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Introduction

Quantum Physics associates a wave-like behaviour to all particles, and divides them
into two families, bosons and fermions. As waves, particles interfere, these interferences
differentiate bosons from fermions: when bosons interfere constructively, fermions do so
destructively. This difference leads to distinct collective behaviours when many particles
are prone to occupy the same energy levels, that is in the quantum degenerate regime. At the
thermodynamical level, the ground state of a system of non-interacting identical particles
depends on the nature of its constituents. At zero temperature, an ensemble of bosons will
form a Bose-Einstein condensate (BEC), characterized by the occupation by all the bosons
of the lowest energy level, while an ensemble of identical fermions will populate the lowest
energy levels from bottom-up with exactly one particle per level, forming a so-called Fermi
sea. Adding to quantum statistical effects, the interactions between the constituents can
strongly modify the ground state. For this reason, depending on these interactions, both an
ensemble of interacting bosons and of fermions can undergo the transition to a superfluid
state (superconducting for charged particles) at low temperature. This superfluid state
is characterized by unusual flow properties, with at low velocities, a zero viscosity, or
electrical resistance for charged particles.

Historically, the discovery of this state constituted the first observations of manifestations
of Quantum Physics at the thermodynamical level, and marked the start of the exploration
of the quantum many-body problem. The first experimental observations date back from the
works of Kamerlingh Onnes [Kamerlingh Onnes, 1913] and the liquefaction of helium in 1908.
These led to the discovery of an ensemble of unusual phenomena in bosonic liquid helium
4 at temperatures below 2.17 K. With the experiments of Kapitza [Kapitza, 1938] on the one
hand and Allen and Misener on the other hand [Allen and Misener, 1938] these effects were
understood to be due to a phase transition to a superfluid state. In parallel, in 1911 using the
same cryogenic techniques, Kamerlingh Onnes had discovered the superconducting state, a
macroscopic signature of Quantum Mechanics in an ensemble of fermions - the electrons in
a metal. In 1972, helium 3, the fermionic twin to helium 4, was discovered to be superfluid
at very low temperatures (below 2.6 mK) [Osheroff et al., 1972], bridging between helium 4
and superconducting metals. London in 1938 had interpreted superfluidity of *He in terms
of Bose-Einstein condensation, noting that the experimental critical temperature for super-
fluidity was close to the theoretical critical temperature for condensation. Nonetheless, the
non-interacting picture was insufficient to yield a faithful description, and only interacting
models could success, with for example two-fluids hydrodynamics or the Bogolyubov de-

scription. The interactions bear an even higher importance for fermionic ensembles, as was
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realized by Bardeen, Cooper and Schrieffer (BCS) [Bardeen et al., 1957a, Bardeen et al., 1957b].
It is the possibility for fermions to bind in pairs thanks to an attractive interaction that causes
the transition to a superconducting (superfluid) state.

Search for double superfluidity in liquid helium mixtures

Once superfluidity was obtained for both liquid *He and *He, researchers have tried
to obtain a doubly superfluid mixture in liquid helium. However, *He and *He interact
strongly with each other. As a consequence, phase separation occurs and the density of di-
lute “He in liquid *He drops rapidly to zero for decreasing temperature, before *He becomes
superfluid [Edwards and Daunt, 1961]. In the opposite situation, a small fraction (X) of *He
can remain diluted in superfluid 4He at zero temperature [Edwards et al., 1965], X = 6 % at
saturated vapor pressure pressure and X = 9% at 25bars. This is illustrated in figure 1
taken from [Rysti, 2013] where temperature is represented on the vertical axis and *He frac-
tion X on the horizontal axis, where the region in which the mixed *He-*He phase is stable
at room pressure is shown in green and blue. The only possibility to realize a double su-
perfluid is then in the dilute phase of 3He. The possibility for a phase transition to a super-

2.0

1.5

*He and “He
normal fluids

25 bar

r(K)

*He normal fluid
“He superfluid

05 Unstable Region

-—— Phase Separation

0 0.2 0.4 0.6 0.8 1
*He Concentration

Figure 1: Phase diagram of 3He-*He solutions taken from [Rysti, 2013], the region of stability for the mixed
3He-*He phase at saturated vapor pressure (SVP) is shown in green and blue. The green region corresponds
to both liquids being normal liquids, and the blue region corresponds to superfluid *He and normal 3He. The
grey region corresponds to a phase separation between pure 3He and a dilute solution of 3He in *He. Pure
liquid 3He is superfluid under T, = 2.6 mK.
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fluid state of fermions diluted into bosons was first demonstrated using a hard sphere model
in [Cohen and van Leeuwen, 1961]. Using Landau’s Fermi liquid theory, Bardeen, Baym and
Pines [Bardeen et al., 1967] have carried the first calculation of the critical temperature for su-
perfluidity of dilute 3He in superfluid He, demonstrating that this temperature was very
low, of the order of a few pK. The cause of this very low temperature is the high diluteness
of *He. The cooling technique that cooled down helium mixtures to the lowest temperature
so far is adiabatic nuclear demagnetization of a copper sample in contact with helium, with
a record of 97 K obtained in 1994 [Oh et al., 1994]. However the cooling power of this tech-
nique decreases exponentially with temperature and it seems that it has reached its limit.
With this temperature record, double superfluidity remains elusive as of today. The search
for this state has however not yet been given-up, and researchers have designed a new cool-
ing technique: adiabatic melting of solid *He [Tuoriniemi et al., 2002]. The lowest tempera-
ture achieved with this method is 300 1K but since this limit was due to technical problems,
better performances are still hoped-for. Finally with a refined knowledge of the *He->He
interaction in “He, [Rysti et al., 2012] calculate a critical temperature for superfluidity of >*He
in superfluid *He as high as T, ~ 45 1K, within possible reach. The exponential dependence

of T, in interactions parameter can however induce large errors on this prediction.

Bose-Fermi mixtures in ultracold atoms

Apart from liquid helium and solids, the field of many-body quantum physics tackles
nowadays numerous physical systems, including exotic systems like neutron stars, and
superfluidity has now been observed in diverse situations [Bennemann and Ketterson, 2013].
In 1995 after the first realization of Bose-Einstein condensation in ultracold dilute gases
of rubidium and sodium [Anderson et al., 1995, Davis et al., 1995], cold atom experiments
joined-in as a valuable test-bench for theories, owing to their capability of studying a wide
variety of systems. Cold atom set-ups allow to trap bosonic and fermionic isotopes of many
different elements. The absence of defects, their very high diluteness and low temperatures
allow for a simple description of the interactions, enabling a direct comparison with
theories. Of particular interest for this thesis, they offer the possibility to address different
interaction regimes, from the truly ideal textbook case to highly correlated states of matter
in the strongly-interacting regime.

Four years after the first observation of Bose-Einstein condensation, quantum degeneracy
was reached in a dilute gas of the fermionic isotope of potassium, 4°K [DeMarco, 1999]. It did
not take long for experimentalist to simultaneously cool mixtures of bosonic and fermionic
isotopes of lithium close to quantum degeneracy [Schreck et al., 2001a, Truscott et al., 2001],
and the first observation of a mixture of a Bose-Einstein condensate with a Fermi sea was
obtained in 2001 in the ultracold Fermions team at ENS [Schreck et al., 2001b]. Since these
seminal works, a rich variety of Bose-Fermi mixtures have been produced, table 1 provides

an extensive list of such experimental realizations.
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Species Reference(s)

Li(f) - "Li(b) [Schreck et al., 2001b, Truscott et al., 2001]
2Na(b) - °Li(f) [Hadzibabic et al., 2002]

40K (f) - 8’Rb(b) [Roati et al., 2002, Modugno et al., 2002]
°Li(f) - %"Rb(b) [Silber et al., 2005]

3He*(f) - *He*(b) [McNamara et al., 2006]

OLi(f) - 10K(f) - Rb(b) | [Taglieber et al., 2008]

Li(f) - 8587Rb(b) [Deh et al., 2008, Deh et al., 2010]
84,86,88G () - 87Sr(f) [Tey et al., 2010, Stellmer et al., 2013]
oLi(f) - 174YDb(b) [Hara et al., 2011, Hansen et al., 2011]
170174y b(b) - 173YDb(f) | [Sugawa et al., 2011]

40K (f) - 41K (b) - °Li(f) | [Wu et al., 2011]

161Dy (f) - 192Dy(b) [Lu et al., 2012]

23Na(b) - 49K (f) [Park et al., 2012]

OLi(f) - 133Cg(b)M) [Repp et al., 2013, Tung et al., 2013]
52Cr(b) - 53Cr(f) [Laburthe-Tolra, 2014]

Table 1: Bose-Fermi mixtures realized in dilute ultracold gases to present, the bosonic (b) or fermionic (f)
nature of each isotope is indicated in parentheses. Helium isotopes are trapped in a metastable state. () The
Li-Cs mixture has been cooled close to quantum degeneracy.

These experiments were designed for different aims. Modugno etal.,, in
[Modugno et al., 2002] have demonstrated that an attractive interaction between a BEC
of Rb and a Fermi sea of “°K can lead to a collapse of the Fermi sea thus exhibiting the first
spectacular effect of Bose-Fermi interactions in a degenerate mixture. The most recurrent
motivation is the prospect of tuning the interactions between bosons and fermions using the
tool of Feshbach resonances, a way to control finely the two-body interactions. This tunabil-
ity has been shown in many combinations: Li-Li [Zhang et al., 2005], Na-Li [Stan et al., 2004],
K-Rb [Inouye et al., 2004, Ferlaino et al., 2006, Ospelkaus et al., 2006a, Zaccanti et al., 2006],
Li-Rb [Deh et al., 2008, Deh et al., 2010], K-K [Wu et al., 2011], Na-K [Park et al., 2012], Li-Cs
[Repp et al., 2013, Tung et al., 2013] and could be further explored with other ones such as
Li-K or He-He [Goosen et al., 2010]. Feshbach resonances further allow to form bound pairs
of atoms, offering the possibility of creating polar fermionic molecules, [Wu et al., 2012]. The
alkaline-earth like elements ytterbium (Yb) and strontium (Sr) have fermionic isotopes with
a SU(N) symmetry in the ground state®® which open prospects of interesting hamiltonians,
further extended by the coupling to a bosonic component. Mixed with lighter atoms, heavy
elements like Sr, Yb or caesium (Cs) allow to study large mass-imbalance effects for example
in few-body bound states [Pires et al., 2014, Tung et al., 2014]. Placing a Bose-Fermi mixture

@1In the ground state the nuclear spin decouples from electronic state, realizing a SU(N) symmetry with N the
degeneracy of the ground state.
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in a lattice, one can study the on-site localization of the bosons driven by the interactions
with the fermions [Ospelkaus et al., 2006b, Giinter et al., 2006, Best et al., 2009], resembling
the famous superfluid-Mott transition of bosons, or even the dual Mott phase of bosons
and fermions with either attractive or repulsive interactions [Sugawa et al., 2011]. Finally
Bose-Fermi mixtures composed of atoms with a magnetic dipole moment could form exotic
phases of matter. It is the case of chromium, and with a stronger dipole moment, the
lanthanide elements erbium and dysprosium.

In none of the above-cited Bose-Fermi mixtures experimentally obtained, both com-
ponents were superfluid. First, fermionic superfluidity requires a sufficiently strong and
attractive interaction, this has limited so far the achievement of superfluidity to only two
species, the alkalis lithium (°Li) and potassium (*°K). Second one needs the bosonic compo-
nent to form a stable superfluid in the conditions of fermionic superfluidity, which further
eliminates number of candidates. Finally the boson-fermion interaction must not destabilize
the mixture, further narrowing the search. There remains a few possible solutions in the
multitude of available choices.

In this thesis we will present experiments on dilute ultracold gases of lithium 7 - a
boson - and lithium 6 - a fermion. Lithium isotopes have the virtue to present Feshbach
resonances. The main original result of this work is the observation of a mixture of a
superfluid of °Li and a Bose-Einstein condensate of “Li. We will show how the usage
of Feshbach resonances allows to create a stable, superfluid BEC with weakly repulsive
interactions. By the right choice of internal states this BEC can be mixed with a superfluid
of ®Li, avoiding phase-separation. The interactions in the Fermi superfluid can be tuned
also with a Feshbach resonance. In the strongly attractive-limit, we create a mixture of
two Bose-Einstein condensates, one made of atoms and the other of molecules. In the
weakly-attractive limit we obtain a mixture of a Bose superfluid with a Fermi superfluid
in the BCS regime, realizing the long-sought goal of liquid helium mixtures of a mixture of
Bose and Fermi superfluids.

Outline

e The first chapter of this manuscript presents the theoretical aspects of degenerate
gases of °Li and “Li. It introduces the two-body interactions present in our gases,
with a description of Feshbach resonances. Then the theory of Bose-Einstein con-
densation and Fermi superfluids in the presence of these interactions is overviewed.
A particular attention is given to the manifestations of superfluidity in these sys-
tems, and especially the critical velocity for frictionless flow, characteristic of this state.
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* The second chapter covers the experimental techniques employed to produce and

study these gases, describing the cooling techniques and precise preparations em-
ployed to obtain our ultracold samples. A possible improvement of the cooling
procedure using grey molasses on the D; line is described in chapter 3, with a
theoretical investigation of the cooling process employed.

In the fourth chapter, we report on an investigation of Bose gases under strong
interactions. Using Feshbach resonances we were able to place gases of bosons in a
situation of resonant two-body interaction to investigate the stability of such gases
against three-body inelastic collisions which are the dominant cause atom losses. This
study outlines the limit of stability of strongly-interacting Bose gases.

The final chapter is dedicated to the experimental realization of a mixture of Bose and
Fermi superfluids, and the study of this system. We present the conditions of stability
of this mixture, demonstrating that they are fulfilled with our system. We demonstrate
the superfluidity of both components and show that the characteristic frictionless flow
is observed. Then we explore the properties of this system, presenting a measurement
of the interaction between the two components using collective oscillations. We finish
by exploring the critical velocity for counter-flow motion, a property specific to super-
fluids.

“Vous avez peur de quoi?
Vous avez peur de qui?
Peur? Mais vous allez perdre les gars!” Aimé Jacquet



Chapter 1

Bose-Einstein condensates and Fermi su-
perfluids

The study of the manifestations of Quantum Mechanics at the thermodynamical level is a
central motivation of the field of ultracold gases. In the present chapter, we will briefly give
some important background for the description of dilute Bose and Fermi gases. First, in the
case of non-interacting quantum particles, revealing the effects of quantum statistics, then
in the more interesting situation of interacting particles. We will summarize the important
theoretical and experimental results constituting the state-of-the-art of research on these sys-
tems, and address the interesting phenomena that arise and in particular superfluidity.

1.1 @ Ideal Quantum Gases

Let us start by the simple case of a classical gas of non-interacting particles of mass m.
We will work in the grand-canonical ensemble, because, as we will see in 1.2, it yields use-
ful relations for experimental observables such as in-trap density. The gas is described by
the classical Boltzmann distribution f(e), which represents the probability for a particle to
occupy a state with energy e at a chemical potential p and at a temperature 7.

fle) = e Pl (1.1)
with 8 = 1/kgT. For particles in free-space this yields:
n\3p = e* (1.2)

where n is the density and A\gg = +/27h2/mkgT is the thermal de Broglie wavelength.
Eq. (1.2) is the equation of state (EoS) of a classical gas in the grand-canonical ensemble,
by using the Gibbs-Duhem relation g—]; = n one recovers the usual ideal gas expression
P = nk:BT.

In the case of a quantum gas made of identical particles, the different quantum statistics be-
tween bosons and fermions result in two different energy distributions (fg for bosons and

fr for fermions):

(1.3)

fB(e) = eBle—m) _ 1
1

fr(e) = Bl 1 (1.4)
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In turn, they lead to [Landau and Lifchitz, 1966b]:

nB/\?iB = 93/2(6ﬁ“) (1.5)
”F)‘gB = —93/2(—66“) (1.6)

@ which are respectively the EoS of an ideal gas of bosons and fermions.

Taking the limit of high temperature or low fugacity z (z = e°*) for the expressions above,
one recovers the classical Boltzmann gas relations. However at low temperature (1.3) and
(1.4) lead to a marked difference with the classical behavior. For fermions, the occupation
probability (1.4) is always smaller than one, two identical fermions cannot occupy the same
state. The Fermi energy energy is defined by Er = u(T = 0, N¢) where Ny is the total number
of fermions (Ty = Ey/kg). The shape of fg(e) is dictated by the ratio 7'/Ts. When this ratio is
large fr is close to (1.1) while at zero temperature all states with energy ¢ < Er are occupied
with probability 1 and all states above Er are empty. We thus see that the temperature Tt sets
the scale for the apparition of quantum statistics effects (quantum degeneracy). The Fermi

energy can be calculated using

N=> file;,T =0, = Ep). (1.7)

7

For a homogeneous system in a box, it yields:

h2
Ep = — (67°n)?/3 (1.8)

2m

The state of a Fermi gas at zero-temperature is called a Fermi sea. Although very different
from a classical gas, it does not, however, constitute a new phase of the system.

In the bosonic case the physical condition fg > 0 imposes that ;1 < € with ¢y the ground
state energy. Then for all states with energy ¢ > ¢y the occupation number is bounded, but
when p — €, the occupation probability of the ground state diverges. Thus there is a critical
number of bosons for which all states are fully occupied and any additional particle necessar-
ily fills the ground state®, marking the transition from an ideal gas (1.5) to a Bose-Einstein
condensate (BEC). The temperature scale for quantum degeneracy and Bose-Einstein con-

densation T, is found by setting

> folei Tepopp=€0) = N (1.9)
i#£0

using a straightforward calculation, it yields that Bose-Einstein condensation is reached for

(nA3p)c = ¢€(3/2) (1.10)

where ((x) is the Riemann function. The critical parameter for BEC is then found to be the
phase-space density n\3;, the critical temperature at a given dendity is kgTep, ~ 3.3n%/3h2 /m.

@g, are the polylogarithm functions defined by gs(2) = 35>, 2" /k".
®This conclusion holds only if the sum in 1.9 excluding the ground state converges, which is verified in the
homogeneous case.
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Contrarily to the fermions case, the transition to a BEC does constitute a phase transition,

peculiar in nature since its cause is purely statistical.

After homogeneous systems, we now consider the experimentally relevant cases of Vg
fermions in two equally populated spin states and N}, bosons in one spin state in a 3D har-

monic potential with frequencies w,, wy, w,

m
Vei(r) = 3 5w, (1.11)

(2
where the index & = b,f denotes either bosons or fermions. 7% and T} can be

straightforwardly obtained using (1.7, 1.9) in the presence of the external potential
[Pitaevskii and Stringari, 2003]:

kpTy = hio(3Ng)'/3 (1.12)
kgTep = hw(Ny/C(3))? (1.13)
where @ = (wyw,w,)'/? is the mean trapping frequency. These temperatures are the

references for quantum degeneracy of harmonically trapped gases.

The ideal gas case considered until here is in many occasions far from the experimental
reality where interactions can have a relevant effect. Before turning to the addition of
quantum interaction effects on top of quantum statistics, let us introduce the local-density
approximation (LDA).

1.2 The Local Density Approximation

This approximation simplifies the treatment of harmonically trapped systems. We will
see that it allows to express easily local variables in trapping potentials, even when interac-
tions are present as long as the thermodynamics of the homogeneous case is known. It is
valid for slowly varying density and trapping potential.

The LDA assumption is that at each position r there exists a mesoscopic volume over
which the local system is at equilibrium and homogeneous. All small volumes being in
contact, they can exchange heat and are thus at thermal equilibrium with temperature 7.
The mesoscopic volumes can also exchange particles imposing a constant chemical potential
o over the whole system. The LDA then treats a small local volume as a homogeneous
system with a local chemical potential 1, () shifted by the external potential (o denotes the

particle type considered) :

ta(r) = po— Vext(r) (1.14)
na(r) = na(pa(r),T) = na(tio — Vext(r),T) (1.15)
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It is now clear that the use of the grand-canonical ensemble is appropriate, and from the
knowledge of the equation of state in the form n,, (., T'), the global chemical potential 1 and
temperature, one can reconstruct the local density and all other thermodynamics variables.
For example the density distribution of a Boltzmann gas in a harmonic potential containing
N particles can be easily obtained by inserting (1.14) into (1.2) and setting N = [ d®rn(r):

32
_ me Ve (r) /ksT
n(r)=N <27rkBT> e (1.16)

In general, when there are several particle types, Eq. (1.14) is still valid but p, depends on
the density of the different species present:

pa(r) = 3 e (na(r). T) = proo — Ve(r) (1.17)
B

where ji, is the contribution to the chemical potential of species « due to the presence of
species [3.

In-situ pressure measurement

An additional — and experimentally handy — consequence of the LDA is that the doubly-

integrated density 7 in a harmonic trap is proportional to the pressure. Indeed recalling the

Gibbs-Duhem formula n = (g—i) . and using (1.14) it can be shown that :

MWWy MWWy
P(ue 1) = "5 (e) = "5 [ [,z dndy (1.18)
with p, = po — %wfz? Since 71(z) is easily accessible experimentally, (1.18) is used to

measure the equation of state of a harmonically trapped system in the form P(u,T), ly-
ing at the basis of many thermodynamics studies for Bose and Fermi gases in three di-
mensions [Nascimbeéne et al., 2010, Navon et al., 2010, Navon et al., 2011]. In two dimensions
similar relations can be obtained and have been used for thermodynamics studies of 2D
Bose gases [Hung et al., 2011, Yefsah et al., 2011]. Another way of extraction of the equa-
tion of state using the LDA has been employed, through the measure of the pressure and
of the compressibility dn/du by means of a precise knowledge of the trapping potential
[Ku et al., 2012, Desbuquois et al., 2014]. This method spares the need of the knowledge of
the global chemical potential . Finally, the local density approximation can be used in ad-
dition with the measurement of local density fluctuations to extract thermodynamic observ-
ables and the equation of state, as has been successfully implemented for one-dimensional
Bose gases [Esteve et al., 2006].
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1.3 S-wave Interactions and Feshbach Resonances

With this basis, we now turn to the description of interactions and their consequences.
At ultracold temperatures in alkali gases, two-body collisions occur generally in the s-wave
channel and have a short-range character. This section then outlines the minimum back-
ground from theory of two-body elastic collisions(® usefull for the description of properties
of Bose and Fermi gases under our experimental conditions.

1.3.1 S-wave interactions

The general hamiltonian for a collision problem is written in the center-of-mass frame

H = Hy + Vine(7) (1.19)
H, is the free hamiltonian Hy = 5—; with reduced mass u. The interaction potential Vint(7)
in the case of lithium represents the Van der Waals interaction with the characteristic 1/r°
attractive tail and short range 1/r1? repulsion. The solutions to the Schrodinger equation
with the above hamiltonian are decomposed as a sum of spherical harmonics factorized in
an angular and a radial part, each term [ corresponding to a partial wave with angular mo-
mentum [%. The radial wave-function then satisfies a Schrodinger equation with an effective
potential:
211+ 1)

pr?

The second term represents an effective repulsive barrier for all partial waves with [ > 0.

Vet (1) = Vine (1) + (1.20)

In the case of lithium, the height of this barrier is of order kg x 4mK. Below this typical
temperature, p-waves (I = 1) and higher-orders are suppressed leaving only s-wave
collisions [ = 0, since the typical temperatures of our samples are much lower (between a
few hundred ¢ K and 100 nK), our gases are in the s-wave regime of two-body collisions. We
will give the solutions to the collision problem in this ultracold — low energy — regime.

The general method to find eigenstates of (1.19) is to express the two-body wave-function
as a sum of a plane wave with wave-vector k (unperturbed free particles) and a spherical

wave (scattered particles):

1/)(,,,) x eikz + f(ea k) eikr (121)

r
f(0,k) is the amplitude of the wave-function that is in the scattered state, it is called the
scattering amplitude. In the s-wave regime, by symmetry f is independent of 6, and at low-

©Inelastic collisions might occur, when energy stored in the internal degrees of freedom is relaxed into kinetic
energy for the atoms accompanied by a change of internal structure. However since they induce heating and
losses we prepare our gases in internal states (spin states) which are protected by conservation laws against

inelastic collisions
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energy tends to [Landau and Lifchitz, 1966a]:

—a

B — . 1.22
ut )k—>0 1+ika—arek? ka0 @ (122)

a is called the scattering length and 7. the effective range. Thus in the limit
kre < 1, (1.23)

the only parameter describing the interactions is the scattering length a. This means that the
details of the potential do not affect the low-energy two-body physics. As a consequence, the
low-temperature scattering properties of many different species are actually described by a
unique hamiltonian, that can be derived using any model potential, as long as it reproduces
f = —a. In particular one can chose a “universal” zero-range potential, approximating the

interaction by a contact interaction:

B Arh*a

vir) ="

5(r) (1.24)

where §(r) is the usual Dirac function(®,
From the knowledge of f, one can obtain the scattering cross section o

do |f(k,0) distinguishable particles (1.25)
d | |f(k,0) +ef(k,m—0)? identical particles '
Where ¢ = 1(—1) for identical bosons (fermions). Again, f is independent of # in the

s-wave channel, so for distinguishable particles, the scattering cross section ¢ is deduced
from (1.22), 0 = 47a?. When considering identical particles, quantum statistics play a role,
constructive interferences for bosons lead to an amplified cross-section o}, = 8ma?, while
destructive interferences cancel-out s-wave scattering for fermions yielding oy = 0. These
interference effects are inverted when considering p-waves, such that identical fermions
can interact in this channel but as seen earlier such scattering is strongly inhibited (except
in the case of a resonant enhancement). Thus in the low energy regime, two distinguishable
spin-states are in general required for collisions to occur in a Fermi gas, this is in particular
true for the systems considered in this work.

1.3.2 Feshbach resonances

Magnetic Feshbach Resonances

From the above discussion, one might get the impression that the scattering properties be-
tween two atoms are immutable with in particular a fixed scattering length. However to
study the effects of interactions it is very useful to be able to control them - varying a. This

DSee [Cohen-Tannoudji, Claude, 1999] for details of the choices of interaction potential, the §(r) potential has to
be regularized for the calculation of some physical quantities.
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control knob is a specificity of cold atom experiments, and arises from the internal degrees-
of-freedom of the atoms. So far we have discussed the orbital wave-function and left out the
spin wave-function, assuming it was fixed. Taking the internal structure into account allows
for different spin states and hence different interacting potentials. This new degree of free-
dom gives rise to the so-called Feshbach resonances (FR), which are the most standard way
to tune the two-body interactions in ultracold gases. A precise description of them can be
found in [Chin et al., 2010], we will again here summarize only the features that are necessary
in the frame of our experiments.

V(r) [TLy—]41) a
c — ES
1E5 / 0
0 Ity T -
/

Figure 1.1: Schematic representation of a Feshbach resonance, the left panel shows the interaction potential
in the open (closed) channel in blue (red). The open channel in this simplified example is a triplet state and
the closed channel is the singlet state, since these two have different total spin their relative energy £ can be
modified using an external magnetic field B. Thus the energy of the bound state £ depends on B. On the
right panel, the resulting dependence of scattering length a in B is represented.

Feshbach resonances take place in collision events in which two atoms in their respective

initial spin state can be coupled to different output states by the collision (see fig. 1.1).
The initial spin state configuration is called the entrance/open channel and the different
states to which they can be coupled constitute the closed channel. The coupling between
the two channels is usually of the hyperfine kind, but can also be induced, for example by
radio-frequency or optical radiation. The reference energy (the threshold) is the zero of the
entrance channel potential at infinite separation r. The zero energy E in the closed channel
depends on its spin configuration and can be varied using an external parameter, namely
the magnetic field B in the case hyperfine coupling. From now on we will consider only
this case of magnetic Feshbach resonances.
Furthermore, the closed channel potential can feature a bound state with energy Ef which
for some value of B crosses the zero energy of entrance channel (see fig. 1.1). When this
occurs, scattering in the open channel is enhanced, leading to a divergence of a. The width
A in magnetic field of this resonance depends on the coupling strength between the two
channels. This coupling leads to a dressing of the bound state in the closed channel by the
open channel. The scattering length a as function of B takes the form:

a(B) = apg <1 - B—ABO> (1.26)
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The unitary regime

Naively one might think that at B = B, o diverges with a, but recalling (1.22) we get

2 .. .
1f];‘§a2 — i—g distinguishable.
. kla|>1
o= S S ] (1.27)
e B = identical bosons.
Ela|>1

In the limit k|a| < 1, we recover the expressions given earlier, and « is the only parameter
characterizing interactions. In the other limit k|a| > 1, o saturates to a value obtained by
replacing a by 1/k, which is the largest cross-section compatible with the conservation of
probability density. This situation in which a diverges (1/a = 0) and drops out of the problem
is called the unitary regime, or unitarity.

The shallow bound state

In the vicinity of a Feshbach resonance, the dressed bound state exists only on the side where
a > 0. Close to the resonance position it is strongly dressed by the open channel and its
binding energy takes the universal form:
2
B — —% (1.28)
Since this energy is much weaker than the binding energy of dimers formed in the bare
interatomic potential, we will refer to the dimer as the shallow dimer and to the latter
as deeply-bound dimers. The spatial extent of the wave-function of the shallow dimer is
proportional to a. The expression (1.28) should be used with care, it is correct (as the main
contribution to E},) only provided |re| < |a|. The validity of this assumption varies between
the different resonances, calling for a classification.

Feshbach resonances are thus usually separated into two kinds, ‘broad’ or ‘narrow’
resonances. We give here a simple image of how these kinds are defined:
For broad resonances one can assume |re| < |a| over a large fraction of the width A around
By, in narrow ones this assumption is valid only in a region of width (A around B, with
¢ < 1. For broad resonances the bound state is strongly dressed by the open channel and
(1.28) is a good approximation over the whole width A while it is true only in a range of
width (A for narrow ones, we shall call this range the universal region.
More specifically, the classification of resonances into ‘broad” and ‘narrow’ kinds is dictated
by a parameter called s, its expression cannot be given here without entering into
unnecessary molecular physics considerations, see [Chin et al., 2010] for more details. Syes is
called the resonance strength, it takes into account the strength of the coupling between the
two channels as well as characteristics of the molecular bound state in the closed channel.
Resonances with sres > 1 (sres < 1) are the ones conventionally called broad (narrow)

©Rigorously these two kinds should be called ‘entrance channel dominated’ and “closed channel dominated’
because because there exists exceptions where resonances with a large width A are actually closed channel dom-
inated.
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resonances.

In studies of few-body properties [Gross et al., 2011, Dyke et al., 2013,
Julienne and Hutson, 2014], finite-range corrections are actually easily measured experi-
mentally. As we shall see in details in section 4, few-body effects are a cause of atom losses
in ultracold gases. Indeed it is the formation of small atomic clusters containing 2,3,--- N
atoms which eventually leads to the construction of the solid state which constitutes the
true ground state of atomic ensembles at ultracold temperatures. Provided few-body losses
are weak, it was shown by [Giorgini et al., 1999] for bosons that the many-body properties
remain dictated to a good approximation by the universal expressions depending only on
a such that finite-range effects can be neglected. When a becomes very large, resonant
few-body effects can appear and modify the properties of the gas. This is expected for the
strongly-interacting Bose gas as we will discuss below. In the case of fermions, the Feshbach
resonances of °Li in which we are interested in this work are very broad with a strong
universal character and the effective range can be neglected. Furthermore, for spin-1/2
fermions the Pauli exclusion principle hampers few-body losses.

The following paragraph lists the different Feshbach resonances at our disposal in lithium
isotopes to realize interacting quantum systems.

1.3.3 Feshbach resonances in lithium

A number of s-wave Feshbach resonances exist in the different spin states of °Li and “Li. We
denote |1¢) (1)) the absolute ground state of °Li ("Li), |2) (|2p)) the second-to-lowest and so
forth. We will focus on the ground and first excited states of each species as they are the ones
used in the experiment. The most accurate results obtained on the characterization of FRs
in °Li were published in [Ziirn et al., 2013] and in Li in [Gross et al., 2011, Navon et al., 2011,
Dyke et al., 2013], we summarized them in table 1.1 and represented their a(B) dependence
in fig. 1.2.

One of the most famous example of a broad Feshbach resonance is the one in °Li be-
tween |1f) and |2) located at 832G, with a resonance strength of s;es = 59, that has al-
lowed numerous studies of strongly interacting Fermi gases and the exploration of the
BEC-BCS crossover. In “Li two resonances widely used are the ones listed in table 1.1,
they are actually intermediate between narrow and broad (sres = 0.8). But with { ~ 0.3,
they still exhibit a universal behavior over a large range of magnetic field (few tens of G)
[Chin et al., 2010, Julienne and Hutson, 2014] and are suitable for few- and many-body physics
studies.

Experimentally, for the study of interactions in many-body systems we aim at using
the universal region of a Feshbach resonance. The limit then is the magnetic-field stability
achieved on the experiment which has to be narrower than the width of the universal region.
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State | Sres ¢ Bo(G) | AG) abg(ao)
I1,) | 0.81 | 0.31 | 737.8(2) | -171 -21
12p) | ~1 | ~0.3 | 893.7(4) | -237.8 | -18.24
12p) | 1| <1 |8455(5) | 4.5 -18.24
13p) | <1 ? ~1040 | ~170 ~-15
States | Sres By(G) A(G) abg(ao)
[16)-2¢) | 59 | 832.18(8) | -262.3(3) | -1582(1)
[16)-[3¢) | 29 | 689.68(8) | -166.6(3) | -1770(5)
126)-|3¢) | 46 | 809.76(5) | -200.2(5) | -1642(5)

Table 1.1: Some Feshbach resonances position and width in the ground states of ’Li (top) and bLi (bottom). ag
is the Bohr radius. ¢ >> 1 for all ®Li resonances listed here. The data on the ’Li |3,) state Feshbach resonance

comes from a private communication with Servaas Kokkelmans.
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Figure 1.2: Scattering length dependence of the different states of ’ Li (left) and ®Li (right) corresponding to the

data given in tab. 1.1. The resonance in the |3;,) state is not represented here since it has not been measured

experimentally and is not known with great precision. Note the difference of a factor 100 in the vertical scales

between left and right panels reflecting the much higher strength of ®Li resonances with respect to ’Li ones.
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1.3.4 °Li-’Li interactions and Feshbach resonances

The main result of this work is the observation of a mixture of Bose and Fermi super-
fluids with “Li and °Li. For the discussion of interactions between these superfluids,
we need to know the scattering properties of °Li-’Li collisions. In the low-temperature
regime, °Li and “Li atoms collide only in s-waves®). The scattering cross-section is given
by 067 = 4ma3./(1 + a2.k?) as is usual for distinguishable atoms, with ag; the scatter-
ing length, which depends on the internal states involved. At high magnetic field, the
background scattering length (aps) for all combinations of the internal states of interest
(1), 126) 5 13b), |16) s |2¢) , and |3¢)) is apg = 41 ap. This value is typically smaller than the
intra-isotope scattering lengths, to magnify the effect of presence of each superfluid on the
other, it would then be preferable to increase this scattering length. It can be done using

inter-isotope Feshbach resonances.

’ ‘ |1p) ‘ |2p) ‘ |3p) ‘
226G, 246 G[150mG 287G, 317 G[300 mG

) ’ [150mG], ’ BOOmGL, 1 o0 6 674G220mG),
540G, 540G 604G
256 G, 276 G 314G, 344G

12,) ’ ! ’ ’ 394G, 699 G[120mG],
578G, 588G 640G

13¢) 305G, 609G, 374G[140mG], 661G, 727 G[60 mG]

Table 1.2: Position and width of the Feshbach resonances in éLi-’Li collisions, for the different internal states.
The estimated width is indicated between square brackets, extracted from theoretical calculations, when it is
smaller than 50 mG it is not indicated.

®Li-"Li resonances exist, they have been predicted theoretically in the group of S. Kokkle-
mans, we use their results here. All of them are narrower than 1 G, and the majority is nar-
rower than the magnetic field fluctuations on our setup (~ 50 — 100 mG). The positions of the
resonances in collisions between |1¢) and |1;,) have been calculated in [von Kempen et al., 2004]
and measured in [Zhang et al., 2005]. The resonances in other combinations of states are
known using calculations of S.K. privately communicated to our group. We have summa-

rized their positions and width when known in table 1.2.

1.4 Interacting Bose-Einstein Condensates

Using the background in collision theory presented above, we can explore the proper-
ties of Bose and Fermi quantum gases in the presence of s-wave short-range interactions.

These interactions are characterized only by the scattering length @ which can be tuned on

OThe Van der Waals radius is very close to that of 7Li or °Li collisions (Rvaw ~ 31lag [von Kempen et al., 2004])
so the p-wave barrier is essentially of the same height as in ®1i-°Li and "Li-"Li collisions.
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a Feshbach resonance to high values and at unitarity to 1/a = 0. This section is dedicated
to the description of interacting Bose gases, first in the weakly-interacting regime where the
thermodynamical state of a Bose gas is well established. As the weakly-interacting regime is
realized on the tail of a Feshbach resonance we will next briefly discuss the regime of strong

interaction reached when getting closer to resonance.

1.4.1 Weakly interacting Bose-Einstein condensates

The weakly-interacting Bose gas is described in second-quantization by the following hamil-
tonian obtained for a contact interaction (1.24):

7 [ (75w 4 Satatn

with g the coupling constant
g = 4wh*a/m. (1.30)

obtained in the Born approximation, a is the scattering length defined above and m the mass
of the bosons. This Hamiltonian is valid when kre < 1, it can be solved using a mean-field
prescription: ¢ = 1 + dtp with (69)) = 0 and ¢y € C. This implies that the U(1) symmetry of
the hamiltonian®® is broken in agreement with the general theory of phase transitions. The
order parameter of this phase is then ¢y = \/n. In the mean-field approximation the energy

can be easily obtained:

1
Ey = iNng (1.31)
with n the density of bosons. Using the thermodynamical relations P = — (%)T N B =
(2%) . one deduces
P = gn?/2 (1.32)
W= gn (1.33)

Additionally the condition for mechanical stability 3—1’3 > 0 imposes a > 0, so that a uniform
Bose-Einstein condensates can exist only for positive a. The writing of the equation of state
in the form (1.33) is very practical for in-trap calculations, because using LDA (1.14) one can
directly obtain the density distribution of a BEC containing NV}, bosons in a harmonic trap at

zero temperature. It reads:

n(r) = + (uo -y m;u? rf) (1.34)

2/5
- _
po =% <15Nba ";;") (1.35)

®)(1.29) is invariant under the transformation () — €' (r)
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where the central chemical potential y is obtained by integration over the volume. The
spatial extent of a BEC in direction r; called the Thomas-Fermi radius R; can be directly
extracted from (1.34) yielding

T —\ 1/5
R = (15Nba m“’) . (1.36)

300
2500
2000
M@y, 150C
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Figure 1.3: Examples of two BEC containing 22 x 103 atoms at two different scattering lengths. Doubly
integrated density profiles in units of the harmonic oscillator length in the z direction ay,, = \/W here ~
10 um withw, = 27 x 15.5 H z. Data taken in the |2;,) state of Li close to the 845.5 G Feshbach resonance (red
squares: 832.0(5) G, blue circles: 845.0(5) G. Using fits with eq. (1.34) (solid lines) of the red squares (blue

circles) profile we find a scattering length of a = 60(10) ag, (¢ = 500(50) ag), in agreement with theoretical

expectations for the respective magnetic fields. In the first case the maximal density is max ~ 2 x 1013 cm ™3

(corresponding to na® ~ 4 x 1077), in the latter nmax =~ 5 x 1012 cm ™2 (na® ~ 107%).

This is one example of a readily measurable prediction from the mean-field approxima-
tion, illustrated in the two experimental profiles at two different scattering lengths displayed
in figure 1.3. It is valid for a 7" = 0 BEC, and to describe finite-temperature effects, the
Hartree-Fock approximation [Pitaevskii and Stringari, 2003] treats (1.29) accounting for a non-
zero population of the excited states p # 0.

Even at zero-temperature, quantum fluctuations can induce non-zero population in the ex-
cited states. A full expansion of (1.29) to second order in §¥ using the Bogolyubov method
yields the well known dispersion relation for the elementary excitations of a BEC:

2\’
e(q) = <2m> + c2¢? (1.37)

where the speed of sound is found to be ¢ = \/W Furthermore, the inclusion of fluc-
tuations of the BEC field around its MF value (and using a renormalized coupling con-
stant), yields the Lee-Huang Yang correction for the ground state energy (see for exam-
ple [Landau and Lifchitz, 1966a, Pitaevskii and Stringari, 2003]), first calculated in the context
of hard-sphere bosons [Lee et al., 1957]:

1 128
Ey==-N 1+ —— 3 1.
0= 3 ng(+15ﬁ na) (1.38)
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In the variables (u, n) this EoS is

pw=gn(l+ 33\3% na?d). (1.39)
The small dimensionless parameter that quantifies the corrections is found to be v/na?, thus
the MF approximation in 3D is asymptotically valid in the weakly-interacting regime. Until
very recently no departure from mean-field had been observed in dilute gases. The use of
Feshbach resonances has allowed for the measurement of the LHY correction, first in the
excitation spectrum of a BEC using Bragg spectroscopy [Papp et al., 2008] and then using the
direct measure of the EoS, backed-up by a Quantum Monte-Carlo theory [Navon et al., 2011].

1.4.2 Approaching the unitary Bose gas

In experimental studies of thermodynamics of the homogeneous Bose gas, the measurement
of the LHY correction constituted the first step away from the weakly-interacting regime.
However, in [Navon et al., 2011] the highest reported value of the diluteness parameter na®
was about (na®)max < 0.03, so beyond-mean field effects remained a small correction to

the weakly interacting state. Using a Feshbach resonance one can tune na® to much larger
values™ and especially to na® > 1.

When a is increased, correlations induced by interactions grow. By going to the reso-
nance position one can reach the regime na® > 1 and unitarity for 1/a = 0. Values of na?
larger than 1 do not mean that the inter-particle distance is smaller than the interaction
range because a does not represent the range of the interactions, on a broad Feshbach
resonance the effective range (re) remains small. Rather, the coherent length increases, so
that when na® > 1, coherent few-body effects take place, amplified by bosonic statistics.

The description of the unitary Bose gas (1/a = 0) is a theoretical challenge under
intense investigation [Liand Ho, 2012, Yin and Radzihovsky, 2013, Piatecki and Krauth, 2014,
Smith et al., 2014, Jiang et al., 2014, Rossi et al., 2014]. At unitarity since 1/a = 0, two-body
effects should drop-out of the description of the gas, and higher-order effects should play
a role. The most recent theoretical works indeed suggest a phase diagram governed by
three-body effects inducing a liquid phase [Piatecki and Krauth, 2014].

Experimental efforts for the obtention of a unitary Bose gas have been hindered by the in-
trinsic instability of strongly interacting Bose gases. This instability is caused by three-body
losses depleting the gases, these losses have an a* dependence [Fedichev et al., 1996] and so
increase sharply when approaching resonance. Chapter 4 of this work describes experimen-
tal studies of stability of resonantly-interacting Bose gases, for a higher level of detail see also
[Rem, 2013].

(h

Jin [Navon et al., 2011] the highest scattering length used was about 5000 ao, using ”Li resonances it can be
stabilized to values up to |a| Z 40000ao.
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1.5 Fermi Superfluids in the BEC-BCS crossover

We continue our description of interacting dilute quantum gases by reviewing interact-
ing fermions. We have discussed earlier the case of an ideal Fermi gas, which is realized in
ultracold gases with a single spin component. The addition of a second component allows
for s-wave collisions, and many-body effects can play a major role. The use of Feshbach res-
onances is crucial for that matter. We will thus review in this section the physics of atomic
Fermi gases containing two spin states (|1, |{))? in equal population, with a Feshbach res-
onance between them.

1.5.1 Stability of Fermi gases on Feshbach resonances

Before entering into details of Fermi gases on a Feshbach resonance, let us consider their
stability. As we discussed in 1.4, this issue is crucial for zero-temperature Bose gases. First,
homogeneous BECs are mechanically unstable when a < 0 eliminating half of the accessible
range. Second, 3-body recombination dramatically shortens their lifetime when approaching
the strongly-interacting regime at the center of the resonance. On the opposite, Fermi gases
exhibit a precious stability over most of the range of interactions accessible. The fundamental
difference with bosons arises from fermionic statistics with the Pauli exclusion principle. On
the macroscopic level it creates the so-called Fermi pressure, famous for preventing neutron
stars from gravitational collapse, which protects ultracold Fermi gases from a mechanical col-
lapse. On the microscopic level, Fermi statistics reduces relaxation processes to bound states
which would imply association of two atoms with the same spin. Thus in a gas contain-
ing two spin states, dimers can be formed but three-body processes are strongly hampered.
The main loss mechanism for a > 0 has been shown to be dimer-dimer collisions with a
relaxation rate v decreasing with increasing interactions: v oc a=2-% [Petrov et al., 2004]. As a
result the lifetime of Fermi gases on Feshbach resonances is long compared to equilibration
as was demonstrated experimentally in [Bourdel et al., 2003, Regal et al., 2004a]. This confirms
that Fermi gases can span the different regimes of interactions accessible on a Feshbach res-
onance, we will qualitatively describe these regimes in the following.

1.5.2 The BEC-BCS crossover

The zero-temperature Fermi gas on a Feshbach resonance realizes the so-called BEC-BCS
crossover [Zwerger, 2012]. The experimental realization of such a crossover, proposed early
by Leggett, and Nozieres and Schmitt-Rink [Leggett, 1980, Nozieres and Schmitt-Rink, 1985],
has been extremely valuable for the advance of the fermionic many-body problem. It first
makes the connection between Bardeen-Cooper-Schrieffer superfluidity of conventional
superconductors on the one end, and Bose-Einstein condensation at the other end. Second,
in the midst of the resonance, the regime where the scattering length becomes larger than

@In ultracold gases of neutral atoms, the different spin states are internal states, for example different Zeeman
sub-levels.
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the inter-particle distance (na®

> 1) can be studied, contrarily to the actual situation on
Bose gases. At its center lies the unitary Fermi gas. Ultracold Fermi gases are thus used as
a quantitative test bench for many-body theories benefitting from their high controllability

and the - apparent - simplicity of their constituents.

At zero temperature when the scattering length describes fully the two-body interac-
tions, the only additional parameter describing the gas is the Fermi energy Er = h%k2/2m.
kp is the Fermi wave vector proportional to the inverse of the inter-particle distance
(kg = (37%n)'/3) in a homogeneous system. All measurable quantities are function of one
universal dimensionless parameter 1/kga which is formally equivalent to the parameter na?

introduced for bosons®.

For small and positive scattering length (1/kpa > 1), fermions pair-up into the bosonic

universal shallow dimer with binding energy h%/ma?

. The gas is thus in the strongly
attractive limit™), but due to the Pauli exclusion principle the interaction between dimers is
repulsive, with effective dimer-dimer scattering length aq = 0.6a [Petrov et al., 2004]. These
dimers then form a Bose-Einstein condensate at zero temperature as was observed exper-
imentally by [Greiner et al., 2003, Jochim et al., 2003b, Zwierlein et al., 2003, Regal et al., 2004,
Bourdel et al., 2004]. Tt was shown in [Leyronas and Combescot, 2007] that the equation of state
of the dimer gas is that of a BEC, including the Lee-Huang-Yang correction. This has been
demonstrated experimentally on the lithium experiment [Navon et al., 2010], in a study of
the thermodynamics of the Fermi gas through the BEC-BCS crossover. This BEC limit is
asymptotically valid when the dimers are effectively tightly bound, that is for 1/kpa > 1.
When the size of the dimers become of the order of the inter-particle distance 1/kpa ~ 1, the
repulsive Bose gas picture does not hold anymore.

On the opposite side of resonance, a is small and negative, that is the interaction is
weakly attractive. In this limit, it was shown first by Cooper [Cooper, 1956] that fermions
with opposite momentum and opposite spin can form a bound state, called a Cooper pair.
The pairing mechanism here is not a two-body mechanism as is the case for the bound state
for a > 0, but is due to the presence of the many-body Fermi sea which stabilizes the bound
state by reducing fluctuations. The binding energy of these pairs is equal to A where A
is called the gap, because it creates a gap in the quasi-particles excitations energy, located
at the Fermi surface. Using a variational wave-function for the ground state, Bardeen,
Cooper and Schrieffer have shown that for arbitrarily weak attractive interaction fermions

DAt T # 0 two parameters are required : 7'/Tr and 1/kra

©We call this a strongly-attractive limit in the sense that the fermions form a bound state, if the formation of
these molecules is avoided, one realizes the so-called “upper-branch’ with a repulsive interaction (a > 0) but this
branch is unstable.

OCooper derived the existence of bound states in the frame of electrons in metals, to explain conventional
superconductivity. In this system, demonstrating the existence of an attractive interaction mediated by the ion
lattice was an important breakthrough by Bardeen and Pines and Frohlich [Frohlich, 1952, Bardeen and Pines, 1955]
while it is “trivial’ in the case of a gas of neutral atoms.
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form a superfluid (superconductor in the case of electrons) when Cooper pairing is present
[Bardeen et al., 1957a, Bardeen et al., 19570].

The Fermi gas on a Feshbach resonance thus indeed realizes the two limiting cases
of the BEC-BCS crossover with on both ends a well understood weakly-interacting limit.
In the close vicinity of the Feshbach resonance the Fermi gas is in the very interesting
strongly-correlated regime, with at its center the unitary Fermi gas (UFG). Apart from
the interest of creating a strongly-correlated system, this regime shares characteristics
with high-T¢. superconductors [Randeria et al., 1989, Sd de Melo et al., 1993]. They are indeed
thought to realize a state where Cooper pairs have a size of the order of the inter-particle
distance.

1.5.3 The equation of state

The unitary Fermi gas is the prime example of the realization of a strongly-correlated state
of matter with ultracold gases. It exhibits unique properties, among which universality:
since 1/kgra = 0, all quantities are proportional to that of a non-interacting Fermi gas™. For
instance the chemical potential of the zero-temperature unitary Fermi gas is :

p=EEF (1.40)

where ¢ is called the Bertsch parameter. Theoretically, the description of the UFG is a chal-
lenge since no small parameter is available to perform a perturbative theory. Thus the mea-
surement of { constitutes a benchmark for many-body theories, permitting a direct compar-
ison between theory and experiment. It has been measured experimentally with high preci-
sion in [Nascimbene et al., 2010, Ku et al., 2012, Van Houcke et al., 2012] converging to a value:

¢ =0.37(1). (1.41)

The knowledge of ¢ yields the equation of state of the zero-temperature unitary Fermi gas.
Over the crossover, in the grand canonical ensemble, the pressure (measured in experiments)
can be expressed as follows:

P(j1.a) = 2Py(i)h(5) (1.42)
2
=t 5 0() (1.43)
5= (1.44)
aN/2mji
1 /2m\*?
Po(p) = = <hg> o/ (1.45)

™ Contrarily to the unitary Bose gas where three body effects are thought to play a role, they empirically do
not enter the description of a unitary Fermi gas since few-body effects are diminished by the Pauli exclusion
principle.
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where Py is the pressure of a non-interacting single-component Fermi gas and the factor 2
accounts for the presence of two spin states, and ©(z) is the Heaviside function. The shifted
chemical potential i is equal to n for a < 0 (BCS) side, for a > 0 (BEC side) it is the chemical
potential corrected by the binding energy of the dimer, ensuring & > 0. § measures the
strength of the interactions, it generalizes 1/kpa in the grand-canonical ensemble, and h(9)
is the dimensionless pressure.

We can derive simple limits for h(9): First the BCS equation of state: when a — 0~ then the
pressure is that of a non-interacting Fermi gas yielding

lim h(5) =1 (BCS). (1.46)

d——00

At unitarity, the expression is the same but rescaled by a numerical factor, using (1.40) we
have n o (u/€)%/? and thus by integration with respect to y using using the Giggs-Duhem
relation we obtain P = 2P, /£%/? so that

h(0) = £~3/2 (Unitarity). (1.47)

On the BEC side in first aproximation we can use the mean field EoS of bosons seen in the
previous section: P = p2/2gqq where p1q4 = 2/ is the chemical potential of the dimers and
gdd = 2mh%aq/m is the dimer-dimer coupling constant (aq = 0.6a). We then get

1
lim £(5) = %5 (BEC), (1.48)

the LHY correction can be easily included in the same fashion, see [Navon, 2011].

Using the direct measurement of the pressure as a function of the chemical potential, the
equation of state of the Fermi gas in the crossover has been measured in [Navon et al., 2010].
The data obtained was fitted using an expansion in terms of Padé approximants, which allow
from the data to find the best approximation of the EoS with a rational function of a given
order, yielding an analytical description for the experimentally measured EoS. The Padé ap-
proximants were constrained using known theoretical limits such as the LHY expression.
A comprehensive description of the equation of state is given in [Navon, 2011]. The explicit
expression of the dimensionless pressure h is™:

51+525+B351??_(553)-&-34524-5553 5 < 0(BCS)
h(s) = (1.49)

2
B 3 >0 (BEC)

This result can be compared to the different existing theories, and is in remarkable agreement
with the early Nozieres Schmitt-Rink calculation and in very good agreement with a fixed-
node Monte-Carlo method [Astrakharchik et al., 2004], see a full comparison with theories in
[Zwerger, 2012].

Moy = —1.137, as = 0.533, as = —0.606, ay = 0.141, 81 = 3.78, B2 = 8.22, B3 = 8.22, B4 = —4.21, By =
3.65, B = 0.186.
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Figure 1.4: Left: experimental equation of state of the Fermi gas in the BEC-BCS crossover (1.49) (blue line).
The dashed black line is the expression obtained for h by performing a Legendre transform from the LHY
expression of the energy (1.38) to calculate the pressure [Nascimbéne, 2010, Navon, 2011], yielding a fair
agreement with the experimental EoS. The right panel is a doubly integrated density profile (red circles) of one
spin state for a unitary Fermi gas, formed by a spin-balanced mixture of | 1¢) —|2¢) at 832 G containing 1.7 x 10°
atoms in each spin state, fitted with the EoS (full line) of a unitary Fermi gas (red circle in left panel). In units
of the harmonic oscillator length ay,, = \/W ~ 10 pm.

In the whole BEC-BCS crossover, the spin-balanced Fermi gas is superfluid at 7' = 0.
There is no additional phase-transition between the BEC and BCS regimes (which is why it
is called a crossover). On the BEC side, the critical temperature for superfluidity is weakly
dependent on a'®. For 1/kga < 1, T, can be approximated in the BCS theory which predicts
an exponential dependence on 1/kpa: Tc/TF x exp(—mn/2kg|al).

To conclude on the BEC-BCS crossover, the phase diagram of Fermi gases is not re-
stricted to zero temperature. The finite-temperature unitary Fermi gas has been studied in
depth [Nascimbene et al., 2010, Ku et al., 2012] and the EoS is now very precisely known in
excellent agreement with a diagrammatic Monte-Carlo theory [Van Houcke et al., 2012]. In
addition, these studies demonstrated the existence of a phase transition to the superfluid
state with a critical temperature 7, = 0.167(13) Ty [Nascimbene et al., 2010, Ku et al., 2012,
Navon et al., 2013]. The nature of the normal (non-superfluid) phase is still a debated issue,
thermodynamics studies indicate a Fermi-liquid behaviour [Nascimbene et al., 2011], while
some theories propose a “pseudogap’ phase induced by the pre-formation of pairs above
the critical temperature. Additionally, another parameter easily tuneable in experiments
is the ratio in spin states populations. In the case of imbalanced gases, an instability oc-
curs for large imbalances destroying superfluidity. At zero-temperature this limit in terms
of chemical potential imbalance is called the Clogston-Chandrasekhar limit. In a homo-
geneous unitary Fermi gas the critical imbalance is z. = 0.44, with # = n}/ns and for a
harmonically trapped gas, this limit is is given by P. = 0.77, where the polarization P is de-

©For atomic BECs, the corrections to 7T¢ induced by interactions are very weak, see [Baym et al., 2001] for ex-
ample, and have been recently measured for an atomic BEC in a harmonic trap [Smith et al., 2011].
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fined by P = (N+—N|)/(N++N,) [Lobo et al., 2006, Zwierlein et al., 2006, Partridge et al., 2006,
Nascimbene et al., 2009].

1.6 Superfluidity of Bose and Fermi gases

After giving an account of the thermodynamical properties of interacting Bose and Fermi
gases, we turn to the description of superfluidity and its manifestations in theses systems.
Both interacting Bose-Einstein condensate and Fermi gases in the BEC-BCS crossover are
superfluid at zero temperature, and a description of the superfluid state will be useful later
in the study of a mixture of such superfluids and their relative motion.

Superfluidity in general refers to an ensemble of phenomena related to flow properties.
Its most famous manifestation is ‘flow without friction’. The first experimental signatures
of frictionless flow were seen as the drop of resistance in a piece of superconducting metal
[Kamerlingh Onnes, 1913], and in liquid helium, Kapitza, Allen and Misener observed a
drop of viscosity below 2.18 K [Kapitza, 1938, Allen and Misener, 1938]. It refers to a state in
which the (super)fluid has a non-zero velocity with respect to an external body in contact
with it, without any dissipation. This state is not the ground state as demonstrated in
[Leggett, 2001], it is actually metastable, with a macroscopically long life-time. A spectacular
consequence of flow without friction is the existence of persistent currents in a torroidal
(ring shaped) geometry. Such long-lived currents were measured in superconducting rings,
where their lifetime could be inferred to be longer than 10° years [File and Mills, 1963]. In
ultracold atoms, persistent currents were observed in single-component BECs contained in
a ring trap, and the life-time of the current was shown to be limited only by the lifetime of
sample itself, extending up to two minutes [Ryu et al., 2007, Beattie et al., 2013].

1.6.1 Landau's criterion for superfluidity

Flow without friction is allowed in a superfluid below a certain critical velocity v.. The fa-
mous expression of v obtained by Landau [Landau, 19410, Landau, 1941a] reads:

ve = Min <e(p)> (1.50)
P p

where ¢(p) is the dispersion relation of elementary excitations.

Let us derive this expression formally: we consider an object of mass M in contact with
a superfluid and moving with respect to it at a velocity v. This object is slowed-down by
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the creation of an excitation in the superfluid. The initial energy and momentum in the

superfluid’s frame are:

M 2
E = ?” P, = M, (1.51)
and the final ones:
M,UIZ ,
E; = 5 +e(p), P= Mv' + p. (1.52)

v’ is the velocity of the impurity after the creation process, p is the momentum of the excita-
tion with energy ¢(p). The conservation laws® lead to

p2

P-v= gt e(p) (1.53)
Hence for the process to be energetically allowed the velocity of the impurity must obey:
.
v > v = Min (We(p)> (1.54)
P b

Let us first consider the excitation to be a motion of the entire superfluid. Each particle of
the superfluid caries a momentum (q) we then have p = Ngq and ¢(p) = N¢?/2m where
N is the number of particles constituting the superfluid. Then applied to (1.54) we find
the surprising result v. = 0, this result in fact is in agreement with the statement that the
frictionless motion of a superfluid is a metastable state. However setting in motion the entire
superfluid requires a strong coupling of the object to the superfluid. For a weakly coupled
object, the interaction of the object with the entire superfluid is a high-order process, the first
excitations created will rather be the low-lying elementary excitations. Landau’s criterion
is found by considering that the object has a very high mass such that the associated term
does not contribute to v., and we indeed finally find (1.50). This formula was obtained
considering a superfluid flowing inside its container for which the limit A/ — oo is valid
[Landau, 1941b, Landau, 1941a]. We must differentiate it with the case of a light impurity.

Relation (1.50) applied to a weakly-interacting Bose gas where ¢(p) = ¢®(p) is the Bo-
golyubov dispersion relation (1.37) leads to the well-known result that the critical velocity is
the speed of sound ¢,

Ve = ¢p = \/gn/m. (1.55)

For the Fermi gas in the BEC-BCS crossover, there exist two excitation branches, one of
them is a collective excitation with bosonic statistics. Atlow momenta the dispersion relation
of this branch is linear:

(p) = per (1.56)

where ¢ is the speed of sound in the Fermi gas. Another kind of excitation is the destruction
of a pair, this process forms two excitations with dispersion relation :

p? 2
eqp(D) = <2m - u) + A2, (1.57)

P'We consider here a translation-invariant system.
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Since they are created in pairs, their total momentum and energy are not constrained and
they form a continuum. We note the lower limit of this continuum €f (p) = €qp(q1) + €qp(q2)
with g1 + g2 = p. From (1.57) one easily sees that ¢"(p) > 2A (with an equality for p <
v2my). Finally the Landau critical velocity in a Fermi gas is:

Ve = l\/gn (ES;}?)> (1.58)

s=fb

Thus, depending on the exact dispersion relations of the two branches, ¢ (p) and ¢! (p), it can
be either more favorable to create one type of excitations or the other. In a theoretical study of
these elementary excitations using BCS theory, Combescot et al.[Combescot et al., 2006] have
studied the critical velocity in the crossover. They have shown that on the BEC side, the
critical velocity is due to the emission of phonons, as one would expect for a BEC since the
pair binding energy is large. On the BCS side, the sound velocity increases while the pair
binding energy A o exp(—2/mkpa) drops and pair breaking is favored, finally the transition
between these two mechanisms happens very close to the unitary limit as shown in figure
1.5.
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Figure 1.5: Critical velocity for (solid line) a Fermi gas as a function of 1/kra calculated using (1.58) and the
dispersion relations for the elementary excitations as obtained in [Combescot et al., 2006]. The sound velocity
on the BCS side is shown in dashed line. (The inset shows the healing length of a Fermi superfluid in the
crossover.)

In the case of a finite-mass impurity, the presence of the associated term p?/2M modifies
noticeably which branch gives the lowest v, as shown in [Castin et al., 2014] using BCS the-
ory and the random phase approximation. Figure 1.6 (a) is a phase diagram representing the
branch giving the lowest critical velocity (bosonic or fermionic) in the BEC-BCS crossover
and as a function (in y axis) of M /m where M (m) is the mass of the impurity (superfluid
Fermi particles). The unit on the z axis A/ is equivalent to the interaction parameter 1/krpa
with 1/kpa = 0 for A/p = 1.162, 1/kpa < 0 for A/p < 1.162. In the region F the critical
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velocity from (1.54) is due to fermionic excitations, in the region Bj it is due to bosonic
excitations but for a momentum p where eg (p) is not linear anymore, it is rather very close
to ef (p). Last, in the region Bs it is due to bosonic excitations and the linear part dominates,
that is v. = ¢;.

Taking the limit M — oo we find the result of [Combescot et al., 2006] that the critical
velocity changes from the fermionic excitation branch to the speed of sound close to unitarity
(A/p = 1.162), on the other hand when the impurity has a mass M close to that of the
superfluid particles, the critical velocity is given by the speed of sound in a much broader
region of the crossover.

2
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Figure 1.6: Left: phase diagram for the critical velocity of an impurity embedded in a Fermi superfluid. On
the horizontal axis: A/u equivalent to 1/kpag (1/kpag > 0 for A/p > 1.162). Vertical axis: mass ratio
a = m/M where M (m) is the mass of the impurity (superfluid Fermi particles). In the region named By
we have v. = ¢, in the B region the critical velocity is due to bosonic excitations but in a momentum range
where their dispersion relation is very close to the fermionic excitations's dispersion relation. In the F region
(yellow), v, is given by fermionic excitations. Right: critical velocity for a BEC in a Fermi superfluid, the regions
are labelled identically. The chemical potential of the BEC p, is weak compared to the Fermi energy of the
fermions, up/Er = 0.1.

1.6.2 Landau's criterion for a mixture of Bose and Fermi superfluids

In the last chapter of this thesis we present the first experimental results on the critical ve-
locity of motion for a BEC moving inside a Fermi superfluid. Let us calculate this critical
velocity using Landau’s argument, we thus calculate the minimal velocity for the emission
of elementary excitation, valid for weakly coupled superfluids. We note ¢®(p) the dispersion
relation of excitations in the BEC and ¢f(p) that in the Fermi superfluid where s refers to
the two possible branches. We consider two superfluids in relative motion with velocity v.
The slowing-down of the whole superfluids is not allowed in the weak coupling limit, such
that v is not changed in the emission process. We write the initial and final conditions in the



38

Chapter 1. Bose-Einstein condensates and Fermi superfluids

frame of the Fermi superfluid:

Mgv?

E; 5

, Pi = Mgv (1.59)

_ Mgv?

E
f 9

+cf(p)+(q) + q-v, Pr= Mpv+q+p. (1.60)

Mp is the total mass of the Bose superfluid, the term g - v is simply the Doppler shift of the
excitation in the BEC. The conservation laws then lead to the critical velocity:

ve = Min <W> . (1.61)
p p

s=1f,b

We see that this critical velocity is the same as (1.54) but replacing a free particle energy
by the dispersion relation of the other superfluid. The analysis of the critical velocity of a
BEC moving inside a Fermi superfluid can be thus obtained by expansion of the analysis
of a finite-mass impurity, this is performed in [Castin et al., 2014]. The result is displayed in
1.6 (b), for the case of a BEC with a chemical potential y, = Eg/10 where Ef is the local
Fermi energy of the Fermi superfluid. In this limit the phase diagram is weakly modified,
with respect to a finite mass impurity. On the BEC side of the crossover, the first excitations
created are phonons, leading to a critical velocity from (1.61) v = ¢ + ¢4

1.6.3 Beyond Landau's criterion

The critical velocity calculated from Landau’s criterion must be handled with care. First
it describes a homogeneous superfluid. Already in an inhomogeneous system such as a
trapped gas, the geometry of the superfluid modifies the dispersion relation of elemen-
tary excitations with respect to the homogeneous case [Zaremba, 1998, Stringari, 1998].
In turn this reduces strongly the critical velocity compared to the naive expectation
of the sound velocity given the density n at the center of the cloud: v # +/gn(0)/m
[Fedichev and Shlyapnikov, 2001].  So already, taking finite-size and geometry effects into
account changes the expected value of the critical velocity, however this is still within the
scope of Landau’s criterion.

As said before, Landau’s criterion is valid in the weak coupling limit. Experimentally,
the ‘impurities” are rarely weakly coupled. For a strong coupling, higher-order excitations
can be created. Notoriously “hydrodynamic’ excitations such as vortices and solitons can
appear. Creation of vortices or solitons is dependent on the geometry of the problem, if we
consider a superfluid moving inside a container, its proportions and form will influence the
creation of defects. Identically the shape and size of a moving defect will determine its crit-
ical velocity [Frisch et al., 1992]. It is known for instance that in most cases critical velocities
measured in liquid helium cannot be described by Landau’s criterion and that turbulence
sets in, see for example [Wilks and Betts, 1987]. Only in experiments performed with moving
ions inside *He, the critical velocity measured is in agreement with Landau’s criterion, where
the dispersion relation presents a roton minimum [Allum et al., 1976, Allum et al., 1977]. An
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argument originally formulated by Feynman treats a vortex or a vortex ring as an elemen-
tary excitation (replacing the momentum p by the moment of inertia I) in order to salvage
Landau’s criterion [Feynman, 1955]. It is valid only in a cylindrical geometry and in general
this cannot be applied and a specific hydrodynamic analysis is required.

In dilute ultracold gases, homogeneous systems have been created only very recently
[Gaunt et al., 2013] and so far all experiments studying superfluid flow have been performed
on inhomogeneous gases. Most searches for superfluid flow have been performed by mov-
ing an impurity created by a laser beam (with infinite effective mass) focused at the position
of the ultracold gas. The laser creates a potential usually large with respect to inter-particle
distance, and the impurity created this is not necessarily weakly coupled. The local density
approximation can be used to calculate the local density in the region where the laser cre-
ates an additional potential and then extract the local critical velocity [Watanabe et al., 2009]
from Landau’s criterion. A possible instability due to vortex creation can be investigated
analytically in simple cases [Frisch et al., 1992] or using for instance hydrodynamic numeri-
cal simulations [Stiefiberger and Zwerger, 2000]. We review the experimental results obtained
until present in the following.

1.6.4 Some experiments on a critical velocity in superfluid dilute gases

On dilute Bose-Einstein condensates, a critical velocity for the motion of a laser impurity
has been first observed in [Raman et al., 1999, Onofrio et al., 2000, Raman et al., 2001]. The
observed critical velocity lies around 0.3 ¢, o where ¢, is the sound velocity at the center of
the cloud. Considering the inhomogeneity of the gas perturbed by the laser, this value of the
critical velocity did not allow for a comparison with theory and so could not determine the
dissipation mechanism. Other measurements realized on a superfluid ring stirred by a laser
showed the influence of the barrier height on the critical velocity in good agreement with a
model using Landau’s criterion and accounting for a reduced density at the barrier position
[Wright et al., 2013]. The creation of vortices by a moving laser beam was first observed in
[Inouye et al., 2001]. In an elegant experiment, Neely etal. demonstrated the formation of
vortices by a moving laser impurity in an oblate geometry [Neely et al., 2010] with a critical
velocity in very good agreement with numerical simulations (v. ~ 0.1¢). The creation of
solitons by a moving elongated potential barrier was observed in [Engels and Atherton, 2007].
Finally, in a two-dimensional Bose gas the existence of a critical velocity has been exper-
imentally proved by stirring a laser at constant radius, the two-dimensional geometry
allowing to probe a constant density [Desbuquois et al., 2012].

It is clear in the experiments on Bose-Einstein Condensates listed above that the usage
of a laser as an impurity does not realize the weak-coupling limit required for Landau’s
criterion to be applicable. To make a more weakly coupled impurity, [Chikkatur et al., 2000]
have used a stimulated Raman process to turn condensate atoms into impurities expelled
by the trapping potential. They have measured the energy dissipated by the impurities as a
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function of their velocity, and observed a dramatic reduction for velocities under the speed
of sound of the condensate. The critical velocity of microscopic, weakly-coupled impurities
is thus in agreement with Landau’s criterion, identically to the case of liquid “He where the
motion of ions agreed with this criterion.

In ultracold Fermi gases, two measurements of a critical velocity have been per-
formed, one using a moving one-dimensional optical lattice creating a periodic potential
[Miller et al., 2007] in an elongated gas and very recently a tightly-focused attractive laser
beam stirring a gas in an oblate trap [Weimer et al., 2014]. In the first reference, the measured
critical velocity at unitarity is in rough agreement with the Landau criterion predictions
displayed in figure 1.5. The qualitative behavior in the crossover agrees with the different
mechanisms for damping between BEC and BCS sides. The measured v. drops sharply on
the BCS side as one expects for pair breaking since the gap is exponentially reduced and
is slightly reduced on the BEC side in agreement with phononic excitations. The setup
used in [Weimer et al., 2014] allowed for a better control of the systematic errors rendering
possible a quantitative comparison with theory from [Combescot et al., 2006]. In the whole
crossover, the measured critical velocity is reduced with respect to theory, a feature they
attribute to probing lower density regions along the stirrer axis, which is well accounted-for
by numerical simulations on the BEC side. Up to this reduction, in the crossover the critical
velocity follows the theoretical expectations.

1.6.5 Other hallmarks of superfluidity

A striking phenomenon due to superfluidity is the quantization of circulation in a rotating
superfluid:

7{11 -dl = ph/m, p € Z. (1.62)

This is due to the fact that the velocity field of a superfluid is related to the phase ¢ of
the order parameter® v = V¢h/m. Since the phase is single-valued up to factors 2,
circulation is quantized, giving rise to vortices in rotating superfluids. Vortices in rotating
dilute Bose and Fermi gases have been observed [Madison et al., 2000, Zwierlein et al., 2005],
confirming the superfluid nature of these systems.

Another hallmark of superfluidity is the existence of second sound. This second sound
mode, in addition to the usual ‘first sound’, is predicted by two-fluids hydrodynamics
treating the normal and superfluid fraction as separate fluids, the superfluid fraction
carrying no entropy. These solutions depend on the thermodynamic properties of the
superfluid and provide a sensitive test for measurements of the equation of state. It is

@The order parameter characterizing the superfluid phase is (1) for bosons as we have seen, for fermions it is
(1p41py) [Leggett, 2006]. To connect to the Bose case, the fermion order parameter can be seen as the mean value
of the annihilation operator for a pair.
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worth noting that in the case of liquid helium, since C,, ~ Cy", the thermal expansion
coefficient o = —% (%) p is small and first and second sound are two uncoupled modes. In
dilute gases this is not true so a coupling between these modes arises [Hu et al., 2010]. As
a second consequence, the second sound excitation carries a density modulation enabling
its observation by usual imaging techniques. This way second sound excitations have been
unambiguously observed recently in a unitary Fermi gas [Sidorenkov et al., 2013]. These
measurements were in good agreement with the previously measured EoS and also provide

the best measurement so far for the superfluid fraction.

Conclusion

To summarize this chapter, we have aimed at presenting ultracold Bose and Fermi gases,
from a point of view that will serve for the results presented in the following chapters. We
presented the theory of ultracold Bose and Fermi gases that are studied in our experiments.
In the final section we gave a special attention to the superfluidity of these gases because
the final part of this work presents novel studies of features of superfluidity in a mixture of
Bose and Fermi superfluids. In the next chapter, we detail how such systems are obtained

experimentally on our setup.
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Chapter 2

Experimental set-up

“Young people must break machines to learn how to use them.” Henry Cavendish

The experimental set-up on which we prepare quantum degenerate gases of lithium has
been running now for more than 15 years and several generations of PhD students. The
details of the apparatus have been presented in many theses starting from Gabriele Ferrari’s
in 2000. Thorough presentations of the set-up can be found in [Ferrari, 2000, Schreck, 2002]
and [Tarruell, 2009]. As during my thesis we have not modified profoundly the apparatus,
we will review the main elements. A later chapter is dedicated to a laser cooling scheme that
was first implemented on potassium by the other team of the LKB ultracold Fermi group
and that we have transposed to lithium atoms.

2.1 Lithium isotopes, atomic structure

Lithium has two stable isotopes ”Li, a boson and 6Li, a fermion. The natural abundances
are 92.5% for “Li and 7.5% for °Li, their masses mg = 6.015u and m7; = 7.016 u with u the
atomic mass unit u = 1.661 x 10~27 kg [Heavner et al., 2001, Nagy et al., 2006].

Lithium is the third element in the periodic table, and the lightest of the alkali metals
(considering that Hydrogen is not an alkali). Alkalis have a single electron in their outermost
electronic shell (a s-shell), so they have a simple atomic structure. °Li has a nuclear spin of
I =1,7Liof I = 3/2. The energy levels at zero magnetic field of °Li and ”Li are represented
in figure 2.1, the optical transition from the 2s orbital to the 2p is at 671 nm. The fine structure
splitting between the 22 P, /2('“‘) and the 2Py, state is about 10 GHz. Incidentally, the isotope
shift of the 25 — 2P transition is also of 10 GHz, and the D, line (225, — 22P, ) of "Li
is almost tuned with the D, line (225, /2 = 22 P, /2) of ®Li. The natural linewidth of the
optical transitions is I' = 27 x 5.9 MHz for both isotopes, from which we can conclude that
the hyperfine levels of the 2P; , are not resolved since their splitting is smaller than the
linewidth I (see fig. 2.1).

@spectroscopic notation: n?**1 L5, n is the principal quantum number, s is the total electrons spin (1/2 for Li),
L is the orbital angular momentum of the electrons and J = L + S, finally F = I + J.
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Figure 2.1: Level schemes of ’Li and °Li, the most accurate measurements of the optical transitions, fine and
hyperfine splittings can be found in [Sansonetti et al., 2011]. Note the near perfect tuning between the ’Li D,
and 6Li D, lines. The transitions used for cooling and repumping in the magneto-optical trap are indicated in

grey, see main text.
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Figure 2.2: Magnetic field dependence of the energy levels of ®Li (left) and ’Li (right). The energy reference
is taken to be the energy of the FF = 1/2, F = 1 manifolds a zero field. For simplicity the states are labeled
here |1s), |2), ... and the index s indicates the isotope (b for “Li and f for bLi). At low field, |1¢) connects to
|F=1/2,mpr =1/2)and |6) to |F = 3/2,mp = 3/2) for °Li and for ’Li: |1,) connectsto |F' = 1,mp = 1)
and |8) to |F' = 2, mr = 2). During the magnetic trapping stages, the atoms are polarized in |6¢) and [8p).
At the beginning of the optical trapping stage, they are transferred to the absolute ground states |1¢) and |1},)
by a radio-frequency rapid adiabatic passage.

2.2 Laser cooling

2.2.1 Laser system

The laser system is based on a master-oscillator — power-amplifier scheme, we use three
master lasers for frequency references, locked using saturated-absorption spectroscopy.
One master laser is locked on the D5 line of “Li. Two other masters are locked on °Li
transitions, one on the D; line and one on the D; line, the latter is also used for a frequency
reference close to the D; transition of “Li. The lasers on the experiment are laser diodes,
originally built for DVD drives®. The diodes have a spectrum centered at 660 nm and can
output in normal conditions up to 120mW in continuous mode. To obtain light on the
transitions of lithium at 671 nm, the diodes are heated-up to approximately 70 °C to dilate

the diode’s cavity, without reducing significantly the diode’s performances.

The power-amplifying diodes are injection-locked to the master lasers. To mitigate
the effects of drifts of the geometric alignment of the laser beams, all laser outputs are
coupled in optical fibers, decoupling the alignments of the input and output beams. This
fiber coupling causes an optical power loss from 30% to 50% depending on the quality of
the fiber injection. To compensate for this loss we use the diodes at or above the limit of
their power ability, shortening their lifetime. To improve the stability of the experiment, we

®Model HL6545MG from Hitachi, now available at Thorlabs.
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have increased the power available in some beams where power is crucial using tapered
amplifiers (TA).

2.2.2 The lithium source

Our samples are loaded from a saturated vapor in an oven where lithium (with natural
abundances) is kept at 390°C. At this temperature lithium is liquid®, and the saturated
vapor pressure is sufficient. To cool and trap lithium to degeneracy temperatures, we first
use laser cooling, addressing its atomic transitions. From the oven, the vapor is collimated
using a tube of length 9 cm and inner diameter 6 mm. The tube is heated-up at a temperature
of 510 °C at the junction with the oven and 190 °C on its output end. The temperature in the
tube is thus above the melting point avoiding solid chunks from forming®.

2.2.3 Double Magneto-Optical trap

At the output of the tube we use a spin-flip Zeeman slower, with cooling light on the Dy
line of both isotopes. At the end of the Zeeman slower, the atoms have a mean velocity of
about 50m/s. From this jet we load a magneto-optical trap (MOT) of both isotopes. By
turning on or off their respective cooling light, we can also selectively trap only °Li or “Li
in the MOT. The MOT is performed in a glass cell, by three pairs of counter-propagating
beams, represented in figure 2.3. The cooling light for “Li and °Li is tuned to the Ds line
and we use the cycling transitions F = 2 - F = 3and F' = 3/2 — F = 5/2 for "Li and
®Li respectively (these transitions are used in the Zeeman slower as well). Due to the rather
narrow hyperfine structure of the excited state, the open transitions F' = 2 — F’ = 2 and
F = 3/2 — F’' = 3/2 are also excited and a strong repumper is needed to pump atoms
fallen into the lower hyperfine manifolds (FF = 1, F = 1/2) back in the cooling cycle.
For °Li, this repumping is done using the D; transition F' = 1/2 — F’ = 3/2. To avoid
having near resonant light for °Li, we repump ’Li using the Dy F = 1, F’ = 2 transition,
as indicated in figure 2.1©). The cooling beam is detuned by § = —5T for 7Li and —4T
for °Li, the repumpers are detuned respectively by —4T and —2T. All frequencies are
mixed in each beam, which have a 1/e? diameter of ~ 1.5cm. The maximum intensity
per frequency is I ~ 3.5mW /cm?, except for the "Li cooling frequency which is amplified
by a TA and is about I ~ 5.5mW/cm?. This corresponds to I ~ I’,,/50 for the cooling

beams, where I!,, = I, (1 + (25/T')?) is the saturation intensity at the beams detuning and

©the melting temperature is 180.6 °C and the boiling point is at 1342 °C.

@3ome liquid drops can form inside the tube, in principle the temperature gradient is such that these drop
move opposite to the gradient thanks to a temperature-dependent surface tension [Tarruell, 2009]. However we
have run several times into a clogging of this tube, the solution in this case is to heat the tube to temperatures as
high as 600 °C to evaporate the liquid.

©The repumping transitions in the spin-flip region of the Zeeman slower are identical as in the MOT
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Isat = 2.4mW /cm?.

In normal conditions, the magneto-optical trap is loaded in 40s and contains a few 10°
7Li atoms and =~ 108 °Li atoms'. The temperature of the two isotopes in the MOT is about
3mK, roughly the same for the two isotopes. Following the MOT stage, we perform a
compressed-MOT (CMOT), which consists in reducing the cooling beams detunings down
to —2T" in 8 ms and and a lowering of the repumpers intensity to I = 0. This results in a
denser cloud of atoms, 100% pumped in the lowest hyperﬁne manifolds. The temperature of
this cloud is 600 1K for both isotopes, the intensities and frequencies are chosen to minimize
this temperature under the constraint of keeping 100% of the atoms. This temperature is
higher than the lowest temperature expected for Doppler cooling in the simplified model of
a two-level atom: Tp = hl'/2kg = 140 uK. The reason for this is that the two-level model is
too simple because the upper hyperfine states are unresolved, furthermore at high density

multiple photon scattering takes places.

The low cooling efficiency for lithium represents an experimental difficulty in the
prospect of cooling to quantum degeneracy. It imposes high capture efficiency for the
trapping potential collecting the atoms after the laser cooling stage. To improve the laser
cooling efficiency and provide a better starting point for the subsequent evaporative cooling,
several solutions exist. One can use different transitions, with a narrower linewidth, this
solution was implemented in [Duarte et al., 2011] using the 25, /5 — 3P3, transition, with a
wavelength of A = 323nm and a linewidth I' = 27 x 754kHz. This has proved successful,
but requires a new laser system at a wavelength at which lasers have weak power and short
lifetimes. To overcome these limitations, we have implemented and investigated a new
laser cooling scheme addressing the D; line at A = 671 nm, developed for potassium by the
Fermix team in our group [Rio Fernandes et al., 2012]. We dedicated a chapter to present our
work. However due to the usage of two isotopes and the close tuning of “Li and °Li lines,
the full implementation of this scheme on our experiment would have implied important
changes to our laser system. Since the experiment was functional without this scheme we
have decided not to use it, but a number of experimental groups have now implemented
our method [Salomon et al., 2013, Nath et al., 2013, Burchianti et al., 2014].

2.2.4 Optical pumping

At the end of the MOT — CMOT sequence, the atoms are polarized in the lowest hyper-
fine manifolds. The next stage of the sequence consists in magnetic trapping. Maxwell’s
equations forbid the creation of trapping potentials by maxima of magnetic field. As a con-
sequence, only internal states which energy increases with magnetic field can be trapped
purely magnetically (“low field seekers”). In the lowest hyperfine manifolds, one state per
isotope (the |F = 1,mp = —1) for “Li and the |F = 1/2,mg = —1/2) for °Li) has a positive

®When the oven tube is clogged, loading can take up to 100's and the numbers are divided by ~ 5.
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slope as shown in figure 2.2. However the maximum depth realizable by a magnetic trap is
too low: 300 uK for °Li, 2.6 mK for “Li and these states are unsuitable for magnetic trapping.
We therefore have to transfer the atoms to the upper hyperfine manifold in which we can re-
alize very deep traps. Furthermore we need to use internal states which are protected agains
inelastic collisions, this is ensured using the maximally-stretched states : |F =2, mp = 2)
(I8p)) and |F = 3/2,mp = 3/2)® (|6¢)). We polarize the atoms in these states by an optical-
pumping sequence. During this sequence, we use abeam in which two frequencies are mixed
with 0" polarization and a weak magnetic field (10 G) parallel to the beam propagation axis.
One frequency realizes the ‘hyperfine pumping’ of “Li, transferring the atoms from F = 1
to F' = 2, with a frequency tuned to the F = 1 — F’ = 2 Dy transition at zero field. The
role of the other frequency is twofold, first it pumps “Li in the |2,2) Zeeman sub-level, sec-
ond it does the hyperfine pumping for °Li (F = 1/2 to F’ = 3/2). The optimal frequency
(maximizing the pumping efficiency on both isotopes) of this second beam is detuned by
—45MHz from the F = 2 — F’ = 2 D; transition of "Liand 25 MHz F = 1/2 — F’ = 3/2 D,
transition for °Li. °Li is not polarized in the |3/2,3/2), because the number of °Li atoms is
not a limiting factor and the remaining atoms in the other sublevels are expelled in the later
stages. The optical pumping sequence lasts 300 us, the beam has a 1/¢? radius of 5mm on
the atoms and a total power of 3mW per frequency.

2.3 Magnetic trapping and radio-frequency evaporation

2.3.1 Quadrupole trap, magnetic transport and transfer to the loffe-
Pritchard Trap

Once the atoms are optically pumped, a quadrupole magnetic trap is turned-on in 2 ms using
the MOT coils with opposite currents between the coils. The atoms are then transported in
the vertical direction to a small appendage of the glass cell see figure 2.3. This transport is
done with two sets of coils: the MOT coils and the Feshbach coils. The zero of the magnetic
field is moved by decreasing current in the MOT coils to zero and simultaneously ramping
up current in the Feshbach coils, in 500ms. At the end of transport the atoms lie in the center
of the Feshbach coils pair, the overall efficiency of this transport is about 40 %, most of the
losses are due to the cutting of the density distribution by the appendage walls.

From the quadrupole trap created by the Feshbach coils, the atoms are transferred to a
Ioffe-Pritchard trap. This trap is realized by four Ioffe bars which generate a strong field
gradient confining the atoms in the radial direction. The axial confinement is provided by
the Pinch coils that create a curvature of the magnetic field along the trap symmetry axis.

®By conservation of angular momentum, the stretched states are protected against spin-relaxation during a

collision.
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Figure 2.3: Scheme of the experiment in the glass cell region, the MOT coils (M) lie in the lower part of the
cell where the atoms are collected from the Zeeman slower jet (grey arrow). The MOT beams are shown in
light red. The Pinch (P), Feshbach and Offset (O) coils (F) are centered on the appendage,. The loffe bars (IB)
create a strong confinement in the radial direction (perpendicular to the bars and the symmetry axis of the
Feshbach and Pinch coils). The dipole trap laser propagates along the long direction of the upper trap, shown
in opaque red.
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The Feshbach coils can also be used (with parallel currents) to adjust the field offset, and an
additional pair of coils: the Offset coils are designed to finely adjust this offset. The transfer
from the quadrupole trap to the Ioffe-Pritchard trap cannot be done adiabatically since it
involves field-reversals in some regions. This transfer is done by an instantaneous turn-on
of the Ioffe bars’ current, followed by a fast switch-on of the Pinch coils. The efficiency of
this transfer is hard to quantify because due to the large size and high optical density of the
cloud at this stage, we cannot count the atom number reliably.

2.3.2 Doppler cooling of ’Li

Once the atoms are confined in the Ioffe-Pritchard trap, the ratio between the currents in the
Pinch and Feshbach coils can be varied to adjust the offset field and the confinement.

In the tightly confined Ioffe trap, the cloud has an initial temperature of 7' ~ 3 mK. Un-
fortunately, the collisional cross-section of “Li is cancelled at momenta corresponding to a
temperature of 6 mK and is still weak at 3mK [Turruell, 2009]. The collision rate v is given by

v = now, (2.1)

for one atom with velocity v in a cloud of density n, o is the scattering cross-section. So
a low scattering cross-section results in low collision rates and very slow thermalization,

whereas a fast thermalization is essential for the success of evaporative cooling.

To solve this problem we use the last part of laser cooling on “Li in the sequence: a
simple Doppler cooling. This cooling is implemented with a single propagating beam
in the axial direction detuned to the red of the FF = 2.mp = 2 — F' = 3,mp = 3 Dy
transition, with an adjustable polarization. The use of a single propagating beam is allowed
since the quadrupole trap redistributes partially the momentum in three dimensions. Since
the direction and amplitude of the magnetic field vary in space, so does the energy of
the internal levels of the atoms. The right detuning for Doppler cooling in these condi-
tions is thus rather complex to calculate and we optimize empirically the polarization,
power and detuning of the cooling light. Doppler cooling cools down to temperatures
of about 300 1K, with a loss of 25 % of the 7Li atoms, it is essential for an efficient evaporation.

2.3.3 Radio-frequency evaporative cooling of ’Li

After Doppler cooling, we can safely start the evaporation of “Li. This evaporation is done
with a radio-frequency knife tuned on the transition |2,2) — |1,1) (|8,) — |1p)), the energetic
atoms turned int the |1, 1) state are expelled by the magnetic field. The frequency of this
transition is much higher than the °Li hyperfine splitting (228 MHz) and is thus selective on
7Li. °Li is then sympathetically cooled by collisions with “Li, with no loss of °Li required.
This sympathetic cooling is a very efficient way of producing high number cold samples of
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®Li, it circumvents the necessity to have two fermionic spin states present to allow for s-wave
collisions. Sympathetic cooling can also be implemented using a second species as a coolant.

Radio-frequency evaporation is performed in 22s, lowering the frequency from
1050 MHz down to 840MHz. The temperatures and numbers in the final state are as
follows: when °Li is absent we trap up to 2.5 x 10 ’Li atoms, at a temperature of 8 uK. When
®Li is present, since it is initially in strong minority, it does not impede evaporative cooling
of 7Li at the beginning of evaporative cooling, however when the numbers of “Li become
comparable to that of °Li, the thermal load it represents is higher than what the heat capacity
of 7Li can take out and “Li numbers drop sharply with little decrease in temperature. The
amount of °Li in the Ioffe trap and thus the final temperature achievable can be freely
adjusted by varying the power of the °Li cooling light. In normal conditions we have up to
2.5 x 10° °Li atoms, in equilibrium with 5 x 10° 7Li atoms at a temperature of 12 uK. The
temperatures quoted are for a Toffe trap with frequencies w, = 3.1kHz, w, = 70 Hz®. Using
these frequencies the phase space densities at the center of the cloud n(0)A3; = N(hw/kgT)?
are: ~ 10! for “Li alone, and for the mixture : ~ 10~! for °Li and ~ 2 x 102 for “Li.

2.4 The hybrid optical dipole - magnetic trap (ODT)

The phase space densities at the end of evaporation in the Ioffe-Pritchard trap are close to
quantum degeneracy, and evaporating more we could reach the Bose-Einstein condensation
threshold for “Li. But since the background scattering length in the |2, 2) state is negative :
apg = —27 ag, reaching this threshold would result in a collapse. Furthermore, in the Ioffe
trap, the magnetic field offset and the trap confinement cannot be adjusted independently.
For these reasons, we transfer the atomic clouds to a hybrid optical — magnetic trap (dipole
trap or ODT).

The optical trapping relies on the dipole force [Grimm et al., 2000], which dominates at
large detunings over the radiation pressure force used for laser cooling. The dipole potential
takes the form

3rc? T

Udip = nggl(r)’ (2.2)
where c s the speed of light in vacuum, wy is the bare frequency of the atom’s transition with
linewidth T, A = w; — wy is the light detuning and I(r) is the light intensity profile. For our
trap we use an Ytterbium fiber laser with wavelength \; = 27¢/w; = 1073 nm, in a gaussian

TEMy mode:

2P
€—2r2 Jw(z)?

I(r) = 5 (2.3)

mw(z)

where P is the total laser power and w(z) is the 1/e? radius of the beam at position z along

®These frequencies have not been measured for a long time and might have drifted since then.
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the propagation axis. w(z) is given by the laser waist at focus wo: w(z) = wo/1 + (2/2r)?,
(2r = mw3/2)\). The potential created is attractive (A < 0) and cylindrically symmetric.
Close to the focus (r < wy, z < zg), it takes the harmonic form:

1
Ugip ~ —Uo + 3™ (wir? + w?2?) (2.4)
where Uy = 3c¢’TP/2w3|Alwd is the potential depth, and the frequencies are w, =

VAU /muwd, w, = wrA/v/2mwg. The waist of our laser is
wo = 27(2) pm,

so that using our parameters, the axial trapping frequency is very weak at low power
(w./2m < 24Hz for a laser power P < 1W). To increase the confinement we add an axial
magnetic trapping created by the Pinch coils. To create an attractive potential we can either
trap low-field seekers with a field minimum, or create a field saddle-point with a maximum
in the axial direction and a minimum transversely. This saddle potential is created by
running an opposite current in the Feshbach coils with respect to the Pinch coils. The
radially repulsive potential it creates is very weak compared to the optical potential and
can be neglected. The trap resulting from the dipole laser and the magnetic field is thus still
cylindrically symmetric. In the axial direction the potential is highly harmonic and can be
measured with high precision, the frequency is freely adjustable by the current in the Pinch
coils. The depth in the transverse direction is adjustable by the laser power.

We load the atom cloud from the Ioffe trap to the dipole trap adiabatically in 20ms,
the typical loading efficiency is about 80 % with the numbers and temperatures quoted
above. The laser power in the initial ODT is about 8 W, resulting in a radial frequency of
wy =~ 21 x 8kHz, and an axial frequency dominated by the optical potential w, ~ 27 x 75 Hz,
the associated trap depth is Uy ~ 200 K. The atoms are kept in the ODT with an offset field
created by the Offset coils of 13G. The temperature of the cloud in this trap depends now
on the isotope, for “Li, since the trap depth is different to the depth in the Ioffe at the end
of RF evaporation, there can be some evaporation in the ODT if this trap is shallower. We
usually indeed observe a slight atom loss accompanied by cooling of “Li after loading the
dipole trap. The case of °Li is different: since there are no collisions and “Li is in minority
at this stage, there is no thermalization possible for °Li, and no evaporation initially in the
ODT. In this regime the temperature of the “Li gas results from the competition between
a thermalization with the large heat load of the °Li cloud and the evaporation through
7Li-"Li collisions"). The resulting temperatures are different for the two isotopes, the bosons
stabilize at a trap ratio n = Up/kpT =~ 6 corresponding to T' ~ 35 uK while °Li fills the trap
up to a higher potential energy: n ~ 4.5, T' ~ 45 uK.

® As a result of this continuous evaporation, the lifetime of the Li cloud is short at this stage.
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2.5 Preparation of strongly interacting degenerate gases

After the transfer to the optical dipole trap, we modify the internal state of the atoms to
place them in states with Feshbach resonances. “Li atoms are transfered from the |2, 2) state
to the |1,1) (|8) — |1p)), and °Li from [3/2,3/2) to [1/2,1/2) (|6¢) — |1¢)). This transfer is
done using a radio-frequency rapid adiabatic passage (RAP) across the RF transitions.

A rapid adiabatic passage in a two-level system consists in dressing the levels by a strong
field with Rabi frequency 2, and sweeping the field detuning ¢ across the resonance, suffi-
ciently slowly such that the atoms follow the dressed state to end up in the other level, hav-
ing absorbed or emitted a photon. The transition probability is given by the Landau-Zener
formula:

Pyp=1— 20/ (2.5)

where § is the detuning variation speed.

For the RAPs here we fix the frequency of the RF radiation at 827 MHz for “Li and 240 MHz
for °Li, the magnetic field offset is then swept from 13 G to 4 G in 50 ms, crossing resonance.
The efficiency of the resulting transfer is found to be above 85 % for both species. At this
point we can ramp the magnetic field to high values using the Feshbach coils (in reverse
direction to the Pinch coils).

Depending on the systems we mean to study, different routes are followed from here. We
will describe in the following the “recipes” for the preparation of two different systems: a
strongly interacting Bose gas, with which we studied the lifetime of a resonant Bose gas, and
a mixture of a Bose-Einstein condensate and a Fermi superfluid in the BEC-BCS crossover.

2.5.1 Preparing a resonantly interacting Bose gas

First we describe how we proceed to obtain a Bose gas with which we studied 3-body
recombination of resonantly interacting bosons (presented in chapter 4). Three-body
recombination is studied by monitoring atom losses as a function of time. We performed
these studies using “Li only, and we used the Feshbach resonance in the absolute ground
state |1,), which connects to the |1, 1) state at low field.

To cool the gas to the temperatures of interest, we complete a last forced evaporation in
the ODT, the efficiency of this evaporation depends on the scattering rate which is is propor-
tional to a?. The background scattering length of the |1;,) at low field is small and negative
(a = —21 ap), so to increase the collision rate, we ramp the magnetic field to values close to
the Feshbach resonance in the |1;,). On the other hand, three-body losses increase like a* for
bosons. A compromise has to be found between a high scattering rate and low losses. The
value of the scattering length that we use to satisfy this is a = 190 ag, at 721 G. The ramp
to this field is done in 350 ms using the Feshbach coils. At this field, we perform the last
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evaporative cooling of the sequence, by lowering the laser power and thus the trap depth.
The trap depth is lowered to an arbitrary value with which we set the final temperature
of the cloud. The duration of the evaporation sequence depends on the final temperature
needed, the maximum duration is 3s to obtain pure BECs with 20 000 atoms and laser power
down to low values (about 100 mW). For the studies of three-body recombination, we used
non-condensed Bose gases, at temperatures between 1 1K and 15 uK.
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Figure 2.4: Experimental sequences for the preparation of resonantly interacting Bose gases of ’Li. Top pan-
els represent the internal energy of the atoms as a function of magnetic field, the bottom panels represent
the scattering length in the different states.

Left: the arrow indicates the evolution of the internal state of the atoms, from the loading in the optical dipole
trap to the beginning of the last forced evaporative cooling. The atoms are transferred to the |1;,) state by a
rapid adiabatic passage (RAP) at low field, then the field offset is ramped to 721 G (dashed grey line) where
evaporation is performed.

Right: Transfer of the cloud to a strongly-interacting field (here to unitarity) after evaporation. The two dif-
ferent strategies are schematically represented, either a direct field ramp to the desired field (a) or a transfer
to the weakly interacting |2;,) state (b) to prevent losses during the ramp.

Following evaporation, we set the scattering length to the desired value, by a last field
ramp. Since we typically need ramps of a few Gauss to a few tens of Gauss, we use the
Offset coils for this last ramp, these coils are limited in current but have a much lower
impedance than the Feshbach coils and can produce faster ramps.

As the scattering length is increased towards resonance, further evaporative losses
take place, induced by several factors. First, the two-body scattering rate increases so that
more atoms can be expelled from the trap by collisions, thus evaporation is more efficient.
Second, three-body losses are amplified as well, and since in a harmonic trap these losses
lead inevitably to a heating of the cloud [Weber et al., 2003], the temperature increases, also

inducing evaporation.
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However, to conduct studies of three-body recombination, it is preferable to cancel
evaporation which is a two-body process, to isolate three-body losses. To reduce evapora-
tion when increasing a, we increase the trap depth simultaneously with the field ramp. For
an adiabatic increase of the laser power, the phase-space density n(0)A3; = (hw/kgT)? is
conserved and the trap depth U is proportional to the laser power P such that the ratio be-
tween temperature and trap depth 7 increases with laser power like 7 P?/3_ Since there is
heating induced by three-body losses during the ramp, this dependence is only an indication.

The goal of our experiment is to determine the temperature dependence of three-body
losses close to unitarity. In consequence, we need the temperature to be constant in
time once the final ramp is done. The final trap depth is chosen to satisfy this condition,
ending-up with trap ratios between n = 6 and n = 8. The time of the ramp is 500 ms, which
is the fastest ramp such that the Offset coils do not produce an inductive field overshoot
at the end of the ramp. We further wait 5ms after the ramp to leave time for the field to
stabilize. With this method, we ensure that the temperature remains stable and that losses
are due primarily to three-body processes at the desired field. During the 500 ms of the
ramp, a fraction of the atoms is lost, leading to numbers at the end of the ramp between
N =10at1uKto N =5 x 10° at 15 uK.

In order to prevent for losses during the ramp, we used a second strategy, which
consisted in transferring the atoms to a weakly-interacting state (the |2,)%) during the field
ramp (fig. 2.4). The atoms are transferred from the |1,) to the |2;,) by a rapid adiabatic
passage at a field where both states are weakly interacting, then the field is ramped to
the desired value, finally they are transferred back to the |1,). This method prevents
three-body losses during the ramp. However it relies on the efficiency of both transfers.
Furthermore the second RF transfer is done from a weakly-interacting state to a strongly-
interacting one which modifies the transfer probablity. Altogether the numbers obtained are
comparable to the ones obtained with a direct ramp and we used this only for a few data sets.

The study of the stability of the unitary Bose gas performed with gases prepared by the
method presented above are reported in chapter 4, in [Rem et al., 2013] (see appendix C) and
in [Rem, 2013].

2.5.2 Preparing a mixture of Bose and Fermi superfluids

This section explains how we obtained a mixture of a BEC with a strongly-interacting Fermi
superfluid starting from the thermal gas loaded in the optical dipole trap. Two necessary
conditions for this superfluid mixture to be stable is that the bosons have a positive scattering
length and the fermions be at the vicinity of a Feshbach resonance. These requirements are
fulfilled if we obtain a mixture composed of “Li in the |2;,) state and ®Li mixed in the |1;) and
|2¢) states at fields around 832 G. We present in what follows how this mixture is produced

Othe |2,) connects at low field to the |1, 0).
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in our apparatus.
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Figure 2.5: Transfer efficiency of ’Li from |1,) to |2,) at 656 G. The frequency of the RF radiation is swept
from 170.9MHz to 170.7 MHz. Left: total number of atoms in |1;,) (black circles) and |2;,) (blue squares)
as a function of the sweep time (in log scale). Right: polarization P = (N7 — N3)/(N; + N») as a function
of sweep time, fitted with eq. (2.5), blue line. The transfer reaches its highest efficiency at ¢ = 10ms, and
coherence is partially lost after 100 ms.

Spin states preparation, “Li transfer

The initial conditions in the dipole trap are given in section 2.4, the mixture is composed
initially of 7Li and °Li in their absolute ground state at low magnetic field, obtained by
a rapid adiabatic passage from the magnetically trapped states. First, the magnetic field
offset is increased to 656 G in 150 ms. This field value is chosen to be far under the position
of the Feshbach resonance in the |1;,) state, avoiding losses and heating that would be
caused by crossing the magnetic field position of this resonance. At this field, we transfer
the 7Li atoms to the |2;,) state by a new rapid adiabatic passage. The frequency of the
transition |1,) — [2) at 656 G is v12 = 170.8 MHz. The RAP is implemented by applying
a radio-frequency radiation during 10 ms, with a sweep of the frequency from 170.9 MHz
to 170.7 MHz in this time. The efficiency of the transfer versus sweep time is represented
in figure 2.5. A too fast sweep results in a non-adiabaticity of the transfer (expressed in
eq. (2.5)), with a fraction of the atoms remaining in |1,). Using a fit with equation (2.5), we
find a Rabi frequency 2 = 27 x 2.3kHz. The typical transfer efficiency at 10 ms is above
90 %. When the sweep time is too long, coherence is lost leading to a decoherent mixture at
long times. This decoherence may be explained in our case by field fluctuations or atoms

collisions, which are spin-state dependent.

Spin states preparation, °Li spin mixture

Once the “Li transfer is achieved, the offset field is ramped in 100 ms to 835G, in the close
vicinity of the ®Li Feshbach resonance at 832 G. During this ramp, the remaining atoms in the
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|1,) state of “Li are lost due to the crossing of its Feshbach resonance. At 835G, we prepare
the spin-mixture of °Li. The resonance frequency for the transition |1f) — |2¢) at this field
is found to be between 76.25 MHz and 76.3 MHz. We implement a partial Landau-Zener
(LZ) sweep (a full LZ sweep corresponding to what we call a rapid adiabatic passage). In
order to adjust the spin polarization P = (N7 — Na)/(N; + N2) of the cloud, according
to eq. (2.5) we can vary the sweep time (changing 5) or the power of the radio-frequency
radiation (changing the Rabi frequency 2). The dependence of polarization on the sweep
time for a sweep of 100 kHz around resonance is shown in figure 2.6. We also show the total
number of atoms N = N; + N; as a function of sweep time, where we see an atom number
loss due to transfer in the |2¢) state. This loss is caused by the turn-on of s-wave collisions
between distinguishable spin states leading to evaporation of the fermions mixture. It is
accompanied by a temperature decrease to 7' = 30 uK.
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Figure 2.6: Transfer efficiency of ®Li from |1¢) to |2¢) at 835 G. The frequency of the field is swept 100 kHz
across the transition frequency. Left: polarization (circles) as a function of sweep time fitted with eq. (2.5),
giving a Rabi frequency of Q = 27 x 650 Hz. Right: total number of ®Li atoms N = N; + N as a function of
sweep time, showing evaporation due to collisions between distinguishable spin states.

For the production of a superfluid mixture, we prepare a spin-balanced (P = 0) cloud
of ®Li, but we can also vary the spin-polarization to create unbalanced degenerate Fermi
gases. The mixture thus prepared is the starting point of the last evaporative cooling. It
is composed of N, = 2 x 10° “Li bosons in the |2;,) state and a mixture of °Li fermions in
the |1¢) and |2¢) states with total number Ny = 1.5 x 105, at 835 G. The temperature of the
mixture is about 30 1K, “Li is in thermal equilibrium with °Li due to inter-isotope collisions
with scattering length aps = 41 ag. If we mean to study the mixture on the BCS side of the
Feshbach resonance of °Li, we need to cross the narrow resonance of |2;) at 845G. If we
cross this resonance when the “Li cloud is in the BEC state, it collapses. To avoid collapse,
for studies of the BCS side the evaporation is done at 860 G, after a 50 ms field ramp using
the Offset coils.
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Figure 2.7: Schematic representation of the preparation sequence for the superfluid mixture. Top panel,
magnetic field dependence of the ’Li energy levels and the sequence “trajectory' in green arrows. Middle
panel, same for °Li.

Both isotopes are transfered at low magnetic field to their absolute ground state by a rapid adiabatic passage
(not shown), then the field is ramped-up to 656 G in 150 ms. ”Liis transfered to the |2,) at 656 G, then the field
is ramped to 835G in 100 ms and the spin-mixture of ®Li is prepared by adjusting the Landau Zener efficiency
of a RF sweep across the |1) — |2¢) transition at 835 G. At this field evaporation is performed. The mixture
at the beginning of the last evaporation is schematically represented by red circles.

The bottom panel shows the different scattering lengths a in the states involved, black and blue curves show
ainthe |1,) and |2p) states of ’Li and the red curve shows a/100 for |1¢)-|2;) collisions of ®Li.
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Figure 2.8: Left: Temperature of the ’Li (blue symbols) and °Li (red symbols) during the evaporation at 835 G.
The red diamonds are measured using a time of flight image in the axial direction, the red squares and blue
circles are measured using the in-situ imaging in the radial direction (the imaging system and temperature
measurement are explained in section 2.6). The dashed lines show the depth at which we reach Fermi degen-
eracy (red) and Bose-Einstein condensation (blue). Inset: Scattering rate of one ’Li atom at the center of the
6Li cloud as a function of trap depth. We observe a drop of the scattering rate at low trap depth leading to
slow cross-thermalization.

Right: Total number of atoms of each species (red: °Li, blue: “Li) as a function of trap depth during evapo-
ration. Note the very small loss of ’Li (a factor~ 2) in the process, demonstrating that cooling is ensured by
5Li.

Thermalization and evaporation

At 835G, and 30 uK, Li exhibits a unitarity-limited scattering rate, in the conditions given
above, 766 ~ 10kHz with -4 the fermion-fermion collision rate. The thermalization of
®Li is thus very fast. The collision rate of one “Li boson with fermions at the center of the
Fermi cloud is 767 ~ 70Hz and is higher than the boson-boson collision rate at this stage
y77 =~ 15Hz. ~g7 gives the timescale for thermalization of “Li with ®Li. So inversely to
the situation of the evaporation in the Ioffe trap, °Li constitutes the coolant. However, the
evaporation of the mixture is forced by lowering the laser power, thus lowering the trap
depth for both species. In consequence ’Li can undergo evaporation and if the trap depth is
lowered too fast, “Li will be lost before it cools down.

We optimized the trap lowering ramp by monitoring both “Li and °Li and verifying cross-
thermalization. The total evaporation ramp lasts for 3.2s and the final trap depth is about
Up ~ 2 uK. In figure 2.8 we display the number and temperature evaporation of both species.
We observe that ®Li and “Li are at thermal equilibrium during the initial steps of evapora-
tion. Furthermore we observe a very high efficiency of the dual species-evaporation on both
species in the initial steps, showing very little atom losses.

At low trap depth, as displayed in figure 2.8, the cross-species scattering rate 57 drops.
As a consequence, the thermalization between “Li and °Li takes longer and longer. We
observe that in the last stages, when stopping evaporation, a slow thermalization dynamics
takes place on “Li (see fig. 2.9 for a fast evaporation to a shallow trap) which can be explained
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Figure 2.9: ’Li thermalization dynamics after a fast evaporation (2s) to a trap depth (Uy ~ 2puK). Left:
temperature (squares) and number (circles) as a function of time. Right: condensed fraction Ny/N as a func-
tion of time, comparison between the measured one (circles) and the one calculated from temperatures and

numbers (squares).

by a partial cross-thermalization. The condensate fraction of “Li grows significantly in one
second, accompanied by a temperature decrease by 40 % and an atom loss of the same
order. We make a comparison between the condensed fraction measured using the density
profile and the one calculated from the ideal Bose gas prediction No/N = 1 — (T/T¢)? using
the temperature and numbers measured. At initial times ¢ < 1s the observed condensate

fraction disagrees with the expectation, signalling that thermalization is not yet achieved.

In order to ensure cross-thermalization, we systematically wait at least 700 ms at the end
of evaporation before running experiments on the mixture. Once we have obtained a degen-
erate mixture, we vary the magnetic field to the desired value where we want to perform the

experiment. The ramp to this field is done during the last wait time.

2.6 Imaging

The atomic density profiles that we have presented until here, from which we extract
experimental observables, have been obtained using absorption imaging. This technique
is based on the recording of the optical density of the atomic cloud on resonant light. The
intensity of a light beam propagating along the z direction through an atomic cloud is given
by the Beer-Lambert law:

I(@,y) = Io(z,y)e” P, (2.6)

where OD is the optical density and Iy is the initial beam intensity. The optical density is
OD(a,y) =0 [ dznla.y.2) 27)

where n is the cloud’s atomic density and o is the absorption cross-section of one atom.
Thus recording the light intensity of a beam on a CCD camera yields the integrated density
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in the propagation direction, the intensity Ij is recorded in the absence of atoms and the ratio
I/, gives the optical density. At resonance the theoretical expression of the cross-section is
o = 6m(\/27)? x C where C is the Clebsh-Gordan coefficient for the absorption transition
and light polarization. However we cannot rely on this expression since experimental im-
perfections can reduce the cross-section, for instance if the imaging light’s spectral width is
not narrower compared to the atomic natural linewidth, the absorption at resonance is re-

duced. We thus have to measure the cross-section experimentally.

=
/TN

Figure 2.10: Schematic representation of the imaging system. The imaging directions are indicated by the
purple arrows, we show three different optical density images, obtained from a Bose-Fermi mixture. A BEC of
in the |2;,) state is imaged in the radial direction, together with one spin-state of a degenerate Fermi gas, the
other fermions spin state is imaged in time of flight in the axial direction.

In the dipole trap, there are two directions of propagation used for imaging: one along
the trap symmetry axis (z direction), parallel to the magnetic field, with o polarization, and
one along its radial direction with 7 polarization (fig. 2.10). The axial imaging can yield ‘time
of flight’ pictures, which are obtained after release and expansion of the cloud. The radial
imaging can be used while the atoms are in the trap - ‘in situ imaging’- or after a time of
flight. In the non-degenerate regime, we can infer the cloud’s temperature by the radius of
the cloud: In situ, according to (1.16) the axial gaussian width is given by

o, =/ kgT /mw? (2.8)

thus fitting the observed distribution with a gaussian yields the temperature of the cloud.
In the other direction, after a long time of flight, the spatial distribution reflects the initial
momentum distribution and we can also obtain the temperature this way.

The imaging resolution in the radial direction, about 5 um is not much smaller than the
cloud’s radial size, as a consequence, the image obtained by this imaging does not reflect
the real optical density because it is spread in the radial direction. Thus only the doubly
integrated density is accurate. A further consequence of this low resolution is that this
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imaging can be used only in the linear-absorption regime: /Iy ~ 1 — OD: The convolution
of the optical density by the resolution smearing conserves the total atom number only in
this linear regime [Nascimbene, 2010]. A solution to circumvent this limitation is to do a short
time of flight, the cloud expands radially much faster than axially thanks to the high aspect
ratio of our trap (w,/w, > 10) and the optical density can be reduced without modifying the

axial distribution.

Using acousto-optic modulators, we are able to shift the light frequency to the transitions
frequency at high field, this shift is of the order of ug x B ~ 1.2 GHz at B = 850 G where g
is the Bohr magneton. This way we can image the atom cloud directly at high magnetic field,
and thanks to the energy splitting of the internal states our imaging is spin-selective, further-
more when in the Paschen-Back regime the imaging transitions are closed transitions. Our
CCD cameras (Pixelfly QE) are able to acquire two subsequent images with a short time sep-
aration (as short as 3 us), allowing to image two spin-states in the same imaging direction).
In total we can image two states in situ and up to two other states in time of flight in the axial
direction. When imaging several spin states of the same cloud, precautions must be taken in
order to avoid significant heating by the first imaging pulse [Nascimbene, 2010, Navon, 2011],
which would distort the density distribution. When imaging both states of a strongly inter-
acting ®Li Fermi gas this limits the duration of the pulses to 40 us. When imaging the “Li
Bose gas and one fermion state in situ, it is safer to image the bosons first since they are in
minority and can only weakly perturb the fermions.

2.7 Calibrations

2.7.1 Imaging Calibration

We have written earlier that the absorption cross-section of the atoms on the imaging light
differs from the ideal case and thus must be calibrated experimentally. The knowledge of this
cross-section allows to back-out the number of atoms in the line of sight - the 1D integrated
density. To calibrate it, one has to find an independent way of extracting the integrated
density, by measuring variables to which it is related. For instance one could measure the
two- or three-body losses decay time, which, involving two- or three-atom collisions depends
on the local atomic density. Since part of our work has been to explore three-body losses, we
perform an independent calibration, with which we calibrate the doubly-integrated density.
The doubly-integrated density is the observable we use in the experiment, and from the
knowledge of the trap frequencies and the equation of state of the gas it can be related to the
1D integrated density.

©When two fermionic atoms are paired, the imaging frequency is shifted by the binding energy. However this
has a significant effect only if the binding energy is large compared to the imaging transition linewidth which is
not verified in the experiments we report in this thesis.
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Figure 2.11: Calibration of the doubly integrated density for the |2;,) state: the left picture shows data points
obtained by an integration of the optical density measured, the black curve is the theoretical profile that is
calculated from the extent of the cloud (Thomas-Fermi radius), the trap frequencies and the scattering length.
Using this curve we correct our doubly integrated density (right).

This calibration is obtained by the in-situ imaging of degenerate interacting gases.
From the equations of state of interacting Bose and Fermi gases seen in the first chapter of
this work, and using the local density approximation, the density profiles of degenerate
gases depend on the total atom number contained in the gas. In the case of a Bose gas, the
Thomas-Fermi radius of a BEC in a harmonic trap given by equation (1.36) depends on the
total number of atoms present in the cloud, contrary to the case of an ideal thermal gas where
it depends only on temperature. This radius can be measured with good precision, this way
we get a calibration factor (acorr) for the integrated density as represented in figure (2.11)
and obtain an absolute measurement of the doubly integrated density and of the total atom
number. This calibration depends not only on the imaging light absorption cross-section
but also on the measure of the radial extent of the BEC that will depend on the imaging
magnification and the parameters that enter expression (1.36): the trap frequencies and the
scattering length (obtained from the magnetic field), all these parameters can be measured
independently. We can then back-out the experimental absorption cross-section.

An alternative method we also use to calibrate the total number for bosons is to compare
the temperature at the onset of BEC to the critical temperature calculated using eq. (1.13).

By these two methods we get for bosons:
In the |1,,) state : using the Thomas Fermi radius radius : acorr = 2.4(5).
In the |2,) : using the TF radius acorr = 2.8(5), and using the critical temperature:
acorr = 2.7(5). The origin of such a large acorr is not fully understood. A reduction of
detectivity by a factor ~ 1.7 is due to a finite spectral width of the probe light but this factor
is still far from the reductions cerr = 2.4 measured.

To calibrate °Li imaging at high field, we use a balanced Fermi superfluid at unitarity, its
equation of state has been measured and calculated with great precision giving a Thomas-

DThe magnification of our imaging is measured by monitoring the free fall of gases under the effect of gravity.
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Fermi radius in the i direction: R; = ¢'/4kph/mw; where ¢ = 0.37 is the Bertsch parameter

and kp = +/2m@(3Ng)1/3/h is the Fermi wave-vector of the trapped gas with total atom
number N;.

Using the same procedure as for bosons we measure acorr = 1.9(5).

2.7.2 Frequencies measurement

A precise and accurate knowledge of the trap frequencies is essential for nearly all measure-
ments on our gases. We use two different ways to measure the trap frequencies: center-of-
mass (CoM) oscillations or parametric excitation. CoM oscillations consist in displacing the
center of gravity of the cloud away from the center of the trap and letting it evolve, if the
cloud remains in the harmonic region of the trap the CoM oscillates at the trap frequencies
(fig. 2.12). Trap anharmonicities cause damping of this motion.
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Figure 2.12: Oscillation of a BEC in the ODT in the axial direction. The fit by a damped sine function shows

excellent agreement, with a long damping time (> 20s), showing the high harmonicity of the magnetic con-
finement.
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Figure 2.13: Atom number left in the dipole trap after a parametric excitation, for a trap depth of Uy ~ 12 K.

To apply a parameteric excitation on the cloud we can for example weakly modulate
the trap power. The response to this excitation is measured as a heating or the atom loss

it causes (fig. 2.13). The resonance frequency is twice the trap frequency provided the
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gas is not superfluid and in the collisionless regime w/y > 1 where w is the weakest
trap frequency and ~ is the collision rate. In the opposite case: the hydrodynamic regime
reached for w/y < 1 or when the gas is superfluid, the response frequency is modified
[Pitaevskii and Stringari, 2003, Riedl et al., 2008] and it is safer to use center-of mass oscilla-

tions(™).

In the dipole trap, the radial confinement is provided by the laser, and the axial con-
finement is dominated by the magnetic field at weak laser powers. The harmonicity of the
magnetic confinement is much higher than the laser confinement, this results in higher pre-
cision on the knowledge of the axial confinement at low power (typically dw,/w, < 1072)
compared to the radial confinement (10~1).

2.7.3 Magnetic field calibration

Another essential calibration on the experiment is that of the magnetic field. The value of
the magnetic field fixes the scattering lengths and the imaging transitions frequency of the
atoms, and a precise knowledge of these values is essential. The magnetic field is calibrated
on our experiment by measuring the frequency of hyperfine transitions of “Li, whose field-
dependence is known with great precision. The usual transition we use is |1,) — |2,) which
has a frequency of the order of 175MHz and a field dependence of ~ 40kHz/G. For a
more precise measure we use the transition |2,) — |5,)™, with a higher field sensitivity
(~ 2.7MHz/G).
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Figure 2.14: Example of magnetic field measurement by radio-frequency transfer from the |1,,) state to the
|2,) state by monitoring the population transfer. The central frequency is extracted by a gaussian fit to the
data, yielding here a magnetic field B = 837.5(1) G.

The magnetic field measurement consists in monitoring the fraction of atoms transferred

™ Note that our spin-balanced Fermi gas at 835G is already in the hydrodynamic regime at the beginning of
the last evaporation.
™M The |5p) state connects to the | = 2, mx = 1) at low field.
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for a pulse of fixed frequency (Fig. 2.14). This acquisition takes typically one hour, the field
stability during this time, given by the width of the transfer spectrum is AB < £100mG.
The field stability on time scales of two days can be higher, up to 0.3 G, and for measurements
requiring a precise knowledge of the field we have to calibrate the field every day.

Summary

In summary we have presented how degenerate quantum gases of lihtium are prepared,
starting from a dilute hot vapor, using first laser cooling then evaporative cooling. Once the
atoms are placed in the optical trap, the magnetic field is freely adjustable, this allows us to
control the two-body interactions inside the gas. By choosing the constituents of the gas we
can study different many-body systems of bosons and fermions. Using these preparation
schemes we prepared Bose gases with a resonant two-body interaction with which we stud-
ied three-body recombination at unitarity as presented in chapter 4. Next, we have prepared
doubly-superfluid mixtures of bosons and fermions, we report on the results about these
studies in chapter 5. But first, next chapter is dedicated to a novel laser cooling method
which opens possibility for improvements of the set-up both in terms of sample size and
cycle rate.
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In chapter 2 we quote a temperature at the end of the MOT-CMOT phase of 600 uK on
our experiment. Some other experimental teams report temperatures down to 300 K with
the same cooling technique, but these results remain far from the expected temperature of
Doppler cooling on a two-level atom: the Doppler temperature T, = Al'/2kg = 140 K. This
poor cooling efficiency is explained by the fact that the upper hyperfine states of lithium on
the Dy line are unresolved. Thus the model of Doppler cooling on one cycling transition is
too simple and the result of this model does not apply. Ironically, in the past the two-level
model has also showed too simple to predict temperatures of laser-cooled samples, but in
the other direction: it predicted higher temperatures than measured [Lett et al., 1988]. The
origin of these low temperatures lied in the multi-level structure of the atoms as well as the
polarization gradients present in the cooling light, [Dalibard and Cohen-Tannoudji, 1989], the
story of these discoveries is now a classics of atomic physics history that led to the discovery
of Sisyphus cooling.

In potassium isotopes, the typical temperature reached in a MOT is about 150 ;K close
to the Doppler temperature, but the usual sub-Doppler cooling by the Sisyphus mechanism
is absent, due also to a narrow hyperfine structure. To solve this problem, the other team
of the LKB ultracold Fermi gases group has used a technique close to Sisyphus cooling:
‘grey molasses cooling’ to lower the obtained temperature [Rio Fernandes et al., 2012]. Grey
molasses cooling was designed after Sisyphus cooling was discovered more than twenty
years ago [Grynberg and Courtois, 1994, Weidemiiller et al., 1994], and soon implemented on
ceesium and rubidium [Boiron et al., 1995, Esslinger et al., 1996].

Grey molasses cooling is explained in the references cited above and in good details in
[Cohen-Tannoudji, Claude, 1996] (in french), we will outline its working principle here, and
focus on the effect of the A configuration present with the cooling and repumping beams,
which we have explored [Grier et al., 2013].

3.1 | Grey molasses cooling in a nutshell

Grey molasses cooling relies on the existence of bright and dark states due to a degen-
eracy of the ground state. Owing to quantum interferences, the dark state is not coupled to
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the excited state by the laser and as such its energy is not light shifted. Bright states are not
transparent to light, as a consequence they experience a light shift proportional to the light
intensity®. These bright and dark states depend on the transition considered and the light
polarization. For a simplified picture we will consider a model with three levels, two ground
states and one excited state with width I'. This system is shone by one standing light wave,
with detuning A with respect to the frequency of the ground-excited transition, for which
one of the two ground levels is a dark state, the other one being bright.

z

Figure 3.1: A grey molasses cycle. The bright state is dressed by the light standing wave, with a space variation
of the light-shift and optical-pumping rate (linewidth), represented here for a wave with § > 0. First the atom
is coupled from a dark state to a bright state at a minimum of the potential created by the light shift. Second
it climbs up a potential hill before being pumped back to a dark state through the excited state.

The grey molasses principle is represented in figure 3.1. First, the atoms trapped in a
dark state leave this state to a bright state. This mechanism can be due for example to the
fact that the atom does not follow adiabatically the dark state in which case it is referred-to
as motional coupling, or to an off-resonant Raman. The important point is that the coupling
out of the dark state has the highest probability where the bright state is closest to the dark
state. For positive detuning A > 0, the light-shift is positive and increases with intensity
such that the two states are closest at the bottom of the potential hill. After being transferred
into the bright state, the atoms start climbing the hill and convert their kinetic energy into
potential energy. Finally, when the atom reaches the top of the hill, it is optically pumped
back to the dark state. To understand why, we can use the dressed atom formalism, in
which the bright state is dressed by the light and acquires an excited state character. Since
the excited state has a linewidth T', this dressing results in a finite width for the bright states
I' =T(Q(2)/A)? where Q) is the Rabi frequency associated to the standing wave, which is
proportional to the square root of its intensity. The space-varying light-shift and linewidth

@The light shift is precisely the potential that is used for optical trapping by a dipole trap.
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are represented in figure 3.1 together with the full cycle. The net result of this cycle is a
kinetic energy loss when climbing up a light-shift potential hill, this energy being carried
by the spontaneous photon emitted at the end of the cycle. This kinetic energy loss for one

atom results in a temperature decrease for an atomic ensemble.

To apply this technique, one thus needs a transition which contains at least one dark
state, shone with a light with positive detuning. The existence of a dark state is ensured
provided the light addresses a transition ¥ — F’ with IV < F ®) in which case the bright
and dark states emerge from the Zeeman degeneracy in the lower manifold. Both for
potassium and lithium, since the upper states are unresolved the use the D line, induces

excitation of other transitions, forcing to use the D; line.

The application of this technique on the D; line of potassium was a success and led to a
temperature 7' = 20 K much lower than the Doppler temperature. Following this success,
we decided to use it on “Li in order to improve our experiment performances, as reported
below and in the corresponding article [Grier et al., 2013] (in appendix C).

3.2 | Implementation on ’Li
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Figure 3.2: Left: Laser scheme used for the D; grey molasses cooling on ’Li. The cooling scheme has a strong
coupling laser (principal beam, black solid arrow) 5 blue detuned from the |F' = 2) — |F’ = 2) transition and
a weak coupling laser (repumper, grey solid arrow) d; blue detuned from the |F' = 1) — |F’ = 2) transition.
Right: example, in the case of o1 polarization of the principal cooling light (driving mr — mp + 1 transitions),
the dark state is the |[F' = 2, mp = 2).

---3

Cooling

We used the D transition F = 2 — F’ = 2 for the cooling transition, addressed with

®Strictly speaking this is true only for bosonic isotopes, for fermionic isotopes the existence of a dark state

depends on the light polarization.
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a light frequency wy. Additionally, as is the case for the MOT stage, we need a repumper
beam in case the atoms fall into the F = 1 manifold®, this repumping is done on the
F =1 — F' = 2 transition with a frequency w;. We note §, the detuning of the cooling
light and ¢; that of the repumper as represented in figure 3.2. The repumping light was
obtained by using an electro-optic modulator on the beam path of the cooling light with an
adjustable frequency. The cooling beams have a 1/¢? radius of 3.5 mm with a peak intensity
Imax = 4.5Is. The intensity of the repumper I is much weaker than that of the cooling
beam Ic: Ir/Ic ~ 0.03. We have used for the D; beams the same directions as the MOT
beams, with opposite polarization, we thus have a light wave in three dimensions, with a

varying polarization in space.

This grey molasses cooling applied after the CMOT phase results in a successful
sub-Doppler cooling of 100 % of the atoms to 60 uK in less than 2ms. This temperature is
reached for a principal detuning d2 = 27 x 27 MHz and when the Raman condition (RC):
d1 = 09 is respected between the two light frequencies (figure 3.3). The dependence of the
temperature on the relative detuning between the two light frequencies § = d; — J, for a
fixed principal detuning d, = 27 x 27 MHz is represented in figure 3.3.
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Figure 3.3: Dependence of the temperature on the relative detuning § between the cooling and repumping
frequencies, for a fixed principal detuning 6o = 27 x 27 MHz. § is in units of the excited states linewidth:
I' = 27 x 5.9MHz. Left: results in the optimal beam alignment conditions. Right: on a broad range of
detuning with non-optimal alignment, the dotted line indicates the initial temperature after the MOT-CMOT
phase and the vertical dashed line indicates the resonance position for the repumping light.

We notice first in figure 3.3 a broad spectrum, with a cooling to a temperature of 250 K
obtained between § = —6I" and 6 = —1I". Second, we observe a very sharp feature around
the Raman condition, with an enhanced cooling at 6 = 0 and a strong heating when the
repumper is detuned to the blue of the Raman condition § > 0. In order to understand

©The F' = 1 manifold constitutes an ensemble of dark states but the coupling by motional coupling or Raman
transition out of these states is much too low and we need a repumper.
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this sharp feature obtained with such a weak repumper, we have explored theoretically the
effects of the Raman configuration. We presents our results in the following.

3.3 The A model.

Our aim is to unravel the effects of the cooler-repumper configuration. So we simplify
the situation to a 1D situation and we consider only a three-level A model illustrated in figure
3.4. Since the frequency difference (hyperfine splitting of “Li: 803.5 MHz) is small compared
to the absolute frequencies, we write two waves of the same frequency w; ~ ws ~ w = kg,
only spatially dephased by a phase ¢. The principal cooling transition is labeled here and
below as transition 2, between states |2) and |3) with a Rabi frequency Qg = I'\/Ic /215 The
repumper transition is labeled 1, between states |1) and |3) with Rabi frequency ©; much
weaker than .

We wish to understand the effect of varying the detuning (§) of transition 1 with respect to
the Raman condition with all others parameters fixed.

11

Figure 3.4: The A scheme, a simplification of the ’Li level structure, used to understand the effect of the
Raman configuration. The cooling (repumping) light is represented by a standing wave with Rabi frequency

Qa(2) (Q1(2)).

The light-atom interaction in the rotating wave approximation is written :

Var = i cos(kz) (12) (3| + h.c.) + A€ cos(kz + ¢) (|1) (3] +h.c.)
+ hdq |2) (2| + hoo |1) (1]

(3.1)

The light force at position z from (3.1) is given by F' = <—VVAL> = —Tr [ﬁVVAL} where
p is the density operator and we get:

F = hk (sin(kz + ¢) QoRe pag + sin(kz) 21Re p13), (3.2)

where p;; are elements of the density matrix, and we can obtain the wavelength-averaged
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force F:
1 A
Fv) = — / dz F(z,v) (3.3)
A Jo
th A
Fv) = o dz (Qosin(kz + ¢) Re pag + Qysin(kz) Re p13) (3.4)
0

where A\ = 27 is the wavelength of the light waves and we have anticipated that the force
depends on the atom’s velocity as will become clear below.

The usual formalism used to compute the atoms dynamics is to consider the light force
as a Langevin force. Its mean value is 7 (v), and the fluctuations around this mean will give
rise to diffusion in momentum space, characterized by the diffusion coefficient D(v) > 0.
The velocity distribution of an ensemble of atoms subject to a Langevin force is a stationary
solution to the Fokker-Planck equation (FPE) (see appendix A.1). Such a solution can be
expressed as a function of 7 and D:

Py (v) o Dzv) exp (m/ov dv’ gEzID (3.5)

For a cooling force:
F(v) = —aw, (3.6)

where o > 0 is the friction coefficient, we identify (3.5) with a Boltzmann distribution to

obtain the temperature(d)

ksT = D(0)/ . 3.7)

To calculate the temperature, one then needs F and D. However, in order to reveal the
physical mechanisms in action, we only calculate the force F(v) and the spontaneous emis-
sion rate obtained from the excited state population ps3:

F/ = Fp33. (38)

I gives the number of scattered photons as a function of time, each photon leading to a
recoil of the emitting atom. Since photons are scattered in a random direction, spontaneous
emission can be seen as a random walk in momentum space leading to a broadening of the
momentum distribution, thus a heating. Other sources of fluctuations should be taken into
account to obtain D [Cohen-Tannoudji, Claude, 1990], but since our model (3.1) is already a
gross simplification of the physical system, we do not expect to be able to quantitatively
predict a steady-state temperature. Instead, restricting our analysis to photon scattering
rate and the force suffices to determine whether the action of the weak repumper serves to
heat or cool the atomic ensemble.

@This is verified only provided that 7(0) = 0, a < 0 and that the velocity distribution covers a region where
the terms F = —av and D = D(0) are dominant.
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The evolution of the density matrix p is obtained through the optical Bloch equations
(OBE):

d _1p. dp
i—p_—|Var, —i—z( ) (3.9)
dt h |: } dt spont. emis.

Since the temperature T = m(v?) /kp verifies T < I'/k in the situation we are considering,
(13 mK for lithium), the atomic velocities are such that the dynamics of the center-of-mass is
much slower than that of the internal degrees of freedom and we can assume that the internal
variables are in quasi-stationary state. We can then replace full time derivatives on the left
hand side of (3.9) by a partial spatial derivative times the atomic velocity

4.0
0z
Using Q;(z) = ; cos(kz + ¢;), and setting h = k = 1:
.0 . I
iv 6[))22 = —2i0(2) Im po + i pss (3.10)
.0 . T
v g;l = —2iQ(2)Imp13 + i3 P33 (3.11)
.0 T
') 523 = (02 — 25)023 + Qa(2) (p33 — p22) — Q1 (2)p21 (3.12)
.0 T
(XY ap;?’ = (51 - z§)p13 + 91(2’) (p33 - ,011) - QQ(Z)p12 (3.13)
.0
20 apil = (62 - 51)p21 + QQ(Z)pg)l — Q2(Z)P23- (314)

I have solved these equations using two different methods, the solutions yield the ex-
pression of F(v) and I'. Motivated by the fact that the repumping intensity is much
smaller than the principal, we used a perturbative approach using €2; as a small parame-
ter to solve this system, in section 3.4. This approach allows us to understand the mecha-
nisms associated to the presence of the repumper. We further generalize this approach by
a non perturbative treatment in terms of continuous fractions based on a previous work
[Kosachev and Rozhdestvenskii, 1994, Kosachiov et al., 1997] in section 3.5.

3.4 The perturbative approach

We perform here a perturbative approach in powers of the repumper Rabi frequency
1, motivated by the observation that our optimal temperatures were obtained for a weak
repumper ((21/92)? < .03). We further simplify it to the case ¢ = 0, because for a finite
phase ¢, the approximation leads to divergencies at the nodes of wave 2. The validity of our
assumptions will be discussed in section 3.5. The expansion of the density matrix reads

pij = Zp“ ), (3.15)

knowing p;;, we can calculate the force. The friction term corresponds to the first order in an
expansion in powers of v and so we write:

%—dem . (3.16)
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Inserting the expansion (3.16) into (3.10-3.14), yields the relations:

ol =1k I g
L — _2cos(z)Im ,053_ M4 *Péé : (3.17)
0z 2
k=) r
% = —20y(2) Im pii") 4 = pliF) (3.18)
z 2
aply Y L' k) (I-Lk) _ (I-1k) (LK)
i oy (61 — 25) 13 =cos(z)(pss " —p11 ) — Q2(2) pis (3.19)
apls Y k) k) Lk (I—1,k)
7;72;2 — (02 — ZE)PQ:’; = Qa(2) (P3é — pyy ) —cos(2) pyy (3.20)
ey OplEY Lk -1k
5 P4 + i = 0y (2)plf") — cos(2)ply Y. (3.21)

0z

with pz(f’l) =0ifk < 0orl < 0. The pgf’l) coefficients can thus be obtained recursively. To
lowest non-vanishing order in Q;, we eventually find:
B Q% 27

2m Jo

dz sin(z) (2Re py") + Reply"). (3.22)

For the spontaneous emission rate we get:

(91)2 27 2.0
F/ =T 7 ) dZ péS ) (3.23)

The expressions of p:%’o), Re p%l) and Re p%l) expressed in terms of lower-order coefficients

are given in appendix (A.2).

We compare in figure 3.5 the experimental temperature with our findings for the fric-
tion coefficient (3.22) and spontaneous emission rate (3.23) as a function of detuning ¢ for a
principal detuning J2 = 27 x 27 MHz and in appendix A.3 for 17MHz and 10 MHz.

An analysis of figure 3.5 yields a first qualitative understanding of the temperature
dependence on the Raman detuning ¢. First, we notice that the spontaneous emission
rate drops at the Raman condition, precisely where the temperature is minimum. Second,
we observe two sign reversals in the friction coefficient, one centered around §; = 0,
corresponding to the resonance of the probe beam with the [1) — |3) transition. A second
one is centered on the Raman condition, from cooling (o > 0) on the red of this transition to
heating (o < 0) on the blue (the friction coefficient displays an unphysical divergence on
the Raman condition due to the assumptions of our model, that will be resolved in section
3.5). Let us explicit the mechanisms responsible for these features.

First, the decrease in emission rate is due to the existence of a dark state (|NC)) in the
three-level system when the two frequencies fulfil the Raman condition 6 = 0. This dark

INC) = (0 [1) — Q1 ]2))/1/92 + 2. (3.24)

state reads:
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Figure 3.5: Cooling efficiency as a function of the repumper detuning §.Top: Experimental temperature, same
as fig. 3.3. Middle: Friction coefficient «, showing a sign reversal from cooling to heating at § = 0. Bottom:
Spontaneous emission rate IV = I'p33, showing a drop around the Raman condition (§ = 0) due to the
presence of a dark state. In the middle and bottom panels, we plot our results for two different principal beam
Rabi frequency 25, because we have only an approximate idea of this parameter in the real 3D situation with
random relative phase (red solid line 25 = 3.4T", blue: Q5 = 2.11).
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The presence of this dark state and a reduced spontaneous emission rate indicates that
the Raman condition creates a new grey molasses cooling mechanism much like the one
described earlier. In addition, we need to understand why the probe’s action results in
cooling to the red of the Raman condition § < 0 and turns into a strong heating to the blue
§ > 0©. Since the probe’s effect is amplified only close to the Raman condition, we will
focus on this range.

For this purpose, we make use again of the dressed-atom picture: since our principal
beam is much stronger than the probe, we will consider the levels |2) and |3) dressed by the
strong pump beam, and try to understand the effect of the probing of these by the level |1)
coupled with the repumper light. The dressing of |2) and |3) by the strong light with Rabi
frequency Q9(z) gives rise to an Autler-Townes doublet structure which follows the spatial
modulation of the standing wave:

12') o [2) —iQ0a(2)/62 |3) (3.25)
3") o< —i(2)/62]2) +[3) . (3.26)
Since our pump beam is far detuned d2 > 9, the state |2) caries very little |3) character

while |3) is mostly comprised of the excited state |3). As a consequence |3) has a short life
time: I'3) ~ T, while |2') has a long lifetime modulated in space

%) = 1(Qy(2)/6,)? < TO. (3.27)
We note in addition that these two states are light-shifted. Their position in ¢ are:

O3~ —6y — Qa(2)2/6, (3.28)
812 ~ Qy(2)? /6, (3.29)
These dressed states are usually represented in the form of a cascade of states where each

doublet is separated by a pump photon (fig. 3.6). Finally we reintroduce by hand the effect
of the repumping radiation coupling |1) to the radiative cascade. The coupling rates can be

approximated by:
L L= (2) (3.30)
Y2 2 (T(2)/2)° + (0 —71())2 '
Q1 (2)? r (3.31)

T T TP 6 - ()

This approximation treats the three level system like two two-levels systems. (|1) and |2),
and |1) and |3')), it is valid provided many-repumping-photon effects can be neglected
which is verified in the range 5| > T'(€22/d2)? (out of the Raman resonance).

©)This situation is somehow inverse from the ‘normal’ grey molasses cooling mechanism in which one needs
a blue detuning A > 0 to cool.

OThis is an approximation, at the antinodes of the intense wave r1?') can be equal to a fraction of T'.
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We can now try to understand how atoms loose or gain energy by cycling through the
radiative cascade, as a function of §. To understand effects on the temperature, we can con-
sider only spontaneous emission events out of |2) to |1) whose rate is given by (3.27). Indeed
a coherent transfer from |1) to |2') does not extract energy from the atomic ensemble

First, for repumper detunings between ¢ 1) and 0, Fig. 3.6(b), we predict cooling. For
this region, the atoms are initially pumped into |3’). Here the light shift modifies the rel-
ative detuning, favoring coupling near the nodes of the light. Since |3’) has a very short
lifetime, spontaneous decay drops the atoms near to the nodes of the longer-lived |2), and
they travel up the potential hill into regions of larger light shift before decaying, yielding
cooling and a positive a. Second, for the case of the repumper tuned slightly blue of the nar-
row doublet state, § > 6127, shown in Fig. 3.6(a), the atoms are pumped directly from |1) into
|2). However, this pumping happens preferentially at the antinodes of the standing wave
as the repumper intensity is greatest, the linewidth of |2’) is the largest, and the light shift
minimizes the detuning of the repumper from the |1) — |2') transition for the ¢ = 0 case
considered here. On average, the atoms exit this state at a point with a smaller light shift
through a spontaneous emission process either into the cascade of dressed states or directly
back to |1). As a result, we expect heating and « < 0 in this region. The negative sign of « in
the region ¢ < 6/*) can also be easily understood by the same means.

2', n+1)

13, n)
1, n)

1, n)

|11 n_1>

Figure 3.6: The cascade of levels dressed by transition 2, the space-varying light shift and linewidth are rep-
resented. Traces show typical cycles of atoms pumped from |1) and back depending on the detuning of wave
1. The detuning of the repumper modulates the entry point into the cascade of the dressed states. Trace (a)
represents a typical cycle for 6 > 0 leading to heating, on the right, trace (b) shows a cycle for § < 0 which
leads to the cooling feature observed experimentally.
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We conclude this section by stating that the experimentally observed change of sign of
the force close to the Raman condition is qualitatively well described in our perturbative
model. The model further reveals the importance of Raman coherence and the existence
of a dark state. The dark state together with the friction coefficient associated with cycles
represented in figure 3.6(b) correspond to a cooling mechanism analogous to that of grey
molasses. In this way, the bichromatic system provides an additional grey molasses scheme
involving both hyperfine states which complements the grey molasses cooling scheme on
the principal transition. On the other hand, when the friction coefficient is negative in the
vicinity of the two-photon resonance, it turns into a heating mechanism that overcomes the
standard grey molasses operating on the F' = 2 — F’ = 2 transition.

The perturbative approach analyzed in terms of the dressed cascade has successfully re-
vealed the mechanisms responsible for the experimental temperature. However it also pos-
sesses some shortcomings. First « displays a divergence on the Raman condition, this diver-
gence is due to a breakdown of the validity of our perturbative approach at the RC where 2,
is not the smallest scale in the problem (§ — 0). Second, for the assumption Q2/Q; > 1 to
hold and the perturbative approach to be valid, we had to make the assumption that the two
waves are exactly in phase with each other ¢ = 0. This is not verified experimentally, where
the geometry of our cooling beams (6 counter-propagating beams in 3 dimensions) creates a
spatially-varying phase and an atom moving across the laser field will in general experience
all possible phases. We wish then to calculate a phase-averaged force:

1 27
= — . . 2
Fohy =5 [ Flooyao 6:32)
Furthermore using (3.24) the dark state is space-dependent for a non-zero phase because the
ratio Q1 (z)/Q2(z) varies in space. We must then also calculate a phase-average spontaneous
emission-rate and check wether the physical picture derived with the perturbative approach
still holds.

3.5 The continued fractions approach

This can be realized using a more general approach based on the projection of the density

matrix on the Fourier basis:
n=-+o00

pii= > puleinhs (3.33)

n=—00
Injecting this expansion in (3.10-3.14) yields recursive relations between different Fourier
components of p. Kozachiov etal. [Kosachev and Rozhdestvenskii, 1994, Kosachiov et al., 1997]
express the solutions of these relations for a generalized A system in terms of continued
fractions. We have used their results to numerically solve the Bloch equations. We then
compute the force F(v) to arbitrary order of €; and extract a by means of a linear fit to the
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small-v region.

First, in figure 3.7 we compare the numerical results for o to our perturbative expansion,
for ¢ = 0, where we see that the features derived above still hold. Additionally the diver-
gence at § = 0 has been regularized in the numerics. Another noticeable difference we note
is that the magnitude of the friction coefficient near the two resonances is reduced in the con-
tinued fraction approach whereas away from the resonance the two approaches agree. This
points out the importance of many-repumper-photons processes near resonance, processes

absent in the perturbative approach.
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Figure 3.7: Left : Comparison of results using the perturbative calculation (dashed), and the continued frac-
tions (solid) for the ¢ = 0 case, with the same parameters as in Fig. (3.5) and 2, = 2.1I". Right: Continued
fractions solution of the photon scattering rate I'" = T" p33 averaged over all relative phases of the repumper
and principal standing waves as a function of the two-photon detuning . Velocity-dependent effects are taken
into account here by computing an average of (F/>¢ (v) weighed by a Maxwell-Boltzmann velocity distribution

at 200 yK.

Next, in figure 3.7 we plot the spontaneous emission rate calculated by continued frac-
tions. This rate does not reach 0 at the Raman condition because the dark state is space-
dependent for a finite dephasing and the atoms can be motionally coupled out of this state.
To take into account these velocity-dependent effects we plot I'' averaged over all relative
phases and velocities, weighed by a thermal Maxwell-Boltzmann distribution with temper-
ature T' = 200 pK. (I') retains a minimum near the Raman condition, in agreement with our

previous findings.

Finally in figure 3.8 we plot (F)4(v) for six different detunings §. We recall that the
force leads to cooling when (F(v) x v) < 0 for all v in the velocity distribution of the atomic
ensemble whose extent is given by the thermal velocity vg, = +/kgT/m. We thus plot
in figure 3.8 (F)4(v) with v in units of vy,. The forces displayed are in good qualitative
agreement with the findings of the continued fraction approach, with a cooling character

when 0 < 0, a sign reversal at § = 0 and a heating force for § > 0.
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Figure 3.8: (F) , as a function of v for different values of § around § = 0. Vertical units: 1/hkT’, horizontal
units: the thermal velocity at T = 200 u K, vg, = /ksT/m.

We can now conclude on our theoretical investigation of the effect of the A configuration.
We have showed that this configuration creates an additional grey-molasses cooling mecha-
nism with a dark state present at the Raman condition, a motional coupling due to the space
dependence of this dark state and a cooling mechanism in the radiative cascade for 6 < 0.
An identical study has been later performed on potassium leading to the same conclusions
[Nath et al., 2013]. A complete study, taking into account the Zeeman degeneracy of the
hyperfine states can be performed, either by a numerical resolution of the optical Bloch
equations for the full system, or by a quantum Monte-Carlo approach [Dalibard et al., 1992],
such a work focusing on °Li is under progress [Sievers, F. and Wu, S., 2014].

Conclusion

As a general conclusion on grey molasses, we note that this method represents a
substantial gain in temperature from laser cooling and in the subsequent phase density.
Following the work in our group, a number of experimental teams have implemented this
scheme [Salomon et al., 2013, Nath et al., 2013, Burchianti et al., 2014], and another technique
successfully implementing sisyphus cooling on lithium has reached similar performances,
with the possibility to use far-from-resonant light [Hamilton et al., 2014].
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The situation on our experiment is special because we need to cool and trap simul-
taneously °Li and “Li, while the D; line of “Li is very close to the Dy line of °Li. This
correspondence results in a strong heating of the °Li cloud when implementing a D;
molasses on “Li, that cannot be compensated by keeping the °Li MOT light. It might be
solvable by implementing simultaneous D; molasses on 7Li and °Li. Otherwise the use
of the off-resonant technique of ref. [Hamilton et al., 2014] could allow to avoid exciting
the Dy transition of ®Li. We also would like to point-out that the Doppler cooling that we
perform in the compressed magnetic trap cools to temperatures comparable or lower than
achieved with a cloud cooled by grey molasses before being loaded in the magnetic trap.
The advantage of grey molasses is found on our experiment in fact in the transport to the
upper appendix, where the cold temperature protects the “Li cloud from being clipped by
the walls of the appendix and we can reach 100 % efficiency for this transport instead of 40%
in the absence of D; cooling.

The best opportunity oppened by grey molasses on lithium is to avoid the magnetic
trapping stage to load directly in an optical trap. With a temperature of 60 K the laser
power necessary to realise a sufficient trap depth can be easily achieved as shown recently
in [Burchianti et al., 2014, Salomon et al., 2014].
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Chapter 4

Three-body losses in strongly interacting
Bose gases

As discussed in chapter 1.4, dedicated to the physics of interacting Bose gases, one of the
main objectives of this research field is to study degenerate Bose gases under resonant inter-
actions. However this task is rendered experimentally challenging by the instability of Bose
gases with large scattering length, caused by three-body losses. In this chapter, we present
an experimental study of these losses, in the vicinity of a Feshbach resonance.

4.1 Three-body losses

Three-body losses originate from the recombination of three free atoms into a bound
dimer and a free atom (Fig. 4.1). During these inelastic collisions, the binding energy of the
dimer is released into kinetic energy of the products. The binding energy is usually higher
than the trap depth Uy and the products evade the trapping potential.

CWS :

Figure 4.1: Schematical representation of a three-body recombination event. Left, initial state of a 3-body
collision involving 3 free atoms. Right, final state corresponding to an inelastic collision forming a free atom
and a bound dimer (represented by the spring). Both products carry the binding energy of the dimer as kinetic
energy.

If we neglect one- and two- body losses, the local equation for the density n as a function

of time in a dilute gas is:

2 Lan® 4.1
= —Lyn @)
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where L3 is called the 3-body loss constant. By integration over the volume, we get for the
total number of bosons in the trap

% = —L3(n®)N (4.2)

where (---) means an average over the whole gas volume. Considering the case of a gas
at zero temperature with universal interactions described solely by the scattering length a,
assuming three-body losses are also described by the scattering length, then dimensional
analysis yields

Lz < ha/m. (4.3)

This a* scaling was also derived formally in [Fedichev et al., 1996]. So losses are enhanced
when increasing a and we expect ultracold gases to be unstable in the vicinity of a Feshbach
resonance. Dimensional analysis based on two-body parameters however does not yield the
exact expression of L3 because it is based only on the scattering length. We discussed the case
of fermions in chapter 1, the relaxation to deeply-bound dimer states is strongly reduced due
to Pauli blocking. Oppositely bosons easily decay to dimer states, the a* scaling is correct in
a first approximation, but it is modulated as a function of a. This modulation comes from
the solution of the three-body problem for resonant two-body scattering. It is illustrated in
figure 4.2 extracted from [Gross et al., 2010] where we see data for Ls (called K3 in the figure)
obtained for ’Li, the underlying a* scaling (dashed line) and the modulated theory (solid red
line). Let us explain this modulation of the a* scaling.
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Figure 4.2: Three body recombination constant L3 (called here K3) as a function of a through a Feshbach
resonance, from [Gross et al., 2010]. Blue and red points show the experimental data. The dashed purple
lines show the underlying a* scaling and the solid red line show the theory from a solution of the three-body
problem, see main text below.

4.2 = A glance at Efimov Physics

The 3-body problem for a resonant short-range 2-body interaction was studied by V. Efi-
mov [Efimov, 1970, Efimov, 1973]. He showed that at unitarity (1/a = 0) there exists an infinite
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series of trimers (3-body bound states) with energy

E, = —h—ZeQW/ 50 (4.4)

" mR? ’
where n refers to the n-th trimer and sp = 1.00624. R; is a length specific to the three-body
problem, which characterizes fully the trimer states properties such as energy and spatial
extent. The energy of these trimers varies as a function of 1/a as represented in figure 4.3, it
reaches the free atom continuum at a = a,, < 0. The log-periodicity present in the trimer’s

energies at 1/a = 0 is reflected in the series ay:
(py1 = ap e/ ~ 22 7q,. (4.5)

For a > 0, their energy eventually meets the energy of the universal dimer (—h?/ma?) at
a = a; and the trimers become indistinguishable from a free atom and one dimer (fig. 4.3).
The resonances of trimers energies with the dimers or with the continuum are responsible for
a modulation of the three-body loss constant Lg [Esry and Greene, 1999, Bedaque et al., 2000,
Braaten and Hammer, 2001], which is enhanced for a = a,, and reduced for a = a;}. These
resonances have been measured experimentally [Kraemer et al., 2006], demonstrating the ex-
istence of Efimov trimers 30 years after their theoretical prediction.

a<0 Energy a>0
3
A+A+A  l/a

.

Figure 4.3: Representation of the energy of the Efimov trimers (ET) (red solid lines) and of the universal dimer
(blue) as a function of 1/a taken from [Ferlaino et al., 2011]. The resonances in three-body recombination
happen when the energy of a trimer meets the free atom continuum on the a < 0 side (red arrow) and when
it joins the dimer energy on the a > 0 side (blue arrow). This picture was derived by V. Efimov.

An additional parameter enters the expression of Lj: the ‘inelasticity parameter’ 3. It
gives the probability amplitude for recombination (loss) to occur when three atoms are in
contact P,ss = exp(—2n3) so that finally, L3 depends on three parameters (a, Ry, 73):

a
Ly = —a'C(+
3 m ( Rt

with C(a/R,n3) a log-periodic function: C(a/R;,n3) = C(22.7a/Ry,n3). The ana-
lytical form of C has been derived [Braaten and Hammer, 2001], and using R; and

,13) (4.6)
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ns as fit parameters one can predict accurately the three-body recombination rate
[Kraemer et al., 2006, Zaccanti et al., 2009, Gross et al., 2010] (solid red line in fig. 4.2). R; and
n3 are a priori specific to each species and are extracted from the experimental data. Recent
theoretical and experimental works though propose a universal description of three-body re-
combination in terms of the Van der Waals length of the interaction potential and the strength
of the Feshbach resonance syes [Wang et al., 2012, Naidon et al., 2014, Wang and Julienne, 2014].

4.3 = Results on the stability of a unitary Bose gas

The theoretical expression (4.6) is valid at zero temperature, that is for 1/ky, > a with ky,
the thermal wave-vector:

kg, = /mksT /h = V27 ) Ags. (4.7)

Thus this theory cannot describe three-body losses in a unitary Bose gas at finite temperature
(kga > 1). To infer the limit Lz(a — o0), we can make a parallel with the 2-body problem
where when a diverges it drops out of the cross-section expression (1.27). It is then replaced
by the only length scale left : 1/kg,. Performing the same replacement for L3 we obtain:

Ls D(kwRi,m3) (4.8)

= 1
ka>1 mkth

where D is now the equivalent to C. We can guess that the transition from (4.6) to (4.8)
happens around kyga = 1 but this does not yield an analytical prediction. During the
first year of my PhD we studied experimentally the lifetime of a non-condensed (thermal)
Bose gas in the strongly interacting and unitary cases, in collaboration with D. Petrov
and F. Werner who derived an analytical model extending from kya < 1 to kgpa > 1
[Rem et al., 2013]. These results have been thoroughly presented in [Rem, 2013] and we will

summarize here the main findings.

Our results have been obtained by studying the decay of the atom number in our gases
at different scattering lengths and temperatures. The preparation of these gases has been
presented in chapter 2, with this preparation we can adjust freely the temperature of the gas
and the magnetic field. According to (4.8), three-body losses depend on temperature, so to
facilitate the analysis, we ensure that the temperature does not change during the evolution.

A uniform temperature is stabilized by elastic two-body collisions. The collision rate for
one atom in the gas is given by 1/7» = nov where o is the cross-section and v the velocity
of the atom. After a few collision times, equilibrium is reached. Thus the timescale to reach
equilibrium is given by 72 = (n)o(v). If three-body losses happen faster than this rate, the
gas remains out-of-equilibrium during its evolution. The loss rate using (4.2) is:

1dN

V3= Nt L3<n2>. 4.9)



4.3 Results on the stability of a unitary Bose gas

87

So the equilibrium condition is y3/72 < 1. For a Boltzmann gas (v) « hkg,/m and (n),
(n?) are easily calculated using (1.16). Furthermore at unitarity, replacing ky, by its expres-
sion yields without difficulty [Li and Ho, 2012]:

B o (1— e m)nady < 1 (4.10)
Y2

So we find that the stability against three-body losses is guaranteed for low phase-space den-
sities nA3y, in which case the gas remains in a quasi thermal equilibrium during its evolution.

We verified experimentally that the gases are well described by a Boltzmann distribution
(1.16). We could then measure the total number of atoms N and the temperature T, and
control a varying the magnetic field B using the Feshbach resonance in the |1},) state of "Li
at 738 G. The number N as a function of time is given by the solution to (4.2):

1

N{t) = ———— (4.11)
\/2t/T+ N
-1 m3@
T = Ly e T3 T (4.12)

with Ny the initial number of atoms and @ the mean trapping frequency. By recording N
as a function of time at fixed values of (T, B) and fitting the results with eq. (4.11) we could
extract L3(a,T).

In the case kya < 1 L3 does not depend on temperature and is constant over the gas.
On the other end at unitarity ky,a > 1, (4.8) yields L3 oc 1/T2. The exact expression for (4.8)
has been derived by D. Petrov and F. Werner [Rem et al., 2013], it describes Ls(a, T', Ry, n3) for
all values of ky,a with a < 0. As expected a modulation of the 1/7? scaling due to Efimov
Physics is present in the theory but is very weak for our case of equal-mass bosons (variation
of about 3%). As a consequence to a good approximation we can neglect this modulation
and R; does not enter in the expression of L3, which depends then solely on 7" and 73. This

_4”3
(& -

hP 1
Ly ~ —536V/3n (4.13)
m

(kD)2
where the numerator 1 — e~ can be understood as the efficiency for three-body recom-
bination when three atoms are in contact, and the probability of contact varies like 1/72.
Measuring L3(T) at 1/a = 0 in “Li gases, we could compare our results with this prediction

using the value of 73 measured in [Gross et al., 2010], with a good agreement as shown in
fig. 4.4.

Furthermore, we have extended our studies to observe the saturation of L3 going the
weakly interacting regime to unitarity, in close agreement again with theory, fig. 4.5. On the
positive a side of the resonance, three-body recombination can lead to the formation of the
shallow dimer with energy Ej, = h?/ma?. For large values of q, this energy is smaller than
the trap depth Up, this implies that the molecules do not leave the trap. It then becomes
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Figure 4.4: Measurements (blue circles) of the three-body recombination constant L3 as a function of tem-
perature T at unitarity (1/a = 0). The green dashed line is a fit with a L3(T) = \3/7? function, yielding
A3 = 2.5(3)stat (6)syst X 10720 (uK)?emEs, the green shaded area shows a region with a 1x o agreement to
the fit. The red dashed line is the theoretical prediction (4.13) A3 = 1.51 x 1072 (uK)2cm®s, 40 % below
the experimental value.

difficult to make a direct relation between losses and three-body recombination rate.
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Figure 4.5: Measurements (blue circles) of L3 as a function of a approaching unitarity, at a temperature of
T = 5.9(6)uK (note the log-log scale ay is the Bohr radius). The grey dashed line is the zero-temperature
theory from [Braaten and Hammer, 2001]. The red solid line is the new theory for L3 from [Rem et al., 2013],
the red shaded area represents the uncertainty due to the spread in the experimental temperature. The grey
dotted line shows the value of a for which a/A\gg = 1.

Discussion of the constant temperature

The simple model (4.11, 4.12) is based on the assumption (verified experimentally) that
the temperature remains constant through time. Let us discuss how this is possible and
what it implies. Since the losses increase with density, they occur preferentially at the
center of the trap, in this region the atoms have a low potential energy and have a total
energy smaller than the ensemble average E/N = 3kgT for a Boltzmann gas in a harmonic
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potential. Thus the remaining atoms have a higher average energy —higher temperature—,
so three-body losses in a harmonic trap lead inevitably to heating, as was first shown in
[Weber et al., 2003]. This heating is reinforced at unitarity, indeed three-body recombination
is momentum-dependent and decreases with increasing kinetic energy of the collision
partners. The average energy of an atom lost by three-body recombination is expressed as
dkgT. § can be calculated from the density and energy distribution of a Boltzmann ensemble
and from the energy dependence of the losses, yielding § = 5/3 for a unitary Bose gas
[Rem et al., 2013]. We have for the total energy Es, = (3 — 6)kgT Nyp

Thus in the absence of evaporation one expects the gas temperature to increase as atoms
are lost from three-body recombination. The aim of our measurements was to measure a
the temperature-dependence of the losses and to compare independently with theory. We
needed a constant temperature to ensure a constant Lz through time. This is made possible
by the fact that our trap has a finite depth Uj leading to evaporative losses, caused by
two-body elastic collisions which we have neglected so far. The average energy lost per
atom by evaporation is much higher than the ensemble average leading to cooling, it is
expressed as a function of temperature : Feoy = (n+ n)kBTNeV where n = Uy /kpT, between
n = 6 and n = 8 on our experiment. « is the excess energy of an evading atom with respect
to the trap depth, it depends on the trap geometry [Cohen-Tannoudji, Claude, 1997]. For our
experiment it is evaluated to be 0.68 < x < 0.78 [Rem et al., 2013].

So finally, it can be easily shown that the condition of constant temperature reads

New 6
Ngb 77+:“i—37

(4.14)

and we find that the loss rate due to evaporation is weaker than the one due to recom-
bination. However we note that neglecting evaporation would lead to an over-estimate
of L3 between 30 % and 50 % and we have corrected our data taking this into account. In
this way we assume a temperature dependence of L3 only to evaluate a correction to our data.

If one assumes in the analysis the temperature dependence of L3, a full model can be built
taking evaporation into account, with the knowledge of the trap depth. One then obtains
coupled-differential equations for temperature and number, the solution of which can be
fitted to the experimental data. Such an analysis has been carried out [Laurent, 2013] yielding
a more precise measurement of L3T? at unitarity. An article is in preparation with data from
our lithium experiment and results obtained on caesium in the group of C. Chin.
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4.4 = Conclusion: stability domain of the strongly

interacting Bose gas

We have found earlier that the stability against three-body losses is guaranteed for low
phase-space density n\%g, but to reach the degenerate regime we need nA\3; > 1. The only
way to stabilize a unitary Bose gas with high phase-space density is then to have a very small
ns. This n3 is specific to each species and so far cannot be varied, we give in table 4.1 a list of
the known 73 for the species in which it has been measured, some of them are more favorable
than lithium for investigations of the unitary Bose gas. Replacing A\gp by a in (4.10) we can
infer the condition for quasi thermal equilibrium for a 7' = 0 Bose gas:

IERN. (1—e *)nae® <« 1. (4.15)

V2

Species | ®Rb | “Li | *K | 133Cs
13 0.06 | 0.21 | 0.09 | 0.06

Table 4.1: Inelasticity parameter 73 for the different species in which it has been measured.

Finally in a degenerate gas at unitarity both a and A\qg diverge and the ratio v2 /3 may
saturate to a density-independent value. This issue has been studied experimentally in
[Makotyn et al., 2014] using 85Rb, starting from a weakly interacting BEC close to 7" = 0 and
ramping the magnetic field rapidly to unitarity. These results indicated that the losses where
sufficiently slow as compared to equilibration in the final state, but temperature on this final
state was unknown.

To conclude, our results have extended the understanding of three-body recombination
near the unitary regime kg,a > 1. The universality of these results was confirmed by a

similar study on potassium [Fletcher et al., 2013].
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Mixtures of Bose and Fermi superfluids

We turn now to the main result of this work, the experimental realization of mixtures
of a weakly-interacting Bose-Einstein condensate of “Li with a Fermi superfluid of °Li in
the BEC-BCS crossover. Based on thermometry and other markers, we will demonstrate
that the mixtures presented are indeed composed of two superfluids. To the best of our
knowledge it is the first production of a system in which a Bose superfluid is mixed with
a Fermi superfluid, our results are presented in [Ferrier-Barbut et al., 2014] (in appendix C).
We explore this novel system to evidence specific bosons-fermions interaction features.
First, using center-of-mass oscillations in the trapping potential, we measure the mean-field
interaction between the BEC and the Fermi superfluid. The very long lifetime of these
oscillations reveal the superfluid character of the mixture. We further investigate this
superfluid feature by driving high-amplitude oscillations where we observe damping above
a critical velocity in the relative motion between the superfluids. Extending this study
throughout the BEC-BCS crossover uncovers the rich physical content of this novel mixture.

The conditions of existence and stability of a Bose-Fermi superfluid mixture reduce the
possible choices of constituents. We have reviewed in the introduction of this work the
many different Bose-Fermi mixtures brought to quantum degeneracy thus far, none of them
fulfilled all these conditions. In the first section, we analyze the interactions effects and
demonstrate that the choice of internal states we have made is indeed suited to realize a
stable doubly superfluid mixture.
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5.1 | Two-body interactions in the |1¢) , |2¢) , |2p) mixture

States | Position (G) | Width (G) | apg (ao)
125) 845.5(5) 45 -18.24
12p) 893.7(4) -237.8 -18.24

1) — |20 | 832.18(8) | -262.3(3) | -1582(1)

Table 5.1: Characteristics of the Feshbach resonances in the superfluid mixture.

The doubly-superfluid mixture that we present in the following is composed of ’Li in the
|2,) state and °Li in its two lowest-energy states |1¢) and |2¢), table 5.1 sums up the Feshbach
resonances in this mixture. The scattering length in the |2,) state crosses zero first at 578 G
[Shotan et al., 2014] and has two Feshbach resonances, a narrow one centered at 845G, and a
broader one at 894 G. In consequence, aj, is negative for fields B < 578 G, B € [845G, 850 G]
and B > 894G, excepted in these regions, the BEC is stable. The |1¢), |2¢) states have one
broad resonance at 832G, a °Li superfluid can be realized around this resonance. The lower
magnetic field limit is given by the range of stability of the Feshbach molecules which ex-
tends down to ~ 600 G [Jochim et al., 2003a]. For increasing magnetic fields, the limit of su-
perfluidity is due to the exponential drop of Tt on the BCS side, limiting us experimentally to
B < 890G [Navon, 2011]. It turns out that the resonances between °Li and “Li in this choice
of internal states are at too low fields, where a;, < 0 and the °Li dimers are unstable. Thus
the bosons (in |2;,)) interact identically weakly with the two fermions states (|1¢) ,|2¢)) with
scattering length equal to the background value ay¢ = 41 ag. Figure 5.1 represents the field
dependence of the scattering lengths of interest for our mixture.

Stability against spin-exchange collisions

While Bose-Einstein condensates of “Li in the |2;) state and °Li Fermi superfluids in the
|1¢), |2¢) states have been obtained and are known to present reasonable lifetimes, a mix-
ture of these three states is not obviously stable. One could think for example of a spin-
exchange collision of the sort |1¢) + |2,) — |2¢) + |1p). The internal energy released in such
an event: F£/h ~ 100MHz (E/kp ~ 5mK) would lead to a direct loss of the products. Cal-
culations by S. Kokkelmans show however that the rate for these processes is rather small:
G ~ 10710 cm3/s with the lifetime of a sample with density n given by 1/7 = nG. With

3 we find 7 ~ 10%s. Inelastic collisions are

our typical densities of the order of 103 cm™
not a limiting factor to the lifetime of a |1¢) , |2¢), |2p) mixture. Our experiments confirm the

stablitity of this mixture, with a lifetime of the order of 7 seconds (at 832 G).
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Figure 5.1: Scattering lengths in our superfluid mixture. In blue solid line, the boson-boson scattering length
ap, in red the fermion-fermion a¢ (note the 1/100 scaling), and in dashed green the boson-fermion scattering
length apg, which is constant aps = 41 ag and identical for both Li spin states in the whole region plotted here.
The regions of instability of the mixture are hatched, between 845 G and 850 G, and above 894 G the BEC is
unstable. Below 730 G the mixture is expected to phase-separate, this limit is only indicative, it is calculated
within a mean-field approximation for the 6Li molecular BEC.

5.2 Mean-field interactions and phase separation

Using the values of the scattering lengths, we can infer the effects of interactions on a
superfluid mixture. The weakness of the boson-fermion interaction suggests to describe it by
a mean-field approximation as in the weakly-interacting Bose gas case. This approximation

reads

e(np, ng) = eg(ng) + ep(np) + gof N M (5.1)

where e is the total energy density of the mixture, ¢ (ep) is that of the Fermi (Bose) gas alone
and the last term is the mean-field energy density due to the boson-fermion interaction.
got = 2mh2aps/myp; is the boson-fermion coupling constant with my; = mymg/(my, + my)

their reduced mass. Equation 5.1 is the equation of state of the mixture. With i, = aiea, we

obtain

Hb = GbeNs + G (5.2)
e = Gonb + (1), (5.3)

where we have taken a mean-field approximation for the boson-boson interaction, and y¢(n)
describes the zero-temperature EoS of the fermions in the absence of bosons which varies in
the BEC-BCS crossover as presented in chapter 1. First using (5.2, 5.3) one can infer the
mixture’s mechanical stability condition against phase separation. It is fulfilled if the com-
pressibility matrix (k;; = 9u;/0n;) has positive eigenvalues, this imposes:

Ops O Ops Op

a = . 4
6nf 8nb 8nb 8nf (5 )




94

Chapter 5. Mixtures of Bose and Fermi superfluids

Injected into (5.2, 5.3) this yields
Ous -, Gox (55)
ons ~ gp
So from the knowledge of the equation of state of the Fermi superfluid in the BEC-BCS
crossover one can predict whether the mixture will phase-separate or if it will remain mixed.
One can use the full EoS of the Fermi gas presented in chapter 1, let us rather consider
simple limits which are sufficient to demonstrate the stability of the mixture. In the BCS
regime where a; — 0~ we have ys = Ep = 12(37%n¢)%/3/2my, and at unitarity (1/a¢ = 0)
ps = EEp. This yields an upper bound on the fermions density, this bound is lowest at
unitarity namely n¢ < 2.7 x 106 cm~2 (we have used the bosons scattering length at 832 G).
This density is much higher than the typical densities in our samples (n¢p < 10'* cm™3).

Close to the unitary regime of the Fermi gas, approaching from above the zero-crossing
of ap, located at 850 G, we see from eq. (5.5) that when a;, — 07 the mixture should phase-
separate. The magnetic field range over which this phase separation takes place can be
evaluated using the field dependence of a;, and the equation of state of the Fermi superfluid
with our typical experimental densities (n ~ 4 x 1012em™3). Using LDA we find that it
occurs for a, < 0.5 ap which corresponds to a very narrow field interval above the true zero
crossing, less than 50 mG.

On the BEC side, using a MF approximation for the molecular BEC regime: 14 = g4qnq
with gqq = 27h%aq/mg, ng = ng/2, and dug/Ong = 20uq/0n¢, where the subscript d refers
to the dimers (ag = 0.6a¢), we obtain the stability condition for a mixture of a molecu-
lar and an atomic BEC: agf/ agap < 0.075. From the magnetic field dependences of the
scattering lengths, we find that this is fulfilled provided B > 730G. The lower limit of
730G is only an indication since it is calculated using the mean-field approximation for a
homogeneous system. We conclude that the Bose-Fermi superfluid mixture is stable for
B € [730G, 845G] U [850 G, 890 G, illustrated as the white regions in figure 5.1 (the regions
of instability are hatched in grey). This stability is in contrast with liquid helium mixtures
where the strong “He-3He interaction leads to phase separation.

An observation of phase-separation in our system would be a stark signal of the
interactions and could allow to gain valuable information for helium mixtures. The region
of phase-separation above 850G is very narrow, below our field stability, furthermore at
low scattering length, LDA breaks down and quantum pressure effects further decrease the
BEC density. An improved field stability is then necessary to observe phase-separation at
the 850 G zero-crossing. It could be however observed for low magnetic fields, the limit of
730 G is approximative but since ap, > 0 for B > 578 G [Shotan et al., 2014] and the molecular
BEC is stable for B > 600 G [Jochim et al., 2003a], we can explore much below this value and
the observation of the phase-separation is an interesting prospect.

Using (5.2, 5.3) we can calculate in-trap densities for the Bose and Fermi superfluid in
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the presence of the other. Inserting in (5.2, 5.3) the local density approximation (uq(r) =
1 — Vext(r)) yields the solutions for the fermionic and bosonic densities n¢(r), np (7). They
are found as the solution to the implicit equations:

2
ne(r) = ng <u? - %ug — Vext(r) (1 — %) + sznf(ro (5.6)
() =l — V() — Pn(r) (5.7)
9b 9b

where np(u) is the equation of state of the Fermi superfluid. These solutions depend on the
atom numbers and on magnetic field. An interesting situation arises when gy = ¢, where
we find that the density of fermions is independent on r over the extent of the BEC (for
wp(r) > 0) [Molmer, 1998, Delehaye, 2012]:

ng = ng (g — 1y + going) - (5.8)

The bosons thus create a flat potential for the fermions, offering very interesting prospects.
For example in the presence of spin-imbalanced Fermi gases the bosons can modify the crit-
ical polarization for superfluidity [Ozawa et al., 2014]. The condition gy = gy, is fulfilled for
two magnetic fields: B = 817.1G and B = 854.3G.

0.Gt ]
-400 -200 0 200 40C

Z (um)

Figure 5.2: Theoretical doubly integrated density profiles of the bosons and one spin state of the fermions,
at B = 832G obtained using LDA with Ny = 300 x 103 balanced fermions, and N, = 30 x 103 bosons.
Solid blue lines: theory neglecting the interspecies interaction. Red dashed lines: theory with the same atom
numbers taking the Bose-Fermi coupling into account, see main text.

Last we can infer the experimental signature of the boson-fermion interactions on
the in-situ density profiles. The imaging technique does not allow for a measurement of
the in-situ density, we rather measure the doubly-integrated density. Figure 5.2 shows
doubly-integrated density profiles of bosons and fermions with typical numbers in our
experiments calculated for B = 832G. In this figure it is clear that the doubly integrated
densities are very weakly perturbed by the presence of the other species. This was indeed
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expected considering the weakness of the Bose-Fermi interaction reflected by the parameter
kpapg ~ 0.01. Thus in what follows we will analyse the experimental profiles neglecting the

inter-isotope interaction.

Having analyzed the interactions in our choice of internal states and demonstrated that
a double superfluid is expected to be stable in this system, we now turn to its experimental
realization achieved on our apparatus.

5.3  Evidences for superfluidity

We have presented in details in chapter 2 the experimental preparation of the mixture.
The final sequence consists in a dual-isotope forced evaporative cooling close to the Feshbach
resonance of °Li situated at 832 G, driven by the °Li gas with a high collision rate. At different
stages of the evaporation, Fermi degeneracy, Bose superfluidity and then Fermi superfluidity
are crossed. While the superfluid transition of the Bose gas is easily observed on its profile
as a central peak, on the opposite, that of the Fermi gas does not lead to a stark modification
of its distribution. A reliable thermometry in the degenerate regime is then crucial to assess
the double superfluidity.

5.3.1 Thermometry of the mixture

Due to strong interactions, temperature is known to be difficult to measure on degen-
erate spin-balanced Fermi gases on a Feshbach resonance. In previous experiments on
our setup, a weakly interacting “Li gas was used as a thermometer for °Li samples
[Nascimbene et al., 2010]. The internal “Li state used then (|1;,)) has a negative scattering at
the magnetic fields of interest so that the Bose gas collapses when reaching the BEC thresh-
old, setting the limit of thermometry. For the present measurements we also use the “Li gas
for thermometry, but in our situation (“Li in the |2,)), the BEC is stable and allows us to push
thermometry to lower temperatures. To extract temperature, we use in-situ density images.
The Bose gas is a reliable thermometer® even under the critical temperature for BEC, be-
cause the temperature can be measured in the thermal wings of the distribution containing
the non-condensed fraction. The temperature is extracted by fitting these wings by a Boltz-
mann distribution, or for a better precision, with the ideal Bose gas equation of state (1.5)
taking quantum statistics into account. The final limit of thermometry is reached when the
thermal fraction is too small to be observed on the profile, corresponding to No/N 2 80 %
given our signal-to noise ratio. This is reached typically at 7 = 100 nK.

@We have checked that this method agrees with the measure using the time-of-flight distribution in the axial
direction. We have also verified that at high temperature, for non-degenerate gases, the temperature extracted
from the “Li image is the same as from the °Li image of the same mixture.
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5.3.2 Degeneracy points

Fermi degeneracy of °Li is crossed at a temperature T ~ 2 yK and trap depth Uy ~ 15 uK and
the Bose-Einstein condensation threshold of Li is met for Uy = 5 uK. The BEC is signalled
by the appearance of a central peak in the in-situ profile as showed in figure 5.3 where we
represent the doubly-integrated profile of a Bose gas just under 7, (with 7¢ defined in (1.13)),
fitted with the sum of a thermal profile for the non-condensed part and a Thomas-Fermi

profile for the condensed part.

Z/ano

Figure 5.3: Doubly integrated profile of a Bose gas at 7' = 0.95 T¢, in units of the harmonic oscillator length.
The solid line is a bimodal fit with a thermal distribution on the wings from which we extract temperature
and a central Thomas-Fermi profile. The condensed fraction extracted from this fit is No/N ~ 0.17(5), in
agreement with the expected value 1 — (T'/T.)® = 0.14 using the temperature measured on the wings of
the distribution.

5.3.3 Superfluidity of Li

Based on previous studies presented in chapter 1, there is no ambiguity that the “Li BEC is
superfluid. However it is preferable to have a proof of superfluity of this BEC, and this is
provided by its hydrodynamic expansion in time of flight. A hydrodynamic behaviour of
the BEC is explained by its superfluidity, and not by a high collision rate ~y since we have
in the experimental conditions v < w,®). It results in an expansion dynamics after release
from the trap that differs from the expansion of a non-interacting system. In figure 5.4, we
represent the aspect ratio n = R, /R, where R, (R.) is the transverse (axial) radius of a
pure “Li BEC at 835G. 7 is represented as a function of time after release from the dipole
trap radial confinement, with the magnetic confinement in the axial direction still on). The
data is compared with the hydrodynamic equations from [Castin and Dum, 1996] (solid line)
with no fit parameters using our trap frequencies w, = 27 x 16 Hz, w, = 27 x 500 Hz. For
comparison, the expansion dynamics expected for a Boltzmann gas at 7' = 100 nK is shown

®Namely the mean free path is longer than the cloud size.
©The weak radial expelling potential (with frequency w’ = 1/2w.) was neglected here since it plays a little
role at these short time scales (w't < 0.45 here).
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as the dot-dashed line. We also plot in dashed line the solution to the Schrodinger equation
for a non-interacting wave-packet expanding from the ground state of the harmonic trap.
Neither the Boltzmann gas theory nor the Schrodinger equation agrees with our data, this
demonstrates the hydrodynamic behavior of the Li condensate which can only be explained

by its superfluidity.

2. - ) ’

Aspect Ratio

Expansion Time (ms)

Figure 5.4: Aspect ratio of a ’Li BEC after release from the radial confinement. The solid line shows the result
from the hydrodynamic equations with no fit parameters using our trap frequencies and the shaded region
shows the uncertainty resulting from the uncertainty on the frequencies. The dashed line shows the solution
of the Schrodinger equation of an expanding wave packet, the dot-dashed line that of a Boltzmann gas at
100 nK.

5.3.4 Superfluidity of °Li

Superfluidity in a degenerate Fermi gas is notoriously more difficult to assess. The demon-
stration of a hydrodynamic behavior is no proof of superfluidity, indeed the very high colli-
sion rate of fermions on a Feshbach resonance results in a hydrodynamic behaviour before
the superfluid transition is crossed [O'Hara et al., 2002, Bourdel et al., 2003, Wright et al., 2007].

Other signatures of superfluidity of °Li must be used.

The first way is to prove that the temperature is below the critical temperature for
superfluidity of a unitary Fermi gas, T,s. The most precise measurement of T is re-
ported in [Ku et al., 2012] for a homogeneous system, with 7. = 0.167(13) leom where
Thom = K2(372n)3/2/2mkp. The critical temperature for a trapped gas (that we called
T, ¢ here) can be found using the local-density approximation with the knowledge of the
equation of state to calculate the local Fermi energy at the trap bottom. This is done
in [Nascimbene et al., 2010] yielding Tc¢ = 0.19 T+9Y, with T5 = hw(3N)Y/3/kg the Fermi

@The homogeneous critical temperature was estimated to be Tt/ Té“’m = 0.157 for this calculation, T, =

0.19 Tk is thus a safe lower bound.
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temperature of the trapped gas. Measuring a temperature lower than 7 ¢ using the Bose gas

provides a first proof of the superfluidity of the Fermi gas.

For the coldest samples studied in our experiment, the thermal fraction of the BEC is too
small to be detected. Nonetheless this still allows us to set an upper bound on temperature,
using the lower bound of 80 % on the condensed fraction and its expression as a function
of temperature No/N = 1 — (T/T.p)3. From the knowledge of the atom number of each
isotope and the trap frequencies we can calculate T p, Tr and thus T, . Our typical numbers
in very shallow traps (~ 1 uK) are: N, = 30 x 103, Ny = 300 x 102 in a trap with frequen-
cies w, = 27 x 16Hz, w, = 27 x 550 Hz®). The corresponding critical temperatures are
then T, = 240nK, T,y = 160nK, and the upper bound on the condensed fraction gives a
temperature lower bound 7' < 140nK = 0.16 Tr demonstrating that the unitary Fermi gas
is in the superfluid regime. Furthermore when the boson-boson scattering length drops to
very low values, because the BEC peak is very narrow we are able to observe lower ther-
mal fractions and to extract lower temperatures. This is the case for magnetic fields below
800G and around the scattering length zero-crossing located at 850 G. We measure typi-
cally T = 80(20) nK, well below the upper limits given above. From this T'/T,s ~ 0.5,
and using the value of the condensed fraction as a function of temperature measured in
[Sidorenkov et al., 2013], we estimate that the superfluid fraction of our spin-balanced Fermi
gas is above 80 %. To this regard, the mixture is close to a zero-temperature limit.

Table 5.2 summarizes the degeneracy and critical temperatures in the mixture during evap-

oration.

Point | Temperature | Trap depth | Axial frequency | Radial frequency
T =Tk 2(0.5) uK 15(5) uK | 23(2)Hz (°Li) | 2000(300) Hz (°Li)
T =T, | 700(50)nK 5(2) uK 18(1)Hz ("Li) | 1200(100) Hz (“Li)
T="T. | 200030)nK | 2(0.3)uK | 18(.5)Hz (°Li) | 800(50)Hz (°Li)

Table 5.2: Typical degeneracy and critical points, indicated for the evaporation at 835 G, the isotope for which
the frequency is given is indicated in parentheses.

To further demonstrate the superfluidity of the Fermi gas we show that atoms of opposite
spin are fully paired in the center of the cloud. This method was used previously at Rice,
MIT and in our group [Partridge et al., 2006, Zwierlein et al., 2006, Nascimbene et al., 2009], it is
based on the measurement of spin-imbalanced gases profiles in a harmonic trap. In this case
the gas forms concentric layers of different polarizations, with in the center were the phase-
space density is highest the fully-paired superfluid core. The outermost shell contains only
majority atoms (|1)) which then form an ideal Fermi gas. In between these two shells lies a
highly polarized phase, in which polarization is too high to allow superfluidity. The minority
atoms ||) dressed by the surrounding majority atoms form a gas of polarons, which turn into

©The indicated frequencies are given for "Li, the frequencies of the same potential seen by °Li are simply

higher by a factor \/mz7/me = \/7/6.
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molecules in the strongly attractive BEC limit [Chevy and Mora, 2010]. Let us show how the
imaging of the doubly integrated density profiles of imbalanced gases yields a demonstration
of pairing in the center.

25
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Figure 5.5: Density profiles of an imbalanced Fermi gas at 835 G, containing Ny = 200 x 103, N, =100x 103
atoms (here 1) = |1f), |4} = |2¢)). Inred circles we show 71, in green squares: 72}, and in black diamonds we
show the doubly integrated density difference 4 — 7). The inner shell extending from z = O to z ~ 180 um is
superfluid (SF), indicated by the plateau in the density difference (black dashed line). The second shell consists
of the polaron phase, partially polarized (PP) with a non-zero minority density. Finally the outermost shell is
fully polarized (FP), the majority atoms form an ideal Fermi gas. The solid grey line is a fit of this profile by a non-
interacting zero-temperature EoS, it is extended to the inner shells in dashed grey, the enhanced experimental
pressure at the core is a signature of strong attraction between the majority and minority spin components.

In the superfluid core, the density difference between the two states is equal to zero:
ny — ny = 0. We recall that using LDA, on the line = 0 we have

0 0

0
—=—=—(1 mwgz —, (5.9)
Oy Opy o )

0z

and furthermore 7,(z) x P,(z,7 = 0) where i, and P, are respectively the doubly in-
tegrated density and pressure for the spin component ¢. Finally using the Gibbs-Duhem
formula n, = 0P, /d,, we obtain for the superfluid region (ny —n| = 0):

O(ny —ny)

=0. A
5 0 (5.10)

This shows that pairing results in a plateau in the difference of doubly-integrated densities
ny — iy in the superfluid region. An imbalanced profile is shown in figure 5.5 recorded at
835G, where we clearly see a plateau in the center and the shell structure. This demonstrates
the existence of a fully-paired core. Data taken at MIT in rotating Fermi gases have shown
the existence of vortices in the region of equal spin densities [Zwierlein et al., 2006]; implying
its superfluidity. The plateau we observe is thus a signal of the superfluidity of the Fermi
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Figure 5.6: Experimental doubly-intergrated density profiles in a mixture at 832 G, containing N, ~ 4 x 104
bosons and N¢ ~ 3 x 10° fermions (in a balanced mixture of |1¢) and |2¢)). Blue circles: bosons, red squares:
fermions (state |1¢)). The solid lines are fits with the mean-field equation of state for the BEC and the unitary
Fermi gas EoS for the Fermions. The interaction with the other species is neglected in these fits and is expected
at the ~ 1% level as shown earlier.

gas.

The imbalanced Fermi gas of figure 5.5 that exhibits a plateau has been obtained in
the presence of a “Li BEC, that can be imaged in time-of-flight in the axial direction. Our
observations demonstrate that our 7Li-°Li system is a mixture of a Bose superfluid and a
Fermi superfluid. As far as we know, it is the first time that such a mixture of Bose-Fermi
superfluids is produced. Experimental in-situ profiles of a Bose-Einstein condensate mixed
with a unitary Fermi superfluid are presented in figure 5.6. As was discussed in the first
chapter of this thesis, superfluidity causes a number of unusual flow properties, among
them vortices and frictionless flow. While the observation of vortices requires a specific set-
up to set the gas in rotation, counter-flow motion can be easily induced on our experiment.

5.3.5 Frictionless counter-flow

Indeed it is possible to apply a displacement to the center-of-mass (CoM) of the mixture (see
section 5.5 for details). When we displace the Bose gas and the Fermi gas individually, they
oscillate at the bare frequencies wy, = 27 x 15.3, wf = 27 x 16.8 respectively. This difference
is explained by the different masses of “Li and °Li. Since the potential is the same for both
clouds and they have a different mass, their oscillation frequencies are different), and we
get wp, = wgy/6/7 in agreement with the experiment.

In the case of the mixture, once the CoM is displaced, the two clouds start to oscillate
in the harmonic potential. We observe that the frequencies are not strongly modified with
respect to the bare frequency. So after a few oscillations two components get out of phase and

O The potential is not exactly identical, slightly increasing the difference between the trapping frequencies, see
5.5.
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flow through each other. We illustrate such a counter-flow motion obtained with oscillations
in the axial direction in figure 5.7, and the center-of-mass position of each species monitored

during 2 s is shown in figure 5.8.

Figure 5.7: Motion of the two superfluids (°Li top, ’Li bottom) in the presence of each other for the first
500 ms with a picture every 15 ms. The dashed white lines are guide to the eye.
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Figure 5.8: Center-of-mass motion of a ’Li cloud (blue circles) and a ®Li cloud (red circles) in a double superfluid
at 860 G. The solid lines show fit to the data with exponentially damped sinusoids, yielding a damping rate
~ < 0.1s7L. The very-long lifetime of these oscillations show the superfluid character of our mixture.

The fit of the data with a simple exponentially decaying sinusoid (solid lines in figure
5.8) give a decay rate of v < 0.1s™1. The typical axial frequencies are about w, ~ 15.5Hz
such that the two superfluids oscillate through each-other with a frequency of ~ 30Hz.
This frequency is very high compared to the obtained 7, demonstrating a very weak
friction. For a better comparison, in a first approximation, we can consider the Bose
gas as an impurity oscillating inside the Fermi cloud. In this limit using results from
[Ferrari, 1999] we can calculate the damping rate of the oscillations inside a degenerate
non-superfluid Fermi gas. In our case the oscillatory motion of the BEC is modulated
with high amplitude periods followed by small amplitude ones. To compare our data to
theory, we use the mean amplitude of motion, for our temperature we get v > 0.05n oy, vp
where o = 47 a,bf is the boson-fermion collisional cross-section, nf the fermion density

at center and vg = /27w (3Ng)1/3/my their Fermi velocity. Using our typical parameters
vp ~ 50mm/s we gety > 0.5s7 !, a factor of five higher than the experimental upper bound,
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which is a clear sign of the superfluidity of our mixture.

The excitation of CoM oscillations of the mixture has allowed us to observe frictionless
flow, illustrating its superfluidity. These oscillations are called the dipole modes, they are
low-energy collective excitations of a gas in a harmonic potential. Being very long-lived in
our experiment, they can be used as a sensitive probe of the mixture properties. In what
follows we will show that indeed the dipole modes are modified by the interactions with the
other species, we calculate this effect with a perturbative approach. Implementing a precise
spectroscopy of the dipole modes, we measure this effect, in very good agreement with
theory. Finally, having characterized the oscillations in the regime of near-zero viscosity, we
will demonstrate that the counter-flow motion follows the general behaviour of superfluid
flows with a breakdown of frictionless motion above a critical velocity.

In the past, the dipole modes have been used to study the properties of ultracold

gases and in particular ultracold mixtures. Soon after the first realization of Bose-Einstein
condensations, mixtures of BECs in two different hyperfine states of the same atomic
species were produced [Cornell and Wieman, 2002]. The center-of-mass motion of these
mixtures revealed a strong interaction between the two BECs leading to a fast damping
[Hall et al., 1998a, Hall et al., 1998b]. This damping was analysed to be due to a coupling
of the dipole modes to other collective excitations of the mixture [Sinatra et al., 1999].
Later-on, in order to reduce the coupling between the two gases, their spatial overlap
was shrunk using a displacement of the center of the trapping potential for one hyperfine
state. The damping was successfully reduced, presenting oscillations over a long time
period [Maddaloni et al., 2000, Modugno et al., 2000]. The oscillatory motion of each BEC
presented a frequency shift due to interaction with the other component, well descibed
by a time-dependent simulation of the Gross-Pitaevskii equation [Modugno et al., 2001]. In
a mixture of two BECs from different atomic species 4K and ®Rb, the scissors mode, a
collective mode of a different kind was shown to be excited by interspecies-interactions
[Modugno et al., 2002]. Subsequently, dipole mode excitations where used to probe the
collisional properties of a mixture of the same two atomic species but with a fermionic
isotope of potassium: 4°K [Ferlaino et al., 2003]. Since the fermionic component was in a
single-spin state, only the bosonic component formed a superfluid in this study.
Apart from mixtures of BECs or mixtures of a BEC and a degenerate Fermi gas, the
dipole modes have been employed for the study of other systems. For example in a
one-dimensional geometry, the excitation of an out-of-phase CoM motion of two con-
densates in the same internal states allowed to realize a quantum equivalent to Newton's
cradle [Kinoshita et al., 2006] and study integrability of a one-dimensional Bose gas. A
similar protocol was used to study spin diffusion of a strongly-interacting Fermi gas in
three-dimensions [Sommer et al., 2011].

On the theoretical side, different works have investigated dipole oscillations
of spin-polarized Bose-Fermi mixtures, [Minguzziand Tosi, 2000, Capuzziet al., 2003,
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Maruyama and Bertsch, 2008]. In the following we present such theory of dipole oscillations
for our doubly superfluid Bose-Fermi mixture, allowing to understand why the dipole
modes are a sensitive probe to the interactions in our system. This theory is then compared
with the experimental results obtained.

5.4 Coupled dipole modes, theory

Considering in the local density approximation that each superfluid sees an effective ex-
ternal potential that is the sum of the trapping potential plus the mean-field boson-fermion
interaction, the center-of-mass oscillations should be modified by the presence of the other
superfluid. To compute this modification, we first make use of a simple model which
follows the approach of [Lobo et al., 2006] developed to calculate the dipole frequency of the
polaron in an imbalanced unitary Fermi gas, and further used in our group in the study of
the polaron’s axial breathing modes [Nascimbene et al., 2009].

5.4.1 Simple model for the BEC dipole frequency shift

This approach is here based on the fact that the samples produced contain a large majority of
®Li (N > N). Considering figure 5.6, we see that with our typical parameters, the bosons
occupy a small fraction of the volume of the Fermi gas near its center, from which we con-
clude that the Fermi superfluid sees mostly the unperturbed harmonic confinement and its
dipole frequency should be almost unchanged. On the other hand, the bosons are entirely
contained in the Fermi superfluid. We treat then the bosons as impurities evolving in the
external potential composed of the sum of the trapping potential Vex(r) and the mean-field
term gpeng(r):

Vett (1) = Vext(T) + goeng(r). (5.11)

Neglecting the effect of the bosons, the fermions density is:

ne(r) = np(pf — Vexe(r)). (5.12)

We consider the limit of vanishing amplitude for the oscillation of the BEC, then we can

expand ns around r = 0:

ne(r) = ng(0) — Vexe(r) <i£> R (5.13)

And finally the effective potential acting on the bosons is:

dng

Vere() = Vext(7) <1 — bt (duf> ) + gbne(0). (5.14)
r=0

This expression shows that the fermions act as a chemical potential shift (gpn¢(0)), plus a
small reduction of the trapping potential. For a harmonic trap, we can easily calculate the
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resulting frequency shift:

1 d
Gp=wp (1= =gyt | o : (5.15)

where wy, is the bare bosons frequency and &y, is that in the presence of the Fermi superfluid.
We note dwp, = wy, — @y, since (%)r—o > 0® and g,¢ > 0, we have dwy, > 0. Using a precise
spectroscopy of the center-of-mass oscillation of the BEC, this frequency shift can be mea-
sured. Before reporting on our measurements, we develop a theory that takes into account
the back-action of the bosons and allows to gain a more complete picture of the dipole oscil-

lations of the mixture. The result can be easily understood as a coupled-oscillators model.

5.4.2 Sum rules and coupled °Li-’Li dipole oscillations

The simple model treating the fermions cloud as an effective potential for the bosons indeed
does not take into account the bosons’ effect on the fermions. We now take it into account
using a treatment of the dipole modes applying sum rules. This method is explained
in [Pitaevskii and Stringari, 2003, Stringari, 2004]. Here we present how to apply the sum
rules to obtain the frequency of the dipole modes in our Bose-Fermi mixture. They allow,
using some assumptions, to calculate the response of the mixture to a displacement of the

centers-of-mass.

The system is described by the following hamiltonian

H=S L LU, (5.16)

where o = f, b denotes either fermions or bosons and U is the potential energy comprised of
the trapping potential and the interatomic interactions, and i denotes the identical particles.
The trapping potential in the z direction reads m,w?2?/2 = k%2 /2 where k is the stiffness of
the trapping potential. The sum rules are introduced through the operators £, = S"N< 2, ,
where Z, ; denotes the position along the axial direction of the trap of particle ¢ in species a.

Let us take the excitation operator F (bg, bp) = beF} + by Fp, and the associated moments:

2
’ , (5.17)

Sk =3 (En — Eo)*|(nl ' [0)

n
where {|n)} is the orthonormal basis of eigenstates with eigenvalues {E,} of H, |0) is the
ground state and we take its energy to be the reference E, = 0. Let us explain why these
sum rules are useful to our purpose which is to describe the CoM oscillation dynamics of
the mixture. First we note that the operator F is a displacement operator, that is the hamil-
tonian H' = H — kdF corresponds to the hamiltonian of the system with the center of the
trap for the species « shifted by a distance d, = db, in the z direction. Furthermore, we
make the assumption which will have to be verified experimentally that the displacement
operator couples the ground state |0) to only two eigenmodes of the unperturbed hamiltonian

®The mechanical stability of the Fermi gas imposes a positive compressibility.
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((0| F'|n) = 0 Vn ¢ {1, 2}), we call the energy of these modes E,, = hw,, n = 1, 2 with by
convention w; < wy. Then the sum for all n is to be taken only for n = 1, 2 and we find easily

that for any value of (b, b¢),
S1

N

Thus to find the frequencies of these modes one has to find the extrema of S;/5_; as a

(hw1)? < < (hws)? (5.18)

function of by, bs. For this we have to calculate S; and S_; explicitly.

Recalling that I = 3, E, |n) (n| we find S1 = (0| FHE |0) = —3 (0| [F, [F, H]] |0), and
using the commutation relation 2, pg ;] = 15 dy; 5a5 we get:

Sy = h? Z 2m (5.19)

S_1 can be calculated in the following manner: first consider the perturbed hamiltonian
H' = H — kdF. Using first-order perturbation theory we can calculate the eigenvectors |n’)
of H', we find:

\<0|Frn>)2

(0| F]0") = 0\F|0>+2dkz = (0| F|0) +2dk S_1. (5.20)

n

To obtain an expression of S_; we can express (0'| F'|0') using a Taylor expansion of the mean
position of each species (z/,) = (0'| 2]0):

(za) = (012 (5.21)
and using the definition of F* given above we finally obtain
1 0(za)

Sa=gr > " Nababs Dy (5.22)

@,

where (z,) = (0’| 2,]0"). So using the two relations (5.19, 5.22) one can calculate the two
eigenmodes frequency. The expressions of S; and S_; (5.19, 5.22), involve only static
macroscopic quantities, which can be calculated using the local density approximation with
the knowledge of the equation of state of the system and do not require any knowledge of
the short-range correlations, showing the power of the sum-rules method for our problem.
In the absence of interaction between the species, these modes are simply the dipole mode
of the bosons and of the fermions with frequencies wg, w,. When there is a coupling between
bosons and fermions the new modes can be calculated with (5.19, 5.22). The problem is
simplified by using the experimental fact N, < Ny, furthermore in the limit of a weak
coupling the new eigenmodes are close to the non-interacting modes, and the frequen-
cies are readily found using first order perturbation theory, let us detail this in the following.

To this aim, two useful conditions can be derived. First when the trapping potentials for
both species are displaced by the same amount d,, = d, then the mass centers are identically
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moved: (z,) = d, by differentiating this with respect to d, one gets 1 = 3" ;5 9u,(24). Next we
recall Hellmann-Feynman'’s theorem: 9y F = (1| 9y H |1)), where ) is a continuous variable.
Applied twice with A = d,, dg, in either order, we conclude that the matrix NaOy(za) 18

symmetric.

We can turn now to the calculation of the eigenfrequencies, for this we recast the sum

rules ratio in (5.18) as:

St e, (W)
5 R M) (5:23)

using the definitions: |¢) = (b}, b;), b}, = bar/Na/Ma, and

Mg = /mampg FB Dy (5.24)

With these notations the frequencies w;, wo are given by w; = \/m where m; are the eigen-
values of M®. The corresponding eigenvectors represent the relative displacements of the
two clouds CoM for the given mode, i.c if one applies the relative displacements given by
the eigenvector 1);, then only the corresponding mode with frequency w; is excited. In the
absence of inter-species interactions (8dﬁ (za) = 0) the eigenvalues are mg¢, my, with eigen-
vectors (y/N¢/mg,0), (0,+/Np/myp). Finally in the weak-coupling regime, one can write M
as M = My + M and treat the boson-fermion interaction (M) as a perturbation. These

matrices read:

0
Mo = ( i ) (5.25)
0 mp
O(z Ny (%
My = TG ey R (5.26)
VTR G

where we have used the two relations derived earlier. We can apply first-order perturbation

theory and identify w; (w2) with &, (@f), these new eigenfrequencies are

(,;.Njf >~ Wwf (527)

- 1 0(zp)

wWp =~ Wp (1 + B dd; > R (5.28)
0{2p)

where we have used N, < Nj. The frequency shift %53 can be calculated explicitly using
the LDA with the external potentials V;, (1) = Vext(7), Vi(1) = Vext((r — dfu)). We finally get

J 1 guek
Owo _ L guik / Prs? (5‘%> <M> | (5.29)
wp 2 Np O ) \ Ous
This expression allows us to calculate the frequency shift of the Bose-Einstein condensate
oscillation in the axial direction of the trapping potential. In the limit where the BEC has a

(| M)

) is bounded by the two eigenvalues of M.

®™One can easily show that m =
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small extent inside the Fermi superfluid the value of dn¢/0u¢ can be evaluated at r = 0 and
taken constant over the BEC size. Then the integral is easily calculated using LDA, it yields:

owp 1 ong
_ L (9 5.30
o ( aﬂf) y (530)

we recover as expected expression (5.15) obtained treating the fermions as an effective
potential. The approximations made to obtain this simple expression are that the BEC has
a small extent, that it oscillates with a small amplitude inside the Fermi superfluid and
that it modifies weakly its profile. Furthermore we considered that the CoM displacement
excites only the dipole modes, these approximations are discussed in paragraph 5.5.4. In
this frame, the effect of the BEC is just the reaction to the Fermi superfluid’s action.

These reciprocal effects can yield the dynamics of the full system, indeed one can obtain
the eigenvectors 1, ¢, (¢; = (bg;, by ;)), which correspond to the relative initial displace-
ments to apply to excite the eigenmode with frequency w;. In the relevant weak coupling
regime these modes are close to the non-interacting ones. Using again perturbation theory
they are readily found as o = \/m (1, ¢), Ip = \/m (enp, 1) with frequency respec-
tively @, @p, and we define p = N, /Ng, n = mg/myp and

2my_ Owp

c (5.31)

mp — Mf Wy
Then the equations of motion for the center-of-mass of the two species: Z(t) = (2(t), zp(t))
can be calculated by expressing Z in the 1 basis Z = 3, ¢;4;, at time ¢ we have then Z(t) =
S, ¢icos(wit) ;. To simplify the discussion of the motion, we will use a simple parallel.
The equations thus obtained are indeed found to be formally equivalent to the equations of
motion of a simple system: Two oscillators of mass M; = m¢N; and M,, = Ny,my, with bare
frequencies wg, wy, weakly coupled by a spring with stiffness K. This harmonic coupling
exerts a force Fpr = —Kpe(2, — 2¢) on the oscillator of mass M, and an equal and opposite
force on the other one. The equations of motion for this system read:

A\ __(@itaE )(a(t)) .
<?Z'b<f>> <§2 wi+ 3 )\ () (532

Using first order perturbation theory with K¢ as a perturbation and in the limit M; > M,,
the eigenfrequencies of this system are found to be

(I}f >~ Wy (533)

1 K,
 _bf 5)- (5.34)
2 Mywy

Op ~ wp(l+

So we see that the coupled oscillator model is equivalent to the dipole modes oscillations

of our mixture if K, matches 2Mbwgi%’ with i%’ defined in (5.29). The eigenmodes of this

system are simply the in-phase and out-of-phase oscillations modes.
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Finally, taking the limits m¢ ~ my,, Nf > N, we can obtain the position of the center-of-

masses as a function of time for the initial conditions 2z, = zf = d, %, = % = 0:

z(t) = d((1 — pe)cos(wst) 4+ pe cos(wpt)) (5.35)
2p(t) = d (—e cos(@st) + (1 + €)cos(wpt)) , (5.36)

where z, denotes the center-of-mass of species .

@

Figure 5.9: Schematic representation of the center-of mass oscillations of the mixture. Each superfluid is seen

be=2Mba)]235wb [wy

as an oscillator (fermions: left, bosons: right), and the mean-field interaction between them acts as a weak
harmonic coupling.

This coupled-oscillators model illustrated in figure 5.9 explains why we can apply an
identical perturbation to both superfluids and still measure a response that depends on their
mutual coupling. If the two atoms had the same mass then their oscillators frequencies
would be degenerate. In which case for identical initial displacements the two oscillators
would never get out of phase and the central spring would never be stretched. This is a
consequence of the generalized Kohn’s theorem [Dobson, 1994] which states that the center-
of-mass motion for an ensemble of particles of the same mass placed in an external potential
is described by the classical equation of a particle in the external potential. Owing to the
different masses of °Li and “Li leading to different frequencies, we can displace them by
the same amount and still measure their coupling, such measurements are presented in the
following.

5.5  Coupled dipole modes, experiments

In the experiment, in the regime where both “Li and °Li are superfluid, the atoms are
radially trapped by the trapping laser, and axially by a magnetic curvature. Since the
coils creating the field (the Pinch coils) have large dimensions with respect to the clouds
size, they create a very harmonic trapping potential. Our experiments are performed at
magnetic fields higher than 700G, so both isotopes are in the Paschen-Back regime. As a
consequence their energy versus field dependence is close to 9% = ;i3 where i is the Bohr
magneton). Thus the two isotopes see the same harmonic potential in the axial direction
Vextz = Mpwpz?/2 = mewez?/2 = k22 /2, the ratio of their trapping frequencies is given by
w/wp = 1/7/6 ~ 1.08. Taking into account the actual field dependence of the energy levels,

D As was shown in [Jochim et al., 2003b] when the °Li molecules are strongly bound, they have a magnetic
moment that differs from 2ug, but a relevant discrepancy was observed only for fields lower than 700 G, outside
of the range of our experiments.
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this ratio is actually ~ 1.1 near 832 G.

5.5.1 Dipole modes excitation

To excite the dipole modes, we make use of the fact that the focal point of the dipole laser is
actually not exactly superimposed with the center of the magnetic axial confinement. When
the laser is at low power, the resulting axial potential is mainly composed of the magnetic
confinement and the atoms lie at its center. When the laser power is increased, the cloud’s
center is shifted along the z direction by the light potential. Thus, the center-of-mass of the
clouds can be displaced by increasing the laser power. To use this as a dipole mode excitation
scheme, we must ensure that no other mode is excited. For this, the laser power is ramped-
up in a time slow compared to the trap oscillation period, this time is ., = 150 ms, with
the typical radial frequencies w, ~ 27 x 500Hz and axial frequencies w, ~ 27 x 16Hz.
The CoM in the axial direction is thus adiabatically displaced to a position that we note d,
this displacement can be varied at will by varying the laser power at the end of the ramp,
for a displacement d = 100 um the power must be increased by a factor ~ 1.3. To excite
dipole oscillations, the ramp-down of the laser power to its initial value has to be done faster
than the axial oscillation period. In order not to excite collective oscillations in the radial
direction, this time must be slow compared to the radial oscillation periods. To satisfy both
these constraints we do this ramp in tgown = 20 ms.
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Figure 5.10: Center-of-mass motion of a ’Li cloud (blue circles) and a °Li cloud (red squares) in the absence
of the other species. The solid lines show sine fit to the data allowing to measure, w, = 27 x 15.68, wy =
27 x 17.14 with a ratio in agreement with the expectations of 1.1 for the magnetic trap.

As a first check, we measure the oscillation of each isotope separately in the trap. Such
measurements are presented in figure 5.10 where the motion of a cloud of ®Li in the absence
of 7Li and vice versa®, is monitored for times up to 1.3s. With the reported data we reach
a precision of Aw/w < 1072, this allows us to verify first the ratio of the bare oscillation
frequencies of the two isotopes. We find wy, = 27 x 15.68(10) Hz and w¢ = 27 x 17.14(10) Hz,

0Since we observe weak fluctuations of the trapping potential over a few hours, to compare two frequencies
we interleave their measurements such that they are measured over the same time period of less than 3 hours.
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thus the ratio wy, /wy = 1.09(1) is in agreement with the expected ratio within the uncertainty.
Furthermore we can check the harmonic character of the trap. For this we drive oscillations
during a longer time (3.5s reported for “Li in figure 5.11), we find the decay time of the
oscillations to be 7 2 20s which gives a high quality factor for the uncoupled oscillators of
@ = wt =~ 2000, explained by the fact that in this regime the axial trapping is provided solely
by the magnetic confinement which is harmonic with a very good approximation due to the
dimensions of the coils. These high-quality oscillators represent very sensitive probes for

perturbations.

e
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Figure 5.11: Long time oscillations of “Li alone allowing for a precise frequency measurement. The long
damping time observed 7 2 20 's shows the high quality factor of the magnetic trapping in the axial direction.

5.5.3 Coupled oscillations

Here we report on the observation of the coupling between the two superfluids using dipole
oscillations. The oscillations are prepared by the same procedure as described above, with
a mixture of superfluids inside the trap. The evolution of the CoM of “Li and °Li are repre-
sented for B = 835G in figure 5.12, fitted with expressions (5.35,5.36). A first observation
is that the motion the two superfluids is undamped for times up to 4 seconds, even when
they move through each other. As we discussed earlier, this very low friction reveals the
superfluid character of the mixture. Furthermore, it allows for a precise measurement of
the frequency of oscillation of each species. A comparison with the bare frequencies gives a
measurement of the coupling. We note as above ws and wy, the bare frequencies and @y, @y,
the frequencies in the presence of the other isotope. For a field of 832 G we measure bare and
coupled frequencies, the results are:

wp = 27 x 15.27(1) Hz, w = 27 x 16.80(50) Hz (5.37)
&y = 21 x 15.00(2) Hz, & = 27 x 16.80(2) Hz. (5.38)

We focus on the “Li frequency, it is shifted by dwy/w, = 0.018(1). At this field the fermion
cloud is a unitary Fermi superfluid with the simple equation of state o = {FEpjoc With
¢ = 0.37(1) the Bertsch parameter. The expected frequency shift can be easily calculated

from equation (5.30), we get
(5wb . 13k1:abf

(5.39)
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with kg = \/2mg(3Ng)1/3/h. Using the experimental parameters (N = 3 x 10°, @ =
27 x 170 Hz) we get dwp /wp, = 0.019(2) in excellent agreement with the experimental value
of 0.018(1).

g 1;’5 amnHll.mHHhmHHHm IH“lel“lHHul
;| s rmmmuwnfumwvwmwwmuw'u
et T e e
:mmummmmmwummu"uuuumumw'u

t (ms)

Figure 5.12: Coupled dipole oscillations of the Bose-Fermi superfluid mixture, top: ’Li, bottom: bLi. Data
taken at 835 G close to unitarity. The coherent energy exchange between the two superfluids and the very
weak damping are clearly observed.

The coupling between the two superfluids is also observed in figure 5.12 as an amplitude
modulation of the “Li BEC oscillations. The data are fitted using the coupled-oscillators
equations (5.35, 5.36), again in excellent agreement. The relative amplitude modulation
of the “Li BEC is much higher than the relative frequency shift, reflected by the factor
e = —14 0wy /wp, in equation (5.36). This is due to the near degeneracy of the two oscillator
frequencies, resulting in an efficient coherent energy exchange between them despite their

weak coupling.
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Figure 5.13: Coupled dipole oscillations of the Bose-Fermi superfluid mixture (top: ’Li, bottom: °Li) at differ-
ent magnetic fields: (a): 790 G, on the BEC side of the crossover, (b): 860 G on the BCS side. The efficiency of
the coherent energy exchange varies in the crossover due to a variation of the coupling.

The measurement of dwy,/wp, can be extended to the BEC-BCS crossover of the Fermi
superfluid by varying the magnetic field. Figure 5.13 shows oscillation measurements at
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two different magnetic fields (see appendix 5.7 for more traces through the crossover).
From its theoretical expression (5.30) we expect dwy/wp, to vary in the crossover since the
equation of state of the Fermi gas varies. The value of (On¢/du¢)r—o depends not only on
magnetic field but also on the total fermions number. It can actually be recast as a uni-
versal function of the interaction parameter 1/kpas where kg is the Fermi wave-vector of

the trapped °Li gas kp = +/2msw(3N;)1/3/h. At zero temperature the equation of state
of the homogeneous Fermi gas with density n is indeed a universal function of 1/k}°™a;
(ko™ = (372n)!/3), this means that any thermodynamical quantity (here dn/du) is that of a
non-interacting Fermi gas times a function of 1/k°™a;. This yields dwy/wp = kSapeh(kPar)
where k) = (37%n¢(0))!/3 is the local Fermi wave-vector at the center of the trap and h(klas)
is a universal function obtained from the EoS. Using the local density approximation, one can
show that k2 = krg(1/kras) with here again kg = \/2mw¢(3N¢)1/3 /h. Finally the frequency
shift can be written as

ow

o = Frawef (1/kgap) (5.40)
where f is a universal function which depends on the equation of state of the Fermi
superfluid, obtained formally from h and g. From the EoS measured in [Navon et al., 2010]
and presented in chapter 1, the function f can be computed numerically.

On the BCS side (a¢ — 07), the EoS is that of an ideal Fermi gas, n¢ = (2mgpug/h%)%/2/3m?
yielding
plim 71/ kear) = %”r (5.41)
which is as expected the same as for a unitary Fermi gas but taking £ = 1. On the BEC
side, the frequency shift does not go to a constant value. Indeed in the limit of a molecular
BEC, the size of the BEC decreases with as so that its curvature at center increases and with
it the 7Li BEC frequency shift. As a first approximation the molecular BEC can be treated
by the mean-field approximation, which yields dus/On; = 2m¢/mh%aq with ag = 0.6 a¢ the
dimer-dimer scattering length and so
i (1 kra) = 6.19k:af. (5.42)
As expected the frequency shift increases on the BEC side, for a better approximation one
can take the Lee-Huang-Yang correction into account, this is presented in Appendix 5.7.

Figure 5.14 represents the measurements of dwy,/wpkraps (red circles) as a function of
1/kpas, compared to theory in blue line. We also show as a blue triangle the expected value
at unitarity calculated from the most recent result on the unitary EoS from [Ku et al., 2012],
and the BCS limit of the frequency shift (5.41) in blue dashed line. The agreement between
the data and the model is good. This demonstrates that the collective dipole modes are a
sensitive probe to both the coupling between the superfluids and the EoS of the Fermi gas.

The frequency shift data displayed in figure 5.14 have been obtained comparing w;, and
@p. It can also be provided by a single measurement using the measurement of . Indeed
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Figure 5.14: Relative frequency shift of the BEC dipole mode in the presence of the Fermi superfluid, through

the BEC-BCS crossover. The red points are data measured, the error bars represent the quadrature sum of
the different uncertainties: frequency measurements and value of kg. The blue solid line is the expectation
calculated from the EoS presented in Chapter 1, the dashed line shows the BCS limit (5.41 and the blue triangle
is the calculated value at unitarity using the measurements of [Ku et al., 2012].

from the fits of the data by equations (5.35, 5.36) displayed as solid lines in figures 5.12, 5.13
and appendix 5.7, the value of € can be extracted. Since its expression reads ¢ = —14 dwy, /wy,
the fitted value yields a second measurement of dwy, /wp,. In figure 5.13 it appears that indeed
the amplitude modulation of the “Li BEC oscillations given by ¢ differs between the BEC
and BCS sides as expected. The variation of dwyp/wy, thus measured rescaled in the same
units as fig. 5.14 is presented in figure 5.15 in green diamonds. The amplification factor
of 14 amplifies the error on dwy,/w, measured this way. But on the BEC side we observe
a disagreement between the green points and theory. The relative amplitude modulation
given by ¢ being very sensitive to the coupling between the two superfluids, we expect it
to be the first observable to show departure from the perturbative approach results, which
might explain the experimental disagreement with theory. We discuss the limitations of this
approach below.

5.5.4 Discussion of the model

To derive the expression of the frequency shift and the coupled oscillators equations, several
assumptions were made. One of them is that the initial displacement of the center-of-mass
of the mixture excites only the two dipole modes. Experimentally, we observe that during
the CoM oscillations, the BEC recovers its full initial amplitude after a cycle of amplitude-
modulation, which corresponds to a coherent energy exchange between the fermions and
bosons modes. This suggests that the dipole modes are not coupled to additional collective
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Figure 5.15: Relative frequency shift of the BEC dipole mode in the presence of the Fermi superfluid, mea-

sured using the amplitude modulation of the BEC oscillations (green diamonds), compared to the theory pre-
sented in main text and to the data from the direct frequency measure (red circles).

modes. To verify this, a signature of the excitation of other collective modes could be a
time-modulation of the Thomas-Fermi radii of the two isotopes. Such a modulation is not
measurable as exemplified in figure 5.16, it validates the assumption that only two modes
are excited.
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Figure 5.16: Time evolution of the Thomas-Fermi radius of the ”Li BEC (blue circles) and the °Li Fermi super-
fluid (red squares) during dipole oscillations at 790 G rescaled in arbitrary units. The absence of measurable
periodic pattern suggests that no other collective modes than the dipole modes are excited. A weak decrease
of both radii is due to residual atom loss during the oscillations.

Also, in the model we considered the BEC as an impurity with a very small extent and
negligible effect on the Fermi superfluid. Experimentally the typical ratio of sizes between
the Fermi superfluid and the BEC is a factor three. Thus the extent of the BEC is not really
negligible. To take the BEC’s extent and its effect on the fermions into account, one can
calculate the full integral in eq. (5.29). This requires a tedious numerical integration, let us
rather discuss qualitatively what we expect. Figure 5.17 represents the theoretical density
profiles of a mixture at 832 G along the z direction calculated using the LDA. The fermions
density profile is compared to a profile neglecting the effect of the bosons. The effect of the
bosons on the fermions is substantial over the size of the BEC, the curvature of the fermions
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profile at the center is reduced. It is this curvature that gives the effective potential seen
by the bosons, we thus expect a weaker modification of the potential so smaller frequency
shift than obtained neglecting the bosons. Finally in some experiments the amplitude of
the oscillations was of the order of the BEC size ~ 100 um, so the approximation of small
amplitude oscillations was not verified. In conclusion, though the perturbative model is
successful to predict the bosons frequency shift, some of the experiments extended beyond
the perturbative regime and a more advanced analysis might reveal interesting dynamics.
To obtain a faithful prediction, full hydrodynamics simulations might be necessary. In the
remainder of this chapter we present what happens when driving oscillations with an even

larger amplitude.

-400 —20C 0 200 400
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Figure 5.17: Theoretical density profiles on the z axis of a mixture of a ’Li BEC (blue solid line) with a 8Li unitary
Fermi superfluid (red solid line). The profile of a Fermi superfluid with the same Thomas-Fermi radius in the
absence of “Li is shown in dashed line, demonstrating that the curvature of the fermions profile is modified in

the presence of "Li.

5.6 Damping of the dipole modes and critical velocity

So far, the dipole oscillations presented are excited with an amplitude d < 110 um. Using
the equations of motion this corresponds to a maximal relative velocity of vmax =~ d(1 +
€)(@g+ap) ~ 18 mm/s. Below this limit® no damping is observed while the two gases move
through each other, a sign of superfluidity of the mixture. Superfluidity is characterized by
the absence of dissipation below a certain critical velocity. It is then expected that for higher
relative velocities the motion should be damped. This distinctive sign of superfluidity is
indeed observed in our experiments, as is presented in the next section starting from the

case of a unitary Fermi gas.

©The limit of d = 110 pm is given for a field of 832 G, it varies in the crossover as we discuss below.
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5.6.1 Damping at unitarity

When increasing the amplitude of the oscillations, a striking phenomenon is observed: for
velocities v < vmax, We Observe a very weak damping, explained by a slight anharmonicity
of the trapping potential. Above this limit as represented in figure 5.18, two timescales
appear: first a very rapid damping of the BEC oscillations, and following this initial
damping, long-lived oscillations at a lower relative velocity. This behaviour is in agreement
with the existence of a critical velocity for the relative motion of the two superfluids. At
initial times when the two superfluids get out of phase, the velocity passes above the critical
value, inducing damping. Once the relative velocity drops below the critical velocity, the
motion is long-lived again. In principle the heating caused by the dissipation of the initial
motion should create a thermal fraction and induce a friction even at long times. But since
the trap is shallow in the radial direction, the clouds can be cooled-down by evaporation.
The Fermi superfluid also exhibits a similar behaviour but with a smaller reduction of the
oscillation amplitude which can be understood since the drag force created by the BEC is

weak relative to its inertia.
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Figure 5.18: Damped oscillations of superfluid mixtures (top: ”Li, bottom: °Li), for two different initial dis-
placements, d = 200 um, left, d = 250 pum, right. The BEC data clearly show an initial damped motion
followed by long-lived oscillations, the Fermi superfluid motion is less reduced by damping, due to a higher
mass. The solid lines are fits to the data using equations (5.43, 5.44). On both data we obtain a damping time
7 ~ 300 ms.

In principle, the onset of friction above the critical velocity could be seen in a single trace
as a reduction in speed. However this requires a high precision on the motion monitoring.
To simplify the analysis, we use another measurement. It consists in fitting the experimental
data with a phenomenological set of equations, inspired by the observed behaviour. In-
stead of fitting the motion of the Bose-Einstein condensate and of the Fermi superfluids by



118

Chapter 5. Mixtures of Bose and Fermi superfluids

eqs. (5.35, 5.36), we allow for a time-varying amplitude:

() = (55 + (1= 5)e ) 24(8) (5.43)
2 (t) = (0 + (1 = dp)e ™) 2 (1), (5.44)

where 2, (t) and z(t) are as in (5.35, 5.36). These equations are purely phenomenological.
The §, and 7, are constants representing the final amplitude of motion relative to the initial
one and the initial damping rate of the oscillations. Results of these fits are shown in figure
5.18. Using the obtained z{(t), # (t) we can extract the maximal relative velocity during the
oscillations.

In figure 5.19 we plot the initial damping rate of the “Li BEC ~, as a function of the max-
imal relative velocity between the “Li and °Li superfluids during the oscillations, for a field
of 832 G corresponding to unitarity. The maximal relative velocity is rescaled in units of the
Fermi velocity of the cloud:

hk 2hw(3N;)1/3
op = e [2ROENYTE (5.45)
mg mg
with the typical experimental parameters: vg ~ 48 mm/s.

In figure 5.19 we observe a sharp onset of damping for relative velocities above v ~ 0.4 vg.

To extract the critical velocity from this data we fit it with an ad-hoc function:

v(v) = O(v —ve) X (v — )Y, (5.46)

using « and v, as fit parameters, with ©(v) the Heaviside function. This fit is shown in solid
line in figure 5.19 with the best fit parameters o = 0.961)-5 and

ve = 0.42(5) vp. (5.47)

This method thus yields a measurement of the critical velocity for the motion of a BEC inside
a Fermi superfluid. Assuming the super-critical damping is due to a breakdown of superflu-
idity and not to other mechanisms such as a dynamical instability, we can discuss the value
of v¢ in terms of a Landau critical velocity.

First, the sound velocity of the ’Li BEC at its center ¢, g = \/gon(0)/2mp ~ 3mm/s® is
much lower than the measured critical velocity, thus, superfluidity of “Li does not seem to
play an obvious role, pointing to a breaking of superfluidity in the fermion gas. As discussed
in chapter 1, the simple Landau formula for a massive impurity is

Ve = l\/gn (eE}(f)) (5.48)

s=fb

where efb denotes the two excitation branches of the °Li superfluid. For a unitary Fermi
superfluid it gives a critical velocity close to v. = ¢ with ¢ the speed of sound of the Fermi

DThe factor \/1/2 is due to the elongated geometry [Pitaevskii and Stringari, 2003].
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Figure 5.19: Damping rate of the BEC oscillations as a function of the maximal velocity of the BEC inside the
Fermi superfluid, rescaled in units of the Fermi velocity, as defined in main text. The solid line shows the fit
used to extract the value of v.. The red dashed line shows the value of the sound velocity at the center of the
fermions cloud, and the blue dot-dashed line shows the sum of the two sound velocities ¢, + ¢ as predicted
by [Castin et al., 2014] calculated with the parameters of our experiments.

superfluid ([Combescot et al., 2006] see ch. 1 fig 1.5). For an elongated gas at unitarity, the
sound velocity at its center can be shown to be ¢ = 51/41)1:/\/5 = 0.35vg [Hou et al., 2013]
with vp defined above, in fair agreement with our measurements though slightly smaller.
This value is shown in red dashed line in figure 5.19. We have also discussed in chapter 1
the relevant case of a BEC impurity in which the value of the critical velocity reads:

o= Min & @)+ e@) (5.49)
p; s=bf D
where ¢B(p) is the Bogolyubov dispersion relation of the BEC’s elementary excitations. Re-
calling figure 1.6 obtained in [Castin et al., 2014] using the typical parameters of our experi-
ments: fy, ~ Eg/10, v is the threshold for the emission of sound excitations in both super-
fluids yielding:
Ve = Cp + Cf (5.50)

with ¢, the sound velocity in the Li BEC. From equation (5.50), v, is upshifted with respect
to ¢;. In an elongated BEC, the sound velocity at center is given by ¢, = /gn(0)/2m. To
compare with our measurements we use a mean sound velocity along the z axis, we get
o, = 0.6(2) vg, finally using (5.50) we obtain v, = 0.41(3) vp shown as the blue dot-dashed
line in figure 5.19, in good agreement with the experimental value.

Other experiments have implemented the motion of an impurity in a Fermi superfluid. In
the measurement of v. using a moving optical lattice, [Miller et al., 2007] and very recently
an attractive leaser beam [Weimer et al., 2014], the direct comparison with theory is rendered
difficult by the fact that the defect probes low-density regions. The value of v. we report
in this thesis is the highest ever measured in a dilute Fermi gas, both in units of vp and in
absolute value. This stresses out the particularity of our experiment, where the perturbation
is localized inside the gas and the condition of weak-coupling is readily fulfilled, avoiding
the drawbacks of laser impurities, and finally the critical velocity value is possibly enhanced
due to the superfluid nature of the impurity.
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Contrary to the unitary case, in other regions of the BEC-BCS crossover, the necessity to
create two excitations (one in each superfluid) could cause the value of v, for a BEC impurity
to differ strongly from that of a massive impurity as measured with a laser. For instance, the
damping of an excitation in the BEC through elementary excitations in the Fermi cloud is
expected to differ starkly between the BEC and BCS regimes [Zheng and Zhai, 2014]. For this
reason we have extended our measurements of the damping rate of the BEC as a function of
v/vg to the crossover.

5.6.2 Damping in the BEC-BCS crossover

7 , , 7 , ,
6 1/l€paf = —0.45 6t 1/k‘p@f = 0.
5 5
T4 T4
2 L
a3 =3
2 2
2 2!
1 1
0 : : ‘ ‘ O—8 ‘ ‘
00 02 04 06 o0& 1Cc 00 02 04 06 08 1c
Vmax/VF Vmax/VF
7 : , , 7 , ,
6 o 1/kpas = 0.45 6 1/kpas=0.7
5 5
T4 T4
2 3
o3 =3
2 2
2 2
1 1
0 e O 0
00 02 04 06 08 1Cc 00 02 04 06 08 1c

Vimax/VF Vimax/VF

Figure 5.20: Damping of the BEC motion as a function of the relative velocity for four different points in the
BEC-BCS crossover. On the BEC side and at unitarity (1/kgas > 0), a sharp onset of damping is observed for
increasing velocity, while friction is strongly reduced on the BCS side. The solid lines are fits with the ad-hoc
function (5.46).

The results in the form 7, = f(vc) are represented in figure 5.20, so far we have been
able to repeat the measurements for four different magnetic fields (780, 800, 832, 880G),
corresponding to 1/kpas = (0.7, 0.45, 0, —0.45). On the BEC side, a sharp onset of damping
is also observed, with at 1/kpas = 0.7 a striking reduction of the apparent critical velocity to
half of its value at unitarity. On the BCS side, the damping rate is strongly reduced, with a
slow increase as a function of velocity rendering difficult an extraction of v..

Though more measurements are needed, we can already comment on the present ones.
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First, for decreasing magnetic fields, the sharp decrease of the apparent v. on the BEC side
is in disagreement with the theories from [Combescot et al., 2006, Castin et al., 2014]. Indeed,
both predict a critical velocity close to the sound velocity, which, at 1/kpas = 0.7 is reduced
only by ~ 5% with respect to its value at unitarity™. Since both a; and a;, decrease while ay
stays constant, the coupling between the superfluids increases and the observed damping
could be due in fact to dissipation through other channels than elementary excitations. For
instance, it is known that in the case of two BECs close to the phase-separation threshold,
relative motion induces phase-separation for velocities much lower than the sound veloc-
ity [Law et al., 2001], this leads experimentally to the formation of dark-bright soliton trains
observed in [Hammner et al., 2011]. A coupling of the dipole modes to other collective modes
leading to a dynamical instability could also explain damping at low amplitudes.
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Figure 5.21: Critical velocity v, in the crossover (kg = \/meo_.)f(BNf)l/S/h), the red circles and error bars
represent the best value and uncertainty on v, obtained by fitting the data with the ad-hoc function (5.46).
Grey squares show the critical velocity measured in ref [Miller et al., 2007] using a moving optical lattice, Grey
diamonds show v. measured with an attractive tightly focused laser impurity from [Weimer et al., 2014].

On the BCS side of resonance, the strong reduction of the damping could be the signature
that a different dissipation mechanism is at work. In this regime, the critical velocity of
a moving BEC should differ from that of a massive impurity, and represent an original
measurement, but so far our results are preliminary and should be pushed further. We
represent the preliminary results on the critical velocity as a function of 1/kpas in figure 5.21,
together with a summary of the results of fig. 5.20.

The difficulty to extract v, points out the limits of our measurement method, for more
insight, our damping data could be further analyzed if a theory able to predict the drag
force above v, was made available. Some alternative techniques might allow to extract more

™Since the theory is for a homogeneous system, we have calculated the local k{ at the center of the cloud to
compare with it.
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accurately the value of v. in the crossover, for example by measuring observables responsive
to the energy dissipated like the condensed fraction of the BEC or the number of atoms.

5.6.3 Friction at finite temperature

The observation of a critical velocity is a hallmark of superfluidity. When the temperature
increases above T, there should be some friction even at vanishingly small relative velocities.
It is then interesting to see if such an increase in friction can be observed when increasing
temperature. At zero temperature, friction above v, leads, as we have seen, to a damping
of the BEC oscillations. However, as we shall see, a strong friction can lead to unexpected
effects and in particular an increase in the lifetime of the BEC oscillations. To model these
effects, we use the coupled oscillators model, adding a fluid friction force f = —av where v
is the relative velocity between the two oscillators. This model reads:

= o _ o . 2 Kyt _ Kyt

2 _ M M 2 Wi + g, M, 2

S== M ) - oM . (551)
b My My b M YT b

it can easily be solved numerically. Exploring the solutions of (5.51) yields surprising
results. Figure 5.22 represents these solutions with the typical parameters of our experi-
ments (M; = 10 M, wg = \/%wb) and initial displacement d, for two different friction
strengths (o = 0.2w, M}, and o = 5w, My). At zero friction, (not represented) the solutions
are the undamped coupled oscillations seen in the precedent sections. For a = 0.2 w, M,
fig. 5.22 (a) the motion of the light oscillator z,, is damped in a time 7 ~ 20/w,. We also
observe the amplitude modulation due to coherent coupling between the two oscillators.
For the strongest friction represented o = 5wy, My, fig. 5.22 (b) the result is counter-intuitive:
First the motion of the light oscillator is less damped than in the previous case, second the
frequency of its oscillations is shifted with respect to the two previous cases, it is locked on
the heavy oscillator’s frequency.

To understand this behaviour, we perturbatively solve this system in the presence of a
strong friction between the oscillators (o > w,M,,, wiMy). To simplify further the analy-
sis, we neglect the coupling between the oscillators (Kps = 0), it plays no major role when
friction is strong. First we solve the system in the situation where the two oscillators are
degenerate w; = wyp, looking for solutions in the form (z¢(t), zp(t)) = (dg, dp) exp(iwt), we
find one undamped mode with frequency w; = wp and dg; = dy 1, the other solutions cor-
respond to initial displacements in two opposite directions and are quickly damped. Since
in the experiments an identical initial displacement is applied on the two oscillators we are
interested in the evolution of the in-phase undamped mode when the degeneracy is lifted
(wf # wp). Then we treat the shift in bare frequency of the two oscillators as a perturbation,
expressing w? = wi(1 + €) (in our experimental system ¢ = 1/6). Expanding w; in powers of
ew = + el + 2w 4., we find:

2

B € € . EBuw}
L= (” 2015 2(1+62)) T BBy T (5.52)
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with a, = a/My, and 8 = M,/ M;. We have found that to second order in ¢, the eigenfre-

quency acquires an imaginary term

GQﬂwg
2(1+ B)3an

which corresponds to the damping rate of this mode. Analysing the expression of v we

v = (5.53)

see that it decreases with increasing friction («) as is the case in the numerical solutions.
In conclusion an increase in friction results in a decrease in damping rate, and a frequency

locking of the two oscillators to w = Re(w1) ~ wg/(1 + ) ~ wy.
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Figure 5.22: Numerical solution to the coupled oscillators model with a friction force f = —a v between the
two oscillators. The two cases are o = 0.2 wp, My, (3), @« = 5wp My, (b). As the friction is increased (between
(a) and (b)), the damping of the light oscillator (top) decreases, due to a frequency and phase-locking of the
two oscillators.
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Figure 5.23: Damped oscillations obtained at 77 = 0.8, = 0.47% (a)and 17 = 1.5T., = 0.5T% (b).
At T = T the frequency of the Bose gas oscillations (top) is @, = 27 x 16.9(2) Hz, pushed-up towards the
Fermi gas frequency &y = 2w x 17.3(2) Hz. At T; we observe an almost perfect locking of the frequencies:
@p = 27 x 18.5(2) Hz, & = 271 x 18.6(2) Hz, associated with a reduction of damping. The initial amplitude
of the oscillations is d = 100 um in both cases.

We have tested this friction model on our experiment, driving oscillations at higher
temperature, by stopping the evaporation earlier (at a magnetic field B = 832G). For
increasing temperature, the boson-fermion-collision rate rises (see chapter 2), and so the
friction between the two gases should grow. We have recorded measurement at two
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temperatures : 77 ~ 300nK, which corresponds to 71 ~ 0.87T.p and Tp ~ 0.4T% ~ 2T
the results at this temperature are represented in figure 5.23 (a). The second temper-
ature is T» =~ 600nK corresponding to Ty ~ 1.5T.;, =~ 0.573™, represented in figure
5.23 (b). The data are fitted with simple exponentially damped sinusoids to extract the
oscillations frequency and damping time (solid lines). For both data sets, the initial dis-

placement d is d ~ 100 um, a value for which no damping was observed at zero temperature.

For the first temperature (7}), initially 50 % of the BEC is condensed while the Fermi
gas is entirely in the normal phase. We observe a fast damping of the Bose gas oscillations
down to zero amplitude, a sign that the mixture is not superfluid. From the fits we get
wp = 27 X 15.9(2) Hz (measurement not shown), @, = 27 x 16.9(2) Hz & = 27 x 17.3(2) Hz,
7 ~ 200 ms with 7 the damping time of the Bose gas oscillations. For the higher temperature
(T») the two gases are fully in the normal phase. The fits yield w, = 27 x 17.2(2) Hz,
&y = 27 x 18.5(2) Hz & = 27 x 18.6(2) Hz, 7 ~ 550 ms.

These results are in qualitative agreement with the friction model: First, in the lower
temperature data set the Bose gas frequency is upshifted with respect to the bare one, and for
the higher temperature an almost perfect frequency locking with the fermions is observed.
Second the damping rate of the Bose gas oscillations is reduced when increasing friction,
as expected from the model. Besides the interesting result that these finite-temperature
measurement yield, they could represent if repeated at many temperatures a probe of the
critical temperature of the Fermi gas in the BEC-BCS crossover.

5.7 Concluding remarks and prospects with Bose-Fermi

superfluid mixtures

In this chapter we have presented experimental results on mixtures of Bose and Fermi
superfluids in “Li-°Li gases. First we have demonstrated the superfluidity of the two
components, before turning to the possible signatures of interactions between the two
superfluids. Such signature was found in the spectroscopy of the dipole modes of the
mixture in the harmonic trapping potential. The experimental results were found in good
agreement with a perturbative model in terms of sum rules. We then explored the damping
of the dipole modes in different regimes, first in the zero-temperature doubly-superfluid
regime, where damping was observed above a certain velocity for relative motion allowing
to study the issue of the critical velocity for counter-flow. Second the damping of the dipole
modes was observed at finite temperature demonstrating an interesting frequency-locking
effect caused by dissipation. The damping measurement if pushed further could bring

™The number of atoms was reduced with respect to the usual conditions on the experiment which explains
differences in degeneracy with respect to what is given in table 5.2.
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precious insight in the critical velocity and damping mechanisms at zero-temperature, and
could allow for an original measurement of the critical temperature of the Fermi superfluid.

While we have observed the first markers of interactions between the two su-
perfluids, a number of interesting measurements could be performed with such
gases.  For instance, since the dipole modes are sensitive to the boson-fermion
interaction, they could be used to measure the effective boson-dimer scattering
length which can differ from 2ap; as was assumed in our mean-field approximation
[Cui, 2014, Zhang et al., 2014]. Beyond the low-lying dipole modes, other collective modes
of the mixture in a harmonic trap could be investigated. A profusion of theoretical
investigations have focused on collective excitations in spin-polarized Bose-Fermi mix-
tures [Minguzzi and Tosi, 2000, Miyakawa et al., 2000, Yip, 2001, Capuzzi and Herndndez, 2001,
Sogo et al., 2002, Liu and Hu, 2003, Capuzzi et al., 2003, Sogo et al., 2003, Maruyama et al., 2005,
Banerjee, 2007, Maruyama and Yabu, 2009, Maruyama and Yabu, 2013], and their extension to
doubly-superfluid mixtures could be of significant interest.

The dipole modes are long-wavelength excitations of the first sound modes. In a
Bose-Fermi superfluid mixture, there exist two first sound modes as we have verified
experimentally. A hallmark of superfluidity is the existence of second-sound, recently
observed in a unitary Fermi gas [Sidorenkov et al., 2013]. In an early theoretical investigation
of Bose-Fermi superfluid mixtures dedicated to a potential realization in liquid 3He-*He
mixtures, [Volovik et al., 1975] have demonstrated that only one second-sound excitation is
expected in the mixture. However this was obtained using the assumption - verified for
liquid helium - that the thermal expansion coefficient is small (due to the fact Cy ~ Cp). This
is not verified for dilute quantum gases, it is then worthwhile investigating this issue both
theoretically and experimentally, with potential measurable effects in a °Li-’Li mixture.
Another hallmark of superfluidity is the existence of vortices in rotating superfluids, the
vortex creation dynamics and steady state of rotating Bose-Fermi superfluid mixtures was
recently studied in [Wen and Li, 2014], and could be experimentally studied in a °Li-"Li
mixture.

A realistic proposal of interesting experiments with a °Li-"Li superfluid mixture is given
in [Ozawa et al., 2014]. The authors study a mixture of a BEC with a spin-imbalanced Fermi
gas, and they demonstrate that the presence of bosons stabilizes superfluidity, raising the
critical imbalance for loss of superfluidity (the Clogston-Chandrasekhar limit). They show
that an instability can occur, forming measurable spatial structures in trapped mixtures.
Furthermore, the imbalanced Fermi gas in a flat potential could display FFLO order at zero
temperature [Zwerger, 2012].

Other interesting proposals include simulation of quark matter [Maeda et al., 2009]
and the formation of Faraday waves [Abdullaev et al., 2013]. Finally the phase
diagram of homogeneous superfluid Bose-Fermi mixtures was studied in
[Adhikari and Salasnich, 2008, Ramachandhran et al., 2011].  When placed in a optical lat-
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tice this mixture should exhibit an interesting phase diagram with a so-called “super-
counter-fluid” phase [Kuklov and Svistunov, 2003], this system has also been studied in
[Modak et al., 2011, Bukov and Pollet, 2014].

Some of these theoretical proposals require a stronger or even tunable boson-fermion
interaction. The possibility to reduce the boson-boson scattering length in the °Li-"Li
mixture can allow to amplify the boson-fermion relative effects and makes our mixture
a privileged one for the study of double superfluids, but one should also look for other
potential mixtures to widen the scope of opportunities.

The only other fermionic atom to have been brought to the superfluid state so far is
40K. Simultaneous superfluidity could be reached in a “°K-*'K mixture since bosonic 'K
has a positive scattering length at the fields of the Feshbach resonances of the fermionic
isotope 40K, The boson-fermion background scattering length in this mixture is 97y
[Wang et al., 2000, Falke et al., 2008], and 40K-41K resonances might allow for a tuneable in-
teraction. “°K-’Li mixture might also offer heteronuclear Feshbach resonances in the range
of superfluidity of “°K and 7Li, to the best of our knowledge no published work ex-
ists on the topic, 39K-°Li or 4 K-°Li have heteronuclear resonances at too low fields and
should not allow for a tunable boson-fermion interaction [Hanna, T. and Tiesinga, E., ]. A
mixture of Na and “°K, with a large and negative background scattering length —575 ag
[Gerdes et al., 2008], could realize a strong boson-fermion interaction(©). Finally and most in-
terestingly, it has been shown that broad interspecies Feshbach resonances exist between
133Cs and °Li [Repp et al., 2013, Tung et al., 2013]. With 133Cs in its absolute internal ground
state | = 3, mp = 3) (first excited |F = 3, mp = 2)) and °Li in |1¢), the resonance is found at
B = 843G (B = 897G), and with |2() at B = 889G (B = 943 G). These resonances overlap
both with the large °Li resonance that we have used between |1¢)-|2¢) at 832 G and with zero
crossings of the boson-boson scattering length of 13*Cs [Ferlaino et al., 2011], opening hope
for resonantly interacting doubly superfluid Bose-Fermi mixtures. These few examples do
not constitute a comprehensive record of possibilities and the growing list of elements cooled
to quantum degeneracy extends the range of candidate Bose-Fermi superfluid mixtures.

©Broad Feshbach resonances exist between these isotopes [Park et al., 2012], it might however be necessary to
use radio-frequency or optical dressing to displace these resonances in the range of superfluidity of K.



Conclusions, perspectives

In this thesis work, we have presented several experimental investigations conducted on
the lithium set-up at Laboratoire Kastler Brossel, each illustrating a different facet of the
achievements and prospects of the field of dilute ultracold gases.

The implementation of D; cooling on "Li provided insight into experimental laser
cooling techniques. The theoretical investigation of the results shed light on the mecha-
nisms at work in this scheme. The application of this technique opened the way to fast
cooling of large degenerate samples of lithium and potassium nowadays routinely obtained
[Salomon et al., 2014, Burchianti et al., 2014, Ketterle, 2014]. Besides, a particularly interesting
prospect of this method is its usage for single-site imaging of lithium isotopes in an optical
lattice, helping to observe strongly-correlated phases in a lattice. This method is based
on fluorescence of trapped atoms, and necessitates a cooling procedure to counteract the
heating caused by spontaneous emission. Since simple Sisyphus cooling is unavailable for
lithium, another cooling procedure is necessary and D; grey molasses cooling is a possible
candidate. This is an illustrative example of how novel techniques used in ultracold gases
can lead to the attainment and study of strongly-correlated states of matter.

Using a Feshbach resonance, we have studied three-body losses in a Bose gas with
resonant two-body interactions. These results have been compared with a theoretical model
showing good agreement, thus extending the understanding of three-body recombination
of bosons in the unitary regime of maximal s-wave two-body interactions, a contribution
to the field of few-body physics. These results allowed us to conclude on the stability-
condition of unitary Bose gases, a benchmark for further experimental studies of this elusive
strongly-interacting system.

In the last part, we have presented experimental results on Bose-Fermi superfluid mix-
tures. To the best of our knowledge, such mixtures have not been observed in any other
physical system. Using relative motion of the two superfluids, we have been able to mea-
sure their coupling (albeit weak). The observed counter-flow motion possesses the charac-
teristics of superfluid flows, with the absence of friction at low velocities and the onset of
dissipation above a critical velocity. The measurement of this critical velocity at unitarity is
in agreement with the Landau critical velocity. The extension of these measurements could
bring insight in the mechanisms for friction above the critical velocity. Besides, interfaces
between bosons and fermions are ubiquitous in nature, from the coupling between pho-
tons and electrons giving rise to the Meissner effect in superconductors, to liquid *He-*He
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mixtures. *He-*He mixtures share many characteristics with our mixtures and the advance-
ment of our research could be mutually advantageous. Possibly, implementing cryogenic
cooling techniques used in helium like dilution refrigeration to dilute ultracold gases could
allow to reach very low temperatures. On the other hand measurements of the properties
of degenerate Bose-Fermi mixtures could help to refine interaction models in helium and
experimentalists towards double superfluidity in helium.



Appendix A

D; sub-Doppler cooling of ’Li

A.1 The Focker-Planck equation

We consider particles subject to a Langevin force, with equation of motion:
mo = F(v,t), (A1)

where F(v,t) is the Langevin force, with mean value (F(v,t)) = F(v) and the stochas-
tic character of the force is expressed by the fluctuations §F(v,t), (6F(v,t)) = 0. OF
decays very rapidly® with t as is usually the case for a Langevin force. See for exam-
ple [Cohen-Tannoudji, Claude, 1990] for a complete treatment. We will take the case here of
F(0) = 0, where the velocity distribution is centered on v = 0 for long times. The evolution
of the velocity distribution is governed by the Focker-Plank equation. In one dimension it

reads :
9 p(w,0) = L ()P (0,0) + 2 (Malol P 0,1) (A2)
ot v, = v 1|V v, 81)2 2|V v, . .
with P the velocity distribution and the M,, coefficients are
L (Av™)
Mo = J%0 A )
using equation (A.1) the M,, coefficients can calculated, for M; we get:
dAv dv dv dv 1
(o) =)= (&) =nrw=m A
(A.5)

where © is the equilibrium mean velocity equal to zero in our case. M5 can be found similarly:
m2 My — / dr (5F (v, )5 (v, +7)) = D(v), (A.6)
0

where D(v) is the diffusion coefficient, expression (A.6) stands for its definition, for example
given in [Cohen-Tannoudji, Claude, 1996].
Finally using (A.2) the equilibrium solution is

Py (v) o Dzv)exp (m/ov dv’ fDEZ/%) , (A.7)

@On time scales much shorter than the evolution driven by F(v).
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which is the expression used in the main text.

A.2  Expressions of coefficients of the perturbative

expansion of the density matrix

Using the perturbative approach presented in the main text, the expressions of the friction
coefficient and the spontaneous emission rate are expressed in terms of the three following

coefficients:
GV =2 Im p{;” A8
P33 = 2cos(z)Im pyg (A.8)
(L1 i K 02cos(z) 9 1o A9
P13 - 51 o % o Q%(Z)/é Oz + 62 Oz (COS(Z) ) P13 ( * )
r 2,1 0 2,0) . 02 11 dp O 2,0 2,0 1,1
§Rep53 )= _ERepés Lt @Impgs ) 20 (2) 02 (P:(s:a '+ 2P52 )) - COS(2>ImPé1 ' (A10)

with Q;(z) = Q; cos(z) and 6 = §; — d2. The expressions of the above coefficients can be
found using the relations:

(1,0) cos(z)

= All
Pz 51 —92(2)2/5—7:1—‘/2 ( )
§2  cos?(2)Q
Re p20 = Im (L0 (922 N E;)2> (A12)
Q9 0 .
Im py") = —5 7 (cos(2)Re pf5"”) — () Impfy " (A13)
§24+1  dycos(z) cos(z)
2,0 1,0 2 1,0
p(22 ) = Impg3 ) <Cos(z)Q§ 5 + 2cos(z)) - Re p(13 ) (A.14)

A.3 | Extention of D, cooling to other principal detunings

The minimal temperatures are found for the parameters given in the main text and
namely, 3 = 27 x 27MHz for the principal detuning. We have further explored the ef-
fect of the A configuration on the temperature for two other detunings: 17MHz (fig. A.1)
and 10 MHz (fig. A.2). We represent the experimental results and compare with our pertur-
bative resolution of the optical Bloch equations as in main text. In the first case we observe
cooling in a narrower band with respect to the case d2 = 27 x 27MHz represented in fig-
ure 3.5, and a similar narrow structure around the Raman condition. In the second case
dy = 27 x 10 MHz we observe a strong heating on both sides off the RC, absent in the pre-
vious cases. We note that the model developed in the main text was based on a far detuned
principal beam d2 > T, which is not verified here, this modifies the cascade of states and the
effects of the cycles through this cascade.
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o/T

Figure A.1: Cooling efficiency as a function of the repumper detuning . Same as figure 3.5 but with 6o =
27 x 17TMHz.
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Figure A.2: Cooling efficiency as a function of the repumper detuning . Same as figure 3.5 but with 6o =
271 x 10 MHz.



Appendix B

Coupled dipole modes of superfluid mix-

tures

1

Dipole modes through the crossover.

Measurements of the coupled dipole modes of superfluid mixtures for nine different

fields in the crossover.
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B.2 BEC limit of the Frequency shift.

Here we evaluate the frequency shift dwy, /wy, given by

dw 1 dn®
=P~ g | =1 ; (B.1)
Wh 2 dg 0

in the limit where the Fermi superfluid is a molecular BEC of composite Fermi-Fermi dimers.
The dimers have a mass mgq = 2m; and a binding energy E4 = h?/mgqa3, where aq = 0.6 s
is the dimer-dimer scattering length [Petrov et al., 2004]. The Lee-Huang-Yang EoS for the
molecular BEC reads

32 a’
nd:@ 1- 2% Hdag

(B.2)
gd 3vT\ 9dd

where ng = ng/2 is the density of dimers, ;g = 2u¢ + E4 their chemical potential, and
gdd = 4mh?aq/mq the coupling constant for the dimer-dimer interaction. Then we have

di = 2% and thus
: m

dngo) 4 1 16 Ndag

- — (B.3)
dug g VT \ gdd

This quantity must be evaluated in the center of the trap (r = 0) to infer the frequency shift
(B.1). The second term in (B.3) is of first order in \/ngag. We then evaluate its argument in
the mean-field approximation which gives the usual expression for the chemical potential of
a BEC in a harmonic trap:

hio =\ 7°
maw
(td)r=0 = 7f (15Ndad % f) : (B.4)

Using (B.4) and the expression of the Fermi wave-vector:

mqw
kF = %(GNd)l/(i’ (B5)

with Ny = 2N4, we can recast our expression for the frequency shift (B.3) in the universal
units used in the main text (Eq. (10)):

3 2/5
Hdag L /5 12/5
- (= k B.6
dpg . ~ 0.6mh%ag ’ Far '
o L 61901 (1 ~ 1172 (kFaf)6/5> (B.8)
wp kpapg krag

This limit is shown in green in Fig. B.3. The mean-field approximation (red curve in Fig. B.3)
corresponds to the first term in Eq. (B.8).
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% =2 0 2 4
1/krag
Figure B.3: Predicted frequency shift (blue line) over a broad range of 1/kga¢. The dashed blue line shows

the ideal Fermi gas limit. On the BEC side the green line shows the Lee-Huang-Yang prediction (B.8) and the
red line the mean-field prediction.
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We study the lifetime of a Bose gas at and around unitarity using a Feshbach resonance in lithium 7. At
unitarity, we measure the temperature dependence of the three-body decay coefficient L;. Our data follow
a Ly = A3/T? law with A3 = 2.5(3)0(6)sysc X 1072° (uK)? cm®s™! and are in good agreement with our
analytical result based on zero-range theory. Varying the scattering length @ at fixed temperature, we
investigate the crossover between the finite-temperature unitary region and the previously studied regime
where |a| is smaller than the thermal wavelength. We find that L5 is continuous across the resonance, and
over the whole a < 0 range our data quantitatively agree with our calculation.

DOI: 10.1103/PhysRevLett.110.163202

Recent advances in manipulating cold atomic vapors
have enabled the study of Fermi gases at the unitary limit
where the scattering length a describing two-body interac-
tions becomes infinite. It has been demonstrated both
experimentally and theoretically that in this limit the system
is characterized by a scale invariance leading to remarkably
simple scaling laws [1]. In contrast, most experimental
results on Bose-Einstein condensates were obtained in the
weakly interacting regime. Recent experimental results on
bosons near Feshbach resonances have revived the interest
in strongly interacting bosons [2]: the development of
experimental tools has enabled a precise test of the
Lee-Huang-Yang corrections [3,4], and several theoretical
papers have studied the hypothetical unitary Bose gas at
zero [5-8] or finite [9] temperature. The strongly interacting
Bose gas is one of the most fundamental quantum many-
body systems, yet many open questions remain. Examples
include the prediction of weakly bound Efimovian droplets
[10,11], the existence of both atomic and molecular super-
fluids [12], and the creation of strongly correlated phases
through three-body losses [13].

Experimental investigation of ultracold bosons near
unitarity has been hampered by the fast increase of the
three-body recombination rate close to a Feshbach reso-
nance [14,15]. In this case, the number of trapped atoms
N(z) follows the usual three-body law

N = —Lsn*)N, (1

where (n?) = [d*rn®(r)/N is the mean square density
and L; is the three-body loss rate constant. In the zero-
temperature limit L increases as ha*/m [16] multiplied
by a dimensionless log-periodic function of a revealing
Efimov physics [17-26]. At finite temperature, Ly saturates
when a becomes comparable to the thermal wavelength

0031-9007/13/110(16)/163202(5)

163202-1

PACS numbers: 34.50.Lf, 03.65.Nk, 31.15.xj, 67.85.—d

Ay = h/27mkgT, and Ly~ ha*/m ~ b /m?(kzT)?
[9,27,28]. This saturation suggests that a non-quantum-
degenerate Bose gas near a Feshbach resonance will main-
tain thermal quasiequilibrium [9]. Indeed, in this regime,
lal| = Ay and n/\fh < 1. Thus, the elastic collision rate
vs % hAgn/m is much higher than the three-body loss rate
¥3 = L3n? o hA}n?/m. Experimental and numerical evi-
dence for a saturation of L; was reported in Refs. [3,22,27].
A theoretical upper bound compatible with this scaling was
derived in Ref. [29] assuming that only the lowest three-body
hyperspherical harmonic contributes, an assumption which
breaks down when |a| exceeds Ay,.

In this Letter, we measure the temperature dependence
of the unitary three-body recombination rate and find
agreement with a Ly « 1/T? scaling law. In a second set
of measurements performed at constant temperature, we
study L3 versus a. We show how this function smoothly
connects to the zero-temperature -calculations when
lal << Ay. These observations are explained by a general
theoretical result for Lj;(a, T), exact in the zero-range
approximation, that we derive in the second part. Our
theory allows for a complete analytic description of the
unitary case and, in particular, predicts (weak) log-periodic
oscillations of the quantity L;7?. Our findings quantify the
ratio of good-to-bad collisions in the system and provide
solid ground for future studies of strongly interacting Bose
gases. Furthermore, on the a < 0 side, experiments have
so far detected a single Efimov trimer [3,23-25,30]. Our
analysis predicts that a second Efimov trimer of very
large size should be detectable in 7Li at temperatures on
the order of a few microkelvins.

Our experimental setup was presented in Ref. [4]. After
magneto-optical trapping and evaporation in an Ioffe
magnetic trap down to =30 uK, =2 X 10° 7Li atoms
are transferred into a hybrid magnetic and dipole trap in

© 2013 American Physical Society
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the state |1, 1). The transverse confinement is obtained by a
single laser beam of waist 43(1) um and wavelength
1073 nm, while the longitudinal trapping is enhanced by a
magnetic field curvature. The resulting potential has a cylin-
drical symmetry around the propagation axis of the laser and
is characterized by trapping frequencies 0.87 < w /27 <
3.07 kHz and 18 < w,/27 <49 Hz. Further cooling is
achieved by applying a homogeneous magnetic field B =~
718 G for which the scattering length is =~200q,, and
decreasing the depth of the trapping potential down to a
variable value U’ allowing us to vary the final temperature
of the cloud. Afterwards, the dipole trap is recompressed to
a value U > U’, to prevent significant atom loss due to the
enhanced evaporation rate; see below. At each T we choose
U so as to maintain the temperature constant during the
three-body loss rate measurement. Finally, the magnetic
field is ramped in 100-500 ms to B, =~ 737.8(3) G, where
the scattering length a diverges [4]. We then measure the
total atom number N remaining after a variable waiting
time ¢ and the corresponding 7', using in situ imaging of
the thermal gas.

Our data are limited to the range of temperature 1 =
T =10 uK.ForT = 1 uK, therate y; = —N/N remains
small with respect to other characteristic rates in our
cloud (elastic scattering rate, trapping frequencies), which
guarantees that a thermal quasiequilibrium is maintained.
We check that for these parameters the in situ integrated
density profile is indeed Gaussian, and we use it to extract
the temperature of the cloud, found to be in agreement with
that of time of flight. The peak phase-space density varies
within 0.07 X 1072 < ngA3 < 1.1 X 1072, A typical time
dependence of N and T is shown in Fig. 1. The time
dependence of the atom number is fitted using the usual
three-body recombination law Eq. (1) [31]. For a nondegen-
erate gas of temperature 7', the density profile is Gaussian,

100

T [pK]

10 100

t [ms]
FIG. 1 (color online). Time dependence of the atom number
(a) and temperature (b) for U = nkzT, with T = 5.2(4) uK,
n =74, and (uncorrected) Lz = 1.2(2)gy X 1072! cm®s™!
The dotted line shows the long time ~'/2 dependence of the
number of atoms.

and we have (n?) = N2A(T) = N*(ma?/2m/3kzT)?, with
® = (w?w,)"/? being the mean trapping frequency. We then
have

N = —L5(T)A(T)N>. 2)
Assuming constant temperature, integrating Eq. (2) gives

_ N(0)

Tt AL, (N0

which we use as a fitting function to analyze N(¢), and
extract L;(T) as shown in Fig. 1.

Because of their n*/7? dependence, three-body losses
preferentially remove atoms of low kinetic energy and
those located at the center of the trap where the density
is the highest and potential energy is the smallest. As a
result, three-body loss events heat up the cloud [16]. We
ensure constant temperature by operating with a typical
trap depth U = nkzT with 6 = n = 8, for which the re-
sidual evaporation then balances recombination heating;
see Fig. 1(b). This ensures that L5 is time independent, but,
as a drawback, evaporation contributes to losses. To quan-
tify the relative importance of evaporative and three-body
losses, we first note that an atom expelled by evaporation
removes on average an energy =(n + k)kzT, where,
taking « from Ref. [32], we follow Ref. [33]. Typically,
we have k = 0.68 for n = 6 and k = 0.78 for n = 8 [34].
In comparison, each three-body event leaves on average an
excess heat of 0kgT per particle. Extending the derivation
of Ref. [16] to the case of an energy dependent three-body
loss rate « E~2, we obtain 8 = 5/3 [34]. The energy
balance required to keep the temperature constant thus
implies that the evaporation rate is ~8/(n + k — 3) times
smaller than the three-body loss rate. Neglecting this effect
would induce a systematic overestimation of L; of about
50% for n = 6 and 30% for n = 8. Therefore, we apply
this systematic correction to our data.

The temperature dependence of L; obtained from our
measurements at unitarity is shown in Fig. 2. It is well fit by
the scaling law L;(T) = A3/T?, with A3 = 2.5(3)gu X
1072 (uK)>cm®s™! as the best-fit value. In order to
discuss the systematic uncertainty of this measurement,
we note that the quantity L;T? scales in all experimental
parameters identically to the thermodynamic quantity
(u?/P)?* of a zero-temperature Bose-Einstein condensate
with chemical potential u and pressure P [34]. We use this
relation to calibrate our experimental parameters [4] and
obtain a systematic uncertainty on A3 of = 25% resulting
in A3 = 2.5(3)5a(6)sysc X 1072 (wK)?cm®s™ 1.

We now study the a dependence of L; on both sides of
the resonance by employing the same experimental proce-
dure as in the unitary case. We tune the scattering length
while keeping the temperature within 10% of 5.9 uK; see
Fig. 3. The excess heat & entering in the correction now
depends on the value of ka. The correction is applied to
all data points (filled circles) except in the range 1500a, <
a < 5000a, (open circles), where the assumptions of our

3)
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FIG. 2 (color online). Temperature dependence of the
three-body loss rate L;. Filled circles, experimental data;
green dashed line, best fit to the data L(T) = A;/T? with A;=
2.5(3)gqat(6)syse X 1072° (uK)?cm®s™!; the shaded green band
shows the 1o quadrature sum of uncertainties. Solid line,
prediction from Eq. (5), A3 = 1.52 X 1072 (uK)?>cm®s~!
with 7, = 0.21 from Refs. [30,39].

model are not applicable [34]. In the limit |a| > Ay, we
observe that L;(a) saturates to the same value on both sides
of the resonance. In the opposite limit |a| < Ay, our data
connect to the zero-temperature behavior [20] studied
experimentally in Refs. [22-26]. On the a <0 side, the
dashed line is the zero-temperature prediction for L5 from
Ref. [20]. We clearly see that finite temperature reduces the
three-body loss rate. On the a > 0 side, temperature effects
become negligible for a < 2000q, as testified by our mea-
surements performed on a low-temperature Bose-Einstein
condensate (green squares), which agree with the total
recombination rate to shallow and deep dimers calculated
at T = 0 in Ref. [20] (dashed line). The data around uni-
tarity and on the a <0 side are seen to be in excellent
agreement with our theory Eq. (4) described below.

In order to understand the dependence L;(a, T) theoreti-
cally, we employ the S-matrix formalism developed in
Refs. [20,35,36]. According to the method, at hyperradii R >
|a| one defines three-atom scattering channels (i = 3,4, ...)
for which the wave function factorizes into a normalized
hyperangular part ®,(R) and a linear superposition of the
incoming, R~5/2¢~*R and outgoing, R~5/2¢**R hyperra-
dial waves. The channel i = 2 is defined for a >0 and
describes the motion of an atom relative to a shallow dimer.
The recombination or relaxation to deep molecular states
(with a size of order the van der Waals range R,) requires
inclusion of other atom-dimer channels. In the zero-range
approximation, valid when R, < R,, = min(1/k, |a|), the
overall effect of these channels and all short-range physics
in general can be taken into account by introducing a single
Efimov channel (i = 1) defined for R, < R < R,,: the
wave function at these distances is a linear superposition of
the incoming, ®,(R)R™2**_ and outgoing, ®;(R)R 2",
Efimov radial waves. Here s, = 1.00624. The notion
“incoming” or “outgoing” is defined with respect to the
long-distance region R,, < R < |al, so that, for example,
the incoming Efimov wave actually propagates towards larger
R whereas incoming waves in all other channels propagate
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FIG. 3 (color online). (a) "Li scattering-length dependence of
the three-body rate constant L;(a) for constant 7 = 5.9(6) uK
(filled and open circles). For small positive a, Ls(a) for a low-
temperature condensate is also shown (green squares). The solid
blue line corresponds to our theoretical prediction Eq. (4) for
T =5.9 uK. The blue range is the same theory for 5.3 to
6.5 uK. The dashed lines show the zero-temperature prediction
for L;(a) [20] fitted to the measurements in Refs. [30,39] with
the parameters 7, = 0.21 and Ry, = 270a,. The vertical dotted
lines correspond to |a|/Ag, = 1. The open circles in the range
1500ay < a < 50004 are not corrected for residual evaporation
as our model is not applicable. (b) Logarithmic plot of the a <0
side, displaying the two Efimov loss resonances.

towards smaller hyperradii. The matrix s;; relates the incom-
ing amplitude in the ith channel with the outgoing one in the
Jjth channel and describes the reflection, transmission, and
mixing of channels in the long-distance region. This matrix
is unitary and independent of the short-range physics. The
short-range effects are taken into account by fixing the relative
phase and amplitude of the incoming and outgoing Efimov
waves R?W <« (R/R;)™0 — e>"-(R/R,) "%, where Ry, is the
three-body parameter and the short-range inelastic processes
are parametrized by 7, > 0, which implies that the number
of triples going towards the region of R~ R, is by
the factor ¢*” larger than the number of triples leaving this
region [37]. Braaten et al. [36] have shown that for a given
incoming channel i = 2 the probability of recombination
to deeply bound states is P; = (1 — e *7)|s;|?/[1 +
(kRy)2s0e=2m-5,,|% [38]. For a <0, by using the fact
that s, is unitary (Y%, |s|;|> = 1) and averaging over the

163202-3
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Boltzmann distribution, we then obtain the total loss rate
constant

T2 BR(1 — em4)
mk?h
N (1 — |sy[2)e /K kdk
0 |1+ (kRy) 2i0e™ 25|’

L

(4)

where ky, = /mkgT /h.

Note that in deriving Eq. (4) we closely followed [36]
where the scattering length was assumed to be finite.
However, we easily generalize this derivation to the case
a = oo, in which the channels become decoupled at dis-
tances R > 1/k and the long-distance region can now be
defined by R ~ 1/k. A less trivial result of our analysis is
that for any ka there exists a unitary transformation of the
matrix s;; which leaves the element s,; invariant, but all
channels with i > 3 become decoupled from the Efimov
channel [34]. This transformation constructs a new large-R
channel characterized by a certain hyperangular wave
function @5(R). For negative or infinite a this is the only
channel that can “talk” to the lossy short-distance Efimov
channel via a unitary 2 X 2 matrix. Therefore, the three-
body loss rate cannot exceed the so-called maximum value
L = 3637205 (kyT)~2/m® reached in the case when
the outgoing flux in this newly constructed channel van-
ishes. Previous derivations of L5 [29] essentially implied
that ®5(R) is the lowest noninteracting hyperspherical
harmonics. This approximation can be made only for
kla| < 1. In general, ®5(R) is not an eigenstate of the
angular momentum operator. In particular, at unitarity
®;(R) = @,(R) [34].

The function s, (ka) is calculated in Ref. [34]. At unitar-
ity it equals s1;(00) = — e~ ™0g2lson2+argl(I+iso)] and from
Eq. (4) one sees that LT? should be a log-periodic function
of T. However, due to the numerically small value of |s,| =
0.04, in the case of three identical bosons the oscillations are
very small and L5 is well approximated by setting s;; = O:

— e 4

s )1
Ly = — 36337 (5)
"

(kgT)

This explains the L5 o T~2 experimental observation seen in
Fig. 2 at unitarity. Taking 0, = 0.21, which is the average of
two measurements made for our ’Li Feshbach resonance in
Refs. [30,39], we get L; = A3/T? with A; = 1.52 X
10720 (wK)? cm® s~ 1. This is 40% below the experimentally
determined value without any adjustable parameter and the
agreement between theory and experiment is 1.40-.

We should point out that Eq. (4) can be easily general-
ized to the case of other three-body systems with smaller
so- Then, the terms neglected in Eq. (5) can become
important. They also become important in our system of
three identical bosons when departing from resonance in
the direction of a <0. Then |s;;(ka)] monotonically
increases as a function of 1/k|a| reaching 1 in the limit

ka — 07, the argument of s;; also being a monotonic
function of 1/k|al| [34]. The solid dark gray (blue) line in
Fig. 3 is the result obtained from Eq. (4) using the same 7.,
as above and Ry, = 270a, also taken from Refs. [30,39].
The shaded blue area reflects our experimental range of
temperatures. More or less visible maxima of L3 appear
when the denominator in the integrand of Eq. (4) reaches
its minimum, i.e., becomes resonant. The approximate
condition for this is args;;(ka) = 7 + 2s,InkR,, and the
features become increasingly more pronounced for larger
|s1;| and smaller 7.. Note that from the viewpoint of the
visibility of the maxima, decreasing |a| is equivalent to
decreasing +/T. Figure 3(b) shows the pronounced reso-
nance at a = a_ = —274a, observed in Refs. [30,39].
This resonance is associated with the passage of an
Efimov trimer through the three-atom threshold. Another
Efimov trimer, larger in size by a factor of /% = 22.7,
is expected to go through the threshold at around
a = —6350ay, leading to another zero energy resonance.
As we deduce from Eq. (4) and show in Fig. 3 for 5.9 uK,
the thermally averaged remnants of this predicted reso-
nance lead to a maximum of L5 at a = —5100q,. As seen
in Fig. 3(b), the agreement between theory and experiment
is very good over the entire a < 0 range.

Because of the existence of a shallow dimer state, the case
a > 0 becomes, in general, a complicated dynamical prob-
lem which should take into account the atom-dimer and
dimer-dimer relaxation as well as various nonuniversal
factors: the finite trap depth, chemical imbalance between
trapped shallow dimers and free atoms, and deviations from
thermal equilibrium which possibly depend on the prepara-
tion sequence. These issues require an extensive discussion
beyond the scope of this Letter. The situation obviously
simplifies in the case of very small @ when the system is
purely atomic and the three-body recombination to deep and
shallow molecules leads to an immediate loss of three atoms.

Discussing the opposite limit of large a > 0, we first
note that dimers are well defined when their size ~a is
smaller than n~'/3, which we assume in the following
(the limit na® > 1 is equivalent to the case a = o). In
the regime a > Ay we find using the Skorniakov-Ter-
Martirosian equation that s, — 0 for ka — oo, which
implies that the atom-dimer relaxation rate vanishes;
shallow dimers then remain at chemical quasiequilibrium
with the decaying atomic ensemble, with a molecular
fraction = nAj < 1 (for the data of Fig. 3 with a > Ay,
the molecular fraction is 0.6%) [34]. Shallow dimer for-
mation and breakup are then balanced, so that the atomic
decay is just given by Eq. (1). The expression of L3 for
a > 0 was obtained in Ref. [36] and reduces to Eq. (4) for
s;p— 0. We conclude that the loss rate must be
continuous across the resonance, in accordance with our
experimental data. Therefore, in Fig. 3(a) the result of
Eq. (4) is simply continued to positive a for a > Ay,.

In summary, we have systematically studied the depen-
dence of the three-body loss rate on T and a in a Bose gas
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near unitarity. Equation (5) shows that, at unitarity, L;
never reaches L5, and one can hope to produce quantum
degeneracy in a unitary Bose gas using atomic species with
a particularly small .. Note that the loss mechanism in
our system drastically differs from a chemical reaction
with finite activation energy AE characterized by the
well-known Arrhenius law L o exp(—AE/kgT). In our
case, instead of a potential hill there is an effective three-
body R™? attraction leading to W(R) x (Ay/R)* at
distances R, = R < Ay,, where we normalized the three-
body wave function W to unit volume and omitted its log-
periodic R dependence. We clearly see that the probability
of finding three atoms in the recombination region is
enhanced at small temperatures and scales as |2 o )\fh oc
1/T%. More subtle is a quantum interference effect in
Efimov three-body scattering, which leads to an enhanced
decay rate at a negative a, suggesting the possibility to
observe the signature of a second Efimov trimer of large
size. Another future direction is to explore the approach to
the quantum-degenerate regime and test whether the virial
expansion of the unitary Bose gas [40] can be measured
by using quasiequilibrium thermodynamics [9].
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A-enhanced sub-Doppler cooling of lithium atoms in D; gray molasses
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Following the bichromatic sub-Doppler cooling scheme on the D, line of “°K recently demonstrated
in Fernandes et al. [Europhys. Lett. 100, 63001 (2012)], we introduce a similar technique for ’Li atoms and obtain
temperatures of 60 uK while capturing all of the 5 x 10% atoms present from the previous stage. We investigate
the influence of the detuning between the the two cooling frequencies and observe a threefold decrease of the
temperature when the Raman condition is fulfilled. We interpret this effect as arising from extra cooling due
to long-lived coherences between hyperfine states. Solving the optical Bloch equations for a simplified A-type
three-level system we identify the presence of an efficient cooling force near the Raman condition. After transfer
into a quadrupole magnetic trap, we measure a phase space density of ~1073. This laser cooling offers a promising
route for fast evaporation of lithium atoms to quantum degeneracy in optical or magnetic traps.

DOI: 10.1103/PhysRevA.87.063411

I. INTRODUCTION

Lithium is enjoying widespread popularity in the cold-atom
trapping community thanks to the tunability of its two-body
interactions and its lightness. Both the fermionic and the
bosonic isotopes of lithium feature broad, magnetically tunable
Feshbach resonances in a number of hyperfine states [1].
The presence of these broad resonances makes lithium
an attractive candidate for studies of both the Fermi- and
Bose-Hubbard models [2] and the strongly correlated regime
for bulk dilute gases of Fermi [3] or Bose [4-6] character. Its
small mass and correspondingly large photon-recoil energy
are favorable factors for large area atom interferometers [7]
and precision frequency measurements of the recoil energy
and fine structure constant [8]. Under the tight-binding
lattice model, lithium’s large photon-recoil energy leads to a
larger tunneling rate and faster time scale for superexchange
processes, allowing for easier access to spin-dominated
regimes [9]. Finally, lithium’s small mass reduces the heating
due to nonadiabatic parts of the collision between ultracold
atoms and Paul-trapped ions. This feature, together with Pauli
suppression of atom-ion three-body recombination events
involving °Li [10], potentially allows one to reach the s-wave
regime of ion-atom collisions [11].

However, lithium, like potassium, is harder to cool using
optical transitions than the other alkali-metal atoms. The
excited-state structure of the D, transition in lithium lacks the
separation between hyperfine states for standard sub-Doppler
cooling techniques such as polarization gradient cooling
[12-14] to work efficiently. Recently, it has been shown by
the Rice group that cooling on the narrow 2S5, — 3P3),
transition produces lithium clouds near 60 uK, about half
the D,-line Doppler cooling limit [15], and can be used for
fast all-optical production of a °Li quantum degenerate Fermi
gas. However, this approach requires special optics and a
coherent source at 323 nm, a wavelength range where power
is still limited. Another route is to use the three-level structure
of the atom as implemented previously in neutral atoms
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and trapped ions [16-22]. The three-level structure offers
the possibility of using dark states to achieve temperatures
below the standard Doppler limit, as evidenced by the use
of velocity-selective coherent population trapping (VSCPT)
to produce atomic clouds with subrecoil temperatures [23]. In
another application, electromagnetically induced transparency
has been used to demonstrate robust cooling of a single ion to
its motional ground state [19,24].

In this paper, we implement three-dimensional bichromatic
sub-Doppler laser cooling of "Li atoms on the D; transition.
Figure 1 presents the "Li level scheme and the detunings
of the two cooling lasers that are applied to the atoms after
the magneto-optical trapping phase. Our method combines
a gray molasses cooling scheme on the |F =2) — |F' =
2) transition [25,26] with phase-coherent addressing of the
|F =1) — |F' =2) transition, creating VSCPT-like dark
states at the two-photon resonance. Instead of UV laser
sources, the method uses laser light that is conveniently
produced at 671 nm by semiconductor laser sources or solid-
state lasers [27,28] with sufficient power. This enables us to
capture all of the ~5 x 10% atoms from a MOT and cool them
to 60 «K in a duration of 2 ms.

We investigate the influence of the relative detuning
between the two cooling lasers and observe a threefold
decrease of the temperature in a narrow frequency range
around the exact Raman condition. We show that extra cooling
arises due to long-lived coherences between hyperfine states.
We develop a simple theoretical model for a sub-Doppler
cooling mechanism which occurs in atoms with a A-type
three-level structure, in this case, the FF =1, F =2, and
F’ = 2 manifolds of the D transition in "Li. The main physical
cooling mechanism is contained in a 1D bichromatic lattice
model. We first give a perturbative solution to the model and
then verify the validity of this approach with a continued
fraction solution to the optical Bloch equations (OBEs).

II. EXPERIMENT

The stage preceding D; sub-Doppler cooling is a com-
pressed magneto-optical trap (CMOT) in which, starting
from a standard MOT optimized for total atom number, the

©2013 American Physical Society
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FIG. 1. (Color online) The D; line for "Li. The cooling scheme
has a strong coupling laser (principal beam, black solid arrow) §,
blue detuned from the |F = 2) — |F’ = 2) transition and a weak
coupling laser (repumper, gray solid arrow) 8, blue detuned from
the |F = 1) — |F’ = 2) transition. The repumper is generated from
the principal beam by an electro-optical modulator operating at a
frequency 803.5 4 3/2w MHz, where § = §; — 6,.

frequency of the cooling laser is quickly brought close to
resonance while the repumping laser intensity is diminished
in order to increase the sample’s phase space density [29].
The CMOT delivers 5 x 10® 7Li atoms at a temperature of
600 uK. The atoms are distributed throughout the F =1
manifold in a spatial volume of 800 um 1/e width. Before
starting our D molasses cooling, we wait 200 us to allow any
transient magnetic fields to decay to below 0.1 G. The light
used for D cooling is generated by a solid-state laser presented
in [27]. The laser is locked at frequency w,, detuned from
the |F =2) — |F' =2) D; transition in 'Li by §&,. It is
then sent through a resonant electro-optical modulator (EOM)
operating at a frequency near the hyperfine splitting in
"Li, vgom = 803.5 MHz + 6/27. This generates a small-
amplitude sideband, typically a few percent of the carrier,
at frequency w;. We define the detuning of this frequency
from the |F =1) — |F’ =2) transition as &; (such that
8 = 8; — 87), as shown in Fig. 1. Using about 150 mW of
671-nm light we perform a three-dimensional D; molasses
as in [25], with three pairs of o™ — o~ counterpropagating
beams. The beams are of 3.4-mm waist and the intensity
(I) of each beam is I 2 451, where Iy = 2.54 mW /cm?
is the saturation intensity of the D, cycling transition in
lithium.

We capture all of the atoms present after the CMOT stage
into the D, gray molasses. The 1/e lifetime of atoms in the
molasses is >50 ms. After being cooled for 1.5-2.0 ms, the
temperature is as low as 40 wK without optical pumping or
60 uK after optical pumping into the |F = 2,mp = 2) state
for imaging and subsequent magnetic trapping. In contrast
with [25], we find no further reduction in the steady-state
temperature by slowly lowering the light intensities after the
initial 2.0 ms.

During the molasses phase, we find a very weak dependence
on the principal laser detuning for 3I" < 6, < 6I". For the
remainder of this article, we use a principal laser detuning of
8, =4.5T =2 x 26.4 MHz. In Fig. 2(a), the temperature
dependence upon the repumper detuning is displayed for
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FIG. 2. (Color online) (a) Typical temperature of the cloud as
a function of the repumper detuning for a fixed principal beam
detuned at §; = 4.5T = 2w x 26.4 MHz. The dashed vertical line
indicates the position of the resonance with transition |F = 2) —
|F’ = 2), the dotted horizontal line shows the typical temperature of
a MOT. (b) Magnification of the region near the Raman condition
with well-aligned cooling beams and zeroed magnetic offset fields.
(c) Minimum cloud temperature as a function of repumper power.

typical conditions. For —9 < §/T" < —6, the temperature
drops from 600 K (the CMOT temperature) to 200 K as gray
molasses cooling gains in efficiency when the weak repumper
comes closer to resonance. For —6 < §/T" < —1, the cloud
temperature stays essentially constant but, in a narrow range
near the position of the exact Raman condition (§ = 0), one
notices a sharp drop of the temperature. For § slightly blue
of the Raman condition, a strong heating of the cloud occurs,
accompanied by a sharp decrease in the number of cooled
atoms. Finally for § > T, the temperature drops again to a level
much below the initial MOT temperature until the repumper
detuning becomes too large to produce significant cooling
below the CMOT temperature.

Figures 2(b) and 2(c) show the sensitivity of the temperature
minimum to repumper deviation from the Raman condition
and repumper power, respectively. The temperature reaches
60 uK in a £500-kHz interval around the Raman resonance
condition. After taking the data for Fig. 2(a), the magnetic field
zeroing and beam alignment were improved, which accounts
for the frequency offset and higher temperature shown in
Fig. 2(a) relative to Figs. 2(b) and 2(c). The strong influence
of the repumper around the Raman condition with a sudden
change from cooling to heating for small and positive Raman
detunings motivated the study of the bichromatic-lattice effects
induced by the A-type level configuration which is presented
in the next section.

III. MODEL FOR HYPERFINE RAMAN COHERENCE
EFFECTS ON THE COOLING EFFICIENCY

In order to understand how the addition of the second
manifold of ground states modifies the gray molasses scheme,

063411-2



A-ENHANCED SUB-DOPPLER COOLING OF ...

12)

FIG. 3. The A level scheme. An intense standing wave with Rabi
frequency €2, and a weaker standing wave with Rabi frequency 2,
detuning 8, illuminate an atom with three levels in a A configuration.

we analyze a one-dimensional model based on a A-type
three-level system schematically represented in Fig. 3.

A. The model

This model includes only the F = 1,2 hyperfine ground
states and the F’ =2 excited state ignoring the Zeeman
degeneracy; hence, standard gray molasses cooling [26] does
not appear in this model. The states are addressed by two
standing waves with nearly the same frequency w; >~ w, >~
o = kc but spatially shifted by a phase ¢. The principal
cooling transition F = 2 — F’ = 2 is labeled here and below
as transition 2, between states |2) and |3) with a Rabi frequency
Q, = ['\/T/21, where [ is the laser light intensity and I, the
saturation intensity on this transition. The repumper transition
is labeled 1, between states |1) and |3) with Rabi frequency
21 much smaller than £2,.

The corresponding Hamiltonian for the light-atom interac-
tion in the rotating wave approximation (at w) is

A

Ha1 = hQpcos(kz) (12)(3] + H.c.)
+n82; cos(kz + ¢) (|1)(3] +H.c.)
+h82(2) (2] + oy [1)(1]. (D

The usual formalism used to compute the atom’s dynamics
is to consider the light force as a Langevin force. Its mean value
is F(v), and the fluctuations around this mean will give rise to
diffusion in momentum space, characterized by the diffusion
coefficient D,(v) > 0. In order to calculate an equilibrium
temperature, one needs F(v) and D,(v). In the limit of small
velocities the force reads

Fw)~ —av, ()

with o the friction coefficient. If o > 0 the force is a
cooling force; in the opposite case it produces heating. For
a cooling force the limiting temperature in this regime is
given by

ks T ~ D,(0)/cr. 3)

However, since our model (1) is a gross simplification of the
physical system, we do not expect to be able to quantitatively
predict a steady-state temperature. Instead, in order to reveal
the physical mechanisms in action, we only calculate the force
F(v) and the excited state population p33. Restricting our
analysis to the force and photon scattering rate, I"ps3, suffices
to determine whether the action of the weak repumper serves
to heat or cool the atomic ensemble.

PHYSICAL REVIEW A 87, 063411 (2013)

From (1) the mean light force on the atoms is computed by
taking the quantum average of the gradient of the potential,
F = (—V?—A[a,l,) = —Tr[,éﬂa_l,], with p the density matrix,
yielding the wavelength-averaged force F,

2

k T
F) = — / dz F(z.v), 4)
27T 0
RKE [E
Fv) = o / dz sin(kz)($22Repr3 + 21Repr2). 5)
0

The spontaneous emission rate averaged over the standing
wave is simply given by the linewidth of the excited state
multiplied by its population:

k
- 21 0
So, both the force and the spontaneous emission rate are

functions of the density matrix p, the evolution of which is
given by the OBEs,

2

&
F/ dZ F P33. (6)

d 1 dp
L= ol +i (2L . 7
ldtp h[ APIE (dt)spontemis. @

As we are focusing on the sub-Doppler regime, we assume
v T/k, (3)

with v being the velocity. The inequality holds for T < 13 mK
for lithium. This inequality allows us to replace the full time
derivative in the left-hand side of (7) by a partial spatial
derivative times the atomic velocity,

d a

— = v—.

dt 0z
Using the notation €2;(z) = €2; cos(z + ¢;) and setting /1 =
k = 1 from here on,

P r
jplPa _ —2iQ(z) Im(023) + i = p33, )
0z 2
P r
v — 2iQ1(2) Im(p1s) + i — 33, (10)
0z 2
. 0p T
iv 823 - (52 B l§>p23 + €22(2) (P33 — p22) — Q1 (2)p21,
(1D
. 0p13 T
=== (31 =1 )13 + 2@ (o3 — p11) = 2@,
(12)
0021

iUY = (82 — 81)pa1 + 22(2)p31 — Q2(2)p23. (13)

The solution of these equations yields the expression of
F(v) and I"’. This semiclassical model is valid only for veloc-
ities above the recoil velocity v, = hk/m (corresponding to
a temperature muv,./ kg of about 6 uK for lithium). Different
theoretical studies [17,18,20,22,30,31] as well as experiments
[16,32] have been performed on such a A configuration
in standing waves or similar systems. However, in our "Li
experiment, we have the situation in which the A configuration
is coupled to a gray molasses scheme which involves a different
set of dark states. This fixes the laser light parameters to
values that motivate our theoretical exploration. Thus, we
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concentrate on the situation corresponding to the conditions of
our experiment.

To solve the OBEs (9)-(13), we first introduce a per-
turbative approach that enables us to point out the relevant
physical mechanisms. We further extend the analysis by an
exact approach in terms of continued fractions.

B. Perturbative approach

In our perturbative approach we choose a Rabi frequency
2, between 2I' and 4I" and Q; K I, €2,,8, as the ratio of
the repumper to principal laser power is very small, typically
(21/ Q)2 < 0.03, under our experimental conditions. We
further simplify the approach by considering only the in-phase
situation ¢ = 0; any finite phase would lead to divergencies of
the perturbative approach at the nodes of wave 1. The validity
of these assumptions are discussed in Sec. III C.

We perform an expansion in powers of the Rabi frequency
2 and the atomic velocity such that the complete expansion
reads

pij =Y p(Q)" ). (14)
n,l

This expansion of p allows us to recursively solve the OBEs.
Using an expansion similar to Eq. (14) for the force, we find

o0
a=—> Frh@). (15)
n=0
We plug the perturbative solution of the OBEs into Eq. (5) and
find, to the lowest order (n = 2) in 2,

R @ (L.1)
@z —— A dzsin(z)(QRe pyy’ +Repj3 7). (16)

The spontaneous emission rate to lowest order in v and €24

reads
Q 2 2
F/=F(271T) /0 dz p3”. (17)

Figure 4 presents the results from (15) and (17) compared
with the experimental data. It shows that indeed a narrow
cooling force appears near the Raman resonance condition
and that the photon scattering rate vanishes at exact res-
onance, hinting at an increase of cooling efficiency with
respect to the gray molasses Sisyphus cooling mechanism
which achieves a temperature near 200 K over a broad
range. The strong heating peak for small, positive repumper
detuning is also a consequence of the negative value of
o, and the heating peak shifts towards higher frequency
and broadens for larger intensities of the principal laser. In
contrast, the friction coefficient and scattering rate in the
range —6 < §/ ' < —3, which correspond to a repumper near
resonance, do not seem to significantly affect the measured
temperature.

To gain further physical insight into this cooling near the
Raman condition, it is useful to work in the dressed-atom
picture. Given the weak repumping intensity, we first ignore
its effect and consider only the dressing of the states |2) and
|3) by the strong pump with Rabi frequency €2,. This dressing

PHYSICAL REVIEW A 87, 063411 (2013)

800Ka) ]
600-”. """""""""""" ¥ e e e * ]
[ ] [ ] ( ]
Tk 4000 oo P ]
% o (]
200f Dl allhatll P ]
0 + } t
]O-(b) "\‘ ]
AN
_a 0 < .
hk? 5 [‘d o
-10f y 1
)
-20
1072
r
I 1079

10710

o/l

FIG. 4. (Color online) Comparison of experimental data with
the perturbative approach results for a detuning of the pump &, =
21 x 26.4 MHz = 4.5T . (a) Temperature versus repumper detuning,
experiment; we indicate the MOT temparature by the dotted line.
Panels (b) and (c) show, respectively, the friction coefficient & and
photon scattering rate I' for 2, = 3.4T (red dashed curve) and 2.1T
(blue solid curve). The intensity ratio (£2;/2,)? is 0.02. The vertical
dashed line indicates the position of §; = 0.

gives rise to an Autler-Townes doublet structure which follows
the spatial modulation of the standing wave:

2') o< [2) — i€2(2)/813), (13)

|3) oc —iS2(2)/8212) + 13). (19)

Since the pump is relatively far detuned (in the conditions
of Fig. 4 Q,/8, < 0.45), the broad state |3’) carries little |2)
character. Conversely, the narrow state |2') is mostly state
|2). Tt follows that |3') has a lifetime I'*) ~ I", while |2')
is relatively long lived with a spatially dependent linewidth
I'?) = I'(Q2(2)/8,)%, which is always <I'/6 for the param-
eters chosen here. In order to reintroduce the effects of the
repumping radiation, we note that the position in § of the
broad state is 817 ~ —8, — Q2,(z)?/8, and the narrow state
8170 ~ ©,(2)?/8,. As coherent population transfer between
[1) and |2') does not change the ensemble temperature, we
consider only events which couple atoms out of |2) to |1)
through spontaneous decay and therefore scale with I'yy.
The rates of coupling from |1) into the dressed states can
be approximated by the two-level absorption rates:

Qi(2)? I'?)(z)

e I YT s A
Qi(2)? r

Yin—13) ~ ) 2D

2 (T/22+[8-83@1P

Finally, these results are valid only in the limit |§| > FQ% / 8%
(see,e.g., [33]) when state |1) is weakly coupled to the radiative
cascade. Near the Raman resonance, the dressed state family
contains a dark state which bears an infinite lifetime under the
assumptions made in this section but is, in reality, limited by
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[1, n)

1, n-1)

FIG. 5. (Color online) The cascade of levels dressed by transition
2 with a schematical representation of state |1). Traces show typical
cycles of atoms pumped from |1) and back depending on the detuning
of wave 1. The detuning of the repumper modulates the entry point
into the cascade of the dressed states, leading either (a) heating or (b)
cooling processes.

off-resonant excitations and motional coupling. This dark state

reads
INC) = (a]1) — 2412))//QF + 23, (22)

which we must add in by hand.

Using this toy model, we now explain the features of Fig. 4
and Fig. 2. Figure 5 represents the cascade of dressed levels
where each doublet is separated by one pump photon. It gives
rise, for example, to the well-known Mollow triplet. Condition
(8) states that if an atom falls in state |3’} it will rapidly decay to
|2") without traveling a significant distance. However, the atom
will remain in |2’) long enough to sample the spatial variation
of the standing wave and gain or lose energy depending on the
difference of light shift between the entry and the departure
points, as in most sub-Doppler cooling schemes.

Let us first analyze the spontaneous emission rate shown
in Fig. 4(c). It reaches two maxima, the first one for § ~ §1*"
and the second one for § ~ §/?, and it goes to exactly zero at
8 = 0. The two maxima are simply due to scattering off the
states |2’) and |3’). At § = 0, I'" goes to zero due to coherent

PHYSICAL REVIEW A 87, 063411 (2013)

population trapping in |[NC). It is the presence of this dark state
which leads to the reduced scattering rate of photons around
8 = 0 and the suppression of the final temperature of the gas
in the region around the Raman condition.

The friction coefficient, Fig. 4(b), displays a more com-
plicated structure with variations in é. It shows a dispersive
shape around 8, remains positive in the range 87 < § < 0,
diverges at § = 0, and reaches negative values for § > 0 up
to 8127, where it drops to negligible values. This structure for
« can be explained using our toy model. Let us consider the
different scenarios corresponding to both sides of § near 0,
they follow formally from Eqgs. (20) and (21) and the spatially
varying linewidth of |2').

For the case of the repumper tuned slightly blue of the
narrow doublet state, § > §/*7, shown in Fig. 5(a), the atoms
are pumped directly from |1) into |2"). However, this pumping
happens preferentially at the antinodes of the standing wave
as the repumper intensity is greatest, the linewidth of |2') is
the largest, and the light shift minimizes the detuning of the
repumper from the |1) — |2’) transition for the ¢ = 0 case
considered here. On average, the atoms exit this state at a
point with a smaller light shift through a spontaneous emission
process either into the cascade of dressed states or directly back
to [1). As aresult, we expect heating and & < 0 in this region.

For repumper detunings between 8> and 0, Fig. 5(b), we
predict cooling. For this region, the atoms are initially pumped
into |3’). Here the light shift modifies the relative detuning,
favoring coupling near the nodes of the light. Spontaneous
decay drops the atoms near the nodes of the longer-lived |2'),
and they travel up the potential hill into regions of larger light
shift before decaying, yielding cooling and a positive «. These
sign changes of « and the decreased scattering rate due to |[NC)
in the vicinity of the Raman condition explain the features of
our perturbative model.

We conclude this section by stating that the experimentally
observed change of sign of the force close to the Raman
condition is well described in our perturbative model. The
model further reveals the importance of Raman coherence and
the existence of a dark state. The dark state together with
the friction coefficient associated with cycles represented in
trace 5(b) correspond to a cooling mechanism analogous to
that of gray molasses. In this way, the bichromatic system
provides an additional gray molasses scheme involving both
hyperfine states which complements the gray molasses cooling
scheme on the principal transition. On the other hand, when the
friction coefficient is negative in the vicinity of the two-photon
resonance, it turns into a heating mechanism that overcomes
the standard gray molasses operatingonthe F =2 — F' =2
transition.

The perturbative approach successfully revealed the mech-
anisms giving rise to the experimentally observed additional
cooling. However, it also possesses some shortcomings. First,
the divergence of « at § = 0 is not physical; the assumption
that 2, is the smallest scale in the problem breaks down when
8 — 0. Alternatively, it can be seen as the failure of our model
based on nondegenerate perturbative theory in the region
where | 1) and |2) become degenerate when dressed with w; and
wy, respectively. Second, we have only addressed the ¢ =0
case. Since the experiment was done in three dimensions with
three pairs of counterpropagating beams, the relative phase
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FIG. 6. (Color online) Comparison of results using the perturba-
tive calculation (dashed), and the continued fractions (solid) for the
¢ = 0 case, with the same parameters as in Fig. 4 and @2, = 2.1T".

between the two frequencies varies spatially, and we must test
if the picture derived at ¢ = 0 holds when averaging over all
phases. In order to address these limitations and confirm the
predictions of the perturbative approach, we now present a
continued-fractions solution to the OBEs which does not rely
on 27 being a small parameter.

C. Continued fractions approach

The limitations listed above can be addressed by using a
more general approach, namely, an expansion of the density
matrix in Fourier harmonics:

n=+00
pij = Z pi(}i)einkz' (23)
n=—oo

Injecting this expansion in (9)—(13) yields recursive rela-
tions between different Fourier components of p. Kozachiov
et al. [17,30] express the solutions of these relations for a
generalized A system in terms of continued fractions. Here
we use their results to numerically solve the Bloch equations.
We then compute the force F(v) to arbitrary order of €2; and
extract o by means of a linear fit to the small-v region. We
then compute F(v) and the photon scattering rate I'" averaged
over the phase between the two standing waves.

Figure 6 compares «(§) obtained through the continued-
fractions approach with the results of the perturbative expan-
sion for the ¢ = 0 case. The continued-fractions approach has
removed the divergence at § = 0 and « crosses zero linearly.
The overall friction coefficient is reduced but the two methods
show qualitative agreement in the range of § considered. At
the Raman condition the interaction with light is canceled due
to the presence of |[NC); thus, the diffusion coefficient D, in
momentum space also cancels. To lowest order, the diffusion
and friction coefficients scale as

D, ~ 8, 24)
o ~8; (25)

according to (3) the temperature scales as
T ~3. (26)

Through this qualitative scaling argument, we show that
even though the light action on the atoms is suppressed

PHYSICAL REVIEW A 87, 063411 (2013)
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FIG. 7. (Color online) (F), in units of 1/AkT" as a function of v
for different values of § around § = 0. The horizontal scale is in units
of the thermal velocity at T = 200 uK, v,, = /kgT /m.

when approaching the Raman condition, we expect that the
temperature will drop when approaching from the § < 0 side,
completing the physical picture derived in the previous section.

Next, we analyze how a randomized phase between the
repumping and principal standing waves, ¢, modifies F(v). In
order to take this into account, we calculate the phase-averaged
force:

2

1
(Fu)g = 2, F(v.9)do. 27)

In Fig. 7, the phase-averaged force is plotted for various
detunings near the Raman condition. It can be seen that a
cooling force is present for small detunings, qualitatively
in agreement with our perturbative model and with the
experimental data. The force, however, changes sign to heating
for small blue detuning, close to § = 0.6 I', also in qualitative
agreement with the experimental data. We note that the
cooling slope very close to zero velocity in the § = 0.8
plot corresponds to a velocity on the order of or below the
single-photon recoil velocity, i.e., is nonphysical.

Finally, for the ¢ # 0 case, |NC) varies in space and
the motion of the atoms can couple atoms out of |[NC)
even at the Raman condition. In Fig. 8 we verify that the
rate of photon scattering retains a minimum near the § =0
region after averaging over ¢ by plotting (I'")y = I'(p33)¢
calculated with the continued fractions approach. Overall, the
friction coefficient @ and photon scattering rate I'' confirm
the existence of a cooling force associated with a decrease in
photon scattering in the vicinity of the Raman condition for
the 1D bichromatic standing-wave model. Thus, the continued
fractions calculation has confirmed the physical mechanisms
revealed by the perturbative expansion and that the lowest
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FIG. 8. (Color online) Continued fractions solution of the photon
scattering rate I'" = I" p33 averaged over all relative phases of the
repumper and principal standing waves as a function of the two-
photon detuning 8. Velocity-dependent effects are taken into account
here by computing an average of (I'')4(v) weighed by a Maxwell-
Boltzmann velocity distribution at 200 uK.

temperatures should be expected close to § = 0, as seen in the
experiment.

IV. CONCLUSION

In this study, using bichromatic laser light near 670 nm,
we have demonstrated sub-Doppler cooling of ’Li atoms
down to 60 uK with near unity capture efficiency from a
magneto-optical trap. Solving the OBEs for a simplified A
level structure, we have analyzed the detuning dependence

PHYSICAL REVIEW A 87, 063411 (2013)

of the cooling force and photon scattering rate. Our analysis
shows that the lowest temperatures are expected for a detuning
of the repumping light near the Raman condition, in agreement
with our measurements. There the A configuration adds a
new set of long-lived dark states that strongly enhance the
cooling efficiency. For 7Li, this addition results in a threefold
reduction of the steady-state temperature in comparison with
an incoherently repumped gray molasses scheme. This atomic
cloud at 60 uKis anideal starting point for direct loading into a
dipole trap, where one of the broad Feshbach resonances in the
lowest-energy states of "Li or SLi could be used to efficiently
cool the atoms to quantum degeneracy [15,34]. Alternatively,
when the atoms are loaded into a quadrupole magnetic trap,
we measure a phase space density of ~107>. This A-enhanced
sub-Doppler cooling in a D; gray molasses is general and
should occur in all alkali metals. Notably, we have observed its
signature in a number of the alkali-metal isotopes not amenable
to polarization gradient cooling: 7Li (this work), “°K [25], and
oLi [35].
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collisions. An analysis with some similarities to
ours for the bright debris disk of HD 172555
(20) found that dust created in a hypervelocity
impact will have a size slope of ~ -4, in agreement
with the fits of (10) to the IR spectrum of ID8.

After the exponential decay is removed from
the data (“detrending”), the light curves at both
wavelengths appear to be quasi-periodic. The
regular recovery of the disk flux and lack of ex-
traordinary stellar activity essentially eliminate
coronal mass ejection (21) as a possible driver of
the disk variability. We employed the SigSpec al-
gorithm (22) to search for complex patterns in
the detrended, post-impact 2013 light curve. The
analysis identified two significant frequencies with
comparable amplitudes, whose periods are P; =
25.4+ 1.1 days and P, = 34.0 = 1.5 days (Fig. 3A)
and are sufficient to qualitatively reproduce most
of the observed light curve features (Fig. 3B).
The quoted uncertainties (23) do not account for
systematic effects due to the detrending and thus
are lower limits to the real errors. Other peaks with
longer periods in the periodogram are aliases or
possibly reflect long-term deviation from the ex-
ponential decay. These artifacts make it difficult
to determine whether there are weak real signals
near those frequencies.

We now describe the most plausible inter-
pretation of this light curve that we have found.
The two identified periods have a peak-to-peak
amplitude of ~6 x 10 in fractional luminosity,
which provides a critical constraint for models of
the ID8 disk. In terms of sky coverage at the disk
distance inferred from the IR SED, such an am-
plitude requires the disappearance and reappear-
ance every ~30 days of the equivalent of an opaque,
stellar-facing “dust panel” of radius ~110 Jupiter
radii. One possibility is that the disk flux perio-
dicity arises from recurring geometry that changes
the amount of dust that we can see. At the time
of the impact, fragments get a range of Kick ve-
locities when escaping into interplanetary space.
This will cause Keplerian shear of the cloud (24),
leading to an expanding debris concentration
along the original orbit (supplementary text). If
the ID8 planetary system is roughly edge-on, the
longest dimension of the concentration will be
parallel to our line of sight at the greatest elon-
gations and orthogonal to the line of sight near
conjunctions to the star. This would cause the
optical depth of the debris to vary within an
orbital period, in a range on the order of 1 to 10
according to the estimated disk mass and par-
ticle sizes. Our numerical simulations of such dust
concentrations on moderately eccentric orbits are
able to produce periodic light curves with strong
overtones. P, and P; should have a 3:2 ratio if
they are the first- and second-order overtones of
a fundamental, which is consistent with the mea-
surements within the expected larger errors (<2c
or better). In this case, the genuine period should
be 70.8 + 5.2 days (lower-limit errors), a value
where it may have been submerged in the perio-
dogram artifacts. This period corresponds to a
semimajor axis of ~0.33 astronomical units, which
is consistent with the temperature and distance
suggested by the spectral models (10).

SCIENCE sciencemag.org

Despite the peculiarities of IDS8, it is not a
unique system. In 2012 and 2013, we monitored
four other “extreme debris disks” (with disk frac-
tional luminosity >10~2) around solar-like stars
with ages of 10 to 120 My. Various degrees of IR
variations were detected in all of them. The
specific characteristics of ID8 in the time domain,
including the yearly exponential decay, addition-
al more rapid weekly to monthly changes, and
color variations, are also seen in other systems.
This opens up the time domain as a new dimen-
sion for the study of terrestrial planet formation
and collisions outside the solar system. The var-
iability of many extreme debris disks in the era
of the final buildup of terrestrial planets may
provide new possibilities for understanding the
early solar system and the formation of habitable
planets (25).
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SUPERFLUIDITY

A mixture of Bose and Fermi superfluids

I. Ferrier-Barbut,* M. Delehaye, S. Laurent, A. T. Grier,T M. Pierce,

B. S. Rem,1 F. Chevy, C. Salomon

Superconductivity and superfluidity of fermionic and bosonic systems are remarkable
many-body quantum phenomena. In liquid helium and dilute gases, Bose and Fermi
superfluidity has been observed separately, but producing a mixture in which both the fermionic
and the bosonic components are superfluid is challenging. Here we report on the observation
of such a mixture with dilute gases of two lithium isotopes, lithium-6 and lithium-7. We probe
the collective dynamics of this system by exciting center-of-mass oscillations that exhibit
extremely low damping below a certain critical velocity. Using high-precision spectroscopy
of these modes, we observe coherent energy exchange and measure the coupling between
the two superfluids. Our observations can be captured theoretically using a sum-rule
approach that we interpret in terms of two coupled oscillators.

n recent years, ultracold atoms have emerged
as a unique tool to engineer and study quantum
many-body systems. Examples include weakly
interacting Bose-Einstein condensates (1, 2),
two-dimensional gases (3), and the superfluid-
Mott insulator transition (4) in the case of bosonic
atoms, and the crossover between Bose-Einstein
condensation (BEC) and fermionic superfluidity
described by the the theory of Bardeen, Cooper,
and Schrieffer (BCS) for fermionic atoms (5). Mix-

tures of Bose-Einstein condensates were produced
shortly after the observation of BEC (2), and a
BEC mixed with a single-spin state Fermi sea
was originally observed in (6, 7). However, realizing
a mixture in which both fermionic and bosonic
species are superfluid has been experimentally
challenging. This has also been a long-sought goal
in liquid helium, where superfluidity was achieved
separately in both bosonic “He and fermionic *He.
The double superfluid should undergo a transition
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between s-wave and p-wave Cooper pairs as the
3He dilution is varied (8). However, because of
strong interactions between the two isotopes,
3He-*He mixtures contain only a small fraction
of ®He (typically 6%) which, so far, has prevented
attainment of simultaneous superfluidity for the
two species (8, 9).

Here we report on the production of a Bose-
Fermi mixture of quantum gases in which both
species are superfluid. Our system is an ultracold
gas of fermionic °Li in two spin states mixed with
“Li bosons and confined in an optical dipole trap.
Using radio-frequency pulses, we prepare °Li atoms
in their two lowest hyperfine states |1¢) and |2¢),
whereas “Li is spin polarized in the second-to-
lowest state |21,) (Z0). For this combination of states,
in the vicinity of the °Li Feshbach resonance at a
magnetic field of 832 G (I1), the scattering length
of the bosonic isotope a;, = 70a, (a, is the Bohr
radius) is positive, preventing collapse of the BEC.
The boson-fermion interaction is characterized by
a scattering length aps = 40.8a, that does not
depend on magnetic field in the parameter range
studied here. At resonance, the Fermi gas exhibits
a unitary limited collision rate, and lowering the
optical dipole trap depth leads to extremely ef-
ficient evaporation. Owing to a large excess of
SLi atoms with respect to 7Li, the Bose gas is sym-
pathetically driven to quantum degeneracy.

The two clouds reach the superfluid regime
after a 4-s evaporation ramp (10). As the 7Li Bose
gas is weakly interacting, the onset of BEC is
detected by the growth of a narrow peak in the
density profile of the cloud. From previous studies
on atomic Bose-Einstein condensates, we con-
clude that the “Li BEC is in a superfluid phase.
Superfluidity in a unitary Fermi gas is notori-
ously more difficult to detect because of the
absence of any qualitative modification of the
density profile at the phase transition. To dem-
onstrate the superfluidity of the fermionic com-
ponent of the cloud, we slightly imbalance the
two spin populations. In an imbalanced gas, the
cloud is organized in concentric layers, with a
fully paired superfluid region at its center, where
Cooper pairing maintains equal spin popula-
tions. This °Li superfluid core can be detected
by the presence of a plateau in the doubly in-
tegrated density difference (72). Examples of
density profiles of the bosonic and fermionic
superfluids are shown in Fig. 1, where both the
Bose-Einstein condensate (blue circles) and the
plateau (black diamonds in the inset) are clearly
visible. Our coldest samples contain N, = 4 x 10*
"Li atoms and N; = 3.5 x 10° °Li atoms. The
absence of a thermal fraction in the bosonic cloud
indicates a temperature below 0.57¢y, where
kpT.p, = 0.94hw, Ny is the critical temperature
of the "Li bosons, and @y, (@) is the geometric
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mean trapping frequency for “Li (°Li). Com-
bined with the observation of the °Li plateau,
this implies that the Fermi cloud is also super-
fluid with a temperature below 0.87.:. Here,
T is the critical temperature for superfluid-
ity of a spin-balanced, harmonically trapped
Fermi gas at unitarity, 7. = 0.197% (13), and
kpTy = haf(?)Nf)l/ 3 is the Fermi temperature.
The superfluid mixture is very stable, with a
lifetime exceeding 7 s for our coldest samples.

As seen in Fig. 1, the Bose-Fermi interaction is
too weak to alter significantly the density pro-
files of the two species (14). To probe the inter-
action between the two superfluids, we study the
dynamics of the mass centers of the two isotopes
(dipole modes), a scheme used previously for the
study of mixtures of Bose-Einstein condensates
(15, 16), mixtures of Bose-Einstein condensates and
spin-polarized Fermi seas (I7), spin diffusion in
Fermi gases (I8), or integrability in one-dimensional
systems (79). In a purely harmonic trap and in
the absence of interspecies interactions, the di-
pole mode of each species is undamped and can
therefore be measured over long time spans to
achieve a high-frequency resolution and detect
small perturbations of the system. We excite the
dipole modes by shifting the initial position of
the °Li and “Li clouds by a displacement d along
the weak direction z of the trap (10). We then
release them and let them evolve during a variable
time ¢, after which we measure their positions. By
monitoring the cloud oscillations during up to 4 s,
we determine their frequencies with high precision
(42 < 2 x 107). In the absence of the other spe-
cies, the oscillation frequencies of °Li and 7Li are,
respectively, wf = 2n x 16.80(2) Hz and o, =

2m x 15.27(1) Hz. In the axial direction, the con-
finement is mostly magnetic, and at high mag-
netic field, both species are in the Paschen-Back
regime, where the electronic and nuclear spin
degrees of freedom are decoupled. In this regime,
the magnetic confinement mostly results from
the electronic spin and is therefore almost iden-
tical for the two isotopes. The ratio w¢ /ey, is then
very close to the expected value ,/7/6 ~ 1.08
based on the ratio of the atomic masses (20).

Contrary to the large damping observed in the
Bose-Bose mixtures (15), we observe long-lived
oscillations of the Bose-Fermi superfluid mixture
at frequencies (@, ®¢). These oscillations extend
over more than 4 s with undetectable damping
(Fig. 2 and fig. S2). This very weak dissipation
is only observed when the initial displacement
d is below 100 um, corresponding to a maxi-
mum relative velocity vmax = (& + @¢)d below
18 mm/s ~ 0.4 vp, where vp = /2kpTr/m;. In
this situation, the BEC explores only the central
part of the much broader Fermi cloud. When
Umax > Ve = 0.4270%%0p = 2012 mm/s, we ob-
serve a sharp onset of damping and heating of
the BEC compatible with the Landau criterion for
breakdown of superfuidity (Fig. 2C) (10). For com-
parison, the sound velocity of an elongated Fermi
gas at its center is v} = £V*vp/\/5 = 17 mm/s
(21), where & = 0.38 is the Bertsch parameter
(5, 13). The measured critical velocity v, is very
close to v§ and is clearly above the BEC sound
velocity of ~5 mm/s at its center.

Two striking phenomena are furthermore ob-
served. First, whereas the frequency ®; of °Li
oscillations is almost unchanged from the value
in the absence of “Li, that of “Li is downshifted
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Fig. 1. Density profiles in the double superfluid regime. N, = 4 x 10* 7Li atoms and N; = 3.5 x 10° °Lj
atoms are confined in a trap at a temperature below 130 nK. The density profiles ny, (blue circles) and
Nt 1 (red squares) are doubly integrated over the two transverse directions. The blue (red) solid line is a fit
to the “Li (°Li) distribution by a mean-field (unitary Fermi gas) EoS in the Thomas-Fermi approximation.
Inset: Spin-imbalanced Fermi gas (N, = 2 x 10°, Ni, =8 x 10%) in thermal equilibrium with a BEC.
Red circles: ns ; ; green squares: n; , ; black diamonds: difference ns » = ;. The plateau (black dashed line)
indicates superfluid pairing (12). Gray solid line: Thomas-Fermi profile of a noninteracting Fermi gas for the
fully spin-polarized outer shell prolonged by the partially polarized normal phase (gray dashed line).
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to &p = 27 x 15.00(2) Hz. Second, the ampli-
tude of oscillations of the bosonic species displays
a beat at a frequency ~(&d¢ — ®p,)/(2n), reveal-
ing coherent energy transfer between the two
clouds (Fig. 2B). To interpret the frequency shift
of the “Li atoms, we note that N, « N¢, which
allows us to treat the BEC as a mesoscopic im-
purity immersed in a Fermi superfluid. Similar-
ly to the Fermi polaron case (22), the effective
potential seen by the bosons is the sum of the
trapping potential V' (r) and the mean-field in-
teraction gyene(r), where ng is the total fermion
density, gyt = 2mh’ays /M, and My = L s
the Li/’Li reduced mass. Neglecting at first
the back-action of the bosons on the fermions,
we can assume that 7n; is given by the local-density-
approximation result n¢(r) = nﬁo) (- v(r),
where ngo) (w) is the stationary equation of state
(EoS) of the Fermi gas. Because the Bose-Einstein
condensate is much smaller than the Fermi cloud
(Fig. 2A), V(r) is smaller than p? over the BEC
volume. We can thus expand ﬁ? ), and we get

dngo)
™
Hy r=0

)
‘We observe that the effective potential is still har-
monic and the rescaled frequency is given by

A

Ve (1) = guens(0) + V(1)

(0)
1 dn
Op =~ 1-— f 2
() ®b< 2gbf< duf> _0> (2)

For a unitary Fermi gas, the chemical potential is
related to the density by y; = £4%(3n2n¢)?> /2my.

In the weakly coupled limit, we get %’ = -0 —

®p

ljkgggf , where ifep = 1/2hmew¢ (3Np)"/? is the Fermi
T

momentum of a noninteracting harmonically
trapped Fermi gas. Using our experimental pa-
rameters kp = 4.6 x 10 m™', we predict a value
®p ~ 21 X 14.97 Hz, in very good agreement with
the observed value 15.00(2)Hz.

To understand the amplitude modulation, we
now take into account the back-action on the
fermions. A fully quantum formalism using a
sum-rule approach (23-25) leads to a coupled
oscillator model in which the positions of the
two clouds obey the following equations (10)

Mie = —Kizp — Kog(2 — 2b) (3)

My, = -Kpap, — Kotz — 2) 4)

where My, = Nymy, (M = Nymy) is the total mass
of the "Li (°Li) cloud, Ky, = My} (K¢ = M)
is the spring constant of the axial magnetic con-
finement, and Ky is a phenomenological (weak)
coupling constant describing the mean-field in-

teraction between the two isotopes. To recov-
er the correct frequency shift (Eq. 2), we take
Kye = 2Ky, 5(%’. Solving these equations with the
initial condition 2¢(0) = 2,(0) = d, and defining
p = Np/N; and & = ;2™ E‘%) in the limit
p,e « 1 we get

g = d[(1 — ep)cos(®drt) + epcos(@dpt)]  (5)

& = d[-€cos(®d¢t) + (14 €)cos(@dpt)]  (6)

The predictions of Egs. 5 and 6 agree well with
experiment (Fig. 2B). Interestingly, the peak-to-
peak modulation of the amplitude of "Li is much
larger than the relative frequency shift, a conse-
quence of the almost exact tuning of the two
oscillators (up to a factor 1/6/7). Thus, the mass
prefactor in the expression for € is large (=14) and
leads to € ~ 0.25 at unitarity. This results in
efficient energy transfer between the two modes
despite their weak coupling, as observed.

We now extend our study of the Bose-Fermi
superfluid mixture to the BEC-BCS crossover by
tuning the magnetic field away from the reso-
nance value By = 832 G. We explore a region
from 860 G down to 780 G where 1/kra; spans
the interval [-0.4, +0.8]. In this whole domain,
except in a narrow region between 845 and
850 G where the boson-boson scattering length

0.4 0.6 0.8
Vimax/VF

Fig. 2. Coupled oscillations of the superfluid mixture. (A) Center-of-mass
oscillations. The oscillations are shown over the first 500 ms at a magnetic
field of 835 G for a Fermi superfluid (top) and a Bose superfluid (bottom).The
oscillation period of ®Li (“Li) is 59.7(1) ms [66.6(1) ms], leading to a
dephasing of ™ near 300 ms. These oscillations persist for more than 4 s
with no visible damping. The maximum relative velocity between the two clouds
is 1.8 cm/s. (B) Coupled oscillations. Symbols: Center-of-mass oscillation of
’Li (top) and °Li (bottom) displaying coherent energy exchange between both

SCIENCE sciencemag.org

superfluids. Solid lines: Theory for an initial displacement d of 100 um at a
magnetic field of 835 G; see text. (C) Critical damping. Symbols: Damping
rate (blue circles) of the amplitude of the center-of-mass oscillations of the
’Li BEC as a function of the maximal relative velocity between the two
superfluids normalized to the Fermi velocity of the ®Li gas. Data taken at
832 G. From these data and using a fit function given in (10) (solid line), we
extract v = 0.4270Pv¢. The red dashed line shows the speed of sound of an
elongated unitary Fermi superfluid v, = EY4ve /V/B = 0.35v¢ (20).
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Fig. 3. Dipole mode frequency shift in the BEC-BCS crossover. Red circles: Experiment. Blue line:
zero-temperature prediction from the equation of state of (26); dashed line: ideal Fermi gas. Blue
triangle: prediction from (13). Error bars include systematic and statistical errors at 1 SD.

is negative, the mixture is stable and the damp-
ing extremely small.

The frequency shift of the BEC (Eq. 2) now
probes the derivative of the EoS n¢ () in the BEC-
BCS crossover. In the zero-temperature limit and
under the local density approximation, Eq. 2
obeys the universal scaling %“’b = kran:f ﬁ

In Fig. 3, we compare our measurements to
the prediction for the function f obtained from the
zero-temperature EoS measured in (26). On the
BCS side, (1/kras < 0), the frequency shift is re-
duced and tends to that of a noninteracting
Fermi gas. Far on the BEC side (1/kpas » 1), we
can compute the frequency shift using the EoS
of a weakly interacting gas of dimers. Within the
mean-field approximation, we have g—ﬁ: = n:;’”ad -
where aqq = 0.6a; is the dimer-dimer scatter-
ing length. This expression explains the increase
in the frequency shift when as is reduced, i.e.,
moving toward the BEC side [see (10) for the
effect of Lee-Huang-Yang quantum correction].

The excellent agreement between experiment
and our model confirms that precision measure-
ments of collective modes are a sensitive dynamical
probe of equilibrium properties of many-body quan-
tum systems (27). Our approach can be extended to
the study of higher-order excitations. In particular,
although there are two first sound modes, one for
each atomic species, we expect only one second
sound for the superfluid mixture (28) if cross-
thermalization is fast enough. In addition, the
origin of the critical velocity for the relative motion
of Bose and Fermi superfluids is an intriguing ques-
tion that can be further explored in our system.
Finally, a richer phase diagram may be revealed
when N, /Nt is increased (29) or when the super-
fluid mixture is loaded in an optical lattice (30).
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EARTHQUAKE DYNAMICS

Strength of stick-slip and creeping
subduction megathrusts from heat

flow observations

Xiang Gao" and Kelin Wang?3*

Subduction faults, called megathrusts, can generate large and hazardous earthquakes. The
mode of slip and seismicity of a megathrust is controlled by the structural complexity of the
fault zone. However, the relative strength of a megathrust based on the mode of slip is far from
clear. The fault strength affects surface heat flow by frictional heating during slip. We model
heat-flow data for a number of subduction zones to determine the fault strength. We find that
smooth megathrusts that produce great earthquakes tend to be weaker and therefore
dissipate less heat than geometrically rough megathrusts that slip mainly by creeping.

ubduction megathrusts that primarily ex-
hibit stick-slip behavior can produce great
earthquakes, but some megathrusts are ob-
served to creep while producing small and
moderate-size earthquakes. The relation-
ship between seismogenesis and strength of sub-
duction megathrust is far from clear. Faults that
produce great earthquakes are commonly thought
of as being stronger than those that creep (7).

Megathrusts that are presently locked to build
up stress for future great earthquakes are thus
described as being “strongly coupled.” However,
some studies have proposed strong creeping
megathrusts because of the geometric irregular-
ities of very rugged subducted sea floor (2, 3).
Contrary to a widely held belief, geodetic and
seismic evidence shows that very rough subduct-
ing sea floor promotes megathrust creep (2). All
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La vitesse critique de Landatuthe particule dans un superfluide de fermions
The Landau critical velocity for a particle in a Fermi supeiitl

Yvan Castifi, Ilgor Ferrier-Barbut Christophe Salomdn

3L aboratoire Kastler Brossel, Ecole normale supérieure RS\et UPMC, Paris, France

Abstract

We determine a la Landau the critical velocityof a moving impurity in a Fermi superfluid, that is by resirigtto

the minimal excitation processes of the superfluids then the minimal velocity at which these processes are ene
getically allowed. The Fermi superfluid actually exhibitstexcitation branches : one is the fermionic pair-breaking
excitation, as predicted by BCS theory ; the other one istiosnd sets pairs into motion, as predicted by Anderson’s
RPA. \} is the smallest of the two corresponding critical velosnsrgf andv'- In the parameter space (superfluid
interaction strength, fermion-to-impurity mass ratiog wentify two transmon lines, corresponding to a disgont
nuity of the first-order and second-order derivativestofThese two lines meet in a triple point and split the plane in
three domains. We briefly extend this analysis to the vergntg realized case at ENS, where the moving object in
the Fermi superfluid is a weakly interacting Bose superfldiisnpurities, rather than a single impurity. For a Bose
chemical potential much smaller than the Fermi energy,apelbgy of the transition lines is uffacted ; a key result

is that the domain} = ¢, wherec is the sound velocity in the Fermi superfluid, is turned intioaainv; = ¢ + cg,
wherecg is the sound velocity in the Bose superfluid, with slightlyftsld boundaries.

Keywords :Fermi gases ; superfluidity ; critical velocity ; Landau erion ; ultracold atoms

Résumé

Nous déterminons la vitesse critiqyed’une impureté en mouvement dans un superfluide de fermmmsrpraison-
nement a la Landau, c’est-a-dire en nous limitant aux psased’excitation minimale du superfluide par la particule.
VL est alors la plus petite des vitesses auxquelles ces puscesst énergétiquement permis. Comme le superfluide
de fermions posséde deux branches d’excitation, I'uneiterique prédite par la théorie de BCS et consistant a briser
des paires de fermions, I'autre bosonique prédite par la ®RAderson et consistant a les mettre en mouvement, il
y a une vitesse critique de Landia,‘(uf et vL associée a chaque branche/eest la plus petite des deux. Dans I'es-
pace des parametres (force des mteractlons dans le sigerfhasse relative fermion-impureté), nous trouvons deux
lignes de transition, correspondant respectivement &tadtinuité des diérentielles premiére et secondeieCes
deux lignes se rejoignent en un point triple et partitiortderplan en trois domaines. Nous étendons succintement
cette analyse au cas, tres récemment réalisé a I'ENS, get'elh mouvement dans le superfluide de fermions est un
superfluide d'impuretés bosoniques en interaction fagiledt qu’une impureté seule. Lorsque le potentiel chireiqu
des bosons reste petit devant I'énergie de Fermi, la topmttes lignes de transition svr ne change pas ; un résultat
marquant est alors qu’au domaide = c, oli ¢ est la vitesse du son dans le superfluide de fermions, camdsp
maintenant un domaim% = C+ Cg, Ol Cg est la vitesse du son dans le superfluide de bosons, avecotdigres
|égérement déplacées.

Mots-clés :gaz de fermions; superfluidité ; vitesse critique ; critégddndau ; atomes froids

1. Introduction, rappels et motivations

Les gaz dégénérés d’atomes neutres fermioniques de gpirsipposés ici non polarisés c’est-a-dire avec des
populations égales dans les deux états internes, sordailals en laboratoire depuis 2002 [1]. lls présentent, en
dessous d’'une température critique, deux propriétés mueas macroscopiques remarquables et bien distinctes. La
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premiére est la présencaud condensat de paires, c’est-a-dire I'existence d’un enmdcroscopiquement peuplé de
I'opérateur densité a deux corps [2], et qui se traduit pjyesinent par une longueur de cohérence macroscopique
pour le champ de paires, limitée donc seulement par la Willsysteme. Cet « ordre a longue portée » , est en
principe mesurable directement par interférométrie [3jsw’est pour I'instant la fraction de paires condensiges
que I'on sait mesurer [4]. La seconde propriété, celle quisnatéresse ici, est la superfluidité. Elle a la réputation
d’étre plus subtile, puisqu’elle met en jeu un ensemble @mpmenes complémentaires, dont certains reposent sur la
métastabilité plutét que sur des propriétés a I'équilibleus en retiendrons ici deux aspects, en passant sousssilenc
les réseaux de tourbillons quantiques [5] et les couramtagreents.

Le premier aspect met en jeu la notion de fraction superflfddepour des conditions aux limites périodiques
cubiques de période, c’est la fraction du gaz qui n’est pas entrainée par un pietextérieur en mouvement, méme
au bout d’'un temps arbitrairement long permettant au systétteindre I'équilibre thermique dans le repére en
mouvement. Si le potentiel extérieur se déplace selon éztiimOX, a la vitesse, la fraction normaled, = 1 - fsdu
gaz est par définition entrainée a cette méme vitesse, sgb&n

)

1-fo= lim _ lim lm %
N—cop=ct v—0 n—0 NMV
ol le gaz, composé d¢ atomes de massa et de densite = N/L3, posséde a I'équilibre une impulsion moyenne
totale (Py) selonOx en présence du potentiel extérieur. La triple limite doit &irise dans cet ordre, afin que la
fraction normale soit une quantité intrinseque. On faibdia tendre vers zéro I'amplitudedu potentiel extérieur,
afin quef, ne dépende pas de la forme du potentiel. Puis I'on fait teladvit¢esse d’entrainement vers zéavantde
prendre la limite thermodynamique, de fagon que I'on aijdors

Ve (2)

En dfet, prendres égale au quantum de vitessehiZ(mL) permettrait, par invariance galiléenne des conditions au
limites périodiques a cette vitesse, de conclure que le sfaaerepos dans le référentiel du potentiel extérieur, ce qu
conduirait &(Pyx) = Nmvdans le référentiel du laboratoire, et donc au résultatiakke (et non physiquel, = 1.
La fraction superfluidds du gaz de fermions de spinf2non polarisé a été trés recemment mesurée dans le régime
d’interaction forte, en fonction de la températiirg6], et a permis de vérifier que la transition de phase supeefiu
se produit & la méme température que celle de la condenshipaires [4] et que celle déduite des singularités des
grandeurs thermodynamiques [7]. Une propriété importatiendue, et confirmée expérimentalement sur d’autres
systemes, est quig — 1 a température nulle.

Le deuxieme aspect de la superfluidité, limité en toute tugweal cas d’une température nulle, est I'existence
d’une vitesse critique, en dessous de laquelle un objet traversant le gaz ne subihadiarce de friction et ne peut
y déposer de I'énergie, donc y a un mouvement non amorti. §fetch a bien été observé dans les gaz d’atomes
froids fermioniques pour un réseau optique unidimensibenanouvement [8]. Le calcul de la vitesse critique est
souvent ardu, et le résultat dépend en général des casticiées de I'objet et de son couplage au gaz [9]. Cependant,
pour un couplage arbitrairemefatible’, dans I'esprit de la définition (1), on peut se limiter, comiadait Landau
[10], a la premiére étape dans la dissipation de I'énergiétitjue de I'objet, a savoir la créationutie(et une seule)
excitation élémentaire dans le gaz. Formellement, ce@méa calculer 'amplitude de ffusion de I'objet sur le gaz
dans I'approximation de Born, au premier ordre en la constd@ couplage gaz-objet, ou a évaluer le taux d’émission
d’excitation par I'objet selon la regle d’or de Fermi, au sed ordre en la constante de couplage. Dans les deux
cas apparait en facteur une distribution de Dirac assumartiriservation de I'énergie non perturbée. Dans ce travail,
I'objet est, sauf en section 5, une particule de madseliscernable des atomes du gaz, de vitesse inti@enc
d’énergie cinétique initialé Mv2. Aprés émission d’une excitation de vecteur d’onds d'énergiey, sa vitesse vaut
v — hg/M, par conservation de I'impulsion totale, d’ou

2~2

VLR
hq-v = oM + € (3)

1. Ce couplage peut étre un couplagieeif : pour un objet quasi-ponctuel, il est proportionneladongueur de éiusion dans 'ondes avec
les atomes du gaz.



par conservation dednergie. Comméyq - v| < qv, cette condition n’est satisfaite pour auaysi v est inférieure a la
vitesse critique de Landau
VL= infvg avec vq = 4

Un calcul devs pour une particule de masb — +oo a été dectué dans la référence [11] avec la théorie approchée de
BCS et de la RPA; il a fallu pour cela prendre en compte les @eamrches d’excitation du superfluide de fermions,
la branche fermionique avec bande interdite, décrivantilute des paires de Cooper de fermions, et la branche
bosonique sans bande interdite mais de départ phononique-é) décrivant la mise en mouvement des paires. On
obtient ainsi [11]

Ve(a = 0) = min([(u® + A*)"? = u)/m]*/2, ¢) (5)

ou c est la vitesse du son dans le superfluide de fermions de tenimiqueu et de gap, et I'on note le rapport
de masse

CY:M (6)

Le fait que la vitesse critique soit non nulle pddr — +co semble contredire le raisonnement qui suit I'équation
(2), I'effet d’un objet de masse infinie sur le superfluide pouvant &gigrdlé & celui d’'un potentiel extérieur défilant
a vitesse constante : on devrait donc awirk 27h/(mL) — 0 a la limite thermodynamique. C’est bien la notion
(subtile) de métastabilité qui permet de donner un sensisom@ement de Landau et de croire a la vitesse critique
préditevt pour des temps assez courts : lorsguevt, le premier pas vers la dissipation est bloqué par une barri¢
d’énergie, mais rien n"'empéche que le systeme puisse firacette barriére par des processus d’ordre arbitrairement
eleve en le couplage gaz-objet, correspondant a une erieyigitation e bien ditférente de celle des excitations
élémentaires de I'équation (4). Ainsi, le processus imabidd’ordreN mettant en mouvement I'ensemble du gaz a
la vitesse 2A/(mL) selonOx, par translation en impulsion de chacun de ses atomesidd Zelon cette direction,
correspond & = 27N/L eteg = N(27h)?/(2mL?), donc a une vitesse critiqwg = 27//(2mL) qui s'annule bien a la
limite thermodynamiqu& pourvu queM > Nm

L'objectif du présent travail est d’étendre les calculsa@edférence [11] au cas d’'une madddinie. Il y a pour
cela une tres forte motivation expérimentale : la prédictie Landau pour la vitesse critique d’une impureté atomique
dans un condensat de Bose-Einstein a été confirmée au MITet@urrait bientdt étre mesurée dans un superfluide
de fermions, grace au mélange de bosons et de fermions sigesftécemment obtenu a I'ENS [14]. Le calcuMie
pour une particule de mashéest dfectué ici en trois étapes : on détermine successivemer'lttzh':lsw;eicritique’/éf due
a la branche d’excitation fermionique de BCS en section|® v@b due & la branche bosonique de la RPA en section
3, la plus petite des deux vitesses donnant finalewieah section 4. Comme la référence [14] met en mouvement
dans le superfluide de fermions un condensat de Bose-Ein#tadt qu’une impureté seule, il convient de modifier
la formule de Landau (4) pour prendre en compté&éedes interactions entre les impuretés, ce qui est faiteiose
5. Nous concluons en section 6.

2. Vitesse critique sur la branche fermionique

On pourrait croire naivement que la vitesse critiqggassociée a la branche d’excitation fermionique du super-
fluide se déduit de I'expression générale (4) en prenantlpeuire, la relation de dispersion correspondante e
des quasi-particules fermioniques. Cependant, ce setait,&car ce serait faire fi des contraintes imposées par la
conservation du nombre total de fermions. En réalité, llimgbé de masskl ne peut, par interaction avec le super-
fluide initialement dans le vide de quasi-particules, faipparaitre qu’'un nombreair d’excitations fermioniques.
Ceci est particulierement clair dans le cadre de la thé@iB@S : le Hamiltonien d’interaction entre I'impureté et
les fermions fait apparaitre les champs fermioniqugs), o = +1/2, seulement par des termes quadratiques de la
forme .y, ; or chaquej,(r) est une combinaison linéaire d’opérateurs d’annihitalig, et de créatiorf)l_(r de

2. Il est plus habituel d'invoquer comme excitation macopsgue la création par I'objet en mouvement d’'un anneau dicité dans le gaz.
Lorsque le rayon de I'anneau est de l'ordre du diametre dy@aaboutit cependant aux mémes lois d’échelldNegt L pour g, 5 etvg, a un
facteur InL prés dansg [12].
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quasi-particules, qui changent la parité de leur nombraesDaraisonnement a la Landau, il faut donc supposer que
I'impureté crée au minimurdeuxquasi-particules fermioniques, de vecteurs d’okgdetk,. Limpureté subit alors
un changement d’'impulsion dei(k; + k») et acquiert une énergie de reculidgk; + k»)?/(2M), ce qui conduit a la

vitesse critiqué

B2 (k1 +ko)?
| Eladloy e 2L 4 ey, + €ty
¢ = inf

7
k1,k2 h|k1 + k2| ( )
Comme rien n'empéche diectuer la minimisation sk, etk, d’abord suik; aq = k1 + k» fixé, puis sug, on peut
se ramener a une écriture plus opérationnelle et formeiieérpiivalente a celle de I'équation (4) :

L
VC,

242
g eeff
Ve, =infvig avecvig = -2 'd (8)
c f q d d hq s
ou e?ﬁ; est le bord inférieur du continuum & deux quasi-particidesfoniques au vecteur d’onde total figé
ef’f; = irk1f €f ky T €f ko=q—k; (9)
1

Comme la relation de dispersidni— €;x est une fonction lisse du vecteur d’'onde, divergente a fiinfa borne
inférieure est atteinte en un point de stationnarité, €edire de gradient nul par rapportka, de la fonction a
minimiser. Comme la relation de dispersion est de plusopety

ik = € (K), (10)

le gradient est nul si et seulement si A A
et (Ki)ka = et (ko)kz (11)

aveck; la directionk;/k; du vecteuk;, €; (k) la dérivée de la fonctior (k), et ou I'on a toujourk, = g - k. lly a
donc en général quatre branches de stationnarité possibles

():ki=ko=q/2, (ii): ks =ko ki # ko,  (iii): ki = -k, (V) €} (k) = €;(k2) = 0 (12)

Dans les deux cas intermédiaires, les dérivedsg) ete; (k2) sont, bien entendu, respectivement égales et opposées.
Particularisons cette discussion au cas de la théorie de @&Ci®lation de dispersion

Rke |\’
erx = €1(K) = [(% - ) +A?

1/2
(13)

Pour un potentiel chimique > 0, elle présente une forme de chapeau mexicain, donc untésgdermionique bien
affirmé, avec une bande interdite de largeur le §apa fonctione; (k) est alors concave décroissante jusqu’au point
d’inflexion kinsiex, PUiS convexe décroissante jusqu’a la posikgn de son minimum,

(2mu)*
h
et enfin convexe croissante au-dela. Les quatre branchéatimearité peuvent alors étre réalisées. Contrairedent

la branche (i), les autres branches n’existent que g@ssez faible. Pour explorer la branche (ii), on peut sedimit
aky € [0, kinflex] €t ka € [Kinflex> Kmin], €t I'on trouve queq = kg + ko décrit [Kmin, 2Kinfiex] ; de méme, pour la branche

kmin = (14)

3. Dans le cas d'un objet en mouvement de masse infinie, ometnpourtant dans la littérature la formule habitue@ﬁb = infq et ()/(hq)
[11], avecer(q) = €14, CE qui Semble relever de I'erreur naive susmentionnéeédlitd, notre équation (7) redonne bie{ﬁb lorsqueM — +co.
D'une part,v(';’f < v*c"afb puisque dans I'équation (7) apparaissent en particulecdafigurationk; = k. D’autre part, la minimisation sur les
directions dek; etk, a modules fixés est immédiate lorsgMe= o, il faut prendre les vecteurs d’onde colinéaires et de méms, =t il reste

. Kaer (k) +oer (k . .
Ve = infig g, % qui est= V% puisqueer (ki) = kivi3° pour toutk;.
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(iii), on peut prendre & ki < kmin < ko, et Ion trouve queq = ko — ky décrit [Q knin]. 4 Finalement, la branche (iv)
correspond simplement@ = k, = kmin, €t aq = |k1+Kks| variant de 0 a Rynin. Sur son domaine d’existence, la branche
(iv) est clairement celle d’énergie minimale, puisque lesteurs d’'ondé; etk, des deux quasi-particules sont au
fond de la rigole du chapeau mexicain. Au-dela, les bran(ifest (iii) n’existent plus donc I'énergie minimale est
obtenue sur la branche (i). Cette discussion est illustréladigure 1. Nous retenons donc, paus 0,
eff qSkain eff qZkam
= ZA = 2 2 1

€ (q) branche (iv) ’ € (q) branche (i) “f (q/ ) ( 5)
en accord avec la référence [11]. Pour un potentiel chimigue, lorsque les paires de Cooper atomiques tendent a
se bosoniser, la relation de dipersion (13) est une fonctionexe, avec une bande interdite de largadr( u?)Y/2.
Commees (K) est alors strictement croissante p&ur 0, seule la branche (i) est réalisée.

© PN
P ‘\(l)
\=A \ \
[The ‘\("l) ‘\\
z b
B . .
w 0]
(iv)
D2] e T e
O oo A
2N
0]
0 ke 0 ko, 2 ko PRk
inflex min k 0 min inflex min a 0 min inflex = "“min a

Ficure 1: Pour la branche d’excitation fermionique de la théoriB@S a potentiel chimiqug > 0, (a) relation de dispersian (k) et sa dérivée

premiére, utiles a la discussion des branches de statith(E2) ; (b) les branches en question en fonction,de trait plein si d’énergie minimale,
en tireté sinon; (c) fonctiorr; (§) permettant de minimisers (q) par discussion graphique, voir I'équation (16). Les qité@sitsur les axes sont
adimensionnées comme il est précisé dans le texte.

Pour obtenir la contribution de la branche fermionique d&Bda vitesse critique de Landau, il reste a minimiser
la fonctionvsq = v¢(g) dans I'équation (8). Comme cette fonction divergegea 0 et eng = oo, elle atteint son
minimum avec une dérivée nulle en un paiptVv; (go) = 0. On adimensionne le probleme, en exprimant les nombres

d’ondeq etqg en unités de @u|)Y/?/h (c’est-a-direkyin iy > 0), les énergies‘f“ etA en unités ddu| et les vitesses
vi(q) etvs en unités delfl/(2m)]*/%, ce qui conduit & la jolie équation implicite

3 od( &@y . &)
a = F¢(Go) avec F¢(Q) = d_d - g et V¢ = alo + % (16)

Ici, le symbole suscrit repére les variables sans dimergdierst donné par I'équation (6). Une discussion graphique
de I'équation est facile afkectuer. Dans le cas le plus riche- 0, les ditérentes branches de la fonctiBp, corres-
pondant aux branches (12) de la fonctkﬁﬁ sont représentées sur la figure 1c; seules les lignes epla@m sont a

prendre en compte, puiqu’elles correspondent aux brarttéesrgie minimale. On voit donc que, paur> AJ2,la
vitesse critique est réalisée sur la branche (iv), agee (2A/a)Y? et

Vo= 2(2Ae)Y?, (17)

cf branzhe(iv)

4. Ceci résulte du fait qule; + ko pour (ii) etke — kg pour (iii) sont des fonctions croissantes kde Les branches (ii) et (iii) se raccordent
de facon lisse@>) enq = kmin, COMme on peut le voir en introduisant la quantité algélerique] — kmin. kinflex] €t I'extension correspondante
o(ky) = €5 kyky dees (k1) aux valeurs négatives. L'unique soluti@hn > kinfex de ¢’ (k2) = ¢’ (k1) permet alors un paramétrage lispe ki + ko(kz)

de I'ensembile (ii) plus (iii). En revanche, (i) et (i) se cacdent de faco! seulement en = 2Kinfiex.
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Poure < A/2, elle est réalisée sur la branche (i), et correspond a tagrhnde des racines déduation polynémiale
de degré quatre erf,’en principe exprimable par radicatix

VB + 8(1— )V + V[A%(16a* — 80a? — 8) + 16a* — 128 + 16]
+VA[32A%(4a? — 1)(5a? + 1) + 1282(50° — 1)] — 16(4? - 1)[4a?(1+ A?) - A*> =0 (18)

A la limite @ — 0, on retrouve le premier terme du second membre de I'équéilp qui provient ectivement de la
branche d’excitation fermionique [11]. Il reste a caraistrla nature de la transition lorsque, par variation cari
du rapport de masseou du gap réduih (c’est-a-dire par variation des interactions dans le gdeieions), la vitesse
critiquevg’f passe de la branche (iv) a la branche (i). Comme on le voitgeeliscussion graphiqueg st continu

a la transition donv'c-ff aussi. Or, en dérivant une fois la troisiéme équation dega6yapport & par exemple, &
fixé, on trouve, compte tenu de la premiére équation de (L&))ajdérivée premiere dfgf“est également continue :

d .

@Vléf
C’est donc la dérivée seconded@qu doit étre discontinue : en dérivant (19) et la premiereadign de (16) par
rapport &, ainsi que la fonctiorr sur les branches (iv) et (i), on obtient

@@, A\ [, AT 1L,
|:d(Y2VCf ( = ?)] - @Vc,f (a = ?) = Zef (k = 1) (20)
et la vitesse critiqueL‘ présente une transition decondrdre sur la ligner = A/2, voir figure 2a. Dans le cas moins
riche d’un potentiel chimiqug < 0, V& ¢ est toujours réalisée sur la branche (i) et ne peut présanteine transition.

= o (19)

2 : ‘ ‘ 2
(@)

m/M

a=m/M

Ficure 2: Diagramme dans le plalzfx(_ Alp,a = m/M), u > 0, |ndiquant (a) pour la branche d’excitation fermioniquesdiperfluide, sur quelle
branche de stationnarité de I'équation (12) la vnessequetv ¢ est réalisée (avec les notations limpidgg et Fy)), et (b) pour la branche

d’excitation bosonique, si la vitesse crlthutﬁO est atteinte en la borne inférieune= 0 (zoneBy), en la borne supérieute= dsup (zonqusup) ou
a l'intérieur de son intervalle d’ emstencnp,_ Qo €]0, gsupl (zoneBy,). Les lignes en trait plein (en tireté) signalent une trémsidu premier ordre
(du second ordre) sudgf ou survbe c'est-a-dire avec une dérivée premiére (seconde) discmmnt

3. Vitesse critique sur la branche bosonique

La conservation du nombre de fermions n’empéche bien eatpas I'impureté, en se déplacant dans le super-
fluide, d'y créer un seul quantum sur sa branche d’excitdimsonique, puisqu’il s'agit d’'une mise en mouvement

5. Aprés regroupement astucieux de termes et élévationared dans les deux équations extrémes de (16), on est rantsni &quations
polynémiales suqg. V doit en annuler le résultant, dont le polyndmevate 'équation (18) est un diviseur.

6



1/(ked) Alu D forme deey(Q)
> 0,161 > 1,729 ou< 0 [0, +oo[ convexe
€[0;0,161] | €[1,162;1729] | [0, Qsud U [Clinf, +oo[ | convexe sA/u > 1,71
<0 <1,162 [0, dsugd concave si\/u < 0,88

TascLe 1: Domaine texistenceD de la branche d’excitation bosonique du superfluide, daler&PA de la référence [11], et (de notre cru) convexité
de larelation de dispersian— e,(0). La perte de convexité (de concavité) est due a l'appardiane partie concave (convexe) aux grands (faibles)
vecteurs d’onde. Sur la composantegy, +oof lorsqu’elle existe, il y a toujours convexité. En= gsyp €tq = ginf, la branche bosonique rejoint le
continuum a deux excitations fermioniques au vecteur dédnthl considéré, c'est-a-dire qugq) = e?ﬁ(q). Un résultat important de la référence
[11] est qu'on a toujoursisup > 2kmin défini dans I'équation (14). Le parametrgK-a) plus habituellement utilisé qu®/u pour mesurer la force
des interactions, voir le texte, est déduit ici de I'équatitétat de BCS [11]. Akra) = O est la limite unitaire, atteinte exyu = 1,162..., etu <0

si et seulement si/lkra) > 0,553.... On notera le paradoxe de notatigqp < Ginf-

collective, de type onde sonore, des paires de Cooper atesiitja vitesse critique associée a la branche bosonique
est donc donnée comme dans I'équation (4) par
2~2
hz_nj + g
hq

Vep = ér;;) Vbq AveC Vpq = (21)

La relation de dispersion des quasi-particules bosoniquese,q = e,(q) est cependant plusficile a cerner que
celle des quasi-particules fermioniques. Son domainesteEnce?D dans I'espace des vecteurs d’onde, sur lequel il
faut minimiservy q dans I'équation (21), est lui-méme a déterminer. Comme batné la référence [11], il n’est pas
nécessairement compact ni connexe. On sait seulement dermg@énérale, grace a I’hydrodynamique des super-
fluides, que la branche atteint la limite des faibles nomti@sdeq — 0 de maniére linéaire an

() ~ hca, (22)
q-0

le codlicientc n’étant autre que la vitesse du son dans le superfluide deédiespdéductible de I'équation d’état par
I'expression bien connuac® = pd—“. On sait aussi que,(q) doit étre inférieur au bord?ff(q) du continuum a deux
excitations fermioniques au vecteur d’onde tafaonsidéré. Sinon, le mouvement collectif des paires pemattir
et son énergie, définie comme un pdle du facteur de strucyunantique, devient complexe [15].

On peut obtenir numériquemes(q) a un ordre d’approximation compatible avec la théorie dSRM@lisée en
section 2 grace a la RPA [16], mise en ceuvre de fagon tréeddeudans la référence [11], non seulement dans le
régime d'interaction faible [15] mais pour des interacti@nbitrairement fortes au sein du superflufdees résultats
correspondants sur le domaine d’existence sont résumeéslaaable 1; y est introduit, en sus déu, I'habituel
paramétrage des interactions pafkta), ot a est la longueur de ffusion dans I'onde entre deux fermions de spins
opposés ekr = (37%p)Y2 est le nombre d’onde de Fermi du gaz parfait non polarisé ohelgg de méme densité
totalep que le superfluide. Il reste & minimiser la fonctigyqg) sur le domaine d’existenc®, en en distinguant les
différentes formes.

Lorsque la branche bosonique existe a tout nombre d’ondexeanple poup: < 0, il se trouve que la relation de
dispersiomy — &,(q) est convexe donc toujours au-dessus de sa tangente gin@rAlorse,(q) > hcq pour toutq,
le minimum absolu dey(q) est atteint ey = 0 etv,, = ¢. Dans la suite de la discussion, on peut donc se restreindre
au casu > 0.

La minimisation devy(q) sur la seconde composante connexeZyea savoir fjins, +oo[, lorsqu’elle existe, est
également assez simple. On trouve que I'éne#gfig) y est « collée au plafond », c’est-a-dire partout extrénmeme
proche def(q) ; commegy; est toujours supérieur au point d’annulationfeigq) [voir figure 1], les trois fonctions
q e efff(q)/q, g — e(g)/qetq — Vy(g) sont croissantes pouy > qinr. On Vvérifie alors numériqguement que le
minimum vy, (dint) devi(q) sur cette seconde composante connexe est toujours aupgéigevitesse du son donc non
pertinent.

6. En pratique, nous résolvons par dichotomie une équation s e,(q)/5 de la formey(w, q) = 1, oly = I11I22/(wzlfz) est une fonction
décroissante de aq fixé. Les intégrales doubldsy, 111 et 122 sont celles (15), (16) et (17) de la référence [11].
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Il reste @ minimisewy(q) sur fintervalle d’existence [Qosyg, ce qui peut conduire en général a trois cas de figure :
le minimum absolu est (a) e = 0, (b) enq = gsup OU (C) €n un pointp strictement a l'intérieur de lintervalle. Il
faut d’abord étudier les minima locaux gg(q) suivant ces trois cas, puis les comparer.
Les minima locaux Pour progresser, nous introduisons les mémes adimensi@miefonction auxiliaird=(q) et
discussion graphique que pour la branche fermionique :

(@ = o+ 2 et Fu(@ = 522, sibien que L@ o - Fu(d 23)

On constate d’abord qu&,(0) = 0 donc ques,(g) a toujours un minimum eq = 0, car la premiere correction au
terme linéaire dans I'équation (22) est cubique, le déymament de Taylor def(q)]? ne contenant, d’aprés la RPA,
que des puissances pairesgi€=nsuite, la fonctiow,(g) admet un minimum en = gsyp & la simple condition que
a > Fp(Gsup). Finalementy,(g) admet un minimum local eqo €]0, dsud Si sa dérivée premiére s’annule gget Si
sa dérivée seconde y est positive. Graphiguement, cedfisigae la courbe; ™~ Fy(Q) croise la droite horizontale
d’ordonnéexr en un point a l'intérieur de l'intervalle et avec une dérivigative, c'est-a-dirée haut en bas?our
gue ce soit possible pour une certaine valeua digéfaut et il sufit que la fonctionFy(q) présente un maximum sur
10, gsud & valeur strictement positive, comme sur la figure 3.

Le minimum globalr., : Les valeursiy(0) = ¢ etvy(gsup) peuvent étre comparées directement, aprés calcul nuneériq
dec etqsyp puisques, et e?ff (connu analytiqguement) coincident @, Lorsqu’il existe, le minimum local de,(q)
endo €]0, gsy est en pratique inférieur &(dsup), PUisqueF,(q) reste sous la droite d’ordonnéesur l'intervalle
[Qo, Osug doncvy(Q) y est croissante. Il est aussi facilement comparable atéssé du son : par intégration de la
troiséme équation de (23), on trouve que

do
Up(Go) - € = fo dgfa - Fp(@] = As - A (24)

OUA, etA_sont les aires (comptées positivement) des zones hachunélesfigure 3.

Le resultat final est indiqué sur la figure 2b. La ligne de s&fiam entre les zones &y, = Vi(Gsup) €tVep = V(o)
correspond au cas limig — gsup C'est-a-dire a I'équatiorr = Fyp(Gsyp) ; elle conduit donc, comme dans le cas de
Vet [voir (19)], & une transition du second ordre pogs, autrement dit & une discontinuité de la dérivée secondg dan
la direction normale a la ligne. Les autres lignes de séjparabnduisent a des transitions du premier ordrevgr
puisque la position du minimum dg(q) saute de 0 & > 0 ou agsy, Leurs équations respectives sédqt= A_ dans
I'équation (24), et (gsup) = €. On notera I'existence d’un point triple & la confluence defs zones.

4. Synthése : vitesse critique globale de la particule

La vitesse critique globale de Landau pour la particule envament dans le superfluide est donnée par la plus
petite des deux vitesseg ; et vy, des sections précédentes. Ppuk 0, on a toujours/g, = C < Vg, Si bien
queV, identiquement égale a la vitesse du son, est d’origineriigee. Pourz > 0, le diagramme dans le plan
(A/u, @ = m/M) de la figure 4a montre que la vitesse critique est d’origarenfonique (/éf < vt’b) dans une sorte
de triangle a un c6té incurvé et dont la base repose sur&ax® ou I'impureté est de masse infinie ; son extension
maximale sur cet axe correspond bien au point de croisefygrt 1, 38 des deux termes au second membre de (5).
Elle est partout ailleurs d’origine bosonique.

Il reste a voir dans quelle mesure la ou les lignes de transide phase prédites S\dé:f et th’ voir la figure
2, subsistent sur la vitesse critique globge ou sont au contraires masquées parce que la vitesse eritigue
de la branche d’excitation concurrente est plus faible.\mons représenté la ligne de transitiorvtlp[entre les

branches de stationnarité (i) et (iv)],= A/2, par un tireté vert sur la figure 4a. La portion correspohdén> 0,55
est entierement masquée par la vitesse critique bosoniegst @onc omise ; mais, de fagon remarquable et peut-étre
inattendue, la portion correspondanha 0,55 est indiscernable, & la résolution de la figure, de la igomentre
le domaine bosonique et le domaine fermionique! De mémes avans représenté les lignes de transitiorvtge
[suivant quev,(q) soit minimale erg = 0, q = gsyp OU strictement entre ces deux valeurs] par un trait noimma
tireté selon que la transition est du premier ou du seconekozbux autres faits remarquables apparaissent. D'une

8



( a) T ‘qexffa T T T qsu‘p qextra q(r)n " qsup
; : —_— : :
RS VN (b) Y :
0,60 - | 08 _ i
\
SN
0,6- ANNY, i
Gl T s b AN NN\ o
\._/Q // N
w Ll 0,45 % |
0,28 J :
0,2 -
L L L 1 | | | |
% 05 1 15 2 % 05 1 15 2
q q

Ficure 3: Pour la valeun/u = 0, 31 choisie a titre @xemple : (a) relation de dispersion adimensionagg) de la branche bosonique (trait plein),
de départ phononique (gros pointillé) mais plafonnée pdokel du continuum a deux excitations fermioniqu%é(d’) au vecteur d’onde total
considéré (tireté), et (b) fonctidf,(g) auxiliaire de discussion graphique pour la minimisatiewg(q). Ici, la branche bosonique existe seulement
sur l'intervalle compact [Qsyp] et vih(g) admet un minimum local egg a l'intérieur de l'intervalle ssi le rapport de massest compris entre les

valeursFp(dsup) et su, Fu(Q). Le tireté en (b) correspond a I'approximatiep(d) =~ F(fiv) (&) = 2A/&; elle est légitime assez prés de- Qsup €t

Iorsquvel est assez faible. C’est bien le cas ici, méme pour la valeninmaie deqp (c’est-a-dire la valeur maximale dg accessible dans la zone
Bg, a A fixé, donc telle qué\, = A_ dans I'équation (24).

part, le tireté noir est en pratique indiscernable du tiveté et se trouve donc lui aussi a la frontiére entre les dioasa
bosonique et fermionique. D’autre part, la portion de tpégin deA > 0,55 semble coincider parfaitement avec la
frontiere entre les domaines bosonique et fermioniqual&ment, la portion de trait plein aux abscisaes 0,55
estimmergée dans le domaine bosonique, et le partage ersdessdomaineB; et B, séparés par une transition de
phase du premier ordre sdr. Nous allons maintenant énoncer quelques faits simplesegttant de comprendre une
partie de ces constatations.
Des zones d'origine prévisiblé.e domaineB,,, ou v'C-’b = Vp(Qsup) cONduit nécessairemenva) > V'E,f donc est, dans
le diagramme final swt, entiérement masqué par la vitesse critique issue de laheatiexcitation fermionique.
En dfet, enq = qgsyp, la branche d’excitation bosonique rejoint le « plafone$§‘>(q) a deux excitations fermioniques,
doncvi(Qsup) = Vi(Qsup) = infqvi(a) = f On en déduit que la frontiére entiBe et F estau-dessude la ligne de
transition entre les zonds,, [ou vCb = vb(qo)] et By, [o0 V- cp = Vb(Gsup)], C'est-a-dire au-dessus du tireté noir sur la
figure 4a.

De fagon symétrique, le domaitffgy, dev: of correspondant a la branche de stationnarité (iv), c'afit@aa >

A/2, ne peut qu’étre entierement masqué par la contributiola éeanche d’excitation bosonique. Effed, sur la
branche (iv), le minimum de; (q) est atteint sur l'intervallg € [0, 2kmin]. Or, sur cetintervalle, la branche d’excitation
bosonique existe bien, puisqag,, > 2kmin cOmme I'a montré la référence [11], et y conduit & une vites@ en
tout point inférieure a la vitessg (q), puisque on a toujourg(q) < eeff(q). Alors, vL est inéluctablement inférieure

a\/f:'"f = meE[O 2] VE(Q), €t la frontiére entrdd; et F esten dessoude la ligne de transition entre les zortgg, et
F surv;;, c'est-a-dire en dessous du tireté vert sur la figure 4a.

Pour résumer, la frontiére entBg et F doit passer entre le plafond tireté vert, d’équatioa F¢(2) = AJ2, etle
plancher tireté noir, d’équation= limg, 4., Fo(do) = Fn(Gsup). Or, comme le montre le calcul numérique, la quantité

Fb(Gsup), considérée comme une fonction Aeest extrémement proche de2 jusqu'aA ~ 0,6, valeur au-dela de

laquelle son graphe commence a s'incurver vers le bas.,AuosrA < 0,55, I'écart est inférieur a quatre pour mille,
etgsyp Yy difféere d'ailleurs de Ryin de moins d’'un pour mille. Aussi la frontiére entBe et F, le tireté vert et le tireté
noir sont-ils en pratique confondus sur la figure 4a, et I'tam@incidence remarquable de deux zones du PHNam)(:

qu =By (25)
Explication de cette coincidence a la frontiBge- F : Aux faibles valeurs dé/u, on peut comprendre physiquement
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pourquoi les tiretés vert et noir sont presque confondugiéfeart linéaire dey(q) aux faiblesq, si on fextrapole
linéairement, atteint le plafond a deux excitations femrhjueSE?‘f(q) ~ 2A en un pointQexyra = 2A/(hC) < 2Kmin
puisquec ~ (2u/3m)Y/2 dans cette limite. En réalité, la branche d’excitation Imigoe s'infléchit autour dg = Qexira
puis longe le plafond de trés prés jusqu’a I'atteindre eroiefmsy, qui est ici extrémement proche diem. On peut
donc s’attendre & pouvoir identifies(q) etef™(q), donc les fonction§ ¢ (&) et Fy(6), sur un voisinage assez étendu de

OsupOU deqsup, la fonctionF ¢ () étant assimilable a son express&Q—ZA/q) 2A /8 sur la branche de stationnarité
(iv), voir les équations (15) et (16) : en un mot,

Fp(q) =~ 2—? pour A< g et A<1 (26)
Ces idées sont illustrées avec succeés sur la figure 3. Celumm(rmlonc pourquoFy(Gsup = A/2 aux faiblesA. Ce
qui est remarquable cependant est que, de ce point de viadelar sk = 0, 55 reste faible.
Quasi-coincidence d%f etvéb sur la zondB; : On peut se demander si I'approximation précédente (26 esine
non seulement eq = Gsyp Mais aussi, dans la zomdg, de la figure 2b, en la positiag du minimum absolu de,(q).
A Afixé, il suffit de le vérifier pour la valeur minimale accessit)gién deqo, correspondant a la valeur maximaleae
atteinte dans cette zone et telle quie= A_ dans I'équation (24). On trouve par le calcul numérique dest dien le
cas,q{)”i“ restant en définitive sisamment loin a droite de la position du maximumFgégd), maximum bien sdr non
décrit par (26). On en déduit le résultat remarquable ques ezoneBy,, donc en pratique dans la zoBe:

V(A @) € By, VE = Vi = Vi (27)

ou I'on peut utiliser I'équation (17) pour évaluv;‘grf
La llgnev'-f = ¢ est remarquableUne fois établie la nature bosonico-fermionique de la zBpec'est-a-dire la
validité de 'approximation (27), il est simple d’évaluarjosition de la frontiére entre les zoraget B, par résolution
de I'équation

Ver=¢ (28)

Le gros pointillé noir correspondant sur la figure 4a, toimiea (presque) sur le trait plein noir pa&r< 0,55. Mieux
encore, dans la partleAa> 0,55 ouv f provient maintenant de la branche de stationnarité (iggtoduitexactement
la frontiére entre les zondd, et F. En dfet, on a icia < A/2, doncvtf provient de la branche de stationnarité
(1) ; or Vo(Osup) = Vi (Osup) > véf comme nous l'avons vu, donc la zoBg,, est hors-jeu, et la transitiof — B, est
nécessairement une transitibr- By.

Une quasi-coincidence a la frontiédg— F : En définitive, il nous reste a expliquer la quasi-coincigahes frontiéres

F - By et By, — Bo. Cette quasi-coincidence est cependant plus approxiengtie les autres, et probablement plus
accidentelle. Il se trouve qu’au point de la frontiére- B, d’abscisse\ = 0, 55, gsup €St trés proche de la position
g = 2kmin du minimum dev¢ (q) ; de méme, au point terminal de cette frontiere d’absdssel, 38, Gsup = 2,59 est,
ce que nous n'expliquons pas, trés proche de la pogitio2,61 du minimum dev¢(q). Aussi les frontieres — B; et
By, — Bo S€ touchent-elles (presque) en leurs extrémités. Dansdgian intermédiaire cependant5b < A< 1,38,
leur eécart devient perceptible sur la figure 4a; le calcul étgue confirme quesy, peut y dévier significativement
de la position du minimum de (g), d’au moins 5%, mais ceci conduit somme toute a un faiblet @carevy(gsyp) =

Vi (Qsup) €t infq v¢(Q) puisquevs () varie seulement au second ordre autour de son minimum.

5. Vitesse critique relative d’un superfluide de bosons et din superfluide de fermions

Il est fort probable qu’une vérification expérimentale deitasse critique de Landau ici prédite aura lieu pour un
grand nombre d’'impuretés, plutdt qu’une seule. Comme iseshaitable d’envoyer dans le superfluide de fermions
un ensemble monocinétique d'impuretés, on est natureffecwnduit a utiliser un condensat de Bose-Einstein de
telles impuretés, avec des interactions en général noigeégles, comme c’est le cas dans la référence [14].

Il faut donc généraliser le raisonnement a la Landau au easdliperfluide de bosons en mouvement a la vitesse
v dans le superfluide de fermions. Le superfluide de bosonsigatement a température nulle dans le référentiel de
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Fiure 4: (a) Diagramme dans le plan & A/u, @ = m/M), x> 0, indiquant dans quelle zone la vitesse critique glokialée fimpureté de masse
M a une origine bosonique (ca§b < vtf, repéré par la lettre B et un fond uni blanc) ou une originenfenique (casx/'c-,f < vtb, repéré par la
lettre F et un fond a rayures jaunes). Le domaine bosonidusparé en deux sous-domairiset B, par la ligne de transition du premier ordre
entre les zoneByg et By, [trait plein noir aux abscisses < 0, 55] de la figure 2b. De facon inattendue, la frontiere eBiret F semble coincider
en pratique avec la ligne de transition du premier ordreede zone®q,,, et By [trait plein noir aux abscisses > 0,55] de la figure 2b. Autre
fait remarquable, la partie non masquée de la ligne de tramslu second ordre suvtf [tireté vert] et la ligne de transition du second ordre entre
les zonesBy, et By, [tireté noir] sont en pratique indiscernables et situeésipément a la frontiere entBy et F. Dernier point notable, la ligne
véf = c [gros pointillé noir] reproduit non seulement la frontieastre B, et F, comme il se doit, mais aussi fort bien celle erieet B;. (b)
Généralisation du diagramme précédent au cas d’un suplerfitimpuretés bosoniques en mouvement dans le superflaitermions, a rapport
fixéeug/Er = 0,1 entre le potentiel chimique des bosons dans le référatgidétur centre de masse et I'énergie de Fermi. La nouvebssat
critiqueVk présente elle aussi une partition en trois zones, sépaaéem@ discontinuité de saftfirentielle seconde (frontiéfe— B;) ou premiére
(frontieresF — B, etB; — By) : la zoneF (a rayures jaunes), ot = v'C-f, et les zone®, etB,, ouv; = v'c-b. La frontiereF — By est tres proche de
la frontiereF ) — F(yv) a la valeur de:g considérée [tireté vert, interrémpu lorsqu'il atteint @neBsy). La frontiereF — B, est bien donnée, comme

il se doit, par le gros pointill&: s = ¢ + cg, ouc (cg) est la vitesse du son dans le superfluide de fermions (bpsbdsoite du point triple. La
frontiére By — By, qui est simplement la frontieBq, — Bo a la valeur dg:g considérée [trait plein noir], dévie au contraire du pditiorsqu’on
s’éloigne du point triple sur sa gauche.

son centre de masse. L'interaction bosons-fermions créeigimum une excitation élémentaire dans le superfluide
de bosons, de quantité de mouventanet d’énergies g —q-V, g — ez q = ea(q) €tant la relation de dispersion pour
un superfluide au repdsDe maniére concomitante, une paire d’excitations fermjioes de vecteurs d’ondig etk,

et d’énergieer i, + €1x,, avecq = —(ki1 + K2), ou une excitation bosonique de vecteur d’ordget d’énergies, _q,
apparait dans le superfluide. Ce processus minimal d'¢xcitae peut cependant conserver I'énergie si la vitesse
relativev des deux superfluides est inférieure aux vitesses critideésndau

VL = infvi(q) avecvi(q) = @+ '@ (29)
cf = q £(d £(Q) = hq
V5, = infvp(q) avec vi(q) = M, (30)
’ q hq
c'est-a-dire a/;, la plus petite des deux vitesses. Dans la suite, nousautilis la forme de Bogoliubov
thZ h2q2 1/2
es(q) = [W (W + Z#B)] (31)

ol ug est le potentiel chimique (positif) du superfluide de bosangepos eM la masse d'un boson. Les expressions
précédentes (8) et (21) correspondent comme il se doit dinuésug — O.

7. Ceci découle des propriétés suivantes de la transfamatitaireT;(v) représentant le changement de référentiel galiléen addasav,
Te(v) = exp[-i X tv - pjh]exp[i X; mgv - rj/h], la somme portant sur le¥g bosons, de masses = M et d’opérateurs position; et impulsion
pj : T{ (VHpTi(v) = Hg + v - Pg + Ngmgv?/2 et T, (v)PgTy(v) = P + Ngmgv, ol Hg est le Hamiltonien des bosonsfs leur opérateur quantité
de mouvement totale. Il reste alors & comparer les énergiegpelsions deT(v)|¥o) etTt(v)llP'p, ou les vecteurs d'ét#¥o) et\‘l“i) sont ceux du
superfluide au repos dans son état fondamental ou en préSeneeexcitation élémentaire de vecteur d’ohde
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L'étude de la vitesse critiqué‘;’f issue de la branche fermionique peut se faire analytiqugrapres adimension-
nement comme dans I'équation (16) et en introduisant l@len@g de éx(8)/d, donnée par
< _ 2M HB zﬁB

QB_ m |/J| = a (32)

On cherche d’abord les minima locaux, de dérivée nulle :

(9 d a
Ve (§) = Y2+ Y sibien que— vy (@) = —29
Vi(§) = a(@ + Qf) 3 aue #(9) @+ %)

expression dont la racine se trouve sur la branche de stativé (iv) [plutdt que sur la branche (i)] ssi la fonction
croissante] - od/(§° + Q3)Y? atteint la valeun\/2 surd € [0, 2] donc ssi

- F(@) (33)

2a A
5 (34)

@+ Gy~

comme le montre une discussion graphique a l'aide de la figure plan é a) est donc séparé a nouveau en deux
domained= etFg,, a la frontiere desquelg 1 présente une transition du second ordre.
L'étude de la vitesse critiqua;%b issue de la branche bosonique est faite numériquementoOvetrcomme dans

le cas a une impureté, une partition du plémc() en trois domaines, suivant que le minimum absoluwglg) est
atteint au bord inférieur, au bord supérieur ou a l'intéridel 'intervalle d’existence [(ys,g de la branche bosonique
en question. Les frontiéresftBrent peu de celles a une impureté seule, puisqu’on a pris ijgotentiel chimique des
bosons petit devant I'énergie de Fermi. On notera le réssiltaple mais important que., = ¢ + cg dans toute la
zoneBy, ¢ etcg étant les vitesses du son dans les superfluides fermionidposenique.

Le diagramme de phase de la vitesse critique glotatest présenté sur la figure 4b et est décrit en détail dans
la Iégende. Les résultats et leur discussion sont d'adlpuoches du cas a une impureté, voir la section précédente,
aussi nous contentons-nous de signaler ici ufférdince notable : le pointillé d’équatiog; = ¢+ cg ne donne plus
une bonne approximation de la frontie— B,, sauf prés du point triple.

6. Conclusion

Nous avons étendu le calcul de la vitesse critique de Landas dn superfluide de fermions non polarisé au cas
ou I'objet en mouvement est (a) une impureté de mésgeM, puis (b) un superfluide bosonique de telles impuretés,
avec prise en compte des excitations du superfluide de fasdita BCS par brisure des paires (branche d’excitation
fermionique) et a la RPA par leur mise en mouvement (branehxeidation bosonique) comme dans la référence [11].

Lorsque le potentiel chimique des fermions est négatf,0, nous trouvons que la vitesse critique est déterminée
par la partie phononique de la branche bosonique et vautgslonpdement (a) la vitesse du somans le superfluide
de fermions, puis (b) la somneer cg, ol cg est la vitesse du son dans le superfluide de bosons.

Lorsque le potentiel chimique des fermions est pogitif; 0, ces résultats ne valent que dans une certaine zone
B, du plan A/u, m/M), ouA etmsont le gap et la masse d'une particule du superfluide de deisnPour (a) aussi
bien que pour (b), au moins dans le régime d’un potentiel chieug petit devant 'énergie de Fermi, il existe alors
deux autres zones, une zoBgou la vitesse critique est déterminée par la partie interamég non phononique, de
la branche bosonique et une zdheu la vitesse critique vaut celu%;’f associée a la branche fermionique. La vitesse
critique a une dtérentielle seconde discontinue a la fronti€re- By, et une diférentielle premiére discontinue en
F — By et enB; — By, les trois frontieres étant concourantes en un point tripéefrontiereF — B, s’obtient, de
maniére exacte, en résolvant quuatmtq = c[cas (a)] ouvL = c + cg [cas (b)]. La frontiéreB; — B, est, de
méme, exactement sur la ligne d’égalité entre les wtesmmes issues des parties phononique et intermédiaire de
la branche bosonique ; dans le cas (a), on I'obtient avec aneebapproximation en résolvant I'équation plus simple
va = ¢, parce que la vitesse critique daBsest en réalité proche dégf ; dans le cas (b), cette approximation est
nettement moins bonne, sauf prés du point triple. FinaléntefrontiereF — B, peut étre identifiée, avec une bonne
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approximation dans les deux cas (a) et (b), a une portion tigrla de discontinuité de la fiérentielle seconde de
V- ., donnée paréquationm/M = A/(2u) pour le cas (a), et par I'égalité dans I'inégalité (34) pleucas (b).

C’f, . . - ~ s g s 7 o 7 . .
Ces prédictions pourraient étre vérifiees expérimentaiemesc le mélange de superfluides des isotopes boso-

nique’Li et fermioniqueSLi du lithium récemment préparé a 'ENS [14]. Ainsi, la tritien du premier ordre a la
frontiere B; — B, prédite ici pourrait étre révélée en faisant varier la loagude difusion entre fermions de spins
opposés, dong, grace a une résonance de Feshbach, et en mesurant la viitigse correspondante ; on devrait
alors observer une rupture de pente dans la vitesse critigifienction de la force des interactions, au passage de la
ligne B; — B,. En revanche, la valeur du rapport de masghl ~ 6/7, imposée, ne permet pas de franchir les autres
frontieres.

Il serait envisageable de prolonger la présente étudeitiuEna ce qui a été directement mesuré dans la réfé-
rence [14], a savoir le taux d’amortissement des oscilistaiu superfluide de bosons dans le superfluide de fermions
harmoniquement piégé, en prenant en compte d’éventfiets de température non nulle. Il faudrait aussi voir si I'in-
teraction entre fermions et bosons estisamment faible pour qu’on puisse restreindre I'analyseyue le fit Landau
et comme ce fut fait ici, au nombreinimalpossible d’excitations élémentaires, et obtenir la mémedra d’énergie
(empéchant I'amortissement du mouvement des impuretésldasuperfluide de fermions) que dans I'expérience.
Toutes questions que nous espérons inspiratrices de xraltétieurs, aussi bien théoriques qu’expérimentaux.
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Abstract

Manifestations of Quantum Physics at the thermodynamical level are found in a broad range of phys-
ical systems. A famous example is superfluidity, discovered at the beginning of the 20th century and
found in many different situations, from liquid helium to neutron stars. Dilute ultracold gases offer
a unique versatility to engineer quantum many-body systems, which can be directly compared with
theory thanks to the controllability of their environment. In this thesis we present several experimen-
tal investigations led on ultracold lithium gases. Lithium provides the possibility to study ensembles
of bosons and fermions, with controllable interactions between the constituents. We present exper-
imental techniques for preparation and studies of degenerate gases of lithium, with prospects for
improvement of the existing methods. We first report on an investigation of three-body recombi-
nation of bosons under a resonant two-body interaction. This study, quantitatively compared with
theory constitutes a benchmark for further studies of the unitary Bose gas. Finally, we present the
first experimental realization of a mixture of a Bose superfluid with a Fermi superfluid. We demon-
strate that both components are in the superfluid regime, and that the counter-flow motion between
them possesses the characteristics of superfluid flow, with the absence of viscosity below a critical
velocity, and an onset of friction above. Using collective oscillations of the mixture, we measure the

coupling between the two superfluids in close agreement with a theoretical model.

Keywords: quantum gases, superfluidity, Bose-Fermi mixtures, unitary gases, three-body

recombination, laser cooling, grey molasses.

Résumé

On trouve des manifestations de la physique quantique au niveau thermodynamique dans de nom-
breux systemes. Un exemple marquant est la superfluidité, découverte au début du 20eme siecle,
que I'on retrouve de ’hélium aux étoiles a neutrons. Les gaz dilués ultra-froids offrent une polyva-
lence unique pour étudier des systemes quantiques macroscopiques, pouvant directement tester les
théories grace a un environnement contrdlé. Dans cette these, nous présentons plusieurs études ex-
périmentales de gaz froids de lithium. Le lithium fournit la possibilité de réaliser des ensembles de
bosons et de fermions, avec des interactions contrdlables entre les constituants. Nous présentons les
techniques utilisées pour préparer et étudier des gaz dégénérés de lithium, et une amélioration pos-
sible des méthodes existantes. Nous décrivons premierement une étude de la recombinaison a trois
bosons avec une interaction a deux corps résonante. Comparés quantitativement a la théorie, ces
résultats fournissent une référence pour les études futures du gaz de Bose unitaire. Pour finir, nous
présentons la premiére observation expérimentale d'un mélange de superfluides de Bose et de Fermi.
Nous démontrons que les deux composants sont superfluides et que leur écoulement relatif vérifie
les propriétés des écoulement superfluides, avec une absence de viscosité en dessous d’une vitesse
critique puis la présence de dissipation au-dela. En utilisant des excitations collectives de ce mélange,

nous mesurons l'interaction entre les deux superfluides, en accord avec un modeéle théorique.

Mots-clés: gaz quantiques, superfluidité, mélanges de bosons et de fermions, gaz unitaires,
recombinaison a trois corps, refroidissement laser, mélasses grises.
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