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1.1 General interest

T
urbulence is said to be one of the last unsolved problems of classical
physics. In a simplistic manner, one can describe turbulence as a very

complicated non-linear fluid flow principally associated with vortices. It is
easier to describe turbulence than to analyze it. Till date, no satisfactory
analytical theory has been established to understand turbulence. It is even
obscure to determine the suitable approach for understanding turbulence. De-
spite this enormous complexity, the most intriguing feature of turbulence is
its ubiquity in nature. Starting from the everyday fluids like tap water or milk
in a cup of hot coffee (see fig. 1.1), prominent signatures of turbulence are
observed in the tropospheric air, the space plasmas (the solar wind, magne-
tospheric plasmas) and even in the interstellar clouds which give birth to the
stars. Other than the usual hydrodynamical fluids and plasmas, turbulence
is believed to describe various phenomena in non-linear optics (Garnier et al.,
2012), small scale biological fluids like microbial suspensions (Wensink et al.,
2012). Turbulence is also observed in quantum mechanics (Proment et al.,
2009). Most interestingly, turbulent behaviour is significantly perceived even
in the field of finance and economics. This fact can be justified by a famous
remark of Benoit Mandelbrot, who said

" The techniques I developed for turbulence, like weather, also apply to the
stock market."

The formal study of turbulence is evoked from some practical interests.
One of them is its efficiency in mixing. A spoon of milk gets uniformly
mixed in coffee within some seconds only if we stir it to create turbulence.
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Without turbulence the mixing would take place by pure molecular diffusion
and would take several months to be completed. In case of weather forcasting,

Figure 1.1: Turbulence in the mixing of milk in coffee, Credit: Daniel G.
Walczyk.

an understanding of turbulence is a must. The first theories of turbulence
were indeed born out of that very interest (Richardson, 1922). Moreover, a
thorough investigation of atmospheric turbulence or more precisely clear air
turbulence (CAT) could be useful for reducing hazards to aircraft passengers
across the zones of rough air and also to design more efficient aircrafts.

1.2 Turbulence in space and astrophysical plas-
mas

Clear signature of turbulence has been observed (Armstrong et al., 1995;
Bruno & Carbone, 2005) also in the space plasmas like solar wind, magneto-
spherical plasmas etc. and in the astrophysical plasmas. In several studies
it is observed that the fluctuations in the aforesaid plasmas usually associate
large number of spatial and temporal scales and the power spectrum of energy
follows almost an identical power law (with index -5/3) to the one predicted
by Kolmogorov for incompressible hydrodynamic turbulence (discussed in de-
tails in chapter 4). However, the plasma turbulence is not exactly identical
to ordinary fluid turbulence due to the presence of electromagnetic fields.
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Moreover, the space plasmas are usually non-collisional and hence a viscous
dissipation mechanism cannot be associated. One has thus to consider the
plausibility of kinetic turbulence in such plasmas (Belmont et al., 2014). In
case of the solar wind, low frequency fluctuations are modelled by ordinary
MHD turbulence whereas more sophisticated models like Hall MHD, electron
MHD or purely kinetic approaches are needed to explain high frequency fluc-
tuations (Meyrand & Galtier, 2010; Salem et al., 2012). An understanding
of solar wind turbulence is necessary in order to understand the acceleration
and the anomalous heating of solar wind (Tu & Marsch, 1997). In course of
this thesis, analytical studies along with some spacecraft data analysis have
been performed in order to address these issues. On the other hand, turbu-
lence in the cold molecular highly compressible interstellar clouds is believed
to bring about the formation of a star by preventing the collapse of a self-
gravitating cloud. The scientists of University of California-Berkeley have
recently performed large scale supercomputing simulations (see figure 1.2) for
understanding the underlying mechanisms.

Figure 1.2: Supercomputing simulation showing the formation of interstel-
lar gas filaments in turbulent interstellar cloud; The highest density (red)
fragments represent molecular self-gravitating cores leading to the star for-
mation; Performed by researchers of University of California-Berkeley using
the Pleiades supercomputer at the NASA Advanced Supercomputing facility,
Credit: NASA.
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1.3 An outline of my thesis

Compressibility in fluids is a non trivial issue which becomes more complicated
when discussed in the framework of turbulence1. The principal work of my
thesis consists of deriving analytical statistical constraints or so-called exact
relations for compressible turbulence. A clear theoretical background is thus
necessary to be developed before presenting my work. Besides, the subject
of my thesis largely covers fluid mechanics, plasma physics and also space
physics. The composition of this thesis is accomplished from a pedagogical
point of view so as to render it accessible to all the persons having knowledge
of at least one of the three domains. Besides, discussing the main problematic
of the thesis, parallel attempts are also taken to address some misconceptions
or unanswered issues in a more general context. Including this introduction,
this thesis consists of eight chapters.

In the second chapter of this thesis, different concepts and measures of
compressibility have been introduced in a general context for a neutral fluid.
Some simple thermodynamic closures (polytropic, barotropic etc.) have been
discussed along with the associated inviscid invariants (mass, linear momen-
tum, total energy and kinetic helicity). Very familiar one dimensional model
of Burgers (1948) is also discussed including some properties of shock waves
in a compressible flow.

The third chapter presents a brief overview of plasma physics. The re-
ductions of kinetic Boltzmann equations2 into fluid equations and finally into
monofluid Magnetohydrodynamic (MHD) equation have been worked out in
a detailed manner. The approximation of ideal MHD, the corresponding lin-
ear wave modes (Alfvén and magnetosonic modes) and integral invariants
(mass, total energy, cross-helicity, magnetic helicity etc.) are discussed in a
schematic way. The notions of Elsässer variables and pseudo-energies both in
incompressible (Elsässer, 1950) and compressible MHD (Marsch & Mangeney,
1987) have been introduced at the end of the chapter.

The fourth chapter is dedicated to introduce turbulence or rather incom-
pressible turbulence both in neutral and MHD fluids. The chapter begins
with some interesting debatable issues like the proper definition of turbulence
or the distinction between chaos and turbulence. This part is followed by
a schematic discussion of different statistical symmetry considerations in the
study of turbulence. The notions of correlation functions, structure functions

1The construction of the sentence was done deliberately in order to present an alternative

point of view than the usual one where we say that turbulence in fluids is complicated and

becomes more complicated in compressible fluids.
2In usual books, the fluid equations are derived from collisionless Vlasov’s equation

which is physically not correct.
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and energy power spectra have been elucidated always in incompressible tur-
bulence. With all these elements two different phenomenological views K41
and IK are described respectively for hydrodynamical and magnetohydro-
dynamic turbulence along with the corresponding power laws which predict
respectively a −5/3 and a −3/2 power law index for the energy power spectra.
The dynamics and the physics of energy cascade in turbulence are explained
using those phenomenological views. Finally, the aspect of self-similarity or
the scale invariance in turbulence is investigated using different models of
intermittency and also a slightly different notion of extended self similarity
(ESS). This chapter practically sets up the theoretical background for present-
ing my thesis work thereby rendering the later more accessible to someone who
is not very familiar to the fundamentals of turbulence.

The fifth chapter contains a very brief review of different types of research
works which have been accomplished in exploring the fundamental properties
of compressible turbulence upto the beginning of my thesis and have played
some role in conglomerating my ideas over compressible turbulence and possi-
ble scopes in that said field. Some initial theoretical approaches are discussed
along with their predictions in a separate section. This part is followed by
another discussion of some important numerical approaches in compressible
turbulence and their different predictions in physical space and Fourier space
scaling. High resolution numerical simulations (Kritsuk et al., 2007a,b; Krit-
suk et al., 2010; Federrath et al., 2010) employing piecewise parabolic method
(PPM) for supersonic turbulence are discussed in an elaborate way. Unlike
incompressible turbulence, no −5/3 power law is found for the fluid velocity
power spectrum for compressible fluids. However, the Kolmogorov type −5/3

spectrum is found to be recovered even in compressible turbulence if one con-
siders the power spectra for cube-root density weighted velocity instead of
normal fluid velocity. For the MHD turbulence simulations, an identical sit-
uation is noticed for the Elsässer variables. A theoretical rather analytical
explanation for this behaviour is tried to investigate in scope of my thesis.
The chapter ends with some significant research works on the compressible
turbulence in astrophysical plasmas and space plasmas. Specially the work of
Carbone et al. (2009) using Ulysses spacecraft data revealed significant im-
provement in fast solar wind turbulence scaling laws when density fluctuations
are taken into account and also hints at the importance of a cube-root density
weighted velocity variable in compressible turbulence.

The sixth chapter comprises of my research works on compressible turbu-
lence. It begins with the derivations of some exact relations in incompressible
hydrodynamic and MHD turbulence. After describing some shortcomings of
previous theoretical approaches in compressible case, we have derived our ex-
act relations for (a) isohtermal neutral fluid (Galtier & Banerjee, 2011), (b)
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isothermal MHD fluid and (Banerjee & Galtier, 2013) (c) polytropic neutral
fluid (Banerjee & Galtier, 2014). With each derivation, we have tried to
understand the corresponding phenomenology and thereby predicting some
spectral indices. Interestingly, the justification behind the scaling of density
weighted velocity becomes clearer owing to these relations. Although the
aspect of anisotropy is beyond the scope of my thesis, a simple anisotropic
phenomenology is proposed in compressible MHD turbulence in the presence
of a very strong mean or external magnetic field. In case of polytropic turbu-
lence, fluctuations of local sound speed and the algebraic value of polytropic
index are predicted to play an important role.

In the chapter 7, a brief but formal introduction of the solar wind is given.
The applicability of MHD in case of the large scale fluctuations are also dis-
cussed. The following part is dedicated to test our exact relation for com-
pressible MHD turbulence using the THEMIS spacecraft data. After giving a
very brief introduction of the THEMIS mission and some of its instruments,
a step-by-step description of the data selection process is provided. In case of
fast solar wind, incompressible scaling is compared with the compressible scal-
ing whence an attempt to quantify the compressibility in the fast solar wind
turbulence is taken. All these studies in case of slow solar wind are kept as
future projects in order to compare the role of compressibility between these
two types of winds.

Finally, in the chapter 8, the significance of my work is resumed briefly along
with some unanswered issues. The chapter ends with a list of propositions of
future works both in theory of compressible turbulence and in spacecraft data
analysis of the space plasmas.
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2.1 What is compressibility ?

C
ompressibility of a matter (solid, liquid or gas) can be described as a
measure of ease with which its density can be altered either locally or

globally. So, in a sense compressibility is inverse to the elasticity of a material.
An increase in density (for a given mass) with respect to an initial density
corresponds to lower volume with respect to the initial volume and is called
compression whereas a decrease in density and hence a rise in volume is known
as rarefaction or dilatation.

The solids are highly elastic and very hard to deform. Their compressibility
is very low. The liquids are a bit less elastic but the compressibility is very
low too. Compressible fluid family is primarily represented by gases. They
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are usually very easy to be compressed or rarefied i.e. for a given pressure
change a gas will respond the best in comparison with solids and liquids (which
are almost indifferent to it). Formally compressibility (β) is defined as the
inverse of bulk modulus i.e. the fractional change in volume for unit change
in pressure (for a given temperature T) and is written as

β =
1

V

✓

∂V

∂P

◆

T

. (2.1)

It is important to note that the compressibility of a material is a function of
instantaneous temperature and pressure (Fine & Millero, 1973). Typically, at
273 K, the compressibility of water is 5.1⇥ 10−10 Pa−1 in the neighbourhood
of zero pressure. Under the same condition, the compressibility of air is about
10−5 Pa−1 which shows that air is much more compressible than water. The

Figure 2.1: Highly compressible dilute diffuse gas in the interstellar space;
Credit: University of Leeds.

above discussion, however, is appropriate for a solid or liquid or gas in static
condition. If we study a fluid in motion, then we have two points of view for
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studying the fluid. The first one is Lagrangian view which consists of studying
the flow by following a fluid blob (of given mass) and recording the changes
of different dynamical variables in course of time. Compressibility of the fluid
here is presented by the variation of density of the given blob with time. In
order to use the other one which is Eulerian point of view, a fixed geometric
volume in space is considered and the dynamical variables at each space and
time point in that volume are studied. In this context compressibility is said
to exist if the density functions (ρ(x, t)) have a non-zero temporal or spatial
derivative almost everywhere.

2.2 Measure of compressibility for a fluid in mo-
tion

Unlike the static case, it is difficult to give a consistent measure of compress-
ibility for a fluid in flow. It is because in the second case the compressibility
is no more a pure material property but gets influenced by the corresponding
flow dynamics. We thus talk of compressible flow. The basic dynamical
equations for a neutral (without charge) fluid is given by

∂ρ

∂t
+r · (ρv) = 0, (2.2)

∂v

∂t
+ (v · r)v = −rP

ρ
+ f + ν∆v +

ν

3
r (r · v) , (2.3)

where v (x, t) is the Eulerian fluid velocity, P (x, t) is the fluid pressure, f is
the body force per unit mass and ν is the kinematic viscosity (which is the
ratio of dynamic viscosity to the fluid density). For an incompressible flow,
at each point (x, t) of the flow field, density is constant and the above two
equations get reduced to

r · v = 0, (2.4)
∂v

∂t
+ (v · r)v = −rP + f + ν∆v. (2.5)

It is however noteworthy that in Eulerian case, the condition (2.4) is an out-
come of incompressibility and not necessarily imply incompressibility (one can
check immediately) whereas it corresponds directly to Lagrangian incompress-
ibility. Throughout our discussion, we shall consider the Eulerian point of

view.

Despite its difficulty, it is important to have a measuring parameter to com-
pare the degree of compressibility of different fluid flows so that the effect of
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compressibility on different phenomena can be analyzed easily. In the fol-
lowing we try to construct a quantity which can be a consistent measure of
compressibility. We assume an ideal (no viscosity) fluid which was initially at
rest with uniform initial density ρ0 and not necessarily uniform initial pressure
P0. The initial pressure gradient is equal to the body force (which is indepen-
dent of the flow) thereby producing zero acceleration. Now we assume very
small perturbation in density ρ1(⌧ ρ0) which causes small perturbations in
velocity (which was initially zero) and pressure and are respectively given by
v and P1. The non-linearity, consisting of terms which are negligible with one
order higher, does not contribute to the modified dynamics and so we are left
with

ρ0
∂v

∂t
+rP1 = 0, (2.6)

∂ρ1
∂t

+ ρ0r · v = 0. (2.7)

Assuming plane wave solution for the perturbations, we obtain simply

ω2
f =

✓

P1

ρ1

◆

k2 = C2
Sk

2, (2.8)

where ωf and k denote respectively the angular frequency and the wavenum-
ber of the linear mode(s). The above equation shows that one mode is possible
and that can easily be identified to acoustic mode (or sound wave) with phase
velocity (and group velocity) equal to CS =

p

P1/ρ1. Hence we can conclude
that any small perturbation in a compressible ideal fluid can propagate with
sound speed. Alternatively speaking, any information of small density fluc-
tuation can be propagated between two points with mutual separation l in a
characteristic compressible time τC = l/CS. For an incompressible fluid,
CS is infinity and so τc = 0. We can hence argue that higher the τC , higher is
the compressibility of the fluid. Following the same reasoning, we can say that
for a given flow with velocity v(x, t), a reliable measure of its compressibility
can be given by the dimentionless ratio | v |/CS which is known as the local
Mach number of the flow and is denoted by M(x, t). So for small density per-
turbation, the supersonic flow is more compressible than a subsonic flow and
the compressibility is linear with the Mach number according to our present
method. This formalism is done for ideal fluid. The insertion of viscosity
cannot, however, alter the propagation speed but attenuates the amplitude of
the wave.

Another approach for measuring the compressibility is by the method of
Helmholtz decomposition (Helmholtz, 1867). We learnt previously that
incompressible fluid velocity is solenoidal or divergenceless (2.4). Helmholtz
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decomposition expresses the fluid velocity vector, in general case, as a vector
sum of two components - i) Solenoidal part (vS) and ii) Compressible part
(vC) where by definition, r ·vS = 0 and r⇥vC = 0. A possible measure for
compressibility can be given simply by the ratio | vC |/| vS |. By construction,
these two components are mutually orthogonal in Fourier space as

k · v̂S = 0 ; k ⇥ v̂C = 0. (2.9)

This fact enables us to decompose the velocity in longitudinal (parallel to k)
and transverse components (v̂S and v̂S respectively) in Fourier space.

In the community of turbulence, however, some different quantities are used
to quantify the influence of compressibility in a turbulent fluid. The simplest
one can just be given as | r · v |/| r ⇥ v | which is approximately analogous
to the last definition using Helmholtz decomposition. Another measure is
obtained from the so-called small scale compressive ratio (rCS) (Kida &
Orszag, 1990, 1992; Kritsuk et al., 2007a) which is given by

rCS =

⌦

| r · v |2
↵

⌦

| r · v |2
↵

+
⌦

| r ⇥ v |2
↵ , (2.10)

and is believed to reflect the compressible effects in length scales near the
viscous length scale in a turbulent fluid. In their paper, Federrath et al.
(2010) used another slightly different version. In order to quantify the relative
importance of compressive motion over rotational motion, they used the ratio
EC(k)/Etot(k) where the numerator and the denominator are defined as

Z 1

0

EC(k)dk =
1

2

Z 1

0

v̂C · v̂⇤
C4πk

2dk,

Z 1

0

Etot(k)dk =
1

2

Z 1

0

v̂ · v̂⇤4πk2dk.

A simple measure of compressibility can also be obtained by the quantity
ρ1/ (ρ0P1) which reflects the static case but this measure does not take into
account the flow velocity and hence does not consider the correlation between
the compressibility and the kinetics.

2.3 Closure for compressible fluids

As shown in the previous section, the basic equations for a hydrodynamic
fluid consist of the mass continuity equation and the momentum conservation
equation which get a simpler form (2.4 and 2.5) for an incompressible fluid.
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These two equations (in fact four equations, the second being a vector equa-
tion) form a closed system1. Precisely speaking, we have one vector variable
v and one scalar variable P (of course it is a simplification for an isotropic
fluid otherwise P would be a tensor of rank two) - and we have one vector
equation and a scalar one. For compressible fluids, density appears to be an
additional scalar variable. So we need another scalar type relation in order to
close the system. A usual practice is to express the fluid pressure as a function
of fluid density. The corresponding fluid or flow-field is known as barotropic

fluid. A more simplified closure is obtained if we express the fluid pressure
proportional to an arbitrary power law of the density i.e.

P = Kργ.

This type of closure is called polytropic closure. Depending on the values
of γ, we have the following cases. The case γ = 1 corresponds to isothermal

case where the proportionality constant K comes to be the square of sound
speed of the flow field. γ = cp/cv is the adiabatic closure, where cp and
cv denote respectively the specific heat of a fluid at constant pressure and in
constant volume. For γ = 0 we get an isobaric fluid where the fluid pressure is
constant throughout. Incompressible limit can be derived from this polytropic
closure if γ −! 1 and can be shown as follows:

∂t(Pρ−γ) = 0 ) ∂tP + v · rP + γP (r · v) = 0. (2.11)

The limit γ −! 1 leads to the condition r · v = 0 which represents an
incompressible flow.

Another possible closure may be the irrotationality of the flow which means
r⇥ v = 0, although this is a vector closure and cannot readily be applied to
serve our purpose.

For the flow field where energy transport is important, we have to go further
and write the evolution equation for temperature too. Then for closing the
system, we have to use some closure relating heat flux, pressure, density etc.

2.4 Invariants in compressible barotropic fluid

2.4.1 Total energy

In general for three dimensional compressible flows whose dynamics is gov-
erned by the Navier-Stokes equations, the total energy is a conserved quantity

1In the present context, the concept of closure is used in a view to having a closed system

of algebraic equations obtained after having linearized the fluid equations which themselves

cannot be closed so easily due to the non-linearity in the Navier-Stokes equations.
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if the viscosity of the fluid is neglected (inviscid case). This fact is an imme-
diate consequence of translational symmetry in time of inviscid Navier-Stokes
equations. If the system of equation is closed with a barotropic closure i.e.
P = P (ρ) we can show that the total energy density is given as

E = ρ



v2

2
−
Z

Pd

✓

1

ρ

◆]

= ρ



v2

2
+

Z

P
dρ

ρ2

]

.

One can easily identify that the above expression consists of two terms - kinetic
energy and compressive internal energy. The internal energy per unit mass is
formally defined as e = −

R

Pd (1/ρ). The total energy conservation is shown
below. First we have :

∂
R

Edτ
∂t

=

Z

∂E
∂t

dτ =

Z

∂

∂t



ρ
v2

2
− ρ

Z

Pd

✓

1

ρ

◆]

dτ. (2.12)

Now we show that (using elementary vector calculus identities)

∂

∂t

✓

ρ
v2

2

◆

=

✓

v2

2

∂ρ

∂t
+ ρv · ∂v

∂t

◆

= −r ·
✓

ρ
v2

2
v

◆

− v · rP (2.13)

and

− ∂

∂t

✓

ρ

Z

Pd

✓

1

ρ

◆◆

= −er · (ρv) + 1

ρ

∂ρ

∂t

∂

∂
⇣

1
⇢

⌘

Z

Pd

✓

1

ρ

◆]

= −er · (ρv)− P

ρ
r · (ρv) = −er · (ρv)− P (r · v)− P

ρ
v · rρ. (2.14)

We note further that

ρv · re = −ρv · r
Z

Pd

✓

1

ρ

◆]

= −ρv · Pr
✓

1

ρ

◆

=
P

ρ
v · rρ. (2.15)

Using (2.13), (2.14) and (2.15), we obtain

∂E
∂t

= −r ·
✓

ρ
v2

2
v + ρev + Pv

◆

= −r · F . (2.16)

The above equation has the conservative form. The rate of change of total
energy density equals to the divergence of flux F . Using Gauss’ divergence
theorem and assuming that the normal component of the flux vanishes at the
boundary surface of our chosen volume, we can show that the total energy
(R

Edτ
)

is an inviscid invariant in three dimensional compressible flow.
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2.4.2 Kinetic helicity

Kinetic helicity is a pseudo scalar and is defined as
R

H!dτ where H! = v ·ω
and ω = r ⇥ v is the vorticity vector. The introduction of kinetic helicity
was also thanks to Helmholtz decomposition (Wu et al., 2007) discussed above.
The velocity vector as well as the vorticity vector can be decomposed in lateral
and transverse components with respect to one another and can be written as

v2ω = H!v + v ⇥Λ, (2.17)

ω2v = H!ω − ω ⇥Λ, (2.18)

where the longitudinal and transverse components of velocity and vorticity are
respectively proportional to the kinetic helicity density H! and the vector Λ

called the Lamb vector. In case of an inviscid barotropic fluid (under possible
conservative body force) total kinetic helicity is a conserved quantity thereby
describing the frozen vortex lines in the flow and hence a conservation of the
number of linkage or knottedness of those lines within them (Thomson, 1869).
Here, in the following, we examine the conservation of kinetic helicity of an
inviscid barotropic fluid :

∂H!

∂t
=

∂v

∂t
· ω +

∂ω

∂t
· v (2.19)

=



− (v · r)v − rP (ρ)

ρ

]

· ω + [r⇥ (v ⇥ ω)] · v (2.20)

= −r ·
✓

v2

2
ω

◆

− rP (ρ)

ρ
· ω +r · [v ⇥ (v ⇥ ω)] . (2.21)

In the step (2.20), we have used the fact that for a barotropic fluid, the
baroclinic vector (rP ⇥ rρ) is always zero. The expression (2.21) however
does not guarantee the conservation of kinetic helicity. Under the condition
where the rP/ρ can be written as a pure gradient, (2.21) is reduced to a pure
divergence form thereby guaranteeing the conservation of total kinetic helicity
under the assumption that either the corresponding flux vector disappears at
every point on the flow-field boundary surface or at the boundary surface it
is purely tangential to the surface. Fortunately, the usual closures of type
polytropic (non-isothermal) (P = Kργ) or isothermal (P = C2

sρ) satisfies the
necessary condition for kinetic helicity conservation in a compressible flow.

2.4.3 Mass and linear momentum

The above two conservations are non-trivial and they are not in general avail-
able (as they are derived here) in the text-books. For the total mass

(R

ρdτ
)
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and the total linear momentum
(R

ρvdτ
)

conservation, the demonstration is
more or less trivial and can immediately be obtained respectively from equa-
tions (2.2) and (2.3). Is it noteworthy that these two quantities are conserved
even in the presence of finite fluid viscosity. The conservation of linear mo-
mentum (as one can expect) is a direct consequence of the absence of any net
external force on the system whereas the mass conservation shows that the
fluid flows in a closed system which prohibits any mass exchange with the
exterior.

2.5 Potential flow

In the above section we have presented the irrotationality (r⇥ v = 0) as a
closure. But the significance of irrotationality is deeper than that and re-
presents a specific class of flow which is known as potential flow. The basic
reason behind the name resides in the fact that for an irrotational fluid, the
flow velocity vector can be expressed as a gradient of a scalar potential φ i.e.
v = −rφ (Zakharov & Sagdeev, 1970). If the fluid is additionally incompress-
ible then the potential satisfies Laplace’s equation i.e. ∆φ = 0. The flow can
be determined just by its kinetics (no information on the dynamics i.e. the
applied force is required to determine the local velocity field). An important
field of application for the potential flow is compressible flows. Remembering
the Helmholtz’s equation, we can understand that the flow velocity has only
its compressible part which means v ⌘ vC and vS = 0 and thus such a fluid
is infinitely compressible according to our measure of compressibility using
Helmholtz decomposition.

For this type of flow, the kinetic helicity is trivially conserved as it is iden-
tically zero (ω = 0) in this case. Interestingly for an irrotational inviscid fluid
the baroclinic vector is also identically zero. The fact can easily be verified
by taking the curl of (2.3) omitting the viscous and the forcing term. It is
thus concluded that a barotropic fluid need not be, in general, irrotational but
an irrotational fluid necessarily implies barotropicity when the viscosity is ne-
glected. The total energy is thus always conserved by the virtue of 2.4.1. In
the following, we shall search for the conservation of the total fluid dilatation
i.e.

R

(r · v) dτ .
Throughout our study, we have searched for flow invariants in the inviscid

limit in the absence of any net external forcing. This very procedure, although
not general, is appropriate in the framework of our study of completely de-
veloped turbulence in the inertial zone - a zone which is supposed to be
independent of the external forcing and the small scale viscous effects. A de-
tailed discussion on this point will be done later while introducing the fluid
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turbulence and its different aspects.

2.6 Two dimensional compressible flow

Discussion over two dimensional flows builds an essential part of fluid dynam-
ics owing to its numerous practical applications. It is however a bit tricky to
talk about the two dimensional flows. The number of available spatial coordi-
nates are three but the fluid velocity vector is spanned in two dimensions and
any variation in the third dimension is neglected. This type of flow field are
thus sometimes called 2.5 dimensional. The velocity field is assumed to be in
x-y plane (by choice) and is defined as

v = vx(x, y)ex + vy(x, y)ey, (2.22)

and the gradient operator is defined as

r ⌘ ∂

∂x
ex +

∂

∂y
ey. (2.23)

The corresponding vorticity vector (pseudo-vector to be precise) is then de-
fined as

ω = r⇥ v =

✓

∂vy
∂x

− ∂vx
∂y

◆

ez = ωez. (2.24)

This above construction makes the kinetic helicity density (v · ω) identically
zero (v ? ω) everywhere in the flow field. The total kinetic helicity is thus
trivially conserved irrespective of the closure of the fluid. An interesting fam-
ily of invariants has been obtained for two dimensional flow of a barotropic,
inviscid fluid by Pedlosky (1987). These invariants are function of a newly
defined quantity called potential vorticity (ωρ = ω/ρ). Using eqn. (2.2)
and taking the curl of the eqn (2.3), we can show that in the inviscid limit,
for a three dimensional flow we have

∂ω⇢

∂t
+ (v · r)ω⇢ = (ω⇢ · r)v. (2.25)

By the above construction, we obtain additionally for a two dimensional flow
(ω⇢ · r) = 0, which renders ω⇢ to be a Lagrangian invariant or material
invariant of the flow.

2.7 One dimensional model for discontinuous
compressible flow: Burgers’ equation

From the above discussion, we can understand that for compressible fluids
we cannot derive any separate evolution equation for the velocity field right
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from the Navier-Stokes equations. However, if we consider a compressible
flow in one dimension, there exists a simplistic yet very useful scalar evolution
equation for the fluid velocity field - this equation is called Burgers’ equation

after J. M. Burgers who played an essential role in popularizing this equation
in the framework of compressible turbulence (Burgers, 1948). The equation
is written as

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
. (2.26)

This equation was known to the mathematicians and physicists well before
Burgers. Burgers’ equation was implemented, possibly for the first time, to
the problem of discontinuities in the viscous fluid flows in the seminal paper
by Bateman (1915). The above equation was proposed in a view to obtaining
discontinuous solution for the fluid motion in the limit of very weak kinematic
viscosity (approaching zero). Unlike Navier-Stokes, this equation neglects the
effect of fluid pressure gradient with respect to the advection term. Here we
search for a travelling wave type solution of the equation (2.26) where the
solution can be expressed as

v(x, t) = F (x+ V t) = F (X),

where X = x + V t (with V constant). Under this assumption, the equation
(2.26) reduces to

V
dF

dX
+ F

dF

dX
= ν

d2F

dX2
, (2.27)

whence we can derive

2ν
dF

dX
= (F + V )2 ± a2, (2.28)

where a is an arbitrary constant of integration. The final solution can be
obtained by integrating (2.28) once more and is given by (taking the +ve sign
in equation (2.28))

v = a tan
h a

2ν
(x+ V t− C)

i

− V, (2.29)

with C being the constant of integration or (taking the -ve sign in equation
(2.28))

∣

∣

∣

∣

v + V − a

v + V + a

∣

∣

∣

∣

= e
a
ν
(x+V t−C). (2.30)

For the first type of solution, we do not have any definite value for v when
ν −! 0 whereas in the second case (which can be re-written in using tanh

function) we get v = −(V + a) or v = (V − a) according as a(x+ V t− c) > 0
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or < 0 whence comes the discontinuity in the solution and the notion of one-
dimensional Burgers’ shock. The shock is developed essentially due to the
non-linearity whereas it dissipates in course of time under the influence of
fluid viscosity (see figure 2.2).

Figure 2.2: Evolution of a Burgers’ shock in course of time (t); Credit: Ludovic
Maas.

2.8 Compressibility ratio for a polytropic gas
across a normal shock

If a normal shock2 develops in a compressible polytropic fluid (P = Kργ), we
can derive (Vázquez-Semadeni et al., 1996) an equation across the interface of
the shock for the compressibility ratio (the ratio of the densities of the forth
and the back of the shock). This study is useful as it describes (as we will see)
the role of Mach number and the polytropic index on the compressibility ratio.
If the two sections of fluid across the shock are characterized respectively by
(ρ1, v1, P1) and (ρ2, v2, P2), then by the continuity equation and the energy

2A shock wave which is developed in the perpendicular direction to the flow of shock

creating fluid medium.
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conservation equation (Bernoulli principle), we can have

ρ1v1 = ρ2v2, (2.31)

ρ1v
2
1 + P1 = ρ2v

2
2 + P2, (2.32)

where v1 and v2 are respectively the normal components of fluid velocity across
the shock interface. Eliminating v2 in (2.31) and (2.32), we obtain

v21 +Kργ−1
1 =

ρ1
ρ2

v21 +K

✓

ρ2
ρ1

◆

ργ−1
2 (2.33)

) v21

✓

1− ρ1
ρ2

◆

= Kργ−1
1

✓

ρ2
ρ1

◆γ

− 1

]

, (2.34)

denoting the compressibility ratio as χ (⌘ ρ2/ρ1) and using the fact that the
sound speed is given by C2

S = γKργ−1
1 , we can show that χ satisfies the

following equation

χγ+1 −
(

1 + γM2
1

)

χ+ γM2
1 = 0, (2.35)

where M1 = v21/C
2
S is defined as the upstream Mach number. From the

above equation, it is easy to verify that when γ −! 1, χ −! M2
1 . So for a

nearly isothermal fluid, the compressibility ratio across a normal shock can
be estimated by the square of its upstream Mach number. When γ ⌧ 1

but γ 6= 0, then according to Vázquez-Semadeni et al. (1996), χ ⇠ eM
2
.

Unfortunately this limit is not evident to verify and it is thought that their
conclusion is suffering from calculation problem. One can simply understand
this problem just by taking different very small values of γ and by checking
whether χ is of the order of eM

2
. In fact, a very small value of γ corresponds to

a near isobaric case which in turn would weaken any discontinuity of pressure
and thus density in the fluid i.e. across a shock (even if it develops) the
compressibility ratio comes to be nearly unity (being independent of upstream
Mach number) and this fact is immediate to verify from (2.35). One can do a
similar elimination of v1 in the conditions of continuity and is left with

γM2
2χ

γ+1 −
(

1 + γM2
2

)

χγ + 1 = 0, (2.36)

where M2 is the downstream Mach number. In the isothermal limit, we obtain
that χ ! 1/M2

2. So the compressibility ratio becomes inversely proportional
to the square of downstream Mach number which is not difficult to imagine.
The compressibility ratio, here also, tends to unity for very small value of
polytropic index.
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2.9 Baroclinic vector

In course of our investigation for different properties and invariants of com-
pressible flow, several times we came across the baroclinic vector (a pseudo-
vector in fact) which is defined as B = (rP ⇥rρ) /ρ2. For barotropic flow
this vector is zero. It is however interesting to discuss the role of this vector.
Without considering barotropicity, we can show that

∂ω

∂t
=

rP ⇥rρ

ρ2
+r⇥ (v ⇥ ω) . (2.37)

This equation reveals that the baroclinic term can act as a vorticity generator.
This term was believed to be active behind curved shocks or at their collisions
after (Passot & Pouquet, 1987; Fleck, 1991; Klein & McKee, 1994). Vázquez-
Semadeni et al. (1996) numerically tested the effect of this term and concluded
that actually the baroclinic term is dominated by the stretching term (the curl)
in the above equation and thus affects the vortex generation rate very slightly.
However, baroclinic vector can be important if their is a thermal heating in
the flow field.
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3.1 What is a plasma ?

P
lasma is popularly known to be the fourth fundamental state of ordinary
matter. It is the only ionized state of matter whereas the other three

states i.e. the solid, liquid and gas correspond to neutral state. Interest-
ingly this 4th state constitutes 99.9% of the visible (or ordinary) matter of
our universe. Starting from the laboratory low pressure discharges, plasmas
can be seen in fusion reactors, atmospherical fluids, stellar cores, stellar winds
and even in the cold interstellar clouds (see figure 3.1). Although the word
plasma is loosely used to indicate any ionized gas or suspension in common
parlance, in physics we define a plasma in a more systematic way. Formally
speaking a plasma is an ionized continuous medium which contains charged
(positive ions, negative ions, electrons) and neutral (atoms) species, and is
macroscopically quasi-neutral i.e. beyond a specified spatial and temporal
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scale, a plasma is almost chargeless. The corresponding spatial scale is known
as Debye scale (λD) within which charge neutrality is not required and the
corresponding time scale is defined by ⌧P = 2⇡/!P where !P is known as the
plasma frequency. ⌧P can more clearly be defined as the time required for a

Figure 3.1: Different types of plasmas: argon glow discharge (left above),
fusion plasma (right above), uv image of solar corona (left below) and highly
dense Lagoon nebula (right below).

plasma to re-establish its original state if one of its dynamical variables (den-
sity, fluid velocity, pressure etc.) undergoes a small (first-order) perturbation.
(λD) and !P are fundamental parameters of each type of charged species in a
plasma. For clarity, we indicate the ionic Debye length and the corresponding
plasma frequency as λDi and !Pi respectively. For the electrons, the respec-
tive parameters are λDe and !Pe. In terms of the known quantities they are
expressed as

Parameter λDi λDe !Pi !Pe

Expression
q

"0kBTi

niZ2e2

q

"0kBTe

nee2

q

niZ2e2

mi"0

q

nee2

me"0

where ni and ne denote respectively ionic and electronic number density,
e is the electronic charge, Z is the ionic valency, Ti and Te are respectively
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the ionic and electronic temperatures, mi and me being respectively the ionic
and electronic masses and finally "0 is the free space permittivity. From these
aforesaid definitions one can easily realize that (considering Z = 1) for a
plasma

λDi

λDe

⇡
r

Ti
Te

,
!Pi

!Pe

⇡
r

me

mi

, (3.1)

where quasi-neutrality is assumed. In laboratory plasmas, electrons are in
general more energetic than the ions and so usually Te > Ti which implies
λDi < λDe. On the other hand for fusion plasmas or space plasmas, these two
temperatures are nearly equal thereby giving the same Debye length both for
the ions and electrons. On the other hand, since me ⌧ mi, we find !Pe > !Pi

for any kind of plasma.

3.2 Two approaches to plasma

A plasma can be treated microscopically or macroscopically according to the
interest. The microscopical approach is known as the kinetic approach whereas
the macroscopic treatment is called the fluid approach.

3.2.1 Kinetic approach

A plasma is a system of mutually interacting charged particles (ions, electrons)
which sometimes can contain considerable number of neutral atoms too. A ki-
netic theory for plasma consists in analyzing different properties of the plasma
by the help of the individual probability distribution functions (PDF) of each
particle species in phase space. This approach takes into account the collec-
tive behaviour of the particles as well as their individual behaviour. We thus
need to know the nature of the microscopic interaction forces along with exter-
nal macroscopic forces in order to construct a kinetic description of a plasma
phenomenon. In the current context, a brief and schematic presentation of
kinetic approach to plasma will be presented without entering into formal and
detailed derivations.

Basic equations

If the distribution function of ith species of a plasma at a given point X ⌘
(x,V, t) is given by fi (x,V, t), then for a collisional plasma, the governing
kinetic equation for the corresponding species is given by Boltzmann equation
(Rax, 2005):

@fi
@t

+V · rfi + a · rVfi =

✓

δfi
δt

◆

collision

, (3.2)
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where a denotes the acceleration and the right hand side term represents the
change in fi (x,V, t) with respect to time due to collisional forces i.e. short
range interaction terms. Of course we do not exactly know the nature of the
collision term which is, in turn, approximated either by simplistic relaxation
model or by more rigorous Boltzmann collision integral and Fokker-Planck
collision term (Bittencourt, 2003).

In case where we neglect intra-particle short range collisional effects but
we wish to take the long range interactions (Coulomb or electro-magnetic
interaction for example) between the charged particles into account, the right
-hand term vanishes and the acceleration is expressed as

mia = Fext + qi (Eint +V ⇥ bint) , (3.3)

where Fext includes all types of external force including Lorentz force associ-
ated to some external electric and magnetic field. Eint and bint, on the other
hand, present respectively resultant electric and magnetic field due to all the
moving charges inside the plasma. Under that condition, the plasma dynamics
can be described by

@fi
@t

+V · rfi +
1

mi

[Fext + qi (Eint +V ⇥ bint)] · rVfi = 0, (3.4)

which is popularly known as collisionless Boltzmann equation or Vlasov equa-
tion.

Macroscopic quantities

Macroscopic variables corresponding to each species i can be derived as the
moments of different kinetic variables under their PDF fi according to the
following definitions:

density ⌘ ni (x, t) =

Z

V

fi (x,V, t) dV, (3.5)

velocity ⌘ vi (x, t) =
1

ni

Z

V

Vfi (x,V, t) dV, (3.6)

pressure ⌘ Pi (x, t) = mi

Z

V

(vi −V)⌦ (vi −V) fi (x,V, t) dV. (3.7)

It is noteworthy that the internal fields of Vlasov equation i.e. Eint and bint

must be self-consistent i.e. they should satisfy Maxwell equations where the
charge density ⇢c and the current density J should be deducible from the sum
of the moments of the PDFs of individual species according to the following
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definitions:

⇢c =
X

i

qi

Z

V

fi (x,V, t) dV, (3.8)

J =
X

i

qi

Z

V

Vfi (x,V, t) dV, (3.9)

where qi is the particular charge of ith species in plasma.

3.2.2 Fluid approach

In this approach, the plasma dynamics is described only in terms of the macro-
scopic variables (which themselves are derived from the kinetic approach) and
not by the microscopic details. The fluid description of a plasma is not al-
ways suitable for explaining a plasma phenomenon. It can only be relevant
if a perfect or a near thermodynamic equilibrium can be ascertained for the
individual population of each species. The fluid equations can be derived as
different moments of Boltzmann’s equations in the velocity space. The zeroth
order moment (corresponding to ith species) is given by

Z

V

✓

@fi
@t

+V · rfi +
1

mi

[qi (E+V ⇥ b)] · rVfi

◆

dV =

Z ✓

δfi
δt

◆

c

dV,

(3.10)
where E and b correspond to the total electric and magnetic fields. Noting
that x, V, t are mutually independent variables, we can show by definition
(3.6)

Z

V · rfidV = r · (niVi) and (3.11)
Z

(E+V ⇥ b) · rVfidV =

Z

rV · [(E+V ⇥ b) fi] dV = 0. (3.12)

In deriving the second expression, we use the fact that E and b do not have
any explicit V dependence and also we use Gauss-Ostrogradsky theorem as-
suming the distribution function will vanish at infinity. Using the above two
expressions and multiplying both sides of (3.10) by mi (mass of ith species),
we get

@⇢i
@t

+r · (⇢ivi) = Si, (3.13)

which gives us a continuity equation for the ith species, Si =
R

mi

(

δfi
δt

)

c
dV =

δ⇢i/δt being the source term for the respective species due to collisions. In
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the same manner, integrating the first order moment of Boltzmann’s equation
in velocity space i.e.
Z

V

V

✓

@fi
@t

+V · rfi +
1

mi

[qi (E+V ⇥ b)] · rVfi

◆

dV =

Z

V

✓

δfi
δt

◆

c

dV,

(3.14)
and following some straightforward algebra (see Bittencourt (2003) book page
200), we finally obtain (again by multiplying both sides by mi)

⇢i



@vi

@t
+ (vi · r)vi

]

= −r · Pi + ⇢ifi +Ai − viSi, (3.15)

where f denotes the external force term, A↵ accounts for the momentum
transport due to collision and P represents the pressure tensor.

As one can remark that the evolution equation for the zeroth order moment
⇢ is coupled with the first order moment v and that of the first order moment
is coupled with the second order moment P . This is also true (one can verify)
for higher order moments. It is thus necessary to close the system by some
additional closure information. For simplicity, where we can assume an al-
most thermodynamic equilibrium, the required closure may be obtained just
by assuming an algebraic relation between the density and the scalar fluid
pressure P. Further simplication is achieved by using an isothermal closure
i.e. P = C2

s⇢, Cs being the constant sound speed where a very quick heat
transfer is assumed. A more general polytropic closure i.e. P = K⇢γ, K being
a constant, is however used very often for astrophysical plasma. In case of
important convection, we cannot, however, restrict ourselves to the evolution
equation of the first order moment and then we have to solve the evolution
equation for P which associates the heat flux tensor which is the third order
moment.

3.3 Magnetohydrodynamics (MHD)

As discussed above, the fluid approach gives a much simpler method for de-
scribing a plasma compared with rigorous kinetic approach. Multi-fluid mod-
els are appropriate where (i) the departure from thermodynamic equilibrium
is very weak but, (ii) the departure from quasi-neutrality is not necessarily
weak (in case of sheath for example). In case of a bi-species plasma (ions and
electrons) where the quasi-neutrality is perturbed very weakly, the ionic and
the electronic fluids are strongly coupled by the ambipolar electric field and
the electronic charge density evolves according to the ionic charge density.
The plasma dynamics can, in that case, be described by a single fluid whose
inertia is governed by the massive ions and mobility by the lighter electrons.
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This fluid, being quasi-neutral, is almost free of any net electrostatic force and
is therefore called a hydromagnetic (old nomenclature) or a magnetohydrody-
namic (MHD) fluid.

3.3.1 Mono-fluid model: Basic equations of MHD

Here we shall carry out a general derivation of mono-fluid equations by sum-
ming the equations of a multi-fluid plasma over all the species of the plasma
(denoted by index ↵). For that we have to define some new quantities. The
mass density of the resulting single fluid is given by

⇢ =
X

↵

n↵m↵, (3.16)

and the respective charge density is defined as

⇢c =
X

↵

n↵q↵, (3.17)

Again, the mean fluid velocity is defined as the density weighted average of
the fluid velocities of each species and is expressed as

v =

P

↵ n↵m↵v↵
P

↵ n↵m↵

, (3.18)

The relative velocity of each species-fluid with respect to the resultant fluid
is called the diffusion velocity of the corresponding species and is given by

w↵ = v↵ − v, (3.19)

The resultant current density for the single fluid will be expressed as

J =
X

↵

n↵q↵v↵. (3.20)

For individual fluids corresponding to each species ↵, the continuity equation
and the momentum evolution equation are respectively written as

@⇢↵
@t

+r · (⇢↵v↵) = S↵, (3.21)

⇢↵



@v↵

@t
+ (v↵ · r)v↵

]

= ⇢c↵ (E+ v↵ ⇥ b) + ⇢↵f −r · P↵ +A↵ − v↵S↵.

(3.22)



28 Chapter 3. Plasma physics and magnetohydrodynamics

The continuity equation for the mono-fluid is then given by

X

↵

@⇢↵
@t

+
X

↵

r · (⇢↵v↵) =
X

↵

S↵, (3.23)

@
P

↵ ⇢↵
@t

+r ·
 

X

↵

⇢↵v↵

!

=
X

↵

S↵. (3.24)

Using the definitions of the single fluid variables given above, we obtain

@⇢

@t
+r · (⇢v) = 0, (3.25)

where the total source term contribution is made to be zero as we consider a
closed system whose total mass is conserved.

In order to obtain the equation of motion for the resultant fluid, we add up
also the individual equation of motions and we are left with

X

↵

⇢↵



@v↵

@t
+ (v↵ · r)v↵

]

=
X

↵

⇢c↵ (E+ v↵ ⇥ b)+

X

↵

⇢↵f −
X

↵

r · P↵ +
X

↵

A↵ −
X

↵

v↵S↵. (3.26)

Now the collision term
P

↵ A↵ should vanish as it gives the total internal force
which is zero under mutual action-reactions. Using the single fluid variables,
the above equation can be expressed as

X

↵

⇢↵



@v↵

@t
+ (v↵ · r)v↵

]

= ⇢c (E+ J⇥ b)+

⇢g −r · P +
X

↵

r · (⇢↵w↵ ⌦w↵)−
X

↵

v↵S↵. (3.27)

As we know by the equation of continuity,

X

↵

v↵S↵ =
X

↵

v↵



@⇢↵
@t

+r · (⇢↵v↵)

]

, (3.28)

we can show that

X

↵

⇢↵



@v↵

@t
+ (v↵ · r)v↵

]

+
X

↵

v↵S↵ =
X

↵



@⇢↵v↵

@t
+r · (⇢↵v↵ ⌦ v↵)

]

.

(3.29)
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Again we note
P

↵ ⇢↵w↵ = 0 by definition. Using this and replacing v↵ by
v +w↵ in the right hand side expression of equation (3.29), we obtain

X

↵



@⇢↵v↵

@t
+r · (⇢↵v↵ ⌦ v↵)

]

=
@⇢v

@t
+r · (⇢v ⌦ v) +

X

↵

r · (⇢↵w↵ ⌦ w↵)

= ⇢



@v

@t
+ (v · r)v

]

+
X

↵

r · (⇢↵w↵ ⌦ w↵) , (3.30)

where we use eqn. (3.25) in deriving the final step. Using the above derived
relation in (3.27), finally we are left with

⇢



@v

@t
+ (v · r)v

]

= ⇢cE+ J⇥ b+ ⇢f −r · P . (3.31)

In the framework of a plasma mono-fluid, the Coulomb force is negligible
with respect to the magnetic Lorentz force due to quasi-neutrality. Under
this approximation the above relation reduces for an MHD fluid to

⇢



@v

@t
+ (v · r)v

]

= J⇥ b+ ⇢f −r · P . (3.32)

Decomposing the kinetic pressure dyad tensor P in its principal pressure part
and deviatoric parts, we finally write

⇢



@v

@t
+ (v · r)v

]

= J⇥ b+ ⇢f −rP + µ∆v +
µ

3
r (r · v) , (3.33)

where µ is the dynamic viscosity. For the sake of simplicity, we assume the
case of plasmas which are sufficiently collisional in order to close the sys-
tem by a simple thermodynamic closure like a barotropic one [P = P (⇢)] or
more specifically an isothermal or polytropic closure (simple barotropes). The
equation for the evolution of magnetic field for the resultant fluid is given by
Faraday’s law:

@b

@t
= −r⇥ E. (3.34)

3.3.2 Ideal MHD approximation from generalized Ohm’s

law

In order to close the system of MHD equations, we need to express the electric
field in terms of the other fluid variables (v, b, P, ⇢ ). It is the Ohm’s law by
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which we get the required information. The generalized form of Ohm’s law can
be derived following the same formalism as that we used in order to obtain the
equivalent Navier-Stokes equation for the resultant mono-fluid in the previous
section - the mass density being replaced by the charge density (for detailed
derivation, see Bittencourt (2003)). Depending on the form of Ohm’s law
used, several types of MHD models can be obtained. The generalized form of
non-relativistic Ohm’s law is written as (Boyd & Sanderson, 2003)

E+ v ⇥ b− j

σ
− 1

σνC

∂j

∂t
=

mi

Zeρ
(j⇥ b−rPe) , (3.35)

where σ denotes the coefficient of conductivity, νC is the electron collision
frequency, mi and Ze are respectively the ionic mass and charge. j represents
the current density and rPe denotes the electronic pressure gradient.

In the MHD approximation, j is supposed to vary on hydrodynamic time
scale τH . By virtue of Bogoliubov hierarchy we can say τHνC . 1. Hence we
have

| j
σ
|/| 1

σνC

∂j

∂t
| . 1. (3.36)

Again the term mirPe/Zeρ can be neglected with respect to the term (v ⇥ b)

considering the ionic Larmor radius to be very small in comparison with the
characteristic fluctuation length scale (for detailed justification see Boyd &
Sanderson (2003)). The generalized Ohm’s law then gets reduced to

E+ v ⇥ b− j

σ
=

mi

Zeρ
(j⇥ b) . (3.37)

The right hand side term is the Hall term and the corresponding MHD is
called Hall MHD. Now comparing the Lorenz force term to the Hall term, we
get

| mi

Zeρ
(j⇥ b) |/| (v ⇥ b) | ⇠ bmi

µ0eρlv
⇠ divA

lv
, (3.38)

where di is the ion inertial length and is defined as

di ⌘
c

ωPi

,

where c is the speed of light in vacuum. The above estimate shows that the
Hall term becomes relevant if the ratio divA/vl is at least of the order of
unity. In case where v ⇠ vA (case of solar wind), Hall effect is perceived if
the characteristic length scale l is at least of the order of di (Galtier (2013),
page 39). In case of solar wind, di ⇠ 102km and thus the Hall effect cannot
be effective for the length scales comparable to astronomical unit (1 A.U. =
1.5⇥ 108 km).
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Without the Hall term, Ohm’s law takes the following form

E+ v ⇥ b =
j

σ
, (3.39)

and corresponds to resistive MHD. In the limit where we neglect the resistivity
of an MHD fluid, we have σ −! 1 and we are thus left with

E+ v ⇥ b = 0. (3.40)

This equation is called idealized Ohm’s law. Substituting the above expression
in the equation (3.34), finally we get

∂b

∂t
= r⇥ (v ⇥ b). (3.41)

Equations (3.25), (3.33) and (3.41) constitute the complete set of ideal MHD

equations.

3.3.3 Linear waves in ideal MHD

It is crucial to examine the existence of waves in an ideal MHD fluid for
understanding the corresponding dynamics and the nature of response created
by the fluid to any external attempt of perturbation with respect to a steady
state flow. Of the waves, the linear modes are the simplest to obtain. These
are the eigen modes corresponding to a very small or first order perturbation
in an ideal MHD fluid. In order to obtain the linear waves, we have to linearize
the ideal MHD equations. Under the assumption of a polytropic closure and
zero steady state velocity (which can be obtained without losing generality
just by a suitable Galilean transformation), these equations are written as
(following the same formalism as that of 2.2):

ωP1 = ρ0C
2
sk · v1, (3.42)

ωv1 = k

✓

P1

ρ0
+

b0 · b1

µ0ρ0

◆

− b0
µ0ρ0

kkb1, (3.43)

ωb1 = −b0kkv1 + b0 (k · v1) , (3.44)

where the terms with subscript 0 denotes the equilibrium quantities and those
with subscript 1 correspond to the linear perturbations. Cs =

p

γP0/ρ0 rep-
resents the equilibrium sound speed and kk and k? denote respectively the
parallel and the perpendicular components of the wave propagation vector
along and perpendicular to the equilibrium field b0. Combining the above
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three algebraic relations, we obtain finally the following relation (for simplic-
ity, we assume µ0 = ⇢0 = 1)
h

ω2 − (k · b0)
2
i

v1 =
⇥(

C2

s + b2
0

)

(k · v1)− (k · b0) (v1 · b0)
⇤

k− (k · b0) (k · v1)b0.

(3.45)

Without losing generality, now if we choose k = k?ey + kkez, the above
relation can be written in the following matrix form (Galtier Book):

0

@

!2 − k2kb
2
0 0 0

0 !2 − k2?C
2
s − k2b20 −k?kkC2

s

0 −k?kkC2
s !2 − k2kC

2
s

1

A

0

@

v1x
v1y
v1z

1

A =

0

@

0

0

0

1

A

In order that the equations have non-trivial solution, the determinant of the
coefficient matrix should vanish. We therefore obtain the following dispersion
relation:

(

!2 − k2kb
2
0

) ⇥

!4 −
(

C2
s + b20

)

k2!2 + k2C2
sk

2
kb

2
0

⇤

= 0. (3.46)

The solutions of the above equation are given as:

!A = ±kkb0, (3.47)

!F = ±

v

u

u

u

t

k2

2

2

4(C2
s + b20) +

s

(C2
s + b20)

2 − 4C2
s b

2
0

k2
k

k2

3

5, (3.48)

!S = ±

v

u

u

u

t

k2

2

2

4(C2
s + b20)−

s

(C2
s + b20)

2 − 4C2
s b

2
0

k2
k

k2

3

5, (3.49)

where !A corresponds to the Alfvén mode (after the discoverer Hannes
Alfvén) and !F and !S are respectively the fast and the slow magnetosonic
modes. Alfvén mode is a purely incompressible and transverse mode (in in-
compressible hydrodynamics we do not have any linear mode) whereas the last
two waves are compressional modes and cannot get excited in incompressible
case. The group velocity of the Alfvén mode is called Alfvén velocity and
is expressed as (re-putting µ0 and ⇢0)

VA =
b0p
µ0⇢0

(3.50)

and the corresponding phase speed is given by (VAkk)/k. Alfvén waves were
theoretically predicted by Alfvén (1942) and was verified, for the first time, in
ionized hydrogen tube experiment (see figure 3.2) 17 years later (Allen et al.,
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1959). The phenomenology of incompressible MHD turbulence in presence of
a directional field b0 is explained by the interaction of fluctuating Alfvén waves
(IK phenomenology) and will be discussed in details in the chapter 4. Whether
the phenomenology of compressible MHD turbulence can be modelized by a
combined effect of Alfvén, fast and slow compressional modes, is yet to be
understood.

It is noteworthy that turbulence which is a complete non-linear phe-
nomenon, can sometimes be described by the linear modes. For collisionless
plasmas, it is also very interesting to note that even for a compressible fluid,
the compressional modes damp rapidly and finally the dynamics is governed
by the only incompressible mode which is Alfvén mode.

3.3.4 Invariants of ideal MHD

In this section, we shall examine the invariance of some dynamical variables
in an ideal MHD flow. As mentioned earlier, the main objective of finding
inviscid invariants lies on the fact that the knowledge of these invariants will
help us determine the possibility of cascades (explained in the next chapter)
in the inertial zone (defined in the previous chapter) which is supposed to
be free from any large scale forcing effect and small scale viscous effect. For
simplicity, here we derive those conservation principles right from the inviscid
ideal MHD equations (⌫ = 0, ⌘ = 0). The generalized expressions with the
viscous terms can be found in standard text books (Galtier, 2013).

The choice of boundary conditions plays a key role in obtaining the invari-
ants. In the following demonstrations, we use the most common and realistic
boundary conditions i.e. at the surface of the chosen Eulerian volume (in
which the flow is confined), the velocity and the magnetic fields are purely
tangential i.e. v.n = 0 and b.n = 0 at each point of the boundary surface,
n being the unit normal vector at an arbitrary point of the surface. We shall
also see that some quantities, which are not invariant under the said bound-
ary condition, can be invariant if we assume v = b = 0 at every point of the
boundary surface.

Mass and linear momentum

As in the hydrodynamic case, conservation of total mass (
R

⇢d⌧) can immedi-
ately be seen from the continuity equation which itself is in conservative form.
For the linear momentum, we can show that for ideal MHD,

@⇢v

@t
= −r · (⇢v ⌦ v)−r

✓

P +
b2

2µ0

◆

+
1

µ0

(b · r)b. (3.51)
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Figure 3.2: Experimental verification of Alfvén waves in a hydrogen filled
tube of 34 inches and of diameter 53/4 inches; The solid line corresponds to
the theoretical estimation and the circles correspond to the experimental val-
ues which justifies the proportionality of Alfvén speed to the magnetic field
in an incompressible or weakly compressible fluid; The discreancy between
the experimental and the theoretical values are due to instrumental reasons;
Reprinted with permission from (Allen et al., 1959); © (1959) American Phys-
ical Society. DOI: 10.1103/PhysRevLett.2.383

http://dx.doi.org/10.1103/PhysRevLett.2.383
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There is a priori no reason for the tensors consisting b vanish at the boundary
surface. As a result, linear momentum is not an invariant under our boundary
conditions. If we relax the boundary conditions by making both the velocity
and magnetic field vanish at surface, then too we cannot show the conserva-
tion. The physical reason for this is simply the fact that linear momentum is
transported by the magnetic field even at the surface.

Total energy

The total energy of a compressible MHD fluid is composed of three parts
- kinetic, magnetic and compressional. As earlier, we consider a barotropic
MHD fluid for which the total energy density is:

E = ⇢



v2

2
+

b2

2µ0⇢
−
Z

Pd

✓

1

⇢

◆]

= ⇢



v2

2
+

b2

2µ0⇢
+

Z

P
d⇢

⇢2

]

.

Now from the ideal MHD equations, we can obtain (using vector calculus
identities) at first:

@

@t

✓

⇢
v2

2

◆

= −r ·
✓

⇢
v2

2
v

◆

− v · rP − j · (v ⇥ b) , (3.52)

and then for the magnetic part of the energy, we obtain

1

2µ0

@b2

@t
=

1

µ0

[r · (v ⇥ b)⇥ b] + j · (v ⇥ b) , (3.53)

and finally for the compressive part we find finally,

@(⇢e)

@t
= −r · (⇢ev)− P (r · v) , (3.54)

adding up the above three components, we get finally

@E
@t

= −r ·
✓

⇢
v2

2
v + ⇢ev + Pv +

✓

b⇥ (v ⇥ b)

µ0

◆◆

= −r · F , (3.55)

which is a conservative form with F being the total energy flux density. The
vector (b⇥ (v ⇥ b)) /µ0 is called Poynting vector which measures the out-
flux of electromagnetic energy. Following the same prescription given in the
previous chapter, we can show that the total energy (

R

Ed⌧) is conserved in
ideal MHD under barotropic closure.
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Cross helicity

Another crucial invariant of ideal MHD is the total cross helicity and was
introduced by Woltjer (1958). The density of cross helicity is defined by
Hc = v · b. Being a scalar product of a polar vector (v) and a pseudo-
vector (b), Hc is a pseudo-scalar i.e. it changes sign under parity. In an
intuitive manner we can say that by virtue of cross helicity, kinetic energy
and magnetic energy can be transferred to one another. In the following we
shall initially investigate the conservation of total cross helicity ( i.e.

R

Hcd⌧),
under barotropic closure. From the ideal MHD equations, we get

@Hc

@t
=

@ (v · b)
@t

= v · @b
@t

+ b · @v
@t

(3.56)

= v · [r⇥ (v ⇥ b)] + b ·


−rP
⇢

− (vr)v − b⇥ (r⇥ b)

µ0⇢

]

= −r · (v ⇥ (v ⇥ b)) + (v ⇥ b) · ! − b ·
rP
⇢

+ (v · r)v

]

,

where the last term is vanished as two members (b) of the scalar triple product
are identical. We also show that

b · [(v · r)v] = b ·


r
✓

v2

2

◆

− v ⇥ !

]

= r ·
✓

v2

2
b

◆

− b · (v ⇥ !) . (3.57)

Now the term with fluid pressure cannot immediately be expressed as a pure
divergence under generalized barotropic closure. It is only a sub-class of
barotropic closure for which rP/⇢ = rh (where h is a scalar function), we
can write

b · rP

⇢
= b · rh = r · (bh) . (3.58)

Now using the expressions of (3.57) and (3.58) in (3.56), we get finally

@Hc

@t
= r ·



v2b− (v · b)v − hb− v2

2
b

]

, (3.59)

which ensures the conservation of total cross helicity under the abovesaid
boundary conditions using Gauss-Ostrogradsky theorem.

Polytropic closure (P = k⇢γ) is such a type of barotropic closure which
indeed permits rP/⇢ = rh , where for a polytropic fluid (given that γ 6=
0and1),

h =
γP

(γ − 1) ⇢
. (3.60)

The conservation of cross helicity is hence assured for a polytropic fluid. Now
γ = 0 corresponds to an isobaric fluid and the term vanishes trivially. For an
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isothermal fluid, γ = 1 and it is also possible to write rP
⇢

= rh where

h = C2
s ln

⇢

⇢0
, (3.61)

Cs and ⇢0 being the constant sound speed and the equilibrium density of the
fluid. Cross helicity is thus invariant even when γ = 0 or 1. Topologically
cross helicity measures the inter field line junctions between the magnetic and
the velocity field lines. A global conservation of this quantity thus describes
the frozen nature of one of them with respect to the other thereby keeping
the number of inter field lines knots a constant.

It is crucial to note that even in compressible MHD, it is the incompressible
cross helicity which is conserved. However, the compressible cross helicity
with density ⇢v · vA (where vA = b/

p
µ0⇢) is not a conserved quantity in

compressible MHD.

Magnetic helicity

Magnetic helicity is another type of helicity which is of purely magnetic origin.
This variable is introduced by Woltjer (1958). The corresponding density is
defined as Hm = a.b where a is a vector potential of magnetic field b. Hm

is also a pseudo scalar as a is a true vector. Due to the presence of vector
potential a, Hm is also expected to be dependent on the choice of gauge. The
Faraday’s equation in ideal MHD is written as

@b

@t
= r⇥ (v ⇥ b) . (3.62)

As we know b = r⇥ a by definition, we obtain

@a

@t
= (v ⇥ b) +rΦ, (3.63)

where Φ is an arbitrary scalar potential corrsponding to the chosen gauge.
Using the above two equations we get

@Hm

@t
=

@ (a · b)
@t

= a · @b
@t

+ b · @a
@t

= b · [(v ⇥ b) +rΦ] + a · (r⇥ (v ⇥ b))

= r · (bΦ) +r · ((v ⇥ b)⇥ a) + 2b · (v ⇥ b)

= r · (bΦ) +r · ((v ⇥ b)⇥ a) [* b · (v ⇥ b) = 0] . (3.64)

These two terms are vanished by Gauss-Ostrogradsky theorem under our
boundary conditions. For the first term it is immediate whereas for the second
term we have to use the identity ((v ⇥ b)⇥ a) = (v · a)b− (b · a)v to apply
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Figure 3.3: Numerical simulation of twisted and knotted magnetic field lines
for a system with non-zero magnetic helicity; Source: Oral presentation of
Simon Candelaresi.

our boundary conditions where both the velocity and magnetic field are purely
tangential at the boundary surface of the Eulerian volume. Total magnetic
helicity is thus proved to be an invariant of ideal MHD.

Magnetic helicity measures the degree of twists and knots (see figure 3.3)
in the magnetic field lines in a plasma (Moffatt, 1969). Conservation of total
magnetic helicity hence indicates that the magnetic field lines are frozen in the
flow field and thus the total number of the intra-fieldline knots is conserved.

3.3.5 Elsässer variables in magnetohydrodynamics

For incompressible fluids, resistive MHD equations are written as

@v

@t
+ (v · r)v = −rP

⇢
− ↵b⇥ (r⇥ b) + ⌫∆v, (3.65)

@b

@t
= r⇥ (v ⇥ b) + ⌘∆b, (3.66)

r · v = 0, (3.67)

r · b = 0, (3.68)

where ↵ = 1/(µ0⇢) is a constant for incompressible flow and ⌘ is the magnetic
resistivity. These equations can be re-written in a more symmetric form if we
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carry out a variable transformation (Elsässer, 1950) from (v,b) to (z+, z−)

where

z± = v ± ↵1/2b. (3.69)

These variables are called Elsässer variables after the name of the discoverer
W.M. Elsässer. By virtue of this transformation, the above equations can be
written as

r · z± = 0 (3.70)

@z+

@t
+
(

z− · r
)

z+ = −rPT +∆
(

⌫+z
+ + ⌫−z

−) , (3.71)

@z−

@t
+
(

z+ · r
)

z− = −rPT +∆
(

⌫+z
− + ⌫−z

+
)

, (3.72)

where PT = P + b2/2µ0 is the total pressure and ⌫± = (⌫ ± ⌘/2). As men-
tioned by the author in his 1950 letter, this notable symmetrical form of these
above equations along with their analogy to the Navier-Stokes equations led
to an intuitive theoretical evidence for the possibility of turbulence in a ’hy-
dromagnetic system’ similar to ordinary hydrodynamic case. The existence
of turbulent magnetic field, coupled with the mechanical fluid motion, can
thus be theoretically understood. The fundamental importance of Elsässer
variables will be explained precisely when we shall discuss the Iroshnikov-
Kraichnan (IK) phenomenology in MHD turbulence in the next chapter.

Compressible Elsässer variables

Despite the success of Elsässer variables in incompressible MHD, Elsässer was
sceptical about their utility in compressible MHD. He ended his 1950 letter by
admitting the fact that " ... we have thus been unable to ascertain whether
similarly simple, symmetrized equations exist for the compressible case."

The generalization of these Elsässer variables to compressible MHD was fi-
nally done after 37 years by Marsch & Mangeney (1987). In the compressible
case, no change in definition of the z± is needed. However, the density, be-
ing a variable in compressible fluids, cannot retain the Elsässer symmetry in
compressible MHD equations. In order to construct the compressible Elsässer
variables, we have to replace b by vA = b/

p
µ0⇢ where vA can be called
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compressional Alfvén velocity. The ideal MHD equations are then written as:

@ ln ⇢

@t
+ (v · r) ln ⇢ = −r · v, (3.73)

@v

@t
+ (v · r)v − (vA · r)vA = −rPT

⇢
− vA (r · vA) , (3.74)

@vA

@t
+ (v · r)vA − (vA · r)v = −1

2
vA (r · v) , (3.75)

@ (P⇢−γ)

@t
= 0, (3.76)

(vA · r) ln ⇢ = −2 (r.vA) . (3.77)

The first one is the continuity equation, the second and the third one corre-
spond respectively to the force equation and Faraday’s equation. The fourth
and the fifth relations present respectively the polytropic closure and the
solenoidal magnetic field. These equations prove to be very useful in deriv-
ing the exact relation of compressible MHD turbulence (Banerjee & Galtier,
2013) which is of central interest of my thesis. A few steps of simple and
straightforward algebra finally gives us the following equations

D±

Dt
ln ρ = −1

2
r ·
(

3z± − z
⌥) , (3.78)

D⌥

Dt
z
± = ±1

4

(

z
+ − z

−) D
±

Dt
ln ρ− 1

8
r
(

z
+ − z

−)2 −


C2
s +

1

8

(

z
+ − z

−)2
]

r ln ρ,

(3.79)

where Cs =
p

γP/⇢, gives the sound speed. These equations are important in
understanding the possible phenomenology of compressible MHD turbulence
and will be discussed later in the chapter on compressible turbulence.

Incompressible limit : From the above equations we can also verify the
incompressible limit which is already known. This limit can easily be achieved
by letting the fluid density constant. However, care should be taken for the
term C2

sr(ln ⇢). In the incompressible limit, although r(ln ⇢) −! 0, the
sound velocity comes to be infinite due to the polytropic exponent which
tends to infinity and thereby rendering the product C2

sr(ln ⇢) to be finite
(Error in Marsch & Mangeney (1987)). In the incompressible limit, the above
equations are hence written as

r · z± = 0, (3.80)

D⌥

Dt
z± = −1

8
r
(

z+ − z−
)2 − rP

⇢
, (3.81)

which are nothing but the equations (3.70), (3.71) and (3.72) in the inviscid
limit.
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Pseudo energies

By using the compressible Elsässer variables, one can re-write the densities of
total energy and cross helicity respectively as

E =
1

4
⇢
(

z+ · z+ + z− · z−
)

+ ⇢e, (3.82)

HC =
1

4
⇢
(

z+ · z+ − z− · z−
)

. (3.83)

The quantities E± = 1
2
⇢z±·z± are called pseudo-energies corresponding to

the two Elsässer variables. In compressible case, the total energy is an inviscid
invariant of MHD whereas the total compressible cross helicity (

R

HCd⌧ =
R

⇢HCd⌧) is not a conserved quantity. In the incompressible case, both the
total energy and the cross helicity are conserved and so are the incompressible
pseudo-energies 1

2
z±·z±. In case where z+ . z− (or z− . z+), it is the pseudo

energy density E+ (or E+) which approximates the total energy density and
the cross helicity (for the cross helicity the sign changes according to the
positive correlation or anti-correlation).
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Figure 3.4: Order of magnitude of various plasma parameters for different
types of plasmas.
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4.1 Turbulence - A phenomenon or a theory ?

T
urbulence is described by very complex dynamics of fluids necessarily
associating non-linearity. Turbulence is ubiquitous and hence it is very

easy to give a natural example of turbulent flow (the mixing of milk in a cof-
fee cup, atmospheric turbulence in troposphere, solar wind, self-gravitating
molecular clouds in astrophysics etc.) but it is extremely hard to set up a
formal definition for this type of motion. In his 1954 lecture (Chandrasekhar,
1954), Chandrasekhar defined turbulence as a phenomenon associated

with the velocity state of a fluid medium. This shows, in fact, the
difficulty of setting up a concrete and quantitative definition of turbulence.
In the different communities of turbulence, we have different definitions for
turbulence depending on their specific approach to understand turbulence.
Mathematically speaking, a turbulent flow can be defined to be a dynamical
system having infinitely large number of degrees of freedom (DF). Later we
shall give an estimation of the DF of a natural turbulent system. A chaotic
motion differs from a turbulent motion due to the fact that the previous one is
defined for particle dynamics (and not for a continuous medium) and possesses
finite and low number of degrees of freedom. There is no strict definition of
turbulence. However, turbulence can formally be defined as a non-

equilibrium statistical system whose state can be determined by

the flux rate of the flow invariants rather than the thermodynamic

variables. Another popular definition is given using Lyapunov exponents.
According to this definition, a turbulent flow-field is associated with

an exponential divergence between the dynamical variables of two

neighbouring points in course of time. In terms of a dynamical variable
z, this definition is mathematically written as

|δz(t)| = |z(x+ r, t)− z(x, t)| = eλt|δz(0)|,

where λ is called the Lyapunov exponent. Unlike the time-independent first
definition, this definition describes the evolution of a turbulent system. For
the astrophysicists neither of these two is very useful. Here the objective is
to identify whether an astrophysical system is turbulent or not right from
their fluctuation spectra. Another definition, which may be called an op-
erational definition, is thus given in terms of the fluctuation power spec-
tra. It defines turbulence to be a non-linear random motion of fluids or
plasmas whose corresponding fluctuation power spectra (F (k)) span a

broad range of lengthscales and/or timescales with a power law

(F (k) ⇠ k↵) ) lnF (k) ⇠ ↵ ln k. A more detailed use and discussion on this
definition will be done throughout.

Although a fluid need not be incompressible in order to produce a turbulent
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flow, the systematic theoretical development for turbulence has primarily been
done under the assumption of incompressibility. It is because i) mathemat-
ically incompressible turbulence is much more simple than the compressible
one and ii) phenomenologically incompressible turbulence is easier to under-
stand in terms of its structures which are the vortices. In this chapter, we
shall introduce different assumptions, notions and approaches of fluid turbu-
lence principally for incompressible flow. The existence and validity of these
notions are not entirely obvious in case of compressible turbulence and will
be discussed in the next chapter.

4.2 Turbulent regime from Navier-Stokes :
Reynolds number

In three dimensions, Navier-Stokes equations are believed (to date) to describe
satisfactorily a neutral fluid motion in the presence of viscosity. Considering
compressibility, we can write the equation as

@v

@t
+ (v · r)v = −rP

⇢
+ f + ⌫∆v +

⌫

3
r (r · v) . (4.1)

For an incompressible fluid (⇢ = constant,r · v = 0), the equations then get
reduced to

@v

@t
+ (v · r)v = −rP + f + ⌫∆v, (4.2)

where (v·r)v represents the non-linear term (non-linear in velocity) and ⌫∆v

corresponds to the viscous term which tries to retain the laminar flow. The
ratio of these two terms gives us a dimensionless number which is obtained as

Re ⌘
|(v · r)v|
⌫∆v

⇡ vl

⌫
⇡ ⇢vl

µ
, (4.3)

where the length scale is derived as r ⌘ 1/l and µ = ⇢⌫ is the dynamic viscos-
ity. This dimensionless quantity is called Reynolds number. A small value
(< 1) of Re corresponds to viscosity dominating laminar motion whereas a
large value (> 100) leads to the case where non-linearity prevails the viscous
effects and hence the regime of non-linear, chaotic motion of the fluid is at-
tained. Typically for a value Re ⇠ 2000, the flow field is characterised as a
turbulent flow for which the afore-said definitions can be used with various
perspectives. A completely developed turbulence is reached when Re ⇠ 104.
Theoretically speaking, with the rise in Re, all the symmetries (Frisch, 1995)
of Navier-Stokes equations are lost. But at a very high Re those sym-

metries are restored in a statistical sense (which will be discussed
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below) - this state is called the state of completely developed tur-

bulence and therefore can be treated more easily in an analytical way than
the states of transition. In the following figure various steps of the transition
from a calm laminar flow to a chaotic complex motion is shown as a function
of Reynolds number.

Figure 4.1: Transition from laminar flow to turbulent flow as a function of
increasing Reynolds number; Courtesy: Sébastien Galtier.

The notion of Reynolds number can also be generalised in case of plasmas.
For MHD fluids (as we have seen in the previous chapter) additionally we
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need Faraday’s equation from which another dimensionless quantity can be
derived and can be written as

Rm ⇡ vl

⌘
, (4.4)

which is the ratio of the non-linear rotational term in Faraday’s equation (after
the substitution of resistive Ohm’s law) to the magnetic-diffusion term. This
quantity is known as Magnetic Reynolds Number. Rm ⌧ 1 indicates that the
magnetic field will be diffused principally and hence the corresponding state is
determined by the boundary conditions rather than the flow whereas Rm . 1

represents the predominance of the advection of the magnetic field lines along
with the flow. Evidently, a total random, chaotic, turbulent type of motion
therefore requires a very high value of both Re and Rm.

In incompressible case, as the density is constant, dynamic viscosity (µ) and
kinematic viscosity (⌫) are equivalent. But in compressible flows, they are not
the same. It is still a subject of debate which one of the two viscous coefficients
is more fundamental and independent of the fluid density. One thus must use
the general expression of Reynolds number including the density in defining
a turbulent regime in compressible turbulence.

The notion of Reynolds number is not exclusive to the Navier-Stokes equa-
tions. As discussed in the chapter 2, a one dimensional compressible flow with
discontinuities can be described by an ordinary differential equation called
Burger’s equation. It is trivial to verify that the corresponding turbulence
regime, which is sometimes called Burgulence (Frisch & Bec, 2001), is simply
characterised by Re.

In an interesting note (page 998, A new kind of science) on Reynolds num-
ber, Wolfram (2002) mentionned that the turbulent regime is not always de-
termined only by the Reynolds number. In fact modern-day experiments
(ref needed) with dye water stream show a laminar-turbulence transition at
a significantly lower Re than that obtained by Osborne Reynolds in 1880s
(Reynolds, 1883). The possible reason for this shift is suspected to be exces-
sive external perturbations of the "modern mechanized world". Despite this,
according to Wolfram, the randomness in a fully developed turbulence can
still be attributed to the so called "intrinsic randomness" of the system and
be expected to be unaffected by any external perturbation.

Historically it is interesting to note that the concept of Reynolds number
was introduced by George Gabriel Stokes (Stokes, 1851). The number is later
named after Osborne Reynolds who pioneered its implementation into the
study of self-similar flows (Rott, 1990) in the year 1883. The term Reynolds

Number was however introduced 25 years later by Sommerfeld (Sommerfeld,
1908).
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Self-similar flow and Reynolds number

A fluid flow is said to be self-similar if it remains unchanged under certain
rescaling of spatial and temporal scales. For such a flow, the governing equa-
tion for the corresponding dynamics should be scale-invariant with respect to
such scaling transformation. Force-free Navier Stokes equation also possesses
such scale-invariance. One can easily show that for incompressible Navier-
Stokes equations with non-zero finite viscosity, the following transformation

x −! λx; t −! λ1−ht; v −! λhv (4.5)

keeps the equation globally unchanged when h = −1. With zero viscosity, the
scale invariance is retained for any real value of h. Reynolds number, being
dimensionless, remains also unaffected under a similarity transformation cor-
responding to finite viscosity1 i.e. h = −1. A fixed finite value of Reynolds
number thus characterizes self-similar flows. In incompressible flow, the scal-
ing of pressure need not be considered separately because of the existence of a
Poisson’s equation between the pressure and the fluid velocity (Frisch, 1995).
In compressible case, however the similarity transformation is a bit different
and sensitive to the nature of closure used. One can easily verify that for
isothermal closure (P = C2

S⇢), the required transformation is given by

x −! λx; t −! λt; v −! v; ⇢ −! λ−1⇢ (4.6)

and for a polytropic closure (P = K⇢γ) the corresponding transformation is

x −! λx; t −! λ
2γ
1+γ t; v −! λ

1−γ
1+γ v; ⇢ −! λ−

2
1+γ ⇢. (4.7)

The isothermal and the incompressible cases can be recovered just by putting
γ = 1 and γ −! 1 respectively. Without much surprise, one can show that
here in compressible case, Reynolds number remains unchanged under simi-
larity scale transformation if we consider the general expression of Reynolds
number including density and the dynamic viscosity to be the intrinsic prop-
erty of the fluid. The similarity transformations are not exactly the same in
case of turbulence where statistical self-similarity is defined with respect to
the structure functions. This aspect will be discussed later in this chapter in
the section of intermittency.

4.3 Chaos and/or turbulence ?

This section is dedicated to a long-lasting debate and probably the most fun-
damental debate in turbulence physics - the relation between turbulence and

1For inviscid case, Reynolds number is identically infinite.
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deterministic chaos. Before coming to the actual controversy, it should be clear
that chaos which is also known as deterministic chaos is a well-defined (math-
ematically) state of disordered motion of a many particle system whereas tur-
bulence is not a theoretical concept but a real, natural phenomenon which
describes highly non-linear, disordered, unpredictable and complex motion in
a real fluid (e.g. poured milk in a coffee cup, the flow of tap water, the atmo-
sphere, the solar flare, the interstellar clouds etc.) when the Reynolds number
attains a very high value. Turbulence thus does not (as we saw above) have
a universal and unique mathematical definition. So of course categorically
they are different. Now the debate can be revitalised if we ask - Is turbulent
disorder originated from chaos or due to some another ’unknown’ fact ?

The correct answer being yet to be known, in the literature, we often see
the clear existence of these two institutions. One can refer to "The lectures
on geophysical fluid dynamics" by Salmon (1998) where turbulence is charac-
terized in the following words :

"However, one further property of turbulence seems to be more fundamental
than all of these because it largely explains why turbulence demands a statistical
treatment. This property is variously called instability, unpredictability, or
lack of bounded sensitivity. In more fashionable terms, turbulence is

chaotic. ".

A diametrically opposite view can be found in Stephen Wolfram’s book "A
new kind of science" where the author claims (page 998):

"And as it turns out I suspect that despite subsequent developments the
original ideas of Andrei Kolmogorov about complicated behaviour in ordinary
differential equations were probably more in line with my notion of intrinsic
randomness generation than with the chaos phenomenon".

The reason behind Wolfram’s view is basically the presence of dissipation
of a fluid in Navier-Stokes equations. Turbulent randomness, in order to be
chaotic, should have been originated from the excessive sensitivity of the con-
stituent particles to the initial conditions of their corresponding motions. But
if the fluid dissipation is included, according to Wolfram, most details of the
initial conditions would have been damped out intuitively at the large scale of
the collective fluid behaviour and it is therefore very unlikely to trace chaotic
unpredictability in the large scale randomness manifested in a turbulent sys-
tem.

Another fact is that every chaotic motion associates moderately finite num-
ber of degrees of freedom whereas a turbulent system is believed to consist
of infinitely large number of motion. An estimation of the number of de-
grees of freedom of a turbulent system is given later in this chapter by using
Kolmogorov’s phenomenology of incompressible turbulence.
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4.4 Basic assumptions

4.4.1 Statistical homogeneity

The notion of statistical homogeneity is a crucial hypothesis for the study of
turbulence. In usual terms, homogeneity describes the translational symmetry
of a function in space (which is defined at every point of the concerning space)
i.e. f(x) = f(x + r). For statistical homogeneity it is sufficient to replace
them by their corresponding statistical (or ensemble) average. For two-point
study, homogeneity is said to exist if the statistical averages of two-point

correlators are only the function of the difference vector between

the positions of the two points and not on their individual positions.
In mathematical expressions that can be written as

hf(x) · g(x + r)i = φ(r), (4.8)

where the h·i denotes the statistical average. The above property reduces to
the usual one point definition of statistical homogeneity for a function  if we
just replace the function g by function f, set r = 0 and define  (0) = f 2(x)

in the above equation.

4.4.2 Statistical isotropy

The properties of an isotropic system are independent of the direction cho-
sen. In case of statistical isotropy, directional invariance holds good

for the ensemble averages of the dynamic variables. For two-point
statistics, the corresponding correlators are functions of the magnitude of the
mutual distance of those two points. Mathematically it can be written simply
as

hf(x) · g(x + r)i = φ(r). (4.9)

Statistical mirror symmetry is also an important notion in turbulence. It is a
partial isotropy (in statistical sense) where we have

hf(x + r)i = hf(x − r)i . (4.10)

4.4.3 Stationary state

A dynamical state is said to be statistically stationary if the statistical

averages of its dynamical variables or rather flow variables are in-

dependent of time. So in a stationary state, for any variable Z we have

@ hZi
@t

= 0. (4.11)
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An essential element of Richardson’s cascade is embedded in the consider-
ation of a statistical stationary state. For such a state, the average energy
injection rate is equal to the average energy dissipation rate. A simple demon-
stration using the incompressible Navier-Stokes equations (equation 4.2) can
be given as the following:

@E

@t
=

@

@t

Z

v2

2
d⌧ =

Z

@

@t

✓

v2

2

◆

d⌧ (4.12)

=

Z 

−r ·
✓

v2

2
v

◆

−r · (Pv) + ⌫v ·∆v + v · f
]

d⌧.

The divergence terms can be thrown away by using Gauss-Ostrogradsky di-
vergence theorem assuming the surface of the closed volume containing the
flow to be at infinity and also assuming that the velocity vector at the surface
is purely tangential. Now for a steady state, the left hand term vanishes and
we are led to the conclusion that

− ⌫v ·∆v = v · f . (4.13)

For a turbulent flow which is statistically homogeneous (and therefore the
statistical average and space average are equivalent), we can say that the rate
of average energy injection is equal to the average energy dissipation and is
formally written as

− h⌫v ·∆vi = hv · fi = ". (4.14)

Note that the existence of this type of statistical steady state is not obvi-
ous. For compressible turbulence the existence of a stationary state and its
consequences will be discussed later.

Interestingly from equation (4.13), we notice that the non-linear term or
the inertial term does not finally contribute to the time rate of change of total
energy (or even average energy). This fact leads to the important conclusion
that in the inertial zone energy is neither gained nor lost on average but gets
transferred from one scale to another thereby ensuring the possibility of an
energy cascade within the said interval.

4.5 Two approaches to turbulence

4.5.1 Statistical approach

Application of statistical tools in the study of turbulence is justified by its
random nature (whatever be the origin of this) and also by the fact that
a completely developed turbulence, by definition, is expected to recover the
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symmetries in Navier-Stokes equations in a statistical sense within the iner-
tial zone (Frisch, 1995). In the study of turbulence fluctuations, two-point
statistics seems to be more relevant than mere one point statistics. Two-point
statistics consists of one-point statistical averaged quantities and two-point
covariances which can also be (in a less rigorous way) considered as a measure
of the correlation between any two points x and x + r. In the following, h·i
will denote the statistical or ensemble average of a variable. Two-point corre-
lator corresponding to the variables ' and  can be expressed in two ways i.e.
h'(x + r)φ(x)i and hφ(x + r)'(x)i. A priori they are different quantities
and there is no reason for them to be equal even under the assumption of
statistical homogeneity (as we see below).

Auto-correlation and spatio-temporal memory The correlation func-
tions involving only one single variable is called the auto-correlation func-
tion. The simplest non-trivial auto- correlation functions are the second
order functions. For an arbitrary flow variable φ, the second order space
and time auto-correlators are respectively defined by hφ(x + r, t)φ(x, t)i and
hφ(x, t+ ⌧)φ(x, t)i. The typical behaviour of a second order space auto-
correlation function is shown in the figure (4.2). The correlation function
remains considerable within a length scale rC called the correlation length

of the variable φ. Beyond that scale φ(x + r, t) comes to be almost indepen-
dent of φ(x, t). rC can therefore be taken as a measure of spatial memory of φ.
Identical treatment can be carried out for the temporal correlation functions
in order to determine the correlation time corresponding to the concerned
variable. In case of a statistically isotropic turbulence, a two-point longitu-
dinal space correlator of velocity of order n (where n is a natural number) is
defined as (Biskamp, 2008)

Cn (r) =
⌦

vk (x)
n−1 vk (x + r)

↵

, (4.15)

where vk denotes the component of velocity in the direction of r. Similar
definitions can be made for the temporal correlations too.

Structure functions In the context of incompressible turbulence, structure
functions of a flow variable represent the statistical moments (of different
orders) of the fluctuations of the corresponding quantity. The n-th order
moment (where n is usually a natural number but can be positive fraction too)
of a flow variable  gives the n-order structure function and is written as Sn =

h(δ )ni. Initially Kolmogorov (1941a), Monin et al. (1975) defined structure
functions for locally isotropic turbulence - following them, for two points x

and x+ r, the longitudinal and transverse n-th order structure functions are
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Figure 4.2: Behaviour of a second order auto-correlation function in space;
Courtesy: Sébastien Galtier.

respectively defined by

Sn (r) =
⌦⇥

δvk (r)
⇤n↵

, Tn (r) = h[δv? (r)]ni , (4.16)

where δvk is the projection of δv in the direction of l and δv? gives the two
components which are perpendicular to r. It is noteworthy that the local
isotropy in statistical sense leads the moments or rather the components of
the moments to be a function of the magnitude of r vector instead of the
vector itself. One should be careful that the isotropy does not necessarily
make the parallel and perpendicular moments equal.

Following the above definition, we can have both positive and negative
values of the structure functions depending on the values of n i.e. an even n
always gives a positive value whereas an odd n may give a negative as well as
a positive value. This definition is not however universal. In Constantin &
Fefferman (1994), where several inequalities have been established relating the
different order structure functions, the authors defined the structure functions
as

Sa
n (r) = h|δv (r)|ni , (4.17)

which always gives positive Sn(l) irrespective of the values of n. In the follow-
ing, we shall be more interested in longitudinal structure functions which is
equivalent to the probability distribution function of the velocity increments
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and their enhanced tails which correspond to the events of relatively large am-
plitude (Biskamp, 2008). The longitudinal structure functions are related to
the longitudinal correlation functions by algebraic equations. One can easily
prove that

S2 (r) = 2 [C2 (0)− C2 (r)] , S3 (r) = 3 [C3 (r)− C3 (−r)] . (4.18)

Similar type (not exactly identical) of relations can be obtained in case of
higher order moments and also for lateral structure functions (Monin et al.,
1975). In obtaining these relations, incompressibility condition i.e. r · v = 0

is a must. For compressible turbulence, the possibility of these type of relation
is therefore not guaranteed.

Structure functions are proved to be more fruitful than the correlators for
high n. Unlike the higher order correlation functions which do not carry
satisfactory information, the higher order longitudinal structure functions are
found to obey a scaling law (Kolmogorov, 1941b) within inertial range and
can be expressed as

Sn (r) = ↵nr
⇠n , (4.19)

where an is a proportionality constant but parametrized by the order of the
structure function. The function Sn (r) can be studied in two different ways
for two interests. One is just by varying r and keeping n constant which helps
us understand the extent (the range of length scale) to which a turbulent flow
shows self-similarity with respect to the statistical moments of given order.
Similarly varying n for a given length scale r is an appropriate tool for the
study of intermittency which will be discussed below.

It is however important to note that the scaling relations of the structure
functions remain the same if one uses the definition of equation (4.17) for the
structure functions (Nie & Tanveer, 1999) .

4.5.2 Spectral approach

Spectral approach to the study of turbulence consists of analytical study in
Fourier space and plays a complementary role to the aforesaid statistical ap-
proach which is based on physical space. The basic reasons for the popularity
of this approach can be understood by virtue of the following points (Galtier,
2013) :

a) The transfer of energy in turbulence from one length scale to another
is believed to be an outcome of the interaction between different linear and
non-linear wave modes in the turbulent media (Lesieur, 2008).

b) Construction of closures in Fourier space is found to model turbulence
more easily and reproduce theoretically the experimental energy spectrum law
(see K41 phenomenology below) immediately with remarkable precision.
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c) Spectral numerical codes are more precise than finite difference method.
Moreover, they are easier to handle numerically in direct numerical simula-
tions.

d) Spectral approach is indispensable in the analytical study of wave turbu-
lence in weakly turbulent flows where the turbulent dynamics and the energy
exchange from one scale to another is supposed to be caused by the interaction
of three or more linear modes (Nazarenko, 2011).

In this approach, turbulent dynamics is studied in Fourier space and so
we need the basic equation(s) of dynamics, here for example Navier-Stokes
equations and the energy transport equation, to be expressed in Fourier space.
Thus we have to construct the Fourier transform of each relevant dynamical
variable which includes one point variables (velocity, pressure, energy etc.) as
well as multi-point quantities like two-point or three-point energy correlation
functions etc. Below we shall give some formal definitions and then construct
some relevant quantities in Fourier space under the assumption of statistical
homogeneity. Then we shall re-write incompressible Navier-Stokes equations
in Fourier space which bears substantial importance in understanding the
origin of inter-scale energy cascading in direct space which will be discussed
in the following section.

4.5.2.1 Correlators in Fourier space and Energy spectra

The three dimensional Fourier transform (FT) of a one-point random station-
ary function f(x) is defined as (in the sense of distribution)

f̂(k) ⌘ 1

(2⇡)3

Z

R3

f(x)e−ik.xdx. (4.20)

For homogeneous turbulence, the two-point correlators are defined as
hf(x)f(x0)i = hf(x)f(x+ r)i = G(r) which let the Fourier transform of the
direct space correlators be expressed as

M(k) ⌘ 1

(2⇡)3

Z

R3

G(r)e−ik.rdr. (4.21)

Considering the case of second order velocity correlation tensors, we can define
the corresponding FT as

φij(k) ⌘
1

(2⇡)3

Z

R3

Rij(r)e
−ik.rdr, (4.22)

where Rij(r) ⌘ hvi(x)vj(x+ r)i is two-point direct space velocity correlator.
φij(k) is called the spectrum of velocity field. For the quantity φij(k) to be
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defined mathematically, Rij should be integrable which is physically possi-
ble because Rij tends to zero for |r| ! 1. Furthermore, due to statistical
homogeneity, one can easily verify that Rij(r) = Rji(−r) which, in turn, gives

φji(k) = φij(−k) = φ⇤
ij(k). (4.23)

We also suppose that the physical space correlation functions (here two-point
correlators) can be expressed as inverse Fourier transform of φij. Then we can
write

Rij(r) =

Z

R3

φij (k) e
ik.rdk. (4.24)

The total average energy (in incompressible case which is equal to the kinetic
energy) per unit mass at a point x is then written as

E =
1

2
hui (x) ui (x)i =

1

2
Rii (0) =

1

2

Z

R3

φii (k) dk, (4.25)

whence we can finally obtain the general expression for the energy spectrum

tensor in homogeneous turbulence and is given by

E (k) ⌘ 1

2
φii(k). (4.26)

For the special case of isotropic turbulence, the energy spectrum gets reduced
to a scalar and is written as E (k) where

E (k) ⌘ dE

dk
=

1

2

d
R

φii (k) dk

dk
=

d
R

2⇡k2φii (k) dk

dk
= 2⇡k2φii(k). (4.27)

E(k) is called the modal spectral density of energy and is highly important
and popular in the community of turbulence.

One can also verify that in homogeneous and isotropic incompressible tur-
bulence, the general expression for the energy spectrum tensor is given by

φij (k) =

✓

δij −
kikj
k2

◆ E (k)

4⇡k2
. (4.28)

4.5.2.2 Navier-Stokes equation and energy equation in Fourier

space

Here we write incompressible Navier-Stokes equations in terms of the Fourier
transform of the original dynamical variables and then we express the energy
equation in Fourier space too. Rewriting the equation (4.2) omitting the force
term, we get

@v

@t
+ (v · r)v = −rP + ⌫∆v. (4.29)
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Taking the FT on both sides, we obtain

@v̂ (k)

@t
+ \(v · r)v = −ikP̂ (k)− ⌫|k|2v̂ (k) , (4.30)

where ’ˆ ’ denotes the corresponding Fourier transform. The next step is to
eliminate the pressure term using incompressibility. Taking the divergence on
both sides of equation (4.2) and using r.v = 0 we get a Poisson’s equation
for pressure and is given by

∆P = −r · [(v · r)v] . (4.31)

Taking FT on both sides of this equation, we get

k2P̂ (k) = ikj \[(v · r)v]j (4.32)

) P̂ (k) = i
kj
k2

\[(v · r)v]j, (4.33)

using the definition of Kronecker delta, we can reduce the ith component of
the equation 4.30 to

@v̂i (k)

@t
+ ⌫k2v̂i (k) = −

✓

δij −
kikj
k2

◆

\[(v · r)v]j, (4.34)

here the repetition of the dummy index j indicates summation over j. The
following step is to derive the FT of the non-linear term. We can write for
the ith component

\[(v · r)v]i =
1

(2⇡)3

Z

(vj(r)@jvi(r)) e
−ik.rdr

=
1

(2⇡)3

Z ✓Z

v̂j (p) e
ip.rdp

◆✓

i

Z

v̂i (q) qje
iq.rdq

◆

e−ik.rdr

= i

Z

p

Z

q

v̂j (p) qj v̂i (q) δ (k− p− q) dpdq, (4.35)

where by definition, (1/(2⇡)3)
R

e−i(k−p−q).rdr = δ (k− p− q). The above
expression, being inserted in (4.34), gives

@v̂i (k)

@t
+ ⌫k2v̂i (k) = −i

✓

δij −
kikj
k2

◆

X

k=p+q

v̂m (p) qmv̂j (q) . (4.36)

Now substituting qm by km−pm and inserting the incompressibility condition
i.e. v̂m (p) pm = 0 in the above relation, we obtain the final form which is
given by (Biskamp, 2008; Ditlevsen, 2010)

@v̂i (k)

@t
+ ⌫k2v̂i (k) = −i

✓

δij −
kikj
k2

◆

X

k=p+q

v̂m (p) kmv̂j (q) . (4.37)
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The evolution equation for the energy spectral density is therefore obtained
from the following expression

@E (k)

@t
=
@(v̂iv̂⇤i )

@t
=
@v̂i
@t
v̂⇤i +

@v̂⇤i
@t

v̂i. (4.38)

Moreover using the fact that the velocity vector is real, we can show v̂⇤i (k) =

v̂i (−k). Using this relation in the equations (4.37) and (4.38) and finally
using a few steps of algebrae, we obtain (Rose, H.A. & Sulem, P.L., 1978),

@E (k)

@t
+ 2⌫k2E (k) =

Z Z

T (k | p,q)δ (k+ p+ q) dpdq, (4.39)

where

T (k | p,q) = −Im [(k · v̂ (q)) (v̂ (p) · v̂ (k)) + (k · v̂ (p)) (v̂ (q) · v̂ (k))]

(4.40)
is called the transfer function. For an inviscid fluid (⌫ = 0), the total energy
equation can be written as

@E

@t
=

@

@t

Z

E(k)dk =

Z Z Z

T (k | p,q)δ (k+ p+ q) dkdpdq. (4.41)

By symmetry, one can write

@E

@t
=

1

3

@

@t

Z

E(k)dk+

Z

E(p)dp+

Z

E(q)dq

]

(4.42)

=
1

3

Z

k,p,q

[T (k | p,q) + T (p | q,k) + T (q | k,p)] δ (k+ p+ q) dkdpdq.

(4.43)

Now by using the incompressibility, one can easily show that

[T (k | p,q) + T (p | q,k) + T (q | k,p)] = 0. (4.44)

The above relation proves the total energy conservation and also energy con-
servation for each triad interaction. The above equation is crucial for under-
standing the localness of interactions in turbulence (discussed in the following
section) in terms of the triads and can be considered to be the key equation
for shell models in turbulence (Ditlevsen, 2010) which are beyond the scope of
our current discussion. Kolmogorov’s −5/3 law for isotropic turbulence can
also be reproduced from the relation (4.41) by using Weiner-Khinchin formula
(for detailed derivation see page 11 of Ditlevsen (2010)).
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4.5.2.3 Triadic interaction and localness of interactions

It is clear from the equation (4.37) that the non-linear term, which efficiently
transfers energy, essentially associates three modes k, p and q in Fourier
space. For an effective non-zero energy transfer, those three modes should
obey the condition of resonance i.e. k+p+q = 0. This introduces the notion
of triadic or three-wave interaction. As the non-linear term is believed
to bring about the energy cascade, the corresponding mechanism is thus be-
lieved to be driven by this type of triad interactions. Let the wave numbers
be ordered by a sequence say kn. As energy cascading should be a process of
inter-scale step-by step energy transfer (can be shown theoretically for hydro-
dynamic turbulence), it is necessarily local in wave space which means then
the efficient energy transferring interactions corresponding to scale k−1

n will
involve either kn or kn±1. Now practically in order to implement the locality
in the triadic interactions, all the triads for which the smallest wave number
is less than the half of the largest one are eliminated selectively. So if we con-
sider an interacting triad of wave vectors kn, pn and qn with an ordering (by
choice) that |kn| > |pn| > |qn|, the selected triads will be those which would
have 2|qn| > |kn|. It is noteworthy that energy is conserved in each triad
interaction. Interestingly, in three dimensions, triad interactions can be re-
duced to pair interactions (two-mode interaction) which is not feasible in two
dimensional turbulence due to enstrophy which is also conserved in each triad
in 2d turbulence (Kraichnan, 1967a). This result of triad-wise conservation
is also valid for incompressible MHD turbulence (Biskamp, 2008). In MHD
turbulence both the energy and cross-helicity can be shown to be conserved
for each interacting triad thereby validating the localness of interactions in
MHD case as well.

4.6 Phenomenology

As described earlier that a turbulent flow necessarily associates fluctuations
of the flow variables over a broad range of spatial and temporal scales. Phe-
nomenology in turbulence refers to a possible physical image by which these
multiscale dynamics and energetics of a turbulent flow can be understood
in a general way. So it is clear that phenomenology is neither an absolute
reality nor a unique entity. Schematically, there are four episodes in a tur-
bulence phenomenology : (i) Determination (by intuition or any other rig-
orous method) of one or more scale invariant quantity(s), (ii) Derivation of
an approximate expression (by dimensional analysis) of that (or those) scale
invariant quantity(s) as a function of other turbulence flow variables (length
scale, corresponding velocity fluctuation, characteristic time, magnetic field
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fluctuation, density fluctuation etc.), (iii) Determination of the characteristic
time(s) governing any transfer (energy, helicity etc.) corresponding to the
flow and finally (iv) Prediction of a power law of relevant spectral density(s)
as a function of the wave numbers corresponding to different length scales and
also derivation of other relevant characteristic scales as a function of different
scale variables. In the following we shall give a brief description of two well-
known phenomenologies namely (a) K41 (Kolmogorov’s phenomenology) for
3D incompressible hydrodynamic isotropic turbulence and (b) IK (Iroshnikov-
Kraichnan phenomenology) for 3D incompressible MHD turbulence in the
presence of a strong external magnetic field.

4.6.1 K41 phenomenology

K41 phenomenology is a direct outcome of Kolmogorov’s 1941 theories. It
can be described by the image of Richardson’s cascade (Richardson, 1922)
i.e. self-similar energy cascading inside the inertial zone. In the absence of
forcing or external energy injection and viscous dissipation, net energy flux
rate (") is assumed to be the scale invariant quantity within inertial zone.
Moreover, using the existence of a stationary state, " can be thought to be

Figure 4.3: Schematic view of Richardson’s energy cascade in turbulence by
eddy fragmentation.
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equal to the energy injection and dissipation rate respectively at the integral
and Kolmogorov scale of the flow. By dimensional analysis, we can show that
for an incompressible flow (density being normalised to unity), the inertial
range energy flux rate is given by

" ⇠ vl
2

⌧l
. (4.45)

Next step is to determine the characteristic time ⌧l. According to Richardson’s
image, ⌧l should be given by the time required for a complete distortion of
a vortex of length scale l and is given by (as according to Kolmogorov, the
distortion is caused by relative velocity and not the individual velocities at
each point) so called eddy turnover time (ETT)

⌧l ⇠
l

vl
, (4.46)

where vl is the velocity fluctuation corresponding to length scale l and physi-
cally it is nothing but the relative velocity (rather the magnitude of the relative
velocity vector) between two points separated by a distance l. The use of ETT
as the characteristic time expresses the scale invariant to be written as

" ⇠ v3l
l
. (4.47)

Using the aforesaid definition of energy spectral density in homogeneous tur-
bulence, we can write

E(k) ⇠ vl
2k−1 ⇠

(

"k−1
) 2

3k−1 ⇠ "
2
3k− 5

3 .

This law is the most famous law in turbulence physics and is commonly known
as Kolmogorov’s 5/3 law. This approximate relation can be converted to
an equation by introducing a dimensionless constant C called Kolmogorov’s
constant and the equation is written as

E(k) = C"
2
3k− 5

3 . (4.48)

The value of C is determined experimentally and is about 1.4 –1.6.
The equation (4.47) is also obtained from the exact relation (Antonia et al.,

1997) in a more direct way (without introducing the characteristic time) if we
use the following definition

vl ⇠
q

⌦

(δv)2
↵

. (4.49)
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The derivation of the final spectra is however not an immediate offspring of
the exact relation which uses no a priori assumption on the scale invariance
of ".

FF Another approach of obtaining the k−5/3 spectrum (Nazarenko, 2011)
consists in assuming that the energy spectral density i.e. E(k) to depend only
on " and k then the only possibility is to obtain the above law given C is a
dimensionless constant. This argument, however, is useful only if the energy
spectral density depends on two variables in incompressible case (as only the
length and the time are independent variables). In fact in MHD case (which
we shall treat in the following subsection), the energy spectral density depends
also on another variable called Alfvén speed and thus by using the previous
method, one cannot obtain unique solution for the spectral law.

Figure 4.4: Normalized velocity power spectra from different experiments
show universal k−5/3 behaviour; Reprinted with permission from Gibson &
Schwarz (1963) ; © (1963) Cambridge university press.
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Universality in turbulence The most intriguing feature of turbulence is
believed to be its universal properties despite the presence of enormous com-
plex dynamics. That means, the regime of turbulence flow exhibits some
common properties or features irrespective of the origin of the fluid (as far
as the governing equations are the same) and the macroscopic conditions im-
posed on the flow regime. One of the formal ways to define this universality is
in terms of the index of the power spectra. A considerable number of experi-
ments have been carried out using different fluids in turbulence. Surprisingly,
each of them has presented a zone with −5/3 power law (see figure 4.4). The
interval for which we get the universal behaviour, is expected to represent the
inertial zone (which will be discussed later) which is free from both the macro-
scopic and microscopic effects. However, the width of the zone with −5/3 is
different from different experiments and can partly be attributed to difference
in the initial Reynolds number of the corresponding flow. It is however impor-
tant to note that, the parameter of universality (for example the index -5/3
of velocity power spectra in incompressible hydrodynamic turbulence) is not
absolutely universal and can be different for different fluids (e.g. a plasma).

4.6.2 IK phenomenology

This phenomenology depends on the image of non-linear interaction of two
oppositely propagating weakly fluctuating linear modes. According to this
phenomenology energy is transferred from one length scale to another length
scale by the deformation of one fluctuating linear wave by the other one.
This phenomenology was independently proposed by Iroshnikov (1964) and
Kraichnan (1965). They applied this concept in understanding the turbulence
in a plasma fluid or more precisely in an MHD fluid. In incompressible MHD
(as seen in the previous chapter), we have only one linear mode which is
Alfvén mode. Now, in presence of a strong magnetic field (sometimes called
the guiding magnetic field) B0, which is supposed to be constant in space
and time, the dynamical equation for the Elsaässer variables (z± = v ± b) is
written as (Elsässer, 1950)

@z±

@t
⌥ (VA · r) z±+

(

z⌥ · r
)

z± = −r
✓

P +
v2A
2

◆

+
1

2

(

$+∆z± +$−∆z⌥
)

,

(4.50)
where VA = B0p

µ0⇢
and vA = bp

µ0⇢
represent respectively the true Alfvén speed

and the normalized local magnetic field. The terms $± =
(

⌫±⌘
2

)

correspond to
the combination of kinematic viscosity and magnetic diffusivity. This equation
indicates that in incompressible MHD turbulence, the non-linear interaction
takes place between two oppositely propagating Elsasser fields where the fields
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z+ and z− convect respectively with velocity -VA and VA along the external
magnetic field (see figure 4.5). This is called Alfvén effect which causes even
the small scale fluctuations to be highly affected by the macroscopic magnetic
field thereby modifying the inertial range spectra.

Figure 4.5: Sporadic interactions of Elsasser fields in IK phenomenology.

Unlike pure hydrodynamical case, here we can define two characteristic
times (i) Alfvén time (⌧Al = l/VA) which corresponds to the time necessary
for one single interaction between z+ and z+ and (ii) Non-linear time (⌧l)

which measures the time required for a sufficient distortion of z+ or z− by one
another and hence they are respectively given by

⌧±l = l/z⌥l . (4.51)

Interestingly the transfer time (⌧tr) is not simply the non-linear time in general
case and depends on the relative importance of the two dynamic time scales.
Three cases are possible :
(a) ⌧Al ⌧ ⌧l - corresponds to weak turbulence regime,
(b) ⌧Al ⇠ ⌧l - corresponds to the critical balance regime in turbulence and
(c) ⌧Al . ⌧l which corresponds to K41 turbulence regime
IK phenomenology dwells on the first situation of the above three. ⌧Al << ⌧l
indicates that the deformation in one single interaction (δz±l ) is too weak to
transfer energy to the next length scale as

δz±l
z±l

⇡ ⌧Al

⌧±l
⌧ 1. (4.52)

We need N (. 1) number of interactions to have a sufficient deformation i.e.
δz±l ⇠ z±l . Considering this interaction process to be completely random an
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estimate for N can be obtained using the law of big numbers according to
which

δz±l
z±l

⇠ 1p
N
. (4.53)

The resulting transfer time is then given by

⌧±trl ⇠ N⌧Al ⇠
✓

z±l
δz±l

◆2

⌧Al ⇠
✓

⌧±l
⌧Al

◆2

⌧Al =
⌧±l

2

⌧Al

. (4.54)

The remaining part of the story is no doubt the determination of the scale
invariants. Unlike the hydrodynamical case, here we have more than one scale
invariant quantities. Alfvén speed, being a constant of the system, is invariant
by scale by default. The total energy (sum of kinetic and magnetic energy)
flux rate is considered to be scale invariant (but not necessarily a constant).
The cross helicity (as we saw in the previous chapter) is also a conserved
quantity and so its flux rate can also be assumed as a scale invariant quantity.
This leads us to the fact that the pseudo-energies

R

(z±)
2
d3x are conserved

individually (shown in the previous chapter). So for them we have a couple
of scale invariant flux rates which are given by "±. Their expressions can be
written as

"± ⇠
(

z±l
)2

⌧±trl
⇠ z+

2

l z−
2

l ⌧Al

l2
. (4.55)

For the sake of simplicity we consider very weak velocity-magnetic field fluc-
tuation correlation (for the general case, see Grappin et al. (1983) which leads
to z+l ' z−l . In that case ⌧+trl ' ⌧−trl and the dimensional relation (4.55) can be
re-written as

" ⇠ z4l ⌧Al

l2
, (4.56)

where " may be regarded as (neglecting the constant factor 2) the total energy
flux rate. Expressing z2l ⇠ E(k)k, we get

" ⇠ vA
−1(E(k)k)2k ) E(k) ⇠ ("vA)

1/2k−3/2. (4.57)

For inserting the equality, we introduce a dimensionless constant CIK and we
write

E(k) = CIK("vA)
1/2k−3/2. (4.58)

Although the mechanism of IK type transfer is different than that for K41
type transfer in inertial range cascade, the difference in spectral indices is
practically very hard to realise (-1.5 and -1.67). It is the higher order moments
who reflect the difference more prominently (ref. needed). One can easily
understand that the transfer time in IK mechanism is larger than that of K41
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as ⌧l . ⌧Al. This is because in Alfvénic turbulence, energy is transferred by
the sporadic interactions of the oppositely propagating Elsasser fields and not
by a continuous process of dissociation of the vortices.

Under the same assumption of isotropy, scale invariants and very weak
velocity-magnetic field fluctuation correlation, if we consider the situation
where ⌧Al . ⌧l, Alfvén effect can still be used where the number of interactions
N necessary for a sufficient deformation of zl is not estimated by the law of
big numbers but can just be estimated as

N ⇠ ⌧l
⌧Al

(4.59)

and so the resulting transfer time (⌧trl) is simply given as

⌧trl ⇠ N⌧Al '
⌧l
⌧Al

⌧Al = ⌧l, (4.60)

which indicates the possibility of a −5/3 spectrum. For the case where ⌧Al >>

⌧l, the effect of ’guiding’ field is negligible and the flow basically behaves as a
K41 flow with the velocity fields are replaced by the Elsasser fields.
FF Very often for deriving the transfer time in critical balanced state,

⌧Al is just replaced by ⌧l in the expression of ⌧trl obtained in (4.54). This is
physically wrong (by construction) although it gives ⌧trl ⇠ ⌧l too.

Here in defining the characteristic times, we assumed isotropy which was
also a primary assumption of Kraichnan too. But physically it is somewhat
inconsistent to maintain three dimensional isotropy in presence of a strong
magnetic field. Without using any mean field, the idea of isotropy is theoret-
ically saved by assuming the strong field B0 to be generated by the largest
coherent structures of the system. But this explanation is not really consistent
to its scale invariance which we used in the dimension analysis. Kraichnan’s
−3/2 spectrum is thus put into question in the framework of isotropic MHD
turbulence (Biskamp, 2008). The phenomenology, on the other hand, is rele-
vant if we consider an anisotropic or at least an axisymmetric (i.e. an isotropy
in the plane perpendicular to that of the strong ’guiding’ magnetic field) tur-
bulent flow.

4.6.3 Utilities of phenomenology

The importance of phenomenology is not only limited in predicting different
power spectra but also in understanding various aspects of turbulence:
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(i) By phenomenological argument we can estimate the number of de-
grees of freedom (which is theoretically infinitely large) for a turbulent system.

(ii) We can also have an idea of the extent to which fluid equations can be
valid for a turbulent system by comparing its macroscopic and microscopic
length scales.

(iii) The law of energy decay in decaying turbulence can be obtained.

(iv) Probability distribution functions can also be approximated by
phenomenological elements.

In the following four subsections, these points will be elaborated in a quan-
titative manner using dimensional analysis.

4.6.3.1 Degrees of freedom of a turbulent flow

A turbulent system is said to possess infinitely large number of degrees of
freedom (references). Theoretically it can serve our purpose but in practical
cases, for numerical simulations for example, we need to have an idea of that
infinitely large value for a real system. More precisely, an estimation of the
minimum number of grid points necessary to simulate a completely developed
three dimensional turbulence is required. In the following we shall give an
approximate order of that quantity using the above K41 phenomenology. From
the expression of the mean energy injection rate (which is equal to the mean
energy dissipation rate in a stationary state) the integral scale (l0) can be
written as

l0 ⇠
v30
"
, (4.61)

and the dissipation scale or the Kolmogorov scale is expressed as

l⌘ ⇠
p
⌫⌧l ⇠

p
⌫l2/3"−1/3 ) l⌘ ⇠

✓

⌫3

"

◆1/4

. (4.62)

The ratio of these two length scales can give an estimation of the spanning
range for a "healthy inertial zone" which is

l0
l⌘

⇠
✓

⌫3

l30v
3
0

◆−1/4

⇠ R
3/4
e , (4.63)

and for a simulation in three dimensions, the minimum number of grid points
in a uniform grid is thus given by

N ⇠ Re9/4, (4.64)
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Surprisingly this number is also controlled by the integral Reynolds number.
For a completely developed turbulence, in general, we have Re ⇠ 104 and so
N ⇠ 109. As a completely developed turbulence is supposed to be spanned in
all the available scales from the integral to the dissipative one, this above esti-
mated N can be a reasonable measure of the number of degrees of freedom of a
turbulent flow. This estimation works if we assume the inertial range motion
is entirely disorganised. In reality, as the experiments show, the inertial range
motion is often consisting of coherent structures like vortex filaments etc. This
reduces significantly the number of degrees of freedom thereby paving the way
for future simulation prospects (Frisch, 1995).

4.6.3.2 Applicability of fluid equations

The above estimation, by default, is adapted to incompressible turbulence. For
compressible turbulence, the issue is more subtle and we have even to check the
applicability of the hydrodynamic model by comparing the fluid dissipation
scale and the kinetic mean free path of the molecules. Usually for the most of
the fluids in our surroundings (water, air etc.) the speed of the sound is of the
order of the thermal velocity (vth) of the molecules. Additionally we suppose
that the kinematic viscosity is written as the product of the molecular mean
free path (λ) and the thermal speed (following usual formulation of transport
co-efficients). Using these two facts, the ratio of the Kolmogorov scale and
the molecular mean free path is given as (Corrsin, 1959; Frisch, 1995)

Υ ⌘ l⌘
λ

⇠ ⌘

l0

l0v0
λvth

vth
v0

⇠M−1
Re

1/4, (4.65)

where M is the Mach number. Attention should be paid on the fact that the
hydrodynamical model is applicable if Υ . 1 i.e. M ⌧ R

1/4
e . For a typical

system with Re ⇠ 104, the condition reduces to M ⌧ 10. This, in turn, puts
a question to the validity of hydrodynamical model for high Mach number
(M ⇠ 10) compressible turbulence both from theoretical and numerical point
of view. However, very high (105−107) Reynolds numbers are estimated both
for cold interstellar molecular clouds (Elmegreen & Scalo, 2004) and the solar
wind (Borovsky & Gary, 2008) which retains the validity of fluid approach in
astrophysical or space plasma turbulence even for M ' 10.

4.6.3.3 Energy decay in non-forced turbulence

If a turbulent flow is not forced, it will dissipate energy in time due to viscous
effects. An approximate law for this decay can be derived by two following
assumptions:
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(1) An "infrared asymptotic self similarity" (IRSS) for velocity with
a negative2 scaling exponent ↵ which means for l ! 1, vl ⇡ Cl↵, C being a
constant.

(2) Principle of permanence of large eddies which asserts that if a
freely decaying turbulent flow initially possesses IRSS, this symmetry will be
preserved at later instants with same scaling exponent ↵ and constant C.

Using the definition of IRSS and that of the spectral density of energy, we
write for l ! 1,

v2l = C2l2↵ ) E(k) = C2k−2↵−1, (4.66)

for k ! 0. As ↵ is negative, the above law indicates a growing energy spectrum
at small scales which is not physical. It is therefore necessary to have a lower
cut-off scale l0 below which the turbulence is of completely developed type and
the scaling law vl ⇠ l

1
3 is obeyed instead. This l0 is called the integral scale

which translates also with time. Corresponding v0 scales as v0 ⇠ Cl↵0 . For
integral scale Reynolds number R0 ⇠ l0v0

⌫
>> 1, the mean energy dissipation

rate can be estimated by

d

dt
v20 ⇠ −" ⇠ −v30

l0
. (4.67)

Substituting the scaling law of vl for large scales in the above equation, we
get

d

dt

(

C2l2↵0
)

⇠ −C3 l
3↵
0

l0
, (4.68)

Integrating the above equation, we get

l0 ⇠ (t+ t0)
1

1−α , v0 ⇠ (t+ t0)
α

1−α , (4.69)

which further gives

E ⇠ (t+ t0)
2α
1−α , R ⇠ (t+ t0)

1+α
1−α , (4.70)

where t0 is a constant of integration. As ↵ is negative, vl and E always decrease
with time whereas the integral scale increases with time. Reynolds number
increases with time for ↵ > −1. On the other hand, for ↵ < −1, Reynolds
number decreases and the above derivation fails once Reynolds number takes a
value of the order of unity. This derivation is a general one. In his classic 1941b
paper, Kolmogorov treated the three dimensional case ↵ = −5

2
and hence

obtained E ⇠ t−10/7 as the law of decay of energy. Interestingly, this particular
choice of ↵ was based on time independence of Loitsyansky’s integral (1939)
which was later invalidated by Batchelor & Proudman (1956).

2Otherwise the velocity field is not homogeneous but only consists of homogeneous in-

crements (Frisch, 1995).
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4.6.3.4 PDF for velocity gradients

Using K41 phenomenology along with Landau argument, we can derive (fol-
lowing Frisch’s book) probability distribution function (PDF) for velocity gra-
dients given that the PDF for velocity fluctuations at inertial scale (v0)

is known. For that we assume the turbulence to be homogeneous and isotropic
and Pv(v0) is known. The characteristic velocity fluctuation corresponding to
Kolmogorov scale l⌘ is estimated by

(v⌘) ⇠ v0

✓

l⌘
l0

◆ 1
3

, l⌘ ⇠ ⌫
3
4 l

1
4
0 v

− 3
4

0 . (4.71)

The corresponding velocity gradient is then estimated by

s ⇠
✓

v⌘
l⌘

◆
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3
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− 1
2 l

− 1
2

0 . (4.72)

We know that if a random variable x follows a PDF Px(x), then a monotonic
function of x denoted as y = f(x) will follow a PDF which is given by

Py(y) ⇠ |df
−1 (y)

dy
|Px

⇥

f−1 (y)
⇤

, (4.73)

where f−1 is the inverse function of f .

In our case, identifying s = f (v0) = v
3
2
0 ⌫

− 1
2 l

− 1
2

0 , we get

f−1 (s) = v0 = s
2
3⌫

1
3 l

1
3
0 , (4.74)

whence we get the resulting PDF for s which can be approximately written
as

Ps(s) ⇠ ⌫
1
3 l

1
3
0 s

− 1
3Pv

⇣

s
2
3⌫

1
3 l

1
3
0

⌘

. (4.75)

This relation is of dubious validity for the central part of the PDFs where
the variables are comparable to their r.m.s values and can only be applied to
the tail of the PDFs. Therefore low order moments of the velocity derivatives
such as skewness, flatness etc. cannot be predicted by the above relation.
According to Landau argument, PDFs of velocity fluctuations are believed
to be non-universal due to its dependence of the detailed mechanism of the
turbulence production. Non universality of velocity PDF propagates to the
dissipative scale velocity gradient PDF by virtue of the above relation.

4.7 Dynamics and energetics of turbulence

4.7.1 Turbulent forcing

A flow field whose dynamics is governed by Navier-Stokes equations, dissipates
energy by virtue of its viscosity. For such a system the turbulent regime decays
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with time and we cannot get a stationary state. An external source of energy
is therefore needed to sustain the turbulent regime and obtain a stationary
state. This source is called a forcing term and the corresponding flow is said
to be forced. In a stationary state, the injected energy rate equals to the
dissipated energy rate (shown earlier). To obtain a considerable inertial zone,
the forcing should act only at the largest scales i.e. at the smallest wave
numbers (⇠ k0) of the system. In general the introduction of the forcing
term in the Navier-Stokes equations may break its invariance under Galilean
transformation. However the invariance is retained if the forcing term is delta-
correlated in time (Frisch, 1995). In case of numerical simulations, the usual
functional forms of forcing is chosen to follow

f (k, t) ⇠ F (k) e−λ(k−k0)δ (t− t0) , (4.76)

where λ is positive. Forcing means, in general sense, injection of a quantity
into the system from exterior. In hydrodynamic turbulence, the only possi-
bility of forcing is in the velocity field through Navier-Stokes equations. In
MHD turbulence, forcing can be done through NS and Faraday equation by
respective excitation of velocity field and magnetic field. Forcing the mag-
netic field is, however, not compulsory and is often avoided for the sake of
simplicity both in theoretical and numerical works. One should understand
that an exclusive forcing on velocity field can equally nourish the magnetic
field and the corresponding energy through cross-helicity i.e. the coupling
between turbulent velocity and magnetic field.

In order to avoid any adulteration of compressibility by the forcing, the forc-
ing itself should be solenoidal (divergenceless) i.e. r · f = 0 in the simulation
of incompressible turbulence. For compressible turbulence, the determination
of forcing scheme is a bit complicated story and the nature of forcing, in fact,
affects the nature of turbulence i.e. the corresponding scaling and spectra
(Mac Low et al., 1998; Kritsuk et al., 2007a; Federrath et al., 2010).

4.7.2 Turbulent cascade

The concept of cascade is of key importance in the study of turbulence. By
definition, turbulence associates a sequence of length and time scales. For
incompressible turbulence, Richardson (1922) proposed an image where the
vortices, which are considered to be the coherent structures of an ideal incom-
pressible flow, get fragmented into smaller vortices and so on. In an interval
of length scales which are sufficiently larger than the viscous or the dissipa-
tion length scale (l⌘), the energy (in incompressible case it just means the
kinetic energy in the absence of any body force field), which is a conserved
quantity, therefore seems to be spent by the larger vortices in order to feed
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the smaller vortices. If we associate a wave number k which is roughly equal
to the inverse of the length parameter (for circular vortices, the diameter, for
example) of the vortices, within the said interval, the energy is said to flow

step by step (can be shown theoretically in hydrodynamic turbulence) from
the lower wave number to higher wave number whence the notion of cascade
takes birth. The energy must be cascaded through because for the aforesaid
length scale interval, no mechanism is present to dissipate the energy from
the system. This interval, where the inertial terms dominate over the viscous
terms, is called the inertial zone. Without any difficulty we can understand
that the energy cascade takes place within that inertial zone. The idea of
turbulent cascade is extended for other conserved quantities too (like the ki-
netic helicity in 3D hydrodynamic turbulence, enstrophy in 2D hydrodynamic
turbulence, magnetic helicity in 3D MHD turbulence etc.). One should not
forget that Richardson image is a possible image and not the only image for
explaining the energy cascade.

The concept of cascade is more adapted in terms of the energy spectra
and triad interactions. One can show that both in incompressible hydrody-
namic and MHD turbulence, spectral energy is conserved for individual triads
(Biskamp, 2008). More generally speaking, the spectra of ideal invariants are
conserved in non-linear interactions. If such a quantity is added or injected
externally to the system (by forcing for example) at an inertial range wave
number kin, it gets scattered into other regions of k-space by triad interac-
tions. For local interactions, this scattering should be in small steps thereby
setting up a cascade of that invariant. Note that, there is no restriction which
says that the cascade should be unidirectional. It is however observed that
the net transfer always takes place in a direction either from larger scale to
smaller scale or the contrary. Depending on the direction of the transfer of a
quantity, we have two types of cascades. The quantities which cascade from
larger scale to smaller scale (i.e. from lower k to higher k) are said to un-
dergo a direct cascade (energy in 3D HD and MHD turbulence, enstrophy
in 2D HD turbulence etc.). For the opposite case, where the net transfer
is from lower length scale to higher length scale, an inverse cascade (en-
ergy in 2D HD turbulence, magnetic helicity in 3D MHD turbulence etc.)
is said to take place. Theoretically it is not very evident to determine the
cascade direction. However there exist some theoretical attempts which can
be useful, under certain circumstances, to determine the cascade direction.
Kolmogorov never insisted on the theoretical determination of the cascade
direction. Historically for the first time interesting rigorous methods of un-
derstanding the cascade direction for both evolving and stationary turbulence
were proposed by Fjortoft (1953). These methods were simple but indirect
(Nazarenko, 2011). In addition they were structured to treat hydrodynamic
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turbulence. The approach conceived by Kraichnan (1967a) was the same as
that of Fjortoft. In addition, he used the locality assumptions to predict
the direct and inverse cascade spectra in 2D hydrodynamic turbulence. But
it is lengthy and does not seem to be adapted readily for MHD turbulence.
Some years later Kraichnan & Montgomery (1980) proposed another method
of determining cascade direction using Gibbs functional under the assumption
of absolute equilibrium. This method can successfully be applied to 2D
and 3D turbulence for both hydrodynamic and MHD turbulence. However,
in this method one needs to know the exhaustive set of invariants for a given
dynamical system and thus cannot be readily applied for a complex system3.
All the above discussions was for incompressible turbulence. For compressible
turbulence a priori we do not have the Richardson’s view of cascade as the
velocity fields are no more divergence-less and even if we create some initial
vortices, sequential fragmentation of those structures will not be guaranteed
due to the fluid compressibility (figure 7.1 Frisch (1995)). A phenomenologi-
cal view equivalent to the Richardson cascade is thus required to understand
the transfer of the conserved quantities in the inertial zone which itself is of
questionable existence in case of compressible turbulence. A discussion will
be done later while discussing different aspects and studies of compressible
turbulence.

4.7.3 Turbulent dissipation

In his 1954 lecture series, Chandrasekhar specified dissipation to be one of
the two most fundamental aspects (the second being interscale energy trans-
fer) of turbulence. In his words, "Viscous dissipation is the only mechanism
available to a fluid medium to dissipate the energy input and thus maintain
an energy balance. Because of this, and because it is physically clear that tur-
bulence cannot exist in an inviscid medium, viscosity and viscous dissipation
are necessary aspects of the turbulence phenomenon." According to the above
idea of cascading, energy is getting transferred in a stepwise manner from the
integral scale to smaller scale and so on by the consecutive fragmentation of
vortices. Dissipation occurs at very small length scales where the correspond-
ing vortex size scale is such that the ⌫∆v dominates over the inertial terms.
It is simply because of the Laplacian in the viscous term which makes the
term inversely proportional to the square of the length scale. Energy is then
dissipated from the system as a consequence of the intermolecular collisions.
The length scale l⌘ which initiates the dissipation is known as Kolmogorov
scale. For hydrodynamic turbulence an estimation of Kolmogorov scale can

3In weak turbulence (beyond the scope of my thesis) regime, we can however prove

rigorously the sense of the cascade (Nazarenko, 2011).
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be obtained by using the K41 phenomenology and is given as (see equation
4.62)

l⌘ ⇠
✓

⌫3

"

◆1/4

. (4.77)

In reality, however, it is usually found that dissipation becomes important at
scales ⇠ 30l⌘. This fact can trivially be attributed to the neglect of the dimen-
sionless constant in the dimension analysis. A possibility of weaker non-linear
interactions than those predicted by the phenomenology can nevertheless be
thought to be a relevant reason for this discrepancy.

For MHD turbulence, similarly, the application of IK phenomenology, esti-
mates the corresponding dissipation scale (lD) to be

lD ⇠
✓

⌫2VA

"

◆1/3

, (4.78)

where the kinematic viscosity and magnetic resistivity are assumed to be of
the same order and so is for the kinetic energy and magnetic energy flux
rate. Considering " and VA to be of the order unity (which is realistic), the
dissipation scale in MHD turbulence can be shown to be larger than that for
ordinary turbulence (for real instances where ⌫ ⌧ 1). This represents earlier
dissipation and therefore weaker cascading in MHD turbulence (in comparison
with hydrodynamic turbulence) which is caused by the sporadic nature of non-
linear interaction between Alfvén waves. It is noteworthy that the existence
of turbulence in an inviscid fluid is not impossible physically. Nevertheless,
for theoretical consideration, a finite non-zero dissipation is essential for the
fluid in order to guarantee the convergence of various global variables like
total energy, total helicity etc.

4.8 Intermittency

Intermittency is basically a concept of chaos dynamics revealing the irregular
variation of the phases of a dynamics which is apparently periodic and chaotic.
In the framework of turbulence (incompressible turbulence is concerned here),
intermittent behavior is perceived in various situations such as dissipation of
kinetic energy in fully turbulent flows, transition between turbulent and non-
turbulent regime in turbulent jets, scaling of structure functions even in the
inertial zone of a completely developed turbulence.

Intermittency in the dissipation range of turbulence is very often seen in
experimental and observational data (see figure 4.6). But it is not in con-
tradiction with traditional image of self-similar K41 phenomenology which is
valid within inertial range. Dissipation range intermittency was discovered
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by (Batchelor & Townsend, 1949) and was, for the first time, explained by
Kraichnan (1967b) using arguments a la Landau by claiming that very minute
fluctuations in the energy dissipation rate get enormously amplified in the far
dissipation zone when the energy spectrum is assumed to fall off faster than
an algebraic fall. For an intermittent flow, the fluctuations of a quantity are
not uniformly distributed statistically but become increasingly sparse as the
spatial or temporal resolution increases. A quantitative measurement of inter-
mittency can statistically be carried out by the quantity flatness or kurtosis
of the fluctuations and is defined as

F =
S4 (l)

(S2(l))
2 (4.79)

and intermittency is said to exist if flatness is independent of the scale cho-
sen. In the K41 phenomenology (discussed earlier), one of the fundamental

Figure 4.6: Clear deviation of the moments of velocity and magnetic fluctua-
tions from the self-similar scaling laws of K41 and IK phenomenology in the
solar wind; Reprinted with author’s permission from Salem et al. (2009); ©
(2009) AAS. DOI: 10.1088/0004-637X/702/1/537

assumptions was the spatial self-similarity of the random velocity fields in
the inertial zone. That means within inertial zone, the spatial distribution of
the coherent structures (eddies in case ordinary turbulence) is identical at any
length scale chosen. Mathematically self-similarity requires the mean turbu-
lent state corresponding to a length scale to be mapped to that at another

http://dx.doi.org/10.1088/0004-637X/702/1/537


76 Chapter 4. Turbulent flow : important notions

length scale by a simple scale factor which, in turn, requires the scaling expo-
nent ⇠n to be proportional to n. In terms of the structure functions this can
be written as (for isotropic turbulence)

Sn (l) = ↵nl
pn (4.80)

where p is a constant with respect to n but changes with different choice of
phenomenology. For K41 phenomenology, we get p = 1

3
and so we should

obtain table 4.1

n 1 2 3 4 5
⇠n 1/3 2/3 1 4/3 5/3

Table 4.1: Self-similarity with K41 phenomenology.

This value of p can also be justified by the Kolmogorov’s exact relation
in turbulence which predicts a linear scaling between the longitudinal third
order velocity structure functions and the fluctuating length scale. Moreover,
in the experiment performed in S1 wind tunnel of ONERA the second order
longitudinal structure function is found to scale as l2/3 for a substantial large
range (see figure 4.7).

On the other hand, for IK phenomenology, we have p = 1
4

and so the table
becomes 4.2

n 1 2 3 4 5
⇠n 1/4 1/2 3/4 1 5/4

Table 4.2: Self-similarity with IK phenomenology.

In the current context, any deviation from self-similar values i.e. the tabular
values of ⇠n represents intermittency in the inertial zone. Even if ⇠n = pn+ q

with q a non-zero constant, the flow is no more self-similar and becomes in-
termittent. Experiments and observational data show clear deviation for the
moments higher than 3. Unlike dissipation range intermittency, inertial range
intermittency contradicts K41 phenomenology and the reason for this type
of intermittency is not very easy to explain. As inertial zone intermittency
is prominent for higher order moments, an intuitive explanation may be at-
tributed to the tail of the velocity PDFs of the corresponding flow. Various
attempts have been taken to model the behavior of the higher order moments.
These models are explained in a brief and qualitative manner in the following
as a function of their increasing complexity.
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Figure 4.7: Scaling of second order longitudinal velocity structure functions (in
logarithmic plot) in time domain using data obtained from S1 wind channel of
ONERA; Reprinted with permission from Frisch (1995); © (1995) Cambridge
university press.

4.8.1 β fractal model

The simplest of all the models for inertial range intermittency is the β -
fractal model which was proposed by Frisch et al. (1978). This model uses the
concept of fractal which is also self-similar by construction. Intermittency in
this model is introduced due to the fact that the coherent structures of a length
scale occupy an effective volume which is a fraction of the effective volume
occupied by its immediate predecessor structures. The ratio of the current
and the previous volume is given by a constant factor β where 0 < β < 1.
A phenomenological view of this model is given in the figure 4.8. For three
dimensional turbulence, the corresponding scaling exponent (following K41
phenomenology) is given by

⇠n =
n

3
+ (3−D)(1− n

3
), (4.81)

where D is the fractal dimension i.e. the effective spatial dimension covered
by the coherent structures of a turbulent flow. D is formally written as D =

d+ (lnβ/lnB) where B is the ratio of consecutive smaller to the larger length
scale (in general we assume B = 1

2
) . If D = 3 i.e. the smaller eddies

are supposed to occupy the same volume as that occupied by their parent
eddies, the intermittent correction is zero. On the other hand, even if D 6= 3,
intermittency is not perceived for the 3rd order moments. This latter fact is
visibly linked with the value of n and thus the chosen phenomenology. For
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higher order (n > 4) moments, if D < 3, the correction part is negative and
⇠n versus n graph shows a good agreement with the experimental or measured
values upto 8th order moments. A ⇠n vs. n graph for the specific choice
of D = 2.8 is shown in figure (4.9) along with the measured values. This

Figure 4.8: Two dimensional representation of fractal cascade for β = 1
2
;

Courtesy: Sébastien Galtier.

model is later generalized using bi-fractal and multi-fractal model for a better
agreement with the experimental values or the values measured from observed
data. Bi-fractal model, at its trivial version, corresponds to the Kolmogorov
law for n 6 3 and to the β fractal model for n > 3.

4.8.2 Refined similarity hypothesis : Log-Normal model

Landau objected (Frisch, 1995) to K41 phenomenology where the local ve-
locity fluctuations (δvl) corresponding to a single length scale l are linked to
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a scale averaged net energy flux rate of dissipation (h"i). In order to solve
this inconsistency, Oboukhov (1962) replaced the scale averaged quantity by
h"li, a mean energy flux rate averaged on a sphere of length scale l. Finally
in order to quantitatively apply the idea of Oboukhov in turbulence scaling,
Kolmogorov (1962) proposed refined similarity hypothesis which can be
expressed mathematically as

Sn(l) = C
⌦

"l
n/3
↵

ln/3. (4.82)

This hypothesis is adapted to inertial zone as well as the dissipative zone
in an equal footing thereby leading to a realistic model of dissipative zone
intermittency. Historically this model precedes β fractal model and is the first
ever model of intermittency in turbulence. The model is called log-normal as
the PDF of the fluctuations of flux rate of energy corresponding to length
scale l i.e. "l is supposed to follow a log-normal law. As a consequence,
this model expresses ⇠n as a non-linear function of n unlike the fractal model.
Indeed one finally obtain (assuming K41 phenomenology)

⇠n =
n

3
− µ

18
n(n− 3), (4.83)

where µ is a parameter to be adjusted according to the measured data set.
This model holds satisfactory agreement with the measured values for n < 10

for µ ' 0.2. Recent experiments however show a net divergence for moments
n > 10 which cannot be predicted by this model and thus requires a more
sophisticated model (see figure 4.9).

4.8.3 Log-Poisson model

This model was proposed by She & Leveque (1994) and is considered to date
to be the most successful model in hydrodynamic turbulence. The model fits
well with the experimental and numerical results upto n = 16. In this model,
the PDF of "l is supposed to obey a log-Poisson law. The scaling exponent,
hence obtained, is given by

⇠n =
n

3
+

2

3

✓

1− λn/3

1− λ
− n

3

◆

, (4.84)

where λ represents the degree of intermittency and decreases with increasing
intermittency. This is also a parameter and can be adjusted externally in
order to have the best fit with the experimental and numerical measures. For
hydrodynamic turbulence λ = 2

3
shows considerable agreement with measured

values for n = 16 whereas for MHD turbulence, a choice of λ = 1
3

gives a
good agreement for n 6 8 (the best fit obtained to date by this model) with
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the velocity fields being replaced by Elsasser variables. The reason of this
difference in values of ’best’ λ is not clear. It is however thought that the best
beta should approximately be the ratio of the effective dimension available for
the dissipative structures to the total accessible dimension for the flow. For
3D hydrodynamic turbulence, the dissipative structures are one dimensional
vortex filaments (so the effective available dimension is 3−1 = 2) whereas for
3D MHD case we find two dimensional current sheets (the effective available
dimension is 3 − 2 = 1) to be the corresponding dissipative structures. It
is important to note that this model is readily applicable to study the exact
scaling relation of MHD turbulence (for 3rd order moments) only if the velocity
and the magnetic field fluctuations are very weakly correlated.

In case of compressible turbulence, the notion of intermittency is not very
clearly established. No satisfactory model is made to date for the correspond-
ing intermittency principally because of our ignorance of the phenomenology
of the compressible turbulence. A brief discussion on the modeling of inter-
mittency in compressible turbulence is given in the chapter 5.

4.8.4 Extended self-similarity

All of the above discussion of intermittency was based on the deviation from
the scaling relation of type equation (4.19). Both from the numerical and
observational studies, it is seen that the scaling relation associates minimum
error at n = 3. Moreover, the exact relations in turbulence theoretically prove
(discussed in chapter 6) the linear scaling between S3 and the fluctuation
length scale. Using this fact, a modified scaling relation can be proposed in
the following form

Sn(l) = ↵0
nS3

⇠n , (4.85)

which indeed gives a substantially larger "inertial range of scaling" (Benzi
et al., 1993) along with a remarkable precision in the determination of the scal-
ing exponents. This formulation is called extended self-similarity (ESS)
or extended scaling relation (Biskamp, 2008). In addition, the scaling expo-
nents determined from ESS do not depend on the Reynolds number and hence
completely developed turbulent scaling can be achieved even at considerably
lower Reynolds number just owing to this relation. However, ESS scaling is
found to degrade (Biskamp, 2008) with increasing value of n and hence only
a limited number of scaling indices can be determined with high precision.

Besides velocity structure function scaling, ESS also assures a broader in-
ertial range and a better precision in case of passive scalar4 scaling. For a

4A scalar which flows with the fluid without affecting the flow field by its own evolution.

e.g. fluid temperature.
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passive scalar ✓, the ordinary scaling relation can be written as (Monin et al.,
1975)

D

⇥

(δ✓)2 δv
⇤n/3

E

= ↵00
nl

⇠n , (4.86)

whereas using ESS, the modified relation becomes
D

⇥

(δ✓)2 δv
⇤n/3

E

= ↵00
n

⌦

(δ✓)2 δv
↵⇠n

. (4.87)

However, ESS cannot produce better results for scaling of pure moments of
passive scalars like (δ✓)n which do not associate any exact relation unlike
(δ✓2δv).

Figure 4.9: Comparison of different models of intermittency: plot of nth order
moment for velocity structure function as a function of n, the discrete points
with different colors and shapes (black and white triangles, white square, black
circle and crosses) correspond to data obtained from different experiments,
the straight chain line, dashed line, dotted line and the solid line correspond
respectively the theoretical predictions of K41, beta-fractal with D = 2.8, log-
Poisson and log-normal models; Reprinted with permission from Frisch (1995);
© (1995) Cambridge university press.
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Turbulence in compressible fluids
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5.1 Why is it important ?

D
ifferent notions, characteristics and exact relations which we have dis-
cussed till now are all based on incompressible turbulence. Historically,

incompressible turbulence was approached first because of two basic reasons:
(i) the laboratory experimental results (Frisch, 1995), to which any newly
established theory could be matched, were all liquids which are fairly in-
compressible fluids and atmospheric turbulence which was of central inter-
est for the aerodynamic engineers was associated with atmosphere which is
weakly compressible as the velocity fluctuations are considerably inferior to
the sound speed and (ii) incompressible turbulence dynamics is much easier
to handle mathematically than the compressible one. In some communities it
was (rather is still) however believed that turbulence in highly compressible
fluids is not physical. In his 1954 lectures (Chandrasekhar, 1954), S. Chan-
drasekhar clearly mentioned, "It exists in incompressible fluids or with small
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(with respect to the velocity of sound) velocities in a compressible fluid, so
that to sufficient accuracy, the problems of turbulence may be discussed in
terms of incompressible fluids." Interestingly in the year 1948, J.M. Burgers
proposed (Burgers, 1948) a simplified form of Navier-Stokes equations in a
view to describing a one-dimensional highly compressible flow with shock dis-
continuities. He also predicted the law of energy spectra E(k) ⇠ k−2 for the
corresponding turbulence in such a fluid using a new phenomenology of his
own.

Figure 5.1: WIND spacecraft data of velocity, density and radial magnetic field
fluctuations (Days in 1995); Reprinted with permission from Meyer-Vernet
(2007) ; © (2007) Cambridge university press.

Interest for compressible turbulence increased with the gradual develop-
ments in (i) aeronautics, (ii) space-physics and (iii) astrophysics. The modern
flights are made high speed including the supersonic ones which are used for
military purpose. These necessarily bring about the formation of shock waves
thereby bringing forth compressible turbulence .

Starting from 1960s, several misssions like Mariner 2, Helios 1 and 2, Wind,
ACE, Ulysses etc. are employed to study the space plasma properties in the
solar wind and planetary magnetospheres using in-situ measurements. Den-
sity fluctuations of the solar wind plasma always drew attention due to their
non-trivial correlation with the velocity and magnetic field fluctuation data.
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In the figure 5.1, we can clearly visualize the density fluctuation peaks are as-
sociated with the abrupt changes of radial velocity fluctuation and also with
the change of sign of the radial magnetic field. These data are obtained by
the WIND spacecraft from the ecliptic solar wind in the year 1995. This indi-
cates that the density fluctuates considerably in solar wind turbulence which,
in turn, justifies the compressible character of the corresponding turbulence.
The degree of fluctuation is found to be more profound in slow wind than in
fast wind. Furthermore compressibility in solar wind turbulence is believed
to play a key role in the heating of the fast solar wind (Carbone et al., 2009).
A study of compressible turbulence is thus essential for understanding the
physics of the solar wind.

Cold interstellar molecular clouds which collapse under their self-
gravitational force are also found to be turbulent associating non-negligible
density fluctuations. The competition between gravitational collapse and the
convective turbulence in such a cloud is indeed considered to be responsible in
star formation mechanism (Vázquez-Semadeni et al., 1996). Moreover, power
laws corresponding to turbulent Mach number and density fluctuations are
predicted from the astrophysical and space plasma data analysis.

Several numerical works on compressible turbulence have been carried out
(Passot et al., 1988; Vázquez-Semadeni et al., 1996; Hennebelle & Audit, 2007;
Kritsuk et al., 2007a,b; Schmidt et al., 2009; Schmidt, 2009; Federrath et al.,
2010) in order to verify the above space physical or astrophysical predictions
and also to understand the basic physics and phenomenology in compress-
ible turbulence – specially the distinction between sub-sonic and supersonic
turbulence.

From a theoretician’s point of view, compressible turbulence is also inter-
esting as well as challenging. The variation of density destroys the quadratic
nature of the total energy density which is no longer v2/2 (in hydrodynamic
case) or (v2 + vA

2)/2 (in MHD case) and also includes an internal energy term
which can be calculated from the corresponding thermodynamic closure and
has, in general a non-trivial form (as described in the chapter 2). The role of
density fluctuations in scaling, spectral laws and phenomenology is an impor-
tant matter to investigate analytically. In case of compressible plasmas, the
coupling between the density fluctuations and the magnetic field fluctuations
is also of key importance and thus should be understood theoretically.

In this chapter we shall try to give a structured review on some theoretical,
observational and numerical works in the framework of compressible turbu-
lence which had been performed until the debut of my thesis and played
significant role in the motivation and progress of my thesis work. Different
sections will correspond to different problematics and interests in compressible
turbulence. Within a section, significant and relevant works on that theme
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will be discussed in a chronological order. No pretension is made to cover 1 all
the important works in compressible turbulence. An important skip relevant
to my thesis interest is however regretted in advance. This review part will
be followed by a schematic discussion on how different notions and features of
incompressible turbulence are modified in case of compressible turbulence. In
the next chapter, we shall discuss exact relations in incompressible and com-
pressible turbulence which will further clarify the intrinsic difference between
these two turbulences by the help of analytical approaches.

5.2 Primitive theoretical approaches

This section will basically consist of some initial but significant theoretical ap-
proaches to compressible turbulence. These works were done from a pure the-
oretical interest and without any significant experimental or numerical back-
ground (which was difficult to achieve at that period).

Despite his scepticism for turbulence in highly compressible fluid medium,
S. Chandrasekhar was the first to publish an analytical paper in compressible
isotropic turbulence (Chandrasekhar, 1951). In this paper he showed analyti-
cally that for an isotropic turbulence the correlation (R) between the density
fluctuations (about their statistical mean value) of two arbitrary points as-
sociates a constant of motion which is given by I =

R1
0
r2Rdr. Using this

he predicted a k2 spectrum for the power spectral density (PSD) of R for
the largest scales of the system. This spectral behaviour indicates that the
largest eddies of density fluctuations are determined by the initial conditions
of the flow and thus reflect permanent features of the system. In the same
paper he also deduced an evolution equation of R which couples the velocity
fluctuations and density fluctuations in a compressible fluid with an adiabatic
closure. However he solved that equation in the very restricted case of sub-
sonic turbulence for which he obtained spherical wave solutions for R with
phase speed

p
2CS where CS is the sound speed in the flow medium. Un-

fortunately, at that time we had neither satisfactory observational data nor
numerical data to test his predictions.

Another important theoretical approach was made in the year 1970 by V.E.
Zakharov and R.Z. Sagdeev (Zakharov & Sagdeev, 1970). Their work was
based on "acoustic turbulence" which concerns an irrotational potential flow.
In their approach, they investigated the development of a turbulent flow in the
wave space under very weak density perturbations (of first order) and derived

1In this review, we will mainly discuss the works related to the fundamental character-

istics of compressible turbulence; important engineering and aeronautical works are unfor-

tunately beyond the scope of this review.
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a continuity equation in Fourier space of the form

@E
@t

+
@Pk

@k
= 0, (5.1)

where E and Pk represent respectively the kinetic energy power spectrum and
the corresponding flux. Both by analytical method and dimensional argu-
ments, they obtained a k−3/2 spectrum for the energy spectrum which was
similar to the energy spectrum obtained by Zakharov for weak turbulence
regime in a previous work (Zakharov, 1965). In the year 1973, Kadomtsev &

Petviashvili published (Kadomtsev & Petviashvili, 1973) an alternative the-
ory based on the dominance of shocks in turbulent scaling. They introduced
a delta correlated random, potential force which they concluded to be in-
dispensable in maintaining a stationary acoustic turbulence regime. Without
that forcing, the sawteeth of acoustic modes (which they obtained as the solu-
tion) are dissipated in time. They also realized that the consideration of "relay
energy transfer" from one scale to another cannot be valid in acoustic turbu-
lence because the harmonics of a sawtooth are phase correlated and hence get
damped together due to energy absorption behind the shock front. However,
energy transfer along the spectrum becomes possible if the phase correlations
are neglected. But in that situation absorption of individual harmonics should
be taken into account which finally lead to the phenomenological equation

@vk
2

@t
+
@Γk

@k
= −↵Γk

k
, (5.2)

where vk is the Fourier transform of velocity and Γk = Avk
2k3/CS, A and

CS being respectively a constant and the isothermal constant sound speed.
↵ denotes another constant. The novelty in their equation with respect to
that of Zakahrov & Sagdeev resides at the right hand term which reflects the
absorption term of a given harmonic in the shocks. In order to evaluate ↵,
they considered a steady state for which they obtained Γk ⇠ k−↵. Finally
assuming v2k ⇠ k−2 in presence of shock wave (as obtained from Burgers’
equation), they found ↵ = 1 which renders the final form as

@vk
2

@t
+
@Γk

@k
= −Γk

k
. (5.3)

Using Hopf characteristic functionals (Hopf, 1952) to "liquid particles" in
sub-sonic turbulence, Moiseev et al. (1981) predicted self-similar spectrum for
the compressible vortices2 in an adiabatic fluid and is written as

Ek = K⇢0C
2

1−3γ

S0 "
2γ

3γ−1k− 5γ−1
3γ−1 , (5.4)

2In sub-sonic turbulence, they assumed a weak compressible effect which does not modify

the vortex structures but just add compressible perturbations on them.
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where Ek ⌘ vk
2 K is a constant of proportionality, ⇢0 and CS0 are respectively

the equilibrium density and sound speed, " denotes the dissipation rate of
kinetic energy (the compressible energy was not taken into account) and γ

is the adiabatic index. In addition, for a very small turbulent Mach number
(M ⌧ 1), they predicted

vc
vs

⇠M2 , (5.5)

where vc and vs are respectively the compressible and the solenoidal com-
ponents of the average velocity fluctuations (see Helmholtz decomposition,
Chapter 2).

Finally for M  1, they derived another power law for kinetic energy spec-
trum from equation (5.3) and is written as

Ek = K⇢0"
2
3L

5
3 (kL)

− 5−M2

3−M2 , (5.6)

where L is the forcing scale of the system and the other symbols carry their
usual meaning. The above equation is not self-similar due to the presence
of Mach number. The equation (5.6) is shown to reduce to the self-similar
equation (5.4) when M2 is assumed to be independent of L.

5.3 Numerical approaches using one dimen-
sional model

In this section we shall try to discuss very briefly some important theoretical
works on one dimensional compressible turbulence which are accompanied by
numerical verifications.

A statistical plus numerical study of one dimensional polytropic fluid with
finite viscosity was accomplished by Tokunaga (1976). The numerical study
was performed by Lax-Wendroff discretization method. In their numerical
study, they obtained step shocks for the density and triangular shocks for the
velocity field (figure 5.2). Total mechanical energy (kinetic and compressive
energy) was numerically found to decay as t−0.9 which was close enough to their
heuristic prediction with t−1. They also reported an equipartition of average
kinetic and compressible energy. Finally they calculated the velocity power
spectrum numerically which gave a k−2 trend at low k and an exponential fall
at higher wave numbers (see figure 5.2).

Density structures in highly compressible turbulence are believed to play
a key role in astrophysics. This aspect was investigated theoretically and
numerically for one dimensional polytropic gas turbulence (Passot & Vazquez-
Semadini, 1998) where the polytropic index is very close to unity. Using a
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simple one-dimensional model, it was found that density PDF follows a log-
normal distribution in isothermal turbulence (for which the polytropic index
γ = 1) whereas for γ 6= 1 we have power-law distribution. For γ < 1 an
asymptotic power-law regime is obtained at high density limit and for γ < 1

we have an asymptotic power law behaviour in the low density regime (figure
(5.3)). The isothermal log-normal distribution was symmetric with respect to
its centre whereas the power laws were not. Interestingly they noticed that
moreover the power laws for γ > 1 and γ < 1 are almost mirror images of
one another. This comparative study is important in order to understand the
basic difference between isothermal and polytropic turbulence which indeed
inspired me in deriving an exact relation for polytropic turbulence (which is
done for an arbitrary value of γ but 6= 0 and 1) which will be discussed in the
chapter 6.

Figure 5.2: Total mechanical energy spectra (left); step discontinuities for
turbulent density and triangular discontinuities for turbulent velocity field
(right); Source: Tokunaga (1976).
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5.4 Numerical Simulations in higher dimensions

5.4.1 Numerical methods for compressible turbulence

Unlike incompressible turbulence, spectral and pseudo-spectral methods are
not suitable for tackling turbulence both in compressible hydrodynamics and
magnetohydrodynamics. Quasi-discontinuous shock waves are difficult to han-
dle in a finite Fourier representation due to the Gibbs phenomenon. However,
a number of numerical studies for compressible MHD turbulence have been
accomplished using spectral and pseudo-spectral mehods (Passot & Pouquet,
1987; Dahlburg & Picone, 1989; Kida & Orszag, 1992).

The recent development of the numerical methods in compressible turbu-
lence is deeply indebted to the astrophysical fluid dynamics and more precisely
to the vast amount of research works in astrophysical plasma turbulence (for a
review see Schmidt (2013)). Typically, there are two different approaches for
simulating astrophysical plasma turbulence. The first one consists of apply-
ing traditional time advancement schemes like Lax-Wendroff or Runge-Kutta.
These methods are of high acuracy but lacking in stability. To get rid of un-
welcome oscillations at the steep gradients, numerical viscosity is introduced
in order to broaden the thickness the shock fronts without affecting the high
accuracy. The best known code of this type is ZEUS code (Stone & Norman,
1992a,b; Stone et al., 1992) which is vastly used in astrophysical MHD flows
with radiation transport (Biskamp, 2008). The same basic algorithm has been
used in developing MOCCT method (Hawley & Stone, 1995). Another simi-
lar type code was developed by Nordlund & Brandenburg (1992) for studying
solar convection.

The second approach is based on Godunov’s method (Richtmyer & Morton,
1967) essentially implementing Lagrangian attack and is appropriate for deal-
ing with the flow discontinuities. This method is of first order and hence the
drawback of this method is poor accuracy. However, several approaches have
been taken in order to improve the accuracy by using sophisticated interpo-
lation schemes. Among these, piecewise parabolic method (PPM), which is a
higher order extension of Godunov’s method, has become very popular and is
specifically useful for simulating both two and three dimensional turbulence.
In the following we shall discuss some important numerical works which have
been performed using PPM.

5.4.2 Piecewise Parabolic Method (PPM):

The advent of modern computational fluid dynamics (CFD) was accompanied
by the development of Piecewise Parabolic Method (PPM) which employed
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Figure 5.3: PDF of s = ln⇢ for (i) isothermal case (left), (ii) γ < 1 (right-
upper) and (iii) γ > 1 (right-lower) for one dimensional gas turbulence;
Reprinted with permission from Passot & Vazquez-Semadini (1998); © (1998)
American physical society. DOI: 10.1103/PhysRevE.58.4501

higher-order interpolation in constructing relevant flow variables everywhere
in the flow field. This method was developed (Colella & Woodward, 1984)
in order to simulate unsteady flows associated with strong shocks and dis-
continuities in astrophysical contexts (e.g. supernova explosions, supersonic
jets etc.). Moreover, PPM changes its ordinary smooth flow algorithm in the
vicinity of a discontinuity in order to capture the corresponding structure and
also detects shock regions in order to adjust the amount of local numerical
dissipation. Another practical advange of this method lies on the fact that it
uses directional splitting algorithm (Strang, 1968) which applies alternating
one-dimensional schemes for a multidimensional flow thereby adding a high
accuracy and better performance to the simulation. Several frameworks in
order to improve the accuracy and resolution have been proposed in later
years (Harten et al., 1987; Liu et al., 1994). Although originated as a pure
hydrodynamic code, PPM got its MHD version (in two dimensions) thanks to
Dai & Woodward (1994).

A significant numerical study was accomplished for two dimensional com-
pressible polytropic turbulence by Passot et al. (1988) using PPM on a 5122

grid using periodic boundary conditions. They performed two runs with re-
spective Mach numbers 1 and 4. In order to understand the effect of vortices
and the shocks in turbulence they studied spectra corresponding to compress-
ible and solenoidal velocity components separately (figure 5.4). They observed
a slightly steeper slop than k−2 for the compressible part which they explained

http://dx.doi.org/10.1103/PhysRevE.58.4501
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Figure 5.4: Vortex structures in numerical simulation (using PPM) of two
dimensional compressible turbulence with 5122 resolution (left) and power
density spectra (right) for (i) solenoidal kinetic energy (ES) (solid line), (ii)
compressible kinetic energy (EC) (dashed line) and (iii) total kinetic energy
(Ev) (dotted line); Reprinted with permission from Passot et al. (1988); ©
(1988) ESO.

in the light of "dimension independent" shock analysis. The solenoidal part
represented an initial k−4 slope followed by a less steeper k−3 slope which was
explained by the piling up of vorticity sheets (Brachet et al., 1986). The nu-
merically obtained solenoidal slope was also in agreement with their theoretical
prediction of Kolmogorov-type self similar spectrum which they established by
following Moiseev et al. (1981) in case of two dimensional turbulence. In their
study, they noticed a lack of equipartition between the vortices and the shocks
which violated the statistical prediction of Kraichnan (1953). This discrepancy
was more pronounced in some previous DNSs of polytropic turbulence using
pseudo-spectral methods (Léorat & Pouquet, 1986; Passot & Pouquet, 1987)
of Navier-Stokes equations and seemed to get reduced in PPM where the true
turbulence regime is believed to be attained owing to a very large Reynolds
number. They also found spectral indices for three dimensional compressible
turbulence which associates respectively k−5/3, k−2 and k−2 spectra from the
solenoidal, compressible and total velocity power spectrum. In order to under-
stand the coherent structures, energy cascading and the distinction between
subsonic and supersonic phases, direct numerical simulations (DNS) of the
Euler equations are one of the best possible numerical approaches. Thanks to
PPM, high resolution simulation of three dimensional supersonic turbulence
became feasible (at least to my knowledge). The initial attempts consisted
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of notable works of Porter et al. (1992); Porter et al. (1994) on decaying tur-
bulence (without forcing) using ideal (without viscosity) compressible fluids
with polytropic closure. They performed simulations using upto 2563 (1992)
and 5123 (1994) uniform grid points and keeping their initial rms Mach num-
ber unity. In order to categorize the incompressible and compressible effects
at the onset and during the development of turbulence, they used Helmholtz
decomposition of the fluid velocity. In both cases, two temporal phases i.e. a
quasi-supersonic and a post-supersonic phase are reported. In the first phase,

Figure 5.5: Power density spectra for (in logarithmic graph) (i) solenoidal
kinetic energy (ES), (ii) compressible kinetic energy (EC) and (iii) total kinetic
energy (Ev) in three dimensional compressible turbulence PPM simulation
with 2563 resolution; the solenoidal and the total kinetic energy spectra follow
a k−0.95 law whereas the compressible kinetic energy spectrum follows a steeper
k−1.8 law; Reprinted with permission from Porter et al. (1992); © (1992)
American Physical Society. DOI: 10.1103/PhysRevLett.68.3156

vortices are formed due to strong interaction between the shocks whereas in
the second phase the kinetic energy spectrum decays in a self-similar way. In
their PRL 1992 (with max resolution of 2563 points), they found that the
spectrum of decaying compressional kinetic energy followed a k−1.8 behaviour

http://dx.doi.org/10.1103/PhysRevLett.68.3156
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whereas the solenoidal kinetic energy as well as the total kinetic energy spec-
tra were found to produce a shallower curve with k−0.95 (see figure 5.5). No
Kolmogorov like regime with k−5/3 was detected. A Kolmogorov spectrum was
however reported for both the solenoidal and compressional part in their 1994
article with higher resolution (see figure5.6). Another interesting finding was

Figure 5.6: Power density spectra for (i) solenoidal kinetic energy (ES) (left
above), (ii) compressible kinetic energy (EC) (left below) using 643 (Q40),
1283 (Q41), 2563 (Q42) and 5123 (Q43) grid points and (iii) vortex tube
structures in 5123 numerical box of supersonic turbulence (right); Reprinted
with permission from Porter et al. (1994); © (1994) AIP publishing LLC.

vortex tubes almost covering the available space which could indicate some
conclusive phenomenology in compressible turbulence (see figure 5.6). It is in
recent years that high resolution (≥ 10243) DNS employing PPM have been
performed by Kritsuk et al. (2007a) (hereafter referred as K07) for simulating
supersonic turbulence. The rms Mach number is maintained at 6. Like the
previous attempts decribed above, they studied supersonic turbulence in an
ideal fluid but added a forcing term in order to obtain a stationary turbulence
regime and hence stationary spectra. In this paper, for the first time, the
power spectra of density weighted velocitites (⇢1/2v, ⇢1/3v) are studied along
with the fluid velocity, its solenoidal and compressional components. In 10243

simulation, the spectra (see figure 5.8) along with their indices are given in



5.4. Numerical Simulations in higher dimensions 95

the following table 5.1.
Interestingly neither the fluid velocity v nor ⇢1/2v follows a Kolmogorov

−5/3 spectrum whereas w ⌘ ⇢1/3v does (see figure 5.8). This can be seen as
a direct consequence of the constancy of compressible kinetic energy transfer
rate (Lighthill, 1955) from one scale to another. Besides they obtained a
k−1 law for the power spectrum of fluid density. In order to provide with a
theoretical explanation for Kolmogorov scaling of this new density weighted
velocity w, they used a simple hierarchical model relating density and length
scales. No rigorous analytical explanation was however furnished. In course of
my master internship and thesis, by virtue of the newly derived exact relations
(discussed in next chapter), this issue is addressed principally over a rigorous
analytical basement.

Variable v vS vc ⇢1/2v ⇢1/2v ⇢

Power spectral index −1.95 −1.92 −2.02 -1.58 -1.69 -1.07

Table 5.1: Different power spectra in supersonic turbulence (Kritsuk et al.,
2007a).

Figure 5.7: Projected gas density of Mach 6 turbulence PPM simulation with
20483 resolution. White, blue and yellow colors represent respectively low,
intermediate and high projected density values; Reprinted with author’s per-
mission from Kritsuk et al. (2009).



96 Chapter 5. Turbulence in compressible fluids

Figure 5.8: Power density spectra corresponding to (a) total velocity (v), (b)
solenoidal velocity (vs), (c) compressional velocity (vc), (d) ⇢1/2v and ⇢1/2vs,
(e) w ⌘ ⇢1/3v and (f) ⇢; Reprinted with permission from Kritsuk et al. (2007a);
© (2007) AAS. DOI: 10.1086/519443

http://dx.doi.org/10.1086/519443


5.4. Numerical Simulations in higher dimensions 97

In their 2007 article, Kritsuk et al. did not publish any direct space scaling
of the structure functions corresponding to the variable ⇢1/3v. This study
was performed in (Kritsuk et al., 2007b) (figure 5.9). Furthermore, their
inertial range is usually 3 spanned within

p
10kmin < k < 10kmin which is

considerably narrow and the spectra suffered from bottleneck effect in the high
wave number range. These points were improved in a following article using
20483 grid points where they obtained a wider inertial range for hydrodynamic
turbulence (figure 5.10) with

p
10kmin < k < 101.5kmin along with a less

pronounced bottleneck.
In the same paper they discussed their MHD simulation results using 5123

resolution and using three plasma betas namely 20, 2 and 0.2. For β = 20 they
again obtained a −5/3 scaling for the variable w whereas they did not precise
any spectral index for magnetic energy. In addition, they obtained (in all
three cases) a satisfactory linear scaling for the third order structure function
corresponding to density weighted Elsässer fieldsW± ⌘ ⇢1/3z± which supports
their imperical 1/3 rule even in scaling in compressible MHD turbulence. A
considerable part of my thesis is devoted to address this point from an analytic
point of view and will be discussed in details in the next chapter.

5.4.3 Compressible intermittency

Intermittency in compressible turbulence is another important issue to be
clearly understood. Although this aspect of intermittency is not directly
adressed in course of my thesis, some important works on compressible tur-
bulence provided me with indirect motivation for bulding up my research
work and interest. Performing a 2563 compressible MHD turbulence simu-
lation, Padoan et al. (2004) proposed a unified approach for modelling the
self-similarity in compressible, super Alfvénic (Alfvénic mach number > 1)
turbulence. Their generalized model was described in terms of usual She-
Lévêque formalism (She & Leveque, 1994) where the Hausdorff dimension of
the most intense dissipative structures was made to be a function of sonic
Mach number. This work prescribes a general method for studying the in-
termittency of interstellar media once the corresponding sonic Mach numbers
are known from the observational data.

A model of extended self-similarity in compressible turbulence was sug-
gested by Schmidt et al. (2008) depending on the numerical data of compress-
ible turbulence of an isothermal fluid (Kritsuk et al., 2007a). They inferred
that refined self-similarity can be achieved in compressible turbulence, if we

3Except the case of the density spectrum where the inertial range is found to get shifted

towards higher wave numbers.
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Figure 5.9: Scaling of third order structure functions of w ⌘ ⇢1/3v using data
of three dimensional supersonic turbulence (r.m.s. Mach ⇠ 6) with 10243

resolution; Reprinted with author’s permission from Kritsuk et al. (2007b).

Figure 5.10: Compensated power density spectrum of w ⌘ ⇢1/3v using data
of three dimensional supersonic turbulence (r.m.s. Mach ⇠ 6) with 20483

resolution; Reprinted with author’s permission from Kritsuk et al. (2009).
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use density-weighted velocity (⇢1/3v) in place of fluid velocity. This conclu-
sion, in turn, justifies again the density weighted velocity to be the appropri-
ate variable for compressible turbulence. The scaling exponents are proved to
obey log-Poisson model even in compressible turbulence thereby ascertaining
the Burgers shocks to be the dissipative structures for intermittence.

5.4.4 Compressible and solenoidal forcing

The role of forcing is also non-trivial in compressible turbulence. In incom-
pressible turbulence, we are bounded to apply a solenoidal forcing whereas for
compressible case, we have an option to choose. For a solenoidal force, the
compressibility of turbulence is governed by the intrinsic fluid compressibility
whereas for a compressible force, the regulation of compressibility in turbu-
lence is partially executed externally thereby reducing the universality of such
a flow and a judicial choice of forcing scheme is needed. On the other hand,
for a pure solenoidal forcing, the compressible effect would decay in time and
could not be reflected properly in the stationary regime of turbulence. A mix-
ture of solenoidal and compressible forcing can also be a choice. A mixture
with compressible to solenoidal forcing ratio ⇡ 0.7 was employed by K07 for
hydrodynamic simulations 4.

The aspect of forcing is significantly studied by Federrath et al. (2008, 2010);
Schmidt et al. (2008); Schmidt et al. (2009) in the framework of their DNS
and also by Schmidt (2009) in his large eddy simulations. Unlike previous
numerical works, Federrath et al. obtained a non-lognormal density PDF
for isothermal turbulence while using compressible driving. In K07, interest-
ingly for high turbulent Mach number, the compressible power spectra (Pc)

locks at half of the value of solenoidal power spectra (Ps) (Kritsuk et al.,
2010). This locking was justified by some geometrical reasoning in a previous
paper (Nordlund & Padoan, 2003). In case of Federrath et al. (2010), for
hydrodynamic isothermal simulations using 10243 points, the compressible to
solenoidal power spectra ratio comes to 1.2 for a pure compressible driving
whereas for a solenoidal one the natural 0.5 ratio is obtained in the inertial
zone. Most interestingly, Federrath et al. observed an important discrepancy
between the turbulence scaling and spectral properties of isothermal turbu-
lence in function of pure solenoidal and pure compressive forcing (figure 5.11).
Using solenoidal scheme they obtained k−1.85 and k−1.45 spectra respectively
for v, ⇢1/2v whereas they obtained an approximate Kolmogorov scaling k−1.64

for the variable ⇢1/3v. However, no Kolmogorov scaling is found for these
three variables under compressible driving (figure 5.11).

4Whereas pure solenoidal scheme was adapted to drive their MHD simulations in 2007.
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Figure 5.11: Compensated power spectra corresponding to different variables
using solenoidal and compressible forcing; Reprinted with permission from
Federrath et al. (2010); © (2010) ESO.
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Figure 5.12: Modified interpretation of power spectra with the newly defined
sonic scale; Reprinted with permission from Federrath et al. (2010); © (2010)
ESO.

5.4.5 Choice of inertial zone and sonic scale

In order to distinguish the subsonic and supersonic regime, they provided with
an estimate for the sonic scale (1/ks) which can be obtained by solving the
equation

Z kd

ks

Ev(k)dk ' 1

2
CS

2, (5.7)

where kd is the dissipation wave vector, CS is the isothermal sound speed
and the other symbols have their usual meaning. After their estimate of
sonic scale they have defined their inertial range inside the super-sonic regime
(k < ks) and more precisely within the range 5 6 k 6 15 whereas they
admit the fact that bottleneck should not affect the turbulence statistics for
k < 40. The spectra obtained in K07 are also suspected to suffer from the
same problem. In fact, I think that their results are satisfactory but lack
suitable complete interpretation. For clarifying the point I take their power
spectra corresponding to ⇢1/3v and try to indicate the maximum possible
inertial zone i.e. 5 . k . 40 (see figure 5.12). Within the newly defined
inertial zone, we obtain one single spectral index −1.64 if we use solenoidal
forcing whereas we get two spectral indices, a −2.1 law for the low wavevector
regime and a Kolmogorov type −1.64 law in the sub-sonic regime if we use
pure compressible forcing. The existence of the double slope can be attributed
to the sub-sonic and supersonic regime (Passot et al., 1988) of compressible
turbulence and therefore the modified estimate for the sonic scale can be given
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by the break point of the two slopes (as drawn by the dotted line in the figure
5.12). A plausible explanation for these slopes is given in the next chapter by
the help of compressible exact relations.

5.4.6 Two-point closure in EDQNM model for compress-

ible turbulence

EDQNM or Eddy Damped Quasi-Normal Markovian is a useful model of tur-
bulence in which the dynamical equations of statistical moments of fluid ve-
locity components are closed in wave space assuming a linear "eddy damping"
effect by the fourth or higher order moments thereby preventing the strong
development of third order moments and the corresponding non-linear energy
transfer (Lindborg et al., 1993). This model is developed and adapted prin-
cipally for incompressible turbulence. An extension of this model in case of
very weakly compressible turbulence is worked out by Bertoglio et al. (2001).
In their model they considered linear terms with density variation but ne-
glected all the non-linear terms comprising density fluctuations. At very low
turbulent Mach number (0.01 or 0.1), the dilatational velocity power spec-
trum starts at giving k−5/3 and evolves towards k−11/3 at large time. For the
pressure spectra, we get k−7/3 in the beginning which is followed by a k−5/3

and a k−11/3 at later instants (figure 5.13). At large times, at a given time
instant, the solenoidal component seems to follow -5/3 law whereas the dilata-
tional component follows a -5/3 at turbulent Mach near unity but conceives a
-11/3 slope for smaller turbulent Mach Numbers (figure 5.13). These results
are in agreement with their theoretical predictions based on a simple model
of weakly compressible turbulence discussed in the same paper. Furthermore,
for very low turbulent Mach number (Mt) ⌧ 1, the dilatational velocity com-
ponent seems to vary as M2

t which does not hold any longer for Mt ⇠ 1. A
detailed discussion of EDQNM is however beyond the scope of this review
and can be found in text books on turbulence (Biskamp, 2008) or in research
papers (Orszag, 1970; Lindborg et al., 1993).

5.5 Observational studies

Compressible turbulence in interstellar clouds Interstellar clouds are
proved to be turbulent due to having fluctuations spanning over a large range
of length scales. Moreover considerable density fluctuations certainly justifies
the compressible character of interstellar turbulence. In fact it is believed that
the convective turbulence in cold interstellar dense clouds play a crucial role
in the process of star formation by preventing the gravitational auto-collapse
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Figure 5.13: Solenoidal and dilatational velocity power spectra for different
turbulent Mach numbers at large times (left) and Pressure spectra at different
time instants (right) obtained using EDQNM model for weakly compressible
turbulence; Reprinted with permission from Bertoglio et al. (2001); © (2001)
AIP publishing LLC.

of those clouds. A voluminous work has been accomplished in the study of
interstellar turbulence and more specifically its compressible aspects. Due to
the difficulties in observational studies, several numerical attempts have been
carried out in order to study the fundamental aspects of astrophysical turbu-
lence like scaling, different power spectral laws etc. In fact, in most of the
cases, interstellar turbulences are modelled by hydrodynamical simulations.
The above described numerical works of supersonic turbulence were also de-
signed for understanding interstellar turbulence. The observational studies
are comparatively fewer but not negligible. In this part we shall briefly dis-
cuss some characteristics of interstellar turbulence in the light of observational
data.

Density power spectrum of electrons has been studied (Rickett, 1977, 1990;
Armstrong et al., 1995) using diffractive scintillations of small angular diame-
ter radio sources. Interestingly, a Kolmogorov type k−5/3 spectrum is observed
within length scales 108 − 1010 cm. Moreover, the r.m.s. velocity fluctuations
across a length scale l is found to scale approximately as l1/3. A possible
explanation for this spectrum was given in the framework of compressible
(polytropic) MHD turbulence (Lithwick & Goldreich, 2001). Density fluc-
tuations are supposed to originate from the slow magnetosonic and entropy
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modes (zero frequency mode in polytropic MHD plasma) which act as passive
elements in the cascade of shear Alfvén waves. This cascade generates a k−5/3

spectrum which is, in turn, reflected by the density fluctuation spectrum of
the same index. However, if the plasma beta is high i.e. the thermal pressure
exceeds the magnetic pressure, the slow and entropy modes are damped below
the proton diffusion length thereby producing a cut-off length scale for the den-
sity fluctuation. Their observational results were justified both by their own
theoretical model which was a ’compressible’ extension of Goldreich-sridhar
model (Goldreich & Sridhar, 1995) and also by the theoretical predictions of
Higdon concerning denstity fluctuation spectrum (Higdon, 1984, 1986) in a
collisionless MHD framework.

Compressibility in solar wind turbulence Solar wind (SW) is the most
familiar laboratory for space plasma turbulence (A formal introduction of the
solar wind is given in chapter 7). Thanks to the feasibility of in-situ mea-
surements, numerous research works have been accomplished on the nature of
SW plasma turbulence. Although density fluctuations are present in SW, the
fractional density fluctuation is indeed very low in fast solar wind and rarely
exceeds 15% whereas for slow solar wind that ratio can be ⇠ 25%. In both
cases the characteristics of SW turbulence is often described satisfactorily in
the framework of an incompressible plasma or nearly incompressible turbu-
lence (Montgomery et al., 1987) i.e. the density fluctuations are assumed to
merely act as passive scalars. This idea was put into question by Hnat et al.
(2005). Using ACE spacecraft data (with 64 s. resolution) they compared the
extended self-similarity (ESS) curves corresponding to different moments of
proton density fluctuations with those of the total magnetic field magnitude
fluctuations which are found to fit to the theoretical ESS curves of the passive
scalars in incompressible turbulence (Hnat et al., 2005; Bershadskii & Sreeni-
vasan, 2004). Both for fast and slow solar winds, they observed a discrepancy
between the two (see figure 5.14) curves which indicates a possible 5 active

nature of the plasma density fluctuations thereby hinting at the compressible
nature of SW turbulence.

The most significant observational study (to date) on the compressible as-
pect of fast solar wind turbulence was realized by Carbone et al. (2009) using
Ulysses spacecraft data in polar solar wind. Inspired by the numerical works
by (Kritsuk et al., 2007a,b) of supersonic isothermal turbulence both in hy-
drodynamics and MHD, they proposed a compressible version (discussed in
chapter 6) of the exact relation originally obtained by Politano & Pouquet

5Another possibility is that the self similarity curves do not exactly represent the phe-

nomenology which is less realistic.
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Figure 5.14: Moments of proton density fluctuations and magnetic field mag-
nitude fluctuations as a function of the order of moments in slow (left) and
fast (right) solar wind; Reprinted with permission from Hnat et al. (2005); ©
(2005) American Physical Society. DOI: 10.1103/PhysRevLett.94.204502

(1998a) – hereafter as PP98 – for incompressible MHD (also derived and
discussed in details in chapter 6) in order to improve the scaling of velocity
structure functions in fast solar wind. For a considerable number of intervals
they indeed observed a better scaling (see figure 5.15 in case of compress-
ible moments where the incompressible Elsässer variables (z±) are replaced
by density weighted compressible Elsässer variables (w± ⌘ ⇢1/3z±). Despite
the improvement in scaling, their relation was not derived analytically. this
very point motivated me to establish a compressible counterpart of PP98 ex-
act relation in order to analytically justify their choice of density-weighted
variable.

Another important issue is the anomalous heating in fast solar wind. Both
Helios and Ulysses data revealed clear signature of local heating by virtue of
the temperature profile of solar wind in function of radial distance. Using three
dimensional temperature analysis in Helios data, the parallel (with respect to
the mean interplanetary magnetic field) temperature of pure fast solar wind
was found (Marsch et al., 1982) to decrease as r−0.69 and the perpendicular
temperature as r−1.17 whereas the adiabatic model of non-collisional plasma
predicts a temperature fall of r−2 in perpendicular direction. Again Ulysses
data gives a radial temperature profile of r−1.03 for northern hemisphere and
that of r−0.81 in the southern hemisphere whereas an adiabatic model would
give a profile with r−1.33 where solar wind is assumed to composed of mainly

http://dx.doi.org/10.1103/PhysRevLett.94.204502
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monoatomic gas (rather protons). This discrepancy gave birth to the idea
of an intra-wind local source of heating in solar wind. In their article of
2009, Carbone et al. propose compressible turbulence in solar wind to be
responsible for this heating. They estimated the energy supply rate by the
dissipation rates of pseudo energies (defined in chapter 3) and found that
the incompressible pseudo energy dissipation could not provide with sufficient
energy whereas the compressible pseudo energy dissipation could (see figure
5.16).

Figure 5.15: Compressible and incompressible scaling (in log-log graph) in
time domaine of the fast solar wind data obtained from Ulysses spacecraft,
Y ± W± represent respectively the incompressible and compressible third order
moments; Reprinted with permission from Carbone et al. (2009); © (2009)
American Physical Society. DOI: 10.1103/PhysRevLett.103.061102

FF This paper however confronted some criticism (Forman et al., 2010)
which principally included their biased choice of data intervals, selection of
MHD frequency range (which seemed to span well inferior to the usual MHD
frequency range i.e. 10−1 − 10−4 Hz used for the solar wind), their estimation

http://dx.doi.org/10.1103/PhysRevLett.103.061102
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of turbulent energy dissipation rate by the pseudo-energy rates and some other
physical issues. Except the question of validity of chosen MHD interval, all
the questions are addressed and explained by the authors in another letter
from the authors (Sorriso-Valvo et al., 2010). Some important works on the
density and magnetic compressibility have been done using Helios (Bavassano
et al., 1982) and Ulysses data (Malara et al., 1996) and specially the effect of
compressibility on the Alfvénicity (the correlation between the velocity and
magnetic field fluctuations) of the solar wind turbulence. A thorough review
on this subject is given in Bruno & Carbone (2005).

Figure 5.16: Heating energy supply by compressible pseudo-energy "±I dissipa-
tion (Red and Blue squares) and incompressible pseudo-energy "±I dissipation
(Green and Violet circles) in comparison with two theoretical estimations
of the radial temperature profile for fast solar wind; Reprinted with permis-
sion from Carbone et al. (2009); © (2009) American Physical Society. DOI:
10.1103/PhysRevLett.103.061102

http://dx.doi.org/10.1103/PhysRevLett.103.061102
http://dx.doi.org/10.1103/PhysRevLett.103.061102
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Exact relations in turbulence
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6.1 Exact relations in incompressible turbu-
lence

E
xact relations in turbulence refer to statistical relations which are derived
analytically from the fundamental equations of dynamics (including the

closure relations) under different symmetry hypotheses (statistical homogene-
ity, isotropy, stationarity etc.). Unlike dimensional analysis, the derivation of
these ’exact’ relations take into account (a) the proper algebraic and differen-
tial structure of the parent equations and (b) the exact algebraic value of the
variables instead of their order of magnitude. The existing exact-relations in
strong1 turbulence are mainly2 the equations relating the divergence of third-

1In weak turbulence, we have other exact relations which are beyond the scope of this

thesis.
2In intermittency, some exact inequalities exist.
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order structure function and the mean flux rate of a conserved quantity (total
energy, incompressible cross-helicity etc.). These equations are derived for the
so called inertial zone (discussed in chapter 4 and 5) in a completely developed
turbulence under the assumption of an infinitely large Reynold’s number. This
type of exact relation was first derived by von Kàrmàn & Howarth (1938) and
then they are successfully applied to the inertial zone of incompressible hy-
drodynamic turbulence by Kolmogorov (Kolmogorov, 1941b) where the third-
order moment of longitudinal velocity structure function was related to the
mean kinetic energy flux rate or the net energy dissipation rate. The Von-
Karman Howarth (VKH) form or the divergence form of this exact relation is
written as

rr ·
⌦

(δv)2 δv
↵

= −4". (6.1)

For isotropic turbulence, this equation can be integrated over a sphere of
radius r and can be written as 3

⌦

(δv)2 δvr
↵

= −4

3
"r, (6.2)

where vr is the component of v in the radial direction of the sphere. The ex-
pression à la Kolmogorov can be obtained by replacing

⌦

(δv)2 δvr
↵

by
⌦

(δvr)
3↵

and is expressed as
⌦

(δvr)
3↵ = −4

5
"r. (6.3)

Later these type of relations are derived for convected passive scalars (tem-
perature etc.) by Yaglom (1949). In the year 1998, Politano and Pouquet
derived (Politano & Pouquet, 1998b,a) an exact relation for incompressible
MHD turbulence introducing Elsasser variables. In recent years some exact
relations for incompressible Hall MHD and electron MHD turbulence have
been derived (Galtier, 2008b; Meyrand & Galtier, 2010).

There exist more than one method for deriving these exact relations. The
initial ones (von Kàrmàn & Howarth, 1938; Kolmogorov, 1941b; Politano &
Pouquet, 1998b) used the tensorial methods involving isotropy from the very
beginning. On the contrary, in this chapter, we shall derive all the exact
relations without using tensorial formalism. First, we shall derive the exact
relations for incompressible hydrodynamics and MHD turbulence. This part
will be followed by the derivation of exact relations of compressible turbulence.
In deriving those relations, we assume only statistical homogeneity and the
existence of a stationary state corresponding to a conserved quantity. No
a priori assumption of statistical isotropy is made. We include an external
forcing f to maintain the turbulent flow. The forcing is chosen to be solenoidal

3For a d-dimensional turbulence, the right hand side is given as − 4

d
εr .
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and delta-correlated in time (to restore Galilean invariance even after adding
forcing term to Navier-stokes equations). We consider two arbitrary points x

and x’ where x0 = x + r. The primed and non-primed quantities will denote
the dynamical variables corresponding to x’ and x respectively. In addition,
for an arbitrary variable  , δ ⌘  0 −  and δ ⌘ ( 0 +  ) /2.

6.1.1 Incompressible hydrodynamic turbulence

For a neutral incompressible fluid, the basic equations of dynamics are given
by

@tv + (v · r)v = −rP + f + ⌫∆v, (6.4)

r · v = 0, (6.5)

where the symbols have their usual meaning (as in the previous chapters). In
the following we shall evaluate the time rate of change of velocity correlator
of order two. By the help of the equation (6.4), we can write

∂t
⌦

v · v0↵ =

⌧

v · ∂v
0

∂t
+

∂v

∂t
· v0
〉

(6.6)

=
⌦

v ·
⇥

−
(

v
0 · r0)

v
0 −r0P 0 + ν∆0

v
0 + f

0⇤+ v
0 · [− (v · r)v −rP + ν∆v + f ]

↵

.

For an incompressible fluid with statistical homogeneity, we have

hv · r0P 0i = rr · hP 0vi = −hP 0 (r · v)i = 0 (6.7)

and identically hv0 · rP i = 0.
Again by using incompressibility, we obtain

v · (v0 · r0)v0 = (v0 · r0) (v · v0) = r0 · [(v0 · v)v0] , (6.8)

and likewise we show

v0 · [(v · r)v] = r · [(v · v0)v] . (6.9)

Now we define E and RE to be respectively the kinetic energy density and
two-point energy correlator4 at point x (same definitions for E’ and R0

E at
point x’) and can be expressed as

E =
v · v
2

, RE =
v0 · v
2

, (6.10)

E 0 =
v0 · v0

2
, R0

E =
v · v0

2
. (6.11)

4 For incompressible turbulence two-point energy correlators are the same in x and x
0

.
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Using statistical homogeneity, we can then write

hE −REi =

⌧

(E + E 0)

2

〉

−
⌧

(RE +R0
E)

2

〉

(6.12)

=

⌧

v · v + v0 · v0

4

〉

−
⌧

v · v0 + v0 · v
4

〉

=

⌧

δv · δv
4

〉

.

Using equations (6.6) to (6.12), we obtain

@t hv · v0i = @t hRE +R0
Ei

= rr · h−REδvi+D + F

= rr ·
*"

(δv)2

4
− (E + E 0)

2

#

δv

+

+D + F

= rr ·
*

(δv)2

4
δv

+

+D + F, (6.13)

where D and F represent resultant dissipative and forcing terms and can
explicitly be expressed as

D = ⌫ hv ·∆0v0 + v0 ·∆vi , F = hv · f 0 + v0 · fi .

Now if we consider a stationary state where the average energy is conserved
by the mutual balance of energy input by forcing term and energy output by
viscous term (discussed in chapter 4), the time derivative of the correspond-
ing correlator should also vanish. Moreover, if we are interested well inside
the inertial zone, D can be neglected with respect to the other terms. The
divergence form of equation (6.1) can simply be obtained if we write F ⌘ "

where " represents the average kinetic energy injection flux rate. Note that the
divergence form is valid for homogeneous three dimensonal turbulence of an
incompressible neutral fluid. If, in addition, statistical isotropy is assumed,
the average flux term can be considered to be a function of | r | and the
equation (6.1) can be simplified to

1

r2
@

@r

(

r2
⌦

(δv)2 δvr
↵)

= −4". (6.14)

This equation, being integrated over a sphere of radius r, gives the form of
well known 4/3 law à la Yaglom. To get the final 4/3 form from the divergence
form, we consider the correlation length of the forcing term f to be very large
compared to r so that f 0 ' f . Under this assumption, we have

"(r) = hv · f + v0 · fi ⇡ hv · f + v0 · f 0i = 2 hv · fi = "(0),
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which render " to be independent of the variable r thereby leading to the
final 4/3 form. The above equation (6.14) is very crucial for understanding
fluid turbulence. It shows that for homogeneous and isotropic turbulence
the third-order moment of velocity structure function scales linearly with the
corresponding length scale r inside the inertial zone. Inversely, inertial zone
can, in turn, be defined in the physical space by this relation i.e. inertial
zone is the range of length scales for which the third-order velocity structure
function is linear to r.

Kolmogorov’s 4/5 law from Yaglom’s 4/3 law: In order to obtain
Kolmogorov’s 4/5 law given in equation (6.3) from the expression (6.2), we
can simply use5 the equation (34.15) in Landau & Lifshitz (1959) which gives

⌦

(δvt)
2 δvr

↵

=
1

6

@

@r

(

r
⌦

(δvr)
3↵) , (6.15)

where vt is the transverse component (perpendicular to the longitudinal di-
rection) of the velocity. Again, one can write

⌦

(δv)2 δvr
↵

= 2
⌦

(δvt)
2 δvr

↵

+
⌦

(δvr)
3↵ .

Substituting this expression in relation (6.15) and using equation (6.2), we
are left with the following ordinary differential form

4ydr + r4dy = −4"rdr, (6.16)

where y =
⌦

(δvr)
3↵. Multiplying both sides by integrating factor x3 and then

integrating, we finally obtain the required Kolmogorov form. In the final
solution, we neglected the constant of integration by using the fact that all
the structure functions do vanish at r = 0.

6.1.2 Incompressible MHD turbulence

In this part, we derive an exact relation for incompressible MHD turbulence of
a plasma just by following the same method used in deriving the pure hydro-
dynamic equation in the previous section. In the current derivation again we
use statistical homogeneity and the existence of two stationary states corre-
sponding to total energy (kinetic + magnetic) and cross-helicity conservation
whereas in their original derivation, Politano & Pouquet did not use any forc-
ing. Also unlike PP98, (who derived their equation directly in terms of the
Elsässer variables) here we shall derive the exact relation in terms of velocity

5A complete vectorial proof for -4/5 law is given by Rasmussen (1999) using rotational

symmetry.
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and magnetic fields (normalized to a velocity) and then we shall re-write that
relation in terms of Elsässer variables. The basic equations are given by

@tv + (v · r)v = −rP + (r⇥ vA)⇥ vA + ⌫∆v + f , (6.17)

@tvA = r⇥ (v ⇥ vA) + ⌘∆vA, (6.18)

r · v = 0, r · vA = 0, (6.19)

where vA = b/
p
µ0⇢ with b being the magnetic field and ⇢ being the constant

density. If the constant density is set to unity (for the sake of simplicity) then
we can write vA = b/

p
µ0. It is important to specify that in our approach, the

system is forced only through momentum equation and not in the Faraday’s
equation whereas several numerical studies (Alexakis et al., 2006) have been
done by forcing the system both in kinetic and magnetic level. The absence of
magnetic forcing can be thought to be an assurance of the absence of a mag-
netic helicity inverse cascade. We can therefore consider only the possibility of
direct cascade hereinafter for 3D incompressible MHD turbulence. The total
energy density and the cross-helicity density of the plasma are given by

E =
1

2

(

v2 + v2A
)

, H = v · vA.

The corresponding two-point correlation functions are respectively given by

hREi =
1

2
hv · v0 + vA · vA

0i , hRHi =
1

2
hv · vA

0 + vA · v0i .

Using the above definitions, one can also show

h(E + E 0)− (RE +R0
E)i =

1

2

⌦

(δv)2 + (δvA)
2↵ , (6.20)

h(H +H 0)− (RH +R0
H)i = hδv · δvAi . (6.21)

Now we derive (as in the previous case) the evolution equation of the correla-
tors. By some simple algebra and vector identities, we obtain,

∂t
⌦

v · v0↵ =
⌦

∂tv · v0 + v · ∂tv0↵

=

⌧

− (v · r)v −rP −r
✓

v2A
2

◆

+ (vA · r)vA

]

· v0

+

"

−
(

v
0 · r0)

v
0 −r0P 0 −r0

 

v0A
2

2

!

+
(

vA
0 · r0)

vA
0
#

· v
〉

+ dC + fC

=
⌦

[− (v · r)v + (vA · r)vA] · v0 −
⇥(

v
0 · r0)

v
0 −
(

vA
0 · r0)

vA
0⇤ · v

↵

+ dC + fC ,

(6.22)

where dC and fC are the resultant dissipative and forcing terms and can be
expressed in the same way as that in the pure hydrodynamic case. In arriving
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the last line we use the fact that for homogeneous incompressible turbulence
the terms hv0 · rP i, hv · r0P 0i, hv0 · r (v2A/2)i and

⌦

v · r0 (v0A
2/2
)↵

vanish.
Again we have

∂t
⌦

vA · vA
0↵ =

⌦

∂tvA · vA
0 + vA · ∂tvA

0↵

=
⌦

[− (vA · r)v + (v · r)vA] · vA
0 −
⇥(

vA
0 · r0)

v
0 −
(

v
0 · r0)

vA
0⇤ · vA

↵

+ dM ,

(6.23)

where dM = ⌘ hvA ·∆0vA
0 + vA

0 ·∆vAi is the magnetic dissipation term.
Adding up equations (6.22) and (6.23), we obtain

∂t hREi = ∂t
1

2
hv · v0 + vA · vA

0i

=
1

2

⌧

[− (v · r)v + (vA · r)vA] · v0 − [(v0 · r0)v0 − (vA
0 · r0)vA

0] · v

+ [− (vA · r)v + (v · r)vA] · vA
0 − [(vA

0 · r0)v0 − (v0 · r0)vA
0] · vA

〉

+D + F

=
1

2

⌧

− (v · r) [v0 · v + vA
0 · vA]− (v0 · r0) [v · v0 + vA

0 · vA]

+ (vA · r) [vA
0 · v + vA · v0] + (vA

0 · r0) [vA
0 · v + vA · v0]

〉

+D + F, (6.24)

where D = (dC + dM)/2 and F = fC/2 . Exploiting the solenoidal character
of v and vA and using the identities (6.20) and (6.21), we can write

∂t hREi =
1

2

⌧

r ·
⇥

−
(

v
0 · v

)

v +
(

v
0 · vA

)

vA +
(

vA
0 · v

)

vA −
(

vA
0 · vA

)

v
⇤

+r0 ·
⇥

−
(

v
0 · v

)

v
0 +
(

v · vA
0)
vA

0 +
(

vA · v0)
vA

0 −
(

vA
0 · vA

)

v
0⇤
〉

+D + F

= rr ·
⌧

−(v · v0)
2

− (vA · vA
0)

2

]

δv +



(v · vA
0)

2
+

(vA · v0)
2

]

δvA

〉

+D + F

= rr · hREδv +RHδvAi+D + F

= rr ·
*

δv

4

"

(δv)2 +

✓

δvA

2

◆2
#

− 2δvA (δv · δvA)

+

+D + F. (6.25)

Now we consider a stationary state where the left-hand side of the equation
(6.25) vanishes. In the inertial zone, we can neglect the dissipation D and
moreover assuming the forcing to be the energy source i.e. writing F = ", we
get finally

rr ·
⌦

δv
⇥

(δv)2 + (δvA)
2⇤− 2δvA (δv · δvA)

↵

= −4", (6.26)

which is the primitive form of Politano-Pouquet’s exact relation. In isotropic
case, integrating the above equation over a sphere of radius r, we obtain

⌦

δvr
⇥

(δv)2 + (δvA)
2⇤− 2δvAr (δv · δvA)

↵

= −4

3
"r, (6.27)
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which is identical to the equation (6) of Politano & Pouquet (1998a) in case of
three dimensional turbulence. Performing the same method for cross-helicity
correlators, we derive

−
⌦

δvAr

⇥

(δv)2 + (δvA)
2⇤+ 2δvr (δv · δvA)

↵

= −4

3
"cr, (6.28)

where "c denotes the mean rate of cross-helicity injection flux. Rewriting the
equations (6.27) and (6.28) in terms of Elsässer variables z± = v ± vA, we
can finally obtain

D

(

δz±
)2
δzr

⌥
E

= −4

3
"±r, (6.29)

where "± denotes the mean rate of pseudo-energies (E± = 1
2
z± ·z±) input flux

by virtue of the forcing term. For incompressible case, both of the pseudo
energies are inviscid invariants which leads to the possibility of obtaining an
exact relation corresponding to each of them. As we shall see, this fact will
no longer be true in compressible case thereby eliminating the possibility of
two exact relations.

In another paper (Politano & Pouquet, 1998b) preeceded by the mentioned
one, they also derived the exact relations corresponding to longitudinal struc-
ture functions which can be thought to be the MHD version of Kolmogorov’s
4/5 law.

6.2 Previous attempts for exact relations in
compressible turbulence

Derivation of exact relations in compressible fluid turbulence is not trivial
principally due to two reasons: (i) The fluid density is no more a constant
thereby affecting the simple symmetric form of the two-point correlators and
(ii) The basic assumptions of inertial zone, exclusive large scale forcing with
delta correlation in time are not evident in compressible case (as discussed in
the previous chapter). In spite of these difficulties, the field of compressible
turbulence, which is of significant importance in space plasmas (solar wind,
planetary magnetosphere etc.) and astrophysical plasmas (interstellar cloud,
dilute interstellar media) demands desperately a sound analytical base in order
to verify the universality and also to construct a plausible phenomenology in
the mentioned field.

6.2.1 Heuristic approach by Carbone et al. (2009)

The importance of compressibility in solar wind turbulence has been perceived
in several papers (Bavassano et al., 1982; Hnat et al., 2005). However, the
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aspect of compressible scaling was, for the first time, investigated by Carbone
et al. (2009). In that paper, they grossly wrote a heuristic relation (analo-
gous to that of the Yaglom’s form) for compressible turbulence in order to
explain the heating of fast solar wind using the observational data of Ulysses
spacecraft. In constructing the relation they used the third-order structure
function of density-weighted Elsässer variables (w± = ⇢1/3z±) and they wrote

D

(

δw±)2 δwr
⌥
E

=
4

3
h⇢i "±r. (6.30)

Their work was inspired by the numerical simulation of (Kritsuk et al.,
2007a,b) who obtained, for compressible turbulence (with r.m.s. Mach num-
ber ⇠ 6), a reasonable scaling relation and a −5/3 spectrum corresponding
to the variables w±. Also in their 2009 paper, they showed some improve-
ments 6in the scaling laws of fast solar wind (FSW) turbulence and in the
estimation of the heating of FSW when compressible law is used instead of
the incompressible version. Nevertheless, their equation (6.30) was not de-
rived analytically from equations of compressible fluid dynamics and cannot
therefore be called as an ’exact’ relation.

6.2.2 FFO approach for a generalized exact equation

A more rigorous attempt was taken by Falkovich, Fouxon and Oz (FFO) in
order to derive a generalized exact relation (Falkovich et al., 2010) which could
include incompressible hydrodynamics and incompressible MHD case as their
special limits. Following the same prescription, Fouxon and Oz derived an
exact relation for a compressible relativistic fluid too (Fouxon & Oz, 2010).
In the following, we shall derive their exact relation for a non-relativistic fluid
using our own notations.

The basic principle behind FFO formulation resides at the construction of a
generalized continuity equation associating generalized density Q, generalized
current J and a generalized external source field S and is given by

@tQ+r · J = S. (6.31)

They use a constitutive relation expressing the current term in terms of the
density and a series of its spatial derivatives in order to close the generalized
continuity equation. The closure equation is given by

Ji = Fi(Q) +
X

k

Gik(Q)rkQ+ . . . , (6.32)

6Their method of data analysis and conclusions on scaling and heating were put into

questions by (Forman et al., 2010).
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where Gik is the Jacobian tensor and the dots represent the higher derivatives.
The zeroth-order term Fi(Q) is associated to conservative dynamics whereas
the first derivative represents the dissipation. For fluid dynamics, they neglect
the higher derivatives and by replacing the closure equation in equation (6.31),
they obtain

@tQ+
@Fi

@ri
= S − @

@ri

 

X

k

Gik(Q)rkQ

!

. (6.33)

Thereafter, they consider a steady-state condition where @t hQ(0, t)Q(r, t)i =
0. Under statistical symmetries, they obtain (according to FF0)

@t hQ(0, t)Q(r, t)i = −2
@

@ri
hQ(0, t)Fi(r, t)i+ hQ(0, t)S(r, t)i

− δ

δri

*

Q(0, t)

 

X

k

Gik(r, t)rkQ(r, t)

!+

= 0. (6.34)

In the final step of derivation, they assumed a large correlation length for
the source term S (which is identified as the forcing term in standard turbu-
lence) with respect to the length scale r. Under that hypothesis, one can write
S(r, t) ⇡ S(0, t) and hence hQ(0, t)S(r, t)i ⇡ hQ(0, t)S(0, t)i ⌘ " , where the
constant " denotes the mean input rate of Q2. Furthermore if the concerned
length scale is too distant to experience any viscous effect, the resultant rela-
tion is given by (equation (2.4), Falkovich et al. (2010)):

ri hQ (0, t)Fi (r, t)i = ". (6.35)

The further assumption of isotropy reduces the above exact relation to

hQ (0, t)Fi (r, t)i =
"ri
d
, (6.36)

where d is the spatial dimension.
The equation (6.36) was their generalized exact relation for homogeneous

isotropic turbulence. The general form was then reduced to some familiar
simplified cases like passive-scalar turbulence, incompressible hydrodynamic
turbulence and also the non-trivial case like compressible turbulence with
barotropic closure just by some appropriate choice of the generalized density
and current. The reduced forms along with corresponding choices of Q and F

(or J) are given in the following table

Limitations of FFO approach Despite having an analytical base in the
derivation, FFO relation(s) suffered from the following subtle mathematical
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Nature of
flow

Choice of
Variables

Exact Relation

Passive scalar
turbulence

Q ⌘ ✓ (passive
scalar)

& J ⌘ ✓v− r✓
h✓(0)✓(r)v(r)i = "r

d

Compressible
barotropic
turbulence

Q4 ⌘
(⇢v, ⇢), J4 ⌘
Q4v & F ⌘

⇢v ⌦ v + P (⇢)1

hρ(0)vj(0) [ρ(r)vj(r)vi(r) + P (r)δij ]i = εri
d

Incompressible
hydrody-

namic
turbulence

⇢ = const., Q ⌘
v & F ⌘ v ⌦ v

hvj(0)vj(r)vi(r)i = "ri
d

and physical shortcomings:

(i) Unlike the exact relations in incompressible turbulence, FFO relations
are expressed in terms of the correlation functions instead of structure func-
tions. One should note that for compressible case, the passage between the
correlation functions and structure functions is no more trivial and needs ad-
ditional calculations 7. Absence of structure functions in the FFO relations
prevents one to perform any spectral or phenomenological prediction in terms
of the fluctuations and this point constitutes a non-negligible physical limita-
tion of the FFO approach.

(ii) In deriving the divergence form of their equation (equation (2.4)), they
unawarely used mirror symmetry or weak isotropy by assuming

hQ(0, t)Fi(r, t)i = hQ(r, t)Fi(0, t)i
hQ(0, t)S(r, t)i = hQ(r, t)S(0, t)i .

Note that the above equalities cannot be led by statistical homogeneity with-
out using at least weak isotropy. The point is however left obscure in their
paper where just before the above simplification they mentioned "using sta-
tistical symmetries" without precising them. They awarely used statistical
isotropy to obtain equation (2.5) (JFM, 2010) from (2.4) where they men-
tioned "Assuming in addition, isotropy one finds ...". This issue clearly makes
their derivations more limited than the divergence forms which can be ob-
tained just by statistical homogeneity.

7As we shall see later that this passage leads to the introduction of the source terms in

the exact relations.
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(iii) The third and the most serious issue of FFO approach was their as-
sumption of a stationary state corresponding to the current-density correlation
function. From continuity equation and compressible Navier-Stokes equations,
we obtain:

@t h⇢⇢0v · v0i = h⇢v · @t(⇢0v0)i+ h⇢0v0 · @t(⇢v)i
= −rr · h⇢⇢0(v · v0)δv + ⇢P 0v − ⇢0Pv0i+ d̃+ f̃ , (6.37)

where:

d̃ = d̃(r) = h⇢0v0 · d + ⇢v · d0i , f̃ = f̃(r) = h⇢0v0 · f + ⇢v · f0i . (6.38)

For homogeneous turbulence we can write:

hδ(⇢v) · δ(⇢v)i = 2
⌦

⇢2v2
↵

− 2 h⇢⇢0v · v0i , (6.39)

which leads to:

@t h⇢⇢0v · v0i = 1

2
@t hδ(⇢v) · δ(⇢v)i − @t

⌦

⇢2v2
↵

. (6.40)

Since the quantity ⇢2v2 is not the density of an inviscid invariant its time
derivative introduces a nonlinear contribution which has a non conservative
form, namely:

@t
⌦

⇢2v2
↵

= −2 h⇢v · [r · (⇢v ⌦ v)] + ⇢v · rP i+ d̃(0) + f̃(0) . (6.41)

In the previous derivations we always considered the stationary state corre-
sponding to average energy which is an inviscid invariant and so does not
lead to the appearance of such type of nonlinear contribution. Therefore, it is
important to check (e.g. by numerical simulations) if the assumption of sta-
tionarity can be applied to the current-density correlation function (whereas
it is applicable for the fluctuating part written in terms of structure functions)
before deriving exact relations supposing the existence of such a stationary
state. In fact, direct numerical simulations (Wagner et al., 2012; Kritsuk
et al., 2013) have shown that the FFO relation lack universality and does not
give satisfactory scaling. This problem is believed to be generated by their
choice of stationary state corresponding to a quantity which is not an inviscid
conserved quantity.

6.3 New exact relations and phenomenologies
in compressible turbulence : My research
work

Due to the abovesaid limitations of the previous attempts, we derived vectorial
exact relations for compressible turbulence considering the inviscid conserva-
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tion of total energy. We have derived three exact relations for compressible
hydrodynamic (Galtier & Banerjee, 2011) and MHD turbulence (Banerjee &
Galtier, 2013) with isothermal closure and also for the turbulence in a com-
pressible polytropic neutral fluid (Banerjee & Galtier, 2014). The principal
objective of these relations is to understand the different results obtained
from the direct numerical simulations (DNS) of compressible turbulence and
also to understand the role of compressibility in space plasma turbulence by
studying the spacecraft data (for solar wind, planetary magnetosphere etc.).
The derivation of these exact relations constitutes the theoretical aspect of
my thesis. The derivations will be carried out in a detailed manner in the
following.

6.3.1 Isothermal hydrodynamic turbulence

As in incompressible turbulence, here also we start with the basic hypotheses
of (a) an infinitely large Reynolds number to ensure a completely developped
turbulence and (b) statistical homogeneity. No prior assumption of isotropy
is made. In addition, an isothermal closure i.e. P = C2

S⇢ (where CS is the
constant sound speed of the fluid medium) is used for the current study. The
complete set of three-dimensional compressible equations are thus given in the
following:

@t⇢+r · (⇢v) = 0,

@t(⇢v) +r · (⇢v ⌦ v) = −rP + d+ f ,

P = C2
S⇢,

where d = µ∆v+ µ
3
r(r·v) represents the viscous term and the other symbols

have their usual meaning. f is chosen to be stationary, homogeneous, delta-
correlated in time and acting at large scales of the flow.

For a compressible isothermal fluid, the energy density is given as

E =
⇢v2

2
− ⇢

Z

Pd

✓

1

⇢

◆

=
⇢v2

2
− ⇢e, (6.42)

where e = C2
s ln(⇢/⇢0) the internal energy per unit mass (⇢0 is a constant

density at equilibrium).
The energy equation then takes the form

@thEi = −µh(r⇥ v)2i − 4

3
µh(r · v)2i+ F , (6.43)

where h i denotes statistical average and F is the mean rate of energy flux
injected at the injection scale(s). We can therefore assume the existence of a
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stationary state where the total average energy is unchanged in course of time
owing to the mutual balance of the average dissipative and forcing terms.

The relevant two-point energy correlation functions associated to the points
x and x0 can be defined as

hRi = h1
2
⇢v · v0 + ⇢e0i, hR0i = h1

2
⇢0v0 · v + ⇢0ei. (6.44)

Unlike incompressible case, energy correlators corresponding to E and E’ are
not the same in the compressible case due to the variable character of local
density.

Using the above definitions, one can show

h(E + E 0)− (R +R0)i = 1

2
hδ(⇢v) · δvi+ hδ⇢δei . (6.45)

As we shall see later this relation (6.45) is a key relation for deriving an exact
relation for some two-point correlation functions.

Now we shall derive a dynamical equation for hR +R0i. To do that first we
calculate

∂thρv · v0i = hρv · ∂tv0 + v
0 · ∂t(ρv)i (6.46)

= hρv · (−v
0 · r0

v
0 − 1

ρ0
r0P 0)i+ hv0 · (−r · (ρvv)−rP )i+ d1 + f1 ,

where

d1 =

⌧

⇢

⇢0
v · d0 + v0 · d

〉

, f1 =

⌧

⇢

⇢0
v · f 0 + v0 · f

〉

,

denote respectively the contributions to the correlation of the viscous and
forcing terms. In addition using the identities

h ⇢
⇢0
v · r0P 0i = hC2

s

⇢

⇢0
v · r0⇢0i = hC2

s⇢v · r0(ln ⇢0)i = hr0 · (⇢e0v)i ,

and
hv0 · r0(⇢v · v0)i = hr0 · (⇢(v · v0)v0)− ⇢(v · v0)(r0 · v0)i ,

we can rewrite (6.46) in the following way

∂thρv · v0i
= h−v

0 · r0(ρv · v0)−r0 · (ρe0v)i − hr · (ρ(v · v0)v + Pv
0)i+ d1 + f1

= rr · h−ρ(v · v0)δv + Pv
0 − ρe0vi+ hρ(v · v0)(r0 · v0)i+ d1 + f1 . (6.47)

Secondly, we have to complete the computation with

@th⇢e0i = h⇢@te0 + e0@t⇢i = hC2
s

⇢

⇢0
@t⇢

0 + e0@t⇢i

= h−C2
s

⇢

⇢0
r0 · (⇢0v0)− e0r · (⇢v)i

= −hr0 · (C2
s⇢v

0)i+ h⇢0v0 · r0(C2
s

⇢

⇢0
)i − hr · (⇢e0v)i . (6.48)
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Again noting that

h⇢0v0 · r0(C2
s

⇢

⇢0
)i = −hr0 · (⇢e0v0)i+ he0r0 · (⇢v0)i ,

we obtain after simplification

@th⇢e0i = rr · h−⇢e0δv − Pv0i+ h⇢e0(r0 · v0)i . (6.49)

The combination of (6.47) and (6.49) leads to

@t hRi = rr ·
⌧

−R δv − 1

2
Pv0 − 1

2
⇢e0v

〉

+ h(r0 · v0)Ri+ d1 + f1 . (6.50)

By performing the same type of analysis for hR0i, we get

@t hR0i = rr ·
⌧

−R0 δv +
1

2
P 0v +

1

2
⇢0ev0

〉

+ h(r · v)R0i+ d01 + f 0
1 , (6.51)

where d01 and f 0
1 represent respectively the dissipative and forcing terms. Now

adding up equations (6.50) and (6.51), we get

@t

⌧

R +R0

2

〉

=
1

2
rr ·

⌧

−(R +R0)δv − 1

2
(Pv0 + ⇢e0v − P 0v − ⇢0ev0)

〉

+
1

2
h(r0 · v0)R + (r · v)R0i+ 1

2
(d1 + d01 + f1 + f 0

1). (6.52)

For the final step of the derivation we shall introduce the usual assumption
specific to three-dimensional fully developed turbulence with a direct energy
cascade (Frisch, 1995). In particular, we suppose the existence of a statistical
steady state in the infinite Reynolds number limit with a balance between
forcing and dissipation. We recall that the dissipation is a sink for the total
energy and acts mainly at the smallest scales of the system. Then, far in
the inertial range we may neglect the contributions of the dissipative terms
in equation (6.52) (Aluie, 2011). Writing f1 + f 0

1 = 2" and introducing the
structure functions we obtain the final form

−2" = h(r0 · v0)(R− E)i+ h(r · v)(R0 − E 0)i

+rr ·
⌧

δ(⇢v) · δv
2

+ δ⇢δe− C2
s δ̄⇢

]

δv + δ̄eδ(⇢v)

〉

, (6.53)

where " is the mean total energy injection rate (which is equal to the mean
total energy dissipation rate; see relation (6.43)).
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Incompressible limit For an incompressible fluid, we have (r · v) = (r0 ·
v0) = 0 which let the source terms vanish. Moreover, we have ⇢ = ⇢0 which
leads to δ⇢ = 0 and e = 0 and indeed we obtain

−4" = rr · h(δv)2δvi , (6.54)

which can be identified as the primitive form of the Kolmogorov’s law.

Phenomenological approach under isotropy Expression (6.53) is the
new exact relation for structure functions in fully developed compressible
turbulence. It is valid for homogeneous – non necessarily isotropic – three-
dimensional compressible isothermal turbulence. When isotropy is addition-
ally assumed this relation can be written symbolically as

− 2" = S(r) + 1

r2
@r(r

2Fr) , (6.55)

where Fr is the radial component of the isotropic energy flux vector. In
comparison with the incompressible case (6.54), expression (6.55) reveals the
presence of a new type of term S which is by nature compressible since it is
proportional to the dilatation (i.e. the divergence of the velocity). This term
has a major impact on the nature of compressible turbulence since as we will
see it acts like a source or a sink for the mean energy transfer rate. Note that
S consists of two terms which account for two-point measurement approach.
If we further reduce equation (6.55) by performing an integration over a ball
of radius r, after simplification we find

− 2

3
"r =

1

r2

Z r

0

S(r)r2dr + Fr(r) . (6.56)

We start the discussion by looking at the small scale limit of the previous
relation which means that the scales are assumed to be small enough to per-
form a Taylor expansion but not too small to be still in the inertial range. We
obtain S(r) = S(0) + r@rS(0) = r@rS(0) which leads to

− 2

3



"+
3

8
r@rS(0)

]

r ⌘ −2

3
"effr = Fr(r) . (6.57)

Note that we do not assume the cancellation of the first derivative of S at
r = 0 although the function, R−E, reaches an extremum at r = 0; the reason
is that this function is weighted by the dilatation function which may have a
non trivial form. We see that at the leading order the main contribution of
S(r) is to modify " for giving an effective mean total energy injection rate "eff .
Then, the physical interpretation of (6.57) is the following. When the flow is
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Figure 6.1: Dilatation (left) and compression (right) phases in space corre-
lation for isotropic turbulence. In a direct cascade scenario the flux vectors
(blue arrows) are oriented towards the center of the sphere. Dilatation and
compression (red arrows) are additional effects which act respectively in the
opposite or in the same direction as the flux vectors.

mainly in a phase of dilatation (positive velocity divergence), the additional
term is negative and "eff is smaller than ". On the contrary, in a phase of
compression @rS(0) is positive and "eff is larger than ".

An illustration of dilatation and compression effects in the space correlation
is given in figure 6.1. In both cases, the flux vector F (dashed arrows) is
oriented towards the center of the sphere (r = 0) since a direct cascade is
expected. Dilatation and compression act additionally (solid arrows): in the
first case, the effect is similar to a decrease of the local mean total energy
transfer rate whereas in the second case it is similar to an increase of the local
mean total energy transfer rate.

The discussion may be extended to the entire inertial range (i.e. for larger
values of r). In this case the analysis is focused on expression (6.56) for
which we have already noted that a term like R − E is mainly negative. It
is interesting to note that S(r) is composed of two types of term which are
different by nature. First, there is the dilatation dominated by the smallest
scales in the flow – the shocklets – which mainly give a negative contribution
with a fast variation (Smith et al., 2000). Secondly, there is the correlation
R − E which derives most of its contribution from relatively larger scales -
where we mainly feel eddies - with a slower variation. This remark may lead
to the assumption that both terms are relatively decorrelated (Aluie, 2011).
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Then S(r) may be simplified as (by using relation (6.45))

S(r) ' −
⌧

δ̄(r · v)


1

4
δ(⇢v) · δv +

1

2
δ⇢δe

]〉

. (6.58)

The previous expression is not derived rigorously but it may give us some
intuition about its contribution. For example, we may expect a power law
dependence close to r2/3 for the structure functions. Direct numerical simu-
lations have never shown a scale dependence for the dilatation therefore we
may expect that it behaves like a relatively small factor. Then S(r) will still
modify " as explained in the discussion above, however the power law depen-
dence in r would be now slightly different. In conclusion and according to this
simple analysis we see that compression effects (through the dilatation) will
mainly impact the scaling law at the largest scales.

Compressible spectrum. We may try to predict a power law spectrum
for compressible turbulence. First, we recall that several predictions have
been made for the kinetic energy spectrum and also for the spectra associated
with the solenoidal or the compressible part of the velocity (Moiseev et al.,
1981; Passot et al., 1988). Although these decompositions are convenient for
theoretical developments, the associated energies are not inviscid invariants
and the predictions are heuristic. For incompressible turbulence the situation
is different because a prediction in k−5/3 for the kinetic energy spectrum may
be proposed by applying a dimensional analysis directly on the exact relation
(Frisch, 1995) which in turn gives a stronger foundation to the energy spectrum
for which a constant flux is expected. This remark was already noted in
particular in recent three-dimensional direct numerical simulations (discussed
in the previous chapter) of isothermal turbulence where it is observed that the
Kolmogorov scaling is not preserved for the spectra based only on the velocity
fluctuations .

We shall now derive a power law spectrum for compressible turbulence by
applying a dimensional analysis on equation (6.53). The prediction – although
not exact – will have therefore stronger foundation than a pure phenomeno-
logical spectral law. Dimensionally, we find "effr ⇠ ⇢v3. By introducing the
density-weighted fluid velocity, w ⌘ ⇢1/3v, and following Kolmogorov we ob-
tain

Ew(k) ⇠ "
2/3
eff k−5/3 , (6.59)

where Ew(k) is the spectrum associated to the new variable w. As explained
by several authors (Kadomtsev & Petviashvili, 1973; Moiseev et al., 1981)
in compressible turbulence we do not expect a constant flux in the inertial
range. Here, the same conclusion is reached since we are dealing with an
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effective mean energy transfer rate. More precisely if we expect a power law
dependence in k for the effective transfer rate one arrives at the conclusion that
a steeper power law spectrum may happen at the largest scales. According to
relation (6.58) and the simple estimate, ⇢v2 ⇠ r2/3, we could have Ew(k) ⇠
k−19/9. This prediction means that for a small prefactor in (6.58) one needs an
extended inertial range to feel the compressible effects on the power spectrum.

Experimental validity Our exact relation has recently been verified by
numerical simulations of supersonic turbulence (r.m.s. Mach ⇠ 6) with 10243

resolution ((Kritsuk et al., 2013)) where the authors have pointed out that the
exponent of the third-order velocity structure function is close to one if the
field used is w instead of v. In fact they evaluated both the flux and the source
term of equation (6.55) and they found that the flux term is negative whereas
the source term is positive but is considerably smaller than the flux term (by
magnitude). Finally the sum of the two is found to follow a linear scaling
with the fluctuation length scale for nearly two decades of length scales (see
figure 6.2). From observational point of view, the solar wind is an interesting

Figure 6.2: Numerical verification of scaling (logarithmic plot) of the flux (F )
and the source terms (Q) of equation (6.55) in supersonic turbulence using
10243 resolution; Reprinted with permission from Kritsuk et al. (2013); ©
(2013) Cambridge university press.

example for which a data analysis has revealed such a multiscale behavior
at low frequency (burlaga). In addition, this work is believed to found the
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primordial base to the findings and conclusions of Carbone et al. (2009) using
fast solar wind data of Ulysses spacecraft. However, in order to establish a
stronger theoretical foundation in the last case one has to deal with plasma
thereby inspiring an exact relation in compressible MHD turbulence.

6.3.2 A new phenomenology for compressible turbulence

Contruction of a consistent phenomenology is non-trivial and debatable for
compressible turbulence as we can no longer think of pure eddies as the com-
pressible velocity field is not solenoidal (divergenceless). Similarly, in case of
compressible MHD turbulence, we have to abandon the idea of Alfvén effect
because of two compressional modes (magnetosonic waves) co-existing with
Alfvén mode which is a pure incompressible mode. The only existing phe-
nomenology for compressible case is using the Burger’s equation which is a
one-dimensional equation and predicts a -2 velocity power spectrum for su-
personic turbulence using the notion of shock formation (Frisch, 1995). This
phenomenology cannot describe the subsonic regime. As it was discussed in
the last chapter, Kritsuk et al. (2007a) predict a -5/3 spectrum for subsonic
turbulence and a -2 spectrum for supersonic turbulence for three dimensional
(3D) compressible isothermal turbulence. A satisfactory phenomenological
description for 3D compressible fluid turbulence (and so for MHD) is yet to
be developped. Note that unlike incompressible hydrodynamics, in a com-
pressible fluid there is sonic or acoustic wave which is a linear mode. In the
following we try to propose (Banerjee & Galtier, 2012) a possible phenomeno-
logical picture (without using directly the shock formation) for understanding
the spectra of different regimes (subsonic and supersonic) in compressible tur-
bulence. We start with our derived exact relation which is written as

−2" = h(r0 · v0)(R− E)i+ h(r · v)(R0 − E 0)i

+rr ·
⌧

δ(⇢v) · δv
2

+ δ⇢δe− C2
s δ̄⇢

]

δv + δ̄eδ(⇢v)

〉

the first two terms of right hand side present the source terms (exclusive for
compressible turbulence) whereas the third one represents the flux term. We
note that the source terms are having (r·v) or (r0 ·v0) as coefficient. Neglect-
ing the dispersive effect of the flow field, we can show (by the basic equations)
that the divergence or the dilatation terms propagate with a constant phase
velocity CS (sound speed in the corresponding turbulent medium). Moreover,
the total source term can be written approximately as

S ⇠
⌧

(r · v)
✓

1

2
⇢0v0 · δv

◆〉

⇠ h(r · δv) (⇢0v0 · δv)i .
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We can remark that in the flux terms the energy density fluctuations are trans-
ported by the fluid velocity fluctuation (represented by the term 1

2
[δ(⇢v) · δv])

whereas the source terms represent the transport of the scalar ⇢v ·δv by (r·v)
where the fluctuating quantity is δv. The basic elements describing a possible
phenomenology for isothermal compressible hydrodynamic turbulence are the
following:

(i) For a given length scale l, there is a competition between the flux and
the source terms regarding the transport of their respective fluctuating scalars
(as defined above) between two points separated by l.

(ii) Considering turbulence to be a phenomenon without memory, the trans-
port which will cover the distance l later (i.e. with a greater characteristic
time) will determine the characteristic non-linear energy transfer time for that
length scale l.

(iii) In this case, we can define two characteristic times ⌧l(= l/vl) and
⌧C(= l/CS) where vl ⇠| δv |.

iv) We assume that the time rate of average total energy is a scale invariant.
Along with these assumptions, we consider three following cases:
(a) Subsonic turbulence (δv < CS) : In this case, the transport by the

flux terms, being slower of the two, governs the effective energy transfer and
so the analysis

" ⇠ ⇢lvl
2

⌧l
⇠ ⇢lvl

3

l
) Ew(k) ⇠ "2/3k−5/3,

where w ⌘ ⇢1/3v . This prediction is supported by recent numerical simula-
tions of compressible isothermal turbulence (Kritsuk et al., 2007a; Federrath
et al., 2010).

(b) Supersonic turbulence (δv > CS): In this case, the source terms,
being slower than the flux terms, govers the interscale energy transfer of the
flow and thus the characteristic time is ⌧tr = ⌧C . Utilizing the exact relation
we find

" ⇠ ⇢lvl
2

⌧C
⇠ (⇢v)

vl
2

l
) Ev(k) ⇠ "k−2.

this prediction finds experimental verification in numerical work of Federrath
et al. (2010).

(c) Sonic scale (δv = CS): At this scale vl = CS and so the characteristic
times are also equal. As it is a given scale (k given), we cannot expect a
power law for that. But evaluating properly the Ew(k) and Ev(k) and then
equalizing them for l = lS we can estimate the sonic scale (ls). Schematically,
hence we can write the compressible turbulence phenomenology as follows

" ⇠
⇢

⇢lvl
3

l
,
MS

⌧C
(⇢v)vl

}

,
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whereMS = vl
CS

is the sonic turbulent Mach number and the above two expres-
sions represent the average energy transfer rate respectively in the subsonic
and the supersonic regime of compressible hydrodynamic turbulence.

This above phenomenology is based on the scale invariance of " but it
never explains the spectral law as an outcome of a cascade. This type of
phenomenology can give an alternative point of view to the familiar one where
the power spectrum is supposed to be resulted from a cascade process. The
inert role of (⇢v) to dimensional analysis can however be a subject of further
discussion.

6.3.3 Isothermal MHD turbulence

For constituting an exact relation of compressible MHD turbulence of an
isothermal plasma, we rewrite the basic equations (except the continuity equa-
tion which is kept unchanged) of ideal MHD in terms of v and vA (Marsch &
Mangeney, 1987) as follows:

∂tρ+r · (ρv) = 0 ,

∂tv + (v · r)v = (vA · r)vA − 1

ρ
r
✓

P +
1

2
ρvA

2

◆

− vA(r · vA) + dC + f0 ,

∂tvA + v · rvA = vA · rv − vA

2
(r · v) + dM ,

vA · r ρ = −2ρ(r · vA),

where dC, dM and f0 represent respectively the contribution of the kinetic
viscosity, magnetic resistivity and the external forcing and the other variables
have their usual meaning. The above boxed equations present respectively the
continuity equation, the momentum equation, Faraday’s induction equation
and the zero divergence of magnetic field. Following the same formalism as
that of pure hydrodynamic case (Galtier & Banerjee, 2011), we define the
relevant two-point correlation functions associated to the total energy and
the compressible cross-helicity density as:

RE =
⇢

2
(v · v0 + vA · vA

0) + ⇢e0, (6.60)

RH =
⇢

2
(v · vA

0 + vA · v0) , (6.61)

and similarly for the primed quantities. Using the above definitions and in-
troducing compressible Elsässer variables z± ⌘ v ± vA, we obtain:

(E + E 0)±(H +H 0)−(RE ±RH +R0
E ±R0

H)−δ⇢δe =
1

2
δ(⇢z±)·δz± . (6.62)

For a statistically homogeneous system, the above relations get reduced to:

hEi ± hHi − 1

2
hRE ±RH +R0

E ±R0
Hi −

1

2
hδ⇢δei = 1

4
hδ(⇢z±) · δz±i , (6.63)
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where h·i denotes statistical average as usual. Now we shall calculate:

@thRE ±RH +R0
E ±R0

Hi , (6.64)

which is useful to have a view on the generalized version of the two exact
relations of Politano-Pouquet for each of the compressible pseudo-energies
(e± = ⇢z± · z±) which are no more conserved in compressible MHD. By using
the above boxed equations and basic identities of vector calculus, we obtain
after some calculations:

∂t(ρv · v0) =

−r · [ρ(v · v0)v] +r · [ρvA(v0 · vA)]− (v0 · vA) [r · (ρvA)]

−r · (Pv
0)−r · (1

2
ρvA

2
v
0)− ρ(v0 · vA)(r · vA)

−r0 · [ρ(v.v0)v0] + ρ(v · v0)(r0 · v0) +r0 · [ρ(v · vA
0)vA

0]

− ρ(v · vA
0)(r0 · vA

0)− ρ

ρ0
r0 · (P 0

v)− ρ

ρ0
r0(

1

2
ρ0vA

02
v)

− ρ(v · vA
0)(r0 · vA

0) + d1 + f1 ,

∂t(ρvA · vA
0) =

−r · [ρ(vA
0 · vA)v] +r · [ρvA(v · vA

0)]− (vA
0 · v)[r · (ρvA)]

− 1

2
ρ(vA · vA

0)(r · v)− 1

2
ρ(vA · vA

0)(r0 · v0)−r · [ρ(vA · vA
0)v0]

+ ρ(vA · vA
0)(r0 · v0) +r0 · [ρ(vA · v0)vA

0]− ρ(vA · v0)(r0 · vA
0) + d2 ,

∂t(ρv · vA
0) =

−r · [ρv(v · vA
0)] +r · [ρvA(vA · vA

0)]− (vA
0 · vA)[r · (ρvA)]

−r · (PvA
0)−r · (1

2
ρv2AvA

0)− ρ(vA
0 · vA)(r · vA)

−r · [ρ(v · vA
0)v0] + ρ(v · vA

0)(r0 · v0) +r0 · [ρ(v · v0)vA
0]

− ρ(v · v0)(r0 · vA
0)− 1

2
ρ(v · vA

0)(r0 · v0) + d3 + f2 ,

∂t(ρvA · v0) =

−r · [ρv(v0 · vA)] +r · [ρvA(v0 · v)]− (v · v0)[r · (ρvA)]

− 1

2
ρ(v0 · vA)(r · v)−r0 · [ρ(vA · v0)v0] + (r0 · v0)(ρvA · v0)

+r0 · [ρ(vA · vA
0)vA

0]− ρ(vA · vA
0)(r0 · vA

0)− ρ

ρ0
r0 · [P 0

vA]

− ρ

ρ0
r0 · [ 1

2
ρ0v02AvA]− ρ(vA · vA

0)(r0 · vA
0) + d4 + f3 ,

∂t(ρe
0) = −r0 · (ρe0v0)−r · (ρe0v)−r0 · (Pv

0) + ρe0(r0 · v0) ,

where d1, d2, d3 andd4 represent the dissipative terms which are expressible
in terms of dM and f1, f2 andf3 represent the forcing contributions which can
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be expressed in terms of f0. Hence we have all the necessary elements for the
dynamic equation of RE and RH . Similarly we can write (by symmetry) the
expressions of R0

E and R0
H just by carefully interchanging the primed and the

unprimed quantities. Now if we apply statistical averaging operator on each
term, after judicious re-arrangement of all the terms we finally obtain:

∂thRE ±RH +R0
E ±R0

Hi

= rr ·
⌧

1

2
δ(ρz±)δz± + δρδe

]

δz⌥ + δ(e+
v2A
2
)δ(ρz±)

〉

− 1

4

⌧

v02A
c2s

r0 · (ρz±e0) + v2A
c2s

r · (ρ0z0±e)
〉

+D± + F±

+

⌧

(r · v)


R0
E ±R0

H − E0 ⌥H 0 ⌥ δρ

2
(vA · z0±)− P 0

2
+

P 0
M

2

]〉

+

⌧

(r0 · v0)



RE ±RH − E ⌥H ⌥ δρ

2
(vA

0 · z±)− P

2
+

PM

2

]〉

+

⌧

(r · vA)



RH ±RE −R0
H ⌥R0

E ± E0 +H 0 − δρ(vA · z0±)± 5P 0

2
± P 0

M

2

]〉

+

⌧

(r0 · vA
0)



R0
H ±R0

E −RH ⌥RE ± E +H − δρ(vA
0 · z±)± 5P

2
± PM

2

]〉

,

where PM = (1/2)⇢v2A is the magnetic pressure. D± and F± represent
respectively the averaged resultant dissipative and forcing terms and can ex-
plicitly be written as

D± =
1

2
[(d1 + d2 + d01 + d02)± (d3 + d4 + d03 + d04)] ,

F± =
1

2
[(f1 + f 0

1)± (f2 + f3 + f 0
2 + f 0

3)] .

The above boxed expression consists of two equations which represent the
generalized form (to compressible MHD) of the coupled equations (4) and
(6) of (Politano & Pouquet, 1998a). As it was already shown (Marsch &
Mangeney, 1987), for compressible flows the compressible cross-helicity (whose
density is written as HC = ⇢v · vA) is no longer conserved and we cannot let
the term @thRE ±RH +R0

E ±R0
Hi vanish to the extent of a stationary state

where the average forcing term and the average resultant dissipative (kinetic
+ magnetic) terms cancel each other to ensure the conservation of total energy
and total cross-helicity. Hence for the compressible case, these two equations
individually do not lead to any exact relation. However, if we add both we
find:
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@thRE +R0

Ei

=
1

2
rr ·

*



1

2
δ(⇢z−) · δz− + δ⇢δe

]

δz+ +



1

2
δ(⇢z+) · δz+ + δ⇢δe

]

δz− + δ(e+
v2A
2

)δ(⇢z− + ⇢z+)

+

− 1

8

*

v02A
c2s

r0 · (⇢z+e0) +
v2A
c2s

r · (⇢0z0+e) +
v02A
c2s

r0 · (⇢z−e0) +
v2A
c2s

r · (⇢0z0−e)

+

+

*

(r · v)
"

R0

E − E0 − δ⇢

2
(vA

0 · vA)− P 0

2
+

P 0

M

2

#

+ (r0 · v0)

"

RE − E − δ⇢

2
(vA · vA

0)− P

2
+

PM

2

#+

+
D

(r · vA)
h

RH −R0

H +H0 − δ⇢(v0 · vA)
i

+ (r0 · vA
0)
h

R0

H −RH +H − δ⇢(v · vA
0)
iE

+D + F ,

where D = (D+ +D−)/2 and F = (F+ + F−)/2. Now to establish the
final relation, we assume that in the limit of infinite (kinetic and magnetic)
Reynold’s numbers, the system attains a stationary state associated with av-
erage total energy. Under this assumption, the left hand term of the above
equation vanishes. Now if we concentrate far in the inertial zone where the
dissipative terms are negligible with respect to the other terms, we are left
with:

−2" =
1

2
rr ·

*



1

2
δ(⇢z−) · δz− + δ⇢δe

]

δz+ +



1

2
δ(⇢z+) · δz+ + δ⇢δe

]

δz− + δ(e+
v2A
2

)δ(⇢z− + ⇢z+)

+

− 1

4

⌧

1

β0
r0 · (⇢z+e0) +

1

β
r · (⇢0z0+e) +

1

β0
r0 · (⇢z−e0) +

1

β
r · (⇢0z0−e)

〉

(6.65)

+

*

(r · v)
"

R0

E − E0 − δ⇢

2
(vA

0 · vA)− P 0

2
+

P 0

M

2

#

+ (r0 · v0)

"

RE − E − δ⇢

2
(vA · vA

0)− P

2
+

PM

2

#+

+
D

(r · vA)
h

RH −R0

H +H0 − δ⇢(v0 · vA)
i

+ (r0 · vA
0)
h

R0

H −RH +H − δ⇢(v · vA
0)
iE

,

where " denotes the mean total energy injection rate (which is equal to the
mean total energy dissipation rate). In the above equation the flux terms
are deliberately written in terms of the compressible Elsässer variables z±

whereas the source terms are expressed in terms of the velocity and the com-
pressible Alfvén velocity. This writing is expected to be useful for (i) an
attempt to generalise the Alfvén effect (introduced by Kraichnan) to describe
the phenomenology of compressible MHD turbulence and (ii) understanding
separately the contribution of the velocity field and the Alfvén term in the
source term. It is interesting to note that in the second part of our flux, the
isothermal β parameter (i.e. 2C2

S/v
2
A) appears which can help us understand

(or obtain) the different limits depending upon its value. The above equation,
being considerably bulky, is laborious to handle. For quick references, we give
below a schematic view of that equation:

− 2" ⇡
⌧

Φ1 +
1

β
Φ2 + (r · v)S1 + (r · vA)S2

〉

, (6.66)
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where each term in the R.H.S of the equation (6.66) corresponds to different
lines of equation (6.65).

Relevant limits

(a) Incompressible MHD: In this limit, all the source terms vanish.
Moreover, the compressible energy term becomes zero (evident from its defi-
nition as for incompressible case ⇢ = ⇢0) and we get finally (normalising the
density to unity):

− 2" =
1

4
rr ·

⌦

(δz−)2δz+ + (δz+)2δz−
↵

. (6.67)

Note that the term rr · hδ(v2A/2)δ(z− + z+)i can be shown to be zero in
incompressible case by expanding it and letting the rr enter inside the average
operator in a judicious manner. A rewriting of the z± in terms of v and vA

(assuming the constant density to be normalised to unity) help us recognise
the equations obtained in incompressible MHD case.

(b) Compressible hydrodynamic case: To verify the hydrodynamic
limit, we put vA = 0 and so z+ = z− = v; we are left with:

−2" = rr ·
⌧

1

2
δ(⇢v) · δv + δ⇢δe

]

δv + δeδ(⇢v)

〉

+

⌧

(r · v)


R0
E − E 0 − P 0

2

]

+ (r0 · v0)



RE − E − P

2

]〉

, (6.68)

which is nothing but equation (6.53) obtained in compressible hydrodynamic
case. Although here the pressure terms are written as the source terms
whereas previously those were considered to contribute in flux terms.

(c) High and low β plasmas: Without problem we admit that in the limit
where the beta parameter of the plasma tends to infinity (very large value),
i.e. the plasma becomes almost incompressible (although not entirely), the
flux term Φ2/β becomes negligible with respect to Φ1 of equation (6.66). On
the contrary for a very small beta value, where the plasma can be assumed to
be cold and magnetised (kinetic pressure negligible with respect to magnetic
pressure), the term Φ2/β dominates over Φ1 term and at that situation the
effective flux term becomes (after rearrangement):

− 1

2

⌧

1

β0r
0 · (⇢ve0) + 1

β
r · (⇢0v0e)

〉

, (6.69)

where each term of the above expression corresponds to the different lines of
equation (6.65).
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Presence of an external magnetic field

Relation (6.65) comprises the total magnetic field at each point of the flow
field. This total field b of each point can be supposed (a realistic case) to
have a fluctuating part (vary in space and time) b̃ superimposed on a constant
external magnetic field B0. In the following, we shall investigate the flux and
the source terms under the said situation. The part of the total flux term
which contains B0 can be expressed as:

hΦB0
i = rr

2µ0

·
⌧

δ

✓

1p
ρ

◆

δ(
p
ρ) [B0 ⇥ (δv ⇥B0)] + δ(

p
ρ) [B0 ⇥ (δv ⇥ δṽA)]

+ δ

✓

1p
ρ

◆

[δ(ρṽA)⇥ (δv ⇥B0) + δ(ρv)⇥ (δṽA ⇥B0)] (6.70)

− δ2
✓

1p
ρ

◆

[δ(ρv) ·B0]B0 +B2

0
δ

✓

1

ρ

◆

δ(ρv) + 2



B0 · δ
✓

ṽAp
ρ

◆]

δ(ρv)

〉

− 1

2µ0

*

B2

0

2ρ02
ρv · r0ρ0 +

B0 · b̃
ρ02

ρv · r0ρ0 +
B2

0

2ρ2
ρ0v0 · rρ+

B0 · b̃0

ρ2
ρ0v0 · rρ

+

,

where ṽA = b̃/
p
⇢. Now if we assume the external field B0 to be very

strong so that B0 . |b̃| and also B0 . |δv|, we shall just consider the
terms weighted by B2

0 . After some straightforward calculations, we obtain the
resultant flux term (the magnetic terms without B0 and with single power of
B0 are neglected) which is written simply as:

hΦB0
i ' rr

2
·
⌧

δ

✓

1p
⇢

◆

δ(
p
⇢) [B0 ⇥ (δv ⇥B0)]− δ2

✓

1p
⇢

◆

[δ(⇢v) ·B0]B0

〉

.

(6.71)
Of course the above expression gives the modifying part of the flux in the
presence of a strong constant magnetic field applied externally. The pure
kinetic terms of the flux are always there. One can easily understand that the
modification is purely due to compressibility. It is also interesting to notice
that in expression (6.71) the fluctuations are exclusively kinetic in nature
(because of the absence of e.g. Hall type term in the basic equations). One
can easily understand that the δv of first term and the δ(⇢v) of the second
term of the above expression can be replaced by δv? and δ(⇢vk) respectively
where δv??B0 and δvkkB0. The pure kinetic terms can however be omitted
by assuming the external magnetic contribution to be dominant with respect
to the velocity and the density fluctuations.

The source terms are also modified due to the effect of a strong external
magnetic field. The terms of type h(r·v)S1i get reduced to (keeping just the
terms with B2

0)

hΨvi '
B2

0

2

⌧

δ (r · v) δ
✓

1p
⇢

◆

δ(
p
⇢)− δ(r · v)

〉

, (6.72)
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and the source terms like h(r · vA)S2i are rewritten as:

hΨvA
i ' B0 ·

⌧

r
✓

1p
⇢

◆

(B0 · v0)

⇢

⇢0δ

✓

1p
⇢

◆}

− (B0 · v)
δ⇢

2
p
⇢0

]

−r0
✓

1p
⇢0

◆

(B0 · v)
⇢

⇢δ

✓

1p
⇢

◆}

− (B0 · v0)
δ⇢

2
p
⇢

]〉

. (6.73)

Simplifying one step further, if we assume that the velocity field vector at
each point of the flow field is perpendicular to the external magnetic field
i.e. vk = v0k = 0, then v ⌘ v?. In that case, hΨvA

i vanishes and so is the
second term of hΦBzi and then the corresponding reduced exact relation can
be written as:

−2" ' B2
0

2
rr? ·

⌧

δ

✓

1p
⇢

◆

δ(
p
⇢)δv?

〉

− B2
0

4

*

(r? · v?)

✓

1 +

r

⇢

⇢0

◆

+ (r0
? · v0

?)

 

1 +

s

⇢0

⇢

!+

. (6.74)

Construction of different spectra

In this section we try to make predictions on compressible spectra using the
derived theoretical relations. The simplified relation (6.74) is considerably
indicative for phenomenological intuition. The existence of strong external
magnetic field B0 renders the energy transfer in parallel (w.r.t. B0) direction
negligible in comparison to the transverse transfer. From the flux term of
(6.74), dimensionally we can have (for instance keeping the source terms aside)

" ⇠ (⇢lv
2
Al)vl?k?, (6.75)

where the above expression represents the perpendicular transfer of magnetic
energy due to B0 with a characteristic time ⌧l ⇠ (l?/vl?). Now if we define
two new variables

Wl = ⇢
1/3
l vl?, Bl = ⇢

1/3
l vAl = ⇢

−1/6
l B0, (6.76)

we obtain,
" ⇠ UlB

2
l k? ⇠ (EU(k?)k?)

1/2EB(k?)k
2
?, (6.77)

whence we get finally
EB · EU 1/2 ⇠ "k

−5/2
? . (6.78)

Taking into consideration of the source terms will just modify " to "eff (like-
wise the compressible hydrodynamic case). A compressional effect (r · v is
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negative) will increase the effective energy flux rate whereas a dilatational
effect (r ·v is positive) will reduce "eff as it is evident from the source terms
of (6.74). With an additional hypothesis of axisymmetry (symmetry in the
plane perpendicular to B0), we can describe the effect of the source terms by
the help of the figure (6.3).

Figure 6.3: Phenomenological view of compressible MHD turbulence in the
presence of a strong directive magnetic field; An axisymmetric total energy
cascade is predicted in the perpendicular direction of the strong directive
magnetic field following the same phenomenology of the hydrodynamic case;
Source: Banerjee & Galtier (2013).

6.3.4 Polytropic hydrodynamic turbulence

The use of isothermal closure in the previous derivations was due to the sake
of simplicity. Astrophysical plasmas are often modelled (Tu & Marsch, 1997;
Hu et al., 1997) as polytropic fluid (P = k⇢γ) with variable polytropic index
γ. In the current study, we shall derive an exact relation for a polytropic
fluid whose polytropic index is fixed with respect to space and time. This
derivation is more complicated than isothermal case due to two reasons : (i)
The sound speed is no longer a constant and (ii) Fluid pressure is no longer
linear to fluid density. As we shall see the fluctuating sound speed plays a key
role in determining the nature of polytropic turbulence.

The basic equations governing the dynamics of a compressible polytropic
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fluid are:

@t⇢+r · (⇢v) = 0 , (6.79)

@t(⇢v) +r · (⇢v ⌦ v) = −rP + d+ f , (6.80)

P = K⇢γ , (6.81)

where the symbols have their usual meaning. The terms d and f represent,
respectively, the contributions of the dissipation and the external forcing. As
in the previous cases, forcing is assumed to be stationary, homogeneous, delta-
correlated in time and acting at large scales only. The sound speed is defined
as:

C2
s =

@P

@⇢
= γP/⇢ . (6.82)

Our objective is to set up an exact relation associated with the correlators
of the total energy density which is defined as:

E =
1

2
⇢v · v + ⇢e , (6.83)

where e accounts for the compressible energy which is expressed as:

e = −
Z

Pd

✓

1

⇢

◆

=
P

⇢(γ − 1)
=

C2
s

γ(γ − 1)
. (6.84)

We shall define the two-point correlation functions for the total energy density.
The correlators are given by the trace of the matrices ⇢v ⌦ v0 and ⇢0v0 ⌦ v.
Unlike the isothermal case, here the sound speed is also a flow variable which
leads us to write the energy density correlators in the following way:

hREi =

⌧

⇢

✓

v · v0

2
+

CsC
0
s

γ(γ − 1)

◆〉

, (6.85)

hR0
Ei =

⌧

⇢0
✓

v0 · v
2

+
C 0

sCs

γ(γ − 1)

◆〉

. (6.86)

Using the above expressions we obtain:

h(E + E 0)− (RE +R0
E)i =

⌧

δ(⇢v) · δv
2

+
δ(⇢Cs)δCs

γ(γ − 1)

〉

. (6.87)

Under statistical homogeneity, the above equation gets reduced to :
⌧

(RE +R0
E)

2

〉

= hEi −
⌧

δ(⇢v) · δv
4

+
δ(⇢Cs)δCs

2γ(γ − 1)

〉

. (6.88)

Now we have to find the partial time derivative of the left-hand side member
of equation (6.88). By a straightforward calculation, we find:
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∂t
⌦

ρv · v0↵ = rr ·
⌦

−ρ(v · v0)δv + Pv
0 − ρh0v + ρ(v · v0)(r0 · v0)

↵

+ d1 + f1 ,

(6.89)

∂t
⌦

ρ0v0 · v
↵

= rr ·
⌦

−ρ0(v0 · v)δv − P 0
v + ρ0hv0 + ρ0(v0 · v)(r · v)

↵

+ d01 + f 0
1 ,

(6.90)

where h is the enthalpy (h = γe); d1, f1 and d01 and f 0
1 correspond respectively

to the dissipative and the forcing terms in equations (6.89) and (6.90). Explicit
expressions for them can be given as follows:

d1 =

⌧

d · v0 +
⇢

⇢0
d0 · v

〉

, f1 =

⌧

f · v0 +
⇢

⇢0
f0 · v

〉

, (6.91)

d01 =

⌧

d0 · v +
⇢0

⇢
d · v0

〉

, f 0
1 =

⌧

f ’ · v +
⇢0

⇢
f · v’

〉

. (6.92)

We also find:

∂t

⌧

ρCsC
0
s

γ(γ − 1)

〉

= −
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1 +
γ − 1

2

◆

C 0
sCs

γ(γ − 1)
r · (ρv) + ρ

2ρ0γ
C 0

sCsr0 · (ρ0v0)

〉

,(6.93)

∂t

⌧

ρ0C 0
sCs

γ(γ − 1)

〉
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⌧✓

1 +
γ − 1

2

◆

CsC
0
s

γ(γ − 1)
r0 · (ρ0v0) +

ρ0

2ργ
CsC

0
sr · (ρv)

〉

. (6.94)

Adding up Eqs. (6.89) to (6.94) and also adding and subtracting the term,
h(r · v)(⇢0C 0

sCs) + (r0 · v0)(⇢CsC
0
s)i/γ(γ − 1), we get by using the definition

of the correlators:

∂t hRE +R0
Ei = (6.95)

rr ·
⌧

−(RE +R0
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v
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2
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〉
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0 + ρCsv
0) · (r0C 0

s)i

− 1
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ρ
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r · (ρv) + CsC
0
s
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ρ

ρ0

◆

r0 · (ρ0v0)

〉

+D + F ,

where D = (d1 + d01)/2 and F = (f1 + f 0
1)/2 represent, respectively, the

resultant dissipative and forcing terms. By introducing in the above expression
relation (6.87) without the statistical average, we obtain eventually:
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∂t hRE +R0
Ei = (6.96)

rr ·
⌧
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ρ0

◆]

r0 · (ρ0v0)

+

.

Now we introduce the usual assumptions specific to three-dimensional fully
developed turbulence with a direct energy cascade. We consider a steady state
for which the partial time derivative of the average energy correlators vanishes.
We consider a small enough viscosity such that the dissipative term will not
affect the inertial range. For incompressible turbulence the dissipation is a
sink localized mainly at the smallest scales of the system but in the present
situation this property is not guaranteed. For example with the one dimen-
sional Burgers equation – a simple archetype equation for very high Mach
number flows – the contribution of the dissipation term is not concentrated
at small scales but is rather constant throughout the whole inertial range.
Its value tends to zero only as the viscosity goes to zero. Note that this is
true for regular shocks but might even become wrong for shocks of Alfvénic
type where dissipation may affect large scales as it is shown in one dimen-
sional simulations (Laveder et al., 2013). The mean energy injection rate is
determined by the resultant forcing which is in fact, under our assumptions,
F = 2" (Galtier & Banerjee, 2011). Note that the question of a forcing acting
at large scales only has been discussed recently in (Kritsuk et al., 2013) in a
numerical context for which it is not an obvious implementation. Then, far
in the inertial zone (infinite Reynolds number limit is assumed) where the
dissipative terms are negligible (Aluie, 2013), the exact relation writes:

−2ε = rr ·
⌧

1

2
(δ (ρv) · δv) δv +

1

γ(γ − 1)
δ (ρCs) δCsδv + δhδ(ρv)

〉

+

⌧

D

✓

R0
E − E0 +

P 0

2
− 1

γ
δρCsC

0
s

◆

+D0
✓

RE − E +
P

2
− 1

γ
δρCsC

0
s

◆〉

,

(6.97)
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where D and D0 denote respectively (r · v) and (r0 · v0). Note that in the
derivation we have used the relation, (v · r)Cs = ((γ − 1)Cs/2⇢)v · r⇢.

Expression (6.97) is the required exact relation for three dimensional poly-
tropic hydrodynamic turbulence. (Banerjee & Galtier, 2014). It is composed
of the divergence of a flux F (first line in the right hand side) and of a purely
compressible term S (second line) which leads us to use for the discussion the
simplified writing:

− 2" = rr · F+ S(r) . (6.98)

As for isothermal turbulence, S may be seen as a source or a sink for the mean
energy transfer rate. But unlike the isothermal case, here the determination
of the sign of the source term is not immediate in general and depends on the
competition between R0

E−E 0 (which is mainly negative) and δ⇢CsC
0
s/γ−P 0/2

(whose sign is more difficult to define although it is positive at small scales
since it tends to P/2 when r ! 0). Thus, S(r) contributes to modify " for
giving an effective mean total energy injection rate "eff (with "eff ⌘ " + S/2)
possibly larger than " in the compression case and smaller than " in the
dilatation case with possibly an inverse cascade if "eff < 0. An illustration of
dilatation and compression effects in the space correlation is given in figure
(6.1).

Incompressible limit

An incompressible behaviour can be expected for a polytropic fluid in the
limit γ −! +1 (Biskamp, 2008). First of all, let us check the incompressible
limit of a polytropic fluid, i.e. γ −! +1. For that limit, we obtain D = 0

and a uniform density at every point of the flow field. We also get for the
second term of the flux, δ(⇢Cs)δCs ⇠ C2

s ⇠ γ (as all of them tend to infinite
value), which does not lead to a singularity thanks to the presence of γ(γ − 1)

in the denominator. The third term also goes away in the incompressible limit
under the following justification:

rr ·
⌦

δhδ(⇢v)
↵

= rr ·
⌦

γδeδ(⇢v)
↵

= rr ·
⌧

γ

2(γ − 1)

✓

P

⇢
+

P 0

⇢0

◆

δ(⇢v)

〉

.

(6.99)
In the limit where γ ! +1, we have ⇢ = ⇢0 = constant and we get (using
D = D0 = 0):

rr ·
⌦

δhδ(⇢v)
↵

=
1

2
rr · hP 0v0 + Pv0 − P 0v − Pvi

=
1

2
hP (r0 · v0) + P 0 (r · v)i = 0 . (6.100)

The term S vanishes automatically due to the solenoidal velocity field and
the uniform density. Then, the Kolmogorov’s exact relation is reproduced
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properly (Antonia et al., 1997). At this point of discussion, we like to stress
on the fact that the exact relation (6.97) for compressible turbulence include
third-order structure function as in the incompressible case and not a fourth
order structure function because

[δ(⇢v) · δv] δv 6= δ⇢ (δv · δv) δv.

Dimensional analysis and spectra

To start with the spectral prediction, we keep the source term S aside and
investigate what happens dimensionally for the spectral prediction just with
the flux term (isotropy is assumed). Additionally, we will not consider any
intermittency correction which can modify slightly our conclusion about the
scaling laws. At this point of discussion, it is necessary to justify the scale
invariance of the mean total energy density injection rate " in the compressible
case. According to (Falkovich et al., 2010) even in compressible turbulence a
scale invariant mean energy flux rate can be assumed if the forcing correlation
length scale is much larger than the inertial range length scales. A discussion
around this question has been developed in Wagner et al. (2012) and Kritsuk
et al. (2013) where it is claimed that a very short time correlation for the large
scale acceleration or a very small length correlation for the density functions
is necessary for the scale invariance of ". Under this assumption, the exact
relation can be written mainly as:

− 2" ' (⇢v)` v
2
`

`

✓

1

2
+

1

γ(γ − 1)M⇢`M`

+
1

(γ − 1)M2
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+
1

4 (γ − 1)M2
`

◆

,

(6.101)
where:

M⇢` ⌘
δ (⇢v)

δ (⇢Cs)
⇠ (⇢v)`

(⇢Cs)`
, M` ⌘

δv

δCs

⇠ v`
Cs`

, M` ⌘
δv

δCs

⇠ v`
Cs

, (6.102)

are respectively the current Mach number, the gradient Mach num-

ber (which is not defined for isothermal turbulence where the sound speed
is constant) and the turbulent Mach number. The third one is familiar
in turbulence studies whereas the first and the second one have been defined
for the sake of our current study. It is not obvious to built up any spectral
assumption from the above expression (6.101). Insofar as we assume further
simplications like (⇢v)`v

2
` ⇠ ⇢`v

3
` and (⇢v)` /(⇢Cs)` ⇠ v`/Cs`, we can approxi-

mately write:

− 4" ' ⇢`v
3
`

`

✓

1 +
(γ + 4)

2γ(γ − 1)M2
`

+
2

(γ − 1)M2
`

◆

. (6.103)
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Additionally, if we assume that M` ⇠ `↵ and M` ⇠ `β, expression (6.103) can
be re-written as:

− 4" ⇠ ⇢`v
3
`

`

(

1 + Γ1`
−2↵ ++Γ2`

−2β
)

, (6.104)

with the coefficients Γ1 = (γ + 4)/[2γ(γ − 1)] and Γ2 = 2/(γ − 1). One can
easily verify that Γ1 ⇠ Γ2 and so none of the second and the third terms can be
neglected with respect to one another just from their coefficient consideration.
From this step after some straightforward calculations, one can predict that
the power spectrum of density-weighted velocity w ⌘ ⇢1/3v scales as:

Ew
k ⇠ "

2
3k− 5

3

(

1 + Γ1k
2↵ + Γ2k

2β
)− 2

3 . (6.105)

For supersonic turbulence for which δv . δCs and δv . δCs, the second and
the third terms become negligible compared with the first one and we have:

Ew
k ⇠ "eff

2/3k−5/3, (6.106)

whereas for δv . δCs but δv ⌧ δCs (which is less probable but still possible),
we have:

Ew
k ⇠ ("eff/Γ1)

2/3 k− (5+4α)
3 , (6.107)

where "eff reflects the non-negligible effect of the source terms in the supersonic
turbulence regime (see next subsection).

For subsonic turbulence we may have two possible situations. First, we
have the case δv ⌧ δCs but δv . δCs for which the spectral relation takes
the form:

Ew
k ⇠ ("/Γ2)

2/3 k− (5+4β)
3 . (6.108)

One may immediately notice that if the scale dependence of the gradient or
the turbulent Mach number is weak, i.e. ↵ or β takes a small value, the power
spectrum for w tends to the Kolmogorov value. Finally, when δv ⌧ δCs and
δv ⌧ δCs, we are left with:

Ew
k ⇠ "

2
3k− 5

3

(

Γ1k
2↵ + Γ2k

2β
)− 2

3 , (6.109)

which is no more a pure power law but a non-trivial combination of two power
laws. A power law can nonetheless be recovered if ↵ ' β. Note that the above
analysis cannot be used in the isothermal limit as Γ1 and Γ2 are undefined for
γ = 1. The basic reason for this problem is our total energy expression whose
compressive part is undefined in the isothermal case and cannot be obtained
as a limit of a polytropic case (for which γ ! 1).
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Source term contributions

The contribution of S is expected to be non negligible at supersonic (M` . 1)
scales. An intuitive argument for this can be found in Biskamp (2008) where
the dilatation term D is shown to be approximately proportional to the Mach
number squared. Following the same formalism as carried out by Kritsuk
et al. (2013) for isothermal turbulence, we may rewrite the polytropic source
term as:

S =

⌧

1

2

⇥

δ(ρvD)− 2δDδ(ρv)
⇤

· δv +



δ(ρCsD)

γ(γ − 1)
+

(γ − 3)

γ(γ − 1)
δDδ(ρCs)

]

δCs − PD

〉

.

(6.110)

In the subsonic case, irrespective of the sub-regimes, Cs(⇠ δCs) is larger
than δv and δCs and hence the source term comes to be simply h−PDi. This
expression, bereft of any fluctuation, can hardly be expected to participate in
turbulence and spectral construction, which in turn justifies why for subsonic
turbulence the basic contribution is from flux terms.

On the other hand, for supersonic regime (with moderate γ) where δv . Cs

and δv . δCs , the source term is reduced to:

S =

⌧

1

2

⇥

δ(⇢vD)− 2δDδ(⇢v)
⇤

· δv
〉

. (6.111)

This expression is similar to Eq. (2.10) in Kritsuk et al. (2013) where a
relatively small contribution has been found numerically for isothermal super-
sonic turbulence. We can therefore conclude that in the supersonic turbulence
regime (M` > 1) the source is weakly affected by the polytropic terms at
moderate values of γ. This point can be quantified numerically for polytropic
turbulence by comparing the relative importance of each term in S.

Different values of polytropic index γ

For the discussion, we shall consider the isothermal case (Galtier & Banerjee,
2011) as a reference against which the polytropic law will be compared. We
see that the polytropic closure leads to the appearance of new terms in the flux
and the source. From expression (6.103), one can immediately see that the
contribution of the second and third terms in the flux may enhance that of the
first one for γ > 1 but opposes when γ < 1. More precisely, for γ < 1 we may
expect even the possibility of an inverse cascade of total energy if the first term
becomes subdominant which practically corresponds to Eq. (6.109). From a
theoretical point of view this situation may arise at low gradient and turbulent
Mach number for which the sound speed and its fluctuations are relatively
large with respect to the velocity fluctuations of the fluid. This property
could be investigated numerically by looking at the relative importance of



6.3. New exact relations and phenomenologies in compressible
turbulence : My research work 145

each term inside the flux. Besides γ = 1 (which is discussed above) the flux
contains another singularity for γ = 0 due to the presence of the second term
in Eq. (6.103).

For the source terms the effect of γ is subtle. The second term of expression
(6.110) – the one multiplied by δCs – depends on the γ values. For γ > 3, both
members of the second term have positive coefficients. For 1 < γ < 3, the
coefficient of the first member (1/[γ(γ − 1)]) is positive whereas it is negative
for the second one ((γ − 3)/[γ(γ − 1)]). If 0 < γ < 1, the opposite case to
the previous one will occur. For astrophysical interest, it is however possible
to get negative values of gamma too (Horedt, 2004). For that situation, the
first and second terms may contribute with a different sign. In order to verify
numerically these effects, it is needed to consider a flow with very low gradient
Mach number (M`) for which the first term (multiplied by δv) of the source
contributes weakly with respect to the second term of the source (multiplied
by δCs). At the same time, it is also essential to weaken the effect of the
third term i.e. h−PDi which is probably not obvious to satisfy. In reality,
the case γ < 0 corresponds, in general, to the thermal instability in the outer
envelopes of giant molecular clouds (Renard & Chieze, 1993) and therefore
requires a more complicated model.
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7.1 Introduction

T
his chapter is dedicated to the study of observational data from the
THEMIS spacecraft with a view to understanding the role of compress-

ibility in the solar wind turbulence. More elaborately, in the course of this
chapter, we shall try to understand the applicability of the exact relation for
compressible MHD turbulence (Banerjee & Galtier, 2013) to the solar wind
which is a collisionless space plasma and can be modeled as an MHD fluid
at large scales. A great advantage of the solar wind is the availability of in-
situ measurements from several spacecraft. In the following, we shall briefly
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describe the solar wind and its characteristics1. This part will be followed
by the description of the THEMIS mission, the process of analyzing in-situ
data for our study. Finally we shall discuss some preliminary results which
are obtained in the course of my thesis.

7.2 The solar wind

The very high temperature (⇠ 106K) of stellar corona renders the coronal
plasma gravitationally unstable. This plasma expands into the outer space
when the stellar magnetic field is not sufficient to confine it by the magnetic
loops. This energetic flow is called the stellar wind. For the sun, the corre-
sponding wind is called the solar wind.

7.2.1 The heliosphere

The plasma of the solar wind contains mostly protons and electrons of energy
ranging between 104 − 105 eV. This energetic outflow extends almost freely
upto a distance of approximately 70 AU (and so beyond the planetary system
⇠ 50 AU) until it gets slowed down by the termination shock. The region
permeated by the solar wind defines the heliosphere (see figure (7.1)). The
shape of the heliosphere is however not spherical but

(i) it has a magnetic spiral structure due to the solar rotation and
(ii) it is equatorially (helmet streamer configuration) due to the solar dipolar

magnetic field.
The solar wind, which consists of mainly ionized hydrogen(96%) and a small

proportion (4%) of ionized helium, attains very soon super sonic and super-
Alfvénic speeds. Both of the sound speed and the Alfvén speed of the solar
wind (near 1 AU) vary between 50 − 100 km/s. whereas the flow velocity is
in general about 300 − 800 km/s. After having travelled approximately 70
AU distance with an approximate velocity of several hundreds of kilometers
per second, finally the solar wind starts to interact with the stellar wind of
the interstellar medium and gets slower to a sub-sonic flow. This region of
interaction is called the terminal shock. This is a fast MHD shock which
propagates towards the Sun and is found to exist between 75 − 90 AU. The
interaction retards the solar wind resulting in important compressible fluctu-
ations and heating of the terminal shock region. The next zone of sub-sonic
solar wind flow is called the heliosheath. The termination of heliosheath is

1Although I have already discussed various aspects and works of the solar wind turbu-

lence in previous chapters under a broader context, in this chapter I wish to give a formal

introduction to the solar wind.
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Figure 7.1: A schematic figure of the heliosphere; Credit: NASA.

defined when the particles of the solar wind cannot push the interstellar wind
any longer and thus gets effectively stopped thereby forming a stagnant but
locally unstable (due to important kinetic and magnetic fluctuations) region,
called the heliopause, at about a distance of 100 AU from the Sun.

7.2.2 Prediction for the solar wind

The existence of the solar wind was theoretically predicted by Eugene Parker

(Parker, 1958) and was detected directly by Soviet satellite Luna 1 in the
very next year (January, 1959). In his model, he assumed the existence of
a stationary radial outflow (from the Sun) driven by the pressure and the
gravity. He neglected the effect of the solar magnetic field as a primitive step.
By the help of ideal gas approximation and polytropic closure, he succeeded in
predicting a supersonic flow which is flowing outwards. However, an improved
version of this work was given later by Weber & Davis (1967) taking the solar
magnetic field into account.

7.2.3 The fast and the slow solar wind

The structure of the magnetic field prevents the solar wind to be radially
symmetric even at a considerable distance from the complex coronal loops.
The wind generated from the central part of the coronal holes flows at a
speed of approximately 550 − 750 km/s. and is called the fast solar wind.



150 Chapter 7. Solar wind data analysis

On the other hand, the speed of the wind emanated from the neighborhood
of the solar equatorial region is about 250-400 km/s. and is called the slow

solar wind. Analyzing the data from various missions, we can find out the
following characteristics of the solar wind:

a) Because of very high density of the slow solar wind, the resultant mass
flow by the slow wind is greater than that by the fast one.

b) The fast wind is fairly uniform whereas the slow one undergoes consid-
erable fluctuations. The boundaries between the two is however sufficiently
sharp (see figure (7.2)).

Figure 7.2: Solar wind speed and the magnetic field polarity observations from
the Ulysses spacecraft covering almost all the latitudes from the equatorial to
the polar region; Reprinted with permission from Biskamp (2008); © (2003)
Cambridge university press.

c) The proton temperature drops more rapidly with distance in the slow
wind than in fast wind. For the slow wind the law T _ r−1.33 represents
nearly adiabatic expansion where for the fast one the law T _ r−0.8 accounts
for a semi- isothermal expansion thereby indicating a sufficient amount of local
input of heat energy in the fast wind. This anomalous heating can possibly
be attributed to the compressible turbulence in the fast solar wind (Carbone
et al., 2009) and is discussed in the chapter 5.

d) iv) Due to the solar rotation, the fast wind catches up the slow solar wind
forming a compression region of high density and magnetic field which is called
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the corotating interaction region (CIR) and this region gets steepened in
a sharp shock front at larger heliospheric distance.

The reason behind the acceleration of the fast wind is still not very clear.
Considering the free expansion of the coronal plasma along the magnetic field
lines in the coronal holes and using the Parker’s hydrodynamic model we get
a velocity ⇠ 500 km/s at a coronal temperature ⇠ 106 K whereas in reality,
we obtain fast solar wind stream of ⇠ 700 km/s. velocity from the coronal
holes of temperature ⇠ 105K. Some are of the opinion that the enormous
acceleration can be attributed to the dissipation of intense high frequency
Alfvén waves originating from the convection zone which leads to a high-
energy ion population. Observations from strongly broadened spectral lines
indicate an effective temperature upto 108 K which is sufficient to explain
the acceleration process. The scientists are, however, still in search of firm
theoretical explanation.

Obscurity exists also in explaining the origin of the slow wind. From the
figure we notice that the slow wind emanates from the equatorial belt which
is magnetically complex and due to the scarcity of open field lines, this region
gives birth to the wind of lower velocities. Yet a better understanding can be
obtained by the study of the fluctuations of the MHD turbulence riding on
the mean solar wind flow.

7.2.4 Exploration of the solar wind

The first study of the solar wind plasma was carried out by Neugebauer &
Snyder (1962) exploiting the data of the Mariner 2 spacecraft, which was
actually planned as a probe for the study of Venus. Since then more than 10
spacecraft have been launched to study the solar wind, either as the principal
objective (like Helios A and B, Wind, ACE, Ulysses etc.), or as a secondary
goal (SOHO, Cluster, THEMIS etc).

The inner heliosphere from 0.3 AU to 1 AU has been explored by the two
spacecraft of Helios mission (1995-2009). This mission, although was launched
in the 1970s, has provided with very rich data which constitute the basis of
the study of solar wind turbulence. The spacecraft WIND and ACE studied
the equatorial wind at about 1 AU distance. The outer heliosphere beyond 1
AU has been investigated by Pioneers 10 and 11 and Voyagers 1 and 2. All
these said spacecraft have had their orbits very near to the ecliptic region
whereas Ulysses possessing a highly inclined orbit becomes able to collect the
data of polar wind (ranging from 1 AU to 5 AU) which is very little affected
by the solar activities unlike the equatorial wind.
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7.2.5 MHD fluctuations in the solar wind

The observations of Mariner 2 already confirmed the fact that solar wind
plasma is not at all steady and is associated with fluctuations of substantial
amount of different quantities such as velocity, magnetic field, density, tem-
perature etc. As outside the corona, this plasma is practically collisionless
and thus a fluid description for the solar wind can therefore be questioned.
Nevertheless, an MHD formalism is appropriate for the fluctuations whose
wavelengths are much larger than the ion inertial scale (⇠ 100km) and the
ion Larmor radius (⇠ 100km). In course of our study we shall concentrate on
these type of fluctuations (will be discussed in details later in this chapter).
However, the collisionless character of the coronal plasma demands a kinetic
approach for describing the wave dissipation in the solar wind where the dis-
sipative effects are necessarily attributed to the plasma collective effects like
cyclotron resonance effect (for a detailed discussion see Balogh & Treumann
(2013) and Belmont et al. (2014)).

The presence of fluctuations is not surprising as the wind originates in
corona which is the site of intense magnetic activity occuring practically at all
available scales. This wind undergoes turbulence dynamics in the solar con-
vection zone and gets modulated by the waves in the convective region through
nonlinear interaction. Besides the instabilities in the solar wind driven by the
sheared flows, shocks, particle beams and anisotropies bring about a continu-
ous resuscitation of turbulence thereby leading to a sustaining turbulent flow
in the solar wind.

7.2.6 Nature of the solar wind turbulence

The nature of the solar wind turbulence depends on the velocity-magnetic field
correlation. For a very high velocity-magnetic field correlation (where one of
the two Alfvén waves are dominant) the fluctuations are thought to be of pure
Alfvénic nature whareas for a weak correlation, fully developed Kolmogorov
turbulence (with well defined scaling and cascade) can be expected. The
Alfvénic school emphasizes the coronal origin of the fluctuations whereas the
other one pays importance to the local instabilities (Roberts & Goldstein,
1991; Marsch, 1991; Biskamp, 2008).

For distances which are not too large, say r < 0.5 AU, large-amplitude
fluctuations of magnetic field and velocity (transverse to the mean field) show
strong correlation which can be expressed by δv ' ±δb. From the construc-
tion of Elsässer variables (discussed in chapter 4), we can easily admit the
fact that strong correlation corresponds to the dominance of one of the two
Alfvén waves. In practice the dominating part is found to be the outward
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wave propagation. In a collisionless plasma as the compressive wave modes
i.e. the fast and slow magnetosonic modes get dissipated very fast (Belcher &
Davis, 1971) and the only surviving mode is the incompressible Alfvén mode,
the large scale turbulence of the solar wind can be treated to be nearly in-
compressible. This point is also supported by the fact that the mean density
fluctuation of the fast solar wind is always about 10− 15%.

In the region very close to the Sun i.e. r  0.3 AU, the outward propagating
wave-spectrum in the fast wind is found to follow an approximate k−1 power
law (Marsch & Tu, 1990a). In order to explain this phenomenon, Velli et al.
(1989) showed that the linear coupling of the outgoing waves to the large scale
inhomogeneity of the solar wind generates a very weak ingoing wave whose
non-linear interaction with the first gives finally an approximate k−1 spectrum.
It is also found that the separation between the spectra of the outward and
the inward wave gets reduced with distance and at distance r = 1 AU, the
two spectra merge to the Kolmogorov’s k−5/3 power law. The explanation for
this phenomenon can be given by the theory of decaying turbulence (Biskamp,
2008).

Figure 7.3: An artist view of the five spacecraft of the THEMIS mission;
Credit: NASA.

However, for the solar wind at about 1AU, some recent works of Hnat et al.
(2005); Carbone et al. (2009) etc. have shown the importance of compressibil-
ity in the solar wind turbulence (discussed in chapter 5) for the scaling and
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heating issues of the fast solar wind. In this chapter we are going to address
this unsolved question by the help of in-situ data analysis of the fast solar
wind.

Finally, I should mention that the high frequency fluctuations of the so-
lar wind (above 0.1 Hz) also constitute an enormous field of research. So-
phisticated models like Hall MHD, Electron MHD, Landau-fluid, gyrokinetic
and pure kinetic models are used in order to understand the nature of this
high-frequency "dissipation range" turbulence in the solar wind. This part is
beyond the scope of my thesis and has been investigated in recent research
papers (for detailed discussions, see Passot & Sulem (2007); Sulem & Pas-
sot (2008); Galtier (2008a); Howes et al. (2008); Schekochihin et al. (2009);
Sahraoui et al. (2009, 2010); Alexandrova et al. (2009)).

7.3 Data source

7.3.1 The THEMIS mission

In scope of my thesis, I studied the nature of solar wind turbulence by exploit-
ing the in-situ data of THEMIS B (renamed later as ARTEMIS 1), which be-
longs to the mission THEMIS or Time History of Events and Macroscale

Interactions during Substorms. The mission consists of five NASA satel-
lites : Themis A, B, C, D and E. As the mission title suggests, THEMIS
was launched in 2007 to study substorms in magnetosphere and the resulting
plasma processes near the poles. Later (end 2009) three of the five satellites
(A, D, E) were made to stay in the terrestrial magnetosphere and the two
others are brought to orbits near the moon in order to study the interaction
of the moon and the solar wind. The new mission has been named to Ac-

celeration, Reconnection, Turbulence and Electrodynamics of the

Moon’s Interaction with the Sun (ARTEMIS) and THEMIS B and C
have become ARTEMIS 1 and 2 respectively. Solar wind data can thus be
obtained from those two satellites by choosing the suitable time intervals over
which they were travelling in the free streaming solar wind i.e. the wind free
from the terrestrial bow shock.

7.3.2 A brief description of instruments

THEMIS B consists of several field and plasma instruments designed to
achieve the science goals of the mission. In the current context we shall be
interested in two of them: (i) Fluxgate Magnetometer (FGM), which provides
the magnetic data and (ii) Electrostatic analyzer (ESA), which provides the
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plasma data (ion and electron distribution functions yielding the correspond-
ing fluid density, velocity, temperature etc.). The description and the working
principle of these two instruments are given in the following:

(i) Fluxgate Magnetometer (FGM): FGM measures the background
magnetic field and its fluctuations with a maximum sampling frequency of 64
Hz. Onboard THEMIS FGM is particularly designed for studying the abrupt
changes in the magnetic configuration of the terrestrial magnetosphere at the
onset of a sub-storm. This instrument possesses an extremely high offset sta-
bility of 0.2 nT/hr and is sufficiently sensitive to detect the magnetic field
variation of the order of 0.01 nT. In the upper limit, this instrument can mea-
sure approximately upto 25000 nT. FGM is thus an efficient magnetometer
with a range of operation spanning over 10−2−104 nT. Higher time resolution
magnetic data with time resolution upto 0.015 s can be obtained (in burst
mode) thanks to this magnetometer. For the current purpose, we are inter-
ested in MHD scales which correspond to a maximum frequency of the order
of 0.1Hz (the reason will be explained in subsection 7.3.2) and thus we use
the spin resolution magnetic data with time resolution of 3 seconds.

Figure 7.4: Working principle of the fluxgate magnetometer (FGM).

Fluxgate magnetometer sensor consists of two small ring cores made of
highly permeable alloy around which copper wires are wound in mutually
opposite sense (see figure 7.4). Alternating currents are then driven through
these windings (called drive winding) which leads, in those two cores, to the
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generation of alternating magnetic fields which are mutually opposing. In
the absence of external magnetic field no global magnetic field is perceived
in the secondary winding (called sense winding) and so no electric current
flows through it. The presence of an external field affects that symmetry and
reinforces the field in one ring while weakening in the other one. A net non-
zero flux is then perceived in the secondary winding which generates a current
by which the corresponding external magnetic field intensity is measured. For
measuring three components of that external magnetic field, a ’triad ’ of such
arrangement is used. FGM can measure a continuous magnetic field as well
as an alternating field.

(ii) Electrostatic Analyzer (ESA): THEMIS has two electrostatic ana-
lyzers for obtaining the plasma data by measuring the velocity distribution
functions of electrons and ions. The working principle of the onboard THEMIS
ESAs is described in the following:

• A pair of "top hat" electrostatic analyzers with common 180◦ by 6◦ fields-
of-view detect particles over 4⇡ steradians each 3s spin period (see figure
7.5). Each analyzer consists of two concentric hemespheric plates in the
form of a shell. The plates (and "hat") are maintained at different volt-
ages. This causes the electrons and ions, the charged particles, to move
in a circle inside the shell. Only the charged particles with just the right
energy will follow the curve of the instrument’s hemispheric shell and
arrive at the particle detector at the exit (principle of cyclotron). At
this point, the detector registers the number of particles that hit it. By
varying the voltages, we can find out how many particles are within each
specified energy. Typically ions having energy ranging from 3 - 25 keV
and electrons with energy upto 30 keV are detected by this analyzer.

• After being detected the particles are binned into six distributions whose
energy, angle, and time resolution depend upon instrument mode. We
thus obtain three dimensional velocity distribution functions of ions and
electrons every 3 seconds (spin resolution of the spacecraft).

• Density, velocity (analogous to the fluid velocity), temperature (calcu-
lated from pressure) are then calculated as the different order moments
of the particle distribution function following the definitions given in the
chapter 3.

For studying the solar wind plasma, this instrument proves to be crucial for
providing high time resolution plasma data. The 3s time resolution (the spin
resolution) thereby allowing us to probe into almost all the inertial range
of MHD (explained quantitatively in subsection 7.3.2.2).The advantage of
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Figure 7.5: A schematic view of ESA; Credit: Barkeley.

THEMIS mission is that even with 3s resolution, several continuous (with-
out gaps) datasets are available (typically of 7-8 hours).

(iii) Other instruments: In addition to the above two instruments,
Themis has
(a) an electric field instrument (EFI) for measuring electric fields in three di-
mensions,
(b) a search coil magnetometer (SCM) for measuring magnetic fluctuations
ranging from 0.1 Hz to 4 kHz,
(c) a solid state telescope (SST) to measure the distribution function of su-
perthermal ( ⇠ 25 keV - ⇠ 6 MeV) particles,
(d) an instrument data processing unit (IDPU) to control the electronics of
the above mentioned instruments and
(e) some ground based instruments including an imager and some gate mag-
netometers. A representative diagram of the spacecraft with its onboard in-
struments is shown in the figure (7.6).

7.4 Judicial selection of data

7.4.1 Selection of intervals

For the sake of obtaining solar wind data, we choose2 certain periods from
years 2008 and 2009. This primary selection is made thanks to the Berkeley

2There exist several long intervals of solar wind in ARTEMIS but as an initial step, we

have limited our study to the years 2008 and 2009.
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Figure 7.6: THEMIS spacecraft with its onboard instruments; Credit: NASA
and oral presentation of Le Contel et al.

website of THEMIS mission (http://themis.ssl.berkeley.edu/) by which we
make sure that during those periods THEMIS B passes through free streaming
solar wind (not connected to the Earth bow shock). As can be seen from figure
(7.7), among nine situations only two situations (highlighted by red border)
can provide us with solar wind data i.e. the periods (i) from 15/06/2008 to
15/10/2008 and (ii) from 15/06/2009 to 30/09/2009. For those two intervals
the apogees of the orbits are located approximately at a distance of 30 RE

(with RE = Earth radius ⇡ 6400 km.) from the Earth and well inside the free
streaming solar wind.

This next step of selection has been realized by the help of a NASA spon-
sored software SSC Orbit Viewer. By using this software, for a given inter-
val, we can get (i) precise trajectory of the spacecraft along with the positions
of magnetopause and bow-shock, (ii) the distance of the spacecraft from the
Earth, magnetopause and bow-shock during that interval. The trajectories
along with the distances are provided in the figure (7.8) for the intervals for
which the spacecraft is far away from the bow-shock region.

However, enough care should be taken in choosing the data which are not
affected significantly by the particles reflected from the terrestrial bow-shock.
It is therefore necessary to examine the energy (or the temperature) of the
ionic fluid corresponding to the chosen interval and to verify whether there
is any considerable fluctuation in the temperature profile. The verification of
such a 24 hour interval on 14/07/2008−15/07/2008 is given in the figure (7.9)
where the ion temperature is found to vary weakly about 100 eV along with
some eventual peaks.
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Figure 7.7: THEMIS spacecraft orbits during different periods; the red tra-
jectory corresponds to THEMIS B and the grey region represents the solar
wind; Credit : http://themis.ssl.berkeley.edu/ .
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Figure 7.8: Spacecraft trajectories (red line) obtained by SSC Orbit Viewer
along with the positions of the magnetopause (off-white net like region) and
bow-shock (green net like region). D1x, D2x, D3x represent respectively the
distance of the spacecraft from the Earth, the magnetopause and the bow-
shock along the x-direction.
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Figure 7.9: Examination of the ionic fluid temperature for a 24-hour interval
on 14/07/2008-15/07/2008.

Figure 7.10: Selection of Fast solar wind data for the periods of 15/06/2008
- 10/10/2008 and 15/06/2009 - 10/10/2009, the three components of velocity
(in km/s) are given in three different colors (as explained in the image).
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In order to understand the compressible turbulence in the fast solar wind,
we start by searching periods of this specific type of solar wind. We use local
data source of AMDA (Automated Multi Dataset Analysis) to obtain the
velocity of the solar wind for the two above-said intervals (see figure (7.10)).
We use GSE (Geocentric Solar Ecliptic) coordinate system where the positive
x-direction corresponds to the longitudinal direction from the Earth to the
Sun and the z direction corresponds to the ecliptic north pole.

We can see that both in the year 2008 and 2009, we have several intervals
with | vx |> 500 km/s representing the streams of the fast solar wind. Once
such an interval is chosen, we checked furthermore whether the corresponding
datasets are continuous (without data gaps) or not. By thorough inspection,
we have sorted out a number of intervals of 2008 for which we obtain clean
(without gaps) data set both for the plasma (obtained by ESA) and the mag-
netic field (obtained by FGM) from AMDA local data base. We have also
tried as much as possible to avoid abrupt and sharp discontinuities in data.
The selected intervals are listed in the table (7.1).

Time interval Duration of clean dataset
14/7/08 06 hrs. - 15/7/08 18 hrs. 36 hours
16/7/08 00 hrs. - 16/7/08 12 hrs. 12 hours
23/7/08 01 hrs. - 23/7/08 21 hrs. 20 hours
9/8/08 18 hrs. - 11/8/08 00 hrs. 30 hours
11/8/08 06 hrs. - 11/8/08 12 hrs 6 hours
11/8/08 15 hrs. - 12/8/08 00 hrs 9 hours

Table 7.1: Selected intervals of the fast solar wind with continuous data set

7.4.2 Relevant spatial and temporal scales

7.4.2.1 The Taylor’s hypothesis

As mentioned above, the principal objective of the current study is to verify
the validity of the exact scaling relation for compressible MHD turbulence in
the solar wind turbulence. The original scaling relation relates third-order
structure functions to the fluctuation length scales (in isotropic turbulence).
In the case of spacecraft data analysis, what we obtain instead, is a time series
of different dynamical variables (velocity, density, temperature, electric field,
magnetic field etc.). Moreover the time series do not correspond to a single
point in space but correspond to the space points crossed by the spacecraft
along its trajectory. Now if we measure the frequency (!0) of the fluctuations
at a specific point in space (i.e. the apparent frequency), it will be given
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by the original frequency !p (perceived in the rest frame of the plasma flow)
modulated by the relative motion between the spacecraft and the solar-wind
bulk plasma. The Doppler relation is thus given by

!0 = !p + k ·VR, (7.1)

where VR is the relative velocity between the solar wind and the spacecraft
and k is the propagation wave vector. Considering the intrinsic fluctuations
to be principally caused by the Alfvén waves, we can write !p = k ·VA and
hence

!0 = k · (VA +VR) . (7.2)

Now using the super Alfvénicity of the solar wind flow i.e. | VR |.| VA |,
one can simplify the above relation to be

!0 ⇡ k ·VR.

Furthermore, considering the relative motion to be essentially in the direction3

of the fluctuation propagation, we can fnally write (Matthaeus & Goldstein,
1982)

!0 ⇡ kVR. (7.3)

This relation enables us to relate linearly the time series data to the corre-
sponding fluctuation length scales and hence for an arbitrary variable, we have
the following equivalence

δ ⌘  (r + l)−  (r) ⌘  (t+ ⌧)−  (t). (7.4)

7.4.2.2 Suitable choice of the frequency range

In order to correctly determine the frequency range of our interest, we should
recall the fact that the MHD mono-fluid description can be appropriate to de-
scribe the dynamics of a plasma if the corresponding length scales are larger
than the ion inertial scale (λi) at which the ions start to decouple themselves
from the electronic population (which still behaves like a fluid) and the mag-
netic field comes to be frozen in the electronic fluid instead of the bulk plasma.
For the solar wind plasma at 1 AU, the ionic density (ni) is approximately 5
particles cm−1. The corresponding λi is then approximately

λi =
speed of light (c)

ion plasma frequency(!pi)
=

r

mi

nie2µ0

⇡ 105m ⌘ 100km. (7.5)

3This assumption may, however, be invalid as the angle between the fluctuation propa-

gation and the direction of solar wind flow was found to be ⇠ 45◦ (Sahraoui et al., 2010).
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Now considering the average fast solar wind velocity to be approximately
500 km/s, the corresponding frequency scale is of the order of 0.1 Hz. This
determines the upper bound of the MHD frequency range. The lower bound,
on the other hand is independent of the plasma parameters and should be
determined by the forcing or energy injection scale. It is still a matter of
debate to determine the effective injection scale for the solar wind turbulence.
For practical purposes, this value is estimated by the lower bound of the −5/3

frequency spectrum of magnetic energy4 power density. In several studies, this
range is found to span roughly within 10−4 − 10−1 Hz. For our current study,
we have varied the time lag (⌧) from 3 s to 3000 s resolution which allows us
to sweep over the frequency range of [10−4, 10−1] Hz.

7.5 Analysis of the selected data

The basic objective is to compare, for a selected interval, the incompress-
ible and compressible energy fluxes (we keep the source terms aside) in or-
der to point out the effect of the density fluctuations in the flux. We have
chosen nearly 25 intervals of 3 hours with 3 s. resolution. The calcula-
tion is done by a simple code using FORTRAN 77/90. The final plots are
drawn in direct scale (and not in logarithmic scale) and so the original sign
(positive or negative) of the third order structure functions are kept intact.
For the sake of simplicity, the GSE x-direction is chosen to be the direc-
tion of measurement. More precisely, we test the scaling of the expression
S3 = h[δ (⇢z+) · δz+] δz−x + [δ (⇢z−) · δz−] δz+x i as a function of time lag ⌧ . In
calculating5 incompressible flux, the plasma density in the selected interval is
just replaced by the mean density of that interval where for the compressible
calculation, we leave the density6 as an ordinary variable. Along with the
aforesaid plot, a measure of compressibility is given for each interval. Coeffi-
cient of variation (the ratio of standard deviation to the mean value) of the
ion density fluctuations is chosen to be the measure of compressibility in the
following studies. In the figure (7.11), we have three panels. The first one rep-
resents the data corrresponding to three components of velocity, density and
three components of magnetic field fluctuations corresponding to the interval
of 8h and 11h on 11/08/2008. The second panel presents the fluctuations

4Considering a constant ratio of kinetic and magnetic energy in incompressible MHD,

one can show that the power density spectrum of magnetic energy is sufficient to represent

the spectral index for the total energy. In compressible case, this is not valid due to the

presence of compressible energy.
5All the calculations are done in S.I. unit system.
6One should not however forget that the density is present also in the expression of

Elsässer variables which should also be taken care with.
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Figure 7.11: The fluctuation data scheme of 8h-11h of 11/08/2008 obtained
from AMDA - the ion velocity components, ion density and magnetic field
components are given in the respective three panels (top figure); calculated
density fluctuations (in green) about the mean value (in violet) (middle panel)
and the scaling of incompressible (in red) and partial compressible flux (in
blue) as a function of time lag ⌧ (bottom panel).
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of the ion density about the mean value for that interval and the third one
represents the scaling of the incompressible and compressible moments.

For this interval the compressibility is very weak (⇠ 8%) and we can ob-
serve that the incompressible and compressible scalings are not very different.
Moreover for this interval, both the flux terms are principally negative. How-
ever, this is not the same picture that we get for other intervals. In fact,
we obtain a random mixture of positive and negative moments both in the
incompressible and compressible case. Here, we present four such intervals
(see figures (7.12) and (7.13)) where different combinations of the flux signs
are obtained.

These intervals are taken from the same day (14 july, 2008). The compress-
ibility (here defined as the coefficient of variation of the density fluctuations)
does not exceed 20% in any of the intervals. A plausible explanation for this
random behaviour can be given using the high Alfvénicity of the fast solar
wind where non-linear cascade is very weak due to a strong velocity magnetic
field correlation (Carbone et al., 2009). Despite the above discussed random
behaviour, it is however found that, in most of the cases, the gap between the
two is more pronounced when the compressibility is higher and vice-versa (see
figure (7.14)).

Comparison of different flux terms for solar wind at 1 A.U. The
compressible flux term used above was just a part of the total flux term
obtained for compressible MHD turbulence. We recall the newly obtained
exact relation for compressible MHD turbulence in an isothermal plasma in
the following:
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The first two lines of the above relation represent the flux terms whereas
the following two lines consist of the source terms. Unlike the incompressible
case, here we have more than one candidate in the flux term. It is therefore
reasonable to investigate the relative importance of those terms in order to
confirm whether any term becomes identically negligible with respect to the
others. The exact relation can schematically be written as

− 2" =
1

2
rr · hF1 + F2 + F3 + F4i+ hΦi+ source terms, (7.6)
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Figure 7.12: (a) Interval with negative incompressible and compressible flux,
(b) Interval with positive incompressible and compressible flux.
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Figure 7.13: (c) Interval with positive incompressible flux and negative com-
pressible flux, (d) Interval with negative incompressible flux and positive com-
pressible flux.
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Figure 7.14: The effect of compressibility on the discrepancy between the
incompressible and compressible flux.
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Figure 7.15: Almost constant plasma beta parameter of order unity during a
10 hour interval of 10/08/2008 -11/10/2008 (second panel)
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The term Φ cannot be written in pure divergence form. However, for the
solar wind at 1 AU., we have found certain intervals (see fig. 7.15) for which
the plasma beta is almost constant and is of the order unity (see figure (7.15)).
For those intervals, we can have β ⇡ β0 ⇠ 1 and hence we can write

hΦi ⇡ −1

2
rr · h⇢ve0 − ⇢0v0ei = rr ·

⌦

δeδ(⇢v)
↵

(7.7)

We try to establish an approximate ordering by using the typical order of
magnitudes of the dataset of current interest. For several intervals of the fast
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solar wind, we get,

| v |⇠ 550km/s. , | δv |⇠ 5km/s.

| vA |⇠ 100km/s. , | δvA |⇠ 2km/s.

⇢ ⇠ 2⇥ 10−21kg.m−3, δ⇢ ⇠ 0.05⇥ 10−21kg.m−3, δ(⇢v) ⇠ 5⇥ 10−17kg.m−2.s−1.

The average sound speed is about 60 km/s. Using all these order of magni-
tudes7, we finally obtain

| F1 |⇡| F2 |⇡ 103 | F3 |⇡ 10−3 | F4 | . (7.8)

But this ordering is not very useful in the current study beacuse the con-
tribution of each term comes from their statistical average. In fact, in some
intervals, the fluctuations are switching enormously within positive and neg-
ative values.We have indeed found some intervals where | F1 |⇡| F3 | or
| F1 |⇡| F4 | after being averaged over the selected interval (see table (7.2)).
It is thus concluded that none of these contributions can be eliminated in a
gross way just by their numerical order of magnitudes.

Time interval hF1i hF3i hF4i
14/07/08 09 hrs. - 12 hrs. 1.95⇥ 10−8 −2.6⇥ 10−12 −1.3⇥ 10−10

11/08/08 08 hrs. - 11 hrs. 4.7⇥ 10−11 1.86⇥ 10−12 3.8⇥ 10−10

21/08/09 01 hrs. - 04 hrs. −6.2⇥ 10−11 −2.65⇥ 10−11 5.28⇥ 10−10

Table 7.2: Average values of the flux terms (for 3 s. lag) for a number of
three-hour intervals

It is therefore logical to investigate the scaling property with the complete
flux term (of course for the intervals with almost uniform beta for simplicity).
With the complete flux term, we have studied more than 6 intervals of 6 hours
(it was harder to get continuous intervals of 6 hours than those of 3 hours)
and we vary the time lag (⌧) from 3 s. to 9000 s so as to cover as much as
possible the MHD range. When the scaling is plotted in logarithmic scale, we
found a remarkably improved scaling (see figures7.16 and 7.17) with respect
to the incompressible scaling (Politano & Pouquet, 1998b) and the empirical
compressible scaling (Carbone et al., 2009). Unlike the previous two scalings,
the new scaling gives

(a) a regular scaling with no sign change (i.e. in logarithmic scale the scaling
does not contain any hole or discontinuity).

7One should however remember that in the final scaling relation, the vectorial fluctuation

part associates essentially the longitudinal fluctuations which is almost identical to the x

component in our study.
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Figure 7.16: Comparison of incompressible (in black), heuristic compressible
(in green) and analytical compressible (in red) scalings in a 6-hour interval of
2008
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Figure 7.17: Comparison of incompressible (in black), heuristic compressible
(in green) and analytical compressible (in red) scalings in a 6-hour interval of
2009
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(b) a consistent power-law behaviour (in fact almost linear behaviour) for
at least three decades of fluctuation time (or length) scales.

Interestingly, the order of magnitude of the compressible third-order struc-
ture function is found to be almost the same (10-15 times greater than the
incompressible value) as that obtained by Carbone et al. (2009). This fact jus-
tifies that the new scaling is adequate for explaining the anomalous heating
of the fast solar wind on the basis of compressible fluctuations in the corre-
sponding turbulence. The contribution is found to come from the fluctuations
of the currents (terms like δ(⇢v)) and not from mere density fluctuations δ⇢.

During the scope of my thesis, only a preliminary study is performed on
the fast solar wind turbulence using in-situ THEMIS spacecraft data. The
next step is, of course, to perform an elaborated study with the complete
compressible scaling law including the source terms. In order to estimate the
source terms, one has to evaluate the local divergence terms of the source term.
Multi-spacecraft data from the two ARTEMIS spacecraft could be used to
estimate the spatial gradients along the direction of separation between them.
Moreover, the role of compressibility in the slow solar wind turbulence is not
studied in the course of my thesis. A comparative study on the compressible
effects in fast and slow solar wind turbulence could enlighten the physics
behind the solar wind turbulence. It is also planned to test the simplified
scaling law which we obtained (Banerjee & Galtier, 2013) in the presence of a
very strong (w.r.t. the fluctuations) magnetic field for certain intervals of the
solar wind data having a strong mean magnetic field.





Chapter 8

Resuming and looking ahead...
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8.1 Answered and unanswered issues of com-
pressible turbulence

M
y research work was primarily dedicated to the development of analytical
theories in compressible turbulence. Unlike the incompressible turbu-

lence, we have meagre theoretical development for the turbulence in compress-
ible fluids. Several analytical exact relations were derived for incompressible
turbulence in neutral fluids and in plasmas (Kolmogorov, 1941b; Yaglom, 1949;
Politano & Pouquet, 1998b,a; Galtier, 2008b; Meyrand & Galtier, 2010) etc.
It is seventy years (1941-2011) after Kolmogorov’s work that we derived the
first Kolmogorov-like exact relation for compressible turbulence (Galtier &
Banerjee, 2011). This work finds its significance in explaining the universality
in compressible turbulence in terms of the cube-root density weighted velocity
(⇢1/3v) supporting previous high resolution numerical results of Kritsuk et al.
(2007a) and Federrath et al. (2010) for isothermal supersonic turbulence. In
addition to the flux terms, compressible exact relation consists of source terms
which are proportional to the dilatation and is believed to modify the global
energy transfer rate. Under the assumption of a direct energy cascade, a pos-
sible phenomenology based on the global dilatation and compression is also
proposed from the said relation. According to this phenomenology, a global
compressional effect would enhance a direct energy cascade whereas a global
dilatational effect would weaken it. In our entire derivation, a direct cascade
is assumed for the total energy which is the sum of kinetic and internal com-
pressive energies and is a global inviscid invariant of the system. This point
can be put in question in the current framework. Recent numerical works



176 Chapter 8. Resuming and looking ahead...

(Aluie et al., 2012) assures a direct cascade for the kinetic energy (which is
not an invariant of compressible turbulence) in subsonic and transonic tur-
bulence. The basic reason of this kinetic energy cascade is due to the large
scale exclusivity of the pressure dilatation term which falls as k−1 and prac-
tically decouples the internal energy to the kinetic energy inside the inertial
zone thereby leading to a direct energy cascade for the later. However, for
supersonic turbulence, this fact is not verified and gives birth to an open is-
sue. Furthermore the existence of a so-called inertial zone is also debatable
in compressible turbulence. Several works (Federrath et al., 2010; Wagner
et al., 2012; Kritsuk et al., 2013) find considerable forcing sensitivity of the
scaling and spectral properties in compressible strong turbulence. Moreover,
till date, no rigorous proof exists to justify a direct energy cascade of total
energy in strong compressible turbulence. However, an inverse energy cascade
has already been reported in two-dimensional weakly compressible turbulence
(Dahlburg et al., 1990) using solenoidal forcing.

Polytropic model is more realistic in case of the solar wind (Marsch &
Tu, 1990b) and in astrophysical plasmas. An extension of our first work
(Galtier & Banerjee, 2011) has been accomplished in case of a polytropic
fluid (Banerjee & Galtier, 2014) in order to understand the role of sound
speed fluctuations in compressible turbulence. In this work, we have defined
three Mach Numbers. Depending on the scaling properties of those Mach
numbers, we have predicted some spectral power laws which are subject to
future numerical and observational verifications.

Another main result of my thesis is the derivation of an exact relation of
compressible MHD turbulence of an isothermal plasma (Banerjee & Galtier,
2013). This work justified analytically the scaling relations and Kolmogorov
type spectral laws for density weighted Elsässer variables. Unlike the incom-
pressible case (Politano & Pouquet, 1998a), here we do not have two separate
scaling laws for two pseudo-energies but one relation corresponding to the con-
servation of total energy. Therefore the theoretically derived proper scaling
variable is ⇢1/3(z+2

z− + z−
2
z+)1/3 instead of ⇢1/3z±. No phenomenology was

proposed for general compressible MHD turbulence and is still an open ques-
tion. Nevertheless, the situation becomes much simpler when we consider
a very strong mean magnetic field. A possible phenomenology is proposed
following Galtier & Banerjee (2011) to explain an energy cascade in the per-
pendicular direction of that mean magnetic field. However, no conclusion is
made on the possibility of a cascade in the parallel direction and is surely a
matter of further investigation. Under this strongly anisotropic condition, a
power law of −5/2 has been predicted for coupled (kinetic and magnetic) en-
ergy power spectra. No prediction for the individual parts of energy (kinetic,
magnetic or compressive) and even for the total energy was possible to made
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from our exact relation.
The last part of my thesis was dedicated in the analysis of in-situ fast solar

wind data of THEMIS spacecraft. For several intervals I have performed
comparative study between the incompressible and compressible fluxes (as
a preliminary step, source terms are kept aside). For a fixed interval, the
discrepancy between the two scalings are found to reflect (to some extent)
the density fluctuations or the degree of compressibility of the said interval.
Finally a crude estimation of the order of magnitude for different candidates of
flux terms has been carried out in the case of the solar wind at 1 AU in order
to understand the relative importance of each term. However, in practice, the
local fluctuations change significantly their sign and therefore, no term can be
considered to be neglected identically in the statistical studies.

8.2 Some future projects

T
he field of theoretical compressible turbulence is developed very little
due to its greater complexity and less symmetry than its incompress-

ible counterpart. A large scope of possible theoretical projects can therefore
be prospected. An exact relation in case of compressible polytropic plasma
(which is not done during my thesis due to lack of time) can be thought to
be an immediate offspring of my thesis work. Several regimes depending on
the sonic and Alfvénic Mach number need to be investigated. A thorough
development of this relation could indeed be useful in understanding the role
of turbulence in the star formation mechanism which is still obscure to the
astrophysicists. The inclusion of gravitational field can obviously sophisticate
the model. The question whether the gravitational field works as a forcing
candidate being effective only at the large scales or can modify the flow at
all scales is subject to future numerical studies including gravitational field.
Interestingly, inclusion of gravitational field as an all-scale entity is shown to
hardly affect the incompressible scaling relations (see Appendix A). Will it
play the identical role in compressible turbulence or not still remains an open
question.

The nature of astrophysical turbulence is essentially convective i.e. governed
by thermal instability which leads to a variable energy flux. A more realistic
theoretical model can thus be thought of by closing the system in terms of third
or higher order moments. A possibility of two-point closures in compressible
turbulence (where the compressibility is not necessarily weak) can be relevant
in this context (Bertoglio et al., 2001).

A fundamental assumption of our derivation is based on the statistical ho-
mogeneity. In practice, a supersonic turbulent flow leads to the formation of
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shocks and discontinuitites which effectively render the flow statistically in-
homogenous or rather globally inhomogeneous. The type of turbulence devel-
oped at the back and the forth of a shock thus need to be studied separately.
A detailed thorough theoretical work is thus needed in case of inhomoge-
neous turbulence in order to understand the supersonic turbulence from a
phenomenological point of view.

Intermittency in compressible turbulence is another subject of immense
complexity and obscurity. Intuitive approaches (Schmidt et al., 2008) for
modelling compressible intermittency in the same framework of incompress-
ible turbulence has also produced, to some extent, good agreements with the
numerical results. However, a proper model with suitable phenomenology for
compressible turbulence is yet to be developed. In fact, such models can pos-
sibly be developed starting from our newly derived exact relations and hence
opens another possibility of theoretical investigation.

Concerning the projects of spacecraft data analysis, the first objective is to
complete the current study (as discussed in the chapter 7). Parallely, it would
be interesting to test the simplified scaling law which we obtained (Banerjee
& Galtier, 2013) in the presence of a very strong (w.r.t. the fluctuations)
magnetic field for the magnetospherical plasmas near magnetosheath which
is governed by a very strong mean magnetic field. For a number of intervals,
positive correlation between the fluctuations of the local density and the local
magnetic field components have been observed in fast solar wind data. A
study (which is not discussed in the scope of this thesis) relating local magnetic
field fluctuations and local ionic density fluctuation is also in progress and can
be indicative in understanding the proper nature and reason of density and
magnetic field coupling and its effect in solar wind turbulence.
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Résumé

Ma thèse a pour but de comprendre le rôle de la compressibilité dans la
turbulence aux basses fréquences dans les plasmas spatiaux (le vent solaire,
les plasmas magnétosphériques etc.) et astrophysiques (nuage moléculaire
interstellaire, le cœur d’une étoile etc.). Trois nouvelles relations exactes
ont été déduites dans le cadre de la turbulence compressible dans un fluide
isotherme et polytrope et dans un plasma MHD isotherme afin de comprendre
différentes propriétés universelles de la turbulence compressible. De plausi-
bles phénoménologies ont été proposées aussi en vue d’une compréhension de
différentes lois de spectre obtenues grâce aux simulations numériques de la
turbulence compressible. Une distinction qualitative entre la turbulence sous-
sonique et supersonique est ainsi décrite.
Une analyse utilisant des données d’observation des sondes spatiales THEMIS
est également réalisée dans le but d’expliquer l’effet de la compressibilité dans
la turbulence du vent solaire rapide.
Keywords: Turbulence, turbulence compressible, plasmas spatiaux, plas-
mas astrophysiques, vent solaire, analyse des données

Abstract

My thesis work is principally dedicated to the understanding of the role of
compressibility in low frequency turbulence of space plasmas (the solar wind,
the magnetosphere etc.) and astrophysical plasmas (interstellar molecular
cloud, the core of a star etc.). Three new exact relations have been derived
analytically in the framework of isothermal and polytropic hydrodynamic tur-
bulence and for isothermal MHD turbulence. By using these relations, various
universal scaling properties of compressible turbulence have been investigated.
In addition, plausible phenomenologies have been proposed in order to the-
oretically reproduce different power-laws for the total energy power spectra
which had been obtained in previous numerical simulations of compressible
turbulence. A semi-qualitative distinction between sub-sonic and supersonic
regimes of turbulence is hence concluded.
In the second part, an analysis using THEMIS spacecraft data is also per-
formed in a view to explaining the effect of the compressibility in the turbu-
lence of the fast solar wind.
Keywords: Turbulence, compressible turbulence, space plasmas, as-
trophysical plasmas, theory, exact relation, solar wind, data analysis
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