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Résumé

La recherche sur les méthodes bayésiennes non-paramétriques connait un essor
considérable depuis les vingt derniéres années notamment depuis le développe-
ment, d’algorithmes de simulation permettant leur mise en pratique. Il est donc
nécessaire de comprendre, d’'un point de vue théorique, le comportement de ces
méthodes. Cette thése présente différentes contributions & ’analyse des propriétés
fréquentistes des méthodes bayésiennes non-paramétriques. Si se placer dans un
cadre asymptotique peut paraitre restrictif de prime abord, cela permet néanmoins
d’appréhender le fonctionnement des procédures bayésiennes dans des modéles ex-
trémement complexes. Cela permet notamment de détecter les aspects de ’a priori
particuliérement influents sur 'inference. De nombreux résultats généraux ont été
obtenus dans ce cadre, cependant au fur et & mesure que les modéles deviennent
de plus en plus complexes, de plus en plus réalistes, ces derniers s’écartent des
hypothéses classiques et ne sont plus couverts par la théorie existante. Outre
I'intérét intrinseque de I’étude d’un modéle spécifique ne satisfaisant pas les hy-
pothéses classiques, cela permet aussi de mieux comprendre les mécanismes qui
gouvernent le fonctionnement des méthodes bayésiennes non-paramétriques.

Chapitre 1 L’introduction présente le paradigme bayésien et 'approche bayési-
enne des problémes non-paramétriques. Nous introduisons les propriétés
fréquentistes des méthodes bayésiennes et présentons leur importance dans
la compréhension du comportement de la loi a posteriori. Nous présentons
ensuite les principaux modéles étudiés dans cette thése, et les difficultés
posées par ceux-ci pour I’étude de leurs propriétés asymptotiques.

Chapitre 2 Dans ce chapitre, nous étudions la consistance et la vitesse de con-
centration de la loi a posteriori dans le modéle de densité décroissante pour
différentes métriques. Ce modéle est particulierement intéressant car les den-
sités décroissantes ont une représentation sous forme de mélange d’uniformes
et sont donc un cas particulier de mélange pour lequel le support du noyau
dépend du paramétre. Dans ce cadre, les hypothéses classiques nécessaires
pour la consistance de la loi a posteriori ne sont pas vérifiées. Notamment la
loi a priori ne met pas suffisamment de masse sur les voisinages de Kullback-
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Leibler du vrai paramétre, et une adaptation des méthodes usuelles est donc
nécessaire. Pour deux familles d’a priori classiques, nous prouvons que ’a
posteriori se concentre a la vitesse minimaxe pour les pertes L; et Hellinger.
Nous étudions ensuite la consistance de la loi a posteriori de la densité pour
les pertes ponctuelle et norme sup. Ces deux métriques sont en général diffi-
ciles & étudier car elles ne peuvent étre reliées a la divergence naturelle qu’est
la divergence de Kullback-Leibler. Pour ces deux pertes, nous prouvons la
consistance de I’a posteriori et donnons une borne supérieure pour la vitesse
de concentration.

Chapitre 3 Nous proposons un test bayésien non paramétrique de décroissance

d’une fonction dans le modéle de régression gaussien. Dans ce cadre, outre
le fait que les deux hypothéses sont non-paramétriques, 1’hypothése nulle
est inclue dans l'alternative. Il s’agit donc d’un cas de test particuliére-
ment difficile. En outre dans ce cas, 'approche usuelle par le facteur de
Bayes n’est pas consistante. Nous proposons donc une approche alternative
reprenant les idées d’approximation d’une hypothése ponctuelle par un in-
tervalle. Nous prouvons que pour une large famille de lois a priori, le test
proposé est consistant et sépare les hypothéses a la vitesse minimaxe. De
plus notre procédure est facile & implémenter et a mettre en ceu vre. Nous
étudions ensuite son comportement sur des données simulées et comparons
les résultats avec les méthodes classiques existantes dans la littérature. Pour
chacun des cas considérés, nous obtenons des résultats au moins aussi bons
que les méthodes existantes, et les surpassons pour un certain nombre de cas.

Chapitre 4 (co-écrit avec Bartek Knapik) Nous proposons une méthode générale

pour ’étude des problémes inverses linéaires mal-posés dans un cadre bayésien.
S’il existe de nombreux résultats sur les méthodes de régularisation et la
vitesse de convergence d’estimateurs classiques, pour ’estimation de fonc-
tions dans un probléme inverse mal-posé, les vitesses de concentration d’a
posteriori dans le cadre bayésien n’a été que trés peu étudié dans ce cadre. De
plus ces quelques rares résultats existant ne considérent que des familles treés
limitées de lois a priori, en général reposant sur la décomposition en valeurs
singuliéres de l'opérateur considéré. Dans ce chapitre nous proposons des
conditions générales sur la loi a priori sous lesquelles 1’a posteriori se con-
centre a une certaine vitesse. Notre approche nous permet de trouver les
vitesses de concentration de I'a posteriori pour de nombreux modeéles et de
larges classes de loi a priori. Cette approche est de plus particuliérement
intéressante car elle permet de mieux comprendre le fonctionnement de la loi
a posteriori et notamment 'impact de I'opérateur sur 'inférence.
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Summary

Research on Bayesian nonparametric methods has received a growing interest for
the past twenty years, especially since the development of powerful simulation al-
gorithms which makes the implementation of complex Bayesian methods possible.
From that point it is necessary to understand from a theoretical point of view
the behaviour of Bayesian nonparametric methods. This thesis presents various
contributions to the study of frequentist properties of Bayesian nonparametric pro-
cedures. Although studying these methods from an asymptotic angle may seems
restrictive, it allows to grasp the operation of the Bayesian machinery in extremely
complex models. Furthermore, this approach is particularly useful to detect the
characteristics of the prior that are strongly influential in the inference. Many
general results have been proposed in the literature in this setting, however the
more complex and realistic the models the further they get from the usual assump-
tions. Thus many models that are of great interest in practice are not covered by
the general theory. If the study of a model that does not fall under the general
theory has an interest on its owns, it also allows for a better understanding of the
behaviour of Bayesian nonparametric methods in a general setting.

Chapter 1 The introduction presents the Bayesian paradigm and the Bayesian
approach to nonparametric problems. We introduce frequentist properties
of Bayesian procedures and present their importance in the understanding
of the behaviour of the posterior distribution. We then present the different
models studied in this manuscript and the challenge faced in studying of
their asymptotic properties.

Chapter 2 In this chapter, we study consistency and concentration rates of the
posterior distribution under several metrics in the monotone density model.
This model is particularly interesting as monotone densities can be written
as a mixture of uniform kernels which is a special case of kernels for which
the support depends on the parameter. In this case the usual hypotheses re-
quired to derive posterior concentration rate are not satisfied. In particular,
the prior distribution we consider do not put positive mass on Kullback-
Leibler neighbourhoods of the true parameter and we thus have to adapt the
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standard methods to get an upper bound on the posterior concentration rate.
For two standard prior distributions, we prove that the posterior concentrate
at the minimax rate for the L; and the Hellinger losses. We then study con-
sistency of the posterior under the pointwise and supremum loss. These two
metrics are in general difficult to study in the Bayesian framework as they
are not related to the Kullback-Leibler divergence which is the natural semi-
metric in this setting. We however prove that the posterior is consistent for
both losses and get an upper bound for the posterior concentration rate.

Chapter 3 We propose a Bayesian nonparametric procedure to test for mono-

tonicity in the regression setting. In this case, not only the null and the
alternative hypotheses are nonparametric, but one is embedded in the other
which makes the testing problem particularly difficult. In particular the
Bayes-Factor, which is a usual Bayesian answer to testing problems, is not
consistent under the null hypothesis. We propose an alternative approach
that relies on the ideas of approximating a point null hypothesis by shrinking
intervals. The proposed procedure is consistent for a wide family of prior dis-
tributions and separate the hypotheses at the minimax rate. Furthermore,
our approach is easy to implement and does not require heavy computations
contrariwise to the existing procedures. We then study its behaviour on sim-
ulated data and for all the considered cases, our procedure does at least as
good as the classical ones, and outperform them in some cases.

Chapter 4 (Joint work with Bartek Knapik) We propose a general approach to

study nonparametric ill-posed linear inverse problems in a Bayesian setting.
Although there is a wide literature on regularisation methods and conver-
gence of estimators in this setting, the posterior concentration in a Bayesian
setting has not received much attention yet. Furthermore, the few existing
results only consider very restricted families of prior distributions, mostly
related to the singular value decomposition of the operator at hand. In
this chapter we give general conditions on the prior such that the posterior
concentrates at a certain rate. This approach allows us to derive asymptotic
results for various ill-posed inverse problems and wide families of priors. Fur-
thermore, this approach is particularly interesting in the sense that it gives
some valuable insights on the behaviour of the posterior distribution in these
models and the impact on the operator on the inference.
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Chapter 1

Introduction

“Perhaps I should not have been a fisherman, he thought.
But that was the thing that I was born for.”

— Ernest Hemingway, The old man and the sea.

Résumé

L’introduction présente le paradigme bayésien et I'approche bayésienne des prob-
lémes non-paramétriques. Nous introduisons les propriétés fréquentistes des méth-
odes bayésiennes et présentons leur importance dans la compréhension du com-
portement de la loi a posteriori. Nous présentons ensuite les principaux modéles
étudiés dans cette thése, et les difficultés posées par ceux-ci pour I'étude de leurs
propriétés asymptotiques.
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This introduction presents the main concepts common to the following chap-
ters, the statistical modeling and its Bayesian approach that we adopt in this thesis.
We proceed with a quick introduction to nonparametric statistics and the construc-
tion of prior distributions in an infinite dimensional space, and we emphasize the
importance of frequentists properties of Bayesian nonparametric procedures. We
then present the different statistical models studied in this manuscript.

1.1 Bayesian nonparametric approaches

The main goal of statistics is to infer on a random phenomenon given observations.
The core concept of statistics is probabilistic modelling, that is a mathematical
approximation of the random phenomenon at hand. In a statistical model, an
observation X on an observation space X is assumed to be generated from a
probability distribution P that belongs to a model P. Usually this distribution
is characterized by a parameter 6 in a parameter set © which gives the sampling

model
{X, Py, 0 € @}

The aim of statistics is then to infer, and make decisions on the model, based
on the observed data. To model complex data generating phenomenon, the pa-
rameter space © may be very large and possibly infinite dimensional. As often in
mathematical sciences, it is interesting to delineate regions of statistical method-
ology, and modern mathematical statistics tends to differentiate Bayesian versus
frequentist methods, parametric versus nonparametric models. In this section, we
define Bayesian nonparametric models and underline their importance.

1.1.1 Bayesian modeling

Statistic models usually fall into either the frequentist paradigm or the Bayesian
one. The frequentist paradigm considers that the data are generated from a fixed
distribution Py, associated with the true parameter 6y. Let g be a function from
© to =, such that one is interested in making inference on ¢(fy). Frequentist
statisticians look for statistics, that is functions S : X — = that minimizes a risk

R(g(00), S(X)).

The risk is most of the time associated with a metric or semi-metric d, or more
generaly any loss function, and can be rewritten

R(g(6), S(X)) = Eg, [d(g(6), S(X))],

where Ey is the expectation with respect to Fy.
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In the Bayesian paradigm, one models the ignorance on the parameter 6 through
a probability distribution IT based on prior beliefs (the prior distribution). An
extensive introduction to Bayesian statistics can be found in Robert (2007). A
Bayesian model is thus a sampling model

X~PF), 0

together with a prior model
0~ 11

which can be combined through the Bayes’ rules to get a probability distribution
of the parameter given the data called the posterior distribution defined as for all
measurable A C ©

_ Ja Pe(X)TI(d0)

M0 € A =1 5, ()i (an)

(1.1)

It is the single object on which all inference (e.g. estimation, testing, construction
of credible sets, etc.) is based.

The Bayesian approach to statistics has become increasingly popular, espe-
cially since the 1990’s because of the development of new sampling methods such
as Markov-Chains Monte-Carlo (MCMC) algorithms that makes sampling under
the posterior distribution feasible if not easy. Bayesian methods are now used in
a wide variety of domains, from biology to finance and data analysts are more
and more attracted by its axiomatic view of uncertainty and its capacity to han-
dle complex models, see Gelman et al. (2004) for instance. However, the fact that
some methods are called Bayesian emphasizes the fact that there is still two philo-
sophical approaches to statistical modeling. When the parameter space is finite
dimensional, Bayesian and frequentist methods usually agree when the amount of
information grows. In particular, under weak assumptions on the prior distribu-
tion, the so called Bernstein-von-Mise Theorem, as presented in Le Cam and Yang
(2000), shows that Bayesian credible sets and frequentist confidence intervals are
asymptotically equivalent. This result is particularly important as it indicates that
Bayesian models with different priors' will eventually agree when the amount of
information? grows, and will give a similar answer as frequentists ones.

1.1.2 Bayesian nonparametrics

Nonparametric models are often defined as probabilistic models with massively
many parameters (see Miiller and Mitra, 2013) or with an infinite dimensional

'With a slight abuse of notations, we may say prior for prior distributions when there is no
confusion
2We will call amount of information either the number of data points or the level of noise.
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parameter space as in Ghosh and Ramamoorthi (2003). These models offer more
flexibility than parametric methods but their mathematical complexity is in general
more involved than for parametric methods.

A first problem in Bayesian nonparametrics is to define a probability distribu-
tion on an infinite dimensional space. Choosing a prior distribution is a key point
in of the Bayesian inference, and going from prior knowledge to a prior distribution
can be challenging. In particular for infinite dimensional parameter spaces, assur-
ing that the prior distribution has a sufficiently large support is a difficult task, not
mentioning the difficulty to compute the posterior distribution for such models.
A popular tool in the Bayesian nonparametric literature is the Dirichlet process
introduced by Ferguson (1974). The Dirichlet process is a probability measures on
the set of probability measure and can be defined as follows:

Definition 1.1 (Dirichlet process, Ferguson, 1974). Let o be a non null finite
measure on X'. We say that P follows a Dirichlet process DP(«), if for all k& € N*,
all partition of measurable sets (B, ..., By) of X,

(P(By)..... P(BY) ~ D((By), ..., a(By))
where D is the Dirichlet distribution.

The Dirichlet processes have been proved to have a large weak support (see
Ferguson, 1973), which is all distributions whose support is included in the support
of the base measure a.. Its hyperparameters are easily interpretable and it lead to
tractable posteriors. Moreover Sethuraman (1994) showed that the Dirichlet pro-
cess can be obtained in a constructive way called the stick breaking representation.
In addition, it opened the way to more flexible prior distributions on the set of
density functions. Since then many prior distributions on infinite dimensional sets
have been proposed. For instance Antoniak (1974) introduced mixtures of Dirich-
let process in the context of probability densities estimation. Given a collection of
kernels K, (-) depending on a parameter ;o we define the mixture

e@zﬁ&mww,

where P is a probability measure. Thus, choosing a prior on P (e.g. a Dirichlet
process prior) induces a prior on 6.

Many other priors have been proposed in the literature, general classes of mix-
tures for the density model (Lo, 1984), hierarchical Dirichlet processes (Teh et al.,
2006), Gaussian processes (Lenk, 1991) among others. It is typically difficult in
nonparametric settings to quantify the impact of a prior distribution on the pos-
terior inference. If in the parametric case, the Bernstein-von-Mise theorem shows
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that when the amount of information increases, inference based on different pri-
ors will merge, it does not hold easily when the parameter space is very large.
Diaconis and Freedman (1986) showed that in some cases, Bayesian nonparamet-
ric procedures can lead to inconsistent results (when the data are assume to be
sampled from a distribution F,,, the posterior distribution does not accumulate
its mass around the true parameter). Some other examples show that even if the
posterior concentrates its mass around the true parameter, the prior still influences
the rate at which this concentration occurs.

1.2 Asymptotic properties of the posterior distri-
bution

Looking at the asymptotic behaviour of the posterior distribution helps under-
standing the impact of the prior on the posterior distribution. It is also important
to detect which parts of the prior influence the most the posterior. In particular,
some aspects of the prior may remain when the amount of information grows to
infinity and may thus be highly influential for small sample sizes for instance. We
now define two main asymptotic properties of the posterior distribution studied in
this manuscript, namely posterior consistency and posterior concentration rate.

1.2.1 Posterior consistency

Consistency of the posterior distribution can be considered as a least requirement
for Bayesian nonparametric procedures. Diaconis and Freedman (1986) proved
that in the case of exchangeable data, consistency of the posterior distribution is
equivalent to weak merging of posteriors associated with different proper prior dis-
tributions. This is particularly interesting as, as argued before, it is often difficult
to go from prior knowledge on the parameter to a prior distribution, and two statis-
ticians could come with two different priors. We give a more detailed definition of
consistency of the posterior distribution, as presented in Ghosh and Ramamoorthi
(2003).

Let the observations X" € X" be some random variables sampled from a
distribution Fg for 6 € ©. Here n is considered to be a quantification of the
amount of information. Consider II a prior probability distribution on ©. We can
thus compute the posterior distribution of # denoted II(-|X™) (see (1.1)). Assume
that there exists an unknown parameter 6, € © such that the data are generated
from the true distribution P, and define an e-neighbourhood of 6 associated with
the loss function d

Be(bo) = {0,d(0,00) < e}.
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Definition 1.2. The posterior distribution is said to be consistent at 6, for the
loss d if for any € > 0, the posterior probability of B.(f)

II(B.(0)|X™) — 1
either in Py probability or Fj-almost surely.

A first result of Doob (1949) shows that when d is a metric and (©,d) is a
complete separable space, any posterior distribution is consistent at 6y, II-almost
surely, under some ergodicity conditions. This result is interesting but very weak as
it does not provides any information on the set of parameters at which consistency
holds.

A usual requirement for the posterior to be consistent is that the prior puts pos-
itive mass on neighbourhoods of 6,. More precisely, if P is absolutely continuous
with respect to Py,, define the Kullback-Leibler divergence as

dP,
KL(Py, Py,) = / log ( dP: ) dP9,
0

one will require that II(K L(Py, Ps,) < €) > 0 for all e.

A second condition is that the model makes it possible to differentiates between
0y and parameters outside B.(6p). This can be formalized by the existence of a
sequence of tests of

Hy: 6 =0y, versus H, : 6 € BZ(6y). (1.2)

We then define an exponentially consistent sequence of tests {¢,(X"™)} as fol-
lows

Definition 1.3. The sequence of tests {¢,(X")} is exponentially consistent for
testing (1.2) if there exists ¢ > 0 such that for all n

Eg, (0n(X")) S e, sup Ep(1 — ¢n(X")) S e
0eBE(0o)

For independent identically distributed observations X" = (X1, ..., X,,) where
the parameter of interest is the common density f with respect to a measure A,
we thus have

dPy . ony A
f:ﬁa 0 (X )_HQ(XZ)’

hence, in this case 6 = f, Schwartz (1965) gives general conditions on the model
to achieve consistency. In this case the Kullback-Leibler divergence between f and

Jois

KL(f, fo) = /Xf(a:) log (;;(8)) da. (1.3)



1.2. ASYMPTOTIC PROPERTIES OF THE POSTERIOR DISTRIBUTION 7

Schwartz (1965) requires that the prior has positive mass on all e-neighborhoods
for the Kullback-Leibler divergence for all ¢ > 0

IL(f: KL(f, fo) <€) >0.

The truth fy is then said to belong to the K L-support of the prior II. This
condition ensures that the support of the prior is large in the sense of the Kullbac-
Leibler divergence.

In the density setting, Schwartz’s Theorem then states:

Theorem 1.1 (Schwartz (1965)). Let 1T be a prior on ©, and 0y € © such that

e Oy is in the K L-support of I1
e there erists an exponentially consistent sequence of tests for (1.2)

then TI(Be(00)|X"™) — 1 Pg° almost surely.

Since this result of Schwartz, other types of results have been obtained, in many
different settings, see for instance Walker and Hjort (2001), Walker (2003), Walker
(2004), Lijoi et al. (2007).

1.2.2 Posterior concentration rate

A more refined asymptotic property is the posterior concentration rate. Loosely
speaking, it is the rate at which the e-neighborhoods B,(fy) can shrink such that
the posterior probability of B.(6p) reminds close to 1. To get a better understand-
ing of the impact of the prior on the posterior, we need to study sharper results
than mere consistency. Some aspects of the prior may influence significantly the
posterior concentration rate. They are thus likely to be highly influential for finite
datasets and should thus be handled with care. We now give a precise definition
of the posterior concentration rate and present some general results proposed in
the literature.

Definition 1.4. Let the observations X" be sampled from a distribution Py with
0y € © and let II be a prior on ©. A posterior concentration rate at fy with respect
to a semimetric d on © is a sequence ¢, such that for all positive sequences M,
going to infinity

I1(0,d(0,0)) < Mpe,|X") — 1,

in P} probability as n goes to infinity.

In their seminal papers Ghosal et al. (2000a) (see also Shen and Wasserman,
2001) proposed general conditions on the model to derive posterior concentration
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rates in the density model (i.e. independent and identically distributed observa-
tions X") in a similar way Schwartz (1965) did for consistency. This idea has then
been extended to many other models, and other approaches have been proposed,
see for instance Ghosal and van der Vaart (2007). Their approach requires also
that the prior puts enough mass on shrinking Kullback-Leibler neighbourhoods of
the truth. However the neighbourhoods here are more restrictive than the ones
considered for consistency. Define the k-th centred Kullback-Leibler moment, if
d Py is absolutely continuous with respect to dF;,

k
dFy.

Vk<P97P90):/ IOg(dPi)_KL<P97P90)
X 0o

We then define the following Kullback-Leibler neighborhood
Su(bo, €, k) = {KL(F;', Py,) < ne’, Vi(F', Py,) < ne} .

As in Schwartz’s Theorem, Ghosal and van der Vaart (2007) also requires the exis-
tence of an exponentially consistent sequence of tests, but instead of testing against
the complement of the shrinking ball B, (), it is sufficient to test against sets

B%(QO) - {0 S @najen S d(eaQO) S 2j€n}7

for any integer 7 > Jy for some positive Jy, where ©,, is an increasing sequence of
sets that takes most of the prior mass of II. Their Theorem is thus as follows:

Theorem 1.2 (Theorem 3 of Ghosal and van der Vaart (2007)). Let d be a semi-
metric on © and consider a sequence €, such that ¢, — 0, ne2 — 0o as n — oo.
For k> 1, K >0 and ©, C O, if there exists a sequence of tests ¢, such that for
Jo >0, for every 5 > Jy

Egydn — 0, sup (1— ¢,) < e Kn*, (1.4)
B}, (00)
and if
j -2 2
H(Bn(eo)) < Kmni €2/2 (15)

I1(S,, (0o, €n, k) — ’
then for every sequence M, — oo we have

I1(0 € ©,,d(0,00) < M,e,|X") — 1
in Py, -probability as n goes to infinity.

A usual way of insuring the existence of tests in condition (1.4), for well suited
semimetric d is to control the covering number of the sets B (f). For instance
when the semimetric d is the Hellinger metric, the well known results by Le Cam
(1986) or Le Cam and Yang (2000) insure the existence of such sequence of tests
under some entropy conditions.
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1.2.3 Minimax concentration rates and adaptation

The concentration rate’s theory can be related to the classical optimal convergence
rate of estimators. Ghosal et al. (2000a) show in the context of density estimation,
that the posterior yields a point estimate that converges at the same rate as the
posterior concentration rate when the considered loss is bounded and convex. It
thus makes sense to compare frequentists and Bayesian approaches based on this
asymptotic property.

To study the asymptotic behaviour of the posterior distribution, we only con-
sider some subspace ©g of the parameter space on which the functions are behaving
well. One of the most common criterion for studying optimality of an estimator
is the minimax risk defined by the minimum over all estimator of maximal risk of
this estimator. More precisely, if d is a semimetric on O, the minimax risk over
©p C O is defined as (see Tsybakov, 2009)

R, = inf sup Ey [d(T5,,0)],

T 6cO¢

where the infimum is taken over all estimators T,. The minimax rate in O is thus
the sequence ¢, such that there exists a fixed positive constant C' with

limsup €,'R, = C.
n—oo

We say that a Bayesian procedure concentrates at the minimax rate if the
concentration rate of the posterior in the class O is the minimax convergence
rate. Many models (prior and sampling models) studied in the literature have
been proven to concentrate at the minimax rate in ©y. In particular, in the
density model, nonparametric mixture models are known to concentrate at the
minimax rate (up to a log factor) over classes of Holder functions for various types
of kernels, see Ghosal and van der Vaart (2001), Ghosal and van der Vaart (2007),
Shen et al. (2013) for Gaussian kernels, Kruijer et al. (2010) for location scale
mixtures or Rousseau (2010) for beta kernels. Many other types of priors have been
proven to lead to the minimax concentration rate, van der Vaart and Van Zanten
(2008) proved minimax concentration rates of the posterior for Gaussian process
priors, Ghosal and van der Vaart (2007) and Knapik et al. (2011) show minimax
concentration rates for series expansions priors for regression and the white noise
model respectively, Arbel et al. (2013), ?, Belitser and Ghosal (2003) obtained
generic results for various sampling models.

The subspaces O are restricted through regularity assumptions such as Sobolev
or Holder smoothness, shape restriction, or sparcity. These classes of functions are
in general indexed by a parameter, say (3, that accounts for the level of regu-
larity or sparcity. In general the posterior concentration rate crucially depends
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on this parameter. However, it is often difficult to fix 8 a priori, it is thus nat-
ural to seek procedures that perform well over a wide variety of ( values, say
£ € I. Such procedures are called adaptive as they automatically adapt the con-
centration rate over the whole collection of spaces O ger. Frequentist adaptive
estimators have been well studied in the literature for the past three decades, see
for instance Efroimovich (1986), Polyak and Tsybakov (1990), or Tsybakov (2009)
for a review. From a Bayesian perspective, adaptive procedures have become
more and more popular, see Belitser and Ghosal (2003) for infinite dimensional
Gaussian distributions, Scricciolo (2006) obtained adaptive rates in the density
model, van der Vaart and van Zanten (2009) considered Gaussian random fields
priors, De Jonge et al. (2010) considered location scale mixtures. Other examples
of adaptive Bayesian procedures can be found in Rivoirard et al. (2012), Rousseau
(2010) or Arbel et al. (2013) for instance.

1.3 Nonparametric Bayesian testing

Another aspect of Bayesian nonparametric inference that has been investigated in
this work is the so called testing problem or model choice. In this case, one is not
interested in recovering an unknown parameter # but rather in taking a decision
on the parameter given the observations. This problem of testing in a Bayesian
framework is well known and can be dated back to Laplace (1814). It can be
formalized as follows: let Oy and ©; be two distinct subspaces of the parameter
space ©, associated with prior probability 7y and 71, one wants to infer whether
0 € O versus 0 € Oy, which can be seen as the estimation of g, (f) as argued in
Robert (2007). Consider II a prior distribution on © = ©¢ U ©;. In this setting it
is natural to consider the 0-1 loss with weights 7, v, similar to the one proposed
by Neyman and Pearson (1938) which is defined for a decision ¢

v if ¢ =0 and Ig,(d) =0

71 otherwise

L(0,¢) = {

The Bayesian solution to this problem (i.e. the minimizer of the Bayesian risk)
is then

Yo+71

(X" = {1 i T1(01[X")/m > 2 T1(O0[X") /g 15)

0 otherwise

To avoid the impact of I1(0g) and II(6;) or v and ~;, one can equivalently define
the Bayes-Factor
(O X"
By = 7(@(” ) x 1L
H(@1|Xn) 0
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The testing procedure corresponds to rejecting Oy if By ; is small but the Bayes-
Factor provides more information than just a 0-1 answer. Standard thresholds
are given by Jeffreys’ scale. A test procedure based on the Bayes-Factor By is
said to be consistent if By goes to infinity in P probability for all 6y € ©¢ and
converges to 0 in F probability for all 6y € ©,. Bayes-Factors for nonparametric
goodness of fit test have been studied in term of their asymptotic properties in
the literature, see Dass and Lee (2004); McVinish et al. (2009); Rousseau (2007);
Rousseau and Choi (2012) for instance. When both hypotheses are nonparametric
and one is embedded in the other, the determination of Bayesian procedures that
have good asymptotic properties is difficult in general.

Similarly to the estimation problem, asymptotic properties of a Bayesian an-
swer to a testing problem are of great interest from both a theoretical and a
methodological point of view since inference based on inconsistent posteriors could
be highly misleading. A similar requirement should also hold for testing proce-
dures. In this context, we will say that a procedure is consistent if it gives the
right answer with probability that goes to 1 as the amount of information grows
to infinity. More precisely, a testing procedure (1.6) is said to be consistent for the
metric or semi-metric d, if for all p > 0

sup Ep(o(X") = o(1),  sup  Ey(1 - p(X")) = o(1). (1.7)
€00 d(6,00)>p

Similarly to the frequentist literature, we consider here uniform consistency, how-
ever this definition of consistency slightly differs from the one usually considered
in the frequentist setting, as here we do not fix a level for the type I error of the
test. It is also interesting to study the counterpart of the concentration rate in
the testing problem namely the separation rate of the test. The separation rate is
defined as the smallest sequence p = p,, such that (1.7) is still valid. Tt indicates
how fast the test can differentiate both hypotheses. Similarly to the concentration
rate, it also indicates which part of the prior influences the Bayesian procedure
even asymptotically. This is of great interest as it is well known that in testing
problems, the sensitivity to the prior is a major issue.

1.4 Challenging asymptotic properties of Bayesian
nonparametric procedures

We have seen that studying the asymptotic behaviour of the posterior distribution
is a major tool to understand the influence of the prior in the nonparametric
setting. We have also seen that there exists sufficient conditions on the model under
which the procedure is known to be consistent and to have optimal asymptotic
behaviour. However, many statistical problems that are of interest in practice
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do not fall under this general theory. These models present a new challenge for
the Bayesian nonparametric community. In this section we present two of these
problems namely the inference under monotonicity constraints and estimation in
linear ill-posed inverse problems.

1.4.1 Inference under monotonicity constraints

In many statistical problems, it is useful to impose some restrictions on the pa-
rameter space to be able to carry out the inference. When modelling real world
situations, shape constraints on the parameter of interest may appear naturally,
this is the case for instance for drug response models or in survival analysis. Fur-
thermore, theses hypotheses are often easy to interpret, understand and explain
compared to smoothness restrictions for instance. Among different shape con-
straints, monotonicity restrictions have been fairly popular in the literature. In a
regression setting for instance, a monotonicity of a response is often granted from
physical of theoretical considerations. Shape constraints inference, and mono-
tonicity in particular can be dated back to Brunk (1955) and most of the early
works on the subject can be found in Barlow et al. (1972). Since then mono-
tonicity constraints have been used in many applied problems: in pharmaceutical
context in Bornkamp and Ickstadt (2009), for survival analysis in Laslett (1982),
Neelon and Dunson (2004) studied monotone regression for trend analysis and
Dunson (2005) considered monotonicity constraints on count data. Many other
applications can be found in Robertson et al. (1988).

In this section, we present the two shape constrained problems studied in this
thesis, namely the estimation of a density under monotonicity constraints and
testing for monotonicity in a regression setting.

1.4.1.1 Monotone densities

Monotone densities are common in practice, especially in survival analysis. A first
study of monotone density can be imputed to Grenander (1956) who considered
the maximum likelihood estimator of a monotone density. Since then many others
have been interested in estimating a unknown distribution under shape restrictions.
Laslett (1982) considers the problem of estimating the distribution of cracks length
on a mine wall, Sun and Woodroofe (1996) present some application in astronomy
and renewal analysis among others. Using shape constraints procedures will ensure
that the estimate follows this constraints, which could be a requirement of the
analysis.

Since Williamson (1956), it is known that a density is monotone non increasing
if and only if it is a mixture of uniform kernels. More precisely, let F be the set
of monotone non increasing densities on [0, 00), then for all f € F there exists a
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probability distribution P such that

_ [~ Toat)
0= [ 2aape), (1)

This mixture representation is particularly interesting as it allows for inference
based on the likelihood. Grenander (1956) showed that the maximum likelihood
estimator coincides with the first derivative of the least concave majorant of the
cumulative distribution function. Its asymptotic properties were later studied in
Groeneboom (1985) under the L, loss and Prakasa Rao (1970) studied the asymp-
totic behaviour of the maximum likelihood estimator evaluated at a fixed point
in the interior of the support. In Groeneboom (1989), it is shown that the mini-
max rate of convergence for this problem is of the order of n=/3. This shows in
a way how monotonicity constraints act as regularity constraints as in this case,
one obtains the same convergence rate as for Lipshitz densities. Another sur-
prising aspect of monotone non increasing densities is that the evaluation of the
maximum likelihood estimator at the boundaries of the support leads to incon-
sistent estimators. This problem has been studied in Sun and Woodroofe (1996)
and very precise results on the behaviour of the maximum likelihood estimator
at 0 can be found in Balabdaoui et al. (2011). More recently, Durot et al. (2012)
obtain some asymptotic results for the maximum likelihood estimator under the
supremum loss. In the Bayesian framework, monotone densities have been studied
in Brunner and Lo (1989) and Lo (1984). From a Bayesian point of view, the
mixture representation (1.8) leads naturally to a mixture type prior. Choosing a
prior model on P in representation (1.8) naturally induces a prior on F. This is
the approach considered in Brunner and Lo (1989). In Chapter 2 we consider two
types of priors on P namely Dirichlet process and finite mixtures with a random
number of components. An interesting feature of these models is that the prior
does not put positive mass on the Kullback-Leibler neighborhood of the truth, and
thus condition (1.5) will not hold and the standard approach based on the work
of Ghosal and van der Vaart (2007) cannot be applied directly. We prove that a
similar result holds when one only considers Kullback-Leibler neighbourhoods of
truncated versions of the densities

ot = LR gy = a0z,

where x,, is an increasing sequence and [’ is the cumulative distribution function
of f. From this result, we prove that for both prior models, the posterior concen-
trates at the minimax rate n='/3 up to a log(n) term. We also study the asymptotic
properties of the posterior distribution of the density at a fixed point x of its sup-
port. This is typically a difficult problem in general as Bayesian methods are in
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general well suited for losses that are related to the Kullback-Leibler divergence
(see Arbel et al., 2013; Hoffmann et al., 2013). In particular, the usual approach
of Le Cam (1986) for constructing exponentially consistent sequence of tests does
not hold in this case. However, we prove in Chapter 2 that for the considered
prior distribution the posterior distribution of f(x) is consistent for every z in the
support of f, including the boundaries. The fact that the posterior distribution
is consistent at the boundaries of the support when the maximum likelihood es-
timator is not can be imputed to the penalization induced by the prior. Another
interesting feature of our Bayesian approach is that the posterior is also consistent
for the supremum loss over the whole support. Here again, the supremum loss
is not related to the Kullback-Leibler divergence, which makes the construction
ofexponentially consistent sequence of tests difficult.

1.4.1.2 Nonparametric test for monotonicity

Although there is a wide literature on the problem of estimating an unknown func-
tion under shape constraints, an important question is whether it is appropriate
to impose a specific shape constraint. If it is, then the estimation procedures
could in general be greatly improved by using a shape constrained estimation
procedure. Conversely, imposing shape constraints in an appropriate case could
lead to dramatically erroneous results. The problem of testing for monotonicity
has been widely studied in the frequentist literature. Bowman et al. (1998) intro-
duced a test for monotonicity in the regression setting base on the idea of critical
bandwidth introduced in Silverman (1981). Hall and Heckman (2000) showed that
this procedure is highly sensitive to flat parts of the regression function, and pro-
posed another test procedure based on running gradient. Baraud et al. (2003),
Ghosal et al. (2000b) and Baraud et al. (2005)propose testing procedures in the
fixed design regression setting and the Gaussian white noise setting. Durot (2003)
and Akakpo et al. (2014) consider a test that exploits the concavity of a primi-
tive of a monotone function. A Bayesian approach to testing monotonicity in a
regression framework has been proposed in Scott et al. (2013).
In Chapter 3, we consider the nonparametric regression model

tid

Y; = f(x;) + o€, ¢~ N(0,1), (1.9)

and we want to test
Hy: feF, versus Hy: f ¢ F, (1.10)

for F be the set of monotone non increasing functions on [0, 1].

A first difficulty in testing for monotonicity in a regression setting is that both
the null and the alternative hypotheses are nonparametric. As a general rule when
using posterior probabilities for hypothesis testing, it is important to take into
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account the sensitivity to the prior distribution. This is true for parametric models
but is critical for nonparametric ones as in that case, as stated before, the prior can
still influence the posterior asymptotically. A second and probably more important
difficulty is the fact that when testing for monotonicity in a regression setting,
the null hypothesis is embedded in the alternative. This problem is common
in goodness of fit tests where one is interested in testing f = fy versus f #
fo. This has been investigated in Dass and Lee (2004), Ghosal et al. (2008) or
McVinish et al. (2009) among others in the density setting, or Rousseau and Choi
(2012) in the regression problem. In this case a main difficulty is that a parameter
in the null model can also be approximated by a parameter in the alternative
model. In fact it has been proved in Walker et al. (2004) that the Bayes-Factor
will asymptotically support the model with prior that satisfies the Kullback-Leibler
property, some additional conditions may be required when both priors do.

In the case of testing for monotonicity, it seems that for a natural choice of
prior, namely piecewise constant functions with random number of bins, the Bayes-
Factor is not consistent. We thus propose an alternative test that is asymptotically
equivalent to testing for monotonicity using a similar idea as approximating a point
null hypothesis by a shrinking interval (see Rousseau, 2007). Denote by F the set
of monotone non increasing functions with support [0, 1] and let d be a metric or
a semi-metric. Consider the test

HE - d(f,F) <7 versus H® : d(f, F) > 7 (1.11)

where J(f, F) =inf,cr ci(f, g) and 7 is a given threshold. If 7 decreases toward 0,
both tests (1.10) and (1.11) are asymptotically equivalent. We propose a calibra-
tion of the threshold 7, the Bayesian answer to the test (1.11) associated with the
0-1 loss is consistent for the initial problem of testing (1.10) and gives good results
in practice compared to the frequentist procedures. Furthermore, for a specific
choice of prior, the proposed Bayesian test is easy to implement which is a great
advantage compared to the existing methods.

We also study the separation rate of the test which gives insights on the
efficiency of the procedure. The adaptive minimax separation rates for testing
monotonicity has been derived in Baraud et al. (2005) and Diimbgen et al. (2001)
over Holder alternatives. Under similar assumptions, we prove that our procedure
achieves the minimax separation rate up to a log(n) factor.

1.4.2 Tll posed linear inverse problems

Another general class of models that became popular for statistical modelling
since the 1960’s is the so called inverse problems. They appear naturally when one
only has access to indirect observations of the parameter of interest. This is the
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case in many fields of applications: medical imaging (computerized tomography),
econometry (instrumental variables), radio astronomy (interferometry), astronomy
(blurred images of Hubble telescope) or seismology among many others. In the
statistical setting this is modelled by considering that the data arise from a prob-
ability distribution whose parameter has been transformed by a known operator
K that acts on the parameter space. In most cases, we can assume that the trans-
formation K does not induce additional noise in the observations. The sampling
model is thus modified to

X" ~ Piy, 0 € 0. (1.12)

If the operator K can be inverted and if its inverse is continuous, then the gen-
eral theory applies and inference on 6 does not differ from the usual framework.
However, in many cases, the inverse of the operator is not continuous. In this case
the problem is called ill-posed with respect to Hadamard’s definition, as in this
case a small noise in the data will be greatly amplified in the inference on 6. An
interesting class of operators which covers many applications is the class of linear
operators on Hilbert Spaces. It is usually assumed that the operator K is compact
and injective and the Hilbert spaces are separable.

Statistical approach to inverse problems has grown popular since the standard
framework has been proposed in Tikhonov (1963). A usual toy example to study
such methods is the white noise model

X":K0+0K, (1.13)
N4D
where W is white noise and o > 0 a variance parameter. In this example we can
easily grasp the difficulties at hand. In Chapter 4 we treat more general inverse
problems models of the form (1.12). In the following, we will recall some features
of statistical inference in inverse problems and illustrate it with model (1.13).

1.4.2.1 Singular value decomposition

Consider K to be a compact injective linear operator between two Hilbert spaces
{0, (-,-)e} and {Z, (-, -)¢}. For reading convenience, we shall drop the subscript for
the inner product when there is no confusion. A usual approach to infer on 6 is to
consider its decomposition in a basis of ©. In the linear inverse problem setting,
a simple choice for such basis would be the one that diagonalize the operator K.
More precisely, denote by K* the adjoint operator of K and suppose that the auto-
adjoint operator K*K is compact, then the spectral Theorem states that K* K has
a complete orthogonal system of eigenvectors {e;} with corresponding eigenvalues
{b;}. We thus have for all § € ©

1=1

i=1
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where x; = /b; and 6; = (0, ¢;). In this case we say that K admits a singular value
decomposition (SVD) with singular values {x;} and singular basis {e;}. Inferring
on 0 is thus equivalent to infer on the infinite sequence {6;}. From the observations
X™ from model (1.12), one can get an estimator 7 of n = K#. Denoting {7n;} its
projection onto the SVD basis, a simple estimator 6 of 0 is given by

When the problem is ill-posed, since {x;}, goes to 0, we see that the coefficients 6;
will be over-estimated for large 1.

To see this problem more clearly, consider the white noise example. By pro-
jecting (1.13) onto the basis {e;} and since W is a white noise, we can rewrite the
model as

€T; = Ki0i+%€i, €; NN(O,].), 1= 1,2,...

with z; = (z,¢;). This sequence model has been a cornerstone in the study of
linear inverse problems, see for instance Donoho (1995); Cavalier and Tsybakov
(2002); Cavalier (2008). The case where K is the identity operator (i.e. r; = 1
for all ¢) has been widely studied in the literature. From a Bayesian perspec-
tive, this representation is highly interesting as in this case, it is natural to con-
sider a prior on the sequence {6;}. These types of priors have been considered in
Ghosal and van der Vaart (2007) when K is the identity or Knapik et al. (2011)
or Agapiou et al. (2013) in the inverse problem setting. To infer on 6, we consider
the transformed model

—1
_ R, O .
wik; :9i+2—\/ﬁei, 1=1,2,...,
which reduces the problem to estimating the mean of an infinite Gaussian sequence.
Since the problem is ill-posed, the sequence /i;l — o0, hence the variance of the
noise blows up.
It appears from these considerations that the difficulty of an inverse problem

can be quantified by the rate at which the sequence {x; 1 goes to infinity.

Definition 1.5 (Ill-posedness). We define the degree of ill-posedness of an inverse
problem as follows:

e We say that a problem is mildly ill-posed of degree p if the sequence of
singular values {k;} is such that there exist constants 0 < Cy < C, < o©
such that

Cyi? <rk; <Cui”?.
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e We say that a problem is severely ill-posed of degree p if the sequence of
singular values {r;} is such that there exist constants 0 < Cy < C,, < oo and
v such that
Che " < k; < Cue .

Some generalized versions of the definition of ill-posedness of an operator have
been considered in the literature (see Ray, 2013, for instance), however for the sake
of simplicity, we will stick to this simple notion. The degree of ill-posedness greatly
influence the complexity of a model. In particular, the minimax convergence rate
for these models strongly depends on it, together with smoothness assumptions on

O.

1.4.2.2 Examples of inverse problems

Even if for some operators the SVD is difficult to compute, and thus the degree of
ill-posedness difficult to assess, there exists a series of classical operators for which
the form of the SVD is explicit. Here we present some examples of ill-posed inverse
problems that have been extensively studied in the literature.

Numerical differentiation If the problem of numerical integration has been
well studied in practice and is well understood from a theoretical point of view, it
turns out that the problem of numerical differentiation is much more complicated
even for simple classes of functions. The operator K is thus defined for all 8 €
Ly([0. 1) by

KO(x) = /Ox O(u)du, Yz € [0, 1].

The SVD is in this case given by the Fourier basis {e;} and we easily obtain

o0

K6 =Y (2mij) (0, ¢;)e;.

j=—o00

Thus the problem is mildly ill-posed of degree 1. We presented here the case of one
time differentiation but similar results hold for the m time differentiation problem.
It is mildly ill-posed of degree m.

Deconvolution A common problem in image processing is deconvolution of a
signal. A particular example is image deblurring for instance. A standard frame-
work is to consider circular deconvolution, that is for § and X\ in Ly([0,1]) and
1-periodic, the operator K is defined as

KO(x) =0 % \zx) = /01 O(u)A(z — u)du,Vx € [0, 1].
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In this case, one only has access to a weighted average of f around the point x.
Standard algebra gives that the singular basis is here again the Fourier basis and
the singular values are the Fourier coefficients of the convolution kernel .

1.4.2.3 Regularization methods

As stated before the difficulty in inferring on the unknown parameter in inverse
problems comes from the fact that the inverse of the operator K is not continuous
over the all Hilbert space =. A usual way to overcome this problem is to consider
regularization methods to obtain a sensible estimator for these models. We present
here two standard methods that are commonly used in practice. For a complete
overview of regularization techniques, we refer to the monograph Engl et al. (1996).

Consider the general setting presented above, and consider a fixed sequence
of weights w = {w;} and an estimator 7 of n = K¢. Each sequence defines an
estimator of 6

b, =will, 6= be:.
g i=1
For a general sequence w, this estimator behaves poorly, due to the fact that
for large 7, x; will be very small and will overwhelm the signal in 7;. The simplest
choice for the weight sequence w to bypass this problem is the projection sequence
w; = <y for some fixed threshold N. This regularization method is commonly
called spectral cut-off. This calibration is rather rough as the weight only takes
values 0 or 1, furthermore it requires a fine calibration of the bandwidth N.
Another approach is the celebrated Tikhonov reqularization (Tikhonov and Arsenin,
1977) which is based on finding a minimizer of the data misfits while controlling
the regularity of the estimator. The estimator is then obtained by

6 = argmin{|| K0 — X"(|* + ][]},

where 4 is a fixed tuning parameter. Here again the calibration of y is crucial. In
particular, an optimal calibration in the minimax sense - i.e. that would lead to the
minimax rate of convergence - will crucially depend on the regularity assumptions
on # and the ill-posedness of the problem. If it is common to assume that the
operator (and thus the degree of ill-posedness) is known, imposing a degree of
regularity to the function 6 is a rather strong assumption. There exist data driven
calibrations of © and N, however these are often difficult to study and will not be
presented here.

1.4.2.4 The Bayesian approach to ill posed inverse problems

The Bayesian approach for ill-posed inverse problems is thus fairly natural as it
is well known that putting a prior distribution on the unknown parameter often
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acts as a regularization. This property is particularly useful in the model choice
problem, but also for estimation as shown in 7 in overfitted mixture models, or
in Castillo (2013) when reculariezation is needed. Some of the priors proposed
in the literature can be directly linked to the usual regularization methods. For
instance the sieve prior presented in Ray (2013) corresponds the the spectral cut-
off regularization. If the Bayesian approach to inverse problems has been put in
practice (see for instance Orbanz and Buhmann, 2008), there is a dramatical lack
of theoretical results for these models, and the families of prior distributions for
which theoretical results exist are very limited.

Agapiou et al. (2013), Knapik et al. (2011) and Knapik et al. (2013) studied
asymptotic properties of the posterior distribution for the conjugate (i.e. Gaussian)
prior in the white noise setting. Minimax adaptive posterior concentration rates
have been obtained in Knapik et al. (2012) also for conjugate priors. Ray (2013)
considered a more general class of prior distributions that are still closely linked to
the SVD of the operator. Moreover the general approach proposed by Ray (2013)
leads to suboptimal rates in some cases. Thus it seems that there is a need for
general results as the ones proposed in Ghosal and van der Vaart (2007) for the
direct model.

In Chapter 4 we propose a general approach to derive posterior concentra-
tion rate for general ill-posed inverse problems. Our approach does not rely on
a specific form of the prior distribution. With this result, we recover the known
results in the literature and improve the suboptimal upper bounds for the poste-
rior concentration rate obtained in Ray (2013). Furthermore, we derived posterior
concentration rates for models that are neither conjugate nor related to the SVD
of the operator. We consider an abstract setting in which the parameter space F is
an arbitrary metrizable topological vector space and let K be an injective mapping
K:F> f— Kf e KF. Even if the problem is ill-posed there exist subsets S,
of K F over which the inverse of the operator can be controlled. For suitably well
chosen priors, these sets will capture most of the posterior mass, and we can thus
easily derive posterior concentration rate for f from posterior concentration rate
for K f by a simple inversion of the operator.

A main contribution of this thesis is to study the asymptotic behaviour of the
posterior distributions for problems for which general results do not hold. In Chap-
ter 2 we study the problem of estimating monotone non increasing densities. In
Chapter 3 we focus on the problem of testing monotonicity of a regression function.
Finally in Chapter 4 we provide general conditions to derive posterior concentra-
tion rates for ill-posed linear inverse problems. Many other models presented in
the literature may require such non standard methods to study the asymptotic
behaviour of the posterior distribution.
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Chapter 2

Monotone densities

“Now we are joined together and have been since noon. And
no one to help either of us.”

— Ernest Hemingway, The old man and the sea.

Résumé

Dans ce chapitre, nous étudions la consistance et la vitesse de concentration de la
loi a posteriori dans le modéle de densité décroissante pour différentes métriques.
Ce modéle est particulierement intéressant car les densités décroissantes ont une
représentation sous forme de mélange d’uniformes et sont donc un cas particulier
de mélange pour lequel le support du noyau dépend du paramétre. Dans ce cadre,
les hypothéses classiques nécessaires pour la consistance de la loi a posteriori ne
sont pas vérifiées. Notamment la loi a priori ne met pas suffisamment de masse
sur les voisinages de Kullback-Leibler du vrai paramétre, et une adaptation des
méthodes usuelles est donc nécessaire. Pour deux familles d’a priori classiques,
nous prouvons que 1’a posteriori se concentre a la vitesse minimaxe pour les pertes
Ly et Hellinger. Nous étudions ensuite la consistance de la loi a posteriori de
la densité pour les pertes ponctuelle et norme sup. Ces deux métriques sont en
général difficiles a étudier car elles ne peuvent étre reliées a la divergence naturelle
qu’est la divergence de Kullback-Leibler. Pour ces deux pertes, nous prouvons la
consistance de I’a posteriori et donnons une borne supérieure pour la vitesse de
concentration.

27
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2.1 Introduction

The nonparametric problem of estimating monotone curves, and monotone densi-
ties in particular, has been well studied in the literature both from a theoretical
and applied perspectives. Shape constrained estimation is fairly popular in the
nonparametric literature and widely used in practice (see Robertson et al., 1988,
for instance). Monotone densities appear in a wide variety of applications such
as survival analysis, where it is natural to assume that the uncensored survival
time has a monotone non increasing density. In these problems, estimating the
survival function is equivalent to estimate the survival time density say f and the
pointwise estimate f(0). It is thus interesting to have a better understanding of
the behaviour of the estimation procedures in this case. An interesting property
of monotone non increasing densities on R™ is that they have a mixture represen-
tation pointed out by Williamson (1956)

[P T (o)
f(x) = / LD ip(g), (2.1)

where P is a probability distribution on R* called the mixing distribution. In
order to emphasize the dependence in P, we will denote fp the functions admit-
ting representation (2.1). This representation allows for inference based on the
likelihood. Grenander (1956) derived the nonparametric maximum likelihood es-
timator of a monotone density and Prakasa Rao (1970) studied the behavior of
the Grenander estimator at a fixed point. Groeneboom (1985) and more recently,
Balabdaoui and Wellner (2007) studied very precisely the asymptotic properties of
the non parametric maximum likelyhood estimator. It is proved to be consistent
and to converge at the minimax rate n~/% when the support of the distribution
is compact. In their paper Durot et al. (2012) get some refined asymptotic results
for the supremum norm.

The mixture representation of monotone densities lead naturally to a mix-
ture type prior on the set of monotone non increasing densities with support on
[0, L] or R*. For example Ferguson (1983) and Lo (1984) introduced the Dirichlet
Process prior (DP) and Brunner and Lo (1989) considered the special case of uni-
modal densities with a prior based on a Dirichlet Process mixture. The problem
of deriving concentration rates for mixtures models have receive a huge interest
in the past decade. Wu and Ghosal (2008) studied properties of general mixture
models Ghosal and van der Vaart (2001) studied the well known problem of Gaus-
sian mixtures, Rousseau (2010) derive concentration rates for mixtures of betas,
Kruijer et al. (2010) proved good adaptive properties of mixtures of Gaussian. Ex-
tensions to the multivariate case have recently been introduced (e.g. Shen et al.
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(2013)).

Under monotonicity constrained, we derive an upper bound for the posterior
concentration rate with respect to some metric or semi metric d(-,-), that is a
positive sequence (€,), that goes to 0 when n goes to infinity such that

Eg (IL(d(f; fo) > €n]X™)) = 0,

where the expectation is taken under the true distribution P, of the data X" and
where fy is the density of P, with respect to the Lebesgue measure. Following
Khazaei et al. (2010) we study two families of nonparametric priors on the class
of monotone non increasing densities. Interestingly in our setting, the so called
Kullback-Leibler property, that is the fact that the prior puts enough mass on
Kulback-Leibler neighbourhood of the true density, is not satisfied. Thus the
approach based on the seminal paper of Ghosal et al. (2000) cannot be applied. We
therefore use a modified version of their results and obtain for the two families of
prior a concentration rate of order (n/log(n))~'/? which is the minimax estimation
rate up to a log(n) factor under the L, or Hellinger distance. We extend these
results to densities with support on R* and prove that under some conditions on
the tail of the distribution, the posterior still concentrates at an almost optimal
rate. To the author’s knowledge, no concentration rates have been derived for
monotone densities on R™.

Interestingly, the non parametric maximum likelyhood estimator of fp(x) is not
consistent for x = 0 (see Sun and Woodroofe (1996) and Balabdaoui and Wellner
(2007) for instance). However, we prove that the posterior distribution of f is still
consistent at this point under a specific family of non parametric mixture prior.
In fact we prove the pointwise consistency of the posterior for all z in [0, L] with
L < oo. We then derive a consistent Bayesian estimator of the density at any
fixed point of the support. This is particularly interesting as the point-wise loss
is usually difficult to study in a Bayesian framework as the Bayesian approaches
are well suited to losses related to the Kullback-Leiber divergence. We also study
the behaviour of the posterior distribution for the sup norm when the density has
a compact support. This problem has been addressed recently in the frequentist
literature by Durot et al. (2012). They derive refined asymptotic results on the sup
norm of the difference between a Grenander-type estimator and the true density
on sub intervals of the form [e, L — €] where ¢ > 0 avoiding the problems at the
boundaries. Here, we prove that the posterior distribution is consistent in sup
norm on the whole support of f; when it has compact support. We also derive
concentration rate for the posterior of the density taken at a fixed point and for
the sup norm on subsets of [0, L] for L < co. We also derive an upper bound for
the concentration rate of f(z) for z € (0, L) but only get suboptimal rates using
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a testing approach as in Giné and Nickl (2010). It is to be noted that for this
problem the modulus of continuity for the pointwise and Hellinger losses defined
for fo € F and z € (0, L) by

m(e) := sup{[f(z) — fo(z)| : f € F, h([, fo) < €}

is of the order €2/3 (see Donoho and Liu, 1991). Given the discussion in Hoffmann et al.
(2013), it is to be expected that the usual approach of Ghosal et al. (2000) based

on tests will lead to suboptimal concentration rates. We now introduce some
notations which will be needed throughout the paper.

Notations For 0 < L < oo define the set F;, by
L
FL:{fs.t.0§f<oo,f\/f:1},
0

We also define &, the k-simplex that is the set {(sq,...,s) € [0,1]%, SF s, = 1}.
Let K L(p1,p2) be the Kullback Leibler deviation between the densities p; and py
with respect to some measure \

KL(pbpz) = /1()% (%) prdA.

We also define the Hellinger distance h(pi, p2) between p; and p, as

Bonp) =5 [ (V1= VA

We will say that =" = 0,,(1) if =* — 0 under . Finally we will denote f’ the
derivative of f.

Construction of a prior distribution on 7, Using the mixture representation
of monotone non increasing densities (2.1) we construct nonparametric priors on
the set F; by considering a prior on the mixing distribution P. Let P be the
set of probability measures on [0, L]. Thus we fall in the well known set up of
nonparametric mixture priors models. We consider two types of prior on the set

P.

Type 1 : Dirichlet Process prior P ~ DP(A,«) where A is a positive con-
stant and « a probability density on [0, L].
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Type 2 : Finite mixture P = Z]K=1 p;d.; with K a non zero integer and d, the
dirac function on . We choose a prior distribution ) on K and given K,
define distributions 7, ;c on (z1, ..., 2x) € [0, L]¥ and 7,  on (p1,...,pK) €
Gk.

For X" = (X3,...,X,), asample of n independent and identically distributed ran-
dom variables with common probability distribution function f in /7, with respect
to the Lebesgue measure, we denote II(-|X"™) the posterior probability measure
associated with the prior II.

The paper is organised as follow: the main results are given in Section 2.2,
where conditions on the priors are discussed. The proofs are presented in Section
2.3.

2.2 Main results

Concentration rates of the posterior distributions have been well studied in the
literature and some general results link the rate to the prior (see Ghosal et al.
(2000)). However, in our setting, the Kullback Leibler property is not satisfied in
its usual form and thus the standard Theorems do not hold. In fact an interesting
feature of mixture distributions whose kernels have varying support is that the
prior mass of the sets { f, K L(fo, f) = +o0} is 1 for most f, € F, given that f and
fo will have different support. One could prevent this by imposing that the support
of the mixing distribution is wider than the support of fy, however this could lead
to a deterioration of the concentration rate. Here, we use a modified version of the
results of Ghosal et al. (2000) considering truncated versions of the density f. This
idea has been considered in Khazaei et al. (2010) in a similar setting. We impose
some conditions on the prior under which the posterior distribution concentrates
at the minimax rate up to a log(n) term.

Conditions on the prior

C1 condition on o Let a be a probability density on R* such that for all 6 €
(0, L), a(f) > 0. Consider the following conditions on «

e for 0 < t; <ty and # small enough
0" < a(f) < 6" (2.2a)
e for 1 < a; < ay and 0 small enough

e u/f < a(f) < e~ a2/? (2.2b)
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e for 1 < b; < by and 6 small enough
e/ < (L —0) < e/ (2.2¢)

C2 condition for Type I prior For P ~ DP(«a, M) with « satisfying C1
C3 condition for the Type II prior The following conditions holds

e For some positive constants Cy,Cs, aq, ..., a,c
e—C’lKlog(K) > Q(K) > e—C'zKlog(K) (23)
k(Do) = KR pit L pi (24)

e 7, ik is the distribution of K independent and identically distributed
random variables sampled from a.

C4 Condition for densities on R™ If f, € F. then for 8 and 7 some fixed
positive constant we have for x large enough

folz) < e P (2.5)

2.2.1 Posterior concentration rate for the L; and Hellinger
metric

The following Theorems gives the posterior concentration rate for the L; and
Hellinger metric for monotone non increasing densities on [0, L] with L < oo and
L = oo. For both Theorems the proofs are postponed to section 2.3.

Theorem 2.1. Let X" = (Xy,...,X,) be an independent and identically dis-
tributed sample with a common probability distribution function fy such that fo €
Fr with 0 < L < oo. Let Il be either a Type I or Type II prior satisfying C2
or C3 respectively with o satisfying (2.2a). If d(-,-) is either the L' or Hellinger
distance, then there exists a positive constant C' such that

N
I1 <f, d(f, fo) = C (log(n)) |X"> — 0, Pya.e. (2.6)

when n goes to infinity, where C' depends on fy only through L and an upper bound
on fo(0). Furthermore, if for 6 > 0, supy g |fo(7)| < 0o and « satisfies (2.2b), or
Sup(r, s | fo(7)| < oo and a satisfies (2.2c), then (2.6) still holds.

Conditions C1 and C2 are roughly the same as in Khazaei et al. (2010). Theo-
rem 2.1 is thus an extension of their results to concentration rates. We also extend
their results to mixtures prior satisfying (2.2b) or (2.2¢) under some additional
conditions on fy. This will prove useful for the estimation of f; and fr. Under
condition C3 on the tail of the true density, i.e. we require exponential tails, we
get the posterior concentration rate for density with support on R*.
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Theorem 2.2. Let X" = (X1,...,X,) be an independent and identically dis-
tributed sample with a common probability distribution density fo such that fo €
Foo and fo satisfy C3. Let 11 be either a Type I or Type II prior satisfying C2
or C3 respectively with « satisfying (2.2a). Then for some positive constant C' we
have for d(-,-) either the Ly or Hellinger metric

I (d( Fro fo) > C (n/ log(n)) * log(n)l/T|X"> =0, Py ae. (2.7)

when n goes to infinity. Similarly, if for § > 0, supy 4 | fo(x)| < 0o and a satisfies
(2.2b), (2.7) still holds.

Note that considering monotone non increasing densities on R deteriorates the
upper bound on the posterior concentration rate with a factor log(n)¥/7. Tt is not
clear whether it could be sharpen or not. For instance, in the frequentist literature,
Reynaud-Bouret et al. (2011) observe a slower convergence rate when considering
infinite support for densities without any other conditions. In a Bayesian setting,
a similar log term appears in Kruijer et al. (2010) when considering densities with
non compact support. However this deterioration of the concentration rate does
not have a great influence on the asymptotic behaviour of the posterior. Note also
that the tail conditions are mild since 7 can be taken as small as needed, and thus
the considered densities can have almost polynomial tails.

The above results on the posterior concentration rate in terms of the L; or
Hellinger metric are new to our knowledge but not surprising. The specificity
of these results lies in the fact that the usual approach based on the approach
of Ghosal et al. (2000) need to bound the prior mass of Kullback Leibler neigh-
bourhoods of the true density which cannot be done here as explained in section
2.1.

2.2.2 Consistency and posterior concentration rate for the
pointwise and supremum loss

The following results consider the pointwise loss function for which only a few exist
in the Bayesian nonparametric literature, see for instance the paper of Giné and Nickl
(2010). The following Theorem proves consistency of the posterior distribution for
all point in the interior of the support.

Theorem 2.3. Let x be in (0, L) with with 0 < L < oo but x < oo. Let fy € Fy,
such that fj exists near x and fi(z) < 0. Let X; , i =1,...,n and Il be either a
Type I or Type II prior satisfying C2 or C38 respectively with o satisfying C1 with
either (2.2a), (2.2b) or (2.2¢). Then, for all x in (0, L) with x < oo, and € > 0

(| (x) — fol)| > eX") = 0. (2.8)
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Consider the posterior median fT(x) = inf{t, 11| fp(z) < ¢|X"] > 1/2}, it follows
that X
Po(|f7 (@) = fo(x)] > €[X") — 0. (2.9)
We thus have a pointwise consistency of the posterior distribution of fy(x)
for every x in the interior of the support of f;. The maximum likelihood is not
consistent at the boundaries of the support as pointed out in Sun and Woodroofe
(1996) for instance. In particular it is not consistent at 0 and when L < oo, it
is not consistent at L. It is known that integrating the parameter as done in
Bayesian approaches induces a penalisation. This is particularly useful in testing
or model choice problems but can also be effective in estimation problems, see for
instance Rousseau and Mengersen (2011). Here we require that the base measure
puts exponentially small mass at the boundaries. This induce enough penalization
to achieve consistency of the posterior distribution of f(0) and f(L). The following
Theorem gives consistency of the posterior distribution of f at every point on the
support of fy including the boundaries.

Theorem 2.4. Let = be in [0, L] with with 0 < L < oo but x < oco. Let fy € Fy,
such that fi exists at x and fi(x) < 0. Let X; , i =1,...,n and II be either a

Type I or Type II prior satisfying C2 or C3 with « satisfying condition (2.2b) if
x =0 or (2.2¢) if v = L. Then, for all x in [0, L] with x < 0o, and € > 0

(| fp(z) — fo(x)] > €|X™) = 0. (2.10)

Consider the posterior median f™(x) = inf{t, I1[ fp(z) < ¢|X"] > 1/2}, it follows
that
Po(|f7(z) = fo(z)] > €[X") = 0. (2.11)

The problem of estimating fy(0) under monotonicity constraints is another ex-
ample of the effectiveness of penalisation induced by integration on the parameters.
Although we do not have a proof for inconsistency of the posterior of f(0) or f(L)
when « satisfies (2.2a), we believe that the similarly to the maximum likelihood
estimator, the posterior distribution is in this case not consistent.

The following Theorem gives an upper bound on the concentration rate of the
posterior distribution under the pointwise loss.

Theorem 2.5. Let fy be in Fp with 0 < L < oo and Il be either a Type I or
Type II prior satisfying C1 or C2 respectively with « satisfying C1, and let x be
in (0, L) such that f" exists in a neighbourhood of x and f'(x) < 0, then for C' a
positive constant

no\ 2
I (pr(:v) - o)l > ¢ (o) |X"> 0 (212)

when n goes to infinity.
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Here the concentration rate is subobtimal. It is however the best rate that
one can obtain using the usual approach by testing (see Hoffmann et al., 2013)
. Proving that the posterior concentrates at the rate n='/3 up to some power of
log(n) would require some more refined control of the posterior distribution close
to Bernstein von Mise types of results, see Castillo (2013), which in the case of
mixture models is very difficult and beyond the scope of this chapter.

We derive from Theorem 2.4 the consistency of the posterior distribution for
the sup norm. This is particularly useful when considering confidence bands, as
pointed out in Giné and Nickl (2010). Under similar assumptions as in Durot et al.
(2012), we get the consistency of the posterior distribution for the sup norm. Note
that contrariwise to Durot et al. (2012), we do not restrict to sub-intervals of the
support of the density. This is mainly due to the fact that the Bayesian approaches
are consistent at the boundaries of the support of f.

Theorem 2.6. Let fy € F with0 < L < 0o be such that f] exists and || f]]oo < 00
and for all x € [0,L], fi(x) < 0. Let also the prior 11 be either a Type I or
Type II prior satisfying C1 or C2 with « satisfying conditions (2.2b) and (2.2c)
respectively. Then

II( sup |fp(z) — fo(x)| > €| X,) — 0. (2.13)

z€[0,L]

Similar results as in Theorem 2.5 also hold for the concentration rate of the
posterior distribution for the supremum over all subsets of the form (a,b) with
0 < a <b< L with the same rate.

2.3 Proofs

In this section we prove Theorems 2.1 to 2.6 given in Section 2.2. To prove Theo-
rems 3-6, we need to construct tests that are adapted to the pointwise or supremum
loss. The usual approach based on 7 cannot be applied in this case. We thus con-
struct test based on the Maximum Likelihood Estimator.

2.3.1 Proof of Theorems 2.1 and 2.2

The proofs of Theorems 2.1 and 2.2 follow the general ideas of Ghosal et al. (2000)
with some modification due to the fact that the Kullback-Leibler property is not
satisfied. We first focus on density on F; with L < oo and extend these results to
monotone non increasing density with support Rt that satisfy C3. We extended
the approach used in Khazaei et al. (2010) to the concentration rate framework
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and get similar results as those presented in Ghosal et al. (2000). More precisely,
the proofs relies on the following Theorem which is a modification of Ghosal et al.
(2000) main Theorem proposed by Rivoirard et al. (2012). To tackle the fact that
the usual Kullback Leibler property is not satisfied in its usual sense, we consider
truncated versions of the densities

S()Ipe.(+)
F(0,)

Jo( )0, ()

Fo(0,) (2.14)

fn() = ) fO,n(') =

where 6,, is defined as

€
= inf 1— F -
0, = inf{z, o(x) < o

We then define the counterpart of the Kullback Leibler neighbourhoods
Sn<‘5n7 en) - {f7 KL(fna fO,n) < Ei,

/fo,n(a:) (log (;;(é))))gda: <é, Oen fz)dz =1 - ei}. (2.15)

Theorem 2.7. Let fy be the true density and let 11 be a prior on F satisfying the
following conditions : there exist a sequence (e,) such that €, — 0 and ne — oo
and a constant ¢ > 0 such that for any n there exist F,, C F satisfying

II(F;) = o(exp(—(c + 2)ney)).

Foranyj €N, j >0, let F,; ={f € Fo,jen < d(f, fo) < (j +1)en} and N,
the Hellinger (or Ly) metric entropy of F, ;. There exists a Jo, such that for all
j Z JO,n

N,; < (K —1)neXj?,

where K 1s an absolute constant.
Let S, (€,,0,) be defined as in (2.15) and let 11 be such that
(S, (€, 0,)) > exp(—cne). (2.16)

We have :
I(f : d(fo, f) < Jonen|X"™) =1+ 0p(1).

The proof of this Theorem is postponed to Appendix 2.5. We will thus prove
that the conditions of Theorem 2.7 are satisfied in our case. Let fy be in F7. The
following lemma states that (2.16) is satisfied.
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Lemma 2.1. Let I be either a Type 1 or Type 2 prior on Fr, as in Theorem 2.1
and let Sy(€n,0,) be a set as in (2.15), then

I1(S,(€n, 0,)) 2 exp {Clenl log(en)}. (2.17)

This lemma is proved in appendix 2.4. The e metric entropy of the set of
bounded monotone non increasing densities has been shown to be less than ¢,
up to a constant (see Groeneboom (1986) or van der Vaart and Wellner (1996) for
instance). As the prior puts mass on F;, on which f(0) is not uniformly bounded,

we consider an increasing sequence of sieves

Fo={f€F1(0)< Mn}. (2.18)

where M,, = exp {cn1/3 log(n)?/3(ty + 1)*1} with ¢; as in the conditions C1 or C2.
The following Lemma shows that F,, covers most of the support of Il as n increase.

Lemma 2.2. Let F, be defined by (2.18) and I be either a Type 1 or Type 2 as
in Theorem 2.1, then
[1(F2) < c-on oo

Here again, the proof is postponed to appendix 2.4. We now get an upper
bound for the e-metric entropy of the set F,,. Recall that in Groeneboom (1985) it
is proved that the L; metric entropy of monotone non increasing densities on [0, 1]
bounded by M can be bounded from above by Cylog(M)e,t. We cannot apply
this result directly for the sets F,, as it would give a suboptimal control of the
entropy to construct tests in a similar way as in Ghosal et al. (2000). In fact the
upper bound on the entropy of F,, is of the order of €"* the usual conditions of
Ghosal et al. (2000) requires an upper bound of the order e"». However as stated

in Theorem 2.7 it is enough to bound the e-metric entropy of the sets

‘Fn,j = {f € Fn,jén < d(fafo) < (]+ 1)En}a

for j € N*. We can easily adapt the results of Groeneboom (1985) to positive
monotone non increasing functions on any interval [a,b] and get the following
Lemma.

Lemma 2.3. Let F be the set of positive monotone non increasing functions on
[a,b] such that for all f in ]:,f;f < My and f < M, then

N(e, Fod) < e log(M + 1) ((b —a)+ 3M2).
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The proof of this Lemma is straightforward given the results of Groeneboom
(1985) and is thus omitted. Let x,; € [0, L] such that €,/2 < z,; < €,. We
denote for all fin F,; fi1; = fljos,,) and fo; = fIz, ;1) Since for all fin F, ;
we have fol |f(x) = fo(z)|dz < (j + 1)€, then

/ " f@)de - / " fo@)de < (G + e,
0 0
which implies that
T f (Tn5) < 2njifo(0) + (5 + 1)én,
which in turn gives
flang) < fo(0) +2(5 + 1).
Recall that for all f € F,, we have f(0) < M,,. Using Lemma 2.3, we construct
an e, /2-net for the set F, ; = {ij, fe fnJ} with N; points, and

log(Ny) < €, log(M, + 1)en(j +2),
and thus deduce
log(Ny) < C'ne’ 42 (2.19)
Similarly, given that f(z,;) < M 4 2(j + 1) we get an ¢,/2-net for the set F; ; =
{f27]’, fe .7:”7]-} with N, points and

log(Ny) < C'ne? 2. (2.20)

This provide a ¢,-net for F,, ; with less than Ny x Ny points. Given (2.19) and
(2.20) the L, metric entropy of the sets F, ; satisfy

log(N(Fnj,€n, L1)) S neij? (2.21)

The conditions of Theorem 2.7 are thus satisfied which ends the proof of The-
orem 2.1

Extention to R* Given that fo(z) < e " when x goes to infinity, if 6, is
such that 6, = inf{z,1 — Fy(z) < €,/(2n)} then 6, < (log(n))Y/7. Using similar
arguments as before, Lemma 2.1 still holds under the exponential tail assumption.
We now get an upper bound for the e-metric entropy of F,, ;. Here again, we split
Fn,; into two parts. The construction of an €,/2-net for ]-"%7]. does not change and
therefore (2.19) holds. Finally, let .7:“,3] = {f € F.;;Vx > 0, f(x) = 0}. Given

Lemma 2.3, we get for ¢; > 0 large enough an €,/(2¢;(j + 1))-net for ]}2] by
considering f* the restriction of f to [z, ;,0,]. We have

d(f, 1) < 2§ + Den,
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where d(-,-) is either the L1 or Hellinger distance. Hence, for ¢; > ¢y an €/2-net
for F 2 ; with at most ecanens® points and thus

log ( (F2

n,j?

€n,d)) < C"nelj?

We conclude using the same arguments as in the preceding section, and thus
Theorem 2.2 is proved.

2.3.2 Proof of Theorems 2.3 and 2.5

To prove Theorem 2.3 and 2.5, we need to construct tests for all x € (0, L) of fy

versus |fp(z) — fo(z)| > e2/* as the approach used in Ghosal et al. (2000) is not
suited for the pointwise loss. As we have II(||fp — foll1 > €.|X") = 0p,(1) we can
consider functions fp such that ||fp — fo||1 < €,. We construct tests ®,, such that

Ej(®) =o(1), sup E;ﬁ(l — ) < o~ Cnes
fvlf(x)_f0($)‘>5n

Denote A* := {f,|f(x) — fo(x)] > €} that can be split into A®" = {f, f( ) —
fo(z) > €} and A®~ = {f, f(x) — fo(zr) < —e€} and denote e, = eoer® and
h, = hge,. Consider the tests

Qb: = { 7lzﬂx hnm] / f(] dt>0n}
z+hn
gb; =1 {n_l Zﬂ[x,x+hn](Xl) — / fo(t)dt < _Cn}
=1 z

We immediately get Eg(max (o), ¢) = o(1). Note that if fp(x) > fo(z) + e,
then

/ Cpet) = folt)dt > ha(fe(2) / folt) = fola)dt
r—hn
> hpe, — Coh2

for some Cj > 0 that only depends on fy. Similarly if fp(z) < fo(z) — €, then
forall h >0

/ fp(t) — fo(t)dt < —he, + Coh®
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We thus deduce for fp such that fp(z) — fo(z) > e,
(1_¢+ <Pf ( 712]1[35 hnx Z)_/ fP(t)dtS_hnen+COh2+cn>
r—hn

ng< Z]I[m ha) (X / fr(t)dt < h062/2>

if ¢, <e? and hy < 1/Cy. Now note that for fp such that ||fp — fol|i < €n

/:hnfpz—/ooolf—fo|+/:hnfo
et / Iz

> —e,+h fo ) > hnfo(x)/Q

v

Moreover,

xT

fP S €n + hnfO(x - hn) S thfo(l‘)

x—hn

for n large enough and A small anough. We conclude that

Var}‘P (nl ZH[I—hyﬂ(XZ)> < th()(.l’)
=1

Thus using Bernstein’s inequality (e.g. van der Vaart and Wellner (1996) Lemma
2.2.9 p. 102) we get

Pf(l o ¢+) < 2€—nhne%/(2+en/3).
Similarly, we have
Pf(l _ ¢;L) < 26*nhne%/(2+en/3).

Taking ®,, = max(¢;:, ¢, ) we deduce

Bo(Pn) = o(1)

sup Pr(l —&,) < ¢~ Chocn
JeAg

en
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We have

Bo(®n) = o(1)

sup Pr(1—&,) < e=Cneocs
JeAz,

Similarly to the proof of Theorem 2.7, following Khazaei et al. (2010), we get
an exponentially small lower bound for D,,. More precisely, we get that

Dn > 2€f(c+2)ne%
with probability that goes to 1. Note that
n Nn n(HT n —(c+2)ne?
Ey D. < EG(97) + B (D < e ")+

n

(2.22)
Ep (I F2| X)) + ele+2net / E(1 - ©7)dII(f)

AeNFn

Given the preceding results, we have

Ej (—n) < o(1) + el sup E}(1—7)
f
which ends the proof choosing ¢, large enough.

Consistency of a Bayesian estimator We consider in this section f,’;(t), the
Bayesian estimator associated with the absolute error loss, define as the median of
the posterior distribution. Consistency of the posterior mean, which is the most
common Bayesian estimator is however not proved here but could nevertheless be
an interesting result.

We first define f7(t) such that

fi(t) = inf{z, T[fp(t) < 2|X"] > 1/2}. (2.23)
In order to get consistency in probability we note that if f7(¢) — fo(t) > € then
L(fp(t) > folt) +€[X") > 1/2.
And if f7(t) — fo(t) < —e then
(fp(t) < fo(t) —€[X") > 1/2.

We deduce, with Markov inequality and Theorem 2.3



42 CHAPTER 2. MONOTONE DENSITIES

Py (fa(t) = fo(t) > ©) B (IL(fp(t) > folt) +€X") > 1/2)
2Eg(II(fp(t) > fo(t) +€[X") > 1/2)

o(1),

IA AN IA

and similarly

P (fi(t) = folt) < —€) < o(1).

Thus we have Pr(|fm(t) — fo(t)] > €) — 0 which gives the consistency in
probability of f7(¢).

2.3.3 Proof of Theorem 2.4

The previous proof holds for all z € (0, L) we now need to prove the consistency
of the posterior for + = 0 and # = L, when the prior satisfies conditions (2.2b)
r (2.2c). We first consider the case © = 0, the case = L can be deduce with
symmetric arguments.
As before, consider the set A? and split it in A%" and A%~. Note that using
the same test ¢, as before we easily get

II(AZ™|X") = o, (1)

We now consider fp € A%T. As before we can restrict ourselves to functions fp
such that ||fp — fo||l1 < €,. We thus have for h = 2¢, /¢

F2(0) = £o(0) < F(0) — fo(h) + - / folt) — Filt)]dt

< fp(0) = fp(h) +
= [p(0) — fp (h)+€/2-

We now prove that the prior mass of the event {fp(0) — fp(h) > €/2} is less that
e (et2ney Using Markov inequality we get

II(fp(0) — fp(h) > €/2) < 2 / 50(0)do < e=02/h < gmaane; log(n),
0

Using the same control for D,, as in the proof of Theorem 2.7, and applying the
usual method of Ghosal et al. (2000), we get the desired result.
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2.3.4 Proof of Theorem 2.6

In this section we prove that the posterior distribution is consistent in sup norm.
Here again, the main difficulty is to construct tests that are adapted to the con-
sidered loss. More precisely we construct a test ® such that

EN®) = o(1), sup ER(1—®) < e O,

fssuppo, ) [f—fol>en

To do so we consider a combination of the tests considered in the previous
section noting that if the posterior distribution is consistent at the points of a
sufficiently refined partition of [0, L] then it is consistent for the sup norm. Here
again, we will only consider the case L = 1 without loss of generality. We first
denote

B = {f, ﬁ)llgﬂf(fc) — fo(@)| > 6}

Let C{, be a positive constant such that || f}|| < C{ and let (z;); be the separation
points of a €/(8C{) regular partition of [0, 1] and p = Card{(z;);}. Note that

B = U{f,[ sup ]{If(l“) — Jo(z)| > €}
i=1 i, Tit1

Recall that A7 = {f,[f(z) — fo(z)| > e}. We consider the set B.(_;(A/)".
Given Theorem 2.3, we have that

En (H <U(Af/i5)‘X">> — o(1).

If f € B. we have for all z € [z;, x;14],

[f (@) = fo()| < |f(x) = [l + | f (@) = folw)| + | folw:) = fol@)]-

Given that f is monotone non increasing, and given the hypotheses on f; we have

|f(@) = f(@)| < |f(@iga) — f3)]
< |f(@is1) = fo(wipr)| + | fo(wirr) — folzi)| + | fo(zs) — f(as)]
< 3¢/5

and for the same reasons

|f(zi) — fol@:)| + | fo(z:) — fo(x)| < 2€/5.
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Which leads to
(@) = fo(z)] < e

and thus, taking the supremum over x, we get

sup [ f(x) = fo(z)| < e

:BE[:L‘Z',:BZ‘+1]

We then deduce

I(B[X") < 1I (Beﬂ {ﬂ(Af}s))c}) o <U<A3;5>> — op,(1)

i=1

Which gives the consistency of the posterior distribution in sup norm

2.4 Technical Lemmas

2.4.1 Proof of Lemma 2.1

To prove Lemma 2.1, we first construct stepwise constant functions such that these
approximations are in the truncated Kullback Leibler neighbourhood of f,. We
then construct a set A included in S, (€,,6,) based on the considered piecewise
constant approximation such that for IT a Type I or Type IT prior II(N) > e~Cnen|

We first construct a piecewise constant approximation of f; which is base on a
sequential subdivision of the interval [0, L] with more refined subdivisions where
fo is less regular such that the number of points is less than ¢, ! points.

This approximation is adapted from the proof of Theorem 2.5.7 in van der Vaart and Wellner
(1996). We then identify a finite piecewise constant density by a mixture of uniform
for which the Hellinger distance between the piecewise constant approximation fp
of fo € F and fyis less that €, and || fo/ fp||cc < M.The following Lemma gives the
form of a finite probability distribution P such that fp is in the Kullback-Leibler
neighbourhood of some f € F.

Lemma 2.4. Let f € F, be such that f(0) < M < 4o00. For all 0 < e <1 there
evists m < LY3MY3e™' p = (p1,...,pm) € &y and v = (zy1,...,2,) € [0, L]
such that P =" 0,.,p; satisfies

KL(f, fp) S €, /(log (f_i)) f<é, (2.24)

where fp is defined as in (2.1).
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Proof. For a fixed €, let f be in F. Consider Py the coarsest partition :
0=a)<a)=1L,
at the " step, let P; be the partition
O=ap <o, <---<a =1L,
and define
ey = max {(f(«j_,) — f(a}))(a) — 25_)"?}.

J

For each j > 1,if (f(zl_))—f(a))(ah —al_)/2 > £5 we split the interval [z;_1, z;]
into two subsets of equal length. We then get a new partition P, ;. We continue
the partitioning until the first k& such that €7 < €3. At each step i, let n; be the
number of intervals in P;, s; the number of interval in P; that have been divided
to obtain P;y1, and ¢ = 1/4/2. Thus, it is clear that £,,; < cg;

silce)™® <Y (flahny) = faf))PP (= af)?

2/3 1/3
< (Z f(l';_l) — f(:L‘;)) (Z 1‘; — l‘§_1> < M2/3L1/3,

J

using Holder inequality. We then deduce that

k k k k
Sonj=k+ Y s <2 gsin; <2 jMPLY ey )
j=1 j=1 j=1

J=1

k
S 2M2/3L1/3€;2/321/3 Z]Q_]/g
7=1
S KOM2/3L1/3€;2/3’

where Ky = 2(1 — 272/3)72. Thus
ne < KoM*PLV3e 1, (2.25)

Now, for f € Fy, we prove that there exists a stepwise density with less than
KoM?3LY31 pieces such that

KL(f h) <€ and /flog(;—i)z(:p)d:p <é (2.26)
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In order to simplify notations, we define

r=ay, lLi=1i—1, gi= f(xz‘fl)l/Q-

We consider the partition constructed above associated with f!/2, which is also
a monotone nonincreasing function that satisfy f1/2(0) < M'? (instead of M).
We denote g the function defined as g(z) = > Iy, , 2,(2)gs

<2 / (PR = k)P

<Z vy —af ) () = P ()
<mpetr < LMBK MY3E,

We then define h = f and and get an equivalent of [ g°.

/92dx = /(92 — f)(x)dx +1

:/( —VHg+ VH(@)ds + 1

=1+ 0(e),

and deduce that ([ g?)1/? =14 O(e). Let H be the Hellinger distance

wan=n (1. 2)
H(f,9%) + H(g*

g2
’W)

1/2
< LYSKoMY%e + (/(g - U‘gﬁ)z(x)dx) <e
9

Since ||f/hllse = |If/d* ([ ¢%) < ([ g?), together with the above bound
on H(f,h) and Lemma 8 from Ghosal and van der Vaart (2007), we obtain the
required result.
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Let P be a probability distribution defined by
ng
P = sz5<xf) pi = (hifl - hz)xf Pny, = hnkﬂfﬁk = hn, L,

thus fp = h and given the previous result, lemma 2.4 is proved. O
Given Lemma 2.4, we now prove Lemma 2.1.

Proof of Lemma 2.1. We first consider the case where 6% < a(f) < 6% for small
0. For ¢, as in Theorem 2.1, define 0,, as

. €n
0, = inf{z,1 — Fy(z) < %}
Note that Fj is cadlag, thus
Fo(0,) > 1—¢€,/(2n) and Vy < 0,1 — Fy(y) > €,/(2n). (2.27)

. Using lemma 2.4 with L = 0,,, we obtain that there exists a distribution P =
ity 0z,p; such that

KL(fon, fr) < €2, and /fonlog(?Pn) <

Note that fp has support [0,0,] and is such that fp(6,) > 0. Now, set m = ny
and consider P’ the mixing distribution associated with {m, 2/, ... 2 p\ ... p }
with >, pi = 1. Define for 1 <7 < m—1 the set U; = [0V (z; — €, /M, x;+ € /M]
and U,, = (0,0, + €,(L — 0,) A e /M]. Construct P’ such that z; € U; and
|P'(Ui) — pil <€em~". We get

vt € [0.6,] fp(t) > .

m

Given that 2/, € U,,, we get 2/, < 0, +¢€,(L—0,)ANe3 /M < 6, for n large enough.
Note also that p!, > p,, —e2m~'. Given the construction of Lemma 2.4, we deduce

Jo(wi1)

> - > .
pm - 1 +O<En> ~ fo('r271>7

for n large enough. Furthermore, given (2.27)

‘v’z<0n, fo —Z / fo dt>—
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thus S
v etmT
V€ [0,6] fp(t) 2 Bt 2
- n

and deduce that [|fo/ fpr|[c S 2+ Lemma 8 from Ghosal and van der Vaart (2007)
gives us that

On

fo
fr

foa)tog (12 ) (21 S (& + HA(fp ) (1 + 105(en /)]
< (e + 1fp = frrlh) (1 + [log(en/n))).
Given the mixture representation (2.1) of fy and fp, we get

(e +1fp — frhh) (1 +1log(n))

en i / .
< (@+ / S =B + 3 By, — L)) (1 + log(n)
2 L / / DPi,
S (6 D015 — et 3o 1oh =i + 30 Tlel = il ) 1+ log(m)])

< €1+ [log(n)]).

0

Generally speaking, denoting Uy = [0, 1] N (U™, U;)¢ and N = {P’,|P'(U;) — pi| <
e2m~'} we obtain that for all P’ € N/

folo)log (42 ) (2)de 5 1+ |og(m)]),

On

0
and similarly

On

fo
fe

for €, small enough. Note also that for all P’ € A/ and n large enough, as before
we get

fol)log (42 ) (e)de < (1 + | log(m)])?,

0

L
for(x)dz <
On n

We now derive a control on k, the number of steps until g, < 2 in the
construction of Lemma 2.4. At step kK — 1, we have g;,_1 > 32 Tt is clear that for
all j, e; <2712, |, thus

MY2LV20-(k=D/2 > o > 62/2

log(MY2LY/?) — (k — 1)1°g2(2) > glog(en).
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Finally, we have

k< 2
~ log(2)
We can then get a lower bound for TI[N] and, given that for ¢, small enough
and n large enough, we have

(log(MY2LV/?) — glog(en)) +1. (2.28)

N C S,(€n,0,),

we can deduce a lower bound for H(Sn(en,ﬁn)>. For the Type 1 prior, we have
similarly to Ghosal et al. (2000)

MN] = Pr(D(Aa(Uy), ..., Aa(Uy,,)) € [pi £ € /n))

- I'(A) /(Pi‘f’ﬁi/nk) AU,
M@ L 4

(pi—€?/nk)NO

Given condition C1, we have

Oz(U,) Z/ a09t1d0,
U;

7

thus
a(U;) > 263 agr™.
for n large enough and e sufficiently small we have as in Lemma 6.1 of Ghosal et al.
(2000)
II(N) Z exp {Ciny log(e)}.

Note that given (2.25), n, < €, which gives the desired result. For the Type 2

~ n

prior, we write

ng
N' = {P/ = Y 10, D) = py| < €, |2 — ] < ei} C Sh(€ns ),

j=1
we then deduce a lower bound for I1[S,,(e,, 0,,)]

"k pite? /nk , Tk
N > Q(K =mny) 1_[71;"‘“0”’c / w;’ dw; H a(U;)
j=1 max(0,p; —€2/ny) j=1
> exp {—enylogmi + 3 log(a(U)) + nilog(c) — milog(my) + > a; log(2€*/mi) }

> exp {Cie 'log(e)} .
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We now consider the case where e~/ < a(f) < e=22/% if 0 is close to 0 and
SUP,eo,9 | fo(®)| < Co. We have that for n large enough and C' > 0, a constant
depending on fy, fo(0) — fo(en) < Ce,. Following Lemma 2.4, we can construct
a piecewise constant approximation of fo on [d, L]. On [0,d], consider the regular
partition with |e, 1| points and the piecewise constant approximation of fy defined
as before (i.e. f; = fo(x;_1)). Again, this approximation can be identified with a
measure P. Given the assumptions on f; we immediately get that K L( fo, fp) < €2.

Consider the same sets A as before, with the same partitions Uy, ..., U,. Using
similar computations as in Lemma 6.1 of Ghosal et al. (2000) we get that

II(N) > exp {Cl(nk + 6, 1) log(e,) + Z log(a(Ui))}

For the U; included in [6, L] we have a(U;) = e-/*. For the U; included in [0, d]
we have a(U;) 2 €, exp{—a/(ie,)}, which gives

Y ally) S —e; " log(n)

We end the proof using similar argument as before. O

2.4.2 Proof of Lemma 2.2
The proof of Lemma 2.2 is straightforward and comes directly from C1 and C2.

Proof. Recall that given (2.1), f(0) = f[o 1 5dP(0). Then

H{/OI%dP(Q)zMn] =11

oMt 1 1 1
/ SAP(6) + / GAP(6) > M, | .
0 2M;

Note that

/2 %dP(@) < Mn/2/ dP(0) < M, /2.

Mt oMt

Thus the set {P, fOQMgl 0=*dP(0) > M, /2} contains F¢ and

HF] < 1

n

/QMR %dP(e) > Mn/2]

oMt 1
~dp
/0 SaP (o)

< 2M'E

Y
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using Markov inequality. Then for a Type 1 prior when n large enough

oMt
mFe < oM / La(0)ds
0

n

oMt —1\ta+1
< 2Mn_1/ etg—lde _ (2Mr;: ) i _ Ce—cn1/3 log(n)2/3.
0 2

For a Type 2 prior, we have that

C < — : . < —1
nr) < ;Q(K k) {ggg% <M, }

< (f} KQK = k)) a ([0, M, 1))

_enl/3 2/3
< Cle—en log(n) ]

O

2.5 Adaptation of Theorem 4 of Rivoirard et al.
(2012)

This Theorem is a slight modification of Theorem 2.9 of Ghosal et al. (2000). The
main deference lies in the handling of the denominator D,, in

n  _f(Xi)
Jacs g0z 0 men i1 7y 41F) N,

e Y e

as in general, it require a lower bound on the prior mass of Kullback Leibler
neighborhood of fy. Here we prove that under condition (2.16) we have for some
constants ¢, C' > 0

P(D, < ce”Cm) = o(1).

Let ,(f) be the log likelihood associated with f and define €2, = {(f, X"), L, (f) —
I.(fo) > —Cine?} for some constant C; > 0. Define also A, = {X",ViX; < 6,}.
We thus have

D, > eCinét / T, dTI(f) = e~CETI(S, (€0, 0,) O Q).
Sn(€n70n)
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Note that given (2.16) we have that there exists p > 0 such that for n large enough
e~ C2nATI(S, (€0, 0,) > p. We now write

PY(D, < e~y < pr (e<0—01>"fin(sn(en, 0,) N Q) < c)

<Py (e(cclcz)neiﬂ(gn(emen) nQ, < %H(Sn<€n79n))

<Py <H(Sn(en, 6,) N Q) > (1 - e<CCIC2>"E%/—C)) T1(S, (€, 9n)))

2 ensn FEOEAN)
- I1(S,(€n, 01))
For all f € S, (€, 0,) we compute

My = Eg(ln(fo) —1n(f)a,)

=n n-t " 0 ﬂ x
a7 oo (7)o
= 0o(0,)" (KLU )+ 10s (T2 )
< anei,
and
P (€2,) = Py (u(f) = la(fo) < —Ciney)
= Py ({ln(f) = lu(fo) < =Cinep} N A,) +o(1)
< B ({ln(fo) — I (f) My, ( — Cy)nep} N A,) +o(1)

(Cy — 03) (”62)

We then compute for C5 and (s some fixed constants

v, = By ({In(fo) = In(f) — mn}HAn)2

— (R(6,))"" <” poeg? (5 ) et oot (55 ) d‘”)z ) mg‘)

O T
= (Fo(en))n_l <n 0 fo 10g2 (J;?(<x))) n . 0(9”)_2n+2mi - mi)

< nF0<9n)n Oen fO,n 10g2 <j];?((:f))> dr + nT_]_miF0<9n)nl(Fo<9n)2n+2 o 1)

< Csne + Cs(ne?)?e,

We finally obtain that for all f € S, (e,,0,), Py(Q) = o(1). We end the proof
using similar arguments as in Ghosal et al. (2000).
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2.6 Discussion

In this chapter, we obtain an upper bound for the concentration rate of the pos-
terior distribution under monotonicity constraints. This is of interest as in this
model, the standard approach based on the seminal paper of Ghosal et al. (2000)
cannot be applied directly. We prove that the concentration rate of the posterior
is (up to a log(n) factor) the minimax estimation rate (n/log(n))~'/? for standard
losses such as L; or Hellinger.

We also prove that the posterior distribution is consistent for the pointwise
loss at any point of the support and for the sup norm loss. Studying asymptotic
properties for these losses is difficult in general as the usual approach are well
suited for losses that are related to the Hellinger metric. Obtaining more refined
results on the asymptotic behaviour of the posterior distribution will require refined
control of the likelihood which in the case of nonparametric mixture models is a
difficult task.
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Chapter 3

Bayesian testing for monotonicity

“Every day is a new day. It is better to be lucky. But I would
rather be exact. Then when luck comes you are ready.”

— Ernest Hemingway, The old man and the sea.

Résumé

Nous proposons un test bayésien non paramétrique de décroissance d’une fonction
dans le modéle de régression gaussien. Dans ce cadre, outre le fait que les deux
hypothéses sont non-paramétriques, I’hypothése nulle est inclue dans I'alternative.
Il s’agit donc d’un cas de test particuliérement difficile. En outre dans ce cas,
I’approche usuelle par le facteur de Bayes n’est pas consistante. Nous proposons
donc une approche alternative reprenant les idées d’approximation d’une hypothése
ponctuelle par un intervalle. Nous prouvons que pour une large famille de lois a
priori, le test proposé est consistant et sépare les hypothéses a la vitesse mini-
maxe. De plus notre procédure est facile a implémenter et a mettre en ceu vre.
Nous étudions ensuite son comportement sur des données simulées et comparons
les résultats avec les méthodes classiques existantes dans la littérature. Pour cha-
cun des cas considérés, nous obtenons des résultats au moins aussi bons que les
méthodes existantes, et les surpassons pour un certain nombre de cas.

o7
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3.1 Introduction

3.1.1 Modelling with monotone constraints

Shape constraints models, and monotone constraints models in particular, are of
growing interest in the nonparametric field. There is a wide literature on the prob-
lem of estimating monotone functions. Groeneboom (1985), Prakasa Rao (1970)
and Robertson et al. (1988) among others study the nonparametric maximum
likelihood estimator of monotone densities, Lo (1984), Brunner and Lo (1989),
and Salomond (2013) study some posterior distribution in a Bayesian approach.
Barlow et al. (1972) and Mukerjee (1988) proposed a shape constraint estimators
of monotonic regression functions. These methods are widely applied in practice.
Bornkamp and Ickstadt (2009) consider monotone function when modeling the re-
sponse to a drug as a function of the dose and Neittaanméki et al. (2008) use a
monotone representation for environmental data.

In this chapter we propose a procedure to test for monotonicity constraints in
the Gaussian regression model

Y; = f(i/n) + o€, ei%./\f((),l),a>0,i:1,...,n, (3.1)

and, with F(K) being the set of all monotone functions uniformly bounded by K,
we test
Hy: fe F(K), versus Hy : f & F(K). (3.2)

Here both the null and the alternative are nonparametric hypotheses. The problem
of testing for monotonicity has already been addressed in the frequentist literature
and a variety of approaches have been considered. Baraud et al. (2005) use pro-
jections of the regression function on the sets of piecewise constant function on a
collection of partition of support of f. Their test rejects monotonicity if there is
at least one partition such that the estimated projection is too far from the set of
monotone functions. Another approach, considered in Hall and Heckman (2000)
and Ghosal et al. (2000) among others, is to test for negativity of the derivative of
the regression function. However this requires some assumptions on the regularity
of the regression function under the null hypothesis that could be avoided. In a
recent paper Akakpo et al. (2014) propose a procedure that detects local departure
from monotonicity, and study very precisely its asymptotic properties.

Here, we propose a Bayesian approach to this problem, which to the author’s
knowledge has only receive little consideration. Scott et al. (2013) consider a
Bayesian test for monotonicity based on constrained spline. Their approach require
smoothness assumptions on the regression function under the alternative, which
we avoid here. We only consider the case where F(K) is the set of monotone
non increasing functions uniformly bounded by K, but a similar approach could
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be used when considering the set of monotone increasing. The most common ap-
proach to testing in a Bayesian setting is the Bayes Factor. Here however, we see
that this method has drawbacks and seems to have poor performances, hence we
propose a modification of the Bayes factor.

3.1.2 The Bayes factor approach

The standard Bayesian answer to the testing problem (3.2) related with the 0 — 1
loss is the Bayes factor

I{feF(K)[Y"}1-T{F(K)}
I{f ¢ F(K) Y} H{FKE)}
This approach to Bayesian testing is easy to understand as posterior probability

of the considered hypotheses have a simple interpretation.
In this chapter we consider a prior on piecewise constant functions.

Boa =

k
f= ZH[(i—l)/k,i/k)wia dll(f) = m(k)m (w1, - . ., wi|k)dAx(wr, . . . wi)dv(k),
i=1

where ) is the Lebesgue measure on R* and v the counting measure on N. These
prior are common in the Bayesian nonparametric literature. Furthermore for the
problem of estimating monotone non increasing densities, related priors have been
proved to lead to the minimax concentration rate over F(K') in Salomond (2013).

In our case, the Bayes factor seems to give poor results in practice. The reason
behind this is that when f has flat parts, it becomes difficult to detect monotonicity
due to estimation uncertainty. For instance when considering the function f = 0
the Bayes Factor does not seem to give a credible answer. As an illustration,
Figure 3.1 gives the histogram constructed from 100 draws of data with f = 0 and
n = 100. Bayes Factor smaller than 0 indicates that the function is not monotone
non increasing. It appears that for these runs, the Bayes Factor is rather small and
that for a non negligible proportion of samples the log Bayes Factor is negative.
Thus the answers given by the Bayes Factor are not satisfying in this case.

3.1.3 An alternative approach

To tackle this issue of constructing a test robust to flat parts, we change the
formulation of our test into

HS - d{f, F(K)} <7 versus H®:d{f F(K)}>r (3.3)
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log(BF)

Figure 3.1: 100 simulation of the log Bayes Factor By, for f =0 and n = 100

where d(f, F(K)) = inf e 7 (k) d(f,g) and d is a metric or a semi-metric and 7 is
a threshold. This ideas is similar to the one proposed in Rousseau (2007) for the
approximation of a point null hypothesis by an interval hypothesis testing. Here
again we consider the 0 — 1 loss with weight 7y, 71 so that the Bayesian decision
is given by

. {0 i 11|/, F(K)} < 7Y, | 2 522 )

1 otherwise

The threshold 7 can be calibrated a priori by a prior knowledge on the tolerance
to approximate monotonicity. In practice such an a priori calibration is not always
feasible. We therefore propose in this chapter an automatic calibration of 7. In
absence of prior information on the threshold, it is natural to have 7 depending on
n, since the more data, the more precise we can afford to be. A least requirement
will be that the test described in (3.3) is asymptotically equivalent to the test
(3.2). Hence a calibration of 7 such that our test is consistent, that is for all p > 0
and d(-,-) a metric or a semi-metric, potentially different from d,

sup E%(0;) = o(1)
fEF(K)

sup  E}(1—47) =o(1).
Ll f, F(K)}>p

(3.5)

To understand the effectiveness of the threshold induced by our approach, we
study the minimum separation rate of our test which is the minimum value p = p,
such that (3.5) is still valid. Small p, implies that the test is able to detect very
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small departure from the null. We thus want our calibrated threshold to induce
the smallest separation rate.

Form a practical point on view, this procedure will be easy to implement as it
will only require sampling under the posterior distribution which is made easy by
our choice of prior. This is a great advantage compared to the frequentist tests
proposed in the literature as they require in general heavy computations.

We thus propose a procedure which although being a Bayesian answer to the
problem (3.3), is also asymptotically an answer to the problem (3.2). Moreover,
our procedure is automatic and easy to implement. The construction of the test is
presented in section 3.2 and its asymptotic properties are discussed in Section 3.2.2.
In Section 3.2.3 we propose a way to calibrate the hyperparameters of the prior
rending the procedure fully automatic. We then run our test on simulated data in
section 3.3 and on real environmental data in section 3.4. A general discussion is
provided in section 3.7.

3.2 Construction of the test

3.2.1 The testing procedure

We first propose a choice for d{ f, F(K)} which measures the distance between
the regression function f and the set F(K) and a way to calibrate the threshold
T in situation where prior information is not available. This is done such that by
answering the problem (3.3) we give a good answer to the problem (3.2). We then
propose a specific family of prior that will speed up the computations together
with a choice for the hyperparameters based on heuristics.

As presented in section 3.1.1, monotone non increasing functions are well ap-
proximated by stepwise constant functions. Let Gy be the set of piecewise constant
functions with k pieces on the partition {[0,1/k),...,[(k — 1)/k, 1]} so that each
function in G, will be written

K
Fur() =Y willig-nymim (), w= (@i, .., wy) € RY, (3.6)
i=1

We assume that the data Y™ = (Y7,...,Y},) is generated by model (3.1), where the
residual variance o2 is unknown. We then build a prior on (f, o) taking a prior on
k and building a prior on each submodels G;. We define

M(w, o, k) = (k)(o|k)I(w|o, k).

First with this choice of prior we have generally speaking 7(F(K)) > 0. Further-
more, if the true regression function fy is in F(K') then the piecewise constant
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function in Gy, of the form (3.6) which minimizes the Kullback Leibler divergence
with fo will also be in F(K) for all k. We consider the following discrepancy
measure d(-,-) in (3.3) between f,, € Gy, and F(K),

d{for, F(K)} = H(w, k) = kggél(wj — w;). (3.7)
From (3.7) it appears that f, is in F(K) if and only if d{f,x, F(K)} = 0.
Here the discrepancy d corresponds to the sup norm between f, ; and the set of
monotone non increasing functions. The idea of the calibration is the following.
In the model Gy, the a posteriori uncertainty for estimating w = (wy,...,wy) is of
order \/k/n. Hence any monotone non increasing function f, ; such that for all
J > 1, w; > w;—O0(y/k/n) might be detected as possibly monotone non increasing.
We thus choose a threshold 77 for each model Gy. We then compare H (w, k) with
some positive threshold depending on n and k and then calibrate 7% such that our
procedure is consistent. To evaluate the effectiveness of the threshold, we consider
Holderian alternatives, following what is done in the frequentist literature,

feH(a,L)={f[0,1] = R,Va,y € [0,17|f(y) — f(z)| < Lly — 2|},

for some constant L > 0 and a regularity parameter a € (0,1]. We study the

separation rate of our procedure and compare it with the minimax separation rate
o/ (20+1)

3.2.2 Theoretical results

The following Theorem provides a way to calibrate 7%. It also gives an upper

bound for the minimal separation rate with respect to the distance do(-, -) defined
as

doo(f,9) = sup {[f(z) — g(x)[}

z€[0,1]
Consider prior of the form
dIl, or Ay dIl,
- -~ — Ty —7— = Tk,
v, AN v

where )\ is the Lebesgue measure on R*, which satisfies the following conditions :

C1 the density 7, is continuous and 7, (o) > 0 for all o € (0, 00),
C2 the density ¢ is continuous and puts mass on all R. Furthermore, g is such
that there exists a constant c, such that for all K > 0, for all z > 0, for all
[ € N, for all sequence u that goes to 0,
JIlzu < |z — 20| < (14 1)zu] g(z)dx ey

sup Su T,
lzo|<K  SUP|zg|<K J Tz — x| < 2u] g(x)da
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C3 7, is such that there exists positive constants C; and C, such that
e—Cdk‘L(k‘) S ﬂ_k(k,) S e—CukL(k) (38)
where L(k) is either log(k) or 1.

The condition C1 and C2 are mild and are satisfied for a large variety of distri-
butions. In section 3.2.3 we will take g to be a Gaussian density and 7, to be a
inverse gamma. Simple algebra shows that for this choice of prior, both conditions
are satisfied. C3 is a usual condition when considering mixture models with ran-
dom number of components, see e.g. Rousseau (2010) and is satisfied by Poisson
or Geometric distribution for instance. We then have the following control on our
test:

Theorem 3.1. Under the assumptions C1 to C38, for a fized constant My > 0,
setting T = 7F = My{klog(n)n='}/2 and 67 the testing procedure defined in (3.4),
for all K > 0 then there exists some M > 0 such that for all o € (0, 1]
sup E7(07) = o(1)
fEF(K)

sup E}(1-47) =o(1)
fdeO{f7‘F(K)}>p7f€H(a7L)

(3.9)

for all p > p,(a) = M{n/log(n)}~*/Z*+Yy, where v, = 1 when L(k) = log(k)
and v, = {log(n)}'/? when L(k) = 1.

Neither the prior nor the hyperparameters depends on the regularity « of the
regression function under the alternative. Moreover for all a € (0, 1], the sepa-
ration rate p,(«) is the minimax separation rate up to a log(n) term. Thus our
test is almost minimax adaptive. The log(n) term seems to follow from our def-
inition of the consistency where we do not fix a level for the Type I or Type II
error contrariwise to the frequentist procedures. The conditions on the prior are
quite loose, and are satisfied in a wide variety of cases. The constant M, does not
influence the asymptotic behaviour of our test but has a great influence in practice
for finite n. A way of choosing M, is given in section 3.2.3.

The proof of Theorem 4.1 is given in Section 3.5, we sketch here the main
ideas. We approximate the true regression function fy in each submodel G, by
fwo . that minimizes the Kullback-Leibler divergence with f,. We have a close

form expression for w® = (w?, ..., w?) given by

L=nit S foli/n), m= Card {j,j/n € [~ D/ki/k)} (3.10)
7,3 /ne((i—1)/k,i/k)

thus f,ox belongs to F for all k when f, € F. To prove the first part of (3.9), we
bound H(w, k) < 2max |w; — w?| if fo € F so that the threshold 7 needs to be
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as large as the posterior concentration rate of w to w® in the misspecified model
Gx. Then to prove the second part of (3.9) when p = p,(«), we bound form below
H(w, k) by H(w® k) —2max |w; —w?| which implies a constraint on the separation
rate of the test to ensure that uniformly over d,(fo, F) > pn(a) and f € H(a, L)
we have H(w, k) > 7.

3.2.3 A choice for the prior in the non informative case

Conditions on the prior in Theorem 4.1 are satisfied for a wide variety of distribu-
tions. However, when no further information is available, some specific choices can
ease the computations and lead to good results in practice. We present in this sec-
tion such a specific choice for the prior and a way to calibrate the hyperparameters.
We also fix 790 = 71 = 1/2 in the definition of J7.

A practical default choice is the usual conjugate prior, given k, i.e. a Gaussian
prior on w with variance proportional to ¢? and an Inverse Gamma prior on o2.
This will considerably accelerate the computations as sampling under the posterior
is then straightforward. Condition (3.8) on 7 is satisfied by the two classical
distributions on the number of parameters in a mixture model, namely the Poisson
distribution and the Geometric distribution. It seems that choosing a Geometric
distribution is more appropriate as it is less spiked. We thus choose

k ~ Geom(\)
=< %k~ IG(a,b) (3.11)
wilk, o % N (m, 0* /)

Standard algebra leads to a close form for the posterior distribution up to a nor-
malizing constant. Recall that n; = Card {i,i/n € [(j — 1)/k, j/k)}, we denote

k

~ 1 — n; _
b 1S T

n; +
i=1 \ ii/nel; TR

where Y; is the empirical mean of the Y; on the set {l,1/n € [( — 1)/n,j/n)}, we

have
k

me(K|Y™) o w (k)b T2 k2 T [ (ny 4 )72

j=1

We can thus compute the posterior distribution of k£ up to a constant. To sample
from 7, we use a random walk Hasting-Metropolis algorithm, see Robert and Casella
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(2004). We then compute the posterior distribution of w and o given k
ok, Y™ ~ IG(a +n/2,bg)
2

wilk, 0%, Y™ JN(m”+nJ i 9 )
le—i‘,u le‘i‘,u

Given k, sampling from the posterior is thus straightforward. We now propose
a way to calibrate the hyperparameters a, b, 1, m and M.

We first propose a calibration for a,b,m,u and A. We choose m to be the
empirical mean of the Y;. We then chose a and b such that the prior on ¢ has a
first order moment and E,(0?) is of the same order as the empirical variance of
the data Y denoted &;. We choose a = 6, + 1 and b = 5. We want the prior on
w to be flat enough to recover large variations from the mean m. This is done by
choosing the hyperparameter p small. We also want the prior on k£ to be flat to
allow large values of k even for small samples sizes. It seems that p and A do not
have a great influence on the results when performing our test on simulated data.
We thus fix = 107! and A = 107%.

Given these choices for a,b,m,\ and p, we calibrate My the constant in 7%
The choice of My is critical for small sample sizes. Given that flats parts of the
functions are the most difficult to detect, especially when £ is large, we let M,
depend on k and calibrate it on simulated data from the completely flat function
f =0 in order to get an upper bound for the type I error for finite sample sizes.

We denote Y" data generated from model (3.1) with f = 0 and noise level o.
For all & we denote Z(Y{", k) the posterior median of H(w, k) given k i.e.

Z(Y" k) =inf {2, II{H (w, k) > 2|Yy", k} > 1/2}.

We then compute for each k, M;(k) the 1 —t quantile of Z(Y™, k). It is natural to
assume that the constant M, should be proportional to the noise level o. Hence a

calibration for M,
1/2
My = My(k)o—' 4 —2 .
0= Mik)o {klogm)}

For each k sampled from the posterior, we use simple Monte-Carlo approxima-
tion for M;(k), based on 10 samples under the posterior to approximate Z (Y, k)
and 10? replications of Y7 to approximate M, (k).

3.3 Simulated Examples

In this section we run our testing procedure on simulated data to study the be-
haviour of our test for finite sample sizes. We choose the prior distribution and



66

CHAPTER 3. BAYESIAN TESTING FOR MONOTONICITY

calibrate the hyperparameters as exposed in section 3.2.3. We consider the follow-
ing nine functions adapted from Baraud et al. (2003) and plot in Figure 3.2.

T
f2$

() =
(z)
f3(z)
fa(z) =
fs(z) =
folz) =
fa(z) =
() =
(z)

T

fs(x

T

h

=0.15x
026—50x 0.5)2
—05003(67?3:)

(1+x)+045e

— 0.5z

=0

0(z—0.5)2

—250(z—0.25)2

(3.12)

The functions f; to fg are clearly not in F. The function f; has a small bump
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Figure 3.2: Regression functions used in the simulated example.

around x = 0.5 which can be seen as a local departure from monotonicity. This
function is thus expected to be difficult to detect for small datasets given our
parametrization. The function fy is a completely flat function.
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Table 3.1: Percentage of rejection for the simulated examples

f 52 Barraud et  Akakpo et Bayes Test, n :

0 al. n =100 al. n=100 | 100 250 500 1000 2500
fi ] 0.01 99 99 97 100 100 100 100
fo ] 0.01 99 100 95 100 100 100 100
f3 ] 0.01 99 98 100 100 100 100 100

H.| f, | 0.01 100 99 100 100 100 100 100
f510.004 99 99 100 100 100 100 100
fe | 0.006 98 99 100 100 100 100 100
f7 1 0.01 76 68 97 100 100 100 100
fs | 0.01 - - 2 0 0 0 0

H

o fo | 0.01 - - 2 3 2 2 0
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For several values of n, we generate N = 500 replication of the data Y" =
{yi;;i = 1,...,n} from model (3.1). For each replication we draw K = 5.103
iterations from the posterior distribution using a Hasting-Metropolis sampler with
a compound Geometric proposal. More precisely, if k;_; the state of our Markov
chain at the step 7, we propose

ki = ki1 +pi

where p; is such that

|pi| ~ Geom(0.3) 4 1
1
P(pi<0)zp(pi>0):§

Given k we draw directly o2 and w from the marginal posteriors. We then approx-
imate 7 { H(w, k) > 75[Y"} by the standard Monte Carlo estimate

K
i {H(w, k) > Hy") = %ZH {H@, k) >t}
i=1

and reject the null if # { H(w, k) > 7¥[Y™} > 1/2. The results are given in table 3.1.

For all the considered functions, the computational time is reasonable even for
large values of n. For instance, for f;, we require less than 45 seconds to perform the
test for n = 2500 using a simple Python script available on the author’s webpage.
For the models with regression function f; to f;, we choose the same residuals
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variance as in Baraud et al. (2003), for the last two functions, we choose a variance
of 0.01 which is of the same order. We observe that for the regression functions f;
to f7, the test perform well and reject monotonicity for almost all tested samples
even when n is small. The results obtained for n = 100 are comparable with those
obtained in Akakpo et al. (2014) and Baraud et al. (2003). For f7, our test outer
perform the frequentist procedures. Although the Bayesian approach does not fix
a level for the test, it appears that with our hyperparameter calibration, the Type
1 error is indeed less or equal to the level of 5% fixed for the frequentist tests.

3.4 Application to Global Warming data

We consider the Global Warming dataset provided by Jones et al. (2011) plotted
in Figure 3.4. It contains the annual temperatures anomalies from 1850 to 2010,
expressed in degrees Celcius. Temperature anomaly is the departure from a long-
term average, here the 1961-1990 mean. The data are gathered from both land
and sea meteorological stations and corrected for non climatic error. In the litera-
ture, this dataset has been used to illustrate some isotonic regression techniques in
Wu et al. (2001) and Zhao and Woodroofe (2012) where they use frequentist esti-
mation procedures under monotonicity constraint. Alvarez and Dey (2009) show,
using a Bayesian monotonic change point method, that there is a positive trend,
and that this trend tend to increase of about .3°C' in the global annual temperature
between 1958 and 2000. Alvarez and Yohai (2012) show that the phenomenon of
global warming is due to a steady increase trend phenomenon using a isotonic es-
timation methods. In our model, that would mean that the regression function f
should be positive increasing and convexe. In all these papers the data is supposed
to be a sequence of independent and identically distributes random variables. This
assumption is questionable (see Fomby and Vogelsang (2002)), but considering an-
nual temperature anomalies should reduce the serial correlation. Similarly to these
authors, we make the same assumption of independence. Our aim is to test if the
hypothesis of increasing temperature anomaly is realistic, given the amount of in-
formation, using the method described in section 3.1.1. In particular, we choose
the prior and the hyperparameters based on the rules described in section 3.2.

We perform our test on this dataset (more precisely on minus the temperature
anomalies to test for monotone increasing trend), choosing the hyperparameters
as in section 3.2.3. We run the MCMC sampler described above for K = 10° in
order to compute Monte Carlo estimate of 07. We obtained

#(H(w, k) > 7FY™) = 0.98

and thus the hypothesis of monotony is ruled out by our procedure. We conclude
that applying a shape constraint regression techniques on the trend of this dataset
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can deteriorate the estimation results.
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Figure 3.3: Plot of the Global Warming data

3.5 Proof of Theorem 3.1

Throughout the proof, we will denote by C' generic constants. Given that we
consider K to be fixed, we will write F instead of F(K) to lighten notations. In
order to prove Theorem 4.1 we need some concentration results of the posterior
around the true regression function. The following Lemma provides a posterior
concentration rate when fy is either in F or in H(«, L). The proof is given in
Section 3.6 and is derived from Ghosal and van der Vaart (2007). Some adaptive
results are known for the Gaussian regression under some regularity assumptions,
the monotone case has not been studied and thus this Lemma has an interest in
its own.

Let d,(-,-) be defined as
dn(f.9)" =n"" Z {f(i/n) = g(i/n)}*

and denote P the distribution of the Y; when f = f; in (3.1).

Lemma 3.1. Let fy be either in F or in H(a, L), and let w be defined as in
Theorem 4.1. Thus

EP(? [H{dn(fw,k - f0)2 + (0- — 0-0)2 > €i|Yn}] 0
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where €, = €,(F) = Cx{n/log(n)}"V* if fo € F, Cx depending only on K and I
and €, = e,(a) = Cp{n/log(n)}=/C+V) i f, € H(a, L), Cp depending only on
L and II.

The proof of this lemma is postponed to Section 3.6. Given this result, we get
the following Lemma that enable us to derive consistency and an upper bound on
the separation rate.

Lemma 3.2. Let M be a positive constant and p,(a) = M{n/log(n)}~/Ze+1),
Let 11 be as in Theorem 4.1 and wqy be the minimizer of the Kulback-Leibler diver-
gence KL(f,, fo). Then there exists a constant A > 0 such that

pr {H (max|wi — W9 > A§§|Y"> <N } 1 (3.13)
E Yo+ M

where &8 = [{klog(n)}/n]"? for all fired positive ~o and ;.

The proof of this lemma is postponed to Section 3.6. Given the preceding
results, we derive (3.9).
We first prove consistency under Hy. Let fy € F then

H (w, k) < 2max|w; — )
and thus
71

Yo + M

as soon as 7% > 2A&k, which gives the consistency under H, given Lemma 3.2.
We now prove consistency under Hy. Let fo & F and fy € H(a, L) we have

— 1

Py |T{H (w, k) > 7 [Yn} <

i

H(w, k) > H(wW’ k) — 2max |w; — w} | (3.14)

Assume that p,(a) < doo(fo,F), we derive a lower bound for H(w° k). Let
g* be the monotone non increasing piecewise constant function on the partition
{[O,I/k‘),...,[({{} —1)/k,1)}, with for 1 < i < k, g; = minj<;w). Given that
doo(fwo,kaf) = lnngJ: doo(fwo,kag) we get

Aoo(fo s F) < doo(fuo g, 97) < H(wo, k)
And therefore, given that doo(fo, F) < doo(fuo k, F) + deo(fuo i, fo)
() oo )= Oy

II{H(w,k)<7hY,} <II {max|w,~ — Wl > P 1

The following Lemma states that for K, a fixed positive constant, the posterior
probability of k being greater that Konp,(a)?/log(n) is less than a opn(1).
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Lemma 3.3. Let k, = ne2/log(n) if L(k) = log(k) and k, = ne> if L(k) = 1
where €, is either €,(F) if fo € F or e, (a) if fo € H(a, L). For Cy a positive
constant that my depend on K or L, let IC,, = {k < Cik,}. If 11 is define as in
Theorem 4.1 then

The proof is postponed to Section 3.6
For k € K, and M large enough we have p,(a)/4 > 7F. Denoting B, =
{dn(fur: fo)? + |oo — o> < €1}, Lemma 3.1 gives

(B} |Yy) = opp(1).

On the set B, N K,, we have for M, the constant in p(«) large enough p,(«)/4 >
doo(fwo,ka fO)

T {H(w, k) < 7Y} <1 [{max o — w?] = pu(a)/8} 0 {Ka 0 B YY" | + 05y (1),

Given (3.13), we get that for all fy such that d,(fo, F) > pn(a)

Yo
Py TH{H(w, k) < 7°|v,} < ]—>1
e e

which ends the proof.

3.6 Proof of Lemmas 3.1, 3.2 and 3.3

3.6.1 Proof of Lemma 3.1

In this section we prove that the posterior concentrate around fy, oy at the rate
(n/log(n))~* if f, € F and (n/log(n))~*/@o*tV if fy € H(a, L). To do so we
follow the approach of Ghosal and van der Vaart (2007). Throughout the proof,
C will denote a generic constant.

Let KL(f,g) = [ flog(f/g) be the Kullback-Leibler divergence between the
two probability densities f and g. We define V/(f,g) = [(log(f/g9) — KL(f,9))*f.
We denote p;(w, o, k) the probability density with respect to the Lebesgue measure
of Y; = f,r+e€ when e; ~ N(0,0?) and p; o the true density of Y;, i.e. when f = fo.
We only consider the case where f € F, a similar proof holds when f € H(«, L).
We define

B(€) = {ZKL{pi(w,a, kY, pio) < né?, ZV{pi(w,a, k),pio} < nez}

i=1 i=1
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Here p(w, 0, k) and p, are Gaussian distributions, we can easily compute

KL{ps(w, 0, k), po} = ~log (0_) 1 (1 - o_) M fenlw) = folw)¥?

1
5 op 2 o? 2 o2
1 2

a\" . [
Vino 0o} =5 (12 ) + |2 (funte) - fofe)]
o o
We have B, (€,) D {2 (fur, fo) < Ce2,lo? — ai|> < Ce2}.
For fy € F, denoting w) = n" > wer, Jo(@:) and z; = inf(1;), T; = sup(l;) we

have

A2 (furts fo) = d2(fo, fuo i) + do(fuoks fu )

and

k

(anwak izl ;{fo 9Uz wa,k}Q
1< |
< n ;nj{fo@}) fo(T5)}
C & ERSIIALE
< ISt~ | < Dol

Denoting k, = C[||fol|>.{n/log(n)}'/?] we deduce that B,(e,) D {k = k,, ||w
w2 < €2, |0% —og| < €2} where || - || is the standard Euclidean norm in R* i.e.

fora—(al,.. a) € R”
k
lallg =K7Y a?.
i=1

We deduce that for a fixed positive constant Cy that depends on || fo|oo ,

w{Baa)} 2 (C inf lolhalen ) molod)inth = k) 2 e (3.10)

To end the proof of Lemma 3.1, the standard approach of Ghosal and van der Vaart
(2007) requires the existence of an exponentially consistent sequence of tests. Their
Theorem 4 suited for independent observations relies on the fact that the set
{do(fuk, fo)* + (0 — 00)* > €2} can be covered with Hellinger balls. Because of the
unknown variance, this cannot be done here, we thus use an alternative approach
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and to construct tests, and then apply Theorem 3 from Ghosal and van der Vaart
(2007).

Consider the sets .7-";-“ = {furkr 05 (€)% < dn(fure, fo)? + (0 —00)* < ((j + 1)en)2}.
There exists a constant C' > 0 such that

FF C {||lw — [k < Cjien, |0 — 00| < Cen} (3.17)

To apply Theorem 3 of Ghosal and van der Vaart (2007), we construct tests fol-
lowing Choi and Schervish (2007).

For |0—0o| < 0/2. Simple algebra leads to an equivalence between (d,(f, f)? + (o — o))"/
and the Hellinger metric so that we can apply Lemma 2 of Ghosal and van der Vaart
(2007). Equation (3.17) implies that for all £ > 0 there exist a e, net of F} con-
taining less than (Cj/€)*. We then have a test W, such that

Eq(Uy) < e=Ci*ne, sup Efo(1—-¥;) < e=Ci*ne,
ffﬁ{\a—ag\ﬁag/Z}

For o > 30(/2 we consider the test Wy defined as
—~ (Y, - fo(fb’i))2
Uy =1 —= ] >nec g,
for a suitably choosen constant ¢; > 0. Chernoff bound gives
Ep(U,) < e ¢m.

If 0 > 300/2 and (f,0) € F}, thus j > jo/e, for some jo > 0. If Y; = f(x;) + oe
where &; ~ N(0,1) then 37, ((Y; — fo(z:))/00)? follow a non central x? distri-
bution with non centrality parameter > (f(z;) — fo(2;))?/0? > 0. Thus setting

W~ X2
02~ (Y — folzy) 2 4 o?
?Z{f} <nc| <pr (ngcln;0).

0 =1

Efo(1—=Vy) = Py,

Chernoff bound gives
Efo(1—Wy) < e @

Recall that we can construct a Ee-net for FJ with less that (C'j/€)* points. For
0 < 0o/2 we consider the test W% associated to f* € .7-";-“ a point in the e, net and
some suitably chosen 0 < co < 1 defined as

i=1
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As before, given that under Py, o, Sor [{Y; — fi(x;)}/o0]” follows a non cen-
tral x2 distribution

Ef (VL) = P,
b =m0

Zn: {w}z < ch] < pr(W < can).

Given that the moment generating function of a non central x? distribution
with non centrality parameter A at point s is known to be (1—2s)"2 exp{sA?/(1—
2s)}, we have for all f,0 € Ff N {0 < 0¢/2} such that d,(f", f) < &e,

0_2 n Y;‘—ft(l‘i)}2 .
032{70 > 2]

n 1 28 0'2
< exp {5 {— log(1 — 2s) + ;mdn(ﬁ ft)2 - 25020—3}} .

For s small enough we have

2 2
1 _SQSdn(fv ft)2 < 48dn(f7 ft)2 < 4S£2Ei < 2802%,

Which in turns gives for ¢, > 0 a fixed constant
Efo(l—W5) < e ™2,
Taking W3 = max; U4 we get a test such that

Eg(V3) = o(1); sup Efo(l—Ws) < o Ci*nél
Fin{o<oo/2}

We conclude the proof by taking ¢,, = max{W;, Uy, U3} as an exponentially con-
sistent sequence of tests and applying Theorem 3 of Ghosal and van der Vaart
(2007).

3.6.2 Proof of lemma 3.2

Let fo either belong to F or to H(«, L) and €, represent either €, (F) if fy € F or
en() if fo € H(a,L). We denote A, = {(w,0,k),dn(fur, f0)*> + |0 — 00]* < 2}
with €, as in Lemma 3.1. Thus 7(A;[Y,,) = opr(1). We now derive an upper
bound for m(max; [w; — w?| > A&V, A,). To do so, we look at the following
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decomposition for all k,, € N,

7T(ma}d"‘}j - w?| > A§§|Ym14n) <

e

S (kY An) Z/ (=] > CE (Yo, A, ks 0)dn(0| Yo, A k)4 (k > koY),
(3.18)
Given Lemma 3.3 we have, choosing k, = Cine? a constant C; as in Lemma 3.3,
m(k > k,|Y,) = opn(1)

We now find an upper bound uniformly in o over A,, for 7 (|w;—w| > AEE|Y,, Ay, k, 0).
We first denote [;(w?, 00) = {loo&) < |w; —w)| < (I+1)0eés} We have for lh<A

(jw; — wf| > AGH Yy, An ko) <> TH{I(wW), 00) [V, A, ko).
1>y
We then write
o (w)— ‘7710 wO
le(wg,ao) eln @)=t (g (w)
fel%(w)_lgo(wo)dﬂ(w) ’

H{[l(w?, UO)|Yn7 Anu k? U} =

where [7(w) = —nlog(c?)/2 — 37 {Y; — fux(x;)}? /o Standard algebra leads
to

k .
Z +Z€Z 2 +A(eaf0, k),

7j=1 i€l

l(w) = 72w

l\DI»—t

where A(e, o, fo, k) does not depend on w and ¢; £ N(0,1) under pg. We thus
deduce

H{[l(w;‘)vao)‘YmAna kaa} =
(wj— w
D S L ) S N
(w;—w))? k
Jesp {-tn o 15, () By —w) b dlw)  Phal)

We now prove that on a set £ such that PJ'(£) = 1 + o(1) we have for (¢;) € &,
We have an upper bound for N} /D ; uniformly in 0 € A, for all k < k.
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Let & = {ﬂkgkn nE_, {’inelj €| < cen/1 log(n)}} for some constant absolute

constant ¢, large enough. We compute

kn k
pr(€°) < QZZpr Z € > cey/nylog(n) | < 2:;2% = o(1).

k=2 j=1 i€l

For (¢;) € € and uniformly in o over A, we compute

n.:

g
D, () :/eXp — L (wi = W)’ + S(wi—w)) Y € pdm(w;)

20 o2
1'2'6[]'

1
> / exp {4 —nj(w; — w?)z — QCeg—gnj|wj — w? og(n) dm(wj)
|wj—w]|<ooces; 7 "

> =328y €0/ 2|, — Y] < opeeh)

Similarly for (¢;) € £ and uniformly in ¢ over A, we have for [ large enough

1 lw;j — ¥ o log(n)
k 0 J J 0
N, (o) < /Il(w;?,ao) exp {—énj|wj — wj| ( e L " dr(w)

< e PR € NI L (w0, 00)}.

We thus have for (¢;); € £, € > 0 and [ large enough, together with condition
C2

k
Nasal@) o ognyebra/z—sen I, 00)}
Dy (o) ~ I(Jw; — Wil < oocell)

< ¢ M(E P
which in turns gives an upper bound for II(|w; — w?| > AEF|Y,,, A, k, 0)

2
6710;702"1(551)2_

I(|w; — w)| > ALYy, An ko) <

DO | —

We thus deduce for C' an absolute constant

0 k —1pC'log(n
T(imax fw; — wjl = AG[Ya) < kne™ 0 1 opy (1),

which gives choosing A large enough

Py Iy oy~ 81> Agk) < T
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3.6.3 Proof of Lemma 3.3

Let be either k, = ne?/log(n) if L(k) = log(k) or k, = ne? if L(k) = 1. Similarly
to before, we have 7 (B,(e,)) > e "%. We define N, and D,, such that

71_(’CCD/) o ZkEIC% ﬂ-(k> IW(Y")dH(w,J) B &
nl{n Zkﬁ(k)fz%(yn)dn(w,a) D,

Given Lemma 10 of Ghosal and van der Vaart (2007), we have
Pr <Dn < e*C"€%> = o(1)
Note also that

k
Ef (Nn) = Z 7 (k) // M(Y")po(Yn)dH(w, o)dY"™ = 71k < k) < ce”CuknLikn)
keKe R Po

Thus for C' small enough we have

N,
B3 11 (k € K5I = B} | 371, -t | + o0

< eCneﬁcefCuknL(kn) + 0(1)
< o(1)

3.7 Discussion

In this chapter we propose a Bayesian approach to the problem of testing quali-
tative hypotheses in a nonparametric framework. More precisely we address the
problem of testing monotonicity of a regression function. This problem arise nat-
urally as shape constraint models, and monotonicity in particular, are fairly used
in practice. Our approach is particularly interesting as it focuses on a problem
where the Bayes Factor seems to give poor results and thus an alternative ap-
proach should be considered. The testing procedure proposed in this chapter is
a modified version of the Bayes Factor that only reject Hy when the data gives
strong evidence that the function is not monotone. When possible, one can choose
a threshold based on prior information on the tolerance level to non monotony.
However, this could be difficult in practice, we thus present a way to calibrate our
test such that it behave well asymptotically. Interestingly this calibration leads to
the optimal separation rate (up to a log(n) term) and thus the tolerance induced
by our approach, and the fact that we test (3.3), H{ versus H{, instead of (3.2),
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H, versus H,, is of the same order as the classical tests available in the literature.
It has the advantage of being very simple to implement even in presence of large
datasets. Although we have focused on monotonicity constraints, other types of
shape constraints such as convexity or unimodality can be dealt with using this
approach. For instance we can test for convexity using piecewise linear functions
as submodels G, and test monotonicity of the slope.
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Chapter 4

Ill-posed inverse problems

“I may not be as stong as I think, but I know many tricks
and I have resolution.”
— Ernest Hemingway, The old man and the sea.

Co-écrit avec Bartek Knapik
Résumé

Nous proposons une méthode générale pour I’é¢tude des problémes inverses linéaires
mal-posés dans un cadre bayésien. S’il existe de nombreux résultats sur les méth-
odes de régularisation et la vitesse de convergence d’estimateurs classiques, pour
I’'estimation de fonctions dans un probléme inverse mal-posé, les vitesses de con-
centration d’a posteriori dans le cadre bayésien n’a été que trés peu étudié dans
ce cadre. De plus ces quelques rares résultats existant ne considérent que des
familles trés limitées de lois a priori, en général reposant sur la décomposition en
valeurs singuliéres de 'opérateur considéré. Dans ce chapitre nous proposons des
conditions générales sur la loi a priori sous lesquelles 1’a posteriori se concentre a
une certaine vitesse. Notre approche nous permet de trouver les vitesses de con-
centration de I’a posteriori pour de nombreux modéles et de larges classes de loi a
priori. Cette approche est de plus particuliérement intéressante car elle permet de
mieux comprendre le fonctionnement de la loi a posteriori et notamment 'impact
de I'opérateur sur 'inférence.

81
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4.1 Introduction

Statistical approaches to inverse problems have been initiated in the 1960’s and
since then many estimation methods have been developed. Inverse problems arise
naturally when one only has indirect observations of the object of interest. Math-
ematically speaking this phenomenon is easily modelled by the introduction of an
operator K such that the observation at hand comes from the model

where f is the object of interest and is assumed to belong to a parameter space F.
In many applications the operator K is assumed to be injective. However, in the
most interesting cases its inverse is not continuous, thus the parameter of interest
f cannot be reconstructed by a simple inversion of the operator. Such problems
are said to be ill-posed. Several methods dealing with the discontinuity of the
inverse operator have been proposed in the literature. The most famous one is to
conduct the inference while imposing some regularity constraints on the parameter
of interest f. These so-called regularisation methods have been widely studied in
the literature both from a theoretical and applied perspective (see Engl et al.,
1996, for a review).

Bayesian approach to inverse problems is therefore particularly interesting, as
it is well known that putting a prior distribution on the parameter yields a natural
regularisation. This property of the Bayesian approach is particularly interesting
for model choice, but it has proved also useful in many estimation procedures, as
shown in Rousseau and Mengersen (2011) in the case of overfitted mixtures models
or to nonparametric models where regularizatino is necessary as in Castillo (2013)
or Salomond (2013) in the semiparametric problem of estimating a monotone den-
sity at the boundaries of its support. Here we study the asymptotic behaviour
of the posterior distribution under the frequentist assumptions that the data Y™
are generated from model (4.1) for some true parameter f;. In particular we are
interested in the rate at which the posterior concentrate around fy. Asymptotic
properties of the posterior distribution have received a growing interest in the liter-
ature. Knapik et al. (2011), Agapiou et al. (2013), and Florens and Simoni (2012)
were the first to study posterior concentration rates under conjugate prior in so-
called mildly ill-posed setting. These were followed by two papers by Knapik et al.
(2013) and Agapiou et al. (2014), studying Bayesian approach to recovery of the
initial condition for heat equation and related inverse problems. The paper by Ray
(2013) is the first study of the posterior concentration rates in the non-conjugate
setting. Considering non-conjugate prior is particularly interesting as it allows
some additional flexibility of the model. However, the approach presented in Ray
(2013) is only valid for priors that are closely linked to the singular value decom-
position (SVD) of the operator. Moreover, in Ray (2013) several rate adaptive
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priors were considered. It should be noted, however, that some of the bounds on
contraction rates obtained in that paper are not optimal. Similar adaptive results,
in the conjugate mildly ill-posed setting, using empirical and hierarchical Bayes
approach were obtained in Knapik et al. (2012).

There is a rich literature on the problem of deriving posterior concentration rate
in the direct problem setting. Since the seminal papers of Ghosal et al. (2000) and
Shen and Wasserman (2001), general conditions on the prior distribution for which
the posterior concentrates at a certain rate have been derived in various cases. In
particular Ghosal and van der Vaart (2007) gives a series of conditions for non
independent and identically distributed data. However, such results cannot be
applied directly to ill-posed inverse problems and to the authors best knowledge,
no equivalent of these results exists in the inverse problem literature. In this
work we try to fill this gap. We first assume the existence of the contraction
result for the so-called direct problem (that is recovery of K f). Next, we impose
additional sufficient conditions on the prior such that the posterior distribution for
the parameter of interest f concentrates at a given rate.

Consider an abstract setting in which the parameter space F is an arbitrary
metrizable topological vector space and let K be an injective mapping K : F >
f— Kf e KF. Even if the problem is ill-posed there exist subsets S, of KF
over which the inverse of the operator can be controlled. For suitably well chosen
priors, these sets will capture most of the posterior mass, and we can thus easily
derive posterior concentration rate for f from posterior concentration rate for K f
by a simple inversion of the operator. More precisely for d and dx some metrics or
semi-metrics on F and K F respectively and fy a point in F, we want to derive the
smallest ball for the metric d on F NS, that contains K~ {f, dx (K f, K fo) < €}
the image of a ball of K(FNS,,) for the metric dg by K—!. This shows in particular
that the choice of S, is crucial for our approach.

The rest of the paper is organised as follows: we present the main result in
Section 4.2 and a general construction for the sets S, in Section 4.3. We then
apply our result for different examples in the white noise and regression setting in
Section 4.4.

4.2 General Theorem

Assume that the observations Y™ come from model (4.1) and that Pg, admit
densities py ; relative to a o-finite measure p". To avoid complicated notations,
we drop the superscript n in the rest of the paper. Let F and KJF be metric
spaces, and let d and dx denote metrics on both spaces, respectively.

In this section we present the main result of this paper which gives an upper
bound on the posterior concentration rate under some general conditions on the
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prior. We will call the estimation of K f given the observations Y the direct prob-
lem, and the estimation f given Y the inverse problem. The main idea is to control
the change of norms between dx and d. If the posterior distribution concentrates
around K f; for the metric dx at a certain rate in the direct problem, applying the
change of norms will give us an upper bound on the posterior concentration rate
for the metric d in the inverse problem. However, since the problem is ill-posed
the change of norms cannot be controlled over the whole space KF. A way to
come around this problem is to only focus on a sequence of sets of high posterior
mass for which the change of norm is feasible. More precisely, for a set S C F,
fo € F and a fixed § > 0 we call the quantity

w(S, fo,d, dk, ) = sup{d(f, fo) : f € S,dx (K[, K fo) <} (4.2)

the modulus of continuity. We note that in this definition we do not assume
fo € §. This is thus a local version of the modulus of continuity considered in
Donoho and Liu (1991) or Hoffmann et al. (2013). On the one hand, the sets S,
need to be big enough to capture most of the posterior mass. On the other hand,
one has to be able to control the distance between the elements of S, and fj, given
the distance between K f and K f; is small. Since the operator K is unbounded,
this suggests that the sets §,, cannot be too big.

Theorem 4.1. Let €, — 0 and let 11 the prior distribution on f be such that
EoIL(S; | Y™) — 0, (4.3)
for some sequence of sets (S,), S, C F, and
EOH(f cdi (K f, K fo) > Mye, | Y") — 0,
for any M,, — oo. Then
EOH(f 2d(f, fo) = w(Sn, fo,d,di, Mye,) | Y”) — 0.
Proof. By (4.3) and the definition of the modulus of continuity

T(f - d(f, fo) > (S, fordy dic, Men) | Y")
I(f €8, :d(f, fo) = w(Sn, fo,d,dic, Mne,,) | Y") + (S5 [ V™)

<
<TI(f €8, :di(Kf, K fo) > Mye, | Y™) + 0p(1).

O

The interpretation of the theorem is the following: given a properly chosen se-
quence of sets §,,, the rate of posterior contraction in the direct problem restricted
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to the given sequence can be translated to the rate of posterior contraction in the
inverse setting. Here, the choice of S, is crucial as it is the principal component
in the control of the change of norm. In particular, the concentration rate ¢, for
the direct problem may not be optimal, and still leads to an optimal concentra-
tion rate w(S,, fo,d, dx, M,e,) for the inverse problem with a well suited choice of
S,,. As shown in Section 4.4.1.2, this is the case for instance when the posterior
distribution of K f is very concentrated. We can then choose S, small enough so
that the change of norms can be controlled very precisely.

To control the posterior mass of the sets §,, we can usually alter the proofs of

contraction results for the direct problems. Here we present a standard argument
leading to (4.3). Define the usual Kullback—Leibler neighborhoods by

Bn(K fo,€) = {f eF: — /pKfO log]];Kf dp < né?,

K fo

2
/pKfo (10g pKf) dp < né?, }, (4.4)
p

K fo

The following Lemma adapted from Ghosal and van der Vaart (2007) gives general
conditions on the prior such that (4.3) is satisfied.

Lemma 4.1 (Lemma 1 in Ghosal and van der Vaart, 2007). Let ¢, — 0 and let
(Sn) be a sequence of sets S,, C F. If 11 is the prior distribution on f satisfying

1(S;)

H(Bn<Kf0, En)) rS eXp(_2n€i)7

then
EolI(S; | Y™) — 0.

4.3 Modulus of continuity

In this section we first present an example of the sequence of sets S, and later
present how the modulus of continuity for this sequence can be computed in two
standard inverse problem settings. We now suppose that F and K F are separable
Hilbert spaces, denoted (Hy, | - ||m,) and (Hs, || - |lm,) respectively. We note that
the sets S, resemble the sets P, considered in Ray (2013).

As already noted, the operator K restricted to certain subsets of the domain
H; might have a finite modulus of continuity defined in (4.2). Clearly, one wants
to construct a sequence of sets S, that in a certain sense approaches the full
domain Hl;. This is understood in terms of the remaining prior mass condition in
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Theorem 4.1. Moreover, since we do not require f; to be in S,,, we need to be able
to control the distance between f, and S,,.

A natural guess is to consider finite-dimensional projections of H;. In this
section we go beyond this concept. To get some intuition, consider the Fourier
basis of H;. The ill-posedness can be then viewed as too big an amplification of
the high frequencies through the inverse of the operator K. Therefore, one wants
to control the higher frequencies in the signal, and thus in the parameter f.

Since H] is a separable Hilbert space, there exist an orthonormal basis (e;) and
each element f € H; can be viewed as an element of /5 and

£l = >

For given sequences k, — oo and p,, — 0, and a constant ¢ > 0 we define

S, = {f €ty Z fi2 < cpi}. (4.5)

i>kn

If the operator K is compact, then the spectral decomposition of the self-
adjoint operator KT K : H;, — H; provides a convenient orthonormal basis. In the
compact case the operator KT K possesses countably many positive eigenvalues x?
and there is a corresponding orthonormal basis (e;) of H; of eigenfunctions, and
the sequence (€;) defined by Ke; = k;é; forms an orthonormal conjugate basis of
the range of K in Hs,. Therefore, both f and K f can be associated with sequences
in /5. Since the problem is ill-posed when x; — 0, we can assume without loss of
generality that the sequence k; is decreasing.

Let k,, pn, and c in the definition of S,, be fixed. Then for any g € S,,

lglli, =D g => g+ g
=1

i<kn i>kn
2 2 -2 .2 2 2
< E g; +cp, = E K; “R;9; +¢py,
i<kn i<kn
—2 2 2 2 —2 2 2
<kl Y KIgE+epl < | Kglh, + el
i<kn

Let f, be the projection of f, on the first k, coordinates, i.e., f,; = fo, for
1 < k, and 0 otherwise. Moreover, we assume that f, belongs to some smoothness
class described by a decreasing sequence (s;):

o0

1follZ = Zsi_szQ,i < 00.

i=1
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The usual Sobolev space of regularity /3 is defined in that way with s; = 7%,
Therefore, we have

1fn = follen < s llfollss K fu = K folla, < sk, hin, [l folls-

Using the triangle inequality twice and keeping in mind that f— f,, € S,, we obtain

1f = follm, < Nf = fallm + 1fn — follm,
< K 1K f = K fullis, + Ve + sk, || folls
<t (1K f = K follg, + Ko si, || folls) + Vepn + sel folls
= “E:HKJC — K folls, + Vepn + 2| follsSk, -

We then find an upper bound for the modulus of continuity,

W(Sna f07 H ’ ”Hu ” ’ ”H2,5> 5 "il;nl(s + Pn t+ Sk, - (46)

Remark 1. If ¢ > 0, then f; € S,, for n large enough (depending on fy).

4.4 Some models

4.4.1 White noise
4.4.1.1 Mildly ill-posed problems

Our first example is based on the well-studied infinite-dimensional normal mean
model. In the Bayesian context the problem of direct estimation of infinitely many
means has been studied, among others, by Zhao (2000); Shen and Wasserman
(2001); Belitser and Ghosal (2003); Ghosal and van der Vaart, (2007).

We consider the white noise setting, where we observe an infinite sequence
Y™ = (Y,Ys,...) satisfying

Yi=rifi + Z;, (4.7)

1
Vn
where C~1i7P < k; < CiP for some p > 0 and C' > 1, and Z;, Zs, ... are indepen-
dent standard normal random variables. Let K f denote the sequence k; f;. In this
setting H; = Hy = {5, and the ¢s-norm is denoted by || - ||.

Since the k;’s decay polynomially, the problem is mildly ill-posed. Such prob-
lems are well studied in the frequentist literature, and we refer the reader to
Cavalier (2008) for a nice overview. There are also several papers on properties
of Bayes procedures for such problems. The first studies of posterior contraction
in mildly ill-posed inverse problems were obtained by Knapik et al. (2011) and
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Agapiou et al. (2013). Later, Ray (2013) and Knapik et al. (2012) studied adap-

tive priors leading to the optimal minimax rate of contraction. Similar problem,

with a different noise structure, has been studied by Florens and Simoni (2012).
We put a product prior on f of the form

= é)zv(o, A,
=1

where \; = i~172% for some o > 0. Furthermore, the true parameter f; is assumed

to belong to S? for some 8 > 0:
s ={ret:lfllf =3 f2® < oo}, (4.8)

Therefore, HKfOH%er is finite, the prior on f induces the prior on K f such that
(Kf); ~ N(0,\r?), and one can deduce from the results of Zhao (2000) and
Belitser and Ghosal (2003) that

(anB)+p
sup  EolI(f: [|[Kf — K fol| > Myn T35 | Y™) — 0.
K follp+p<R

In order to apply Theorem 4.1 we need to construct the sequence of sets S,
and verify condition (4.3). We use the construction as in (4.5), and we verify the
remaining posterior mass condition along the lines of Lemma 4.1.

Theorem 4.2. Suppose the true fy belongs to S? for f > 0. Then for every R > 0
and M, — oo

_ _(er8)
sup  EoII(f : |[f = foll = Mun T2e%% | Y™) — 0.
[ folls<R

Proof. We first note that if ||f||s < R, then |K f||g+, < CR. Next we verify the
condition of Lemma 4.1. Let

1 __(anB) _ (anB)+p

k, =nT2e¥%  p, =n H2i% ¢, =n H2atp,

Note that L
_2(anB)+2p 1+20—2(aAB) _ 1+2a=2(anph)
nGi =n-n 1F2at2p —=7n +2a+2p = ¢, (anB)+p 7

hence T1(B, (K fy,€,)) 2 exp(—Cyne?) by Lemma 4.3 uniformly over a Sobolev
ball of radius R, S#(R).

Note also that

_ _2(anp) 142« 1+2a—2(anB)
pik‘}z—’—Za =N 1+2a+2p . nl+2a+2p =N 1+2a+2p = NE

2

n’
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and given ¢ > 2(1+2a)/a we have TI(S¢) < exp(—(c/8)ne?) by Lemma 4.2. Hence

H(Bn(ff) )~ exp (= (5= o)),

uniformly over a ball of radius R. The condition of Lemma 4.1 is verified upon
choosing ¢ = 8(2+ () V 2(1 + 2a) /.
Finally, we note that (cf. (4.6))

(anB)+p (anB)

W(Sn,fo, ” ’ ”7H ' HanEn)

p - _(anf) B
5 Mnn1+2a+2p - n 1+2a+2p + n  142a+2p + n  142a+2p

< __(anp)
S M,n T+2a+2p

which ends the proof. O

The upper bound on the posterior contraction rate in this theorem agrees with
the results of Knapik et al. (2011) and Proposition 3.5 in Ray (2013). One could
obtain the rate of contraction exactly as in Knapik et al. (2011), that is with scaled
priors. However, this would require a refined version of Lemma 4.3, and the rate
of posterior contraction for direct problem based on scaled priors. We therefore
decided to set the scaling 7, = 1 and refer to the existing results in Zhao (2000)
and Belitser and Ghosal (2003).

Our result on posterior contraction in the mildly ill-posed case presented in
this section is not too much different from Proposition 3.5 in Ray (2013). We
note three important differences: in our approach we use the existing results on
posterior contraction in the direct problem, and the proofs of bounds on prior
mass of the sequence §,, and Kullback-Leibler type neighborhoods are elementary.
Finally, our result is uniform over Sobolev balls of given radius.

Lemma 4.2. Let p, be an arbitrary sequence tending to 0, ¢ be an arbitrary con-
stant, and let the sequence k, — oo satisfy k2* > 2(1 + 2a)/(acp?). Then

I1(87) < exp (-5 2ki ).
Proof. For Wy, W, ... independent standard normal random variables

I(S;) = Pr(z ANW?2 > cpi).

i>kn
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For some ¢t > 0

Pr( Z ANW?E > cpi)
i>kn
=Pr (exp (t Z )\Z-Wf) > exp(tcpi)) < exp(—tcp?)E exp (t Z )\¢W¢2>
>k >k,
= exp(—tcp?) H Eexp(t\W2) = exp(—tcp?) H (1—2t\) V2
>k i>kn
We first applied Markov’s inequality, and later used properties of the moment
generating function. Here we additionally assume that 2t\; < 1 for ¢ > k,.
We take the logarithm of the right-hand side of the previous display. Since

log(1 —y) = —y/(1 —y), we have

—tep?+ Z log(1 — 2t\;)~Y/2
i>kn
1 1 2t\;
= —tcp? — 3 Z log(1 — 2t\;) < —tep? + 3 Z o

i>kn 1>kn

We continue with the latter term, noticing that 1 —2t\; > 1 — 2tk =2 for i > k,

1 2\, |
_ i < '—1—204.
3210 2N = 1 2th 12 2

i>kn i>kn
Since z7172% is decreasing, we have that
> k2 14+ 2a
—1—2« —1—2« —1-2a _ ''n —1—2« —2«
2;2 S/nx v+ hy 7R = S 1 <
2 n

noting that k, > 1 for n large enough. Finally

I+ 2« t 20
2 1 -2tk 172"

—tep? + Z log(1 — 2tA\;) Y2 < —tep? +
i>kn
Thus for t = k1T22/4
1+2
gkn) S eXp(_Epikrlz+2a>7
4o 8

since k2% > 2(1 + 2a)/(acp?). O

&
(S5) < exp(— ki +

Lemma 4.3. Suppose fo € SP. Then for every R > 0 there exist positive constants
C1, Cy such that for all € € (0,1),
14+20—2(aAB)
inf II(B,(K fo,€)) > Cy exp(—Cge_ i )

[ folls<R
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Proof. This proof is adapted from Belitser and Ghosal (2003). Recall that in the
white noise model the ¢, balls and Kullback-Leibler neighborhoods are equivalent.
By independence, for any N,

o0

H( Z(/%fz — Hz’fo,z‘)Q < 62)
S N (4.9)
> H(Z(/ﬂfi — rifoa)? < 62/2>H< Z (Kifi = kifoi)? < 62/2>-
i=1 i=N+1
Also . . .
Z (Kifi — Kifoq)? <2 Z R fE 2 Z K3 o (4.10)
i=N+1 i=N+1 i=N+1

The second sum in the display above is less than or equal to

[\

AN N PR AN fllf < 7
i=N+1
whenever N > Ny = (8| fol|3)"/ @ 2)e1/(54p),
By Chebyshev’s inequality, the first sum on the right-hand side of (4.10) is less
than €2/4 with probability at least

8 N 202\ 8 - —1-2a—2p 4
1_6_22 EH(/{ZfZ)_l_e_QZ g 21_(a+p)N2(a+p)€2>1/2
i=N-+1 i=N+1

if N> Ny = (8/(a+ p))V/ et et/ etp),
To bound the first term in (4.9) we apply Lemma 6.2 in Belitser and Ghosal
(2003) with gz = /{ifO,i and 52 = 62/2. Note that

N N

42042p ¢2 1+2042p  —2p £2

E ¢ & = E l 1 fO,i
i=1 i=1
N

_ Z ,L~1+2a726f027ﬂ-2ﬁ < N(1+2a72ﬁ)/\0||f0||?3.
i=1

Therefore,
N
H(Z(Hifi—ﬁifo,i)Q < 62/2>
i=1

log 2
> eXp(— (1 +2a+2p+ %)N) exp(—N(mo‘*m“ol!fo”?a)

N
< Pr (Z V2 < 252N1+2a+2p)_

i=1
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The last term, by the central limit theorem, is at least 1/4 if 252 N'T22+2 > N and
N is large, that is, N > N3 = ¢ /(@*P) and N > N,, where N, does not depend
on fy. Choosing N = max{Ny, No, N3, Ny} we obtain

H(f K f=Kfoll <€)

1 log 2
> zexp(— (14 20+ 29+ E2) ) exp (- N2 2,

Consider o > 3. Then exp(—N) > exp(—N{1+20=28)) g0
1
O(f : |1Kf = Kfoll <€) = < exp(—Cun#272)),

for some constant C3 that depends only on «, 3, p and HfOHZB Moreover, since
e <1land a > 3, N is dominated by e /(#+P) and we can write

1 _ 14+20-28
(S : 1K f = Kfoll <€) > cexp(—Che 55 ),

where Cy depends on fy again through || fo||3 only.
Now consider a@ < . Similar arguments lead to

H(f:|Kf— Kfol <e) > %exp<—c5e—al+p),

for some constant Cs that depends only on «, 8,p and || fo||3. O

4.4.1.2 Severely and extremely ill-posed problems

In this section we consider the white noise setting with truncated Gaussian priors.
The main purpose of this part is to show that in some classes of ill-posed problems
adaptation does not need to be achieved simultaneously in both direct and indirect
problems. As a matter of fact, in this part the rates in the direct problem will
be much (polynomially) slower than the optimal rates. This is mostly due to the
fact that we consider in here severely and extremely ill-posed problems that yield
logarithmic rates of recovery. See also Knapik et al. (2013) and Agapiou et al.
(2014) for examples and references.

We again consider the white noise setting, where we observe an infinite sequence
Y™ = (Y1,Ys,...) asin (4.7) where r; < exp(—~yi?) for some p > 1 and v > 0. Let
K f denote the sequence k; f;, and the fo-norm is denoted by || - ||. In this setting
Hl = HQ = EQ.

We first consider estimation of K f that will be later used to obtain the rate
of contraction of the posterior around f,. We put a product prior on f of the form

kn
1= @N(o,m,
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where \; = i~ ®exp(—&iP), for a > 0, £ > —2v, and some k,, — co. We choose k,
solving 1 = n\; exp(—2vi?) = ni~*exp(—(§ + 27)i*). Using the Lambert function
W one can show that

k, = <MW<TL§@>>M) — <§kf;y + O(log log n))l/p, (4.11)

see also Lemma A.4. in Knapik et al. (2013). Note that in this case we have
exp(k?) = (nk;*)YE+29) 50 we can avoid exponentiating k,,. Therefore, we do not
have to specify the constant in front of the loglogn term in the definition of k,,
and we may assume that it is of the order (logn)'/?.

Note that the hyperparameters of the prior do not depend on fy, but only on
K, which is known. For S, as in (4.5) with k, as above and ¢ = 0, the prior is
supported on S,, and the first condition of Theorem 4.1 is trivially satisfied.

Theorem 4.3. Suppose the true fy belongs to S® for 3 > 0. Then for every R > 0
and M, — oo

sup BoIl(f : [|f — fol = M,(logn)™* | V™) — 0.

[ folls<R

Proof. Assume for brevity that we have the exact equality x; = exp(—~i?). Dealing
with the general case is straightforward, but makes the proofs somewhat lengthier.
Since Y;|fi ~ N(k;fi;,n™1) and f; ~ N(0,);) for i < k,, the posterior dis-
tribution (for K f) can be written as (K f);|Y" ~ N(\/nt;,Y;, sin) for i < k,,

where
)\Z’/{?

1 +n\ik?’

2,4
nA;K;

(1+n\k2)?

Sin ti,n -

Since the posterior is Gaussian, we have

/ \KJ — K2 di(E fY™) = [KF = Kfoll?+ 3 s (412)

1<kn

where ﬂ denotes the posterior mean and can be rewritten as:

f(\f B ( n\;K? )kn B (n)\m?fo,i \/ﬁ)\m?Zi>kn
S\l nNk? Vi N+ nhk? T+ n\k? iz

By Markov’s inequality the left side of (4.12) is an upper bound to M?2e?

times the desired posterior probability. Therefore, in order to show that II(f :
|Kf — Kfoll > M,e,|Y™) goes to zero in probability, it suffices to show that the
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expectation (under the true fy) of the right hand side of (4.12) is bounded by a
multiple of €2. The last term is deterministic. As for the first term we have

BIKf—Kfoll> = |EKf = Kfol*+ > tin.

i<kn

We also observe

o 2f
EKf— Kfl? = § e oy 0 § K
1<kn i>kn

We are interested in the asymptotics of the three sums

2
113
R (R DT T SN S

i<kn i>kp i<kn i<kn

The following bounds are proven in Lemma, 4.4:

2f 28 2va
0,7 2
Z (14_”)\5 +Z fOZN ||f0||5n §+27(10gn) P p(E+2Y)
1<kn i>kn 1 (413)
Z Sin = Z Lim < n_l(log n)r.
i<kn i<kn

Therefore, the posterior contraction rate for the direct problem is given by
= (log n)f%rﬁn_#.
By (4.6) an upper bound for the modulus of continuity is given by
S for | 111+ 1 M) S My exp(rkD)es + b,
< Mun&5 (log n)fﬁen + (log n)_g
< M (logn) 7,
which ends the proof. O

As already mentioned, this theorem, or rather its proof, shows that the adapta-
tion to the optimal rate does not need to be attained simultaneously in the direct
and in the inverse problem. The upper bound for the rate of contraction in the di-
rect problem is much slower than the optimal rate of estimation of the analytically
smooth parameter K fy, that is n="/2(logn)'/?P. This is presumably not surprising
since the prior puts mass on analytic functions, whereas the true f; belongs to
the Sobolev class. There is only one choice of the parameters of the prior, namely
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¢ =0 and a = (§ and the corresponding k,,, leading to the optimal rate also in the
direct problem. This prior, however, depends on the true smoothness of f;.

On the other hand, regardless of the choice of £ and o we achieve the optimal
minimax rate of contraction (logn)~#/? for the inverse problem of estimating f,
(cf. Knapik et al. (2013) or Agapiou et al. (2014) and references therein). We note
that other papers on Bayesian approach to severely and extremely ill-posed inverse
problems do not consider truncated priors. In Knapik et al. (2013) the optimal
rate is achieved for the priors with exponentially decaying or polynomially decaying
variances (in the latter case the speed of decay leading to optimal rate is closely
related to the regularity of the truth). Ray (2013) and Agapiou et al. (2014) obtain
similar results for the priors with polynomially decaying variances. However, in
the former case the rate for undersmoothing priors is worse than the rate obtained
in the other papers.

We end this section with an auxiliary result used in the proof of the main result
of this section.

Lemma 4.4. The inequalities in (4.13) hold.

Proof. Note that ¢;,, < n~! and Sin < n~!. Therefore, the last two sums in (4.13)
are bounded from above by n~'k, = n~!(logn)'/?.
As for the first term in the first sum in (4.13) we have

ki o 2 26,28
: - A2
Z (1 4+ n\;k? Z i f
ngn Z<I€n
Z i) exp(2(€ + 7)iP)i P fo i
i<kn

and for k, large enough all terms i) exp(2(£++)i?) are dominated by ko™ " exp(2(£+

)kg)7

K‘zzfzi 91 9
> T <R epEERILE (41
i<kn ()

As for the second term in the first sum in (4.13) we note that

S ORfE =) exp(—29in)i i Ly

1>kn i>kn

and since exp(—2vi?)i~?? is monotone decreasing

> K2 < exp(—29kR)k, | foll3- (4.15)

i>kn
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Recall that exp(k2) = (nk;*)"/€+27) and therefore we can rewrite the bounds
n (4.14) and (4.15) as

2(€47) 2B+ 2
—21.2(a— — _ §+2
n~2k2ep) (nk;n )f“” =n s+2wk; v,

and

2va
26+ &2y

ke, ?P (nk;, )~ o ek,
Finally, since k, in this case can be taken of the order (logn)'/?, we obtain the

desired upper bound. O

4.4.2 Regression

We now consider the inverse regression model with Gaussian residuals
Yi = (Kf) () + o, 6 ~ N(0,1) (4.16)

where the covariate x; € R are fixed in a covariate space X. In the sequel, we
take either X = [0, 1] or X = R. In the following we consider the noise level o > 0
to be known although one could also think of putting a prior on it and estimate it
in the direct model. In this setting, a common choice for the metric d and dg is

d(f.g) =n" Z 7)) =If —gll2. dx(f.9) = d(K f, Kg).

For f € L, we denote the standard Ly norm by

11l = (/f)/

and for all k € N*, a € R¥ we denote the usual Euclidean norm by

) 1/2
e = (z )
=1

There are many known results on concentration rate of the posterior distribution
for the direct model in this case, see for instance Ghosal and van der Vaart (2007)
give some general conditions on the prior to achieve a certain rate. Posterior
concentration rate for inverse problems has not been considered in this setting.
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4.4.2.1 Numerical differentiation using spline prior

In this section, we consider the inverse regression problem (4.16) with the Volterra
operator defined for all measurable function f such that fol f <ooand z € [0,1]
as

K f(x) = /0 " Ft. (4.17)

This model is particularly useful for numerical differentiation for instance and has
been well studied in the literature. In particular, Cavalier (2008) shows that the
SVD basis for this problem is the Fourier basis and that the problem is mildly
ill-posed of degree 1. We will consider a prior on f that is well suited for if the
true regression function fy belongs to the Holder space H(/3, L) for some 5 > 0.
That is fy is fp = | 8] times differentiable and

| £ () — £ ()]
1 folls = sup <L
S PP [

Since K fy is (8o + 1) times differentiable, it also holds that if fy € H (S, L) then
KfeH(B+1,L).

Here we construct a prior on f by considering its decomposition onto a B-splines
basis. A definition of the B-spline basis can be found in De Boor (1978). For a
fixed positive integer ¢ > 1 called the degree of the basis, and a given partition
of [0,1] in m subintervals of the form ((i — 1)/m,i/m], the space of splines is
a collection of function f(0,1] — R that are ¢ — 2 times differentiable and if
restricted to one of the sets ((i — 1)/m,i/m]|, are polynomial of degree at most
q- An interesting feature of the space of splines is that it formsa J =m + ¢ —1
dimensional linear space with the so called B-spline basis denoted (B, ..., Bj,).
Prior based on the decomposition of the function f in the B-spline basis of order
ghave been considered in the regression setting in Ghosal and van der Vaart (2007)
and Shen and Ghosal (2014) for instance and are commonly used in practice. Here
we construct a different version of the prior that will prove to be useful to derive
concentration rate for the direct problem and the indirect problem. Let the prior
distribution on f be defined as

J ~ 11
M:<ay,...ay X1, (4.18)
fla) =T 3272 (a1 — a;)Bjga ().
Given the definition of B;, in De Boor (1978), standard computation gives

B (v) = J(Bjg-1(z) = Bj114-1(2))
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which in turns gives
J

Kf(z) =) a;Bj,(x).
j=1
This explains why we choose a prior as in (4.18) as it leads to the usual spline prior
on K f. Note that the condition that K f(0) = 0 can be imposed by a specific choice
of nodes for the B-Splines basis (see De Boor, 1978, for more details). To compute
the modulus of continuity for this model, we need to impose some conditions on
the design. Let X¢ be a matrix defined by its coefficients

1 - . .
“ > Big(w)Big(w), i,j=1,.....J

Similarly to Ghosal and van der Vaart (2007) we ask that the design points satisfy
the following conditions:

D1 for all v; € R’/
T vA7 = viZBvy

D2 for all vy € R/7!
(J-1)" 1||V2||J 1= sz(q 1)V2

where a =< b means that for some constants ¢,C' > 0, ca < b < C'a. Condition
D1 is natural when considering B-splines priors in a regression setting, and both
conditions are satisfied for a wide variety of designs. Consider for instance the
uniform design x; = i/n for i = 1,...,n. Then given Lemma 4.2 in Ghosal et al.
(2000), we get that for v; € R, vy € R7™!

2

MBI S|SB S vz

2
ValBioa(T = D7 S || vesBiaa| SIvalBL -7

Where the constants only depend on ¢. Furthermore we gave that

J ) 1
H ZVLJ'BM =viZivi+0 (E) ;
j=1

where the O(n™!) only depends on q. We get similar results

J—1 9 1
S vt | = v o (1),
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Thus D1 and D2 are satisfied for the uniform design for all J = o(n).

We now go on and derive conditions on the prior such that the posterior con-
centrates at the minimax adaptive rate (up to a log(n) factor). Note that here the
prior distribution is neither conjugate nor depends on the SVD of the operator.

Theorem 4.4. Let Y™ = (Y1,...,Y,) be a sample from (4.16) with X = [0, 1]
and I1 be a prior of f as defined in (4.18). Suppose that 11; is such that for some
constants cqg,c, > 0 and t >0, for all J > 1,

e_cdjlog(j)t S HJ(] S J S 2])’ HJ(J > j) 5 e—cujlog(j)t (419)

and suppose that 11, ; is such that for all ap € R, ||ag||lec < H, there erzists a
constant co depending only on H such that

Mo, (|[a = aol[s < €) > e7e2 1801/ (4.20)

Define ©(B,L,H) = {f € H(B,L),||fllo < H}. If the design (z1,...,x,)
satisfies conditions D1 and D2, then for all L and for all § < q if fo € H(B, L)
there exits a constant C' > 0 that only depends on q, L, H and 11 such that

sup  sup  Egll (Hf — fol| = C (n) 0+ log(n)3r|Y"> —0 (4.21)
B<q—1 fo€©(B,L,H)

with r = max{t, 1}(8+1)/(28 + 3).

Conditions (4.19) is similar to the one considered in Shen and Ghosal (2014)
for instance, and is satisfied by the Poisson or geometric distribution for instance.
Condition (4.20) is satisfied for usual choices of priors such as product of inde-
pendent distribution on the a; that admits a continuous density. Similar results
hold for functions that are not uniformly bounded, with additional conditions on
the tails of II, ;. This will only require additional computation similar to those in
Shen and Ghosal (2014), and will thus not be treated here.

We first compute an upper bound for the modulus of continuity. Given condi-
tions D1 and D2 we get, denoting A(a) = (a;41 — a;); € R/!

112 = J*A(a) S1 Afa)
1
S P lIA@IB,

1
< P——|lall}

S PIE LI

To apply Theorem 4.1, we first need to derive a concentration rate for K f. Note
that in this case we simply have a standard non parametric regression model with
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a spline prior. This model has been extensively studied in the literature as in
Ghosal and van der Vaart (2007) or de Jonge and van Zanten (2012) and we can
easily adapt their results to derive minimax adaptive concentration rates.

Lemma 4.5. Let II be as in Theorem 4.4. Let 'Y, be sampled form model 4.16
with f = fo and assume that fy € O(B, L, H) with f < q— 1. Then there ezists a
constant C' that only depends on H, L, 11, and q such that

EoI(|[| K f — K fol|n > Cn~ B/ 843 10g(n)"|Y,) — 0
with r = max{t, 1}5/(26 + 1).

Similar results have been proved in Shen and Ghosal (2014), however the au-
thors do not give a direct proof of this Theorem. Here this lemma gives us directly
the posterior concentration rate for the direct problem.

Proof. We prove Lemma 4.5 using Theorem 4 of Ghosal and van der Vaart (2007).
Let 8 < q and fy be in H(B, L) and set ¢, = Cn~FTV/28+3) Jog(n)" with r =
max{t, 1}3/(28 + 1). Set J, := Jone2log(n)~" for a fixed constant Jy > 0 and
consider the sieves §,, defined by

S, ={J < J,,acR’}

We first control the local entropy function N(e,{J,a € S, : ||Kf — Kfo|| <
€nt, ||-||n) by using the same reasoning as in the proof of Theorem 12 of Ghosal and van der Vaart
(2007) for all J € S,, we get setting

log(N(e, {J,a € Sy : |[Kf = Kfol| < €a}, [ ]])) < neg.
The prior mass of the sieve is easily controlled using the condition (4.19) as
TH(S5) = Ty (J > J) < ¢ colnlostn)

We now need to control the prior mass of Kullback—Leiber neighbourhoods of K fj.
Note that this condition will also be useful to apply Lemma 4.1 and thus derive
the concentration rate for the direct problem. Let B, (K fo, €) be defined as in (4.4)

Bh(K fo,€) = {f eF: — /pKfO log}fo du < né?,

K fo
2
/pKfo (10g pKf) d/L S neza }a
Pk,

0

 Using the results of section 7.3 of Ghosal and van der Vaart (2007), setting
Jn = Jylog(n)™"/? we deduce that for some constant ¢ that only depends on o

B, (K fo,€1) D {jn < J<2J, |Kf = K foll} < cer}.
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Standard approximation results on splines gives that for all J there exists a se-
quence ag = (agy,...,aps) such that

J
1K fo =Y a0iBiglln < JPEK folls < J 7L

J=1

Given condition D1 on the design, we thus have that for a constant ¢ > 0 that
only depends on ¢ and L

Bu(K fo,€2) D {Jn < J < 2], ||a — aoll;, < 4/ Jnen}.

We thus derive a lower bound on the prior mass of Kullback-Leibler neighbourhood
of Kfo

N(Bu(K forea) = 11 (Jy < J <200 llo— ol = ¢ T},

o Jn(calog(Jn)t+ez log(Ji Y2

Vv

We thus have for Cy > 0,

H(SC) —CoJp 1 t
n < e~ Colnlog(Jn)" 4.22
(B (K foren)) = (4.22)

which in turns, together with Theorem 4 of Ghosal and van der Vaart (2007) ends
the proof. O

We now derive the posterior concentration rate of the posterior distribution for
the inverse problem. We now get an upper bound for the modulus of continuity,
for f € S,. Standard approximation results on splines (e.g. De Boor et al. (1978))
we have that for all J there exists a® € R’ such that

J—-1

1fo = (af11 = a))(Big-lloe < (J = D)7 folloo

Jj=1
and

J
15 fo =D afBjalle < 77K fol oo

j=1
We thus deduce that for J > 2,

||f_f0||n < Hf_faOHn"i‘HfaO _fOHn
SC‘]_1||Kf_Kfn||+||fa0 _.f0||n
S CI K = K folln + |1 K foo = K folln + || fao = folln
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We can thus deduce an upper bound for the modulus of continuity
W(Snaan II ' ||na II : ||n75) S Jn5
Applying Theorem 4.1 gives
Eoll(||f = folln = Cn= @ log(n)?[Y™) — 0

for C' > 0 a constant that only depends on || fo||s, ¢ > 0 and II.

4.4.2.2 Deconvolution using mixture priors

In this section, we consider model (4.16) where K is the convolution operator in
R. This model is widely used in practice, especially when considering auxiliary
variables in a regression setting or for image de-blurring. For a convolution kernel
A € Ly(R) symmetric around 0, and for all f € Ly(R), we define K as

Kf(x)=Xx* f(x) /R fw)A(x —u)du, Vr € R. (4.23)

To the authors best knowledge, theoretical properties of Bayesian nonparametric
approach has not been studied for this model. In this setting we consider a mixture
type prior on f, and derive an upper bound for the posterior concentration rate.
Mixture priors are common in the Bayesian literature, Ghosal and van der Vaart
(2001), Ghosal and van der Vaart (2007) and Shen et al. (2013) consider mixtures
of Gaussian kernels, Kruijer et al. (2010) consider location scale mixture and Rousseau
(2010) studied mixtures of betas. Nonetheless, since they do not fit well into the
usual setting based on the SVD of the operator, mixture priors have not be con-
sidered in the literature for ill-posed inverse problems. In our case, they proved
particularly well suited for the deconvolution problem. Let Y™ = (Y3,...,Y}) be
sampled from model (4.16) for a true regression function fy € Lo(R) with X = R,
and assume that for ¢, > 0, for all i = 1,...,n, z; € [—c,log(n), ¢, log(n)]. This
assumption is equivalent to tails conditions on the design distribution in the ran-
dom design setting. Our choice of prior is well suited for fy such that for a § > 0,
fo is in the Sobolev ball f; € S®(L). To avoid technicalities, we will also assume
that fo has finite support, that we may choose to be [0, 1] without loss of gener-
ality. Similar results should hold for function with support on R with additional
assumptions on the tails of fy but are not treated here.

For a collection of kernels W, that depend on a the parameter v, a positive inte-
ger J and a sequence of nodes (z1, ..., z;) we consider the following decomposition
for the regression function f in model (4.16)
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where (wy,...,w;) € R7 is a sequence of weight. We choose U proportional to a
Gaussian kernel of variance v? and the uniform sequence of nodes z; = j/J for j
such that j/J € [—2¢, log(n), 2¢, log(n)]

1 _(w=i/D)?
e 202 ,
vV 2mv?

The choice of a Gaussian kernel is fairly natural in the nonparametric literature. In
our specific case it will prove to be particularly well suited. Their main advantage
here is that we can easily compute Fourier transform of f and thus use the a similar
approach as in section 4.3. We consider the following prior distribution on f

V(@) = Wy = 2) =

J ~ 11,
M=y~ T, (4.24)
wl,...,wJ|J~ ®3]:1N(0a1)

We use a specific Gaussian prior for the weight (wy,...,w,) in order to use the
results on Reproducing Kernel Hilbert Spaces following de Jonge and van Zanten
(2010) to derive concentration rate for the direct problem. However our intu-
ition is that this results should holds for a more general classes of prior but the
computations would be more involved.

Following Fan (1991), we define the degree of ill-posedness of the problem
through the Fourier transform of the convolution kernel. For p > 0, we say that
the problem is mildly ill posed of degree p if there exists some constants ¢, C' > 0
such that for A the Fourier transform of A

At) = / AMu)e™du,
we have for |¢| sufficiently large
clt] ™ < A < CJt| P, p e N” (4.25)

For all fy € SP(L), we have that K f, € SP*P(L') for L' = LC. Under these condi-
tions, the following Theorem gives an upper bound on the posterior concentration
rate.

Theorem 4.5. Let Y" = (Y1,...,Y,) be sampled from (4.16) with X = R and
assume that the design points (z;) are such that (z;) € [—clog(n),clog(n)]™. Let
fo be such that for € N* and M > 0, fo € SP(L) with support on [0,1] and
| folleo < M. Consider K to be as in (4.23) with X\ satisfying (4.25). Let I1 be a
prior distributions defined as in (4.24) with

(] =j)=j* (4.26a)
vl e ST (v) S e v 0B/ (4.26D)
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Then there exists a constant C' and r that only depends on 11, L, K and M such
that
EGTI(|[f = fol| = Cn= @520+ D 10g (n)"[Y™) — 0,

as n goes to oo.

Note that here the prior does not depend on the regularity 5 of fy, we have the
adaptive minimax concentration rates for this problem. Note also that the prior
does not depends on the degree of ill-posedness either. It is thus well suited for
a wide variety of convolution kernels. In particular this can be useful when the
operator is only partially known, as in this case the regularity of the prior may
not be accessible. However, this case is beyond the scope of this article. We prove
Theorem 4.5 by applying Theorem 4.1 together with Lemma 4.1. A first difficulty
is to explicit the set S, on which we can control the modulus of continuity. A
second problem is to derive the posterior concentration rate for the direct problem,
given that here K f is supported on the real line. de Jonge and van Zanten (2010)
derived the posterior concentration rate for Hélder smooth function with bounded
support. However, their results directly extend to the case of convolution of Holder
functions with bounded support.

Proof. We first specify the set S, for which we can control the modulus of conti-
nuity. Denoting f the Fourier transform of f, for any sequence a,, going to infinity
and I,, = [—a,, a,] we define for a > 0

so= {1 [ VP [ 1P, (1.27
I Ig
We control the modulus of continuity w(Sy, fo, || |[, || - [|,d) in a similar way as in
Section 4.3. First consider f € S,,, we have denoting f,(-) = f(-)I1,(-)
1A% = 1AIP
< (1 +a)llfull®

< / FPIARI < a2 K12

Note that for fo € S°(L) we have for fy,(z) = [ fom(t)e_mdt
o = foull < 2a.°L ||K fo — K fo|| < 2a;, ),
which in turns gives

W(Sus foull -1 11,0) S ahd + a”. (4.28)
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We now control the prior mass of S; in order to apply Lemma 1. Denote by
ln = lan/(21LJ)], Ly, = [a,/(2IL])], we have

J

E 2wyt
w;e

j=1

In
|f(t)|2dt > 27TJ/ P "
I

—Ln

J

E 2wyt
w;e

Jj=1

Z 6—47r2 (t41)20? dt

l=—Ln
In 1| J
> o] Z 6—47r2(1—|—l)2v2 / ij627rjt
U

l=—Ln

dt

dt

and similarly we get

_Ln

J 00

; 42 2,2 42 2 9
E wj627rjt § e 472 (t+1)%v + E e 4m= (t+1)%v dt
j=1 l=—00 I=lp

—Ly [e'¢) 1] J
42202 42]24,2 .
§27TJ § e47rlv +§ :6 42 l*v / E :,wj€27r]t

1
|f(t)2dt < 2mJ /
Ic 0

l=—00 I=ly

We thus deduce that for an absolute constant C,C’ > 0
[(S5) < 1(v < J/ay) S e Conlosten)

We now adapt the results of de Jonge and van Zanten (2010) to our setting in
order to get the control of the posterior mass of the Kullback-Leibler neighbour-
hoods of K f, and the posterior concentration rate for the direct problem. Follow-
ing their notations we havethat KV, € P, and thus the small ball probability
II(]| f||loo < €) can be controled by their Lemma 3.3. We extend their Lemma
3.5 to our setting. Note that with Lemma 9 of Scricciolo (2014), Lemma 3.4 of
de Jonge and van Zanten (2010) holds for the same T, , with a = 5 + p. Choos-
ing h to be as in the proof of Lemma 3.5 of de Jonge and van Zanten (2010) and
denoting wy = fo * A\, we have

1 x—7j/J

h(z) = To(wo) oW (L2212

(z) | > w(wo) — ( . )
j/J[—2ca log(n),2¢s log(n)]

and thus deduce
Al F100 < [ Taw(wo)]|?2¢, log(n).
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Using their decomposition (3.8), we control |h(zx) — U, * T, ,(wp)(z)| along the
same lines as in their computations page 3312. We have

2¢4 log(n)
() — % T (w0) ()] < |lx) - / T (60) (9) Vo — )dy

2¢y log(n)

—2¢z log(n)
+ [ T (w0) (0) W — )y

[e.e]

+

/200 T“’“(WO)(y)‘I’v(ﬂf—y)dy' (4.29)

cq log(n)

The first display of (4.29) can be controled as in the proof of Lemma 3.5 of
de Jonge and van Zanten (2010). For the last two displays, we have

—2¢z log(n)
/ T o (00) ()0 — y)dy| +

/2 T Tau(wo) () Vale — y)dy

cq log(n)

c2 log(n)2
ST w(wo) o€ ™ 2y

-1
Following the same proof of Theorem 2.2 of de Jonge and van Zanten (2010), we
get

Eoll(||[K f — K fo|| > Cn~H/CoH204 ) g ()0 y™) — 0

and similarly to their equation (2.5) we get, with €, = n~(3TP)/(28+2p+1) oo (p)ro0
7”62
(||Kf — Kfol] <e€,) >e "

Choosing choosing a,, = ne?, together with Lemma 4.1 and Theorem 4.1, this gives
us the desired results. 0

4.5 Discussion

In this paper we propose a new approach to the problem of deriving posterior
concentration rates for linear ill-posed inverse problems. More precisely, we put
a prior on the parameter of interest f that naturally imposes the prior on K f,
leading to a certain rate of contraction in the direct problem. Next, we consider
a sequence of sets on which the operator K possesses a continuous inverse. Then,
we impose additional conditions on the prior (or the posterior itself) under which
the posterior concentrates at a certain rate in the inverse problem setting.

This is a great advantage of the Bayesian approach in this setting as when
the posterior distribution is known to concentrate at a given rate in the direct
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problem, one only has to consider subset of high prior mass for which the norm
of the inverse of the operator may be handled. Our result seems to show that the
main difficulty when considering linear inverse problems is to control the change of
norms form dg to d, which is dealt here by considering the modulus of continuity
as introduced in Donoho and Liu (1991) and Hoffmann et al. (2013). It is also to
be noted that contrariwise to existing methods, we do not require a Hilbertian
structure for the parameter space, see for instance the example treated in Section
4.4.2.1. This could be particularly useful when considering nonlinear operators,
and is of potential interest when considering the case of partially known operators.

We recovered (a subset of) the existing results from Knapik et al. (2011),
Knapik et al. (2013), Agapiou et al. (2013), Agapiou et al. (2014), and Ray (2013).
Our approach should be viewed as a generalization of the ideas presented in the
latter paper. Furthermore, we were able to derive posterior concentration rates
for prior distributions that were not covered by the existing theory. In this sense,
the approach proposed in this paper is more general, and we believe more natural,
that the existing ones.
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