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Abstract

One of the outstanding challenges in large vocabulary automatic speech recognition (ASR)
is the reduction of development costs required to build a new recognition system or adapt
an existing one to a new task, language or dialect. The state-of-the-art ASR systems are
based on the principles of the statistical learning paradigm, using information provided
by two stochastic models, an acoustic (AM) and a language (LM) model. The standard
methods used to estimate the parameters of such models are founded on two main as-
sumptions: the training data sets are large enough, and the training data match well
the target task. It is well-known that a great part of system development costs is due
to the construction of corpora that fulfill these requirements. In particular, manually
transcribing the audio data is the most expensive and time-consuming endeavor. For
some applications, such as the recognition of low resourced languages or dialects, finding
and collecting data is also a hard (and expensive) task. As a means to lower the cost
required for ASR system development, this thesis proposes and studies methods that aim
to alleviate the need for manually transcribing audio data for a given target task. Two
axes of research are explored.

First, unsupervised training methods are explored in order to build three of the main
components of ASR systems: the acoustic model, the multi-layer perceptron (MLP) used
to extract acoustic features and the language model. The unsupervised training meth-
ods aim to estimate the model parameters using a large amount of automatically (and
inaccurately) transcribed audio data, obtained thanks to an existing recognition system.
A novel method for unsupervised AM training that copes well with the automatic audio
transcripts is proposed: the use of multiple recognition hypotheses (rather than the best
one) leads to consistent gains in performance over the standard approach. Unsupervised
MLP training is proposed as an alternative to build efficient acoustic models in a fully
unsupervised way. Compared to cross-lingual MLPs trained in a supervised manner, the
unsupervised MLP leads to competitive performance levels even if trained on only about
half of the data amount. Unsupervised LM training approaches are proposed to estimate
standard backoff n-gram and neural network language models. It is shown that the per-
formance improvements obtained with unsupervised LM training are complementary to
those obtained with unsupervised AM training.

Second, this thesis proposes the use of model interpolation as a rapid and flexible
way to build task specific acoustic models. In reported experiments, models obtained via
interpolation outperform the baseline pooled models and equivalent maximum a posteriori
(MAP) adapted models. Interpolation proves to be especially useful for low resourced
dialect ASR. When only a few (2 to 3 hours) or no acoustic data truly matching the
target dialect are available for AM training, model interpolation leads to substantial
performance gains compared to the standard training methods.
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Résumé

Au long des dernières décennies, des importants avancements ont été réalisés dans le
domaine de la reconnaissance de la parole à grand vocabulaire. Un des défis à relever dans
ce domaine concerne la réduction des coûts de développement nécessaires pour construire
un nouveau système ou adapter un système existant à une nouvelle tâche, langue ou
dialecte. Les systèmes de reconnaissance de la parole à l’état de l’art sont basés sur les
principes de l’apprentissage statistique, utilisant l’information fournie par deux modèles
stochastiques, un modèle acoustique (MA) et un modèle de langue (ML). Les méthodes
standards utilisées pour construire ces modèles s’appuient sur deux hypothèses de base: les
jeux de données d’apprentissage sont suffisamment grands, et les données d’apprentissage
correspondent bien à la tâche cible. Il est bien connu qu’une partie importante des coûts
de développement est dû à la préparation des corpora qui remplissent ces deux conditions,
l’origine principale des coûts étant la transcription manuelle des données audio. De plus,
pour certaines applications, notamment la reconnaissance des langues et dialectes dits
“peu dotés”, la collecte des données est en soi une mission difficile. Cette thèse a pour
but d’examiner et de proposer des méthodes qui visent à réduire le besoin de transcrire
manuellement des données audio pour une tâche cible donnée. Deux axes de recherche
ont été suivis.

Dans un premier temps, des méthodes d’apprentissage dits “non-supervisées” sont
explorées. Leur point commun est l’utilisation des transcriptions audio obtenues au-
tomatiquement à l’aide d’un système de reconnaissance existant. Des méthodes non-
supervisées sont explorées pour la construction de trois des principales composantes
des systèmes de reconnaissance. D’abord, une nouvelle méthode d’apprentissage non-
supervisée des MAs est proposée: l’utilisation de plusieurs hypothèses de décodage (au lieu
de la meilleure uniquement) conduit à des gains de performance substantiels par rapport à
l’approche standard. L’approche non-supervisée est également étendue à l’estimation des
paramètres du réseau de neurones (RN) utilisé pour l’extraction d’attributs acoustiques.
Cette approche permet la construction des modèles acoustiques d’une façon totalement
non-supervisée et conduit à des résultats compétitifs en comparaison avec des RNs es-
timés de façon supervisée. Finalement, des méthodes non-supervisées sont explorées pour
l’estimation des MLs à repli (backoff ) standards et MLs neuronaux. Il est montré que
l’apprentissage non-supervisé des MLs conduit à des gains de performance additifs (bien
que petits) à ceux obtenus par l’apprentissage non-supervisé des MAs.

Dans un deuxième temps, cette thèse propose l’utilisation de l’interpolation de mod-
èles comme une alternative rapide et flexible pour la construction des MAs pour une tâche
cible. Les modèles obtenus à partir d’interpolation se montrent plus performants que les
modèles de base, notamment ceux estimés à échantillons regroupés ou ceux adaptés à la
tâche cible. On montre que l’interpolation de modèles est particulièrement utile pour la

v



Résumé

reconnaissance des dialectes peu dotés. Quand la quantité des données d’apprentissage
acoustiques du dialecte ciblé est petite (2 à 3 heures) ou même nulle, l’interpolation des
modèles conduit à des gains de performances considérables par rapport aux méthodes
standards.
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Chapter 1

Introduction

For many decades scientists have attempted to design machines that are capable of re-
producing or imitating human behavior. As speech is the most common form of commu-
nication between humans, trying to make machines understand (and reproduce) natural
speech has been a widely investigated research topic. The main goal of this research area
is to allow verbal communication between humans and machines to be more natural, and,
in some cases, to facilitate also the communication between humans.

Automatic speech understanding aims to obtain the underlying message of a spoken
utterance. Extracting such information directly from the audio stream (the digital rep-
resentation of a recorded utterance) is a challenging and complex task. The audio signal
that carries the message also contains non-linguistic information that is not always useful
for understanding the message. For this reason, the audio stream is usually converted into
a sequence of written words before being processed by the final application. Performing
this conversion from audio to text is the main goal of automatic speech recognition (ASR).

Interpreting the meaning or the semantics behind words is itself a difficult endeavor,
hence representing a separate research area. For instance, it might be particularly hard
to understand nuances of irony or figures of speech, such as metaphor, hyperbole or
simile. Despite this fact, ASR can be very useful for different applications, such as voice
command, audio media indexing, information retrieval, machine translation, dictation or
computer-aided communication with people suffering from hearing disabilities.

ASR research has been investigated for at least six decades. In the beginning, ASR
was limited to speaker dependent recognition of isolated words pertaining to short list
vocabularies. The technology has gradually evolved towards the recognition of more
complex tasks. Nowadays, ASR systems are able to cope with large vocabulary continuous
speech from multiple speakers with reasonable accuracy. Owing however to the fact that
ASR research has focused on the most spoken languages of the world, the highest levels
of recognition performance are limited to these few languages.

In the past years, there has been a growing interest on building large vocabulary ASR
systems for different domains and languages. An example close to me is the Quaero Pro-
gramme1, a European Consortium formed by academic and industrial partners. During a
period of six years, speech recognition systems for 23 different languages were developed.
Another more recent case is the (ongoing) IARPA Babel Program2, which focuses on the

1http://www.quaero.org
2http://www.iarpa.gov/index.php/research-programs/babel
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1. Introduction

recognition of languages that have a limited amount of resources. This initiative is not
restricted only to academia: private companies like Apple, IBM, Google, Microsoft, as
many others, have already demonstrated some interest in expanding the use of speech
technologies in their products designed for the public.

1.1. The statistical framework

Current state-of-the-art ASR systems stand on the principles of statistical pattern recog-
nition. In this approach, by means of the Bayesian rule decision, the recognition task
resumes on searching for the most likely word sequence given the speech data and two
probabilistic models: the acoustic and the language models. Prior to searching, the audio
stream is converted into a suitable sequence of acoustic feature vectors.

The parameters of such probabilistic models are obtained via a training algorithm
that attempts to fit a set of available training samples to a suitable objective function.
As speech recognition is a classification problem, the correct classification labels of the
training data are usually required. Training itself is an automatic process, although
choices for algorithms and optimization criteria still rely on expert’s skills. In fact, it
must be considered that the training data constitute the ground truth of the process being
modeled. Concerning these data, two fundamental assumptions need to be considered.

1. The corpus used for training has to be large enough to generate reliable estimates
and to lead to good generalization on new data.

2. The data has to be representative of the target task. In other words, it is assumed
that training and test data are independent identically distributed samples drawn
from the same probability density function.

Despite the huge progress that has been made on speech recognition over the last
decades, developing or adapting a recognition system to a new language or domain is still
an expensive and time-consuming task. Evidently, reducing system development costs is
a necessary step in order to ensure the rapid expansion of speech recognition technologies.

Factors influencing development costs and time are varied, including, of course, the
availability of computational resources. Another important cost factor is the human effort
needed. Although a great part of the development process can be performed automatically,
human supervision is required, for instance, on architectural decisions (acoustic feature
vectors, type of models, estimation criteria, smoothing algorithms, decoding strategy,
etc.), data selection or data annotation.

It is well known that one of the most important cost factors involved in system
development is the production of manually annotated audio data. Reducing the need
for this certainly leads to a reduction of development costs and, consequently, favors the
rapid expansion of speech recognition technologies. Hence, the first research direction
investigated in this thesis deals with the use of automatically annotated audio data.

Because the similarity between the training data and the target data is also important,
gathering a large amount of data is not always sufficient to guarantee suitable performance
levels. Furthermore, large quantities of data are not always easily available for certain (low
resourced) languages, dialects or domains. In these cases, additional effort is required to
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1.2. Cost efficient training data production

construct representative training corpora and to refine the system parameters. The second
axis of research covered in this thesis’ work deals with the use of techniques to reduce the
need for training data in the target domain, hence reducing the human effort necessary
to develop systems for low resourced tasks.

1.2. Cost efficient training data production

As mentioned before, the first assumption in the statistical framework is the availability of
large amounts of training data. In the case of automatic speech recognition, the training
corpora are composed of acoustic and textual data.

In particular, acoustic model (AM) estimation requires both, the audio data and
their associated text transcriptions. Usually, dozens to hundreds of hours of data are
required for acoustic model estimation in order to achieve suitable performance levels
on large vocabulary recognition tasks. While collecting acoustic data is relatively easy
(although not always), manually transcribing them is an expensive and time-consuming
task. Roughly, 10 to 50 hours of work are required to produce detailed transcriptions for
one hour of audio data. Of course, this number may vary depending on the difficulty of
the task, the experience of the transcriber and the desired level of transcription details.

A well-known technique that has been growing in popularity as a means to reduce the
need for manual annotation for acoustic learning is the method known as unsupervised
training (Zavaliagkos and Colthurst, 1998; Kemp and Waibel, 1999). In this method, an
initial model trained for another task or with a small amount of data is used to process
several hours of untranscribed acoustic data and generate approximate transcriptions.
These transcriptions are then used as ground truth for AM training. The main drawback
of such an approach is that the automatic transcriptions are known to contain many errors
that can mislead parameter estimation. Dealing with them is an important issue in order
to improve efficiency of unsupervised acoustic model training (Kemp and Waibel, 1999;
Lamel et al., 2000; Gollan et al., 2007).

Language model (LM) estimation, on the other hand, requires only textual data.
Usually, dozens of millions to billions of words are required to build language models for
large vocabulary recognition tasks. Huge amounts of data can be readily gathered from
different types of digital media, such as the Web, newspapers, books, etc. Nevertheless,
most of these available sources represent a more formal (written) style rather than the
spoken style intrinsic to natural speech. Information retrieval techniques can be used to
reduce the need for audio transcriptions by searching on the Web for data that represents
well the spoken form (Bulyko et al., 2007).

Despite the fact that manual audio transcriptions are expensive to produce, it is not
difficult to prove that they play a major role in language modeling, since they truly rep-
resent speech. An alternative that naturally arises is the use of automatic transcriptions
as ground truth for language model parameter estimation (Bacchiani and Roark, 2003).
Unsupervised language modeling is a much more challenging problem compared to unsu-
pervised acoustic modeling (Novotney et al., 2009). This is probably due to the fact that
language modeling is a sparser optimization problem and, thus, more sensitive to wrongly
assigned classification labels.

In brief, audio transcriptions are a valuable resource for ASR system development,
being essential for the estimation of acoustic models and likewise important for the esti-
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mation of language models.

1.3. Matching the target data

As previously stated, using huge amounts of data is not a sufficient condition to get reliable
models. The training data has to match the target task too. Thus, a problem arises in
cases where target specific data is scarce. In particular, it is difficult to retrieve (acoustic
and textual) data for conversational speech recognition tasks and for low e-resourced
languages or dialects.

Data mismatch issues are usually addressed using a suitable model adaptation tech-
nique. The process uses two sources of knowledge: a well-trained baseline model estimated
on a large amount of (possibly) out-of-domain data; and a small amount of adaptation
data, from which relevant information related to the target task can be extracted. The
main principle, which is illustrated in Figure 1.1a, is to adjust the parameters of the
baseline model to approximate the adaptation data. Adaptation also incurs costs related
to human effort. First, audio transcriptions (though in a smaller quantity) are required.
Second, human supervision might be required to refine the adaptation parameters. These
two cost factors can be reduced using either unsupervised AM training or automatic
optimization of the adaptation parameters.

Various acoustic and language model adaptation techniques exist. In some of them,
the concept of degree of adaptation is intrinsic. An example is the maximum a poste-
riori (MAP) adaptation of acoustic (Gauvain and Lee, 1994) and language (Bacchiani
and Roark, 2003) models, where a parameter, which can be set manually or obtained
empirically, allows to control the relevance of the two sources of knowledge. In other
cases, the adapted model is obtained by forcing the baseline model to satisfy constraints
extracted from the adaptation data. This is the case, for instance, of maximum likelihood
linear regression acoustic model adaptation approaches (Leggetter and Woodland, 1995)
or minimum discrimination information based language model adaptation (Kneser et al.,
1997; Federico, 1999).

In the aforementioned methods, it is assumed that data used to estimate the base-
line model are homogeneous, drawn from the same distribution function. However, this
assumption is not strictly true, since these data actually come from a wide variety of
sources. Considering these dissimilarities is a potential way to improve model adaptation.
A proposed approach, widely used for language modeling, is to consider the background
model as a set of component models, each estimated on an independent subset of the
training data. The task specific model is obtained by means of interpolation of the com-
ponent models, allowing, then, to control the degree of adaptation of each subset with
respect to the target specific data. This approach is highly flexible, since no changes on
the component models are required while adapting the model to a new task. In fact,
adaptation can be performed by simply estimating a few interpolation coefficients. A
main drawback of this model combination technique is the data fragmentation introduced
by dividing the training data into subsets. This approach is illustrated in Figure 1.1b.

Usually, such a combination approach is not applied for AM training. Acoustic train-
ing data dissimilarities are typically addressed via adaptive training approaches (Anas-
tasakos et al., 1996; Kuhn et al., 1998; Gales, 1998a), a family of methods that attempt
to remove from the acoustic model the speech variability among the speakers represented
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(a) Model adaptation. (b) Model combination.

Figure 1.1.: Representation schemes of model adaptation and model combination meth-
ods.

in the training data. Different from the research direction taken in this thesis, adaptive
training methods do not cope with low resourced data tasks.

1.4. Scientific goals

The main objective of this thesis is to study and propose new techniques that aim to
reduce the human effort required for system development. Two different research axes are
considered. First, the use of unsupervised techniques to alleviate the need for manually
transcribed audio data for acoustic and language model training. Second, the use of model
adaptation and model combination techniques to alleviate the need for task specific data.
Of particular interest for this thesis is the use of adaptation and combination techniques in
which the adaptation parameters are automatically estimated on the target data, requiring
low human supervision. The main scientific goals pursued in this thesis are:

Investigate unsupervised HMM/GMM based acoustic model training techniques.
It will be shown that unsupervised training is a particular case of the expectation-
maximization (EM) algorithm (Dempster et al., 1977), in which the true word sequence
labels are not observed. A survey of different approaches to deal with recognition errors
will be performed, showing that they are all specific cases of a generalized EM algo-
rithm. Furthermore, this thesis proposes to base acoustic model parameter estimation
on multiple weighted decoding hypotheses instead of the 1-best hypothesis. The multiple
hypotheses are extracted from the recognition lattices as an attempt to better represent
the true transcription labels and lead to more reliable models.
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Investigate unsupervised MLP training for acoustic feature extraction. Acoustic
features extracted from discriminatively trained multi-layer perceptrons (MLP) have been
successfully used in large vocabulary ASR tasks (Fousek et al., 2008b). Training such
models relies on the use of transcribed audio data. This thesis proposes to extend the
use of unsupervised training approaches to estimate the parameters of bottleneck MLP
models (Grézl et al., 2007). The proposed method is empirically compared to cross-lingual
MLPs (Stolcke et al., 2006).

Investigate unsupervised language model training. Unsupervised training of lan-
guage models has been reported to improve recognition accuracy when applied in con-
versational speech recognition tasks (Bacchiani and Roark, 2003; Novotney et al., 2009).
Here, we propose to use this technique to estimate language models for large vocabulary
broadcast speech recognition tasks. Unsupervised training is assessed on the state-of-
the-art n-gram based models and on neural network based language models. In order to
take into accounts reliable information provided by the decoder, namely the confidence
measures, a variant of the so-called Kneser-Ney (KN) n-gram smoothing which allows the
use of fractional counts is proposed.

Investigate acoustic model interpolation. Inspired by common language modeling
practices, it is proposed to generate task specific acoustic models as a combination of
component models, each trained on an independent subset of the training data. The
models are combined a posteriori via linear interpolation using coefficients automatically
estimated on a small amount of task specific data. The method is theoretically compared
to adaptive training approaches and empirically compared to pooled and MAP adapted
models. The proposed acoustic model interpolation technique induces an increase on the
number of model parameters. In order to reduce them and recover suitable computational
complexity levels, a theoretically motivated Gaussian mixture model (GMM) reduction
algorithm is also proposed.

1.5. Outline

This thesis is organized in four parts. Part I presents the general motivation and context
of this work, including this introduction. Chapter 2 presents a background of automatic
speech recognition, while Chapter 3 describes the baseline systems used in this work.

Part II presents the work addressing unsupervised training. After a brief introduction
of this subject, Chapter 4 describes the work on unsupervised acoustic model training.
Chapter 5 extends the approach to the estimation of bottleneck multi-layer perceptron
parameters. This part finishes with an extension to unsupervised language model training
in Chapter 6.

Part III concerns the model combination studies. After a brief overview of this
subject, Chapter 7 describes the theoretical acoustic model interpolation framework.
Experimental work in this topic are presented in Chapter 8.

Part IV gives an overall summary on this thesis work highlighting the main results
obtained and suggesting some future research directions.
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Chapter 2

Automatic speech recognition

The aim of the speech recognition task is to convert a continuous speech audio flow into a
sequence of written words that represents the spoken utterance. Current state-of-the-art
large vocabulary continuous speech recognition (LVCSR) systems stand on the principles
of statistical pattern recognition. In this approach, by means of the Bayesian decision
rule, the recognition task can be stated as the problem of searching for the most likely
word sequence given two probabilistic models: the acoustic and the language models.

In this chapter, an overview of the statistical methods for LVCSR is presented with
special attention to acoustic and language modeling. Due to the importance in the general
context of this thesis, the searching algorithm is briefly described as well.

2.1. Statistical speech recognition

The current state-of-the-art LVCSR approaches are based on the principles of statistical
learning methods. Given an input audio stream, represented by a sequence of observation
vectors X , this approach seeks to find the optimal word sequence W that maximizes the
posterior probability P (W|X ), that is:

W∗ = arg max
W

P (W|X ) = arg max
W

P (W) · f (X|W)

P (X )
(2.1)

W∗ =arg max
W

P (W) · f (X|W) (2.2)

The passage in (2.1) is the straightforward application of the Bayes’ decision rule. In
(2.2), the prior probability over the observation vectors, P (X ), is ignored, since it does
not affect the maximization over W . The key point here is the Bayes’ decision rule, which
allows the recognition problem to be decomposed into two terms, one representing the
acoustic likelihood function, f (X|W), provided by an AM, and another representing the
prior knowledge over the word sequences, P (W), provided by a language model (LM).
These models are usually estimated independently. The maximization procedure over the
word sequences is commonly referred to as decoding or search algorithm.

For LVCSR tasks, modeling the likelihood f (X|W) directly is impractical. To make
the problem more tractable, sub-word units, such as phones, are used (Cohen and Mercer,
1975). Of course, this requires the assumption that any word sequence can be mapped into
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Figure 2.1.: Automatic speech recognition system.

at least one sub-word unit sequence. This mapping function is provided by a pronunciation
model.

Considering Q a phone sequence, and assuming that f (X|Q,W) = f (X|Q), (2.2)
can be rewritten as follows:

W∗ =arg max
W

∑

Q

P (W) · P (Q|W) · f (X|Q) (2.3)

W∗ ≈ arg max
W

max
Q

P (W) · P (Q|W) · f (X|Q) (2.4)

where the acoustic model is denoted by f (X|Q), the pronunciation model by P (Q|W)
and the language model by P (W). In (2.4), a Viterbi approximation is performed in
order to restrict the search space during decoding.

These three models (acoustic, pronunciation and language), together with the search-
ing algorithm constitute the core of typical ASR systems, which is depicted in Figure 2.1.
Prior to the global search process, the continuous audio stream has to be converted into a
sequence of discrete vectors, what is performed by the acoustic feature extraction module.

In the next section, further details of acoustic modeling and acoustic feature extrac-
tion will be presented. The following sections will describe language modeling and the
searching algorithm. Since pronunciation modeling is not in the scope of this thesis, no
further details will be given here.

2.2. Acoustic modeling

The acoustic model (AM) is a crucial component in any typical ASR system. It is in
charge of providing the likelihood of a sequence of observed acoustic feature vectors for a
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given sequence of labels, which can be words or sub-word units. Each acoustic model is
commonly represented by a hidden Markov model (HMM), with the output state densities
modeled by multivariate GMMs.

2.2.1. Hidden Markov models

By means of hidden Markov models, the continuous speech can be modeled as a first
order Markov process with unobserved or hidden states. HMMs have been used in speech
recognition since the 1970’s (Baker, 1975; Jelinek, 1976).

Approaches using HMMs are founded on two assumptions. First, it is assumed that
the audio stream can be split into segments in which the waveform can be considered to
be stationary. Second, it is assumed that the probability of a sample being generated
depends only on the current state, or, more specifically, it does not depend on previous
states nor previously observed samples. Even if both assumptions are not strictly true
for the continuous speech, the HMM-based approach has been proving its effectiveness
for speech recognition over the past decades, constituting the state-of-the-art in matters
of acoustic modeling. To derive the mathematical framework, let us adopt the following
notations:

λ = (π,A,θ) the HMM parameter vector

i = {0 . . . N} the HMM state indexes

π = {πi}i=0...N the vector of state initial probabilities

A = {ai,j}i,j=0...N the matrix of transition probabilities between states

where ai,j is the transition probability from state i to state j

θ = {θi}i=1...N the state emission probability parameter vectors

X = (x1, . . . , xT ) a sequence of T observation acoustic vectors

S = (s1, . . . , sT ) a sequence of states having generated X

W = (w1, . . . , wM) a sequence of M words generated by X

Following Baum et al. (1970), we will consider the first state of the HMM, i = 0, as
a non-emitting state. Given these definitions, the likelihood of the acoustic observation
vectors X given the model λ can be represented by:

f (X|λ) =
∑

S

πs0

T
∏

t=1

ast−1,stf (xt|θst) (2.5)

where f (xt|θi) is the emission probability density function (p.d.f.) at state i. In (2.5), the
summation is performed over all possible state sequences.

Two distinct and independent processes can be identified in (2.5). The first one,
referred to as the Markov process, is parameterized by the state initial probabilities, π, and
the state transition probabilities, A. The second one, referred to as the output process, is
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parameterized by θ. This later is commonly represented by multivariate Gaussian mixture
distributions, which can be expressed by:

f (xt|θi) =
K
∑

k=1

ωik · N (xt|µik,Σik) (2.6)

where K denotes the number of Gaussian components in the mixture θi, defined by
θi = {ωik, µik,Σik}k=1...K . For notation clearness, it will be assumed that all the mixtures
have the same number of components. Here, ωik denotes the mixture weight, µik the mean
vector and Σik the covariance matrix of the k-th component. The mixture weights satisfy
∑

k ωik = 1, and N (·|µ,Σ) is a normal p.d.f., defined as:

N (x|µ,Σ) :=
1

(2π)
d
2 |Σ|

1

2

exp

{

−
1

2
(x− µ)T Σ−1 (x− µ)

}

(2.7)

where d is the dimensionality of the feature space, |M | and M−1 denote, respectively, the
determinant and the inverse of a matrix M , and vT denotes the transpose of a vector
v. In the following section, standard methods used to estimate the HMM and GMM
parameters are presented.

2.2.2. Parameter estimation

Obtaining the parameters of the HMM-based acoustic models with GMM state observa-
tions is a large multidimensional optimization problem. These parameters are estimated
in order to fit some appropriate training criterion. Depending on their objective function,
the training methods can be divided into two main categories, generative or discrimina-
tive. The first family of methods attempts to maximize the joint probability function,
P (X , C), between the observation vectors, X , and their associated classification labels, C.
Generative methods attempt to model the manner how the data are generated. On the
other hand, the discriminative methods model the conditional probability P (C|X ), seek-
ing to maximize the separation distance among the existing classes (Bishop and Lasserre,
2007).

Although discriminative methods usually lead to better generalization performances,
we focus here on generative training methods. This choice comes from the fact that gener-
ative acoustic models are less sensitive to the errors present in the automatic transcriptions
(Wang et al., 2007) which are used to guide the parameter estimation throughout this
work. Furthermore, rather than training from scratch, discriminative methods are often
used to refine generative model estimates. Thus, it can be expected that improvements
on the generative models would reflect on improvements on the discriminative ones.

Maximum-likelihood estimation

The maximum likelihood estimation (MLE) is probably the most popular method used
for HMM training due to the existence of very efficient algorithms, such as the Viterbi
(Viterbi, 1967) and Baum-Welch (Baum et al., 1970) algorithms. Both fall into the family
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of the EM algorithms (Dempster et al., 1977), which constitute a powerful framework for
solving incomplete data problems iteratively.

In the following, the mathematical formulation is derived using the same notation as
defined in Section 2.2.1. The goal here is to find a model that maximizes the likelihood (or,
alternatively, the log-likelihood) of an observation sample X given the model parameters
λ, that is:

λML = arg max
λ

f (X|λ) = arg max
λ

log f (X|λ) (2.8)

where the likelihood f (X|λ) is defined in (2.5).
Let us define the complete data as Y = (X ,S,L), where X = (x1, . . . , xT ) is the

observed incomplete data, S = (s1, . . . , sT ) is the sequence of unobserved HMM states
and L = (l1, . . . , lT ) is the sequence of unobserved output Gaussian component labels,
with st ∈ [1, N ] and lt ∈ [1, K]. The complete data log-likelihood can be expressed by:

log f (Y|λ) = log πs0 +
T
∑

t=1

log ast−1,st +
T
∑

t=1

logωstltN (xt|µstlt ,Σstlt) (2.9)

If the true sequences of HMM states and Gaussian component labels were known,
the optimal model estimates could be calculated directly from (2.9). Of course, this is
not the case. However, it can be shown that the incomplete data log-likelihood can be
expressed in terms of two conditional expectation values calculated over the complete
data log-likelihood, as follows:

log f (X|λ) =Q(λ, λ̂)−H(λ, λ̂) (2.10)

Q(λ, λ̂) :=E
[

log f (Y|λ)
∣

∣

∣
X , λ̂

]

(2.11)

H(λ, λ̂) :=E
[

log f (Y|X ,λ)
∣

∣

∣
X , λ̂

]

(2.12)

with

E [log f(A|B)|C] =
∑

a

log f(A = a|B = b) · P (A = a|C = c) (2.13)

where λ̂ and λ denote two different sets of model parameters. H(·) represents the cross
entropy function between two parameterized distributions and satisfies the divergence
inequality:

H(λ̂, λ̂) ≥ H(λ, λ̂) ∀ λ, λ̂

From this latter and from the definition given in (2.10), it is straightforward to show that,
whenever a new model fit λ satisfies Q(λ, λ̂) > Q(λ̂, λ̂), it also satisfies log f (X|λ) >
log f(X|λ̂). This forms the basis of the EM algorithm: the incomplete data likelihood can
be maximized indirectly, via maximization of a bound function, Q(·), which is commonly
referred to as auxiliary function.
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2. Automatic speech recognition

By definition the auxiliary function can be decomposed into two terms, which can be
maximized independently (Juang, 1985):

Q(λ, λ̂) = E
[

log f(S|λ)
∣

∣

∣
X , λ̂

]

+ E
[

log f (X ,L|S,λ)
∣

∣

∣
X , λ̂

]

(2.14)

The first term on the right hand side of (2.14) represents the Markov process, while
the second one represents the output process.

Usually, acoustic model training is performed in two steps. At the first one, given the
current model fit, an expectation over the state/frame alignment is performed. With this,
the model parameters are updated by maximization of the auxiliary function.

State/frame alignment The state/frame alignment step, also called segmentation step,
consists of associating regions of the audio stream to HMM states, given the current model
fit. When manual transcriptions are available, a forced alignment is performed between
the observation vectors and the models that represent the word sequences. Henceforth,
we will refer to this case as supervised training. Alignment can be performed using the
Baum-Welch algorithm (Baum et al., 1970), which allows the computation of the following
probabilities:

ψit = P
(

st = i
∣

∣

∣
X , λ̂

)

the probability of being at state i at time t, given

that model λ̂ generates X .

ξijt = P
(

st−1 = i, st = j
∣

∣

∣
X , λ̂

)

the probability of making a transition from

state i to state j at time t, given that λ̂ generates X .

(2.15)

As an alternative, the Viterbi algorithm (Viterbi, 1967) can be used to perform a hard
alignment decision, assigning only zero or one probabilities to ψit and ξijt.

If manual transcriptions are not available, an unsupervised training method can be
applied (see Chapter 4). In this case, the state/frame alignment is performed between
the audio stream and their hypothesized transcriptions, which are provided by an existing
recognition system.

In both cases, supervised and unsupervised, seed or bootstrap models are required to
provide a first segmentation guess. A straightforward initialization method is known as
flat start. In this case, all the phoneme models are set equally, with parameters usually
obtained via a global estimation over the entire training set (or a uniform sample of it).
Another possible solution is to use phoneme models trained to another task, domain,
accent or language as seed models. In such a case, it might be required to map the phone
sets from the original task to the new one. Flat start usually requires less designing efforts,
but may also lead to worse performance levels.

Parameters update Given the current state/frame alignment, the model parameters
are updated via maximization of the auxiliary function. From (2.9) and (2.11), it can be
shown that the auxiliary function can be decomposed as:
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2.2. Acoustic modeling

Q(λ, λ̂) =Qπ(π, λ̂) +QA(A, λ̂) +Qθ(θ, λ̂) (2.16)

with

Qπ(π, λ̂) =
N
∑

i=1

ψi0 log πi (2.17)

QA(A, λ̂) =
N
∑

i=1

N
∑

j=1

T
∑

t=1

ξijt log aij (2.18)

Qθ(θ, λ̂) =
N
∑

i=1

K
∑

k=1

T
∑

t=1

γikt logωikN (xt|µik,Σik) (2.19)

where ψit and ξijt are defined in (2.15) and γikt = P (st = i, lt = k|X , λ̂) is the probability

of being at the k-th Gaussian component of mixture of state i at time t, given that λ̂

generates X . It can be computed as:

γikt = ψit

ω̂ikN
(

xt

∣

∣

∣
µ̂ik, Σ̂ik

)

∑

k′ ω̂ik′N
(

xt

∣

∣

∣
µ̂ik′ , Σ̂ik′

) (2.20)

The update equations for the model λ can be obtained taking the partial derivatives
of the auxiliary function with respect to each of the parameters and setting them to zero.
Observing the constraints

∑

i πi = 1,
∑

j aij = 1 and
∑

k ωik = 1, the following equations
are obtained:

πi =ψi0 (2.21)

aij =

∑T
t=1 ξijt

∑N
j=1

∑T
t=1 ξijt

=

∑T
t=1 ξijt

∑T
t=1 ψi(t−1)

(2.22)

ωik =

∑T
t=1 γikt

∑K
k=1

∑T
t=1 γikt

=

∑T
t=1 γikt

∑T
t=1 ψit

(2.23)

µik =

∑T
t=1 γiktxt
∑T

t=1 γikt
(2.24)

Σik =

∑T
t=1 γikt(xt − µik)(xt − µik)

T

∑T
t=1 γikt

(2.25)

Maximum a posteriori estimation

Another generative training method used for acoustic modeling is the well-known MAP
estimation (Gauvain and Lee, 1994). It assumes the existence of an appropriate prior
distribution, denoted by g(λ), over the model parameters λ. Thus, given a sample X
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2. Automatic speech recognition

with p.d.f. f(X|λ), the MAP estimates of λ can be defined as the mode of the posterior
probability, g(λ|X ), or:

λMAP = arg max
λ

g (λ|X ) = arg max
λ

f (X|λ) g(λ) (2.26)

The maximization in (2.26) can also be performed using an EM iterative procedure.
In such a case, the auxiliary function assumes the form R(λ, λ̂) = Q(λ, λ̂)+log g(λ). The
MAP parameter estimates are defined as the mode of the function Ψ(λ, λ̂) = expR(λ, λ̂).

A careful choice for the prior distributions can substantially simplify the derivation
of the parameter update equations. In Gauvain and Lee (1994), the prior knowledge was
modeled by a product of Dirichlet and normal-Wishart densities. For the full mathemat-
ical formulation, refer to the original paper. As an example, the Gaussian component
mean vectors can be re-estimated by:

µik =
τikmik +

∑T
t=1 γiktxt

τik +
∑T

t=1 γikt
(2.27)

where mik and τk are two parameters of the normal-Wishart prior distribution. In par-
ticular, mik can be seen as a prior d-dimensional mean vector, while τik > 0 is a meta-
parameter, which is usually set manually or obtained via some optimization algorithm.
By inspection of (2.27), it can be seen that the mean vectors are updated by a weighted
sum of the prior parameters and the observation vectors.

The inherent use of MAP estimation is for adaptation. It can be used to adapt a base-
line acoustic model (which provides the prior distribution of the parameters) to a specific
task, domain, genre or speaker. Another common application is on Gaussian mixture pa-
rameter smoothing, a technique employed to improve the model generalization capability.
In such a case, the prior distribution over the model parameters can be provided by a
global Gaussian density component.

Discriminative training methods

Different from generative training, the aim of discriminative training methods is the di-
rect or indirect maximization of the recognition accuracy. These methods rely on the
optimization of some suitable classification measure to increase the separability between
the correct and competing sequences of class labels.

Some examples of discriminative acoustic modeling methods used for speech recogni-
tion tasks are the maximum mutual information estimation (MMIE) (Bahl et al., 1986;
Woodland and Povey, 2002), the minimum classification error estimation (Juang and
Katagiri, 1992; Juang et al., 1997) and the minimum phone error estimation (Povey and
Woodland, 2002). In particular, the MMIE method has been used in some of the systems
developed throughout this work. In this case, the model estimates are obtained by:

λMMI = arg max
λ

f(X|λW) · P (W)
∑

∼

W
f(X|λ∼

W
) · P (

∼

W)
(2.28)
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where λW denotes the model that represents the word sequence W and P (W) denotes a
prior distribution over the word sequences, provided by a language model. In the numer-
ator, the correct word sequence is considered, while, in the denominator, the summation
is performed over all possible sequences. In practice, for large vocabulary tasks, the de-
nominator is approximated by the summation over the most likely competing sequences,
which can be obtained from multiple decoding hypotheses provided by the speech recog-
nizer (Valtchev et al., 1996; Woodland and Povey, 2002).

The MMI estimates can be obtained using an extended version of the Baum-Welch
algorithm (Gopalakrishnan et al., 1991). During the estimation process, insofar as pos-
sible, the likelihood in the numerator is maximized at the same time as the likelihood of
the competing hypotheses is minimized. Furthermore, in order to favor acoustic discrim-
ination, the prior probability P (W) is usually provided by a weakened language model
(Schlüter et al., 1999).

2.2.3. Model structure

So far, the mathematical framework has been described without taking into considera-
tion any specific acoustic model structure. In the case of large vocabulary recognition,
the inclusion of certain constraints is essential to avoid sparsity problems and make the
estimation and decoding processes tractable. In this section, some well-known acoustic
modeling practices are described.

The modeling unit

In principle, a single HMM could be used to model a whole word or even an entire utter-
ance. However, for LVCSR tasks, it would be impractical. Usually, the acoustic phenom-
ena are modeled at the phoneme level (or any other suitable sub-word unit). Models for
longer contexts (words, utterances) are obtained by composition of the phoneme models,
sticking them together as a string.

Consequently, the number of possible state sequences would increase exponentially
with the number of phonemes in an utterance, heavily increasing the complexity to com-
pute the data likelihood, given by (2.5). Fortunately, different elements exist to restrain
the possible sequences and make this problem tractable. For instance, the pronuncia-
tion dictionary is responsible for limiting the number of states considered between two
distinct phoneme models. Inside a single phoneme unit, the model topology defines the
number of possible paths that can be followed. In Figure 2.2, an example of topology is
shown, a left-to-right model. It contains three emitting states and only allows two types
of transitions: to the current state itself, or to the state at its “right” position.

Another common approximation performed to reduce computation time is to consider
only the most likely state sequence, instead of summing over all possible sequences, what
leads to:

f (X|λ) ≈ max
S

{

πs0

T
∏

t=1

ast−1,stf (xt|θst)

}

(2.29)

In addition, different heuristics exist to discard low probability paths in order to

17
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Figure 2.2.: Left-to-right 3-state hidden Markov model.

further reduce computational complexity required for decoding purposes. For this topic,
the reader may refer to Knill and Young (1997).

Context-dependent models

From the fundamental assumptions of the HMM-based framework, no dependency exists
between two observation samples. However, it is well-known that the realization of a
certain phoneme is highly dependent on the realization of the preceding and the following
phonemes due to physical articulatory constraints. In order to capture this co-articulation
effect, phones are commonly modeled depending on the context. In other words, a certain
phone, /a/ for instance, could be represented by different context-dependent triphone
models, such as /b,a,s/, /m,a,r/, /t,a,g/, etc., in the acoustic models inventory.

Unfortunately, many of the phone contexts might be underrepresented or not repre-
sented at all in the training data, making them impossible to be reliably modeled. A
possible solution to overcome this problem is to backoff from underrepresented contexts
to less-specific contexts.

Another possible solution to this sparsity problem is to tie some of the model pa-
rameters, forcing them to share a number of observation vectors during the estimation
process. Tying can be performed at different levels, such as phones (Lee and Hon, 1988),
states (Young and Woodland, 1993), mixtures (Huang and Jack, 1989; Bellegarda and
Nahamoo, 1990) or features (Takahashi and Sagayama, 1995). The acoustic models used
in this thesis have been trained with a combination of model backoff and state tying
techniques.

Tied-state models

States tying is the procedure of constraining acoustically similar states to share the same
output observation distribution density, reducing the effect of sparsity at the same time
as preserving some context dependency. Data-driven or phonetic approaches can be used
to select which states are more likely to be pooled together.

In the data-driven case, the choice for merging relies on acoustic related measures,
based on some distance between the Gaussian parameters that represent the state dis-
tributions. Although this approach is straightforward and does not require any external
source of knowledge, it is unable to make clustering decisions for unseen contexts.

In the other case, the merging decision relies on the construction of a phonetic decision
tree, containing binary yes/no questions to decide the branch to be followed. States falling
on the same leaf are pooled together. The questions are usually defined based on the
phonetic characteristics of the left and right contexts, which clearly requires the use of
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an external source of knowledge. More detailed information about the construction and
usage of decision tree methods can be found in Bahl et al. (1991) and Young et al. (1994).

2.2.4. Feature extraction

The main assumption of the speech recognition task is that the audio signal encodes the
acoustic representation of an underlying sequence of words. However, together with the
relevant linguistic information, many noisy components exist in the speech signal. Here,
the term noisy is employed in a large sense to qualify any non-linguistic event, such as
speaker identity, speaker emotional state, environment condition, background noise and
so on. In this context, the aim of signal analysis is to extract linguistically related acoustic
features, being, as best as possible, invariant to non-linguistic phenomena.

Short-term features

Feature extraction in current state-of-the-art speech recognition systems is based on power
spectrum analysis. Typically, the feature vectors are extracted after a processing chain
relying uniquely on pre-defined mathematical operations, including windowing, Fourier
analysis, warping, filtering and other transforms. Usually, a short-term window ranging
on about 10 to 40 milliseconds is employed.

The two most widely used processing chains are based on principles of psycho-acous-
tics, yielding to the well-known Mel-frequency cepstral coefficients (Davis and Mermel-
stein, 1980) and perceptual linear predictive (Hermansky, 1990) cepstral coefficients. Be-
sides their correlation with human hearing perception and good discrimination, these
features present an additional advantage: the channel variation effect can be removed
by simple subtraction of the global cepstral mean and variance from the input vectors.
This probably constitutes the most straightforward manner to avoid undesirable (non-
linguistic) events.

The acoustic feature vector is usually formed by the concatenation of the aforemen-
tioned cepstral-like features, the log-energy of the signal and, optionally, pitch features.
Furthermore, in order to emulate acoustic dynamics, first and second derivatives of all
the coefficients are included in the feature vectors.

Discriminative features

In the recent years, there has been a growing interest to increase the discriminative power
of acoustic features. This task can be done, for instance, by applying a discriminatively
trained linear transform to the feature vector (Povey et al., 2005; Zhang et al., 2006).
Another approach consists of extracting feature vectors from a discriminative classifier,
such as a MLP. This latter approach is investigated in this work.

MLP features have been successfully used in many LVCSR tasks (Ellis et al., 2001; Zhu
et al., 2005; Fousek et al., 2008a). When used in combination with short-term features,
they lead to substantial gains in recognition accuracy (Fousek et al., 2008b). The MLP
feature extraction chain can be summarized as follows:

1. A feature vector, henceforth raw feature vector, is extracted from the audio signal
via a power spectrum analysis. This vector usually covers a wide temporal context
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Figure 2.3.: A 4-layer bottleneck multi-layer perceptron (MLP) architecture. Features are
extracted from the third-layer (the bottleneck).

in order to increase complementarity between MLP and short-term features and,
thus, favor feature combination.

2. The raw vector is processed by the MLP. A feature vector is extracted from either,
the output (Hermansky et al., 2000) or a hidden (the bottleneck) (Grézl et al., 2007)
layer.

3. A decorrelation transform is further applied to the extracted vector to result in the
final MLP feature vector.

Different from the processing chain described in the last section, MLP feature ex-
traction stands on a formerly trained neural network model. As an example, a 4-layer
bottleneck MLP is shown in Figure 2.3. Typically, MLPs are trained to estimate the
posterior probabilities of HMM phone models or HMM states, what evidently requires a
model/frame (or state/frame) alignment, such as described in Section 2.2.2. Similarly to
HMM training, a forced-alignment can be performed if manual transcriptions are avail-
able. If it is not the case, a proposed solution is to extract features from MLPs trained for
another language (Stolcke et al., 2006; Tóth et al., 2008) or trained for multiple languages
(Grezl et al., 2011; Vu et al., 2012). In this thesis, we have also explored training MLPs
with automatic transcriptions provided by the speech recognizer (see Chapter 5).

2.2.5. Hybrid MLP/HMM acoustic models

In the previous sections, we focused on the description of the HMM-based acoustic models
with GMM output probability densities. An alternative architecture that has been gaining
a lot of popularity in the last few years is based on hybrid MLP/HMM architecture. In
such a model, the HMM state probabilities are given by the output layer of a MLP neural
network.
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The HMM/MLP architecture was introduced for automatic speech recognition in
Morgan and Bourlard (1995). Due to the increase in power of easily available hardware
and development of new training methods, the use of MLPs with several layers, the so-
called deep neural networks (DNNs), was shown to substantially outperform HMM/GMM
based acoustic models for a variety of tasks (Mohamed et al., 2011, 2012; Hinton et al.,
2012). Because of its proved strength, the (deep) MLP/HMM architecture has risen to
the new state-of-the-art in terms of acoustic modeling. As a drawback, DNNs are slower
to train in comparison to HMM/GMM models.

Despite the recent advances reported on the use of neural networks, the methods
proposed in this thesis are assessed in a HMM/GMM based system.

2.3. Language modeling

In the previous section, state-of-the-art acoustic modeling techniques have been intro-
duced. This section focus on general aspects of another main component of ASR systems,
the language model. For a review of this topic, the reader may refer, for example, to
Rosenfeld (2000) or Goodman (2001).

This section begins with a definition of language modeling and motivation purposes.
Next, the state-of-the-art n-gram based approach is presented. The last subsection
presents other language modeling techniques, especially those based on continuous space
vector representations.

2.3.1. Definition

The role of the language model is to capture regularities in the underlying process of
natural language generation, providing a prior knowledge of the language. Approaches for
language modeling can be divided into two main groups: deterministic or stochastic. The
deterministic approaches rely on the construction of a formal grammar, with rules designed
based on the expert knowledge about the language. Conversely, stochastic (or statistical)
language model parameters are learned via statistical methods from data observed in a
training corpus, although the structure of the model and parameters to be learned are
still a matter of expert’s choice. The scope of this thesis is limited to statistical language
modeling.

Statistical language models have been first used for speech recognition in the 1980’s
(Bahl et al., 1983; Jelinek, 1985) and have been proven useful in a large variety of natural
language processing applications, like machine translation (Brown et al., 1990), optical
character recognition (Hull, 1992) or handwriting recognition (Srihari and Baltus, 1992).
The language model should be able to provide a prior probability to any possible sequence
of words that can be represented in the word vocabulary space, denoted by V . The prior
probability of a particular sequence of M words denoted by W = (w1, . . . , wM), with
wm ∈ V , can be written as:

P (W) = P (w1, . . . , wM) =
M
∏

m=1

P (wm|w1, . . . , wm−1) (2.30)
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From (2.30), it follows that the probability of a word string can be calculated as the
product of the probabilities of observing a particular word at the m-th position given its
context, that is, the preceding m− 1 words.

For LVCSR tasks, the model as presented in (2.30) can neither reliably nor efficiently
be estimated from any existing training corpus due to the high dimensionality of the
problem. For instance, it would be necessary to estimate about 1080 parameters to build
a language model covering contexts up to 15 words and with a vocabulary containing 100
thousands of words. These problems were the main motivation for the formulation of the
so-called n-gram language modeling approach, which is described in Section 2.3.2. Before,
we describe the most common measures used to evaluate language model performances.

Evaluation measures

The quality of a language model can be measured in terms of the (log-) likelihood of
a development data set. Given a model pLM and a test data with M samples, W =
(w1, . . . wM , ), the log-likelihood can be calculated as:

L(pLM ,W) =
M
∑

m=1

log pLM(wm) (2.31)

As an alternative, results of language modeling techniques are usually reported in
terms of perplexity, which is calculated by:

PP (pLM ,W) = 2H(pLM ,W) (2.32)

where H(pLM ,W) is the empirical estimate of the cross-entropy:

H(pLM ,W) = −
1

M

M
∑

m=1

log2 pLM(wm) (2.33)

Perplexity can be interpreted as a measure of a per word average branching factor
of the language regarding the model. Roughly speaking, the lower the perplexity on test
data, the less confusion appears, and, therefore, the better is the model for that data.

Although some correlation exists between perplexity and speech recognition perfor-
mance, a reduction in perplexity does not always lead to a reduction in the recognition
error rate. In general, only relative gains in perplexity of more than 10% can be considered
significant (Rosenfeld, 2000). Furthermore, perplexity is only meaningful for comparing
models that have the same word vocabulary list (this is not the case of likelihood). De-
spite that, perplexity is still the principal metric used to assess the quality of language
models.

2.3.2. N-gram based language models

The n-gram based framework has been the most widely used for language modeling for the
past 30 years, being omnipresent in the state-of-the-art speech recognition systems either
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as unique solution, or in combination with other methods. The n-gram LM is derived
from an approximation to the joint probability of the word sequences, assuming that the
most relevant context information is encoded by a short span history, that is, the (n− 1)
preceding words. In other words, it models the language as a (n − 1)-th order Markov
process. The word-based n-gram language model can be represented as follows:

P (W) ≈
M
∏

m=1

P (wm|wm−n+1, . . . , wm−1) (2.34)

In practice, a history of at most 3 words (that is n = 4, or 4-gram language model)
is used in most of the speech recognition tasks. In an empirical study, Goodman (2001)
claimed that no significant improvements could be observed using contexts longer than 4
words (5-grams). Despite the (heavy) approximation performed, the n-gram parameters
estimation is still a sparse data problem, which is commonly treated using a smoothing
algorithm.

The smoothing issue

As a desirable characteristic, an n-gram based language model should be able to assign a
non-zero probability to any possible word sequence with length n that can be generated
from the vocabulary. A natural choice to estimate the n-gram conditional probabilities
is to maximize the likelihood of the training data. Given a word w and its history h

with length (n − 1), and denoting (h, w) a word string formed by h followed by w, the
maximum likelihood (ML) estimates can be obtained by:

pML (w|h) =
C(h, w)

∑

wi
C(h, wi)

(2.35)

where C(·) denotes the string counts, that is, the number of times a sequence is ob-
served in the training corpus. Unfortunately, the ML criterion leads to poor estimates,
assigning zero probabilities to any unseen sequence, although they may occur in the test
data. Increasing the training corpus is not a sufficient solution, since for common LVCSR
applications the limits of tractability would be reached before a full n-gram coverage.

One of the methods to deal with this problem is to smooth the model probabilities.
The smoothing techniques not only address the zero probability issue, but also help to
improve the performance of the model in general (Chen and Goodman, 1999). In this later
work, Chen and Goodman perform an empirical comparison of some popular smoothing
approaches. Among them, the KN (Kneser and Ney, 1995) smoothing algorithm seems
to be the most successfully used over the past years for many different speech recognition
tasks. As other discounting methods (Katz, 1987; Ney and Essen, 1991; Ney et al.,
1994), this algorithm deducts certain probability masses from the ML estimates of the
more frequent events and redistributes them to the less frequent and unseen events. The
interpolated KN model (Ney et al., 1997) can be represented as follows:

pKN(w|h) =
max {C(h, w)−D, 0}

∑

wi
C(h, wi)

+
D ·N1+(h, •)
∑

wi
C(h, wi)

pKN(w|g) (2.36)
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with

pKN(w|g) =
N1+(•, g, w)

N1+(•, g, •)
(2.37)

where D is a fixed discount parameter and g is a less-specific (shorter) history obtained
by removing the farthest word from the history. The functions N1+(·) give the number of
unique words that appear in context with a certain string. More specifically, denoting a
as an arbitrary word prefix, we can write these functions as follows:

N1+(h, •) = |wi : C(h, wi) > 0| (2.38)

N1+(•, g, w) = |a : C(a, g, w) > 0| (2.39)

N1+(•, g, •) = |(a, wi) : C(a, g, wi) > 0| =
∑

wi

N1+(•, g, wi) (2.40)

In practice, pKN(w|g) (2.37) also need to be smoothed, leading to:

pKN(w|g) =
max {N1+(•, g, w)−Dn, 0}

N1+(•, g, •)
+
Dn ·N1+(g, •)

N1+(•, g, •)
pKN(w|ĝ) (2.41)

where the index n in Dn denotes the use of a specific discount parameter for each n-
gram level and ĝ denotes a history shorter than g. The discount parameters can be
defined arbitrarily or obtained via optimization. Ney et al. (1994) proposed the use of the
following formula:

Dn =
n1

n1 + 2 · n2

(2.42)

where n1 and n2 denotes, respectively, the number of n-grams with counts exactly equal
to one (commonly referred to as singletons) or two.

Only one discount parameter is considered in the original KN smoothing. Chen and
Goodman (1999) proposed the use of three different discounts (applied to events occurring
one, two and three or more times), reporting gains in perplexity.

The interpolated model represented in (2.36) is slightly different from the backoff
model originally proposed by Kneser and Ney (1995). In the interpolated model, a portion
of the less-specific distribution, pKN(w|g), is always used. In the backoff model, this
distribution is only considered if the sequence hw has not been observed in the training
data.

Smoothing is an essential step for n-gram language modeling. Nevertheless, it does
not exempt the model from other weaknesses, which are discussed hereafter together with
refinements that have been proposed to deal with them.

Shortcomings

The strength of word-based n-gram LM may be related to its good coverage and perfor-
mance achieved, associated to its simplicity. Compared to other models, it is faster to
train and more convenient for usage during decoding.
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Despite that, it is not difficult to identify some shortcomings of this approach. First,
it assumes only a local dependency, failing to generalize well for more structured sentences
or reordered sentences. For instance, let us consider the prediction of the word reduced in
the two phrases below:

1. incoming taxes were reduced as a result of the new financial plan

2. incoming taxes, as a result of the new financial plan, were reduced

Assuming a two words history, the probability of reduced occurring would be quite
different in these examples, although they are semantically equivalent. It is natural to
assume the string taxes were reduced more likely to occur than plan were reduced.

Not only semantic, but also syntactic relations are neglected in the word-based n-
gram approach, which assumes a simple word level dependency. Including such higher
level information in the model is one of the axes of research in the language modeling field
(Rosenfeld, 2000).

Some attempts have been made to deal with the aforementioned shortcomings. For
instance, Huang et al. (1993) used skipping n-grams to capture long-span dependencies
while keeping a tractable history size. In another direction, Brown et al. (1992) proposed
to organize words in clusters to alleviate the data sparsity problem and establish some
relation between them. This technique can also be used to include linguistic knowledge
in the model by, for instance, defining the classes based on part-of-speech tags. Such
an information can also be explicitly incorporated into the factored LM (Bilmes and
Kirchhoff, 2003), since it allows the inclusion of arbitrary features. Depending on the
features used, this later model can generalize both, word and class-based n-gram models.

The aforementioned methods are somewhat a derivation of the word-based n-gram
LM, inheriting its strengths but also some of its weaknesses. In particular, n-gram based
models suffer from the lack of structure, which is a suitable condition to improve gen-
eralization power. Furthermore, the discrete representation of the model space (the vo-
cabulary) associated with its large dimensionality may prevent the estimation of reliable
parameters. In the following section, an overview of some language modeling approaches
dealing with these problems is presented.

2.3.3. Other language modeling approaches

Like factored LMs, the possibility to incorporate arbitrary features is also an intrinsic
characteristic of exponential language models (Della Pietra et al., 1992; Rosenfeld, 1996;
Berger et al., 1996; Chen, 2009). This flexibility allows to tackle some of the n-gram based
models weaknesses by including, for example, longer context dependencies and morpho-
logical or syntactic information. In addition, this approach can benefit from methods to
select the most useful features to be included into the model. As a main drawback, the
use and the estimation of exponential models are computationally challenging tasks.

Differently from the approaches presented so far, an underlying structure is present
in decision tree based language models (Bahl et al., 1989). This approach relies on par-
titioning the history space at each node of a tree by asking arbitrary questions about
the history. During the growing procedure, the question maximizing the likelihood of the
training data is selected at each node. Data falling onto the leaves are used to calculate
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the model probabilities. Due to the greedy characteristic of the growing algorithm, find-
ing the optimal tree can be a struggle, limiting the success of the approach. In Xu and
Jelinek (2004), the authors have proposed to combine randomly grown decision trees as
an alternative solution to avoid local optima, reporting gains in terms of perplexity and
speech recognition performance over a baseline n-gram LM.

Another method favoring the use of large-span context dependencies is based on the
latent semantic analysis (LSA) paradigm and has been proposed by Bellegarda (1997).
It allows the representation of words and sequence of words into a continuous space,
which is assumed to encode latent semantic information. The probability of a word
given a context (an entire document for instance) can be inferred based on the distance
between their vectors projected into this space. The LSA language modeling approach
relies on the concept of “bag-of-words”, ignoring the order in which words appear in the
document. Despite the relative simplicity of this assumption, the use of the LSA method
can nonetheless help to improve the system recognition performance when combined with
the n-gram approach due to their complementary characteristic (Bellegarda, 2000).

In fact, relying on a continuous vector representation and providing a structure to
the language model seems to be the new trend in the language modeling research field.
This combination of factors helps to alleviate from sparse data problems and improve the
generalization power of the model. In Sarikaya et al. (2009), for example, the authors
have proposed a HMM/GMM-like LM trained with feature vectors extracted from a LSA
space. However, the approaches that have been most widely investigated in the recent
years are based on neural network models.

Neural network language models

Neural networks have been used for statistical language modeling since the beginning
of the 2000’s (Bengio et al., 2000, 2003), and have been successfully applied to speech
recognition (Schwenk and Gauvain, 2002; Schwenk, 2007). These reported works used
a similar model topology based on feed-forward neural networks, such as exemplified in
Figure 2.4. This model is structured in multiple layers, with each internal node (neuron)
having a sigmoidal activation function and being fully connected to the neighbor layers
by means of weighted links.

The model in Figure 2.4 contains four layers. The input layer is used to inform the
word history, which is represented by (n− 1) word vectors, each having the dimension of
the vocabulary size |V| and being encoded as a one-to-n vector, that is, having just one
element of the vector set to 1 and the remaining to 0. In the second (the projection) layer,
each of the word vectors is projected into a P -dimensional continuous space. Given the
input vector coding, projection can be performed as a simple look-up operation over the
|V|×P projection matrix. The third (the hidden) layer, used for feature space transform,
has a dimension H. Finally, the output layer, with dimension N <= |V|, implements a
softmax normalization function to compute the word posterior probabilities.

Feed-forward neural network language model (NNLM) training can be performed us-
ing a standard back-propagation algorithm. This is a computationally expensive task,
mainly due to the softmax normalization performed over the large dimensional output
vector. A possible way to mitigate this problem is to limit the output vocabulary to a
shortlist of most frequent words (Schwenk and Gauvain, 2002). In such a case, the prob-
abilities of the remaining words are obtained from a backoff n-gram LM. More recently,
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Figure 2.4.: Feed-forward neural network language model architecture.

Le et al. (2011) have proposed the use of a tree-like structured output layer, allowing
posterior probabilities to be calculated for the entire vocabulary with a small increase of
computational effort. For the same reasons, the use of NNLMs for full decoding is also
prohibitive, limiting their usage on rescoring the decoding hypotheses (see Section 2.4).

In common with n-gram based models, feed-forward NNLMs limit the history to a
few (n− 1) preceding words. However, since NNLMs suffer much less with data sparsity
problems, longer contexts (n = 6, for instance) can be applied with a minor increase
of computational complexity (Le et al., 2013). An alternative model, able to encode
contexts with arbitrary (and unknown) lengths, is the recurrent NNLM (Mikolov et al.,
2010), which uses a recursive connection between the hidden and the input layers.

An empirical comparison of different language modeling techniques, including the
aforementioned NNLMs, can be found in Mikolov et al. (2011).

2.4. Decoding

The goal of the decoding (or search) algorithm is to find the optimal word sequence that
represents an observed audio signal, considering the information provided by acoustic,
language and pronunciation models. In today’s state-of-the-art ASR systems, this large
dimensional optimization problem, which is defined in (2.2), is solved using a multi-pass
decoding strategy.

Prior to word recognition, an audio partitioning procedure is usually applied. This
step is responsible for purging non-speech data from the audio file, dividing it into shorter
segments, and clustering segments into homogeneous regions, each assumed to refer to a
speaker in a specific acoustic condition (background and channel). Different unsupervised
approaches exist to perform this task (like Gauvain et al. (1998); Hain et al. (1998)).

As a major advantage, audio partitioning favors the use of cluster-based acoustic
model adaptation techniques, which can substantially improve the recognition perfor-
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mance. Other benefits include the reduction of computation time required for decoding
and the possibility to extract additional non-linguistic information from the audio stream,
such as speech turns or speakers identities.

Once the data is segmented, feature vectors are extracted from the continuous stream
(see Section 2.2.4). Optionally, unsupervised methods can be further applied to adapt
the speaker independent acoustic model to the specific speaker-based cluster or to select
a model that better represents the data. Each segment is, then, decoded independently.

2.4.1. Word recognizer

The search algorithm used to solve (2.2) is commonly based on dynamic programming
approaches, such as the Viterbi (Viterbi, 1967) or the forward-backward (Baum et al.,
1970) algorithms. Although, due to the huge search space involved in LVCSR tasks,
pruning methods need to be applied to render the decoding problem manageable. A
comprehensive description of techniques employed for decoding can be found in Knill and
Young (1997).

Furthermore, decoding is usually performed in various passes as a compromise be-
tween computational cost and recognition accuracy. A general solution is to use less
accurate (and smaller) models in a first step to generate multiple decoding hypotheses
and successively re-evaluate them with more accurate (and bigger) models. The multiple
hypotheses can be represented in different forms, like N -best lists, lattices or confusion
networks. These structures, which are shown in Figure 2.5, can be used to represent the
output of the ASR system as well.

An N -best list, as the name suggests, is a list of the most likely sentence hypotheses
ordered by their likelihood scores. Since each hypothesis is fully represented, N -best lists
may contain a lot of redundancy, what usually limits the number of competing hypotheses
that can be considered. Conversely, a lattice is a compact representation of the searching
space and can encode a larger number of hypotheses. It consists of an acyclic graph
where nodes represent time stamps and edges represent hypothesized words with their
associated likelihood scores. Finally, a confusion network is also an acyclic graph with
the particularity that edges representing competing words always have the same source
node and the same destination node. Different from lattices, confusion networks contain
edges with posterior probability scores and nodes with approximate timing information.
Confusion networks can be constructed from lattices (Mangu et al., 1999) or from N -best
lists.

2.4.2. Evaluation measures

ASR systems performance is commonly reported in terms of word error rate (WER). After
aligning the hypothesis and the reference transcriptions using a dynamic programming
approach, three types of recognition errors can be identified: substitutions (S), insertions
(I) and deletions (D). These errors are used to compute the WER, as follows:

WER =
S +D + I

N
(2.43)

where N denotes the number of words in the reference.
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score=0.100: for[61,73,1] real[73,101,0.5] action[101,132,0.4] next[132,168,0.5] year[168,190,1]

score=0.080: for[61,73,1] re[73,93,0.4] election[93,137,0.4] next[137,168,0.5] year[168,190,1]

score=0.050: for[61,73,1] reaction[73,132,0.1] next[132,168,0.5] year[168,190,1]

score=0.025: for[61,73,1] real[73,101,0.5] action[101,137,0.1] next[137,168,0.5] year[168,190,1]

(a)

73

93re (0.4)

101
real (0.5)

132reaction (0.1)

137

election (0.4)

action (0.4)

action (0.1)

168next (0.5)

next (0.5)

190
year (1.0)61

for (1.0)

(b)

61 73
for (1.0)

101

re (0.4)

real (0.5)

<eps> (0.1)

132

election (0.4)

action (0.5)

reaction (0.1)

168
next (1.0)

190
year (1.0)

(c)

Correct words
Incorrect words

(a)
score=s: score of the whole sentence

w[st, et, p]: word w starting at time st, ending at time et and having score p

(b), (c)
t

Node with time stamp t

w(p)
Word link w with score p

Best path
Other paths

Figure 2.5.: Example of (a) an N-best list, (b) a decoding lattice and (c) a confusion
network for the same speech segment.
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Depending on the application and language being evaluated, other related measures,
like character error rate or morpheme error rate, may be useful as well. In other cases,
it might be interesting to report a lower bound error measure to identify strengths and
weaknesses of a certain system. An example of such a measure can be obtained by aligning
the reference transcriptions with multiple recognition hypotheses (N -best lists, lattices or
confusion networks). In this case, errors are computed only when none of the hypotheses
(partially) matches the reference.

Besides text transcriptions, time stamps and speaker identities, recognition systems
are often capable to associate a confidence score to each hypothesized word. Among
other applications, such a measure can be used to detect possible misrecognized or out-of-
vocabulary words (Young, 1994; Allauzen, 2007) and improve the performance of unsu-
pervised acoustic model training (Zavaliagkos and Colthurst, 1998; Gollan et al., 2007) or
adaptation algorithms (Pitz et al., 2000; Padmanabhan et al., 2000; Gollan and Bacchiani,
2008).

A review of various approaches used to estimate confidence measures can be found
in Jiang (2005). In Wessel et al. (2001), different measures for LVCSR are presented and
empirically compared. In this latter reported work, the best results have been obtained
with word posterior probabilities, especially when they are computed from word lattices.
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Chapter 3

Baseline Automatic Speech Recognition
System

All experiments of this work have been performed using the LIMSI toolkit (Gauvain et al.,
2002) briefly described in the next section. The following two sections describe the corpora
used in this work as well as the baseline systems for Portuguese and English. The baseline
Portuguese system was developed as a part of this thesis work, while the baseline English
system is the one developed and described in Vergyri et al. (2010).

3.1. The LIMSI broadcast recognition system

This section provides a brief description of the baseline LIMSI ASR systems targeting
broadcast data, which was first detailed in Gauvain et al. (2002). The systems use HMMs
with Gaussian mixture model state output densities and backoff n-gram language models
as described below.

3.1.1. Acoustic modeling

The LIMSI ASR system makes use of HMMs with GMM state output observations for
acoustic modeling. Each context dependent phone is modeled by a left-to-right triphone
HMM, with state GMMs containing 32 components.

Special symbols are included in the phone inventory to explicitly represent breath
noise, hesitation and silence. Breath and hesitation units are modeled in the same way as
regular phones (context dependent triphone HMMs). Conversely, silence is modeled by a
single GMM, generally containing 1024 components.

To avoid sparseness, model backoff and state-tying are used. Phone contexts insuffi-
ciently represented in the training data are backed-off to less-specific contexts. State-tying
is done across the same state position of a phone and relies on a classification and re-
gression tree (CART). For each model, the tree is constructed based on questions related
to the characteristics of the left and right context phones: for instance, whether it is a
consonant or a vowel, if it is voiced or voiceless, word position (word beginning, internal,
final) and so on. States falling on the same tree leaf are tied together.

Acoustic feature extraction is based on perceptual linear predictive (PLP) analysis
(Hermansky, 1990). Feature vectors are extracted every 10ms using a power spectrum
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3. Baseline Automatic Speech Recognition System

analysis over a 30ms sliding window. For each window, 12 Mel-frequency cepstral coef-
ficients (MFCC) are computed. These coefficients are normalized on a speaker segment
cluster basis using mean and variance removal. A 39-dimensional feature vector is ob-
tained by concatenating the 12 cepstrum coefficients with the log-energy, along with their
first and second derivatives. Generally, a 3-dimensional pitch feature vector (pitch with
its first and second derivatives) is concatenated to the previous vector, resulting in a
42-dimensional feature vector.

3.1.2. Language modeling

Although the most important source of texts for language modeling are the manual tran-
scriptions, these are difficult to obtain. So language modeling makes use of other written
sources that are abundant, cheap and can be easily gathered from the Web, such as news,
blogs or closed captions. However, texts coming from such sources have not been produced
for LM training, but for the consumption by human readers. So, several pre-processing
and normalization steps are required (Adda et al., 1997; Adda and Adda-Decker, 1997).

A variety of normalization steps are typically carried out, such as converting text
encoding, filtering out HTML tags and titles or separating the texts into one sentence
per line. These steps are not strictly dependent on the language, but depend on the
source from which texts have been collected. Another essential normalization procedure
consists of converting numerical patterns (cardinals, ordinals, dates, currency, etc.) and
abbreviations to be close to their spoken forms (Adda et al., 1997).

The ASR systems rely on n-gram based language models. Prior to LM estimation
a word list vocabulary is selected via the interpolation of unigram component models.
First, a component unigram LM is estimated on each source. These models are linearly
interpolated with coefficients automatically chosen in order to maximize the likelihood
of a development set. The vocabulary is formed by the words with the highest unigram
probabilities. The vocabulary is determined as a trade-off between its size and the out
of vocabulary (OOV) rate measured on a development set. Words not appearing in the
vocabulary are mapped to a common token, the unknown word (<UNK>).

Once the vocabulary is selected, component 2-, 3- and 4-gram LMs are trained sep-
arately on each of the training subsets. These models are estimated using a modified
version of the Kneser-Ney smoothing with three discounting parameters per n-gram level
(Chen and Goodman, 1999). The EM algorithm is used to estimate the interpolation coef-
ficients in order to maximized the likelihood of a development set. The component models
are linearly interpolated using the estimated coefficients to produce the final model.

3.1.3. Decoding

Prior to word recognition, an unsupervised audio partitioning procedure is performed to
divide the audio stream into homogeneous clusters regrouping segments from the same
speaker generally in similar acoustic conditions. After removing non-speech data from the
audio file, segment boundaries and speaker labels are jointly estimated using a maximum
likelihood iterative procedure (Gauvain et al., 1998). The algorithm uses a GMM to
represent each speech segment and agglomerative clustering (see the original paper for
further details).
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Audio partitioning enables the use of cluster-based AM adaptation techniques. In the
LIMSI system, unsupervised constrained maximum likelihood linear regression (CMLLR)
and MLLR adaptation (Leggetter and Woodland, 1995) is performed on speaker cluster
basis. The automatically extracted speaker labels can also be used to select a gender
dependent model (if applicable).

Word recognition is performed in various steps. Using the CMLLR/MLLR adapted
acoustic model and a 2-gram LM, a word lattice hypothesis is generated. This lattice is
re-scored by a 3-gram and, then, by a 4-gram LM. Re-scoring uses both, lattice expansion
and beam pruning. The final recognition hypothesis is obtained after a consensus decoding
(Mangu et al., 1999).

3.2. The European Portuguese system

Portuguese is one of the most spoken languages in the world, having more than 210 million
native speakers. Being spread around different geographical locations (Brazil, Portugal,
Africa, East Timor and Macao), it has different dialect and accent varieties. Since the
discussion of merits to distinguish these terms is not in the scope of this work, they might
be used interchangeably here.

The European Portuguese (EP) and the Brazilian Portuguese (BP) can be considered
the most important varieties of the language (Mateus and d’Andrade, 2000). The main
difference between them is at the phonological level, namely the pronunciation of un-
stressed vowels (Mateus and d’Andrade, 2000). However, these two varieties also present
differences in vocabulary, word spelling or written style, leading researchers to usually
develop dialect-specific ASR systems (Silva et al., 2005; Abad et al., 2009). In fact, there
is an international movement to uniform the orthographic system with the adoption of
the International Orthographic Agreement by the Community of Portuguese Language
Countries (CPLP, 1990) – Comunidade dos Países de Língua Portuguesa. Although the
agreement was first signed in October 1990, it was ratified only in 2009 and the transi-
tion is not yet complete. In Brazil, for instance, the transition is planned to end in 2016
(Brasil, 2012).

Portuguese ASR was first investigated at LIMSI since early 2000’s in the context of
the European founded Alert Project1 and has gained more attention in the recent years
as one of the target languages of the Quaero Programme2. Given the context, both efforts
focused on the recognition of the European Portuguese.

The following subsections provide more information about the EP ASR systems de-
veloped as part of this thesis work. After describing the development and evaluation
corpora, the pronunciation modeling strategy is presented. Given that corpus subsets be-
came available at different stages of this work, two different setups, the early and improved
system setups, are presented.

1http://www.alert-project.eu
2http://www.quaero.org
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Set name Source Epoch
# of Duration

Shows in hours

trainR00 RTP 2000 9 3.1 (3.1)‡

trainRVE

trainR01 RTP 2001 60 55.6
trainR10 RTP 2010 173 78.3
trainV09 Voice of America 2009 350 21.2
trainE10 Euronews 2009-2010 564 18.2

trainQ10 Quaero * 2010 184 71.7 (55.8)‡

trainQ11 Quaero * 2011 304 70.8

Total 1644 318.9 (58.9)‡

‡ The duration in parenthesis refers to the available amount of manually transcribed data. Manual
transcriptions for trainQ11 are available, but they were not used in this work.

* The source ‘Quaero’ refers to the corpora organized under the Quaero Programme. It comprises data
from different sources (RTP, TSF, RDP, Antena1 and Antena2).

Table 3.1.: Description of the Portuguese acoustic training data. Duration is measured
after music and noise removal.

3.2.1. Corpora

Acoustic training data

The acoustic data were collected from European Portuguese sources, although speakers of
other dialects might be present. The data were divided into four sub-corpora according to
their availability date as shown in Table 3.1. Training sets trainR00 and trainRVE were
available from the beginning of this work. trainR00, containing about 3 hours of speech
with manual transcriptions, was used only for bootstrapping. trainRVE contains about
173 hours of untranscribed speech data. It was subdivided into four subsets according
to the epoch the shows were broadcast and the sources they were collected from. The
two remaining sets, trainQ10 and trainQ11, were collected and manually transcribed as
part of the Quaero Programme. They are comprised of, respectively, about 72 and 71
hours of audio, of which about 56 and 59 have been transcribed. These two data sets
were available, respectively, in mid-2011 and mid-2012. In total, about 319 hours of audio
data (118 hours with manual transcriptions) were available.

This acoustic training corpus contains both broadcast news (BN) and broadcast con-
versations (BC) data. The sets trainV09 and trainE10 are mostly BN. They were
collected from the archives of the Portuguese branches of ‘Voice of America’ and ‘Eu-
ronews’ websites. Their data consist of short documents (a few minutes) and have few
speakers per file. The remaining sets were collected via satellite or podcasts and were
selected to contain more interactive data. They are somewhat longer (a few dozens of
minutes) and have a wider variety of speakers.

The sets with R, trainR00, trainR01 and trainR10, were collected from the RTP
channel. The ‘Quaero’ data (Q), trainQ10 and trainQ11, come from five sources (RTP,
RDP, Antena1, Antena2 and TSF channels).
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Set name Source Epoch
# of Duration

Shows in minutes

testR00 RTP 2000 2 76
testR09 RTP 2010 2 71
testV09 Voice of America 2009 30 125
testE10 Euronews 2010 100 113
devQ10 Quaero * 2011 16 199
testQ10 Quaero * 2011 17 207
testQ11 Quaero * 2011 21 214

Total 188 1005

* The source ‘Quaero’ refers to the corpora organized under the Quaero Programme. It comprises data
from different sources (RTP, TSF, RDP, Antena1 and Antena2).

Table 3.2.: Description of the Portuguese acoustic development and evaluation data. Du-
ration is measured after music and noise removal.

Development and evaluation data

The European Portuguese test data are shown in Table 3.2. They were collected from
the same sources as used for acoustic modeling and were divided and named in order to
simplify their relation with the training sets (Table 3.1). Thus, testR00 is associated to
trainR00, testR09 to trainR10 and so on. Both devQ10 and testQ10 relate to trainQ10.
The data used for system development will be specified for each experiment. No overlap
exists between any of the training, development or evaluation sets.

Text corpus

The majority (about 89%) of the written corpus used in this work corresponds to the
EP dialect. The remaining data (about 11%) come from Brazilian sources and have been
used only on the early setup.

The text corpus is composed of data collected from different sources, such as newspa-
pers, blogs and closed captions, as well as the available audio transcriptions. Information
about this corpus is given in Table 3.3. The epoch refers to the date the texts were
published according to the meta-data available from the source. The number of words
refers to the number of space delimited character strings and was obtained after text
normalization.

The vast majority (more than 99%) of the text data come from written sources (pre-
dominantly news). The ‘Voice of America’ and ‘Euronews’ texts are a mix of news and
closed captions. The text data from these two sources were only used for language mod-
eling in the early system and represent less than 0.8% of the total texts. As can be seen
in Table 3.3, less than 0.1% correspond to manual transcriptions of audio data. ‘RTP’
corresponds to the transcriptions of trainR00, while ‘Quaero’ corresponds to trainQ10.
The two sets comprise about 578 thousand words.
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Dialect Type Source Epoch # Words

European

News

Google News 2007-2010 256.2M
Cetem Público 1991-1998 172.8M
Diário Digital 2001-2009 95.1M
Jornal de Notícias 1996-2001 47.2M
Diário de Notícias 2005-2007 23.2M
Portugal Diário 2007 2.2M
Expresso 2000-2001 2.0M
Correio 2001 1.1M

Total 599.8M
Blog Blog Sapo 2006-2009 38.7M

News /
Closed Captions

Euronews 2004-2010 5.2M
Voice of America 2009 350k

Total 5.6M

Transcriptions
RTP (trainR00) 2000 29k
Quaero (trainQ10) 2010 539k

Total 568k
Total 644.7M

Brazilian
News

O Povo 2008-2009 33.9M
AFP 1994-1998 22.3M
AEN 2003-2007 11.5M
Folha de São Paulo 2007 1.9M
NHK 2004-2007 1.4M

Total 71.0M
Blog Estadão 2006-2009 26.5M

Total 97.5M

Total 742.0M

Table 3.3.: Description of the Portuguese textual training data. Last column gives the
number of running words, obtained after text normalization. ‘M’ = ×106; ‘k’
= ×103. The Brazilian corpus was used only in early stages of development.

3.2.2. Pronunciation modeling

The pronunciation dictionary was built using an rule-based grapheme-to-phoneme (G2P)
solution developed by me. For other published work on G2P conversion for European
Portuguese, the reader may refer, for instance, to Braga et al. (2006) for a rule-based
approach or to Caseiro et al. (2002) for a hybrid rule-based/data-driven approach. In
both cases, the authors have used G2P converter for text-to-speech. While text-to-speech
usually relies on the use of a single (canonical) pronunciation, ASR frequently needs to
cover various pronunciation forms. Owning to the fact that pronunciation variability is
not a main topic of this thesis, the G2P converter described here is able to generate a
unique pronunciation form. The generation of pronunciation variants is a topic that was
well covered in another thesis work developed in our group (Karanasou, 2013).
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consonants b, p, t, d, g, k, f, v, s, z, S, Z, m, n, ñ, l, L, R, ö
oral vowels i, e, E, a, 5, 1, O, o, u

nasal vowels ı̃, ẽ, 5̃, õ, ũ
oral semi-vowels j, w

special units [breath], [hesitation], [silence]

Table 3.4.: Phone list used for the European Portuguese ASR system development.

Grapheme-to-phoneme conversion

The standard Lisbon phonological system was modeled using 35 phones, being 19 conso-
nants, 9 oral vowels, 5 nasal vowels and 2 oral semi-vowels (Cruz-Ferreira, 1995). Two
phones for two nasal semi-vowels were assessed in initial stages of development, however
they were not kept since no improvement was observed.

In addition to the 35 phones, three special symbols were used to model breath noise,
hesitation and silence. Table 3.4 shows the list of acoustic units used for the development
of the Portuguese ASR system.

The Portuguese spelling system is somewhat close to the phonological representation,
although many exceptions and cases of ambiguity exist. Some examples for which a G2P
rule can be straightforwardly inferred are presented in Table 3.5. In the listed examples,
the phonological forms are shown within slashes (//). An ‘apostrophe’ (") is placed before
the stressed syllable, and a ‘hyphen’ (-) is used to indicate syllable boundaries whenever
necessary. The standard Lisbon pronunciation variety is used in these examples (see the
online dictionary of the Instituto de Linguística Teórica e Computacional (2007)3).

The graphemes (b, ç, d, f, j, k, l, p, t, v) have a unique phonological representation4.
Diacritics are very useful to determine the pronunciation of vowels, although not always
unambiguously. In some cases, it is a sequence of two letters that determines the phonemic
conversion. For instance, ‘ch’, ‘lh’ and ‘nh’ always generate the phonemes /S/, /L/ and
/ñ/ respectively.

In the cases presented Table 3.6, a deeper analysis of context need to be performed
for G2P conversion. This is the case for ‘s’, for which the pronunciation depends on its
position in the word (e.g. saber /s/ vs. ruas /S/) or on the left and right contexts (e.g.
casa /z/ vs. festa /S/ vs. senso /s/). However, there are some exceptions to these rules
(e.g. trânsito /z/ vs. ânsia /s/).

The pronunciation of vowels also depends on if they occur in the tonic position (e.g.
casa /"kaz5/, ovo /"ovu/, zele /"zEl1/) or if they are realized as a glide (e.g. pai /"paj/ vs.
dia /d"ia/). Nevertheless, some cases remain ambiguous (e.g. ovo /o/ vs. ovos /O/), while
others require additional (non-graphemic) information to determine the pronunciation of
a vowel (e.g. selo as a noun /e/ vs. selo as a verb /E/).

Another example that cannot be fully disambiguated via a rule-based G2P system is
the case of ‘x’. Due to an inherent variation that depends on the origins of the words, ‘x’
can be realized as /S/, /s/, /z/ or /ks/. For instance, the pronunciation of ‘x’ in words
lixo, prolixo and fixo (/S/, /ks/, /ks/ respectively) can only be defined as exception rules

3Available at http://www.portaldalinguaportuguesa.org
4Of course this is limited to the scope of this work. The graphemes (t, d) when followed by (i, e) might

be represented by [tS, dZ] in some variants of Brazilian Portuguese, while (l) might be represented by
/l/ or /ë/ in the standard Lisbon variant (see note 2 in Table 3.5).
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3. Baseline Automatic Speech Recognition System

Grapheme Phoneme Graphemic
form

Phonemic
form

Comments

b /b/ bela /"bEl5/

Unique mapping
ç /s/ criação /kri5"s5̃w/
d /d/ dia /"dia/
f /f/ favor /f5"vor/
j /Z/ jato /"Zatu/
á /a/ ápice /"apis1/

Vowels with diacritics having
often a unique mapping

â /5/ ânimo /"5nimu/
é /E/ é /"E/
í /i/ vício /"visju/
õ /õ/ missões /mi"sõjS/
ú /u/ baú /ba"u/
ch /S/ chá /"Sa/

Two letters with unique
mapping

lh /L/ velho /"vELu/
nh /ñ/ sonho /"soñu/

Table 3.5.: Examples of G2P conversion cases that can be performed in a straightforward
manner using a rule-based G2P system. The sign (") is placed before the
stressed syllable.

(if the origin of the word is unknown). Some rules can be defined for specific contexts.
For instance, in words beginning with ‘ex’ followed by a vowel, ‘x’ becomes a /z/ (e.g.
exato).

Pronunciation lexicon

The pronunciation lexicon was created to represent the Portuguese variant spoken in
Lisbon. The rule-based G2P converter developed in this work has four steps:

1. Pre-syllabification. A hundred rules that cover almost all syllabification cases.
Exceptions are cases that require stress syllable marking to resolve diphthongs (e.g.
di-a vs. ín-dia).

2. Stress syllable marking. 18 rules that are used to simplify some of the conversion
rules (see above).

3. Post-syllabification. Eight rules used to finish word syllabification.

4. Phonetization. 264 rules for vowels and 137 for consonants used to convert
grapheme into phonemes.

Except for acronyms, for which the uttered and spelled pronunciation forms have been
used, a unique pronunciation is generated for each word. This limits the strength of the
dictionary since only one form of homographs can be represented. In our case, the form
minimizing the phone error rate with respect to a reference dictionary has been used. For
instance, selo has been transcribed /"selu/ rather than /"sElu/ (Table 3.6).

The pronunciation dictionary could be enhanced by allowing multiple pronunciations
for ambiguous cases. To reduce the confusion incurred by the additional pronunciations,
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3.2. The European Portuguese system

Grapheme Phonemes Graphemic
form

Phonemic
form

Comments

a /a/ or /5/

casa /"kaz5/

Depends on the syllable
stress and the context

café /k5"fE/
caso /"kasu/
sopa /"sop5/
lama /"l5m5/

e
/e/, /E/,
/1/ or /j/

zele /"zEl1/
Depends on the syllable
stress, the context and if it
is realized as a diphthong or
not. Might be ambiguous

exato /i"zatu/
selo (noun) /"selo/
selo (verb) /"sElo/
cear /"sjar/

s
/s/, /S/ or

/z/

saber /sa"ber/

Depends on word position,
syllabification and the con-
text

ruas /"ruaS/
ca-sa /"kaz5/
fes-ta /"fESt5/
sen-so /"sẽsu/
trân-si-to /"tr5̃zitu/
ân-sia /"5̃sja/

x
/S/, /ks/,
/z/ or /s/

lixo /"liSu/

Often ambiguous
prolixo /pru"liksu/
fixo /"fiksu/
exato /i"zatu/
sintaxe /s̃ı"tas1/

Table 3.6.: Examples of G2P conversion cases that require syllabification (or context anal-
ysis), stress syllable marking or are ambiguous. The sign (") is placed before
the stressed syllable. The ‘hyphen’ (-) is used to separate syllables.

the acoustic training data (by means of forced alignment or decoding) could be used to
discover the correct pronunciation form(s) and to associate their pronunciation probabil-
ities.

Evaluation of the pronunciation dictionary

The G2P converter described above was assessed as follows. A pronunciation lexicon con-
taining about 9.5k words was downloaded from the online dictionary Infopedia (Infopedia,
2009) on January 20105. Another lexicon was generated for the same list using the G2P
converter.

Compared to the reference, the generated pronunciations have a WER of 20.3% and a
phone error rate (PER) of 3.5%. About 76% of the wrongly generated pronunciations had
a unique phone error, and about 19% had two errors. Many errors are due to ambiguous
cases (e.g. adega /E/ → /e/, roça /O/ → /o/, auxiliar /s/ → /ks/). Other notable errors
come from design choices made as the case of the diphthongs /wẽ/ and /we/ which were
respectively represented as /uẽ/ and /ue/ (e.g. fluência /uẽ/, coeso /ue/). Furthermore,
about a third of words having three or more phone errors are words borrowed from foreign

5The pronunciations seem to be no longer available in this dictionary.
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3. Baseline Automatic Speech Recognition System

languages (e.g. ballet, cachet, designer, jeans, online, marketing), for which the G2P rules
are not well suited. For many systems, foreign words are typically treated by exception
rules.

The G2P converter was also assessed on a decoding task and compared to a rule-based
converter previously available at LIMSI. Both systems were used to generate a pronunci-
ation dictionary for a 145k word vocabulary list. Acoustic models were constructed for
each generated dictionary using a subset of 11 hours of acoustic data from trainRVE (Ta-
ble 3.1). The models were evaluated on a 4.5 hour development set comprised of testR00,
testR09 and testV09 (Table 3.2). The new G2P converter obtained a 6% WER relative
improvement (30.4% vs. 32.5%) over the former converter.

3.2.3. Early system

As mentioned before, the training corpora have became available at different stages of this
work. For the early system setup, about 176 hours of acoustic data were used. It consists
of the 3h of manually transcribed data from trainR00 and the 173h of unstranscribed
data from trainRVE.

A 39-dimensional vector containing PLP-like features was used for acoustic modeling.
The acoustic models are gender independent and were estimated via MLE. Two sets of
acoustic models were trained. The first bootstrap models were estimated on trainR00

and cover about 3.6k phone contexts with about 1.5k tied states. These bootstrap models
were used to initialize unsupervised AM training (Zavaliagkos and Colthurst, 1998) using
the 173 hours of untranscribed data in trainRVE. The resulting models cover about 15.7k
phone contexts and have about 11.5k tied states.

The text data used for language modeling contains about 485 million words. Sources
of both European and Brazilian Portuguese data were used with the exception of the
‘Quaero’ transcriptions and ‘Google News’. The texts were normalized by converting
abbreviations and numerical patterns to their approximate spoken forms. Acronyms were
not explicitly treated, since the pronunciation dictionary already contains uttered and
spelled pronunciations. Furthermore, punctuation marks were removed, although words
containing a hyphen (e.g. sexta-feira) were not split.

A 158k word vocabulary was obtained by merging four different word lists, each
selected in order to keep the OOV rate below 1% on their corresponding development
sets, testR00, testR09, testV09 and testE10. This word list was used to estimate 2-,
3- and 4-gram language models on the training texts. The perplexity of the combined
development set with the 4-gram LM is 149.

The pronunciation lexicon was generated by an early version of the G2P converter.
This early G2P had PER of 4.0%, compared to the 3.5% with the revised G2P converter
with respect to the reference dictionary.

This early system was used only for the development of the lattice-based unsuper-
vised acoustic model training method (Chapter 4) and evaluated on testR00, testR09,
testV09 and testE10. Two systems were built for reference: ‘System A’, which uses the
bootstrap AM trained on trainR00; ‘System B’, which uses the acoustic model estimated
on trainRVE via unsupervised training. Both make use of the same 158k word language
model.

The baseline results obtained with the early setup are summarized in Table 3.7. The
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3.2. The European Portuguese system

System name LM AM
WER(%)

testR00 testR09 testV09 testE10 Total

System A 485M trainR00 36.1 36.2 21.4 22.5 27.0
System B 485M trainRVE 26.4 27.3 12.9 13.7 18.1

Relative improvement (%) 26.8 24.6 39.7 39.1 33.0

Table 3.7.: Baseline results with the early Portuguese ASR system. The language model
(LM) was trained on the subset of the corpus available by mid-2011. ‘System
A’ uses the bootstrap acoustic model (AM), trained on 3h of manually tran-
scribed data. ‘System B’ uses an unsupervised AM trained on 173h of data.

bootstrap system obtained an overall WER of 27.0% and ‘System B’ an overall WER of
18.1%. The use of 173h of untranscribed data for acoustic modeling reduced the relative
WER by one-third.

3.2.4. Improved system

Prior to the 2011 Quaero evaluation campaign, new acoustic and textual data became
available and were incorporated into the improved system.

About 72 hours of data, of which 56 hours have transcriptions associated (trainQ10),
were added to the acoustic training corpus. A development set (devQ10) and an evaluation
set (testQ10) containing respectively 3.3 and 3.5 hours of data also became available.

A 39-dimensional vector containing PLP-like features was used for acoustic modeling.
Acoustic models are gender independent and were estimated via MLE. The use of gender
dependent models were also assessed, but did not improve the system performance.

For this system, two additional text normalization steps were applied. First, a 3-
gram LM was used to correct the word case of all data, except the manual transcriptions,
which are assumed to have the correct case assigned. The word casing LM was trained
on pre-selected sources. Second, the new orthographic agreement (CPLP, 1990) was
applied. About 800 words were converted into the new orthographic forms using rules
automatically extracted from the Infopedia online dictionary (Infopedia, 2009).

With the arrival of the ‘Google News’ data, the Brazilian text sources were removed
after assessing that their usage did not reduce perplexity of the development data. (This
agrees with the results reported by Abad et al. (2009)). A decision was taken to consider
a development scenario where only news and blog sources were available. Thus, texts
from ‘Euronews’ and ‘Voice of America’ were also not used even though these were closed
captions which are certainly a closer match to spoken language than the news texts.

Two language models were generated. The LM_10src was built using the eight EP
news text sources, the ‘Blogsapo’ data and the ‘RTP’ transcriptions, totaling about
639M words. The ‘Quaero’ transcriptions were included when training the second model,
LM_11src. The perplexities of the development set devQ10 are 138 and 127 respectively
with LM_10src and LM_11src. A relative improvement of 8% is seen by including a
relatively small transcription set (539k of 639M words) in the LM training.
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3. Baseline Automatic Speech Recognition System

The LMs have a 65k word vocabulary 6, which was obtained based on the interpola-
tion of unigram component models trained on the same data as were used to build the
LM_10src. An OOV rate of 1.1% was measured on devQ10. The G2P converter was used
to generate the pronunciations for this word list.

Five reference systems were setup to represent different acoustic modeling scenarios.
WERs with these five systems are shown in Table 3.8 on devQ10, testQ10 and testQ11.
‘System C’ is the bootstrap system that uses the same AM as ‘System A’ (Table 3.7),
trained only on trainR00. The pronunciation lexicon and LMs differ between ‘System A’
and ‘System C’.

The second part of the table shows the performance of systems that use only trainQ10

for acoustic modeling. ‘System D’ represents the condition for which the transcriptions of
trainQ10 are not considered available: it uses an AM trained in an unsupervised manner
together with LM_10src. ‘System E’ is the complementary supervised system: the manual
transcriptions of trainQ10 were included for acoustic and language modeling (LM_11src).
The acoustic models of ‘System D’ and ‘System E’ cover, respectively, 12.4k and 11.5k
phone contexts, and have about 10.1k and 11.5k tied states. The supervised (‘System E’)
outperforms the unsupervised system (‘System D’) when models are trained on the same
data by about 12% relative. The use of the trainQ10 data brings a 40% relative WER
improvement over the bootstrap system for the unsupervised case and a 47% reduction
for the supervised training condition.

The third part of Table 3.8 shows the performance of systems that also use the
trainRVE data for acoustic modeling. The acoustic models of such systems were generated
as follows. First, a model was trained on the trainRVE using an unsupervised approach.
This model was then adapted unsupervised (‘System F’) or supervised (‘System G’) using
the trainQ10 data with MAP estimation. Both models cover about 15.7k phone contexts
and have about 11.5k tied states. In the supervised case, trainQ10 transcripts are also
used for language modeling, that is, ‘System F’ uses LM_10src and ‘System G’ uses
LM_11src. The supervised (‘System F’) outperforms the unsupervised system (‘System
G’) by about 10% relative. ‘System G’ and ‘System F’ outperform the bootstrap system
by 43% and 48% relative respectively.

The training data trainQ11, which was available only in mid-2012, was not used for
the baseline system development. This set was only used to assess unsupervised MLP
training approaches (Chapter 5).

3.3. The English system

An English ASR system was also used in this work as a basis for the experiments on
accent adaptation via model interpolation that are presented in Chapter 8. The data
and baseline system are the same as presented in Vergyri et al. (2010) and are briefly
described in this section. The system was designed to recognize multi-accented broadcast
data coming from six different geographical regions where English is spoken as an official
language. For further details, the reader is referred to the original paper.

6The vocabulary of the improved system (65k) is smaller than the vocabulary of the early system (158k)
due to the additional text normalization steps applied and the removal of the Brazilian Portuguese
text data from the language modeling corpus.
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3.3. The English system

System
LM AM

WER(%)
name devQ10 testQ10 testQ11 Total

System C LM_10src trainR00 53.7 45.9 54.8 51.5
System D LM_10src trainQ10 33.0 26.8 33.0 30.9
System E LM_11src trainQ10 28.7 23.4 29.1 27.1
System F LM_10src trainRVE → trainQ10 31.2 25.6 31.6 29.5
System G LM_11src trainRVE → trainQ10 28.0 23.2 28.6 26.6

Table 3.8.: Baseline results with the improved Portuguese ASR system. Transcriptions of
trainQ10 are present in LM_11src, but not in LM_10src. Systems D and F
use unsupervised acoustic model (AM) training, while systems E and G use
supervised AM training. In the two last rows, an unsupervised model trained
on trainRVE has been MAP adapted to trainQ10.

Set (Info) US AU GB ME NA IN Non-US Total

Training (hours) 316.6 33.0 55.4 27.7 8.2 9.4 133.7 450.3
Training (# of shows) 667 461 225 72 34 26 818 1485
Test (min) 172 12 48 15 13 15 103 275
Test (# of shows) 10 4 3 1 1 1 10 20
Test (# of speakers) 202 19 45 15 15 15 109 311

Table 3.9.: Duration of the multi-accented English data sets. Accents: United States
(US), Australia (AU), Great Britain (GB), Middle East (ME), North Africa
(NA), India (IN). Last two columns give the total without and with ‘US’ data.

3.3.1. Corpora

Information about the training and test corpora used to build and evaluate the multi-
accented English ASR system are presented in Table 3.9. It consists of a multi-accented
corpus collected from six different geographical regions where English is spoken as official
language: United States (US), Australia (AU), Great Britain (GB), Middle East (ME),
North Africa (NA) and India (IN). The audio data comes from a variety of news sources,
mostly collected via satellite with some downloaded from the Web. The geographical
region from where the show was broadcast is considered as the accent label for all the
speakers in the audio file. The true accent label for each speaker is unknown. In Vergyri
et al. (2010), the labels for the ‘ME’ and ‘NA’ accents were mistakenly swapped.

Roughly, two thirds of the data come from the ‘US’ dialect, with the other one third
unevenly distributed across the remaining five dialects. The ‘NA’ and ‘IN’ dialects are
the less represented in the corpus each having less than 2% of the total amount of data.
The test subset sizes have been defined based on the distribution of the training data.

3.3.2. System overview

The broadcast ASR system used in this work is quite similar to other systems developed
at LIMSI (Gauvain et al., 2002), as introduced in Section 3.1. Acoustic modeling uses
a 42-dimensional feature vector, including cepstrum, log energy and pitch features. The
phone set contains 35 phones besides the special units for silence, breath and hesitation.
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System US AU GB ME NA IN All Ave

Accent independent 14.34 11.92 12.84 15.90 26.47 39.28 16.07 20.12
Speaker-accent-ID 14.71 11.23 13.10 16.46 25.19 34.28 16.01 19.18
Show-accent-ID 13.95 11.91 11.98 16.46 25.19 34.28 15.39 18.96

Table 3.10.: Baseline results with the multi-accented English automatic speech recognition
system after Vergyri et al. (2010). ‘All’ corresponds to the WER on the
whole test set, while ‘Ave’ to the average WER when the test subsets are
weighted equally. In the original paper, the ‘ME’ and ‘NA’ accent labels have
been mistakenly swapped.

The baseline acoustic models of Vergyri et al. (2010) were generated as follows. First,
an accent- and gender-independent model was estimated on the entire training data set.
Gender-specific and accent-specific models were obtained using a joint MAP adaptation
(Gauvain and Lee, 1994), followed by one iteration of MMIE (Bahl et al., 1986). Speaker
adaptive training (Anastasakos et al., 1996) was also used. The models cover about 18k
phone contexts with about 11.5k tied states.

The language models were trained on about 1.2 billion words of texts and were built
based on the interpolation of LM components estimated on different subsets of the training
data. The system uses a 65k word vocabulary.

The decoder was slightly modified to recognize multi-accented data. Similar to Chen
et al. (2001), a GMM-based classifier first determines the most likely accent for each test
segment. Based on this decision and the speaker labels automatically extracted during
audio partitioning, an accent- and gender-specific model is selected for decoding. Standard
decoding is performed, including CMLLR/MLLR adaptation, lattice generation, lattice
re-scoring and consensus decoding. Accent classification was compared at the show and
speaker level. A 100% accuracy is reported by Vergyri et al. (2010) for a show based
accent classification.

The results obtained by Vergyri et al. (2010) are summarized in Table 3.10. The
first row shows the accent-independent system. The second and third rows show the
multi-accented systems with, respectively, speaker- and show-based accent classification.
With show-based classification, a 4% relative WER improvement in average is obtained
compared to the accent-independent system (from 16.07% to 15.39%). However, the
performance for the ‘ME’ accent deteriorates.

3.4. Summary

This chapter has presented an overview of the two ASR systems used throughout this
work in order to provide relevant background for the remaining chapters. First, the
LIMSI BN recognition system was generally presented, followed by details of the European
Portuguese (EP) and the multi-accented English systems.

The EP recognition system (or, more precisely, the improved system setup) was first
developed for the 2011 Quaero Evaluation Campaign, in which I have actively partic-
ipated. I developed and evaluated the G2P converter, updated and refined the text
normalization procedure (with the application of the new orthographic agreement), and
performed part of the unsupervised acoustic model training.
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3.4. Summary

The majority of the work carried out in this thesis was tested with the improved EP
system, although not always using the full acoustic model training corpus in order to
simulate some training situations. For example, only the ‘Quaero 2010’ acoustic data is
used in some cases to compare the supervised and unsupervised training approaches. The
recognition results with the reference systems have been reported in this chapter.

The multi-accented English data and the baseline system presented in Vergyri et al.
(2010) were briefly described. This system is used as the baseline for the experiments on
multi-accented data recognition presented in Chapter 8.
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Part II.

Unsupervised model training
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Unsupervised model training

A great portion of time and cost consumed during automatic speech recognition system
development is due to the production of manual audio transcripts. While, for some tasks,
large amounts of data can be easily gathered from different sources (Web, radio, TV, etc.),
manually transcribing them is an arduous task. Depending on the type of data, a human
might spend up to 50 times real time to produce detailed audio transcriptions, and even
then, they will not be exempt of errors (Barras et al., 2001).

Large amounts of audio transcriptions are required for acoustic model training. In
practice, dozens to hundreds (or even thousands) of hours of speech are used to build AMs
for large vocabulary speech recognition. A technique that has been gaining popularity in
the speech community as a means to reduce the human effort spent on data annotation is
the unsupervised AM training (Zavaliagkos and Colthurst, 1998; Kemp and Waibel, 1999).
The term unsupervised training is used here to define the method in which the model
parameters are estimated from automatic (rather than manual) transcriptions. Some
authors prefer to refer to the method as semi-supervised or self-supervised training, since
the language model provides some level of supervision. Beyond the speech recognition
community, the term unsupervised is used with a different meaning.

Unsupervised acoustic model training consists of an iterative procedure in which the
parameter estimation relies on untranscribed audio data. In short, it makes use of an
existing ASR system to decode a training set comprised of a large amount of untranscribed
audio data. The generated inaccurate transcriptions are used as ground truth to estimate
the acoustic model parameters.

Automatic transcriptions are known to contain errors that can mislead the AM param-
eter estimation. This issue is usually dealt with the use of confidence measures provided
by the ASR system to filter or weigh the best decoding hypothesis (Wessel and Ney, 2001;
Gollan et al., 2007). A novel approach is proposed in Chapter 4. It consists of using
multiple decoding hypotheses (rather than the best one) to guide the acoustic parameter
estimation. The multiple hypotheses are extracted from the decoding lattices to better
represent the true transcription labels and lead to more accurate models. The use of
different training strategies is also investigated as an attempt to avoid the propagation of
errors from one iteration to another.

Most of the published experiments in unsupervised acoustic model training make use
of features extracted directly from the audio stream, such as the PLP features (Herman-
sky, 1990). In recent years, different research groups have adopted the use of acoustic
features extracted from MLP classifiers trained in a supervised manner (Ellis et al., 2001;

49



Zhu et al., 2005; Stolcke et al., 2006; Tóth et al., 2008; Fousek et al., 2008a; Lamel et al.,
2011; Veselý et al., 2012). MLP based features can lead to substantial gains in performance
when combined with PLP features.

Chapter 5 proposes to train the MLP classifiers on untranscribed audio data rather
than manually transcribed data. This approach allows the construction of accurate AMs
making use of MLP features in a fully unsupervised manner. Both MLPs and acoustic
model training rely on the use of automatic transcriptions. This approach is empirically
compared to another solution that relies on the use of MLPs trained on data from other
languages (Stolcke et al., 2006; Tóth et al., 2008).

In contrast to AM training, audio transcriptions are not mandatory for LM training.
Language models can be estimated on huge amounts of text data that can be easily
collected from the Web. However, the inclusion of audio transcripts in the LM training
corpus is expected to improve the model accuracy, since transcriptions truly represent
the spoken style of the target data. An alternative to improve LM performances without
relying on transcriptions is to collect conversational-like data from the Web by means of
information retrieval techniques (Bulyko et al., 2007). Another alternative is to use audio
transcriptions automatically produced by an existing ASR system (Bacchiani and Roark,
2003), or in other words, perform unsupervised language model training. Compared to
unsupervised acoustic modeling, unsupervised language modeling is a more challenging
task (Novotney et al., 2009). Although little explored, unsupervised LM training has been
reported to improve the performance for conversational data recognition tasks (Bacchiani
and Roark, 2003; Novotney et al., 2009).

Although not mandatory, it is not difficult to prove that audio transcriptions also
play a major role in language modeling since they truly represent the spoken form. An
alternative that naturally arises is the use of automatic transcriptions as ground truth for
language model parameter estimation (Bacchiani and Roark, 2003). Chapter 6 investi-
gates the use of unsupervised LM training approaches for a broadcast data recognition
task. Like done for unsupervised AM training, confidence based filtering and weighting
approaches are proposed to deal with the recognition errors. The use of multiple decod-
ing hypotheses (rather than the best one) is also proposed and assessed empirically. The
unsupervised training framework is extended to neural network language models. It is
proposed to retrain a baseline NNLM on automatically generated transcription text data.

Some of the work described in this part of this dissertation was originally published
in ICASSP 2011 (Fraga-Silva et al., 2011), SLTU 2012 (Fraga-Silva et al., 2012) and
Interspeech 2013 (Roy et al., 2013).
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Chapter 4

Unsupervised HMM/GMM-based
acoustic model training

4.1. Introduction

Acoustic model training for large vocabulary continuous speech recognition relies on large
amounts of transcribed audio data to achieve suitable performance levels. However, ob-
taining manually annotated audio data is an expensive and time-consuming task. A
well-known technique that has been gaining popularity over the last years and can be
used as a means to reduce the human effort required to prepare data for acoustic learn-
ing is commonly referred to as unsupervised acoustic model training (Zavaliagkos and
Colthurst, 1998; Kemp and Waibel, 1999; Wessel and Ney, 2001; Lamel et al., 2002b;
Wang et al., 2007; Lamel and Vieru, 2010). In such an approach, acoustic model training
is based upon inaccurate transcriptions obtained via automatic speech recognition.

Unsupervised training is investigated in this chapter. In the following subsections,
we propose to fit all the unsupervised training methods studied here into the iterative
expectation-maximization framework (Dempster et al., 1977). In Section 4.2, we inves-
tigate confidence-based filtering and weighting approaches used to reduce the impact of
the recognition errors present in the automatic transcriptions.

A novel unsupervised AM training approach is proposed in Section 4.3. Multiple
decoding hypotheses (rather than the best one) are extracted from the decoding lattices
to better approximate the true audio transcriptions. The use of lattices as a material
for improving existing algorithms is recurrent in the speech processing community. For
instance, they have been used for language recognition (Gauvain et al., 2004), speaker
adaptation (Padmanabhan et al., 2000) and system combination (Li et al., 2002).

Some experiments are described along this chapter to validate the theoretical analyses.
A further experimental work is conducted in Section 4.4 to compare the aforementioned
approaches. In parallel, we investigate the use of different training strategies to assess
their impact on the propagation of recognition errors across the training iterations. A
summary is presented in the Section 4.5.

The mathematical framework presented takes into account only one possible pronun-
ciation per word. The extension to the multiple pronunciations case is straightforward.
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4. Unsupervised HMM/GMM-based acoustic model training

4.1.1. Maximum likelihood estimation

Acoustic model parameters can be estimated via maximum likelihood estimation, which
can be represented by the following optimization problem:

λML = arg max
λ

log f (X|λ) (4.1)

This is an incomplete data problem that can be efficiently solved using the EM al-
gorithm (Dempster et al., 1977) via the maximization of the following auxiliary function
(see Section 2.2.2):

Q(λ, λ̂) = E
[

log f(Y|λ)
∣

∣

∣
X ,W , λ̂

]

= E
[

log f(S|W ,λ)
∣

∣

∣
X ,W , λ̂

]

+ E
[

log f(X ,L|S,λ)
∣

∣

∣
X ,W , λ̂

]

(4.2)

where Y = (X ,W ,S,L) represents the complete data, X the observed vectors, W the
known word sequence, S the unknown HMM state sequence and L the unknown sequence
of Gaussian labels. In (4.2), it is assumed the word sequence probability does not depend
on the acoustic model parameters, i.e. P (W|λ) = P (W).

In contrast to the equations presented in Section 2.2.2 (c.f. (2.14)), the word sequence
labels W are explicitly shown in (4.2). The iterative EM algorithm used to solve the MLE
problem (4.1) can be summarized as follows:

Forced alignment Given the current model λ̂, W and X , calculate state/frame align-
ment probabilities P (S|X ,W , λ̂) using the forward-backward algorithm (Bahl et al.,
1983) or, alternatively, estimate the best state sequence S∗ using the Viterbi algo-
rithm (Viterbi, 1967).

Model update Given P (S|X ,W , λ̂) estimate the new model parameters λ.

λ∗ = arg max
λ

∑

S

∑

L

P (L,S|X ,W , λ̂) · log f (X ,L,S|W ,λ) (4.3)

where the summation is performed over all possible state and Gaussian label se-
quences. Alternatively, if the Viterbi alignment is used:

λ∗ = arg max
λ

∑

L

P (L|X ,S∗, λ̂) · log f (X ,L,S∗|λ) (4.4)

In both cases, since the true word sequence is known, we have used P (W|X ) = 1.

4.1.2. Maximum likelihood estimation without audio
transcriptions

Unsupervised AM training is evidently an incomplete data problem (Dempster et al.,
1977). In addition to the HMM state and Gaussian level alignments, the true transcription
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labels are also unknown. In this case, the auxiliary function to be maximized can be
represented as:

Q(λ, λ̂) = E
[

log f(Y|λ)
∣

∣

∣
X , λ̂

]

= E
[

log f(S|W ,λ)
∣

∣

∣
X , λ̂

]

+ E
[

log f(X ,L|S,λ)
∣

∣

∣
X , λ̂

]

(4.5)

This function can be decomposed as:

Q(λ, λ̂) =Qπ(π, λ̂) +QA(A, λ̂) +Qθ(θ, λ̂) (4.6)

where π denotes the state initial probabilities, A the state transition probabilities and θ

the state emission probabilities. These terms can be independently maximized and can
be written as:

Qπ(π, λ̂) =
∑

u∈V

N
∑

i=1

ψ̄ui0 log πi (4.7)

QA(A, λ̂) =
∑

u∈V

∑

v∈V

N
∑

i=1

N
∑

j=1

T
∑

t=1

ξ̄uvijt log aij (4.8)

Qθ(θ, λ̂) =
∑

u∈V

N
∑

i=1

K
∑

k=1

T
∑

t=1

γ̄uikt logωikN (xt|µik,Σik) (4.9)

where u and v are words in the vocabulary V and the probabilities ψ̄, ξ̄ and γ̄ can be
defined as:

ψ̄uit = P
(

wt = u, st = i
∣

∣

∣
X , λ̂

)

the probability of being at word u and state

i at time t, given that model λ̂ generates X .

ξ̄uvijt = P
(

wt−1 = u, wt = v, st−1 = i, st = j
∣

∣

∣
X , λ̂

)

the probability of mak-

ing a transition from word u and state i to word v and state j at time
t, given that λ̂ generates X .

γ̄uikt = P
(

wt = u, st = i, lt = k
∣

∣

∣
X , λ̂

)

the probability of being at word u

and the k-th Gaussian component of mixture of state i at time t, given
that λ̂ generates X . It can be calculated as:

γ̄uikt = ψ̄uit

ω̂ikN
(

xt

∣

∣

∣
µ̂ik, Σ̂ik

)

∑

k′ ω̂ik′N
(

xt

∣

∣

∣
µ̂ik′ , Σ̂ik′

)

(4.10)

The auxiliary functions presented in (4.7), (4.8) and (4.9) are quite similar to those
obtained for the standard (supervised) MLE (c.f. (2.17), (2.18) and (2.19)). In the
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4. Unsupervised HMM/GMM-based acoustic model training

unsupervised case shown above, summing over all the words with indexes u and v is
necessary. Besides that, the definitions for the joint probabilities ψ̄, ξ̄ and γ̄ in the
unsupervised case also include word indexes observed at time frames (t − 1) and t (c.f.
(2.15) and (4.10)). Unsupervised AM training can also be solved in an iterative way using
the EM algorithm. Besides the state/frame level alignments, word/state alignments are
also required for unsupervised AM parameter estimation. They can be jointly estimated
via decoding. The unsupervised EM algorithm can be represented as follows:

Decoding Given the current model λ̂ (as well as the language and pronunciation models),
decode X , estimating the state/frame alignment probabilities P (S|X , λ̂) and the
word sequence posterior probabilities P (W|S,X , λ̂). Decoding is guided by the
following maximization problem:

(W∗,S∗) = arg max
W

max
S

P (W) · P (S|W , λ̂) · f(X|S, λ̂) (4.11)

Model update Given P (W ,S|X , λ̂) = P (S|X , λ̂) · P (W|S,X , λ̂), estimate the new
model parameters λ.

λ∗ = arg max
λ

∑

W

∑

S

∑

L

P (L,S,W|X , λ̂) · log f (X ,L,S|W ,λ) (4.12)

where the summation is performed over all possible word, state and Gaussian label
sequences.

For initialization, an acoustic model trained on a small amount of manually tran-
scribed data can be used. Lamel et al. (2002a) showed that bootstrapping can be done
using as little as 10 minutes of acoustic data if the available untranscribed data set is large
enough. Alternatively, the initial model can be built by combining seed models trained
on other languages (Wheatley et al., 1994; Schultz and Waibel, 2001).

The language and pronunciation models are usually kept fixed over the entire acoustic
parameter estimation process. Their quality influence the acoustic estimates obtained,
given that they provide some level of supervision for unsupervised AM training.

4.2. Approximating with the 1-best hypothesis

Summing over all word and state sequences as in (4.12) is a computationally challenging
task. A common way to reduce the computational effort required for unsupervised acoustic
model estimation is to consider only the best hypothesis provided by the recognizer.

The 1-best unsupervised AM training approach is illustrated in Figure 4.1. An ex-
isting recognition system is used to decode a subset of the untranscribed acoustic data.
The automatic transcriptions are then used as ground truth for standard acoustic model
parameter estimation. The procedure is reiterated until a suitable convergence criterion
is attained.

Different strategies can be applied to use the different training subsets at each iter-
ation. For instance, LIMSI usually uses an incremental training approach, doubling the
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4.2. Approximating with the 1-best hypothesis

Figure 4.1.: Unsupervised acoustic model training scheme.

amount of data at each iteration (Lamel et al., 2002b). BBN prefers to re-decode the en-
tire training set every iteration (Ma et al., 2006). The impact in acoustic model accuracy
of using such strategies is compared in Section 4.4.

4.2.1. The influence of recognition errors

The simple substitution of manual transcriptions by automatic ones for acoustic model
training is not optimal. Automatic transcriptions contain many errors especially when
the initial models are poorly estimated, which is often the case for applications requiring
unsupervised training. Dealing with the recognition errors is a major issue in unsupervised
AM training, given the fact they can potentially mislead the parameter estimation.

To give an idea of how recognition errors can affect model accuracy, a controlled
experiment was conducted. The 72 hour training set trainQ10 was decoded using an
initial AM trained on the 3 hour set trainR00 and the language model LM_10src (see
Section 3.2). Since the trainQ10 manual transcriptions were available, the training set
WER could be measured (about 45%). Different training WERs (from 0% to 45%) were
simulated by correcting some of the hypothesized words. For each target WER, the
hypothesized words were substituted by the reference words if their confidence measures
were above a certain threshold. The partially corrected transcriptions were then used
as ground truth for standard acoustic model training. These resulting models were then
used to decode the 3.5 hour development set devQ10 in order to assess their quality.

The WER of the devQ10 set is plotted as a function of the simulated training word
(WER) and phone (PER) errors in Figure 4.2. Roughly, an absolute increase of 10% in
the training WER (corresponding to about 5% in PER) led to an absolute increase of 1%
in the devQ10 WER. For a single training iteration, the use of automatic transcriptions
(45% WER) rather than manual ones (0% WER) results in an absolute increase of 4% in
the devQ10 WER (from 30.7% to 34.8%).

Of course, recognition errors cannot be corrected in such a way in real applications.
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Figure 4.2.: Influence of simulated transcription errors in acoustic modeling. The errors
present in the training transcriptions are measured in terms of word error
rate (WER) and phone error rate (PER). Points with the same “WER on
devQ10” correspond to the same acoustic model.

If approximate transcriptions (closed captions) are available though, they can be used
to filter errors from the automatic transcriptions (Lamel et al., 2000). In such an ap-
proach, closed captions and automatic transcriptions are submitted to forced alignment,
and segments failing to align are discarded.

For the more general case where closed captions are not available, a proposed solution
is to use the confidence measures provided by the recognizer to filter probable errors out
or to weigh the decoding hypotheses. Different confidence-based approaches are detailed
in the remainder of this chapter. For a straightforward comparison, they have all been
considered as special cases of a generalized unsupervised EM algorithm.

4.2.2. Generalizing the unsupervised training algorithm

The generalized EM algorithm described in this section is used to simplify the theoreti-
cal comparison among the different confidence-based filtering and weighting approaches
described in the following subsections. We will first adopt the following notation. Let

C(u, i; t) = P (wt = u, st = i|X ,L)

be defined as a frame wise confidence score that measures the probability of being at
word u and state i at time t, given that X generates the lattice hypothesis L. Let us also
consider that the probabilities ψ̄uit and ξ̄uvijt presented in (4.10) can be approximated by:

ψ̄uit =P (wt = u, st = i|X , λ̂) ≈ C(u, i; t) (4.13)

ξ̄uvijt =P (wt−1 = u, wt = v, st−1 = i, st = j|X , λ̂) ≈ C(u, i; t− 1) · C(v, j; t) (4.14)
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4.2. Approximating with the 1-best hypothesis

The latter approximation assumes the independence between the confidence scores
calculated for two consecutive frames. Although not strictly true, this approximation
greatly simplifies the generalization of the unsupervised training algorithm. It is important
to note though that the calculation of the confidence scores usually takes into account the
interdependence between consecutive frames as well as between concurrent hypotheses
(Wessel et al., 2001). With the approximations from (4.13) and (4.14), the generalized
unsupervised acoustic model training algorithm can be summarized as follows:

1. Decode the training data X , generating a lattice L using (4.11).

2. For all occurrences in the lattice L, calculate a frame wise confidence score C(u, i; t)
for all word u in the vocabulary V and state i ∈ [1, N ] to be jointly aligned to the
frame occurring at time t.

3. Modify the confidence score C̄(u, i; t) = F{u, i, t, C(u, i; t)} using a function F{·}
specific for each filtering or weighting method.

4. With the modified confidence scores C̄(u, i; t), calculate ψ̄uit and ξ̄uvijt using (4.13)
and (4.14) respectively.

5. Update the model parameters using (4.12) and assuming

P (W ,S|X , λ̂) =
∏

t

P (wt = u, st = i|X , λ̂) =
∏

t

ψ̄uit

6. Reiterate until convergence.

Only the function F{·} that modifies the confidence score (Step 3) is redefined to
derive each of the unsupervised acoustic model training methods. For instance, if neither
filtering nor weighting is applied, this function can be expressed as:

C̄(u, i; t) =

{

1 if w∗
t = u and s∗t = i

0 otherwise
(4.15)

where w∗
t and s∗t represent, respectively, the word and state aligned to the best decoding

hypothesis at time t.

4.2.3. Confidence measures

Confidence measures provided by the recognition system can be used to filter or weight
the decoding hypothesis to reduce the impact of recognition errors.

In the filtering approaches, a segment (sentence, word, phone, frame) is used for
training only if its confidence measure is greater than a certain threshold. As confidence
measures are not perfect, recognition errors may persist regardless the threshold applied.
As a rule of thumb, small thresholds will keep more incorrectly recognized segments,
misleading parameter estimation. On the other hand, if a high threshold is chosen, most
of the data is excluded and not enough significant information is added to the model, i.e.,
the system only learns what it already knows (Kemp and Waibel, 1999).
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4. Unsupervised HMM/GMM-based acoustic model training

As for other system parameters, the threshold can be manually chosen or selected
based on an optimization algorithm. A suitable criterion to optimize the confidence
threshold is the development set WER obtained by using the acoustic model trained on
the filtered audio data. This task can be performed without manual verification, but
might be computationally expensive. As many threshold values are evaluated, as many
models need to be estimated and used to decode the development set. This procedure
can be parallelized to avoid increasing the training time.

An advantage of weighting is that it does not require threshold optimization. The
quality of the confidence measures though may affect the performance of the model trained
with weighted audio data. This is also the case for the filtering approaches.

Word-based confidence measures

Word posterior probabilities are probably the most commonly used confidence score for
ASR. They can be readily estimated from decoding lattices (Wessel et al., 2001), and to
weight or filter the decoding hypothesis used for unsupervised AM training (Kemp and
Waibel, 1999; Wessel and Ney, 2001).

A word-based confidence measure can be obtained as follows. Let us consider that a
lattice L is generated after decoding a training sample X = (x1, . . . , xT ) of T observation
vectors. Let an edge from this lattice be represented by a tuple e = [ŵ, Ŝw; t̂s, t̂f ], where
t̂s and t̂f denote starting and finishing times of the edge, ŵ is the word associated to

the edge and Ŝw = (ŝts , . . . , ŝtf ) is the associated hypothesized state sequence. Posterior
probabilities P (e|X ,L) can be efficiently calculated for each edge using the forward-
backward algorithm.

Let Cword(u, Su; [ts, tf ]) be a confidence measure for a word u aligned to time stamps
[ts, tf ] and having state sequence Su = (sts , . . . , stf ). This confidence measure can be
defined as the probability of the lattice edge matching these conditions, that is:

Cword(u, Su; [ts, tf ]) = P ([ŵ = u, Ŝw = Su; t̂s = ts, t̂f = tf ]|X ,L) (4.16)

This is not the unique possible definition for a word-based confidence measure. For
instance, the sequence of states could be ignored, and the confidence measure would be
obtained by summing over all edges matching only words and time stamps. Since the
state sequence is fundamental for unsupervised AM training, the definition in (4.16) will
be adopted.

For our generalization purposes, let us define the frame wise confidence measure by
assigning the word posterior probability to all states aligned with the word:

Cword(u, i; t) =P (wt = u, st = i|X ,L)

=Cword(u, Su; [ts, tf ])
⇐⇒ Su(t) = i ∧ ts ≤ t ≤ tf (4.17)

where S(t) denotes the state from sequence S aligned to time t.

State-based confidence measures

Since acoustic model parameters are estimated on sub-word units, the use of confidence
scores estimated at sub-word levels (phones, states) should make more sense for unsu-
pervised acoustic modeling. Gollan et al. (2007) reported improvements by filtering the
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training data based on state-based (instead of word) confidence measures. Their proposed
measure can be presented as:

Cstate(•, i; t) =
∑

e=[ŵ,Ŝw;t̂s,t̂f ] ∈L :

Ŝw(t)=i ∧ t̂s≤t≤t̂f

P (e|X ,L) (4.18)

where the summation is performed over all lattice edges having state i aligned to time
t, with t̂s ≤ t ≤ t̂f . Alternatively, Cstate(·) can be obtained as the marginalization of
Cword(·) (4.17) for all words in the vocabulary V .

Cstate(•, i; t) =
∑

ŵ∈V

Cword(ŵ, i; t) (4.19)

4.2.4. Weighting by confidence measures

In the 1-best word-weighted unsupervised AM training, the model parameters are es-
timated taking into account the best decoding hypothesis together with its word-based
confidence scores. It can be considered a special case of the algorithm proposed in Sec-
tion 4.2.2. In this case, the function used to modify the confidence scores (step 3) can be
represented as:

C̄(u, i; t) =

{

Cword(u, i; t) if w∗
t = u and s∗t = i

0 otherwise
(4.20)

where w∗
t and s∗t represent, respectively, the word and state aligned to the best decoding

hypothesis at time t and Cword(·) is defined in (4.17).
The 1-best state-weighted approach can be defined in two different ways. The first is

analogous to (4.20), but using state-based confidence instead:

C̄(u, i; t) =

{

Cstate(•, i; t) if w∗
t = u and s∗t = i

0 otherwise
(4.21)

An alternative definition, that takes into consideration the fact that the state-based
confidence measure is a marginalization of the word-based confidence measures, is:

C̄(u, i; t) =

{

Cword(u, i; t) if s∗t = i

0 otherwise
(4.22)

This latter definition suggests that weighting at the state level is a smoother approx-
imation to the generalized unsupervised AM training algorithm compared to weighting
at the word level. At the state level, a summation is performed over all possible word
sequences. At the word level, the summation is approximated by the best word sequence.
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Figure 4.3.: Comparison of 1-best weighting methods for 4 iterations of incremental un-
supervised acoustic model training. WER on the development set devQ10

set (a) and per-iteration absolute WER improvement over the 1-best method
(b).

Experiments

Unsupervised acoustic model training with weighted data was evaluated in a large vocab-
ulary recognition task and compared to the case where neither filtering nor weighting was
applied to the automatic transcriptions. Henceforth, this latter will simply be referred to
as “1-best” as opposed to the “1-best weighted” variant.

Experiments were carried out using the improved EP system (see Section 3.2.4) and
using an incremental iterative unsupervised training procedure, as follows.

A bootstrap model was trained on 3 hours of manually transcribed data (trainR00).
At the first iteration, this model was used to decode a subset of trainQ10 containing
18 hours of speech data, that is, one fourth of the full training set. The automatic
transcriptions were then used for acoustic model training. At the second iteration, the
latter models were used to decode half of the trainQ10 data (the previous 18h + another
18h), which were subsequently used for unsupervised AM training. The same procedure
was repeated for the third and fourth iterations using the entire trainQ10 data set.

At each iteration, four acoustic models were estimated using either the following
unsupervised training variants: “1-best” and “1-best weighted” using word, phone1 or state
based confidence measures. The WER on the development set (devQ10) was measured at
each iteration with each method. The results are summarized in Figure 4.3a. The same
language model (LM_10src) was used for all tests. Figure 4.3b shows the per-iteration
absolute WER improvement of the weighting methods over the “1-best” unsupervised
training. For instance, the “Weighted states” model leads to an absolute WER reduction
of 1.0% over “1-best” at the fourth iteration (32.0% vs. 33.0%).

Other than the first iteration of the “Weighted words” variant, weighting by confidence

1Although they have not been explicitly defined, phone based confidence measures can be obtained in a
similar way as the state confidence measures, by changing the matching condition to phone alignments
instead of state alignments.
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4.2. Approximating with the 1-best hypothesis

measures always leads to recognition improvements over the “1-best” unsupervised training
baseline. Moreover, except for the “Weighted states” method, the absolute improvement
increases at each iteration.

At the first iteration, the “Weighted states” method leads to better performance levels
with a statistically significant improvement according to the NIST matched pairs sentence-
segment word error (MAPSSWE) test (Pallett et al., 1990), with p < 0.02. At the
second iteration, the state and phone weighting techniques are statistically similar, but
significantly better than “1-best” and “Weighted words” (p < 0.02). For the last two
iterations, the weighting methods perform similarly, but all are better than the “1-best”
baseline with an absolute WER improvement of at least 0.8% (p < 0.001).

The best result on the devQ10 set was obtained with the “Weighted phones” method
at the fourth iteration (31.9% vs. 33.0% for the 1-best baseline).

4.2.5. Filtering by confidence measures

In the 1-best word-filtered unsupervised AM training, the model parameters are estimated
taking only the best decoding hypothesis into account, but removing words having confi-
dence scores below a certain threshold. This approach can fit into the algorithm proposed
in Section 4.2.2 by using the following function to modify the confidence scores:

C̄(u, i; t) =

{

1 if Cword(u, i; t) > Cτ and w∗
t = u and s∗t = i

0 otherwise
(4.23)

where Cτ is the confidence measure threshold and Cword(u, i; t) is defined in (4.17).
The 1-best state-filtered unsupervised AM training can be obtained by replacing

Cword(·) in the above function by Cstate(·), defined in (4.19).

Experiments

Filtering methods were applied to the same task described in the last section and compared
to the “1-best” unsupervised training baseline. The experiments were carried out using a
similar setup, but with word, phone or state based confidence measures used to filter low
probability training examples.

The WER results on the development set (devQ10) are shown in Figure 4.4a. Fig-
ure 4.4b shows the per-iteration absolute improvement of the filtering methods over the
“1-best” baseline.

The filtering methods always lead to better recognition performance levels than the
“1-best” baseline whichever confidence measure is used. Like for weighing, the absolute
improvement tends to increase with each iteration.

At the first iteration, the “Filtered states” leads to better performance levels with a
statistically significant improvement according to the MAPSSWE test (p < 0.01). Al-
though the difference between the filtering methods from the second to fourth iterations
is not statistically significant, all the filtering methods outperform the “1-best” baseline
(p < 0.001).

The best results on devQ10 were obtained with filtering at the word or state levels.
At the fourth iteration, both led to a WER of 31.8%, compared to 33.0% of the baseline,
and to 31.9% with the best weighting technique (“Weighted phones”).
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Figure 4.4.: Comparison of 1-best filtering methods for 4 iterations of incremental unsu-
pervised acoustic model training. WER on the development set devQ10 (a)
and per-iteration absolute WER improvement over the 1-best method (b).

4.3. Approximating with multiple decoding hypotheses

The unsupervised training techniques described in the previous section rely on the use
of a unique alignment hypothesis provided by the recognizer to guide the parameter
estimation. The standard approach assumes that the best transcription (filtered or not,
weighted or not) approximates well the reference.

This work proposes to rely unsupervised acoustic model estimation on multiple de-
coding hypotheses weighted by their confidence measures. By providing a better approx-
imation to the true audio data transcriptions, the unsupervised AM training algorithm
is expected to converge to a better solution, leading to improved model estimates. The
multiple alignment hypotheses are obtained from the decoding lattices.

4.3.1. The lattice-based training approach

The lattice-based unsupervised acoustic model training can be considered as an approx-
imation to the EM algorithm presented in Section 4.1.2. In this case, the model update
equation presented in (4.12) is rewritten as:

λ∗ = arg max
λ

∑

W,S∈L

∑

L

P (W ,S,L|X , λ̂) · log f (X ,L,S|λ,W) (4.24)

where, in contrast to the 1-best based approach, the first summation is performed over
all word and state sequences contained in the decoding lattice L.

The number of word and state sequences that are used to re-estimate the acoustic
model depends on the size of the decoding lattice, which can be changed during recognition
by pruning, expansion and rescoring operations.

Analogously to the 1-best approaches, the lattice-based unsupervised training can be
seen as a special case of the generalized algorithm proposed in Section 4.2.2. In this case,
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the estimated confidence scores are not modified:

C̄(u, i; t) = Cword(u, i; t) = P (wt = u, st = i|X ,W ,L) (4.25)

where Cword(·) is defined in (4.17),
Optionally, a threshold Cτ can used to remove low confidence hypotheses, leading to:

C̄(u, i; t) =

{

Cword(u, i; t) if Cword(u, i; t) > Cτ

0 otherwise
(4.26)

4.3.2. Influence of the decoding parameters

In this section, we evaluate how some of the decoding parameters affect the performance
of the lattice-based unsupervised training approach.

Influence of the confidence measures

The performance of the unsupervised training algorithms may vary according to the esti-
mation of the confidence measures, which are all based on the word posterior probabilities.
Computing these probabilities depends on the language and acoustic model scores and
on the decoding parameters. The formula to calculate the posterior probability for a
sequence of words W can be represented as:

P (W|X ) =

(

P (W) · f(X|W)1/α
)β

∑

W ′∈L (P (W ′) · f(X|W ′)1/α)
β

(4.27)

where P (W) and f(X|W) denote, respectively, the language and acoustic model scores,
α the acoustic model scaling factor and β the edge exponential scaling factor (Campbell
et al., 2007).

Both scaling factors can be used to adjust the word posterior probabilities and thus the
confidence scores. More specifically, α controls the likelihood ratio between the acoustic
and language models, while β controls the likelihood ratio among concurrent hypotheses.
As β increases, the posterior probability approaches the delta distribution, thereby ap-
proaching the 1-best solution. On the other direction, when β = 0, the confidence scores
of all concurrent hypotheses are equal.

We evaluated how the parameter β influence the accuracy of models generated using
the lattice-based unsupervised training approach. Since the variation of α also changes
the 1-best solution (and β does not), we have not evaluated its impact.

The experiments were carried out on the early European Portuguese system. First,
the bootstrap model, trained on 3 hours of manually transcribed audio data (trainR00),
was used to decode a subset of trainRVE containing 11 hours of audio data. Different
lattice-based acoustic models were generated on this 11 hour data set for values of β
varying from 0.1 to 10. Another model was trained on the 1-best audio transcriptions for
reference. A language model estimated on about 485M words was used for all tests.
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4. Unsupervised HMM/GMM-based acoustic model training

β 0 (1-best) 0.1 0.5 0.8 1.0 1.2 1.5 3.0 10
WER (%) 22.7 22.7 22.4 22.3 22.3 22.2 22.2 22.3 22.6

Table 4.1.: Influence of the edge scale factor (β) in unsupervised lattice-based acoustic
model training using 11 hours of untranscribed training data. The overall
WER on the development data (testR00 + testR09 + testV09 + testE10)
is reported. A threshold Cτ = 0.01 was used. The WER with the bootstrap
model is 27.0%.

The systems were evaluated on a development set comprised of 6.4 hours formed by
testR00 (1.3h), testR09 (1.2h), testV09 (2.1h) and testE10 (1.9h). The results are
shown in Table 4.1. As a reminder, the overall WER on the four sets with the bootstrap
model is 27.0%. The model generated using the 1-best unsupervised training approach
obtained a WER of 22.7%, a 16% relative improvement compared to the bootstrap model.

The lattice-based acoustic model obtained an overall WER of 22.2% for the best
cases (with β = 1.2 and β = 1.5), outperforming the 1-best based model with a 2%
relative improvement. The WER varies by only 0.1% absolute for values of β ranging
between 0.8 and 3.0, which shows a certain robustness of the lattice-based unsupervised
training approach with respect to the edge scale factor. When β = 0, the lattice-based
model equals the 1-best based model as can be expected. At the other extreme (with
β = 10) the model accuracy deteriorates due to the fact that all competing hypotheses
are weighted equally, increasing the importance of noisy data.

Influence of the lattice size

The number of hypotheses considered for training is another factor affecting the perfor-
mance of the lattice-based unsupervised training approach. Intuitively, hypotheses with
low confidence scores will not add substantial information to the model. On the contrary,
the cumulative effect of many low probability hypotheses can potentially mislead the pa-
rameter estimation. In addition, the number of hypotheses also affects the computational
complexity required for training.

A straightforward manner to reduce the number of hypotheses is to filter decoding
hypothesis segments having confidence scores below a certain threshold. Alternatively,
the lattice size can be reduced by decreasing the beam search parameter. In this case, a
path is removed from the lattice if its score is below a certain threshold, calculated as a
function of the beam search parameter. The variation of the beam parameter modifies
the lattice density, which can be measured by the ratio between the number of links (or
nodes) over the number of words given by the best hypothesis.

These two methods were assessed using the same experimental setup described in the
previous section, that is, performing unsupervised AM training with the 11 hour subset
of the trainRVE data. First, the beam search parameter was varied from 2 to 10, leading
to an average density varying from 4.4 to 347.8 links per word. The experiments showed
that varying the lattice density has little impact on the overall WER of the development
data set (testR00 + testR09 + testV09 + testE10). An absolute WER increase of
only 0.2% was observed at the worst case (beam=2, density=4.4) in comparison with
the best performance (WER=22.2%), obtained with the default parameter (beam=8,
density=123.4).
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Threshold 0.001 0.01 0.1 0.3 0.5 0.7
WER (%) 22.4 22.2 22.3 22.4 22.6 22.8

Table 4.2.: Influence of the confidence measure threshold in unsupervised lattice-based
acoustic model training using 11 hours of untranscribed training data. The
overall WER on the development data (testR00 + testR09 + testV09 +
testE10) is reported. An edge scale factor β = 1.2 was used. The WER with
the bootstrap model is 27.0%.

The impact of confidence measure threshold is slightly more relevant. Table 4.2 shows
the results obtained with models trained using different thresholds. The best result was
obtained for a threshold of 0.01. The performance is slightly worse when a threshold
of 0.001 is applied, possibly due to the presence of noisy data. When the threshold is
increased, the system performance is also adversely affected. For threshold values greater
than 0.5, only the 1-best hypothesis (furthermore, filtered) is effectively used for training,
leading to loss in performance. For a threshold of 0.7 (thus, 1-best) an absolute loss of
0.6% is observed compared to the case with a threshold of 0.01 (WER=22.2%).

4.3.3. Comparing lattice-based and 1-best training approaches

An iterative incremental unsupervised training procedure was pursued in order to com-
pare the 1-best and lattice-based unsupervised training approaches. For the lattice-based
method, the edge scale factor (β = 1.2) and pruning threshold (Cτ = 0.01) were optimized
for the first iteration and kept fixed during the training process.

In the first iteration, the acoustic models were estimated on a 11 hour subset of the
trainRVE data. Until the 5th iteration, the amount of training data was doubled at each
iteration, each time re-decoding the subset from the previous iteration. In the 5th and
6th iterations, all the 173 hours of the trainRVE audio data were used.

The WER performance was evaluated on testR00, testR09, testV09 and testE10.
The results by iteration are reported in Table 4.3. The duration specifies the amount of
training data (in hours) used at each iteration. The duration of the lattice-based models
takes into account the weight factors applied to the decoding hypotheses, as well as the
removal of the low probability segments.

For all the evaluation sets, the lattice-based models outperform the 1-best models.
The absolute improvement per iteration varies between 0.3% and 0.6%. According to
the MAPSSWE test, these gains are statistically significant (p < 0.01). After the last
iteration, the absolute overall WER improvement obtained with the lattice-based unsu-
pervised training method is about 0.4% (2% relative) compared to the standard 1-best
approach.

4.3.4. Comparing lattice-based, 1-best weighting and 1-best
filtering approaches

In the last section, the use of multiple decoding hypotheses for unsupervised acoustic
modeling was assessed and compared to the standard 1-best unsupervised training. In
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System Dur testR00 testR09 testV09 testE10 Overall

Bootstrap 3 36.1 36.2 21.4 22.5 27.0

1-best (1st iteration) 11 32.7 33.1 16.0 18.1 22.7
lattice (1st iteration) 10 32.2 32.8 15.4 17.7 22.2
1-best (2nd iteration) 22 31.1 31.3 14.6 16.6 21.2
lattice (2nd iteration) 20 30.5 30.9 14.2 16.2 20.7
1-best (3rd iteration) 44 29.8 30.2 13.6 15.1 19.9
lattice (3rd iteration) 41 29.0 29.3 13.1 14.7 19.3
1-best (4th iteration) 87 27.6 28.4 12.9 14.3 18.7
lattice (4th iteration) 80 27.5 28.0 12.6 13.9 18.4
1-best (5th iteration) 173 26.6 27.3 12.9 13.5 18.1
lattice (5th iteration) 157 26.2 26.5 12.5 13.5 17.8
1-best (6th iteration) 173 26.4 27.3 12.9 13.7 18.1
lattice (6th iteration) 159 26.0 26.8 12.6 13.3 17.7

Table 4.3.: Comparison between the 1-best and the lattice-based acoustic models using
an incremental unsupervised training strategy. The WER(%) is reported for
each iteration. ‘Dur’ corresponds to the duration (in hours) of the acoustic
data used for training.

particular, the influence of the decoding parameters was evaluated using the early Euro-
pean Portuguese ASR system.

This section compares the use of multiple hypotheses with the 1-best weighting and
1-best filtering unsupervised training approaches using the improved EP system. More
precisely, the 1-best, 1-best weighted at phone level, 1-best filtered at state level and
lattice-based unsupervised training methods were assessed using an incremental iterative
training procedure.

The experiments were performed as follows. First the bootstrap model, estimated on
the 3 hour data set trainR00, was used to decode a subset containing 18 hours of the
trainQ10 data set. An acoustic model was estimated on these data using either of the
unsupervised training approaches assessed (1-best, 1-best weighted, 1-best filtered and
lattice-based). These models were used to decode 36 hours of trainQ10 (the previous
18h + another 18h). The procedure was repeated for other two iterations using the entire
trainQ10 data set (72 hours).

For the 1-best filtering method, the confidence threshold was optimized at each it-
eration in order to minimize the WER on the development data set devQ10. For the
lattice-based method, the threshold was selected at the first iteration and kept fixed. The
default edge scale factor (β = 1) was used.

The models were evaluated on the development set (devQ10) at each iteration. The
models obtained after the last (4th) iteration, were also assessed on the test sets testQ10
and testQ11. The results are summarized in Table 4.4.

As in the previous experiments, the use of confidence measures for unsupervised
acoustic modeling helped to improve the recognition accuracy. The 1-best weighted, 1-
best filtered and lattice-based models outperform the baseline 1-best model on about 0.8%
absolute on the combined devQ10+testQ10+testQ11 set after the last iteration.

At the first iteration, the 1-best filtered and the lattice-based methods outperform
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Method
devQ10 testQ10 testQ11 Overall

1st 2nd 3rd 4th 4th 4th 4th
(18h) (36h) (72h) (72h) (72h) (72h) (72h)

Bootstrap 53.7 45.9 54.8 51.5

1-best 41.5 36.7 33.5 33.0 26.8 33.0 30.9
1-best phone weighted 41.1 35.9 32.5 31.9 26.3 32.2 30.1
1-best state filtered 40.6 35.7 32.6 31.8 26.3 32.2 30.1
Lattice 40.5 35.3 32.4 31.9 26.2 32.3 30.1

Table 4.4.: Comparison of unsupervised acoustic model training approaches using an iter-
ative incremental training strategy. The WER(%) is measured on the develop-
ment set devQ10 for all iterations, and on the test sets testQ10 and testQ11

for the last iteration. The numbers within parentheses represent the amount
of training data (in hours) used at each iteration.

the 1-best and 1-best weighted approaches on the development data set devQ10 (with
p < 0.04 according to the MAPSSWE test). At the second iteration, the lattice-based
model obtains the best performance levels (p < 0.005). At the 3rd and 4th iterations, no
difference in performance is observed between the 1-weighted, 1-best filtered and lattice-
based models.

These results suggest that the use of multiple decoding hypotheses for unsupervised
training is well-suited for small training data sets, which usually generate automatic tran-
scriptions with high training WERs. As the errors contained in the automatic transcrip-
tions reduce, the 1-best solution becomes more reliable. This could be taken into account
for the lattice-based training approach by, for instance, decreasing the edge scale factor
from one iteration to another. However, I suppose that only marginal gains could be
obtained by doing so.

4.4. Other training strategies

In unsupervised AM training approaches, dealing with recognition errors usually relies on
the use of confidence measures. The idea is to remove potential errors from the training
data or reduce their impact by weighting the training data, avoiding then the model
parameters to overfit on wrongly assigned classification labels.

Overfitting on training data can also be avoided by using a cross-validation (CV)
approach. Shinozaki et al. (2009), for instance, applied a CV method to improve the
performance of an unsupervised acoustic model adaptation approach. One of the problems
with CV techniques relates to the number of choices of independent training subsets
(folds). If, on one hand, the use of many folds increase the possibility of getting better
generalization, it also leads to data fragmentation. For the same task mentioned above
(unsupervised acoustic model adaptation), Kubota et al. (2010) proposed an aggregated
technique that reduces data fragmentation. Different from CV, it allows overlap between
training subsets to increase the amount of training data at each iteration.

Both methods could be applied to unsupervised AM training. However, besides the
fragmentation problem mentioned, another technical issue could arise: the use of CV or
aggregated methods would require managing different training subsets. Even if this might
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Figure 4.5.: Unsupervised acoustic model training strategies assessed in this work for a
training data set divided into four 18 hour subsets. The colored boxes denote
the subset used during each iteration. The numbers within parentheses denote
the total amount of audio data decoded for all iterations.

be considered a minor issue, dealing with many acoustic models and decoding setups for
every iteration increase the complexity of the training procedure.

The main goal of a CV-based unsupervised AM training approach is to avoid the
propagation of the recognition errors from one iteration to another. This effect can be
approximated by carefully defining a training strategy that uses different portions of the
audio data across the training iterations. These strategies are discussed below.

Training strategies

A straightforward training strategy used for unsupervised acoustic modeling is to used the
entire training data set at every iteration (Ma et al., 2006). Alternatively, an incremental
procedure can be performed by increasing the amount of data at each time and re-decoding
data from previous iterations (Lamel et al., 2002b).

In the all data strategy, wrongly assigned labels might be reinforced from one iteration
to another. Intuitively, the incremental strategy could help to reduce this effect: in every
iteration, there is always a portion of the data that was not used to estimate the models
from previous iterations.

If this assumption is correct, another proposed training strategy, henceforth differ-
ential, would work even better. Instead of systematically estimating the models from
data obtained at the current and previous iterations, the new acoustic model could be
estimated on an entirely new data set. Of course, it would be necessary to increase the
amount of data at some point to avoid data fragmentation. Two possibilities were con-
sidered in this work: increasing the amount of data after each iteration; or increasing the
amount of data after having completed a cycle, that is, after spanning all training subsets.

The aforementioned training strategies are illustrated in Figure 4.5 for a training
set equally divided into four subsets. This division was chosen to keep about the same
training computational complexity for all methods compared. In particular, about 200
hours of audio data are decoded at each method for the whole iterative procedure.
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Training
strategy

# of
Iter.

Amount of
data decoded
(in hours)

WER(%)
1-best 1-best

weighted
1-best

filtered
Lattice

All data 3 216 31.5 30.4 30.7 30.3
Incremental 4 198 30.9 30.1 30.1 30.1
Differential 1 4 144 30.6 30.2 30.1 30.1
Differential 1 5 216 30.3 29.9 29.8 29.7
Differential 2 7 216 30.2 - 29.7 29.6

Table 4.5.: Comparison of unsupervised acoustic model training strategies. The WER
was evaluated on about 10.3h of data comprised of devQ10, testQ10 and
testQ11. The number of iterations and the total amount of training data
decoded are reported. All the acoustic models were trained on the 72 hour
data set trainQ10.

The number of iterations performed on each method is not the same. For instance,
three and seven iterations have to be done for the ‘All data’ and ‘Differential 2’ strategies,
that is, estimating three and seven acoustic models respectively. However, the number
of iterations is not the most important factor determining the complexity of the training
strategy: decoding the training data is the most time consuming step of unsupervised
AM training approaches. Thus, the experiments were carried out in a manner that all
training strategies required the same amount of decoding time.

Experimental results

In order to compare the four training strategies presented, a set of experiments was
carried out using the trainQ10 acoustic data. This training set was divided into four
non-overlapping subsets, each containing about 18 hours of audio data. The number of
iterations performed is exactly as presented in Table 4.5, all data (3), incremental (4),
differential 1 (5) and differential 2 (7). For each strategy, the 1-best, 1-best weighted,
1-best filtered and lattice-based unsupervised AM training approaches were used.

These strategies were assessed on about 10.3 hours of data, that is, the development
set devQ10 and the test sets testQ10 and testQ11. Table 4.5 summarizes the results
obtained. In addition to the WER measured on the combined test sets, the number
of iterations and total amount of training data decoded are reported. The results are
reported for the last iteration of each method, except for the ‘Differential 1’ strategy, for
which both the 4th and 5th iteration results are presented.

The influence of the training strategy is clearer for the standard 1-best unsupervised
training approach. This can be justified by the fact that the other methods (1-best
weighted, 1-best filtered and lattice) also used confidence based measures to reduce the
impact of the recognition errors. The ‘Differential 2’ strategy leads to a WER absolute
improvement of 1.3% compared to the ‘All data’ strategy when the 1-best based acoustic
models are used to decode the test data.

The use of a differential strategy (1 or 2) leads to better performance levels for the
1-best weighted, 1-best filtered and lattice-based models. After the 4th iteration, the
‘Differential 1’ strategy leads to same performance levels as the ‘Incremental’ strategy,
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even if less time is spent for decoding the training data (216h vs. 144h). At the 5th
iteration, ‘Differential 1’ leads to an absolute WER improvement around 0.3–0.6% com-
pared to ‘Incremental’ for a similar amount of time spent for decoding. The ‘Differential
2’ strategy leads to the best overall performances for the cases where it was applied, being
marginally better than ‘Differential 1’ (a 0.1% WER absolute improvement).

It is worth noting that the best performance levels for all strategies were obtained
by using the lattice-based unsupervised training approach. The best overall WER was
achieved with the ‘Differential 2’ strategy and the lattice-based models (29.6%). This
corresponds to an absolute gain of 1.9% compared to the baseline 1-best ‘All data’ strategy
(31.5%) and 1.3% compared to the 1-best ‘Incremental’ strategy (30.9%).

4.5. Summary

In this chapter, the unsupervised acoustic model training algorithm was investigated.
This approach was first presented in the form of an incomplete data problem in which the
word sequence is unknown, in addition to the state and Gaussian label sequences.

With a controlled experiment, it was shown that dealing with the recognition errors
is a major issue in unsupervised AM training. Different weighting and filtering confidence
based approaches used to reduce the impact of errors were described. They were all
presented within a proposed theoretical framework as approximations to a generalized
EM algorithm.

The weighting and filtering approaches were assessed with confidence measures based
on words, phones and states. The experiments suggested that the use of state-based
(instead of word-based) confidence measures is beneficial during the first iteration of
an incremental unsupervised acoustic model training process. However, no significant
improvement was observed after the last iteration.

We proposed the use of multiple decoding hypotheses weighted by their confidence
measures to guide the acoustic model parameter estimation. The use of multiple hypothe-
ses extracted from the decoding lattices was justified theoretically as a smooth approxima-
tion to the generalized EM algorithm. The influence of different decoding parameters was
empirically evaluated. The lattice-based method proved to be robust to the variation of
the beam search parameter and behaves quite well for large variations of the edge scaling
factor and the confidence measure threshold.

For all the experiments performed, the lattice-based unsupervised training approach
led to the best overall performances compared to the standard 1-best, the 1-best weighted
and the 1-best filtered approaches. The improvements were significantly better for the
first iterations of training, when the acoustic model estimates are quite inaccurate. As
long as the model ameliorates, the improvement led by the lattice-based approach reduces
compared to the 1-best solution.

The lattice-based and the weighting approaches provide easier training setups com-
pared to filtering, which requires the optimization of the confidence threshold parameter.
The main disadvantage of the lattice-based approach is the increase in time required to
estimate the acoustic models (about 1.5 times compared to the 1-best approaches). How-
ever, this difference should be negligible, since most of the computational complexity of
unsupervised acoustic modeling is due to the decoding of the training data.
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4.5. Summary

As an attempt to avoid the propagation of the recognition errors from one iteration
to another, two variants of a differential training strategy were presented. Both led to
better recognition performance levels than two other reported strategies, all data (Ma
et al., 2006) and incremental (Lamel et al., 2002b).

The combination of two techniques proposed in this chapter, the lattice-based un-
supervised AM training and the differential strategy, led to the best overall WER per-
formance (29.6%). Absolute improvements of 1.9%, 1.3% and 0.5% were respectively
obtained over three reference unsupervised training methods: 1) 1-best with the ‘All
data’ strategy; 2) 1-best with the ‘Incremental’ strategy; and 3) 1-best filtered with the
‘Incremental’ strategy.

When trained on the same audio data, the supervised acoustic models outperforms
their unsupervised counterpart on about 7.4% relative (27.4% vs. 29.6%). This differ-
ence is on the same order as reported in previous work (Lamel et al., 2002b; Ma et al.,
2006; Novotney et al., 2009). Furthermore, the relative difference between supervised and
unsupervised approaches seems to be invariant to the amount of data used in acoustic
modeling. However, it is worth reminding that the performance of unsupervised models
can be improved by adding more automatically transcribed data with a small increase in
terms of development cost.
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Chapter 5

Unsupervised multi-layer perceptron
training

5.1. Introduction

As presented in Chapter 4, unsupervised acoustic model training methods are suitable
when sufficient manually transcribed audio data is not available, helping to reduce the
human effort required to improve the performance of large vocabulary continuous speech
recognition systems. Most of the reported work in unsupervised acoustic modeling make
use of short-term raw acoustic features like PLP (Hermansky, 1990) cepstral features.
Such features are extracted directly form the audio stream via a power spectrum analysis
as described in Section 2.2.4.

In recent years, there has been growing interest to increase the discriminative power
of the acoustic features. In particular, many recent systems rely on multi-layer perceptron
(MLP) classifiers for feature extraction. MLP-based features have been successfully used
in a variety of LVCSR tasks (Ellis et al., 2001; Zhu et al., 2005) and, when used in
combination with PLP features, can lead to substantial gains in recognition performance
(Fousek et al., 2008a,b; Lamel et al., 2011).

In reported work, the MLP classifiers have been trained in a supervised manner, that
is, relying on the use of manually transcribed audio data. Even when manually transcribed
data for the target language are not available, acoustic modeling can still take advantage
of the discriminative features. A proposed solution is to use features extracted from
MLPs trained for other languages (Stolcke et al., 2006; Tóth et al., 2008) or for multiple
languages (Grezl et al., 2011; Veselý et al., 2012; Vu et al., 2012).

An alternative solution to allow the use of MLP features without relying on manually
annotated data is proposed in this chapter. As is done for the HMM parameters, the
MLP classifiers are estimated on automatically transcribed data. MLPs trained in an
unsupervised manner are empirically compared to cross-lingual MLPs (Stolcke et al.,
2006; Tóth et al., 2008). An unsupervised MLP adaptation scheme is also proposed. In
this case, an MLP trained for another language is retrained upon the untranscribed data
of the target language. Retraining is based on the approaches proposed in Thomas et al.
(2012) and Grézl et al. (2014).

The remainder of this chapter is organized as follows. In Section 5.2, a general descrip-
tion of the MLP model is presented, showing current applications of MLPs in acoustic
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modeling. Section 5.3 presents the experimental work on the use of bottleneck MLP
classifiers for feature extraction. We first evaluate the impact of using manually or auto-
matically transcribed data for the estimation of the HMM and MLP parameters. Then,
models estimated with features extracted from unsupervised MLPs or cross-lingual MLPs
are empirically compared. A summary is presented in Section 5.4.

5.2. Multi-layer perceptron neural networks

As the name suggests, multi-layer perceptron is a type of artificial neural network model
formed by multiple layers, in which nodes have a non-linear activation function and are
fully-connected to the next layer by means of weighted links (see Figure 5.1).

Let us denote a certain layer containing L neurons by a vector y, the previous layer
containing K neurons by a vector x and the weighted links by a K×L dimensional matrix
A = {akl}k∈[1,K],l∈[1,L]. The value of the l-th coefficient of the vector y (neuron yl) can be
calculated by:

yl = f

(

bl +
K
∑

k=1

xk · akl

)

(5.1)

where bl represents the l-th element of a bias vector b that allows the shift of the activation
function with respect to the input vector x.

The non-linear activation function f(·) depends on expert choices. Usually, sigmoidal
activation functions are used for internal layers. In the output layer, a softmax function is
commonly used to allow the calculation of class posterior probabilities. Thus, the neuron
activation functions can be represented as:

f(zl) =















1

1 + e−zl
all layers but the output layer

ezl
∑

k e
zk

for the output layer

(5.2)

MLPs have been used for acoustic modeling with two main objectives. First, they can
be used to model the output probability density of HMM states, replacing Gaussian mix-
ture models (Section 5.2.2). Alternatively, they can be used to provide acoustic features
for a standard HMM/GMM based acoustic model architecture (Section 5.2.3).

5.2.1. MLP training

The MLP parameters, namely the weight matrices and bias vectors, are often estimated
using the so-called back-propagation algorithm (e.g. (Rojas, 1996, Chapter 7)). This
algorithm attempts to minimize the multi-class classification errors, which is performed
in two main steps. First, the input vectors are processed by the MLP in order to predict
output values. Predicted values and the true reference are used to calculate an error
vector. In the second step, the errors are propagated backward and used to update the
model parameters.
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The back-propagation algorithm requires pairs of input/output vectors. In the case
of acoustic modeling, it means having data labeled at the phone or HMM state level.
In other words, the frame/phone or frame/state alignment is required. In the same way
it is done for HMM training, these associations can be obtained via forced alignment if
manual audio data transcriptions are available. In this chapter, it is proposed to use
partially accurate alignments provided by an existing speech recognizer.

5.2.2. Hybrid HMM/MLP architecture

The hybrid HMM/MLP architecture was introduced for automatic speech recognition in
Morgan and Bourlard (1995). In this architecture, an MLP is used to model the HMM
state observation probability densities. Thus, instead of a GMM, each state is represented
by a node from the output layer of the MLP.

In early years, the hybrid models did not lead to sufficiently high gains of recognition
accuracy to justify their usage to the detriment of HMM/GMMs. Their use was limited
by their inherent high computational complexity, which restricted the MLPs to have only
a few layers and units (especially output units).

The hybrid architecture has gained a lot of popularity in the last few years. Due to the
increase in power of easily available hardware and development of new training methods,
the use of MLPs with several layers (known as deep neural networks (DNN)) was shown to
outperform GMMs for a variety of speech recognition tasks (Mohamed et al., 2011, 2012;
Hinton et al., 2012). By increasing the number of layers, more linear space transforms are
allowed, increasing the ability of the system to capture underlying model structures. This
advent has considerably increased the strength of the HMM/MLP architecture, which has
risen to the new state-of-the-art in terms of acoustic modeling. As a drawback, DNNs are
slower to train in comparison to HMM/GMM models.

Although the use of DNN based acoustic models is beyond the scope of this thesis,
it has been shown that unsupervised training approaches are very likely to be used in
such an architecture (Laurent et al., 2014). Future research directions on this topic are
discussed in Part IV.

5.2.3. MLP for feature extraction

Another common use of neural networks is for acoustic feature extraction (Hermansky
et al., 2000; Ellis et al., 2001; Zhu et al., 2005; Grézl et al., 2007; Fousek et al., 2008a).
In this solution, the MLP is used to provide feature vectors which are used to estimate
standard HMM/GMM based acoustic models. Due to the complementary characteristics
of MLP and PLP based features, their combination often leads to substantial gains in
recognition performances (Fousek et al., 2008b).

MLP features are derived in three steps. First, a raw feature vector, typically covering
a wide temporal context (100–500 milliseconds), is extracted from the audio signal via
a power spectrum analysis. This input vector is processed by the MLP, from which a
feature vector is extracted. A decorrelation transform is applied to this feature vector to
produce the final MLP feature vector.

The MLP features can be extracted from the output layer (Hermansky et al., 2000),
being, therefore, probabilistic features or from a hidden (the bottleneck) layer (Grézl et al.,
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Figure 5.1.: A 4-layer bottleneck multi-layer perceptron (MLP) architecture. Features
are extracted from the third-layer (the bottleneck) and processed by PCA
transformation. The output layer is used only during training.

2007). In this chapter, bottleneck features were used.

5.3. Unsupervised bottleneck MLP training

The bottleneck features are extracted from a hidden layer of an MLP classifier. The main
advantage of such a structure is the independence between the size of the feature vector
and the number of training targets. This topology can be used to target MLP training
to sub-phoneme classes, such as HMM states, without increasing the size of the acoustic
feature vector (Grézl et al., 2007).

The 4-layer bottleneck MLP used in this work is represented in Figure 5.1. The raw
input vector is based on a temporal pattern (TRAP) analysis (Schwarz et al., 2004): long
energy trajectories for a 300 millisecond sliding window in 19 Mel-scale frequency sub-
bands of the spectrogram are computed and projected using a discrete cosine transform
(DCT). 25 coefficients per band are retained, yielding a 475-dimensional input vector.

The first hidden layer is large (3500 units) enough in order to provide necessary
modeling power. The second hidden layer, the bottleneck, contains as many nodes as the
desired size of the feature vector. A 39-dimensional vector is generally used in our systems
for easy comparison with the PLP-like feature vectors. The output layer computes the
target class posterior probabilities. In this work, context-independent HMM phone states
were used as targets, since they were shown to outperform phone targets (Grézl et al.,
2007). The size of the output layer is proportional to the size of the phone list. The feature
vector extracted from the bottleneck layer is decorrelated using a PCA transformation.
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As stated in Section 5.2.1, MLP training requires an alignment between the input
frame vectors and the state (or phone) output target labels. This task usually relies on
manually transcribed data, where the texts are aligned to speech. In order to train an MLP
even if manual transcripts are not available, we propose to use the alignment hypothesis
provided by a recognizer as output class labels, in a similar way as was performed for the
HMM parameters.

In the following subsections, an empirical comparison between supervised and un-
supervised MLP training is performed. In addition, MLPs trained in an unsupervised
manner are compared to cross-lingual MLPs. The experiments were carried out using a
similar setup, which is described in the following section.

5.3.1. Experimental setup

The experiments were performed using the LIMSI European Portuguese ASR system (Sec-
tion 3.2.4). The setup used here is slightly different from the one used for the experiments
in Chapter 4. It uses the complete acoustic training data and is executed as follows. First,
a bootstrap acoustic model was estimated on the trainR00 data. This model was used
to initiate an incremental iterative procedure to decode and estimate a model on the 173
hour trainRVE data set using a lattice-based unsupervised training approach (Chapter 4).
This is the model “lattice (6th iteration)” shown in Table 4.3. This latter model was used
to decode the 72 hour trainQ10 and the 71 hour trainQ11 data sets. In total, 316 hours
of audio data (173 + 72 + 71) were used for the experiments reported in this chapter.

The bottleneck MLP architecture shown in Figure 5.1 was used. It uses a 475-
dimensional TRAP-DCT acoustic feature vector as input. The first hidden layer has
3500 nodes. The bottleneck layer produces a 39-dimensional feature vector. The output
layer contains 109 HMM state targets. There are 35 three-state phones and four units
with a single state (silence, breath and two hesitation markers). The MLP feature vector
is concatenated to a 39-dimensional PLP-like feature vector (12 cepstral features + log
energy along with their first and second derivatives). A 3-dimensional pitch feature vector
(pitch with its first and second derivatives) is also appended, resulting in a 81-dimensional
feature vector (MLPPLPF0).

MLP training was performed using the QuickNet software (Jonhson, 2004). A sim-
ilar training procedure was adopted for all cases. First, the data were randomized and
split into three non-overlapping subsets containing about 13%, 26% and 52% of data for
training, with the remainder reserved for cross-validation. Training is performed in six
epochs. The three first epochs use 13% of data, the next two 26% and the last one 52%
of data. The learning rates change for each different training subset. In some cases (they
will be explicitly mentioned) a fourth epoch was carried out using the entire training data
set. The PCA transforms were estimated using a randomly selected subset of the training
data.

For all three training subsets (trainRVE, trainQ10 and trainQ11), the 1-best hypoth-
esis and the decoding lattices were generated to be used for unsupervised training. More
specifically, the MLP parameters were estimated using the 1-best decoding hypothesis,
while the lattices were used to estimate the HMM/GMM parameters.

A language model trained on 485M of words (early EP system setup Section 3.2.3) was
used only to decode the trainRVE data. Other than that, all experiments use the language
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Acoustic Model
Amount of

data (in hours)
LM PLP MLPPLPF0

trainRVE / Unsupervised (baseline) 173 LM_10src 33.0 -
trainQ10 / Unsupervised 72 LM_10src 31.1 29.9
trainQ10 / Supervised 72 LM_10src 29.1 27.3
trainQ10 / Supervised 72 LM_11src 28.7 27.0

Table 5.1.: Comparison of PLP and MLP based acoustic models trained in a supervised
or an unsupervised manner. The WER(%) is measured on the development
set devQ10. LM_11src includes the trainQ10 manual transcriptions in the
training corpus, while LM_10src does not.

model LM_10src, which was trained on about 639M words and does not contain the
manual transcriptions of the trainQ10 data (see Chapter 3). Another model LM_11src,
which contains the trainQ10 transcriptions, was used (for reference) together with the
MLP and the HMM trained in a supervised manner.

5.3.2. Comparing PLP and MLP based acoustic models

The first experiments were carried out to assess the impact of the MLP bottleneck features
in acoustic modeling. This comparison made use of trainQ10 data to train both the MLP
and the HMMs in order to be able to compare the supervised and unsupervised training
approaches. The systems were evaluated on the development set devQ10.

The results are summarized in Table 5.1. The PLP baseline model trained on the
trainRVE data obtained a WER of 33.0% on devQ10. The unsupervised PLP-based
acoustic model obtained a WER of 31.1% on devQ10, that is, a 5.2% relative improvement
over the baseline. This result is different from the one presented in Table 4.4 (31.9%),
given the different initial conditions of the two experiments. The use of features extracted
from an MLP trained in an unsupervised manner and combined with the PLP+F0 features
led to an additional gain in performance, obtaining a WER of 29.9%. This represents a
3.9% relative gain compared to the unsupervised model using only PLP features.

As can be expected, the use of manual (rather than automatic) transcriptions ob-
tains better performance levels for all conditions. When a supervised training approach
is used to estimate both the MLP and the HMM parameters, WERs of 29.1% and 27.3%
are obtained, respectively, for the PLP and MLPPLPF0 based acoustic models. This
represents relative differences of 6.4% and 8.7% with respect to their unsupervised coun-
terparts using the same acoustic training data and the same language model. At a first
glance, this difference may appear fairly large, but it is worth recalling that automatic
transcriptions are effortless to obtain compared to manual transcriptions. As we will show
in Section 5.3.6, the inclusion of more untranscribed data in the HMM and MLP training
corpus shorten the difference with respect to the fully supervised approach (leading to a
WER of 27.4% on devQ10).

When the trainQ10 manual transcriptions are included in the language model training
corpus (LM_11src, last row), an additional absolute gain of 0.3–0.4% is obtained.
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HMM Supervised HMM unsupervised

MLP Supervised 27.3 29.4
MLP Unsupervised 28.3 29.9

Table 5.2.: Comparison of supervised and unsupervised training approaches used to esti-
mate either MLP and HMM parameters. The WER(%) is measured on the
development set devQ10. MLP and HMM parameters were estimated on the
72 hour trainQ10 data set. LM_10src was used for decoding.

5.3.3. Comparing unsupervised and supervised MLP and HMM
training approaches

In the previous section, a comparison between PLP and MLP (precisely MLPPLPF0)
based models was performed. In particular, it was shown that the supervised system
outperforms the unsupervised one by about 8.7% relative. This difference is higher than
for the PLP based models (6.4%). Given this scenario, a logical question is: what is the
impact of supervised and unsupervised training on each of the components, MLP and
HMM? This section aims to empirically answer this question.

The experimental setup is similar as in the last section. The 72 hour training trainQ10
data were used to estimate either the MLP and the HMM parameters using either a
supervised and an unsupervised approach. Four acoustic models were estimated on the
same data using the possible combinations of MLP supervised/unsupervised and HMM
supervised/unsupervised. The models were evaluated on the development set devQ10

using the same language model, LM_10src.
Table 5.2 summarizes the results obtained. Systems shown on the main diagonal

correspond to those where both components (MLP and HMM) are trained with manual
(top left) or automatic (bottom right) transcriptions, leading to WERs of 27.3% and
29.9% respectively.

The system in which only the HMM is trained in an unsupervised manner (top right)
has an absolute performance loss of 7.1% compared to the fully supervised system. How-
ever, when only the MLP is trained in an unsupervised way (bottom left), the relative
difference with respect to the fully supervised system is only 3.5%. Using an unsupervised
HMM training approach, the supervised MLP (top right) outperforms the unsupervised
MLP (bottom right) on only 1.7% relative (0.5% absolute). These results suggest that
the MLP parameter estimation is more robust to the recognition errors present in the
training data than the HMM parameter estimation.

5.3.4. Filtering by confidence measures

In Chapter 4, it was shown that the use of confidence measures for filtering or weighting are
very helpful to improve the unsupervised acoustic model training approach. We therefore
decided to evaluate if they could also benefit the unsupervised MLP parameter estimation.

Five different MLPs were estimated using a portion of trainQ10. For each case,
frames having state based confidence measures (see Section 4.2.3) below a certain thresh-
old were discarded, keeping 100%, 90%, 80%, 60% or 50% of the data. An unsupervised
acoustic model was trained with features extracted from each of these MLPs, and com-
bined with the PLP and pitch features. The HMM parameters were estimated on all
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the data, using the decoding lattices of trainQ10. These five models were evaluated on
devQ10.

No difference in performance was observed for the models estimated on features gen-
erated from the bottleneck MLPs trained on 100%, 90%, 80% and 60% of data. The
WER fluctuates less than 0.1%, all leading to a WER of 29.9%. A small degradation
in performance (WER = 30.2%) was observed when the MLP is trained on only 50% of
data.

Given that filtering the training data did not lead to improvements, and the WER
obtained with unsupervised MLP is close to the one obtained with supervised MLP (a
0.5% absolute difference, c.f. Table 5.2), further experiments involving weighting by
confidence measures were not performed.

5.3.5. Using additional untranscribed acoustic data

In the previous experiments, the MLP and HMM components were trained using only
the trainQ10 data set for comparison purposes between supervised and unsupervised
approaches. In this section, the effect of adding other unstranscribed data to train the
MLP and HMM components was evaluated.

Three conditions were tested. First, only the 72 hour trainQ10 set was used, as in the
previous experiments. Second, the training subset trainQ11 was added, totalizing 143
hours. For the third condition, the trainRVE data were included, totalizing 316 hours of
speech. Data were added respecting this sequence mainly due to the similarity between
the trainQ10 and trainQ11 sets, which come from the same type of data (the “Quaero”
data, as described in Chapter 3).

These conditions served to estimate either the MLP or the HMM parameters via
unsupervised training. Several, but not all the possible combinations were assessed. In
particular, the HMM parameters were estimated on equal or smaller amount of training
data in comparison to the MLP parameters. All the systems were evaluated on devQ10.

The recognition performance results are reported in Table 5.3. The first column shows
acoustic models trained using only trainQ10, but with MLP features (in addition to the
PLP and pitch features) extracted from MLPs trained on varied amounts of data. By
doubling the amount of data used for MLP estimation (first to second row), the WER
decreases from 29.9% to 29.5%. This is almost the same performance obtained with the
use of an MLP trained on the manual transcriptions of trainQ10. The performance is
further improved when more 173 hours of untranscribed data (trainRVE) are used for
MLP training (third row). A WER of 28.6% is obtained.

On the other hand, the additional data for the estimation of the HMM parameters
does not always lead to a gain in recognition performance. When all data are used to
estimate the bottleneck MLP parameters (third row), the best performance is achieved
with acoustic models trained on trainQ10 + trainQ11, obtaining a WER of 27.8%. A
loss in performance (0.1%) is observed when the trainRVE data are also included in the
HMM training set.

This latter effect is known and can be justified by the fact that part of the trainRVE

data come from slightly different types of source with respect to the test set. There exist
different adaptation techniques that can be used to include mismatching data for acoustic
modeling and avoid a loss in performance as was observed here. This topic will be treated
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MLP

Acoustic Models
trainQ10

(72h)
trainQ10

+ trainQ11

(143h)

trainRVE +
trainQ10 +
trainQ11 (316h)

trainQ10 (72h) 29.9 - -
trainQ10 + trainQ11 (143h) 29.5 28.2 -
trainRVE + trainQ10 + trainQ11 (316h) 28.6 27.8 27.9

Table 5.3.: Effect of adding unstranscribed data for unsupervised MLP and HMM param-
eter estimation. The WER(%) was measured on the development set devQ10.
The duration of each training set is shown in parenthesis.

in the third part of this thesis.

5.3.6. Comparing unsupervised and cross-lingual MLPs

Stolcke et al. (2006) is the first who reported successful use of MLPs to produce fea-
tures for a different task or language. Another example of cross-lingual portability was
reported in Tóth et al. (2008), where an English MLP was used in a Hungarian ASR
system. In both cases, probabilistic MLP features were used with supervised training of
the acoustic models. We have also reported the successful use of cross-lingual bottleneck
MLPs with the unsupervised estimation of the HMM parameters in Roy et al. (2013). Be-
yond the results published in this latter work, we have observed same performance levels
with the use of a supervised English MLP (25.0%) and an unsupervised Hungarian MLP
(24.9%). MLP portability is revisited here and compared to the proposed unsupervised
MLP training approach.

The experiments were performed using the European Portuguese ASR system. Two
bottleneck MLPs, trained for English and French broadcast data, were used for com-
parison. Other than the output layer, which depends on the phone states in each lan-
guage, they have the same structure as the Portuguese MLP: 4-layers with dimensions
475× 3500× 39×O, with O being the number of HMM target states.

The two cross-lingual MLP networks were trained in a supervised manner using
roughly the same volume of audio data. The English MLP was trained using 645 hours
of speech data, and the French MLP with 600 hours (Le et al., 2010). Both networks
were used to produce features for the 72 hour trainQ10 data set, that were used to build
acoustic models with MLPPLPF0 features trained on an unsupervised fashion. These
two models were used to decode the development data devQ10. The WERs obtained are
shown in the second column of Table 5.4 (2nd and 3rd entry). For comparison purposes,
the performance of the HMM trained with features extracted from the MLP trained on all
of the Portuguese untranscribed data is shown in the first row. The HMM trained with
features produced with the English MLP obtains similar WER levels as compared to that
trained with using the unsupervised Portuguese MLP (28.7% and 28.6% respectively). A
small gain (1.0% relative) is obtained with the features generated with the French MLP
(28.3%).

The French MLP was also used to produce features for the 71 hour trainQ11 data
set. These features were used to estimate a model on the combined trainQ10 + trainQ11
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MLP
Acoustic Models

trainQ10

(72h)
trainQ10 +

trainQ11 (143h)

trainRVE + trainQ10 + trainQ11 (316h) 28.6 27.8
English (645h) 28.7 -
French (600h) 28.3 27.3

Table 5.4.: Comparison of an MLP trained in an unsupervised manner and cross-lingual
MLPs. The acoustic models were trained in an unsupervised way using the
decoding lattices of trainQ10 or trainQ10+trainQ11. The WER(%) is mea-
sured on the development set devQ10. LM_10src was used for decoding.

data set. The recognition results are shown in the third column of Table 5.4. This new
model outperforms the one trained with unsupervised Portuguese MLP features (first
row) by 1.8% relative (27.3% and 27.8%, respectively).

Retraining MLPs

The use of cross-lingual MLPs is quite efficient in order to improve the recognition per-
formance compared to PLP models, even when little (or no) manually transcribed data
are available. Intuitively, one can expect that the use of an MLP tuned for the target
language should outperform the cross-lingual MLPs trained on the same amount of data
(Stolcke et al., 2006). Le et al. (2010), for instance, showed that adapting bottleneck
MLPs to a specific target condition (channel and dialect) outperforms the use of a gen-
eralized (channel and dialect independent) MLP. Adaptation was done by retraining the
MLP with a subset of the data representing the target condition, without changing the
MLP structure. A similar multi-language adaptation technique was described in Vu et al.
(2012). In this latter work, a language independent MLP was trained on a large amount
of data with certain phones as output targets. The MLP was then adapted to a new
language via retraining. The output layer is replaced in order to represent the new phone
targets.

Following these approaches, the French MLP was retrained using all of the Portuguese
untranscribed audio data, replacing the output layer by the context independent states of
the Portuguese phone inventory. A single training epoch with all the data was performed.
For comparison, the unsupervised Portuguese MLP was also retrained on all data. Both
models were used to generate features for the trainQ10+trainQ11 data, from which,
unsupervised acoustic models were estimated. These models were used to decode the
development set devQ10, as well as the evaluation sets testQ10 and testQ11. Table 5.5
shows the recognition performances obtained on each of the individual test sets, as well
as the global WER.

Retraining both the MLPs leads to improvements in WER. However, the absolute
gain is slightly smaller with the French MLP compared to the Portuguese one (0.1% and
0.3% respectively). This is probably due to the change in structure that the French MLP
was submitted for retraining.

It is worth noting that the system using a retrained Portuguese MLP with all data
(316 hours) and an unsupervised HMM trained on 143 hours (trainQ10+trainQ11) leads
to a WER of 27.4% on devQ10. This is similar to the WER obtained with a system having
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MLP devQ10 testQ10 testQ11 All

trainRVE + trainQ10 + trainQ11 (316h) 27.8 22.7 28.4 26.3
French (600h) 27.3 22.6 28.1 26.0
trainRVE + trainQ10 + trainQ11 (316h) – retrained 27.4 22.6 28.0 26.0
French (600h) – retrained 27.2 22.6 27.8 25.9

Table 5.5.: Comparison of an MLP trained in an unsupervised manner and a cross-lingual
MLP, both retrained on the 316 hours of untranscribed Portuguese data. The
acoustic models were trained in an unsupervised way using the decoding lat-
tices of trainQ10+trainQ11. The WER(%) is measured on the development
set devQ10 and test sets testQ10 and testQ11. ‘All’ refers to the WER
obtained on the combined dev+test sets. LM_10src was used for decoding.

HMM and MLP parameters estimated in a supervised manner using the 72 hour trainQ10
data set (27.3%). This tie has been achieved by adding more data, but with no human
effort spent on manual annotation.

5.4. Summary

In this chapter, unsupervised MLP training was investigated. After briefly describing
MLPs, we focused on the use of bottleneck MLP for extracting features for acoustic
modeling. An extensive empirical comparison was performed using such discriminatively
trained features. In particular, it was shown that the combined use of MLP features
with traditional PLP-like features can substantially reduce the recognition errors of large
vocabulary ASR systems even when no manual transcriptions are available.

Supervised and unsupervised training approaches of both, MLP and HMM compo-
nents, were compared using the same training data set. It was shown that unsupervised
MLPs can be used to produce acoustic features that are only slightly worse than the fea-
tures produced by a supervised MLP. Unlike unsupervised HMM training, no advantage
from confidence based data filtering was observed during unsupervised MLP training.

When trained on 72 hours of audio data, the fully supervised HMM with MLP features
outperforms its unsupervised counterpart by about 8.7% relative (27.3% vs. 29.9%). The
use of 316 hours of data for unsupervised MLP and HMM training led to equivalent
performance levels as the fully supervised system trained on 72 hours (WER = 27.4%).

Unsupervised MLP training was compared to cross-lingual MLPs. As reported by
previous groups, the use of cross-lingual MLPs is efficient to improve the recognition per-
formance, even when little (or no) manually transcribed data is available for the target
language. Unsupervised MLP training, seems to be a good alternative to cross-lingual
MLP porting. In our case, an unsupervised Portuguese MLP trained on 316 hours per-
forms as good as a supervised English MLP trained on 645 hours, and slightly worse than
a supervised French MLP trained on 600 hours of data.

We have limited the scope of this work to the use of bottleneck MLPs. However, the
use of unsupervised training approaches seems to be well suited for DNN based models as
well as recently reported in Laurent et al. (2014). A comparison between supervised and
unsupervised DNN training approaches, such as performed in this chapter, is considered
for future work.
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Chapter 6

Unsupervised language model training

6.1. Introduction

The estimation of language model parameters only requires text data. Usually, dozens
of millions to billions of words are used to build n-gram based language models for large
vocabulary speech recognition. Such amounts of data are readily available on the Web
from a variety of sources, such as online newspapers, blogs, forums, tweets and so on.
Nevertheless, not all of these sources match the target data in terms of topic or style.

A common approach applied for n-gram based language modeling is to build language
models for each available source and interpolate these models in a later phase (DeMori
and Federico, 1999). Usually, the interpolation coefficients are automatically estimated
using an iterative algorithm that aims to maximize the likelihood of a small held-out data
set that corresponds to the target task. Thus, it can be expected that higher coefficients
are assigned to sources that are similar to the held-out data.

Given that audio transcriptions truly represent the spoken style, they are naturally
a desirable source of text to be used in language modeling. Component models trained
on manual transcriptions usually have high coefficients assigned during interpolation.
However, creating such training resources is costly and time consuming. Like for acoustic
modeling, one can envisage to use automatic transcriptions provided by a recognizer to
reduce costs required for language modeling. Automatic transcriptions can be used to
estimate a component LM which is interpolated a posteriori with the baseline model
(Bacchiani and Roark, 2003; Novotney et al., 2009). Alternatively, the n-gram counts
extracted from the automatic transcriptions can be merged to the n-gram counts extracted
from the other training sources (news, blogs, etc.). Both interpolation and counts merging
can be seen as particular cases of MAP adaptation (Bacchiani and Roark, 2003).

This chapter investigates the use of unsupervised training approaches for LM training.
First, confidence measures are explored as a means to reduce the impact of the recognition
errors. A filtering approach is applied by converting words with low confidence scores
to a common “unknown” word. Alternatively, the n-gram counts are weighted by the
confidence scores. In addition, inspired by the work performed in acoustic model training
(Chapter 4), the use of multiple weighted hypotheses is investigated. These hypotheses
are extracted from the decoding lattices or from the confusion networks.

Weighting the training data generates n-grams with fractional counts. However, the
so-called KN discounting algorithm (Kneser and Ney, 1995), which was reported to out-
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perform other known smoothing techniques (Chen and Goodman, 1996, 1999), relies only
on integral counts. To take advantage of confidence based weighting methods, a variation
of the KN smoothing algorithm that handles fractional counts is presented in this chapter.

As an alternative to backoff n-gram language models, neural network language models
were explored within the unsupervised training framework. Such a model uses a continu-
ous space word representation and has a suitable structure for generalization. These two
characteristics, which are not present in standard backoff n-gram models, are expected
to help on reducing the impact of recognition errors. The experiments were carried out
using the structured output layer (SOUL) NNLM (Le et al., 2011).

The remainder of this chapter is organized as follows. In Section 6.2, unsupervised
n-gram language model training is investigated, focusing on the use of confidence based
filtering and weighting techniques. In particular, the use of KN smoothing with fractional
counts is described in Section 6.2.4. In Section 6.3, the use of automatic transcriptions to
adapt the parameters of an NNLM is investigated. A summary of the chapter is given in
Section 6.4.

6.2. Unsupervised backoff n-gram language model

training

A brief overview of n-gram language modeling techniques was presented in Chapter 2. In
this section, the focus is on the use of automatic transcriptions for LM training. Similar
as used for unsupervised acoustic model training, the principle is illustrated in Figure 6.1.
In brief, an initial system is used to decode a large amount of untranscribed data. The
automatically generated transcriptions are used as ground truth to estimate the language
model parameters. If necessary, the process can be re-iterated until some convergence
criterion is achieved. In order to reduce the influence of recognition errors, confidence
based filtering or weighting techniques can be applied.

6.2.1. Filtering by confidence measures

Filtering data for language model estimation is not trivial. The simple removal of a word
changes multiple n-grams, affecting the model probabilities for different contexts. For the
same reason, it is hard to deal with insertion and deletion errors.

Filtering can also be applied at sentence level. Although straightforward, this solution
does not cope well with local transcription errors since the decision for filtering is based
on the scores of all the words in the sentence. Alternatively, n-gram with low probabilities
can be removed as performed, for instance, in Novotney et al. (2009).

Another word level filtering approach is proposed here. Instead of being removed,
words with low confidence scores are transformed into an “unknown” word (<UNK>). As
an example, the transcript:

... for[1.0] real[0.5] action[0.4] next[0.6] year[1.0] ...

where the number within brackets denotes the word confidence score, leads to the following
bi-gram counts if a confidence threshold of 0.55 is applied:
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Figure 6.1.: Unsupervised language model training scheme.

1 for <UNK>

1 <UNK> <UNK>

1 <UNK> next

1 next year

The language models are obtained from these counts using the interpolated version of the
KN smoothing (Ney et al., 1997).

6.2.2. Weighting by confidence measures

Weighting data for language modeling was performed in a similar way as proposed in Novotney
et al. (2009). The (fractional) counts of a particular n-gram are obtained as the product of the
confidence scores of its compounding words. The use of the average and maximum functions
has been assessed as alternatives, but the product led to the best performance levels. If this
weighting scheme is applied, the transcript:

... for[1.0] real[0.5] action[0.4] next[0.6] year[1.0] ...

leads to the following bi-gram counts:

0.50 for real

0.20 real action

0.24 action next

0.60 next year

The language models are obtained from these fractional counts using an extended version of
the KN smoothing proposed in Section 6.2.4.
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6.2.3. Using multiple decoding hypotheses

Inspired by the work performed in unsupervised acoustic model training, the use of multiple
decoding hypotheses was explored for language modeling. The language models are estimated
using the KN smoothing variant proposed in Section 6.2.4, but with n-gram count lists obtained
from decoding lattices or confusion networks.

Getting n-gram counts from lattices

The lattice-based n-gram counts can be obtained by performing the forward-backward algorithm
(Baum et al., 1970), taking into consideration the scores of the past (n− 1) nodes in the lattice
leading to a particular node. As an example, from the word lattice:

73

93
re (0.4)

101
real (0.5)

132reaction (0.1)

137

election (0.4)

action (0.4)

action (0.1)

168next (0.5)

next (0.5)

190
year (1.0)61

for (1.0)

it is possible to extract the following bi-gram counts:

0.50 for real

0.40 for re

0.10 for reaction

0.40 re election

0.50 real action

...

Getting n-gram counts from confusion networks

Similar to the 1-best weighting case, confusion network n-gram counts are calculated as the
product of confidence scores of their compounding words. The difference is that all paths in the
confusion network having length n are exploited. Empty transition links (<eps>) are skipped,
but their confidence scores are used for the calculation of the n-gram counts. A pruning strategy
is used to limit the number of n-grams extracted. As an example, from the confusion network:

61 73
for (1.0)

101

re (0.4)

real (0.5)

<eps> (0.1)

132

election (0.4)

action (0.5)

reaction (0.1)

168
next (1.0)

190
year (1.0)

it is possible to extract the following bi-gram counts:

0.50 for real

0.40 for re

0.05 for action

0.04 for election

0.01 for reaction

0.20 re action

0.16 re election

...
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6.2. Unsupervised backoff n-gram language model training

This method was also combined with the filtering technique by transforming low probability
words into the unknown word. From the confusion network example shown above and using a
confidence threshold of 0.45, the following bi-grams can be extracted:

0.50 for real

0.40 for <UNK>

0.05 for action

0.05 for <UNK>

0.20 <UNK> action

0.16 <UNK> <UNK>

...

6.2.4. Kneser-Ney smoothing with fractional counts

The Kneser-Ney smoothing (Kneser and Ney, 1995) is one of the algorithms the most applied for
language modeling. It can be represented as follows. Let (a, g, w) be a sequence of words with
length n, where a is a prefix word, g is an arbitrary sequence of words with length (n − 2) and
w is the word to be predicted. The sequence h = (a, g) is the history of w with length (n − 1)
and g is the less specific history of w with length (n− 2). Thus, the interpolated KN smoothed
model (Ney et al., 1997) can be represented by:

pKN (w|a, g) =
max {C(a, g, w)−D, 0}

∑

wi
C(a, g, wi)

+ γ(a, g)pKN (w|g) (6.1)

where C(s) denotes the counts of event s, D is the discounting parameter and γ(a, g) is the
interpolation coefficient with the lower order model pKN (w|g). The coefficients γ(a, g) and the
lower order probability densities pKN (w|g) are obtained constraining the model to:

C(g, w) =
∑

aj

C(aj , g, w) =
∑

aj

C(aj , g)C(w|aj , g)

=
∑

aj

C(aj , g)pKN (w|aj , g) =
∑

aj

[

∑

wi

C(aj , g, wi)

]

pKN (w|aj , g) (6.2)

The standard KN discounting algorithm (see Section 2.3.2) considers that the n-gram fre-
quencies are represented as integral counts. An extended version of the KN smoothing that takes
into account fractional n-gram counts is obtained as follows. The coefficients γ(a, g) are obtained
by applying the constraint

∑

wi
pKN (wi|·) = 1 to (6.1):

1 =

∑

wi
max {C(a, g, wi)−D, 0}
∑

wi
C(a, g, wi)

+ γ(a, g)

=⇒ γ(a, g) =

∑

wi
(C(a, g, wi)−max {C(a, g, wi)−D, 0})

∑

wi
C(a, g, wi)

γ(a, g) =

∑

wi
min {C(a, g, wi), D}
∑

wi
C(a, g, wi)

(6.3)
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The lower order models pKN (w|g) can be obtained by substituting (6.1) and (6.3) in (6.2):

C(g, w) =
∑

aj

max {C(aj , g, w)−D, 0}+
∑

aj

C(aj , g)γ(aj , g)pKN (w|g)

=⇒ pKN (w|g) =
C(g, w)−

∑

aj
max {C(aj , g, w)−D, 0}

∑

aj
C(aj , g)γ(aj , g)

pKN (w|g) =

∑

aj
min {C(aj , g, w), D}

∑

aj

∑

wi
min {C(aj , g, wi), D}

(6.4)

Finally, (6.3) and (6.4) can be rewritten as:

γ(a, g) =
C<(a, g, •) +DN>(a, g, •)

∑

wi
C(a, g, wi)

(6.5)

pKN (w|g) =
C<(•, g, w) +DN>(•, g, w)

C<(•, g, •) +DN>(•, g, •)
(6.6)

Where the functions C<(·) and N>(·) are defined as:

C<(a, g, •) =
∑

wi:C(a,g,wi)<D

C(a, g, wi) (6.7)

C<(•, g, w) =
∑

aj :C(aj ,g,w)<D

C(aj , g, w) (6.8)

C<(•, g, •) =
∑

(aj ,wi):C(aj ,g,wi)<D

C(aj , g, wi) (6.9)

N>(a, g, •) = |wi : C(a, g, wi) > D| (6.10)

N>(•, g, w) = |aj : C(aj , g, w) > D| (6.11)

N>(•, g, •) = |(aj , wi) : C(aj , g, wi) > D| (6.12)

Equations 6.3 and 6.4 are similar to those of the interpolated KN model (c.f. (2.36) and
(2.37)), except for the presence of the C<(·) functions and the use of N>(·) in the place of N1+(·).
With integral counts, and assuming D < 1, the summations C<(·) equal zero and N>(·) equals
N1+(·), leading to the original KN equations.

Calculating the discounting parameter

Another important issue when working with fractional counts is the calculation of the discounting
parameter D. With integral counts, discounting is obtained by:

D =
n1

n1 + 2 · n2
(6.13)
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6.2. Unsupervised backoff n-gram language model training

where n1 and n2 denote, respectively, the number of n-grams with exactly one or two counts.
With fractional counts, though, these definitions are unclear.

Three alternatives are proposed to calculate the discounting parameters. In the first one,
(6.13) is used with n1 and n2 values obtained after approximating fractional counts to integer
counts. Alternatively, D can be calculated by:

D =

∑

(a,g,w):C(a,g,w)≤1C(a, g, w)
∑

(a,g,w):C(a,g,w)≤2C(a, g, w)
(6.14)

Equation 6.14 is proposed as a simple extension of (6.13), without theoretical justification.
In particular, (6.13) is recovered if only integral counts are admitted. As a third option, the
discounting parameters can be obtained as a result of an optimization algorithm. In this work,
the Powel’s method (Press et al., 2007, Section 10.7), such as used by Bisani and Ney (2008),
was used in order to minimize the language model perplexity of a development set.

Equivalent levels of perplexity of the development data set were obtained with the three
methods. However, the optimization algorithm was used in the remainder of this chapter.

6.2.5. Experiments

The experiments were carried out using the improved European Portuguese recognition system
described in Section 3.2.4. This system was used to decode the training sets trainRVE, trainQ10
and trainQ11, containing, respectively, 173, 72 and 71 hours of speech data (see Table 3.1). The
1-best transcriptions that were generated contain, respectively, 1642, 630 and 635 thousand
words. From each training set, 2-, 3- and 4-gram component LMs were estimated with n-
gram counts extracted from, either, 1-best, 1-best weighted or 1-best filtered transcriptions or
decoding lattices, confusion networks or filtered confusion networks. The 1-best and 1-best
filtered component models were estimated using the standard interpolated KN smoothing with a
single discounting parameter per n-gram level (Kneser et al., 1997). For the remaining methods,
the KN smoothing variant described in Section 6.2.4 was used.

For 1-best filtered and confusion network filtered counts, a confidence threshold of 0.1 was
used. Other thresholds around 0.05 and 0.5 were assessed during an optimization procedure, but
the results did not change significantly. The scaling edge factor β (c.f. (4.27)) was set to 0.8
after tuning.

The component language models estimated on the decoding hypotheses were interpolated
with the baseline language model LM_10src (see Section 3.2.4), generating adapted language
models. The interpolation coefficients were optimized to minimize the perplexity of the devQ10

set.
The perplexities of devQ10 with the 4-gram component models estimated using the assessed

methods are shown in Table 6.1. The perplexity obtained after interpolating the three models
(trainRVE, trainQ10 and trainQ11) and after interpolating them with the baseline model are
also shown. In the best case, with counts extracted from the confusion networks, the perplexity
is reduced by 5% relative to the baseline model (from 138 to 131).

The interpolated language models were assessed for a broadcast data recognition task. Each
model was used to decode the sets devQ10, testQ10 and testQ11 using two different acoustic
models. The baseline AM was estimated on the 173 hour trainRVE data set using an unsupervised
acoustic modeling approach. The second acoustic model used was obtained via unsupervised
MAP adaptation of the baseline model to the 72 hour trainQ10 untranscribed data set. The
recognition results are summarized in Table 6.2.
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6. Unsupervised language model training

Counts trainRVE

(173h)
trainQ10

(72h)
trainQ11

(71h)
3 models

(316h)
+ LM_10src

1-best 321 300 300 219 132
1-best weighted 336 321 325 234 132
1-best filtered 329 327 333 244 134
lattice 321 308 308 236 133
confusion network 308 295 297 220 131
confusion network filtered 375 388 394 284 137
manual - 270 - - 127

Table 6.1.: Perplexity of devQ10 with 4-gram language models estimated on the decoding
hypotheses of trainRVE, trainQ10 and trainQ11. The perplexity obtained
by interpolating these “3 models” and the perplexity obtained by interpolating
them with the baseline model “LM_10src” are given. The performance ob-
tained with the use of a component model trained with manual transcriptions
is reported for reference. For reference, the perplexity with the baseline model
alone is 138. The numbers within parentheses correspond to the amount of
audio data of each training set.

With the baseline AM (Table 6.2a), a small difference in performance is observed with the
addition of automatic transcriptions to the LM training corpus, with p<0.01 according to the
MAPSSWE test (Pallett et al., 1990). No significant difference in performance on testQ10 was
observed with any of the methods assessed. Absolute improvements around 0.2% were achieved
on devQ10 and testQ11. The best LM (1-best filtered) leads to an overall WER reduction of
0.19% with respect to the baseline model (from 31.16% to 30.97%). For reference, a component
LM trained on the trainQ101 manual transcriptions was assessed. In this case, an overall WER
of 30.62% was achieved, that is, an absolute gain of 0.54% compared to the baseline.

The second set of experiments was performed to assess the case where language and acoustic
models are jointly adapted using automatic transcriptions obtained from the same training iter-
ation. With the adapted AM (Table 6.2b) the 1-best weighting and 1-best filtering techniques
obtained the best recognition performances for all test sets. According to the MAPSSWE test,
these two language models are equivalent and both better than the other models assessed. In
particular, the 1-best weighting technique led to an absolute WER reduction of 0.25% compared
to the baseline (from 29.47% to 29.22%). For reference, the case that uses a component LM
trained with the trainQ10 manual transcriptions has a WER of 29.02%, that is an absolute
reduction of 0.45% compared to the baseline.

Language model training with multiple decoding hypotheses does not improve the perfor-
mance compared to training with 1-best transcriptions. Similar results were reported by Novot-
ney et al. (2009). This might be due to fact that a large number of “incorrect” n-grams is
extracted from the decoding lattices or the confusion networks, overwhelming the influence of
the “correct” n-grams.

1The only source for which manual transcriptions were available.
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6.3. Unsupervised neural network language model adaptation

Language model devQ10 testQ10 testQ11 testQ10 +
testQ11

Overall

LM_10src (baseline) 33.58 26.43 33.50 30.02 31.16

+ 1-best 33.36 26.48 33.31 29.94* 31.04*
+ 1-best weighted 33.32 26.48 33.28 29.93* 31.02*
+ 1-best filtered 33.24 26.39 33.29 29.89* 30.97*
+ lattice 33.37 26.45 33.45 30.00* 31.08
+ confusion network 33.30 26.53 33.32 29.97* 31.04*
+ confusion network filtered 33.41 26.39 33.29 29.89* 31.02*
+ manual (trainQ10) 32.94 26.00 32.95 29.52 30.62

(a) With the baseline acoustic model.

Language model devQ10 testQ10 testQ11 testQ10 +
testQ11

Overall

LM_10src (baseline) 31.36 25.77 31.29 28.57 29.47

+ 1-best 31.06 25.85 31.25 28.59 29.38
+ 1-best weighted 30.86 25.68 31.12 28.44* 29.22*
+ 1-best filtered 30.87 25.69 31.26 28.51* 29.27*
+ lattice 30.98 25.90 31.23 28.60 29.37
+ confusion network 30.97 25.89 31.22 28.59 29.36
+ confusion network filtered 31.17 25.71 31.19 28.49* 29.35

+ manual (trainQ10) 30.68 25.48 30.92 28.24 29.02

(b) With the adapted acoustic model.

Table 6.2.: Recognition results with component language models trained in an unsuper-
vised manner and interpolated with the baseline language model LM_10src.
The performance obtained with the use of a component model trained with
manual transcriptions is reported for reference. Stars (*) denote equivalent
systems according to the matched pairs sentence-segment word error signifi-
cance test (p<0.01).

6.3. Unsupervised neural network language model

adaptation

In principle, the lack of a suitable structure for generalization and the use of discrete modeling
units make backoff n-gram language modeling quite sensitive to wrongly assigned classification
labels. Different from backoff models, neural network language models (Bengio et al., 2000;
Schwenk and Gauvain, 2002; Schwenk, 2007) use a continuous space word representation and
have a suitable structure for generalization. These two characteristics could help to reduce the
impact of the recognition errors during unsupervised LM parameter estimation.

An introduction to NNLMs was presented in Section 2.3.3 with focus on feed-forward network
models (Bengio et al., 2000, 2003). The unsupervised language model training experiments out-
lined in this section were carried out using a variation of the feed-forward NNLM, the structured
output layer (SOUL) NNLM (Le et al., 2011, 2013), which is briefly described below.
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Figure 6.2.: Structured output neural network language model architecture.

6.3.1. Structured output layer neural network language model

The main difference of common NNLMs and the structured output layer NNLM (Le et al., 2011,
2013) is (as the name suggests) the output layer. The SOUL model is able to handle output
vocabularies with arbitrary sizes (rather than a short list of words) with only a small increase
of computational calculation time. This is accomplished by organizing the output layer as a
tree-like structure, built based on a word class (and sub-classes) clustering algorithm. The first
level of the tree gives softmax posterior class probabilities. From the second to the second to
last levels, sub-class probabilities are calculated. The last level of the tree is used to estimate
the word posterior probabilities. The probabilities of the most frequent words (the short list) are
directly estimated at the first tree level. In other words, words of the short list are considered
to represent their own classes (without sub-classes).

Figure 6.2 shows the architecture of the SOUL NNLM used. It consists of a 4-layer feed-
forward network model. The input is formed by a vector that represents three history words
(that is a 4-gram LM). Each word is projected into a 500-dimensional shared continuous space.
The second hidden layer contains 1000 nodes with sigmoidal activation functions. The softmax
output layer is structured into a 3-level tree and contains a two thousand word short list.

6.3.2. Experiments

The experiments were carried out using the improved European Portuguese recognition sys-
tem, which was used to generate 1-best automatic transcriptions for the training sets trainRVE,
trainQ10 and trainQ11.

The neural network language models were obtained as follows. First, a baseline NNLM was
estimated with the same data used to train the backoff n-gram model LM_10src: nine written
sources and a small amount of transcribed data. The training procedure adopted is similar to the
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NNLM Baseline → Unsupervised
trainQ10,
trainQ11

→ Unsupervised
trainRVE,

trainQ10, trainQ11

→ Supervised
trainQ10

Perplexity 123 114 114 106

Table 6.3.: Perplexity of devQ10 obtained with neural network language models interpo-
lated with the 4-gram model LM_10src. ‘Baseline’ refers to the NNLM trained
only on written text sources. The remaining NNLMs were obtained by adapt-
ing the baseline model to the transcriptions of the reported training sets using
unsupervised or supervised training. For reference, the perplexity with the
baseline backoff n-gram model is 138.

one described in Le et al. (2011). A word clustering algorithm is used to build the output layer
tree-like structure, which is fixed for the remaining training steps. Ten iterations of stochastic
back-propagation training (like in Bengio et al. (2003)) are performed with different learning
rates. For each iteration, the training data is randomly sampled to about 25 million words. The
development set devQ10 was used for validation.

Then, the baseline NNLM was adapted to the 1-best transcriptions of trainQ10+trainQ11

and trainRVE+trainQ10+trainQ11. Adaptation was performed by retraining the initial model
using the automatic transcriptions as target labels. Five back-propagation iterations were per-
formed. During retraining, only the parameters of the hidden and output layers are updated,
but the projection matrix is fixed. Other retraining strategies have been tried (increasing the
number of iterations, updating the whole model, filtering the transcriptions by confidence mea-
sures), but the described setup led to the best perplexity and recognition performance levels on
the development set devQ10. For reference, an NNLM was obtained by retraining the baseline
model with the manual transcriptions of trainQ10.

The adapted NNLM and the baseline NNLM were each interpolated with the backoff 4-gram
language model (LM_10src) with coefficients estimated to minimize the perplexity of devQ10.
These perplexities are reported in Table 6.3 for reference. The use of the baseline NNLM aline
leads to a 11% relative improvement compared to the LM_10src (from 138 to 123). On top of
that, adapted NNLMs obtain relative improvements of 7% or 14% for unsupervised (from 123 to
114) and supervised (from 123 to 106) adaptation respectively.

The interpolated models (NNLM+LM_10src) were assessed in a recognition task. Decoding
lattices for the sets sets devQ10, testQ10 and testQ11 were generated using the 2- and 3-gram
LM_10src models. These lattices were rescored in a latter step with each of the interpolated
models described above. Two acoustic models were used for decoding, one trained only on
trainRVE and another obtained by adapting this latter to trainQ10. In both cases, the automatic
transcriptions of the training data were used to guide AM parameter estimation. The recognition
results are summarized in Table 6.4.

Compared to the backoff n-gram models (see Table 6.2), the use of a 4-gram SOUL NNLM
led to significant increase of recognition accuracy. The baseline SOUL NNLM outperforms the
baseline backoff LM on about 1.19% absolute (WER from 31.16% to 29.97%) with the baseline
AM, and on about 0.78% with the adapted AM (from 29.47% to 28.69%).

With the baseline AM (Table 6.4a), unsupervised NNLM adaptation did not lead to improve-
ments over the baseline NNLM. When the SOUL NNLM is adapted to the manual transcriptions
of trainQ10, an absolute gain of 0.32% is obtained (from 29.97% to 29.65%). It is worth noting
that this improvement is due only to the neural network model. An additional absolute gain
of around 0.4–0.5% can be expected by including a component backoff model trained on the
trainQ10 manual transcriptions.
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Neural network
language model

devQ10 testQ10 testQ11 testQ10+
testQ11

All

LM_10src (baseline) 32.41 25.38 32.15 28.81 29.97
→ Unsupervised :

trainQ10+trainQ11 32.24 25.45 32.15 28.85 29.94
trainRVE+trainQ10+trainQ11 32.26 25.56 32.24 28.95 30.01

→ Supervised : trainQ10 31.97 25.27 31.75 28.56 29.65

(a) With the baseline acoustic model.

Neural network
language model

devQ10 testQ10 testQ11 testQ10+
testQ11

All

LM_10src (baseline) 30.68 25.21 30.22 27.75 28.69
→ Unsupervised :

trainQ10+trainQ11 30.35 25.05 30.19 27.66 28.52
trainRVE+trainQ10+trainQ11 30.29 25.14 30.25 27.73 28.55

→ Supervised : trainQ10 29.89 24.82 29.88 27.39 28.19

(b) With the adapted acoustic model.

Table 6.4.: Recognition results obtained with neural network language models interpo-
lated to the 4-gram backoff model LM_10src. ‘Baseline’ refers to the NNLM
trained only on written text sources. The remaining NNLMs were obtained
by adapting the baseline model to the transcriptions of the reported training
sets using unsupervised or supervised training.

With the adapted AM (Table 6.4b), the unsupervised adapted NNLM led to small gains of
recognition performance over the baseline NNLM. At the best (when the NNLM is adapted to
trainQ10+trainQ11), an absolute overall WER improvement of 0.17% is obtained in comparison
with the baseline NNLM (from 28.69% to 28.52%). Although some improvement was achieved
on devQ10 (0.33% absolute) and testQ10 (0.16% absolute), this was not the case for testQ11.
According to the MAPSSWE test, only the improvements obtained over the joint dev-eval set is
significant (p<0.005). For reference, when the NNLM is adapted to the manual transcriptions
of trainQ10, an absolute improvement of 0.50% is obtained in comparison to the baseline (from
28.69% to 28.19%).

An additional experiment was performed to assess if the use of unsupervised backoff n-gram
language model training would improve the recognition accuracy on top of the unsupervised
adapted SOUL NNLMs. In other words, if the gains obtained with the use of untranscribed data
during the estimation of both models were complementary.

No recognition accuracy improvement was observed on devQ10, testQ10 and testQ11.
Therefore, the best performance levels obtained with the unsupervised language modeling ap-
proaches explored here are due to the NNLM adaptation, which led to an overall WER of 28.52%
(with the adapted AM).

6.4. Summary

In this chapter, unsupervised language model training was applied to a European Portuguese
broadcast recognition task. Two models were explored within the unsupervised training frame-
work, the standard backoff n-gram language models and the structured output layer neural
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network language models.
First component backoff n-gram LMs were estimated with automatic transcriptions gen-

erated by an existing ASR system and interpolated to a baseline language model (trained on
written text sources). To deal with recognition errors, confidence based filtering and weighting
techniques were applied on n-gram counts extracted from the 1-best decoding hypothesis and
multiple hypotheses (lattices and confusion networks). In contrast with unsupervised acoustic
modeling (Chapter 4), the use of multiple decoding hypotheses did not outperform the 1-best
hypothesis approach. The best recognition results were obtained when the component models
were estimated with 1-best filtered or 1-best weighted n-gram counts. At the best, they obtained
an absolute improvement of 0.25% compared to the baseline (from 29.47% to 29.22%).

A variant of the Kneser-Ney smoothing algorithm that takes into account fractional counts
was presented. The method was used to generate language models from the 1-best weighted
hypothesis, lattices and confusion networks counts.

Automatic audio transcriptions were also used to adapt a baseline structured output layer
NNLM (Le et al., 2011) trained on text sources. Adaptation was performed by retraining the
baseline model with automatic transcriptions as target labels. At the best, unsupervised adap-
tation obtained an absolute improvement of 0.17% compared to the baseline (from 28.69% to
28.52%). When combined to unsupervised backoff n-gram language modeling, no additional
improvement was achieved.

In summary, the approaches assessed in this chapter led to absolute WER gains around
0.2–0.3% with respect to the backoff n-gram and NNLM baselines. These results corroborates
with previously reported work (Bacchiani and Roark, 2003; Novotney et al., 2009): unsuper-
vised language modeling is a much more challenging task than unsupervised acoustic modeling.
However, it is worth noting that unsupervised LM leads to gains of recognition performance on
top of unsupervised acoustic modeling. That being said, if some data have been automatically
transcribed for unsupervised AM training, the additional cost of using the transcripts for LM
training is negligible. Thus, using unsupervised LM might be worthwhile.

The approaches presented here were applied for broadcast speech recognition. Higher im-
provements might be obtained for tasks having larger mismatches between the baseline model and
the target data, such as conversational speech recognition (Bacchiani and Roark, 2003; Novotney
et al., 2009), dialog or voice search.
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Model combination

The use of large amounts of data to estimate acoustic and language models for ASR is not a
sufficient condition to lead to suitable recognition performance levels. The acoustic and text
training data need to be similar to the target data. In other words, training and test data have
to be drawn from the same probability density function. A problem thus arises in cases where
target specific data are scarce as is the case for tasks involving conversational telephone speech
recognition or low e-resourced languages and dialects.

The construction of representative training corpora for low e-resourced tasks is especially
demanding. Besides the human effort required for manually transcribing the audio data, even
collecting the data is costly and time-consuming. In some cases, costs due to fieldwork, rewarding
subjects, acquiring legal authorizations, etc., also need to be considered.

Model adaptation techniques can be used to reduce the need for target specific data. Adap-
tation assumes the existence of two sources of knowledge: a well-trained baseline model that does
not represent well the target data, and a small amount of adaptation data from which relevant
information related to the target task can be extracted. The main principle is to adjust the
parameters of the baseline model to approximate the target specific data, generating an adapted
model.

Various acoustic and language model adaptation techniques exist. MAP adaptation, for
instance, can be applied to acoustic (Gauvain and Lee, 1994) and language (Bacchiani and Roark,
2003) models. MAP acoustic model adaption uses a hyper-parameter to control the degree of
relevance between the baseline model and the target-specific data. In the maximum likelihood
linear regression acoustic model adaptation approaches (Leggetter and Woodland, 1995), the
adapted model is represented as a linear transformation of the baseline model.

Adaptation methods assume that data used on the estimation of the baseline model are
homogeneous, drawn from the same distribution function. However, this assumption is not
strictly true, since the training data is usually collected from a wide variety of sources. A
proposed approach that can take into account the data heterogeneity and is commonly used for
language model training is model interpolation. In this approach, a set of component models are
independently estimated and interpolated a posteriori using automatically estimated coefficients.
Interpolation allows to adjust the relevance of the different training subsets with respect to the
target specific data.

This work investigates the use of interpolation to build acoustic models that match the
target data well even if only a small (or no) amount of target data is available for training. We
argue that interpolation is a faster and more flexible alternative than acoustic model adaptation
techniques. This part is organized in a different manner compared to Part II due to the different
experimental setups assessed. Thus, Chapter 7 first describes the theoretical framework for
acoustic model interpolation and our proposed methods. The experiments performed and results
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obtained are presented in Chapter 8.
Some of the work described in this part of this dissertation was originally published in

Interspeech 2013 (Fraga-Silva et al., 2013) and Eusipco 2014 (Fraga-Silva et al., 2014).
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Chapter 7

Acoustic model interpolation

7.1. Introduction

In LVCSR tasks, the acoustic realization is usually modeled by hidden Markov models. The
parameters of such models are often estimated by maximizing the likelihood of the training data
(Juang, 1985). This estimation method assumes two hypotheses. First, the method relies on the
use of a large amount of data to generate robust estimates. Second, the ML estimation assumes
that the training and the test sets are drawn from the same distribution function. In other words,
the acoustic model will be applied to recognize some data that are similar to the training data
set.

In the context of low cost ASR system development, the first issue was investigated in
Chapter 4. Unsupervised training was used as a means to produce approximate corpus for
acoustic modeling. This chapter investigates the second issue.

Acoustic models for speech recognition are often trained on data coming from a variety
of sources. The most common approach used for acoustic modeling is to pool together all of
the available data, considering them all part of a unique training set. This method leads to
good accuracy if the two aforementioned assumptions hold. However, gathering a fair amount
of acoustic training data that matches well the target can be difficult for a variety of tasks,
like conversational telephone speech recognition (Gauvain et al., 2003) or non-native speech
recognition (Fischer et al., 2001; Wang et al., 2003).

This problem is often treated using an adaptation method (Wang et al., 2003; Oh et al.,
2007; Vergyri et al., 2010), such as MLLR (Leggetter and Woodland, 1995) or MAP (Gauvain
and Lee, 1994; Zavaliagkos et al., 1996) adaptation. In such cases, an existing (and more general)
model trained on a large amount data is adapted to a small amount of data that matches better
the target task.

Model adaptation is usually performed by adjusting the similarity levels between the baseline
model, trained on out-of-domain data, and the in-domain adaptation data. This is clearer with
MAP estimation, where a hyper-parameter is used to control which amount of in-domain frames
should be used to modify the prior out-of-domain models. In MLLR schemes, adjustment is
made by means of matrix transforms used to represent the in-domain data in the same subspace
of the out-of-domain data.

These techniques still consider the out-of-domain data as a unique homogeneous training set,
assigning the same importance to all samples. Nonetheless, it seems reasonable to consider that
different subsets of that data could have different degrees of relevance for the target data. This
assumption is considered for language modeling, which is usually performed as follows. First,
component language models are trained on separate subsets of the training data and, in a latter
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step, interpolated to generate a final model. The degree of relevance of each component model is
assigned via interpolation coefficients estimated in order to maximize the likelihood of the target
data.

In this work, we propose to apply the same principle for acoustic modeling, assigning mixture
coefficients to component acoustic models trained on separate subsets. We show that these
coefficients can be estimated using the EM algorithm (Dempster et al., 1977) aiming to maximize
the likelihood of a held-out data set. As an alternative, the coefficients can be estimated on-the-
fly for each test data set. Two combination methods, both based on model interpolation, are
presented. In the first method, the GMMs of the component models are merged. In the second
one, the training data are weighted during the AM parameter estimation.

Interpolation of acoustic models has been used in other tasks related to speech processing.
For instance, for speech synthesis, it was used to combine models of different speaking styles
(Tachibana et al., 2004) or models trained for different speakers (Yoshimura et al., 1997). For
speech recognition, model interpolation was used to combine native and non-native acoustic
models as an alternative to acoustic model adaptation (Wang et al., 2003; Tan and Besacier,
2007).

GMM interpolation as presented in this chapter is performed by merging the Gaussian mix-
tures of the component models and properly adjusting the mixing coefficients. The resulting
model is a large GMM containing all the parameters of the component models. When several
components are merged together, the computational complexity required for decoding may in-
crease considerably. A GMM reduction algorithm is proposed in this chapter as a means to
recover suitable computational complexity levels.

The remainder of this chapter is organized as follows. In Section 7.2, some common acoustic
model adaptation techniques are briefly described. In Section 7.3, the two interpolation ap-
proaches (GMM interpolation and data weighting) are presented. The EM-based method used
to estimate the interpolation coefficients is also shown. Section 7.4 described the GMM reduction
algorithm proposed in this work. A summary is given in Section 7.5.

7.2. Acoustic model adaptation

Speech variability is an important issue in ASR, directly affecting the quality and challenging the
robustness of the recognition systems. For the speech recognition task, variability can be seen
as a noisy material disturbing the signal carrying the relevant linguistic information. This noise
(term applied here in a large sense to qualify non-linguistic events) can be due to variations on
gender, accent, age, speaking style, rate of speech, health and so on (Benzeghiba et al., 2007).

Compensating the speech variability is a major issue on ASR that has been well covered in
the literature (for a review, refer to Benzeghiba et al. (2007)). Among other techniques, nor-
malizing the cepstral means and variances is probably the most straightforward method to avoid
undesirable (non-linguistic) events. Another well known solution is to normalize the vocal tract
length among speakers through feature transforms in order to reduce the impact of physiological
variations (Lee and Rose, 1996). In this work, we will focus on another type of compensation,
the model adaptation.

Acoustic model adaptation is fundamental on state-of-the-art ASR systems. The basic prin-
ciple is to adjust the parameters of a baseline speaker independent model to the targeted con-
dition (genre, accent, speaker, channel, etc.) represented by the adaptation set. The most
popular methods used for this purpose, maximum a posteriori (MAP) adaptation, maximum
likelihood linear regression (MLLR) and constrained MLLR (CMLLR) are briefly summarized
in the following. In this chapter, all the mathematical framework is developed uniquely for the
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GMM parameter θ, assuming that an HMM state/frame alignment is used. The extension to
the estimation of the HMM parameters should be straightforward.

7.2.1. Maximum a posteriori

Maximum a posteriori estimation (Gauvain and Lee, 1994) was shortly introduced in Sec-
tion 2.2.2 as a generative method for estimating the acoustic model parameters. As proposed in
the original paper, the algorithm is well suited to be used as an adaptation technique. In this
section, we are particularly interested on the adaptation of the GMM parameters. The MAP
adapted GMM estimates can be obtained as the mode of the posterior probability g(θ|X ),

θMAP = arg max
θ

g(θ|X ) = arg max
θ

f (X|θ) g(θ) (7.1)

where g(θ), provided by a baseline acoustic model, is a prior distribution over the GMM param-
eters θ, X = (x1, . . . , xT ) is a set of adaptation feature vectors with p.d.f. f(X|θ).

This problem can be efficiently solved using an iterative EM approach (Dempster et al.,
1977). In particular, the Gaussian mean vector µk of the k-th component of the adapted model
can be obtained as a weighted sum of the prior parameters and the observed adaptation vectors,
as follows:

µk =
τkmk +

∑T
t=1 γktxt

τk +
∑T

t=1 γkt
(7.2)

where mk is the mean vector of the k-th Gaussian component of the baseline model, while τk
is a parameter controlling the degree of adaptation: as long as τk increases, more adaptation
data is necessary to actually differentiate the adapted parameters from the prior ones. Finally,
γkt = P (k|xt, θ̂) is the probability of being at Gaussian component k at time t given that θ̂

generates X , and can be calculated as:

γkt =
ω̂kP (xt|µ̂k, Σ̂k)

∑

k′ ω̂k′P (xt|µ̂k′ , Σ̂k′)
(7.3)

where ω̂k, µ̂k and Σ̂k are the current estimates of, respectively, the mixture coefficient, the mean
vector and the covariance matrix of the k-th Gaussian components.

7.2.2. Maximum likelihood linear regression

Maximum likelihood linear regression (Leggetter and Woodland, 1995) is an adaptation scheme
based on model space linear transformations. In the unconstrained case, the mean and covariance
transforms are independent one from another. The general linear transforms of the mean µ and
covariances Σ are given by:

µ̂ = Aµ+ b = Wξ (7.4)

Σ̂ = HΣHT or Σ̂ = LHLT (7.5)

where ξ = [µT 1]T is the extended mean vector, b is a bias vector and W = [A b] is the
extended linear transform. The covariance matrix can be transformed in either way shown in
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(7.5), where L represents Cholesky factor Σ. H, which is the same in both cases, is the transform
to be determined.

An EM procedure can be employed to improve the adapted model estimates. First, given the
initial model parameters θ = (µ,Σ, ω) and the adaptation data X , estimate transforms W and
H. Given these transforms, use (7.4) and (7.5) to obtain the adapted GMM parameters. Repeat
these two steps until convergence. For the formulation used to calculate the model transforms,
the reader is referred to the original paper.

7.2.3. Constrained maximum likelihood linear regression

Different from standard MLLR, the constrained MLLR (Digalakis et al., 1995; Gales, 1998b)
adaptation scheme uses the same transform for the mean and covariance parameters. In this
case, the linear transforms can be represented by:

µ̂ = Āµ− b̄ (7.6)

Σ̂ = ĀΣĀT (7.7)

It is straightforward to show that the probability density function of a single Gaussian
component of the transformed model can be expressed in terms of the original model as follows:

N (xt|µ̂k, Σ̂k) = |A| · N (Axt + b|µk,Σk) (7.8)

where A = Ā−1, b = Ā−1b̄ and |A| denotes the determinant of matrix A.
Equation 7.8 express that the CMLLR may be implemented by applying a transformation to

the input vector multiplied by the determinant of A. In other words, there is no need to actually
transform the model parameters, what might be computationally expensive in some cases (Gales,
1998b).

As in the unconstrained case, an EM procedure can be used to improve estimates. In the
first step, given the initial model parameters θ = (µ,Σ, ω) and the adaptation data X , estimate
the transform W = [A b]. With W , transform the input vectors using x̂t = Axt + b. The
procedure can be repeated until convergence. During recognition, the relation expressed in (7.8)
can be used to compute the likelihood with respect to the adapted model.

7.2.4. Adaptive training approaches

The MLLR/CMLLR techniques presented in the previous sections are used to adapt an original
model to a new condition that, presumably, was not well represented on the training data. In
particular, it can be used to adapt a model to a test segment, a speaker for instance. Such
methods can also be applied to the training data in addition to the testing data. Speaker
(for instance) dependent transforms are used during the estimation of the mean and covariance
parameters. This approach aims to compensate the inter speaker variability, letting the model
represent only the intra speaker variability.

The first proposed method with these characteristics is the speaker adaptive training (SAT)
(Anastasakos et al., 1996). It assumes the speaker specific model is a transformation of a unique
canonical model. In the standard approach, MLLR was used, while a variation using CMLLR was
proposed in Gales (1998b). Alternatively, the speaker specific model parameters can be obtained
as a linear interpolation of parameters estimated on subsets of the training data. This method
was named cluster adaptive training (CAT) (Gales, 1998a) or eigenvoices adaptation (Kuhn et al.,
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1998). In Gales (2001), it was shown that these two latter methods are mathematically equivalent,
despite the way the clusters are obtained. In addition, Gales has proposed a generalization of
the adaptive training approaches, showing that SAT and CAT are special cases of the same
framework.

In the proposed generalized approach, it is assumed that C clusters are available for training
and the canonical model consists of C sets of means and a unique set of covariance matrices and
mixture coefficients. Thus, only the mean parameters of the canonical model are transformed
during training. The general form of the adaptive schemes is:

µ̂sk = Wsξk (7.9)

where µ̂sk is the transformed mean vector of Gaussian component k for speaker s, Ws is a speaker
dependent transform and ξk is the canonical mean vector of component k. The size of ξk (and
consequently Ws) depend on the number of clusters used and if a bias component is used or not.

SAT can be seen as a restriction of such a method by setting the number of clusters to 1.
On the other hand, CAT uses various speaker clusters plus a bias cluster, with the restriction of
having only diagonal transforms. In other words:

SAT: ξk = [µT
k 1]T Ws = [As bs] (7.10)

CAT: ξk = [µT
1k . . . µ

T
Ck µb]

T Ws = [αs1I . . . αsCI I] (7.11)

where µb is a bias cluster, I is the identity matrix and α are scalar numbers.
The adaptive training procedure is a slight variation of the standard EM algorithm used

on ML estimation. It can be depicted as follows. Given an initial set of model parameters
θ̂ = ω̂, ξ̂, Σ̂, estimate speaker specific transforms Ws. These transforms are used on the standard
ML to estimate a new model θ. For example, for the case where SAT is performed using CMLLR
(Gales, 1998b), the update equations of the mean and covariance parameters are very similar to
those of standard ML:

µk =

∑S
s=1

∑Ts

t=1 γktx̂t
∑S

s=1

∑Ts

t=1 γkt
(7.12)

Σk =

∑S
s=1

∑Ts

t=1 γkt(x̂t − µk)(x̂t − µk)
∑S

s=1

∑Ts

t=1 γkt
(7.13)

where S is the total number of speakers, Ts denotes the number of frames for speaker s, x̂t =
Asxt + bs is the feature vector adapted with the speaker dependent transform.

7.3. Interpolating models

Acoustic model estimation is commonly performed considering the training data as a single
homogeneous data set, with the objective function being optimized over all the available data.
The ML estimates of the Gaussian parameters are given by:

θML = arg max
θ

f (X|θ) (7.14)
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During decoding, the likelihood function f (·|θ) is evaluated on the test data, assuming that
training and test sets have been generated from the same density function.

Given that the training data are usually heterogeneous, acoustic model interpolation is
presented in the following section as a means to weight the degree of relevance of various training
subsets with respect to the target specific data.

7.3.1. Interpolation of Gaussian mixture models

Linear interpolation is perhaps one of the most straightforward manner to combine models. Here,
it was used to combine the GMMs of different component acoustic models in a similar way as
done for language modeling. Furthermore, it was assumed that all the acoustic models have the
same structure. The mathematical framework will be derived for the GMM of a single state.
The extension to the HMM parameters is straightforward.

First, let us assume that the training data can be split into M independent subsets, such
as X = {X1, . . . ,XM}, with each subset Xm = {xTm0

, . . . , xTm0+Tm−1} having Tm observation
vectors and starting at frame Tm0. Let Θ = (θ1, . . . , θM ) denote the set of GMMs parameters
where each θm has been independently estimated on the associated training subset Xm, each
referring to the same HMM state. The likelihood of observing a sample xt at time t, given that
the interpolated model has generated X , is:

f (xt|Θ, α) =

M
∑

m=1

αm · f(xt|θm) (7.15)

where α = (α1, . . . , αM ) represents the set of interpolation coefficients, with the constraint
∑

m αm = 1.
The models θm are GMMs with probability density functions expressed by (for notation

clearness, it will be assumed that all Gaussian mixtures have K components):

f (xt|θm) =

K
∑

k=1

ωmk · N (xt|µmk,Σmk) (7.16)

where N (·|µ,Σ) is a normal density function with mean vector µ and covariance matrix Σ.
Substituting (7.16) in (7.15):

f (xt|Θ, α) =

M
∑

m=1

K
∑

k=1

αmωmk · N (xt|µmk,Σmk) =

L
∑

l=1

βl · N (xt|µl,Σl) (7.17)

In (7.17), a simple index substitution is performed, with βl = αmωmk and L = M × K.
Thus, it follows that the interpolated model is a GMM with M × K components and mixture
weights αmωmk. In other words, the interpolated model can be obtained by merging the Gaussian
parameters of the component models and adjusting their mixture coefficients. A consequence
of this procedure is the increase in size of the interpolated model according to the number of
component models used, leading to an increase of computational complexity. However, the same
level of complexity can be recovered by applying a GMM reduction algorithm, such as the one
proposed in Section 7.4. The GMM interpolation method is illustrated in Figure 7.1.

GMM interpolation has something in common with cluster adaptive training (Gales, 1998a)
or eigenvoices (Kuhn et al., 1998) in the sense that these methods use a combination of different

108



7.3. Interpolating models

Figure 7.1.: Gaussian mixture model interpolation scheme. Dashed lines correspond to
Gaussian components, while solid lines to the global mixture. After GMM
reduction, the reduced mixture is plotted by a solid line and the original
mixture by a dotted line.

component models based on scalar interpolation coefficients. However, the coefficients are applied
at different levels.

More importantly, these methods have quite different purposes. Interpolation aims to gener-
ate a task specific model from a set of available component models, which are independently esti-
mated. On the other hand, CAT and eigenvoices (as well as other adaptive training approaches)
aim to estimate a canonical model (composed by component models) in which the inter speaker
variability is diminished. In the adaptive training approaches, the component model parameters
are jointly estimated. This aspect makes interpolation a more flexible approach to be used on
adaptation, since any existent model judged to be relevant for a task can rapidly be taken into
consideration. Moreover, as shown in Section 8.4, model interpolation can be used on top of
speaker adaptive training (Anastasakos et al., 1996).

7.3.2. Data weighting

Another approach to take into account the relevance of training subsets for a given task is to
re-estimate the model parameters by weighting the observation vectors according to previously
selected coefficients. It follows that this approach can also be seen as an interpolation scheme.

Let us consider that the training data can be partitioned into M subsets {Xm}m∈[1,M ], each
subset having a relevance weight αm, and let Θ = {θm}m∈[1,M ] denotes a set of M component
mixture models. Let us consider that the model parameters are tied as follows:

ωmk = ωk

µmk = µk

Σmk = Σk

∀ m ∈ [1,M ] (7.18)

In this case, the ML estimates of Θ can be obtained by maximizing the following auxiliary
function:

QΘ(Θ; Θ̂, α̂) =

K
∑

k=1

M
∑

m=1

Tm
∑

t=1

P (m, k|xt, Θ̂) · logωkN (xt|µk,Σk) (7.19)
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where Θ̂ and α̂ denote the current sets of Gaussian mixture parameters and interpolation coef-
ficients; ωk, µk and Σk are the new estimates of, respectively, the mixture coefficient, the mean
vector and the covariance matrix of the k-th Gaussian component. Furthermore,

P (m, k|xt, Θ̂) = P (m|xt, Θ̂) · P (k|xt, θ̂m) (7.20)

Given that model parameters are tied (i.e. θ̂i = θ̂m ∀ i ∈ [1,M ]), the second term is actually
independent of m. For this same reason, the first term can be simplified as:

P (m|xt, Θ̂) =
P (xt|θ̂m)P (m|Θ̂)

∑

m′ P (xt|θ̂m′)P (m′|Θ̂)
=

P (xt|θ̂m)α̂m

P (xt|θ̂m)
∑

m′ α̂m′

= α̂m (7.21)

The second term in (7.20) represents the occupancy probability of the k-th Gaussian com-
ponent and is given by (7.3).

The re-estimation equations can be obtained by taking the derivatives of the auxiliary func-
tion and equating to zero. They are given by:

ωk =

∑M
m=1

∑Tm

t=1 α̂mγkt
∑M

m=1 α̂mTm

(7.22)

µk =

∑M
m=1

∑Tm

t=1 α̂mγktxt
∑M

m=1

∑Tm

t=1 α̂mγkt
(7.23)

Σk =

∑M
m=1

∑Tm

t=1 α̂mγkt(xt − µk)(xt − µk)
T

∑M
m=1

∑Tm

t=1 α̂mγkt
(7.24)

These equations are similar to the standard ML re-estimation equations (see Section 2.2.2).
In particular, they can be obtained by setting M = 1. Approximately, αm can be seen as a factor
used to weight the samples of subset Xm.

With respect to the re-estimation equations, data weighting has something in common
with speaker adaptive training (Anastasakos et al., 1996), more precisely with the variant using
CMLLR (Gales, 1998b). By removing the bias parameter (bs = 0) and restraining the trans-
form to have a diagonal matrix (As = αsI), we can rewrite the re-estimation equations of the
SAT/CMLLR (7.12) and (7.13) as:

µk =

∑S
s=1

∑Ts

t=1 αsγktxt
∑S

s=1

∑Ts

t=1 γkt
(7.25)

Σk =

∑S
s=1

∑Ts

t=1 γkt(αsxt − µk)(αsxt − µk)
T

∑S
s=1

∑Ts

t=1 γkt

=

∑S
s=1

∑Ts

t=1 αsγkt(xt − µk)(xt − µk)
T

∑S
s=1

∑Ts

t=1 γkt
+Ψk (7.26)

with

Ψk =

∑S
s=1

∑Ts

t=1 αsγktxt(1− αs)
∑S

s=1

∑Ts

t=1 γkt
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Concerning the re-estimation of the mean vectors, both data weighting (7.23) and the re-
stricted SAT/CMLLR (7.25) use a coefficient α to weight the input vectors. Nevertheless, they
use slightly different normalization factors. Beyond that, concerning the re-estimation of the
covariance matrices, SAT/CMLLR (7.26) contains an additional term Ψk compared to data
weighting (7.24).

Despite the similarities in the re-estimation formulae, data weighting has different purposes
in comparison with adaptive training. While the first attempts to find the best model to represent
the adaptation data, the second attempts to find a canonical model that reduces the inter speaker
variability. Thus, for data weighting, the set of interpolation coefficients is estimated on the
adaptation data, while for SAT/CMLLR, the coefficients (or, more generally, the transforms)
are estimated for each training speaker.

7.3.3. Estimation of the interpolation coefficients

The interpolation coefficients can be estimated using an EM approach like it is usually done for
language modeling (DeMori and Federico, 1999). Given a set of component acoustic models θ̂m,
the interpolation coefficients αm can be obtained by maximizing the following auxiliary function:

Qα(α; Θ̂, α̂) =

M
∑

m=1

T
∑

t=1

K
∑

k=1

α̂mγkt · logαm (7.27)

where α̂ represents the current estimates and γkt is given by (7.3). Equation 7.27 represents a
partial auxiliary function obtained after a Viterbi approximation for a particular HMM state.
Here, the state index i was omitted for simplicity. The re-estimation equation can be obtained
by setting to zero the partial derivation of Qα with respect to αm constrained by

∑

αm = 1,
what leads to:

αm =
1

T

T
∑

t=1

α̂mf(xt|θ̂m)
∑M

m′=1 α̂m′f(xt|θ̂m′)
(7.28)

where f(·|θ̂m) is the p.d.f. of a GMM, given by (7.16).
The interpolation coefficients can be estimated on some held-out data or on the test set itself.

This task requires an alignment between the data stream and their associated transcriptions in
order to calculate the likelihood f(xt|θ̂m) on each of the component models. This alignment can
be guided by the manual transcriptions of the held-out data (if available) or can be obtained via
decoding. In this latter case, it can be considered a type of unsupervised adaptation scheme.

7.4. Gaussian mixture model reduction

Model interpolation as presented in Section 7.3 is performed by merging the GMMs of the com-
ponent models and properly adjusting the mixture coefficients. The resulting model is a large
GMM containing all the Gaussian parameters of the component models. When several com-
ponents are merged together, the computational complexity required for decoding may increase
considerably. A mixture reduction algorithm can be used to recover suitable complexity levels.

Although this is not a recurrent issue in speech recognition, GMM reduction is relevant and
well covered in other research areas. For distributed data fusion for instance (Chen et al., 2010), it
is usually necessary to combine several GMMs estimated from separate and independent sources.
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Given the large number of Gaussian components obtained, a mixture reduction algorithm is
necessary to decrease the computational complexity required during processing. For the multiple
target tracking task (Ardeshiri et al., 2012; Salmond, 2009), GMM reduction is fundamental given
that the number of Gaussian components tends to rapidly increase over time.

Although often necessary to keep the model tractable, parameter reduction entails loss of
information. For this reason, most of known approaches define the GMM reduction problem as a
minimization of a loss (or divergence) function. A different point of view is given in this section.
The reduction problem is defined as a constrained MLE problem, assuming that the training
vectors are assembled in clusters.

In the next section, the mixture reduction problem is formally presented, together with a
description of some of the most used reduction methods. The proposed algorithm is described
in Section 7.4.2.

7.4.1. Gaussian mixture model reduction strategies

A straightforward solution to reduce the number of Gaussian components of a given GMM
is to prune the components having the lowest mixing coefficients, as applied, for instance, in
Blackman (2004). Although, this method can be expected to generate a reduced mixture that
may considerably diverge from the original one, especially if the target number of components is
small.

Another solution is to estimate the reduced mixture aiming to minimize its divergence with
respect to the original mixture. An overview of algorithms based on this concept is given in this
section. The reader may refer to Crouse et al. (2011) for another review.

Problem definition

Let us consider an initial d-dimensional multivariate GMM, with K mixture components, repre-
sented by Φ = (c1, · · · , cK ,m1, · · · ,mK , S1, · · · , SK), where ωk, mk and Sk denote, respectively,
the mixture coefficient, the d-dimensional mean vector and the d × d covariance matrix for the
k-th Gaussian component of Φ.

The GMM reduction problem can be defined as the estimation of a model with L components
(L < K) and parameters θ = (ω1, · · · , ωL, µ1, · · · , µL,Σ1, · · · ,ΣL) in such a way that the reduced
model is as close as possible to the original one according to a suitable similarity measure.
Alternatively, it can be defined as the minimization of a suitable deviation measure D(·) between
the two mixtures:

θ∗ = arg min
θ

D(Φ, θ) (7.29)

The main difference between the algorithms discussed in this section relies on the choice of
D(·) and the manner it is optimized, that is, using global or local decisions.

Deviation measures

The two most used deviation measures for GMM reduction are the Kullback-Leibler (KL) diver-
gence and the integral squared error (ISE).

The KL divergence (Kullback and Leibler, 1951) constitutes one of the most important
concepts in the information theory field. It is a well-known and theoretically motivated asym-
metric deviation measure between two probability density functions. The KL divergence of two
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multivariate Gaussian distributions N1 and N2 is well known and has the form:

DKL(N1||N2) =
1

2

[

(µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + tr(Σ−1
2 Σ1)− log

(

|Σ1|

|Σ2|

)

− d

]

(7.30)

where AT, |A| and tr(A) denote, respectively, the transpose, the determinant and the trace of a
matrix A.

Unfortunately, the KL divergence between two Gaussian mixtures has no closed form, what
makes its use inconvenient for a direct optimization on the GMM reduction problem. Yet, it can
be minimized using an iterative clustering algorithm as proposed in Davis and Dhillon (2007).

Scott and Szewczyk (2001) proposed the use of the integral squared error as the optimization
criterion for the GMM reduction problem. The ISE between two distributions, f1(·) and f2(·)
can be represented by:

ISE(f1(x), f2(x)) =
1

2

∫ ∞

−∞
(f1(x)− f2(x))

2 dx (7.31)

The main advantage for using such a measure for GMM reduction is that the ISE between
two mixtures has a closed form. Therefore, the ISE can be directly minimized using a variety of
known optimization algorithms.

Top-down algorithms

One of the first solutions proposed to the Gaussian mixture reduction problem consists of a greedy
top-down algorithm (Salmond, 1990). Starting with the original mixture, the algorithm merges
the two most similar components at each iteration. In the original work, an ad-hoc similarity
criterion based on concepts of the statistical analysis of the variance was used. Alternatively,
Williams and Maybeck (2003) has proposed to merge components having the lowest ISE, while
Runnalls (2007) used an upper bound of the KL divergence.

Though relatively simple, these greedy algorithms have some disadvantages. First, they are
based on local decisions. Only the similarities between pairs of components are considered at each
iteration. The effect on the global mixture is not considered. Besides that, these algorithms may
be quite costly, especially if the original mixture model contains a large number of components.
At each iteration, the similarity between all pairs of Gaussians is calculated.

Bottom-up algorithms

Rather than starting from the full mixture, Huber and Hanebeck (2008) proposed a bottom-up
algorithm to generate a reduced approximation of the original mixture. The reduced mixture is
initialized with a single Gaussian. Within an iteration, a component is selected to be split into
two slightly separate Gaussians. The mixture parameters are adjusted using a progressive Bayes
estimation (Hanebeck et al., 2003) in order to minimize the ISE with respect to the original
mixture. Hence, different from top-down algorithms, this algorithm relies on the optimization of
a similarity measure within the overall mixture.

The algorithm proposed in Huber and Hanebeck (2008) was applied to the reduction of a
univariate mixture model. The authors have pointed some changes that are needed to extend
the algorithm to the multivariate case. Other variations may be applied to this algorithm. For
instance, instead of splitting a single Gaussian, all current components might be split at each
iteration. In the same way, other global similarity measures could be used to fit the reduced
mixture to the original one.
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7. Acoustic model interpolation

Algorithm Type Deviation measures
used

Blackman (2004) Prune less relevant compo-
nents

None

Salmond (1990) Top-down A measured based on the
analysis of the variance

Williams and Maybeck (2003) Top-down ISE between components
Runnalls (2007) Top-down Upper-bound of the KL

divergence between compo-
nents

Huber and Hanebeck (2008) Bottom-up with progres-
sive Bayes

ISE between mixtures

Valverde et al. (2012) Progressive Bayes ISE between mixtures
Davis and Dhillon (2007) Iterative (hard)-clustering KL divergence between

mixtures
Schieferdecker and Huber (2009) Modular (Runnall’s + K-

means clustering + pro-
gressive Bayes)

Upper-bound of the KL
divergence between com-
ponents + ISE between
mixtures

Table 7.1.: Summary of the GMM reduction algorithms described in this section. The
progressive Bayes framework is described in Hanebeck et al. (2003).

Other algorithms

The top-down algorithms are often used to generate an initial guess of the reduced mixture model,
which is subject to further refinements. Valverde et al. (2012), for instance, used the progressive
Bayes framework (Hanebeck et al., 2003) to minimize the ISE, but after initializing the reduced
mixture with a greedy algorithm. Schieferdecker and Huber (2009) proposed a modular algorithm
that combines the Runnalls’ algorithm (Runnalls, 2007), followed by a K-means clustering and
an ISE optimization.

Davis and Dhillon (2007) has proposed an iterative solution to refine the reduced mixture
based on an agglomerative clustering procedure. This algorithm has been proved to minimize
the KL divergence between the original and the reduced mixtures. This solution is similar to the
one proposed in this work, but have different theoretical motivation. Furthermore, the proposed
solution leads to a soft clustering algorithm.

The GMM reduction algorithms described in this section are summarized in Table 7.1.

7.4.2. Constrained maximum likelihood estimation

In this section, another interpretation of the mixture reduction problem is given. Instead of
minimizing some deviation measure between the original and reduced mixtures, the proposed
algorithm is theoretically motivated from the maximum likelihood estimation, with an additional
constraint.

Redefining the GMM reduction problem

Let us consider a d-dimensional multivariate GMM with L components and parameters θ =
(ω1, . . . , ωL, µ1, . . . , µL,Σ1, . . . ,ΣL). Given a set of T independent identically distributed (i.i.d.)
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7.4. Gaussian mixture model reduction

observation vectors, X = (x1, · · · , xT ), the parameters of the model θ can be estimated using a
ML estimation, as follows:

θ∗ = arg max
θ

T
∑

t=1

log f(xt|θ) (7.32)

where f(·|θ) represents the p.d.f. of the Gaussian mixture model. By introducing a hidden
variable y in (7.32), it can be written as:

θ∗ = arg max
θ

T
∑

t=1

log

(

∑

y

f(xt, y|θ)

)

(7.33)

The above equation is true for any hidden variable y. In particular, let us consider the case
where it refers to a set of K clusters of observation vectors, the clusters being represented by
{φk}k∈[1,K]. Furthermore, let us consider that each vector xt is constrained to belong to a unique
cluster. In other words, each φk can be interpreted as an indivisible packet of training vectors.
Mathematically, if a vector xt belongs to the j-th cluster, then:

f(xt|φk) =

{

1, if k = j

0, ∀ k 6= j
(7.34)

With this constraint, (7.33) can be rewritten as:

θ∗ = arg max
θ

T
∑

t=1

log

(

K
∑

k=1

f(xt, φk|θ)

)

= arg max
θ

T
∑

t=1

log

(

K
∑

k=1

f(xt|φk, θ) · f(φk|θ)

)

(7.35)

Then, using (7.34):

θ∗ = arg max
θ

T
∑

t=1

log f(yt = φk|θ) = arg max
θ

K
∑

k=1

nk · log f(φk|θ) (7.36)

where yt refers to the cluster associated to the vector xt observed at instant t, and nk denotes
the number of vectors associated to the cluster φk.

The objective function of the proposed GMM reduction algorithm can be obtained by
considering that each cluster is, in fact, modeled by a Gaussian component of the original
mixture model, that is φk ∼ N (·|mk, Sk). Thus, representing the original GMM by Φ =
(c1, . . . , cK ,m1, . . . ,mK , S1, . . . , SK), with K > L, and dividing the argument of (7.36) by T , we
obtain the final form of the constrained maximum likelihood estimation (CMLE) problem:

θ∗ = arg max
θ

K
∑

k=1

ck · log f(φk|θ) (7.37)

where ck = nk

T is the mixture coefficients of the k-th component of model Φ.
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7. Acoustic model interpolation

Expectation-maximization algorithm

The CMLE problem defined in (7.37) is similar to the original MLE formulation. It is also
an incomplete data problem which can be solved using an iterative EM approach (Demp-
ster et al., 1977). In this case, the complete data can be defined as Y = (Φ,H), where
Φ = ({φ1, c1}, . . . , {φK , cK}) is the set of observed Gaussian components and their mixture gains
of the original GMM and H = (h1, . . . , hK) is the sequence of unobserved Gaussian component
labels of the reduced model, the one to be estimated.

In this case, the auxiliary function can be written:

Q(θ̂, θ) = E
[

log f (Φ,H|, θ)
∣

∣

∣
Φ, θ̂

]

=
K
∑

k=1

L
∑

l=1

ck · γkl · log [ωl · f(φk|µl,Σl)] (7.38)

where

γkl = f(l|φk, θ̂) =
f(l|φk, θ̂)

∑

l′ f(l
′|φk, θ̂)

=
ω̂l · f(φk|µ̂l, Σ̂l)

∑

l′ ω̂l′ · f(φk|µ̂l′ , Σ̂l′)
(7.39)

By definition, the log likelihood of a cluster of vectors φk with respect to a normal distribution
parameterized by the mean vector µl and covariance matrix Σl can be expressed by:

log f(φk|µl,Σl) =
∑

xt∈φk

log f(xt|µl,Σl) =
T
∑

t=1

log f(xt|µl,Σl) · P (xt|φk) (7.40)

In the above equation, P (xt|φk) represents the probability of a vector xt to belong to the
cluster φk, which is 1 only if xt ∈ φk and 0 otherwise, according to the constraint added during
the definition of the algorithm. Relaxing this constraint, this function can be rewritten as the
conditional expectation of the log-likelihood function, as follows:

log f(φk|µl,Σl) =E [log f(xt|µl,Σl)|φk]

= logN (mk|µl,Σl)−
1

2
tr
(

Sl
−1Sk

)

(7.41)

where N (·|µ,Σ) represents a normal distribution with mean vector µ and covariance matrix Σ
and tr(A) the trace of matrix A.

The parameter update equations can be obtained by taking the partial derivatives of the
auxiliary function given by (7.38) and equating to zero, with the normalization constraint

∑

l ωl =
1. Using the definition (7.41) in the auxiliary function, we obtain:

ωl =

K
∑

k=1

ck · γkl (7.42)

µl =
1

ωl
·

K
∑

k=1

ck · γkl ·mk (7.43)

Σl =
1

ωl

K
∑

k=1

ck · γkl ·
[

(mk − µl)(mk − µl)
T + Sk

]

(7.44)

where γkl is given by (7.39).
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Relation with other clustering methods

The re-estimation equations (7.42) to (7.44) are similar to those used in the cluster algorithm
presented by Davis and Dhillon (2007), except for the term γkl, which assigns a probability of a
cluster φk being at the l-th Gaussian component of the model.

The clustering algorithms proposed by the previous authors can be obtained by performing
a Viterbi approximation in equations (7.42) to (7.44), i.e.:

γkl =

{

1 if l = arg max
l′∈{1···L}

f(l′|φk, θ)

0 otherwise
(7.45)

Therefore, the proposed algorithm can be seen as a soft clustering algorithm.

7.5. Summary

In this chapter, we proposed to take into account the relevance of different training subsets for
acoustic modeling. Inspired by the use of interpolation for language modeling, two combination
methods were theoretically presented. In the first one, component models are independently
estimated on each training subset and then interpolated. In the second method, the relevance
weights are taken into account during the estimation of the acoustic model parameters. The
latter is equivalent to train acoustic models with weighted data. In addition, an EM approach
was proposed to automatically estimate the interpolation coefficients.

The proposed methods were theoretically compared with adaptive training approaches. It
was shown that the re-estimation equations of the data weighting and the speaker adaptive train-
ing (Anastasakos et al., 1996) methods are somewhat similar. The GMM interpolation method
presents similarities with the cluster adaptive training (Gales, 1998a) and eigenvoices speaker
adaptation (Kuhn et al., 1998) approaches in the sense they all make use of scalar coefficients
to weight the relevance of multiple component models. However, and more importantly, the
interpolation methods have different design goals compared to adaptive training schemes. While
data weighting and interpolation are used to build task specific models, adaptive training aims
to build canonical models in which the inter speaker variability is reduced.

The main advantage of the GMM interpolation method is the flexibility it provides. Given
a set of available component models, task specific models can be rapidly obtained by estimating
a few interpolation coefficients and merging the Gaussian mixtures. To some extent, there
should be no need to re-train the component models for a new task or when new acoustic data
become available. For the implementation suggested in this chapter, this is only true if the
structure of the acoustic model (namely the phone set, phone contexts and tied-states table)
does not change. Extending the method to allow different phone sets and tied-state tables is
a possible direction for improvement. For instance, the model structure could be redefined by
specializing the clustering tree to a new phone set as proposed in Schultz and Waibel (2000).
Alternatively, the HMM states could be re-clustered based on similarity measures taken over the
output Gaussian mixture densities to define a new model structure.

Compared to interpolation, data weighting is less flexible. Whenever additional data are
included in the training corpus or a new task is considered, it is necessary to re-estimate all the
model parameters.

GMM interpolation leads to an increase of model parameters, which can be compensated
using a mixture reduction algorithm. A theoretically correct solution to reduce the number of
Gaussian components in an existing mixture was proposed. The solution is based on a constrained
version of the standard maximum likelihood estimation and leads to a soft clustering algorithm.
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7. Acoustic model interpolation

The theoretical framework described in this chapter is empirically assessed in the next chap-
ter.
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Chapter 8

Experiments with acoustic model
interpolation

8.1. Introduction

A common approach used for acoustic modeling is to pool all the available training data together
as if they were parts of one homogeneous set. However, given that the acoustic data are usually
collected from a wide variety of sources, the training data is certainly heterogeneous due to
variations across speakers (gender, dialect, accent, background condition, speaking style, etc.)
and within a speaker (age, emotional state, etc.) (Benzeghiba et al., 2007). This variability is
an important difficulty in ASR, directly affecting the quality and challenging the robustness of
recognition systems.

Pooling the training data usually leads to good overall performance levels on test sets also
coming from a variety of sources. Generally, it can be expected that some more improvement
in performance can be obtained by adapting the pooled model to data coming from the same
source as the target set. However, adaptation techniques allow similarity levels to be adjusted
only with respect to the complete training data. We hypothesize that more reliable parameter
estimates can be obtained by considering different degrees of relevance for different subsets of
the training data.

In this chapter, the model interpolation and data weighting schemes proposed in Chapter 7
are empirically assessed. First, in Section 8.2, we empirically motivate the choice for the GMM
reduction algorithm proposed in the previous chapter, showing that it outperforms a greedy
(Runnalls, 2007) and a hard clustering (Davis and Dhillon, 2007) algorithms. In Section 8.3, the
data weighting and GMM interpolation approaches are assessed for the European Portuguese
broadcast recognition system. In Section 8.4, the GMM interpolation method is assessed as an
alternative to MAP adaptation for generating accent-dependent models for the multiple-accented
English data recognition task. We also show that interpolation can be efficiently used to build
acoustic models on-the-fly for each test data set and without requiring data from the targeted
accent for AM training. A summary is given in Section 8.5.

8.2. Gaussian mixture reduction algorithm

The GMM reduction algorithm proposed in Section 7.4 was validated in two different experi-
ments. First, it was applied to reduce the HMM state mixtures of an interpolated model. Second,
it was applied to generate a universal background model (UBM) GMM from the acoustic model
in order to perform adaptation.
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8. Experiments with acoustic model interpolation

Initialization
EM clustering

No EM Hard Soft

Single Gaussian - 36.6 35.8
Gaussians with highest coefficients 39.3 36.5 36.3
Runnalls’ algorithm 36.4 36.0 35.8

Table 8.1.: Recognition results with acoustic models obtained using three different GMM
reduction algorithms (Runnalls’, hard clustering and soft clustering) for three
different types of initialization. For reference, the WER obtained with the
model without reduction is 34.5%.

8.2.1. Reduction of HMM state mixtures

The GMM reduction algorithm was assessed with the Portuguese broadcast recognition sys-
tem. An acoustic model containing 160 Gaussians per state was built after interpolating five
component models trained on trainR01, trainR10, trainV09, trainE10 and trainQ10 (see Sec-
tion 3.2.1). The same interpolation coefficient (0.2) was set for all models. Each of the state
mixtures was reduced to 32 components using the Runnalls’ algorithm (Runnalls, 2007), hard
clustering (Davis and Dhillon, 2007) and the soft clustering algorithm proposed in Section 7.4.

For the hard and soft clustering algorithms, three types of initialization were assessed. First,
the single Gaussian that represents the whole mixture is used. Before each re-estimation itera-
tion, all the Gaussians of the reduced models are split until the desired number of components is
achieved. Second, the Gaussian components having the highest mixture gains were selected for
initialization. Third, the reduced mixture was initialized with the Runnalls’ algorithm (Runnalls,
2007) like used in Schieferdecker and Huber (2009).

The models with reduced mixtures were used to decode the development set devQ10 with
the baseline language model LM_10src. No speaker adaptation was done during decoding. The
results are summarized in Table 8.1. With the same system, the acoustic model without GMM
reduction obtains a word error rate of 34.5%. As expected, a loss in performance is observed with
the use of GMM reduction. The proposed algorithm outperforms the Runnalls’ algorithm (35.8%
vs. 36.4%). For all three initialization procedures used, the proposed soft clustering algorithm
outperformed hard clustering. The best performances obtained with clustering methods are
36.0% (hard) and 35.8% (soft).

8.2.2. Estimating universal background models

A universal background model is generally a mixture model that approximates the full HMM/GMM
acoustic model. UBMs are useful, for instance, to perform a simplified vocal tract length nor-
malization, speaker recognition or CMLLR adaptation. UBMs are often estimated from scratch
using a sampled subset of the training data.

A fast-training alternative is to generate the UBM via GMM reduction. In this case, an initial
global mixture is formed by merging all the Gaussian components of the HMM/GMM acoustic
model and scaling the mixture gains according to the number of training frames associated to
each state. Then, this GMM is reduced to the desired number of components.

UBMs obtained via reduction were compared to equivalent UBMs estimated from scratch
for a CMLLR adaptation task. Three systems (with different target languages, acoustic feature
vectors and training criteria) were evaluated on their respective development sets. The results
are summarized in Table 8.2. Generally, the reduced GMM obtains equivalent (or better) WERs
compared to UBMs trained from scratch (absolute reductions from 0.1% to 0.3% were observed).
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8.3. European Portuguese broadcast data recognition

Language Amount Features Training UBM estimation
of data criterion from

scratch
GMM

reduction

Portuguese 156h PLP MLE 33.4 33.1
Portuguese 378h MLP+PLP+F0 MMIE 23.1 23.0
Latvian 628h MLP+PLP+F0 MLE 21.6 21.5

Table 8.2.: Recognition results obtained with UBM/GMMs estimated from scratch or via
GMM reduction of acoustic models. The results are show in terms of WER(%)
on the development sets of the different systems.

Source
Training

Name Dur

RTP, Voice of America, Euronews
trainRVE

(trainR01+trainR10+trainV09+trainE10)
173.3

Quaero trainQ10 71.7

Table 8.3.: Information of the European Portuguese corpus used to assess the impact of
coefficients for acoustic model interpolation. Duration (Dur) is given in hours.

8.3. European Portuguese broadcast data recognition

In this section, acoustic model interpolation is applied to a large vocabulary Portuguese speech
recognition task and compared to the pooled and with MAP adapted models. The experiments
were carried out using the improved LIMSI European Portuguese ASR system described in
Section 3.2.4.

8.3.1. Impact of interpolation coefficients

A set of experiments was carried out in order to validate the automatic determination of the
interpolation coefficients. The training data were separated into two different sets, trainRVE and
trainQ10, comprised respectively of about 173 and 72 hours of data as summarized in Table 8.3.

Two pairs of coefficients were estimated using the EM procedure described in Section 7.3.3,
with the estimation guided by either the manual or the automatic transcriptions of devQ10.
Both obtained similar interpolation coefficients, 0.20/0.80 and 0.25/0.75 for trainRVE/trainQ10,
respectively. Other coefficient pairs (see Figure 8.1) were manually set to assess their influence
in the recognition performance. For each pair of coefficients, models were estimated using the
GMM interpolation and data weighting methods described in Section 7.3. The models were
evaluated on the devQ10 and testQ11 sets.

The recognition results obtained are plotted in Figure 8.1. The horizontal axis gives the coef-
ficient values selected for trainQ10. The WERs obtained with the two methods, data weighting
and GMM interpolation, are generally quite close. The largest difference is 0.3% absolute on
testQ11 for coefficients of trainQ10 ranging from 0.50 to 0.75. These differences are probably
due to the fact that models obtained via data weighting have all the parameters optimized by tak-
ing the interpolation coefficients into account. For the models obtained via GMM interpolation,
only a few parameters (the coefficients) are adjusted.

The model estimated only on trainQ10 (coefficient = 1.0) has a significant lower WER than
the model estimated only on trainRVE (coefficient = 0.0), even if this latter was trained on 2.4
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Figure 8.1.: Evaluation of acoustic models obtained using data weighting or GMM in-
terpolation with different pairs of mixture coefficients. WER(%) on the de-
velopment set devQ10 set (a) and testQ11 (b). The sources combined are
trainRVE and trainQ10 (see Table 8.3).

times as much data. This is because trainQ10 comes from the same source and epoch as devQ10
and testQ11, and therefore does a better match to the target data.

The pooled model (baseline) is the one with same coefficients assigned for trainQ10 and
trainRVE (coefficient = 0.5). Comparing the WER obtained with the pooled model and the
model trained only on trainQ10 (coefficient = 1.0), it can be seen that adding the 173 hours
of trainRVE do not lead to improvements on devQ10 and to an absolute improvement of 0.3%
(from 31.8% to 31.5%) on testQ11.

Different WERs were obtained by manually varying the interpolation coefficients, reaching
a minimum around the coefficients estimated on the automatic and manual transcriptions of
devQ10, 0.75 and 0.80 respectively. The estimated coefficients obtain absolute improvements
of about 0.2–0.3% compared to the pooled models. These results suggest that near optimal
interpolation coefficients can be automatically selected without requiring manual transcriptions
for the development data.

8.3.2. Comparing interpolation, data weighting, pooling and
MAP adaptation

A set of experiments was carried in order to assess data weighting and GMM interpolation as a
means of generating acoustic models adapted to the target source. The 245 hour untranscribed
training data were divided into five subsets, namely trainR01, trainR10, trainV09, trainE10
and trainQ10, according to the show source and broadcast date. The training corpus information
is summarized in Table 8.4a.

The systems were evaluated on four test sets coming from the same sources as were used for
training, namely the sets testR00, testV09, testE10 and testQ11 as presented in Table 8.4b.
For each test set, an associated held-out set was used to estimate the interpolation coefficients.
There is no overlap of the held-out data with the training or the evaluation data. The held-out
sets heldE09 and heldV09 have not been used in other experiments. They correspond to data
collected from shows broadcast in 2009 from the respective sources. The system parameters
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8.3. European Portuguese broadcast data recognition

Source Name Dur

RTP trainR01 55.6
RTP trainR10 78.3
Voice of America trainV09 21.2
Euronews trainE10 18.2
Quaero trainQ10 71.7

(a) Acoustic training corpus.

Source
Held-out Evaluation

Name Dur Name Dur

RTP trainR00 3.1 testR00 1.2
Voice of America heldV09 4.9 testV09 2.1
Euronews heldE09 4.5 testE10 1.9
Quaero devQ10 3.3 testQ11 3.5

(b) Held-out and evaluation sets.

Table 8.4.: Information of the European Portuguese corpus used for acoustic model inter-
polation experiments. The held-out sets were used to estimate the interpola-
tion coefficients. Duration (Dur) is given in hours.

were tuned on devQ10. Automatic transcriptions for the held-out data were generated using the
pooled acoustic model estimated on all of the training data.

A baseline acoustic model was created by pooling the 245 hour audio training data. One
iteration of unsupervised MAP estimation was used to adapt the pooled model to each source.
Adaptation was guided using the automatic transcriptions of either of the trainR01, trainV09,
trainE10 and trainQ10 sets.

Source-specific models were also created via data weighting and GMM interpolation. First,
five acoustic models were independently estimated on each training subset via maximum like-
lihood estimation. Interpolation coefficients were estimated on each of the four held-out data
sets. These coefficients were then taken into consideration to create four source-specific models
via data weighting and other four via GMM interpolation. For reference, another model was
generated via GMM interpolation using equally set coefficients.

Acoustic models were estimated using an unsupervised training approach with the 1-best
hypothesis considered as ground truth. All the acoustic models have the same structure, covering
about 15.7k phone contexts with 11.5k tied-states. The models obtained via pooling, MAP
adaptation and data weighting have 32 Gaussians per state, while the models obtained via
interpolation have 160 (5× 32).

The LM_10src language model trained on a corpus comprised of ten different sources and
having about 639M words (Section 3.2.4) was used for all experiments.

Table 8.5 summarizes the recognition results obtained on testR00, testV09, testE10 and
testQ11. The last row corresponds to the global WER obtained on the entire test set. The second
column of the table gives the WERs obtained with the pooled model, which has a WER 22.6%
on the combined test set. MAP adapted models obtain a better global WER (22.4%) compared
to the baseline, although a loss in performance is observed for the testR00 and testE10 sets.
The highest gain obtained via MAP adaptation is observed for the testV09 set (0.5% absolute).

When models are generated using data weighting, the use of estimated coefficients obtains
a 0.4% WER absolute gain compared to the use of equally set coefficients (which is equivalent
to the baseline pooled model). For models obtained via interpolation, the use of estimated
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Test set
Data weighting GMM Interpolation

MAPequal
(pooled)

auto equal auto

testR00 24.7 24.5 25.1 25.0 25.1
testV09 14.4 13.6 14.3 13.9 13.9
testE10 13.2 13.1 13.7 13.6 13.3
testQ11 31.5 31.2 31.9 31.6 31.3
Overall 22.6 22.2 22.9 22.6 22.4

Table 8.5.: Recognition results with acoustic models obtained via data weighting, GMM
interpolation, pooling or MAP adaptation. The sources combined are those
presented in Table 8.4a. WER (%) is measured on the test sets testR00,
testV09, testE10 and testQ11. For data weighting and interpolation, the
use of equally set coefficients (‘equal’) is compared to the use of automatically
selected (‘auto’) ones.

Test set
GMM interpolation of MAP adapted models

equal auto

testR00 24.4 24.8
testV09 13.8 13.6
testE10 13.2 13.0
testQ11 31.2 31.1

Overall 22.3 22.2

Table 8.6.: Recognition results with acoustic models obtained via interpolation of MAP
adapted models. The sources combined are those presented in Table 8.4a.
WER (%) is measured on the test sets testR00, testV09, testE10 and
testQ11. The use of equally set coefficients (‘equal’) is compared to the use
of automatically selected (‘auto’) ones.

coefficients outperform equally ones on about 0.3% absolute.
The best performance levels are obtained using data weighting with automatically estimated

coefficients. Contrary to MAP adaptation, no loss in performance is obtained on the individual
test sets. Compared to the pooled and MAP adapted models, absolute WER reductions of 0.4%
and 0.2% are respectively obtained.

We observe that models obtained via GMM interpolation perform worse than those obtained
via data weighting. This is probably due to the fact that some of the component models were
poorly estimated. More precisely, the acoustic models trainV09 and trainE10 were estimated
on about 20 hours of audio data. Given that the HMM state-tying table was fixed, a part of the
state GMMs was certainly trained with only a few training samples.

To generate acoustic models with “well-trained” mixtures, the pooled model was adapted
to each of the five training sources (Table 8.4) via MAP estimation. These five models were
interpolated using equally set coefficients and coefficients automatically estimated on each of
the four held-out data sets. These models were used to decode testR00, testV09, testE10 and
testQ11. Table 8.6 summarizes the results obtained.

The models obtained with the interpolation of MAP adapted models using automatically
estimated coefficients outperform on only 0.1% the model obtained with equally set coefficients.
Both interpolated models obtain similar WERs (22.3% for ‘equal’, 22.2% for ‘auto’) compared
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8.4. Multiple accented English data recognition

to the models created via data weighting (22.2%, c.f. Table 8.5).

8.4. Multiple accented English data recognition

According to Huang et al. (2001), accent is, behind gender, the second principal source of speech
variability. Even if substantial progress has been made in the techniques for normalization and
speaker adaptation to compensate some of the variability, recognition accuracy has been shown
to strongly degrade when the accent of the test speaker is not well represented in the training
data (Fischer et al., 2001; Wang et al., 2003; Zheng et al., 2005).

A general approach to deal with accented data is to adapt a prior model to the target accent
(Wang et al., 2003). This approach can be extended to the multi-accented data case Huang
et al. (2004); Zheng et al. (2005). The main principle is to build different accent-dependent
models and use a selector for adaptation. This procedure was adopted by Vergyri et al. (2010)
to recognize multiple accented English data. In that work, accent-specific models were created
for six different geographical regions where English is spoken as an official language. Similar to
Chen et al. (2001), a GMM based classifier was used to select an accent-dependent model for each
test segment. On average, a significant improvement was obtained over the accent-independent
system, although the accuracy of one of the accents (Middle-East 1) degraded.

In this section, we revisit the problem addressed in Vergyri et al. (2010). However, instead
of using the approach based on MAP adaptation (Gauvain and Lee, 1994), we propose to build
the accent-dependent models via interpolation, with coefficients automatically estimated as de-
scribed in Section 7.3.3. In this case, model interpolation is performed by merging the GMMs
of the component models and properly adjusting the mixture coefficients (Section 7.3.1). Accent
adaptation is restrained to acoustic modeling in order to validate the interpolation method pro-
posed. We therefore assume that the remaining system components (pronunciation dictionary,
language models) provide a good coverage for all the accents represented in the data set.

Interpolation was assessed in two ways. For the first method, accent-dependent models are
built via interpolation during the training phase and used during decoding after model selection.
For the second method, the component models are interpolated on-the-fly, with coefficients es-
timated for each test segment. Therefore, instead of making a hard decision for an accent, a
smoothed combination is performed.

In the following we described the experiments performed to validate the acoustic model
interpolation as an adaptation technique. Before reporting results, the experimental setup is
presented. In the second, model interpolation is used as an accent adaptation technique. After,
it is used to generate speaker and show specific models in an unsupervised manner on-the-fly.
Finally, we show that the technique is also very useful when the target accent is not represented
in the training set.

8.4.1. Experimental setup

The data and baseline system used in this work are the same as presented in Vergyri et al. (2010)
and described in Section 3.3. As a reminder, the most important details are given here.

The duration information of training and test sets of the broadcast news multi-accented
English corpus used in this work is reproduced in Table 8.7. For these experiments, two additional
subsets were defined, train6h and held-out. These are non-overlapping randomly selected
subsets of the training data and were used to estimate the interpolation coefficients for each
accent. In contrast to the experiments carried out on Portuguese, manual transcriptions of

1In Vergyri et al. (2010), the labels for the ME and NA accents were mistakenly swapped.

125



8. Experiments with acoustic model interpolation

Set (Duration) US AU GB ME NA IN Total

Training (hours) 316.6 33.0 55.4 27.7 8.2 9.4 450.3
Train6h (hours) 6.0 6.0 6.0 6.0 6.0 6.0 36.0
Held-out (hours) 3.6 2.0 2.0 1.6 2.2 1.7 13.1
Test (min) 172 12 48 15 13 15 275

Table 8.7.: Duration of the multi-accented English data sets. Accents: United States
(US), Australia (AU), Great Britain (GB), Middle East (ME), North Africa
(NA), India (IN).

the entire training and held-out data sets were available. Thus, the models were trained in a
supervised manner.

As a reminder, the multi-accented English system uses a 42-dimensional PLP-like (Herman-
sky, 1990) acoustic feature vector (12 cepstrum coefficients, log energy and pitch, along with
their first and second derivatives).

The phone set contains 35 phones and special units for silence, breath and hesitation markers.
The HMM-GMM acoustic models cover about 18k phone contexts and contain 11.5k tied states.
They are all gender dependent, speaker adapted (Anastasakos et al., 1996), and were obtained
via MMIE (Bahl et al., 1986).

Two sets of models can be considered as baseline for this work, both being described in
Vergyri et al. (2010). The first one consists of an accent-independent, gender-dependent model
generated by pooling all the training data together. The second are the accent-dependent,
gender-dependent models obtained via a joint (accent, gender) MAP adaptation scheme of the
accent-independent, gender-independent prior model.

The multi-accent dependent system uses a GMM classifier to select the most likely accent
for each test segment. The corresponding accent-dependent model is used for decoding. The
decoding in the LIMSI systems (see Section 3.3) includes unsupervised MLLR and constrained
CMLLR for speaker adaptation (Leggetter and Woodland, 1995).

The main results obtained by Vergyri et al. (2010) are reproduced in the first two entries of
Table 8.8. On average, the multi-accented system (with per show accent identification) performs
better than the accent-independent system, with the exception of the ME accent.

8.4.2. Accent-adaptation via model interpolation

Model interpolation was assessed via supervised adaptation, but with automatically estimated
coefficients. In a first step, the train6h subset was used to estimate context-independent models
for each accent. Interpolation coefficients were estimated in order to maximize the likelihood
of the held-out data set. In a second step, the MAP adapted accent-dependent models were
interpolated using the estimated coefficients.

After merging the Gaussian mixtures, each accent-specific (interpolated) model contains
192 components per GMM. The mixtures were reduced to 32 components using the algorithm
proposed in Section 7.4. During decoding, a GMM classifier was used to select the accent-
specific interpolated model for each show, as performed in the baseline multi-accented system.
The results obtained with this approach are shown in the second part of Table 8.8.

On average, the interpolated models obtained the best word recognition performances on
the test data. With respect to the two baseline systems (“Show-accent-ID” and “Accent-
independent”), relative improvements of 2.2% and 6.3%, were achieved. The reduced interpolated
models also outperform the two baseline systems (1.8% and 6.0% relative), but with a small loss
in performance compared to the large interpolated model. Contrary to the “Show-accent-ID”
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8.4. Multiple accented English data recognition

System US AU GB ME NA IN Overall Ave

Accent independent 14.34 11.92 12.84 15.90 26.47 39.28 16.07 20.12
Show-accent-ID 13.95 11.91 11.98 16.46 25.19 34.28 15.39 18.96
Interpolated (equal) 14.45 11.64 12.30 16.34 25.49 35.81 15.84 19.34
Interpolated (auto) 13.83 11.55 11.08 15.79 24.29 33.52 15.05 18.34
Interpolated reduced 13.75 11.87 11.45 15.79 24.89 33.95 15.11 18.62
On-the-fly (speaker) 14.11 11.37 11.65 15.63 24.24 33.18 15.27 18.36
On-the-fly (show) 14.06 11.18 11.30 15.86 24.24 33.69 15.22 18.39

Table 8.8.: Recognition results using different recognition systems for each of the six re-
gional English accents. ‘Overall’ corresponds to the WER(%) on the com-
bined test set, while ‘Ave’ to the average WER when each subset is weighted
equally (see Table 8.7). The first part shows results for the baseline models;
the second and third parts, for models interpolated, either during the training
(2nd), or decoding (3rd) phase. Acoustic models were trained on 450 hours of
data.

system, the interpolated models obtain similar performance levels as the “Accent-independent”
system for the ME data. The improvements obtained with the interpolated models are signifi-
cant with respect to both baseline systems, according to the MAPSSWE significance test (Pallett
et al., 1990).

8.4.3. On-the-fly acoustic model interpolation

Acoustic model interpolation was assessed as an unsupervised adaptation technique. The com-
ponent models are not interpolated during training, but interpolation coefficients are estimated
during decoding by maximizing the likelihood of the test data. The estimated coefficients are
used to create a segment-specific model on-the-fly by interpolation of the component models.
GMM reduction was not applied in this case. The third part of Table 8.8 provides recognition
results for speaker- or show-specific interpolated models.

On-the-fly interpolation based on speaker or show test segments outperforms “Show-accent-
ID” for all accents but US. On-the-fly interpolation outperforms the accent independent system
for all accents, even US, which is well represented on the accent independent model (70% of
acoustic training data is US).

8.4.4. Leaving target accent out

Another set of experiments was performed to assess the case where the target accent data is
not represented in the training corpus. The procedure used to create the component models is
similar to the one used in the previous experiments, except that the subset corresponding to the
target accent was not used for training. For instance, the acoustic model used to decode the US
test data was created using about 134 hours of data rather than 450 hours (450 hours from the
entire training data set - 317 from the US training data; c.f. Table 8.7). The amount of audio
data used for build acoustic models for each dialect are shown in Table 8.9a.

It was assumed that the held-out sets were available. They were used only for MAP
adaptation and for estimating the interpolation coefficients. MMIE was not used on top of the
MAP adapted models, since it led to loss in recognition performances for the US data. (We did
not try for the other accents). The systems were evaluated on the test and train6h sets, since

127



8. Experiments with acoustic model interpolation

US AU GB ME NA IN
133.7 417.3 394.9 422.6 442.1 440.9

(a) Amount of data (in hours) used to build acoustic models for each dialect.

System US AU GB ME NA IN Overall Ave

Accent-independent 21.31 13.99 15.29 18.77 29.33 44.69 21.69 23.90
Adapted to held-out 20.69 13.02 14.39 19.15 28.58 41.11 20.90 22.82
Interpolated (auto) 20.42 13.35 13.30 17.25 27.33 40.84 20.41 22.08
Interpolated reduced 20.66 13.48 13.79 17.45 28.08 41.00 20.70 22.41
On-the-fly (speaker) 20.65 12.61 13.40 17.09 28.38 40.51 20.56 22.11

(b) WER(%) on test sets.

System US AU GB ME NA IN Overall Ave

Accent-independent 19.87 20.06 14.86 17.22 27.46 38.24 23.17 22.95
Adapted to held-out 19.04 17.39 14.16 17.41 25.37 34.69 21.54 21.34
Interpolated (auto) 19.12 18.06 12.88 15.86 24.61 35.66 21.25 21.03
Interpolated reduced 19.41 18.41 13.13 16.33 24.99 36.45 21.68 21.45
On-the-fly (speaker) 19.40 19.10 13.20 15.71 25.36 36.06 21.69 21.47

(c) WER(%) on train6h (as test) sets.

Table 8.9.: Recognition results for the case where no training data in the dialect was
available for acoustic model training. The amount of AM training data used
for each dialect is shown in (a). The held-out sets were used only for MAP
adaptation and to estimate the AM interpolation coefficients. No MMIE was
performed. ‘Overall’ corresponds to the WER on the combined (b) test

and (c) train6h sets, while ‘Ave’ to the average WER when each subset is
weighted equally (see Table 8.7). These results cannot be compared with those
in Table 8.8 as the training conditions are different.

these latter were not used for training.

Results on test

The recognition results obtained on the test sets are reported in Table 8.9b. First row presents
the results with the accent-independent system. The second part of each table shows the multi-
accented systems with per show accent-identification, but with accent-dependent models built
via MAP adaptation to the held-out data, via interpolation or via interpolation followed by
a GMM reduction. Last row presents the system with models interpolated on-the-fly for each
speaker.

As in previous experiments, all the four multi-accented systems outperform the accent-
independent system.

For the test sets, the interpolated models outperform the adapted ones with a global rela-
tive WER reduction of 2.2% (20.41% vs. 20.90%). Even with reduced mixtures, the interpolated
models still outperform the adapted ones for three accents (GB, ME, NA) and obtain similar
performance levels for two (US, IN). However, reducing the mixtures of the interpolated model
leads to a slight loss in performance. It is important to remind that manual transcriptions of
the held-out data were used. As reported in Section 8.3, this has little impact for the estima-

128



8.5. Summary

tion of interpolation coefficients. However, it is well-known that supervised MAP estimation
is substantially better than unsupervised estimation (c.f. systems F and G in Table 3.8, for
instance).

Models interpolated on-the-fly outperform adapted models for five accents, giving similar
performance for the US accent. This approach leads to the best recognition performances for
three accents (AU, ME, IN) compared to the other four systems. This is an interesting result,
since this latter setup does not require any held-out data, as adaptation is performed on speaker
cluster basis (on top of CMLLR/MLLR adaptation).

Results on train6h

The models built in the previous experiment were evaluated on the train6h data sets to report
results on a test set larger than test. As a reminder, the train6h data were not used for AM
training in this condition. The results obtained on the train6h sets, shown in Table 8.9c, agree
in part with those obtained on the test sets. The interpolated models (3rd row) obtain better
overall performance levels than the adapted models (2nd row) (21.25% vs. 21.54%). For three
accents (GB, ME, NA), the interpolated models outperform the adapted ones. For the US data,
these two systems are equivalent. On the other hand, adapted models outperform interpolated
models for the AU and IN accents.

On-the-fly interpolation (last row) obtains similar recognition performances than the MAP
adapted models (21.69% vs. 21.54%). The former outperforms the latter for two accents (GB,
ME) and is similar for the IN data. For the remaining three accents, it is worse. However, on-
the-fly interpolation is an unsupervised adaptation technique as it does not use any data from
the target dialect, except for the test set itself.

8.5. Summary

In this chapter, the GMM reduction algorithm, the acoustic model interpolation and data weight-
ing methods proposed in Chapter 7 were empirically assessed. The proposed GMM reduction
algorithm performed better than a greedy (Runnalls, 2007) and a hard-clustering (Davis and
Dhillon, 2007) algorithms when used to reduce the mixtures of an acoustic model built via inter-
polation. The proposed algorithm was also used to generate universal background models from
HMM/GMM based acoustic models as a faster alternative than training UBMs from scratch. It
was shown that the EM algorithm can be used to estimate near optimal interpolation coefficients
even on an untranscribed held-out data set. Estimated coefficients led to better performance lev-
els than manually set coefficients.

The data weighting and GMM interpolation methods were used to build source-specific
acoustic models for a Portuguese broadcast recognition task. Both outperformed the baseline
pooled model and the MAP adapted models on four evaluation sets. (Although interpolation
generates models with a larger number of parameters). It was shown that GMM interpolation
requires the use of “well-trained” component models to achieve suitable performance levels.

This work used a single interpolation coefficient assigned to each component model. In non-
reported experiments carried out with the Portuguese ASR system, the use of phone specific
interpolation coefficients did not bring improvements. Acoustic models for the Portuguese ASR
system were estimated using an unsupervised training approach taking the 1-best decoding hy-
pothesis as ground truth. The improvements obtained with model interpolation are expected
to be additive to those obtained with confidence-based weighting or filtering approaches (Chap-
ter 4).
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8. Experiments with acoustic model interpolation

The GMM interpolation method was also assessed for the recognition of multiple-accented
English data as a means to generate accent-specific acoustic models. Compared to a previously
proposed approach (Vergyri et al., 2010) that relies on MAP adaptation, interpolation led to
a small but significant gain in performance for all the six accents represented in the corpus.
The algorithm proposed in Section 7.4 was used to reduce the state mixtures of the models
obtained via interpolation in order to perform a fair comparison with the pooled and the MAP
adapted models. The reduced interpolated models consistently outperformed the pooled and the
MAP adapted ones, although with some loss in performance compared to the larger interpolated
models.

Interpolation was also assessed as an unsupervised adaptation scheme for the multiple-
accented English data task. Interpolation coefficients were estimated on-the-fly and used to
generate acoustic models for each test speaker or show. This approach has the advantage of not
requiring held-out data, but performed slightly worse than accent-specific interpolated models.

Another condition was assessed for the English recognition task: data for the target accent
were not used for acoustic model training. Only a small amount of held-out data was used
for adaptation and to estimate the interpolation coefficients. This condition required training
models on all other data sources for each target accent. GMM interpolation consistently outper-
formed the accent-independent system on each of the six test accents. For three accents, GMM
interpolation led to better performance levels than MAP adapted models.

It was shown that on-the-fly interpolation is especially useful for more extreme conditions
in which no data for the target accent are available neither for acoustic model training nor for
adaptation. In this condition, on-the-fly interpolation led to substantial gains in performance
compared to the baseline accent-independent system.
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Conclusions

This last chapter summarizes the contributions of this work and discusses the conclusions that
can be drawn from them. Some possible extensions of this work are also suggested.

Contributions

We investigated different approaches to reduce the costs required for ASR system development.
A large part of these costs are due to the human effort required to produce a large amount
of manual audio transcripts, which are fundamental for acoustic model training and well-suited
for language model training. Additional costs are required when the target data is scarce in
accessible sources (TV, radio, Web, podcasts) due to the extra effort applied for data collection
and system refinements. Among other tasks, this is the case for recognizing data from low e-
resourced languages and dialects. Two axes of research were explored: 1) the use of unsupervised
training methods as a means to reduce the need for manually transcribed audio data; and 2) the
use of acoustic model interpolation as a means to reduce the need for target specific acoustic
data.

Unsupervised training approaches were applied to build three main components of
state-of-the-art ASR systems: the acoustic models, the MLPs used to extract acoustic features
and the language models. Several conclusions can be drawn from this work.

As has been previously reported, unsupervised AM training approaches can be used to
substantially improve the performance of ASR systems without requiring manual transcriptions
(Chapter 4). Unsupervised AM training can be further improved by applying confidence based
filtering and weighting methods to diminish the impact of recognition errors contained in the
automatic transcriptions. The training strategy applied for unsupervised training also matters.
We observed that carefully choosing the manner how the training data subsets are used across the
training iterations can avoid the propagation of the recognition errors and significantly improve
the model accuracy.

A novel approach for unsupervised AM training was proposed, that is, the use of multiple
decoding hypotheses (rather than the best one) to guide the acoustic model parameter estimation
(Chapter 4). The use of multiple decoding hypotheses consistently outperformed the standard
unsupervised AM training approaches, especially when the automatic transcriptions used for
training contain a large amount of errors. We proposed and justified theoretically the use of
multiple decoding hypotheses as a smother approximation to the true transcription labels than
the 1-best case.

In this work, we also proposed to extend the unsupervised training framework to the use
of MLP features (Chapter 5). We showed that untranscribed data can be used to efficiently
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estimate the parameters of MLPs applied for feature extraction. The proposed method was used
to create accurate acoustic models with MLP-based features in a fully unsupervised manner. The
results obtained were very competitive to cross-lingual MLPs. An MLP trained on 316 hours of
untranscribed data from the target language performed similar as a cross-lingual MLP trained
on 600 hours of transcribed data.

Automatically generated audio transcriptions were also explored as a means to improve
the language model estimates (Chapter 6). By adding a relatively small amount of automatic
transcription texts into the LM training corpus (only 3M of 639M words), we reported gains in
recognition performance for a broadcast news recognition task. As has been previously reported,
the experimental work conducted showed that unsupervised LM training is a much more chal-
lenging task than unsupervised AM training. Nonetheless, we observed additive gains with the
joint use of unsupervised LM and unsupervised AM training. That being said, if some data have
been automatically transcribed for unsupervised AM training, the additional cost of using the
transcripts for LM training is negligible. Thus, using unsupervised LM might be worthy. The
unsupervised LM framework was assessed for standard backoff n-gram and extended to neural
network language models. Both methods led to similar relative gains in performance with re-
spect to their baseline models. However, NNLMs outperform backoff LMs in absolute values.
The gains obtained with both NNLM and backoff LMs were not complementary.

Inspired by common practices applied for language modeling, we proposed to weight the
relevance of the different subsets of the training data via data weighting and via GMM interpo-
lation. The theoretical approaches proposed were empirically validate for two tasks: European
Portuguese broadcast data recognition and multiple-accented English data recognition.

Data weighting was shown to be a type of interpolation technique, so as GMM interpolation
(Chapter 7). The proposed interpolation approaches were theoretically compared with adap-
tive training approaches. It was shown that the re-estimation equations of the data weighting
and the speaker adaptive training (Anastasakos et al., 1996) methods have some similarities. In
the same way, GMM interpolation and cluster adaptive training (Gales, 1998a) have similarities
in the sense that both make use of scalar coefficients to weigh multiple component models. How-
ever, while data weighting and interpolation methods aim to build acoustic models for a specific
task, adaptive training methods attempt to reduce the speech variability among the training
speakers. In addition, we argued that GMM interpolation is a flexible way to generate acoustic
models for a target data given that only a few interpolation coefficients need to be re-estimated
for each target task or when new data sets are incorporated into the acoustic training corpus.

Data weighting and GMM interpolation were reported to outperform baseline pooled models
and MAP adapted models when applied to a European Portuguese broadcast data recognition
task (Chapter 8). It was furthermore shown that near optimal interpolation coefficients can be
estimated on a small held-out data set using a fully automatic EM-based approach, even if the
estimation relies on untranscribed held-out data. These results were confirmed with the multiple-
accented English data recognition system by using the GMM interpolation method. With this
latter system, low-resourced data conditions were additionally assessed. When only about 2 to 3
hours of target accent data were available for training, interpolation outperformed the baseline
pooled models (accent-independent) for the six test accents and the MAP adapted models for
three of the accents. For a more extreme condition, when no data were available neither for
training nor for adaptation, interpolation has proven to be especially useful. In this case, on-the-
fly interpolation led to substantial gains in performance over the pooled (accent-independent)
models.

GMM interpolation engendered an increase of model parameters, which was compensated
by using a theoretically motivated mixture reduction algorithm. The solution, based on a con-
strained version of the standard maximum likelihood estimation, outperformed other reduction
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algorithms based on greedy merge (Runnalls, 2007) and Gaussian component clustering (Davis
and Dhillon, 2007)

Perspectives

The main goal of this work was to reduce the cost required for ASR development. Given the
central role played by acoustic and language models in such systems, the focus of this work was on
reducing the human effort required to build these two models. Costs of other development steps
might be reduced as well. For instance, instead of relying on expert’s knowledge about the target
language, unsupervised training methods could be used to automatically discover the acoustic
modeling units (Bacchiani and Ostendorf, 1999; Varadarajan et al., 2008; Jansen and Church,
2011). Similarly, the pronunciation lexicon can also be created with low (or no) knowledge
about the language (Bacchiani and Ostendorf, 1999; Bisani and Ney, 2008). Investigating the
combined use of unsupervised approaches to define acoustic modeling units and generate the
pronunciation lexicon (Hartmann et al., 2013) together with the techniques proposed in this
thesis is a possible research direction in order to allow the development of accurate ASR systems
in a fully unsupervised and low-cost manner.

The unsupervised training methods were assessed for HMM/GMM based acoustic models.
Given the recent risen in popularity of hybrid HMM/DNN acoustic models, extending the tech-
niques proposed in this work to such models is another suitable research direction. Unsupervised
training of neural networks has already been reported in this dissertation for bottleneck MLPs
(Chapter 5) and for (SOUL) NNLMs (Chapter 6). Laurent et al. (2014) reported experiments
in unsupervised DNN training as well. Yet, the use of confidence-based filtering and weighting
techniques as well as multiple decoding hypotheses (rather than the best one) is to be empirically
evaluated. Filtering can be performed straightforwardly by removing the low probability training
segments. Similarly, weighting could be performed by adjusting the learning rates according to
the confidence scores. Such a weighting technique is also to be explored as an extension to our
reported work in unsupervised bottleneck MLP and NNLM training.

A recurrent reported issue with work on DNNs is the difficulty to adapt the neural network
to new tasks. Well-known techniques that have been applied for several years for HMM/GMM
based acoustic model adaptation do not achieve the same results for DNN based models. Look-
ing for rapid and efficient DNN adaptation techniques is a current relevant research axis given
the computational complexity required for training such models. Model combination could be
investigated as a possible solution to this issue. Combining neural network layers or the poste-
rior probability scores are straightforward approaches. However, combining several layers in an
efficient way to maintain model correctness and model tractability is still a challenge.

On a short term basis, the methods proposed in this work could be enhanced and extended
to new applications. In particular, acoustic model interpolation was performed with a fixed
model structure and phone set inventory. To extend the method and allow arbitrary models to
be merged, it would be necessary to redefine the model structure after interpolation. A possible
way to perform this task is to re-cluster the HMM states based on similarity measures taken over
the state output mixtures. Clustering tree specialization (Schultz and Waibel, 2000) can also be
envisaged to attain this goal.

The proposed acoustic model interpolation methods could be extended to address other
tasks thereby validating the conclusions obtained in this work. As already mentioned, when
applied to create source-specific and accent-specific acoustic models, interpolation outperforms
other methods (data pooling and MAP adaptation). Due to the flexibility it provides, acoustic
model interpolation seems to be particularly interesting for adapting ASR systems over time.
Rather than retraining the entire model when new training data are delivered, only the new data
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could be used to estimate a new component model, which could be combined straightforwardly
to the previous model. Another possible application for AM interpolation is to combine manually
transcribed and automatically transcribed acoustic data sets. Adaptation methods (like MAP
adaptation) are commonly used to do this. Nevertheless, acoustic model interpolation may also
outperform MAP adaptation in this case.
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