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Résumé

La re
her
he sur les méthodes bayésiennes non-paramétriques 
onnaît un essor


onsidérable depuis les vingt dernières années notamment depuis le développe-

ment d'algorithmes de simulation permettant leur mise en pratique. Il est don


né
essaire de 
omprendre, d'un point de vue théorique, le 
omportement de 
es

méthodes. Cette thèse présente di�érentes 
ontributions à l'analyse des propriétés

fréquentistes des méthodes bayésiennes non-paramétriques. Si se pla
er dans un


adre asymptotique peut paraître restri
tif de prime abord, 
ela permet néanmoins

d'appréhender le fon
tionnement des pro
édures bayésiennes dans des modèles ex-

trêmement 
omplexes. Cela permet notamment de déte
ter les aspe
ts de l'a priori

parti
ulièrement in�uents sur l'inferen
e. De nombreux résultats généraux ont été

obtenus dans 
e 
adre, 
ependant au fur et à mesure que les modèles deviennent

de plus en plus 
omplexes, de plus en plus réalistes, 
es derniers s'é
artent des

hypothèses 
lassiques et ne sont plus 
ouverts par la théorie existante. Outre

l'intérêt intrinsèque de l'étude d'un modèle spé
i�que ne satisfaisant pas les hy-

pothèses 
lassiques, 
ela permet aussi de mieux 
omprendre les mé
anismes qui

gouvernent le fon
tionnement des méthodes bayésiennes non-paramétriques.

Chapitre 1 L'introdu
tion présente le paradigme bayésien et l'appro
he bayési-

enne des problèmes non-paramétriques. Nous introduisons les propriétés

fréquentistes des méthodes bayésiennes et présentons leur importan
e dans

la 
ompréhension du 
omportement de la loi a posteriori. Nous présentons

ensuite les prin
ipaux modèles étudiés dans 
ette thèse, et les di�
ultés

posées par 
eux-
i pour l'étude de leurs propriétés asymptotiques.

Chapitre 2 Dans 
e 
hapitre, nous étudions la 
onsistan
e et la vitesse de 
on-


entration de la loi a posteriori dans le modèle de densité dé
roissante pour

di�érentes métriques. Ce modèle est parti
ulièrement intéressant 
ar les den-

sités dé
roissantes ont une représentation sous forme de mélange d'uniformes

et sont don
 un 
as parti
ulier de mélange pour lequel le support du noyau

dépend du paramètre. Dans 
e 
adre, les hypothèses 
lassiques né
essaires

pour la 
onsistan
e de la loi a posteriori ne sont pas véri�ées. Notamment la

loi a priori ne met pas su�samment de masse sur les voisinages de Kullba
k-
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iv RÉSUMÉ

Leibler du vrai paramètre, et une adaptation des méthodes usuelles est don


né
essaire. Pour deux familles d'a priori 
lassiques, nous prouvons que l'a

posteriori se 
on
entre à la vitesse minimaxe pour les pertes L1 et Hellinger.

Nous étudions ensuite la 
onsistan
e de la loi a posteriori de la densité pour

les pertes pon
tuelle et norme sup. Ces deux métriques sont en général di�-


iles à étudier 
ar elles ne peuvent être reliées à la divergen
e naturelle qu'est

la divergen
e de Kullba
k-Leibler. Pour 
es deux pertes, nous prouvons la


onsistan
e de l'a posteriori et donnons une borne supérieure pour la vitesse

de 
on
entration.

Chapitre 3 Nous proposons un test bayésien non paramétrique de dé
roissan
e

d'une fon
tion dans le modèle de régression gaussien. Dans 
e 
adre, outre

le fait que les deux hypothèses sont non-paramétriques, l'hypothèse nulle

est in
lue dans l'alternative. Il s'agit don
 d'un 
as de test parti
ulière-

ment di�
ile. En outre dans 
e 
as, l'appro
he usuelle par le fa
teur de

Bayes n'est pas 
onsistante. Nous proposons don
 une appro
he alternative

reprenant les idées d'approximation d'une hypothèse pon
tuelle par un in-

tervalle. Nous prouvons que pour une large famille de lois a priori, le test

proposé est 
onsistant et sépare les hypothèses à la vitesse minimaxe. De

plus notre pro
édure est fa
ile à implémenter et à mettre en ÷u vre. Nous

étudions ensuite son 
omportement sur des données simulées et 
omparons

les résultats ave
 les méthodes 
lassiques existantes dans la littérature. Pour


ha
un des 
as 
onsidérés, nous obtenons des résultats au moins aussi bons

que les méthodes existantes, et les surpassons pour un 
ertain nombre de 
as.

Chapitre 4 (
o-é
rit ave
 Bartek Knapik) Nous proposons une méthode générale

pour l'étude des problèmes inverses linéaires mal-posés dans un 
adre bayésien.

S'il existe de nombreux résultats sur les méthodes de régularisation et la

vitesse de 
onvergen
e d'estimateurs 
lassiques, pour l'estimation de fon
-

tions dans un problème inverse mal-posé, les vitesses de 
on
entration d'a

posteriori dans le 
adre bayésien n'a été que très peu étudié dans 
e 
adre. De

plus 
es quelques rares résultats existant ne 
onsidèrent que des familles très

limitées de lois a priori, en général reposant sur la dé
omposition en valeurs

singulières de l'opérateur 
onsidéré. Dans 
e 
hapitre nous proposons des


onditions générales sur la loi a priori sous lesquelles l'a posteriori se 
on-


entre à une 
ertaine vitesse. Notre appro
he nous permet de trouver les

vitesses de 
on
entration de l'a posteriori pour de nombreux modèles et de

larges 
lasses de loi a priori. Cette appro
he est de plus parti
ulièrement

intéressante 
ar elle permet de mieux 
omprendre le fon
tionnement de la loi

a posteriori et notamment l'impa
t de l'opérateur sur l'inféren
e.
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Summary

Resear
h on Bayesian nonparametri
 methods has re
eived a growing interest for

the past twenty years, espe
ially sin
e the development of powerful simulation al-

gorithms whi
h makes the implementation of 
omplex Bayesian methods possible.

From that point it is ne
essary to understand from a theoreti
al point of view

the behaviour of Bayesian nonparametri
 methods. This thesis presents various


ontributions to the study of frequentist properties of Bayesian nonparametri
 pro-


edures. Although studying these methods from an asymptoti
 angle may seems

restri
tive, it allows to grasp the operation of the Bayesian ma
hinery in extremely


omplex models. Furthermore, this approa
h is parti
ularly useful to dete
t the


hara
teristi
s of the prior that are strongly in�uential in the inferen
e. Many

general results have been proposed in the literature in this setting, however the

more 
omplex and realisti
 the models the further they get from the usual assump-

tions. Thus many models that are of great interest in pra
ti
e are not 
overed by

the general theory. If the study of a model that does not fall under the general

theory has an interest on its owns, it also allows for a better understanding of the

behaviour of Bayesian nonparametri
 methods in a general setting.

Chapter 1 The introdu
tion presents the Bayesian paradigm and the Bayesian

approa
h to nonparametri
 problems. We introdu
e frequentist properties

of Bayesian pro
edures and present their importan
e in the understanding

of the behaviour of the posterior distribution. We then present the di�erent

models studied in this manus
ript and the 
hallenge fa
ed in studying of

their asymptoti
 properties.

Chapter 2 In this 
hapter, we study 
onsisten
y and 
on
entration rates of the

posterior distribution under several metri
s in the monotone density model.

This model is parti
ularly interesting as monotone densities 
an be written

as a mixture of uniform kernels whi
h is a spe
ial 
ase of kernels for whi
h

the support depends on the parameter. In this 
ase the usual hypotheses re-

quired to derive posterior 
on
entration rate are not satis�ed. In parti
ular,

the prior distribution we 
onsider do not put positive mass on Kullba
k-

Leibler neighbourhoods of the true parameter and we thus have to adapt the

vii



viii SUMMARY

standard methods to get an upper bound on the posterior 
on
entration rate.

For two standard prior distributions, we prove that the posterior 
on
entrate

at the minimax rate for the L1 and the Hellinger losses. We then study 
on-

sisten
y of the posterior under the pointwise and supremum loss. These two

metri
s are in general di�
ult to study in the Bayesian framework as they

are not related to the Kullba
k-Leibler divergen
e whi
h is the natural semi-

metri
 in this setting. We however prove that the posterior is 
onsistent for

both losses and get an upper bound for the posterior 
on
entration rate.

Chapter 3 We propose a Bayesian nonparametri
 pro
edure to test for mono-

toni
ity in the regression setting. In this 
ase, not only the null and the

alternative hypotheses are nonparametri
, but one is embedded in the other

whi
h makes the testing problem parti
ularly di�
ult. In parti
ular the

Bayes-Fa
tor, whi
h is a usual Bayesian answer to testing problems, is not


onsistent under the null hypothesis. We propose an alternative approa
h

that relies on the ideas of approximating a point null hypothesis by shrinking

intervals. The proposed pro
edure is 
onsistent for a wide family of prior dis-

tributions and separate the hypotheses at the minimax rate. Furthermore,

our approa
h is easy to implement and does not require heavy 
omputations


ontrariwise to the existing pro
edures. We then study its behaviour on sim-

ulated data and for all the 
onsidered 
ases, our pro
edure does at least as

good as the 
lassi
al ones, and outperform them in some 
ases.

Chapter 4 (Joint work with Bartek Knapik) We propose a general approa
h to

study nonparametri
 ill-posed linear inverse problems in a Bayesian setting.

Although there is a wide literature on regularisation methods and 
onver-

gen
e of estimators in this setting, the posterior 
on
entration in a Bayesian

setting has not re
eived mu
h attention yet. Furthermore, the few existing

results only 
onsider very restri
ted families of prior distributions, mostly

related to the singular value de
omposition of the operator at hand. In

this 
hapter we give general 
onditions on the prior su
h that the posterior


on
entrates at a 
ertain rate. This approa
h allows us to derive asymptoti


results for various ill-posed inverse problems and wide families of priors. Fur-

thermore, this approa
h is parti
ularly interesting in the sense that it gives

some valuable insights on the behaviour of the posterior distribution in these

models and the impa
t on the operator on the inferen
e.
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Chapter 1

Introdu
tion

�Perhaps I should not have been a �sherman, he thought.

But that was the thing that I was born for.�

� Ernest Hemingway, The old man and the sea.

Résumé

L'introdu
tion présente le paradigme bayésien et l'appro
he bayésienne des prob-

lèmes non-paramétriques. Nous introduisons les propriétés fréquentistes des méth-

odes bayésiennes et présentons leur importan
e dans la 
ompréhension du 
om-

portement de la loi a posteriori. Nous présentons ensuite les prin
ipaux modèles

étudiés dans 
ette thèse, et les di�
ultés posées par 
eux-
i pour l'étude de leurs

propriétés asymptotiques.
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2 CHAPTER 1. INTRODUCTION

This introdu
tion presents the main 
on
epts 
ommon to the following 
hap-

ters, the statisti
al modeling and its Bayesian approa
h that we adopt in this thesis.

We pro
eed with a qui
k introdu
tion to nonparametri
 statisti
s and the 
onstru
-

tion of prior distributions in an in�nite dimensional spa
e, and we emphasize the

importan
e of frequentists properties of Bayesian nonparametri
 pro
edures. We

then present the di�erent statisti
al models studied in this manus
ript.

1.1 Bayesian nonparametri
 approa
hes

The main goal of statisti
s is to infer on a random phenomenon given observations.

The 
ore 
on
ept of statisti
s is probabilisti
 modelling, that is a mathemati
al

approximation of the random phenomenon at hand. In a statisti
al model, an

observation X on an observation spa
e X is assumed to be generated from a

probability distribution P that belongs to a model P. Usually this distribution

is 
hara
terized by a parameter θ in a parameter set Θ whi
h gives the sampling

model

{X , Pθ, θ ∈ Θ}.
The aim of statisti
s is then to infer, and make de
isions on the model, based

on the observed data. To model 
omplex data generating phenomenon, the pa-

rameter spa
e Θ may be very large and possibly in�nite dimensional. As often in

mathemati
al s
ien
es, it is interesting to delineate regions of statisti
al method-

ology, and modern mathemati
al statisti
s tends to di�erentiate Bayesian versus

frequentist methods, parametri
 versus nonparametri
 models. In this se
tion, we

de�ne Bayesian nonparametri
 models and underline their importan
e.

1.1.1 Bayesian modeling

Statisti
 models usually fall into either the frequentist paradigm or the Bayesian

one. The frequentist paradigm 
onsiders that the data are generated from a �xed

distribution Pθ0 asso
iated with the true parameter θ0. Let g be a fun
tion from

Θ to Ξ, su
h that one is interested in making inferen
e on g(θ0). Frequentist

statisti
ians look for statisti
s, that is fun
tions S : X 7→ Ξ that minimizes a risk

R(g(θ0), S(X)).

The risk is most of the time asso
iated with a metri
 or semi-metri
 d, or more

generaly any loss fun
tion, and 
an be rewritten

R(g(θ), S(X)) = Eθ0 [d(g(θ0), S(X))] ,

where Eθ is the expe
tation with respe
t to Pθ.
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In the Bayesian paradigm, one models the ignoran
e on the parameter θ through
a probability distribution Π based on prior beliefs (the prior distribution). An

extensive introdu
tion to Bayesian statisti
s 
an be found in Robert (2007). A

Bayesian model is thus a sampling model

X ∼ Pθ, θ ∈ Θ

together with a prior model

θ ∼ Π

whi
h 
an be 
ombined through the Bayes' rules to get a probability distribution

of the parameter given the data 
alled the posterior distribution de�ned as for all

measurable A ⊂ Θ

Π(θ ∈ A|X) =

∫
A
Pθ(X)Π(dθ)∫

Θ
Pθ(X)Π(dθ)

. (1.1)

It is the single obje
t on whi
h all inferen
e (e.g. estimation, testing, 
onstru
tion

of 
redible sets, et
.) is based.

The Bayesian approa
h to statisti
s has be
ome in
reasingly popular, espe-


ially sin
e the 1990's be
ause of the development of new sampling methods su
h

as Markov-Chains Monte-Carlo (MCMC) algorithms that makes sampling under

the posterior distribution feasible if not easy. Bayesian methods are now used in

a wide variety of domains, from biology to �nan
e and data analysts are more

and more attra
ted by its axiomati
 view of un
ertainty and its 
apa
ity to han-

dle 
omplex models, see Gelman et al. (2004) for instan
e. However, the fa
t that

some methods are 
alled Bayesian emphasizes the fa
t that there is still two philo-

sophi
al approa
hes to statisti
al modeling. When the parameter spa
e is �nite

dimensional, Bayesian and frequentist methods usually agree when the amount of

information grows. In parti
ular, under weak assumptions on the prior distribu-

tion, the so 
alled Bernstein-von-Mise Theorem, as presented in Le Cam and Yang

(2000), shows that Bayesian 
redible sets and frequentist 
on�den
e intervals are

asymptoti
ally equivalent. This result is parti
ularly important as it indi
ates that

Bayesian models with di�erent priors

1

will eventually agree when the amount of

information

2

grows, and will give a similar answer as frequentists ones.

1.1.2 Bayesian nonparametri
s

Nonparametri
 models are often de�ned as probabilisti
 models with massively

many parameters (see Müller and Mitra, 2013) or with an in�nite dimensional

1

With a slight abuse of notations, we may say prior for prior distributions when there is no


onfusion

2

We will 
all amount of information either the number of data points or the level of noise.
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parameter spa
e as in Ghosh and Ramamoorthi (2003). These models o�er more

�exibility than parametri
 methods but their mathemati
al 
omplexity is in general

more involved than for parametri
 methods.

A �rst problem in Bayesian nonparametri
s is to de�ne a probability distribu-

tion on an in�nite dimensional spa
e. Choosing a prior distribution is a key point

in of the Bayesian inferen
e, and going from prior knowledge to a prior distribution


an be 
hallenging. In parti
ular for in�nite dimensional parameter spa
es, assur-

ing that the prior distribution has a su�
iently large support is a di�
ult task, not

mentioning the di�
ulty to 
ompute the posterior distribution for su
h models.

A popular tool in the Bayesian nonparametri
 literature is the Diri
hlet pro
ess

introdu
ed by Ferguson (1974). The Diri
hlet pro
ess is a probability measures on

the set of probability measure and 
an be de�ned as follows:

De�nition 1.1 (Diri
hlet pro
ess, Ferguson, 1974). Let α be a non null �nite

measure on X . We say that P follows a Diri
hlet pro
ess DP (α), if for all k ∈ N
∗
,

all partition of measurable sets (B1, . . . , Bk) of X ,

(P (B1), . . . , P (Bk)) ∼ D(α(B1), . . . , α(Bk))

where D is the Diri
hlet distribution.

The Diri
hlet pro
esses have been proved to have a large weak support (see

Ferguson, 1973), whi
h is all distributions whose support is in
luded in the support

of the base measure α. Its hyperparameters are easily interpretable and it lead to

tra
table posteriors. Moreover Sethuraman (1994) showed that the Diri
hlet pro-


ess 
an be obtained in a 
onstru
tive way 
alled the sti
k breaking representation.

In addition, it opened the way to more �exible prior distributions on the set of

density fun
tions. Sin
e then many prior distributions on in�nite dimensional sets

have been proposed. For instan
e Antoniak (1974) introdu
ed mixtures of Diri
h-

let pro
ess in the 
ontext of probability densities estimation. Given a 
olle
tion of

kernels Kµ(·) depending on a parameter µ we de�ne the mixture

θ(·) =
∫

X
Kµ(·)dP (µ),

where P is a probability measure. Thus, 
hoosing a prior on P (e.g. a Diri
hlet

pro
ess prior) indu
es a prior on θ.
Many other priors have been proposed in the literature, general 
lasses of mix-

tures for the density model (Lo, 1984), hierar
hi
al Diri
hlet pro
esses (Teh et al.,

2006), Gaussian pro
esses (Lenk, 1991) among others. It is typi
ally di�
ult in

nonparametri
 settings to quantify the impa
t of a prior distribution on the pos-

terior inferen
e. If in the parametri
 
ase, the Bernstein-von-Mise theorem shows
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that when the amount of information in
reases, inferen
e based on di�erent pri-

ors will merge, it does not hold easily when the parameter spa
e is very large.

Dia
onis and Freedman (1986) showed that in some 
ases, Bayesian nonparamet-

ri
 pro
edures 
an lead to in
onsistent results (when the data are assume to be

sampled from a distribution Pθ0, the posterior distribution does not a

umulate

its mass around the true parameter). Some other examples show that even if the

posterior 
on
entrates its mass around the true parameter, the prior still in�uen
es

the rate at whi
h this 
on
entration o

urs.

1.2 Asymptoti
 properties of the posterior distri-

bution

Looking at the asymptoti
 behaviour of the posterior distribution helps under-

standing the impa
t of the prior on the posterior distribution. It is also important

to dete
t whi
h parts of the prior in�uen
e the most the posterior. In parti
ular,

some aspe
ts of the prior may remain when the amount of information grows to

in�nity and may thus be highly in�uential for small sample sizes for instan
e. We

now de�ne two main asymptoti
 properties of the posterior distribution studied in

this manus
ript, namely posterior 
onsisten
y and posterior 
on
entration rate.

1.2.1 Posterior 
onsisten
y

Consisten
y of the posterior distribution 
an be 
onsidered as a least requirement

for Bayesian nonparametri
 pro
edures. Dia
onis and Freedman (1986) proved

that in the 
ase of ex
hangeable data, 
onsisten
y of the posterior distribution is

equivalent to weak merging of posteriors asso
iated with di�erent proper prior dis-

tributions. This is parti
ularly interesting as, as argued before, it is often di�
ult

to go from prior knowledge on the parameter to a prior distribution, and two statis-

ti
ians 
ould 
ome with two di�erent priors. We give a more detailed de�nition of


onsisten
y of the posterior distribution, as presented in Ghosh and Ramamoorthi

(2003).

Let the observations X
n ∈ X n

be some random variables sampled from a

distribution P n
θ for θ ∈ Θ. Here n is 
onsidered to be a quanti�
ation of the

amount of information. Consider Π a prior probability distribution on Θ. We 
an

thus 
ompute the posterior distribution of θ denoted Π(·|Xn) (see (1.1)). Assume

that there exists an unknown parameter θ0 ∈ Θ su
h that the data are generated

from the true distribution P n
θ0
, and de�ne an ǫ-neighbourhood of θ0 asso
iated with

the loss fun
tion d

Bǫ(θ0) = {θ, d(θ, θ0) ≤ ǫ}.
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De�nition 1.2. The posterior distribution is said to be 
onsistent at θ0 for the

loss d if for any ǫ > 0, the posterior probability of Bǫ(θ0)

Π(Bǫ(θ0)|Xn) → 1

either in P n
θ0
probability or P∞

θ0
-almost surely.

A �rst result of Doob (1949) shows that when d is a metri
 and (Θ, d) is a

omplete separable spa
e, any posterior distribution is 
onsistent at θ0, Π-almost

surely, under some ergodi
ity 
onditions. This result is interesting but very weak as

it does not provides any information on the set of parameters at whi
h 
onsisten
y

holds.

A usual requirement for the posterior to be 
onsistent is that the prior puts pos-

itive mass on neighbourhoods of θ0. More pre
isely, if Pθ is absolutely 
ontinuous

with respe
t to Pθ0 , de�ne the Kullba
k-Leibler divergen
e as

KL(Pθ, Pθ0) =

∫
log

(
dPθ

dPθ0

)
dPθ,

one will require that Π(KL(Pθ, Pθ0) < ǫ) > 0 for all ǫ.
A se
ond 
ondition is that the model makes it possible to di�erentiates between

θ0 and parameters outside Bǫ(θ0). This 
an be formalized by the existen
e of a

sequen
e of tests of

H0 : θ = θ0, versus H1 : θ ∈ Bc
ǫ (θ0). (1.2)

We then de�ne an exponentially 
onsistent sequen
e of tests {φn(X
n)} as fol-

lows

De�nition 1.3. The sequen
e of tests {φn(X
n)} is exponentially 
onsistent for

testing (1.2) if there exists c > 0 su
h that for all n

Eθ0(φn(X
n)) . e−cn, sup

θ∈Bc
ǫ (θ0)

Eθ(1− φn(X
n)) . e−cn.

For independent identi
ally distributed observations X
n = (X1, . . . , Xn) where

the parameter of interest is the 
ommon density f with respe
t to a measure λ,
we thus have

f =
dPθ

dλ
, θn(Xn) =

n∏

i=1

θ(Xi),

hen
e, in this 
ase θ = f , S
hwartz (1965) gives general 
onditions on the model

to a
hieve 
onsisten
y. In this 
ase the Kullba
k-Leibler divergen
e between f and

f0 is

KL(f, f0) =

∫

X
f(x) log

(
f(x)

f0(x)

)
dx. (1.3)
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S
hwartz (1965) requires that the prior has positive mass on all ǫ-neighborhoods
for the Kullba
k-Leibler divergen
e for all ǫ > 0

Π (f : KL(f, f0) ≤ ǫ) > 0.

The truth f0 is then said to belong to the KL-support of the prior Π. This


ondition ensures that the support of the prior is large in the sense of the Kullba
-

Leibler divergen
e.

In the density setting, S
hwartz's Theorem then states:

Theorem 1.1 (S
hwartz (1965)). Let Π be a prior on Θ, and θ0 ∈ Θ su
h that

• θ0 is in the KL-support of Π
• there exists an exponentially 
onsistent sequen
e of tests for (1.2)

then Π(Bǫ(θ0)|Xn) → 1 P∞
θ0

almost surely.

Sin
e this result of S
hwartz, other types of results have been obtained, in many

di�erent settings, see for instan
e Walker and Hjort (2001), Walker (2003),Walker

(2004), Lijoi et al. (2007).

1.2.2 Posterior 
on
entration rate

A more re�ned asymptoti
 property is the posterior 
on
entration rate. Loosely

speaking, it is the rate at whi
h the ǫ-neighborhoods Bǫ(θ0) 
an shrink su
h that

the posterior probability of Bǫ(θ0) reminds 
lose to 1. To get a better understand-
ing of the impa
t of the prior on the posterior, we need to study sharper results

than mere 
onsisten
y. Some aspe
ts of the prior may in�uen
e signi�
antly the

posterior 
on
entration rate. They are thus likely to be highly in�uential for �nite

datasets and should thus be handled with 
are. We now give a pre
ise de�nition

of the posterior 
on
entration rate and present some general results proposed in

the literature.

De�nition 1.4. Let the observations X
n
be sampled from a distribution P n

θ0
with

θ0 ∈ Θ and let Π be a prior on Θ. A posterior 
on
entration rate at θ0 with respe
t
to a semimetri
 d on Θ is a sequen
e ǫn su
h that for all positive sequen
es Mn

going to in�nity

Π(θ, d(θ, θ0) ≤ Mnǫn|Xn) → 1,

in P n
θ0
probability as n goes to in�nity.

In their seminal papers Ghosal et al. (2000a) (see also Shen and Wasserman,

2001) proposed general 
onditions on the model to derive posterior 
on
entration
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rates in the density model (i.e. independent and identi
ally distributed observa-

tions X
n
) in a similar way S
hwartz (1965) did for 
onsisten
y. This idea has then

been extended to many other models, and other approa
hes have been proposed,

see for instan
e Ghosal and van der Vaart (2007). Their approa
h requires also

that the prior puts enough mass on shrinking Kullba
k-Leibler neighbourhoods of

the truth. However the neighbourhoods here are more restri
tive than the ones


onsidered for 
onsisten
y. De�ne the k-th 
entred Kullba
k-Leibler moment, if

dP n
θ is absolutely 
ontinuous with respe
t to dP n

θ0
,

Vk(P
n
θ , P

n
θ0
) =

∫

X

∣∣∣∣log
(
dP n

θ

dP n
θ0

)
−KL(P n

θ , P
n
θ0
)

∣∣∣∣
k

dPθ.

We then de�ne the following Kullba
k-Leibler neighborhood

Sn(θ0, ǫ, k) =
{
KL(P n

θ , P
n
θ0
) ≤ nǫ2, Vk(P

n
θ , P

n
θ0
) ≤ nǫ

}
.

As in S
hwartz's Theorem, Ghosal and van der Vaart (2007) also requires the exis-

ten
e of an exponentially 
onsistent sequen
e of tests, but instead of testing against

the 
omplement of the shrinking ball Bǫn(θ0), it is su�
ient to test against sets

Bj
n(θ0) = {θ ∈ Θn, jǫn ≤ d(θ, θ0) ≤ 2jǫn},

for any integer j ≥ J0 for some positive J0, where Θn is an in
reasing sequen
e of

sets that takes most of the prior mass of Π. Their Theorem is thus as follows:

Theorem 1.2 (Theorem 3 of Ghosal and van der Vaart (2007)). Let d be a semi-

metri
 on Θ and 
onsider a sequen
e ǫn su
h that ǫn → 0, nǫ2n → ∞ as n → ∞.

For k > 1, K > 0 and Θn ⊂ Θ, if there exists a sequen
e of tests φn su
h that for

J0 > 0, for every j ≥ J0

Eθ0φn → 0, sup
Bj

n(θ0)

(1− φn) ≤ e−Knj2ǫ2n, (1.4)

and if

Π(Bj
n(θ0))

Π(Sn(θ0, ǫn, k))
≤ eKnj2ǫ2n/2, (1.5)

then for every sequen
e Mn → ∞ we have

Π(θ ∈ Θn, d(θ, θ0) ≤ Mnǫn|Xn) → 1

in P n
θ0
-probability as n goes to in�nity.

A usual way of insuring the existen
e of tests in 
ondition (1.4), for well suited

semimetri
 d is to 
ontrol the 
overing number of the sets Bj
n(θ0). For instan
e

when the semimetri
 d is the Hellinger metri
, the well known results by Le Cam

(1986) or Le Cam and Yang (2000) insure the existen
e of su
h sequen
e of tests

under some entropy 
onditions.
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1.2.3 Minimax 
on
entration rates and adaptation

The 
on
entration rate's theory 
an be related to the 
lassi
al optimal 
onvergen
e

rate of estimators. Ghosal et al. (2000a) show in the 
ontext of density estimation,

that the posterior yields a point estimate that 
onverges at the same rate as the

posterior 
on
entration rate when the 
onsidered loss is bounded and 
onvex. It

thus makes sense to 
ompare frequentists and Bayesian approa
hes based on this

asymptoti
 property.

To study the asymptoti
 behaviour of the posterior distribution, we only 
on-

sider some subspa
e Θ0 of the parameter spa
e on whi
h the fun
tions are behaving

well. One of the most 
ommon 
riterion for studying optimality of an estimator

is the minimax risk de�ned by the minimum over all estimator of maximal risk of

this estimator. More pre
isely, if d is a semimetri
 on Θ, the minimax risk over

Θ0 ⊂ Θ is de�ned as (see Tsybakov, 2009)

Rn = inf
Tn

sup
θ∈Θ0

Eθ [d(Tn, θ)] ,

where the in�mum is taken over all estimators Tn. The minimax rate in Θ0 is thus

the sequen
e ǫn su
h that there exists a �xed positive 
onstant C with

lim sup
n→∞

ǫ−1
n Rn = C.

We say that a Bayesian pro
edure 
on
entrates at the minimax rate if the


on
entration rate of the posterior in the 
lass Θ0 is the minimax 
onvergen
e

rate. Many models (prior and sampling models) studied in the literature have

been proven to 
on
entrate at the minimax rate in Θ0. In parti
ular, in the

density model, nonparametri
 mixture models are known to 
on
entrate at the

minimax rate (up to a log fa
tor) over 
lasses of Hölder fun
tions for various types
of kernels, see Ghosal and van der Vaart (2001), Ghosal and van der Vaart (2007),

Shen et al. (2013) for Gaussian kernels, Kruijer et al. (2010) for lo
ation s
ale

mixtures or Rousseau (2010) for beta kernels. Many other types of priors have been

proven to lead to the minimax 
on
entration rate, van der Vaart and Van Zanten

(2008) proved minimax 
on
entration rates of the posterior for Gaussian pro
ess

priors, Ghosal and van der Vaart (2007) and Knapik et al. (2011) show minimax


on
entration rates for series expansions priors for regression and the white noise

model respe
tively, Arbel et al. (2013), ?, Belitser and Ghosal (2003) obtained

generi
 results for various sampling models.

The subspa
es Θ0 are restri
ted through regularity assumptions su
h as Sobolev

or Hölder smoothness, shape restri
tion, or spar
ity. These 
lasses of fun
tions are

in general indexed by a parameter, say β, that a

ounts for the level of regu-

larity or spar
ity. In general the posterior 
on
entration rate 
ru
ially depends
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on this parameter. However, it is often di�
ult to �x β a priori, it is thus nat-

ural to seek pro
edures that perform well over a wide variety of β values, say

β ∈ I. Su
h pro
edures are 
alled adaptive as they automati
ally adapt the 
on-


entration rate over the whole 
olle
tion of spa
es Θ0,β∈I . Frequentist adaptive

estimators have been well studied in the literature for the past three de
ades, see

for instan
e Efroimovi
h (1986), Polyak and Tsybakov (1990), or Tsybakov (2009)

for a review. From a Bayesian perspe
tive, adaptive pro
edures have be
ome

more and more popular, see Belitser and Ghosal (2003) for in�nite dimensional

Gaussian distributions, S
ri

iolo (2006) obtained adaptive rates in the density

model, van der Vaart and van Zanten (2009) 
onsidered Gaussian random �elds

priors, De Jonge et al. (2010) 
onsidered lo
ation s
ale mixtures. Other examples

of adaptive Bayesian pro
edures 
an be found in Rivoirard et al. (2012), Rousseau

(2010) or Arbel et al. (2013) for instan
e.

1.3 Nonparametri
 Bayesian testing

Another aspe
t of Bayesian nonparametri
 inferen
e that has been investigated in

this work is the so 
alled testing problem or model 
hoi
e. In this 
ase, one is not

interested in re
overing an unknown parameter θ but rather in taking a de
ision

on the parameter given the observations. This problem of testing in a Bayesian

framework is well known and 
an be dated ba
k to Lapla
e (1814). It 
an be

formalized as follows: let Θ0 and Θ1 be two distin
t subspa
es of the parameter

spa
e Θ, asso
iated with prior probability π0 and π1, one wants to infer whether

θ ∈ Θ0 versus θ ∈ Θ1, whi
h 
an be seen as the estimation of IΘ1(θ) as argued in

Robert (2007). Consider Π a prior distribution on Θ = Θ0 ∪Θ1. In this setting it

is natural to 
onsider the 0-1 loss with weights γ0, γ1 similar to the one proposed

by Neyman and Pearson (1938) whi
h is de�ned for a de
ision ϕ

L(θ, ϕ) =

{
γ0 if ϕ = 0 and IΘ0(θ) = 0

γ1 otherwise
.

The Bayesian solution to this problem (i.e. the minimizer of the Bayesian risk)

is then

ϕ(Xn) =

{
1 if Π(Θ1|Xn)/π1 ≥ γ0

γ0+γ1
Π(Θ0|Xn)/π0

0 otherwise

. (1.6)

To avoid the impa
t of Π(Θ0) and Π(θ1) or γ0 and γ1, one 
an equivalently de�ne

the Bayes-Fa
tor

B0,1 =
Π(Θ0|Xn)

Π(Θ1|Xn)
× π1

π0

.



1.4. CHALLENGING ASYMPTOTIC PROPERTIES 11

The testing pro
edure 
orresponds to reje
ting Θ0 if B0,1 is small but the Bayes-

Fa
tor provides more information than just a 0-1 answer. Standard thresholds

are given by Je�reys' s
ale. A test pro
edure based on the Bayes-Fa
tor B0,1 is

said to be 
onsistent if B0,1 goes to in�nity in P n
θ0
probability for all θ0 ∈ Θ0 and


onverges to 0 in P n
θ0
probability for all θ0 ∈ Θ1. Bayes-Fa
tors for nonparametri


goodness of �t test have been studied in term of their asymptoti
 properties in

the literature, see Dass and Lee (2004); M
Vinish et al. (2009); Rousseau (2007);

Rousseau and Choi (2012) for instan
e. When both hypotheses are nonparametri


and one is embedded in the other, the determination of Bayesian pro
edures that

have good asymptoti
 properties is di�
ult in general.

Similarly to the estimation problem, asymptoti
 properties of a Bayesian an-

swer to a testing problem are of great interest from both a theoreti
al and a

methodologi
al point of view sin
e inferen
e based on in
onsistent posteriors 
ould

be highly misleading. A similar requirement should also hold for testing pro
e-

dures. In this 
ontext, we will say that a pro
edure is 
onsistent if it gives the

right answer with probability that goes to 1 as the amount of information grows

to in�nity. More pre
isely, a testing pro
edure (1.6) is said to be 
onsistent for the

metri
 or semi-metri
 d, if for all ρ > 0

sup
θ∈Θ0

Eθ(ϕ(X
n)) = o(1), sup

d(θ,Θ0)>ρ

Eθ(1− ϕ(Xn)) = o(1). (1.7)

Similarly to the frequentist literature, we 
onsider here uniform 
onsisten
y, how-

ever this de�nition of 
onsisten
y slightly di�ers from the one usually 
onsidered

in the frequentist setting, as here we do not �x a level for the type I error of the

test. It is also interesting to study the 
ounterpart of the 
on
entration rate in

the testing problem namely the separation rate of the test. The separation rate is

de�ned as the smallest sequen
e ρ = ρn su
h that (1.7) is still valid. It indi
ates

how fast the test 
an di�erentiate both hypotheses. Similarly to the 
on
entration

rate, it also indi
ates whi
h part of the prior in�uen
es the Bayesian pro
edure

even asymptoti
ally. This is of great interest as it is well known that in testing

problems, the sensitivity to the prior is a major issue.

1.4 Challenging asymptoti
 properties of Bayesian

nonparametri
 pro
edures

We have seen that studying the asymptoti
 behaviour of the posterior distribution

is a major tool to understand the in�uen
e of the prior in the nonparametri


setting. We have also seen that there exists su�
ient 
onditions on the model under

whi
h the pro
edure is known to be 
onsistent and to have optimal asymptoti


behaviour. However, many statisti
al problems that are of interest in pra
ti
e
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do not fall under this general theory. These models present a new 
hallenge for

the Bayesian nonparametri
 
ommunity. In this se
tion we present two of these

problems namely the inferen
e under monotoni
ity 
onstraints and estimation in

linear ill-posed inverse problems.

1.4.1 Inferen
e under monotoni
ity 
onstraints

In many statisti
al problems, it is useful to impose some restri
tions on the pa-

rameter spa
e to be able to 
arry out the inferen
e. When modelling real world

situations, shape 
onstraints on the parameter of interest may appear naturally,

this is the 
ase for instan
e for drug response models or in survival analysis. Fur-

thermore, theses hypotheses are often easy to interpret, understand and explain


ompared to smoothness restri
tions for instan
e. Among di�erent shape 
on-

straints, monotoni
ity restri
tions have been fairly popular in the literature. In a

regression setting for instan
e, a monotoni
ity of a response is often granted from

physi
al of theoreti
al 
onsiderations. Shape 
onstraints inferen
e, and mono-

toni
ity in parti
ular 
an be dated ba
k to Brunk (1955) and most of the early

works on the subje
t 
an be found in Barlow et al. (1972). Sin
e then mono-

toni
ity 
onstraints have been used in many applied problems: in pharma
euti
al


ontext in Bornkamp and I
kstadt (2009), for survival analysis in Laslett (1982),

Neelon and Dunson (2004) studied monotone regression for trend analysis and

Dunson (2005) 
onsidered monotoni
ity 
onstraints on 
ount data. Many other

appli
ations 
an be found in Robertson et al. (1988).

In this se
tion, we present the two shape 
onstrained problems studied in this

thesis, namely the estimation of a density under monotoni
ity 
onstraints and

testing for monotoni
ity in a regression setting.

1.4.1.1 Monotone densities

Monotone densities are 
ommon in pra
ti
e, espe
ially in survival analysis. A �rst

study of monotone density 
an be imputed to Grenander (1956) who 
onsidered

the maximum likelihood estimator of a monotone density. Sin
e then many others

have been interested in estimating a unknown distribution under shape restri
tions.

Laslett (1982) 
onsiders the problem of estimating the distribution of 
ra
ks length

on a mine wall, Sun and Woodroofe (1996) present some appli
ation in astronomy

and renewal analysis among others. Using shape 
onstraints pro
edures will ensure

that the estimate follows this 
onstraints, whi
h 
ould be a requirement of the

analysis.

Sin
e Williamson (1956), it is known that a density is monotone non in
reasing

if and only if it is a mixture of uniform kernels. More pre
isely, let F be the set

of monotone non in
reasing densities on [0,∞), then for all f ∈ F there exists a
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probability distribution P su
h that

f(·) =
∫ ∞

0

I[0,θ](·)
θ

dP (θ). (1.8)

This mixture representation is parti
ularly interesting as it allows for inferen
e

based on the likelihood. Grenander (1956) showed that the maximum likelihood

estimator 
oin
ides with the �rst derivative of the least 
on
ave majorant of the


umulative distribution fun
tion. Its asymptoti
 properties were later studied in

Groeneboom (1985) under the L1 loss and Prakasa Rao (1970) studied the asymp-

toti
 behaviour of the maximum likelihood estimator evaluated at a �xed point

in the interior of the support. In Groeneboom (1989), it is shown that the mini-

max rate of 
onvergen
e for this problem is of the order of n−1/3
. This shows in

a way how monotoni
ity 
onstraints a
t as regularity 
onstraints as in this 
ase,

one obtains the same 
onvergen
e rate as for Lipshitz densities. Another sur-

prising aspe
t of monotone non in
reasing densities is that the evaluation of the

maximum likelihood estimator at the boundaries of the support leads to in
on-

sistent estimators. This problem has been studied in Sun and Woodroofe (1996)

and very pre
ise results on the behaviour of the maximum likelihood estimator

at 0 
an be found in Balabdaoui et al. (2011). More re
ently, Durot et al. (2012)

obtain some asymptoti
 results for the maximum likelihood estimator under the

supremum loss. In the Bayesian framework, monotone densities have been studied

in Brunner and Lo (1989) and Lo (1984). From a Bayesian point of view, the

mixture representation (1.8) leads naturally to a mixture type prior. Choosing a

prior model on P in representation (1.8) naturally indu
es a prior on F . This is

the approa
h 
onsidered in Brunner and Lo (1989). In Chapter 2 we 
onsider two

types of priors on P namely Diri
hlet pro
ess and �nite mixtures with a random

number of 
omponents. An interesting feature of these models is that the prior

does not put positive mass on the Kullba
k-Leibler neighborhood of the truth, and

thus 
ondition (1.5) will not hold and the standard approa
h based on the work

of Ghosal and van der Vaart (2007) 
annot be applied dire
tly. We prove that a

similar result holds when one only 
onsiders Kullba
k-Leibler neighbourhoods of

trun
ated versions of the densities

fn(·) =
f(·)I[0,xn]

F (xn)
, fθ0,n(·) =

fθ0(·)I[0,xn]

Fθ0(xn)
,

where xn is an in
reasing sequen
e and F is the 
umulative distribution fun
tion

of f . From this result, we prove that for both prior models, the posterior 
on
en-

trates at the minimax rate n−1/3
up to a log(n) term. We also study the asymptoti


properties of the posterior distribution of the density at a �xed point x of its sup-

port. This is typi
ally a di�
ult problem in general as Bayesian methods are in
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general well suited for losses that are related to the Kullba
k-Leibler divergen
e

(see Arbel et al., 2013; Ho�mann et al., 2013). In parti
ular, the usual approa
h

of Le Cam (1986) for 
onstru
ting exponentially 
onsistent sequen
e of tests does

not hold in this 
ase. However, we prove in Chapter 2 that for the 
onsidered

prior distribution the posterior distribution of f(x) is 
onsistent for every x in the

support of f , in
luding the boundaries. The fa
t that the posterior distribution

is 
onsistent at the boundaries of the support when the maximum likelihood es-

timator is not 
an be imputed to the penalization indu
ed by the prior. Another

interesting feature of our Bayesian approa
h is that the posterior is also 
onsistent

for the supremum loss over the whole support. Here again, the supremum loss

is not related to the Kullba
k-Leibler divergen
e, whi
h makes the 
onstru
tion

ofexponentially 
onsistent sequen
e of tests di�
ult.

1.4.1.2 Nonparametri
 test for monotoni
ity

Although there is a wide literature on the problem of estimating an unknown fun
-

tion under shape 
onstraints, an important question is whether it is appropriate

to impose a spe
i�
 shape 
onstraint. If it is, then the estimation pro
edures


ould in general be greatly improved by using a shape 
onstrained estimation

pro
edure. Conversely, imposing shape 
onstraints in an appropriate 
ase 
ould

lead to dramati
ally erroneous results. The problem of testing for monotoni
ity

has been widely studied in the frequentist literature. Bowman et al. (1998) intro-

du
ed a test for monotoni
ity in the regression setting base on the idea of 
riti
al

bandwidth introdu
ed in Silverman (1981). Hall and He
kman (2000) showed that

this pro
edure is highly sensitive to �at parts of the regression fun
tion, and pro-

posed another test pro
edure based on running gradient. Baraud et al. (2003),

Ghosal et al. (2000b) and Baraud et al. (2005)propose testing pro
edures in the

�xed design regression setting and the Gaussian white noise setting. Durot (2003)

and Akakpo et al. (2014) 
onsider a test that exploits the 
on
avity of a primi-

tive of a monotone fun
tion. A Bayesian approa
h to testing monotoni
ity in a

regression framework has been proposed in S
ott et al. (2013).

In Chapter 3, we 
onsider the nonparametri
 regression model

Yi = f(xi) + σǫi, ǫi
iid∼ N (0, 1), (1.9)

and we want to test

H0 : f ∈ F , versus H1 : f 6∈ F , (1.10)

for F be the set of monotone non in
reasing fun
tions on [0, 1].
A �rst di�
ulty in testing for monotoni
ity in a regression setting is that both

the null and the alternative hypotheses are nonparametri
. As a general rule when

using posterior probabilities for hypothesis testing, it is important to take into



1.4. CHALLENGING ASYMPTOTIC PROPERTIES 15

a

ount the sensitivity to the prior distribution. This is true for parametri
 models

but is 
riti
al for nonparametri
 ones as in that 
ase, as stated before, the prior 
an

still in�uen
e the posterior asymptoti
ally. A se
ond and probably more important

di�
ulty is the fa
t that when testing for monotoni
ity in a regression setting,

the null hypothesis is embedded in the alternative. This problem is 
ommon

in goodness of �t tests where one is interested in testing f = f0 versus f 6=
f0. This has been investigated in Dass and Lee (2004), Ghosal et al. (2008) or

M
Vinish et al. (2009) among others in the density setting, or Rousseau and Choi

(2012) in the regression problem. In this 
ase a main di�
ulty is that a parameter

in the null model 
an also be approximated by a parameter in the alternative

model. In fa
t it has been proved in Walker et al. (2004) that the Bayes-Fa
tor

will asymptoti
ally support the model with prior that satis�es the Kullba
k-Leibler

property, some additional 
onditions may be required when both priors do.

In the 
ase of testing for monotoni
ity, it seems that for a natural 
hoi
e of

prior, namely pie
ewise 
onstant fun
tions with random number of bins, the Bayes-

Fa
tor is not 
onsistent. We thus propose an alternative test that is asymptoti
ally

equivalent to testing for monotoni
ity using a similar idea as approximating a point

null hypothesis by a shrinking interval (see Rousseau, 2007). Denote by F the set

of monotone non in
reasing fun
tions with support [0, 1] and let d̃ be a metri
 or

a semi-metri
. Consider the test

Ha
0 : d̃(f,F) ≤ τ versus Ha

1 : d̃(f,F) ≥ τ (1.11)

where d̃(f,F) = infg∈F d̃(f, g) and τ is a given threshold. If τ de
reases toward 0,
both tests (1.10) and (1.11) are asymptoti
ally equivalent. We propose a 
alibra-

tion of the threshold τ , the Bayesian answer to the test (1.11) asso
iated with the

0-1 loss is 
onsistent for the initial problem of testing (1.10) and gives good results

in pra
ti
e 
ompared to the frequentist pro
edures. Furthermore, for a spe
i�



hoi
e of prior, the proposed Bayesian test is easy to implement whi
h is a great

advantage 
ompared to the existing methods.

We also study the separation rate of the test whi
h gives insights on the

e�
ien
y of the pro
edure. The adaptive minimax separation rates for testing

monotoni
ity has been derived in Baraud et al. (2005) and Dümbgen et al. (2001)

over Hölder alternatives. Under similar assumptions, we prove that our pro
edure

a
hieves the minimax separation rate up to a log(n) fa
tor.

1.4.2 Ill posed linear inverse problems

Another general 
lass of models that be
ame popular for statisti
al modelling

sin
e the 1960's is the so 
alled inverse problems. They appear naturally when one

only has a

ess to indire
t observations of the parameter of interest. This is the
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ase in many �elds of appli
ations: medi
al imaging (
omputerized tomography),

e
onometry (instrumental variables), radio astronomy (interferometry), astronomy

(blurred images of Hubble teles
ope) or seismology among many others. In the

statisti
al setting this is modelled by 
onsidering that the data arise from a prob-

ability distribution whose parameter has been transformed by a known operator

K that a
ts on the parameter spa
e. In most 
ases, we 
an assume that the trans-

formation K does not indu
e additional noise in the observations. The sampling

model is thus modi�ed to

X
n ∼ P n

Kθ, θ ∈ Θ. (1.12)

If the operator K 
an be inverted and if its inverse is 
ontinuous, then the gen-

eral theory applies and inferen
e on θ does not di�er from the usual framework.

However, in many 
ases, the inverse of the operator is not 
ontinuous. In this 
ase

the problem is 
alled ill-posed with respe
t to Hadamard's de�nition, as in this


ase a small noise in the data will be greatly ampli�ed in the inferen
e on θ. An
interesting 
lass of operators whi
h 
overs many appli
ations is the 
lass of linear

operators on Hilbert Spa
es. It is usually assumed that the operator K is 
ompa
t

and inje
tive and the Hilbert spa
es are separable.

Statisti
al approa
h to inverse problems has grown popular sin
e the standard

framework has been proposed in Tikhonov (1963). A usual toy example to study

su
h methods is the white noise model

X
n = Kθ + σ

W√
n
, (1.13)

where W is white noise and σ > 0 a varian
e parameter. In this example we 
an

easily grasp the di�
ulties at hand. In Chapter 4 we treat more general inverse

problems models of the form (1.12). In the following, we will re
all some features

of statisti
al inferen
e in inverse problems and illustrate it with model (1.13).

1.4.2.1 Singular value de
omposition

Consider K to be a 
ompa
t inje
tive linear operator between two Hilbert spa
es

{Θ, 〈·, ·〉θ} and {Ξ, 〈·, ·〉ξ}. For reading 
onvenien
e, we shall drop the subs
ript for

the inner produ
t when there is no 
onfusion. A usual approa
h to infer on θ is to

onsider its de
omposition in a basis of Θ. In the linear inverse problem setting,

a simple 
hoi
e for su
h basis would be the one that diagonalize the operator K.

More pre
isely, denote by K∗
the adjoint operator of K and suppose that the auto-

adjoint operator K∗K is 
ompa
t, then the spe
tral Theorem states that K∗K has

a 
omplete orthogonal system of eigenve
tors {ei} with 
orresponding eigenvalues

{bi}. We thus have for all θ ∈ Θ

K∗Kθ =
∞∑

i=1

bi〈θ, ei〉ei =
∞∑

i=1

κ2
i θiei, (1.14)
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where κi =
√
bi and θi = 〈θ, ei〉. In this 
ase we say that K admits a singular value

de
omposition (SVD) with singular values {κi} and singular basis {ei}. Inferring
on θ is thus equivalent to infer on the in�nite sequen
e {θi}. From the observations

X
n
from model (1.12), one 
an get an estimator η̂ of η = Kθ. Denoting {η̂i} its

proje
tion onto the SVD basis, a simple estimator θ̂ of θ is given by

θ̂i =
η̂i
κi
.

When the problem is ill-posed, sin
e {κi}, goes to 0, we see that the 
oe�
ients θi
will be over-estimated for large i.

To see this problem more 
learly, 
onsider the white noise example. By pro-

je
ting (1.13) onto the basis {ei} and sin
e W is a white noise, we 
an rewrite the

model as

xi = κiθi +
σ√
n
ǫi, ǫi ∼ N (0, 1), i = 1, 2, . . .

with xi = 〈x, ei〉. This sequen
e model has been a 
ornerstone in the study of

linear inverse problems, see for instan
e Donoho (1995); Cavalier and Tsybakov

(2002); Cavalier (2008). The 
ase where K is the identity operator (i.e. κi = 1
for all i) has been widely studied in the literature. From a Bayesian perspe
-

tive, this representation is highly interesting as in this 
ase, it is natural to 
on-

sider a prior on the sequen
e {θi}. These types of priors have been 
onsidered in

Ghosal and van der Vaart (2007) when K is the identity or Knapik et al. (2011)

or Agapiou et al. (2013) in the inverse problem setting. To infer on θ, we 
onsider
the transformed model

xiκ
−1
i = θi +

κ−1
i σ√
n

ǫi, i = 1, 2, . . . ,

whi
h redu
es the problem to estimating the mean of an in�nite Gaussian sequen
e.

Sin
e the problem is ill-posed, the sequen
e κ−1
i → ∞, hen
e the varian
e of the

noise blows up.

It appears from these 
onsiderations that the di�
ulty of an inverse problem


an be quanti�ed by the rate at whi
h the sequen
e {κ−1
i } goes to in�nity.

De�nition 1.5 (Ill-posedness). We de�ne the degree of ill-posedness of an inverse

problem as follows:

• We say that a problem is mildly ill-posed of degree p if the sequen
e of

singular values {κi} is su
h that there exist 
onstants 0 < Cd ≤ Cu < ∞
su
h that

Cdi
−p ≤ κi ≤ Cui

−p.
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• We say that a problem is severely ill-posed of degree p if the sequen
e of

singular values {κi} is su
h that there exist 
onstants 0 < Cd ≤ Cu < ∞ and

γ su
h that

Cde
−γip ≤ κi ≤ Cue

−γip .

Some generalized versions of the de�nition of ill-posedness of an operator have

been 
onsidered in the literature (see Ray, 2013, for instan
e), however for the sake

of simpli
ity, we will sti
k to this simple notion. The degree of ill-posedness greatly

in�uen
e the 
omplexity of a model. In parti
ular, the minimax 
onvergen
e rate

for these models strongly depends on it, together with smoothness assumptions on

Θ.

1.4.2.2 Examples of inverse problems

Even if for some operators the SVD is di�
ult to 
ompute, and thus the degree of

ill-posedness di�
ult to assess, there exists a series of 
lassi
al operators for whi
h

the form of the SVD is expli
it. Here we present some examples of ill-posed inverse

problems that have been extensively studied in the literature.

Numeri
al di�erentiation If the problem of numeri
al integration has been

well studied in pra
ti
e and is well understood from a theoreti
al point of view, it

turns out that the problem of numeri
al di�erentiation is mu
h more 
ompli
ated

even for simple 
lasses of fun
tions. The operator K is thus de�ned for all θ ∈
L2([0, 1]) by

Kθ(x) =

∫ x

0

θ(u)du, ∀x ∈ [0, 1].

The SVD is in this 
ase given by the Fourier basis {ej} and we easily obtain

Kθ =
∞∑

j=−∞
(2πij)−1〈θ, ej〉ej .

Thus the problem is mildly ill-posed of degree 1. We presented here the 
ase of one

time di�erentiation but similar results hold for the m time di�erentiation problem.

It is mildly ill-posed of degree m.

De
onvolution A 
ommon problem in image pro
essing is de
onvolution of a

signal. A parti
ular example is image deblurring for instan
e. A standard frame-

work is to 
onsider 
ir
ular de
onvolution, that is for θ and λ in L2([0, 1]) and
1-periodi
, the operator K is de�ned as

Kθ(x) = θ ⋆ λ(x) =

∫ 1

0

θ(u)λ(x− u)du, ∀x ∈ [0, 1].
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In this 
ase, one only has a

ess to a weighted average of f around the point x.
Standard algebra gives that the singular basis is here again the Fourier basis and

the singular values are the Fourier 
oe�
ients of the 
onvolution kernel λ.

1.4.2.3 Regularization methods

As stated before the di�
ulty in inferring on the unknown parameter in inverse

problems 
omes from the fa
t that the inverse of the operator K is not 
ontinuous

over the all Hilbert spa
e Ξ. A usual way to over
ome this problem is to 
onsider

regularization methods to obtain a sensible estimator for these models. We present

here two standard methods that are 
ommonly used in pra
ti
e. For a 
omplete

overview of regularization te
hniques, we refer to the monograph Engl et al. (1996).

Consider the general setting presented above, and 
onsider a �xed sequen
e

of weights w = {wi} and an estimator η̂ of η = Kθ. Ea
h sequen
e de�nes an

estimator of θ

θ̂i = wi
η̂i
κi
, θ̂ =

∞∑

i=1

θ̂iei.

For a general sequen
e w, this estimator behaves poorly, due to the fa
t that

for large i, κi will be very small and will overwhelm the signal in η̂i. The simplest


hoi
e for the weight sequen
e w to bypass this problem is the proje
tion sequen
e

wi = Ii≤N for some �xed threshold N . This regularization method is 
ommonly


alled spe
tral 
ut-o�. This 
alibration is rather rough as the weight only takes

values 0 or 1, furthermore it requires a �ne 
alibration of the bandwidth N .

Another approa
h is the 
elebrated Tikhonov regularization (Tikhonov and Arsenin,

1977) whi
h is based on �nding a minimizer of the data mis�ts while 
ontrolling

the regularity of the estimator. The estimator is then obtained by

θ̂ = argmin
θ
{||Kθ −X

n||2 + µ||θ||2},

where µ is a �xed tuning parameter. Here again the 
alibration of µ is 
ru
ial. In

parti
ular, an optimal 
alibration in the minimax sense - i.e. that would lead to the

minimax rate of 
onvergen
e - will 
ru
ially depend on the regularity assumptions

on θ and the ill-posedness of the problem. If it is 
ommon to assume that the

operator (and thus the degree of ill-posedness) is known, imposing a degree of

regularity to the fun
tion θ is a rather strong assumption. There exist data driven


alibrations of µ and N , however these are often di�
ult to study and will not be

presented here.

1.4.2.4 The Bayesian approa
h to ill posed inverse problems

The Bayesian approa
h for ill-posed inverse problems is thus fairly natural as it

is well known that putting a prior distribution on the unknown parameter often
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a
ts as a regularization. This property is parti
ularly useful in the model 
hoi
e

problem, but also for estimation as shown in ? in over�tted mixture models, or

in Castillo (2013) when re
ulariezation is needed. Some of the priors proposed

in the literature 
an be dire
tly linked to the usual regularization methods. For

instan
e the sieve prior presented in Ray (2013) 
orresponds the the spe
tral 
ut-

o� regularization. If the Bayesian approa
h to inverse problems has been put in

pra
ti
e (see for instan
e Orbanz and Buhmann, 2008), there is a dramati
al la
k

of theoreti
al results for these models, and the families of prior distributions for

whi
h theoreti
al results exist are very limited.

Agapiou et al. (2013), Knapik et al. (2011) and Knapik et al. (2013) studied

asymptoti
 properties of the posterior distribution for the 
onjugate (i.e. Gaussian)

prior in the white noise setting. Minimax adaptive posterior 
on
entration rates

have been obtained in Knapik et al. (2012) also for 
onjugate priors. Ray (2013)


onsidered a more general 
lass of prior distributions that are still 
losely linked to

the SVD of the operator. Moreover the general approa
h proposed by Ray (2013)

leads to suboptimal rates in some 
ases. Thus it seems that there is a need for

general results as the ones proposed in Ghosal and van der Vaart (2007) for the

dire
t model.

In Chapter 4 we propose a general approa
h to derive posterior 
on
entra-

tion rate for general ill-posed inverse problems. Our approa
h does not rely on

a spe
i�
 form of the prior distribution. With this result, we re
over the known

results in the literature and improve the suboptimal upper bounds for the poste-

rior 
on
entration rate obtained in Ray (2013). Furthermore, we derived posterior


on
entration rates for models that are neither 
onjugate nor related to the SVD

of the operator. We 
onsider an abstra
t setting in whi
h the parameter spa
e F is

an arbitrary metrizable topologi
al ve
tor spa
e and let K be an inje
tive mapping

K : F ∋ f 7→ Kf ∈ KF . Even if the problem is ill-posed there exist subsets Sn

of KF over whi
h the inverse of the operator 
an be 
ontrolled. For suitably well


hosen priors, these sets will 
apture most of the posterior mass, and we 
an thus

easily derive posterior 
on
entration rate for f from posterior 
on
entration rate

for Kf by a simple inversion of the operator.

A main 
ontribution of this thesis is to study the asymptoti
 behaviour of the

posterior distributions for problems for whi
h general results do not hold. In Chap-

ter 2 we study the problem of estimating monotone non in
reasing densities. In

Chapter 3 we fo
us on the problem of testing monotoni
ity of a regression fun
tion.

Finally in Chapter 4 we provide general 
onditions to derive posterior 
on
entra-

tion rates for ill-posed linear inverse problems. Many other models presented in

the literature may require su
h non standard methods to study the asymptoti


behaviour of the posterior distribution.
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Chapter 2

Monotone densities

�Now we are joined together and have been sin
e noon. And

no one to help either of us.�

� Ernest Hemingway, The old man and the sea.

Résumé

Dans 
e 
hapitre, nous étudions la 
onsistan
e et la vitesse de 
on
entration de la

loi a posteriori dans le modèle de densité dé
roissante pour di�érentes métriques.

Ce modèle est parti
ulièrement intéressant 
ar les densités dé
roissantes ont une

représentation sous forme de mélange d'uniformes et sont don
 un 
as parti
ulier

de mélange pour lequel le support du noyau dépend du paramètre. Dans 
e 
adre,

les hypothèses 
lassiques né
essaires pour la 
onsistan
e de la loi a posteriori ne

sont pas véri�ées. Notamment la loi a priori ne met pas su�samment de masse

sur les voisinages de Kullba
k-Leibler du vrai paramètre, et une adaptation des

méthodes usuelles est don
 né
essaire. Pour deux familles d'a priori 
lassiques,

nous prouvons que l'a posteriori se 
on
entre à la vitesse minimaxe pour les pertes

L1 et Hellinger. Nous étudions ensuite la 
onsistan
e de la loi a posteriori de

la densité pour les pertes pon
tuelle et norme sup. Ces deux métriques sont en

général di�
iles à étudier 
ar elles ne peuvent être reliées à la divergen
e naturelle

qu'est la divergen
e de Kullba
k-Leibler. Pour 
es deux pertes, nous prouvons la


onsistan
e de l'a posteriori et donnons une borne supérieure pour la vitesse de


on
entration.

27
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2.1 Introdu
tion

The nonparametri
 problem of estimating monotone 
urves, and monotone densi-

ties in parti
ular, has been well studied in the literature both from a theoreti
al

and applied perspe
tives. Shape 
onstrained estimation is fairly popular in the

nonparametri
 literature and widely used in pra
ti
e (see Robertson et al., 1988,

for instan
e). Monotone densities appear in a wide variety of appli
ations su
h

as survival analysis, where it is natural to assume that the un
ensored survival

time has a monotone non in
reasing density. In these problems, estimating the

survival fun
tion is equivalent to estimate the survival time density say f and the

pointwise estimate f(0). It is thus interesting to have a better understanding of

the behaviour of the estimation pro
edures in this 
ase. An interesting property

of monotone non in
reasing densities on R
+
is that they have a mixture represen-

tation pointed out by Williamson (1956)

f(x) =

∫ ∞

0

I[0,θ](x)

θ
dP (θ), (2.1)

where P is a probability distribution on R
+

alled the mixing distribution. In

order to emphasize the dependen
e in P , we will denote fP the fun
tions admit-

ting representation (2.1). This representation allows for inferen
e based on the

likelihood. Grenander (1956) derived the nonparametri
 maximum likelihood es-

timator of a monotone density and Prakasa Rao (1970) studied the behavior of

the Grenander estimator at a �xed point. Groeneboom (1985) and more re
ently,

Balabdaoui and Wellner (2007) studied very pre
isely the asymptoti
 properties of

the non parametri
 maximum likelyhood estimator. It is proved to be 
onsistent

and to 
onverge at the minimax rate n−1/3
when the support of the distribution

is 
ompa
t. In their paper Durot et al. (2012) get some re�ned asymptoti
 results

for the supremum norm.

The mixture representation of monotone densities lead naturally to a mix-

ture type prior on the set of monotone non in
reasing densities with support on

[0, L] or R+
. For example Ferguson (1983) and Lo (1984) introdu
ed the Diri
hlet

Pro
ess prior (DP) and Brunner and Lo (1989) 
onsidered the spe
ial 
ase of uni-

modal densities with a prior based on a Diri
hlet Pro
ess mixture. The problem

of deriving 
on
entration rates for mixtures models have re
eive a huge interest

in the past de
ade. Wu and Ghosal (2008) studied properties of general mixture

models Ghosal and van der Vaart (2001) studied the well known problem of Gaus-

sian mixtures, Rousseau (2010) derive 
on
entration rates for mixtures of betas,

Kruijer et al. (2010) proved good adaptive properties of mixtures of Gaussian. Ex-

tensions to the multivariate 
ase have re
ently been introdu
ed (e.g. Shen et al.
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(2013)).

Under monotoni
ity 
onstrained, we derive an upper bound for the posterior


on
entration rate with respe
t to some metri
 or semi metri
 d(·, ·), that is a

positive sequen
e (ǫn)n that goes to 0 when n goes to in�nity su
h that

E

n
0 (Π(d(f, f0) > ǫn|Xn)) → 0,

where the expe
tation is taken under the true distribution P0 of the data X
n
and

where f0 is the density of P0 with respe
t to the Lebesgue measure. Following

Khazaei et al. (2010) we study two families of nonparametri
 priors on the 
lass

of monotone non in
reasing densities. Interestingly in our setting, the so 
alled

Kullba
k-Leibler property, that is the fa
t that the prior puts enough mass on

Kulba
k-Leibler neighbourhood of the true density, is not satis�ed. Thus the

approa
h based on the seminal paper of Ghosal et al. (2000) 
annot be applied. We

therefore use a modi�ed version of their results and obtain for the two families of

prior a 
on
entration rate of order (n/ log(n))−1/3
whi
h is the minimax estimation

rate up to a log(n) fa
tor under the L1 or Hellinger distan
e. We extend these

results to densities with support on R
+
and prove that under some 
onditions on

the tail of the distribution, the posterior still 
on
entrates at an almost optimal

rate. To the author's knowledge, no 
on
entration rates have been derived for

monotone densities on R
+
.

Interestingly, the non parametri
 maximum likelyhood estimator of fP (x) is not

onsistent for x = 0 (see Sun and Woodroofe (1996) and Balabdaoui and Wellner

(2007) for instan
e). However, we prove that the posterior distribution of f is still


onsistent at this point under a spe
i�
 family of non parametri
 mixture prior.

In fa
t we prove the pointwise 
onsisten
y of the posterior for all x in [0, L] with
L ≤ ∞. We then derive a 
onsistent Bayesian estimator of the density at any

�xed point of the support. This is parti
ularly interesting as the point-wise loss

is usually di�
ult to study in a Bayesian framework as the Bayesian approa
hes

are well suited to losses related to the Kullba
k-Leiber divergen
e. We also study

the behaviour of the posterior distribution for the sup norm when the density has

a 
ompa
t support. This problem has been addressed re
ently in the frequentist

literature by Durot et al. (2012). They derive re�ned asymptoti
 results on the sup

norm of the di�eren
e between a Grenander-type estimator and the true density

on sub intervals of the form [ǫ, L − ǫ] where ǫ > 0 avoiding the problems at the

boundaries. Here, we prove that the posterior distribution is 
onsistent in sup

norm on the whole support of f0 when it has 
ompa
t support. We also derive


on
entration rate for the posterior of the density taken at a �xed point and for

the sup norm on subsets of [0, L] for L < ∞. We also derive an upper bound for

the 
on
entration rate of f(x) for x ∈ (0, L) but only get suboptimal rates using
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a testing approa
h as in Giné and Ni
kl (2010). It is to be noted that for this

problem the modulus of 
ontinuity for the pointwise and Hellinger losses de�ned

for f0 ∈ F and x ∈ (0, L) by

m(ǫ) := sup{|f(x)− f0(x)| : f ∈ F , h(f, f0) ≤ ǫ}

is of the order ǫ2/3 (see Donoho and Liu, 1991). Given the dis
ussion in Ho�mann et al.

(2013), it is to be expe
ted that the usual approa
h of Ghosal et al. (2000) based

on tests will lead to suboptimal 
on
entration rates. We now introdu
e some

notations whi
h will be needed throughout the paper.

Notations For 0 < L ≤ ∞ de�ne the set FL by

FL =

{
f s.t. 0 ≤ f < ∞, f ց

∫ L

0

f = 1

}
,

We also de�ne Sk the k-simplex that is the set {(s1, . . . , sk) ∈ [0, 1]k,
∑k

i=1 si = 1}.
Let KL(p1, p2) be the Kullba
k Leibler deviation between the densities p1 and p2
with respe
t to some measure λ

KL(p1, p2) =

∫
log

(
p1
p2

)
p1dλ.

We also de�ne the Hellinger distan
e h(p1, p2) between p1 and p2 as

h2(p1, p2) =
1

2

∫
(
√
p1 −

√
p2)

2dλ.

We will say that Ξn = op0(1) if Ξ
n → 0 under P0. Finally we will denote f ′

the

derivative of f .

Constru
tion of a prior distribution on FL Using the mixture representation

of monotone non in
reasing densities (2.1) we 
onstru
t nonparametri
 priors on

the set FL by 
onsidering a prior on the mixing distribution P . Let P be the

set of probability measures on [0, L]. Thus we fall in the well known set up of

nonparametri
 mixture priors models. We 
onsider two types of prior on the set

P.

Type 1 : Diri
hlet Pro
ess prior P ∼ DP (A, α) where A is a positive 
on-

stant and α a probability density on [0, L].
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Type 2 : Finite mixture P =
∑K

j=1 pjδxj
with K a non zero integer and δx the

dira
 fun
tion on x. We 
hoose a prior distribution Q on K and given K,

de�ne distributions πx,K on (x1, . . . , xK) ∈ [0, L]K and πp,K on (p1, . . . , pK) ∈
SK .

For X
n = (X1, . . . , Xn), a sample of n independent and identi
ally distributed ran-

dom variables with 
ommon probability distribution fun
tion f in FL with respe
t

to the Lebesgue measure, we denote Π(·|Xn) the posterior probability measure

asso
iated with the prior Π.

The paper is organised as follow: the main results are given in Se
tion 2.2,

where 
onditions on the priors are dis
ussed. The proofs are presented in Se
tion

2.3.

2.2 Main results

Con
entration rates of the posterior distributions have been well studied in the

literature and some general results link the rate to the prior (see Ghosal et al.

(2000)). However, in our setting, the Kullba
k Leibler property is not satis�ed in

its usual form and thus the standard Theorems do not hold. In fa
t an interesting

feature of mixture distributions whose kernels have varying support is that the

prior mass of the sets {f,KL(f0, f) = +∞} is 1 for most f0 ∈ FL given that f and

f0 will have di�erent support. One 
ould prevent this by imposing that the support

of the mixing distribution is wider than the support of f0, however this 
ould lead

to a deterioration of the 
on
entration rate. Here, we use a modi�ed version of the

results of Ghosal et al. (2000) 
onsidering trun
ated versions of the density f . This
idea has been 
onsidered in Khazaei et al. (2010) in a similar setting. We impose

some 
onditions on the prior under whi
h the posterior distribution 
on
entrates

at the minimax rate up to a log(n) term.

Conditions on the prior

C1 
ondition on α Let α be a probability density on R
+
su
h that for all θ ∈

(0, L), α(θ) > 0. Consider the following 
onditions on α

• for 0 < t1 ≤ t2 and θ small enough

θt1 . α(θ) . θt
2

(2.2a)

• for 1 < a1 ≤ a2 and θ small enough

e−a1/θ . α(θ) . e−a2/θ
(2.2b)
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• for 1 < b1 ≤ b2 and θ small enough

e−b1/θ . α(L− θ) . e−b2/θ
(2.2
)

C2 
ondition for Type I prior For P ∼ DP (α,M) with α satisfying C1

C3 
ondition for the Type II prior The following 
onditions holds

• For some positive 
onstants C1, C2, a1, . . . , ak, c

e−C1K log(K) ≥ Q(K) ≥ e−C2K log(K)
(2.3)

πp,k(p1, . . . , pK) ≥ K−KcKpa11 . . . paKK (2.4)

• πx,K is the distribution of K independent and identi
ally distributed

random variables sampled from α.

C4 Condition for densities on R
+

If f0 ∈ F∞ then for β and τ some �xed

positive 
onstant we have for x large enough

f0(x) ≤ e−βxτ

. (2.5)

2.2.1 Posterior 
on
entration rate for the L1 and Hellinger

metri


The following Theorems gives the posterior 
on
entration rate for the L1 and

Hellinger metri
 for monotone non in
reasing densities on [0, L] with L < ∞ and

L = ∞. For both Theorems the proofs are postponed to se
tion 2.3.

Theorem 2.1. Let X
n = (X1, . . . , Xn) be an independent and identi
ally dis-

tributed sample with a 
ommon probability distribution fun
tion f0 su
h that f0 ∈
FL with 0 < L < ∞. Let Π be either a Type I or Type II prior satisfying C2

or C3 respe
tively with α satisfying (2.2a). If d(·, ·) is either the L1
or Hellinger

distan
e, then there exists a positive 
onstant C su
h that

Π

(
f, d(f, f0) ≥ C

(
n

log(n)

)−1/3

|Xn

)
→ 0, P0 a.e. (2.6)

when n goes to in�nity, where C depends on f0 only through L and an upper bound

on f0(0). Furthermore, if for δ > 0, sup[0,δ] |f ′
0(x)| < ∞ and α satis�es (2.2b), or

sup[L,L−δ] |f ′
0(x)| < ∞ and α satis�es (2.2
), then (2.6) still holds.

Conditions C1 and C2 are roughly the same as in Khazaei et al. (2010). Theo-

rem 2.1 is thus an extension of their results to 
on
entration rates. We also extend

their results to mixtures prior satisfying (2.2b) or (2.2
) under some additional


onditions on f0. This will prove useful for the estimation of f0 and fL. Under


ondition C3 on the tail of the true density, i.e. we require exponential tails, we

get the posterior 
on
entration rate for density with support on R
+
.
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Theorem 2.2. Let X
n = (X1, . . . , Xn) be an independent and identi
ally dis-

tributed sample with a 
ommon probability distribution density f0 su
h that f0 ∈
F∞ and f0 satisfy C3. Let Π be either a Type I or Type II prior satisfying C2

or C3 respe
tively with α satisfying (2.2a). Then for some positive 
onstant C we

have for d(·, ·) either the L1 or Hellinger metri


Π
(
d(fP , f0) ≥ C (n/ log(n))−1/3 log(n)1/τ |Xn

)
→ 0, P0 a.e. (2.7)

when n goes to in�nity. Similarly, if for δ > 0, sup[0,δ] |f ′
0(x)| < ∞ and α satis�es

(2.2b), (2.7) still holds.

Note that 
onsidering monotone non in
reasing densities on R
+
deteriorates the

upper bound on the posterior 
on
entration rate with a fa
tor log(n)1/τ . It is not

lear whether it 
ould be sharpen or not. For instan
e, in the frequentist literature,

Reynaud-Bouret et al. (2011) observe a slower 
onvergen
e rate when 
onsidering

in�nite support for densities without any other 
onditions. In a Bayesian setting,

a similar log term appears in Kruijer et al. (2010) when 
onsidering densities with

non 
ompa
t support. However this deterioration of the 
on
entration rate does

not have a great in�uen
e on the asymptoti
 behaviour of the posterior. Note also

that the tail 
onditions are mild sin
e τ 
an be taken as small as needed, and thus

the 
onsidered densities 
an have almost polynomial tails.

The above results on the posterior 
on
entration rate in terms of the L1 or

Hellinger metri
 are new to our knowledge but not surprising. The spe
i�
ity

of these results lies in the fa
t that the usual approa
h based on the approa
h

of Ghosal et al. (2000) need to bound the prior mass of Kullba
k Leibler neigh-

bourhoods of the true density whi
h 
annot be done here as explained in se
tion

2.1.

2.2.2 Consisten
y and posterior 
on
entration rate for the

pointwise and supremum loss

The following results 
onsider the pointwise loss fun
tion for whi
h only a few exist

in the Bayesian nonparametri
 literature, see for instan
e the paper of Giné and Ni
kl

(2010). The following Theorem proves 
onsisten
y of the posterior distribution for

all point in the interior of the support.

Theorem 2.3. Let x be in (0, L) with with 0 < L ≤ ∞ but x < ∞. Let f0 ∈ FL

su
h that f ′
0 exists near x and f ′

0(x) < 0. Let Xi , i = 1, . . . , n and Π be either a

Type I or Type II prior satisfying C2 or C3 respe
tively with α satisfying C1 with

either (2.2a), (2.2b) or (2.2
). Then, for all x in (0, L) with x < ∞, and ǫ > 0

Π
(
|fP (x)− f0(x)| > ǫ|Xn

)
→ 0. (2.8)
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Consider the posterior median f̂π
n (x) = inf{t,Π

[
fP (x) ≤ t|Xn

]
> 1/2}, it follows

that

P0

(
|f̂π

n (x)− f0(x)| > ǫ|Xn
)
→ 0. (2.9)

We thus have a pointwise 
onsisten
y of the posterior distribution of f0(x)
for every x in the interior of the support of f0. The maximum likelihood is not


onsistent at the boundaries of the support as pointed out in Sun and Woodroofe

(1996) for instan
e. In parti
ular it is not 
onsistent at 0 and when L < ∞, it

is not 
onsistent at L. It is known that integrating the parameter as done in

Bayesian approa
hes indu
es a penalisation. This is parti
ularly useful in testing

or model 
hoi
e problems but 
an also be e�e
tive in estimation problems, see for

instan
e Rousseau and Mengersen (2011). Here we require that the base measure

puts exponentially small mass at the boundaries. This indu
e enough penalization

to a
hieve 
onsisten
y of the posterior distribution of f(0) and f(L). The following
Theorem gives 
onsisten
y of the posterior distribution of f at every point on the

support of f0 in
luding the boundaries.

Theorem 2.4. Let x be in [0, L] with with 0 < L ≤ ∞ but x < ∞. Let f0 ∈ FL

su
h that f ′
0 exists at x and f ′

0(x) < 0. Let Xi , i = 1, . . . , n and Π be either a

Type I or Type II prior satisfying C2 or C3 with α satisfying 
ondition (2.2b) if

x = 0 or (2.2
) if x = L. Then, for all x in [0, L] with x < ∞, and ǫ > 0

Π
(
|fP (x)− f0(x)| > ǫ|Xn

)
→ 0. (2.10)

Consider the posterior median f̂π
n (x) = inf{t,Π

[
fP (x) ≤ t|Xn

]
> 1/2}, it follows

that

P0

(
|f̂π

n (x)− f0(x)| > ǫ|Xn
)
→ 0. (2.11)

The problem of estimating f0(0) under monotoni
ity 
onstraints is another ex-

ample of the e�e
tiveness of penalisation indu
ed by integration on the parameters.

Although we do not have a proof for in
onsisten
y of the posterior of f(0) or f(L)
when α satis�es (2.2a), we believe that the similarly to the maximum likelihood

estimator, the posterior distribution is in this 
ase not 
onsistent.

The following Theorem gives an upper bound on the 
on
entration rate of the

posterior distribution under the pointwise loss.

Theorem 2.5. Let f0 be in FL with 0 < L ≤ ∞ and Π be either a Type I or

Type II prior satisfying C1 or C2 respe
tively with α satisfying C1, and let x be

in (0, L) su
h that f ′
exists in a neighbourhood of x and f ′(x) < 0, then for C a

positive 
onstant

Π

(
|fP (x)− f0(x)| > C

(
n

log(n)

)−2/9

|Xn

)
→ 0. (2.12)

when n goes to in�nity.
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Here the 
on
entration rate is subobtimal. It is however the best rate that

one 
an obtain using the usual approa
h by testing (see Ho�mann et al., 2013)

. Proving that the posterior 
on
entrates at the rate n−1/3
up to some power of

log(n) would require some more re�ned 
ontrol of the posterior distribution 
lose

to Bernstein von Mise types of results, see Castillo (2013), whi
h in the 
ase of

mixture models is very di�
ult and beyond the s
ope of this 
hapter.

We derive from Theorem 2.4 the 
onsisten
y of the posterior distribution for

the sup norm. This is parti
ularly useful when 
onsidering 
on�den
e bands, as

pointed out in Giné and Ni
kl (2010). Under similar assumptions as in Durot et al.

(2012), we get the 
onsisten
y of the posterior distribution for the sup norm. Note

that 
ontrariwise to Durot et al. (2012), we do not restri
t to sub-intervals of the

support of the density. This is mainly due to the fa
t that the Bayesian approa
hes

are 
onsistent at the boundaries of the support of f0.

Theorem 2.6. Let f0 ∈ FL with 0 < L < ∞ be su
h that f ′
0 exists and ||f ′

0||∞ < ∞
and for all x ∈ [0, L], f ′

0(x) < 0. Let also the prior Π be either a Type I or

Type II prior satisfying C1 or C2 with α satisfying 
onditions (2.2b) and (2.2
)

respe
tively. Then

Π( sup
x∈[0,L]

|fP (x)− f0(x)| > ǫ|Xn) → 0. (2.13)

Similar results as in Theorem 2.5 also hold for the 
on
entration rate of the

posterior distribution for the supremum over all subsets of the form (a, b) with

0 < a < b < L with the same rate.

2.3 Proofs

In this se
tion we prove Theorems 2.1 to 2.6 given in Se
tion 2.2. To prove Theo-

rems 3-6, we need to 
onstru
t tests that are adapted to the pointwise or supremum

loss. The usual approa
h based on ? 
annot be applied in this 
ase. We thus 
on-

stru
t test based on the Maximum Likelihood Estimator.

2.3.1 Proof of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 follow the general ideas of Ghosal et al. (2000)

with some modi�
ation due to the fa
t that the Kullba
k-Leibler property is not

satis�ed. We �rst fo
us on density on FL with L < ∞ and extend these results to

monotone non in
reasing density with support R
+
that satisfy C3. We extended

the approa
h used in Khazaei et al. (2010) to the 
on
entration rate framework
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and get similar results as those presented in Ghosal et al. (2000). More pre
isely,

the proofs relies on the following Theorem whi
h is a modi�
ation of Ghosal et al.

(2000) main Theorem proposed by Rivoirard et al. (2012). To ta
kle the fa
t that

the usual Kullba
k Leibler property is not satis�ed in its usual sense, we 
onsider

trun
ated versions of the densities

fn(·) =
f(·)I[0,θn](·)

F (θn)
, f0,n(·) =

f0(·)I[0,θn](·)
F0(θn)

(2.14)

where θn is de�ned as

θn = inf{x, 1− F0(x) <
ǫn
2n

}.

We then de�ne the 
ounterpart of the Kullba
k Leibler neighbourhoods

Sn(ǫn, θn) =

{
f,KL(fn, f0,n) ≤ ǫ2n,

∫
f0,n(x)

(
log

(
f(x)

f0(x)

))2

dx ≤ ǫ2n,

∫ θn

0

f(x)dx & 1− ǫ2n

}
. (2.15)

Theorem 2.7. Let f0 be the true density and let Π be a prior on F satisfying the

following 
onditions : there exist a sequen
e (ǫn) su
h that ǫn → 0 and nǫ2n → ∞
and a 
onstant c > 0 su
h that for any n there exist Fn ⊂ F satisfying

Π(F c
n) = o(exp(−(c+ 2)nǫ2n)).

For any j ∈ N, j > 0, let Fn,j = {f ∈ Fn, jǫn < d(f, f0) ≤ (j + 1)ǫn} and Nn,j

the Hellinger (or L1) metri
 entropy of Fn,j. There exists a J0,n su
h that for all

j ≥ J0,n

Nn,j ≤ (K − 1)nǫ2nj
2,

where K is an absolute 
onstant.

Let Sn(ǫn, θn) be de�ned as in (2.15) and let Π be su
h that

Π(Sn(ǫn, θn)) ≥ exp(−cnǫ2n). (2.16)

We have :

Π(f : d(f0, f) ≤ J0,nǫn|Xn) = 1 + oP (1).

The proof of this Theorem is postponed to Appendix 2.5. We will thus prove

that the 
onditions of Theorem 2.7 are satis�ed in our 
ase. Let f0 be in FL. The

following lemma states that (2.16) is satis�ed.
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Lemma 2.1. Let Π be either a Type 1 or Type 2 prior on FL as in Theorem 2.1

and let Sn(ǫn, θn) be a set as in (2.15), then

Π(Sn(ǫn, θn)) & exp

{
C1ǫ

−1
n log(ǫn)

}
. (2.17)

This lemma is proved in appendix 2.4. The ǫ metri
 entropy of the set of

bounded monotone non in
reasing densities has been shown to be less than ǫ−1
,

up to a 
onstant (see Groeneboom (1986) or van der Vaart and Wellner (1996) for

instan
e). As the prior puts mass on FL, on whi
h f(0) is not uniformly bounded,

we 
onsider an in
reasing sequen
e of sieves

Fn =
{
f ∈ FL, f(0) ≤ Mn

}
. (2.18)

where Mn = exp
{
cn1/3 log(n)2/3(t2+1)−1

}
with t2 as in the 
onditions C1 or C2.

The following Lemma shows that Fn 
overs most of the support of Π as n in
rease.

Lemma 2.2. Let Fn be de�ned by (2.18) and Π be either a Type 1 or Type 2 as

in Theorem 2.1, then

Π
(
F c

n

)
. e−cn1/3 log(n)2/3 .

Here again, the proof is postponed to appendix 2.4. We now get an upper

bound for the ǫ-metri
 entropy of the set Fn. Re
all that in Groeneboom (1985) it

is proved that the L1 metri
 entropy of monotone non in
reasing densities on [0, 1]
bounded by M 
an be bounded from above by C0 log(M)ǫ−1

n . We 
annot apply

this result dire
tly for the sets Fn as it would give a suboptimal 
ontrol of the

entropy to 
onstru
t tests in a similar way as in Ghosal et al. (2000). In fa
t the

upper bound on the entropy of Fn is of the order of enǫn the usual 
onditions of

Ghosal et al. (2000) requires an upper bound of the order enǫ
2
n
. However as stated

in Theorem 2.7 it is enough to bound the ǫ-metri
 entropy of the sets

Fn,j = {f ∈ Fn, jǫn ≤ d(f, f0) ≤ (j + 1)ǫn} ,
for j ∈ N

∗
. We 
an easily adapt the results of Groeneboom (1985) to positive

monotone non in
reasing fun
tions on any interval [a, b] and get the following

Lemma.

Lemma 2.3. Let F̃ be the set of positive monotone non in
reasing fun
tions on

[a, b] su
h that for all f in F̃ ,

∫ b

a
f ≤ M2 and f ≤ M , then

N(ǫ, F̃ , d) . ǫ−1 log(M + 1)
(
(b− a) + 3M2

)
.
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The proof of this Lemma is straightforward given the results of Groeneboom

(1985) and is thus omitted. Let xn,j ∈ [0, L] su
h that ǫn/2 ≤ xn,j ≤ ǫn. We

denote for all f in Fn,j f1,j = fI[0,xn,j) and f2,j = fI[xn,j ,L]. Sin
e for all f in Fn,j

we have

∫ 1

0
|f(x)− f0(x)|dx ≤ (j + 1)ǫn then

∫ xn,j

0

f(x)dx−
∫ xn,j

0

f0(x)dx ≤ (j + 1)ǫn,

whi
h implies that

xn,jf(xn,j) ≤ xn,jf0(0) + (j + 1)ǫn,

whi
h in turn gives

f(xn,j) ≤ f0(0) + 2(j + 1).

Re
all that for all f ∈ Fn we have f(0) ≤ Mn. Using Lemma 2.3, we 
onstru
t

an ǫn/2-net for the set F1
n,j =

{
f1,j , f ∈ Fn,j

}
with N1 points, and

log(N1) . ǫ−1
n log(Mn + 1)ǫn(j + 2),

and thus dedu
e

log(N1) ≤ C ′nǫ2nj
2

(2.19)

Similarly, given that f(xn,j) ≤ M + 2(j + 1) we get an ǫn/2-net for the set F2
n,j ={

f2,j , f ∈ Fn,j

}
with N2 points and

log(N2) ≤ C̃ ′nǫ2nj
2. (2.20)

This provide a ǫn-net for Fn,j with less than N1 ×N2 points. Given (2.19) and

(2.20) the L1 metri
 entropy of the sets Fn,j satisfy

log(N(Fn,j, ǫn, L1)) . nǫ2nj
2. (2.21)

The 
onditions of Theorem 2.7 are thus satis�ed whi
h ends the proof of The-

orem 2.1

Extention to R
+

Given that f0(x) . e−βxτ
when x goes to in�nity, if θn is

su
h that θn = inf{x, 1 − F0(x) < ǫn/(2n)} then θn . (log(n))1/τ . Using similar

arguments as before, Lemma 2.1 still holds under the exponential tail assumption.

We now get an upper bound for the ǫ-metri
 entropy of Fn,j. Here again, we split

Fn,j into two parts. The 
onstru
tion of an ǫn/2-net for F1
n,j does not 
hange and

therefore (2.19) holds. Finally, let F̃2
n,j = {f ∈ F2

n,j, ∀x > θn, f(x) = 0}. Given

Lemma 2.3, we get for c1 > 0 large enough an ǫn/(2c1(j + 1))-net for F̃2
n,j by


onsidering f ⋆
the restri
tion of f to [xn,j , θn]. We have

d(f, f ⋆) ≤ c2(j + 1)ǫn,
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where d(·, ·) is either the L1 or Hellinger distan
e. Hen
e, for c1 > c2 an ǫ/2-net
for F2

n,j with at most ec3nǫ
2
nj

2
points and thus

log
(
N(F2

n,j, ǫn, d
)
) ≤ C̃ ′′nǫ2nj

2.

We 
on
lude using the same arguments as in the pre
eding se
tion, and thus

Theorem 2.2 is proved.

2.3.2 Proof of Theorems 2.3 and 2.5

To prove Theorem 2.3 and 2.5, we need to 
onstru
t tests for all x ∈ (0, L) of f0
versus |fP (x) − f0(x)| ≥ ǫ

2/3
n as the approa
h used in Ghosal et al. (2000) is not

suited for the pointwise loss. As we have Π(||fP − f0||1 > ǫn|Xn) = oP0(1) we 
an

onsider fun
tions fP su
h that ||fP − f0||1 ≤ ǫn. We 
onstru
t tests Φn su
h that

En
0 (Φ) = o(1), sup

f,|f(x)−f0(x)|>ǫn

E

n
f (1− Φ) ≤ e−Cnǫ2n.

Denote Ax
ǫ := {f, |f(x)− f0(x)| > ǫ} that 
an be split into Ax,+

ǫ = {f, f(x)−
f0(x) > ǫ} and Ax,−

ǫ = {f, f(x) − f0(x) < −ǫ} and denote en = e0ǫ
2/3
n and

hn = h0en. Consider the tests

φ+
n = I

{
n−1

n∑

i=1

I[x−hn,x](Xi)−
∫ x

x−hn

f0(t)dt > cn

}

φ−
n = I

{
n−1

n∑

i=1

I[x,x+hn](Xi)−
∫ x+hn

x

f0(t)dt < −cn

}

We immediately get E

n
0 (max(φ+

n , φ
−
n ) = o(1). Note that if fP (x) > f0(x) + en

then

∫ x

x−hn

fP (t)− f0(t)dt ≥ hn(fP (x)− f0(x))−
∫ x

x−h

f0(t)− f0(x)dt

≥ hnen − C0h
2

for some C0 > 0 that only depends on f0. Similarly if fP (x) < f0(x)− en then

for all h > 0 ∫ x+h

x

fP (t)− f0(t)dt ≤ −hen + C0h
2
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We thus dedu
e for fP su
h that fP (x)− f0(x) > en

Pf(1− φ+
n ) ≤ Pf

(
n−1

n∑

i=1

I[x−hn,x](Xi)−
∫ x

x−hn

fP (t)dt ≤ −hnen + C0h
2 + cn

)

≤ Pf

(
n−1

n∑

i=1

I[x−h,x](Xi)−
∫ x

x−h

fP (t)dt ≤ −h0e
2
n/2

)
,

if cn ≤ e2n and h0 ≤ 1/C0. Now note that for fP su
h that ||fP − f0||1 ≤ ǫn
∫ x

x−hn

fP ≥ −
∫ ∞

0

|f − f0|+
∫ x

x−hn

f0

≥ −ǫn +

∫ x

x−hn

f0

≥ −en + hnf0(x) ≥ hnf0(x)/2.

Moreover,

∫ x

x−hn

fP ≤ en + hnf0(x− hn) ≤ 2hnf0(x)

for n large enough and h small anough. We 
on
lude that

VarnfP

(
n−1

n∑

i=1

I[x−h,x](Xi)

)
≤ 2hf0(x)

Thus using Bernstein's inequality (e.g. van der Vaart and Wellner (1996) Lemma

2.2.9 p. 102) we get

Pf (1− φ+) ≤ 2e−nhne2n/(2+en/3).

Similarly, we have

Pf (1− φ−
n ) ≤ 2e−nhne2n/(2+en/3).

Taking Φn = max(φ+
n , φ

−
n ) we dedu
e

P0(Φn) = o(1)

sup
f∈Ax

en

Pf(1− Φn) ≤ e−Ch0e3n



2.3. PROOFS 41

We have

P0(Φn) = o(1)

sup
f∈Ax

en

Pf(1− Φn) ≤ e−Cne0ǫ2n

Similarly to the proof of Theorem 2.7, following Khazaei et al. (2010), we get

an exponentially small lower bound for Dn. More pre
isely, we get that

Dn ≥ 2e−(c+2)nǫ2n

with probability that goes to 1. Note that

E
n
0

(
Nn

Dn

)
≤ E

n
0(Φ

x
n) + P n

0 (Dn ≤ e−(c+2)nǫ2n)+

E
n
0(Π[F c

n|Xn]) + e(c+2)nǫ2n

∫

Aǫ∩Fn

E
n
f (1− Φx

n)dΠ(f)

. (2.22)

Given the pre
eding results, we have

E
n
0

(
Nn

Dn

)
≤ o(1) + e(c+2)nǫ2n sup

f
E

n
f (1− Φx

n)

whi
h ends the proof 
hoosing e0 large enough.

Consisten
y of a Bayesian estimator We 
onsider in this se
tion f̂π
n (t), the

Bayesian estimator asso
iated with the absolute error loss, de�ne as the median of

the posterior distribution. Consisten
y of the posterior mean, whi
h is the most


ommon Bayesian estimator is however not proved here but 
ould nevertheless be

an interesting result.

We �rst de�ne f̂π
n (t) su
h that

f̂π
n (t) = inf{x,Π[fP (t) ≤ x|Xn] > 1/2}. (2.23)

In order to get 
onsisten
y in probability we note that if f̂π
n (t)− f0(t) > ǫ then

Π(fP (t) > f0(t) + ǫ|Xn) > 1/2.

And if f̂π
n (t)− f0(t) < −ǫ then

Π(fP (t) < f0(t)− ǫ|Xn) > 1/2.

We dedu
e, with Markov inequality and Theorem 2.3
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P n
0 (f̂

π
n (t)− f0(t) > ǫ) ≤ P n

0 (Π(fP (t) > f0(t) + ǫ|Xn) > 1/2)

≤ 2En
0 (Π(fP (t) > f0(t) + ǫ|Xn) > 1/2)

≤ o(1),

and similarly

P n
0 (f̂

π
n (t)− f0(t) < −ǫ) ≤ o(1).

Thus we have P n
0 (|f̂π

n (t) − f0(t)| > ǫ) → 0 whi
h gives the 
onsisten
y in

probability of f̂π
n (t).

2.3.3 Proof of Theorem 2.4

The previous proof holds for all x ∈ (0, L) we now need to prove the 
onsisten
y

of the posterior for x = 0 and x = L, when the prior satis�es 
onditions (2.2b)

or (2.2
). We �rst 
onsider the 
ase x = 0, the 
ase x = L 
an be dedu
e with

symmetri
 arguments.

As before, 
onsider the set A0
ǫ and split it in A0,+

ǫ and A0,−
ǫ . Note that using

the same test φ−
n as before we easily get

Π(A0,−
ǫ |Xn) = oP0(1).

We now 
onsider fP ∈ A0,+
ǫ . As before we 
an restri
t ourselves to fun
tions fP

su
h that ||fP − f0||1 ≤ ǫn. We thus have for h = 2ǫn/ǫ

fP (0)− f0(0) ≤ fP (0)− fP (h) + h−1

∫
|f0(t)− fP (t)|dt

≤ fP (0)− fP (h) + h−1ǫn

= fP (0)− fP (h) + ǫ/2.

We now prove that the prior mass of the event {fP (0)− fP (h) > ǫ/2} is less that

e−(c+2)nǫ2n
. Using Markov inequality we get

Π(fP (0)− fP (h) > ǫ/2) ≤ 2ǫ−1

∫ h

0

1

θ
α(θ)dθ ≤ e−a2/h . e−a2nǫ2n log(n).

Using the same 
ontrol for Dn as in the proof of Theorem 2.7, and applying the

usual method of Ghosal et al. (2000), we get the desired result.
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2.3.4 Proof of Theorem 2.6

In this se
tion we prove that the posterior distribution is 
onsistent in sup norm.

Here again, the main di�
ulty is to 
onstru
t tests that are adapted to the 
on-

sidered loss. More pre
isely we 
onstru
t a test Φ su
h that

En
0 (Φ) = o(1), sup

f,sup[0,L] |f−f0|>ǫn

E

n
f (1− Φ) ≤ e−Cnǫ2n.

To do so we 
onsider a 
ombination of the tests 
onsidered in the previous

se
tion noting that if the posterior distribution is 
onsistent at the points of a

su�
iently re�ned partition of [0, L] then it is 
onsistent for the sup norm. Here

again, we will only 
onsider the 
ase L = 1 without loss of generality. We �rst

denote

Bǫ =

{
f, sup

[0,L]

{|f(x)− f0(x)| > ǫ

}

Let C ′
0 be a positive 
onstant su
h that ||f ′

0||∞ ≤ C ′
0 and let (xi)i be the separation

points of a ǫ/(8C ′
0) regular partition of [0, 1] and p = Card{(xi)i}. Note that

Bǫ =

p⋃

i=1

{f, sup
[xi,xi+1]

{|f(x)− f0(x)| > ǫ}.

Re
all that Ax
ǫ = {f, |f(x) − f0(x)| > ǫ}. We 
onsider the set Bǫ

⋂p
i=1(A

xi

ǫ/8)
c
.

Given Theorem 2.3, we have that

E

n
0

(
Π

(
p⋃

i=1

(Axi

ǫ/5)
∣∣∣Xn

))
= o(1).

If f ∈ Bǫ we have for all x ∈ [xi, xi+1],

|f(x)− f0(x)| ≤ |f(x)− f(xi)|+ |f(xi)− f0(xi)|+ |f0(xi)− f0(x)|.

Given that f is monotone non in
reasing, and given the hypotheses on f0 we have

|f(x)− f(xi)| ≤ |f(xi+1)− f(xi)|
≤ |f(xi+1)− f0(xi+1)|+ |f0(xi+1)− f0(xi)|+ |f0(xi)− f(xi)|
≤ 3ǫ/5

and for the same reasons

|f(xi)− f0(xi)|+ |f0(xi)− f0(x)| ≤ 2ǫ/5.
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Whi
h leads to

|f(x)− f0(x)| ≤ ǫ

and thus, taking the supremum over x, we get

sup
x∈[xi,xi+1]

|f(x)− f0(x)| ≤ ǫ.

We then dedu
e

Π(Bǫ|Xn) ≤ Π

(
Bǫ

⋂{
p⋂

i=1

(Axi

ǫ/5)
c

})
+Π

(
p⋃

i=1

(Axi

ǫ/5)

)
= oP0(1)

Whi
h gives the 
onsisten
y of the posterior distribution in sup norm

2.4 Te
hni
al Lemmas

2.4.1 Proof of Lemma 2.1

To prove Lemma 2.1, we �rst 
onstru
t stepwise 
onstant fun
tions su
h that these

approximations are in the trun
ated Kullba
k Leibler neighbourhood of f0. We

then 
onstru
t a set N in
luded in Sn(ǫn, θn) based on the 
onsidered pie
ewise


onstant approximation su
h that for Π a Type I or Type II prior Π(N ) ≥ e−Cnǫ2n
.

We �rst 
onstru
t a pie
ewise 
onstant approximation of f0 whi
h is base on a

sequential subdivision of the interval [0, L] with more re�ned subdivisions where

f0 is less regular su
h that the number of points is less than ǫ−1
n points.

This approximation is adapted from the proof of Theorem 2.5.7 in van der Vaart and Wellner

(1996). We then identify a �nite pie
ewise 
onstant density by a mixture of uniform

for whi
h the Hellinger distan
e between the pie
ewise 
onstant approximation fP
of f0 ∈ F and f0 is less that ǫn and ||f0/fP ||∞ ≤ M .The following Lemma gives the

form of a �nite probability distribution P su
h that fP is in the Kullba
k-Leibler

neighbourhood of some f ∈ F .

Lemma 2.4. Let f ∈ FL be su
h that f(0) ≤ M < +∞. For all 0 < ǫ < 1 there

exists m . L1/3M1/3ǫ−1
, p = (p1, . . . , pm) ∈ Sm and x = (x1, . . . , xm) ∈ [0, L]m

su
h that P =
∑m

i=1 δxi
pi satis�es

KL(f, fP ) . ǫ2,

∫ (
log

(
f

fP

))2

f . ǫ2, (2.24)

where fP is de�ned as in (2.1).
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Proof. For a �xed ǫ, let f be in FL. Consider P0 the 
oarsest partition :

0 = x0
0 < x0

1 = L,

at the ith step, let Pi be the partition

0 = xi
0 < xi

1 < · · · < xi
ni

= L,

and de�ne

εi = max
j

{
(f(xi

j−1)− f(xi
j))(x

i
j − xi

j−1)
1/2
}
.

For ea
h j ≥ 1, if (f(xi
j−1)−f(xi

j))(x
i
j−xi

j−1)
1/2 ≥ εi√

2
we split the interval [xj−1, xj ]

into two subsets of equal length. We then get a new partition Pi+1. We 
ontinue

the partitioning until the �rst k su
h that ε2k ≤ ǫ3. At ea
h step i, let ni be the

number of intervals in Pi, si the number of interval in Pi that have been divided

to obtain Pi+1, and c = 1/
√
2. Thus, it is 
lear that εi+1 ≤ cεi

si(cεi)
2/3 ≤

∑

j

(f(xi
j−1)− f(xi

j))
2/3(xi

j − xi
j−1)

1/3

≤
(∑

j

f(xi
j−1)− f(xi

j)

)2/3(∑

j

xi
j − xi

j−1

)1/3

≤ M2/3L1/3,

using Hölder inequality. We then dedu
e that

k∑

j=1

nj = k +

k∑

j=1

jsk−j ≤ 2

k∑

j=1

jsk−j ≤ 2

k∑

j=1

jM2/3L1/3(cεk−j)
−2/3

≤ 2M2/3L1/3ε
−2/3
k 21/3

k∑

j=1

j2−j/3

≤ K0M
2/3L1/3ε

−2/3
k ,

where K0 = 2(1− 2−2/3)−2
. Thus

nk ≤ K0M
2/3L1/3ǫ−1. (2.25)

Now, for f ∈ FL, we prove that there exists a stepwise density with less than

K0M
2/3L1/3 1

ǫ
pie
es su
h that

KL(f, h) ≤ ǫ2 and

∫
f log(

f0
fP

)2(x)dx . ǫ2 (2.26)
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In order to simplify notations, we de�ne

xi = xk
i , li = xi − xi−1, gi = f(xi−1)

1/2.

We 
onsider the partition 
onstru
ted above asso
iated with f 1/2
, whi
h is also

a monotone nonin
reasing fun
tion that satisfy f 1/2(0) ≤ M1/2
(instead of M).

We denote g the fun
tion de�ned as g(x) =
∑

I[xi−1,xi](x)gi

||f 1/2 − g||22 =
∫

(f 1/2 − g)2(x)dx =

nk∑

i=1

∫

Ii

(f 1/2 − g)2(x)dx

≤
nk∑

i=1

∫

Ii

(f 1/2(xk
i−1)− f 1/2(xk

i ))
2dx

≤
nk∑

i=1

(xk
i − xk

i−1)(f
1/2(xk

i−1)− f 1/2(xk
i ))

2

≤ nkε
2
k ≤ L1/3K0M

1/3ǫ2.

We then de�ne h = g2∫
g2

and and get an equivalent of

∫
g2.

∫
g2dx =

∫
(g2 − f)(x)dx+ 1

=

∫
(g −

√
f)(g +

√
f)(x)dx+ 1

= 1 +O(ǫ),

and dedu
e that (
∫
g2)1/2 = 1 +O(ε). Let H be the Hellinger distan
e

H(f, h) = H

(
f,

g2∫
g2

)

≤ H(f, g2) +H(g2,
g2∫
g2

)

≤ L1/6K0M
1/6ǫ+

(∫
(g − g

(
∫
g2)1/2

)2(x)dx

)1/2

. ǫ.

Sin
e ||f/h||∞ = ||f/g2||∞(
∫
g2) ≤ (

∫
g2), together with the above bound

on H(f, h) and Lemma 8 from Ghosal and van der Vaart (2007), we obtain the

required result.
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Let P be a probability distribution de�ned by

P =

nk∑

i=1

piδ(x
k
i ) pi = (hi−1 − hi)x

k
i pnk

= hnk
xk
nk

= hnk
L,

thus fP = h and given the previous result, lemma 2.4 is proved.

Given Lemma 2.4, we now prove Lemma 2.1.

Proof of Lemma 2.1. We �rst 
onsider the 
ase where θt1 . α(θ) . θt2 for small

θ. For ǫn as in Theorem 2.1, de�ne θn as

θn = inf{x, 1− F0(x) <
ǫn
2n

}.

Note that F0 is 
àdlàg, thus

F0(θn) ≥ 1− ǫn/(2n) and ∀y < θn1− F0(y) > ǫn/(2n). (2.27)

. Using lemma 2.4 with L = θn, we obtain that there exists a distribution P =∑nk

i=1 δxi
pi su
h that

KL(f0,n, fP ) ≤ ǫ2n, and

∫
f0,n log

(
f0,n
fP

)2

. ǫ2n.

Note that fP has support [0, θn] and is su
h that fP (θn) > 0. Now, set m = nk

and 
onsider P ′
the mixing distribution asso
iated with {m, x′

1, . . . , x
′
m, p

′
1 . . . , p

′
m}

with

∑m
i=1 p

′
i = 1. De�ne for 1 ≤ i ≤ m−1 the set Ui = [0∨(xi−ǫ3n/M, xi+ǫ3n/M ]

and Um = (θn, θn + ǫn(L − θn) ∧ ǫ3n/M ]. Constru
t P ′
su
h that x′

i ∈ Ui and

|P ′(Ui)− pi| ≤ ǫ2m−1
. We get

∀t ∈ [0, θn] f
′
P (t) >

p′m
x′
m

.

Given that x′
m ∈ Um, we get x

′
m ≤ θn+ ǫn(L−θn)∧ ǫ3n/M . θn for n large enough.

Note also that p′m ≥ pm−ǫ2nm
−1
. Given the 
onstru
tion of Lemma 2.4, we dedu
e

pm ≥ f0(xi−1)

1 +O(ǫn)
& f0(xi−1),

for n large enough. Furthermore, given (2.27)

∀z < θn, f0(z)(L− z) ≥
∫ L

z

f0(t)dt ≥
ǫn
2n

,
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thus

∀t ∈ [0, θn] f
′
P (t) &

ǫn
2n

− ǫ2nm
−1

θn
&

ǫn
n
,

and dedu
e that ||f0/fP ′||∞ . n
ǫn

Lemma 8 from Ghosal and van der Vaart (2007)

gives us that

∫ θn

0

f0(x) log

(
f0
fP ′

)
(x)dx .

(
ǫ2n +H2(fP , fP ′)

)
(1 + | log(ǫn/n)|)

.
(
ǫ2n + |fP − fP ′|1

)
(1 + | log(ǫn/n)|).

Given the mixture representation (2.1) of f0 and fP , we get

(
ǫ2n + |fP − fP ′ |1

)
(1 + log(n))

.
(
ǫ2n +

∫ θn

0

∣∣∣
∑

(
pi
xi

− p′i
x′
i

)Ix≤xi
+
∑ pi

xi
(Ix≤xi

− Ix≤x′

i
)
∣∣∣dx
)
(1 + log(n))

.
(
ǫ2n +

∑
|xi

x′
i

− 1|p′i +
∑

|p′i − pi|+
∑ pi

xi
|x′

i − xi|
)
(1 + | log(n)|)

. ǫ2n(1 + | log(n)|).

Generally speaking, denoting U0 = [0, 1] ∩ (∪m
i=1Ui)

c
and N = {P ′, |P ′(Ui)− pi| ≤

ǫ2nm
−1} we obtain that for all P ′ ∈ N

∫ θn

0

f0(x) log
( f0
fP ′

)
(x)dx . ǫ2n(1 + | log(n)|),

and similarly

∫ θn

0

f0(x) log
( f0
fP ′

)2
(x)dx . ǫ2n(1 + | log(n)|)2,

for ǫn small enough. Note also that for all P ′ ∈ N and n large enough, as before

we get ∫ L

θn

fP ′(x)dx .
ǫn
n
.

We now derive a 
ontrol on k, the number of steps until εk ≤ ǫ
3/2
n in the


onstru
tion of Lemma 2.4. At step k− 1, we have εk−1 ≥ ǫ
3/2
n . It is 
lear that for

all j, εj ≤ 2−1/2εj−1, thus

M1/2L1/22−(k−1)/2 ≥ εk−1 ≥ ǫ3/2n

log(M1/2L1/2)− (k − 1)
log(2)

2
≥ 3

2
log(ǫn).
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Finally, we have

k ≤ 2

log(2)
(log(M1/2L1/2)− 3

2
log(ǫn)) + 1. (2.28)

We 
an then get a lower bound for Π[N ] and, given that for ǫn small enough

and n large enough, we have

N ⊂ Sn(ǫn, θn),

we 
an dedu
e a lower bound for Π
(
Sn(ǫn, θn)

)
. For the Type 1 prior, we have

similarly to Ghosal et al. (2000)

Π[N ] = Pr(D(Aα(U0), . . . , Aα(Unk
)) ∈ [pi ± ǫ2n/nk])

≥ Γ(A)∏
i Γ(Aα(Ui))

∏

j

∫ (pi+ǫ2n/nk)

(pi−ǫ2n/nk)∧0
x
Aα(Uj)−1
j dxj .

Given 
ondition C1, we have

α(Ui) ≥
∫

Ui

α0θ
t1dθ,

thus

α(Ui) ≥ 2ǫ3nα0xi
t1 .

for n large enough and ǫ su�
iently small we have as in Lemma 6.1 of Ghosal et al.

(2000)

Π(N ) & exp {C1nk log(ǫ)} .
Note that given (2.25), nk . ǫ−1

n whi
h gives the desired result. For the Type 2
prior, we write

N ′ =

{
P ′ =

nk∑

j=1

p′jδx′

j
, |p′j − pj| ≤ ǫ2/nk, |x′

j − xj | ≤ ǫ3n

}
⊂ Sn(ǫn, θn),

we then dedu
e a lower bound for Π[Sn(ǫn, θn)]

Π[N ′] ≥ Q(K = nk)

nk∏

j=1

n−nk
k cnk

∫ pi+ǫ2/nk

max(0,pi−ǫ2/nk)

w
aj
j dwj

nk∏

j=1

α(Ui)

≥ exp
{
−cnk lognk +

∑
log(α(Ui)) + nk log(c)− nk log(nk) +

∑
aj log(2ǫ

2/nk)
}

& exp
{
C ′

1ǫ
−1 log(ǫ)

}
.
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We now 
onsider the 
ase where e−a1/θ ≤ α(θ) ≤ e−a2/θ
if θ is 
lose to 0 and

supx∈[0,δ] |f ′
0(x)| ≤ C0. We have that for n large enough and C > 0, a 
onstant

depending on f0, f0(0) − f0(ǫn) ≤ Cǫn. Following Lemma 2.4, we 
an 
onstru
t

a pie
ewise 
onstant approximation of f0 on [δ, L]. On [0, δ], 
onsider the regular
partition with ⌊ǫ−1

n ⌋ points and the pie
ewise 
onstant approximation of f0 de�ned
as before (i.e. fi = f0(xi−1)). Again, this approximation 
an be identi�ed with a

measure P . Given the assumptions on f0 we immediately get thatKL(f0, fP ) . ǫ2n.
Consider the same sets N as before, with the same partitions U1, . . . , Un. Using

similar 
omputations as in Lemma 6.1 of Ghosal et al. (2000) we get that

Π(N ) ≥ exp
{
C1(nk + ǫ−1

n ) log(ǫn) +
∑

log(α(Ui))
}

For the Ui in
luded in [δ, L] we have α(Ui) & ǫ
3/2
n . For the Ui in
luded in [0, δ]

we have α(Ui) & ǫn exp {−a/(iǫn)}, whi
h gives

∑
α(Ui) . −ǫ−1

n log(n)

We end the proof using similar argument as before.

2.4.2 Proof of Lemma 2.2

The proof of Lemma 2.2 is straightforward and 
omes dire
tly from C1 and C2.

Proof. Re
all that given (2.1), f(0) =
∫
[0,1]

1
θ
dP (θ). Then

Π

[∫ 1

0

1

θ
dP (θ) ≥ Mn

]
= Π

[∫ 2M−1
n

0

1

θ
dP (θ) +

∫ 1

2M−1
n

1

θ
dP (θ) ≥ Mn

]
.

Note that

∫ 1

2M−1
n

1

θ
dP (θ) ≤ Mn/2

∫ 1

2M−1
n

dP (θ) ≤ Mn/2.

Thus the set {P,
∫ 2M−1

n

0
θ−1dP (θ) ≥ Mn/2} 
ontains F c

n and

Π[F c
n] ≤ Π

[∫ 2M−1
n

0

1

θ
dP (θ) > Mn/2

]

≤ 2M−1
n E

[∫ 2M−1
n

0

1

θ
dP (θ)

]
,
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using Markov inequality. Then for a Type 1 prior when n large enough

Π[F c
n] ≤ 2M−1

n

∫ 2M−1
n

0

1

θ
α(θ)dθ

≤ 2M−1
n

∫ 2M−1
n

0

θt2−1dθ =
(2M−1

n )t2+1

t2
= Ce−cn1/3 log(n)2/3 .

For a Type 2 prior, we have that

Π[F c
n] ≤

∞∑

h=1

Q(K = k)πk

[
min
j≤k

xj ≤ M−1
n

]

≤
( ∞∑

h=1

kQ(K = k)

)
α([0,M−1

n ])

≤ C ′e−cn1/3 log(n)2/3 .

2.5 Adaptation of Theorem 4 of Rivoirard et al.

(2012)

This Theorem is a slight modi�
ation of Theorem 2.9 of Ghosal et al. (2000). The

main deferen
e lies in the handling of the denominator Dn in

Π(f : d(f0, f) ≥ J0,nǫn|Xn) =

∫
d(f,f0)≥J0,nǫn

∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)
∫ ∏n

i=1
f(Xi)
f0(Xi)

dπ(f)
=

Nn

Dn
,

as in general, it require a lower bound on the prior mass of Kullba
k Leibler

neighborhood of f0. Here we prove that under 
ondition (2.16) we have for some


onstants c, C > 0
P n
0 (Dn < ce−Cnǫ2n) = o(1).

Let ln(f) be the log likelihood asso
iated with f and de�ne Ωn = {(f,Xn), ln(f)−
ln(f0) > −C1nǫ

2
n} for some 
onstant C1 > 0. De�ne also An = {Xn, ∀iXi ≤ θn}.

We thus have

Dn ≥ e−C1nǫ2n

∫

Sn(ǫn,θn)

IΩndΠ(f) = e−C1nǫ2nΠ(Sn(ǫn, θn) ∩ Ωn).
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Note that given (2.16) we have that there exists ρ > 0 su
h that for n large enough

e−C2nǫ2nΠ(Sn(ǫn, θn) > ρ. We now write

P n
0 (Dn < e−Cnǫ2n) ≤ P n

0

(
e(C−C1)nǫ2nΠ(Sn(ǫn, θn) ∩ Ωn) < c

)

≤ P n
0

(
e(C−C1−C2)nǫ2nΠ(Sn(ǫn, θn) ∩ Ωn <

c

ρ
Π(Sn(ǫn, θn)

)

≤ P n
0

(
Π(Sn(ǫn, θn) ∩ Ωc

n) >

(
1− e−(C−C1−C2)nǫ2n

c

ρ

)
Π(Sn(ǫn, θn))

)

≤
2
∫
Sn(ǫn,θn)

P n
0 (Ω

c
n)dΠ(f)

Π(Sn(ǫn, θn))
.

For all f ∈ Sn(ǫn, θn) we 
ompute

mn = E

n
0 (ln(f0)− ln(f)IAn)

= nF0(θn)
n−1

∫ θn

0

f0 log

(
f0(x)

f(x)

)
dx

= nF0(θn)
n

(
KL(f0,n, fn) + log

(
F0(θn)

F (θn)

))

≤ C3nǫ
2
n,

and

P n
0 (Ω

c
n) = P n

0 (ln(f)− ln(f0) < −C1nǫ
2
n)

= P n
0 ({ln(f)− ln(f0) < −C1nǫ

2
n} ∩ An) + o(1)

≤ P n
0 ({ln(f0)− ln(f)−mn > (C1 − C3)nǫ

2
n} ∩ An) + o(1)

≤ E

n
0 ({ln(f0)− ln(f)−mn}IAn)

2

(C1 − C3)2(nǫ2n)
2

+ o(1).

We then 
ompute for C5 and C6 some �xed 
onstants

vn = E

n
0 ({ln(f0)− ln(f)−mn}IAn)

2

= (F0(θn))
n−1

(
n

∫ θn

0

f0 log
2

(
f0(x)

f(x)

)
dx+ n(n− 1)

(∫ θn

0

f0,n log

(
f0(x)

f(x)

)
dx

)2

−m2
n

)

= (F0(θn))
n−1

(
n

∫ θn

0

f0 log
2

(
f0(x)

f(x)

)
dx+

n− 1

n
F0(θn)

−2n+2m2
n −m2

n

)

≤ nF0(θn)
n

∫ θn

0

f0,n log
2

(
f0(x)

f(x)

)
dx+

n− 1

n
m2

nF0(θn)
n−1(F0(θn)

−2n+2 − 1)

≤ C5nǫ
2
n + C6(nǫ

2
n)

2ǫn.

We �nally obtain that for all f ∈ Sn(ǫn, θn), P
n
0 (Ω

c
n) = o(1). We end the proof

using similar arguments as in Ghosal et al. (2000).
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2.6 Dis
ussion

In this 
hapter, we obtain an upper bound for the 
on
entration rate of the pos-

terior distribution under monotoni
ity 
onstraints. This is of interest as in this

model, the standard approa
h based on the seminal paper of Ghosal et al. (2000)


annot be applied dire
tly. We prove that the 
on
entration rate of the posterior

is (up to a log(n) fa
tor) the minimax estimation rate (n/ log(n))−1/3
for standard

losses su
h as L1 or Hellinger.

We also prove that the posterior distribution is 
onsistent for the pointwise

loss at any point of the support and for the sup norm loss. Studying asymptoti


properties for these losses is di�
ult in general as the usual approa
h are well

suited for losses that are related to the Hellinger metri
. Obtaining more re�ned

results on the asymptoti
 behaviour of the posterior distribution will require re�ned


ontrol of the likelihood whi
h in the 
ase of nonparametri
 mixture models is a

di�
ult task.
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Chapter 3

Bayesian testing for monotoni
ity

�Every day is a new day. It is better to be lu
ky. But I would

rather be exa
t. Then when lu
k 
omes you are ready.�

� Ernest Hemingway, The old man and the sea.

Résumé

Nous proposons un test bayésien non paramétrique de dé
roissan
e d'une fon
tion

dans le modèle de régression gaussien. Dans 
e 
adre, outre le fait que les deux

hypothèses sont non-paramétriques, l'hypothèse nulle est in
lue dans l'alternative.

Il s'agit don
 d'un 
as de test parti
ulièrement di�
ile. En outre dans 
e 
as,

l'appro
he usuelle par le fa
teur de Bayes n'est pas 
onsistante. Nous proposons

don
 une appro
he alternative reprenant les idées d'approximation d'une hypothèse

pon
tuelle par un intervalle. Nous prouvons que pour une large famille de lois a

priori, le test proposé est 
onsistant et sépare les hypothèses à la vitesse mini-

maxe. De plus notre pro
édure est fa
ile à implémenter et à mettre en ÷u vre.

Nous étudions ensuite son 
omportement sur des données simulées et 
omparons

les résultats ave
 les méthodes 
lassiques existantes dans la littérature. Pour 
ha-


un des 
as 
onsidérés, nous obtenons des résultats au moins aussi bons que les

méthodes existantes, et les surpassons pour un 
ertain nombre de 
as.
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3.1 Introdu
tion

3.1.1 Modelling with monotone 
onstraints

Shape 
onstraints models, and monotone 
onstraints models in parti
ular, are of

growing interest in the nonparametri
 �eld. There is a wide literature on the prob-

lem of estimating monotone fun
tions. Groeneboom (1985), Prakasa Rao (1970)

and Robertson et al. (1988) among others study the nonparametri
 maximum

likelihood estimator of monotone densities, Lo (1984), Brunner and Lo (1989),

and Salomond (2013) study some posterior distribution in a Bayesian approa
h.

Barlow et al. (1972) and Mukerjee (1988) proposed a shape 
onstraint estimators

of monotoni
 regression fun
tions. These methods are widely applied in pra
ti
e.

Bornkamp and I
kstadt (2009) 
onsider monotone fun
tion when modeling the re-

sponse to a drug as a fun
tion of the dose and Neittaanmäki et al. (2008) use a

monotone representation for environmental data.

In this 
hapter we propose a pro
edure to test for monotoni
ity 
onstraints in

the Gaussian regression model

Yi = f(i/n) + σǫi, ǫi
iid∼ N (0, 1) , σ > 0, i = 1, . . . , n, (3.1)

and, with F(K) being the set of all monotone fun
tions uniformly bounded by K,

we test

H0 : f ∈ F(K), versus H1 : f 6∈ F(K). (3.2)

Here both the null and the alternative are nonparametri
 hypotheses. The problem

of testing for monotoni
ity has already been addressed in the frequentist literature

and a variety of approa
hes have been 
onsidered. Baraud et al. (2005) use pro-

je
tions of the regression fun
tion on the sets of pie
ewise 
onstant fun
tion on a


olle
tion of partition of support of f . Their test reje
ts monotoni
ity if there is

at least one partition su
h that the estimated proje
tion is too far from the set of

monotone fun
tions. Another approa
h, 
onsidered in Hall and He
kman (2000)

and Ghosal et al. (2000) among others, is to test for negativity of the derivative of

the regression fun
tion. However this requires some assumptions on the regularity

of the regression fun
tion under the null hypothesis that 
ould be avoided. In a

re
ent paper Akakpo et al. (2014) propose a pro
edure that dete
ts lo
al departure

from monotoni
ity, and study very pre
isely its asymptoti
 properties.

Here, we propose a Bayesian approa
h to this problem, whi
h to the author's

knowledge has only re
eive little 
onsideration. S
ott et al. (2013) 
onsider a

Bayesian test for monotoni
ity based on 
onstrained spline. Their approa
h require

smoothness assumptions on the regression fun
tion under the alternative, whi
h

we avoid here. We only 
onsider the 
ase where F(K) is the set of monotone

non in
reasing fun
tions uniformly bounded by K, but a similar approa
h 
ould
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be used when 
onsidering the set of monotone in
reasing. The most 
ommon ap-

proa
h to testing in a Bayesian setting is the Bayes Fa
tor. Here however, we see

that this method has drawba
ks and seems to have poor performan
es, hen
e we

propose a modi�
ation of the Bayes fa
tor.

3.1.2 The Bayes fa
tor approa
h

The standard Bayesian answer to the testing problem (3.2) related with the 0− 1
loss is the Bayes fa
tor

B0,1 =
Π {f ∈ F(K) | Y n}
Π {f 6∈ F(K) | Y n}

1−Π {F(K)}
Π {F(K)} .

This approa
h to Bayesian testing is easy to understand as posterior probability

of the 
onsidered hypotheses have a simple interpretation.

In this 
hapter we 
onsider a prior on pie
ewise 
onstant fun
tions.

f =
k∑

i=1

I[(i−1)/k,i/k)ωi, dΠ(f) = π(k)π(ω1, . . . , ωk|k)dλk(ω1, . . . , ωk)dν(k),

where λk is the Lebesgue measure on R
k
and ν the 
ounting measure on N. These

prior are 
ommon in the Bayesian nonparametri
 literature. Furthermore for the

problem of estimating monotone non in
reasing densities, related priors have been

proved to lead to the minimax 
on
entration rate over F(K) in Salomond (2013).

In our 
ase, the Bayes fa
tor seems to give poor results in pra
ti
e. The reason

behind this is that when f has �at parts, it be
omes di�
ult to dete
t monotoni
ity

due to estimation un
ertainty. For instan
e when 
onsidering the fun
tion f = 0
the Bayes Fa
tor does not seem to give a 
redible answer. As an illustration,

Figure 3.1 gives the histogram 
onstru
ted from 100 draws of data with f = 0 and
n = 100. Bayes Fa
tor smaller than 0 indi
ates that the fun
tion is not monotone

non in
reasing. It appears that for these runs, the Bayes Fa
tor is rather small and

that for a non negligible proportion of samples the log Bayes Fa
tor is negative.

Thus the answers given by the Bayes Fa
tor are not satisfying in this 
ase.

3.1.3 An alternative approa
h

To ta
kle this issue of 
onstru
ting a test robust to �at parts, we 
hange the

formulation of our test into

Ha
0 : d̃{f,F(K)} ≤ τ versus Ha

1 : d̃{f,F(K)} > τ (3.3)
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Figure 3.1: 100 simulation of the log Bayes Fa
tor B0,1 for f = 0 and n = 100

where d̃(f,F(K)) = infg∈F(K) d̃(f, g) and d̃ is a metri
 or a semi-metri
 and τ is

a threshold. This ideas is similar to the one proposed in Rousseau (2007) for the

approximation of a point null hypothesis by an interval hypothesis testing. Here

again we 
onsider the 0 − 1 loss with weight γ0, γ1 so that the Bayesian de
ision

is given by

δπn =

{
0 if Π

[
d̃{f,F(K)} ≤ τ |Yn

]
≥ γ0

γ0+γ1

1 otherwise

. (3.4)

The threshold τ 
an be 
alibrated a priori by a prior knowledge on the toleran
e
to approximate monotoni
ity. In pra
ti
e su
h an a priori 
alibration is not always

feasible. We therefore propose in this 
hapter an automati
 
alibration of τ . In

absen
e of prior information on the threshold, it is natural to have τ depending on

n, sin
e the more data, the more pre
ise we 
an a�ord to be. A least requirement

will be that the test des
ribed in (3.3) is asymptoti
ally equivalent to the test

(3.2). Hen
e a 
alibration of τ su
h that our test is 
onsistent, that is for all ρ > 0
and d(·, ·) a metri
 or a semi-metri
, potentially di�erent from d̃,

sup
f∈F(K)

E

n
f (δ

π
n) = o(1)

sup
f,d{f,F(K)}>ρ

E

n
f (1− δπn) = o(1).

(3.5)

To understand the e�e
tiveness of the threshold indu
ed by our approa
h, we

study the minimum separation rate of our test whi
h is the minimum value ρ = ρn
su
h that (3.5) is still valid. Small ρn implies that the test is able to dete
t very
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small departure from the null. We thus want our 
alibrated threshold to indu
e

the smallest separation rate.

Form a pra
ti
al point on view, this pro
edure will be easy to implement as it

will only require sampling under the posterior distribution whi
h is made easy by

our 
hoi
e of prior. This is a great advantage 
ompared to the frequentist tests

proposed in the literature as they require in general heavy 
omputations.

We thus propose a pro
edure whi
h although being a Bayesian answer to the

problem (3.3), is also asymptoti
ally an answer to the problem (3.2). Moreover,

our pro
edure is automati
 and easy to implement. The 
onstru
tion of the test is

presented in se
tion 3.2 and its asymptoti
 properties are dis
ussed in Se
tion 3.2.2.

In Se
tion 3.2.3 we propose a way to 
alibrate the hyperparameters of the prior

rending the pro
edure fully automati
. We then run our test on simulated data in

se
tion 3.3 and on real environmental data in se
tion 3.4. A general dis
ussion is

provided in se
tion 3.7.

3.2 Constru
tion of the test

3.2.1 The testing pro
edure

We �rst propose a 
hoi
e for d̃{f,F(K)} whi
h measures the distan
e between

the regression fun
tion f and the set F(K) and a way to 
alibrate the threshold

τ in situation where prior information is not available. This is done su
h that by

answering the problem (3.3) we give a good answer to the problem (3.2). We then

propose a spe
i�
 family of prior that will speed up the 
omputations together

with a 
hoi
e for the hyperparameters based on heuristi
s.

As presented in se
tion 3.1.1, monotone non in
reasing fun
tions are well ap-

proximated by stepwise 
onstant fun
tions. Let Gk be the set of pie
ewise 
onstant

fun
tions with k pie
es on the partition {[0, 1/k), . . . , [(k − 1)/k, 1]} so that ea
h

fun
tion in Gk will be written

fω,k(·) =
k∑

i=1

ωiI[(i−1)/k,i/k)(·), ω = (ω1, . . . , ωk) ∈ R
k. (3.6)

We assume that the data Y n = (Y1, . . . , Yn) is generated by model (3.1), where the

residual varian
e σ2
is unknown. We then build a prior on (f, σ) taking a prior on

k and building a prior on ea
h submodels Gk. We de�ne

Π(ω, σ, k) := Π(k)Π(σ|k)Π(ω|σ, k).

First with this 
hoi
e of prior we have generally speaking π(F(K)) > 0. Further-
more, if the true regression fun
tion f0 is in F(K) then the pie
ewise 
onstant
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fun
tion in Gk of the form (3.6) whi
h minimizes the Kullba
k Leibler divergen
e

with f0 will also be in F(K) for all k. We 
onsider the following dis
repan
y

measure d̃(·, ·) in (3.3) between fω,k ∈ Gk and F(K),

d̃{fω,k,F(K)} = H(ω, k) = max
k≥j≥i≥1

(ωj − ωi). (3.7)

From (3.7) it appears that fω,k is in F(K) if and only if d̃{fω,k,F(K)} = 0.
Here the dis
repan
y d̃ 
orresponds to the sup norm between fω,k and the set of

monotone non in
reasing fun
tions. The idea of the 
alibration is the following.

In the model Gk, the a posteriori un
ertainty for estimating ω = (ω1, . . . , ωk) is of
order

√
k/n. Hen
e any monotone non in
reasing fun
tion fω,k su
h that for all

j > i, ωi ≥ ωj−O(
√

k/n) might be dete
ted as possibly monotone non in
reasing.

We thus 
hoose a threshold τkn for ea
h model Gk. We then 
ompare H(ω, k) with
some positive threshold depending on n and k and then 
alibrate τkn su
h that our

pro
edure is 
onsistent. To evaluate the e�e
tiveness of the threshold, we 
onsider

Hölderian alternatives, following what is done in the frequentist literature,

f ∈ H(α, L) =
{
f, [0, 1] → R, ∀x, y ∈ [0, 1]2|f(y)− f(x)| ≤ L|y − x|α

}
,

for some 
onstant L > 0 and a regularity parameter α ∈ (0, 1]. We study the

separation rate of our pro
edure and 
ompare it with the minimax separation rate

n−α/(2α+1)
.

3.2.2 Theoreti
al results

The following Theorem provides a way to 
alibrate τkn . It also gives an upper

bound for the minimal separation rate with respe
t to the distan
e d∞(·, ·) de�ned
as

d∞(f, g) = sup
x∈[0,1]

{|f(x)− g(x)|}

Consider prior of the form

dΠω

dλk
= g⊗k,

dΠσ

dλ1
= πσ,

dΠk

dν
= πk,

where λk is the Lebesgue measure on R
k
, whi
h satis�es the following 
onditions :

C1 the density πσ is 
ontinuous and πσ(σ) > 0 for all σ ∈ (0,∞),
C2 the density g is 
ontinuous and puts mass on all R. Furthermore, g is su
h

that there exists a 
onstant cg su
h that for all K > 0, for all z > 0, for all
l ∈ N, for all sequen
e u that goes to 0,

sup
|x0|≤K

∫
I [lzu ≤ |x− x0| ≤ (l + 1)zu] g(x)dx

sup|x0|≤K

∫
I [|x− x0| ≤ zu] g(x)dx

≤ u−cg ,
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C3 πk is su
h that there exists positive 
onstants Cd and Cu su
h that

e−CdkL(k) ≤ πk(k) ≤ e−CukL(k)
(3.8)

where L(k) is either log(k) or 1.

The 
ondition C1 and C2 are mild and are satis�ed for a large variety of distri-

butions. In se
tion 3.2.3 we will take g to be a Gaussian density and πσ to be a

inverse gamma. Simple algebra shows that for this 
hoi
e of prior, both 
onditions

are satis�ed. C3 is a usual 
ondition when 
onsidering mixture models with ran-

dom number of 
omponents, see e.g. Rousseau (2010) and is satis�ed by Poisson

or Geometri
 distribution for instan
e. We then have the following 
ontrol on our

test:

Theorem 3.1. Under the assumptions C1 to C3, for a �xed 
onstant M0 > 0,
setting τ = τkn = M0{k log(n)n−1}1/2 and δπn the testing pro
edure de�ned in (3.4),

for all K > 0 then there exists some M > 0 su
h that for all α ∈ (0, 1]

sup
f∈F(K)

E

n
f (δ

π
n) = o(1)

sup
f,d∞{f,F(K)}>ρ,f∈H(α,L)

E

n
f (1− δπn) = o(1)

(3.9)

for all ρ > ρn(α) = M{n/ log(n)}−α/(2α+1)vn where vn = 1 when L(k) = log(k)
and vn = {log(n)}1/2 when L(k) = 1.

Neither the prior nor the hyperparameters depends on the regularity α of the

regression fun
tion under the alternative. Moreover for all α ∈ (0, 1], the sepa-

ration rate ρn(α) is the minimax separation rate up to a log(n) term. Thus our

test is almost minimax adaptive. The log(n) term seems to follow from our def-

inition of the 
onsisten
y where we do not �x a level for the Type I or Type II

error 
ontrariwise to the frequentist pro
edures. The 
onditions on the prior are

quite loose, and are satis�ed in a wide variety of 
ases. The 
onstant M0 does not

in�uen
e the asymptoti
 behaviour of our test but has a great in�uen
e in pra
ti
e

for �nite n. A way of 
hoosing M0 is given in se
tion 3.2.3.

The proof of Theorem 4.1 is given in Se
tion 3.5, we sket
h here the main

ideas. We approximate the true regression fun
tion f0 in ea
h submodel Gk by

fω0,k that minimizes the Kullba
k-Leibler divergen
e with f0. We have a 
lose

form expression for ω0 = (ω0
1, . . . , ω

0
k) given by

ω0
i = n−1

i

∑

j,j/n∈[(i−1)/k,i/k)

f0(j/n), ni = Card {j, j/n ∈ [(i− 1)/k, i/k)} (3.10)

thus fω0,k belongs to F for all k when f0 ∈ F . To prove the �rst part of (3.9), we

bound H(ω, k) ≤ 2max |ωi − ω0
i | if f0 ∈ F so that the threshold τkn needs to be
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as large as the posterior 
on
entration rate of ω to ω0
in the misspe
i�ed model

Gk. Then to prove the se
ond part of (3.9) when ρ = ρn(α), we bound form below

H(ω, k) by H(ω0, k)−2max |ωi−ω0
i | whi
h implies a 
onstraint on the separation

rate of the test to ensure that uniformly over dn(f0,F) ≥ ρn(α) and f ∈ H(α, L)
we have H(ω, k) > τkn .

3.2.3 A 
hoi
e for the prior in the non informative 
ase

Conditions on the prior in Theorem 4.1 are satis�ed for a wide variety of distribu-

tions. However, when no further information is available, some spe
i�
 
hoi
es 
an

ease the 
omputations and lead to good results in pra
ti
e. We present in this se
-

tion su
h a spe
i�
 
hoi
e for the prior and a way to 
alibrate the hyperparameters.

We also �x γ0 = γ1 = 1/2 in the de�nition of δπn .

A pra
ti
al default 
hoi
e is the usual 
onjugate prior, given k, i.e. a Gaussian
prior on ω with varian
e proportional to σ2

and an Inverse Gamma prior on σ2
.

This will 
onsiderably a

elerate the 
omputations as sampling under the posterior

is then straightforward. Condition (3.8) on πk is satis�ed by the two 
lassi
al

distributions on the number of parameters in a mixture model, namely the Poisson

distribution and the Geometri
 distribution. It seems that 
hoosing a Geometri


distribution is more appropriate as it is less spiked. We thus 
hoose

Π =





k ∼ Geom(λ)

σ2|k ∼ IG(a, b)

ωi|k, σ iid∼ N (m, σ2/µ)

(3.11)

Standard algebra leads to a 
lose form for the posterior distribution up to a nor-

malizing 
onstant. Re
all that nj = Card {i, i/n ∈ [(j − 1)/k, j/k)}, we denote

b̃k = b+
1

2

k∑

j=1




∑

i,i/n∈Ij

(
Yi − Yj

)2
+

njµ

nj + µ
(Yj −m)2



 ,

where Yj is the empiri
al mean of the Yl on the set {l, l/n ∈ [(j − 1)/n, j/n)}, we
have

πk(k|Y n) ∝ π(k)b̃
−(α+n/2)
k µk/2

k∏

j=1

(nj + µ)−1/2

We 
an thus 
ompute the posterior distribution of k up to a 
onstant. To sample

from πk we use a random walk Hasting-Metropolis algorithm, see Robert and Casella
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(2004). We then 
ompute the posterior distribution of ω and σ given k

σ2|k, Y n ∼ IG(a+ n/2, b̃k)

ωj|k, σ2, Y n ind.∼ N
(
mµ+ nj Ȳj

nj + µ
,

σ2

nj + µ

)
.

Given k, sampling from the posterior is thus straightforward. We now propose

a way to 
alibrate the hyperparameters a, b, µ,m and M0.

We �rst propose a 
alibration for a, b,m, µ and λ. We 
hoose m to be the

empiri
al mean of the Yi. We then 
hose a and b su
h that the prior on σ has a

�rst order moment and Eπ(σ
2) is of the same order as the empiri
al varian
e of

the data Y n
denoted σ̂2

y . We 
hoose a = σ̂2
y + 1 and b = σ̂4

y . We want the prior on

ω to be �at enough to re
over large variations from the mean m. This is done by


hoosing the hyperparameter µ small. We also want the prior on k to be �at to

allow large values of k even for small samples sizes. It seems that µ and λ do not

have a great in�uen
e on the results when performing our test on simulated data.

We thus �x µ = 10−1
and λ = 10−1

.

Given these 
hoi
es for a, b,m, λ and µ, we 
alibrate M0 the 
onstant in τkn .
The 
hoi
e of M0 is 
riti
al for small sample sizes. Given that �ats parts of the

fun
tions are the most di�
ult to dete
t, espe
ially when k is large, we let M0

depend on k and 
alibrate it on simulated data from the 
ompletely �at fun
tion

f = 0 in order to get an upper bound for the type I error for �nite sample sizes.

We denote Y n
0 data generated from model (3.1) with f = 0 and noise level σ.

For all k we denote Z(Y n
0 , k) the posterior median of H(ω, k) given k i.e.

Z(Y n, k) = inf {z,Π{H(ω, k) > z|Y n
0 , k} ≥ 1/2} .

We then 
ompute for ea
h k, Mt(k) the 1− t quantile of Z(Y n, k). It is natural to
assume that the 
onstant M0 should be proportional to the noise level σ. Hen
e a

alibration for M0

M0 = Mt(k)σ
−1

{
n

k log(n)

}1/2

.

For ea
h k sampled from the posterior, we use simple Monte-Carlo approxima-

tion for Mt(k), based on 103 samples under the posterior to approximate Z(Y n
0 , k)

and 103 repli
ations of Y n
0 to approximate Mt(k).

3.3 Simulated Examples

In this se
tion we run our testing pro
edure on simulated data to study the be-

haviour of our test for �nite sample sizes. We 
hoose the prior distribution and
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alibrate the hyperparameters as exposed in se
tion 3.2.3. We 
onsider the follow-

ing nine fun
tions adapted from Baraud et al. (2003) and plot in Figure 3.2.

f1(x) =− 15(x− 0.5)3Ix≤1/2 − 0.3(x− 0.5) + e−250(x−0.25)2

f2(x) =0.15x

f3(x) =0.2e−50(x−0.5)2

f4(x) =− 0.5 cos(6πx)

f5(x) =− 0.2x+ f3(x)

f6(x) =− 0.2x+ f4(x)

f7(x) =− (1 + x) + 0.45e−50(x−0.5)2

f8(x) =− 0.5x2

f9(x) =0

(3.12)

The fun
tions f1 to f6 are 
learly not in F . The fun
tion f7 has a small bump

❋� ❋✁ ❋✂

❋✄ ❋☎ ❋✆

❋✝ ❋✞ ❋✟
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Figure 3.2: Regression fun
tions used in the simulated example.

around x = 0.5 whi
h 
an be seen as a lo
al departure from monotoni
ity. This

fun
tion is thus expe
ted to be di�
ult to dete
t for small datasets given our

parametrization. The fun
tion f9 is a 
ompletely �at fun
tion.
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Table 3.1: Per
entage of reje
tion for the simulated examples

f0 σ2 Barraud et

al. n = 100
Akakpo et

al. n = 100
Bayes Test, n :

100 250 500 1000 2500

H1

f1 0.01 99 99 97 100 100 100 100

f2 0.01 99 100 95 100 100 100 100

f3 0.01 99 98 100 100 100 100 100

f4 0.01 100 99 100 100 100 100 100

f5 0.004 99 99 100 100 100 100 100

f6 0.006 98 99 100 100 100 100 100

f7 0.01 76 68 97 100 100 100 100

H0
f8 0.01 - - 2 0 0 0 0

f9 0.01 - - 2 3 2 2 0

For several values of n, we generate N = 500 repli
ation of the data Y n =
{yi, i = 1, . . . , n} from model (3.1). For ea
h repli
ation we draw K = 5.103

iterations from the posterior distribution using a Hasting-Metropolis sampler with

a 
ompound Geometri
 proposal. More pre
isely, if ki−1 the state of our Markov


hain at the step i, we propose

kp
i = ki−1 + pi

where pi is su
h that

|pi| ∼ Geom(0.3) + 1

P (pi < 0) = P (pi > 0) =
1

2

Given k we draw dire
tly σ2
and ω from the marginal posteriors. We then approx-

imate π
{
H(ω, k) > τkn |Y n

}
by the standard Monte Carlo estimate

π̂
{
H(ω, k) > τkn |Y n

}
=

1

K

K∑

i=1

I

{
H(ωi, ki) > τk

i

n

}

and reje
t the null if π̂
{
H(ω, k) > τkn |Y n

}
> 1/2. The results are given in table 3.1.

For all the 
onsidered fun
tions, the 
omputational time is reasonable even for

large values of n. For instan
e, for f1, we require less than 45 se
onds to perform the

test for n = 2500 using a simple Python s
ript available on the author's webpage.

For the models with regression fun
tion f1 to f7, we 
hoose the same residuals
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varian
e as in Baraud et al. (2003), for the last two fun
tions, we 
hoose a varian
e

of 0.01 whi
h is of the same order. We observe that for the regression fun
tions f1
to f7, the test perform well and reje
t monotoni
ity for almost all tested samples

even when n is small. The results obtained for n = 100 are 
omparable with those

obtained in Akakpo et al. (2014) and Baraud et al. (2003). For f7, our test outer
perform the frequentist pro
edures. Although the Bayesian approa
h does not �x

a level for the test, it appears that with our hyperparameter 
alibration, the Type

1 error is indeed less or equal to the level of 5% �xed for the frequentist tests.

3.4 Appli
ation to Global Warming data

We 
onsider the Global Warming dataset provided by Jones et al. (2011) plotted

in Figure 3.4. It 
ontains the annual temperatures anomalies from 1850 to 2010,

expressed in degrees Cel
ius. Temperature anomaly is the departure from a long-

term average, here the 1961-1990 mean. The data are gathered from both land

and sea meteorologi
al stations and 
orre
ted for non 
limati
 error. In the litera-

ture, this dataset has been used to illustrate some isotoni
 regression te
hniques in

Wu et al. (2001) and Zhao and Woodroofe (2012) where they use frequentist esti-

mation pro
edures under monotoni
ity 
onstraint. Alvarez and Dey (2009) show,

using a Bayesian monotoni
 
hange point method, that there is a positive trend,

and that this trend tend to in
rease of about .3◦C in the global annual temperature

between 1958 and 2000. Álvarez and Yohai (2012) show that the phenomenon of

global warming is due to a steady in
rease trend phenomenon using a isotoni
 es-

timation methods. In our model, that would mean that the regression fun
tion f
should be positive in
reasing and 
onvexe. In all these papers the data is supposed

to be a sequen
e of independent and identi
ally distributes random variables. This

assumption is questionable (see Fomby and Vogelsang (2002)), but 
onsidering an-

nual temperature anomalies should redu
e the serial 
orrelation. Similarly to these

authors, we make the same assumption of independen
e. Our aim is to test if the

hypothesis of in
reasing temperature anomaly is realisti
, given the amount of in-

formation, using the method des
ribed in se
tion 3.1.1. In parti
ular, we 
hoose

the prior and the hyperparameters based on the rules des
ribed in se
tion 3.2.

We perform our test on this dataset (more pre
isely on minus the temperature

anomalies to test for monotone in
reasing trend), 
hoosing the hyperparameters

as in se
tion 3.2.3. We run the MCMC sampler des
ribed above for K = 105 in

order to 
ompute Monte Carlo estimate of δπn . We obtained

π̂(H(ω, k) > τkn |Y n) = 0.98

and thus the hypothesis of monotony is ruled out by our pro
edure. We 
on
lude

that applying a shape 
onstraint regression te
hniques on the trend of this dataset
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an deteriorate the estimation results.

Figure 3.3: Plot of the Global Warming data

3.5 Proof of Theorem 3.1

Throughout the proof, we will denote by C generi
 
onstants. Given that we


onsider K to be �xed, we will write F instead of F(K) to lighten notations. In

order to prove Theorem 4.1 we need some 
on
entration results of the posterior

around the true regression fun
tion. The following Lemma provides a posterior


on
entration rate when f0 is either in F or in H(α, L). The proof is given in

Se
tion 3.6 and is derived from Ghosal and van der Vaart (2007). Some adaptive

results are known for the Gaussian regression under some regularity assumptions,

the monotone 
ase has not been studied and thus this Lemma has an interest in

its own.

Let dn(·, ·) be de�ned as

dn(f, g)
2 = n−1

n∑

i=1

{f(i/n)− g(i/n)}2

and denote P n
0 the distribution of the Yi when f = f0 in (3.1).

Lemma 3.1. Let f0 be either in F or in H(α, L), and let π be de�ned as in

Theorem 4.1. Thus

EPn
0

[
Π{dn(fω,k − f0)

2 + (σ − σ0)
2 ≥ ǫ2n|Y n}

]
→ 0



70 CHAPTER 3. BAYESIAN TESTING FOR MONOTONICITY

where ǫn = ǫn(F) = CK{n/ log(n)}−1/4
if f0 ∈ F , CK depending only on K and Π

and ǫn = ǫn(α) = CL{n/ log(n)}−α/(2α+1)
if f0 ∈ H(α, L), CL depending only on

L and Π.

The proof of this lemma is postponed to Se
tion 3.6. Given this result, we get

the following Lemma that enable us to derive 
onsisten
y and an upper bound on

the separation rate.

Lemma 3.2. Let M be a positive 
onstant and ρn(α) = M{n/ log(n)}−α/(2α+1)
.

Let Π be as in Theorem 4.1 and ω0 be the minimizer of the Kulba
k-Leibler diver-

gen
e KL(fω,k, f0). Then there exists a 
onstant A > 0 su
h that

P n
0

{
Π
(
max

i
|ωi − ω0

i | ≥ Aξkn|Y n
)
≤ γ1

γ0 + γ1

}
→ 1. (3.13)

where ξkn = [{k log(n)}/n]1/2 for all �xed positive γ0 and γ1.

The proof of this lemma is postponed to Se
tion 3.6. Given the pre
eding

results, we derive (3.9).

We �rst prove 
onsisten
y under H0. Let f0 ∈ F then

H(ω, k) ≤ 2max
i

|ωi − ω0
i |

and thus

P n
0

[
Π{H(ω, k) ≥ τkn |Yn} <

γ1
γ0 + γ1

]
→ 1

as soon as τkn ≥ 2Aξkn, whi
h gives the 
onsisten
y under H0 given Lemma 3.2.

We now prove 
onsisten
y under H1. Let f0 6∈ F and f0 ∈ H(α, L) we have

H(ω, k) ≥ H(ω0, k)− 2max
i

|ωi − ω0
i | (3.14)

Assume that ρn(α) < d∞(f0,F), we derive a lower bound for H(ω0, k). Let

g∗ be the monotone non in
reasing pie
ewise 
onstant fun
tion on the partition

{[0, 1/k), . . . , [(k − 1)/k, 1)}, with for 1 ≤ i ≤ k, g∗i = minj≤i ω
0
j . Given that

d∞(fω0,k,F) = infg∈F d∞(fω0,k, g) we get

d∞(fω0,k,F) ≤ d∞(fω0,k, g
∗) ≤ H(ω0, k)

And therefore, given that d∞(f0,F) ≤ d∞(fω0,k,F) + d∞(fω0,k, f0)

Π
{
H(ω, k) < τkn |Yn

}
≤ Π

{
max

i
|ωi − ω0

i | ≥
ρn(α)− d∞(fω0,k, f0)− Cτkn

4
|Y n

}

The following Lemma states that for K0 a �xed positive 
onstant, the posterior

probability of k being greater that K0nρn(α)
2/ log(n) is less than a oPn

0
(1).
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Lemma 3.3. Let kn = nǫ2n/ log(n) if L(k) = log(k) and kn = nǫ2n if L(k) = 1
where ǫn is either ǫn(F) if f0 ∈ F or ǫn(α) if f0 ∈ H(α, L). For C1 a positive


onstant that my depend on K or L, let Kn = {k ≤ C1kn}. If Π is de�ne as in

Theorem 4.1 then

Π (Kc
n|Y n) ≤ oPn

0
(1) (3.15)

The proof is postponed to Se
tion 3.6

For k ∈ Kn and M large enough we have ρn(α)/4 > τkn . Denoting Bn =
{dn(fω,k, f0)2 + |σ0 − σ|2 ≤ ǫ2n}, Lemma 3.1 gives

Π(Bc
n|Yn) = oPn

0
(1).

On the set Bn ∩ Kn we have for M , the 
onstant in ρ(α) large enough ρn(α)/4 ≥
d∞(fω0,k, f0)

Π
{
H(ω, k) < τkn |Yn

}
≤ Π

[
{max

i
|ωi − ω0

i | ≥ ρn(α)/8} ∩ {Kn ∩ Bn}|Y n
]
+ oPn

0
(1).

Given (3.13), we get that for all f0 su
h that dn(f0,F) > ρn(α)

P n
0

[
Π{H(ω, k) < τkn |Yn} <

γ0
γ0 + γ1

]
→ 1

whi
h ends the proof.

3.6 Proof of Lemmas 3.1, 3.2 and 3.3

3.6.1 Proof of Lemma 3.1

In this se
tion we prove that the posterior 
on
entrate around f0, σ0 at the rate

(n/ log(n))−1/4
if f0 ∈ F and (n/ log(n))−α/(2α+1)

if f0 ∈ H(α, L). To do so we

follow the approa
h of Ghosal and van der Vaart (2007). Throughout the proof,

C will denote a generi
 
onstant.

Let KL(f, g) =
∫
f log(f/g) be the Kullba
k-Leibler divergen
e between the

two probability densities f and g. We de�ne V (f, g) =
∫
(log(f/g)−KL(f, g))2f .

We denote pi(ω, σ, k) the probability density with respe
t to the Lebesgue measure

of Yi = fω,k+ǫi when ǫi ∼ N (0, σ2) and pi,0 the true density of Yi, i.e. when f = f0.
We only 
onsider the 
ase where f ∈ F , a similar proof holds when f ∈ H(α, L).
We de�ne

Bn(ǫ) =

{
n∑

i=1

KL{pi(ω, σ, k}, pi,0) ≤ nǫ2,
n∑

i=1

V {pi(ω, σ, k), pi,0} ≤ nǫ2

}
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Here p(ω, σ, k) and p0 are Gaussian distributions, we 
an easily 
ompute

KL{pi(ω, σ, k), pi,0} =
1

2
log

(
σ2

σ2
0

)
− 1

2

(
1− σ2

0

σ2

)
+

1

2

{fω,k(xi)− f0(xi)}2
σ2

V {pi(ω, σ, k), pi,0} =
1

2

(
1− σ2

0

σ2

)2

+

[
σ2
0

σ2
{fω,k(xi)− f0(xi)}

]2

We have Bn(ǫn) ⊃ {d2n(fω,k, f0) ≤ Cǫ2n, |σ2 − σ2
0 |2 ≤ Cǫ2n}.

For f0 ∈ F , denoting ω0
j = n−1

j

∑
xi∈Ij f0(xi) and xj = inf(Ij), xj = sup(Ij) we

have

d2n(fω,k, f0) = d2n(f0, fω0,k) + d2n(fω,k, fω0,k)

and

d2n(f0, fω0,k) =
1

n

k∑

j=1

∑

xi∈Ij

{f0(xi)− fω0,k}2

≤ 1

n

k∑

j=1

nj{f0(xj)− f0(xj)}2

≤ C

k

[
k∑

j=1

{f0(xj)− f0(xj)}
]2

≤ C||f0||2∞
k

.

Denoting kn = C⌈||f0||2∞{n/ log(n)}1/2⌉ we dedu
e that Bn(ǫn) ⊃ {k = kn, ||ω −
ω0||2kn ≤ ǫ2n, |σ2 − σ2

0 | ≤ ǫ2n} where || · ||k is the standard Eu
lidean norm in R
k
i.e.

for a = (a1, . . . , ak) ∈ R
k

||a||2k = k−1
k∑

i=1

a2i .

We dedu
e that for a �xed positive 
onstant C0 that depends on ||f0||∞ ,

π{Bn(ǫn)} &

(
C inf

x∈[0,1]
[g{f0(x)}]ǫn

)kn

πσ(σ
2
0)ǫ

2
nπ(k = kn) ≥ e−C0nǫ2n. (3.16)

To end the proof of Lemma 3.1, the standard approa
h of Ghosal and van der Vaart

(2007) requires the existen
e of an exponentially 
onsistent sequen
e of tests. Their

Theorem 4 suited for independent observations relies on the fa
t that the set

{dn(fω,k, f0)2 + (σ − σ0)
2 ≥ ǫ2n} 
an be 
overed with Hellinger balls. Be
ause of the

unknown varian
e, this 
annot be done here, we thus use an alternative approa
h
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and to 
onstru
t tests, and then apply Theorem 3 from Ghosal and van der Vaart

(2007).

Consider the sets Fk
j =

{
fω,k, σ; (jǫn)

2 ≤ dn(fω,k, f0)
2 + (σ − σ0)

2 ≤ ((j + 1)ǫn)
2}
.

There exists a 
onstant C > 0 su
h that

Fk
j ⊂

{
||ω − ω0||k ≤ Cjǫn, |σ − σ0| ≤ Cjǫn

}
. (3.17)

To apply Theorem 3 of Ghosal and van der Vaart (2007), we 
onstru
t tests fol-

lowing Choi and S
hervish (2007).

For |σ−σ0| ≤ σ0/2. Simple algebra leads to an equivalen
e between (dn(f, f
′)2 + (σ − σ′)2)

1/2

and the Hellinger metri
 so that we 
an apply Lemma 2 of Ghosal and van der Vaart

(2007). Equation (3.17) implies that for all ξ > 0 there exist a ξǫn net of Fk
j 
on-

taining less than (Cj/ξ)k. We then have a test Ψ1 su
h that

E

n
0 (Ψ1) ≤ e−Cj2nǫ2n; sup

Fk
j ∩{|σ−σ0|≤σ0/2}

Ef,σ(1−Ψ1) ≤ e−Cj2nǫ2n.

For σ > 3σ0/2 we 
onsider the test Ψ2 de�ned as

Ψ2 = I

{
n∑

i=1

(
Yi − f0(xi)

σ0

)2

> nc1

}
,

for a suitably 
hoosen 
onstant c1 > 0. Cherno� bound gives

E

n
0 (Ψ2) ≤ e−Cn.

If σ > 3σ0/2 and (f, σ) ∈ Fk
j , thus j > j0/ǫn for some j0 > 0. If Yi = f(xi) + σεi

where εi ∼ N (0, 1) then
∑n

i=1 ((Yi − f0(xi))/σ0)
2
follow a non 
entral χ2

n distri-

bution with non 
entrality parameter

∑n
i=1(f(xi)− f0(xi))

2/σ2 > 0. Thus setting
W ∼ χ2

n

Ef,σ(1−Ψ2) = Pf,σ

[
σ2

σ2
0

n∑

i=1

{
Yi − f0(xi)

σ

}2

≤ nc1

]
≤ pr

(
W ≤ 4

9
c1n

σ2
0

σ

)
.

Cherno� bound gives

Ef,σ(1−Ψ2) ≤ e−C2n.

Re
all that we 
an 
onstru
t a ξǫ-net for Fk
j with less that (Cj/ξ)k points. For

σ < σ0/2 we 
onsider the test Ψ
t
3 asso
iated to f t ∈ Fk

j a point in the ξǫn net and

some suitably 
hosen 0 < c2 < 1 de�ned as

Ψt
3 = I

[
n∑

i=1

{
Yi − f t(xi)

σ0

}2

≤ c2n

]
.
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As before, given that under Pf0,σ0,

∑n
i=1 [{Yi − f t(xi)}/σ0]

2
follows a non 
en-

tral χ2
n distribution

E

n
0 (Ψ

t
3) = P0

[
n∑

i=1

{
Yi − f t(xi)

σ0

}2

≤ c2n

]
≤ pr(W ≤ c2n).

Given that the moment generating fun
tion of a non 
entral χ2
n distribution

with non 
entrality parameter∆ at point s is known to be (1−2s)n/2 exp{s∆2/(1−
2s)}, we have for all f, σ ∈ Fk

j ∩ {σ < σ0/2} su
h that dn(f
t, f) ≤ ξǫn

Pf,σ

[
σ2

σ2
0

n∑

i=1

{
Yi − f t(xi)

σ

}2

≥ c2n

]

≤ exp

[
n

2

{
− log(1− 2s) +

1

σ2

2s

1− 2s
dn(f, f

t)2 − 2sc2
σ2
0

σ2

}]
.

For s small enough we have

2s

1− 2s
dn(f, f

t)2 ≤ 4sdn(f, f
t)2 ≤ 4sξ2ǫ2n ≤ 2sc2

σ2
0

σ2
.

Whi
h in turns gives for c′2 > 0 a �xed 
onstant

Ef,σ(1−Ψt
3) ≤ e−nc′2.

Taking Ψ3 = maxtΨ
t
3 we get a test su
h that

E

n
0 (Ψ3) = o(1); sup

Fj
n∩{σ≤σ0/2}

Ef,σ(1−Ψ3) ≤ e−Cj2nǫ2n.

We 
on
lude the proof by taking φn = max{Ψ1,Ψ2,Ψ3} as an exponentially 
on-

sistent sequen
e of tests and applying Theorem 3 of Ghosal and van der Vaart

(2007).

3.6.2 Proof of lemma 3.2

Let f0 either belong to F or to H(α, L) and ǫn represent either ǫn(F) if f0 ∈ F or

ǫn(α) if f0 ∈ H(α, L). We denote An = {(ω, σ, k), dn(fω,k, f0)2 + |σ − σ0|2 ≤ ǫ2n}
with ǫn as in Lemma 3.1. Thus π(Ac

n|Yn) = oPn
0
(1). We now derive an upper

bound for π(maxj |ωj − ω0
j | ≥ Aξkn|Yn, An). To do so, we look at the following
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de
omposition for all kn ∈ N,

π(max
j

|ωj − ω0
j | ≥ Aξkn|Yn, An) ≤

∑

k≤kn

π(k|Yn, An)
k∑

j=1

∫
π(|ωj−ω0

j | ≥ Cξkn|Yn, An, k, σ)dπ(σ|Yn, An, k)+π(k > kn|Yn).

(3.18)

Given Lemma 3.3 we have, 
hoosing kn = C1nǫ
2
n a 
onstant C1 as in Lemma 3.3,

π(k > kn|Yn) = oPn
0
(1)

We now �nd an upper bound uniformly in σ over An for π(|ωj−ω0
j | ≥ Aξkn|Yn, An, k, σ).

We �rst denote Il(ω
0
j , σ0) = {lσ0ξ

k
n ≤ |ωj −ω0

j | ≤ (l+1)σ0ξ
k
n}. We have for l0 ≤ A

Π(|ωj − ω0
j | ≥ Aξkn|Yn, An, k, σ) ≤

∑

l≥l0

Π{Il(ω0
j , σ0)|Yn, An, k, σ}.

We then write

Π{Il(ω0
j , σ0)|Yn, An, k, σ} =

∫
Il(ω

0
j ,σ0)

el
σ
n(ω)−l

σ0
n (ω0)dΠ(ω)

∫
elσn(ω)−l

σ0
n (ω0)dΠ(ω)

,

where lσn(ω) = −n log(σ2)/2 − 1
2

∑n
i=1{Yi − fω,k(xi)}2/σ2

. Standard algebra leads

to

lσn(ω)− lσ0
n (ω0) = −1

2

k∑

j=1

(ωj − ω0
j )

2

σ2
+
∑

xi∈Ij

ǫi
σ0

σ2
(ωj − ω0

j ) + ∆(ǫ, σ, f0, k),

where ∆(ǫ, σ, f0, k) does not depend on ω and ǫi
iid∼ N (0, 1) under pn0 . We thus

dedu
e

Π{Il(ω0
j , σ0)|Yn, An, k, σ} =
∫
Il(ω

0
j ,σ0)

exp
{
−1

2
nj

(ωj−ω0
j )

2

σ2 +
∑

xi∈Ij (ǫi)
σ0

σ2 (ωj − ω0
j )
}
dΠ(ω)

∫
exp

{
−1

2
nj

(ωj−ω0
j )

2

σ2 +
∑

xi∈Ij(ǫi)
σ0

σ2 (ωj − ω0
j )
}
dΠ(ω)

=
Nk

n,j,l(σ)

Dk
n,j(σ)

We now prove that on a set E su
h that P n
0 (E) = 1 + o(1) we have for (ǫi) ∈ E ,

We have an upper bound for Nk
n,j/D

k
n,j uniformly in σ ∈ An for all k ≤ kn.
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Let E =
{
∩k≤kn ∩k

j=1

{∣∣∣
∑

xi∈Ij ǫi

∣∣∣ ≤ ce
√

nj log(n)
}}

for some 
onstant absolute


onstant ce large enough. We 
ompute

pr(E c) ≤ 2

kn∑

k=2

k∑

j=1

pr


∑

xi∈Ij

ǫi > ce

√
nj log(n)


 ≤ 2

k2
n

nc2e
= o(1).

For (ǫi) ∈ E and uniformly in σ over An we 
ompute

Dk
n,j(σ) =

∫
exp



− nj

2σ2
(ωj − ω0

j )
2 +

σ0

σ2
(ωj − ω0

j )
∑

xi∈Ij

ǫi



 dπ(ωj)

≥
∫

|ωj−ω0
j |≤σ0ceξkn

exp

{
−nj(ωj − ω0

j )
2 − 2ce

σ0

σ2
nj |ωj − ω0

j |
√

log(n)

nj

}
dπ(ωj)

≥ e−3c2eσ
2
0nj(ξ

k
n)

2/(2σ2)Π(|ωj − ω0
j | ≤ σ0ceξ

k
n)

Similarly for (ǫi) ∈ E and uniformly in σ over An we have for l large enough

Nk
n,j,l(σ) ≤

∫

Il(ω
0
j ,σ0)

exp

{
−1

2
nj|ωj − ω0

j |
(
|ωj − ω0

j |
σ2

− σ0

σ2
ce

√
log(n)

nj

)}
dπ(ω)

≤ e−l2σ2
0nj(ξ

k
n)

2/(4σ2)Π{Il(ω0
j , σ0)}.

We thus have for (ǫi)i ∈ E , ǫ > 0 and l large enough, together with 
ondition

C2

Nk
n,j,l(σ)

Dk
n,j(σ)

≤ e−
1

2σ2 σ
2
0nj(ξ

k
n)

2(l/2−3ce)
Π{Il(ω0

j , σ0)}
Π(|ωj − ω0

j | ≤ σ0ceξkn)

≤ e−nj(ξ
k
n)

2l2
σ2
0

8σ2 ,

whi
h in turns gives an upper bound for Π(|ωj − ω0
j | ≥ Aξkn|Yn, An, k, σ)

Π(|ωj − ω0
j | ≥ Aξkn|Yn, An, k, σ) ≤

1

2
e−l0

σ2
0

8σ2 nj(ξ
k
n)

2

.

We thus dedu
e for C an absolute 
onstant

Π(max
1≤j≤k

|ωj − ω0
j | ≥ Aξkn|Yn) ≤ kne

−l0C log(n) + oPn
0
(1),

whi
h gives 
hoosing A large enough

P n
0

{
Π(max

1≤j≤k
|ωj − ω0

j | ≥ Aξkn|Yn) <
γ1

γ0 + γ1

}
→ 1.
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3.6.3 Proof of Lemma 3.3

Let be either kn = nǫ2n/ log(n) if L(k) = log(k) or kn = nǫ2n if L(k) = 1. Similarly

to before, we have π (Bn(ǫn)) ≥ e−nǫ2n
. We de�ne Nn and Dn su
h that

π(Kc
n|Yn) =

∑
k∈Kc

n
π(k)

∫ p(ω,σ,k)
p0

(Y n)dΠ(ω, σ)
∑

k π(k)
∫ p(ω,σ,k)

p0
(Y n)dΠ(ω, σ)

=
Nn

Dn

Given Lemma 10 of Ghosal and van der Vaart (2007), we have

P n
0

(
Dn ≤ e−Cnǫ2n

)
= o(1)

Note also that

E

n
0 (Nn) =

∑

k∈Kc
n

π(k)

∫ ∫

Rn

p(ω, σ, k)

p0
(Y n)p0(Yn)dΠ(ω, σ)dY

n = π(k ≤ kn) ≤ ce−CuknL(kn)

Thus for C small enough we have

E

n
0 [Π (k ∈ Kc

n|Y n)] = E

n
0

[
Nn

Dn

I
Dn>e−Cnǫ2n

]
+ o(1)

≤ eCnǫ2nce−CuknL(kn) + o(1)

≤ o(1)

3.7 Dis
ussion

In this 
hapter we propose a Bayesian approa
h to the problem of testing quali-

tative hypotheses in a nonparametri
 framework. More pre
isely we address the

problem of testing monotoni
ity of a regression fun
tion. This problem arise nat-

urally as shape 
onstraint models, and monotoni
ity in parti
ular, are fairly used

in pra
ti
e. Our approa
h is parti
ularly interesting as it fo
uses on a problem

where the Bayes Fa
tor seems to give poor results and thus an alternative ap-

proa
h should be 
onsidered. The testing pro
edure proposed in this 
hapter is

a modi�ed version of the Bayes Fa
tor that only reje
t H0 when the data gives

strong eviden
e that the fun
tion is not monotone. When possible, one 
an 
hoose

a threshold based on prior information on the toleran
e level to non monotony.

However, this 
ould be di�
ult in pra
ti
e, we thus present a way to 
alibrate our

test su
h that it behave well asymptoti
ally. Interestingly this 
alibration leads to

the optimal separation rate (up to a log(n) term) and thus the toleran
e indu
ed

by our approa
h, and the fa
t that we test (3.3), Ha
0 versus Ha

1 , instead of (3.2),
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H0 versus H1, is of the same order as the 
lassi
al tests available in the literature.

It has the advantage of being very simple to implement even in presen
e of large

datasets. Although we have fo
used on monotoni
ity 
onstraints, other types of

shape 
onstraints su
h as 
onvexity or unimodality 
an be dealt with using this

approa
h. For instan
e we 
an test for 
onvexity using pie
ewise linear fun
tions

as submodels Gk and test monotoni
ity of the slope.
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Chapter 4

Ill-posed inverse problems

�I may not be as stong as I think, but I know many tri
ks

and I have resolution.�

� Ernest Hemingway, The old man and the sea.

Co-é
rit ave
 Bartek Knapik

Résumé

Nous proposons une méthode générale pour l'étude des problèmes inverses linéaires

mal-posés dans un 
adre bayésien. S'il existe de nombreux résultats sur les méth-

odes de régularisation et la vitesse de 
onvergen
e d'estimateurs 
lassiques, pour

l'estimation de fon
tions dans un problème inverse mal-posé, les vitesses de 
on-


entration d'a posteriori dans le 
adre bayésien n'a été que très peu étudié dans


e 
adre. De plus 
es quelques rares résultats existant ne 
onsidèrent que des

familles très limitées de lois a priori, en général reposant sur la dé
omposition en

valeurs singulières de l'opérateur 
onsidéré. Dans 
e 
hapitre nous proposons des


onditions générales sur la loi a priori sous lesquelles l'a posteriori se 
on
entre à

une 
ertaine vitesse. Notre appro
he nous permet de trouver les vitesses de 
on-


entration de l'a posteriori pour de nombreux modèles et de larges 
lasses de loi a

priori. Cette appro
he est de plus parti
ulièrement intéressante 
ar elle permet de

mieux 
omprendre le fon
tionnement de la loi a posteriori et notamment l'impa
t

de l'opérateur sur l'inféren
e.

81
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4.1 Introdu
tion

Statisti
al approa
hes to inverse problems have been initiated in the 1960's and

sin
e then many estimation methods have been developed. Inverse problems arise

naturally when one only has indire
t observations of the obje
t of interest. Math-

emati
ally speaking this phenomenon is easily modelled by the introdu
tion of an

operator K su
h that the observation at hand 
omes from the model

Y n ∼ P n
Kf , (4.1)

where f is the obje
t of interest and is assumed to belong to a parameter spa
e F .

In many appli
ations the operator K is assumed to be inje
tive. However, in the

most interesting 
ases its inverse is not 
ontinuous, thus the parameter of interest

f 
annot be re
onstru
ted by a simple inversion of the operator. Su
h problems

are said to be ill-posed. Several methods dealing with the dis
ontinuity of the

inverse operator have been proposed in the literature. The most famous one is to


ondu
t the inferen
e while imposing some regularity 
onstraints on the parameter

of interest f . These so-
alled regularisation methods have been widely studied in

the literature both from a theoreti
al and applied perspe
tive (see Engl et al.,

1996, for a review).

Bayesian approa
h to inverse problems is therefore parti
ularly interesting, as

it is well known that putting a prior distribution on the parameter yields a natural

regularisation. This property of the Bayesian approa
h is parti
ularly interesting

for model 
hoi
e, but it has proved also useful in many estimation pro
edures, as

shown in Rousseau and Mengersen (2011) in the 
ase of over�tted mixtures models

or to nonparametri
 models where regularizatino is ne
essary as in Castillo (2013)

or Salomond (2013) in the semiparametri
 problem of estimating a monotone den-

sity at the boundaries of its support. Here we study the asymptoti
 behaviour

of the posterior distribution under the frequentist assumptions that the data Y n

are generated from model (4.1) for some true parameter f0. In parti
ular we are

interested in the rate at whi
h the posterior 
on
entrate around f0. Asymptoti


properties of the posterior distribution have re
eived a growing interest in the liter-

ature. Knapik et al. (2011), Agapiou et al. (2013), and Florens and Simoni (2012)

were the �rst to study posterior 
on
entration rates under 
onjugate prior in so-


alled mildly ill-posed setting. These were followed by two papers by Knapik et al.

(2013) and Agapiou et al. (2014), studying Bayesian approa
h to re
overy of the

initial 
ondition for heat equation and related inverse problems. The paper by Ray

(2013) is the �rst study of the posterior 
on
entration rates in the non-
onjugate

setting. Considering non-
onjugate prior is parti
ularly interesting as it allows

some additional �exibility of the model. However, the approa
h presented in Ray

(2013) is only valid for priors that are 
losely linked to the singular value de
om-

position (SVD) of the operator. Moreover, in Ray (2013) several rate adaptive
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priors were 
onsidered. It should be noted, however, that some of the bounds on


ontra
tion rates obtained in that paper are not optimal. Similar adaptive results,

in the 
onjugate mildly ill-posed setting, using empiri
al and hierar
hi
al Bayes

approa
h were obtained in Knapik et al. (2012).

There is a ri
h literature on the problem of deriving posterior 
on
entration rate

in the dire
t problem setting. Sin
e the seminal papers of Ghosal et al. (2000) and

Shen and Wasserman (2001), general 
onditions on the prior distribution for whi
h

the posterior 
on
entrates at a 
ertain rate have been derived in various 
ases. In

parti
ular Ghosal and van der Vaart (2007) gives a series of 
onditions for non

independent and identi
ally distributed data. However, su
h results 
annot be

applied dire
tly to ill-posed inverse problems and to the authors best knowledge,

no equivalent of these results exists in the inverse problem literature. In this

work we try to �ll this gap. We �rst assume the existen
e of the 
ontra
tion

result for the so-
alled dire
t problem (that is re
overy of Kf). Next, we impose

additional su�
ient 
onditions on the prior su
h that the posterior distribution for

the parameter of interest f 
on
entrates at a given rate.

Consider an abstra
t setting in whi
h the parameter spa
e F is an arbitrary

metrizable topologi
al ve
tor spa
e and let K be an inje
tive mapping K : F ∋
f 7→ Kf ∈ KF . Even if the problem is ill-posed there exist subsets Sn of KF
over whi
h the inverse of the operator 
an be 
ontrolled. For suitably well 
hosen

priors, these sets will 
apture most of the posterior mass, and we 
an thus easily

derive posterior 
on
entration rate for f from posterior 
on
entration rate for Kf
by a simple inversion of the operator. More pre
isely for d and dK some metri
s or

semi-metri
s on F and KF respe
tively and f0 a point in F , we want to derive the

smallest ball for the metri
 d on F ∩ Sn that 
ontains K−1{f, dK(Kf,Kf0) ≤ ǫ}
the image of a ball ofK(F∩Sn) for the metri
 dK by K−1

. This shows in parti
ular

that the 
hoi
e of Sn is 
ru
ial for our approa
h.

The rest of the paper is organised as follows: we present the main result in

Se
tion 4.2 and a general 
onstru
tion for the sets Sn in Se
tion 4.3. We then

apply our result for di�erent examples in the white noise and regression setting in

Se
tion 4.4.

4.2 General Theorem

Assume that the observations Y n

ome from model (4.1) and that P n

Kf admit

densities pnKf relative to a σ-�nite measure µn
. To avoid 
ompli
ated notations,

we drop the supers
ript n in the rest of the paper. Let F and KF be metri


spa
es, and let d and dK denote metri
s on both spa
es, respe
tively.

In this se
tion we present the main result of this paper whi
h gives an upper

bound on the posterior 
on
entration rate under some general 
onditions on the
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prior. We will 
all the estimation of Kf given the observations Y the dire
t prob-

lem, and the estimation f given Y the inverse problem. The main idea is to 
ontrol

the 
hange of norms between dK and d. If the posterior distribution 
on
entrates

around Kf0 for the metri
 dK at a 
ertain rate in the dire
t problem, applying the


hange of norms will give us an upper bound on the posterior 
on
entration rate

for the metri
 d in the inverse problem. However, sin
e the problem is ill-posed

the 
hange of norms 
annot be 
ontrolled over the whole spa
e KF . A way to


ome around this problem is to only fo
us on a sequen
e of sets of high posterior

mass for whi
h the 
hange of norm is feasible. More pre
isely, for a set S ⊂ F ,

f0 ∈ F and a �xed δ > 0 we 
all the quantity

ω(S, f0, d, dK, δ) := sup
{
d(f, f0) : f ∈ S, dK(Kf,Kf0) ≤ δ

}
. (4.2)

the modulus of 
ontinuity. We note that in this de�nition we do not assume

f0 ∈ S. This is thus a lo
al version of the modulus of 
ontinuity 
onsidered in

Donoho and Liu (1991) or Ho�mann et al. (2013). On the one hand, the sets Sn

need to be big enough to 
apture most of the posterior mass. On the other hand,

one has to be able to 
ontrol the distan
e between the elements of Sn and f0, given
the distan
e between Kf and Kf0 is small. Sin
e the operator K is unbounded,

this suggests that the sets Sn 
annot be too big.

Theorem 4.1. Let ǫn → 0 and let Π the prior distribution on f be su
h that

E0Π
(
Sc
n | Y n

)
→ 0, (4.3)

for some sequen
e of sets (Sn), Sn ⊂ F , and

E0Π
(
f : dK(Kf,Kf0) ≥ Mnǫn | Y n

)
→ 0,

for any Mn → ∞. Then

E0Π
(
f : d(f, f0) ≥ ω(Sn, f0, d, dK,Mnǫn) | Y n

)
→ 0.

Proof. By (4.3) and the de�nition of the modulus of 
ontinuity

Π
(
f : d(f, f0) ≥ ω(Sn, f0, d, dK,Mnǫn) | Y n

)

≤ Π
(
f ∈ Sn : d(f, f0) ≥ ω(Sn, f0, d, dK,Mnǫn) | Y n

)
+Π(Sc

n | Y n)

≤ Π
(
f ∈ Sn : dK(Kf,Kf0) ≥ Mnǫn | Y n

)
+ oP (1).

The interpretation of the theorem is the following: given a properly 
hosen se-

quen
e of sets Sn, the rate of posterior 
ontra
tion in the dire
t problem restri
ted
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to the given sequen
e 
an be translated to the rate of posterior 
ontra
tion in the

inverse setting. Here, the 
hoi
e of Sn is 
ru
ial as it is the prin
ipal 
omponent

in the 
ontrol of the 
hange of norm. In parti
ular, the 
on
entration rate ǫn for

the dire
t problem may not be optimal, and still leads to an optimal 
on
entra-

tion rate ω(Sn, f0, d, dK,Mnǫn) for the inverse problem with a well suited 
hoi
e of

Sn. As shown in Se
tion 4.4.1.2, this is the 
ase for instan
e when the posterior

distribution of Kf is very 
on
entrated. We 
an then 
hoose Sn small enough so

that the 
hange of norms 
an be 
ontrolled very pre
isely.

To 
ontrol the posterior mass of the sets Sn we 
an usually alter the proofs of


ontra
tion results for the dire
t problems. Here we present a standard argument

leading to (4.3). De�ne the usual Kullba
k�Leibler neighborhoods by

Bn(Kf0, ǫ) =
{
f ∈ F : −

∫
pKf0 log

pKf

pKf0

dµ ≤ nǫ2,

∫
pKf0

(
log

pKf

pKf0

)2
dµ ≤ nǫ2,

}
, (4.4)

The following Lemma adapted from Ghosal and van der Vaart (2007) gives general


onditions on the prior su
h that (4.3) is satis�ed.

Lemma 4.1 (Lemma 1 in Ghosal and van der Vaart, 2007). Let ǫn → 0 and let

(Sn) be a sequen
e of sets Sn ⊂ F . If Π is the prior distribution on f satisfying

Π(Sc
n)

Π(Bn(Kf0, ǫn))
. exp(−2nǫ2n),

then

E0Π
(
Sc
n | Y n

)
→ 0.

4.3 Modulus of 
ontinuity

In this se
tion we �rst present an example of the sequen
e of sets Sn, and later

present how the modulus of 
ontinuity for this sequen
e 
an be 
omputed in two

standard inverse problem settings. We now suppose that F and KF are separable

Hilbert spa
es, denoted (H1, ‖ · ‖H1) and (H2, ‖ · ‖H2) respe
tively. We note that

the sets Sn resemble the sets Pn 
onsidered in Ray (2013).

As already noted, the operator K restri
ted to 
ertain subsets of the domain

H1 might have a �nite modulus of 
ontinuity de�ned in (4.2). Clearly, one wants

to 
onstru
t a sequen
e of sets Sn that in a 
ertain sense approa
hes the full

domain H1. This is understood in terms of the remaining prior mass 
ondition in
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Theorem 4.1. Moreover, sin
e we do not require f0 to be in Sn, we need to be able

to 
ontrol the distan
e between f0 and Sn.

A natural guess is to 
onsider �nite-dimensional proje
tions of H1. In this

se
tion we go beyond this 
on
ept. To get some intuition, 
onsider the Fourier

basis of H1. The ill-posedness 
an be then viewed as too big an ampli�
ation of

the high frequen
ies through the inverse of the operator K. Therefore, one wants

to 
ontrol the higher frequen
ies in the signal, and thus in the parameter f .
Sin
e H1 is a separable Hilbert spa
e, there exist an orthonormal basis (ei) and

ea
h element f ∈ H1 
an be viewed as an element of ℓ2 and

‖f‖H1 =
∞∑

i=1

f 2
i .

For given sequen
es kn → ∞ and ρn → 0, and a 
onstant c ≥ 0 we de�ne

Sn :=
{
f ∈ ℓ2 :

∑

i>kn

f 2
i ≤ cρ2n

}
. (4.5)

If the operator K is 
ompa
t, then the spe
tral de
omposition of the self-

adjoint operator KTK : H1 → H1 provides a 
onvenient orthonormal basis. In the


ompa
t 
ase the operator KTK possesses 
ountably many positive eigenvalues κ2
i

and there is a 
orresponding orthonormal basis (ei) of H1 of eigenfun
tions, and

the sequen
e (ẽi) de�ned by Kei = κiẽi forms an orthonormal 
onjugate basis of

the range of K in H2. Therefore, both f and Kf 
an be asso
iated with sequen
es

in ℓ2. Sin
e the problem is ill-posed when κi → 0, we 
an assume without loss of

generality that the sequen
e κi is de
reasing.

Let kn, ρn, and c in the de�nition of Sn be �xed. Then for any g ∈ Sn

‖g‖2
H1

=
∞∑

i=1

g2i =
∑

i≤kn

g2i +
∑

i>kn

g2i

≤
∑

i≤kn

g2i + cρ2n =
∑

i≤kn

κ−2
i κ2

i g
2
i + cρ2n

≤ κ−2
kn

∑

i≤kn

κ2
i g

2
i + cρ2n ≤ κ−2

kn
‖Kg‖2

H2
+ cρ2n.

Let fn be the proje
tion of f0 on the �rst kn 
oordinates, i.e., fn,i = f0,i for
i ≤ kn and 0 otherwise. Moreover, we assume that f0 belongs to some smoothness


lass des
ribed by a de
reasing sequen
e (si):

‖f0‖2s =
∞∑

i=1

s−2
i f 2

0,i < ∞.
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The usual Sobolev spa
e of regularity β is de�ned in that way with si = i−β
.

Therefore, we have

‖fn − f0‖H1 ≤ skn‖f0‖s, ‖Kfn −Kf0‖H2 ≤ sknκkn‖f0‖s.

Using the triangle inequality twi
e and keeping in mind that f−fn ∈ Sn we obtain

‖f − f0‖H1 ≤ ‖f − fn‖H1 + ‖fn − f0‖H1

≤ κ−1
kn
‖Kf −Kfn‖H2 +

√
cρn + skn‖f0‖s

≤ κ−1
kn

(
‖Kf −Kf0‖H2 + κknskn‖f0‖s

)
+
√
cρn + skn‖f0‖s

= κ−1
kn
‖Kf −Kf0‖H2 +

√
cρn + 2‖f0‖sskn.

We then �nd an upper bound for the modulus of 
ontinuity,

ω(Sn, f0, ‖ · ‖H1, ‖ · ‖H2, δ) . κ−1
kn
δ + ρn + skn. (4.6)

Remark 1. If c > 0, then f0 ∈ Sn for n large enough (depending on f0).

4.4 Some models

4.4.1 White noise

4.4.1.1 Mildly ill-posed problems

Our �rst example is based on the well-studied in�nite-dimensional normal mean

model. In the Bayesian 
ontext the problem of dire
t estimation of in�nitely many

means has been studied, among others, by Zhao (2000); Shen and Wasserman

(2001); Belitser and Ghosal (2003); Ghosal and van der Vaart (2007).

We 
onsider the white noise setting, where we observe an in�nite sequen
e

Y n = (Y1, Y2, . . .) satisfying

Yi = κifi +
1√
n
Zi, (4.7)

where C−1i−p ≤ κi ≤ Ci−p
for some p ≥ 0 and C ≥ 1, and Z1, Z2, . . . are indepen-

dent standard normal random variables. Let Kf denote the sequen
e κifi. In this

setting H1 = H2 = ℓ2, and the ℓ2-norm is denoted by ‖ · ‖.
Sin
e the κi's de
ay polynomially, the problem is mildly ill-posed. Su
h prob-

lems are well studied in the frequentist literature, and we refer the reader to

Cavalier (2008) for a ni
e overview. There are also several papers on properties

of Bayes pro
edures for su
h problems. The �rst studies of posterior 
ontra
tion

in mildly ill-posed inverse problems were obtained by Knapik et al. (2011) and
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Agapiou et al. (2013). Later, Ray (2013) and Knapik et al. (2012) studied adap-

tive priors leading to the optimal minimax rate of 
ontra
tion. Similar problem,

with a di�erent noise stru
ture, has been studied by Florens and Simoni (2012).

We put a produ
t prior on f of the form

Π =

∞⊗

i=1

N(0, λi),

where λi = i−1−2α
, for some α > 0. Furthermore, the true parameter f0 is assumed

to belong to Sβ
for some β > 0:

Sβ =
{
f ∈ ℓ2 : ‖f‖2β :=

∑
f 2
i i

2β < ∞
}
. (4.8)

Therefore, ‖Kf0‖2β+p is �nite, the prior on f indu
es the prior on Kf su
h that

(Kf)i ∼ N(0, λiκ
2
i ), and one 
an dedu
e from the results of Zhao (2000) and

Belitser and Ghosal (2003) that

sup
‖Kf0‖β+p≤R

E0Π
(
f : ‖Kf −Kf0‖ ≥ Mnn

− (α∧β)+p
1+2α+2p

∣∣ Y n
)
→ 0.

In order to apply Theorem 4.1 we need to 
onstru
t the sequen
e of sets Sn

and verify 
ondition (4.3). We use the 
onstru
tion as in (4.5), and we verify the

remaining posterior mass 
ondition along the lines of Lemma 4.1.

Theorem 4.2. Suppose the true f0 belongs to Sβ
for β > 0. Then for every R > 0

and Mn → ∞

sup
‖f0‖β≤R

E0Π
(
f : ‖f − f0‖ ≥ Mnn

− (α∧β)
1+2α+2p

∣∣ Y n
)
→ 0.

Proof. We �rst note that if ‖f‖β ≤ R, then ‖Kf‖β+p ≤ CR. Next we verify the


ondition of Lemma 4.1. Let

kn = n
1

1+2α+2p , ρn = n− (α∧β)
1+2α+2p , ǫn = n− (α∧β)+p

1+2α+2p .

Note that

nǫ2n = n · n− 2(α∧β)+2p
1+2α+2p = n

1+2α−2(α∧β)
1+2α+2p = ǫ

− 1+2α−2(α∧β)
(α∧β)+p

n ,

hen
e Π(Bn(Kf0, ǫn)) & exp(−C2nǫ
2
n) by Lemma 4.3 uniformly over a Sobolev

ball of radius R, Sβ(R).
Note also that

ρ2nk
1+2α
n = n− 2(α∧β)

1+2α+2p · n 1+2α
1+2α+2p = n

1+2α−2(α∧β)
1+2α+2p = nǫ2n,
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and given c ≥ 2(1+2α)/α we have Π(Sc
n) ≤ exp(−(c/8)nǫ2n) by Lemma 4.2. Hen
e

Π(Sc
n)

Π(Bn(Kf0, ǫn))
. exp

(
−
( c
8
− C2

)
nǫ2n

)
,

uniformly over a ball of radius R. The 
ondition of Lemma 4.1 is veri�ed upon


hoosing c = 8(2 + C2) ∨ 2(1 + 2α)/α.

Finally, we note that (
f. (4.6))

ω(Sn, f0, ‖ · ‖,‖ · ‖,Mnǫn)

. Mnn
p

1+2α+2p · n− (α∧β)+p
1+2α+2p + n− (α∧β)

1+2α+2p + n− β
1+2α+2p

. Mnn
− (α∧β)

1+2α+2p ,

whi
h ends the proof.

The upper bound on the posterior 
ontra
tion rate in this theorem agrees with

the results of Knapik et al. (2011) and Proposition 3.5 in Ray (2013). One 
ould

obtain the rate of 
ontra
tion exa
tly as in Knapik et al. (2011), that is with s
aled

priors. However, this would require a re�ned version of Lemma 4.3, and the rate

of posterior 
ontra
tion for dire
t problem based on s
aled priors. We therefore

de
ided to set the s
aling τn ≡ 1 and refer to the existing results in Zhao (2000)

and Belitser and Ghosal (2003).

Our result on posterior 
ontra
tion in the mildly ill-posed 
ase presented in

this se
tion is not too mu
h di�erent from Proposition 3.5 in Ray (2013). We

note three important di�eren
es: in our approa
h we use the existing results on

posterior 
ontra
tion in the dire
t problem, and the proofs of bounds on prior

mass of the sequen
e Sn and Kullba
k�Leibler type neighborhoods are elementary.

Finally, our result is uniform over Sobolev balls of given radius.

Lemma 4.2. Let ρn be an arbitrary sequen
e tending to 0, c be an arbitrary 
on-

stant, and let the sequen
e kn → ∞ satisfy k2α
n ≥ 2(1 + 2α)/(αcρ2n). Then

Π(Sc
n) ≤ exp

(
− c

8
ρ2nk

1+2α
n

)
.

Proof. For W1,W2, . . . independent standard normal random variables

Π(Sc
n) = Pr

(∑

i>kn

λiW
2
i > cρ2n

)
.
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For some t > 0

Pr
(∑

i>kn

λiW
2
i > cρ2n

)

= Pr
(
exp
(
t
∑

i>kn

λiW
2
i

)
> exp(tcρ2n)

)
≤ exp(−tcρ2n)E exp

(
t
∑

i>kn

λiW
2
i

)

= exp(−tcρ2n)
∏

i>kn

E exp(tλiW
2
i ) = exp(−tcρ2n)

∏

i>kn

(1− 2tλi)
−1/2.

We �rst applied Markov's inequality, and later used properties of the moment

generating fun
tion. Here we additionally assume that 2tλi < 1 for i > kn.
We take the logarithm of the right-hand side of the previous display. Sin
e

log(1− y) ≥ −y/(1− y), we have

−tcρ2n+
∑

i>kn

log(1− 2tλi)
−1/2

= −tcρ2n −
1

2

∑

i>kn

log(1− 2tλi) ≤ −tcρ2n +
1

2

∑

i>kn

2tλi

1− 2tλi
.

We 
ontinue with the latter term, noti
ing that 1− 2tλi > 1− 2tk−1−2α
n for i > kn

1

2

∑

i>kn

2tλi

1− 2tλi

≤ t

1− 2tk−1−2α
n

∑

i>kn

i−1−2α.

Sin
e x−1−2α
is de
reasing, we have that

∑

i>kn

i−1−2α ≤
∫ ∞

kn

x−1−2α dx+ k−1−2α
n =

k−2α
n

2α
+ k−1−2α

n ≤ k−2α
n

1 + 2α

2α
,

noting that kn > 1 for n large enough. Finally

−tcρ2n +
∑

i>kn

log(1− 2tλi)
−1/2 ≤ −tcρ2n +

1 + 2α

2α

t

1− 2tk−1−2α
n

k−2α
n .

Thus for t = k1+2α
n /4

Π(Sc
n) ≤ exp

(
− c

4
ρ2nk

1+2α
n +

1 + 2α

4α
kn

)
≤ exp

(
− c

8
ρ2nk

1+2α
n

)
,

sin
e k2α
n ≥ 2(1 + 2α)/(αcρ2n).

Lemma 4.3. Suppose f0 ∈ Sβ
. Then for every R > 0 there exist positive 
onstants

C1, C2 su
h that for all ǫ ∈ (0, 1),

inf
‖f0‖β≤R

Π(Bn(Kf0, ǫ)) ≥ C1 exp
(
−C2ǫ

− 1+2α−2(α∧β)
(α∧β)+p

)
.
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Proof. This proof is adapted from Belitser and Ghosal (2003). Re
all that in the

white noise model the ℓ2 balls and Kullba
k�Leibler neighborhoods are equivalent.

By independen
e, for any N ,

Π
( ∞∑

i=1

(κifi − κif0,i)
2 ≤ ǫ2

)

≥ Π
( N∑

i=1

(κifi − κif0,i)
2 ≤ ǫ2/2

)
Π
( ∞∑

i=N+1

(κifi − κif0,i)
2 ≤ ǫ2/2

)
.

(4.9)

Also ∞∑

i=N+1

(κifi − κif0,i)
2 ≤ 2

∞∑

i=N+1

κ2
i f

2
i + 2

∞∑

i=N+1

κ2
i f

2
0,i. (4.10)

The se
ond sum in the display above is less than or equal to

2N−2β−2p

∞∑

i=N+1

i2βf 2
0,i ≤ 2N−2β−2p‖f0‖2β <

ǫ2

4
,

whenever N > N1 = (8‖f0‖2β)1/(2β+2p)ǫ−1/(β+p)
.

By Chebyshev's inequality, the �rst sum on the right-hand side of (4.10) is less

than ǫ2/4 with probability at least

1− 8

ǫ2

∞∑

i=N+1

EΠ(κ
2
i f

2
i ) = 1− 8

ǫ2

∞∑

i=N+1

i−1−2α−2p ≥ 1− 4

(α + p)N2(α+p)ǫ2
> 1/2

if N > N2 = (8/(α+ p))1/(2α+2p)ǫ−1/(α+p)
.

To bound the �rst term in (4.9) we apply Lemma 6.2 in Belitser and Ghosal

(2003) with ξi = κif0,i and δ2 = ǫ2/2. Note that

N∑

i=1

i1+2α+2pξ2i =
N∑

i=1

i1+2α+2p · i−2pf 2
0,i

=

N∑

i=1

i1+2α−2βf 2
0,ii

2β ≤ N (1+2α−2β)∧0‖f0‖2β.

Therefore,

Π
( N∑

i=1

(κifi−κif0,i)
2 ≤ ǫ2/2

)

≥ exp
(
−
(
1 + 2α + 2p+

log 2

2

)
N
)
exp
(
−N (1+2α−2β)∧0‖f0‖2β

)

× Pr
( N∑

i=1

V 2
i ≤ 2δ2N1+2α+2p

)
.
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The last term, by the 
entral limit theorem, is at least 1/4 if 2δ2N1+2α+2p > N and

N is large, that is, N > N3 = ǫ−1/(α+p)
and N > N4, where N4 does not depend

on f0. Choosing N = max{N1, N2, N3, N4} we obtain

Π(f : ‖Kf−Kf0‖ ≤ ǫ)

≥ 1

8
exp
(
−
(
1 + 2α+ 2p+

log 2

2

)
N
)
exp
(
−N (1+2α−2β)∧0‖f0‖2β

)
.

Consider α ≥ β. Then exp(−N) ≥ exp(−N (1+2α−2β)) so

Π(f : ‖Kf −Kf0‖ ≤ ǫ) ≥ 1

8
exp
(
−C3N

(1+2α−2β)
)
,

for some 
onstant C3 that depends only on α, β, p and ‖f0‖2β. Moreover, sin
e

ǫ < 1 and α ≥ β, N is dominated by ǫ−1/(β+p)
and we 
an write

Π(f : ‖Kf −Kf0‖ ≤ ǫ) ≥ 1

8
exp
(
−C4ǫ

− 1+2α−2β
β+p

)
,

where C4 depends on f0 again through ‖f0‖2β only.

Now 
onsider α < β. Similar arguments lead to

Π(f : ‖Kf −Kf0‖ ≤ ǫ) ≥ 1

8
exp
(
−C5ǫ

− 1
α+p

)
,

for some 
onstant C5 that depends only on α, β, p and ‖f0‖2β.

4.4.1.2 Severely and extremely ill-posed problems

In this se
tion we 
onsider the white noise setting with trun
ated Gaussian priors.

The main purpose of this part is to show that in some 
lasses of ill-posed problems

adaptation does not need to be a
hieved simultaneously in both dire
t and indire
t

problems. As a matter of fa
t, in this part the rates in the dire
t problem will

be mu
h (polynomially) slower than the optimal rates. This is mostly due to the

fa
t that we 
onsider in here severely and extremely ill-posed problems that yield

logarithmi
 rates of re
overy. See also Knapik et al. (2013) and Agapiou et al.

(2014) for examples and referen
es.

We again 
onsider the white noise setting, where we observe an in�nite sequen
e

Y n = (Y1, Y2, . . .) as in (4.7) where κi ≍ exp(−γip) for some p ≥ 1 and γ > 0. Let
Kf denote the sequen
e κifi, and the ℓ2-norm is denoted by ‖ · ‖. In this setting

H1 = H2 = ℓ2.
We �rst 
onsider estimation of Kf0 that will be later used to obtain the rate

of 
ontra
tion of the posterior around f0. We put a produ
t prior on f of the form

Π =
kn⊗

i=1

N(0, λi),
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where λi = i−α exp(−ξip), for α ≥ 0, ξ > −2γ, and some kn → ∞. We 
hoose kn
solving 1 = nλi exp(−2γip) = ni−α exp(−(ξ + 2γ)ip). Using the Lambert fun
tion

W one 
an show that

kn =
( α

p(ξ + 2γ)
W
(
n

p
α
p(ξ + 2γ)

α

))1/p
=
( logn

ξ + 2γ
+O(log log n)

)1/p
, (4.11)

see also Lemma A.4. in Knapik et al. (2013). Note that in this 
ase we have

exp(kp
n) = (nk−α

n )1/(ξ+2γ)
, so we 
an avoid exponentiating kn. Therefore, we do not

have to spe
ify the 
onstant in front of the log log n term in the de�nition of kn,
and we may assume that it is of the order (log n)1/p.

Note that the hyperparameters of the prior do not depend on f0, but only on

K, whi
h is known. For Sn as in (4.5) with kn as above and c = 0, the prior is

supported on Sn and the �rst 
ondition of Theorem 4.1 is trivially satis�ed.

Theorem 4.3. Suppose the true f0 belongs to Sβ
for β > 0. Then for every R > 0

and Mn → ∞

sup
‖f0‖β≤R

E0Π
(
f : ‖f − f0‖ ≥ Mn(log n)

−β/p
∣∣ Y n

)
→ 0.

Proof. Assume for brevity that we have the exa
t equality κi = exp(−γip). Dealing
with the general 
ase is straightforward, but makes the proofs somewhat lengthier.

Sin
e Yi|fi ∼ N(κifi, n
−1) and fi ∼ N(0, λi) for i ≤ kn, the posterior dis-

tribution (for Kf) 
an be written as (Kf)i|Y n ∼ N(
√
nti,nYi, si,n) for i ≤ kn,

where

si,n =
λiκ

2
i

1 + nλiκ
2
i

, ti,n =
nλ2

iκ
4
i

(1 + nλiκ
2
i )

2
.

Sin
e the posterior is Gaussian, we have

∫
‖Kf −Kf0‖2 dΠ(Kf |Y n) = ‖K̂f −Kf0‖2 +

∑

i≤kn

si,n, (4.12)

where K̂f denotes the posterior mean and 
an be rewritten as:

K̂f =
( nλiκ

2
i

1 + nλiκ2
i

Yi

)kn
i=1

=
( nλiκ

3
i f0,i

1 + nλiκ2
i

+

√
nλiκ

2
iZi

1 + nλiκ2
i

)kn
i=1

=: EK̂f + (
√

ti,nZi)
kn
i=1.

By Markov's inequality the left side of (4.12) is an upper bound to M2
nε

2
n

times the desired posterior probability. Therefore, in order to show that Π(f :
‖Kf −Kf0‖ ≥ Mnεn|Y n) goes to zero in probability, it su�
es to show that the
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expe
tation (under the true f0) of the right hand side of (4.12) is bounded by a

multiple of ε2n. The last term is deterministi
. As for the �rst term we have

E‖K̂f −Kf0‖2 = ‖EK̂f −Kf0‖2 +
∑

i≤kn

ti,n.

We also observe

‖EK̂f −Kf0‖2 =
∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
+
∑

i>kn

κ2
i f

2
0 .

We are interested in the asymptoti
s of the three sums

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ2
i )

2
+
∑

i>kn

κ2
i f

2
0,i,

∑

i≤kn

si,n,
∑

i≤kn

ti,n.

The following bounds are proven in Lemma 4.4:

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
+
∑

i>kn

κ2
i f

2
0,i . ‖f0‖2βn− 2γ

ξ+2γ (logn)−
2β
p
+ 2γα

p(ξ+2γ) ,

∑

i≤kn

si,n ≍
∑

i≤kn

ti,n ≍ n−1(log n)
1
p .

(4.13)

Therefore, the posterior 
ontra
tion rate for the dire
t problem is given by

εn = (log n)
−β

p
+ γα

p(ξ+2γ)n− γ
ξ+2γ .

By (4.6) an upper bound for the modulus of 
ontinuity is given by

ω(Sn, f0, ‖ · ‖, ‖ · ‖,Mnǫn) . Mn exp(γk
p
n)ǫn + k−β

n

. Mnn
γ

ξ+2γ (log n)−
γα

p(ξ+2γ) ǫn + (logn)−
β
p

. Mn(log n)
−β

p , ,

whi
h ends the proof.

As already mentioned, this theorem, or rather its proof, shows that the adapta-

tion to the optimal rate does not need to be attained simultaneously in the dire
t

and in the inverse problem. The upper bound for the rate of 
ontra
tion in the di-

re
t problem is mu
h slower than the optimal rate of estimation of the analyti
ally

smooth parameter Kf0, that is n
−1/2(log n)1/2p. This is presumably not surprising

sin
e the prior puts mass on analyti
 fun
tions, whereas the true f0 belongs to

the Sobolev 
lass. There is only one 
hoi
e of the parameters of the prior, namely
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ξ = 0 and α = β and the 
orresponding kn, leading to the optimal rate also in the

dire
t problem. This prior, however, depends on the true smoothness of f0.
On the other hand, regardless of the 
hoi
e of ξ and α we a
hieve the optimal

minimax rate of 
ontra
tion (log n)−β/p
for the inverse problem of estimating f0

(
f. Knapik et al. (2013) or Agapiou et al. (2014) and referen
es therein). We note

that other papers on Bayesian approa
h to severely and extremely ill-posed inverse

problems do not 
onsider trun
ated priors. In Knapik et al. (2013) the optimal

rate is a
hieved for the priors with exponentially de
aying or polynomially de
aying

varian
es (in the latter 
ase the speed of de
ay leading to optimal rate is 
losely

related to the regularity of the truth). Ray (2013) and Agapiou et al. (2014) obtain

similar results for the priors with polynomially de
aying varian
es. However, in

the former 
ase the rate for undersmoothing priors is worse than the rate obtained

in the other papers.

We end this se
tion with an auxiliary result used in the proof of the main result

of this se
tion.

Lemma 4.4. The inequalities in (4.13) hold.

Proof. Note that ti,n ≤ n−1
and si,n ≤ n−1

. Therefore, the last two sums in (4.13)

are bounded from above by n−1kn = n−1(log n)1/p.
As for the �rst term in the �rst sum in (4.13) we have

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
≤ n−2

∑

i≤kn

λ−2
i κ−2

i i−2βi2βf 2
0,i

= n−2
∑

i≤kn

i2(α−β) exp(2(ξ + γ)ip)i2βf 2
0,i,

and for kn large enough all terms i2(α−β) exp(2(ξ+γ)ip) are dominated by k
2(α−β)
n exp(2(ξ+

γ)kp
n), so

∑

i≤kn

κ2
i f

2
0,i

(1 + nλiκ
2
i )

2
≤ n−2k2(α−β)

n exp(2(ξ + γ)kp
n)‖f0‖2β. (4.14)

As for the se
ond term in the �rst sum in (4.13) we note that

∑

i>kn

κ2
i f

2
0,i =

∑

i>kn

exp(−2γip)i−2βi2βf 2
0,i,

and sin
e exp(−2γip)i−2β
is monotone de
reasing

∑

i>kn

κ2
i f

2
0,i ≤ exp(−2γkp

n)k
−2β
n ‖f0‖2β. (4.15)



96 CHAPTER 4. ILL-POSED INVERSE PROBLEMS

Re
all that exp(kp
n) = (nk−α

n )1/(ξ+2γ)
and therefore we 
an rewrite the bounds

in (4.14) and (4.15) as

n−2k2(α−β)
n

(
nk−α

n

) 2(ξ+γ)
ξ+2γ = n− 2γ

ξ+2γ k
−2β+ 2γα

ξ+2γ
n ,

and

k−2β
n

(
nk−α

n

)− 2γ
ξ+2γ = n− 2γ

ξ+2γ k
−2β+ 2γα

ξ+2γ
n .

Finally, sin
e kn in this 
ase 
an be taken of the order (logn)1/p, we obtain the

desired upper bound.

4.4.2 Regression

We now 
onsider the inverse regression model with Gaussian residuals

Yi = (Kf)(xi) + σǫi, ǫi
iid∼ N (0, 1) (4.16)

where the 
ovariate xi ∈ R are �xed in a 
ovariate spa
e X . In the sequel, we

take either X = [0, 1] or X = R. In the following we 
onsider the noise level σ > 0
to be known although one 
ould also think of putting a prior on it and estimate it

in the dire
t model. In this setting, a 
ommon 
hoi
e for the metri
 d and dK is

d(f, g)2 = n−1

n∑

i=1

(f(xi)− g(xi))
2 = ||f − g||2n, dK(f, g) = d(Kf,Kg).

For f ∈ L2 we denote the standard L2 norm by

||f || =
(∫

f 2

)1/2

,

and for all k ∈ N
∗
, a ∈ R

k
we denote the usual Eu
lidean norm by

||a||k =
(

k∑

i=1

a2i

)1/2

There are many known results on 
on
entration rate of the posterior distribution

for the dire
t model in this 
ase, see for instan
e Ghosal and van der Vaart (2007)

give some general 
onditions on the prior to a
hieve a 
ertain rate. Posterior


on
entration rate for inverse problems has not been 
onsidered in this setting.



4.4. SOME MODELS 97

4.4.2.1 Numeri
al di�erentiation using spline prior

In this se
tion, we 
onsider the inverse regression problem (4.16) with the Volterra

operator de�ned for all measurable fun
tion f su
h that

∫ 1

0
f < ∞ and x ∈ [0, 1]

as

Kf(x) =

∫ x

0

f(t)dt. (4.17)

This model is parti
ularly useful for numeri
al di�erentiation for instan
e and has

been well studied in the literature. In parti
ular, Cavalier (2008) shows that the

SVD basis for this problem is the Fourier basis and that the problem is mildly

ill-posed of degree 1. We will 
onsider a prior on f that is well suited for if the

true regression fun
tion f0 belongs to the Hölder spa
e H(β, L) for some β > 0.
That is f0 is β0 = ⌊β⌋ times di�erentiable and

||f0||β = sup
x 6=y

|f (β0)(x)− f (β0)(y)|
|x− y|β−β0

≤ L.

Sin
e Kf0 is (β0 + 1) times di�erentiable, it also holds that if f0 ∈ H(β, L) then
Kf ∈ H(β + 1, L).

Here we 
onstru
t a prior on f by 
onsidering its de
omposition onto a B-splines

basis. A de�nition of the B-spline basis 
an be found in De Boor (1978). For a

�xed positive integer q > 1 
alled the degree of the basis, and a given partition

of [0, 1] in m subintervals of the form ((i − 1)/m, i/m], the spa
e of splines is

a 
olle
tion of fun
tion f(0, 1] → R that are q − 2 times di�erentiable and if

restri
ted to one of the sets ((i − 1)/m, i/m], are polynomial of degree at most

q. An interesting feature of the spa
e of splines is that it forms a J = m + q − 1
dimensional linear spa
e with the so 
alled B-spline basis denoted (B1,q, . . . , BJ,q).
Prior based on the de
omposition of the fun
tion f in the B-spline basis of order

qhave been 
onsidered in the regression setting in Ghosal and van der Vaart (2007)

and Shen and Ghosal (2014) for instan
e and are 
ommonly used in pra
ti
e. Here

we 
onstru
t a di�erent version of the prior that will prove to be useful to derive


on
entration rate for the dire
t problem and the indire
t problem. Let the prior

distribution on f be de�ned as

Π :





J ∼ ΠJ

a1, . . . aJ
iid∼ Πa,J

f(x) = J
∑J−1

j=1 (aj+1 − aj)Bj,q−1(x).

(4.18)

Given the de�nition of Bj,q in De Boor (1978), standard 
omputation gives

B′
j,q(x) = J (Bj,q−1(x)− Bj+1,q−1(x))
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whi
h in turns gives

Kf(x) =
J∑

j=1

ajBj,q(x).

This explains why we 
hoose a prior as in (4.18) as it leads to the usual spline prior

onKf . Note that the 
ondition thatKf(0) = 0 
an be imposed by a spe
i�
 
hoi
e

of nodes for the B-Splines basis (see De Boor, 1978, for more details). To 
ompute

the modulus of 
ontinuity for this model, we need to impose some 
onditions on

the design. Let Σq
n be a matrix de�ned by its 
oe�
ients

(Σq
n)i,j =

1

n

n∑

l=1

Bi,q(xl)Bj,q(xl), i, j = 1, . . . , J

Similarly to Ghosal and van der Vaart (2007) we ask that the design points satisfy

the following 
onditions:

D1 for all v1 ∈ R
J

J−1||v1||2J ≍ v
′
1Σ

q
nv1

D2 for all v2 ∈ R
J−1

(J − 1)−1||v2||2J−1 ≍ v
′
2Σ

(q−1)
n v2

where a ≍ b means that for some 
onstants c, C > 0, ca ≤ b ≤ Ca. Condition

D1 is natural when 
onsidering B-splines priors in a regression setting, and both


onditions are satis�ed for a wide variety of designs. Consider for instan
e the

uniform design xi = i/n for i = 1, . . . , n. Then given Lemma 4.2 in Ghosal et al.

(2000), we get that for v1 ∈ R
J
, v2 ∈ R

J−1

||v1||2JJ−1 .
∥∥∥
∑J

j=1 v1,jBj,q

∥∥∥
2

. ||v1||2JJ−1

||v2||2J−1(J − 1)−1 .
∥∥∥
∑J−1

j=1 v2,jBj,q−1

∥∥∥
2

. ||v2||2J−1(J − 1)−1.

Where the 
onstants only depend on q. Furthermore we gave that

∥∥∥
J∑

j=1

v1,jBj,q

∥∥∥
2

= v
′
1Σ

q
nv1 +O

(
1

n

)
,

where the O(n−1) only depends on q. We get similar results

∥∥∥
J−1∑

j=1

v2,jBj,q−1

∥∥∥
2

= v
′
2Σ

q−1
n v2 +O

(
1

n

)
.
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Thus D1 and D2 are satis�ed for the uniform design for all J = o(n).
We now go on and derive 
onditions on the prior su
h that the posterior 
on-


entrates at the minimax adaptive rate (up to a log(n) fa
tor). Note that here the
prior distribution is neither 
onjugate nor depends on the SVD of the operator.

Theorem 4.4. Let Y n = (Y1, . . . , Yn) be a sample from (4.16) with X = [0, 1]
and Π be a prior of f as de�ned in (4.18). Suppose that ΠJ is su
h that for some


onstants cd, cu > 0 and t ≥ 0, for all J > 1,

e−cdj log(j)
t ≤ ΠJ(j ≤ J ≤ 2j), ΠJ(J > j) . e−cuj log(j)t

(4.19)

and suppose that Πa,J is su
h that for all a0 ∈ R
J
, ||a0||∞ ≤ H, there exists a


onstant c2 depending only on H su
h that

Πa,J(||a− a0||J ≤ ǫ) ≥ e−c2J log(1/ǫ)
(4.20)

De�ne Θ(β, L,H) = {f ∈ H(β, L), ||f ||∞ ≤ H}. If the design (x1, . . . , xn)
satis�es 
onditions D1 and D2, then for all L and for all β ≤ q if f0 ∈ H(β, L)
there exits a 
onstant C > 0 that only depends on q, L, H and Π su
h that

sup
β≤q−1

sup
f0∈Θ(β,L,H)

E0Π
(
||f − f0|| ≥ C (n)−β/(2β+3) log(n)3r|Y n

)
→ 0 (4.21)

with r = max{t, 1}(β + 1)/(2β + 3).

Conditions (4.19) is similar to the one 
onsidered in Shen and Ghosal (2014)

for instan
e, and is satis�ed by the Poisson or geometri
 distribution for instan
e.

Condition (4.20) is satis�ed for usual 
hoi
es of priors su
h as produ
t of inde-

pendent distribution on the aj that admits a 
ontinuous density. Similar results

hold for fun
tions that are not uniformly bounded, with additional 
onditions on

the tails of Πa,J . This will only require additional 
omputation similar to those in

Shen and Ghosal (2014), and will thus not be treated here.

We �rst 
ompute an upper bound for the modulus of 
ontinuity. Given 
ondi-

tions D1 and D2 we get, denoting ∆(a) = (aj+1 − aj)j ∈ R
J−1

||f ||2n = J2∆(a)′Σq−1
n ∆(a)

. J2 1

J − 1
||∆(a)||2J−1

. J2 1

J − 1
||a||2J

. J2||Kf ||2n.

To apply Theorem 4.1, we �rst need to derive a 
on
entration rate for Kf . Note
that in this 
ase we simply have a standard non parametri
 regression model with
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a spline prior. This model has been extensively studied in the literature as in

Ghosal and van der Vaart (2007) or de Jonge and van Zanten (2012) and we 
an

easily adapt their results to derive minimax adaptive 
on
entration rates.

Lemma 4.5. Let Π be as in Theorem 4.4. Let Yn be sampled form model 4.16

with f = f0 and assume that f0 ∈ Θ(β, L,H) with β ≤ q − 1. Then there exists a


onstant C that only depends on H, L, Π, and q su
h that

E0Π(||Kf −Kf0||n ≥ Cn−(β+1)/(2β+3) log(n)r|Yn) → 0

with r = max{t, 1}β/(2β + 1).

Similar results have been proved in Shen and Ghosal (2014), however the au-

thors do not give a dire
t proof of this Theorem. Here this lemma gives us dire
tly

the posterior 
on
entration rate for the dire
t problem.

Proof. We prove Lemma 4.5 using Theorem 4 of Ghosal and van der Vaart (2007).

Let β ≤ q and f0 be in H(β, L) and set ǫn = Cn−(β+1)/(2β+3) log(n)r with r =
max{t, 1}β/(2β + 1). Set Jn := J0nǫ

2
n log(n)

−t
for a �xed 
onstant J0 > 0 and


onsider the sieves Sn de�ned by

Sn := {J ≤ Jn, a ∈ R
J}

We �rst 
ontrol the lo
al entropy fun
tion N(ǫ, {J, a ∈ Sn : ||Kf − Kf0|| ≤
ǫn}, ||.||n) by using the same reasoning as in the proof of Theorem 12 of Ghosal and van der Vaart

(2007) for all J ∈ Sn we get setting

log(N(ǫ, {J, a ∈ Sn : ||Kf −Kf0|| ≤ ǫn}, ||.||n)) ≤ nǫ2n.

The prior mass of the sieve is easily 
ontrolled using the 
ondition (4.19) as

Π(Sc
n) = ΠJ(J > Jn) ≤ e−cuJn log(Jn)t

We now need to 
ontrol the prior mass of Kullba
k�Leiber neighbourhoods of Kf0.
Note that this 
ondition will also be useful to apply Lemma 4.1 and thus derive

the 
on
entration rate for the dire
t problem. Let Bn(Kf0, ǫ) be de�ned as in (4.4)

Bn(Kf0, ǫ) =
{
f ∈ F : −

∫
pKf0 log

pKf

pKf0

dµ ≤ nǫ2,

∫
pKf0

(
log

pKf

pKf0

)2
dµ ≤ nǫ2,

}
,

Using the results of se
tion 7.3 of Ghosal and van der Vaart (2007), setting

J̃n = Jn log(n)
−r/β

we dedu
e that for some 
onstant c that only depends on σ

Bn(Kf0, ǫn) ⊃ {J̃n ≤ J ≤ 2J̃n, ||Kf −Kf0||2n ≤ cǫ2n}.
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Standard approximation results on splines gives that for all J there exists a se-

quen
e a0 = (a0,1, . . . , a0,J) su
h that

||Kf0 −
J∑

j=1

a0,jBj,q||n ≤ J−β−1||Kf0||β ≤ J−β−1L.

Given 
ondition D1 on the design, we thus have that for a 
onstant c′ > 0 that

only depends on σ and L

Bn(Kf0, ǫn) ⊃ {J̃n ≤ J ≤ 2J̃n, ||a− a0||J̃n ≤ c′
√
J̃nǫn}.

We thus derive a lower bound on the prior mass of Kullba
k-Leibler neighbourhood

of Kf0.

Π(Bn(Kf0, ǫn)) ≥ Π
(
J̃n ≤ J ≤ 2J̃n, ||a− ω0||n ≥ c′J̃1/2

n ǫn

)

≥ e−J̃n(cd log(J̃n)t+c2 log(J̃
−1/2
n ǫ−1

n )

We thus have for C2 > 0,

Π(Sc
n)

Π(Bn(Kf0, ǫn))
≤ e−C2Jn log(Jn)t , (4.22)

whi
h in turns, together with Theorem 4 of Ghosal and van der Vaart (2007) ends

the proof.

We now derive the posterior 
on
entration rate of the posterior distribution for

the inverse problem. We now get an upper bound for the modulus of 
ontinuity,

for f ∈ Sn. Standard approximation results on splines (e.g. De Boor et al. (1978))

we have that for all J there exists a0 ∈ R
J
su
h that

‖f0 −
J−1∑

j=1

(a0j+1 − a0j )(Bj,q−1)‖∞ ≤ (J − 1)−β‖f0‖∞

and

||Kf0 −
J∑

j=1

a0jBj,q||∞ ≤ J−β−1||Kf0||∞.

We thus dedu
e that for J ≥ 2,

||f − f0||n ≤ ||f − fa0 ||n + ||fa0 − f0||n
≤ CJ−1||Kf −Kfn||+ ||fa0 − f0||n
≤ CJ−1||Kf −Kf0||n + ||Kfa0 −Kf0||n + ||fa0 − f0||n
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We 
an thus dedu
e an upper bound for the modulus of 
ontinuity

ω(Sn, f0, || · ||n, || · ||n, δ) ≤ Jnδ

Applying Theorem 4.1 gives

E0Π(||f − f0||n ≥ Cn−β/(2β+3) log(n)q|Y n) → 0

for C > 0 a 
onstant that only depends on ||f0||∞, q ≥ 0 and Π.

4.4.2.2 De
onvolution using mixture priors

In this se
tion, we 
onsider model (4.16) where K is the 
onvolution operator in

R. This model is widely used in pra
ti
e, espe
ially when 
onsidering auxiliary

variables in a regression setting or for image de-blurring. For a 
onvolution kernel

λ ∈ L2(R) symmetri
 around 0, and for all f ∈ L2(R), we de�ne K as

Kf(x) = λ ∗ f(x)
∫

R

f(u)λ(x− u)du, ∀x ∈ R. (4.23)

To the authors best knowledge, theoreti
al properties of Bayesian nonparametri


approa
h has not been studied for this model. In this setting we 
onsider a mixture

type prior on f , and derive an upper bound for the posterior 
on
entration rate.

Mixture priors are 
ommon in the Bayesian literature, Ghosal and van der Vaart

(2001), Ghosal and van der Vaart (2007) and Shen et al. (2013) 
onsider mixtures

of Gaussian kernels, Kruijer et al. (2010) 
onsider lo
ation s
ale mixture and Rousseau

(2010) studied mixtures of betas. Nonetheless, sin
e they do not �t well into the

usual setting based on the SVD of the operator, mixture priors have not be 
on-

sidered in the literature for ill-posed inverse problems. In our 
ase, they proved

parti
ularly well suited for the de
onvolution problem. Let Y n = (Y1, . . . , Yn) be
sampled from model (4.16) for a true regression fun
tion f0 ∈ L2(R) with X = R,

and assume that for cx > 0, for all i = 1, . . . , n, xi ∈ [−cx log(n), cx log(n)]. This
assumption is equivalent to tails 
onditions on the design distribution in the ran-

dom design setting. Our 
hoi
e of prior is well suited for f0 su
h that for a β > 0,
f0 is in the Sobolev ball f0 ∈ Sβ(L). To avoid te
hni
alities, we will also assume

that f0 has �nite support, that we may 
hoose to be [0, 1] without loss of gener-
ality. Similar results should hold for fun
tion with support on R with additional

assumptions on the tails of f0 but are not treated here.

For a 
olle
tion of kernels Ψv that depend on a the parameter v, a positive inte-
ger J and a sequen
e of nodes (z1, . . . , zJ) we 
onsider the following de
omposition

for the regression fun
tion f in model (4.16)

f(·) =
J∑

j=1

wjΨv(· − zj),
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where (w1, . . . , wJ) ∈ R
J
is a sequen
e of weight. We 
hoose Ψj proportional to a

Gaussian kernel of varian
e v2 and the uniform sequen
e of nodes zj = j/J for j
su
h that j/J ∈ [−2cx log(n), 2cx log(n)]

Ψj,v(x) = Ψv(x− zj) =
1√
2πv2

e−
(x−j/J)2

2v2 ,

The 
hoi
e of a Gaussian kernel is fairly natural in the nonparametri
 literature. In

our spe
i�
 
ase it will prove to be parti
ularly well suited. Their main advantage

here is that we 
an easily 
ompute Fourier transform of f and thus use the a similar

approa
h as in se
tion 4.3. We 
onsider the following prior distribution on f

Π :=





J ∼ ΠJ

v ∼ Πv

w1, . . . , wJ |J ∼ ⊗J
j=1N(0, 1)

(4.24)

We use a spe
i�
 Gaussian prior for the weight (w1, . . . , wJ) in order to use the

results on Reprodu
ing Kernel Hilbert Spa
es following de Jonge and van Zanten

(2010) to derive 
on
entration rate for the dire
t problem. However our intu-

ition is that this results should holds for a more general 
lasses of prior but the


omputations would be more involved.

Following Fan (1991), we de�ne the degree of ill-posedness of the problem

through the Fourier transform of the 
onvolution kernel. For p > 0, we say that

the problem is mildly ill posed of degree p if there exists some 
onstants c, C > 0
su
h that for λ̂ the Fourier transform of λ

λ̂(t) =

∫
λ(u)eitudu,

we have for |t| su�
iently large

c|t|−p ≤ |λ̂(t)| ≤ C|t|−p, p ∈ N
∗

(4.25)

For all f0 ∈ Sβ(L), we have that Kf0 ∈ Sβ+p(L′) for L′ = LC. Under these 
ondi-
tions, the following Theorem gives an upper bound on the posterior 
on
entration

rate.

Theorem 4.5. Let Y n = (Y1, . . . , Yn) be sampled from (4.16) with X = R and

assume that the design points (xi) are su
h that (xi) ∈ [−c log(n), c log(n)]n. Let

f0 be su
h that for β ∈ N
∗
and M > 0, f0 ∈ Sβ(L) with support on [0, 1] and

||f0||∞ ≤ M . Consider K to be as in (4.23) with λ satisfying (4.25). Let Π be a

prior distributions de�ned as in (4.24) with

ΠJ(J = j) ≍ j−s
(4.26a)

v−qe−
cd
v

log(1/v)r . Πv(v) . v−qe−
cu
v

log(1/v)r . (4.26b)
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Then there exists a 
onstant C and r that only depends on Π, L, K and M su
h

that

E

n
0Π(||f − f0|| ≥ Cn−β/(2β+2p+1) log(n)r|Y n) → 0,

as n goes to ∞.

Note that here the prior does not depend on the regularity β of f0, we have the
adaptive minimax 
on
entration rates for this problem. Note also that the prior

does not depends on the degree of ill-posedness either. It is thus well suited for

a wide variety of 
onvolution kernels. In parti
ular this 
an be useful when the

operator is only partially known, as in this 
ase the regularity of the prior may

not be a

essible. However, this 
ase is beyond the s
ope of this arti
le. We prove

Theorem 4.5 by applying Theorem 4.1 together with Lemma 4.1. A �rst di�
ulty

is to expli
it the set Sn on whi
h we 
an 
ontrol the modulus of 
ontinuity. A

se
ond problem is to derive the posterior 
on
entration rate for the dire
t problem,

given that here Kf is supported on the real line. de Jonge and van Zanten (2010)

derived the posterior 
on
entration rate for Hölder smooth fun
tion with bounded

support. However, their results dire
tly extend to the 
ase of 
onvolution of Hölder

fun
tions with bounded support.

Proof. We �rst spe
ify the set Sn for whi
h we 
an 
ontrol the modulus of 
onti-

nuity. Denoting f̂ the Fourier transform of f , for any sequen
e an going to in�nity

and In = [−an, an] we de�ne for a > 0

Sn =

{
f,

∫

In

|f̂(t)|2dt ≥ a

∫

Icn

|f̂(t)|2dt
}
. (4.27)

We 
ontrol the modulus of 
ontinuity ω(Sn, f0, || · ||, || · ||, δ) in a similar way as in

Se
tion 4.3. First 
onsider f ∈ Sn, we have denoting f̂n(·) = f̂(·)IIn(·)

||f ||2 = ||f̂ ||2

≤ (1 + a)||f̂n||2

. a2pn

∫

In

|f̂ |2|λ̂|2| . a2pn ||Kf ||2

Note that for f0 ∈ Sβ(L) we have for f0,n(x) =
∫
f̂0,n(t)e

−itxdt

||f0 − f0,n|| ≤ 2a−β
n L , ||Kf0 −Kf0,n|| ≤ 2a−(β+p)

n ,

whi
h in turns gives

ω(Sn, f0, || · ||, || · ||, δ) . apnδ + a−β
n . (4.28)
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We now 
ontrol the prior mass of Sc
n in order to apply Lemma 1. Denote by

ln = ⌊an/(2ΠJ)⌋, Ln = ⌈an/(2ΠJ)⌉, we have
∫

In

|f̂(t)|2dt ≥ 2πJ

∫ ln

−Ln

e−4π2t2v2

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ dt

= 2πJ
ln∑

l=−Ln

∫ l+1

l

e−4π2t2v2

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ dt

= 2πJ

∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣
ln∑

l=−Ln

e−4π2(t+l)2v2dt

≥ 2πJ
ln∑

l=−Ln

e−4π2(1+l)2v2
∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ dt

and similarly we get

∫

Icn

|f̂(t)|2dt ≤ 2πJ

∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣
−Ln∑

l=−∞
e−4π2(t+l)2v2 +

∞∑

l=ln

e−4π2(t+l)2v2dt

≤ 2πJ

( −Ln∑

l=−∞
e−4π2l2v2 +

∞∑

l=ln

e−4π2l2v2

)∫ 1

0

∣∣∣∣∣
J∑

j=1

wje
2πjt

∣∣∣∣∣ .

We thus dedu
e that for an absolute 
onstant C,C ′ > 0

Π(Sc
n) ≤ Π(v ≤ J/an) . e−C′an log(an)

We now adapt the results of de Jonge and van Zanten (2010) to our setting in

order to get the 
ontrol of the posterior mass of the Kullba
k-Leibler neighbour-

hoods of Kf0 and the posterior 
on
entration rate for the dire
t problem. Follow-

ing their notations we havethat KΨv ∈ P∞, and thus the small ball probability

Π(||f ||∞ ≤ ǫ) 
an be 
ontroled by their Lemma 3.3. We extend their Lemma

3.5 to our setting. Note that with Lemma 9 of S
ri

iolo (2014), Lemma 3.4 of

de Jonge and van Zanten (2010) holds for the same Tα,v with α = β + p. Choos-
ing h to be as in the proof of Lemma 3.5 of de Jonge and van Zanten (2010) and

denoting ω0 = f0 ⋆ λ, we have

h(x) =
∑

j/J [−2cx log(n),2cx log(n)]

Tα,v(ω0)
1

Jv
Ψ

(
x− j/J

v

)
,

and thus dedu
e

||h||2HJ,v ≤ ||Tα,v(ω0)||22cx log(n).
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Using their de
omposition (3.8), we 
ontrol |h(x) − Ψv ⋆ Tα,v(ω0)(x)| along the

same lines as in their 
omputations page 3312. We have

|h(x)−Ψv ⋆ Tα,v(ω0)(x)| ≤
∣∣∣∣∣h(x)−

∫ 2cx log(n)

−2cx log(n)

Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣∣

+

∣∣∣∣∣

∫ −2cx log(n)

−∞
Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣∣

+

∣∣∣∣
∫ ∞

2cx log(n)

Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣ (4.29)

The �rst display of (4.29) 
an be 
ontroled as in the proof of Lemma 3.5 of

de Jonge and van Zanten (2010). For the last two displays, we have

∣∣∣∣∣

∫ −2cx log(n)

−∞
Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣∣+
∣∣∣∣
∫ ∞

2cx log(n)

Tα,v(ω0)(y)Ψv(x− y)dy

∣∣∣∣

. ||Tα,v(ω0)||∞e−
c2x log(n)2

2v2 v−1.

Following the same proof of Theorem 2.2 of de Jonge and van Zanten (2010), we

get

E0Π(||Kf −Kf0|| ≥ Cn−(β+p)/(2β+2p+1) log(n)r0|Y n) → 0

and similarly to their equation (2.5) we get, with ǫn = n−(β+p)/(2β+2p+1) log(n)r0

Π(||Kf −Kf0|| ≤ ǫn) ≥ e−nǫ2n.

Choosing 
hoosing an = nǫ2n, together with Lemma 4.1 and Theorem 4.1, this gives

us the desired results.

4.5 Dis
ussion

In this paper we propose a new approa
h to the problem of deriving posterior


on
entration rates for linear ill-posed inverse problems. More pre
isely, we put

a prior on the parameter of interest f that naturally imposes the prior on Kf ,
leading to a 
ertain rate of 
ontra
tion in the dire
t problem. Next, we 
onsider

a sequen
e of sets on whi
h the operator K possesses a 
ontinuous inverse. Then,

we impose additional 
onditions on the prior (or the posterior itself) under whi
h

the posterior 
on
entrates at a 
ertain rate in the inverse problem setting.

This is a great advantage of the Bayesian approa
h in this setting as when

the posterior distribution is known to 
on
entrate at a given rate in the dire
t
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problem, one only has to 
onsider subset of high prior mass for whi
h the norm

of the inverse of the operator may be handled. Our result seems to show that the

main di�
ulty when 
onsidering linear inverse problems is to 
ontrol the 
hange of

norms form dK to d, whi
h is dealt here by 
onsidering the modulus of 
ontinuity

as introdu
ed in Donoho and Liu (1991) and Ho�mann et al. (2013). It is also to

be noted that 
ontrariwise to existing methods, we do not require a Hilbertian

stru
ture for the parameter spa
e, see for instan
e the example treated in Se
tion

4.4.2.1. This 
ould be parti
ularly useful when 
onsidering nonlinear operators,

and is of potential interest when 
onsidering the 
ase of partially known operators.

We re
overed (a subset of) the existing results from Knapik et al. (2011),

Knapik et al. (2013), Agapiou et al. (2013), Agapiou et al. (2014), and Ray (2013).

Our approa
h should be viewed as a generalization of the ideas presented in the

latter paper. Furthermore, we were able to derive posterior 
on
entration rates

for prior distributions that were not 
overed by the existing theory. In this sense,

the approa
h proposed in this paper is more general, and we believe more natural,

that the existing ones.
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