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Dispersive and dissipative effects in quantum field theory in curved space-time to modelize condensed matter systems

Xavier Busch

1. General relativity

• he signture of speEtime is (-, +, +, +)F

• he metri is noted g µν nd the ovrint derivtive is ∇ µ F e point in speEtime is xF he volume element is dx √ -gF

• smpliit summtion is mde on repeted indexesF st runs on spe nd time for qreek vriles @µ, ν • • • AD on spe only for vtin vriles @i, j, • • • A 2. Quantum mechanics

• ixpettion vlue of n opertor Ô in mixed stte ρ is noted Ô ρ .

= Tr ρ Ô D or when no onfusion n e mdeD only Ô F por pure sttes |Ψ D the stte will e expliitly put in the formul s Ψ| Ô |Ψ F

• rmiltonin is Ĥ in hrödinger representtion nd H in reisenerg representE tionF

Miscellaneous

• fold nottions designte vetors @in spe onlyAF sn one dimensionD it designtes lgeri quntityF

• gommuttors nd ntiommuttors re de(ned y [a, b] = ab -baD {a, b} = ab+ba 2 F

• pourier trnsformtion is normlized s f (x) =
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1. From the parametric amplier to pair particle production 6 sF glssil prmetri mpli(er 

F F F F F F F F F F F F F F F F F F F F F F F F F U ssF rmetri mpli(er in quntum mehnis F F F F F F F F F F F F F F F F F II sssF eltivity F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IV sF pield theory F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PI gonlusions F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F PT 2. Notion of separability Introduction 3. Geometry sF de itter spe F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F RQ ssF de itter group F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F RR sssF e0ne group F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F RS sF Erepresenttion F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F RW gonlusions F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F SQ
F F F F F F F F F F F F F F F F F IIQ ssF honon (eld F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IIT sssF yservles F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IIW sF e prtiulr systemD polritons F F F F F F F F F F F F F F F F F F F F F F F F IPQ gonlusions F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IPS 8. Dissipative phonons sF etions for dissiptive phonons F F F F F F F F F F F F F F F F F F F F F F F F F IPU ssF he dispersive se F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IQP sssF he dissiptive se F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IQS gonlusions F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IRR
9. Dissipative condensates sF he physil system nd the equtions of motion F F F F F F F F F F F F F F F IRU ssF he sttionry stte F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F IRV sssF honon pir prodution y sudden modultion

F F F F F F F F F F F F F F ISU gonlusions F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F ITT
10. Separability of analogue black hole radiation

sF he system F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F ITW ssF homins of nonseprility F F F F F F F F F F F F F F F F F F F F F F F F F F IUS

Introduction

huring the xx th enturyD two fundmentl theories were proposedF hey desrie the world in dul nd pprently inomptile wyF hese re quntum mehnis nd generl reltivityF heir merging ould provide us uni(ed theory of the universeF nE fortuntelyD lnk sle !iFeFD the sle uilt with the fundmentl onstnts of quntum mehnis nd generl reltivity! physis is tody experimentlly out of rehF roweverD quntum prtiles propgting in lssil grvittionl (eld is (rst step towrds this theoryF uh semiElssil theory is similr to wht ws done in the eginning of qunE tum mehnisD when quntum eletrons were propgting in lssil eletromgneti (eldF uh theory ws neessrily inomplete ut gve irth to mny interesting feE tures nd in prtiulr to the lser e'etF huring the erly yers of studying quntum prtiles in the presene of lssil grvittionD one of the most ounter intuitive phenomenon tht ws predited ws the rwking rdition rwUSF st omes from the retion of pirs of quntum prtiles out of vuum in the viinity of n event horizonD whih delimits lk holeF snsted of nnihiltingD s it would e the se in the sene of lk holeD it hppens tht one of the two prtiles hs positive energy nd is emitted towrds in(nityD while the other one hs negtive energy @totl energy is onservedA nd flls into the lk holeF he lk hole thus e'etively emits therml )ux of prtiles @if these re mssiveD the ones with insu0ient energy fll k into the lk holeD while the others reh in(nityAF st turns out tht this phenomenon is not spei( to lk holesF sndeedD s ws shown y F nruh in IWUT nrUTD if prtile detetor is pled in vuum nd elertedD it will see its environment s if it were thermlly popultedF woreoverD if seond prtile detetor is pled t restD it will interpret eh prtile detetion of the (rst detetor s prtile emissionF his phenomenon n e understood quite s rwking rditionX the vuum ontins virtul pirs of prtilesF he one of negtive restEenergy is sored y the detetor @in his frmeD this prtile hve positive energyA nd the one of positive restEenergy is emitted towrds in(nityF e third similr exmple is pir prtile prodution rTW in non sttionry speE time @eFgFD in expnsionAF he modultions of the geometry rings energy tht llows virtul pirs of prtiles present in the vuum to eome relF gontrry to the previous sesD in this seD oth prtiles hve positive energyF prom n experimentl point of viewD the three e'ets re fr out of rngeF por exmE pleD lk hole emitting lot of prtiles would emit therml )ux with temperture I P INTRODUCTION of the order of µKF st is thus indistinguishle from the osmologil kground t temperture of 2.7KF por the nruh e'etD given humnly erle elertionD the expeted temperture should e of the order of 10 -20 KF por proton t the vrge rdron golliderD tking into ount the elertion in the p vities @with (eld strength of 5M V /mAD it should e of the order of few µKF he possiility of experimentlly verifying these theories ws rised y F nruh in IWVI nrVIF re notied tht sound wves in @nonErottionlA )uid re driven y the sme equtions of motion s slr (eld in urved speEtimeF sf the )uid possesses soni horizonD @ple seprting susoni from supersoni regionsAD then this horizon should ehve s reltivisti event horizonF es ll nlogiesD this one is limitedF he (rst limit onerns the dispersion reltionX in reltivityD ny prtile hs its energy nd momentum linked y E 2 = m 2 c 4 + c 2 P 2 F iven though this expression remins @pproximtelyA true for low moment wves @the previous expression is just ylor expnsionAD t lrge momentD its reks downD s the wvelength eomes so low tht the disrete hrter of the )uid is mnifestF he seond limit omes from quntum mehnis itselfX sound wve in )uid like wter is purely lssil ojetF his seond point hs een prtilly solved y the profusion of nlogue models tht were proposed @see efF fvII for n expliit listAD nd whih properties were loser to quntum mehnis thn sound wves wereF es n exmpleD we shll study foseEiinstein ondenstes nd polritonsD see rtF sssF gonerning the modi(tion of the dispersion reltionD no nlogue medium hs purely reltivisti dispersion reltionD minly euse of the ft tht it is omposed of tomsF st ws thus nturl to introdue non onventionl dispersion reltion in grvittionl ontextD nd thus to rek the lol vorenz invrineF his ws done in ovrint mnner y F toson gtWT introduing vetor (eldD the vuum expeE ttion vlue of whih is timelikeF st thus introdues preferred time whih orresponds in nlogue grvity to lortory timeF prom reltivisti point of viewD the next step is to onsider suh (eld s dynmilD s is the metri twHIF prom the point of view of ondensed mtterD the next step ws to introdue dissiption on top of dispersionF o do soD simpli(ed model ws introdued y F rentni rHUF prom logil point of viewD ny interting (eld with non reltivisti dispersion relE tion should get dissiptedF roweverD most of the studies re mde in free @non intertE ingA theories @the only interting theories in the presene of grvittion re not yet well known erIIAF st ws thus neessry to introdue dissiption in phenomenologil wyD so s not to introdue intertionsF yn the other hndD introdution of dispersion is motivted y reltivity itselfF snE deedD when tking the rwking resoningD nd when onsidering the pst of n emitted quntumD this quntum styed in the viinity of the lk hole sine its retionF end during ll this time it went through n exponentil redshiftF his redshift is so huge tht one seond efore its emissionD the wvelength of the quntum is million orders of mgnitude smller thn its (nl wvelength @for lk hole of the size of the sunAF his length is thus wy smller thn lnk length nd generl reltivity n not e onsidered s it stnds nd must e quntizedF roweverD s nnouned in the (rst prE grphD there is no theory of quntum grvittionF his is the trnsplnkin prolemF INTRODUCTION Q st turns out tht it is solved y dispersionX the quntum leves the viinity of the lk hole nd thus stops eing lueshifted @when going to the pstA when its wvelength is suh tht the dispersion reltion is no longer reltivistiFhis point shll e disussed in more detils in rtF ssF sn this thesisD we shll study the roustness of the rwking proess when introduing dispersion nd dissiption in reltivityF sn rtF sD we shll present the fundmentl onepts for the following prtsF o do soD we (rst onsider the lssil prmetri mpli(er nd quntize it until we rrive to pir prtile prodution in osmologyF henD in rtF ssD we shll look t the de itter speEtimeD introduing dispersion nd dissiptionF e shll then drw generi onlusions for rwking rdition nd @nlogueA lk holesF pinllyD in rtF sssD we shll turn towrds nlogue models nd study the in)uene of dissiption on dynmil gsimir e'et nd the onsequene of initil onditions on @nlogueA rwking rditionF Introduction hen studying quntum e'ets in urved kgroundD or their nlogue experimenE tlly essile ounterprtsD one noties tht most of the e'ets re lredy present in muh simpler ontextsF sndeedD rwking rdition nd pir prtile prodution re spontneous emissions due to the mpli(tion of quntum noise present in the vuumF e huge simpli(tion n e mde when the initil stte is not vuumF he e'et eomes mpli(tion of initilly present @eventully lssilA noiseF sf these stimulted proesses dominteD lssil desription of the theory is enoughF es onsequeneD some lssil systems ontin the preursor of rwking rdition of pir prtile proE dutionF his is the essene of the experiment of efF + IIF sn suh experimentD the lssil equivlent of rwking rdition is limed to e oserved s the mpli(E tion y n elerting @wterA )ow of n inoming wveF he outgoing wves re produed in pirs s would e the rwking )uxF prom the point of view of pir prtile produtionD lssil nlogue re even simpler sine swing in grden is enoughD see ghpF ID eF sF sn the (rst prt of this thesis we use this simpli(tion to developD for the non speilized redershipD the formlism nd the tools tht shll e used in the rest of this thesisF ghpF I progressively introdues notion of quntum (eld theory in urved speEtime nd gives n overview of the introdution of dispersion nd dissiptionF his is relly the edrok of the thesisF he gol of the hpter is not to give n overview of (eld theory nor reltivityF therD it fouses on onepts tht will e of gret use in the followingF he redership interested y deeper introdution to these sujets my red efsF vvUSDwUQ for reltivity or eiWTDWS for n introdution to quntum (eld theory in )t speEtimeF por quntum (eld theory in urved speEtimeD rther omplete nd ler overview is given y lWRD fwWSF ghpF P introdues the notion of seprility of quntum stte nd gives tools llowing to hrterize seprle sttesF rere ginD the gol is not to present eh notion in detilsF ome of the onepts re introdued rpidly nd the interested reder n onsult veoWUD wWSF S Introduction hen onsidering non sttionry systemD the temporl modi(tions of its prmeters rek energy onservtionF es n exmpleD hild sitted on swingD when he moves his legsD mkes the period of osilltions vryF re hene rings energy to the swing tht projets him higherF he simplest non sttionry system is the prmetri mpli(erF st is n hrmoni osilltor with timeEvrying frequenyF e shll here onsider (rst the lssil version of the prmetri mpli(erD then quntize itF efter introduing to reltivityD in eF sD we shll give quik view of the pir prtile prodution ourring in quntum (eld theoryF sn eh seD we shll see 1. Hamiltonian mechanics rmiltonin mehnis is wy to derive equtions of motion from (rst priniples in onservtive systemsF he proess onsists of two stepsF he (rst one (xes the kinemtis nd the seond one the dynmis of the systemF o (x the kinemtis of the systemD one (rst needs nonil quntities tht desrie ompletely the systemF sf the system hs n degrees of freedomD there re 2n quntitiesD nmely q i nd p i orresponding to the positions nd moment of ll degrees of freedomF he spe generted y these vriles is lled phse spe when it is endowed with iliner ntisymmetri form lled oisson rketsF hen the oisson rkets tke the form {A, B} = i ∂ q i A∂ p i B -∂ p i A∂ q i B where A nd B re ny funtions of the phse speD q i nd p i re lled nonilF yne n show tht ny other hoie of q i nd p i is nonil if nd only if {q i , q j } = {p i , p j } = 0 nd {q i , p j } = δ ij F he dynmis of the system is determined y the evolution in time of the di'erent q i nd p i F st is represented y prmetri urve (q i (t), p i (t)) in the phse speD for whih the urviliner oordinte is timeF ixperiments hve shown tht equtions of motion re of order twoF hen one knows ll the q i nd p i of system t instnt t 0 D its evolution is thus fully determinedF hereforeD there exists 2n funtions f i , g i whih depend on phse speD suh tht ny urve pssing through (q i , p i ) t time t should pss t (q i + f i dt, p i + g i dt) t time t + dtF sn generlD these funtions evolve in timeF hen it is not the seD the system is lled stationaryF e system is lled conservative when the noniity of the vriles is onserved through timeD iFeFD if (q i (t), p i (t)) is nonilD then (q i (t + dt), p i (t + dt)) lso isF sn suh seD one n show tht there exists funtion H lled the rmiltonin of the system suh tht qi = {q i , H}D ṗi = {p i , H}F hese re the equtions of motion of the systemF his implies tht for ny oservle O depending on nonil vriles nd time expliitlyD dO dt = ∂ t O + {O, H}. @IFIA sn generlD the rmiltonin H(q i , p i , t) depends expliitly on timeF roweverD when the system is sttionryD it depends on time only through the phse speF sn suh seD euse of iqF @IFIA pplied to O = HD the restrition of the rmiltonin to the solution of the eqution of motion H(q i (t), p i (t)) is onstntF his physilly orresponds to the energy of the systemF fy extensionD the energy of non sttionry system is the vlue of the rmiltonin H(q i (t), p i (t); t)F yne n solve the eqution qi = {q i , H} to extrt p i (q i , qi )F yne then de(nes the vgrngin y mking the vegendre trnsformtion of the rmiltoninX L(q i , qi ) . = i p i qi -HF yne n show tht the equtions of motion re then equivlent to

d dt ∂L ∂ qi = ∂L ∂q i . @IFPA V CHAPTER 1. PARAMETRIC AMPLIFIER & PARTICLE PRODUCTION
he form of iqF @IFPA is lled vgrnge equtions of motionF st is lso equivlent to extremizing the tion S = L(q i , qi )dtF he dvntge of the tion is tht it is unhnged when one prmetrizes time di'erentlyF 2. The system gonsider (rst mss m t the extremity of mssless springF uppose lso tht the rte of the spring depends on timeD so tht the system is prmetri mpli(erF uh system hs only one degree of freedom nd is ompletely desried y the position of the mss q nd its momentum pF he rmiltonin hene deomposes into the kineti prt p 2 /2m nd the potentil one k(t)q 2 /2 @the origin of the xis is suh tht q = 0 is the equiliriumAF st hene redsD with ω = k/mX H(t) = p 2 2m + mω 2 (t) 2 q 2 . @IFQA the equtions of motion dedued from suh rmiltonin re then ṗ = -mω 2 (t)q, m q = p. @IFRA his system eing liner nd of order twoD the spe of solutions is of dimension twoF st is then engendered y two pirs (q 1 , p 1 ) et (q 2 , p 2 )F qiven two of thoseD the quntity W .

= q 1 p 2 -q 2 p 1 @IFSA is lled ronskin of the system nd does not depend on time 1 F B. Particular cases 1. Adiabatic case e shll onsider here the diti seD iFeFD the se in whih ω vries slowly X ω ω 2 F henD the rel nd imginry prts of the omplex solution

q(t) = N e -i ω √ mω 1 + O ω ω 2 , p(t) = -iN √ mωe -i ω 1 + O ω ω 2 @IFTA
is se of solutionsF sn iqF @IFTAD x is normliztion onstntF he energy ssoited to the two solutions is identil nd vries with timeF st is equl to H(t) = N 2 ω(t)/2F he rtio

J . = H(t)/ω(t) = N 2 /2 1 + O ω ω 2 .
@IFUA is onstnt in the diti limit ω ω 2 F st is lled n diti invrintF 1. This is not a constant of motion since it mixes two dierent solutions I. CLASSICAL PARAMETRIC AMPLIFIER W 2. Asymptotic case e onsider here the importnt se where ω is onstnt for t → ±∞F he limits re lled respetively ω in nd ω f F fy hoosing the origin of timesD we n write the solution for initil times s

(q, p) ∼ t→-∞ A √ mω in sin[ω in t], A √ mω in cos[ω in t] , @IFVA
where A is normliztion onstntF henD t (nl timesD we will hve

(q, p) ∼ t→+∞ B √ mω f sin[ω f t + ϕ], B √ mω f cos[ω f t + ϕ] . @IFWA
he energy is then initilly E in = A 2 ω in /2 nd in the end E f = B 2 ω f /2F reneD the diti invrint is symptotilly

J in = A 2 2 , J f = B 2 2 @IFIHA
he rtio R . = J f /J in only depends on the detil of the evolution of ω(t)F he modi(tion of the energy of the system is hene due to oth the hnge in frequeny @diti prtA nd to the hnge in R @non diti prtAF 3. Example sn this prgrphD we onsider the se where ω is onstnt funtion for t = t 0 D ut hs sudden hnge t time t = t 0 F henD for t < t 0 D iqF @IFVA nd for t > t 0 D iqF @IFWA pplyF et t = t 0 D equtions of motion implies tht oth q nd p re ontinuousF yne dedues R = ω 2 in cos 2 ω in t 0 + ω 2 f sin 2 ω in t 0 ω f ω in . @IFIIA his mens tht the men mpli(tion @when t 0 is rndomA is (ω 2 in + ω 2 f )/2ω f ω in > 1F here is in generl mpli(tion for the diti invrintF he timeEreversiility is here lost y tking the verge on t 0 even though the system is time reversileF sndeedD for eh solution (q(t), p(t))D (q(-t), p(-t)) is solution of the reverse time evolution of the system ω(-t)F roweverD for oth evolutionsD the diti invrint inreses when time evolvesF st n hene e oneived s some sort of entropyF yne n note tht if one mkes seond sudden hnge fter time ∆t tking k the vlue of ω to its initil vlueD the men vlue @with respet to t 0 A of the mpli(tion of the diti invrint is for ny vlue of ∆tX

R t 0 = (ω 2 f + ω 2 in ) 2 4ω 2 f ω 2 in > 1. @IFIPA
por olletion of non orrelted prmetri mpli(ersD suh cyclic opertion leds to energy mpli(tionF IH CHAPTER 1. PARAMETRIC AMPLIFIER & PARTICLE PRODUCTION q p pigure IFIX ivolution of the phse spe in the se of n diti evolution of ωF tte goes slowly from the yellow elE lipse to the red oneD onserving the totl reF q p pigure IFPX ivolution of the phse spe in the se of sudden hnge of ωF tte hnges suddenly from one elE lipse to the otherF 4. Phase space diagram feuse the system is ompletely desried y two quntities q, pD we n plot the trE jetory in the plne q, pF es sid eforeD the evolution of the system is urve leled y timeF sn the se of the hrmoni osilltorD the urve is simply n ellipse nd the time neessry to mke one turn is the period of the system 2π/ωF hen onsidering the diti limitD see pigF IFID the ellipse is slowly deformed nd its re remins onstntF his is euse the re of the ellipse is proportionl to the diti invrintF sn the se ω is symptotilly onstntD the phse spe will e omposed of two ellipses orE responding to initil nd (nl sttes nd some pth linking one to the otherF hen the hnge is suddenD the length of this pth is null nd the two ellipses touh eh otherD see pigF IFPF 5. Canonic base and Bogoliubov transformation.

e shll here mke ompletely forml study in order to prepre qunti(tionF ther tht deomposing q on trigonometri funtionsD we shll onsider omplex q nd de(ne nonil se through the positivity of the frequeny in the exponentilF reneD for II. PARAMETRIC AMPLIFIER IN QUANTUM MECHANICS II hrmoni osilltor @ω is onstntAD (q, p) can . = e -iωt √ 2mω , -i mω/2e -iωt . @IFIQA he other element of the se will e the omplex onjugte of the (rstF his se is suh tht the ssoited ronskin is equl to -iF hen onsidering the prmetri mpli(erD nd in the se where it is symptotilly sttionryD we n de(ne two privileged sis ording to whether they re nonil for symptotilly low or lrge timesX (q, p) in ∼ t→-∞ (q, p) can , (q, p) f ∼ t→+∞ (q, p) can @IFIRA hese two sis re then linked y fogoliuov trnsformtion fogRUX (q, p) in = α(q, p) f + β [(q, p) f ] * . @IFISA ronskin onservtion then implies |α| 2 -|β| 2 = 1F woreoverD ronskin n e viewed s iliner form (q 1 , p 1 ), (q 2 , p 2 ) KG = -i(q 1 p * 2 -q * 2 p 1 ). @IFITA his form hs ll the properties of slr produtD exept for positivityF es n exE mpleD the produt of two solutions is time independent nd nonil modes form n orthonorml seF reneD we (nd k the fogoliuov oe0ients throughX α = (q, p) in , (q, p) f KG , β = (q, p) in , [(q, p) f ] * KG . @IFIUA he notion of fogoliuov trnsformtion is thus entirely lssilF woreoverD it is possile to show tht during time evolutionD the mpli(tion of the diti invrint is ounded y

(|α| -|β|) 2 ≤ R ≤ (|α| + |β|) 2 .
@IFIVA II. Parametric amplier in quantum mechanics e shll onsider now the quntiztion of the prmetri mpli(erF he nonil qunE tiztion proedure of system onsist in onverting ll oservle nd nonil vriles to opertors ting on some stteF woreoverD the noniity of vriles now trnsltes in ommuttors @[q, p] = i A insted of oisson frketsF wore detils will e given in ghpF PD eF sF eF A. Schrödinger representation 1. General considerations es for its lssil versionD the quntum prmetri mpli(er hs only one degree of freedomF sts rmiltonin is rermitin opertor qudrti in the opertors position IP CHAPTER 1. PARAMETRIC AMPLIFIER & PARTICLE PRODUCTION q nd momentum pF sts expression is identil to iqF @IFQAF he hrödinger eqution reds

i ∂ t |Ψ(t) = Ĥ(t) |Ψ(t) = p2 2m + mω 2 (t) 2 q2 |Ψ(t) . @IFIWA
ine the rmiltonin expliitly depends on timeD there exist no sttionry stteF st is then neessry to use di'erent pproh from the usul one using deomposition into sttionry sttesF o do soD let us onsider the mtrix element of nonil opertors

q el (t) = Ψ 1 (t)| q |Ψ 2 (t) , p el (t) = Ψ 1 (t)| p |Ψ 2 (t) , @IFPHA
where |Ψ 1,2 (t) re two solutions of iqF @IFIWAF feuse of the hrödinger equtionD these quntities re solution of the lssil equtions of motion see iqF @IFRAD iFeFD m q el = p el , ṗel = -mω 2 (t)q el . @IFPIA ell the onlusions of eF s hene pplyF sn prtiulrD the diti solutions nd the mpli(tion re the smeF 2. Harmonic oscillator hen the frequeny ω is onstnt in timeD we re fing the usul hrmoni osilltorF e n then deompose the stte on sis of sttionry sttes

|Ψ(t) = n c n e -iEnt/ |Ψ n @IFPPA
where |Ψ n is the solution of Ĥ |Ψ n = E n |Ψ n D nd E n = ω(n + 1/2) with n ∈ NF e note here tht energy is not disreteD sine it n reh ny vlueF ynly the rtio E/ωD iFeFD the diti invrint is disreteF reneD in the diti limit of the system the vlue of n will e onstntF sn lssil mehnisD this result ws non trivilF rereD it omes from the ft tht n is n integer tht vries slowlyF o mke link with the previous prgrphD we onsider the mtrix elements of (q, p) etween eigen sttes of the rmiltoninX

q k,l (t) = e i(E k -E l )t/ Ψ k | q |Ψ l , p k,l (t) = e i(E k -E l )t/ Ψ k | p |Ψ l .
@IFPQA euse they re solution of iqF @IFPIAD if |E k -E l | = ωD then q k,l (t) = p k,l (t) = 0F sing the rermitin hrter of q @q k,l = q * l,k A nd the nonil ommuttors l q k,l p l,m -p k,l q l,m = -i δ k,m D we show tht up to phse de(ning origin of timesD q k,l (t) = k 2mω δ k-l-1 e iωt + l 2mω δ k-l+1 e -iωt F e now de(ne the retion nd nnihiltion opertors through their tion of sttionry sttesX

â † |Ψ n = (n + 1) |Ψ n+1 , â |Ψ n = √ n |Ψ n-1 . @IFPRA
q k,l then simply reds in term of those opertors nd the funtions de(ned in iqF @IFIQAX q k,l (t) = (â † ) k,l q * can + âk,l q can , p k,l (t) = (â † ) k,l p * can + âk,l p can . @IFPSA II. PARAMETRIC AMPLIFIER IN QUANTUM MECHANICS IQ hen hoosing non sttionry sttes |Ψ 1,2 (t) of the form of iqF @IFPPAD q el nd p el then deompose on the sis of q k,l nd p k,l F ih term is then either proportionl to q can nd orresponds to lowering the energy of the system @it only ontins opertors âAD or it is proportionl to q * can nd orresponds to inresing the energy of the systemF his justi(es the de(nition we used in iqF @IFIQAF woreoverD the opertors â n e expressed in term of nonil opertorsD s â = mω 2 q + i p √ 2mω F he rmiltonin thus reds in term of these opertors

Ĥ = ω â † â + ââ † 2 . @IFPTA
3. Representation position por ompletenessD we give here for the interested reder the expressions of opertors nd sttes in the representtion positionF sn this representtionD the stte is desried y spe dependent wve funtion |Ψ(t) ≡ ψ(q, t)F he opertor q orresponds to multiplition y q nd the opertor p orresponds to derivtion with respet to qX q |Ψ(t) ≡ qψ(q, t), p |Ψ(t) ≡ -i ∂ q .ψ(q, t) @IFPUA he slr produt is the integrtion on ll rel vlues of qF iigen sttes |Ψ n re then proportionl to rermite polynomils H n F hey re equl to

ψ n (q, t) = 1 √ 2 n n! ( mω π
) 1/4 H n mω q e -mω 2 q 2 e -iω(n+1/2)t . @IFPVA woreoverD the opertor â isX

â ≡ mω 2 q + ∂ q √ 2mω = - √ 2mω e -mω 2 q 2 ∂ q e mω 2 q 2 , â † ≡ mω 2 q - ∂ q √ 2mω = √ 2mω e
mω 2 q 2 ∂ q e -mω 2 q 2 . @IFPWA B. Heisenberg representation sn some sesD it is useful to modify the wy we see opertors nd sttesF o do soD we notie tht neither sttes nor opertors hve ny physil meningF ynly the omintion Ψ(t)| Ô |Ψ(t) D where Ô is some rermitin opertorD hs physil mening nd n e mesuredF st is then possile to trnsfer the time dependene of the stte to the opertors without modifying ny physil predition of the theoryF his is the ide of the reisenerg representtion 1. Evolution operator e should (rst notie tht the hrödinger iqF @IFIWA is (rst order liner equtionF reneD it is nlytilly solvle nd the solution reds formlly 

Ĥ

where Texp is the time ordered exponentilX

Texp i t t 0 Ĥ = n i n t>t 1 >•••>tn>t 0 dt 1 • • • dt n Ĥ(t 1 ) • • • Ĥ(t n ). @IFQIA
he opertor Û is then unitry euse the rmiltonin is hermitinF he expression of physil quntity n hene e deomposed sX

Ψ(t)| Ô |Ψ(t) = Ψ(t 0 )| Û † (t; t 0 ) Ô Û (t; t 0 ) |Ψ(t 0 ) = Ψ(t 0 )| Ô(t; t 0 ) |Ψ(t 0 ) @IFQPA
where Ô(t; t 0 ) = Û † (t; t 0 ) Ô Û (t; t 0 )F his opertor is solution of the di'erentil eqution

i d Ô(t) dt = [ Ô(t), H],
@IFQQA where H . = Û † (t; t 0 ) Ĥ(t) Û (t; t 0 ) is modi(ed version of the rmiltoninF e formlly pss from Ĥ to H y repling every opertor y its version in reisenerg representtionF woreoverD the ommuttors of q(t) nd p(t ) re no longer nonilF ynly the equl time ommuttors re nonil [q(t), p(t)] = i F he min dvntge of reisenerg representtion is its similrity with lssil theoryF gompre for instne iqF @IFQQA with iqF @IFIAF woreoverD opertors oey the sme equtions s the mtrix elements see iqF @IFPIAF 2. Back to the parametric amplier por the prmetri mpli(erD the rmiltonin in reisenerg representtion H reds see iqF @IFQA H = p(t) 2 2m + mω 2 2 q(t) 2 . @IFQRA he equtions of motion in reisenerg representtion see iqF @IFQQA then red for the prmetri mpli(er ), H(t)] = -mω 2 q(t). @IFQSA whih is the opertor version of iqF @IFPIAF sn the se of the hrmoni osilltorD the solutions re simply the exponentils introdued in iqF @IFIQAF sing iqF @IFPSA to (x the normliztionD we get q(t) = âq can (t) + â † q * can (t), p(t) = âp can (t) + â † p * can (t). @IFQTA e emphsize tht opertors â nd â † do not depend on time nd were de(ned in iqF @IFPRAF por the prmetri mpli(erD it is impossile to de(ne meningful retion nd nE nihiltion opertorsF roweverD if ω is symptotilly onstnt in timeD it is possile to II. PARAMETRIC AMPLIFIER IN QUANTUM MECHANICS IS de(ne two sis of opertorsX one for smll timesD nd one for lrge timesF e hve then two possile deompositionsX (q(t), p(t)) = âin (q, p) in + â † in [(q, p) in ] * = âf (q, p) f + â † f [(q, p) f ] * @IFQUA he fogoliuov trnsformtion of nonil modes iqF @IFISA thus trnsripts to the retion nd nnihiltion opertorsX âf = αâ in + β * â † in . @IFQVA his trnsformtion quires here ll its physil senseF st is similr to the trnsformtion ourring during re)exionGtrnsmissionF sndeedD in suh seD we hve âin = râ reflected + tâ transmitted F he inoming ry then uts into re)eted prt nd trnsmitted prtF ine ll opertors re destrution opertorsD unitrity imposes |r| 2 + |t| 2 = 1F rereD on the other hnd euse iqF @IFQVA mixes retion nd nnihiltion opertorsD unitrity imposes |α| 2 -|β| 2 = 1F es onsequeneD the outgoing )ux ontins more qunt of energy thn the inoming )uxF 3. Ground state e now hve every tool to express the initil ground stte |Ψ 0 in fter the evolution of the systemF he ground stte is hrterized y âin |Ψ 0 in = 0. @IFQWA st then deomposes on the sis of (nl eigenEsttes @iFeFD

q(t) = 1 i [q(t), H(t)] = p(t) m , ṗ(t) = 1 i [p(t
|Ψ n f = (â † f ) n |Ψ 0 f ) s |Ψ 0 in = n c n (â † f ) n |Ψ 0 f = Ŝ |Ψ 0 f
where Ŝ is some unitry opertorF sing fogoliuov trnsforE mtion to express âin in term of (nl opertorsD iqF @IFQWA gives α * âf -

β * â † f Ŝ |Ψ 0 f = 0F sing âf |Ψ 0 f = 0D it simpli(es into [â f , Ŝ] - β * α * â † f Ŝ |Ψ 0 f = 0. @IFRHA e n onsider Ŝ s funtion of â † f F e then hve [â f , Ŝ] = n nc n (â † f ) n-1 = S (â † f ) is the derivtive of ŜF rene Ŝ (â † f ) -β * α * â † f Ŝ(â † f ) is funtion of â † f nd is identilly 0 euse of iqF @IFRHAF reneD we hve Ŝ(â † f ) ∝ e β * 2α * â † f â †
f F he proportionlity oe0ient is then (xed y the normliztion of the stteF o summrizeD we hve

|Ψ 0 in = 1 |α| e β * 2α * â † f â † f |Ψ 0 f . @IFRIA
he ground stte then gets exited y the time evolutionF sts men energy level is fter evolution pigure IFQX epresenttion of the igner funtion for di'erent timesF he iniE til ellipse orresponding to W (q, p) = 1/10W max is moved nd deformed s time evolvesF he lssil trjetory @dottedA orresponds to W (q, p) = W max F por n initilly exited stteD we hve

n f . = Ψ 0 | in â † f âf |Ψ 0 in = |β|
n f = Ψ n | in â † f âf |Ψ n in = n in + 2 |β| 2 n in + |β| 2 . @IFRQA
he third term is the spontneous exittion from vuumF he (rst term is the iniE til vlue of the diti invrintF he middle term then orresponds to stimulted emissionX ih initil quntum of energy hs proility |β| 2 to rete two qunt of energyF hese ones re neessrily produed y pirsF sndeedD we n show tht if n -m is oddD Ψ m | f |Ψ n in = 0F he vuum ehves s if it n lend 1/2 quntum of energy nd get it k fter the time evolutionF his ehvior is ommonly interpreted s retion of virtul quntumF 4. Wigner function o desrie some quntum stteD there exists n equivlent to the phse spe digrms tht is representtion of the igner funtionF fefore de(ning the igner funtionD we need (rst to de(ne the qudrture sttes |q tht re the eigenstte of the opertor q nd ssoited to the eigenvlue q X q |q = q |q 2 F henD we de(ne the igner funtion of stte |Ψ(t) in hrödinger representtion through W (t; q, p) . = 1 2π dx q -x/2|Ψ(t) Ψ(t)|q + x/2 e ipx @IFRRA hysillyD this funtion orresponds to qusiEproility distriution in phse speF sn pigF IFQ we represented n initilly qussin oherent stte nd its time evolutionF et eh timeD the igner funtion is qussin funtionF e represented the ontour line orresponding to W (q, p) = W max /10 t di'erent timesF he dotted line orrespond to lssil motionF e see tht the ontour line is n ellipse tht gets deformed s time pssesF feuse it gets squeezedD the (nl stte is lled squeezed oherent stteF 2. These states are represented by δ functions in representation position. Moreover, ψ(q, t) = q|Ψ(t) . IU 5. Dissipation sn this susetion we rie)y introdue dissiption in mnner similr to VWF o do so y onserving the linerity of equtions of motionD we ouple the prmetri mpli(er to some ontinuum of hrmoni osilltorsF hen doing soD the totl rmiltonin reds in reisenerg representtion

H = p(t) 2 2m + mω 2 2 q(t) 2 + dζ pζ (t) 2 2 + ω 2 ζ 2 qζ (t) 2 + g ω ζ πdω ζ /dζ
qζ q @IFRSA iqutions of motion for the hrmoni osilltor red qζ + ω 2 ζ qζ = -gω ζ q. @IFRTA essuming tht q 0 ζ is solution of the homogeneous orresponding eqution @g = 0A tht mthes the solution initillyD the generl solution reds

qζ = q0 ζ -dt θ(t -t ) sin ω ζ (t -t ) ω ζ g ω ζ πdω ζ /dζ q(t ) @IFRUA
hen we injet this in equtions of motion for the prmetri mpli(erD we get

m q = p, ṗ = -mω 2 q -dζg ω ζ πdω ζ /dζ q0 ζ -g 2 q.
@IFRVA he g 2 q term is the term tht indues dissiptionF st is lol euse the oupling is hosen proportionl to ω ζ / dω ζ /dζF sn lssil mehnisD this orresponds to frition foreX when q 0 ζ = 0 is the trivil solutionD the system is then equivlent to some non onservtive systemF sn quntum mehnisD one n no longer ssume q0 ζ = 0D sine the ommuttor [q 0 ζ , p 0 ζ ] = -i F he term proportionl to q0 ζ is the term tht is neessry so tht unitrity of the whole system is preservedF 6. Coupled parametric ampliers sn order to prepre eF sD we onsider here system of oupled prmetri mpli(ersF por simpliityD we put them on the sme line so tht we hve one dimensionl systemF he rmiltonin of suh system reds

H = i p 2 i 2m + mω 2 (t) 2 q 2 i + m i,j
k i,j (t)(q i -q j ) 2 . @IFRWA sn the most generl seD the fogoliuov trnsformtion etween initil nd (nl stte redsD in term of mtries a i,f = j α i,j a j,in + β i,j a † j,in , @IFSHA nd unitrity is expressed though mtrix eqution αα † -ββ † = 1F

IV CHAPTER 1. PARAMETRIC AMPLIFIER & PARTICLE PRODUCTION hen eh of these osilltors is only oupled to its losest neighorD in the ontinuum limitD nd with prmetri mpli(er9s density ρ(z)dzD rmiltonin eomes H = dzρ(z) p(z) 2 2m + mω 2 (t) 2 q(z) 2 + mc 2 (z)(∂ z q) 2 . @IFSIA st redsD when mking the nonil trnsformtion φ = √ mqD π = p/ √ mX

H = dzρ(z) π(z) 2 2 + ω 2 (t) 2 φ(z) 2 + c 2 (∂ z φ) 2 . @IFSPA

III. Relativity

e mke here rek in our study of prmetri mpli(ers to study the sis of generl reltivity @qAF his is not q in the strit sense sine we do not study the in)uene of mtter on geometryF therD we wish to onsider urved geometry nd mtter living on itF A. Special relativity 1. Notion of space-time peil reltivity is sed on two ssumptionsF he (rst one is the reltivity prinipleF st sttes tht the results of n experiment do not depend on the inertial referene frme it is mde inF e referene frme is lled inertil when every free prtile hs onstnt speedF e referene frme moving t onstnt speed with respet to some inertil referentil is hene itself inertilF he seond ssumption is the ft tht there exist mximum speed in the universeF e ll c this mximum speedF feuse of the (rst ssumptionD it hs the sme vlue in ll inertil referentilF es resultD if in n inertil frmeD two points x = (t, x) nd x = (t , x ) re suh tht (x -x ) 2 -c 2 (t -t ) 2 = 0D it will remin so in ny inertil frme @sine we go from one point to the other using mximl speedAF e nme distne etween two in(nitely lose points ds de(ned y

ds 2 = dx 2 -c 2 dt 2 .
@IFSQA yne n show from homogeneity of spe tht the distne is the sme in every inertil referene frmeF e then hve three types of distne X space-like if ds 2 > 0D time-like if ds 2 < 0 nd light-like if ds 2 = 0F he ssumption tht there is mximl veloity trnsltes in the ft tht the trjetory of ny prtile is neessrily timeElike or lightE likeF vet x(t) e the @timeElikeA trjetory of prtile in some inertil referene frmeD nd v . = dx/dt its veloity in this frmeF henD long the trjetoryD ds 2 = -(c 2 -v 2 )dt 2 F 2. Action, energy, momentum por reltivisti prtileD the tion does not depend on the referene frmeF his is generliztion of the independene of the tion through reprmetriztion of timeD III. RELATIVITY IW see eF sF eF ID nd onsequene of the reltivity prinipleF feuse ds is the only invrintD it reds S = -mc √ -ds 2 where m is onstnt nd the integrl runs long the trjetory of the prtileF he tion hene hs the form in some inertil frme S = -mc √ c 2 -v 2 dtF reneD momentum nd rmiltonin red in tht frme

p = δS δv = m v 1 -v 2 /c 2 , H = pv + mc √ c 2 -v 2 = mc 2 1 -v 2 /c 2 , @IFSRA
nd the equtions of motion re m ṗ = 0F sn the limit of low veloityD E ∼ mc 2 + p 2 /2mF e here reognize tht m is the mss of the prtileF woreoverD we see tht

E 2 -p 2 c 2 = m 2 c 4 . @IFSSA
his is the reltion etween energy nd momentum in speil reltivityF st remins true in every inertil frmeF por mssless prtilesD the reltion eomes E 2 = p 2 c 2 D whih implies tht v = c nd ds = 0F hey thus follow lightElike trjetoriesF B. General relativity 1. Manifold sn generl reltivityD the reltivisti priniple is extended to the equivlene prinipleF st sttes tht the e'ets of grvittion re locally not di'erent thn e'et of elertionF sn n elerting frmeD the distne etween two points is no longer given y iqF @IFSQAD ut is still qudrti funtion of IEforms dx nd dtF he right onept for generl reltivity is hene the onept of mnifoldF e mnifold is some spe tht looks lolly like winkowski spe desried y the metri of iqF @IFSQAF he distne is generlly given with the help of the metri g µν though

ds 2 = g µν dx µ dx ν , @IFSTA
where summtion over ll repeted indexes µ, ν is impliit nd where x µ = (t, x)F e oordinte trnsformtion should not hnge ds 2 F fut sine

dx µ = Λ µ ρ dx ρ @with Λ µ ρ = ∂ x ρ x µ AD we lso need to hve g µν (x )Λ µ ρ Λ ν σ = g ρσ (x)D or equivlentlyD g µν (x ) = g ρσ (x)(Λ -1 ) ρ µ (Λ -1
) σ ν F yjets tht trnsform like dx µ re lled vetorsF yjets tht trnsform like produt of dx nd g @eventully with ontrtionsA re lled tensorsF he rnk of the tensor is the numer of susript indexes @ovrintA nd of supersript indexes @ontrvrintAF he produt or ontrtion of tensors is lso tensorF 2. Covariance sn order to uild theory tht do not depend on oordinte system tht we hoseD we need it to e covariantD so tht its equtions of motions re slrs @tensors of rnk 0AF ine they generlly ontin derivtivesD we need the notion of ovrint derivtiveD iFeFD suh tht the derivtive of tensor is still tensorF e will note ∇ µ the ovrint derivtiveF st shll hve ll properties of derivtives @veiniz rule nd linerityAF yrdinry PH CHAPTER 1. PARAMETRIC AMPLIFIER & PARTICLE PRODUCTION derivtives of slr is tensorF reneD on slrsD we hose ∇ µ = ∂ µ F 3 he ovrint derivtive of ny tensor n then e de(ned from the one of vetor using veiniz rule @∀e, e ν ∇ µ T ν = ∂ µ (T ν e ν ) -T ν ∇ µ e ν for exmpleAF woreoverD given sis onstnt e µ i @suh tht ∂ ν e µ i = 0D the ovrint derivtive of ny vetor @V µ = i a i e µ i A reds

∇ ν V µ = ∂ ν V µ + i a i ∇ ν e µ i F he(ning the ghristo'el symols s ∀i, Γ µ νρ e ρ i = ∇ ν e µ i D we get ∇ ν V µ = ∂ ν V µ + Γ µ
νρ V ρ F wo more onditions will e imposed to our ovrint derivtiveD so tht it is uniqueX st shll e metri @iFeFD ∇ µ g νρ = 0A nd without torsion @iFeFD for ll slr ϕD ∇ µ ∇ ν ϕ = ∇ ν ∇ µ ϕAF hese two onditions impose tht

Γ µ νρ = 1 2 g µσ (∂ ν g ρσ + ∂ ρ g νσ -∂ σ g νρ ) . @IFSUA
en other notion tht is needed is the notion of ovrint volumeF sndeed the nive volume dx 1 • • • dx n @where n is the dimentionlity of speEtimeA is not onserved when mking oordinte trnsformtionF yn the ontrryD the invrint volume element is de

(ned y dV = √ -gdx 1 • • • dx n where g = g µ 1 ν 1 • • • g µnνn µ 1 •••µn ν 1 •••νn
is the determinnt of the metri nd is the fully ntisymmetri symol with 1•••n = 1F he interested reder n hek tht for ll slr funtion f D dV f does not depend on the hosen oordinte systemF

Test particle

e onsider here the trjetory of free prtile inside urved geometryF es in speil reltivityD its tion reds S = -mc √ -ds 2 F he trjetory is prmetrized y x µ (λ) where λ is prmeter of the trjetory nd the 4Eveloity of the prtile is vetor deE (ned y u µ = dx µ /dλF sing these nottionsD the tion reds S = -mc dλ √ -g µν u µ u ν F he vgrnge eqution of motion hene reds d dλ

g µν u µ √ -ds 2 = 0, @IFSVA or equivlentlyD notiing tht d dλ = u ρ ∂ ρ D u ρ ∂ ρ u µ + u σ u ρ g µν ∂ ρ g σν = u µ d dλ log( √ -ds 2 ).
@IFSWA e hoose λ to e the proper time τ of the prtile @de(ned y ds 2 = -dτ 2 A so tht g µν u µ u ν = 1F he rhs of iqF @IFSWA is then 0F woreoverD writing ∂ ρ g σν in term of ghristo'el symols nd reognizing ovrint derivtiveD eqution of motion tkes the form of geodesi equtionX

u ρ ∇ ρ u µ = 0. @IFTHA 3.
Because ∂ µ is a tensor when acting on scalars, a particular representation of a vector is V = V µ ∂ µ . A particular basis of vectors will then be identied to the dierent derivatives along each coordinates. Similarly, the covariant equivalent of vectors (or 1-form) are represented as U = U µ dx µ . Hence, the dierentials are a basis of 1-forms.
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pree prtiles in urved speEtime hene follow geodesiF hen hoosing oordinte systemD the term du/dτ orresponds to the elertion of the prtile nd the term Γ µ νρ u ν u ρ orresponds to the grvittionl fore divided y the inertil mssF e see here tht oth inertil nd grvittionl mss re neessrily equlF IV. Field theory A. Local Lorentz invariant theory 1. Free eld in at space-time fefore onsidering (eld theoryD let us onsider system of N identil free prtiles @reltivisti or notAF he rmiltonin of suh system is

H N = E n D where E n is funtion of p n D momentum of the n th prtileF st is its kineti energy @E n = p 2 n /2m if the prtile is not reltivistiD nd E n = mc 2 1 + p 2 n /m 2 c 2 if it
is reltivistiAF e onvenient sis to desrie @ representtion ofA the quntum sttes is the eigenvetors of momentum opertor pn |Ψ pn n = p n |Ψ pn n F e sis for sttes of the whole system is then tensor produt of suh 1Eprtile stteF feuse ll prtile re identilD stte should e identi(ed to itself when inverting two of the prtilesF hey re thus linked y phseF he only representtions from permuttion group to phse U (1) re the trivil one nd the signtureF here will then e two kind of prtilesF he ones for whih the representtion is signture re lled fermionsF heir stte is ntiEsymmetri when inverting to prtilesF hen the representtion is the trivil oneD they re lled osonsF heir stte is symmetri when inverting two prtilesF prom now onD we shll only onsider osonsF he rilert spe desriing N osons is H N D engendered y symmetril tensor produt of |Ψ pn n hen the numer of prtiles is not (xedD the totl rilert spe desriing the stte is thus ⊕ N H N D nd the rmiltonin is the sum of H N D eh of whih t on H N onlyF roweverD this desription is not onvenient nd not prtilF por this resonD we introdue retion opertor a † pn tht retes prtile of momentum p n y a † pn |Ψ = (n pn + 1) |Ψ pn n ⊗ |Ψ D where the symmetriztion is impliit nd n pn is the numer of prtiles of momentum p n F gompre for exmple with iqF @IFPRAF sing suh de(nitionD one n show tht the rmiltonin reds @in ll H N nd thus in the totl rilert speA

Ĥ = pn E(p n )â † pn âpn F o void ponderous ourenes of D we introdue k = p/ nd a † k = a † p /
√ F sing suh opertorsD the quntum rmiltonin for system of free identil osonsD the numer of whih is not (xed redsD in the limit of in(nite volume @so tht momentum is ontinuous prmeterA

Ĥ = dkE(k)â † k âk . @IFTIA
sn order to reover nonil formlismD inspired from iqF @IFPSAD we introdue nonE dzπ 2 + φE 2 (i∂ z ) φF sf the prtile is reltivistiD the rmiltonin thus reds

il opertors φk . = â † -k +â k √ 2E(k) , πk . = i â † -k -â k √ 2/E(k) F heir nonil ommuttor is [ φk , πk ] = iδ(k -k )F
Ĥ = dz π(z) 2 2 + m 2 c 4 2 φ(z) 2 + 2 c 2 2 (∂ z φ) 2 . @IFTQA
feuse when onsidering reltivisti settingsD one n in priniple rete prtile out of energyD the totl numer of prtile in reltivisti quntum theory is not onserved nd the (eld theory eomes very relevntF feuse of similrities with iqF @IFSPAD suh system n e onsidered s unh of hrmoni osilltors oupled to their losest neighorsF 2. In a general space-time sn generl reltivityD equtions of motion must e written in ovrint wy @indepenE dently of ny hoie of oordinte systemAF e lredy sw tht the rmiltonin is not ovrint ut tht the tion isF feuse (elds re funtions of speEtime @the tion is only de(ned in reisenerg representtionAD we write the tion s S = dx √ -gL where L is the vgrngin density nd is slrF es in the vegendre trnsformtionD we hve L = π∂ t φ -HD where H is the rmiltonin densityF he vgrngin density then reds for free (eld in )t speEtime

L = (∂ t φ) 2 2 - c 2 2 (∂ z φ) 2 - m 2 c 4 2 2 φ2 , @IFTRA nd in ovrint wy s L = -c 2 2 g µν ∂ µ φ∂ ν φ - m 2 c 4 2 2 φ2 , @IFTSA
where g µν is the inverse of the metri g µν g νρ = δ ρ µ D nd g µν dx µ dx ν = -c 2 dt 2 + dz 2 see iqF @IFSQAF uh n expression llows to immeditely generlize to urved speEtimeF sn the se of miniml oupling4 D the tion for free slr (eld in urved metri reds

S = -1 2 cdtdz √ -g g µν ∂ µ φ∂ ν φ + m 2 c 2 2 φ2 . @IFTTA
prom suh n tionD the equtions of motion red

1 √ -g ∂ ν √ -gg µν ∂ µ φ + m 2 c 2 φ = 0. @IFTUA PQ (1/ √ -g)∂ ν √ -gg µν ∂ µ = ∇ µ ∇ µ @
where ∇ is the ovrint derivtiveA is the h9elemert opertor ssoited to the urved speEtimeF nder this formD the equtions of motion re trivilly ovrintF woreoverD fter we hoose oordinte systemD the metri deomposes into ds 2 = -N 2 c 2 dt 2 + g ij (dX i + N i dt)(dX j + N j dt)D where we introdued the lpse N nd the shift N i D nd where indexes i, j run on spe vrilesF he nonil momentum ssoited to φ is then

π = δL δ∂ t φ = 1 N 2 ∂ t φ - N i N 2 ∂ i φ @IFTVA
nd the rmiltonin reds

H = 1 2 dz √ -g c (N π + N i /N ∂ i φ) 2 + c 2 g ij ∂ i φ∂ j φ + m 2 c 4 2 φ2 @IFTWA
where g ij is the spe omponent of g µν @it is not the inverse of g ij AF por the rmiltonin de(ned in iqF @IFTWA to e onserved energyD speEtime needs to e sttionry @iFeFD there needs to exist timeElike uilling vetor 5 A nd tht the uilling vetor reds in the hosen oordinte system K t = ∂ t F hen this uilling vetor is timeElike in ll speEtimeD we n hose the spe oordintes suh s g ij e positive de(niteF his implies tht the rmiltonin is ounded from elow nd the system is stleF hen it is no longer the seD the hyperEsurfe de(ned y K µ t K ν t g µν = 0 @iFeFD suh tht K t is no longer timeElikeA is lled uilling horizonF his geometry is the one for sttionry lk holeF sn this seD the rmiltonin is no longer positive opertor nd n energetic instility n ourD iFeFD there exist some negtive energy sttesF his energetic instility is responsile for the emission of prtile )ux y the lk holeF his is rwking rditionF 3. In cosmology en other se where we n de(ne preferred time is when spe is homogeneous nd isotropiD s in osmologyF sn suh seD homogeneity implies the existene of 3 uilling vetors generting the trnsltions in speF ime is then generted y the vetor orE thogonl to these threeF sn osmologyD spe is (lled y )uid @the prtiles of whih eing lustersAF he preferred referentil is then the one in whih the )uid is t restF reneD the @omoileA time is the time for n oserver t rest with respet to the )uidF essuming one dimensionl speD the speEtime metri reds

ds 2 = -c 2 dt 2 + a(t) 2 dz 2 , @IFUHA
where a is the sle ftor nd is funtion of timeF iqF @IFUHA de(nes priedmnE vemîtreEoertsonElker @pvA speEtimeF feuse there exists preferred timeD we n express the rmiltonin nd nonil momentum ssoited to itF st does not 5. Killing vectors are generators of symmetries of space-time. See Chap. 3, Sec. II. A for a more accurate denition.
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hve extly the form of prmetri mpli(er euse of the preftor √ -g = acF st is however possile to onsider the renormlized (eld φ = √ a φF he vgrngin for suh (eld reds

L = 1 2 dz(∂ t φ) 2 - c 2 a 2 (∂ z φ) 2 - m2 c 4 2 φ2 -∂ t H φ2 /2 , @IFUIA where m2 c 4 = m 2 c 4 -(H/2) 2 -∂ t (H/2
) nd H = ȧ/a is the rule prmeterF he lst term is totl derivtive nd shll ply no role in the equtions of motionF he nonil momentum ssoited to φ is then

π = δL δ∂ t φ = ∂ t φ @IFUPA nd the rmiltonin H = 1 2 dz π2 + c 2 a 2 (∂ z φ) 2 + m2 c 4 φ2 reds in pourier omponentsX H = 1 2 dk |π k | 2 + ω 2 k φk 2 . @IFUQA rereD ω 2 k = m2 c 4 / 2 + c 2 k 2 /
a 2 depends on timeF e hene hve olletion of @omplexA prmetri mpli(er leled y kF reneD y similr resoning thn the one leding to iqF @IFQUAD we get

φk = âin k φ in k + (â in -k ) † φ in k * = âf k φ f k + (â f -k ) † φ f k * , @IFURA where φ in/f k ∼ t→±∞ e -iω k t / √
2ω k re the nonil modes for initil nd (nl timesF he fogoliuov @IFQVA trnsformtion then reds

âf k = α k âin k + β * k (â in -k ) † . @IFUSA
woreoverD the initil vuum is expressed in term of (nl sttes see iqF @IFRIAX

|0 in = k>0 1 |α k | e β * k α * k a † k a † -k |0 f . @IFUTA
here hve een here prodution of pirs of prtiles preserving homogeneity nd isotropy of speF he density of prtiles of momentum etween k nd k + dk is n k dk where

n k . = 0| in (â f k ) † âf k |0 in = |β k | 2 . @IFUUA
hese prtiles hve een reted y the evolution of speEtimeF he seond quntity tht hrterizes the stte nd tht shll e of gret use in ghpF P is the term de(ned y sn this setion we wish to rek lol vorentz invrine y introduing non reltivisti dispersion reltionD eFgFD E 2 = m 2 c 4 +c 2 2 k 2 +k 4 /Λ 2 F he motivtions hve een given in the introdution nd ome oth from nlogue grvity side nd from the trnsplnkin prolemF roweverD ny non reltivisti dispersion reltion reks vorentz invrineD implying the existene of privileged frmeF sn order to keep the full ovrine of the theoryD we introdue timeElike unit vetor (eld uF o keep seond order in time nd liner equtions of motionD the tion for the slr (eld is neessrily of the formD see eFgFD twHID

c k . = 0| in âf -k âf k |0 in = α k β * k . @IFUVA st qunti(
S = 1 2 cdx √ -g (u µ ∂ µ φ) 2 -φf (∇ µ ⊥ µν ∇ ν , [∇ µ , u µ ], (u µ ∇ µ u ν )∇ ν )φ @IFUWA
where ⊥ µν . = g µν -u µ u ν is the spe prt of the metri nd ∇ µ is the ovrint derivtiveF sn the reltivisti seD f (x, y, z) = m 2 -c 2 xF he (rst rgument of f is term introduing dispersion in k 2 F he seond in independent of kF st introdues non miniml oupling to the (eld with its environmentF he third one is proportionl to the elertion of uF feuse u is unitEnorm (eldD its elertion is orthogonl to itF st hene de(nes preferred diretion in speD nd odd terms in the dispersion reltionF sn the full theoryD the (eld u hs to e onsidered s dynmi s well s the metriF he theory tht (xes the men vlue of the (eld u is unknown to usF fut euse this theory mixes the vetor (eld nd the metriD we shll suppose tht the symmetries of this two (elds re similrF sn prtiulrD the uilling (elds ommute with uF sn pv speEtimeD u is then expressed in the frme of iqF @IFUHA s u = c∂ t nd hene [D µ , u µ ] = cHD u µ D µ u ν = 0F xegleting non miniml ouplingD the rmiltonin reds in term of renormlized (elds see disussion efore iqF @IFUQA

H = 1 2 dz π2 + φ f 1 a 2 ∂ 2 z φ , @IFVHA
where f is linked to f the sme wy m ws linked to mF he only modi(tion with respet to eF sF eF Q is hene t the level of de(nition of

ω 2 k = f -k 2 a 2
F sn ghpF RD eF sssD we shll ompute β k in simple exmple of dispersive quntum (eld theoryF 2. kinematics e here onsider the kinemtis for n intertion etween prtiles hving superluE minl dispersion reltion @ω 2 = k 2 + k 4 /Λ 2 A in )t speEtime of ny dimensionF e show tht suh prtile is instle nd n deompose into two other prtilesD iFeFD the full theory neessrily ontins dissiptionF e (rst onsider the retion 1 → 2 + 3 where eh numer i represent prtile of energy ω i nd momentum k i F otl energy nd impulsion re onserved quntitiesX

ω 1 = ω 2 + ω 3 , k 1 = k 2 + k 3 . @IFVIA PT CHAPTER 1. PARAMETRIC AMPLIFIER & PARTICLE PRODUCTION
sing dispersion reltion nd onsidering the squre of these equlitiesD we get

[u 2 u 3 + 2k 2 k 3 (u 2 u 3 ) 2 + 2(k 2 2 + k 2 3 )u 2 u 3 + k 2 k 3 Λ 2 ] 2 = (1 + k 2 2 Λ 2 )(1 + k 2 3 Λ 2 ), @IFVPA
where

k i = k i u i F sn the limit k 2 , k 3 ΛD it is solved y u 2 u 3 = 1 - 3(k 2 + k 3 ) 2 2Λ 2 . @IFVQA
sn the reltivisti seD Λ → ∞D we neessrily hve u 2 u 3 = 1F he two (nl prtiles propgte in the sme diretion with the sme speedF he (nl stte is hene identil to the initil oneX retion 1 → 2 + 3 is impossileF sn the presene of dispersionD howeverD u 2 u 3 = 1F he (nl prtiles hene propgte in di'erent diretionsF etion 1 → 2 + 3 is hene kinetilly possileF hen onsidering only one momentum kD the other ones t s n environment nd prtiles re dissiptedF 3. Free eld with dissipation hen onsidering free (eldD no intertion our nd retion 1 → 2 + 3 is impossileF sf we wish to get dissiption without introduing intertion @theory for n interting (eld in urved speEtime is not yet knownAD it is neessry to introdue y hnd environmentl degrees of freedom nd to ouple our (eld to it s we did in iqF @IFRSAF sf the gol is to get dissiptionD it is lso neessry to hveD for eh momentum kD ontinuous set of environmentl degrees of freedomF he environment then lives in speEtime hving one more dimensionF he most generl qudrti tion then deomposes S T = S φ +S Ψ +S int where S φ is the free dispersive (eld tion of eF sF fF ID S Ψ is the tion for the free environment ΨD nd S int is responsile for the intertionF wore detils will e given in ghpF S nd in rtF sssF

Conclusion

sn this hpterD we introdued the notion of prmetri mpli(er oth in lssil nd quntum mehnisF e oserved tht mny notions re ommon to oth theoriesF sn prtiulrD the notion of fogoliuov trnsformtion nd the inrese of the diti invrint re lredy present in lssil mehnisF he ltter trnsltes in quntum mehnis y n exittion of the systemF he min di'erene etween lssil nd quntum theories is t the level of the ground stteF sndeedD in lssil mehnisD the ground stte remins the ground stte s time evolvesF yn the ontrryD in quntum mehnisD the ground stte of prmetri mpli(er gets exitedF sn ftD the (nl level is inresed y multiple of two nd the trnsition proility is given y the fogoliuov trnsformtionF e then introdued the notion of quntum (eld theory nd oserved tht for free (elds in homogeneous urved speEtimeD one n onsider the (eld s olletion of non oupled prmetri mpli(ersF he quntum exittion of vuum then trnsltes for the (elds s spontneous retion of pirs of prtilesF yn the other hndD initil Chapter 2

Notion of separability

Introduction hen studying quntum (eld theory in nlogue grvityD key hllenge is to identify whether the produed prtiles re due to spontneous or indued emissionF sndeedD the reted prtiles ome oth from mpli(tion of initilly present @thermlA noise nd from the quntum proess of vuum mpli(tionF o nswer this questionD the right notions re entnglement nd seprilityF sn this hpterD we (rst review some sis of quntum mehnis nd entnglement together with the de(nition of the seprility riterionF es seond stepD we rell some useful tools to determine whether stte is seprle or notF e lso show tht for qussin sttesD the seprility riterion often used is lso non seprility riterionD iFeFD tht only seprle sttes verify tht onditionF en even more prtil tool for fose iinstein ondenstes using diretly oservle quntities will e derived in ghpF UD eF sssF gF xo dynmis is onsidered in this hpterF Contents I. Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 29 e rell (rst the sis of quntum mehnisF qiven phse speD the di'erent oservles re funtions of the nonil quntitiesD eFgFD q, q2 , p, • • • F yservles n e summedD multiplied y @omplexA slrs or multiplied to eh otherF sn mthemtil termD they form n lger AF e stte ω is then n pplition whih ssoites numer to n oservleF his numer physilly orresponds to the men vlue of the oservle @when mking mny experiments with the sme stte ωAF he stte is supposed to e liner funtion of oservlesX ω(λ Ô1 + µ Ô2 ) = λω( Ô1 ) + µω( Ô2 )F e lso impose ω( 1) = 1D whih trnsltes the ft tht the men vlue of numer is this numerF sn the followingD we shll drop the nottion 1F sn lssil mehnisD we lso supposed tht ω( Ô1 Ô2 ) = ω( Ô1 )ω( Ô2 )F his implies tht men vlues n e identi(ed with the oservles q ≡ ω(q)F sn prtiulrD this mens tht the spred in mesurement of the nonil quntities is nullF his fils to e true in the rel world euse of reisenerg inequlitiesD nd this is the sis of quntum mehnisF es onsequeneD one n no longer suppose tht ω ommutes with multiplitionF es n exmpleD given some oservle ÔD the quntity

∆O 2 . = ω Ô -ω( Ô) 2 = ω( Ô2 ) -ω( Ô) 2 @PFIA
gives the vrine of the mesurementF his implies some proilisti interprettion for the oservlesF fefore onsidering equtions of motionD two dditionl steps need to e tkenF pirstD * struture is dded to the oservles y de(ning n ntiliner opertor ( Â + λ B) † = Â † + λ * B † suh tht its squre is identity ( Â † ) † = Â nd tht it ts s re)etion ( Â B) † = B † Â † F his mens tht † is n djoint opertionF o (x uniquely this quntityD one supposes tht nonil oordintes re self djoint @q † = qD p † = pAF eondD the stte is supposed to e positiveD iFeFD ω( Ô † ) = ω( Ô) * nd ω( Ô † Ô) ≥ 0F his is to reover tht the men vlues of position nd moment re rel vluesD tht their vrines re positiveF qiven ll these propertiesD one veri(es tht if ω 1 nd ω 2 re two sttesD nd if α ∈]0, 1[D then αω 1 + (1 -α)ω 2 is lso stteF ttes for whih suh deomposition @other thn the trivil one ω 1 = ω 2 A exists re lled mixed sttesF ythers re lled pure sttesF yne n show tht when phse spe is (nite dimensionlD there exists unique rilert spe H @up to unitry trnsformtionA nd n irreduile representtion π 1 of oservles suh tht π( Ô) is n opertor ting on the rilert spe suh tht for ny pure stte ωD there exists vetor in the rilert spe |Ψ suh tht for ll oservle

ÔD ω( Ô) = Ψ| π( Ô) |Ψ X ∀A, ∃H, ∃π : A → L(H), ∀ω, ∃ |Ψ ∈ H, ω( Ô) = Ψ| π( Ô) |Ψ . @PFPA 1. π( Ô1 Ô2 ) = π( Ô1 )π( Ô2 ), π is linear, π( Ô † ) = π( Ô) † .
For mathematical construction of this Hilbert space, see the GNS construction [Wal94]. The uniqueness follows from the Stone-von Neumann theorem.
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por mixed sttesD suh vetor does not existD ut there exists n opertor ρ ∈ L(H) suh tht ω( Ô) = Tr ρπ( Ô) F feuse of the ssumptions mde on the stteD this opertor is rermitinD positiveD of tre unityF st is lled the density mtrix of the stteF hen phse spe is of in(nite dimensionD there my exist mny di'erent rilert spesD orresponding to di'erent ground sttes of the theoryF hen restriting the lss of sttes @iFeFD speifying the ground stteAD the rilert spe eomes uniquely de(nedF sn the followingD we shll identify oservles with their representtionsD nd sttes with the orresponding vetor in rilert speF sn the kinemti desription of systemD the noniity of vriles now trnsltes in ommuttors @[q, p] = i A insted of oisson frketsF sing guhy hwrtz inequlE itiesD one shows tht ∆q 2 ∆p 2 ≥ |[q, p]| 2 /4 + {q -q , p -p } 2 ≥ D whih is the reisenerg unertinty reltionF hen treting the dynmis of the systemD one needs the time evolution of Ψ| Ô |Ψ F o (x it one requires tht this oinides with lssil equtions of motion for the nonE il oordintesF yne lso requires the superposition prinipleD iFeFD eqution of motion is liner in |Ψ F sn hrödinger representtionD the oservle is supposed to e time independent while the stte vryF yne n then show tht the eqution of motion is the hrödinger equtionD iqF @IFIWA s we sw in iqF @IFPIAF he possiility of writing equtions of motion in term of pure stte follows from unitrity whih imposes tht pure stte remins so fter time evolutionF o summrizeD quntum mehnis follows from three ssumptionsX unitrity of the evolutionD the superposition prinipleD nd the reisenerg unertinty priniple @t the level of nonil ommuttorsAF he ft tht time evolution of men vlues of nonil oordinte oinide with the lssil mehnis preditions (xes the equivlene etween lssil nd quntum systemF B. Mixed states 1. Natural light o show the interest of mixed sttesD we onsider in this setion the polriztion of nturl lightF sf one mesures polriztion of light in ny diretionD one will oserve tht hlf of the photons pss through the polrizer nd hlf re lokedF yne n show tht suh system n not e desried in term of pure stte |Ψ F sndeedD vetor spe of this stte is dimension 2 nd n orthonorml sis is |→ D|↑ D iFeFD sttes polrized horizontlly nd vertillyF reneD ny stte |Ψ is written

|Ψ = e iα cos θ |→ + e -iα sin θ |↑ .
@PFQA feuse stte is not polrized when mesured with respet to horizontl xesD one deE dues tht θ = π/4F sf we rotte the xis nd mke the sme remrkD it omes tht α = π/4F fut this stte hs irulr polriztionD whih is not the se for nturl lightF ihF QI 2. Density matrix o desrie generl system @inluding nturl lightAD we then need to represent mixed sttesF o do soD we use the density mtrix of the stteF st n e written s sttistil superposition of pure sttes

ρ = n p n |Ψ n Ψ n | @PFRA
where p n ≥ 0 orresponds to some @sttistilA proilityF p n n lso e onsidered s the eigenvlues of the density mtrixF he men vlue of n oservle Ô is then the sttistil superposition of the di'erent men vlues

Ô = Tr ρ Ô = n p n Ψ n | Ô |Ψ n . @PFSA
ure sttes n e reognized s they re the only sttes for whih the density mtrix stis(es Tr (ρ 2 ) = 1D or equivlentlyD they re the only sttes for whih the entropy is 0D where the entropy of mixed stte is de(ned y

S = - n p n log p n = -Tr (ρ log ρ) . @PFTA
he sttes with the mximum of entropy re sttes for whih ll proilities equlF hey re proportionl to identityF por nturl lightD the stte ρNP is esily written s

ρNP = 1 2 [|→ →| + |↑ ↑|] . @PFUA
feuse the mtrix is proportionl to identityD it reds identilly in every orthonorml sisF reneD for ll projetor Ô = |Ψ Ψ|D we hve Tr ρNP Ô = 1/2F ihF 3. Reduced state hen onsidering susystem of some lrge systemD the susystem is generlly hrE terized y mixed stteF e otin the orresponding density mtrix y tring ll other degree of freedomF he new stte is lled redued stteF o e expliitD onsider n orthonorml sis of sttes tht is ftorized |Ψ A ⊗|Ψ B D the (rst prt desriing the susystem nd the seond desriing the rest of the systemF henD for ny oservle ÔA on the susystem AD we hve

Tr (ρO A ) = A,B Ψ A | ⊗ Ψ B | ρO A |Ψ A ⊗ |Ψ B = A Ψ A | ρA O A |Ψ A = Tr A (ρ A O A ) @PFVA
where ρA = B Ψ B | ρ |Ψ B is the redued stteF iven in the se where ρ ws pureD there is no reson why ρA should e lso pureF es n exmpleD onsider the two photon polriztion pure stte |Ψ = (|→ ⊗ |→ + |↑ ⊗ |↑ ) √ 2F efter tring out the seond photonD the density mtrix desriing the stte of the (rst photon is ρNP of iqF @PFUAF e lredy showed tht this stte is not pureF QP CHAPTER 2. NOTION OF SEPARABILITY C. Separability 1. Denition he notion of seprility is linked to the notion of entnglementF e onsider here system omposed of two susystems A nd BF wo kinds of pure stte n existF iither it n e ftorized |Ψ = |Ψ A ⊗ |Ψ B D or it nnotF hen it is ftorizedD the men vlue of ny ftorized oservle ÔA ⊗ ÔB is the produt of the two men vluesF his se orresponds to hving disonneted experiments tht were prepred independentlyF hen the pure stte n not e ftorE izedD it n violte some fell9s inequlityD nd hene nnot e desried y sttistil ensemleF sn mixed sttesD FpF erner introdued the notion of seprle stte erVWF re onsidered the following pprtusX imgine some rndom genertor piking numer n with proility p n F qiven the vlue of nD n experimenter prepres the system in the ftorized stte ρ

(A) n ⊗ ρ (B)
n F feuse the rndom genertor n e onsidered s lssilD the stte is classically entangledF st reds expliitly

ρ = n p n ρ (A) n ⊗ ρ (B) n . @PFWA
ttes tht nnot e written in suh wy re lled non separableD or quantum mechanically entangledF e stte is not seprle in itselfF he notions depends on the two susystems A, B we onsiderF por exmpleD onsider some homogeneous stteF hen onsidered in reisenE erg representtionD the susystem of given wve numer k n e initilly seprle when onsidered the two rilert spes generted y (â in ±k ) † nd non seprle fter time evolution when onsidered the two rilert spes generted y (â out ±k ) † F yn the other hndD euse we re in reisenerg representtionD the stte is the smeF 2. Interest of the concept he onept of seprility is key onept in nlogue grvity when one tries to identify some intrinsilly quntum phenomenon suh s pir prtile prodution from vuumF sndeedD in nlogue grvityD one hs three di'erent phenomen tht resemle muhF he (rst one is the mpli(tion of some @mrosopiA inident wveF st is not di'erent from the prmetri mpli(tion of the lssil hrmoni osilltor of ghpF ID eF sF he seond is the mpli(tion of inherent therml noiseF st leds to indued prtile proE dutionF he third one is the mpli(tion of quntum vuum leding to spontneous prtile produtionF hen we hve only the seond hnnelD the (nl stte is lwys sepE rleD even though there is ohereneF hen only the third hnnel is presentD the (nl stte is @mximllyA non seprleF he ft tht the (nl stte is non seprle @when the initil stte hs no ohereneA is then the sign tht spontneous prtile prodution from vuum signi(ntly ourredF II. PERES HORODECKI CRITERION QQ II. Peres Horodecki criterion e onsider here two mode stte @it n e the redued stte of some lrger stteA engendered y retion opertors a † nd b † F A. Partial transpose yne of the most generl riterion to determine whether our stte is seprle or not is the eresErorodeki riterionF his riterion needs the notion of prtil trnsposed stteF st is the density mtrix one otins when trnsposing only the prt orresponding to the susystem aF pormllyD this mens

i a | ⊗ µ b | ρ |j a ⊗ |ν b = j a | ⊗ µ b | ρTa |i a ⊗ |ν b , @PFIHA
where i a , j a @resp µ b , ν b A re ny vetors depending only on â † @resp b † AF sf the stte is seprleD sine the @totlA trnspose of physil stte is physil stteD it is ovious tht the prtil trnspose is physil stte 2 F he equivlene sttement is not true in generl ut only when rilert spe is dimension 2 × 2 or 2 × 3F sn more generl seD one hs to generlize the prtil trnsposeD see efF rrrWTF he generliztion is the followingX stte ρ is seprle if nd only if for ll positive liner mps Λ @from (rst suspe to the otherAD

(Λ ⊗ I)ρ is positiveF hen ρ is seprleD euse Λ(ρ (A) n ) nd ρ (B) n
re positiveD the sttement is trivilly trueF he equivlene neessittes more triky demonstrtionF e shll not present it hereD sine we won9t use it in the rest of the thesisF en other se where the equivlene is true is in ontinuous vriles @iprtiteA qussin systemF feuse this is useful se for this thesisD we tret it in the next susetionF st is lrgely inspired from efF imHH nd inludes more detilsF B. Gaussian case 1. Wigner and P function e onsider in this susetion qussin iprtite stteF st is then hrterized y qussin igner funtionD see iqF @IFRRAF por iprtite stteD there re 4 nonil vrilesD nmely Q . = (q a , p a , q b , p b ) whih form vetorF he ovrine mtrix is then

V . = TrρQQ. @PFIIA
yne n show tht in term of thisD the igner funtion for qussin stte is determined only y the ovrine mtrix nd the (rst moment

Q 0 . = TrρQF W (Q) = e -(Q-Q 0 )V -1 (Q-Q 0 )/2 (2π) 4 det V . @PFIPA 2.
A physical state ρ is a hermitian operator of trace unity and such that for all pure state |Ψ , Ψ| ρ |Ψ ≥ 0, or equivalently with all eigenvalues positive.

QR CHAPTER 2. NOTION OF SEPARABILITY

sn some sesD we n de(ne the P representtion of the stte s

W (Q) = d QP ( Q) e -(Q-Q) 2 π 2 . @PFIQA
feuse the igner funtion of oherent stte â |α = (q 0 + ip 0 ) |α hs the qussin form W α (q, p) = e -(q-q) 2 -(p-p) 2 /πD this deomposition implies tht

ρ = d QP ( Q) |α a α a | |α b α b | . @PFIRA
sn the se one n de(ne P representtion tht is positiveD the stte is seprleF e shll here inspire from this P representtion to try to deompose our stte in term of oherent stte in @qussinA superposition of qussin ftorized sttesD iFeFD

W (ρa⊗ρ b )( Q,D) (Q) = e -(Q-Q)D -1 (Q-Q)/2 /4π 2 √ det D where D is 2 × 2 lok digonlD eh lok eing of determinnt lrger thn 1/4F he stte ρ(Q 0 , Z) = d Q e -( Q-Q 0 )Z -1 ( Q-Q 0 )/2 4π √ det Z (ρ a ⊗ ρ b )( Q, D), @PFISA
where Z is positive symmetri mtrixD is the seprle stte with TrρQ = Q 0 nd ovrine mtrix V = Z + DF prom thisD we dedue tht ny qussin stte for whih the ovrine mtrix reds Z +D with Z positive nd D lok digonlD eh lok eing of determinnt lrger thn 1/4 is seprleF fy writing

Z = √ D(D -1/2 V D -1/2 -1) √ DD we get tht if the ovrine mtrix is suh tht D -1/2 V D -1/2 -1 is positiveD then the stte is seprleF hysillyD D -1/2 V D -1/2
-1 ≥ 0 mens tht there exist some nonil trnsforE mtion on oth setors seprtely suh tht the su)utunt mode @iFeFD the smller eigenvlue of the full ovrine mtrixA is lrger thn 1/2F 2. Gauge choice e notie tht mking ny fogoliuov trnsformtion on a nd b seprtely does not modify the seprility of the systemD sine it is equivlent to multiplying the stte y lok digonl opertor on the right nd on the left 3 F woreoverD it does not spoil either the ft tht ρTa is positive opertorF e n then hose guge y imposing

Trρââ = 0, Trρ bb = 0, Trρâ † b ∈ R, Trρâ b ∈ R, @PFITA
his implies in prtiulr tht Trρq i p j = 0F ith suh hoieD the ovrine mtrix reds

V =     n 0 c 0 0 n 0 c c 0 m 0 0 c 0 m     @PFIUA
3. This operation is often called LOCC: Local Operations and Classical Communication

II. PERES HORODECKI CRITERION

QS sn this gugeD we look for mtrix D digonlD with eh of the two sumtrix of determinnt 1/4F st expliitly reds 2D = diag (x 2 y 2 , 1/x 2 y 2 , y 2 /x 2 , x 2 /y 2 ) where x, y re free prmetersF his implies tht

D -1/2 V D -1/2 = 2     nx 2 y 2 0 cy 2 0 0 n/x 2 y 2 0 c /y 2 cy 2 0 my 2 /x 2 0 0 c /y 2 0 mx 2 /y 2     .
@PFIVA he eigenvlues of this mtrix re

y 2 nx 2 + mx -2 ± (nx 2 -mx -2 ) 2 + 4c 2 , y -2 nx -2 + mx 2 ± (nx -2 -mx 2 ) 2 + 4c 2 .
@PFIWA he two with minus sign n e mde equl to eh other y hoie of yF woreoverD their produt is

P low . = nx 2 + mx -2 -(nx 2 -mx -2 ) 2 + 4c 2 × nx -2 + mx 2 -(nx -2 -mx 2 ) 2 + 4c 2 . @PFPHA hisD seen s funtion of x is extreml for x 4 = |c|n+m|c | |c|m+n|c | D nd t this vlueD it is P max low = 2m 2 + 2n 2 + 4 |cc | -2 4(|c| n + m |c |)(|c| m + n |c |) + (m 2 -n 2 ) 2 . @PFPIA
hen this quntity is lrger thn 1D D -1/2 V D -1/2 -1 is positive nd the stte is sepE rleF woreoverD

P max low > 1 ⇔ 1 4 -|cc | 2 + m 2 n 2 > m 2 + n 2 4 + mn c 2 + c 2 . @PFPPA
he right hnd side of this equivlene is the eres rorodeki riterion de(ned in efF imHHF nder guge invrint formD it reds in one of the two equivlent forms

det V - det A + det B 4 - |det C| 2 + 1 16 ≥ 0, @PFPQA 1 4 -|det C| 2 + det A det B - det A + det B 4 -tr AJCJBJC T J ≥ 0, @PFPQA
where the di'erent 2 × 2 mtries re de(ned y

V = A C C T B , @PFPRA
nd J is the sympleti mtrixF he onlusion of this susetion is tht if iqF @PFPQA is ful(lledD then there exists some opertor D suh tht D -1/2 V D -1/2 -1 ≥ 0D nd hene the stte is seprleF QT CHAPTER 2. NOTION OF SEPARABILITY 3. Positivity of the state prom the positivity of the stteD we get the positivity of

f (α, β, γ, δ) . = Trρ (αq a -iβp a + γq b -iδp b ) (αq a + iβp a + γq b + iδp b ) . @PFPSA
his is qudrti funtion of α tht is lwys positiveF he ssoited disriminnt is hene negtiveF he disriminnt is still qudrti funtion of β nd of onstnt signF sts own disriminnt is hene negtiveF epeting one gin the opertion with γD we otin tht 4

det V - det A + det B 4 - det C 2 + 1 16 ≥ 0. @PFPTA
he omputtion is long ut not di0ultF st won9t e presented hereF he ovrine mtrix of ρTa is otined from V y multiplying y -1 the seond line nd the seond olumnF reneD det V, det A nd det B re unhnged while det C is multiplied y -1F sn the se ρTa orresponds to physil stteD we then hve

det V - det A + det B 4 + det C 2 + 1 16 ≥ 0. @PFPUA
iqsF @PFPUA nd @PFPTA imply iqF @PFPQAF o onlude this setionD we hve tht qussin stte suh tht ρTa is physil is seprleD then implying the equivleneF woreoverD prtil riterion is given y iqF @PFPQAF C. State with symmetries sn mny physil systemsD some symmetries our nd we hve det V = ( √ det A det B -|det C|) 2 F his hppens for exmpleD in homogeneous or sttionry systemsF sn this seD iqF @PFPQA redues to

√ det V + 1 4 - √ det A + √ det B 2 √ det V + 1 4 + √ det A + √ det B 2 ≥ 0. @PFPVA
he seond term is lwys positiveD nd heneD seprility is equivlent to

√ det A -1/2 √ det B -1/2 ≥ |det C| . @PFPWA
sn wht followsD to (x idesD we ssume homogeneity of the stteF st trnsltes identilly to sttionry systemsF he retion nd nnihiltion opertors re then leled y momentum kF sf oth setors re leled y moment of di'erent solute vlueD then no entnglement n ourF reneD two interesting ses n ourX iither the stte is n entnglement of two oEpropgting modes a † k D b † k or two ounterEpropgting modes a † k D 4. To obtain this equation in a general gauge, it is necessary to treat both real and imaginary parts of the 4 coecients. In the gauge of the previous section, this result falls even when we assume the 4 coecients to be real. 

|c k | 2 ≤ n a (n b + 1).
@PFQHA por seprle sttesD iqF @PFPWA redues to 

|c k | 2 ≤
|c k | 2 = n a (n b + 1 -δ k ).
@PFQPA his prmeter elongs to [0, n b + 1]F δ k = 0 orresponds to mximlly entngled sttes wheres δ k = n b + 1 orresponds to sttes with no oherene @iFeFD thermlA gHSF he limit of non seprility is given y δ k = 1F he seond prmeter omes from more prgmti point of view nd is de(ned y

∆ k . = n a n b -|c k | 2 .
@PFQQA he third one reples the de(nition of iqF @PFQQA in the se where n a = n b = n k F sn suh seD euse the eqution ftorizes nd euse n + |c| ≥ 0D we de(ne

∆ k . = n k -|c k | .
@PFQRA e use the sme nottion for the seond nd the third de(nition sine they do not pply in the sme seY no misunderstnding n thus ourF yne n show tht the isotropi wve vetor hve een usedD wheres for lk holesD the nlysis ws sed on sttionry modesF sn spite of thisD the two ses re unexpetedly similrD s we shll showF woreoverD for free (eldsD reltivisti or dispersiveD this pir retion @lso lled the dynmil gsimir e'et in ondensed mtter physisD see eFgFD efsF gfpIHDtf + IPA is ssoited with the uilding up of nonlol orreltions tht led to quntum mehniE lly entngled sttes gHRDgHTD see ghpF PF por dissiptive (eldsD iFeFD (elds oupled to n environmentD there is ompetition etween the squeezing of the stteD whih inE reses the strength of the orreltionsD nd the oupling to the externl thD whih redues it gHSD HUD gHVD gHVF sn the present prtD we nlyze dispersive nd dissiptive (elds in de itter spe for two resonsF pirstD sine de itter endowed with osmologil preferred frme is oth homogeneous nd sttionryD high frequeny dispersion n e studied long oth pprohesF his will llow us to relte them in very preise wyF e shll see tht their omptiility relies on twoEdimensionl symmetry group whih is sugroup of the de itter isometry group itHTF feuse the genertors of the two symmetries do not ommuteD in eh pproh only one symmetry is mnifestD while the other is somehow hiddenF sn ftD this extr symmetry hs een exploited in the lk hole ner horizon pproximtion of efsF fwWSD gtWTD fppHSD HSD gpIPD ut without notiing @in generlA tht it relies on properties tht re ext in de itter speF eondD the min onsequene of high frequeny dispersionD tht is the loss of the therE mlity of the spetrumD hs rised deep questions onerning the reltionships etween vorentz symmetry nd lk hole thermodynmis tWID tWQD tWTF st hs een limed tht this loss should led to violtions of the seond lw hHTDiptHUDtIHF hese issues re prtiulrly relevnt when working with extended theories of grvityD INTRODUCTION RI suh s iinsteinEether itwHR or rorv grvity rorHWD see efF fIIF he prt is orgnized s followsX in ghpF QD we introdue de itter spe nd its symmetriesF e lso introdue the 0ne group nd show tht theories invrint under this group re dispersive nd dissiptive theoriesF sn ghpF RD we onsider only disE persionF e demonstrte tht the funhEhvies vuum is no longer therml for ny @superluminlA dispersion reltionF e lso show tht it is the only sttionry stle stteF he deprtures from thermlity nd the SEmtrix re then extly lulted for qurti superluminl dispersion reltionF sn ghpF SD we present the tion whih engenders dissiptive e'ets while onserving ovrineF ixploiting the homogeneity nd sttionrity of de itterD we ompute the spetrl properties nd the orreltions of pirs with opposite moment nd the devitions with respet to the qionsErwking tempertureF e then pply our model to lk holes in ghpF T nd show tht the min result pply in lk hole geometriesF e work in units where = c = 1F Chapter 3 Geometry Introduction he itter speEtime ws (rst disovered s solution of the equtions of motion for grvittion in vuumD in the presene of @positiveA osmologil onstntF st is thus mximlly symmetri solution with non vnishing @nd positiveA urvtureF hen ompleting the spe time so tht the prtile reh in(nity in in(nite proper timeD it hs een shown tht the de itter spe time is emedded in )t speEtime e here de(ne the de itter spe from this emedding nd identify its invrinesF e then rek minimlly the symmetry so tht lol vorentz invrine is rokenF sn the lst setionD we identify the simplest representtion for (elds nd oservles on de itter tht re invrint under the remining symmetryF Contents A. Denition gonsider winkowski @)tA speEtime in 2 + 1 dimensions in the grtesin frme so tht the metri reds ds 2 = -dx 2 0 + dx 2 1 + dx 2 2 F he 1 + 1 dimensionl de itter speEtime is the hyperoloid of one sheet desried y the eqution -x 2 0 + x 2 1 + x 2 2 = H -2 F e oordinte set desriing the whole spe is given y @ζ, θA de(ned y

∆ k oeys -1/2 < n k -n k (n k + 1) ≤ ∆ k ≤ n k D
Hx 0 = sinh ζ, Hx 1 = cosh ζ cos θ, Hx 2 = cosh ζ sin θ.
@QFIA sing these oordintesD de itter spe time9s metri is π[D with (ζ, -π) identi(ed to @ζ, πAF st is then geodesilly ompleteD in the sense tht ny geodesi rehes in(nity with n in(nite proper timeF his property is inherited from the winkowski spe timeF qiven this de(nitionD the de itter speEtime hs onstnt urvture nd is mxiE mlly symmetriD iFeFD the iemnn urvture tensor reds R µνρσ ∝ g µρ g νσ -g νρ g µσ F B. Poincaré patch st n e useful to introdue two other sets of oordintes (τ, X) nd (t, z) de(ned y e Hτ = e Ht = sinh ζ + cosh ζ cos θ, HX = cosh ζ sin θ, z = Xe -Hτ . @QFQA he inverse trnsformtion is

H 2 ds 2 = -dζ 2 + cosh 2 ζdθ 2 , @QFPA nd the whole speEtime is overed y (ζ, θ) ∈ R × [-π,
sinh ζ = H 2 X 2 -1 + e 2Hτ 2e Hτ , tan θ 2 = (1 -H 2 X 2 + e 2Ht ) 2 + 4H 2 X 2 e 2Hτ -(1 -H 2 X 2 + e 2Hτ ) 2HXe
Hτ .

@QFRA his inverse trnsformtion is only de(ned s long s |θ| ≤ arccos (-tanh ζ)F his suprt of de itter speEtime is lled oinré pthF he omplementry prt is otined y symmetry P T D iFeFD repling (e Ht , X) y (-e Ht , -X) in the de(nitionD or equivlently (ζ, θ) y (-ζ, θ + π)F he oinré pth nd the surfes of onstnt t, X, z hve een represented in pigF QFIF he xes hve een hosen so tht digonls re lightE like urvesF sndeedD the lightElike urves re de(ned y ζ = L(θ) with L = ± cosh(L)F his di'erentil eqution is solved y arcsin tanh ζ = ±(θ -θ 0 )F ith suh de(nitionsD the metri of the spe time restrited to oinré pth reds

ds 2 = -dt 2 + e 2Ht dz 2 = -dτ 2 + [dX -v(X)dτ ] 2 , @QFSA
with v(X) = HXF he oinré pth n hene either e viewed s sptilly homogeE neous isotropi @iFeFD pvA expnding speEtimeD or sttionry speEtime with two lk hole horizons @in higher dimensionD the horizon eomes sphereAF roweverD it n not e viewed t the sme time s homogeneous nd sttionry for lgeri resonsD see eF ssF eF RR CHAPTER 3. GEOMETRY

Π 0 Π Π 2 0 Π 2 Π 0 Π Π 2 0 Π 2 Θ Arcsin Tanh Ζ
pigure QFIX enrose digrm of de itter speF he light like urves orrespond to digonls with 45 degrees ngle with respet to vertilF sn lk re the surfes t = cteF hey spn tringle whih onstitutes the oinré pthF sn red re the surfes X = cteF he plin line is HX = 1D the dshed line is HX < 1 nd the dotted line is HX > 1F sn lue re the surfes z = cteF he dotted urves orrespond to z > 0 outside the oinré pth @the z > 0 inside oinré pth hve not een representedAF olid line orrespond to lrge @negtiveA vlue of z nd dshed to lower vlue of zF

II. de Sitter group

A. Killing Algebra e uilling vetor K is the genertor of symmetry of speEtimeF st is suh tht the metri is the sme t two point in(nitely lose with distne proportionl to KD iFeFD y oordinte trnsformtion x µ = x µ + K µ D we hve t (rst order in g µν (x ) = g µν (x)F feuse the metri is tensorD we hve

g µν (x ) = (δ ρ µ + ∂ µ K ρ )(δ σ ν + ∂ ν K σ )g ρσ (x + K) ∼ g µν (x) + (∂ µ K ρ g νρ + ∂ ν K ρ g µρ + K ρ ∂ ρ g µν )F
he eqution for uilling vetor is the nelltion of the lst prenthesisD of equivlentlyD using ovrint derivtives ∇ µ X

∇ µ K ν + ∇ ν K µ = 0.
@QFTA sf in oordinte systemD the metri is invrint under one of its oordinteD sy x i then the vetor ∂ x i is uilling vetor (eldF he three di'erent oordinte systems introdued in eF sF ih emphsizes one uilling vetorF e express them s

K θ = ∂ θ|ζ , K t = ∂ τ |X , K z = ∂ z|t . @QFUA

RS

st n e shown tht these 3 uilling vetor (elds engender the whole uilling lger of the speEtimeF st orresponds to SO(1, 2) lger nd we hve

[K θ , K t ] = HK θ -K z , [K z , K θ ] = -K t , [K t , K z ] = HK z . @QFVA B.
Invariant quantum eld theory e here investigte whih of the free slr lol quntum (eld theories @pA would e invrint under the full de itter group SO(1, 2)F feuse we restrit ourselves to free slr nd lol pD the equtions of motion re of the form Ôφ = 0 where Ô is some di'erentil opertor tht ommutes with the three uilling vetorsF he most generl lol opertor ting on slr (elds n e written in the homogeneous frme @t, zA s

Ô = ∞ n,m=0 α n,m (t, z)∂ n z ∂ m t . @QFWA
smposing tht Ô ommutes with K z D implies tht the α funtions depend only on tF smposing tht it lso ommutes with K t implies α n,m (t) = α n,m e -nHt D where α n,m re onstntsF reneD Ô is neessrily of the form

Ô = ∞ n,m=0 α n,m e -nHt ∂ n z ∂ m t .
@QFIHA hen we impose the invrine under the third genertorD nmely K θ D the only invrint opertor re neessrily funtions of the gsimir of the groupD iFeFD

Ô = -∂ 2 t -H∂ t + (e -Ht ∂ z ) 2 = -K 2 t + K z K θ + K θ K z -K 2 z F
his is simply the d9elemertin of the speE timeF reneD no dispersion n ourF III. Ane group A. Algebra e here suppose tht the de itter group is minimlly rokenF e hene need to pik two independent vetors in the three dimensionl spe of uilling vetors so tht their ommuttor linerly depends on the twoF hese engender the 0ne groupF uh pir is neessrily of the form

K 1 = sin(θ -θ 0 )∂ ζ + [1 + tanh ζ cos(θ -θ 0 )] ∂ θ , K 2 = cos(θ -θ 0 )∂ ζ + tanh ζ sin(θ -θ 0 )∂ θ .
@QFIIA ghoosing the origins of θ suh tht θ 0 = 0D the 0ne group eomes engendered y K t , K z F he 0ne lger is then

[K t , K z ] = HK z . @QFIPA RT CHAPTER 3
. GEOMETRY e notie tht the 0ne group hs no gsimir opertor in the sense tht the universl enveloping lger !iFeFD the polynomils in K t D K z ! of the 0ne group hs no elementD ut the identityD tht ommute with the 0ne groupF roweverD the lol opertor invrint under this 0ne group re more generl nd given y iqF @QFIHAF sn ftD de(ning u ff nd s ff s the two orthonorml vetors tht ommute with K t , K z nd suh tht u ff is freely flling 1 D iFeFD s µ ff ∂ µ = e -Ht ∂ z nd u µ ff ∂ µ = -∂ t iqF @QFIHA mens tht the most generl 0ne group invrint opertor is funtion of u µ ff ∂ µ nd s µ ff ∂ µ F sn ddition we notie tht u ff nd s ff oey [u ff , s ff ] = Hs ff , @QFIQA whih is the 0ne lger of iqF @QFIPAF rene this lger is intrinsi to the osmologil frme on de itter speF iqF @QFIQA follows from the ft tht the ommuttor [u ff , s ff ] must e liner omintion of u ff nd s ff sine they re the only (elds tht ommute with K t nd K z F st is equl to s ff euse u ff is freely fllingF he preferred time ssoited to u ff is the osmologil timeF B. Field theory sing the opertor Ô of eF ssF fD our progrm is to tret Ô φ = 0 s de(ning the generl (eld equtionF o this endD we impose tht Ô e seond order in some @preferredA time derivtiveF e nme u the unit timeElike liner omintion of u ff nd s ff suh tht Ô is qudrti in uF s is the unit speElike liner omintion of u ff nd s ff tht is orthogonl to uF feuse s is speElike nd u is timeElikeD P = -is µ ∂ µ is the preferred momentum opertorD nd Ω = -iu µ ∂ µ the preferred frequenyF he generl form of the opertor Ô is Ô = -Ω2 + g( P ) Ω + h( P ).

@QFIRA xext we impose the invrine under the disrete prity symmetry s → -sF his implies tht g nd h re even funtions of P F sn higher dimensionsD this ondition would follow from the requirement of isotropy @in ftD isotropy lso imposes tht u is freely flling sine its elertion is orthogonl to u nd would de(ne preferred diretionAF he lst importnt ondition is tht Ô e omptile with unitry evolution rHUF he proper wy to speify this ondition is the followingX the prt of Ô tht is even in Ω desries dispersive e'ets nd should e selfEdjointD wheres the odd prt desries dissiptive e'ets nd should e ntiEselfEdjointD where the djoint is de(ned y

d 2 x √ -gΦ * ( ÔΨ) = d 2 x √ -g( Ô † Φ) * Ψ. @QFISA
o sort out the ontriutions whih re due to the expnsionD it is useful to introdue the selfEdjoint opertor Ωsa = 1 2 Ω + Ω † F henD the unitry opertors re given y

Ô = -Ω2 sa -i γ sa Ωsa + Ωsa γ sa + F 2 sa , @QFITA
1. this is unique up to changing s to its opposite -s.

III. AFFINE GROUP

RU where γ sa nd F sa re oth rel funtions of P † P F he funtion F sa desries the dispersive e'ets omptile with the 0ne groupF snstedD the funtion γ sa D whih multiplies the odd term in ΩD desries the dissipE tive e'ets omptile with itF st preisely mthes the set of γ funtions introdued in rHUD egxHV to desrie dissiptive e'ets tht re lol in timeD nd tht oey the generlized equivlene priniple @qiAD whih sttes tht the tion must e sum of slrs under generl oordinte trnsformtions whih reprodue those one hd in winkowski speEtime endowed with homogeneous stti u (eldF his greement is nontrivil nd follows from the ft thtD on one sideD the qi implies tht the (eld eqution n only depend on the two scalars Ω nd P de(ned y the metri g nd the u (eldD wheresD on the other sideD Ω nd P re the two invariants under the genertors K t nd K z of the 0ne groupF e note tht the di'erent frequenies nd moment re not independent quntitiesF he freely flling momentum

P ff = s µ ff ∂ µ nd frequeny Ω ff = u µ ff ∂ µ re linked to the onserved momentum k = K µ z ∂ µ nd frequeny ω = K µ t ∂ µ y P ff = ke -Ht , Ω ff = ω -HXP ff . @QFIUA
es (nl ommentD we notie tht the 0ne group is losely relted to pourier nd wellin nlysis wpSQF hen working on the representtion of the 0ne group L 2 (R)D the eigenmodes of -iK z = -i∂ z of eigenvlue k re the plne wves e ikz D wheres those of -iK t = -iH(z∂ z + 1/2) of eigenvlue ωD re φ ± ω = θ(±z)(±z) iω/H-1/2 F he ltter live on either side of z = 0 nd they orrespond to wellin modesF hey re omplete for ω ∈ R @sine invertileA on L 2 (R + )F reneD to hve ompleteness on funtions of RD one needs two fmilies of wellin modesD on either side of z = 0D given y φ ± ω F C. Characteristics of the modes hen u is no longer freely fllingD euse the only vetors tht ommute with K t nd K z re the liner omintions of u ff nd s ff D so is uF y ne generlizes iqF @QFIUA y writing the orthonorml hrter of u, s under the existene of some rel prmeter ξ so tht u = cosh ξu ff + sinh ξs ff , s = sinh ξu ff + cosh ξs ff . @QFIVA he elertion of u is then onstnt nd one hs u µ D µ s ν = sinh 2 ξHu ff F he sme equlities red t the level of frequenies nd moment Ω, P using iqF @QFIUAX Ω = cosh ξω + (sinh ξ -cosh ξHX)ke -Ht , P = sinh ξω + (cosh ξ -sinh ξHX)ke -Ht . @QFIWA riting the dispersion reltion @without dissiptionA Ω 2 = F 2 (P 2 )D one gets n impliit version of the hrteristis equtionF woreoverD the preferred timeD de(ned y the ssumptions tht equtions of moE tion re seond order in time @iFeFD s µ ontins only spe derivtivesD or equivlently u µ dx µ ∝ dt pref A is t pref = t -log |cosh ξ -HX sinh ξ| /HF his time is ill de(ned 
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pigure QFPX e drw here the hrteristis of dispersive (eld with superluminl dispersion reltion F (P 2 ) = P 2 (1+P 2 /2/Λ) 2 with Λ = 10HD ω = HF he elertion of the u (eld is (xed y ξ = -0.1 in t, X oordintes @left pnelA nd ξ = -1.5 in enrose digrm @right pnelAF sn lue dotted lineD we represent the positive norm V mode nd in purple dshed line its negtive energy prtnerF hen they reh the universl horizonD they re so redshifted tht they ehve reltivistillyF sn their pstD howeverD they seem to pper t some initil t pref nd were sent t t → -∞F he green dshed nd red dotted urve @hrdly distinguishle on the left plotA re trpped V modes inside the universl horizonF hey seem to exist only for (nite lifetimeF he yellow solid nd green dotEdshed urve re the U modesF sn the presene of elertionD they emerge from the universl horizonF e lso note tht ll mode is inluded in the oinré pthD justifying the left pnel representtionF sn lk dots re represented urves of onstnt t pref F on the universl 2 horizon cosh ξ -HX sinh ξ = 0F ith suh de(nitionD u µ dx µ = -(cosh ξ -HX sinh ξ)dt pref F feuse the preftor hnges its sign inside the universl horizonD the )ow of prtiles goes kwrds @in preferred timeA within this regionF sn pigF QFPD we represent the di'erent hrteristis of the modeF he dimensionlity of modes seems t (rst glne to e 6F here re two U modes represented in lk nd dshed red @the red one hs negtive energy nd the lk one hs positive energyAD two onventionl V modes in lue nd mgent nd two modes trpped inside the universl horizonF he ft tht the two @low energyA out modes n trverse the universl horizon is not surpriseF yn the (rst hndD sine they re extremely redshiftedD they ehve reltivistilly nd do not feel the universl horizonF yn the seond hndD when they reh the universl horizonD they reh t perf → ∞F snside the horizonD they propgte under deying t perf F 2. In the presence of dispersion, even though the group velocity of the modes can be innite, if the vector eld u is not freely falling, there exists a region in space from where modes can not escape. The limit of this region is called universal horizon [BBM12]. It is situated at x = -10 on Fig. 3.2. This concept was introduced by Sibiryakov in a talk, and further described in [BJS11,BS11]. RW en nlytil nlysis shows tht t lrge vlues of XD the modes follow urves of onstnt HXe -Ht ∼ e -Ht pref F he vlue of this onstnt is ±ω/k for the outgoing reltivisti modes nd ±ω/k ± Λ/k 2e -|ξ| / sinh 3 |ξ| for the other onesF feuse of this similr ehviorD the 8 roots of these modes tke their origin on the sme limit in enrose digrmD iFeFD ζ → ∞ with θ (nite @nd di'erent from πAF he four remining urves tke their origin t (nite vlue of X ut in(nite timeF his orresponds to ζ → ∞D θ = sgn(ξ)πF he ft tht inoming nd outgoing modes hve the sme symptoti ehvior is n indition tht the theory my e ill de(nedF sn prtiulrD the identi(tion of guhy surfe where initil onditions hve to e hosen is highly non trivilF hen the u (eld is not elertedD the guhy surfe is muh esier to identifyF sndeedD in suh seD there is no universl horizon nd ll the modes originte from t pref = t → -∞F sn the followingD for resons of simpliityD we shll onsider the se where u is freely flling nd drop the susript ffF

IV. P-representation

A. One point functions qiven the two symmetries engendered y K t , K z D the slr (elds n e deomposed either s

Φ = ∞ -∞ dk H √ 2π e ikz φ k (t), @QFPHA or s Φ = ∞ -∞ dω H
√ 2π e -iωt φ ω (X). @QFPIA sn the kErepresenttionD iqF @QFITA gives the seond order eqution 3

1 a(t) ∂ t a(t)∂ t + γ sa ( k 2 a(t) 2 )∂ t + ∂ t γ sa ( k 2 a(t) 2 ) + Hγ sa ( k 2 a(t) 2 ) +F 2 sa ( k 2 a(t) 2 )+ H 2 4 φ k (t) = 0.
@QFPPA es in ll osmologil spesD see eFgFD efF wHVD the generl @homogeneousA solution thus lives in twoEdimensionl spe nd tkes the form

φ k (t) = A k φ k (t) + (B -k φ k (t)) * .
@QFPQA sn de itterD euse of the 0ne group invrineD the k nd t dependenes in iqF @QFPHA n e omined in single vrile P = Hke -Ht F sndeed iqF @QFPPA n e rewritten s H 2 P 2 ∂ 2 P -HP 2 γ sa (P 2 ) P ∂ P + ∂ P γ sa (P 2 ) P + F 2 sa (P 2 ) + H 2 /4 χ(P ) = 0. @QFPRA 3. In a theory with dissipation, (γ = 0), unitarity imposes that the rhs is dierent from 0. In this section, we neglect the rhs and we only consider the dierential operator of the lhs. For the construction of a unitary dissipative theory, we refer to Chap. 5. SH CHAPTER 3. GEOMETRY his possiility is due to the presene of the spettor uilling (eld K t F heres K z gurntees tht kEmodes seprteD K t tells us tht iqF @QFPPA is invrint under t → t + T, k → ke HT , P → P.

@QFPSA his implies tht φ k (t) only depends on t only through P = ke -Ht F iqF @QFPRA n e further simpli(ed y extrting deying ftor from χX if we pose χ = e dP γsa(P 2 )/P H χD iqF @QFPRA trnsltes to χ s

H 2 P 2 ∂ 2 P + F 2 sa (P 2 ) + H 2 /4 -γ 2 sa (P 2 ) χ = 0. @QFPTA
yn the other hndD in the ωErepresenttionD the sptil modes oey the higher order eqution

-(ω +i∂ X v)(ω +iv∂ X )-i{γ sa (-∂ 2 X ), (ω +iv∂ X +iH/2)}+F 2 sa (-∂ 2 X )+H 2 /4 φ ω (X) = 0.
@QFPUA nlike wht is found in the kErepresenttionD t (xed ωD the dimensionlity of the spe of solutions now depends on the dispersion reltionX it is 2n when the highest power of P in F 2 sa (P 2 ) is 2n or 2n + 1 when the highest power of P in γ sa (P 2 ) is 2nF sn spite of this it is possileD nd very instrutiveD to relte the solutions of iqF @QFPUA to those of iqF @QFPPAF o this endD it is useful to onsider the pourier trnsformD

φω (P) = ∞ -∞ dX √ 2π e -iPX φ ω (X), @QFPVA
where P designtes the wve vetorD nd P > 0 its normF sn the (ω, P )ErepresenttionD iqF @QFPUA eomes -(ω -iHP ∂ P )(ω -iH∂ P P )-i{γ sa (P 2 ), (ω -iH∂ P P +iH/2)}+F 2 sa (P 2 )+H 2 /4 φω = 0. @QFPWA es in the kErepresenttionD this is seond order eqution @in ∂ P AF woreover one veri(esD tht φω extly ftorizes s fwWS

φω (P) = P -i ω H -1 × χ(P), @QFQHA
where χ is independent of ωF sn dditionD one lso veri(es tht χ oeys iqF @QFPRAF hese unusul properties re due to the other uilling (eld K z F sn ft euse of iqF @QFPSAD in (t, P ) representtionD irrespetively of vorentz violting terms F sa nd γ sa D the modes trivilly depend on t through deltEfuntionX δ(P -Hke Ht )F hen working in the (ω, P ) representtionD this implies oth the ftoriztion of iqF @QFQHAD nd the ft tht χ oeys iqF @QFPRAF he extr ftor of 1/P in iqF @QFQHA is due the toin dt/dP = -1/HP F ine iqF @QFPWA is seond order nd singulr t P = 0D the dimensionlity of the spe of solutions of φω (P) is 4D euse P hs oth signsF he physil mening of this fourEdimensionl speD nd its reltion with the twoEdimensionl one found in the kE representtionD re given in ghpF RD eF sF fF st is mthemtilly linked to the di'erene etween wellin nd pourier trnsformF IV. P-REPRESENTATION SI B. Two point functions hen working with sttes ρtot tht re invrint under the 0ne group @this is nloE gous to the restrition to the soElled α-vu whih re invrint under the full de itter group UTD wotVSAD the two point funtions re invrint under oth K t nd K z F roweverD euse the ommuttor [K z , K t ] = -HK z does not vnishD one nE not simultneously digonlize K z nd K t F his leds to two di'erent wys to express the twoEpoint funtionsD either t (xed wve numer k = -i∂ z|t D or t (xed frequeny ω = i∂ t|X F ixpliitlyD one hs

G k any (t, t ) . = d∆ze -ik∆z G any (∆z, t, t ), @QFQIA G ω any (X, X ) . = d∆te iω∆t G any (∆t, X, X ), @QFQIA
where k = |k|D nd where the ny susript indites tht these pourier trnsforms pply to ny twoEpoint funtion whih is invrint under the 0ne groupF @sn iqF @QFQIAD G k only depends on k euse we impose isotropyFA sn diret speD the invrine under the 0ne group trnsltes in the ft tht the twoEpoint orreltion funtions only depend on geometril invrints evluted etween the two pointsF sn de itter speD there re two geometril invrints under the 0ne groupF sing the oordintes t, XD they red

∆ 1 = e H(t-t ) , @QFQPA ∆ 2 = Xe -H(t-t )/2
-X e H(t-t )/2 . @QFQPA hey re linked to the de itter @full groupA invrint distne y

∆ 2 = ∆ 2 2 -(∆ 1 - 1 ∆ 1 ) 2 .
@QFQQA he distnes ∆ 1 , ∆ 2 n e lso de(ned in oordinte invrint mnnerF he interested reder will (nd the expressions t the end of this susetionF reneD ny PEpoint funtion G any (x, x ) n e written s Gany (∆ 1 (x, x ), ∆ 2 (x, x ))F he ft tht only two vriles re needed is not surpriseD given the homogeneity nd sttionrity of the settingF roweverD euse ∆ 1 , ∆ 2 mix the properties of the two di'erent pointsD they re not onvenient to useF e pourier trnsform the funtion with respet to ∆ 2 nd renme vrilesD so tht it reds G any (P, P ) = θ(PP ) where G any (P, P ) is given y iqF @QFQRAF his follows from P = ∂ X|t,t ,X ogether with iqF @QFQUAD iqsF @QFQRA nd @QFQWA re the key equtions of this seE tionX henever PEpoint funtion G any (x, x ) is invrint under the 0ne groupD its pourier trnsforms G k any (t, t ) nd G ω any (P, P ) re relted to G any (P, P ) of iqF @QFQRA y iqF @QFQUA nd iqF @QFQWA respetivelyF o onlude this setionD we express ∆ 1 nd ∆ 2 in ovrint termsF he log of ∆ 1 is given y the line integrl of u ff from x to x D tht is

√
ln ∆ 1 = -H x x u ff µ dx µ . @QFRHA
his is well de(ned expressionF sndeedD sine u ff is geodesiD u ff µ dx µ is n ext IEform nd the ove integrl does not depend on the pthF ineD iqF @QFQQA gives ∆ 2 s omintion of ∆ 1 nd ∆ whih re oth invrintly de(nedD so is ∆ 2 F 4 o summrizeD we showed tht (rstlyD P is invrintly de(nedY seondlyD ∆ 1 is esily expressed in P, P speY thirdlyD so is the vrile onjugted to ∆ 2 Y nd fourthlyD P n e ttriuted to the (eld itselfD so tht one n esily tke the even @ntiEommuttorA nd the odd prt of the PEpoint funtionsF hese re the resons tht mke the P E representtion very onvenient representtion of 0ne invrint funtionsF 4. If one wishes, ∆ 2 can also be seen as the integral of s ff µ dx µ , the 1-form associated to the vector orthogonal to u ff . Since this form is not exact, one has to specify the contour from x to x . Using the t, z coordinates, one should go at xed z from t to (t + t )/2, then vary z at xed time until ((t + t )/2, z ), and vary t at xed z until (t , z ). Any dierent contour would give some combination of ∆ 1 and ∆ 2 .

IV. P-REPRESENTATION SQ Conclusions sn this hpterD we onsidered de itter spe oth s some geometril ojetD nd s mnifold on whih is de(ned some (eld theoryF sn eF sD we de(ned the geometril ojet s n hypersurfe in winkowski @)tA spe timeF e identi(ed uilling vetors forming n lger in eF ss nd showed tht the only invrint (eld theory in deEitter is the reltivisti oneF sn eF sssD we roke minimlly the de itter group so s to otin the 0ne groupF e showed tht the 0ne group is de(ned uniquely up to rottion nd tht the only (eld theories tht re invrint re dispersive nd dissiptive onesF sn eF sD we de(ned the P representtion for the (elds tht re invrint under the 0ne groupF Chapter 4

Dispersive elds in de Sitter space Introduction he quntum (eld theories in urved spe time re mthemtilly well de(ned in hyperoli speEtimes lWR !iFeFD in spe times with well de(ned initil guhy surfe! in the future of this guhy surfeF por dispersive (eld in de itter with non elerted preferred frmeD the surfe t = -∞ is guhy surfe nd its future is the oinrré pthF e here onsider free dispersive theory de(ned on the oinré pth of de itterF e identify the generl onsequenes of lol vorentz violtion nd then ompute oservles in n expliit solvle model of qurti superluminl dispersionF his hpter is minly sed on fIPF Ultraviolet dispersion e hose to neglet ll dissiptive e'et in this hpterD nd to mke dispersion only in the ultrvioletF prom iqF @QFITAD with γ sa = 0D the dispersion reltion reds

Ω 2 = F 2 (P 2 ) = m 2 + P 2 + f (P 2 ).
@RFIA e suppose tht f vnishes fster thn P 2 for P → 0D so s to reover reltivisti reltion for P ΛD where Λ gives the ultrviolet dispersive sleF es suhD iqF @RFIA n e viewed s the rmiltonEtoi eqution for the orresponding dispersive prtiE le fwWSD fppHSF sing g µν + u µ u ν = s µ s ν D this eqution reds

g µν ∂ µ S∂ ν S + m 2 + f (s µ ∂ µ S) 2 = 0, @RFPA
where S(t, z) is the tion of the prtileF yn the other hndD iqF @RFIA n lso e viewed s the dispersion reltion governing some (eldF rowever there is some miguity euse of the ordering of the di'erentil opertorsD nd nonminiml ouplingsF sn this hpterD we work with twHID vvwHP

-g µν ∇ µ ∇ ν + m 2 + f (-s µ ∇ µ s ν ∇ ν ) Φ = 0, @RFQA
where ∇ µ is the ovrint derivtiveF uh n eqution my ome from the tion

S = -1 2 dx √ -g g µν ∂ µ Φ∂ ν Φ + m 2 Φ 2 + Φf (-s µ ∇ µ s ν ∇ ν )Φ . @RFRA
por other pprohes sed on ondensed mtter modelsD see efsF HPDwHWDnrIP nd rtF sssF yne n hek tht with the deomposition of iqsF @QFPHA nd @QFPIA this eqution of motion is of the kind of iqsF @QFPPA nd @QFPUAD with F 2 sa + H 2 /4 = F 2 = m 2 + P 2 + f F e see tht F sa = 0 orresponds to mss m = H/2F his is the lgeri origin of the prolem tht rises for m < H/2D see eF sssF B. Scalar product and BD vacuum o identify sis of solutions for iqsF @QFPPA nd @QFPUAD we onsider the onserved slr produt see iqF @IFSAF st is given y nrWS

(Φ 1 , Φ 2 ) = i dl (Π * 1 Φ 2 -Φ * 1 Π 2 ) , @RFSA
where Π = -u µ ∂ µ Φ is the momentum onjugted to ΦF he integrl must e evluted long u µ dx µ = dt = 0D nd the line element is dl = dX = a(t)dzF sn the kErepresenttionD for Φ k = e ikz φ k nd Φ k = e ik z φ k D one hs

(Φ k , Φ k ) = 2πδ(k -k ) × [a(t) (φ * k i∂ t φ k -φ k i∂ t φ * k )] . @RFTA ST CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE he stndrd normliztion (Φ k , Φ k ) = 2πHδ(k -k )
imposes to work with modes φ k tht hve unit positive urrent with respet to a(t)/Hi∂ t F hen onsidering χ of iqF @QFPRAD it is onvenient to reexpress this ondition s

Hχi∂ P χ * -Hχ * i∂ P χ = 1. @RFUA ht isD the χ mode is imposed to e of unit positive ronskinF roweverD euse iqF @QFPRA is seond orderD χ is not ompletely (xed y iqF @RFUAF o identify the in mode whih desries prtiles t erly timeD one hs to impose tht it ehves s the positive frequeny uf mode t erly time fhVRF sing iqF @QFPSA to reexpress this ondition in terms of P D the in mode χ BD must oey ompre with iqF @IFTA χ BD ∼

P →∞ e i P F (P 2 ) dP P H

2 F (P 2 ) P . @RFVA hen the modes φ k with unit positive norm n ll e written s

φ k (t) = H k [A k χ BD (P ) + (B -k χ BD (P )) * ] , @RFWA
where

A k nd B -k stisfy |A k | 2 -|B -k | 2 = 1D nd where the extr ftor of H/k ensures tht (Φ k , Φ k ) = 2πHδ(k -k
) is found when χ BD oeys iqF @RFUAF he stte whih is vuum with respet to χ BD for ll vlues of kD iFeFD B k = 0 for ll kD is the funhEhvies @fhA vuum UTD fhUUF o hndle the mode identi(tion in the ωErepresenttionD it is pproprite to work with the pourier mode of iqF @QFQHA nd to seprte solutions with positive nd negtive vlues of PF sn the uf pproximtionD positive norm solutions desrie right moving @U A prtiles for P > 0D left moving @V A prtiles for P < 0D nd vie vers for negtive norm solutionsF roweverD the ext solutions of iqF @QFPWA mix U nd V modesF he generl solution should thus e deomposed s φω (P) = P H

-i ω H -1 θ(P) H A U ω χ BD + B V -ω χ BD * + θ(-P) H A V ω χ BD + B U -ω χ BD * , @RFIHA
where the 4 oe0ients weigh the initil @fhA ontriutions with positive @negtiveA norm A @BAD nd with U or V ontentF sn ftD the slr produt of two suh modes

Φ ω = e -iωt φ ω , Φ ω = e -iω t φ ω is (Φ ω , Φ ω ) = 2πHδ(ω -ω ) A U ω 2 -B U -ω 2 + A V ω 2 -B V -ω 2 . @RFIIA
his is ext nd n e veri(ed e expressing iqF @RFSA in the P ErepresenttionD see efF fppHSF smposing the positive norm ondition (Φ ω , Φ ω ) = 2πHδ(ω -ω ) on the mode sis onstrints the ove prenthesis to e unityF reneD in de itterD irrespeE tively of the dispersion reltion of iqF @RFIAD the omplete set of positive norm sttionry modes ontins 2 modes φ U ω , φ V ω for ω ∈ (-∞, ∞)F yne veri(es tht 2n -4 solutions of SU iqF @QFPUA re not symptotilly ounded in XD nd nnot e normlizedF hese modes should not e used when deomposing the nonil (eld oeying iqF @RFQA wHWF st is interesting to notie tht the ompleteness of the sttionry modes follows from the ompleteness of the wellin trnsform wpSQD in mnner similr tht the ompleteness of the homogeneous mode sis follows from tht of the pourier trnsformD see the end of ghpF QD eF sssF fF ith this remrkD we hve veri(ed tht the set of the symptotilly ounded solutions of iqF @QFPUA mthes tht of the solutions of iqF @QFPPAF o onlude this setionD we point out tht the SEmtrix in the kErepresenttion ftorizes into PEmode setors ontining prtiles with opposite wve vetors kD euse the spe is homogeneousF snstedD in the ωErepresenttionD the SEmtrix ftorizes in di'erent setors with ω > 0D eh of them eing REmode setor whih ontins two

U modes φ U ω , (φ U -ω ) * D nd two V modes φ V ω , (φ V -ω ) * F he 4 × 4
hrter of the SEmtrix in this representtion results from the omposition of the osmologil mixing of U nd V modes with the sttionry mixing of modes of opposite frequenyD see eF sssF g for detilsF C. The two Hamiltonians sn preprtion for the nlysis of the stility of the fh vuumD we study the rmilE tonin of our dispersive (eldF e (rst point out tht the (elds u nd K t de(ne two di'erent rmiltonin funtionsD tht we ll respetivelyD H u nd H t F sing the onE jugted momentum Π = -u µ ∂ µ φ nd the vgrngin density L of iqF @RFRAD they re respetively given y

H u . = dl(Π∂ t | z φ -L), H t . = dl(Π∂ t | X φ -L), @RFIPA
where we rell tht

∂ t | z = -u µ ∂ µ nd ∂ t | X = -K µ t ∂ µ F H u
thus engenders time trnsE ltions t (xed zD while H t does it t (xed XF sn de itter speD H u nd H t di'er euse u = K t -vs = K t sine the )ow v = HX does not vnishF sn winkowski spe endowed with grtesin u (eldD whih is otined in the limiting se H → 0D the two rmiltonins oinide sine u → K t when H → 0F his implies tht in de itter H t nd H u shre the properties tht the rmiltonin possess in winkowski speF yn the one hndD the sttionry H t

H t = 1 2 ∞ -∞ dX (∂ t φ) 2 + m 2 φ 2 + (1 -v 2 )(∂ X φ) 2 + φf (-∂ 2 X )φ , @RFIQA
is onserved for ll dispersion reltionsF roweverD for oth vorentz invrint theories nd dispersive ones with f (P 2 ) ≥ 0D it is not positive de(nite preisely euse K t is spe like outside the horizonsF @ell tht its norm is -K 2 t = 1 -v 2 FA xotie lso tht when working in the P representtion one esily veri(es tht the lst term in H t is positive de(nite for f > 0F por dispersive theories with f < 0D suh s phonons in relium 4 D the density of H t eomes negtive where v rehes the ritil vndu veloity tWWD itVRF sn ny seD in de itterD when using the sttionry modes of iqF @RFIHAD H t n e deomposed s ∞ 0 dωH ω D where

H ω = ω H A U ω 2 + A V ω 2 -B U -ω 2 -B V -ω 2 . @RFIRA SV CHAPTER 4.
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H t is thus mnifestly onserved nd not positive de(niteF yn the other hndD the osmologil

H u n e deomposed s H u = ∞ -∞ dkH k where H k (t) = a(t) 2H 2 |∂ t φ k (t)| 2 + F 2 ( k 2 a(t) 2 )|φ k (t)| 2 .
@RFISA H u is thus positive de(nite whenever F 2 > 0F @xotie tht theories with F 2 < 0 re dyE nmilly unstle even in winkowski speFA roweverD H t is not onserved euse d ln a/dt = H = 0F he nononservtion of H k (t) engenders nonditi trnsiE tions wWV whih desrie pir retion of qunt of opposite kD see eF sssF e for prtiulr exmpleF hen using iqF @RFWAD the time dependene of H k n e entirely expressed in the P representtion s

H k (t) = |A k | 2 + |B -k | 2 2HP |HP ∂ P χ BD | 2 + F 2 (P 2 )|χ BD | 2 + Re A k B -k HP (HP ∂ P χ BD ) 2 + F 2 (P 2 )χ 2 BD .
@RFITA e lso see tht when imposing

|A k | 2 -|B -k | 2 = 1D the minimiztion of H k @more
preiselyD its integrl over one periodA implies B -k = 0F his is the lssil equivlent of sying tht the fh vuum is the lowest energy stte with respet to the preferred frme (eld uF o onludeD we lerly see the omplementry roles plyed y the rule onstnt HF sn the sttionry representtionD it is responsile for n energetic instabilityD iFeFD for onserved rmiltonin H t unounded from elowF snsted in the homogeneous representtionD H is responsile for the time dependene of the positive de(nite H u D whih engenders pir retionD iFeFD vacuum instabilityF hese two properties re vlid for ll dispersion reltionsD nd therefore they lso pply to vorentz invrint theoriesF his is reminder tht (eld theories in de itter speD nd in lk hole metrisD re thretened y dynmil instilitiesD iFeFD omplex frequeny modes hhUTD gIHF sn dditionD s rgued elowD violtions of thermodynmil lws re lso relted to n energeti instilityF II. The consequences of Lorentz violations sn de itter speD when onsidering vorentz invrint (eldsD the funhEhvies vuum possesses mny remrkle propertiesF yn the one hndD it is homogeneous nd sttionE ryD nd on the other hndD it is n rdmrd stteF sn ftD it is the only sttionry rdmrd stte UTD twHTF sn dditionD it n e shown tht ll other rdmrd sttes )ow towrds the fh vuumF fy this we men tht the nEpoint funtions evluE ted in these sttes )ow towrds the orresponding one evluted in the fh vuumF sn this senseD the fh vuum is the only stle regulr stteF pinllyD when evluted in the stti pth |HX| < 1D the nEpoint funtions re ll therml uWIF hey indeed oey the doule uw onditionX they re periodi in imginry time with period 2π/HD nd they re nlyti in the strip 0 < (t) < 2π/HF

II. THE CONSEQUENCES OF LORENTZ VIOLATIONS

SW hen onsidering dispersive (eldsD we shll see thtD for free (elds t lestD the fh vuum still stis(es ll these propertiesD sve the very lstF sn ftD even though the periodiity in (t) is still extly foundD the nlytiity in the strip is lwys lost when there is high frequeny dispersionF his mens tht the fh vuum is no longer therml stteF A. Stationarity and periodicity ine we work with free (elds nd sine the fh vuum is qussin stteD we only need to onsider the 2Epoint funtionF hen using the settings of the former setionD the ightmn funtion in the fh vuum n e written s fhVR

G BD (z, t, z 0 , t 0 ) = ∞ -∞ dk e ik(z-z 0 ) 2πk χ BD kHe -Ht χ * BD kHe -Ht 0 . @RFIUA
hen onsidered t (xed t 0 nd tD this funtion is mnifestly homogeneousF st is lso sttionryD when onsidered t (xed

X 0 = a(t 0 )z 0 nd X = a(t)zF sndeed in terms of P = k/a(t)D one gets G BD (X, t, X 0 , t 0 ) = ∞ 0 dP i sin(P X -P X 0 e H(t-t 0 ) ) πP χ BD (P )χ * BD (P e H(t-t 0 ) ), @RFIVA
whih is funtion of t -t 0 onlyF reneD for ll dispersion reltions imposed in the osmologil frmeD the fh vuum is oth sttionry nd homogeneousD iFeFD invrint under the 0ne groupD s it is for reltivisti (eldsF wore surprisinglyD G BD is lso periodi in the imginry time lpseD with the usul period 2π/HD extly s for vorentz invrint (eldsD nd for therml funtionsF e expet tht homogeneityD sttionrity nd the ove periodiity will e extly preserved when onsidering the nEpoint funtions of interting (elds evluted in the fh vuumD euse these properties re proteted y the 0ne group of iqF @QFIPAF sn other wordsD the nEpoints funtions will lwys e invrint under this sugroupF B. Thermality por vorentz invrint theoriesD it hs een shown y qions nd rwking qrUU tht freely flling oservers immersed in the fh vuum detet therml th with temperture k B T H = H 2π F st ws lso understood thtD when restrited to the stti pth -1 < HX < 1D the redued density mtrix of ny quntum (eld theory @interting or notA is therml stte t tht tempertureF snterestinglyD this result is lwys violted for dispersive (eldsF o demonstrte thisD we onsider prtile detetors whih follow orits tht re stE tionry with respet to the uilling (eld K t F feuse K 2 t = -1 + H 2 X 2 D the only stE tionry orits re t (xed XD nd with |HX| < 1 when they re timelikeF he deE tetor trnsition rte of spontneous exittion

R -@deEexittion R + A is proportionl to nrUTD fwWS R ± (ω, X) ∝ ∞ -∞ Hdte ±iωt G BD (X, t; X, 0). @RFIWA TH CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE
o relte the detetor energy gp ∆E > 0 to the uilling frequeny ωD one must tke into ount the X dependent redshift ftor @∆E = ω/ √ 1 -H 2 X 2 A oming from the deE tetor9s kinemtisD whih lso enters in olmn lw T loc (X) = T gl / √ 1 -H 2 X 2 relting the lol temperture to the glolly de(ned one wUQD olQHF sn wht followsD we shll work with the glolly de(ned temperture nd with ωF o study the devitions from thermlityD it is onvenient to use the temperture funtion T gl (ω, X) de(ned y

R -(ω, X) R + (ω, X) = e -ω/k B T gl (ω,X) . @RFPHA por reltivisti (eldsD one hs k B T gl (ω, X) = k B T H = H/2πD
for ll |HX| < 1 nd for 0 < ω < ∞D in ord with olmn lw nd the lnk spetrumF o ompute T gl in the presene of dispersionD we shll use the ft tht the rtes re given y

R ± (ω, X) = φ BD,U ±ω (X) 2 + φ BD,U ±ω (-X) 2 , @RFPIA where φ BD,U ω is the positive norm fh mode tht is initilly right movingD iFeFD A U ω = 1, A V ω = B U ω = B V ω = 0 in iqF @RFIHAF imilrlyD (φ BD,U -ω ) * is given y the negtive normD negtive frequenyD modeX B U ω = 1F
sn the ove eqution we hve used the symmetry X → -X to express the ontriution of the left moving V Emode evluted t X s tht of the right

U Emoving one t -XF ixpliitlyD φ BD,U ω is φ BD,U ω (X) = ∞ 0 dP √ 2πH e iP X P H -iω/H-1 χ BD (P ), @RFPPA
where χ BD oeys iqF @QFPRAF o prove tht thermlity is violted it is su0ient to work with X = 0 nd to onsider very high frequenies ω/Λ 1F sn this limit the integrl is dominted y high vlues of P D nd therefore y the leding term of the dispersion reltionD tht we prmetrize here y

f n (P 2 ) = P 2n Λ 2n-2 . @RFPQA
sn the high P regimeD the uf expression of iqF @RFVA o'ers relile pproximtion of χ BD F reneD up to irrelevnt onstntsD one gets

φ BD,U ω (X = 0) ≈ dP P P -i ω H -n-1 2 e iP n . @RFPRA sing Q = P n s integrtion vrileD one otins Γ funtionD nmely φ BD,U ω (X = 0) ≈ e ωπ/2nH × Γ - iω nH - n -1 2n . @RFPSA
sing this result in iqF @RFPIAD iqF @RFPHA gives

k B T gl (ω Λ, X = 0) = n H 2π , @RFPTA TI iFeFD n times the stndrd temperture T H F snstedD for ω/Λ 1 nd H/Λ
1D T gl (ω, X = 0) redues pproximtively to the stndrd temperture T H gpIPF rene the fh vuum is no longer thermlF his result is nontrivil sine G BD of iqF @RFIVA is still periodi in imginry timeD with the stndrd periodF prom the ove equtions nd from P ∝ e -Ht D one understnds tht the power n of iqF @RFPQA redues the domin of nlytiity of G BD in (t) y ftor of nF sndeed sine χ BD ∼ e iP n for lrge P D the integrl in iqF @RFIVA ontriutes s 1/(1 -e nHt ) whih is nlyti in the redued strip 0 < (t) < 2π/nH onlyF he oservtion tht T gl (ω, X = 0) = nT H for ω/Λ

1 shll e veri(edD for n = 2D in extly solvle model in eF sssF fF C. Regular states and stability sn this setionD we show tht some of the ingredients of event horizon thermodynmE is qrUUD tHQ re still present when dding high frequeny dispersionF xmelyD we showD (rstly tht the fh vuum is the only sttionry stte whih is regulr ndD seE ondD tht the other regulr sttes )ow towrds the fh stteF @es explined elowD the notion of regulr sttes should e understood s the generliztion of rdmrd sttes in the presene of short distne dispersionFA rene for free (elds t lestD the fh stte is the only stle stteF o prove these lims we shll use onepts tht re ommon to vorentz invrint nd dispersive (eldsF fefore proeedingD let us disuss our riterion of stilityF e sy tht the fh vE uum is stle euseD t lrge timeD oservles omputed in nery sttes onverge towrds those evluted in the fh vuumF reneD for these oservlesD the pertured sttes will e symptotilly indistinguishle from the fh vuumF his )ow is often referred to s osmi no hir theorem wwIID wwIID rolIQ s it losely follows the rie9s no hir theorem wUQF e dopted this riterion euse there is no stE tionry uilling (eld whih is glolly timelike in de itterF es onsequeneD there is n energetic instilityD see iqF @RFIRAD whih mens tht stility nnot e dedued from spetrum ounded from elowF st is worth mentioning tht to study the thermliztion in interting quntum (eld theoriesD the )ow towrds sttionry therml sttes is esE tlished in efF qIH y studying some nEpoint funtionsF iven though the purity of the initil stte is preserved y the rmiltonin evolutionD fter whileD these funtions eome indistinguishle from therml onesF sn tht se s wellD the stility of the stte is thus inferred from the )ow of some oservlesD rther thn from the evolution of the stte itselfF ine high frequeny dispersion modi(es the short distne ehvior of the 2Epoint funtionD we (rst need to de(ne wht we men y regulr sttes euse the stndrd de(nition of rdmrd stte is preisely sed on this ehvior fhVRF sn homogeE neous osmologil spesD this di0ulty n e overome euse one n rephrse the stndrd de(nition in terms of n diti expnsion of the solutions of iqF @QFPPA t (xed kF ine these new terms re ommon to oth vorentz invrint nd dispersive (eldD one n implement the sutrtion proedure to dispersive (eldsF vet us rell the key elementsD for more detilsD see efF vxwHSF sn de itterD euse of iqF @QFIPAD the diti expnsion n e done in terms of single mode χD solution of iqF @QFPRAD TP CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE nd of unit ronskinD see iqF @RFUAF his expnsion generlizes iqF @RFVA nd is est expressed s

χ adiab = 1 2W (P ) e i 1 H P W (P )dP , @RFPUA
where W oeys the nonliner eqution

W 2 = F 2 (P 2 ) P 2 - H 2 2 ∂ 2 P W W - 3 2 (∂ P W ) 2 W 2 , @RFPVA
nd where F 2 determines the dispersion reltion in iqF @RFIAF hen working with vorentz invrint (elds in D dimensionsD the (rst 1 + D/2 terms in itertive solution of iqF @RFPVA should e tken into ount when determining the 1 + D/2 quntities tht need to e sutrtedF his gurntees tht the renormlized stress tensor evluted in the fh vuum is (nite in osmologil spesD nd thus in de itterF his is not surprise sine χ BD nd χ adiab oey the sme ondition for P → ∞F rene their di'erenes develop t (nite P D nd euse of the expnsion HF hen working with dispersive (eldsD this (niteness is still found when F 2 is positiveD su0iently regulrD nd grows fster tht P 2 for P → ∞F sndeed the higher the power n in the leding term of iqF @RFPVAD the more suppressed re the next order terms in the diti expnsion vxwHSF por instneD in two dimensionsD for F 2 n ∼ P 2n /Λ 2n-2 D with n ≥ 2D the seond quntity whih is usully sutrted in the stress tensor is lredy (niteF st n thus e either sutrted or notF 1 sn either seD in the fh vuum of de itterD the renormlized vlues of ρ = u µ u ν T µν nd Π = s µ s ν T µν re onstnt in spe nd timeD while the )ow J = u µ s ν T µν vnishesF ixpliitlyD they re @we neglet the prt oming from dynmis of the unit timeElike vetor (eld uAD with W 0 = F/P vvwHP

ρ = ∞ 0 P dP 2π W 2 0 W -W 0 - H 2 4W 0 ∂ 2 P W 0 W 0 - 3 2 (∂ P W 0 ) 2 W 2 0 Π = ∞ 0 P dP 2π dP W 0 dP W 0 W -1 - H 2 4W 2 0 ∂ 2 P W 0 W 0 - 3 2 (∂ P W 0 ) 2 W 2 0 , @RFPWA
where the lst two term ome from the sutrtion proedureF e now onsider the hnge of the stress tensor with respet to tht of the fh vuum when working with some @possily mixedA stte Ψ desried y the density mtrix ρΨ F por free (eldsD this hnge is determined y the di'erene of the 2Epoint

funtions δG Ψ = G Ψ -G BD F his di'erene n e expressed in terms of the positive norm fh modes φ BD k s δG Ψ = 2Re dkdk 2π e i(kz-k z ) φ BD k (t) n Ψ (k, k )(φ BD k (t )) * + c Ψ (k, k )φ BD k (t ) , @RFQHA
1. As a result, in Ref.

[LNMS05], it is proposed to subtract only the rst term. We claim instead that the rst two terms should be subtracted, as done when dealing with Lorentz invariant elds. Indeed only this choice guarantees that the stress tensor would remain nite when taking the limit Λ → ∞. In addition, in our proposal, the two manners to consider Λ become compatible. Λ can be either seen as a (Lorentz violating) regulator to be sent at ∞ when computing observables, or as a physical nite ultraviolet parameter, but which enters suppressed in observables.

II. THE CONSEQUENCES OF LORENTZ VIOLATIONS

TQ where n Ψ (k, k ) nd c Ψ (k, k ) re expettion vlues of norml ordered produts of fh destrution nd retion opertors a k , a † k X n Ψ (k, k ) = a † k a k ρΨ , c Ψ (k, k ) = a k a -k ρΨ .
@RFQIA hey respetively enode the power spetrum nd the oherene of ρ t the qussin level gHSF o estlish the stility of the fh vuumD we (rst point out tht the other sttionE ry sttes re ll singulrF he reson omes from the ft tht the sttionrity of G Ψ implies thtD irrespetively of c Ψ D k×n Ψ (k, k ) only depends on the rtio k/k F hereforeD the hnge of the expettion vlue of H u of iqF @RFIPA with respet to the fh vuumD neessrily diverges euse the ontriution of high k is not suppressed enoughD s n Ψ (k, k) ∝ 1/kF his is true for dispersion funtions F (P ) ≥ > 0 for P → ∞D nd therefore true for vorentz invrint theoriesF his generlizes the ft twHT tht the αEvuD whih re invrint under the full de itter group nd therefore sttionryD re ll singulrD sve the fh vuumF sn our seond step we onsider sttes tht desrieD t some initil timeD local perturE tions ontining nite numer of fh prtilesX N tot = dkn Ψ (k, k) < ∞F woreoverD to e le to hndle ll dispersion reltions t oneD we suppose tht there exists ut o' wve numer k max ove whih the numer of prtiles dereses exponentillyD iFeF

n Ψ (k, k) ≤ e -bk , ∀k > k max , @RFQPA
with b > 0F hen hwrtz inequlities nd the hermitiity of ρΨ implies the following inequlities generlizing those of efF gHS

|n Ψ (k , k)| 2 ≤ |n Ψ (k, k)| |n Ψ (k , k )| , @RFQQA nd dk 1 f k 1 c Ψ (k 1 , k) 2 ≤ n Ψ (k, k) dk 1 dk 2 f k 1 f * k 2 (n Ψ (k 1 , k 2 ) + δ(k 1 -k 2 )) , @RFQRA
for ll test funtions f k ∈ CF sing these inequlities one n study the ehvior of iqF @RFQHA t lrge timeF ine there is momentum uto' k max D t lrge time only low moment P mtterF rene for ll dispersion reltions of iqF @RFIAD the dominnt term is the mss termF yne should then distinguish mssive (elds with m > H/2 his mens tht F sa of iqF @QFITA is positive in the P → 0 limit Y see iqF @RFQVA for the origin of this ondition from mssless (eldsF et this pointD one lso needs to onsider the pir retion mplitudes relting the initil fh mode φ BD k oeying iqF @RFVA to the out mode φ out k de(ned t low momentumF sing the tehniques of efF wWV nd the ft tht iqF @QFPRA is seond order for ll F 2 D we n verify tht for oth m > H/2 nd m = 0D the α k , β k oe0ients of iqF @RFRHA re ounded for dispersion reltions with F 2 > 0F sing this resultD t lrge time nd for mssive (eldsD one (nds tht 

δ Ψ G < e -H(
= u µ u ν δT Ψ µν D δJ Ψ = u µ s ν δT Ψ µν nd δΠ Ψ = s µ s ν δT Ψ
µν lso )ow exponentilly to 0F yn the other hndD when m = 0D t lrge times the dispersive modes eome onformlly invrintD iFeFD proportionl to e ikz-ikη where η ∝ e -Ht is the onforml timeF es resultD oth slr derivtives u µ ∂ µ δG Ψ nd s µ ∂ µ δG Ψ )ow to 0 s in iqF @RFQSAF his implies tht δρ Ψ D δJ Ψ nd δΠ Ψ lso )ow exponentilly fst to 0F sn onlusionD we hve shown tht for ll dispersion reltionsD the men stress tensor T µν ρΨ omputed with n ritrry lolized stte ontining (nite numer of fh qunt )ows towrds tht omputed in the fh vuumF his follows from the osmoE logil expnsion a ∼ e Ht whih redshifts the moment P ∼ ke -Ht D nd dilutes the prtilesF sn our proof we hve used the ondition of iqF @RFQPA euseD for ll polynoE mil dispersion reltionsD it gurntees tht the hnge of the stress tensor with respet to its vlue in the fh vuum is (niteF vess restritive onditionsD nd therefore lrger set of sttesD n ertinly e used one hving hosen some lss of dispersion reltionsF yne ould lso relx the ondition tht the perturtion is lolF rowever detiled study of these extensions goes eyond the sope of this thesisF III. Quartic superluminal dispersion st is of vlue to expliitly ompute the modi(tions of the oservles whih re due to high frequeny dispersionF sn de itter there re a priori two types of oservlesX (rstD the pir retion rtes whih re due to osmologil expnsionD nd seond the thermlElike response of sttionry prtile detetorsF sn eF sssF g we shll study third type of oservlesD nmely symptoti pir retion rtes in the ωErepresenttionD whih omines the former two phenomenF his hs no physil mening in vorentz invrint theoryF roweverD euse of vorentz violtionD nothings forids oservers to follow speElike trjetoriesF woreoverD in nlogue grvity experimentsD this is the mesurle quntity sine it is the )ux tht is ejeted from the smpleF o get nlytil expressionsD we onsider the qurti superluminl dispersionD iFeFD f = P 4 /Λ 2 F sn this seD the generl solution of iqF @QFPRA is given y

χ = C √ p M -iλ 4 , iµ 2 , ip 2 λ + D √ p W -iλ 4 , iµ 2 , ip 2 λ , @RFQTA
where C nd D re the two integrtion onstntsD nd where M nd W re the two hittker funtionsD see ghpF IQ in efF eTRF por simpliityD we introdued the

dimensionl quntities µ = m 2 H 2 -1 4 = Fsa(P =0)
H D λ = Λ/HD p = P/HF sing iqF @RFVA to hrterize the initil lrge p ehviorD the unit ronskin fh modeD when omplex onjugtedD is given y wHVD vxwHS

χ * BD = λ 2p e -πλ 8 W -iλ 4 , iµ 2 , ip 2 λ . @RFQUA TS
A. Cosmological pair creation rates o get the pir retion rtesD we need to identify the omintion of M nd W tht orresponds to the (nl mode χ out F es iqF @RFVA does not o'er relile pproximtion for P → 0D the identi(tion should e done using the osmologil time tF sing iqF @QFPPAD one (nds tht symptoti positive norm solutions re proportionl to e -iµHt t lrge tF hen m < H 2 D µ is imginry nd the modes grow or dey t lrge time twHTF rene it is not possile to de(ne symptoti out modesF hen m > H 2 D there is no di0ultyX when reexpressing e -iµHt in terms of P ∝ e -Ht D one gets

χ out ∼ p→0 p 1 2 +iµ √ 2µ . @RFQVA
sing this ehviorD the positive unit ronskin out mode is found to e

χ out = (-iλ) 1+iµ 2 1 2µp M -iλ 4 , iµ 2 , ip 2 λ . @RFQWA he in -out fogoliuov trnsformtion is given yY see iqF @IFISA χ out = α k χ BD + β k χ * BD .
@RFRHA e put susript k to the ove @kEindependentA oe0ients to remind the reder tht ll these lultions re done in the kErepresenttionF sing e IQFI in ef eTRD one (ndsD see eppendix fFP in efF wHVD

|β k (µ, λ)| 2 = 1 e 2πµ -1
1 + e -λπ 2 × e πµ . @RFRIA por λ 1D up to exponentilly smll orretionD one reovers the reltivisti resultD iFeFD the (rst term in the ove equtionF por λ 1D there is n enhnement of the pir retion proility y ftor equl to e πµ F iven though the symptoti out modes nnot e de(ned for 0 < m ≤ H/2D when m = 0D it is gin possile to de(ne these modes sine for t → ∞D they ehve s e -ikη where dη = dt/a(t) is the onforml timeF st is then possile to identify the mssless out omintion of M nd WD nd to extrt the fogoliuov oe0ientsF sn this seD the norm of β k is

|β k (λ)| 2 = π √ λ Γ 1 4 + i λ 4 2 e πλ/4 + π √ λ 4 Γ 3 4 + i λ 4 2 e πλ/4 - 1 2 . @RFRPA por λ 1D one gets |β k | 2 ∼ 1/(64λ 4
)D iFeFD power lw dereseD unlike wht we found ove for the mssive seF iqF @RFRPA orrets n error in iqF @IQIA of efF fppHS ut without ltering the onlusions of tht setionF TT CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE B. Deviations from thermality pollowing eF ssF fD our im is to extly ompute T gl (ω, X) of iqF @RFPHA using iqF @RFPIAF o this endD we need to evlute iqF @RFPPA for qurti dispersionF sing iqF @RFQUAD we get

(φ BD,U -ω (X)) * = λ 4π e -πλ 8 ∞ 0 dpe -ipHX p -i ω H -3 2 W -iλ 4 , iµ 2 , ip 2 λ . @RFRQA
urprisinglyD it turns out tht this integrl n e extly doneD s shown in the next susetionF ine the (nl expression is sum tht onverges s 2 -n for lrge nD one n urtely numerilly ompute the rtio of iqF @RFPHA in terms of known hypergeometri funtionsF o study the onsequenes of qurti dispersionD we plot the temperture funtion T gl (ω, X) in vrious sesD see eF sssF fF PF 1. Evaluation of Eq. @RFRQA sn this tehnil setionD we derive expliit expression for (φ BD,U -ω ) * of iqF @RFRQAF o do soD we shll ompute more generl funtion A(z) to e le to exploit some nlytil property in zF st is de(ned y

A(z) . = e iπ(α+1)/4 ∞ 0 dpp α e -ipx W κ, ν, izp 2 e i(z-1)p 2 z 1 2 , @RFRRA
nd whih is relted to the fh mode y

(φ BD,U -ω (X)) * = e -iπ(α+1)/4 λ 4π e -πλ 8 λ (α+1)/2 A(z = 1). @RFRSA o simplify nottionsD we introdued α = -3/2 -iω/HD ξ = -iλ/4D ν = iµ/2D x = HX √ λ nd resled p → p √ λF wking rottion in omplex p plne of ngle π/4D one gets A(z) = ∞ 0 dpp α e -pxe iπ/4 W ξ, ν, zp 2 e (z-1)p 2 z 1 2 . @RFRTA he hittker is then expressed s sum W (ξ, ν, zp 2 ) = B(ν) + B(-ν) where eTR B(ν) = -π sin 2πν e -zp 2 /2 z 1/2+ν p 1+2ν Γ(1/2 -ν -ξ)Γ(1/2 + ν -ξ) ∞ n=0 Γ(1/2 + ν -ξ + n) n!Γ(1 + 2ν + n) (zp 2 ) n . @RFRUA hen the mplitude A is expressed s A(z) = -π sin 2πν z ν A +ν (z) -z -ν A -ν (z) Γ(1/2 -ν -ξ)Γ(1/2 + ν -ξ) , @RFRVA
where

A +ν (z) . = ∞ 0 dpp β e -pxe iπ/4 e -p 2 /2 ∞ n=0 Γ(1/2 + ν -ξ + n) n!Γ(1 + 2ν + n) (zp 2 ) n = ∞ n=0 Γ(1/2 + ν -ξ + n) n!Γ(1 + 2ν + n) z n ∞ 0
dpp β+2n e -pxe iπ/4 e -p 2 /2 , @RFRWA III. QUARTIC SUPERLUMINAL DISPERSION TU nd where β = α + 1 + 2νF he lst equlity is vlid only inside the rdius of onvergene of the power series ! iFeFD |z| < 1/2F e notie tht z = 1 is not in the rdiusD this is why we introdued the extr vrile zF ixpnding the osillting exponentil in x s seriesD we get

∞ 0 dpp β+2n e -pxe iπ/4 e -p 2 /2 = ∞ k=0 (-1) k x k e ikπ/4 k! 2 (β-1+k)/2+n Γ β + 1 + k + 2n 2 .
@RFSHA sing this expressionD the sum over n gives

A +ν (z) = ∞ k=0 (- √ 2ix) k Γ(1/2 + ν -ξ)Γ((k + 1 + β)/2) k!Γ(1 + 2ν) 2 (β-1)/2 × 2 F 1 1 2 + ν -ξ, k + 1 + β 2 ; 1 + 2ν; 2z @RFSIA
sing iqF @ISFQFVA of efF eTR nd iqF @RFRVAD one otins

A(z) = ∞ k=0 Γ(1 + (k + α)/2 + ν)Γ(1 + (k + α)/2 -ν) Γ(-ξ + (k + 3 + α)/2) (- √ 2ix) k k! 2 α/2 × 2 F 1 1 2 + ν -ξ, 1 2 -ν -ξ; -ξ + k + 3 + α 2 ; 1 - 1 2z
@RFSPA he ove expressions re ll vlid for |z| < 1/2F roweverD sine oth A nd the sum re nlyti on CD the result is still vlid t z = 1F

st is then onvenient to express the 2 F 1 s

2 F 1 (a, b; c; u) = ∞ n=0 Γ(a + n)Γ(b + n)Γ(c) Γ(a)Γ(b)Γ(c + n)n! u n , @RFSQA
to split the sum etween odd nd even kD nd to notie tht eh sum over k gives n hypergeometri funtion

A(1) = ∞ n=0 2 -n Γ(1/2 + ν -ξ + n)Γ(1/2 -ν -ξ + n) n!Γ(1/2 + ν -ξ)Γ(1/2 -ν -ξ) 2 α/2 × B α, 1 2 -e iπ/4 x √ 2B α + 1 2 , 3 2 , @RFSRA
where

B(α, ) = Γ 1 + α 2 + ν Γ 1 + α 2 -ν 2 F 2 1 + α 2 + ν, 1 + α 2 -ν; ; n -ξ + 3+α 2 ; i x 2 2 Γ (n -ξ + (3 + α)/2) . @RFSSA TV CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE
e veri(ed tht the ove expression is solution of the 4 th order di'erentil iqF @QFPUAF prom the symmetries of iqF @QFPUAD four independent solutions re

(φ BD,U -ω (X)) * , φ BD,U +ω (X), (φ BD,U -ω (-X)) * , φ BD,U +ω (-X). @RFSTA
he lst two ones give the V modes evluted t XF hese four funtions re independent euse they re orthogonl to eh other when using the slr produt of iqF @RFSAF sn dditionD to vlidte this long lultionD we ompred the (nl expression of iqF @RFSRA with the originl integrl of iqF @RFRQA tht we evluted numerilly with wthemti R F e found perfet greementF 2. Study of T gl (ω, X) sn pigF RFID we plot T gl (ω)/T H s funtion of ω/HD for vrious vlues of λD nd evlE uted t X = 0D iFeFD for n inertil detetorF pirstD when ω/Λ nd 1/λ re oth muh smller thn 1D we see tht this rtio is very lose to ID s expeted from former nlE ysis fwWSD gtWTD fppHSD HSD gpIPF sn this roust regimeD the detetor will pereive lnk lw t the stndrd tempertureD up to negligile orretionsF eondD in the high frequeny limitD for ω/Λ 1D in greement with the nlysis of eF ssF fD the rtio goes to 2 irrespetively of the vlue of λF his lst point is not ler from the (gure ut n e veri(ed nlytilly from the expressions of iqF @RFSPA nd the ft tht |A ω /A -ω | → 1 when λ → 0 + F hirdD we see tht there is shrp trnsition from the roust reltivisti regime to new regimeF en exmintion of iqF @RFSPA on(rms tht the trnsition ours t ritil frequeny ω crit = Λ/2F pigure RFIX he rtio of T gl (ω, X) of iqF @RFPHA over the stndrd reltivisti temperture T H s funtion of ω H D for X = 0 nd m = 0D nd for four vlues of λD nmely 1 @dotted lueAD 5 @dshed purpleAD 10 @dotEdshed yellowAD nd 50 @green solid lineAF yne lerly sees tht for lrge vlues λD the spetrum is urtely lnkin nd t the stndrd tempertureD until ω rehes ertin ritil vlue ω crit D whih is equl to Hλ/2F por ω > ω crit D T (ω, X = 0) inreses shrply nd rehes 2T H F his (gure is essentilly unhnged when we use mssive (eld with µ < λ/2F sn the right pnelD we represent the slope of ln(R + /R -) de(ning group temperture T gr s 1/T gr = d(ω/T gl )/dω @whih is similr to the link etween phse nd group veloityAD or equivlently 1/T gr = d ln(R + /R -)/dωF e oserve tht T gr is sujet to sudden hnge when ω rosses ω crit F TW pigure RFPX he log 10 of the temperture di'erene |T (ω)/T H -1| s funtion of ωD for X = 0 nd m = 0D nd for four vlues of λD nmely 10 @dotted lueAD 20 @dshed purpleAD 40 @dotEdshed yellowAD nd 80 @green solid lineAF e see tht |T (ω)/T H -1| inreses exponentilly in ω until ω rehes ω crit F st n e shown nlytilly tht |T (ω)/T H -1| follows iqF @RFSUAF sn pigF RFPD we plot log 10 |T gl (ω)/T H -1| to study the smll devitions from the reltivisti regime for ω < ω crit F e (rst notie tht the shrp peks re due to the ft tht T gl (ω)/T H -1 rosses 0 while deresing for ω → 0F e reful exmintion of the envelope revels tht

|T gl (ω)/T H -1| ∼ e -πλ/4+πω/2H . @RFSUA reneD t (xed ωD the devitions derese exponentilly with λD wheresD t (xed λD they grow exponentilly till ω rehes ω crit F sn pigF RFQ we study the X dependene of T gl (ω, X)/T H F his desries violtions of the olmn glol equilirium lwF e see tht the trnsition from the roust regime to the new regime ours t di'erent ritil frequenies when onsidering detetors following di'erent orits leled y XF snterestinglyD this dependene n e expressed s

ω crit = λ 2 1 - a X H - a 2 X 2H 2 + O a X H 3 , @RFSVA
where

a X = H 2 |X|/ √ 1 -H 2 X 2
is the detetor proper elertion t (xed XF sn ddiE tionD on the left pnel nd for |HX| ≥ 0.9D we notie tht the low frequeny temperture signi(ntly di'ers from the stndrd oneF his e'et is relted to the rodening of the horizon tht ws oserved in pIID gpIPF sn those ppersD when onsidering pertured metri pro(les v = v backgrd + δvD it ws found tht the symptoti lk hole temperture di'ers from the stndrd one when the sptil extension ross the horizon of the perturtion δv is smller thn κx ∼ (κ/Λ) 2/3 F rere we (nd tht the temperture seen y prtile detetor di'ers from the stndrd one preisely when it enters this regionF sn logElog plotD see pigF RFRD we hve numerilly found tht the extension of this region @de(ned y the lous where the reltive temperture di'erene is I7A deE pends on Λ with power equl to 0.675 ± 0.01 in greement with the 2/3 of the ove referenesF wo lessons re here otinedF pirstD the ner horizon properties n e proed either y perturing the kground metri vD or y introduing lol prtile detetorD with oherent outomesF eondD sine these responses re lolly determinedD they re ommon to de itter nd lk holesD see ghpF TF pinlly it is lso interesting to study the ehvior of T gl (ω)/T H when vrying λ t (xed ω nd for X = 0 @see pigF RFSAF hen λ is lrge enoughD iFeFD lrger thn the ritil vlue λ crit = 2ω/HD the devitions from the stndrd temperture re extremely smllD in greement to wht we sw in pigF RFPF snstedD for λ → 0D T (ω, X = 0)/T H lwys pigure RFQX he sme rtio s in pigF RFI @on the leftA nd pigF RFP @on the rightAD for m = 0 nd λ = 50D nd for six di'erent positionsD nmely HX = 0@green solid lineAD 0.3 @yellow dot dshedAD 0.5 @purple dshedAD 0.7 @lue dottedAD 0.9 @ornge thikAD nd 0.95 @lk thik dotsAF yn the rightD the lst two urves hve not een plotted sine they re too fr from the other onesF he orresponding vlues of the elertion of the detetor re a/H = 0, 0.31, 0.57, 1, 2D nd 3F yne sees tht T (ω, X)/T H eomes lrger thn 2 when X = 0F yne lso sees tht the devitions t (xed ω inrese with a X F 

Λ 1 H X crit pigure RFRX gritil vlue of HX -1 de(ned y T (X crit , ω = 0, λ) -T H = 0.
01T H s funtion of λF e show tht the extension of this region depends on Λ with power equl to 0.675 ± 0.01F

)ows to PD with slope tht depends on the vlue of ω/HF en exmintion of these slopes shows tht the slope derese when ω inresesX dT /dλ| λ=0 goes from 1.02 ± 0.005 to 0F his is the ehvior t smll λF he ehvior t lrge λ ws given y iqF @RFSUAF C. Asymptotic S-matrix in the ω-representation sn this setionD we ompute the fogoliuov trnsformtion etween the initil fh modes nd the symptoti out modes in the ω representtionF sn this representtionD the modes re identi(ed through their sptil symptoti ehviorD nd not their temporl one we used in eF sssF eF rene the fogoliuov trnsformtion n e viewed s n SEmtrixF his is the desription whih is pproprite to study the mode mixing on n nlogue lk hole horizonF por more detils out mode identi(tion in the ωErepresenttionD we refer to efF gpIPF sn the present seD t (xed ω eh sis ontins 4 modesF rene the fogoliuov oe0ients form 4 × 4 mtrixF his mtrix is n element of U (2, 2) sine the two modes pigure RFSX he rtio of the temperture T (ω) T H @on the leftA nd log 10 |T (ω)/T H -1| @on the rightA s funtion of λD for X = 0 nd m = 0D nd for four vlues of ω/HD nmely 1 @green solid lineAD 5 @yellow dot dshedAD 10@purple dshedAD nd 20@lue dottedAF he dey of iqF @RFSUA n e oservedF

φ U ω , φ V ω hve positive normD while (φ U -ω ) * , (φ V -ω
) * hve negtive oneF sn wht follows we (rst study the mssless seD nd then the mssive se m > H/2F sn oth ses we shll see tht the SEmtrix possesses unusul ftoriztion properties tht re due to the two symmetries governed y K z nd K t F e shll lso see tht the elements of this mtrix omine the osmologil spets of eF sssF e nd the sttionry thermlElike spets of eF sssF f o ompute the oe0ients of the SEmtrixD we (rst need to identify the inoming nd outgoing modesF et (xed ωD for qurti dispersionD the generl solution of iqF @QFPWA ontins V symptoti rnhesD R for X → ∞D nd R for X → -∞F sn dditionD when forming wve pkets in ωD one (nds tht R propgte towrds X = 0D wheres 4 propgte wy from itF he mode identi(tion is sed on this seond spetX he R inoming modesD reD y de(nitionD the R solutions tht only possess one inoming symptoti rnhF hese inoming modes re simply given y the pourier trnsform of the sttionry fh modes φBD ω D therey showing tht the de(nitions of in modes sed on their temporl ehvior nd the sptil one re perfetly onsistentF o see thisD let us onsider s n exmple (φ BD,U -ω ) * F sing iqF @RFSRAD its symptoti ehvior n e found using HIF p to n irrelevnt overll onstntD one (nds

(φ BD,U -ω ) * ∼ X→±∞ (1 ∓ 1) × e ix 2 2 ( ix 2 2 ) -i λ 4 -3 4 -i ω 2H + Z ω,λ,µ,± × ( -ix 2 2 ) -1 4 +i ω 2H -i µ 2 + (µ → -µ) , @RFSWA where x = HX √ λ nd where the oe0ient Z is Z ω,λ,µ,± = 2 -iµ-i λ 4 +i ω 2H Γ(-iµ)Γ( 1 2 -i ω H + iµ) √ πΓ( 1 2 -i µ 2 + i λ 4 )
e ±(-iπ/4+πµ/2-πω/2H) . @RFTHA he (rst term in iqF @RFSWA desries the inoming high momentum rnhD s n e veri(ed y omputing its group veloity dX/dt = 1/∂ ω P ω D where

P ω = ∂ X S ω is the UP CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE Α Ω Β Ω A Ω B Ω
pigure RFTX sn this (gureD unlike the repreE senttion of pigF QFID t = Cst. re horizonE tl linesD nd X = Cst. re vertil onesF he two vertil lines represent the uilling horizons t HX = ±1F en inoming @fhA high momentum positive norm U Emode @in thik lineA splits into four out modes with low momentX n outgoing positive norm U E mode @lue lineAD negtive norm U Emode @green dotsAD positive norm V Emode @purE ple dshesAD nd negtive norm V Emode @yellow dsh dotsAF he respetive mpliE tudes of these four outgoing modes re given in iqF @RFTRAF o drw these hrterisE tisD we work with m = 0D ω/H = 5 nd Λ/H = 1000F he lpse of time spent very lose to the horizon is H∆t ∼ ln(Λ/ω)F st diverges for Λ → ∞D in whih se one reovE ers the reltivisti ehviorD nd ultrhigh initil momentF orresponding root of iqF @RFPAF he lst two terms desrie the 4 low momentum outgoing rnhesF yne veri(es tht they propgte wy from the stti pthD two for X → ∞ nd two for X → -∞F sn pigF RFT we shemtilly represent the speEtime pttern ssoited with wve pket mde with φ BD,U ω F e now hve to identify the out mode sisD iFeFD the four unit norm symptoti outgoing modesF es in eF sssF eD we tret seprtely the mssless nd the mssive seF 1. The massless case ine symptoti outgoing modes hve low momentum P D they oey the twoEdimensionl reltivisti d9elemert equtionF et (xed ωD the eqution for the right moving U Emodes is

(iω -HX∂ X )φ U ω = ∂ X φ U ω . @RFTIA por ω > 0D the out U Emodes of positive nd negtive unit norm re φ U,out ω,R = θ(1 + HX) (1 + HX) iω/H 2ω/H , (φ U,out -ω,L ) * = θ(-1 -HX) (-1 -HX) iω/H 2ω/H . @RFTPA he V Emodes φ V,out ω,L , (φ V,out -ω,R
) * re otined y repling X y -X in the oveF e put the R modes in vetor in the following order 

Φ ω = (φ U ω , (φ U -ω ) * , φ V ω , (φ V -ω ) * )
S ω =     α k 0 0 β k 0 α * k β * k 0 0 β k α k 0 β * k 0 0 α * k     ×     α H ω β H ω 0 0 β H ω α H ω 0 0 0 0 α H ω β H ω 0 0 β H ω α H ω     .
@RFTQA woreoverD the fogoliuov oe0ients α k , β k re those of iqF @RFRPAD nd α H ω , β H ω re the stndrd reltivisti oe0ientsD tken relD nd oeying

β H ω /α H ω = e -πω/H nd |α H ω | 2 -|β H ω | 2 = 1F
o get these rel oe0ients we hose the @ritrryA phses of the out modes in n pproprite mnnerF here re only R di'erent oe0ients in S ω D nd they ll hve ler mening when onsidering one fh modeF sn pigF RFTD we represent the mode

φ BD,U ω = α ω φ out,U ω,R + β ω (φ out,U -ω,L ) * + A ω φ out,V ω,L + B ω (φ out,V -ω,R ) * . @RFTRA
he α ω , β ω oe0ients weigh the mode mixing mongst U Emodes of opposite normD wheres A ω nd B ω desrie respetively the elsti nd the nomlous U -V mode mixingF he norm of these four oe0ients oey

|α ω | 2 = |α k | 2 × (n H ω + 1), |β ω | 2 = |α k | 2 × n H ω , |A ω | 2 = |β k | 2 × n H ω , |B ω | 2 = |β k | 2 × (n H ω + 1), @RFTSA
where n H ω = 1/(e ω/T H -1) is the lnk spetrum t the stndrd temperture T H F e see tht the devitions from the reltivisti spetrum re proportionl to

|α k | 2 -1 = |β k | 2 ∼ λ -4
D s those reking the reltivisti U EV deouplingF hus oth devitions from the reltivisti theory re governed y the osmologil pir retion rtes t (xed kF e notie tht the dey of the devitions from thermlity in 1/λ 4 is in greement with the dey in 1/ω 4 max found in lk hole metri when working t (xed DD see pigF IR of efF wHWF e lso notie tht irrespetive of ω nd ΛD the elsti |A ω | is the smllest oe0ientF e (nlly emphsize tht these extremely simple results re exactD nd follow from the hypergeometri funtions 2 F 2 of iqF @RFSRAF 2. The massive case es in eF sssF eD the mssive out modes should e hndled with reF en orthonorml sis for these out modes is given y the following right modes (R)X

φ out R,ω = θ(X) (HX) i ω H -iµ √ 2µHX , φ out * R,-ω = θ(X) (HX) i ω H +iµ 2µ(HX) , @RFTTA
together with the LEmodes otined y repling X y -X in the ove expressionsF e hve used this REL seprtion in the ple of the U EV one sed on the sign of the group veloityD euseD for mssive modes the symptoti group veloity with respet to the )ow v = HX is no longer well de(nedF 2. This decomposition is due both to the ane group and to the fact that the infra red is not modied. It will be made explicit in a more general context in Chap. 5, Sec. III. B, see in particular Eq. (5.45).
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e now put the four out modes of frequeny ω in vetor in the following order

Φ ω = (φ R ω , (φ R -ω ) * , φ L ω , (φ L -ω ) *
)D while the four in modes re ordered in the sme order s in the mssless seF he(ning gin the SEmtrix y Φ BD ω = S ω Φ out ω D we otin

S ω =     α k 0 0 β k 0 α * k β * k 0 0 β k α k 0 β * k 0 0 α * k     ×     T ω 0 R ω 0 0 T -ω 0 R -ω R ω 0 T ω 0 0 R -ω 0 T -ω     .
@RFTUA yn the left mtrixD the α k , β k oe0ients re those of iqF @RFRIAF reneD s fr s this mtrix is onernedD we otin the sme struture s in iqF @RFTQAF snsted on the ωEdependent right mtrixD the oe0ients re

T ω = e -π(µ-ω/H)/2 2 cosh π(µ -ω/H) , R ω = e π(µ-ω/H)/2
2 cosh π(µ -ω/H) . @RFTVA hey oey the unitrity reltion |T ω | 2 + |R ω | 2 = 1F rene unlike wht ws found in iqF @RFTQA the right mtrix now desries n elsti sttering etween modes of the sme normF es resultD the min di'erene etween the mssless nd the mssive se is tht the (nl ouption numer of mssive prtile no longer diverge s T H /ω for ω → 0F his dispperne of the therml like divergene ws lredy found in efF gp + IP in lk hole metrisF Conclusions sn this hpterD we otin two kinds of resultsD preise mthemtil ones hrterizing dispersive (elds in de itter speD nd more generl ones ssoited with the oservtion tht thermlity is violted when vorentz invrine is roken t high energyF his work is ompletion of efF wHVD where onsequenes of dispersion on in)tion is studiedF gonerning the (rst kindD in eF sD we used the group ssoited with the two residE ul symmetries of dispersive (elds in de itter to provide preise reltionships etween the two representtions of the (eldD sed respetively on the homogeneity nd on the sttionrity of the settingsF he key result is tht the homogeneous modes nd the sttionry ones n e all expressed in terms of the single fh mode χ BD (P ) nd its omplex onjugtedD where χ BD oeys iqF @RFVAD see iqsF @RFWA nd @RFIHAF por free (eldsD ll oservles re thus enoded in tht single modeF sn eF ss we show tht the twoEpoint funtion omputed in the fh vuum is still sttionry nd periodi in (t) with period 2π/HD s it is for vorentz invrint (eldsF sn spite of thisD we then show tht the fh vuum is no longer therml stte when restrited to the stti pthF sn prtiulrD we show tht the temperture funtion of iqF @RFPHA isD for ultrhigh frequeny ω/Λ

1D n times the stndrd oneD where n is the highest power of P 2 in the dispersion reltion of iqF @RFIAF sn eF sssF fD y onsidering the response funtion of prtile detetors with di'erent elertionD we lso show tht the olmn lw is violtedF iven though the fh vuum is no longer in therml equiliriumD we prove tht @for free (elds t lestA it is still the only sttionryD US regulrD nd stle stteD s it is in reltivisti theories wwIIDwwIIDrolIQF sn other wordsD for dispersive (eldsD there is no @regulrA uw stte on de itter speF e elieve tht these properties will remin true when onsidering interting (eldsF pinlly we explin the origin of the violtions of thermlity in terms of the loss of the positivity of the sttionry rmiltonin restrited to the stti pthF heres this opertor possesses spetrum ounded from elow for vorentz invrint theoriesD this is no longer true for dispersive (eldsF es result the ordinry seond lw of thermodynmis is no longer protetedD violtions of this lw re possileD nd the system might develop dynmil instilitiesF sn this respet the ft tht the fh vuum is shown to e stle in de itter eomes nontrivil resultF Chapter 5

Dissipative elds in de Sitter space hen preserving unitrity nd generl ovrineD dissiption is tehnilly more di0ult to hndle thn pure dispersionF o do so in simple termsD following rHUD we introdue dissiption y oupling φ to some environmentl degrees of freedom ψD nd the tion of the entire system S tot = S φ + S ψ + S int is tken qudrti in φ, ψD s in models of tomi rdition dmping efUT nd quntum frownin motion VWF eginD for resons of simpliityD we shll work in 1 + 1 dimensionsF he reder interested in fourEdimensionl models my onsult egxHVD where there is phenomenologil study of in)tionry spetr in dissiptive modelsF sn the present workD we onsider dispersion reltions tht ontin oth dispersive nd dissiptive e'etsF hese reltions n e prmetrized y two rel funtions Γ, f s

Ω 2 + 2iΓΩ = m 2 + P 2 + f = F 2 , @SFIA
where Γ(P 2 ) > 0 is the dmping rteD nd f (P 2 ) desries dispersive e'etsF o reover reltivisti ehvior in the infrredD typil ehvior would e Γ ∼ P 2 nd f ∼ P 4 for P 2 → 0F sn iqF @SFIAD Ω nd P 2 reD the preferred frequeny nd momentum de(ned in ghpF QD eF sssF fF e now onsider unitry model whih implements iqF @SFIAF his model is not unique ut n e onsidered s the simplest oneD s shll e mde ler elowF sn ovrint termsD the totl tion S tot = S φ + S ψ + S int is ompre with iqF @IFRSA

S tot = 1 2 d 2 x -g(x) -g µν ∇ µ φ∇ ν φ -m 2 φ 2 -φf -∇ 2 s φ + 1 2 d 2 x -g(x) dζ (∇ u ψ ζ ) 2 -(πζ) 2 ψ 2 ζ + d 2 x -g(x) γ (∇ s ) φ ∇ u dζψ ζ .
@SFPA sn the (rst lineD S φ is the tion for mssive dispersive (eldF st oinides with the one we took in ghpF RF sn two dimensionsD the selfEdjoint opertor whih implements

P 2 is -∇ 2 s . = ∇ † s ∇ s D where ∇ s = s µ ∇ µ is n ntiEselfEdjoint opertor @when u is freely flling frmeAD ∇ † s = -∇ µ s µ its djointD nd ∇ µ the ovrint

derivtiveF e fourEdimensionl version of this model n e found in rHUF

he seond lineD the tion for the ψ (eldD ontins the extr prmeter ζD whih n e onsidered s momentum in some extr dimensionF sts role is to gurntee tht the environment degrees of freedom re denseD something neessry to engender dissiptive e'ets when oupling ψ to φ rHUDVWF he kineti term of ψ is governed y the ntiEself djoint opertor ∇ u .

= -(u µ ∇ µ + ∇ µ u µ )/2 whih implements Ω = u µ p µ F e emphsize tht there is no sptil derivtive ting on ψF his mens tht the qunt of ψ re t rest in the preferred frmeF his restrition n esily e removed y dding the term c 2 ψ (∇ s ψ) 2 whih ssoites to c ψ the group veloity of the low ζ quntF snluding this term leds to muh more omplited equtions euse dissiptive e'ets UV CHAPTER 5. DISSIPATIVE FIELDS IN DE SITTER SPACE re then desried y nonlol kernelD s shll e rie)y disussed fter iqF @SFIIAF por resons of simpliityD we shll work with c ψ = 0 whih gives lol kernelF woreoverD in homogeneous universes c ψ = 0 lso implies tht the ψEmodes re not prmetrilly mpli(ed y the osmologil expnsionF hen working with given funtions Γ(P 2 ) nd f (P 2 )D we do not expet tht the omplitions ssoited with c ψ = 0 will qulittively modify the e'etive ehvior of φD t lest when dissiptive sle is well seprted from the rule sleF he intertion etween the two (elds is given y the tion of the third lineF he strength nd the momentum dependene of the oupling is governed y the funtion γ(P ) whih hs the dimension of momentumF sts role is to engender the dey rte Γ entering iqF @SFIAF he lst two lines possess peulir properties whih hve een dopted to otin simple equtions of motionF hese re

∇ µ u µ u ν ∇ ν + F 2 (-∇ 2 s ) φ = γ(∇ † s )∇ u dζψ ζ , @SFQA ∇ 2 u + (πζ) 2 ψ ζ = -∇ u γ(∇ s )φ. @SFQA B.
Eective equations of motion sn this setionD we use n ext resolution of iqF @SFQA to get the e'fetive equtions of motion for φ depending only on the diverse initil onditions on the guhy surfe @t → -∞ in de itterAF he solution to iqF @SFQA is

ψ ζ (x ) = ψ 0 ζ (x ) -d 2 x -g(x)G ζ (x , x)∇ u γ(∇ s )φ(x), @SFRA
where ψ 0 ζ is homogeneous solutionD nd where the driven solution is governed y G ζ (x, x )D the retrded qreen funtion of ψ ζ F hen injeting ψ ζ in the rhs of the (rst equtionD one otins the eqution of φ driven y ψ 0 ζ F he generl solution n e writE ten s φ = φ dec + φ dr D where the deying prt is homogeneous solutionD nd where the driven prt is given y

φ dr (x ) = d 2 x -g(x)G ret (x , x)γ(∇ † s )∇ u dζψ 0 ζ (x). @SFSA
sn generl qussin φ -ψ modelD the retrded qreen funtion G ret would oey nonlol equtionD iFeFD n integroEdi'erentil equtionF e hve djusted the properties of S ψ nd S int preisely to void thisF wo properties re essentilF pirstlyD t (xed ζ nd long the orits of uD iqF @SFQA redues to tht of driven hrmoni osilltorF his n e seen y using the oordintes (t, z) de(ned y u µ ∂ µ = -∂ t|z where z is sptil oordinte whih lels the orits of uF henD ∇ u pplied to slrs is

∇ u = a -1/2 ∂ t|z a 1/2 , @SFTA
where a(t, z) . = e t dt Θ(t ,z) D nd where Θ . = -∇ µ u µ is the expnsion of uF rene the resled (eld

Ψ ζ (t, z) . = a(t, z)ψ ζ (t, z) @SFUA
UW oeys the eqution of n osilltor of onstnt frequeny ω ζ = π |ζ|D see iqF @IFQSAF eondlyD when summed over ζD the retrded qreen funtion of ψ oeys rHU

∇ u ∞ -∞ dζG ζ (x, x ) = δ 2 (x -x ), @SFVA where δ 2 (x -x ) is the ovrint hir deltD iFeFD d 2 x -g(x)h(x)δ 2 (x -x ) = h(x )F
iqF @SFVA gurntees tht the di'erentil opertor enoding dissiption is lolF xmelyD when inserting ψ ζ of iqF @SFRA in iqF @SFQAD one (nds

diss φ = γ(∇ † s )∇ u dζψ 0 ζ , @SFWA
with the lol di'erentil opertor

diss . = ∇ µ u µ u ν ∇ ν + F 2 (-∇ 2 s ) + γ(∇ † s )∇ u γ(∇ s ) . @SFIHA
yne n now verify tht the uf solutions of diss φ = 0 re governed y rmiltonE toi tion whih oeys the dispersion reltion of iqF @SFIA with

Γ = |γ| 2 /2.
@SFIIA he reder n lso verify tht ny modi(tion of the tions S ψ nd S int leds to the replement of diss y nonlol opertorF hen onsidered in simultneously homogeneous nd stti situtionsD this is not prolemti euse one n work with pourier modes in oth spe nd timeF rowever when onsidered in nonhomogeneous ndGor nonstti kgroundsD it eomes hopeless to solve suh n eqution y nlytE il methodsF sn our modelD the retrded qreen funtion thus oeys

diss G ret (x, x ) = δ 2 (x -x ), @SFIPA
nd vnishes when x is in the pst of x D where the pst is de(ned with respet to the folition introdued y the u (eldF hen nonilly quntizing φ nd ψD sine our tion is qudrti in the (eldsD the ommuttor G c (x, x ) . = [ φ(x), φ(x )] is independent of ρtot D the stte of the entire systemF woreoverD it is relted to G ret in the usul wy

-iG c (x, x ) = G ret (x, x ) -G ret (x , x).
@SFIQA sn this hpter we only onsider qussin sttesF his implies wWSD veoWU tht the density mtrix ρtot D nd ll oservlesD re ompletely determined y the ntiE ommuttor of φD onditions re imposed in the remote pstD euse of dissiptionD only the lst one is relevntF sing iqF @SFSAD it is given y

G ac (x, x ) . = { φ(x), φ(x )} , @SFIRA tht of
G dr ac (x, x ) = d 2 x 1 -g(x 1 )d 2 x 2 -g(x 2 )G ret (x, x 1 )G ret (x , x 2 )N (x 1 , x 2 ), @SFISA
where the noise kernel is

N (x, x ) . =γ(∇ † s )∇ u γ(∇ † s )∇ u dζdζ { ψ0 ζ (x), ψ0 ζ (x )} . @SFITA
sn eF ss nd eF sssD we ompute G dr ac in de itter speEtime nd extrt from it pir retion proilities nd rwking!like e'ets tking ple in de itter spe for sttes tht re invrint under the 0ne groupD see ghpF QD eF sssF II. Homogeneous picture A. Dissipation and nonseparability sn this setionD we deompose the (elds in pourier modes of (xed kF his representtion is suitle for studying the osmologil pirEretion e'ets indued y the expnsion a(t) = e Ht = -1/HηF o express the outome of dissiption in stndrd termsD we exploit the ft tht vorentz invrine is reovered in the infrredD for moment P = ke -Ht muh lower thn dispersive nd dissiptive slesF sn this limitD sine Γ nd f of iqF @SFIA re negligileD the k omponents of φ deouple from ψD nd oey reltivisti wve equtionF reneD the k omponent of the @drivenA (eld opertor of iqF @SFSA n e deomposed in the out sis s

φk (t) ∼ t→∞ âk φ rel k (t) + â † -k [φ rel k (t)] * , @SFIUA
where the out modes φ rel k oey the slr reltivisti wve eqution nd stisfy the stndrd positive frequeny ondition t lte timeF his mens tht the @reduedA stte of φ @otined y tring over ψA n e symptotilly desried in terms of onventionl exittions with respet to the symptoti outEvuumF he out opertors âk , â † k oey the stndrd ommuttion rule [â k , â † k ] = δ(k -k )F por nottionl simpliityD we omit the δ(k-k ) when writing twoEpoint funtions euse it is ommon to ll of them sine we only onsider homogeneous sttesF por instneD

{ φ † k , φk } = δ(k -k ) × G k ac F sing iqF @SFIUAD the oe0ient of the δ funtion is G k ac (t, t) t→∞ = 2 [2n k + 1] |φ rel k (t)| 2 + 4Re c k φ rel k (t) 2 , @SFIVA
where 

n k . = ˆa † k âk = â † -k â-k , c k . = â-k âk . @SFIWA
W (χ rel ) = 2H [(χ rel ) * ∂ P χ rel ] = 1. @SFPIA
sing suh χ rel nd iqsF @QFQUA nd @SFIVAD iqF @SFISA n e written s

G ac (P, P )| P →0 = 2 H [2n k + 1] |χ rel (P )| 2 + 4 H Re c k (χ rel (P )) 2 , @SFPPA = ∞ 0 dP 1 P 2 1 dP 2 P 2 2
G ret (P, P 1 )G ret (P, P 2 )N (P 1 , P 2 ). @SFPPA sn the seond lineD the noise kernel of iqF @SFITAD whih is lso invrint under the 0ne group for the set of sttes we re onsideringD hs een written in the P Erepresenttion using iqF @QFQUAF o extrt n k nd c k from the ove equtionsD we need to ompute G ret nd N F sing iqF @QFQUAD iqF @SFIPA reds

H 2 ∂ 2 P - γ(-iP ) √ P H∂ P γ(iP ) √ P + F 2
P 2 G ret (P, P ) = δ(P -P ). @SFPQA he unique @retrdedA solution n e expressed s G ret (P, P ) = 2 H θ(P -P ) ( χP χ * P ) e -I P P , @SFPRA with the optil depth egxHVD

I P P = P P dP 1 Γ(P 1 ) HP 1 .
@SFPSA sts role is to limit the integrls over P 1 nd P 2 in iqF @SFPPA to low vlues so tht I P 0 1F ell informtion out the stte for higher vlues of P is ersed y dissiptionF sn iqF @SFPRA we hve used χ(P )

. = e I P 0 χ(P ), @SFPTA where χ is homogeneous dmped solution of iqF @SFPQAD in greement to the funtions introdued efore iqF @QFPTAF fy onstrutionD χ(P ) oeys the reversile @dmping freeA eqution 1 D see iqF @QFPTA

H 2 P 2 ∂ 2 P + F 2 -Γ 2 χ(P ) = 0, @SFPUA 1.
For high values of P , the eective dispersion relation is superluminal if ∂ P (f -Γ 2 ) > 0, and subluminal if this quantity is negative. The critical case, f -Γ 2 = 0, gives rise to a relativistic dispersion. In the case where F 2 -Γ 2 becomes negative, the mode enters an overdamped regime, see Ref. [ACNP08]. To avoid the complications this entails, we will only consider f -Γ 2 ≥ 0.
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nd is normlized y iqF @SFPIAF woreoverD we impose tht it oeys the out positive frequeny onditionD mening tht in the limit P → 0D it symptotes to the out mode χ rel of iqF @SFPHAF reneD ompring iqF @SFPPA with iqsF @SFPPA nd @SFPRAD we (nd

n k + 1 2 = ∞ 0 dP 1 HP 2 1 dP 2 P 2 2
Re ( χ(P 1 ) χ * (P 2 )) e -I P 1 0 -I

P 2 0 N (P 1 , P 2 ), @SFPVA c k = ∞ 0 dP 1 HP 2 1 dP 2 P 2 2
χ * (P 1 ) χ * (P 2 )e -I P 1 0 -I P 2 0 N (P 1 , P 2 ). @SFPVA hese entrl equtions estlish how the environment noise kernel N (xes the lte time men ouption numer nd the strength of the orreltionsF e now ompute N F hen u is freely fllingD the resled (eld Ψ0 q of iqF @SFUA is dense set of independent hrmoni osilltors of onstnt frequeny ω ζ = π|ζ|D one t eh zF he frequeny is onstnt euse we set c ψ = 0 in the tion for ψD see the disussion fter iqF @SFPAF st implies tht the positive frequeny mode funtions re the stndrd e -iω ζ t / 2ω ζ D nd tht the stte of these osilltors remins un'eted y the expnsion of the universeF rene T ψ D the temperture of the environmentD is not redshiftedF e here wish to rell tht for reltivisti @nd dispersiveA (eldsD the vuum stte of zero temperture is the only sttionry stte whih is rdmrdD see ghpF RD eF ssF reneD for these (eldsD the temperture is (xed to zeroF his is not the se in our model where ny temperture T ψ is eptleF sn wht followsD we shll thus tret T ψ s free prmeterD nd work with homogeneous therml sttesF his mens tht the expettion vlue of the ntiommuttor of ψ0 q is given y

{ ψ0 ζ (x), ψ0 ζ (x )} = δ(z -z ) a(t)a(t ) δ(ζ -ζ ) coth ω ζ 2T ψ cos (ω ζ ∆t) ω ζ . @SFPWA he ftor coth(ω ζ /2T ψ ) = 2n ψ ζ + 1
is the stndrd osoni therml distriutionF he preftor δ(z -z )/ a(t)a(t ) omes from the fts tht ψ0

ζ of iqF @SFUA is dense set of independent osilltorsD nd tht a(t, z) redues here to the sle ftor a(t)F o get N of iqF @SFITA one should di'erentite the ove nd integrte over ζF he integrtion gives distriution whih should e understood s guhy prinipl vlueD

dζdζ ∇ u ∇ u { ψ0 ζ (x), ψ0 ζ (x )} = - δ(z -z ) a(t)a(t ) × 2T ψ ∂ ∂∆t P.V. coth (πT ψ ∆t) .
@SFQHA o e le to reEexpress iqF @SFQHA in the P ErepresenttionD it is neessry to verify tht it is invrint under the 0ne groupF his is esily done using nottions of ghpF QD eF sF yne veri(es tht the (rst ftor simply equls δ(∆ 2 )D wheres the seond term is only funtion of ∆ 1 F king into ount the derivtives of iqF @SFITAD in the P E representtionD the noise kernel t temperture T ψ reds 

N (P, P ) = -γ(iP )γ(-

II. HOMOGENEOUS PICTURE

VQ he symol P.V. indites tht when evluted in the integrls of iqF @SFPVAD the nonsinE gulr prt should e extrted using guhy prinipl vlue presription on ln(P /P ) = H(t -t )F sn the highEtemperture limitD the doule integrls of iqF @SFPVA n e evluted nlytilly euse N e'etively ts s hir delt funtionF snstedD when working with n environment in its ground stteD or t low temperture T ψ D we re not wre of nlytil tehniques to evlute these integrlsF reneD to study the impt of dissipE tion on oherene in @nerA vuum sttesD we shll numerilly integrte iqsF @SFPVAF C. Numerical Results sn the forthoming numeril omputtionsD for simpliityD we work with

f = P 4 Λ 2 , Γ = g 2 P 2 2Λ , @SFQPA
whih ontin the sme ultrviolet momentum sle ΛF he dimensionless oupling g 2 ontrols the reltive importne of dispersive nd dissiptive e'etsF sn the limit g 2 → 0D we get the qurti superluminl dispersion studied in ghpF RD eF sss nd in efsF wHVD fIPF he ritil oupling g 2 crit .

= 2D gretly simpli(es the lultionsD sine f -Γ 2 = 0 gurntees tht χ(P ) oeys reltivisti equtionD see iqF @SFPUAF sing numerilly stle proedure to extrt the guhy prinipl vlues like in efF egxHVD we ompute n k nd c k of iqF @SFPVA in the prmeter spe ΛD g 2 D m 2 D nd T ψ F ine ll physil e'ets only depend on dimensionless rtiosD we present the numeril results in terms of µ = m 2 /H 2 -1/4D λ = Λ/HD nd ϑ = T ψ /HF 1. Massless critical case e egin with the mssless se @m = 0A nd with g = g crit F hen iqF @SFPUA is prtiE ulrly simple sine the resled mode χ of iqF @SFPTA redues for all P to the outEmode χ(P ) = e iP/H / √ 2HF sn this we reover the onforml invrine of the mssless (eld in two dimensionsF here usully would e no prtile prodution when it propgtes in de itter speD howeverD the onforml invrine eing roken y dissiptionD pirEretion will tke pleF sn pigF SFI we present n k nd δ k when the environment is in its ground stte @T ψ = 0AF por omprisonD we lso show n k for qurti dispersion @g 2 = 0A whih n e omputed nlytilly in the funhEhvies vuum wHVF por λ → ∞ the numer of prtiles goes to zero s 1/λD s is expeted sine onforml invrine is restored in this limitF hespite dissiptionD we (nd tht δ k < 1 for ll vlues of λF his indites tht the stte is lwys nonseprle in the twoEmode k sisF sn dditionD ontrry to wht might hve een expetedD the twoEmode entnglement is stronger for smller vlues of λD iFeFD stronger dissiptive e'etsF he reson for this hs to e found in the ft tht λ lso sets the sle where onforml invrine is rokenF vet us now turn to the e'ets of the environment temperture T ψ F pigure SFP shows ontour plots of n k nd δ k for mssless (eld with iqF @SFQPAD gin for g = g crit F sn the limit λ → ∞D we oserve tht n k → 0 irrespetively of the vlue of T ψ F his estlishes tht there is roustness of the reltivisti result in the limit λ → ∞ whih generlizes tht found for dispersive (eldsD see eFgFD efF wHVF his should not e surprise sine we showed in ghpF RD eF ss tht when ψ is not oupled to φD iFeFD g 2 /λ → 0D only the fh vuum is sttionry stle stteF woreoverD in the highEtemperture limitD iqsF@SFPVA n e evluted nlytilly to give

n k + 1 2 ∼ √ πϑ √ λ , δ k ∼ √ πϑ √ λ 1 - 1 + erfi 2 √ λ e 2λ , @SFQQA
where erfi is the imginry error funtionF e ompred the orresponding ontours with On the contrary, for high temperatures, ϑ 1, n k scales as n k ∝ ϑλ -1/2 whereas δ k scales as δ k ∝ ϑλ -1/2 for λ 1, and δ k ∝ ϑλ 1/2 for λ 1. The hatched region indicates the numerical uncertainty about the threshold value δ k = 1 found when n k 1.

II. HOMOGENEOUS PICTURE

VS the numeril ones shown in pigF SFP nd found tht they re prtilly indistinguishle for ϑ > 10F hen onsidering the e'ets of T ψ D we oserve two regimesF et low temperture @ϑ 1AD n k nd δ k only depend on λ nd re silly given y the zero temperture limit shown in pigF SFIF roweverD t lrge temperture @ϑ 1AD they depend on λ nd ϑ ording to iqsF @SFQQAF es expetedD the strongest signtures of quntum entnglementD δ k 1D re found in the region where the reking of onforml invrine is lrge @nd hene pirEretion is tiveA nd when the environment temperture is smllD so tht the spontneous pirEretion events re not negligile with respet to thermlly indued eventsF yn the other hndD when the temperture is lrgeD the (nl stte is seprle sine δ k 1F sn pigF SFP @right pnelA we see tht the threshold se δ k = 1 is pproximtively given y ϑ ∼ λ -1/2 for λ 1F he hthed region for λ 10 represents the numeril unertinty in the region where n k is muh smller thn IF 2. Massive elds e remind see ghpF RD eF sssF e tht the mssless se m = 0 is n isolted point in the mss spetrumX wellEde(ned notion of outEqunt requires either m = 0 or µ 2 > 0F sn the ltter seD the symptoti outEmodes with positive frequeny @seeD eFgFD eppendix f of efF wHVA re given y

χ(P ) = π 2 sinh πµ √ P H J iµ (P/H), @SFQRA
where J denotes the fessel funtion of the (rst kindF pigure SFQ shows the ontour plots of n k nd δ k for mssive (eld with µ 2 = 1 nd g = g crit D in the sme prmeter spe @λD ϑA s in pigF SFPF he se of vorentzE invrint (eld in the funhEhvies stte is reovered in the limit λ → ∞D ϑ → 0F xow onforml invrine is lredy roken y the mss term nd therefore n k remins nonzero in this limitF et zero tempertureD the strongest entnglement @lowest δ k A is found t lrge vlues of λD iFeFD wek dissiptionF his ws expetedD sine dissiption redues the strength of orreltionsF roweverD s in the mssless seD the threshold of seprility δ k = 1 is not rossedF hen inresing the environment temperture T ψ D we see tht the strength of orreE ltion is reduedD nd seprle sttes re foundF he nonseprility riterion δ k < 1 is therefore only met either when T ψ is smller thn the qionsErwking temperture T GH = H/2πD or when the oupling to the environment is su0iently wekF xotie lso tht the ehvior t high temperture n gin e otined nlytillyD the integrls over the fessel funtions eoming hypergeometri funtionsF 3. Role of g in the underdamped regime st is lso interesting to onsider the role of the oupling gD see iqF @SFQPAF es g 2 pE prohes zeroD the dissiptive sle 2Λ/g 2 is moved deeper into the with respet to the dispersive sle whih is (xed y ΛF sn the limit g 2 → 0D the (eld eomes purely dispersive nd n k D δ k n e omputed nlytilly wHV in the funhEhvies vuumF por g 2 < 2 the mode is underdmpedF sn this seD the solutions to iqF @SFPUA whih orrespond to symptoti outEmodes of positive frequeny re given yD see iqF @RFQWA pigure SFRX Contour plots of δn k /n 0 k and δ k for a massive eld (µ 2 = 1) in the underdamped regime g 2 ≤ g 2 crit . The environment is in its ground state (ϑ = 0) and the two axes are the dispersive scale λ and the dissipative one 2λ/g 2 ≥ λ.

χ(P ) = -2i λ 1+iµ 2 1 2µp M -i λ 2 , iµ 2 

VU pigure SFR shows ontour plots of δn

k /n 0 k . = (n k -n 0 k )/n 0 k @
where n 0 k is the numer of prtiles without dispersion nd dissiptionA nd δ k for mssive (eld in the unE derdmped regimeF rereD we set T ψ = 0D nd plot the results in the prmeter spe spnned y the two @dimensionlessA ultrviolet slesX λ whih hrterizes dispersionD nd 2λ/g 2 whih is the sle of dissiptionF he ltter is lrger thn the former in the underdmped regimeF he grey res therefore orrespond to the overdmped regime whih we did not studyF sn the wek dispersiveGdissiptive regime λ 10D it is ler tht δn k nd δ k re oth dominted y dissiptive e'etsF por the ltterD this is euse dispersion lone does not led to deohereneF por the devition δn k D this follows from the ft tht dispersion gives n exponentilly smll orretion to the pir retion proess @see efF wHVAD while the orretions due to dissiption re only lgerilly smllF es resultD the hierrhy of sles does not diretly (x the importne of the respetive e'etsF yn the other hndD when dispersion is strong @λ 1A the pir retion proess is silly governed y dispersive e'etsF he orretion to the prtile numer due to dissiption is very smll @ompred to the dispersive orretionAF yne n lso oserve tht the degree of twoEmode entnglement is then silly governed y the seprtion etween the two sles g 2 D iFeFD δ k is determined y the strength of dissiption at the dispersive thresholdD (Γ/P ) | P =Λ F III. Stationary picture sn the sene of dispersionGdissiptionD it is well known tht the funhEhvies vuum is therml @uwA stte t the qionsErwking temperture T GH = H/2π fhVRF st is lso known tht this is the temperture seen y ny inertil prtile detetorD nd tht this is losely relted to the nruh e'et found in winkowski speD nd to the rwking rdition emitted y lk holes fwWSF sn the presene of dissiptionD while the sttionrity of the stte of φ is exactly preserved when the stte of the environment is invrint under the 0ne groupD the thermlity of the stte is not extly preservedF his loss of thermlityD whih generlizes wht ws found for dispersive (eldsD see ghpF RD eF ssD questions the sttus of lk hole thermodynmis when vorentz invrine is violted hHTD iptHUD tIHF A. Loss of thermality o proe the sttionry properties of the stteD we onsider the trnsition rtes of prtile detetors t rest with respet to the orits of K t F his mens tht the detetor is loted t (xed H|X| < 1 in the oordintes of iqF @QFSAF sn this seD the twoEpoint funtions only depend on t -t nd n e nlyzed t (xed ω = i∂ t | X D see iqF @QFQIAF @he ove restrition on X simply expresses tht the trjetory e timelikeFA he trnsition rtes see iqF @RFIWA reD up to n overll onstntD given y pourier trnsforms of the ightmn funtion G W fwWSF he rtes then determine n ω (X)D
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the men numer of prtiles of frequeny ω > 0 seen y detetor loted t XD through

n ω (X) n ω (X) + 1 = G ω W (X, X) G -ω W (X, X)
. @SFQTA o study the devitions with respet to the qionsErwking temperture T H = H/2πD we generlize the temperture funtion T gl (ω, X) introdued in iqF @RFPHA to ny stte y n ω (X) n ω (X) + 1 = e -ω/T gl (ω,X) . @SFQUA st gives the e'etive temperture seen y the detetorD nd redues to the stndrd notion when it is independent of ωF sn the following numeril omputtionsD for simpliityD we work t X = 0 with n inertil detetorD with g = g crit D m = 0D nd T ψ = 0F ine the lultion of the ommuttor of φ is muh fster nd more relile thn tht of the ntiommuttorD insted of using iqF @SFQTAD n ω shll e numerilly omputed with

n ω (X) = G ω W (X, X) G ω c (X, X)
. @SFQVA he denomintor is expressed using iqF @SFIQAF he numertor is otined from inE tegrting the retrded green9s funtion G ω ret (X, P) in mixed X, P representtion nd the noise of iqF @SFQIA with T ψ → 0F sn dditionD the prinipl vlue is repled y presription for the ontour of ln P/P = Ht to e in the upper omplex plneF sn this we reover the ft tht when the ntiommuttor in the vuum is P.V.(1/t)D the orresponding vuum ightmn funtion is 1/(t -i )F

0 1 2 3 4 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Ω TH Tgl TH
pigure SFSX Plot of the ratio T gl (ω)/T H as a function of ω/T H for various values of λ. We work with a massless eld with g = g crit , for a detector localized in the center of the patch (X = 0), and with T ψ = 0. The values of λ are 1 (continuous), 3 (dotdashed), 5 (dashed), and 10 (dotted.) pigure SFTX Plot of T 0 /T H -1 in logarithmic scales as a function of λ, where T 0 is the low-frequency temperature of massless elds with g = g crit and when T ψ = 0 (ψvacuum). We have also represented by a dotted curve the same quantity evaluated without dissipation when the state is the Bunch-Davies vacuum.

sn pigF SFSD we plot the rtio T gl (ω)/T H s funtion of ω for vrious vlues of λD nd for T ψ = 0F e (rst oserve tht T gl (ω) is onstnt for ll frequenies from zero to III. STATIONARY PICTURE VW few multiples of T H F reneD the lnkin hrter of the stte isD to high uryD preserved y dissiptionD s ws found in the presene of dispersionD see ghpF R nd efsF wHWD pIIF por higher frequeniesD iFeFD ω/T H > 4D we were not le to study T gl (ω) with su0ient ury euse of the numeril noise ssoited to n ω < 0.01F es in the dispersive seD we expet tht the temperture funtion T gl (ω) is modi(ed for ω ΛF eondD when λ is smller thn SD iFeFD when dissiption is strongD we oserve tht the temperture is signi(ntly @more thn 5%A lrger thn T H F hese devitions re further studied in pigF SFTD where we plot the devitions of T 0 D the lowEfrequeny e'etive tempertureD with respet to T H s funtion of λF e oserve tht the devition due to dissiption symptotilly follows

T 0 T H -1 ∼ λ→∞ (6λ) -1 . @SFQWA
his lw hs een veri(ed up to λ = 10 3 F st hs to e ompred with the devition due to qurti dispersion studied in ghpF RD eF sssF his devition is represented y the dotted urveD nd sles s T disp 0 /T H -1 ∼ e -πλ/4 F sn other wordsD the devition due to @qudrtiA dissiption dereses muh slower thn tht due to @qurtiA superluminl dispersionF he importnt lesson for lk hole thermodynmil lws is tht ultrviolet dispersion nd dissiption oth destroy the thermlity of the stteF his lends support to the lim tht vorentz invrine is somehow neessry for these lws to e stis(edF B. Asymptotic correlations among right movers es explined in eF ssF eD t lte timeD the φ (eld deouples from its environmentF his llows to use the reltivisti out sis t (xed k to red out the stte of φF elterntivelyD one n lso use n out sis formed with sttionry modes with (xed frequeny ωF sndeedD t (xed ωD the momentum P ω ∼ |ω/X| → 0 t lrge |X|D nd dispersive e'ets re negligileF rene φω (X)D the sttionry omponent of the (eld opertorD deouples from the environment t lrge |X|D nd n e nlyzed using reltivisti modesF es we shll seeD this new out sis is not trivilly relted to the homogeneous one used in eF ss euse it enodes therml e'ets t the qionsErwking tempertureF rene the ovrine mtrix of the new out opertors will depend on n k nd c k of iqF @SFPVAD ut lso on these therml e'etsF et this point we need to explin why we re interested in expressing in di'erent sis stte whih is fully hrterized y n k nd c k F he min reson omes from lk hole physisF es shll e disussed in the next hpterD when ertin onditions re metD the results of this setion pply to the rwking rdition emitted y dissiptive (eldsF o ompute the ovrine mtrix in the new sisD we rell some properties of the relativistic mssless (eld in de itterF pirstD euse of onforml invrineD the (eld opertor splits into two setors whih do not mixD one for the rightEmoving U modes with k > 0D nd the other for the leftEmoving V modes with k < 0F sn dditionD in de itterD the timeEdependene of ll homogeneous modes n e expressed through χ rel (P ) of iqF @SFPHAD whih here redues to

χ rel (P ) = e iP/H / √ 2H, @SFRHA WH CHAPTER 5.
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where P > 0F his mode hs unit positive uleinEqordon normD s n e veri(ed using the ronskin ondition of iqF @SFPIAF e introdue n intermedite sis onstruted with the sttionry nruh modes ϕ ω nrUTF sn the P representtionD they n e written s rIHD see iqF @QFQHA φ rel ω = (P/H) -iω/H-1 × χ rel (P ). @SFRIA hey form n orthonorml nd omplete mode sis if ω ∈] -∞, ∞[F he sptil ehvior of the U modes is given y

φ U ω (X) = ∞ 0 dP H √ 2π e iPX φ rel ω (P ).
@SFRPA e now introdue the lterntive out sis formed of sttionry modes whih re lolE ized on either side of the horizonsD heneforth lled R nd L modesF hey ehve s indler modes in winkowski speF por U EmodesD the horizon is loted t HX = -1D nd these modes re the ones of iqF @RFTPA nd re de(ned for ω > 0F hey re esily relted to the nruh mode y omputing iqF @SFRPAF sndeedD for ω > 0D one gets

φ U ω = α H ω φ U,out ω,R + β H ω (φ U,out -ω,L ) * , @SFRQA
where oe0ients α H ω nd β H ω re the stndrd fogoliuov oe0ients leding to the qionsErwking temperture H/2πF hey oey β H ω /α H ω = e -πω/H F esymptotilly in the future nd in speD the U prt of the (eld opertor n thus e expressed s

φU (x) = ∞ 0 dk{â k e ikz φ rel k (t) + h.c.} @SFRRA = ∞ -∞ dω{â ω U e -iωt φ U ω (X) + h.c.} @SFRRA = ∞ 0 dω{â ω U,R e -iωt φ U,out ω,R (X) + (â -ω U,L ) † e -iωt (φ U,out -ω,L ) * + h.c.} @SFRRA
he V prt possesses similr deompositionD nd the V modes re otined from the U ones y repling X → -XD nd R ↔ LF he φ V ω modes re thus de(ned on either side of HX = 1F

sing the ove equtionsD the nruh nd the indlerElike opertors of frequeny |ω| re relted y

    âω U,R â-ω † U,L âω V,L â-ω † V,R     =     α H ω β H * ω 0 0 β H ω α H * ω 0 0 0 0 α H ω β H * ω 0 0 β H ω α H * ω     ×     âω U â-ω † U âω V â-ω † V     .
@SFRSA e onsidered oth U nd V modes euse our im is to ompute the ovrine mtrix of the R nd L opertors in terms of n k nd c k of iqF @SFPVAD where c k mixes U nd V modesF o do soD we (rst ompute the ovrine mtrix of the nruh opertorsF hen working with sttes tht re invrint under the 0ne groupD n k nd c k of iqF @SFPVA III. STATIONARY PICTURE WI re independent of kF his implies tht the ovrine mtrix of the nruh opertors is independent of ωF sndeedD using

âω U = ∞ 0 dk H k H iω/H-1/2
âk , @SFRTA whih follows from the pourier trnsforms iqsF @SFRRA nd @SFRRAD one veri(es tht the independene of k implies tht of ωF es resultD introduing

V † ω = â †ω U , â-ω U , â †ω V , â-ω V D the ovrine mtrix of nruh opertors reds C . = V ω ⊗ V † ω = δ(ω -ω ) ×     2     n k 0 0 c k 0 n k c * k 0 0 c k n k 0 c * k 0 0 n k     + 1     , @SFRUA
where n k nd c k re given in iqF @SFIWAF sing the mtrix B ω of iqF @SFRSAD nd dropping the trivil ftor of δ(ω -ω )D the ovrine mtrix of R nd L opertors is

C RL ω = B ω CB † ω = 2     n ω c ω m * ω c U V ω c * ω n ω c U V * ω m ω m ω c U V ω n ω c ω c U V * ω m * ω c * ω n ω     + 1, @SFRVA where 2n ω + 1 = α H ω 2 + β H ω 2 (2n k + 1) , @SFRWA c ω = α H ω (β H ω ) * (2n k + 1) , @SFRWA m ω = 2Re c k α H ω β H ω , @SFRWA 2c U V ω = (α H ω ) 2 c k + (β H ω ) 2 c k * . @SFRWdA
he (rst two oe0ients onern seprtely either the U D or the V EmodesF hey (x the spetrum nd the strength of the orreltionsF he lst two onern the U -V mode mixingD nd re proportionl to c k F gonsidering the oherene mongst pirs of U EquntD iFeFD ignoring the V EmodesD s in eF ssD we use the prmeter δ of iqF @PFQPA

δ ω U = n ω + 1 -|c ω | 2 /n ω .
@SFSHA sing iqF @SFRWAD we otin

δ ω U = n k (n k + 1) (|α H ω | 2 + |β H ω | 2 ) n k + |β H ω | 2 .
@SFSIA e see tht δ U does not depend on c k F his is to e expeted sine c k hrterizes the orreltion etween modes of opposite momentD nd sine there is no U -V mode mixing In the infalling vacuum, for T ψ = 0, the nonseparability found for the massless relativistic case is preserved as long as Λ/H = λ 1/5. When the environment is characterized by a temperature T ψ = 0, the entanglement is preserved as long as T ψ √ HΛ/2, as explained in the text.

for twoEdimensionl mssless (eldsF wore importntlyD iqF @SFSIA is vlid irrespetively of the temperture of the environment T ψ F e n thus study how the seprility of

U Equnt is 'eted y T ψ F he riterion of nonseprilityD δ ω U < 1D gives |β H ω | 2 = 1 e ω/T H -1 > n 2 k (T ψ ) 2n k (T ψ ) + 1 , @SFSPA
where n k (T ψ ) is plotted in pigF SFPF sing this pigureD in pigF SFU we study ln δ U ω with ω = H s funtion of λ nd ϑ = T ψ /HF et zero temperture T ψ = 0D we see tht the pir of U Equnt with ω = H is nonseprle for λ 0.2D iFeFD for rther strong dissiption sine Λ = H/5F sing iqF @SFSPA we see tht this is lso true for ll qunt with ω/H 1F wore surprisinglyD when λ is high enoughD this pir is nonseprle even when T ψ > T H D iFeFD when the environment possesses temperture higher thn the qionsErwking tempertureF sndeedD whenever T ψ √ HΛ/2D the pir is nonseprleD s ll pirs with smller frequeny ωF sn other words the quntum entnglement of the low frequeny U pirs of qunt is extremely roust when working with dissiptive (elds whih re reltivisti in the infrredF he roustness essentilly follows from the kinemtil hrter of the trnsE formtion of iqF @SFRSA whih reltes two relativistic mode sesF st is lso due to the ft tht n k D the numer of U -V pirs reted y the osmologil expnsionD remins negligile in iqF @SFRWA s long s 1 Λ/HD nd T ψ T H (Λ/H) 1/2 F Conclusions sn this hpter we used @ twoEdimensionl redution ofA the dissiptive model introdued in efF rHU to ompute the spetrl properties nd the orreltions of pirs produed in n expnding de itter speF he terms enoding dissiption in iqF @SFPA reks the @lolA vorentz invrine in the ultrviolet setorF etD they re introdued in ovrint mnner y using unit timelike vetor (eld u whih spei(es the preferred WQ frmeF sn dditionD the unitrity of the theory is preserved y oupling the rdition (eld φ to n environmentl (eld ψ omposed of dense set of degrees of freedom tkenD for simpliityD t rest with respet to the u (eldF egin for simpliityD the tion is qudrti in φ, ψD nd the spetrl density of ψ modes is suh tht the @extA retrded qreen funtion of φ oeys lol di'erentil equtionD see iqF @SFIHA nd iqF @SFIPAF fy exploiting the homogeneous hrter of the settingsD we expressed the (nl oE uption numer n k D nd the pirEorreltion mplitude c k D in terms of the noise kernel N nd the retrded qreen funtionD see iqF @SFPVAF ther thn working with integrls over time s usully doneD we used the proper momentum P = k/a(t) to prmetrize the evolution of (eld on(gurtionsF reneD iqF @SFPVA n e viewed s )ow equtions in physil momentum speF o preise the nlysis of efF egxHV where onsequene of dissiption on in)tion is expliitly studiedD we numerilly omputed n k nd c k in eF ssF hen onsidering mssless (eldD n k nd the strength of the orreltions re plotted s funtions of the sle seprtion Λ/HD nd the temperture of the environment T ψ /HD in pigF SFPF he roustness of the reltivisti results is estlished in the limit of lrge rtio Λ/HF he key result onerns the threshold vlues of the prmetersD see the lous δ k = 1 on the right pnelD for whih the (nl stte remins nonseprleD iFeFD so entngled tht it nnot e desried y stohsti ensemleF his nlysis ws then extended to mssive (eldsD see pigF SFQD nd to the onsequenes of vrying the reltive importne of dissiptive nd dispersive e'etsD see pigF SFRF es expetedD the quntum oherene is lost t high ouplingD nd when the temperture of the environment is high enoughF sn eF sss we exploited the sttionrityD nd we studied how the therml distriution hrterizing the qionsErwking e'et is 'eted y dissiptionF es in the se of dispersionD see ghpF RD we found tht the therml hrter isD to leding orderD roustF e lso omputed the devitions of the e'etive temperture with respet to the stndrd one T H = H/2πD see pigsF SFS nd SFTF sn preprtion for the nlysis of the rwking e'etD we studied the strength of the symptoti orreltions ross the uilling horizon etween @rightA moving qunt with opposite frequenyF uite remrklyD we found tht the pirs remin entngled @the twoEmode stte remins nonseprleA even for n environment temperture exeeding T H = H/2πD see pig SFUF sn onlusionD even though our results hve een derived in 1 + 1 dimensionsD we elieve tht very similr results hold in four dimensionsD t lest for homogeneous osE mologil metris nd for spherilly symmetri onesD euse hnge of the dimensionE lity only 'ets the lowEmomentum mode propgtionF rene even if this introdues nontrivil modi(tionsD s grey ody ftors in lk hole metrisD they will not interfere with the highEmomentum dissiptive e'ets when the hierrhy of sles Λ/H, Λ/κ 1 is foundF hey n thus e omputed seprtelyF Chapter 6

Black hole-de Sitter correspondence Introduction et eh point of speEtimeD euse of quntum e'etsD the vuum ontins pirs of virtul prtileEntiprtileF wost of the timeD these never eome rel prtilesF sn some ses howeverD some energy n e used to onvert this virtul pir into rel oneF et the neighorhood of lk hole horizonD it n hppen tht one of these virtul prtile fll into the lk hole nd the other one rehes in(nity without eing nnihiltedF he )ux of suh prtiles is the rwking rditionF sn this hpterD we onsider quntum (eld theory in 1 + 1 dimensionl speEtime ontining lk holeF e show tht mny spets of the rdition esping it re similr to those found in de itter speF e show tht the devitions to the petrum of the )ux is governed y the width of the ner horizon region where spe time looks like de itterF A. Generalities e here onsider the kground for generl vorentz violting p in sttionry spe time in ICI dimensionsF e thus hve two privileged vetor (elds in this spe timeD nmely K t @we suppose it is direted towrds the futureA the sttionry uilling vetor (eld nd u the unit timelike vetor (eld generting dispersion nd dissiptionF es in the previous hptersD we suppose tht u hs the sme symmetries s the speE timeD whih mens tht u ommutes with K t F vet s e the unit spelike vetor (eld orthogonl to uF his mens tht the metri reds g µν = -u µ u ν + s µ s ν F feuse oth the metri nd u re sttionryD so is sF K t nd s then form sis of vetors tht ommuteF here hene exists @lollyA oordinte system @τ, XA suh tht

K t = ∂ τ nd s = ∂ X F fy de(ning the two funtions of XD c . = K µ t u µ nd v .
= -K µ t s µ D one n show tht ll slr quntities onstruted using K t , g, u nd s only depend on v, c nd their derivtives @v = s µ ∂ µ v, c = s µ ∂ µ c, . . . AF he link etween the u nd the uilling (eld is

u = -1 c (K t + vs), @TFIA
nd the metri tkes form muh similr to the rhs of iqF @QFSA

ds 2 = -c(X) 2 dτ 2 + (dX -v(X)dτ ) 2 . @TFPA
his shows tht the two funtions v nd c ompletely (x the speEtime nd the preferred frmeF woreoverD the elertions of u, s re given y

∇ µ u ν = - c c u µ s ν - v c s µ s ν , ∇ µ s ν = - c c u µ u ν - v c s µ u ν . @TFQA
end t the level of the lgerD one veri(es immeditely tht

[u, s] = c c u + v c s.
@TFRA yn the other hndD the norm of the uilling (eld reds K 2 t = -c 2 + v 2 F hen |v| rosses cD the uilling (eld thus eomes speElikeF his is uilling horizonF st seprtes the suluminl region |v| < c from the superluminl one |v| > cF en importnt notion in the presene of uilling horizon is the notion of surfe grvityF st is de(ned y the reltion

κK µ t = K ν t ∇ ν K µ t t the horizonF sing our funtions v nd cD it reds κ = ∂ X (v 2 -c 2 ) 2v | horizon .
@TFSA e reover the expression of the surfe grvity used in ondensed mtter models fvIID wHWD nd generlize tHVF sn the presene of n horizon situted t X = X H D to simplify nottionsD we shift the xes nd de(ne x . = X -X H so tht the horizon is t x = 0F hen κ > 0D this horizon is the oundry of lk holeX no lightlike urve n espe the superluminl regionF hen κ < 0D the horizon is the oundry of white holeF sndeedD lose to the horizonD the lightlike geodesis re x = 2sgn(v)t for oEpropgting modes nd x = x 0 e κt for ounterEpropgting modesF WT CHAPTER 6. BLACK HOLE-DE SITTER CORRESPONDENCE B. Freely falling frame o get sitution whih is loser to tht of ghpF RD eF sF eD we now ssume tht the preferred frme is freely fllingD iFeFD u µ D µ u ν = 0F his implies tht c is onstnt nd y rede(nition of K t D we hose it to e c = 1F henD ssuming tht the )ow is moving to the leftD the veloity pro(le is in the ner horizon region @xrA v ∼ -1 + κx he importnt lesson of the previous setion is tht under the ssumptions of sttionE rity nd freely fllingnessD the lk hole metri nd the preferred frme re ompletelyD nd invrintlyD determined y v(x)F ine the de itter kground (elds of ghpF QD eF s n e desried y the sme settings with the extr ondition tht v dS is liner in xD the omprison of dispersive e'ets ssoited with given dispersion reltion n e esily done for the solutions of oth iqF @QFPUA nd its rmilton toi orresponding equtionF sn prtiulrD we n lredy predit tht the deviations etween de itter nd the lk hole se will e governed y the sptil extension of the lk hole xr where v is pproximtively liner in xF hen v = -1 + D tanh(κx/D), @TFTA the extension isD roughly spekingD given y |κx| = DF 1 sing this veloity pro(leD ner the horizonD iqF @TFRA is given y

[u, s] = v (x)s = κs 1 - (κx) 2 D 2 + O(κx) 4 , @TFUA
whih lerly shows tht the devitions with respet to iqF @QFIQA re governed y κx/DF II. Correspondence in the absence of dissipation e now show tht this orrespondene is not limited to the kground (eldsD ut extends to the dynamics of dispersive (eldsF e shll show this (rst t the lssil level @ufA nd then for the quntum (eld theoryF A. The characteristics et the lssil levelD the orrespondene is most lerly seen y onsidering rmilton9s equtionsF sn prtiulrD irrespetive of the hoie of f in iqF @RFIAD the time derivtive of the momentum

P = ∂ x S = s µ ∂ µ S oeys dP dτ = - 1 ∂ ω x ω (P)
= -Pv (x ω (P)), @TFVA 1. Even though the parameter D plays no role when computing the Hawking spectrum using relativistic elds, it plays important roles in black hole physics. pigure TFIX he hrteristis of (eld in the sme frme s in pigF RFTF he disE persion reltion is superluminl nd we drw the hrteristis oth in the lk hole pro(le of iqF @TFTA @lkA nd in de itter @redAF lues of the prmeters re D = 0.8D Λ/κ = 30D ω = κF sn dshedD we drw the V modeF sn solid lines is repreE sented the U mode of positive frequenyF sn dotEdshD we show the negtive energy mode tht is trpped into the lk holeF sts turning point orresponds to the ple where the uf pproximtion filsF sn dotted is represented the horizon x = 0F where x ω (P) is the root of iqF @RFIA t (xed ωD iFeFD with Ω expressed s Ω = ω -v(x)PF e lern here tht iqF @TFVA is the dynmil equivlent of iqF @TFUAF his estlishes how the preferred frme lger imprints the prtile9s dynmisF rving understood thtD s long s κx DD iqF @TFVA nd iqF @TFUA gurntee tht P oeys P(τ ) = P 0 e -κτ , @TFWA s in the de itter osmology where P = k/a(t)F st is worth pointing out tht this exponentil redshift pplies for oth signs of PD iFeFD for oth right nd left moving solutionsF his orrespondene in P Espe lso pplies to the lssil trjetories in xE speF et (xed ωD x(τ ) oeys ω -v(x)P = ±F (P )D where P(τ ) is the solution iqF @TFVAD nd where + @-A desries right moving trjetoriesF es long s v ∼ -1 + κx furnishes good desription of vD the dispersive trjetories x ω (τ ) in the lk hole metri re indistinguishle from those in de itterD iFeFD x ω (τ ) is the sme funtion s X dS ω (t) -1/H for H = κ nd t = τ D see pigF TFIF B. At the level of elds he orrespondene further extends to dispersive (eld euse the sttionry modes φ ω still @extlyA oey iqF @QFPUA in the lk hole seF hereforeD ner the uilling horizonD the lk hole pourier modes φω (P) ftorize s in iqF @QFQHAD where χ will oey iqF @QFPRA with H = κF et this point we mke two oservtionsF pirstD iqF @QFPRA resulted in de itter from the oexistene of K t nd K z D nd their lger of iqF @QFIPAF eondD iqF @QFPRA ws used in ll nlytil tretments of the sttering of dispersive modes on lk hole horizon fwWSD gtWTD fppHSD HSD gpIPF hese oservtions rise severl questionsX

• ht is the relevne of this orrespondene for the S mtrix c WV CHAPTER 6. BLACK HOLE-DE SITTER CORRESPONDENCE

• ht is the vlidity domin of this orrespondene in terms of time lpses c

• gn we de(ne (eld K z whih is pproximtively uilling ner the horizon c he (rst question is ertinly the most importnt oneF es shown in efsF gpIPDpIID pIPD in the lk hole seD when Λ/κ 1D the leading deviations from the lnk spetrum t the stndrd rwking temperture re governed y inverse powers of the prmeter D whih enters in iqF @TFUAF his mens tht these devitions re in ft de(ned with respet to the orresponding dispersive spetrum evluted in de itter speF his is perfetly oherent euse in de itterD the devitions due to dispersion with respet to the reltivisti spetrum re very smllD see ghpF RD eF sssF e nd ghpF RD eF sssF gD muh smller thn those of the lk hole seF sn riefD this explins why the prmeter D of iqF @TFUAD whih governs the extension of the lk hole ner horizon region whih n e mpped in de itterD lso governs the spetrl devitions of the lk hole )uxF gonerning the seond questionD s fr s spe is onernedD the vlidity rnge of the linerized expression of v round K 2 t = 0 is trivilly (xed y DF ht is less trivil onerns the lpse of time during whih this linerized expression n e usedD given the dispersion reltion of iqF @RFIAF st is t this level tht the seprtion etween the kground sle κ ∼ ω nd the dispersive sle Λ entersF hen Λ/ω 1D the lpse of time during whih the right moving U Eprtiles of frequeny ω sty in the xr slesD for qurti dispersionD s κ∆τ ∼ log(D 3/2 Λ/ω)F o show this resultD one uses the ft tht in the limit Λ/ω 1 the solutions of the dispersion reltion t κx = D re P ∼ ±Λ √ D for the inoming modes nd P ∼ ±ω/D for the outgoing modesF feuse in etween the wve is in the xrD P ∼ P 0 e -κt ppliesF wking the rtio of the two expressions gives the umulted redshift from the high initil momentum till the (nl oneF st sles s P in /P out ∼ e κ∆τ ∼ ω disp max /ωD where

ω disp max = D 3/2 Λ.
@TFIHA e see tht it omines in nontrivil mnner the sle seprtion nd the sptil extension of the xrF sn efF pIP it ws expliitly shown tht κ∆τ D the dimensionl lpse of time spent in the de itter like regionD governs the properties of the lk hole spetrumF rving lri(ed these issuesD it is worth returning to geometril spets y investiE gting how vetor (eld K z = ∂ z n e introdued in lk hole speEtimes nd to wht extent it ould e onsidered s n pproximte uilling (eldF st should e (rst pointed out thtD prioriD there exist severl wys to introdue new oordinte zF snE deedD in de itterD K dS z oeys severl properties tht n e used to de(ne the vetor (eld in the lk hole seF por instneD the ommuttor [u, K dS z ] vnishesF sing this propE erty to de(ne zD one gets the onstrution of efF rHU tht we used in ghpF SD eF s where the lk hole metri reds ds 2 = -dτ 2 + a 2 dz 2 D with a = v(x(τ, z))/v(z) ∼ e -κτ in the xrF he disdvntge of this hoie is tht the lpse of time during whih the exponentil is found for the sle ftor a is muh shorter thn the lpse ∆τ we ove disussedF A posterioriD it turns out tht etter hoie is provided y imposing tht iqF @QFIPA e stis(edX

[K t , K z ] = κK z . @TFIIA

III. ANALOGY IN THE PRESENCE OF DISSIPATION

WW his implies tht K z . = e κt ∂ x is the derivtive with respet to the new oordinte z = xe -κt F e then hve the following ommuttion reltions

[K z , u] = (v (x) -κ)K z , @TFIPA nd D µ K zν + D ν K zµ = v (x) -κ 2 (s µ u ν + u µ s ν ).
@TFIQA ine κ = v (x = 0)D we see tht the devitions from the uillingnessD iFeFD the seond equtionD nd from the homogeneous de itternessD the (rst equtionD re oth governed y the grdient of v in the xrD nd not from κ itselfF st is thus geometrilly meningE fulD nd dynmilly relevntD to sy tht sttionry lk hole metri endowed with freely flling frme possessesD in the xrD n pproximte homogeneous uilling (eld K z oeying the 0ne lger of iqF @TFIIAF III. Analogy in the presence of dissipation e now explin when nd why the results of ghpF SD eF sss pply to the rwking rdition emitted y dissiptive (eldsF yur min im is to estlish tht the spetrum of rwking rditionD nd the ssoited long distne orreltions ross the horizonD re oth roust when dissiption ours t su0iently high energy with respet to the surfe grvityD s ws ntiipted in efsF fwWSD rHUF he roustness shll e estlished y studying the ntiommuttor of iqF @SFISAD nd showing tht its symptoti ehvior is governed y iqsF @SFRWA nd @SFRWAF es in de itter seD we shll ssume tht the environment hs the sme symmetries s speEtimeD iFeFD is sttionryF his implies tht the noise kernel of iqF @SFITA only depends on τ -τ when evluted t x, x D long the orits of the uilling (eld K t F hen these sttionry onditions re metD the @driven prt of theA ntiommuttor of φ is @extlyA given y

G ω ac (x, x ) = dx 1 dx 2 G ω ret (x, x 1 )[G ω ret (x , x 2 )] * N ω (x 1 , x 2 ) @TFIRA
where the two kernels G ω ret nd N ω re now de(ned in the lk hole metri of iqF @TFPA with c = 1F es resultD to ompre the expressions of G ω ac (x, x ) evluted in de itter nd in iqF @TFPAD it is su0ient to study G ω ret nd N ω F o estlish the orrespondene with ontrolled pproximtionsD the following four onditions re neessryX

• the stte of ψ should e the sme • the lk hole surfe grvity κ = H

• the ner horizon region should e lrge enough

• the dispersive nd dissiptive sles should oth e muh lrger thn κ ∼ ωF he (rst ondition is rther ovious nd needs no justi(tionF he seond nd the third onditions onern the metri nd the u (eldF hey follow from eF sF he fourth ondition is generliztion of Λ ω ∼ κD see eF ssF

N ω (x 1 , x 2 ) = γ(-∂ 1 )γ(-∂ 2 ) (-iω + √ v 1 ∂ 1 √ v 1 ) (iω + √ v 2 ∂ 2 √ v 2 ) dζG ω ac,ψ (x 1 , x 2 , ζ), @TFISA where v i . = v(x i ) nd ∂ i .
= ∂ x i F he sttionry kernel in the integrl is the pourier trnsform of the ntiommuttor of ψD see iqF @SFPWAF o ompute it we use the ft tht the ftor a(t, z) of iqF @SFTA is now given y @see iqF @SSA in efF rHU for threeEdimensionl rdil )owA

a(τ, x) = v(x)/v(z(τ, x)).
@TFITA es in iqF @SFTAD z lels the orits of uF st is here ompletely (xed y the ondition tht z = x when t = 0F ine the orits re solutions of dx/dt = vD z is impliitly given y

x z dx 1 v(x 1 ) = t. @TFIUA
sing the ove equtions to reEexpress the δ(z -z ) of iqF @SFPWAD one (nds

G ac,ψ (∆τ, x 1 , x 2 ; ζ) = δ(∆τ - x 1 x 2 dx/v) √ v 1 v 2 2n ζ + 1 ω ζ cos (ω ζ ∆t) . @TFIVA
sts pourier omponent with respet to ∆τ is trivilly

G ω ac,ψ (x 1 , x 2 ; ζ) = e iω∆t 12 √ v 1 v 2 2n ζ + 1 ω ζ cos (ω ζ ∆t 12 ) , @TFIWA
where ∆t 12 =

x 1

x 2 dx/v is the lpse of time from x 2 to x 1 following n orit z = cst whih onnets these two pointsF ine the settings re sttionryD these orits re ll the smeD s n e seen in pigF TFQF sing iqF @TFISAD the noise kernel is expliitly given y

N ω (x 1 , x 2 ) =γ(-∂ 1 )γ(-∂ 2 ) e iω∆t 12 √ v 1 v 2 dζ(2n ζ + 1)ω ζ cos (ω ζ ∆t 12 ) . @TFPHA
his kernel is lol in tht it only depends on v @or equivlently on g µν nd u µ A etween

x 1 nd x 2 F reneD when evluted in the lk hole xrD it greesD as an identityD with the orresponding expression evluted in de itterF sn onlusionD we notie tht this identity follows from our hoie of the tion of iqF @SFPAF rd we used more omplited environmentD this identity would hve een repled y n pproximtive orrespondeneF sn tht seD the orrespondene would hve still een urte if the propgtion of ψ hd een ditiF es usulD this ondition is stis(ed when the degrees of freedom of ψ re hevyD iFeFD when their frequeny ω ζ ∼ Λ κF he sttionry funtion G ω ret (x, x 1 ) oeys iqF @SFIPAD whih is fourth order eqution in ∂ x when working with iqF @SFQPAF hepending on the position of x nd x 1 D its ehvior should e nlyzed using di'erent tehniquesF pr wy from the horizonD the propgE tion is well desried y uf tehniques sine the grdient of v is smllF glose to the horizon instedD the uf pproximtion filsD s in dispersive theories gpIPF sn this regionD the P representtion urtely desries the (eld propgtionD nd is essentilly the sme s tht tking ple in de itterF hereforeD the lultion of G ω ac (x, x ) of iqF @TFIRA t lrge distnes oils down to onneting the de itter!like outome t high P to the lowEmomentum uf modesF es in the se of dispersive (eldsD the onnetion entils n inverse pourier trnsform from P to x spe in the intermedite region IID see pigF TFQD where oth desriptions re vlid fwWSD gorWVD HSD fppHSD gpIPF sn the present seD these steps re performed t the level of the twoEpoint funtion rther thn eing pplied to sttionry modesF sn ftD we shll ompute G ω ac through

G ω ac (x, x ) = ∞ -∞ dP 1 dP 2 G ω ret (x, P 1 )G ω * ret (x , P 2 )N ω (P 1 , P 2 ), @TFPIA
where the two G ω ret re expressed in mixed x, P representtionF he erly on(gurtions in intertion with the environment re desried in P speD while the lrge distne ehvior is expressed in x speF 1. Relevant range for P i vet us give here only the essentil pointsD more detils re given in eF sF he vlidity of the whole proedure relies on omintion of the third nd the fourth ondition given oveD nmely max(1, D -2 ) Λ/κD nd is limited to moderte frequeniesD iFeFD 0 < ω ∼ κ ΛF por simpliityD we onsider mssless (eldsF hen Λ/κ 1 gurntees tht the inE flling V modes essentilly deouple from the outgoing U modes euse the only soure of U -V mixing omes from the ultrviolet setorF reneD t leding order in κ/ΛD it is legitimte to onsider only the U modesF por mssive (elds with m ΛD the disussion is more elorte ut the min onlusion is the smeX the properties of the rwking rdition re roustF por mssless (eldsD t (xed ωD the propgtion of the U modes is governed y the e'etive dispersion reltionD see iqF @SFPUAD

Ω = ω -v(x)P = √ F 2 -Γ 2 .
@TFPPA es long s P ΛD the U setor of G ω ret ehves s for reltivisti (eldD sine √ F 2 -Γ 2 ∼ P (1 + O(P/Λ))F snstedD when P ΛD the dispersive nd dissiptive terms weighted y f nd Γ nnot e negleted in iqF @SFIPAF o hrterize the trnsition from these two regimesD we onsider the optil depth of iqF @SFPSAF hen working t (xed ωD one (nds

I ω (x, x 1 ) = P 1 P dP Γ(P ) P ∂ x v [x ω (P )] = x x 1 dx Γ[P ω (x )] v ω gr (x )
, @TFPQA IHP CHAPTER 6. BLACK HOLE-DE SITTER CORRESPONDENCE where x ω (P ) is the root of iqF @TFPPAD s is P ω (x) when using x s the vrile see eF sF e for the origin of this expressionF he (rst expression governs G ret in the xr where ∂ x v ∼ κ is lmost onstntD see iqF @SFPRAF o leding order in Γ/P 1D whih is stis(ed everywhere ut very lose to the horizonD the seond expression governs G ret in x speF ine v ω gr = 1/∂ ω P is the group veloity in the rest frmeD I ω = t t 1 dt Γ(P ω )D where the integrl is evluted long the lssil outgoing trjetoryF st should e notied thtD when onsidered in x speD I ω pplies on the right nd the left of the horizonF sn the regionD v gr > 0D while it is negtive in vD so tht in oth ses I ω > 0 when P 1 > P > 0D iFeFD when P 1 is in the pst of P F o hrterize the retrded qreen funtions of iqF @TFPIAD we ompute I ω in the mixed representtionD in the limit where P 1 is lrge enough so tht x ω (P 1 ) is deep inside the xrD while x is fr wy from tht regionF por simpliityD we onsider the se of iqF @SFQPA with g = g crit F sn this seD only the dissiptive e'ets re signi(nt 2 D nd one (nds

I ω (x, P 1 ) ∼ P 2 1 2κΛ + ω 2 |x| Λ|1 + v R/L | 3 , @TFPRA
where v R @v L A is the symptoti veloity on the right @leftA sideF prom the seond termD we lern tht |κx| should e muh smller thn Λ/κ for the rwking qunt not to e dissiptedF ine we work in the regime Λ/κ 1D this ondition is esily stis(edF e notie tht similr type of wek dmping e'et of outgoing modes hs een oserved in experiments + IIF prom the (rst termD we lern tht I ω gives n upper ound to the domin of P whih signi(ntly ontriutes to iqF @TFPIAD nmely P 2 ΛκD s in de itterF e lower ound of this domin is provided y the γ ftors of iqF @SFQIAF sing this eqution nd iqF @QFQWAD the integrnd of iqF @TFPIA sles s T (P ) ∝P Γ(P )e -2I(x,P ) ∝ P 3 e -P 2 /Λκ , @TFPSA nd its ehvior is represented in pigF TFPF reneD the relevnt domin of P D iFeFD when T is lrger thn 10% of its mximum vlueD sles s 0.36

√ κΛ = P min P P max = 2.4 √ κΛ. @TFPTA
2. Range of integration in direct space gonsidered in speEtimeD sine P ∼ e -κt D this limits the lpse of time during whih the oupling to ψ oursF snterestinglyD this lpse is given y κ∆t ≈ 2D iFeFD two eEfoldsD irrespetive of the vlue of Λ/κD nd tht of ωF st should e lso stressed tht nothing preise n e sid out the domin of xD whih signi(ntly ontriutes euse the xEuf fils when P is so lrgeF yne n simply sy tht it is roughly hrterized y the intervl [-x trans , x trans ]D where x trans = x ω=κ (P min ) is given y

κx trans ∼ 3 κ/Λ. @TFPUA
2. In the case where g 2 1, dispersive eects are important and may limit the role of dissipation in the NHR. In that case, the decaying part of the eld will contribute to Eq. ( 5 DD see pigF TFQD whereD on the one hndD one is still in de itter!like spe sine v is still liner in XD ndD on the other hndD the lowEmomentum modes n e lredy well pproximted y their uf expressionsF xotie (nlly tht this resoning only pplies for frequenies ω ω diss max F sndeedD when ω = ω diss max D dissiption ours round κx ∼ DD iFeFD no longer in de itter like kgroundF hese steps re su0ient to estlish tht the results of ghpF SD eF sssF f pply for ω ω diss max F sn prtiulrD iqF @SFRWA implies tht the spetrum of rdition is roust @when the temperture of the environment is low enoughD see pigF SFUAF xmelyD to leding order in κ/ΛD the men ouption numer n ω of qunt reeived fr wy is given y the lnk distriution t the stndrd reltivisti temperture T H = κ/2πF es in dispersive settingsD the rel di0ulty is to evlute the spetrl devitionsF sn this respetD we onjeture tht the leding devitions due to dissiption will e suppressed y powers of κ/ω diss max F ht isD they will e governed y the omposite ultrviolet sle of iqF @TFPVA whih depends on the highEenergy physisD here with Γ qudrti in P D nd on the extension D of the lk hole xrF his seond dependene is highly relevnt when D 1F ogether with the roustness of the spetrumD one lso hs tht of the longEdistne orreltions ross the horizon etween the rwking qunt nd their prtnersF hese orreltions re (xed y the oe0ient c ω of iqF @SFRWAF o get the speEtime properties IHR CHAPTER 6. BLACK HOLE-DE SITTER CORRESPONDENCE

I L II L III II R I R 1.5 1.0 0.5 0.0 0.5 1.0 1.5 3 2 1 0 1 2 3 X t
pigure TFQX Null outgoing geodesics (dashed lines) on either side of the horizon at x = 0, and freely falling orbits z = cst. (dotted) in the τ, x coordinates of Eq. (6.2). As explained in the text, the nearby geodesics schematically indicate the space-time region where G ac (τ, x, τ 1 , x 1 ) is nonvanishing, when κτ 1 = 2.5, and κx 1 = 1.5, see Fig. 1 of Ref.

[Par10] for the relativistic case. The two thick solid lines represent the region where the noise kernel contributes to G ac , see Eq. (6.14) and Eq. (6.21). In the central region III, the propagation is well described in P space, and resembles to that found in de Sitter.

of the ptternD one should integrte over ωD iFeFD perform the inverse pourier trnsform of iqF @QFQIAD euse it is this integrl tht introdues the speEtime oherene wWTD fwWSD rIHF sn pigF TFQD we hve shemtilly represented the ntiommuttor G ac (τ -τ 1 , x, x 1 ) in the τ -τ 1 , x plne when x 1 is tken fr wy from the horizonF • he entrl region III is the region where the on(gurtions of the φ (eld re driven y the noise kernelF sn pigF TFQ the two thik solid lines indite the speE time lous where the intertions involving the on(gurtions seleted y τ 1 , x 1 re 3. From this observation, we learn that the correspondence between the physics in black hole metrics and in de Sitter is not merely a convenient way to obtain n ω and c ω in Sec. IV. B. It actually shows up in the NHR when computing observables, such as the mean value or the two-point correlation of ρ = u µ u ν T µν . Moreover, it ceases when leaving this region. In this sense, the Hawking eect only develops, or separates, from its de Sitter roots for |κx| D, and furthermore, this separation is adiabatic.

IV. FLUX AND LONG DISTANCE CORRELATIONS

IHS tking pleF 4 sn this entrl region IIID the propgtion is well desried in P speD nd orresponds to tht found in de itterD see iqF @TFRPA nd iqF @TFRQAF sn riefD when κ/ω diss max 1 nd ω/ω diss max 1D the nontrivil propgtion only ours deep inside the xr whih is portion of de itter spe more mthemtil rgument is given in eF sF his implies tht n ω nd c ω reD to good pproximtionD given y their de itter expressions of iqF @SFRWAF qiven tht these @extA expressions hrdly di'er from the reltivisti ones when κ/Λ 1D we n predit thtD when omputed in lk hole metriD these two oservles re roust whenever the (niteness of the xr introdues smll devitions with respet to the de itter seF por ω/ω diss max 1D this is gurnteed y κ/ω diss max 1F IV. Flux and long distance correlations he expressions for the symptoti )ux nd the orreltion pttern re oth enoded in iqF @TFIRAF o otin themD we need two thingsF pirstlyD we need to hrterize G ω ret from the symptoti region down to the xrF o this endD we should perform uf nlysis of the sttionry dmped modesF eondlyD we need to onnet the uf modes with the high momentum de itterElike physis tking ple very lose to the horizonF A. WKB analysis et (xed ωD using iqF @SFIHAD diss φ dec = 0 implies tht the deying mode φ dec ω oeys

(iω -∂ x v) (iω -v∂ x ) + F 2 (-∂ 2 x ) -γ(-∂ x )(iω - √ v∂ x √ v)γ(∂ x ) φ dec ω = 0. @TFPWA
he mode φ ω dec deys when displing x long the diretion of the group veloityF reneD on the right of the horizonD the outgoing U Emode deys when x inresesD while it dereses for deresing x < 0 in the left regionD see pig TFQF reneD U Emodes sptilly dey on oth sides when leving the horizonF es in the se of dispersive (elds gpIPD we look for solutions of iqF @TFPWA of the form φ dec ω (x) = e i x dx Qω(x ) , @TFQHA where Q ω (x) is expnded in powers of the grdient of v(x)F o (rst orderD iqF @TFPWA gives

(ω-v(x)Q ω + iΓ) 2 -(F 2 -Γ 2 ) = - i 2 ∂ x ∂ Q (ω -v(x)Q ω + iΓ) 2 -(F 2 -Γ 2 )
, @TFQIA 4. To get Fig. 6.3, we have ltered out low frequencies. This amounts to considering a wavepacket rather than the two-point function, see Eqs. (38,39) in Ref. [Par10]. Had we considered G ac , the thick lines would have extended back in time, because the coupling between ψ and φω is centered around κt ω = ln ω + cst., which xes the blueshift for P ω ∝ ω to reach √ κΛ, see Eq. (6.26).
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where the funtions Γ > 0 of iqF @SFIIA nd F re evluted for P = Q ω F he leding order solutionD the omplex momentum Q (0) ω (x) . = P C ω (x)D ontins no grdientD nd oeys the omplex rmiltonEtoi eqution ω -v(x)P + iΓ(P ) = F 2 (P ) -Γ 2 (P ) . = F (P ). @TFQPA es expetedD this eqution gives iqF @SFIA sine Ω = ω -vP F o (rst order in the grdientD we get totl derivtive

Q (1) ω = i 2 ∂ x log F (P C ω ) ∂ ω P C ω .
@TFQQA gomining iqF @TFQPA nd iqF @TFQQAD we otin the deying ufEmode

φ dec ω (x) ≈ e -Iω(x,x 0 ) × e i x x 0 dx Pω(x ) 2v C gr F (P C ω )
. @TFQRA o get this expressionD we introdued v C gr = 1/∂ ω P C ω whih n e oneived s omplex group veloityF e lso deomposed P C ω into its rel prt P ω D nd its imginry prt P I ω F he osillting exponentil is the stndrd expressionD while the deying one is dxP I ω F he ltter is equl to I ω of iqF @TFPQA when working to (rst order in Γ/P D whih is here legitimte pproximtionF e preliminry nlysisD similr to iqF @eIPA of efF gpIPD indites tht the orretions to iqF @TFQRA re ounded y O( ω 2 Λ 2 |1+v| 3 + g 2 ω Λ(1+v) 2 )F rene iqF @TFQRA gives n urte desription everywhere ut in the entrl region III de(ned y κx trans of iqF @TFPUAF sing iqF @TFQRAD the U Emode ontriution to the ommuttor isD for ω > 0D

G ω c (x, x ) = θ(I ω (x, x ))φ dec ω (x) (φ grw ω (x )) * + θ(I ω (x , x))φ grw ω (x) φ dec ω (x ) * , @TFQSA
where the growing mode φ grw ω stis(es iqF @TFPWA with the opposite sign for the lst term whih enodes dissiptionF he expression for ω < 0 is given y G -ω c = -(G ω c ) * whih follows from the imginry hrter of G c in t, x speF e used the sign of I ω in iqF @TFQSA so tht similr expression is vlid on the left of the horizonF xote lso tht iqF @TFQSA nnot e used to estimte G ω c ross the horizon euse the uf pproximtion fils in region IIIF xote (nlly tht iqF @TFQSA is vlid only for Λ |x -x | 1F rving hrterized in quntittive terms the impt of dissiptionD we now work in onditions suh tht the mode dmping is negligile fr wy from this entrl regionF ht isD we work with x, x oeying x trans |x| Λ/κ 3 , @TFQTA where the upper limit omes from the neglet of the seond term in iqF @TFPRAF nder these onditionsD the @out prt of theA ntiEommuttor of iqF @TFIRA isD for ω > 0D given y

G ω ac (x, x ) ≈(2n ω + 1) φ out,BH ω,R (x)(φ out,BH ω,R (x )) * + (φ out,BH -ω,L (x)) * φ out,BH -ω,L (x ) + 2Re c ω φ out,BH ω,R (x)φ out,BH -ω,L (x ) , @TFQUA
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where n ω nd c ω re onstnt euse we re fr from region IIID nd where the R nd L out modes live on one side of the horizon nd hve unit normF feing undmpedD they re either reltivistiD orD more generllyD dispersive uf modesF sn the former seD they thus ehve in the regions of interestD nmely

I R/L nd II R/L D s φ out,BH ω,R ∼ II θ(x) x iω/κ √ 2ω ∼ I θ(x) e iωx/(1+v R ) 2ω/(1 + v R ) , φ out,BH -ω,L * ∼ II θ(-x) (-x) iω/κ √ 2ω ∼ I θ(-x) e -iωx/|1+v L | |2ω/(1 + v L )| , @TFQVA
where v R(L) is the symptoti veloity in the region R @LD where 1 + v L < 0AF es in de itterD the @positive unit normA mode φ out,BH -ω,L living in the L region hs negtive uilling frequenyF sn iqF @TFQUAD n ω nd c ω re unmiguously de(ned euse the R/L modes re normlized in regions I R/L F husD they respetively de(ne the spetrum emitted y the lk holeD nd the ωEontriution of the orreltion ross the horizonF o ompute themD we should (nd the equivlent of iqF @SFPVAF o this endD we shll use iqF @TFPIAD nd exploit the ft tht their vlues re (xed in the domin of P given in iqF @TFPTAF B. Connection with de Sitter physics sn iqF @TFPIAD we need @the U Emode ontriution ofA G ω ret (x, P 1 ) with |x| x trans D sine we re interested in the fr wy ehvior of G ω ac D nd with P 1 √ κΛD euse the integrnd vnishes for lower vlues of P F ine P ω (x) P 1 D the retrded hrter of iqF @SFPRA is utomtilly implementedD whih mens tht G ω ret (x, P 1 ) = (-i)G ω c (x, P 1 ). @TFQWA he ommuttor G ω c (x, P 1 )D on the one hndD oeys iqF @TFPWA in xD nd on the other hndD ehves s in de itter for P 1 √ κΛD when ω diss max of iqF @TFPVA oeys κ/ω diss max 1F his seond ondition mens tht the high P 1 ehvior is governed y iqF @SFPRA nd iqF @QFQWAF por simpliity we onsider the mssless se of iqF @SFQPAD when g 2 = 2F sn this modelD in de itterD using the nruh modes of iqF @SFRIAD the U Emode ontriution is

G ω c,dS (x, P) = e -I P 0 φ U ω (x)(θ(P)φ rel ω (P )) * -φ U -ω (x) * (θ(-P)φ rel -ω (P )) , @TFRHA
where I P 0 is given in iqF @SFPSAD nd where we repled its lower vlue P ω (x) √ κΛ y 0 euse x is tken su0iently lrgeF sing iqF @SFRQAD we n reEexpress iqF @TFRHA in the R/L out mode sisF por ω > 0 we get G ω c,dS (x, P) = e -I P 0 φ out,dS ω,R (x)(φ out,dS ω,R (P)) * -(φ out,dS -ω,L (x)) * φ out,dS -ω,L (P) . @TFRIA sn this we reover tht the ommuttor possesses the sme expression if one uses the in @nruhA or the out mode sisF IHV CHAPTER 6. BLACK HOLE-DE SITTER CORRESPONDENCE iqF @TFRIA pplies s suh to the lk hole metri in the regions II R/L D κx trans |κx| < D/2D euse G c,BH oeys the sme equtionsD nd its normliztion is (xed y the equl time ommuttorsF sn ftD in these regions the normlized lk hole modes φ out,BH ω,R , φ out,BH -ω,L oinide with the modes φ out,dS ω,R , φ out,dS -ω,L of iqF @RFTPAF henD the uf hrter of φ out,BH ω,R , φ out,BH -ω,L gurntees tht iqF @TFRIA pplies further wy from the horizonD in the regions de(ned y iqF @TFQTAF reneD in these regionsD we hve

G ω c,BH (x, P) ≈ e -I P 0 φ out,BH ω,R (x) 
(φ out,dS ω,R (P)) * -(φ out,BH -ω,L (x)) * φ out,dS -ω,L (P) . @TFRPA e kept the de itter modes in PEspe euse only |P| κ/Λ ontriute to iqF @TFPIAF sing iqF @TFQWAD inserting the ove expression in iqF @TFPIAD nd ompring the resultE ing expression with iqF @TFQUAD we get

(2n ω + 1) = dP 1 dP 2 χ ω * R (P 1 )χ ω R (P 2 )e -I P 1 0 -I P 2 0 N ω (P 1 , P 2 ). @TFRQA 2c ω = dP 1 dP 2 χ ω * R (P 1 )χ -ω * L (P 2 )e -I P 1 0 -I P 2
0 N ω (P 1 , P 2 ). @TFRQA hese expressions re identil to those evluted in de itterF reneD n ω nd c ω re respetively given y iqsF @SFRWA nd @SFRWAF hereforeD to leding order in κ/ΛD nd for n environment t zero tempertureD n ω nd c ω retin their stndrd reltivisti expressionsF his mens tht the stte of the outgoing modes when they leve the entrl region IIID nd propgte freelyD is the nruh vuum tWID tWQD fwWSF his n e expliitly heked from iqF @TFRQA y reEexpressing the out modes φ out,dS ω,R/L in terms of the nruh modes of iqF @SFRIAF sn this seD one (nds tht the men numer of nruh qunt n Unruh ω is given yD see iqF @SFRUAD

(2n Unruh ω + 1) = ∞ 0 dP 1 dP 2 (φ rel ω (P 1 )) * φ rel ω (P 2 )e -I P 1 0 -I P 2 0 N ω (P 1 , P 2 ) =1 + O(κ/Λ).
@TFRRA sn other wordsD the role of the doule integrls in iqF @TFRQA nd iqF @TFRRAD whose integrnd expliitly depends on the tul trnsElnkin physis governed y ΛD f (P )D Γ(P )D is to implement the nruh vuum in dissiptive theoriesF Conclusions sn this hpterD we showed tht the portion of spe lose to lk hole of surfe grvity κ n e mpped into de itter spe with H = κ even in the presene of vorentz violtionF e then used this orrespondene to drw onlusions on the )ux produed y the lk holeD nd its link with the symptoti )uxes produed in de itterF hen four onditions re metD we showed tht the nlysis performed in de itter in ghpF R nd ghpF S pplies to rwking rditionF he inequlity whih ensures the IHW vlidity of this orrespondene is κ/ω diss max , κ/ω disp max 1D where ω disp max , ω diss max re the omE posite ultrviolet sle of iqsF @TFIHA nd @TFPVAF hey depend oth on the mirosopi sle ΛD nd D whih (xes the extension of the lk hole ner horizon region where the metri nd the (eld u n e mpped into de itterF he vlidity of the orrespondene in turn gurntees thtD to leding orderD the rwking preditions re roust ! even if the erly propgtion ompletely di'ers from the reltivisti oneD see pigF TFQF his estlishes tht when leving the very high momentum P ∼ Λ @trnsElnkinA region nd strting to propgte freelyD the outgoing on(gurtions re orn in their nruh vuum stte tWID tWQD fwWSF he mirosopi implementtion of this stte in dissiptive theories is shown in iqF @TFRRAF es resultD s in the se of dispersive theE ories wHWD gpIPD the leding devitions with respet to the reltivisti expressions should e suppressed s powers of κ/ω max D iFeFD they should e governed y the extension of the lk hole xr whih is portion of de itter speF After all the universe is an hypothesis, like the atom, and must be allowed the freedom to have properties and to do things which would be contradictory and impossible for a nite material structure.

Willem de Sitter

Part III Analogue gravity Introduction he nlogy nrVI etween sound propgtion in nonuniform )uids nd light propE gtion in urved speEtimes opens the possiility to experimentlly test long stndE ing preditions of quntum (eld theory fhVRD suh s the origin of the lrge sle strutures in our niverse wgVID wukHS nd the rwking rdition emitted y lk holesF sn the (rst seD the osmi expnsion engenders prmetri mpli(tion of homogeneous modes whih is very similr to tht t the origin of the dynmil gsimir e'et @hgiA tf + IPD t + IID vrrIQD ompre for instne efF gHR with efsF ppHRD gfpIHF etD in order to predit with ury wht should e oE servedD one must tke into ount the short distne properties of the medium euse the preditions involve short wvelength modesF es resultD the nlogy reks down nd se y se nlysis is requiredF por modern review on nlogue grvityD see efF fvIIF sn this prtD we shll study some of these )uidsF sn ghpF UD we review wht is fose ondenste nd in whih sense its vuum stte ehves s quntum vuum in urved spe timeF sn ghpF VD we onsider phonons propgting in suh @homogeneousA tomi ondensteF e inlude the dissiptive e'ets for the phonons due to the intertion of the toms with their environmentF es onsequeneD the dispersion reltion is of the form

Ω 2 + 2iΩΓ(k 2 ) = c 2 k 2 + f (k 2 ).
sn ghpF WD we onsider the polriton system in whih fig is repled y )uid of lightF sn oneE or twoEdimensionl mirovity deviesD photons quire n e'etive mss m euse of sptil on(nementD while n e'etive twoEody photonEphoton intertion n originte from the χ (3) optil nonlinerity of the vity mediumF es resultD ssemlies of mny photons in the vity n disply the olletive ehvior of foseE iinstein ondensteF roweverD ontrry to the previous seD some loss ppers t the level of the ondenste nd one need to pump the systemF es onsequeneD the system is out of equilirium nd the phonons re mssive exittionsF sn ghpF IHD we study the sttionry )uxes esping lk hole in the presene of initilly therml stte ut negleting dissiptive e'etsF e lso hrterize the seprility of the (nl stteF I. CONDENSATION OF AN ULTRACOLD QUANTUM GAS IIQ I. Condensation of an ultracold quantum gas A. Notion of condensation e gs is omposed of prtiles @tomsD moleulesDFFFAF o (x idesD we onsider osoni tomsF hree typil length sles then enter in ompetitionF he (rst one is the men distne etween tomsF st is proportionl to the power -1/3 of the densityX n -1/3 F he seond distne is due to the ft tht toms hve sizeD orD sy otherwiseD tht intertion etween toms our only if they re t distne smller thn R e F he third distne is the therml de froglie wvelenth due to the temperture λ T = 2π 2 /mT F sn the se λ T n -1/3 R e D the gs is lled ultrold @λ T R e A dilute @n -1/3 R e A quntum @λ T n -1/3 A gsF hese re the neessry onditions for the gs to form fose ondenste hlF gonsider the dilute ultrold seD nd neglet intertionsF ine the toms re non reltivisti nd hve osoni ouption numerD the totl numer of toms is given s n integrl over phse speD s

N = d 3 xd 3 k (2π) 3 1 e ( 2 k 2 /2m-µ)/k B T -1 . @UFIA
he frtion on the right is the therml density of osonsD T is the temperture of the gs nd µ < 0 is the hemil potentilF 2 k 2 /2m is the kinemti energy of the tomF sn the seD -µ k B T D one n neglet the -1 nd one reovers the foltzmnn sttistisF roweverD in suh seD the density is n ∼ λ -3 T e µ/k B T D so tht λ T n -1/3 F sn the quntum seD -µ k B T D one nnot neglet the -1F sn suh seD the density of prtiles is given y

n = λ -3 T √ π 4 dz z 2 e z 2 -µ/k B T -1 ≤ λ -3 T √ π 4 dz z 2 e z 2 -1 ∼ 0.51λ -3 T . @UFPA
his ound is violted for quntum gsF his mens tht mrosopi numer of prtile lies in the prt of phse spe where the density of prtiles in phse spe is in(niteD iFeFD 1/(e ( 2 k 2 /2/m-µ)/k B T -1) = ∞F his mrosopi numer of prtiles with the sme momentum is foseEiinstein ondensteF e note tht in one or two @sptilA dimensionsD the integrl does not onverge sine the ftor z 2 is repled y 1 or zF he density n hene e s lrge s one wnts y lowering the @solute vlue ofA hemil potentilF xo ondenstion oursF es onsequeneD trying to mke ondenstes on sheets or on line is impossile 1 F ynly qusiEondenstion n e mde wgHQF B. Hamiltonian formalism et the next orderD we onsider the two ody intertionD ut neglet three ody termsF he lssil rmiltonin of the system then reds in the presene of glol potentil

V (x)X H = - 1 2m α p 2 α + V (x) + 1 2 α =β U (x α -x β ), @UFQA
1. It becomes possible on sheet when energy is proportional to momentum.
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where the sum runs over ll toms of the gs nd where U is the 2Eody intertion potentilF he quntiztion proedure is similr to the one of ghpF ID eF ssF e (rst onsider the se of (nite volume VF henD in the se with one prtileD @disreteA sis of sttes is given y the eigenvetors |Ψ p of the opertor pX p |Ψ p = p |Ψ p F ith mny indistinguishle prtilesD sis of sttes is given y the symmetrized produt of suh sttesX σ α Ψ p σ(α) D where the sum runs over permuttionsF ine the sme set of moment {p i } ppers for eh prtileD n equivlent wy of writing this stte is |N k 1 , ..., N k i , ... D where N k i lels the numer of toms of momentum p i = k i F por eh N @the totl numer of tomA these sttes engender rilert spe H N F he sum of ll these rilert spes H = N H N orresponds to the sttes in the grnd nonil ensemleF yn this rilert speD one de(nes retion a † k i nd nnihiltion a k opertors s â †

k i α |Ψ pα = N k i + 1 α |Ψ pα ⊗ |Ψ k i D where the symmetriztion is impliit nd where N k i is the numer of prtiles in stte |Ψ k i F sn the new lngugeD this reds â † k i |N k 1 , ..., N k i , ... = N k i + 1 |N k 1 , ..., N k i + 1, ... F sing these opertorsD the rmiltonin reds Ĥ = - 2 2m k k 2 â † k âk + k 1 ,k 2 dx V e i(k 1 -k 2 )x V (x)â † k 1 âk 2 + 1 2 k 1 ,k 2 ,k 3 ,k 4 dx 1 dx 2 V 2 U (x 1 -x 2 )e -ik 1 x 1 -ik 2 x 2 +ik 3 x 1 +ik 4 x 2 â † k 1 â † k 2 âk 3 âk 4 , @UFRA
sn the limit of lrge volumeD y hnging the position vriles to their di'erene nd sumD the integrl of the seond line of iqF @UFRA reds dx V U (x)e -i(k 1 -k 3 )x δ k 1 +k 2 -k 3 -k 4 F hen the intensity of the oupling U is lowD the momentum of the tom hrdly hnges when it interts nd one n pproximte the integrl y onstntX gat V δ k 1 +k 2 -k 3 -k 4 D where g at = dxU (x)F nder these onditionsD the rmiltonin reds

Ĥ = - 2 2m k k 2 â † k âk + k 1 ,k 2 Ṽ (k 1 -k 2 )â † k 1 âk 2 + g at 2V k 1 ,k 2 ,k 3 ,k 4 δ k 1 +k 2 -k 3 -k 4 â † k 1 â † k 2 âk 3 âk 4 @UFSA
iven though the gs is non reltivistiD euse toms re indistinguishleD it is onE venient to introdue quntum (eld s Φ(x) = k e -ikx √ V âk F he ommuttion relE tion on opertors â imply the ommuttion reltion on the (eldX [ Φ(x), Φ(x )] = 0D [ Φ(x), Φ † (x )] = δ(x -x )F Φ nd Φ † re thus nonil vrilesF woreoverD using suh (eldD the rmiltonin reds

Ĥ = dx 2 2m ∂ x Φ † (x)∂ x Φ(x) + V (x) Φ † (x) Φ(x) + g at 2 Φ † (x) Φ † (x) Φ(x) Φ(x) . @UFTA
sn reisenerg formlismD the equtions of motion for suh system re then i ∂ t Φ = [ Φ, H] see iqF @IFQQAF hey give the non liner eqution

i ∂ t Φ = -2 2m ∆ x Φ + V Φ + g at Φ † Φ Φ, @UFUA

IIS

where ∆ x is the stndrd vple opertorF hen fose ondenstion oursD euse mrosopi @hugeA numer of toms re ondensed @sy t k = 0 2 AD one hve âk=0 ∼ â † k=0 1F o (rst orderD one n hene pproximte the opertors y their expettion vlueF his remrk inspires the following deomposition @tht n lwys e mde for opertorsAX

Φ = Φ cond 1 + φ , where Φ cond = Φ .
@UFVA he interest of suh deomposition however is tht in the presene of ondensteD the expettion vlues of inresing power of φ go deresingF yne n thus expnd iqF @UFUA in powers of φF he zeroth order gives the qross itevskii equtionX

i ∂ t Φ cond = -2 2m ∆ x + V + g at |Φ cond | 2 Φ cond . @UFWA
olving the qross itevskii eqution given potentil V is full prolem in itselfF roweverD we shll not onsider it in this thesisF sndeedD for ll nie iFeFD respeting iqF @UFIHA funtion Φ cond D there exists potentil V @eventully time dependentAD suh tht the funtion is solution of the orresponding qross itevskii equtionF therD we shll interpret the physil quntities entering Φ cond F sn the next setionD we shll fous on the perturtions φ given kground Φ cond F he (rst meningful quntity is the modulus of Φ cond F sn term of the originl opertorD we hve for ll mesosopi volume V where potentil is pproximtely onstnt ρ . = |Φ cond | 2 ∼ â † k=0 âk=0 /VF wthing suh volumesD one dedues tht ρ is the density of ondensed tomsF st is of interest to oserve the time dependene of suh densityF sndeedD using iqF @UFWAD one gets

∂ t ρ = ∂ x i 2m [Φ * cond ∂ x Φ cond -Φ cond ∂ x Φ * cond ] . @UFIHA
he term into the derivtive in the right hnd side is -ρvF v is interpreted s the veloity of the ondensteD s shll e mde ler elowF he generl form of Φ cond thus reds

Φ cond = √ ρe i dxmv/ e -i µ(t)dt/ , @UFIIA
where µ is rel funtion of timeF vet now expliit why v is the veloity of the ondensteF pirstD under this onditionD iqF @UFIHA reds ∂ t ρ = -∂ x ρvD whih is the onservtion eqution for )uidF eondD when introduing iqF @UFIIA into the rmiltoninD the energy reds

E = dxρ g at ρ + V + 1 2 mv 2 + 2 8m ∂ x ρ ρ 2 . @UFIPA
he preftor dxρ is the sum over ll toms @they hve ertin width nd re suE perposedAF he term g at ρ is the intertion potentilF st is proportionl to the density 2. In the absence of a potential, only k = 0 can condense and the condensate is homogeneous. In the presence of a potential, this needs not be true.
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euse intertion is ontt intertion nd euse numer of toms is huge so tht density of ll toms nd density of ll toms ut the one we onsider re the smeF he V term is the externl potentilF 1 2 mv 2 is the kineti prt of the energyF ell these term re lssil terms @they orrespond to the limit → 0A nd re reovered in )uid mehnisF he lst term is quntum potentilF feuse it is lrge only when ∂ x ρ/ρ is lrger thn the size of the tomD it n e oneived s kind of energy of deformtion of the tomF II. Phonon eld hen expnding iqF @UFUA round solution of iqF @UFWAD one gets n eqution of motion for φ whih is (rst order in timeF sing iqF @UFWA to remove every dependene in ∂ t Φ cond D one gets to (rst order in φX

i (∂ t + v∂ x ) φ = -2 2mρ ∂ x ρ∂ x φ + g at ρ( φ + φ † ). @UFIQA
his eqution only depends on the e'etive quntities v, ρ nd g at F feuse V n e hosen in suh wy tht these funtions tke ny vlue @ut respeting iqF @UFIHAAD in the nlysis on the perturtion (elds φD we shll minly onsider tht the kground is given y pro(le of v, ρ nd g at D nd never speify the potentil V F prom the nonil ommuttors of the (eld ΦD we dedue the nonil ones for the )ututions φX [ φ(t, x), φ(t, x )] = 0, [ φ(t, x), φ † (t, x )] = δ(x -x )/ρ(t, x).

@UFIRA woreoverD when expnding the rmiltonin to qudrti order in φD tking Φ cond solution of iqF @UFWAD the liner term in φ vnish nd the e'etive rmiltonin reds 3

H = dxρ 2 2m ∂ x φ † ∂ x φ -i φ † v∂ x φ + g at 2 ρ( φ + φ † ) 2 . @UFISA
he seond term is not rermitinD ut ssoites with the iρ φ † ∂ t φ tht ppers in the vegendre trnsformtionD to give n rermitin tionF A. Analogue gravity: characteristics and mode equation hen solving iqF @UFIQA for φ † nd inserting it into the hermitin onjugte equtionD one gets the self de(ned seond order eqution of motionD see efsF hqWWD wHWF

-i (∂ t + v∂ x ) + 2mρ ∂ x ρ∂ x m g at ρ i (∂ t + v∂ x ) + 2mρ ∂ x ρ∂ x φ = 1 ρ ∂ x ρ∂ x φ. @UFITA
3. Because a non canonical transformation has been made, to get this result, it is necessary to use Lagrangian formalism II. PHONON FIELD IIU his eqution is muh di'erent from the reltivisti versionD see eFgFD iqF @RFQAF roweverD t the level of the orresponding rmiltonEtoi equtionD see iqF @RFPAD it reds

(∂ t S + v∂ x S) 2 = g at ρ m (∂ x S) 2 + 2 4m 2 (∂ x S) 4 , @UFIUA
whih is identil to its reltivisti equivlentF he dispersion reltion for suh theory is then superluminl qudrti oneD nd we reognize tht c 2 . = gatρ m is the speed of low energeti exittionsD or speed of soundF woreoverD the typil length under whih dispersion ours the equivlent of 1/Λ in iqF @SFQPA is lled reling length nd is de(ned y ξ = /2mcF sing these slesD the dispersion reltion is

Ω 2 = (ω -vk) 2 = c 2 k 2 (1 + ξ 2 k 2 ).
@UFIVA rereD Ω is the freely flling frequenyF e reognize in iqF @UFIUA dispersive theory in urved kgroundF sn prtiulrD the kground is the one of iqF @TFPA @with v nd c eing time dependent sine we did not ssume sttionrityAF reneD t the level of hrteristisD the theories of slr (eld in urved speE time nd the theory of phonon in fig re indistinguishleF wode dimensionlity nd SEmtrix struture re thus identilF feuse of thisD similr e'etsD suh s prodution of pir of phonon in homogeneous settings of prodution of entngled qunt in nlogue lk hole @iFeFD nlogue rwking rditionA should ourF his is the essene of nE logue grvityF yn the other hndD euse the quntum theory underneth is di'erent @eFgFD ordering of opertors is not the smeAD the results my quntittively di'erF B. Homogeneous case sn this setionD we onsider tht kground is homogeneousD iFeFD v, ρ nd c re onstnts in speF qoing into the omoving frmeD we suppose v = 0F e onsequene of the onservtion iqF @UFIHA is tht ρ is onstnt in timeF sn the generl se howeverD c is funtion of timeD see efF tf + IP for n experiment relizing suh onditionsF nder suh onditionsD we introdue the pourier trnsform of the (eld φk = dx/ √ 2πe -ikx φ(x)F sing iqF @UFIQAD it is solution of

i ∂ t φk = Ω k φk + mc 2 φ † -k , @UFIWA with Ω k . = 2 k 2 2m + mc 2 . @UFPHA
1. Bogoliubov eld sf the system is lso sttionry @c onstnt in timeAD using iqF @UFIWA nd its hermitin onjugteD we digonlize the system introduing the fogoliuov (eld fogRU

φk . = √ ρ u k φk + v k φ † -k , @UFPIA u k . = √ Ω k + mc 2 + √ Ω k -mc 2 2 √ ω k , v k . = √ Ω k + mc 2 - √ Ω k -mc 2 2 √ ω k , @UFPPA nd where 2 ω 2 k . = 2 Ω 2 k -m 2 c 4 @UFPQA so tht ω 2 k = c 2 k 2 (1 + ξ 2 k 2 )
is the rhs of the dispersion reltionF he fogoliuov (eld is then solution of

i∂ t φk = ω k φk .
@UFPRA prom this equtionD we dedue tht the sound wves re quntizedF sndeedD the solution of iqF @UFPRA φk = bk e -iω k t , @UFPSA with [ bk , b † k ] = δ(k -k )F hese wves re thus quntum prtilesD lled phononsF he (eld φ is lled fogoliuov (eld euse iqF @UFPIA is fogoliuov trnsE formtion in the sense tht it mixes positive nd negtive energy modes nd tht |u k | 2 -|v k | 2 = 1 it hs een (rst introdued in efF fogRUF he next step is to inverse the fogoliuov trnsformtion of iqF @UFPIA to get the originl (eld s

√ ρ φk = bk u k e -iω k t -b † -k v k e iω k t . @UFPTA
snserting this deomposition into iqF @UFISAD one getsD up to n dditionl onstnt

H = dkω k b † k b k .
@UFPUA e re thus deling with hrmoni osilltors nd the opertor bk digonlize the rmilE toninF sn the non sttionry se the hrmoni osilltor eomes prmetri mpli(er nd similr nlysis to the one of ghpF I oursF his is due to the ft tht @in homogeneous systemAD reltivisti (eld is hidden in suh systemF his emphsizes the nlogy with grvittionF e shll mke it ler in next setionF 2. Analogy with relativity e show here tht nlogy with reltivity is muh stronger in homogeneous settingsF sndeedD in suh seD one n de(neD out of the nonil (eldsD (eld tht ehves in reltivisti mnnerF st is given y

χk . = - φk + φ † -k √ 2 ρ ξck 2 .
@UFPVA IIW ith suh de(nitionD using ξc = /2m onstntD iqF @UFIWA gurnties tht

∂ t χk = i ρξck 2 φk -φ † -k √ 2 .
@UFPWA he ommuttor of the two (elds is therey nonilX [ χk , ∂ t χ † k ] = iδ(k-k )F woreoverD using one gin iqF @UFIWAD we get for the seond derivtive of the (eld

∂ 2 t χk + ω 2 k χk = 0. @UFQHA
χk is hene (eld similr to q of ghpF IF sn prtiulrD in the sttionry seD

χk = bk e -iω k t + b † k e iω k t √ 2ω k . @UFQIA
sn the non sttionry seD when initil nd (nl opertors n e identi(edD there exists @newA fogoliuov trnsformtion linking the twoD s in iqF @IFQVAF his trnsE formtion orresponds to time proess nd is oneptully di'erent from iqF @UFPIAF hen negleting dispersion @ξ → 0AD iqF @UFQHA is similr to the eqution of motion of @resledA (eld in n pv speEtimeD see iqF @IFUPA nd efsF xtfxIPD gfpIHF he nlogy then tells us tht the renormlized mss m = 0 nd

ω 2 k (t) = c sound (t) 2 k 2 ↔ c 2 light k 2 /a(t) 2 .
@UFQPA e vrying speed of sound thus orresponds to vrying the sle ftor a(t) @nd not vrying speed of lightAF e deresing speed of sound orresponds to n expnding universeF III. Observables yne n de(ne mny oservles for ondensteF o leding order in the (eld φD they ll re qudrti opertorsF sn sttionry nd homogeneous sesD they hene only depend on the two quntities

n b k = b † k b k , c b k = b k b -k . @UFQQA
hey re respetively the men ouption numer of phonon nd their ohereneF fy mking di'erent mesurementsD one my extrt these two quntities nd drive onluE sions on the seprility of the stte @see eF sssF g nd ghpF PAF e shll onsider here six oservlesF pive of them re diretly otined nd one is diretly relted to reltivisti oservlesF he reltivisti oservle is used in homogeneous systemsD where one n de(ne the χk opertor of iqF @UFPVAF feuse the system is qussinD the ommuttor of χk is independent of the stteF ell relevnt quntities re then enoded in the ntiommuttor

G k ac (t, t ) . = { χk (t), χ-k (t )} . @UFQRA IPH CHAPTER 7.
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sing the results of ghpF ID we deompose χk = bk χ k + b † k χ * k on sis of unit norm modes @eFgFD initilly or (nlly ontining only positive frequeniesAD thus de(ning the noE tion of prtileF sing suh deompositionD the ntiommuttor redsD using iqF @UFQQAD

G k ac (t, t ) = n b k + 1 2 χ * k (t)χ k (t ) + c b k χ k (t)χ k (t ) . @UFQSA
xote tht in suh expressionD the lhs @nd thus the rhsA is independent of the notion of prtileF st is one hoie for χ k (t) hs een mde tht n b k nd c b k existF he (ve oservles usully used in fig split into two distint groupsF sn homogeE neous settingsD they re relted to the ntiommuttorF A. Density and phase uctuation 1. General denitions he (rst group ontins the expettion vlues of either density )utution opertor or phse opertorF hey re de(ned y

δ ρ . = Φ † Φ -|Φ cond | 2 ∼ ρ φ + φ † , θ . = Φ * cond Φ -Φ cond Φ † 2iρ ∼ φ -φ † 2i .
@UFQTA ith these de(nitionsD one shows tht to (rst order

Φ(x, t) = Φ cond 1 + δ ρ ρ e i θ, @UFQUA
hene the nme of phse opertorF 2. Homogeneous settings sn homogeneous settingsD it is possile to relte these three oservles to the ntiomE muttor of iqF @UFQRAF sndeedD using iqsF @UFPVA nd @UFPWAD one gets

χk = - δ ρk 2ρcξk 2 , ∂ t χk = 2ρξck 2 θk , @UFQVA
where δ ρk nd θ k re the pourier trnsform of δ ρ nd θF he three ntiommuttors of these (elds re thus relted to our G ac y

{δ ρk (t), δ ρ-k (t )} = 2ρcξk 2 G k ac (t, t ), { θk (t), δ ρ-k (t )} = -∂ t G k ac (t, t ), { θk (t), θ-k (t )} = ∂ t ∂ t G k ac (t, t ) 2ρcξk 2 .
@UFQWA he knowledge of G ac of iqF @UFQRA thus (xes the three of themF III. OBSERVABLES IPI B. The g 1 and the g 2 he seond group of oservles re the soElled g 1 nd g 2 funtions wgHQD hqWWF hey re de(ned y

g 1 (x, t, x , t ) . = Φ † (x, t) Φ(x , t ) , @UFRHA g 2 (x, t, x , t ) . = Φ † (x, t) Φ † (x , t ) Φ(x , t ) Φ(x, t)
g 1 (x, t, x, t)g 1 (x , t , x , t ) . @UFRHA he g 2 orresponds to the @normlized nd normlEordered in tomi opertorsA orrelE tion of the densityF st is mesured y mking sttistil verge of the orreltions of ρ(t, x) over di'erent reliztions gIHD ggIQF he norml ordering omes nturlly when the mesurement destroys the tomF o piture it in simple termsD if one hs only one tom in position xD the quntity ρ(x)ρ(x) = 0 while its norml ordered ounterE prt is 0F sf the oservtion destroys the tomD it nnot e oserved twieF he g 1 is otined in the interferene pttern when mking intert the ondenste with itselfF sn term of the reltive )ututionsD to (rst orderD they give

g 1 (x, t, x , t ) = Φ cond (x, t) * Φ cond (x , t ) 1 + φ † (x, t) φ(x , t ) , @UFRIA g 2 (x, t, x , t ) = 1 + φ † (x, t) φ † (x , t ) + φ(x , t ) + φ † (x , t ) + φ(x , t ) φ(x, t) .
@UFRIA yne n invert iqF @UFQTA to express φ s funtion of δ ρ nd θF es onsequeneD the g 1 nd g 2 funtions red in term of the previous oservles

g 1 (x, t, x , t ) = Φ cond (x, t) * Φ cond (x , t ) × 1 + δ ρ(x, t) ρ(x, t) -i θ(x, t) δ ρ(x , t ) ρ(x , t ) + i θ(x , t ) , g 2 (x, t, x , t ) = 1 + {δ ρ(x, t), δ ρ(x , t )} ρ(x, t)ρ(x , t ) -i [ θ(x, t), δ ρ(x , t )] ρ(x , t ) @UFRPA
hey hve thus simple expressions in term of G k ac of iqF @UFQRA in homogeneous settingsF sndeedD for k = 0D we hve the pourier trnsform of the two funtions

g k 1 (t, t ) . = e i t t µ/ dxe -ik•x g 1 (x, t, x = 0, t ) = 1 2 cξk 2 + 1 cξk 2 ∂ t ∂ t -i(∂ t -∂ t ) G k ac (t, t ) + G k c (t, t )/2 , @UFRQA
where G k c (t, t ) is the ommuttor of χ @whih is imginryAD nd

g k 2 (t, t ) . = ρ dxe -ik•x g 2 (x, t, x = 0, t ) = 2 cξk 2 G k ac (t, t ) -i∂ t G k c (t, t ) .
@UFRRA sing iqF @UFQSAD we see tht mesurement of g k 1 (t, t = t)D or g k 2 (t, t = t)D for vrious t is su0ient to extrt the di'erent n b k nd c b k F IPP CHAPTER 7. BOSE CONDENSATION AND ANALOGUE GRAVITY C. Measure of separability fefore we uild tool to determine whether stte is seprle or notD we need to determine wht we men when we sy tht the stte of the ondenste is seprleF e introdued in ghpF P very generl tools nd we notied tht stte is not seprle in itselfD ut tht it depends on the notion of prtile tht we onsiderF et (rst viewD in ondensteD prtiles re the tomsF roweverD we sw in eF ss tht in homogeneous nd sttionry systemsD n other notion of prtile existsD iFeFD the phononsF e thus hve two @or more if mny phonon interprettions existA notions of seprilityF sn the nlogy with grvittionD the equivlent of propgting lightlike prtiles re the phononD see iqF @UFQIA or iqF QS in wHWF prom the nlogue grvity point of viewD when trying to determine the seprility of rwking )ux or of pir prtile produtionD the right notion is thus the seprility of the phonon stteF o hve t our disposl well de(ned phononD we shll suppose tht the system is @t lest to good pproximtionA homogeneous nd sttionryF ith suh ssumptionsD the opertors bk D the men ouption numer n b k nd the oherene c b k re uniquely de(nedF sing the results of ghpF PD the seprility ondition for the phonons of momentum k

redsD see iqF @PFQIA c b k 2 ≤ n b k n b -k . @UFRSA
hen onsidering the phonon of given frequeny ωD the dimensionlity of the spe of solutions my e higherD see ghpF RD eF sF fF es onsequeneD the seprility riterion is not uniquely de(ned nd mny iprtite systems n e onsideredF his se is onsidered in more detils in ghpF IHF e now onsider how iqF @UFRSA trnsltes into the oservlesF feuse it is muh simple in two of themD we only onsider these twoF pirstD using iqF @UFQSAD the equl time ntiommuttor reds

G k ac (t, t = t) = n b k + n b -k + 1 + 2 c b k cos 2ω k t + arg c b k 2ω k . @UFRTA sn isotropi medi @n b k = n b -k
AD the mesure of suh quntity is hene su0ient to deterE mine whether the stte is seprle or notF eondD using iqF @UFRRAD the equl time g 2 funtion reds

g k 2 (t, t = t) = cξk 2 n b k + n b -k + 1 + 2 c b k cos 2ω k t + arg c b k ω k -1. @UFRUA
sn isotropi mediD the mesure of suh quntity is thus lso enough to determine the nonseprilityF woreoverD t lrge vlues of kD euse

ω k ∼ cξk 2 D we hve g k 2 (t, t = t) ∼ 2n b k + 2 c b k 2 cos 2ω k t + arg c b k F o summrizeD we hve
• por sttes eing oth homogeneous nd isotropiD whenever there exists time suh tht ω k G k ac (t, t = t) < 1/2D the phonon stte of momentum k is nonseprleF • por sttes eing oth homogeneous nd isotropiD whenever there exists time suh tht g k 2 (t, t = t) < cξk 2 /ω k -1D the phonon stte of momentum k is nonseprleF woreoverD the rhs is 0 in the lrge k limitF IV. A PARTICULAR SYSTEM, POLARITONS IPQ yne ould lso work t (xed t nd vry t F sn this seD one would get periodi ehvior of frequeny ω f /2π for G ac F roweverD t (xed tD ω f G ac (t, t ) is now entered on 0D nd the mxim vry from n + 1/2 -|c| to n + 1/2 + |c| ording to the vlue of the (xed time tF reneD the nonseprility of the stte revels itself in the ft tht there exists some vlues of t suh tht ω f G ac (t, t ) remins smller thn 1/2 for ll t F IV. A particular system, polaritons A. General description of the system o get fose ondenstionD we sw tht three ingredients re neessry nd su0ientF pirstD the prtiles should e osonsF eondD they should hve mssF end thirdD they should intertF hoton re osonsD ut they re neither mssive nor self intertingF roweverD when putting them etween two mirrorsD the trnsverse momentum @whih is quntizedA plys the role of n e'etive mss for the lower dimensionl e'etive theoryF sndeedD the dispersion reltion reds

E 2 = 2 c 2 k 2 ⊥ + 2 c 2 k 2 . @UFRVA
sn this expressionD the (rst term plys the role of mss term nd the seond of momenE tumF yn the other hndD if etween the two mirrorsD one reples the vuum y some non liner mediD the photon intert with eletrons tht re self intertingF his inE trodues some e'etive intertion etween photonsF et the quntum levelD the prtile tht propgtes is liner superposition of n eletronEhole pir @lled exitonA nd photonF his superposition is nmed polriton or )uid of light ggIQF sn physil systemsD euse mirrors re never perfetly re)etingD there re inherent losses tht one ompenstes y pumping the systemF e sketh of the plnr mirovity system we re onsidering is shown in pigF UFIF e omprehensive review of its rih physis n e found in efF ggIQF rere we shortly summrize the min fetures tht re importnt for our disussionF sn the simplest on(gurtionD light is on(ned in vity mteril of refrtive index n 0 sndwithed etween two highEqulity plneE prllel metlli or dieletri mirrors sped y distne z F hoton propgtion long pigure UFIX keth of the plnr mirovity system under onsidertionF IPR CHAPTER 7. BOSE CONDENSATION AND ANALOGUE GRAVITY the zExis is then quntized s q z = πM/ z D M eing positive integerF por eh longitudinl mode M D the frequeny dispersion of the mode s funtion of the inEplne wvevetor k hs the form

E cav (k) = c n 0 q 2 z + k 2 E bare 0 + 2 k 2 2m , @UFRWA
where the e'etive mss m of the photon nd the rest energy E bare 0 re relted y the reltivistiElike expression

m = q z c/n 0 = E bare 0 c 2 /n 2 0 . @UFSHA
xegleting for simpliity polriztion degrees of freedomD we n de(ne the retion nd destrution opertors â † k nd âk for eh mode of wvevetor k nd their relEspe ounterprts Φ(x) s round iqF @UFSAF B. Hamiltonian of the system sn term of the quntum (eld opertor Φ(x)D the isolted vity rmiltonin n e written in the formD see iqF @UFTA

H 0 = dx E bare 0 Φ † Φ + 2 2m (∇ x Φ † )(∇ x Φ) + g at 2 Φ † Φ † Φ Φ . @UFSIA
he (rst two terms desrie the photon rest energy nd its e'etive @kinetiA mssD reE spetivelyF he lst term ounts for uerr optil nonlinerity of the vity medium whih is essentil to hve sizle photonEphoton intertionsF he g at oe0ient qunE tifying the intertion strength is proportionl to the mteril χ (3) X expliit expressions n e found in efF ggIQF sn ddition to its onservtive internl dynmis ruled y H 0 D the vity is oupled to externl ths inludingD eFgFD the rditive oupling to the propgting photon modes outside the vity vi the @smllA trnsmittivity of the mirrorsF e typil wy of modeling the dissiptive e'ets due to this environment is sed on rmiltonin formlism where the environment is desried y phenomenologil quntum (eld Ψζ F he th nd intertion rmiltonins hve the form

H bath = dx dζω ζ Ψ † ζ (x) Ψζ (x) @UFSPA H int = dx dζg ζ Φ † (x) Ψζ (x) + Φ(x) Ψ † ζ (x) . @UFSPA
his rmiltonin form is the non reltivisti version of the wy we introdued dissiE ptionD seeF iqF @SFPAF rereD the th opertors Ψζ oey the non reltivisti ig

[ Ψζ (x, t), Ψ † ζ (x , t)] = δ(x -x )δ(ζ -ζ )F
sn the se of rditive loss proesses from plnr mirovityD the Ψζ (x, t) opertor orresponds to the destrution opertor of extrEvity photons nd the ζ quntum numer indites the vlue of the norml omE ponent of the extrEvity wvevetorF hile more relisti desriptions of the miroE vity devie n e used to otin (rst priniple preditions for the g ζ oupling onE stnt ggHTD in the present prt we onsider it s @relEvluedA model prmeter to IV. A PARTICULAR SYSTEM, POLARITONS IPS e djusted so s to reprodue the experimentlly oserved photon dey rteF sn the quntum optil litertureD pprohes to dissiption sed on rmiltonins of the form of iqF @UFSPA go under the nme of inputEoutput formlism ggHTD wWSD qHRF ith respet to equivlent desriptions sed on the trunted igner qgIPD uIRD this method hs the min dvntge tht unitrity is mnifestly preserved s Φ nd Ψζ re treted on n equl footingF es lst stepD we hve to inlude the rmiltonin term desriing the oherent pumping of the vity y n inident lser (eld of @normlizedA mplitude F (x, t)D

H F = dx Φ(x)F * (x, t) + Φ † (x)F (x, t) .
@UFSQA por monohromti pump of frequeny ω P D wvevetor k P D nd very wide wistD we n perform plne wve pproximtion nd write

F (x, t) = F 0 e -iω P t e ik•x , @UFSRA
where k is the projetion of k P long the vity plneF o summrizeD the totl rmiltonin hs the form

H = dx E bare 0 Φ † Φ + 2 2m (∇ x Φ † )(∇ x Φ) + g at 2 Φ † Φ † Φ Φ + ΦF * + Φ † F + dζω ζ Ψ † ζ Ψζ + g ζ Φ † Ψζ + Φ Ψ † ζ . @UFSSA

Conclusions

sn this hpter we review how gs of toms ondenste when one lowers its tempertureF e see tht the ondenste n e desried in term of quntum (eld nd tht its rmiltonin is the rmiltonin of free (eld in n externl potentil to whih one dds qurti intertion termF e use the ft tht mrosopi prt of the gs ondenstes to mke perturtive expnsion of the (eldF he (rst order )ututions re quntized sound wvesD or phononsF e see tht these phonons ehve to liner order s free (eld in urved speEtimeD the geometry of whih is (xed y the ondensteF e lso ompute oservles tht re spei( to ondenstes nd express the seprility ondition in term of theseF e see tht for the g 2 D the seprility ondition is simply expressed s lower ound on the equl time g 2 F sn the (nl setionD we ompute the rmiltonin for slightly di'erent system tht shll e studied in more detils in ghpF WF por system tht is pumped nd dissiptedD one needs to dd to the rmiltonin oth the pump term nd the term desriing the environment responsile for dissiptionF

I. ACTIONS FOR DISSIPATIVE PHONONS IPU I. Actions for dissipative phonons

A. Eective Hamiltonian for relative density uctuations o get dissiption t the level of phononD we shll llow toms to intert with n environmentF feuse the opertion tht llows to desrie )ututions from the tom (eld is not nonil trnsformtionD we shll use the tion formlismF he tion for the seond quntized (eld desriing free dilute ultrold tomi gs isD see iqF @UFTA or hqWW

S Φ = dtdx i Φ † ∂ t Φ - 1 2m ∂ x Φ † ∂ x Φ -V Φ † Φ - g at 2 Φ † Φ † Φ Φ .
@VFIA e shll tke the reltivisti environment of iqF @SFPA @with preferred time eing the l timeAF e wnt the intertion term to onserve the numer of toms @for the se where toms get dissiptedD see ghpF WAF e shll thus hose

S Ψ = 1 2 dtdx ∞ -∞ dζ ∂ t Ψζ 2 -πζ Ψζ 2 , @VFPA S int = -dtdx [( Φ † ) α Φα ]g(∂ x )∂ t ( dζ Ψζ ) . @VFPA
xotie tht S Ψ ontins no sptil grdientsD nd tht it does not depend on ρF reneD the kinemtis of the environment degrees of freedom is independent of oth k nd ρF his is simplifying pproximtionF sn ftD s in ghpF SD our philosophy is to hoose the simplest model tht possesses some key propertiesF hese re s followsX unitrity of the whole systemD stndrd tion for the phononsD nd ility to reprodue most of the dey rtesF prom suh systemD equtions of motion red

i∂ t Φ = - 1 2m ∂ 2 x + V + g at Φ † Φ Φ + α( Φ † ) α-1 Φα g(∂ x )∂ t ( dζ Ψζ ), @VFQA (∂ 2 t + ω 2 ζ ) Ψζ = ∂ t g(-∂ x )[( Φ † ) α Φα ]. @VFQA
he ondenstion of Φ thus engenders the ondenstion of the environmentF e thus write it s

Ψζ = Ψ cond ζ + Ψζ . @VFRA
et (rst orderD iqF @VFQAD implies modi(ed qrossEitevskii equtionD see iqF @UFWAX

i∂ t Φ cond = H cond Φ cond , @VFSA with H cond = -∂ 2 x 2m + V + g at |Φ cond | 2 + α |Φ cond | α-1 g(∂ x )∂ t ( dζ Ψcond ζ
). @VFTA IPV CHAPTER 8. DISSIPATIVE PHONONS ine this lst term does not ontin ny derivtive ting on Φ cond D the onservtion iqF @UFIHA remins unhngedF st gives riseD in the qudrti prt of iqF @VFIAD to term tht is to e dded to the stndrd tionD see iqF @UFISA

δS φ = dtdxαφ † φρ α g(∂ x )∂ t ( dζΨ cond ζ
). @VFUA yn the other hndD iqF @VFPA gives two ontriutionsX

S (1) int = -dtdx [ α(α -1) 2 ( φ † ) 2 + α 2 φ † φ + α(α -1) 2 φ2 ]ρ α g(∂ x )∂ t ( dζΨ cond ζ ) , S (2) int = -dtdx αρ α [ φ † + φ]g(∂ x )∂ t ( dζ Ψζ ) .
@VFVA he (rst one is qudrti in φ nd zeroth order in Ψζ F st omines with iqF @VFUA to give

δS φ + S (1) int = dtdx α(α -1) 2 (φ † + φ) 2 ρ α g(∂ x )∂ t ( dζΨ cond ζ ).
@VFWA he role of this term is to modify the speed of sound whih is now given y

mc 2 . = g at ρ + α(α -1) 2 ρ α-1 g(∂ x )∂ t ( dζΨ cond ζ ). @VFIHA
ith this new de(nitionD the free rmiltonin is still of the form of iqF @UFISA

H φ = dxρ 1 2m ∂ x φ † ∂ x φ -i φ † v∂ x φ + mc 2 ( φ + φ † ) 2 , @VFIIA
while the free rmiltonin for the environment is simply dxdζ(πζ) 2 Ψ † ζ Ψζ F he seond ontriution S

(2) int gives rise to the intertion rmiltonin

H int = dx g √ ξ (ρξ) α (ξ∂ x ) n ( φ + φ † )∂ t ( dζ Ψζ ) . @VFIPA
where we posed αg(-∂ x ) = gξ α+1/2 (ξ∂ x ) n F e liner superposition of suh intertion rmiltonin with di'erent n nd α my e mde so s to getD for the dissiptive rteD ny funtion of the momentumF 

i∂ t φk = Ω k φk + mc 2 φ † -k + γ k √ ρ ∂ t dζ Ψζ,k , @VFIQA [∂ 2 t + (πζ) 2 ] Ψζ,k = ∂ t γ * k √ ρ( φk + φ † -k ) . = ĵΨ,k . @VFIQA
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where Ω k ws given in iqF @UFPHA nd where

γ k = g(ρξ) α-1/2 (iξk) n , @VFIRA
is the e'etive dimensionless oupling for the wve numer kF he solution of iqF @VFIQA is see iqF @SFRA

Ψζ,k = Ψ0 ζ,k + dt R 0 ζ (t, t ) ĵΨ,k (t ), @VFISA
where Ψ0 ζ,k is homogeneous solution we shll desrie elowD nd where R 0 ζ is the retrded qreen funtionF st is independent of k euse the tion S Ψ ontins no sptil grdientF hen summing over ζD it oeysD see iqF @SFVA or efsF VWD rHU

∂ t dζR 0 ζ (t, t ) = δ(t -t ). @VFITA
his gurntees tht the kernel enoding dissiption is lolF sndeedD inserting iqF @VFISA into iqF @VFIQAD nd using iqF @VFITAD iqF @VFIQA gives

i∂ t φk = Ω k φk + mc 2 φ † -k + γ k ∂ t Ψ0 k / √ ρ + γ k ∂ t γ * k ( φk + φ † -k ) , @VFIUA
where Ψ0 k = dζ Ψ0 ζ,k F es nnounedD the lst term in the rFhFsF is lol in timeF fsilly ll other hoies of S Ψ nd S int would give nonlol kernelF 1 sn these sesD iqF @VFIUA would e n integrloEdi'erentil equtionF hese more omplited models do not seem pproprite to e0iently lulte the onsequenes of dissiption on phonon orreltion funtionsF o get the e'etive dispersion reltionD we onsider iqF @VFIUA when ll kground quntities re onstnt nd when Ψ 0 k = 0F e get

(Ω + iΓ k ) 2 = ω2 k , @VFIVA
where

ω2 k = ω 2 k -Γ 2 k , Γ k = |γ k | 2 k 2 cξ. @VFIWA
nd where ω k ws de(ned in iqF @UFPQAF sing iqF @VFIRAD we verify tht the seond eqution delivers

Γ k = g 2 (c/ξ)(ρξ) 2α-1 (kξ) 2+2n . @VFPHA
reneD y hoosing gD α nd n our model shll e le to reprodue mny initio omputed dey rtesF es expetedD we lso verify tht for |γ k | 2 → 0D one reovers the stndrd fogoliuov dispersion for ll kF 1. In this respect, we notice that one can generalize our model so as to deal with an ab initio computed nonlocal dissipative kernel D(tt ). To do so, one should compute its Fourier transform D(ω) (which is 1/(ω + i ) in our model) and replace dζ Ψζ by dζ ω ζ D(ω ζ ) Ψζ in Eq. (8.12).
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sn iqF @VFPHAD the oupling onstnt g is dimensionlessD ρ is the ondensed tom densityD nd ξ short distne length whih orresponds to the heling length in tomi fose gsesF he powers n nd α n e hosen to reprodue e'ets omputed from (rst priniplesF por instneD in fose gsesD two types of dissiptive e'ets re foundX he (rst oneD lled feliev dey HQD sles with α = 0 nd n = 3/2D while the seond oneD the vndu dey HPD depends on the tempertureD hs lso α = 0D nd is proportionl to ck 1 + k 2 ξ 2 F sn wht followsD the quntities g, c, ξ depend on timeD while preserving the homogeneE ityF rene the nontrivil dynmis will our within two mode setors {k, -k}F C. Time-dependent settings sn ll this hpterD euse we work with reltivisti environmentD nd euse we work in homogeneous timeEdependent systems we shll use the reltivisti (eld de(ned in iqF @UFPVAF sing suh (eldD S k D the tion of the k setorD reds

S k = 1 2 dt |∂ t χk | 2 -ω 2 k | χk | 2 + dζ|∂ t Ψζ,k | 2 -(πζ) 2 | Ψζ,k | 2 + 2 χ † k 2Γ k ∂ t dζ Ψζ,k , @VFPIA
where cD ξD nd Γ re ritrry @positiveA timeEdependent funtionsD nd where phse (-isgn(k)) n hs een sored in Ψζ,k F sn n tomi ondensteD c nd ξ re relted y cξ = 1/2m = cstF prom the ove tionD or from iqF @VFIUAD we get the eqution for χ k X

(∂ t + Γ k ) 2 + ω2 k χk = 2Γ k ∂ t Ψ0 k . @VFPPA
he generl solution n e written s χk (t) = χdec k (t; t 0 ) + χdr k (t; t 0 ), @VFPQA where the driven prt χdr k (t; t 0 ) nd its temporl derivtive vnish t t = t 0 F he deying prt χdec k (t; t 0 ) is thus the solution of the homogeneous eqution whih oeys the ig t tht timeF rene it possesses the following deompositionX

χdec k (t; t 0 ) = e -t t 0 Γ k dt bk χk (t) + b † -k χ * k (t) , @VFPRA
where the destrution nd retion opertors bk , b † -k oey the stndrd nonil ommuE ttors [ bk , b † k ] = 1 nd orrespond to the phoni opertors of iqF @UFQIA in the deoupling limit Γ → 0D nd where χk is solution of ompre with iqF @QFPTA

(∂ 2 t + ω 2 k ) χk = 0, @VFPSA of unit ronskin i( χ * k ∂ t χk -χk ∂ t χ * k ) = 1F
he usefulness of this deomposition is twofoldF yn the one hndD t 0 n e oneived s the initil time when the stte is (xedF IQI he opertors â † k , âk n then e used to speify the prtile ontent of this stteF yn the other hndD iqF @VFPQA nd iqF @VFPRA furnish n instntneous prtile representtion round ny time t 0 F sndeedD in the limit Γ/ω 1 nd Γ(t -t 0 ) 1D the ontriution of χdr k (t; t 0 ) n e negletedD nd χk (t) ∼ χdec k (t; t 0 ) ehves s stndrd nonil (eld sine the preftor of iqF @VFPRA is pproximtely equl to 1F e shll return to this in eF sssF fF PF he driven prt of iqF @VFPQA is given y see iqF @SFSA

χdr k (t, t 0 ) = ∞ t 0 dt G χ ret (t, t ; k) 2Γ k (t )∂ t Ψ0 k (t ), @VFPTA
where G χ ret is the retrded qreen funtion of iqF @VFPPAF sing the unit ronskin solution of iqF @VFPSAD it n e expressed sD see iqF @SFPRA

G χ ret (t, t ; k) = θ(t -t )e -t t Γ k dt × 2 ( χk (t) χ * k (t )).
@VFPUA ine χ is nonil nd liner (eldD the stndrd reltion etween the ommuttor nd the retrded qreen funtion holdsD see iqF @SFIQAF sn onsequeneD when the stte of the system is qussin nd homogeneousD the redued stte of χ is ompletely (xed y its ntiommuttorF feuse of iqF @VFPQAD it ontins three terms

G ac (t, t ; k) . = { χk (t), χ-k (t )} = G dec ac + G dr ac + G mix ac . @VFPVA he (rst one deys nd is governed y χdec G dec ac (t, t ; k) = { χdec k (t), χdec -k (t )} . @VFPWA he seond one is driven nd governed y Ψ0 G dr ac (t, t ; k) = ∞ t 0 dτ dτ 4Γ k (τ )Γ k (τ )G χ ret (t, τ )G χ ret (t , τ )∂ τ ∂ τ { Ψ0 k (τ ), Ψ0 -k (τ )} . @VFQHA
he third one desries the orreltions etween χ nd ΨF st is nonzero either when the initil stte is not ftorized s ρ = ρχ ⊗ ρΨ D or when the two (elds hve intertedF st is given y twie the symmetriztion of

G mix ac (t, t ; k) . = ∞ t 0 dτ 2Γ k (τ )G χ ret (t , τ )∂ τ { χdec k (t), Ψ0 -k (τ )} . @VFQIA
hen the stte is prepred t n erly time Γ(t -t 0 ) 1D only the driven term signifE intly ontriutes to iqF @VFPVAD whih mens tht the system would hve thermlized with the thF et (xed k nd ζD Ψ0 ζ,k D the homogeneous solution of iqF @VFIQA is omplex hrmoni osilltor of pulstion ω ζ = π |ζ|F st thus reds

Ψ0 ζ,k (t) = e -iω ζ t ĉζ,k + e iω ζ t ĉ † -ζ,-k 2ω ζ , @VFQPA IQP CHAPTER 8. DISSIPATIVE PHONONS
where ĉζ,k nd ĉ † ζ,k re stndrd destrution nd retion opertorsF sn the following setions we shll work with therml ths t temperture T F sn suh sttesD the noise kernel entering iqF @VFQHA isD

{ Ψ0 k (τ ), Ψ0 -k (τ )} = ∞ 0 dω ζ π coth ω ζ 2k B T 2ω ζ cos[ω ζ (τ -τ )].
@VFQQA e notie tht it does not depend on kF e study the time evolution of the phonon stte when mking two ssumptionsF pirstD we onsider sttes whih re prepred long time efore the experimentD so tht iqF @VFPVA is given y iqF @VFQHAD with t 0 = -∞F eondD we suppose sudden hnge of the ondensed toms ours t time t = 0F sn eppF eD we study the se where the hnge is modulted in time t given frequenyF he speed of sound c nd the e'etive oupling γ k entering iqF @VFPPA will hnge on similr time sleF ine pproximting the hnge of the sound speed y step funtion only modi(es the response for very high kD s n e seen in efF gfpIHD for simpliityD we shll work with n instntneous hnge for cF por γ k instedD we shll use ontinuous pro(le euse n instntneous hnge would led to divergenesD s we shll see elowF rene we shll work with

c(t) = c f + (c in -c f )θ(-t), γ k (t) = γ f + (γ in -γ f )h(κt), @VFQRA
where h(κt) is smoothing out funtion whih goes from 1 to 0 round t = 0 in time lpse of the order of 1/κF et this pointD it should e notied tht ny physil systemD suh s n tomi fose ondenste desried y iqF @UFWAD would only respond fter (nite mount of time of the order of ξ/cF rene the funtion h of iqF @VFQRA is physilly meningfulD nd κ should e of the order of c/ξF gonsidering the symptoti vlues of these pro(lesD we shll use the following notE tions

Γ in/f . = γ 2 in/f (cξ)k 2 , ω2 in/f . = c 2 in/f k 2 + (cξ) 2 k 4 -Γ 2 in/f , @VFQSA
see iqF @VFIWAF fefore onsidering dissiptionD we study the dispersive seD (rstD to nlyze the reE dution of the orreltions due to stimulted proesses ndD seondD to know the outome in the dissiption free seD so s to e le to isolte the onsequenes of dissiptionF

II. The dispersive case

A. Analytic study sn the sene of dissiptionD phonon exittions n e nlyzed efore nd fter the jump using stndrd prtile interprettionF reneD the onsequenes of the jump re ll enoded in the fogoliuov oe0ients α, β entering

χ in = αχ out + βχ * out , @VFQTA 0 5 10 15 20 0 1 2 3 4 t m c in 2 Ω f . G ac
pigure VFIX e represent the produt ω f × G ac (t, t = t)D where the ntiommuttor G ac is given in iqF @VFQWAD s funtion of the dimensionlized time tmc 2 in D for k = mc in D nd for two vlues of the temperE tureD nmelyD T ξ in /2 @dshed lineA nd 2T ξ in @solid lineAY see iqF @VFRPAF he vlue of the jump is c f /c in = 0.1F es explined in the textD the dotted line gives the threshold vlue 1/2 whih distinguishes nonseprle sttesF hen inresing the tempertureD the ontriution of the stimulted mpli(E tion with respet to the spontneous one is lrgerF es resultD the oherene is reduedY iFeFD the minim of ω f × G ac re inresedF whih relte the in mode to the out modeF hese modes hve positive unit ronskin nd re equl to e -iω in/f t 2ω in/f for t < 0 or t > 0 respetivelyF sing iqF @VFPSAD one veri(es tht the modes re C 1 ross the jumpF prom the juntion onditionsD one (nds the fogoliuov oe0ients gfpIH

α = ω f + ω in 2 √ ω f ω in , β = ω f -ω in 2 √ ω f ω in . @VFQUA
o prepre the omprison with the dissiptive seD the initil phonon stte is tken to e therml th t temperture T F his mens tht the initil men ouption numer is n in = 1/(e ω in /T -1) nd tht c in D the initil orreltion term etween k nd -kD vnishesF efter the jumpD the men ouption numer nd the orreltion term re

n out = n out spont. + n out stim. = |β| 2 + |α| 2 + |β| 2 e ω in /T -1 , @VFQVA c out = c out spont. + c out stim. = αβ + 2αβ e ω in /T -1 . @VFQVA
hese two quntities ompletely (x the lte time ehvior of the ntiommuttor of the reltivisti (eld

G ac (t, t ) = (n in + 1/2)Re{χ in (t)χ * in (t )}F sn ftD for t, t > 0D one hs G ac (t, t ) =(n out + 1/2) cos (ω f (t -t )) ω f + c out e -iω f (t+t ) ω f . @VFQWA
sing this expressionD it is ler tht the ontriution of the stimulted mpli(tion weighted y n in = 1/(e ω in /T -1) nd tht of spontneous proesses re not esy to distinguishF es sid in ghpF PD eF ssF gD to e le to do soD it is useful to introdue the prmeter ∆ of iqF @PFQRAF sn the present seD the vlue of ∆ ssoited with iqsF @VFQVA is @VFRIA sn iqF @VFRHAD one lerly sees the ompetition etween the squeezing of the stte due to the sudden jump governed y β whih redues the vlue of ∆D nd the initil ouption numer whih inreses its vlueF st remins to extrt this informtion from iqF @VFQWAF B. Numeric study o this endD we plot in pigF VFI the produt ω f G ac (t, t = t) of iqF @VFQWA s funtion of timeD for two di'erent vlues of T D respetivelyD hlf nd twie the temperture

∆ out = ∆ out spont. + ∆ out stim. = -(|α| -|β|) |β| + (|α| -|β|) 2 e ω in /
T ξ in . = mc 2 in = 1 4mξ 2 in , @VFRPA
(xed y the initil vlue of the heling lengthF e otin two perfet sinusoidl urves sine the mode χ k freely propgtes fter the sudden hngeF es stted fter iqF @UFRTAD the minim of the urves orrespond to ∆ + 1/2F hereforeD if in n experimentD the miniml vlue of ω f G ac is mesured with enough preision to e less thn 1/2D one n ssert tht the stte is nonseprle @in the sene of dissiptionAF o omplete the nlysisD we study how these results depend on the wve numer kF e work with the stndrd fogoliuov dispersion reltion see iqF @VFIVA with Γ = 0D cξ = 1/2m onstntD nd with c f /c in = 1/10F sn pigF VFP we plot the ntiommuttor ω f × G ac (t, t = t) s funtion of k for two temperturesD nmelyD T ξ in /2 @left pnelA nd T ξ in @right pnelAF e (rst see tht the modes with lower k re more mpli(ed thn those the height of the jump governed y c f /c in whih inreses the ohereneD iFeFD redues the vlue of ∆D nd the initil ouption numer whih inreses ∆F yne lso sees tht the stte of higher momentum mode stys nonseprle for higher temperturesF with higher kF es expeted from iqF @VFRIAD when looking t the lower envelopeD we lso see tht the oherene level is higher @the minim of G ac lowerA when working with smller tempertureD ndGor with higher kD iFeFD with rrer events governed y smller initil ouption numer n in F o quntify this e'etD nd possily lso to guide future experimentsD we hrterize the domin where the resulting stte is nonseprleD iFeFD where ∆ out < 0F o this endD in pigF VFQD we plot ∆ out s funtion of T /T ξ in nd the rtio c f /c in F e onsider two vlues of kD nmely one in the hydrodynmil regimeD nd one of the order of the inverse heling lengthF his lerly on(rms tht t higher momentD sttes re more likely to e nonseprleF woreoverD one sees tht for wve numer smller thn the heling lengthD t temperture ∼ T ξ in of iqF @VFRPAD in order to otin nonseprle stteD c f /c in should e either lrger thn 3 or smller thn 1/3F o illustrte these spets with onrete exmpleD we onsider the experiment of efF tf + IPF he relevnt vlues re T = 6.05T ξ in nd k ∼ 2.15mc in D so tht the initil numer of prtiles is of the order of 3F yn the other hndD one hs c f /c in ∼ 2 1/4 F @o get these numersD we used T = 200nKD ω/2π = 2kHzD m = 7.10 -27 kg nd c in = 8mm/sFA he orresponding vlue of the oherene level is ∆ ∼ 1.4F rene the stte is seprleF sn order to reh ∆ = 0D one should either inrese the rtio c f /c in ∼ 6D or work with lower tempertureD of the order of 0.6T ξ in F III. The dissipative case sn the presene of dissiptionD the mode interprettion involving the fogoliuov oe0E ients of iqF @VFQTA is no longer vlidF sn ftD the stte of χ is now hrterized y G dr ac IQT CHAPTER 8. DISSIPATIVE PHONONS of iqF @VFQHAD whih is governed y the retrded qreen funtion nd the noise kernelF he seprility of the stte should thus e dedued from its propertiesF hen the environment stte is therml stteD using iqF @VFQQAD iqF @VFQHA n e expressed s

G dr ac (t, t ) = dω ζ 2π ω ζ coth ω ζ 2T G r (t, ω ζ ) G r (t , -ω ζ ), @VFRQA
where we introdued the pourier trnsform

G r (t, ω ζ ) . = ∞ -∞ dτ e iω ζ τ Γ(τ )G χ ret (t, τ ), @VFRRA
of the retrded qreen funtion of iqF @VFPUAF sn the followingD we ompute iqF @VFRQAD whih is esier to hndle thn iqF @VFQHAD in two di'erent sesF sn the (rst oneD there is no dissiption fter the sudden hngeD iFeFD γ f = 0 in iqF @VFQRAF sn the seond oneD Γ is onstntF A. Turning o dissipation after the jump hen Γ f = 0 for κt 1D we hve the possiility of using the stndrd prtile interpreE ttion to red the symptoti stteF sn ftD inserting iqF @VFPUA into iqF @VFRRAD using iqF @VFQRA nd κt 1D one gets

G r (t, ω ζ ) = √ Γ in 2ω f e iω f t R(ω ζ ) -e -iω f t R * (-ω ζ ) , @VFRSA
where

R(ω ζ ) . = √ 2ω f ∞ -∞ dτ h(κτ )e iω ζ τ e -∞ τ Γ χout (τ ). @VFRTA
he funtion χout (τ ) is the stndrd out modeX it is the positive unit ronskin mode of iqF @VFPSA whih is positive frequeny t symptotilly lte timeF he time dependene of iqF @VFRSA gurntees tht iqF @VFRQA hs extly the form of iqF @VFQWAF he (nl ouption numer n out nd orreltions c out re found to e

n out + 1 2 = Γ in ω f ∞ 0 dω ζ π ω ζ coth( ω ζ 2T ) |R(ω ζ )| 2 + |R(-ω ζ )| 2 , c out * = 2 Γ in ω f ∞ 0 dω ζ π ω ζ coth( ω ζ 2T )R(ω ζ )R(-ω ζ ).
@VFRUA e notie tht these expressions re similr to those of iqF @VFQVAD nd tht R * (±ω ζ ) plys the role of density @in ω ζ A of α nd βD respetivelyF sn ftD when tking the limit Γ in → 0 in iqF @VFRUAD one reovers the dispersive expressions of iqF @VFQVAF e n now explin why we introdued the funtion h in iqF @VFQRAF por κ → ∞D h(κt) eomes the step funtion θ(-t)F sn this limitD iqF @VFRTA gives

R(ω ζ ) = ω f + (ω ζ -iΓ in ) ω2 in -(ω ζ -iΓ in ) 2 + O 1 κ , @VFRVA

III. THE DISSIPATIVE CASE

IQU whih indites tht R ehves s 1/ω ζ for ω ζ → ∞F rene oth n out nd c out of iqF @VFRUA would logrithmilly divergeF he divergenes rise from the ft tht the environment (eld Ψ ontins ritrry high frequenies ω ζ F o regulte the divergenesD severl venues n e envisgedF yne ould either introdue ζEdependent oupling in iqF @VFIPA or ut o' the high frequeny ω ζ spetrum in iqF @VFPAF roweverD these would spoil the lolity of iqF @VFITAF por this @mthemtilA resonD we prefer to use h(κt) of iqF @VFQRAF woreoverD tking n instntneous hnge in Γ(t) would remove the C 1 hrter of G ac (t, t ) found in the dispersive seY see the disussion fter iqF @VFQTAF 1. Approximating Eq. @VFRTA e now give n pproximte vlue of iqF @VFRTA oth for generl pro(le h nd when pplied to the prtiulr se

h(z) =    1 if z < 0, 1 -z if 0 < z < 1, 0 if 1 < z. @VFRWA
his shll e used to otin the following (guresF o do soD we (rst onsider tht h is onstnt for negtive timesF2 reneD the prt of the integrl tht runs on negtive times is esy to hndle nd gives

0 -∞ dτ h(κτ )e iω ζ τ e -Γ in κ ∞ κτ h 2 (z)dz √ 2ω f χout (τ ) ∼ e -Γ in κ ∞ 0 h 2 ω f + (ω ζ -iΓ in ) ω2 in -(ω ζ -iΓ in ) 2
. @VFSHA rereD we negleted the e'et of the hnge of ω due to the hnge in Γ for positive times on ϕ out F he devition is generilly of order Γ 2 in /ω f κF3 o get this oundD we n writeD for positive timesD χout = e -iω f τ /

√ 2ω f + χ1 D nd perturtively in χ1 D get to | χ1 | √ 2ω f < Γ 2 in /ω f κ ∞ 0 h 2 F
his ound n e relxed order y order y solving iqF @VFPSA with soureF his is not the gol of this setionF por positive timesD we now mke the sme pproximtion nd get

∞ 0 dτ h(κτ )e iω ζ τ e -Γ in κ ∞ κτ h 2 (z)dz √ 2ω f χout (τ ) ∼ 1 κ ∞ 0 dτ h(τ )e -Γ in κ ∞ τ h 2 e i(ω ζ -ω f )τ . @VFSIA
e n now ompute this lst integrl perturtively in Γ/κF o get oherent results nd to get rid of the 1/ω ζ termD the sme expnsion is neessry in iqF @VFSHAF ine for the ses we onsider @iFeFD sudden hngeD

Γ ω κAD Γ in /κ > Γ 2 in /ω f κ > Γ 2
in /κ 2 D the expnsion in Γ in /κ should e done to (rst order mximumF o this orderD R eomes pigure VFRX he rtio ∆n r of iqF @VFSRA for jump ω f /ω in = 0.1 nd κ = 10ω in is represented in the plne n in , Γ in /ω in F por low initil ouption numerD we see tht ∆n r is proportionl to dissiE ptive rte Γ in /ω in D wheres it evolves from liner to qudrti for high numE ersF es it is explined in the textD these oservtions re on(rmed y nlyti expressionsF hen working with h of iqF @VFRWAD one otins

R = 1- Γ in κ ∞ 0 h 2 ω f + (ω ζ -iΓ in ) ω2 in -(ω ζ -iΓ in ) 2 + ∞ 0 dτ h(κτ ) 1 - Γ in κ ∞ τ h 2 e i(ω ζ -ω f )τ × 1 + O Γ 2 in ω f κ .
R ∼ ω f + (ω ζ -iΓ in ) ω2 in -(ω ζ -iΓ in ) 2 + h 1 i(ω ζ -ω f ) κ ω ζ -ω f - Γ in 3κ   ω f + (ω ζ -iΓ in ) ω2 in -(ω ζ -iΓ in ) 2 + h 4 i(ω ζ -ω f ) κ ω ζ -ω f   . @VFSQA where e x = n k=0 x k /k! -h n (x)
x n /n! de(nes the reminder term of order nD h n (x)D of the ylor expnsion of the exponentil funtionF e notie tht h n (x)

∼ x for x → 0 so tht R is regulr t ω ζ = ω f F woreoverD t lrge xD h n (x) ∼ -e x n!/x n + 1 + O(1/x) so tht R ∼ 1/ω 2
ζ t lrge ω ζ F o omplete the studyD we heked the vlidity of iqF @VFSQA y numerilly evluting RF hen onsidering only the (rst two terms of iqF @VFSQAD we oserved tht the reltive error is smller thn Γ/κD s preditedF hen inluding the lst termD the reltive error remins smller thn Γ 2 /κω f F 2. Spectral deviations due to dissipation e study how n out of iqF @VFRUA depends on the dissiption rte Γ in F o this endD we study its di'erene with the dispersive ouption numer n out disp of iqF @VFQVA evluted with the sme vlues for the temperture T D nd the initil nd the (nl frequeny see iqF @VFQSAF sn pigF VFR we represent the reltive hnge

∆n r . = n out (Γ in ) -n out disp n out disp + 1/2 , @VFSRA
s funtion of the initil ouption numer n in nd the rtio Γ in /ω in F e work with jump ω f /ω in = 0.1D nd with κ = 10ω in F e use this prmetriztion euseD t (xed kD iqF @VFPPA only depends on ω(t) nd Γ(t)F rene the heling length nd k need not e spei(edF por these vluesD we (nd two regimesF pirstD for low ouption numerD we oserve tht the devition ∆n r linerly depends on Γ in F en nlytil tretment sed on iqF @VFSPA revels thtD for smll Γ in /ω in nd lrge κ/ω in D ∆n r ehves s

∆n r = Γ in ω in 1 n in + 1/2 × g(κ/ω in ), @VFSSA IQW
pigure VFSX e represent the lines of ∆ = -0.2 @dshedAD 0@solidA nd 0.2 @dottedA in the plne {T /T ξ in , log 10 (c f /c in )}D on the left pnel for k = 0.3mc in nd on the right one for k = mc in F γ 2 k tkes three vluesX from 0D iFeFD the dispersive se shown y the thik red lineD to 0.5D nd κ = 10mc 2 in F por tempertures tht re not too lowD we oserve tht the vlue of ∆ is roust when c f < c in @whih orresponds to n expnding universeAD while it inreses when c f > c in F where g(κ/ω in ) is rther omplited funtion 4 F e did numerilly heked tht iqsF @VFSSA nd @VFSTA pply for n in 5 nd κ 10ω in F reneD under these onditionsD ∆n r depends on κ eff of iqF @VFSUAD ut not on the ext shpe of h of iqF @VFQRAF eondD for high ouption numers nd high κΓ/ω 2 in D we oserve in pigF VFR qudrti dependene in ΓF vowering κΓ/ω 2 in D we oserve trnsition from this qudrti ehvior to liner oneF hese numeril oservtions re in greement with the nE lytil result

∆n r ∼ Γ in ω in 2 ω 2 in -ω 2 f ω 2 in + ω 2 f + O Γ in κ , @VFSVA whih pplies in the limit Γ in ω κ T F 4.
It is given by

g(κ/ω in ) = 1 π   2 log κ eff ωin 1 + (ω f /ω in ) 2 -1   , (8.56)
where κ eff is the eective slope of the prole h(κt). It is given by

κ eff . = κ exp -γ -dtdt (∂ t h) (∂ t h) log(κ |t -t |) , (8.57)
where γ is the Euler constant. The interesting part of these equations is that they apply for any h(κt) when κ/ω in 1. Moreover, κ eff also governs the logarithmic growth of |c|. 

Ω f t G ac G ac t 0
pigure VFTX e represent the ntiommutE tor G ac normlized to its vlue efore the jumpD s funtion of ω f tD nd for T = T ξ in nd k = 2mc in F he three upper urves @in lueA represent n expnding universe @c f = 0.5c in AD while the three lower @in purE pleA ones represent ontrting universe @c f = 2c in AF he solid lines show the two dispersive sesD the dshed lines represent the dissiptive ses with γ 2 = 0.15 nd κ = 100mc 2 in D nd the dotted lines show the results when κ is inresed to 10 4 mc 2 in in orE der to see the logrithmi growth of n nd c of iqF @VFQVAF sn ll sesD G ac is C 1 ross the jumpF ine the oherene is sed on the minim of G ac D the vlue of ∆ is roust when c f /c in < 1D wheres it neessrily inE reses when c f /c in > 1F sn riefD iqsF @VFSSA nd @VFSVA estlish how n out of iqF @VFRUA onverges towrds the dispersive ouption numer of iqF @VFQVA when Γ in /ω in 1 nd κ ω in F e similr nlysis n e done for the oe0ient c out of iqF @VFRUAD nd it gives similr resultsF 3. Final coherence level sn pigF VFSD we represent the oherene level ∆ of iqF @PFQRA s funtion of the temE perture nd c f /c in D for two di'erent vlues of kD nmelyD k/mc in = 0.3 nd 1D nd three vlues of γ 2 D nmelyD 0, 0.25 nd 0.5F he vlue of κ is κ = 10mc 2 in F es one might hve expetedD we oserve ontinuous devition of ∆ for inresing vlues of the oupling γ 2 k F wore surprisinglyD we oserve tht inreses of c(t)D c f > c in D nd deresesD c f < c in D ehve very di'erentlyF sn the (rst seD there is lrge inrese of ∆D whih implies loss of ohereneF yn the ontrryD in the seond seD the vlue of ∆ is roustD nd some mrginl gin of oherene n even e foundF o vlidte these oservtionsD we studied the ehvior of ∆ for di'erent pro(les of the smoothing funtion h(κt)F henever c f /c in is not too lose to ID we otined similr resultsD therey showing tht the hoie of the pro(le of h does not signi(ntly mtterF snstedD when c f /c in ∼ 1D the ehvior of ∆ is less universlF sn order to understnd the di'erent ehviors of c f > c in nd c f < c in D we represent in pigF VFT the ntiommuttor normlized to its vlue t the jump G ac (t = t )/G t=t =0 s funtion of ω f tD nd for di'erent vlues of the steepness prmeter κF e (rst notie tht this funtion is C 1 ross the jumpD s were the modes in dispersive theoriesF his implies tht one extremum of the ntiommuttor oinides with the vlue efore the jumpF sn the sene of dissiptionD one esily veri(es tht it is minimum for c f < c in nd mximum otherwiseF por wek dissiptionD y ontinuity in ΓD this must still e the seF reneD when c f < c in D the minim of the ntiommuttor re (xed y the initil IRI stteF snstedD for c f > c in D they re (xed y the intensity of the jump nd the injetion of energy from the environmentF es lerly seen in the (gureD this injetion inreses with κ nd explins why oherene is more roust when c f < c in @iFeFD in expnding universesAF B. Constant dissipation rate sn this setionD we study our model when the dissiptive rte Γ is onstntD s it is found for instne in polriton systems qgIPD uIR nd in tosephson metmteE ril vrrIQF sn this seD there is no unmiguous notion of @outA quntD even though the ntiommuttor of iqF @VFRQA is well de(ned for ll t, t F xeverthelessD provided Γ/ω is low enoughD we shll see tht n pproximte reding of the (nl stte n e rehed in term of the instntneous prtile representtion sed on iqF @VFPRAF feuse γ is onstnt in iqF @VFQRAD there is simpli(tion with respet to the previous susetionX no regulriztion is now needed sine iqF @VFRQA is (niteF woreoverD the retrded qreen funtion of iqF @VFPUA is extly knownF st is given y

G χ ret = e -Γ(t-t ) ×      θ(t -t ) sin ω(t-t ) ω for t , t < 0 or t > 0, sin(ω f t) cos(ω in t ) ωf -cos(ω f t) sin(ω in t ) ωin for t < 0 nd t > 0.
@VFSWA reneD fter the jump of cD for positive timesD the pourier trnsform of iqF @VFRRA gives

G r (t, ω ζ ) = √ Γe iω ζ t ω2 f -(ω ζ -iΓ) 2 + √ Γ e -Γt+iω f t 2ω f ωf + (ω ζ -iΓ) ω2 in -(ω ζ -iΓ) 2 - 1 ωf -(ω ζ -iΓ) + (ω f → -ω f ).
@VFTHA his mens tht we @extlyA know the integrnd of iqF @VFRQAF he integrl n e performed y nlyti methods @y evluting the residues of polesAD nd then reognizing the in(nite sum s (nite sum of hypergeometri funtionsF e do not present the nlyti result here sine it is long nd not instrutiveF snstedD the min results re presented elowF 1. Two-point correlation function o disover the e'ets of dissiptionD in pigF VFU we plot ωf × G ac (k, t = t ) oth s funtion of timeD s in pigF VFID nd s funtion of the wve numer kD s in pigF VFPF hen onsidered s funtion of tD we oserve tht the osilltions tke ple in nrrowing envelopeF es expetedD the ltter follows n exponentil dey in e -2Γt towrds the equilirium vlue ωf G eq ac = ωf G ac (t = t → ∞)F his simple ehvior implies tht the nonseprility of the stte is quikly lost t high temperturesF sndeedD rough estimte of the lpse of time for the deoherene to hppen is of the order (2Γn eq ) -1 D where n eq is the men ouption numer t equiliriumF reneD when n eq 1D the time for the loss of oherene is smller thn the dissiptive time 1/Γ y ftor 1/2n eq F hen onsidered s funtion of kD on the right pnelD we oserve dmped osilltionsF pigure VFVX e drw the equl time densityE density orreltion of iqF @VFTIA s funE tion of mc in |x -x |D for n elongted @1DA ondenste nd c f /c in = 0.1D nd T = T ξ in F e tke t = 7.5/mc 2 f nd four vlues of γ 2 k D nmelyD 10 -2 @solid lue lineAD 10 -1.5 @dshed purple lineAD 10 -1 @dotEdshed yellow lineA nd 10 -0.5 @green dotted lineAF he prmE eter n of iqF @VFIRA is n = 0F e oserve pek t x = x tht is rodened y dissipE tionD nd series of peks propgting wy from the enter with group veloity higher thn c f F he fster they propgteD the more dmped they re sine we hve Γ ∼ k 2 F por lrge kD they re more dmped thn those of the dispersive se @represented y dshed lineA sine the dey rte Γ ∝ k 2 F o further study the e'ets of inresing ΓD in pigF VFVD we represent the equl time densityEdensity twoEpoint funtion @see efF ppHR nd ghpF UD eF sssF eA

G dd . = δ ρ(t, x)δ ρ(t, x ) ρ = dk π e ik(x-x ) cξk 2 G k ac (t, t = t), @VFTIA
for the se of one dimensionl @elongtedA ondenste nd four vlues of γ 2 D nmelyD log 10 (γ 2 ) = -2, -1.5, -1 nd -0.5F e tke rther lrge t = 7.5/mc 2 f to see the propgtion of the phonon wvesF es expeted we oserve pek entered on x = x plus series of peks for |x -x | > 2c f tF he (rst one is present even in vuum nd is mpli(ed y the men ouption numers n k > 0F e see tht it is rodened y dissiptionF he series of peks for |x -x | > 2c f t is due to the ft tht the phonons III. THE DISSIPATIVE CASE IRQ re produed in pirsF es in in)tionry osmology gHRD their mplitudes re (xed y the c k oe0ientsF hese peks propgte t di'erent speeds euse of dispersionF he fstest re more dmped euse dispersion is nomlousD nd euse dissiption goes in k 2 F e lso notie tht the (rst propgting pek is negtive when working with c f < c in F @por c f > c in instedD it would e positiveFA e onlude y notiing tht this plot gives no indition of whether the stte is seprle or notD minly euse G dd mixes di'erent twoEmode setors leled y kD some of whih eing nonseprleD ut not llF 2. Approximate particle interpretation and separability o interpret the properties of G ac D we now use the instntneous prtile representtion sed on χdec of iqF @VFPRAF iven though the ntiEommuttor G ac is wellEde(nedD for dissiptive systemsD there is no unique @nonilA wy of de(ning the onept of prtileF rene the men ouption numer n nd the orreltion term c re somehow miguousF he issue is twofold s it requires one to tret seprtely the equilirium nd the out of equilirium prts of G ac F pirstD lose exmintion of the out of equilirium prt δG ac . = G ac -G eq ac revels tht it ontins nonosillting terms whih cannot e expressed s the ntiommuttor of χdec in iqF @VFPRAF sn ft the equl time ntiEommuttor of χdec deys s e -2Γt D wheres the non osillting terms dey s e -2πtT F reneD when Γ < πT D these extr terms n e negleted for t, t 1/(πT -Γ)F hen these onditions re ful(lledD one n de(ne δn(t 0 ) nd δc(t 0 )D the out of equilirium vlue of the ouption numer nd the oherene t t 0 D y δG ac (t, t ) ∼ δn(t 0 )χ dec (t; t 0 )[χ dec (t ; t 0 )] * + δc(t 0 )χ dec (t; t 0 )χ dec (t ; t 0 ) + cc, @VFTPA where χ dec (t; t 0 ) = e -Γ(t-t 0 ) e -iω f (t-t 0 ) / √ 2ω f is the deying solution of iqF @VFPRA whih ontins only positive frequeny nd whih is unit ronskin t t = t 0 F ine δG ac (t, t ) is independent of t 0 D one immeditely dedues tht

δn(t 0 ) = δn(0)e -2Γt 0 , |δc(t 0 )| = |δc(0)|e -2Γt 0 .
@VFTQA his mthes the ehvior of the envelope oserved in pigF VFUF sn the limit of smll dissiptionD one (nds tht the initil vlues oey

δn(0) = δn disp + O Γ ω in + Γ T , δc(0) = c disp + O Γ ω in + Γ T , @VFTRA
where δn disp = n out -n eq nd c disp = c out re the orresponding quntities evluted with the dispersive se γ = 0F he vlues of n out nd c out re given in eF ssD nd n eq is the men ouption numer in therml thF eondD similr nlysis of the equilirium prt of G ac gives

G eq ac (t, t ) = e -Γ|t-t | G th,disp ac (t, t ) + O( Γ ω f ), @VFTSA IRR CHAPTER 8. DISSIPATIVE PHONONS 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 t
pigure VFWX e represent the oherene level ∆ s funtion of ΓtD for T = T ξ in /2 nd γ 2 k = 0.01F e onsider two vlues of c f /c in = 0.1 @solid lineA or 0.5 @dshed lineAD nd two vlues of k/mc in = 1 @lk lineA or 1.5 @thik red lineAF he impreision in the vlue of ∆ is indited y vertil rsF sn the present wekly dissiptive sesD the spred of ∆ is of the order 0.02F hereforeD the moment where the nonseprility of the stte is lost is known with some preisionF where G th,disp ac is the orresponding dispersive ntiommuttor in therml stteF st is worth notiing tht in the presene of dissiptionD the resled ntiommuttor n e smller thn 1/2D s n e seen in pigF VFU for high kF his is euse the φ (eld is still interting with the environmentF etD in the limit

Γ |t -t | 1 nd Γ/ω f 1D G eq ac is indistinguishle from G th,disp
ac F e n then work with 2n eq + 1 = coth[ω f /2T ]F hoing soD we get n impreision of the order of Γ/ω f F rving identi(ed n = δn + n eq nd cD we n ompute the oherene level ∆ of iqF @PFQRAD whih of ourse inherits the impreision oming from n eq F sn pigF VFWD we represent ∆ k nd its impreision s funtion of time for four di'erent sesF es lredy disussedD we notie tht the nonseprility of the stte is lost in time muh smller thn 1/ΓF e lso notie tht when Γ/ω is low enoughD the impreision in ∆ does not signi(ntly 'et our ility to predit when nonseprility will e lostF sn riefD for low vlues of Γ/ω nd Γ/T D the ntiommuttor G ac n e relily interpreted t ny time t 0 using the instntneous prtile representtion sed on χdec (t, t 0 ) of iqF @VFPRAF Conclusions sn this hpterD we omputed the spetrl properties n k nd the oherene oe0ient c k of qusiprtiles produed when sudden hnge is pplied to oneEdimensionl homogeneous systemF e took into ount oth the e'ets of n initil temperture nd the ft tht the qusiprtiles re oupled to reservoir of modesD something whih indues dissiptive e'etsF por de(nitenessD the qusiprtiles re tken to e fogoliuov phonons propgting in n tomi ondensteF et our results should pplyD muttis mutndisD to ll wekly dissiptive systems @s long s the kground is not dissiptedAF por simpliityD we work with qudrti tionF smportntlyD this llows us to omE pute the ntiommuttor for nonequl times see iqsF @VFPVA to @VFQIAD something whih is not generlly done when using the trunted igner method vgHPD ut whih ould e very useful for future experimentsF feuse our system is oupled to thD n k nd c k re a posteriori extrted from the ntiommuttor of the phonon (eld see iqF @VFRUA nd @VFTPAF henD to distinguish lssil orreltions from quntum entnglementD we used the ft tht negtive vlues of the prmeter ∆ k of iqF @PFQRA orrespond to IRS nonseprle sttes @for the qussin sttes we onsiderAF hen negleting dissiptive e'etsD we studied the ompetition etween the squeezE ing of the qusiprtiles stteD whih is indued y the sudden hngeD nd the initil tempertureD whih inreses the ontriution of stimulted e'ets see iqF @VFRHAF sn pigF VFID one lerly sees tht the vlue of the minim of the equl time ntiommuttor llows one to know if the stte is seprle or notF he outome of the ompetition is summrized in pigF VFQD where the oherene prmeter ∆ is plotted s funtion of the sudden hnge of the sound speed nd the tempertureF e pplied our nlysis to the reent experiment of efF tf + IP nd onluded tht one should either inrese the hnge of c or work with lower temperture in order to otin nonseprle stteF e then inluded dissiptive e'etsF hen there is no @signi(ntA dissiption fter the sudden hngeD we showed in pigF VFR how the (nl numer of prtiles is progresE sively 'eted y inresing dissiptionF hen the initil ouption numer is lowD the devitions re liner in the dey rte ΓD wheres they re qudrti for ouption numers n in 5F snterestinglyD we oserved in pigF VFS tht dissiptionD on the one hndD hrdly 'ets the oherene prmeter ∆ when the sudden hnge is due to derese of the sound speed @something whih orresponds to n expnding universe when using the nlogy with grvityA ndD on the other hnd severely redues the oherene when the sound speed inresesF his disrepny is further studied in pigF VFT whih illustrtes the key role plyed y the C 1 hrter of the ntiommuttor ross the sudden hngeF e lso studied the se when the dissiptive rte is onstntF sn this seD the min e'et of dissiption on the ntiommuttor is the expeted dmping towrds the equilirium vlueD see pigF VFUF es resultD for high ouption numersD the nonsepE rility of the stte is lost in time muh shorter thn the inverse dey rteD see pigF VFWF sn spite of the ft tht the qusiprtiles re still oupled to the environmentD we showed tht relile study of this loss n e performed for wekly dissiptive sysE temsD iFeFD with Γ/ω 1F yn the ontrryD for strongly dissiptive systemsD iFeFD rpidly deying qusiprtilesD we elieve the notion of nonseprility nnot e meningfully implementedF I. THE PHYSICAL SYSTEM AND THE EQUATIONS OF MOTION IRU I. The physical system and the equations of motion e use here the polriton system of ghpF UD eF sD with the rmiltonin given in iqF @UFSSAF woreoverD we shll restrit to the se of monohromti pump normlly inident on the vityD whih gives vnishing inEplne k = 0 nd therefore sptilly homogeneous nd isotropi pump mplitude F (x, t) = F 0 (t)e -iωpt X this pump on(gurE tion injets into the vity photon )uid tht is sptilly homogeneous nd t restF iven though the oherent pump ts on the single k = 0 modeD euse of the intertion termD the (eld dynmis involve the whole ontinuum of inEplne k modesF prom iqF @UFSSAD the equtions of motion re

i∂ t Φ = E bare 0 - ∂ 2 x 2m + g Φ † Φ Φ + dζg ζ Ψζ + F, @WFIA i∂ t Ψζ = ω ζ Ψζ + g ζ Φ.
@WFIA he solution of iqF @WFIA n e written s

Ψζ (x, t) = Ψ0 ζ (x, t) -i dt θ(t -t )e -iω ζ (t-t ) g ζ Φ(x, t ). @WFPA
he (rst term is the homogeneous solution @ontrry to iqF @VFQPAD the environment is not reltivistiA

Ψ0 ζ (x, t) = ĉ(x, ζ)e -iω ζ t . @WFQA rere ĉ(x, ζ)
is the destrution opertor of environment quntum of energy ω ζ lolized t xF st oeys the nonil ommuttor

[ĉ(x , ζ ), ĉ † (x, ζ)] = δ(x -x )δ(ζ -ζ ). @WFRA
sntroduing the right hnd side of iqF @WFPA in iqF @WFIA gives the e'etive eqution of motion for the photon (eldD

i∂ t Φ = E bare 0 - ∂ 2 x 2m + g Φ † Φ Φ -i dt D(t -t ) Φ(t ) + dζg ζ Ψ0 ζ + F = 0. @WFSA he non lol dissiptive kernel is ompre to iqF @VFITA D(t -t ) . = θ(t -t ) dζg 2 ζ e -iω ζ (t-t ) , @WFTA
nd its pourier trnsform is

D(ω) = dζg 2 ζ i ω -ω ζ + i . @WFUA
feuse of the high frequeny of the pump s ompred to the timeEsle of the hydrodyE nmi evolution of the )uidD we shll see elow tht D(t -t ) n e well pproximted y lol kernel within sort of Markov pproximtion nd orrespondingly D(ω) n e pproximted y onstnt vlue independent of ωF IRV CHAPTER 9. DISSIPATIVE CONDENSATES nder wekEintertion ssumptionD we perform the usul dilute gs pproximE tion HQ nd we split the (eld opertor s the sum Φ = Φ cond (1 + φ) of @lrgeA oherent omponent Φ cond (x, t) orresponding to the ondenste nd @smllA quntum )utution (eld φ(x, t)F snluding the new terms stemming from pumping nd from lossesD the men (eld Φ cond (x, t) n e shown to oey generlized qrossEitevskiiE vngevin eqution of the form

i∂ t Φ cond (x, t) = E bare 0 - ∂ 2 x 2m + g |Φ cond | 2 Φ cond (x, t) -i dt D(t -t )Φ cond (x, t ) + F (x, t).
@WFVA hen ssuming tht the pump is lmost monohromti F (x, t) = F 0 (x, t)e -iωpt nd Φ cond (x, t) = Φ0 (x, t)e -iωpt with Φ0 (x, t) nd F 0 (x, t) slowly vrying funtions of timeD it is pproprite to extrt the temporlly lol prt of the dissiptive kernel nd to rewrite iqF @WFVA s

i∂ t Φ0 (x, t) = F 0 (x, t) + E bare 0 + ∆E -ω p - ∂ 2 x 2m + g Φ0 2 -iΓ Φ0 (x, t) -i dt D(t -t )e iωp(t-t ) Φ0 (x, t ) -Φ0 (x, t) , @WFWA
where the rel nd imginry prts of D(ω p ) = Γ+i∆E de(ned in iqF @WFUAD respetively give the dey rte Γ nd @smllA shift ∆E of the photon frequenyD see refF gvVIF ixpliitlyD one hs

∆E = -dζg 2 ζ P.V. 1 (ω ζ -ω p ) , Γ = dζg 2 ζ πδ(ω ζ -ω p ), @WFIHA
where P.V. is the guhy prinipl vlueF sn the followingD ll formuls will e written in terms of the e'etive vity photon frequenyD E 0 = E bare 0 + ∆EF he rtio ω p /Γ = Q p gives the qulity ftor of the vityX in typil mirovity systems one hs Q p 10 5 F por given ω p D vrious hoies of g ζ giving the sme vlue for Γ should e onsidered t this level s physilly equivlentF II. The stationary state e egin our disussion of quntum )ututions in sttionry stte under sptilly homogeneous nd monohromti pump t frequeny ω p D F (x, t) = F 0 e -iωpt with onE stnt pump mplitude F 0 F sn this seD we n sfely ssume the oherent omponent Φ cond of the photon (eld to e itself sptilly homogeneous nd monohromtilly osilE lting t ω p D Φ cond (x, t) = Φ 0 e -iωpt F sing iqF @WFWAD it is immedite to see tht Φ 0 oeys the stte eqution

ω p -E 0 -g |Φ 0 | 2 + iΓ Φ 0 = F 0 .
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pigure WFIX e represent the density of the ondensteD solution of iqF @WFIIA s funE tion of the pump intensityF he relevnt pE rmeter in suh (gure is the distne from the istility loop to the vertil xes (xed y Γ/(ω p -E 0 ) @here 0.1AF e only onsider ondenstes suh tht gΦ 2 0 ω p -E 0 D iFeFD in the upper rnh of the istility loopD in the stle regionF sn the followingD we shll ssume tht the phse of the pump F 0 is hosen in wy to give rel nd positive Φ 0 > 0F es we re interested in stle on(gurtion where the phonon mss is the smllestD we will follow previous work on nlog models sed on super)uids of light in mirovities qgIP nd onentrte our ttention on the se of pump frequeny lueEdetuned with respet to the re photon frequeny ω p > E 0 D where the dependene of the internl intensity Φ 2 0 on the pump intensity |F 0 | 2 shows istility loopD see pigF WFI or efsF ggHRD ggIQF wore spei(llyD we shll onentrte on the upper rnh of the istility loopD where intertions hve shifted the e'etive photon frequeny E 0 + gΦ 2 0 to the lue side of the pump lserD E 0 + gΦ 2 0 ≥ ω p F ixt resonne ω p = E 0 + gΦ 2 0 is found t the endEpoint of the upper rnh of the istility loopX s we shll see shortlyD only this point orresponds to vnishing phonon mssF he more omplex physis of quntum )ututions under monohromti pump in the viinity of the soElled mgi ngle ws disussed in gIH for pump intensities spnning ross the optil prmetri osilltion threshold gHQF A. The equation of motion iqsF @WFSA nd @WFVA determine the eqution for liner perturtions φF king into ount the sptil homogeneity of the menE(eld solution Φ cond D we use the reltive perturtion φk t given wve numer kF sing wrkovin 1 pproximtion to neglet the nonElol prt of the dissiptive termD one otins the following quntum vngevin eqution of motion ompre with iqF @VFIQA i

(∂ t + Γ) φk = Ω k φk + mc 2 φ † -k + Ŝk Φ 0 . @WFIPA 1.
The exact equation is given in Eq. (9.42). Since the characteristic frequency ω k of phonon modes is much lower than ω p , the non-local part of the dissipative term of Eq. (9.6) can be neglected as it gives corrections proportional to ω k /ω p . In fact, using Eq. (9.7), [ D(ω p + ω) -D(ω p )] ∼ D(ω p )ω/ω p for typical dissipation baths, which is much smaller in magnitude than D(ω p ) when ω ω p . ISH CHAPTER 9. DISSIPATIVE CONDENSATES sts onservtive prt shows interesting di'erenes from the se of tomi ondenstesX hile the intertion energy hs the sme form s in iqF @UFIWA mc 2 .

= gΦ 2 0 , @WFIQA the detuning oe0ient multiplying φk in iqF @WFIPA keeps trk of the pump frequeny ω p F st is given y

Ω k . = k 2 2m -ω p + E 0 + 2mc 2 , @WFIRA
insted of iqF @UFPHAF st llows for lrger vriety of fogoliuov dispersions ggHRD ggIQF he eigenmodes of the deterministi prt of the liner prolem desried y iqF @WFIPA re in ft hrterized y the dispersion iqF @UFPQA nd olletive phonon destrution opertor of the form of iqF @UFPIA where u k nd v k re given y iqF @UFPPAF sing iqF @WFIRAD we get to the expliit expression

ω2 k = M (M + 2m)c 4 + k 2 c 2 (1 + M/m) + k 4 4m 2 , @WFISA
in terms of the mss prmeter M de(ned y

M c 2 = E 0 + mc 2 -ω p ≥ 0.
@WFITA e put ˜on ω2 k to emphsize tht the dispersion reltion is the one of iqF @VFIVAD or equivlently Ω 2 + 2iΓΩ = ω 2 k D with ω k nd ωk linked y iqF @VFIWAF he presene of (E nite phonon rest energy is ruil di'erene s ompred to the equilirium se where phonons re lwys msslessF he phonon mss is however drmtilly suppressed M m when the pump frequeny pprohes resonne with the @intertionEshiftedA vity modeD ω p E 0 + gΦ 2 0 D tht isD when the operting point pprohes the leftmost endEpoint of the upper rnh of the istility loopF sn this limitD M → 0 nd the dispersion extly reovers the usul fogoliuov dispersion of equilirium fose ondenE stes HQD with mssless phonons nd lowEfrequeny speed of sound equl to cD see under iqF @UFPQAF es usul for quntum vngevin equtionsD the eqution of motion @WFIPA lso involves dey term proportionl to Γ nd n e'etive quntum soure term

Ŝk (t) . = dζg ζ ĉ(k, ζ)e -i(ω ζ -ωp)t @WFIUA
summrizing quntum )ututions in the initil stte of the environmentD ssumed to e deorrelted from the systemF sn the wrkovin limit ω ω p D the vngevin quntum noise opertor Ŝk (t) stis(es the osoni ommuttion reltions of destrution opertor

[ Ŝk (t), Ŝ † k (t )] = dζg 2 ζ e -i(ω ζ -ωp)(t-t ) ∼ 2Γδ(t -t )δ(k -k ), @WFIVA [ Ŝk (t), Ŝk (t )] = 0.
@WFIVA e further ssume tht the environment is initilly in n equilirium therml stte with low temperture T e ω p F es the hrteristi phonon frequenies ωk re lso muh II. THE STATIONARY STATE ISI smller thn ω p D we n sfely pproximte the expettion vlues y the following expressions

Ŝk (t) Ŝk (t ) = 0, @WFIWA Ŝk (t) Ŝ † k (t ) 2Γδ(t -t )δ(k -k ), @WFIWA Ŝ † k (t) Ŝk (t ) = 2Γ e ωp/Te -1 δ(t -t )δ(k -k ) 0. @WFIWA
his mens tht the environment is vuum white noise th with )t frequeny distriutionF B. Quantum uctuations in the steady state sn the present sttionry seD the fogoliuov trnsformtion of iqF @UFPIA is time indeE pendentF sn terms of the phonon opertor φk D iqF @WFIPA then eomesD

i(∂ t + Γ) φk = ωk φk + u k Ŝk -v k Ŝ † -k . @WFPHA
feuse of ω p > 0D the retion opertor Ŝ † -k ontins positive frequenyF sndeedD using iqF @WFIUAD one gets

dte iωt Ŝ † -k = 2π dζg ζ ĉ † 0 (k, ζ)δ(ω + ω ζ -ω p ), @WFPIA
whih only vnishes for ω > ω p D tht isD fr outside the frequeny rnge involved in the phonon dynmisF es resultD the quntum )ututions of the environment het up the phonon stte even when Ψ0 ζ is in its vuum stteD iFeFD when the environment stte is nnihilted y Ŝk F es in iqF @VFPQAD the solution of iqF @WFPHA hs the following struture

φk (t) = φdec k (t; t 0 ) + φdr k (t; t 0 ). @WFPPA he deying prt is φdec k (t; t 0 ) = bk e -Γ(t-t 0 ) e -iω k (t-t 0 ) , @WFPQA
where the bk opertor destroys phonon t time t 0 nd oeys the nonil ommuttor

[ bk , b † k ] = δ(k -k )F he driven prt is φdr k (t; t 0 ) = -i t t 0 dt e -Γ(t-t ) e -iω k (t-t ) u k Ŝk (t ) -v k Ŝ † -k (t ) . @WFPRA
yne veri(es tht φk of iqF @WFPPA oeys the usul equl time ommuttors

[ φk (t), φ † k (t)] = δ(k -k ), @WFPSA
[ φk (t), φk (t)] = 0, @WFPSA ISP CHAPTER 9. DISSIPATIVE CONDENSATES s n identityD irrespetively of the hoie of t 0 F wore preiselyD the twoEtime ommuttors re given yX

[ φk (t), φ † k (t )] = e -Γ|t-t | e -iω k (t-t ) δ(k -k ), @WFPTA [ φk (t), φ-k (t )] = O ωk ω p δ(k -k ). @WFPTA
sn the wrkov limit under onsidertion here ωk ω p D the ltter ommuttor is negE ligileF yne the sttionry stte hs een rehed @iFeFD in the t 0 → -∞ limitAD the deying prt φdec k is lso negligile nd φk is given y φdr k of iqF @WFPRAF 1. Two-point functions in the steady state he sttistil properties of the phonon (eld re summrized y two point orreltion funtions

G ϕ † ϕ (t, t ; k) . = φ † k (t) φk (t ) , G ϕϕ (t, t ; k) . = φ-k (t) φk (t ) , @WFPUA
whih re diretly relted to the physilly oservle seondEorder oherene funtionD see iqF @UFRHAD desriing the orreltions of density )ututions of the inEvity photon (eldF he pourier trnsform of g 2 (x, t, x , t ) see iqF @UFRRA is relted to the soElled struture ftor of the )uid nd provides diret informtion on the k omponent of the density )ututions HQF o qudrti order in φ it is equl to

g k 2 (t, t ) = 2 (u k -v k ) 2 [G(t, t , k)] -2v k (u k -v k )e -Γ|t-t | cos[ω k (t -t )], @WFPVA
where

G(t, t , k) . = G ϕ † ϕ (t, t , k) + G ϕϕ (t, t , k) @WFPWA
is linked to the ntiommuttor of χ we used in ghpF V y

[G(t, t , k)] = ω f G ac - cos[ω k (t -t )] 2 .
@WFQHA e thus see tht mesurement of g 2 provides omplete informtion on [G]X the seond term of iqF @WFPVA is in ft stteEindependentD s it is equl to the rel prt of the ommuttor in iqF @WFPTA multiplied y some known ftorF sing iqsF @WFPRA nd @WFIWAD one otins the twoEpoint funtions of iqF @WFPUA in the sttionry stteX

G ϕ † ϕ st (t, t ; k) = n b k,st e -Γ|t-t | e iω k (t-t ) , G ϕϕ st (t, t ; k) = cb k,st e -(Γ+iω k )|t-t | , @WFQIA
where

n b k,st = v 2 k , cb k,st = u k v k Γ Γ + iω k . @WFQPA ISQ
oughly spekingD these quntities give the men ouption nd the orreltion funtion in the phonon point of viewF es shown y more reful nlysisD these identi(tions re sujeted to some inherent impreisionD see the disussion elow in eF ssF fF Q nd ghpF VD eF sssF fF en lterntive desription of this stte in terms of the photon vriles @insted of the phonon onesA n e otined using the fogoliuov trnsformtion iqF @UFPIAF he men ouption numer nd the orreltions of photon opertors re equl to

n a,st k = 2u 2 k v 2 k ω2 k Γ 2 + ω2 k , c a,st k = iω k u k v k v 2 k Γ -iω k - u 2 k Γ + iω k . @WFQQA
hese quntities re essile from the intensity pttern of the frE(eld emission from the vity nd its oherene propertiesX the presene of nonEvnishing emission n a,st k t wvevetor distint from the oherent pump t k = 0 stems from prmetri proesses nlogous to the ones tking ple in prmetri downEonversion experimentsF he nonEvnishing orreltion c a,st k = 0 is signture of the twoEmode squeezed nture of this emission wWSD qHRD gHIF prom the photon momentum distriution iqF @WFQQAD it is immedite to lulte the (rstEorder oherene funtion de(ned in iqF @UFRHAF por simpliityD we restrit our ttention to g 1 evluted t equl times t = t D

g 1 (x, x , t = t) = Φ 2 0 + dk (2π) d e ik•(x -x) n a,st k . @WFQRA
sn this equtionD d is the dimensionlity of the )uid long the vityX while stndrd plnr vities s the one skethed in pigF UFI hve d = 2D e'etive oneEdimensionl d = 1

)uids n e reted with n dditionl inEplne on(nement ggIQF he modi(ed fogoliuov oe0ients u k , v k whih pper in iqF @WFQQA re given in iqF @UFPPA nd the frequeny ωk in iqF @WFISAF sing these expressionsD strightforwrd lultion gives

n a,st k = m 2 c 4 2(Γ 2 + ω2 k ) @WFQSA
whih is regulr in the k → 0 limit oth euse of the @smllA phonon mss M (M +2m)c 4 in iqF @WFISA nd euse of lossesF sing isotropyD it is immedite to see from wht preedes tht for ny dimensionlity dD the |x -x | → ∞ long distne limit of g 1 shows ondenste plus n exponentilly deying termD

g 1 (x, x , t = t) Φ 2 0 + Ae -|x-x |/ c , @WFQTA with oherene length c = c 2 (1 + M/m) Γ 2 + M (M + 2m)c 4 1/2 .
@WFQUA his shows tht in the present seD thnks to the presene of the oherent pumpD the longEdistne oherene of the photon ondenste is roust ginst )ututions indeE pendently of the dimensionlityF por reent disussion of the long distne oherene of g 1 under n inoherent pumpD we refer to ggIQD e + IQF ISR CHAPTER 9. DISSIPATIVE CONDENSATES k,st = v 2 k for low phonon mss prmeter M/m = 0.01 in the drivenE dissiptive stedy stte @solidAD nd in therml stte t temperture T = 1/2mc 2 @dshedAF foth urves re independent of the dissiptive rte ΓF htever the vlue of the mss prmeter M D one n show tht the absolute devition etween the two urves is lwys smller thn 0.052 whih is rehed for Ω k ∼ 1.5mc 2 F yn the other hndD the relative di'erene eE tween the two ouption numers eE omes lrge t high momentD see pigF WFQF 

b k = n b k,st ± cb k,st
involved in iqF @WFRIAF he dshed line represents the therml distriution t T = 1/2mc 2 X while n b k deys s 1/k 2 for lrge moment in the nonEequilirium sttionry stteD the therml distriution deys ordE ing to muh fster foltzmnn lw s e -(k/mc) 2 F me system prmeters s in pigF WFPX phonon mss M/m = 0.01 nd dissiption rte Γ/mc 2 = 0.03F o understnd the physil implitions of these resultsD we (rst onsider the Γ → 0 limit where dissiption tends to zeroF xote tht euse of the presene of the pump the system does not reover stndrd thermodynmil equilirium stte in this limitD ut mintin nonEequilirium hrterF wore detils on this ruil ft re given in eF ssF gF sn this seD the e'etive phonon stte is inoherentD sine G ϕϕ st = cb k,st = 0D s in stndrd therml equiliriumF he stte is thus fully hrterized y the (nite vlue of iqF @WFQPA of the men phonon ouption numer n b k F snterestinglyD even in the Γ → 0 limitD the sttionry stte of the system di'ers from stndrd thermodynmil equilirium stteD s it is mnifest in the phonon ouption distriution not following the lnk distriutionF xonethelessD s n e seen in pigF WFPD the stte it is very lose to therml stte t temperture k B T st = mc 2 /2 (xed y the intertion energyD see iqF @WFIQAF his is our (rst resultX feuse of the unusul presene of positive frequeny in Ŝ † -k D see iqF @WFPIAD the phonon (eld is e'etively heted up even when the environment is in its vuum stteF sn pigF WFP nd in susequent (guresD the wvevetor k is dimensionlized y mking use of the heling length de(ned y ξ = 1/2mc @sine = 1AF

II. THE STATIONARY STATE

ISS prom physil point of viewD it is importnt to note the oneptul di'erene of this result with respet to the quntum depletion of the fose ondenste s predited for the ground stte of equilirium fogoliuov theory HQX the (nite ouption numer n b k refers here to phonon qusiprtile exittionsD while stndrd quntum depletion refers to the underlying prtiles @in our seD photonsAF elong the sme linesD one should not onfuse the (nite phonon ouption in the present drivenEdissiptive sttionry stteD with the (nite photon ouption in the ground stte of mirovity devie in the ultrEstrong lightEmtter ouplingD s disussed in gfgHSD ggHTF o etter understnd the physil mening of the two di'erent photon nd phonon desriptions of the sme stteD we shll pply the seprility riterion in two distint wysD either to photon or to phonon opertorsX the results re not expeted to oinide s photon nd phonon opertors re relted y iqF @UFPIA whih is U (1, 1) trnsformtion mixing retion nd destrution opertorsF prom the phonon point of viewD the sttionry stte of the system is mnifestly seprle in the Γ → 0 limit s phonons re fully inoherentD cb k,st = 0F yn the ontrryD the sme stte is nonseprle from the photon point of view sine

|c a k | 2 = n a k (n a k + 1/2), @WFQVA
violtes the seprility ound iqF @PFQIAF xote tht this result is not peulir to the drivenEdissiptive seD ut is lso found in the ground stte of equilirium fogoliuov theoryF st hs strightforwrd physil interprettion if one reminds tht the (niteE k photons originte from prmetri sttering proess where two pump photons t k p = 0 stter into the ±k sttesF iven though the stte is nonseprle only from the photon point of viewD we n expliitly verify tht the entropy of the stte grees in the two points of viewD s it is expeted from the invrine of entropy under U (1, 1) trnsformtionsF his is strightE forwrdly done knowing tht the entropy is equl to

S = 2[(n + 1) log(n + 1) -n log n],
@WFQWA in terms of n de(ned y

(n + 1/2) 2 . = (n + 1/2) 2 -|c 2 | gHSF 3. Weak dissipation
rving understood the stte properties in the limit Γ → 0D we now turn to the se of smll ut (nite dissiptive rtesD Γ ω k F he min hnge is tht the orreltion funtion iqF @WFQIA is now G ϕϕ st = 0F hile its t -t time dependene orretly expresses sttionrity of the stteD it drmtilly di'ers from the usul ωk (t + t ) one desriing orreltions of rel phonon pirs t wvevetors ±k gfpIHF his mens tht G ϕϕ st = 0 cannot e strightforwrdly interpreted s desriing real pirs of phonons with oppoE site momentF tillD euse of the quntum )ututions ssoited to the dissiption proessesD there re nonEtrivil orreltions G ϕϕ st = 0 etween phonon modes of opposite wvevetors ±kF his is seond min result of this hpterF he presene of nonEzero orreltion cb k,st = 0 in the sttionry stte hs importnt onsequenes when one ttempts to mesure the ouption numer n b k,st vi meE surement of g 2 nd thus of [G]F o e spei(D let us onsider n experiment where

IST CHAPTER 9. DISSIPATIVE CONDENSATES [G(t, t , k)] is mesured for vrious vlues of the intervl τ = t -tF rovided τ is short enoughD Γτ 1D one gets [G st (t, t + τ, k)] ∼ n b k,st cos(ω k τ ) + (c b k,st e -iω k τ ). @WFRHA
por very smll dissiption rtes Γ → 0D orreltions re negligileX s resultD the lFhFsF divided y cos(ω k τ ) diretly provides informtion on the men numer of prtiles n b k,st F hen proeeding in the sme wy in the presene of signi(nt dissiptionD the sme proedure gives C. Fluctuation dissipation relation e sw in eF ssF f tht the sttionry stte of phonons when the photon )uid is in its stedy stte in ontt with the environment is not thermlF his might pper t (rst glne s quite surprising sine under very generl onditionsD systems wekly interting with lrge sttionry reservoir reh therml equilirium stte s it is gurnteed y )ututionEdissiption @phA reltions vvWTD engWPF sn this setionD we shll see the violtion of the ph reltion stems from the ft tht our system is externlly driven y the oherent lser pump with (nite frequeny ω p F o show tht this violtion is not due to some pproximtionD we use the ext reisenerg eqution of motion without performing the wrkov pproximtion we used in eF ssF eF prom iqsF @WFSA nd @WFVAD in the ple of iqF @WFIPAD the ext eqution for liner perturtions is

ñb k,st = n b k,st + (c b k,st ) + (c b k,st ) tan(ω k τ ), @WFRIA
i(∂ t + Γ) φk (t) = Ω k φk (t) + mc 2 φ † -k (t) + Ŝk (t) |Φ 0 | -i dt D(t -t )e iωp(t-t ) φk (t ) -φk (t) .
@WFRPA sing iqF @WFIUA to express Ŝk in terms of the destrution opertors ĉ(k, ζ) of the enviE ronmentD nd working in pourier trnsform to exploit the sttionrity of the situtionD the eqution tkes the form 2

O 1 (ω) φω k + O 2 (ω) φ-ω -k † = dζg ζ δ(ω + ω p -ω ζ )ĉ(k, ζ). @WFRQA sing the omplex onjugted eqution for -ω, -k to eliminte (φ -ω -k ) † D we get O 1 (ω)O * 1 (-ω) -O 2 (ω)O * 2 (-ω) φω k = dζg ζ δ(ω + ω p -ω ζ )O * 1 (-ω)ĉ(k, ζ) + δ(ω -ω p + ω ζ )O 2 (ω)ĉ(-k, ζ) † . @WFRRA 2. For Eq. (9.42), Ô1 (ω) = ω + iΓ + i D(ω p + ω) -i D(ω p ) -Ω k and Ô2 (ω) = -mc 2

III. PHONON PAIR PRODUCTION BY A SUDDEN MODULATION

ISU wking the fogoliuov trnsformtion of iqF @UFPIA to get the eqution for the phonon (eld φω k simply mounts to reple in the ove eqution

O i y u k O i -v k O 3-i D for i ∈ {1, 2}F
reneD the sme type of expression pplies to φω k D orD more generllyD to ny liner superposition @even ω dependentA of φω k nd ( φ-ω -k ) † F e now remind the reder tht the ph reltion trivilly pplies t the level of the opertors of the environmentF xmelyD when working in therml stteD one hs

ĉ(k, ζ), ĉ(k, ζ) † [ĉ(k, ζ), ĉ(k, ζ) † ] = coth βω ζ 2 2 , @WFRSA
s n e immeditely veri(ed y omputing the ommuttor nd the expettion vlue of the ntiEommuttor of ĉ(k, ζ) nd ĉ(k , ζ ) † F hen the pump frequeny ω p = 0D the sitution is simpleX feuse of the hir δ funtion in iqF @WFRRAD nd euse the energy of the environment modes ω ζ is positive for ll ζD for ω > 0D φω k is only driven y the destrution opertor ĉ(k, ζ) with ω ζ = ωF henD using iqF @WFRSAD diret evlution gives

φω k , ( φω k ) † φω k , ( φω k ) † = coth βω 2 2 , @WFRTA
irrespetively of the vlues of O 1 (ω) and O 2 (ω)F his is the stndrd ph reltionF hen ω p = 0D to get onise expressionD s in efF gvVID it is useful to introdue the e'etive density of sttes J(ω)

through dζg 2 ζ = dω ζ J(ω ζ )F e diret evlution then gives { φω k , φ †,ω k } [ φω k , φ †,ω k ] = |O 1 (-ω)| 2 J(ω p + ω) coth β(ω p + ω)/2 -|O 2 (ω)| 2 J(ω p -ω) coth β(ω p -ω)/2 2 |O 1 (-ω)| 2 J(ω p + ω) -|O 2 (ω)| 2 J(ω p -ω) .
@WFRUA e see tht ph reltion is reovered only if O 2 (ω)J(ω p -ω) = 0F sn suh seD the rgument in the coth in the right hnd side of iqF @WFRUA is displed s if there were hemil potentil µ = -ω p F por generl environmentD ll frequenies ω ζ re positive nd over the whole ω > 0 regionD so J(ω) vnishes only for ω < 0F es resultD the O 2 (ω)J(ω p -ω) = 0 ondition requires either working t very high frequenies ω > ω p outside the region of interest for quntum hydrodynmisD or hving O 2 (ω) = 0D tht is vnishing intertion etween photonsF III. Phonon pair production by a sudden modulation sn the previous setionD we studied the quntum )ututions in sttionry stte under monohromti ontinuous wve pumpF sn this setion we shll extend the disussion ISV CHAPTER 9. DISSIPATIVE CONDENSATES to the se when sudden hnge is imposed on the system nd pirs of phonons re expeted to e generted t the time of the fst modultion vi proesses tht re losely nlogous to the osmologil pir retion e'et in the erly universe @see ghpF S nd efsF ppHRDgHRA nd to the dynmil gsimir e'et @see ghpF V nd efsF gfpIHD tf + IPAF A. The modied state o filitte nlytil lultionsD we will restrit our ttention here to very idelE ized model inspired y efF gp + HVD where the sptilly homogeneous nd sttionry ondenste wve funtion of mplitude Φ 0 remins n ext solution of iqF @WFWA t ll timesF es ompred to tomi gsesD this requirement is it more sutle in the present nonEequilirium se s the photon density is relted to the pump intensity y the more omplite stte eqution @WFIIAF e possile strtegy to ful(ll this ondition might onE sist of ssuming tht ΓD mD the pump mplitude F 0 nd its frequeny ω p remin onstnt while g nd E 0 suddenly hnge t t = 0 keeping E 0 (t) + g(t)Φ 2 0 onstntF3 hile we gree tht suh modultions re quite unrelisti in stteEofEthe rt experimentsD still the predited phonon pir prodution proess ppers to e oneptully identil to the one tking ple in the more relisti ut more omplex on(gurtions where the ondenste wvefuntion is itself vrying s inD eFgFD efF uIRF es result of the modultionD the phonon frequeny ωk (t) of iqF @WFISA experienes sudden hnge @the susript in/f refers to its vlue t times t ≷ 0A

ωk (t) = ω k,in + θ(t)(ω k,f -ω k,in ),
@WFRVA tht diretly re)ets onto the fogoliuov opertorsX while the photon opertor φ in iqF @WFIPA is ontinuous t t = 0D the phononi ones φ de(ned in iqF @UFPIA experiene the following sudden jumpD see iqF @VFQUA nd efF gfpIH

φk (t = 0 + ) = α k φk (t = 0 -) + β k φ † -k (t = 0 -), α k = u k,f u k,in -v k,f v k,in = ω f + ω in 2 √ ω f ω in , β k = v k,f u k,in -u k,f v k,in = ω f -ω in 2 √ ω f ω in , @WFRWA
where the seond equlity of the lst two lines follow from the onstny of Ω k -mc 2 F reneD for positive times t nd withD we hve φdec k (t) given y iqF @WFPQA with t 0 = 0 + D bk = φk (t = 0 + )D nd φdr k (t) given y iqF @WFPRAF sing the ft tht the soure term Ŝ hs white noise pro(leD t ll times t > 0 one hs

φdec k φdr -k = φdec k ( φdr k ) † = 0.
@WFSHA ISW por t, t > 0D fter the jumpD the twoEpoint orreltion funtions de(ned in iqF @WFPUA then hve the form

G ϕ † ,ϕ DCE (t, t , k) = n b k,f e -Γ|t-t | + δn b k e -Γ(t+t ) e iω k,f (t-t ) G ϕ,ϕ DCE (t, t , k) = cb k,f e -(Γ+iω k,+ )|t-t | + c b k e -(Γ+iω k,f )(t+t ) .
@WFSIA pour independent nd onstnt quntities re identi(ed in iqF @WFSIA through the time dependene of their ssoited exponentil ftorD nmely

n b k,f = v 2 k,f @WFSPA cb k,f = u k,f v k,f Γ Γ + iω k,f @WFSPA δn b k = φ † k,f φk,f -n b k,f , @WFSPA c b k = φ-k,f φk,f -cb k,f . @WFSPdA he (rst two quntitiesD n b k,f nd cb k,f D
give the (nl vlues one the sttionry stte is gin rehed for the new prmeters fter the jumpX hey hve the sme physil interprettion s n b k,st nd cb k,st de(ned in iqF @WFQPA nd disussed t length in the previous setionF snstedD δn b k nd c b k govern the time dependene of the orreltion funtions in response to the jump in the prmetersF hey involve two tres tken t time t = 0 + whih reD see iqF @WFRWA

φ † k,f φk,f = α 2 k + β 2 k n b k,in + β 2 k + 2α k β k cb k,in , φ-k,f φk,f = α 2 k cb k,in + β 2 k (c b k,in ) * + α k β k 2n b k,in + 1 , @WFSQA
where n b k,in nd cb k,in re given y iqsF @WFSPA nd @WFSPA with f susript repled y inF hese re the initil sttionry vlues s predited y iqF @WFQPAF wore spei(llyD δn b k is involved in the only deying term in iqF @WFSIA whih osilltes e iω k,f (t-t ) X physillyD its equlEtime vlue δn b k (t) = δn b k e -2Γt desries the numer of extr photons with respet to n b k,f tht re generted y the jump nd still present t time tF c b k is insted involved in the only term whih is rotting s e -iω k,f (t+t ) X its equlEtime vlue c b k (t) = c b k e -2(Γ+iω k,f )t gives the instntneous orreltion etween these extr phononsX s it is illustrted in pigF WFRD these nonEtrivil orreltions n produe nonseprility t the level of phononsF tudies of this physis for lossless systems were reported in gHSD gHTD gHVD fppIQD pgIQF por ompletenessD it is useful to give expliit expression of the orresponding qunE tities in the photon @rther thn phononA point of viewF sing gin the fogoliuov trnsformtion iqF @UFPIAD one gets

n a k (t) = n a,st k,f +e -2Γt (u 2 k,f + v 2 k,f )δn b k -2u k,f v k,f [c b e -2iω k,f t ] @WFSRA c a k (t) = c a,st k,f +e -2Γt u 2 k,f c b e -2iω k,f t + v 2 k,f c * b e 2iω k,f t -2u k,f v k,+ δn b k . @WFSRA
es expetedD the fogoliuov trnsformtion is responsile for temporl osilltions in these photoni quntities in response to the jumpX s ompred to the tomi se see efF gfpIHD osilltions re now dmped t the loss rte Γ nd tend to their stti vlues n a,st k,f nd c a,st k,f for the (nl prmeters fter the jumpF f /c 2 in = 2 for the upper @lue solidA urveD nd c 2 f /c 2 in = 1/2 for the lower @purple dshedA oneF he two green dotted urves give the seprE ility thresholds of these two sesX nonE seprility is found whenever the lower envelope @not represented hereA of n osE illting solid line goes elow the orreE sponding dotted urveF he middle yelE low dotEdshed urve is the @ommonA vlue of g 2,k efore the sudden hngeF me system prmeters s in pigF WFRF sn prtieD optil mesurements typilly involve oherene funtion of (eldF sn our seD the seondEorder oherene g 2 is most importnt s it is the simplest to nlyzeF snserting the expettion vlues of iqF @WFSIA into iqF @WFPVAD we immeditely identify the sttionry nd the deying ontriutions g 2,k (t, t ) = e -Γ|t-t | g st 2,k (t, t ) + e -Γ(t+t ) g dec 2,k (t, t ). @WFSTA he time dependene of g st 2,k nd g dec 2,k is of the form

g st 2,k (t, t ) = A 1 cos [ω k,f |t -t | + θ 1 ] , @WFSUA g dec 2,k (t, t ) = A 2 cos [ω k,f (t -t )] + A 3 cos [ω k,f (t + t ) + θ 3 ] , @WFSUA ITP CHAPTER 9. DISSIPATIVE CONDENSATES
where the three onstnts re

A 1 e -iθ 1 = 2(u k -v k ) 2 n b k,f + cb k,f -2v k (u k -v k ), A 2 = 2(u k -v k ) 2 δn b k , A 3 e -iθ 3 = 2(u k -v k ) 2 c b k .
@WFSVA prom mesurements of g 2,k (t, t ) t di'erent times t, t D we n thus extrt S rel qunE tities @out of the 6 physil onesAD nmely

[c b k ], [c b k ], δn b k , cb k,f nd n b k,f + [c b k,f ]F o disentngle n b k,f from [c b k,f
]D nother oservleD suh s the k omponent of the g 1 funtionD is neededF sn pigF WFS we represent the equl time g 2,k s funtion of tD for given wve numer kξ in = 0.75 nd the sme prmeters of the previous (guresX for these vluesD the initil vlue osilltes with mplitude A 3 = 0.26 round the men vlue A 1 cos(θ 1 )+A 2 = -0.45F sts (nl vlue is A 1 cos(θ 1 ) = -0.4F he threshold vlue of nonseprility is rehed when the minimum of the g 2 rosses -0.53±0.005F xegleting for simpliity the intrinsi impreision due to ±|c b k,f |D s in ghpF VD losses mke nonseprility to dispper within time of the order

t loss . = log ( c b k -δn k )/n k,f /2Γ 1/4n k,f Γ, @WFSWA
where the lst inequlity follows from iqF @PFQHA nd pplies when 2n k,f 1F sn the present seD t loss Γ 0.16F sn pigF WFTD we represent the k dependene of the equl time g 2,k funtionD t time t = 3/mc 2 in in two di'erent sesX when c 2 f /c 2 in = 2 s in the former (gureD ut lso when c 2 f /c 2 in = 1/2D iFeFD when the (nl sound speed is divided y √ 2 rther thn multiplied y √ 2F sn oth sesD we use the sme system prmeters s in the former pigureF e oserve two osillting funtionsD the minim of the upper one lose to the mxim of the lower oneF heir ommon vlue is g st 2,k evluted efore the jumpD see pigF VFT for more detilsF st is represented y dotted lineF prom the two envelopes of eh urveD we n mesure the width on the osilltions A 3 e -2Γt D whih gives the k dependene of the strength of the orreltionsD nd the verge vlue A 1 cos(θ 1 ) + A 2 F he two dshed urves in pigF WFT re the orresponding thresholds of nonseprilityF sn oth sesD there is lrge domin of k where the stte is nonseprleF o omplete the study of the g 2 D we represent in pigF WFU its sptil dependene on xx fter integrtion over kF por the ske of simpliityD we restrit the study of g 2 to oneEdimensionl geometry where photons re strongly on(ned lso long the y diretionF xone of the qulittive fetures is however expeted to e modi(ed when going to higher dimensionsF sn ddition to the negtive pek t x = x due to the repulsive interprtile intertionsD we see propgting orreltion pttern whih is governed y the group veloity v gr = ∂ k ωk where ωk is given in iqF @WFISAF es in the se of equilirium ondenstesD see pigF VFV nd efF gfpIHD the fst osilltions t lrge seprtions re due to the superluminl form of the dispersion reltion iqF @WFISA in the high momentum regionF vow moment modes k 2 /2m < M c 2 propgte with smller veloity euse of the smll ut (nite phonon mss nd re responsile for the longEwvelength osilltions tht re visile t smll xx F st is worth oserving tht dissiption introdues n extr dissiptive length sle L d = c/Γ in ddition to the usul pigure WFUX e plot the equl time funtion g 2 (t, t, xx ) s funtion of the @normlE izedA sptil distne xx t t = 12/mc 2 in @purple dshedAD nd 18/mc 2 in @lue solidAF sn ddition to the negtive pek t x = x due to repulsive intertionsD the phonon pirs generted t the jump re visile in the series of moving fringes with sptilly deresing sptil periodF qiven the smll vlue of Γ/mc 2 in = 0.03D dissiptive e'ets hve minor e'et on the pro(les shown hereF eprility fetures re hrd to sE ertin from this (gureF me system nd jump prmeters s in pigF WFRF heling length ξ = 1/mcX for the prmeters of the (guresD we hve L d /ξ f ∼ 40D whih mens tht dissiption 'ets the pro(les of g 2 only t lrge distnesF 3. The g 1 por the ske of ompletenessD we onlude the setion with study of the (rstEorder oherene funtion g 1 s de(ned in iqF @UFRQAF st desries the photon momentum distriution @for t = t A nd the photon oherene in momentum spe @for generi t = t AF sing iqF @UFPIAD this quntity is given for k = 0 y -t ) .

g 1,k (t, t ) = u 2 k G ϕ † ϕ (t, t ; k) + v 2 k G ϕ † ϕ (t , t; k) -2u k v k [G ϕϕ (t, t ; k)] + v 2 k e -Γ|t-t | e -iω k (t
@WFTHA hen onsidering the stte fter sudden hngeD the g 1 splits nlogously g 2 in iqF @WFSTA into its sttionry nd its deying prtsD g 1,k (t, t ) =e -Γ|t-t | g st 1,k (t, t ) + e -Γ(t+t ) g dec 1,k (t, t ). @WFTIA sing iqF @WFSIAD the two omponents de(ne 4 independent quntities pigure WFVX womentum distriution of the vity photonsF he equlEtime g 1,k (t, t) is plotted in momentum spe t t = 3/mc 2 in @solid lue lineAF hshed purple lines inE dite its lower nd upper envelopesF he phonon stte is nonseprle whenever the lower envelope goes elow the dotted green line inditing the seprility ondition iqF @WFTRAF me system nd jump prmeE ters s in pigF WFR hese enode the 6 independent rel quntities whih hrterize the orreltion funE tions of iqF @WFSIAF reneD unlike the g 2,k D the g 1,k fully hrterizes the iprtite stte k, -kF sn pigF WFVD we represent the equl time g 1,k (t, t)D for tmc 2 in = 3 nd for the sme pE rmeters s in the previous (guresF gontrry to wht ws found for g 2,k D the seprility threshold of iqF @PFQIA @n b k = c b k A does not simply enter in g 1,k F sn ftD to extrt itD we need oth the upper nd lower envelopes of g 1,k (t, t)D lled respetively U k (t) nd L k (t)F ioltion of the inequlity

g st 1,k (t, t ) = [B 1 e -iω k,+ |t-t | ] + iB 2 sin [ω k,+ (t -t )] , @WFTPA g dec 1,k (t, t ) = B 3 (u 2 k,+ + v 2 k,+ ) cos [ω k,+ (t -t )] + [B 4 e -iω k,+ (t+t ) ] -iB 3 sin [ω k,+ (t -t )] . @WFTPA given y B 1 = u 2 k,+ n b k,f + v 2 k,+ (n b k,f + 1) -2u k,+ v k,+ cb k,f , B 2 = n b k,f -v 2 k,+ , B 3 = δn b k , B 4 = -2u k,+ v k,+
L k (t) > (u k,+ -v k,+ ) 2 U k (t) + 2v 2 k,+ (u k,+ + v k,+ ) 2 , @WFTRA
implies tht the phonon stte is nonseprleD iFeFD n b k (t) < c b k (t) F sn the (gureD the rtio of iqF @WFTRA is represented y dotted green lineF e gin see the lrge domin of k where the phonon stte is nonseprleD nmely kξ in > 0.6F C. Time evolution of separability criterion e now show tht the nonseprility riterion of iqF @PFQIA sed on the phonon φk opertors is equivlent to the violtion of guhyEhwrtz @gA inequlity for phonon opertorsF e onsider the modi(ed equlEtime seondEorder orreltion whih is otined from the stndrd photoni one g 2,k (t, t ) y

g b 2,k (t, t ) . = g 2,k (t, t ) + 2v k (u k -v k ) [ φk (t), φ † k (t )] = 2 (u k -v k ) 2 [G(t, t , k)].
@WFTSA he sutrtion of the ontriution of the ommuttor in this expression is equivlent to tking the norml ordering with respet to the phonon opertors bk of iqF @WFPQAD hene the b supersript in the ove nottionF sn terms of this quntityD the g inequlity reds

D k (t, t ) = g b 2,k (t, t)g b 2,k (t , t ) -|g b 2,k (t, t )| 2 4 (u k -v k ) 4
≥ 0 : @WFTTA xo violtion of iqF @WFTTA n our in lssil sttistil physisF sn the sene of dissiptionD the phonon men ouption numer n b k nd orreltion term c b k re oth III. PHONON PAIR PRODUCTION BY A SUDDEN MODULATION ITS well de(nedD nd onstnt efore nd fter sudden jumpF sing these two quntitiesD one otins e onlude this setion with short disussion of the stndrd momentumEspe g inequlity for photon âk opertorsD see dxIR or uth + IP for its tomi ounterprtF he momentumEspe seondEorder photon oherene4 is de(ned s

D k (t, t ) = (n b k ) 2 -c b k 2 sin 2 [ω k (t -t )]. @WFTUA
G 2 (k, k ) = a † k a † k a k a k . @WFTVA
he expliit form of the g inequlity isX

[G 2 (k, k )] 2 ≤ G 2 (k, k)G 2 (k , k ), @WFTWA
hysillyD this quntity desries the orreltions etween the )ututions of the photon ouption numers in the modes k nd k F hnks to the qussin nture of the stteD 

G 2 (k, k ) = δ k+k |c a k | 2 + δ k-k (n a k ) 2 + n a k n a k . @WFUHA
por k = -kD the g ondition iqF @WFTWA is then equivlent to the seprility ondition iqF @PFQIA pplied to photon opertorsF Conclusions sn this hpterD we studied the quntum )ututions in oherently pumped nd sptilly homogeneous photon )uids in plnr mirovitiesF yur ttention ws foused on the simplest se of qusiEresonnt oherent pump t norml inidene on the mirovityD where the photon )uid is t rest nd the e'etive mss of phonon exittions on top of the photon )uid is very smllF hen the pump is monohromti nd sttionryD the system rehes sttionry stteX most remrklyD even if the environment is in its vuum stteD the sttionry stte of the photon gs is not vuum stteD ut ontins (nite ouption of @lmostA inoherent phononsF iven though the phonon distriution qulittively resemles lnk lw t n e'etive temperture of the order of the intertion energy in the )uidD the nonEequilirium nture of the system leds to quntittively signi(nt devitions nd to violtions of the stndrd )ututionEdissiption reltionsF hen the system prmeters re suddenly modulted in timeD entngled pirs of extr phonons re reted in the )uid vi proesses tht re the nlog of osmologil pir prodution or the dynmil gsimir e'etF hue to the dissiptionD these phonons eventully dey while the system relxes to new sttionry stteF eurte informtion on the properties of these extr phonons n e otined from mesurements of the timeE dependene of the (rstE nd seondEorder oherene funtions of the vity photonsD I. THE SYSTEM ITW I. The system e onsider here generi sttionry system presenting lk hole pro(le nd disperE sion ut no dissiptionF st n either e the strophysil lk hole of iqF @TFPA with the (eld of iqF @RFRAD or n nlogue lk hole in figD with perturtions governed y iqF @UFITAF o (x nottions nd idesD we shll suppose tht the dispersion reltion does not depend on spe nd reds

F 2 (k) = k 2 (1 + k 2 Λ 2 ). @IHFIA
he suluminl se will e rie)y studied in eF sssF eF he only non trivil dynmis is then enoded in the veloity of the )owD v(x)D where v is either the veloity of the ondensteD or the prmeter in the metriF feuse the )ow is sttionryD the solution of the mode eqution splits into ω setorsX φω (x) = dt/ √ 2πe iωt φ(t, x) whih n e studied seprtely fwWSF hen the )ow is symptotilly uniform on oth sidesD the inoming modes φ in,a ω D with single rnh with group veloity pointing towrd the horizonD re well de(ned nd symptotilly superpositions of plne wvesF @he index a refers to the dimensionlity of the set of solutions t (xed |ω|FA he sme pply to the outgoing modes φ out,a ω D with the group veloity pointing now wy from the horizonF wore detils out this identi(tion nd the dimensionlity of the set of modes n e found in efsF wHWD wHWF sn riefD euse of superluminl dispersionD there is threshold vlue ω max ove whih there is no pir retionF por 0 < ω < ω max D there re three independent modesF hey re lled φ in,u ω , φ in,v ω , (φ in,u -ω ) * for the in modes @nd similrly for the out onesAF he (rst two hve positive norm nd desrie respetively ounterE nd opropgting qusiprtilesD see pigF TFIF he third oneD (φ in,u -ω ) * D hs negtive normD nd desries the inoming negtive frequeny prtner trpped in the supersoni regionF hese three modes re sttered in the ner horizon regionF es resultD the outgoing modes re nontrivilly relted to the inident onesF he SEmtrix relting the @normlizedA in modes to the out ones is thus n element of U (1, 2)F pollowing efF wHWD we nme its oe0ients

  âu ω (â u -ω ) † âv ω   =   α ω β * ω A ω β -ω α * -ω B ω Ãω B * ω α v ω     âu,in ω (â u,in -ω ) † âv,in ω   .
@IHFPA o void ponderous nottionD only the supersript in will e writtenF he supersript out is thus impliedF he three independent pirs of destrution nd retion operE tors ssoited with the three in @or three outA modes oey the nonil ommuttion reltionsF hen ρD the stte of the quntum (eldD is sttionry nd qussinD it ftorizes into threeEmode setors of (xed |ω|F sn this hpter we shll only onsider suh sttesF hen euse the SEmtrix of iqF @IHFPA only mixes modes with the sme |ω|D the ftoriztion eqully pplies to the desription of ρ in terms of inD or out qusiprtile ontentF e shll study the ltter sine we im to identify the ses where the stte fter the sttering is nonseprleF IUH CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION por ω > 0 nd t lte timeD eh threeEmode stte is fully hrterized y six numers

n u ±ω = (â u ±ω ) † âu ±ω , n v ω = (â v ω ) † âv ω , c uu/v ω = âu -ω âu/v ω , d uv ω = (â u ω ) † âv ω .
@IHFQA he interprettion of the three @rel nd positiveA (nl ouption numers n a ω is strightE forwrd nd stndrdF he two c ω re omplexD nd their norms quntify the strength of the sttistil orreltions etween outgoing qusiprtiles of opposite energyD nmely etween the uu pirs of ounterpropgting out modes (φ out,u ω , φ out,u -ω )D nd the uv pirs (φ out,v ω , φ out,u -ω )F hey generlize the c k term de(ned in iqF @UFQQAF sn the present seD we thus hve two di'erenesD see iqF @PFQQA

∆ uu ω . = n u -ω n u ω -|c uu ω | 2 , @IHFRA ∆ uv ω . = n u -ω n v ω -|c uv ω | 2 .
@IHFRA e showed in ghpF P tht if one of them is negtiveD the stte is nonseprleF he lst oe0ient of iqF @IHFQAD d uv ω D hrterizes the strength of the orreltions etween u nd v modes whih hve een elstilly stteredF husD it results from the nE logue greyody ftorsF hese orreltions re never strong enough to violte lssil inequlitiesY see ghpF PD eF ssF gF reneD they shll no longer e mentionedF o e le to determine if the (nl stte is nonseprleD it is neessry to know the initil stte nd the oe0ients of the SEmtrixF yur im is not so muh to perform the lultion in prtiulr reliztionY rtherD we im to hrterize the domins in prmeter spe where the stte is nonseprleF o this endD we need to identify the independent prmeters whih spn this speD nd to dopt phenomenologil desription of their ehviorsF es (rst stepD we ssume tht the initil stte is inoherentF st is thus hrterized y the three initil ouptions numers n in,u ω , n in,v ω , n in,u -ω sine the three orreltion terms initilly vnishF hysillyD this is very legitimte ssumptionD s it mens tht the three modes re not orrelted prior to eing stteredF sn this seD using iqF @IHFPAD iqF @IHFQA gives

n u ω = |α ω | 2 n u,in ω + |β ω | 2 (n u,in -ω + 1) + |A ω | 2 n v,in ω , n v ω = |α v ω | 2 n v,in ω + Bω 2 (n u,in -ω + 1) + Ãω 2 n u,in ω , n u -ω = |α -ω | 2 n u,in -ω + |β -ω | 2 (n u,in ω + 1) + |B ω | 2 (n v,in ω + 1), c uu ω =α ω β * -ω (n u,in ω + 1 2 ) + α -ω β * ω (n u,in -ω + 1 2 ) + A ω B * ω (n v,in ω + 1 2 ), c uv ω = Ãω β * -ω (n u,in ω + 1 2 ) + α -ω B * ω (n u,in -ω + 1 2 ) + α v ω B * ω (n v,in ω + 1 2 ), d uv ω = Ãω α * ω n u,in ω + β ω B * ω (n u,in -ω + 1) + α v ω A * ω n v,in ω .
@IHFSA hen working in the in vuumD

n u ω = |β ω | 2 , n v ω = Bω 2 nd n u -ω = |β -ω | 2 + |B ω | 2
respetively give the men numer of the u qunt spontaneously emitted to the right @the rwking quntAD tht of the v qunt emitted to the leftD nd tht of their negtive I. THE SYSTEM IUI energy prtnersF hen the initil stte is not the vuumD the terms weighted y n in,a ω give the induced ontriutionsF yne then sees tht the norms |A ω | 2 , Ãω 2 respetively quntify the greyody ftorsD iFeFD the re)etion of v qunt into u onesD nd vie versF xotie tht unlike wht is found for 2 × 2 SEmtriesD one hs 

|β ω | 2 = |β -ω | 2 D |B ω | 2 = Bω 2 D nd |A ω | 2 = Ãω
ω | 2 D |β -ω | 2 D |A ω | 2 nd |B ω | 2 F he U (1, 2
) hrter of the S mtrix imposes the reltions from the normlity of lines nd olumnsD

|α v ω | 2 = 1 + |B ω | 2 -|A ω | 2 , |α ω | 2 = 1 + |β ω | 2 -|A ω | 2 , |α -ω | 2 = 1 + |β -ω | 2 + |B ω | 2 , Ãω 2 = |β -ω | 2 -|β ω | 2 + |A ω | 2 , Bω 2 = |β -ω | 2 -|β ω | 2 + |B ω | 2 , @IHFTA
nd from the orthogonlity of the lines

Ãω β * -ω -α -ω B * ω + α v ω B * ω = 0, @IHFUA α ω β * -ω -α -ω β * ω + A ω B * ω = 0. @IHFUA
he numer of rel independent quntities is then redued from eighteen @nine omplex numersA to nineD whih n e tken to e (ve phses nd the ove four normsF his hoie is onvenient euse the (ve phses drop out from iqF @IHFRAF sn dditionD iqsF @IHFUA nd the positivity of the rFhFsF of iqsF @IHFTAD imply some inequlity mong the four normsF 1 hese onstrints re equivlent to

|A ω | 2 ≤ 1 + |B ω | 2 , @IHFVA β min ω ≤ |β ω | ≤ β max ω , @IHFVA
1. The origin of this fact is the following: Eqs. (10.7) dene two triangles in complex plane. Hence, one length cannot be larger than the sum of the two others. In addition to the nine real parameters of the S-matrix, one nds that there is an extra multiplicity two. It produces the symmetrical triangles with respect to the real axis. This extra multiplicity has no inuence in the sequel since the initial state is incoherent.
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where

β min/max ω . = |A ω B ω α -ω | ± |α v ω β -ω | 1 + |B ω | 2
. @IHFWA sn this expressionD α -ω nd α v ω re impliit expressions of A ω , B ω nd β -ω F o implement the right ondition of iqF @IHFVA nd redue the numer of independent norms to threeD we impose 

β ω β -ω = |α v ω | + |A ω B ω | 1 + |B ω | 2 = 1 -|A ω | 2 |α v ω | -|A ω B ω | . @IHFIHA he left ondition of iqF @IHFVA is then equivlent to |β ω β -ω | ≥ |A ω B ω | 2 /4 |α v ω |F o implement this inequlityD we introdue |β 0 ω | 2 y |β ω β -ω | = β 0 ω 2 + |A ω B ω | 2 /4 |α v ω | . @IHFIIA hen A ω nd B ω vnishD one hs |β ω | 2 = |β -ω | 2 = |β 0 ω | 2 F sn onlusionD our prmetriztion of the relevnt oe0ients of the S mtrix is sed on |A ω | 2 , |B ω | 2 nd |β 0 ω | 2 F iqsF @IHFIHA nd @IHFIIA then (x |β ±ω | 2 F B.
smllD iFeFD if |A ω | 2 , |B ω | 2
1D the spetrum of u qunt spontneously emitted n u ω = |β 0 ω | 2 remins remrkly lnkinD even though the e'etive tempertureD herefter lled T hor D is signi(ntly modi(edF st is well pproximted y oIPD pIP 

T hor . = T H tanh (T ∞ /T H ) , T ∞ . = ΛD 3/2 (2 + D) √ 2 -D . @
|A ω | 2 = 2A 2 e ω/T hor + 1 , |B ω | 2 = 2B 2 e ω/T hor + 1 , β 0 ω 2 = 1 e ω/T hor -1 , @IHFIRA
where the onstnts A 2 nd B 2 (x the overll norm of the two ouplings etween the ounterpropgting mode with the rwking mode nd its prtnerF st should e notied tht iqsF @IHFIRA nd @IHFTA orretly imply tht only A ω , B ω nd α v ω re regulr in the limit ω → 0D wheres the squred norms of the six other oe0ients diverge s 1/ωF st n e shown tht this interesting property follows from the normliztion in 1/ √ ω of the low momentum modesF C. Initial state o ompute iqF @IHFSA we lso need the initil men ouption numers n in,a ω D where the supersript a lels the three modesF es in efF wHWD we ssume tht fr from the horizon the initil stte is therml th t some glol temperture T in in the frame of the uidF his mens tht the three n in,a ω re given y

n in,a ω = 1 exp (Ω in,a ω /T in ) -1 , @IHFISA
where Ω in,a ω is the symptoti vlue of the omoving frequeny of the orresponding symptoti in modeF sts vlue is given y

Ω in,a ω = ω -v a as k in,a ω , @IHFITA
where k in,a ω is the orresponding wve vetorD nd where v a as is the symptoti vlue of v evluted on the left or right sideF sn the present seD one hs v a as = -1 ± DF hesign is ssoited to the u modesD nd the + sign to the v modeD see pigF IHFIF sn the low frequeny limitD ω/Λ 1D the expressions of Ω in,a ω n e nlytilly omputed wHWF sing themD one otins

n u,in ±ω ∼ 1 exp [(µ ∓ ω)/T u in ] -1 , n v,in ω ∼ 1 exp (ω/T v in ) -1 . @IHFIUA
he hemil potentil of uEmodesD µD nd the redshifted tempertures re

µ Λ = (1 + D)(D(2 + D)) 3/2 1 + 4D + 2D 2 , T u in = T in D(2 + D) 1 + 4D + 2D 2 , T v in = T in (2 -D).
@IHFIVA he leding quntity governing n u,in ±ω is µ/T u in F st sles s ΛD 1/2 /T in F hen T in ΛD 1/2 D the redshift is so importnt tht the uEmodes re e'etively in their ground stteD s in reltivisti settingsF IUR CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION
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pigure IHFIX hispersion reltion in the frme of the )uid Ω(k) @leftAF sn lue is the U rnh with ounterEpropgting modesD in yellow the V rnh with oEpropgting modesF sn dsh we represent the lines Ω = ω -vkD with v = -1 + D for the susoni region @purpleA nd v = -1 -D for the supersoni region @greenAF wodes of frequeny ω re situted t the intersetion of the solid nd dsh urvesF xegtive norm modes orrespond to modes with negtive frequeny in the frme of the )uid Ω nd re indited y the susript -ωF he in modes re di'erentited from the out modes euse they hve group veloity direted towrds the lk hole in the frme of the lF rmeters re ω = Λ/4 nd D = 0.8F yn the rightD the speEtime pttern of the sme modesF sn lue the positive norm U modeD in green dot dshed is the negtive norm trpped U modeD in yellow dshed is the positive norm V modeF rmeters re ω = Λ/40D ω = κ nd D = 0.8F D. Summary yur prmetriztion of the (nl stteD see iqF @IHFSAD is sed on six dimensionless quntitiesD nmely ω/T hor , D, Λ/κ, A, B, nd T in /T hor .

@IHFIWA he (rst rtio is the frequeny in the units of the e'etive tempertureD whih itself depends on the surfe grvity κD the dispersive wveEnumer ΛD nd the height of the veloity pro(le DD see iqF @IHFIQAF he prmeters A nd B respetively quntify the greyody ftors nd the pir retion of uv pirsF he lst rtio gives the initil temperture in the units of the e'etive tempertureF xotie tht these prmeters re not independentD s T hor depends on DF e hve dopted this setD preisely euse the residul dependene on D t (xed T hor is very wekF reneD D n e e'etively (xedF es we shll see elowD the other (ve prmeters re ll relevntF e elieve they e'etively provide omplete desription of the systemD t lest when the )ow pro(le is smooth enoughD iFeFD v(x) is monotoni nd hrterized II. DOMAINS OF NONSEPARABILITY IUS y single length relted to the surfe grvity in the viinity of the horizonF hen these onditions re not metD resonnt e'ets eIID dxIR relted to the lk hole lser e'et gIHDpIHDpII ould ply n importnt role nd must e seprtely desriedF II. Domains of nonseparability sing iqsF @IHFTA nd @IHFUAD iqF @IHFRA n e expressed in terms of the three initil ouption numersF sn greement with iqF @WA in ef dxIRD we otin

∆ uu ω = |α v ω | 2 n u,in ω n u,in -ω + Bω 2 n u,in ω n v,in ω + Ãω 2 n u,in -ω n v,in ω + |B ω | 2 n u,in ω + |β -ω | 2 n v,in ω -|β ω | 2 (1 + n v,in ω + n u,in ω + n u,in -ω ), ∆ uv ω = |A ω | 2 n u,in ω n u,in -ω + |β ω | 2 n u,in ω n v,in ω + |α ω | 2 n u,in -ω n v,in ω + |B ω | 2 n u,in ω + |β -ω | 2 n v,in ω -Bω 2 (1 + n v,in ω + n u,in ω + n u,in -ω ).
@IHFPHA e notie tht the ove expressions re muh more omplited thn the orresponding ones in homogeneous nd isotropi situtionsF yne here looses the net seprtion of the ontriutions of the spontneous nd the indued hnnels of iqF @VFRHAF e lso notie tht the mximum vlue of ∆ uu ω nd ∆ vv ω is ounded y n u -ω F sndeed reisenerg unertinties gurnteeY see iqF @PFQHA c uu/v ω 2 ≤ n u -ω (n u/v ω + 1), @IHFPIA for oth the uu nd the uv hnnelsF st is thus useful to introdue the reltive quntities of iqF @PFQPAY see efF gHV

δ uu ω . = ∆ uu ω n u -ω + 1, δ uv ω . = ∆ uv ω n u -ω + 1. @IHFPPA
whih re oth positiveD irrespetive of the stte ρF sn wht followsD we study the domins of negtivity of ∆ uu ω nd ∆ vv ω y mking use of the prmetriztion of eF sF sn (rst timeD we onsider the dispersion reltion of iqF @IHFIAF he suEluminl se is rie)y studied in eF sssF eF o identify the domins of nonseprilityD we shll minly use (guresF pigure IHFPX he quntities ∆ uu ω of iqF @IHFPHA @left pnelA nd δ uu ω of iqF @IHFPPA @right pnelA re represented s funtions of ω/T hor for low initil temperture T in = Λ/20D for Λ = 10κD D = 1/2D nd for three vlues of A = 4BD nmely B = 0.01 @solid lueAD 0.02 @dshed purpleAD 0.1 @dotted yellowAD nd 0.25 @dotEdshed greenAF yne lerly sees tht low frequeny modes re seprleD nd tht inresing A = 4B monotonously redues the domin of nonseprilityF frequenyD the stte is lwys seprleD even though deresing A nd B lerly inreses the domin of nonseprilityF he minimum vlue of ∆ uu ω is rehed for ω/T hor ∼ 1F snstedD the minimum of δ uu ω is rehed for ω → ∞F sn riefD for low initil temperturesD the low frequeny setor ontins mny pirs ut they re seprleD the high frequeny setor ontins very few pirs whih re highly nonseprleD nd the intermedite regime ontins few of them whih re rely nonseprleF pigure IHFQX e represent the sme funtions s in pigF IHFPD for the sme prmetersD ut for higher initil temperture T in = 2ΛF es expetedD when ompred to pigF IHFPD one oserves redution of the nonseprility dominsF es found t low temperE tureD inresing A = 4B still redues the domin of nonseprilityF roweverD the high frequeny setors re now seprle euse T u in > 2T hor D s disussed elow iqF @IHFPRAF sn pigF IHFQD we study the sme funtions for muh lrger initil tempertureX T in = 2ΛF sn this seD the indued e'ets re muh more importnt thn oveF es resultD the (nl stte eomes seprle even t lrge frequenyF sn ftD ording to the vlue of A nd BD three di'erent regimes show upF hen A, B re low enoughD II. DOMAINS OF NONSEPARABILITY IUU there still exists (nite rnge in ω where the stte is nonseprleF hen inresing A, BD this domin disppersD ut ∆ uu ω still possesses lol minimumF hen further inresing A nd BD ∆ uu ω eomes monotonilly deresing funtion of ωF reneD s expetedD inresing the initil temperture severely restrits the nonseprility of the stteD or even ompletely suppresses itF st is of vlue to study nlytilly the symptoti ehviorsF he infrred ehvior is dominted y the vlues of A nd BD s n e seen from

∆ uu ω ∼ ω→0 T hor T v in ω 2 n u,in ω + n u,in -ω + 1 (γ + B -Aγ -) 2 , @IHFPQA
where γ ± is the limit of ω |β ±ω | 2 /T hor for ω → 0F iqF @IHFPQA diverges s ω → 0 nd is positive de(nedF his implies the seprility of the low frequeny regimeF 2 sn the lrge frequeny regime µ > ω T in , T hor D we otin

∆ uu ω ∼ e -2µ/T u in -e -ω/T hor 1 -e -|µ-ω|/T u in .
@IHFPRA his is negtive when ωT u in 2µT hor F reneD sine ω < µD the setor is nonseprle if 2T hor T u in F ith D = 1/2 nd Λ = 10κD this limit orresponds to T in ∼ Λ/11D independently of the vlues of A nd BF sn dditionD we oserved tht hnging D t (xed T hor nd T u in of iqF @IHFIVA hs silly no e'etF sn riefD the stte in the infrred setor is generilly seprle euse of the diverE gent ontriution governed y the oe0ients A nd BF snstedD the seprility in the ultrviolet setor ritilly depends on T u in /T hor F he intermedite regime is nonseprle if A, B re low enoughF rving hrterized how ∆ uu ω depends on ω/T hor D we now study how it depends on A, B, T hor nd T in F e shll estlish tht only two types of ehviors re foundD depending on the rtio T H /T ∞ D see iqF @IHFIQAF sn this we extend wht ws found in the spetrl nlysis of efF pIPF hen T H /T ∞ 1/3D one lives in the rwking regimeD with smll dispersive e'etsF snstedD when T H /T ∞ 3D one (nds the dispersive regime where the surfe grvity plys no signi(nt roleF 2. Hawking regime e (rst work t the edge of the rwking regimeD with T H /T ∞ = 1/3F eduing this rtioD whih mens reduing κ/ΛD does not 'et the properties of pigF IHFRF rene wht follows pplies to the entire rwking regimeF o eliminte ωD we onsider the minimum vlue of ∆ uu ω for ω < 5T hor F @st is pointless to onsider higher vlues sine the pir prodution rtes re exponentilly suppressed in tht regimeFA e shll onsider two vlues of the minimumD nmely min ω ∆ uu ω = 0 nd = -0.5F he (rst one gives the limit of nonseprilityD wheres the seond urve 2. There is a noticeable exception: when A = B, the leading divergence in 1/ω 2 is absent. As a result, the domain of nonseparability further extends at low frequency. This is the case studied in Refs. [Unr95,BMPS95a,MP09b] where high frequency dispersion is added on the two-dimensional massless scalar equation. pigure IHFSX he vlue of ω/T hor tht minimizes ∆ uu ω in the sme plne s in pigF IHFRD for the sme prmetersD nd for the intermedite temperture 5T u in = 2µF he lines of onstnt ω/T hor go y steps of 1/2 from 1/2 @drk lueA to 4.5 @ler lueAF he most relevnt setor is ω/T hor 1D see iqF @IHFIRAF indites the domin where the nonseprility is signi(ntD nd therefore more likely to e oserved in n experimentF sn pigF IHFRD oth urves min ω ∆ uu ω = 0 nd = -0.5 re represented in the plne of log 10 (A Λ/κ) nd log 10 (B Λ/κ)D nd for three di'erent initil temperturesD nmely 5T u in /2µ = 1/3D 1 or 3F efter severl triesD we hve dopted these xis nd this prmetriztion of the initil tempertureD euse hnging D nd Λ t (xed

IUV CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION

T u in 2µ
, A Λ/κ, B Λ/κ, @IHFPSA hs no signi(nt in)uene on the urvesF his mens tht in the rwking regimeD the miniml vlue of ∆ uu only depends on these three omposite slesF his is the (rst importnt result of this hpterF he other lesson from pigF IHFR is tht A nd B should e oth smller thn ∼ T u in /6µ × κ/Λ for the stte to e signi(ntly entngledD iFeFD ∆ uu ω < -.5F hen this II. DOMAINS OF NONSEPARABILITY IUW ondition is metD the stte n e found entngled even when the initil temperture T in is signi(ntly lrger thn the horizon temperture T hor F o give n exmpleD when T in = Λ = 10T hor D the stte is nonseprle if A, B 1/10F sn dditionD one lso sees tht A ∼ B enhnes the nonseprility of the stteF his is euse the 1/ω 2 divergene of iqF @IHFPQA is redued when A ∼ BF o omplete the informtion nd lso guide future experimentsD in pigF IHFS we repreE sent the vlue of ω/T hor tht minimizes ∆ uu ω for the sme prmeters s those of pigF IHFRD nd for the middle temperture T u in /µ = 2/5F xotie tht rough hrteriztion of the urves n e otined y onsidering the symptoti ehviors of iqsF @IHFPQA nd @IHFPRAD nd y minimizing their sumF he symmetry with respet to interhnging A nd B is then explinedF sn dditionD when inresing the initil temperture T in D we lern tht one should inrese the vlue of ω/T hor in order to minimize ∆ uu ω F oughly spekingD one gets (ω/T hor ) 3 ∼ T in /T hor F 3. The dispersive regime e now proeed in the sme wy for the dispersive regimeF e work t the edge of this domin with T H /T ∞ = 3F e hve veri(ed tht wht follows pplies in the whole dispersive regime T H /T ∞ > 3F es for the rwking regimeD we extrt the ω dependene y tking the minimum of ∆ uu ω over ωD for ω < ω max D where ω max is the mximum vlue for whih the negtive norm mode exists wHWF ine we re in the dispersive regimeD the pproximte expression of iqF @IHFIUA is no longer vlidD even though µ nd T u in of iqF @IHFIVA re still well de(nedF e thus use the ext expression of iqF @IHFISA in this setionF es in pigF IHFRD in pigF IHFT we drw the onstnt vlues min 

u in 2µ , A √ D , B √ D . @IHFPTA
his is the seond importnt result of this hpterF xotie tht these three rtios di'er from those of iqF @IHFPSAF e lso notie tht pigF IHFT is very similr to pigF IHFRF his mens tht the rossoverD round Λ/κD ∼ 1D from the rwking regime to the dispersive one is rther smoothF es resultD when tken togetherD pigsF IHFR nd IHFT o'er full hrteriztion of the nonseprility domins when the initil temperture elongs to the domin 0.1 T in /µ 1F he min onlusion of this setion is tht seprility of the stte depends minly on three quntitiesF he (rst one is the initil temperture in the unit of the hemil potentil µF his ws expeted sine this rtio governs the initil distriution of uEqusiprtilesF he other two re the A nd B prmeters enoding the oupling with the third modeF o otin domins with wellEde(ned sling propertiesD these dimensionless prmeters should e resled y Λ/κ in the rwking regime nd y √ D in the dispersive one 3 F B. Nonseparability of uv pairs 1. The dependence in ω feuse the nlysis is rther similr to tht of the previous setionD we only give the min resultsF sn pigF IHFUD we (rst study δ uv ω s funtion of ω/T hor for three di'erent vlues of A, BF es ws found pigF IHFPD we oserve tht the low frequeny setor is lwys seprleF hen inresing the initil tempertureD s expetedD the vlue of δ uv ω inreses nd the stte eomes seprle for ll ωF e then need to inrese the pir retion rte B 2 to get nonseprle sttesD see pigF IHFVF e oserve tht the low frequeny setor remins s it ws t low tempertureF yn the ontrryD for high frequenyD the stte is now seprleF etD when B is lrge enoughD there exists n intermedite regime where the stte remins nonseprleF sn this regimeD the nonseprility depends on ompetition etween the oupling B nd the initil tempertureF hese oservtions n e veri(ed nlytillyF pirstD the low frequeny ehvior is

∆ uv ω ∼ ω→0 T hor T v ω 2 γ 2 + n u,in ω + n u,in -ω + 1 .
@IHFPUA e otin ehvior similr to tht of uu pirs given in iqF @IHFPQAF roweverD in the present seD ∆ uv ω remins positive even when A = BF eondD t lrge frequenyD the 3. We point here that the quartic superluminal dispersion relation has only been used in Eqs. (10.13) and (10.17). From this we can deduce that the above results should hardly be modied had we used another type of superluminal dispersion relation. This is due to the fact that we here parametrize the elements of the S-matrix in a manner which is basically independent of the dispersion relation once T hor is given, see Eq. (10.14). pigure IHFVX he sme reltive quntity δ uv ω s funtion of ω/T hor for high temperture T in = Λ/3D for three vlues of B = 0.1 @solid lueAD 1 @dshed purE pleAD nd 2 @dotted yellowAD for A = B/4D Λ = 10κD nd D = 1/2F ith respet to pig IHFUD the vlues of B hve een inE resed y ftor of ∼ 10F ehvior of ∆ uv ω is very di'erent to tht of ∆ uu ω F sndeedD when µ > ω T in , T hor D we hve

II. DOMAINS OF NONSEPARABILITY

∆ uv ω ∼ e -ω/T v in + e |ω-µ|/T u in -ω/T hor (e -ω/T v in -2B 2 ) e |ω-µ|/T u in -1 . @IHFPVA
he soure of nonseprility is the term proportionl to B 2 F his mkes perfet sense sine B 2 (xes the prodution of uv pirsF ith more preisionD the lrge frequeny @ω = µA ehvior is nonseprle only if

2B 2 e µ/T hor -µ/T v in , @IHFPWA whih requires very low initil temperture in order to e stis(edF hen iqF @IHFPWA is not ful(lledD the stte is seprle t lrge ωF roweverD nonseprility is possile when

2B 2 e -µT hor /T v in (T hor +T u in )
@IHFQHA for frequenies oeying pigure IHFIHX he threshold of uv nonE seprility ∆ uv ω = 0 in the T v in /T hor , B plne for 3 vlues of Λ √ D/κD iFeFD 40 @dshed purpleAD 4 @solid lueAD 0.4 @dotE ted yellowAF sn the rwking regimeD there exists ritil tempertureD whih onE trols the seprility of the U V setorF his ritil temperture disppers in the dispersive regimeF et lrger temE pertureD nonseprility is found if B 2 > T v in /Λ √ DF hen going further in the disE persive regimeD ∆ uv ω = 0 no longer evolvesD nd remins long the dotted urveF 2. The parametric dependence es for uu pirsD we now determine wht is the domin of the prmeter spe where the stte is nonseprleF e represent in pigF IHFW the minimum over ω of ∆ uv ω for di'erent tempertures in the A, B plneF he (rst oservtion is tht A plys no roleF his n e seen from the symptoti ehviors of iqsF @IHFPUA nd @IHFPVAF e loser nlysis revels tht the relevnt prmeters governing the nonseprility of uv pirs re

ω µ + T u in log(2B 2 ) 1 + T u in /T hor -T u in /T v in . @IHFQIA
T v in T hor , B, Λ √ D κ . @IHFQPA
his is the third importnt result of this hpterF qiven tht oservtionD we represent in pigF IHFIH the nonseprility threshold ∆ uv ω = 0 in the BD T in /T hor plne for di'erent vlues of Λ/κF e oserve (rstD tht in the rwking regimeD there is ritil temperture T crit in ∼ T hor elow whih the stte is lwys nonseprleF his limit is due to the U V ehvior of the spetrumF sndeedD IVQ we see from iqF @IHFPWA tht when µ is lrge @iFeFD deep in the rwking regimeA nd T v in < T hor D the sttes with ω ∼ µ re nonseprle for ll vlues of BF he seond oservtion is tht this ritil temperture dereses s we leve the rwking regimeF his is euse the nonseprle regime ω T hor no longer exists when T hor ∼ ω max F et higher tempertureD the nonseprility riterion eomes B 2 T in /ΛF o summrizeD the stte is nonseprle when

T v in T hor or T v in B 2 ΛF

III. Dierent cases

A. Subluminal dispersion relation e rie)y onsider the suEluminl dispersion reltionD

F 2 (k) = c 2 (k 2 - k 4 Λ 2 ), @IHFQQA
in order to present the min di'erenes with the nonseprility of the superEluminl se onsidered in eF ssF sn pigF IHFIID s in the right pnel of pigF IHFQD we represent the reltive quntity δ uu ω for high initil tempertureF por suh tempertureD we see tht the stte is slightly less entngled thn in the superluminl seF he origin of this is due to the ft tht in modes ome from the suEsoni side of the horizonF es resultD for given initil temperture T in D the e'etive uEtemperture T u in of iqF @IHFIUA is lrger thn tht found when the in modes ome from the supersoni sideF sn other words the initil distriution of uEqunt is less redEshifted for su thn superEluminl dispersionF his implies tht the ontriution of stimulted emission is higherD nd this redues the domins of nonseprilityF he low temperture ehvior of δ uu ω is muh less sensitive to the sign of the dispersion reltion euse in tht seD the nonseprility threshold is minly governed y the oupling of the v modesF feuse there is no novel spet in this seD we do not represent itF sn dditionD similr e'ets re lso oserved onerning the nonseprility of uv pirsF reneD these need not to e studied seprtelyF pigure IHFIIX he reltive quntity δ uu ω of iqF @IHFPPA for the suluminl dispersion reE ltion of iqF @IHFQQA s funtion of ω/T hor D for high initil temperture T in = 2ΛD for three vlues of B = 0.01 @solid lueAD 0.02 @dshed purpleAD nd 0.09 @dotted yellowAD A = 4BD Λ = 10κD nd D = 1/2F IVR CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION B. Analogue white holes e onsider the white hole )ow otined y repling v(x) y -v(x)D where the )ow pro(le v(x) desries lk holeD for n exmple see iqF @IHFIPAF sn this seD s explined in efF wHWD S W H D the SEmtrix in the white hole )ow is simply given y the inverse of the orresponding lk hole one given in iqF @IHFPAF feuse of unitrityD S W H is of the form S W H = T S † T D where T = diag(1, -1, 1)F sn terms of the lk hole oe0ientsD S W H reds

S W H =   α * ω -β * -ω Ã * ω -β ω α -ω -Bω A * ω -B * ω (α v ω ) *   . @IHFQRA
hen onsidering n inoherent initil stte hrterized y three initil ouption numersD iqF @IHFPHA eomes

∆ uu ω = |α v ω | 2 n u,in ω,WH n u,in -ω,WH + |B ω | 2 n u,in ω,WH n v,in ω,WH + |A ω | 2 n u,in -ω,WH n v,in ω,WH + Bω 2 n u,in ω,WH + |β ω | 2 n v,in ω,WH -|β -ω | 2 (1 + n v,in ω,WH + n u,in ω,WH + n u,in -ω,WH ) ∆ uv ω = Ãω 2 n u,in ω,WH n u,in -ω,WH + |β -ω | 2 n u,in ω,WH n v,in ω,WH + |α ω | 2 n u,in -ω,WH n v,in ω,WH + Bω 2 n u,in ω,WH + |β ω | 2 n v,in ω,WH -|B ω | 2 (1 + n v,in ω,WH + n u,in ω,WH + n u,in -ω,WH ).
@IHFQSA yn the other hndD working gin with the therml initil stte of iqF @IHFISAD in the ple of iqF @IHFIUAD the initil distriutions re

n v,in ω,WH ∼ 1 exp ω/T v in,WH -1 , n u,in ±ω,WH ∼ 1 exp ω/T u in,WH -1 , @IHFQTA where T u in,WH = T in D, T v in,WH = T in (2 + D). @IHFQUA
hese two e'etive tempertures re independent of the dispersion reltion euse the three inoming modes re now low momentum onesF es resultD for white hole )owsD the dispersive sle Λ only enters in the (nl distriutions only through the e'etive temperture T hor of iqF @IHFIQAD whih is the sme for the lk nd the white hole )ows ±v(x)F hen onsidering the entnglement of the qusiprtiles emitted y white holeD one expets tht it will e weker thn tht of the orresponding lk holeF he reson is lerX in white hole )owsD stimulted e'ets dominte in over the spontneous hnnel euse low frequeny exittions re lueshifted @t (xed ωD the (nl vlue of the wve numer k ω is lrger thn the inoming oneAF es resultD the quntities of iqF @IHFQSA III. DIFFERENT CASES IVS diverge in the low frequeny limit s

ω 2 × ∆ uu ω ∼ ω→0 α 2 v (T u in,WH ) 2 + (A 2 + B 2 )T u in,WH T v in,WH -T hor (γ --γ + )T v in,WH + (γ -+ γ + )T u in,WH ω 3 × ∆ uv ω ∼ ω→0 T u in,WH T hor (γ --γ + )T u in,WH + (γ -+ γ + )T v in,WH , @IHFQVA
where γ ± re the two quntities de(ned fter iqF @IHFPQAF pigure IHFIPX he limit of nonseprility for the limit ω → 0 s funtion of A, B in white hole )owF rmeters re D = 1/2 nd T u in,WH = 2T hor × 0.5@dotted yellowAD 0.8 @dshed purpleA nd 1 @solid lueAF he min onsequene of these equtions is tht the nonseprility n e e'eE tively studied y onsidering the low frequeny limitF sn pigF IHFIPD we represent the limit of nonseprility ∆ uu ω = 0 t ω = 0 in the (A, B) plneF por T u in,WH < 2T hor D we oserve tht the stte is nonseprle in very lrge domin of the plneF snstedD for T u in,WH ≥ 2T hor D only smll domin remins nonseprleF he trnsition etween the two regimes is rpid sine hnging the vlue of the temperture y 20% is su0ient to otin nonseprility for B 0.3F e veri(ed tht these onlusions re not signifE intly modi(ed y relxing the ondition ω → 0D nd tking the minimum of δ uu ω s ws done in eF ssF por T u in,WH < 2T hor D we oserved n inrese of the nonseprility dominF snsted for T u in,WH ≥ 2T hor D we did not oserve ny inreseF o onlude this setionD it is interesting to ompre the vlues of δ uu ω omputed in white hole nd in lk hole for the sme initil stteF sn the left pnel of pigF IHFIQ @respF the right pnelA we represent the di'erene of the minim over ω of δ uu ω @respF δ uv ω A of iqF @IHFPPA etween the lk hole nd the white hole seF e used the smes vlues of the prmeters D = 1/2, A = B = 0.1D T in /T hor nd plot the dependene of the funtion in Λ/κF e oserve tht δ is generilly higher in the white hole )ow thn in the orresponding lk hole oneF pigure IHFIQX he di'erene of the minim over ω of δ uu ω @left pnelA nd δ uv ω @right pnelA omputed in white hole nd in lk holeD for three di'erent tempertures T in = 2T hor × 0.2 @dotted yellowAD 1 @dshed purpleAD 5 @solid lueAF he prmeters re D = 1/2, A = B = 0.1F yne sees tht inresing the initil temperture further inreses the di'erene etween the vlues of δ uu ω nd δ uv ω D whih mens tht the nonseprle hrter of the stte is more rpidly lost for white holes thn lk holesF with stimulted e'ets from genuine quntum entnglement due to spontneous e'etsD we worked t (xed ωD nd used the riterion of nonseprility of the stte whih implies tht one of the di'erenes of iqF @IHFRA should e negtiveD see ghpF PF sn eF sD we studied the generi properties of the SEmtrix on n nlogue lk hole horizon in order to dopt prmetriztion of the spetr tht tkes into ount the @superEluminlA dispersion reltionF e then omined these prmeters with those hrterizing the three initil distriutions of qusiprtiles whih re sttered on the horizonF he set of six prmeters we used is desried in eF sF hF sn eF ssD we (rst studied the dependene in ω of ∆ uu ω D the di'erene of iqF @IHFRA whih hrterizes the pirs of rwking quntF es expetedD in the infrred setorD the stte is seprleD euse stimulted e'ets dominte over spontneous onesF e lso oserved tht the domin of nonseprility ritilly depends on the strength of the ouplings etween the spettor third mode nd the two modes under studyF e then studied how the minimum vlue of ∆ uu ω over ω depends on the (ve prmeters we doptedD see iqF @IHFIWAF e showed tht the domin of nonseprility only depends on three omintions of these prmetersF sn dditionD two of the three omintions possess two di'erent formsF he prmeter tht distinguishes the two regimes is the rtio of the tempertures T H /T ∞ D see iqF @IHFIQAF hen it is smller thn 1/3D dispersive e'ets re smllD nd one e'etively works in regime lose to the reltivisti rwking oneF snstedD when it is lrger thn 3D one works in regime where the surfe grvity plys no signi(nt roleF e lso showed tht the rossover from one regime to the other is rther smoothF gomining the slings in the two regimesD we otined rther omplete hrteriztion of the domins of nonseprilityD whih we hope will e useful to guide future experiments to identify the pproprite rnge of prmeters where the spontneous rwking e'et domintes over stimulted onesF he min lesson is tht in oth regimesD the nonseprility threshold ritilly depends on the initil temperture of the system @something whih ws expetedAD ut IVU lso on the intensity of the oupling with the third spettor modeF hen the ltter is smll enoughD the (nl stte n e quntum mehnilly entngled even when the initil temperture is higher thn the lk hole tempertureF por ompletenessD we lso studied the quntity ∆ uv ω whih governs the nonseprility of the other type of pirs emitted y n nlogue lk holeF he relevnt prmeters re ompletely di'erentF sn eF sssF eD we rie)y studied the modi(tions when repling the superluminl dispersion reltion y suluminl oneF xo signi(nt hnge is oserved esides the ft tht stimulted e'ets re slightly more importnt for suluminl dispersionD s the redshift of the initil distriution is less pronounedF sn eF sssF fD we ompred the entnglement otined in white hole )ow with tht of lk hole oneF e showed tht white holes re less pproprite to look for quntum entnglement euse stimulted e'ets re muh more importntF Conclusions and perspectives sn this thesis we studied e'ets indued y nontrivil nd nonquntum metri @either grvittionl or e'etive in nlogue systemsA on quntum mtterF prom the grvity point of viewD we introdued non trivil dispersion nd some dissiption y the ddiE tion of kground timelike vetor (eld to the metriF sn rtF sD we reviewed the si elements of quntum (eld theory in urved speEtime nd the seprility riteE rionF hese tools llowed us to uild mny theoriesF sn rtF ssD we studied in detils rther simple urved speEtimeD iFeFD the de itter speEtimeF e sw tht even though dispersion nd dissiption modify the ultrviolet ehvior of the theoryD most of the preditions of the stndrd theory re roust to the introdution of dispersion nd disE siptionF prom the osmologil point of viewD this ompletes the in)tionry works of efsF wHVDegxHVF woreoverD using the orrespondene etween de itter nd lk holesD we showed tht the rwking )ux remins therml to good pproximtion even in the presene of dispersion nd dissiptionF e lso hrterized n upper ound to the leding devitionsF sn rtF sssD we onsidered mny ondensed mtter systems tht re nlogue to quntum (eld theory in urved speEtime nd hrterized in eh se the domin in prmeter spe where the preditions of quntum (eld theory in urved speEtime should e mnifestF sn prtiulrD we onsidered the nlogue of pir prtile produtionD iFeFD dynmil gsimir e'et in foseEiinstein ondenstes in the presene of generi dissiptive rteD nd we studied the e'et of the initil temperture on nlogue rwking rditionF his work is prt of glol progrmD the im of whih is to mesure the quntum properties of vuum nd to vlidte rwking9s preditions in nlogue experimentsF prom more theoretil point of viewD it joins quntum grvity theories whih ontin ulE trviolet dispersionD suh s rorv theory rorHW nd iinsteinEeether theory itwHRF iven though mny di'erent sujets hve een studiedD this work only onsiders sulss of spets of quntum (eld theory in urved speEtimeF es n exmpleD we ould go further inluding intertionsF e lso only onsidered osoni mtter (elds nd more spei(lly slr (eldsF woreoverD the kEretion of mtter (elds on the kground (eldsD iFeFD on spe time nd preferred time my e sequel to this workF yn the nlogue grvity sideD n extension of this work ould onsist in the expliit study of rwking e'et in presene of dissiptionD or more generlly in non trivil kgroundF sn prtiulrD when onsidering white hole )owsD experiments hve shown the intriguing presene of non trivil stnding wvesF IVV IWP APPENDIX A. MODULATED DCE I. Time-dependence in homogeneous media sn this setion we onsider the e'ets of time dependene on quntum systemF hile the nture of the time dependene is left unspei(edD we shll restrit our ttention to homogeneous mediD llowing the entire nlysis to e done t (xed wve vetor kF es resultD the dimensionlity of the system drops outD nd need not e spei(edF o (x the nottion nd the oneptsD we shll work in n tomi fose ondenste hqWWD tf + IPF roweverD the following nlysis is esily dpted to other mediD suh s polriton systems ggIQ nd tosephson metmterils t + IID vrrIQF st is lso pplile to pir retion in osmologil modelsD suh s primordil in)tion tUWD wgVIY in prtiulrD the time vrition we shll study in eF ssF e is very similr to tht ourring during the preheting phse t the end of in)tion uvWUF A. Equations of motion sn ondensed dilute gsD liner density perturtions oey the fogoliuovEde qennes eqution hqWWF et (xed kD in units where = 1D one otins negleting dissiption see iqsF @VFIQA nd @WFIPA i∂ t φk = Ω k φk + mc 2 φ † -k . @eFIA es in efsF vuyHQD pIHD we shll desrie iqF @eFIAD s well s its orresponding rermitin onjugte eqution with k → -kD s mtrix equtionX

i∂ t φk φ † -k = Ω k mc 2 -mc 2 -Ω k × φk φ † -k
. @eFPA o lerly identify the e'ets tht re due to temporl hnge of Ω k or cD we perform the stndrd fogoliuov trnsformtionD see iqF @UFPIA

φk φ † -k = u k v k v k u k × φk φ † -k , @eFQA
where u k nd v k re given y iqF @UFPPA nd the frequeny ω k is given y iqF @UFPQAF hen Ω k ndGor c vry in timeD so too do u k D v k D nd ω k F sing the ft tht u 2 k -v 2 k = 1D strightforwrd lgeri mnipultion leds to the following eqution of motion 1 for the fogoliuov opertors

2 ϕ k nd φ † -k X i∂ t φk φ † -k = ω k i uk v k i uk v k -ω k × φk φ † -k , @ eFRA 
1. Equation (A.4) is very similar to the equation governing the photon eld in a cavity of modulated Josephson metamaterial in Ref.

[LPHH13], although due to the stationarity of that inhomogeneous system (in a rotating frame), the correlations are between opposite frequencies rather than opposite wave vectors.

2. Note that, as in Chap. 8, we could also have considered χk ∝ φk + φ † -k which obeys

∂ 2 t + ω 2 k (t) χk = 0.
For a sinusoidal modulation of ω 2 k (t), this is (up to a coordinate transformation) the Mathieu equation [AS64], which also plays a role in preheating cosmological scenarios [KLS97].

I. TIME-DEPENDENCE IN HOMOGENEOUS MEDIA

IWQ where uk = ∂ t u k F sn sttionry systemsD one reovers the stndrd digonl mtrix governed y ω k F sn tht seD the (elds re trivilly relted to the @nonilA phonon retion nd nnihiE ltion opertorsD see iqF @UFPSAF sn term of vetorsD this eqution reds

φk φ † -k = e -iω k t 0 bk + 0 e iω k t ( b-k ) † .
@eFSA hen the system is sttionry for symptoti erly timesD the initil opertors bin k nd (b in -k ) † re well de(ned nd relted t erly times to the (eld opertors y the ove equtionF he sme is true when the system eomes sttionry for symptoti lte timesD where the lte ehvior of the (elds ϕ k nd φ † -k de(nes the (nl opertors bout k nd (b out -k ) † F henD euse the (eld eqution is linerD the two sets of symptoti opertors re relted y n overll fogoliuov trnsformtionD see iqF @IFQVA bout

k = α as k bin k + (β as k ) * ( bin -k ) † , @eFTA
where the requirement tht oth the initil nd (nl opertors stisfy the osoni omE muttion reltions imposes the ondition

|α as k | 2 -|β as k | 2 = 1F he symptoti in opertors de(ne twoEomponent mode W in k (t) vi the ommuE ttor W in k (t) . = φk (t), (b in k ) † [ φ † -k (t), (b in k ) † ]
. @eFUA o simplify the nottionD we shll no longer write the susript k sine ll equtions shll e de(ned for (xed vlue of k = |k|F iqution @eFUA implies tht the mode doulet W in (t) is the solution of iqF @eFRA with initil onditions W in ∼ t→-∞ e -iωt 0 F por lrge times it ehves s

W in ∼ t→+∞ α as e -iωt
β as e iωt . @eFVA pollowing the stndrd method wWV to evlute the fogoliuov oe0ients α as nd β as D we introdue the funtions α(t) nd β(t) through the expression

W in (t) = α(t) e -i t ωdt β(t) e i t ωdt
. @eFWA fy de(nitionD their initil vlues re 1 nd 0D nd their lteEtime vlues oinide @up to phseA with α as nd β as F hey oey the (rstEorder oupled equtions pigure eFPX rere is plotted |β| s funE tion of N for vrious vlues of RD from top to ottomX 0 @lueAD 0.5 @purpleAD 2 @yellowAD nd 5 @greenAF por ll plotsD the modultion mplitude A = 0.1F efter n initil liner growth for ll urvesD those with R < 1 grow exponentilly with N D while those with R > 1 rise nd fll periE odillyD the mplitude nd period eing pproximtely proportionl to 1/RF e lso note the smll rpid osilltions oE urring on top of the longEtime ehviorF = ω p t, r . = 2ω 0 -ω p ω p = AR/4. @eFIRA e lso ssume tht A 1D so the reltive modultion of ω is smllF hen iqsF @eFIHA simplify nd eome

∂ t α = u v e 2i ωdt β, ∂ t β = u v e -2i ωdt
∂ τ α ≈ A 8 e irτ + e i(2-r)τ β, @eFISA ∂ τ β ≈ A 8 e -irτ + e -i(2-r)τ α. @eFISA
o solve these equtionsD two ses will e seprtely onsideredX in the (rstD the modE ultion is nonresonnt so β 1 for ll timesY in the seondD the modultion is lose to resonnt so AR/4 = r 1F

a. Non-resonant case hen β is very smllD unitrity |α| 2 = 1 + |β| 2 implies tht |α| remins lose to 1F iqution @eFISA then gurntees tht the phse of α is slowly vrying in timeD so ∂ t (β/α) ∼ ∂ t (β)/αF ine we seek only the mgnitude |β|D we shll not onsider this phseF e thus hve

∂ τ β ≈ A 8 e -irτ + e -i(2-r)τ . @eFITA his is trivilly solved y β(t) ≈ -A 8 
e -iτ r -1 r + e -iτ (2+r) -1 2 + r . @eFIUA his eqution orretly desries two e'ets tht re visile in pigsF eFP nd eFQX he (rst term desries longEtime vritions of lrge mgnitudeD while the seond desries shortEtime vritions of smll mgnitudeF b. Close to resonance e now suppose tht we re lose to resonne so r 1F sn suh seD rotting wve pproximtion n e performed so tht we neglet terms osillting with frequeny 2ω 0 + ω p F nder suh irumstnesD the fogoliuov oe0ients re solutions of

∂ τ α ≈ A 8 e irτ β, ∂ τ β ≈ A 8 e -irτ α.
@eFIVA pigure eFSX rere re plottedD for ext resonne R = 0D the (nl ouption numer n out @left (gureA nd ∆ @right (gureA s funtions of the initil ouption numer n in @nd the initil temperture in units of the men frequeny ω 0 A for vrious vlues of N X 5 @lue solidAD 15 @dshed purpleAD nd 25 @dotted yellowAF st is ler tht oth n out nd ∆ inrese with temperture in n pproximtely liner fshionF roweverD wheres inresing N rises oth the interept nd slope of the n out EurvesD it hs the opposite e'et on the ∆EurvesD yielding nonseprle stte over progressively wider rnge of initil temperturesF for vrious vlues of N F e oserve tht n out inreses oth with initil temperture nd with N D while ∆ ! whih is sensitive to the division of n out into spontneous nd stimulted ontriutions ! inreses with initil temperture ut decreases with N F his is in ordne with iqF @VFRHA sine |β| inreses with the durtion N F sn pigF eFTD we represent the nonseprility threshold in the (N, T )Eplne ! tht isD the lous where ∆ = 0 ! for vrious vlues of RF xotie tht ∆ is positive to the right of the urves sine it lwys inreses with n in F sn the se of resonne @|R| < 1AD we oserve tht whtever the initil tempertureD ∆ eomes negtive nd the stte eomes nonseprle for N lrger thn some vlueF fy ontrstD in the nonresonnt se @|R| > 1AD there exists temperture ove whih the stte is seprle for ll vlues of N F his ritil temperture depends on R nd is generilly lower thn ω 0 F he nlyti tretment of eF ssF eF P gives T max ∼ ω 0 / ln(R)F o onlude this setionD we onsider the experiment of efF tf + IPD the results of whih triggered the present nlysisF prom the dtD we estimte tht the pekEtoEpek mplitude A ∼ 0.1 nd tht the durtion N ∼ 50F @sn ftD this is only n upper ound on AF st is tully the frequeny of the trpping potentil tht is modulted with this mplitudeD nd estimting the orresponding mplitude for the mode frequenies is rther nontrivilFA e hve not een le to determine with preision the pproprite vlue for RF sn prinipleD if one works extly t the resonne R = 0D the phonon stte would e nonseprle for n in 1200F snstedD when working with R = 1D nonseprility would our only for n in 40F hese (ndings seem to overestimte the oserved intensity of the orreltionsF e possile explntion for this is the neglet of wek dissiptive e'etsF o study this possiilityD in eF sss we inlude wek dissiption while the system is eing modultedF e shll see tht wek dissiption is su0ient to ruin the nonseprility pigure eFTX lotted here re loi of the seprility threshold ∆ = 0 in the (T in , N )Eplne for vrious vlues of RD from right to leftX 0 @lueAD 0.99 @purpleAD 2 @yellowAD nd 5 @greenAF es for previous plotsD we work with A = 0.1F xote one gin the splitting of the lrgeEN ehvE ior into resonnt @|R| < 1A nd nonresoE nnt @|R| > 1A regimesF por R < 1D the urves re seen to extend inde(nitely toE wrds higher vlues of n in D mening tht it is possileD for ny initil tempertureD to reh nonseprle stte if N is mde lrge enoughF yn the other hndD for R > 1D the urves reh some mximum vlue of n in nd then turn roundD so the stte n only e mde nonseprE le for tempertures elow some mxiE mum vlueD nd even then the system will osillte etween seprle nd nonsepE rle sttesF egin we notie the lk of smoothness of the urves due to the shortE time osilltions of |β|F rehed y the system in the sene of dissiptionD therey possily explining wht ws reported in efF tf + IPF III. Weak dissipation sn this setionD we introdue wek dissiptive rte Γ ! where wek mens Γ/ω 0 1 ! nd study its e'ets on qusiprtile retion nd entnglementF A. General model of weak dissipation sn the presene of dissiptionD the notion of fogoliuov oe0ients is no longer well de(nedD s the system is oupled to some environmentF es resultD the stte of the system n no longer e hrterized y α(t) nd β(t) s in the nonEdissiptive seF snstedD the men ouption numer n nd the orreltion c n still e de(ned for ll times when dissiption is wek enoughD see ghpF V nd ghpF WF sn this regimeD the seprility prmeter ∆ remins relted to these y iqF @PFQRAF e dopt simple e'etive pproh to dissiptionD inspired y the results of ghpF V nd ghpF W in whih it ws inorported using rmiltonin models tht respet uniE trityF sn these hptersD only single sudden hnges were onsideredD nd it ws found tht the fogoliuov oe0ients ! whih n e locally de(ned in the viinity of the III. WEAK DISSIPATION PHI hnge when dissiption is wek enough ! respond to the sudden hnge s if dissiption were not presentF sn ftD the min e'et of wek dissiption oserved ws the expeted exponentil dmping of the system towrds n equilirium stteF hese oservtions re here implemented y onsidering series of in(nitesiml douE le steps of durtion dtF sn eh doule stepD the system evolves ording to two proessesX

• nonEdissiptive modultion linking [n(t)D c(t)] to n intermedite [ñ(t)D c(t)] y n in(nitesiml fogoliuov trnsformtion δSD whih n e derived from the lol ehvior of α(t) nd β(t) in the sene of dissiptionY where n eq (t) = n eq (ω k (t)) is the men ouption numer when the system is in equiliE riumD typilly the therml distriution of iqF @eFPIAF hen oupled to suh inoherent sttesD the equilirium vlue of the oherene prmeter c eq vnishesD s is ssumed in iqsF @eFPSAF PHP APPENDIX A. MODULATED DCE o (rst order in dtD iqsF @eFPQA to @eFPSA omine to give (∂ t + 2Γ)n = 2Γn eq + 2 [(α * ∂ t β -β∂ t α * )c] , (∂ t + 2Γ)c = (α∂ t β * -β * ∂ t α)(1 + 2n) + 2(α * ∂ t α -β∂ t β * )c. @eFPTA hese re equivlent to iqsF @eFPVA when the nonEdissiptive equtions for α(t) nd β(t)D iqsF @eFIHAD re sustituted in iqsF @eFPTAD nd the unitrity ondition |α| 2 -|β| 2 = 1 is usedF yne n hek tht in the limit Γ → 0D iqsF @VFQVA stisfy the ove equtionsF yne n lso hek thtD when there is no modultion or fter the modultion hs ended ! iFeFD when αD β nd n eq re onstnt in time ! iqsF @eFPTA imply tht n nd c dey exponentilly towrd their equilirium vlues n eq nd 0F purthermoreD iqsF @eFPTA yield the following simple eqution for the evolution of the e'etive numer n = n(n + 1) -|c| 2 tht (xes the vlue of the entropy gHSX

∂ t n = 2Γ 2 |c| 2 + (1 + 2n)(n eq -n) .
@eFPUA he evolution of n(t) determined y this eqution governs the entropy exhnges etween the system nd its environmentF B. Analytic study e now use the model uilt in eF sssF eD nd in prtiulr iqF @eFPTA to the modulted evolution of iqF @eFIPAF sing iqF @eFIHAD iqF @eFPTA gives (∂ t + 2Γ)n = 2Γn eq + u v e -2i ωdt c , (∂ t + 2Γ)c = u v e 2i ωdt (1 + 2n).

@eFPVA rereD n eq (t) = n eq (ω k (t))D where n eq (ω) is the men ouption numer t frequeny ω when the system rehes equilirium in the limit t → ∞F st is determined y the stte of the environmentD nd is typilly given y n eq (ω) = n th (ω/T )D for given temperture T nd where n th (ω/T ) is the therml distriution of iqF @eFPIAF e work in regime where the reltive modultion of the mode frequeny is smllD nd where it is not too fr from resonneY in eF ssF eF PD we sw tht this regime orreE sponds to A 1D AR/4 1F hus we n pproximte u v e -2i ωdt ∼ A 4 ω p e -iARωpt/4 D nd if we lso verge over the rpid osilltions so tht these n e negletedD iqsF @eFPVA eome

(∂ t + 2Γ)n = 2Γn eq + A 4
ω p e -iARωpt/4 c , (∂ t + 2Γ)c = ω p A 8 e iARωpt/4 (1 + 2n).

@eFPWA xegleting the time dependene of n eq nd working t ext resonne R = 0D it n e derived from iqsF @eFPWA thtD for Γ/ω 0 > A/4D n grows nd sturtes t n max = 32Γ 2 n eq + A 2 ω 2 0 32Γ 2 -2A 2 ω 2 0 . @eFQHA III. WEAK DISSIPATION PHQ yn the other hndD for Γ/ω 0 < A/4D n grows exponentillyD leit t slower rte due to dissiptionF sn oth these sesD ∆ deys exponentilly towrds the limiting vlue ∆ min = 8Γn eq -Aω 0 8Γ + 2Aω 0 . @eFQIA husD the stte eventully eomes nonseprle if 2n eq Γ/ω 0 < A/4F xote tht this ondition for nonseprility is independent of the ondition for exponentil growth of nF wore preiselyD if n eq < 1/2D there exists regime where n sturtes nd the (nl stte is nonseprleD wheres if n eq > 1/2D there exists regime in whih the (nl stte is seprle nd n grows exponentillyF C. Numerical analysis por the results presented hereD we tke for initil nd equilirium vlues of n the therE ml distriution of iqF @eFPIA nd for eqution of motion iqF @eFPVAF sn pigF eFU we representD for vrious dissiptive rtes Γ/ω 0 D the time evolution of n nd ∆ t ext resonne R = 0 nd with temperture for the environment T = ω 0 F e oserve tht the men ouption numer dereses with Γ/ω 0 D the devition eoming lrger with inresing N Y nd thtD for lrge enough dissiptive rtesD n is seen to sturte t lrge N F gorrespondinglyD the oherene is redued @iFeFD ∆ inresesAD nd for lrge enough Γ/ω 0 the limiting vlue of ∆ is positive so tht the stte never eomes nonseprleF es n exmpleD with the numers of efF tf + IPD nmely for T in /ω 0 = 1 nd N = 50D wek dissiption of Γ/ω 0 = 2% is lmost su0ient to ruin the nonseprility whih N pigure eFUX rere re plottedD t ext resonne R = 0 nd for n initil therml th with T in = ω 0 D the men ouption numer @left (gureA nd the seprility prmeter ∆ @right (gureA immeditely fter the end of the frequeny modultionF he mplitude is s efore tken to e A = 0.1F he vrious urves orrespond to di'erent dissiptive rtes Γ/ω 0 @from lrger to smller n nd from lower to higher ∆AX 0 @lueAD 0.01 @purpleAD 0.02 @yellowA nd 0.03 @greenAF he rte of inrese of n is seen to e redued y lrger dissiption rtesY utD in ordne with the predition of eF sssD it pprohes exponentil growth for Γ/ω 0 < A/4 = 0.025 nd sturtes for Γ/ω 0 > 0.025F imilrlyD ∆ pprohes limiting vlue whih inreses with the dissiption rteD nd s predited in eF sss the (nl stte is nonseprle only when Γ/ω 0 < A/8n eq ≈ 0.021F pigure eFVX rere re shownD t R = 2 nd for n initil therml th with T = ω 0 D the men ouption numer @left (gureA nd seprility prmeter ∆ @right (gureA immeditely fter the end of the frequeny modultionF es eforeD the mplitude A = 0.1F he vrious urves orrespond to di'erent vlues of the dissiptive rte Γ/ω 0 D from lrger to smller (rst osilltionX 0 @lueAD 0.01 @purpleAD 0.02 @yellowA nd 0.03 @greenAF e note smoothing out of the osilltions with inresing dissiptive rteD nd eventully their dispperneD s in overdmped systemsF n nd ∆ re seen to pproh limiting vluesD whih @respetivelyA derese nd slightly inrese with inresing Γ/ω 0 F is found in the sene of dissiptionF o e more expliitD in the sene of dissipE tionD ∆ = -0.4995D while for Γ/ω 0 = 2%D ∆ = -0.018F xonseprility is lost for Γ/ω 0 ∼ 2.1%F lightly o' resonneD with 0 < |R| < 1D the di'erenes with respet to the resonnt se re similr to those of the non dissiptive seF ee pigF eFQ for the ehvior of the men ouption numer n out = |β| 2 nd pigF eFT for the ehvior of the seprility prmeter ∆ for 0 < |R| < 1 in the sene of dissiptionF es n e seen thereD n out flls with R nd ∆ inreses with RF sn the nonresonnt seD with R > 1D dissiption is oserved to dmpen the osillE tions in n nd ∆D oth of whih pproh limiting vlues tht @respetivelyA derese nd inrese with inresing Γ/ω 0 Y see pigF eFVF st is even possile to reh n overdmped regime where no osilltions ourF es in the sene of dissiptionD on top of this long rnge ehvior some smll nd rpid osilltions of frequeny ner 2ω p ourF hese do not dey when the system rehes nerEequilirium stteD s n e veri(ed y onsidering the nerEsttionry solution of iqsF @eFPWA when the rpid osilltions re tken into ountF es in the non dissiptive seD in pigF eFWD we represent the nonseprility threshold in the (N, T )Eplne for vrious vlues of RD nd for dissiptive rte Γ/ω 0 = 1%F es in pigF eFTD ∆ is positive to the right of the urves sine it lwys inreses with T in F e oserve tht regime where nonseprility is rehed is muh redued y dissiptionF sn prtiulrD even in the resonnt regimeD there exists mximum temperture ove whih the (nl stte is lwys seprleF e onlude this setion y pplying our results to the experiment desried in efF vrrIQF e (nd tht the relevnt prmeters re n eq = 0.0056D A ≈ 0.048 nd Γ/ω 0 > 0.009F @e n only give lower ound for Γ/ω 0 euse it is knowledged pigure eFWX lotted here re loi of the seprility threshold ∆ = 0 in the (T in , N )Eplne for the sme prmeters s in pigF eFTF he vlue of the dissipE tive rte is Γ/ω 0 = 0.01F he e'et of dissiption is here mnifest s it introE dues ritil temperture ove whih stte lwys is seprleF sf one is unE der this ritil tempertureD the miniml time needed to reh nonseprility is inresedF tht there is dditionl soure of dissiption ! proly twoEphoton dissiption ! tht is not ounted forFA essuming the experiment is performed very lose to resonneD we tke R = 0D so iqsF @eFQHA nd @eFQIA re pplileF ine A/8n eq ≈ 1 > Γ/ω 0 D we onlude tht -1/4 ≤ ∆ < 0 nd the stte is nonseprleF his is in greement with the results of efF vrrIQ whih reports ∆ = (2 -0.32 -1) /2 ≈ -0.1F he ehvior of nD howeverD is more di0ult to sertin sine A/4 is slightly ove the lower ound of Γ/ω 0 F e expet tht the dditionl dissiptive e'ets will tke Γ/ω 0 ove A/4D so tht n should sturteF Conclusions e hve onsidered the spetrum of qusiprtiles nd their degree of entnglement due to sinusoidl modultion of the @squredA frequeny in homogeneous quntum systemF por de(nitenessD the system under onsidertion ws tken to e n tomi foseE iinstein ondensteF he modultion ws found to e desrile y three prmetersX its lengthD its mplitudeD nd the detuning of its frequeny from resonne @t twie the men mode frequenyAF he (nl mount of spontneous retionD desried y the mgnitude of the fogoliuov oe0ient |β|D is found to hve omplited dependene on these three prmetersD while the ehvior of the seprility prmeter ∆ out ws given in iqF @VFRHAF e key oservtionD in ordne with similr results seen in efF uvWUD is the exisE tene of (nite width of resonnt frequeniesF everging out the smll rpid osilltions tht re superimposed on lrge longEtime ehviorD the spontneous ontriution to resonnt qusiprtile modes grows exponentilly with the durtion of the modultionD nd for ny initil tempertureD the (nl stte n e mde nonseprle if the modulE tion lsts long enoughF por o'Eresonnt modesD howeverD the spontneous ontriution rises nd flls periodillyD never rehing ove some mximum vlueF et the level of PHT APPENDIX A. MODULATED DCE entnglementD this hs the e'et thtD for o'Eresonnt modesD there is temperture ove whih the (nl stte is lwys seprleD no mtter the length of the modultionF pinllyD we evluted the onsequenes of wekly dissiptive e'etsF e demonstrted tht the nonseprility of the (nl stte n e signi(ntly redued nd even destroyed when these re tken into ountF st is thus ler tht wek dissiption ould ply n importnt role in the experimentl ttempts to estlish nonseprility of the (nl stteF hese onsidertions hve een illustrted y onsidering two reent experimentsF Bibliography efUT F eihelurg nd F feigF Radiation damping as an initial value problemF ennls of hysis 98D PTR @IWUTAF efIQ tF edmekD F fushD nd F rentniF Dissipative elds in de Sitter and black hole spacetimes: quantum entanglement due to pair production and dissipationF hysF evF h 87D IPRHQW @PHIQAF arXiv:1301.3011F 
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 7 Bose condensation and analogue gravity sF gondenstion of n ultrold quntum gs F

  sing suh nonil (eldsD the rmiltonin redsD up to the ddition of PP representtion positionD one introdues the (elds φ(z) = dk √ 2π d e ikz φk D nd identilly for πF sing these (eldsD the rmiltonin for free prtile reds Ĥ = 1 2

  es the orreltion etween prtiles of opposite momentF PS B. Local Lorentz symmetry breaking 1. Introduction of dispersion

II

  feuse of homogeneityD in oth sesD ovrine mtries A, B, C re digonlF woreoverD A nd B re proportionl to identity nd we hve A = n a + 1/2D B = n b + 1/2 where n a = a † k a k nd similrly for n b F sn the se where modes re oEpropgtingD the mtrix C is suh tht det C = |d k | 2 D where d k = a † k b k F feuse det C ≥ 0D positivity of the stte see iqF @PFPTA implies seprility see iqF @PFPQAF iqF @PFPWA redues to |d k | 2 ≤ n a n b is lwys ful(lledF sn the se modes re ounterEpropgtingD the mtrix C is suh tht det C = -|c k | 2 D where c k = a k b -k F he positivity of the stte then implies

ContentsI.

  Fields in de Sitter space . . . . . . . . . . . . . . . . . . . . . . . 55 I. FIELDS IN DE SITTER SPACE SS I. Fields in de Sitter space A.

  D oth for the fh nd the out modesD nd we de(ne the SEmtrix y Φ BD ω = S ω Φ out ω F e III. QUARTIC SUPERLUMINAL DISPERSION UQ (nd tht S ω ftorizes 2 s

  ψD nd the mixed one ontining φ nd ψF heomposing the (eld opertor φ = φdec + φdr D G ac splits into three termsF he (rst one involves only φdec D the seond ontins oth φdec nd φdr D nd the lst only φdr F hen ssuming tht the initil VH CHAPTER 5. DISSIPATIVE FIELDS IN DE SITTER SPACE

  g 2 = 2 δk for g 2 = 2 nk for g 2 = 0 pigure SFIX xumeril vlues for n k nd δ k for mssless (eld with critical dmping g = g crit nd qurti superluminl dispersion t the enE ergy sle Λ = HλF por omprisonD we hve represented y dotted line the n k of the qurE ti dispersive (eld @in whih se δ k = 0 idenE tillyAF urprisinglyD the stte is nonseprE leD δ k < 1D for ll vlues of λF woreoverD δ k dereses when dissiption inresesF VR CHAPTER 5. DISSIPATIVE FIELDS IN DE SITTER SPACE

  pigure SFPX Contour plots of ln n k and ln δ k for a massless eld with critical coupling g = g crit in the parameter space (λ = Λ/H, ϑ = T ψ /H) . At low temperatures, for ϑ = T ψ /H 1/10, n k and δ k barely depend on ϑ.

  pigure SFQX Contour plots of ln n k and ln δ k for a massive eld (µ = 1) with critical coupling g = g crit in the parameter space (λ = Λ/H, ϑ = T ψ /H). As in Fig.5.2, for low temperature ϑ 0.1, n k and δ k are independent of the temperature. Instead for ϑ 1 and λ 1, n k and δ k scale both as ϑλ -1/2 .VT CHAPTER 5. DISSIPATIVE FIELDS IN DE SITTER SPACE

  for δ U ω with ω = H for massless eld with critical coupling g = g crit .
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  First, the deviations with respect to the Hawking spectrum due to dispersion are governed by D [MP09b, FP11, CPF12]. Second, the nonlocal correlations across a black hole horizon are also governed by D, in that they start to dier from vacuum correlations when κx ∼ D [SU10, Par10] II. CORRESPONDENCE IN THE ABSENCE OF DISSIPATION WU

  .14). This situation corresponds to what is found in the surface wave experiments [WTP + 11, RMM + 08]. III. ANALOGY IN THE PRESENCE OF DISSIPATION IHQ pigure TFPX es funtion of log 10 (P/κ)D in dotted line we plot exp{-I ω (X, P )}D the optiE l depth of iqF @TFPQAD evluted for ω/κ = 1D Λ/κ = 400D nd κx = 20F he solid urve repE resents T (P ) of iqF @TFPSA for the sme vluesD nd D = 0.99F he left dshEdotted line orE responds to the limit of the xrX κx = D/2D here reexpressed s P = 2κ/DF por lower P D in region ID the de itter!like P representE tion filsF he right vertil line indites the upper limit of the xEuf pproximtionD see eF sF por the dopted vluesD the region II where the P nd the x desriptions re oth vlid hs (nite sizeF e lso see tht T vnE ishes in region IF his vlue de(nes the entrl region IIID see pigsF TFP nd TFQF sing the pro(le of iqF @TFTAD x trans is situted deep inside the xr when κ/ω diss max 1D where the ritil frequeny ω diss max is given y ω diss max = ΛD 2 . @TFPVA reneD when κ/ω diss max 1D the oupling etween φ nd ψ is urtely desried in the P representtionD nd tkes ple in portion of de itterF sn dditionD the onnetion etween the highE nd lowEmomentum propgtion n e sfely done in the intermedite region IID de(ned y κ|x trans | κ|x|

•

  pr wy from the xrD in regions I R nd I L D for D |κx|D the hrteristis of the (eld follow null geodesisD see iqF @TFQVAF ine v ∼ cst.D they no longer seprte from eh otherF reneD t lrge distnesD the speEtime pttern otined y (xing one point wWTDwWTD nd the equl time orreltion pttern fpp + HVD will e the sme s those predited y reltivisti tretmentF• sn the two intermedite regions II R nd II L D for x trans |κx| DD the hrterisE tis seprte from eh other following δx ∼ e κt sine their ehvior is lredy lose to the reltivisti oneF his pttern is otined y onsidering twoEpoint funtions with one point (xedD or wvepkets fwWSF st is interesting to notie tht it nnot e otined y onsidering equl time orreltionsD sine these develop only outside the xrD for |κx| D rIHF sndeed s long s x nd x re in the xrD the @pproximteA de itter invrine under K z D see ghpF QD eF sD implies tht dωG ω ac only depends on x -x F 3

  ntiommuttor of iqF @VFQWA multiplied y ω f s funtion of k/mc in D when evluted t equl time t = t = 5/mc 2 in D for c f = c in /10D on the left pnel for T = T ξ in /2 nd on the right for T = T ξ in @solid lue osillting urvesAF he dshed yellow line in the middle gives the vlue of ω f G ac = n in + 1/2 efore the sudden hngeF he envelopes of the minim nd mxim re indited y solid purple linesF yne lerly sees tht the domin of kD where the lower line is elow the threshold vlue 1/2D is redued when inresing the tempertureF xotie tht ll urves symptote to 1/2 euse in the limit k → ∞D one hs n k = c k = 0F et (xed |β/α|D the threshold vlue of nonseprility ∆ = 0 de(nes ritil temperture T C F st is given y @see lso efF fppIQA |β/α| = e -ω in /T C .

III

  plot of ∆ out indued y sudden vrition of the sound speedD s funtion of temperture T /T ξ in nd the logrithm of the rtio c f /c in F sn the left pnelD k = mc in /10 is in the hydrodynmil regimeD nd in the right pnelD k = mc in F he threshold vlue ∆ out = 0 is indited y thik lineF yne lerly sees the ompetition etween

  represent the produt ωf ×G ac (t, t = t) where G ac is given in iqF @VFQWAD on the left pnelD s funtion of the dimensionlized time tmc 2 in for k = 1.5mc in D γ 2 k = 0.03 nd T = 0.8T ξ in D nd on the right pnelD s funtion of k/mc in for t = 5/mc 2 in D γ 2 k = 0.05 nd T = 0.5T ξ in F he dshed yellow line on the right pnel is the se with no dissiption γ 2 k = 0F sn ll sesD the height of the jump is c f /c in = 0

  ouption numer of phonons n b

  the mesurement of the men ouption numer of phononsF he solid urves show n

  whih shows periodi devitions in τ round n verge vlue n b k,st + (c b k,st )Y note tht this verge still di'ers from n b k,st y systemti error proportionl to cb k,st D see pigF WFQF

  is devoted to disussion of possile strtegies iming to extrt the four quntities @iFeFD six rel quntitiesA of iqF @WFSPA from urte mesurements of the oherene funtions of the vity photon (eldF wo of them n b k,f , c b k,f , hrterize the (nl sttionry stteD while δn b k , c b k hrterize the deying properties of the stteF unowledge of the following four rel quntitiesD |c b k |, δn b k , n b k,f nd |c b k,f | llows to ssess the nonseprility of the phonon stteF 1. The anticommutator G ac es (rst exmpleD we onsider the equl time omintion nlogous to iqF @WFPWAD[G DCE (t, t, k)] = n b k,f + δn b k e -2Γt + [c b k e 2(Γ+iω k,f )t + cb k,f ]. @WFSSApor underdmped phonon modes suh tht ω k,f > ΓD this quntity osilltes etween mxim nd minim given yn b k,f + δn b k (t) + [c b k,f ] ± c b k (t) X the funtion c b k (t) = c b k e -2Γtn thus e extrted from the mplitude of osilltionsF he midEpoint of the osilltions provides insted informtion onn b k (t) = n b k,f + (c b k,f ) + δn b k e -2Γt Fhis quntity n e tken s opertive de(nition of the men ouption numerF sf one wishes to extrt the δn b k (t) = δn b k e -2Γt ontriution from the orreltion orretionD one hs just to mesure [G DCE (t, t)] for di'erent times tX sine it is the only term tht possess this time dependeneD δn b k (t) is therefore well de(nedF reneD the only quntity 'eted y cb k,f is n b kof the phonon stte fter sudden jumpF he osillting solid lue line shows the equl time funE tion [G DCE (t, t, k)] de(ned in iqF @WFSSA for time t = 3/mc

2F

  etD s shown y numeril simultions wHWD wHWD the reltive di'erene etween |β ω | 2 nd |β -ω | 2 is generlly smllF snsted the di'erenes A ω -Ãω nd B ω -Bω diverge in generl when ω → 0F e shll return to this importnt point elowF xotie (nlly tht the oe0ients |β -ω | 2 nd |B ω | 2 onsidered seprtely give the men numer of u nd v qunt emitted y the orresponding white hole )owY see eF sssF f for more detilsF A. Parametrization of the scattering e now show thtD for sttionry inoherent sttesD only four independent prmeters of S enter iqF @IHFRAF e shll work with the four squred norms |β

  Parametrization of dispersive spectra o fr we worked t (xed ωF o hrterize the spetrumD we need to prmetrize the ωEdependene of |A ω | 2 , |B ω | 2 nd |β 0 ω | 2 F o this endD we onsider the )ow pro(le of iqF @TFTAX v(x) = -1 + D tanh κx D . @IHFIPA he prmeter D (xes the symptoti vlues of v + 1 on either sideF sn the present se they re equl nd oppositeF por more generl symmetri pro(les we refer to efsF pIPD oIIF he frequeny κ (xes the surfe grvityD nd determines the temperture of the lk hole rdition T H . = κ/(2π) in the Hawking regimeD iFeFD when dispersive e'ets re negligile euse Λ/κ 1F e work in units where c = = k B = 1F hen leving this regimeD numeril nd nlytil studies gpIP hve estlished tht D lso mttersF sn prtiulrD when the oupling to the ounterpropgting mode is

A

  . Nonseparability of uu pairs 1. The dependence in ω sn pigF IHFPD we study the ω/T hor dependene of ∆ uu ω nd δ uu ω in the low initil temperture regimeD for T in = Λ/20F e onsider three di'erent vlues of the oe0ients A, B of iqF @IHFIRAD with (xed rtio A/B = 4F et lrge frequenyD ω/T hor 2D the stte is nonseprle independently of the vlues of A nd BF yn the other hndD t low IUT CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION

  minimum vlue of ∆ uu ω over ω in the plne of log 10 A Λ/κD log 10 B Λ/κD for D = 1/2D Λ/κ = 4D nd for three initil tempertures 5T u in /2µ = 1/3 @olidAD 1 @hshedA or 3 @hottedAF he thik red line is min ∆ uu ω = 0D nd inE dites the limit of nonseprilityF he lk line gives min ∆ uu ω = -0.5F st indiE tes the domin where the nonseprilE ity is signi(ntF e hve T H ∼ T ∞ /3D so we work t the edge of the Hawking regimeF he dshed region represents the foridden region where|α v | 2 = 1 + |B| 2 -|A| 2 < 0F

  ω ∆ uu ω equl to 0 nd -0.5D to respetively get the nonseprilityD nd the signi(ntly nonseprleD dominsF sn the present seD the xes hve een hosen to e log 10 (A/ √ D), log 10 (B/ √ D)D euseD when dopting themD we oserved tht hnging D nd Λ t (xed T u in /µ nd {A, B}/ √ D hs no signi(nt e'etF es resultD in the dispersive regimeD the miniml vlue of ∆ uu pigure IHFTX es in pigF IHFRD we represent the minimum vlue of ∆ uu ω for three iniE til tempertures 5T u in /2µ = 1/3 @olidAD 1 @hshedA or 3 @hottedAD nd for D = 1/2F rereD we work in the dispersive regime sine κ/Λ = 10/4D nd T H /T ∞ ∼ 3F es exE plined in the textD the two oordintes now re log 10 A/ √ D nd log 10 B/ √ DF he lk line represents min ∆ uu ω = -0.5D nd the thik red line min ∆ uu ω = 0F xotie the similrity of the present (gure with pigF IHFRF st indites tht the rossoverD round Λ/κD ∼ 1D from the rwking regime to the dispersive one is smoothF IVH CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION only depends on the following three omposite slesX T

  reltive quntity δ uv ω of iqF @IHFPPA s funtion of ω/T hor for low temperture T in = Λ/300D for three vlues of B = 0.01 @solid lueAD 0.1 @dshed purpleAD nd 0.25 @dotted yellowAD for A = 4BD Λ = 10κD nd D = 1/2F por uv pirsD inresing B now inreses the nonseprility sine B 2 governs their retion rteF

  his is the order of mgnitude tht we oserve in pigF IHFVF IVP CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION minimum overω of ∆ uv ω for Λ = 4κD D = 1/2 nd for temE perture T = 1/3Λ √ D @hottedAD Λ √ D @hshedA or 3Λ √ D @solidAF he dshed region represents the region with |α v | 2 = 1 + |B| 2 -|A| 2 < 0F he line min ∆ = 0 is indited in thik redF he line min ∆ = -0.5 is indited in lkF

  Conclusionse nlyzed the strength of the orreltions hrterizing the two types of pirs tht re emitted y sttionry lk hole )owF o distinguish lssil orreltions ssoited IVT CHAPTER 10. SEPARABILITY OF ANALOGUE BLACK HOLE RADIATION

  (es tht the zeroth order solutionD iFeFD onstnt vlues for α nd βD orE responds to the uf pproximtionF yne lso veri(es tht orretions re ssoited with nonditi trnsitionsD nd re here interpreted s retion of phonon pirs with opposite wve vetorsF IWS II. First eects of modulation rere we pply the onepts desried in eF s to the temporl modultion of iqF @eFIPAD solving iqsF @eFIHA to (nd the ehvior of the fogoliuov oe0ient |β as | nd of the nonseprility prmeter ∆ out of iqF @

  is shown logrithmi plot of |β| s funtion of R for vrious vlues of N X 25 @lue solidAD 50 @purple dshAD nd 100 @yellow dottedAF por ll plotsD the modultion mplitude A = 0.1F e lerly see the emergene of enE trl pek with inresing N D extending from R = -1 to 1F por |R| > 1D the urves osillte in omplited wyD s for smll vlues of |β| the smll rpid osE illtions eome more importntF feE use of theseD |β| need not extly vnE ish t the ompletion of yleF he numer of longEtime osilltions inreses in proportion to N D nd their mxim tre out n envelope orresponding to the 1/ √ R 2 -1 ehvior of their mximF o revel the vrious e'ets of the prmetri mpli(tion indued y iqF @eFIPAD we (rst numerilly study the ehvior of the norm of |β|D whose squre gives the (nl ouption numer when working in the in vuumF sn this setionD we provide only qulittive desriptionD ut the following oservtions re ll explined in the nlytil study presented in eF ssF eF PF IWT is shown ontour plot of ln |β| s funtion of N nd RF es in pigsF eFP nd eFQD the modultion mplitude A = 0.1F he ontour vlE ues re 5 @the mximum shownD t the oundry etween drk lue nd whiteAD 4D nd derese y steps of 1F e lerly seeD with inresing N D the emergene of n exponentilly growing resonnt regime for |R| < 1 nd n osillting nonresoE nnt regime for |R| > 1F xote lso tht the ontours themselves re not extly smoothD hving jgged edges due to the shortEtime osilltions of |β|F sn pigF eFPD we represent |β| s funtion of dimensionlized time N D for vrious vlues of the prmeter RF ih of the urves is superposition of lrge longEtime vritionD nd smll shortEtime vritionF he former is y fr the most signi(nt onE triutionD nd shll e disussed elowF he origin of the ltter is provided in iqF @eFIUAF e notie thtD fter n initil liner growth whose rte is independent of RD the depenE dene of |β| on N flls into one of two typesD depending on the vlue of RX iF por |R| > 1D |β| eventully drops elow the liner urveD heding k towrds zero nd flling into periodi osilltionF his is the o'Eresonnt regimeF iiF por |R| < 1D |β| eventully lims ove the liner urveD tending towrds exponentil growthF his is the resonnt regimeD nd is due to stimulted mpli(tion of formerly spontneously reted quntF e thus get sense from pigF eFP of the importne of the prmeter RF o invesE tigte this furtherD in pigF eFQ we represent |β| in logrithmi sle s funtion of R for vrious vlues of N F e oserve entrl pek round R = 0 of inresing height nd deresing widthD though the width sturtes with inresing N suh tht it extends from R = -1 to 1F his pek orresponds to the resonnt regimeD nd s the evolution of |β| eomes exponentil for lrge N we (nd tht the height of the pek in log |β| vries linerly with N F por |R| > 1D we oserve osilltions with (xed mximum vlue for eh vlue of RD suh tht the mxim tre out n envelope tht is smooth funtion of RF his is the nonresonnt regimeD where |β| never rises ove (xed mximum vlueF por ompletenessD in pigF eFR we omine the ove (gures in ontour plotD where the ontours re lines of onstnt |β| in the (N, R)EplneF yne n lerly see the emergene of the resonnt pek for |R| < 1 with inresing N D s well s the osilltory ehvior for |R| > 1F II. FIRST EFFECTS OF MODULATION IWU 2. Analytical properties es n e seen from pigs eFP nd eFQD the dependene of |β| on the prmeters N D A nd R is rther omplitedF etD the essentil fetures n e otined nlytillyD s we now showF o simplify the following equtionsD we use the dimensionl time τ nd the detuning prmeter r given y τ .
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  n a n b . @PFQIA reneD seprle sttes re suh tht |c k | 2 ≤ n a n b nd Gaussian homogeneous sttes suh tht |c k | 2 ≤ n a n b re seprleF his riterion ws (rst used in efF gHS in the se n a = n b F o get mesure of the non seprility of stteD three di'erent prmeters n e introdued nd re used in di'erent systemsF he (rst one ws introdued in efF gHV nd is δ k de(ned y
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I

  δ Ψ G dereses exponentilly in timeF his implies tht the hnges of densityD urrent nd pressure with respet to the fh vuum δρ Ψ

t+t )/2 , @RFQSA TR CHAPTER 4. DISPERSIVE FIELDS IN DE SITTER SPACE iFeFD

  Introductionhile highEenergy dispersion is rther esily introdued @see ghpF RA nd hs een studied in mny ppers oth in osmologil settings wfHID xieHID xHID wHV nd lk hole metris nrWSD fwWSD see eFgFD efF tWW for reviewD dissiption hs reeived omprtively muh less ttentionF

sn this hpterD we study slr quntum (eld φ tht hs stndrd reltivisti ehvior t low energy ut displys dispersion and dissipation t high energyD therey violting @lolA vorentz invrineF he dissiption is introdued in ovrint lnguge so tht it n e generlized to ny speEtimeF e then study the e'ets of dissiption on pir prtile prodution nd on the )uxes reeived y n inertil oserverF e lso study the )uxes produed y speEtime nd rehing in(nity euse it would e exE perimentlly essile in nlogue grvity experimentsF his hpter is minly sed on efF efIQF Contents I. Covariant settings for dissipative eld . . . . . . . . . . . . . . 77 A. Action for dissipative eld . . . . . . . . . . . . . . . . . . . . . . . 77 B. Eective equations of motion . . . . . . . . . . . . . . . . . . . . . 78 II. Homogeneous picture . . . . . . . . . . . . . . . . . . . . . . . . 80 A. Dissipation and nonseparability . . . . . . . . . . . . . . . . . . . . 80 B. Invariant states and P representation . . . . . . . . . . . . . . . . 81 C. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 III. Stationary picture . . . . . . . . . . . . . . . . . . . . . . . . . 87 A. Loss of thermality . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 B. Asymptotic correlations among right movers . . . . . . . . . . . . . 89 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 UT I. COVARIANT SETTINGS FOR DISSIPATIVE FIELD UU I. Covariant settings for dissipative eld A. Action for dissipative eld

  Invariant states and P representation ine the sttes we onsider re invrint under the 0ne groupD n k nd c k re neessrily independent of kF e shll nevertheless keep the lel k to remind the reder tht we work t (xed k nd not t (xed ω s in the next setionF feuse of the 0ne groupD

	χ rel (P )	. =	√ k × φ rel k (t),	@SFPHA
	only depends on P D where φ rel k (t) is the @positive unit normA out mode of iqF @SFIUAF he
	norm of the mode χ is (xed y the ronskinD see iqF @RFUAX	

he men numer of symptoti outgoing prtiles is n k > 0D wheres the omplex numer c k hrterizes the strength of the orreltions etween prtiles of opposite wvenumerF he reltive mgnitude of this numer leds to the notion of nonseprE ilityD see ghpF PD eF ssF gF o hrterize the level of ohereneD we shll use the prmeter δ of iqF @PFQPAD see efF gHSF VI B.

  B. Field equations and eective dispersion relationfeuse the ondenste is homogeneousD it is pproprite to work with the pourier omE ponents t (xed wve vetor k = -i∂ x D where k is relF hen the totl rmiltonin splits into setors tht do not intertX H T = dkH k D with H k = H † -k F sn the rest frme of the ondensteD t (xed kD the (eld equtions reD see iqF @UFIWA

  ]F he simpliity of this ondition rises from the ft tht G DCE (t, t, k) is the expettion vlue of norml ordered produts of phonon opertors bk , b † -k of iqF @WFPQAF he ondition nd its intrinsi impreision re visully represented in pigF WFR y the two dotted linesF

	2 in s funtion of the @normlizedA phonon momentum ξ in kF xonE seprle phonon sttes re found wherever the lower envelope @dshed lineAD inditing G ϕ † ϕ DCE (t, t, k) -|G ϕϕ DCE (t, t, k)|D goes elow 0F sn the present seD the intrinsi impreiE sion ±|c b k,f | @dotted linesA does not signifE intly 'et the identi(tion of nonsepE rle sttesF ystem nd jump prmeE tersX M in /m = 0.01D c 2 f /c 2 in = 2D nd Γ = 0.03mc 2 in F sn terms of [G DCE (t, t, k)]D the nonseprility ondition of iqF @PFQIA pplied to phonon sttesD c b k (t) ≥ n b k (t)D is simply reexpressed s [G DCE (t, t, k)] ≤ 0 up to erE ror terms of order O[c b 2. The g 2 0 5 10 15 20 25 30 0.55 0.50 0.45 0.40 0.35 t m c in 2 g 2 n b f,k 0.14F es in pigF VFUD n exponenE til onvergene towrds the (nl vlue is pprentF he horizontl green line represents the phononseprility threshE oldX xonseprility is found s long s the lower envelope of the osillting solid line stys elow the horizontl lineD whose thikness shows the intrinsi impreision ± cb k,f of the men ouption numerF me system nd jump prmeters s in pigF WFRF 0.0 0.5 1.0 1.5 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 k Ξ in g 2 k,f ITI 2.0 pigure WFSX imeEevolution in pourierE pigure WFTX pourierEspe seondEorder spe of the seondEorder oherene of the oherene of the photon (eldF he two photon (eldF he solid lue line shows osillting urves represent the equl time the equl time g 2,k (t, t ) t t = t for g 2,k (t, t) s funtion of normlized moE given kξ in = 0.75F sn this seD the iniE mentum kξ in t time t = 3/mc 2 in fter til nd (nl vlues of the phonon ouE ption re respetively n b st,k 0.06 nd jump hrterized y c 2

  reneD the g inequlity is violted if nd only if the stte is nonseprle @when sin[ω k (t -t )] = 0AF sn the presene of dissiptionD s disussed in eF ssF fF Q nd in ghpF VD eF sssF fD the oupling of the phonon (eld φ to n environment introdues intrinsi miguities in the de(nition of nonseprilityF xevertheless deomposition of φ t ny time t over instantaneous destrution nd retion opertors bk , b † -k llows to show tht for Γ(tt )1D the ove reltion etween the sign of D k (t, t ) nd the nonseprility riterion sed on these opertors remins vlid to leding order in Γ/ω k F eepting this inherent unertinty of order Γ/ω k 1D one n then follow how nonseprility is progressively lost s time goes onF his physis is illustrted in (g WFWX the quntity in iqF @WFTTA displys three di'erent ehviors depending on t, t ompred to the hrteristi time t loss of iqF @WFSWAF IF por (t, t ) t loss D no violtion is oservedD euse the stte is seprleD s exE petedF

	PF por t	t loss	t D iqF @WFTTA n only e violted for t suh tht g b 2,k (t, t) < 0D
	euse g b 2,k (t , t ) > 0F elong onstntEt utD the reder will reognize the
	ehvior lredy seen in pigF WFSF
	QF por t, t	t loss nd Γ/ω 2 k	|t -t | 1/ω k D iqF @WFTTA is violtedF his is the most
	roust regime for nonseprilityF
	xote tht esides the trnsition from point 2 to point 3D there is lwys nrrow nd
	|t -t |	Γ/ω 2 k where the inequlity is never violted with positiveness of order Γ/ω k F
	es resultD twoEtime mesurement of g b 2,k (t = t ) is required to identify nonseprle
	sttesF		

  IHFIQA he e'etive temperture T hor thus interpoltes etween the Hawking regime for low T H /T ∞ D nd the dispersive regime where it symptotes to T ∞ for T H /T ∞ 1F xumeril studies hve lso shown tht |A ω | 2 nd |B ω | 2 re not fully determined y κ, Λ, DF hey depend on the ext properties of the wve equtionD nd on the IUQ kground pro(lesF etD they re generlly smller thn |β 0 ω | 2 D nd remin (nite for ω → 0F o implement these numeril oservtionsD we shll work with

  • n exponentil dmping due to dissiption whih rries [ñ(t)D c(t)] to [n(t + dt)D c(t + dt)]F he nonEdissiptive modultion over dt gives rise to smll hnge in the quntum mplitude opertors s in iqF @eFTAX bk(t + dt) = δα bk (t) + (δβ) * b † -k (t), @eFPPAwhere δα -1 nd δβ re proportionl to dtF es desried oveD this is the sme in(nitesiml trnsformtion tht ts lolly in the sene of dissiptionD so if S(t) is the (nite fogoliuov trnsformtion relting the instntneous mplitude opertors bk(t) nd b † -k (t) to bin k nd bin -k †in the nonEdissiptive seD then δS = S(t + dt)S -1 (t)F sn terms of α(t) nd β(t)D this is equivlent toδα = α(t + dt)α * (t) -β(t + dt) * β(t) ∼ 1 + ( αα * -β * β)dt, δβ = β(t + dt)α(t) * -α(t + dt) * β(t) ∼ ( βα * -α * β)dt.@eFPQA woreoverD unitrity requires tht |δα| 2 -|δβ| 2 = 1D so the di'erene |δα| 2 -1 is seondE order in dtF hus we re led to the following equtions for the resulting hnges in n nd cD see iqF @VFQVAXñ(t) = |δβ| 2 + |δβ| 2 + |δα| 2 n(t) + 2 (δαδβc(t)) ∼ n(t) + 2 [δβc(t)] , c(t) = δαδβ * + 2δαδβ * n(t) + δα 2 c(t) + (δβ * ) 2 c * (t) ∼ δβ * [1 + 2n(t)] + δα 2 c(t). @eFPRAsn the seond prt of the doule stepD we ount for the proess of wek dissiptionD whih is desried y n(t + dt) = n eq (t) + [ñ(t) -n eq (t)]e -2Γdt ∼ ñ(t) -2Γ[ñ(t) -n eq (t)]dt, c(t + dt) = c(t)e -2Γdt ∼ c(t) -2Γc(t)dt, @eFPSA
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The eld could be coupled to the curvature, in which case, such term disappears in at space. We assume here it is not the case.

This simplies the study, but is not necessary. When it is not the case, we should apply the same treatment to positive and negative times.

Note that for low values of κ, a WKB approximation gives the same rst term, with an upper bound on the approximation given by Γ 2 /ω 2 (1 + κ/ω).

In this case, the change is specied by one parameter. Two-parameter changes can be considered by changing both Γ and F 0 while keeping their ratio constant. This can still be generalized by changing both ω p and E 0 while keeping ω p -E 0 constant. In all cases, the gluing of the background across the jump is easily done.

Note that this quantity should not be confused with g 2,k (t, t ) dened in Eq. (9.28) as the Fourier transform of the real-space g 2 (x, t, x , t ).
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Chapter 1

From the parametric amplier to pair particle production Chapter 7

Bose condensation and analogue gravity Introduction hen one ools down gs t low enough pressure so tht it does not eome liquid nor solidD the low energy sttes get more nd more populted while the high energy ones get depletedF es onsequeneD one strts to feel quntum e'etsF sf the gs is omposed of fermionsD the gs eomes degenerte s no more thn one prtile n e in the sme stteF yne then hve 1 prtile in eh of the lowest energy sttesF yn the other hndD if it is omposed of osonsD the prtiles form fose iinstein ondensteF e here review some si properties of fose iinstein ondensteF e onsider phonons propgting in suh ondenste nd uild e'etive tools to determine if the stte is seprle or not @seeF ghpF PAF sn eF sD we onsider prtiulr out of equilirium ondensteF 

Dissipative phonons

Introduction hen onsidering phonons propgting in figD liner nlysis is generlly perE formedF roweverD the totl rmiltonin remins fourth order in the phonon opertorF hese ui nd qurti terms indue two ody intertionsF he dominnt ones re three ody nd re possile euse of dispersionF es nnouned in ghpF ID eF sF fF PD they indue dissiptionF sn this hpterD we shll onsider phonons living on n homogeneous figF sing formlism similr to the one of ghpF SD we introdue dissiption for the phononsF e use lrge lss of dissiptive rtes Γ so tht ny @lol in timeA dissiptive rte n e reoveredF e then onsider homogeneous ondenste sujet to sudden hngeF es (rst stepD we ompute the oservles in the sene of dissiptionD so s to see the e'ets of initil temperture on the nonseprilityF es (nl stepD we inlude dissiptionF he seprility of the (nl stte is studiedF his hpter is minly sed on fIQF 

Dissipative condensates

Introduction sn n tomi fose ondensteD the numer of toms is @to very good pproximtionA onservedF es onsequeneD to mke mesurement on the stteD one modi(es @nd sometimes destroyA the ondensteF yn the other hndD there exist some systemsD suh s polriton systemsD see ghpF UD eF s where the prtiles forming the ondenste re dissiptedF hen mesuring the outgoing )uxD one then mesures the properties of the systemF his is the min dvntge of suh systemX it is not neessry to destroy the ondenste to oserve itF sn this hpterD we (rst review the equtions of motion for phonon in suh systemF e then study in detils the sttionry stte so tht we identify its min propertiesF sn prtiulrD sine the system is out of equiliriumD the )utution dissiption theorem is violtedF sn eF sssD we ompute the retion of the phonon stte to some sudden hngeF o void tehnil di0ultiesD the sudden hnge is (ne tuned so tht the ondenste is sttionryF his hpter is minly sed on fgIRF Separability of analogue black hole radiation Introduction eprt from dynmil gsimir e'etD the seond min predition of nlogue grvity is the nlogue rwking rditionF roweverD s in the previous hptersD there is ompetition etween the spontneous qunt emission from vuum nd initilly present therml )ututionsF he hllenge is then to identify seprle sttesF sn this hpterD we use phenomenologil desription of the nlogue rwking rdition to hrterize the seprility of the outgoing )uxesF his llows us to onsider very wide lss of situtionsF e (rst identify the relevnt prmeters governing the seprility of the stteF henD using superluminl dispersion reltionD we identify in whih regimes the (nl stte is seprleF es (nl stepD we quikly study the suluminl se nd the seprility of the )ux emitted y white holeF his hpter is minly sed on fIRF sn this ppendix we study theoretilly the retion of system to longElsting modultion with the im of understnding under whih onditions the (nl stte will e nonseprleF he min hnge with respet to ghpF V nd ghpF W is in the expression of the fogoliuov oe0ientsF sn (rst timeD we present the si equtions governing the time evolution of the modes of homogeneous system in response to n ritrry modultion in timeF e then hrterize the nonseprility of the stte fter sinusoidl modultionF es (nl stepD we introdue dissiption through its min e'etsF his ppendix is minly sed on efF fIR 

sn the followingD we shll ssume tht Ω -mc 2 is onstntF 3 sn this seD the fogoliuov oe0ients re governed solely y the time evolution of ωF sn the followingD we onsider n extended oherent modultion of the system tht indues orresponding modultion of ω 2 F wore preiselyD ω 2 is ssumed to e onstnt for negtive timesD then follows sinusoidl osilltion of durtion ∆tD nd settles on onstnt (nl vlue for ll lter timesX

@eFIPA his funtion is illustrted in pigF eFIF st de(nes three dimensionless prmeters tht re ll relevnt in the followingX the reltive pekEtoEpek 4 mplitude A of the freE queny modultionD the numer of osilltions N D nd resonne prmeter we ll RF ixpliitlyD these re de(ned y

xotie tht R omines in prtiulr wy the detuning (2ω 0 -ω p ) /ω p nd the mpliE tude AX it desries the reltive frequeny gp from resonneD sled y A so tht it depends on this distne s frtion of the width of the frequeny modultionF xotie lso tht N is not neessrily n integerF por onvenieneD in the rest of the pperD we shll use N t = ω p t/2π s dimensionless time prmeterF ine α nd β re ontinuous in timeD we n think of α(N ) nd β(N ) either s their (nl vlues fter modultion of length N D or s their instntneous vlues t N t = N during modultion of indeterminte lengthF hese equivlent points of view llow us to use the sme nottion for N nd N t D nd lso for |β as (N )| nd |β(t = ∆t N )|F 3. In atomic BEC, this corresponds to a constant atomic mass. This is not necessarily true in systems like polaritons or atoms on a lattice, as pointed out to us by C. Westbrook [MO06].

4. Assuming A 1, the square root of the second line of Eq. (A.12) gives ω k (t)/ω 0 ≈ 1+(A/2) sin ω p t, so that the relative amplitude of the frequency modulation (as opposed to that of the squared frequency) is A/2.

IWV APPENDIX A. MODULATED DCE

smposing the initil onditions α = 1 nd β = 0 t t = 0D the ext solutions of these equtions re

everl omments should e mdeF pirstD for low vlues of τ = ω p tD we hve |β| ∝ Aτ F his explins the ft tht ll urves of pigF eFP re initilly liner with growth rte tht is independent of RF eondD iqsF @eFIWA revel the ruil role plyed y RD whih did not pper in iqsF @eFISAF he vlue of R delinetes the two ehviors tht we oservedD nd hrE terizes the trnsition from one to the other ourring t |R| = 1F hen |R| > 1D the squre root is imginry nd β osilltes in timeD with mximum given y |β| max ∼ 1/ √ R 2 -1F his is the o'Eresonnt ehviorF sn dditionD the ft tht |β| max depends only on R explins the envelope tred out with inresing N in pigF eFQF sn ontrstD when |R| < 1D β grows exponentillyD s n e lerly seen in the lowER urves of pigF eFPF his is the resonnt regimeD nd the ft tht it ours over (nite rnge of R explins the (nite width of the growing prt of the spetrum seen in pigsF eFQ nd eFRF sndeedD t lrge timesD we (nd

F he ritil se is |R| = 1F sn this seD under the ssumptions we usedD β grows linerly in timeF hirdD in the limit R 1D r = AR/4 1D iqF @eFIWA gives |β| ∼ sin [rτ /2] R , @eFPHA whih orresponds to the (rst term of iqF @eFIUAF here is thus perfet omptiility of the two desriptions in this intermedite rnge 1 R 4/A where they overlpF pinllyD we n sustitute the expressions of iqF @eFIWA into the rightEhnd side of iqsF @eFISAD yielding improved solutions tht re relevnt lose to resonne nd inlude the rpidly osillting termsF sn ftD iterting this opertion gives perturtive expnsion for the solutions of iqsF @eFISAD of whih iqsF @eFIWA re the lowestEorder termsF B. Dependence on temperature and nal entanglement e now inlude the e'ets of nonzero initil temperture ! orD equivlentlyD nonE zero initil ouption numer ! on oth the (nl ouption numer n out nd the seprility prmeter ∆ out F o do soD the initil ouption numer is supposed to follow the therml distriutionX n th (ω/T ) = 1 e ω/T -1 . @eFPIA n out nd ∆ out re then given y iqsF @VFQVA nd @VFRHAF sn pigF eFSD n out nd ∆ out re plotted s funtions of n in nd T /ω 0 for system extly t resonne @R = 0A nd