
HAL Id: tel-01087271
https://theses.hal.science/tel-01087271

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping and Scheduling on Multi-core Processors using
SMT Solvers
Pranav Tendulkar

To cite this version:
Pranav Tendulkar. Mapping and Scheduling on Multi-core Processors using SMT Solvers. Embedded
Systems. Universite de Grenoble I - Joseph Fourier, 2014. English. �NNT : �. �tel-01087271�

https://theses.hal.science/tel-01087271
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : informatique

Arrêté ministérial : 7 août 2006

Présentée par

Pranav TENDULKAR

Thèse dirigée par Oded Maler
et codirigée par Peter Poplavko

préparée au sein du laboratoire Verimag
et de Ecole Doctorale Mathématiques, Sciences et Technologies de l’In-
formation, Informatique

Mapping and Scheduling on Multi-
core Processors using SMT Sol-
vers

Thèse soutenue publiquement le 13th October 2014,
devant le jury composé de :

Dr. Albert Cohen
INRIA, Paris, Rapporteur
Prof. Marc Geilen
Technical University of Eindhoven, Netherlands, Rapporteur
Prof. Dimitrios S. Nikolopoulos
Queen’s University, Belfast, UK, Examinateur
Dr. Alain Girault
INRIA, Grenoble, Examinateur
Dr. Benoît Dinechin
Kalray, Examinateur
Dr. Phil Harris
United Technologies Research Center, Cork, Ireland, Examinateur
Dr. Oded Maler
CNRS, Verimag, Directeur de thèse
Dr. Peter Poplavko
Verimag, Co-Directeur de thèse

Acknowledgements

Foremost I would like immensely thank Oded Maler who is my thesis supervisor, but much
more. He persistently helped me throughout my PhD. and provided motivation, research
directions to carry out my work. But more importantly he gave me unparalleled freedom to
explore my varied interests while choosing a topic for my thesis. He made me understand
research and many other things in general and broader sense. He has been a continuous source
of inspiration and motivation, to carry out the work, especially in times when things were
obscure. He always provided me more than enough time and guidance where it was utmost
necessary and ensured that I remained focussed on my topic. It was a privilege to work at
Verimag especially with Oded, since he always provided a healthy and relaxed work atmosphere.
He always blended humor with our daily chores at Verimag which teared down undesired
tensions and frustrations. I had a great time at Grenoble working under his supervision. He
was like a friend when we met over many lunches or dinners, with his entertaining and
knowledgeable discussions on diverse topics. I will forever cherish the time that we shared
during these years.

I am deeply thankful to Peter Poplavko who inspired me to work on dataflow models.
Although according to Oded, he hijacked me to this domain. Peter played a very important
role in my thesis. He was providing me a continuous feedback on my work. He enabled me to
understand how to persistently attack a problem. He was actively guiding me throughout all
my PhD. I thank him for all our discussions, code reviews, publication writing exercises etc. in
which he invested a lot of his time. Especially the feedback on my thesis even when he was on
vacation was of great help. I am confident that I would never have been able to complete this
thesis without him.

I would like to thank the jury members and the reviewers for attending my thesis defense.
I especially thank them for their valuable feedback on the manuscript. The feedback gave me
an additional perspective to my own work. I am very happy to have such a jury.

I also want to thank the group at Technical University of Eindhoven who supported me for
an internship. It was a very different and wonderful experience to work there. Prof. Sander
Stuijk and his team were immensely supportive during my work. A few names I would like
to mention are Hamid Reza Pourshaghaghi, Francesco Comaschi, Sebastian Moreno, Rosilde
Corvino, Karthik Chandrasekar. Out of my office I made many friends in Eindhoven who
accompanied me in several evenings for dinner, playing cards, skating and many other things.
I will always remember the time that I spent with Deepak Jain, Srivathsa Bhat, Sushil Shirsath,
Sandip Pawar, Aroa Izquierdo and many others.

I want to thank all my colleagues in Verimag. Sophie Quinton, Irini-Eleftheria Mens,
Abhinav Srivastav, Alexios Lekidis and many of them. We always crack jokes on PhD. life and
make fun of our situations which seemed to be going nowhere. I believe I had a great working
environment, sharing my views, talks, presentation etc. with my friends. I would like to convey
my thanks to the administrative staff which was a life-line for me in France. I still remember
my struggles as a non-french speaking foreigner and without their help I would have been
nowhere.

A special thanks goes to Dorit Maler. I enjoyed the time that we spent with her in informal
meetings. We shared such memorable discussions, that I would cherish for rest of my life. I

i

ii

still remember how confident I felt after I talked with her just before my defense. She is a
wonderful person, and I feel lucky to know her closely.

Finally, I want to thank most supportive and loveable parents, who have been there for
me always, irrespective of all the things. I am indebted to them to the last bit for being there
and bringing the best out of me. Along with them, I thank my sisters and extended family
for their support even if I am far away for a long time. I want to thank my wife "Vrushali",
for her constant support in good and bad times. She accompanied me without any complain
irrespective of my negligence towards her. I am grateful to have such companion. I dedicate
this thesis to my parents and my wife.

Abstract

In order to achieve performance gains in the software, computers have evolved to multi-core
and many-core platforms abounding with multiple processor cores. However the problem
of finding efficient ways to execute parallel software on these platform is hard. With a
large number of processor cores available, the software must orchestrate the communication,
synchronization along with the execution of the code. Communication corresponds to the
transport of data between different processors, which either can be handled transparently
by the hardware or explicitly managed by the software. Synchronization is a requirement of
proper selection of start time of computations e.g. the condition for software tasks to begin
execution only after all its dependencies are satisfied.

Models which represent the algorithms in a structured and formal way expose the available
parallelism. Deployment of the software algorithms represented by such models needs a
specification of which processor to execute the tasks on (mapping) and when to execute them
(scheduling). Mapping and scheduling is a hard combinatorial problem to solve with a huge
design space containing exponential number of solutions. In addition, the solutions are
evaluated according to different costs that need to be optimized, such as memory consumption,
time to execute, static power consumption, resources used etc. Such a problem with multiple
costs is called a multi-criteria optimization problem. The solution to this problem is not a
unique single solution, but a set of incomparable solutions called Pareto solutions. In order to
track multi-criteria problems, special algorithms are needed which can approximate the Pareto
solutions in the design space.

In this thesis we target a class of applications called streaming applications, which process a
continuous stream of data. These applications typically apply similar computation on different
data items. A common class of models called dataflow models conveniently expresses such
applications. In this thesis, we deal with mapping and scheduling of dataflow applications on
many-core platforms. We encode this problem in form of logical constraints and present it to
satisfiability modulo theory (SMT) solvers. SMT solvers, solve the encoded problem by using
a combination of search techniques and constraint propagation to find an assignment to the
problem variables satisfying the given cost constraints.

In dataflow applications, the design space explodes with increased number of tasks and pro-
cessors. In this thesis, we tackle this problem by introducing symmetry reduction techniques
and demonstrate that symmetry breaking accelerates search in SMT solvers, increasing the size
of the problem that can be solved. Our design-space exploration algorithm approximates the
Pareto front of the problem and produces solutions with different cost trade-offs. We validate
these solutions by executing them on a real multi-core platform.

Further we extend the scheduling problem to the many-core platforms which are assembled
from multi-core clusters connected by network-on-chip. We provide a design flow which
performs mapping of the applications on such platforms and automatic insertion of additional
elements to model the communication. We demonstrate how communication with bounded
memory can be performed by correctly modeling the flow-control. We provide experimental
results obtained on the -processor Kalray MPPA- platform.

iii

iv abstract

Multi-core processors have typically a small amount of memory close to the processor.
Generally application data does not fit in the local memory. We study a class of parallel
applications having a regular data access pattern, with large amount of data to be processed by
a uniform computation. Such applications are commonly found in image processing. The data
must be brought from main memory to local memory, processed and then the results written
back to main memory, all in batches. Selecting the proper granularity of the data that is brought
into local memory is an optimization problem. We formalize this problem and provide a way
to determine the optimal transfer granularity depending on the characteristics of application
and the hardware platform. Further we provide a technique to analyze different data exchange
mechanisms for the case where some data is shared between different computations.

Applications in modern embedded systems can start and stop dynamically. In order to exe-
cute all these applications efficiently and to optimize global costs such as power consumption,
execution time etc., the applications must be reconfigured at runtime. We present a predictable
and composable way (executing independently without affecting others) of migrating tasks
according to the reconfiguration decision.

Keywords: Multi-core, many-core, dataflow, mapping, scheduling, SMT solver

Résumé

Dans l’objectif d’augmenter les performances, l’architecture des processeurs a évolué vers
des plate-formes "multi-core" et "many-core" composées de multiple unités de traitements.
Toutefois, trouver des moyens efficaces pour exécuter du logiciel parallèle reste un problème
difficile. Avec un grand nombre d’unités de calcul disponibles, le logiciel doit orchestrer la
communication et assurer la synchronisation lors de l’exécution du code. La communication
(transport des données entre les différents processeurs) est gérée de façon transparente par le
matériel ou explicitement par le logiciel.

Les modèles qui représentent les algorithmes de façon structurée et formelle mettent en
évidence leur parallélisme inhérent. Le déploiement des logiciels représentés par ces modèles
nécessite de spécifier placement (sur quel processeur s’exécute une certaine tâche) et l’ordon-
nancement (dans quel ordre sont exécutées les tâches). Le placement et l’ordonnancement sont
des problèmes combinatoires difficile avec un nombre exponentiel de solutions. En outre, les
solutions ont différents coûts qui doivent être optimisés : la consommation de mémoire, le
temps d’exécution, les ressources utilisées, etc. C’est un problème d’optimisation multi-critères.
La solution à ce problème est ce qu’on appelle un ensemble Pareto-optimal nécessitant des
algorithmes spéciaux pour l’approximer.

Nous ciblons une classe d’applications, appelées applications de streaming, qui traitent
un flux continu de données. Ces applications qui appliquent un calcul similaire sur différents
éléments de données successifs, peuvent être commodément exprimées par une classe de mo-
dèles appelés modèles de flux de données. Le problème du placement et de l’ordonnancement
est codé sous forme de contraintes logiques et résolu par un solveur Satisfaisabilité Modulo
Théories (SMT). Les solveurs SMT résolvent le problème en combinant des techniques de
recherche et de la propagation de contraintes afin d’attribuer des valeurs aux variables du
problème satisfaisant les contraintes de coût données.

Dans les applications de flux de données, l’espace de conception explose avec l’augmen-
tation du nombre de tâches et de processeurs. Dans cette thèse, nous nous attaquons à ce
problème par l’introduction des techniques de réduction de symétrie et démontrons que la
rupture de symétrie accélère la recherche dans un solveur SMT, permettant ainsi l’augmenta-
tion de la taille du problème qui peut être résolu. Notre algorithme d’exploration de l’espace
de conception approxime le front de Pareto du problème et produit des solutions pour diffé-
rents compromis de coûts. De plus, nous étendons le problème d’ordonnancement pour les
plate-formes "many-core" qui sont une catégorie de plate-forme multi coeurs où les unités sont
connectés par un réseau sur puce (NoC). Nous fournissons un flot de conception qui réalise le
placement des applications sur de telles plate-formes et insert automatiquement des éléments
supplémentaires pour modéliser la communication à l’aide de mémoires de taille bornée. Nous
présentons des résultats expérimentaux obtenus sur deux plate-formes existantes : la machine
Kalray à  processeurs et les Tilera TILE-.

Les processeurs multi-coeurs ont typiquement une faible quantité de mémoire proche du
processeur. Celle ci est généralement insuffisante pour contenir toutes les données necessaires
au calcul d’une tâche. Nous étudions une classe d’applications parallèles présentant un pat-

v

vi résumé

tern régulier d’accès aux données et une grande quantité de données à traiter par un calcul
uniforme. Les données doivent être acheminées depuis la mémoire principale vers la mémoire
locale, traitées, puis, les résultats retournés en mémoire centrale, tout en lots. Fixer la bonne
granularité des données acheminées en mémoire locale est un problème d’optimisation. Nous
formalisons ce problème et proposons un moyen de déterminer la granularité de transfert
optimale en fonction des caractéristiques de l’application et de la plate-forme matérielle.

En plus des problèmes d’ordonnancement et de gestion de la mémoire locale, nous étu-
dions une partie du problème de la gestion de l’exécution des applications. Dans les systèmes
embarqués modernes, les applications peuvent démarrer et s’arrêter dynamiquement. Afin
d’exécuter toutes les applications de manière efficace et d’optimiser les coûts globaux tels
que la consommation d’énergie, temps d’exécution, etc., les applications nécessitent d’être
reconfigurées dynamiquement à l’exécution. Nous présentons une manière prévisible et com-
posable (exécution indépendamment sans affecter les autres) de réaliser la migration des tâches
conformément à la décision de reconfiguration.

Contents

Abstract iii

Résumé v

 Introduction 
. Multi-core Processor System Architecture . 

.. Host Processors . 
.. Peripheral Devices . 
.. Multi-core Fabric . 
.. Memory Organization . 
.. Network Interconnect . 

. Multi-core Software . 
.. Theoretical issues . 
.. Practical Issues . 

. Software Design Flow . 
. Related Tools . 

.. SDF . 
.. MAMPS . 
.. MP-Opt . 
.. StreamIT . 
.. StreamRoller . 
.. Discussion . 

. Organization of Thesis . 

 Programming Model 
. Dataflow graphs . 

.. Static Dataflow . 
.. Dynamic Dataflow . 

. Synchronous Dataflow . 
. Split-Join Graphs . 

.. The Semantics of Split-join Graphs . 
.. Derived Task Graph . 
.. Marked Split-join Graphs . 

. Split-join Graph Application Example : JPEG decoder 
. Conclusion . 

 Architecture Model 
. Multi-core and Many-core processors . 

.. Clusters . 
.. Shared Memory . 

vii

viii contents

.. Network-On-Chip . 
.. DMA . 

. Tilera Tile . 
. Kalray MPPA- . 
. CompSOC Platform . 
. IBM Cell BE Processor . 
. DMA Controller in Cell Processor . 

.. Strided DMA . 
.. DMA list . 

. Modeling DMA Controller . 
. Platform Model . 
. Conclusion . 

 Satisfiability solvers and multi-criteria Optimization 
. Satisfiability Solvers . 
. An Example of SMT constraints . 

.. Non-retractable and retractable constraints 
. Multi-Criteria Problem . 
. Cost-Space Exploration . 
. Distance based Exploration . 
. Grid Based Exploration . 
. Conclusions . 

 Deployment and Evaluation Methodology 
. The Tool . 
. Profiling the application . 
. Run-time environment . 

.. Initialization of the application . 
.. Execution of the application . 
.. Release of the resources . 
.. Hardware Specific Implementation . 

. Communication Buffers . 
.. FIFO buffer example . 
.. Inter-cluster FIFO buffer in Kalray . 

. Conclusions . 

 Scheduling in shared memory 
. Symmetry in Split-join Graphs . 
. SMT Constraints . 
. Experiments . 

.. Finding Optimal Latency . 
.. Processor-Latency Trade-offs . 
.. A Video decoder . 
.. JPEG decoder . 

. Conclusions . 

 Multi-stage scheduling for distributed memory processors 
. Design Flow . 

.. Software partitioning . 
.. Mapping software to hardware cluster . 

contents ix

. Inter-cluster FIFO . 
. Modeling Communication . 

.. Partition-Aware Graph . 
.. Buffer Aware Graph . 
.. Communication Aware Graph . 

. Scheduling . 
.. Schedule Graph . 
.. Mapping and scheduling using SMT . 

. Schedule improvement . 
.. Improvement of latency . 
.. Processor Optimal Schedule . 

. Experiments . 
. Conclusions . 

 Optimizing the DMA communication 
. Data-parallel applications . 

.. Buffering schemes . 
.. Data distribution, block Shape and Granularity 

. Optimal Granularity for Data Transfers . 
.. Single Processor . 
.. Multiple Processors . 

. Shared Data Transfers . 
. DMA Performance of the Cell processor . 
. Experimental Results . 

.. Independent Data Computations . 
.. Shared Data Computations . 
.. Convolution Benchmark (FIR filter) . 
.. Mean Filter Algorithm . 

. Conclusions . 

 Run-time application management and reconfiguration 
. Runtime Resource Manager . 

.. System-level resource manager . 
. Implementation . 

.. Application-level resource manager . 
.. Migration Point . 
.. Actor and FIFO Migration on CompOSe 

. Application-level manager . 
.. Run-Time Actor and FIFO Migration . 
.. Results . 

. Conclusions . 

 Conclusions and Future Work 

Appendices 

A Schedule XML 

Bibliography 

List of Figures

. Evolution of multi-core processors . 
. MPSoC architecture . 
. Multi-core architecture . 
. Execution of a program . 
. Parallelism in a program . 
. Software design flow . 

. Basic dataflow graph . 
. Simple SDF with two actors . 
. SDF with backward edge . 
. Timed Synchronous DataFlow Graph . 
. Example schedule of a Synchronous DataFlow graph 
. Split-Join graph . 
. JPEG decoder . 

. Tilera Tile- processor . 
. Kalray MPPA- platform . 
. CompSOC platform . 
. IBM Cell BE processor . 
. IBM Cell processor DMA controller . 
. Image stored in memory . 
. DMA transfers . 

. Pareto points . 
. Forward and backward cones . 
. Sat and Unsat sets . 
. Grid based exploration . 

. Structure of StreamExplorer . 
. FIFO token example for actors A and B with buffer size =  

. Illustration of the lexicographic ordering theorem 
. Time to find optimal latency as a function of the number of tasks for 5 and 20

processors. 
. Exploration time to find optimal latency as a function of the number of tasks and

processors. 
. Result of Pareto exploration for Ó = 30 . 
. Video decoder example . 
. Video decoder exploration result . 

. Multi-stage design flow . 

x

list of figures xi

. Working of inter-cluster FIFO . 
. Communicating tasks . 
. Partition aware communicating tasks . 
. Buffer aware graph model for a channel without DMA 
. Buffer aware graph model for a channel with DMA 
. Double buffering example schedule . 
.  scheduling solutions for  partitioning solutions 
. Jpeg decoder solutions measured on Kalray platform 
. Application benchmarks: summary of results . 

. Neighborhood pattern of size k . 
. Contiguous vs periodic allocation of data . 
. Distribution of D data of same size, but different shapes 
. Influence of block shape on the amount of shared data 
. Decomposition of one dimensional input array . 
. Pipelined execution using double buffering on one processor 
. Regimes depending on the block size . 
. Rectangular blocks: (a) computation and transfer domains, (b) optimal granularity

candidates and optimal granularity. 
. The dependence of computation C and transfer T on the granularity (s1,s2). 
. Pipelined execution in the transfer regime using multiple processors 
. Evolution of the computation domain and optimal granularity as we increase the

number of processors . 
. Shared data communication . 
. DMA performance for contiguous blocks . 
. Independent data computations . 
. Measurements for shared data in computation regime 
. Measurements for shared data in transfer regime . 
. Convolution algorithm . 
. Predicted transfer time for different block shapes with shared data 
. Predicted and measured values for different combinations of s1 × s2 

. Run-time resource manager (conceptual view). 
. Run-time resource manager (deployment view). 
. JPEG decoder SDF graph . 
. Actor migration steps example . 
. Measured and predicted reconfiguration times . 

A. Gantt chart for schedule XML . 

chapter 1
Introduction

The first chapter introduces the embedded systems domain. It explains the multi-core scenario and
technological challenges associated with it.

Multi-core processors are now an unavoidable fact of the information processing industry.
Over the years, technology advancement has seen the scaling of Moore’s law []. While

the technology evolved for smaller and smaller transistor size, more amount of hardware could
be fabricated on chip with same area. Increasing clock speed to gain performance improvement,
a technique followed for many years, could no longer provide performance benefits, because of
several issues like power consumption, current leakage, electrical interference, chip-design
issues etc. []. In order to exploit the advantages of technology scaling, multi-core processor
came into existence. It became clear that adding multiple processor cores to the same chip
provides more benefits and performance rather than over-clocking a single processor [].
This trend is illustrated in Figure ., where the evolution of the processors gradually shifts
towards multi-core approach.

Another motivational factor for multi-core processing was the advancements in data pro-
cessing algorithms, which demanded extra computational power. Applications which perform
video processing, audio-video rendering, and many other signal processing applications be-
came computationally heavy with their evolution. In addition, such applications have stringent
deadline requirements to be met on a platform having limited resources. They also provide
a degree of freedom, which involve exploitation of different levels of parallelism. Multi-core
approach is often a suitable solution for parallel applications. It is well-known that the speed-
up due to multi-core processor is less than proportional to their number, nevertheless, it still
remains attractive in power-performance trade-offs.

 . multi-core processor system architecture

A typical embedded system has to perform various tasks. For example, a cellphone would
display images, play video/audio, send and receive messages, perform data transfer and do
more. In real-time systems, the tasks have strict deadlines. For example, a cell-phone is
receiving a message in background while it is decoding audio and video data and displaying
it on the screen. It has timing constraints such that it should not drop frames while doing
audio/video processing to ensure quality of the service. At the same time, the communication
protocol to receive messages requires messages to be exchanged at definite time intervals.



 chapter  . introduction

Figure . – Evolution of multi-core processors 

Handling such a wide variety of tasks using only one processor is difficult in practice. This
will require a processor with high clock frequency, which in turn will incur higher power
consumption. On mobile platforms, the resources such as energy resource are limited and
must be optimally used.

In order to satisfy these constraints, designers use a piece of hardware called as MPSoC
(MultiProcessor System on Chip) []. MPSoC’s typically have dedicated hardware for some
functions. For example, there is a dedicated IP (Intellectual Property) block, to process the
input from keyboard. Suppose that instead of dedicated IP block, the general purpose processor
(GPP) handled this task in the software, which is a possibility. This will increase the load on
the processor, which will have to continuously poll for updated status from the keypad. With
the IP block, this polling is offloaded to the dedicated hardware and it informs the GPP only
when it has some relevant information to process. Suppose a key is pressed by the user, it
is processed by the IP block and checked for its validity. And then it generates an interrupt
to the GPP to process this information. Thus GPP is responsible for management of many
such blocks, in addition to management of the software. Figure . shows an example MPSoC,
where different functions such as Display, Camera, Keyboard, etc. are offloaded to a dedicated
reduced instruction set computing (RISC) hardware. However, the hardware itself is managed by
a GPP.

Dedicated hardware is a long-debated trade-off between performance and flexibility. Appli-
cation Specific Instruction-set Processor (ASIP) can be optimized to provide high performance
at low energy cost. The price to be paid is in terms of flexibility. If there is need to change
in protocols, this hardware cannot be used. For example, if there is dedicated hardware for
H. video, it cannot be used for newer specification H.. In order to support newer
algorithms and their respective upgrades, it is desirable to add more GPPs on the chip rather
than to develop a dedicated hardware. Owing to this fact, there were two interesting types
of processors were developed. First one is SIMD (Single Instruction Multiple Data), the chip

. Taken from []

 . . multi-core processor system architecture 

General processorDSP

Memory USB Ethernet

Wireless

cameraDisplayAudio

Keyboard GPIO

A/D

Figure . – MPSoC architecture

contains multiple processors which execute the same instruction on different data sets. It
is a very useful architecture for data-parallel application like image processing. Graphics
processing unit (GPU) are common example of such an architecture. The other interesting
stream is MIMD (Multiple Instruction Multiple Data) or SPMD (Single Program Multiple Data).
In this architecture, the processors execute independently of each other. This is the class of
multi-core systems that we target for our work.

The design of multi-core processor architectures are driven mainly by the design costs
pertaining to its application. Typical design and manufacturing of such systems requires
investments in millions of dollars. Thus re-usability of such designs are also of primary
importance. To make these systems generic and applicable in a wide range of applications
typical system architectures have been followed. The dedicated IP blocks are re-used in the
design, which brings lot of benefits, especially for verification of the design. Figure . shows an
example of a multi-core architecture. Such multi-core systems consists of following hardware
components -

.. Host Processors

Host Processors consist of a single or a group of general purpose processors which are used
mainly for management tasks. Typically these group of processors are responsible for running
operating systems or firmware and launching applications. They also handle other tasks like
serving the hardware requests, running single-threaded program etc. The host processors are
the masters of the systems and their main job is to control all the other pieces of hardware
components and serve their requests.

.. Peripheral Devices

Peripheral devices typically consist of Application Specific Instruction-set Processor (ASIP)
which are dedicated to a specific functionality. As seen in Figure ., the peripheral devices
like USB, Display etc. are the ASIP processors which are dedicated to their respective functions.
They provide a minimum instruction set, which can be used to perform a restricted task. The

 chapter  . introduction

Group of Host
Processors

Main Memory

multi-core fabric

Cluster1 Clustern

Inter-cluster memory

interconnect

H/W
peripheral

H/W
peripheral

shared bus

core1

local
mem

corem

local
mem

Intra-cluster memory

Figure . – Multi-core architecture

advantage of ASIP is that, they are optimized to run a specific function efficiently. Thus they
provide high performance and reduce power consumption. However, it comes at the cost of
limited flexibility and reprogramming. In contrast, GPP are less efficient compared to ASIP,
but they provide high flexibility. In addition to ASIPs, some architecture also have Digital
Signal Processor (DSP) which have SIMD or VLIW (Very Long Instruction Word) execution
model. These processors are highly optimized to process data in parallel by using a single
instruction. They are helpful in efficient execution of signal processing algorithms like filter
banks, Fourier transforms, convolution etc. Application Specific Integrated Circuit (ASIC) also
form a part of peripheral devices. These hardware circuits are devised to perform only specific
tasks and are more efficient than ASIPs or GPPs, but at a cost of no flexibility.

.. Multi-core Fabric

The motivation behind introduction of multi-core accelerator is to improve the response
time of the programs that have portions executing in parallel as shown in Figure .. Multi-core
fabric is typically used to offload the parallel computation of the program to execute it faster
than on a single processor.

The multi-core fabric typically consists of multiple symmetric processors. Sometimes the
symmetric cores are grouped in clusters [, ]. The obvious benefit of having clusters is
to limit number of processors sharing common resources, resulting in less contentions and
faster access. Typically, memory is a resource which is extensively used by the processor. If
thousands of processors access memory, then memory will be a huge bottleneck, resulting
in worse performance. Clustering helps to reduce number of processors to contend for such
resources, for example by adding local memories to every cluster, which are synchronized with
the main memory using either explicit transfers or synchronous hardware mechanisms (cache).

 . . multi-core processor system architecture 

Seq0 A0 A1 B0 B1 B2 B3 C0 C1 C2 C3 Seq1

(a) Sequential execution on single processor

Seq0

A0

A1

B1

B0

B2

B3

C0

C1

C2

C3

Seq1

(b) Parallel execution

Figure . – Execution of a program

.. Memory Organization

The memory access in a computer system is the biggest bottleneck in the advancement of
the processor technology. The gap between the the processor and memory speeds is increasingly
becoming larger. Caches were added to processor systems which helped to close this gap. Multi-
level caches became necessary to further boost the performance. In multi-core processors, they
bring additional problems like extra area and power overhead, maintaining cache coherence
(maintaining same copy of data in all the caches of the system) which limits scalability [, ,
] etc.

Owing to such and many other issues, the multi-cores generally follow a Non-Uniform
Memory Access (NUMA) model, where though all the memory is directly or indirectly accessi-
ble to all the cores, the access times differ according to hierarchy. Another problem with the
cache in hierarchical memory, is that the access time for the cache is unpredictable (or in a
wide range). If data is not found in cache, the amount of time required to bring data from
main memory to cache depends on various factors like memory access latency, contentions on
network, DRAM architecture and so on. Further, when processing is done in parallel, it can
trigger cache coherence mechanism, maintaining the same copy of data in different caches to
update the copies. This data traffic brings a further unpredictability in the software. Many
a times, handling of cache coherence is offloaded to the software, making hardware design
simpler. Some architectures provide scratchpad memories, which is located on-chip close to
the processor. The difference is fast and predictable access as contrary to slower and with larger
variation in access time for off-chip memories.

.. Network Interconnect

With increasing number of transistors and hardware on the chip, as discussed before, it
became increasingly difficult to maintain a single clock source with small skew across the
entire chip. Due to this Globally Asynchronous Locally Synchronous (GALS) approach was
introduced, which involves using different clocks in different region of the chip. Traditional
approaches like Point-to-Point connections, shared bus, etc. incurred number of issues to
connect high number of hardware blocks. These issues include performance, dynamic power
dissipation, wire delay, crosstalk, global routing congestion etc. In addition, with the increasing
complexity, performance requirements, power issues, real-time requirements, Network On-

 chapter  . introduction

Chip (NoC) came into existence []. In NoC, the communication message is split into packets
which are eventually transmitted on the packet-switched network. Due to their regular
structure, fragmentation of wires and data multiplexing, they resolve many of the above-
mentioned problems. A detailed survey of various NoC techniques and architectures are found
in [, ].

 . multi-core software

Given that we have a multi-core processor architecture, with the applications executing
on them as a software, the question is how much speed-up can be acquired compared to the
single core execution and how to optimize it. In this context, given a parallel application and a
parallel processing architecture, the software programmer has a very high number of design
choices at various levels.

These choices can be briefly described as -
n Software : programming model and languages, portability, performance, re-use
n Algorithm : exposing the parallelism, and a set of design parameters influencing its

execution, that can be chosen by the programmer.
n Models : abstraction of hardware platform, abstraction of software details to focus on

the timing properties.
n Optimization tools and methods : heuristics and formal methods to be used for opti-

mization, mapping and scheduling algorithms
Given with all these choices, it is not practically possible to evaluate every combination.

In many cases, these decisions are made by intuition rather than by theory. It becomes
hard to analyze if the design choices made by the programmer were correct and ensure
optimal utilization of the resources. With these mentioned points, we can roughly describe
the theoretical and practical issues in design and implementation of software on multi-core
processors.

.. Theoretical issues

... Theoretical limit for the speedup

When an application is executed in parallel, the speedup obtained compared to its sequen-
tial execution is theoretically limited by the Amdahl’s Law.

Amdahl’s Law for maximum speedup in parallel execution of a program on n processors
is given by -

Speedup =
1

(1− p) +
p

n

where, n ∈ N number of parallel threads in execution
p ∈ [0,1], is the proportion of the program that can be made parallel

Thus we can observe that, the maximum speedup is directly dependent on the sequential
and the parallel parts of the program. Even if we have infinite processors for the execution
of the software, still the speedup obtained will be limited by the factor 1

1−p . We should note
that this is only a theoretical limit. In practice, the program execution faces various issues like
cache conflicts, network contentions, synchronization and communication overheads etc. It

 . . multi-core software 

A

CB D

E

Ta
sk

p
ar
al
le
li
sm

(a) Task parallelism

fork

A1A0 A2

join

D
at
a

p
ar
al
le
li
sm

(b) Data parallelism

A B

C

D

E

iteration 

iteration 

A B

C

D

Time

P1

P2

P3

P
ro
ce
ss
or
s

(c) Pipeline parallelism

Figure . – Parallelism in a program

is difficult to take into account all these factors; however it becomes apparent that the actual
speedup that is obtained will be less than the theoretical speedup.

... Parallelization of the Software

Designing a parallel algorithm and expressing the parallelism efficiently is a challenging
task. It refers to the concurrent execution of different parts of an algorithm. There are several
types of parallelism, as discussed below.

Task Parallelism refers to different tasks in an application, that can be executed in parallel.
For example, in a word processor, one task waits for input from the user and displays it on the
screen, whereas another parallel task immediately processes the input in parallel and check
for error in a given dictionary. These  tasks can run in parallel and can be represented in a
task graph. An example of task parallelism is shown in Figure .(a). Maximum amount of
task parallelism is equal to the task graph width.

Data Parallelism is the same task executing on different data. Single Instruction Multiple
Data (SIMD) and Single Program Multiple Data (SPMD) are different implementation schemes
which benefit from data parallelism. The difference between them is that, in SIMD on every
piece of data, each processor executes the same instruction. This is the type of input suits
vector processors like GPUs. In the case of SPMD, each processor executes same software
subroutine on a separate piece of data. Thus due to coarse granularity, the instructions may

 chapter  . introduction

differ between different data-parallel tasks (because of data dependent operations). Due to this
characteristic, different data-parallel tasks can have different execution times.

For example, if we execute a blur filter on an image, in the output each pixel is replaced by
the mean value of its x neighborhood. This filter can operate independently on each pixel.
Figure .(b) illustrates data parallelism. It looks similar to task parallelism, however with
some key differences. In data parallelism, the tasks execute same piece of software on different
piece of data, making the execution times of data-parallel tasks same (or nearly the same).
Further the granularity and the number of tasks can be an option for the programmer, which
is less the case for task parallelism. For example we can join tasks A0 and A1 into one task of
higher granularity.

Pipeline Parallelism is the possibility of executing another instance of the entire task graph,
before the completion of previous instance. Figure .(c) shows an example of such execution
of task graph shown in Figure .(a). We call execution of the graph once as an iteration of the
graph. We observe that the execution of iteration  finishes with execution of task E, however,
task A of the next iteration starts before task E of the first iteration finishes. This increases
the throughput of the application, which is the number of graph instances executing per unit
time. It brings extra efficiency to execute such pipelined schedule, however the analysis of such
schedule is more complex. Further, programming such schedule also has to ensure the data
communication between tasks. The pipelined parallelism can be partly modeled by task and
data parallelism if we concatenate multiple instances of the task graph into one more complex
instance.

Instruction-level Parallelism (ILP) is different from that of SIMD data parallelism operating
at the instruction level. In ILP, different instructions of a sequential program can be executed
in parallel. For example, if the program has two instructions without dependency between
them, they can execute in parallel in hardware by using hardware pipeline. Superscalar
processors perform pipeline dependency analysis in hardware for parallel execution. To write
such code explicitly would be a complex process which results in unportable code, specific
to the processor. Further the benefits gained by this optimization would be minimal, and
therefore we don’t explore this parallelism. It is taken care of by hardware and compiler.

... Programming Models and Languages

Given an algorithm for performing tasks and processing data, it should be represented
with a model of computation. The model abstracts the algorithm in order to hide the fine
details of a program, but still represent important characteristics of the algorithm, primarily
its parallelism, that can be used for optimization. For example, in Figure . the model used is
task graph. It represents the precedence of the tasks and also indicates about which tasks can
be executed in parallel. There are different models of computation available for specific class
of problems. We discuss this issue detail in Chapter .

In addition to the programming models, there is need of programming languages which can
express the data processing in these models in order to enable their execution on the hardware
platforms. Today there is no standard way of programming parallel platforms. There have
been various efforts to develop languages in the context of different target architectures and
programming models. OpenMP [] is an extension to C/C++ language, which consists of
set of compiler directives and library routines to specify parallel computations for a shared
memory architecture. It annotates the loops and parallelizable code in a sequential program,
which is used by the OpenMP compiler and runtime to effectuate a parallely executing code
on the hardware. Recent versions of OpenMP support task parallelism. However, OpenMP is

 . . multi-core software 

designed more for shared memory programming. There have been efforts to implement it on
MPSoC architectures [, , ].

OpenCL [] and CUDA [], target typically the GPU architectures. They are efficient in
expressing and optimizing the SIMD kind of operations. In addition they support the typical
GPU hardware which has different levels and types of memories. There have been recent
work [] on using OpenCL for multi-core platform with certain restrictions. There are many
other works like MPI [], Cilk [], PGAS [], ZPL [] etc.

Overall the programming languages and models should provide the following
n Abstraction of the application algorithm, independent of the hardware platform with a

separation between algorithm and implementation.
n Data abstraction and sharing conventions, in order to utilize different levels of memory

in the hardware platform effectively.
n Portability to different hardware platforms.
n Execution model transparency, which in turn will help the tools and provide the

programmer with a better understanding of how the code will execute on the hardware
platform, facilitating the design choices.

n Interoperability with existing code. With new programming languages, one should not
have to always completely rewrite all the programs that have already been written in
other languages. It should be easy to migrate the code from other languages.

... Deployment of Parallel Applications

Deployment of applications refers to organizing the execution of the program on the
hardware platform. It consists mainly of two steps:

n Mapping is the spatial allocation of processor resources to the tasks to execute in paral-
lel. It aims at optimizing the properties related to the amount of allocated resources,
like power consumption, communication cost, load-balancing etc.

n Scheduling is the temporal allocation of processors between different tasks. It aims
at optimizing the properties that depend on task execution order like response time,
communication buffer size etc.

Embedded systems typically operate under extra-functional constraints. Hence deployment
of applications has to consider various requirements such as throughput, response time, power
consumption, load balancing, data communication etc. All these variables are elements of
a multi-criteria optimization [] problem where the cost variables are in conflict with each
other. For example, if we use two processors instead of three, shown in Figure .(c), we have
to execute task D on either processor P1 or P2. This will delay the execution of task E, thus
increasing the response time of the application.

In such case, the optimal solution is not unique, but rather a set of incomparable solutions
called Pareto [] set. These solutions represent different trade-offs between the cost variables.

Exploring the design space and finding the Pareto solutions requires a model of computation
as well as a model of the hardware platform. The application model captures different aspects of
algorithms, such as concurrency, data communication, precedence constraints etc. In contrast,
the hardware platform models capture the hardware resources such as number of processors,
communication links, interconnect bandwidth, power consumption, memory capacity etc.
Deployment involves finding a solution which can make efficient use of all these resources in
the hardware meeting the performance goals. Both the models, while abstracting information,
lose some fine level details. This is a natural trade-off between efficiency in finding solutions
and accuracy, giving rise to performance gap between the predicted properties and its actual
execution.

 chapter  . introduction

Theory solver tools

Application model Platform model

Profiler Performance analyzer

Application code

solutions

Hardware platform
performance
measurement

app. code
profiling

profiling
information

feedback

deployment

Figure . – Software design flow

.. Practical Issues

In addition to the theoretical issues, there are practical problems for exploitation of multi-
core software -

n Lack of standard development and debugging tools
n Lack of multi-core operating systems and system software
n Lack of parallel programming models
n Non-standardized interfaces of tools, compilers, hardware from different manufacturers
n Unavailability of parallel programming expertise

Due to all these factors, the multi-core software development faced difficulties. A variety
of different architectures made it impossible to standardize programming models and tools
for this domain. Current software development tools for multi-core processors are far less
matured than those for single core processors and even those for hardware development of
multi-core processors. It is evident that the software development for multi-core processor
requires highly skilled work-force.

 . software design flow

The software design process commonly follows the Y-chart approach [, ] as shown
in Figure .. This approach involves an application model and a hardware platform used as
an input to the optimization solver. Optimization solver is particularly a set of tools which is
used to determine the optimal configurations in which the application code can execute on
the hardware platform satisfying different cost constraints. These solver tools need profiling
information from the application code, such as task execution times, memory consumption,
communication data size etc. This information varies from one hardware platform to another,
and can be either calculated by the WCET (Worst Case Execution Time) analysis tools or
estimated by running the code on the platform and profiling it. The performance analyzer
part is optional in the design flow, and it can provide a feedback to the solver in terms of extra
constraints to avoid performance problems observed during measurements.

 . . related tools 

The solver which forms the heart of this methodology, employs different solution space
search algorithms to solve the mapping and scheduling problem. There exists a vast literature
on algorithms for mapping and scheduling. The ultimate goal of the solver is to use such
algorithms to solve this problem, and produce a solution (or set of Pareto optimal solutions).

 . related tools

.. SDF

SDF [] is a design flow based on synchronous dataflow (SDF) model. This design flow
starts from architecture and application specification and proceeds to mapping, scheduling
and performance prediction. The input to this tool is an application and architecture graph
along with different constraints, like throughput, processors used etc. The tool performs
static performance analysis on the input and determines if the constraints are feasible. If
any constraint is violated, the bottlenecks can be analyzed. This tool is oriented to a specific
predictable hardware platforms. Apart from SDF model, it also supports some other (more
expressive) application models in particular SADF (Scenario Aware Data Flow).

.. MAMPS

MAMPS [] extends SDF for code generation for an FPGA based platform. The inputs to
this tool are same as SDF plus a template to generate hardware platform. This tool then takes
input application along with its throughput requirements, generates a hardware platform and
executable code which can satisfy these requirements. This hardware platform then can be
programmed on an FPGA and the application can be run on the platform. This tool uses a
simple Xilinx Microblaze processor and point-to-point links or a simple NoC to minimize the
prediction error due to network contentions.

.. MP-Opt

MP-Opt [] is a similar tool to that of SDF/MAMPS, focussing on the throughput con-
straints of an application. It consists of four parts- a front-end compiler which generates
SDF graphs from annotated C code. A solver, based on constraint programming, solves the
allocation and scheduling problem. A back-end compiler responsible for generation of C code
which can be executed on the target hardware. And finally the description languages which
allows interfacing between all these components.

.. StreamIT

StreamIT is a programming language and a compiler which can compile the dataflow
applications []. The language models SDF with various programming patterns like filters
(same as actors) and split-join mechanism (edges). In this work, application data streams are
explicitly split and merged in order to exploit the available parallelism. StreamIt can analyze
and optimize sliding window extensions of SDF which are not taken into consideration in
SDF. For example it supports peek construct, which allows a filter to read the token without
removing it from the channel.

.. StreamRoller

Another interesting work is StreamRoller compiler [] which maps the StreamIT code
on the Cell platform. It uses an algorithm SGMS (Stream Graph Modulo Scheduling) to

 chapter  . introduction

schedule the actors on the processors using ILP (Integer Linear Programming). SGMS applies a
pipelining technique at coarse-grain level in order to achieve concurrent execution and hidden
communication, minimizing stalls. It is done in two steps. First step involves splitting of the
actor and partitioning in order to evenly balance the work among the processors. It is done by
integer linear programming. Second stage is where actors are assigned to the pipeline stage in
order to overlap communication and computation. It is done by greedy heuristic partitioning
which assigns filters to processors.

.. Discussion

SDF tool does extensive performance analysis on SDF and other variants of the model. It
also offers mapping and scheduling tools for a multiprocessor on-chip network platform with
TDM scheduling. It does not support multiple core clusters accessing local shared memory
without network and does not provide a run-time environment, although MAMPS as well
as CompOSe operating system (see Section .) offer support for SDF. MAMPS on other
hand deals with combined design space exploration of architecture and application. It has a
run-time management system which performs online resource management considering the
requirements of the application. MP-Opt offers optimization and runtime environment for
Cell processor architecture which assumes one processor per cluster. It is designed to use
the DMA communication (see Section .) of the processor but does not model it explicitly.
The major optimization goal of SDF, MAMPS and MP-Opt is optimization of throughput,
which requires pipelined scheduling. StreamIT is a compiler based approach to optimize the
execution of streaming applications based on actor splitting and fusion. In this thesis we
present our infrastructure which deals with mapping and scheduling problem on multi-core
taking DMA communication into account. We consider application latency as the timing metric
to optimize in our work. Our infrastructure deals with eliminating symmetrical solutions in
the design space and accelerating the search for optimal solutions.

 . organization of thesis

In this thesis we study the problem of mapping and scheduling dataflow applications on
multi-core processors. The thesis is organized as follows:

n Chapter  introduces the application programming model used in this work. We discuss
briefly different programming models and similarity with our model that we introduce.

n Chapter  presents the hardware architecture model that we follow for our investigation.
We describe the important parameters of the hardware platform that must be taken into
account for modeling. Further we describe the working of DMA on Cell processor and
introduce a model to estimate performance of the applications using it.

n Chapter  introduces the satisfiability solvers and briefly describe the mechanism
behind them. We give a small example of how a scheduling problem can be encoded and
presented to such solvers. Further, we describe the multi-criteria optimization problem,
where multiple costs must be optimized simultaneously. We present algorithms to
efficiently track solutions to such problems.

n Chapter  explains the method of deployment and evaluation of our solutions. We
briefly describe the framework in which we carry out the experiments and a runtime
environment which is used to execute and validate the solutions discovered by our
methods.

n In Chapter  we introduce the symmetry in the dataflow graphs and a method to encode
them in to satisfiability constraints in order to accelerate the search for solutions. We

 . . organization of thesis 

present the constraints by which the scheduling problem can be encoded in order to
optimize latency, communication buffer size and number of processors.

n Chapter  introduces a new multi-stage approach for the scheduling problem for the
Kalray processor. We demonstrate the modeling of communication and network flow-
control to orchestrate the application execution in bounded distributed memory.

n In Chapter  we study the parallel applications with regular access pattern, which bring
the data from main memory to the limited local memory, process it and write back the
results again to the main memory. We present the work on optimizing the DMA transfer
size, for such applications.

n In Chapter  we present a runtime system which optimizes resource usage of the system
by dynamically reconfiguring the applications. We present a predictable method for
such reconfiguration, without affecting other running applications.

n Chapter  concludes the thesis and presents the future work.

chapter 2
Programming Model

This chapter introduces the role of programming model and split-join graphs which we use to model
streaming class of applications.

The description of a multi-core mapping and scheduling problem starts with a model for
applications. Models are encoded and presented to the optimization solvers to find correct

and efficient parallel schedules.
While studying an algorithm specification, one encounters numerous parameters, details

available to the designer consideration. It is very important to select few of them which make
the most significant impact towards the solution of the problem. If the model captures too
fine-grain details, then it becomes difficult for the optimization solvers and any other search
strategies to find optimal solutions. This makes the model of computation or the programming
model, a very important aspect of embedded system design. It gives a structured view of
how a given computation will execute and is annotated by important characteristics of the
program. The model helps us to study the behavior of the entire system depending on the
behavior of individual components. By study of such model using timed system formalisms,
the designer can estimate the required resources. It is very helpful in order to gain an insight
of the algorithms and performance of the machines on which applications represented by such
models execute.

A programming model, in general, should provide the following information:
n Structure of the program
n Amount of computation of different elements
n Interaction among different elements of the program
Depending on the target class of applications and modeling objectives, there are different

types of models to choose from. Timed Automata, Petri Nets, acyclic task graphs, Process
Networks are examples of models. They are developed for different goals e.g. analyze deadlocks,
ensure safe operations etc., and hence different formalisms are applied on the models to achieve
these goals.

A class of applications called streaming applications, process a continuous stream of data for
indefinite time. The input data arrives at a given rate, and is processed by algorithms defining
such applications. JPEG decoder, MPEG decoder, H- encoder, filter banks etc. are examples
of streaming applications. These applications perform a predetermined set of operations on
input stream of data and can be easily represented with the type of models referred to as
dataflow graphs.



 chapter  . programming model

In this chapter we describe a few relevant dataflow graph models which are typically used
in signal processing applications. We focus on synchronous dataflow graph (SDF) model in
detail. We present a model namely split-join graph which can be regarded as a sub-class of SDF
model. Further we describe the semantics and behavior of this model. We conclude the chapter
by defining method to convert a split-join graph to an acyclic task graph which is a commonly
used model for mapping and scheduling tasks with dependencies.

 . dataflow graphs

Dataflow graph is a popular class of model of computation related to Petri Nets, which
describes a computational process with evolving availability of the data. Dataflow graphs have
nodes called actors, which represent the computation performed on a data. The edges between
the actors carry tokens represents the communication of the data, which is processed by the
actors. It emphasizes only on the dependency between execution of different actors. Dataflow
graph does not describe any timing notions explicitly, however there are common extension of
time for actors and/or edges.

C

A

B

D C

A

B

D

Figure . – Basic dataflow graph

Figure . shows an example of a dataflow graph. It has four computation actors namely A,
B , C, D . Actors A and B produce data tokens which are taken by actor C. Actor C processes
this data and produces an other data token used by actor D . This is represented by the edges,
which exhibit the data dependency. The data tokens are depicted as black bullets in the graph.
When the actors execute they consume the tokens present at their input edges and produce
tokens on their output edges. In Figure ., C consumes the tokens produced by A and B from
their outputs and produces the tokens on the input edge of actor D .

In the dataflow terminology, the nodes called as actors produce or consume an amount of
data on the edges called as rate. Different data flow graph models are distinguished by the
rules that determine the number of tokens produced and consumed by actors. Dataflow graphs
can be classified into static and dynamic depending on whether the rate of production and
consumption of tokens is statically known. We discuss some of the dataflow models below.

.. Static Dataflow

These are very simple models which assume that the amount of data is known a priori to
the execution. These models have completely predictable execution times and various other
parameters of the model. This is a trade-off that has to be made in order to achieve simplicity
and analyzability of the model.

Homogeneous synchronous data flow (HSDF) are the simplest dataflow graph similar to
shown in Figure ., where rate of every edge is equal to . Thus every actor produces a token

 . . dataflow graphs 

on outgoing edge while it consumes one token on an incoming edge. They can be seen as an
extension to the acyclic task graph by cyclic paths and data tokens.

Synchronous Dataflow (SDF) graphs is a restricted version of dataflow in which the produc-
tion and consumption rates (can be non-unity) are known at the compile time. Each actor fires
or executes by consuming and producing a predefined number of tokens at its input and output
respectively. Each actor may have different rates, however to an individual actor the actual
rates are invariant. This restrictive property makes the model analyzable and easy to predict
and produce a static schedule which can be repeatedly executed in bounded memory. Marked
graphs [], a class of Petri nets, are similar to HSDF graphs, while SDF can be regarded as
equivalent to weighted marked graphs [].

Computation graphs [], another type of static dataflow model, are similar to the SDF,
which are represented by a finite set of nodes connected with directed queues. In addition
to token rates, it adds a threshold value, which is a minimum number of tokens that must
be present at the input queue. SDF can be regarded as special case of computation graphs,
where this threshold is equal to the consumption rate. Threshold property of this model is
helpful in modeling sliding window algorithms, where the nodes need to read the data tokens
without consuming them. These graphs find applications in DSP systems, where it is common
to operate on a continuous stream of data, e.g. FIR filters, FFT algorithms etc.

There are various extension of SDF. Cyclo Static dataflow model [, ] enhances the
SDF model by allowing periodically changing token production and consumption rates in
contrast to the static rates of SDF. Multidimensional Data Flow (MDSDF) [] supports the
multi-dimensional tokens, such that an actor fires only if the tokens/space in all the dimensions
are available. Such models are useful in applications like image processing where the data is
represented in two or multiple dimensions. Windowed Synchronous Data Flow (WSDF) [] is
an extension of MDSDF, which supports sliding window algorithms.

.. Dynamic Dataflow

With the development of new applications and algorithms, the static models are not able
to accommodate the conditional execution of the actors or varying data rates []. Dynamic
dataflow are the models in which a set of parameters like the production and consumption
rates are not completely known at compile time. This allows flexibility in modeling modern
applications, however at the cost of analyzability of such models.

An example of dynamic dataflow is Process Networks. Kahn Process Networks (KPN or
simply PN) [] is model of concurrent computations which has a set of deterministic processes
which communicate by unbounded FIFO (first-in first-out) queues. The processes block only
when trying to read an empty queue, but the queues grow indefinitely when writing processes
add data to them. Termination of a PN program is undecidable in finite time, as is boundedness
of the queues. This property of queues makes an actual implementation infeasible in limited
amount of memory. There are various algorithms to execute a process network in bounded
memory, one such is described in section . of []. As compared to SDF, KPN is more
expressive but difficult to make static analysis [].

Boolean dataflow model (BDF) [] is a extension of SDF model supporting conditional exe-
cution of an actor. It has two special actors called as switch and select. The switch actor has two
output and one input, while select actor has two input and one output ports respectively. The
former determines to which output port the tokens are produced, while the latter determines
from which input port the tokens are consumed. The selection in both the cases is done with
the help of a control port. This property makes the model difficult for compile time analysis.
For example it is difficult to check boundedness of memory, absence of deadlock, compute a
timed schedule, and the model in general is Turing complete.

 chapter  . programming model

Scenario Aware Dataflow (SADF) [] is a class of extensions of SDF model, introducing the
concept of scenarios. A predefined set of scenarios can be seen as different modes of operation
of the model, in which the resource requirements, like communication rates and structure,
differ considerably. While some properties of these graphs like deadlock and throughput in
many cases are analyzable at design time, in practice this analysis can be computationally
expensive.

There are many parametric extensions of SDF which allow updating of the parameters
of the the dataflow graphs at run-time. Parameterized synchronous dataflow (PSDF) [],
Variable rate dataflow (VRDF) [], Schedulable parametric data-flow (SPDF) [] are a few
examples of such extensions.

In this thesis, we use static dataflow models, typically SDF. Since our model of computation
is closely related with SDF, we discuss it first in brief and then describe the split-join graphs
which can be considered as a restriction to the SDF model.

 . synchronous dataflow

SDF is one of the static dataflow models for computation. This model, introduced by Lee
and Messerschmitt [], provides a compact representation of applications which communicate
data in regular fashion. The graph consists of actors which are connected by edges. An actor
corresponds to a piece of code which has input and/or output. It performs some computation
on the input tokens and as a result produces output tokens. The edges are marked with input
and output rates. The actors communicate using buffers which are of limited size. An actor
can fire when its input buffers have enough tokens available for firing and output buffers have
enough space for tokens.

A B
2 3

Figure . – Simple SDF with two actors

Figure . shows a very basic SDF. It has two actors namely A and B . The numbers marked
on the edge connecting A to B denote the rates. Thus for this edge, the production rate is  and
consumption rate is . It implies that when actor A executes, it will produce two tokens on the
edge, while when actor B executes, it will consume  tokens on this edge.

An iteration of a graph is execution of all the actors of SDF for a fixed number of times
greater than or equal to one. In an iteration, consistency property [] of an SDF states that,
for all edges in SDF, the amount of data produced on the edge of an SDF is equal to the
data consumed on that edge. In short, the graph should return to the initial state after an
iteration. Thus in the above example, initially there are zero tokens on the edge. If actor A
executes  times, it will produce  tokens on its output edge, and if actor B executes for 
times, then it consumes all the  tokens. Thus an iteration can be defined for this example for
A executing three and B two times. Note that they can also execute for multiple of these values,
for example  and  times respectively, but we always refer to the minimal values. An array
which gives minimal number of times for execution of actor for graph to be consistent is also
called repetition vector.

Definition  (Repetition Vector) – Repetition Vector is an array of length equal to number of actors
in SDF, such that if each actor is invoked for the number of times equal to its entry, the number of
tokens on each edge of SDF remains unchanged.

 . . synchronous dataflow 

Any SDF graph which is not consistent requires unbounded memory to execute or dead-
locks []. When an SDF graph deadlocks, no actor is able to fire, which is due to an
insufficient number of tokens in a cycle of the graph. Any SDF graph which is inconsistent or
deadlocks is not useful in practice.

A B
2 3

32


Figure . – SDF with backward edge

The edge between actor A and B represents a FIFO which carries data from the writer of the
FIFO to the respective reader. In the example, if actor A fires continuously, the size of the FIFO
will grow continuously and the graph will require unbounded memory for execution. SDF
graph models bounded memory with the help of backward edges with initial tokens (similar to
algorithm in []) as shown in Figure .. The initial tokens represent the free space available
in the forward edge. For every execution of actor A, it produces  (data) tokens on the forward
edge, while it consumes  (space) tokens from the backward edge. Similarly actor B consumes 
data tokens and produces  space tokens. The model itself does not differentiate between these
tokens, and gives an opportunity to represent the communication using bounded memory.

A, 1.0 B , 2.0
2 3

32



Figure . – Timed Synchronous DataFlow Graph

SDF graphs without timing notions are used to check correctness of the system (e.g. consis-
tency and deadlock) or for property analysis (e.g. determining buffer-size). For performance
analysis, timed variants are introduced (shown in Figure .). The execution time of each actor
is denoted with a number in the actor. Thus according to Figure ., actor A takes . time
unit, while actor B takes . time units for execution. However, the actors in this case has a
fixed execution time and any variation in the execution time is not modeled, which makes it
statically analyzable.

When scheduling the SDF graphs, fully static approach uses fixed actor execution times
and schedules the actors according to strict timing and data dependency. Since dataflow
applications continuously process a stream of data, the execution is periodic in nature. The
periodic scheduling of the SDF can be classified into two types : (i) different iterations of graphs
don’t overlap (non-pipelined) (i i) different iterations execute in overlapping fashion (pipelined).

Figure . shows an example of non-pipelined and pipeline schedules. In the case of
pipelined scheduling, there are two phases execution of SDF graph. The transition system
consists of a finite sequence of states and transitions, called the prologue (or transient phase),
followed by a sequence of states and transitions which is repeated infinitely often and is
called the periodic phase. The periodic phase is very useful in analyzing the properties of the

 chapter  . programming model

A0 A1 A2

B0

B1

A0 A1

Time

Proc1

Proc2

Proc3

i teration0 i teration1

(a) Non-pipelined

A0 A1 A2

B0

B1

A0 A1A0 A1 A2

B0

B1

Time

Proc1

Proc2

Proc3

prologue periodic phase

i teration0

i teration1

(b) Pipelined

Figure . – Example schedule of a Synchronous DataFlow graph

application like throughput. It is difficult to predict and control the length of the prologue
phase even for small SDF graphs. However, in the case of strictly periodic schedule one can
indirectly enforce it, at the cost of some optimality loss []. In the case of non-pipelined
schedule, the prologue is absent, while the schedule can be executed infinitely with bounded
resources. For more details, the reader is referred to [].

Pipelined scheduling is a complex task. From real-time scheduling point of view it incurs
satisfaction of three cost/objective constraints at the same time: latency, processor count and
throughput. Handling these three constraints at the same time is rarely studied in the literature
of SDF and task graphs. Usually only two types of the above constraints are considered. In this
thesis we also restrict to two of them – processor count and latency, sometimes adding buffer
storage cost as an extra. Multi-criteria optimized scheduling is often done by using different
generic solution search methods such as constraint programming [], linear programming [,
], as well as model checking [], genetic programming [] etc. In this thesis we focus on
non-pipelined scheduling, while pipelined scheduling is a future work. An interested reader
can refer to [] for our preliminary results on pipelined scheduling with throughput, latency
and processor count criteria, using SMT solvers.

 . split-join graphs

SDF is a general programming model which can accommodate a wide range of streaming
applications, and supports features like stateful actors, odd production and consumption rates
etc. However in this work, we would like to focus on regular data-parallel applications. We
would like to simplify this model in order to facilitate analysis while still covering most of the
SDF applications. Thus, we define the split-join graphs, which can be thought as a sub-class of
SDF graphs.

Definition  (Split-Join and Task Graphs) – A split-join graph S is defined by S = (V ,E ,d ,Ó,é)
where (V ,E) is a directed acyclic graph (DAG), that is, a set V of actors, a set E ⊆ V × V of edges.
The function d : V → R+ defines the node execution time, Ó : E → {a,1/a | a ∈ N+} assigns a
parallelization factor to every edge. An edge e is a split, join or neutral edge depending on whether
Ó(e) > 1, < 1 or = 1. é(e) denotes the size of data tokens sent to each spawned task in the case of
split, or received from each joined task in the case of join, or just sent and received once per execution
if the edge is neutral. A split-join graph with Ó(e) = 1 for every e is called an acyclic task-graph and
is denoted by T = (U ,E ,Ö,é), where the four elements in the tuple correspond to V , E , d , and é.

 . . split-join graphs 

A B C A Bi

B1

BÓ

C
Ó 1/Ó

Figure . – A simple split-join graph and its expanded task graph. Actor B has Ó instances.

The split-join graph is a generalization of the acyclic task graph by data parallelism, explic-
itly represented by parallelization factors Ó. This is illustrated by the example in Figure ..
The decomposability of a task into parallelizable sub-tasks is expressed as a numerical label
(parallelization factor) on a precedence edge leading to it. A label Ó on the edge from A to B
means that every executed instance of task A spawns Ó instances of task B . Likewise, a 1/Ó
label on the edge from B to C means that all those instances of B should terminate and their
outputs be joined before executing C (see Figure .). An acyclic task graph can thus be viewed
as derived from the split-join graph by making data parallelism explicit .

We call the nodes of the split-join graphs actors and those of the acyclic task graph tasks.
The edges of a split-join graph e ∈ E are called channels, and those in an acyclic task graph
× ∈ E are called dependency arcs or just dependencies.

.. The Semantics of Split-join Graphs

In split-join graphs, the tasks (i.e. instances of an actor) can execute in parallel unless
there are dependencies between them. In Figure . actor A spawns Ó instances of actor B ,
which can execute in parallel. Still, for convenience, we explain the functional behavior from
sequential-execution point of view.

In sequential execution, channel e = (v,v′) can be seen as a FIFO (first-in-first-out) buffer.
Let the task instances of each actor v execute in a fixed order, which determines their index: v0,
v1, v2 etc. Let Ó↑(e) be the amount of tokens (also called production rate) that are produced by
actor v on channel e. The instances vq of the writer actor of channel (v,v′) produce Ó↑(v,v′)
tokens each in the FIFO channel; in the derived task graph Ó↑ also corresponds to the number
of outgoing dependency arcs of vq . Similarly, Ó↓(v,v′) denotes the number of tokens consumed
(called consumption rate) and the number of incoming dependencies of instances v′r of the
channel reader actor. Mathematically these rates can be described as:

Ó↑(e) =

Ó(e) Ó(e) ≥ 1

1 Ó(e) < 1
; Ó↓(e) =

1 Ó(e) ≥ 1

Ó(e)−1 Ó(e) < 1

Split-join graphs also follow the consistency property which was defined for SDF graphs
in Section .. Let c(v) denote the repetition count of an actor v obtained from the repetition
vector of the graph. The equations that express the consistency requirement are known as
balance equations; are given for an edge(v,v′) as:∧

(v,v′)∈E

Ó↑(v,v′) · c(v) = Ó↓(v,v′) · c(v′) (.)

 chapter  . programming model

Note that if Equation . has a solution c(v) then k · c(v),∀k ∈ N+ is a solution as well.
However, we assume the minimal positive integer solution and use the notation c(v) for it.
Executing each actor c(v) number of times is defined graph iteration.

The amount of data that is communicated in an iteration, on an edge can be then easily
quantified. The tokens have size é bytes, and the amount of data produced by an instance of v
and consumed by an instance of v′, for an edge e is:

w↑(e) = Ó↑(e) ·é(e); w↓(e) = Ó↓(e) ·é(e)
where w↑(e) and w↓(e) is total amount of data produced and consumed on edge e respectively.

Given this description of the split-join graph, it can be easily converted into another graph
namely task graph. In Chapter , we introduce well formedness, a strong property for split-join
graphs (can be seen as a restriction on SDF graphs), where we define a strict nested structure.
Split-join graph is comparable to SDF in terms of decidability and complexity of analysis.
However it presents structured view of regular nested loops that appear in programs and hence
it is easier for implementation []. Further with the well-formedness restriction we apply
on split-join graphs, it is relatively easier to present the theory of symmetry elimination on
identical task instances derived from the same actor.

.. Derived Task Graph

The task graph derived from a split-join graph models one graph iteration.  For each actor
v the task graph contains c(v) tasks {v0,v1, . . .vc(v)−1}, i.e. the instances of actor v.

Let us define the edges of the derived task graph. For a split-join channel (v,v′) with
Ó(v,v′) = a/b let us consider the sequence of a · c(v) tokens produced in the FIFO buffer in
one iteration. Let us number these tokens by index i in the order they are produced by the
instances of actor v : v0, v1, Obviously, token i is produced by task vq where q = bi/ac. The
actor instances consume the tokens in the same order as they are produced (the FIFO order).
Therefore, the first b tokens will be consumed by task v′0, then the next b tokens by v′1, etc. In
general, the token i is consumed by task v′r where r = bi/bc. To model this producer-consumer
dependency of token production and consumption, the task graph should contain edge (vq ,v′r).
The derived task graph then can be defined formally as:

Definition  (Derived Task Graph) – From a consistent marked split-join graph S = (V ,E ,d ,Ó,é)
we derive the task graph T = (U ,E ,Ö,é) as follows:

U = {vh | v ∈ V , 0 ≤ h < c(v)}
E = {(vh,v

′
h′) | (v,v′) ∈ E ∧ ×(v,v′ ,h,h′)}

where × is predicate defined by:

×(v,v′ ,h,h′) : ∃ i ∈ N : h = bi/Ó↑(v,v′)c,
h′ = bi/Ó↓(v,v′)c, vh,v

′
h ∈ U

and:
∀(vh,v

′
h′) ∈ E é(vh,v

′
h′) = é(v,v′),

∀vh ∈ U Ö(vh) = d(v)

.. Marked Split-join Graphs

We have seen two different extension of acyclic task graphs : graph with initial tokens and
split-join graphs. Here we combine them into one. In order to model the graph in bounded

. In SDF terminology, deriving a task graph is equivalent to deriving a homogeneous SDF graph.

 . . split-join graph application example : jpeg decoder 

buffer, marked graphs introduce notion of channel marking, an equivalent of SDF with initial
tokens.

Definition  (Marked graph) – The marked (split-join) graph S can be defined as a split-join
graph extended by allowing cyclic paths and introducing an extra edge parameter – the marking:
m : E → N≥0. The extended tuple for a marked graph is thus: Î = (V ,E ,d ,Ó,é,m), where m
represents the marking on the edges. We assume that any split-join graph is a marked graph with
zero marking.

The conversion of marked split-join graph is similar to that of un-marked graph. A non-zero
marking m′ = m(v,v′) has the semantics of initial availability of m′ tokens in the channel.
Therefore, for the case of a marked graph in the above example we have to calculate r as
r = b(i + m′)/bc. Without initial tokens the consumer of the token i produced on the channel
(v,v′) is task v′r where r = bi/bc. However, now this consumption can be seen as shifted by value
m. The derivation of the task graph then can be updated as follows.

Definition  (Derived Task Graph) – From a consistent marked split-join graph S =
(V ,E ,d ,Ó,é,m) we derive the task graph T = (U ,E ,Ö,é) as follows:

U = {vh | v ∈ V , 0 ≤ h < c(v)}
E = {(vh,v

′
h′) | (v,v′) ∈ E ∧ ×(v,v′ ,h,h′)}

where × is predicate defined by:

×(v,v′ ,h,h′) : ∃ i ∈ N : h = bi/Ó↑(v,v′)c,
h′ = b(i + m(v,v′))/Ó↓(v,v′)c, vh,v

′
h ∈ U

and:
∀(vh,v

′
h′) ∈ E é(vh,v

′
h′) = é(v,v′),

∀vh ∈ U Ö(vh) = d(v)

 . split-join graph application example : jpeg decoder

VLD
IQ/
IDCT

CC
12 1

12

Figure . – JPEG decoder

Figure . shows a JPEG decoder expressed as Split-Join graph. It has three main actors:
variable length decoding (VLD), inverse quantization combined with inverse discrete cosine
transform (IQ/IDCT) combined and color conversion (CC). The VLD actor is responsible for
decoding the JPEG parameters which are added to the image as header. After the header is
decoded, it performs variable length decoding on the image data which is then converted into
blocks. These image blocks are then passed to the IQ/IDCT actor which first performs inverse
quantization and then performs inverse discrete cosine transform on these blocks. Finally the
color actor performs color conversion which then finishes the decoding from JPEG image to
Bitmap image format.

 chapter  . programming model

The edges in this application are used to communicate JPEG image parameters which are
defined in the header and the image data. The rates are proportional to the size of image that
is being decoded 32×24 pixels in our case.

 . conclusion

In this chapter we discuss various aspects of programming model and how streaming
application can be expressed in our model, namely split-join graph. Split-join graph model is
similar to the fork-join model used in []. Both typically represent a well-structured nested
loop computation which is typically observed in certain class of applications. In fork-join
graphs, the tasks are divided in stages and segments. This model has a stricter requirement
that tasks in the same stage can execute concurrently, while tasks in preceding stages must
complete before. In split-join graph, we have a general expression of parallelism in which
precedence constraints are expressed only via connected actors. Further we annotate the edges
with the amount of data transfer to model the communication.

We also discussed other existing models, which can also be used for expressing such
applications. However, in order to perform formal analysis, in further chapters, we need a
simple model. Our model can be regarded as a subset of SDF graphs, thus enabling us to
readily use some of the SDF benchmarks, or many of them with little or no modifications.

In next chapter we discuss characteristics of various hardware platforms and important
parameters to model them. We further show how these parameters are effectively used in
solving the mapping and scheduling problem on these hardware platforms using satisfiability
solvers.

chapter 3
Architecture Model

After having considered the application programming model, in this chapter we introduce the
hardware architecture model, which is used to model the multi-core hardware platforms.

Many-core / Multi-core processors exploit a collection of complex mechanisms and sub-
systems, designed for specific purpose to accelerate certain functions. For example, SIMD

(Single Instruction Multiple Data) instruction accelerates execution of instructions by executing
same operations concurrently on multiple data. Such mechanism is typically used in signal pro-
cessing manipulations, like matrix multiplication, where the same operation can be performed
on multiple elements in parallel. DMA (Direct Memory Access) is another example, where the
DMA engine facilitates the overlapping of computation and communication by performing
asynchronous data transfer without intervention of a processor. Multi-core processors operate
at a different level of granularity than SIMD, and they can be used to accelerate data-parallel
applications. In the previous chapter we observed different programming models and how
they can be used to express parallelism in certain applications. Applications, represented by
such parallel models, can be accelerated on multi-core processors by executing concurrently.

With multi-core platforms the space of design-parameters is huge. They include the number
of processors used, the amount of memory used, power / energy consumption, communication
costs, latency, throughput and many more. If all these parameters were considered together
with hardware platform low-level details such as instruction-level details (like instruction-set
in simulation), the combinatorial problem of mapping and scheduling would be unmanageable.
Thus with the large design space, the decisions for executing an application on these platforms
must be taken at higher level of abstraction. Scheduling is an old problem and different
formalisms and approaches have been developed in order to solve it. In order to study
scheduling, the tasks in the application are annotated with the timing parameters, typically
worst case execution time of the task. Thus the instruction-level details of the tasks are
abstracted away, which simplifies the decision-making process for application execution. If an
application is to be deployed efficiently on a platform, then we need accurate models of the
platform as well. A similar approach is applied to multi-core processors, where the minute
details of the platform are abstracted away retaining only important parameters. A decision-
making theory then can be applied on the combined models of application and platform in
order to find an efficient solution to the scheduling problem specific to the platform.

In this chapter, we discuss the multi-core and many-core processor architectures in general
and we give details of some particular architectures. Then we describe the way we model these



 chapter  . architecture model

architectures.

 . multi-core and many-core processors

When multi-core processor came into existence, they typically consisted of few processors
with large caches located near the processor in shared global address space. These processors
were rich with instruction-level acceleration mechanisms such as multi-stage pipeline, branch
prediction, cache coherency etc. Further scaling of such sophisticated cores is difficult owing
to various issues such as power consumption, design complexity, physical layout etc. which
became a strong motivation for development of many-core processors.

In a many-core platform, multiple multi-core clusters are networked on a chip. The
platform has a powerful general-purpose processor which can be located either on-chip or
off-chip. This processor has full capabilities such as cache and cache coherency, coprocessor
support, floating point engine etc. This processor is also called a host CPU. The accelerator
fabric, the many-core system itself, contains simplified processor cores which can accelerate
computation by executing application code in parallel. The processor cores in the accelerator
fabric are grouped in clusters. The processors (in the cluster) share a finite amount of resources
like local memory and can function independent of each other. Figure . shows a functional
diagram of such a processor.

Such processor architectures, although complex, can be efficiently utilized for various
applications. One important usage scenario is when a host CPU runs all the usual software
stack and general-purpose tasks, whereas computationally expensive highly parallel kernels
are forwarded to the many-core fabric. We discuss the components and terminology of these
processors below.

.. Clusters

In order to facilitate the development of both software and hardware, multiple cores are
grouped together as clusters which share finite resources like DMA engines, local or intra-
cluster memory etc. The processors inside the cluster typically are light-weight processors
(with limited capabilities in terms of pipeline stages, cache mechanism, or virtual addressing).
Power consumption and design challenges are the fundamental reason behind such archi-
tecture. These processors are designed to perform computations independent of each other
and communicate efficiently. Within a cluster, the processors can communicate using various
mechanisms such as shared memory, common registers, etc. The communication outside the
cluster is managed with help of asynchronous mechanisms such as DMA (discussed further).
Typically, communication and synchronization inside a cluster is faster than between clusters.

.. Shared Memory

A limited amount of memory is generally made accessible to all the processors inside the
cluster. Memory is usually multi-bank in order to provide good performance scalability by
preventing memory conflicts due to usage of different banks. It is also called intra-cluster
memory or local memory. This local memory ranges typically from some kilobytes to a few
megabytes and has access latency usually less than  clock cycles. The main memory has access
latency of around hundreds to a few thousand clock cycles and is of several order of megabytes
or gigabytes. Typically the program is first loaded in the main memory and the program
execution is started. The clusters must fetch the program data into intra-cluster memory,
and subsequently perform computations on it. The processors don’t have direct access to the
main memory, but can fetch data from main memory to local memory. The data movement

 . . t ilera tile 

between them is facilitated by asynchronous mechanisms namely DMA, explained further.
This hierarchical organization of memory provides the programmer benefit of performing
computations on a part of local memory concurrently with, asynchronous data transfer between
local and main memory or different local memories.

.. Network-On-Chip

The multi-core / many-core processors contain network on chip (NoC) in order to facilitate
data movement between clusters or between cluster and other hardware peripherals like I/O
devices. A processor which is connected to the NoC via a network interface initiates a data
transfer. Data is pushed on the network in form of packets. The size of these packets depends
on the NoC architecture. It may also contain other information like the route, the destination
address etc. The role of the NoC is also to provide arbitration between packets with conflicting
routes and to ensure correct delivery of data from the source to destination. There are various
arbitration policies such as round-robin, priority-based, etc. which can be used to resolve the
conflicts.

.. DMA

A DMA controller is a piece of hardware used to move data between isolated memories,
possibly asynchronously with respect to the core program execution. If data transfer is
synchronous, the processor remains blocked as long as data transfer is in progress. The main
memory access latency can reach few thousands of clock cycles. If the processor had access
only to that memory, it will spend most of its time in blocking for memory access rather than
performing useful computations. This scenario can be improved by having a local memory in
the cluster such that data is fetched from the main memory to the local memory and then the
processors perform the computation in the local memory. When the computation is finished,
the results are written back to the main memory. This data movement is performed by the
DMA controller. In order to efficiently overlap computation and communication, the DMA
controller, after being setup, can function without any intervention from the processor to move
the data. Different parameters such as amount of data to be transferred, the stride, the source
and destination address are specified by the programmer in the setup of a DMA controller.
Stride is an optional argument which is explained in later section. The DMA controller can
signal back to the main processor upon completion of the data transfer by mainly two methods:
polling and interrupt. In polling method the processor can check for a flag for completion of
data transfer, using an interrupt mechanism the processor is interrupted of its current task
and a service routine is executed to process the transfer completion.

We discuss in detail different platforms that admit such mechanisms.

 . tilera tile

Tilera Tile Pro [] processor architecture consists of  symmetrical processors (shown
in Figure .(a)), running at . MHz. Each processor (also called tile) is connected to a
switch engine which can route communication packets on six independent networks in a mesh
topology (seen in Figure .(b)). Each processor core contains three-way VLIW processor with
three instructions per bundle. It contains three computing pipelines P, P and P.

n P: executes arithmetic and logical operations.
n P: executes arithmetic and logical operations, branching instructions, read/write SPR

(special-purpose registers).
n P: executes memory load/store, test/set operations.

 chapter  . architecture model

XAUI 
PHY/MAC

Serialize
Deserialize

GbE 

GbE 

Flexible I/O

XAUI 
PHY/MAC

Serialize
Deserialize

DDR controller  DDR controller 

DDR controller  DDR controller 

PCIe 
PHY/MAC

Serialize
Deserialize

UART,HPI,IC,
JTAG,SPI

Flexible I/O

PCIe 
PHY/MAC

Serialize
Deserialize

(a) Tile- processor architecture

Processor

Reg File

P
P


P


Cache

L Cache

LI LD

I-TLB D-TLB

D DMA

Switch

MDN TDN

UDN IDN

STN

(b) Processor core

Figure . – Tilera Tile- processor

 . . kalray mppa- 

The Cache engine of this platform contains Translation Look-aside Buffers (TLB), which
are used to support virtual memory, required for the Linux platform. The platform contains a
multi-level cache. Each tile contains KB of Level- (L) Instruction cache, KB of L data
Cache and  KB of Level- (L) cache. This accounts for total of .MB on-chip cache. Each
tile also has a D DMA engine for data transfer between the tiles and main memory, however it
is currently unsupported by the software.

Every tile is also connected to different networks mentioned below -
n User Dynamic Network (UDN): It is the only visible network to the user which is

exposed by C library routines for streaming the data between tiles.
n Memory Dynamic Network (MDN): It is interfaced with the cache engine to carry the

memory traffic between tiles (such as cache misses, DMA) and between tile and main
memory.

n Coherence Dynamic Network (CDN): It carries the cache protocol messages to main-
tain the hardware cache coherence and is invisible to the programmer.

In addition there are other three networks which support traffic for I/O devices and
other purposes, but are not relevant to our work. The network channels include hardware
flow control and buffering mechanisms to enable asynchronous data transfers. The dynamic
networks are packet-switched mesh networks which employ "XY-routing" mechanism. The
packets from source to destination are switched along x-axis first and then to y-axis. Thus the
hardware is robust and efficient in maintaining coherent data across all the processors and our
software can use such mechanisms in order to perform communication transparently.

In addition it contains SIMD instructions for sub-word parallelism and instructions like
saturating arithmetic for acceleration of DSP algorithms. We assume that the compiler is
responsible for utilizing the available instruction-level parallelism.

We use this architecture to demonstrate the constraint-based solving of scheduling problem
using SMT solvers. We produce solutions with different resource usages and validate them by
executing on this platform. The details of the experimentation are given in Chapter .

 . kalray mppa-

Kalray MPPA- [] platform is shown in Figure .. This platform consists of 
symmetrical processors which are grouped together,  processors in groups called compute
clusters. These compute clusters are connected by a network of D toroidal topology. Apart
from compute clusters, the platform also has four I/O subsystems, which are group of four
cores each, called I/O clusters. There are two NoCs on the chip; one is for data transfer (data
NoC), optimized for bulk transfers, while the other is for control messages (control NoC),
mainly optimized for low latency. A cycle accurate timer is also integrated inside a cluster,
accessible by any processor in the cluster and used for time measurement. The Kalray platform
has a host processor, an Intel CPU, which is connected to the multi-core chip via PCI bus.

Each compute cluster contains  VLIW cores with a -bank shared memory of  MB
capacity. Out of  cores, one core is called Resource Manager(RM), and is dedicated to
operating system functions. The remaining  cores, called Processing Elements (PE), can be
used for executing application threads based on the pthread model of execution. Every core
implements a -bit -issue Very Long Instruction Word (VLIW) architecture with a -stage
instruction pipeline. It includes two arithmetic and logic units, a multiply-accumulate/floating-
point unit, a load/store unit, and a branch and control unit. These five execution units are
connected through a shared register file of  -bit general-purpose registers (GPRs). It also
has independent KB instruction cache and KB data cache to hide the access latency to the

 chapter  . architecture model


KB

Quad
Core

USMC PCIe inter laken DDR

GPIOs

E
th

Inter
laken

Q
u
ad

C
ore


K
B

E
th

Inter
laken

Q
uad

C
ore


K
B

DDR

GPIOs PCIe interlaken

Quad
Core


KB

Shared
Memory

D-Noc
Router

DMA

syst.
core

C-Noc
Router

C-NoC

DSU

C0 C1

C2 C3

C8 C9

C10 C11

C4 C5

C5 C6

C12 C13

C14 C15

Figure . – Kalray MPPA- Platform (with zoom into a compute cluster)

MB shared memory. There is no hardware cache coherency in compute clusters, and it has to
be explicitly managed by the software.

Kalray MPPA software library provides an abstraction layer which provides efficient com-
munication and synchronization primitives by hiding low-level hardware details. It provides
the API (Application Programmer Interface) for setting up the DMA, for communication
between compute clusters, IO clusters and host. The RM core is a privileged core and is
responsible for executing the kernel routines. The main task on RM core is waiting on events
from PE which are system calls to execute kernel routines. The PE is blocked till the system
call is being processed, and after finished is unblocked by an event from RM core. The RM core
being privileged is responsible for initiating the data transfers by setting up the DMA engines
and can be accessed with MPPA library API. It also handles the hardware interrupts.

The host is connected to the IO cluster subsystem via PCI/e connection. The MPPA library
also provides API which facilitates synchronization and data transfer to and from IO subsystem
via PCI. More details about the architecture and its software library are given in [].

In Tilera architecture, the data movement between the processors was managed by the
hardware using cache coherence mechanism. However such a mechanism does not exist on
Kalray architecture and data movement is managed explicitly by the software. Moreover
the cost of moving the data is non-negligible and has to be modeled to predict the software
performance accurately. We explicitly model the inter-cluster communication and orchestrate
it along with the scheduling of the computation tasks. We execute a number of benchmarks on
this platform to validate our results. Further details are presented in Chapter .

 . compsoc platform

The CompSOC platform [] (see Figure .) , is a research platform developed by the
Eindhoven University of Technology. It is a tile-based architecture in which a set of processing
and memory tiles are connected to each other via the Æthereal network-on-chip []. Each
processor tile contains a Microblaze processor running the CompOSe real-time operating sys-

 . . ibm cell be processor 

MB dmemimem

cme
m_in DMA

cme
m_outTile

CompOSe

Tile
cme
m_in DMA

cme
m_out

MB dmemimem

CompOSe

Æthereal NoC

Figure . – CompSOC platform

tem []. CompOSe provides composable and predictable application scheduling. Composable
means starting or stopping of a certain application doesn’t affect timing behavior of other
applications running on the same processor.

A processor tile contains also a non-shared local memory for instructions and data, as well
as communication memories which are used by a DMA for communication with remote tiles.
Memory tiles contain a memory sub-system that can be accessed from the processing tiles. The
tiles that communicate with memory and other processing tiles using Æthereal NoC. This NoC
has slots which are reserved by applications, guarantees a fixed bandwidth.

The CompSOC platform provides a predictable and composable timing behavior to appli-
cations running on the platform []. In order to provide composability, it uses a composable
scheduling strategy such as time-division multiplexing (TDM), where the presence or absence
of requests from one application cannot affect the scheduling decisions for other applications.
In addition, it uses preemption after a fixed time to prevent one application from starving
another. Furthermore, it delays scheduling of another task till the end of the time slice to
avoid that the early completion of one request will cause subsequent requests to be scheduled
earlier. In order to provide predictability, it requires that all data needed for a request must be
locally available and that there should be enough local storage space to store the response of
this request. In combination with the use of predictable resources with bounded worst-case
execution times and the use of a predictable TDM scheduler, it is possible to compute a worst-
case response time for any task running on a resource. The TDM scheduler can be thought as
a time wheel with fixed number of time-slices. Each application has a dedicated number of
slices for execution, and is pre-empted on completion of its slices. This guarantees the amount
of time an application will have in the time wheel. The sequence of these time slices is then
repeatedly executed until the platform is stopped explicitly. Thus the worst-case response time
can easily be calculated, and depends on the number of slices allocated to the application, total
number of slices, and worst case execution time of the application. Complete details about this
platform can be found in [, ].

In Chapter  we discuss how we can perform reconfiguration of the applications for global
optimization of the resources. For such a reconfiguration, the system must be able to predictably
migrate the tasks of an application, without affecting execution of other applications. This can
be achieved with a support from hardware. For more details the reader is referred to Chapter .

 . ibm cell be processor

The Cell Broadband Engine Architecture [, ] is a -core heterogeneous multi-core
architecture, consisting of a Power Processor Element (PPE) linked to  Synergistic Process-

 chapter  . architecture model

ing Elements (SPE) acting as coprocessors, connected through internal high speed Element
Interconnect Bus (EIB) as shown in Figure ..

PPE
(PowerPC
Processor
Element)

PPU
(PowerPC
Processor
Unit)

MIC
(Memory
Interface
Controller)

SP
E

SP
E

SP
E

SP
E

BIC (Bus
Interface
Controller)

EIB (Element Interconnect Bus)

SP
E

SP
E

SP
E

SPU
(Synergistic

Processor Unit)

LS
(Local Store)

MFC (Memory
Flow Controller)

SPE
(Synergistic
Processor
Element)

Figure . – IBM Cell BE processor

The PPE is composed of a general-purpose -bit RISC processor called PowerPC Processor
Unit (PPU) integrated with cache mechanism and bus interface. Each SPE is composed of a
Synergistic Processing Unit (SPU) which is a vector processing unit, a SRAM local store (LS) of
size  kbytes shared between instructions and data, and a Memory Flow Controller (MFC)
to manage DMA data transfers. The PPE has a single shared address space across SPEs and
the memory translation units in MFC handle the required address translation. An SPE can
access the external DRAM and the local store of other SPEs only by issuing DMA commands.
The PPU does not have its own MFC but can initiate DMA on behalf of an SPU, by exclusively
accessing its MFC. An MFC supports aligned DMA transfers of , , , ,  or a multiple of 
bytes, the maximum size of one DMA transfer request being K. To transfer more than K,
DMA lists are supported.

The cell processor operates in virtual memory environment. The MFC of each SPE is
composed of a Direct Memory Access Controller (DMAC) to process DMA commands queued
in the MFC and of a Memory Management Unit (MMU) to handle the translation of DMA
generated addresses. The MMU has a translation look-aside buffer (TLB) for caching recently
translated addresses, which is explained in detail ahead. After the address translation, the
DMAC splits the DMA command into smaller bus transfers and peak performance is achievable
when both the source and destination address are -byte aligned and the block size is
multiple of  bytes []. We can observe reduction in performance when this is not the case.

Processors use a technique called virtual memory, where an application executing on
them is presented is presented with a contiguous virtual address space representing the main
memory and secondary storage. This memory is divided in a unit called pages. A virtual page is
mapped to a physical page when accessed and the translation information is marked in a page
table. Page size is a design-parameter and has its own tradeoffs. For example, if we increase

 . . dma controller in cell processor 

the page size, it will cause lesser number of page table entries, but will require larger area in
physical memory a part of which might remain unutilized [].

When an application accesses an address, a virtual address translated to physical one
referring to the page table. For every memory access, a corresponding entry in the page table
is fetched and its physical address is calculated. Thus one virtual memory access requires
two physical memory accesses (one for page table entry and other for data). Since memory
is generally much slower than the processor, a special cache is added to the hardware called
Translation look-aside buffer (TLB), which contains recently accessed page table entries. On
a TLB miss the hardware has to locate the required entry in the page table. The application
has view of all the memory available, however not all the physical pages are allocated at the
start of the page execution to avoid the wastage of the physical memory in case if it remains
unused. If the accessed physical page corresponding to the virtual address is unallocated, a
new physical page is allocated by invoking complex kernel memory allocation routines. The
page table entry is updated and then loaded in TLB. This allocation and translation costs many
thousands of cycles on the Cell processor and should be avoided if possible []. In order to
avoid this overhead we allocate huge pages, where the page size is MB. Note that one page
has one entry in TLB, thus for this entire MB of data there will be only one entry in TLB.
We allocate the application data strictly in this page. In our experiments (see Section .) a
warm-up run is performed where we access this page, loading the entry in the TLB of SPE.
Next time the address of application data is accessed, it takes only a few cycles for address
translation.

In the Cell Simulator that we use [] the PPE and SPE processors run at .GHz clock
frequency and the interconnect is clocked with half the frequency of the processors. The
Cell-simulator gives performance predictions close to the actual processor. The cell-simulator
approximates the memory performance by using a DDR memory model. Further the TLB
replacement policies in the SPE uses a Replacement Management Table (RMT) for replacement
of TLB entries. The simulator does not support RMT. However in our measurements, we
subside the effect of TLB using large pages and a warm-up run thus does not affect our model.
Further details of the architecture can be obtained at [].

We study data-parallel applications with regular access patterns and how they perform
uniform computation by fetching the data from main memory to the local memory and writing
back the results again to the main memory. The entire application data doesn’t fit in the local
memory and hence must be brought in the local memory in batches. The transfer granularity
influences the performance of the application and is an optimization problem. We study this
problem for the Cell architecture. More details are available in Chapter .

 . dma controller in cell processor

In this section, we present the details of the DMA controller of the Cell processor and how
it can be modeled. The model can be trivially adapted to the Kalray processor, which also
supports DMA transfers.

Figure . shows a basic flow of a DMA command inside the SPE of the Cell processor. The
SPU initiates a DMA transfer command through the channel interface. Then the command is
enqueued in the DMA controller (DMAC) which can serve at maximum  pending requests.
The DMA controller then selects a data transfer command following some complex set of rules.
If the command is a write then it will access the local store to fetch the data to be written to
a remote memory. The TLB unit provides the address translation for the memory requests.
The DMA command is split into chunks of  bytes which is the size of the data transfer on
the network, which is then enqueued into bus interface unit (BIU). The BIU then pushes the

 chapter  . architecture model

SPU

Local
Store

C
h
an

n
el

In
te
rf
ac
e

M
M
IO

Memory
Interface
Controller

Main
Memory

E
IB

(E
le
m
en

t
In
te
rc
on

n
ec
t
B
u
s)

DMA
SPU

DMAC

MMU

TLB

B
IU

Figure . – IBM Cell processor DMA controller

data on the interconnect performing handshake with the memory interface controller. For read
requests similar steps are performed, except that the direction of data is reversed and local
store is accessed by BIU to write when fetched from a remote memory. For more details please
refer to [].

The DMA controller is a complex piece of hardware and it is difficult indeed to model it
accurately. However we make simplified version of the model by observing the amount of time
the controller takes to read or write the data. A DMA transfer constitutes of two main phases:

n Initialization Phase: This phase includes time to write the command in the DMA con-
troller. Typically during this time the processor is blocked and cannot be used for any
computation. The time required for this phase is independent of the amount of data to
be transferred.

n Data Transfer Phase: This phase is where the command is ready and the data is actually
transferred on the network. The duration of this phase is naturally proportional to the
amount of data that is being transferred.

It is more efficient to transfer few large chunks of data than many small ones, as the
controller can amortize the initialization phase costs.

.. Strided DMA

Remember that memory is made up of contiguous locations which are accessed by spec-
ifying addresses. For example a kbytes of memory can be accessed by address  to .
When the software allocates an array in the memory, it will allocate it in a contiguous address
space. In image processing applications a raw image will therefore be stored incrementally

 . . dma controller in cell processor 

row0

row1

row2

row3

row4

row5

row6

row7

co
l 0

co
l 1

co
l 2

co
l 3

co
l 4

co
l 5

co
l 6

co
l 7

(a) Pixels of an image in row and columns

Address Memory contents
x
x
x
x

xFD
xFE
xFF row7, col7

row7, col6

...

row0, col3

row0, col2

row0, col1

row0, col0

(b) Image stored in memory

Figure . – Image stored in memory

as row , row  and so on, where each row will be composed of column , column  etc. as
shown in Figure .. Suppose we had an image of  rows and  columns stored contiguously in
the memory, and an algorithm divides it into four blocks equally each of four rows and four
columns. Suppose we want to transfer only one block (lets say top-left), we need data from row
 to row  and column  to column . The hardware transferring this block must transfer first
for row , column  to column  and skip column  to column . Then it must continue for
row , row  and row  similarly. This skipping of data at regular offsets is called strided DMA
and is shown in Figure .(b) (assuming every gray part consists of four pixels in a row).

A DMA controller transfers contiguous as well as non-contiguous (strided) data blocks
between the local store and main memory, as shown in Figure .. In the case of a contiguous
(or non-strided) transfer the data blocks residing in a contiguous address space are transferred
from source to destination. In the case of strided DMA shown in Figure .(b), the data can
be located in uniformly spaced non-contiguous locations. Typically, the DMA controller is
responsible to manage the stride by splitting the strided data into multiple requests which
are contiguous in nature. The distance between two non-contiguous locations is referred
to as stride as shown in Figure .(b). A point to note is that in general the stride can be
supported either at source or destination of the DMA transfer or both, depending on the
hardware architecture. For the strided DMA, the DMA controller has some extra overhead, in
order to appropriately decode command and issue a DMA transfer incrementally. Thus the
transfer delay will certainly depend not only on the amount of data being transferred but also
on the number of non-contiguous blocks being transferred.

.. DMA list

The strided DMA command is supported by Cell architecture in a more generic way using
DMA list. DMA list contains upto  elements where each element determines the size and
remote memory address. The local store address is not specified in the list and passed explicitly
in setup. A DMA list transfer can move data between a contiguous area in an local store and
possibly a non-contiguous area in the remote memory. Cell architecture has a limitation that
the SPU issuing the strided DMA does not support stride in its local store either for fetching or

 chapter  . architecture model

D to D

Main
Memory

Local
MemorySrc addr. Dst addr.

Block

(a) Non-Strided DMA

D to D

Main
Memory

Local
MemorySrc addr. Dst addr.

Stride

(b) Strided DMA with stride at source

Figure . – DMA transfers

putting data into a remote memory. Thus stride is available only for a remote address. DMA
list is placed in the local store of the SPE and is passed to MFC for processing. MFC fetches the
list element by element and transfers the data. The local address is incremented by size in the
element for every transfer. The DMA transfer is performed until the entire list is processed.
The software is responsible for allocating the DMA list and initializing its parameters. The
waiting on the list transfer can be done using a single routine call. More details about DMA
lists are available in [, ]. DMA transfer is provided with an identifier which can be later
used to poll for its completion.

 . modeling dma controller

The DMA transfer time for a contiguous block of size s, denoted by T(s), consists of
two parts, a fixed initialization cost I and data transfer delay proportional to the data to be
transferred. This delay is given by g · s, where g refers to transfer delay in time units per byte,
s refers amount of data transferred in bytes. The DMA communication delay is summarized
in Equation ..

T(s) = I + g · s (.)

It is important to note that during the time I both the compute core and the DMA channel
are busy for setting up the transfer, whereas during the remaining time G = g · s only the
DMA channel is still busy, pushing the data into the NoC, while the core can proceed to other
tasks in parallel. At any time later, the processor may decide to wait for the completion of the
transfer. DMA transfer completion status can be polled from any core inside the cluster. This
operation is blocking until time T(s) has elapsed plus it may take some additional timing delay
ç to return the control back to the thread waiting for the transfer completion

In the case of strided transfer, the data transferred consists of multiple contiguous blocks.
Let the transfer consists of s1 blocks each of size s2 bytes. The DMA set up call incurs a fixed
initialization cost for the transfer given by I0. The hardware transfers s1 blocks successively.
After transmission of each s2 block, the source/destination address is incremented with an
amount equal to the stride of the transfer. This incurs a fixed cost which is proportional to
number of s1 blocks and given by I1 · s1. The time required for entire data to be sent through
the network is proportional to the cost per byte, and is given by g · (s1 · s2). The DMA transfer
delay for strided DMA is shown in Equation ..

 . . platform model 

T(s1,s2) = I0 + I1 · s1 + g · (s1 · s2) (.)
Obviously from this formula, it is always costlier to perform the strided DMA rather than a

contiguous DMA for the same amount of data. But it is always more beneficial to perform a
strided DMA than to perform s1 DMA transfers of contiguous blocks. The observations above
can be summarized by the following inequality:

T(1,s1 · s2) ≤ T(s1,s2) ≤ s1 × T(s2)

 . platform model

We consider the hardware platform as an interconnection of different clusters. Each cluster
consists of some number of processors. The processors within the cluster are connected
to a shared memory and communicate with each other without any extra overhead or cost.
Clusters can have caches in them, in order to provide a faster access to frequently accessed
data. However, to avoid modeling complex and difficult to predict cache functionality, we do
not model execution time variations due to cache misses but assume average-case execution
times instead. The communication between the clusters is facilitated by a mechanism called
DMA (Direct Memory Access). Further we assume a fixed routing between global interconnect
terminals with distances known statically.

Given the notions above, we can formally define the hardware architecture model as :

Definition  (Architecture Model) – An architecture model A = (X, æ, M, D , I , g, ç) is a tuple,
X is a set of clusters, æ⊆ X ×X is a set of communication paths between pairs of clusters, whereas
æx,x′ ∈ N0 gives the distance between any two clusters (x,x′) ∈ X × X. M and D are the number of
cores and DMA channels per cluster respectively. I ∈ R≥0 is the DMA initialization time and g ∈ R+

0
is the cost per byte for a transfer. ç ∈ R≥0 refers to the constant time required to check if the DMA
transfer is complete.

Table . provides us the summary of parameters that has been used in this work for the
respective architectures.

Parameter Symbol Unit IBM Cell Tilera TILE Kalray MPPA
Number Of Clusters |X| Number   
Proc. Per cluster M Number   
On-chip memory per cluster Bytes  kB .MB MB
DMA Per Cluster D Number   
DMA Init. Time I Cycles   
DMA Cost per byte g Cycles per byte .  .
DMA Completion time ç Cycles per transfer   

Table . – Summary of hardware platform parameters

 . conclusion

In this chapter we discussed multi-core and many-core processor architectures encountered
in our work and how they can be modeled. We abstract from minute details of the hardware
platforms and while retaining the important parameters which are useful for mapping and
scheduling. The architecture model presented in this chapter, has a meaningful application to
the architectures that we used during this work. In the next chapter we discuss formalisms

 chapter  . architecture model

that ensure application and architecture models can be used to map and schedule application
efficiently on such complex platforms.

chapter 4
Satisfiability solvers and

multi-criteria Optimization

This chapter introduces the notions of multi-criteria optimization problem and SMT solver which we
use to solve multi-criteria scheduling problems.

Given a many-core hardware platform and a parallel application, to find an optimal mapping
and scheduling solution is a hard combinatorial problem. Scheduling tasks on a processor

is a well-known research topic, and there are various theories and techniques developed to
solve this problem. Scheduling can be viewed as a constrained optimization problem. The
constraints are typically precedences (coming from the precedences in the task graph) and
resource constraints (e.g. no two tasks can use the same processor simultaneously). Other
constraints can concern memory usage, schedule latency, the number of processors used etc.
In fact, any performance measure of the system can sometimes be viewed as a constraint
and sometimes as an optimization objective. In our work, we use SMT (satisfiability modulo
theory) solvers, which collect techniques to solve the problem presented in the form of linear
constraints.

Solution to the problem described above with multiple costs is not unique, rather it is
a set of incomparable points called Pareto points. Such problems are called multi-criteria
optimization problems. In these problems, the costs generally conflict with each other, such
that reducing one cost may require increase in another one and vice-versa.

In this chapter we present some basic facts on SMT solvers which we apply to optimize
mapping and scheduling for many-core processors. We explain briefly the theory behind them.
Then we introduce multi-criteria optimization, for which we would like to apply the SMT
solvers. Multi-criteria problems need specialized algorithms in order to track their solutions.
We conclude the chapter by discussing such algorithms.

 . satisfiability solvers

The scheduling problem can be approached with different forms of expressing the problem
and corresponding solution methods. A technique called Linear programming [] is applica-
ble when the problem is expressed in terms of conjunction of linear inequalities, and the set of
feasible solutions is a convex polyhedron. Applicable for unbounded resources, this theory
can produce quick solutions. However, scheduling under resource constraints is a non-convex



 chapter  . satisfiability solvers and multi-criteria optimization

problem. For example the mutual exclusion constraint, when a pair of tasks share a processor
so that they should not overlap in time, can be expressed only as a disjunction of inequalities.
For example, for a pair of tasks A and B allocated to the same processor, task A can start either
after task B has finished or vice-versa. Due to such constraint, the solution space of the problem
consists of a number of disjoint convex sets. A branch of linear programming called Mixed
Integer Linear Programming (MILP), also known as disjunctive linear programming, is used for
scheduling problems in operations research area []. However the MILP-based methods can
solve scheduling problems typically upto a few tens of tasks [, ]. Thus, the applicability of
disjunctive linear programming is severely limited.

However there are techniques which we believe to be better scalable specialized in solv-
ing Boolean combinations of constraints, popularly known as constraint logic programming
(CLP) [], which explore the search space for a solution and employ techniques like constraint
propagation to prune the search space. A CLP problem is composed of atoms. An atom is a
linear inequality of a Boolean variable. A literal is either an atom or its negation. The constraint
logic program contains different clauses (or constraints) which are disjunctions of literals
that impose rules on the values that can be assigned to the variables. The solver performs
search over the domains of the variables in order to find an assignment which satisfies all the
constraints. For example if X is defined as a variable in the constraint logic program, X , f alse
will be a constraint, due to which X will be always assigned with a true value. The solvers
which solve problems expressed in a Boolean CNF (conjunctive normal form) form are called
satisfiability (SAT) solvers. In the course of its development, the SAT theory was generalized to
non-Boolean variables arranged in predicates "theory constraints as more complex atoms". For
example x − y > c, a linear inequality, can be expressed in these solvers. Such kind of solvers
are called satisfiability modulo theories (SMT) solvers []. These solvers can take advantage
of existing SAT solver search engine either by converting a SMT problem to a Boolean SAT
problem (eager approach) or by using theories which can perform constant propagation and
conflict analysis in order to solve the problem (lazy approach).

An algorithm called DPLL [], which involves backtracking-based search procedures for
deciding the satisfiability, enhanced the performance of these solvers. Further improvements
were made to the solvers, like for example CHAFF SAT solver [] incorporated carefully
engineered data structures and algorithms to accelerate the search. GRASP (Generic seaRch
Algorithm for the Satisfiability Problem) [] is another example of a novel algorithm which
unified several search-space pruning methods and improved back-tracking techniques. Modern
SMT solvers such as Yices [], Z [] and many more employ such efficient techniques and
are widely used in the verification community.

The SAT solver problem context typically consists of Boolean variables, their negations
and disjunctions. For SMT, in addition to Boolean variables, there are other variable types
such as integer, real, arrays, interpreted functions etc. The solver checks whether there is an
assignment of values to the variables which satisfies all the mentioned constraints. If solver
is unable to find such an assignment (due to conflicting clauses), the problem is said to be
unsatisfiable. SAT or SMT solvers use backtracking algorithm which incrementally builds the
solution to the problem. In case if an assignment of a value to a variable creates a conflict
(unsatisfiable solution), this assignment can be retracted and checking continues with other
assignments. This procedure is carried out recursively. DPLL algorithm provides rules for
backtracking. We explain them briefly for satisfiability solvers.

n Unit Propagation is done when a clause is a unit clause containing only one literal. In
such cases, the variables are assigned values to make the problem satisfiable, and the
opposite value for these variables is not evaluated.

n Clause Elimination is done when a variable is assigned such a value, that clauses
containing this variable become true. These clauses do not constrain the search and can

 . . an example of smt constraints 

be safely eliminated.
Advanced backtracking techniques have enhanced the performance of SMT solvers so that

they can solve large problems using multiple theories. When the problem is presented in
form of variables and clauses to the solver, it uses different theories depending on the nature
of the problem and produces a solution. Within a limited time budget, the SAT solver can
return an answer as sat (satisfiable), unsat (unsatisfiable) or timeout (unable to decide). If the
answer returned is sat, then the solver builds up a model which describes the values which
are assigned to the variables. If the answer is unsat, it implies that the problem contains
conflicting clauses and cannot be satisfied. In case the result is timeout, it means that with the
time budget the solver could not decide upon its satisfiability if the problem is sat or unsat.
This suggest that we should either increase the time budget, or the problem is too difficult to
solve.

 . an example of smt constraints

We present an example of SMT constraints for scheduling a split-join graph shown in Fig-
ure . for Ó = 3. The derived task graph, T = (U ,E ,Ö,é), will have tasks A0,B0,B1,B2 and C0.
Let s(u) and e(u) denote the start and end time of a task u, and Þ(u) be the processor on which
it will execute.

The constraints which express the task graph for scheduling to the solver are given as:
n Non-negative start times: indicating that there are no negative start times of the task.∧

u∈U

s(u) ≥ 0

Note that this kind of constraints are implicit as we will see later they follow directly
from definition of variable domains, like s(u) ∈ R≥0 in this case. In sequel we do not
explicitly specify such constraints.

n End times: The task always finishes when the time equal to its execution time has
elapsed after the starting time. ∧

u∈U

e(u) = s(u) + Ö(u)

n Precedence relations: No task can start before the finish of its predecessors.∧
(u,u′)∈E

e(u) ≤ s(u′)

n Non-overlapped execution on a processor: Tasks running on same processor should
not overlap in time.∧

u,u′∈U

(Þ(u) = Þ(u′))⇒ (e(u) ≤ s(u′)∨ (e(u′) ≤ s(u))

n Processor cost: The tasks should use only M processors or less.∧
u∈U

Þ(u) ≥ 0∧Þ(u) < M

Thus the scheduling of task graph can be encoded as an SMT problem with linear arithmetic
theory. A more detailed encoding of the problem is presented in Section ..

.. Non-retractable and retractable constraints

A constraint solver can be used for optimization by adding to the constraint satisfaction
problem a condition of form x ≤ C that can be used for cost optimization, where x is a tight
upper bound on the cost and C is a constant. In order to find an optimal cost, the solver

 chapter  . satisfiability solvers and multi-criteria optimization

Processors

L
at
en

cy

dominated
Pareto

Figure . – Pareto points

must be queried for different values of the cost to detect feasible (satisfiable) and unfeasible
(unsatisfiable) cost points. In such an exploration, the set of constraints remains the same,
except for the value of constant C. To recall, the problem context of an SMT solver consists of
variables and constraints defined on these variables. We take advantage of two specific types of
constraint typically supported by the SMT solver tools: non-retractable constraints are the one
which cannot be removed from the problem context, and retractable constraints which can be
removed from the problem context in the order reverse from their addition order, which leads
to incremental update of the problem definition without redefining the problem from scratch.
This can save some solver computation time across multiple queries. In the above example, we
can put all the constraints as non-retractable and the processor cost as retractable. For every
query, the retractable constraint must be updated with a new value of constant M.

As explained above, if a problem has only one cost, the optimal cost can be searched using
successive queries with different values of the cost (binary search) using a retractable constraint.
However when the problem admits multiple costs we need a more elaborate exploration of the
cost space, because in such problems there is typically no unique single solution, but rather a
set of incomparable solutions (points in the cost space). Such a problem is called multi-criteria
problem, which is discussed further in detail.

 . multi-criteria problem

In optimization problems, a search is performed to reduce the cost to a feasible minimum
value satisfying the constraints. For example, in binary search, a solution with higher cost is
discarded, when a solution with lower cost is found, narrowing down the space of explored
costs. With respect to a given point, a solution point in the cost space with higher cost is called
dominated point and while the point with a lower cost is called dominating point. If we consider
a problem with multiple costs, then the dominated point should have a distinct cost that is no
better than reference point in all dimensions. Formally, dominated points can be defined as
follows.

Definition  (Dominated Points) – Any two points c and c’ belonging to same cost space, point c
dominates c’, if for every dimension i ∈ [1..d],ci ≤ c′i and c , c′.

If we eliminate dominated by other points from set of solutions for such multi-dimensional
problem, the resulting set consists of alternative solutions which represent the best trade-offs

 . . cost-space exploration 

s B+(s)
B−(s)

s′ < s

s′ > ss′ || s

s′ || s

Figure . – Forward and backward cones

between different costs. Such set of solutions or points are called Pareto points. Figure .
shows such Pareto points (marked in red) which dominate the other points (marked in white).
The set of Pareto points are said to be ones, which are non-dominated by any other point.

A typical example in scheduling for such multi-criteria problem will be optimizing the
latency cost of a schedule and the number of processors used in it which is proportional to
amount of static power consumption. Given that there is enough parallelism available in the
application, if we increase number of processors, the application can run concurrently, which
will decrease the latency of execution. Similarly if we decrease number of processors, then a
larger portion of application will execute sequentially thus increasing the latency of execution.
It is desirable to reduce both latency and number of processors used. However, if we try to
reduce one cost the other cost increases and vice-versa. Such problems are called multi-criteria
optimization problems [], and are being studied since a long time [, , ]. Figure .
shows a sample exploration of design space for two costs - number of processors used and latency
of the schedule (we ignored the communication cost).

Some of these multi-criteria problems exhibit a monotonic behavior. For example, in
processors and latency trade-off, if a point C1 = (2,5) is feasible, then the point C2 = (3,9)
will also be feasible. This can be thought as if a schedule satisfies cost of  processors and
latency cost of  units, then another point with cost of  processors and loose latency of  units
will also be feasible, owing to the fact that some processors and/or some time intervals might
remain unused. Similarly, if the point C2 = (3,9) is infeasible, then point C1 = (2,5) will be
infeasible because if problem cannot be scheduled with  processors, it cannot be satisfied with
 processors and a tighter latency.

For such monotonic problems, we can assume that all points above a feasible cost are
feasible and those below an infeasible cost are infeasible. More formally, as shown in Figure .,
if point s is a sat point, then the forward cone represented by B+(s) contains only feasible
points. Similarly if point s is unsat point, then the backward cone represented by B−(s)
contains only infeasible points. The remaining s′ || s are incomparable points with respect to s.
Also if s is a sat, then the algorithm must explore the B−(s) and s′ || s for Pareto solutions. If it
explores the forward cone B+(s), then it is waste of effort, since the solver will always return
sat or timeout. Similarly for unsat point, the algorithm must explore B+(s) and s′ || s.

 . cost-space exploration

The optimal solution for a multi-criteria optimization problem is the set of Pareto points.
To find or approximate this set, we need to explore the cost space. Typically the cost space

 chapter  . satisfiability solvers and multi-criteria optimization

C0 C1

C1 = B+(C1)

C0 = B−(C0)

C̃

(a) (b)

Figure . – (a) Sets C0 (unsat) and C1 (sat) represented by their extremal points C0 and C1; (b)
The state of our knowledge at this point as captured by C0 (infeasible costs) C1 (feasible costs)
and C̃ (unknown). The actual Pareto front is contained in the closure of C̃.

is huge and intelligent algorithms are needed to obtain quickly a good approximation of the
Pareto front. There are various approaches and algorithms for this exploration. One approach
is to consider the cost of a problem as a weighted sum of multiple costs and solving it for
one-dimension using binary search and repeating the process with different weight vectors.
Certain other popular approaches depend on heuristic search techniques to find solutions.
Examples of such approaches are evolutionary / genetic algorithms [, ]. In [], a distance
based algorithm was proposed which approximates the Pareto front by aiming at reducing
the distance between the sat and unsat points. It involves a complex algorithm to explore
the cost space which depends on the current state of the exploration and can be viewed as
a multi-dimensional form of binary search. Instead we use a simple grid-based exploration
algorithm which relies on successive refinement of cost space in the grid. First we briefly
describe below the problem formally and then we discuss the grid based algorithm.

Let Q(c) be a shorthand for the satisfiability query ∃Þ∃s s.t. ï(Þ,s,c), which asks whether
there is a feasible deployment (mapping Þ, schedule s), whose cost vector is less than or
equal to c. If the solver answers affirmatively with some cost c we have a solution and may
also conclude any cost in forward cone of c that B+(c) = {c′ | c′ ≥ c} is feasible, which follows
directly from the cost constraints. If the answer is negative we can conclude that any cost
in the backward cone B−(c) = {c′ | c′ ≤ c} is infeasible. After submitting a number of queries
with different values of c we face a situation illustrated in Figure .. The sets C0 and C1
are, respectively, the maximal costs known to be infeasible (unsat) and minimal feasible costs
found (sat). Sets C0 and C1 are defined as the sets of all points known to be unsat and sat,
they are equal to the union of forward/backward cones of the extremal points. The feasibility
of costs which are outside C0 ∪ C1 is unknown. The set C1 constitutes an approximation of
the Pareto front and its quality, defined as a kind of Hausdorff distance to the actual front, is
bounded by its distance to the boundary of the backward cone of C0.

 . distance based exploration

The algorithm presented in [] calculates the Hausdorff distance between the sat and
unsat sets C0 and C1, and tries to reduce it by successively querying the solver for different
costs. The exploration algorithm maintains a list of currently explored points and updates
the distance between the two sets with newly added points. The distance is then reduced by
repeatedly querying at mid-way between the two points which give a maximum distance. The
query returning sat are added to C0, while those returning unsat are added to C1. Every query
that is asked to the SMT solver has a time limit (query time out). Since there will possibly be

 . . grid based exploration 

Figure . – Exploring the cost space via grid refinement. The dark points indicate the new
candidates for exploration after each refinement.

a large number of Pareto points, to restrict the runtime of the algorithm a global time out is
applied, after which the algorithm stops at the current state. For more details, the reader is
referred to [].

 . grid based exploration

Instead of the distance-based algorithm in this thesis, we use here a simpler exploration
algorithm based on grid refinement. In the multi-dimensional cost space, a grid is placed ini-
tially at each dimension in midway(see Figure .). We perform the queries on the intersecting
points of the grid. At every stage of the algorithm we refine the grid defined on the cost space,
making it denser and ask Q(c)-queries with c ranging over the newly-added grid points which
are outside C0 ∪C1. Note that not all these new points will necessarily be queried because each
query increases the size of C0 ∪C1 so as to include some of these points. The description so far
was based on the assumption that all queries give a definite answer (sat or unsat). However it
is known [] that as c gets closer to the boundary between sat and unsat, the computation
time may grow prohibitively and the solver can get stuck. To tackle this problem we bound the
time budget per query and when this bound is reached we mark the given point as timeout
Choosing the appropriate value for the time budget is a matter of trial and error.

We use a parameter ×, which determines the current relative granularity of the Pareto
exploration in all dimensions. In every dimension we perform linear search. In particular, in
dimension p we make 1/× steps of equal size from Cmin

p to Cmax
p , where Cmin

p and Cmax
p are the

lower and upper bound respectively for exploration in dimension p.
The top level procedure of our algorithm is illustrated in Algorithm . The whole explo-

ration has a global timeout, globalTimeOut . To accumulate the current knowledge on the cost
space, the algorithm maintains two set variables, C0 and C1 (in the actual implementation we
just keep track of the extremal points C0 and C1 along with the timeout points C̃t). The initial
exploration granularity is set to × = 1/2, and we recursively reduce it by a factor 1/2 after
the entire exploration at the given step is finished. Thus with more iterations, the algorithm
explores the cost space with finer granularity.

Each iteration executes a nested loop, one level of nesting per dimension. Procedure
explore, shown in Algorithm , executes one level of loop nesting and calls itself recursively to
explore in the next dimension. This procedure lets the current dimension of vector c assume
all linear search values, whereas the other lower dimensions remain constant, initially set
to Cmax. The lower dimensions assume their currently explored value, whereas the current
dimension p is explored between Cmin

p and Cmax
p bounds.

There can be three possible results for a SMT query: sat, unsat, and timeout, the latter
occurring when the satisfiability conclusion was not reached within the timeout, and in this
case marked as timeout. If, on the contrary, satisfiability has been computed, then one of the

 chapter  . satisfiability solvers and multi-criteria optimization

Algorithm  Pareto Exploration Algorithm

C0 := ∅ . unsat points
C1 := {Cmax} . sat points
C̃t = ∅ . timeout points
× := /
while algoRunTime() ≤ globalTimeOut do

p := firstDimension()
c := Cmax

explore(×,p,c,C0,C1)
× := × / 

end while
C1 := minimalPoints(C1)
return C1

Algorithm  explore(step ×, dimension p, cost c, cost set C0,C1)

. Explore cost dimension p and higher
for Ö := 0 to 1 step × do

cp := round ((1− Ö) ·Cmin
p + Ö ·Cmax

p)
if c < C0 ∧ c < C1 ∧ c < C̃t then

result := satQuery(Q(c),satTimeout)
if result = sat then
C1 := C1 ∪ B+(c)

else if result = unsat then
C0 := C0 ∪ B−(c)

else
C̃t := C̃t ∪ c

end if
end if
if c ∈ C1 ∧ ¬lastDimension(p) then

explore(×,nextDimension(p),c,C0,C1)
end if

end for

two sets are extended by point c as a minimal/maximal point. For a solver query, we impose a
per query timeout satTimeout , which is much smaller than globalTimeOut and determined
by manual calibration of this setup.

Note that procedure explore calls the solver directly only until the first sat answer or a C1
point has been reached. After this, all the remaining values to be explored for cp automatically
fall into the ‘known sat’ area, C1 and thus the solver is called only for the deeper recursion
levels, with lower cost values in the higher dimensions. In order to speed up the algorithm,
instead of linear search, a binary search method is used in the actual implementation.

 . conclusions

We briefly discussed the SMT solvers and the theory behind them. We also discussed the
multi-criteria optimization problems. These problems have multiple conflicting costs to be
optimized, and the solution to such problems is not unique, but rather consists of multiple
incomparable solutions also called Pareto solutions. The exploration of these problems in

 . . conclusions 

their respective cost-space require specialized algorithms to track the Pareto solutions. We
presented the grid-based exploration algorithm which is used in our work to explore the
multi-dimensional cost space.

In further chapters we talk about how to encode the deployment problem as SMT con-
straints and efficiently find solutions using such exploration algorithms. We also discuss how
the solutions discovered by the SMT solver can be deployed on a multi-core system.

chapter 5
Deployment and Evaluation

Methodology

This chapter describes our framework to explore, deploy and evaluate the solutions on a multi-core
platform.

The SMT solver is responsible to analyze and produce solutions to the scheduling problem,
according to different costs and platform constraints that are specified in the optimization

problem. In order to produce these solutions the solver needs inputs in the form of constraints
which represent the structure of application including timing information of tasks, token sizes,
channel parallelization factors etc. The problem expressed in the form of constraints is then
explored by the cost-space exploration algorithm which is described in the previous chapter.
The result is in the form of Pareto solutions, which expresses the configuration of the hardware
platform on which the application must execute to produce expected results.

Given such a situation, we need a software infrastructure which can perform all the
mentioned tasks. We implement a software tool in Java which is used to convert the split-
join graph information to constraints which can be presented to the solver. We call this
tool StreamExplorer. StreamExplorer also incorporates the cost-space exploration algorithm
described previously. Further on the hardware platforms we implement a run-time system
which deploys the solution produced by the solver. The run-time software is equipped with
profiler functionality which can provide accurate timing information of the application to
StreamExplorer.

In this chapter we briefly describe StreamExplorer and the run-time system. The run-time
system consists of different sub-systems which initialize the application as per the specified
configuration, perform different measurements and report statistical data back to StreamEx-
plorer. The first task of the run-time is to profile the actor execution times. StreamExplorer
feeds the measured times to the split-join graph. It then performs cost-space exploration to
find multiple solutions to the scheduling problem. The approximate Pareto solutions are then
verified on the hardware platform using run-time system. We describe the infrastructure of
StreamExplorer and run-time system in this chapter.



 chapter  . deployment and evaluation methodology

Property Analyzer
Workload Latency

Graph Models
Split-join SDF

Z Library

Cost-space Explorer
grid binary search

XML Parser
Split-join Platform

Output Generator

DotGraph Gantt Chart

Schedule XML

Run-time
Default XML

p
ro

fi
le

X
M

L

app. model

qu
er

y

re
su

lt

schedule

XML

Figure . – Structure of StreamExplorer

 . the tool

StreamExplorer is a collection of different algorithms which operate on split-join graphs.
The brief structure of the tool is shown in Figure .. It consists of following parts:

n Split-Join Graph Core: This part forms the core of the StreamExplorer, which contains
the code to represent different components of the split-join graph model, like actors,
channels, ports etc. It defines a graph object which is a collection of all these elements.

n Property Analyzer: This part performs different analyses on the split-join graph. For
example it performs deadlock analysis and checks for the consistency of the graph.
In addition it can provide different properties like total execution time in the graph,
longest path etc. It also provides support functions to determine the connected actors /
tasks, get split join factors etc.

n Input Parsers: The parsers form a vital part of the StreamExplorer which parses the
input XML file, containing the information about the split-join graph model (rates, num-
ber of actors, interconnections etc.). It also contains a parser to parse the specification
of hardware platform defined in Chapter .

n Solver Interface: This part of the StreamExplorer performs the conversion of the split-
join graph and platform model to constraints which are presented to the SMT solver.
We have integrated Z SMT solver tightly with the StreamExplorer. The StreamExplorer
creates variables and constraints for non-pipelined scheduling, from the split-join graph
model and platform parameters.

n Cost-space Explorer: This part of the StreamExplorer consists of the cost-space ex-
ploration algorithms (grid-based, binary search etc.). The algorithms in this part are
generic and can be easily configured for different exploration like latency vs buffer size,
latency vs processors etc.

n Output Generators: The output generators produce the results of different analyses
and optimizations performed. The most commonly used for analysis of inputs and
results, are the dot graph generation for graphical representation of split-join graphs,
Gantt chart generation for a schedule, schedule XML generation for run-time system.

 . . profiling the application 

StreamExplorer consists of total K+ lines of code written in Java and K+ lines of code
written in C++ for runtime system. It is interfaced with the SMT solver using Z library. Z
solver in the tool, can be easily replaced by another solver by performing minimal changes.
The link between the StreamExplorer and the run-time system is provided with bash scripts
which automates the process.

 . profiling the application

The profiling of the application is done mainly in order to measure the execution time of
different actors. The execution times of actors are used for scheduling in the solver. We use
the XML format similar to that in SDF tool [] to present the split-join application graphs
in the form of an equivalent SDF graph. The profiling of application is done on the platform,
which uses the run-time system for measurement and produces a XML file which contains the
timing information of the application. In order to run the profiled application, the run-time
system must be initialized (for data-structure, FIFOs etc.) and hence must be provided with a
schedule XML. Thus it is a cyclic requirement, where for initial profiling we need a schedule
XML, but also an XML is generated by the run-time based on the profiling. It is possible to
create a front-end parser, which can detect the parameters of split-join application graph (for
example MpOpt []) automatically. However it is an extra effort and out of scope of this thesis.
In order to satisfy this cyclic dependency, we provide a default XML configuration file, which
is able to configure the split-join application graph to execute on a single processor with an
arbitrary valid sequential schedule and the required buffer size for that schedule.

This default configuration is used to profile the application graph in the run-time. In its
sequential schedule neither shared memory contention on the bus nor network contentions are
present. Thus we measure the timing which is unaffected by these two factors. In profiling,
the application is executed for  graph iterations and a statistical data is produced on the
execution times. It contains minimum, maximum, average values for every actor present in
the application. Thus the profiling reports worst case and average case value of the actors and
either of them can be chosen for the optimization purpose.

 . run-time environment

The run-time system is a piece of software written in C++, which requires an input schedule
XML file that describes the split-join application graph and is linked with the functional code
of the actors. It is used to deploy the scheduling solutions on the platform and consists of three
parts:

n Initialization : allocate data structures for execution.
n Execution : execute different schedules on the processors.
n Release : collect results and deallocate data structures.

.. Initialization of the application

The first phase performs the initialization of the application graph on the platform. It
first reads the buffer size of the all the channels allocated in the schedule, and it allocates
the memory and initializes the data structures for them. Further it initializes every processor
that is supposed to execute tasks and provides it with the static order of tasks according to
the schedule. The information of the static schedule described in the schedule XML file is
discarded, however the ordering between the actors is retained. The name of actors in the
schedule XML file are resolved to the functions which execute as functional code for the actors.
Every application defines a standard translation function which associates the name of the

 chapter  . deployment and evaluation methodology

actor to the function that can be executed on behalf of it. The run-time is thus able to associate
a piece of code to every actor. When this resolution is finished, the run-time system then calls
application specific initialization where the pre-execution functions are performed such as
memory allocations specific to the application.

From programmers perspective, an actor is a function which will be called by the runtime
to execute it on the platform. It will be provided with the data structures where it can access
the tokens in input and output FIFO.

.. Execution of the application

After the initialization is finished on the hardware platform, the run-time enters Execution
phase. In this phase, the run-time spawns a thread on every processor to which a schedule
is allocated. The remaining processors remain idle. Every processor executes its respective
static-order schedule in a self-timed way for a fixed number of iterations. In later subsection,
we explain how due to our FIFO design, the precedence between the reader and writer are
respected. We enforce a barrier synchronization between iterations, since we assume a non-
pipelined execution. The run-time measures the time required for execution of the actor
instance which is also used for debugging purpose. The latency is measured for every graph
iteration on every processor. The maximum of the values measured on all the processors, gives
the latency of the graph iteration.

.. Release of the resources

After the execution has finished, the run-time calls the application specific exit calls for
application to release any allocated resources and transfer of the application output data (e.g.
decoded JPEG image). Then it deallocates all the data structures and gathers the measurements
that were done on the platform. Finally it performs statistical analysis on the measurements
and generates the output XML. The output XML generated by the run-time system contains
statistical information about actor execution as well as latency. The latter is compared with the
model predicted latency.

.. Hardware Specific Implementation

Depending on the hardware platform, the run-time system is adapted accordingly. We
discuss the hardware-specific implementation briefly.

... Kalray MPPA-

On the Kalray architecture, the host processor and the MPPA platform are connected with a
PCI bridge. The run-time system implements a data transfer part, which allows communication
of data over the PCI to the MPPA fabric. The data is first uploaded to the IO clusters and then
from there it is distributed to the compute clusters. In the initialization phase this data consists
of schedule information for the involved compute clusters. At the release phase, collected
measurement and the application output is fetched from the compute clusters to the host via
I/O clusters.

The barrier synchronization on this platform is performed in two phases. Inter-cluster
synchronization is done using IO cluster which communicated with 0th processor of every
compute cluster. After all the compute clusters are synchronized, the synchronization inside a
cluster (intra-cluster synchronization) is performed using a pthread library barrier.

The I/O cluster reads the schedule XML file for the application and starts the compute
clusters accordingly. It keeps the unallocated clusters inactive.

 . . communication buffers 

... Tilera Tile Pro

The Tilera processor architecture has support for hardware cache coherency. Thus the
run-time execution system can execute as if it had just one cluster. It does not need any explicit
data transfer mechanisms between processor cores, as it is taken care by coherency mechanism.

In order to execute plain application code without any interruption from the operating
system, the Tilera software supports bare-metal environment. The processors configured
this way execute only the application code in the pthread parallel programming library. We
configure only one processor for execution of operating system and another one for handling
I/O devices. The remaining  processors execute the application tasks.

The processor running the operating system starts a thread on every allocated processor.
Each thread then executes the allocated schedule for a fixed number of iterations. We use the
low-level hardware primitives provided by the Tilera software library which implements locks,
barriers, atomic operations etc. These primitives significantly speed-up the software execution
compared to the pthread primitives.

 . communication buffers

In the split-join graph application model, the actors communicate via channels. The writer
actor of the channel generates the tokens on the channel, while the reader actor of the channel
removes them.

Following the model semantics, the split-join graph channels should use a bounded memory.
To suit this requirements, the communication memory should be re-used efficiently. Moreover,
to exploit the data parallelism of the split-join channels, it should be possible to execute
different concurrent task instances of channel writer and reader on different cores. The
requirements of the communication buffers can be listed as follows :

n Correct token delivery from the writer of the token to its reader.
n Reuse of the communication buffers (i.e. of the token space positions inside).
n Arbitration between writers and readers of the same token position.
n Support for concurrent instances of writer and reader that access the same reused token

position.
n In the case of inter-cluster channel, the delivery of data and its status between writer

and reader.
We created a software FIFO buffer implementation that satisfies these requirements. To

support concurrent writers and readers we exploit the fact that in a split-join graph each
writer/reader instance writes/reads statically known amounts of data at statically known
offsets. Therefore, each token data is extended with status record that can be updated inde-
pendently, indicating whether the given token is ready to be written or read. For the reuse of
bounded token memory, we use standard circular buffer with a wrap-around mechanism.

It is very important to note the following. The term FIFO here indicates a certain ordering
restriction between the concurrent instance of writer and reader that write and read to the
same reused token position in the buffer. The task instances with a smaller task index should
execute earlier than those with a larger index. This restriction on the schedule coincides with
the notion of task symmetry introduced in Chapter , where we also prove that restricting the
schedule like this does not lead to sub-optimality.

The FIFO buffer can be regarded as a collection of a memory allocated for a data structure
that includes token data and token status. In the FIFO buffer implementation, the status record
for every token consists of  parts. The first part is the index of the token, while the second part
consists of a state of the token which can be {‘e’-empty, ‘b’-busy, ‘d’-contains data}. Every writer
task of the FIFO buffer can acquire token only when the token is empty, similarly, a reader task

 chapter  . deployment and evaluation methodology

position0 position1st0 st1

(a) FIFO structure in memory, sti is status

A0

A1

B0

A2

A3

B1

0
e

1
e

0
b

1
b

0
d

1
d

0
b

1
b

2
e

3
e

2
b

3
b

2
d

3
d

2
d

3
d

4
e

5
e

Time

st0

st1

P2

P1

P0

P
ro
ce
ss
or
s

FI
FO

st
at
u
s

(b) FIFO token and status on executions

Figure . – FIFO token example for actors A and B with buffer size = 

of the FIFO buffer can acquire token only when the token contains data. The reader and writer
both, when acquiring a token change the state to busy. When writer task finishes, it updates
the state part to from busy to contains data. Similarly when reader task finishes, it updates the
state part from busy to empty. In addition to state, the index part identifies to which instance
the token belongs. Before execution, the tokens are assigned index ,,... The instance  of the
writer can access only the tokens in index range [0,Ó↑), instance  can access [Ó↑,2 ·Ó↑) and so
on. In general any instance i of a writer can access tokens in range [i ·Ó↑, (i +1) ·Ó↑). Similarly,
any instance j of reader can access tokens having index [j ·Ó↓, (j +1) ·Ó↓). In a bounded buffer
with size b tokens, a token space at position k is first used for token k then reused for tokens
k + b, k + 2b etc. Therefore, the value of index is monotonically increasing and the reader
instance increases it by the size of the FIFO buffer upon its completion. The index value also
implies the position in the FIFO buffer. The writer and reader of the FIFO buffer, both access
statically known positions in the FIFO buffer, which can be easily calculated from their task
index. Thus, a combination of index and state gives an accurate information about which task
has a right over the token position in the FIFO buffer.

An important point to note is, the FIFO design does not make any assumption about
execution time of its producers and consumers. The FIFO is robust against the variation in the
execution time.

.. FIFO buffer example

Suppose in a split-join graph (A,B) is a channel with parameters Ó = 1/2, c(A) = 4, c(B) = 2
Ó↑AB = 1, Ó↓AB = 2, and buffer size bAB = 2. Figure .(a) shows how the FIFO buffer is allocated
in the local memory of the processor and Figure .(b) shows an execution of this example. We
use the notation index

state for the status record. The execution happens as follows:

n Initially position0 and position1 are marked with status 0
e and 1

e , indicating two
empty tokens with index  and  respectively.

n writer instance A0 acquires token0 and marks it as busy. Similarly A1 marks token1 as
busy.

n After A0 finishes execution, token0 contains data which changes its status to 0
d indicat-

ing it contains data. Similarly A1 changes the status of token1.

 . . communication buffers 

n reader instance B0, who should read from both token0 and token1, waits till both of
them contain data. At the beginning of its execution it marks both them as busy.

n After B0 finishes execution and increments the index of token0 and token1 to  and 
respectively. Also it marks them as empty.

n A2 and A3 waited for token status 2
e and 3

e respectively. Now they can continue execution
and the rest follows similarly.

Table . shows the token status before and after execution of each instance. From this table,
we can see that each actor instance awaits and modified token status records at pre-known
locations with unique index and status. Thus we can conclude that irrespective if the reader
and writer instances are executing in parallel, they will wait for each other to maintain the
correct order of production and consumption of tokens. This logic guarantees that the tokens
are delivered correctly.

Table . – FIFO buffer token status before and after execution of tasks

token0 token1instance
before after before after

A0
0
e

0
d - -

A1 - - 1
e

1
d

A2
2
e

2
d - -

A3 - - 3
e

3
d

B0
0
d

2
e

1
d

3
e

B1
2
d

4
e

3
d

5
e

FIFO buffer used by Erbium compiler [] to map streaming applications on shared memory
processors use similar notions.

.. Inter-cluster FIFO buffer in Kalray

In Kalray MPPA, we have a possibility of allocating communicating actors on different
clusters if memory or processor resources of a single cluster are insufficient. In such a case,
the FIFO buffer must be adapted to transport the tokens from one cluster to another. The
run-time checks the cluster assignment of writer and reader to detect inter-cluster FIFO. Such
FIFO buffer has the writer actor and reader actor allocated on different clusters. In the FIFO
buffer implementation, the same amount of memory is allocated at the source and destination
cluster. Also in addition to the token status at the writer side, it also contains remote token
status which is updated by the reader side when consuming of the token is finished. At the
end of its execution, the writer starts a DMA transfer from the source cluster to destination
cluster. It can start writing only if the remote token status indicates a free token at the same
position. Similarly, when the reader finishes execution, it starts a DMA transfer to update
the token status at the positions that it has finished reading, back to the writer side. Such
a communication is referred to as flow control. It allows the reader and writer of the FIFO
buffer to be in sync with each other. More details on inter-cluster FIFO buffer will follow
in Chapter .

 chapter  . deployment and evaluation methodology

 . conclusions

In this chapter we described the tool StreamExplorer, that we have developed, which
performs a task of converting a split-join application graph, represented in form of XML, to
SMT constraints and provides a run-time environment to deploy the SMT solutions on the
platform. We also describe how StreamExplorer performs profiling of the application code
via run-time system. The profiling information is used by the StreamExplorer to annotate
the split-join application with actor execution times to be used in SMT solver scheduling
constraints. The problem is explored by the StreamExplorer to find solutions, which are are
implemented and verified for accuracy by measurements in the run-time system. The run-time
system produces statistics for every solution, which is used to evaluate the accuracy of solutions
produced by the solver. Such infrastructure allows us to experiment with various split-join
applications represented by their respective XML files in SDF format. In the next chapter
we will discuss how the split-join graph can be represented using SMT solver constraints in
order to solve the scheduling problem on a hardware platform, first restricting ourselves to one
shared memory cluster to extend later to multiple clusters. We will also discuss the techniques
enabling the SMT solver to accelerate the discovery of the solutions.

chapter 6
Scheduling in shared memory

This chapter deals with the scheduling problem in shared memory multi-processors using SMT solvers
and a technique to eliminate the symmetry.

We encode the multi-core deployment for split-join graphs as a quantifier-free SMT prob-
lem, defined by a combination of linear constraints. The major computational obstacle

is the intractability of the mapping and scheduling problems aggravated by the exponential
blow-up while expanding the graph from symbolic (actors) to explicit (tasks) form (refer
to Section .). We tackle this problem by introducing “symmetry breaking” constraints among
identical processors and identical tasks. For the latter we prove a theorem concerning the
optimality of schedules where instances of the same actor are executed according to a fixed
lexicographical order.

In this chapter we discuss the symmetry breaking constraints and the theorem which
underlies them. We present the experimental results of exploration with and without the
symmetry constraints. We conclude this chapter by presenting the results with real JPEG
decoder and Video decoder applications.

 . symmetry in split-join graphs

The data-parallel tasks encoded in the split-join graph model are symmetrical in nature.
They represent equal computations which can be executed in parallel. A permutation of
instances of an actor in a schedule of a split-join graph can produce an equivalent schedule,
such that the properties of the schedule (latency, number of processors used etc.) remain the
same. Such equivalent schedules do not give any additional benefit to the programmer, rather
they prove to be a hurdle in satisfiability proving of the problem. The amount of permutations
grow exponentially with the number of data-parallel tasks. Thus these equivalent schedules
must be excluded, without losing optimal solutions in the cost space. We discuss the symmetry
in the split-join graphs further in detail.

Recall that in a split-join graph the decomposability of a task into parallelizable sub-tasks is
expressed as a numerical label (parallelization factor) on a split edge leading to it. In Figure .
an integer label Ó on the edge from A to B means that every executed instance of task A spawns
Ó instances of task B . Likewise, a 1/Ó label on the edge from B to C means that all those
instances of B should terminate and their outputs be joined before executing C. The derived
task graph can thus be viewed as obtained from the split-join graph by making data parallelism



 chapter  . scheduling in shared memory

explicit (see Figure .). To distinguish between these two types of graphs we call the nodes of
the split-join graphs actors (task types) and those of the task graph tasks.

In Chapter  we have defined the notions of consistency of split-join graphs and showed
how a task graph can be derived from a consistent split-join graph. In this section we formally
define a sub-class of consistent split-join graphs called well-formed split-join graphs. Most of
practical split-join graphs are well-formed. For these graphs we prove a theorem leading to
symmetry breaking for identical data-parallel tasks.

The DAG structure of a split-join graph naturally induces a partial-order relation ∠ over the
actors such that v∠v′ if there is a path form v to v′. The set of minimal elements with respect to
∠ is V• ⊆ V consisting of nodes with no incoming edges. Likewise, the maximal elements V•
are those without outgoing edges. An initialized path in a DAG is directed path á = v1 · v2 · · ·vk
starting from some v1 ∈ V•. Such a path is complete if vk ∈ V•. With any such path we associate
the multiplicity signature

à(á) = (v1,Ó1) · (v2,Ó2) · · · (vk−1,Ók−1)
where Ói = r((vi ,vi+1)). We will also abuse à to denote the projection of the signature on the
multiplication factors, that is à(á) = Ó1 ·Ó2 · · ·Ók−1.

To ensure that different instances of the same actor communicate with the matching
instances of other actors and that such instances are joined together properly, we need an
indexing scheme similar to indices of multi-dimensional arrays accessed inside nested loops.
Because an actor may have several ancestral paths, we need to ensure that its indices via
different paths agree. This will be guaranteed by a well-formedness condition that we impose
on the multiplicity signatures along paths.

Definition  (Parenthesis Alphabet) – Let Î = {1} ∪Î{ ∪Î} be any set of symbols consisting of
a special symbol 1 and two finite sets Î{ and Î} admitting a bijection which maps every Ó ∈ Î{ to
Ó′ ∈ Î} , for Ó > 1,Ó ∈ N.

Intuitively Ó and Ó′ correspond to a matching pair consisting of a split Ó and its inverse
join 1/Ó. These can be viewed also as a pair of (typed) left and right parentheses.

Definition  (Canonical Form) – The canonical form of a sequence à over a parentheses alphabet Î
is the sequence à̄ obtained from à by erasing occurrences of the neutral element 1 as well as matching
pairs of the form Ó ·Ó′.

For example, the canonical form of à = 5 · 1 · 3 · 1 · 1 · 1/3 · 1 · 2 is à̄ = 5 · 2. Note that the
(arithmetic) products of the factors of à and of à̄ are equal and we denote this value by c(à) and
let c(×) = 1. A sequence à is well-parenthesized if à̄ ∈ Î∗{ , namely its canonical form consists only
of left parentheses. Note that this notion refers also to signature prefixes that can be extended to
well-balanced sequences, namely, sequences with no violation of being well-parenthesized by
a join not compatible with the last open split.

Definition  (Well Formedness) – A split-join graph is well formed if:
. Any complete path á satisfies c(à(á)) = 1;
. The signatures of all initialized paths are well parenthesized.

In fact, the first condition implies SDF consistency. It ensures that the graph is meaningful (all
splits are joined) and that the multiplicity signatures of any two paths leading to the same actor
v satisfy c(à) = c(à′). We can thus associate unambiguously this number with the actor itself
and denote it by c(v). Note that it coincides with the repetition count defined in Section ..
The repetition count is the number of instances of actor v that should be executed.

 . . symmetry in split-join graphs 

The second condition forbids, for example, sequences of the form 2 ·3 ·1/2 ·1/3. It implies
an additional property: every two initialized paths á and á′ leading to the same actor satisfy
à̄(á) = à̄(á′). Otherwise, if two paths would reach the same actor with different canonical
signatures, there will be no way to close their parentheses by the same path suffix. Although
consistent split-join graphs not satisfying Condition  can make sense for certain computations,
they require more complicated mappings between tasks and they will not be considered here.
As for the restrictions that we imposed on the split-join graph compared to more general SDF
graphs admitting non-divisible token production and consumption rate, let us first remark that
the main result of this chapter, Theorem ., can be extended, somewhat less elegantly, to an
acyclic SDF, as we do in []. Moreover, the extensive study of StreaMIT benchmarks found
in [] reports that most actors in most applications, fall into the category of well-formed
split-join graphs that we treat . For well-formed graphs, a unique canonical signature, denoted
by à̄(v), is associated with every actor.

Definition  (Indexing Alphabet and Order) – An actor v with à̄(v) = Ó1 · · ·Ók defines an
indexing alphabet Av consisting of all k-digit sequences h = a1 · · ·ak such that 0 ≤ ai ≤ Ói −1. This
alphabet can be mapped into {0, . . . ,c(v)−1} via the following recursive rule:

N (ê) = 0 and N (h · aj) = Ój ·N (h) + aj

We use�v to denote the lexicographic total order over Av which coincides with the numerical order
overN (Av).

Every instance of actor v will be indexed by some h ∈ Av and will be denoted as vh. We use
notation h and Av to refer both to strings and to their numerical interpretation viaN . In the
latter case vh will refer to the task in position h according to the lexicographic order�v. See
for example, tasks B0, B1, . . . in Figure ..

Recall from Definition , that a derived task graph consists of tasks U which are connected
by edges E. In the context of well-formed graphs, we establish a relation between the tasks and
dependency arcs on the one hand and their corresponding actors and channels on the other
hand as follows:

U = {vh|v ∈ V ,h ∈ Av}
E = {(vh,v

′
h′) | (v,v′) ∈ E , (h v h′ ∨ h′ v h)}
∀v,∀h ∈ Av Ö(vh) = d(v)

Notation h v h′ indicates that string h′ is a prefix of h. To take an example, according to the
definition, a split edge (v,v′) is expanded to a set of dependency arcs {(vh,v

′
h·a) | a = 0 . . .Ó−1},

where Ó = r((v,v′)). The tasks can be partitioned naturally according to their actors, letting
U =

⋃
v∈V Uv and Uv = {vh : h ∈ Av}. A permutation é : U → U is actor-preserving if it can be

written as é =
⋃

v∈V év and each év is a permutation on Uv.

Definition  (Deployment) – A deployment for a task graph T = (U ,E ,Ö) on an execution platform
with a finite set M of processors consists of a mapping function Þ : U → M and a scheduling function
s : U → R+ indicating the start time of each task. A deployment is called feasible if it satisfies
precedence and mutual exclusion constraints, namely, for each pair of tasks we have:

Precedence: (u,u′) ∈ E → s(u′)− s(u) ≥ Ö(u)

Mutual exclusion: Þ(u) = Þ(u′)→ [(s(u′)− s(u) ≥ Ö(u))∨ (s(u)− s(u′) ≥ Ö(u′))]

. From a total of  application benchmarks, it is observed that % of the actors in a program have same
repetition count. An average of % of the actors have a repetition count of . Non-divisible communication rates,
for example in CD-DAT benchmark, are rare.

 chapter  . scheduling in shared memory

Note that Þ(u) and s(u) are decision variables while Ö(u) is a constant. The latency of the
deployment is the termination time of the last task, maxu∈U (s(u) + Ö(u)). The problem of
optimal scheduling of a task-graph is already NP-hard due to the non-convex mutual exclusion
constraints. This situation is aggravated by the fact that the task-graph will typically be
exponential in the size of the split-join graph. On the other hand, it admits many tasks which
are identical in their duration and isomorphic in their precedence constraints. In the sequel
we exploit this symmetry by showing that all tasks that correspond to the same actor can be
executed according to a lexicographic order without compromising latency.

Definition  (Ordering Scheme) – An ordering scheme for a task-graph T = (U ,E ,Ö) derived from
a split-join graph G = (V ,E , r,d) is a relation ≺=⋃

v∈V ≺v where each ≺v is a total order relation on
Uv.

In the lexicographic ordering scheme�, the tasks vh ∈ Uv are ordered in the lexicographic
order�v of their indices ‘h’. We say that a schedule s is compatible with an ordering scheme ≺
if vh ≺ vh′ implies s(vh) ≤ s(vh′). We denote such an ordering scheme by ≺s and use notation
v[h] for the task occupying position h in ≺s

v.

Lemma  – Let s be a feasible schedule and let v and v′ be two actors such that (v,v′) ∈ E . Then
. If r(v,v′) = Ó ≥ 1, then for every h ∈ [0,c(v)−1] and every a ∈ [0,Ó−1] we have

s(v′[Óh + a])− s(v[h]) ≥ d(v).

. If r(v,v′) = 1/Ó then for every h ∈ [0,c(v)−1] and every a ∈ [0,Ó−1] we have

s(v′[h])− s(v[Óh + a]) ≥ d(v).

Proof. The precedence constraints for Case  are in fact s(v′Óh+a)− s(vh) ≥ d(v), and we have to
prove that in this expression the lexicographic index vh can be replaced by schedule-compatible
index v[h]. Let j = hÓ+ a and j ′ = j +1. Since each instance of v is a predecessor of exactly Ó
instances of v′, the execution of v′[j] must occur after the completion of at least dj ′/Óe instances
of v. By construction, this is not earlier than the termination of the first dj ′/Óe instances of v to
occur in schedule s. In our notation this can be written as:

s(v′[j]) ≥ s(v[dj ′/Óe −1]) + d(v)

Substituting j and j ′ into the above formula we obtain our hypothesis. A similar argument
holds for Case .

Theorem . (Lexicographic Ordering) – Every feasible schedule s can be transformed into a
latency-equivalent schedule s′ compatible with the lexicographic order�.

Proof. Let és be an actor-preserving permutation on U defined as és(vh) = v[h]. In other
words, és maps the task in position h according to � to the task occupying that position
according to ≺s . The new deployment is defined as

Þ′(vh) = Þ(és(vh)) and s′(vh) = s(és(vh)).

Permuting tasks of the same execution time does not influence latency nor the satisfaction of
resource constraints. All that remains to show is that s′ satisfies precedence constraints. Each
vh is mapped into v[h] and each of its v′ sons (respectively parents) is mapped into v′[Óh+ a],
0 ≤ a ≤ Ó−1. Hence a precedence constraint for s′ of the form

s′(vh·a)− s′(vh) ≥ d(v)

is equivalent to

s(v[Óh + a])− s(v[h]) ≥ d(v)

 . . smt constraints 

A0 B1

B0

B2

C0

C1

C2

D0

(a) A task graph

A0 B0B1

B2 C2 C1

C0 D0

Time

Proc.

P

P

(b) A schedule

A0 B2B1

B0 C0 C1

C2 D0

Time

Proc.

P

P

(c) A lexicographic schedule

Figure . – Illustration of the lexicographic ordering theorem

which holds by virtue of Lemma  and the feasibility of s.

For example, in Figure . we illustrate a task graph, a feasible schedule and the same
schedule transformed into a lexicographic-compatible schedule by a permutation of the task
indices. The implication of this result is that we can introduce additional constraints to the
formulation of the scheduling problem requiring lexicographic compatibility of the schedule
without losing optimality. These constraints enforce one ordering of equivalent tasks in time
out of many possible, thus significantly reducing the search space.

 . smt constraints

Expressing scheduling problems using constraint solvers is fairly standard [, , , ]
and various formulations may differ in the assumptions they make about the application and
the architecture and the aspects of the problem they choose to capture. For split-join graphs,
we need to adapt these constraints and re-invent them in order to accommodate the calculation
of communication buffer size. In the following section we write down the constraints that
define a feasible schedule and its cost in terms of latency, number of processors and buffer size.

n Completion time and precedence: e(u) is the time when task u terminates and a task
cannot start before the termination of its predecessors.∧

u∈U

e(u) = s(u) + Ö(u) ∧
∧

(u,u′)∈E
e(u) ≤ s(u′)

n Mutual exclusion: tasks running on same processor should not overlap in time.∧
u,u′∈U

(Þ(u) = Þ(u′))⇒ (e(u) ≤ s(u′)∨ (e(u′) ≤ s(u)) (.)

n Communication buffer: these constraints compute the buffer size of every channel
(v,v′) ∈ E . They are based on the observation that buffer utilization is piecewise-
constant over time, with jumps occurring upon initiation of writers and termination of
readers. Hence the peak value of memory utilization can be found among one out of
finitely-many starting points.
Recall that in Section . we define w↑ and w↓ as functions on split-join graph channel
specifying the size of data in bytes produced and consumed on the channel by execution
of one writer or reader instance respectively. Below we use w↑v,v′ and w↓v,v′ for the values
of these functions for channel (v,v′).
The first constraint defines w̃↑(u,u∗), the contribution of writer u ∈ Uv to the filling of

 chapter  . scheduling in shared memory

buffer (v,v′) observed at the start of a writer u∗ ∈ Uv:∧
(v,v′)∈E

∧
u∈Uv

∧
u∗∈Uv

(s(u) > s(u∗))∧ (w̃↑(u,u∗) = 0) ∨
(s(u) ≤ s(u∗))∧ (w̃↑(u,u∗) = w↑v,v′)

Likewise the value w̃↓(u′ ,u∗) is the (negative) contribution of reader u′ to buffer (v,v′)
observed at the start of writer u∗:∧

(v,v′)∈E

∧
u′∈Uv′

∧
u∗∈Uv

((e(u′) > s(u∗))∧ w̃↓(u′ ,u∗) = 0) ∨
(e(u′) ≤ s(u∗))∧ (w̃↓(u′ ,u∗) = w↓v,v′)

The total amount of data in buffer (v,v′) at the start of task u∗ ∈ Uv, denoted by Rv,v′ (u∗),
is the sum of contributions of all readers and writers already executed:∧

(v,v′)∈E

∧
u∗∈Uv

Rv,v′ (u∗) =
¼
u∈Uv

w̃↑(u,u∗)−
¼

u′∈Uv′

w̃↓(u′ ,u∗)

The buffer size for (v,v′), denoted by Bv,v′ is the maximum over all the start times of
tasks in Uv: ∧

(v,v′)∈E

∧
v∗∈Uv

Rv,v′ (u∗) ≤ Bv,v′

n Costs: The following constraints define the cost vector associated with a given de-
ployment, which is C = (CL,CM ,CB), where the costs indicate, respectively, latency
(termination of last task), number of processors used and total buffer size.∧

u∈U

e(u) ≤ CL ∧
∧
u∈U

Þ(u) ≤ CM ∧
¼

(v,v′)∈E

Bv,v′ ≤ CB

We refer to the totality of these constraints as ï(Þ,s,C) which are satisfied by any feasible
deployment (Þ,s) whose cost is C.

n Symmetry breaking: We add two kinds of symmetry-breaking constraints, which do
not change optimal costs.
� Task Symmetry: We add the lexicographic task ordering constraints justified by The-

orem . ∧
v∈V

∧
vh,vh+1∈Uv

s(vh) ≤ s(vh+1)

where vh denotes the instance of v at the hth position in the order�v.
� Processor Symmetry: Secondly we add fairly standard constraints to exploit the

processor symmetry: processor 1 runs task 1, processor 2 runs the lowest index
task not running on processor 1, etc. Therefore, let us number all tasks arbitrarily
with a unique index: u1,u2, etc. The processor symmetry breaking is defined by the
following constraint:

Þ(u1) = 1 ∧
∧

2≤i≤|U |
Þ(u i) ≤ max

1≤j<i
Þ(u j) + 1

It can be easily checked that the costs such as latency, number of processor used, buffer size
etc. remain unchanged with such restrictions.

 . experiments

In this section we investigate the performance of the cost-space exploration algorithm
using the constraints defined in the previous section. First, we assess the contribution of
the symmetry reduction constraints on the execution time and the quality of solutions for a
synthetic example. Then we explore the cost space for a split-join graph derived from a real

 . . experiments 

0 10 20 30 40 50

0

500

1,000

timeout

Ó

E
xp

lo
ra
ti
on

ti
m
e
(s
ec
on

d
s)

no sym task sym
proc sym task & proc sym

(a) -processor deployment

0 10 20 30 40 50

0

500

1,000

timeout

Ó

E
xp

lo
ra
ti
on

ti
m
e
(s
ec
on

d
s)

no sym task sym
proc sym task & proc sym

(b) -processor deployment

Figure . – Time to find optimal latency as a function of the number of tasks for 5 and 20
processors.

video application. These experiments use version . of the Z Solver [] running on a Linux
machine with Intel Core i processor at 1.73 GHz with 4 GB of memory. Finally, we validate the
model used to derive the solution by deploying a JPEG decoder on the Tilera platform []
according to the derived schedule. The measured performance is very close to the predicted
one.

.. Finding Optimal Latency

We use the split-join graph of Figure . with various values of Ó to explore the effect of
the symmetry reduction constraints on the performance of the solver. We start with a single
cost version of the problem and perform binary search to find the minimum latency that
can be achieved for a fixed number of processors. We solve the same problem using four
variations of the constraints: without symmetry reduction, with processor symmetry, with task
symmetry and with both. Figure . depicts the computation times for finding the optimal
latency as a function of Ó on platforms with 5 and 20 processors. We use time-out per query
of 20 minutes, which is much larger than the one minute we typically use because we want
to find the exact optimum in order to compare the effects of different symmetry constraints.
Scheduling problems are known to be easy when the number of processors approaches the
number of tasks. For the difficult case of 5 processors, task symmetry starts dominating beyond
10 tasks and the combination of both gives the best results. It increases the size of graphs
whose optimal latency can be found (with no query executing more than  minutes) from
Ó = 12 to Ó = 48. Not surprisingly, for 20 processors, the relative importance of processor
symmetry grows. In Figure .(b) we see no advantage from the task symmetry, as the problem
suffers mainly from processor symmetry.

We perform a similar experiment but now we explore not only for different Ó but also for
different number of processors. In this experiment, we fix the number of processors and Ó.
Again we perform binary search in order to find the minimal latency that can be achieved.
This time we put a time-limit of three minutes on each of the query. We do not change the
time-out settings. We perform this experiment for all four settings of symmetry. The results

 chapter  . scheduling in shared memory

α

0
5
10

15
20
25

processors 0510152025

Exploration
T
im

e(seconds)

0

100

200

300

400

500

0

60

120

180

240

300

360

420

480

540

(a) Without symmetry constraints

α

0
5
10

15
20
25

processors 0510152025

Exploration
T
im

e(seconds)

0

100

200

300

400

500

0

60

120

180

240

300

360

420

480

540

(b) With task symmetry constraints

α

0
5
10

15
20
25

processors 0510152025

Exploration
T
im

e(seconds)

0

100

200

300

400

500

0

60

120

180

240

300

360

420

480

540

(c) With processor symmetry constraints
α

0
5
10

15
20
25

processors 0510152025

Exploration
T
im

e(seconds)

0

100

200

300

400

500

0

60

120

180

240

300

360

420

480

540

(d) With task and processor symmetry constraints

Figure . – Exploration time to find optimal latency as a function of the number of tasks and
processors.

of this experiment are shown in Figure .. We observe in this experiment the peak levels
where the solver takes maximum time when no symmetry breaking is applied to the problem.
When the task symmetry constraints are applied to the exploration, we see the reduction in
exploration time for larger Ó. However the symmetry due to large number of processors still
prevails. When we apply just processor symmetry constraints, we lose the benefit of the task
symmetry, but the solver time for larger number of processors is reduced significantly (seen
in Figure .(c)). When both task and processor symmetry are applied to the problem, we get a
significant reduction, for both Ó and large number of processors, as observed in Figure .(d).
Thus we observe the benefits of task symmetry and processor symmetry constraints for the
problem.

.. Processor-Latency Trade-offs

To demonstrate the effect of symmetry reductions on the Pareto front exploration we fix
Ó = 30 and seek trade-offs between latency and the number of processors. We use a time
budget of one minute per query and a total time budget to minutes, but is never reached.
Figure . depicts the results obtained with and without symmetry breaking constraints.

 . . experiments 

0 5 10 15 20 25 30

Latency

0

5

10

15

20

25

30

P
ro

ce
ss

or
s

Ti
m

e
pe

rq
ue

ry
(s

ec
on

ds
)

Sat Points Unsat Points Pareto Curve

0

7

14

21

28

35

42

49

56

(a) Without symmetry constraints

0 5 10 15 20 25 30

Latency

0

5

10

15

20

25

30

P
ro

ce
ss

or
s

Ti
m

e
pe

rq
ue

ry
(s

ec
on

ds
)

Sat Points Unsat Points Pareto Curve

0

7

14

21

28

35

42

49

56

(b) With task and proc. symmetry constraints

Figure . – Result of Pareto exploration for Ó = 30

 chapter  . scheduling in shared memory

VLD
300x

FetchL



IDCTL


MCL



Chr −
Spli t


FetchC


MCC



IDCTC


Upscale


Chr −
Join


Color
680x

x (10)

4x
(1)

4
(2)

1
(2)

1
(2)

1
(2)

4 (2)

1
(1)

1
(1)

4x
(1)

1/4x

(1)

1/4

(2)

1/x (8)

Figure . – Video decoder example

Actor Execution Time
VLD 300 · x
F etchL 150
ID CTL 130
McL 100
Chr − Spli t 40
F etchC 300
ID CTC 260
Upscale 40
McC 200
Chr − Join 30
Color 680 · x

Table . – Execution times

The square points show the unsat points whereas the circle are the sat points. The black
curve is the approximation of the Pareto front, connecting all the minimal sat points. Points
whose queries took long time to answer are surrounded by a dark halo whose intensity is
proportional to the time (the darkest areas are around the timeout points). As one can see
from the figure, symmetry constraints reduce significantly the number of time-outs. From
additional experiments we noticed that processor symmetry reduces the upper-left part of the
curve while task symmetry is useful around the middle. The total exploration time observed is
42 minutes without symmetry, and 16 minutes with both types of symmetry constraints.

.. A Video decoder

Next we perform a 3-dimensional cost exploration for a model of a video decoder taken
from []. In our video decoder programming model, a complete video frame can be processed
by a repeated execution of the split-join graph shown in Figure .. Every edge is marked with
a parallelization factor Ó and data token size in blocks (in parentheses) for buffer size computa-
tions. The VLD actor parses the input bitstream, extracting the subsequent macroblocks. The
parameter x selects the number of macroblocks processed per one graph iteration. The larger x
the more macroblocks can be processed in parallel, but the more difficult it is to generate an
optimal schedule. The actors indexed by ‘L’ process four luminance blocks per macroblock
and the actors indexed by ‘C’ process two chrominance blocks. The Color actor converts the
frame into the RGB format. The Fetch actors fetch the reference blocks from the previous frame
for motion compensation, done by MC actors. Actor Upscale scales 2 chrominance blocks
into 8. The weights w of the channels (in blocks) are depicted in parentheses in the figure. We
perform the exploration for x = 5 which yields a task-graph with 122 tasks.

Without any symmetry constraints the solver quickly times out for most queries of interest.
Symmetry constraints do not completely eliminate time-outs but reduce them significantly and
therefore the quality of the Pareto front approximation is much better, as shown in Figure ..
Note that for a sequential implementation (CM = 1) the constraints improve the best buffer size
found from 276 to 182 and for the most parallel deployment (CM = 122) they reduce the best
latency from 10 K to 7 K and the buffer size from 333 to 229. The Pareto point (14,333,62)
found without symmetry constraints is strongly dominated by the point (10,229,31) found
with symmetry breaking. This solution improves the latency and buffer usage by roughly a third

 . . experiments 

while using half of the processors. We believe it is a promising indication of the applicability
of our approach and of the potential performance gains in treating the optimization problem
globally.

Latency(.10 3)

8

12

16

20

24

Buff
er

Size

150

200

250

300

350

400

P
ro

ce
ss

or

0

20

40

60

80

100

120

140

[5,367,91]

[24,276,1]

[14,276,122]

[14,333,62]

[10,323,122]

[17,182,122]

[7,205,122]

[24,182,1]

[19,182,31]

[10,229,31]

without symmetry constraints with symmetry constraints

Figure . – Video decoder exploration result

.. JPEG decoder

Finally we validate our model by deploying a JPEG decoder, see Figure ., on the Tilera
platform [] which is a -core symmetric multi-core platform running at . MHz
(described in Section .). Unlike the real execution on the platform, theoretical scheduling
problem that we solve is deterministic where task execution times are assumed to be precisely
known. The obtained schedule is time-triggered, given in terms of the exact start time function
s. In reality, there are variations in execution times and in our implementation we use static
order schedules, preserving only the order of task execution on each processor (as described
in Section .). This is a common way to generate schedules for task graphs and SDF, see
for example []. When task execution times agree with the nominal values used in the
optimization problem, this scheduling policy for a non-lazy schedule coincides with s. Unlike
the traditional work on dataflow mapping, we support mappings where the writers and
readers of the same buffer storage can be spread over more than two different processors.
Our experience confirms that this scheduling policy can be implemented with a reasonable
amount of additional synchronization between the cores. Note also that when the schedule

 chapter  . scheduling in shared memory

is compatible with lexicographical task order (justified by Theorem .), the accesses to the
channels automatically become FIFO and this facilitates the implementation of cyclic buffers
(described in Section .).

The JPEG decoder has three main actors: variable length decoding (VLD), inverse quan-
tization and inverse discrete cosine transform (IQ/ ID CT) combined and color conversion
(Color). To measure execution times we run the decoder several times on a single processor
and measure the execution time of each actor. To mitigate cache effects, we consider the average
execution time rather than worst case, which occurs only in the first execution due to cache
misses. We use these average execution times in the model we submit to the solver. We then
deploy the decoder on the platform and run it 100 times (again to dampen cache effects). The
relation between the average latency (in microseconds) observed experimentally and the
Pareto points computed by the SMT solver is depicted below and the deviation is typically
smaller than %.

number of processors      

Latency (Þs)
predicted      
measured      

We observe in these results, that the predicted latency decreases with the increasing number
of processors. However, in practice, we see the minimum latency with four processors and
then an increase with the increasing number of processors. This effect is observed due to the
fact that we do not model communication in this architecture. When multiple processors use
the same FIFO buffers, it causes frequent data movement between them resulting from the
cache coherency protocol. This movement of data is difficult to model and causes prediction
errors in our experiment. From this we conclude that for better accuracy the communication
should be modeled explicitly.

 . conclusions

In this chapter we discussed the effect of symmetry constraints on the scheduling of split-
join graphs. We presented results that prove that symmetry breaking constraints accelerates
the exploration process for the SMT solver. We proved strength of these constraints first using
synthetic benchmarks, and then with real-life applications such as JPEG and Video decoder
(with  tasks) by a -dimensional cost-space exploration.

Various approaches to facilitate the task of the solver by additional symmetry breaking
constraints have been tried, for example [] for graph coloring or an automated method
for discovering graph automorphism [] which can lead to significant improvements []
. However, our deployment problem does not require complex detection of isomorphic sub-
graphs. Instead we exploit the knowledge about the structure of the task graphs coming from
the original split-join graph and not relying in any way on the graph automorphism. We gave
a simple proof of the lexicographic for arbitrary nesting, Theorem ., thus improving the
results of [], which was restricted to one level of nesting as it was relying on isomorphic
sub-graphs.

SMT solvers have been used to solve the scheduling problem previously []. There have
been attempts to use constraint programming techniques to solve this problem [, ].
In [] a quantitative model checking engine is developed using a variant of timed automata
for combined scheduling and buffer storage optimization of SDF graphs.

In the next chapter, we solve the same scheduling problem for Kalray processor architecture.
We observe that the inherently complex nature of the platform, restricts us from solving the
problem as a whole. In addition, the explicit communication must be modeled in order to

 . . conclusions 

predict the performance of the application correctly. Thus, in addition to scheduling problem,
which in that case becomes more complex, we employ the solver for additional optimization
problems that concern with planning the communication on the platform.

chapter 7
Multi-stage scheduling for

distributed memory processors

This chapter introduces the multi-stage approach that we use for scheduling applications on the
Kalray processor architecture.

In previous chapters we observed that on the Tilera platform, with help of the symmetry
reduction constraints, the SMT solver was able to handle a scheduling problem with 

tasks. Tilera is a, programming-wise, simple shared-memory platform with hardware support
of single consistent memory space visible from all cores. Due to this support, the data transfer
between the processor cores was managed by the hardware, and transparent to the software.
Hence the number of decision variables in the optimization problem was relatively small. In
contrast to the Tilera platform, the Kalray platform has a richer and more complex set of
mechanisms which are exposed to the user. The processors are grouped into clusters so that
processors on the same cluster communicate rapidly via shared memory while tasks that run
on different clusters communicate via more expensive means (DMA channels over the NoC)
which are under explicit control of the programmer. A modeling and optimization framework
that does not reflect communication costs will not be useful for this architecture.

Thus the optimization problem on Kalray has many more decision variables that affect
costs such as load-balancing, communication, number of used clusters etc. If all these decision
variables as a monolithic optimization problem are presented to the SMT solver, it would result
in a very complex set of constraints, practically solvable only for a small number of tasks. Thus
in order to be able to schedule larger applications on this architecture, the problem must be
split into a few sub-problems. After splitting, the top-level decisions about load-balancing and
cluster allocation are made first and later the scheduling inside the clusters is done, combined
with mapping to cores and buffer size allocation. This makes the problem solving better
tractable.

Our design flow consists of three stages. First we partition the actors into software clusters,
then we map them into the clusters of the platform and finally scheduling (of execution and
communication) for each cluster. The inter-cluster communication, performed using DMA,
must be modeled correctly to obtain good latency prediction. We discuss the constraints in
detail and the modeling of communication by inserting new actors and edges representing the
data transfer and flow control, to support program execution using limited resources. Finally



 chapter  . multi-stage scheduling for distributed memory processors

estimated
comm. cost

max workload
per soft cluster

#soft
clusters

(D Pareto solutions)

communication costminimal solution

(D Pareto solutions)

comm.
buffer size

latency

Partitioning

Application
Graph

Placement

Multi-cluster
Scheduling

Figure . – Multi-stage design flow

we present the results of experiments that were performed on the Kalray processor using a
number of streaming applications.

 . design flow

Kalray platform has explicit communication mechanisms which have costs that cannot
be ignored and must be taken into account in order to perform a faithful communication
modeling. We explain in Section . how inter-task communication is implemented depending
on whether or not the two communicating tasks reside on the same cluster. As we shall
see, when they are not on the same cluster, we need to augment the split-join/task graphs
with additional communication tasks which are based on the DMA cost model introduced
in Section .. Moreover, in case of communication channels between two different clusters we
need to model synchronization as well. As a result we obtain models that yield constrained
optimization problems too large to be solved monolithically and we need to split (as suggested
in []) the design flow into stages described below.

n Software partitioning: We partition the actors into groups (software clusters) with
the intention that each software cluster is executed on one (hardware) cluster of the
platform. Solutions are evaluated according to three criteria: the number of soft
clusters (which determines the number of hardware clusters that will be used for
the application), the maximal computational workload over the soft clusters, and the
amount of communication between tasks belonging to different clusters. These are

 . . design flow 

conflicting criteria and we provide a set consisting of the best trade-offs provided by
our cost exploration procedure.

n Mapping software to hardware clusters: Due to the toroidal architecture of the in-
terconnect, the distance between pairs of clusters is not uniform and hence, while
mapping soft clusters to hard ones we attempt to optimize inter-cluster communication
multiplied by the distance. This is a standard optimization problem applied to each of
the solution obtained in the previous stage.

n Mapping and scheduling: In this stage we map the tasks into the cores of their respec-
tive clusters and perform scheduling on shared resources: cores that run numerous
tasks and DMA channels that serve many software channels. To this end the original
split-join and task graphs are modified to reflect tasks associated with DMA transfers as
well as synchronization mechanism.

The outcome of the process is a set of solutions in terms of schedules, representing different
trade-offs between latency, amount of memory used in a cluster and number of clusters. Our
run-time environment executes these multi-cluster schedules produced by the SMT solver,
where we measure the latency and compare with the value predicted by the model. Below we
provide a detailed description of those steps.

.. Software partitioning

In the first step, we partition the actors of the application graph. We follow the partitioning
technique of [], adapted here to our application model. We experimentally observed (not
reported here) that combined partitioning and placement is a hard problem, which significantly
limits the size of problems that can be solved. Thus we decide to keep them as two different
sub-problems.

In this step, all the actors of the applications are grouped so that each actor is assigned
to a unique group called soft cluster. The workload assigned to a soft cluster is then equal to
the product of the execution time of the actor and its repetition count. We calculate the total
computation workload allocated to each soft cluster and try to minimize the maximal one.

Every two actors that communicate via a split-join channel incur zero communication
cost if they are allocated to the same soft cluster. Otherwise the channel contributes to the
communication cost proportionally to the total amount of data communicated through the
channel in one graph iteration.

The maximal workload per soft cluster and communication cost are conflicting criteria. If
we try to minimize the workload per soft cluster (equally distribute the workload among the
soft clusters), we increase the communication cost (communicating actors allocated to different
soft clusters). Similarly if we try to reduce the communication cost by assigning more actors to
the same soft cluster, the maximum workload in a soft cluster increases. We apply our grid
based design-space algorithm to this multi-criteria optimization problem to estimate the Pareto
front.

Problem Inputs:

- Application Graph SM = (V M ,EM ,d ,Ó,é) .
- Hardware Architecture Model A = (X, æ, M, D , I , g, ç)

Output:

- A partition of at most |X | soft clusters represented by a mapping z : V → Z, where
Z = {1,2,3..., |X |} is a set of soft clusters identified by unique numbers.

 chapter  . multi-stage scheduling for distributed memory processors

Costs and bounds:

Bounds
Symbol Cost Description

Lower Upper
Cä Max. computation workload per soft cluster min

∧
v∈V M

d(v) · c(v) ´
v∈V M

d(v) · c(v)
CÙ Estimated communication cost 

´
(v,v′)∈EM

c(v) ·w↑(v,v′)
CZ Number of soft clusters  |X |

Constraints:
Values z(v) for all actors are decision variables that have to be computed by the solver. The

partitioning variables have to satisfy the following constraints:
n Workload Calculation: Let variables ä(a) signify the total workload assigned to soft

cluster a. The workload of an actor can be easily calculated by the execution time times
its repetition count. The workload allocated to a soft cluster is the sum of workload of
actors allocated to it. ∧

a∈Z
ä(a) =

¼
v∈V M : z(v)=a

d(v) · c(v)

n Estimated Communication Cost for soft cluster: Let Ù(v,v′) be the estimated commu-
nication cost associated with channel (v,v′). The channel will incur communication cost
only if the reader and writer of the channel are allocated to different soft clusters. The
estimated communication cost is equal to the amount of data that is being produced (or
consumed) on the channel.∧

(v,v′)∈EM : z(v),z(v′)

Ù(v,v′) = c(v) ·w↑v,v′ = c(v′) ·w↓v,v′

If the reader v and the writer v′ are in the same soft cluster, then the communication
cost for them is zero. ∧

(v,v′)∈EM : z(v)=z(v′)

Ù(v,v′) = 0

The last three constraints simply define the three cost criteria.
n Partition Cost: This constraint defines the partitioning cost of the solution in terms of

number of soft clusters. The number of soft clusters to which the actors are assigned
should be less than the cost CZ . ∧

v∈V M

z(v) ≤ CZ

n Total Estimated Communication Cost: The total communication cost is subject to cost
constraint and is equal to the sum of communication cost of all the channels.¼

(v,v′)∈EM

Ù(v,v′) ≤ CÙ

n Workload Cost: Cä is the maximum workload.∧
a∈Z

ä(a) ≤ Cä

The solution expresses the assignment of actors to their respective soft clusters. The
communication cost and the workload incurred by each soft cluster can be trivially derived
from it.

Our cost exploration algorithm produces an approximation of a three-dimensional Pareto
front of solutions, and each of the discovered solutions is then subject to subsequent steps of

 . . design flow 

placement and scheduling.

.. Mapping software to hardware cluster

The placement step allocates a unique physical cluster to every soft cluster. In this step, the
communication cost is based on the distance between the clusters. We do a one-dimensional
minimization of the total communication cost by a binary search method.

Problem Inputs:

- Application Graph SM .
- Hardware Architecture Model A.
- Partitioning scheme z.

Output:

- x : Z → X : represents assignment of a soft cluster to platform cluster where we assume
that clusters are identified by positive numbers: X = { , , ..., |X|}

Costs and bounds:

Bounds
Symbol Cost Description

Lower Upper

CÚ Total communication cost 
´

(v,v′)∈EM : z(v),z(v′)
c(v) ·w↑v,v′ ·æmax

Constraints:
The values for decision variables {x(a) : a ∈ Z} for soft clusters computed by the solver at

this step should satisfy the following constraints.

n Allocation of soft cluster to platform cluster: We assign the soft cluster a to a cluster
from set X of clusters available on the platform.∧

a∈Z
x(a) ≤ |X |

n Unique cluster for every soft cluster: No two soft clusters should be placed on the
same cluster: ∧

a,b∈Z : a,b

x(a) , x(b)

n Communication costs between soft clusters: The distance aware communication cost
Ú(a,b) between two soft clusters a,b is the weighted sum of the communication between
respective actors with the weight given by the distance between the clusters.∧

a,b∈Z
Ú(a,b) =

¼
(v,v′)∈EM :

z(v)=a
z(v′)=b

Ù(v,v′) ·æx(a),x(b)

n Total communication cost: The total communication cost is the sum of communication
costs of all the soft clusters. It is a cost constraint which is subject to minimization.¼

a,b∈Z:a,b

Ú(a,b) ≤ CÚ

The solution of the placement step expresses a mapping of each soft cluster to a unique
cluster on the platform.

 chapter  . multi-stage scheduling for distributed memory processors

cluster0

A0 A1 Fst0 Fst1

posw0 stw0

rsw0

posw1 stw1

rsw1

DMA0 DMA1

 



cluster1

B0

posr0 str0 posr1 str1 DMA0 DMA1









Figure . – Working of inter-cluster FIFO

 . inter-cluster fifo

Before we further describe the design flow, we need to explain how we implement com-
munication between tasks that reside in different clusters. The basic ideas have been already
introduced in Section ., whereas here we give more implementation details by means of an
illustrative example. We implement an inter-cluster FIFO which transparently handles the
data transfer and synchronization between the readers and writers of the FIFO. We follow the
same example as in subsection .. where we assumed a simpler, intra-cluster case. Suppose
in a split-join graph, where A and B are connected actors with parameters Ó = 1/2, c(A) = 4,
c(B) = 2 Ó↑AB = 1, Ó↓AB = 2, and mAB = 2. Also suppose that z(A) , z(B), so they have to
communicate using a DMA channel. Let us recall that the FIFO buffer is split to writer and
reader sub-buffers. Figure . demonstrates such a scenario, where A0, A1, Fst0 etc. are the
tasks running on the processors of the writer cluster (cluster0). Here Fst represents a special
task which is needed to detect the completion of DMA transfer in the writer cluster. It is
explained in detail later. The token data and token status entries in the FIFO buffer located in
the local shared memory of the writer cluster is shown as posw

0 , stw
0 etc. The corresponding

data structures at the reader cluster (cluster1) are shown as posr
0, str

0. The writer cluster
has an additional status denoted by rsw

0 which indicates FIFO status at reader cluster for this
position. The following steps illustrate how the inter-cluster communication takes place using
the FIFO.

n Step : Task A0 checks for the status stw
0 in the FIFO if the token status at position

zero (posw
0) indicates an empty token. If the token status is ‘e’-empty, then it marks

the token as busy and starts to produce data in this position of the FIFO. Similarly task
A1 checks for status stw

1 and starts to produce data in position  of the FIFO. A point
to note here is that A0 and A1 are not necessarily synchronized. They can execute on
the same or different processors. Flags rsw

0 and rsw
1 are initialized empty before the

execution of the schedules indicating free space for tokens on cluster1.
n Step : After task A0 finishes, the position  of the FIFO contains data and updated

status, ‘d’ - contains data, the task A0 starts a DMA transfer of token data and its status
together, but not before the remote status rsw

0 indicates an empty token space at remote
cluster, to move the data in position  and its status (posw

0 and stw
0 in Figure .) to

another cluster (where tasks of actor B are located). Similarly task A1 also starts another
DMA to move the data and status in position . Or otherwise the tasks wait till the

 . . modeling communication 

A B
ê : [Ó(ê),é(ê)]

Figure . – Communicating tasks

A Iwr Gwr B
ewt(ê) : [1,w↑(ê)] ewn(ê) : [1] ert(ê) : [Ó(ê),é(ê)]

Figure . – Partition aware communicating tasks

remote status indicates free space.
n Step : The DMA transfer copies the data from posw

0 and stw
0 to the reader cluster posr

0
and str

0 respectively. When the DMA transfers initiated by tasks A0 and A1 are finished,
task B0 which is continuously polling on the status at position  (str

0) and position 
(str

1), can start its execution owing to the availability of the data.
n Step : Task Fst0, executing in the same cluster as task A0, is continuously polling

on the status of DMA transfer started by task A0. Once it detects completion of this
transfer, it marks the status of the position  (stw

0) as empty and available for re-use.
Similarly task Fst1 marks stw

1 when it is available. Note that step  and step  may
execute concurrently.

n Step : After task B0 finishes execution, its marks the local status str
0 and str

1 of token
as free. Task B0 initiates a DMA transfer explicitly, which copies str

0 to rsw
0 and str

1 to
rsw

1 .

After these steps, similarly tasks A2, A3 and B1 can execute on same or different processors,
repeating the same sequence of communication and synchronization operations as A0, A1 and
B0 respectively. The advantage of using such FIFO is that it decouples the two clusters, meaning
that the writer cluster can immediately re-use the FIFO buffers when the DMA transfer has
finished transferring the data to the reader cluster without waiting for reader to finish.

 . modeling communication

With the background of inter-cluster FIFO we continue discussion of design flow steps. In
the scheduling step we perform a joint scheduling of the computation tasks (the tasks of the
application graph) and the communication tasks (the DMA transfers). Our approach to define
the scheduling problem is to first describe the model that reflects both the computation and the
communication in a many-core system and then to explain how this model is encoded in terms
of constraints. The model is obtained from a series of graph transformations, which gradually
changes the application graph into a final schedule graph which models all the deployment
decisions.

In this section we focus on modeling the communication, and assume that we are given a
ready partitioning solution (from the partitioning step) and the buffer allocation, which is part
of the combined solution computed at the scheduling step (described later).

 chapter  . multi-stage scheduling for distributed memory processors

.. Partition-Aware Graph

For defining the graph transformations, in particular for adding new actors, it is convenient
to introduce notation v : [d(v),z(v)], which represents an actor v with delay d(v) and soft cluster
number z(v). Similarly, e : [Ó(e),é(e),m(e)] represents an edge e with parallelization factor
Ó(e), token size é(e) and marking m(e). When the latter two parameters are omitted, the
default values are considered zero. Note that if é is zero, the given edge models an execution
order constraint and does not have a memory buffer for communication.

We assume to have a ready partitioning solution z(v), calculated earlier in the design flow.
In order to model the communication delay, we need to introduce additional actors in the
split-join graph, representing the DMA transfers.

Recall from Equation . that a DMA transfer consists of two phases: DMA transfer
initialization and network communication. We model these two phases of DMA transfer by two
actors : Iwr and Gwr . Figure . shows an application graph channel and Figure . shows its
partition-aware graph for the case where actors A and B are assigned to different soft clusters.
In this case the channel (A,B) is split into writer and reader sub-buffers. The FIFO buffers
that are allocated at the writer and reader side are modeled by ewt and ert respectively. The
working of inter-cluster FIFO was explained in detail in the previous section.

Edge ewt(ê) models the writer sub-buffer; Ó = 1 indicating that one writer instance is
followed by exactly one data transfer (where é and w↑ represents the data size (in bytes) of
one token and the total data size of tokens produced by one writer instance respectively. Refer
to Section ..), whereas é(ewt) = w↑(ê) indicates that the Ó↑ tokens produced by an instance
of the writer actor is encapsulated into one token. Edge ewn(ê) reflects the sequential order
between the two DMA phases. Channel ert(ê) corresponds to the reader sub-buffer. It has the
same parameters as the original edge ê.

Let EM
ÉZ denote the set of inter-cluster channels crossing the partition boundaries and EM

ÉZ
its complement. Formally,

EM
ÉZ = {(v,v′) ∈ EM | z(v) , z(v′)}

EM
ÉZ

= EM \ EM
ÉZ

Definition  (Partition-Aware Graph) – A partition-aware graph SP = (V P ,EP ,d ,Ó,é) is a split-
join graph obtained by replacement of application graph edges EM

ÉZ by a sub-graph with new actors
and edges as defined below.

The delay for the newly added actors is the DMA initialization time I and the network
sending time g ·w↑(ê).

V P = V M ∪ {Iwr(ê), Gwr(ê) | ê = (v,v′) ∈ EM
ÉZ }

Actors Parameters Predecessor Successor
Iwr(ê) [I ,z(v)] v Gwr(ê)
Gwr(ê) [g ·w↑(ê),z(v)] Iwr(ê) v′

The edges of partition-aware are given by-

EP = EM
ÉZ
∪ {ewt(ê), ewn(ê), ert(ê) | ê = (v,v′) ∈ EM

ÉZ }

Edge Parameters Edge-writer Edge-reader

ewt(ê) [1,w↑(ê)] v Iwr(ê)
ewn(ê) [1] Iwr(ê) Gwr(ê)
ert(ê) [Ó(ê),é(ê)] Gwr(ê) v′

 . . modeling communication 

A B
e : [Ó(e),é(e)]

ebe(e) : [Ó−1(e),0,b(e)]

Figure . – Buffer aware graph model for a channel without DMA

A Iwr Gwr

Fst

B

IrdGrd

ewt : [1,w↑] ewn : [1] ert : [Ó,é]

e w
s
: [1
]

e
wb : [1,0,b(e

wt)]

e r
s
:[
1
]

ern : [1]

e
rb : [Ó −1

,0,b(e
rt)]

Figure . – Buffer aware graph model for a channel with DMA

The partition-aware graph implicitly models the application execution on the platform
with unbounded resources, such as buffer memory, cores and DMA channels. The remaining
graph transformations model the synchronization on bounded resources.

.. Buffer Aware Graph

The next transformation after obtaining a partition-aware graph has for the purpose to
model the bounded buffer capacity allocated to the channels. Note that we do not allocate
buffers for the channels ewn, as they model the ordering of the actors. Let EP ′ denote the the
subset of all edges in EP except for ewn edges.

Definition  (Buffer Allocation) – b : EP ′ → N+ defines the bounded capacity assigned to the
channels of the partition-aware graph. It is part of the solution of the combined scheduling and buffer
allocation problem.

Definition  (Buffer Aware Graph) – is a cyclic marked split-join graph ÎB = (V B ,EB ,d ,Ó,é,m)
obtained from the partition-aware graph by adding marked channels that model the allocated buffer
capacity and new actors that model the DMA polling and flow control.

In this graph, for each channel ê ∈ EP ′ in we add a new backward channel – in the opposite
direction, marked with the buffer allocation b(ê), signaling the free space availability in the
channel. If ê is an intra-cluster channel then the backward channel is the inversion of ê, with
inversely proportional parallelization factor, see Figure ..

Recall that the marking represents the initial number of tokens in the channel. In the
backward channel the marking b(ê) indicates the free space that is available initially i.e. the
total buffer space. At every execution, the writer takes Ó↑ tokens of space and produces Ó↑
tokens of data, and the reader takes Ó↓ tokens of data and produces Ó↓ tokens of space.

 chapter  . multi-stage scheduling for distributed memory processors

precedence dependency (data)

backward dependency (space)
processor blocked

A0 Fst0A1 A2

Iwr0 Iwr1 Iwr2Gwr0 Gwr1

Ird0 Grd0

B0

Time

Proc1

DMA1

Proc2

DMA2

Figure . – Double buffering example schedule

If the channel is an inter-cluster channel, involving DMA, then we model the free space of
the writer sub-buffer, ewt and the reader sub-buffer, ert by separate backward channels. To
model the communication we also add additional actors, see Figure ..

Consider the writer sub-buffer ewt . The direct reader of this sub-buffer is the DMA transfer
actor. The space in this sub-buffer becomes available when the DMA transfer is complete.
Detecting the transfer completion takes non-negligible processor time denoted by ç, modeled
by a new actor Fst . This actor produces the space tokens on the backward channel of ewt . The
reader sub-buffer ert is written by the DMA transfer actor, which copies the data from ewt
to ert. Recall that for flow control purposes, the status of the tokens of the reader sub-buffer
have to be communicated back to the writer. The DMA transfer required for the flow control
is modeled by Ird and Grd , and it is actually the flow control itself that is represented by the
backward channel of ert. The number of tokens on this channel represents the number of
empty rsw

i status records (see Figure .) which indicate the empty (i.e. free) state of the token
positions.

Let us consider an example to illustrate the working of our model for inter-cluster FIFO.
We assume that two actors A and B are connected with a neutral channel (Ó = 1) and assigned
to different clusters. Suppose that we use well-known double-buffering approach, such that
b(ewt(A,B)) = b(ert(A,B)) = 2 tokens. Initially, the available space in both buffers is . Let us
simulate the execution of the model in Figure . unfolded for three actor instances: A0, A1,
A2.

n A0 executes and consumes one space token.
n At the end, A0 triggers an initialization of DMA transfer, modeled by Iwr0
n Data is sent to the network, which is represented by Gwr0. In parallel, A1 picks the

second space token and triggers another DMA transfer: Iwr1 and Gwr1.
n When Gwr0 finishes, B0 receives the input data tokens. At the end it releases the space

occupied by these tokens and triggers a DMA transfer to update the writer accordingly.

 . . modeling communication 

This transfer is modeled by Ird0 and Grd0.
n Before A2 can execute, the task Fst0 must finish, which releases the necessary free space

tokens in the backward channel.
This concludes a complete flow-control cycle between the writer and reader.
We formalize addition of the new actors and channels as:

V B = V P ∪ {Fst(ê), Ird (ê), Grd (ê) | ê = (v,v′) ∈ EM
ÉZ }

Actors Parameters Predecessor Successor
Fst(ê) [ç,z(v)] Gwr(ê) v
Ird (ê) [I ,z(v′)] v′ Grd (ê)
Grd (ê) [Ó↓(ê) ·é0 · g,z(v′)] Ird (ê) Iwr(ê)

The edges of partition-aware are given by- The delay of network sending node Ó↓ ·é0 · g
corresponds to the delay of sending é0 bytes of status record for all Ó↓ tokens read in the
channel, where é0 depends on the implementation.

EB = EP ∪ {ews(ê),ewb(ê),ers(ê),ern(ê),erb(ê),ebe(ê) | ê = (v,v′) ∈ EM
ÉZ } ∪

{ebe(ê) : [Ó
−1(ê),0,b(ê)] | ê = (v,v′) ∈ EM

ÉZ
}

Edge Parameters Edge-writer Edge-reader
ews(ê) [1] Iwr(ê) Fst(ê)
ewb(ê) [1,0,b(ewt(ê))] Fst(ê) v
ers(ê) [1] v′ Ird (ê)
ern(ê) [1] Ird (ê) Grd (ê)
erb(ê) [Ó-1(ê),0,b(ert(ê))] Grd (ê) Iwr(ê)

The important point to remember is that the buffer allocation b for channels is decided by
the SMT solver and the corresponding solver constraints are described in subsection ...

.. Communication Aware Graph

In our implementation, the compute core remains busy until the completion of the DMA
initialization tasks (Iwr or Ird), started after the completion of the corresponding computation
actor (writer or reader). Moreover, if the computation actor instance starts multiple DMA
transfers (as a writer/reader of multiple channels), then none of these DMA transfers can start
until the initialization of the previous transfer has finished. This restriction can be modeled by
adding extra edges between the actors modeling the DMA initialization phase, to enforce a
sequential execution order in the schedule.

Definition  (Communication Aware Graph) – Communication Aware Graph SK =
(V K ,EK ,d ,Ó,é,m) is obtained from the buffer aware graph SB by adding the edges to model the
ordering of the DMA transfers with regard of their transfer initialization phase.

The set of actors of the communication aware graph is same as in the buffer aware graph
V K = V B . To define the new edges, we first introduce function I(v), representing an ordered set
of DMA transfer initialization actors (Iwr or Ird) connected to the output of given actor v, i.e.

I(v) = {v′ | (v,v′) ∈ EB ∧∃ ê ∈ EM : v′ = Iwr(ê)∨ v′ = Ird (ê)}
The ordering (I1, I2, . . . | Ik ∈ I(v)) is selected arbitrarily, but it must be the same in the model and
the implementation. Then, we have:

EK = EB ∪ {(Ii , Ii+1) : [1] | Ii , Ii+1 ∈ I(v), v ∈ V B }

 chapter  . multi-stage scheduling for distributed memory processors

The final transformation to model the communication is the derivation of the task graph
T K = (U K ,EK ,Ö,é) from the communication aware split-join graph SK . This is done according
to Definition , of deriving the task graph from a split-join graph. In addition we require that
the task graph inherit the partitioning from the split-join graph: ∀vh ∈ U .z(vh) = z(v). This
derived task graph is called Preliminary schedule graph.

Having shown the model for communication, we proceed to the scheduling model in the
next section.

 . scheduling

The schedule graph represents a final solution which can be deployed on the platform.
It consists of processor allocation and ordering scheme for tasks, buffer sizes for different
channels, and the start times of the tasks. It is described below.

.. Schedule Graph

The schedule graph T S = (U S ,ES ,Ö,é) is obtained from preliminary schedule graph T K by
adding the mutual exclusion edges, according to the given schedule s and intra-cluster mapping Þ,
where:

n Þ : U S → N≥0 maps every task to a core (for computation tasks) or a DMA channel (for
transfer tasks);

n s : U S → R+ associates each task with a start time.
Like buffer allocation, b, the schedule and the mapping should be computed by the solver
during the scheduling step of the design flow, as discussed later.

Let us recall and introduce some notations.
n U S = U S

T ∪U S
C is the task partitioning into:

� transfer tasks U S
T , derived from DMA transfer actors: Iwr , Gwr Ird , and Grd .

� computation tasks U S
C

n I (u) are the transfer tasks connected to the output of task u, by analogy to I(v) of the
computation-aware graph.

n U S
C+ is the set of computation tasks connected to DMA transfers: U S

C+ = {u ∈ U S
C | I (u) ,

∅}
n U S

C∅ is the set of the remaining computation tasks, i.e. those with no DMA transfer tasks
at the output.

Note that not all tasks introduced for communication are transfer tasks, as the tasks Fst (see
Figure .) are computation tasks, as they are executed on the compute cores.

Due to a limited number of the compute cores and DMA channels, multiple tasks are
mapped to the same core or channel, and their execution intervals should not overlap in time.
This requirement is modeled by adding mutual exclusion edges. The edges of the schedule
graph are obtained from:

ES = EK ∪EÞT ∪E
Þ
C∅ ∪E

Þ
C+

EÞT are the mutual exclusion edges for the transfer tasks mapped at the same DMA channel.

EÞT = {(u,u′) : [1] | u,u′ ∈ U S
T ,z(u) = z(u′),Þ(u) = Þ(u′), s(u′) ≥ s(u)}

Similarly, we insert an edge for the computation tasks without any DMA task at the output,
allocated on the same core.

EÞC∅ = {(u,u′) : [1] | u ∈ U S
C∅,u

′ ∈ U S
C , z(u) = z(u′),Þ(u) = Þ(u′), s(u′) ≥ s(u)}

Finally, when the earlier task u starts some DMA transfers upon its completion, let Imax(u)
represent the last transfer in the ordered set (I1(u), I2(u), . . .). The compute core becomes

 . . scheduling 

available to a later task u′ after the last transfer has finished:

EÞC+ = {(Imax(u),u
′) : [1] | u ∈ U S

C+,u
′ ∈ U S

C ,z(u) = z(u′),Þ(u) = Þ(u′), s(u′) ≥ s(u)}

.. Mapping and scheduling using SMT

In the previous sections, we have described a sequence of rules to derive a schedule graph,
which can model the effect of a joint scheduling/buffering solution to be calculated by the
SMT solver. The solver constraints for this problem are therefore directly generated from the
schedule graph. Below we present the corresponding definition of the optimization problem
solved at the scheduling step of the design flow.

Problem Inputs:
- partition-aware graph SP

- hardware architecture model A
- partitioning solution z

Output:
- (T S ,b,Þ,s), where T S = (U S ,ES ,Ö,é) is the schedule graph obtained from SP , the partition-

aware graph by adding extra actors and edges based on buffering b, mapping Þ and
scheduling s. According to the calculated buffer allocation b, mapping Þ, and schedule s,
which are also part of the solution.

- Þ : U S → N≥0 maps every task to a processor or DMA channel inside its soft cluster
- s : U S → R≥0 associates each task with a start time
- b : EP ′ → N+ associates each channel in the partition-aware graph to a buffer size

measured in tokens.
Costs and bounds:

Bounds
Symbol Cost Description

Lower Upper

CB
max. communication
memory per cluster

minz

¼
(v,v′)∈EP ′

: z(v′)=z

w↑v,v′ + w↓v,v′ − gcd(w↑v,v′ ,w
↓
v,v′) maxz

¼
(v,v′)∈EP ′

: z(v′)=z

c(v) ·w↑v,v′

CL schedule latency longest path delay in task graph derived from SP ´
v∈V P

d(v) · c(v)

Constraints:
n Application and Schedule: The schedule should respect all the dependencies, includ-

ing the application dependencies, bounded buffer space, DMA transfer ordering, and
mutual exclusion, all represented by edges in the schedule graph:∧

(u,u′)∈ ES (b,s,Þ)

s(u′) ≥ s(u) + Ö(u)

As we explicitly indicate here, the set of schedule dependencies is a function of the
problem solution. However, the SMT solvers require a static set of constraints. Therefore,
observing that the set U S is static we rewrite the constraints as:∧

u,u′∈U S

×S(u,u′ ,Þ,s,b) =⇒ s(u′) ≥ s(u) + Ö(u)

where ×S is a predicate that determines whether (u,u′) ∈ E.
For the mutual exclusion edges, this predicate can be trivially obtained from the defini-
tion of sets EÞ, and, in the case of no DMA (i.e. single cluster) the result is equivalent
to Equation ..

 chapter  . multi-stage scheduling for distributed memory processors

n Communication buffer: The constraints for modeling the communication buffer are
included in the above constraints through the backward edges. Predicate for these edges
can be obtained from predicate ×(v,v′ ,h,h′) in Definition , by substituting the buffer
allocation to marking m. However, in practice we do not include these constraints,
instead reuse the buffer constraints explained in Section .. For the intra-cluster
channels, we use exactly the same constraints as there. In the case of inter-cluster
channels we take into account that for the writer sub-buffer the free space is produced
by Fst actor. Therefore, it is this actor, instead of the direct reader of the channel, Iwr ,
who plays the reader role in the buffer constraints for the edge that models the writer
sub-buffer. Similarly for reader sub-buffer, the data is produced by Gwr actor and free
space is produced by Grd actor instead of the intra-cluster channel reader..

n Resource constraints: These constraints express bounded number of DMA channels
and cores per cluster. ∧

u∈U S
T

Þ(u) < |D | ∧
∧

u∈U S
C

Þ(u) < |M |

Bounded buffer memory per cluster:∧
a∈Z

¼
e=(v,v′)∈EP ′ : z(v′)=a

b(e) ·é(e) ≤ CB

n Latency constraint: The schedule must observe the latency cost constraint.∧
u∈U S

s(u) + Ö(u) ≤ CL

n Extra constraints:In our implementation we require the writer and reader sub-buffers
to have equal buffer memory:∧

ê∈EM
ÉZ

b(ewt(ê)) ·é(ewt(ê)) = b(ert(ê)) ·é(ert(ê))

We also require that the initialization and network phases of DMA transfers follow
immediately one after the other and on the same DMA channel:∧

ê=(v,v′)∈EM
ÉZ

∧
0≤h<c(v)

s(Iwr h(ê)) + I = s(Gwr h(ê))) ∧ Þ(Iwr h(ê)) = Þ(Gwr h(ê)))∧
ê=(v,v′)∈EM

ÉZ

∧
0≤h′<c(v′)

s(Ird h′ (ê)) + I = s(Grd h′ (ê))) ∧ Þ(Ird h′ (ê)) = Þ(Grd h′ (ê)))

where h and h′ correspond to the index of task instance of channel writer and channel
reader.

n Symmetry Constraints: Last but not the least, we add task and processor symmetry
breaking constraints (explained in Section .), which improve the performance of the
constraint solvers.

For feasible costs and tractable problem sizes the solver produces the scheduling problem
solutions, which include the mapping of tasks to the compute cores and DMA channels, as
well as task start times and channel buffer allocations.

 . schedule improvement

The schedule generated by the solver is not necessarily optimal in terms of latency and
processor usage. For example, even if a task is enabled (i.e. it has all input data and output
buffer space and the core at its disposal), the solver might schedule it for later execution.

 . . experiments 

Similarly, even if a processor is idle when the task should start, the solver might allocate a
new processor to run a task. This happens because when the exploration algorithm makes
queries at the points lying away from the Pareto front, the solver might produce a schedule with
under-utilization of resources like processors or time without violating the cost constraints.
Such a schedule must be improved in terms of latency and number of processors used, to
efficiently utilize the resources. If such improvement constraints are included in our query, it
complicates the problem and makes it harder for the solver to produce a solution. Hence this
improvement must be done separately.

To summarize, the solutions obtained by the solver are correct but often not tight, in terms
of latency and processing resources. In two steps: () we improve the latency and () we improve
the mapping.

.. Improvement of latency

According to task graph scheduling theory, the schedule constraints imply that each task
can be scheduled in [ASAP(u),ALAP(u)] interval (see e.g. []), where ASAP and ALAP stand
for as soon as possible and as late as possible start time for the given mapping and resource
access ordering. They are obtained by longest-delay path algorithms in the schedule graph.
The solver typically computes start times s(u) somewhere inside this interval, whereas using
ASAP(u) would allow tightening the latency constraint and it would directly correspond to
our ‘non-lazy’ (self-timed) online scheduling policy.

To realize this improvement, upon a "satisfiable" response from the SMT solver query we
extract the solver-computed mapping, the task execution order per core and DMA channel
and the buffer allocation per edge and calculate the corresponding schedule graph. In the
schedule graph, we set all start times according to s(u) = ASAP(u) and update the latency cost
CL attributed to the obtained solution to the completion time of the latest task.

.. Processor Optimal Schedule

When we acquire a non-lazy schedule from the above procedure, we fix the task start-times,
and apply the left edge algorithm  to recompute the mapping Þ(u). As a result, we obtain an
improved scheduling solution with a compact schedule and mapping.

The tasks are assigned to processors in non-decreasing start time order. The processor
usage is optimized such that processors are assigned an index in increasing order inside a
cluster starting from zero. The processor with higher index is assigned only when the processor
of lower index has an overlapping task with the current task which is to be assigned.

This optimization of schedule helps the cost-space exploration process, as the loose points
in the solution provided by the solver are tightened with the above mentioned process. As
tighter solutions are obtained, it reduces number of queries in the exploration.

 . experiments

In this section we give an empiric evaluation of the validity of our many-core scheduling
approach, using a set of application benchmarks. We run our design flow in order to approxi-
mate the Pareto points of feasible schedules. We execute every solution obtained on the real
hardware of the MPPA platform and compare its real performance to the one predicted by our
scheduling solution. Our application benchmarks consist of the JPEG Image Decoder, and a
subset of StreamIt benchmarks []. The characteristics of the benchmarks are summarized
in Table .. The exploration experiments use version . of the Z Solver [] running on a

. A classical algorithm used in design automation for this purpose [].

 chapter  . multi-stage scheduling for distributed memory processors

Table . – Application benchmark characteristics

BenchMark #Actors #Channels #Tasks
Total Exec.

Time (cycles)
Total Comm.
Data (bytes)

JPEG Decoder     
Beam Former     
Insertion Sort     
Merge Sort     
Radix Sort     
Dct     
Dct     
Dct     
Dct     
Dct     
Dct     
Dct     
Dct     
Dct Coarse     
Dct Fine     
Comparison Count     
Matrix multiplication     
Fft     

Table . – Jpeg decoder : Partitioning step solutions

Allocated soft cluster Exploration Cost
Solution

VLD IQ Color Cä CÙ CZ
Ps0      
Ps1      
Ps2      
Ps3      

Linux machine with Intel Core i processor at . GHz with  GB of memory. We use the
JPEG decoder as an example to illustrate the experiments done for each benchmark in detail.

For the partitioning step, the exploration is done in a -dimensional cost space: (Cä ,CÙ,CZ)
i.e. the maximal workload per soft cluster, communication cost estimate and number of soft
clusters. There is a trade-off between these costs, and our grid-based exploration strategy, finds
four Pareto points as shown in Table ..

At the placement step, the soft clusters are mapped to neighbor clusters. We perform a
binary search in order to find the minimal feasible total communication cost.

In the scheduling step, the exploration is done for each partitioning solution in a -
dimensional space (CL,CB), i.e. latency and maximal buffer size per soft cluster. We plot
all four Pareto fronts in Figure .. We observe some Pareto fronts cross because they differ in
the number of available soft clusters, which leads to the following effect. On the top-left side
of the cost diagram a large buffer memory per soft cluster is allowed. Therefore, even a single

 . . experiments 

soft cluster solution has enough buffer memory to minimize the latency, and it dominates the
solutions with more soft clusters because it does not use DMA transfers. On the bottom-right
side, the parallelism available to the solutions with less soft cluster count is restricted by small
amount of buffer memory, whereas adding more soft clusters results in a larger total buffer
memory, allowing to run more tasks in parallel and get a better latency. Therefore, a larger
number of clusters may yield a solution with a smaller latency, even despite the larger DMA
cost. The combination of these individual Pareto fronts can be pruned, retaining only the
overall Pareto solutions. These solutions will be a mix of multi-cluster and single-cluster ones,
showing interesting deployment trade-offs. This proves that it is not a trivial problem to select
the number of clusters, and we observe the true multi-criteria nature of the problem.

1 1.05 1.1 1.15 1.2 1.25

·104
0.4

0.6

0.8

1
·106

Buffer Size (bytes)

L
at
en

cy
(c
yc
le
s)

Ps0 Ps1 Ps2 Ps3

Figure . –  scheduling solutions for  partitioning solutions

Figure . shows the results obtained for the scheduling solutions when executed on the
Kalray platform. We plot the minimum and maximum observed latency on the platform as
well as the predicted one. The maximum error that was observed in this configuration, as well
as for the entire JPEG experiment, was %.

Figure . shows the summary of results obtained for all benchmarks. Firstly, we have
plotted the total number of scheduling solutions obtained for an application benchmark,
adding up those obtained for different partitioning solutions. Note that this solution number
depends on the amount of parallelism available in the application as well as on the structure
of the application graph. For example, for an application graph as shown in Figure . there is
no latency-buffer size trade-off irrespective of the parallelism factor Ó, the buffer size required
is Ó tokens for each channel, the application cannot execute with less and will not improve
with more.

Secondly, we plot the the maximum error of the predicted latency vs the one measured
on the platform for  iterations. The overall maximum error (%) was observed in the

 chapter  . multi-stage scheduling for distributed memory processors

1 1.05 1.1 1.15 1.2 1.25

·104
0.4

0.6

0.8

1
·106

Buffer Size (bytes)

L
at
en

cy
(c
yc
le
s)

1 1.05 1.1 1.15 1.2 1.25

·104
0.4

0.6

0.8

1
·106

Buffer Size (bytes)

L
at
en

cy
(c
yc
le
s)

1 1.05 1.1 1.15 1.2 1.25

·104
0.4

0.6

0.8

1
·106

Buffer Size(bytes)

L
at
en

cy
(c
yc
le
s)

1 1.05 1.1 1.15 1.2 1.25

·104
0.4

0.6

0.8

1
·106

Buffer Size(bytes)

L
at
en

cy
(c
yc
le
s)

pred. measured-min. measured-max.

Figure . – Jpeg decoder solutions measured on Kalray platform

‘Comparison Count’ benchmark. In the schedule that resulted in this error we observed that
there were  simultaneous DMA transfers between a pair of clusters, which contributed to
network contention and hence a less accurate latency prediction. However, we believe that
another factor contributing to inaccuracy is the contention on the shared memory bus inside
the clusters. We also believe that the error could be larger if we ran with caches enabled.

 . conclusions

In this chapter, we presented a multi-stage approach which was used to schedule split-join
application models on the Kalray processor architecture. The major contribution in this work
is an accurate modeling of network communication with buffering that supports multiple
parallel writers and readers per channel, as well as network DMA transfers and flow control.
We validate the framework using a dozen of real applications from the well-known StreamIt

 . . conclusions 

JP
EG

De
c.

Be
am

Fo
rm
er

In
se
rti
on
So
rt

M
er
ge
So
rt

Ra
di
x S
or
t

Dc
t

Dc
t

Dc
t

Dc
t

Dc
t

Dc
t

Dc
t

Dc
t

Dc
t C
oa
rse

Dc
t F
in
e

Co
m
p.
co
un
t

M
at
rix

M
ul
t. Ff

t
0

20

40

60

80

100
2
5

1
5
5

7

3
7

6 4

8

4

8 8

2
4

7 1
0

3

6 4

8 8

#Solutions %error

Figure . – Application benchmarks: summary of results

set of benchmarks for signal-processing applications. For the optimal schedules generated for
benchmarks, we performed latency measurements on real many-core hardware. Despite the
fact that we ignored the network contention in scheduling, the maximal error of scheduler’s
timing estimation was only % and typically in the range of -%. We obtain this level
of precision by exploiting non-cached shared local memory system at the cluster level. The
maximal benchmark size we could handle had  tasks, where the solver’s performance started
to saturate.

This chapter borrows some ideas from previous work. Implementation-aware graphs, a
formalism similar to our schedule graphs were proposed in [] and we extend this work by a
more realistic modeling which consider processor blocking and verify it on a real platform.
A DMA model similar to ours is considered in [] who also use an SMT solver to compute
schedules, but only for uni-processor systems. The work of [] considers the network routing
and pipelined scheduling (which is outside the scope of this thesis) but they do not combine
their the network communication model with parallel scheduling in shared-memory clusters.

Data-parallel applications apply uniform computations on large amount of data. Due to
large size, the input and output data cannot be placed in relatively small local memory. Thus
the data must be processed in small parts. The amount of the data that should be fetched in
the local memory has an impact on performance of the applications and is an optimization
problem that we discuss in the next chapter.

chapter 8
Optimizing the DMA

communication

This chapter introduces the DMA transfer granularity optimization for data parallel computations
with regular memory access patterns.

Data parallel applications, like filtering in image processing, apply the same computation to
different blocks of data. Such type of application benefit from available data parallelism

when executed concurrently on multi-core platforms. The processors connected to main
memory with DMA have to explicitly fetch the data into local memory from the main memory,
on which the computation should be performed and finally the results written back in main
memory. However the choice of the amount of data to be brought to the local memory in each
DMA transfer, which is obviously limited by the size of local memory, is a design choice to be
made by the programmer.

In this chapter we discuss influence of DMA transfer granularity and access pattern by
DMA on performance of data-parallel applications. We start by discussing the data parallelism
in applications and how software pipelining helps to achieve the overlap between data transfer
and computation. With this software pipelining into consideration, the non-trivial choice of
granularity of DMA transfer is described in detail. Further, different mechanisms to exchange
the shared data between different processors and its effect on the optimal granularity are
discussed. We conclude this chapter with experiments performed on the Cell processor
architecture.

 . data-parallel applications

There are different types of parallelism available in parallel applications, as discussed
in Section .. A class of applications known as embarrassingly parallel, performs uniform
computation on a large amount of data blocks. In this chapter, we focus on such applications,
which have a regular memory access pattern that can be modeled for static optimization. Our
application structure consists of computation Y = f (X), where X and Y are large input and
output arrays respectively. For simplicity, we assume that both have the same dimensions. The
computation f () is applied uniformly to every element of this array.

If the input (and the output) array is one-dimensional, then each element of this array can be
computed as Y(i) = f (X(i)), where i represents the position of an element in the array. However,



 chapter  . optimizing the dma communication

n

n

k / 

k / 

Figure . – Neighborhood pattern of size k

in some applications like filtering in image processing, the input and output data arrays are
two dimensional instead of one. Such a computation can be represented as Y(i1, i2) = f (X(i1, i2)),
where both the input and output arrays are two-dimensional. In such cases, the position of
element in the array must be determined by two indices i1 and i2. Applications compute data
for more than two dimensions, however we restrict ourselves to two dimensions for simplicity.

Given such a scenario, the computations can be further classified as:
n independent computations: This type of computations does not require any surrounding

data, but the one which is being processed. Y(i) = f (X(i)) and Y(i1, i2) = f (X(i1, i2)) are
examples of independent computations.

n overlapped data computations: In this case, the computation requires surrounding block
of data to produce output. For example, in the case of two dimensional data, Y(i1, i2) =
f (V(i1, i2)) is an example of overlapped computation, where V(i1, i2) is a (k +1)× (k +1)
matrix ,

V(i1, i2) =

{
X(j1, j2) :

(i1 − k/2 ≤ j1 ≤ i1 + k/2)
(i2 − k/2 ≤ j2 ≤ i2 + k/2)

}
(.)

We refer to V as the shared data required for the computation. We assume a symmetric
window of size k around the data block as shown in Figure ..

In practice it is possible that algorithms require shared data only from one side around the
data block and we consider it later.

.. Buffering schemes

Semantically, a one-dimensional data-parallel algorithm can be specified by the following
sequential program.

Algorithm  Sequential Data Processing

for i:= to n do
Y[i]:=f(X[i])

end for

However, for the processors with hierarchical memory, the data must be brought from the
main memory, into a memory closer to the processor. Typically the entire input and output
array does not fit into the local memory and one needs to split the data into parts for processing.

. for convenience k is assumed an even integer.

 . . data-parallel applications 

In such case, the processor will have to prefetch the data (dma_get), then process it and write
back (dma_put) the results to the output, as shown in Algorithm . The meaning of ein and
eout variables used is that there is an identifier to check completion of dma_get or dma_put.

Algorithm  Single Buffering

for i:= to m- do
dma_get (in_buf,X[i · s +1 .. (i +1) · s],ein); . fetch in-buffer
dma_wait (ein);
for j:= to s do . compute

out_buf[j]= f(in_buf[j]);
end for
dma_put (out_buf,Y[i · s +1 .. (i +1) · s], eout); . write out-buffer
dma_wait (eout);

end for

However if we implement this single buffering algorithm, the processor remains idle when
the input and output arrays are being transferred. To improve this situation double buffering is
employed, where the input and the output buffer are split into two parts. While the processor
performs computation on first part of the buffer, the transfer is carried on the other part and
vice-versa. This is done to overlap the computation and communication.

Algorithm  Double Buffering

d:=;
dma_get (in_buf[],X[..s],ein[]); . first read
for i:= to m- do

if i < m −1 then
dma_get (in_buf[d⊕],X[(i +1) · s +1..(i +2) · s],ein[d⊕]); . fetch next

end if
dma_wait (ein[d]); . wait for current input
for j:= to s do . process current

out_buf[d][j]= f(in_buf[d][j]);
end for
if i > 0 then

dma_wait (eout[d⊕ ]); . wait for previous write
end if
dma_put (out_buf[d], Y[i) · s +1..(i +1) · s], eout[d]); . write current
d:=(d⊕ ); . toggle buffer

end for
dma_wait (eout[d⊕]); . wait for last write to complete

Algorithm  defines a software pipeline with  stages: input transfer, computation and
output transfer. In this algorithm, the processor issues a fetch for a block of data and proceeds
to the computation of previously fetched data. After finishing the computation it issues a write
of the computed results and completes the iteration. Fetching the first block and waiting for
the write of the last block are respectively the beginning (prologue) and the end of the pipeline
(epilogue).

 chapter  . optimizing the dma communication

P0 P1 P2 P3

... b j b j+1 Contiguous

P3 P0 P1 P2 P3 P0

b j b j+p

... ...

Periodic

Figure . – Contiguous vs periodic allocation of data

.. Data distribution, block Shape and Granularity

The input data to be processed must be distributed among the available processors for
parallel processing. Depending on the number of dimensions, the data can be split in various
ways. We discuss the splitting and distribution of one-dimensional and two-dimensional data
below.

... One-dimensional data

In the case of one dimensional data without any shared data computations, it is simple
to cut the input array uniformly into parts equal to the number of processors and allocate
one part per processor. This allocation can be done in two types : (a) contiguous : where the
adjacent blocks j and j +1 are allocated to the same processor or (b) periodic where the blocks j
and j + p are allocated to the same processor, where p is the number of processors. Figure .,
shows both schemes for four processors P0 to P3. These solutions are equivalent in the amount
of distribution of data.

In the case of one dimensional data, when there is need for shared data for computation,
periodic allocation can be beneficial as the processors can exchange the data amongst themselves.
In the case of contiguous allocation the processor has to fetch the computation data as well as
shared data into its local memory to perform the processing, thus increasing the granularity of
data transfer. Contiguous allocation is favorable when processor stores the shared data locally
at the end of current iteration and reuses it for the next. We discuss this further in Section ..

... Two-dimensional data

Two dimensional data can be divided equally into various shapes as illustrated in Figure ..
Again such solutions are equivalent in amount of data that is being transferred from the main
memory. However, depending on the shape, the data maybe contiguously transferred in one
DMA transfer or by using expensive strided DMA (additional delay due to stride is described
in Section .).

In the case of shared data for two-dimensional data, the geometry of the data partitioning
scheme determines the amount of data that will be shared between the processors. For example,
as shown in Figure . we see that for completely horizontal or vertical blocks of the same area,
the amount of shared data, is greater than for square shaped blocks.

 . optimal granularity for data transfers

For one-dimensional or two-dimensional data, finding the optimal granularity for the data
transfer, that minimizes the total execution time of the application is a non-trivial problem.
In order to derive the optimal granularity, the performance of the pipelined execution of the

 . . optimal granularity for data transfers 

n

n/p

n/p lines of n elements

n

n/p

n lines of n/p elements

n/
√
p

n/
√
p

n/
√
p lines of n/

√
p elements

Figure . – Distribution of D data of same size, but different shapes

shared data computation block

s2 = 4

s1 = 1

s2 = 2

s 1
=
2

s 1
=
4

s 2
=
1

(s1,s2) = (1,4) (s1,s2) = (2,2) (s1,s2) = (4,1)

Figure . – Influence of block shape on the amount of shared data

. . .0 1 m −1

Input Array (m blocks)

. . .0 s −1

. . .0 b −1

Each block of s elements

Each element of b bytes

Figure . – Decomposition of one dimensional input array

 chapter  . optimizing the dma communication

double buffering algorithm must be analyzed. In this section we first analyze the performance
of this algorithm for different size and shapes for independent computations, without any
shared data.

For one-dimensional data we assume that the application performs a computation on a
block of data s consisting of elements, where each element is of b bytes of data. Figure .
shows an input array, composed of m blocks. We assume that the computation time to perform f
on one element is é time units. Since we already have assumed data independent computation
time, if the deviation in this time is not significant, then we can assume an average value of é
which gives a good approximation of reality. Therefore the computation time of s elements
can be given by C(s) = é · s.

For two-dimensional data, we assume that the computation time depends only on the area
of the rectangle is given by:

C(s1,s2) = é · s1 · s2
In practice, C(s1,s2) has a component which depends on number of lines s1, due to

expensive loop overheads for inner and the outer loop on certain architectures. We assume
that this overhead is negligible and discuss it further in the experiments section.

For transfer time, we use the formula in Equation . for a non-strided DMA:

T(s) = I + g · s · b
and from Equation . for strided DMA:

T(s1,s2) = I0 + I1 · s1 + g · (s1 · s2) · b
As discussed before, the software pipeline has  stages, namely, input data transfer, compu-

tation and output data transfer. Depending on the ratio between computation time for one
block C, and transfer time per block T for input and output blocks, the execution pipeline can
be classified into two types :

n Computation Regime: In this case, the computation time dominates the transfer time
C > T , shown in Figure .(a).

n Transfer Regime: Here the transfer time dominates the computation time C ≤ T , shown
in Figure .(b).

As mentioned earlier, the execution of the pipeline stage has an epilogue and prologue
stage which equals to the transfer time of a block. Now, we can observe in Figure .(b) a
transfer regime, in which the total execution time of the pipeline is dominated by the transfer
time. Whereas in computation regime shown in Figure .(a), the execution time is dominated
by the computation time. We can see that apart from the computation time, the prologue
and the epilogue also contribute to the execution time. Let m be number of blocks which are
grouped for the the pipeline stage. The total execution time ß, of the pipeline can easily be
estimated with the help of transfer time and computation time and given by -

ß =

 m ·C +2T in the computation regime

(m +1) · T + C in the transfer regime
(.)

The ratio between computation time of a block C and its transfer time T is not fixed but
varies with the block size and shape. We can therefore control it to some extent in order to
optimize performance, but which relation is preferred? The answer depends on which resource
is more stressed by the application, which is either computation or communication, and this
characterized by the parameter è,

è =é− g · b (.)

 . . optimal granularity for data transfers 

s=

Prologue

Epilogue

Time

Output
Transfer

Computation

Input
Transfer

id le compute0 compute1 compute2 id le

prefetch0 prefetch1 prefetch2

writeback0 writeback1 writeback2

(a) Computation Regime

s=

Prologue

Epilogue

Time

Output
Transfer

Computation

Input
Transfer

prefetch0 prefetch1 prefetch2 prefetch3 prefetch4 prefetch5

id le compute0 compute1 compute2 compute3 compute4 compute5 id le

writeback0 writeback1 writeback2 writeback3 writeback4 writeback5

(b) Transfer Regime

Figure . – Pipelined execution using double buffering on one processor

where g is the cost per byte for DMA transfer (refer to Section .). In fact è gives the difference
in cost per element for computation and communication.

If è ≤ 0, then it signifies that the pipeline would always execute in the transfer regime
where transfer time is dominating the computation time. The optimal transfer granularity for
this case is easy to calculate and should be equal to the maximum size limited by the local
store. This will improve the performance of the application by reducing the idle time between
computations. Similarly if è > 0, then the pipeline is in computation regime, and we consider
this case for further analysis.

As we see in Figure .(a) if s is small we are still in the transfer regime, because the transfer
time T(s) is dominated by DMA initialization time. However, when è > 0 the computation
grows faster for larger s than the transfer time and for a certain block size s∗ we enter the
computation regime. To see the impact of s on the total pipeline time (Figure .(b)) we have
to substitute m =

⌈
n
s

⌉
into Equation ., where n is the size of the array. For small enough s,

where the transfer regime is dominated by DMA initialization time, the total pipeline time
mainly depends on m giving the number of DMA initialization, and the latter decreases inverse
proportional to s.

However for larger s the component proportional to s starts to dominate. In the computa-
tion regime the total computation time m ·C can be seen as constant as the total computation
time for n elements is roughly é · n. In this regime, prologue and epilogue times 2T result in
growth of pipeline time with s. Because in computation regime the pipeline time thus always
grows with s, our strategy is to make s small enough so that we get into the transfer regime. In
this regime we have to find s yielding minimal T(s).

We also have a constraint that the block granularity is between one element and the full
input array size, provided that its size does not exceed the maximum local buffer size B imposed
by the local store limited capacity. This leads to following constrained optimization problems
for one or two-dimensional data:

 chapter  . optimizing the dma communication

Transfer
/ computation
time per block

s

C(s)

I

T(s)

nns∗Transfer
Domain

Computation
Domain

(a) C(s) and T(s) per block

Total Exec
time

s

ß(s)

s∗

Transfer
Regime

Computation Regime

Transfer
Domain

Computation
Domain

(b) Pipeline execution time

Figure . – Regimes depending on the block size

min T(s) s.t. min T(s1,s2) s.t.

T(s) ≤ C(s) T(s1,s2) ≤ C(s1,s2)

s ∈ [1..n] s1,s2 ∈ [1..n1]× [1..n2]

b · s ≤ B b · s1 · s2 ≤ B

For this problem, we analyze the case with single and multiple processors for one-dimensional
and two-dimensional data separately.

.. Single Processor

... One-dimensional data

We plot the computation time and the transfer time in Figure .(a). The ratio between the
computation time and the DMA transfer time of the block splits the domain of solutions into
computation domain and transfer domain.

The intersection of functions T(s) and C(s) for one-dimensional data blocks where the
computation domain corresponds to the interval [s∗ , n], and the overall execution switches
from a transfer regime to a computation regime for granularity s∗, as illustrated in Figure .(b).

The total execution time for a large n is then approximated by:

ß(s) =

2 · T(s) + m ·C(s) ' 2 · g · s · b + n ·é f or s > s∗

(
⌈

n
s

⌉
+1) · T(s) + C(s) ' (n · I)/s + (n · g · b) f or s ≤ s∗

(.)

Recall that according to our strategy we search for optimal values of s by minimizing T(s)
for s ≤ s∗. From Figure . we see that ß(s) is a decreasing function for s ≤ s∗. Therefore the
optimal value is s∗ given by:

s∗ = I/(é− gb) (.)

 . . optimal granularity for data transfers 

s1

s2

T = C
n1

n2I1/è

Transfer domain
T > C

Computation domain
T < C

(a)

s1

s2

H
n1

n2

ss1

s2 = s′2

s′
s′1

s∗
1

H(1)

(b)

Figure . – Rectangular blocks: (a) computation and transfer domains, (b) optimal granularity
candidates and optimal granularity.

Figure . – The dependence of computation C and transfer T on the granularity (s1,s2).

If for any granularity s the execution is always in the computation regime (due to high é),
the optimal unit of transfer is a block, that is s∗ = 1, which guarantees minimal prologue and
epilogue.

... Two-dimensional data

For two-dimensional data, we should find an optimal rectangular block which should give
minimal execution time for the pipeline. For rectangular blocks, the dependence of T(s1,s2)
and C(s1,s2) on their arguments is illustrated in Figure . (assuming è > I1). Similarly, the
intersection of these two surfaces separates the domain of (s1,s2) into two sub-domains, the
computation domain where T < C and the transfer domain where T > C, see Figure ..

Comparing the transfer time of the different shapes is not trivial since the computation
domain forms a partially ordered set where possibly two different shapes s and s′ are such
that s1 < s′1 and s2 > s′2. This is due to the fact that if these shapes have the same area, then the

 chapter  . optimizing the dma communication

Prologue

Epilogue

Time

Output
Transfer

Proc0

Proc1

Proc2

Input
Transfer

b0,b1,b2 b3,b4,b5 b6,b7,b8

id le b2 b5 b8

id le b1 b4 b7

id le b0 b3 b6

b0,b1,b2 b3,b4,b5 b6,b7,b8

Figure . – Pipelined execution in the transfer regime using multiple processors

shape with smaller number of lines has a smaller transfer overhead, that is T(s1,s2) < T(s′1,s
′
2).

Observe that the computation domain is convex where for any point s inside the domain,
we can always find another point s′ on the boundary such that s′2 = s2 and s′1 < s1 and hence
with a smaller transfer time. Therefore the candidates for optimality are restricted, as for the
one-dimensional case, to the intersection T(s1,s2) = C(s1,s2). These points are of the form
(s1,H(s1)) where,

H(s1) = (I0 + I1/s1)/è

and their transfer time is expressed as a function of the number of clustered horizontal blocks
s1:

T(s1,H(s1)) = c · (I0 + I1s1)

where c is the constant 1+ (gb/è). This function is linear and monotone in s1, meaning that as
we move upwards in the hyperbola H the transfer time increases, and hence the optimal shape
is,

(s∗1,s
∗
1) = (s1,H(s∗1)) = (1,H(1))

which constitutes a contiguous block of one line of the physical data array. This is not surprising
as the asymmetry between dimensions in memory access prefers flat blocks with s1 = 1.
Without data sharing and memory size constraints the problem becomes similar to the one-
dimensional case where it is only the size of the block that needs to be optimized.

.. Multiple Processors

Given p identical processors having the same processing speed and the same local store
capacity, the input array is partitioned into p chunks of data distributed among the processors
to execute in parallel. We assume that processors have enough memory to that each of it
can implement double buffering algorithm. We extend our granularity analysis to this case
assuming all processors implement the same granularity.

Data transfers in this setting may happen in parallel, leading to network contentions and we
model the corresponding increase in transfer time as proportional to the number of processors.
It also reduces the workload per processor as computation happens in parallel. We assume
that each processor has its own DMA so that it can issue request irrespective of the other
processors and all the processors start at the same time in a synchronized manner. Thus the
DMA initialization phase is overlapped in time. Figure . illustrates a pipelined execution
using several processors where p concurrent transfer requests arrive simultaneously to the

 . . shared data transfers 

time

s

C(s)

T1(s)

Tp(s)

s∗(1) s∗(p)

s1

s2

Tp = CT1 = C

1
s∗(p)

Hp(1)

s∗(1)

H(1)

n1

n2

Figure . – Evolution of the computation domain and optimal granularity as we increase the
number of processors

b0 b1 b2 b3 b4

shared data

s
n

(a) One Dimensional

p0 p1 p2p2

p3 p4 p5

p6 p7 p8

s1

s2

(b) Two Dimensional

Figure . – Shared data communication

shared interconnect. Arbitration of these requests is left to the hardware which performs the
data transfers at a low granularity (packet based) in round robin fashion. We assume that the
time difference between processors receiving their blocks is negligible.

We model by parameterizing the transfer cost per byte g with the number of active proces-
sors such that gp that increases linearly with p. Obviously this changes the ratio between the
computation time and the transfer time of a block and consequently the optimal granularity.
Figure . shows the evolution of the computation domains and optimal granularity for
one-dimensional and two-dimensional data as we increase the number of processors. The
reasoning is similar to the previous one, where functions T and H become Tp and Hp, yielding
an optimal data granularity for each p. For more details the reader is referred to [, ].

 chapter  . optimizing the dma communication

 . shared data transfers

A shared data computation is a data-parallel loop in which the computation for each block
needs additional data from the neighboring blocks. In the one-dimensional case the processing
of the input block is assumed to be:

Yi = f (X[i],V[i])

where V[i] is additional data taken from the input left neighbor X[i −1]. For two dimensional
case, the assumed data sharing V(i1, i2) was defined in Section .. For both one and two
dimensional case the shared data is illustrated in Figure .. This shared data, can be
transferred between the processors in various ways. We consider three strategies/mechanisms
for transferring shared data that mainly differ in the component of the architecture which
carries the burden of the transfer,

. Replication: transfer via the global interconnect from main to local memory. In this
method, the processor issues the DMA get for input and shared data for both X and V .

. Inter-processor communication: transfer via the global interconnect between the cores.
In this method, the processors synchronize at the beginning of the iteration and transfer
the shared data using DMA, and then proceed to computations.

. Local buffering: transfer by the core processors themselves. In this method, the proces-
sor after computation of current iteration copies the shared data from current iteration
to a new position in the local store to be used in the next iteration.

We can observe that in the second case, we need to do periodic allocation of data, while
for the third case we have to do contiguous allocation of data as shown in Figure .. These
strategies can be compared with respect to the overhead for communication time or replication
time in the third case.

In general we observe that replication performs better in the computation regime because
even if the data transfer time has extra overhead for V which is overlapped with the computa-
tion time and hence compensated. In transfer regime, the execution time depends also on other
factors like amount of shared data k, cost for locally copying the data etc. A detailed analysis
of how to select the best strategy is given in [, ], and we omit it here for brevity.

 . dma performance of the cell processor

We measure the DMA transfer time and accordingly the cost per byte as we increase
the block size in one transfer, as shown in Figure .. The DMA cost per byte is reduced
significantly for block size larger than  bytes. On Cell architecture if the DMA is not
multiple of -bytes or unaligned at source and/or destination to -byte boundary, the
interconnect performs poorly []. We observe this effect in Figure .(b), where below 
bytes the cost per byte is significantly high and is consistent for higher sizes. For large block
sizes the ratio converges to cost per byte gp proportional to the number of processors. As we
increase the number of processors and synchronize concurrent DMA transfers, we can observe
that transfer time is not highly affected for a small granularity because the initial phase of the
transfer is done in parallel in each processor’s MFC, whereas for large granularity the transfer
time is proportional to the number of processors due to the contentions of concurrent requests
on the bus and bottleneck at the Memory Interface Controller (MIC) as explained in [].

The initialization phase time for one-dimensional blocks I is about  cycles and the
DMA transfer cost per byte to read from main memory g1 is about . cycles per byte, and
it increases proportionately to the number of processors to reach p · g1 (for high granularity
transfers).

 . . dma performance of the cell processor 

     

103

104

Block size (s · b) in bytes

Tr
an

sf
er

ti
m
e
(c
lo
ck

cy
cl
es
)

 SPU
 SPU
 SPU
 SPU

(a) DMA Transfer Time

     

0

10

20

30

Block size (s.b) in bytes

C
os
t
p
er

by
te

(c
lo
ck

cy
cl
es
)

 SPU
 SPU
 SPU
 SPU

(b) Cost Per Byte

Figure . – DMA performance for contiguous blocks

gpp
min max avg

 . . .
 . . .
 . . .
 . . .

Table . – DMA performance for contiguous blocks

For two-dimensional data blocks DMA transfers are implemented using DMA lists (ex-
plained in Section .), for which we derive the DMA parameter values based on profiling
information. As modeled in Section ., these parameters consist of a fixed initialization cost
I0 = 108 cycles and an initialization cost per line I1 = 50 cycles which corresponds to the cost
of the processing of each list element. The transfer cost per byte g is subject to variations that
are more visible and amplified for data block transfers with increasing block height s1. These
variations are due to several factors such as concurrent reading and writing requests of the
same processor, packet-level arbitration between requests of different processors as well as the
effect of stridden accesses of main memory. The minimal, maximal and average values of gp
measured for two-dimensional data are shown in Table . and we use the average value in our
model used to calculate the optimal granularity.

Note that due to the characteristics of the Cell B.E. not all block size and shape combinations
are possible. The limit for number of elements in a DMA list is K, where each element is
a contiguous block transfer of upto KBytes. However, the Cell B.E. has a strict alignment
requirements on -byte boundary for both DMA transfers and SPU vector instructions for
which the processor is optimized. If this is not taken care of, the DMA engine aligns the data
by itself causing data transfers to local memory at shifted offsets. To consider the shifting in
application code would become too complex, and hence the scenario is avoided altogether by
restricting to aligned transfers.

 chapter  . optimizing the dma communication

     
0

0.5

1

1.5

·107

computation
regime

transfer
regime

Block size (s · b) in bytes

E
xe
cu

ti
on

ti
m
e
(c
lo
ck

cy
cl
es
)

 SPU-pred  SPU-pred  SPU-pred
 SPU-meas  SPU-meas  SPU-meas

Figure . – Independent data computations

 . experimental results

In the experiments, we implement a double buffering algorithm for different benchmarks,
some of them are applications where computations are completely independent and others
have shared data. For each benchmark, we vary the block size and shape, along with the
number of processors. We compare the performance (and the optimal solution) obtained
in practice with those predicted by our analytical model. Our benchmarks consist of, first
synthetic algorithms of (independent/shared) computations where f is a synthetic function for
which we vary the computation workload per byte é and the size of shared data k.

We then implement a convolution algorithm (a FIR filter) that computes an output signal on
as a convolution of an input signal and an impulse response signal. These signals are encoded
as one-dimensional data arrays and the size of the impulse response signal determines the size
of the data window required to compute one output item. We vary the size of the impulse
signal to vary the size of the shared data.

Our last benchmark is a mean filtering algorithm working on a bitmap image, encoded as a
two-dimensional data array. This algorithm computes the output for each pixel as the average
of the value of its neighborhood.

.. Independent Data Computations

To validate our analytical results for independent computations, we use synthetic algo-
rithms and focus only on one-dimensional data, since, as explained previously, optimizing
data granularity for independent two-dimensional data is similar to the one-dimensional case
where it is about optimizing the granularity (and not the shape) of data.

For the synthetic algorithms, we fix the size b of an element to  bytes and the size n of
input data array to K elements, the total size of the array being Mbytes. The local storage
memory capacity K and two double buffers allocated then limit the possible clustered
elements in one transfer to B=K elements, not taking into account the memory space allocated

 . . experimental results 

      

106

106.5

Block size (s · b) in bytes

E
xe
cu

ti
on

ti
m
e
(c
lo
ck

cy
cl
es
)

 repl  ipc  local buffering
 repl  ipc  local buffering

(a) shared data size  bytes

      

106

106.2

106.4

106.6

Block size (s · b) in bytes

E
xe
cu

ti
on

ti
m
e
(c
lo
ck

cy
cl
es
)

 repl  ipc  local buffering
 repl  ipc  local buffering

(b) shared data size  bytes

Figure . – Measurements for shared data in computation regime

for code and the memory required for other data structures. We vary the size of block s and
the number of processors. We compare both predicted and measured optimal granularity, and
the total execution time for both transfer and computation regimes.

Figure . shows the predicted and measured values for ,  and  processors. We
can observe that the values are very close to each other. The predicted optimal points are
not exactly the measured ones but they give very good accuracy. Performance prediction
in the computation regime is better than in the transfer regime, the dominant part of the
total execution time is due to the processors which have more predictable performance than
the interconnect. Besides, as mentioned in [] in this regime we hide delays due to the
interconnect latency and bandwidth.

.. Shared Data Computations

For shared data computations we perform the experiments for two shared data sizes
k=,  bytes for  and  processors. Observe that as expected in the computation
regime the replication strategy performs always better than local buffering and IPC as shown
in Figure .. Further we also observe that IPC performs worse than local buffering owing to
the high synchronization overheads between the processor for the inter-processor data transfer.
The synchronization cost using barrier is between  and  cycles at each iteration, which
is comparatively larger than overhead replicating data in the computation regime.

In the transfer regime, performance varies according to the value of k and number of
processors. We can observe in Figure . that the costs of local buffering and replication are
nearly the same, and that replication performs even better for a transfer of blocks size between
 bytes and K. This demonstrates that using DMA for transferring additional data can
perform sometimes better than local buffering even for a small value of k, and that keeping
shared data in the local store may have a non-negligible cost. Therefore, even when considering
contiguous partitioning of data, shared data redundant fetching using a replication strategy
can be as efficient, if not more efficient than keeping shared data in the local store. However,
the cost of transferring shared data using replication becomes higher than other strategies
when the number of processors increase because of the contentions even for small values of k.

 chapter  . optimizing the dma communication

      

105.8

106

106.2

106.4

106.6

Block size (s · b) in bytes

E
xe
cu

ti
on

ti
m
e
(c
lo
ck

cy
cl
es
)

 repl  ipc  local buffering
 repl  ipc  local buffering

(a) shared data size  bytes

      

105.8

106

106.2

Block size (s · b) in bytes

E
xe
cu

ti
on

ti
m
e
(c
lo
ck

cy
cl
es
)

 repl  ipc  local buffering
 repl  ipc  local buffering

(b) shared data size  bytes

Figure . – Measurements for shared data in transfer regime

     

4

4.02

4.04

4.06

Block size (s · b) in bytes

N
or
m
al
iz
ed

ex
ec
u
ti
on

ti
m
e

 repl
 ipc
 local

(a)  Processors

     

1

1.01

1.02

1.03

1.04

Block size (s · b) in bytes

N
or
m
al
iz
ed

ex
ec
u
ti
on

ti
m
e

 repl
 ipc
 local

(b)  Processors

Figure . – Convolution algorithm

.. Convolution Benchmark (FIR filter)

Convolution is an algorithm [] benchmark (FIR filter) used commonly in signal processing
applications. In a FIR (finite impulse response) filter, convolution is done between a given finite
impulse response signal of size r and the the input signal. The algorithm assumes D input
array share r −1 data elements between the subsequent iterations. The equation to calculate
the output Y for an input arrays X and C is given as:

Y[i] =
m¼

j=0

X[i − j] ·C[j]

In our experiments, the size of input array X is chosen to be Mbytes of data, so it cannot fit

 . . experimental results 

    





1

1.2

1.4

·105

Block height s1, s2 = 4096/s1

D
M
A
tr
an

sf
er

ti
m
e
(c
yc
le
s)

Block with replicated data transfer time

Figure . – Predicted transfer time for different block shapes with shared data

in the scratchpad memory, whereas C, the filter coefficients are small enough to be permanently
stored in the local store of each SPU. Hence double buffering is implemented to transfer data
blocks of array X (respectively Y). The measured computation cost per element é is about 53
cycles, owing to the SIMD (single instruction multiple data) floating point operations performed
on double data type. Note that for this algorithm, despite an optimized implementation using
vector operations the computation cost per byte é is much higher than the transfer cost per
byte with maximum contentions g8, resulting from the use of maximum number of available
cores. Therefore, the overall execution is always in a computation regime for all strategies.

Figure . summarizes performance results for size of b = 8 bytes and r = 32 samples,
using  and  processors. In the computation regime, replication strategy outperforms local
buffering and IPC strategies since it avoids the computational overhead at each iteration
of copying shared data locally or exchanging data between neighboring processors using
synchronous DMA calls. This overhead is proportional to the number of iterations and therefore
decreases with higher granularities to be eventually negligible which leads all strategies to
perform with nearly the same efficiency for large granularities.

.. Mean Filter Algorithm

We use a mean filter algorithm which works on a bitmap image of 512×512 pixels. Each
pixel is characterized by its intensity ranging over [0 − 255]. The output for a pixel is the
average of the values in its neighborhood defined as a square (mask) centered around it. We
have experimented with different mask sizes and focus on the presentation of the results for a
 x mask, that is, k = 8. Note that the Cell architecture does not support SIMD instructions
for char (-byte) datatype, and non-SIMD operations are highly inefficient on SPU. In order to
use SIMD operations for efficient execution of the filter code, we encode a pixel as an integer
(b = 4 bytes). Based on profiling information, the computation workload per element obtained,
is roughly é = 62 cycles.

Figure . illustrates the influence of the shape of the block (and its implied replicated
area) on the transfer time calculated using formula mentioned in []. We consider in this
plot different feasible combinations of (s1,s2) so that s1 × s2 = 4096. A shape (s1,s2) yields a

 chapter  . optimizing the dma communication

     

4

4.5

5

·106

Block height s1

P
ip
el
in
e
to
ta
le

xe
cu

ti
on

ti
m
e
(c
yc
le
s)

meas s1 × s2 = 1K
pred s1 × s2 = 1K

(a) s1 × s2 = 1024

     

4

4.5

5

5.5

·106

Block height s1

P
ip
el
in
e
to
ta
le

xe
cu

ti
on

ti
m
e
(c
yc
le
s)

meas s1 × s2 = 2K
pred s1 × s2 = 2K

(b) s1 × s2 = 2048

Figure . – Predicted and measured values for different combinations of s1 × s2

block of s1 +8 lines, each line corresponding to a contiguous transfer of b · (s1 +8) bytes. The
optimal transfer time is obtained neither for square (64,64) nor the flattest possible (8,512)
blocks and the best trade-off in this case is (s1,s2) = (32,128).

Finally we evaluate the effect of the granularity and shape of the blocks and the total
execution time of the pipeline for different numbers of processors. The distance between the
predicted and measured values is rather small except for large values of s1. The major reason
for the discrepancy between the model and the reality is that C(s1,s2) has non negligible
component that depends on s1 for two reasons. The first is due to the overhead at each
computation iteration related to the setting required between the outer loop and the inner
loop like adjustment of the pointers for every row, pre-calculation of sums of borders etc.
Secondly, the creation of DMA list elements equal to s1, occupies the processor as discussed
in Section . and this overhead is also added to the overall execution time.

We observed that overall predicted results are close to the measured ones. However, some
error in prediction results from -

n Variation in the DMA cost per byte parameter g, with respect to contentions in the
global interconnect, which is difficult to model accurately.

n Cell SPU are vector processors, which have high overheads for non-vector instructions
like branching, scalar calculations etc. Owing to this fact, the code which performs
initialization of the data structures, adjustments of pointers etc. requires considerably
large amount of time.

n In the case of strided DMA the overhead of formulating a DMA list is significantly
higher, which results in poor prediction for rectangular blocks with higher s1 value.

A further detailed explanation of the experiments is given in [, ] and skipped here
to keep the text concise.

 . conclusions

In this chapter, we presented a way to model the DMA transfer granularity problem for
data-parallel applications, under simplified assumptions. The selection of such parameters is

 . . conclusions 

an additional burden to the application programmer and in general a non-trivial issue, owing
to various factors that must be considered such as dimensionality, amount of shared data etc.,
combined with the hardware architecture parameters. We captured the essential parameters of
the applications with or without shared data and presented a method to calculate the optimal
data-transfer granularity for double-buffering algorithms. We presented real-life application
benchmarks in the experiments section to prove validity of our results.

Pre-fetching the data to the local processor memory is an old technique to close the gap
between the speed of the processor and the main memory. Caches used for this reason faced the
problem of area and speed overhead in supporting cache coherency []. Scratchpad Memories
(SPMs) is an alternative solution to caches where data (and sometimes code) transfers through
the memory hierarchy explicitly by the software. In architectures supporting scratchpad mem-
ories, buffering techniques have been suggested previously to hide the access latencies [].
In [], the author performs parametric analysis for calculating optimal buffer size for data
independent parallel loops for a cache based architecture. However the work doesn’t consider
multi-processor scenario or data sharing. Effect on multiple processors performing DMA
concurrently is studied in []. Our work on one-dimensional data is very close to one in [],
where the author presents a formal analysis on the optimal buffer size on a single processor
system. We extend the problem with multiple processors accessing the resources. Work has
been done in context of parallel loop partitioning [, , ] for effective distribution of data on
multiple processors. However, we deal with DMA-based architectures instead of cache-based,
and study the problem formally. This is a joint work and is also published in [].

Despite the fact that for each application the SMT solver can generate different Pareto
configurations which can optimally execute an application maintaining the given costs, this is
not always sufficient in practice due to fundamental problem that the exact set of applications
executing on the on the platform at the same time is often unknown at compile time, as it is
dynamically decided at run time. In order to make an efficient execution of all the applications,
decisions must be made at system-level at run-time to optimize the utilization of the resources
by a dynamically changing set of applications. In next chapter we describe such a run-time
system which manages applications dynamically.

chapter 9
Run-time application

management and

reconfiguration

This chapter introduces a run-time management system to handle the applications dynamically
starting at unknown time in the on resource-constrained multi-core processors.

In contemporary MPSoCs, the number of applications that run concurrently is increasing
rapidly. It is often the case that the designer has only a predefined set of applications,

which can be launched by the user. However, launching of an application depends on the
user requirements. For example, if user is playing a video on a mobile device, the audio
related to it should also be decoded in parallel. In background, the device may update its
messages or emails, which is happening transparently to the video application. Thus even if
the applications are known at compile-time, the set of simultaneously running applications
varies. In addition each application has its own Pareto optimal configurations which defines
the trade-offs between various system parameters like resource usage, energy consumption
etc. Due to this situation there is a need for having a runtime manager which will launch
or reconfigure all the applications in order to globally optimize the resources of the device,
while satisfying the requirements of the applications. This launching or reconfiguration should
also be done transparently without affecting running applications like an MPEG decoder,
which have strict deadlines. In short, the application launching and reconfiguration should be
predictable (should finish in a definite amount of time) and composable (should not affect the
running applications).

In this chapter we describe a run-time manager which guarantees predictable and compos-
able behavior. We describe how the system-level resource manager manages applications and
provides configuration decisions to the application-level resource-manager. The application
resource manager then, depending on the configuration provided, reconfigures the applica-
tion(s) in a predictable and composable way. We demonstrate this run-time manager on a real
hardware platform. We perform a case-study of JPEG decoder application on this platform
and demonstrate its performance.



 chapter  . run-time application management and reconfiguration

System RM

Application
RM

Application
RM

R
u
n
-t
im

e
re
so
u
rc
e
m
an

ag
er

Application start/stop request

Figure . – Run-time resource manager (conceptual view).

 . runtime resource manager

At design time, the design flow generates multiple configurations for a given application
which represent the available trade-offs between resource usage and quality. Configurations
could for example provide a trade-off between the use of different resources, such as different
processors, or trade-offs between processing and memory usage, or through DVFS, between
energy consumption and resource utilization. The configurations determined at design time are
Pareto optimal trade-offs between the various quantities considered at run-time (i.e., resource
usage, energy usage and quality). The configurations are determined at design time on a
per-application basis. The run-time resource manager must combine these configurations
at run-time to investigate system-wide trade-offs. After combining the trade-off spaces of
the individual applications, the resource manager can decide on the optimal system-wide
configuration of all running applications and subsequently it can implement this decision by
reconfiguring the individual running applications. As mentioned before, all of these steps
need to be performed by the run-time resource manager while providing timing guarantees to
the running applications. A resource manager which fulfills these constraints is introduced
here. The resource manager uses the predictable and composable multi-dimensional multiple-
choice knapsack (MMKP) heuristic presented in [] to select an optimal configuration for all
applications running on the platform. The configuration selected by this heuristic may trigger
a reconfiguration of these applications. Our proposed run-time mechanism ensures that this
reconfiguration process is completed within a bounded amount of time (i.e, the reconfiguration
is predictable). Moreover, the timing behavior of applications of which the resource assignment
is not changed will not be affected (i.e., the reconfiguration is composable).

.. System-level resource manager

In order to perform a predictable and composable migration, we need a hardware platform
which supports such features. In composable execution, starting and stopping of an application
does not affect other applications running on the platform. Depending on the allocated
resources a guaranteed worst-case response time for an application is called a predictable
execution. The CompSOC platform discussed in Section . which runs CompOSe operating
system provides an infrastructure for predictable and composable execution of applications.

 . . runtime resource manager 

The platform is equipped with techniques such as TDM based task and network scheduling
etc. as discussed in Section .. Every processor in the platform has a fixed number of time
slots which can be allocated to different applications.

The system-level and application-level resource managers will be running on top of Com-
pOSe. The system-level resource manager is implemented as a separate application running
on the platform. Because of the composability offered by CompSOC, it is guaranteed that the
manager itself will not interfere with the timing behavior of other applications. The system-
level resource manager can optimize the resource budget distribution using an algorithm such
as the MMKP heuristic presented in [].

... MMKP Algorithm

This algorithm assumes that the set of applications that execute on the hardware platform
are known at the compile-time. A Pareto set of solutions can be calculated with methods
such as cost space exploration discussed in Chapter  for each application. This algorithm
decides on the optimal configuration of every application in a bounded amount of time (i.e., it
is predictable) while considering multiple costs, with the goal of globally efficient execution of
all applications satisfying the resource constraints.

The inputs to this algorithms are the Pareto points for each application, where every point
indicates the amount of resources used and a value associated with the point which indicates
its optimality. Suppose an application is already running on the platform. A maximum-
value configuration can be selected for optimized execution of this application. When a new
application starts on the platform this algorithm combines the Pareto configurations of the new
application and the currently running application(s) to form a new set of configurations. In
order to speed up the computation of new set, the multi-dimensional cost space is transformed
to a two-dimensional space by aggregating the resource usage. In this transformed space the
dominated points for every application are eliminated. Every Pareto point of newly started
application is combined with every Pareto point in the current set such that it satisfies the
resource constraints. If the combination of the configurations does not satisfy the platform
resource constraints the point is eliminated. The dominated points in the combined set
of solutions obtained are again eliminated. Thus the resultant set consists of combined
configurations of already running applications and the newly starting application annotated
with total resource usage and optimality value. A tunable parameter L provides a bound on
how many total combined solutions are retained. If the above combination generates more
Pareto points than the parameter L, it eliminates some of them heuristically. A Pareto point
with maximum-value is then chosen which provides a configuration for every application
running on the platform. Given an MMKP instance I with N newly starting applications, the
bounds on the execution time can be given by:

T(I) ≤ C ·N · L2
where C is a processor dependent constant.

In this work, we use the MMKP heuristic in our system-level resource manager. For further
details on the algorithm the reader is referred to []. It is possible to replace the MMKP
algorithm with any other one that would to decide reasonably optimal configuration for all
the applications in predictable amount of time. The configuration of applications represented
by the chosen Pareto point by system-level resource manager can call for reconfiguration of
application(s) running on the hardware platform. We focus on the application-level resource
manager which implements the resource allocation decisions taken by the system-level resource
manager within a bounded amount of time.

 chapter  . run-time application management and reconfiguration

Tile Tile Tile

Application
RM (slave)

Application
RM (master)

Application
RM (slave)

System RM

Application
RM (slave)

Application
RM (master)

Application
RM (slave)

ÆtherealNOC

Figure . – Run-time resource manager (deployment view).

 . implementation

In this section, we describe the mechanism by which the application-level resource manager
handles the application reconfiguration.

.. Application-level resource manager

The implementation of a reconfiguration decision, which is handled by the application-
level resource manager, may require that actors from an application are migrated from one
processing tile to another. This process is triggered from inside the application which is being
reconfigured. This is because from the perspective of the CompOSe operating system, our
application-level resource manager is part of the application. The application programmer
does not have to code for the application manager, but only add the application manager task
in its schedule.

Our application-level resource manager uses a master-slave configuration (see Figure .).
The master stores the active resource configuration of the application. Whenever the MMKP
algorithm decides to reconfigure the application, the master will send a set of reconfiguration
commands to the slaves. For this purpose, a pair of dedicated FIFOs is used between the master
processor and each slave in the platform.

Since the whole reconfiguration process takes place only during the TDM time slices
allocated to the application, it is guaranteed that the other applications will not be affected
by the reconfiguration (i.e., the run-time resource manager is composable). In order to arrive
at a predictable run-time mechanism it is however also important that the reconfiguration
process itself can be completed within a bounded and known amount of time. Otherwise, the
application which is being reconfigured may miss its own timing deadlines.

.. Migration Point

To reduce the migration overhead, a reconfiguration can only be performed at specific
moments during the execution of the application. In the SDF MoC (model of computation),
actors have no state that needs to be preserved across firings. Any state (data) that needs to

 . . implementation 

be stored between firings should be stored explicitly as a token that circulates on a special
self-source self-sink edge (self-edge) of an actor. Allowing actor migrations only when an actor
is not executing (firing) ensures that no state (other than the initial token on the self-edge)
needs to be transferred. This implies, no processor context needs to be migrated, which reduces
the migration overhead considerably.

Whenever an actor is migrated to a different processor, the edges connected to this actor
must also be reconfigured. Tokens that are present in these edges must then be migrated
from the old edges to the newly created edges. Throughout the execution of the SDF graph,
the number of tokens in the edges may vary. Hence, the amount of tokens that needs to be
transferred may vary depending on the moment when an actor would be migrated. As a result,
the time needed to migrate an actor and its connected edges might depend strongly on the
number of tokens in these edges. In order to provide timing guarantees, design-time analysis
techniques must take the worst-case situation into account when analyzing whether a particular
reconfiguration would be feasible given the timing constraints of the application. When actor
migrations are allowed to occur at any moment when an actor is inactive, this could lead to
very pessimistic estimates on the number of tokens that needs to be transferred. As a result,
design-time analysis techniques would most probably indicate that many reconfiguration
options cannot be performed within the given timing constraints. To address this issue, we
use a special property of SDF. Since the production and consumption rates of the actors on the
edges are constant in an SDF graph, there exists an execution interval called graph iteration
(see Section .), where each actor has been fired for a certain number of times, the token
distribution in an SDF graph returns to its original state. At this moment, the number of tokens
in all edges connected to an actor are equal to the number of initial tokens. Since this is a
well defined amount, it can be easily taken into account in the timing analysis performed at
design-time. Therefore, our application-level resource manager will only migrate an actor and
its connected edges when the actor and all actors connected to the edges of this actor have
completed an iteration. Note that this condition is not sufficient. The actors that communicate
with migrating actor should also be halted at the start of an iteration. Otherwise during the
migration, tokens may be added or removed from these edges unequal to the number of initial
tokens and taking this into account it too complex.

.. Actor and FIFO Migration on CompOSe

When migrating an actor, the schedule on the processor on which this actor was originally
running as well as the schedule on the processor to which the actor is moved must be changed.
In CompOSe, actors from the same SDF graph are scheduled using a static-order schedule. To
modify these schedules, CompOSe requires that the complete schedule of all actors that belong
to the same SDF is removed from a processor and subsequently a new schedule can be loaded.
This implies that the application (SDF) should be stopped on the processor from which the actor
is migrated away as well as the processor to which the actor is moved. When migrating an actor,
the channels (FIFOs) connected to the actor must also be migrated. This can be done through
CompOSe by removing the old FIFOs and adding the FIFOs to the new migrated actor. If initial
tokens are present in the old FIFO, they are retained and copied to the new FIFO. CompOSe
requires that the application whose set of FIFOs is modified on a processor is not running
during this reconfiguration. Hence, the application must be stopped on the processor from
which migrated actor departs, the processor receiving the migrated actor and all processors
that run actors which have at least one FIFO channel connected to migrated actor. In many
practical situations, this will often imply that the application must be halted on all processors.
Considering this aspect and in order to reduce the number of messages exchanged between the
master and slave components of our application-level resource manager, the resource manager

 chapter  . run-time application management and reconfiguration

VLD
IQ/
IDCT

CC

1

1

1

36 1 1 1

36 1
36 1

Figure . – JPEG decoder SDF graph

will halt the application on all processors. Next, it will perform the reconfiguration. When this
process is completed, the application will be resumed on all processors. Note that during this
whole process, the other applications running on these processors are not interrupted which
ensures that our run-time reconfiguration is composable.

The next section presents in detail the messages that are exchanged between the master and
slave components in our application-level resource manager when reconfiguring an application.
As explained in that section, each individual operation during the reconfiguration process (e.g.,
reconfiguration decision, actor migration, FIFO creation, etc.) can be performed in a bounded
amount of time. Since the complete set of operations that needs to be performed in order
to migrate an actor is known at design-time, it is possible to provide a timing guarantee on
the completion of the whole reconfiguration. Hence, the run-time resource manager offers a
predictable reconfiguration mechanism.

 . application-level manager

We demonstrate our resource manager with a running example of a JPEG decoder where
actors migrated from one processor to another. The application SDF graph shown in Figure .,
consists of three actors, namely Variable Length Decoder (VLD), Inverse Quantizer combined
with Inverse Discrete Cosine Transform (IQ/IDCT) and Color Conversion (CC). The VLD actor
has a state that needs to be preserved across actor firings. In between firings, this state is stored
as an initial token on the self-edge connected to this actor. One pair of edges from the VLD to
IQ/IDCT respectively CC actor is used to communicate JPEG header parameters (e.g., image
size) between the actors. The remaining edge from the VLD to the IQ/IDCT actor and the edge
from the IQ/IDCT to the CC actor are used to communicate the actual image data.

.. Run-Time Actor and FIFO Migration

Figure . illustrates the actor migration process. Initially the VLD and IQ/IDCT actors
are running on the second tile and the CC actor is running on the first tile. Next to these
actors, the second tile is also running the system-level resource manager as well as the master
application-level resource manager for this application. The other two tiles are running a
slave application-level resource manager for our JPEG decoder application. On each tile, if
the application does not execute, a small time slice is allocated to application level resource
manager which checks for any migration decisions. It facilitates to migration of applications on
the tile where the application is not executing previously. In this example, no other applications
are active on the platform. At some point in time, the system-level resource manager decides
to migrate the CC actor from tile  to tile . (This decision would normally be triggered when
a new application is started on the platform, but for simplicity we assume in this example that
the system-level resource manager takes this decision without any new application entering
the system). Once the system-level resource manager has taken the decision to reconfigure the

 . . application-level manager 

Time

Tile

Tile

Tile

Tile : CC
Tile : VLD, IQ/IDCT
Tile : empty

Tile : empty
Tile : VLD, IQ/IDCT
Tile : CC

()

(
)

()

()

(
)

()

(,)

()

()

()

()

Figure . – Actor migration (Steps performed by resource manager. For steps (), (), () etc.
refer to Table .).

application, it informs the master application-level resource manager about this decision (step
 in Figure .). Since the application-level resource manager is part of the JPEG application
running on tile , it will be periodically scheduled on this tile. The first time it gets scheduled
after the system-level resource manager took the decision to reconfigure, it will start the
actual reconfiguration process. This process starts by sending a command to all tiles to
halt the application (step  in Figure .). This is done by sending a message through the
dedicated FIFOs between the master and slave application-level resource managers. Whenever
an application-level resource manager is scheduled on a processor, it will check this FIFO
to verify whether new commands are available in this FIFO. If so, these commands will be
processed. Once the command to halt the application on the tile has been completed, the slave
application-level resource manager will inform the master application-level resource manager
by sending an acknowledgment (step  in Figure .). When all slaves has confirmed that
the application has been halted and the application has also been halted on the tile running
the master application-level resource manager, the resource manager continues with the next
step of the reconfiguration process. Since after reconfiguration there will be no actors of
this application running on tile , the number of time slices allocated to the application can
be reduced on tile  to just one (which is needed to periodically execute the slave resource
manager). Furthermore, the number of TDM slices allocated on tile may have to be increased.
This is done as step  in Figure .. In this step, the master resource manager instructs the slave
resource managers to make this change in the TDM allocation. Step  involves the removal of
the old FIFOs from tile  to tile  and in step  new FIFOs are created between tile  and .
These FIFOs are immediately connected to the VLD actor on tile  and a new instance of the
CC actor on tile . (Note that we assume that the instruction code of all actors is available on
all tiles. Hence, no code migration is required). Next, the static-order schedule on tile  is
updated (i.e., the CC actor is added to it). Subsequently (step ), a message is sent to all tiles to
resume the execution of the application. At this moment, the reconfiguration process of the
application has ended and the master application-level resource manager confirms this to the
system-level resource manager (step ). This completes the complete reconfiguration process
of the application.

As mentioned before, in order to ensure a predictable reconfiguration process, it is impor-
tant that each of the steps described above can be completed within a bounded amount of
time. Our implementation ensures that this constraint is met. Table . lists the number of
clock cycles needed to perform the various steps in the reconfiguration process. These times

 chapter  . run-time application management and reconfiguration

Table . – Actor migration overhead (in clock cycles).

Step Description Master Slave

() Instruct application RM to reconfigure  n/a

() Request removal of application from TDM  

() Remove application from TDM and ack. App. dependent

() Resize TDM allocation  

(/) Add/remove FIFO Table . Table .

() Add application to TDM  

() Inform system RM about completion  n/a

depend on the tile which ultimately needs to perform the operation. When the operation (e.g.,
removal of application from TDM) needs to be performed on a slave tile, then we need to
consider the overhead of sending a message from the resource manager running on the master
tile to the resource manager on a slave tile. The time required to remove an application from
the TDM schedule (step ) depends on the application. As explained before, an application
may only be stopped on a tile when the application has completed a full iteration of the SDF
graph. In the worst-case, the application may have just started a new iteration on all tiles
when a request to remove the application from the TDM schedule is received. In that case,
a complete iteration of the SDF graph must be finished before the request can be executed.
Hence, the worst-case time needed to complete step  is bounded by the worst-case time needed
to complete one iteration of the SDF graph on the platform. Since all resources in the platform
are predictable and since we assume that the worst-case execution time of all actors are known,
we can compute the worst-case time needed to complete step  at design-time. Table . shows
the time required to reconfigure a FIFO. Depending on the tiles to which a FIFO is connected
the time required to add or remove a FIFO varies. If the source and destination of a FIFO are
both on the master tile, then there is minimal overhead to remove or add the FIFO. In this
case, the overhead is limited to the allocating/freeing the data structure associated with the
FIFO. When a FIFO is used to communicate between different tiles, for example between a
tile running the master resource manager and a tile running a slave resource manager, the
overhead will also include communication overhead to send a message to add or remove a FIFO
and to send an acknowledgment after adding or removing the FIFO. The highest overhead
occurs when a FIFO is connected between two different slave cores. In this scenario, the master
application-level resource manager has to communicate messages between two different slaves
and wait for their acknowledgments.

Table . – FIFO add/remove overhead (in clock cycles).

Src Master Master Slave Slave- Slave-

Destination Master Slave Master Slave- Slave-

Time to remove FIFO     

Time to add FIFO     

 . . application-level manager 

-- -- -- -- -- -- -- -- -- -- -- --
0

0.2

0.4

0.6

0.8

1

1.2
·107

Tile mapping(VLD, IQ/IDCT, CC)

C
lo
ck

cy
cl
es

(a) Measurements with step  included

-- -- -- -- -- -- -- -- -- -- -- --
0

0.5

1

1.5

2

2.5
·104

Tile mapping(VLD, IQ/IDCT, CC)

C
lo
ck

cy
cl
es

(b) Measurements without step  included

step step step step step+
step step predicted

Figure . – Measured and predicted reconfiguration times

 chapter  . run-time application management and reconfiguration

.. Results

It follows from Table . and Table . that the amount of time taken to complete an actor
migration depends on the old and new configuration of the application on the system. We have
performed an experiment in which the JPEG decoder is reconfigured several times. Initially
all three actors are mapped to tile  i.e., configuration ,, in Figure . which indicates
that the three actors VLD, IQ/IDCT and CC are running on tile . As a first reconfiguration,
the IQ/IDCT actor is migrated to tile . The left-most bar in Figure . shows the run-time
(in clock-cycles) needed to perform this reconfiguration. This run-time is measured using an
actual implementation of our run-time reconfiguration mechanism on the CompSOC platform.
The squared box above the bar indicates the worst-case reconfiguration time as computed
using the run-times listed in Table . and Table .. The next bar in Figure . shows the time
needed to migrate the CC actor to tile  (configuration ,, to configuration ,,). The other
bars indicate other reconfiguration options that have been tested. Each time the label left to the
bar indicates the configuration prior to the reconfiguration. The top part of Figure . shows
that the reconfiguration time is dominated by step . The bottom part of Figure . shows the
run-time of the reconfiguration process when excluding step . Comparing these two parts
it is clear that the actual run-time of the reconfiguration process as well as the worst-case
run-time of the reconfiguration process are dominated by step  (i.e., the worst-case of all other
steps is always very close to the measured run-time for these steps). The fact that step  is the
bottleneck in the reconfiguration process is not unexpected. As explained in Section ., the
run-time resource manager must in step  halt the execution of the application on all resources.
In the worst-case this may require the application to execute a complete iteration before it can
be halted. Even in the typical situation, it will require that many actors finish their execution
before this step is completed. Hence the long worst-case and measured run-times for this
step. The only option to reduce the time taken by step  would be to relax the constraint that
an application can only be reconfigured at the end of an iteration. However, as discussed in
Section ., this could in the worst-case lead to a large overhead in migrating tokens when
reconfiguring FIFOs. An experiment with a small test application have confirmed that this
overhead for most realistic applications by far exceeds the worst-case time needed to complete
an iteration of the graph. From this we concluded that the choice to allow reconfigurations
only at an iteration boundary is still the best option.

 . conclusions

In this chapter we introduced a run-time reconfiguration mechanism which provides
timing guarantees on the time needed to migrate actors and their communication channels in a
MPSoC. The mechanism guarantees that the reconfiguration of one application will not affect
the timing behavior of other applications running on the same resources ensuring a composable
behavior enables predictable and composable MPSoC reconfiguration. The proposed run-time
mechanism is demonstrated on a realistic MPSoC (called CompSOC), which is running a
JPEG decoder application. In our implementation we make a design choice of migrating the
application only at the end of the iteration. However when relaxing this constraint, the amount
of data that will be needed to be migrated will cause a very pessimistic prediction of the actor
migration.

Task migration in a multi-processor system is performed for various reasons like ther-
mal [, ], load-balancing [], fault-tolerance [] etc. We can classify the task migration
work briefly in two types depending on the underlying architecture which is shared memory or
distributed memory. We consider a scalable approach for multiprocessor with private memory
for each processor, where the migration is done only at pre-decided checkpoints []. Taking

 . . conclusions 

the advantage of SDF programming model, in our case the programmer need not explicitly
store the context for migration.

A comprehensive survey of the run-time resource managers and their optimization strate-
gies is provided in []. It divides the run-time resource manager into two parts; one which
deals with optimization decision making while the second is responsible for implementation of
this decision. Casavant et. al. in [] provides with the classification of different optimization
algorithms that can be used for resource manager. We use MMKP [], which guarantees us
predictability and flexibility. Owing to the private shared memory for each core, we implement
the master-slave configuration of the resource manager, where the master is responsible for the
decision making process, while the implementing the decision is performed collectively by all
the responsible cores. This gives us an advantage of managing the data-structures in a simple
way []. We belong to the (type ) adaptive applications classified in [], where applications
are allocated certain resource budgets, and is responsible to manage them efficiently.

Master-slave configuration for task migration with copy of task in all processors is presented
in [], is similar to our work. However they require sufficiently large queue size between the
communicating actors to avoid the deadline misses in the application during the task migration.
We migrate the application only the end of iteration, in a predictable one time slot in order to
avoid any deadline misses and disturbances to other applications.

Almeida et al. in [] propose tasks migration to provide workload balance in multiprocessor
system to optimize the throughput. There is no indication of amount of time required to
migrate the task and its related resources. Further, their task migration is not capable of
migrating stateful actors.

In[], the author proposes locking of caches for hard-real time tasks which can provide
predictable task migration. Their work focuses on cache based techniques, which become
unscalable with increasing amount of processors on chip. Whereas we focus on private memory
for each core, which has own instances of tasks running.

Hardware mechanisms [, , ] are proposed in order to offload the task of scheduling
and migration to the hardware in order to save from the run-time overhead. However it is
essentially a trade-off between the speed, flexibility and scalability of the system. Definitely, we
do not outperform the hardware mechanisms, but our methodology gives a predictability and
composability without requiring specialized hardware. In AsyMOS [], a different approach
is taken, where the system management functions are handled by dedicated cores. Ours is a
flexible approach where we dedicate TDM slices in our framework for the management tasks.

In the next chapter we conclude this thesis and discuss the future work.

chapter 10
Conclusions and Future Work

This chapter concludes the thesis and discusses about the possible future work.

In this thesis, we used a constraint satisfaction approach to solve mapping and scheduling
problems on multi-core architectures. This thesis can be seen as an elaboration and extension

of work started in [] which utilized multi-criteria optimization exploration algorithm to find
efficient mapping and scheduling solutions for a multi-processor architecture. It experimented
on relatively simple architectures and small problem sizes. In this thesis, we tried to overcome
the limitations of this work and provide experiments on real platforms. We established
symmetry breaking techniques for data-parallel computations which significantly improved
the performance of the SMT solver and increased the size of the application model that could
be solved. In this experiment we observed that task symmetry and processor symmetry applied
in conjunction amplify the effect symmetry reduction in SMT. Either of them applied separately
has a smaller effect on the reduction.

We used SMT solver to further perform mapping and scheduling of applications on the
Kalray many-core architecture. The processors were grouped into clusters and connected
by network-on-chip, communicate with each other via DMA. We used the DMA model in
order to characterize the data transfers between different clusters. Our framework provided
an automated way of performing distribution of tasks across the clusters and generating
communication-aware models. These models were used to deploy the solution on the hardware
platform. We verified the performance on the hardware platform and found it to be fairly
accurate. We believe that with additional modeling of network route selection and contentions,
we will be able to further reduce the error in performance prediction.

We also addressed the problem of optimization of DMA data transfer granularity for data-
parallel applications with regular memory access patterns. We compared different methods
by which the shared data could be exchanged between the processors in an efficient way. We
built a model of the DMA mechanism with which we were able to successfully demonstrate
a methodology to differentiate between the transfer and computation regimes, and how they
affect the performance of the application. We experimented our formalization on the Cell
processor architecture and proved it to be reasonably realistic considering the assumptions we
made.

Further in this thesis, we demonstrated a necessity of a runtime manager on the multi-core
platforms that chooses the configurations of the applications in execution in order to optimize
resource-utilization globally. We discussed how an algorithm like MMKP can decide an optimal



 chapter  . conclusions and future work

configuration out of available Pareto set for an application and take a decision to migrate the
tasks dynamically. We demonstrate how this application reconfiguration can be performed in a
predictable (i.e. amount of time known at design time) and composable (i.e. without affecting
other applications running on the platform) way. For this work, we performed experiments on
a platform designed for predictability. We run experiments using the JPEG decoder application
and prove that a predictable migration of application can be performed, in a composable way.

We believe that, this thesis can be further extended in many possible directions, some of
which are discussed below.

n Scheduling under variation in execution time: In our case, we always consider the
worst-case execution time for the actors (or tasks). However in reality the execution
time between tasks of the same actor differ due to many reasons such as data-dependent
execution. Predictions made this way are good when the range of execution times is
small, but their quality degrades when variations become large. It will be interest-
ing to incorporate this variation in execution time of tasks into the formulation of
the constraints and costs. As we observe in the experiments that, the SMT solver is
overwhelmed with increase in the problem size (number of tasks). This variation of
execution time can cause additional burden on the solver. Probably it will involve
support of special formalism such as probabilistic scheduling under uncertainty.

n Splitting of actor over multiple clusters: In our multi-stage design-flow for Kalray
processor architecture, we assign an actor to a partition in the partitioning step. This
makes the granularity of assignment equal to an actor. However, if an actor has a very
high repetition count (for example  tasks or more), we could possibly split the actor
between multiple clusters. Actor splitting will introduce additional decision variables
and further overhead to the solver. This will also have an impact on the communication
buffer memory and must be studied in detail.

n Network route selection and communication scheduling: In the mapping and schedul-
ing on the Kalray processor, the second stage places the communicating partitions as
close as possible. In reality the NoC is fast enough and the distance between clusters
is a factor of less importance. We made an attempt by putting them close so that the
network contentions are reduced to a minimal value, as the contentions can cause an
error in performance prediction. We believe that if we perform network route selection
and scheduling of communication, we will be able to eliminate this source of error
completely. Finding optimal routes for communication is a hard problem and will need
special encoding techniques to solve it using the SMT solver.

n Combination of DMA transfer granularity results with split-join graphs: We model
the DMA transfer size optimization problem for application which have regular memory
access pattern. It is possible to model such applications using split-join graph model.
If we use such application model, then the DMA transfer size can affect the split-join
factor of the application. As choosing a DMA transfer size implies combining of blocks
for processing. It also means combining tasks which can actually execute in parallel. It
will be interesting to see how the SMT solver can decide between data parallelism and
data transfer granularity. Also extending split-join graphs to multiple dimensions and
shared data are other related work directions.

n Pipelined scheduling on the platform: Streaming application have an another impor-
tant constraint in addition to latency, called throughput. It emphasizes the number of
graph iterations that can execute in a unit time. For meeting this requirement, multiple
iterations of the application execute in parallel in a pipelined execution. A constraint
formulation for pipelined scheduling will require additional variables, modulo arith-



metic operation and special mutual exclusion constraints and these clauses make the
problem solving harder. We would like to experiment with such pipelined scheduling
on and see it in action on the multi-processor hardware platform.

Currently we are in process of experimenting with three different encodings of the pipelined
scheduling, a problem not so simple for SMT solvers []. For the moment we can solve
typically problem upto size of - tasks. However, the benefits of pipeline parallelism for
the performance justify such a restriction.

Contributions

n Selma Saidi, Pranav Tendulkar, Thierry Lepley, and Oded Maler. « Optimizing Explicit
Data Transfers for Data Parallel Applications on the Cell Architecture ». In: ACM
Trans. Archit. Code Optim. . (Jan. ), :–:. issn: -. doi: 10.1145/
2086696.2086716. url: http://doi.acm.org/10.1145/2086696.2086716

n Selma Saidi, Pranav Tendulkar, Thierry Lepley, and Oded Maler. « Optimal D Data
Partitioning for DMA Transfers on MPSoCs ». In: Proceedings of the  th Euromicro
Conference on Digital System Design. DSD ’. Washington, DC, USA: IEEE Computer
Society, , pp. –. isbn: ----. doi: 10.1109/DSD.2012.99. url:
http://dx.doi.org/10.1109/DSD.2012.99

n Selma Saidi, Pranav Tendulkar, Thierry Lepley, and Oded Maler. « Optimizing two-
dimensional DMA transfers for scratchpad Based MPSoCs platforms ». In: Micropro-
cessors and Microsystems ., Part A (). Special Issue DSD  on Reliability
and Dependability in MPSoC Technologies, pp.  –. issn: -. doi: http:
//dx.doi.org/10.1016/j.micpro.2013.04.006. url: http://www.sciencedirect.
com/science/article/pii/S0141933113000549

n Pranav Tendulkar, Peter Poplavko, and Oded Maler. « Symmetry Breaking for Multi-
criteria Mapping and Scheduling on Multicores ». In: Formal Modeling and Analysis
of Timed Systems. Ed. by Víctor Braberman and Laurent Fribourg. Vol. . Lecture
Notes in Computer Science. Springer Berlin Heidelberg, , pp. –. isbn:
----. doi: 10.1007/978-3-642-40229-6_16. url: http://dx.doi.
org/10.1007/978-3-642-40229-6_16

n Pranav Tendulkar and Sander Stuijk. « A Case Study into Predictable and Composable
MPSoC Reconfiguration ». In: Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW),  IEEE th International. , pp. –. doi: 10.1109/
IPDPSW.2013.12

n Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler. « Many-
Core Scheduling of Data Parallel Applications using SMT Solvers ». In: Proceedings of
the  th Euromicro Conference on Digital System Design. DSD ’. 

n Pranav Tendulkar, Peter Poplavko, and Oded Maler. Strictly Periodic Scheduling of
Acyclic Synchronous Dataflow Graphs using SMT Solvers. Tech. rep. TR--. Verimag
Research Report, 



http://dx.doi.org/10.1145/2086696.2086716
http://dx.doi.org/10.1145/2086696.2086716
http://doi.acm.org/10.1145/2086696.2086716
http://dx.doi.org/10.1109/DSD.2012.99
http://dx.doi.org/10.1109/DSD.2012.99
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.04.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.04.006
http://www.sciencedirect.com/science/article/pii/S0141933113000549
http://www.sciencedirect.com/science/article/pii/S0141933113000549
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1109/IPDPSW.2013.12
http://dx.doi.org/10.1109/IPDPSW.2013.12

appendix A
Schedule XML

An example of schedule XML for JPEG decoder application, generated by StreamExplorer
for a schedule shown in Figure A..

Listing A. – Schedule XML for JPEG decoder on single cluster
 <?xml version="  . " encoding="UTF− " ?>
 <mapping>
 < !−− Applicat ion Structure −−>
 < !−− Actor d e s c r i p t i o n −−>
 <graphActors s i z e=" ">
 <a c t o r funct ion="VLD" i n s t a n c e s=" " name="VLD" numPorts=" " />
 <a c t o r funct ion="IQ" i n s t a n c e s=" " name="IQ" numPorts=" " />
 <a c t o r funct ion="COLOR" i n s t a n c e s=" " name="COLOR" numPorts=" " />
 </ graphActors>
 < !−− Channel d e s c r i p t i o n −−>
 <graphChannels s i z e=" ">
 <channel channelSize=" " dstActor="COLOR" dstPort=" " dstPortRate=" "

name="IQCOL" srcActor=" IQ" s r c P o r t=" " s rcPortRate=" " tokenSize="
 " />

 <channel channelSize=" " dstActor=" IQ" dstPort=" " dstPortRate=" "
name="VLDIQ" srcActor="VLD" s r c P o r t=" " s rcPortRate=" " tokenSize
=" " />

 </ graphChannels>
 < !−− Schedule Descr ipt ion −−>
 <schedule s i z e=" ">
 < !−− Cluster Al loca t ion −−>
 <c l u s t e r id=" " s i z e=" ">
 < !−− Processor Al loca t ion −−>
 <processor id=" " s i z e=" ">
 <a c t o r ins tance=" " name="VLD" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 </ processor>
 <processor id=" " s i z e=" ">
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />



 appendix a. schedule xml

 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 </ processor>
 <processor id=" " s i z e=" ">
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 </ processor>
 <processor id=" " s i z e=" ">
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 <a c t o r ins tance=" " name="IQ" />
 <a c t o r ins tance=" " name="COLOR" />
 </ processor>
 </ c l u s t e r>
 </ schedule>
 < !−− FIFO Al loca t ion −−>
 < f i f o a l l o c a t i o n s i z e=" ">
 < f i f o ds tClus ter=" " f i f o S i z e =" " name="IQCOL" s r c C l u s t e r=" " />
 < f i f o ds tClus ter=" " f i f o S i z e =" " name="VLDIQ" s r c C l u s t e r=" " />
 </ f i f o a l l o c a t i o n>
 </mapping>



3 2 1 0

 0
 1

0
0

0
0

0
 2

0
0

0
0

0
 3

0
0

0
0

0
 4

0
0

0
0

0
 5

0
0

0
0

0
 6

0
0

0
0

0

Processors

tim
e

G
a
n
tt ch

a
rt

COLOR_0COLOR_1

COLOR_10COLOR_11

COLOR_2COLOR_3

COLOR_4COLOR_5COLOR_6COLOR_7

COLOR_8COLOR_9

IQ_0IQ_1

IQ_10IQ_11

IQ_2IQ_3

IQ_4IQ_5IQ_6IQ_7

IQ_8IQ_9

VLD_0

Figure A. – Gantt chart for schedule XML

Bibliography

[] Andrea Acquaviva et al. « Assessing Task Migration Impact on Embedded Soft
Real-Time Streaming Multimedia Applications ». In: EURASIP Journal on Embedded
Systems . (), p. .

[] A Agarwal, D.A Kranz, and V. Natarajan. « Automatic partitioning of parallel loops
and data arrays for distributed shared-memory multiprocessors ». In: Parallel and
Distributed Systems, IEEE Transactions on . (), pp. –. issn: -.
doi: 10.1109/71.466632.

[] Ankur Agarwal, Cyril Iskander, and Ravi Shankar. « Survey of network on chip
(noc) architectures & contributions ». In: Journal of engineering, Computing and
Architecture . (), pp. –.

[] B. Akesson et al. « Composability and Predictability for Independent Application
Development, Verification, and Execution ». In: Multiprocessor System-on-Chip. Ed.
by M. Hübner and J. Becker. Circuits & Systems. London: Springer Verlag, ,
pp. –.

[] B. Akesson et al. « Virtual Platforms for Mixed Time-Criticality Applications: The
CoMPSoC Architecture and SDF Design Flow ». In: Proceedings of workshop on Quo
Vadis, Virtual Platforms? Challenges and Solutions for Today and Tomorrow. .

[] Gabriel Marchesan Almeida et al. « Evaluating the impact of task migration in multi-
processor systems-on-chip ». In: Proceedings of the rd symposium on Integrated
circuits and system design. SBCCI ’. ACM, , pp. –.

[] Turgay Altilar and Yakup Paker. « Minimum Overhead Data Partitioning Algorithms
for Parallel Video Processing ». In: Proceedings Domain Decomposition Methods
Conference. , pp. –.

[] Alper Atamtürk and Martin WP Savelsbergh. « Integer-programming software
systems ». In: Annals of Operations Research . (), pp. –.

[] P. Axer et al. « Response-Time Analysis of Parallel Fork-Join Workloads with Real-
Time Constraints ». In: Real-Time Systems (ECRTS),  th Euromicro Conference
on. , pp. –. doi: 10.1109/ECRTS.2013.31.

[] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling.
Kluwer international series in engineering and computer science. Kluwer, .

[] Clark W Barrett et al. « Satisfiability Modulo Theories. » In: Handbook of satisfiability
 (), pp. –.

[] Christopher Batten. ECE  Complex Digital ASIC Design Course Overview. url:
http://www.csl.cornell.edu/courses/ece5950.

[] Luca Benini and Giovanni De Micheli. « Networks on chips: a new SoC paradigm ».
In: Computer . (), pp. –. issn: -. doi: 10.1109/2.976921.



http://dx.doi.org/10.1109/71.466632
http://dx.doi.org/10.1109/ECRTS.2013.31
http://www.csl.cornell.edu/courses/ece5950
http://dx.doi.org/10.1109/2.976921

 bibliography

[] Luca Benini et al. « P: Building an Ecosystem for a Scalable, Modular and
High-efficiency Embedded Computing Accelerator ». In: Proceedings of the Confer-
ence on Design, Automation and Test in Europe. DATE ’. Dresden, Germany: EDA
Consortium, , pp. –. isbn: ----. url: http://dl.acm.org/
citation.cfm?id=2492708.2492954.

[] Stefano Bertozzi et al. « Supporting task migration in multi-processor systems-on-
chip: a feasibility study ». In: Proceedings of the conference on Design, automation and
test in Europe: Proceedings. DATE ’. EDAA, , pp. –.

[] B. Bhattacharya and S.S. Bhattacharyya. « Parameterized dataflow modeling for
DSP systems ». In: Signal Processing, IEEE Transactions on . (), pp. –
. issn: -X. doi: 10.1109/78.950795.

[] Shuvra S. Bhattacharyya, EdF. Deprettere, and BartD. Theelen. « Dynamic Dataflow
Graphs ». In: Handbook of Signal Processing Systems. Ed. by Shuvra S. Bhattacharyya
et al. Springer New York, , pp. –. isbn: ----. doi: 10.
1007/978-1-4614-6859-2_28. url: http://dx.doi.org/10.1007/978-1-4614-6859-
2_28.

[] G. Bilsen et al. « Cycle-static dataflow ». In: Signal Processing, IEEE Transactions on
. (), pp. –. issn: -X. doi: 10.1109/78.485935.

[] Tobias Bjerregaard and Shankar Mahadevan. « A Survey of Research and Practices
of Network-on-chip ». In: ACM Comput. Surv. . (June ). issn: -.
doi: 10.1145/1132952.1132953. url: http://doi.acm.org/http://doi.acm.org/10.
1145/1132952.1132953.

[] Robert D. Blumofe et al. « Cilk: An Efficient Multithreaded Runtime System ».
In: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPOPP ’. Santa Barbara, California, USA: ACM, ,
pp. –. isbn: ---. doi: 10.1145/209936.209958. url: http://doi.
acm.org/10.1145/209936.209958.

[] Alessio Bonfietti et al. « A Constraint Based Approach to Cyclic RCPSP ». In: Princi-
ples and Practice of Constraint Programming – CP . Ed. by Jimmy Lee. Vol. .
Lecture Notes in Computer Science. Springer Berlin Heidelberg, , pp. –
. isbn: ----. doi: 10.1007/978-3-642-23786-7_12. url: http:
//dx.doi.org/10.1007/978-3-642-23786-7_12.

[] Alessio Bonfietti et al. « An efficient and complete approach for throughput-maximal
SDF allocation and scheduling on multi-core platforms ». In: DATE. DATE. Dres-
den, Germany: IEEE, , pp. –. isbn: ----. url: http://dl.
acm.org/citation.cfm?id=1870926.1871143.

[] J.T. Buck and E.A. Lee. « Scheduling dynamic dataflow graphs with bounded mem-
ory using the token flow model ». In: Acoustics, Speech, and Signal Processing, .
ICASSP-.,  IEEE International Conference on. Vol. . , – vol.. doi:
10.1109/ICASSP.1993.319147.

[] Bill Carlson et al. Programming in the partitioned global address space model. Novem-
ber . url: http://upc.gwu.edu.

[] T.L. Casavant and J.G. Kuhl. « A taxonomy of scheduling in general-purpose dis-
tributed computing systems ». In: Software Engineering, IEEE Transactions on .
(), pp.  –.

http://dl.acm.org/citation.cfm?id=2492708.2492954
http://dl.acm.org/citation.cfm?id=2492708.2492954
http://dx.doi.org/10.1109/78.950795
http://dx.doi.org/10.1007/978-1-4614-6859-2_28
http://dx.doi.org/10.1007/978-1-4614-6859-2_28
http://dx.doi.org/10.1007/978-1-4614-6859-2_28
http://dx.doi.org/10.1007/978-1-4614-6859-2_28
http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1145/1132952.1132953
http://doi.acm.org/http://doi.acm.org/10.1145/1132952.1132953
http://doi.acm.org/http://doi.acm.org/10.1145/1132952.1132953
http://dx.doi.org/10.1145/209936.209958
http://doi.acm.org/10.1145/209936.209958
http://doi.acm.org/10.1145/209936.209958
http://dx.doi.org/10.1007/978-3-642-23786-7_12
http://dx.doi.org/10.1007/978-3-642-23786-7_12
http://dx.doi.org/10.1007/978-3-642-23786-7_12
http://dl.acm.org/citation.cfm?id=1870926.1871143
http://dl.acm.org/citation.cfm?id=1870926.1871143
http://dx.doi.org/10.1109/ICASSP.1993.319147
http://upc.gwu.edu

bibliography 

[] B. Chapman et al. « Implementing OpenMP on a high performance embedded
multicore MPSoC ». In: Parallel Distributed Processing, . IPDPS . IEEE
International Symposium on. , pp. –. doi: 10.1109/IPDPS.2009.5161107.

[] Tien-Fu Chen and Jean-Loup Baer. « A performance study of software and hardware
data prefetching schemes ». In: Computer Architecture, ., Proceedings the st
Annual International Symposium on. , pp. –. doi: 10.1109/ISCA.1994.
288147.

[] Byn Choi et al. « DeNovo: Rethinking the Memory Hierarchy for Disciplined Paral-
lelism ». In: Parallel Architectures and Compilation Techniques (PACT),  Interna-
tional Conference on. , pp. –. doi: 10.1109/PACT.2011.21.

[] F. Commoner et al. « Marked Directed Graphs ». In: J. Comput. Syst. Sci. . (Oct.
). doi: 10.1016/S0022-0000(71)80013-2. url: http://dx.doi.org/10.1016/
S0022-0000(71)80013-2.

[] S. Cotton et al. « Multi-criteria optimization for mapping programs to multi-
processors ». In: Industrial Embedded Systems (SIES),  th IEEE International
Symposium on. , pp. –. doi: 10.1109/SIES.2011.5953650.

[] L. Dagum and R. Menon. « OpenMP: an industry standard API for shared-memory
programming ». In: Computational Science Engineering, IEEE . (), pp. –.
issn: -. doi: 10.1109/99.660313.

[] Paul T. Darga, Karem A. Sakallah, and Igor L. Markov. « Faster Symmetry Discovery
Using Sparsity of Symmetries ». In: Proceedings of the th Annual Design Automation
Conference. DAC ’. Anaheim, California: ACM, , pp. –. isbn: --
--. doi: 10.1145/1391469.1391509. url: http://doi.acm.org/10.1145/
1391469.1391509.

[] Tatjana Davidovi. Mathematical programming-based approach to scheduling of com-
municating tasks. GERAD, HEC Montréal, .

[] Martin Davis, George Logemann, and Donald Loveland. « A machine program for
theorem-proving ». In: Communications of the ACM . (), pp. –.

[] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Chich-
ester, New York: John Wiley & Sons, . url: http://www.bibsonomy.org/bibtex/
29f7d242bb8c221e5afca03dd32d1de4c/lcschoening.

[] Benoît Dupont de Dinechin et al. « A Distributed Run-Time Environment for the
Kalray MPPA®- Integrated Manycore Processor ». In: Procedia Computer Science
. ().  International Conference on Computational Science, pp. –
. issn: -. doi: 10.1016/j.procs.2013.05.333. url: http://www.
sciencedirect.com/science/article/pii/S1877050913004766.

[] Bruno Dutertre and Leonardo De Moura. « The yices smt solver ». In: Tool paper at
http://yices. csl. sri. com/tool-paper. pdf  (), p. .

[] Matthias Ehrgott. Multicriteria optimization. Springer, .

[] C. A. J. van Eijk et al. « Identification and Exploitation of Symmetries in DSP Algo-
rithms ». In: Proceedings of the Conference on Design, Automation and Test in Europe.
DATE ’. Munich, Germany: ACM, . isbn: ---. doi: 10.1145/
307418.307572. url: http://doi.acm.org/10.1145/307418.307572.

[] M. Engels et al. « Cycle-static dataflow: model and implementation ». In: Signals,
Systems and Computers, .  Conference Record of the Twenty-Eighth Asilomar
Conference on. Vol. . , – vol.. doi: 10.1109/ACSSC.1994.471504.

http://dx.doi.org/10.1109/IPDPS.2009.5161107
http://dx.doi.org/10.1109/ISCA.1994.288147
http://dx.doi.org/10.1109/ISCA.1994.288147
http://dx.doi.org/10.1109/PACT.2011.21
http://dx.doi.org/10.1016/S0022-0000(71)80013-2
http://dx.doi.org/10.1016/S0022-0000(71)80013-2
http://dx.doi.org/10.1016/S0022-0000(71)80013-2
http://dx.doi.org/10.1109/SIES.2011.5953650
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/1391469.1391509
http://doi.acm.org/10.1145/1391469.1391509
http://doi.acm.org/10.1145/1391469.1391509
http://www.bibsonomy.org/bibtex/29f7d242bb8c221e5afca03dd32d1de4c/lcschoening
http://www.bibsonomy.org/bibtex/29f7d242bb8c221e5afca03dd32d1de4c/lcschoening
http://dx.doi.org/10.1016/j.procs.2013.05.333
http://www.sciencedirect.com/science/article/pii/S1877050913004766
http://www.sciencedirect.com/science/article/pii/S1877050913004766
http://dx.doi.org/10.1145/307418.307572
http://dx.doi.org/10.1145/307418.307572
http://doi.acm.org/10.1145/307418.307572
http://dx.doi.org/10.1109/ACSSC.1994.471504

 bibliography

[] J. Figueira, S. Greco, and M. Ehrgott. Multiple criteria decision analysis: state of the
art surveys. Vol. . Springer Verlag, , pp. –. url: http://books.google.
com/books?hl=en&http://www.bibsonomy.org/bibtex/22952817899439e6150a557f21104e2e2/

kamil205.

[] P. Fradet, A. Girault, and P. Poplavko. « SPDF: A schedulable parametric data-flow
MoC ». In: Design, Automation Test in Europe Conference Exhibition (DATE), .
, pp. –. doi: 10.1109/DATE.2012.6176572.

[] Alessio Franceschelli et al. « MPOpt-Cell: A High-performance Data-flow Pro-
gramming Environment for the CELL BE Processor ». In: Proceedings of the th
ACM International Conference on Computing Frontiers. CF ’. Ischia, Italy: ACM,
, :–:. isbn: ----. doi: 10.1145/2016604.2016618. url:
http://doi.acm.org/10.1145/2016604.2016618.

[] Rosario G. Garroppo, Stefano Giordano, and Luca Tavanti. « A Survey on Multi-
constrained Optimal Path Computation: Exact and Approximate Algorithms ». In:
Comput. Netw. . (Dec. ), pp. –. issn: -. doi: 10.1016/j.
comnet.2010.05.017. url: http://dx.doi.org/10.1016/j.comnet.2010.05.017.

[] Yang Ge, Parth Malani, and Qinru Qiu. « Distributed task migration for thermal
management in many-core systems ». In: Proceedings of the th Design Automation
Conference. DAC ’. ACM, , pp. –.

[] Marc Geilen and Twan Basten. « Requirements on the Execution of Kahn Process
Networks ». In: Programming Languages and Systems. Ed. by Pierpaolo Degano.
Vol. . Lecture Notes in Computer Science. Springer Berlin Heidelberg, ,
pp. –. isbn: ----. doi: 10.1007/3- 540- 36575- 3_22. url:
http://dx.doi.org/10.1007/3-540-36575-3_22.

[] Marc Geilen, Twan Basten, and Sander Stuijk. « Minimising Buffer Requirements
of Synchronous Dataflow Graphs with Model Checking ». In: Proceedings of the
Nd Annual Design Automation Conference. DAC ’. Anaheim, California, USA:
ACM, , pp. –. isbn: ---. doi: 10.1145/1065579.1065796. url:
http://doi.acm.org/10.1145/1065579.1065796.

[] Kees Goossens and Andreas Hansson. « The aethereal network on chip after ten
years: goals, evolution, lessons, and future ». In: Proceedings of the th Design
Automation Conference. DAC ’. ACM, , pp. –.

[] Michael I. Gordon. « Compiler Techniques for Scalable Performance of Stream Pro-
grams on Multicore Architectures ». Ph.D. Thesis. Cambridge, MA: Massachusetts
Institute of Technology, . url: http://groups.csail.mit.edu/commit/papers/
10/mgordon-phd-thesis.pdf.

[] R. Govindarajan, Guang R. Gao, and Palash Desai. « Minimizing Buffer Require-
ments Under Rate-Optimal Schedule in Regular Dataflow Networks ». In: J. VLSI
Signal Process. Syst. . (July ), pp. –. issn: -. doi: 10.1023/A:
1015452903532. url: http://dx.doi.org/10.1023/A:1015452903532.

[] Khronos OpenCL Working Group et al. « The OpenCL Specification, Version .,
 ». In: Document Revision  ().

[] Michael Gschwind. « Chip multiprocessing and the cell broadband engine ». In:
Proceedings of the rd conference on Computing frontiers. CF ’. Ischia, Italy: ACM,
, pp. –. isbn: ---. doi: 10.1145/1128022.1128023. url: http:
//doi.acm.org/10.1145/1128022.1128023.

http://books.google.com/books?hl=en& http://www.bibsonomy.org/bibtex/22952817899439e6150a557f21104e2e2/kamil205
http://books.google.com/books?hl=en& http://www.bibsonomy.org/bibtex/22952817899439e6150a557f21104e2e2/kamil205
http://books.google.com/books?hl=en& http://www.bibsonomy.org/bibtex/22952817899439e6150a557f21104e2e2/kamil205
http://dx.doi.org/10.1109/DATE.2012.6176572
http://dx.doi.org/10.1145/2016604.2016618
http://doi.acm.org/10.1145/2016604.2016618
http://dx.doi.org/10.1016/j.comnet.2010.05.017
http://dx.doi.org/10.1016/j.comnet.2010.05.017
http://dx.doi.org/10.1016/j.comnet.2010.05.017
http://dx.doi.org/10.1007/3-540-36575-3_22
http://dx.doi.org/10.1007/3-540-36575-3_22
http://dx.doi.org/10.1145/1065579.1065796
http://doi.acm.org/10.1145/1065579.1065796
http://groups.csail.mit.edu/commit/papers/10/mgordon-phd-thesis.pdf
http://groups.csail.mit.edu/commit/papers/10/mgordon-phd-thesis.pdf
http://dx.doi.org/10.1023/A:1015452903532
http://dx.doi.org/10.1023/A:1015452903532
http://dx.doi.org/10.1023/A:1015452903532
http://dx.doi.org/10.1145/1128022.1128023
http://doi.acm.org/10.1145/1128022.1128023
http://doi.acm.org/10.1145/1128022.1128023

bibliography 

[] Michael Gschwind et al. « Synergistic Processing in Cell’s Multicore Architecture ».
In: IEEE Micro . (Mar. ), pp. –. issn: -. doi: 10.1109/MM.2006.
41. url: http://dx.doi.org/10.1109/MM.2006.41.

[] Andreas Hansson et al. « Design and implementation of an operating system
for composable processor sharing ». In: Microprocessors and Microsystems .
(). Special issue on Network-on-Chip Architectures and Design Methodolo-
gies, pp. –.

[] Marcus Josephus Maria Heijligers. « The application of genetic algorithms to high-
level synthesis ». In: ().

[] John L Hennessy and David A Patterson. Computer architecture: a quantitative ap-
proach. Elsevier, .

[] J. Howard et al. « A -Core IA-message-passing processor with DVFS in nm
CMOS ». In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 
IEEE International. , pp. –. doi: 10.1109/ISSCC.2010.5434077.

[] IBM. Cell SDK .. https://www.ibm.com/developerworks/power/cell/. .

[] IBM. Cell Simulator. http://www.alphaworks.ibm.com/tech/cellsystemsim. Ver-
sion .. .

[] J. Jaffar and J.-L. Lassez. « Constraint Logic Programming ». In: Proceedings of the
th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
POPL ’. Munich, West Germany: ACM, , pp. –. isbn: ---.
doi: 10.1145/41625.41635. url: http://doi.acm.org/10.1145/41625.41635.

[] J. Jahn, M.A.A. Faruque, and J. Henkel. « CARAT: Context-aware runtime adaptive
task migration for multi core architectures ». In: Design, Automation Test in Europe
Conference Exhibition (DATE), . , pp. –.

[] C. R. Johns and D. A. Brokenshire. « Introduction to the Cell Broadband Engine
Architecture ». In: IBM J. Res. Dev. . (Sept. ), pp. –. issn: -.
doi: 10.1147/rd.515.0503. url: http://dx.doi.org/10.1147/rd.515.0503.

[] Roel Jordans et al. « An Automated Flow to Map Throughput Constrained Appli-
cations to a MPSoC ». In: Bringing Theory to Practice: Predictability and Performance
in Embedded Systems. Ed. by Philipp Lucas et al. Vol. . OpenAccess Series in In-
formatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, , pp. –. isbn: ----. doi: 10.4230/OASIcs.PPES.
2011.47. url: http://drops.dagstuhl.de/opus/volltexte/2011/3081.

[] G. Kahn. « The Semantics of a Simple Language for Parallel Programming ». In:
Information Processing ’: Proceedings of the IFIP Congress. Ed. by J. L. Rosenfeld.
New York, NY: North-Holland, , pp. –.

[] Kalray. Kalray MPPA . url: http://www.kalray.eu/.

[] Shin-Haeng Kang et al. « Multi-objective mapping optimization via problem de-
composition for many-core systems ». In: Embedded Systems for Real-time Multimedia
(ESTIMedia),  IEEE th Symposium on. IEEE. , pp. –.

[] Richard M Karp and Rayamond E Miller. « Properties of a model for parallel compu-
tations: Determinacy, termination, queueing ». In: SIAM Journal on Applied Mathe-
matics . (), pp. –.

http://dx.doi.org/10.1109/MM.2006.41
http://dx.doi.org/10.1109/MM.2006.41
http://dx.doi.org/10.1109/MM.2006.41
http://dx.doi.org/10.1109/ISSCC.2010.5434077
https://www.ibm.com/developerworks/power/cell/
http://www.alphaworks.ibm.com/tech/cellsystemsim
http://dx.doi.org/10.1145/41625.41635
http://doi.acm.org/10.1145/41625.41635
http://dx.doi.org/10.1147/rd.515.0503
http://dx.doi.org/10.1147/rd.515.0503
http://dx.doi.org/10.4230/OASIcs.PPES.2011.47
http://dx.doi.org/10.4230/OASIcs.PPES.2011.47
http://drops.dagstuhl.de/opus/volltexte/2011/3081
http://www.kalray.eu/

 bibliography

[] J. Keinert, C. Haubelt, and J. Teich. « Modeling and Analysis of Windowed Syn-
chronous Algorithms ». In: Acoustics, Speech and Signal Processing, . ICASSP
 Proceedings.  IEEE International Conference on. Vol. . , pp. III–III.
doi: 10.1109/ICASSP.2006.1660798.

[] J.H. Kelm et al. « Cohesion: An Adaptive Hybrid Memory Model for Accelerators ».
In: Micro, IEEE . (), pp. –. issn: -. doi: 10.1109/MM.2011.8.

[] Bart Kienhuis et al. « A Methodology to Design Programmable Embedded Systems ».
In: Embedded Processor Design Challenges. Ed. by EdF. Deprettere, Jürgen Teich,
and Stamatis Vassiliadis. Vol. . Lecture Notes in Computer Science. Springer
Berlin Heidelberg, , pp. –. isbn: ----. doi: 10.1007/3-540-
45874-3_2. url: http://dx.doi.org/10.1007/3-540-45874-3_2.

[] M. Kistler, M. Perrone, and F. Petrini. « Cell Multiprocessor Communication Net-
work: Built for Speed ». In: Micro, IEEE . (May ), pp. –. issn: -.
doi: 10.1109/MM.2006.49.

[] T. Klevin. « Get RealFast RTOS with Xilinx FPGAs ». In: ().

[] Abdullah Konak, David W. Coit, and Alice E. Smith. « Multi-objective optimiza-
tion using genetic algorithms: A tutorial. » In: Rel. Eng. & Sys. Safety . (),
pp. –. url: http://dblp.uni- trier.de/db/journals/ress/ress91.
html#KonakCS06;http://dx.doi.org/10.1016/j.ress.2005.11.018;http:

//www.bibsonomy.org/bibtex/28a293983a13e46a6acf0b157c05e85cb/dblp.

[] Manjunath Kudlur and Scott Mahlke. « Orchestrating the Execution of Stream
Programs on Multicore Platforms ». In: SIGPLAN Not. . (June ), pp. –
. issn: -. doi: 10.1145/1379022.1375596. url: http://doi.acm.org/10.
1145/1379022.1375596.

[] Manjunath V Kudlur. Streamroller: A Unified Compilation and Synthesis System for
Streaming Applications. ProQuest, .

[] Fadi J Kurdahi and Alice C Parker. « REAL: a program for REgister ALlocation ».
In: Proceedings of the th ACM/IEEE Design Automation Conference. ACM. ,
pp. –.

[] Chi-kin Lee and Mounir Hamdi. « Parallel Image Processing Applications on a
Network of Workstations ». In: Parallel Comput. . (Jan. ), pp. –. issn:
-. doi: 10.1016/0167-8191(94)00068-L. url: http://dx.doi.org/10.1016/
0167-8191(94)00068-L.

[] E.A. Lee and D.G. Messerschmitt. « Synchronous data flow ». In: Proceedings of the
IEEE . (), pp. –. issn: -. doi: 10.1109/PROC.1987.13876.

[] Julien Legriel and Oded Maler. « Meeting Deadlines Cheaply ». In: ECRTS. IEEE,
, pp. –.

[] Julien Legriel et al. « Approximating the Pareto Front of Multi-criteria Optimization
Problems ». In: TACAS. Ed. by Javier Esparza and Rupak Majumdar. Vol. .
LNCS. Springer, , pp. –. isbn: ----.

[] Thierry Lepley, Pierre Paulin, and Eric Flamand. « A Novel Compilation Approach
for Image Processing Graphs on a Many-Core Platform with Explicitly Managed
Memory ». In: Proceedings of the IEEE ().

http://dx.doi.org/10.1109/ICASSP.2006.1660798
http://dx.doi.org/10.1109/MM.2011.8
http://dx.doi.org/10.1007/3-540-45874-3_2
http://dx.doi.org/10.1007/3-540-45874-3_2
http://dx.doi.org/10.1007/3-540-45874-3_2
http://dx.doi.org/10.1109/MM.2006.49
http://dblp.uni-trier.de/db/journals/ress/ress91.html#KonakCS06; http://dx.doi.org/10.1016/j.ress.2005.11.018; http://www.bibsonomy.org/bibtex/28a293983a13e46a6acf0b157c05e85cb/dblp
http://dblp.uni-trier.de/db/journals/ress/ress91.html#KonakCS06; http://dx.doi.org/10.1016/j.ress.2005.11.018; http://www.bibsonomy.org/bibtex/28a293983a13e46a6acf0b157c05e85cb/dblp
http://dblp.uni-trier.de/db/journals/ress/ress91.html#KonakCS06; http://dx.doi.org/10.1016/j.ress.2005.11.018; http://www.bibsonomy.org/bibtex/28a293983a13e46a6acf0b157c05e85cb/dblp
http://dx.doi.org/10.1145/1379022.1375596
http://doi.acm.org/10.1145/1379022.1375596
http://doi.acm.org/10.1145/1379022.1375596
http://dx.doi.org/10.1016/0167-8191(94)00068-L
http://dx.doi.org/10.1016/0167-8191(94)00068-L
http://dx.doi.org/10.1016/0167-8191(94)00068-L
http://dx.doi.org/10.1109/PROC.1987.13876

bibliography 

[] Mirko Loghi, Massimo Poncino, and Luca Benini. « Cache Coherence Tradeoffs in
Shared-memory MPSoCs ». In: ACM Trans. Embed. Comput. Syst. . (May ),
pp. –. issn: -. doi: 10.1145/1151074.1151081. url: http://doi.acm.
org/10.1145/1151074.1151081.

[] Andrea Marongiu and Luca Benini. « Efficient OpenMP Support and Extensions for
MPSoCs with Explicitly Managed Memory Hierarchy ». In: Proceedings of the Con-
ference on Design, Automation and Test in Europe. DATE ’. Nice, France: European
Design and Automation Association, , pp. –. isbn: ----.
url: http://dl.acm.org/citation.cfm?id=1874620.1874819.

[] J.P. Marques-Silva and K.A. Sakallah. « GRASP: a search algorithm for propositional
satisfiability ». In: Computers, IEEE Transactions on . (), pp. –. issn:
-. doi: 10.1109/12.769433.

[] Cupertino Miranda et al. « Erbium: A Deterministic, Concurrent Intermediate
Representation to Map Data-flow Tasks to Scalable, Persistent Streaming Processes ».
In: Proceedings of the  International Conference on Compilers, Architectures and
Synthesis for Embedded Systems. CASES ’. Scottsdale, Arizona, USA: ACM, ,
pp. –. isbn: ----. doi: 10.1145/1878921.1878924. url: http:
//doi.acm.org/10.1145/1878921.1878924.

[] Matthew W. Moskewicz et al. « Chaff: Engineering an Efficient SAT Solver ». In:
Proceedings of the th Annual Design Automation Conference. DAC ’. Las Vegas,
Nevada, USA: ACM, , pp. –. isbn: ---. doi: 10.1145/378239.
379017. url: http://doi.acm.org/10.1145/378239.379017.

[] Leonardo Mendonça de Moura and Nikolaj Bjørner. « Z: An Efficient SMT Solver. »
In: TACAS. Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. . Lecture Notes
in Computer Science. Springer, , pp. –. isbn: ----. url:
http://dblp.uni- trier.de/db/conf/tacas/tacas2008.html#MouraB08;http:

//dx.doi.org/10.1007/978-3-540-78800-3_24;http://www.bibsonomy.org/bibtex/

23964b30f7dd5e5f7133e45828935ac10/kaptoxic.

[] S. Muir and J. Smith. « AsyMOS-an asymmetric multiprocessor operating system ».
In: Open Architectures and Network Programming,  IEEE. , pp.  –.

[] P.K. Murthy and E.A. Lee. « Multidimensional synchronous dataflow ». In: Signal
Processing, IEEE Transactions on . (), pp. –. issn: -X. doi:
10.1109/TSP.2002.800830.

[] Vincent Nollet, Diederik Verkest, and Henk Corporaal. « A Safari Through the
MPSoC Run-Time Management Jungle ». In: J. Signal Process. Syst. . (Aug. ),
pp. –.

[] Henri J. Nussbaumer. Fast Fourier transform and convolution algorithms. Springer-
Verlag, Berlin ; New York : , x,  p. : isbn:   .

[] CUDA Nvidia. « Compute unified device architecture programming guide ». In:
().

[] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers,
. isbn: .

[] Vilfredo Pareto. « Cours d\’economie politique ». In: ().

[] Thomas Martyn Parks. « Bounded Scheduling of Process Networks ». UMI Order
No. GAX-. PhD thesis. Berkeley, CA, USA, .

http://dx.doi.org/10.1145/1151074.1151081
http://doi.acm.org/10.1145/1151074.1151081
http://doi.acm.org/10.1145/1151074.1151081
http://dl.acm.org/citation.cfm?id=1874620.1874819
http://dx.doi.org/10.1109/12.769433
http://dx.doi.org/10.1145/1878921.1878924
http://doi.acm.org/10.1145/1878921.1878924
http://doi.acm.org/10.1145/1878921.1878924
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08; http://dx.doi.org/10.1007/978-3-540-78800-3_24; http://www.bibsonomy.org/bibtex/23964b30f7dd5e5f7133e45828935ac10/kaptoxic
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08; http://dx.doi.org/10.1007/978-3-540-78800-3_24; http://www.bibsonomy.org/bibtex/23964b30f7dd5e5f7133e45828935ac10/kaptoxic
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08; http://dx.doi.org/10.1007/978-3-540-78800-3_24; http://www.bibsonomy.org/bibtex/23964b30f7dd5e5f7133e45828935ac10/kaptoxic
http://dx.doi.org/10.1109/TSP.2002.800830

 bibliography

[] Pierre G. Paulin et al. « Parallel Programming Models for a Multi-Processor SoC
Platform Applied to High-Speed Traffic Management ». In: Proceedings of the in-
ternational conference on Hardware/Software Codesign and System Synthesis: .
CODES+ISSS ’. IEEE Computer Society, , pp. –.

[] Lu Peng et al. « Memory Performance and Scalability of Intel’s and AMD’s Dual-
Core Processors: A Case Study ». In: Performance, Computing, and Communications
Conference, . IPCCC . IEEE Internationa. , pp. –. doi: 10.1109/
PCCC.2007.358879.

[] P. Poplavko et al. « Task-level Timing Models for Guaranteed Performance in Multi-
processor Networks-on-chip ». In: Proceedings of the  International Conference
on Compilers, Architecture and Synthesis for Embedded Systems. CASES ’. San Jose,
California, USA: ACM, , pp. –. isbn: ---. doi: 10.1145/951710.
951721. url: http://doi.acm.org/10.1145/951710.951721.

[] Shiv Prakash and Alice C Parker. « SOS: Synthesis of application-specific hetero-
geneous multiprocessor systems ». In: Journal of Parallel and Distributed computing
. (), pp. –.

[] RM Ramanathan. « Intel Multi-core Processors: Making the move to Quad-core
and Beyond, white paper ». In: Intel Corporation ().

[] A Ramani et al. « Breaking instance-independent symmetries in exact graph col-
oring ». In: Design, Automation and Test in Europe Conference and Exhibition, .
Proceedings. Vol. . , – Vol.. doi: 10.1109/DATE.2004.1268868.

[] IBM Redbooks. Programming the Cell Broadband Engine Architecture: Examples and
Best Practices. Vervante, . isbn: , .

[] Selma Saidi. « Optimizing DMA Data Transfers for Embedded Multi-Cores ». In:
Phd thesis. .

[] Selma Saidi et al. « Optimal D Data Partitioning for DMA Transfers on MPSoCs ».
In: Proceedings of the  th Euromicro Conference on Digital System Design. DSD
’. Washington, DC, USA: IEEE Computer Society, , pp. –. isbn: --
--. doi: 10.1109/DSD.2012.99. url: http://dx.doi.org/10.1109/DSD.2012.
99.

[] Selma Saidi et al. « Optimizing Explicit Data Transfers for Data Parallel Applications
on the Cell Architecture ». In: ACM Trans. Archit. Code Optim. . (Jan. ), :–
:. issn: -. doi: 10.1145/2086696.2086716. url: http://doi.acm.org/10.
1145/2086696.2086716.

[] Selma Saidi et al. « Optimizing two-dimensional DMA transfers for scratchpad
Based MPSoCs platforms ». In: Microprocessors and Microsystems ., Part A ().
Special Issue DSD  on Reliability and Dependability in MPSoC Technologies,
pp.  –. issn: -. doi: http://dx.doi.org/10.1016/j.micpro.2013.04.
006. url: http://www.sciencedirect.com/science/article/pii/S0141933113000549.

[] J.C. Sancho et al. « Quantifying the Potential Benefit of Overlapping Communication
and Computation in Large-Scale Scientific Applications ». In: SC  Conference,
Proceedings of the ACM/IEEE. , pp. –. doi: 10.1109/SC.2006.51.

[] Jose Carlos Sancho and Darren J. Kerbyson. « Analysis of double buffering on two
different multicore architectures: Quad-core Opteron and the Cell-BE ». In: Parallel
and Distributed Processing Symposium, International  (), pp. –. doi: http:
//doi.ieeecomputersociety.org/10.1109/IPDPS.2008.4536316.

http://dx.doi.org/10.1109/PCCC.2007.358879
http://dx.doi.org/10.1109/PCCC.2007.358879
http://dx.doi.org/10.1145/951710.951721
http://dx.doi.org/10.1145/951710.951721
http://doi.acm.org/10.1145/951710.951721
http://dx.doi.org/10.1109/DATE.2004.1268868
http://dx.doi.org/10.1109/DSD.2012.99
http://dx.doi.org/10.1109/DSD.2012.99
http://dx.doi.org/10.1109/DSD.2012.99
http://dx.doi.org/10.1145/2086696.2086716
http://doi.acm.org/10.1145/2086696.2086716
http://doi.acm.org/10.1145/2086696.2086716
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.04.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.04.006
http://www.sciencedirect.com/science/article/pii/S0141933113000549
http://dx.doi.org/10.1109/SC.2006.51
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2008.4536316
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2008.4536316

bibliography 

[] Prabhat Kumar Saraswat, Paul Pop, and Jan Madsen. « Task migration for fault-
tolerance in mixed-criticality embedded systems ». In: SIGBED Rev. . (Oct. ),
:–:.

[] Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. « Predictable task migra-
tion for locked caches in multi-core systems ». In: Proceedings of the  SIG-
PLAN/SIGBED conference on Languages, compilers and tools for embedded systems.
LCTES ’. ACM, , pp. –.

[] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
.

[] Tae-ho Shin, Hyunok Oh, and Soonhoi Ha. « Minimizing Buffer Requirements for
Throughput Constrained Parallel Execution of Synchronous Dataflow Graph ».
In: Proceedings of the th Asia and South Pacific Design Automation Conference.
ASPDAC ’. Yokohama, Japan: IEEE Press, , pp. –. isbn: ---
-. url: http://dl.acm.org/citation.cfm?id=1950815.1950860.

[] Hamid Shojaei et al. « A parameterized compositional multi-dimensional multiple-
choice knapsack heuristic for CMP run-time management ». In: Proceedings of the
th Annual Design Automation Conference. DAC ’. ACM, , pp. –.

[] Lawrence Snyder. The ZPL Programmer’s Guide. Scientific and Engineering Computa-
tion. March .

[] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization. Second Edition. CRC Press, . isbn: ,
.

[] S. Stuijk et al. « Scenario-aware dataflow: Modeling, analysis and implementation of
dynamic applications ». In: Embedded Computer Systems (SAMOS),  International
Conference on. , pp. –. doi: 10.1109/SAMOS.2011.6045491.

[] Sander Stuijk. « Predictable Mapping of Streaming Applications on Multiproces-
sors ». In: Phd thesis. .

[] Sander Stuijk, Marc Geilen, and Twan Basten. « SDF3: SDF For Free ». In: Application
of Concurrency to System Design th International Conference ACSD  Proceedings.
Turku Finland: IEEE Computer Society Press Los Alamitos CA USA, , pp. –
. doi: 10.1109/ACSD.2006.23. url: http://www.es.ele.tue.nl/sdf3.

[] Herb Sutter. « The free lunch is over: A fundamental turn toward concurrency in
software ». In: Dr. Dobb’s Journal . (), pp. –.

[] Pranav Tendulkar, Peter Poplavko, and Oded Maler. Strictly Periodic Scheduling
of Acyclic Synchronous Dataflow Graphs using SMT Solvers. Tech. rep. TR--.
Verimag Research Report, .

[] Pranav Tendulkar, Peter Poplavko, and Oded Maler. « Symmetry Breaking for Multi-
criteria Mapping and Scheduling on Multicores ». In: Formal Modeling and Anal-
ysis of Timed Systems. Ed. by Víctor Braberman and Laurent Fribourg. Vol. .
Lecture Notes in Computer Science. Springer Berlin Heidelberg, , pp. –
. isbn: ----. doi: 10.1007/978-3-642-40229-6_16. url: http:
//dx.doi.org/10.1007/978-3-642-40229-6_16.

[] Pranav Tendulkar and Sander Stuijk. « A Case Study into Predictable and Compos-
able MPSoC Reconfiguration ». In: Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW),  IEEE th International. , pp. –.
doi: 10.1109/IPDPSW.2013.12.

http://dl.acm.org/citation.cfm?id=1950815.1950860
http://dx.doi.org/10.1109/SAMOS.2011.6045491
http://dx.doi.org/10.1109/ACSD.2006.23
http://www.es.ele.tue.nl/sdf3
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1109/IPDPSW.2013.12

 bibliography

[] Pranav Tendulkar et al. « Fine-grain OpenMP runtime support with explicit com-
munication hardware primitives ». In: Design, Automation Test in Europe Conference
Exhibition (DATE), . , pp. –. doi: 10.1109/DATE.2011.5763299.

[] Pranav Tendulkar et al. « Many-Core Scheduling of Data Parallel Applications
using SMT Solvers ». In: Proceedings of the  th Euromicro Conference on Digital
System Design. DSD ’. .

[] E. Teruel et al. « On weighted T-systems ». In: Application and Theory of Petri Nets
. Ed. by K. Jensen. Vol. . Lecture Notes in Computer Science. Springer
Berlin Heidelberg, , pp. –. isbn: ----. doi: 10.1007/3-
540-55676-1_20. url: http://dx.doi.org/10.1007/3-540-55676-1_20.

[] B. D. Theelen et al. « A scalable single-chip multi-processor architecture with on-
chip RTOS kernel ». In: J. Syst. Archit. .- (Dec. ), pp. –.

[] William Thies. « Language and compiler support for stream programs ». PhD thesis.
Massachusetts Institute of Technology, .

[] William Thies and Saman Amarasinghe. « An empirical characterization of stream
programs and its implications for language and compiler design ». In: international
conference on Parallel architectures and compilation techniques. PACT ’. Vienna,
Austria: ACM, , pp. –. isbn: ----. doi: 10.1145/1854273.
1854319. url: http://doi.acm.org/10.1145/1854273.1854319.

[] Tilera, LTD. Tilera TILE processor. url: http://www.tilera.com/.

[] Saud Wasly and Rodolfo Pellizzoni. « A Dynamic Scratchpad Memory Unit for Pre-
dictable Real-Time Embedded Systems ». In: Proceedings of the  th Euromicro
Conference on Real-Time Systems. ECRTS ’. Washington, DC, USA: IEEE Com-
puter Society, , pp. –. isbn: ----. doi: 10.1109/ECRTS.
2013.28. url: http://dx.doi.org/10.1109/ECRTS.2013.28.

[] M.H. Wiggers, M.J.G. Bekooij, and G. J M Smit. « Efficient Computation of Buffer
Capacities for Cyclo-Static Dataflow Graphs ». In: Design Automation Conference,
. DAC ’. th ACM/IEEE. , pp. –.

[] W. Wolf, A.A. Jerraya, and G. Martin. « Multiprocessor System-on-Chip (MPSoC)
Technology ». In: Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on . (), pp. –. issn: -. doi: 10.1109/TCAD.
2008.923415.

[] Yang Yang et al. « Exploring trade-offs between performance and resource require-
ments for synchronous dataflow graphs ». In: Embedded Systems for Real-Time Mul-
timedia, . ESTIMedia . IEEE/ACM/IFIP th Workshop on. , pp. –.
doi: 10.1109/ESTMED.2009.5336821.

[] Jun Zhu, Ingo Sander, and Axel Jantsch. « Buffer minimization of real-time stream-
ing applications scheduling on hybrid CPU/FPGA architectures ». In: DATE. Nice,
France: IEEE, , pp. –. isbn: ----. url: http://dl.acm.
org/citation.cfm?id=1874620.1874980.

[] Jun Zhu, Ingo Sander, and Axel Jantsch. « Constrained global scheduling of stream-
ing applications on MPSoCs ». In: ASPDAC. .

[] C. Zinner and W. Kubinger. « ROS-DMA: A DMA Double Buffering Method for
Embedded Image Processing with Resource Optimized Slicing ». In: Real-Time and
Embedded Technology and Applications Symposium, . Proceedings of the th
IEEE. , pp. –. doi: 10.1109/RTAS.2006.38.

http://dx.doi.org/10.1109/DATE.2011.5763299
http://dx.doi.org/10.1007/3-540-55676-1_20
http://dx.doi.org/10.1007/3-540-55676-1_20
http://dx.doi.org/10.1007/3-540-55676-1_20
http://dx.doi.org/10.1145/1854273.1854319
http://dx.doi.org/10.1145/1854273.1854319
http://doi.acm.org/10.1145/1854273.1854319
http://www.tilera.com/
http://dx.doi.org/10.1109/ECRTS.2013.28
http://dx.doi.org/10.1109/ECRTS.2013.28
http://dx.doi.org/10.1109/ECRTS.2013.28
http://dx.doi.org/10.1109/TCAD.2008.923415
http://dx.doi.org/10.1109/TCAD.2008.923415
http://dx.doi.org/10.1109/ESTMED.2009.5336821
http://dl.acm.org/citation.cfm?id=1874620.1874980
http://dl.acm.org/citation.cfm?id=1874620.1874980
http://dx.doi.org/10.1109/RTAS.2006.38

	Abstract
	Résumé
	1 Introduction
	1.1 Multi-core Processor System Architecture
	1.1.1 Host Processors
	1.1.2 Peripheral Devices
	1.1.3 Multi-core Fabric
	1.1.4 Memory Organization
	1.1.5 Network Interconnect

	1.2 Multi-core Software
	1.2.1 Theoretical issues
	1.2.2 Practical Issues

	1.3 Software Design Flow
	1.4 Related Tools
	1.4.1 SDF3
	1.4.2 MAMPS
	1.4.3 MP-Opt
	1.4.4 StreamIT
	1.4.5 StreamRoller
	1.4.6 Discussion

	1.5 Organization of Thesis

	2 Programming Model
	2.1 Dataflow graphs
	2.1.1 Static Dataflow
	2.1.2 Dynamic Dataflow

	2.2 Synchronous Dataflow
	2.3 Split-Join Graphs
	2.3.1 The Semantics of Split-join Graphs
	2.3.2 Derived Task Graph
	2.3.3 Marked Split-join Graphs

	2.4 Split-join Graph Application Example : JPEG decoder
	2.5 Conclusion

	3 Architecture Model
	3.1 Multi-core and Many-core processors
	3.1.1 Clusters
	3.1.2 Shared Memory
	3.1.3 Network-On-Chip
	3.1.4 DMA

	3.2 Tilera Tile64
	3.3 Kalray MPPA-256
	3.4 CompSOC Platform
	3.5 IBM Cell BE Processor
	3.6 DMA Controller in Cell Processor
	3.6.1 Strided DMA
	3.6.2 DMA list

	3.7 Modeling DMA Controller
	3.8 Platform Model
	3.9 Conclusion

	4 Satisfiability solvers and multi-criteria Optimization
	4.1 Satisfiability Solvers
	4.2 An Example of SMT constraints
	4.2.1 Non-retractable and retractable constraints

	4.3 Multi-Criteria Problem
	4.4 Cost-Space Exploration
	4.5 Distance based Exploration
	4.6 Grid Based Exploration
	4.7 Conclusions

	5 Deployment and Evaluation Methodology
	5.1 The Tool
	5.2 Profiling the application
	5.3 Run-time environment
	5.3.1 Initialization of the application
	5.3.2 Execution of the application
	5.3.3 Release of the resources
	5.3.4 Hardware Specific Implementation

	5.4 Communication Buffers
	5.4.1 FIFO buffer example
	5.4.2 Inter-cluster FIFO buffer in Kalray

	5.5 Conclusions

	6 Scheduling in shared memory
	6.1 Symmetry in Split-join Graphs
	6.2 SMT Constraints
	6.3 Experiments
	6.3.1 Finding Optimal Latency
	6.3.2 Processor-Latency Trade-offs
	6.3.3 A Video decoder
	6.3.4 JPEG decoder

	6.4 Conclusions

	7 Multi-stage scheduling for distributed memory processors
	7.1 Design Flow
	7.1.1 Software partitioning
	7.1.2 Mapping software to hardware cluster

	7.2 Inter-cluster FIFO
	7.3 Modeling Communication
	7.3.1 Partition-Aware Graph
	7.3.2 Buffer Aware Graph
	7.3.3 Communication Aware Graph

	7.4 Scheduling
	7.4.1 Schedule Graph
	7.4.2 Mapping and scheduling using SMT

	7.5 Schedule improvement
	7.5.1 Improvement of latency
	7.5.2 Processor Optimal Schedule

	7.6 Experiments
	7.7 Conclusions

	8 Optimizing the DMA communication
	8.1 Data-parallel applications
	8.1.1 Buffering schemes
	8.1.2 Data distribution, block Shape and Granularity

	8.2 Optimal Granularity for Data Transfers
	8.2.1 Single Processor
	8.2.2 Multiple Processors

	8.3 Shared Data Transfers
	8.4 DMA Performance of the Cell processor
	8.5 Experimental Results
	8.5.1 Independent Data Computations
	8.5.2 Shared Data Computations
	8.5.3 Convolution Benchmark (FIR filter)
	8.5.4 Mean Filter Algorithm

	8.6 Conclusions

	9 Run-time application management and reconfiguration
	9.1 Runtime Resource Manager
	9.1.1 System-level resource manager

	9.2 Implementation
	9.2.1 Application-level resource manager
	9.2.2 Migration Point
	9.2.3 Actor and FIFO Migration on CompOSe

	9.3 Application-level manager
	9.3.1 Run-Time Actor and FIFO Migration
	9.3.2 Results

	9.4 Conclusions

	10 Conclusions and Future Work
	Appendices
	A Schedule XML
	Bibliography

