ∈ {1, . . . , q + 1}|x ⊆ var(Xh). Then, there is, according to lemma 6.2.19:

B(φ∗
k, Di−1) = minX partition of var(X)

such that
∀x∈X ,∃h∈{1,...,q+1}|

x⊆var(Xh)

⎛
⎝ ∏

x∈X

⎛
⎝minh∈{1,...,q+1}|

x⊆var(Xh)
|rh(Di−1)|

⎞
⎠

⎞
⎠

B(φ∗
k, Di−1) = |r∗

q+1(Di−1)|
Since the extension of relations with access patterns always stays the same, then, at
each iteration, materialized relations have the same extension as during the first iter-
ation. This means that, for all i ≥ 1:
B(φ∗

k, Di−1) = |r∗
q+1(D0)|

With the original relation name (the one with access pattern), it gives:
B(φ∗

k, Di−1) = |rα
q+1(D0)|

We then derive:
|p(Di)| ≤ |p(Di−1)| + ∑

φk∈Φ
such that

p is the head relation of φk
and rα

k the only relation of
φk having an access pattern

|rα
k (D0)|

As |p(D0)| = 0, we have:
|p(Di)| ≤ i ∗ ∑

φk∈Φ
such that

p is the head relation of φk
and rα

k the only relation of
φk having an access pattern

|rα
k (D0)|

We obtain:
|Accesses(Φ, D0)| ≤
n0∑
i=0

(∑
φj∈Φ | there

is at least one
input in the

access pattern
on the last
atom of φj

(∏
atom p(Y) |

p(Y)∈body(φj)
with p(Y)

without any
access pattern

(i ∗ ∑
φk∈Φ

such that
pis the

head relation
of φk

and rα
k

the only
relation of
φk having
an access
pattern

|rα
k (D0)|)) + ∑

φj∈Φ | there
is no no input
in the access

pattern
on the last
atom of φj

1)

Thus:
|Accesses(Φ, D0)| ≤

6.2. Bounding the Number of Accesses 129

n0 ∗ (∑
φj∈Φ | there

is at least one
input in the

access pattern
on the last
atom of φj

(∏
atom p(Y) |

p(Y)∈body(φj)
with p(Y)

without any
access pattern

(n0 ∗ ∑
φk∈Φ

such that
pis the

head relation
of φk

and rα
k

the only
relation of
φk having
an access
pattern

|rα
k (D0)|)) + ∑

φj∈Φ | there
is no no input
in the access

pattern
on the last
atom of φj

1)

So:
|Accesses(Φ, D0)| ≤ O(

∑
φj∈Φ | there

is at least one
input in the

access pattern
on the last
atom of φj

(
∏

atom p(Y) |
p(Y)∈body(φj)

with p(Y)
without any

access pattern

(
∑

φk∈Φ
such that

pis the
head relation

of φk
and rα

k
the only

relation of
φk having
an access
pattern

|rα
k (D0)|)))

6.2.7 Discussion

The bound on the number of accesses given in lemma 6.2.22 applies on DatalogαLast

queries which follow properties (P1) and (P2). This kind of queries encompasses the
outputs of the inverse-rules algorithm and of algorithm 6.1. Precisely, we showed it
encompasses the outputs of the inverse-rules algorithm when its input query doesn’t
contain any functions. However, this results can be straightforwardly generalized to all
inputs of the inverse-rules algorithm. Indeed, what is missing to obtain this result is a
proof that the immediate consequence operator, defined for DatalogαLast queries, still
has a fixpoint when the query has functions, with the restriction that functions can
only appear in heads of non recursive CQαLast rules. Remember, in the inverse-rules
algorithm, that functions can only appear after reversing view definitions, which are CQ
queries. So they cannot appear in recursive rules. Since the operational semantics of
DatalogαLast queries defines a naive evaluation method (given in algorithm 6.2) which
is clearly bottom-up, then we can use the same argument as the one given in the proof
of lemma 7 in [Duschka et al., 2000]. This argument says that this query structure
implies that terms having an infinitely number of nested functions cannot be generated
during a bottom-up evaluation. That’s why all previous results can still be used when
functions are present in heads of non-recursive CQαLast rules.

Proof of lemma 6.2.22 gives a method specifying how to use results given in 6.2.20
to a particuliar configuration of a DatalogαLast query to obtain a precise bound on the

130 Chapter 6. Optimizing Query Processing in DaWeS

number of accesses implied by this query. In the case of lemma 6.2.22, the particuliar
configuration is expressed through properties (P1) and (P2). It means that, if we
keep the same naive evaluation algorithm, any processing that aims at optimizing the
number of implied accesses by transforming the initial DatalogαLast query (provided
that the results of both evaluations is the same), any such processing may be given
a precise bound on the number of these accesses (in the style of the bound guiven in
lemma 6.2.22). And then, two such bounds will make easier the comparison between
the initial query and the optimized one, from which it will be possible to checked
whether the optimization algorithm is useful or not. So we think this bound may
an interesting tool to help the study of new algorithms to optimize (ie. reduce) the
number of implied accesses during DatalogαLast query evaluation by trasforming the
initial query obtained after the inverse-rules algorithm.

The last remark on the bound on the number of accesses given in lemma 6.2.22 is
related to the number of iterations until fixpoint during evaluation. This number is
hidden inside the bound (ie. considered as a constant) despite it is tightly linked to
the number of implied accesses. Hiding this number of iterations does not mean that
we consider it as a non key parameter to evaluate the number of accesses. Instead,
it means that we assume this number will not vary too much between two different
bounds obtained for example from an output of the inverse-rules algorithm and from
the same output optimized by some heuristics. This is clearly a simplification but that
is justified in that the number of iterations before fixpoint is a parameter that may be
different from one query to its optimizations. So if we keep it in the bound, it will be of
no use in order to compare optimization algorithms that could be applied to the output
of the inverse-rules algorithm. In some sense, this number of iterations is a dynamic
parameter since it depends on the query, while our bound is useful to statically study
inverse-rules algorithm optimizations.

Chapter 7

Using DaWeS

In this chapter, we discuss the features offered by DaWeS to its users. We also discuss
how web service API operations, global schema relations, enterprise record definitions
and performance indicator queries are defined. We present the various qualitative and
quantitative experiments done on DaWeS.

7.1 DaWeS Features

We discuss what DaWeS offers to its administrators and enterprise users.

7.1.1 Administrators

DaWeS provides the following features to the administrators:

1. Modeling the web service domains that involves adding the global schema re-
lations and their corresponding attributes and adding the global schema con-
straints.

2. Adding new data types (to use for describing the local schema and global schema
attributes).

3. Adding new web services belonging to a particular service domain and defining
the relevant web service API operations and mapping them to the global schema
using LAV mapping. Also for every web service API operation, identifying the
schema of the response and the desired transformation.

132 Chapter 7. Using DaWeS

4. Creating new record definitions (queries formulated over the global schema).
5. Creating new performance indicators (queries formulated using the record defi-

nitions).
6. Creating calibration tests for the record definitions and the performance indicator

queries.
7. Monitoring the web service API operation changes.
8. Monitoring the calibration status for all the record definitions and performance

measure queries.

The role of DaWeS administrator has been summarized in the Figure 7.1.

��������	
���
���
����
��
��������������������
��

���
�����	
���
���
�
�������

���
�����	
���
���
�
���

�
��������
�����
���������

�
��������
������
���������
�
�
�

����������!�������������
	
���
���
�����!����
�

������

��������	��
	

Figure 7.1: Role of DaWeS Administrator

7.1.2 Enterprise Users

Enterprise users has the following features provided by DaWeS:

7.1. DaWeS Features 133

1. Ability to search the supported web services
2. Specifying the authentication and authorization parameters for the desired web

services
3. Ability to search the supported record definitions and performance measure

queries
4. Choosing the relevant (or interesting) record definitions and performance measure

queries
5. Creating new performance indicators (queries formulated using the record defi-

nitions)
6. Ability to view their own enterprise records and performance indicator results

The features available to DaWeS enterprise user has been summarized in the Fig-
ure 7.2.

����������	
����������������
��	����������	�

�������������������
���
���������	�
������

����
�������������	
���������

�����������
�������������	
�
�������

��������������������
������
������	
��

�����

�����������	���

��	���	���	�������	
����
���������������

Figure 7.2: Role of DaWeS Enterprise User

134 Chapter 7. Using DaWeS

7.2 Methodology for Modeling Web Service Inter-
faces in a Data Integration Approach

A data integration system involving web services is defined by the pentuple W =
(D, G, L, M, C), where D is the set of domain (note to the reader, this is different from
the domain or categories of web services) of various attributes used in the system, G is
the set of global schema relations, L is the set of various web service API operations
considered M is the set of source descriptions where every web service API operation
is defined over the global schema relations using safe conjunctive query LAV mapping
and C is the set of constraints on the global schema relations (currently only full and
functional dependencies).

7.2.1 Global Schema Relations

When support for a new domain of web service(s) is required, the following guidelines
are taken into account in order to identify the various relations and their corresponding
attributes:

1. Identification of the resources: Various web services belonging to the studied
domain are analyzed to identify the various resources managed by them. These
resources are named and form the initial set of global schema relation names.
The various information captured by each of these resources like name, identifier,
creation date, status form their corresponding attributes.

2. Client Requirements: The client feedback is also considered in deciding the
global schema relations. A client may be interested in various performance indi-
cators. Once the client requirements are known, it is verified whether they can
be computed from the existing global schema relations and the corresponding
attributes or whether new relations would be required.

3. Market Study of Performance Indicators: Another source of information
for the performance indicators in a particular domain is the associated market
study. It also helps in figuring out the global schema relations.

4. Resource/Attribute name synonyms(semantics): Various resources are re-
ferred to by different names in different web services. Referring these resources
by these different names will ultimately result in having a large number of global
schema relations. Therefore, while working with heterogeneous web services, we
ensured whether the different resource names are in actual synonyms. If two or

7.2. Methodology for Modeling Web Service Interfaces in a Data
Integration Approach 135

more resource names are synonyms or semantically similar, one of these names is
kept and it is taken into account during the LAV Mapping. For example, in the
domain of project management web services, todo and task are synonyms used
interchangeably in various web services. The same procedure is applied while
considering the attribute names.

5. Transient features: Some of the information present in a resource represen-
tation are transient in nature. The most common attributes that shows highly
volatile nature in its values is the status. Example project status, task status,
campaign status. Other attributes like the resource names usually don’t change
their values. Therefore such transient information is considered as an attribute
of a relation. Take for example, we have two different web service operations
like Get Open Tasks and Get Closed Tasks. Instead of creating two different
global schema relations OpenTasks and Closed Tasks, the status of the tasks is
considered as an attribute of the relation Tasks. Identifying these transient in-
formation from the resource name and description is a little fuzzy. But it helps
to significantly reduce the number of global schema relations.

6. Resource identifier, source and creation time: For every global schema
relation, it is made sure that all of them have the following information: resource
identifier, source and the creation time of the resource. These three information
are quite useful since they are in-volatile information. They can be used together
to uniquely identify a particular source of information. Source is used to identify
the web service API and the associated version.

7.2.2 Local Schema Relations and LaV Mapping

When support for a new web service has to be added to the system, it is first ensured
whether it belongs to one of the existing domains of the web services in DaWeS or
share some common features to an existing domain. If there are some new features or
if they don’t belong to an existing domain, the first step involved is to define the global
schema relations corresponding to this domain.

In the context of data integration, the relations in the data sources constitute
the local schema. As we have seen throughout our discussion, the web service opera-
tions(request and response parameters) form our local schema relations. Thus for every
web service, we will take a look into the relations (the different API operations) and
their attributes (the input/request and the output/response parameters). Defining the
local schema involves the following steps:

136 Chapter 7. Using DaWeS

• All the relevant operations that can be mapped to the global schema relations
are identified.

• The data type of all the attributes (both input and output attributes) are identi-
fied. New data types (if required) are created, especially for those input attributes
that concern only a particular web service.

Note that for every relation name given in the table, our naming convention followed
this manner:

1. Source (Web Service Name)
2. Version (Version of the Web Service API under consideration)
3. Resource Name (After considering the output of the web service API operation)

Example 7.2.1. : Let us consider a data integration system W = (D, G, L, M, C) in-
volving two web services: Basecamp[Basecamp, 2012] and Teamwork [Teamwork, 2012],
two project management web services that manage various projects and tasks of the en-
terprises. Every projects has a number of task lists and a task list has a number of
projects.

The set of domains include D =

{String, Project Status, Task Status, Basecamp Project Identifier,
Basecamp Todo List Identifier, Basecamp Todo Identifier,

Teamworkpm Project Identifier, Teamworkpm Task List Idenitifier,
Teamworkpm Task Identifier}

The set of global schema relations G =

{ Project(pid, src, pname, pcdate, pstatus), TaskList(pid, src, tlid),
Task(tlid, tid, src, tname, tcdate, tddate, tcmpdate, tstatus) }

G describes three relations: Project, TaskList and Task; Project with attributes
project identifier pid, source src, name pname, creation date pcdate and status pstatus,
TaskList with attributes project identifier pid, source src and task list identifier tlid

and and Task with attributes task list identifier tlid, task identifier tid, source src,
task name tname, task creation date tcdate, task due date tddate, task completion date
tcmpdate and task status tstatus.

7.2. Methodology for Modeling Web Service Interfaces in a Data
Integration Approach 137

The set of global schema constraints C =

{ Project : pid, src → pname, Project : pid, src → pcdate,

Project : pid, src → pstatus, TaskList : tlid, src → pid,

Task : tid, src → tlid, Task : tid, src → tname,

Task : tid, src → tcdate, Task : tid, src → tddate,

Task : tid, src → tcmpdate, Task : tid, src → tstatus }

Consider the functional dependency Project : pid, src → pname. If two tuples in
Project have the same values pid and src, then the corresponding values for pname

must be the same.

We now look LAV mappings M to define the some web service API operations L
along with the access patterns (adornments) using the global schema relations. We
explain the LAV mapping of Basecampv1Projects and the present the LAV mapping
of the rest without detailed explanation.

Basecampv1Projects: This operation gives the details of all the projects: project
identifier pid, name pname, status pstatus and creation date pcdate. Figure 7.3 shows
the screenshot of Basecamp Project obtained from their API documentation. The goal
is to translate the information from API documentation on web pages to LAV mapping
(along with XSD and XSLT).

Basecampv1Projectsoooo(pid, pname, pstatus, pcdate) ←
Project(pid,′ Basecamp API′, pname, pcdate, pstatus).

(7.1)

The access pattern oooo in the above LAV mapping describes that the API opera-
tion Basecampv1Projects has no input attributes. Also note the source src attribute in
Project corresponds to ‘Basecamp API’. For all other attributes in Basecampv1Projects,
there is one-to-one mapping with the attributes of Project.

Basecampv1TodoLists: This operation takes as input the project identifiers pid

and gives the todo list identifiers tid present in the corresponding project identified by
the project identifier.

Basecampv1TodoListsio(pid, tlid) ←
TaskList(pid,′ Basecamp API′, tlid).

(7.2)

138 Chapter 7. Using DaWeS

Figure 7.3: Screenshot of Basecamp Project

Basecampv1Tasks: This operation takes as input the project identifier pid and
todo list identifier tlid and gives as output the tasks present in the given todolist. It gives
the following details like task identifer tid, name tname, status tstatus and creation
date tcdate.

Basecampv1Tasksiioooo(pid, tlid, tid, tname, tstatus, tcdate) ←
TaskList(pid,′ Basecamp API′, tlid),

Task(tlid, tid,′ Basecamp API′, tname, tcdate, tddate, tcmpdate, tstatus).

(7.3)

Basecampv1CompletedTasks: This operation takes as input the project identi-
fier pid and todo list identifier tlid and gives as output the completed tasks present in
the given todolist. It gives the following details like task identifer tid, name tname,
status tstatus and creation date tcdate.

7.2. Methodology for Modeling Web Service Interfaces in a Data
Integration Approach 139

Basecampv1CompletedTasksiioooo(pid, tlid, tid, tname, tcdate, tcmpdate) ←
TaskList(pid,′ Basecamp API′, tlid),

Task(tlid, tid,′ Basecamp API′, tname, tcdate, tddate, tcmpdate,′ Completed′).

(7.4)

TeamworkpmProjects: This operation gives the details of all the projects: project
identifier pid, name pname, status pstatus and creation date pcdate.

TeamworkpmProjectAPIoooo(pid, pname, pstatus, pcdate) ←
Project(pid,′ Teamworkpm API′, pname, pcdate, pstatus).

(7.5)

TeamworkpmTodoLists: This operation takes as input the project identifiers pid

and gives the todo list identifiers tid present in the corresponding project identified by
the project identifier.

TeamworkpmTodoListsio(pid, tlid) ←
Project(pid,′ Teamworkpm API′, pname, pcdate, pstatus),

TaskList(pid,′ Teamworkpm API′, tlid).

(7.6)

TeamworkpmTasks: This operation takes as input the todo list identifier tlid

and gives as output the tasks present in the given todolist. It gives the following details
like task identifertid, name tname, project identifier pid, status tstatus, creation date
tcdate and task due date tddate.

TeamworkpmTasksioooooo(tlid, tid, tname, pid, tstatus, tcdate, tddate) ←
Project(pid,′ Teamworkpm API′, pname, pcdate, pstatus),

TaskList(pid,′ Teamworkpm API′, tlid),

Task(tlid, tid,′ Teamworkpm API′, tname, tcdate, tddate, tcmpdate, tstatus).

(7.7)

7.2.2.1 XML Schema: Response Validation

When we make a web service API operation call, we get a response from the web service.
We need to make sure that the response is in accordance to what we had expected.
For this purpose, we use the schema of the expected response. In the example web

140 Chapter 7. Using DaWeS

services that we considered, a vast majority of them did not expose any XML schema
(XSD), but with a couple of examples given in the (human-readable) documentation,
we created the XSD. Since XSD schema takes a considerable amount of space, we
present here only one of the XSD schema. Below is the XSD schema of the operation
Basecampv1Projects (Refer the LAVMapping C.10). We validate the four elements
that we are interested in (id, name, created_at and archived). We have mentioned the
expected types.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>
<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<!-- Project Identifier -->
<xs:element name="id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<!-- Project Name -->
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<!-- Project Creation Date -->
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<!-- Project Status: Archived(true or false) -->
<xs:element name="archived">

<xs:complexType>
<xs:simpleContent>

7.2. Methodology for Modeling Web Service Interfaces in a Data
Integration Approach 141

<xs:extension base="xs:boolean">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

7.2.2.2 XSLT: Response Transformation

Next, we use XSLT transformation to transform the result to a desired format. Again
we continue the example with Basecampv1Projects (LAV Mapping C.10). Note how
we extract only the desired information: project identifier, name, status and creation
date. As we saw earlier that this operation returns the status of project as either
archived or not (true or false), but our global schema relation requires that the project
status is either ’Archived’ or ’Active’. Therefore we make this data transformation for
this element. Also take a look at how we extract the first ten characters from the
date (YYYY-MM-DD). The transformed data consists of tuples of project, where each
project detail is in a new line. Project details are comma separated (i.e., ’identifier’,
’name’, ’status’, ’date’ newline).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">

<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>

<xsl:template match="/">
<xsl:for-each select="json/array">

<xsl:value-of select="id"/>,<xsl:value-of select="name"/>,
<!-- Project Status: Archived or Active -->
<xsl:if test="archived = ’false’">Active</xsl:if>
<xsl:if test="archived =’true’">Archived</xsl:if>,
<!-- Project Creation date -->
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

142 Chapter 7. Using DaWeS

7.2.3 Enterprise Record Definitions and Performance Indica-
tor Queries

Performance Indicators or business performance measures are useful for every enterprise
to track its growth and well-being. It is also useful to keep a track on various business
units and their working. Business performance measures are usually an aggregation (or
a summary) of large enterprise data. Take for example if various projects undertaken by
an enterprise constitutes the enterprise data, examples of possible business performance
measures include:

• Total number of projects
• Total number of completed projects
• Total number of pending projects
• Total number of late running projects
• Total number of projects completed before time
• Percentage of late running projects
• Average number of projects completed in a month

One of the key characteristic of the performance indicators is that they are cal-
culated periodically. These are expressed in numbers with varying units of measures.
Numbers can signify financial measures, count or a comparison. [Lawyer and Chowd-
hury, 2004] discusses several best practices in data warehousing particularly in relation
to data warehouse attribution and keys and data warehouse loading. In particular
they suggest not to select a single frequency (hourly, daily, monthly) for loading the
data warehouse. During the design and development of DaWeS, we made sure that
various queries have an associated frequency that decides when to fetch the relevant
information from the web services. The frequencies included the most common ones:
daily, weekly, fortnightly, monthly, quarterly half-yearly and yearly. We take a look on
the various characteristics of performance indicators

1. Frequency: Different indicators are computed at various periods of time. For
example Total number of new subscribers to a magazine in a month, day or a
week. Some of the popular frequencies commonly used in businesses are hourly,
daily, weekly, fortnightly, monthly, quarterly, yearly or a specific period (exam-
ples: last 10 days, between some specified, dates). Some enterprises, especially
the internet service providers(ISPs) or large web services even go to much more
smaller periods of times like computing the availability of their services every

7.2. Methodology for Modeling Web Service Interfaces in a Data
Integration Approach 143

minute (or second). Such real time monitoring of various business measures is
also getting very common these days.

2. Significance of the numerals: What does a performance indicator signify. In most
cases, the performance indicators are usually numerals (integers or floating point)
or multiple numerals along with some associated informations. For example:
Number of new subscriptions or unsubscription for an internet magazine or after
an email marketing campaign, Average number of clicks registered on an email
marketing campaign on a day, top five active forums. The significant measures
include

• Count (Financial Measure, Numerical Count)
• Mean, Mode, Median, and Standard Deviation
• Ratio, Percentage
• 95 or 99 percentile
• Ordinal (Position, Top 5 or 10)

3. Granularity of Information: One other interesting characteristic of performance
indicator is to figure out the manner and amount of aggregation to be performed.
Total number of pending projects in an enterprise with hundreds of employees
is an important business metric for business executives controlling the overall
functioning of various business units. What’s more interesting for a manager
is to track the number of pending projects in her team. Similarly, consider
another example where a forum consists of various entries (comments), and every
entry constitutes an activity. Different types of users require different levels of
(granular) information. A manager of Customer support team would like to know
the number of unanswered comments in the forums managed by the team, but
the customer support team member will be more concerned about the number of
unanswered comments directly assigned to him/her.

4. State: In most of the resource representations, state is an important data field.
This state field is quite often used for the computation of performance indicator,
often used as a criterion for the aggregation (as discussed above). Information
of various states are computed at different points of time. A user before starting
his work on a day would like to see the number of pending tasks assigned to him
on a particular day. But at the end of a week/month, he prefers to see the total
number of tickets solved by him. So the state of information (here tickets) is
another important factor. Some examples of the states include

• Solved Tickets
• Unsolved Tickets
• Answered Forums

144 Chapter 7. Using DaWeS

• Unanswered Forums
• Active Projects
• Archived Projects

5. Category of the Requester : The indicators requested by different persons differs
based on his/her work profile. A manager requests for a different set of indicators
than an employee in his/her team. Following are some examples of performance
indicators with the (possible) requester(s) given in the brackets

• Total tickets overdue on him/her (Employee and Manager)
• Total tickets overdue on the team (Manager)
• Total tickets solved by the team in the quarter (Manager)

6. Choice of Performance Indicators: When users choose an indicator, various rea-
sons are behind their choice. A choice comes along with the associated infor-
mation of the person who made the choice (job profile, team, company, domain
of work). This information in turn is useful to suggest identifiers when a new
company/organization looks for identifiers in a category (or a service). Some of
the reasons behind the choice of a performance indicator are already discussed
above (Refer Category of the Requester, State and Granularity).

7.3 Experiments

In this section, we describe the various experiments done on DaWeS, both qualitative
and quantitative and report our observations.

7.3.1 Experiment Description

We took into consideration 35 different operations (refer section C.2) of 12 different web
services belonging to three different domains(project management, email marketing and
support/helpdesk). We considered 17 record definitions (refer section C.3) formulated
over the global schema relations (defined in the section C.1). We make use of the
record definitions to define our performance indicators (refer section C.4 to see the
20 such performance indicators) and then use the enterprise records to compute the
performance indicators.

7.3. Experiments 145

7.3.1.1 Setup

The details of the system, database and the cache are given in the Table 7.3.1.1.

Table 7.1: DaWeS Experiments: Setup

DaWeS Settings
Ehcache Version 2.6.5
Cache Eviction Policy Least Frequently Used
Allowed Number of entries (on Heap) 10000
Allowed Number of entries (on Disk) 100
Time to Live 600 seconds

For real-life scenario, we considered the test data as described in the section C.5 and
entered them into the respective web services using web browsers. We use the DaWeS
command line options to run our tests (refer section D.3). We use (INFO Logging
mode) logging to log the time taken by various functions in DaWeS. Twelve different
web services and the associated number of operation considered by us is given in the
Table 7.2.

Table 7.2: Total Web Service API Operations considered for the Tests

Project Management Services
1. Basecamp 4
2. Liquid Planner 2
3. Teambox 3
4. Zoho Projects 1

Email Marketing Services
5. MailChimp 3
6. Campaign Monitor 5
7. iContact 1
Support (Helpdesk) Services
8. Zendesk 5
9. Desk 4
10. Zoho Support 1
11. Uservoice 2
12. FreshDesk 4

146 Chapter 7. Using DaWeS

We created 100 test organizations (one of them was created manually and all oth-
ers made use of the same authentication parameters) to simulate a multi-enterprise
environment. We considered that all the 100 test organizations have the same informa-
tion of authentication parameters, the interested record definitions and the interested
performance indicator queries. Thus we created 100 (homogeneous) enterprises for
performing our tests. For a given organization, we performed the following steps:

1. For every web services considered in the Table 7.2, do the following

(a) Create an account in the respective web service
(b) Add test data (with the details given in section C.5)
(c) Add the organization authentication parameters and other required infor-

mation (like the subdomain in the URL) for the web service to DaWeS.

2. Add the information (to DaWeS) that this organization is interested in all the
record definitions considered in the Table C.4.

3. Add the information (to DaWeS) that this organization is interested in all the
performance indicators considered in the Table C.5.

7.3.1.2 Qualitative Tests

We have tested the following features: Scheduler, Calibration, Search, Fetching of
Records from web services and Performance Indicator computation. Our focus is on
the query evaluation (fetching of records from the web services) and the performance
indicator computation.

For the qualitative tests, we test the capability of our system to handle different
types of queries and performance indicators. We make sure that various web service
operations are handled properly, especially the operations requiring pagination and
those that need to follow some specific operation invocation sequence (both are handled
by the inverse rules algorithm using the domain rules). The web service API operations
that are considered have one or more of the following characteristics:

1. Requires no input arguments
2. Requires one or more input arguments
3. Requires pagination

We also tested the system with the following authentication mechanisms:

7.3. Experiments 147

1. Basic HTTP Authentication (username/password combination)
2. Basic HTTP Authentication (username/password combination and additional

information from the users like the (sub)domain name of their service)
3. OAuth v1.0 Authentication (with additional information from the user like the

subdomain)

The test data are detailed in the section C.5. They have the following features

1. Multiple resources with same names (or titles) within a single web service. Ex-
ample: Two tasks having the same name in Basecamp.

2. Multiple resources with same names (or titles) among different web services.
Example: Two tasks in Basecamp and Teamworkpm having the same name.

3. Multiple resources with different names (or titles) within a single web services or
among different web services

We use the following types of queries (defined over the global schema relations)

1. Conjunctive Query
2. Union of Conjunctive Query
3. (Recursive) Datalog Query

We also test our system for different types of performance indicators

1. Total/Count of entries
2. Average
3. Percentage
4. Tuples (useful to create charts)

7.3.1.3 Quantitative Tests

In this set of tests, we check the time required to compute the record definitions (queries
formulated over the global schema relations) and performance indicator queries. Espe-
cially we focus our attention to the queries on the global schema relations and calculate
the different times for query throughput (throughput here refers to the time taken to
compute a query):

1. Query throughput (one query at a time)

148 Chapter 7. Using DaWeS

2. Query throughput, when run with the scheduler
3. Query throughput, when response is available in the database (from previous com-

putation), so using the cache

As mentioned above, we are interested mostly in the two main features of DaWeS:
query evaluation (fetching of records from web services) and performance indicator
computation. Therefore for the query evaluation, we take into consideration the fol-
lowing times (averaged for 100 organizations):

1. (Hibernate) Setup Time for query evaluation
2. Performing various checks (whether the record definition identifier is valid)
3. Get the latest record for the organization (if any)
4. Get the latest Calibration Status
5. Setting up the IRIS Datalog engine (Example: loading the domain rules, inverse

rules)
6. Query Evaluation (or Execution) time. This includes

(a) Reading the data from the cache
(b) Making Web service API operation calls
(c) Response Validation
(d) Response Transformation

7. Performing Chase (Heuristics handling incomplete information) and Frame Re-
sponse

8. Saving the result to the database

For performance indicator computation, we are interested in computing the follow-
ing times (averaged for 100 organizations):

1. (Hibernate) Setup Time
2. Performing various checks (whether the performance indicator identifier is valid)
3. Get the latest performance indicator value for the organization (if any)
4. Get the latest Calibration Status
5. Check whether the dependent records of organization are valid
6. Execute (SQL query) and Frame Response
7. Saving the result to the database

7.3. Experiments 149

7.3.2 Experiment Results

7.3.2.1 Qualitative Tests

We use some screen-shots to show the responses of DaWeS when various operations
(section D.3) are performed.

Figure 7.4 shows DaWeS command line options.

Figure 7.4: DaWeS: Help

1. Search: Figure 7.5 shows how a web service is searched using DaWeS. In the
given example, we search for project management web services, but simply use
project as the search pattern. The results shows all the project management web
services currently supported with DaWeS (along with the current ratings).

Figure 7.5: DaWeS: Searching a web service

Figure 7.6 shows how a record definition is searched using DaWeS. In the given
example, we search for the record definitions which captures the notion of all

150 Chapter 7. Using DaWeS

forums. DaWeS not only returns the record definitions that contains the pattern
all forums, but also some other record definitions that may be useful to the
enterprise, belonging to the same domain or are somewhat related.

Figure 7.6: DaWeS: Searching a record definition

Figure 7.7 shows how DaWeS is used to search for interesting performance in-
dicators. In the given example, we search for performance indicators that deal
with campaigns. DaWeS returns the relevant performance indicators and their
current ratings.

Figure 7.7: DaWeS: Searching a Performance Indicator

2. Calibration: Figure 7.8 shows how DaWeS is used to calibrate all the record
definitions and the latest calibration status is stored in the database (which will
be used before the fetching of record; the record will be fetched if the status is
passed)
Figure 7.9 shows how DaWeS is used to calibrate all the performance indicator
computation and the latest calibration status is stored in the database (which
will be used before the performance indicator computation the computation will
be performed if the status is passed)

3. Fetching of Records from web services: Figure 7.10 shows how DaWeS is
used to fetch and form a record after the query evaluation. In this case, the

7.3. Experiments 151

Figure 7.8: DaWeS: Performing Calibration of Record Definitions

Figure 7.9: DaWeS: Performing Calibration of Performance Indicators

concerned record is Daily New Projects. The example shows the capability of
DaWeS to evaluate a particular query of an enterprise.

Figure 7.10: DaWeS: Fetching a Record: Daily New Projects

Figure 7.11 shows how DaWeS is used to evaluate the record definition Daily
Open Tasks.
Figure 7.12 shows how DaWeS is used to evaluate the record definition Daily
Open Tickets.

4. Performance Indicator Computation: Figure 7.13 shows how DaWeS is used
to compute the performance indicator of an enterprise. In this case, the concerned
performance indicator is Monthly Forwards of Campaign
Figure 7.14 shows how DaWeS is used to compute the performance indicator
Total high priority tickets Registered in a month.
Figure 7.15 shows how DaWeS is used to compute the performance indicator:
Percentage of high priority tickets Registered in a month

152 Chapter 7. Using DaWeS

Figure 7.11: DaWeS: Fetching a Record: Daily Open Tasks

Figure 7.12: DaWeS: Fetching a Record: Daily Open Tickets

5. Scheduler: Figure 7.16 shows how DaWeS is used to run the scheduler. As
mentioned before and as seen in the figure, DaWeS performs the calibration
and then computation of record definitions and performance indicators for every
enterprise.

7.3.2.2 Quantitative Tests

We continue with tests performed using 100 test organizations.

7.3. Experiments 153

Figure 7.13: DaWeS: Computing a Performance Indicator: Monthly Forwards of Cam-
paign

Figure 7.14: DaWeS: Computing a Performance Indicator: Total high priority tickets
Registered in a month

Figure 7.15: DaWeS: Computing a Performance Indicator: Percentage of high priority
tickets Registered in a month

Figure 7.16: DaWeS: Running the scheduler

We will present here once again (refer section C.2 for details) all the record defini-
tions.

154 Chapter 7. Using DaWeS

Figure 7.17: DaWeS: Scheduler performing Query Evaluation using web service API
Operations

1. Daily New Projects
2. Daily Active Projects
3. Daily OnHold Projects
4. Daily OnHold or Archived Projects
5. Daily New Tasks
6. Daily Open Tasks
7. Daily Closed Tasks
8. Daily TodoLists
9. Daily Same Status Projects

10. Daily New Forums
11. Daily All Forums
12. Daily New Topics
13. Daily New Tickets
14. Daily Open Tickets
15. Daily Closed Tickets
16. Daily New Campaigns
17. Daily Campaign Statistics

7.3. Experiments 155

Figure 7.18: DaWeS: Analysis of Query Evaluation of All Queries

Figure 7.17 shows the average time taken for 100 organizations to compute the
records using the web service API operations with the help of a scheduler. Recall
that the scheduler computes the records of an enterprise (thus making the most of the
cache). Note the interesting spikes for the following records

• 1. Daily New Projects
• 5. Daily New Tasks
• 10. Daily New Forums
• 12. Daily New Topics
• 13. Daily New Tickets
• 16. Daily New Campaigns

This is because the data is not available locally in the cache and the (time-expensive)
web service API operations have to be made. For the subsequent operations (depending
on the data already fetched and cache), the computation time is low.

Figure 7.18 shows the query analysis. Query evaluation takes significant amount of
time followed by making use of the chase algorithm. We see in Figure 7.19 the time
taken by the wrapper during query evaluation. It is clear that the most amount of
time is spent making API operation calls and getting the response.

156 Chapter 7. Using DaWeS

Figure 7.19: DaWeS: Analysis of Various Components of Generic HTTP Web Service
Wrapper

Next we see the computation of performance indicators using the records. The
performance indicators considered are given below (refer section C.4 for details).

1. Total Monthly New Projects
2. Total Monthly Active Projects
3. Total Monthly OnHold Projects
4. Total Monthly Completed Tasks
5. Average Tasks Completed Daily in a month
6. Total Monthly New Tasks
7. Total Todo Lists
8. Percentage of tasks completed to tasks created in a day
9. Total Monthly New Campaigns

10. Monthly Click Throughs of Campaign
11. Monthly Forwards of Campaign
12. Monthly Bounces of Campaign
13. Total Monthly Solved Tickets
14. Daily Average Resolution Time

7.3. Experiments 157

15. Total New Tickets Registered in a month
16. Total New Forums Registered in a month
17. All Forums in a month
18. Total New Topics Registered in a month
19. Total High Priority Tickets Registered in a month
20. Percentage of High Priority Tickets Registered in a month

Figure 7.20 shows the average time taken to compute performance indicators. Recall
that the performance indicators make use of the underlying (Oracle) DBMS for the
query evaluation. We check that evaluating performance indicators is two orders of
magnitude quicker than fetching the data. This was expected because of fetching the
data from web services require network communication times to achieve calls whereas
performance indicators are computed by highly optimized query evaluation techniques
in Oracle using the enterprise records stored in the database.

Figure 7.20: DaWeS: Performance Indicator Computation

Current tests: We are currently working on creating a thread pool for the sched-
uler so that record computation of multiple enterprises can be done in parallel. We
are also currently working on a test suite to test DaWeS with thousands of API op-
erations randomly generated. We want to see how much load (number of web service
operations) can a single instance of DaWeS handle without performance degradation.

Chapter 8

Future Works and Conclusion

There are several scopes for extending the capabilities of DaWeS. From experimental
perspective, DaWeS needs to be industrially tested with additional domains and the
associated web services. Secondly, one of the reasons for choosing two tables for storing
the enterprise data and performance indicators was to easily migrate these data to a
columnar storage based cloud infrastructure. This possibility of migration needs to
be tested with columnar stores along with the associated changes required in perfor-
mance indicator queries. A visual interface for creating performance indicator queries
is another interesting direction that can further reduce the burden of working with the
complex SQL queries.

From a research perspective, we presented a heuristics for handling the incomplete
information in DaWeS using the inverse rules algorithm. The precise characterisation
of the heuristics is useful especially to understand the query composition capabilities of
DaWeS. Currently, the inverse rules algorithm handles full and functional dependencies
and we utilize this capability to specify the primary keys of the global schema relations.
Datalog has caught the attention of the research community and various extensions
[Calì et al., 2009b, 2012, 2011; Calvanese et al., 2007; Gottlob et al., 2012] to datalog
have been proposed especially to deal with the various constraints used in the ontology.
Ontological queries can be rewritten into small non-recursive datalog programs [Gottlob
and Schwentick, 2011]. Support for additional constraints in the global schema is very
interesting. Another possible extension is by making use of certain aggregate queries
with datalog [Shkapsky et al., 2013].

We showed that even with basic web technologies, we can reduce a significant
amount of coding effort and automate the feeding of data warehouse with web ser-

160 Chapter 8. Future Works and Conclusion

vice data. A further study is required that can compare what is done with the basic
languages and what could be done with advanced languages (eg., automating the gen-
eration of the LAV mapping). [Yerneni et al., 1999] considered the case of search forms
usually found in web sites and studied additional adornments like unspecifiable and
optional. Certain web service API operations also have these arguments; extending
DaWeS taking into account these is another interesting direction.

Columnar storage is gaining a lot of traction during the past few years. This gradual
transition from relational databases to columnar storage opens up a lot of new research
problems particularly handling of the OLAP CUBE queries, previously suggested with
the star schema. Any such advancement can be used to enhance the capabilities of
DaWeS to handle CUBE queries. DaWeS doesn’t follow multidimensional modeling.
But in some cases, the customers of DaWeS may be interested to have hierarchies in
some dimensions to perform cubing and OLAP. This needs to be further explored.

From the perspective of business requirements, a more automated approach to
handling the errors is needed. Currently we periodically perform the calibration of
records and performance indicators to ensure their accurate computation. Calibration
of records help DaWeS adminstrators to get quick information when any web service
API undergoes any (unannounced) change. But (unannounced) API change is one of
the possible failures.

We discussed about various failures that can occur while making API operation calls
in section 5.2.2.10. Web service APIs don’t follow any standard HTTP errors that can
be used to distinguish between various categories of errors. Distinguishing various
categories of errors is important so as to take appropriate action. Take for example, if
network or the service provider is temporally down, it signifies that the API operation
call can be repeated after a period of time. If the operation call returns an error
’resource not found’, the operation call need not be repeated and it must be reported
and diagnosed why such an operation call was made since API calls are expensive.
DaWeS needs to be further enhanced with automated error handling mechanism such as
with the help of an ontology of API failures and associated measures towards correcting
errors.

The growing use of web services among the enterprises cannot be undermined.
DaWeS is a need of the hour for the enterprises using multiple web services for their
day to day transactions. DaWeS provides them an integrated view of their enterprise
data spread across multiple web services and also enables them to create and compute
interesting business performance measures. DaWeS also points to a new generation

161

of web services that make interesting and promising use of the enterprise data spread
across other web services.

DaWeS aims towards building a scalable and adaptable service for integration with
ever-evolving web services supporting not only the ease of use in building interesting
business measures but also enabling the continuity of enterprise data in the event of
web service shutdowns or switching. With DaWeS, we show how mediation as ETL is
effective in integration with web services. Given its scalable and adaptable nature, it
can be easily adapted by small and medium scale enterprises considering the minimum
amount of coding effort while handling web service API. Generic HTTP wrapper shows
that even with the lack of machine readable interfaces, it is possible to work with
numerous web services (and the problem is not as complex as the wrappers for textual
sources, legacy databases where a new wrapper is created for every new data source).

Given the interest of cloud computing within the industry, our current approach of
storing the complete web service API enterprise data on just two big tables may be
adapted to the columnar storage based cloud infrastructure.

Our proposed upper bound on the number of API operation calls can be used to
compare various optimization algorithms to reduce the number of (expensive) web
service API operation calls. Finally the proposed heuristics handling incomplete infor-
mation shows another interesting feature of inverse rules algorithm towards handling
incomplete answers and query composition.

DaWeS also bridges the current gap between the industry and research community
considering the lack of usage of machine readable syntactic and semantic standards
like WSDL, WADL, hRESTS, SAWSDL. We believe that this situation will change in
the coming years and DaWeS can be further automated like automated generation of
LAV mapping. DaWeS also presents to the research community a platform for testing
various recent scientific advancements in the fields of web services, data integration
and data warehousing.

Bibliography

Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., and Weber, R. (2002). Active
xml: Peer-to-peer data and web services integration. In VLDB, pages 1087–1090.
Morgan Kaufmann. (Cited on page 43.)

Abiteboul, S. and Duschka, O. M. (1998). Complexity of answering queries using
materialized views. In Mendelzon, A. O. and Paredaens, J., editors, Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages 254–263. ACM
Press. (Cited on page 47.)

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-
Wesley. (Cited on pages 47, 55, 57, 99 and 114.)

Abiteboul, S., Kanellakis, P. C., and Grahne, G. (1991). On the representation and
querying of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187. (Cited on
page 47.)

Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.-C., Senellart, P., et al. (2012).
Web data management. Cambridge University Press. (Cited on page 47.)

Adali, S., Candan, K. S., Papakonstantinou, Y., and Subrahmanian, V. S. (1996).
Query caching and optimization in distributed mediator systems. In Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’96, pages 137–146, New York, NY, USA. ACM. (Cited on page 46.)

Afrati, F. N. and Kiourtis, N. (2008). Query answering using views in the presence of
dependencies. In NTII, pages 8–11. (Cited on page 49.)

Afrati, F. N., Li, C., and Mitra, P. (2002). Answering queries using views with arith-
metic comparisons. In Popa, L., Abiteboul, S., and Kolaitis, P. G., editors, PODS,
pages 209–220. ACM. (Cited on page 49.)

164 Bibliography

Agarwal, S., Keller, A. M., Wiederhold, G., and Saraswat, K. (1995). Flexible relation:
An approach for integrating data from multiple, possibly inconsistent databases. In
In IEEE International Conference on Data Engineering, pages 495–504. (Cited on
page 49.)

Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A., and Verma, K. (2005).
Web service semantics-wsdl-s. (Cited on page 52.)

Aweber (2012). Aweber. http://www.aweber.com. (Cited on page 184.)

Axis, A. (2012). Apache web services project. hhttp://axis.apache.org/axis2/
java/core/. (Cited on page 42.)

Bai, Q., Hong, J., McTear, M. F., and Wang, H. (2006). A bucket-based approach to
query rewriting using views in the presence of inclusion dependencies. Journal of
Research and Practice in Information Technology, 38(3):251–266. (Cited on page 49.)

Barhamgi, M., Benslimane, D., and Ouksel, A. M. (2008). Composing and optimizing
data providing web services. In Huai, J., Chen, R., Hon, H.-W., Liu, Y., Ma, W.-Y.,
Tomkins, A., and Zhang, X., editors, WWW, pages 1141–1142. ACM. (Cited on
pages 43, 44 and 45.)

Baril, X., Bellahsène, Z., et al. (2003). Designing and managing an xml warehouse.
XML Data Management: Native XML and XML-Enabled Database Systems, Addi-
son Wesley, pages 455–473. (Cited on pages 39 and 43.)

Basecamp (2012). Basecamp. http://www.basecamp.com. (Cited on pages 136
and 184.)

Bayardo, R. J., Jr., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap,
V., Ksiezyk, V. K. T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea,
R., Unnikrishnan, C., Unruh, A., and Woelk, D. (1997). Infosleuth: Agent-based
semantic integration of information in open and dynamic environments. (Cited on
page 46.)

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., and Toumani, F. (2005).
Developing adapters for web services integration. In Pastor, O. and e Cunha, J. F.,
editors, CAiSE, volume 3520 of Lecture Notes in Computer Science, pages 415–429.
Springer. (Cited on page 42.)

Bibliography 165

Benslimane, D., Dustdar, S., and Sheth, A. P. (2008). Services mashups: The new
generation of web applications. IEEE Internet Computing, 12(5). (Cited on pages 22,
44 and 45.)

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie, J., and
Siméon, J. (2007). Xml path language (xpath) 2.0. W3C recommendation, 23. (Cited
on page 52.)

Berners-Lee, T., Fielding, R., and Frystyk, H. (1996). Hypertext transfer protocol–
http/1.0. (Cited on page 21.)

Berti-Equille, L. and Moussouni, F. (2005). Quality-aware integration and warehousing
of genomic data. In Naumann, F., Gertz, M., and Madnick, S. E., editors, IQ. MIT.
(Cited on page 40.)

Bhowmick, S., Madria, S., Ng, W.-K., and Lim, E.-P. (1999). Web warehousing: Design
and issues. In Kambayashi, Y., Lee, D.-L., Lim, E.-p., Mohania, M., and Masunaga,
Y., editors, Advances in Database Technologies, volume 1552 of Lecture Notes in
Computer Science, pages 93–104. Springer Berlin Heidelberg. (Cited on page 41.)

Bhowmick, S. S., Madria, S. K., and Ng, W. K. (2003). Representation of web data in
a web warehouse. Comput. J., 46(3):229–262. (Cited on page 41.)

Bosak, J., Bray, T., Connolly, D., Maler, E., Nicol, G., Sperberg-McQueen, C., Wood,
L., and Clark, J. (1998). W3c xml specification dtd. (Cited on page 38.)

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S., and Winer, D. (1999). Soap: Simple object access protocol. HTTP
Working Group Internet Draft. (Cited on pages 42 and 51.)

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (1997).
Extensible markup language (xml). World Wide Web Journal, 2(4):27–66. (Cited
on pages 52 and 189.)

Burstein, M. H., Hobbs, J. R., Lassila, O., Martin, D., McDermott, D. V., McIlraith,
S. A., Narayanan, S., Paolucci, M., Payne, T. R., and Sycara, K. P. (2002). Daml-
s: Web service description for the semantic web. In Proceedings of ISWC, pages
348–363. (Cited on pages 32 and 44.)

Calì, A., Calvanese, D., Giacomo, G. D., and Lenzerini, M. (2002). On the role of
integrity constraints in data integration. IEEE Data Eng. Bull., 25(3):39–45. (Cited
on page 49.)

166 Bibliography

Calì, A., Calvanese, D., Giacomo, G. D., and Lenzerini, M. (2004). Data integration
under integrity constraints. Inf. Syst., 29(2):147–163. (Cited on page 49.)

Calì, A., Calvanese, D., and Lenzerini, M. (2013). Data integration under integrity
constraints. In Jr., J. A. B., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., and
Sølvberg, A., editors, Seminal Contributions to Information Systems Engineering,
pages 335–352. Springer. (Cited on page 49.)

Calì, A., Calvanese, D., and Martinenghi, D. (2009a). Dynamic query optimization
under access limitations and dependencies. J. UCS, 15(1):33–62. (Cited on pages 49
and 59.)

Calì, A., Gottlob, G., and Lukasiewicz, T. (2009b). Tractable query answering over
ontologies with datalog+/-. In Grau, B. C., Horrocks, I., Motik, B., and Sattler,
U., editors, Description Logics, volume 477 of CEUR Workshop Proceedings. CEUR-
WS.org. (Cited on page 159.)

Calì, A., Gottlob, G., and Lukasiewicz, T. (2012). A general datalog-based framework
for tractable query answering over ontologies. J. Web Sem., 14:57–83. (Cited on
page 159.)

Calì, A., Gottlob, G., and Pieris, A. (2011). New expressive languages for ontological
query answering. In Burgard, W. and Roth, D., editors, AAAI. AAAI Press. (Cited
on page 159.)

Calì, A., Lembo, D., and Rosati, R. (2003). Query rewriting and answering under
constraints in data integration systems. In IJCAI, pages 16–21. (Cited on page 49.)

Calì, A. and Martinenghi, D. (2008). Querying data under access limitations. In ICDE,
pages 50–59. (Cited on page 49.)

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R. (1998).
Source integration in data warehousing. In DEXA Workshop, pages 192–197. (Cited
on page 40.)

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R. (1999). A
principled approach to data integration and reconciliation in data warehousing. In
Gatziu, S., Jeusfeld, M. A., Staudt, M., and Vassiliou, Y., editors, DMDW, volume 19
of CEUR Workshop Proceedings, page 16. CEUR-WS.org. (Cited on page 40.)

Bibliography 167

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R. (2001a). Data
integration in data warehousing. Int. J. Cooperative Inf. Syst., 10(3):237–271. (Cited
on page 40.)

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. (2007).
Tractable reasoning and efficient query answering in description logics: The dl-lite
family. J. Autom. Reasoning, 39(3):385–429. (Cited on page 159.)

Calvanese, D., Giacomo, G. D., and Lenzerini, M. (2000a). Answering queries using
views over description logics knowledge bases. In Kautz, H. A. and Porter, B. W.,
editors, AAAI/IAAI, pages 386–391. AAAI Press / The MIT Press. (Cited on
page 49.)

Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y. (2000b). What is view-
based query rewriting? In Bouzeghoub, M., Klusch, M., Nutt, W., and Sattler, U.,
editors, Proceedings of the 7th International Workshop on Knowledge Representation
meets Databases (KRDB 2000), Berlin, Germany, August 21, 2000, volume 29 of
CEUR Workshop Proceedings, pages 17–27. CEUR-WS.org. (Cited on page 47.)

Calvanese, D., Lembo, D., and Lenzerini, M. (2001b). Survey on methods for query
rewriting and query answering using views. (Cited on page 47.)

Campaign Monitor (2012). Campaign monitor. http://www.campaignmonitor.com.
(Cited on page 184.)

Cautis, B., Deutsch, A., and Onose, N. (2011a). Querying data sources that export
infinite sets of views. Theory Comput. Syst., 49(2):367–428. (Cited on page 49.)

Cautis, B., Deutsch, A., Onose, N., and Vassalos, V. (2011b). Querying xml data
sources that export very large sets of views. ACM Trans. Database Syst., 36(1):5.
(Cited on page 46.)

Chandra, A. K. and Merlin, P. M. (1977). Optimal implementation of conjunctive
queries in relational data bases. In STOC, pages 77–90. (Cited on page 48.)

Chaudhuri, S. and Dayal, U. (1997). An overview of data warehousing and olap tech-
nology. SIGMOD Record, 26(1):65–74. (Cited on page 60.)

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., and Widom, J. (1994). The tsimmis project: Integration of heterogeneous
information sources. In In Proceedings of IPSJ Conference, pages 7–18. (Cited on
page 46.)

168 Bibliography

Cheng, K., Kambayashi, Y., Lee, S. T., and Mohania, M. K. (2000). Functions of a web
warehouse. In Kyoto International Conference on Digital Libraries, pages 372–379.
(Cited on page 41.)

Christiansen, H. and Martinenghi, D. (2004). Simplification of integrity constraints for
data integration. In Seipel, D. and Torres, J. M. T., editors, FoIKS, volume 2942 of
Lecture Notes in Computer Science, pages 31–48. Springer. (Cited on page 49.)

ConstantContact (2012). Constantcontact. http://www.constantcontact.com.
(Cited on page 184.)

Crockford, D. (2006). Json. (Cited on pages 52 and 189.)

Desk (2012). Desk. http://www.desk.com. (Cited on page 184.)

Deutsch, A., Ludäscher, B., and Nash, A. (2007). Rewriting queries using views with
access patterns under integrity constraints. Theor. Comput. Sci., 371(3):200–226.
(Cited on pages 50 and 64.)

Duschka, O. M. and Genesereth, M. R. (1997). Answering recursive queries using
views. In PODS, pages 109–116. (Cited on pages 46, 47 and 61.)

Duschka, O. M., Genesereth, M. R., and Levy, A. Y. (2000). Recursive query plans for
data integration. J. Log. Program., 43(1):49–73. (Cited on pages 47, 49, 64, 67, 112
and 129.)

Eclipse (2012). Eclipse ide. http://www.eclipse.org/eclipse/development/
readme_eclipse_3.8.html. (Cited on page 98.)

ehcache (2012). Ehcache. http://ehcache.org/. (Cited on page 98.)

Fernández, M., Malhotra, A., Marsh, J., Nagy, M., and Walsh, N. (2002). Xquery 1.0
and xpath 2.0 data model. W3C working draft, 15. (Cited on pages 52 and 71.)

Fernandez, P. (2013). Scribe. https://github.com/fernandezpablo85/scribe-
java. (Cited on page 98.)

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-
Lee, T. (1999). Hypertext transfer protocol–http/1.1. (Cited on pages 21 and 190.)

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures. (Cited on pages 31, 51, 181 and 186.)

Bibliography 169

Freshdesk (2012). Freshdesk. http://www.freshdesk.com. (Cited on page 184.)

Friedman, M., Levy, A. Y., and Millstein, T. D. (1999). Navigational plans for data
integration. In Hendler, J. and Subramanian, D., editors, AAAI/IAAI, pages 67–73.
AAAI Press / The MIT Press. (Cited on page 46.)

Gao, S., Sperberg-McQueen, C. M., Thompson, H. S., Mendelsohn, N., Beech, D.,
and Maloney, M. (2009). W3c xml schema definition language (xsd) 1.1 part 1:
Structures. W3C Candidate Recommendation, 30. (Cited on pages 52, 71 and 98.)

Gardarin, G., Mensch, A., Tuyet Dang-Ngoc, T., and Smit, L. (2002). Integrating
heterogeneous data sources with xml and xquery. In Database and Expert Systems
Applications, 2002. Proceedings. 13th International Workshop on, pages 839–844.
IEEE. (Cited on page 46.)

Genesereth, M. R., Keller, A. M., and Duschka, O. M. (1997). Infomaster: An in-
formation integration system. In Peckham, J., editor, SIGMOD Conference, pages
539–542. ACM Press. (Cited on page 46.)

Goessner, S. (2006). Jsont - transforming json. http://goessner.net/articles/
jsont/. (Cited on page 53.)

Goessner, S. (2007). Jsonpath - xpath for json. http://goessner.net/articles/
JsonPath/. (Cited on page 53.)

Gomadam, K., Ranabahu, A., and Sheth, A. (2010). Sa-rest: Semantic annotation of
web resources. W3C Member Submission, 5. (Cited on page 52.)

Gottlob, G., Orsi, G., and Pieris, A. (2011a). Ontological queries: Rewriting and op-
timization. In Data Engineering (ICDE), 2011 IEEE 27th International Conference
on, pages 2–13. IEEE. (Cited on page 49.)

Gottlob, G., Orsi, G., and Pieris, A. (2011b). Ontological query answering via rewrit-
ing. In Eder, J., Bieliková, M., and Tjoa, A. M., editors, ADBIS, volume 6909 of
Lecture Notes in Computer Science, pages 1–18. Springer. (Cited on page 49.)

Gottlob, G., Orsi, G., Pieris, A., and Simkus, M. (2012). Datalog and its extensions for
semantic web databases. In Eiter, T. and Krennwallner, T., editors, Reasoning Web,
volume 7487 of Lecture Notes in Computer Science, pages 54–77. Springer. (Cited
on page 159.)

Gottlob, G. and Schwentick, T. (2011). Rewriting ontological queries into small non-
recursive datalog programs. Description Logics, 745. (Cited on page 159.)

170 Bibliography

Gottlob, G. and Schwentick, T. (2012). Rewriting ontological queries into small non-
recursive datalog programs. In Brewka, G., Eiter, T., and McIlraith, S. A., editors,
KR. AAAI Press. (Cited on page 47.)

Grahne, G. (1989). Horn tables - an efficient tool for handling incomplete information
in databases. In [Silberschatz, 1989], pages 75–82. (Cited on page 47.)

Grahne, G. and Kiricenko, V. (2002). Obtaining more answers from information inte-
gration systems. In Proc. Fifth International Workshop on the Web and Databases
(WebDB ’02), pages 67–76. (Cited on page 48.)

Grahne, G. and Kiricenko, V. (2003). Partial answers in information integration sys-
tems. In WIDM, pages 98–101. (Cited on page 48.)

Grahne, G. and Kiricenko, V. (2004). Towards an algebraic theory of information
integration. Inf. Comput., 194(2):79–100. (Cited on pages 48, 55, 103 and 104.)

Grahne, G. and Mendelzon, A. O. (1999). Tableau techniques for querying information
sources through global schemas. In In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 332–
347. Springer. (Cited on page 48.)

Gryz, J. (1999). Query rewriting using views in the presence of functional and inclusion
dependencies. Inf. Syst., 24(7):597–612. (Cited on page 49.)

Guérin, E., Marquet, G., Burgun, A., Loréal, O., Berti-Equille, L., Leser, U., and
Moussouni, F. (2005). Integrating and warehousing liver gene expression data and
related biomedical resources in gedaw. In Ludäscher, B. and Raschid, L., editors,
DILS, volume 3615 of Lecture Notes in Computer Science, pages 158–174. Springer.
(Cited on page 40.)

Hadley, M. J. (2006). Web application description language (wadl). Technical report,
Mountain View, CA, USA. (Cited on pages 22 and 52.)

Halevy, A. Y. (2000). Theory of answering queries using views. SIGMOD Record,
29(4):40–47. (Cited on page 49.)

Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB J., 10(4):270–
294. (Cited on pages 46, 49 and 61.)

Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., and Zhuge, Y. (1995). The
stanford data warehousing project. IEEE Data Eng. Bull., 18(2):41–48. (Cited on
pages 40 and 41.)

Bibliography 171

Hansen, M., Madnick, S. E., and Siegel, M. (2002). Data integration using web services.
In Lacroix, Z., editor, DIWeb, pages 3–16. University of Toronto Press. (Cited on
page 42.)

He, H. (2003). What is service-oriented architecture. Publicação eletrônica em, 30.
(Cited on page 50.)

hibernate (2012). Hibernate. www.hibernate.org. (Cited on page 98.)

iContact (2012). icontact. http://www.icontact.com. (Cited on page 184.)

Imieliński, T. and Lipski, Jr., W. (1984). Incomplete information in relational
databases. J. ACM, 31(4):761–791. (Cited on page 47.)

Inmon, W. H. (1992). Building the Data Warehouse. John Wiley & Sons, Inc., New
York, NY, USA. (Cited on pages 22, 38, 39, 43 and 181.)

IRIS (2008). Integrated Rule Inference System - API and User Guide. (Cited on
pages 98, 99 and 293.)

Java SE (2012). Java se development kit 7, update 25 (jdk 7u25). www.oracle.com/
technetwork/java/javase/7u25-relnotes-1955741.html. (Cited on page 98.)

javax.xml (2012). javax.xml: Core xml constants and functionality from the
xml specifications. http://docs.oracle.com/javase/1.5.0/docs/api/javax/
xml/package-summary.html. (Cited on page 99.)

jersey (2012). Jersey-restful web services in java. https://jersey.java.net/. (Cited
on page 42.)

Json-lib (2012). Json-lib. http://json-lib.sourceforge.net/. (Cited on page 99.)

Kambhampati, S., Lambrecht, E., Nambiar, U., Nie, Z., and Gnanaprakasam, S.
(2004). Optimizing recursive information gathering plans in emerac. J. Intell. Inf.
Syst., 22(2):119–153. (Cited on page 46.)

Karakasidis, A., Vassiliadis, P., and Pitoura, E. (2005). Etl queues for active data
warehousing. In Berti-Equille, L., Batini, C., and Srivastava, D., editors, IQIS,
pages 28–39. ACM. (Cited on page 41.)

Kay, M. et al. (2007). Xsl transformations (xslt) version 2.0. W3C Recommendation,
23. (Cited on pages 52, 71 and 98.)

172 Bibliography

Kayako (2012). Kayako. http://www.kayako.com. (Cited on page 184.)

Kimball, R. (1996). The Data Warehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses. John Wiley. (Cited on pages 22, 38, 39 and 43.)

Kimball, R. and Merz, R. (2000). The data webhouse toolkit: building the web-enabled
data warehouse. Wiley New York. (Cited on page 41.)

Kirk, T., Levy, A. Y., Sagiv, Y., and Srivastava, D. (1995). The information manifold.
In In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from
Heterogeneous, Distributed Enviroments, pages 85–91. (Cited on page 46.)

Knoblock, C. A., Minton, S., Ambite, J. L., Ashish, N., Muslea, I., Philpot, A., and
Tejada, S. (2001). The ariadne approach to web-based information integration. Int.
J. Cooperative Inf. Syst., 10(1-2):145–169. (Cited on page 46.)

Koch, C. (2004). Query rewriting with symmetric constraints. AI Commun., 17(2):41–
55. (Cited on page 46.)

Kopecký, J., Gomadam, K., and Vitvar, T. (2008). hrests: An html microformat
for describing restful web services. In Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology -
Volume 01, WI-IAT ’08, pages 619–625, Washington, DC, USA. IEEE Computer
Society. (Cited on pages 32, 52 and 185.)

Kopecký, J., Vitvar, T., Bournez, C., and Farrell, J. (2007). Sawsdl: Semantic anno-
tations for wsdl and xml schema. IEEE Internet Computing, 11(6):60–67. (Cited on
pages 32 and 52.)

Kwok, C. T. and Weld, D. S. (1996). Planning to gather information. In In Proceedings
of the AAAI Thirteenth National Conference on Artificial Intelligence, pages 32–39.
(Cited on page 49.)

Lausen, H., Polleres, A., and Roman, D. (2005). Web service modeling ontology
(wsmo). W3C Member Submission, 3. (Cited on page 52.)

Lawyer, J. and Chowdhury, S. (2004). Best practices in data warehousing to support
business initiatives and needs. In HICSS. (Cited on page 142.)

Levy, A. Y. (1999). Logic-based techniques in data integration. (Cited on page 47.)

Bibliography 173

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996a). Query-answering algorithms
for information agents. In Clancey, W. J. and Weld, D. S., editors, AAAI/IAAI,
Vol. 1, pages 40–47. AAAI Press / The MIT Press. (Cited on page 47.)

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996b). Querying heterogeneous infor-
mation sources using source descriptions. In Vijayaraman, T. M., Buchmann, A. P.,
Mohan, C., and Sarda, N. L., editors, VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay),
India, pages 251–262. Morgan Kaufmann. (Cited on page 49.)

Li, C. (2003). Computing complete answers to queries in the presence of limited access
patterns. VLDB J., 12(3):211–227. (Cited on page 50.)

Li, C., Bawa, M., and Ullman, J. D. (2001). Minimizing view sets without losing query-
answering power. In den Bussche, J. V. and Vianu, V., editors, ICDT, volume 1973
of Lecture Notes in Computer Science, pages 99–113. Springer. (Cited on page 48.)

Li, C. and Chang, E. Y. (2000). Query planning with limited source capabilities. In
ICDE, pages 401–412. (Cited on pages 49 and 50.)

Li, C. and Chang, E. Y. (2001a). Answering queries with useful bindings. ACM Trans.
Database Syst., 26(3):313–343. (Cited on page 64.)

Li, C. and Chang, E. Y. (2001b). On answering queries in the presence of limited
access patterns. In ICDT, pages 219–233. (Cited on page 50.)

Li, Y. and Heflin, J. (2010). Using reformulation trees to optimize queries over dis-
tributed heterogeneous sources. In Patel-Schneider, P. F., Pan, Y., Hitzler, P., Mika,
P., Zhang, L., Pan, J. Z., Horrocks, I., and Glimm, B., editors, International Seman-
tic Web Conference (1), volume 6496 of Lecture Notes in Computer Science, pages
502–517. Springer. (Cited on page 50.)

LiquidPlanner (2012). Liquidplanner. http://www.liquidplanner.com. (Cited on
page 184.)

LittleCrowd (2014). Littlecrowd. http://www.littlecrowd.com/. (Cited on page 27.)

Lopes, C. T. and David, G. (2006). Higher education web information system usage
analysis with a data webhouse. In Gavrilova, M. L., Gervasi, O., Kumar, V., Tan,
C. J. K., Taniar, D., Laganà, A., Mun, Y., and Choo, H., editors, ICCSA (4),
volume 3983 of Lecture Notes in Computer Science, pages 78–87. Springer. (Cited
on page 41.)

174 Bibliography

Mailchimp (2012). Mailchimp. http://www.mailchimp.com. (Cited on page 184.)

Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., and Martinez, I. (2010).
Using semantics for automating the authentication of web apis. In Proceedings of
the 9th International Semantic Web Conference on The Semantic Web - Volume Part
I, ISWC’10, pages 534–549, Berlin, Heidelberg. Springer-Verlag. (Cited on page 52.)

Manolescu, I., Florescu, D., and Kossmann, D. (2001). Answering xml queries over
heterogeneous data sources. In Mouaddib, N., editor, BDA. (Cited on page 46.)

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al. (2009). Owl-
s: Semantic markup for web services (2004). Latest version available from:
http://www.ai.sri.com/daml/services/owl-s/1.2. (Cited on page 52.)

Martin, D., Paolucci, M., and Wagner, M. (2007). Bringing semantic annotations to
web services: Owl-s from the sawsdl perspective. In Proceedings of the 6th Interna-
tional The Semantic Web and 2Nd Asian Conference on Asian Semantic Web Con-
ference, ISWC’07/ASWC’07, pages 340–352, Berlin, Heidelberg. Springer-Verlag.
(Cited on page 32.)

McKee, B., Ehnebuske, D., and Rogers, D. (2001). Uddi version 2.0 api specification.
UDDI. org. (Cited on page 42.)

Microformats (2012). Microformats. http://microformats.org/. (Cited on page 52.)

Mignet, L., Abiteboul, S., Ailleret, S., Amann, B., Marian, A., and Preda, M. (2000).
Acquiring xml pages for a webhouse. In Doucet, A., editor, BDA. (Cited on page 39.)

Millstein, T. D., Halevy, A. Y., and Friedman, M. (2003). Query containment for data
integration systems. J. Comput. Syst. Sci., 66(1):20–39. (Cited on page 49.)

Mitra, P. (2001). An algorithm for answering queries efficiently using views. In ADC,
pages 99–106. (Cited on pages 47 and 49.)

Nash, A. and Ludäscher, B. (2004a). Processing first-order queries under limited access
patterns. In PODS, pages 307–318. (Cited on page 50.)

Nash, A. and Ludäscher, B. (2004b). Processing unions of conjunctive queries with
negation under limited access patterns. In Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K., and Ferrari, E., editors,
EDBT, volume 2992 of Lecture Notes in Computer Science, pages 422–440. Springer.
(Cited on page 50.)

Bibliography 175

Oracle Database (2012). Oracle database express edition. http://www.
oracle.com/technetwork/database/database-technologies/express-
edition/index.html. (Cited on page 98.)

Papakonstantinou, Y., Borkar, V. R., Orgiyan, M., Stathatos, K., Suta, L., Vassalos,
V., and Velikhov, P. (2003). Xml queries and algebra in the enosys integration
platform. Data Knowl. Eng., 44(3):299–322. (Cited on page 46.)

Papakonstantinou, Y. and Vassalos, V. (2002). Architecture and implementation of an
xquery-based information integration platform. IEEE Data Eng. Bull., 25(1):18–26.
(Cited on page 46.)

Pérez, J. M., Llavori, R. B., Aramburu, M. J., and Pedersen, T. B. (2008). Integrat-
ing data warehouses with web data: A survey. IEEE Trans. Knowl. Data Eng.,
20(7):940–955. (Cited on page 43.)

Pottinger, R. and Halevy, A. (2001). Minicon: A scalable algorithm for answering
queries using views. The VLDB Journal, 10(2-3):182–198. (Cited on pages 47
and 61.)

Pottinger, R. and Levy, A. Y. (2000). A scalable algorithm for answering queries using
views. In El Abbadi, A., Brodie, M. L., Chakravarthy, S., Dayal, U., Kamel, N.,
Schlageter, G., and Whang, K.-Y., editors, VLDB, pages 484–495. Morgan Kauf-
mann. (Cited on page 47.)

ProgrammableWeb, M. (2012). Apis, and the web as platform. URL: http://www.
programmableweb. com. (Cited on pages 32 and 51.)

Raggett, D., Le Hors, A., Jacobs, I., et al. (1999). Html 4.01 specification. W3C
recommendation, 24. (Cited on page 189.)

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. VLDB J., 10(4):334–350. (Cited on page 47.)

Rajaraman, A., Sagiv, Y., and Ullman, J. D. (1995). Answering queries using templates
with binding patterns (extended abstract). In Proceedings of the fourteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, PODS
’95, pages 105–112. (Cited on pages 49, 64, 101, 111 and 112.)

Rootsystem (2014). Rootsystem. http://www.rootsystem.fr. (Cited on page 27.)

176 Bibliography

Roth, M. T. and Schwarz, P. M. (1997). Don’t scrap it, wrap it! a wrapper architecture
for legacy data sources. In Proceedings of the 23rd International Conference on Very
Large Data Bases, VLDB ’97, pages 266–275, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc. (Cited on pages 22, 42 and 70.)

Salem, R., Boussaïd, O., and Darmont, J. (2013). Active xml-based web data integra-
tion. Information Systems Frontiers, 15(3):371–398. (Cited on page 43.)

Salem, R., Darmont, J., and Boussaïd, O. (2010). Toward active xml data warehousing.
In Ben-Abdallah, H. and Feki, J., editors, EDA, volume B-6 of RNTI, pages 65–79.
Cépaduès. (Cited on page 43.)

Samuel, J. (2014). Towards a data warehouse fed with web services. In Presutti, V.,
d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., and Tordai, A., editors, ESWC,
volume 8465 of Lecture Notes in Computer Science, pages 874–884. Springer. (Cited
on pages 1 and 23.)

Samuel, J. and Rey, C. (2014). Dawes: Data warehouse fed with web services. In
INFORSID. (Cited on pages 1 and 23.)

Samuel, J., Rey, C., Martin, F., and Peyron, L. (2014). Mediation-based web services
fed data warehouse. In Bimonte, S., d’Orazio, L., and Negre, E., editors, EDA,
RNTI. Hermann. (Cited on pages 1 and 23.)

Sheth, A. (2003). Semantic web process lifecycle: role of semantics in annotation,
discovery, composition and orchestration. (Cited on page 52.)

Sheth, A. P., Gomadam, K., and Ranabahu, A. (2008). Semantics enhanced services:
Meteor-s, sawsdl and sa-rest. IEEE Data Eng. Bull., 31(3):8–12. (Cited on page 52.)

Sheth, A. P. and Larson, J. A. (1990). Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.,
22(3):183–236. (Cited on page 44.)

Shkapsky, A., Zeng, K., and Zaniolo, C. (2013). Graph queries in a next-generation
datalog system. PVLDB, 6(12):1258–1261. (Cited on page 159.)

Silberschatz, A., editor (1989). Proceedings of the Eighth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, March 29-31, 1989,
Philadelphia, Pennsylvania, USA. ACM Press. (Cited on pages 170 and 177.)

SQL Developer (2012). Oracle sql developer. http://www.oracle.com/technetwork/
developer-tools/sql-developer/overview/index.html. (Cited on page 98.)

Bibliography 177

Teambox (2012). Teambox. http://www.teambox.com. (Cited on page 184.)

Teamwork (2012). Teamwork. http://www.teamworkpm.net. (Cited on pages 136
and 184.)

Thakkar, S., Ambite, J. L., and Knoblock, C. A. (2004). A data integration approach
to automatically composing and optimizing web services. In In Proceedings of the
ICAPS Workshop on Planning and Scheduling for Web and Grid Services. (Cited on
page 22.)

Thakkar, S., Ambite, J. L., and Knoblock, C. A. (2005). Composing, optimizing, and
executing plans for bioinformatics web services. The VLDB Journal, 14(3):330–353.
(Cited on page 50.)

Thakkar, S., Knoblock, C. A., and Ambite, J. L. (2003). A view integration approach
to dynamic composition of web services. In In Proceedings of 2003 ICAPS Workshop
on Planning for Web Services. (Cited on pages 43, 44 and 45.)

Trujillo, J. and Luján-Mora, S. (2003). A uml based approach for modeling etl processes
in data warehouses. In Song, I.-Y., Liddle, S. W., Ling, T. W., and Scheuermann,
P., editors, ER, volume 2813 of Lecture Notes in Computer Science, pages 307–320.
Springer. (Cited on pages 41 and 60.)

Ubuntu (2012). Ubuntu. http://ubuntu.com/. (Cited on page 98.)

Ullman, J. D. (1989a). Bottom-up beats top-down for datalog. In [Silberschatz, 1989],
pages 140–149. (Cited on page 99.)

Ullman, J. D. (1989b). Principles of Database and Knowledge-Base Systems, Volume
II. Computer Science Press. (Cited on pages 58, 63 and 104.)

Ullman, J. D. (2000). Information integration using logical views. Theor. Comput.
Sci., 239(2):189–210. (Cited on pages 46 and 47.)

Uservoice (2012). Uservoice. http://www.uservoice.com. (Cited on page 184.)

van den Heuvel, W.-J., Weigand, H., and Hiel, M. (2007). Configurable adapters: the
substrate of self-adaptive web services. In Proceedings of the ninth international
conference on Electronic commerce, ICEC ’07, pages 127–134, New York, NY, USA.
ACM. (Cited on page 42.)

178 Bibliography

van der Meyden, R. (1998). Logical approaches to incomplete information: A survey. In
Chomicki, J. and Saake, G., editors, Logics for Databases and Information Systems,
pages 307–356. Kluwer. (Cited on page 47.)

Vardi, M. Y. (1986). Querying logical databases. J. Comput. Syst. Sci., 33(2):142–160.
(Cited on page 47.)

Vassiliadis, P. (2011). A survey of extract-transform-load technology. In Taniar, D.
and Chen, L., editors, Integrations of Data Warehousing, Data Mining and Database
Technologies, pages 171–199. Information Science Reference. (Cited on page 60.)

Vassiliadis, P. and Simitsis, A. (2009). Extraction, transformation, and loading. In Liu,
L. and Özsu, M. T., editors, Encyclopedia of Database Systems, pages 1095–1101.
Springer US. (Cited on page 60.)

Vitvar, T., Kopecký, J., Viskova, J., and Fensel, D. (2008). Wsmo-lite annotations for
web services. In ESWC, pages 674–689. (Cited on page 52.)

Vrdoljak, B., Banek, M., and Rizzi, S. (2003). Designing web warehouses from xml
schemas. In Kambayashi, Y., Mohania, M. K., and Wöß, W., editors, DaWaK,
volume 2737 of Lecture Notes in Computer Science, pages 89–98. Springer. (Cited
on page 41.)

W3C (2001). Web Service Description Language 1.1. (Cited on pages 22, 32, 51
and 185.)

W3C (2004). Web Services Architecture. (Cited on pages 181 and 185.)

W3C (2009). Web Application Description Language. (Cited on page 52.)

Wolf, G., Kalavagattu, A., Khatri, H., Balakrishnan, R., Chokshi, B., Fan, J., Chen,
Y., and Kambhampati, S. (2009). Query processing over incomplete autonomous
databases: query rewriting using learned data dependencies. VLDB J., 18(5):1167–
1190. (Cited on page 49.)

Wrike (2012). Wrike. http://www.wrike.com. (Cited on page 184.)

XSD Generator: FreeFormatter (2012). Xsd generator: Freeformatter. http://www.
freeformatter.com/xsd-generator.html. (Cited on page 93.)

Xyleme, L. (2001). A dynamic warehouse for xml data of the web. IEEE Data Eng.
Bull., 24(2):40–47. (Cited on pages 38, 39 and 43.)

Bibliography 179

Yang, G., Kifer, M., and Chaudhri, V. K. (2006). Efficiently ordering subgoals with
access constraints. In PODS, pages 183–192. (Cited on page 50.)

Yerneni, R., Li, C., Garcia-Molina, H., and Ullman, J. D. (1999). Computing capa-
bilities of mediators. In SIGMOD Conference, pages 443–454. (Cited on pages 49
and 160.)

Yu, L., Huang, W., Wang, S., and Lai, K. K. (2008). Web warehouse - a new web
information fusion tool for web mining. Information Fusion, 9(4):501–511. (Cited
on page 41.)

Zendesk (2012). Zendesk. http://www.zendesk.com. (Cited on page 184.)

Zhou, G., Hull, R., and King, R. (1996). Generating data integration mediators that use
materialization. Journal of Intelligent Information Systems, 6(2-3):199–221. (Cited
on page 40.)

Zhou, G., Hull, R., King, R., and Franchitti, J.-C. (1995). Data integration and
warehousing using h2o. IEEE Data Eng. Bull., 18(2):29–40. (Cited on page 40.)

Zhu, F., Turner, M., Kotsiopoulos, I. A., Bennett, K. H., Russell, M., Budgen, D.,
Brereton, P., Keane, J. A., Layzell, P. J., Rigby, M., and Xu, J. (2004). Dynamic data
integration using web services. In ICWS, pages 262–269. IEEE Computer Society.
(Cited on pages 43, 44 and 45.)

Zoho Projects (2012). Zoho projects. http://www.zoho.com/projects. (Cited on
page 184.)

Zoho Support (2012). Zoho support. http://www.zoho.com/support. (Cited on
page 184.)

Zorrilla, M., Millan, S., and Menasalvas, E. (2005). Data web house to support web
intelligence in e-learning environments. In Granular Computing, 2005 IEEE Inter-
national Conference on, volume 2, pages 722–727. IEEE. (Cited on page 41.)

Zyp, K. et al. (2010). A json media type for describing the structure and meaning of
json documents. draft-zyp-json-schema-02 (work in progress). (Cited on page 53.)

Appendix A

Glossary

Resource: [Fielding, 2000] defines resource R as a temporally varying membership
function MR(t), which for time t maps to a set of entities, or values, which are equiva-
lent. The values in the set may be resource representations and/or resource identifiers.

Web Services: W3C defines a web service [W3C, 2004] as a software system
designed to support interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization in con-
junction with other Web-related standards

Data Warehouse: A data warehouse [Inmon, 1992] is a subject-oriented, inte-
grated, time-varying, non-volatile collection of data in support of the management’s
decision-making process.

Appendix B

Analysis of Web Service API

We considered actual web services from three different business domains for our study.
We found the domain of the analyzed web services explicitly mentioned on their respec-
tive websites. We analyzed these web services on various criteria in order to understand
how much human effort is required to integrate with them.

B.1 Web services Analyzed

The three domains that we considered are project management, email marketing and
support (helpdesk). In order to understand the three domains, we briefly describe them
below

Email Marketing web services: Email marketing is a form of direct market-
ing which uses email as a means of communicating to a wide audience. It is com-
monly used by companies to inform the (subscribed) audience about new products and
newly released features. Companies use this marketing technique to give offers to a
selected group of customers. Email marketing services offer features like creating new
campaigns, managing the list of subscribers, and collecting the campaign statistics.
Campaign statistics include the information like the number of people who opened
the email campaign, the count of people who clicked the campaign or forwarded it to
others, the count of people who marked it as an abuse and also the number of people
who unsubscribed after receiving a campaign.

Project Management web services: An enterprise has a number of projects
that its employees work on. A project has a number of tasks assigned to different

184 Appendix B. Analysis of Web Service API

employees. Every task has an associated status like open, due or closed to respectively
signify whether it is still not complete, it is overdue or it is complete. A project man-
agement service provides features to track the progress of a project and the associated
tasks. It serves many purposes: planning and estimation of a project, resource alloca-
tion, collaboration among team members, tracking the progress, communication and
documentation of all activities,

Support (Helpdesk) web services A helpdesk web service helps customers (in-
tended or current) to raise their complaints and problems regarding various products.
The support (helpdesk) web services help the customers to file their complaints, con-
cerns and suggestions on an online web portal. They also help the companies to track
the progress on how the user request has been responded internally. For this purpose,
every user request has an associated ticket. A ticket gives the complete details of who
made the request, how was the request made (online web portal, social networking
websites, email or phone), who (or which internal team) is acting on it and what is the
due date for the resolution of the problem.

In addition to these, they also provide features like online forums, where the cus-
tomers can find resolutions to the commonly occurring problems.

The names of the web services analyzed and their respective domains are given in
the Table B.1

Table B.1: Web services

Project Management Services
1. Basecamp [Basecamp, 2012]
2. Liquid Planner [LiquidPlanner, 2012]
3. Teambox [Teambox, 2012]
4. Wrike [Wrike, 2012]
5. Zoho Projects [Zoho Projects, 2012]
6. TeamWork [Teamwork, 2012]

Email Marketing Services
7. MailChimp [Mailchimp, 2012]
8. Campaign Monitor [Campaign Monitor, 2012]
9. Constant Contact [ConstantContact, 2012]
10. iContact [iContact, 2012]
11. AWeber [Aweber, 2012]

Support (Helpdesk) Services
12. Zendesk [Zendesk, 2012]
13. Desk [Desk, 2012]
14. Kayako [Kayako, 2012]
15. Zoho Support [Zoho Support, 2012]
16. Uservoice [Uservoice, 2012]
17. FreshDesk [Freshdesk, 2012]

B.2. Criteria of Analysis 185

B.2 Criteria of Analysis

Next we take a look at the API of each of the individual web services mentioned in
the Table B.1 and analyze them on various criteria described in the Table B.2. This
analysis is used to understand how much manual effort is required to integrate with
these web services and what aspects of the web service integration can be generalized.

Table B.2: Web Service API Information Template

1. Category (Domain) of the web services
2. Use of Web Service Description Language
3. Conformance to the REST
4. Support for Versions
5. Authentication Methods
6. Resources Involved
7. Message Formats for Communication
8. Service Level Agreement/ Terms and Conditions of Use
9. Interface Details (Generic details of all the operations)
10. Data Types
11. Dynamic Nature of the Resources
12. Operation Invocation Sequence
13. Pagination

B.2.1 Category (Domain) of web services

By classifying the APIs into various categories based on their functions, it is easier to
compare similar services. For the current set of web services that we have taken into
consideration, their domains are summarized in Table B.1.

B.2.2 Use of Web Service Definition Languages

WSDL (Web Service Definition Language) [W3C, 2001] was proposed to handle au-
tomatic web service integration, web service discovery and web service composition
[W3C, 2004]. But for the current set of web services taken into account, we found
that none of them have exposed any WSDL files. All of them have given their web
service description using HTML in human readable format. Another proposal was to
combine the idea of machine readability and human readability into a single format
called hRESTS, an HTML microformat [Kopecký et al., 2008]. But use of hRESTS is
also missing in the considered web services. We considered the use of machine readable

186 Appendix B. Analysis of Web Service API

standards like WSDL, hRESTS to understand how much of human effort is required
to work with the given web services.

We also took into consideration some other web services other than those mentioned
above and we found that barring few exceptions, none of the web services exposed a
WSDL file describing their interface. Thus we require some manual efforts to transform
the web service API description written in human readable format on the respective
web sites of the web service to any chosen internal format.

B.2.3 Conformance to the REST

REST (Representational State Transfer) [Fielding, 2000] architecture style was pro-
posed for the web services to support automatic integration and avoid tight coupling
between clients and servers. REST [Fielding, 2000] is defined by four interface con-
straints: "identification of resources; manipulation of resources through representations;
self-descriptive messages; and, hypermedia as the engine of application state."

An API may or may not be adherent to the REST architectural style. In most
of the non adherent APIs, hypermedia is not used as a state of application engine or
(and) the messages are not self-descriptive. Both of these features make the client and
the server tightly coupled (thereby losing the REST benefits).

The conformance to REST for the considered web services is summarized in the
table B.3. Note that, our use of the term REST like is based on the current industrial
practice. It has become a common industry practice to declare a web service RESTful
when it is completely adherent to the REST architecture style and REST like when
some principles are not followed.

B.2.4 Support of Versions

Considering the fact that not all web services are REST compliant, we need to consider
how web services evolve from time to time and how they inform this change in their
interfaces to the API users. A common practice among the web service providers is
to allow versions of the API. The major changes between two API versions include
the following: change in message formats (XML, JSON, plain-text, signed content),
change in authentication and authorization mechanisms, operation interface (input,
output or error) changes, deprecation of one or more operations, change in service level

B.2. Criteria of Analysis 187

Table B.3: Web services and their Conformance to REST

Project Management Services
1. Basecamp REST like (Not hypermedia driven)
2. Liquid Planner REST like (Not hypermedia driven)
3. Teambox REST like (Not hypermedia driven)
4. Wrike Not REST
5. Zoho Projects Not REST
6. TeamWork REST like (Not hypermedia driven)

Email Marketing Services
7. MailChimp Not REST
8. Campaign Monitor REST like (Not Hypermedia driven)
9. Constant Contact REST
10. iContact REST like (Not Hypermedia driven)
11. AWeber REST

Support (Helpdesk) Services
12. Zendesk REST like (Not hypermedia driven)
13. Desk Not REST
14. Kayako REST
15. Zoho Support Not REST
16. Uservoice REST like (Not Hypermedia driven)
17. FreshDesk REST like (Not Hypermedia driven)

agreement or terms of conditions of use, resource representation changes, addition of
new resources and addition of one or more operations.

Versioning helps the service providers to release new features and also gives the
developers some time before actually shifting on to the latest version. The service
providers can gradually terminate the older versions when a significant number of
developers or web service clients have migrated to the latest version.

The support for versions including the current versions is summarized in the Ta-
ble B.4. This table also give the reader an idea about the version of the web service API
that we took into consideration. We also show how the service providers differentiates
between two versions of API (eg., in HTTP header, body or URL)

B.2.5 Authentication Methods

Web services need to authenticate and authorize the use of third party users. Var-
ious methods of authentication include: basic HTTP authentication (username and
password) and open authentication standards (OAuth 1.0, OAuth 2.0).

The use of various authentication mechanisms have been summarized in the Ta-
ble B.5. Some require an additional parameter called the key often known as the API

188 Appendix B. Analysis of Web Service API

Table B.4: Web services and the Support for Versions

Project Management Services
1. Basecamp Yes, in URL (Current Version:v1)
2. Liquid Planner Yes, in Header (X-API-Version) (Current Version: 3.0.0)
3. Teambox Yes, in URL (Current Version:1)
4. Wrike Yes, in URL (Current Version:v2)
5. Zoho Projects None
6. TeamWork None

Email Marketing Services
7. MailChimp Yes, in URL (Current Version:1.3)
8. Campaign Monitor Yes, in URL (Current Version:v3)
9. Constant Contact None
10. iContact Yes, in URL (Current Version:2.2)
11. AWeber Yes, in URL (Current Version:1.0)

Support (Helpdesk) Services
12. Zendesk None
13. Desk Yes, in URL (Current Version:v1)
14. Kayako None
15. Zoho Support None
16. Uservoice Yes, in URL (Current Version:v1)
17. FreshDesk None

key for tracking the API usage of the third party users (for pricing purposes).

B.2.6 Resources Involved

In REST, the key abstraction of information is a resource. REST defines a resource
as any information that can be named. Continuing with the examples from the three
domains, examples of resources include daily open tasks, all campaigns, daily campaign
statistics, daily closed tickets, open tickets, all forums, all projects, archived projects
etc.

A static resource refer to the same set of values or entities irrespective of the time.
Examples include new projects, forums or campaigns created on January 24, 2012.
Examples of non-static resources include daily open tasks, daily campaign statistics
since their values vary from time to time.

The primary resources related to project management services are: company, clients,
project, task, user, user generated content like conversations, comments. The primary
resources of a support(helpdesk) service: company, groups, tickets, attachments, users,
tags, forums and comments. A closer look of email marketing services help us to
determine the following primary resources: subscriber, client, campaign and statistics.

B.2. Criteria of Analysis 189

Table B.5: Web services and the Authentication Mechanisms

Project Management Services
1. Basecamp OAuth 2.0
2. Liquid Planner HTTP Basic Authentication (Email and Password)
3. Teambox OAuth 2.0
4. Wrike OAuth 1.0
5. Zoho Projects Basic HTTP Authentication
6. TeamWork HTTP Basic Authentication (API Token and Bogus Text as

password)
Email Marketing Services

7. MailChimp HTTP Basic Authentication: API Key and DC (location of
the server)

8. Campaign Monitor HTTP Basic Authentication
9. Constant Contact OAuth2.0
10. iContact Basic HTTP Authentication (App ID, Sandbox Username,

Password)
11. AWeber OAuth 1.0

Support (Helpdesk) Services
12. Zendesk HTTP basic authentication
13. Desk OAuth 1.0a
14. Kayako Basic HTTP Authentication (API Key, Salt, Signature). Con-

tent must be signed with the Key
15. Zoho Support HTTP Basic Authentication (API Key and Ticket ID)
16. Uservoice OAuth 1.0
17. FreshDesk Basic HTTP Authentication (Username, Password)

APIs are used to get access to these resources through various methods and opera-
tions. The resources that we obtain from various web services are detailed in the Table
B.6.

B.2.7 Message Formats for Communication

Communication between a web service client and a web service provider includes the
request for desired resource (with optional parameters like the resource identifier) by
the client and the web service provider response in the form of a resource representation
or sometimes error (diagnostics) while accessing the requested resource. The commonly
found message formats for the communication include JSON [Crockford, 2006], XML
[Bray et al., 1997], HTML [Raggett et al., 1999]. JavaScript Object Notation (JSON)
is a lightweight, text-based, language-independent data interchange format. It was
derived from the ECMAScript Programming Language Standard. XML (Extensible
Markup Language) is a markup language designed to be both human readable and
machine readable. HTML (HyperText Markup Language) is another markup language
commonly used to create web pages and viewed using the web browser. The use of

190 Appendix B. Analysis of Web Service API

Table B.6: Web services and the Resources

Project Management Services
1. Basecamp Project, Task
2. Liquid Planner Project, Task
3. Teambox Project, Task
4. Wrike Task
5. Zoho Projects Project, Task
6. TeamWork Project, Task

Email Marketing Services
7. MailChimp Campaign, Statistics
8. Campaign Monitor Campaign, Statistics
9. Constant Contact Campaign, Statistics
10. iContact Campaign, Statistics
11. AWeber Campaign, Statistics

Support (Helpdesk) Services
12. Zendesk Forum, Topic, Ticket
13. Desk Ticket
14. Kayako Ticket, Topic
15. Zoho Support Ticket
16. Uservoice Forum, Topic, Ticket
17. FreshDesk Forum, Topic, Ticket

various message formats among the considered web services are summarized in the
Table B.7.

B.2.8 Service Level Agreement/ Terms and Conditions of Use

Every service limits the usage of its API like the number of calls that can be made on a
particular day or a period of time. The terms of a service also determines how certain
information from the service can be used.

The SLA of various web services is described in the Table B.8. This information
is crucial since the number of API calls (a limited resource) must be efficiently used.

B.2.9 Interface Details

Web service API supports multiple operations to access and manipulate the various
resources. They generally use the HTTP [Fielding et al., 1999] protocol for the commu-
nication. Every HTTP request requires a URL(Uniform Resource Location), header,
method and body. The HTTP URL corresponds to the location of the resource. The
HTTP headers are used to specify the content type of the communication, the authen-

B.2. Criteria of Analysis 191

Table B.7: Web services and the Message Formats

Project Management Services
1. Basecamp JSON
2. Liquid Planner JSON
3. Teambox JSON
4. Wrike XML, JSON
5. Zoho Projects XML, JSON
6. TeamWork XML, JSON

Email Marketing Services
7. MailChimp XML, JSON, PHP, Lolcode
8. Campaign Monitor XML, JSON
9. Constant Contact XML
10. iContact XML, JSON
11. AWeber JSON

Support (Helpdesk) Services
12. Zendesk XML, JSON
13. Desk JSON
14. Kayako XML
15. Zoho Support XML, JSON
16. Uservoice XML, JSON
17. FreshDesk XML

tication parameters and also to specify certain client capabilities (whether compression
supported by the clients). HTTP methods include GET, POST, PUT and DELETE
respectively used to get, create, update and delete a resource in the server. There are
other HTTP methods, but the above four are commonly used methods. The HTTP
body contains the request parameters from the client and response from the service
providers.

Therefore when we analyze the operations of a web service, we take into account
the following

1. Operation name
2. Operation request parameters: For every operation request, the following infor-

mation is required
(a) The URL of the resource/operation
(b) HTTP Method
(c) HTTP Headers (example: authentication and content-type)
(d) HTTP Body (other information like the resource identifier)

3. Operation response parameters
4. Operation error parameters

We also made an observation during our study that the use of HTTP methods is

192 Appendix B. Analysis of Web Service API

Table B.8: Web services and the Service Level Agreement

Project Management Services
1. Basecamp 500 requests per 10 second period from the same IP address

for the same account
2. Liquid Planner Each user account may make up to 30 requests per 15 seconds
3. Teambox N.A.
4. Wrike N.A.
5. Zoho Projects Error code:6403 on exceeding the limit
6. TeamWork 120 requests per minute

Email Marketing Services
7. MailChimp Stream Timeout: 300 seconds and Connection Timeout:30

seconds
8. Campaign Monitor N.A.
9. Constant Contact N.A.
10. iContact N.A.
11. AWeber 60 requests per minute

Support (Helpdesk) Services
12. Zendesk Limit Exists (Value not specifically mentioned)
13. Desk 60 requests per minute
14. Kayako N.A.
15. Zoho Support 250 calls per day / Organization (Free)
16. Uservoice N.A.
17. FreshDesk N.A.

not uniform. Take for example, we have observed the use of HTTP POST used to
retrieve or delete a resource. Thus a generic assumption like HTTP GET is used for
resource access cannot be made.

B.2.10 Data Types

Apart from the data types like integers, strings and floating point numerals, we also
considered other data types: resource identifier, date (or time) and enumerated data
types.

Resources are usually identified by their identifiers and this information is usually
present in the resource representation. While extracting this information from various
representation from various web services, we notice that resource identifiers are not
unique across web services. The use of URI (uniform resource identifiers) to identify
the resources is missing. A resource identifier like a ticket identifier from Zendesk is
identical to the ticket identifier from Freshdesk, that is, both Zendesk and Freshdesk
may have the same ticket identifier 1. Thus while considering the tickets from various
web services, one must also take into account the source of the information and not
solely depend on the resource identifiers.

B.2. Criteria of Analysis 193

Various web services use different formats to represent data and time. There is no
particular standard (like ISO 8601) employed across the web services. Web services
use different ways to represent enumerated values. Take for example, 0, 1, 2 are used
to respectively specify the priority of a ticket as low, medium and high.

B.2.11 Dynamic Nature of the Resources

As described before, a resource is a mapping between time and a set of values or
entities. The resources that can be accessed and manipulated by the web service API
operation are usually dynamic in nature. Take for example, Freshdesk has an API
operation to get all the open tickets. Note that this resource open tickets is dynamic
in nature, since a ticket that was in the open state and retrieved yesterday may not
be present if the same API operation is called today since the ticket may have been
resolved during this period.

B.2.12 Operation Invocation Sequence

Certain operation calls cannot be made directly unless we have some additional infor-
mation that must be passed as parameters to the corresponding operation calls. This
additional information is obtained from some other sources or by making a different
operation call of the same (or different) web service API. Thus for accessing some re-
sources, there is an underlying operation invocation sequence (not explicitly mentioned,
sometimes).

Take for example (for the clarity of the reader, we have simplified the situation),
Basecamp has three operation calls

1. Get all projects (It takes no input parameters)
2. Get all Todo lists for a project(It takes as input the project identifier)
3. Get all Todo items of a Todo list (It takes as input the Todo list identifier)

If a client is interested in getting all the todo items, there is no way that the third
operation can be directly called (unless of course, the client somehow knows all the todo
item identifiers). Thus the client needs to make the second call that again requires an
argument, the values for which can only be obtained from the first call. Thus for
accessing or manipulating certain resources, an invocation sequence must be followed.

194 Appendix B. Analysis of Web Service API

B.2.13 Pagination

Pagination is a special case of operation invocation sequence, where the same operation
call must be made multiple times to obtain the complete representation of a resource.
Resource representation sometimes requires a lot of space. In order to reduce the size of
the output response in a single API call, most web services support paginated operation
requests. We observed the use of pagination in web service APIs like Mailchimp and
Zendesk.

B.3 Conclusion

We summarize our analysis with these web services in Tables B.9, B.10 and B.11. In
addition to demonstrating the significant heterogeneity existing among the web service
API (in terms of the use of message formats, service level agreements, data types,
operation and resource handling etc.), the analysis also shows that a lot of service
providers are still using the basic web technologies (HTTP, XML, JSON) to expose
their API to third party users and the use of machine readable web service description
hasn’t still caught up as a common practice in the industry.

B.3. Conclusion 195

Table B.9: Web Service API Analysis on Project Management Services

Web Service Basecamp Liquid
Planner

Teamwork Zoho
Projects

Wrike Teambox

1. API De-
scription

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

2. Confor-
mance to
REST

REST like REST like REST like Not REST Not REST REST like

3. Version v1 3.0.0 N.A. N.A. v2 1
4. Authentica-
tion

Basic
HTTP,
OAuth 2

Basic
HTTP

Basic
HTTP

Basic
HTTP

OAuth 1.0 OAuth 2.0

5. Resources
Involved

Project,Todo
List, Todo

Project,
Task

Project,
Task List,
Task

Project,
Task List,
Task

Task Project,
Task

6. Message
Formats

JSON JSON XML,
JSON

XML,
JSON

XML,
JSON

JSON

7. Service
Level Agree-
ment

Max 500
requests
/10s from
same IP
address
for same
account

Max 30
requests
/15s for
same
account

Max 120
requests
/1min

Error
code:6403
on exceed-
ing the
limit

N.A N.A.

8. HTTP Re-
source Access

GET GET GET POST POST GET

9. Data Types
(dt)

Enumerated
dt
(Project
and Todo
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

Enumerated
dt (Task
Status),
Date

Enumerated
dt
(Project
and Task
Status),
Date

10. Dynamic
nature of the
resources

Yes
(Project
and Todo
Status)

Yes
(Project
and Task
Status)

Yes
(Project
and Task
Status)

Yes(Project
and Task
Status)

Yes (Task
Status)

Yes
(Project
and Task
Status)

11. Operation
Invocation
Sequence
Required

Yes No Yes Yes Yes Yes

12. Pagination No No No Yes Yes No

196 Appendix B. Analysis of Web Service API

Table B.10: Web Service API Analysis on Email Marketing services

Web Service Mailchimp Campaign
Monitor

iContact Constant
Contact

AWeber

1. API De-
scription

HTML page HTML page HTML page HTML page HTML page

2. Confor-
mance to
REST

Not REST REST like REST like REST REST

3. Version 1.3 v3 2.2 N.A. 1.0
4. Authentica-
tion

Basic HTTP Basic
HTTP,
OAuth 2

Basic HTTP
(with Sand-
box)

OAuth 2.0 OAuth 1.0

5. Resources
Involved

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

Campaign,
Campaign
Statistics

6. Message
Formats

XML,
JSON, PHP,
Lolcode

XML, JSON XML, JSON XML JSON

7. Service
Level Agree-
ment

N.A. N.A. 75,000 re-
quests /24h,
with a max
of 10,000
requests /1h

N.A 60 requests
per minute

8. HTTP Re-
source Access

GET GET GET GET GET

9. Data Types
(dt)

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

Enumerated
Data types
(Campaign
Status),
Date

10. Dynamic
nature of the
resources

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

Yes (Cam-
paign Sta-
tus)

11. Operation
Invocation
Sequence
Required

Yes Yes No Yes Yes

12. Pagination Yes No No Yes Yes

B.3. Conclusion 197

Table B.11: Web Service API Analysis on Support/Helpdesk Services

Web Service Zendesk Desk Zoho
Support

Uservoice Freshdesk Kayako

1. API De-
scription

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

HTML
page

2. Confor-
mance to
REST

REST
like

REST Not
REST

REST
like

REST
like

REST

3. Version v1 v2 N.A. v1 N.A. N.A.
4. Authentica-
tion

Basic
HTTP

Basic
HTTP,
OAuth
1.0a

Basic
HTTP

OAuth
1.0

Basic
HTTP

Basic
HTTP

5. Resources
Involved

Forum,
Topic,
Ticket

Case Task Forum,
Topic,
Ticket

Forum,
Topic,
Ticket

Ticket,
Topic

6. Message
Formats

XML,
JSON

JSON XML,
JSON

XML,
JSON

JSON XML

7. Service
Level Agree-
ment

Limit
exists
(but un-
known)

60 re-
quests
per
minute

250 calls
/day /org
(Free)

N.A. N.A. N.A.

8. HTTP Re-
source Access

GET GET GET GET GET GET

9. Data Types
(dt)

Enumerated
dt
(Ticket
Status),
Date

Enumerated
dt (Case
Status),
Date

Enumerated
dt (Task
Status),
Date

Enumerated
dt (Ticket
Status),
Date

Enumerated
dt (Ticket
Status),
Date

Enumerated
dt
(Ticket
Status),
Date

10. Dynamic
resources

Yes
(Ticket
Status)

Yes (Case
Status)

Yes (Task
Status)

Yes
(Ticket
Status)

Yes
(Ticket
Status)

Yes
(Ticket
Status)

11. Operation
Invocation
Sequence
Required

Yes Yes Yes Yes Yes Yes

12. Pagination Yes Yes Yes Yes No Yes

Appendix C

DaWeS: Examples

In this chapter, we will see what are the steps involved when a new web service has to be
added, how to formulate a query over the global schema and how to define performance
indicator queries.

C.1 Global Schema

We present here the global schema relations and the corresponding attributes identified
during our analysis of the three domains: project management, email marketing and
support(helpdesk). The detailed description of the relations and their attributes are
given in the Table C.1

Table C.1: Global Schema Relations an their attributes

Project Management Services

Project

pid Project Identifier
src Source

pname Project Name
pcdate Project Creation Date
pstatus Project Status

Task List
pid Project Identifier
src Source
tlid Task List Identifier

Task

tlid Task List Identifier
tid Task Identifier

200 Appendix C. DaWeS: Examples

src Source
tname Task Name
tcdate Task Creation Date
tddate Task Due Date

tcmpdate Task Completion Date
tstatus Task Status

Email Marketing Services

Client
clid Client Identifier
src Source

Campaign

cmid Campaign Identifier
src Source

cmname Campaign Name
cmcdate Campaign Creation Date
cmstatus Campaign Status

Campaign Statistics

cmid Campaign Identifier
src Source

cmar Campaign Abuse Reports
cmctr Campaign Click-through Reports
cmbr Campaign block Reports
cmfr Campaign forward Reports

Support (Helpdesk) Services

Forum Category
fcid Forum Category Identifier
src Source

fcname Forum Category Name

Forum

fid Forum Identifier
src Source

fname Forum Name
fcdate Forum Creation Date

Topic

tpid Topic Identifier
src Source

tpname Topic Name
fid Forum Identifier

tpcate Topic Creation Date

Ticket

tkid Ticket Identifier
src Source

tkname Ticket Name
tkcdate Ticket Creation Date
tkddate Ticket Updation Date

tkcmpdate Ticket Completion Date
tkpriority Ticket Priority

C.1. Global Schema 201

tkstatus Ticket Status
Miscellaneous

Page

pgno Page Number
src Source

operation Web service operation
Limit Page Limit

Next Page
pglink Page Link

src Source
operation Web service operation

Next we need to specify data constraints on the global schema relations. Consid-
ering the fact that the Inverse rules algorithm can support full and functional depen-
dencies, we make use of this to support the functional dependenices, especially the key
dependencies. For every global schema relation, we specify its respective primary key
as given in Table C.2.

Table C.2: Primary Key for Global Schema Relations

S.No. Global Schema Relation Key
1. Project(pid, src, pname, pcdate, pstatus) pid,src
2. TaskList(pid, src, tlid) tlid,src
3. Task(tlid, tid, src, tname, tcdate, tddate, tcmpdate, tstatus) tid,src
4. Campaign(cmid, src, cmname, cmcdate, cmstatus) cmid,src
5. Client(clid,src)
6. CampaignStatistics(cmid, src, cmar, cmctr, cmfr, cmbr) cmid,src
7. Forum(fid, src, fname, fcdate) fid,src
8. ForumCategory(fcid, src, fcname) fcid,src
9. Topic(tpid, src, tpname, tpcdate, fid) tpid,src
10. Ticket(tkid, src, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus) tkid,src
11. Page(pgno, src, operation, limit)
12. NextPage(pglink, src, operation)

Example C.1.1. To specify the primary keys of the global schema relation Forum,
we make use of the EQUAL predicate of IRIS. To specify following two functional
dependencies in global schema relation Forum:

202 Appendix C. DaWeS: Examples

Forum : fid, src → fname

Forum : fid, src → fcdate,

we specify it in the following manner:

E(?fname1,?fname2):-Forum(?fid1, ?src1, ?fname1, ?fcdate1),
Forum(?fid2, ?src2, ?fname2, ?fcdate2),
EQUAL(?fid1,?fid2),EQUAL(?src1,?src2).

E(?fcdate1,?fcdate2):-Forum(?fid1, ?src1, ?fname1, ?fcdate1),
Forum(?fid2, ?src2, ?fname2, ?fcdate2),
EQUAL(?fid1,?fid2),EQUAL(?src1,?src2).

�

C.2 Web Service API Operations

We use the local schema relations mentioned in the Table C.3. For every web service
API operation considered for testing, we present its Local as View Mapping, the XSD
schema and XSLT transformation. Note that in the examples below, the lines between
<xsl:for-each select· · · > and </xsl:for-each> must be written in a single line. For
the reasons of readability and clarity, we have put them on separate lines. We also
specify the attributes of every local schema relation along with its access pattern. We
use f for the free(output) attributes corresponding to the response of a web service
API operation and b for the bound(input) attributes corresponding to the request
parameters.

1. CampaignMonitorv3SentCampaign:This web service API operation takes
as input the concerned client identifier(clid), the possible values of which are
obtained from the web service operation C.4. The response consists of all the
sent campaigns. We are interested in the campaign identifiers cmid and campaign
names cmname.

(a) LAVMapping:
CampaignMonitorv3SentCampaignbff (clid, cmid, cmname) ←

Client(clid,′ CampaignMonitor v3 API′),

Campaign(cmid,′ CampaignMonitor v3 API′, cmname, cmcdate,′ Sent′).

(C.1)

(b) XSD Schema: As discussed in the LAV Mapping C.1 above, we are inter-
ested in the following elements (XPath given) from the response schema

C.2. Web Service API Operations 203

Table C.3: Local Schema Relations

S.No. Local Schema Relation
1. CampaignMonitorv3SentCampaign

2. CampaignMonitorv3ScheduledCampaign

3. CampaignMonitorv3DraftCampaign

4. CampaignMonitorv3Client

5. CampaignMonitorv3CampaignStatistics

6. IContactv2_2Campaign

7. Mailchimpv1_3TotalCampaign

8. Mailchimpv1_3Campaign

9. Mailchimpv1_3CampaignStatistics

10. Basecampv1Projects

11. Basecampv1TodoLists

12. Basecampv1Tasks

13. Basecampv1CompletedTasks

14. LiquidP lannerv3_0_0Projects

15. LiquidP lannerv3_0_0Tasks

16. TeamworkpmProjects

17. TeamworkpmTodoLists

18. TeamworkpmTasks

19. ZohoProjectsProjects

20. FreshdeskForum

21. FreshdeskTopic

22. FreshdeskForumCategory

23. FreshdeskT icket

24. Uservoicev1Ticket

25. Uservoicev1TotalT ickets

26. Zendeskv2Forum

27. Zendeskv2Topic

28. Zendeskv2Ticket

29. Zendeskv2SolvedT icket

30. Zendeskv2TicketDetails

31. ZohoSupportTask

32. Deskv2Topic

33. Deskv2TotalTopics

34. Deskv2TotalCases

35. Deskv2Case

204 Appendix C. DaWeS: Examples

i. Campaign identifier (Campaigns/Campaign/CampaignID)
ii. Campaign name (Campaigns/Campaign/Name).

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Campaigns">
<xs:complexType>

<xs:sequence>
<xs:element name="Campaign" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="CampaignID">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We only extract CampaignID and Name from the operation re-
sponse as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="Campaigns/Campaign">
<xsl:value-of select="CampaignID"/>,
<xsl:value-of select="Name"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

C.2. Web Service API Operations 205

2. CampaignMonitorv3ScheduledCampaign: This web service operation takes
as input the concerned client identifier(clid), the possible values of which are ob-
tained from the web service operation C.4. The response consists of all the sched-
uled campaigns. We are interested in the campaign identifiers cmid, campaign
names cmname and campaign creation dates cmdate.

(a) LAV Mapping:
CampaignMonitorv3ScheduledCampaignbfff (clid, cmid, cmname, cmdate) ←

Client(clid,′ CampaignMonitor v3 API′),

Campaign(cmid,′ CampaignMonitor v3 API′, cmname, cmdate,′ Scheduled′).

(C.2)

(b) XSD: As discussed in the LAV Mapping C.2, we are interested in the fol-
lowing elements (XPath) from the response schema

i. Campaign identifier ScheduledCampaigns/Campaign/CampaignID

ii. Campaign name ScheduledCampaigns/Campaign/Name.
iii. Campaign Creation Date ScheduledCampaigns/Campaign/DateCreated.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ScheduledCampaigns">
<xs:complexType>

<xs:sequence>
<xs:element name="Campaign" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="CampaignID">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="DateCreated">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

206 Appendix C. DaWeS: Examples

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We only extract CampaignID, Name and DateCreated from the
operation response as shown below. Note how we extract only the first ten
characters of DateCreated which corresponds to YYYY-MM-DD (date in
year-month-day format).
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>

<xsl:template match="/">
<xsl:for-each select="ScheduledCampaigns/Campaign">

<xsl:value-of select="CampaignID"/>,
<xsl:value-of select="Name"/>,
<xsl:value-of select="fn:substring(current()/DateCreated,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

3. CampaignMonitorv3DraftCampaign: This web service operation takes as
input the concerned client identifier(clid), the possible values of which are ob-
tained from the web service operation C.4. The response consists of all the draft
campaigns. We are interested in the campaign identifiers cmid, campaign names
cmname and campaign creation dates cmdate.

(a) LAV Mapping:
CampaignMonitorv3DraftCampaignbfff (clid, cmid, cmname, cmdate) ←

Client(clid,′ CampaignMonitor v3 API′),

Campaign(cmid,′ CampaignMonitor v3 API′, cmname, cmdate,′ Draft′).

(C.3)

(b) XSD: As discussed in the LAV Mapping C.3, we are interested in the fol-
lowing elements (along with their XPath) from the response schema

i. Campaign identifier Drafts/Campaign/CampaignID

ii. Campaign name Drafts/Campaign/Name.
iii. Campaign Creation Date Drafts/Campaign/DateCreated.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Drafts">

C.2. Web Service API Operations 207

<xs:complexType>
<xs:sequence>

<xs:element name="Campaign" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="CampaignID">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="DateCreated">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We only extract CampaignID, Name and DateCreated from the
operation response as shown below. Note how we extract only the first ten
characters of DateCreated which corresponds to YYYY-MM-DD (date in
year-month-day format).
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

208 Appendix C. DaWeS: Examples

<xsl:for-each select="Drafts/Campaign">
<xsl:value-of select="CampaignID"/>,
<xsl:value-of select="Name"/>,
<xsl:value-of select="fn:substring(current()/DateCreated,1,10)"/>

<xsl:text>
</xsl:text>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

4. CampaignMonitorv3Client: This web service API operation takes no input
and as output gives all the client identifiers.

(a) LAV Mapping:
CampaignMonitorv3Clientf (clid) ←

Client(clid,′ CampaignMonitor v3 API′).
(C.4)

(b) XSD: As discussed in the LAV Mapping C.4, we are interested in the fol-
lowing elements (along with their XPath) from the response schema

i. Client identifier Clients/Client/CampaignID

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Clients">
<xs:complexType>

<xs:sequence>
<xs:element name="Client" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="ClientID">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We only extract ClientID from the operation response as shown
below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

C.2. Web Service API Operations 209

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="Clients/Client">
<xsl:value-of select="ClientID"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

5. CampaignMonitorv3CampaignStatistics: This web service API operation
takes as input the campaign identifier cmid, the values of which are obtained
from the various operations C.3, C.2 and C.1. The response include the detailed
statistics corresponding to every campaign identified by its identifier. It includes
the abuse rate cmar, click rate cmctr, forward rate cmfr and bounce rate cmbr.

(a) LAV Mapping:
CampaignMonitorv3CampaignStatisticsbffff (cmid, cmar, cmctr, cmfr, cmbr) ←

Campaign(cmid,′ CampaignMonitor v3 API′, cmname, cmcdate, cmstatus),

CampaignStatistics(cmid,′ CampaignMonitor v3 API′, cmar, cmctr, cmfr, cmbr).

(C.5)

(b) XSD: As discussed in the LAV Mapping C.5, we are interested in the fol-
lowing elements (along with their XPath) from the response schema

i. Bounced count (Summary/Bounced)
ii. Clicks count (Summary/Clicks)

iii. Forwards count (Summary/F orwards)
iv. SpamComplaints count (Summary/SpamComplaints)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Summary">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="Bounced">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:integer">
<xs:attribute name="type" type="xs:string">

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="Clicks">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:integer">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Forwards">

210 Appendix C. DaWeS: Examples

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:integer">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="SpamComplaints">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:integer">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We only extract SpamComplaints, Clicks, Forwards and Bounces

from the operation response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="Summary">
<xsl:value-of select="SpamComplaints"/>,
<xsl:value-of select="Clicks"/>,
<xsl:value-of select="Forwards"/>,
<xsl:value-of select="Bounced"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

6. IContactv2_2Campaign: This web service API operation of IContact takes
no input and gives all the campaigns. The response includes the identifier cmid,
name cmname and the status cmstatus of all the campaigns.
(a) LAV Mapping:

IContactv2_2Campaignfff (cmid, cmname, cmstatus) ←
Campaign(cmid,′ IContact v2.2 API′, cmname, cmcdate, cmstatus).

(C.6)

(b) XSD: As discussed in the LAV Mapping C.6, we are interested in the fol-
lowing elements (XPath) from the response schema

C.2. Web Service API Operations 211

i. Campaign identifier response/campaigns/campaign/campaignId

ii. Campaign name response/campaigns/campaign/name.
iii. Campaign status response/campaigns/campaign/archiveByDefault.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="response">
<xs:complexType>

<xs:sequence>
<xs:element name="campaigns">

<xs:complexType>
<xs:sequence>

<xs:element name="campaign" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="campaignId">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="archiveByDefault">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

212 Appendix C. DaWeS: Examples

(c) XSLT: We only extract campaignId, name and archiveByDefault from
the operation response as shown below. Note how we transform the value
of the archiveByDefault to our internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="response/campaigns/campaign">
<xsl:value-of select="campaignId"/>,
<xsl:value-of select="name"/>,
<xsl:if test="archiveByDefault = ’0’">Active</xsl:if>
<xsl:if test="archiveByDefault =’1’">Archived</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

7. Mailchimpv1_3TotalCampaign: This web service API operation of Mailchimp
takes no input and gives the total number of campaigns. In order to support the
pagination, our internal transformation makes sure that the count of campaigns
is changed to (page number, page size) combination.

(a) LAV Mapping:
Mailchimpv1_3T otalCampaignff (pgno, pgsize) ←

P age(pgno,′ MailChimp v1.3 API′,′ Mailchimpv1_3Campaign′, pgsize).
(C.7)

(b) XSD: Consider the web service operation defined using the LAVMapping C.7.
We are interested in the following information

i. Total Campaigns Count (MCAP I/total)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MCAPI">
<xs:complexType>

<xs:all>
<xs:element name="total">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>

C.2. Web Service API Operations 213

</xs:element>
</xs:schema>

(c) XSLT: Note how we transform the total number of entries to page number,
entries per page combination. Refer our discussion in section C.2.1. We
have set the default entries per page as 2.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>

<xsl:template name="for-loop">
<xsl:param name="total" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="page" select="1"/>
<xsl:if test="$total > 0">

<xsl:value-of select="$page"/>,
<xsl:value-of select="$increment"/>
<xsl:text>
</xsl:text>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total - $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="page" select="$page+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template match="/">

<xsl:variable name="default">2</xsl:variable>
<xsl:variable name="page">

<xsl:copy-of select="$default"/>
</xsl:variable>
<xsl:variable name="total">

<xsl:value-of select="MCAPI/total"/>
</xsl:variable>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total"/>
<xsl:with-param name="increment" select="$default"/>
<xsl:with-param name="page" select="0"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

8. Mailchimpv1_3Campaign: This operation takes as input (page number, page
size) combination and gives the details of all the campaigns. The list of (page
number, page size) combination is obtained from the operation considered in
the LAV mapping C.7. The outputs include the campaign identifier cmid, name
cmname, creation date cmcdate and status cmstatus.

(a) LAV Mapping:

214 Appendix C. DaWeS: Examples

Mailchimpv1_3Campaignbbffff (pgno, pgsize, cmid, cmname, cmcdate, cmstatus) ←
P age(pgno,′ MailChimp v1.3 API′, ’Mailchimpv1_3Campaign′, pgsize),

Campaign(cmid,′ MailChimp v1.3 API′, cmname, cmcdate, cmstatus).

(C.8)

(b) XSD: Consider the web service operation defined using the LAVMapping C.8.
We are interested in the following elements (XPath)

i. Campaign identifier MCAP I/data/struct/id

ii. Campaign name MCAP I/data/struct/title.
iii. Campaign Creation date MCAP I/data/struct/create_time.
iv. Campaign status MCAP I/data/struct/status.

Note how we created a new data type campaignStatus to validate the al-
lowed values of the campaign status.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="campaignStatus">
<xs:restriction base="xs:string">

<xs:enumeration value="sent"/>
<xs:enumeration value="save"/>
<xs:enumeration value="paused"/>
<xs:enumeration value="schedule"/>
<xs:enumeration value="sending"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="MCAPI">

<xs:complexType>
<xs:all>

<xs:any maxOccurs="unbounded" processContents="lax"/>
<xs:element name="data">

<xs:complexType>
<xs:sequence>

<xs:element name="struct" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="title">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

C.2. Web Service API Operations 215

<xs:element name="create_time">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="status">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="campaignStatus">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>
<xs:attribute type="xs:string" name="key"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, title, create_time and status

from the operation response as shown below. Note how we transform the
campaign status to our desired internal format using various if conditions.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="MCAPI/data/struct">
<xsl:value-of select="id"/>,
<xsl:value-of select="title"/>,
<xsl:value-of select="fn:substring(current()/create_time,1,10)"/>,
<xsl:if test="status =’sent’">Sent</xsl:if>
<xsl:if test="status =’save’">Scheduled</xsl:if>
<xsl:if test="status =’paused’">Scheduled</xsl:if>
<xsl:if test="status =’sending’">Sent</xsl:if>
<xsl:text>
</xsl:text>

216 Appendix C. DaWeS: Examples

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

9. Mailchimpv1_3CampaignStatistics: This operation takes as input the cam-
paign identifier and gives the campaign statistics: campaign abuse count cmar,
click count cmctr, forward count cmfr and bounce count cmbr.

(a) LAV Mapping:
Mailchimpv1_3CampaignStatisticsbffff (cmid, cmar, cmctr, cmfr, cmbr) ←

Campaign(cmid,′ MailChimp v1.3 API′, cmname, cmcdate, cmstatus),

CampaignStatistics(cmid,′ MailChimp v1. 3 API′, cmar, cmctr, cmfr, cmbr).

(C.9)

(b) XSD: Consider the web service operation defined using the LAVMapping C.9.
We are interested in the following elements (XPath)

i. Campaign Abuse Reports MCAP I/abuse_reports

ii. Campaign Click Count MCAP I/clicks.
iii. Campaign Forwards Count MCAP I/forwards.
iv. Campaign Hard Bounces MCAP I/hard_bounces.
v. Campaign Soft Bounces MCAP I/soft_bounces.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MCAPI">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="abuse_reports">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:double">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="clicks">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:double">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="forwards">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:double">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

C.2. Web Service API Operations 217

</xs:complexType>
</xs:element>
<xs:element name="hard_bounces">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:double">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="soft_bounces">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:double">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the abuse_reports, clicks, forwards,
soft_bounces and hard_bounces from the operation response as shown be-
low. Note how we sum up the count of soft bounces and hard bounces to
get the desired bounce count.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="MCAPI">
<xsl:value-of select="abuse_reports"/>,
<xsl:value-of select="clicks"/>,
<xsl:value-of select="forwards"/>,
<xsl:value-of select="soft_bounces+hard_bounces"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

10. Basecampv1Projects: This operation gives the details of all the projects:
project identifier pid, name pname, status pstatus and creation date pcdate.

(a) LAV Mapping:

218 Appendix C. DaWeS: Examples

Basecampv1P rojectsffff (pid, pname, pstatus, pcdate) ←
P roject(pid,′ Basecamp API′, pname, pcdate, pstatus).

(C.10)

(b) XSD: Consider the web service operation defined using the LAVMapping C.10.
We are interested in the following elements (XPath)

i. Project identifier json/array/id

ii. Project name json/array/name.
iii. Project Creation date json/array/created_at.
iv. Project status json/array/archived.

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>
<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="archived">

<xs:complexType>
<xs:simpleContent>

C.2. Web Service API Operations 219

<xs:extension base="xs:boolean">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the id, name, created_at and archived

from the operation response as shown below. Note how we tranform the
boolean archived to the desired internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/array">
<xsl:value-of select="id"/>,

<xsl:value-of select="name"/>,
<xsl:if test="archived = ’false’">Active</xsl:if>
<xsl:if test="archived =’true’">Archived</xsl:if>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

11. Basecampv1TodoLists: This operation takes as input the project identifiers
pid and gives the todo list identifiers tid present in the corresponding project
identified by the project identifier.

(a) LAV Mapping:
Basecampv1T odoListsbf (pid, tlid) ←

T askList(pid,′ Basecamp API′, tlid).
(C.11)

(b) XSD: Consider the web service operation defined using the LAVMapping C.11.
We are interested in the following element (XPath)

i. Todo List identifier json/array/id

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element

220 Appendix C. DaWeS: Examples

is json.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the id from the operation response
as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/array">
<xsl:value-of select="id"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

12. Basecampv1Tasks: This operation takes as input the project identifier pid and
todo list identifier tlid and gives as output the tasks present in the given todolist.
It gives the following details like task identifer tid, name tname, status tstatus

and creation date tcdate.

(a) LAV Mapping:

C.2. Web Service API Operations 221

Basecampv1T asksbbffff (pid, tlid, tid, tname, tstatus, tcdate) ←
T askList(pid,′ Basecamp API′, tlid),

T ask(tlid, tid,′ Basecamp API′, tname, tcdate, tddate, tcmpdate, tstatus).

(C.12)

(b) XSD: Consider the web service operation defined using the LAVMapping C.12.
We are interested in the following elements (XPath)

i. Taskidentifier (json/todos/remaining/array/id)
ii. Task name (json/todos/remaining/array/content).

iii. Task Creation date (json/todos/remaining/array/created_at).
iv. Task status (json/todos/remaining/array/completed).

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="todos" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="remaining" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="content">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

222 Appendix C. DaWeS: Examples

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="completed">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:boolean">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, content, created_at and
completed from the operation response as shown below. Note how we trans-
form the boolean completed to our desired internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/todos/remaining/array">
<xsl:value-of select="id"/>,
<xsl:value-of select="content"/>,
<xsl:if test="completed = ’false’">Open</xsl:if>
<xsl:if test="completed =’true’">Completed</xsl:if>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

C.2. Web Service API Operations 223

13. Basecampv1CompletedTasks: This operation takes as input the project iden-
tifier pid and todo list identifier tlid and gives as output the completed tasks
present in the given todolist. It gives the following details like task identifer tid,
name tname, status tstatus and creation date tcdate.

(a) LAV Mapping:
Basecampv1CompletedT asksbbffff (pid, tlid, tid, tname, tcdate, tcmpdate) ←

T askList(pid,′ Basecamp API′, tlid),

T ask(tlid, tid,′ Basecamp API′, tname, tcdate, tddate, tcmpdate,′ Completed′).

(C.13)

(b) XSD: Consider the web service operation defined using the LAVMapping C.13.
We are interested in the following elements (XPath)

i. Task identifier (json/todos/completed/array/id)
ii. Task name (json/todos/completed/array/content)

iii. Task Creation date (json/todos/completed/array/created_at)
iv. Task Completion date (json/todos/completed/array/completed_at)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="todos" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="completed" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="content">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

224 Appendix C. DaWeS: Examples

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="completed_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, content, created_at and
completed_at from the operation response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/todos/completed/array">
<xsl:value-of select="id"/>,
<xsl:value-of select="content"/>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>,
<xsl:value-of select="fn:substring(current()/completed_at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

C.2. Web Service API Operations 225

14. LiquidPlannerv3_0_0Projects: This operation gives the details of all the
projects: project identifier pid, name pname, status pstatus and creation date
pcdate.

(a) LAV Mapping:
LiquidP lannerv3_0_0P rojectsffff (pid, pname, pstatus, pcdate) ←

P roject(pid,′ LiquidPlanner API′, pname, pcdate, pstatus).
(C.14)

(b) XSD: Consider the web service operation defined using the LAVMapping C.14.
We are interested in the following elements (XPath)

i. Project identifier (json/array/id)
ii. Project name (json/array/name)

iii. Project Creation date (json/array/created_at)
iv. Project status (json/array/is_on_hold)

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="class" type="xs:string"/>

</xs:extension>

226 Appendix C. DaWeS: Examples

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="is_on_hold">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:boolean">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the id, name, created_at and is_on_hold

from the operation response as shown below. Note how we tranform the
boolean is_on_hold to our desired internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/array">
<xsl:value-of select="id"/>,
<xsl:value-of select="name"/>,
<xsl:if test="is_on_hold = ’false’">Active</xsl:if>
<xsl:if test="is_on_hold =’true’">OnHold</xsl:if>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

15. LiquidPlannerv3_0_0Tasks: This operation gives the details of all the tasks:
task identifier tid, name tname, project identifier pid, status tstatus, creation
date tcdate and due date tddate.

(a) LAV Mapping:
LiquidP lannerv3_0_0T asksffffff (tid, tname, pid, tstatus, tcdate, tddate) ←

P roject(pid,′ LiquidPlanner API′, pname, pcdate, pstatus),

T askList(pid,′ LiquidPlanner API′, tlid),

T ask(tlid, tid,′ LiquidPlanner API′, tname, tcdate, tddate, tcmpdate, tstatus).

(C.15)

C.2. Web Service API Operations 227

(b) XSD: Consider the web service operation defined using the LAVMapping C.15.
We are interested in the following elements (XPath)

i. Task identifier (json/array/id)
ii. Task name (json/array/name)

iii. Task Project identifier (json/array/project_id)
iv. Task status (json/array/is_done)
v. Task Creation date (json/array/created_at)

vi. Task Due date (json/array/expected_finish)

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="class" type="xs:string"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="expected_finish">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string"/>

228 Appendix C. DaWeS: Examples

<xs:attribute name="class" type="xs:string"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="done_on">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="class" type="xs:string"/>
<xs:attribute name="null" type="xs:string"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="is_done">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:boolean">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the id, name, project_id, is_done

created_at and expectedf inish from the operation response as shown below.
Note the transformation on the boolean is_done to our desired internal
format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/array">
<xsl:value-of select="id"/>,
<xsl:value-of select="name"/>,
<xsl:value-of select="project_id"/>,
<xsl:if test="is_done = ’false’">Open</xsl:if>
<xsl:if test="is_done =’true’">Completed</xsl:if>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>,
<xsl:value-of select="fn:substring(current()/expected_finish,1,10)"/>

C.2. Web Service API Operations 229

<xsl:text>
</xsl:text>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

16. TeamworkpmProjects: This operation gives the details of all the projects:
project identifier pid, name pname, status pstatus and creation date pcdate.

(a) LAV Mapping:
T eamworkpmP rojectAP Iffff (pid, pname, pstatus, pcdate) ←

P roject(pid,′ Teamworkpm API′, pname, pcdate, pstatus).
(C.16)

(b) XSD: Consider the web service operation defined using the LAVMapping C.16.
We are interested in the following elements (XPath)

i. Project identifier (projects/project/id)
ii. Project name (projects/project/name)

iii. Project status (projects/project/status)
iv. Project Creation date (projects/project/created-on)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="projectStatus">
<xs:restriction base="xs:string">

<xs:enumeration value="active"/>
<xs:enumeration value="on-hold"/>
<xs:enumeration value="archived"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="projects">

<xs:complexType>
<xs:sequence>

<xs:element name="project" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created-on">

230 Appendix C. DaWeS: Examples

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="status">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="projectStatus">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id,name, created-on and status

from the operation response as shown below. Note how we perform the case
change on the status.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="projects/project">
<xsl:value-of select="id"/>,
<xsl:value-of select="name"/>,
<xsl:if test="status = ’active’">Active</xsl:if>
<xsl:if test="status =’archived’">Archived</xsl:if>,
<xsl:value-of select="fn:substring(current()/created-on,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

17. TeamworkpmTodoLists: This operation takes as input the project identifiers
pid and gives the todo list identifiers tid present in the corresponding project
identified by the project identifier.

C.2. Web Service API Operations 231

(a) LAV Mapping:

T eamworkpmT odoListsbf (pid, tlid) ←
P roject(pid,′ Teamworkpm API′, pname, pcdate, pstatus),

T askList(pid,′ Teamworkpm API′, tlid).

(C.17)

(b) XSD: Consider the web service operation defined using the LAVMapping C.17.
We are interested in the following element (XPath)

i. Todo List identifier todo-lists/todo-list/id

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="todo-lists">
<xs:complexType>

<xs:sequence>
<xs:element name="todo-list" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id from the operation response
as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="todo-lists/todo-list">
<xsl:value-of select="id"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

232 Appendix C. DaWeS: Examples

18. TeamworkpmTasks: This operation takes as input the todo list identifier tlid

and gives as output the tasks present in the given todolist. It gives the following
details like task identifertid, name tname, project identifier pid, status tstatus,
creation date tcdate and task due date tddate.

(a) LAV Mapping:
T eamworkpmT asksbffffff (tlid, tid, tname, pid, tstatus, tcdate, tddate) ←

P roject(pid,′ Teamworkpm API′, pname, pcdate, pstatus),

T askList(pid,′ Teamworkpm API′, tlid),

T ask(tlid, tid,′ Teamworkpm API′, tname, tcdate, tddate, tcmpdate, tstatus).

(C.18)

(b) XSD: Consider the web service operation defined using the LAVMapping C.18.
We are interested in the following elements (XPath)

i. Task identifier (todo-items/todo-item/id)
ii. Task name (todo-items/todo-item/content)

iii. Task Project identifier (todo-items/todo-item/project-id)
iv. Task status (todo-items/todo-item/completed)
v. Task Creation date (todo-items/todo-item/start-date)

vi. Task Due date (todo-items/todo-item/due-date)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="todo-items">
<xs:complexType>

<xs:sequence>
<xs:element name="todo-item" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="project-id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="content">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">

C.2. Web Service API Operations 233

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="start-date">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="due-date">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="completed">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:boolean">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, content, project-id, completed,
start-date and due-date from the operation response as shown below. Note
the transformation on the boolean completed. Also note how we transform
the two dates (start-date and due-date) to a desired YYYY-MM-DD format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>

234 Appendix C. DaWeS: Examples

<xsl:template match="/">
<xsl:for-each select="todo-items/todo-item">

<xsl:value-of select="id"/>,
<xsl:value-of select="content"/>,
<xsl:value-of select="project-id"/>,
<xsl:if test="completed = ’false’">Open</xsl:if>
<xsl:if test="completed =’true’">Completed</xsl:if>,
<xsl:value-of select="concat(fn:substring(current()/start-date,1,4),

concat(concat(’-’, fn:substring(current()/start-date,5,2)),
concat(’-’,fn:substring(current()/start-date,7,2))))"/>,

<xsl:value-of select="concat(fn:substring(current()/due-date,1,4),
concat(concat(’-’, fn:substring(current()/due-date,5,2)),
concat(’-’,fn:substring(current()/due-date,7,2))))"/>

<xsl:text>
</xsl:text>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

19. ZohoProjectsProjects: This operation gives the details of all the projects:
project identifier pid, name pname, status pstatus and creation date pcdate.

(a) LAV Mapping:
ZohoP rojectsP rojectsffff (pid, pname, pstatus, pcdate) ←

P roject(pid,′ ZohoProjects API′, pname, pcdate, pstatus).
(C.19)

(b) XSD: Consider the web service operation defined using the LAVMapping C.19.
We are interested in the following elements (XPath)

i. Project identifier (response/result/P rojectDetails/P rojectDetail/project_id)
ii. Project name (response/result/P rojectDetails/P rojectDetail/project_name)

iii. Project status (response/result/P rojectDetails/P rojectDetail/project_status)
iv. Project Creation date (response/result/P rojectDetails/P rojectDetail/proj_created)

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/X
<xs:element name="response">

<xs:complexType>
<xs:sequence>

<xs:element name="result">
<xs:complexType>

<xs:sequence>
<xs:element name="ProjectDetails">

<xs:complexType>
<xs:sequence>

<xs:element name="ProjectDetail" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all>
<xs:element type="xs:string" name="project_id"/>
<xs:element type="xs:string" name="project_name"/>
<xs:element type="xs:string" name="project_status"/>
<xs:element type="xs:string" name="proj_created"/>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

C.2. Web Service API Operations 235

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element type="xs:string" name="uri"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the project_id, project_name,
project_created and project_status from the operation response as shown
below. Note the transformation on the boolean project_status to convert to
an internal format. Also note the tranformation on the date project_created

to YYYY-MM-DD format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="response/result/ProjectDetails/ProjectDetail">
<xsl:value-of select="project_id"/>,
<xsl:value-of select="project_name"/>,
<xsl:if test="project_status =’active’">Active</xsl:if>
<xsl:if test="project_status =’archived’">Archived</xsl:if>,
<xsl:value-of select="concat(fn:substring(current()/proj_created,7,4),

concat(concat(’-’, fn:substring(current()/proj_created,1,2)),
concat(’-’,fn:substring(current()/proj_created,4,2))))"/>

<xsl:text>
</xsl:text>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

20. FreshdeskForumCategory: This operation gives all the forum categories :
their identifiers fcid and names fcname.

(a) LAV Mapping:
F reshdeskF orumCategoryff (fcid, fcname) ←

F orumCategory(fcid,′ Freshdesk API′, fcname).
(C.20)

(b) XSD: Consider the web service operation defined using the LAVMapping C.20.
We are interested in the following elements (XPath)

i. Forum identifier (forum-categories/forum-category/id)
ii. Forum name (forum-categories/forum-category/name)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="forum-categories">
<xs:complexType>

<xs:sequence>

236 Appendix C. DaWeS: Examples

<xs:element name="forum-category" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id and name from the operation
response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>

<xsl:template match="/">
<xsl:for-each select="forum-categories/forum-category">

<xsl:value-of select="id"/>,
<xsl:value-of select="name"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

21. FreshdeskForum: This operation takes as input the forum category identifier
fcid (obtained by the operation considered in the LAV mapping C.20) and gives
as output all the forums belonging to that category: with their identifiers fid

C.2. Web Service API Operations 237

and name fname.

(a) LAV Mapping:
F reshdeskF orumbff (fcid, fid, fname) ←
F orumCategory(fcid,′ Freshdesk API′, fcname),

F orum(fid,′ Freshdesk API′, fname, fcdate).

(C.21)

(b) XSD: Consider the web service operation defined using the LAVMapping C.21.
We are interested in the following elements (XPath)

i. Forum identifier (forum-category/forums/forum/id)
ii. Forum name (forum-category/forums/forum/title)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="forum-category">
<xs:complexType>

<xs:all>
<xs:any maxOccurs="unbounded" processContents="lax"/>
<xs:element name="forums">

<xs:complexType>
<xs:sequence>

<xs:element name="forum" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:all>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

238 Appendix C. DaWeS: Examples

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id and name from the operation
response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="forum-category/forums/forum">
<xsl:value-of select="id"/>,
<xsl:value-of select="name"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

22. FreshdeskTopic: This operation takes as input the forum category identifier
fcid and forum identifier fid and gives as output all the topics belonging to the
forum. It gives as output the topic identifier tpid, name tpname and the creation
date tpcdate.

(a) LAV Mapping:
F reshdeskT opicbbfff (fcid, fid, tpid, tpname, tpcdate) ←

F orumCategory(fcid,′ Freshdesk API′, fcname),

F orum(fid,′ Freshdesk API′, fname, fcdate),

T opic(tpid,′ Freshdesk API′, tpname, tpcdate, fid).

(C.22)

(b) XSD: Consider the web service operation defined using the LAVMapping C.22.
We are interested in the following elements (XPath)

i. Topic identifier (forum/topics/topic/id)
ii. Topic name (forum/topics/topic/title)

iii. Topic Creation date (forum/topics/topic/created-at)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="forum">

<xs:complexType>
<xs:all>

<xs:any maxOccurs="unbounded" processContents="lax"/>
<xs:element name="topics">

<xs:complexType>
<xs:sequence>

<xs:element name="topic" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="id">

<xs:complexType>

C.2. Web Service API Operations 239

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="title">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created-at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:all>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, title, and created-at from
the operation response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="forum/topics/topic">
<xsl:value-of select="id"/>,
<xsl:value-of select="title"/>,

240 Appendix C. DaWeS: Examples

<xsl:value-of select="fn:substring(current()/created-at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

23. FreshdeskTicket: This operation gives all the open tickets giving the following
details: ticket identifier tkid, name tkname, creation date tkcdate, due date
tkddate and priority tkpriority.

(a) LAV Mapping:

F reshdeskT icketfffff (tkid, tkname, tkcdate, tkddate, tkpriority) ←
T icket(tkid,′ Freshdesk API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority,′ Open′).

(C.23)

(b) XSD: Consider the web service operation defined using the LAVMapping C.23.
We are interested in the following elements (XPath)

i. Ticket identifier (helpdesk-tickets/helpdesk-ticket/id)
ii. Ticket name (helpdesk-tickets/helpdesk-ticket/subject)

iii. Ticket Creation date (helpdesk-tickets/helpdesk-ticket/created-at)
iv. Ticket Due date (helpdesk-tickets/helpdesk-ticket/due-by)
v. Ticket status (helpdesk-tickets/helpdesk-ticket/status)

vi. Ticket priority (helpdesk-tickets/helpdesk-ticket/priority)

Note how we created new data types ticketStatus and ticketPriorityto
validate the ticket status and ticket priority respectively.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="ticketStatus">
<xs:restriction base="xs:string">

<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="4"/>
<xs:enumeration value="5"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="emptyDate">

<xs:union memberTypes="xs:dateTime">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value=""/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>
<xs:simpleType name="ticketPriority">

<xs:restriction base="xs:string">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="4"/>

</xs:restriction>
</xs:simpleType>

C.2. Web Service API Operations 241

<xs:element name="helpdesk-tickets">
<xs:complexType>

<xs:sequence>
<xs:element name="helpdesk-ticket" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="subject">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created-at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="due-by" nillable="true">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="emptyDate">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

<xs:attribute type="xs:string" name="nil"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="status">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="ticketStatus">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

242 Appendix C. DaWeS: Examples

<xs:element name="priority">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="ticketPriority">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, subject, created-at, due-by
and priority from the operation response as shown below. Note the trans-
formation on the priority to the internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="helpdesk-tickets/helpdesk-ticket">
<xsl:value-of select="id"/>,
<xsl:value-of select="subject"/>,
<xsl:value-of select="fn:substring(current()/created-at,1,10)"/>,
<xsl:value-of select="fn:substring(current()/due-by,1,10)"/>,
<xsl:if test="priority =’1’">Low</xsl:if>
<xsl:if test="priority =’2’">Medium</xsl:if>
<xsl:if test="priority =’3’">High</xsl:if>
<xsl:if test="priority =’4’">High</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

24. Uservoicev1TotalTickets: This web service operation takes no input and gives
the total number of tickets. In order to support the pagination, our internal
transformation makes sure that the count of tickets is changed to (page number,
page size) combination.

(a) LAV Mapping:
Uservoicev1T otalT icketsff (pgno, pgsize) ←

P age(pgno,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgsize).
(C.24)

C.2. Web Service API Operations 243

(b) XSD: Consider the web service operation defined using the LAVMapping C.24.
We are interested in the following elements (XPath)

i. Total Tickets (response/response_data/total_records)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="response">
<xs:complexType>

<xs:all>
<xs:element name="response_data">

<xs:complexType>
<xs:all>

<xs:element name="total_records">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the page number, entries per page
from the operation response as shown below. Refer our discussion on page
handling (section C.2.1). The default number of entries per page is set as
25.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template name="for-loop">

<xsl:param name="total" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="page" select="1"/>
<xsl:if test="$total > 0">

<xsl:value-of select="$page"/>,
<xsl:value-of select="$increment"/>
<xsl:text>
</xsl:text>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total - $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="page" select="$page+1"/>

244 Appendix C. DaWeS: Examples

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template match="/">

<xsl:variable name="default">25</xsl:variable>
<xsl:variable name="page">

<xsl:copy-of select="$default"/>
</xsl:variable>
<xsl:variable name="total">

<xsl:value-of select="response/response_data/total_records"/>
</xsl:variable>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total"/>
<xsl:with-param name="increment" select="$default"/>
<xsl:with-param name="page" select="1"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

25. Uservoicev1Ticket: This operation takes as input the (page number, page size)
combination obtained from the operation considered in the LAV mapping C.24.
It gives all the tickets with the following details: ticket identifier tkid, name
tkname, creation date tkcdate, status tkstatus and priority tkpriority.

(a) LAV Mapping:

Uservoicev1T icketbbfffff (pgno, pgsize, tkid, tkname, tkcdate, tkstatus, tkpriority) ←
P age(pgno,′ Uservoice v1 API′,′ Uservoicev1Ticket′, pgsize),

T icket(tkid,′ Uservoice v1 API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus).

(C.25)

(b) XSD: Consider the web service operation defined using the LAVMapping C.25.
We are interested in the following elements (XPath)

i. Ticket identifier (response/tickets/ticket/id)
ii. Ticket name (response/tickets/ticket/subject)

iii. Ticket Creation date (response/tickets/ticket/created_at)
iv. Ticket status (response/tickets/ticket/state)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="response">
<xs:complexType>

<xs:all>
<xs:element name="tickets" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="ticket" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:all>
<xs:element name="id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">

C.2. Web Service API Operations 245

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="subject">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="state">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="type" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the id, subject, created_at and state

from the operation response as shown below. Note the transformation on
state to the internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

246 Appendix C. DaWeS: Examples

xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="response/tickets/ticket">
<xsl:value-of select="id"/>,
<xsl:value-of select="subject"/>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>,
<xsl:if test="state =’open’">Open</xsl:if>
<xsl:if test="state =’closed’">Closed</xsl:if>,Low

<xsl:text>
</xsl:text>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

26. Zendeskv2Forum: This operation gives all the forums with the following de-
tails: forum identifier fid and name fname.

(a) LAV Mapping:
Zendeskv2F orumff (fid, fname) ←

F orum(fid,′ Zendesk v2 API′, fname, fcdate).
(C.26)

(b) XSD: Consider the web service operation defined using the LAVMapping C.26.
We are interested in the following elements (XPath)

i. Forum identifier (forums/forum/id)
ii. Forum name (forums/forum/name)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="forums">
<xs:complexType>

<xs:sequence>
<xs:element name="forum" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

C.2. Web Service API Operations 247

<xs:any maxOccurs="unbounded" processContents="lax"/>
</xs:all>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id and name from the operation
response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="forums/forum">
<xsl:value-of select="id"/>,
<xsl:value-of select="name"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

27. Zendeskv2Topic: This operation takes as input the forum identifier fid and
gives as output all the topics belonging to the forum. It gives as output the topic
identifier tpid, name tpname and the creation date tpcdate.

(a) LAV Mapping:
Zendeskv2T opicbfff (fid, tpid, tpname, tpcdate) ←
T opic(tpid,′ Zendesk v2 API′, tpname, tpcdate, fid),

F orum(fid,′ Zendesk v2 API′, fname, fcdate).

(C.27)

(b) XSD: Consider the web service operation defined using the LAVMapping C.27.
We are interested in the following elements (XPath)

i. Topic identifier (entries/entry/id)
ii. Topic name (entries/entry/title)

iii. Topic Creation date (entries/entry/created-at)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="entries">
<xs:complexType>

<xs:sequence>
<xs:element name="entry" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="id">

248 Appendix C. DaWeS: Examples

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="title">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created-at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the id, title and created-at from the
operation response as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="entries/entry">
<xsl:value-of select="id"/>,
<xsl:value-of select="title"/>,
<xsl:value-of select="fn:substring(current()/created-at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

C.2. Web Service API Operations 249

</xsl:stylesheet>

28. Zendeskv2Ticket: This operation gives all the ticket identifiers tkid.

(a) LAV Mapping:

Zendeskv2T icketf (tkid) ←
T icket(tkid,′ Zendesk v2 API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus).

(C.28)

(b) XSD: Consider the web service operation defined using the LAVMapping C.28.
We are interested in the following elements (XPath)

i. Ticket identifier (records/record/nice-id)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="records">
<xs:complexType>

<xs:sequence>
<xs:element name="record" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="nice-id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the nice-id from the operation re-
sponse as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="records/record">
<xsl:value-of select="nice-id"/>
<xsl:text>
</xsl:text>

250 Appendix C. DaWeS: Examples

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

29. Zendeskv2SolvedTicket: This operation gives all the solved ticket identifiers
tkid.

(a) LAV Mapping:

Zendeskv2SolvedT icketf (tkid) ←
T icket(tkid,′ Zendesk v2 API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority,′ Closed′).

(C.29)

(b) XSD: Consider the web service operation defined using the LAVMapping C.29.
We are interested in the following elements (XPath)

i. Ticket identifier (tickets/ticket/nice-id)

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="tickets">
<xs:complexType>

<xs:sequence>
<xs:element name="ticket" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="nice-id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="count"/>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the nice-id from the operation re-
sponse as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>

C.2. Web Service API Operations 251

<xsl:template match="/">
<xsl:for-each select="tickets/ticket">

<xsl:value-of select="nice-id"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

30. Zendeskv2TicketDetails: This operation takes as input the ticket identifers
(obtained from the operations like the ones considered in the LAVMapping C.28
and C.29. It gives the ticket details: ticket name tkname, creation date tkcdate,
due date tkddate, completion date tkcmpdate, status tkstatus and priority tkpriority.

(a) LAV Mapping:

Zendeskv2T icketDetailsbffffff (tkid, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus) ←
T icket(tkid,′ Zendesk v2 API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus).

(C.30)

(b) XSD: Consider the web service operation defined using the LAVMapping C.30.
We are interested in the following elements (XPath)

i. Ticket identifier (ticket/nice-id)
ii. Ticket name (ticket/subject)

iii. Ticket Creation date (ticket/created-at)
iv. Ticket Due date (ticket/due-date)
v. Ticket Completion date (ticket/solved-at)

vi. Ticket priority (ticket/priority-id)
vii. Ticket status (ticket/status-id)

Note how we created new data types ticketStatus and ticketPriorityto
validate the ticket status and ticket priority respectively.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="ticketStatus">
<xs:restriction base="xs:string">

<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="4"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="emptyDate">

<xs:union memberTypes="xs:dateTime">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value=""/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>
<xs:simpleType name="ticketPriority">

<xs:restriction base="xs:string">

252 Appendix C. DaWeS: Examples

<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="4"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="ticket">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="nice-id">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="subject">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created-at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="solved-at" nillable="true">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="emptyDate">
<xs:attribute name="type" type="xs:string">
</xs:attribute>
<xs:attribute type="xs:string" name="nil"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="due-date" nillable="true">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="emptyDate">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

C.2. Web Service API Operations 253

<xs:attribute type="xs:string" name="nil"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="status-id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="ticketStatus">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="priority-id">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="ticketPriority">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the subject, created-at, due-date,
solved-at, priority-id and status-id from the operation response as shown
below. Note the transformation on the priority-id and status-id to get the
desired internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="ticket">
<xsl:value-of select="subject"/>,
<xsl:value-of select="fn:substring(current()/created-at,1,10)"/>,
<xsl:value-of select="fn:substring(current()/due-date,1,10)"/>,
<xsl:value-of select="fn:substring(current()/solved-at,1,10)"/>,
<xsl:if test="priority-id =’0’">Low</xsl:if>
<xsl:if test="priority-id =’1’">Low</xsl:if>
<xsl:if test="priority-id =’2’">Medium</xsl:if>
<xsl:if test="priority-id =’3’">High</xsl:if>
<xsl:if test="priority-id =’4’">High</xsl:if>,
<xsl:if test="status-id =’0’">Open</xsl:if>
<xsl:if test="status-id =’1’">Open</xsl:if>
<xsl:if test="status-id =’2’">Closed</xsl:if>

254 Appendix C. DaWeS: Examples

<xsl:if test="status-id =’3’">Closed</xsl:if>
<xsl:if test="status-id =’4’">Closed</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

31. ZohoSupportTask: This operation gives the details of all the tasks: ticket
identifer tkid, name tkname, due date tkddate, status tkstatus and priority
tkpriority.

(a) LAV Mapping:

ZohoSupportT askfffff (tkid, tkname, tkddate, tkpriority, tkstatus) ←
T icket(tkid,′ ZohoSupport API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus).

(C.31)

(b) XSD: Consider the web service operation defined using the LAVMapping C.31.
We are interested in the following elements (XPath)

i. Ticket identifier (response/result/T asks/row/fl[@val =′ ACT IV IT Y ID′]/node())
ii. Ticket name (response/result/T asks/row/fl[@val =′ Subject′]/node())

iii. Ticket Due date (response/result/T asks/row/fn : substring(fl[@val =′ DueDate′]/node())
iv. Ticket Priority (response/result/T asks/row/fl[@val =′ P riority′]/node())
v. Ticket Status (response/result/T asks/row/fl[@val =′ Status′]/node())

Note how we created new data types ticketStatus and ticketPriorityto
validate the ticket status and ticket priority respectively.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="response">
<xs:complexType>

<xs:sequence>
<xs:element name="result">

<xs:complexType>
<xs:sequence>

<xs:element name="Tasks">
<xs:complexType>

<xs:sequence>
<xs:element name="row" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="fl" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="val" use="optional"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:byte" name="no" use="optional"/>

</xs:complexType>
</xs:element>

C.2. Web Service API Operations 255

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute type="xs:string" name="uri"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: Note how we extract the desired information from the operation
response and how we transform the status and priority to the desired internal
format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="response/result/Tasks/row">
<xsl:value-of select="fl[@val = ’ACTIVITYID’]/node()"/>,
<xsl:value-of select="fl[@val = ’Subject’]/node()"/>,
<xsl:value-of select="fn:substring(fl[@val = ’Due Date’]/node(),1,10)"/>,
<xsl:if test="fl[@val = ’Priority’]/node() =’Highest’">High</xsl:if>
<xsl:if test="fl[@val = ’Priority’]/node() =’High’">High</xsl:if>
<xsl:if test="fl[@val = ’Priority’]/node() =’Lowest’">Low</xsl:if>
<xsl:if test="fl[@val = ’Priority’]/node() =’Low’">Low</xsl:if>
<xsl:if test="fl[@val = ’Priority’]/node() =’Normal’">Medium</xsl:if>,
<xsl:if test="fl[@val = ’Status’]/node() =’Not Started’">Open</xsl:if>
<xsl:if test="fl[@val = ’Status’]/node() =’Deferred’">Open</xsl:if>
<xsl:if test="fl[@val = ’Status’]/node() =’In Progress’">Open</xsl:if>
<xsl:if test="fl[@val = ’Status’]/node() =’Waiting on someone else’">Open</xsl:if>
<xsl:if test="fl[@val = ’Status’]/node() =’Completed’">Closed</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

32. Deskv2TotalTopics: This web service API operation of Desk takes no input
and gives the total number of topics. In order to support the pagination, our
internal transformation makes sure that the count of topics is changed to (page
number, page size) combination.

(a) LAV Mapping:
Deskv2T otalT opicsff (pgno, pgsize) ←

P age(pgno,′ Desk v2 API′,′ Deskv2Topic′, pgsize).
(C.32)

(b) XSD: Consider the web service operation defined using the LAVMapping C.32.
We are interested in the following elements (XPath)

256 Appendix C. DaWeS: Examples

i. Total Topics (json/total_entries)

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:all>
<xs:element name="total_entries">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the page number, entries per page
from the operation response as shown below. Refer our discussion on page
handling (section C.2.1). The default number of entries per page is set as
25.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template name="for-loop">

<xsl:param name="total" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="page" select="1"/>
<xsl:if test="$total > 0">

<xsl:value-of select="$page"/>,
<xsl:value-of select="$increment"/>
<xsl:text>
</xsl:text>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total - $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="page" select="$page+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template match="/">

C.2. Web Service API Operations 257

<xsl:variable name="default">25</xsl:variable>
<xsl:variable name="page">

<xsl:copy-of select="$default"/>
</xsl:variable>
<xsl:variable name="total">

<xsl:value-of select="json/total_entries"/>
</xsl:variable>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total"/>
<xsl:with-param name="increment" select="$default"/>
<xsl:with-param name="page" select="1"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

33. Deskv2Topic: This operation takes as input (page number, page size) combina-
tion obtained from the operation considered in the LAV mapping C.32 and gives
all the topics with the following details: the topic identifier tpid, name tpname

and the creation date tpcdate.

(a) LAV Mapping:
Deskv2T opicbbfff (pgno, pgsize, tpid, tpname, tpcdate) ←

P age(pgno,′ Desk v2 API′,′ Deskv2Topic′, pgsize),

T opic(tpid,′ Desk v2 API′, tpname, tpcdate, fid).

(C.33)

(b) XSD: Consider the web service operation defined using the LAVMapping C.33.
We are interested in the following elements (XPath)

i. Topic identifier (json/_embedded/entries/array/position)
ii. Topic name (json/_embedded/entries/array/title)

iii. Topic Creation date (json/_embedded/entries/array/created_at)

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="_embedded">

<xs:complexType>
<xs:sequence>

<xs:element name="entries" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="position">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

258 Appendix C. DaWeS: Examples

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="name">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>
</xs:complexType>

</xs:element>
</xs:sequence>

<xs:attribute type="xs:string" name="class"/>
</xs:complexType>

</xs:element>
</xs:sequence>

<xs:attribute type="xs:string" name="class"/>
</xs:complexType>

</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: Consider the web service operation defined using the LAVMap-
ping C.33. We are interested in making use of four elements from the
response: task identifier id, name content, creation date created_at and
completion date completed_at.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>

C.2. Web Service API Operations 259

<xsl:template match="/">
<xsl:for-each select="json/_embedded/entries/array">

<xsl:value-of select="position"/>,
<xsl:value-of select="name"/>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

34. Deskv2TotalCases: This web service API operation of Desk takes no input and
gives the total number of cases. In order to support the pagination, our internal
transformation makes sure that the count of cases is changed to (page number,
page size) combination.

(a) LAV Mapping:

Deskv2T otalCasesff (pgno, pgsize) ←
P age(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize).

(C.34)

(b) XSD: Consider the web service operation defined using the LAVMapping C.34.
We are interested in the following elements (XPath)

i. Total Cases (json/total_entries)

Note how the root element is json. This is because we convert the json
response to xml response. During this conversion, the desired root element
is json.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:all>
<xs:element name="total_entries">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="type"/>

</xs:complexType>
</xs:element>

</xs:schema>

(c) XSLT: We are interested in extracting the page number, entries per page
from the operation response as shown below. Refer our discussion on page

260 Appendix C. DaWeS: Examples

handling (section C.2.1). The default number of entries per page is set as
25.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template name="for-loop">

<xsl:param name="total" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="page" select="1"/>
<xsl:if test="$total > 0">

<xsl:value-of select="$page"/>,
<xsl:value-of select="$increment"/>
<xsl:text>
</xsl:text>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total - $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="page" select="$page+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template match="/">

<xsl:variable name="default">25</xsl:variable>
<xsl:variable name="page">

<xsl:copy-of select="$default"/>
</xsl:variable>
<xsl:variable name="total">

<xsl:value-of select="json/total_entries"/>
</xsl:variable>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total"/>
<xsl:with-param name="increment" select="$default"/>
<xsl:with-param name="page" select="1"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

35. Deskv2Case: This operation takes as input (page number, page size) combi-
nation obtained from the operation considered in the LAV mapping C.34 and
gives all the cases with the following details: case identifer tkid, name tkname,
creation date tkcdate, status tkstatus and priority tkpriority.

(a) LAV Mapping:

Deskv2Casebbfffff (pgno, pgsize, tkid, tkname, tkcdate, tkpriority, tkstatus) ←
P age(pgno,′ Desk v2 API′,′ Deskv2Case′, pgsize),

T icket(tkid,′ Desk v2 API′, tkname, tkcdate, tkddate, tkcmpdate, tkpriority, tkstatus).

(C.35)

(b) XSD: Consider the web service operation defined using the LAVMapping C.35.
We are interested in the following elements (XPath)

C.2. Web Service API Operations 261

i. Ticket identifier (json/_embedded/entries/array/subject)
ii. Ticket name (json/_embedded/entries/array/subject)

iii. Ticket Creation date (json/_embedded/entries/array/created_at)
iv. Ticket Priority (json/_embedded/entries/array/priority)
v. Ticket Status (json/_embedded/entries/array/status)

Note how we make use of the ticket name as the ticket identifier.
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="json">
<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">
<xs:element name="_embedded">

<xs:complexType>
<xs:sequence>

<xs:element name="entries" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="array" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="priority">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="status">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="subject">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="created_at">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:dateTime">
<xs:attribute name="type" type="xs:string">
</xs:attribute>

262 Appendix C. DaWeS: Examples

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
<xs:attribute type="xs:string" name="class"/>
</xs:complexType>

</xs:element>
</xs:sequence>

<xs:attribute type="xs:string" name="class"/>
</xs:complexType>

</xs:element>
</xs:sequence>

<xs:attribute type="xs:string" name="class"/>
</xs:complexType>

</xs:element>
<xs:any maxOccurs="unbounded" processContents="lax"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

(c) XSLT: We are interested in extracting the subject, created_at, priority

and status from the operation response as shown below. Note how we make
use of the ticket name as the ticket identifier. Also note the transformation
on the ticket status and ticket priority to the desired internal format.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">
<xsl:output method="text" omit-xml-declaration="yes"

cdata-section-elements="namelist"/>
<xsl:template match="/">

<xsl:for-each select="json/_embedded/entries/array">
<xsl:value-of select="subject"/>,
<xsl:value-of select="subject"/>,
<xsl:value-of select="fn:substring(current()/created_at,1,10)"/>,
<xsl:if test="priority =’1’">Low</xsl:if>
<xsl:if test="priority =’2’">Low</xsl:if>
<xsl:if test="priority =’3’">Low</xsl:if>
<xsl:if test="priority =’4’">Low</xsl:if>
<xsl:if test="priority =’5’">Medium</xsl:if>
<xsl:if test="priority =’6’">Medium</xsl:if>
<xsl:if test="priority =’7’">Medium</xsl:if>
<xsl:if test="priority =’8’">High</xsl:if>
<xsl:if test="priority =’9’">High</xsl:if>
<xsl:if test="priority =’10’">High</xsl:if>,
<xsl:if test="status=’new’">Open</xsl:if>
<xsl:if test="status =’pending’">Open</xsl:if>
<xsl:if test="status =’resolved’">Closed</xsl:if>
<xsl:if test="status =’open’">Open</xsl:if>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

C.2. Web Service API Operations 263

</xsl:stylesheet>

C.2.1 HandlingPagination

Pagination is a special case and we describe it in some detail below:

Example C.2.1. Pagination comes in various ways. One commonly used mechanism
is to give the page number and the desired count of entries per page. This is captured
in the global schema relation discussed above. It has four attributes

1. Page Number pgno: This attribute corresponds to the page number.
2. Source src: This attribute (like many other global schema relations) captures the

source of the information: here the web service API and version
3. Operation operation: It captures the corresponding web service API operation

which required paginated input parameters
4. Limit limit: It captures the notion of maximum (or default) number of entries

per page.

We discussed about some internal transformation that converts the total number of
entries to page number and number of entries (page number, page limit combination)
for the LAV mappings C.7, C.24, C.32 and C.34. This (page number,page limit)
combination is used by the operations considered in the LAV mappings C.8, C.25, C.33
and C.35 respectively.

Now we show how the total count of (campaigns, entries, topics or cases) is trans-
formed to a (page number, page limit) combination. We show here one example XSLT
for Deskv2TotalTopics considered in the LAV mapping C.32. The other examples are
done similarly (except for the change in the element names)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2005/xpath-functions" version="2.0">

<xsl:output method="text" omit-xml-declaration="yes"
cdata-section-elements="namelist"/>

<xsl:template name="for-loop">
<xsl:param name="total" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="page" select="1"/>
<xsl:if test="$total > 0"><xsl:value-of select="$page"/>,

<xsl:value-of select="$increment"/><xsl:text>
</xsl:text>
<xsl:call-template name="for-loop">

264 Appendix C. DaWeS: Examples

<xsl:with-param name="total" select="$total - $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="page" select="$page+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template match="/">

<xsl:variable name="default">25</xsl:variable>
<xsl:variable name="page">

<xsl:copy-of select="$default"/>
</xsl:variable>
<xsl:variable name="total">

<xsl:value-of select="json/total_entries"/>
</xsl:variable>
<xsl:call-template name="for-loop">

<xsl:with-param name="total" select="$total"/>
<xsl:with-param name="increment" select="$default"/>
<xsl:with-param name="page" select="1"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

The idea behind here is to divide the total count by the desired number of entries
per page (here the default is 25). Therefore if the count is 100, this transformation will
give the following

(1,25)
(2,25)
(3,25)
(4,25)

�

C.3 Enterprise Records

We will discuss how to form the queries over the global schema relations. The queries
formulated over the global schema relation form the record definition

We considered the record definitions in the table C.4. Note that every record defi-
nition we considered takes into account the state of the resource as reported yesterday
(the day before the evaluation of the query/record definition).

We will see how each of the record definition names considered in the table C.4 is ac-
tually formulated over the global schema relations. Recall that inverse rules algorithm
can handle recursive datalog queries. We will consider in our examples

C.3. Enterprise Records 265

Table C.4: Records from Web Services

Project Management Services
1. Daily New Projects New projects created yesterday
2. Daily Active Projects Active projects reported yesterday
3. Daily OnHold Projects Onhold projects reported yesterday
4. Daily OnHold or Archived Projects Active or Onhold projects reported yesterday
5. Daily Same Status Projects Projects with same status reported yesterday
6. Daily TodoLists TodoLists reported as of yesterday
7. Daily New Tasks New Tasks created yesterday
8. Daily Open Tasks Tasks reported to be completed yesterday
9. Daily Closed Tasks Tasks reported to be solved yesterday

Email Marketing Services
10. Daily New Campaign New campaigns created yesterday
11. Daily Campaign Statistics Campaign statistics reported yesterday

Support (Helpdesk) Services
12. Daily New Tickets New tickets created yesterday
13. Daily Open Tickets Tickets remaining unsolved as reported yesterday
14. Daily Closed Tickets Tickets reported to be solved yesterday
15. Daily New Forums New forums created yesterday
16. Daily All Forums All forums as reported yesterday
17. Daily New Topics New topics created yesterday

1. Conjunctive query
2. Union of Conjunctive query (Example: Record definition C.39)
3. Recursive Datalog query (Example: Record definition C.40)

Note that in all our queries, we use yesterday(), a special function that before
evaluation is transformed to the date before today’s evaluation. We also have a function
like yesterday(n), which gives the date n days before yesterday.

1. Daily New Projects

q(pid, src, pname, pstatus) : −P roject(pid, src, pname,′ yesterday()′, pstatus). (C.36)

2. Daily Active Projects

q(pid, src, pname) : −P roject(pid, src, pname, pcdate,′ Active′). (C.37)

266 Appendix C. DaWeS: Examples

3. Daily OnHold Projects

q(pid, src, pname) : −P roject(pid, src, pname, pcdate,′ OnHold′). (C.38)

4. Daily OnHold or Archived Projects: This is an example of a union of con-
junctive query.

q(pid, src, pname) : −P roject(pid, src, pname, pcdate,′ Active′).
q(pid, src, pname) : −P roject(pid, src, pname, pcdate,′ OnHold′). (C.39)

5. Daily Same Status Projects: This is an example of recursive datalog query.
q(pid, src, pid, src, status) : −P roject(pid, src, pname, pcdate, status).
q(pid1, src1, pid2, src2, status) : −P roject(pid1, src1, pname1, pcdate1, status),

q(pid2, src2, pid3, src3, status).

(C.40)

6. Daily TodoLists
q(pid, tlid) : −P roject(pid, src, pname, pcdate, pstatus),

T askList(pid, src, tlid).
(C.41)

7. Daily New Tasks
q(tid, src, tname, tstatus) : −P roject(pid, src, pname, pcdate, pstatus),

T askList(pid, src, tlid),

T ask(tlid, tid, src, tname,′ yesterday()′, tddate, tcmpdate, tstatus).

(C.42)

8. Daily Open Tasks
q(tid, src, tname) : −T ask(tlid, tid, src, tname, tcdate, tddate,

tcmpdate,′ Open′).
(C.43)

9. Daily Closed Tasks
q(tid, src, tname) : −P roject(pid, src, pname, pcdate, pstatus),

T askList(pid, src, tlid),

T ask(tlid, tid, src, tname, tcdate, tddate,′ yesterday()′,′ Completed′).

(C.44)

10. Daily New Forums

q(fid, src, fname) : −F orum(fid, src, fname,′ yesterday()′). (C.45)

11. Daily All Forums

q(fid, src, fname) : −F orum(fid, src, fname, fcdate). (C.46)

C.4. Performance Indicators 267

12. Daily New Topics

q(tpid, src, tpname) : −T opic(tpid, src, tpname,′ yesterday()′, fid). (C.47)

13. Daily New Tickets

q(tkid, src, tkname, tkpriority, tkstatus) : −
T icket(tkid, src, tkname,′ yesterday()′, tkddate, tkcmpdate,

tkpriority, tkstatus).

(C.48)

14. Daily Open Tickets

q(tkid, src, tkname, tkpriority) : −
T icket(tkid, src, tkname, tkcdate, tkddate, tkcmpdate, tkpriority,′ Open′).

(C.49)

15. Daily Closed Tickets

q(tkid, src, tkname, tkcdate, tkddate, tkpriority) : −
T icket(tkid, src, tkname, tkcdate, tkddate,′ yesterday()′,

tkpriority,′ Closed′)

(C.50)

16. Daily New Campaigns

q(cmid, src, cmname, cmstatus) : −Campaign(cmid, src, cmname,
′yesterday()′, cmstatus).

(C.51)

17. Daily Campaign Statistics

q(cmid, src, cmname, cmctr, cmfr, cmbr) : −
Campaign(cmid, src, cmname, cmcdate, cmstatus),

CampaignStatistics(cmid, src, cmar, cmctr, cmfr, cmbr).

(C.52)

C.4 Performance Indicators

We demonstrate in this section how to create performance indicator queries using the
records. For this purpose, we would also request the reader to refer the relational tables
used in DaWeS (refer section D.2). We show how we use SQL query to compute our
desired performance indicator.

For our experiments, we considered the performance indicators given in the ta-
ble C.5. We see different types of performance indicators

1. Count
2. Average

268 Appendix C. DaWeS: Examples

3. Percentage
4. A list of tuples (a table, useful for creating charts)

Table C.5: Performance Indicators

Project Management Services
1. Total Monthly New Projects New projects created during the last

30 days
2. Total Monthly Active

Projects
Active projects reported during the
last 30 days

3. Total Monthly OnHold
Projects

Onhold projects reported during the
last 30 days

4. Total Todo Lists Lately reported total todo lists
5. Total Monthly New Tasks New tasks created during the last 30

days
6. Total Monthly Completed

Tasks
Tasks completed during the last 30
days

7. Average Tasks Completed
Daily in a month

Average number of tasks completed
during the last 30 days

8. Monthly percentage of tasks
completed to tasks created in
a day

Percentage of tasks completed to
tasks created in a day during the
last 30 days

Email Marketing Services
9. Total Monthly New Cam-

paigns
New campaigns created during the
last 30 days

10. Monthly Bounces of Cam-
paign

Monthly bounces of every campaign
reported during the last 30 days
(latest reported)

11. Monthly Click Throughs of
Campaign

Monthly clicks of every campaign
reported during the last 30 days
(latest reported)

12. Monthly Forwards of Cam-
paign

Monthly forwards of every cam-
paign reported during the last 30
days (latest reported)

Support (Helpdesk) Services
13. Total New Tickets Registered

in a month
Total count of tickets created during
the last 30 days

14. Total Monthly Solved Tickets Total count of solved tickets during
the last 30 days

C.4. Performance Indicators 269

15. Total New Forums Registered
in a month

Total forums created during the last
30 days

16. All Forums in a month Total forums (latest) reported dur-
ing the last 30 days

17. Total New Topics Registered
in a month

Total new topics created during the
last 30 days

18. Total High Priority Tickets
Registered in a month

Total number of high priority tickets
created during the last 30 days

19. Percentage of High Priority
Tickets Registered in a month

Percentage of high priority tickets
created during the last 30 days

20. Daily Average Resolution
Time

Average resolution time of the tick-
ets solved during the last day

As explained in section D.2, we use the two relations OrgRecord and OrgRecordV al

to store the records of every organization. The performance indicator queries considers
this fact to define a SQL query using these organization records.

To make our SQL query generic (to be able to use with any organization), we use
a variable $orgID that is internally transformed to the identifier of the concerned or-
ganization before executing the SQL query. Note that the relations LCRecord and
LCRECORDATTRIBUTE stores the record definition and the record attribute de-
tails.

Given below is the SQL query to compute total monthly new projects. Note that
it makes use of the record definition C.36 (Daily New Projects). The idea is to take
the count of all the project identifiers that were created during the last 30 days.

SELECT count(value) FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Projects’

)
AND

org_id = $orgID

270 Appendix C. DaWeS: Examples

)
AND

lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’pid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Projects’

)
)

Note here we are using the record ’Daily New Projects’ and its attribute ’pid’ to
get the count of projects created in a month.

So for every performance indicator, we must take care of the following

1. Record Definition and Attribute: We must be aware of the relevant records and
the specific attribute

2. Period: We must be aware of the period from which the desired records are
needed

3. Supported SQL Aggregate functions

Now we take another example Monthly Average resolution time, where we make
use of two different attributes of a record (the completion time of the ticket and the
creation time of the ticket). We make use of the record definition C.44 (Daily Closed
Tickets) and its two attributes (tkcdate and tkcmpdate,). We use some of the Oracle
in-built functions to create the following performance indicator.

SELECT sum
(

TO_NUMBER
(

trunc(sysdate) - to_date (replace(o.value,’’’’,’’), ’yyyy-mm-dd’)
)

) / count (o.value)
FROM OrgRecordVal o, Dual
WHERE org_record_id in
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =

C.4. Performance Indicators 271

(
SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tickets’

)
AND

org_id=$orgID
)

and
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkcdate’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tickets’

)
)

Now we see the SQL queries of all the considered performance indicators.

1. Monthly Bounces of Campaign: This performance indicator is defined using
the record definition C.52 (Daily Campaign Statistics). The indicator makes
use of the organization records corresponding to the daily registered campaign
statistics for the last day. It selects the values for the attributes cmid, campaign
identifier and cmbr, the campaign abuse count from these records.

WITH c AS
(

SELECT * FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
AND

org_id = $orgID
)

AND lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmname’

AND

272 Appendix C. DaWeS: Examples

LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
)

),
d AS
(

SELECT * FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmbr’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
)

)
SELECT c.value AS cmid ,d.value AS bounces FROM c,d

WHERE
c.org_record_id = d.org_record_id

AND
c.idx = d.idx

2. Total Monthly Solved Tickets: This performance indicator is defined using
the record definition C.50 (Daily Closed Tickets). The indicator makes use of
the organization records corresponding to the tickets solved daily for the last 30
days. It selects the values for the attribute tkid, ticket identifier and computes
their total count.

SELECT count(*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN

C.4. Performance Indicators 273

(
SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tickets’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tickets’

)
)

)

3. Daily Average Resolution Time: This performance indicator is defined using
the record definition C.50 (Daily Closed Tickets). The indicator makes use of the
organization records corresponding to the tickets solved during the last day. It
selects the values for the attribute tkcdate, ticket creation date. For every ticket,
it computes the days passed sinced the creation of the ticket. Once the count for
every ticket is obtained, they are summed and the divided by the total number
of tickets (number of values considered for the ticket creation date).

SELECT sum (TO_NUMBER
(

trunc (sysdate) -to_date (replace (o.value,’’’’,’’) ,
’yyyy-mm-dd’)

)
) /count (o.value)
FROM OrgRecordVal o, Dual
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD

274 Appendix C. DaWeS: Examples

WHERE NAME LIKE ’Daily Closed Tickets’
)

AND
org_id = $orgID

)
AND

lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkcdate’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tickets’

)
)

4. Total New Tickets Registered in a month: This performance indicator is
defined using the record definition C.48 (Daily New Tickets). The indicator makes
use of the organization records corresponding to the new tickets created daily for
the last 30 days. It selects the values for the attribute tkid, ticket identifier and
computes their total count.

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
)

C.4. Performance Indicators 275

)

5. Total New Forums Registered in a month: This performance indicator
is defined using the record definition C.45 (Daily New Forums). The indicator
makes use of the organization records corresponding to the new forums created
daily for the last 30 days. It selects the values for the attribute fid, forum identifier
and computes their total count.

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Forums’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’fid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Forums’

)
)

)

6. All Forums in a month: This performance indicator is defined using the record
definition C.46 (Daily New Forums). The indicator makes use of the organization
records corresponding to the differnent forum reported daily for the last 30 days.
It selects the values for the attribute fid, forum identifier and computes their total
count.

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN

276 Appendix C. DaWeS: Examples

(
SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily All Forums’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’fid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily All Forums’

)
)

)

7. Total New Topics Registered in a month: This performance indicator is
defined using the record definition C.47 (Daily New Topics). The indicator makes
use of the organization records corresponding to the new topics created daily for
the last 30 days. It selects the values for the attribute tpid, topic identifier and
computes their total count.

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Topics’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =

C.4. Performance Indicators 277

(
SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tpid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Topics’

)
)

)

8. Total High Priority Tickets Registered in a month: This performance
indicator is defined using the record definition C.48 (Daily New Tickets). The
indicator makes use of the organization records corresponding to the new tickets
created daily for the last 30 days. It selects the values for the attribute tkpriority,
ticket priority and computes the total count of the tickets having the value for
tkpriority as ’High’.

SELECT count (*) FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkpriority’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
)

AND
value LIKE ’’’High’’’

9. Percentage of High Priority Tickets Registered in a month This perfor-
mance indicator is defined using the record definition C.48 (Daily New Tickets).

278 Appendix C. DaWeS: Examples

The indicator makes use of the organization records corresponding to the new
tickets created daily for the last 30 days. It selects the values for the attribute
tkpriority, ticket priority and computes the total count of the tickets having the
value for tkpriority as ’High’ and the total count of all the tickets created during
the last 30 days (simply using the count of tkpriority). It finally computes the
percentage using the two counts.
WITH count1 AS
(

SELECT count (*) c1 FROM OrgRecordVal
WHERE org_record_id in
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkpriority’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
)

AND
value LIKE ’’’High’’’),

count2 AS
(

SELECT count (*) c2 FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
AND

C.4. Performance Indicators 279

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tkpriority’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tickets’

)
)

)
SELECT c1/c2*100 FROM count1,count2

10. Total Monthly New Projects: This performance indicator is defined using
the record definition C.36 (Daily New Projects). The indicator makes use of the
organization records corresponding to the new projects created daily for the last
30 days. It selects the values for the attribute pid, project identifier and computes
their total count.
SELECT count(value) FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Projects’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’pid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Projects’

)
)

11. Total Monthly Active Projects: This performance indicator is defined using
the record definition C.37 (Daily Active Projects). The indicator makes use of

280 Appendix C. DaWeS: Examples

the organization records corresponding to the active projects reported daily for
the last 30 days. It selects the values for the attribute pid, project identifier and
computes their total count (considering only the unique values).

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Active Projects’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’pid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Active Projects’

)
)

)

12. Total Monthly OnHold Projects: This performance indicator is defined using
the record definition C.38 (Daily OnHold Projects). The indicator makes use of
the organization records corresponding to the onhold projects reported daily for
the last 30 days. It selects the values for the attribute pid, project identifier and
computes their total count (considering only the unique values).

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =

C.4. Performance Indicators 281

(
SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily OnHold Projects’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’pid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily OnHold Projects’

)
)

)

13. Total Monthly Completed Tasks: This performance indicator is defined using
the record definition C.44 (Daily Closed Tasks). The indicator makes use of the
organization records corresponding to the tasks solved daily for the last 30 days.
It selects the values for the attribute tid, task identifier and computes their total
count.

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tasks’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD

282 Appendix C. DaWeS: Examples

WHERE NAME LIKE ’Daily Closed Tasks’
)

)
)

14. Average Tasks Completed Daily in a month: This performance indicator
is defined using the record definition C.44 (Daily Closed Tasks). The indicator
makes use of the organization records corresponding to the tasks solved daily for
the last 30 days. It selects the values for the attribute tid, task identifier and
computes their total count. It then computes the average by dividing the total
count by 30.

SELECT count (*)/30 FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tasks’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tasks’

)
)

)

15. Total Monthly New Tasks: This performance indicator is defined using the
record definition C.42 (Daily New Tasks). The indicator makes use of the organi-
zation records corresponding to the new tasks created daily for the last 30 days.
It selects the values for the attribute tid, task identifier and computes their total
count.

SELECT count (*) FROM

C.4. Performance Indicators 283

(
SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tasks’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tasks’

)
)

)

16. Total Todo Lists: This performance indicator is defined using the record def-
inition C.41 (Daily TodoLists). The indicator makes use of the organization
records corresponding to the todo lists reported lately. It selects the values for
the attribute tlid, todo list identifier and computes their total count.

SELECT count (*) FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily TodoLists’

)
AND

org_id = $orgID
)

AND

284 Appendix C. DaWeS: Examples

lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tlid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily TodoLists’

)
)

)

17. Percentage of tasks completed to tasks created in a day This performance
indicator is defined using two record definitions C.42 (Daily New Tasks) and C.44
(Daily Closed Tasks). The indicator makes use of the organization records cor-
responding to the new tasks created daily as well as the tasks completed daily
for the last 30 days. It selects the values for the attribute tid, task identifier for
both different types of records and computes the total count of each to compute
the percentage

WITH count1 AS
(

SELECT count (*) c1 FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tasks’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Closed Tasks’

)
)

C.4. Performance Indicators 285

)
)
, count2 AS
(

SELECT count (*) c2 FROM
(

SELECT distinct value FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tasks’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’tid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Tasks’

)
)

)
)
SELECT c1/c2*100 FROM count1,count2

18. Total Monthly New Campaigns: This performance indicator is defined using
the record definition C.51 (Daily New Campaigns). The indicator makes use of
the organization records corresponding to the new campaigns created daily for
the last 30 days. It selects the values for the attribute cmid, campaign identifier
and computes their total count.

SELECT count (value) FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’30’ day

AND
lcrecord_id =
(

286 Appendix C. DaWeS: Examples

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Campaigns’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmid’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily New Campaigns’

)
)

19. Monthly Click Throughs of Campaign: This performance indicator is de-
fined using the record definition C.52 (Daily Campaign Statistics). The indicator
makes use of the organization records corresponding to the daily registered cam-
paign statistics for the last day. It selects the values for the attributes cmid,
campaign identifier and cmctr, the campaign click count from these records.

WITH c AS
(

SELECT * FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmname’ AND LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
)

),

C.4. Performance Indicators 287

d AS
(

SELECT * FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmctr’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
)

)
SELECT c.value AS cmid ,d.value AS clicks FROM c,d
WHERE c.org_record_id = d.org_record_id AND c.idx = d.idx

20. Monthly Forwards of Campaign: This performance indicator is defined using
the record definition C.52 (Daily Campaign Statistics). The indicator makes
use of the organization records corresponding to the daily registered campaign
statistics for the last day. It selects the values for the attributes cmid, campaign
identifier and cmfr, the campaign forwards count from these records.

WITH c AS
(

SELECT * FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

288 Appendix C. DaWeS: Examples

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmname’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
)

),
d AS
(

SELECT * FROM OrgRecordVal
WHERE org_record_id IN
(

SELECT id FROM OrgRecord
WHERE time < sysdate

AND
time > sysdate - interval ’1’ day

AND
lcrecord_id =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
AND

org_id = $orgID
)

AND
lcr_attr_id =
(

SELECT ID FROM LCRECORDATTRIBUTE
WHERE NAME LIKE ’cmfr’

AND
LCRECORD_ID =
(

SELECT ID FROM LCRECORD
WHERE NAME LIKE ’Daily Campaign Statistics’

)
)

)
SELECT c.value AS cmid ,d.value AS forwards FROM c,d
WHERE c.org_record_id = d.org_record_id AND c.idx = d.idx

C.5. Test Data for Web Services 289

C.5 Test Data for Web Services

For every web service, we present the various test data that we manually entered using
their forms (using browsers). The test data can also be added to the respective web
services by making use of their APIs. The following test data were used for testing
DaWeS.

Basecamp

1. Create two projects

(a) Design: Then create two Todo-Lists within the Project ’Design’
i. Database Design: Then create the following todos

A. Relations for storing the record definitions (and mark it as done)
B. Relations for storing the performance indicators (and mark it as

done)
C. Relations for storing the web service descriptions
D. Relations related to organization and their data

ii. Modules Design: Then create the following todos
A. Design Answer Builder
B. Design Generic Wrapper
C. Scheduler
D. Performance Indicator Computation

(b) Development: Then create one Todo-List within the Project ’Development’
i. Modules Development: Then create the following todos

A. Develop Answer Builder
B. Develop Generic Wrapper
C. Scheduler
D. Performance Indicator Computation

Liquid Planner

1. Create two projects

(a) Unit Testing: Then create the following tasks
i. Answer Builder
ii. Generic Wrapper
iii. Performance Indicator Computation

290 Appendix C. DaWeS: Examples

(b) Integrated Testing: Then create the following tasks
i. Testing the calibration
ii. Scheduler

Teamworkpm

1. Create two projects

(a) Documentation: Then create two Todo-Lists
i. Database Documentation: Then create the following todos

A. Describe the relations for storing the record definitions (and mark
it as done)

B. Describe the relations for storing the performance indicators (and
mark it as done)

C. Describe the relations for storing the web service descriptions
D. Describe the relations related to organization and their data

ii. Modules Documentation: Then create the following todos
A. Document Answer Builder
B. Document Generic Wrapper (Mark it as done)
C. Scheduler
D. Performance Indicator Computation

(b) System Requirement and Analysis (and mark this project as archived)

Zoho Projects Create a Project ’Client communication’

MailChimp: Create three campaigns

1. Alpha Release Campaign
2. Beta Release Campaign
3. Product Release Mailchimp Campaign (Mark it as draft)

CampaignMonitor: Create three campaigns

1. Alpha Release Campaign
2. Beta Release Campaign
3. Product Release CampaignMonitor Campaign (Mark it as draft)

iContact: Create two campaigns

C.5. Test Data for Web Services 291

1. Alpha Release Campaign (Mark it as draft)
2. Product Release iContact Campaign (Mark it as draft)

Zendesk

1. Create four tickets

(a) Add support for a new web service (Normal Priority)
(b) Add support for a new performance indicator (High Priority)
(c) Add support for a new record definition (Normal Priority)
(d) Response transformation not working for the given example (High Priority

and mark it as fixed)

Desk: Create three tickets

1. Make a request to open an account (Priority: 9)
2. Make a call to the web service provider (Priority: 1)
3. Request the web service provider for a feature request (Priority: 2)

Zoho Support: Create four tickets

1. Request for a new feature (Low Priority)
2. Add support for a new web service (Normal Priority)
3. Add support for a new performance indicator (High Priority)
4. Add support for a new record definition (Low Priority)

Uservoice: Create three tickets

1. Add a new test case for the response transformation (mark it as Closed/done)
2. Study the new web service feature request
3. Add a new domain of web services

FreshDesk

1. Create three tickets

(a) Correct typos in the documentation (Medium Priority)
(b) Add a new section called Experiments in the documentation (High Priority)

292 Appendix C. DaWeS: Examples

(c) Add new subsections Setup and Results in the section Experiments (High
Priority)

2. Create two forums

(a) Product Release Announcements and Create three new topics
i. Alpha Release
ii. Beta Release
iii. Product version 1.0 Release

(b) Request for Features and Create three new topics
i. Add support for new Performance Indicator
ii. Add support for new Record Definitions
iii. Add support for new Web service

Appendix D

DaWeS: Manual

In this chapter we first take a look at the syntax for the datalog query used in DaWeS
(section D.1). Then we take a detailed look at the various relations (SQL Tables in
section D.2) used to store the web service definitions, record definitions, performance
indicator queries and the enterprise data. DaWeS command line options are discussed
in section D.3. Section D.4 presents the java interface for various DaWeS options.

D.1 Syntax for writing Datalog query

We use IRIS [IRIS, 2008] as the datalog engine for DaWeS. We use IRIS syntax to spec-
ify the LAV Mapping between local schema relations and the global schema relations
and to define the datalog query for the record definitions. Let’s first see the syntax for
the specifying atoms and facts in IRIS. A literal (an atom or a fact) specified by the
name followed by the list of terms in brackets. If a term is a constant, it is specified
in quotes(’), else if it is a variable, the variable name is prefixed with the question
mark(?). If it is a fact, it must end with a period(.)
Example D.1.1. Example facts

Project(’1’, ’Documentation’, ’Active’, ’2013-12-11’).
Project(’2’, ’Development’, ’Active’, ’2013-12-12’).

Example of an atom

Project(?identifier, ?name, ?status, ?creation_date)

�

294 Appendix D. DaWeS: Manual

For a conjunctive query, the head of the conjunctive query (a literal) is followed by
the symbols (:-) and finally followed by comma separated literals in the body. This is
finally followed by a period (.).

Example D.1.2. Following is a conjunctive query to get the identifiers and names of
active projects.

q(?identifier,?name) :- Project(?identifier, ?name, ’Active’, ?date).

�

Recall that we use conjunctive query to specify the LAV mapping.

For a datalog query that consists of one or more conjunctive queries, every conjun-
tive query is specified as mentioned below. In order to distinguish between the query
predicate and other predicates, the query predicate name is preceded by symbols (?-)
and terminated by (.)

Example D.1.3. Following is a datalog query (precisely, union of conjunctive query)
to get the identifiers and names of active and archived projects. Note that we specify
also the facts and the query predicate.

Project(’1’, ’Documentation’, ’Active’, ’2013-12-11’).
Project(’2’, ’Development’, ’Active’, ’2013-12-12’).
q(?identifier,?name) :- Project(?identifier, ?name, ’Active’, ?date).
q(?identifier,?name) :- Project(?identifier, ?name, ’Archived’, ?date).
?-q(?identifier,?name).

On giving the above input to the IRIS datalog engine, it gives the following output

(’1’, ’Documentation’)
(’2’, ’Development’)

�

D.2 Relations

DaWeS Database is used for storing web service description, global (mediated) schema,
record schema, performance indicators queries, enterprise authentication parameters,
enterprise records and performance and indicators. They are shown in the Figures 5.5,
5.6, 5.7, 5.8, 5.9, 5.10, D.1 and D.2. In all these tables ID is the primary key. Figure 5.5
shows the information related to the web service. For every web service, we collect the

D.2. Relations 295

LCRECORD

ID
NAME

DESCRIPTION
DATALOGQUERY
FREQUENCY_ID

LCINDICATOR

ID
NAME

DESCRIPTION
SQL_QUERY

FREQUENCY_ID

LCRECORDANDTAG

ID
ORG_ID
LCR_ID
TAG_ID

LCINDICATORANDTAG

ID
ORG_ID
LCI_ID
TAG_ID

ID
NAME
URL
EMAIL

ORGANIZATION

LCRECORDANDRATING

ID
ORG_ID

LC_RECORD_ID
RATING

LCINDICATORANDRATING

ID
ORG_ID

LC_INDICATOR_ID
RATING

ID
NAME

DESCRIPTION

TAG

WEBSERVICEANDTAG

ID
ORG_ID

WEB_SERVICE_ID
TAG_ID

WEBSERVICEANDRATING

ID
ORG_ID

WEB_SERVICE_ID
RATING

ID
WS_PROVIDER_ID

NAME
DESCRIPTION
LOGOURL

WEBSERVICE

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure D.1: Organization Tags and Ratings

LCRECORD

ID
NAME

DESCRIPTION
DATALOGQUERY
FREQUENCY_ID

CALIBRATIONRECORDS

ID
LCRECORD_ID

STATUS
TIME

MESSAGE

LCINDICATOR

ID
NAME

DESCRIPTION
SQL_QUERY

FREQUENCY_ID

CALIBRATIONINDICATORS

ID
LCINDICATOR_ID

STATUS
TIME

MESSAGE

A B B in the Referencing Table is the foreign key of

the referenced table where A is the candidate key

Figure D.2: Organization Tags and Ratings

296 Appendix D. DaWeS: Manual

information regarding the various categories (or domains) it belongs to. Examples of
categories include Project Management, Email Marketing etc. The administrator also
registers the various API of the web services and the details of the service providers.
Figure 5.6 describes the various information that is essential to describe the web ser-
vice API. For every API, the administrator must collect the information related to
the message formats, state (current, deprecated or active), authentication parameters
required from the enterprises and from DaWeS Administrator (for OAuth 1.0). It also
shows the various details captured for every API operation like the expected response
schema (XSD), the desired transformation (using XSLT) and HTTP details of request.
Every API operation has an associated local schema relation as shown in Figure 5.7.
Local schema relations are described using the global schema relations using LAV map-
ping (conjunctive query). Both local schema and global schema relations have their
attributes and the corresponding data types described. Figure 5.8 shows how records
(datalog queries) and performance indicator queries are stored. Records definitions are
(recursive) datalog queries. Every record definition and every performance indicator
has an associated frequency of execution that tells the scheduler (section 5.2.2.2) how
often they must be computed. They also have associated calibration test data (sec-
tion 5.2.2.3) to ensure their proper computation. Figure 5.9 captures every information
required from the enterprise (or organization), i.e., organization details, authentication
parameters for the web services, the interested records and performance indicators.
Figure 5.10 shows how enterprise records and performance indicators are stored. In
some cases, record or performance indicator may result in failures. This information is
also captured. Figure D.1 shows how organization can tag and rate the web services,
the records and performance indicators. Figure D.2 shows how the current calibration
(section 5.2.2.3) status and performance indicators are handled.

We now take a detailed look at the various relations used in DaWeS along with their
attributes. In the following figures, P denotes primary key F denotes the foreign key,
U denotes whether unique attributes and ∗ denotes that the value cannot be NULL.
Arrows signify the foreign key attributes.

D.2.1 Web Service

To define a web service, one requires to know its domain(category), the service provider
name. A web service provider may provide one or more web services. And a web service
may belong to one or more different categories. Refer the Figure D.3 to see the tables
involved to define the details of a web service.

D.2. Relations 297

WEBSERVICEANDCATEGORY

UF WEB_SERVICE_ID NUMBER
UF WS_CATEGORY_ID NUMBER
P * ID NUMBER

JOHN.WEBSERVICECATEGORY

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)

WEBSERVICE

P * ID NUMBER
UF WS_PROVIDER_ID NUMBER
U NAME VARCHAR2 (100 BYTE)

URL VARCHAR2 (100 BYTE)
DESCRIPTION VARCHAR2 (255 CHAR)
LOGOURL VARCHAR2 (255 CHAR)

WEBSERVICEPROVIDER

P * ID NUMBER
U * NAME VARCHAR2 (100 BYTE)

* URL VARCHAR2 (100 BYTE)
DESCRIPTION VARCHAR2 (255 CHAR)
LOGOURL VARCHAR2 (255 CHAR)

Figure D.3: Details of SQL Tables Related to Web Service

We now discuss the various tables in detail.

• WEBSERVICECATEGORY: To define various possible web service domains
or categories. Every web service explicitly mentions its domain in its web site.
Examples include project management, email marketing. The attributes of this
relation include identifier, name and description.

• WEBSERVICEPROVIDER: A web service provider can provide one or more
web services. This table captures the information of the web service provider like
name and its URL. Considering our example, Zoho web service provider offers
various services including Zoho Support and Zoho Projects. The attributes of
this relation include identifier, name and description.

• WEBSERVICE: This table captures the information related to a web service,
such as its name, URL, service provider and a brief description of its service as
described on their website.

• WEBSERVICEANDCATEGORY: A web service can have one or more cat-
egory. The various web service categories defined above can be referred for this
purpose. The attributes of this relation include identifier, a reference identifier
to the web service category and a reference to the web service.

298 Appendix D. DaWeS: Manual

D.2.2 Web Service API

Now we discuss about the tables used to store the details of a web service API and all
the relevant operations. Refer the figure D.4 to see the tables involved.

Described below is the description of various tables in detail.

• WEBSERVICEAPI: It is used to store the details of a web service API. A web
service can have more than one API, some of them may be in deprecated state.
This table captures the information about its URL, any common http header or
body information to be sent. To specify any variable use $ along with the name.
Take for example, in a web service API operation, if domain is variable, specify
it as $domain.example.com.

• WEBSERVICEAPISTATE: A web service can be in various states like active
or deprecated. This information is captured in this table. The attributes include
the identifier, a reference to the concerned web service and the state.

• MESSAGEFORMAT: Web services API use different formats to communicate.
Popular message formats include XML and JSON. This table is used to store the
details of various message formats. The attributes include identifier, name and
description.

• HTTPMETHOD: This tables is used to store the HTTP method details. The
attributes include identifier, name and description. Examples of HTTP method
include GET, POST, PUT and DELETE.

• WSAPIMESSAGEFORMAT: This table is used to store the message format
used for the communication between the web service and the API service users.
The attributes include identifier, reference to the web service API and reference
to the message format.

• WEBSERVICEAPIOPERATION: This table captures the information about
the various web service API operations, the URL, the HTTP header, the HTTP
body contents. To specify any variable use $ along with the name. Take for
example, in a web service API operation, if an identifier is obtained from some
other web service API operation(s), specify it as $var_name. Note that the URL
is relative to the URL specified in the WEBSERVICEAPI table.

• WSAPIOPSCHEMA: This table contains the schema of the Web service Op-
eration response. Note that we use the XML Schema to store this information.
Therefore it must be remembered that any json response will be internally trans-
formed to XML. The root element of a transformed JSON (to XML) is <json>

• WSAPIOPTRANSFORM: To make sure that every web service operation

D.2. Relations 299

J
O
H
N
.H
T
T
P
M
E
T
H
O
D

P
*

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2
 (

1
0
0
 B

Y
T

E
)

D
E

S
C

R
IP

T
IO

N
V

A
R

C
H

A
R

2
 (

1
0
0
0
 B

Y
T

E
)

W
S
A
P
IM
E
S
S
A
G
E
F
O
R
M
A
T

U
F

W
S

_
A

P
I_

ID
N

U
M

B
E

R
U

F
M

E
S

S
A

G
E

_
F

O
R

M
A

T
_
ID

N
U

M
B

E
R

P
*

ID
N

U
M

B
E

R

W
E
B
S
E
R
V
IC
E
A
P
I

P
*

ID
N

U
M

B
E

R
U

F
W

E
B

_
S

E
R

V
IC

E
_
ID

N
U

M
B

E
R

U
N

A
M

E
V

A
R

C
H

A
R

2
 (

1
0
0
 B

Y
T

E
)

V
E

R
S

C
H

A
R

 (
1
0
 B

Y
T

E
)

U
R

L
V

A
R

C
H

A
R

2
 (

1
0
0
 B

Y
T

E
)

H
T

T
P

_
H

E
A

D
E

R
V

A
R

C
H

A
R

2
 (

3
0
0
 B

Y
T

E
)

H
T

T
P

B
O

D
Y

V
A

R
C

H
A

R
2

(3
0
0

B
Y

T
E

)

M
E
S
S
A
G
E
F
O
R
M
A
T

P
*

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2
 (

1
0
0
 B

Y
T

E
)

D
E

S
C

R
IP

T
IO

N
V

A
R

C
H

A
R

2
 (

1
0
0
0
 B

Y
T

E
)

W
E
B
S
E
R
V
IC
E
A
P
IO
P
E
R
A
T
IO
N

P
*

ID
N

U
M

B
E

R
U

F
*

W
S

_
A

P
I_

ID
N

U
M

B
E

R
U

*
N

A
M

E
V

A
R

C
H

A
R

2
 (

1
0
0
 B

Y
T

E
)

*
U

R
L

V
A

R
C

H
A

R
2
 (

1
0
0
 B

Y
T

E
)

F
*

H
T

T
P

_
M

E
T

H
O

D
_
ID

N
U

M
B

E
R

H
T

T
P

_
H

E
A

D
E

R
V

A
R

C
H

A
R

2
 (

5
0
0
 B

Y
T

E
)

H
T

T
P

_
B

O
D

Y
V

A
R

C
H

A
R

2
 (

5
0
0
 B

Y
T

E
)

C
R

U
D

N
U

M
B

E
R

(1
9

2
)

W
S
A
P
IO
P
T
R
A
N
S
F
O
R
M

P
*

ID
N

U
M

B
E

R
F

W
S

_
A

P
I_

O
P

_
ID

N
U

M
B

E
R

X
M

L
S

C
H

E
M

A
C

L
O

B

W
S
A
P
IO
P
S
C
H
E
M
A

P
*

ID
N

U
M

B
E

R
F

W
S

_
A

P
I_

O
P

_
ID

N
U

M
B

E
R

X
M

L
S

C
H

E
M

A
C

L
O

B

W
S
A
P
IR
E
Q
P
A
R
A
M
S

P
*

ID
N

U
M

B
E

R
U

F
W

S
_
A

P
I_

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2
 (

1
0
0
 B

Y
T

E
)

D
E

S
C

R
IP

T
IO

N
V

A
R

C
H

A
R

2
 (

2
0
0
 B

Y
T

E
)

F
A

U
T

H
M

E
T

H
O

D
ID

N
U

M
B

E
R

A
U
T
H
M
E
T
H
O
D

P
*

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2
 (

1
0
0
 B

Y
T

E
)

D
E

S
C

R
IP

T
IO

N
V

A
R

C
H

A
R

2
 (

1
0
0
0
 B

Y
T

E
)

W
E
B
S
E
R
V
IC
E
A
P
IS
T
A
T
E

P
*

ID
N

U
M

B
E

R
U

F
W

S
_
A

P
I_

ID
N

U
M

B
E

R
U

S
T

A
T

E
V

A
R

C
H

A
R

2
 (

2
0
 B

Y
T

E
)

W
S
A
P
IO
A
U
T
H
1
P
A
R
A
M

P
*

ID
N

U
M

B
E

R
F

*
W

S
_
A

P
I_

ID
N

U
M

B
E

R
*

K
E

Y
V

A
R

C
H

A
R

2
 (

2
0
0
 B

Y
T

E
)

*
S

E
C

R
E

T
V

A
R

C
H

A
R

2
 (

2
0
0
 B

Y
T

E
)

*
R

E
Q

U
E

S
T

_
U

R
L

V
A

R
C

H
A

R
2
 (

2
0
0
 B

Y
T

E
)

*
A

C
C

E
S

S
_
T

O
K

E
N

_
U

R
L

V
A

R
C

H
A

R
2
 (

2
0
0
 B

Y
T

E
)

*
A

U
T

H
O

R
IZ

A
T

IO
N

U
R

L
V

A
R

C
H

A
R

2
(2

0
0

B
Y

T
E

)

Fi
gu

re
D

.4
:

D
et

ai
ls

of
SQ

L
Ta

bl
es

R
el

at
ed

to
W

eb
Se

rv
ic

e
A

PI

300 Appendix D. DaWeS: Manual

is properly transformed to the required information, we make use of the XSLT
transformation. As mentioned before, internally we transform the data to XML,
therefore this fact must be considered while working with json format message
responses. The root element of a transformed JSON (to XML) is <json>

• WSAPIOAUTH1PARAM: If a web service API uses OAuth 1.0 authentica-
tion, this stores the API key (of the administrator), API secret (of the adminis-
trator) and various authentication end points (URL) of the web service for OAuth
1.0.

• WSAPIREQPARAMS: This table consists of the information that must be
obtained from the user (enterprise) in order to make the API calls on its behalf.
Examples include authentication parameters like username, password.

D.2.3 Global and Local Schema Relations

Figure D.5 explains the tables used to store local and global schema relations and their
associated data constraints. It also shows the attribute used for the LAVMapping.

GSCONSTRAINTS

P * ID NUMBER
CONJUNCTIVEQUERY VARCHAR2 (1000 BYTE)

GSRELATIONATTRIBUTE

P * ID NUMBER
UF* GS_RELATION_ID NUMBER
U NAME VARCHAR2 (100 BYTE)
F DATA_TYPE_ID NUMBER

DESCRIPTION VARCHAR2 (100 BYTE)

DATATYPE

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)

LSRELATIONATTRIBUTE

P * ID NUMBER
UF LS_RELATION_ID NUMBER

* BOUND NUMBER
F * DATA_TYPE_ID NUMBER

* NAME VARCHAR2 (100 BYTE)
* IDX NUMBER

LOCALSCHEMARELATION

P * ID NUMBER
NAME VARCHAR2 (100 BYTE)

F WS_API_OP_ID NUMBER
LAVMAPPINGCQ VARCHAR2 (1000 BYTE)

GLOBALSCHEMARELATION

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)

Figure D.5: Details of SQL Tables Related to Local and Global Schema

We now discuss the various tables in detail.

D.2. Relations 301

• DATATYPE: This table is used to define different data types. Examples in-
clude integer, string, float, project identifier, basecamp project identifier. The
attributes include identifier, name and description.

• GLOBALSCHEMARELATION: Global schema relations are used to define
new record definitions. Examples include Project, Campaign, Task. The at-
tributes include identifier, name and description.

• GSRELATIONATTRIBUTE: This is used in conjunction with table GLOB-
ALSCHEMARELATION. This contains the details of every attribute used in the
global schema relation, its index (note that index starts from 1). The attributes
include identifier, name, description, reference to the concerned global schema
relation and reference to the data type.

• GSCONSTRAINTS: This is used to specify any constraints on the global
schema. Currently it is used to support full and functional dependeny. The
attributes include identifier, and conjunctive_query. The attribute conjunc-
tive_query in the table has the following format (for the functional and full
dependencies)

E(x...z) :- GSRel1(...),GSRelN(...),EQUAL(..)....EQUAL(..).

Note there is a period(.) at the end.
• LOCALSCHEMARELATION: This is the transformed output of a web ser-

vice response expressed like a relation. Therefore it contains the details of the
relevant web service API operation. The attributes include the identifier, refer-
ence to the concerned web service API operation, name and the LAV Mapping
between the current local schema relation and the global schema relations. Note
that the LAV mapping is a conjunctive query in DaWeS.

• LSRELATIONATTRIBUTE: This is used in conjunction with the table LO-
CALSCHEMARELATION to specify the attributes and their index (note that
index starts from 1). The attribute includes the identifier, reference to the re-
spective local schema relation, name, bound status(whether the attribute in the
relation is bound/input or not; hence it takes the values 1 when the concerned
attribute is bound and 0, when it is not), index and reference to the data type.

D.2.4 Record Definitions and Performance Indicator Queries

The global schema relations are used to store the record definitions (datalog query
formulated over the global schema relations). These record definitions are in turn

302 Appendix D. DaWeS: Manual

used to define the performance indicator queries. Both the record definitions and the
performance indicator queries must be periodically calibrated in order to make sure
that they perform the computation correctly. Figure D.6 shows the tables related
to store the record definitions and performance indicator queries. It also shows the
tables related to perform the calibration of the record definitions and the performance
indicator queries.

UPDATEFREQUENCY

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)

LCRECORDCALIBRATIONTESTDATA

P * ID NUMBER
F LCRECORD_ID NUMBER

INPUT VARCHAR2 (1000 BYTE)
RESULT VARCHAR2 (1000 BYTE)

LCRECORD

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
F FREQUENCY_ID NUMBER

DATALOGQUERY VARCHAR2 (4000 BYTE)

LCRECORDATTRIBUTE

P * ID NUMBER
F LCRECORD_ID NUMBER

IDX NUMBER
NAME VARCHAR2 (1000 BYTE)

LCINDICATORATTRIBUTE

P * ID NUMBER
UF LCINDICATOR_ID NUMBER
U NAME VARCHAR2 (100 BYTE)
F DATA TYPE ID NUMBER

LCINDICATORDEPRECORDS

UF LCI_ID NUMBER
UF LCRECORD_ID NUMBER
P * ID NUMBER
U QUERY VARCHAR2 (200 BYTE)

LCINDICATOR

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
SQL_QUERY VARCHAR2 (1000 BYTE)

F FREQUENCY ID NUMBER

LCINDICATORCALIBRATIONTESTDATA

P * ID NUMBER
F LCINDICATOR_ID NUMBER

INPUT VARCHAR2 (1000 BYTE)
RESULT VARCHAR2 (1000 BYTE)

Figure D.6: Details of SQL Tables Related to Record Definitions and Performance
Indicators

We now discuss the various tables in detail.

• UPDATEFREQUENCY: It is used to store different frequencies of compu-
tation for the performance indicator and the record definitions. The examples
include daily, weekly. The attributes include identifier, name and description.

• LCRECORD: A record definition is a (recursive) datalog query defined over
the global schema relations. This table is used to store the record definition. The
attributes include identifier, name, description, datalog query and reference to
the frequency of computation.

• LCRECORDATTRIBUTE: This is used in conjunction with the LCRECORD
table to specify the attributes and their index (note that index starts from 1).
The attributes include identifier, reference to the concerned record definition,
name and the index. Note that the data type of every term obtained after the
query computation is a string. Hence we don’t have any specific reference to the
data type.

D.2. Relations 303

• LCRECORDCALIBRATIONTESTDATA Computation of a Record must
be in accordance with what it is defined to do. The calibration test data has
an associated input and desired result. The calibration input test data is fed
to an record computing module and it’s verified whether the obtained relation
is the same as that expected. The attributes include the identifier, name, input
test data and the desired result. Note that when the input test data is empty, it
corresponds to the situation when the record computation is made over the data
obtained from the web service(s).The calibration test data for a record will be a
set of input relations with the name of dependent global schema relation names.
Example Project(’1’,’Project A’, ’Open’,’2013-11-11’). The resultant data is also
expressed as a relation q(...), where q can be replaced by any word used as the
query predicate name.

• LCINDICATOR: An indicator makes use of the records. It contains the SQL
query describing the computation of the indicator using the record definitions.
The attributes include identifier, name, description, sql query using the record
definition names and reference to the frequency of computation.

• LCINDICATORATTRIBUTE: The attributes of the indicator are stored in
this table. This table is used in conjunction with LCINDICATOR table. The
index of the attributes start from 1. The attributes of this table include identifier,
reference to the concerned performance indicator query, name and reference to
the data type.

• LCINDICATORCALIBRATIONTESTDATA: The calibration test data
for a indicator will be a set of input relations with the name of dependent
LCRECORD with spaces removed and the resultant data is expressed as a rela-
tion q(...). The attributes include the identifier, name, input test data and the
desired result.

• LCINDICATORDEPRECORDS: This is to specify the dependent records
for a performance indicator computation. The attributes include the identifier,
reference to the concerned performance indicator, reference to the required perfor-
mance indicator and a (SQL) query to perform various checks on the dependent
records of the organizations (whether they are error-free or any other checks).

304 Appendix D. DaWeS: Manual

D.2.5 Enterprises, Enterprise Records and Enterprise Perfor-
mance Indicators

The users of DaWeS are the various organizations(enterprises). Not every organization
is interested in integrating with every web service available with DaWeS. Similarly
there are a large number of performance indicators and record definitions. Therefore,
every organization needs to specify the authentication parameters of every interested
web service and the desired record definitions as well as the performance indicator
queries. Figure D.7 shows the tables related to an organization. Figure D.8 shows
the tables related to the organization data (result obtained from the record definition
evaluation and performance indicator query evaluation).

WSAPIREQPARAMS

P * ID NUMBER
UF WS_API_ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (200 BYTE)
F AUTH METHOD ID NUMBER

LCINDICATOR

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
SQL_QUERY VARCHAR2 (1000 BYTE)

F FREQUENCY ID NUMBER

LCRECORD

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
F FREQUENCY_ID NUMBER

DATALOGQUERY VARCHAR2 (4000 BYTE)

ORGANIZATION

P * ID NUMBER
NAME VARCHAR2 (100 BYTE)
URL VARCHAR2 (200 BYTE)
EMAIL VARCHAR2 (100 BYTE)

ORGINTDRECS

P * ID NUMBER
UF ORG_ID NUMBER
UF LCR_ID NUMBER

ORGINTDPIS

P * ID NUMBER
UF ORG_ID NUMBER
UF LCI_ID NUMBER

ORGREQPARAMS

P * ID NUMBER
F WS_API_RP_ID NUMBER

VALUE VARCHAR2 (200 BYTE)
F ORG ID NUMBER

Figure D.7: Details of SQL Tables Related to Organization, its authentication params
and interested Record Definitions and Performance Indicator

We now discuss the various tables in detail.

• ORGANIZATION: It is used to store the details of organizations (DaWeS end
users/enterprises). The attributes of this table include identifier, url, name and
email.

• ERROR: It is used to store the error encountered during the computation of a
record or a performance indicator query. The attributes include identifier, error

D.2. Relations 305

LCRECORD

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
F FREQUENCY_ID NUMBER

DATALOGQUERY VARCHAR2 (4000 BYTE)

ORGINDICATOR

P * ID NUMBER
UF ORG_ID NUMBER
U * TIME TIMESTAMP
UF LCINDICATOR_ID NUMBER
UF ERROR ID NUMBER

ORGRECORD

P * ID NUMBER
UF ORG_ID NUMBER
U * TIME TIMESTAMP
UF LCRECORD_ID NUMBER
UF ERROR ID NUMBER

ORGINDICATORVAL

P * ID NUMBER
UF* ORG_IND_ID NUMBER
U IDX NUMBER
UF LCI_ATTR_ID NUMBER

VAL VARCHAR2 (1000 BYTE)

ORGRECORDVAL

UF LCR_ATTR_ID NUMBER
VALUE VARCHAR2 (1000 BYTE)

UF ORG_RECORD_ID NUMBER
U IDX NUMBER
P * ID NUMBER

ERROR

P * ID NUMBER
ERROR_MESSAGE VARCHAR2 (500 BYTE)
QUERY VARCHAR2 (2000 BYTE)

ORGANIZATION

P * ID NUMBER
NAME VARCHAR2 (100 BYTE)
URL VARCHAR2 (200 BYTE)
EMAIL VARCHAR2 (100 BYTE)

LCINDICATOR

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
SQL_QUERY VARCHAR2 (1000 BYTE)

F FREQUENCY ID NUMBER

Figure D.8: Details of SQL Tables Related to Organization Data

message and the query that failed.
• ORGREQPARAMS: It is used to store the authentication parameters of the

organizations for various web services. The attributes include the identifier, refer-
ence to the organization, reference to web service API required parameter and its
value (Currently these values are plain text, but they can be hashed for security
reasons).

• ORGINTDRECS: An organization may only be interested in some records.
This table stores this information. Therefore the attributes include identified,
reference to the organization and reference to the interested record definition.

• ORGINTDPIS: An organization may only be interested in some performance
indicators. This table stores this information. Therefore the attributes include
identified, reference to the organization and reference to the interested perfor-
mance indicator query.

• ORGRECORD: The results obtained after the evaluation of the record defini-

306 Appendix D. DaWeS: Manual

tion are stored in this table along with the timestamp. The attributes include
the identifier, reference to the concerned record definition, reference to the orga-
nization, time of evaluation and finally in case of error, a reference to the error
occured.

• ORGRECORDVAL:It is used in conjunction with ORGRECORD table and
contains the query results. The results obtained after the query evaluation con-
sists of multiple tuples. Every tuple is identified by an index (index starts from
1). For every term in the tuple, there is an associated attribute (LCRECORDAT-
TRIBUTE). Therefore the attributes of this table include identifier, reference to
the record (computed), index of the tuple, reference to the attribute of the term
and the obtained term value.

• ORGINDICATOR: The results obtained after the evaluation of the perfor-
mance indicator query is stored in this table along with the timestamp. The
attributes include the identifier, reference to the concerned performance indica-
tor query, reference to the organization, time of evaluation and finally in case of
error, a reference to the error occured (otherwise it is null).

• ORGINDICATORVAL It is used to store the results of organization indicator
and is used in conjunction with ORGINDICATOR. The results obtained after
the query evaluation consists of multiple tuples. Every tuple is identified by an
index (index starts from 1). For every term in the tuple, there is an associated
attribute (LCINDICATORATTRIBUTE). Therefore the attributes of this table
include identifier, reference to the performance indicator (computed), index of
the tuple, reference to the attribute of the term and the obtained term value.

D.2.6 Tags and Ratings

Different organizations have been given the option to tag the web services, record
definitions and performance indicator queries of interest. They can also rate all of
them with values 1 to 10 (with 10 being the highest rating). Figure D.9 shows the
tables used to store the ratings and tags given by an organization.

We now discuss the various tables in detail.

• TAG: Tags for web services, records and indicators. The attributes include
identifier, name and description (optional).

• WEBSERVICEANDRATING: Every user of the platform can specify a rat-
ing to the service. The rating ranges from 1-10, with 10 being the highest. The

D.2. Relations 307

L
C
IN
D
IC
A
T
O
R

P
*

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2

 (
1

0
0

 B
Y

T
E

)
D

E
S

C
R

IP
T

IO
N

V
A

R
C

H
A

R
2

 (
1

0
0

0
 B

Y
T

E
)

S
Q

L
_

Q
U

E
R

Y
V

A
R

C
H

A
R

2
 (

1
0

0
0

 B
Y

T
E

)
F

F
R

E
Q

U
E

N
C

Y
ID

N
U

M
B

E
R

J
O
H
N
.L
C
IN
D
IC
A
T
O
R
A
N
D
T
A
G

U
F

L
C

I_
ID

N
U

M
B

E
R

U
F

T
A

G
_

ID
N

U
M

B
E

R
P

*
ID

N
U

M
B

E
R

U
F

O
R

G
ID

N
U

M
B

E
R

L
C
R
E
C
O
R
D

P
*

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2

 (
1

0
0

 B
Y

T
E

)
D

E
S

C
R

IP
T

IO
N

V
A

R
C

H
A

R
2

 (
1

0
0

0
 B

Y
T

E
)

F
F

R
E

Q
U

E
N

C
Y

_
ID

N
U

M
B

E
R

D
A

T
A

L
O

G
Q

U
E

R
Y

V
A

R
C

H
A

R
2

 (
4

0
0

0
 B

Y
T

E
)

J
O
H
N
.L
C
R
E
C
O
R
D
A
N
D
T
A
G

U
F

L
C

R
_

ID
N

U
M

B
E

R
U

F
T

A
G

_
ID

N
U

M
B

E
R

P
*

ID
N

U
M

B
E

R
U

F
O

R
G

ID
N

U
M

B
E

R

W
E
B
S
E
R
V
IC
E

P
*

ID
N

U
M

B
E

R
U

F
W

S
_

P
R

O
V

ID
E

R
_

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2

 (
1

0
0

 B
Y

T
E

)
U

R
L

V
A

R
C

H
A

R
2

 (
1

0
0

 B
Y

T
E

)
D

E
S

C
R

IP
T

IO
N

V
A

R
C

H
A

R
2

 (
2

5
5

 C
H

A
R

)
L

O
G

O
U

R
L

V
A

R
C

H
A

R
2

(2
5

5
C

H
A

R
)

W
E
B
S
E
R
V
IC
E
A
N
D
T
A
G

U
F

W
E

B
_

S
E

R
V

IC
E

_
ID

N
U

M
B

E
R

U
F

T
A

G
_

ID
N

U
M

B
E

R
P

*
ID

N
U

M
B

E
R

U
F

O
R

G
ID

N
U

M
B

E
R

W
E
B
S
E
R
V
IC
E
A
N
D
R
A
T
IN
G

U
F

W
E

B
_

S
E

R
V

IC
E

_
ID

N
U

M
B

E
R

R
A

T
IN

G
N

U
M

B
E

R
*

ID
N

U
M

B
E

R
U

F
O

R
G

ID
N

U
M

B
E

R

J
O
H
N
.L
C
R
E
C
O
R
D
A
N
D
R
A
T
IN
G

U
F

L
C

_
R

E
C

O
R

D
_

ID
N

U
M

B
E

R
U

R
A

T
IN

G
N

U
M

B
E

R
*

ID
N

U
M

B
E

R
U

F
O

R
G

ID
N

U
M

B
E

R

O
R
G
A
N
IZ
A
T
IO
N

P
*

ID
N

U
M

B
E

R
N

A
M

E
V

A
R

C
H

A
R

2
 (

1
0

0
 B

Y
T

E
)

U
R

L
V

A
R

C
H

A
R

2
 (

2
0

0
 B

Y
T

E
)

E
M

A
IL

V
A

R
C

H
A

R
2

 (
1

0
0

 B
Y

T
E

)

J
O
H
N
.L
C
IN
D
IC
A
T
O
R
A
N
D
R
A
T
IN
G

U
F

L
C

_
IN

D
IC

A
T

O
R

_
ID

N
U

M
B

E
R

U
R

A
T

IN
G

N
U

M
B

E
R

*
ID

N
U

M
B

E
R

U
F

O
R

G
ID

N
U

M
B

E
R

J
O
H
N
.T
A
G

P
*

ID
N

U
M

B
E

R
U

N
A

M
E

V
A

R
C

H
A

R
2

 (
1

0
0

 B
Y

T
E

)
D

E
S

C
R

IP
T

IO
N

V
A

R
C

H
A

R
2

 (
1

0
0

0
 B

Y
T

E
)

Fi
gu

re
D

.9
:

D
et

ai
ls

of
SQ

L
Ta

bl
es

R
el

at
ed

to
O

rg
an

iz
at

io
n

Ta
gs

an
d

R
at

in
gs

308 Appendix D. DaWeS: Manual

attributes include the identifier, reference to the organization, reference to the
web service and the rating.

• WEBSERVICEANDTAG: An enterprise can tag a web service to specify its
purpose of usage. This is useful to search a web service based on various purposes
of a service. The attributes include the identifier, reference to the organization,
reference to the web service and reference to the tag.

• LCRECORDANDTAG: An organization can define a tag for a LCRecord. It
can be any string of choice. The attributes include the identifier, reference to the
organization, reference to the record definition and reference to the tag.

• LCRECORDANDRATING: An organization can rate a record a rating be-
tween 1 and 10, 10 being the highest. The attributes include the identifier,
reference to the organization, reference to the record definition and the rating.

• LCINDICATORANDTAG: An organization can define tags for the indicator.
It can be a string of any choice. The attributes include the identifier, reference
to the organization, reference to the performance indicator query and reference
to the tag.

• LCINDICATORANDRATING: An organization can rate an indicator a rat-
ing between 1 and 10, 10 being the highest. The attributes include the identifier,
reference to the organization, reference to the performance indicator query and
the rating.

D.2.7 Calibration Status and Error Details

We saw before the various calibration test data for the record definitions and perfor-
mance indicator queries. Figure D.10 shows how the results of the calibration tests are
stored.

• CALIBRATIONRECORDS It is used to store the calibration status of record
definition computation. The attributes include identifier, reference to the con-
cerned record definition, the time of calibration, status of calibration (whether
passed or failed; if passed, the value is 1, else 0) and any remark after the cali-
bration is performed (useful for diagnosis, useful after failure).

• CALIBRATIONINDICATORS It is used to store the calibration status of
performance indicators computation. The attributes include identifier, reference
to the concerned performance indicator, the time of calibration, status of calibra-
tion (whether passed or failed; if passed, the value is 1, else 0) and any remark
after the calibration is performed (useful for diagnosis, useful after failure).

D.3. DaWeS: Command Line Manual 309

LCRECORD

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
F FREQUENCY_ID NUMBER

DATALOGQUERY VARCHAR2 (4000 BYTE)

LCINDICATOR

P * ID NUMBER
U NAME VARCHAR2 (100 BYTE)

DESCRIPTION VARCHAR2 (1000 BYTE)
SQL_QUERY VARCHAR2 (1000 BYTE)

F FREQUENCY ID NUMBER

CALIBRATIONRECORDS

P * ID NUMBER
* STATUS NUMBER
* TIME TIMESTAMP

F * LCRECORD_ID NUMBER
* MESSAGE VARCHAR2 (2000 BYTE)

CALIBRATIONINDICATORS

P * ID NUMBER
* STATUS NUMBER
* TIME TIMESTAMP

F * LCINDICATOR_ID NUMBER
* MESSAGE VARCHAR2 (2000 BYTE)

Figure D.10: Details of SQL Tables Related to Calibration

D.3 DaWeS: Command Line Manual

D.3.1 Name

dawes - Web Service fed Multi-Enterprise Data Warehouse

D.3.2 Synopsis

dawes [-irhv] [-csl r|ws|pi] [-o organization] [-p string] [-n Identifier]

D.3.3 Description

DaWeS is a Web Service fed multi-enterprise data warehouse. Using this application,
users can add new web services to be integrated to the system, define new records and
performance indicators. Users can also run the various unit tests and integration tests
that comes alongwith the application. Thus the user can cali- brate the system to make
sure that the system is working as it is expected. There’s also a scheduler that runs to
fetch the records and the performance indicators based on their expected frequency.

D.3.4 Options

• -i or –initialize: This option is used to initialize the system(to experiment the
system with some default web ser- vices, records and performance indicators)

310 Appendix D. DaWeS: Manual

• -c or –compute r|pi: It is used to fetch or compute record or performance
indicator respectively. Therefore it takes one of the values from r|pi option with
the organization identifier as the argument. By default, if no specific identifier
corresponding to the record or performance indicator is specified, all the records
or performance indicators of the organization is computed. In order to compute
a particular record or performance indicator, specify the identifier using the -n|–
number option with the correspond- ing identifier as the argument.

• -s or –search ws|r|pi: It is used to search a new web service(ws), record(r)
or performance indicator(pi). Therefore it takes one of the values from ws|r|pi
-p|–pattern option. It can be a name or any desired string.

• -l or –calibrate all|r|pi: Run the unit tests and integration tests that comes
along with the application It is used to calibrate a record, performance indicator
or a web service. Therefore it takes one of the values from ws|r|pi By default, if
no specific identifier corresponding to the web service or record or performance
indi- cator is specified, all the web services, records or performance indicators are
calibrated. In order to calibrate a particular web service, record or performance
indicator, specify the identifier using the -n|–number identifier option with the
corresponding identifier as the argument.

• -r or –scheduler: It is used to run the scheduler. The scheduler fetches the
records from the web services and com- putes the performance indicators based
on their associated frequency. Once the computation or fetching is complete, it
sleeps till the next run. -t or –test

• -h or –help: Get the usage of tha application
• -v or –version: Get the version of the application
• -o or –organization identifier: It is used to specify the organization. The

identifier of an organization is specified as an argument to this option. This
option is used with the -d|–define and -c|–compute options.

• -p or –pattern string: This is used to specify a pattern to search along with
the -s|–search option. The desired pattern is the argument to this option.

• -n or –number identifier: This is used to specify the identifier of a web service,
record or performance indicator. The identi- fier is the argument to this option.
This option is used with the -l|–calibrate and -c|–compute options.

D.3.5 Examples

• dawes -i
It is used to initialize the system with initial set of data for running the unit tests

D.3. DaWeS: Command Line Manual 311

and calibration tests.
• dawes -s ws -p "project"

It is used to search a web service with names matching project, or belonging to
category ’*project*’ or having the tag ’*project*’.

• dawes -s r -p "task"
It is used to search a record having a name or tag ’*task*’

• dawes -s pi -p "task"
It is used to search a performance indicator having a name or tag ’*task*’.

• dawes -l r
It performs calibration for all the records

• dawes -l pi
It performs calibration for all the performance indicators

• dawes -l r -n 23
It performs the calibration of the record identified by the number 23

• dawes -l pi -n 23
It performs the calibration of the performance indicator identified by the number
23

• dawes -c r -o 12 -n 15
It fetches the record 15 of the the organization 12.

• dawes -c pi -o 12 -n 15
It computes the performance indicator with the 15 of the the organization 12.

• dawes -r
It runs the scheduler

D.3.6 Files

• config/application.ini
It is used to configure the application. It is used to specify the username, password
and the database schema.

• config/ecache.xml
It is used to configure the internal caching mechanism.

• config/database.sql
It contains the sql file for the initial setup

• config/log4j.properties
It can be configured to configure the logging mechanisms.

• resource/
It contains the files related to the unit tests. In general, this file is important to set

312 Appendix D. DaWeS: Manual

up an initial number of web services, their schema and response transformation
files. This file doesn’t require any modifications for the initial setup.

• man/
It contains the installation manual.

• dawes.jar
It is an executable jar

• dawes
The script to run the application

• config/log4j.properties
It can be configured to configure the logging mechanisms.

• resource/
It contains the files related to the unit tests. In general, this file is important to set
up an initial number of web services, their schema and response transformation
files. This file doesn’t require any modifications for the initial setup.

• man/
It contains the installation manual.

• dawes.jar
It is an executable jar

• dawes
The script to run the application

D.4 DaWeS: Java Interfaces for Developers

DaWeS developers can refer the following files to add support for new web services,
define new performance indicators and records.

• com.littlecrowd.dataintegration.relations: All the (relational) tables used in DaWeS.
• com.littlecrowd.dataintegration.init: It consists of a set of examples from the

three domain of web services under consideration. These examples can be used
to understand how new web services are added to the system, how local and
global schema relations are defined, how the LAV mapping is done and finally
how records and performance indicator queries are defined.

D.4.1 Interfaces

We take a look at various interfaces in DaWeS.

D.4. DaWeS: Java Interfaces for Developers 313

D.4.1.1 Adding a new domain in the Global Schema

When a new domain is added to the global schema, the following interface is used. It
is used to add new global schema relations pertaining to the new domain.

public interface IGlobalSchema {
/**
* Creating or Updating new Global Schema relations of a new domain
*/

public void createOrUpdateRelations() throws Exception;
}

D.4.1.2 Adding a new web service to DaWeS

In order to add a new web service to DaWeS, make sure that the associated web service
provider and the API operations are added using the following interface:

public interface IWebServiceCreator {
/**
* Creating a new Web Service Provider
*/

public void createWebServiceProvider() throws Exception;
/**
* Creating a new Web Service
*/

public void createWebService() throws Exception;
/**
* Creating a new Web Service API
*/

public void createWebServiceAPI() throws Exception;
/**
* Add the Web Service API operations
*/

public void createWebServiceAPIOperations() throws Exception;
}

D.4.1.3 Adding a new organization

When a new organization is added to DaWeS, some default performance indicators and
record definitions can also be added. In addition to this, the interface can also be used
to add the authentication parameters for different web services.

public interface IOrganizationCreator {
/**
* Add a new organization

314 Appendix D. DaWeS: Manual

*/
public void createOrganization() throws Exception;
/**
* Add the performance indicators that an organization is interested to
* compute
*/

public void createOrganizationInterestedPis() throws Exception;
/**
* Add the records that an organization is interested to
* compute
*/

public void createOrganizationInterestedRecs() throws Exception;
/**
* Add the authentication parameters for the web services that an
* organization is intended to integrate with
*/

public void createOrganizationReqParams() throws Exception;
}

D.4.1.4 Adding new Record Definitions

The following interface can be used to add new record definitions related to a new
domain (or domains):

public interface ILCRecordCreator {
/**
* Add the record definitionss related to a new domain (or domains)
*/

public void createRecords() throws Exception;
}

D.4.1.5 Adding new Performance Indicator Queries

The following interface can be used to add new performance indicator queries related
to a new domain (or domains):

public interface ILCIndicatorCreator {
/**
* Add the performance indicator queries related to a new domain (or domains)
*/

public void createIndicators() throws Exception;
}

D.4. DaWeS: Java Interfaces for Developers 315

D.4.2 Options

We saw in section D.3 various command line options of DaWeS. We now discuss the
java interfaces for those options. The options we mainly discuss here are the following:

1. initialize DaWeS with various default web services, global schema relations,
record definitions and performance indicator queries.

2. compute the records and performance indicators of an organization
3. search a web service, record definition and performance indicator query
4. calibrate the record and performance indicator computation
5. scheduler to periodically perform the record and performance indicator compu-

tation

D.4.2.1 initialize

Given below is the interface to initialize DaWeS:

public class InitialData {
public static void initialize() {
}

}

D.4.2.2 compute

Given below are the interfaces to compute the records and performance indicators:

public class LittleCrowdRecord {
/**
* @param lcrID: Record Definition identifier
* @param orgID: Organization identifier
* @param print: whether to print the results on to the screen
* Computes the given record of the organization
*/

public static void compute(BigDecimal lcrID, BigDecimal orgID,
boolean print) throws Exception {

}
/**
* @param orgID: Organization identifier
* Computes all the (interested) records of the organization
*/

public static void compute(BigDecimal orgID) throws Exception {
}

}

316 Appendix D. DaWeS: Manual

public class LittleCrowdPerformanceIndicator {
/**
* @param lcpID: Performance Indicator Query identifier
* @param orgID: Organization identifier
* @param print: whether to print the results on to the screen
* Computes the given performance indicator of the organization
*/

public static void compute(BigDecimal lcpID, BigDecimal orgID,
boolean print) throws Exception {

}
/**
* @param orgID: Organization identifier
* Computes all the (interested) performance indicators of the organization
*/

public static void compute(BigDecimal orgID) {
}

}

D.4.2.3 search

Following is the interface to search a web service, record definition and performance
indicator query recognized by the type ws, r and pi respectively:

public class Search {
/**
* @param type: Possible values include ws, r and pi
* @param pattern: Pattern to search for
* returns the search results
*/

public static ISearchResult search(String type, String pattern)
throws Exception {

}
}
public abstract interface ISearchResult {

public void addRow(ISearchResultRow row);
public List<ISearchResultRow> get();
public void print();

}

public abstract interface ISearchResultRow {
public List<String> get();

}

D.4.2.4 calibrate

Following are the interfaces to calibrate the record and performance indicator compu-
tation:

D.4. DaWeS: Java Interfaces for Developers 317

public class CalibrationResult {
/**
* @param passed: Whether the calibration test passed
* @param remark: Remark for calibration test success/failure
* Constructor to set the calibration result
*/

public CalibrationResult(boolean passed, String remark) {
}
/**
* Returns whether the calibration passed or failed
*/

public boolean isPassed() {
}

/**
* Returns the remark related to the calibration test
*/

public String getRemark() {
}

}

public class LCRecordCalibration {
/**
* performs the calibration for all the record computation
*/

public static void calibrate() {
/**
* @param lcrID: Record Definition Identifier
* returns the calibration status
* performs the calibration of a record definition
*/

public static CalibrationResult calibrate(BigDecimal lcrID) {
}

public class LCPerformanceIndicatorCalibration {
/**
* performs the calibration of all performance indicator queries
*/

public static void calibrate() {
/**
* @param lcpiID: Performance Indicator Query identifier Identifier
* returns the calibration status
* performs the calibration of the given performance indicator
*/

public static CalibrationResult calibrate(BigDecimal lcpiID)
throws Exception {

}

D.4.2.5 scheduler

Following is the interface to run the scheduler to perform the periodic computation of
records and indicators.

318 Appendix D. DaWeS: Manual

public class SchedulerService {
public SchedulerService() {
}

}

