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Résumé

La reherhe sur les méthodes bayésiennes non-paramétriques onnaît un essor

onsidérable depuis les vingt dernières années notamment depuis le développe-

ment d'algorithmes de simulation permettant leur mise en pratique. Il est don

néessaire de omprendre, d'un point de vue théorique, le omportement de es

méthodes. Cette thèse présente di�érentes ontributions à l'analyse des propriétés

fréquentistes des méthodes bayésiennes non-paramétriques. Si se plaer dans un

adre asymptotique peut paraître restritif de prime abord, ela permet néanmoins

d'appréhender le fontionnement des proédures bayésiennes dans des modèles ex-

trêmement omplexes. Cela permet notamment de déteter les aspets de l'a priori

partiulièrement in�uents sur l'inferene. De nombreux résultats généraux ont été

obtenus dans e adre, ependant au fur et à mesure que les modèles deviennent

de plus en plus omplexes, de plus en plus réalistes, es derniers s'éartent des

hypothèses lassiques et ne sont plus ouverts par la théorie existante. Outre

l'intérêt intrinsèque de l'étude d'un modèle spéi�que ne satisfaisant pas les hy-

pothèses lassiques, ela permet aussi de mieux omprendre les méanismes qui

gouvernent le fontionnement des méthodes bayésiennes non-paramétriques.

Chapitre 1 L'introdution présente le paradigme bayésien et l'approhe bayési-

enne des problèmes non-paramétriques. Nous introduisons les propriétés

fréquentistes des méthodes bayésiennes et présentons leur importane dans

la ompréhension du omportement de la loi a posteriori. Nous présentons

ensuite les prinipaux modèles étudiés dans ette thèse, et les di�ultés

posées par eux-i pour l'étude de leurs propriétés asymptotiques.

Chapitre 2 Dans e hapitre, nous étudions la onsistane et la vitesse de on-

entration de la loi a posteriori dans le modèle de densité déroissante pour

di�érentes métriques. Ce modèle est partiulièrement intéressant ar les den-

sités déroissantes ont une représentation sous forme de mélange d'uniformes

et sont don un as partiulier de mélange pour lequel le support du noyau

dépend du paramètre. Dans e adre, les hypothèses lassiques néessaires

pour la onsistane de la loi a posteriori ne sont pas véri�ées. Notamment la

loi a priori ne met pas su�samment de masse sur les voisinages de Kullbak-
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iv RÉSUMÉ

Leibler du vrai paramètre, et une adaptation des méthodes usuelles est don

néessaire. Pour deux familles d'a priori lassiques, nous prouvons que l'a

posteriori se onentre à la vitesse minimaxe pour les pertes L1 et Hellinger.

Nous étudions ensuite la onsistane de la loi a posteriori de la densité pour

les pertes pontuelle et norme sup. Ces deux métriques sont en général di�-

iles à étudier ar elles ne peuvent être reliées à la divergene naturelle qu'est

la divergene de Kullbak-Leibler. Pour es deux pertes, nous prouvons la

onsistane de l'a posteriori et donnons une borne supérieure pour la vitesse

de onentration.

Chapitre 3 Nous proposons un test bayésien non paramétrique de déroissane

d'une fontion dans le modèle de régression gaussien. Dans e adre, outre

le fait que les deux hypothèses sont non-paramétriques, l'hypothèse nulle

est inlue dans l'alternative. Il s'agit don d'un as de test partiulière-

ment di�ile. En outre dans e as, l'approhe usuelle par le fateur de

Bayes n'est pas onsistante. Nous proposons don une approhe alternative

reprenant les idées d'approximation d'une hypothèse pontuelle par un in-

tervalle. Nous prouvons que pour une large famille de lois a priori, le test

proposé est onsistant et sépare les hypothèses à la vitesse minimaxe. De

plus notre proédure est faile à implémenter et à mettre en ÷u vre. Nous

étudions ensuite son omportement sur des données simulées et omparons

les résultats ave les méthodes lassiques existantes dans la littérature. Pour

haun des as onsidérés, nous obtenons des résultats au moins aussi bons

que les méthodes existantes, et les surpassons pour un ertain nombre de as.

Chapitre 4 (o-érit ave Bartek Knapik) Nous proposons une méthode générale

pour l'étude des problèmes inverses linéaires mal-posés dans un adre bayésien.

S'il existe de nombreux résultats sur les méthodes de régularisation et la

vitesse de onvergene d'estimateurs lassiques, pour l'estimation de fon-

tions dans un problème inverse mal-posé, les vitesses de onentration d'a

posteriori dans le adre bayésien n'a été que très peu étudié dans e adre. De

plus es quelques rares résultats existant ne onsidèrent que des familles très

limitées de lois a priori, en général reposant sur la déomposition en valeurs

singulières de l'opérateur onsidéré. Dans e hapitre nous proposons des

onditions générales sur la loi a priori sous lesquelles l'a posteriori se on-

entre à une ertaine vitesse. Notre approhe nous permet de trouver les

vitesses de onentration de l'a posteriori pour de nombreux modèles et de

larges lasses de loi a priori. Cette approhe est de plus partiulièrement

intéressante ar elle permet de mieux omprendre le fontionnement de la loi

a posteriori et notamment l'impat de l'opérateur sur l'inférene.
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Summary

Researh on Bayesian nonparametri methods has reeived a growing interest for

the past twenty years, espeially sine the development of powerful simulation al-

gorithms whih makes the implementation of omplex Bayesian methods possible.

From that point it is neessary to understand from a theoretial point of view

the behaviour of Bayesian nonparametri methods. This thesis presents various

ontributions to the study of frequentist properties of Bayesian nonparametri pro-

edures. Although studying these methods from an asymptoti angle may seems

restritive, it allows to grasp the operation of the Bayesian mahinery in extremely

omplex models. Furthermore, this approah is partiularly useful to detet the

harateristis of the prior that are strongly in�uential in the inferene. Many

general results have been proposed in the literature in this setting, however the

more omplex and realisti the models the further they get from the usual assump-

tions. Thus many models that are of great interest in pratie are not overed by

the general theory. If the study of a model that does not fall under the general

theory has an interest on its owns, it also allows for a better understanding of the

behaviour of Bayesian nonparametri methods in a general setting.

Chapter 1 The introdution presents the Bayesian paradigm and the Bayesian

approah to nonparametri problems. We introdue frequentist properties

of Bayesian proedures and present their importane in the understanding

of the behaviour of the posterior distribution. We then present the di�erent

models studied in this manusript and the hallenge faed in studying of

their asymptoti properties.

Chapter 2 In this hapter, we study onsisteny and onentration rates of the

posterior distribution under several metris in the monotone density model.

This model is partiularly interesting as monotone densities an be written

as a mixture of uniform kernels whih is a speial ase of kernels for whih

the support depends on the parameter. In this ase the usual hypotheses re-

quired to derive posterior onentration rate are not satis�ed. In partiular,

the prior distribution we onsider do not put positive mass on Kullbak-

Leibler neighbourhoods of the true parameter and we thus have to adapt the
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standard methods to get an upper bound on the posterior onentration rate.

For two standard prior distributions, we prove that the posterior onentrate

at the minimax rate for the L1 and the Hellinger losses. We then study on-

sisteny of the posterior under the pointwise and supremum loss. These two

metris are in general di�ult to study in the Bayesian framework as they

are not related to the Kullbak-Leibler divergene whih is the natural semi-

metri in this setting. We however prove that the posterior is onsistent for

both losses and get an upper bound for the posterior onentration rate.

Chapter 3 We propose a Bayesian nonparametri proedure to test for mono-

toniity in the regression setting. In this ase, not only the null and the

alternative hypotheses are nonparametri, but one is embedded in the other

whih makes the testing problem partiularly di�ult. In partiular the

Bayes-Fator, whih is a usual Bayesian answer to testing problems, is not

onsistent under the null hypothesis. We propose an alternative approah

that relies on the ideas of approximating a point null hypothesis by shrinking

intervals. The proposed proedure is onsistent for a wide family of prior dis-

tributions and separate the hypotheses at the minimax rate. Furthermore,

our approah is easy to implement and does not require heavy omputations

ontrariwise to the existing proedures. We then study its behaviour on sim-

ulated data and for all the onsidered ases, our proedure does at least as

good as the lassial ones, and outperform them in some ases.

Chapter 4 (Joint work with Bartek Knapik) We propose a general approah to

study nonparametri ill-posed linear inverse problems in a Bayesian setting.

Although there is a wide literature on regularisation methods and onver-

gene of estimators in this setting, the posterior onentration in a Bayesian

setting has not reeived muh attention yet. Furthermore, the few existing

results only onsider very restrited families of prior distributions, mostly

related to the singular value deomposition of the operator at hand. In

this hapter we give general onditions on the prior suh that the posterior

onentrates at a ertain rate. This approah allows us to derive asymptoti

results for various ill-posed inverse problems and wide families of priors. Fur-

thermore, this approah is partiularly interesting in the sense that it gives

some valuable insights on the behaviour of the posterior distribution in these

models and the impat on the operator on the inferene.
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Chapter 1

Introdution

�Perhaps I should not have been a �sherman, he thought.

But that was the thing that I was born for.�

� Ernest Hemingway, The old man and the sea.

Résumé

L'introdution présente le paradigme bayésien et l'approhe bayésienne des prob-

lèmes non-paramétriques. Nous introduisons les propriétés fréquentistes des méth-

odes bayésiennes et présentons leur importane dans la ompréhension du om-

portement de la loi a posteriori. Nous présentons ensuite les prinipaux modèles

étudiés dans ette thèse, et les di�ultés posées par eux-i pour l'étude de leurs

propriétés asymptotiques.
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2 CHAPTER 1. INTRODUCTION

This introdution presents the main onepts ommon to the following hap-

ters, the statistial modeling and its Bayesian approah that we adopt in this thesis.

We proeed with a quik introdution to nonparametri statistis and the onstru-

tion of prior distributions in an in�nite dimensional spae, and we emphasize the

importane of frequentists properties of Bayesian nonparametri proedures. We

then present the di�erent statistial models studied in this manusript.

1.1 Bayesian nonparametri approahes

The main goal of statistis is to infer on a random phenomenon given observations.

The ore onept of statistis is probabilisti modelling, that is a mathematial

approximation of the random phenomenon at hand. In a statistial model, an

observation X on an observation spae X is assumed to be generated from a

probability distribution P that belongs to a model P. Usually this distribution

is haraterized by a parameter θ in a parameter set Θ whih gives the sampling

model

{X , Pθ, θ ∈ Θ}.
The aim of statistis is then to infer, and make deisions on the model, based

on the observed data. To model omplex data generating phenomenon, the pa-

rameter spae Θ may be very large and possibly in�nite dimensional. As often in

mathematial sienes, it is interesting to delineate regions of statistial method-

ology, and modern mathematial statistis tends to di�erentiate Bayesian versus

frequentist methods, parametri versus nonparametri models. In this setion, we

de�ne Bayesian nonparametri models and underline their importane.

1.1.1 Bayesian modeling

Statisti models usually fall into either the frequentist paradigm or the Bayesian

one. The frequentist paradigm onsiders that the data are generated from a �xed

distribution Pθ0 assoiated with the true parameter θ0. Let g be a funtion from

Θ to Ξ, suh that one is interested in making inferene on g(θ0). Frequentist

statistiians look for statistis, that is funtions S : X 7→ Ξ that minimizes a risk

R(g(θ0), S(X)).

The risk is most of the time assoiated with a metri or semi-metri d, or more

generaly any loss funtion, and an be rewritten

R(g(θ), S(X)) = Eθ0 [d(g(θ0), S(X))] ,

where Eθ is the expetation with respet to Pθ.
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In the Bayesian paradigm, one models the ignorane on the parameter θ through
a probability distribution Π based on prior beliefs (the prior distribution). An

extensive introdution to Bayesian statistis an be found in Robert (2007). A

Bayesian model is thus a sampling model

X ∼ Pθ, θ ∈ Θ

together with a prior model

θ ∼ Π

whih an be ombined through the Bayes' rules to get a probability distribution

of the parameter given the data alled the posterior distribution de�ned as for all

measurable A ⊂ Θ

Π(θ ∈ A|X) =

∫
A
Pθ(X)Π(dθ)∫

Θ
Pθ(X)Π(dθ)

. (1.1)

It is the single objet on whih all inferene (e.g. estimation, testing, onstrution

of redible sets, et.) is based.

The Bayesian approah to statistis has beome inreasingly popular, espe-

ially sine the 1990's beause of the development of new sampling methods suh

as Markov-Chains Monte-Carlo (MCMC) algorithms that makes sampling under

the posterior distribution feasible if not easy. Bayesian methods are now used in

a wide variety of domains, from biology to �nane and data analysts are more

and more attrated by its axiomati view of unertainty and its apaity to han-

dle omplex models, see Gelman et al. (2004) for instane. However, the fat that

some methods are alled Bayesian emphasizes the fat that there is still two philo-

sophial approahes to statistial modeling. When the parameter spae is �nite

dimensional, Bayesian and frequentist methods usually agree when the amount of

information grows. In partiular, under weak assumptions on the prior distribu-

tion, the so alled Bernstein-von-Mise Theorem, as presented in Le Cam and Yang

(2000), shows that Bayesian redible sets and frequentist on�dene intervals are

asymptotially equivalent. This result is partiularly important as it indiates that

Bayesian models with di�erent priors

1

will eventually agree when the amount of

information

2

grows, and will give a similar answer as frequentists ones.

1.1.2 Bayesian nonparametris

Nonparametri models are often de�ned as probabilisti models with massively

many parameters (see Müller and Mitra, 2013) or with an in�nite dimensional

1

With a slight abuse of notations, we may say prior for prior distributions when there is no

onfusion

2

We will all amount of information either the number of data points or the level of noise.
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parameter spae as in Ghosh and Ramamoorthi (2003). These models o�er more

�exibility than parametri methods but their mathematial omplexity is in general

more involved than for parametri methods.

A �rst problem in Bayesian nonparametris is to de�ne a probability distribu-

tion on an in�nite dimensional spae. Choosing a prior distribution is a key point

in of the Bayesian inferene, and going from prior knowledge to a prior distribution

an be hallenging. In partiular for in�nite dimensional parameter spaes, assur-

ing that the prior distribution has a su�iently large support is a di�ult task, not

mentioning the di�ulty to ompute the posterior distribution for suh models.

A popular tool in the Bayesian nonparametri literature is the Dirihlet proess

introdued by Ferguson (1974). The Dirihlet proess is a probability measures on

the set of probability measure and an be de�ned as follows:

De�nition 1.1 (Dirihlet proess, Ferguson, 1974). Let α be a non null �nite

measure on X . We say that P follows a Dirihlet proess DP (α), if for all k ∈ N
∗
,

all partition of measurable sets (B1, . . . , Bk) of X ,

(P (B1), . . . , P (Bk)) ∼ D(α(B1), . . . , α(Bk))

where D is the Dirihlet distribution.

The Dirihlet proesses have been proved to have a large weak support (see

Ferguson, 1973), whih is all distributions whose support is inluded in the support

of the base measure α. Its hyperparameters are easily interpretable and it lead to

tratable posteriors. Moreover Sethuraman (1994) showed that the Dirihlet pro-

ess an be obtained in a onstrutive way alled the stik breaking representation.

In addition, it opened the way to more �exible prior distributions on the set of

density funtions. Sine then many prior distributions on in�nite dimensional sets

have been proposed. For instane Antoniak (1974) introdued mixtures of Dirih-

let proess in the ontext of probability densities estimation. Given a olletion of

kernels Kµ(·) depending on a parameter µ we de�ne the mixture

θ(·) =
∫

X
Kµ(·)dP (µ),

where P is a probability measure. Thus, hoosing a prior on P (e.g. a Dirihlet

proess prior) indues a prior on θ.
Many other priors have been proposed in the literature, general lasses of mix-

tures for the density model (Lo, 1984), hierarhial Dirihlet proesses (Teh et al.,

2006), Gaussian proesses (Lenk, 1991) among others. It is typially di�ult in

nonparametri settings to quantify the impat of a prior distribution on the pos-

terior inferene. If in the parametri ase, the Bernstein-von-Mise theorem shows
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that when the amount of information inreases, inferene based on di�erent pri-

ors will merge, it does not hold easily when the parameter spae is very large.

Diaonis and Freedman (1986) showed that in some ases, Bayesian nonparamet-

ri proedures an lead to inonsistent results (when the data are assume to be

sampled from a distribution Pθ0, the posterior distribution does not aumulate

its mass around the true parameter). Some other examples show that even if the

posterior onentrates its mass around the true parameter, the prior still in�uenes

the rate at whih this onentration ours.

1.2 Asymptoti properties of the posterior distri-

bution

Looking at the asymptoti behaviour of the posterior distribution helps under-

standing the impat of the prior on the posterior distribution. It is also important

to detet whih parts of the prior in�uene the most the posterior. In partiular,

some aspets of the prior may remain when the amount of information grows to

in�nity and may thus be highly in�uential for small sample sizes for instane. We

now de�ne two main asymptoti properties of the posterior distribution studied in

this manusript, namely posterior onsisteny and posterior onentration rate.

1.2.1 Posterior onsisteny

Consisteny of the posterior distribution an be onsidered as a least requirement

for Bayesian nonparametri proedures. Diaonis and Freedman (1986) proved

that in the ase of exhangeable data, onsisteny of the posterior distribution is

equivalent to weak merging of posteriors assoiated with di�erent proper prior dis-

tributions. This is partiularly interesting as, as argued before, it is often di�ult

to go from prior knowledge on the parameter to a prior distribution, and two statis-

tiians ould ome with two di�erent priors. We give a more detailed de�nition of

onsisteny of the posterior distribution, as presented in Ghosh and Ramamoorthi

(2003).

Let the observations X
n ∈ X n

be some random variables sampled from a

distribution P n
θ for θ ∈ Θ. Here n is onsidered to be a quanti�ation of the

amount of information. Consider Π a prior probability distribution on Θ. We an

thus ompute the posterior distribution of θ denoted Π(·|Xn) (see (1.1)). Assume

that there exists an unknown parameter θ0 ∈ Θ suh that the data are generated

from the true distribution P n
θ0
, and de�ne an ǫ-neighbourhood of θ0 assoiated with

the loss funtion d

Bǫ(θ0) = {θ, d(θ, θ0) ≤ ǫ}.
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De�nition 1.2. The posterior distribution is said to be onsistent at θ0 for the

loss d if for any ǫ > 0, the posterior probability of Bǫ(θ0)

Π(Bǫ(θ0)|Xn) → 1

either in P n
θ0
probability or P∞

θ0
-almost surely.

A �rst result of Doob (1949) shows that when d is a metri and (Θ, d) is a
omplete separable spae, any posterior distribution is onsistent at θ0, Π-almost

surely, under some ergodiity onditions. This result is interesting but very weak as

it does not provides any information on the set of parameters at whih onsisteny

holds.

A usual requirement for the posterior to be onsistent is that the prior puts pos-

itive mass on neighbourhoods of θ0. More preisely, if Pθ is absolutely ontinuous

with respet to Pθ0 , de�ne the Kullbak-Leibler divergene as

KL(Pθ, Pθ0) =

∫
log

(
dPθ

dPθ0

)
dPθ,

one will require that Π(KL(Pθ, Pθ0) < ǫ) > 0 for all ǫ.
A seond ondition is that the model makes it possible to di�erentiates between

θ0 and parameters outside Bǫ(θ0). This an be formalized by the existene of a

sequene of tests of

H0 : θ = θ0, versus H1 : θ ∈ Bc
ǫ (θ0). (1.2)

We then de�ne an exponentially onsistent sequene of tests {φn(X
n)} as fol-

lows

De�nition 1.3. The sequene of tests {φn(X
n)} is exponentially onsistent for

testing (1.2) if there exists c > 0 suh that for all n

Eθ0(φn(X
n)) . e−cn, sup

θ∈Bc
ǫ (θ0)

Eθ(1− φn(X
n)) . e−cn.

For independent identially distributed observations X
n = (X1, . . . , Xn) where

the parameter of interest is the ommon density f with respet to a measure λ,
we thus have

f =
dPθ

dλ
, θn(Xn) =

n∏

i=1

θ(Xi),

hene, in this ase θ = f , Shwartz (1965) gives general onditions on the model

to ahieve onsisteny. In this ase the Kullbak-Leibler divergene between f and

f0 is

KL(f, f0) =

∫

X
f(x) log

(
f(x)

f0(x)

)
dx. (1.3)
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Shwartz (1965) requires that the prior has positive mass on all ǫ-neighborhoods
for the Kullbak-Leibler divergene for all ǫ > 0

Π (f : KL(f, f0) ≤ ǫ) > 0.

The truth f0 is then said to belong to the KL-support of the prior Π. This

ondition ensures that the support of the prior is large in the sense of the Kullba-

Leibler divergene.

In the density setting, Shwartz's Theorem then states:

Theorem 1.1 (Shwartz (1965)). Let Π be a prior on Θ, and θ0 ∈ Θ suh that

• θ0 is in the KL-support of Π
• there exists an exponentially onsistent sequene of tests for (1.2)

then Π(Bǫ(θ0)|Xn) → 1 P∞
θ0

almost surely.

Sine this result of Shwartz, other types of results have been obtained, in many

di�erent settings, see for instane Walker and Hjort (2001), Walker (2003),Walker

(2004), Lijoi et al. (2007).

1.2.2 Posterior onentration rate

A more re�ned asymptoti property is the posterior onentration rate. Loosely

speaking, it is the rate at whih the ǫ-neighborhoods Bǫ(θ0) an shrink suh that

the posterior probability of Bǫ(θ0) reminds lose to 1. To get a better understand-
ing of the impat of the prior on the posterior, we need to study sharper results

than mere onsisteny. Some aspets of the prior may in�uene signi�antly the

posterior onentration rate. They are thus likely to be highly in�uential for �nite

datasets and should thus be handled with are. We now give a preise de�nition

of the posterior onentration rate and present some general results proposed in

the literature.

De�nition 1.4. Let the observations X
n
be sampled from a distribution P n

θ0
with

θ0 ∈ Θ and let Π be a prior on Θ. A posterior onentration rate at θ0 with respet
to a semimetri d on Θ is a sequene ǫn suh that for all positive sequenes Mn

going to in�nity

Π(θ, d(θ, θ0) ≤ Mnǫn|Xn) → 1,

in P n
θ0
probability as n goes to in�nity.

In their seminal papers Ghosal et al. (2000a) (see also Shen and Wasserman,

2001) proposed general onditions on the model to derive posterior onentration
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rates in the density model (i.e. independent and identially distributed observa-

tions X
n
) in a similar way Shwartz (1965) did for onsisteny. This idea has then

been extended to many other models, and other approahes have been proposed,

see for instane Ghosal and van der Vaart (2007). Their approah requires also

that the prior puts enough mass on shrinking Kullbak-Leibler neighbourhoods of

the truth. However the neighbourhoods here are more restritive than the ones

onsidered for onsisteny. De�ne the k-th entred Kullbak-Leibler moment, if

dP n
θ is absolutely ontinuous with respet to dP n

θ0
,

Vk(P
n
θ , P

n
θ0
) =

∫

X

∣∣∣∣log
(
dP n

θ

dP n
θ0

)
−KL(P n

θ , P
n
θ0
)

∣∣∣∣
k

dPθ.

We then de�ne the following Kullbak-Leibler neighborhood

Sn(θ0, ǫ, k) =
{
KL(P n

θ , P
n
θ0
) ≤ nǫ2, Vk(P

n
θ , P

n
θ0
) ≤ nǫ

}
.

As in Shwartz's Theorem, Ghosal and van der Vaart (2007) also requires the exis-

tene of an exponentially onsistent sequene of tests, but instead of testing against

the omplement of the shrinking ball Bǫn(θ0), it is su�ient to test against sets

Bj
n(θ0) = {θ ∈ Θn, jǫn ≤ d(θ, θ0) ≤ 2jǫn},

for any integer j ≥ J0 for some positive J0, where Θn is an inreasing sequene of

sets that takes most of the prior mass of Π. Their Theorem is thus as follows:

Theorem 1.2 (Theorem 3 of Ghosal and van der Vaart (2007)). Let d be a semi-

metri on Θ and onsider a sequene ǫn suh that ǫn → 0, nǫ2n → ∞ as n → ∞.

For k > 1, K > 0 and Θn ⊂ Θ, if there exists a sequene of tests φn suh that for

J0 > 0, for every j ≥ J0

Eθ0φn → 0, sup
Bj

n(θ0)

(1− φn) ≤ e−Knj2ǫ2n, (1.4)

and if

Π(Bj
n(θ0))

Π(Sn(θ0, ǫn, k))
≤ eKnj2ǫ2n/2, (1.5)

then for every sequene Mn → ∞ we have

Π(θ ∈ Θn, d(θ, θ0) ≤ Mnǫn|Xn) → 1

in P n
θ0
-probability as n goes to in�nity.

A usual way of insuring the existene of tests in ondition (1.4), for well suited

semimetri d is to ontrol the overing number of the sets Bj
n(θ0). For instane

when the semimetri d is the Hellinger metri, the well known results by Le Cam

(1986) or Le Cam and Yang (2000) insure the existene of suh sequene of tests

under some entropy onditions.



1.2. ASYMPTOTIC PROPERTIES OF THE POSTERIOR DISTRIBUTION 9

1.2.3 Minimax onentration rates and adaptation

The onentration rate's theory an be related to the lassial optimal onvergene

rate of estimators. Ghosal et al. (2000a) show in the ontext of density estimation,

that the posterior yields a point estimate that onverges at the same rate as the

posterior onentration rate when the onsidered loss is bounded and onvex. It

thus makes sense to ompare frequentists and Bayesian approahes based on this

asymptoti property.

To study the asymptoti behaviour of the posterior distribution, we only on-

sider some subspae Θ0 of the parameter spae on whih the funtions are behaving

well. One of the most ommon riterion for studying optimality of an estimator

is the minimax risk de�ned by the minimum over all estimator of maximal risk of

this estimator. More preisely, if d is a semimetri on Θ, the minimax risk over

Θ0 ⊂ Θ is de�ned as (see Tsybakov, 2009)

Rn = inf
Tn

sup
θ∈Θ0

Eθ [d(Tn, θ)] ,

where the in�mum is taken over all estimators Tn. The minimax rate in Θ0 is thus

the sequene ǫn suh that there exists a �xed positive onstant C with

lim sup
n→∞

ǫ−1
n Rn = C.

We say that a Bayesian proedure onentrates at the minimax rate if the

onentration rate of the posterior in the lass Θ0 is the minimax onvergene

rate. Many models (prior and sampling models) studied in the literature have

been proven to onentrate at the minimax rate in Θ0. In partiular, in the

density model, nonparametri mixture models are known to onentrate at the

minimax rate (up to a log fator) over lasses of Hölder funtions for various types
of kernels, see Ghosal and van der Vaart (2001), Ghosal and van der Vaart (2007),

Shen et al. (2013) for Gaussian kernels, Kruijer et al. (2010) for loation sale

mixtures or Rousseau (2010) for beta kernels. Many other types of priors have been

proven to lead to the minimax onentration rate, van der Vaart and Van Zanten

(2008) proved minimax onentration rates of the posterior for Gaussian proess

priors, Ghosal and van der Vaart (2007) and Knapik et al. (2011) show minimax

onentration rates for series expansions priors for regression and the white noise

model respetively, Arbel et al. (2013), ?, Belitser and Ghosal (2003) obtained

generi results for various sampling models.

The subspaes Θ0 are restrited through regularity assumptions suh as Sobolev

or Hölder smoothness, shape restrition, or sparity. These lasses of funtions are

in general indexed by a parameter, say β, that aounts for the level of regu-

larity or sparity. In general the posterior onentration rate ruially depends
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on this parameter. However, it is often di�ult to �x β a priori, it is thus nat-

ural to seek proedures that perform well over a wide variety of β values, say

β ∈ I. Suh proedures are alled adaptive as they automatially adapt the on-

entration rate over the whole olletion of spaes Θ0,β∈I . Frequentist adaptive

estimators have been well studied in the literature for the past three deades, see

for instane Efroimovih (1986), Polyak and Tsybakov (1990), or Tsybakov (2009)

for a review. From a Bayesian perspetive, adaptive proedures have beome

more and more popular, see Belitser and Ghosal (2003) for in�nite dimensional

Gaussian distributions, Sriiolo (2006) obtained adaptive rates in the density

model, van der Vaart and van Zanten (2009) onsidered Gaussian random �elds

priors, De Jonge et al. (2010) onsidered loation sale mixtures. Other examples

of adaptive Bayesian proedures an be found in Rivoirard et al. (2012), Rousseau

(2010) or Arbel et al. (2013) for instane.

1.3 Nonparametri Bayesian testing

Another aspet of Bayesian nonparametri inferene that has been investigated in

this work is the so alled testing problem or model hoie. In this ase, one is not

interested in reovering an unknown parameter θ but rather in taking a deision

on the parameter given the observations. This problem of testing in a Bayesian

framework is well known and an be dated bak to Laplae (1814). It an be

formalized as follows: let Θ0 and Θ1 be two distint subspaes of the parameter

spae Θ, assoiated with prior probability π0 and π1, one wants to infer whether

θ ∈ Θ0 versus θ ∈ Θ1, whih an be seen as the estimation of IΘ1(θ) as argued in

Robert (2007). Consider Π a prior distribution on Θ = Θ0 ∪Θ1. In this setting it

is natural to onsider the 0-1 loss with weights γ0, γ1 similar to the one proposed

by Neyman and Pearson (1938) whih is de�ned for a deision ϕ

L(θ, ϕ) =

{
γ0 if ϕ = 0 and IΘ0(θ) = 0

γ1 otherwise
.

The Bayesian solution to this problem (i.e. the minimizer of the Bayesian risk)

is then

ϕ(Xn) =

{
1 if Π(Θ1|Xn)/π1 ≥ γ0

γ0+γ1
Π(Θ0|Xn)/π0

0 otherwise

. (1.6)

To avoid the impat of Π(Θ0) and Π(θ1) or γ0 and γ1, one an equivalently de�ne

the Bayes-Fator

B0,1 =
Π(Θ0|Xn)

Π(Θ1|Xn)
× π1

π0

.
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The testing proedure orresponds to rejeting Θ0 if B0,1 is small but the Bayes-

Fator provides more information than just a 0-1 answer. Standard thresholds

are given by Je�reys' sale. A test proedure based on the Bayes-Fator B0,1 is

said to be onsistent if B0,1 goes to in�nity in P n
θ0
probability for all θ0 ∈ Θ0 and

onverges to 0 in P n
θ0
probability for all θ0 ∈ Θ1. Bayes-Fators for nonparametri

goodness of �t test have been studied in term of their asymptoti properties in

the literature, see Dass and Lee (2004); MVinish et al. (2009); Rousseau (2007);

Rousseau and Choi (2012) for instane. When both hypotheses are nonparametri

and one is embedded in the other, the determination of Bayesian proedures that

have good asymptoti properties is di�ult in general.

Similarly to the estimation problem, asymptoti properties of a Bayesian an-

swer to a testing problem are of great interest from both a theoretial and a

methodologial point of view sine inferene based on inonsistent posteriors ould

be highly misleading. A similar requirement should also hold for testing proe-

dures. In this ontext, we will say that a proedure is onsistent if it gives the

right answer with probability that goes to 1 as the amount of information grows

to in�nity. More preisely, a testing proedure (1.6) is said to be onsistent for the

metri or semi-metri d, if for all ρ > 0

sup
θ∈Θ0

Eθ(ϕ(X
n)) = o(1), sup

d(θ,Θ0)>ρ

Eθ(1− ϕ(Xn)) = o(1). (1.7)

Similarly to the frequentist literature, we onsider here uniform onsisteny, how-

ever this de�nition of onsisteny slightly di�ers from the one usually onsidered

in the frequentist setting, as here we do not �x a level for the type I error of the

test. It is also interesting to study the ounterpart of the onentration rate in

the testing problem namely the separation rate of the test. The separation rate is

de�ned as the smallest sequene ρ = ρn suh that (1.7) is still valid. It indiates

how fast the test an di�erentiate both hypotheses. Similarly to the onentration

rate, it also indiates whih part of the prior in�uenes the Bayesian proedure

even asymptotially. This is of great interest as it is well known that in testing

problems, the sensitivity to the prior is a major issue.

1.4 Challenging asymptoti properties of Bayesian

nonparametri proedures

We have seen that studying the asymptoti behaviour of the posterior distribution

is a major tool to understand the in�uene of the prior in the nonparametri

setting. We have also seen that there exists su�ient onditions on the model under

whih the proedure is known to be onsistent and to have optimal asymptoti

behaviour. However, many statistial problems that are of interest in pratie
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do not fall under this general theory. These models present a new hallenge for

the Bayesian nonparametri ommunity. In this setion we present two of these

problems namely the inferene under monotoniity onstraints and estimation in

linear ill-posed inverse problems.

1.4.1 Inferene under monotoniity onstraints

In many statistial problems, it is useful to impose some restritions on the pa-

rameter spae to be able to arry out the inferene. When modelling real world

situations, shape onstraints on the parameter of interest may appear naturally,

this is the ase for instane for drug response models or in survival analysis. Fur-

thermore, theses hypotheses are often easy to interpret, understand and explain

ompared to smoothness restritions for instane. Among di�erent shape on-

straints, monotoniity restritions have been fairly popular in the literature. In a

regression setting for instane, a monotoniity of a response is often granted from

physial of theoretial onsiderations. Shape onstraints inferene, and mono-

toniity in partiular an be dated bak to Brunk (1955) and most of the early

works on the subjet an be found in Barlow et al. (1972). Sine then mono-

toniity onstraints have been used in many applied problems: in pharmaeutial

ontext in Bornkamp and Ikstadt (2009), for survival analysis in Laslett (1982),

Neelon and Dunson (2004) studied monotone regression for trend analysis and

Dunson (2005) onsidered monotoniity onstraints on ount data. Many other

appliations an be found in Robertson et al. (1988).

In this setion, we present the two shape onstrained problems studied in this

thesis, namely the estimation of a density under monotoniity onstraints and

testing for monotoniity in a regression setting.

1.4.1.1 Monotone densities

Monotone densities are ommon in pratie, espeially in survival analysis. A �rst

study of monotone density an be imputed to Grenander (1956) who onsidered

the maximum likelihood estimator of a monotone density. Sine then many others

have been interested in estimating a unknown distribution under shape restritions.

Laslett (1982) onsiders the problem of estimating the distribution of raks length

on a mine wall, Sun and Woodroofe (1996) present some appliation in astronomy

and renewal analysis among others. Using shape onstraints proedures will ensure

that the estimate follows this onstraints, whih ould be a requirement of the

analysis.

Sine Williamson (1956), it is known that a density is monotone non inreasing

if and only if it is a mixture of uniform kernels. More preisely, let F be the set

of monotone non inreasing densities on [0,∞), then for all f ∈ F there exists a
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probability distribution P suh that

f(·) =
∫ ∞

0

I[0,θ](·)
θ

dP (θ). (1.8)

This mixture representation is partiularly interesting as it allows for inferene

based on the likelihood. Grenander (1956) showed that the maximum likelihood

estimator oinides with the �rst derivative of the least onave majorant of the

umulative distribution funtion. Its asymptoti properties were later studied in

Groeneboom (1985) under the L1 loss and Prakasa Rao (1970) studied the asymp-

toti behaviour of the maximum likelihood estimator evaluated at a �xed point

in the interior of the support. In Groeneboom (1989), it is shown that the mini-

max rate of onvergene for this problem is of the order of n−1/3
. This shows in

a way how monotoniity onstraints at as regularity onstraints as in this ase,

one obtains the same onvergene rate as for Lipshitz densities. Another sur-

prising aspet of monotone non inreasing densities is that the evaluation of the

maximum likelihood estimator at the boundaries of the support leads to inon-

sistent estimators. This problem has been studied in Sun and Woodroofe (1996)

and very preise results on the behaviour of the maximum likelihood estimator

at 0 an be found in Balabdaoui et al. (2011). More reently, Durot et al. (2012)

obtain some asymptoti results for the maximum likelihood estimator under the

supremum loss. In the Bayesian framework, monotone densities have been studied

in Brunner and Lo (1989) and Lo (1984). From a Bayesian point of view, the

mixture representation (1.8) leads naturally to a mixture type prior. Choosing a

prior model on P in representation (1.8) naturally indues a prior on F . This is

the approah onsidered in Brunner and Lo (1989). In Chapter 2 we onsider two

types of priors on P namely Dirihlet proess and �nite mixtures with a random

number of omponents. An interesting feature of these models is that the prior

does not put positive mass on the Kullbak-Leibler neighborhood of the truth, and

thus ondition (1.5) will not hold and the standard approah based on the work

of Ghosal and van der Vaart (2007) annot be applied diretly. We prove that a

similar result holds when one only onsiders Kullbak-Leibler neighbourhoods of

trunated versions of the densities

fn(·) =
f(·)I[0,xn]

F (xn)
, fθ0,n(·) =

fθ0(·)I[0,xn]

Fθ0(xn)
,

where xn is an inreasing sequene and F is the umulative distribution funtion

of f . From this result, we prove that for both prior models, the posterior onen-

trates at the minimax rate n−1/3
up to a log(n) term. We also study the asymptoti

properties of the posterior distribution of the density at a �xed point x of its sup-

port. This is typially a di�ult problem in general as Bayesian methods are in
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general well suited for losses that are related to the Kullbak-Leibler divergene

(see Arbel et al., 2013; Ho�mann et al., 2013). In partiular, the usual approah

of Le Cam (1986) for onstruting exponentially onsistent sequene of tests does

not hold in this ase. However, we prove in Chapter 2 that for the onsidered

prior distribution the posterior distribution of f(x) is onsistent for every x in the

support of f , inluding the boundaries. The fat that the posterior distribution

is onsistent at the boundaries of the support when the maximum likelihood es-

timator is not an be imputed to the penalization indued by the prior. Another

interesting feature of our Bayesian approah is that the posterior is also onsistent

for the supremum loss over the whole support. Here again, the supremum loss

is not related to the Kullbak-Leibler divergene, whih makes the onstrution

ofexponentially onsistent sequene of tests di�ult.

1.4.1.2 Nonparametri test for monotoniity

Although there is a wide literature on the problem of estimating an unknown fun-

tion under shape onstraints, an important question is whether it is appropriate

to impose a spei� shape onstraint. If it is, then the estimation proedures

ould in general be greatly improved by using a shape onstrained estimation

proedure. Conversely, imposing shape onstraints in an appropriate ase ould

lead to dramatially erroneous results. The problem of testing for monotoniity

has been widely studied in the frequentist literature. Bowman et al. (1998) intro-

dued a test for monotoniity in the regression setting base on the idea of ritial

bandwidth introdued in Silverman (1981). Hall and Hekman (2000) showed that

this proedure is highly sensitive to �at parts of the regression funtion, and pro-

posed another test proedure based on running gradient. Baraud et al. (2003),

Ghosal et al. (2000b) and Baraud et al. (2005)propose testing proedures in the

�xed design regression setting and the Gaussian white noise setting. Durot (2003)

and Akakpo et al. (2014) onsider a test that exploits the onavity of a primi-

tive of a monotone funtion. A Bayesian approah to testing monotoniity in a

regression framework has been proposed in Sott et al. (2013).

In Chapter 3, we onsider the nonparametri regression model

Yi = f(xi) + σǫi, ǫi
iid∼ N (0, 1), (1.9)

and we want to test

H0 : f ∈ F , versus H1 : f 6∈ F , (1.10)

for F be the set of monotone non inreasing funtions on [0, 1].
A �rst di�ulty in testing for monotoniity in a regression setting is that both

the null and the alternative hypotheses are nonparametri. As a general rule when

using posterior probabilities for hypothesis testing, it is important to take into



1.4. CHALLENGING ASYMPTOTIC PROPERTIES 15

aount the sensitivity to the prior distribution. This is true for parametri models

but is ritial for nonparametri ones as in that ase, as stated before, the prior an

still in�uene the posterior asymptotially. A seond and probably more important

di�ulty is the fat that when testing for monotoniity in a regression setting,

the null hypothesis is embedded in the alternative. This problem is ommon

in goodness of �t tests where one is interested in testing f = f0 versus f 6=
f0. This has been investigated in Dass and Lee (2004), Ghosal et al. (2008) or

MVinish et al. (2009) among others in the density setting, or Rousseau and Choi

(2012) in the regression problem. In this ase a main di�ulty is that a parameter

in the null model an also be approximated by a parameter in the alternative

model. In fat it has been proved in Walker et al. (2004) that the Bayes-Fator

will asymptotially support the model with prior that satis�es the Kullbak-Leibler

property, some additional onditions may be required when both priors do.

In the ase of testing for monotoniity, it seems that for a natural hoie of

prior, namely pieewise onstant funtions with random number of bins, the Bayes-

Fator is not onsistent. We thus propose an alternative test that is asymptotially

equivalent to testing for monotoniity using a similar idea as approximating a point

null hypothesis by a shrinking interval (see Rousseau, 2007). Denote by F the set

of monotone non inreasing funtions with support [0, 1] and let d̃ be a metri or

a semi-metri. Consider the test

Ha
0 : d̃(f,F) ≤ τ versus Ha

1 : d̃(f,F) ≥ τ (1.11)

where d̃(f,F) = infg∈F d̃(f, g) and τ is a given threshold. If τ dereases toward 0,
both tests (1.10) and (1.11) are asymptotially equivalent. We propose a alibra-

tion of the threshold τ , the Bayesian answer to the test (1.11) assoiated with the

0-1 loss is onsistent for the initial problem of testing (1.10) and gives good results

in pratie ompared to the frequentist proedures. Furthermore, for a spei�

hoie of prior, the proposed Bayesian test is easy to implement whih is a great

advantage ompared to the existing methods.

We also study the separation rate of the test whih gives insights on the

e�ieny of the proedure. The adaptive minimax separation rates for testing

monotoniity has been derived in Baraud et al. (2005) and Dümbgen et al. (2001)

over Hölder alternatives. Under similar assumptions, we prove that our proedure

ahieves the minimax separation rate up to a log(n) fator.

1.4.2 Ill posed linear inverse problems

Another general lass of models that beame popular for statistial modelling

sine the 1960's is the so alled inverse problems. They appear naturally when one

only has aess to indiret observations of the parameter of interest. This is the
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ase in many �elds of appliations: medial imaging (omputerized tomography),

eonometry (instrumental variables), radio astronomy (interferometry), astronomy

(blurred images of Hubble telesope) or seismology among many others. In the

statistial setting this is modelled by onsidering that the data arise from a prob-

ability distribution whose parameter has been transformed by a known operator

K that ats on the parameter spae. In most ases, we an assume that the trans-

formation K does not indue additional noise in the observations. The sampling

model is thus modi�ed to

X
n ∼ P n

Kθ, θ ∈ Θ. (1.12)

If the operator K an be inverted and if its inverse is ontinuous, then the gen-

eral theory applies and inferene on θ does not di�er from the usual framework.

However, in many ases, the inverse of the operator is not ontinuous. In this ase

the problem is alled ill-posed with respet to Hadamard's de�nition, as in this

ase a small noise in the data will be greatly ampli�ed in the inferene on θ. An
interesting lass of operators whih overs many appliations is the lass of linear

operators on Hilbert Spaes. It is usually assumed that the operator K is ompat

and injetive and the Hilbert spaes are separable.

Statistial approah to inverse problems has grown popular sine the standard

framework has been proposed in Tikhonov (1963). A usual toy example to study

suh methods is the white noise model

X
n = Kθ + σ

W√
n
, (1.13)

where W is white noise and σ > 0 a variane parameter. In this example we an

easily grasp the di�ulties at hand. In Chapter 4 we treat more general inverse

problems models of the form (1.12). In the following, we will reall some features

of statistial inferene in inverse problems and illustrate it with model (1.13).

1.4.2.1 Singular value deomposition

Consider K to be a ompat injetive linear operator between two Hilbert spaes

{Θ, 〈·, ·〉θ} and {Ξ, 〈·, ·〉ξ}. For reading onveniene, we shall drop the subsript for

the inner produt when there is no onfusion. A usual approah to infer on θ is to
onsider its deomposition in a basis of Θ. In the linear inverse problem setting,

a simple hoie for suh basis would be the one that diagonalize the operator K.

More preisely, denote by K∗
the adjoint operator of K and suppose that the auto-

adjoint operator K∗K is ompat, then the spetral Theorem states that K∗K has

a omplete orthogonal system of eigenvetors {ei} with orresponding eigenvalues

{bi}. We thus have for all θ ∈ Θ

K∗Kθ =
∞∑

i=1

bi〈θ, ei〉ei =
∞∑

i=1

κ2
i θiei, (1.14)
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where κi =
√
bi and θi = 〈θ, ei〉. In this ase we say that K admits a singular value

deomposition (SVD) with singular values {κi} and singular basis {ei}. Inferring
on θ is thus equivalent to infer on the in�nite sequene {θi}. From the observations

X
n
from model (1.12), one an get an estimator η̂ of η = Kθ. Denoting {η̂i} its

projetion onto the SVD basis, a simple estimator θ̂ of θ is given by

θ̂i =
η̂i
κi
.

When the problem is ill-posed, sine {κi}, goes to 0, we see that the oe�ients θi
will be over-estimated for large i.

To see this problem more learly, onsider the white noise example. By pro-

jeting (1.13) onto the basis {ei} and sine W is a white noise, we an rewrite the

model as

xi = κiθi +
σ√
n
ǫi, ǫi ∼ N (0, 1), i = 1, 2, . . .

with xi = 〈x, ei〉. This sequene model has been a ornerstone in the study of

linear inverse problems, see for instane Donoho (1995); Cavalier and Tsybakov

(2002); Cavalier (2008). The ase where K is the identity operator (i.e. κi = 1
for all i) has been widely studied in the literature. From a Bayesian perspe-

tive, this representation is highly interesting as in this ase, it is natural to on-

sider a prior on the sequene {θi}. These types of priors have been onsidered in

Ghosal and van der Vaart (2007) when K is the identity or Knapik et al. (2011)

or Agapiou et al. (2013) in the inverse problem setting. To infer on θ, we onsider
the transformed model

xiκ
−1
i = θi +

κ−1
i σ√
n

ǫi, i = 1, 2, . . . ,

whih redues the problem to estimating the mean of an in�nite Gaussian sequene.

Sine the problem is ill-posed, the sequene κ−1
i → ∞, hene the variane of the

noise blows up.

It appears from these onsiderations that the di�ulty of an inverse problem

an be quanti�ed by the rate at whih the sequene {κ−1
i } goes to in�nity.

De�nition 1.5 (Ill-posedness). We de�ne the degree of ill-posedness of an inverse

problem as follows:

• We say that a problem is mildly ill-posed of degree p if the sequene of

singular values {κi} is suh that there exist onstants 0 < Cd ≤ Cu < ∞
suh that

Cdi
−p ≤ κi ≤ Cui

−p.
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• We say that a problem is severely ill-posed of degree p if the sequene of

singular values {κi} is suh that there exist onstants 0 < Cd ≤ Cu < ∞ and

γ suh that

Cde
−γip ≤ κi ≤ Cue

−γip .

Some generalized versions of the de�nition of ill-posedness of an operator have

been onsidered in the literature (see Ray, 2013, for instane), however for the sake

of simpliity, we will stik to this simple notion. The degree of ill-posedness greatly

in�uene the omplexity of a model. In partiular, the minimax onvergene rate

for these models strongly depends on it, together with smoothness assumptions on

Θ.

1.4.2.2 Examples of inverse problems

Even if for some operators the SVD is di�ult to ompute, and thus the degree of

ill-posedness di�ult to assess, there exists a series of lassial operators for whih

the form of the SVD is expliit. Here we present some examples of ill-posed inverse

problems that have been extensively studied in the literature.

Numerial di�erentiation If the problem of numerial integration has been

well studied in pratie and is well understood from a theoretial point of view, it

turns out that the problem of numerial di�erentiation is muh more ompliated

even for simple lasses of funtions. The operator K is thus de�ned for all θ ∈
L2([0, 1]) by

Kθ(x) =

∫ x

0

θ(u)du, ∀x ∈ [0, 1].

The SVD is in this ase given by the Fourier basis {ej} and we easily obtain

Kθ =
∞∑

j=−∞
(2πij)−1〈θ, ej〉ej .

Thus the problem is mildly ill-posed of degree 1. We presented here the ase of one

time di�erentiation but similar results hold for the m time di�erentiation problem.

It is mildly ill-posed of degree m.

Deonvolution A ommon problem in image proessing is deonvolution of a

signal. A partiular example is image deblurring for instane. A standard frame-

work is to onsider irular deonvolution, that is for θ and λ in L2([0, 1]) and
1-periodi, the operator K is de�ned as

Kθ(x) = θ ⋆ λ(x) =

∫ 1

0

θ(u)λ(x− u)du, ∀x ∈ [0, 1].
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In this ase, one only has aess to a weighted average of f around the point x.
Standard algebra gives that the singular basis is here again the Fourier basis and

the singular values are the Fourier oe�ients of the onvolution kernel λ.

1.4.2.3 Regularization methods

As stated before the di�ulty in inferring on the unknown parameter in inverse

problems omes from the fat that the inverse of the operator K is not ontinuous

over the all Hilbert spae Ξ. A usual way to overome this problem is to onsider

regularization methods to obtain a sensible estimator for these models. We present

here two standard methods that are ommonly used in pratie. For a omplete

overview of regularization tehniques, we refer to the monograph Engl et al. (1996).

Consider the general setting presented above, and onsider a �xed sequene

of weights w = {wi} and an estimator η̂ of η = Kθ. Eah sequene de�nes an

estimator of θ

θ̂i = wi
η̂i
κi
, θ̂ =

∞∑

i=1

θ̂iei.

For a general sequene w, this estimator behaves poorly, due to the fat that

for large i, κi will be very small and will overwhelm the signal in η̂i. The simplest

hoie for the weight sequene w to bypass this problem is the projetion sequene

wi = Ii≤N for some �xed threshold N . This regularization method is ommonly

alled spetral ut-o�. This alibration is rather rough as the weight only takes

values 0 or 1, furthermore it requires a �ne alibration of the bandwidth N .

Another approah is the elebrated Tikhonov regularization (Tikhonov and Arsenin,

1977) whih is based on �nding a minimizer of the data mis�ts while ontrolling

the regularity of the estimator. The estimator is then obtained by

θ̂ = argmin
θ
{||Kθ −X

n||2 + µ||θ||2},

where µ is a �xed tuning parameter. Here again the alibration of µ is ruial. In

partiular, an optimal alibration in the minimax sense - i.e. that would lead to the

minimax rate of onvergene - will ruially depend on the regularity assumptions

on θ and the ill-posedness of the problem. If it is ommon to assume that the

operator (and thus the degree of ill-posedness) is known, imposing a degree of

regularity to the funtion θ is a rather strong assumption. There exist data driven

alibrations of µ and N , however these are often di�ult to study and will not be

presented here.

1.4.2.4 The Bayesian approah to ill posed inverse problems

The Bayesian approah for ill-posed inverse problems is thus fairly natural as it

is well known that putting a prior distribution on the unknown parameter often
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ats as a regularization. This property is partiularly useful in the model hoie

problem, but also for estimation as shown in ? in over�tted mixture models, or

in Castillo (2013) when reulariezation is needed. Some of the priors proposed

in the literature an be diretly linked to the usual regularization methods. For

instane the sieve prior presented in Ray (2013) orresponds the the spetral ut-

o� regularization. If the Bayesian approah to inverse problems has been put in

pratie (see for instane Orbanz and Buhmann, 2008), there is a dramatial lak

of theoretial results for these models, and the families of prior distributions for

whih theoretial results exist are very limited.

Agapiou et al. (2013), Knapik et al. (2011) and Knapik et al. (2013) studied

asymptoti properties of the posterior distribution for the onjugate (i.e. Gaussian)

prior in the white noise setting. Minimax adaptive posterior onentration rates

have been obtained in Knapik et al. (2012) also for onjugate priors. Ray (2013)

onsidered a more general lass of prior distributions that are still losely linked to

the SVD of the operator. Moreover the general approah proposed by Ray (2013)

leads to suboptimal rates in some ases. Thus it seems that there is a need for

general results as the ones proposed in Ghosal and van der Vaart (2007) for the

diret model.

In Chapter 4 we propose a general approah to derive posterior onentra-

tion rate for general ill-posed inverse problems. Our approah does not rely on

a spei� form of the prior distribution. With this result, we reover the known

results in the literature and improve the suboptimal upper bounds for the poste-

rior onentration rate obtained in Ray (2013). Furthermore, we derived posterior

onentration rates for models that are neither onjugate nor related to the SVD

of the operator. We onsider an abstrat setting in whih the parameter spae F is

an arbitrary metrizable topologial vetor spae and let K be an injetive mapping

K : F ∋ f 7→ Kf ∈ KF . Even if the problem is ill-posed there exist subsets Sn

of KF over whih the inverse of the operator an be ontrolled. For suitably well

hosen priors, these sets will apture most of the posterior mass, and we an thus

easily derive posterior onentration rate for f from posterior onentration rate

for Kf by a simple inversion of the operator.

A main ontribution of this thesis is to study the asymptoti behaviour of the

posterior distributions for problems for whih general results do not hold. In Chap-

ter 2 we study the problem of estimating monotone non inreasing densities. In

Chapter 3 we fous on the problem of testing monotoniity of a regression funtion.

Finally in Chapter 4 we provide general onditions to derive posterior onentra-

tion rates for ill-posed linear inverse problems. Many other models presented in

the literature may require suh non standard methods to study the asymptoti

behaviour of the posterior distribution.
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Chapter 2

Monotone densities

�Now we are joined together and have been sine noon. And

no one to help either of us.�

� Ernest Hemingway, The old man and the sea.

Résumé

Dans e hapitre, nous étudions la onsistane et la vitesse de onentration de la

loi a posteriori dans le modèle de densité déroissante pour di�érentes métriques.

Ce modèle est partiulièrement intéressant ar les densités déroissantes ont une

représentation sous forme de mélange d'uniformes et sont don un as partiulier

de mélange pour lequel le support du noyau dépend du paramètre. Dans e adre,

les hypothèses lassiques néessaires pour la onsistane de la loi a posteriori ne

sont pas véri�ées. Notamment la loi a priori ne met pas su�samment de masse

sur les voisinages de Kullbak-Leibler du vrai paramètre, et une adaptation des

méthodes usuelles est don néessaire. Pour deux familles d'a priori lassiques,

nous prouvons que l'a posteriori se onentre à la vitesse minimaxe pour les pertes

L1 et Hellinger. Nous étudions ensuite la onsistane de la loi a posteriori de

la densité pour les pertes pontuelle et norme sup. Ces deux métriques sont en

général di�iles à étudier ar elles ne peuvent être reliées à la divergene naturelle

qu'est la divergene de Kullbak-Leibler. Pour es deux pertes, nous prouvons la

onsistane de l'a posteriori et donnons une borne supérieure pour la vitesse de

onentration.

27
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2.1 Introdution

The nonparametri problem of estimating monotone urves, and monotone densi-

ties in partiular, has been well studied in the literature both from a theoretial

and applied perspetives. Shape onstrained estimation is fairly popular in the

nonparametri literature and widely used in pratie (see Robertson et al., 1988,

for instane). Monotone densities appear in a wide variety of appliations suh

as survival analysis, where it is natural to assume that the unensored survival

time has a monotone non inreasing density. In these problems, estimating the

survival funtion is equivalent to estimate the survival time density say f and the

pointwise estimate f(0). It is thus interesting to have a better understanding of

the behaviour of the estimation proedures in this ase. An interesting property

of monotone non inreasing densities on R
+
is that they have a mixture represen-

tation pointed out by Williamson (1956)

f(x) =

∫ ∞

0

I[0,θ](x)

θ
dP (θ), (2.1)

where P is a probability distribution on R
+
alled the mixing distribution. In

order to emphasize the dependene in P , we will denote fP the funtions admit-

ting representation (2.1). This representation allows for inferene based on the

likelihood. Grenander (1956) derived the nonparametri maximum likelihood es-

timator of a monotone density and Prakasa Rao (1970) studied the behavior of

the Grenander estimator at a �xed point. Groeneboom (1985) and more reently,

Balabdaoui and Wellner (2007) studied very preisely the asymptoti properties of

the non parametri maximum likelyhood estimator. It is proved to be onsistent

and to onverge at the minimax rate n−1/3
when the support of the distribution

is ompat. In their paper Durot et al. (2012) get some re�ned asymptoti results

for the supremum norm.

The mixture representation of monotone densities lead naturally to a mix-

ture type prior on the set of monotone non inreasing densities with support on

[0, L] or R+
. For example Ferguson (1983) and Lo (1984) introdued the Dirihlet

Proess prior (DP) and Brunner and Lo (1989) onsidered the speial ase of uni-

modal densities with a prior based on a Dirihlet Proess mixture. The problem

of deriving onentration rates for mixtures models have reeive a huge interest

in the past deade. Wu and Ghosal (2008) studied properties of general mixture

models Ghosal and van der Vaart (2001) studied the well known problem of Gaus-

sian mixtures, Rousseau (2010) derive onentration rates for mixtures of betas,

Kruijer et al. (2010) proved good adaptive properties of mixtures of Gaussian. Ex-

tensions to the multivariate ase have reently been introdued (e.g. Shen et al.
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(2013)).

Under monotoniity onstrained, we derive an upper bound for the posterior

onentration rate with respet to some metri or semi metri d(·, ·), that is a

positive sequene (ǫn)n that goes to 0 when n goes to in�nity suh that

E

n
0 (Π(d(f, f0) > ǫn|Xn)) → 0,

where the expetation is taken under the true distribution P0 of the data X
n
and

where f0 is the density of P0 with respet to the Lebesgue measure. Following

Khazaei et al. (2010) we study two families of nonparametri priors on the lass

of monotone non inreasing densities. Interestingly in our setting, the so alled

Kullbak-Leibler property, that is the fat that the prior puts enough mass on

Kulbak-Leibler neighbourhood of the true density, is not satis�ed. Thus the

approah based on the seminal paper of Ghosal et al. (2000) annot be applied. We

therefore use a modi�ed version of their results and obtain for the two families of

prior a onentration rate of order (n/ log(n))−1/3
whih is the minimax estimation

rate up to a log(n) fator under the L1 or Hellinger distane. We extend these

results to densities with support on R
+
and prove that under some onditions on

the tail of the distribution, the posterior still onentrates at an almost optimal

rate. To the author's knowledge, no onentration rates have been derived for

monotone densities on R
+
.

Interestingly, the non parametri maximum likelyhood estimator of fP (x) is not
onsistent for x = 0 (see Sun and Woodroofe (1996) and Balabdaoui and Wellner

(2007) for instane). However, we prove that the posterior distribution of f is still

onsistent at this point under a spei� family of non parametri mixture prior.

In fat we prove the pointwise onsisteny of the posterior for all x in [0, L] with
L ≤ ∞. We then derive a onsistent Bayesian estimator of the density at any

�xed point of the support. This is partiularly interesting as the point-wise loss

is usually di�ult to study in a Bayesian framework as the Bayesian approahes

are well suited to losses related to the Kullbak-Leiber divergene. We also study

the behaviour of the posterior distribution for the sup norm when the density has

a ompat support. This problem has been addressed reently in the frequentist

literature by Durot et al. (2012). They derive re�ned asymptoti results on the sup

norm of the di�erene between a Grenander-type estimator and the true density

on sub intervals of the form [ǫ, L − ǫ] where ǫ > 0 avoiding the problems at the

boundaries. Here, we prove that the posterior distribution is onsistent in sup

norm on the whole support of f0 when it has ompat support. We also derive

onentration rate for the posterior of the density taken at a �xed point and for

the sup norm on subsets of [0, L] for L < ∞. We also derive an upper bound for

the onentration rate of f(x) for x ∈ (0, L) but only get suboptimal rates using
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a testing approah as in Giné and Nikl (2010). It is to be noted that for this

problem the modulus of ontinuity for the pointwise and Hellinger losses de�ned

for f0 ∈ F and x ∈ (0, L) by

m(ǫ) := sup{|f(x)− f0(x)| : f ∈ F , h(f, f0) ≤ ǫ}

is of the order ǫ2/3 (see Donoho and Liu, 1991). Given the disussion in Ho�mann et al.

(2013), it is to be expeted that the usual approah of Ghosal et al. (2000) based

on tests will lead to suboptimal onentration rates. We now introdue some

notations whih will be needed throughout the paper.

Notations For 0 < L ≤ ∞ de�ne the set FL by

FL =

{
f s.t. 0 ≤ f < ∞, f ց

∫ L

0

f = 1

}
,

We also de�ne Sk the k-simplex that is the set {(s1, . . . , sk) ∈ [0, 1]k,
∑k

i=1 si = 1}.
Let KL(p1, p2) be the Kullbak Leibler deviation between the densities p1 and p2
with respet to some measure λ

KL(p1, p2) =

∫
log

(
p1
p2

)
p1dλ.

We also de�ne the Hellinger distane h(p1, p2) between p1 and p2 as

h2(p1, p2) =
1

2

∫
(
√
p1 −

√
p2)

2dλ.

We will say that Ξn = op0(1) if Ξ
n → 0 under P0. Finally we will denote f ′

the

derivative of f .

Constrution of a prior distribution on FL Using the mixture representation

of monotone non inreasing densities (2.1) we onstrut nonparametri priors on

the set FL by onsidering a prior on the mixing distribution P . Let P be the

set of probability measures on [0, L]. Thus we fall in the well known set up of

nonparametri mixture priors models. We onsider two types of prior on the set

P.

Type 1 : Dirihlet Proess prior P ∼ DP (A, α) where A is a positive on-

stant and α a probability density on [0, L].
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Type 2 : Finite mixture P =
∑K

j=1 pjδxj
with K a non zero integer and δx the

dira funtion on x. We hoose a prior distribution Q on K and given K,

de�ne distributions πx,K on (x1, . . . , xK) ∈ [0, L]K and πp,K on (p1, . . . , pK) ∈
SK .

For X
n = (X1, . . . , Xn), a sample of n independent and identially distributed ran-

dom variables with ommon probability distribution funtion f in FL with respet

to the Lebesgue measure, we denote Π(·|Xn) the posterior probability measure

assoiated with the prior Π.

The paper is organised as follow: the main results are given in Setion 2.2,

where onditions on the priors are disussed. The proofs are presented in Setion

2.3.

2.2 Main results

Conentration rates of the posterior distributions have been well studied in the

literature and some general results link the rate to the prior (see Ghosal et al.

(2000)). However, in our setting, the Kullbak Leibler property is not satis�ed in

its usual form and thus the standard Theorems do not hold. In fat an interesting

feature of mixture distributions whose kernels have varying support is that the

prior mass of the sets {f,KL(f0, f) = +∞} is 1 for most f0 ∈ FL given that f and

f0 will have di�erent support. One ould prevent this by imposing that the support

of the mixing distribution is wider than the support of f0, however this ould lead

to a deterioration of the onentration rate. Here, we use a modi�ed version of the

results of Ghosal et al. (2000) onsidering trunated versions of the density f . This
idea has been onsidered in Khazaei et al. (2010) in a similar setting. We impose

some onditions on the prior under whih the posterior distribution onentrates

at the minimax rate up to a log(n) term.

Conditions on the prior

C1 ondition on α Let α be a probability density on R
+
suh that for all θ ∈

(0, L), α(θ) > 0. Consider the following onditions on α

• for 0 < t1 ≤ t2 and θ small enough

θt1 . α(θ) . θt
2

(2.2a)

• for 1 < a1 ≤ a2 and θ small enough

e−a1/θ . α(θ) . e−a2/θ
(2.2b)
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• for 1 < b1 ≤ b2 and θ small enough

e−b1/θ . α(L− θ) . e−b2/θ
(2.2)

C2 ondition for Type I prior For P ∼ DP (α,M) with α satisfying C1

C3 ondition for the Type II prior The following onditions holds

• For some positive onstants C1, C2, a1, . . . , ak, c

e−C1K log(K) ≥ Q(K) ≥ e−C2K log(K)
(2.3)

πp,k(p1, . . . , pK) ≥ K−KcKpa11 . . . paKK (2.4)

• πx,K is the distribution of K independent and identially distributed

random variables sampled from α.

C4 Condition for densities on R
+

If f0 ∈ F∞ then for β and τ some �xed

positive onstant we have for x large enough

f0(x) ≤ e−βxτ

. (2.5)

2.2.1 Posterior onentration rate for the L1 and Hellinger

metri

The following Theorems gives the posterior onentration rate for the L1 and

Hellinger metri for monotone non inreasing densities on [0, L] with L < ∞ and

L = ∞. For both Theorems the proofs are postponed to setion 2.3.

Theorem 2.1. Let X
n = (X1, . . . , Xn) be an independent and identially dis-

tributed sample with a ommon probability distribution funtion f0 suh that f0 ∈
FL with 0 < L < ∞. Let Π be either a Type I or Type II prior satisfying C2

or C3 respetively with α satisfying (2.2a). If d(·, ·) is either the L1
or Hellinger

distane, then there exists a positive onstant C suh that

Π

(
f, d(f, f0) ≥ C

(
n

log(n)

)−1/3

|Xn

)
→ 0, P0 a.e. (2.6)

when n goes to in�nity, where C depends on f0 only through L and an upper bound

on f0(0). Furthermore, if for δ > 0, sup[0,δ] |f ′
0(x)| < ∞ and α satis�es (2.2b), or

sup[L,L−δ] |f ′
0(x)| < ∞ and α satis�es (2.2), then (2.6) still holds.

Conditions C1 and C2 are roughly the same as in Khazaei et al. (2010). Theo-

rem 2.1 is thus an extension of their results to onentration rates. We also extend

their results to mixtures prior satisfying (2.2b) or (2.2) under some additional

onditions on f0. This will prove useful for the estimation of f0 and fL. Under

ondition C3 on the tail of the true density, i.e. we require exponential tails, we

get the posterior onentration rate for density with support on R
+
.
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Theorem 2.2. Let X
n = (X1, . . . , Xn) be an independent and identially dis-

tributed sample with a ommon probability distribution density f0 suh that f0 ∈
F∞ and f0 satisfy C3. Let Π be either a Type I or Type II prior satisfying C2

or C3 respetively with α satisfying (2.2a). Then for some positive onstant C we

have for d(·, ·) either the L1 or Hellinger metri

Π
(
d(fP , f0) ≥ C (n/ log(n))−1/3 log(n)1/τ |Xn

)
→ 0, P0 a.e. (2.7)

when n goes to in�nity. Similarly, if for δ > 0, sup[0,δ] |f ′
0(x)| < ∞ and α satis�es

(2.2b), (2.7) still holds.

Note that onsidering monotone non inreasing densities on R
+
deteriorates the

upper bound on the posterior onentration rate with a fator log(n)1/τ . It is not
lear whether it ould be sharpen or not. For instane, in the frequentist literature,

Reynaud-Bouret et al. (2011) observe a slower onvergene rate when onsidering

in�nite support for densities without any other onditions. In a Bayesian setting,

a similar log term appears in Kruijer et al. (2010) when onsidering densities with

non ompat support. However this deterioration of the onentration rate does

not have a great in�uene on the asymptoti behaviour of the posterior. Note also

that the tail onditions are mild sine τ an be taken as small as needed, and thus

the onsidered densities an have almost polynomial tails.

The above results on the posterior onentration rate in terms of the L1 or

Hellinger metri are new to our knowledge but not surprising. The spei�ity

of these results lies in the fat that the usual approah based on the approah

of Ghosal et al. (2000) need to bound the prior mass of Kullbak Leibler neigh-

bourhoods of the true density whih annot be done here as explained in setion

2.1.

2.2.2 Consisteny and posterior onentration rate for the

pointwise and supremum loss

The following results onsider the pointwise loss funtion for whih only a few exist

in the Bayesian nonparametri literature, see for instane the paper of Giné and Nikl

(2010). The following Theorem proves onsisteny of the posterior distribution for

all point in the interior of the support.

Theorem 2.3. Let x be in (0, L) with with 0 < L ≤ ∞ but x < ∞. Let f0 ∈ FL

suh that f ′
0 exists near x and f ′

0(x) < 0. Let Xi , i = 1, . . . , n and Π be either a

Type I or Type II prior satisfying C2 or C3 respetively with α satisfying C1 with

either (2.2a), (2.2b) or (2.2). Then, for all x in (0, L) with x < ∞, and ǫ > 0

Π
(
|fP (x)− f0(x)| > ǫ|Xn

)
→ 0. (2.8)
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Consider the posterior median f̂π
n (x) = inf{t,Π

[
fP (x) ≤ t|Xn

]
> 1/2}, it follows

that

P0

(
|f̂π

n (x)− f0(x)| > ǫ|Xn
)
→ 0. (2.9)

We thus have a pointwise onsisteny of the posterior distribution of f0(x)
for every x in the interior of the support of f0. The maximum likelihood is not

onsistent at the boundaries of the support as pointed out in Sun and Woodroofe

(1996) for instane. In partiular it is not onsistent at 0 and when L < ∞, it

is not onsistent at L. It is known that integrating the parameter as done in

Bayesian approahes indues a penalisation. This is partiularly useful in testing

or model hoie problems but an also be e�etive in estimation problems, see for

instane Rousseau and Mengersen (2011). Here we require that the base measure

puts exponentially small mass at the boundaries. This indue enough penalization

to ahieve onsisteny of the posterior distribution of f(0) and f(L). The following
Theorem gives onsisteny of the posterior distribution of f at every point on the

support of f0 inluding the boundaries.

Theorem 2.4. Let x be in [0, L] with with 0 < L ≤ ∞ but x < ∞. Let f0 ∈ FL

suh that f ′
0 exists at x and f ′

0(x) < 0. Let Xi , i = 1, . . . , n and Π be either a

Type I or Type II prior satisfying C2 or C3 with α satisfying ondition (2.2b) if

x = 0 or (2.2) if x = L. Then, for all x in [0, L] with x < ∞, and ǫ > 0

Π
(
|fP (x)− f0(x)| > ǫ|Xn

)
→ 0. (2.10)

Consider the posterior median f̂π
n (x) = inf{t,Π

[
fP (x) ≤ t|Xn

]
> 1/2}, it follows

that

P0

(
|f̂π

n (x)− f0(x)| > ǫ|Xn
)
→ 0. (2.11)

The problem of estimating f0(0) under monotoniity onstraints is another ex-

ample of the e�etiveness of penalisation indued by integration on the parameters.

Although we do not have a proof for inonsisteny of the posterior of f(0) or f(L)
when α satis�es (2.2a), we believe that the similarly to the maximum likelihood

estimator, the posterior distribution is in this ase not onsistent.

The following Theorem gives an upper bound on the onentration rate of the

posterior distribution under the pointwise loss.

Theorem 2.5. Let f0 be in FL with 0 < L ≤ ∞ and Π be either a Type I or

Type II prior satisfying C1 or C2 respetively with α satisfying C1, and let x be

in (0, L) suh that f ′
exists in a neighbourhood of x and f ′(x) < 0, then for C a

positive onstant

Π

(
|fP (x)− f0(x)| > C

(
n

log(n)

)−2/9

|Xn

)
→ 0. (2.12)

when n goes to in�nity.
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Here the onentration rate is subobtimal. It is however the best rate that

one an obtain using the usual approah by testing (see Ho�mann et al., 2013)

. Proving that the posterior onentrates at the rate n−1/3
up to some power of

log(n) would require some more re�ned ontrol of the posterior distribution lose

to Bernstein von Mise types of results, see Castillo (2013), whih in the ase of

mixture models is very di�ult and beyond the sope of this hapter.

We derive from Theorem 2.4 the onsisteny of the posterior distribution for

the sup norm. This is partiularly useful when onsidering on�dene bands, as

pointed out in Giné and Nikl (2010). Under similar assumptions as in Durot et al.

(2012), we get the onsisteny of the posterior distribution for the sup norm. Note

that ontrariwise to Durot et al. (2012), we do not restrit to sub-intervals of the

support of the density. This is mainly due to the fat that the Bayesian approahes

are onsistent at the boundaries of the support of f0.

Theorem 2.6. Let f0 ∈ FL with 0 < L < ∞ be suh that f ′
0 exists and ||f ′

0||∞ < ∞
and for all x ∈ [0, L], f ′

0(x) < 0. Let also the prior Π be either a Type I or

Type II prior satisfying C1 or C2 with α satisfying onditions (2.2b) and (2.2)

respetively. Then

Π( sup
x∈[0,L]

|fP (x)− f0(x)| > ǫ|Xn) → 0. (2.13)

Similar results as in Theorem 2.5 also hold for the onentration rate of the

posterior distribution for the supremum over all subsets of the form (a, b) with

0 < a < b < L with the same rate.

2.3 Proofs

In this setion we prove Theorems 2.1 to 2.6 given in Setion 2.2. To prove Theo-

rems 3-6, we need to onstrut tests that are adapted to the pointwise or supremum

loss. The usual approah based on ? annot be applied in this ase. We thus on-

strut test based on the Maximum Likelihood Estimator.

2.3.1 Proof of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 follow the general ideas of Ghosal et al. (2000)

with some modi�ation due to the fat that the Kullbak-Leibler property is not

satis�ed. We �rst fous on density on FL with L < ∞ and extend these results to

monotone non inreasing density with support R
+
that satisfy C3. We extended

the approah used in Khazaei et al. (2010) to the onentration rate framework
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and get similar results as those presented in Ghosal et al. (2000). More preisely,

the proofs relies on the following Theorem whih is a modi�ation of Ghosal et al.

(2000) main Theorem proposed by Rivoirard et al. (2012). To takle the fat that

the usual Kullbak Leibler property is not satis�ed in its usual sense, we onsider

trunated versions of the densities

fn(·) =
f(·)I[0,θn](·)

F (θn)
, f0,n(·) =

f0(·)I[0,θn](·)
F0(θn)

(2.14)

where θn is de�ned as

θn = inf{x, 1− F0(x) <
ǫn
2n

}.

We then de�ne the ounterpart of the Kullbak Leibler neighbourhoods

Sn(ǫn, θn) =

{
f,KL(fn, f0,n) ≤ ǫ2n,

∫
f0,n(x)

(
log

(
f(x)

f0(x)

))2

dx ≤ ǫ2n,

∫ θn

0

f(x)dx & 1− ǫ2n

}
. (2.15)

Theorem 2.7. Let f0 be the true density and let Π be a prior on F satisfying the

following onditions : there exist a sequene (ǫn) suh that ǫn → 0 and nǫ2n → ∞
and a onstant c > 0 suh that for any n there exist Fn ⊂ F satisfying

Π(F c
n) = o(exp(−(c+ 2)nǫ2n)).

For any j ∈ N, j > 0, let Fn,j = {f ∈ Fn, jǫn < d(f, f0) ≤ (j + 1)ǫn} and Nn,j

the Hellinger (or L1) metri entropy of Fn,j. There exists a J0,n suh that for all

j ≥ J0,n

Nn,j ≤ (K − 1)nǫ2nj
2,

where K is an absolute onstant.

Let Sn(ǫn, θn) be de�ned as in (2.15) and let Π be suh that

Π(Sn(ǫn, θn)) ≥ exp(−cnǫ2n). (2.16)

We have :

Π(f : d(f0, f) ≤ J0,nǫn|Xn) = 1 + oP (1).

The proof of this Theorem is postponed to Appendix 2.5. We will thus prove

that the onditions of Theorem 2.7 are satis�ed in our ase. Let f0 be in FL. The

following lemma states that (2.16) is satis�ed.
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Lemma 2.1. Let Π be either a Type 1 or Type 2 prior on FL as in Theorem 2.1

and let Sn(ǫn, θn) be a set as in (2.15), then

Π(Sn(ǫn, θn)) & exp

{
C1ǫ

−1
n log(ǫn)

}
. (2.17)

This lemma is proved in appendix 2.4. The ǫ metri entropy of the set of

bounded monotone non inreasing densities has been shown to be less than ǫ−1
,

up to a onstant (see Groeneboom (1986) or van der Vaart and Wellner (1996) for

instane). As the prior puts mass on FL, on whih f(0) is not uniformly bounded,

we onsider an inreasing sequene of sieves

Fn =
{
f ∈ FL, f(0) ≤ Mn

}
. (2.18)

where Mn = exp
{
cn1/3 log(n)2/3(t2+1)−1

}
with t2 as in the onditions C1 or C2.

The following Lemma shows that Fn overs most of the support of Π as n inrease.

Lemma 2.2. Let Fn be de�ned by (2.18) and Π be either a Type 1 or Type 2 as

in Theorem 2.1, then

Π
(
F c

n

)
. e−cn1/3 log(n)2/3 .

Here again, the proof is postponed to appendix 2.4. We now get an upper

bound for the ǫ-metri entropy of the set Fn. Reall that in Groeneboom (1985) it

is proved that the L1 metri entropy of monotone non inreasing densities on [0, 1]
bounded by M an be bounded from above by C0 log(M)ǫ−1

n . We annot apply

this result diretly for the sets Fn as it would give a suboptimal ontrol of the

entropy to onstrut tests in a similar way as in Ghosal et al. (2000). In fat the

upper bound on the entropy of Fn is of the order of enǫn the usual onditions of

Ghosal et al. (2000) requires an upper bound of the order enǫ
2
n
. However as stated

in Theorem 2.7 it is enough to bound the ǫ-metri entropy of the sets

Fn,j = {f ∈ Fn, jǫn ≤ d(f, f0) ≤ (j + 1)ǫn} ,
for j ∈ N

∗
. We an easily adapt the results of Groeneboom (1985) to positive

monotone non inreasing funtions on any interval [a, b] and get the following

Lemma.

Lemma 2.3. Let F̃ be the set of positive monotone non inreasing funtions on

[a, b] suh that for all f in F̃ ,

∫ b

a
f ≤ M2 and f ≤ M , then

N(ǫ, F̃ , d) . ǫ−1 log(M + 1)
(
(b− a) + 3M2

)
.



38 CHAPTER 2. MONOTONE DENSITIES

The proof of this Lemma is straightforward given the results of Groeneboom

(1985) and is thus omitted. Let xn,j ∈ [0, L] suh that ǫn/2 ≤ xn,j ≤ ǫn. We

denote for all f in Fn,j f1,j = fI[0,xn,j) and f2,j = fI[xn,j ,L]. Sine for all f in Fn,j

we have

∫ 1

0
|f(x)− f0(x)|dx ≤ (j + 1)ǫn then

∫ xn,j

0

f(x)dx−
∫ xn,j

0

f0(x)dx ≤ (j + 1)ǫn,

whih implies that

xn,jf(xn,j) ≤ xn,jf0(0) + (j + 1)ǫn,

whih in turn gives

f(xn,j) ≤ f0(0) + 2(j + 1).

Reall that for all f ∈ Fn we have f(0) ≤ Mn. Using Lemma 2.3, we onstrut

an ǫn/2-net for the set F1
n,j =

{
f1,j , f ∈ Fn,j

}
with N1 points, and

log(N1) . ǫ−1
n log(Mn + 1)ǫn(j + 2),

and thus dedue

log(N1) ≤ C ′nǫ2nj
2

(2.19)

Similarly, given that f(xn,j) ≤ M + 2(j + 1) we get an ǫn/2-net for the set F2
n,j ={

f2,j , f ∈ Fn,j

}
with N2 points and

log(N2) ≤ C̃ ′nǫ2nj
2. (2.20)

This provide a ǫn-net for Fn,j with less than N1 ×N2 points. Given (2.19) and

(2.20) the L1 metri entropy of the sets Fn,j satisfy

log(N(Fn,j, ǫn, L1)) . nǫ2nj
2. (2.21)

The onditions of Theorem 2.7 are thus satis�ed whih ends the proof of The-

orem 2.1

Extention to R
+

Given that f0(x) . e−βxτ
when x goes to in�nity, if θn is

suh that θn = inf{x, 1 − F0(x) < ǫn/(2n)} then θn . (log(n))1/τ . Using similar

arguments as before, Lemma 2.1 still holds under the exponential tail assumption.

We now get an upper bound for the ǫ-metri entropy of Fn,j. Here again, we split

Fn,j into two parts. The onstrution of an ǫn/2-net for F1
n,j does not hange and

therefore (2.19) holds. Finally, let F̃2
n,j = {f ∈ F2

n,j, ∀x > θn, f(x) = 0}. Given

Lemma 2.3, we get for c1 > 0 large enough an ǫn/(2c1(j + 1))-net for F̃2
n,j by

onsidering f ⋆
the restrition of f to [xn,j , θn]. We have

d(f, f ⋆) ≤ c2(j + 1)ǫn,



2.3. PROOFS 39

where d(·, ·) is either the L1 or Hellinger distane. Hene, for c1 > c2 an ǫ/2-net
for F2

n,j with at most ec3nǫ
2
nj

2
points and thus

log
(
N(F2

n,j, ǫn, d
)
) ≤ C̃ ′′nǫ2nj

2.

We onlude using the same arguments as in the preeding setion, and thus

Theorem 2.2 is proved.

2.3.2 Proof of Theorems 2.3 and 2.5

To prove Theorem 2.3 and 2.5, we need to onstrut tests for all x ∈ (0, L) of f0
versus |fP (x) − f0(x)| ≥ ǫ

2/3
n as the approah used in Ghosal et al. (2000) is not

suited for the pointwise loss. As we have Π(||fP − f0||1 > ǫn|Xn) = oP0(1) we an
onsider funtions fP suh that ||fP − f0||1 ≤ ǫn. We onstrut tests Φn suh that

En
0 (Φ) = o(1), sup

f,|f(x)−f0(x)|>ǫn

E

n
f (1− Φ) ≤ e−Cnǫ2n.

Denote Ax
ǫ := {f, |f(x)− f0(x)| > ǫ} that an be split into Ax,+

ǫ = {f, f(x)−
f0(x) > ǫ} and Ax,−

ǫ = {f, f(x) − f0(x) < −ǫ} and denote en = e0ǫ
2/3
n and

hn = h0en. Consider the tests

φ+
n = I

{
n−1

n∑

i=1

I[x−hn,x](Xi)−
∫ x

x−hn

f0(t)dt > cn

}

φ−
n = I

{
n−1

n∑

i=1

I[x,x+hn](Xi)−
∫ x+hn

x

f0(t)dt < −cn

}

We immediately get E

n
0 (max(φ+

n , φ
−
n ) = o(1). Note that if fP (x) > f0(x) + en

then

∫ x

x−hn

fP (t)− f0(t)dt ≥ hn(fP (x)− f0(x))−
∫ x

x−h

f0(t)− f0(x)dt

≥ hnen − C0h
2

for some C0 > 0 that only depends on f0. Similarly if fP (x) < f0(x)− en then

for all h > 0 ∫ x+h

x

fP (t)− f0(t)dt ≤ −hen + C0h
2
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We thus dedue for fP suh that fP (x)− f0(x) > en

Pf(1− φ+
n ) ≤ Pf

(
n−1

n∑

i=1

I[x−hn,x](Xi)−
∫ x

x−hn

fP (t)dt ≤ −hnen + C0h
2 + cn

)

≤ Pf

(
n−1

n∑

i=1

I[x−h,x](Xi)−
∫ x

x−h

fP (t)dt ≤ −h0e
2
n/2

)
,

if cn ≤ e2n and h0 ≤ 1/C0. Now note that for fP suh that ||fP − f0||1 ≤ ǫn
∫ x

x−hn

fP ≥ −
∫ ∞

0

|f − f0|+
∫ x

x−hn

f0

≥ −ǫn +

∫ x

x−hn

f0

≥ −en + hnf0(x) ≥ hnf0(x)/2.

Moreover,

∫ x

x−hn

fP ≤ en + hnf0(x− hn) ≤ 2hnf0(x)

for n large enough and h small anough. We onlude that

VarnfP

(
n−1

n∑

i=1

I[x−h,x](Xi)

)
≤ 2hf0(x)

Thus using Bernstein's inequality (e.g. van der Vaart and Wellner (1996) Lemma

2.2.9 p. 102) we get

Pf (1− φ+) ≤ 2e−nhne2n/(2+en/3).

Similarly, we have

Pf (1− φ−
n ) ≤ 2e−nhne2n/(2+en/3).

Taking Φn = max(φ+
n , φ

−
n ) we dedue

P0(Φn) = o(1)

sup
f∈Ax

en

Pf(1− Φn) ≤ e−Ch0e3n
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We have

P0(Φn) = o(1)

sup
f∈Ax

en

Pf(1− Φn) ≤ e−Cne0ǫ2n

Similarly to the proof of Theorem 2.7, following Khazaei et al. (2010), we get

an exponentially small lower bound for Dn. More preisely, we get that

Dn ≥ 2e−(c+2)nǫ2n

with probability that goes to 1. Note that

E
n
0

(
Nn

Dn

)
≤ E

n
0(Φ

x
n) + P n

0 (Dn ≤ e−(c+2)nǫ2n)+

E
n
0(Π[F c

n|Xn]) + e(c+2)nǫ2n

∫

Aǫ∩Fn

E
n
f (1− Φx

n)dΠ(f)

. (2.22)

Given the preeding results, we have

E
n
0

(
Nn

Dn

)
≤ o(1) + e(c+2)nǫ2n sup

f
E

n
f (1− Φx

n)

whih ends the proof hoosing e0 large enough.

Consisteny of a Bayesian estimator We onsider in this setion f̂π
n (t), the

Bayesian estimator assoiated with the absolute error loss, de�ne as the median of

the posterior distribution. Consisteny of the posterior mean, whih is the most

ommon Bayesian estimator is however not proved here but ould nevertheless be

an interesting result.

We �rst de�ne f̂π
n (t) suh that

f̂π
n (t) = inf{x,Π[fP (t) ≤ x|Xn] > 1/2}. (2.23)

In order to get onsisteny in probability we note that if f̂π
n (t)− f0(t) > ǫ then

Π(fP (t) > f0(t) + ǫ|Xn) > 1/2.

And if f̂π
n (t)− f0(t) < −ǫ then

Π(fP (t) < f0(t)− ǫ|Xn) > 1/2.

We dedue, with Markov inequality and Theorem 2.3
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P n
0 (f̂

π
n (t)− f0(t) > ǫ) ≤ P n

0 (Π(fP (t) > f0(t) + ǫ|Xn) > 1/2)

≤ 2En
0 (Π(fP (t) > f0(t) + ǫ|Xn) > 1/2)

≤ o(1),

and similarly

P n
0 (f̂

π
n (t)− f0(t) < −ǫ) ≤ o(1).

Thus we have P n
0 (|f̂π

n (t) − f0(t)| > ǫ) → 0 whih gives the onsisteny in

probability of f̂π
n (t).

2.3.3 Proof of Theorem 2.4

The previous proof holds for all x ∈ (0, L) we now need to prove the onsisteny

of the posterior for x = 0 and x = L, when the prior satis�es onditions (2.2b)

or (2.2). We �rst onsider the ase x = 0, the ase x = L an be dedue with

symmetri arguments.

As before, onsider the set A0
ǫ and split it in A0,+

ǫ and A0,−
ǫ . Note that using

the same test φ−
n as before we easily get

Π(A0,−
ǫ |Xn) = oP0(1).

We now onsider fP ∈ A0,+
ǫ . As before we an restrit ourselves to funtions fP

suh that ||fP − f0||1 ≤ ǫn. We thus have for h = 2ǫn/ǫ

fP (0)− f0(0) ≤ fP (0)− fP (h) + h−1

∫
|f0(t)− fP (t)|dt

≤ fP (0)− fP (h) + h−1ǫn

= fP (0)− fP (h) + ǫ/2.

We now prove that the prior mass of the event {fP (0)− fP (h) > ǫ/2} is less that

e−(c+2)nǫ2n
. Using Markov inequality we get

Π(fP (0)− fP (h) > ǫ/2) ≤ 2ǫ−1

∫ h

0

1

θ
α(θ)dθ ≤ e−a2/h . e−a2nǫ2n log(n).

Using the same ontrol for Dn as in the proof of Theorem 2.7, and applying the

usual method of Ghosal et al. (2000), we get the desired result.
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2.3.4 Proof of Theorem 2.6

In this setion we prove that the posterior distribution is onsistent in sup norm.

Here again, the main di�ulty is to onstrut tests that are adapted to the on-

sidered loss. More preisely we onstrut a test Φ suh that

En
0 (Φ) = o(1), sup

f,sup[0,L] |f−f0|>ǫn

E

n
f (1− Φ) ≤ e−Cnǫ2n.

To do so we onsider a ombination of the tests onsidered in the previous

setion noting that if the posterior distribution is onsistent at the points of a

su�iently re�ned partition of [0, L] then it is onsistent for the sup norm. Here

again, we will only onsider the ase L = 1 without loss of generality. We �rst

denote

Bǫ =

{
f, sup

[0,L]

{|f(x)− f0(x)| > ǫ

}

Let C ′
0 be a positive onstant suh that ||f ′

0||∞ ≤ C ′
0 and let (xi)i be the separation

points of a ǫ/(8C ′
0) regular partition of [0, 1] and p = Card{(xi)i}. Note that

Bǫ =

p⋃

i=1

{f, sup
[xi,xi+1]

{|f(x)− f0(x)| > ǫ}.

Reall that Ax
ǫ = {f, |f(x) − f0(x)| > ǫ}. We onsider the set Bǫ

⋂p
i=1(A

xi

ǫ/8)
c
.

Given Theorem 2.3, we have that

E

n
0

(
Π

(
p⋃

i=1

(Axi

ǫ/5)
∣∣∣Xn

))
= o(1).

If f ∈ Bǫ we have for all x ∈ [xi, xi+1],

|f(x)− f0(x)| ≤ |f(x)− f(xi)|+ |f(xi)− f0(xi)|+ |f0(xi)− f0(x)|.

Given that f is monotone non inreasing, and given the hypotheses on f0 we have

|f(x)− f(xi)| ≤ |f(xi+1)− f(xi)|
≤ |f(xi+1)− f0(xi+1)|+ |f0(xi+1)− f0(xi)|+ |f0(xi)− f(xi)|
≤ 3ǫ/5

and for the same reasons

|f(xi)− f0(xi)|+ |f0(xi)− f0(x)| ≤ 2ǫ/5.
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Whih leads to

|f(x)− f0(x)| ≤ ǫ

and thus, taking the supremum over x, we get

sup
x∈[xi,xi+1]

|f(x)− f0(x)| ≤ ǫ.

We then dedue

Π(Bǫ|Xn) ≤ Π

(
Bǫ

⋂{
p⋂

i=1

(Axi

ǫ/5)
c

})
+Π

(
p⋃

i=1

(Axi

ǫ/5)

)
= oP0(1)

Whih gives the onsisteny of the posterior distribution in sup norm

2.4 Tehnial Lemmas

2.4.1 Proof of Lemma 2.1

To prove Lemma 2.1, we �rst onstrut stepwise onstant funtions suh that these

approximations are in the trunated Kullbak Leibler neighbourhood of f0. We

then onstrut a set N inluded in Sn(ǫn, θn) based on the onsidered pieewise

onstant approximation suh that for Π a Type I or Type II prior Π(N ) ≥ e−Cnǫ2n
.

We �rst onstrut a pieewise onstant approximation of f0 whih is base on a

sequential subdivision of the interval [0, L] with more re�ned subdivisions where

f0 is less regular suh that the number of points is less than ǫ−1
n points.

This approximation is adapted from the proof of Theorem 2.5.7 in van der Vaart and Wellner

(1996). We then identify a �nite pieewise onstant density by a mixture of uniform

for whih the Hellinger distane between the pieewise onstant approximation fP
of f0 ∈ F and f0 is less that ǫn and ||f0/fP ||∞ ≤ M .The following Lemma gives the

form of a �nite probability distribution P suh that fP is in the Kullbak-Leibler

neighbourhood of some f ∈ F .

Lemma 2.4. Let f ∈ FL be suh that f(0) ≤ M < +∞. For all 0 < ǫ < 1 there

exists m . L1/3M1/3ǫ−1
, p = (p1, . . . , pm) ∈ Sm and x = (x1, . . . , xm) ∈ [0, L]m

suh that P =
∑m

i=1 δxi
pi satis�es

KL(f, fP ) . ǫ2,

∫ (
log

(
f

fP

))2

f . ǫ2, (2.24)

where fP is de�ned as in (2.1).
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Proof. For a �xed ǫ, let f be in FL. Consider P0 the oarsest partition :

0 = x0
0 < x0

1 = L,

at the ith step, let Pi be the partition

0 = xi
0 < xi

1 < · · · < xi
ni

= L,

and de�ne

εi = max
j

{
(f(xi

j−1)− f(xi
j))(x

i
j − xi

j−1)
1/2
}
.

For eah j ≥ 1, if (f(xi
j−1)−f(xi

j))(x
i
j−xi

j−1)
1/2 ≥ εi√

2
we split the interval [xj−1, xj ]

into two subsets of equal length. We then get a new partition Pi+1. We ontinue

the partitioning until the �rst k suh that ε2k ≤ ǫ3. At eah step i, let ni be the

number of intervals in Pi, si the number of interval in Pi that have been divided

to obtain Pi+1, and c = 1/
√
2. Thus, it is lear that εi+1 ≤ cεi

si(cεi)
2/3 ≤

∑

j

(f(xi
j−1)− f(xi

j))
2/3(xi

j − xi
j−1)

1/3

≤
(∑

j

f(xi
j−1)− f(xi

j)

)2/3(∑

j

xi
j − xi

j−1

)1/3

≤ M2/3L1/3,

using Hölder inequality. We then dedue that

k∑

j=1

nj = k +

k∑

j=1

jsk−j ≤ 2

k∑

j=1

jsk−j ≤ 2

k∑

j=1

jM2/3L1/3(cεk−j)
−2/3

≤ 2M2/3L1/3ε
−2/3
k 21/3

k∑

j=1

j2−j/3

≤ K0M
2/3L1/3ε

−2/3
k ,

where K0 = 2(1− 2−2/3)−2
. Thus

nk ≤ K0M
2/3L1/3ǫ−1. (2.25)

Now, for f ∈ FL, we prove that there exists a stepwise density with less than

K0M
2/3L1/3 1

ǫ
piees suh that

KL(f, h) ≤ ǫ2 and

∫
f log(

f0
fP

)2(x)dx . ǫ2 (2.26)
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In order to simplify notations, we de�ne

xi = xk
i , li = xi − xi−1, gi = f(xi−1)

1/2.

We onsider the partition onstruted above assoiated with f 1/2
, whih is also

a monotone noninreasing funtion that satisfy f 1/2(0) ≤ M1/2
(instead of M).

We denote g the funtion de�ned as g(x) =
∑

I[xi−1,xi](x)gi

||f 1/2 − g||22 =
∫

(f 1/2 − g)2(x)dx =

nk∑

i=1

∫

Ii

(f 1/2 − g)2(x)dx

≤
nk∑

i=1

∫

Ii

(f 1/2(xk
i−1)− f 1/2(xk

i ))
2dx

≤
nk∑

i=1

(xk
i − xk

i−1)(f
1/2(xk

i−1)− f 1/2(xk
i ))

2

≤ nkε
2
k ≤ L1/3K0M

1/3ǫ2.

We then de�ne h = g2∫
g2

and and get an equivalent of

∫
g2.

∫
g2dx =

∫
(g2 − f)(x)dx+ 1

=

∫
(g −

√
f)(g +

√
f)(x)dx+ 1

= 1 +O(ǫ),

and dedue that (
∫
g2)1/2 = 1 +O(ε). Let H be the Hellinger distane

H(f, h) = H

(
f,

g2∫
g2

)

≤ H(f, g2) +H(g2,
g2∫
g2

)

≤ L1/6K0M
1/6ǫ+

(∫
(g − g

(
∫
g2)1/2

)2(x)dx

)1/2

. ǫ.

Sine ||f/h||∞ = ||f/g2||∞(
∫
g2) ≤ (

∫
g2), together with the above bound

on H(f, h) and Lemma 8 from Ghosal and van der Vaart (2007), we obtain the

required result.



2.4. TECHNICAL LEMMAS 47

Let P be a probability distribution de�ned by

P =

nk∑

i=1

piδ(x
k
i ) pi = (hi−1 − hi)x

k
i pnk

= hnk
xk
nk

= hnk
L,

thus fP = h and given the previous result, lemma 2.4 is proved.

Given Lemma 2.4, we now prove Lemma 2.1.

Proof of Lemma 2.1. We �rst onsider the ase where θt1 . α(θ) . θt2 for small

θ. For ǫn as in Theorem 2.1, de�ne θn as

θn = inf{x, 1− F0(x) <
ǫn
2n

}.

Note that F0 is àdlàg, thus

F0(θn) ≥ 1− ǫn/(2n) and ∀y < θn1− F0(y) > ǫn/(2n). (2.27)

. Using lemma 2.4 with L = θn, we obtain that there exists a distribution P =∑nk

i=1 δxi
pi suh that

KL(f0,n, fP ) ≤ ǫ2n, and

∫
f0,n log

(
f0,n
fP

)2

. ǫ2n.

Note that fP has support [0, θn] and is suh that fP (θn) > 0. Now, set m = nk

and onsider P ′
the mixing distribution assoiated with {m, x′

1, . . . , x
′
m, p

′
1 . . . , p

′
m}

with

∑m
i=1 p

′
i = 1. De�ne for 1 ≤ i ≤ m−1 the set Ui = [0∨(xi−ǫ3n/M, xi+ǫ3n/M ]

and Um = (θn, θn + ǫn(L − θn) ∧ ǫ3n/M ]. Construt P ′
suh that x′

i ∈ Ui and

|P ′(Ui)− pi| ≤ ǫ2m−1
. We get

∀t ∈ [0, θn] f
′
P (t) >

p′m
x′
m

.

Given that x′
m ∈ Um, we get x

′
m ≤ θn+ ǫn(L−θn)∧ ǫ3n/M . θn for n large enough.

Note also that p′m ≥ pm−ǫ2nm
−1
. Given the onstrution of Lemma 2.4, we dedue

pm ≥ f0(xi−1)

1 +O(ǫn)
& f0(xi−1),

for n large enough. Furthermore, given (2.27)

∀z < θn, f0(z)(L− z) ≥
∫ L

z

f0(t)dt ≥
ǫn
2n

,
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thus

∀t ∈ [0, θn] f
′
P (t) &

ǫn
2n

− ǫ2nm
−1

θn
&

ǫn
n
,

and dedue that ||f0/fP ′||∞ . n
ǫn

Lemma 8 from Ghosal and van der Vaart (2007)

gives us that

∫ θn

0

f0(x) log

(
f0
fP ′

)
(x)dx .

(
ǫ2n +H2(fP , fP ′)

)
(1 + | log(ǫn/n)|)

.
(
ǫ2n + |fP − fP ′|1

)
(1 + | log(ǫn/n)|).

Given the mixture representation (2.1) of f0 and fP , we get

(
ǫ2n + |fP − fP ′ |1

)
(1 + log(n))

.
(
ǫ2n +

∫ θn

0

∣∣∣
∑

(
pi
xi

− p′i
x′
i

)Ix≤xi
+
∑ pi

xi
(Ix≤xi

− Ix≤x′

i
)
∣∣∣dx
)
(1 + log(n))

.
(
ǫ2n +

∑
|xi

x′
i

− 1|p′i +
∑

|p′i − pi|+
∑ pi

xi
|x′

i − xi|
)
(1 + | log(n)|)

. ǫ2n(1 + | log(n)|).

Generally speaking, denoting U0 = [0, 1] ∩ (∪m
i=1Ui)

c
and N = {P ′, |P ′(Ui)− pi| ≤

ǫ2nm
−1} we obtain that for all P ′ ∈ N

∫ θn

0

f0(x) log
( f0
fP ′

)
(x)dx . ǫ2n(1 + | log(n)|),

and similarly

∫ θn

0

f0(x) log
( f0
fP ′

)2
(x)dx . ǫ2n(1 + | log(n)|)2,

for ǫn small enough. Note also that for all P ′ ∈ N and n large enough, as before

we get ∫ L

θn

fP ′(x)dx .
ǫn
n
.

We now derive a ontrol on k, the number of steps until εk ≤ ǫ
3/2
n in the

onstrution of Lemma 2.4. At step k− 1, we have εk−1 ≥ ǫ
3/2
n . It is lear that for

all j, εj ≤ 2−1/2εj−1, thus

M1/2L1/22−(k−1)/2 ≥ εk−1 ≥ ǫ3/2n

log(M1/2L1/2)− (k − 1)
log(2)

2
≥ 3

2
log(ǫn).
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Finally, we have

k ≤ 2

log(2)
(log(M1/2L1/2)− 3

2
log(ǫn)) + 1. (2.28)

We an then get a lower bound for Π[N ] and, given that for ǫn small enough

and n large enough, we have

N ⊂ Sn(ǫn, θn),

we an dedue a lower bound for Π
(
Sn(ǫn, θn)

)
. For the Type 1 prior, we have

similarly to Ghosal et al. (2000)

Π[N ] = Pr(D(Aα(U0), . . . , Aα(Unk
)) ∈ [pi ± ǫ2n/nk])

≥ Γ(A)∏
i Γ(Aα(Ui))

∏

j

∫ (pi+ǫ2n/nk)

(pi−ǫ2n/nk)∧0
x
Aα(Uj)−1
j dxj .

Given ondition C1, we have

α(Ui) ≥
∫

Ui

α0θ
t1dθ,

thus

α(Ui) ≥ 2ǫ3nα0xi
t1 .

for n large enough and ǫ su�iently small we have as in Lemma 6.1 of Ghosal et al.

(2000)

Π(N ) & exp {C1nk log(ǫ)} .
Note that given (2.25), nk . ǫ−1

n whih gives the desired result. For the Type 2
prior, we write

N ′ =

{
P ′ =

nk∑

j=1

p′jδx′

j
, |p′j − pj| ≤ ǫ2/nk, |x′

j − xj | ≤ ǫ3n

}
⊂ Sn(ǫn, θn),

we then dedue a lower bound for Π[Sn(ǫn, θn)]

Π[N ′] ≥ Q(K = nk)

nk∏

j=1

n−nk
k cnk

∫ pi+ǫ2/nk

max(0,pi−ǫ2/nk)

w
aj
j dwj

nk∏

j=1

α(Ui)

≥ exp
{
−cnk lognk +

∑
log(α(Ui)) + nk log(c)− nk log(nk) +

∑
aj log(2ǫ

2/nk)
}

& exp
{
C ′

1ǫ
−1 log(ǫ)

}
.
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We now onsider the ase where e−a1/θ ≤ α(θ) ≤ e−a2/θ
if θ is lose to 0 and

supx∈[0,δ] |f ′
0(x)| ≤ C0. We have that for n large enough and C > 0, a onstant

depending on f0, f0(0) − f0(ǫn) ≤ Cǫn. Following Lemma 2.4, we an onstrut

a pieewise onstant approximation of f0 on [δ, L]. On [0, δ], onsider the regular
partition with ⌊ǫ−1

n ⌋ points and the pieewise onstant approximation of f0 de�ned
as before (i.e. fi = f0(xi−1)). Again, this approximation an be identi�ed with a

measure P . Given the assumptions on f0 we immediately get thatKL(f0, fP ) . ǫ2n.
Consider the same sets N as before, with the same partitions U1, . . . , Un. Using

similar omputations as in Lemma 6.1 of Ghosal et al. (2000) we get that

Π(N ) ≥ exp
{
C1(nk + ǫ−1

n ) log(ǫn) +
∑

log(α(Ui))
}

For the Ui inluded in [δ, L] we have α(Ui) & ǫ
3/2
n . For the Ui inluded in [0, δ]

we have α(Ui) & ǫn exp {−a/(iǫn)}, whih gives

∑
α(Ui) . −ǫ−1

n log(n)

We end the proof using similar argument as before.

2.4.2 Proof of Lemma 2.2

The proof of Lemma 2.2 is straightforward and omes diretly from C1 and C2.

Proof. Reall that given (2.1), f(0) =
∫
[0,1]

1
θ
dP (θ). Then

Π

[∫ 1

0

1

θ
dP (θ) ≥ Mn

]
= Π

[∫ 2M−1
n

0

1

θ
dP (θ) +

∫ 1

2M−1
n

1

θ
dP (θ) ≥ Mn

]
.

Note that

∫ 1

2M−1
n

1

θ
dP (θ) ≤ Mn/2

∫ 1

2M−1
n

dP (θ) ≤ Mn/2.

Thus the set {P,
∫ 2M−1

n

0
θ−1dP (θ) ≥ Mn/2} ontains F c

n and

Π[F c
n] ≤ Π

[∫ 2M−1
n

0

1

θ
dP (θ) > Mn/2

]

≤ 2M−1
n E

[∫ 2M−1
n

0

1

θ
dP (θ)

]
,
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using Markov inequality. Then for a Type 1 prior when n large enough

Π[F c
n] ≤ 2M−1

n

∫ 2M−1
n

0

1

θ
α(θ)dθ

≤ 2M−1
n

∫ 2M−1
n

0

θt2−1dθ =
(2M−1

n )t2+1

t2
= Ce−cn1/3 log(n)2/3 .

For a Type 2 prior, we have that

Π[F c
n] ≤

∞∑

h=1

Q(K = k)πk

[
min
j≤k

xj ≤ M−1
n

]

≤
( ∞∑

h=1

kQ(K = k)

)
α([0,M−1

n ])

≤ C ′e−cn1/3 log(n)2/3 .

2.5 Adaptation of Theorem 4 of Rivoirard et al.

(2012)

This Theorem is a slight modi�ation of Theorem 2.9 of Ghosal et al. (2000). The

main deferene lies in the handling of the denominator Dn in

Π(f : d(f0, f) ≥ J0,nǫn|Xn) =

∫
d(f,f0)≥J0,nǫn

∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)
∫ ∏n

i=1
f(Xi)
f0(Xi)

dπ(f)
=

Nn

Dn
,

as in general, it require a lower bound on the prior mass of Kullbak Leibler

neighborhood of f0. Here we prove that under ondition (2.16) we have for some

onstants c, C > 0
P n
0 (Dn < ce−Cnǫ2n) = o(1).

Let ln(f) be the log likelihood assoiated with f and de�ne Ωn = {(f,Xn), ln(f)−
ln(f0) > −C1nǫ

2
n} for some onstant C1 > 0. De�ne also An = {Xn, ∀iXi ≤ θn}.

We thus have

Dn ≥ e−C1nǫ2n

∫

Sn(ǫn,θn)

IΩndΠ(f) = e−C1nǫ2nΠ(Sn(ǫn, θn) ∩ Ωn).
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Note that given (2.16) we have that there exists ρ > 0 suh that for n large enough

e−C2nǫ2nΠ(Sn(ǫn, θn) > ρ. We now write

P n
0 (Dn < e−Cnǫ2n) ≤ P n

0

(
e(C−C1)nǫ2nΠ(Sn(ǫn, θn) ∩ Ωn) < c

)

≤ P n
0

(
e(C−C1−C2)nǫ2nΠ(Sn(ǫn, θn) ∩ Ωn <

c

ρ
Π(Sn(ǫn, θn)

)

≤ P n
0

(
Π(Sn(ǫn, θn) ∩ Ωc

n) >

(
1− e−(C−C1−C2)nǫ2n

c

ρ

)
Π(Sn(ǫn, θn))

)

≤
2
∫
Sn(ǫn,θn)

P n
0 (Ω

c
n)dΠ(f)

Π(Sn(ǫn, θn))
.

For all f ∈ Sn(ǫn, θn) we ompute

mn = E

n
0 (ln(f0)− ln(f)IAn)

= nF0(θn)
n−1

∫ θn

0

f0 log

(
f0(x)

f(x)

)
dx

= nF0(θn)
n

(
KL(f0,n, fn) + log

(
F0(θn)

F (θn)

))

≤ C3nǫ
2
n,

and

P n
0 (Ω

c
n) = P n

0 (ln(f)− ln(f0) < −C1nǫ
2
n)

= P n
0 ({ln(f)− ln(f0) < −C1nǫ

2
n} ∩ An) + o(1)

≤ P n
0 ({ln(f0)− ln(f)−mn > (C1 − C3)nǫ

2
n} ∩ An) + o(1)

≤ E

n
0 ({ln(f0)− ln(f)−mn}IAn)

2

(C1 − C3)2(nǫ2n)
2

+ o(1).

We then ompute for C5 and C6 some �xed onstants

vn = E

n
0 ({ln(f0)− ln(f)−mn}IAn)

2

= (F0(θn))
n−1

(
n

∫ θn

0

f0 log
2

(
f0(x)

f(x)

)
dx+ n(n− 1)

(∫ θn

0

f0,n log

(
f0(x)

f(x)

)
dx

)2

−m2
n

)

= (F0(θn))
n−1

(
n

∫ θn

0

f0 log
2

(
f0(x)

f(x)

)
dx+

n− 1

n
F0(θn)

−2n+2m2
n −m2

n

)

≤ nF0(θn)
n

∫ θn

0

f0,n log
2

(
f0(x)

f(x)

)
dx+

n− 1

n
m2

nF0(θn)
n−1(F0(θn)

−2n+2 − 1)

≤ C5nǫ
2
n + C6(nǫ

2
n)

2ǫn.

We �nally obtain that for all f ∈ Sn(ǫn, θn), P
n
0 (Ω

c
n) = o(1). We end the proof

using similar arguments as in Ghosal et al. (2000).
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2.6 Disussion

In this hapter, we obtain an upper bound for the onentration rate of the pos-

terior distribution under monotoniity onstraints. This is of interest as in this

model, the standard approah based on the seminal paper of Ghosal et al. (2000)

annot be applied diretly. We prove that the onentration rate of the posterior

is (up to a log(n) fator) the minimax estimation rate (n/ log(n))−1/3
for standard

losses suh as L1 or Hellinger.

We also prove that the posterior distribution is onsistent for the pointwise

loss at any point of the support and for the sup norm loss. Studying asymptoti

properties for these losses is di�ult in general as the usual approah are well

suited for losses that are related to the Hellinger metri. Obtaining more re�ned

results on the asymptoti behaviour of the posterior distribution will require re�ned

ontrol of the likelihood whih in the ase of nonparametri mixture models is a

di�ult task.
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Chapter 3

Bayesian testing for monotoniity

�Every day is a new day. It is better to be luky. But I would

rather be exat. Then when luk omes you are ready.�

� Ernest Hemingway, The old man and the sea.

Résumé

Nous proposons un test bayésien non paramétrique de déroissane d'une fontion

dans le modèle de régression gaussien. Dans e adre, outre le fait que les deux

hypothèses sont non-paramétriques, l'hypothèse nulle est inlue dans l'alternative.

Il s'agit don d'un as de test partiulièrement di�ile. En outre dans e as,

l'approhe usuelle par le fateur de Bayes n'est pas onsistante. Nous proposons

don une approhe alternative reprenant les idées d'approximation d'une hypothèse

pontuelle par un intervalle. Nous prouvons que pour une large famille de lois a

priori, le test proposé est onsistant et sépare les hypothèses à la vitesse mini-

maxe. De plus notre proédure est faile à implémenter et à mettre en ÷u vre.

Nous étudions ensuite son omportement sur des données simulées et omparons

les résultats ave les méthodes lassiques existantes dans la littérature. Pour ha-

un des as onsidérés, nous obtenons des résultats au moins aussi bons que les

méthodes existantes, et les surpassons pour un ertain nombre de as.

57



58 CHAPTER 3. BAYESIAN TESTING FOR MONOTONICITY

3.1 Introdution

3.1.1 Modelling with monotone onstraints

Shape onstraints models, and monotone onstraints models in partiular, are of

growing interest in the nonparametri �eld. There is a wide literature on the prob-

lem of estimating monotone funtions. Groeneboom (1985), Prakasa Rao (1970)

and Robertson et al. (1988) among others study the nonparametri maximum

likelihood estimator of monotone densities, Lo (1984), Brunner and Lo (1989),

and Salomond (2013) study some posterior distribution in a Bayesian approah.

Barlow et al. (1972) and Mukerjee (1988) proposed a shape onstraint estimators

of monotoni regression funtions. These methods are widely applied in pratie.

Bornkamp and Ikstadt (2009) onsider monotone funtion when modeling the re-

sponse to a drug as a funtion of the dose and Neittaanmäki et al. (2008) use a

monotone representation for environmental data.

In this hapter we propose a proedure to test for monotoniity onstraints in

the Gaussian regression model

Yi = f(i/n) + σǫi, ǫi
iid∼ N (0, 1) , σ > 0, i = 1, . . . , n, (3.1)

and, with F(K) being the set of all monotone funtions uniformly bounded by K,

we test

H0 : f ∈ F(K), versus H1 : f 6∈ F(K). (3.2)

Here both the null and the alternative are nonparametri hypotheses. The problem

of testing for monotoniity has already been addressed in the frequentist literature

and a variety of approahes have been onsidered. Baraud et al. (2005) use pro-

jetions of the regression funtion on the sets of pieewise onstant funtion on a

olletion of partition of support of f . Their test rejets monotoniity if there is

at least one partition suh that the estimated projetion is too far from the set of

monotone funtions. Another approah, onsidered in Hall and Hekman (2000)

and Ghosal et al. (2000) among others, is to test for negativity of the derivative of

the regression funtion. However this requires some assumptions on the regularity

of the regression funtion under the null hypothesis that ould be avoided. In a

reent paper Akakpo et al. (2014) propose a proedure that detets loal departure

from monotoniity, and study very preisely its asymptoti properties.

Here, we propose a Bayesian approah to this problem, whih to the author's

knowledge has only reeive little onsideration. Sott et al. (2013) onsider a

Bayesian test for monotoniity based on onstrained spline. Their approah require

smoothness assumptions on the regression funtion under the alternative, whih

we avoid here. We only onsider the ase where F(K) is the set of monotone

non inreasing funtions uniformly bounded by K, but a similar approah ould
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be used when onsidering the set of monotone inreasing. The most ommon ap-

proah to testing in a Bayesian setting is the Bayes Fator. Here however, we see

that this method has drawbaks and seems to have poor performanes, hene we

propose a modi�ation of the Bayes fator.

3.1.2 The Bayes fator approah

The standard Bayesian answer to the testing problem (3.2) related with the 0− 1
loss is the Bayes fator

B0,1 =
Π {f ∈ F(K) | Y n}
Π {f 6∈ F(K) | Y n}

1−Π {F(K)}
Π {F(K)} .

This approah to Bayesian testing is easy to understand as posterior probability

of the onsidered hypotheses have a simple interpretation.

In this hapter we onsider a prior on pieewise onstant funtions.

f =
k∑

i=1

I[(i−1)/k,i/k)ωi, dΠ(f) = π(k)π(ω1, . . . , ωk|k)dλk(ω1, . . . , ωk)dν(k),

where λk is the Lebesgue measure on R
k
and ν the ounting measure on N. These

prior are ommon in the Bayesian nonparametri literature. Furthermore for the

problem of estimating monotone non inreasing densities, related priors have been

proved to lead to the minimax onentration rate over F(K) in Salomond (2013).

In our ase, the Bayes fator seems to give poor results in pratie. The reason

behind this is that when f has �at parts, it beomes di�ult to detet monotoniity

due to estimation unertainty. For instane when onsidering the funtion f = 0
the Bayes Fator does not seem to give a redible answer. As an illustration,

Figure 3.1 gives the histogram onstruted from 100 draws of data with f = 0 and
n = 100. Bayes Fator smaller than 0 indiates that the funtion is not monotone

non inreasing. It appears that for these runs, the Bayes Fator is rather small and

that for a non negligible proportion of samples the log Bayes Fator is negative.

Thus the answers given by the Bayes Fator are not satisfying in this ase.

3.1.3 An alternative approah

To takle this issue of onstruting a test robust to �at parts, we hange the

formulation of our test into

Ha
0 : d̃{f,F(K)} ≤ τ versus Ha

1 : d̃{f,F(K)} > τ (3.3)
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Figure 3.1: 100 simulation of the log Bayes Fator B0,1 for f = 0 and n = 100

where d̃(f,F(K)) = infg∈F(K) d̃(f, g) and d̃ is a metri or a semi-metri and τ is

a threshold. This ideas is similar to the one proposed in Rousseau (2007) for the

approximation of a point null hypothesis by an interval hypothesis testing. Here

again we onsider the 0 − 1 loss with weight γ0, γ1 so that the Bayesian deision

is given by

δπn =

{
0 if Π

[
d̃{f,F(K)} ≤ τ |Yn

]
≥ γ0

γ0+γ1

1 otherwise

. (3.4)

The threshold τ an be alibrated a priori by a prior knowledge on the tolerane
to approximate monotoniity. In pratie suh an a priori alibration is not always

feasible. We therefore propose in this hapter an automati alibration of τ . In

absene of prior information on the threshold, it is natural to have τ depending on

n, sine the more data, the more preise we an a�ord to be. A least requirement

will be that the test desribed in (3.3) is asymptotially equivalent to the test

(3.2). Hene a alibration of τ suh that our test is onsistent, that is for all ρ > 0
and d(·, ·) a metri or a semi-metri, potentially di�erent from d̃,

sup
f∈F(K)

E

n
f (δ

π
n) = o(1)

sup
f,d{f,F(K)}>ρ

E

n
f (1− δπn) = o(1).

(3.5)

To understand the e�etiveness of the threshold indued by our approah, we

study the minimum separation rate of our test whih is the minimum value ρ = ρn
suh that (3.5) is still valid. Small ρn implies that the test is able to detet very
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small departure from the null. We thus want our alibrated threshold to indue

the smallest separation rate.

Form a pratial point on view, this proedure will be easy to implement as it

will only require sampling under the posterior distribution whih is made easy by

our hoie of prior. This is a great advantage ompared to the frequentist tests

proposed in the literature as they require in general heavy omputations.

We thus propose a proedure whih although being a Bayesian answer to the

problem (3.3), is also asymptotially an answer to the problem (3.2). Moreover,

our proedure is automati and easy to implement. The onstrution of the test is

presented in setion 3.2 and its asymptoti properties are disussed in Setion 3.2.2.

In Setion 3.2.3 we propose a way to alibrate the hyperparameters of the prior

rending the proedure fully automati. We then run our test on simulated data in

setion 3.3 and on real environmental data in setion 3.4. A general disussion is

provided in setion 3.7.

3.2 Constrution of the test

3.2.1 The testing proedure

We �rst propose a hoie for d̃{f,F(K)} whih measures the distane between

the regression funtion f and the set F(K) and a way to alibrate the threshold

τ in situation where prior information is not available. This is done suh that by

answering the problem (3.3) we give a good answer to the problem (3.2). We then

propose a spei� family of prior that will speed up the omputations together

with a hoie for the hyperparameters based on heuristis.

As presented in setion 3.1.1, monotone non inreasing funtions are well ap-

proximated by stepwise onstant funtions. Let Gk be the set of pieewise onstant

funtions with k piees on the partition {[0, 1/k), . . . , [(k − 1)/k, 1]} so that eah

funtion in Gk will be written

fω,k(·) =
k∑

i=1

ωiI[(i−1)/k,i/k)(·), ω = (ω1, . . . , ωk) ∈ R
k. (3.6)

We assume that the data Y n = (Y1, . . . , Yn) is generated by model (3.1), where the

residual variane σ2
is unknown. We then build a prior on (f, σ) taking a prior on

k and building a prior on eah submodels Gk. We de�ne

Π(ω, σ, k) := Π(k)Π(σ|k)Π(ω|σ, k).

First with this hoie of prior we have generally speaking π(F(K)) > 0. Further-
more, if the true regression funtion f0 is in F(K) then the pieewise onstant
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funtion in Gk of the form (3.6) whih minimizes the Kullbak Leibler divergene

with f0 will also be in F(K) for all k. We onsider the following disrepany

measure d̃(·, ·) in (3.3) between fω,k ∈ Gk and F(K),

d̃{fω,k,F(K)} = H(ω, k) = max
k≥j≥i≥1

(ωj − ωi). (3.7)

From (3.7) it appears that fω,k is in F(K) if and only if d̃{fω,k,F(K)} = 0.
Here the disrepany d̃ orresponds to the sup norm between fω,k and the set of

monotone non inreasing funtions. The idea of the alibration is the following.

In the model Gk, the a posteriori unertainty for estimating ω = (ω1, . . . , ωk) is of
order

√
k/n. Hene any monotone non inreasing funtion fω,k suh that for all

j > i, ωi ≥ ωj−O(
√

k/n) might be deteted as possibly monotone non inreasing.

We thus hoose a threshold τkn for eah model Gk. We then ompare H(ω, k) with
some positive threshold depending on n and k and then alibrate τkn suh that our

proedure is onsistent. To evaluate the e�etiveness of the threshold, we onsider

Hölderian alternatives, following what is done in the frequentist literature,

f ∈ H(α, L) =
{
f, [0, 1] → R, ∀x, y ∈ [0, 1]2|f(y)− f(x)| ≤ L|y − x|α

}
,

for some onstant L > 0 and a regularity parameter α ∈ (0, 1]. We study the

separation rate of our proedure and ompare it with the minimax separation rate

n−α/(2α+1)
.

3.2.2 Theoretial results

The following Theorem provides a way to alibrate τkn . It also gives an upper

bound for the minimal separation rate with respet to the distane d∞(·, ·) de�ned
as

d∞(f, g) = sup
x∈[0,1]

{|f(x)− g(x)|}

Consider prior of the form

dΠω

dλk
= g⊗k,

dΠσ

dλ1
= πσ,

dΠk

dν
= πk,

where λk is the Lebesgue measure on R
k
, whih satis�es the following onditions :

C1 the density πσ is ontinuous and πσ(σ) > 0 for all σ ∈ (0,∞),
C2 the density g is ontinuous and puts mass on all R. Furthermore, g is suh

that there exists a onstant cg suh that for all K > 0, for all z > 0, for all
l ∈ N, for all sequene u that goes to 0,

sup
|x0|≤K

∫
I [lzu ≤ |x− x0| ≤ (l + 1)zu] g(x)dx

sup|x0|≤K

∫
I [|x− x0| ≤ zu] g(x)dx

≤ u−cg ,
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C3 πk is suh that there exists positive onstants Cd and Cu suh that

e−CdkL(k) ≤ πk(k) ≤ e−CukL(k)
(3.8)

where L(k) is either log(k) or 1.

The ondition C1 and C2 are mild and are satis�ed for a large variety of distri-

butions. In setion 3.2.3 we will take g to be a Gaussian density and πσ to be a

inverse gamma. Simple algebra shows that for this hoie of prior, both onditions

are satis�ed. C3 is a usual ondition when onsidering mixture models with ran-

dom number of omponents, see e.g. Rousseau (2010) and is satis�ed by Poisson

or Geometri distribution for instane. We then have the following ontrol on our

test:

Theorem 3.1. Under the assumptions C1 to C3, for a �xed onstant M0 > 0,
setting τ = τkn = M0{k log(n)n−1}1/2 and δπn the testing proedure de�ned in (3.4),

for all K > 0 then there exists some M > 0 suh that for all α ∈ (0, 1]

sup
f∈F(K)

E

n
f (δ

π
n) = o(1)

sup
f,d∞{f,F(K)}>ρ,f∈H(α,L)

E

n
f (1− δπn) = o(1)

(3.9)

for all ρ > ρn(α) = M{n/ log(n)}−α/(2α+1)vn where vn = 1 when L(k) = log(k)
and vn = {log(n)}1/2 when L(k) = 1.

Neither the prior nor the hyperparameters depends on the regularity α of the

regression funtion under the alternative. Moreover for all α ∈ (0, 1], the sepa-

ration rate ρn(α) is the minimax separation rate up to a log(n) term. Thus our

test is almost minimax adaptive. The log(n) term seems to follow from our def-

inition of the onsisteny where we do not �x a level for the Type I or Type II

error ontrariwise to the frequentist proedures. The onditions on the prior are

quite loose, and are satis�ed in a wide variety of ases. The onstant M0 does not

in�uene the asymptoti behaviour of our test but has a great in�uene in pratie

for �nite n. A way of hoosing M0 is given in setion 3.2.3.

The proof of Theorem 4.1 is given in Setion 3.5, we sketh here the main

ideas. We approximate the true regression funtion f0 in eah submodel Gk by

fω0,k that minimizes the Kullbak-Leibler divergene with f0. We have a lose

form expression for ω0 = (ω0
1, . . . , ω

0
k) given by

ω0
i = n−1

i

∑

j,j/n∈[(i−1)/k,i/k)

f0(j/n), ni = Card {j, j/n ∈ [(i− 1)/k, i/k)} (3.10)

thus fω0,k belongs to F for all k when f0 ∈ F . To prove the �rst part of (3.9), we

bound H(ω, k) ≤ 2max |ωi − ω0
i | if f0 ∈ F so that the threshold τkn needs to be
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as large as the posterior onentration rate of ω to ω0
in the misspei�ed model

Gk. Then to prove the seond part of (3.9) when ρ = ρn(α), we bound form below

H(ω, k) by H(ω0, k)−2max |ωi−ω0
i | whih implies a onstraint on the separation

rate of the test to ensure that uniformly over dn(f0,F) ≥ ρn(α) and f ∈ H(α, L)
we have H(ω, k) > τkn .

3.2.3 A hoie for the prior in the non informative ase

Conditions on the prior in Theorem 4.1 are satis�ed for a wide variety of distribu-

tions. However, when no further information is available, some spei� hoies an

ease the omputations and lead to good results in pratie. We present in this se-

tion suh a spei� hoie for the prior and a way to alibrate the hyperparameters.

We also �x γ0 = γ1 = 1/2 in the de�nition of δπn .

A pratial default hoie is the usual onjugate prior, given k, i.e. a Gaussian
prior on ω with variane proportional to σ2

and an Inverse Gamma prior on σ2
.

This will onsiderably aelerate the omputations as sampling under the posterior

is then straightforward. Condition (3.8) on πk is satis�ed by the two lassial

distributions on the number of parameters in a mixture model, namely the Poisson

distribution and the Geometri distribution. It seems that hoosing a Geometri

distribution is more appropriate as it is less spiked. We thus hoose

Π =





k ∼ Geom(λ)

σ2|k ∼ IG(a, b)

ωi|k, σ iid∼ N (m, σ2/µ)

(3.11)

Standard algebra leads to a lose form for the posterior distribution up to a nor-

malizing onstant. Reall that nj = Card {i, i/n ∈ [(j − 1)/k, j/k)}, we denote

b̃k = b+
1

2

k∑

j=1




∑

i,i/n∈Ij

(
Yi − Yj

)2
+

njµ

nj + µ
(Yj −m)2



 ,

where Yj is the empirial mean of the Yl on the set {l, l/n ∈ [(j − 1)/n, j/n)}, we
have

πk(k|Y n) ∝ π(k)b̃
−(α+n/2)
k µk/2

k∏

j=1

(nj + µ)−1/2

We an thus ompute the posterior distribution of k up to a onstant. To sample

from πk we use a random walk Hasting-Metropolis algorithm, see Robert and Casella
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(2004). We then ompute the posterior distribution of ω and σ given k

σ2|k, Y n ∼ IG(a+ n/2, b̃k)

ωj|k, σ2, Y n ind.∼ N
(
mµ+ nj Ȳj

nj + µ
,

σ2

nj + µ

)
.

Given k, sampling from the posterior is thus straightforward. We now propose

a way to alibrate the hyperparameters a, b, µ,m and M0.

We �rst propose a alibration for a, b,m, µ and λ. We hoose m to be the

empirial mean of the Yi. We then hose a and b suh that the prior on σ has a

�rst order moment and Eπ(σ
2) is of the same order as the empirial variane of

the data Y n
denoted σ̂2

y . We hoose a = σ̂2
y + 1 and b = σ̂4

y . We want the prior on

ω to be �at enough to reover large variations from the mean m. This is done by

hoosing the hyperparameter µ small. We also want the prior on k to be �at to

allow large values of k even for small samples sizes. It seems that µ and λ do not

have a great in�uene on the results when performing our test on simulated data.

We thus �x µ = 10−1
and λ = 10−1

.

Given these hoies for a, b,m, λ and µ, we alibrate M0 the onstant in τkn .
The hoie of M0 is ritial for small sample sizes. Given that �ats parts of the

funtions are the most di�ult to detet, espeially when k is large, we let M0

depend on k and alibrate it on simulated data from the ompletely �at funtion

f = 0 in order to get an upper bound for the type I error for �nite sample sizes.

We denote Y n
0 data generated from model (3.1) with f = 0 and noise level σ.

For all k we denote Z(Y n
0 , k) the posterior median of H(ω, k) given k i.e.

Z(Y n, k) = inf {z,Π{H(ω, k) > z|Y n
0 , k} ≥ 1/2} .

We then ompute for eah k, Mt(k) the 1− t quantile of Z(Y n, k). It is natural to
assume that the onstant M0 should be proportional to the noise level σ. Hene a
alibration for M0

M0 = Mt(k)σ
−1

{
n

k log(n)

}1/2

.

For eah k sampled from the posterior, we use simple Monte-Carlo approxima-

tion for Mt(k), based on 103 samples under the posterior to approximate Z(Y n
0 , k)

and 103 repliations of Y n
0 to approximate Mt(k).

3.3 Simulated Examples

In this setion we run our testing proedure on simulated data to study the be-

haviour of our test for �nite sample sizes. We hoose the prior distribution and
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alibrate the hyperparameters as exposed in setion 3.2.3. We onsider the follow-

ing nine funtions adapted from Baraud et al. (2003) and plot in Figure 3.2.

f1(x) =− 15(x− 0.5)3Ix≤1/2 − 0.3(x− 0.5) + e−250(x−0.25)2

f2(x) =0.15x

f3(x) =0.2e−50(x−0.5)2

f4(x) =− 0.5 cos(6πx)

f5(x) =− 0.2x+ f3(x)

f6(x) =− 0.2x+ f4(x)

f7(x) =− (1 + x) + 0.45e−50(x−0.5)2

f8(x) =− 0.5x2

f9(x) =0

(3.12)

The funtions f1 to f6 are learly not in F . The funtion f7 has a small bump
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Figure 3.2: Regression funtions used in the simulated example.

around x = 0.5 whih an be seen as a loal departure from monotoniity. This

funtion is thus expeted to be di�ult to detet for small datasets given our

parametrization. The funtion f9 is a ompletely �at funtion.
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Table 3.1: Perentage of rejetion for the simulated examples

f0 σ2 Barraud et

al. n = 100
Akakpo et

al. n = 100
Bayes Test, n :

100 250 500 1000 2500

H1

f1 0.01 99 99 97 100 100 100 100

f2 0.01 99 100 95 100 100 100 100

f3 0.01 99 98 100 100 100 100 100

f4 0.01 100 99 100 100 100 100 100

f5 0.004 99 99 100 100 100 100 100

f6 0.006 98 99 100 100 100 100 100

f7 0.01 76 68 97 100 100 100 100

H0
f8 0.01 - - 2 0 0 0 0

f9 0.01 - - 2 3 2 2 0

For several values of n, we generate N = 500 repliation of the data Y n =
{yi, i = 1, . . . , n} from model (3.1). For eah repliation we draw K = 5.103

iterations from the posterior distribution using a Hasting-Metropolis sampler with

a ompound Geometri proposal. More preisely, if ki−1 the state of our Markov

hain at the step i, we propose

kp
i = ki−1 + pi

where pi is suh that

|pi| ∼ Geom(0.3) + 1

P (pi < 0) = P (pi > 0) =
1

2

Given k we draw diretly σ2
and ω from the marginal posteriors. We then approx-

imate π
{
H(ω, k) > τkn |Y n

}
by the standard Monte Carlo estimate

π̂
{
H(ω, k) > τkn |Y n

}
=

1

K

K∑

i=1

I

{
H(ωi, ki) > τk

i

n

}

and rejet the null if π̂
{
H(ω, k) > τkn |Y n

}
> 1/2. The results are given in table 3.1.

For all the onsidered funtions, the omputational time is reasonable even for

large values of n. For instane, for f1, we require less than 45 seonds to perform the

test for n = 2500 using a simple Python sript available on the author's webpage.

For the models with regression funtion f1 to f7, we hoose the same residuals



68 CHAPTER 3. BAYESIAN TESTING FOR MONOTONICITY

variane as in Baraud et al. (2003), for the last two funtions, we hoose a variane

of 0.01 whih is of the same order. We observe that for the regression funtions f1
to f7, the test perform well and rejet monotoniity for almost all tested samples

even when n is small. The results obtained for n = 100 are omparable with those

obtained in Akakpo et al. (2014) and Baraud et al. (2003). For f7, our test outer
perform the frequentist proedures. Although the Bayesian approah does not �x

a level for the test, it appears that with our hyperparameter alibration, the Type

1 error is indeed less or equal to the level of 5% �xed for the frequentist tests.

3.4 Appliation to Global Warming data

We onsider the Global Warming dataset provided by Jones et al. (2011) plotted

in Figure 3.4. It ontains the annual temperatures anomalies from 1850 to 2010,

expressed in degrees Celius. Temperature anomaly is the departure from a long-

term average, here the 1961-1990 mean. The data are gathered from both land

and sea meteorologial stations and orreted for non limati error. In the litera-

ture, this dataset has been used to illustrate some isotoni regression tehniques in

Wu et al. (2001) and Zhao and Woodroofe (2012) where they use frequentist esti-

mation proedures under monotoniity onstraint. Alvarez and Dey (2009) show,

using a Bayesian monotoni hange point method, that there is a positive trend,

and that this trend tend to inrease of about .3◦C in the global annual temperature

between 1958 and 2000. Álvarez and Yohai (2012) show that the phenomenon of

global warming is due to a steady inrease trend phenomenon using a isotoni es-

timation methods. In our model, that would mean that the regression funtion f
should be positive inreasing and onvexe. In all these papers the data is supposed

to be a sequene of independent and identially distributes random variables. This

assumption is questionable (see Fomby and Vogelsang (2002)), but onsidering an-

nual temperature anomalies should redue the serial orrelation. Similarly to these

authors, we make the same assumption of independene. Our aim is to test if the

hypothesis of inreasing temperature anomaly is realisti, given the amount of in-

formation, using the method desribed in setion 3.1.1. In partiular, we hoose

the prior and the hyperparameters based on the rules desribed in setion 3.2.

We perform our test on this dataset (more preisely on minus the temperature

anomalies to test for monotone inreasing trend), hoosing the hyperparameters

as in setion 3.2.3. We run the MCMC sampler desribed above for K = 105 in

order to ompute Monte Carlo estimate of δπn . We obtained

π̂(H(ω, k) > τkn |Y n) = 0.98

and thus the hypothesis of monotony is ruled out by our proedure. We onlude

that applying a shape onstraint regression tehniques on the trend of this dataset
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an deteriorate the estimation results.

Figure 3.3: Plot of the Global Warming data

3.5 Proof of Theorem 3.1

Throughout the proof, we will denote by C generi onstants. Given that we

onsider K to be �xed, we will write F instead of F(K) to lighten notations. In

order to prove Theorem 4.1 we need some onentration results of the posterior

around the true regression funtion. The following Lemma provides a posterior

onentration rate when f0 is either in F or in H(α, L). The proof is given in

Setion 3.6 and is derived from Ghosal and van der Vaart (2007). Some adaptive

results are known for the Gaussian regression under some regularity assumptions,

the monotone ase has not been studied and thus this Lemma has an interest in

its own.

Let dn(·, ·) be de�ned as

dn(f, g)
2 = n−1

n∑

i=1

{f(i/n)− g(i/n)}2

and denote P n
0 the distribution of the Yi when f = f0 in (3.1).

Lemma 3.1. Let f0 be either in F or in H(α, L), and let π be de�ned as in

Theorem 4.1. Thus

EPn
0

[
Π{dn(fω,k − f0)

2 + (σ − σ0)
2 ≥ ǫ2n|Y n}

]
→ 0
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where ǫn = ǫn(F) = CK{n/ log(n)}−1/4
if f0 ∈ F , CK depending only on K and Π

and ǫn = ǫn(α) = CL{n/ log(n)}−α/(2α+1)
if f0 ∈ H(α, L), CL depending only on

L and Π.

The proof of this lemma is postponed to Setion 3.6. Given this result, we get

the following Lemma that enable us to derive onsisteny and an upper bound on

the separation rate.

Lemma 3.2. Let M be a positive onstant and ρn(α) = M{n/ log(n)}−α/(2α+1)
.

Let Π be as in Theorem 4.1 and ω0 be the minimizer of the Kulbak-Leibler diver-

gene KL(fω,k, f0). Then there exists a onstant A > 0 suh that

P n
0

{
Π
(
max

i
|ωi − ω0

i | ≥ Aξkn|Y n
)
≤ γ1

γ0 + γ1

}
→ 1. (3.13)

where ξkn = [{k log(n)}/n]1/2 for all �xed positive γ0 and γ1.

The proof of this lemma is postponed to Setion 3.6. Given the preeding

results, we derive (3.9).

We �rst prove onsisteny under H0. Let f0 ∈ F then

H(ω, k) ≤ 2max
i

|ωi − ω0
i |

and thus

P n
0

[
Π{H(ω, k) ≥ τkn |Yn} <

γ1
γ0 + γ1

]
→ 1

as soon as τkn ≥ 2Aξkn, whih gives the onsisteny under H0 given Lemma 3.2.

We now prove onsisteny under H1. Let f0 6∈ F and f0 ∈ H(α, L) we have

H(ω, k) ≥ H(ω0, k)− 2max
i

|ωi − ω0
i | (3.14)

Assume that ρn(α) < d∞(f0,F), we derive a lower bound for H(ω0, k). Let

g∗ be the monotone non inreasing pieewise onstant funtion on the partition

{[0, 1/k), . . . , [(k − 1)/k, 1)}, with for 1 ≤ i ≤ k, g∗i = minj≤i ω
0
j . Given that

d∞(fω0,k,F) = infg∈F d∞(fω0,k, g) we get

d∞(fω0,k,F) ≤ d∞(fω0,k, g
∗) ≤ H(ω0, k)

And therefore, given that d∞(f0,F) ≤ d∞(fω0,k,F) + d∞(fω0,k, f0)

Π
{
H(ω, k) < τkn |Yn

}
≤ Π

{
max

i
|ωi − ω0

i | ≥
ρn(α)− d∞(fω0,k, f0)− Cτkn

4
|Y n

}

The following Lemma states that for K0 a �xed positive onstant, the posterior

probability of k being greater that K0nρn(α)
2/ log(n) is less than a oPn

0
(1).
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Lemma 3.3. Let kn = nǫ2n/ log(n) if L(k) = log(k) and kn = nǫ2n if L(k) = 1
where ǫn is either ǫn(F) if f0 ∈ F or ǫn(α) if f0 ∈ H(α, L). For C1 a positive

onstant that my depend on K or L, let Kn = {k ≤ C1kn}. If Π is de�ne as in

Theorem 4.1 then

Π (Kc
n|Y n) ≤ oPn

0
(1) (3.15)

The proof is postponed to Setion 3.6

For k ∈ Kn and M large enough we have ρn(α)/4 > τkn . Denoting Bn =
{dn(fω,k, f0)2 + |σ0 − σ|2 ≤ ǫ2n}, Lemma 3.1 gives

Π(Bc
n|Yn) = oPn

0
(1).

On the set Bn ∩ Kn we have for M , the onstant in ρ(α) large enough ρn(α)/4 ≥
d∞(fω0,k, f0)

Π
{
H(ω, k) < τkn |Yn

}
≤ Π

[
{max

i
|ωi − ω0

i | ≥ ρn(α)/8} ∩ {Kn ∩ Bn}|Y n
]
+ oPn

0
(1).

Given (3.13), we get that for all f0 suh that dn(f0,F) > ρn(α)

P n
0

[
Π{H(ω, k) < τkn |Yn} <

γ0
γ0 + γ1

]
→ 1

whih ends the proof.

3.6 Proof of Lemmas 3.1, 3.2 and 3.3

3.6.1 Proof of Lemma 3.1

In this setion we prove that the posterior onentrate around f0, σ0 at the rate

(n/ log(n))−1/4
if f0 ∈ F and (n/ log(n))−α/(2α+1)

if f0 ∈ H(α, L). To do so we

follow the approah of Ghosal and van der Vaart (2007). Throughout the proof,

C will denote a generi onstant.

Let KL(f, g) =
∫
f log(f/g) be the Kullbak-Leibler divergene between the

two probability densities f and g. We de�ne V (f, g) =
∫
(log(f/g)−KL(f, g))2f .

We denote pi(ω, σ, k) the probability density with respet to the Lebesgue measure

of Yi = fω,k+ǫi when ǫi ∼ N (0, σ2) and pi,0 the true density of Yi, i.e. when f = f0.
We only onsider the ase where f ∈ F , a similar proof holds when f ∈ H(α, L).
We de�ne

Bn(ǫ) =

{
n∑

i=1

KL{pi(ω, σ, k}, pi,0) ≤ nǫ2,
n∑

i=1

V {pi(ω, σ, k), pi,0} ≤ nǫ2

}
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Here p(ω, σ, k) and p0 are Gaussian distributions, we an easily ompute

KL{pi(ω, σ, k), pi,0} =
1

2
log

(
σ2

σ2
0

)
− 1

2

(
1− σ2

0

σ2

)
+

1

2

{fω,k(xi)− f0(xi)}2
σ2

V {pi(ω, σ, k), pi,0} =
1

2

(
1− σ2

0

σ2

)2

+

[
σ2
0

σ2
{fω,k(xi)− f0(xi)}

]2

We have Bn(ǫn) ⊃ {d2n(fω,k, f0) ≤ Cǫ2n, |σ2 − σ2
0 |2 ≤ Cǫ2n}.

For f0 ∈ F , denoting ω0
j = n−1

j

∑
xi∈Ij f0(xi) and xj = inf(Ij), xj = sup(Ij) we

have

d2n(fω,k, f0) = d2n(f0, fω0,k) + d2n(fω,k, fω0,k)

and

d2n(f0, fω0,k) =
1

n

k∑

j=1

∑

xi∈Ij

{f0(xi)− fω0,k}2

≤ 1

n

k∑

j=1

nj{f0(xj)− f0(xj)}2

≤ C

k

[
k∑

j=1

{f0(xj)− f0(xj)}
]2

≤ C||f0||2∞
k

.

Denoting kn = C⌈||f0||2∞{n/ log(n)}1/2⌉ we dedue that Bn(ǫn) ⊃ {k = kn, ||ω −
ω0||2kn ≤ ǫ2n, |σ2 − σ2

0 | ≤ ǫ2n} where || · ||k is the standard Eulidean norm in R
k
i.e.

for a = (a1, . . . , ak) ∈ R
k

||a||2k = k−1
k∑

i=1

a2i .

We dedue that for a �xed positive onstant C0 that depends on ||f0||∞ ,

π{Bn(ǫn)} &

(
C inf

x∈[0,1]
[g{f0(x)}]ǫn

)kn

πσ(σ
2
0)ǫ

2
nπ(k = kn) ≥ e−C0nǫ2n. (3.16)

To end the proof of Lemma 3.1, the standard approah of Ghosal and van der Vaart

(2007) requires the existene of an exponentially onsistent sequene of tests. Their

Theorem 4 suited for independent observations relies on the fat that the set

{dn(fω,k, f0)2 + (σ − σ0)
2 ≥ ǫ2n} an be overed with Hellinger balls. Beause of the

unknown variane, this annot be done here, we thus use an alternative approah
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and to onstrut tests, and then apply Theorem 3 from Ghosal and van der Vaart

(2007).

Consider the sets Fk
j =

{
fω,k, σ; (jǫn)

2 ≤ dn(fω,k, f0)
2 + (σ − σ0)

2 ≤ ((j + 1)ǫn)
2}
.

There exists a onstant C > 0 suh that

Fk
j ⊂

{
||ω − ω0||k ≤ Cjǫn, |σ − σ0| ≤ Cjǫn

}
. (3.17)

To apply Theorem 3 of Ghosal and van der Vaart (2007), we onstrut tests fol-

lowing Choi and Shervish (2007).

For |σ−σ0| ≤ σ0/2. Simple algebra leads to an equivalene between (dn(f, f
′)2 + (σ − σ′)2)

1/2

and the Hellinger metri so that we an apply Lemma 2 of Ghosal and van der Vaart

(2007). Equation (3.17) implies that for all ξ > 0 there exist a ξǫn net of Fk
j on-

taining less than (Cj/ξ)k. We then have a test Ψ1 suh that

E

n
0 (Ψ1) ≤ e−Cj2nǫ2n; sup

Fk
j ∩{|σ−σ0|≤σ0/2}

Ef,σ(1−Ψ1) ≤ e−Cj2nǫ2n.

For σ > 3σ0/2 we onsider the test Ψ2 de�ned as

Ψ2 = I

{
n∑

i=1

(
Yi − f0(xi)

σ0

)2

> nc1

}
,

for a suitably hoosen onstant c1 > 0. Cherno� bound gives

E

n
0 (Ψ2) ≤ e−Cn.

If σ > 3σ0/2 and (f, σ) ∈ Fk
j , thus j > j0/ǫn for some j0 > 0. If Yi = f(xi) + σεi

where εi ∼ N (0, 1) then
∑n

i=1 ((Yi − f0(xi))/σ0)
2
follow a non entral χ2

n distri-

bution with non entrality parameter

∑n
i=1(f(xi)− f0(xi))

2/σ2 > 0. Thus setting
W ∼ χ2

n

Ef,σ(1−Ψ2) = Pf,σ

[
σ2

σ2
0

n∑

i=1

{
Yi − f0(xi)

σ

}2

≤ nc1

]
≤ pr

(
W ≤ 4

9
c1n

σ2
0

σ

)
.

Cherno� bound gives

Ef,σ(1−Ψ2) ≤ e−C2n.

Reall that we an onstrut a ξǫ-net for Fk
j with less that (Cj/ξ)k points. For

σ < σ0/2 we onsider the test Ψ
t
3 assoiated to f t ∈ Fk

j a point in the ξǫn net and

some suitably hosen 0 < c2 < 1 de�ned as

Ψt
3 = I

[
n∑

i=1

{
Yi − f t(xi)

σ0

}2

≤ c2n

]
.
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As before, given that under Pf0,σ0,

∑n
i=1 [{Yi − f t(xi)}/σ0]

2
follows a non en-

tral χ2
n distribution

E

n
0 (Ψ

t
3) = P0

[
n∑

i=1

{
Yi − f t(xi)

σ0

}2

≤ c2n

]
≤ pr(W ≤ c2n).

Given that the moment generating funtion of a non entral χ2
n distribution

with non entrality parameter∆ at point s is known to be (1−2s)n/2 exp{s∆2/(1−
2s)}, we have for all f, σ ∈ Fk

j ∩ {σ < σ0/2} suh that dn(f
t, f) ≤ ξǫn

Pf,σ

[
σ2

σ2
0

n∑

i=1

{
Yi − f t(xi)

σ

}2

≥ c2n

]

≤ exp

[
n

2

{
− log(1− 2s) +

1

σ2

2s

1− 2s
dn(f, f

t)2 − 2sc2
σ2
0

σ2

}]
.

For s small enough we have

2s

1− 2s
dn(f, f

t)2 ≤ 4sdn(f, f
t)2 ≤ 4sξ2ǫ2n ≤ 2sc2

σ2
0

σ2
.

Whih in turns gives for c′2 > 0 a �xed onstant

Ef,σ(1−Ψt
3) ≤ e−nc′2.

Taking Ψ3 = maxtΨ
t
3 we get a test suh that

E

n
0 (Ψ3) = o(1); sup

Fj
n∩{σ≤σ0/2}

Ef,σ(1−Ψ3) ≤ e−Cj2nǫ2n.

We onlude the proof by taking φn = max{Ψ1,Ψ2,Ψ3} as an exponentially on-

sistent sequene of tests and applying Theorem 3 of Ghosal and van der Vaart

(2007).

3.6.2 Proof of lemma 3.2

Let f0 either belong to F or to H(α, L) and ǫn represent either ǫn(F) if f0 ∈ F or

ǫn(α) if f0 ∈ H(α, L). We denote An = {(ω, σ, k), dn(fω,k, f0)2 + |σ − σ0|2 ≤ ǫ2n}
with ǫn as in Lemma 3.1. Thus π(Ac

n|Yn) = oPn
0
(1). We now derive an upper

bound for π(maxj |ωj − ω0
j | ≥ Aξkn|Yn, An). To do so, we look at the following
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deomposition for all kn ∈ N,

π(max
j

|ωj − ω0
j | ≥ Aξkn|Yn, An) ≤

∑

k≤kn

π(k|Yn, An)
k∑

j=1

∫
π(|ωj−ω0

j | ≥ Cξkn|Yn, An, k, σ)dπ(σ|Yn, An, k)+π(k > kn|Yn).

(3.18)

Given Lemma 3.3 we have, hoosing kn = C1nǫ
2
n a onstant C1 as in Lemma 3.3,

π(k > kn|Yn) = oPn
0
(1)

We now �nd an upper bound uniformly in σ over An for π(|ωj−ω0
j | ≥ Aξkn|Yn, An, k, σ).

We �rst denote Il(ω
0
j , σ0) = {lσ0ξ

k
n ≤ |ωj −ω0

j | ≤ (l+1)σ0ξ
k
n}. We have for l0 ≤ A

Π(|ωj − ω0
j | ≥ Aξkn|Yn, An, k, σ) ≤

∑

l≥l0

Π{Il(ω0
j , σ0)|Yn, An, k, σ}.

We then write

Π{Il(ω0
j , σ0)|Yn, An, k, σ} =

∫
Il(ω

0
j ,σ0)

el
σ
n(ω)−l

σ0
n (ω0)dΠ(ω)

∫
elσn(ω)−l

σ0
n (ω0)dΠ(ω)

,

where lσn(ω) = −n log(σ2)/2 − 1
2

∑n
i=1{Yi − fω,k(xi)}2/σ2

. Standard algebra leads

to

lσn(ω)− lσ0
n (ω0) = −1

2

k∑

j=1

(ωj − ω0
j )

2

σ2
+
∑

xi∈Ij

ǫi
σ0

σ2
(ωj − ω0

j ) + ∆(ǫ, σ, f0, k),

where ∆(ǫ, σ, f0, k) does not depend on ω and ǫi
iid∼ N (0, 1) under pn0 . We thus

dedue

Π{Il(ω0
j , σ0)|Yn, An, k, σ} =
∫
Il(ω

0
j ,σ0)

exp
{
−1

2
nj

(ωj−ω0
j )

2

σ2 +
∑

xi∈Ij (ǫi)
σ0

σ2 (ωj − ω0
j )
}
dΠ(ω)

∫
exp

{
−1

2
nj

(ωj−ω0
j )

2

σ2 +
∑

xi∈Ij(ǫi)
σ0

σ2 (ωj − ω0
j )
}
dΠ(ω)

=
Nk

n,j,l(σ)

Dk
n,j(σ)

We now prove that on a set E suh that P n
0 (E) = 1 + o(1) we have for (ǫi) ∈ E ,

We have an upper bound for Nk
n,j/D

k
n,j uniformly in σ ∈ An for all k ≤ kn.
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Let E =
{
∩k≤kn ∩k

j=1

{∣∣∣
∑

xi∈Ij ǫi

∣∣∣ ≤ ce
√

nj log(n)
}}

for some onstant absolute

onstant ce large enough. We ompute

pr(E c) ≤ 2

kn∑

k=2

k∑

j=1

pr


∑

xi∈Ij

ǫi > ce

√
nj log(n)


 ≤ 2

k2
n

nc2e
= o(1).

For (ǫi) ∈ E and uniformly in σ over An we ompute

Dk
n,j(σ) =

∫
exp



− nj

2σ2
(ωj − ω0

j )
2 +

σ0

σ2
(ωj − ω0

j )
∑

xi∈Ij

ǫi



 dπ(ωj)

≥
∫

|ωj−ω0
j |≤σ0ceξkn

exp

{
−nj(ωj − ω0

j )
2 − 2ce

σ0

σ2
nj |ωj − ω0

j |
√

log(n)

nj

}
dπ(ωj)

≥ e−3c2eσ
2
0nj(ξ

k
n)

2/(2σ2)Π(|ωj − ω0
j | ≤ σ0ceξ

k
n)

Similarly for (ǫi) ∈ E and uniformly in σ over An we have for l large enough

Nk
n,j,l(σ) ≤

∫

Il(ω
0
j ,σ0)

exp

{
−1

2
nj|ωj − ω0

j |
(
|ωj − ω0

j |
σ2

− σ0

σ2
ce

√
log(n)

nj

)}
dπ(ω)

≤ e−l2σ2
0nj(ξ

k
n)

2/(4σ2)Π{Il(ω0
j , σ0)}.

We thus have for (ǫi)i ∈ E , ǫ > 0 and l large enough, together with ondition

C2

Nk
n,j,l(σ)

Dk
n,j(σ)

≤ e−
1

2σ2 σ
2
0nj(ξ

k
n)

2(l/2−3ce)
Π{Il(ω0

j , σ0)}
Π(|ωj − ω0

j | ≤ σ0ceξkn)

≤ e−nj(ξ
k
n)

2l2
σ2
0

8σ2 ,

whih in turns gives an upper bound for Π(|ωj − ω0
j | ≥ Aξkn|Yn, An, k, σ)

Π(|ωj − ω0
j | ≥ Aξkn|Yn, An, k, σ) ≤

1

2
e−l0

σ2
0

8σ2 nj(ξ
k
n)

2

.

We thus dedue for C an absolute onstant

Π(max
1≤j≤k

|ωj − ω0
j | ≥ Aξkn|Yn) ≤ kne

−l0C log(n) + oPn
0
(1),

whih gives hoosing A large enough

P n
0

{
Π(max

1≤j≤k
|ωj − ω0

j | ≥ Aξkn|Yn) <
γ1

γ0 + γ1

}
→ 1.
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3.6.3 Proof of Lemma 3.3

Let be either kn = nǫ2n/ log(n) if L(k) = log(k) or kn = nǫ2n if L(k) = 1. Similarly

to before, we have π (Bn(ǫn)) ≥ e−nǫ2n
. We de�ne Nn and Dn suh that

π(Kc
n|Yn) =

∑
k∈Kc

n
π(k)

∫ p(ω,σ,k)
p0

(Y n)dΠ(ω, σ)
∑

k π(k)
∫ p(ω,σ,k)

p0
(Y n)dΠ(ω, σ)

=
Nn

Dn

Given Lemma 10 of Ghosal and van der Vaart (2007), we have

P n
0

(
Dn ≤ e−Cnǫ2n

)
= o(1)

Note also that

E

n
0 (Nn) =

∑

k∈Kc
n

π(k)

∫ ∫

Rn

p(ω, σ, k)

p0
(Y n)p0(Yn)dΠ(ω, σ)dY

n = π(k ≤ kn) ≤ ce−CuknL(kn)

Thus for C small enough we have

E

n
0 [Π (k ∈ Kc

n|Y n)] = E

n
0

[
Nn

Dn

I
Dn>e−Cnǫ2n

]
+ o(1)

≤ eCnǫ2nce−CuknL(kn) + o(1)

≤ o(1)

3.7 Disussion

In this hapter we propose a Bayesian approah to the problem of testing quali-

tative hypotheses in a nonparametri framework. More preisely we address the

problem of testing monotoniity of a regression funtion. This problem arise nat-

urally as shape onstraint models, and monotoniity in partiular, are fairly used

in pratie. Our approah is partiularly interesting as it fouses on a problem

where the Bayes Fator seems to give poor results and thus an alternative ap-

proah should be onsidered. The testing proedure proposed in this hapter is

a modi�ed version of the Bayes Fator that only rejet H0 when the data gives

strong evidene that the funtion is not monotone. When possible, one an hoose

a threshold based on prior information on the tolerane level to non monotony.

However, this ould be di�ult in pratie, we thus present a way to alibrate our

test suh that it behave well asymptotially. Interestingly this alibration leads to

the optimal separation rate (up to a log(n) term) and thus the tolerane indued

by our approah, and the fat that we test (3.3), Ha
0 versus Ha

1 , instead of (3.2),
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H0 versus H1, is of the same order as the lassial tests available in the literature.

It has the advantage of being very simple to implement even in presene of large

datasets. Although we have foused on monotoniity onstraints, other types of

shape onstraints suh as onvexity or unimodality an be dealt with using this

approah. For instane we an test for onvexity using pieewise linear funtions

as submodels Gk and test monotoniity of the slope.
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Chapter 4

Ill-posed inverse problems

�I may not be as stong as I think, but I know many triks

and I have resolution.�

� Ernest Hemingway, The old man and the sea.

Co-érit ave Bartek Knapik

Résumé

Nous proposons une méthode générale pour l'étude des problèmes inverses linéaires

mal-posés dans un adre bayésien. S'il existe de nombreux résultats sur les méth-

odes de régularisation et la vitesse de onvergene d'estimateurs lassiques, pour

l'estimation de fontions dans un problème inverse mal-posé, les vitesses de on-

entration d'a posteriori dans le adre bayésien n'a été que très peu étudié dans

e adre. De plus es quelques rares résultats existant ne onsidèrent que des

familles très limitées de lois a priori, en général reposant sur la déomposition en

valeurs singulières de l'opérateur onsidéré. Dans e hapitre nous proposons des

onditions générales sur la loi a priori sous lesquelles l'a posteriori se onentre à

une ertaine vitesse. Notre approhe nous permet de trouver les vitesses de on-

entration de l'a posteriori pour de nombreux modèles et de larges lasses de loi a

priori. Cette approhe est de plus partiulièrement intéressante ar elle permet de

mieux omprendre le fontionnement de la loi a posteriori et notamment l'impat

de l'opérateur sur l'inférene.

81
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4.1 Introdution

Statistial approahes to inverse problems have been initiated in the 1960's and

sine then many estimation methods have been developed. Inverse problems arise

naturally when one only has indiret observations of the objet of interest. Math-

ematially speaking this phenomenon is easily modelled by the introdution of an

operator K suh that the observation at hand omes from the model

Y n ∼ P n
Kf , (4.1)

where f is the objet of interest and is assumed to belong to a parameter spae F .

In many appliations the operator K is assumed to be injetive. However, in the

most interesting ases its inverse is not ontinuous, thus the parameter of interest

f annot be reonstruted by a simple inversion of the operator. Suh problems

are said to be ill-posed. Several methods dealing with the disontinuity of the

inverse operator have been proposed in the literature. The most famous one is to

ondut the inferene while imposing some regularity onstraints on the parameter

of interest f . These so-alled regularisation methods have been widely studied in

the literature both from a theoretial and applied perspetive (see Engl et al.,

1996, for a review).

Bayesian approah to inverse problems is therefore partiularly interesting, as

it is well known that putting a prior distribution on the parameter yields a natural

regularisation. This property of the Bayesian approah is partiularly interesting

for model hoie, but it has proved also useful in many estimation proedures, as

shown in Rousseau and Mengersen (2011) in the ase of over�tted mixtures models

or to nonparametri models where regularizatino is neessary as in Castillo (2013)

or Salomond (2013) in the semiparametri problem of estimating a monotone den-

sity at the boundaries of its support. Here we study the asymptoti behaviour

of the posterior distribution under the frequentist assumptions that the data Y n

are generated from model (4.1) for some true parameter f0. In partiular we are

interested in the rate at whih the posterior onentrate around f0. Asymptoti

properties of the posterior distribution have reeived a growing interest in the liter-

ature. Knapik et al. (2011), Agapiou et al. (2013), and Florens and Simoni (2012)

were the �rst to study posterior onentration rates under onjugate prior in so-

alled mildly ill-posed setting. These were followed by two papers by Knapik et al.

(2013) and Agapiou et al. (2014), studying Bayesian approah to reovery of the

initial ondition for heat equation and related inverse problems. The paper by Ray

(2013) is the �rst study of the posterior onentration rates in the non-onjugate

setting. Considering non-onjugate prior is partiularly interesting as it allows

some additional �exibility of the model. However, the approah presented in Ray

(2013) is only valid for priors that are losely linked to the singular value deom-

position (SVD) of the operator. Moreover, in Ray (2013) several rate adaptive
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priors were onsidered. It should be noted, however, that some of the bounds on

ontration rates obtained in that paper are not optimal. Similar adaptive results,

in the onjugate mildly ill-posed setting, using empirial and hierarhial Bayes

approah were obtained in Knapik et al. (2012).

There is a rih literature on the problem of deriving posterior onentration rate

in the diret problem setting. Sine the seminal papers of Ghosal et al. (2000) and

Shen and Wasserman (2001), general onditions on the prior distribution for whih

the posterior onentrates at a ertain rate have been derived in various ases. In

partiular Ghosal and van der Vaart (2007) gives a series of onditions for non

independent and identially distributed data. However, suh results annot be

applied diretly to ill-posed inverse problems and to the authors best knowledge,

no equivalent of these results exists in the inverse problem literature. In this

work we try to �ll this gap. We �rst assume the existene of the ontration

result for the so-alled diret problem (that is reovery of Kf). Next, we impose

additional su�ient onditions on the prior suh that the posterior distribution for

the parameter of interest f onentrates at a given rate.

Consider an abstrat setting in whih the parameter spae F is an arbitrary

metrizable topologial vetor spae and let K be an injetive mapping K : F ∋
f 7→ Kf ∈ KF . Even if the problem is ill-posed there exist subsets Sn of KF
over whih the inverse of the operator an be ontrolled. For suitably well hosen

priors, these sets will apture most of the posterior mass, and we an thus easily

derive posterior onentration rate for f from posterior onentration rate for Kf
by a simple inversion of the operator. More preisely for d and dK some metris or

semi-metris on F and KF respetively and f0 a point in F , we want to derive the

smallest ball for the metri d on F ∩ Sn that ontains K−1{f, dK(Kf,Kf0) ≤ ǫ}
the image of a ball ofK(F∩Sn) for the metri dK by K−1

. This shows in partiular

that the hoie of Sn is ruial for our approah.

The rest of the paper is organised as follows: we present the main result in

Setion 4.2 and a general onstrution for the sets Sn in Setion 4.3. We then

apply our result for di�erent examples in the white noise and regression setting in

Setion 4.4.

4.2 General Theorem

Assume that the observations Y n
ome from model (4.1) and that P n

Kf admit

densities pnKf relative to a σ-�nite measure µn
. To avoid ompliated notations,

we drop the supersript n in the rest of the paper. Let F and KF be metri

spaes, and let d and dK denote metris on both spaes, respetively.

In this setion we present the main result of this paper whih gives an upper

bound on the posterior onentration rate under some general onditions on the
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prior. We will all the estimation of Kf given the observations Y the diret prob-

lem, and the estimation f given Y the inverse problem. The main idea is to ontrol

the hange of norms between dK and d. If the posterior distribution onentrates

around Kf0 for the metri dK at a ertain rate in the diret problem, applying the

hange of norms will give us an upper bound on the posterior onentration rate

for the metri d in the inverse problem. However, sine the problem is ill-posed

the hange of norms annot be ontrolled over the whole spae KF . A way to

ome around this problem is to only fous on a sequene of sets of high posterior

mass for whih the hange of norm is feasible. More preisely, for a set S ⊂ F ,

f0 ∈ F and a �xed δ > 0 we all the quantity

ω(S, f0, d, dK, δ) := sup
{
d(f, f0) : f ∈ S, dK(Kf,Kf0) ≤ δ

}
. (4.2)

the modulus of ontinuity. We note that in this de�nition we do not assume

f0 ∈ S. This is thus a loal version of the modulus of ontinuity onsidered in

Donoho and Liu (1991) or Ho�mann et al. (2013). On the one hand, the sets Sn

need to be big enough to apture most of the posterior mass. On the other hand,

one has to be able to ontrol the distane between the elements of Sn and f0, given
the distane between Kf and Kf0 is small. Sine the operator K is unbounded,

this suggests that the sets Sn annot be too big.

Theorem 4.1. Let ǫn → 0 and let Π the prior distribution on f be suh that

E0Π
(
Sc
n | Y n

)
→ 0, (4.3)

for some sequene of sets (Sn), Sn ⊂ F , and

E0Π
(
f : dK(Kf,Kf0) ≥ Mnǫn | Y n

)
→ 0,

for any Mn → ∞. Then

E0Π
(
f : d(f, f0) ≥ ω(Sn, f0, d, dK,Mnǫn) | Y n

)
→ 0.

Proof. By (4.3) and the de�nition of the modulus of ontinuity

Π
(
f : d(f, f0) ≥ ω(Sn, f0, d, dK,Mnǫn) | Y n

)

≤ Π
(
f ∈ Sn : d(f, f0) ≥ ω(Sn, f0, d, dK,Mnǫn) | Y n

)
+Π(Sc

n | Y n)

≤ Π
(
f ∈ Sn : dK(Kf,Kf0) ≥ Mnǫn | Y n

)
+ oP (1).

The interpretation of the theorem is the following: given a properly hosen se-

quene of sets Sn, the rate of posterior ontration in the diret problem restrited
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to the given sequene an be translated to the rate of posterior ontration in the

inverse setting. Here, the hoie of Sn is ruial as it is the prinipal omponent

in the ontrol of the hange of norm. In partiular, the onentration rate ǫn for

the diret problem may not be optimal, and still leads to an optimal onentra-

tion rate ω(Sn, f0, d, dK,Mnǫn) for the inverse problem with a well suited hoie of

Sn. As shown in Setion 4.4.1.2, this is the ase for instane when the posterior

distribution of Kf is very onentrated. We an then hoose Sn small enough so

that the hange of norms an be ontrolled very preisely.

To ontrol the posterior mass of the sets Sn we an usually alter the proofs of

ontration results for the diret problems. Here we present a standard argument

leading to (4.3). De�ne the usual Kullbak�Leibler neighborhoods by

Bn(Kf0, ǫ) =
{
f ∈ F : −

∫
pKf0 log

pKf

pKf0

dµ ≤ nǫ2,

∫
pKf0

(
log

pKf

pKf0

)2
dµ ≤ nǫ2,

}
, (4.4)

The following Lemma adapted from Ghosal and van der Vaart (2007) gives general

onditions on the prior suh that (4.3) is satis�ed.

Lemma 4.1 (Lemma 1 in Ghosal and van der Vaart, 2007). Let ǫn → 0 and let

(Sn) be a sequene of sets Sn ⊂ F . If Π is the prior distribution on f satisfying

Π(Sc
n)

Π(Bn(Kf0, ǫn))
. exp(−2nǫ2n),

then

E0Π
(
Sc
n | Y n

)
→ 0.

4.3 Modulus of ontinuity

In this setion we �rst present an example of the sequene of sets Sn, and later

present how the modulus of ontinuity for this sequene an be omputed in two

standard inverse problem settings. We now suppose that F and KF are separable

Hilbert spaes, denoted (H1, ‖ · ‖H1) and (H2, ‖ · ‖H2) respetively. We note that

the sets Sn resemble the sets Pn onsidered in Ray (2013).

As already noted, the operator K restrited to ertain subsets of the domain

H1 might have a �nite modulus of ontinuity de�ned in (4.2). Clearly, one wants

to onstrut a sequene of sets Sn that in a ertain sense approahes the full

domain H1. This is understood in terms of the remaining prior mass ondition in
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Theorem 4.1. Moreover, sine we do not require f0 to be in Sn, we need to be able

to ontrol the distane between f0 and Sn.

A natural guess is to onsider �nite-dimensional projetions of H1. In this

setion we go beyond this onept. To get some intuition, onsider the Fourier

basis of H1. The ill-posedness an be then viewed as too big an ampli�ation of

the high frequenies through the inverse of the operator K. Therefore, one wants

to ontrol the higher frequenies in the signal, and thus in the parameter f .
Sine H1 is a separable Hilbert spae, there exist an orthonormal basis (ei) and

eah element f ∈ H1 an be viewed as an element of ℓ2 and

‖f‖H1 =
∞∑

i=1

f 2
i .

For given sequenes kn → ∞ and ρn → 0, and a onstant c ≥ 0 we de�ne

Sn :=
{
f ∈ ℓ2 :

∑

i>kn

f 2
i ≤ cρ2n

}
. (4.5)

If the operator K is ompat, then the spetral deomposition of the self-

adjoint operator KTK : H1 → H1 provides a onvenient orthonormal basis. In the

ompat ase the operator KTK possesses ountably many positive eigenvalues κ2
i

and there is a orresponding orthonormal basis (ei) of H1 of eigenfuntions, and

the sequene (ẽi) de�ned by Kei = κiẽi forms an orthonormal onjugate basis of

the range of K in H2. Therefore, both f and Kf an be assoiated with sequenes

in ℓ2. Sine the problem is ill-posed when κi → 0, we an assume without loss of

generality that the sequene κi is dereasing.

Let kn, ρn, and c in the de�nition of Sn be �xed. Then for any g ∈ Sn

‖g‖2
H1

=
∞∑

i=1

g2i =
∑

i≤kn

g2i +
∑

i>kn

g2i

≤
∑

i≤kn

g2i + cρ2n =
∑

i≤kn

κ−2
i κ2

i g
2
i + cρ2n

≤ κ−2
kn

∑

i≤kn

κ2
i g

2
i + cρ2n ≤ κ−2

kn
‖Kg‖2

H2
+ cρ2n.

Let fn be the projetion of f0 on the �rst kn oordinates, i.e., fn,i = f0,i for
i ≤ kn and 0 otherwise. Moreover, we assume that f0 belongs to some smoothness

lass desribed by a dereasing sequene (si):

‖f0‖2s =
∞∑

i=1

s−2
i f 2

0,i < ∞.
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The usual Sobolev spae of regularity β is de�ned in that way with si = i−β
.

Therefore, we have

‖fn − f0‖H1 ≤ skn‖f0‖s, ‖Kfn −Kf0‖H2 ≤ sknκkn‖f0‖s.

Using the triangle inequality twie and keeping in mind that f−fn ∈ Sn we obtain

‖f − f0‖H1 ≤ ‖f − fn‖H1 + ‖fn − f0‖H1

≤ κ−1
kn
‖Kf −Kfn‖H2 +

√
cρn + skn‖f0‖s

≤ κ−1
kn

(
‖Kf −Kf0‖H2 + κknskn‖f0‖s

)
+
√
cρn + skn‖f0‖s

= κ−1
kn
‖Kf −Kf0‖H2 +

√
cρn + 2‖f0‖sskn.

We then �nd an upper bound for the modulus of ontinuity,

ω(Sn, f0, ‖ · ‖H1, ‖ · ‖H2, δ) . κ−1
kn
δ + ρn + skn. (4.6)

Remark 1. If c > 0, then f0 ∈ Sn for n large enough (depending on f0).

4.4 Some models

4.4.1 White noise

4.4.1.1 Mildly ill-posed problems

Our �rst example is based on the well-studied in�nite-dimensional normal mean

model. In the Bayesian ontext the problem of diret estimation of in�nitely many

means has been studied, among others, by Zhao (2000); Shen and Wasserman

(2001); Belitser and Ghosal (2003); Ghosal and van der Vaart (2007).

We onsider the white noise setting, where we observe an in�nite sequene

Y n = (Y1, Y2, . . .) satisfying

Yi = κifi +
1√
n
Zi, (4.7)

where C−1i−p ≤ κi ≤ Ci−p
for some p ≥ 0 and C ≥ 1, and Z1, Z2, . . . are indepen-

dent standard normal random variables. Let Kf denote the sequene κifi. In this

setting H1 = H2 = ℓ2, and the ℓ2-norm is denoted by ‖ · ‖.
Sine the κi's deay polynomially, the problem is mildly ill-posed. Suh prob-

lems are well studied in the frequentist literature, and we refer the reader to

Cavalier (2008) for a nie overview. There are also several papers on properties

of Bayes proedures for suh problems. The �rst studies of posterior ontration

in mildly ill-posed inverse problems were obtained by Knapik et al. (2011) and
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Agapiou et al. (2013). Later, Ray (2013) and Knapik et al. (2012) studied adap-

tive priors leading to the optimal minimax rate of ontration. Similar problem,

with a di�erent noise struture, has been studied by Florens and Simoni (2012).

We put a produt prior on f of the form

Π =

∞⊗

i=1

N(0, λi),

where λi = i−1−2α
, for some α > 0. Furthermore, the true parameter f0 is assumed

to belong to Sβ
for some β > 0:

Sβ =
{
f ∈ ℓ2 : ‖f‖2β :=

∑
f 2
i i

2β < ∞
}
. (4.8)

Therefore, ‖Kf0‖2β+p is �nite, the prior on f indues the prior on Kf suh that

(Kf)i ∼ N(0, λiκ
2
i ), and one an dedue from the results of Zhao (2000) and

Belitser and Ghosal (2003) that

sup
‖Kf0‖β+p≤R

E0Π
(
f : ‖Kf −Kf0‖ ≥ Mnn

− (α∧β)+p
1+2α+2p

∣∣ Y n
)
→ 0.

In order to apply Theorem 4.1 we need to onstrut the sequene of sets Sn

and verify ondition (4.3). We use the onstrution as in (4.5), and we verify the

remaining posterior mass ondition along the lines of Lemma 4.1.

Theorem 4.2. Suppose the true f0 belongs to Sβ
for β > 0. Then for every R > 0

and Mn → ∞

sup
‖f0‖β≤R

E0Π
(
f : ‖f − f0‖ ≥ Mnn

− (α∧β)
1+2α+2p

∣∣ Y n
)
→ 0.

Proof. We �rst note that if ‖f‖β ≤ R, then ‖Kf‖β+p ≤ CR. Next we verify the

ondition of Lemma 4.1. Let

kn = n
1

1+2α+2p , ρn = n− (α∧β)
1+2α+2p , ǫn = n− (α∧β)+p

1+2α+2p .

Note that

nǫ2n = n · n− 2(α∧β)+2p
1+2α+2p = n

1+2α−2(α∧β)
1+2α+2p = ǫ

− 1+2α−2(α∧β)
(α∧β)+p

n ,

hene Π(Bn(Kf0, ǫn)) & exp(−C2nǫ
2
n) by Lemma 4.3 uniformly over a Sobolev

ball of radius R, Sβ(R).
Note also that

ρ2nk
1+2α
n = n− 2(α∧β)

1+2α+2p · n 1+2α
1+2α+2p = n

1+2α−2(α∧β)
1+2α+2p = nǫ2n,
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and given c ≥ 2(1+2α)/α we have Π(Sc
n) ≤ exp(−(c/8)nǫ2n) by Lemma 4.2. Hene

Π(Sc
n)

Π(Bn(Kf0, ǫn))
. exp

(
−
( c
8
− C2

)
nǫ2n

)
,

uniformly over a ball of radius R. The ondition of Lemma 4.1 is veri�ed upon

hoosing c = 8(2 + C2) ∨ 2(1 + 2α)/α.

Finally, we note that (f. (4.6))

ω(Sn, f0, ‖ · ‖,‖ · ‖,Mnǫn)

. Mnn
p

1+2α+2p · n− (α∧β)+p
1+2α+2p + n− (α∧β)

1+2α+2p + n− β
1+2α+2p

. Mnn
− (α∧β)

1+2α+2p ,

whih ends the proof.

The upper bound on the posterior ontration rate in this theorem agrees with

the results of Knapik et al. (2011) and Proposition 3.5 in Ray (2013). One ould

obtain the rate of ontration exatly as in Knapik et al. (2011), that is with saled

priors. However, this would require a re�ned version of Lemma 4.3, and the rate

of posterior ontration for diret problem based on saled priors. We therefore

deided to set the saling τn ≡ 1 and refer to the existing results in Zhao (2000)

and Belitser and Ghosal (2003).

Our result on posterior ontration in the mildly ill-posed ase presented in

this setion is not too muh di�erent from Proposition 3.5 in Ray (2013). We

note three important di�erenes: in our approah we use the existing results on

posterior ontration in the diret problem, and the proofs of bounds on prior

mass of the sequene Sn and Kullbak�Leibler type neighborhoods are elementary.

Finally, our result is uniform over Sobolev balls of given radius.

Lemma 4.2. Let ρn be an arbitrary sequene tending to 0, c be an arbitrary on-

stant, and let the sequene kn → ∞ satisfy k2α
n ≥ 2(1 + 2α)/(αcρ2n). Then

Π(Sc
n) ≤ exp

(
− c

8
ρ2nk

1+2α
n

)
.

Proof. For W1,W2, . . . independent standard normal random variables

Π(Sc
n) = Pr

(∑

i>kn

λiW
2
i > cρ2n

)
.
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For some t > 0

Pr
(∑

i>kn

λiW
2
i > cρ2n

)

= Pr
(
exp
(
t
∑

i>kn

λiW
2
i

)
> exp(tcρ2n)

)
≤ exp(−tcρ2n)E exp

(
t
∑

i>kn

λiW
2
i

)

= exp(−tcρ2n)
∏

i>kn

E exp(tλiW
2
i ) = exp(−tcρ2n)

∏

i>kn

(1− 2tλi)
−1/2.

We �rst applied Markov's inequality, and later used properties of the moment

generating funtion. Here we additionally assume that 2tλi < 1 for i > kn.
We take the logarithm of the right-hand side of the previous display. Sine

log(1− y) ≥ −y/(1− y), we have

−tcρ2n+
∑

i>kn

log(1− 2tλi)
−1/2

= −tcρ2n −
1

2

∑

i>kn

log(1− 2tλi) ≤ −tcρ2n +
1

2

∑

i>kn

2tλi

1− 2tλi
.

We ontinue with the latter term, notiing that 1− 2tλi > 1− 2tk−1−2α
n for i > kn

1

2

∑

i>kn

2tλi

1− 2tλi

≤ t

1− 2tk−1−2α
n

∑

i>kn

i−1−2α.

Sine x−1−2α
is dereasing, we have that

∑

i>kn

i−1−2α ≤
∫ ∞

kn

x−1−2α dx+ k−1−2α
n =

k−2α
n

2α
+ k−1−2α

n ≤ k−2α
n

1 + 2α

2α
,

noting that kn > 1 for n large enough. Finally

−tcρ2n +
∑

i>kn

log(1− 2tλi)
−1/2 ≤ −tcρ2n +

1 + 2α

2α

t

1− 2tk−1−2α
n

k−2α
n .

Thus for t = k1+2α
n /4

Π(Sc
n) ≤ exp

(
− c

4
ρ2nk

1+2α
n +

1 + 2α

4α
kn

)
≤ exp

(
− c

8
ρ2nk

1+2α
n

)
,

sine k2α
n ≥ 2(1 + 2α)/(αcρ2n).

Lemma 4.3. Suppose f0 ∈ Sβ
. Then for every R > 0 there exist positive onstants

C1, C2 suh that for all ǫ ∈ (0, 1),

inf
‖f0‖β≤R

Π(Bn(Kf0, ǫ)) ≥ C1 exp
(
−C2ǫ

− 1+2α−2(α∧β)
(α∧β)+p

)
.
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Proof. This proof is adapted from Belitser and Ghosal (2003). Reall that in the

white noise model the ℓ2 balls and Kullbak�Leibler neighborhoods are equivalent.

By independene, for any N ,

Π
( ∞∑

i=1

(κifi − κif0,i)
2 ≤ ǫ2

)

≥ Π
( N∑

i=1

(κifi − κif0,i)
2 ≤ ǫ2/2

)
Π
( ∞∑

i=N+1

(κifi − κif0,i)
2 ≤ ǫ2/2

)
.

(4.9)

Also ∞∑

i=N+1

(κifi − κif0,i)
2 ≤ 2

∞∑

i=N+1

κ2
i f

2
i + 2

∞∑

i=N+1

κ2
i f

2
0,i. (4.10)

The seond sum in the display above is less than or equal to

2N−2β−2p

∞∑

i=N+1

i2βf 2
0,i ≤ 2N−2β−2p‖f0‖2β <

ǫ2

4
,

whenever N > N1 = (8‖f0‖2β)1/(2β+2p)ǫ−1/(β+p)
.

By Chebyshev's inequality, the �rst sum on the right-hand side of (4.10) is less

than ǫ2/4 with probability at least

1− 8

ǫ2

∞∑

i=N+1

EΠ(κ
2
i f

2
i ) = 1− 8

ǫ2

∞∑

i=N+1

i−1−2α−2p ≥ 1− 4

(α + p)N2(α+p)ǫ2
> 1/2

if N > N2 = (8/(α+ p))1/(2α+2p)ǫ−1/(α+p)
.

To bound the �rst term in (4.9) we apply Lemma 6.2 in Belitser and Ghosal

(2003) with ξi = κif0,i and δ2 = ǫ2/2. Note that

N∑

i=1

i1+2α+2pξ2i =
N∑

i=1

i1+2α+2p · i−2pf 2
0,i

=

N∑

i=1

i1+2α−2βf 2
0,ii

2β ≤ N (1+2α−2β)∧0‖f0‖2β.

Therefore,

Π
( N∑

i=1

(κifi−κif0,i)
2 ≤ ǫ2/2

)

≥ exp
(
−
(
1 + 2α + 2p+

log 2

2

)
N
)
exp
(
−N (1+2α−2β)∧0‖f0‖2β

)

× Pr
( N∑

i=1

V 2
i ≤ 2δ2N1+2α+2p

)
.
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The last term, by the entral limit theorem, is at least 1/4 if 2δ2N1+2α+2p > N and

N is large, that is, N > N3 = ǫ−1/(α+p)
and N > N4, where N4 does not depend

on f0. Choosing N = max{N1, N2, N3, N4} we obtain

Π(f : ‖Kf−Kf0‖ ≤ ǫ)

≥ 1

8
exp
(
−
(
1 + 2α+ 2p+

log 2

2

)
N
)
exp
(
−N (1+2α−2β)∧0‖f0‖2β

)
.

Consider α ≥ β. Then exp(−N) ≥ exp(−N (1+2α−2β)) so

Π(f : ‖Kf −Kf0‖ ≤ ǫ) ≥ 1

8
exp
(
−C3N

(1+2α−2β)
)
,

for some onstant C3 that depends only on α, β, p and ‖f0‖2β. Moreover, sine

ǫ < 1 and α ≥ β, N is dominated by ǫ−1/(β+p)
and we an write

Π(f : ‖Kf −Kf0‖ ≤ ǫ) ≥ 1

8
exp
(
−C4ǫ

− 1+2α−2β
β+p

)
,

where C4 depends on f0 again through ‖f0‖2β only.

Now onsider α < β. Similar arguments lead to

Π(f : ‖Kf −Kf0‖ ≤ ǫ) ≥ 1

8
exp
(
−C5ǫ

− 1
α+p

)
,

for some onstant C5 that depends only on α, β, p and ‖f0‖2β.

4.4.1.2 Severely and extremely ill-posed problems

In this setion we onsider the white noise setting with trunated Gaussian priors.

The main purpose of this part is to show that in some lasses of ill-posed problems

adaptation does not need to be ahieved simultaneously in both diret and indiret

problems. As a matter of fat, in this part the rates in the diret problem will

be muh (polynomially) slower than the optimal rates. This is mostly due to the

fat that we onsider in here severely and extremely ill-posed problems that yield

logarithmi rates of reovery. See also Knapik et al. (2013) and Agapiou et al.

(2014) for examples and referenes.

We again onsider the white noise setting, where we observe an in�nite sequene

Y n = (Y1, Y2, . . .) as in (4.7) where κi ≍ exp(−γip) for some p ≥ 1 and γ > 0. Let
Kf denote the sequene κifi, and the ℓ2-norm is denoted by ‖ · ‖. In this setting

H1 = H2 = ℓ2.
We �rst onsider estimation of Kf0 that will be later used to obtain the rate

of ontration of the posterior around f0. We put a produt prior on f of the form

Π =
kn⊗

i=1

N(0, λi),
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where λi = i−α exp(−ξip), for α ≥ 0, ξ > −2γ, and some kn → ∞. We hoose kn
solving 1 = nλi exp(−2γip) = ni−α exp(−(ξ + 2γ)ip). Using the Lambert funtion

W one an show that

kn =
( α

p(ξ + 2γ)
W
(
n

p
α
p(ξ + 2γ)

α

))1/p
=
( logn

ξ + 2γ
+O(log log n)

)1/p
, (4.11)

see also Lemma A.4. in Knapik et al. (2013). Note that in this ase we have

exp(kp
n) = (nk−α

n )1/(ξ+2γ)
, so we an avoid exponentiating kn. Therefore, we do not

have to speify the onstant in front of the log log n term in the de�nition of kn,
and we may assume that it is of the order (log n)1/p.

Note that the hyperparameters of the prior do not depend on f0, but only on

K, whih is known. For Sn as in (4.5) with kn as above and c = 0, the prior is

supported on Sn and the �rst ondition of Theorem 4.1 is trivially satis�ed.

Theorem 4.3. Suppose the true f0 belongs to Sβ
for β > 0. Then for every R > 0

and Mn → ∞

sup
‖f0‖β≤R

E0Π
(
f : ‖f − f0‖ ≥ Mn(log n)

−β/p
∣∣ Y n

)
→ 0.

Proof. Assume for brevity that we have the exat equality κi = exp(−γip). Dealing
with the general ase is straightforward, but makes the proofs somewhat lengthier.

Sine Yi|fi ∼ N(κifi, n
−1) and fi ∼ N(0, λi) for i ≤ kn, the posterior dis-

tribution (for Kf) an be written as (Kf)i|Y n ∼ N(
√
nti,nYi, si,n) for i ≤ kn,

where

si,n =
λiκ

2
i

1 + nλiκ
2
i

, ti,n =
nλ2

iκ
4
i

(1 + nλiκ
2
i )

2
.

Sine the posterior is Gaussian, we have

∫
‖Kf −Kf0‖2 dΠ(Kf |Y n) = ‖K̂f −Kf0‖2 +

∑

i≤kn

si,n, (4.12)

where K̂f denotes the posterior mean and an be rewritten as:

K̂f =
( nλiκ

2
i

1 + nλiκ2
i

Yi

)kn
i=1

=
( nλiκ

3
i f0,i

1 + nλiκ2
i

+

√
nλiκ

2
iZi

1 + nλiκ2
i

)kn
i=1

=: EK̂f + (
√

ti,nZi)
kn
i=1.

By Markov's inequality the left side of (4.12) is an upper bound to M2
nε

2
n

times the desired posterior probability. Therefore, in order to show that Π(f :
‖Kf −Kf0‖ ≥ Mnεn|Y n) goes to zero in probability, it su�es to show that the
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expetation (under the true f0) of the right hand side of (4.12) is bounded by a

multiple of ε2n. The last term is deterministi. As for the �rst term we have

E‖K̂f −Kf0‖2 = ‖EK̂f −Kf0‖2 +
∑

i≤kn

ti,n.

We also observe

‖EK̂f −Kf0‖2 =
∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
+
∑

i>kn

κ2
i f

2
0 .

We are interested in the asymptotis of the three sums

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ2
i )

2
+
∑

i>kn

κ2
i f

2
0,i,

∑

i≤kn

si,n,
∑

i≤kn

ti,n.

The following bounds are proven in Lemma 4.4:

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
+
∑

i>kn

κ2
i f

2
0,i . ‖f0‖2βn− 2γ

ξ+2γ (logn)−
2β
p
+ 2γα

p(ξ+2γ) ,

∑

i≤kn

si,n ≍
∑

i≤kn

ti,n ≍ n−1(log n)
1
p .

(4.13)

Therefore, the posterior ontration rate for the diret problem is given by

εn = (log n)
−β

p
+ γα

p(ξ+2γ)n− γ
ξ+2γ .

By (4.6) an upper bound for the modulus of ontinuity is given by

ω(Sn, f0, ‖ · ‖, ‖ · ‖,Mnǫn) . Mn exp(γk
p
n)ǫn + k−β

n

. Mnn
γ

ξ+2γ (log n)−
γα

p(ξ+2γ) ǫn + (logn)−
β
p

. Mn(log n)
−β

p , ,

whih ends the proof.

As already mentioned, this theorem, or rather its proof, shows that the adapta-

tion to the optimal rate does not need to be attained simultaneously in the diret

and in the inverse problem. The upper bound for the rate of ontration in the di-

ret problem is muh slower than the optimal rate of estimation of the analytially

smooth parameter Kf0, that is n
−1/2(log n)1/2p. This is presumably not surprising

sine the prior puts mass on analyti funtions, whereas the true f0 belongs to

the Sobolev lass. There is only one hoie of the parameters of the prior, namely
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ξ = 0 and α = β and the orresponding kn, leading to the optimal rate also in the

diret problem. This prior, however, depends on the true smoothness of f0.
On the other hand, regardless of the hoie of ξ and α we ahieve the optimal

minimax rate of ontration (log n)−β/p
for the inverse problem of estimating f0

(f. Knapik et al. (2013) or Agapiou et al. (2014) and referenes therein). We note

that other papers on Bayesian approah to severely and extremely ill-posed inverse

problems do not onsider trunated priors. In Knapik et al. (2013) the optimal

rate is ahieved for the priors with exponentially deaying or polynomially deaying

varianes (in the latter ase the speed of deay leading to optimal rate is losely

related to the regularity of the truth). Ray (2013) and Agapiou et al. (2014) obtain

similar results for the priors with polynomially deaying varianes. However, in

the former ase the rate for undersmoothing priors is worse than the rate obtained

in the other papers.

We end this setion with an auxiliary result used in the proof of the main result

of this setion.

Lemma 4.4. The inequalities in (4.13) hold.

Proof. Note that ti,n ≤ n−1
and si,n ≤ n−1

. Therefore, the last two sums in (4.13)

are bounded from above by n−1kn = n−1(log n)1/p.
As for the �rst term in the �rst sum in (4.13) we have

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
≤ n−2

∑

i≤kn

λ−2
i κ−2

i i−2βi2βf 2
0,i

= n−2
∑

i≤kn

i2(α−β) exp(2(ξ + γ)ip)i2βf 2
0,i,

and for kn large enough all terms i2(α−β) exp(2(ξ+γ)ip) are dominated by k
2(α−β)
n exp(2(ξ+

γ)kp
n), so

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
≤ n−2k2(α−β)

n exp(2(ξ + γ)kp
n)‖f0‖2β. (4.14)

As for the seond term in the �rst sum in (4.13) we note that

∑

i>kn

κ2
i f

2
0,i =

∑

i>kn

exp(−2γip)i−2βi2βf 2
0,i,

and sine exp(−2γip)i−2β
is monotone dereasing

∑

i>kn

κ2
i f

2
0,i ≤ exp(−2γkp

n)k
−2β
n ‖f0‖2β. (4.15)
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Reall that exp(kp
n) = (nk−α

n )1/(ξ+2γ)
and therefore we an rewrite the bounds

in (4.14) and (4.15) as

n−2k2(α−β)
n

(
nk−α

n

) 2(ξ+γ)
ξ+2γ = n− 2γ

ξ+2γ k
−2β+ 2γα

ξ+2γ
n ,

and

k−2β
n

(
nk−α

n

)− 2γ
ξ+2γ = n− 2γ

ξ+2γ k
−2β+ 2γα

ξ+2γ
n .

Finally, sine kn in this ase an be taken of the order (logn)1/p, we obtain the

desired upper bound.

4.4.2 Regression

We now onsider the inverse regression model with Gaussian residuals

Yi = (Kf)(xi) + σǫi, ǫi
iid∼ N (0, 1) (4.16)

where the ovariate xi ∈ R are �xed in a ovariate spae X . In the sequel, we

take either X = [0, 1] or X = R. In the following we onsider the noise level σ > 0
to be known although one ould also think of putting a prior on it and estimate it

in the diret model. In this setting, a ommon hoie for the metri d and dK is

d(f, g)2 = n−1

n∑

i=1

(f(xi)− g(xi))
2 = ||f − g||2n, dK(f, g) = d(Kf,Kg).

For f ∈ L2 we denote the standard L2 norm by

||f || =
(∫

f 2

)1/2

,

and for all k ∈ N
∗
, a ∈ R

k
we denote the usual Eulidean norm by

||a||k =
(

k∑

i=1

a2i

)1/2

There are many known results on onentration rate of the posterior distribution

for the diret model in this ase, see for instane Ghosal and van der Vaart (2007)

give some general onditions on the prior to ahieve a ertain rate. Posterior

onentration rate for inverse problems has not been onsidered in this setting.
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4.4.2.1 Numerial di�erentiation using spline prior

In this setion, we onsider the inverse regression problem (4.16) with the Volterra

operator de�ned for all measurable funtion f suh that

∫ 1

0
f < ∞ and x ∈ [0, 1]

as

Kf(x) =

∫ x

0

f(t)dt. (4.17)

This model is partiularly useful for numerial di�erentiation for instane and has

been well studied in the literature. In partiular, Cavalier (2008) shows that the

SVD basis for this problem is the Fourier basis and that the problem is mildly

ill-posed of degree 1. We will onsider a prior on f that is well suited for if the

true regression funtion f0 belongs to the Hölder spae H(β, L) for some β > 0.
That is f0 is β0 = ⌊β⌋ times di�erentiable and

||f0||β = sup
x 6=y

|f (β0)(x)− f (β0)(y)|
|x− y|β−β0

≤ L.

Sine Kf0 is (β0 + 1) times di�erentiable, it also holds that if f0 ∈ H(β, L) then
Kf ∈ H(β + 1, L).

Here we onstrut a prior on f by onsidering its deomposition onto a B-splines

basis. A de�nition of the B-spline basis an be found in De Boor (1978). For a

�xed positive integer q > 1 alled the degree of the basis, and a given partition

of [0, 1] in m subintervals of the form ((i − 1)/m, i/m], the spae of splines is

a olletion of funtion f(0, 1] → R that are q − 2 times di�erentiable and if

restrited to one of the sets ((i − 1)/m, i/m], are polynomial of degree at most

q. An interesting feature of the spae of splines is that it forms a J = m + q − 1
dimensional linear spae with the so alled B-spline basis denoted (B1,q, . . . , BJ,q).
Prior based on the deomposition of the funtion f in the B-spline basis of order

qhave been onsidered in the regression setting in Ghosal and van der Vaart (2007)

and Shen and Ghosal (2014) for instane and are ommonly used in pratie. Here

we onstrut a di�erent version of the prior that will prove to be useful to derive

onentration rate for the diret problem and the indiret problem. Let the prior

distribution on f be de�ned as

Π :





J ∼ ΠJ

a1, . . . aJ
iid∼ Πa,J

f(x) = J
∑J−1

j=1 (aj+1 − aj)Bj,q−1(x).

(4.18)

Given the de�nition of Bj,q in De Boor (1978), standard omputation gives

B′
j,q(x) = J (Bj,q−1(x)− Bj+1,q−1(x))
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whih in turns gives

Kf(x) =
J∑

j=1

ajBj,q(x).

This explains why we hoose a prior as in (4.18) as it leads to the usual spline prior

onKf . Note that the ondition thatKf(0) = 0 an be imposed by a spei� hoie

of nodes for the B-Splines basis (see De Boor, 1978, for more details). To ompute

the modulus of ontinuity for this model, we need to impose some onditions on

the design. Let Σq
n be a matrix de�ned by its oe�ients

(Σq
n)i,j =

1

n

n∑

l=1

Bi,q(xl)Bj,q(xl), i, j = 1, . . . , J

Similarly to Ghosal and van der Vaart (2007) we ask that the design points satisfy

the following onditions:

D1 for all v1 ∈ R
J

J−1||v1||2J ≍ v
′
1Σ

q
nv1

D2 for all v2 ∈ R
J−1

(J − 1)−1||v2||2J−1 ≍ v
′
2Σ

(q−1)
n v2

where a ≍ b means that for some onstants c, C > 0, ca ≤ b ≤ Ca. Condition

D1 is natural when onsidering B-splines priors in a regression setting, and both

onditions are satis�ed for a wide variety of designs. Consider for instane the

uniform design xi = i/n for i = 1, . . . , n. Then given Lemma 4.2 in Ghosal et al.

(2000), we get that for v1 ∈ R
J
, v2 ∈ R

J−1

||v1||2JJ−1 .
∥∥∥
∑J

j=1 v1,jBj,q

∥∥∥
2

. ||v1||2JJ−1

||v2||2J−1(J − 1)−1 .
∥∥∥
∑J−1

j=1 v2,jBj,q−1

∥∥∥
2

. ||v2||2J−1(J − 1)−1.

Where the onstants only depend on q. Furthermore we gave that

∥∥∥
J∑

j=1

v1,jBj,q

∥∥∥
2

= v
′
1Σ

q
nv1 +O

(
1

n

)
,

where the O(n−1) only depends on q. We get similar results

∥∥∥
J−1∑

j=1

v2,jBj,q−1

∥∥∥
2

= v
′
2Σ

q−1
n v2 +O

(
1

n

)
.
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Thus D1 and D2 are satis�ed for the uniform design for all J = o(n).
We now go on and derive onditions on the prior suh that the posterior on-

entrates at the minimax adaptive rate (up to a log(n) fator). Note that here the
prior distribution is neither onjugate nor depends on the SVD of the operator.

Theorem 4.4. Let Y n = (Y1, . . . , Yn) be a sample from (4.16) with X = [0, 1]
and Π be a prior of f as de�ned in (4.18). Suppose that ΠJ is suh that for some

onstants cd, cu > 0 and t ≥ 0, for all J > 1,

e−cdj log(j)
t ≤ ΠJ(j ≤ J ≤ 2j), ΠJ(J > j) . e−cuj log(j)t

(4.19)

and suppose that Πa,J is suh that for all a0 ∈ R
J
, ||a0||∞ ≤ H, there exists a

onstant c2 depending only on H suh that

Πa,J(||a− a0||J ≤ ǫ) ≥ e−c2J log(1/ǫ)
(4.20)

De�ne Θ(β, L,H) = {f ∈ H(β, L), ||f ||∞ ≤ H}. If the design (x1, . . . , xn)
satis�es onditions D1 and D2, then for all L and for all β ≤ q if f0 ∈ H(β, L)
there exits a onstant C > 0 that only depends on q, L, H and Π suh that

sup
β≤q−1

sup
f0∈Θ(β,L,H)

E0Π
(
||f − f0|| ≥ C (n)−β/(2β+3) log(n)3r|Y n

)
→ 0 (4.21)

with r = max{t, 1}(β + 1)/(2β + 3).

Conditions (4.19) is similar to the one onsidered in Shen and Ghosal (2014)

for instane, and is satis�ed by the Poisson or geometri distribution for instane.

Condition (4.20) is satis�ed for usual hoies of priors suh as produt of inde-

pendent distribution on the aj that admits a ontinuous density. Similar results

hold for funtions that are not uniformly bounded, with additional onditions on

the tails of Πa,J . This will only require additional omputation similar to those in

Shen and Ghosal (2014), and will thus not be treated here.

We �rst ompute an upper bound for the modulus of ontinuity. Given ondi-

tions D1 and D2 we get, denoting ∆(a) = (aj+1 − aj)j ∈ R
J−1

||f ||2n = J2∆(a)′Σq−1
n ∆(a)

. J2 1

J − 1
||∆(a)||2J−1

. J2 1

J − 1
||a||2J

. J2||Kf ||2n.

To apply Theorem 4.1, we �rst need to derive a onentration rate for Kf . Note
that in this ase we simply have a standard non parametri regression model with
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a spline prior. This model has been extensively studied in the literature as in

Ghosal and van der Vaart (2007) or de Jonge and van Zanten (2012) and we an

easily adapt their results to derive minimax adaptive onentration rates.

Lemma 4.5. Let Π be as in Theorem 4.4. Let Yn be sampled form model 4.16

with f = f0 and assume that f0 ∈ Θ(β, L,H) with β ≤ q − 1. Then there exists a

onstant C that only depends on H, L, Π, and q suh that

E0Π(||Kf −Kf0||n ≥ Cn−(β+1)/(2β+3) log(n)r|Yn) → 0

with r = max{t, 1}β/(2β + 1).

Similar results have been proved in Shen and Ghosal (2014), however the au-

thors do not give a diret proof of this Theorem. Here this lemma gives us diretly

the posterior onentration rate for the diret problem.

Proof. We prove Lemma 4.5 using Theorem 4 of Ghosal and van der Vaart (2007).

Let β ≤ q and f0 be in H(β, L) and set ǫn = Cn−(β+1)/(2β+3) log(n)r with r =
max{t, 1}β/(2β + 1). Set Jn := J0nǫ

2
n log(n)

−t
for a �xed onstant J0 > 0 and

onsider the sieves Sn de�ned by

Sn := {J ≤ Jn, a ∈ R
J}

We �rst ontrol the loal entropy funtion N(ǫ, {J, a ∈ Sn : ||Kf − Kf0|| ≤
ǫn}, ||.||n) by using the same reasoning as in the proof of Theorem 12 of Ghosal and van der Vaart

(2007) for all J ∈ Sn we get setting

log(N(ǫ, {J, a ∈ Sn : ||Kf −Kf0|| ≤ ǫn}, ||.||n)) ≤ nǫ2n.

The prior mass of the sieve is easily ontrolled using the ondition (4.19) as

Π(Sc
n) = ΠJ(J > Jn) ≤ e−cuJn log(Jn)t

We now need to ontrol the prior mass of Kullbak�Leiber neighbourhoods of Kf0.
Note that this ondition will also be useful to apply Lemma 4.1 and thus derive

the onentration rate for the diret problem. Let Bn(Kf0, ǫ) be de�ned as in (4.4)

Bn(Kf0, ǫ) =
{
f ∈ F : −

∫
pKf0 log

pKf

pKf0

dµ ≤ nǫ2,

∫
pKf0

(
log

pKf

pKf0

)2
dµ ≤ nǫ2,

}
,

Using the results of setion 7.3 of Ghosal and van der Vaart (2007), setting

J̃n = Jn log(n)
−r/β

we dedue that for some onstant c that only depends on σ

Bn(Kf0, ǫn) ⊃ {J̃n ≤ J ≤ 2J̃n, ||Kf −Kf0||2n ≤ cǫ2n}.
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Standard approximation results on splines gives that for all J there exists a se-

quene a0 = (a0,1, . . . , a0,J) suh that

||Kf0 −
J∑

j=1

a0,jBj,q||n ≤ J−β−1||Kf0||β ≤ J−β−1L.

Given ondition D1 on the design, we thus have that for a onstant c′ > 0 that

only depends on σ and L

Bn(Kf0, ǫn) ⊃ {J̃n ≤ J ≤ 2J̃n, ||a− a0||J̃n ≤ c′
√
J̃nǫn}.

We thus derive a lower bound on the prior mass of Kullbak-Leibler neighbourhood

of Kf0.

Π(Bn(Kf0, ǫn)) ≥ Π
(
J̃n ≤ J ≤ 2J̃n, ||a− ω0||n ≥ c′J̃1/2

n ǫn

)

≥ e−J̃n(cd log(J̃n)t+c2 log(J̃
−1/2
n ǫ−1

n )

We thus have for C2 > 0,

Π(Sc
n)

Π(Bn(Kf0, ǫn))
≤ e−C2Jn log(Jn)t , (4.22)

whih in turns, together with Theorem 4 of Ghosal and van der Vaart (2007) ends

the proof.

We now derive the posterior onentration rate of the posterior distribution for

the inverse problem. We now get an upper bound for the modulus of ontinuity,

for f ∈ Sn. Standard approximation results on splines (e.g. De Boor et al. (1978))

we have that for all J there exists a0 ∈ R
J
suh that

‖f0 −
J−1∑

j=1

(a0j+1 − a0j )(Bj,q−1)‖∞ ≤ (J − 1)−β‖f0‖∞

and

||Kf0 −
J∑

j=1

a0jBj,q||∞ ≤ J−β−1||Kf0||∞.

We thus dedue that for J ≥ 2,

||f − f0||n ≤ ||f − fa0 ||n + ||fa0 − f0||n
≤ CJ−1||Kf −Kfn||+ ||fa0 − f0||n
≤ CJ−1||Kf −Kf0||n + ||Kfa0 −Kf0||n + ||fa0 − f0||n
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We an thus dedue an upper bound for the modulus of ontinuity

ω(Sn, f0, || · ||n, || · ||n, δ) ≤ Jnδ

Applying Theorem 4.1 gives

E0Π(||f − f0||n ≥ Cn−β/(2β+3) log(n)q|Y n) → 0

for C > 0 a onstant that only depends on ||f0||∞, q ≥ 0 and Π.

4.4.2.2 Deonvolution using mixture priors

In this setion, we onsider model (4.16) where K is the onvolution operator in

R. This model is widely used in pratie, espeially when onsidering auxiliary

variables in a regression setting or for image de-blurring. For a onvolution kernel

λ ∈ L2(R) symmetri around 0, and for all f ∈ L2(R), we de�ne K as

Kf(x) = λ ∗ f(x)
∫

R

f(u)λ(x− u)du, ∀x ∈ R. (4.23)

To the authors best knowledge, theoretial properties of Bayesian nonparametri

approah has not been studied for this model. In this setting we onsider a mixture

type prior on f , and derive an upper bound for the posterior onentration rate.

Mixture priors are ommon in the Bayesian literature, Ghosal and van der Vaart

(2001), Ghosal and van der Vaart (2007) and Shen et al. (2013) onsider mixtures

of Gaussian kernels, Kruijer et al. (2010) onsider loation sale mixture and Rousseau

(2010) studied mixtures of betas. Nonetheless, sine they do not �t well into the

usual setting based on the SVD of the operator, mixture priors have not be on-

sidered in the literature for ill-posed inverse problems. In our ase, they proved

partiularly well suited for the deonvolution problem. Let Y n = (Y1, . . . , Yn) be
sampled from model (4.16) for a true regression funtion f0 ∈ L2(R) with X = R,

and assume that for cx > 0, for all i = 1, . . . , n, xi ∈ [−cx log(n), cx log(n)]. This
assumption is equivalent to tails onditions on the design distribution in the ran-

dom design setting. Our hoie of prior is well suited for f0 suh that for a β > 0,
f0 is in the Sobolev ball f0 ∈ Sβ(L). To avoid tehnialities, we will also assume

that f0 has �nite support, that we may hoose to be [0, 1] without loss of gener-
ality. Similar results should hold for funtion with support on R with additional

assumptions on the tails of f0 but are not treated here.

For a olletion of kernels Ψv that depend on a the parameter v, a positive inte-
ger J and a sequene of nodes (z1, . . . , zJ) we onsider the following deomposition

for the regression funtion f in model (4.16)

f(·) =
J∑

j=1

wjΨv(· − zj),
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where (w1, . . . , wJ) ∈ R
J
is a sequene of weight. We hoose Ψj proportional to a

Gaussian kernel of variane v2 and the uniform sequene of nodes zj = j/J for j
suh that j/J ∈ [−2cx log(n), 2cx log(n)]

Ψj,v(x) = Ψv(x− zj) =
1√
2πv2

e−
(x−j/J)2

2v2 ,

The hoie of a Gaussian kernel is fairly natural in the nonparametri literature. In

our spei� ase it will prove to be partiularly well suited. Their main advantage

here is that we an easily ompute Fourier transform of f and thus use the a similar

approah as in setion 4.3. We onsider the following prior distribution on f

Π :=





J ∼ ΠJ

v ∼ Πv

w1, . . . , wJ |J ∼ ⊗J
j=1N(0, 1)

(4.24)

We use a spei� Gaussian prior for the weight (w1, . . . , wJ) in order to use the

results on Reproduing Kernel Hilbert Spaes following de Jonge and van Zanten

(2010) to derive onentration rate for the diret problem. However our intu-

ition is that this results should holds for a more general lasses of prior but the

omputations would be more involved.

Following Fan (1991), we de�ne the degree of ill-posedness of the problem

through the Fourier transform of the onvolution kernel. For p > 0, we say that

the problem is mildly ill posed of degree p if there exists some onstants c, C > 0
suh that for λ̂ the Fourier transform of λ

λ̂(t) =

∫
λ(u)eitudu,

we have for |t| su�iently large

c|t|−p ≤ |λ̂(t)| ≤ C|t|−p, p ∈ N
∗

(4.25)

For all f0 ∈ Sβ(L), we have that Kf0 ∈ Sβ+p(L′) for L′ = LC. Under these ondi-
tions, the following Theorem gives an upper bound on the posterior onentration

rate.

Theorem 4.5. Let Y n = (Y1, . . . , Yn) be sampled from (4.16) with X = R and

assume that the design points (xi) are suh that (xi) ∈ [−c log(n), c log(n)]n. Let

f0 be suh that for β ∈ N
∗
and M > 0, f0 ∈ Sβ(L) with support on [0, 1] and

||f0||∞ ≤ M . Consider K to be as in (4.23) with λ satisfying (4.25). Let Π be a

prior distributions de�ned as in (4.24) with

ΠJ(J = j) ≍ j−s
(4.26a)

v−qe−
cd
v

log(1/v)r . Πv(v) . v−qe−
cu
v

log(1/v)r . (4.26b)
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Then there exists a onstant C and r that only depends on Π, L, K and M suh

that

E

n
0Π(||f − f0|| ≥ Cn−β/(2β+2p+1) log(n)r|Y n) → 0,

as n goes to ∞.

Note that here the prior does not depend on the regularity β of f0, we have the
adaptive minimax onentration rates for this problem. Note also that the prior

does not depends on the degree of ill-posedness either. It is thus well suited for

a wide variety of onvolution kernels. In partiular this an be useful when the

operator is only partially known, as in this ase the regularity of the prior may

not be aessible. However, this ase is beyond the sope of this artile. We prove

Theorem 4.5 by applying Theorem 4.1 together with Lemma 4.1. A �rst di�ulty

is to expliit the set Sn on whih we an ontrol the modulus of ontinuity. A

seond problem is to derive the posterior onentration rate for the diret problem,

given that here Kf is supported on the real line. de Jonge and van Zanten (2010)

derived the posterior onentration rate for Hölder smooth funtion with bounded

support. However, their results diretly extend to the ase of onvolution of Hölder

funtions with bounded support.

Proof. We �rst speify the set Sn for whih we an ontrol the modulus of onti-

nuity. Denoting f̂ the Fourier transform of f , for any sequene an going to in�nity

and In = [−an, an] we de�ne for a > 0

Sn =

{
f,

∫

In

|f̂(t)|2dt ≥ a

∫

Icn

|f̂(t)|2dt
}
. (4.27)

We ontrol the modulus of ontinuity ω(Sn, f0, || · ||, || · ||, δ) in a similar way as in

Setion 4.3. First onsider f ∈ Sn, we have denoting f̂n(·) = f̂(·)IIn(·)

||f ||2 = ||f̂ ||2

≤ (1 + a)||f̂n||2

. a2pn

∫

In

|f̂ |2|λ̂|2| . a2pn ||Kf ||2

Note that for f0 ∈ Sβ(L) we have for f0,n(x) =
∫
f̂0,n(t)e

−itxdt

||f0 − f0,n|| ≤ 2a−β
n L , ||Kf0 −Kf0,n|| ≤ 2a−(β+p)

n ,

whih in turns gives

ω(Sn, f0, || · ||, || · ||, δ) . apnδ + a−β
n . (4.28)
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We now ontrol the prior mass of Sc
n in order to apply Lemma 1. Denote by

ln = ⌊an/(2ΠJ)⌋, Ln = ⌈an/(2ΠJ)⌉, we have
∫

In

|f̂(t)|2dt ≥ 2πJ

∫ ln

−Ln

e−4π2t2v2

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ dt

= 2πJ
ln∑

l=−Ln

∫ l+1

l

e−4π2t2v2

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ dt

= 2πJ

∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣
ln∑

l=−Ln

e−4π2(t+l)2v2dt

≥ 2πJ
ln∑

l=−Ln

e−4π2(1+l)2v2
∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ dt

and similarly we get

∫

Icn

|f̂(t)|2dt ≤ 2πJ

∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣
−Ln∑

l=−∞
e−4π2(t+l)2v2 +

∞∑

l=ln

e−4π2(t+l)2v2dt

≤ 2πJ

( −Ln∑

l=−∞
e−4π2l2v2 +

∞∑

l=ln

e−4π2l2v2

)∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ .

We thus dedue that for an absolute onstant C,C ′ > 0

Π(Sc
n) ≤ Π(v ≤ J/an) . e−C′an log(an)

We now adapt the results of de Jonge and van Zanten (2010) to our setting in

order to get the ontrol of the posterior mass of the Kullbak-Leibler neighbour-

hoods of Kf0 and the posterior onentration rate for the diret problem. Follow-

ing their notations we havethat KΨv ∈ P∞, and thus the small ball probability

Π(||f ||∞ ≤ ǫ) an be ontroled by their Lemma 3.3. We extend their Lemma

3.5 to our setting. Note that with Lemma 9 of Sriiolo (2014), Lemma 3.4 of

de Jonge and van Zanten (2010) holds for the same Tα,v with α = β + p. Choos-
ing h to be as in the proof of Lemma 3.5 of de Jonge and van Zanten (2010) and

denoting ω0 = f0 ⋆ λ, we have

h(x) =
∑

j/J [−2cx log(n),2cx log(n)]

Tα,v(ω0)
1

Jv
Ψ

(
x− j/J

v

)
,

and thus dedue

||h||2HJ,v ≤ ||Tα,v(ω0)||22cx log(n).
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Using their deomposition (3.8), we ontrol |h(x) − Ψv ⋆ Tα,v(ω0)(x)| along the

same lines as in their omputations page 3312. We have

|h(x)−Ψv ⋆ Tα,v(ω0)(x)| ≤
∣∣∣∣∣h(x)−

∫ 2cx log(n)

−2cx log(n)

Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣∣

+

∣∣∣∣∣

∫ −2cx log(n)

−∞
Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣∣

+

∣∣∣∣
∫ ∞

2cx log(n)

Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣ (4.29)

The �rst display of (4.29) an be ontroled as in the proof of Lemma 3.5 of

de Jonge and van Zanten (2010). For the last two displays, we have

∣∣∣∣∣

∫ −2cx log(n)

−∞
Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣∣+
∣∣∣∣
∫ ∞

2cx log(n)

Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣

. ||Tα,v(ω0)||∞e−
c2x log(n)2

2v2 v−1.

Following the same proof of Theorem 2.2 of de Jonge and van Zanten (2010), we

get

E0Π(||Kf −Kf0|| ≥ Cn−(β+p)/(2β+2p+1) log(n)r0|Y n) → 0

and similarly to their equation (2.5) we get, with ǫn = n−(β+p)/(2β+2p+1) log(n)r0

Π(||Kf −Kf0|| ≤ ǫn) ≥ e−nǫ2n.

Choosing hoosing an = nǫ2n, together with Lemma 4.1 and Theorem 4.1, this gives

us the desired results.

4.5 Disussion

In this paper we propose a new approah to the problem of deriving posterior

onentration rates for linear ill-posed inverse problems. More preisely, we put

a prior on the parameter of interest f that naturally imposes the prior on Kf ,
leading to a ertain rate of ontration in the diret problem. Next, we onsider

a sequene of sets on whih the operator K possesses a ontinuous inverse. Then,

we impose additional onditions on the prior (or the posterior itself) under whih

the posterior onentrates at a ertain rate in the inverse problem setting.

This is a great advantage of the Bayesian approah in this setting as when

the posterior distribution is known to onentrate at a given rate in the diret
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problem, one only has to onsider subset of high prior mass for whih the norm

of the inverse of the operator may be handled. Our result seems to show that the

main di�ulty when onsidering linear inverse problems is to ontrol the hange of

norms form dK to d, whih is dealt here by onsidering the modulus of ontinuity

as introdued in Donoho and Liu (1991) and Ho�mann et al. (2013). It is also to

be noted that ontrariwise to existing methods, we do not require a Hilbertian

struture for the parameter spae, see for instane the example treated in Setion

4.4.2.1. This ould be partiularly useful when onsidering nonlinear operators,

and is of potential interest when onsidering the ase of partially known operators.

We reovered (a subset of) the existing results from Knapik et al. (2011),

Knapik et al. (2013), Agapiou et al. (2013), Agapiou et al. (2014), and Ray (2013).

Our approah should be viewed as a generalization of the ideas presented in the

latter paper. Furthermore, we were able to derive posterior onentration rates

for prior distributions that were not overed by the existing theory. In this sense,

the approah proposed in this paper is more general, and we believe more natural,

that the existing ones.
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