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Résumé : comportements en temps long et a grande échelle de quelques
dynamiques de collision

Cette thése est composée de trois parties, dont chacune est consacrée a 1’étude d’un systéme de par-
ticules en interaction, probabiliste ou déterministe, et & l'intérieur duquel les interactions se produisent
uniquement aux collisions entre les particules.

La premiére partie présente I’étude du modéle d’échange complet, introduit en physique pour décrire
le transport de la chaleur dans une classe de matériaux poreux dits aérogels. Nous proposons une étude
heuristique et numérique des états stationnaires hors de 1’équilibre de ce modéle dans le Chapitre 2,
puis nous introduisons un cadre formel permettant d’obtenir des résultats d’ergodicité rigoureux dans le
Chapitre 3.

La deuxiéme partie s’intéresse aux systémes de particules interagissant a travers leur rang, qui décrivent
I’évolution de processus de diffusion sur la droite réelle dont les coefficients de dérive et de diffusion ne
dépendent que de leur rang. Nous obtenons dans le Chapitre 4 un résultat de propagation du chaos
pour ces systémes, et nous décrivons également le comportement en temps long du processus de diffusion
non-linéaire associé. Nous complétons ces résultats dans le Chapitre 5, et les appliquons & ’étude de la
distribution du capital et de la performance des portefeuilles dans le modele d’Atlas, introduit en théorie
des portefeuilles stochastiques, dans le Chapitre 6.

Dans la troisiéme partie, nous introduisons une version multitype du systéme de particules étudié dans
la deuxiéme partie. Nous obtenons dans le Chapitre 7 un résultat de propagation du chaos similaire a
celui du Chapitre 4, ce qui nous permet de donner une interprétation probabiliste a une classe de systémes
paraboliques d’équations aux dérivées partielles non-linéaires, dits systéemes diagonauz. En vue d’approcher
les solutions de systémes diagonaux hyperboliques, nous décrivons au Chapitre 8 la limite de ce systéme
de particules, lorsque l'intensité du bruit dans le systéme diminue. Nous appelons cette limite dynamique
des particules collantes multitype, et présentons au Chapitre 9 I'utilisation de cette dynamique dans I’étude
des systémes diagonaux hyperboliques d’équations aux dérivées partielles non-linéaires. Nous obtenons en
particulier un résultat de stabilité en distance de Wasserstein pour les solutions de tels systémes, grace a
une étude détaillée de notre systéme de particules.

Mots-clés : systémes de particules, collisions, comportement en temps long, transport thermique,
billard stochastique, propagation du chaos, processus non-linéaire, distance de Wasserstein, modéle d’Atlas,
limite petit bruit, dynamique des particules collantes, systémes hyperboliques.

Abstract: long time and large scale behaviour of a few collisional dynam-
ics

This thesis contains three parts, each one of which is dedicated to the study of an interacting particle
system, where interactions are either probabilistic or deterministic and only occur at collisions between
particles.

The first part is dedicated to the study of the Complete Exchange Model, which was introduced in
physics in order to describe heat transport in a class of porous materials called aerogels. We provide a
heuristic and numerical study of nonequilibrium steady states of the model in Chapter 2, and then we
introduce a formal framework allowing to obtain rigorous ergodicity results in Chapter 3.

The second part addresses rank-based interacting particles, which are diffusion processes on the real
line with drift and diffusion coefficients depending only on their rank. We obtain a propagation of chaos
result for such systems in Chapter 4 and also describe the long time behaviour of the associated nonlinear
diffusion process. These results are completed in Chapter 5, and applied to the study of capital distribution
and portfolio performance in the Atlas model, which was introduced in Stochastic Portfolio Theory, in
Chapter 6.

In the third part, we introduce a multitype version of the particle system of the second part. A
propagation of chaos result, similar to Chapter 4, is obtained in Chapter 7 and allows us to provide a
probabilistic interpretation to a class of parabolic systems of nonlinear partial differential equations, called
diagonal systems. In order to approximate the solution to hyperbolic diagonal systems, we describe the
small noise limit of this particle system in Chapter 8. We call Multitype Sticky Particle Dynmaics the
resulting particle system, and describe in Chapter 9 how to use this particle system to study hyperbolic
diagonal systems of nonlinear partial differential equations. In particular, we obtain a stability result in
Wasserstein distance for the solutions to such systems, thanks to a detailed study of our particle system.

Keywords: particle systems, collisions, long time behaviour, thermal transport, stochastic billiards,
propagation of chaos, nonlinear processes, Wasserstein distance, Atlas model, small noise limit, sticky
particle dynamics, hyperbolic systems.
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Chapitre 1

Introduction

Ce manuscrit est composé de trois parties, essentiellement indépendantes. De maniére géné-
rique, chaque partie est consacrée a ’étude d’un systéme de particules, & l'intérieur duquel les
interactions se font par collision :

e le modeéle d’échange complet, introduit en physique pour décrire le transfert de la chaleur
dans les aérogels, dont on étudie numériquement et théoriquement les états stationnaires
hors de I’équilibre dans la Partie I;

e les diffusions interagissant a travers leur rang, pour lesquelles on établit des résultats de
propagation du chaos et de convergence & 1’équilibre, et dont on discute I'application & un
modéle de marché financier dans la Partie IT;

e la dynamique des particules collantes multitype, que ’on définit et utilise dans la Partie 111
pour résoudre des systémes hyperboliques d’équations aux dérivées partielles non-linéaires.

Chaque partie est divisée en deux ou trois chapitres. Cette introduction donne un résumé rapide
de chacun de ces chapitres, et décrit 'articulation de ceux-ci & l'intérieur de chaque partie.

1.1 Partie I : le modéle d’échange complet

Les travaux présentés dans la premiére partie de ce manuscrit s’inscrivent dans le contexte
général de ’étude du transport de la chaleur dans les matériaux. Considérons par exemple une
barre de métal dont les extrémités sont mises en contact avec deux thermostats, de températures
différentes. Aprés une phase transitoire, on observe expérimentalement qu’un régime stationnaire
s’établit, sous lequel un courant d’énergie traverse la barre en allant du thermostat chaud vers le
thermostat froid. L’équation qui relie la valeur de ce courant d’énergie au gradient de la température
en un point donné est appelée loi de Fourier, ou de Fick, et s’écrit génériquement

J(x) = —s(T)VT (2), (1.1)

ot J(x) est le courant d’énergie au point z, 7 (x) est la température et (7)) est la conductivité
thermique du matériau. Cette loi empirique est observée dans de nombreux systémes dirigés par
un mécanisme général de diffusion. Un des buts de la physique statistique hors de 1’équilibre est
d’établir rigoureusement une telle loi de comportement macroscopique, & partir d’une description
microscopique de la matiére.

Une réponse satisfaisante & ce probléme serait d’exhiber un modéle microscopique, dans le-
quel les molécules interagissent selon les équations de la mécanique classique, et pour lequel un
comportement moyen de quantités macroscopiques telles que la température et le courant d’éner-
gie pourrait étre rigoureusement décrit. Un tel programme nécessite de prouver des résultats de
mélange, ou d’ergodicité, sur la dynamique microscopique, ce qui est extrémement difficile pour
des modéles décrivant des évolutions complétement déterministes ; nous renvoyons aux articles de
revue de Bonetto, Lebowitz et Rey-Bellet [24] ainsi que Lepri, Livi et Politi [104] pour un exposé
détaillé des travaux allant dans ce sens.
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Une réponse physiquement moins satisfaisante, mais plus accessible & la théorie, consiste a
introduire de ’aléa dans le modéle microscopique, afin d’en améliorer les propriétés d’ergodicité.
Cet aléa peut prendre plusieurs formes : I’évolution microscopique peut étre purement aléatoire,
ou la superposition d’'un mécanisme déterministe et d’un bruit perturbatif, ou encore purement
déterministe et c’est alors l'interaction avec les thermostats qui est modélisée par un processus
stochastique. La littérature pour chacune de ces trois familles de modéles est trés abondante et il
n’est pas possible d’en faire un état complet ici; citons néanmoins :

e les travaux de Bertini, De Sole, Gabrielli, Jona-Lasinio et Landim, dont une présentation
synthétique est faite dans [15], et qui concernent I’étude, d’un point de vue thermodynamique,
de la classe des stochastic lattice gases qui entrent dans la premiére catégorie ci-dessus;

e les articles de Olla, Varadhan et Yau [111] et Fritz, Funaki et Lebowitz [67] sur I’étude de
Iergodicité de systéme hamiltoniens bruités, qui entrent dans la deuxiéme catégorie ci-dessus,
et pour lesquels la loi de Fourier a été étudiée ensuite par Basile, Bernardin et Olla [14, 12];

e les travaux de Eckmann, Hairer, Pillet et Thomas, présentés dans [53], qui s’intéressent a des
chaines d’oscillateurs déterministes mises en contact avec des thermostats représentés par
des processus stochastiques.

Le modéle auquel la Partie I de ce manuscrit est consacrée appartient & la troisiéme caté-
gorie ci-dessus : il s’agit d’un modéle d’évolution déterministe, hamiltonien, mis en contact avec
deux thermostats qui introduisent de ’aléa dans le systéme. Nous proposons une étude numérique
de ses propriétés thermodynamiques, puis développons un formalisme mathématique permettant
d’obtenir des résultats d’ergodicité — au moins partiellement.

1.1.1 Le modéle d’échange complet

Un aérogel est un matériau synthétique constitué d’un réseau de cellules solides & 'intérieur
desquelles sont confinées des molécules de gaz. Expérimentalement, on constate que ces matériaux
sont d’excellents isolants thermiques ; ils sont actuellement utilisés dans I'industrie aéronautique et
dans celle du batiment. Afin d’en comprendre les propriétés thermiques, Gaspard et Gilbert [65]
ont proposé le modéle microscopique suivant : en deux dimensions, le réseau solide est représenté
par des disques, centrés en chaque sommet de Z2, de rayon p €]0,1/2[. A l'intérieur de chaque
cellule se trouve une molécule de gaz, qui est représentée par un disque de rayon r €]0,1/2[ tel
que :

e 7 est assez grand pour que la molécule reste confinée dans la cellule;

e 1 est assez petit pour que deux molécules dans des cellules voisines puissent se toucher
lorsqu’elles sont proches de leur interface commune.

Ce modéle est décrit sur la Figure 1.1.

Si les collisions d’une molécule contre les bords de la cellule ou contre les molécules voisines se
font de maniére élastique, et qu’il n’y pas d’interaction entre les molécules en dehors des collisions,
alors I’évolution jointe des positions et des vitesses des molécules est décrite par le Hamiltonien

_IpP
ot le potentiel V(q) prend la forme
_ 0 siqeq,
Via) = { +oo siq¢Q, (1.2)

et Q est un sous-ensemble de (IRQ)Z2 qui décrit ’ensemble des configurations physiquement admis-
stbles, c’est-a-dire pour lesquelles les disques ne s’intersectent pas.

En utilisant les propriétés dispersives de la dynamique d’une molécule isolée dans une cellule,
Gaspard et Gilbert ont expliqué la faible conductivité thermique du matériau par le fait que les
collisions entre deux molécules voisines, et donc les échanges d’énergie, sont des événements rares
dans ce systéme. Cette observation a motivé I’étude de plusieurs modéles similaires ; en particulier,
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FIGURE 1.1 — Le mode¢le d’aérogel de Gaspard et Gilbert : les disques gris, de rayon p, délimitent les
cellules solides. Les disques rouges, de rayon r, représentent les molécules de gaz. Chaque molécule
est confinée dans sa cellule, mais deux molécules voisines peuvent tout de méme entrer en collision :
c’est le cas des molécules en bas a droite de la figure.

Gilbert et Lefevere [71] ont proposé un modéle unidimensionnel, possédant un Hamiltonien dont le
potentiel est de la forme (1.2), et qui est décrit de la maniére suivante : N molécules sont placées
sur les sommets du réseau {1, ..., N}. Chaque molécule évolue dans une cellule unidimensionnelle
de longueur 1. Le mouvement de la molécule & U'intérieur de sa cellule est ballistique, et lorsque
la molécule arrive & une extrémité de la cellule, elle est réfléchie avec la méme vitesse. On note
qi(t) € [0,1] la position de la i-éme molécule au temps ¢ > 0, et p;(t) € R sa vitesse. Lorsque deux
molécules voisine i et i+ 1 sont telles que |g;(t) — gi+1(t)] = 1 —a, ce que 'on appelle une collision,
alors les deux molécules échangent leur vitesse : p;+1(t) 1= pi(t™) et p;(t) := pi+1(t7). La longueur
a € [0, 1] est appelée parameétre d’interaction.

Ce modéle est représenté sur la Figure 1.2. Il a également été étudié par Prosen et Camp-
bell [119] sous le nom de modéle Bing-Bang pseudo-intégrable ; dans ce manuscrit, nous conservons
la dénomination modéle d’échange complet de Gilbert et Lefevere.

FIGURE 1.2 — Le modéle d’échange complet pour N = 5 molécules. L’écart entre les positions des
molécules 4 et 5 a atteint la valeur 1 — a, ces molécules doivent donc échanger leur vitesse.
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Nous nous intéressons alors au cas ou ce systéme est mis en contact avec des thermostats a ses
deux extrémités. Ces thermostats sont modélisés ainsi : lorsque 'une des deux molécules 1 ou N
atteint un bord de sa cellule, la norme de sa vitesse est mise & jour aléatoirement, indépendamment
de la vitesse incidente, selon une densité de probabilité qui dépend du bord de la cellule. On note
oYt et ¢~ les densités de mise & jour associées aux bords q; = 0 et ¢; = 1 de la cellule 1, et ¢~
et ™'~ les densités de mise & jour associées aux bords gy = 0 et gy = 1 de la cellule N.

Un choix physiquement pertinent de densités de mise & jour est

1 1 p p° N N p >

+ — oAb~ [ _Z i+ — = - = — 1.3
=) = geew (g ) D =Y = R (-4 ). 03
avec 11,,Tr > 0. En effet, si a = 0, alors ce choix assure que la mesure invariante du processus
(¢1(t), p1(t))1>0 est donnée par le produit

1 p?
V2rTy

ce qui correspond a la distribution de Maxwell-Boltzmann & la température 71, pour la vitesse.
On obtient la méme distribution, a la température Tg, pour le processus (¢n(t), pn(t))e>0. Les
molécules en contact avec les thermostats sont donc thermalisées par ceux-ci. Pour ce choix de
densité de mise a jour, les thermostats sont dits mazwelliens [24].

La Partie I contient deux chapitres. Le Chapitre 2 présente le comportement thermodynamique
du modéle d’échange complet, de maniére heuristique et numérique. Le Chapitre 3 propose une
étude rigoureuse de l'ergodicité du processus des positions et vitesses des molécules lorsque le
systéme est mis en contact avec les thermostats décrits ci-dessus, en se restreignant au cas de
N = 2 molécules.

1.1.2 Conjectures et résultats numériques

Pour tout ¢ > 0, nous notons (q(t), p(t)) € [0,1]¥ x RY I'ensemble des positions et des vitesses
des N molécules. Nous commengons par étudier le modéle & ’équilibre thermodynamique, c’est-a-
dire lorsque (q(t), p(t)) est distribué sous la mesure produit :

e de la distribution uniforme des positions sur [0, 1] conditionnellement &
VZE{l,,N_l}, |Qz_%+1|§1—a7

e de la distribution de Maxwell-Boltzmann & température T' pour chacune des vitesses.

D’aprés la description du modéle donnée ci-dessus, le transfert d’énergie le long de la chaine ne
s’effectue que par collision. Il est donc naturel de s’attendre a ce que la conductivité thermique
k(T) du matériau soit reliée a la fréquence v(a,T) des collisions entre molécules.

Nous montrons dans la Section 2.3 du Chapitre 2 que, pour un nombre de molécules N fixé, la
fréquence des collisions a 1’équilibre entre les molécules 7 et i + 1 s’écrit

/T
ViJYiJrl(a’a T)= Ci],viJrl(a) T’

ou Cz]\i 4+1(a) est une constante qui ne dépend que du parameétre d’interaction a et de i et N.
Evidemment, lorsque a = 0, il n’y a pas de collision et C’ZNz +1(a) = 0. Nous observons par intégration
numérique que lorsque le nombre de particules tend vers 'infini, CZJ\Q 41(a) devient constant le long
de la chaine, égal & une certaine valeur C(a) finie et non-nulle. Nous définissons ainsi la fréquence
macroscopique de collision
v(a,T) = C(a) Z
™
Hors de I'équilibre thermodynamique, c’est-a-dire lorsque le systéme est mis en contact avec

des réservoirs maxwelliens de températures respectives 11, et Tg, nous définissons 1’énergie de la
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i-éme molécule par E}¥ (t) := p;(t)?/2, et le courant local d’énergie j;Y;, , (t) est formellement donné

par
d

aEzN(t) = jil1,i(t) = 3 (1)

En supposant que la dynamique est ergodique, c’est-a-dire que la loi de (q(t), p(t)) converge, en
temps long, vers une unique mesure dite état stationnaire hors de I’équilibre, nous définissons la
température de la i-éme molécule par

Y = (i),

K2

ou (-) désigne l'espérance sous 1’état stationnaire hors de 1’équilibre. Le courant stationnaire d’éner-
gie est défini par
N ‘N

] = <]i,i+1>a
il ne dépend pas de ¢ puisque sous ’état stationnaire, la dérivée temporelle de I’énergie de chaque
particule s’annule.

Sous une hypothése d’équilibre local classique (voir [71]), nous dérivons formellement dans la
Section 2.3 du Chapitre 2 I'identité

TN + TN
jN = *Vi],vi+1 <a’a %) (Ti]L - TiN) ) (1.4)

ce qui est 'expression microscopique la loi de Fourier (1.1) dans laquelle la conductivité thermique
est donnée par la fréquence de collision. En plongeant le réseau {1,..., N} dans [0, 1] et en passant
a la limite du grand nombre de particules dans l'identité ci-dessus, nous nous attendons donc a
ce que, pour un matériau macroscopique, unidimensionnel, de longueur 1 et mis en contact a ses
deux extrémités avec des thermostats de températures respectives 71, et Tr, le courant d’énergie
et la température dans le régime stationnaire vérifient

veel0,1], J= —C(a)\/;aﬁ(x), TO) =T, T(1) =Tz,

ou J est constant le long du matériau. Cette relation s’intégre et donne le profil de température

2/3

vz € [0,1], T(x) = ((1 - JU)TE’/2 + ng/Q) , (1.5)
qui était déja obtenu par Gilbert et Lefevere [71]. Signalons que ce type de profil macroscopique
non-linéaire apparait également dans d’autres modéles hamiltoniens ; voir Dhar [49], Eckmann et
Young [54], Gaspard et Gilbert [70, 69].

Nous obtenons enfin un profil de température par simulation numérique, que nous comparons
a (1.5). Nous constatons alors que le profil expérimental est linéaire entre Ty, et Tg, ce qui est
en désaccord avec le profil théoriquement attendu. En comparant nos travaux a d’autres résultats
numériques de Ryals et Young [124], nous concluons que la description de 1'état d’équilibre local
qui méne a la loi de Fourier (1.4) n’est pas correcte et doit étre affinée.

1.1.3 Etude de ’ergodicité dans le cas de deux molécules

Le but du Chapitre 3 est d’établir des résultats rigoureux d’ergodicité pour le processus
(a(t), p(t))i>0 lorsque le systéme est mis en contact avec des thermostats. En toute généralite,
ce processus est de Markov, et son évolution est déterministe entre les mises & jour des vitesses
des molécules 1 et N. Il entre donc dans la classe des Processus de Markov Déterministes par
Morceaux, auxquels est consacré par exemple 'ouvrage de Davis [40].

Afin de réduire la complexité formelle du probléme, nous nous restreignons au cas de N = 2
molécules. Nous notons alors

X(t) := (q1(t), g2(t); p1(t), p2(1)) € QU x R?,

Q:={(q1,2) €[0,1]*: |1 — @2| <1 —a}.



6 Introduction

Remarquons que le processus (X (t))t>0 décrit le mouvement d’une boule de billard évoluant sur
la table bidimensionnelle €2, qui est représentée sur la Figure 1.3, selon les régles suivantes :

e aux réflexions sur les murs « droits », c’est-a-dire définis par ¢; € {0,1} ou ¢2 € {0,1}, la
composante tangentielle de la vitesse est conservée tandis que la composante normale de
la vitesse est mise & jour indépendamment de la vitesse incidente, selon une densité qui ne
dépend que du mur;

e les réflexions sur les murs « obliques », c’est-a-dire définis par |g; —ga2| = 1—a, sont spéculaires.

On suppose & partir de maintenant que a < 1/2.

o

¢h

¢1,+

¢2,+ Cla

FIGURE 1.3 — La table de billard €. Les densités de mise & jour associées & chaque mur droit sont
indiquées.

Certaines configurations de I’espace des phases € x R? ne sont pas physiquement admissibles :
par exemple, X () ne peut pas étre situé sur le bord de ) et avoir une vitesse qui pointe vers
Iextérieur de Q. On souhaite également éviter les collisions dans les coins de la table, pour lesquelles
les régles de réflexion sont a priori ambigués. Nous définissons dans le Chapitre 3 un sous-ensemble
X de Q x R2, appelé ensemble des configurations admissibles, qui exclut ce type de configurations.
Pour tout = € X, presque stirement, le processus (X (t));>o initialisé & = est bien défini et prend ses
valeurs dans X pour tout ¢ > 0. Nous notons P, la loi de ce processus dans ’espace des trajectoires
continues a droite avec une limite a gauche D([0, 400), X), et I'espérance sous P, est notée E,.

1.1.3.1 Description du comportement en temps long

Commencgons par remarquer qu’il y a beaucoup de mesures invariantes triviales pour le proces-
sus (X ())t>o0 :

e sila configuration initiale est de la forme x = (¢1,¢2;0,0) € X, alors la boule de billard reste
a la méme position (¢1,¢2) & tout temps positif et d, est une mesure invariante ;

e de méme si x = (¢q1,¢2;p1,p2) € X avec p; = 0, ou po = 0, ou encore p; = —pa et 1 —a <
q1+g2 < 14a, alors le mouvement de la boule de billard est piégé dans une orbite périodique.

Notons X4 'ensemble des configurations admissibles £ € X qui ne correspondent pas aux cas
décrits ci-dessus. La notation nd en indice signifie non-dégénéré, car X \ X,q est négligeable pour
la mesure de Lebesgue sur Q x R2.

Le but du Chapitre 3 est d’établir le résultat suivant.

Affirmation 1.1.1. Il existe une mesure de probabilité myq sur OxR2, telle que, pour tout & € Xpq,
pour toute fonction continue et bornée f: Q) x R2 = R,

lim B f(X@)] = [ fan

t—+4o0 O xR2

Nous n’énongons pas ce résultat sous la forme d’un théoréme, car nous en donnons une preuve
incompléte. Celle-ci est décrite dans les deux paragraphes suivants.
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1.1.3.2 Stratégie générale de la preuve
Notre preuve repose sur la notion de processus de renouvellement markovien.

Définition 1.1.2. Une suite de variables aléatoires (Yo, Tn)n>0 G valeurs dans un espace Y X
[0,4+00) est un processus de renouvellement markovien si la suite (Yy,, Tni1—Tn)n>0 €st une chaine
de Markov, & valeurs dans Y x (0,+00), homogéne en temps, et dont le noyau de transition

N(y,t;dzds) :=P(Y1 €dz,7o — 1y €ds|Yy =y, 71 — 10 =1)
ne dépend pas de la coordonnée t.

Si la suite (7, )n>0 est presque stirement non-bornée, alors on définit, pour tout ¢t > 79, M (t) :=
m si et seulement si 7,,, < ¢t < T,41. Le processus & temps continu (YM(t))tzo est dit semi-
markovien. Il peut étre rendu markovien en le complétant par la coordonnée ¢ — Tpz ().

Définition 1.1.3. Soit (Y, Tn)n>0 un processus de renouvellement markovien & valeurs dans
Y x [0,+00), tel que presque sirement, sup,~o T, = +00. Pour tout t > 79, définissons M(t)
comme ci-dessus. Le processus semi-markovien complété associé a (Yo, Tn)n>0 est le processus a
temps continu (Yarce),t — Tar(e) )ezro-

Nous proposons maintenant d’introduire une discrétisation temporelle du processus (X (¢))¢>o0
le long d’une suite croissante de temps aléatoires (7,)n>0, que nous appelons suite des instants
d’observation, construite de la facon suivante : nous nous donnons

e un sous-ensemble ) C X4, que nous appelons section de la table de billard ;

e une fonction mesurable 7ops : Y — (0,+00), que nous appelons temps d’observation, telle

que pour tout y € Y, Py (X (7ons(y)) € V) = 1;
et définissons
7o :=inf{t > 0: X(t) € V},
VY >0, Tni1 = Tn + Tobs(X(T0)).
Pour tout n > 0, nous notons Y,, := X (7,) € V.

Par construction, les 7,, sont des temps d’arrét pour le processus (X (¢))¢>o. D’aprés la propriété
de Markov forte, nous déduisons que la suite (Y}, 7, )n>0 est un processus de renouvellement
markovien. Si nous choisissons 7ops de sorte & assurer que, P -presque stirement, la suite (7, )n>0
est non-bornée, alors nous obtenons l’identité suivante : pour toute fonction continue et bornée

FiOxR2 SR,
vt >0, Ez[f(X(t))] =E, [f(X(t))]l{t<‘ro}] + Eq [Pt—TM(t)f(YM(t))]l{tZ'ro}] ) (1'6)

ot (Yar(),t — Tar())t=>0 est le processus semi-markovien complété associé & (Y, Tn)n>0, €t

i f(y) = Ey[f(X(®))]

est le semi-groupe du processus (X (t));>0. Dans la Section 3.3 du Chapitre 3, nous appelons
factorisation du processus (X (t));>0 par le processus de renouvellement markovien (Y5, 7y )n>0
lidentité (1.6). Au moins formellement, il est clair que cette formule permet d’obtenir 1’ Affirma-
tion 1.1.1 & partir d’un résultat de convergence du le processus semi-markovien complété.

Le comportement en temps long d’'un processus semi-markovien complété est donné par le
théoréme de renouvellement markovien, qui existe sous plusieurs formes, mais repose généralement
sur deux hypothéses fondamentales :

e l'ergodicité de la chaine de Markov (Y,)n>0;

e lintégrabilité de 71 — 79 sous la mesure invariante de la chaine (Y;,)n>0.

L’ergodicité de la chaine de Markov (Y;,)n>0 est exprimée en terme de récurrence au sens de
Harris.

Définition 1.1.4 (Section VIL3, [7]). Soit (Y5 )n>0 une chaine de Markov, homogéne en temps,
a valeurs dans un espace Y. Cette chaine est dite récurrente au sens de Harris s%l existe R C ),
r>1, € >0 et une mesure de probabilité A sur )Y tels que :
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(i) pour touty € Y, P(In>1:Y, eR|Yy=y)=1;
(i) pour tout y € R, pour tout B C Y, P(Y, € B|Yy = y) > eA(B).

La premiére condition ci-dessus exprime la récurrence de la chaine dans l’ensemble R. La

seconde condition est appelée condition de Doeblin locale, ou encore condition de minoration [109,

|. La définition que nous utilisons ici, comme beaucoup des notions de théorie du renouvellement
markovien, provient du livre d’Asmussen [7].

Une chaine de Markov récurrente au sens de Harris posséde une mesure invariante o-finie, et
cette mesure est unique & multiplication prés. Lorsque cette mesure est bornée, alors la chaine
posséde une unique mesure de probabilité invariante, et est dite positive récurrente au sens de
Harris.

Le théoréme de renouvellement markovien que nous utilisons est dit & Alsmeyer [2].

Théoréme 1.1.5 (Corollaire 1, [2]). Soit (Yn, Tn)n>0 un processus de renouvellement markovien
tel que SUp,, >0 Tn = +00 presque sirement, et soit (YM(t) , t*TM(t))tZO le processus semi-markovien
complété associé. Supposons que :

o la chaine de Markov (Yy,)n>0 est positive récurrente au sens de Harris, on note alors v son
unique mesure de probabilité invariante ;

° EV[Tl — TQ] < +00;
e [e processus de renouvellement markovien est non-arithmétique ;

alors pour toute fonction g : Y x [0,4+00) — R suffisamment réguliére,

1

+oo
tEﬁQEb@MwJ—WWM}ZEIg—7aZ;ylﬂ)M%ﬂpﬁr—m>SH6=yMW@w-

La condition de non-arithméticité est ’équivalent des conditions de non-périodicité dans les
théorémes de renouvellement classiques, nous ne détaillons pas son contenu ici.

Le Théoréme 1.1.5 permet formellement d’obtenir I’Affirmation 1.1.1, dans laquelle la mesure
ergodique 7yq est alors donnée par

H s=0

1 Tobs (Y)
a(dr) = = P, f(y)v(dy)ds,
| t@man =2 [ [ s

= /yey Tobs(Y)v(dy).

1.1.3.3 La suite des instants d’observation

Nous précisons maintenant notre choix de temps (7, )n>0 le long desquels le processus (X (¢))¢>0
est discrétisé. Notre but est que le processus de renouvellement markovien (Y;,, 7, )n>0 défini par
Y, := X(r,) vérifie les hypothéses du Théoréme 1.1.5; en particulier, nous souhaitons montrer
que la chaine de Markov (Y},),>0 est positive récurrente au sens de Harris. Nous devons pour cela
construire un sous-ensemble R C ) dans lequel la condition de Doeblin locale est vérifiée, ce qui
nécessite d’avoir une expression relativement maniable du noyau de transition de cette chaine de
Markov.

Nous nous appuyons sur la remarque suivante, formulée dans la Section 3.4 du Chapitre 3 :
lorsque la boule de billard arrive sur un bord oblique, on obtient une description équivalente de la
dynamique en laissant la boule poursuivre sa trajectoire en ligne droite dans [%mage de la table
par la symétrie d’axe le bord oblique. Notons (X (t));>0 le processus obtenu en répétant cette
opération a chaque réflexion sur un bord oblique; il décrit le mouvement d'une boule de billard
sur une table 2 qui est cette fois infinie, mais dont tous les bords sont thermalisés : par cette
opération de dépliage de la trajectoire, nous éliminons les réflexions spéculaires. On retrouve le
processus original X (¢) a partir du processus déplié X (¢) par la fonction dite de pliage

F:QxR? - QxR
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Notons que l'opération de pliage/dépliage est classique dans I’étude des billards (déterministes)
polygonaux [75, 131].

Il est alors possible de découper la table Q en bandes, a 'intérieur desquelles les composantes
(G1(t),p1(t)) et (q2(t), p2(t)) du processus X (t) évoluent de maniére indépendante, et telles que le
temps mis par le processus déplié pour traverser chaque bande est une fonction déterministe Tops
de la configuration a I’entrée de la bande. En définissant )V comme I'image par la fonction de pliage
des bords de ces bandes, nous obtenons une discrétisation (Y, 7, )n>0 pour laquelle nous pouvons
écrire explicitement le noyau de transition de la chaine de Markov (Y},),>0. Cette idée est illustrée

sur la Figure 1.4.

FIGURE 1.4 — Un exemple de trajectoire dépliée. Les bandes sont délimitées par le prolongement
de tous les murs verticaux, ce prolongement est marqué en pointillés. Le temps mis par la boule
pour traverser une bande est donné par la largeur de la bande divisée par la composante normale
(par rapport au bord de la bande) de la vitesse au moment o la boule se trouve sur le bord de la
bande. Tant que la boule reste dans une bande, ses composantes horizontale et verticale évoluent
indépendamment. La chaine (Y},),>0 est obtenue en repliant les configurations obtenues a chaque
instant d’observation sur le processus déplié.

Pour ce choix de temps d’observation, et sous des hypothéses sur les densités de mise a jour
b T, ob 7, ¢*1 et ¢~ que nous ne détaillons pas ici mais qui sont vérifices dans le cas des
réservoirs maxwelliens (1.3), nous obtenons dans la Section 3.6 du Chapitre 3 que la chaine de
Markov (Y;,)n>0 est récurrente au sens de Harris. Dans le cas ou

G =gt =gt gl =gt =g, (1.7)

ce que nous convenons d’appeler équilibre thermodynamique, nous pouvons par ailleurs construire
explicitement une mesure de probabilité invariante pour la chaine de Markov (Y, )n>0, ce qui
entraine le caractére positif de la récurrence. Hors de 1’équilibre thermodynamique, nous laissons
cette question ouverte.

1.1.3.4 Bilan des résultats obtenus

Pour le choix d’instants d’observation présenté ci-dessus, nous savons prouver que la chaine
(Y, )n>0 est récurrente au sens de Harris, mais nous devons admettre les deux hypothéses suivantes :

e la récurrence est positive;
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e sous I'hypothése précédente, si v est 'unique mesure de probabilité invariante de la chaine
de Markov (Y;,)n>0, alors

/ Tobs(y)v(dy) < +o00.
yey

Nous pouvons néanmoins prouver ces deux hypothéses dans le cas de 1’équilibre thermodyna-
mique (1.7).
Nous obtenons alors le résultat suivant.

Théoréme 1.1.6 (Théoréme 3.2.5, Chapitre 3). Sous des hypothéses sur les densité de mise a
jour que nous ne détaillons pas ici, mais qui sont vérifiées pour les réservoirs mazwelliens (1.3),
et en supposant :

e soil que nous sommes & Uéquilibre thermodynamique (1.7) ;
e soit que les deux hypothéses ci-dessus sont vérifiées ;

alors le résultat de ’Affirmation 1.1.1 est valide.

1.1.4 Perspectives

Les résultats numériques du Chapitre 2 montrent que le transport de ’énergie dans le modéle
d’échange complet n’est pas bien compris. Essentiellement, on s’attend & ce que le confinement
des particules dans les cellules amortisse la nature ballistique de leur mouvement, et rende ainsi la
propagation de ’énergie plus diffusive. Le fait que le profil de température observé expérimenta-
lement ne correspond pas & celui prévu par la loi de Fourier montre que cette idée doit étre revue
et précisée ; cela fait 'objet d’un travail en cours avec Raphaél Lefevere.

Bien sir, le prolongement le plus naturel et immédiat des travaux présentés dans le Chapitre 3
consiste en 'amélioration du Théoréme 1.1.6, dans I’énoncé duquel on souhaiterait retirer les hypo-
théses introduites au paragraphe 1.1.3.4. A plus long terme, on espére ensuite adapter la méthode
de discrétisation décrite ci-dessus pour des chaines comportant un nombre arbitraire N de molé-
cules, et obtenir ainsi un résultat complet d’ergodicité hors de 1’équilibre thermodynamique. Un
tel résultat serait un premier pas important vers I’étude rigoureuse du modéle d’échange complet.

1.2 Partie II : systémes de particules interagissant a travers
leur rang

Soient b, o deux fonctions continues de [0, 1] dans R. Pour tout u € [0, 1], définissons
Au) ::/ o?(v)d, B(u) ::/ b(v)dv. (1.8)
La Partie IT est consacrée & I’étude du probléme de Cauchy

0uF(x) = SOAE(2))) — Oa(B(F(x))),
Fy(x) = Hxm(x),

(1.9)

ou H *xm désigne la fonction de répartition de la mesure de probabilité m sur R. Compte-tenu de
la forme de la condition initiale, il est naturel de chercher des solutions (F});>o telles que, pour
tout t > 0, F} reste la fonction de répartition d’une mesure de probabilité P; sur R. En prenant la
dérivée formelle en espace de (1.9), il vient

8, P, (x) = %ai(UQ(H % P,(2))P;) — 0, (b(H * Pi(z)) Py, (1.10)

POZma
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que l'on interpréte aisément comme ’équation de Fokker-Planck associée au processus de diffusion
scalaire (X;)¢>0, solution de

{dXt = b(H = P,(Xy))dt + o(H = Pi(X;))dW, (1.11)

H % P; = F; est la fonction de répartition de X,

ou la variable aléatoire X est distribuée selon m, et (W;);>0 est un mouvement brownien standard
a valeurs dans R, indépendant de Xj.

Les coefficients de 1’équation différentielle stochastique (1.11) présentent la particularité de
dépendre de la loi de la variable aléatoire Xy, et non seulement de sa valeur. De telles équations
différentielles stochastiques, et par extension, le processus de diffusion (X;):>o lui-méme, sont dits
non-linéaires au sens de McKean [108]. Une procédure de linéarisation consiste alors a introduire
n copies (X}"™)i>0,- .-, (X;"™")i>0, dirigées par n mouvements browniens (W})i>o, .. ., (W7 )n>0
indépendants, et dans lesquelles la loi P; est remplacée par la distribution marginale p de la

mesure empirique
n

1
n._ .
K= n Z 6(X2’n)t20’
i=1
qui est une variable aléatoire & valeurs dans l'espace P(C(]0, +oo[,R)) des mesures de probabilité
sur ’ensemble des trajectoire continues.
On obtient alors le systéme de n équations différentielles stochastiques

) 1 1 & .
/L7n — . . . .
Axp" =b | — D ixinexiny |dt+o ~ D Liximaxiny | AW, (1.12)
j=1 j=1
ot les variables aléatoires X", ..., X" sont indépendantes et identiquement distribuées selon m,
et W1, ...,WW" sont des mouvements browniens standard dans R, indépendants et indépendants

de Xg" ..., X3".

Ce systéme posséde une interprétation trés simple : il décrit le mouvement de n particules sur la
droite réelle, telles que la particule de rang j dans ’ordre croissant des positions a un coefficient de
dérive égal 4 b(j/n) et un coefficient de diffusion égal & 02(j/n). Lorsque deux particules se croisent,
elles échangent leurs coefficients de dérive et de diffusion. Ce systéme est donc naturellement appelé
systéme de particules, ou de diffusions, interagissant & travers leur rang.

Indépendamment de leur intérét dans I’étude des solutions d’équations aux dérivées partielles du
type (1.9), les systémes de diffusions interagissant & travers leur rang jouent un role important dans
la théorie des portefeuilles stochastiques introduite par Fernholz [58], et plusieurs travaux récents
leur ont été consacrés. Les propriétés de bonne définition de ces systéme et des questions reliées

ont été abordées par Fernholz, Ichiba, Karatzas et Prokaj [61], Ichiba, Karatzas et Shkolnikov [79],
Ichiba et Karatzas [78], Pal et Shkolnikov [116]. Leur comportement en temps long a été étudié
par Pal et Pitman [115], Jourdain et Malrieu [89], Ichiba, Pal and Shkolnikov [30], puis Ichiba,

Papathanakos, Banner, Karatzas and Fernholz [31]. Des propriétés asymptotiques, lorsque n tend
vers U'infini, ont été obtenues par Chatterjee et Pal [11] et Shkolnikov [127].

La Partie II propose une étude du lien entre le systéme de particules introduit ci-dessus et
Péquation aux dérivées partielles (1.9). On s’intéresse en particulier au comportement en temps
long de ces deux objets. On donne enfin une application de nos résultats a un modeéle de marché
financier, dit modéle d’Atlas en champ moyen, dans lequel les prix des actions interagissent &
travers leur rang.

1.2.1 Propagation du chaos

L’approximation du processus non-linéaire (1.11) par le systéme de particules (1.12) décrite
ci-dessus est généralement rendue valide par un résultat de propagation du chaos [130] : lorsque le
nombre de particules augmente, la mesure empirique p3 échantillonne de mieux en mieux la loi P;
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du processus non-linéaire, de sorte que les particules se comportent asymptotiquement comme des
copies indépendantes et identiquement distribuées du processus non-linéaire.

Pour le systéme de particules (1.12), des résultats de propagation du chaos ont été obtenus
par Bossy et Talay [25, 26], qui ont également donné des estimations de convergence pour un
schéma numérique associé, puis Jourdain [32, 83, 85] sous diverses hypothéses sur les fonctions
b et o. Ces résultats sont présentés dans article de revue [37]; nous les complétons dans la
Section 4.2 du Chapitre 4 en établissant le Théoréme 1.2.1 de passage a la limite dans ’équation aux
dérivées partielles (1.9), puis le Théoréme 1.2.2 de passage a la limite dans I’équation différentielle
stochastique (1.11).

Théoréme 1.2.1 (Proposition 4.2.1, Chapitre 4). Supposons que la mesure de probabilité m a un
moment d’ordre 1 fini, et que la fonction A définie par (1.8) est strictement croissante, ¢’est-a-dire
que l’ensemble des zéros de o est d’intérieur vide. Alors :

o il existe une unique solution faible (Fi)i>o de l’équation (1.9) (dans une classe appropriée,
que Nous ne Précisons pas ici) ;

e pour tout t > 0, ult converge en probabilité dans P(R) vers une mesure de probabilité P(t)
sur R ;

e pour tout t > 0, Fy est la fonction de répartition de P(t).
Théoréme 1.2.2 (Corollaire 4.2.13, Chapitre 4). Supposons que la mesure de probabilité m a un
moment d’ordre 1 fini, que o ne s’annule pas sur]0,1[ et :

e sig(0) =0 alors le support de m n’est pas borné inférieurement ;

e sio(l) =0 alors le support de m n’est pas borné supérieurement ;
alors :

o il existe une unique solution faible (X¢)i>0 de 'équation différentielle stochastique (1.11) ;

o la mesure empirique u" converge en probabilité dans P(C([0, +oo[,R)) vers la loi P du pro-
cessus non-linéaire (X¢)i>0 ;

e pour tout t > 0, la distribution marginale P; de P au temps t coincide avec la mesure P(t)
obtenue dans le Théoréme 1.2.1.

1.2.2 Comportement en temps long du processus non-linéaire

Dans les Sections 4.3 et 4.4 du Chapitre 4, on s’intéresse au comportement en temps long du
processus non-linéaire (X;)¢>0, ou de maniére équivalente, de la solution (F});>o de I’équation (1.9).
1.2.2.1 Distances du y2 et de Wasserstein

Les convergences que nous énongons sont mesurées en distance du x2 et en distance de Was-
serstein, définies ci-dessous.

Définition 1.2.3. Soit E un espace métrique, et soient u, v deur mesures de probabilité définies
sur la tribu borélienne de E. On appelle distance du x2 de p par rapport a v, et l’on note x2(ulv),

la quantité
dup 2 '
Xa(plv) = \//IeE <$(°’”) - 1) v(dz) sip<v,
+ 00

sinon,

ol 1 K v signifie que u est absolument continue par rapport o v, auquel cas du/dv désigne la
dérivée de Radon-Nikodym de p par rapport a v.

Notons que, si pu < v, alors

X5 (p|v) = Var, (3—5) : (1.13)
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Définition 1.2.4. Soient d > 1 et u, v deux mesures de probabilité définies sur la tribu borélienne
de R%. Pour tout p > 1, on appelle distance de Wasserstein d’ordre p entre p et v, et l’on note

W, (1, v), la quantité
>1/ZD

ot II(p, v) désigne ’ensemble des couples aléatoires (X,Y) de lois marginales p et v.

d
W, (u,v) = inf E X, Y|P
piv) (X.Y)EM(0) < lz | |

i=1

Notons que les distances x2 et W, peuvent prendre la valeur +oo.

Expliquons briévement la raison pour laquelle ces deux distances apparaissent naturellement
ici.

D’une part, les mesures invariantes du processus non-linéaire et du systéme de particules véri-
fient génériquement une inégalité de Poincaré [5, Définition 2.5.4]. Pour un processus de Markov
possédant une unique mesure invariante p, une telle inégalité sur p est classiquement équivalente
a la décroissance exponentielle de la variance sous p des fonctions test le long du semi-groupe [5,
Théoréme 2.5.5]. D’aprés (1.13), la distance du 2 mesure exactement cette variance, c’est donc
la distance naturelle pour quantifier la convergence & ’équilibre de processus de diffusion dont la
mesure invariante vérifie une inégalité de Poincaré.

D’autre part, les travaux d’Otto [112] ont montré que les équations d’évolution non-linéaires
du type (1.9) entretiennent des liens forts avec la théorie du transport optimal, et la distance
de Wasserstein s’est récemment révélée étre particuliérement adaptée a ’étude du comportement
en temps long de ces équations. Nous renvoyons aux livres de Villani [135] et Ambrosio, Gigli et
Savaré [3] pour un exposé détaille de ces liens. Dans le contexte plus particulier des équations
de Fokker-Planck, linéaires ou non, des résultats de convergence a 1’équilibre en distance de Was-
serstein utilisant les outils du transport optimal ont été obtenus en particulier par Carrillo et
Toscani [38], Carrillo, McCann et Villani [37] et, plus récemment, Bolley, Gentil et Guillin [21, 22].
La Définition 1.2.4 permet également de borner W, (u, ) en construisant un couplage explicite,
c’est-a-dire un élément (X,Y) de I(u,v) pour lequel on sait estimer (E[Zle |X; — Y|P,
Cattiaux et Guillin [39] et Eberle [52] ont utilisé de tels arguments probabilistes dans ce contexte.

Signalons enfin qu’il est possible de relier la distance du x2 et la distance de Wasserstein qua-
dratique Wy via une inégalité de transport. Plus précisément, on dit qu'une mesure de probabilité
v sur R? vérifie 'inégalité de transport-xo de constante C' > 0 si, pour toute mesure de proba-
bilité g sur RY, Wo(u,v) < v/Cxa(u|v). Jourdain [$5] a montré qu'une telle inégalité implique
nécessairement une inégalité de Poincaré, et que la réciproque est vraie lorsque d = 1.

1.2.2.2 Existence d’un équilibre

Commencgons par établir une condition nécessaire a I’existence d’un équilibre pour le processus
(X4t)1>0 en observant que, pour tout ¢ > 0,

BLX) = BLXol+ [ B(F(X.)lds = ELXo] + ¢B(1), (1.14)

ot l'on rappelle que d’aprés (1.8),
1
B(1) = / b(u)du.
u=0

Pour que le processus ne diverge pas a l'infini en temps long, il est nécessaire de s’assurer que son
taux de croissance moyen B(1) s’annule.

Sous cette condition, on peut alors s’intéresser a I’équation stationnaire correspondant a (1.9),
qui s’écrit

0= SO2(A(F) ~ D (B(Fx). (1.15)

L’ensemble des distributions stationnaires du processus non-linéaire est obtenu en résolvant cette
équation différentielle ordinaire sur R.
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Proposition 1.2.5 (Proposition 4.4.1, Chapitre 4). Si l’ensemble des zéros de o est d’intérieur
vide, et B vérifie B(1) = 0 et B(u) > 0 pour tout u €]0,1[, alors l’ensemble des fonctions de
répartition Fy sur R qui résolvent (1.15) est ’ensemble des translations de la fonction W1, c’est-
a-dire l’ensemble des fonctions Foo : @ +— W=z + Z) pour T décrivant R, ot W est la fonction
continue et strictement croissante définie sur |0, 1[ par

Vu €]0, 1], \p(u)/:/Q ;B((Z))dv.

Sous les hypothéses de la Proposition 1.2.5, et & condition que ¥~! soit la fonction de répartition
d’une mesure de probabilité possédant un moment d’ordre 1 fini, une mesure invariante pour le
processus non-linéaire est donc entiérement caractérisée par son espérance. En particulier, sous
I’hypothése B(1) = 0, (1.14) implique que pour tout ¢t > 0, E[X;] = E[X(]. Ainsi s’attend-on a ce
que X; converge génériquement vers la mesure invariante possédant la méme espérance que m.

1.2.2.3 Convergence a 1’équilibre

Le premier résultat de convergence & 1’équilibre pour le processus non-linéaire est dii & Jourdain
et Malrieu [39], dans le cas ot 02 est constant et strictement positif. Remarquons que dans ce cas :

e pour tout t > 0, la loi P; du processus non-linéaire X; posséde une densité p; par rapport a
la mesure de Lebesgue sur R ;

e sous les hypothéses de la Proposition 1.2.5; toutes les mesures invariantes du processus non-
linéaire possédent une densité strictement positive sur R.

Théoréme 1.2.6 (Théoréme 2.4, [39]). Supposons que o? est constant et strictement positif, et :
e B(1) =0 et B(u) > 0 pour tout u €]0,1[;
o b est de classe Ct, b(0) >0 et b(1) < 0;
alors il existe n > 0 tel que, dés que m vérifie :
e m admet un moment d’ordre 1 fini;
e m possede une densité py par rapport a la mesure de Lebesgue sur R ;

o X2(Po|pec) < 1M, 00 poo est la mesure invariante du processus non-linéaire de méme espérance
que m;

et que la fonction (t,x) — pi(x) est assez réguliere, alors il existe X > 0 tel que

vt >0, X2(Pt[Poo) < exp(—At)x2(PolPoo)-

Demander que pg soit proche de po, est trés restrictif et ne semble pas nécessaire dans les
exemples traités par Jourdain et Malrieu. Nous avons donc cherché & étendre le Théoréme 1.2.6
en retirant cette hypotheése.

Notre premier résultat dans cette direction est une propriété de contraction de la distance de
Wasserstein entre deux solutions de (1.9) partant de conditions initiales différentes. Si (F})i>o et
(G¢)t>0 sont deux telles solutions, alors pour tout p > 1, on note W, (F;, G¢) la distance de Was-
serstein entre les mesures de probabilité dont F; et GGy sont les fonctions de répartition respectives.

Proposition 1.2.7 (Proposition 4.3.1, Chapitre 4). Sous les hypothéses du Théoréme 1.2.1, soient
(Fi)t>0 et (Gi)e>o deux solutions de l'équation aux dérivées partielles (1.9), de conditions initiales
respectives Fy et Go. Alors pour tout p > 1, la distance de Wasserstein Wy,(Fy, Gt) est décroissante
au cours du temps.

Dans I’énoncé ci-dessus, lorsque Wy, (Fy, Go) = +oo, alors W, (F;, G¢) reste infini & tout temps.
Bolley, Brenier et Loeper [20] ont établi un résultat similaire dans le cas hyperbolique o = 0, nous
y revenons dans la Partie III.

Cette proposition ne nécessite aucune hypothése de régularité sur les fonctions (Fj);>o et
(Gt)t>0- Sa preuve est entiérement probabiliste, et repose sur un argument de couplage des mou-
vements browniens réfléchis qui décrivent la statistique d’ordre du systéme de particules. En sup-
posant plus de régularité sur (F)i>o0 et (Gi¢)i>0, on peut quantifier la décroissance énoncée en
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obtenant une expression explicite de la dissipation de W, (F;, G;), dans l’esprit des travaux récents
de Bolley, Gentil et Guillin [21, 22]. Cette expression est donnée dans la Proposition 4.3.4 du
Chapitre 4 ; elle nous permet enfin d’obtenir le résultat suivant de convergence & I’équilibre.

Théoréme 1.2.8 (Théoréme 4.4.6, Chapitre 4). Supposons que :
e pour tout u € [0,1], o%(u) > 0;

e les coefficients b et o sont assez réguliers pour que, pour tout t > 0, la loi P, du processus de
diffusion non-linéaire X; admette une densité p; par rapport a la mesure de Lebesgue sur R,
et la fonction (t,x) — p(xz) soit une solution au sens classique de ’équation de Fokker-Planck
non-linéaire (1.10) ;

e les coefficients b et o vérifient les hypothéses de la Proposition 1.2.5 et sont tels que les
mesures invariantes du processus de diffusion mon-linéaire aient un moment d’ordre 1 fini;

e la mesure de probabilité m a un moment d’ordre 1 fini, et vérifie Wa(m, ¥~=1) < +oc.

Soient alors (Fy)i>o la solution de (1.9) issue de Fy := H xm, et Foo la fonction de répartition de
la mesure invariante du processus non-linéaire de méme espérance que m. Alors

V1< g <sup{p>2:W,(m, U ') < o0}, \ 1irg1 W, (F, Fxo) = 0.
— 400

Le Théoréme 1.2.8 ne nécessite plus de condition de proximité entre m et la mesure invariante
correspondante, ce qui améliore donc I’énoncé du Théoréme 1.2.6. En revanche, il ne fournit pas
de vitesse de convergence a 1’équilibre. Ce probléme est discuté dans la sous-section suivante.

1.2.3 Vitesse de convergence a I’équilibre

Afin d’obtenir une vitesse de convergence a I’équilibre pour le processus non-linéaire, il est assez
naturel d’envisager le programme suivant :

e obtenir une vitesse de convergence a ’équilibre pour le systéme de particules uniforme en le
nombre de particules;

e prouver un résultat de propagation du chaos uniforme en temps pour le systéme de particules.

On peut alors conclure que le processus non-linéaire converge & I’équilibre & la méme vitesse que
le systéme de particules.

Ce programme a été appliqué par Malrieu [106, | puis Cattiaux, Guillin et Malrieu [40]
pour ’équation des milieux granulaires et un systéme de particules en interaction de champ moyen
associé. Dans ce cas, la mesure invariante du systéme de particules vérifie une inégalité de Sobolev
logarithmique [5, Définition 2.6.1], de constante uniforme en le nombre de particules, ce qui entraine
la décroissance exponentielle uniforme de I'entropie relative de la loi du systéme par rapport a sa
mesure invariante. Les propriétés de tensorisation de ’entropie relative, combinées & la propagation
du chaos uniforme en temps, permettent alors d’obtenir la décroissance exponentielle de ’entropie
relative de la loi du processus non-linéaire par rapport a sa mesure invariante, au méme taux.

Dans le cas des systémes de particules interagissant a travers leur rang et pour un coefficient
de diffusion 02 constant et strictement positif, Jourdain et Malrieu [$9] ont prouvé que la mesure
invariante du systéme de particules vérifie une inégalité de Poincaré de constante uniforme en
le nombre de particules, ce qui entraine la décroissance exponentielle uniforme de la distance du
Y2 entre la loi du systéme de particules et sa mesure invariante. Malheureusement, il n’y a pas
de propagation du chaos uniforme en temps, et la distance du y2 ne possédant pas les mémes
propriétés de tensorisation que ’entropie relative, on ne peut pas conclure directement. On donne
néanmoins des résultats partiels pour cette approche dans le Chapitre 5.

1.2.3.1 Comportement en temps long du systéme de particules

Jourdain et Malrieu [89] ont décrit le comportement en temps long du systéme de parti-
cules (1.12), dans lequel o2 est constant et strictement positif, et les coefficients b(j/n), j €
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{1,...,n}, donnant la dérive instantanée de la particule en j-éme position, sont remplacés par leur
approximation

j j— 1

n n
Nous conservons la notation (th’", o, X{"™")e>0 pour désigner le systéme de particules avec ces

coefficients modifiés. Notons qu’alors 'hypothése B(1) = 0, nécessaire a I'existence d’un équilibre
pour le processus non-linéaire, implique que

an(j) =0.

Remarquons maintenant que le systéme de particules ne peut pas admettre d’équilibre : en effet,
la projection du processus (th’", ooy X{"")i>0 le long de la direction (1,...,1) est un mouvement
brownien réel de variance o2. On fait disparaitre cette singularité en introduisant

1, )
(Zt PP Ztn n)t207
la projection orthogonale du systéme de particules sur I’hyperplan
M, :={(z1,...,20) ER" : 21+ -+ 2, = 0}.

Notons que projeter un vecteur de R™ sur M, revient & retirer & chaque coordonnée la valeur
moyenne de ces coordonnées. Autrement dit, le processus (Zt1 M Zy )i>0 décrit les positions
des particules par rapport au centre de masse du systéme.

Pal et Pitman ont alors obtenu le résultat suivant.

Théoréme 1.2.9 (Théoréme 8, [115]). Supposons que o2 est constant et strictement positif, et

que B(1) = 0. Alors le processus (Ztl’", oy 28>0 converge a léquilibre, en variation totale, si
et seulement si les nombres b, (1),...,by(n) vérifient
J
Vief{l,...,n—1}, > ba(k)>0. (1.16)
k=1

Dans ce cas, l'unique mesure invariante du systeme admet la densité

” 1 2 « , 2 — ,
P (2) == Z P | an(j)Z(j) ) Zp = /EM exp | — an(j)Z(j) dz < +o0
n i=1 zEM, j=1

par rapport a la mesure de surface sur My, ot z(1y < -+ < 2(p) désigne le réordonnement croissant
de (z1,--.,2n)-

La condition (1.16), appelée dans la suite condition de stabilité, est 'exact analogue discret de
la condition B(u) > 0 pour tout u €]0, 1] qui apparait dans le Théoréme 1.2.8. Jourdain et Malrieu
ont introduit une condition plus forte d’uniforme concavité pour B :

(UC) 1l existe a > 0 tel que, pour tous u,v € [0,1] avec u < v, b(v) — b(u) < —a(v —u).
Cette condition permet d’obtenir le Théoréme 1.2.10, qui donne une vitesse de convergence a
I’équilibre pour le systéme projeté.

Avant d’énoncer ce résultat, rappelons que ’on note p; la densité du processus non-linéaire Xy,
Doo la densité de la mesure invariante possédant la méme espérance que m. Notons py la densité de
(Ztl’", ..., Z{"") par rapport a la mesure de surface sur M,, et pi’" la densité de la loi marginale de
Z," par rapport a la mesure de Lebesgue sur R. Par échangeabilité, pi ™ est également la densité
de la loi marginale de Z;"" par rapport & la mesure de Lebesgue sur R, pour tout i € {1,...,n}.
De méme, la densité p? est symétrique en (z1,...,2,), de sorte que la densité marginale pL,"
de la premiére coordonnée est également la densité marginale de la i-éme coordonnée, pour tout
ie{l,...,n}.
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Théoréme 1.2.10 (Théoréme 2.12, [39]). Supposons que o2 est constant et strictement positif,
que B(1) = 0 et que la condition (UC) est vérifice. Alors il existe X > 0, dépendant de o et o2, tel
que pour tout n > 1,

X2 (P} 1Phe) < exp(—At)x2(pg [Phe)-

Proposition 1.2.11 (Proposition 2.11, [39]). Supposons que o? est constant et strictement positif,
que B(1) = 0 et que b est lipschitzienne, et que la mesure de probabilité m admet un moment d’ordre
2 fini. Alors, pour tout t > 0, il existe K(t) € [0, 400[ tel que
K(t)
W (pr™, pr) < :
2(pr",pe) < n
Le Théoréme 1.2.10 donne un taux de convergence & l’équilibre uniforme en le nombre de
particules, ce qui est donc encourageant en vue du programme énoncé ci-dessus. Malheureusement,
le résultat de propagation du chaos obtenu & la Proposition 1.2.11 n’est pas uniforme en temps, et
I’on ne peut donc pas conclure directement.

1.2.3.2 Convergence de p.,"

Malgré la non-uniformité en temps de la propagation du chaos dans la Proposition 1.2.11, on
aimerait pouvoir obtenir une vitesse de convergence a 1’équilibre pour le processus non-linéaire en
procédant de la maniére suivante : écrivons, pour toust > 0 et n > 1,

Wa(pt, poc) < Wa(pe, pp ™) + Wa(pr™, pi") + Wa(pl', peo)- (1.17)

D’aprés la Proposition 1.2.11, le premier terme du membre de droite ci-dessus disparait si n tend
vers 'infini & ¢ fixé. Le troisiéme terme est traité dans le Chapitre 5, ott nous établissons le résultat
suivant.

Proposition 1.2.12 (Théoréme 5.1.2, Chapitre 5). Supposons que o2 est constant et strictement
positif, que B(1) =0 et que b est strictement décroissante. Alors, pour tout r > 1,

. 1,n o
En revanche, le second terme dans le membre de droite de (1.17) pose probléme : idéalement,
on souhaiterait transposer le résultat du Théoréme 1.2.10 & la distance de Wasserstein entre les
marginales respectives pi " et pL™ de p et pL. En supposant par exemple que I’on puisse montrer

que pl vérifie 'inégalité de transport-ys de constante C' uniforme en n, alors il vient, pour tout
t>0,

1 C c
Ln 1,
Wa(p ", pl") < %Wz(p?,pé’o) <\ oxePllpie) < 4/ exp(=A)x2 (P p%)-
Mais le terme x2(pf|pL) croit géométriquement avec n, et le membre de droite ci-dessus explose
lorsque n tend vers l'infini. Nous n’avons pas réussi a surmonter cette difficulté.

1.2.4 Le modéle d’Atlas en champ moyen

Indépendamment de leur intérét dans I'approximation des solution d’équations du type (1.9),
les systémes de diffusions interagissant & travers leur rang ont fait I’objet d’une attention assez
importante en théorie des portefeuilles stochastiques. En effet, Fernholz a montré [58, 62| que
sur un marché asymptotiquement stable en temps, la dynamique des prix des actifs est assez bien
approchée par les exponentielles de systémes de diffusions interagissant a travers leur rang. En
particulier, le modeéle d’Atlas, dans lequel la croissance globale du marché est portée par Iactif le
plus bas, permet de retrouver les courbes de distribution du capital observées empiriquement. Ce
modele a été introduit par Fernholz [58] et étudié en détail par Banner, Fernholz et Karatzas [11],
voir aussi [62, 81].
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Dans ce contexte, on s’intéresse généralement & la répartition du capital entre les compagnies
présentes sur le marché [11, 41, 62, 125], et & la gestion de portefeuilles [11, 62]. Ces questions sont
généralement étudiées en analysant d’abord la stabilité en temps long du marché [11, , 89, 80, 81]
pour un nombre fixé n d’actifs, puis en faisant tendre ce nombre d’actifs vers 'infini dans un marché
stationnaire [11, 41, |. Les résultats essentiels dans cette direction sont présentés dans larticle
de revue de Fernholz et Karatzas [62] ; plus généralement, la théorie des portefeuilles stochastiques
est introduite dans le livre de Fernholz [58].

Dans le Chapitre 6, nous appelons modéle d’Atlas en champ moyen le modéle de marché dans
lequel les logarithmes des prix des actifs sont donnés par (1.12), et nous proposons de raisonner
dans lordre inverse de celui décrit ci-dessus : nous utilisons d’abord les résultats du Chapitre 4
pour donner une description asymptotique, lorsque la taille du marché augmente, du comporte-
ment de chaque actif. Le phénoméne de propagation du chaos implique que ceux-ci se comportent
approximativement comme des copies indépendantes d'une méme dynamique non-linéaire. Le com-
portement en temps long de cette dynamique, et donc la stabilité du marché asymptotique, sont
déterminés par nos résultats de convergence & 1’équilibre. Nous renvoyons & la Section 6.2 du
Chapitre 6 pour une présentation détaillée de ces résultats.

Nous nous intéressons ensuite & la distribution du capital et & la sélection de portefeuilles
pour le marché asymptotique dans le modéle d’Atlas en champ moyen. Dans la Section 6.4 du
Chapitre 6, nous retrouvons la transition de phase observée par Chatterjee et Pal [11] : selon les
paramétres du modéle, pour un grand marché et en régime stationnaire,

e soit 'intégralité du capital est concentrée par un petit nombre de compagnies;

e soit le capital est bien réparti sur le marché et aucune compagnie ne concentre une portion
macroscopique du capital total.

Dans le second cas, nous obtenons une description assez fine de la densité de capital sur le marché,
qui exhibe les mémes propriétés qualitatives que les courbes de distribution du capital empirique-
ment observées [58].

Dans la Section 6.5 du Chapitre 6, nous comparons enfin les performances d’une famille de
portefeuilles, qui réalise une interpolation entre :

e le portefeuille neutre, qui investit la méme somme sur chaque actif;

e le portefeuille de marché, qui investit sur chaque actif une somme proportionnelle au prix de
cet actif.

Empiriquement [118, |, on constate que le portefeuille neutre est plus performant que le por-
tefeuille de marché. Ce fait est généralement expliqué par 'effet de rééquilibrage, & savoir que les
investisseurs vendent les actifs avec un prix élevé et achétent les actifs de faible prix. Le portefeuille
neutre est insensible & cet effet, alors que le portefeuille de marché donne plus de poids aux actifs
dont les prix sont les plus élevés, ce qui va dans le sens opposé de l'effet de rééquilibrage. Notons
que les hypothéses B(0) = B(1) = 0 et B(u) > 0 pour u €]0, 1], nécessaires a la stabilité du
processus non-linéaire dans le Théoréme 1.2.8, traduisent cet effet de rééquilibrage : la dynamique
des petits actifs est dirigée par la quantité b(0) > 0, alors que celle des grands actifs est dirigée par
b(1) <0.

Cette observation a été vérifiée dans le modéle d’Atlas par Banner, Fernholz et Karatzas [11].
Dans le modeéle d’Atlas en champ moyen, I’expression de la mesure invariante du processus non-
linéaire nous permet de calculer explicitement le rendement asymptotique des portefeuilles. Nous
mettons alors en évidence 'influence de la volatilité sur le rendement des portefeuilles : si celle-ci
est une fonction décroissante du prix de l'actif, alors nous confirmons que le portefeuille neutre a
un meilleur taux de croissance que le portefeuille de marché. Dans le cas contraire, il est possible
de construire des modéles dans lesquels le portefeuille de marché est meilleur que le portefeuille
neutre. A notre connaissance, un tel phénomeéne n’a encore jamais été observé.

1.2.5 Perspectives

Comme nous ’avons souligné dans la Sous-section 1.2.3, la question principale encore ouverte
dans les travaux de la Partie II est la vitesse de convergence & l’équilibre du processus non-
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linéaire, en dehors des hypothéses du Théoréme 1.2.6. Nous renvoyons a cette sous-section pour
une présentation détaillée des stratégies proposées dans cette direction.

1.3 Partie III : la dynamique des particules collantes multi-
type

Les résultats de propagation du chaos exposés dans le Chapitre 4 permettent de donner une
représentation probabiliste des solutions de I’équation aux dérivées partielles (1.9). La motivation
initiale des travaux présentés dans cette partie est la suivante : peut-on construire une représenta-
tion similaire pour les solutions d’un systéme d’équations aux dérivées partielles non-linéaires 7

Les systémes diagonauzr d’équations aux dérivées partielles permettent effectivement de déve-
lopper une telle théorie. Ce sont les systémes de la forme

2
Ou” + X (n)0,u” = %[ﬁuv,

u?(0,2) = ug(x),

Yy € {1,....d}, (1.18)

ol la fonction inconnue

est définie sur [0 + co) x R et a valeurs dans R?. On suppose ici que 02 > 0, que pour tout

v € {1,...,d}, la condition initiale u} est la fonction de répartition d’une mesure de probabilité
m? sur R, ce que I'on note naturellement u} = H «m?, et que le champ de vitesses

est défini sur [0, 1]¢ et & valeurs dans R?. Comme dans la Partie II, on cherche alors des solutions
u = (ul,...,u?) telles que, pour tout v € {1,...,d}, pour tout ¢ > 0, u”(¢,-) reste la fonction de
répartition d’une mesure de probabilité sur R.

Le systéme (1.18) est dit paraboliqgue. On s’intéresse également a sa version hyperbolique, donnée
par
O + X7 (u)d,u” =0,

u(0,2) = uf (). (1.19)

vy e{l,...,d}, {

On commence par introduire un systéme multitype de particules interagissant a travers leur
rang, qui étend le systéme étudié dans la Partie II et permet d’approcher les solutions de systémes
paraboliques (1.18). On décrit ensuite la limite petit bruit de ce systéme de particules, que I'on
appelle dynamique des particules collantes multitype. On montre enfin que, lorsque le nombre de
particules tend vers l'infini, la dynamique des particules collantes multitype permet effectivement
d’approcher les solutions de systémes hyperboliques (1.19). Les liens entre ces différents objets
sont résumés sur la Figure 1.5.

Remarque 1.3.1. Dans toute la Partie III, les objets notés en caractéres gras (par exemple u et A
ci-dessus) sont les objets de dimension d. Les coordonnées de tels objets sont notées en caractéres
maigres et repérées par des lettres grecques, génériquement v ou «, 5, placées en exposant.

Les énoncés de nos résultats font intervenir les conditions de continuité suivantes sur le champ
de vitesses A = (A!,..., \9).

(C) Pour tout v € {1,...,d}, la fonction A\ est continue sur [0, 1]%.

(LC) 1l existe une constante Li,c € [0, +o0] telle que

d
Vye{l,...,d}, Vu,velo,1], [A7(u) = N (v)| < Lic Z " =o'

v'=1
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Systéme multitype de particules Dynamique des particules
interagissant a travers leur rang 0210 collantes multitype
n — 400 n — +00
Systéme parabolique (1.18) _— Systéme hyperbolique (1.19)
0210

FIGURE 1.5 — Liens formels entre systéme multitype de particules interagissant & travers leur rang,
dynamique des particules collantes et systémes paraboliques (1.18) et hyperboliques (1.19). Dans
ce manuscrit, on ne s’intéresse pas directement & la fléche grisée.

1.3.1 Systémes multitypes de particules interagissant a travers leur rang

Supposons ici que o = 1. La construction d’un systéme de particules, similaire & celui intro-
duit dans la Partie II, permettant d’approcher les solutions du systéme parabolique (1.18), est
présentée dans le Chapitre 7. En prenant la dérivée en espace de (1.18), on obtient que les dérivées
(pt,...,pd)t>0 d'une solution u vérifient le systéme

1
o} = 5551?? + 0, (\T(H = pf(2), ..., H=pl(x)p]),

Y
pO*m’Ya

Yy e{l,...,d},

que 'on interpréte comme le systéme d’équations de Fokker-Planck vérifié par les lois marginales
P}, ..., P2 des coordonnées du processus de diffusion

X = (Xl(t)’ ce ’Xd(t))tZO
a valeurs dans R? et solution de ’équation différentielle stochastique non-linéaire

dX7(t) = N (H « PHXO(t)), ..., H* PHX"(t))) dt + dW (),

1.20
P est la loi de X7(t), (1.20)

Vy e {1,...,d}, {

ot W = (W(t),...,W4(t));>0 est un mouvement brownien standard dans R%, et X(0) est une
variable aléatoire dans R, indépendante de W, et telle que, pour tout v € {1,...,d}, la loi
marginale de X7(0) est m?.

Afin de linéariser ’équation différentielle stochastique non-linéaire ci-dessus, on introduit n
processus

X = (X,i,n(t), . ,Xg,n(t))tzo, ke{l,...,n},
dans R?, vérifiant, pour tous k € {1,...,n} et v € {1,...,d},

1« 1 ¢
AXT, (O =X = s wexz, op 07 D Lixe, wexq, oy | 4+ dW(D),
j=1

j=1

ol les processus
Wi = (WD), ..., Wi (t))i>o, ke{l,...,n},

sont des mouvements browniens standard dans R? indépendants, et les variables aléatoires

X1,,(0),...,X,.,(0)
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sont indépendantes et identiquement distribuées selon la mesure produit m! ® - - - ® m¢, indépen-
damment de Wq,..., W,,.

Les processus X,Z,n peuvent étre vus comme décrivant les positions dans un systéme de d x n
particules évoluant sur la droite réelle de la fagon suivante :

e chaque particule posséde un type v € {1,...,d}, et il y a n particules de chaque type;

e la dérive de chaque particule dépend de son rang parmi les particules de son propre type,
mais également parmi chaque sous-systéme de particules d’un type donné.

Dans la suite, ce systéme de particules est appelé systéme multitype de particules interagissant a
travers leur rang.

Le lien entre ce systéme de particules et le systéme parabolique (1.18) est éclairci dans le
Théoréme 7.1.4 du Chapitre 7.

Théoréme 1.3.2 (Théoréme 7.1.4, Chapitre 7). Sous Uhypothese (LC), la mesure empirique
1 n
==Y 6 e P(C(]o, R4
=3 30w, € PO(0, ool BY)

converge en probabilité, dans P(C([0,4+oc[,R%)), vers la loi P de l'unique solution faible de I’équa-
tion différentielle stochastique non-linéaire (1.20).
De plus, la fonctionu = (ul,...,u?) : [0, +oo[xR — [0, 1]¢ définie par, pour tout~y € {1,...,d},

Y(t,z) € [0, +oo[xR, u¥(t,z) := H * P, (),

est 'unique solution (dans une classe que nous ne précisons pas ici) du systéme parabolique (1.18)
2
avec 0* = 1.

1.3.2 Limite petit bruit des systémes multitypes de particules interagis-
sant a travers leur rang

Afin de construire une approximation des solutions du systéme hyperbolique (1.19), on sou-
haite déterminer la limite petit bruit, c’est-a-dire lorsque o2 tend vers 0, du systéme multitype de
particules interagissant a travers leur rang introduit ci-dessus.

Dans ce but, on pose € := 02/2, et I'on souligne la dépendance en e du systéme de particules
en notant désormais (X5 ,(¢), ..., X5, (t))¢>0 le processus de diffusion a valeurs dans (R?)" défini
par

1< 1<
AxX =X | > Lixemexpnmp > Lixeamexeny | A+ V2edW) (). (1.21)
j=1 j=1

Le coefficient de dérive de ce processus de diffusion est génériquement une fonction discontinue
de (Rd)" dans lui-méme ; ainsi la limite petit bruit de ce processus n’est-elle pas couverte par la
théorie de Freidlin et Wentzell [65]. Nous introduisons donc des méthodes ad hoc pour déterminer
cette limite, et traitons d’abord le cas scalaire d = 1, puis le cas de systémes de dimension supé-
rieure vérifiant la condition d’uniforme stricte hyperbolicité (USH) que nous introduisons dans le
paragraphe 1.3.2.2 ci-dessous.

1.3.2.1 Limite petit bruit dans le cas scalaire

Dans le cas d = 1, il n’y a qu’un type de particules et (1.21) décrit simplement 1’évolution d’un
systéme de particules interagissant a travers leur rang tel que celui étudié dans la Partie I1, avec des
coefficients de variance constants. Par souci de lisibilité, nous ne faisons plus mention du type des
particules, et notons donc (X7 ,(t),..., Xy, ,(£))i>0 le systéme de particules, et A\(1/n),..., A(n/n)
les coefficients de dérive.

La particule qui voyage en j-éme position posséde donc une dérive instantanée A(j/n). Lorsque
I'intensité € de l'agitation brownienne diminue, et tant que cette particule ne croise pas d’autre
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particule, sa trajectoire se concentre donc autour de la droite de pente A(j/n). Supposons que
A(G/n) > M5 + 1)/n), de sorte que les particules en j-éme et (j + 1)-éme position finissent
par entrer en collision. Alors celles-ci échangent leurs coefficients de dérive, et gardent donc une
orientation qui tend & les rapprocher. Trés naturellement, les particules qui entrent en collision
restent donc collées dans la limite petit bruit. Elles forment un amas dont il est facile de voir que
la vitesse est donnée par la moyenne des vitesses incidentes. Plus généralement, lorsque plusieurs
amas entrent en collision, ils se collent et forment un seul gros amas, dont la vitesse est déterminée
par la conservation de la masse (on convient que toutes les particules ont la méme masse) et de la
quantité de mouvement.

Cette dynamique limite est appelée dynamique des particules collantes et a été introduite par
Zeldovitch [141] pour décrire le mouvement des galaxies. Nous prouvons dans la Section 8.3 du
Chapitre 8 qu’elle décrit effectivement la limite petit bruit du processus (1.21), dans un sens que
nous ne précisons pas ici. Brenier et Grenier [29] puis Jourdain [36] ont montré que cette dynamique
permet d’approcher la solution de I’équation hyperbolique (1.19) avec d = 1 dans le sens suivant.

Théoréme 1.3.3 ([29, 86]). Soit (x1,,(0),...,2nn(0))n>1 une suite de conditions initiales telles
que, pour toutn > 1,
-Tl,n(o) S e S xn,n(o)a

et dont les mesures empiriques
1 n
Nn(o) = E ;5u,n(0)

convergent étroitement vers la mesure de probabilité m sur R.
Pour tout n > 1, soit (x1,,(t), ..., 2Tnn(t))i>0 le processus décrivant les positions du systéme
de particules collantes suivant :

o la particule d'indice k € {1,...,n} est en position initiale xj »(0), et posséde la vitesse initiale
A(k/n) et la masse initiale 1/n ;

e les particules voyagent a vitesse constante sur la droite réelle tant qu’elles n’entrent pas en
collision ;

e auz collisions, les particules se collent et forment un amas dont la vitesse est déterminée par
la conservation de la masse et de la quantité de mouvement.

Alors, pour tout t > 0, la mesure empirique

pn(t) ==

SN

Z 6Ik,n(t)

k=1

converge étroitement vers une mesure de probabilité p(t) sur R, telle que la fonction

u{ [0, +00[xR — [0,1]
' (t,x) = (H o+ p(t))(z)

est 'unique solution entropique de la loi de conservation scalaire

Opu 4 0, (A(u)) =0,
{ uw(0,2) = H * m(x), (1.22)

ot la fonction de flurx A : [0,1] — R est définie par

u

Yu € [0,1], A(u) ::/ A(v)dv.
v=0
Dans le cas scalaire, le diagramme décrit sur la Figure 1.5 est donc parfaitement complété, en
prenant pour « bonne » notion de solution de I’équation hyperbolique la solution entropique de la
loi de conservation (1.22). On renvoie & l'article de Jourdain [85] pour une étude plus détaillée du
cas scalaire.
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1.3.2.2 Limite petit bruit dans le cas uniformément strictement hyperbolique

Daus le cas de la dimension supérieure d > 2, la limite petit bruit du processus défini par (1.21)
est beaucoup moins claire. Evidemment, tant qu’il n’y a pas de collision entre des particules de type
différent, chaque systéme de particules d’'un type donné suit la dynamique des particules collantes
pour des coefficients de vitesse donnés par 'ordre global du systéme. Plus précisément, on s’attend
a ce que, dans la limite petit bruit, les particules de type v € {1,...,d} suivent la dynamique des
particules collantes dans laquelle la particule en k-éme position parmi les particules de type 7, qui
est notée ~ : k dans la suite, posséde une vitesse initiale donnée par
k
n

Wit W ) (1.23)

s -1
A (ww:ka"'aw»}/;ka » Fyik v:k

ot, pour tout v # 7,

;Y: P % x nombre de particules de type +' situées & gauche de ~ : k.
Tant qu’il n’y a pas de collision entre des particules de type différent, ’ordre global du systéme ne
change pas, et les coefficients de vitesse donnés par (1.23) ne sont pas affectés.

Déterminer 'ordre des particules résultant d’une collision entre particules de types différents
est en revanche beaucoup plus difficile. On constate en effet que les deux phénoménes suivants
peuvent se produire et poser probléme :

e dans la limite petit bruit, la collision demeure aléatoire, c’est-a-dire que ’ordre des particules
aprés la collision est aléatoire;

e un amas contenant des particules de plusieurs types se forme.

Dans le premier cas, nous ne pouvons pas déterminer en général la probabilité de chaque ordre
possible. Dans le second cas, nous ne savons pas calculer explicitement la vitesse des amas formés.
Nous discutons de ces questions dans le Chapitre 8, en remarquant que le processus donné par (1.21)
s’inscrit dans le cadre un peu plus général de processus de diffusion interagissant a travers leur
ordre, c’est-a~dire de processus de diffusion & valeurs dans R et dont le coefficient de dérive ne
dépend de la valeur du processus qu’a travers l'ordre de ses coordonnées. Le Chapitre 8 donne
quelques résultats partiels sur la limite petit bruit de tels processus.

Nous éliminons les deux phénoménes décrits ci-dessus en travaillant sous la condition d’uniforme
stricte hyperbolicité suivante.

(USH) Uniforme stricte hyperbolicité : il existe une constante Lysy €]0, +00] telle que

Vye{l,...,d -1}, inf A(u) — sup A'(u) > Lyss.
ug(0,1]4 uelo,1]¢

Alors, en utilisant les mémes arguments qu’au Chapitre 8, nous obtenons la description suivante de
la limite petit bruit de (1.21) : tant qu’il n’y a pas de collision entre particules de types différents,
chaque systéme de particules d’un type donné suit la dynamique des particules collantes avec des
coefficients déterminés par l'ordre global du systéme wvia (1.23). Lors d’une collision entre amas
de types différents, les amas se croisent sans se coller et s’ordonnent par type décroissant. Les
coeflicients de vitesse de chaque amas sont alors mis a jour en prenant le nouvel ordre global du
systéme. Cette dynamique est appelée dynamique des particules collantes multitype ; une trajectoire
typique est représentée sur la Figure 1.6.

1.3.3 Dynamique des particules collantes multitype

Le Chapitre 9 est consacré a 1’étude du lien entre la dynamique des particules collantes multitype
introduite ci-dessus, et le systéme hyperbolique (1.19). L’espace d’état naturel pour la dynamique
des particules collantes multitype est le produit cartésien D¢, ot D, est le polyédre

Dy ={(z1,...,20) ER" 121 <+ <3}
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4

FIGURE 1.6 — Un exemple de trajectoire de la dynamique des particules collantes multitype. Les
positions des particules sont représentées en abscisses, et le temps est en ordonnée. Chaque couleur
est associée a un type de particule. Les particules de méme type se collent aux collisions, et les
collisions entre amas de types différents peuvent modifier les vitesses des amas, voire faire éclater
ceux-ci.

Un élément typique de DY est appelé une configuration et noté
x = (2 )1<y<d1<k<n,

ou x; désigne la position de la k-éme particule de type . Pour tout p € [1, +0c], nous définissons
la distance || - ||, sur D2 par

X =¥lloo = sup |z} =y}
1<v<d,1<k<n

La dynamique des particules collantes multitype définit un flot (®(+;¢));>0 dans DZ.

1.3.3.1 Notion de solution probabiliste

La premiére tache dans I’étude du systéme hyperbolique (1.19) consiste & définir proprement
ce que l'on entend par une solution de ce systéme. En effet, le produit A7 (u)0,u” n’est bien défini,
au sens des distributions, que si u” est régulier. Or, les solutions que nous cherchons & obtenir sont
des fonctions de répartition, et peuvent donc éventuellement étre discontinues.

Considérons par exemple le cas scalaire évoqué au paragraphe 1.3.2.1, ol ug est la fonction
de Heaviside et A est décroissante. Alors on peut introduire une approximation par la dynamique
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des particules collantes, dans laquelle la position initiale de chaque particule est 0. Comme A est
décroissante, toutes les particules restent collées et voyagent en un seul amas, de vitesse

1~ (k
22 (n)
n n
k=1
11 en résulte aisément que la solution obtenue & la limite s’écrit u(t, z) = Lio>exys on

1
A= / A(v)do,
v=0

et cette solution est effectivement discontinue.

Remarque 1.3.4. Nous pouvons formuler les deux remarques suivantes sur ce cas, et qui sont a
la base de notre notion de solution pour le systéme hyperbolique (1.19) :

(i) si nous remplagons, dans la définition de la dynamique des particules collantes, la vitesse
initiale A(k/n) de la particule en k-éme position par son approximation

k/n n) — —1)/n
; / M)y = /) 1A/((k D/n).
v=(k—1)/n n

ce que nous avons d’ailleurs fait pour étudier le comportement en temps long des systémes de
particules interagissant & travers leur rang au Chapitre 5, alors pour tout n > 1, la fonction
de répartition empirique des particules est exactement la solution wu(t, z) que nous cherchons
a approcher;

(ii) la « bonne vitesse » & mettre devant le terme J,u dans la formulation non-conservative
de (1.22) est ici A, c’est-a-dire la valeur moyenne de A sur la discontinuité de u.

La seconde remarque ci-dessus peut étre précisée, et rendue plus générale, en observant que si
F est la fonction de répartition d’une mesure de probabilité m sur R, alors la distribution 0, (A(F))
coincide avec la mesure de Radon AM{F'}(x)m(dz), on, pour tout € R,

1

MFH @) = / M(1 = 0)F(x™) + 0F (2))de,

0=0
et F(z7) est la limite & gauche de F en z. Avec cette définition, une formulation équivalente
de (1.22) est

O+ Mu}oyu =0,

u(0,2) = H * m(x),
ce qui correspond a la version scalaire du systéme (1.19), dans laquelle nous avons convenu d’in-
terpréter le produit A(u)0zu comme la distribution A{u}0,u.

Nous gardons la méme convention dans le cas général et introduisons ainsi la notion de solution
probabiliste du systéme hyperbolique (1.19).

Définition 1.3.5 (Définition 9.2.12, Chapitre 9). Une solution probabiliste du systéme hyperbo-
lique (1.19) est une fonction

u=(u',...,u?): [0, +oo[xR — R?

telle que :

e pour tout t > 0, pour tout v € {1,...,d}, la fonction u?(t,-) est la fonction de répartition
d’une mesure de probabilité sur R ;

e [a fonction u est une solution, au sens faible, du systéme d’équations

O + N{u}dzu” =0,

u?(0,2) = ug (),

Vye{l,...,d}, {
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ou, pour touty € {1,...,d},

1

A{u}(t, z) = /920 AT (ut(t, @), (1= 0)u? (ta7) + Ou (t,x), . .., ul(t, x)) dO),

et \7{u}0,u" est interprétée comme la mesure de Radon de densité \Y{u}(t,-) par rapport
& la mesure de probabilité Oyu”(t,-) sur R.

Cette notion est introduite et discutée dans la Section 9.2 du Chapitre 9.

1.3.3.2 Existence d’une solution via le systéme de particules

Nous nous intéressons maintenant a la construction de solutions probabilistes, au sens de la
Définition 1.3.5, du systéme hyperbolique (1.19), & partir de la dynamique des particules collantes
multitype. En raison du point (i) de la Remarque 1.3.4, nous modifions légérement cette dynamique
en remplagant la vitesse initiale de la k-éme particule de type 7, donnée a (1.23), par la valeur

k/n

1 y—1 v+1 d

n/ 7 (wv:k,...,w%k SV, W ,...,wv:k) do.
v=(k—1)/n

Cette nouvelle définition, qui ne change rien & la nature de la dynamique, nous permet de
montrer dans la Proposition 9.2.15 du Chapitre 9 que, pour toute configuration initiale, les fonctions
de répartition empiriques de chacun des d systémes de particules fournissent une solution exacte,
au sens de la Définition 1.3.5, du systéme hyperbolique (1.19).

Nous combinons ensuite cette observation & :

e un résultat de fermeture, énoncé a la Proposition 9.2.14, de ’ensemble des solutions proba-
bilistes du systéme hyperbolique (1.19);

e un résultat de compacité, énoncé a la Proposition 9.5.6, pour une famille de dynamiques de
particules collantes multitypes dont les configurations initiales sont obtenues en discrétisant
les conditions initiales u}, ..., ud du systéme hyperbolique (1.19);

et obtenons le résultat d’existence suivant.
Théoréme 1.3.6 (Théoréme 9.2.17, Chapitre 9). Sous les hypothéses (C) et (USH), pour tout
choiz de mesures de probabilité m', ..., m® sur R, il existe une solution probabiliste, au sens de

la Définition 1.3.5, du systéme hyperbolique (1.19) avec les conditions initiales ucl,, cen ug définies
par, pour tout v € {1,...,d}, uj := H*m?.

1.3.3.3 Stabilité uniforme pour le systéme de particules

Le résultat central du Chapitre 9, énoncé et prouvé dans la Section 9.4 de celui-ci, est l'es-
timation de stabilité uniforme au niveau discret décrite dans le Théoréme 1.3.7 ci-dessous. Nous
établissons ce résultat sous I’hypothése supplémentaire de Genuine Nonlinearity :

(GNL) Pour tout v € {1,...,d}, \¥ est de classe C! sur [0,1]¢ et
soit  Yue€[0,1]%, 9,)\7(u) >0,
soit  Yu € [0,1]%, 9,A\7(u) <0,
ott 0,A7 désigne la dérivée partielle de A par rapport a u”.

Théoréme 1.3.7 (Théoréme 9.2.22, Chapitre 9). Sous les hypothéses (LC), (USH) et (GNL),
alors pour tout p € [1,+00], il existe une constante L, € [1,+o0o[ dépendant de d, Li.c, Lusu mais
pas de n, telle que pour tous X,y € Dg, pour tous s,t > 0,

1@(x55) = Dy D)llp < Lpllx = yllp + [t = sl Lo,
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ol

d 1/p
Vp e [l,400), Lgp:= Z sup |A7(u)l? ,
,Y:luG[O,l]d

Lc,oo := sup sup [A7(u)l.
1<y<due€[0,1]¢

La preuve de ce résultat est longue et plutot technique. Nous en donnons donc une bréve
description ici. Commencons par remarquer qu’il suffit d’obtenir le Théoréme 1.3.7 pour les cas
particuliers p = 1 et p = o0, les cas intermédiaires s’en déduisent ensuite grace au théoréme
de Riesz-Thorin. Ces deux cas extrémaux sont traités en deux grandes étapes : nous établissons
d’abord une version locale de nos estimations L! et L™, ¢’est-a-dire pour des configurations initiales
x et y proches (dans un sens que nous précisons ci-dessous). Nous intégrouns ensuite cette estimation
locale le long d’un chemin qui interpole deux configurations initiales x et y arbitraires, et sur lequel
nous pouvons appliquer notre estimation locale de proche en proche.

Précisons d’abord ce que nous entendons par configurations initiales proches. Dans la Sous-
section (9.4.2), nous appelons configurations & collisions binaires les configurations x € DY telles
que, dans la dynamique des particules collantes multitype démarrée en x, les collisions n’impliquent
que deux types de particules distincts. Pour de telles configurations, nous encodons les propriétés
topologiques des trajectoires des particules dans un graphe, appelé graphe de collision, dont les
sommets représentent les collisions entre amas de types différents. Pour deux configurations x et
y partageant le méme graphe de collision, nous utilisons la contractivité de la dynamique des
particules collantes type par type afin d’écrire un systéme récursif d’inéquations, posé sur les
sommets du graphe, vérifié par les quantités

Y 12 (xt) — @) (yi )|

vy:k€c

aux instants de collision, ot la somme porte sur I’ensemble des particules v : k appartenant a ’amas
¢ impliqué dans la collision. Le probléme devient donc purement algébrique, et sa résolution nous
permet d’obtenir les estimations L' et L attendues.

La procédure d’interpolation permettant de passer des estimations locales en x, y & un résultat
global est décrite dans la Sous-section 9.4.3. Nous utilisons ici les propriétés géométriques des
trajectoires des particules, afin de construire un chemin entre deux configurations données x et y
le long duquel deux configurations suffisamment proches partagent le méme graphe de collision.

1.3.3.4 Stabilité et propriété de semi-groupe

La valeur de la constante £,, donnée dans le Théoréme 1.3.7 est explicite et ne dépend pas de
n, ce qui nous permet de passer a la limite du grand nombre de particules dans ’estimation de
stabilité. Nous en déduisons le théoréme suivant, qui est le résultat principal du Chapitre 9, et

dans lequel nous définissons, pour tous m = (m?',...,m%),m’ = (m*,...,m'Y) € P(R)?,

d 1/p
Vp €L, 400, W{(m,m'):= (Z Wp(m”,m”)p> ;
y=1

WD (m,m') := sup Woo(m?,m").
1<<d

Théoréme 1.3.8 (Théoréme 9.2.25, Chapitre 9). Pour tout m* € P(R)?, notons P+ 'ensemble
des vecteurs de mesures de probabilité m € P(R)? tels que

ng) (m,m") < 4o0.

Alors, sous les hypothéses du Théoréme 1.5.7, il existe une famille d’opérateurs (S¢)i>0 de Pm=
tels que :
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(i) pour tout m = (m',...,m%) € Pp, la fonction u = (ut,...,u?) : [0, 400[xR — [0,1]¢ défi-
nie par u?(t, z) := H % (S7m)(z) est une solution probabiliste du systeme hyperbolique (1.19)
avec les conditions initiales ug, . .., ud données par ug == H xm" ;

(i) pour tout p € [1,+00], pour tous m,m’ € Ppy«, pour tous s,t > 0,
Wz(gd)(Stm, Ssm’) < E,,Wz(od)(m, m’) + |t — s|Lc,p,

ot les constantes L, et Lc, ont été introduites dans le Théoréme 1.5.7;

(i) (St)e>o0 est un semi-groupe sur Pm».

Ce théoréme est démontré dans la Section 9.5 du Chapitre 9. Dans le cas scalaire, un résultat
équivalent a été obtenu par Bolley, Brenier et Loeper [20], mais par une méthode qui n’utilise
pas la dynamique des particules collantes. De fait, si les liens entre les dynamiques de particules
collantes et les lois de conservation scalaires ont été bien étudiés [27, 29, , 28, 31], il semble que
notre travail soit le premier & appliquer une méthode particulaire & des systémes hyperboliques
d’équations. Notons cependant que les schémas que nous obtenons présentent de fortes similitudes
avec les méthodes dites de Wave Front Tracking [30], qui sont connues pour donner des résultats

de stabilité [10, 16, 17], au moins en distance W1, comparables & ceux du Théoréme 1.3.8.

1.3.4 Perspectives

Nous proposons deux perspectives de recherche dans lesquelles les résultats de la Partie III
peuvent étre approfondis et généralisés.

1.3.4.1 Limite petit bruit de processus de diffusion interagissant a travers leur ordre

Dans le Chapitre 8, nous généralisons la question de la limite petit bruit des systémes mul-
titypes de particules interagissant a travers leur rang en introduisant la notion de processus de
diffusion interagissant a travers leur ordre. Nous donnons une description de la limite petit bruit
de tels processus dans certains cas particuliers, mais laissons ouverte la question d’une description
exhaustive.

Cette question nous semble néanmoins trés intéressante, car a notre connaissance il n’existe
pas d’étude aussi générale de la limite petit bruit de processus de diffusion, a coefficient de dérive
irrégulier, en grande dimension (voir I'introduction du Chapitre 8). Nous détaillons ce probléme
et émettons quelques conjectures dans la Section 8.5 du Chapitre 8.

1.3.4.2 Systémes hyperboliques et dynamique des particules collantes multitype

Les Théorémes 1.3.7 et 1.3.8 sont obtenus en particulier sous ’hypothése (GNL). Dans un
travail en cours avec Benjamin Jourdain et Régis Monneau, nous établissons ces deux théorémes
en retirant cette hypothése. L’hypothése (USH) reste néanmoins fondamentale car elle permet la
bonne définition de la dynamique des particules collantes multitype.

On peut ensuite s’intéresser a des systémes hyperboliques du type (1.19), dans lesquels les
conditions initiales u}, ..., ud ne sont plus monotones, mais seulement & variation bornée. Autre-
ment dit, ce sont les fonctions de répartition de mesures signées sur la droite réelle. Dans le cas
scalaire d = 1, on peut encore introduire un systéme de particules collantes permettant d’approcher
la solution entropique de la loi de conservation correspondante, en attribuant un signe aux parti-
cules et en annihilant deux particules de signes opposés lorsqu’elles entrent en collision [85, 86].
Dans le cas général d > 1, il est naturel de souhaiter adapter les résultats du Chapitre 9 pour un
systéme de particules collantes multitype, possédant également un signe et obéissant a la méme
régle d’annihilation.
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Chapitre 2

Thermodynamique du modele
d’échange complet

Ce chapitre présente, d’un point de vue formel, les propriétés thermodynamiques conjecturées
pour le modeéle d’échange complet, et les illustre par des simulations numériques. Nous mettons ici
P’accent sur la compréhension globale du modéle, et non sur la rigueur des preuves.

2.1 Introduction

2.1.1 Heat transfer by local collisions

This chapter is concerned with the mathematical description of heat transfer by local collisional
dynamics in porous materials, such as aerogels. Aerogels are derived from gels, where the liquid
component is replaced with gas. Experimentally, they exhibit very low thermal conductivity.
Based on systems of semi-dispersing billiards introduced by Bunimovich, Liverani, Pellegrinotti
and Suhov [34], Gaspard and Gilbert argued in [68] that low thermal conductivity can be explained
by the fact that such systems typically entail very few interactions between energy carriers.

As a simple model of such a system, Gilbert and Lefevere [71] introduced the Complete Exchange
Model (CEM) as the lattice Hamiltonian dynamics described below. This model was also proposed
by Prosen and Campbell in [119], where it was called pseudo-integrable Bing Bang model. There,
it was remarked that the study of this system is equivalent to the study of a stochastic billiard in
higher dimensions; see Chapter 3 for developments in this direction.

In the present chapter, we introduce the basic thermodynamic properties of the CEM and
state a few conjectures with respect to the profile of temperature and the energy current in the
nonequilibrium steady state. These conjectures are then confronted with numerical experiments.

2.1.2 The deterministic complete exchange model

Consider a system of N point molecules with unit mass, each one being confined in a one-
dimensional cell of unit length, located on the lattice {1,..., N}. For i € {1,..., N}, the position
of the i-th molecule in its cell is denoted by ¢;(t) € [0, 1], while its velocity is denoted by p;(t) € R.
Each molecule moves at constant velocity in its cell, changing the sign of the velocity at each
reflection at the boundaries of the cell. The interaction between a pair of neighbouring molecules,
say (i,1+1), occurs when the difference between the relative positions of the two molecules reaches
the value 1 — a, i.e.

lgi(t) — qiv1(t)] =1 — a.

Then, the molecules ¢ and i + 1 exchange their velocities, i.e.

pi(t) = piy1(t™), pit1(t) = pi(t).



32 Thermodynamique du modéle d’échange complet

The parameter a € [0,1) is called the interaction parameter. We shall distinguish the following
interaction regimes:

1. the noninteracting case a = 0,
2. weak interactions a < 1,

3. moderate interactions a < 1/2,
4

. strong interactions a > 1/2.

Figure 2.1 — The deterministic Complete Exchange Model, with N = 5 molecules.

Formally, the joint process (q(t), p(t)):>0 evolves according to the Hamiltonian

N
Z ( + me i ) Z ‘/mt qi, QZ+1

on the phase space RY x RY, where the pinning and interaction potentials are respectively of hard
wall and hard sphere type, namely

0 ifgel0,1],

400 otherwise,

0 iflg—q|<1—a,

+00 otherwise.

%M@Z{ WM%&Z{

This model shall be referred to as the deterministic CEM.

2.1.3 Thermal baths

In order to study thermal transport along the chain of molecules, the edge molecules 1 and N
are put in contact with reservoirs, the action of which is modelled by stochastic updates of the
velocities of the molecules at the boundaries of their respective cells. More precisely, when g1 (¢t) = 0
or ¢1(t) = 1, then the modulus of the velocity of the first molecule is drawn, independently of the
incoming velocity, according to the probability density

2
¢r(v) = TiLe p( 21;1)

on [0, +00). Similarly, when gx(t) = 0 or gn(t) = 1, then the modulus of the velocity of the N-th
molecule is drawn, independently of the incoming velocity, according to the probability density

2
PR (v) = TLRG p ( 21}11)

on [0, 4+00).
When there is no interaction, i.e. a = 0, the choice of these update densities ensures that the
marginal steady state of the first molecule (g1, p1) is the product measure

! e ( p% ) dg1d
xp | ——
V27T, P L aept
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of the uniform distribution for the positions and the Maxwell-Boltzmann distribution at tempera-

ture ! Ty, for the velocities; a similar statement obviously holds for the marginal steady state of the

N-th molecule (gn,pn). Therefore, such reservoirs are usually called Mazwellian reservoirs [24].
This model shall be referred to as the thermalised CEM.

2.1.4 Outline of the chapter

The outline of the chapter is as follows: we derive a few properties of the deterministic CEM in
Section 2.2, while Section 2.3 is dedicated to the study of the thermalised CEM. We first compute
the frequency of collisions between neighbouring molecules at thermal equilibrium. Then, under
two assumptions of ergodicity and local thermal equilibrium, we define the nonequilibrium steady
state temperatures and energy currents, and derive an expression of the Fourier law in which the
thermal conductivity is given by the frequency of collisions. This fact was already obtained by
Gilbert and Lefevere [71] for the CEM and is in agreement with more general results by Gaspard
and Gilbert [70, 69].

The Fourier law provides us with a theoretical macroscopic temperature profile, which we com-
pare with numerical simulations. There, we observe that the experimental temperature profile does
not match theoretical expectations. We conclude that the local thermal equilibrium assumption
has to be refined, in a fashion that was also discussed by Ryals and Young [124].

Throughout the chapter, we denote [ - |T := max( - ,0) and [ - ]~ := max(— - ,0).

2.2 The deterministic CEM

This section is dedicated to the study of the process (q(t), p(t)):>0 in the deterministic CEM.
This process takes its values in the phase space Q x RY, where

Q={q=(g,...an) € 0.1V : Vi€ {1,....N 1}, ]gips — 4 < 1 - a}.

The volume of Q depends on both the number N of molecules and the interaction parameter a; it
shall be denoted by V¥ (a).

2.2.1 Infinitesimal evolution and Liouville equation

We begin by giving a formal description of the infinitesimal evolution of the dynamics. Cer-
tainly, the process of positions (q(t)):>0 is continuous, while the process of velocities (p(t)):>0 is
piecewise constant and right continuous. We shall denote by p(¢~) the left limit of p in ¢.

Then, for f: Q xRN - R,

< fa(t), pl) =L f(a(0),p(t7), L= 154 L4 L, (21)

where the operators Lf, L9 and L' are defined as follows.

e L' represents the action of the free motion,

L'f(a,p) =p Vqf(a,p).

e LI represents the action of the deterministic reflection of the molecules at the boundaries
of their cell,

N

LY f(a,p) = > {[pi] " Sgi=0 + [pi] =1} (f(@,p—i) — f(a. P)),

i=1

where P-i = (pla ceeyPi—1, —Piy Pit1y - - apN)

1. Throughout the chapter, we take the convention that the Boltzmann constant kg is worth 1.
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e L' represents the action of the interactions between molecules,

N-1
Z { Pi+1 — pz 5Qi+17Qi:170f + [pi - pi+1]+5qi+1—q¢:—(1—a)}
1=1

x (f(d, Pissi+1) — f(a,P)),
where picit1 = (P1,.- -, Pit1,Pis- - PN) and O, —g,—+(1—q) refers to the pullback of the
distribution d along the application (q,p) + gi+1 — ¢ = (1 — a) on Q x RV,

The derivation of these expressions is explained in Append1x 2.A. Let us underline the similarity
of LY with the infinitesimal generator L', defined by

N

L'f(a,p) =Y Ailgip) (f(a,p—:) — f(a,p)),

i=1

of a classical Markov jump process in which the velocity of the i-th molecule is reversed at rate
Ai(qi,p;i): the operator LY is indeed a degenerate version of L', where velocity reversions occur
certainly when (and only when) ¢ = 0 and ¢ = 1, with a rate corresponding to the incoming
velocity of the molecule.

If the initial configuration of the system is distributed according to the probability distribution
7o on the phase space Q x RY | the law 7(t) of (q(t), p(t)) satisfies the Liouville equation

d

Snlt) = @) (), 7(0) = mo,

where the operator (L9°")* is the formal adjoint of L4, A tedious but straightforward application
of the Green formula

/  (p-Vaf)edadp = /  fg(p - m)og(dq)dp - /  f(p-Vag)dadp,
(a,p) EQXRN (q,p) EOOQXRN (a,p) EQXRN

where o4 refers to the surface measure on 09 while n denotes the outward normal vector to 9,
yields
(Ldet)* _ L*’f+L*’dr +L*’i

where

L*%g(q,p) = —p - Vq9(a,p),

L*%g(q,p) := Z{[m] gi=0 + [pi] "04,=1} (g —g(a,p)),

L* ! Z {[P pz-‘rl q1+1—q1':1—a + [Pi+1 - pi]+6qi+1*q«;:*(1*a)}

x (9(q, Piesi+1) — 9(a,P)) -

Note that L*f, L*9 and L*! are not the respective formal adjoints of Lf, L9 and L' since the
boundary terms produced by the application of the Green formula to Lf have been included in
L4 and L™ rather than in L*f. Besides, since the evolution is Hamiltonian, there is no surprise
in observing the reversibility identity

(L¥)*g) oS =L (g0 S),
where S is the velocity reversing operator defined on Q x RY by

S(a,p) = (a4, —p).
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2.2.2 Stationary distributions

A stationary distribution for the deterministic CEM is a probability distribution s, on Q x RV
such that

(Ldet)*ﬂ_oo — 0’

so that, if the initial configuration of the system is distributed according to 7, then (q(t), p(t))
remains distributed according to 7w, for all t > 0.

A large class of stationary distributions can be easily obtained from the expression of (Ld¢*)*
derived in Subsection 2.2.1. Indeed, let ¥ : [0,+0c0)” — R be a symmetric function, i.e. such
that, for all permutation o of {1,..., N},

Y(vi,...,on) € [0, +00)V, U(Vg(1)s -+ Vo(ny) = ¥(v1,...,UN),

and such that
\I/(’Ul,...,’UN)ZO, / \I/(’Ul,...,’UN)dvl"'d’UNzl.
(v150.50N)
Then, the probability distribution with density
1
ﬂ{qe(z}ﬁ‘l’(|Q1|a---a|QN|) (2.2)

with respect to the Lebesgue measure on the phase space  x RY is stationary.

A particular case of such a stationary distribution, which we shall consider as physically rele-
vant, is the Maxwell-Boltzmann distribution at temperature 7', defined by

N
1 1
’ i=1

where

ZN(a,T) := VN(a)(2xT)N/2.

Let us however mention that there are many stationary distributions that are not of the

form (2.2). As an example, for any q € (2, the probability distribution 4, concentrates on
a state where all the molecules have a null initial velocity, and therefore will always remain in the
same position. As a consequence, this probability distribution is certainly stationary.

2.3 The thermalised CEM

We now put the system in contact with reservoirs as is described in Subsection 2.1.3. Then, the
process (q(t), p(t))i>0 becomes a (piecewise deterministic) Markov process, and its infinitesimal
generator writes

Lth — Lf +Ltr +Li,
where Lf and L' are defined in Section 2.2, while L' describes the action of:

e the random reflections for the first and N-th molecules,

e the deterministic reflections for the other molecules,



36 Thermodynamique du modéle d’échange complet

and is given by
—+o0
Ltrf = [p1]75¢h:0 (/0 f(q7 (va25 ce 7pN))¢L(U)dv - f(q7 p))

o ([ 1@ o oo fap)

=0

+ [pn] " dgn=0 (/;00 f(a, (p1, ..., pn-1,v))¢r(v)dv — f(q, P))

=0

+oo
T [pn] S < [ v —eono)o — fla, p>)

=0

N-—1
+ Z {[pi] " 0gi=0 + [pi] T0g,=1 } (f — fla,p)).

The formal adjoint of L*" now writes
(Lth)* — L*’f+L*’tr+L*’i,

where L*f and L*! are defined in Section 2.2, while

—+oo
vg(q, (—v,p2,...,pn))dv — p19(q, p))

+oo

L% g =1 {p,5010q,=0 (¢L (Pl)/

=0

+ 1yp,<0y0g,=1 <¢L(p1)/

—+o0
1 gpes0pan o <¢R<pN> [ 0@ ne om0~ pvla p>>

Ug(q, (va25 o 7pN))dv + plg(qa p)>
=0

=0

+oo
+ Lpy<0}Ogn=1 (¢R(—pzv)/_0 vg(q, (p1; - - -, pPN-1,v))dv +pzvg(q,p))
+ Z {[pz] q;=0 + [p ql—l} g(qa p)) .

2.3.1 Equilibrium and nonequilibrium steady states

If T, = Tg =: T, then the Maxwell-Boltzmann distribution 7B satisfies (L*)*7}B = 0,
therefore it remains a stationary distribution for the system. This distribution shall be referred to
as the equilibrium steady state of the model at temperature T'.

Out of equilibrium, that is to say when 71, # TR, the existence and uniqueness of stationary
distributions for the model is a nontrivial issue, see Chapter 3 for partial results in the case N = 2.
In the present chapter, we shall work under the following assumption.

Assumption 1 (Nonequilibrium ergodicity). For all 71, > 0 and T > 0, there exists a unique
stationary distribution 7NESS guch that, for dqdp-almost all initial configuration (p%,q"), for all
function f : Q x RN integrable with respect to 7SS then

t—+oo t

lim —/ fa(s),p(s))ds —/ f(q,p)ﬂNESS(dqdp), P(po,q0)-2.5., (2.3)
(a,p)EQXRN

where P(0 qo) refers to the law of the process (q(t), p(t))i>0 with initial configuration (p”,q°).

The probability distribution 7N®5S shall be referred to as the nonequilibrium steady state of

the model. For the sake of brevity, both sides of (2.3) shall simply be denoted by (f).
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2.3.2 Equilibrium frequency of collisions

Let us first assume that 71, = Tr =: T. Since energy transfer between the i-th and (i + 1)-th
molecules only occurs when |¢; — gi+1| = 1 — a, which we shall refer to as a collision between
the molecules, then in order to study thermal properties of the model, it is useful to compute the
frequency of such collisions, that is to say, the average number of collisions by time unit.

Let us fix ¢ € {1,..., N — 1}, and denote by (tf)nzl the sequence of successive instants at
which ¢;+1(t) — ¢:(t) = £(1 — a). On account of the computations detailed in Appendix 2.A, the
frequency of collisions between the i-th and (i 4+ 1)-th molecules on a trajectory writes

t

lim 1/:_02 (5% (ds) + 515; (ds)) = lim l/ ([pi-i-l(s_) - pi(S_)]+6Qi+1(5)*qi(5):17a(d5)

t—+oo t t—+oot Jo_g
Fpi(57) = Pit1 (5 0gu 11 () —ai(s)=—(1-a) (d5)) -

Under Assumption 1, we obtain that the frequency of collisions VZNZ +1(a,T) at temperature T’
between the i-th and (¢ + 1)-th molecules rewrites

N
1 1

N 2

um-H(a,T) :7/ ) exp | —=— s

ZN(a,T) Jiqp)eaxry QTJZ:; !

X ([piJrl - pi]+5q1'+1*q1':1*a(dqdp) + [pi - pi+1]+5qi+1—qi:—(1—a) (dqdp)) ’

which yields
T

V%-H(aaT) = Ciz,\g-i-l (a) P (2.4)

where CJY;, | (a) does not depend on T'. The derivation of (2.4) is detailed in Subsection 2.B.2 of

Appendix 2.B.
In the case N = 2, the constant CF ,(a) is explicit and worth

2a

012,2(0’) = 1— 0/2,

which is confirmed by numerical simulations for a two-molecule system as is shown on Figure 2.2.
For a large number of molecules and in the regime of weak and moderate interactions, numerical
integration shows that:

e apart from side effects, the function i — C}Y, | (a) is flat, see the left-hand of Figure 2.3,

e it median value CﬁV/QMN/QJH(a) converges to some value C(a) when N grows to infinity.

The shape of the function a — C(a)/+/7 is plotted on right-hand of Figure 2.3; it describes
the frequency of collisions between two neighbouring molecules for a large chain of molecules.
Of course, this function is increasing as the larger the interaction parameter is, the more often
molecules collide.

2.3.3 Energy and current

On account of the shape of the Hamiltonian H?, there is no potential energy in the system.
Therefore, the energy of the i-th molecule at time ¢ > 0 is nothing but its kinetic energy

The time-integrated current of energy J/,([0,¢]) between the i-th and (i + 1)-th molecules
must be such that

K2

EY(t) = B (0) = Ji¥, ;([0,4]) = Ji541((0,4]), (2.5)
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Figure 2.2 — Frequency of collisions for a two-molecule system: for three values of a, namely
a = 0.01 (weak interactions), a = 0.1 (moderate interactions) and a = 0.9 (strong interactions),
the experimentally observed ratio v{,(a,T)/ VT is plotted for T ranging from 1 to 10%. The
theoretically expected value 2a/(/m(1—a?)) of this ratio is superposed to the experimental results.
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Figure 2.3 — Left-hand figure: for a chain of N = 50 molecules and a moderate interaction pa-
rameter a = 0.2, the theoretical values of CZJ\Q 4+1(a)/y/m along the chain is plotted in red. The
superposed black graph corresponds to experimental observations of the ratio 1/1]\2 1(a,T)/ VT at
a fixed temperature 7' = 1. Right-hand figure: theoretical value of C(a)/+/7 for a ranging from 0
to 1/2. For small values of the interaction parameter, C'(a) exhibits a linear growth with respect

to a.

where J{¥;([0,¢]) denotes the time-integrated current of energy from the left-hand reservoir to
the first molecule, and fJJJ\\,C ~4+1([0,]) denotes the time-integrated current of energy from the
right-hand reservoir to the N-th molecule. Therefore, we define, for all i € {1,..., N — 1},

L i, iy
Ji{i-ﬁ-l([o’t]) =9 Z pis1 () =it )?,

thitl<y
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where (t&F1), 51 refers to the sequence of successive instants at which |g;+1(t) — ¢:(t)] = 1 — a;
and
1 _
Toa((04]) =5 > @) = pa((h) )%,
o<t

where (t21),,>1 refers to the sequence of successive instants at which ¢;(t) € {0,1}, vL is the
velocity randomly drawn at the instant t0'! and p;((t%1)7) is the velocity of the first molecule
immediately before the update; finally, J ]]VV ~n4+1([0,1]) is defined similarly.

2.3.4 Steady state quantities

Let us recall that, under Assumption (1), the kinetic temperature T is usually defined by the
formula

(E) = ngT,

where d is the number of degrees of freedom for each molecule and kg is the Boltzmann constant.
Here, the point molecules move in a one-dimensional cell, therefore d = 1, and the Boltzmann
constant is set to 1. As a consequence, the steady state temperature of the i-th molecule is defined
by

TN = 2El) = (p}).

Note that, under the equilibrium steady state ﬂ'%/IB, the steady state temperature of each molecule
effectively coincides with 7.

Let us now define the steady state energy current LNZ 11 by

. . 1
j%+1 = lim —J-{\QJFI([O,IS]). (2.6)

to+oo t Y

Owing to (2.5), the gradient of the current is the time derivative of the energy. In the steady state,
this time derivative vanishes, so that ijZ 41 does not depend on ¢ and we shall refer to its value as

it

2.3.5 Influence of the interaction parameter «

For a finite system of N molecules and a > 0, there is always an exchange of energy between
the reservoirs in the steady state, and therefore we cannot expect the steady state temperatures
TlN and TJ{\/ to be equal to the temperatures 71, and Tx of the reservoirs.

This fact is illustrated on the left-hand of Figure 2.4, where the steady state temperatures for
a two-molecule system are experimentally computed while a ranges from 0 to 1. As is expected, in
the noninteracting case a = 0, the molecules are thermalised by their respective reservoirs; while
for a > 0, the steady state temperatures of the molecules tend to equilibrate. The value a = 1/2
seems to have a peculiar role as for strong interactions, both molecules seem to have the same
steady state temperature. Quite surprisingly, this common steady state temperature exhibits an
oscillatory behaviour for @ > 1/2. This fact, that we are not able to explain, is also observed on
the experimental value of the current 52, which is plotted on the right-hand of Figure 2.4.

In the sequel of the chapter, we shall describe the temperature profile for systems with a large

but finite number N of molecules. In order to keep the temperatures 77" and T close to the
temperature of the reservoirs, it will therefore be necessary to work in the weak interaction regime.
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Figure 2.4 — Left-hand: experimental values of (p}) and (p3) for T1, = 100, Tg = 1 and a ranging
from 0 to 1. When a grows to 1/2 (moderate interactions), the steady state temperatures of both
molecules equilibrate. For a > 1/2 (strong interactions), the common temperature of the molecules
exhibits an unexpected oscillatory behaviour. Right-hand: experimental value of the current j2
for 71, = 100, Tg = 1 and a ranging from 0 to 1. In the moderate interaction regime, the intensity
of the current increases. In the strong interaction regime, the same oscillatory behaviour as for
the temperatures is observed.

2.3.6 Fourier law and temperature profile

We now address the energy current jV for large values of N. Arguing as in the computation
of the frequency of collisions in Subsection 2.3.2, we write

1/t =
a0 =5 | (PR = p29) 3 (0 (d9) + 0, 09))
5 [ @) =)
X ([Pit1(57) = Pils )] 0gu i1 (9)—ai(s)=1-a(ds) + [pi(s7) = Pit1 (7)) T 0gi 11 (5)—as(s)=—(1-a) (d))

so that
1

N 2 2 NESS

Jii+l = 5/ B (Pz' _Pi+1) ™ (dpdp)
(a,p)€QXRN (2.7)

X ([piJrl 7pi]+5qi+1*qi:1*a + [pi 7pi+1]+5q¢+1—qi:—(1—a)) :

Of course, the expression of 7NFSS is unknown. We therefore have to perform an approximation

of the nonequilibrium steady state. This is the purpose of the following local thermal equilibrium

assumption (see [71]).

Assumption 2 (Local equilibrium). We assume that, for large values of N, for alli € {1,..., N —
1}, under the nonequilibrium steady state,
o the positions are uniformly distributed in €2, independently of the velocities,

e the marginal distribution of (p;, p;+1) is the product measure

1 pf P?ﬂ
J P\ TorN T arN )
2my\ /TN Til_\{_l i i1

Note that Assumption 2 is very rough: in particular, it does not take the correlation between
molecules ¢ and ¢ 4+ 1 into account; besides, it postulates a Gaussian distribution for the steady
state velocity of the molecules.

Then, the right-hand side of (2.7) can be computed and rewrites

) Cz'Ni+1(a) TN + TN, TN +TH,
Jz',Ni+1 == ,\/E B) - (Tﬁl - Tz'N) = _Vz',NiJrl (a, %) (Tﬁl - TiN) , (28)
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where 1/11\2 4+1(a,T) is the frequency of collisions computed in Subsection 2.3.2. The derivation
of (2.8) is explicited in Subsection 2.B.3 of Appendix 2.B.

Let us highlight the fact that (2.8) is the microscopic expression of the Fourier law, as it relates
the energy current with the discrete gradient of the temperature. The thermal conductivity is given
by the frequency of collisions, which is natural since collisions are the only mechanism of energy
transfer.

Let us now derive a macroscopic temperature profile. To this aim, we define the distribution

Tn on [0, 1] by
PR o
N ‘— Ni:1 i0i/N >

and we denote by T : [0,1] — [0,400) the limit of Ty when N grows to infinity. On the other
hand, we define

J:= lim jV,
N ——+oc0o
where we recall that the value j% of ji’]\g_ﬂ does actually not depend on i € {1,..., N — 1}, see
Subsection 2.3.4. Then, by (2.8), T and J are expected to satisfy the macroscopic Fourier law
J = —v(a, T)0,T,
where the macroscopic conductivity is given by the frequency of collisions
T
v(a,T) = C(a)y/—,
7r

and the function a — C(a)/+/7 is plotted on the left-hand of Figure 2.3. The boundary conditions
are given by the reservoirs and write

T(0) =Tz, T(1) =Tr.

The macroscopic Fourier law can be integrated and yields the macroscopic temperature profile
_ 3/2 3/2\2/3
vz € [0,1], T(x)=((1—a)T" + 2Ty ) (2.9)
as well as the value of the macroscopic current

~2C(a) (372 3/2
T=57 (TL T3 ) .

Let us point out the fact that the theoretical temperature profile does not depend on the
interaction parameter a. Both the theoretical shape (2.9) and the experimental observation of the
temperature profile in the weak interaction regime are plotted on Figure 2.5. We observe that
the experimental profile does not match theoretical expectations and is rather linear. This fact in
discussed in the conclusive Section 2.4 below.

2.4 Conclusions

Under Assumptions 1 and 2, we derived a nonlinear macroscopic temperature profile (2.9),
which was already obtained in similar contexts by Dhar [19], Eckmann and Young [54], Gilbert and
Lefevere [71] and Gaspard and Gilbert [70, 69], and does not depend on the physical characteristics
of the material.

Numerical simulations however show that, at least in the weak interaction regime, the tem-
perature profile is linear. Such a linear profile was also observed by Prosen and Campbell [119]
and especially Ryals and Young [124] for a similar model. There, it was noted that the Gaussian
shape of the marginal distributions of the velocitites under local thermal equilibrium formulated
in Assumption 2 is not correct. As a conclusion, we claim that this local thermal equilibrium
assumption does not actually capture the correct behaviour of the material, and therefore should
be refined.
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Figure 2.5 — Experimental profile of 7 for N = 20 molecules, in the weak interaction regime
a = 0.001. The theoretical profile (2.9) is plotted in blue. The experimentally observed profile is

plotted in black and is linear.

2.A Derivation of the expression of L', L% and L'

2.A.1 Derivation of the expression of L' and L

To derive the expressions of Lf and LI used in Subsection 2.2.1, it is sufficient to consider
a single molecule evolving in the one-dimensional cell [0, 1] with ballistic motion in the bulk and
specular reflection at the boundaries. Let us denote by (¢(t),p(t)) the coordinates of the molecule

at time ¢ > 0, and assume for instance that

q(0) =qo € (0,1),  p(0) =po > 0.

Then, for all t > 0,

q(t) = qo + tpo, p(t) =po, ift<ty,
q(t) =1- (t - tjzfl)pOa p(t) = —Po, if tgfl S t< ttm
q(t) = (t —t},)po, p(t) =po, ift, <t <t

where we define ¢, := (1 — qo)/po and, for all n > 1,

=t +1/po,  t} =1t +1/po.
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In the sense of distributions on [0, +00), we easily obtain, for f:[0,1] x R — R,
d
3/ (a(®),p(t)) = p(1)0,(a(t), p(t))

+z{ (1,=po) = S(1,p0)) 8y, + ((0,po) = F(0, ~po)) 3 }

= p(1)d,f(a(t),p(1)) + Z{ ey 0 b (Fa@®), =p(t7) = Fa(®) p())) -

(2.10)
Assoonas 9, f € L. .([0,1] XR) there is no difficulty in interpreting the term p(¢)9, f (¢(t), p(t)),
which is a distribution on [0, 4+00), as the pullback (or composition) of

Lf(q,p) = pOyf (¢, p),

which is a distribution on [0,1] x R, along the function ¢ — (q(t), p(t)).
We can similarly interpret the second term in the right-hand side of (2.10) as the pullback of

the distribution
Ldrf = {[p]_6q20 + [p]+6q:1} (f(qa _p) - f(Qap))

on [0,1] x R along the function t — (q(¢),p(t")). Indeed, a (nonrigourous) application of the
composition formula for distributions (see e.g. [73, Exemple 4.3.4]) allows us to define the pullback
of the distribution d4—¢ on [0,1] x R along t — (q(t),p(t7)) as

+oo +oo
6q(t):0 = Pgl Z 5t; = ([P(t_)]_)_l Z 5t;,
n=1 n=1

and the pullback of the distribution d,=1 on [0,1] x R along ¢t — (q(t),p(t™)) as

+00 too
dq(t)=1 = pal Z 5t;71 = ([pt)]")~" Z 5t271
n=1 n=1

We deduce that

D 0 =) =0 and Y b =[] Sy,
= =1

which provides the expected expression for LI f.

2.A.2 Derivation of the expression of L

The expression of L' is obtained by similar arguments for a two molecule system. In this
case, let us denote denote by (¢5),>1 the sequence of successive instants at which qg( )—qu(t) =
+(1 — a). Then, the pullback dg,4)—q, (1)=1—q Of the distribution dg, 4,=1-4 on [0, 1] x R? along
(q1(8),q2(2), p1(t7), p2(t7))e=0 satisties

—+oo
> 6 =[p2(t™) = pr(t )] Gga(t)—ar (6)=1—a;
n=1

similarly, the pullback &g, (¢)—q, (t)=—(1—a) Of the distribution 6, 4 —_(1_4) on [0,1]* x R? along
(q1(t), q2(t), p1(t7), p2(t™))e>0 satisfies

Z 8, = [p1(t7) = p2(t )] 0o (t) g1 (1)=—(1-a)-
=1
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2.B Computation of pairwise marginal statistics

2.B.1 Generical computation of pairwise marginal statistics

In this subsection, we explain how to compute expressions of the form

1
TN (¢i> gi+1)da,
VN (a’) qeQ o
for i € {1,...,N —1}. To this aim, it is useful to define the sequence of auxiliary functions g, on

[0,1] by the recursive relation

1
go =1, gn+1(q) = / T{jg—q|<1-a}9n(q)dq.
q'=0

Indeed, for all n > 1, g, (q) rewrites

therefore

on the one hand, while

 f(4i;giv1)dq = / Tgi—qii)<1—a} f(@is Giv1)9i-1(qi)gn —i—1(qiv1)dgidgit1
qef (qi,qi+1)€[0,1]?

on the other hand.
Remarking that

Vg € [0, al, Ljg—qi<1-a} = Lig<q+1-a}s
Vg € [a,1 —d, Lfjg—q'|<1-a} = 1,
Vg €1 -a1], Ljg-gI<1-a) = L{g2q-1+a};

we easily deduce from the construction of g,, that there exists a sequence of polynomials P, (a, q)
such that, for all n > 0,
Pu(a,q) if ¢ €10, al,
gn(q) = Pn(aaa) ifg e [a,l—a],
P,(a,1—¢q) ifqgel—a,l]

Besides, the sequence P, (a, ¢) satisfies the recursive relation, for all a € [0,1/2], for all g € [0, a],

PO(a’7 Q) = 17
a q+l—a
Prii(a,q) :/ Pu(a,q')dq" + (1 — 2a) P(a, a) +/ Py(a,1—¢')dq"
q'=0

q¢'=1—a

Although we did not find an explicit expression for the polynomials P,(a,q), the recursive
relation can be implemented and therefore numerical integration can yield exact values for the
coeflicients of the polynomials, for all n > 0.

2.B.2 Computation of the frequency of collisions

Let us now apply the results of Subsection 2.B.1 above to derive the value of the frequency of

collisions 1/, (a, T stated in (2.4).
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Let us first recall that

N
1 1
N T =~ —=—=> "0 | Ipix1 — pil 04,1 —gi=1-a(dad
ZﬁHl(a’ ) ZN(G,,T) /(CIaP)EQx]RN eXp 2T p] [p +1 p] Gi+1=9qi=1 ( q p)

j=1
1 1 &
2 +
N exp | —5= > pj | [Pi — pit1] g0, —qi=—(1-a)(dadp),
ZN(aaT) /(q,p)EQXIRN QT; ! o ( )
and
N
1 / 1 9
N exp | =57 )0 | Pit1 — pil 041 —gi=1-a(dadp)
ZN(avT) (q,p) EQXRN 2TJ; ! i
1
= 5+ exp pz +pz ) i+1 — dpldpl 1
21T (pi,pi+1)ER? ( + i+ +
1
0gis i —ai=1—a(dq);
N a) /qe(l Gi+1—qi=1 ( q)
similarly,
1 1 &
2 +
TN exXp | —5+ p; | [pi —pis1]7 04141 —qi=—(1-a)(dadp)
ZN(a,T) /(q,p)e(leRN QTZ J gi+1—qi=—(1—a)

L 1
- 2nT ( )eR? €xp (_ﬁ(pf +P?+1)) [pi —Pi+1]+dpidpi+1
PiPi+1)€

1
Op i —ae—(1—g) (dq).
X VN(a) /qu Git1—qi=—(1 a)( q)

On the one hand,

1 1 .
2nT /( 5 piy1) ER2 oxp ( oT (pz +pz+1)> [Pi+1 — pi] T dpidpita —;

while, on the other hand, Subsection 2.B.1 yields

‘h+1 qi=1— a(dq

gi—1(@)gn—i—1(¢ + 1 — a)dq
qeQ 0

v .
/ Pi_1(a,q¢)Pn—i—1(a,a — q)dg,
q=0

91 1(@Q)gn—i-1(g — (1 —a))dg

@

q1+1 gi=—(1— a)(dq

o]

P;,_i(a,q)Pn—i—1(a,a — q)dg,
and

VN (a) = / oveala)dg =2 / _ Py _1(a,q)dq + (1 — 2a) Py 1(a, ).

As a conclusion, 1, (a,T) = CY, | (a)\/T/m, where C}Y, | (a) writes

2/ P,_1(a,q)Pn—i—1(a,a — q)dg
Ci]\ngl( ) = 1=t

- , (2.11)
2/ Py_1(a,q)dg + (1 — 2a)Pn_1(a,a)

and can be computed by numerical integration for all values of a € [0,1/2] and N > 2.
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2.B.3 Computation of the current

Under Assumptions 1 and 2, the current ijZ 41 Writes

2
Pit1

N
Y. = ex - d zd 3 2
Tisi+l 2[ N /1 NZ ” /( i»Dit+1) ER2 P < 2TN 2Tij-\i[-1> bt ( P +1)

x / a ([p”l 7pi]+5‘1i+1*¢h:1*a(dq) + [pi — pi+1]+5lﬁ+1—‘h:_(1_a) (dq)) ’
qec

see (2.7). Let us first compute

2 2
pH—l
p pz-l—l) [pH-l pz] €xXp < N - N > dpidpi+1
2774 /TNTZ_\L1 /(m pit1)€ER? 2T; 2T,

1
=5 ( (TN 2130 + TN (TN ) VP Loy + (TN)PTN 15 — (7711)3/210,3) :

+oo 2 2 TN
L = / / u'v exp <u v ) dvdu, o= -
ueR Jv=au 2 T;

1+1
Direct integration yields

where

27 1 (TN)/? T,
Iig=—y//— 2+ = 271 2+ i+ ,
o 1+a? ( 1+a > (TN, 1) /? 2T
/o 3/2
ba=a"5wm =V T (2TN 3/2°
(1 +a ) (2 [ z+1)
V2 TN)3/2
Lz = *777;3/2 = *VQW%’
(1+a?) (2751 1)
2m a? (TN )2 TN
Ins = 2 =2 s 2 i
o 1+a? < " 1+ 0‘2) 7T(2Tz'],\£+1)1/2 i 2TZZ\'{+1 7
where we have defined N N
TN o T’z +Tz+1
i,0+1 2 .

As a consequence,

2
pz Pit1

p p?,—l—l) [Pit1 — pZ] exp < - > dp;dpi+1
274/ TNT]_\{_l /(% pit1)ER? 2TN 2Tij_\{_1

= \/_ z z+1 (7111-1\/:1

7).

Similarly,

2 2
i Pit1

1 / 2 2 +
o NN (7 = pi1) i = pina] T exp | =55 — oon ) dpidpia
2 TNTZ_\{_1 (pi,pi+1)€ER? QTZ-N QTiJJ\il

N N
- \/_ z z+1 (T’z-i-l T’z ) .
We deduce that
. 1 2
jz‘,NiJrl = _m /EQ (6qi+1_qi:1_a(dq) + 6qi+1*q1':*(1*a) (dq)) \/_ Tz]\z[Jrl (Tz{VH TN)
q

N Tz]\z[-l-l N N
- Ci,i+1(a) T (T7,+1 711 ) ’

where the value of CJY () is given in (2.11). This yields (2.8).



Chapitre 3

Etats stationnaires hors de
I’équilibre du modele d’échange
complet

3.1 Introduction

In this chapter, we develop an adequate setting allowing to derive rigorous ergodicity results
on the thermalised Complete Exchange Model introduced in Chapter 2. It is a generical rule in
nonequilibrium statistical mechanics that the the less randomness there is in a model, the more
difficult it is to establish ergodicity results [24, 67]. Here, thermal baths are the only source of
randomness, there is no additional noise. Therefore, approximations or simplifications have to be
introduced.

On the one hand, approximated models were introduced in the series of articles by Lefevere,
Mariani and Zambotti [103, , 99], where the deterministic interaction between two neighbouring
particles was replaced with the interaction with an array of thermalised scatterers. Then, the
emphasis was put on the macroscopic fluctuation theory of these approximated models. We refer
to Lefevere [98] for a short review of results and conjectures in this direction, and mention that this
also led to theoretical developments regarding the large deviations of renewal processes, see [102,

| by the same authors.

On the other hand, the purpose of the present chapter is to provide a detailed study of the
model in the particular case of a two-molecule system, from which rigourous ergodicity results
can be derived. The reduction to the two particle case is a drastic simplification and allows to
introduce notions that are easy to handle. We nonetheless expect that most of these notions
can naturally be extended to the general case, although this extension may require a substantial
amount of technical developments.

The main result of this chapter, namely Theorem 3.2.5, is not entirely proved and we left
two conditions, that we were not able to prove, as technical assumptions. On the one hand,
we however prove that these assumptions are satisfied in the case of thermal equilibrium, which
provides a complete convergence proof for this case. On the other hand, the author is still working
on these assumptions and expects to complete this work in a forthcoming future.

3.1.1 A stochastic billiard representation

Throughout this chapter, we consider a two-molecule instance of the thermalised Complete
Exchange Model, so that there is no bulk molecule. For all £ > 0, we denote by

X(t) = (q"(t), *(t); p* (1), p° (1))

the process of positions and velocities of the molecules. The interaction parameter a is generally
assumed to belong to (0,1/2), although we shall sometimes also consider the case a = 0, to which
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we will refer as the case without interaction. When the molecule i € {1, 2} is such that ¢* = 0 (resp.
q" = 1), the norm of its velocity is randomly drawn according to the update density ¢** (resp.
¢"7). We address generical update densities, and not only Maxwellian reservoirs as in Chapter 2.

Our analysis relies on the interpretation of (X (t)):>0 in terms of a stochastic billiard, which was
introduced in [119, 101]: the process (X (t)):>0 describes the motion of a point particle evolving
in the polygonal billiard table €2, which refers to the closure of

Q:={(¢",¢*) € (0,1)*: |¢" — ¢*| <1—a},

see Figure 3.1. The polygon 2 is an hexagon. The facets {¢' —¢> =1—a} and {¢®> —¢' =1 —a}
are called oblique facets. A reflection of the billiard particle on one of these facets corresponds to
an interaction between the two molecules, therefore the reflection of the billiard particle on the
oblique facets is specular. On the contrary, a reflection of the billiard particle on one of the four
other facets corresponds to a stochastic update of the velocity of one of the molecules. Therefore,
these four facets shall be called thermalised walls. When the billiard particle hits one of these
walls, the normal component of the velocity is randomly updated according to the corresponding
update density, while the tangential component of the velocity is preserved. The update densities
associated with each thermalised wall are indicated on Figure 3.1.

¢*

ot

¢1,+

¢2,+ a

Figure 3.1 — The billiard table Q. The update densities associated with each thermalised wall are
indicated.

The interpretation in terms of the motion of a particle in a billiard table in higher dimensions
is a classical means to describe one dimensional gases of hard molecues; see, for instance, the so-
called mechanical models in Chernov and Markarian [12, Sections IV.1 and IV.2| or the examples
in Tabachnikov [131, Chapter 1]. As far as billiards with stochastic reflection rules are concerned,
we mention recent results by Cook and Feres [15] and Chumley, Cook and Feres [13], in which the
authors deal with a local description of the state of the billiard particle after each reflection, and
the reflections are assumed to be identically distributed and independent. For general results on
the classical theory of stochastic billiards, we refer to the article by Comets, Popov, Schiitz and
Vachkovskaia [44], in which the norm of the velocity vector is preserved at each reflection, while
the angle of the reflection is randomly updated. In our model though, the norm of the velocity is
not preserved. A similar phenomenon occurs in the random billiard models introduced and studied
by Konstantin and Yarmola [95, 140], see also systems with particle-disk interactions [139, 138].
There, compacity issues related with existence properties of bounded stationary distributions are
highlighted, similarly to our technical assumptions (T1) and (T2).

3.1.2 Organisation of the chapter and notations
3.1.2.1 Organisation of the chapter

This chapter is organised as follows.

We give the main definitions of the model in Section 3.2. There, we also state our main result,
namely Theorem 3.2.5, which asserts that the billiard process is typically ergodic, i.e. for generical
initial configurations, X (t) converges in distribution to some (nonequilibrium) steady state mq.
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Our proof relies on a time discretisation of the process along a sequence of observation times,
such that the extracted chain have nice ergodic features. We explain this general sketch in Sec-
tion 3.3. We address to seemingly auxiliary problems in Section 3.4, which provides us with a
precise description of the billiard process. We finally give a proper definition of our sequence of
observation times in Section 3.5, and obtain ergodicity results on both the billiard process and its
discretisation in Section 3.6, thereby completing the proof of Theorem 3.2.5.

A formal construction of the billiard process is provided in Appendix 3.A, while Appendix 3.B
contains the proof of a technical result.

3.1.2.2 Notations

The billiard table is the closure Q of the open subset Q of [0, 1]2. The polygon 2 is an hexagon,
the facets {¢' —¢? = 1—a} and {¢® —¢' = 1—a} are called oblique facets. The four other facets are
called thermalised walls. For all (i,€) € {1,2} x {4+, —}, we denote by W€ the set of (¢*, ¢*) € 9
such that ¢* = 0 (resp. ¢* = 1) and ¢* € (0,1 —a) (resp. ¢" € (a,1)) if € = + (resp. € = —), where
i’ =2ifi=1and i =1 if i = 2. The closure of the union of Wh*, ..., W?%~ is denoted by W.

Typical configurations of the billiard process are denoted z = (¢!, ¢%;p*,p?) € Q x R2. The
Lebesgue measure on ) x R? is indifferently denoted by dz or dg*dg?dp'dp?. The use of the tensor
product symbol @ shall be understood as follows: for any positive measures p!(dgdp) and p?(dqdp)
on [0,1] x R, the measure p! @ p? is the product measure p*(dg'dp!)p'(dg>dp?) on [0,1]? x R.

Given a measurable space (E,E), the canonical random variable on E is the measurable ap-
plication X mapping F onto itself, defined by X (w) = w. Given a probability distribution P on
E, we shall refer to the probability space (E,E,P) as the probability space E endowed with the
probability distribution P under which the law of the canonical random variable X is PP.

Finally, let us mention that the symbol N refers to the set of positive integers {1,2,...}.

3.2 Model and results

In this section, we give a short presentation of the properties of the billard process, an extended
construction of which is detailed in Appendix 3.A. We then state our main ergodicity result, and
discuss the particular case of thermal equilibrium in the context of the billiard process.

3.2.1 The billiard process
3.2.1.1 Construction and properties of the billiard process

A precise construction of the billiard process (X (t))¢>o is detailed in Appendix 3.A. In partic-
ular, we introduce a subset X of Q x R?, that we call the space of admissible configurations, having
the following properties.

Proposition 3.2.1 (Definition of the billiard process). For all x € X, the process (X*(t))i>0
describing the motion of the point particle in the billiard table Q x R? with initial configuration
x 1s such that, almost surely, for all t > 0, X*(t) is well-defined and belongs to X. The process
(X*(t))e>0 is a Markov process with right continuous and left limited sample-paths, and it has the
strong Markov property.

Proposition 3.2.1 is obtained as a consequence of general results on Piecewise Deterministic
Markov Processes [40].

For all z € X, the law of (X*(t));>0 in the Skorohod space D([0, +0), X) is denoted by P,
and the expectation under P, is denoted by E,. In the sequel, we shall denote by (X (¢));>0 the
canonical variable on the Skorohod space D([0, +00), X') and endow the latter with the collection
of probability distributions {P,,z € X'}. From now on, we therefore refer to the canonical process
(X (t))t>0 under the probability distribution P, as the billiard process with initial configuration
rzedX.
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Definition 3.2.2 (Transition kernel and semigroup). The transition kernel of the billiard process
is defined by, for allt > 0, for all x € X,

Py(z;) =P (X(t) € ).

The semigroup of the billiard process is defined on the set of continuous and bounded functions

f:QxR2 =R by, forallt >0, for all z € X,
Py f(z) == Eq (f(X (1))

3.2.1.2 Symmetries of the table

The space 2 x R?, and the space of admissible configurations X, are naturally invariant under
the following transformations.

Definition 3.2.3 (Symmetries of the billiard table). The symmetries of the billiard are the fol-
lowing transformations:

o the identity &V : (¢, ¢%pt, p?) = (¢4, ¢ pt, p?);
(1 - ql’ 1- q27 _pla _p2);

a0 pY);

(
(1—¢*1—q"—p* —p).

Note that, for all (i,e) € {1,2} x {4, —}, the process (&%°X%(t));>0 has the same law as the
process (XGi’Ez(t))tzo constructed on the table Q, where the update densities associated with each
thermalised wall have been repositioned according to &“¢. As a consequence, in situations in which
the behaviour of the configuration x with respect to the wall W*€ plays a role, the symmetry &*¢

shall be used to reduce the study to the behaviour of the configuration &*¢x with respect to the
wall Wht,

the point symmetry &4~ : (¢*, ¢%; pt, p?)

H
o the azial symmetry &> . (ql,q2;p1,p2) —
o the azial symmetry &>~ : (¢4, ¢%;pt, p?) —

3.2.2 Ergodicity of the billiard process

We now state our main result concerning the long time behaviour of the billiard process. To
this aim, we first remark that many trivial stationary distributions of the billiard process can be
exhibited. Indeed, depending on the initial configuration = = (¢!, ¢%; p*, p?) € X,

e if pt = p? = 0, then under P, for all t > 0, X(¢) = x and the distribution J, is obviously

stationary;

e if either p! = 0 or p? = 0 then the trajectory of the billiard particle is stuck in a periodic

orbit, to which a stationary distribution can easily be associated;

e ifl —a<q'+¢*<1+aandp'+p? =0, then the trajectory of the billiard particle is also

stuck in a periodic orbit.
The last two cases are illustrated on Figure 3.2.

To avoid such pathologic situations, we introduce the following set of nondegenerate initial
configurations.

Definition 3.2.4 (Nondegenerate initial configurations). The subset Xpg C X is defined by x =
(g%, ¢ pt,p?) € Xua if and only if pt #0, p*> #0 and, if 1 —a < ¢* +¢* <1+ a, then p' # —p.

Let us note that the Lebesgue measure of the set X'\ Aq is null.

The main result of this chapter is Theorem 3.2.5 below, which describes the long time behaviour
of the billard process starting from any configuration = € X, 4. This results holds under a set of
assumptions on the update densities ¢*¢, (i,¢) € {1,2} x {+, —}, that we now introduce.

Let v be a probability density on [0,400). We introduce the following assumptions on :
(H1) The probability density ¢ has a finite first order moment.

(H2) The probability density % is bounded and continuous dr-almost everywhere in [0, +00).
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Figure 3.2 — Two periodic orbits, corresponding to initial configuration such that one of the velocity
components is null (blue trajectory) or 1 —a < ¢! +¢?> < 1+ a and p' + p? = 0 (red trajectory).

(H3) For all T > 0,
+oo

P(r)ydr > 0.
T

r=

For all (i,€) € {1,2} x {4+, —}, we denote by ¥"¢ the probability density defined on [0, +0cc) by

_ 1 . /1
v =t (7).

If %€ satisfies the assumption (H1), we denote by u®€ its first order moment. In other words,

+oo i3

ie ¢z,e D

uh ::/ ( )dp.
p

=0 p

Theorem 3.2.5 (Ergodicity). Let us assume that the probability densities >+, 1= >+ and
>~ satisfy assumptions (H1), (H2) and (H3). Under the technical assumptions (T1) and (T2)
introduced below, there exists a probability distribution mnq on X such that, for all continuous and
bounded function f: Q x R?2 = R, for all x € Xyq,

lim E;(f(X())) = dmpq.

Jm BFEO) = [ fam

Proof. The proof of Theorem 3.2.5 is developped in Section 3.6. O
The technical assumptions (T1) and (T2) are explicited at the beginning of Section 3.6.

In the case of Maxwellian reservoirs [24], that is to say update densities of the form

1,2 2,2

o) =0 =spew (<) @0 =) =pven (<11 ). @)

with 81,82 > 0, it is easily checked that assumptions (H1), (H2) and (H3) are satisfied. In

particular,
pht=ptT = /wp2, Pt =P = /a2

The importance of small velocities in the transfer of energy in aerogels was already pointed
out in [68, 71] as they imply low rates of interaction between neighbouring particles. From the
mathematical point of view, the fact that the update densities (or, more precisely, the densities
bt b= 2t and ) satisfy the condition (H3) brings forth a very unusual shape for the
thermodynamic potential describing the macroscopic fluctuation of the current of the approximated
models addressed in [99], see also [102, 100].

Therefore, our proof is especially designed to address small velocities, and the condition (H3)
plays a crucial role here. In particular, it allows us to use the Renewal Theorem in Subsection 3.3.1
to quantify the marginal action of the thermal baths on the molecules, see Remark 3.6.4 there.
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3.2.3 Thermal equilibrium

In the case of Maxwellian reservoirs (3.1), the choice ' = 32 was called thermal equilibrium
in Chapter 2.

Definition 3.2.6 (Thermal equilibrium). For general density updates, we call thermal equilibrium
the case

Pt =gt —igt, M =gt =g
i.e. both cells are physically identical.
Remark 3.2.7. At thermal equilibrium, and if
+oo 4+ +oo 4 —
ur ::/ mdp < 400, wooi= / Mdp < +o00,
0 p 0 p

then in the absence of interactions (i.e. if a = 0), it is known (see Subsection 3.4.1) that the
probability measure ®(p)dgdp, where

1 + —(_
O(p) = = (1{p>0}¢ p(p) + ]l{p<O}Lpp)> ;

is stationary for both (¢*, p') and (¢2, p?). )
Adding interactions, one can observe that the function g : { x R? — R defined by

mq’(l?l)‘b(lﬂ)

9(¢" ¢%p"\p°) =
is a probability density on £ x R? and satisfies the relation L*g = 0, where L* refers to the formal
adjoint of the infinitesimal generator of the thermalised Complete Exchange Model in Chapter 2.
Therefore, it is a steady state of the billiard process, at least at the formal level.

Our proof of Theorem 3.2.5 does not rely on the use of the infinitesimal generator of the
billiard process, therefore we do not provide Remark 3.2.7 with a rigorous meaning. However,
we shall observe in Remark 3.6.10 that, at thermal equilibrium, Theorem 3.2.5 applies and the
ergodic measure m,q is the probability distribution with density g defined above with respect to
the Lebesgue measure on  x R2.

3.3 General sketch of the proof

We now describe the general sketch of our proof of Theorem 3.2.5. It consists in introducing
a time discretisation of the billiard process along a sequence of stopping times (7,,)n>0, that we
call observation times, such that the discrete time process (X(7,),Tn)n>0 be a Markov renewal
process. We then derive convergence results for the billiard process from ergodicity results on the
discrete time process (X (74,), Tn)n>0, which is done thanks to the Markov Renewal Theorem.

We first recall a few results on Harris recurrence and Markov renewal theory. We refer for
instance to Asmussen [7, Section VII.3] for details.

3.3.1 Harris recurrence

Throughout Subsections 3.3.1 and 3.3.2, we let ) be a measurable space. The stochastic
processes we address are built on an abstract probability space, that we do not precise, which is
endowed with the probability distribution P. The expectation under P is denoted by E.

Definition 3.3.1 (Harris recurrence). A time homogeneous Markov chain (Yy)n>0 with values in
Y is Harris recurrent if there exists a subset R C Y, an integer r > 1, an € > 0 and a probability
distribution X on Y such that:
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(i) the chain is recurrent in the set R, that is to say, for ally € Y,
P,(3n>1:Y,€R)=1;

(i) the local Doeblin condition is satisfied in R, that is to say, for all y € R, for all measurable
subset B C Y,
P, (Y, € B) > eX(B);
where Py(-) :=P(:|Yo = y).
Definition 3.3.1 is a priori different from the classical definition of Harris recurrence as given
by Meyn and Tweedie [109], the equivalence between both definitions is discussed in Asmussen [7,
Corollary 3.12, p. 205].

Harris recurrence classically implies existence and uniqueness of stationary distributions defined
as follows.

Definition 3.3.2 (Stationary distributions). Let (Y},)n>0 be time homogeneous Markov chain with
values in' Y. A positive and o-finite Borel measure v on Y is called a stationary o-finite distribution
for (Yo)n>o if, for all measurable B C ),

| Poti € Byotay) = o(5)

Of course, if 7 is a stationary o-finite distribution in the sense of Definition 3.3.2, then any
multiple of 7 is also a stationary o-finite distribution.

Proposition 3.3.3. If the Markov chain (Y,,)n>0 is Harris recurrent, then it admits a unique
stationary o-finite distribution, up to a multiplicative constant.

The proof of Proposition 3.3.3 can be found in [7, Theorems 3.2 and 3.5, pp. 200-201].

If the stationary o-finite distributions o of a Harris recurrent Markov chain are actually bounded
measures, then they can be normalised to a probability distribution v, which consequently is the
unique stationary probability distribution for the Markov chain (Y;,),>0. The latter is said to be
positive Harris recurrent, and we denote by P, the probability distribution

Py() = / PO (3.2)

The expectation under P, is naturally denoted by E,, .

3.3.2 Markov renewal theory
We now give a few definitions and results of Markov renewal theory.

Definition 3.3.4 (Markov renewal process). A Markov renewal process is a random sequence
(Yo, Tn)n>0 taking its values in Y x [0, +00), such that the sequence (Yn, Tnt1 — Tn)n>0 S a time
homogeneous Markov chain taking its values in Y x (0,400), with a transition kernel

P(Y1€edz, o —1 €ds|Yy =y, 71 — 710 =1)
which does not depend on t.

It is easily checked that if (Y, 7,)n>0 is a Markov renewal process, then the marginal sequence
(Ys)n>o is a time homogeneous Markov chain in Y.

Definition 3.3.5 (Completed semi-Markov process). Let (Yy,, Tn)n>0 be a Markov renewal process

inY x [0,+00). If

sup 7, = +00
n>0

almost surely, then for all t > 19, there exists a unique M (t) :=m > 0 such that 7, <t < Timy1-
The completed semi-Markov process associated with (Y, 7y )n>0 is the process

(Yar),t — Tare) ) e>mo-
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Given a Markov renewal process satisfying the assumptions of Definition 3.3.5, the long time be-
haviour of the corresponding completed semi-Markov process is described by the Markov Renewal
Theorem. We first need to introduce yet another definition, see Alsmeyer [2].

Definition 3.3.6 (Nonarithmeticity). Let (Y, Tn)n>0 be a Markov renewal process such that the
marginal Markov chain (Yy,)n>0 possesses a unique stationary probability distribution v. This
Markov renewal process is called d-arithmetic if d > 0 refers to the largest number for which there
exists a measurable function vy : Y — [0,d) such that

Py(r1 —70 € v(Yo) —v(Y1) +dZ) = 1,

where P, is defined in (3.2).

If there is no such d > 0, then the Markov renewal process is said to be nonarithmetic.

There are several versions of the Markov Renewal Theorem, depending on the setup (see for
instance Asmussen [7, Section VII.4| for a simple proof in the case of a Markov chain (Y,)n>0

with discrete state space). Our version is due to Alsmeyer [2, Corollary 1] and covers the case of
Markov chain with a continuous state space.

Theorem 3.3.7 (Markov Renewal Theorem). Let (Y5, 7y )n>0 be a Markov renewal process, sat-
isfying the assumptions of Definition 5.3.5, and let (Yars),t — Tar))t>ro Tefer to the associated
completed semi-Markov process. Let us assume that:

o the Markov chain (Yy)n>o is positive Harris recurrent, in which case we denote by v its
unique stationary probability distribution,

o the Markov renewal process (Yn,Tn)n>0 is nonarithmetic,

e the drift of the Markov renewal process defined by
o= EV(Tl — TQ)

is finite.
Then, for all bounded function g : Y x [0, +00) — R such that, for v-almost all y € ), the function
t— g(y,t)Py (71 — 10 > t) is continuous dt-almost everywhere, then

, 1 e
lim E,(9(Yare),t — Tme)) = ﬁ/ / g(z,8)P.(11 — 10 > s)dsv(dz),
zeY Js=0

t——+oo

for v-almost ally € Y.

3.3.3 Sequence of observation times and factorisation of the billiard pro-
cess

We now consider the billiard process (X (t))¢>0. In order to construct our sequence of observa-
tion times, we first introduce the following condition.

Definition 3.3.8 (Stability condition). A subset Y C Xnq and a function Tops : Y — (0, +00) are
said to satisfy the stability condition if:

(i) for all x € Xya, 7o :=1inf{t > 0: X(t) € Y} < 400, Py-almost surely,

(i) for all x € Xpa, Po(X(10) €Y) =1,
(ii1) for ally € Y, then Py(X(1ons(y)) € V) = 1.

Given a subset ) C X4 and a function 7ops : ¥ — (0, +00) satisfying this stability condition,
let us define the associated sequence of observation times (7,,)n>0 by, for all n > 0, 7,41 =
Tn + Tobs (X (Tn))-

Proposition 3.3.9 (Sequence of observation times). For all subset ) C Xpq and function Tobs :
Y — (0,4+00) satisfying the stability condition of Definition 3.3.8, the sequence (Yy, Tn)n>0 defined
by Yy, := X (1) is a Markov renewal process with values in Y x [0, +00).



3.4 Two useful auxiliary considerations 55

Proof. Let © € X,q. First, it is clear from Definition 3.3.8 that, P, -almost surely, for all n > 0,
Y, € Y while 7,41 — 7, € (0,+00). Besides, for all n > 0, 7,, is a stopping time for the process
(X(t))t>0. As a consequence, the strong Markov property for (X (t)):>0 and the definition of
the sequence (7,)n>0 ensures that (Y,),>o is a Markov chain. Since 7,41 — 7, is a deterministic
function of Y,,, we conclude that the sequence (Y, Tht1 — Tn)n>0 is a time homogeneous Markov
chain, with a transition kernel that does not depend on the time coordinate. This completes the
proof. O

The sequence of observation times allows us to provide the following factorisation of the billiard
process by the Markov renewal process.

Proposition 3.3.10 (Factorisation). Let Y be a subset of Xpna and Tons : Y — (0,400) be a
function, satisfying the stability condition of Definition 3.3.8. For x € X.q, let us denote by
(Y, Tn)n>0 the Markov renewal process defined by Proposition 3.5.9, and let us assume that, P,-
almost surely,

sup 7, = +090,
n>0

so that the associated completed semi-Markov process (YM(t),t — TM(t))t>ro 15 well-defined. Then,
for all continuous and bounded function f : Q x R? = R, we have

vt > 0, Ew(f(X(t))) =E, (f(X(t))]l{t<‘ro}) +E; (Pt—TM(t)f(YM(t))]l{tZTo}) )
where we recall that P, refers to the semigroup of (X (t))t>o-
Proof. For all t > 0,

+oo
E.(f(X(1)) = Eo (f(X(O))Lir<re}) + D Bo (f(XO)Lr, <t<rnin) »
m=0

and for all m > 0,

Eac (f(X(t))]l{‘rmgt<Tm+1}) = E:n (Ez (f(X(t))]l{Tm,§t<‘rm+7'0bs(X(Tm))}|X(Tm)))
= Ez (IL{Tm§t<7'm+1}Pt7'rmf(X(Tm))) ;

thanks to the strong Markov property. Taking the sum of the right-hand side above for all the
values of m > 0, we obtain the expected equality. O

3.4 Two useful auxiliary considerations

In this section, we leave the study of the ergodicity of the billiard process apart and establish
auxiliary results regarding two objects:

e the evolution of a single particle in contact with thermal baths in Subsection 3.4.1,

e the evolution of the unfolded version of the billiard process in Subsection 3.4.2.

3.4.1 DMarginal action of the thermal baths on a single particle

In order to quantify the marginal action of the thermal baths on the molecules, this subsection
addresses the motion of a single molecule in the interval [0,b], with b > 0. The molecule travels
at constant velocity in the interior of the interval. When it reaches the leftmost boundary, it
is reflected with a random velocity drawn according to the density ¢+ (p) on [0, +00), with
iy € {1,2}. When it reaches the rightmost boundary, it is reflected with a random velocity, drawn
according to the density ¢'~ = (—p) on (—o0c, 0], with i_ € {1,2}. The position of the molecule is
denoted by ¢(t) € [0,b], and its velocity is denoted by p(t) € R, see Figure 3.3.

The time taken by the particle to cross the interval after a velocity update is distributed
according to the densities ¥**+*(r) and 1%-~(r), defined as follows.
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Definition 3.4.1 (Crossing time densities). The probability densities %+ (r) and b=~ (r)
are defined on [0,400) by

Q/Jb;i+’+(7") — T%¢i+,+ (9) , ’L/Jb;i”_(T) = i i ,— (9) .

r r2 r

p(t)

Pt ® i
0 q(t) b

Figure 3.3 — The motion of a single molecule in the interval [0, b].

Definition 3.4.2 (Law of the process). For all (qo,po), for all t > 0, the joint law of (q(t),p(t))
when the initial configuration of the particle is (qo, po) is denoted by

byig i

Py """ (g0, po; dgdp),
it is a probability distribution on [0,b] x R.
We also denote by
biig i

py T (+;dgdp)

the law of (q(t), p(t)) when the initial position is distributed according to do(dq)¢™+ T (p)dp, and by

biig i
pe 7 (—;dgdp)
the law of (q(t),p(t)) when the initial position is distributed according to 61(dq)¢'=~(—p)dp.

by i

~ (g0, po; dgdp), py """ (+; dgdp) and py"™* "~ (—; dgdp) are derived in

Exact expression for p)/'+"!
Lemma 3.4.4.

If the probability densities 1%+ (r) and %'~ ~(r) satisfy the assumption (H1), then it is
known that the long time behaviour of (¢(¢),p(t)) is described by the probability distribution

o i+ i——(—
plii+i= (dgdp) = ¢T‘) + ﬂ{p<0}¢7](jp)) dgdp (3:3)

b(pi+ + pi-) ( tr=0)

on [0,b] x R, where

) oo iy ,+ ) oo i, —
'u/1+ e / d) (p) dp, 'u/z, e / ¢ (p) dp
p=0 b p=0 p

see Lefevere and Zambotti [103, Proposition 3.1], where it was also proved that this measure is a
steady state of the process (¢(t), p(t))i>0. In Lemma 3.4.5, we use this fact to provide quantitative
bounds on the law of (¢q(t), p(t)), for large times.

We shall work on the probability space (Ri)N endowed with the probability distribution P
under which the canonical variable (v;f, v; )j>1 is an ii.d. sequence, with marginal distribution

given by the product density ¢+ T (vT)¢i—~(v™). The expectation under P is denoted by E.

3.4.1.1 Exact expression for the time marginals

Definition 3.4.3 (Time to reach the end of the interval). For all (q,p) € [0,b] x R, let define
Tend (0, ) € (0,+00] by:
78a(a,p) = +00 if p = 0;
o Twale.p) = (b—q)/p if p>0;

b Tfnd(qap) =—q/pifp<O0.
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Note that 72 ,(q,p) € (0,+0oc] is the time needed by a molecule in the configuration (g, p) to
reach the boundary of the interval toward which it is directed.

We denote by Ui+~ (ds) the renewal measure associated with the probability density b+ x
b=~ on [0, 4+00). It writes U%%+:i- (ds) = dg(ds) + u¥®+i- (s)ds, where ubi+:- (s) is the associ-
ated renewal density. We refer to Asmussen [7, Chapter V]| for an introduction to renewal theory.
For s > 0, we also define

Ub;*zqr,i, (S) = / ’l/)b;iJ“Jr(S o C)Ub;zqr,i, (dC),
P (3.4)

Ubiteri-(g) = / P (s — ) U= (de).
c=0
Lemma 3.4.4 (Expression of the law of the process). For all t > 0, the probability distribution

b'i+,i

pe (g0, po;dgdp) on [0,b] x R is given by

i 8(go+tpo.po) (dqdp)  if t < 78.4(q0,p0),
P (g0, pordadp) = {4, i e , (3.5)
t=7804(q05P0) (—sgn(po); dgdp)  otherwise.
Besides,
i Lobigi q
Pt (H1dadp) = Lipso,g<ipy 6 () <5tp(dq) + Eub’ e <t 5) dq> dp
(=) b- 30
+ ]l{p<0,b*q§7tp}771)171]1);*”’L (t - —p ) dgdp;
and, similarly,
b;’L‘+,’L'7 7, — 1 b"i+ 1 b
Pt (=5 dgdp) = Tipco,b—q<—tp} @ (=P) | Sor1p(dq) + =" et — —p dq ) dp
(3.7)

i+7+ . .
+ ]l{p>01q<tp}¢T@Ub’l+’*l (t — ]_j> dqdp

Proof. The equality (3.5) is an obvious consequence of the Markov property. We prove (3.6);
clearly, (3.7) works similarly. Let us assume that ¢(0) = 0, p(0) = v]". Let (’U;_jfl)jzl be the

sequence of successive moment updates at the leftmost boundary and let (v, j) j>1 be the sequence
of successive moment updates at the rightmost boundary. Let a;rj_l =b/ ’U;rj_l, Ogj 1= b/ vy, and
So:=0,8;:=0f + 05 +---+05;_ + 05, s0 that (q(t), p(t)) writes

t—8;_ b ,
q(t) :b%’ p(t) = if Sj1 <t<Sj 1403,
T2j-1 O95-1

and

t—(Sj—1 +U;—1) b .
J J

Hence, for all continuous and bounded function f : [0,b8] X R — R,

-S;-1 b
E(f(q(t ZE( < —= ,+—> ﬂ{sj1<t<sj1+a;jl}>

1 0251

035
E ) o).,
G
LG

> PUEE () drUY o (ds)

) )w“ ~(r)drUPFet (s)ds.
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Now, the changes of variables (¢q,p) = (b(t — s)/r,b/r) in the first integral and (g, p) = (b(1 —
(t —s)/r),—b/r) in the second integral yield

1.
E(f(q(t /q O/p Fla,p)Lg<ipy & (p) (&ep(dq) + Eub’”’z* (t - %) dq) dp

b—
/ / q p ]l{b q<— tp}¢ ( )Ub ¥l (t — ——p ) dqdp,

which leads to (3.6). O

3.4.1.2 Long time behaviour

We are now interested in the long time behaviour of the process (¢(t), p(t))¢>0. Let us first note
that the probability density 1%+ % or ¢%->~ satisfies assumption (H1) (resp. (H2)) for a given
b > 0 if and only if it satisfies assumption (H1) (resp. (H2)) for all b > 0. As a consequence, in the
following lemma, it is assumed that % F and '~ satisfy assumption (H1) (resp. (H2)) for
the sake of coherence with Theorem 3.2.5, but it certainly implies that %%+ % and %'~ ~ satisfy
assumption (H1) (resp. (H2)) for all b > 0.

Lemma 3.4.5 (Long time behaviour). If both "+ and "=~ satisfy the assumption (H1),

then for all (po,qo) € [0,b] x R such that po # 0, the probability distribution pt’”’ (qo, po; dgdp)
converges weakly to the probability distribution pos Dot (dgdp) defined in (3.3). Furthermore, if
Yt and =" also satisfy the assumption (H2), then there exists MY+~ > 0 such that, for
all n > MY+t for all (go, po) € [0,b] x R such that py # 0, for all t > 72 4(qo,Po) + 1,

Py (qo, po; dgdp) > £4+i- (dgdp), (3.9)

Z+Z

where E (dqdp) is the positive bounded measure on [0,b] x R defined by

1 ¢+ (p)

biig,i— — S
;" (dgdp) = (it + - ) (ﬂ{p>0,q§(n—Mb”+”)p} D

o (3.10)
1 (D) 4
thpcob-gz-@-M"Hpy T qdp-

Proof. As is mentioned above, the first part of the lemma is a classical result. We now assume
that 5T and "~ also satisfy (H2) and prove the second part of the lemma. We first claim
that there exists M%*+#~ > 0 such that, for all s > MP*+~if v refer to any of the functions
ub;i+,i,, Ub;*zjr,i, or Ub;zjr,*i,’ then

1
> 3.11
Y2 g ) 10
Then, given > MY+~ for all t > n, (3.11) yields
1 1
Vs<t,  olt—s)> (3.12)

{t S>Mb1+l }m Z]I{Sﬁnfl\/fb;i*’i*}m'

Now (3.9) follows from (3.12) and Lemma 3.4.4.

It remains prove the existence of MYi+i-  TIf ¢+ and -~ satisfy (H2), then by
Lemma 3.4.6 below, the probability density ¢+ x b=~ is directly Riemann integrable. There-
fore, it is a consequence of the key Renewal Theorem that lims_, oo u?®%- (s) = 1/b(u’* + p'-),
see [ , Exercise 4.2, p. 157]. Thus, there exists My > 0 such that, for all s > My, u”+-(s) sat-
isfies (3.11). Similarly, there exists M; > 0 such that, for all s > My, u%"+(s) > 1/(v/2b(u*+ +
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u'=)). Hence, for all s > My,
Ub;*zqr,i, (S) — / wb;i+,+(s _ C)Ub;i+,i, (dc)
c=0
> / wb?”*(s — c)ub?”’i* (c)de

=M,
1 571\/[1 b
> —_ st C dC.
_ﬂWWwW[wqb (©)

Since 1/1”;”’"’ is a probability density, there exists My > 0 such that, as soon as s — M7 > Mo,

C_:OMI YUt (e)de > 1/y/2 and UY*i+:7- () satisfies (3.11). We similarly build M} > 0 such that,
for all s > My + M, ::—OMI YY1~ (¢)de > 1/v/2, so that UY+*i~(s) satisfies (3.11). We conclude
by taking M%%+~ as the maximum of My, M; + My and M; + M. O

Lemma 3.4.6. Let ' and ¥? be probability densities on [0,+00) satisfying assumptions (H1)
and (H2). Then the probability density ' * ¢? is directly Riemann integrable on [0, +00).

Proof. Let us first note that, under the assumption that the probability densities 1! and >
satisfy (H2), then its is straightforward to check that the probability density 1! * 1% is bounded
and continuous on [0, +00). Following Asmussen [7, Proposition 4.1, p. 154], it is now enough to
exhibit a nonincreasing and Lebesgue integrable function F' on [0,+00) such that, for all ¢ > 0,
G 2(1) < F(1).

To this aim, we slightly adapt the argument by Feller [57, Theorem 2a, p. 367] and write, for

all t > 0,
t

t/2
O U - s+ [ v oas

=t/2
—+o0 “+o0
gwwm/ W@%wam/ ' (s)ds.
r>0 s=t/2 r>0 s=t/2

Let us denote by F'(t) the right-hand side above. On the one hand, F is certainly nonincreasing.
On the other hand, the fact that F' is Lebesgue integrable on [0, +00) follows from the assumption
that the probability densities ¢! and ? satisfy (H1), and the proof is completed. o

3.4.2 Unfolding the trajectories

A classical trick in the study of deterministic polygonal billiards is the unfolding procedure,
which can roughly be described as follows: when the billiard particle hits a boundary of the
polygon, instead of reflecting the trajectory specularly, we rather reflect the polygon with respect
to the boundary and let the billiard particle keep on moving in straight line. Repeating the
procedure at each reflection, the trajectory of the billiard particle becomes a half line, evolving
across a sequence of iterated copies of the original billiard table. We refer to the textbook by
Tabachnikov [131] or the review article by Gutkin [75] for more precisions regarding the unfolding
of polygonal billiards.

Clearly, the unfolding procedure is well adapted to specular reflections, but not to stochastic
reflections. Therefore, we use a partial unfolding procedure and define the unfolded billiard process
as follows.

Definition 3.4.7 (Unfolded billiard process). We denote by (X ())¢>0 and call unfolded billiard
process the process obtained by unfolding the trajectory of the billiard process at each reflection on
the oblique facets. It describes the motion of a billiard particle in the set Q0 defined as the union of
the iterated reflections of Q with respect to its oblique facets, with reflections at the boundary of Q
of the same nature as for the original billiard process.

The infinite unfolded table € is depicted on Figure 3.4.
For all t > 0, we denote

X(t) = (@(1), )0 (1), P (1)).
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¢1,+

¢2,+

Figure 3.4 — A part of the unfolded billiard table Q. The update densities associated with each
thermalised wall are indicated. The reminiscent oblique facets are drawn in dotted line, but are
no longer seen by the unfolded process. A trajectory of the unfolded process is plotted in red, the
corresponding original trajectory is plotted in dotted line.

The processes (¢*(t),p'(t))e>0 and (g%(t),p?(t))t>0 are respectively called horizontal and vertical
components of the unfolded billiard process.

The original billiard process X (t) is recovered from the unfolded process by applying the folding
map B B

F: QxR = QxR?,
which we construct as follows. For all k € Z, we let Uy denote the axial symmetry of R? x R? with
respect to the line {(¢',q%) € R? : ¢ — ¢ = (1 — a)(2k + 1)}, that is to say
Uk: : (Eila(}a;ﬁlai)’g) = (EIQ + (1 - a’)(2k + 1)7§1 - (1 - a’)(2k + 1)7#551)

Let us define:

e 410 as the identity of R? x R2,

o forall k>1, U¥:=Up_10---0Up,

e forallk < —1,4* :=Upo---0U_;.
For all k € Z, the image of Q x R? by U* is Q% x R2, where the polygon QF writes

Q" = {@,3®) € [k —a), k(1 —a) + 1] x [-k(1 —a), —k(1 —a) + 1] :
Ck-1(1-a)<q - <2k+1)(1-a)}
Besides, the unfolded table Q partially depicted on Figure 3.4 writes

=)o

keZ
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Definition 3.4.8 (Folding map). The folding map F : QxR2 = QO xR2 is defined, for all k € Z,
for all T = (q*, % p",p%) € QF x R2, by:

o if k is even, then §% = (¢* — k(1 —a),q® + k(1 — a); p',p%);

o if k is odd, then §7 = (¢* + k(1 — a),¢* — k(1 — a); p,pY).

Then we have, for all ¢ > 0, X () = FX ().

Remark 3.4.9. Let us note that § is not well-defined for configurations in the intersection of
QF x R? and QFt! x R2. However, it can be checked that the images X'* of the space of admissible
configurations X by the applications ¥ are pairwise disjoint; besides, for all z € X, P -almost
surely, for all ¢ > 0, X (¢) belongs to exactly one of these images. As a consequence, it is actually
sufficient to define § on Ukezf % instead of on € x R2, in which case there is no more ambiguity.

3.5 The sequence of observation times

In this section, we explain how to construct a subset J C AX,q of and a function 7ops : Y —
(0, +00) satistying the stability condition of Definition 3.3.8 and such that the associated Markov
renewal process (Y, 7,)n>0 hopefully satisfies the assumptions of the Markov Renewal Theo-
rem 3.3.7.

The definition of the sequence of observation times is detailed in Subsection 3.5.1. A precise
description of the Markov renewal process thus obtained is made in Subsection 3.5.2. We finally
give a few properties of the stationary distributions of the Markov chain in Subsection 3.5.3.

3.5.1 Definition of the sequence of observation times
3.5.1.1 Heuristic explanation

Recall that, for all £ > 0, we denote by X (¢) = (g(¢), 32(£); p'(t), p2(t)) € Q x R? the unfolded
billiard process introduced in Subsection 3.4.2. Let us now observe that the space Q can be divided
into bands, inside of which the horizontal and vertical components evolve independently. This fact
is illustrated on Figure 3.5.

Figure 3.5 — The boundaries of the bands are drawn in dotted lines. An exemple of a trajectory
of the unfolded process is drawn in solid line. Each dot stands for an observation time. Between
two consecutive observation times, the horizontal and vertical components evolve independently.
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As a consequence, defining the sequence of observation times (7,,),>0 as the sequence of consec-
utive instants at which the unfolded process hits the boundary of such a band, and letting ) be the
image by the folding map of these boundaries, we obtain a Markov renewal process (X (7,,), Tn)n>0
with an explicit transition kernel.

The formal construction of the set ) and the corresponding function 7.ps are detailed in the
following paragraph.

3.5.1.2 Construction of Y and 74,5

Elementary sections. Let us define the subsets y{,{ﬁ, y{ﬁ and Y'LF of Xyq by

yl/)t’-i_ = (qlﬂqQ;plaPQ) S Xnd : ql = O},
Vit = {(¢", ¢%p".p?) € Xua : ¢ = a,p' >0},
Yot ={(¢",¢*p".p*) € Xoa 1 ¢' = a,p' <0},

and, for all (i,€,%) in the set of indices
IT:= {1,2} x {+,—} x {bo,in, ou},

the subset V"¢ of X,q is defined by &>¢(V1F), where &% is the symmetry of X' introduced
in §3.2.1.2. The twelve sets {yf’E : (i,€,%) € II} are not pairwise disjoint, since the configurations
(¢4, ¢%;pt, p?) € Xnq such that (¢!, ¢?) belongs to the set

N :={(0,a), (a,0),(a,a),(a,1 —a),(l —a,a),(1 —a,1—a),(1—a,1),(1,1—a)}

necessarily belong to exactly two of these sets. To circumvent this subtlety, we define X7 ; as the set
of configurations = € X,q such that, P, -almost surely, for all ¢ € [0, tnit(z)], X (t) € N. Certainly,
if x € X4, then P -almost surely, for all ¢t > 0, X (t) € X/,.

Definition 3.5.1 (Elementary sections, section). The elementary sections {Vi : (i, e, %) € II} are
defined by

V(i e, %) € 1I, Voe .= Yhenxl,.

The section of € is the union

y= U »-

(i,e,x)€IL

The elementary sections are drawn on Figure 3.6. The sets y}i’; are located on the boundary
of the billiard table, therefore they shall be called boundary sections. The sets Jiiir’f are located
inside the billiard table and the normal component of the velocity of configurations in these sets
points toward the center of the table, therefore they shall be called inward sections. The sets Vi<
are located inside the billiard table and the normal component of the velocity of configurations in
these sets points toward the boundary of the table, therefore they shall be called outward sections.

Observation time. The heuristic description of the observation time in introduction leads to
defining 7obs(y) as the time that the unfolded process takes to cross the band it is entering at the
configuration y. Therefore, it is the quotient of the width of the band by the normal component
of the velocity in y.

Definition 3.5.2 (Observation time). For all y = (q*, ¢*;pt,p?) € Y, we define Tons(y) by:
o Tons(y) = a/(ep') if y € Vs,

(1—-2a)/(ep') if y € V5,

—a/(ep') if y € V&5

® Tobs (y) :

® Tobs (y) :
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O
T bz
Vi
O @ @ @
bz
Vit Vil Vi
BN NES BESEE
Y
@ O O
Jyzr -
yg:)+I O

O @
Figure 3.6 — The solid lines represent the elementary sections {yi’E : (i,¢,%) € II}. Arrows stand

for the sign of the normal component of the velocity of configurations in a given elementary section.
White dots are excluded from X,q, while red dots correspond to the set N.

3.5.1.3 The stability condition

By construction, Y C X,q and 7ops : Y — (0, +00). We now check that the stability condition
of Definition 3.3.8 is satisfied.

Proof of (i) in Definition 3.3.8. Let us fix € X,q and check that, P -almost surely, 7o < +o0.
Certainly,

To <inf{t>0:X(¢) € U(iﬂe)e{lﬂg}x{ﬁ,}ygg},
and it follows from the definition of the boundary sections that
Utioe1.2yx(+—1 Vs = Xna N (W x R?).
Since, P -almost surely, X (¢t) € &7, for all t > 0, we deduce that
7o <inf{t > 0: X(t) € W x R?*} = t(),
where thi¢ () is defined in Definition 3.A.4 and is such that tn;(z) < 400 as Xy C Xnd. O
Proof of (ii) in Definition 3.3.8. The point (ii) in Definition 3.3.8 is clearly satisfied. O

Proof of (iii) in Definition 3.5.8. It is an easy observation on the unfolded process that, for all
/%, €

y € Y, X(Tobs(y)) belongs to at least one of the sets {Vi" : (i,¢,x) € II}, Py-almost surely.
On the other hand, by the definition of X, X (7obs(y)) € X4, Py-almost surely. Therefore,

Py(X(Tobs(y)) € y) =1 O

3.5.2 Description of the Markov renewal process (Y,,, 7,,)n>0

We now define the sequence (73,),>0 as in Proposition 3.3.9 and let Y}, := X (7).
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3.5.2.1 The transition kernel of the Markov chain (Y,,),>0
Let us note that, for all y € YV, 79 = 0 under P,,.

Definition 3.5.3 (Transition kernel of (Y;,)n>0). For all y € Y, we denote by Q(y;-) the law of
Y1 = X (1) under P,.

Thanks to the heuristic explanation detailed in §3.5.1.1, the transition kernel Q(y;-) can be
explicitely computed for all y € Y. Let us assume for instance that y = (0,¢3;pd,pd) € y&f.
Then Tobs(y) = a/p}, and under P,, on the time interval [0, 7ops(y)), the horizontal component
(g*(t),p'(t)) and the vertical component (¢*(t), p?(t)) of the unfolded process evolve independently
and have respective marginal distribution 5(q&+tpé,pé)(d§1dﬁl) and p;~ %1 (¢2, p2; dg2dp?), where
we recall the Definition 3.4.2 of the latter probability distribution. As a consequence, P;(y;-) is
given by the pushforward measure of

Ot +tphph) (AT'dPY) ® pp = (g3, pi; dg°dp?) (3.13)

by the folding map §.

At the observation time, by the definition of X, §?(Tobs(y)) # 1. If ¢*(Tobs(y)) > 1, then the
unfolded process is at the boundary of its domain and the component (g*,p') is updated according
to the probability distribution &,(dg')¢* = (—p)dp. If ¢?(Tobs(y)) < 1, then the unfolded process is
in the interior of its domain and the component (g*, p*) is not updated, so that its value remains

(a,pd). As a consequence, the law of X (Tobs(y)) under P, writes

3a(dG" g™~ (=P)dP' @ Licqpea—aypl, "ty (46,93 dG°dP?)

+ 801 (7' DY) @ Lgocqp 1y 02 (! (a5, 53 AT dP?).

Taking the pushforward measure of these two terms by §, we obtain the following expression for
Qy:-):
QY5 ) = Q1,+.bo)—(2,—.bo) U5 *) + Q1,4 bo)= (1, +.in) (U5 ),
where
Q1,+b0)— 2,00 (U5 ) 1= Lacqr <1yt (a5, p5: dg dp') @ 61(dg®) 6™~ (—p?)dp?,
Q1,+.bo)—(1,+in) (U3 ) 7= S(appy (dg'dp") & ﬂ{o<q2<1}pi7£2’l(qgmﬁ; dg*dp?),
and pi2~ %% : dqdp) refers to the pushf d fp2 ot
Pl o, po; dgdp) refers to the pushforward measure of p; (
cation (¢,p) — (¢ — 1+ a,p).
On the other elementary sections, we similarly obtain:

qo, po; dgdp) by the appli-

o for all y = (a,q3; pi, P2) € y}rﬁ,
QY; ) = R +,im)—(1,—0u) (Y3 ),

where
1;2,2
Q(1+.in) = (1,—0w) (U5 ) 7= 01— a,ppy (A dp") ® p (75 ) 4 (05,25 dg*dp?),
o forall y = (1 —a,¢3;pd, p2) € VLT,
QY5 ) = Q1+.00)(1,4.b0) (45 ) + Q1 4.00) = (2.—in) (U5 )5

where

Q(1,+.0m—(1,4b0) (43 *) = 0(dg oM (p)dp" © Lgocqecr-ayp® 700" (4d, pB; dg’dp?),
Q(1,4,00)—(2,—,in) (U3 ) = 11{0<q1<1}p¢_2a7/232’1(q§,pﬁ; dg'dp') @ 6(1_q 1) (dg?dp?),

e on the other elementary sections, the expression of Q(y;-) is obtained using the symmetries
of the table introduced in §3.2.1.2.
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We thus obtain a collection of components Q; ¢ .- (i,erv)(y; ), for (i,e,%x),(i',€,+") € II.
Aggregating the states of the Markov chain (Y;,),>0 into elementary sections, we can introduce
the graph depicted in Figure 3.7, where:

e the vertices are the elementary sections,
e an oriented edge V¢ — yj',*e' is in the graph if and only if there exists y € Y such that
Q(yayi/,e ) > 0.

Then, associating each edge Y- — yj';f' with the kernel Q(; e «)—(i.e’.+) (y; -) actually provides a
complete description of the law of the Markov chain (Y},)n>0.

Figure 3.7 — The representation of the Markov kernel Q(y;-) when the states are aggregated into
elementary sections.

3.5.2.2 Regularity along the semigroup

The analysis carried out in the previous paragraph also yields exact expressions for the quantity
Pi(y;-) for y € Y and t € [0, Tobs(y)). This allows to derive the following regularity property, the
proof of which is tedious but straightforward — therefore we omit it.

Lemma 3.5.4. Let f : Q x R2 — R be continuous and bounded. For all y € Y, the function
t— P f(y) is continuous dt-almost everywhere on [0, Tobs(y))-

3.5.2.3 Further properties of the Markov renewal process (Y., 7 )n>0

Normal component of the velocity. For all n > 0, the normal component of the velocity
of Y,, is understood with respect to the elementary section in which Y;, lies.

Definition 3.5.5 (Normal component). For all (i,e,%) € II, for all y = (¢*, ¢%; p*, p?) € Vi€ we
call normal component of the velocity in y the component p°.

The following lemma shows that the normal component of the velocity is only updated on the
boundary sections.

Lemma 3.5.6. Let 0 < nf <--- <nj <--- refer to the increasing sequence of indices n’ > 0 such
that there exists (i,€) € {1,2} x {4+, —} for which Y,» € Y. Then, for alll > 1, nj is a stopping
time for the Markov chain (Y3,)n>0-
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Furthermore, let pi, = €'v] refer to the normal component of the velocity of Yo € g(f/, with
v; > 0. Then, for alll > 1, for alln € {nj,...,nj, — 1}, the normal component of the velocity of
Y, isp".

Finally, on o possibly enlarged probability space, there exists i.i.d. sequences (m))i>1 and
(M])i>1 such that, for all 1 > 1, mj; < v} < Mj.

Proof. For all | > 1, the random variable n is the I-th instant of return of the Markov chain
(Y,)n>o0 in a boundary section. Therefore it is a stopping time for the Markov chain (Y},),>0. Let
us emphasise the fact that at this stage, n; is not necessarily almost surely finite — this fact will
be proved in Subsection 3.6.1 below.

It follows from a straightforward analysis of the measures Q(; e ) (ir,e’,)(y; ) constructed
in §3.5.2.1 above that, if ¥’ € {in,ou}, then the marginal distribution of the normal component
of the velocity under Q; e ) (ir,er,x)(¥5 ) 18 i (dpi/), where p’ refers to the normal component of
the velocity of y € V2. Thus, for all [ > 1, for all n € {ny,...,nj4, — 1}, the normal component
of the velocity of Y, is the normal component of the velocity of ¥,,,.

Finally, if ¥ = bo, then the marginal distribution of the normal component of the velocity under
Qe )= (it ) (U3 -) 18 (bi,’ﬁl(e'pi,)dpi,7 independently of y. As a consequence, one can realise a ver-
sion of the Markov chain (Y},), >0 such that, at the [-th return in a boundary section é’g, the normal
component of the velocity p;; is set to ev;’e, where the sequence (vll’+,vll’_, UIQ’+, UIQ’_)IZl is i.i.d.
with marginal distribution given by the product density ¢b'F (01 )t~ (01 7)) >+ (v2 1) (v27).
Therefore, v} = v’ satisfies

po_ s 11— 24 2,— / L+ 1= 24 2~ _ am
my :=min(v,"", v 00,007 ) <vp <max(v, v 00T, 00T ) =0 M,

and the proof is completed. ([l

The sequence of observation times. We now address the following property of the sequence
of observation times (7, )n>0.

Lemma 3.5.7. For all x € X.q, Py-almost surely,

sup 7, = +00.

n>0
Proof. We use the sequence of indices {n},...,n;,...} introduced in Lemma 3.5.6 above. If this
sequence is finite, then there exists n}, < 400 such that, for all n > n/ , the modulus of the normal
component of the velocity of Y, is v}, and therefore 7o14(Y;,) > (aA(1—2a))/v}. As a consequence,
for all n > n’,

al(l—2a
Tn = Tn/, + Tobs(yn’L) +o 4+ Tobs(yn—l) > Tn', + (7’L - ni)%’
and the right-hand side above easily goes to +00 with n. Now if the sequence {n},...,nj,...} is

infinite, it suffices to prove that sup;>, 7,; = 400, and by the definition of the sequence (Tn)n>0s

-1 -1
a
U1 Ty 2y Tons(Yag) =D —
k=1 =

k=1

Following Lemma 3.5.6, the right-hand side above is stochastically larger than Z;;ll a/Mj,, where
(M])r>1 is a sequence of i.i.d. and almost surely finite random variables. As a consequence,

-1

a

l£+mm Z ﬁfc = +00, almost surely,
k=1

and therefore sup,,~, 7, = +00, P;-almost surely. |

Lemma 3.5.7 implies that the Markov renewal process (Y, 7, )n>0 satisfies the assumptions of
Definition 3.3.5, which shall alow us to define the completed semi-Markov process associated with
(Yn; Tn)nzo-
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3.5.3 On the stationary distributions of (Y},),>0

Recall that stationary o-finite distributions for the Markov chain (Y;,),>0 were introduced in
Definition 3.3.2. Without addressing the issue of the existence such a distribution yet, we already
derive necessary conditions. For all (i, ¢, %) € II, let us denote by V)yire the restriction of a stationary

o-finite distribution 7 to the elementary section yi’ﬁ.

3.5.3.1 Marginal distribution of the normal component of the velocity

The following remark on the shape of 7 on the boundary sections can immediately be formu-
lated.
Lemma 3.5.8. For all stationary o-finite distribution v, for all (i,€) € {1,2} x {+, —}, there exist
positive and o-finite measures ﬁ‘lyiye(dqldpl) and ﬁfyiwe(dqupQ) such that
bo bo

Dyyie = Ve (dgtdp') @ 72 (dg?dp?).

e IViy A2
Besides, the marginal distribution of the normal component (q',p?) writes
Pyie(dg'dp’) = 0 (dg")d"“ (ep")dp,
where ¢i =0 if e =+ and ¢ = 1 if e = —, up to a multiplicative constant.

Proof. The proof for the four boundary sections being the same, we only address the case (i,¢€) =
(1,4). Then, by §3.5.2.1,

Py.+(dg' dg*dp'dp?)
= / . Qo)1+ bo) (Y03 dg" dg*dp" dp*)7 1.+ (dyo)
YoE€Vou
+/ Q(2,— bo)—+(1,+,bo) (03 dg' dg*dp' dp®)7y,2. - (dyo)
yoeyﬁgj °
_ / ., 00(dg" et (P)dp" @ Ljocgzci-aypZ " (65 P; Ag>dp®) 7y (dyo)
YoEVou

+ / L do(dgh)et T (pH)dp' @ 11{o<q2<1_a}02,;‘};25’1(q(% +1 = a,pp; dg*dp?) )y, (dyo)
YoV °

= 0o(dg")¢" " (p')dp' @ 7,14 (dg*dp?),

where

- 2-a;2,1 -
V%}é,+(dq2dp2) = Lio<cqr<1-a} (/ Jit p—a;pé (43 P3; dqupQ)l/lyg‘,f (dyo)
° Yo €Yot

+/ P (gg +1 - a,pé;dQQdPQ)ﬂyz,(dyo))
yUEySI ° bo
The proof is completed. O

3.5.3.2 Thermal equilibrium

We now assume that the system is at thermal equilibrium, i.e. ¢*F = ¢>T = ¢+ and ¢V~ =
¢*>~ = ¢, see Subsection 3.2.3. Let us assume that )™ and ¥~ defined by ©¢(r) = r=2¢¢(r—1)
satisfy the condition (H1), and let 4™ and pu~ refer to the respective first order moments of ™
and ¢~. Then, a bounded stationary distribution © can be explicitly derived. Indeed, let us
first note that the probability distributions p.*"*~ (¢°,p% dgdp) and p2*""~ (dgdp) introduced in
Definition 3.4.2 no longer depend on iy and i_, and therefore can be denoted by p%(q°, p°; dgdp)
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and p?_(dgdp). Furthermore, for all b > 0, p (dgdp) = b~ (o< y<p}Poc(dgdp), where pos(dgdp)
refers to the positive and o-finite measure

_ 1 ¢" (p) d)(p))
o(dgdp) := —— | 1 —+1 ————= ] dqd
Poc(dgdp) e < >0}, R0 — qdp

on R x R. Besides, the stationarity of p%_(dqdp) reads, for all b > 0,
Vt>0,  poo(dgdp) = / 0t (40, Po; dgdp) poc (dgdp).
(g0,p0)€[0,6] xR
Let us now define o as follows:

Pyr+ = 0o(dg")p™ (p')dp" @ Liocg2<1-a)Poo (dg*dp?),
Pjyi+ = 0a(dg")o" (p")dp! @ L{o<q2<13Po0 (dg’dp?),
yit = 0a(dg' )™ (=) dp" © Locqe <1ypoo(dg?dp®),

and the restriction of 7 to the other elementary sections is defined similarly.

Proposition 3.5.9 (Existence of a stationary probability distribution at equilibrium). At thermal
equilibrium and under the assumption that ™ and 1~ satisfy the condition (H1), the measure v
defined above is a bounded stationary distribution for the Markov chain (Yp)n>0-

Proof. The fact that 7 is bounded under the assumption (H1) is straightforward. To prove that it
is a stationary distribution, we have to check that, for all (¢/,¢',*") € II,

ﬂD;i'I,G/ (dy) = Z / phe Q(i,e,*)%(i’,e’,*’) (yO; dy)ED}i’E (d?JO)a
* YoEVY

/

where the sum is taken over all the indices (i, ¢, *) such that the edge (i,¢,%*) — (i, €/, *") belongs
!

to the graph of Figure 3.7. The arguments are the same for all the indices (i’,€’,+") in II, as an
illustration we only detail the case (i’,¢’,x") = (1,4,1in). Then, the only indices (i, €, *) such that
the edge (i,€,%) — (1,+,in) belongs to the graph of Figure 3.7 are (1,+,bo) and (2, —, ou).

On the one hand,

/yo€y1’+ Q(1,+.b0)— (1.+.in) (Y03 dY) 731+ (dyo)

bo

- 'dp! 2—a (2 2. 3.2 1,2
= /ygeyéi)+ (5(11,17(1;)((31(] dp )®]1{0<qz<1}/)a/p(1)(qo,p0,dq dp ))
. 50(dQé)¢+ (p(l))dp(l)]l{0<qg<17a}poo (dqup%)

—+oo
= ]1{0<q2<1} / 0 5(a,pé)(dq1dp1)
D

1__

- { / P (4015 dquPQ)poo(dqﬁdpﬁ)} ¢* (po)dpo-
(q3.p3)€0.1-a]xR /PO
On the other hand,
/ Q(2,— 0w~ (1,4,in) (Y0: dY) 75,2~ (dyo)
YoV~
= / (e (40" dpY) @ Tyocg2 <1y 025 (g + 1 — a,pi dg*ap?) )
YoEVSU
L ocqi<13Poo (dggdpg)1—a (dgd) o™t (p5)dpg

—+oo
= ]1{0<q2<1} / 0 5(a,p§)(dq1dp1)
D

2__
0=

- / P (ap + 1 — a,pg; dg’dp”) pso (dagdpg) ¢ & (07)dpp.
(a5:p5)€[0,1] xR 770
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Putting the last two equalities together, we obtain

/ - Q(14.b0)— (1. +,im) (Y03 dY)7py1.+ (dyo) + / Q(2,— o) = (1,+,in) (Y0; dY) 75,2~ (dyo)
YoEYy, ° .

o YoE€EVou

+oo
= ]l{O<q2<1}/ 0 6(a,pé)(dqldpl)
P

1__
1=
' / P (a3, P g dp?) pso (daidpp) ¢ & (p5)dpp.
(¢2,p3)€[0,2—a] xR 0
By stationarity, for all pg > 0, the braced term above writes

P (5, 03 44 dp? ) oo (Ag3dp3) = o (dd?dp?),

/(qﬁmﬁ)e[oﬂ—a] xR

so that

/ - Q(14.b0)— (1.+,im) (Y03 dy)7py1.+ (dyo) + / Q(2,— o) = (1,+,in) (Y03 dY) 75,2~ (dyo)
YoEVy) ° Yy

+oo
= 1{0<q2<1}Poc(dg*dp?) /1 . S(a.pty (dg"dp")o™ (pg)dpg

Po=
= 6,(dg") ¢ (p")dp' ® L{o<q2<1}Po0(dg' dp?),

which is exactly the claimed expression for Uiyt o

0EVIT

3.6 Proof of Theorem 3.2.5

In this section, we show that, under the assumptions of Theorem 3.2.5, the Markov renewal
process (Y, Tn)n>0 constructed in Section 3.5 satisfies the assumptions of the Markov Renewal
Theorem 3.3.7. We then complete the proof of Theorem 3.2.5.

We first check in Subsection 3.6.1 that the Markov chain (Y},),>0 is Harris recurrent, which
implies that it possesses a unique stationary o-finite distribution, up to a multiplicative constant,
thanks to Proposition 3.3.3. At thermal equilibrium, Proposition 3.5.9 provides a bounded sta-
tionary distribution, which implies that the Markov chain (Y},),>¢ is positive recurrent. Out of
equilibrium, we were not able to obtain such a result and therefore have to formulate the first
technical assumption

(T1) The stationary distributions of the Markov chain (Y;,),>0 are bounded.

In Subsection 3.6.2, we address the remaining assumptions of the Markov Renewal Theorem;
namely, the nonarithmeticity and the finiteness of the drift. Out of equilibrium, we have to
formulate the second technical assumption

(T2) With the notations of Theorem 3.3.7, i < 4oc.

Under these technical assumptions, we complete the proof of Theorem 3.2.5 in Subsection 3.6.3.

3.6.1 Harris recurrence of the Markov chain (Y},),>0
This subsection is dedicated to the proof of the following proposition.

Proposition 3.6.1 (Harris recurrence). Under the assumptions of Theorem 3.2.5 on the update
densities, the Markov chain (Y3,)n>0 introduced in Section 3.5 is Harris recurrent.

The proof is detailed in the paragraphs below. In §3.6.1.1, a family of sets I,), indexed by some
parameter 7, is provided, together with €,, A, such that the local Doeblin condition is satisfied in
the set R,, with » =1 and ¢,, A,. In §3.6.1.2, a value of 7 is fixed in order to ensure that the set
R, is recurrent, which is proved in §3.6.1.3.
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3.6.1.1 The local Doeblin condition

The local Doeblin condition expresses the fact that the Markov chain (Y, ),>0 has good mixing
properties, in the sense that it somehow forgets the initial condition after r steps, as long as this
initial condition lies in R. Let us first explain how to derive a natural set R for the Markov chain
(Yn)n20~

The transition measures of the form Q;  +)—(i,e/,bo) (¥; ) correspond to an update of the normal
component, so that at least this component has totally forgotten the initial condition. On the
other hand, the marginal distribution of the nonupdated component is the pushforward measure
by the folding map of some measure p (”)’Z (qo,po,dqdfﬂ for some iy,i_, g, po depending on
—ajig4,
S Tobs (yg
pas "= (dgdp) and therefore weakly depends on y.

These ideas are made precise in Lemma 3.6.3 below. It is first necessary to introduce the
following notation.

y. By Lemma 3.4.5, if 7ops(y) is large, then P ~ (4o, Po; dgdp) is close to the steady state

Definition 3.6.2 (Function I). For all y = (¢*,q%p*, p?) €Y, let us define I'(y) by
o T(y) = Tobs(y) — 7o (@*, 1) if y € Vi, U VT,
o T(y) := Tobs(y) — Tna(d®, 1) if y € yin ’
o I(y) :=T(&"(y)) if y € Y2 with (i.c) # (1,+),

where 78, 4(q,p) is defined in Definition 3.4.5.

The quantity I'(y) denotes to the difference between the time needed by the normal component
of the unfolded process to reach the elementary section toward which it is directed, and the time
needed by the tangential component of the unfolded process to reach the boundary of the domain
toward which it is directed. Therefore, the larger T'(y) is, the closer the marginal distribution of
the nonupdated component of the unfolded process is to its steady state.

Lemma 3.6.3 (Local Doeblin condition). Under the assumptions of Theorem 3.2.5, there exists
M > 0 such that, for all n > M, the set

Ry:={y e W, :T(y) > n}
satisfies the local Doeblin condition with r =1 and suitable €,, A,.

Proof. Under the assumptions of Theorem 3.2.5, Lemma 3.4.5 can be applied to the probability
densities 12~%%F(r) and ¥?~%1~(r) defined in Subsection 3.4.1. As a consequence, there exists
M?=%21 > 0, that we denote by M in the sequel of the proof, such that, for all n > M, for all
(go,po) € [0,2 — a] x R such that py # 0,
vt > 72 Hq0.po) + 1. pi P (qo, pos dgdp) > €27 (dgdp),
where the positive and bounded measure £~***(dgdp) is defined in (3.10).
Let n > M, let us define

R, :={yc Y :T(y) > n}.

Then, for all y = (g8, 43; P8, D) € Ry Tobs(y) = Tong (y) +T(y) > 724*(y) +n. Therefore, according
to §3.5.2.1,

QY; ) > Q@1 ,+,bo)—(2,—,bo) (Y3 *)

= Lacqr <P (a3, p3; dg'dp') @ 61(dg”)¢™ ™ (—p*)dp?

> Liacq <13 05?45 (dg dp') @ 61(dg?) >~ (—p?)dp?,
where we denote by 6#2_‘“2’1(dq1dp1) the pushforward measure of K%_“Q’l(dqldpl) by the appli-

cation (¢,p) — (¢ — 1+ a,p). The right hand side above no longer depends on y, we denote it
by A,(-). It is a positive bounded mesure on yﬁg. To complete the proof, we now check that
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€y 1= Xn(yﬁg) > 0. Certainly, it is sufficient to prove that £}*~%*!((a,1) x R) > 0, that is to say
£27%%1((1,2 — a) x R) > 0. Owing to (3.10),

1 ¢ (—p)
= 1pc0.2—a—q<—(n—rr)py ————dpd
=22 —a)(pE+ 1 pbo) w<02-amas=(n=Mp} T T AP,

(5 (dgdp)

and for all p € (—00,0), the marginal distribution in g above gives positive weight to (1,2 — a).
Therefore €, > 0 and the proof is completed by letting A, (-) := A, /€y. O

Remark 3.6.4. The role of the condition (H3) is now clear: the set R, is characterised by the
fact that the normal component of the velocity is slow with respect to the tangential component
of the velocity, so that the tangential component of the unfolded process has enough time to mix
and get close to its steady state before the next observation time. If the normal component of
the velocity is not small, then at the observation time, the tangential component has not mixed
enough.

3.6.1.2 The sequence (I'(Y},))n>0

The function T' plays a key role in the derivation of nice mixing properties for the Markov
chain (Y,,)n>0, therefore it is natural to try to reduce the dimension of the problem by studying
the sequence (I'(Y,,))n>0. Of course, this is not a Markov chain. However, following the line of the
proof of Lemma 3.6.3, one can obtain the following result.

Lemma 3.6.5. Under the assumptions of Theorem 3.2.5, for all edge (i,e,%x) — (i',€/,%") in the
graph of Figure 3.7, for all ' > 0, there exists n > 0 such that, for all n > 1,

inf  P,(Y; € VO T(Y)) > 0) > 0. (3.14)
yeY T(y)=>n

Proof. We prove the statement for y € y&j U y}n* U YL+ and use the symmetries of §3.2.1.2 to
conclude. Let us first introduce, for all (i,€) € {1,2} x {+, -},

She = sup{v >0: / ¢>(p)dp < 1} € (0,400],
0

and recall the definition of M+~ from Lemma 3.4.5. Depending on the edge (i, €, x) — (i, €, %),
we shall prove below that, given n’ > 0, (3.14) holds for the following choices of n:

e (1,+,bo) = (2,—,bo): n = M~ %21,

e (1,+,bo) = (1,+,in): n = (M*~*>' +1/5%F) Vay' /(1 — 2a).
e (1,+,in) = (1,—,0u): n = (M1Y22 4 1/52%) v (1 — 2a)1' /a.
(1,4,0u) = (2, —,in): n = (M?2=%21 1 1/SV=) van' /(1 — 2a).
(1,4+,0u) = (1,+,bo): n = M2~s2L

Case (1,+,bo) = (2,—,bo): let > 0, and let n > 5 := M?~%2! Let y € yg;f such that
I'(y) > n. By Lemma 3.6.3,

P,(Y1 € Vo . T(V1) > 0) > ex\({y € Vo . T(W) > 0'})

1
= 51(d 2N\ 2,—( 2 d 2
202 — a) (> + i) /y 1(dg”)¢™~ (=p7)dp
oL (—p) (3.15)
{]l{fﬂl<‘)w<1*ql>/<*zv1>97*1v12*<"2v1a/HoZ>f<ql+1ﬂz>/<fpl>zn'}—7191

1 ¢2+(p1) d 1d 1
R0 Hima)/p sn- Moo a/ (o) = (1= p 2y T fO0 AP
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The right hand side above does not depend on y. Besides, for all p! < 0, the set {¢* € [a,1) :
(1 —qY)/(=p') < n— M?~%2%1} has positive Lebesgue measure, and for all ¢! in this set, the
assumption that ¢?~ satisfies (H3) ensures that

0
/ Lo/ (—p)—(q1+1-a) /(—p) 2} &7 (=P?)dp® > 0.
p?=—o00
The proof of the case (1,+,0u) — (1,4, bo) is similar.

Case (1,4,bo) — (1,+,in): let n > 0, and let n > n := (M?2=%21 41/8%2F) v an' /(1 — 2a).
Then, for all y = (0,q3;p}, p3) € yg;f such that T'(Y) > #, the same proof as for Lemma 3.6.3
yields

1
1,4+ / 1 1
Py(Yl SNV ,F(Y1) > ) > 2(2 — a)(’u27+ n Ml’_) /y,l’* 5(a7pé)(dq dp )
1 ¢ (=p?)
{p?<0,(2—a—q?)/(=p?)<n—M?2~*21 (1-2a) /p' —q2/(=p?) 27’} —p?

2,+ 2)
21,2
+1{p2>o,q2/p2§n7ww¢2vl,<172a>/p17<1fq2>/p22n'}T}dq dp”.

The measure with density ¢?* (p?) gives positive weight to the set {1/(n—M?~421) < p? < §2+},
and for all p? in this set,

1
2
/ Lig2 /p2 <n—mr2-e21 (1-2a) /ph—(1-¢?) /p? >} 4
q

20

1

& /2 ﬂ{qQ/pZSn*MQ*‘“?*l7(17q2)/p2Sn(lﬁa)/a*n’}dqz
q*=0

621;1'1 (qg, p%) > n. Now, it is a consequence of our choice of

7 that the right hand side above is positive. The proofs of the cases (1,+,in) — (1, —,ou) and

(1,4,0u) — (2,—,in) are similar. O

owing to the fact that I'(y) = a/p} — .

We now would like to introduce a collection of positive numbers {1’ : (i, ¢, *) € II} such that,
for all edge (i,€,x) — (¢, €/,«") of the graph,

Cinf P,V € YL T(Vi) >0l ) > 0.
yeVy I (y)>ne©

However, some of the relations between 1’ and 7 introduced in the proof of Lemma 3.6.5 are not
compatible, therefore we have to restrict ourselves to a subset of edges, that however preserves the
connectedness of the graph. More precisely, we shall remove the edge (1,+,0u) — (2,—,in) and
its symmetrically associated edges. .

Using the notations of the proof of Lemma 3.6.5, we define {ny : (i,¢,%) € I} as follows:

o We first fix the values of 75 such that
1 2-a;2,1
7701’4+ > M2 %% ,
1,— 2-a;1,2
Now > M40,
2 2-a;1,2
7701,J+ > M2~ wh ,
ng{; > M27a;2,1.

e We then fix the values of 7 such that

M > (i (1= 2a) /a) v (M2 4 1/8%7),
M > (T (1=2a)/a) v (M2 +1/8%T),
"> (3 (1= 2a) /a) v (MBDT 4 1/80),
M > (3 (1= 2a)/a) v (MY 4+1/807)
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e We finally fix the values of ;. such that

> (it a/(1— 2a)) v (M1 4 1/8%7),
Moy > (i a/(1—2a)) vV (M?~%H2 41/8%7),
ot > (it a/(1 = 2a)) v (M7 4 1/81F),
M > (i~ a/(1—2a)) v (M?7%12 41/807),

Definition 3.6.6 (The set ©). For all (i,¢,%) € T1, let us denote by OL° the set {y € Yo : T(y) >
e}, and let © refer to the union of the twelve sets of the collection {©Y° : (i,¢,%) € I1}.

The proof of Lemma 3.6.5 ensures that, for all edge (i,€,*) — (i',€,+") in the (reduced) graph

of Figure 3.8,
al(iye,%) = (i€, +)) == inf P,(Y1 €0, ) >0,
yeEOL”

The matrix indexed by II x IT with coefficients a((i,e,%x) — (i, €',%’)), completed with null
coeflicients whenever the edge 0L — @i/,’ﬁ/ does not belong to the reduced graph of Figure 3.8,
is substochastic: at each transition, some mass is lost, which corresponds to the probability for Y
to leave ©. However, it remains irreducible in the sense that the reduced graph is connected. In
particular, this implies that, for all (i, ¢, *) € II, there exists a3 > 0 such that, for all y € ©, there
exists a deterministic N(y) € N depending only on the elementary section in which y lies, such
that P, (Yn(,) € %) > oy, For instance, N(y) can be chosen as the minimal length of a path
connecting the vertex corresponding to the elementary section in which y lies with the vertex oL°
in the graph of Figure 3.8. In this case, N(y) € {1,...,6}, since 6 is obviously the diameter of the
graph.

Figure 3.8 — The reduced graph. Each edge is associated with the positive weight «((i,€e,x) —
(&', €, %)).

According to Lemma 3.6.3 and the choice of né’oJr, the local Doeblin condition is satisfied in the
set

R:=00  ={yeYt Ty >nt}, (3.16)
with r = 1 and

1 —a: _
)\() = )\n]l);+(~) = Eﬂ{a<q1<1}€i§+ 72,1(dqldp1) ® 51(dq2)¢2’ (71)2)(12727
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where € € (0,1) is chosen such that A())) =1 (see the proof of Lemma 3.6.3 above). Note that the
probability distribution A(-) is concentrated on the elementary section yﬁj.

3.6.1.3 Recurrence

Let us now prove that the set R defined in (3.16) is recurrent, through the two following steps:

Step 1. There exists a stopping time Ny for the Markov chain (Y},),>0 and 8 > 0 such that,
for ally € Y, Py(N1 < +00) =1 and P, (Yn, € ©) > 8.

Step 2. There exists a bounded function Ny on © and a > 0 such that, for all y € O,
Py(YNg(y) €R)>a.

Step 1 is proved in Appendix 3.B. Following the arguments at the end of §3.6.1.2 above, Step 2
is achieved by taking a = aé’j. Combining Steps 1 and 2 and using the strong Markov property,
we deduce that N := Ny + Ny(Yn,) > 1 is a stopping time for the Markov chain (Y,,),>0, such
that, for all y € Y, Py (N < 400) = 1 and P, (Yy € R) > af > 0. This easily leads to the
following result.

Lemma 3.6.7 (Recurrence). For ally € ), P,(3n>1:Y, € R)=1.

Proof. By the construction of NV, there exists a measurable functional ® on the space of sequences
(Yn)n>o in Y such that N = ®((Yy,)n>0). Let us define inductively N©®© = 0 and NG+D) =
N + &((Yyw 4n)n>0)-

Let y € Y. Then, P,-almost surely, for all i > 0, N < +oc0. For i > 1, let A® refer to the
event {Yya € R,..., Yy & R}. Then P, (AM) <1 —ap, and, for all i > 1,

P,(AD) =P, (A+D)) £ P (AD Yyeuin € R).
By the strong Markov property,
P,(AD Yy € R) = Ey(Py(AD Yyui € R[Y1,..., Yyo))
= Ey(]l{A(i)}Py(YN(i+1) S R|Y1, ... ,YN('L)))
= Ey(]l{A(i)}PYN(i) (YN(l) S R))
> afP,(AD).
As a consequence, for all i > 1, P, (A®) < (1 — aB)’. By the Borel-Cantelli lemma, there exists

a P,-almost surely finite random variable I such that P,(Yyo) € R) = 1, which completes the
proof. O

3.6.2 Assumptions of the Markov Renewal Theorem

Under the assumptions of Proposition 3.6.1, completed by the technical assumption (T1), the
Markov chain (Y;,),>0 is positive Harris recurrent. Let us denote by v its unique stationary
probability distribution. Let us denote by P, the probability distribution

P.()i= [ PyOw)

on the Skorohod space D([0,+00), X). The expectation under P, is denoted by E,,.
By Lemma 3.5.7, the Markov renewal process satisfies the assumptions of Definition 3.3.5. To

apply the Markov Renewal Theorem 3.3.7, we furthermore need to check that it is nonarithmetic,
and that the drift

E, (11 — 1) = /ey Tobs (Y)v(dy) (3.17)

is finite.
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3.6.2.1 Nonarithmeticity
Let us recall the Definition 3.3.6 of a nonarithmetic Markov renewal process.

Lemma 3.6.8. Under the assumptions of Theorem 3.2.5, the Markov renewal process (Yo, Tn)n>0
s nonarithmetic.

Proof. Let us assume that there exist d > 0 and a measurable function v : ) — [0, d) satisfying
P, (7obs(Yo) € 7(Yo) — v(Y1) + dZ) = 1. Our proof is in three steps: in Step 1, we prove that
there exists a measurable function 7 : Y — [0, d) such that P, (y(Y1) =7(Yp)) = 1. In Step 2, we
combine this result with the fact that the Markov chain (Y}, ), >0 satisfies the local Doeblin condition
in the set R to prove that, v-almost everywhere in R, 7 is constant. As a consequence, v-almost
everywhere in R, Tobs(y) — 7(y) belongs to the shifted lattice — + dZ. Finally, in Step 3, we prove
that the pushforward measure of the restriction of v to R by the application y — 7obs(y) — v(y)
admits a density, which is a contradiction with the conclusion of Step 2.

Step 1. For all y € ), there exists a unique ¥(y) € [0,d) such that Tobs(y) € Y(y) —F(y) + dZ,
and the function 5 : ) — [0,d) is easily measurable. As a consequence, for all z € ) such that
Tobs(y) € Y(y) — 7(2) + dZ, then (z) = 7(y). Therefore, P, (y(Y1) =7(Yp)) = 1.

Step 2. The conclusion of Step 1 rewrites

P,(v(Y1) =7(Yo)) = /ey /ey Ty () =70 Qy; d2)v(dy) = /ey P,(v(Y1) =7(Yo))v(dy) =1,

so that, for v-almost all y € Y, P,(v(Y1) = 7(Yo)) = 1. Now, for v-almost all y € R, for all
measurable B C ),

Lzwesy = Py(7(Y0) € B) =Py(7v(V1) € B) 2 e/ey Ly ()epyA(da),

i.e. the pushforward measure of A by = is absolutely continuous with respect to the Dirac distri-
bution in J(y). Since this pushforward measure is non null and does not depend on y, we deduce
that 7 is constant, v-almost everywhere in R. As a conclusion,

PV(YO € R, Tobs(YO) — ’Y(YQ) S *?‘F dZ) = I/(R) > 0.

Step 3. Let f : [0,d) —» R and ¢ : [0,+00) — R be continuous and bounded. Then, by
stationarity,

Ey (J000)g(ans 00D L ey ) = Bo (SOOI (ans (Vi) g e )
= B, (JE0000/ 01 )

where v is a random variable with density ¢+ (p) and independent of both Yy and the event
{1y € yﬁ) +} Then,

B, (FG00)a(0/0)E y,cypry) = By (FEOO)L vy ) / ijg(a/p)¢1,+(p)dp

E, (g(Tobs(Yl))ll{Yleyﬂ);f})
P,(viel)

—-E, (f(v(Yﬂ)]l{yley;j})

so that
E, (F(000)9(7ons (Y0)) Yo € V") = By (FG00)IYo € W35 ) Bu (g(rons(¥o)) Yo € HF)

i.e. Y(Yp) and Tobs(Yo) are independent under P, (-|Yy € VLoF). Since 7ops(Yp) admits a density
under thls probability distribution, then so does Tobs(Yo) — v(Yo). As a conclusion, and since
R C ybo ,
P,(Yo € R, 7o0s(Yo) — v(Y0) € =7 4+ dZ)
=P, (Y € R, Tons(Yo) — 7(Yo) € =7 + dZ|Y0 e VIMwlh

<P, (Tobs(S/O (YO) S 'Y + dZ|Y0 eV ) =0,
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which is a contradiction with the conclusion of Step 2 and therefore completes the proof. O

3.6.2.2 Finiteness of the drift
The drift & of the Markov renewal process (Y, 7 )n>0 is defined by (3.17).

Lemma 3.6.9. At thermal equilibrium and if the probability densities ¥ and 1~ satisfy the
assumptions (H1), (H2) and (H3), then i < +oo.

Proof. Let y = (¢',¢%p",p*) € Y. Under Py, 71 = Tobs(y) < (a A (1 — 2a))/|p’|, where p is
the normal component of the velocity in y. At thermal equilibrium, Proposition 3.5.9 provides
an explicit expression of v, and the marginal distribution of |p’| under v is proportional to either
¢~ (p)dp or ¢T(p)dp, depending on the elementary section in which y lies. As a consequence, the
assumption (H1) ensures that E, (1) < +o0. O

Out of thermal equilibrium, we were not able to obtain a similar control on the marginal
distribution of the normal component of the velocities, therefore we have to resort to the technical
assumption (T2).

3.6.3 Conclusion of the proof of Theorem 3.2.5

We now complete the proof of Theorem 3.2.5. We recall that under the assumptions of The-
orem 3.2.5, the combination of Lemma 3.5.7, Proposition 3.6.1, Lemma 3.6.8 and the technical
assumptions (T1) and (T2) ensures that the Markov Renewal Theorem 3.3.7 can be applied to the
Markov renewal process (Ys,, T )n>0-

Proof of Theorem 3.2.5. Let f : Q x R? — R be continuous and bounded. For all (y,s) € Y x
[0,4+00), let us define g(y, s) := Psf(y). Then, according to Lemma 3.5.4, the function g satisfies
the assumptions of the Markov Renewal Theorem 3.3.7, therefore there exists a measurable subset
Z C Y such that v(Z) =1 and, for all z € Z,

Tobs(y)
lim E.(9(Varo .t — mary)) = — / N / 9y, s)dsv(dy) = / F (@) mna(da),

t—+o0 2 s=0 zeQxR2

where the probability distribution m,q is defined by

1 Tobs(y)
/ ) f(@)mpa(de) = :/ / P, f(y)dsv(dy). (3.18)
zeQxXR2 1% yeY Js=0
But by Proposition 3.3.10, we have, for all ¢ > 0,

E. (gY@, t — mvuw)) = Bo(Pemry o f(Yary)) = E=(f(X(2))),

where we have used the fact that P,(1p = 0) = 1 since Z C ).
As a consequence, Theorem 3.2.5 at least holds for all initial configurations z € Z. To complete
the proof, we construct a stopping time 7% for the process (X (t));>0 such that, for all z € Xy,

P, (17 <400, X(r%) € Z) = 1. (3.19)

For all z € X,q, it is clear from the definition of the set X7 ; in Subsection 3.5.1.2 that there exists
a stopping time 7,4 for the billiard process such that Py(ma < +00, X (Tha) € Xy) = 1. As a
consequence, it is sufficient to obtain (3.19) for initial configurations x € X} .

We now let n(Z) :=inf{n > 0:Y, € Z} and 7% := n(z). Certainly, 72 is a stopping time
for the Markov process (X (¢))¢>0. Furthermore, since v(Z) > 0, the Markov chain (Y;,),>0 is
recurrent in the set Z [7, Corollary 3.3, p. 200], therefore, for all z € X!, P,(7% < +00) = 1.
This completes the proof. ([l



3.A A formal construction of the billiard process 7T

Remark 3.6.10. Since the expression of Psf(y), for s < 7obs(y), can be explicitly written as
in §3.5.2.1, it is a priori possible to derive an explicit expression for the probability distribution mq
whenever an explicit expression of the probability distribution v is available. This is in particular
the case at thermal equilibrium, see §3.5.3.2. We leave the detailed computation to the courageous
reader but claim that in this case, one actually recovers the expression for the equilibrium steady
state that was announced in Remark 3.2.7.

3.A A formal construction of the billiard process

In this appendix, we provide a formal construction of the billiard process (X (t))¢>0 as a Piece-
wise Deterministic Markov Process (PDMP) by following step by step the general and standard
methodology introduced by Davis [46, Section 26].

3.A.1 State space and billiard flow

The following definition of the state space for the billiard is classical in the theory of billiards [42,
Section IV.1].

Definition 3.A.1 (State space). The natural state space for the billiard process is the subspace
X" of Q x R? given by the union of Q x R?, which describes the set of configurations located in the
interior of the billiard table, and the subset of OQ x R? composed by configurations (q*, ¢%; pt,p?)
located at the boundary of the billiard table such that the velocity vector (p',p?) points inward the
billiard table €.

The deterministic billiard flow with specular reflection of OQ is denoted by (p+(-)).

3.A.2 Local characteristics of the PDMP

As a PDMP, the process (X ()):>0 is characterised by the following local characteristics |10,
Section 26]:

e The deterministic evolution of the process is driven by the billiard flow (¢(-)) on X”, with

specular reflection on the oblique facets. This flow stops being defined when it hits W x R?
(see Remark 3.A.3 below), but it is certainly nonexplosive.

e The jump rate is identically null, see Remark 3.A.2 below.

e The transition measure is defined on the set of configurations z = (¢, ¢%; p*, p?) € W x R2,
such that there exists zo € Q x R? and ¢ > 0 such that ¢;(z0) = z, as follows:

— if (¢*, ¢?) is located on a singular point of 9, the process is killed, see Remark 3.A.3;

— otherwise, there exists a unique (i, €) € {1,2} x {4+, —} such that x € W%¢ x R? and the
corresponding transition measure is obtained by updating the ¢-th velocity component
according to the density ¢“¢(ep).

Remark 3.A.2. The jump rate of a PDMP describes the rate, possibly depending on the current
state of the process, at which stochastic updates of the system spontaneously occur. The fact that
the jump rate is identically null in our model is typical of stochastic billiards. On the other hand,
PDMP models with positive jump rate have been introduced in the context of thermodynamical
systems, and in particular for chains of oscillators: in this context, the positive jump rate stands for
a stochastic noise that improves on the ergodic properties of the genuine Hamiltonian dynamics [67].

Remark 3.A.3. Killing the process when it hits a singular point of 952 is a usual convention in
the theory of billiards in polygons [131, 75, 42], although this does not appear explicitly in PDMP
literature [46]. However, it can be taken into account by adding a cemetery state to the state
space. Still, we rule out killed processes by introducing the space of admissible configurations in
Subsection 3.A.3 below.
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3.A.3 The space of admissible configurations

The author is a nice people and does not actually want the billiard process to be killed. There-
fore, we define the hitting time of thermalised walls as follows.

Definition 3.A.4 (Hitting time). The hitting time of thermalised walls tyy : X' — (0,+00] is
defined by B
thit(x) := inf{t > 0: p;(x) € W x R?}.

Note that, since the singular points of 9} are contained in W, the billiard flow cannot be killed
before it reaches W x R?, so that tp;;(z) is well defined in (0, +oc].
We now define the space of admissible configurations.

Definition 3.A.5 (Admissible configurations). The space of admissible configurations is denoted
by X and composed by the configurations v € X' such that:

e x is not located on a singular point of 0);
o if thit(z) < 400, then ¢y, (z)(x) is not located on a singular point of OS2
It can be checked that the Lebesgue measure of the space X’ \ X is null. In Subsection 3.A.5

below, we check that, if the billiard process starts in an admissible configuration x € X', then it
remains in the space of admissible configurations at all times, almost surely.

3.A.4 Hitting the thermalised walls

This short paragraph is dedicated to the study of admissible configurations x = (¢', ¢%; p',p?) €
X such that tpi;(z) = 400. One easily checks that there are actually two possible types of such
configurations:
e p! = p? =0, in which case ¢;(x) = z, for all t > 0;
el-a<qg'4+¢><1+aandp' = —p? in which case the billiard flow performs roundtrips
along a periodic orbit between the oblique facets, with orthogonal reflection at each facet.

Note that, in both cases, X () = (), for all ¢ > 0; the process is never killed; and it always
remains in the space of admissible configurations.

3.A.5 The sequence of stochastic updates

We now give a practical way to construct the billiard process, on the probability space (Ri)N
endowed with the probability distribution IP under which the canonical variable

1,+ 1,— 24+ 2 —
(v o vy T 0T )

is an i.i.d. sequence, with marginal distribution given by the product density
G L e 1 (S A e B

In particular, this enables us to introduce the sequence of stochastic updates (x;,t;);>1, which
plays a key role in the sequel.

Let € X. Since the case tyit(2) = +00 has been addressed in Subsection 3.A.4 above, we can
assume that tnit(x) < +00. Then we let zg = z, to = 0 and define (z;,%;);>1 by induction:

o if thit(xj_l) < +o00, then ti=tj—1+ thit(l'j—l);

e if z; 1 € X, then there exists a unique (i,¢) € {1,2} x {4+, —} such that ¢y (o, ,)(7j-1)
is located on W*¢. Then, z; defined by replacing the i-th component of the velocity in
Ptyse(zy_1)(Tj—1) with v;fe.

By the fact that the law of U;’E has a density, it is straighforward that, if ¢ni(2;—1) < +o00 and
xj_1 € X, then tni(z;) < +00 and z; € X, P-almost surely. Therefore, the sequence of stochastic

updates (z;,t;);>1 is well defined, P-almost surely.
We are now able to define the billiard process.
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Definition 3.A.6 (Billiard process). For all x € X, we define the billiard process started at x by
X®(t) = i1, (x;), for all § >0, for all t € [t;,tj11).

Then (X*(t)):>0 is defined on the time interval [0, sup;(t;), and P-almost surely, it takes its
values in X.

3.A.6 Standard conditions

In order to ensure that the billiard process (X*(t)):>0 is well defined, we finally have to check
the standard conditions [46, (24.8), p. 62]. The only nontrivial point there is the following: for all
t >0, let N(t) denote the number of stochastic updates on [0, ], namely

+oo
N(t) = Z ]l{tjgt}'
j=0

Then we have the following result.
Lemma 3.A.7. For all initial configuration x € X, then E(N(t)) < +o0.

Proof. Although it is not necessary, the framework of the unfolded process introduced in Sub-
section 3.4.2 turns out to be convenient for this proof. Let x = (q!,q¢%; p',p?) € X. Following
Subsection 3.A.5, if thit(2) = 400, then N(t) = 0, for all ¢ > 0. Now if tp;t(2) < 400, then observe
that between four consecutive stochastic updates ¢;, t;j41, tj42 and t;13, at least one of the two
components (¢*, pt) or (¢%,p?) is updated and travels on a distance larger than a A (1 —2a). As a
consequence, for all 7/ > 1,

aA(1—2a)

M ’
where Mj := max{v}*, (i,e) € {1,2} x {+,—},3j' =2 < j < 35'}.

Let t == tnit(2), ), == ty+(an(1-2a))/Mi+- - -+(aAN(1-2a))/M; and N'(t) := Z;COZOO ]l{t;,gt}-
Certainly, N(t) < 3N'(t), for all £ > 0. On the other hand, since the sequence (M;/);>1 is i.i.d.
under P, then E(N'(t)) < 400, for all t > 0, see Asmussen [7, Theorem 2.4, p. 146]. This concludes
the proof. 0

t3jr41 — t35—2 2>

Lemma 3.A.7 ensures in particular that, P-almost surely, the sequence of instants of stochastic
updates has no accumulation point, i.e. sup;-,?; = +00. The properties of the process (X*(t)e>0
stated in Proposition 3.2.1 now follow from Davis [10, Sections 24 and 25].

3.A.7 Probability spaces

The original probability space on which the billiard process (X*(¢))¢>o is constructed in Sub-
section 3.A.5 is the space (Ri)N endowed with the probability distribution P, the expectation
under which is denoted by E. In the body of the chapter, we rather used the law P, of the process
(X*(t))t>0 in the Skorohod space D([0,+00), X). However, in Appendix 3.B below, we will deal
with situations in which the original sequence (U;’+,U;’_,U]2-’+,U]2-’_)j21 plays a particular role,
which we shall emphasise by using the probability distribution P.

3.B Recurrence of the set ©

This appendix is dedicated to the proof of Step 1 in §3.6.1.3, namely that there exists a stopping
time N; for the Markov chain (Y,,)n>0 and 8 > 0 such that, for ally € Y, Py (N1 < 400) =1 and
P,(Yn, € ©) > 3, where we recall that © is defined in §3.6.1.2. For the sake of convenience, we
shall simply use the notation NV instead of IV;.

Let y € Y. Then thit(y) < 400, where we recall the Definition 3.A.4 of thit(y), and we let
ng := sup{n > 0 : 7, < thit(y)}. Note that ng is a deterministic function of y, therefore it is a
stopping time for the Markov chain (Y,),>0. Then either 7,,, < tnit(y), that is to say there is a
stochastic update of a component of the velocity between two observation times, or 7,,, = thit(y)
and the first stochastic update of a component of the velocity occurs at an observation time.
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3.B.1 Stochastic update between two observation times
Let us first address the case 7,, < thit(y). Then Y, can belong to any elementary section,
including the boundary sections in the case ng = 0. We first assume that Y,,, := (¢', ¢%;p!,p?) €

YT for some % € {bo,in, ou}, and then extend our results to any elementary section thanks to
the symmetries introduced in §3.2.1.2.

3.B.1.1 Boundary section

Let us assume that Y,,, € yﬁj; in particular, np = 0 and Y, = y. Since Y C X,q4, then either
p? >0 or p? <0.

—Vy’

22t
vy

Figure 3.9 — The possible cases for Y,,, € y&j. The red trajectory describes the case p? > 0, while
the blue trajectory describes the case p? < 0. The circled digits indicate the situation dealt with:
in situations @ and ®, v > nkl)];r and N = 0. In situation @, v < nkl)];r and N = 1. In situation @,
v < nkl)j;r, v > 60 and N = 1. In situation ®, v < ml,’:, v <6 and N =5.

Case p? > 0. Due to the definition of ng, v := I'(Yy,) = a/p' — (2—a—¢?)/p?> > 0. Ify > né’o*',
then we let N =0 and
P,(Yy € Vot . T(Yn) = mp0) = 1= kl,’(:r@

Now, if v < n2F, let us exhibit A7, > 0 independent of y and such that P, (Y; € ©) > g.F,. In
this purpose, let us note that tu;(y) = 72-%(¢%, p?) = (2 — a — ¢*)/p>. Besides,

end

I D g )
XY(rod' (% p?) = <p1T,2a;p1,v} > ,
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and, on the event {v;"” < (1 —a)/~},

X (1os()) = (.2 =a =0} T —ed ™, —v}7),

Yl - 3Xy(70bs(y)) = (1 - ’Y/Ui’_a 1; _’U}’_a _’Ug,_) € ylf;)_’

a 2—a a 2—a
'M)=—5--——+725-—-—1—
Uy Uy Uy Uy

As a consequence, letting N = 1, we obtain

_ _ _ l1—a a 2—a _
Py(YNeyS;,F(YN)znig)zlP’(vi* T +7277§6>

1—a 1,+ a 2—a 2,— 1,4+
ZP( = > Tho » 3= 2 1= TThe | = Phoer
Uy Uy U1
and Bé’o'f® > 0 due to the assumption that 91"~ and ¥?~ satisfy condition (H3).

Case p? < 0. Similarly to the case above, v := I'(Y,,,) = a/p' — ¢*/(—p?) > 0. If v > nkl)j;r,
then we let N =0 and

P, (Yn € Yo" (V) > mih) = 1= 8k,

Let us now assume that v < 77&’:. The situation is more intricate than in the case above due to
the fact that 7ops(y) does not correspond to a stochastic update of a component of the velocity.
More precisely, on the event {v7" < 1/},

Vi = XY(rons(y)) = (@707 30", 0] ) € W,
1—2¢ 1—y2t 1

1 2, =7 T 29
p v1+ U1+

(Y;) =

where 7' is defined by
1—a q°
/
= —— >v>0.
pl —p?
We deduce that if 4" is not too small, then the probability that I'(Y7) be large is uniformly bounded
away from 0. To give a precise statement, let us fix 6 > nillfr large enough for the inequality

1 1

1,4+ 2+

? =P — <77 < —— | >0
bo,® 1, —= Y1 1,

¢ <9nin+ nbo+>

to hold. Note that the existence of § is ensured by the fact that 1)** satisfies the condition (H3).
Now, if v/ > 6, then we let N =1 and

1 1
P,(Yny € V", T(Yn) = n ") > P <v?’* <o w2 nin’*)
Uy

1 1

2,+ 1+ 1,4+

2Pl oy <53 0- 55 2y bo,®"
Mo U1

It remains to address the case v < né’oJr, ~" < 6, which has to be understood as the case in which
the component p' is large. Then the first update of this fast component for the unfolded process
typically occurs at the 5-th observation time (see Figure 3.9). More precisely, let us define v/ > 0
by ,
7”::2 1afq—2>'y>0.
p —-Pp
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Then, on the event {v2" < 1/},

2, 2, 2,— 2,—
Ys = (1—a—|—7"vl+,1;v1 t - ) eV,

a a—~"v " a a ”
M) =5 = =5~ = T
Vg Uy Vg vy

Let us now check that the conditions v > 0 and 7/ < 6 prevent " from being large. Writing

1 2(1—a) 2(1—a)
" !
= 0
1—24 1—2a | 1—2a '’

we deduce that letting N = 5 yields

1 a a
2,— 2,— 2, 2,—
Py(Yn € Voo, I'(Ys) 2 m, ) 2 P (Ul T< A BT R/ )
2 1

1—2a a a
>P (0Pt < , - >t | =Bt
= ( 1 2(1 . a)e ’Ug’i ’Uf7+ Z Mo ﬂbo,@
and 8,5 > 0 due to the fact that both )2+ and ¢*~ satisfy the condition (I13).
Symmetries. If Y, € Jié’g for some (i,€) € {1,2} x {+, —}, we define N and ﬁé’(f@, A i’(i@
applying the argument above starting from G¢(Y,,,). We finally define

. ,€ i€
B3 11 1= min ’ .. y > 0.
3.B.1.1 (i) {1,2} x{ 17}( bo,®? ) bo,©)

3.B.1.2 Inward section

We now assume that Y, € y}j. Once again, either p?> > 0 or p? < 0. The arguments are

roughly the same as in the case of boundary sections and we refer to Figure 3.10 for an overview
of the different cases dealt with.

Case p* > 0. Due to the definition of ng, v := I'(Yy,) = (1 — 2a)/p* — (1 — ¢?)/p? > 0. If
v > nilrf, then we let N = ng and

P,(Yy € Vit D(Yn) > 0 ") =1=: 6%,

Let us now assume that v < 77i11;+ and introduce 7' := 1/p! — (1 — ¢®)/p* > v > 0 and 0 > nk~
large enough for the inequality

2 —a 2 — 1
Bt =P ——F= <" <—x]>0
’ 6 — i ot
to hold. If v/ > 6, then we let N = ng + 1 and
P,(Yn € Vi, T(Yw) = mii) = Buhs

while, if v/ < 6, then we let N = ng + 2 and

1,—

_ _ _ 1l—a a 2—a _
Py<YNeJJ§g,F<Yw>znég>zp<v% < Tm s Zné;>=:6i;5>0-
. ,

Case p* < 0. If v :=T(Yp,) = (1 — 2a)/p" — ¢*/(—p®) > n} T, then we let N = ng and

P,(Yy € VT, T(Yy) > ny) = 1= AL,
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2,+
(2

Figure 3.10 — The possible cases for Y,,, € y}nﬂ“. The red trajectory describes the case p? > 0,
while the blue trajectory describes the case p? < 0. The circled digits indicate the situation dealt
with: in situations @ and @, ~v > nk{]j and N = ng. In situations @ and ®, v < nkl)j;r, ~' > 6 and
N = ng+ 1. In situations ® and ®, v < 77}:1)’O+, ~v" < 60 and N = ng + 2 in the red case, N = ng + 4
in the blue case.

If v < nyT, we introduce v/ := 1/p' — ¢*/(—p®) > v > 0 and 0 > nl~ large enough for the

inequality

1 1
1L+ 2,+
ﬂin,@'P<0 1,— S'Ul < 11+>>0

Tlou Thn

to hold. If v/ > 6, then we let N = ng + 1 and
P, (Yn € Vo, T(Y) = nyi) > Blhs

while, if v/ < 6, then we let N = ng + 4 and

1 a a
2,— 2,— 2, 2,—
P,(Yy ey, , T(Yy) >, ) 2P <U1 < AN R +~" > ) ,
2 1

where

As a consequence,

2,— 2,— 2, a a a 2,— 1,
P,(Ynv €V, . T(YN) 2y, ) 2P (%Jr <53 25 = e ) =: B > 0.

%

Symmetries. If Y,, € Y,
applying the argument above starting from &%<(Y,,,). We finally define

¢ for some (i,¢) € {1,2} x {+, -}, we define N and ﬂfr’]e@, .. .,ﬂf}f’]ﬁ@

)
n

B3 p.12:= min Bl BE) > 0.
(i,e)6{1,2}><{+,_}( ,® ,@)
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3.B.1.3 Outward section

It is clear from Figure 3.9 that the argument developed in §3.B.1.1 remains valid if Y,,, € ygu*.
This enables us to define N and ﬂou T ,ﬂou ®1n this case, and then in all the cases Y, €
(i,e) € {1,2} x {+,—} by symmetry. For notational convenience, we finally define

Ou’

B3B.13 = (i1€)€{$3§{+17}(50u o Bone) >

even though (3313 = f3.3.1.1 obviously.

3.B.1.4 Conclusion

Putting together §3.B.1.1, §3.B.1.2 and §3.B.1.3, we conclude that if y € Y is such that 7,, <
thit(y), then there is a deterministic function N of y and a positive number

B3p.1 :=min(B35.1.1,03.8.1.2: 33.8.1.3):

such that P, (Yn € ©) > (331 Besides, P,-almost surely, N —ng < 5.

3.B.2 Stochastic update at an observation time

Let us now address the case 7,, = thit(y). Then ng > 1 and Y, lies in a boundary elementary
section. Due to the symmetries introduced in §3.2.1.2, there is no loss of generality in assuming
that Y, € Y7, in which case Yy, = (0,¢%v}"", p?) where (¢%,p?) is a deterministic function of
y. By the definition of V), ¢* € (0,a) U (a,1—a) and p? € (—o0,0) U (0, +0oc). Let us mention that,
in this subsection, we use the notions of renewal theory and the associated notations introduced
in Subsection 3.4.1.

3.B.2.1 Case ¢* € (0,a), p> <0

For all k > 1, let o := (2 — a)(1/1)2,C 1+ 1/1}2,€ ), and let Sy := 0, S :== o1 + -+ + 0Ok,
Spi=8r+(2- a)/vé;cil. Let us write t := ¢/(—p?) > 0 and introduce the following random
variables:

K :=sup{k >0: 5, <t}, K* :=sup{k >0: 5} <t},

with the convention that K* = —1 whenever S; > t. Clearly, P-almost surely, K < +o0o and
K* < 400. Besides, for all k € {0,..., K},

Yng—i—lOk = (O q +p25k,’U2k+1, ) € ybo ’

while, as soon as K* > 0, for all k € {0,..., K*},
Yiotrionts = (1 —a+¢ +p*S;, 1;p7, _Ugl’cjrz) € J’i;ﬂ

see Figure 3.11.

Certainly, no + 10K is not a stopping time for the Markov chain (Y},),>0. Indeed, for k €
{0,..., K*} such that S < t, deciding whether Si41 < t or Si41 > t requires the knowledge of Sy,
and v%}:irl, that can be expressed as functions of Y, +10x, but also of ”51;27 that is independent
of Yy, +10k (but is a function of Y;,,+10k+5). For the same reason, ng + 10K* + 5 is not a stopping
time for the Markov chain (Y,),>0 either. However, a stopping time for the Markov chain (Y, )n>0
is recovered by considering the random time N := (ng + 10K) V (ng + 10K* + 5).

Then N is finite P -almost surely, and Yy € © in particular if N = ng 4+ 10K and

2 2
a ¢ +p Sk 1+
I'(Yno410x) = ——— 2>y
VoK +1 p
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}/72 0

Y’7(J+5

Yoo+10K+45

YTL() +10K

Figure 3.11 — Case ¢®> € (0,a), p?> < 0 on the unfolded process. At the k-th reflection on the
boundary on the left, the updated value of the normal velocity is U;I’:r At the k-th reflection

on the boundary on the right, the updated value of the normal velocity is vgl’c_. The situation
depicted on the picture corresponds to N = ng + 10K, i.e. K = K* + 1.

that is to say

a 2+ QS
P,(YN€O)>P|K=K"+1,—= 4 pQ Kme
VoK +1 P

+

P(Sk<t,sgzt,%+5k2t+n§j>

. Vok+1

+ o

o0

o

+oo
1,4 2—a;1,2
/O ]1{s<t,s+(27a)r2t,s+ar2t+n]l)’+}1/1 (T)dTU “ (dS)
r=

t

L.
¢
/ U(t —s) U %02 (ds) = U(t) + / U(s)u?~“12(t — s)ds,
s=0 s=0
where the function ¥ is defined on [0, +00) by

+oo
Ve > 0, \I](C) = / ]1{c§(27a)r,c§arfné;+}w17+(r)dr'

Note that ¥ is nonincreasing and, due to the fact that 1+ satisfies the condition (H3), ¥(c) > 0
for all ¢ > 0.

Let o' > M?~ %12 where M?~%%2 is defined as in Lemma 3.4.5. Then, proceeding as in the
proof of Lemma 3.4.5, we obtain that if ¢ > 7/,

¢ ‘ 1 o — M2—eil2
/SZO \I/(S)U27a’112(t —s)ds > 22— )t 1) /S:O U(s)ds;
while, if ¢ < 7/, then U(t) > ¥(n') > 0. As a conclusion,
1 o — M2—eil2
P,(Yy €0)> (2(2 TR /5:0 W(s)ds) AT(n") > 0.

Using the symmetries introduced in §3.2.1.2, one can now define 33 3 9.1 > 0 such that, as soon
as Tny = thit(y) and Yy, € V¢ is such that &(Y,,,) = (0, ¢*; v, p?) satisfies ¢ € (0,a) and p* < 0,

P,(YNy €0O)>f3321.

3.B.2.2 Case ¢®> € (a,1—a), p> <0

Forallk > 1, let o := l/v%;::ﬁrl/vg,’;, andlet So :=0, Sy, := 71+ - - -+, 5‘; = §k+1/v§,’;1.
Let us write £ := (¢? — a)/(—p?) > 0 and introduce the following random variables:

K :=sup{k >0: S} <}, K* :=sup{k >0:5; <1},
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with the convention that K* = —1 whenever S_’S > t. Clearly, P-almost surely, K < +oo and
K* < 400. Besides, for all k € {0,..., K},

Yno-‘rﬁk = (Oa q2 +p2‘§k7 ’U;],C—:laPQ) € yg:ra
while, as soon as K* > 0, for all k € {0,..., K*},
Yootekts = (Lq2 +p°Sk; —Uéiclzap2) €Yoy

see Figure 3.12.

Yo,
¢ r KM—FS

% - Yogt6k-+3
no+6(K+1) 9 .

Figure 3.12 — Case ¢ € (a,1 — a), p? < 0 on the unfolded process. At the k-th reflection on the
boundary on the left, the updated value of the normal velocity is U;}ctr At the k-th reflection

on the boundary on the right, the updated value of the normal velocity is vg};. The situation
depicted on the picture corresponds to the event E1.

For the same reasons as in §3.B.2.1, N := (ng + 6K) V (ng + 6K* + 3) is a stopping time for
the Markov chain (Y,)n>0. Let ¢ := ¢?/(—p?) > t, and let us define the following events:

E' = {K=K* Sz, <t}
E? = {1/v0T > 0100t + 1037 <¥/(2—a)},
E? = {ajv;T > 1},

see Figures 3.12, 3.13 and 3.14.

Yrm S

leo +5

Yn,(]+10

Figure 3.13 — The event E? in the case ¢* € (a,1 — a), p*> < 0.

On the event E', Yy, 4 = (0,¢* + pQSRH;v;gH,pQ) € y&f and one can apply the results
of §3.B.2.1 to define N starting from Yy 4. On the event E?, Yy 19 = Yyo110 = (0,¢% + p*(2 —

a)(l/vi”L + 1/037,); vé”L p?) € )}&;L and one can apply the results of §3.B.2.1 to define N starting
from Y,,,110. On the complementary event (E* U E?)¢, one simply lets N = ng. Then, the strong
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Figure 3.14 — The event E? in the case ¢* € (a,1 —a), p*> < 0.

Markov property applied with the stopping time N + 6 ensures that N remains a stopping time
for the Markov chain (Y;,),>0. Besides,

P,(YNn €0)=P,(Yy €0,E")+P,(Yx € 0,E%) +P,(Yy € O,(E' UE?"),

and we now give a lower bound uniform in y for each of the three terms of the right hand side
above.
First, P, (Yn € ©,E') =P, (Yy € O|EY)P,(E') > B35.2.1Py(EY), and

P,(E")=P(K =K* Sg,, <?)

+o00 B B 1
=Y P(Sp<tt<Si+——<¥

Vok+2

—+o0 —+o0
= / Liscii<siraryt ™ (r)drU Y (s)ds

t
= / Ut — 1 s) UL (- s)ds,
5=0

where the function W is defined on (0, +00) x [0, +o0) by

“+o0
Ve >0, Vt>0, U(t;c) := / ]l{cgr<t+c}1/)1’7(r)dr.
r=0

Note that, for all ¢ > 0, the function ¥(-;¢) is nondecreasing.
Recall that 1/S1~ € [0, +00) refers to the lower bound of the support of the density ¢''~, and
let us fix 1’ large enough for the inequality

1
ST

MU (14 2 )y 3.20
+ t 1o )1 (3.20)

to hold. In particular, ' > M1, Assume that £ = (¢ — a)/(—p?) > 1. Since ¢*> < 1 — a, one
deduces that #' — = a/(—p®) > an’/(1 — 2a). Proceeding as in the proof of Lemma 3.4.5 and
using the monotonicity of W(;c), one gets

i 1 7]/_]\/11;1,1 a "
U — &)U T - 5)d >—/ U —1n':s)ds=: g

/s:O ( +9) (= s)ds > 2(ptt +pb7) Jazo 1-24"°)% o
and B no longer depends on y, while (3.20) ensures that it is positive. As a consequence,

P,(Yy € 0,E") > 15,1 883301

Let us now fix 1" such that

1 1
n’ > (2—a) <7]/\/ <517+ + 5’2’—>)'
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Ift<n' and ¢ > 7", then Py (Yn € ©,E?) = P,(Yy € O|E?)P,(E?) > B35.2.1P,(E?), and

Cht vy’ Uy
1 1 1 ’
>P >0, =+ < =%,
<v% + 70 v%’Jr vy 2—a

and the choice of 1" as well as the assumption that 1T satifies (H3) ensure that 53 > 0. As a
consequence,
P,(Yy €O, E?) > ]1{t’<n’,t”2n”}5(2)53-3-2-1'

Finally, let us assume that £ < 7’ and ¥ < 7. Then, on the event E* C (E'U E?)¢, T'\(Yn) =
[(Y,,) = a/vi™ — 1 and then,

P,(Yn € ©,(E'UE?)) >P,(Yy € O, E?)

a5 1+
P(Txf2%0>
U1

a
>P (‘U1,+‘ >n" + 77&’;) =: @),
1

and 8®) > 0 thanks to the assumption that )'F satifies the condition (H3). As a consequence,
P,(Yy €0, (E' UE?)) > Loy peyn BY;

and putting all together we conclude

Py(Yy € ©) > min (5(1)53.3.2.175(2)53.13.2.1, 5(3)) > 0.

Using the symmetries introduced in §3.2.1.2; one can now define 83 g 59 > 0 such that, as soon
as Tno = thit(y) and Yy, € Vi< is such that &%¢(Y,,) = (0,4¢%; v, p?) satisfies ¢> € (a,1 — a) and
p* <0,

P,(Yn €0) > B3p522.

3.B.2.3 Case p> >0

Let us finally assume that p? > 0. Then Y, is in one of the six situations depicted on
Figure 3.15.

In situations A, C and E, one can restart the construction of N as in Subsection 3.B.1 starting
from Y,,. In situations B, (resp. D, F), one can restart the construction of N as in §3.B.2.1
and §3.B.2.2 starting from &%~ (Y,,,11) (resp. &5~ (Vay+3), 6%~ (Yag+s)). In any case,

P,(YN €0O)>f3p21AB3B22=:B3p2>0.

3.B.3 Conclusion

The stopping time N has been defined for all choice of y, and the proof of Step 1 in §3.6.1.3 is
completed by defining 8 := 8331 A B3.53.2 > 0.
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Figure 3.15 — The possible situations in the case p? > 0.
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Deuxieme partie

Systemes de particules interagissant
a travers leur rang






Chapitre 4

Propagation du chaos pour les
systemes de particules interagissant
a travers leur rang, et comportement
en temps long de leur limite de
champ moyen

Ce chapitre reprend le contenu de larticle [91], écrit avec Benjamin Jourdain et paru dans
Stochastic Partial Differential Equations: Analysis and Computations. En plus de 'harmonisation
des notations et références avec le reste du manuscrit, les modifications suivantes ont été apportées
dans la version ici présentée :

e les remarques 4.3.2 et 4.4.7 ont été ajoutées;

e I'hypothése (D2) a été symétrisée de sorte que le coefficient de diffusion o2 puisse s’annuler
en 0 et en 1, ce qui a entrainé une légére modification de la preuve du Lemme 4.2.10 et de
I’énoncé du Lemme 4.2.12.

4.1 Introduction

Let a,b : [0,1] — R be continuous functions, with @ > 0. For all u € [0,1], let us define
A(u) = [, a(v)dv and B(u) = [ b(v)dv. Let m be a probability distribution on R. We are
interested in the nonlinear Cauchy problem on [0, +00) x R:

1
Fo(z) = H «m(x),

(4.1)

where H % - refers to the spatial convolution with the Heaviside function.

The partial differential equation in (4.1) is called a scalar quasilinear parabolic equation. It is
a model for several usual nonlinear evolution equations, such as the porous medium equation, for
which B(u) = 0 and the diffusion term has the particular form A(u) = u?, ¢ > 1; or conservation
laws, in which the diffusion term is linear, i.e. A(u) = o?u with 02 > 0. A conservation law is
said to be viscous if 0 > 0 and inviscid if 02 = 0. A particular case of a conservation law is the
Burgers equation, for which B(u) = u?.

In this chapter, we introduce a probabilistic approximation of the Cauchy problem by means
of a system of scalar diffusion processes, interacting through their ranking. We then use this

probabilistic representation to study the long time behaviour of the solution.
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A weak solution to the Cauchy problem (4.1) is a family of functions (F});>o, such that the
mapping
[0,400) — Li,(R)
{ t — Fy

be continuous and such that, for all t > 0, F; takes its values in [0, 1] and for all g € C2°([0, +00) X
R),

/g(t,x)Ft(z)dxf/g(O,:c)H*m(:c)dz
® ® (4.2)

:/R/Ot{%A(Fs(x))(')ig(s,x)—i—B(Fs(x))@zg(S,x)+Fs($)as!](5a$)}d5d$,

where C2°(]0, +00) x R) refers to the space of real-valued C* functions with compact support in
[0,4+00) x R.

When A is C? on [0, 1], we say that (F})¢>o has the classical regularity if (t,z) — Fy(z) is C12
on (0,400) x R and solves (4.1) in the classical sense. The space derivatives (p:):>0 of a solution
(Fi)t>0 with classical regularity satisfies the nonlinear Fokker-Planck equation

Orpi () = %33 (a(H # pe(@))pe(2)) — 0 (b(H * py(2))pe()), (4.3)

therefore it is natural to consider the associated nonlinear stochastic differential equation

X =Xo +/O b(H x Ps(Xs))ds Jr/o o(H x Ps(X,))dWs, (4.4)

P, is the distribution of X,
where o(u) := a(u)'/?, X, has distribution m and is independent of the Brownian motion W.
Due to the discontinuity of the Heaviside function, a direct study of this equation by classical
techniques, such as the use of fixed-point theorems [130], seems out of reach (except when the

diffusion coefficient o is constant, see [382]); therefore we introduce a linearized approximation
of (4.4).

In Section 4.2, we call particle system a solution X" € C([0, +o0),R™) to the stochastic differ-
ential equation in R™

) ) t ) t ) )
X0 = Xy [0 (s [ (en ol < (X)) W,
0 0

1 n
n o _ .
:ut - n E - 5th'n’
i—

where (X{);>1 is a sequence of i.i.d. random variables with marginal distribution m, independent
of the R™-valued Brownian motion (W1,..., W™). Here, the term ¢, > 0 has been added in the
diffusion in order to ensure the well definition of solutions, and it is only required to vanish when
n — +o0o. In Proposition 4.2.1, we prove that as soon as the function A is increasing and m has
a finite first order moment, the flow of time marginals ¢ — pf* of the empirical distribution of the
particle system converges in probability to the unique mapping ¢ — P(t) such that (H % P(t)):>0 is
a weak solution to the Cauchy problem (4.1). This function will be referred to as the probabilistic
solution of the Cauchy problem. Our analysis is essentially based on results obtained for the
particular case of the porous medium equation [84]. A crucial argument in the extension of this
work is the uniqueness of weak solutions to the Cauchy problem stated in Proposition 4.2.2, the
proof of which is adaptated from works by Wu, Zhao, Yin and Lin [137] and Liu and Wang [105] (see
Appendix 4.A). Proposition 4.2.1 has strong connections with recent results by Shkolnikov [127],
see Remark 4.2.6.

(4.5)
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We then give two representations of the mapping ¢t — P(t) as the flow of time marginals of
a probability distribution on the space of sample-paths C(]0, +00),R). More precisely, in Subsec-
tion 4.2.2, we give necessary and sufficient conditions on the coefficients of the Cauchy problem
for the empirical distribution p™ = (1/n) Y"1, 6xin of the particle system in C([0,+00),R) to
converge in probability to the law P of a weak solution to (4.4). In Subsection 4.2.3, we define
the reordered particle system as the reflected diffusion process obtained by increasingly reordering
the positions (X"",..., X;"") of the particles. We prove in Proposition 4.2.15 that the associated
empirical distribution " converges in probability to a probability distribution Pon C([0,400),R)
with time marginals P(t).

Our motivation for introducing the particle system (4.5) is the study of nonlinear evolution
problems, as it has been done for particular equations by Jourdain [83, 84, 85]. However, such
systems of so-called rank-based interacting particles also arise in several contexts (see the intro-
duction of [30] for references), and have received much attention lately. In particular, motivated
by the study of the Atlas model of equity markets introduced by Fernholz [58] (see also Banner,
Fernholz and Karatzas [11]), much work has been done about the rank-based stochastic differential
equation

AX] =D Loy bydt + > 1y o;dW, (4.6)
j=1 j=1
where (Y,!,...,Y;") refers to the increasing reordering of (X},..., X*). The case n = 2 is exhaus-

tively studied by Fernholz, Ichiba, Karatzas and Prokaj [61]. For n > 3, Ichiba, Karatzas and
Shkolnikov [79] show that strong solutions can be defined as long as there is no triple collision.
Triple collisions are studied in [78]. Concentration of measure bounds for the local time at collisions
and statistics related to this system are given by Pal and Shkolnikov in [116].

As far as the long time behaviour of solutions to (4.6) is concerned, Ichiba, Papathanakos,
Banner, Karatzas and Fernholz [31] prove that under some convexity assumption on the sequence
of drift coefficients (b;), the process of spacings (Y;2 — Y;,...,Y” — Y"!) converges in total
variation to its unique stationary distribution when t — 4+o00. When the sequence of diffusion
coefficients is such that 03 — 0% = .-+ = 02 — ¢2_,, this stationary distribution is the product
of exponential distributions. These results extend the work by Pal and Pitman [115], in which
oj =1 for all j. In this case, the particle system solution to (4.6) does not have any equilibrium,
as the process of its center of mass is a drifted Brownian motion. However, the convergence to
equilibrium in total variation of its projection on the hyperplane {z; + -+ + x, = 0} can be

deduced from the long time behaviour of the process of spacings [115]. Convergence rates are
provided by Ichiba, Pal and Shkolnikov [30] using Lyapounov functionals. Based on the Poincaré
inequality satisfied by the stationary distribution, Jourdain and Malrieu [389] prove the convergence

to equilibrium in y? distance with an exponential rate, which is uniform in n. However, due to the
lack of scaling property in the dimension n for the x? distance, one cannot deduce from their result
the convergence to equilibrium of the probabilistic solution (F});>o to the Cauchy problem (4.1),
which is the purpose of Sections 4.3 and 4.4 of this chapter.

In many cases, transport metrics, and the Wasserstein distance in particular, are contractive
for the flow of solutions to parabolic equations: see von Renesse and Sturm [136] for the linear
Fokker-Planck equation, Carrillo, McCann and Villani [37], Cattiaux, Guillin and Malrieu [40] and
the recent work by Bolley, Gentil and Guillin [22] for the granular media equation and Bolley,
Guillin and Malrieu [23] for the kinetic Vlasov-Fokker-Planck equation. We will prove such a
contractivity property by a probabilistic argument and without further regularity assumption, and
then take advantage of it to state the convergence to equilibrium of the solutions.

Let us first recall some useful properties of the one-dimensional Wasserstein distance (see
Villani [135] for a complete introduction). Let p > 1. For all probability distributions p and v on
R, we define

W,(u,v):= inf E(X-YP)V?,
(V) i (I )

where II(u, v) refers to the set of random couples (X,Y") such that X has marginal distribution p
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and Y has marginal distribution . As soon as both y and v have a finite moment of order p, then
W, (1, V) < +00.

Given a right-continuous nondecreasing function F, we define its pseudo-inverse as F~1(u) :=
inf{fx € R: F(x) > u}. Then it is a remarkable feature of the one-dimensional case that the
Wasserstein distance W, (u, v) can be expressed in terms of the pseudo-inverses of the cumulative
distribution functions F), := H * u and F), := H xv as

W2 (4, v / F (u) — By (u)Pdu. (4.7)

This leads to the following useful expressions: let (z1,...,2,) € R™, we denote by (y1,...,yn) its
increasing reordering and by u™ its empirical distribution. Then for all probability distribution g,

W2 (", 1) Z / ol w)Pdu < Z / CF)Pdu. (48)

(i— 1)/n
In particular when g is the empirical distribution p™ of some vector (z7,..., ] ) with increasing
reordering (y4,...,Y.),
1 1o
Wh (™, p™) = gzhﬁ —yil" < EZI%‘ — P (4.9)
i=1 i=1

We finally point out the fact that we will indifferently refer to the Wasserstein distance between p
and v as Wp(u,v) or Wy(F,, F,).

In Section 4.3 we study the evolution of the Wasserstein distance between two probabilistic
solutions (F})¢>0 and (Gt)i>o of the Cauchy problem (4.1) with different initial conditions Fy and
Go. We use the contractivity of the reordered particle system in Proposition 4.3.1 to prove that
the flow t — W, (Fi,G;) is nonincreasing. Then we provide an explicit expression of the time
derivative of the flow in Proposition 4.3.4. Our work is related to results exposed in the review
papers by Carrillo and Toscani [38] and Carrillo, Di Francesco and Lattanzio [35]; a further review
is given in Remark 4.3.6.

Section 4.4 is dedicated to the convergence to equilibrium of the solutions. We call stationary
solution the cumulative function F,, of a probability distribution m., with a finite first order
moment, such that if (F})¢>o is the probabilistic solution of the Cauchy problem (4.1) with Fy =
F, then for all ¢t > 0, F; = Fi. It is clear from (4.2) that F is a stationary solution if and only
if it solves the stationary equation (1/2)0?(A(Fx)) — O(B(Fx)) = 0, in the sense of distributions.

We solve the stationary equation in Proposition 4.4.1, extending the results of Jourdain and
Malrieu [89] who deal with the viscous conservation law. Using the results of Section 4.3 as well
as the probabilistic approximation built in Section 4.2, we then prove in Theorem 4.4.6 that the
probabilistic solutions converge to the stationary solutions in Wasserstein distance.

In [89], the solutions of the viscous conservation law are proven to converge exponentially fast
to equilibrium in x? distance, under the condition that the initial measure m be close enough to
the stationary solution mq,. Theorem 4.4.6 does not involve such a condition, but the proof does
not provide any indication on the rate of convergence of (F;):>o to the equilibrium. As we remark
in Subsection 4.4.3, one can recover an exponential rate of convergence in (quadratic) Wasserstein
distance in the setting of [39].

Notations

Given a separable metric space S, we denote by P(S) the set of Borel probability distribu-
tions on S, equipped with the topology of weak convergence. The space C([0,400),S) of con-
tinuous functions from [0,4+00) to S is provided with the topology of the uniform convergence
on the compact sets of [0,+00). Besides, for all probability distribution u € P(C([0,4+00),.5)),
the marginal distribution at time ¢ > 0 is denoted by p; € P(S). The canonical application
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P(C([0,4+00),S)) — C([0,+00),P(S)) associates the distribution p with the flow of its time
marginals ¢ — ;. Finally, if f is a real-valued bounded function then || f||o refers to the supremum
of the function |f|.

Assumptions

Our results are valid under various assumptions on the degeneracy of the parabolic equation.
Let us introduce the following conditions:

(D1) The function A is increasing.
(D2) For all u € (0,1), a(u) > 0.
(D3) There exists a > 0 such that, for all u € [0, 1], a(u) > a.
Obviously, (D1) is weaker than (D2), which is weaker than (D3).
We also introduce the two following conditions on the regularity of the coefficients:
(R1) The function a is C! on [0, 1].
(R2) The function a is C? on [0, 1], the function b is C! on [0,1] and there exists 8 > 0 such that
the functions a” and b’ are 8-Holder continuous.

The condition (R1) is a natural necessary condition for the Cauchy problem (4.1) to admit classical
solutions. The stronger condition (R2) will be used in Lemma 4.2.7 to ensure the existence of
classical solutions to the Fokker-Planck equation (4.3).

Finally, the existence and integrability of stationary solutions will depend on the two following
equilibrium conditions:
(E1) For all u € (0,1), B(u) > 0, B(1) = 0 and the function a/2B is locally integrable on (0,1).
(E2) The function a/2B is such that

2 a(u)u b a(u)(1 —u)
/o 2|B<u>|d“+/1/2 2B U

4.2 Probabilistic approximation of the solution

4.2.1 Existence and uniqueness of the probabilistic solution

Following [13], for all n > 1 there exists a unique weak solution X" = (X/",..., X/"™)y0
to the stochastic differential equation (4.5). We call it the particle system and denote by p™ the
random variable in P(C([0, +00),R)) defined by p" := (1/n) >_1r | dxin.

Let T > 0, possibly T = +oco. We denote by P(T) the set of continuous mappings ¢ €
[0,T) — P(t) € P(R) such that for all ¢t € [0,T"), the probability distribution P(¢) has a finite first
order moment and the function ¢ — [, [2|P(t)(dz) is locally integrable on [0,T). Let F(T') :=
{(H = P(t))e0,1); P € P1(T)}; note that F(T')  C([0,T), L} (R)). The particular sets P1(400)
and F(4o00) are simply denoted by Py and F.

Throughout this chapter, we will call probabilistic solution the solution to the Cauchy prob-
lem (4.1) given by the following proposition.

Proposition 4.2.1. Under the nondegeneracy condition (D1) and the assumption that m has a
finite first order moment, there exists a unique weak solution (Fi)i>o to the Cauchy problem (4.1)
in F, and it writes (H % P(t))i>0 where the mapping t — P(t) is the limit in probability, in
C([0,400),P(R)), of the sequence of mappings t — ui'.

The proof of Proposition 4.2.1 relies on Proposition 4.2.2 and Lemmas 4.2.3 and 4.2.4. For all
n > 1, let 7' denote the distribution of ;™ in P(C([0, +00),R)). In Lemma 4.2.3, we prove that the
sequence (1'™),>1 is tight. Since the canonical application P(C([0,4+00),R)) — C([0, +00), P(R))
is continuous, then the sequence (7™),>1 of the distributions of the random mappings ¢ — pf in
C([0,400), P(R)) is tight. Let 7> be the limit of a converging subsequence, that we still index by
n for convenience. Lemma 4.2.4 combined with Proposition 4.2.2 proves that 7> concentrates on
a single point P € Py, which is such that the function (¢,z) — (H * P(t))(z) is a weak solution
of (4.1).
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Proposition 4.2.2. Assume that the nondegeneracy condition (D1) holds.
1. Let T > 0, possibly T = 4oo. Let (Ftl)te[O,T) and (FtQ)te[O,T) € F(T), such that for all
g € C*([0,T) x R), (Ftl)te[O,T) and (FtQ)te[O,T) satisfy (4.2). Then, for all t € [0,T),
F}! = F?.
2. There is at most one weak solution to the Cauchy problem (4.1) in F.

Proof. The second point of the proposition clearly follows from the first point, and the first point
is proved in Appendix 4.A. O

Lemma 4.2.3. The sequence (7'™),>1 is tight.

Proof. Since the distribution of (X%7 ..., X™") in C([0,+0oc),R™) is symmetric, according to
Sznitman [130, Proposition 2.2, p. 177], (7'™),>1 is tight if and only if the sequence of the distri-
butions of the variables X" € C([0, +00),R) is tight. This latter fact classically follows from the
fact that for all n > 1, Xé ™ = X! has distribution m on the one hand, and from the Kolmogorov
criterion as well as the boundedness of the coefficients a and b and the sequence (cy)n>1 on the
other hand. O

Lemma 4.2.4. Under the assumption that m has a finite first order moment, the distribution w°
is concentrated on the set of mappings P € Py such that the function (t,x) — (H % P(t))(z) is a
weak solution to the Cauchy problem (4.1).

Proof. We first prove that 7> concentrates on P;. Let u® be a variable in C([0, +00), P(R)) with
distribution 7*°. We will prove that for all ¢ > 0,

sup /|z|u°°(s)(dz) < 400 a.s.,
sef0,t] /R

so that taking ¢ in a countable unbounded subset of [0, 4+00) yields > € Py almost surely.
Let ¢ > 0. For all M > 0, the function far : p+— sup,¢o Je(lz| A M)p(s)(dz) is continuous
and bounded on C([0, 4+00), P(R)). For fixed n,

E(fu(i") < =S B ( w |X;‘v"|>
=1

s€[0,t

1n
< d 15|00 + — E
< [ laim(az) + o] +nzl <sup

i—1 s€[0,t]

"

where we have used the Cauchy-Schwarz inequality in the second line and the Doob inequality as
well as the fact that m has a finite first order moment in the third line. The constant C' depends
neither on M nor on n. As a consequence, lim inf s 400 E(fas(1°°)) < C and by Fatou’s lemma,

[ e oty aw

<C,

C>E <liminf fM(;LOO)> >E < sup liminf /R(|:L'| /\M)/LOO(S)(d:L')> .

M——+o0 s€[0,t] M——+o0

By the monotone convergence theorem,

it [ (ol A (9)de) =t [ (la] 4 M= (s)(da) = [ e (o))

so that E (SUPse[o,t] Jg || g (s)(dz)) < C, which yields the expected result.

It now remains to prove that (¢, ) — (H * u>(t))(z) is almost surely a weak solution of the
Cauchy problem (4.1). The computation is made for the porous medium equation in [84, Lemma
1.5] and can be straightforwardly extended; it relies on the uniform continuity of a@ and b on [0, 1]
and the fact that ¢,, — 0. O



4.2 Probabilistic approximation of the solution 99

Remark 4.2.5. Without assuming neither (D1) nor the existence of a first order moment for m,
one can still prove that the sequence (7"),>1 is tight and that the limit of any converging subse-
quence concentrates on weak solutions to the Cauchy problem (4.1), that of course not necessarily
belong to F. Thus, the existence of weak solutions holds under very weak assumptions.

Remark 4.2.6. The law of large numbers for the sequence of mappings ¢ — puj stated in Propo-
sition 4.2.1 has recently been addressed under more restrictive conditions on the initial condition
m and the coefficients @ and b. In [127], Shkolnikov studies the particle system (4.5) with the
specific condition that the process of spacings between two particles with consecutive positions
in R be stationary (the description of the stationary distribution is given in [81]). Then in the
case where a is affine and b is C!, with b’ uniformly negative, the sequence of mappings t + u?
is proven to converge in probability, in C([0,+0c0), P(R)), to the unique mapping ¢ — P(t) such
that (t,x) — (H * P(t))(x) is a weak solution to the Cauchy problem (4.1) for a specified initial
condition Fy. In place of our Proposition 4.2.2, the author uses Gilding’s theorem for unique-

ness [72, Theorem 4] and therefore needs to assume that any weak solution to the Cauchy problem
is continuous on [0, +00) X R when m does not weight points.
In the more recent article by Dembo, Shkolnikov, Varadhan and Zeitouni [48], the stationarity

assumption is removed and the continuity of (F});>¢ is obtained as a consequence of mild regularity
and nondegeneracy assumptions on the coefficients of the Cauchy problem (4.1). More precisely,
the authors establish a large deviation principle for the sequence (7™),>1, with a rate function
that is infinite on the set of mappings ¢ — P(t) such that the function (¢,x) — (H x P(t))(x) is
discontinuous. They also prove that a zero of the rate function is a mapping ¢ — P(t) such that
the function (¢,z) — (H * P(t))(z) is a continuous weak solution to (4.1), and deduce the law of
large numbers as a consequence of Gilding’s uniqueness theorem.

Both approaches heavily rely on the continuity of the solution (F});>¢ to (4.1), as it is a crucial
condition to use Gilding’s uniqueness theorem. While we address the regularity of (F})i>o in
Lemma 4.2.7 below, we insist on the fact that our proof of Proposition 4.2.1 does not require that
(F})i>0 be continuous, which allows us to relax the regularity and nondegeneracy assumptions on
m, a and b with respect to [127, 48]. However, the regularity of (F};);>o plays a more important
role in establishing the law of large numbers for the sequence of empirical distributions p" €
P(C([0,+00),R)) in Subsection 4.2.2. Therefore, in the proof of Lemma 4.2.10, we prove that,
under the nondegeneracy condition (D2), the function F} is continuous on R, d¢-almost everywhere.

We conclude this subsection by discussing the regularity of the probabilistic solution (F})¢>o.
For all finite T > 0, we denote by C}*([0,T] x R) the set of C'? functions on [0, T] x R that are
bounded together with their derivatives. For all > 0, the Holder spaces H'(R) and H'/2!([0,T] x
R) are defined as in [97, p. 7].

Lemma 4.2.7. Assume that the uniform ellipticity condition (D3) and the regularity condition
(R2) hold, that m has a finite first order moment and that H*m is in the Hélder space H'(R), with
I =3+8. Then for all finite T > 0, the probabilistic solution (F})i>o to (4.1) is in C} ([0, T] x R).
In particular, it is a classical solution to (4.1).

Proof. Fix a finite T > 0. Then owing to the assumptions (D3), (R2) and on the regularity of
H x m, the classical result of LadyZenskaja, Solonnikov and Ural’ceva [97, Theorem 8.1, p. 495]
ensures that the Cauchy problem in divergence form

0, F(z) = s (%a(ﬁt(x))azﬁt(x) _ B(E(m))) ,

Fy(z) = H « m(z),

(4.10)

admits a classical bounded solution F , which belongs to the Holder space H/?!([0,T] x R), with
I = 3+ 8. Certainly, F satisfies (4.2) for all g € C2°([0,T) x R). Let us now prove that F e F(T).
On the one hand, by the maximum principle [97, Theorem 2.5, p. 18], for all t € [0, T7, ||}~7t||OO <1.
On the other hand, the space derivative p := 9, F is C12 on [0,T] x R and satisfies the linear
parabolic equation

Ope(x) = alt, 2)2Pr(x) + b(t, ©)0u Dy (x) + ¢(t, 2)pr (),
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where

alt,z) = %a(ﬁ}(x)),

Blt,2) = Sa’ (Fu(e))u Fol() — b(Eu(x),

ot z) : %a"(ﬁt(x))(azﬁt(z))Q — U (Fy(2))0, Fy ().

The coefficients @, b and € are continuous and bounded in [0, 7] x R and, due to the condition (D3),
the operator is parabolic. By the maximum principle [66, Theorem 9, p. 43], and since py > 0,
then p(z) > 0 for all (¢,2) € [0,7] x R.

As a consequence, for all ¢t € [0,7], p; is the density of a nonnegative bounded measure on
R, with total mass lower than 1. Let us now prove that the mapping ¢ — p:(x)dx is continuous
for the topology of weak convergence. Since p is continuous on [0,7] X R, the mapping ¢t —
pe(x)dz is continuous for the topology of vague convergence. Besides, as, for all s,¢ € [0,T],
sup,eg |[Fi(2) — Fs(z)| < [|0:F||so|t — s, the total mass ¢ — [, py(z)dz is continuous.

Hence, the continuous mapping ¢ — p;(x)dx is a measure-valued solution to the linear Fokker-
Planck equation

Ot = 5 (a (Fy(a ))pt) — az(b(ﬁt(x))ﬂt);

the coefficients of which are measurable and bounded functions on [0,7] x R. Therefore by Fi-
galli [63, Theorem 2. 6] and since po is a probability density, then for all ¢ € [0, T, p; is the density
of the dlstrlbutlon of Xt, where (Xt)te[o,T] is a weak solution to the stochastic differential equation

)Zt)?ﬁ/o b(ﬁs(fcs))dH/O o(Fy(X))dWs,

where X, has distribution m and is independent of the Brownian motion W. Now one easily
deduces from the assumption that m has a finite first order moment and from the boundedness
of o and b that F' € F (T'). Therefore, by the first part of Proposition 4.2.2, F is the restriction
to [0, T] of the probabilistic solution (Ft)tzo to (4.1) given by Proposition 4.2.1. Hence, (F};);>0 €
Cp2([0,T] x R) and the fact that (F});>o is a classical solution to (4.1) now follows from the fact
that T is arbitrarily large. [l

Remark 4.2.8. The regularity assumption on the initial condition H*m is far from being necessary
for the probabilistic solution (F;)¢>o to have the classical regularity. For instance, it is known
for the case of the viscous conservation law that (F};);>o has the classical regularity even for a
discontinuous initial condition H % m (see [39, Corollary 1.2]).

4.2.2 The nonlinear martingale problem

The propagation of chaos result of Proposition 4.2.1 only deals with the flow of time marginals
of the empirical distribution p". A natural further question is the convergence in P(C([0, +00),R))
towards the solution to a proper nonlinear martingale problem.

Recall that the distribution of the random variable u™ in P(C(]0, +00),R)) is denoted by 7™
and by Lemma 4.2.3, it is tight. Let X refer to the canonical process on the probability space
C([0, +00), R), namely X(w) := w; for all w € C([0,+0o0),R). We shall also denote by C%(R) the
space of C? functions ¢ : R — R such that ¢, ¢’ and ¢” are bounded.

Definition 4.2.9. A probability distribution P € P(C([0,4+00),R)) is called a solution to the
nonlinear martingale problem if:

e PFh=m

e for all ¢ € CZ(R), the process M® defined by Md) =o(Xy) — fo s)ds is a
P-martingale, where, for all jp € P(R), L(p)d(x) := b(H*p(x ))¢'( ) (1/2) (H*u( ))¢7"( );

o dt-almost everywhere, P; does not weight points.
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Following [34, Lemma 1.2], if P is a solution to the nonlinear martingale problem, then the
function (¢,z) — H x P;(z) is a weak solution to the Cauchy problem (4.1). Besides, since the
coefficients a and b are bounded, it is easily seen that if m has a finite first order moment, then
this solution belongs to F, therefore it coincides with the probabilistic solution (F});>¢ given by
Proposition 4.2.1.

Owing to Lévy’s characterization of the Brownian motion, a probability distribution solving
the nonlinear martingale problem is the distribution of a weak solution to the nonlinear stochastic
differential equation (4.4). Reciprocally, the distribution P of a weak solution to (4.4) is a solution
to the nonlinear martingale problem if and only if, d¢-almost everywhere, P; does not weight
points. When there exists a unique solution to the nonlinear martingale problem, we will refer to
the associated weak solution X of (4.4) as the nonlinear diffusion process.

Let us first investigate the existence of a solution to the nonlinear martingale problem.

Lemma 4.2.10. Under the nondegeneracy condition (D2) and the assumption that m has a finite
first order moment, the limit of any converging subsequence of (7'™")p>1 concentrates on the set of
solutions to the nonlinear martingale problem.

Proof. By Lemma 4.2.3, the sequence (7'"),>1 is tight. Let 7/°° denote the limit of a converging
subsequence, that we still index by n for convenience. Let @) refer to the canonical variable in the
probability space P(C([0, +00),R)). Since the variables X} are i.i.d. with marginal distribution
m, then 7’*-a.s., Q9 = m. Let us now prove that 7'*°-a.s., dt-almost everywhere, (); does not
weight points. By Proposition 4.2.1, n'*-a.s., for all ¢ > 0 one has H x Q; = F; where (F})¢>0
is the probabilistic solution to the Cauchy problem (4.1). Therefore it is enough to prove that,
dt-almost everywhere, the function F; is continuous on R. In this purpose, we first remark that
the mapping ¢ — P(t) solves a linear Fokker-Planck equation. Indeed, since A and B are C! on
[0,1], the functions (t,z) — A(Fi(z)), (t,z) — B(Fi(z)) are of finite variation and the associated
Stieltjes measures write d(A(Fy(z))) = a(t,x)P(t)(dz), d(B(F;(x))) = b(t, z) P(t)(dx), where

a(Fi(z))
a(t,z) == A(Fy(x)) — A(Fi(z7))
Fy(z) — Fy(z™)

if F; is continuous in z,

otherwise,

and b(t, x) is similarly defined. Remark that the functions @ and b are bounded, and |[a||sc < ||a||oo,
[16]lco < ||b]|oo- As a consequence, the continuous mapping ¢ — P(t) is a measure-valued solution
on [0,400) to the Fokker-Planck equation with measurable and bounded coefficients

8, P(t) = %8§(d(t,x)P(t)) — 8, (b(t, 2) P(2)).

_ Fix a finite 7 > 0. Then by Figalli [63, Theorem 2.6], there exists a probability distribution
P € P(C([0,T],R)) such that, for all ¢t € [0,T], F; = P(t) and P is the distribution of a weak
solution (X¢)¢ejo, 7] on [0,77] to the stochastic differential equation

t t
X =Xo —|—/ b(s, Xs)ds —|—/ 7(s, Xs)dWs,
0 0

where &(t,x) := a(t, x)'/2. The process (X;).e(o,7) satisfies the condition of Bogachev, Krylov and

Rockner [19, Remark 2.2.3, p. 63]. Hence the positive measure & (¢, z)P;(dz)dt admits a density
p(t,z) € L2 ([0,T] x R). Recall that, by (D2), 0%(u) can only vanish for u = 0 or u = 1. As
a consequence, &(t,x) can only vanish if F} is continuous at  and Fi(x) = 0 or Fy(xz) = 1. But
since F} is the cumulative distribution function of P;, the set of such points x is P;-negligible. As
a consequence, P-almost everywhere, (¢, z) > 0, therefore

p(t, )

Pt(dac)dt = L(5(t.2)>0} —6(15 )

dadt
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and consequently, P;(dz) admits a density dt-almost everywhere in [0, T]. Since 7 is arbitrary, we
conclude that F; is continuous on R, d¢-almost everywhere.
We finally prove that m'>-a.s., for all ¢ € C2(R), the process M? defined by Mtd) = o(Xy) —
- fot L(Qs)9(Xs)ds is a Q-martingale. We will proceed as in the proof of [34, Lemma 1.6].
Let ¢ € C%(R), k>1,0<s1<---<spy<s<tandg: R* — R continuous and bounded. For all
Q € P(C([0, +o0),R)), we define

9(Q) == <Q,g<Xsl, LX) (¢<Xt> — 6(X,) — / tL(QT)qb(XT)dr) > .

By It6’s formula, for all n > 1,

G(u") = % Zg(Xsl, . ,Xsk)</ & (XM (cn + o (H * p (X)) AW

t 2
+ [ (ot ipoeim) + 5 ) ar),

so that, since (¢,)n>1, 0, g, ¢’ and ¢ are bounded, lim,—, + o E(G(1")?) = 0. We now check that
the functional G is continuous at all P € P(C([0,4+00),R)) such that, dr-almost everywhere, P,
does not weight points. Let (P7),>1 be a sequence of probability distributions on C([0, +00), R)
weakly converging to P € P(C([0,+00),R)) such that, dr-almost everywhere, P, does not weight
points. Then, for all ¢ > 1,

G(PY) = <Pq,g<Xsl, ) [ - L(PT>>¢<XT>dr>
. (4.11)

(P10 ) (9000 — o) - | t L(P)OXr) ).

On the one hand, as g and the derivatives of ¢ are bounded, there exists C' > 0 independent of ¢
such that, for all ¢ > 1,

’<pq,g(xsl, LX) / (P - L<Pr>>¢<Xr>dr>\

< C/ (sup|b (H % PX(x)) — b(H * P-(z))| +sup|a(H * P!(x)) — a(H *PT(gc))|) dr.
Tz€R zeR

By Dini’s theorem, dr-almost everywhere in [s, t], H x P4 converges uniformly to H * P, on R when
q — +00. As the functions b and a are bounded and uniformly continuous on [0, 1], by Lebesgue’s
theorem, the right-hand side above goes to 0 when ¢ — +400.

On the other hand, dr-almost everywhere in [s,¢], the function  — L(P,)¢(x) is contin-
uous on R and uniformly bounded in 7, therefore by Lebesgue’s theorem again, the function
(Xr)r>0 > g(Tsys ooy Tsy, ) (D) — f L(P;)p(x,)dr) is continuous on C([0, +00),R). As a
consequence, the second term in the rlght hand s1de of (4.11) converges to G(P) and we conclude
that limg_, 100 G(P?) = G(P).

Since we have proved that 7/°°-a.s., dr-almost everywhere, ), does not weight points, then

lim E™"(G(Q)%) =E" (G(Q)?),

n—-+o0o

100

which rewrites

E™(6(Q)%) = lim E(G(u")*) =0.

n—-+oo
As a consequence, taking ¢, (s1,..., Sk, s,t), g in countable subsets leads to the conclusion that
m'>-a.s., Q solves the nonlinear martingale problem. [l

We now address the uniqueness of solutions to the nonlinear martingale problem. The following
criterion is due to Stroock and Varadhan [129].
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Lemma 4.2.11. Under the assumptions of Proposition 4.2.1, if the function (t,x) — a(Fi(x)) is
uniformly positive on the compact sets of [0,+00) X R, then there is at most one solution to the
nonlinear martingale problem.

Proof. Let P and @ denote two solutions to the nonlinear martingale problem. Then they both
solve the following linear martingale problem in R € P(C([0, +0),R)):

 Ro=m;

e for all ¢ € CZ(R), the process M? defined by

M = 0l - 6060) ~ [ { & (XME () + 307 C)alF (K)o

is a R-martingale.

The functions a(Fs(x)) and b(Fs(x)) are measurable and bounded, and a(Fs(x)) is uniformly
positive on the compact sets of [0, +00) x R. By [129, Exercise 7.3.3, p. 192], P = Q. O

Lemma 4.2.12. Assume that m has a finite first order moment, and either the uniform ellipticity
condition (D3) holds, or the nondegeneracy condition (D2) holds and:

e if 02(0) = 0, then Fy(z) > 0 for all z € R,
e if0%(1) =0, then Fy(z) < 1 for all z € R.
Then the function (t,x) — a(Fi(x)) is uniformly positive on the compact sets of [0, +00) x R.

Proof. 1f (D3) holds, the result is obvious. Now if Fy(z) > 0, for all compact subset K € [0, +00) X
R, by the first part of Lemma 4.B.1 in Appendix 4.B, there exists ug > 0 such that for all (¢,z) € K,
Fy(z) > up. If (D2) holds in addition, for all (t,z) € K, a(Fy(z)) > inf,>u, a(u) > 0. The same
arguments hold for the symmetric case Fy(z) < 1. O

We conclude this subsection by stating a propagation of chaos result for the empirical distri-
bution p™ of the particle system in P(C([0, +c0), R)).

Corollary 4.2.13. Under the assumptions of Lemma 4.2.12, there exists a unique solution P to
the nonlinear martingale problem, and it is the limit in probability, in P(C([0,+00),R)), of the
sequence of empirical distributions p™.

4.2.3 The reordered particle system

For all t > 0, let Y;* := (Y;"",...,Y;*™) denote the increasing reordering of the vector
(th’", ..., X;"™). Then the sample-paths of the process Y™ are in C([0,+o0), D,,), where D,
refers to the polyhedron {(y1,...,yn) ER":y1 < -+ <y, }.

It is well known that Y™ is a normally reflected Brownian motion on dD,,, with constant
drift vector and constant diagonal diffusion matrix. More precisely, according to [34], the process
Eﬂl, ..., ") defined by Bi = > fot ll{Xg,n:X;-,n}dWSj is a Brownian motion. By the It6-Tanaka
ormula,

YO =Yg 4 b(i/n)t + (cn + 0 (i/n))Bi + Vi, (4.12)

where V is a R™-valued continuous process with finite variation |V| which writes V; = fot (vE —
AV s with d|V]i-ace., 7 = 47T =0, > 0 and 4} (V""" =Y~ ""™) = 0. We shall now refer to
the process Y™ as the reordered particle system and denote by u" € P(C([0, +00), R)) its empirical
distribution.

Lemma 4.2.14 (Tanaka [132]). For a given random variable Yg* € D,, and an independent R™-
valued Brownian motion (B, ..., B"™), there exists a unique process (Y™, V) € C(]0, +00), Dy, x R™)
satisfying all the above conditions.
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For Q € P(C([0,+),R)) and t1,...,tx > 0, let us denote by Qy, . € P(R¥) the finite-
dimensional marginal distribution of Q. Let us define A as the set of probability distributions
Q € P(C([0,40),R)) such that, for all 0 < ¢; < -+ < tg, Q4.+, is the distribution of (H =
Qi) YU),...,(H*Q,) 1 (U)) where U is a uniform random variable on [0, 1]. Remark that any
Q € A is exactly determined by the flow of its one-dimensional marginals ¢ — Q.

Proposition 4.2.15. Under the assumptions of Proposition 4.2.1, the empirical distribution p"
of the reordered particle system converges in probability, in P(C([0, +00),R)), to the unique P € A
such that for all t > 0, b = P(t), where the mapping t — P(t) is given by Proposition /.2.1.
In particular, for all t > 0, H ﬁt = F}, where (F)i>o is the probabilistic solution to the Cauchy
problem (4.1).

Proof. Let @™ refer to the distribution of " in P(C([0,4+00),R)). According to Sznitman [130],
the tightness of (7"),>1 is equivalent to the tightness of the sequence of the distributions of the
variables Y% € C([0,+00),R) where 6, is a uniform random variable in the set {1,...,n},
independent of Y. For all n > 1, YOH"’” has distribution m. Besides, for s <t and p > 1,

n On,n 1 S @n 7,m ~n ~n
E (jyfen —y/m"p) = = 3B [V - ¥0P) = B (Wh(GEE i)
i=1
Now, by (4.9) and exchangeability of (X;}"")¢>0, ..., (X]"™)i>0,
~n ~n 1 S @,n ©,m n ,n
E (WG, i) < — Y (1X0" = X{7P7) =E (IX2" - X)),
i=1

so that, by the proof of Lemma 4.2.3 and the Kolmogorov criterion, the sequence (7™),>1 is tight.

It is clear from the definition of the reordered particle system that for all ¢ > 0, up = np,
therefore it is already known from Proposition 4.2.1 that i} converges in distribution to P(t).
Consequently, the proof of Proposition 4.2.15 requires nothing but a uniqueness result for the
support of any limit point of (7™),>1.

The latter is a consequence of the following remark. Certainly, u™ € A, and the set A is closed
in P(C(]0, +0),R)) by [85, Lemma 3.5]. Hence, any limit point of (7™),,>1 is concentrated on the
unique probability distribution P € A such that for all ¢ > 0, P = P(¢). O

4.2.4 Propagation of chaos in Wasserstein distance

The original particle system defined by (4.5) is exchangeable, therefore the propagation of
chaos result stated in Proposition 4.2.1 implies that the distribution Ptl’n of th ™ converges weakly
to P(t) in P(R). This convergence result can be strengthened in Wasserstein distance.

Corollary 4.2.16. Under the nondegeneracy condition (D1) and the assumption that m has a
finite moment of order p > 1, then Ptl’" and P(t) have a finite moment of order p, and

. 1,n _ 3 p(,,Nn —
Proof. Let t > 0. As just seen before the corollary, Ptl’" converges weakly to P(t). To prove that

this convergence holds in the Wasserstein distance of order p, it is sufficient to prove that the
sequence (| X;"™|P),> is uniformly integrable (see Villani [135, Theorem 6.9]). For all ¢ > 1,

q)) <C, (4.13)

where C' does not depend on n. Thus, the sequence (|Xt1” — X3|P)n>1 is uniformly integrable, and
since | X "|P < 2P71(| X" — X3|P +|X3[P) then the sequence (|X"[P),>1 is uniformly integrable.
Therefore P/™ and P(t) have a finite moment of order p and W,(P"", P(t)) — 0.

t
E (X} - X3)7) < 207! ((tnbnoo)q +E (\ | ew ot sty aw!




4.3 Contraction of the Wasserstein distance between two solutions 105

Let M > 0. Then, by (4.8),

i/n

D, M - i/n 7,1 —1 P + & i, —1 P
Wi Py =3 [ v antaus 30 [T Qi m e

n i/n . n n .
< Z/( o) Y = B )Py e+ Z/ N (V5" = F7 N (w)P A M)du.
1— n i=1 11— n

On the one hand,
1
Z / (Y™ — B ()P A M)du = / (CH % 1)~ () — Fy ()P A M)du,
(i—-1)/n 0

and the function p € P(R) — fo |(H % )~ (u) — F7 ' (u)[P A M)du is continuous and bounded.
Therefore, by Propositmn 4.2.1,

lim E / (JY;"™ — F7 Y (w)|P A M)du | = 0.
Ll (Z “)/nlt p o (w)] ) )

On the other hand, remarking that for all z,y € R,

|2 = yPLje—ypp2ary < |2 =YL gja2 g pvaresay + 12 = YLy zevarie 2 (4.14)
< 2P[2P Loz nayovy + 28|y [P Ly o> a0y

we write

Z/ -1)/ thzm - Ft71(u)|p]l{|Yti7n_Ftil(u”pzj\/f}du

| /\

—Z|Ym Lovinpzayony +2° / B Ly s sy A

i,mn —1
FZW |p]1{|xz’”\p2M/2p}+2p/0 I @PL ot o vapey
=1

We deduce from the exchangeability of the variables X;*™ ..., X/"", the uniform integrability of
(|X/""P)n>1 and the finiteness of fol |E; " (w)[Pdu = [, [2[P P(t)(dz) that

n i/n )
lim supE <Z/( |y, " — Ft_l(u)lp]l{yti,nFtl(u)p>M}du> =0,

M —+o00 n>1 i—l)/n

so that E[WP(ui', P(t))] — 0. O

4.3 Contraction of the Wasserstein distance between two so-
lutions

Let Fy and G be the cumulative functions of two probability distributions with a finite first
order moment. Under the condition (D1), by Proposition 4.2.1 there exist a unique probabilistic
solution (F});>o to the Cauchy problem (4.1) with initial condition Fp, and a unique probabilistic
solution (Gy)¢>o to the Cauchy problem (4.1) with initial condition Go. This section addresses
the behaviour of the flow ¢ — W,(F;,G;). In Proposition 4.3.1 we prove that it is nonincreasing
it W, (Fo, Go) < 400, using only the contractivity of the reordered particle system. Then, assum-
ing the classical regularity of (F});>0 and (Gy);>0, we provide an explicit expression of the time
derivative of the flow t — WP(F;, Gy).

We point out the fact that we will sometimes call ezpectation or moment of a cumulative
distribution function the expectation or the moment of the derivated probability distribution.
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4.3.1 Monotonicity of the flow

We first deduce from a natural coupling between two versions of the reordered particle system
that the flow t — W, (F}, G;) is nonincreasing.

Proposition 4.3.1. Assume that the nondegeneracy condition (D1) holds and that Fy and Go
have a finite first order moment. Then, for all p > 1,

o if W,(Fo,Go) < 400, then the flow t — Wy (Fy, Gt) in nonincreasing;

o if W,(Fo,Go) = 400, then for allt > 0, W,(F;, G¢) = +o0.

Proof. We deduce the monotonicity property from the contractive behaviour of the reordered
particle system. Let (3',...,3") be a R"-valued Brownian motion and let U',... U™ be inde-
pendent uniform variables on [0, 1]. Let us denote by (U™, ..., U(™) the increasing reordering of
(U',...,U™). Forall 1 <i<mn,let Y := Fy Y (U®) and Y := GgH(UD). By Lemma 4.2.14,
there exists a unique strong solution (Y, V¥) € C([0,+00), D,, x R™) to the reflected stochastic
differential equation

VI =Yg 4 b(i/n)t + (en + o (ifn))B; + VT,

and similarly, we denote by (Y¢ V%) the unique strong solution in C(]0, +00), D,, x R™) to the
reflected stochastic differential equation

YO = Y 4 b(i/n)t + (n + o (i/n)) B} + V7

By the beginning of Subsection 4.2.3 and the Yamada-Watanabe theorem, the process Y "™ (resp.
Y@") has the same distribution as the increasing reordering of the particle system X" (resp.
XEm) solution to (4.5) with initial conditions i.i.d. according to the cumulative distribution
function Fy (resp. Go). In particular, the propagation of chaos result of Proposition 4.2.15 applies
to the empirical distributions " := (1/n) Y1, 6y rim and g&" = (1/n) Y1, dyc.in.

Now, for all t > 0, (4.9) yields WE(7;"", fif™™) = (1/n) S, [V,7" — Y,7""|P. The following
inequality, the proof of which is postponed below, is crucial:

VO<s<t  WE(E R < WE(RET ST, (4.15)

Case W, (Fp, Gg) < 4oo. If both Fy and Gy have a finite moment of order p, then owing to
Corollary 4.2.16, one can extract a subsequence along which Wp(ﬁf " ﬁtG ™) goes to WP(Fy, Gt)
and WE (™™, i) goes to WE(Fy, G) almost surely, then conclude by using (4.15).

Assummg only W, (Fo, Go) < 400, we shall now proceed as in the proof of Corollary 4.2.16 to
show that for all ¢ > 0,

lim E(WE(G ", ") = Wh(E, Go),

n—-+o0o

which results in the claimed assertion thanks to (4.15).
For all M > 0, by (4.9) we write

Wp('an"an _ Z|Yan YGzn|

. . . . +
I Z(D/tF,z,n - }/tG,z,n|p A M) + (D/tF,z,n - }/tG,z,n|p _ M) )

By Proposition 4.2.1, ﬁf" converges in probability to the probability distribution dF; with
cumulative distribution function F}, and similarly ﬁtG" converges in probability to dG;. Therefore,

the couple (i1"", i¥™) converges in probability to (dF,dG,) and

1 <& ) ) 1
Jim B (g Sy - S g M)) = [0Ft @ = 6 dnau
i=1
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By the monotone convergence theorem and (4.7),

n

. . 1 Fin Giinp WP
MEH;METOOE(”;m v |AM>>WP<Ft,Gt>€[O,+OO].

It now remains to check that

. 1« Fi G.i
1 E|-= Y,y ot — M)t | = 0. 4.16
m <RZ(| t t | ) ) ( )

n—-+oo .
=1

Using (4.14) twice results in

1 1y
- Fin  ,Ginp - Fin  ,Ginp ) )
= (|Yt A M) <=3 L T R
i=1 i=1
AP R Fi
- LN vy . .
< n E Y, Yol ]1{\YtF’“"—YOF”|P2]M/4P}
i=1
AP N SGin G
_ s T vy . .
T E Y, Yol Loyein _yipsn/ary
i=1

+ L En ’ |vai _ yG»i|p]1 . .
" 0 0 {IyFi—ySip>My2v}
i=1

On the one hand, by the construction of YOF’i and YOG’i,
E (% l_il Yy — Y0G7i|p]1{YOFvi—YOG'iIPZM/Q’)}>
—E (% Zn: |FyH(U) - Gal(U(i))m{Fﬁ(U“))G01<U<i>>P>M/2P}>
i=1
- (% zj; |Fy H(U?) — Go_l(Ui”p]l{Fol(Ui)—Gol(Ui)pZM/Qp}>

1
/O |Fy () — Go_l(u)|pﬂ{\F071(u)ngl(u)|P2N[/2P}du7

and the right-hand side does not depend on n. Since W,(Fp, Go) < +oo, it goes to 0 when
M — +o0o. On the other hand,

LN o Fim Fi 47 L Fim Fiipt1
E (Ezn/t 7Y0 |pII_{YtF,i,nYOF,i|p>M/4p}> < ME <EZ|}Q —YO |p
=1 =1

47 1~ wFin Fip+1
e <H ; | X" = X :

where we have used the inequality (4.9) in the last line. By (4.13), there exists C' > 0 independent
of n such that E(| X" — X}**|Pt1) < C. Then

M——+o0 n—-+oo

) . 1 — Fi Fi
lim limsupE <g Z v,y J|P]1{|Ytp,i,n_yop,i‘pzM/M} = 0;
i=1

and likewise,

M—+o00 n—4oo

) ) I o= i G
lim limsupE (5 Z lY,"" —Y, ’l|p]1{‘YtG,i,n_Y0G,i‘pZM/le} =0,
i=1
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which completes the proof of (4.16).
Case W,(Fy, Go) = +oo. By the triangle inequality,
Wi (Fo, Go) < Wy (Fo, Fy) + Wp(Go, Gi) + Wp(Fy, Gy).

According to Proposition 4.2.15, there exists a subsequence (that we still index by n for conve-
nience) along which ﬁg "™ converges to the distribution with cumulative function Fy almost surely
in P(R), and ﬁf "™ converges to the distribution with cumulative function F} almost surely in P(R).
Recalling that the Wasserstein distance is lower semicontinuous on P(R) (see [135, Remark 6.12]),

we get W, (Fo, Fi) < liminf,, 4o W, (7", fif ™) so that by Fatou’s lemma, (4.9) and (4.13),

n—-+o0o

1 & , ,
WE(Fy, Fy) < liminf E (E > oy YOF”P’) < o0,
=1

and similarly W, (G, G¢) < 4+00. As a consequence, if Wy, (Fy, Go) = +oo then W, (F;, G¢) = +o0.
Proof of (4.15). Recall that

Y = Y 4 b(i /)t + (cq + o(i/n))B; + VT,
Y = Y 4 (i /n)t + (cn + o(i/n))Bi + V.7,

with AV, = (4" — AT AV E|,, aVE = (45 — 4&THA|VE],. Thus, for all 1 < i < n, the
process Y4 — YGin ig of finite variation, hence

n n
dz |}/tF,’L',n o }/tG,’L',n|p _ pz |}/tF,i,n o }/tG,i,n|p—2(}/tF,i,n o }/tG,’L',n)d(}/tF,i,n o }/tG,i,n)
i=1 i=1

n
=p ) |V G pyen — y SR (3 g v E,
=1

n
D D A el D A [P PR L | ™
=1

where, for all p > 1, we take the convention that |2|P~2z = 0 when z = 0. The two terms of the last
member above are symmetric; we only deal with the first one, which we rewrite S;d|V¥|;. By the
Abel transform, S; = p>_", 'th’iu(YtF’Fl’",}QG’FL”,}QF’L",}QG’Z-’"), where u(x1,y1,T2,y2) =
|20 — y2|P2(22 — y2) — |21 — 11 [P~ 2(21 — y1). Recall that d|VF|;-ae., 47 > 0 and v/ (V0" —
}QF’FL”) = 0, and remark that for fixed y; < ys, the expression u(z, y1, x, y2) remains nonpositive
when x € R. Then d|V¥|;-a.e., S; <0 and the proof of (4.15) is completed. O

Remark 4.3.2. For the viscous conservation law with a concave transport coefficient B as studied
in [89], one can recover the contractivity result of Proposition 4.3.1 from an elementary coupling
argument on the solutions to the nonlinear stochastic differential equation (4.4), following the
idea of Cattiaux and Guillin [39, Theorem 4.9]. Indeed, assume that a(u) = 0? > 0 and b is
nonincreasing on [0, 1]. Then (4.4) rewrites

t
X, =X b(H * Py(X,))ds + oW,
t o+/0 (H  Po(X.))ds + oW, )

P, is the distribution of X4,

and by [89, Theorem 1.1], this equation admits a unique strong solution, and for all ¢ > 0, its
distribution P; admits a density with respect to the Lebesgue measure on R.

Let us assume that Wa(Fy, Go) < 400, let U be a uniform random variable on [0, 1], X{" :=
FyH(U), X§ := G5'(U) and let W be a Brownian motion independent of (X{", X§). We denote
by X ¥ and X the strong solutions to (4.17) with respective initial conditions Xt and XOG , driven
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by the same Brownian motion W. Then, for all ¢ > 0, the cumulative distribution function of X}
is I; and the cumulative distribution function of X is G;. As a consequence,

E (X! - X{)*) =E((X§ — X§)?) +2 /O E (XF = X b(F(XE)) = 0(Go(XT)))) ds. (4.18)

For all s € (0,], the random variables U, := F,(X[) and V; := G4 (X&) are uniformly distributed
on [0,1]. Interpreting the nondecreasing function —b : [0,1] — R as the inverse of a cumulative
distribution function, we deduce from the optimal coupling (4.7) that

E ((F; 1 (Us) +b(U))?) < E (F,7H(Us) + b(V))?)
E ((G;1(Vs) +b(Vs))?) < E ((G7H(Vs) + b(Us))?) -

Developing the products and using the fact that U; and Vs have the same distribution yields

E (XFB(F,(XE) = B (F7 (U)b(U,)) < B (FHU)B(V,)) = E (XFB(G,(XE))

S S S

E (XEH(GL(XT)) = E (G5 (Va)b(Va)) < E (G (Va)b(U,)) = E (XEb(F,(X]))).

S S S

(4.19)

so that the integral in (4.18) is nonpositive. Note that the inequalities in (4.19) can also be obtained
using [120, Theorem 3.1.2, p. 109]. Thanks to our optimal choice for (X[, X§), we now conclude
that

VE>0,  W3(F,G) <E((X]—X7)?) <E((X§ - X§)?) = W3(Fo, Go).

4.3.2 Derivative of the flow

We will now compute the time derivative of the flow ¢t — WP ([, G¢) when (F});>0 and (Gt)i>0
have the classical regularity. We first derive a nonlinear evolution equation for the pseudo-inverse
function F;~'. Of course, the same holds for G; *.

Lemma 4.3.3. Assume that the uniform ellipticity condition (D3) and the regularity condition
(R1) hold, that Fy has a finite first order moment, that the probabilistic solution (F;)i>o to the
Cauchy problem (4.1) with initial conditon Fy has the classical regularity and that for all 0 < t1 <
ta, the function (t,x) — O0,Fi(x) is bounded on [t1,t2] x R . Then the pseudo-inverse function
(t,u) — F;H(u) is C2 on (0,400) x (0,1) and satisfies

8 F, Y (u) = b(u) — %au (a;(iul)(u)) : (4.20)

Proof. On the one hand, since (F});>0 is a classical solution to (4.1), then
1
O F,(x) = 5 (a/ (Fy(2))(0:Fy (2))* + a(Fy(2))02F,(z)) — b(Fy ()0, Fy(z). (4.21)

On the other hand, the lower bound in the Aronson estimate (4.50) allows to apply the implicit
functions theorem to (t, x,u) — Fy(z) —u and deduce that (¢,u) — F; ' (u) is C%2 on (0, 4-00) x R.
Besides,

1

- - _ ath(thl(u))
Ou Fy(Fy (u))

authl(u) m

and  O2F; '(u) = (4.22)

For all ¢t > 0, since F; is a continuous function then Fy(F, *(u)) = u, so that derivating with
respect to t yields 0 = 9, Fy(F; ' (u)) + 0. Fy (F; H(u))0: F; ' (u). Using (4.21) and (4.22), we write

—10\ 1 a(u) a(u)dg Fy * (u)
O Fy " (u) = b(u) 2 <8uFt1(U) [auFtil(U)P > 7

from which we deduce (4.20). O
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For all function f: R — [0, 1], we define the function tI(f,-) : R — [0, 1] by

tI(f, ) == Les0y(1 = f(2)) + Lip<oy f(2).
Then the main result of this subsection is the following.

Proposition 4.3.4. Assume that the conditions of Lemma 4.5.3 are satisfied with both (Fy)i>o0
and (Gt)t>o0. Let p > 2 such that W,(Fy, Go) < +oo and |z|P~(t1(Fy, z) + t1(Go,z)) — 0 when
x — +o00. Then for all 0 < t; < tg,

Wp (FtQaGt2) Ftuth)

-1 (" oty 2 (OuF () — 0,6 (@)
=D [ [ G T wau,

Proof. See Appendix 4.B. O

Remark 4.3.5. A straightforward strategy to prove Proposition 4.3.4 is the following: for €1,€s €
(0,1/2), let

1—eo
W51€11€2 (Ft’ Gt) = / |Ft71(u) - G;l(uﬂpdua

then certainly W2 . (F;, Gt) — Wh(F;, Gt) when €1, e2 — 0. Now,

d

&Wp €1, 62(

/1 62 — G W) |F7 () = G @) P72 (0F (1) — 8iGFH (w)) du
/1 ; Gil(u))lFfl(u)—G;l(u)wQau( alw) _ _al) )du
-5 e

8uGrH(u)  OuFyH (u)
G ) ) — G ) (

Fta Gt)

’U

wI’U

wl”s

1 B 1 ﬂl €
Gy () OuF N (u) /],

plp—1) (17 s (0uFT N (W) — 0,67 (W)
Sl / o)l 7 ) = 67 = S e e S,

where we have used (4.20) at the second line and integrated by parts in the last line. Hence,
Proposition 4.3.4 holds as soon as the boundary terms vanish, i.e.

t2 1 1 1me
liminf/ [a(Ft_l —~GYFT -Gt < — = 1)] dt = 0.
e1,e2—0 Jy 8uGt 8uFt

€1

However, we were not able to provide a rigorous account of this statement. In Appendix 4.B, we
use a different expression of Wg(Ft, G4) in terms of Fy, G; to compute the time derivative of the
flow.

Remark 4.3.6. Although the setting is different, the result of Proposition 4.3.1 obtained by
a probabilistic approximation is comparable to the result of Carrillo, Di Francesco and Lat-
tanzio [35, Theorem 5.1], the proof of which relies on the deterministic operator splitting method.
In Lemma 4.3.3, the nonlinear evolution equation for the pseudo-inverse of the solution to the
Cauchy problem generalizes in a rigorous way the proposed extensions of the work by Carrillo
and Toscani [38, Section 3]. In Carrillo, Gualdani and Toscani [30], the time derivative of the
flow of the Wasserstein distance between two solutions is computed by the method described in
Remark 4.3.5 for the case of compactly supported solutions at all times, therefore the boundary
terms necessarily vanish in the integration by parts.

The same method is also applied by Alfonsi, Jourdain and Kohatsu-Higa [1], where the authors
get rid of the boundary terms using Gaussian estimates on the density. As Lemma 4.B.2 shows,
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under the uniform ellipticity condition (D3), such estimates still hold in our case as soon as the
tails of Fy or Gy are not heavier than Gaussian. Since we are willing to use Proposition 4.3.4 to
compare F; with the stationary solution F,,, we would therefore need the tails of F,, not to be
heavier than Gaussian. But according to Remark 4.4.5 below, under the condition (D3), the tails
of F, cannot be lighter than exponential.

4.4 Convergence to equilibrium

This section is divided into three parts. In Subsection 4.4.1, we solve the stationary equation. In
Subsection 4.4.2, we prove the convergence of solutions to stationary solutions. In Subsection 4.4.3,
we discuss the (lack of) rate of convergence to equilibrium.

4.4.1 The stationary equation

We recall that the stationary equation is the following:
1
502 (A(Fso () = 0: (B(Fas ())) = 0 (4.23)

As mentionned in the introduction, the stationary solutions for the Cauchy problem are the cu-
mulative distribution functions, with a finite first order moment, solving (4.23) in the sense of
distributions. In Proposition 4.4.1, we solve the stationary equation, and we give a criterion for
integrability in Corollary 4.4.4.

Proposition 4.4.1. Under the nondegeneracy condition (D1), a necessary and sufficient condition
for the existence of cumulative distribution functions solving the stationary equation is B(1) = 0,
B(u) > 0 and the local integrability of the function a/2B on (0,1). Then all the solutions are
continuous.

If in addition B(u) > 0 for all u € (0,1), which corresponds to the equilibrium condition (E1),
then Fy, is a solution if and only if there exists T € R such that for all x € R, Fy(x) = V" (z+7),
where the function ¥ is defined by

Vue (0,1),  T(u):= /;2 2‘]‘3(8)@. (4.24)

In this case, T = WU(Fx(0)).

Proof of Proposition 4.4.1. We first prove the necessary condition. Let F' be a cumulative dis-
tribution function (we shall write F instead of F., in the proof), solving (4.23) in the sense of
distributions. Then there exists ¢ € R such that the function z — (1/2)A(F(x)) is absolutely
continuous with respect to the Lebesgue measure, with density B(F(x)) + c¢. Since by the condi-
tion (D1), A is increasing, then F' is continuous. Hence, B(F(z)) + ¢ is a nonnegative, continuous
and integrable function, so that taking the limit x — —oo yields B(0) + ¢ = ¢ = 0. We deduce
B(u) > 0 and B(1) = 0 by taking the limit © — 4o0.

It remains to prove that a(u)/2B(u) is locally integrable in (0,1). We use the convention that
a(u)/2B(u) = 0 when a(u) = B(u) = 0, and we define U := {u € (0,1) : B(u) = 0 and a(u) # 0}.
Let 0 <a<B<1land z_ := F~Ya), x4 := F71(B). We denote by dF(z) the Stieltjes measure
associated with the continuous function F' of finite variation. Then by the chain rule formula [121,
(4.6) p. 6], the Radon measure (1/2)a(F(z))dF(x) has the density B(F(x)) with respect to the
Lebesgue measure. Therefore dF(x)-a.e., F(z) ¢ U. By the change of variable formula [121, (4.9)

p. 8],
" a(F(2) " a(F(2)) 8 afu)
| snirgy temendre@ = [ spginare = [ g

and the left-hand side is bounded by =4 — x_ < 4oc0.
We now prove that the condition is sufficient. For u € (0,1), let us define ¥(u) as in (4.24).
Then ¥ is absolutely continuous and since A is increasing, so is ¥. Thus ¥ ! is continuous, with
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finite variation. In case W has a finite limit in 1 (resp. 0), we write ¥=!(z) = 1 (resp. 0) for
x € [¥(1),4+00) (resp. (—oo, ¥(0)]) so that =1 is a cumulative distribution function on R. We
now check that U~! is a solution, in the sense of distributions, of the stationary equation. Let
¢ € CP(R) be a test function. Then by the integration by parts formula [121, (4.5) p. 6] and the
chain rule formula applied to A(¥~(x)),

,%/]Rﬁb/(z)/l(\lfl(x))dz = %/R‘b(z)a(‘l’fl(x))d‘l’fl(z)'

By the change of variable formula and the definition of ¥,

3 [ o@av " @)av @) = 5 [ swtuatau= [ o) Bw s,

and performing a new change of variables in the last member above yields
1
5 [[F@aw @) = [ o@)BE @)
R R

i.e. 1 is a solution in the sense of distributions of the stationary equation.

We finally assume that B(u) > 0 for all v € (0,1) and prove that F is a solution if and only
if it is a translation of =1, If F' is a solution, since B(u) > 0 then ¥ is C* on (0, 1) so that the
chain rule formula gives

a(F(z))
d(U(F =V (F(2))dF(z) = ————~dF(z) =d
(B(F () = W(F@)AF () = 5p ot dF(z) = da,
where the last equality holds due to B(u) > 0. Then ¥ (F(z))—¥(F(0)) = x and F(z) = ¥~ (2+7)
with Z = U(F(0)). Reciprocally it is immediate that all the translations of ¥~ solve the stationary
equation. O

Remark 4.4.2. When the condition that B(u) > 0 on (0,1) is not fulfilled, then one can exhibit
solutions that are not translations of each other. For instance, let a(u) = u(1 — u)|u — 1/2|>/2 and
B(u) = u(1 —u)(u—1/2)% Then a is continuous on [0, 1], its antiderivative satisfies (D1), B is C*
on [0,1], B(0) = B(1) = 0 and B(u) > 0. Besides, ¥(u) = sgn(u — 1/2)|u — 1/2|'/2. For all h > 0,
let us define

0 x < —1/V2,
1/2 — 22 ~1/V2 <z <0,
Foon(x) =4 1/2 0<x<h,
1/24 (x—h)? h<z<h+1/V2,
1 z>h+1/V2.

Then Fy o = U1 and for all b > 0, Fo n, solves the stationary equation although it is not a
translation of 1.

In order to apply the results of Section 4.3, we need criteria ensuring the existence of a first
order moment as well as the classical regularity for a stationary solution F,,. They come as
corollaries to Proposition 4.4.1.

Corollary 4.4.3. Under the nondegeneracy condition (D2), the regularity condition (R1) and the
equilibrium condition (E1), all the stationary solutions Fn, are C? on R.

Proof. By Proposition 4.4.1 and the condition (E1), it is enough to prove that ¥~! is C? on R,
which follows from the inverse function theorem, since ¥ is C2 on (0,1) by (R1) and (E1), and
U/ (u) > 0 for all w € (0,1) by (D2). O

Corollary 4.4.4. Under the nondegeneracy condition (D1) and the equilibrium condition (E1),
the solutions to the stationary equation have a finite first order moment if and only if (E2) holds.
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Proof. According to Proposition 4.4.1, it is enough to prove the statement for the solution U1,
the first order moment of which is given by

/1;2 U (u)du — /01/2 U(u)du = /01/2 ;g():)du + /1:2 %(U)U)du

by the Fubini-Tonelli theorem. The finiteness of the right-hand side is the condition (E2). O

Remark 4.4.5. In the case of the viscous conservation law and under the condition (E1), it is
sufficient that b(0) > 0 and b(1) < 0 for (E2) to hold, and in this case the probability distributions
derivated from the stationary solutions have exponential tails and satisfy a Poincaré inequality
(see [89, Lemma 2.1]). In the general case of the stationary equation (4.23), and under the
equilibrium condition (E1), these results extend as follows.

e Under the uniform ellipticity condition (D3), if 5(0) > 0 and b(1) < O then it is clear
from the expression of ¥ that the stationary solutions still have exponential tails, and they
consequently satisfy a Poincaré inequality. If 5(0) = 0 (resp. b(1) = 0), then the left (resp.
the right) tail is heavier than exponential.

e Under the nondegeneracy condition (D1), as soon as the cumulative distribution function
¥~ admits a positive density p, then it satisfies a Poincaré inequality if and only if it
satisfies the Hardy criterion (see [5, Theorem 6.2.2, p. 99]), namely

“+00 x d x 0 d
sup/ p(y)dy/ Y < fo, sup/ p(y)dy/ Y <t
>0Jz o p(y) <0 J _ oo « py)

Letting y = ¥(v), we rewrite
z q vl(z)
| 5= weprw
o py) 1/2

so that that the stationary solutions satisfy a Poincaré inequality if and only if

sup (1—u)/u (a(u) )2dv<+oo sup u/l/Q(a(”))de<+oo
u>1/2 1/2 2B(v) ’ u<1/2  Ju 2B(v) .

4.4.2 Convergence in Wasserstein distance

We now state the main result of the chapter, namely the convergence to equilibrium of the
probabilistic solutions in Wasserstein distance.
Theorem 4.4.6. Let us assume that:

e the coefficients of the Cauchy problem (4.1) satisfy the uniform ellipticity condition (D3),
the regularity condition (R2) and the equilibrium conditions (E1) and (E2);

e the probability distribution m has a finite first order moment;
o Wo(H +m, ¥~ 1) < +oo.

Let (Fi)i>o0 be the probabilistic solution the Cauchy problem (4.1) with initial condition Hxm. Then
there exists a unique stationary solution F., such that Fy and F have the same expectation, and
for all p > 2 such that Wy,(H xm,¥~1) < +o0,

V1<qg<np, tiiljrnoowq(Ft,Foo):().

Proof. The proof is in 6 steps.

Step 1. We first prove the existence and uniqueness of a stationary solution F, such that
Fy and F,, have the same expectation. By the condition (E2), the integral fol U (u)du is defined.
Owing to the condition (E1) and according to Proposition 4.4.1, the stationary solutions are the
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functions of the form F..(z) = ¥~1(x + Z), # € R. By Corollary 4.4.4, the expectation of such a
cumulative distribution function exists and it is given by

/01 F (u)du = /01 U (u)du — z.

Thus, the unique stationary solution with the same expectation as Fy is given by Fuo(z) = =1 (2 +
z), with 7 = [ (U (u) — F5 ' (u))du.

Step 2. We now introduce a smooth approximation of the initial condition Fy in order to
use Lemma 4.2.7. Let ( be a C* probability density on R with compact support and such that
fR z{(z)dz = 0. For all & > 0 and x € R, we define (,(x) := a™1{(atx) and F§(z) := Fy*(a(z).
Then F§ is C* on R and it is the cumulative distribution function of X¢ + aZ, where X, has
distribution m, Z has density ¢ and X and Z are independent. As a consequence, F§* has a finite
first order moment and it has the same expectation as Fy and F,, due to Step 1. By Lemma 4.2.7,
the probabilistic solution (F*);>o to the Cauchy problem (4.1) with initial condition F§* has the
classical regularity and for all finite 7" > 0, it belongs to Cé’Q([O, T] x R).

Using the obvious coupling (Xo, Xo + aZ) of Fy and F§*, we note that for all ¢ > 1,

W, (Fo, F) < aE(|Z])/7 < +ox.

This leads to the following remarks:

e As F. is a translation of ¥=!, by the triangle inequality, W,(H *m, ¥~1) and W, (F¢, Fx)
are simultaneously finite or infinite.

e Using the triangle inequality again and Proposition 4.3.1, we get
W (B, Foo) < Wo(Fy FE) + Wo (B Fog) < aB(1Z]) Y9+ Wy (F, Fuo).

Hence, as soon as, for all o > 0, limsup,_, . W,(F*, Fs) = 0, then taking a arbitrarily
small yields limy_, oo Wq(Fi, Foo) = 0.

We now fix a > 0. The remaining steps are dedicated to the proof of the fact that, for all p > 2
such that W,(H * m, ¥~!) < 400, for all 1 < ¢ < p, limy_y 100 W, (F®, Fs) = 0.

Step 3. We prove that for all ¢ > 0, the expectation of F}* remains constant. By Corol-
lary 4.2.13, for all ¢ > 0, F* is the marginal cumulative distribution function of the nonlinear
diffusion process X solution to (4.4) with initial condition having cumulative distribution func-
tion F§*. Since o and b are bounded,

VE>0,  E(XP) =E(XE) +/OtE[b(F§(X§))]ds.

But for all s > 0, F? is continuous so that E[b(F&(X%))] = fol b(u)du = B(1). By (El), we
conclude that E(X7) = E(Xg§).

Step 4. We now describe the evolution of the Wasserstein distance Wy (Fy, Foo). We are
willing to use Proposition 4.3.4, therefore we need to check that (Ff);>o and Fu satisfy the
assumptions of Lemma 4.3.3. It is the case for (F*);>o thanks to Lemma 4.2.7. The stationary
solution F, has a finite first order moment owing to the condition (E2) and Corollary 4.4.4, it is
C? on R by the condition (R2) and Corollary 4.4.3, and from the definition of ¥~! and condition
(D3) it follows that the derivative of F, is bounded by 2||B||s/a-

Moreover, by the assumption that Wy (H * m, ¥~1) < 400 and Step 2, Wo(F$, Fy) < +00;
and since both F§* and F,, have a finite first order moment, |z|(t1(F§, z) + t1(Fx,x)) vanishes
when # — *o00. Thus, Proposition 4.3.4 applies to (F*);>0 and Fy with p = 2 and yields, for all
0<t; < tQ,

2/ o W2 e _ ot (Ou(FP) () - 3uF<;1(u))2
W2 (thaFoo) W2 (Ft1 5 Foo) - /tl /0 a(u) au(Fta)*l(u)auFozl (u) dudt < 0.
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Using the uniform ellipticity condition (D3), we can then assert that

lim inf / ) 0 0P ),y
0

Ou(F)~ ()0 F' (u)
and extract a sequence (t,)n>1 growing to +oo such that the integral above goes to 0 along (t,)n>1.
Let us prove that for all u € (0,1),

u

lim 0, (F) ™! (v) — 0uF ' (v)|dv = 0. (4.25)

n—-+o0o 1/2
Let 0 < € < 1/2. By the Cauchy-Schwarz inequality and the condition (E1),

1/2
1—e 1—e¢ 1—e au Fo —1 _auF—l 2
/ 10, (F&) ™t = 0, FZ |dv < / 8u(Ft“)*18uF;)1dv/ (9u(FE) jj) dv
€ " € " € au(Fti)ilauFoo

2 1/2

a(v) /1—5 . /1—6 (&L(Ff‘)*l o 3uF(;1)

< sup O (F) *do o — dv .
(UE[E,I—S] 2B(U) € ( tn) € au(Fta )_16111:‘001

n

(4.26)

The first integral can be bounded uniformly in n as follows:

[ aum o = ) -0 - ()9

€/2
< %/ ((Ftofl)_l(lfeJrv)f(FtOT‘L)_l(efv)) dv
0
2 €/2 . L 1 o -
< P (/0 (For(l —e+v) = Foi (e =) var/O |(F2) " (v) — F5 (v)|dv>
2

€/2 1
= - (/ (FL' (A —etv) = Fl(e—v)) dv+ / [(F5) ™ (v) — Fool(v)ldv> ;
€ \Jo 0
where the last inequality is due to Proposition 4.3.1. We deduce that the right-hand side of (4.26)
goes to 0, so that taking € < u A (1 —u) yields (4.25).

Step 5. We extract a subsequence of (t,),>1, that we still index by n for convenience, such
that lim,, oo (F*)71(1/2) — F5,'(1/2) = £ € [~00, +00]. Then using Step 4, for all u € (0,1) one
has (F)~!(u) — F*(u) — £. Besides, since by Proposition 4.3.1,

1
SUP/ |(Fta)_1(u)_Fo_ol(u)|2du:W§(F0aaFoo) < +o0,
0

t>0

then the functions (u — (F)™*(u) — F'(u))n>1 are uniformly integrable. We deduce using

Step 3 that
1

¢= lim (F2) M (u) — Fx'(uw)) du = 0.

n—-+oo 0

Step 6. Let p > 2 such that W,(F§, ¥7!) < +o00. Then by Step 2, W, (F§, Fso) < +00;
therefore, for all 1 < ¢ < p, the functions (u — |(F )™ (u)—F3'(u)|?)n>1 are uniformly integrable,
and using Step 5 we have

lim /0 [(FE) ™ (u) — FL (u)|*du = 0.

n—-+oo

But according to Proposition 4.3.1, the flow ¢ — W, (F}, F) is nonincreasing. As a consequence
limy—y 4 0o Wy (F¥, Fiso) = 0 and the proof is completed by virtue of Step 2. O
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Remark 4.4.7. In view of the contraction results for the flow of Wasserstein distance between
two solutions of Fokker-Planck equations obtained in [21, 22], one can wonder whether the formula
of Proposition 4.3.4 can be used to compare the dissipation of the Wasserstein distance to the
Wasserstein distance itself; that is to say, whether one can derive a differential inequality of the
form

d
EW%(F“ Gt) < *CW%(F@, Go), C > 0,
at least for initial data Fy, G having the same expectation. By the Gronwall lemma, this would

imply exponential contraction
vt > 05 Wg(Fta Gt) < eXP(*Ct)Wg(Fov G0)7

and Theorem 4.4.6 would easily follow from the existence of a stationary solution with the same
expectation of Fy. In addition, one would obtain an exponential rate of convergence to equilibrium
(this issue is discussed in Subsection 4.4.3 below).

Unfortunately, there is no hope to derive such a differential inequality from the formula of
Proposition 4.3.4. Indeed, let us observe that the latter does not depend on the function b. As a
consequence, if o2 is constant, then it is the same formula as for the heat equation, for which no
such exponential contraction can be expected.

4.4.3 Rate of convergence

We first recall the result of convergence to equilibrium stated in [39], where A(u) = o%u with
02 > 0. Then it is easily checked that the conditions (R1), (E1) and (E2) are satisfied if B is C? on
[0,1], with B(1) =0, (0) > 0, b(1) < 0 and B(u) > 0 on (0,1). Then according to Remark 4.4.5,
all the stationary solutions F,, admit a positive density p., and satisfy a Poincaré inequality.
Under these assumptions, we have the following convergence result.

Lemma 4.4.8. [89, Lemma 2.8] There exist n > 0 and ¢ > 0 depending on A and B such that for
all cumulative distribution function Fy with a finite first order moment, calling Fi the sationary
solution with the same expectation as Fy, as soon as [(Fy — Fuo)? /pscda < 1 then

(Fi(x) — Foo(@))? , _ expl—ct) [ (Fo(x) — Foe())?
vi20, / po(@ PSS / @

According to [38, Proposition 1.4], the quadratic Wasserstein distance between two probability
distributions g and v on R such that u admits a positive density p satisfies the inequality

W) <4 / (H * u(z)p(ng « ()

Hence, the convergence result of Lemma 4.4.8 can be translated in terms of the Wasserstein
distance.

dzx.

Corollary 4.4.9. Under the assumptions of Lemma 4.4.8, as soon as [(Fy— Fx)?/pscda is small
enough, then Wao(F}, Foo) converges to 0 exponentially fast.

4.A Proof of Proposition 4.2.2

This appendix is dedicated to the proof of the first point of Proposition 4.2.2, which states
that there is at most one weak solution to the Cauchy problem (4.1) in the set F(T'), for all
T > 0, possibly T' = +oo. The proof is adaptated from Wu, Zhao, Yin and Lin [137, Section
3.2] as well as Liu and Wang [105], who provide uniqueness of bounded weak solutions to the
ingtial-boundary value problem, namely the Cauchy problem (4.1) in the strip [0,7") x (0,1) with
boundary conditions at = 0 and z = 1. At an intuitive level, one can see our restriction to the
set F(T) as some boundary conditions at x = —oo and z = 4o0.

We shall follow the so-called Holmgren’s approach which consists in turning the proof of unique-
ness for (4.1) into a proof of existence for an adjoint problem. Recall that we make the following
nondegeneracy assumption:
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(D1) The function A is increasing.

Let T > 0, possibly T = +oo, and let (F} )teOT), (F; )teOT) € F(T) such that for all g €
C2([0,T) xR), both (F}')sejo,r) and (F7).eqo,r) satisfy (4. ) Then, for all ¢ € [0,T), the function
F?— F1 is integrable on R and the functlon (s,z) — F2?(z)—FX(z) is integrable on Q; := (0,t) x R.
Therefore, for all t € [0,7T") and for all g € C([0,T) x R), (4.2) yields

/ t(F2 FY { AD2g + Bo,g + asg} dsdz = /R (F?(z) — F(x))g(t, z)dw; (4.27)

where

A(s,x) = /0 a((1—0)F)(z)+0F2(z)) do,

and

B(s,z) = /O b((1—0)F,) (z) + 0FZ(x)) df.

Remark 4.A.1. For all t € [0,7T), by a classical regularization argument the integral equal-
ity (4.27) holds true for all function g in the space Cp*([0,#] x R) of real-valued C? functions
bounded together with their derivatives.

Let f € C([0,7) x R). Then there exists t € [0,T) such that Supp f C [0,¢) x R. Let us
introduce the adjoint problem to (4.1) as
1~ ~
§A8§g + BO,g+0sg=f (s,2) €10,t) x R,

(4.28)

The coefficients A and B may not be smooth enough to allow the adjoint problem to admit
classical solutions. Therefore we introduce a suitable approximation of (4.28). For small §,n > 0,
let

Gs = {(s,2) € [0,] x R:[FL(x) - F2(x)| < 4},

. ) (4.29)
Fs :={(s,z) € [0,t] xR:|F;(z)— F;(z)| > 6},

and let us define
0 on Gg,

(s, z) = ~ o
57) B(nJrA(S,w))] B(s,x) on Fy.

Since A is increasing and (F}),cjo,1), (F)icjo,r) are bounded, there exist L(d) > 0 and K(J) > 0
independent of 1 such that

A(s,z) > L(9)

(s
A (s, @) < K(9) (s,7) €

,.T) S Fg,
[0,¢] x

Let £ be a C°° probability density on R? such that Supp¢& C [—1,1] x [-1,1]. For all € > 0,

let & = e 2¢(e7ts, e tr) and define /L — Ax & and )‘57,6 = )\f? x &. Then A, and )\fw are C™
functions and all thelr derivatives are bounded on [0,¢] x R. Besides,
lim A (s,z) = A(s,z) a.e. in [0,¢] x R,
e—0
lim X0 (s,2) = Xo(s,z a.e. in [0,t] x R,
=0 nie(8:2) n(%2) 0,1] (4.30)
Ac(s,x) <C (s,x) € [0,t] xR,

|)\2_’€(s,x)| < K(0) (s,x) € 0,t] x R,
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where C' refers to a positive constant independent of e, § and 7, and K(§) refers to a positive
constant depending only on §. In the sequel, the values of C' and K (§) can change from one line
to another.

We finally define

B B 1/2
B (s0) = Xls.0) | 300+ Ao

and emphasize the fact that

1By cllo < K(6). (4.31)
We are now able to introduce the approximate adjoint problem
1 ~ ~
—(n+ A)d%g + B 0rg + 0sg = ,x) € [0,1) x R,
51+ A)0z9 + By 0o + 059 = f (s,2) € 10,1) (4.32)
g(t,z) =0 z eR.

The coefficients of the equation are bounded, globally Lipschitz continuous, the operator is uni-
formly parabolic, and the right-hand side f is continuous and bounded. Therefore the Cauchy
problem (4.32) admits a unique classical bounded solution gJ . (see [94, p. 369]). Since the coeffi-

cients of the equation and f are C* on [0,¢] X R, then so is ggﬁe (see [66, p. 263]). Owing to the
Feynman-Kac formula, gfhe has the following probabilistic representation:

V(s,z) €[0,t) xR, g} (s,z)=-E [/t f(r, Zf*””)dr] (4.33)

where, for a given standard Brownian motion W, (Z;*),¢[0,4 is the unique strong solution of the
stochastic differential equation

Z5% =g +/ the(u, Z5%)du +/ (0 + Ac(u, Z5%))V2AW,,. (4.34)

Lemma 4.A.2. The functions gf],e, &nghE and agg;‘w are such that:

sup. [gf(5,2)] < O (1.35)
[0,f]xR

sup [ 19}, (5. )/de < K(6), (4.36)
s€[0,t] JR

Sl[lp] |8Igf7,e(sa :E)| < Ii(E, 55 77) eXp(*SCQ/Ii(E, 55 7’))7 (437)
s€|0,t

sup |a£gf7,e(57 :C)| < Ii(E, 55 7’) eXp(*SCQ/Ii(E, 55 T’))v (438)
s€[0,t]

where the value of k(e,d,n) can change from one line to another.

Proof. The inequality (4.35) directly follows from the Feynman-Kac formula (4.33). Besides, since
f has a compact support in [0, ¢] X R, say Supp f C [0,¢] X [z—,x], one has

t
(5.0 < flle | BZE" € ooz

and for z > x4,

Bl — 277)?]

P(Z3* ez_,ay]) <Ple—Z2" >z —24) < @ —2.)?

Owing to (4.34) and (4.31),

El(z — 25 <2 ((r = 82B] | + (r = )l + Al ) < K(9),
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and similar arguments for z < x_ yield (4.36).
In order to prove (4.37) and (4.38), let us take the derivative with respect to x of the prob-
lem (4.32). Then the function 8969376 is the unique classical solution of the Cauchy problem

1 ~ 1. ~ =~ ~
5+ A)dzg" + (QGEAE - BS,G) Oag" + 0:B) 9" + 0s9" = O f,

(4.39)
gl(ta z) =0,
and the Feynman-Kac formula now writes
t T
8Igf,7€(s,z) =-E [/ Ou f(r, Z1*") exp </ 81Bf,76(u, Zi’s’x)du) dr}
s 5 (4.40)

t
= —/ /amf(r,z)Gl(s,x;r,z)dzdr
s R

where (Zﬁ’s’z)re[oyt] is the associated diffusion process and G (s, z;, 2) is the fundamental solution
of (4.39). Following Friedman [66, p. 24], there exists some constant x > 0 depending on the
coefficients of (4.39) (therefore, on €, § and 1) such that, for all s < r,

Ys,aym, 2 LR _(e—a)?
|G (s, 37, )|§(r—s)1/2 p( H(T_S)>, (4.41)
10.G (s, 37, 2)| < . i - exp (_755(7"2)) . (4.42)

For x > x4, (4.40) combined with (4.41) yields

. 2
|azgnesx|<// 10: s )1/2exp( %)dzdr

r —X 2 t
Snllazflloo(mf”)e"p( tfs >/ T
(

< 20— )]0l —aexp (L),

and similar arguments for x < z_ lead to (4.37). Likewise, for > x4, using (4.42) one gets

9 gnesx|<// 192 1l - exp(—w)dzdr

K(r —s)
t
< W10 fllelrs — ) [ =

Writing, thanks to the change of variable v = (z — ) /(k(r — 5))/?

to1 —z4)? oo 2
/ exp (M) dr = / = exp(—v?)dw,
s T8 K(r =) (a—w4)/(r(t=s))1/2 ¥

and using the fact that, as soon as z > x, + (tk)'/?,
T — T4 1 k(t —s)
Vo> ——+ < M0,
ST T oyt

we deduce that for = >z, + (tk)'/2,

/( - 2 exp(-?)dv < 2 e (_M) < exp (_M) _

o—wy)/(r(t—s))1/2 U (x — 24 K(t —s) K(t = s)

By similar arguments for < z_, one finally concludes to (4.38). O
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By the definition of 92,67

[ @) - B aiss = [ (@) - Fi)f(s)dsda
[0,4+00) xR 1 . (4.43)
- / (F52 - Fsl) {5(77 + Ae)azgg,e + Bg,eamgg,e =+ 3593,5} dsdz.

It follows from the boundedness of A, and ng and from Lemma 4.A.2 that

. 10595 (s, 2)| < (e, 8,n) exp(—r(e, d,n)z?).
s€|0,t

Consequently, g? € C12([0,1] x R), therefore due to remark 4.A.1,
1~ ~
/ (F2 — F} {5/18593,5 + BO.g) .+ 859216} dsdz = 0. (4.44)
t
As a conclusion, subtracting (4.44) to (4.43),

[ ) - Fla)ssadsis
[0, +o0) xR (4.45)

1 ~ ~ ~ ~
= [z { G A Dot + (B - Browgs, fasa
t

We now have to prove that the right-hand side of (4.45) goes to 0 as €, d,7 — 0. In this purpose,
we closely follow the line of [105]. In particular, the proofs of our Lemmas 4.A.3 and 4.A.4 are
nothing but transcriptions of the proofs of Lemmas 1 and 3 in [105] to the framework of an
unbounded domain Q; and weak solutions in F(T"). Then the estimates (4.35)—(4.38) ensure that
the computations still make sense.

Recall that C refers to a positive constant that does not depend on €, 1 or §.

Lemma 4.A.3. [105, Lemma 1] The functions azgge and 855]216 are such that:

| s+ g rasas < 0 e, (4.46)
/ (029p,)?dsdz < KQ) | ¢ (4.47)
A U

Lemma 4.A.4. [105, Lemma 3] The function 819216 s such that:
sup / |8Igf7 (s,z)|dr < C. (4.48)
s€l0,t] JR ’

The estimates of Lemmas 4.A.2, 4.A.3 and 4.A.4 give sufficient uniformity over the derivatives
of gfhe to conclude.

Proposition 4.A.5. The right-hand side of (4.45) is arbitrarily small when €,1,5 — 0.
Proof. For lighter notations, let us denote F(s,x) = F2(z) — F!(z), and
-1 ~ ~ _n _ o~ ~
I:= / Fo (A - A)d2g0 dsdx + / Fiaiggﬁedsdx + | F(B),— B)dyg) dsdx
¢ Qt Qt
=L+ 1+ I

Recall that since (F})ejo,), (F2)iejo.r) € F(T), then F € (L' NL>)(Qy).
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Owing to the Cauchy-Schwarz inequality,

~ ~ 1/2 1/2
_ (A, — A)? _ 1 ~
L] < (/ |F|ﬁdsdz> (/ |F|5(77 + Ae)(aigf],e)std:L‘> . (4.49)

Using (4.30), by dominated convergence the first integral in the right-hand side of (4.49) goes to
0 as e — 0 for fixed  and §. According to Lemma 4.A.3; the second integral in (4.49) is bounded
by C + K (0)/n. Therefore, for fixed n and ¢, lim._,o I; = 0.

Let oo > 0. Recalling the definition (4.29) of F,, and G4, let us write

L] < U Fd2¢° |dsdx + U Fd2¢° |dsde.
9 xrJIn,€e 9 xrJIn,€e
F, Ga

By the Cauchy-Schwarz inequality,

1/2 1/2
_ _ 1 ~
[ wpezgs dasas < ([ 11— S} ([ R+ A 02050 asae
R n U+ A)) U2 |

1/2 1/2
1 K(9)
§C<ng(1/z)(n+ﬁe)> (C+ 0 )

< S oy KO

= L(o) n

where L(«) only depends on «. Likewise,

1/2 1/2
_ _ _1 ~
[ Rt dasae < [ 4R S)([jFp0+ A@) asas )
G, o WD+ A)) Ve, 2 |

c K@©6)\\"?
< (e(e+57)
so that for fixed 1, «,

1/2 1/2
limsup |I5| < C7 <C+ @> 1oy <g> :
e—0 n L(a) n

Finally, let us write

|I5] < : |F(B) . — B)yg) |dsdz + / |F(B) . — B)dyg) |dsdx.
S5

Gs
We first deal with the integral on G5. On account of Lemma 4.A.3, for given § and 7 the family
(|8zgf776|)5>0 is bounded in L?(Q;). Therefore there exists a sequence (e;)g>1 decreasing to 0,

such that [0.g5 ., | converges weakly in L?(Q;) to a function A > 0 when k — +oc0. From now
on, the convergence ¢ — 0 will always be understood along the sequence (ex)r>1. According to
Lemma 4.A.4, for all compact subset D C Qy,

/ hdsdz = hm/ 0290 Jdsdz < C
D e—0 D ’

so that
/ hdsdx < C.

t

Furthermore, on Gs one has Ei,e — 0 a.e. when € — 0, and ||§7‘36||OO < K(6). Since F €

(L*NL*>®)(Q:) € L?(Q:), by dominated convergence one deduces that 1¢, |F(§f],€ — B)| converges
strongly in L2(Q;) to 1G5|F§|. Finally,

lim [ |F(B), — B)d,g) |dsdz = / |FB|hdsdz < C6.
e—0 Gs ’ ’ Gs
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We now turn to the integral on Fs. By the Cauchy-Schwarz inequality,

_ B o B 1/2 B 1/2
|F(B) . — B)dyg) |dsdx < (/ |F|(B), — B)stdz) (/ |F|(029 6)2dsdz) :
Fs ’ ’ Fs ’ Fs ’
Owing to Lemma 4.A.3 and the boundedness of F,

a K(6
|F|(009) ) dsdz < C + K@)
Fs ’ n

and by construction, ET‘;E — B a.c. in Fy when € — 0, while ||§f]€||OO < K(6). By dominated

convergence, on concludes that for fixed n and §, limsup,_,, |I3| < C94.
Combining the previous estimates, let us now write

K(5)\ /2 1 1/2
limsup |[I| < Cn <C+ ( )> +<g) +C6
€e—0 n L(a) n

and conclude by taking consecutively n — 0, « — 0 and § — 0. O

It follows from Proposition 4.A.5 and (4.45) that
[ (@) - F@)fsasds =0,
[0,T)xR

Since f is arbitrary, F!(z) = F2(x) a.e. in Q;, and this holds for all ¢ € [0,7). As a consequence,
for all t € [0,T), F! = F?.

4.B Proof of Proposition 4.3.4

This appendix is dedicated to the computation of the time derivative of the flow ¢ — W5 (F}, Gy)
of the Wasserstein distance between two solutions (Fy)>0 and (Gy)>0 of the Cauchy problem (4.1)
with respective initial conditions Fy and Gy and classical regularity. In Subsection 4.B.1, we
gather some tail estimates on the solutions F; and Gy as well as their space derivatives. In Subsec-
tion 4.B.2, we use a new expression of Wg(Ft, G4) in terms of F; and G to prove Proposition 4.3.4.

4.B.1 Tail estimates

In this subsection we are concerned with the asymptotic behaviour of Fi(x) and 9, F;(x) when
|z| is large.

Lemma 4.B.1. Under the assumptions of Proposition 4.2.1, for all t > 0, there exists a finite
constant C(t) > 0 such that the function t — C(t) is nondecreasing and:

Ve< O, gR(2r - C) < Fa) < Fo (5 +C0) +exp (—%) !

Vo > C(t),

L= Fy(2e +C0)] < 1= F(a) 1= Fy (5 C0)) +exp (‘cﬁ)) |

N =

Proof. Fix a finite T' > 0.
We will use the process (Xt)te[O,T] introduced in the proof of Lemma 4.2.10. Let ¢t € [0, 7] and
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define C;(t) := t||b||co- If # < —C1(t), then
Fi(z)=P (XO —|—/ b(r, X, )dr —|—/ a(r, X,)dW, < x)
0 0
— t — — —
>P (Xo +/ a(r, X, )dW, <z — t||b||oo>
0
— — t — —
>P (XO <2(z — t]|b]| ), '/ a(r, X,)dW,
0

p<

where Cy(t) := 20 (t) = 2t||b||oo. By Chebyshev’s inequality,

"

smwmx)
t — —

/ a(r, X, )dW,
0

<tflle —2 | Xo<20- @(t)) P(Xo < 22 — Ca(t)),

t
/ a(r, X,.)dW,
0

E(
>1—

=2
1o Pl
(bl — <)

<tblloc -z | Ko<20- @(t))

2

/ o (r X)W, | )_(OSQ:C—CQ(t))
0

(t]1b][o0 — )

and the right-hand side is larger than 1/2 as soon as x < —C3(t) := —(2t]|62%||) /2.
As far as the upper bound is concerned, for x < —C(t),

t t
Fi(x)=P (XO Jr/o b(r, X, )dr +/O a(r, X, )dW,. < z>
— t — — —
<P (Xo +/ a(r, X, )dW, <z + t||b||oo)
0
t — — — —
= / g (/ &(r, X )AW, < & — 3 + £ [0 ] ’ X = y) m(dy).
R 0

Let us fix © < —C4(t). For 29 € R, let us split the integral in the right-hand side above in two
parts, integrating respectively on (—oo, 2] and (zg,+00). Then the first part can be bounded by
Fy(zp), whereas for the second part the exponential Markov inequality yields, for all A > 0,

t _2
P(/ G(r, X,)dW, <z —y +t/|b]|o ’ X0:y> < exp ()\(x—y+t||b||oo)+t)\2||02||00);
0

and finally, Fy(z) < Fy(zo) +exp (A(z — 2o + t|[b]|oc) + tA%||62||cc/2). As soon as zo > z+t[|b||oc,
optimizing this expression in A > 0 yields

(z — @0 + tlll_?lloo)z)

Ft(z)SFO(zO)+eXp ( 2t||6_2||

We now choose 29 = (2+t/|b]|s0) /2, then 2o < 0 and Fy(zo) = Fo((z+t[|b]|0)/2) = Fo(z/2+Ca(t))
with Cy(t) := t||b||oc /2. Moreover, for x < —C5(t) = —2t||b|| oo,

(& — @0 + t][B]|0)? o (14 t][B]|oc /2)? z?
_ — —pt— ' )< —
“p< 211620 R T e A WA A

where C5(t) := 32t||5%||oc. We get the first part of the lemma by taking C(t) as the maximum of
Cy(t),...,C5(t), and the second part follows similarly. O
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Assuming the classical regularity of (F}):>0, we now derive some estimates on the probability
density 0, F; from the celebrated Aronson inequalities on the fundamental solution of a parabolic
equation with divergence form operator [6]. Due to the possible dispersion of the initial condition,
our upper bound contains an extra tail term in addition to the classical Gaussian term.

Lemma 4.B.2. Under the assumptions of Lemma 4.3.3, for all 0 < t; < t3, there exists a positive
constant K > 0, depending on t1 and ta, such that for all (t,z) € (t1,ta] X R,

w e (Siog) 200 < g (o (g )+ (m3)).
(4.50)

Proof. The assumptions of Lemma 4.3.3 together with Corollary 4.2.13 ensure that the nonlinear
martingale problem of Subsection 4.2.2 has a unique weak solution P. We denote by X the
associated nonlinear diffusion process. Let I'(s,y;t,dx) = P(X; € dz|Xs = y) be the transition
probability of X. The generator

Lf:= %a(Ft(z))aif + b(Fi(x))0x f

is uniformly elliptic, and by the regularity assumptions on A, B and (F})¢>o, it rewrites in the
divergence form

L1 = 50: (a(F2)021) - (56 (Fie)0. ) ~ UFi(o) ) 0.

Let 0 < t; < t3. The assumption of boundedness of 9, F;(x) on [t1,ts] X R ensures that the
coefficients of the latter form are bounded. Thus, owing to [6], I'(s,y;t,dz) admits a density
g(s,y;t,x) and there exist some positive constants v;, k;, ¢ € {1,2}, depending on t; and t2, such
that for all ¢ € (t1,t2],

K1 (z —y)? _ K2 (z —y)?
e () < st < = men (5 )

Hence, p}(x) < 0, Fy(z) < p?(z), where

/f P (‘%) Fu(dy) < exp (‘m)

/JC:O P (%) P, (dy) <1— F;, (z/2).

[, o (i) o 2o (i)

/ e (‘M) P, (dy) < F;, (2/2),

—oo Yot —t1)
so that the upper bound of (4.50) holds for any K > ko V (472).

For all z > 0,

while

Likewise, for x <0,

while
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As far as the lower bound is concerned, there exist z_ < 0 < x4 such that Fy, (z4)—F, (x_) >
1/2. Then for all z € R,

p(x) > % /f exp (—M) Py, (dy)

T (t—t Y1t —t1)
K1 ((xg V—z_) + |2])?
= 2(t—tr)12 P (_ +71(t*t1) ) -

Now there exists K > 0 large enough, depending on k1, 71 and x4 V —x_, such that for all x € R,

—r_ 2 1 K 2
Ao (e V) b)Y L Kt
2 ’yl(t—tl) K t—tl

which results in the lower bound of (4.50). O

4.B.2 Proof of Proposition 4.3.4

We first give a general formula for the Wasserstein distance W, (F, G) between two cumulative
distribution functions F' and G.

Lemma 4.B.3. Let F and G be two cumulative distribution functions on R. Then, for allp > 1,
WIE.G) =plp = 1) [ Locyy (G0) — P + [F@) ~ G)) (v — o) Pdady. (451)

Proof. Let us split the right-hand side of (4.51) into two symmetric integrals in F' and G. Thanks
to the Fubini-Tonelli theorem, the first integral writes:

/R e G(@) = )] pp = 1)(y — 2)"*dady
1
- /RZ Ha<y;@)2F ()} </0 ]l{F(y)<USG(z)}du> p(p —1)(y — )P~ 2dady

1
:/ / L{ocyiF(y)<u<c(z)P(P — Dy — )P~ *dzdydu.
0 R2

By the definition of the pseudo-inverse functions F~! and G~!, note that for all z,y € R and
u € (0,1), F(y) < u if and only if y < F~(u) and G(x) > u if and only if x > G~ (u). Thus, the
right-hand side above rewrites

1
/ / L1 (uy<a<y<r—1 P — 1)(y — )P *dzdydu
0 R2

1 F~1(u) F~1(u) .
= / LiG-1(uw)<F-1(u)} / / p(p—1)(y — z)"“dydadu
0 =G~ 1(u) Jy=x

1
- /0 Lot (uy<r1(w} (F 1 (u) = G~ (u)Pdu,

and we conclude using the symmetry in F' and G of the two integrals in the right-hand side
of (4.51). O

We are now ready to complete the proof of Proposition 4.3.4.
Proof of Proposition 4.3.4. For all t > 0, (4.51) yields
Wg(Ft;Gt) :p(p—1)(I(Ft,Gt)+I(Gt,Ft)), (452)

where we define I(Fy, Gy) := [g2 Lizcyy[Ge(z) — Fy(y)] " (y — 2)P~2dedy. The assumption that
W, (Fo, Go) < 400 combined with Proposition 4.3.1 ensures that both I(F;, Gy) and I(Gy, Fy) are
finite.
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For all M > 0, let us denote
I (Fy, Gy) = /2 L M<ocy<any[Gi(z) — F(y)] T (y — z)P~*dady,
R

then by the monotone convergence theorem, limps—, 1o Ins(Fy, Gt) = I(F;, Gi) < +00. Owing to
the assumption of classical regularity on (F});>o and (G¢)¢>0, the function t — Ip(Fy, Gy) is C?
on (0,400) and for all ¢t > 0,

d _
&IM(F“ Gi) = /2 Li—m<ocy<ntlici@)> )} (0:Gi(x) — O F, (y))(y — )P~ *dady
i

1
= /RZ L M<a<y<MiG(2)>Fi(y)} On <§G(Gt(w))3x0t(x) - B(Gt(z))> (y — x)"~*dady

1 _
- /2 LM <a<y<MiG(2)>Fi(y)) Or <§G(Ft(y))ath(y) - B(Ft(y))> (y — x)"~*dady.
R
(4.53)
Let us define o}, (x) := M A F7 ' (Gy(z)) and ¢y, (2) = (—M) V G; ' (Fy(z)). Then the first
integral in the right-hand side of (4.53) rewrites

/y TI_M Lr@w)<c.w) / T oy, (%Q(Gt(x))amGt(x) = B(Gt(x))) dady

=@ (v)
and integrating by parts, we get
Y 1
/ (y — x)P~20, <§a(Gt(z))8mGt(:c) — B(Gt(z))> dx

=ea(¥)

= = )7 (J0(GH =)V F(1)0:Celiry () — BGH(-M) V(1))

e (JuG@)0Gile) - BGla) ) d

= (y)
Now

M Yy 5 1

[ tmwseon [ -2 0 (Ga(Gi@)0.Gilo) - BGi) ) dudy

y=—M I:‘Pju(y)
M 1 ‘/’L(z) 3

[ nwsein (5a(C@)0.600) - BG) [T w2l - arSayas

rx=—M Yy=x

= [ Mz (oG @G ~ PG ) () ~ 2y

so that the first integral in the right-hand side of (4.53) finally writes
M L1
| tinwzamn{(#h@ - o7 (5alGu()2,6i(a) - BGi)
-M
_ o1 _
— (2 = o3 (@) (Fa(Ge(=M) V Fy(2))0: Gl (1) = BG(~M) V Fy(x)) }da
whereas the second integral similarly writes

/M 1r,e)<auen { (0 (@) - )2 (%G(Ft(M) A Gul@))0s Ful; (2)) = B(F((M) A Gy(w)) )

~ = @) (F0(F ()0 Fi() - BE)) .

Hence, we deduce that for all 0 < t1 < to,

t
2 d
I]\/I(thaGtg) — IM(FtlaGt1) = / EI]\/I(Ft;Gt)dt == J]b + J]%4 + JI?/[’
t1
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where
to M
Tl = / / Urwze (e @) — 2P BEO) AG) - BG/@)
T (z — gy (2)P 2 BGo(—M) V Fi() — B(Fy(x)]}drdt;
72 -l/tz/Mn {0k () — 2P 2a(Gu(2)0:Cr(x)
M= 9 w S {Fi(2)<Gi(2)} P\ T T a\Gt\T) ) Oz X
+ (z — @&(m))p_Qa(Ft(m))@th(x)}dxdt;
U + p—2 +
Jir = ’E/t [Mﬂ{Ft(m>th(z>}{(@kf(z> — )P a(F((M) A Gi(2))0: Fi (97 (%))

+ (z — oy (@)P2a(Ge (= M) V Fy(2))0: Gi(py, () }dadt.
Integral term J1,. Since B is C! on [0, 1],

ta M
e / / r oyl (93 (@) = 272 F (M) A Gio) = Gio)

)P IG M) V) — Fi(o)]bdads
/t 2 / [bll (2307~ {[Ga(e) = FAODJ* + [Gul=) = Fi(a)] ot

< / 1b]] oo (2M)P~L{61(Fy, M) + t1(Gy, — M)} dt.

By Lemma 4.B.1, for all M > 2C(tq), for all ¢ € [t1, t2],

tl(Fta M) < tl(FOa M/2 - C(tQ)) + eXp(_MQ/C(tQ))a
t1(Gy, — M) < t1(Go, —M /2 4 C(ta)) + exp(—M?/C(t2)),

so that |J},| — 0 when M — +o0 due to the tail assumption on Fy and G.

Integral term J3,. By the monotone convergence theorem,

i T = /Z/H{Ff 1< @ (Gi(@) — 2)P%a(Gi(@)) 0, Gi(2)
7 H(F(2))P 2 a( Fy ()0, Fy (2) Ydadt,

and the limit is finite as

/ /H{Ft<w><c¢t<m>}( YGi(x)) — )P 2a(Gy(2)) 0, Gy (x)dadt
< llll / [ 1 o)) — a0, @axat

= [lalloo W” T5(F, Gy)dt

t1

< llallso(t2 — t) W) 5 (Fo, Go) < +o0,

due to Proposition 4.3.1 (we take the convention that W9 (F}, Gy) = 1).
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Integral term J3;. Note that

ta M
/t /  r o< (o) = 220l FM) A Gi@)) 0 Fiiy ()
L J-
to
= / / 11{Fr,(ﬂC)SGt(I);Ft(]W)SGt(Z)}(M — z)p72a(Ft (M))ath(M)dSCdtﬁL (454)
t1 —M

ta M
[ b cconnans e (Fr Gila) = 0~ 2a(Ga(a) o P (Gu(w))dad.

According to Lemmas 4.B.1 and 4.B.2, letting C' := C(t1/2), for M > 4C, the first integral in the
right-hand side of (4.54) is bounded by

ta
||a||oo/ (2M)P~10, Fy(M)dt

t1

< [[a] oo (2D~ / ﬁ <exp <ﬁ) T <F/ %» "
< Kol g2 (o (g ) +4 (Ao F - 0) +om () ).

and the right-hand side of the last inequality vanishes when M — 400, whereas the second integral
in the right-hand side of (4.54) converges monotonically to

/ / L pu(y <o) (B (Cr(3)) — 2P 2a(Go(2)) 00 Fo(Fy (Go(a) .

The second term in J3, is similar.
Conclusion. Taking the limit M — +oo in the equality In(Fy,, Gt,) — I (Fyy, Gry) — (i, +

J2;) = J3; now yields

I(Fy,, Giy) — I(Fyy, Gry ) — / /H{Ff(z)<cf(z)}{( H(Gi(x)) — 2)P2a(Gi(2)) 0. G ()
+ (z — Gy (Fy(2)))Pa(Fy(x)) 0y Fy () fdadt

=_Z (/2/]1{& V<G (B H(Ge(2)) — 2)P2a(Ge(2))0u Fy (Fy 1 (Ge(x)))dadt
+/tl /R]I{Ft(zKGt(r)}(w_Gt_l(Ft(x)))pQG(Ft(x))amGt(Gt_l(Ft(ac)))dxdt).

The left-hand side of the equality above is finite and the integrands in both integrals of the right-
hand side are nonnegative. Hence, all the integrals involved are absolutely convergent, and we
deduce

I(thaGt2) IFt17th)

Z%t /]R]lm(x)«;t WHETH(Gi(w)) — )72 (a(Gi(2))(0:Gi(x) — 0 Fr(F; (Gi(2))))
+ (@ = GTH(F(2)))" 72 (a(Fy(2)) (02 Fe(2) — 0:Go(Gr ' (Fy(x)))) ydadt.
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By symmetry and using (4.52), we now conclude
Wg(th ) Gtz) - WS(FIH ) Gt1)
=P [ R Golo)) = o2 (oG 0:Gele) = 0. P (Gut)
Flr = G (R@)P2 (alF(w)) 0. B (2) — 0.G4(G7 (Fu(x)) Yl

_ 7@ /t t { /O CE ) — G () P2a(u) (au thl o F:l (u)) 0uG7 ! (u)du
1 1

+/01 |F7 (w) — G Hw) P~ 2a(u) ((%Ft_l(u) — auGt_l(u)) (’)uFt_l(u)du} dt

= [P [l ) - 6 o O G )

which completes the proof. O
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Chapitre 5

Grands systemes stationnaires de
particules interagissant a travers
leur rang

Les résultats de ce chapitre ont été repris et étendus dans larticle [123].

5.1 Introduction

5.1.1 Nonlinear process

Let m be a probability distribution on the real line, b : [0, 1] — R be a continuous function and
02 > 0. This chapter is concerned with the long time behaviour of the viscous scalar conservation
law

2
g
OuFy = 75§Ft — 0x(B(F)),

(5.1)
Fy=H xm,
where )
Yu € [0,1], B(u) ::/ b(v)dv,
v=0
and H x - refers to the convolution with the Heaviside function, so that H * m is the cumulative
distribution function of m. Following [33, 89, 91|, the equation (5.1) possesses a unique weak

solution (F});>0, which describes the flow of marginal cumulative distribution functions of the
nonlinear diffusion process

dXt = b(Ft(Xt))dt + O'th,

F; is the CDF of X4,

where X is distributed according to m and is independent of the standard Brownian motion
(W)i>o0 in R. Let P refer to the law of the process (X;);>0 in the space of continuous sample-
paths C([0, +00),R), then for all ¢t > 0, the marginal distribution P; of X; possesses a density p;
with respect to the Lebesgue measure on R.

The two following conditions are natural in order to ensure ergodicity: first, taking the expec-
tation of X; yields, for all ¢t > 0,

B[] = BXo] + [ EIB(E(X.)ds = B[] + £B(1),

therefore one has to assume that B(1) = 0 so as to prevent X; from drifting away to infinity.
Second, since the cumulative distribution function F} is nondecreasing, the flux function B should
be (strictly) concave so as to provide confinement. These conditions are summed up in the following
Assumption (E):
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(E) B(1) =0 and the function b is decreasing on [0, 1].

Under Assumption (E), the set of stationary distributions for the nonlinear process (X;):>o is
explicitely described in Proposition 5.2.2 below. In particular, there is a unique centered stationary
distribution, and it possesses a density p., with respect to the Lebesgue measure on R.

5.1.2 Rank-based particle system

Following the propagation of chaos results of [33, 89, 91], P is the limit, in probability, of the

empirical distribution
n

n 1
He= g Zé(X:’n)tzo

i=1

of the system of rank-based interacting particles defined by

. 7,n 1 . )
vie{l,...n},  dAX{P"=b| - Zln{xg,ngz,n} dt + odW}, (5.2)
J=
where Xol’", ..., X" are i.i.d. according to m and independent of the standard Brownian motion

(W, W )>0 in R™.
For all j € {1,...,n}, it shall actually be convenient to replace the derivative b(j/n) = B'(j/n)
appearing in (5.2) with its finite difference approximation

bu(j) = n (B (%) - (%)) ’

which does not affect the asymptotic behaviour of the system when the number of particles is
large. We still denote by (X", ..., X/"");>0 the resulting system of particles.

As was remarked by Jourdain and Malrieu [89], this particle system cannot converge to an
equilibrium, since its projection along the direction (1,...,1) is a drifted Brownian motion. For all
t >0, let us denote by (Z/",..., Z"™) the orthogonal projection of the vector (X", ..., X;*™)
onto the hyperplane

My = {(21,...,2n) ER™ 1 21 + - + 2, = 0},

which is orthogonal to the singular direction (1,...,1).
The projected particle system (Z1", ..., Z{"")i>0 is a diffusion process in the hyperplane M,
which writes

n—1 .0 ;
dWw} — — dw?;. 5.3
LIy aws (53)

dZt, = bn ]I{Zz’TLSZ:’n} — g bn(j) dt+0‘
j=1 j=1 VE)

Besides, by exchangeability, for all ¢ > 0,

Under Assumption (E),

> balj) =n(B(1) = B(0)) =0 (5.4)

and the projected particle system has a unique stationary distribution described in Proposi-
tion 5.2.4 below. This stationary distribution possesses a density pZ with respect to the surface
measure on M,,; see Remark 5.2.5 for details on the surface measure of M,,.
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5.1.3 Main results

Before stating the main result of this chapter, let us first recall the definition of the Wasserstein
distance on R.

Definition 5.1.1. Letr > 1 and let p and v be two probability distributions on R. The Wasserstein
distance of order r between u and v is defined by

W, (u,v):=  inf E[X — Y|)Y",

(0= nf  (BX = YT

where I(u,v) refers to the set of random couples (X,Y) with respective marginal distributions p
and v.

Jourdain and Malrieu [89, Proposition 2.11] proved that under Assumption (E) and as soon as
b is Lipschitz continuous and m has a finite second order moment, then for all ¢ > 0, there exists
K(t) € (0, +00) such that the marginal distribution p;™ of Z™ (or Z/'™ for any i € {1,...,n} by
exchangeability) satisfies
(t)

=

WQ(p;,napt) <

5

Since the result above is not uniform in time, one cannot derive a convergence result for the

marginal density pl" of the first coordinate under p towards the stationary density ps, of the

nonlinear process. This is the purpose of our following theorem.

Theorem 5.1.2. Under Assumption (E), let pL,™ refer to the marginal density of the first coordi-
nate under p% . Then, for all T > 1,

lim Wr(pé’on,poo) =0.

n—-+oo

Theorem 5.1.2 follows from the convergence of the Laplace transform of pl;” stated in Theo-
rem 5.1.3.

Theorem 5.1.3. Let Assumption (E) hold.
Then b(0) > 0 > b(1), and for all t € (—2b(0)/0?, —2b(1)/0?),

(i) the Laplace transform
Lult) = [ expltopn (o)
z€R

of Peo 18 finite,
(i) for n large enough, the Laplace transform

L2 (1) := /e]R exp(tz)pl™ (x)dz

1,n

of p3a* s finite,
(#5) limpy—s 100 L7 (8) = Loo(t).

Let us note that 5(0) > 0 > b(1) is a straightforward consequence of Assumption (E).

The outline of the chapter is as follows. The stationary distributions p~, and pZ, are described in
Section 5.2. The Laplace transforms of p,, and p} are computed, and the proof of Theorem 5.1.3
is completed, in Section 5.3. We finally explain how to derive Theorem 5.1.2 in Section 5.4.

5.2 Stationary distributions

5.2.1 Nonlinear process

We first describe the set of stationary distributions of the nonlinear process. This heavily relies
on the function ® introduced in Lemma 5.2.1 below.
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Lemma 5.2.1. Under Assumption (E),
(1) for all w e (0,1), B(u) >0,
(i) the function ® : (0,1) = R defined by

Vu € (0,1), Mm:AJi%WHL%%E%ﬁU (5.5)

is C% and increasing on (0,1), and satisfies
o2 2
(0] ~ ! h 0 P ~
(u) 2000) og(u) when ul 0, (u) 2(1)

log(1 —u) when ut 1. (5.6)

Besides, it is integrable on [0,1] and such that

/1 & (u)du = 0. (5.7)

=0
Proof. Under Assumption (E), for all u € (0, 1),

1 [JU b(v)dv > b(u) > 1 ! /1 b(v)dv,

(% =0 —U Jy=u

that is to say (1 —u)B(u) > u(B(1) — B(u)) and finally B(u) > uB(1) = 0, whence the first point.
Assumption (E) also implies that
e when u | 0, B(u) ~ b(0)u, with 5(0) > 0,
e when u 11, B(u) ~ —b(1)(1 — u), with b(1) <0,
therefore the integrals in the right-hand side of (5.5) are finite, and the function ® is C? and
increasing on (0, 1), and satisfies (5.6). The integrability of ® on [0, 1] follows from (5.6), and by
the Fubini-Tonelli theorem,

1 2 1 2 1l 2
vo v(l —v)o / / (1-v)o
-——@mz/ ) L L Y9 qpdu,
/u:O /'U:O 2B(U) v=0 QB(’U) u=0 Jov=u 2B(U)
whence (5.7). O

Note that the inverse function ®~! of the function ® defined in Lemma 5.2.1 is the cumulative
distribution function F,, of a probability distribution P, on R, which is such that

1 1
/ (| P (d2) = / 1 (w)[du < +oo, / 2P (dz) = / B(u)du = 0.
z€R u=0 Tz€R u=0
Besides, since ® is C? and ®'(u) > 0 for all u € (0, 1), we deduce that F., possesses a density poo
with respect to the Lebesgue measure on R, which writes poo () = 2B(Fuo(z))/0?.
We can now recall the description of the set of stationary distributions of the nonlinear process,
which is detailed in Proposition 4.4.1 of Chapter 4.

Proposition 5.2.2. Under Assumption (E), the stationary probability distributions for the non-
linear process (Xi)i>0 are the translations of the probability distribution Pu; that is to say, the
probability distributions with cumulative distribution function x — Foo(x 4+ T) for some T € R.

As a consequence of Proposition 5.2.2, a stationary distribution for the nonlinear process is
characterised by its expectation. In particular, P, is the unique centered stationary distribution
of the nonlinear process.

Remark 5.2.3. In Chapter 4, the stationary distributions are proven to be the translations of the
function ¥ defined on (0,1) by

u 0_2
Yu € (0,1), U(u) = / dv.
1) ) v=1/2 2B(v)

Since ® and ¥ have the same derivative, it is clear that the set of translations of ® ! coincides
with the set of translations of W1,
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5.2.2 Projected particle system

We now address the projected particle system. In this purpose, we first introduce the following
notation: for all z = (z1,...,2,) € M, we denote by

zZ1) < < Zn)

the increasing reordering of (z1,. .., zn).
Under Assumption (E), (5.3) rewrites

n—1

dzi™ = -Vv(zZ!'", ..., ZPMdt + o

dWy — — dwy
n t n; to

where the continuous function V' : M,, — R is defined by

n

V(Zl, ceey Zn) = an(j)Z(])

Jj=1

We are now ready to describe the stationary distribution of the projected particle system, which
is due to Pal and Pitman [115, Theorem 8|.

Proposition 5.2.4. Under Assumption (E),

2 -, .
Z, ::/ exp ;Z}bn(])z(j) dz < +o0,
]:

and the probability distribution with density
. 1 2 « ,
Poc(2) = Z—exp | — > bali)2()
n J=1

with respect to the surface measure on M, is the unique stationary distribution of the process
1,n n,n
(Zt7 a"'7Zt7 )tzO-

Remark 5.2.5. A function f : M, — R is said to be symmetric if the value of f(z1,...,2,) is
invariant by permutation of the coordinates of (z1,...,2,). Clearly, p2 is symmetric. Therefore,
it is straightforward to show that, for all measurable and symmetric function f: M,, — R,

/ZeMn FEwLE: = [ e

zEM,,

where the probability density pl is defined by

Poo(21, vy zn) =l <o 3P (215 -5 20)
1 2 &, .
= ”!]l{mgmﬁzn}z_ exp (F Z bn(z)zi> .
" i=1

In particular, if one is interested in the marginal distribution pl;”, one can use exchangeability
and write, for all measurable f: R — R,

[ sewe@e= [ s

1< N
= /ZGMTL - ;f(zz)poo(z)dz

- / o SN

i=1

S|
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For all i € {1,...,n}, the integral

/Z TG ()

can now be explicited as follows. Rewriting M, as the hypersurface {z € R" : ¢(z) = 0}, where
¢(x) =21+ -+ + @y, it follows from [73, Exemple 4.3.4] that the distribution

dood=dwy- - dri 10 (5,4 pai i 4wisitotan) ([AT)dTigg - - day,
is well defined on R™, and such that
Sood=|Ve| 'z = vn de.
As a consequence, we obtain the formula

V/nn!

i z I / d$1 s 'dwi_lde_l s dxn
zEM, n (T15ee s Tim1,T it 15005 ) ERP L

X ]1{11S"'Smi—lS*(11+"'+Ii71+Ii+1+"'+In)SIi+1S“'§In}

—
~
5
=)
g4
O
oL
Il

2 . .
X f(=(@1+ -zt aia o o) exp | =5 Y (0a(j) = ba(i)2;
i
5.3 Expression and convergence of the Laplace transforms
In this section, we give explicit expressions of the Laplace transforms of pL,” and p.., and we

complete the proof of Theorem 5.1.3.

5.3.1 Laplace transforms

We first give explicit expressions for the Laplace transforms of p,, and pL™.

Lemma 5.3.1. Let Assumption (E) hold, and let t € (—2b(0)/0?, —2b(1)/0?).
(i) The Laplace transform

Lutt) = [ _ ep(ta)pec ()

of Peo 18 finite and writes

Loolt) = /ul—o P (t /1:0 220(1) o= tLI—u %dv) o

(ii) There exists ng > 1, depending on t, such that, for all n > ng, the Laplace transform

L= [ _ ep(i)p (w)de

of pX™ is finite and writes

n i—1 n—1
1 1 1
L (t) = —
(1) nZH to?  j/n X].'_‘[ to?21—j/n’
i=1j=171 — — Jj=i 1 _
2n B(j/n) 20 B/n)

where we take the convention that a product over an empty set of indices is worth 1.
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Proof. The point (i) follows from the expression of ® given in (5.5) combined with the esti-
mates (5.6). Let us now address (ii). For all ¢ € R, Remark 5.2.5 allows us write

1 n
L (t) = — 1;(t),
L0 =3 00
where
|
Il(t) = \/ﬁn / d$1 s 'dwi_lde_l s dxn
Zn (L1500 @i—1,Ti 4150, T ) ERP T

2 ) .
X ]l{ZlS”'Sﬂ—lS—(Zl+"‘+$i71+$i+1+‘“+$n)§$i+1S”'Swn,} €xXp E (t + 0_2 (bn(]) - bn(l))) Zj
J#i

Note that, at this stage, nothing prevents I;(¢) from being infinite.
Let us fix i € {1,...,n}. Then, for all j # i, we let

Yj ::zj+(zl+"'+$i71+zi+l+"'+$n)7

so that
dyi - - - dyi—1dYit1 - - - dyn = ndxy - - -des—1dwipq - - - day,

while
]l{zlg"'gxiflS7(11"1’"'+1i71+xi+1+“'+xn)gmi+lS"'an} = ]l{ylS“'Syi—lﬁoﬁyi+1ﬁ"'§yn}'
Besides, the quantity ¥; :== o1 + -+ + 2,1 + ;41 + - - - + x,, satisfies
=) wi=Y (y+ %),
J#i J#i

therefore

M
[

1
;;yj-

As a consequence,

7 N
N
+

L
—
o
3
—
<
=
o>
3
—
S
N
=
~__
8
<
Il

/T\
~
+

L
—
(=
3
Yy
.
N~—
|
(=
3
—
~.
N~—
N~—
~__
—
&
+
[\
S
N~—

where we have used (5.4) at the second line. Letting

t 2
w(Gi1) = == + Z5ba(j),
Y (4, t) —+ —50a(j)
we conclude that
! dyy - dyi_1dyisq - - - dyy,
oy gy
Zn (Y1,-->Yi—1,Yit1,-Yn) ERP L n

X Ly, <Syi 1 <0<y <o<un) D | D (i D)y;
i
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We can now split the integral and write

where

0 Yi—1 Y2 i—1
I (1) ::/ / / exp | > (i )y; | dyr -+ dyi—adyi,
Yy Yy1=—00 j=1

i—1=—00 JYj—2=—00

+o00 n
/ / / exp | Y (s | dyn - dyiyadyiga.
Yit+1=0 Jyiqo=yiq1 Y

n=Yn—1 j=i+1

Let us remark that, under Assumption (E), for all § > 0,

B B
mi 2 o mf 20
we0,1-6] U wels1] 1 —u
therefore
2n B(j 2b(1 2n B(j 2b(0
liminf min n (J/n) = — ( ), lim sup max ils (j/n) = - ( )
n+oo 1<j<n—102  j/n o2 n—too 2<j<n 02 1—j/n o’

Owing to the choice of ¢, there exists ng > 1 such that, for all n > ng,

2n B(7 2n B(j
BB L 2B
2<j<n 02 1—j/n 1<j<n-102 j/n

For n > ng and under Assumption (E), successive integrations yield

1—1 1—1

_ 1 1

J=1 J=1 ——t—|— —B

n
Ij(t):ﬁ ('t)+-7--1+ (nt)(mniﬁ n—j+1, 1 —1
= 1l Yn(n, P __B(J )
n n

and the right-hand sides of both lines are well defined on account of (5.8).
As a consequence, L" (t) writes

i—1

e B Bl et

i=1 j=1 f—t +5B j=itl —
g

Finally, using the fact that L7 (0) = 1, we deduce that

Z, n—l 1:[

whence the expected expression for L7 (¢). O

]/”

5.3.2 Convergence of the Laplace transforms

Before proving Theorem 5.1.3, let us introduce the following properties, that are trivial conse-
quences of the Taylor-Lagrange inequality.
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(TL1) For all n € (0, 1), there exists k, € (0,400) such that, for all € [—(1 —7), +00),
[log(1 + ) — ol < rylaf.

One can take r, = 1/(2n?).

(TL2) For all z,y € R,
|exp(x) — exp(y)| < exp(y) (lz —y| + [R(z — y)]),

where the function R : z — exp(z) — 1 — z is such that, for all z € [-1,1],
|R(2)| < Rl2]%,

with & = exp(1)/2.

We are now ready to prove Theorem 5.1.3.

Proof of Theorem 5.1.5. Let us fix t € (—2b(0)/0?, —2b(1)/0?) and n > ng, where ng is given by

Lemma 5.3.1. Let € > 0 such that € < (0) A (—b(1)), and

2 (b(0) — ) <t < 5 (~b(1) — ).
Then there exists ¢ € (0,1/2) such that:

e for all u € [0,0], B(u) > u(b(0) — ¢),

o forallu e [1—0,1], B(u) > (1 —u)(=b(1) —¢),
and Assumption (E) allows us to define

s_(6):= inf B Lo, 5. () = B(u)

inf > 0.
we(0,1-8) U we(5,1) 1 —u

For all uw € (0,1), let

F(u) = exp(td(u)) = exp (t / io 27]}302)@ —t / iu %dv) ,

and for all ¢ € {1,...,n}, let

- i—1 1 n—1 1
Ja(@) :jl:[ll to?  j/n x JI_IZZ to21—j/n’
20 B(j/n) 2n B(j/n)

so that

ECRSUED O BN AURF O]

We split the sum above as follows

>/ 15a09) = F0)ldu =3 Ly [ (i) — £ () du
i—1 v=(i—1)/n i—1 u=(i—1)/n
+ Z Lins<i<n(1-6)} / | fn(i) — f(u)|du
i—1 u=(i—1)/n
n i/n .
D T— o 1) = s
i=1 u=(i—1)/n

and address the boundary terms and the central terms separately.

(5.9)
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Boundary terms. Let us write

i/n
Zﬂ{l<n5}/ - n|fn(l) u)|du < — Z]l{z<n6}fn / flu

u=(i—

On the one hand, it follows from (5.6) that

5
1611101 - f(u)du = 0.
On the other hand, we show that
limlim sup Z Li<nsy fu(i) =0, (5.10)
so that i/
gn(;lgiup; . / o M) = fln =0,

and symmetric arguments yield the same result for the other boundary term in (5.9).
If t > 0, then for i < nd,
H to® 1 — -
1 o? Jj/n

2nB(/)

. te? 1 —6-D) toe? 1 -
H S (U A <(1-2———) .
e to? j/n 2n b(0) — e 2n b(0) — €

2n B(j/n)

The right-hand side above is uniformly bounded with respect to n > ng and 6 < 1/2 by a constant
C € (0,+00). As a consequence,

while

1 « _
- Zﬂ{igné}fn(l) < Co,
=1

whence (5.10).

Let us now assume that ¢t < 0. Then, for all ¢ € {1,...,n},
j=11— ﬁ jfn_
2n B(j/n)

Controlling the remaining term

1;[ 1 to? 1—j/n
2n B(j/n)

for i < nd is now much more delicate: indeed, for small values of j, the fraction (1 — j/n)/B(j/n)
is no longer bounded, and the prefactor 1/n has to be absorbed to balance this growth. As a
consequence, the geometric bound obtained above is too inaccurate. We shall therefore proceed
as follows.

On the one hand,

- e 14t A ) 2n B(/) ’
9 B(j/n)
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and for all j € {|nd|+1,...,n—1},
1—j/n 1
B(j/n) ~ s4(5)

As a consequence, for n large enough to ensure that to?/(2ns4 (§)) > —1/2, the inequality (TL1)
yields

n—1 2 . 2 n—1 . 2 2
1-— 1—
-2 (o) < w2 w o )
j=Ina)+1 nEum T jlnegpr DV T A
which converges to
to? /1 1—w
dv
2 v=0 B(U)
On the other hand,
[nd] [nd]
1 1
<
31;[1 LA et 1;[ L=afj’
2n B(j/n)
where 9
to
=—————¢€(0,1
“E s —a <OV

thanks to the choice of e. Using (TL1) again, we write

[nd] [nd]

1 o
log - = — log <1 — —,)
_ [nd] (g—’—m a2)
= oz._Q
=Nk
[nd] -
< z 22
o Z ; + Ko 6
Jj=i
2
< a(1+log(nd) —log(i)) + ka o
so that
[nd] 1
1T K, 0%
o?1—j/n = % (i/n)>’
Jj=t 1 4+t— -
2n B(j/n)
where K, := exp(a + koa?m?/6). Since
12 /5 dv e
lim Z - = = )
n—+oo n (i/n)e —ov* l—a
we conclude that
[nd] 2 1
1 K, to 1—w
li - () < —2 5 _ = Yqu ) = M(©).
imsup -3 0 < 20 (5 [ Frsa) =00
=1

To obtain (5.10), we now have to check that M (4) vanishes with ¢. To this aim, we fix 0 < n <
b(0) A (=b(1)) such that —2(b(0) —n)/0? < t. Then, for § small enough, we have

L y—w —logé
dv < ,
/Uza B(v) 7 b(0) =7
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so that -
to 1—vw
= < 5B
eXp( > S B(v)d”) =0
with 5
—to
f:=—————¢€(0,1).
2000) ) = OV

As a conclusion, M (6) is of order =7 when § is small, whence (5.10).
Central term. We now want to prove that

i/n
lim lim s Lnseion 2(6) — f(w)|du = 0. 5.11
im Tgup; e [ U0 = s (5.11)
In this purpose, we fix ¢ € {1,...,n} such that nd < i < n(1 —9), and let u € [(i — 1)/n,i/n].
Then, by (TL2),
[fn (i) = f(u)| < exp(t®(u))(|A] + [R(A)]),
where A := Ay + Ay, with

> s (1~ i)~ g
_T;Z_:log (1+ g;ﬂ%g) +t[_u %dv

The construction of ng ensures that there exists n € (0,1) such that, for all n > ng, for all
je{l,...,n—1},

E j/n to?1—j/n

“Bgm s T g =

Then using (TL1), we write

i—1
to® j/n “ ta® j/n

Al < —t d
[Aa] < Jz:QR B(j/n) /U 02B * WZ 2n B(j/n)

9 1—1 ]/n . 2 m
< |tlo Z/ J(n B do + |tlo /

2 j=1 v=(j—-1)/n B(]/?’L) B(U) 2 (i— 1)/n 271 B
Now
to? j/n

|t|o? /“ 1/ |tlo? 2ot
d Z
2 (-1)/n B o "Z n\2s_(0) " "as_(52 )

while the uniform continuity of v/B(v) on [0,1 — §] implies that, for n large enough,

1—1
[l /”"
2 Z v=(j—1)/n

Jj=1

2n B(j/n)

j/n v

BG/m) B | W=

Using the same arguments for Ay, we conclude that there exists a constant S(6) € (0, +00), that
does not depend on n, u and ¢ but grows to infinity when ¢ vanishes, such that, for n large enough,
S(s
Al <6+ L
n

Taking n large enough to ensure that the right-hand side above be lower than 1, we deduce

from (TL2) that )
R <5+ 52,
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therefore
[fa (i) = f(u)] < exp(t®(u)) (5 + @ R (5 N @) ) |
and finally
n i/n _ B )
le{n6<i<n(1—6)} /_(._1)/ [fn(?) — f(u)|du < Loo(t) <5 + @ +R (5 + @) ) .

Letting n grow to infinity, then ¢ vanish, in the right-hand side above, we obtain (5.11) and thereby
complete the proof. O

5.4 Completion of the proof of Theorem 5.1.2

The proof of Theorem 5.1.2 is based on the following lemma.

Lemma 5.4.1. Let (jin)n>1 be a sequence of probability distributions on R, and let u be a proba-
bility distribution on R. Let us assume that there exists p > 0 such that, for all t € [—p, p),

lim exp(tz)un, (dz) = / exp(tz)u(dz) < +oo.
n=too Joer z€R

Then, for all r > 1,
lim W (pp, 1) = 0.

n—-+oo

Before proving Lemma 5.4.1, let us explain how it allows to derive Theorem 5.1.2 from Theo-
rem 5.1.3. To this aim, let us fix p > 0 such that

p< % (b(0) A —b(1)).

Then, by Theorem 5.1.3, there exists nar > 1 such that L7 (p) < 400 for n > nar, and there
exists n, > 1 such that L% (—p) < o0 for n > ny . Clearly, this implies that, for all ¢ € [—p, p],
L (t) < +oc as soon as n > ng V ng, and the assumptions of Lemma 5.4.1 are satisfied and
Theorem 5.1.2 follows.

Proof of Lemma 5./.1. The convergence of Laplace transforms on the interval [—p, p] implies that
iy, converges weakly to . Following [135, Theorem 6.9], to obtain the convergence in Wasserstein
distance of order r, it now suffices to prove that

tin [ el ) = [ ol (o)
(S8 z€ER

n—-+o0o .
But since p,, converges weakly to pu, the convergence above follows from the uniform integrability
property
lim sup/ || pn (dx) = 0,
lz|">a

a——+00 n>1
which can be obtained by proving that, for some ' > r,
limsup/ 2| i (dz) < 400.
n—+oo JzeR

Therefore, we now fix r’ > r. Then, there exists a constant M > 0 such that, for all x € R, if
|z| > M, then

lz|" < exp(plz]) < exp(px) + exp(—pz).
As a consequence,
me/ mﬁmegM“+/ (exp(pz) + exp(—p)) p(dz) < +oo
n—+oo JreR zER

which completes the proof. O
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Chapitre 6

Distribution du capital et
performance de portefeuilles dans le
modele d’Atlas en champ moyen

Ce chapitre reprend le contenu de I'article [90], écrit avec Benjamin Jourdain. La version prépu-
bliée de cet article comporte un appendice C, qui présente I'extension des résultats de Particle [91]
a des hypothéses de non-dégénérescence un peu plus générales. Dans ce manuscrit, cet appendice a
été incorporé au Chapitre 4. Par souci de cohérence avec la littérature de la théorie des portefeuilles
stochastiques, les conventions de notation différent légérement des Chapitres 4 et 5 : en particulier,
le « systéme de particules », qui représente ici les log-capitalisations des prix des actifs, est noté
(YL(t),...,Y(t)i>0 plutot que (X", ..., X{"™);>0, et les coefficients de dérive de ces processus
sont donnés par la fonction v : [0,1] — R plutét que b.

6.1 Introduction

6.1.1 Rank-based models

Rank-based models of equity markets were introduced by Fernholz within the framework of
Stochastic Portfolio Theory [58, 62] as first-order approximations of asymptotically stable markets.
In such models, the capitalization of a stock is described by the exponential of a diffusion process,
the drift and variance of which depend only on the rank of the stock among the whole market. A
simple but celebrated instance of such a model is the Atlas model [58, 11, 62, 81], where all the
stocks have the same variance and the smallest stock is responsible for the growth of the whole
market.

In the long-term, the Atlas model was proven to capture the actual distribution of the total
capital [58]. This gave rise to a large amount of mathematical studies on rank-based models [78,

, 61, 60]; in particular, concerning the shape of capital distribution curves [11, 41, 62, | as
well as the selection of optimal investment strategies (portfolios) on the market [11, 62]. Both the
capital distribution and the performance of portfolios depend on the long time behaviour of the
market, which was described in [11, , 89, 80, 81]. In order to study large markets, asymptotic
properties, when the number of stocks grows to infinity, of long-term rank-based models were
derived in [11, 41, 125].

In this chapter, we introduce a rank-based model that we call the mean-field Atlas model,
where the drift and variance of the capitalization processes depend on empirical quantiles. This
particular shape for the characteristics of the market, that we shall discuss below, allows us to:

1. derive an asymptotic description of the evolution of the market when its size grows to infinity,
through a functional law of large numbers;

2. obtain closed form expressions for the long time behaviour of this asymptotic market;
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3. recover capital distribution curves similar to those empirically observed;
4. carry out a detailed analysis of the performance of a portfolio rule.

Before providing more insight into these issues in Subsection 6.1.2 and giving a proper definition
of our model in Subsection 6.1.3, let us insist on the following particularity of our approach. In
all the works cited above, the authors first address the long time behaviour of market models with
a fixed number of stocks, then possibly study the large size limit of the market under its steady
state. The latter is not so easy to handle as the underlying stationary distribution is generically not
known, see §6.1.2.1 below for a more detailed review. As a consequence, the asymptotic behaviour
of these steady states for large markets is all the more difficult to understand, although there have
been remarkable results in this direction [11, 41].

In the present chapter, we somehow take the opposite path and first obtain an asymptotic
description of the evolution of the whole market when the number of stocks grows to infinity. This
limit shall be referred to as the asymptotic market. Then, we address the long time behaviour of
this asymptotic market and get an explicit description of the steady states of large markets, which
is widely based on the theoretical results of Chapter 4. To our knowledge, this is the first study
proceeding in this way. Reassuringly, we essentially observe the same phenomena as in previous
works, which gives an a posteriori account for this novel approach.

6.1.2 Context and motivations

We now provide a general introduction to the issues we shall address in the context of the
mean-field Atlas model; namely, the long-term stability of rank-based models, the description of
capital distribution curves and the analysis of portfolio performance.

6.1.2.1 Long-term stability of rank-based models

The framework of Stochastic Portfolio Theory [58, 62] is described as follows. For a market
containing a fixed number n > 1 of stocks, with respective capitalizations X! (¢),..., X"(t) > 0 at
time ¢, the log-capitalizations Y, (¢) := log X/ (t) are assumed to satisfy the relation

Vie{l,...,n}, dY (t) = ~L(t)dt + ol () dB' (1), (6.1)

where the growth rate process (v.(t),...,v2(t))t>0 and the volatility process (o} (t),. .., (t))i>0
in R™ are adapted to a given filtration (F(t));>0 on some probability space (£2,F,P), and the
processes (B(t))t>0, i > 1 are independent (F(t));>o-Brownian motions.

The model is said to be rank-based whenever the growth rate process and volatility process

write

n n
’Y:z(t) = Z II'{Y;(t):YTEj)(t)},Y%’ J:z(t) = Z ]l{y;(t):yrsj)(t)}gév (62)
j=1 j=1
for given growth rate coefficients v},...,7" € R and volatility coefficients o},..., 0" € R, where

Yn(l)(t) < - < Y,S”)(t) refer to the increasing reordering of Y,1(¢),...,Y,"(t). In other words,
the dynamics of each stock is determined by its rank among the whole market. As is explained
below, we shall work under assumptions ensuring that almost surely, dt-almost everywhere, the
random variables Y,!(t),...,Y(t) are pairwise distinct. Therefore there is no need to take a
specific convention to resolve ties.

Let us emphasize the fact that we use the notation (j) to refer to the increasing reordering,
following the usual convention for order statistics. However it is sometimes convenient to use

the decreasing reordering [58, (2, , 41]. In such situations, we shall use the notation [k]. In
other words, if (y!,...,y") € R", then ((1),...,(n)) is a permutation of (1,...,n) such that
y < .. <y while ([1],...,[n]) is a permutation of (1,...,n) such that y > ... > yl"l. Note

that one may always choose [k] = (n — k + 1).

As soon as, for all j € {1,...,n}, (67)? > 0, then the stochastic differential equation (6.1, 6.2)
admits a unique weak solution [13], and almost surely, d¢-almost everywhere, the random variables
Y,1(t),...,Y,"(t) are pairwise distinct. Then, we define the capitalization of the i-th stock by

n

Xi(t) :=expYi(t).
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A first mathematical study of rank-based models was carried out by Banner, Fernholz and
Karatzas [11]. There, the emphasis was laid on the particular choice for the growth rate coefficients

o =19, Y= =7, =0, (6.3)

where g > 0. With this choice of coefficients, the smallest stock is responsible for the growth
of the whole market, therefore, analogically to the ancient Greek myth, this model is called the
Atlas model. Various generalizations of this model were introduced later, such as hybrid Atlas
models by Ichiba, Papathanakos, Banner, Karatzas and Fernholz [31] (see also Fernholz, Ichiba
and Karatzas [59]), in which the growth rate and volatility processes depend both on the rank and
on the index ¢ of a stock.

As far as the long time behaviour of the solution to (6.1, 6.2) is concerned, Banner, Fernholz
and Karatzas [11] described the marginal distribution of each stock in the long-term. Pal and
Pitman [115] and Jourdain and Malrieu [89] described their joint distribution in the long-term
for models in which all the stocks are assigned the same variance, and Ichiba, Papathanakos,
Banner, Karatzas and Fernholz [31] extended these results to the case of a linearly decreasing
variance coeflicient with respect to the rank. Rates of convergence were provided by Ichiba, Pal
and Shkolnikov [30].

Generically, a necessary and sufficient condition ensuring the long-term stability of rank-based
models (6.1, 6.2) is that

k
VeEe{l,....n—1}, > (v —gn) >0, (6.4)

Jj=1

where g, := (1/n) > 7_, ), is the mean growth rate of the processes (Y, (t))i>0, - -, (Y (t))i>0-
This condition somehow expresses the fact that the growth rate of small stocks is larger than the
mean growth rate of the market, while the growth rate of large stocks is smaller than the mean
growth rate of the market. This is known as the size effect, see [58, p. 86]. From the economic
point of view, this effect is a natural consequence of rebalancing, that is, the fact that investors
buy stocks when their prices are low and sell stocks with large prices.

Similarly to the size effect on growth rates, the variance of small stocks is also empirically
observed to be larger than the variance of large stocks. Throughout this chapter, we shall refer to
this phenomenon as the volatility size effect. As an example, in [62, Figure 13.6], the variance is
observed to be linearly decreasing with respect to the rank, which motivates the stability result
of [81].

Several models have been introduced to capture the growth rate and volatility size effects, see
for instance the so-called Volatility-Stabilized Model by Fernholz and Karatzas [62, Section 12],
which was later on discussed by Pal [114], Shkolnikov [128] and Sarantsev [126]. As we shall see
below, both rebalancing and the volatility size effect play a key role in the analysis of portfolio
performance.

6.1.2.2 Capital distribution curves
For all i € {1,...,n}, the market weight at time ¢ > 0 of the i-th stock is defined by

_ X} (t)
X e+ X))

i, (1) :

The capital distribution curve is the logarithmic representation of the market weights rearranged
by decreasing order, namely the curve logk — log u% ] (t), where we recall that [k] refers to the

index of the stock with k-th largest capitalization at time ¢; that is to say, X,[ll] t)y>---> X,En] (t).

The actual capital distribution curves for the stocks traded on the NYSE, the AMEX and
the NASDAQ stock market between 1929 and 1999 were described by Fernholz [58, Figure 5.1,
p- 95]. They exhibit a remarkable stability over time, and indicate, at least for the largest stocks, a
Pareto-like distribution of the capital, which is a common observation in the economic literature [58,
Section 5.6.
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This Pareto-like distribution was recovered for the Atlas model (6.3) by Fernholz [58, Ex-
ample 5.3.3, pp. 103-104]. In the case of rank-based models (6.1, 6.2) with constant variance
coefficients, Chatterjee and Pal [41] adressed the asymptotic behaviour, when n grows to infin-

ity, of the stationary distribution of (ME ) (t),..., ;Lw (t))t>0. They observed the following phase
transition phenomenon: depending on the growth rate coefficients,

e cither the largest stock dominates the market and monopolizes all the capital,
e or most of the capital is spread among a few leading stocks,
e or the market weight of every stock vanishes.

In the second case above, the distribution of the capital between the few leading stocks was also
proven to exhibit a Pareto-like distribution.

6.1.2.3 Portfolio performance

A portfolio rule on an equity market is a strategy prescribing the proportion of wealth to be
invested in each stock. In particular, the equally weighted portfolio assigns the same weight to
all stocks, while the market portfolio is given by market weights. Due to the fact that these two
strategies can easily be implemented, they are of importance for practitioners and have aroused
many empirical and theoretical studies.

From the empirical point of view, it has been observed that the equally weighted portfolio
generally outperforms the market portfolio (‘beats the market’) under various indicators; we refer
to the work by Plyakha, Uppal and Vilkov [118] for a study of the major U.S. equity indices over
the last four decades. From the theoretical point of view, it is commonly believed that the equally
weighted portfolio beating the market is due to rebalancing: indeed, the market portfolio tends
to invest more capital in large stocks, while the equally weighted portfolio is insensitive to this
effect; see the preprint by Pal and Wong [117] and the references therein. As far as the Atlas
model is concerned, the performance of the equally weighted portfolio and the market portfolio
was addressed by Banner, Fernholz and Karatzas [11], who essentially confirmed that the equally
weighted portfolio beats the market.

6.1.3 Model and results

We complete this introduction by giving a proper definition of the mean-field Atlas model and
providing an overview of our results.

6.1.3.1 The mean-field Atlas model

Let v,0 : [0,1] = R be continuous functions; v is the growth rate function, o is the volatility
function. The function o2 shall be called the wvariance function. The mean-field Atlas model
consists of the rank-based model (6.1, 6.2), with growth rate and volatility coefficients given by,
foralln > 1,

Vj € {1,...,71}, 7%:7(‘7/”)’ O’%ZO’(]/TL), (65)

and initial log-capitalizations Y} (0),...,Y,"(0) i.i.d. according to a given probability distribution
m on R. Tt is well defined as soon as o2(u) > 0 for all u € [0, 1], which we shall refer to as the
uniform ellipticity assumption (UE) in the sequel.

For all j € {1,...,n}, for all ¢ > 0, Yn(J)(t) is the empirical quantile of order j/n of the
vector (Y,1(t),...,Y,™(t)), so that the growth rate and volatility of the log-capitalization process
Yn(j ) is a function of j/n. From the point of view of economical modelling, we argue that mean-
field coefficients (6.5) are reasonable choices for large rank-based models as they describe weak
interactions between the stocks, in the sense that the larger the market is, the smaller the individual
influence of a stock on another is.

Remark 6.1.1. Let us emphasize that the mean-field Atlas model is not a generalization of the
genuine Atlas model (6.3): formally, to recover (in the large size limit) the growth rate coeffi-
cients (6.3) from the mean-field coefficients (6.5), one should replace the growth rate function ~
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with gdg, where Jg is the Dirac distribution in 0. Of course, this is not a function and therefore the
Atlas model cannot be rigorously described in terms of mean-field coefficients. However, mean-field
approximations of the Atlas model can be introduced by using the growth rate function

Yalu) = gla+ (A —w)*  g>0,

where a > 0 is the Atlas index: the larger it is, the more the growth rate concentrates on small
stocks. This mean-field approximation of the Atlas model is used in Example 6.5.7 below.

6.1.3.2 Results and outline of the chapter

Section 6.2 is dedicated to the description of the asymptotic behaviour of the mean-field Atlas
model in the large size limit. This issue was first addressed by Shkolnikov [127] for stationary
initial distributions, and then by the author [91] for generical initial distributions (see also the
recent article by Dembo, Shkolnikov, Varadhan and Zeitouni [48]). The following propagation
of chaos phenomenon was observed: when n grows to infinity, the log-capitalization processes
asymptotically behave like independent copies of a stochastic process (Y (¢)):>0, such that, for all
t>0,

E(Y () =E(Y(0)) + gt, (6.6)
where
1
g ::/ ~(u)du (6.7)
u=0
is the market mean growth rate. In other words, the chaoticity of the i.i.d. initial conditions is
asymptotically propagated to the log-capitalization processes when their number is large. We first
recall this result, and then describe the long time behaviour of the fluctuation Y (¢) of Y (¢) around
gt. Under a size effect assumption of the same nature as (6.4), we prove that the law of 57(15)
converges toward an explicit equilibrium distribution. We also discuss the shape of the tails of this
equilibrium distribution in —oo and +oo.
In Section 6.3, we define the weighted capital measure IIP (t) by

R (X ()
m@’guww+mﬂmwﬁm

Jj=1

(6.8)

for all diversity indices p > 0. When p = 1, we drop the superscript notation and only refer to
IL,(t) as the capital measure.

The weighted capital measure is a random probability measure on [0, 1]. Our study of capital
distribution curves and portfolio performance is based on the analysis of II? (¢) when n — 400 and
t — 400. We first use our propagation of chaos result to derive a law of large numbers for II? (¢);
namely, we prove that

; P (+) — TP
i T2 (1) =T (1),
where the asymptotic weighted capital measure IIP(t) is a deterministic probability distribution on
[0,1], with an explicit expression in terms of the law of Y'(¢). Then, we address the long time
behaviour of II?(¢), and prove that there exists a critical diversity index p. > 0 such that:
e if p €0, p.), then

lim IIP(t) = 117,
t——+o0
where the long-term asymptotic weighted capital measure IIP is a probability distribution on
[0, 1], with an explicit expression in terms of the equilibrium distribution introduced above,

o if p > pc, then
lim Hp(t) = 51.

t— o0
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We shall refer to the fact that the model behave differently whether p € [0,p.) or p > p. as a
phase transition phenomenon, and the case p € [0,p.) (resp. p = p. and p > p.) shall be called the
subcritical phase (resp. criticality and the supercritical phase).

In Section 6.4, we study the distribution of the capital for the long-term asymptotic market.
This relies on the analysis of the capital measure as follows. Recall from §6.1.2.2 that the capital
distribution curve describes the repartition of capital with respect to the rank of companies, ordered
by size. For the sake of coherence with the works by Fernholz [58] and Chatterjee and Pal [11],
the companies are ranked with respect to the decreasing order of their size: ug ] t)y>---> ;Lw (t).
We recall that one can choose [k] = (n — k + 1).

For u,v € [0,1] with 4 < v, the proportion of capital held by companies ranked between nu
and nv is roughly

Z P (t) = Z plr R (8) ~ Z pd () = (Tp—pe<i—uy, Mu(t))

nu<k<nv nu<k<nv n(l—v)<j<n(l—u)

which explicits the link between the capital distribution curves and the capital measure II,,(¢).
In order to describe the long-term capital distribution on large markets, we use the results of
Section 6.3 on the long time behaviour of the asymptotic capital measure TI(t).

Interestingly, the phase transition for the asymptotic weighted capital measure derived in Sec-
tion 6.3 results in the same phenomenon as was observed by Chatterjee and Pal [41] (see §6.1.2.2
above). Yet we provide a different, and complementary, description. In particular, in the case where
the market weight of every stock vanishes, we introduce the capital density g : [0,1] — [0, +00)
such that the proportion of capital held by the companies ranked between nu and n(u + du) is
given by fi(u)du in the long-term asymptotic market. The study of the capital density allows us
to recover the Pareto-like shape of capital distribution curves, similar to the ones obtained by
Fernholz.

We finally address the performance of portfolio rules in Section 6.5. We first introduce a
family of portfolio rules, called p-diversity weighted portfolios, interpolating between the equally
weighted and the market portfolio. The performance of such portfolios is described in terms of
the weighted capital measures. Therefore, based on the results of Section 6.3, we obtain a law of
large numbers for the growth rates of these portfolios. Then, we analyse the long time behaviour
of these asymptotic growth rates.

As far as the discussion led in §6.1.2.3 is concerned, we draw the following conclusions: in the
limit of a large market, the relative performance of the equally weighted portfolio with respect to
the market portfolio only depends on the volatility structure of the market model, and no longer
on the growth rate. In particular, if the variance of a stock is a nonincreasing function of its
capitalization, which matches the volatility size effect described in §6.1.2.1, then we recover the
fact that the equally weighted portfolio beats the market. However, we also provide an example
of a model, where large stocks have large variance, in which the market portfolio outperforms the
equally weighted portfolio, in spite of rebalancing.

6.2 The mean-field Atlas model

In this section, we give a general description of the limit of the mean-field Atlas model when the
number of companies n grows to infinity, laying particular emphasis on the long time behaviour
of the market. Our analysis is based on the theoretical study of Chapter 4, the main results of
which shall be recalled whenever needed. Notations and conventions are set up in Subsection 6.2.1.
The description of the large market asymptotics is made in Subsection 6.2.2, and its long time
behaviour is discussed in Subsection 6.2.3.

6.2.1 Preliminaries

We first set up some notations and conventions.
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6.2.1.1 Assumptions

Let us introduce and discuss the various assumptions that we shall use on the initial distribution
m and the coefficients v and o of the mean-field Atlas model.

Following [13], a sufficient condition for the system (6.1) to be defined in the mean-field Atlas
model is the following uniform ellipticity assumption

Vu € [0,1],  o*(u) > 0. (UE)

A weakening of this assumption, allowing degeneracies in 0 and 1, is discussed in §6.3.2.3.

The law of large numbers for the weighted capital measure requires integrability conditions
on the powers of the capitalization processes. These conditions are propagated from integrability
conditions on the powers of initial capitalizations, therefore we shall assume that the common
probability distribution m of the initial log-capitalizations Y,}(0),...,Y,*(0) satisfies

Vp >0, / ePm(dy) < +oo. (H)
yeR

We now define the function I' on [0, 1] by, for all u € [0, 1],

Then, the long-term stability of large markets is ensured by the following equilibrium assump-
tions (E1) and (E2). The first one is the continuous equivalent of (6.4), namely

Vu € (0,1), I'(u) — gu >0, (E1)

where we recall that g is the market mean growth rate defined in (6.7). Note that (E1) together
with the continuity of v imply that v(0) > ¢g > (1), which is the continuous translation of the size
effect: in average, small stocks grow faster than the market, while large stocks grow slower than the
market. In particular, if the growth rate function ~ is decreasing on [0, 1], then Assumption (E1)
is satisfied.

The second equilibrium condition writes

1/2 U ! 1—u
—————du —|—/ ————du < 400, E2
/u:o ) —gal T oy o TP — g (E2)

and ensures integrability properties for the equilibrium distribution. Note that under Assump-
tion (E1) and because of the continuity of v, a sufficient condition for (E2) to hold is v(0) > g >
Y(1).

Let us finally note that the growth rate function corresponding to the mean-field approximation
of the Atlas model introduced in Remark 6.1.1 satisfies the equilibrium conditions (E1) and (E2)
for all @ > 0.

6.2.1.2 Notations

For all T > 0, the space of continuous sample-paths C([0,7],R) is endowed with the sup
norm || - ||, and the space C(]0,+00),R) is provided with the topology of the locally uniform
convergence. For all k& > 1, the set of probability distributions on C([0,+00), R¥) is denoted by
P(C([0, 4+00),R¥)). The marginal distribution of P € P(C([0,40oc),R)) at time ¢ > 0 is denoted
by P;. The cumulative distribution function of P; is denoted by F; := H % P;, where H * - refers
to the convolution with the Heaviside function H(y) := 1,>0y. For all nonincreasing function
a: R — R, the pseudo-inverse of a is defined by a=!(u) := inf{y € R : a(y) > u}.

For all ¢ € [1,+00), the g-Wasserstein distance between two cumulative distribution functions
F and G on R is defined by

W, (F Q) := inf E(|X — Y]9))"/4 6.9
Q( ’ ) (X,Y)chl)upl(F,G)( (| |)) ) ( )
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where Coupl(F, G) refers to the set of random pairs (X,Y") with marginal cumulative distribution
functions F' and G, see Rachev and Riischendorf [120]. The right-hand side above can actually be
rewritten in terms of the pseudo-inverse functions F'~! and G~! as follows: given a uniform random
variable U on [0,1], an optimal coupling is provided by the random pair (F~1(U),G~1(U)) €
Coupl(F, G) [120, Theorem 3.1.2, p. 109], so that

W, (F,G) = </u1 |F~ Y (u) — Gl(u)|qdu)1/q. (6.10)

=0

Finally, if II refers to a probability distribution on [0,1], for all measurable and bounded
function f :[0,1] — R, we denote

(f.T0) = /  Swa).

6.2.2 Propagation of chaos and nonlinear log-capitalization process

We first recall the following propagation of chaos result from Corollary 4.2.13 in Chapter 4.
For an introduction to the propagation of chaos phenomenon, we refer to the lecture notes by
Sznitman [130].

Theorem 6.2.1. Let us assume that the variance function o2 satisfies the uniform ellipticity

condition (UE), and that the probability distribution m admits a finite first order moment. Recall
that Y,1(0),...,Y,"(0) are i.i.d. according to m.

o There exists a unique weak solution (Y (t))i>o to the stochastic differential equation, nonlinear
in the sense of McKean,

6.11
F; = H % P, is the cumulative distribution function of Y (t), ( )

{ AY (1) = y(F (Y (1))t + o (F (Y (1)))aB(2),
where Y (0) is distributed according to m and (B(t))i>0 is a standard brownian motion in R
independent of Y(0). Let P € P(C([0,400),R)) denote the law of (Y (£))t>0-

e For any finite set {i1,...,ix} of distinct indices, the joint law of (Y1 (t),..., Y, (¢))i>0
converges weakly, in P(C([0, +00), R*)), to the law P®* of k independent copies of the process
(Y'(t))eo-

e Finally, dt-almost everywhere, the probability distribution P; is absolutely continuous with
respect to the Lebesque measure on R.

Nonlinearity in the sense of McKean has to be understood as the fact that the coefficients in
the stochastic differential equation (6.11) depend on the entire law of the random variable Y ()
through its cumulative distribution function F;. Therefore, the process (Y (¢));>0 shall be called
the nonlinear log-capitalization process.

Remark 6.2.2. The following remarks on the nonlinear log-capitalization process can be formu-
lated.

e The equality (6.11) rewrites

YO =Y0)+ [ ARE s+ [ a(R Y ()Be)

On the one hand, since o is bounded, then the stochastic integral is a centered martingale. On
the other hand, by Theorem 6.2.1, ds-almost everywhere, the probability distribution Ps does
not weight points so that F5(Y(s)) has a uniform distribution on [0,1]. As a consequence,
taking the expectation of the equality above yields (6.6), i.e. E(Y (t)) =E(Y(0)) + gt.
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e Theorem 6.2.1 rewrites as a law of large numbers for the empirical distribution v™ of the
process (Y,1(t),...,Y,"(t))t>0, defined as a random variable in P(C([0, +o0),R)) by

n 1 -
A B CIO S
=1

Indeed, following [130, Proposition 2.2, p. 177], the statement of Theorem 6.2.1 combined
with the exchangeability of the processes (Y,!(t))i>0, .- -, (Y;?(t))i>0 imply that v™ converges
in probability, in P(C([0, +00),R)), to P.

6.2.3 Long time behaviour of the nonlinear log-capitalization process

We now describe the long time behaviour of the nonlinear log-capitalization process (Y (¢)):>o.
Because of (6.6), it is necessary to introduce a shift by defining Y (¢) := Y (¢) — gt, for all ¢ > 0.

The process (Y (t))i>o is called the fluctuation process. We first note that (Y () satisfies
the same nonlinear stochastic differential equation (6.11) as (Y'(¢));>0, with shifted growth rate

Y(u) := y(u) - g.

Lemma 6.2.3. Under the assumptions of Theorem 6.2.1, the fluctuation (?(t))tzo solves the
nonlinear stochastic differential equation

{ dY (t) = F(F(Y (t)))dt + o(F, (Y (1)))dB(t),

Fy is the cumulative distribution function of f’(t),

where Y (0) is distributed according to m and (B(t))i>o is a standard brownian motion in R in-
dependent of Y (0). Moreover, weak uniqueness holds for this nonlinear stochastic differential
equation.

Proof. Weak uniqueness for the nonlinear stochastic differential equation follows from the appli-
cation of Theorem 6.2.1 with ~y replaced with 7. We now check that (Y (¢));>0 is a solution. By
definition, N
dY (¢t) = dY (t) — gdt

=y (F(Y(1)))dt + o (F (Y ()))dB(t) — gdt

= F(F,(Y (1) + gt))dt + o (FL (Y () + gt))dB(?).
Moreover, since, for all y € R, F,(y) = P(Y () < y), then Fy(y + gt) = P(Y (t) — gt < y) = Fy(y),
where Fy is the cumulative distribution function of Y'(t). As a consequence,

dY (t) = F(F(Y (1))dt + o (F(Y (1)))dB(1),
and the proof is completed. O

To describe the long time behaviour of the fluctuation (}N/(t))tzo, we now assume that the
uniform ellipticity condition (UE) and the equilibrium condition (E1) hold. This enables us to
define the continuous, increasing function ¥ on (0, 1) by

b o*(v)

Yu € (0, 1), \I/(’LL) = /_1/2 md’l}

Note that the pseudo-inverse function ¥~! is a cumulative distribution function on R. Its first
order moment writes

0 +00 1/2 o2(u 1 o2(u
/:_ ‘I’_l(y)dy—i-/:o (1_\11_1(9))(19 = /:0 UQ(F(U)()gu)du—’—/_l/Q(l_u)Q(Fi( ) du,

and, because of Assumption (UE), it is finite if and only if Assumption (E2) holds.
The cumulative distribution function ¥~ describes the equilibrium of the fluctuation process,
which is made precise in the following theorem from Section 4.4 in Chapter 4.
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Theorem 6.2.4. Let us assume that:

the function o2 satisfies the uniform ellipticity condition (UE),

the function -y satisfies the equilibrium conditions (E1) and (E2),

the function o2 is C? on [0,1], the function v is C* on [0,1] and there exists 3 > 0 such that
the functions (o) and ~' are B-Holder continuous,

the probability distribution m has a finite first order moment, and, for all p > 0, W,(H *
m, P71) < +oo.
Then, the pseudo-inverse W1 of the function U introduced above is the cumulative distribution
Junction of a probability distribution with positive density on R. B B

Let us now write Fy for the cumulative distribution function on( ), and define Fs, by Foo(y) =
UL (y + %), where y is chosen so that

/yeR Yy (y)dy = /yER ym(dy).

lim W (Ft, ) = 0.

t—+oo

Then, for allp > 1,

The probability distribution with density (¥~!)" shall be referred to as the equilibrium distri-
bution. We discuss the shape of its tails in the following remark.

Remark 6.2.5. Describing the tail of the equilibrium distribution in +co amounts to describing
the behaviour of ¥(u) when u 1 1. Let us recall that, under Assumptions (UE), (E1) and (E2),
(1) < g; so that the critical diversity index p. defined by

Pe = 2(’;27(?51)) (6.12)

is nonnegative.

o If v(1) < g, that is to say p. > 0, then writing

1

T'(v) — gv=g(1—v) - / Y (w)duw

yields
v a%(v) a%(1) “ dv 1
\Ilu:/ —————dv ~y, / ~ut1 —— log(1 — u),
= 2 200 =g B = A (M) Jurp T T BT

so that the tail of the equilibrium distribution in +oo is expected to be exponential with
parameter p., that is to say, 1 — U~!(y) is expected to decay to 0 at an exponential rate of
order pc.

o If v(1) = g, that is to say p. = 0, then the tail of the equilibrium distribution in +oo is
expected to be heavy, that is to say, 1 — U~1(y) is expected to decay to 0 slower than any
exponential rate.

Likewise, a symmetric phenomenon is observed for the tail of the equilibrium distribution in
—o0. The critical index q. defined by g. := 2(7(0) — g)/o%(0) is nonnegative, and if g. > 0, then

1
P(w) ~uto -log(w),

C

so that, when y — —oo, U~1(y) is expected to decay to 0 at an exponential rate of order g.. If
gc = 0, then the tail of the equilibrium distribution in —oo is expected to be heavy.
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6.3 The weighted capital measure

For all p > 0, t > 0, the weighted capital measure IIP (¢) is defined by (6.8). Recall that for
p = 1, we write IL,(¢) instead of IIL (¢), and refer to this measure as the capital measure. For all
measurable and bounded function f : [0,1] — R,

by =Y (X (1) AN . eV () j
) = 2 T - +<X())pf(ﬁ)‘;epw+---+epY#<t>f(ﬁ)‘

J:1

As is explained in Section 6.1, the capital measure is strongly related to the capital distribution
curves. Likewise, we shall describe in Section 6.5 below the link between the weighted capital
measures and the performance of a family of portfolio rules. Therefore, it is of interest to describe
the asymptotic behaviour of the weighted capital measure when the size of the market grows to
infinity. This task is carried out in Subsection 6.3.1 by deriving a law of large numbers for TI2 (¢).
The corresponding limit TTP(¢) is referred to as the asymptotic weighted capital measure, and its
long time behaviour is addressed in Subsection 6.3.2.

6.3.1 Law of large numbers

We first address the limit, when n grows to infinity, of II? (¢).

Proposition 6.3.1. Let us assume that the conditions of Theorem 6.2.1 are satisfied, and that
the probability distribution m satisfies the condition (H). Let us fix T > 0 and q € [1,4+00). Then,
for allp >0,

o there exists C; < 400 such that
1 -1
vie 0, 7],  2P(1) ::/ PP (Wdy = E (ePY“)) <cp, (6.13)
u=0

e for all continuous function f : [0,1] — R, the process ((f,1I%(t)))icjo,r) converges, in
L(C([0,T],R)), to the deterministic process ((f,II7(t)))¢cjo,r], where TIP(t) is the proba-
bility distribution with density exp(pFy *(u))/ZP(t) with respect to the Lebesque measure on
[0,1].

The proof of Proposition 6.3.1 is detailed in Appendix 6.A. The probability distribution IT?(t)
shall be called the asymptotic weighted capital measure.

6.3.2 Long-term asymptotic capital measure

We now address the long time behaviour of the asymptotic weighted capital measure II7(t).

6.3.2.1 Heuristic derivation

Let us recall that the cumulative distribution function Fy of the fluctuation f’(t) =Y(t) — gt
writes Fy(y) = Fi(y + gt). As a consequence, the density of the asymptotic weighted capital
measure ITP(t) with respect to the Lebesgue measure on [0, 1] rewrites

ePF H(u) eP(Fy H(u)+gt) ePF M (w)

1 - 1 _ - 1 _ :
/ PF () gy, / P (W)t at) g, / PF ) gy,
u=0 u=0 u=0

Under appropriate assumptions, Theorem 6.2.4 asserts that Ft converges, in Wasserstein distance,
to Fu defined by Fuo(y) = U1y + ), where 7 is chosen so that Fs, and m have the same
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expectation. As a consequence, the asymptotic weighted capital measure TP (t) is expected to
converge to the probability distribution II” with density

PPt (u) P (¥ (1) —) PP (u)

1 _ - 1 1
/ PP () gy, / PP =9) gy / RATOEM
u=0 u=0 u=0

1
ZP = / "YW dy < +o0.
u=0

)

as long as

Following the first-order analysis of the equilibrium distribution carried out in Remark 6.2.5, this
should be the case for p € [0,p.). On the contrary, if p > p., then ZP is expected to be infinite,
and all the mass of IIP(¢) should concentrates around 1 when ¢ grows to infinity, so that IIP(¢)
is rather expected to converge to the Dirac distribution §;. This phase transition phenomenon is
made precise in §6.3.2.2 below.

6.3.2.2 Phase transition
Let us recall that the critical diversity index p, > 0 was defined in (6.12).

Lemma 6.3.2. Let us assume that the uniform ellipticity condition (UE), that the equilibrium
condition (E1) hold, and that the critical diversity index p. is positive. Then, for all p € [0,p.),
ZP < +oo, and we denote by IIP the probability distribution with density exp(pW¥(u))/ZP with
respect to the Lebesgue measure on [0,1].

Moreover, for all continuous function f: [0,1] — R, the function p — (f,1IP) is continuous on
[0,pc), and:

e if ZPc = 400, then limyy, (f, TIP) = f(1),

e if ZPc < 400, we denote by 1P the probability distribution with density exp(pe¥(u))/ZPe
with respect to the Lebesgue measure on [0, 1], and then limyy, (f,IIP) = (f, IIP<).

The proof of Lemma 6.3.2 is postponed to Appendix 6.B. The probability distribution II” shall
be called the long-term asymptotic weighted capital measure.

Example 6.3.3. We explicit the long-term asymptotic weighted capital measure for a constant
variance function o2 and for «(u) = 1 — 2u. For these coefficients, g = 0 and the equilibrium
distribution was computed in [89, Example 2.3|. In particular, the function ¥ writes

“ o? 1 U
U(u :/ 7dv:—1og( ),
R R e R

so that, for p € [0, pc), 117 is the Beta(l + p/pe, 1 — p/pc) distribution. In addition, it is easily
checked that ZP¢ = +o00, so that II? converges to the Dirac distribution in 1 when p approaches
the critical diversity index p..

We now explicit the link between II? and the long time behaviour of TP ().

Proposition 6.3.4. Let us assume that the conditions of Theorem 6.2.4 hold, and that the proba-
bility distribution m satisfies the condition (). Let p. > 0 be defined by (6.12). Let f:[0,1] = R
be a continuous function, and p > 0.

e Subcritical phase: if p € [0,p.), then

lim (f,TIP(t)) = (f,1I"),

t— o0

where the probability distribution IIP is defined in Lemma 6.3.2.
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Figure 6.1 — The density of II? for a constant variance function o and y(u) = 1 — 2u. The
diversity index p varies between 0 and p.. The uniform density is recovered for p = 0, while the
mass concentrates on the point © = 1 when p approaches the critical diversity index pc.

e Supercritical phase: if p > p., then

: P4)) —
Jim_(£.19(1) = £(1)
e Criticality: the long time behaviour of (f,11P<(t)) is described as follows:
— if ZPc = 400, by Lemma 6.5.2, limpyp, (f, 1IP) = f(1), and then
lim (f, 117 (t)) = f(1),

t——+oo
— if ZPc < 400, by Lemma 6.5.2, limpyp, (f, 1IP) = (f,T1P<), and then

FO) A (ST < Dt (f, T(0)) < Timsup (f, T(2)) < f()V (£, T09) . (6.14)

t—+oo

The proof of Proposition 6.3.4 is postponed to Appendix 6.B. The description of the long time
behaviour of TI?(¢) is summarized on Figure 6.2. Note that, in the case ZPc = 400, the function
p = limy_ 4 oo (f, TIP(¢)) is defined and continuous on [0, +00).

6.3.2.3 Removing the phase transition

In order to describe all the possible situations for the equilibrium distribution, it is natural to
look for functions v and o such that p. = 400, that is to say, for which there is no phase transition
and the tail in 400 of the equilibrium distribution is lighter than exponential. Partial results in
this direction are provided in Chapter 4.
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vy (s.10)
f() fQ)
Limits of (f, IIP<(t))
p p
- Pc . - Pc -
Subcritical phase Supercritical phase Subcritical phase Supercritical phase

Figure 6.2 — A schematic representation of the long time behaviour of (f,IIP(¢)) according to
Proposition 6.3.4. On the left-hand figure, limy,. (f, [IP) = f(1), so that lim;_, oo (f, [P (t)) exists
and its value is represented by the black dot. On the right-hand figure, limp, (f, II?) # f(1) and
the limit points of (f,TIP<(¢)) are located inside the gap between limy,, (f, 1IP) = (f,TIP¢) and

fQ).

To obtain p, = +00, one can for instance remove the uniform ellipticity assumption (UE) on
the variance function o2 and allow the latter to vanish in 1. Our analysis shall actually cover
both the tails in —oo and 400 of the equilibrium distribution, therefore we introduce the following
nondegeneracy assumption

Vu € (0,1), o?(u) > 0, (ND)

which allows the variance to vanish in 0 and 1, in contrast with Assumption (UE). Under this
assumption and suitable further assumptions on the initial distribution m, the propagation of
chaos result of Theorem 6.2.1 can be recovered, see Chapter 4. We still denote by (Y (¢)):>0 the
corresponding nonlinear log-capitalization process. Adding the condition (H), we easily extend the
laws of large numbers obtained in Proposition 6.3.1.

Let us now address the equilibrium distribution of the fluctuation (Y (), defined by Y (¢) =
Y (t)—gt. Under Assumptions (ND) and (E1), the function ¥ can still be defined and the stationary
distributions of the fluctuation (?(t))tzo are exactly the translations of the probability distribution
with cumulative distribution function ¥—!, see Proposition 4.4.1 in Chapter 4. However, the tails
of the equilibrium distribution can now exhibit a wide range of behaviours. For instance, if
o?(u) = (1 —u)® and T'(u) — gu ~yup1 (1 —u)?, with @ > 0 and 8 > 1, then the tail of the
equilibrium distribution in +oco now depends on o — 3 as follows:

e ifa—f > —1, then limsup, 4, U(u) < 400, so that the support of the equilibrium distribution
is bounded from above,

e if  — B = —1, then the tail of the equilibrium distribution in 400 is exponential,

e if  — f < —1, then the tail of the equilibrium distribution in 400 is polynomial.

Thus, the stationary distributions of the fluctuation can be rigourously described without the
uniform ellipticity assumption (UE).

However, extending the results of Proposition 6.3.4 concerning the long time behaviour of ITP ()
requires to establish convergence results for the fluctuation in the same way as Theorem 6.2.4. In
the proof of the latter (see Theorem 4.4.6 in Chapter 4), the uniform ellipticity assumption (UE)
ensured the regularity of the function (¢,y) — F(y), which was a crucial technical point. Re-
placing Assumption (UE) with the nondegeneracy assumption (ND), we were not able to obtain a
similar result, and therefore our proof could not be adapted. As a consequence, in the absence of
convergence results for the fluctuation, the conclusions of Proposition 6.3.4 can only be recovered
at the heuristic level, based on the analysis of the equilibrium distribution described above.
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6.4 Capital distribution curves

We pursue the discussion of §6.1.3.2 in order to describe the capital distribution in the long-
term asymptotic mean-field Atlas model. If [k] refers to the index of the company with k-th largest
capitalization, we define the relative rank of this company by k/n € [0,1]. In the limit of large
markets, we shall be interested by the proportion of capital held by companies with relative rank
between u and u + du, for u € [0, 1].

6.4.1 Phase transition for the long-term asymptotic capital measure

We first recall the following technical lemma, which is a straighforward consequence of the
Portmanteau theorem [18, Theorem 2.1, p. 16].

Lemma 6.4.1. Let (I1,,),>1 be a sequence of probability distributions on R, such that IL,, converges
weakly to a probability distribution I1 on [0,1]. If IT is absolutely continuous with respect to the
Lebesgue measure on [0,1], then for all interval I C [0,1], IL,(I) converges to II(I).

We deduce from §6.1.3.2, Proposition 6.3.1 and Lemma 6.4.1, that for all t > 0 and u, v € [0, 1]
with u < v, the proportion of capital held by the companies with relative rank between u and v
converges in probability to

1 v 11w
<11{1_v§‘§1_u},ﬂ(t)>%/_ o T (1=w) 4.

In particular, the proportion of capital held by the companies with relative rank between u and
u-+du in a large market is roughly exp(F; ' (1—u))du/Z(t). Then, the phase transition phenomenon
derived in Section 6.3 translates as follows.

(i) If p. > 1, then the asymptotic capital measure (with index p = 1) is subcritical, so that in
the long-term, the proportion of capital held by the companies with relative rank between u
and u + du is roughly fi(u)du, where

e\I/(l—u)

Z

u) =

is the capital density.

(ii) If p. < 1, the asymptotic capital measure is supercritical, therefore II(t) converges weakly to
the Dirac distribution §;. As a consequence, all the capital concentrates on the relative rank
0.

A detailed study of the capital density [ is carried out in Subsection 6.4.2, and the Pareto-like
distribution empirically observed is recovered. We establish a comparison between our results and
the article by Chatterjee and Pal [11] in Subsection 6.4.3.

6.4.2 Capital distribution curve in the subcritical case

Let us assume that p. > 1. Similarly to Fernholz [58, Section 5|, we call capital distribution
curve the logarithmic plot of the function w — f(u). For the coefficients introduced in Exam-
ple 6.3.3, we draw the capital distribution curve on Figure 6.3.

Figure 6.3 has to be compared with the shape of the empirical curves obtained by Fernholz [58,
Figure 5.1, p. 95|, which exhibit the following characteristics:

e they are almost linear for stocks with small ranks, which indicates a Pareto-like distribution
of the capital,

e they become concave for stocks with large ranks.

This behaviour is easily recovered for the long-term asymptotic capital measure.
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Figure 6.3 — The logarithmic plot of the capital density fi(u) for the coefficients of Example 6.3.3,
with p. = 4.

Proposition 6.4.2. Let us assume that the conditions of Proposition 0.3.4 hold, with p. > 1.
Then:

o forul 0,logii(u) ~ (—1/pc)logu, therefore the capital distribution curve is linear with slope
—1/pc € (—=1,0),

o forut 1, logi(u) = —oo and, if the parameter q. defined in Remark 6.2.5 is positive, then
log i(u) ~ (1/qc) log(1 — u).

Proof. By the definition of the capital density, log fi(u) = ¥(1 —u) —log Z. Therefore, the asymp-
totic behaviour of log fi(u) in 0 and 1 is a straightforward consequence of Remark 6.2.5. g

6.4.3 The Chatterjee-Pal phase transition

We now describe the phase transition observed by Chatterjee and Pal in [41], and discuss the
relation with the long time behaviour of our asymptotic capital measure.

Let us assume that, for all w € [0,1], o(u) = 1, and that « is decreasing (so that it sat-
isfies the equilibrium assumption (E1)). Then, following [115], the process of market weights

(ul (@), ..., 1™ (t))t>0, defined by

3
D) = X135 +X-n~(~t)+ X))’
n n

admits a unique stationary distribution. Let us sample (ul,...,u") from this distribution, and
denote by (ug], . ,ML"]) the decreasing reordering of (ul, ..., um).

The set of sequences (my)r>1 such that 1 > my > mg > -+ > 0 is endowed with the distance
d(m,m’) == 3125 27%(|lmy, — m}| A 1). Then, Theorem 2 in [41] writes as follows:

(1] [n]

e if p. =0, then the sequence (uy', ..., 1y ) converges in probability to (1,0,...),



6.5 Performance of diversity weighted portfolios 161

(1l [n]

e if p. € (0, 1), then the sequence (un', ..., un ") converges in distribution to a Poisson-Dirichlet
process with parameter pc,
e if p. > 1, then the sequence (ML”, . ,ML"]) converges in probability to (0,0,...).
The Poisson-Dirichlet process, introduced by Kingman [96], is a random sequence (my)r>1 such

that, almost surely, 1 > mj > mg > --- > 0 and ZZ:; my, = 1. In particular, my converges to 0.
In the case p. < 1, let (mg)g>1 refer to the limit, when n — +o00, of the sequence (ug], ey uw).
It is either (1,0,...) or a Poisson-Dirichlet process. Let us explain how to recover our conclusion
of the supercritical case (ii) in Subsection 6.4.1 from the result of Chatterjee and Pal. To this aim,
we fix u € (0,1]. For all € > 0, there exists K > 1 such that Zle my, > 1 — €/2. Therefore, for n

large enough, Zszl ;Af | > 1—e. As a consequence, for n large enough and such that K/n < u, we
obtain that the companies with rank k < nu hold at least a proportion 1 — € of the total capital.
Since u and € are arbitrary, we conclude that, in the large market limit, the whole capital is held
by companies with relative rank around O.

In the case p. > 1, all the market weights vanish. This is coherent with (i) in Subsection 6.4.1,
since the measure fi(u)du does not weight points, so that no company holds a positive proportion of
capital when n grows to infinity. However, our study of the capital density & provides informations
on the capital distribution that are not available from Chatterjee and Pal’s results.

As a conclusion, although we observe the very same phenomenon as Chatterjee and Pal, we
depict it differently. In particular, they give detailed informations on the supercritical phase that
our study cannot recover, while we provide a more precise description the capital distribution in
the subcritical phase.

6.5 Performance of diversity weighted portfolios

We finally address the analysis of the performance of diversity weighted portfolios. The math-
ematical framework of Stochastic Portfolio Theory is briefly recalled in Subsection 6.5.1, where we
also introduce a family of portfolios, called diversity weighted portfolios. This family is indexed by
a diversity index and interpolates between the equally weighted portfolio and the market portfolio.

The performance of a portfolio rule is measured by its long-term asymptotic growth rate and
excess growth rate, that we define in Subsection 6.5.2. The monotonicity of these quantities with
respect to the diversity index is addressed in Subsection 6.5.3, and a reduction formula providing
simple expressions is derived in Subsection 6.5.4.

We use these results to explicit the long-term asymptotic growth rate of the equally weighted
portfolio and the market portfolio in Subsection 6.5.5, and state global conclusions in Subsec-
tion 6.5.6.

6.5.1 Stochastic portfolio theory in a nutshell

We first provide a short overview of Stochastic Portfolio Theory [58, (2].

6.5.1.1 Portfolio

A portfolio rule, or portfolio for short, is an adapted process
T, = (ﬂ-'rlz(t)’ ae 77T'Z(t))t20

such that, for allt > 0, for alli € {1,...,n}, 7 (t) > 0 and 7} (¢)+- -+ 77 (t) = 1. It describes the
proportion of wealth that one invests in each stock. We assume that portfolios are self-financing,
that is to say, there is no exogenous infusion or withdrawal of money after the initial time. Then,

the wealth process (Z7(t))i>0 associated with a portfolio 7, satisfies
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and the initial wealth is normalized to Z™ (0) = 1. By Itd’s formula,
d(log Z5"(t)) = v (t)dt + > ml, (t)ol, (H)d B (t),
i=1

where the processes

n n

(0= Ym0 F AT, 2Ta(0) = 5 A0~ 7 0) (o (1),

i=1 i=1

are respectively called the growth rate and the excess growth rate of the portfolio.

Clearly, the growth rate of the portfolio writes as the average of the growth rates of the stocks
contained in the portfolio, with weights given by the portfolio, plus the excess growth rate. The
latter rewrites as the average of the variances of the stocks contained in the portfolio, minus the
variance of the wealth process. Since 77, () > 0, the variance of the wealth process is lower than
the average of the variances of the stocks contained in the portfolio. Thus, the variance reduction
due to diversification in the portfolio is exactly measured by the excess growth rate.

6.5.1.2 Diversity weighted portfolios
For all p > 0, we now define the p-diversity weighted portfolio 72 = (72:1(t),..., 70" (t))s>0 by

(X ()"
(Xa@®)P + -+ (Xp(@)P

Vt>0, Vie{l,...,n},  wNt):=

The associated wealth process is denoted by (ZZ(t));>0 and the growth rate and excess growth
rate processes of the portfolio are respectively denoted by (V£ (t)):>0, (7%.n(t))t>0. The parameter
p is called the diversity index.

Certainly, the choice p = 0 corresponds to the equally weighted portfolio, while the choice
p = 1 is the market portfolio. For 0 < p < 1, the p-diversity weighted portfolio interpolates
between the equally weighted portfolio and the market portfolio, and it is functionally generated
by a measure of diversity in the sense of Fernholz [58, Section 3.4]. Let us also mention that
diversity weighted portfolios, with p = 0.76, were used in actual portfolio managing strategies for
the S&P 500 Index [58, Section 7.2].

6.5.1.3 Long-term growth rate and performance

Following [58, Section 1.3], the growth rate of a portfolio measures its long-term performance,
in the sense that

1 T
Tl_i}rfoo T <log zZm(T) — /t:O o (t)dt) =0, almost surely.

As a consequence, the study of the long time behaviour of the processes (7" (t))¢>0 and (7%, (£))>0
arises as a natural question with respect to practical situations. As far as the asymptotic behaviour
of portfolio rules in large markets is concerned, previous studies such as [ 1] measured the perfor-
mance of a sequence of portfolio rules {(m,(t))t>0,n > 1} by analyzing the asymptotic long-term
growth rate
—— 3 3 Tn

The latter was computed for the Atlas model (6.3), with constant variance coefficients (o})% = - - =
(07)2 > 0, or linearly decreasing coefficients (07)? = a + s*(n — j), a > 0, s* > 0, which matches
the empirical observation of [62, Figure 13.6]. For the equally weighted portfolio and the market
portfolio, exact expressions were derived. For p-diversity weighted portfolios with p € (0,1), the
long-term growth rate and excess growth rate were explicited in terms of the stationary distribution
of the market portfolio. At that time, very little was known about this stationary distribution, so
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that the authors had to resort to the so-called certainty-equivalent approximation to describe the
large market limit of the long-term growth rate and excess growth rate. Still, in all cases, it was
observed that, for large markets, the equally weighted portfolio outperforms diversity weighted
portfolios, and in particular, beats the market.

6.5.1.4 Growth rates and capital measure

Unlike [11], we shall rather provide a detailed study of the long-term asymptotic growth rate

GP:= lim lim ~P(¢)

t—+oo n——+oo

for p-diversity weighted portfolios. This brings forth results in a more synthetic fashion. To do so,
we remark that, by the definition of p-diversity weighted portfolios and due to (6.5) and (6.8), for
all p > 0, the growth rate and excess growth rate of p-diversity weighted portfolios write

Yh(t) = (v, 1L (1) + % ,.(2),
. 2
1 oPY D (1) j (6.15)
P _ - 2 (L
<U I 2 z_: (epyl ) +. +epY$(t)> 7 (n) ’

while the quadratic variation of (log Z2(t))¢>o writes

K PV (5) 2
P
HosZn) Z < ) /: ePYai(s) £ ... 1 epYi2(s) ds. (6.16)

Jj=1

N)I»—l

L) =

We shall prove below that the quantity

n oY (1) S
j; EAHONTION B (5)

is of order 1/n, so that the analysis of the long-term asymptotic portfolio performance only relies
on the analysis of the long-term asymptotic weighted capital measure.

6.5.2 Long-term asymptotic growth rates

We first derive laws of large numbers for the processes (V£ (t))i>0, (V5.0 (t))t>0 and (ZE(t))i>o0,
based on Proposition 6.3.1.

Lemma 6.5.1. Let us assume that the conditions of Proposition 6.3.1 are satisfied. Let us fix
T >0 and q € [1,400). Then, for all p > 0, when n grows to infinity,

o the growth rate (YE(t))icio,r) and excess growth rate (%, (t))icio,r) respectively converge, in
L9(C([0,T],R)), to the deterministic processes (Y*(t))icio,r) and (Vi (t))ic(o,r) defined by

VE>0,  AP(t) =, 07()), AR =5 (0% TIP()), (6.17)

l\D|>—‘

where b is the rate of return function defined by

1

b(u) :=vy(u) + 502(u);

e the wealth process (Z}(t))icjo, ) converges, in LY(C([0,T],R)), to the deterministic process
(ZP(t))teio, 1) defined by

t
vt >0, log ZP(t) = / ~P(s)ds. (6.18)
5=0
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Proof. We first address the laws of large numbers (6.17) for the growth rate and excess growth
rate. On account of (6.15) and Proposition 6.3.1, it suffices to prove that

n Y () S
; IO 1oy ) 7 (;)

converges to 0 in LY(C([0,T],R)). To this aim, we remark that, using the notations of Lemma 6.A.1
in Appendix 6.A, for all £ > 0,

oY (0 PN 12
) MY AT
where 1 refers to the the constant function equal to 1. By the same arguments as in Ap-

—(2p) ~
pendix 6.A and with the notations of Lemma 6.A.1, we obtain that o2, : (t)/(12(t))? converges, in

L9(C([0, T],R)), to ;5(219) (t)/(17(t))2, therefore the right-hand side above converges to 0 and (6.17)
follows.

In addition, we deduce from the argument above and (6.16) that the process ({log Z)(t)):cjo,1
converges in probability, in C([0,77,R), to 0, and that the process (log ZE(t)):co,7] converges in
probability, in C([0,77,R), to the process (log ZP(t)):c[o,1) defined by (6.18). Using the continuity
of the mapping

M=

j=1

(y(®)ecory — ()

on C([0,T],R), we deduce that the process (Z%(t))¢c[o,7] converges in probability, in C([0, 77, R),
to the process (Z7(t))epo,r)- Let ¢ € [1,+00). To conclude that the convergence also holds in
L9(C([0,T],R)) we prove that, for r > ¢,

te[0,T)

supE | sup |[ZE(t)]" | < +oo.
n>1 te[0,T]

This proof of this latter fact is based on Doob’s inequality in a similar fashion as at the end of the
proof of Lemma 6.A.1. Uniformity in n follows from the fact that

noL2pYi(s)
1

< 163 | oot
PYi)? 3= il

K2

This completes the proof. O

The deterministic processes (7*(t))t>0, (7% (t))i>0 and (ZP(t)):>0 shall be respectively called
the asymptotic growth rate, the asymptotic excess growth rate and the asymptotic wealth pro-
cess associated with p-diversity weighted portfolios. Their long time behaviour is determined by
Proposition 6.3.4 as follows.

Lemma 6.5.2. Let us assume that the conditions of Proposition 6.5.4 hold, and recall the defini-
tion (6.12) of the critical diversity index p. > 0.

e Forallp € [0,p.),

GP := lim ~*(t) = (b, 1), G := lim ~2(t) =

t——+o0 t— o0

N | —
7~
Q
\‘N
=
]
~

e For all p > p,

1
GP := lim ~P(t) = b(1), G := lim ~2(t) = 502(1).

t——+oo t——+oo

Proof. This result follows from a straighforward application of Proposition 6.3.4 and Lemma 6.5.1.
O
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The quantities G? and G% shall be respectively called the long-term asymptotic growth rate
and the long-term asymptotic excess growth rates. When p = pe, the limits of vP<(¢) and £ (¢t)
when t — +00 may not exist, therefore we define

GPe = lim sup v7< (), GPe := limsup < (t).

t——+o0 t——+o0

Proposition 6.3.4 ensures that the functions p — GP and p — GZ are continuous on [0, p..), constant
on (pc, +00), and satisfy

liminf G < GP¢ < limsup GP, liminf G < GP¢ < lim sup G?.
P—Pe P—De P—De P—De

Following Subsection 6.5.1, the performance of the p-diversity weighted portfolio is measured by
its long-term asymptotic growth rate GP, therefore we shall look for optimal values of the diversity
index p for which G? is maximal.

6.5.3 Montonicity criterion

We first address the monotonicity of the functions p + GP? and p — G%, based on the following
lemma.

Lemma 6.5.3. Let us assume that the conditions of Proposition 6.5.1 hold and fix a continuous
function f:[0,1] = R. If f is monotonic on [0,1], then, for all t > 0, the function p — (f,TIP(¢))
has the same monotonicity on [0, 400).

Proof. Let us fix a continuous function f : [0,1] — R. By (6.6) and the Leibniz integral rule, for
all t > 0, the function

1
P / el l(“)f(u)du
u=0
is C! on [0, 4+00), and its derivative writes

d
dp u=0
from which it easily follows that the function p — (f,1IP(t)) is C! on [0, +00) and

1
IO fudu = [ B e f(u)d

u=0

% (FIIP() = (B TIP()) — (BT TIP() (f, TP (1) = Cov(F,H (U), £(U)),

where the random variable U € [0,1] is distributed according to IIP(¢).
Let us now assume that f is nondecreasing, and let U, V' be independent random variables in
[0,1] distributed according to TIP(t). Since both F;' and f are nondecreasing, then

(F7H(U) = FH(V)(fF(U) = f(V)) 2 0,
and taking the expectation of this inequality yields

d o )
o (£, 1P(t)) = Cov(E, " (U), f(U)) =0,

so that the function p — (f,IIP(¢)) is nondecreasing on [0, +00).
If f is nonincreasing, then we replace f with —f in the argument above and the proof is
completed. O

We can now derive the following monotonicity criterion for the long-term asymptotic growth
rate and excess growth rate.

Corollary 6.5.4. Let us assume that the conditions of Proposition 6.5./ hold.

o If the rate of return function b is monotonic on [0, 1], then the function p — GP has the same
monotonicity on [0,400).

2

e If the variance function o? is monotonic on [0,1], then the function p — G% has the same

monotonicity on [0,400).
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6.5.4 The reduction formula

We complete the monotonicity criterion of Corollary 6.5.4 by the following reduction formula
expressing the long-term asymptotic growth rate in terms of the long-term asymptotic excess
growth rate in the subcritical phase.

Proposition 6.5.5. Let us assume that the conditions of Proposition 6.3.4 hold, and that p. > 0.
Then, for all p € [0, pc),

GP = (1-p)GP +g.

Proof. Let us assume that p. > 0 and fix p € [0, p.). Using Lemma 6.5.2, we first write
_ 1 _ o
GP = (7, 17) 4 5 (0% TI") = (7,11") + g + G,

where we recall that ¥(u) = v(u) — ¢g. Thanks to the first-order analysis of ¥ carried out in
Remark 6.2.5,

lim e (0 () = gu) = 0, lim e (D(u) = gu) = lim(g —7(1)(1 =)' =/7 =0,

so that integrating by parts yields

1 1 1
/ YT (y)du = f/ pU (w)eP? ) (D(u) — gu)du = fg/ YW o2 () du,
u=0 u=0 u=0

hence (7,11P) = —pG~. O

Remark 6.5.6. In the supercritical phase, elementary algebra allows to derive a similar reduction
formula, where p has to be replaced with p., namely G? = (1 — p.)G% + g, for all p > p.. Both
formulas rewrite in a compact form as

Vp # pe, Gp:(l—P/\Pc)Gf‘f'ga

and this also holds true for p = p. as soon as at least one of the functions p — GP or p — G% is
continuous at pe.

6.5.5 Performance of the equally weighted and the market portfolio

Let us apply the results of Proposition 6.5.5 to describe the performance of the equally weighted
and the market portfolio.
Equally weighted portfolio: the long-term asymptotic growth rate writes

1

1
O = g +g= 5/ o?(u)du + g > g,
u=0

so that the equally weighted portfolio grows faster than the market mean growth rate g, by a factor
depending only on the volatility structure of the market.

Market portfolio: if p. > 1, then the long-term asymptotic growth rate writes G(!) = ¢, so that
the market portfolio grows at the market mean growth rate. If p. < 1, then

2
1
G(l):(l—pc)aé )+g>g,

so that the market portfolio grows faster than the market mean growth rate, by a factor depending
on both the growth rate function and the variance function of the market.
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6.5.6 Optimal selection of portfolios and volatility structure

We now combine the results of Corollary 6.5.4 and Proposition 6.5.5 to select the portfolio rule
with best performance, depending on the volatility structure of the market. We sum up our results
in Conclusions (C1), (C2) and (C3).

Let us first assume that the variance function ¢~ is nonincreasing, which matches the volatility
size effect. Then, Corollary 6.5.4 implies that the long-term asymptotic excess growth rate G%
is nonincreasing on [0, +00). Using the reduction formula of Proposition 6.5.5, we deduce that
the long-term asymptotic growth rate GP is nonincreasing on [0, +00), therefore it is maximal for
p=0.

2

(C1) If the variance function is nonincreasing, then the equally weighted portfolio is optimal among
p-diversity weighted portfolios.

A particular case of a nonincreasing variance function is the case of a constant variance function.
Then, by Remark 6.5.6, for all p # pc,

2
o
Gp:(lfp/\pc)? +g. (6.19)
The expression above has the same right and left limits in p., so that, by Remark 6.5.6, the
formula (6.19) is actually valid for all p € [0, +00).

(C2) If the variance function is constant, then, for all p > 0, the long-term asymptotic growth rate
of the p-diversity weighted portfolio is given by the formula (6.19).

We finally look for conditions on the market model to produce a situation in which the equally
weighted portfolio is not optimal among p-diversity weighted portfolios. On account of Corol-
lary 6.5.4, this is the case if the rate of return function b is increasing on [0, 1]. In such a situation,
and under Assumptions (UE) and (E1),

(1) = (1) + 50°(1) > 4(0) + 30%(0) > g,

so that p. < 1. Then, using the results of Subsection 6.5.5,

1

GO = / b(u)du < b(1) = GW,
u=0

that is to say, the market portfolio outperforms the equally weighted portfolio — and it is actually

optimal among all p-diversity weighted portfolios.

Example 6.5.7. Let us specify an example of a model where the market portfolio is optimal. We
use the growth rate function introduced in the mean-field approximation of the Atlas model of
Remark 6.1.1, y(u) = v4(u) = g(a+1)(1 —u)®, with a > 0 to be specified below. Recall that this
growth rate function satisfies Assumptions (E1) and (E2). We now choose the variance function
o2 in order to satisfy the uniform ellipticity assumption (UE) and to ensure that the rate of return

function b = v + 02 /2 is increasing; for instance, we let
o?(u) = 2(C +u = ya(w)),

with C = 1+ g(a + 1), see Figure 6.4. Then, for all & > 0, b(u) = C + u is increasing and o2
satisfies the uniform ellipticity assumption (UE). We now take o > 2 to ensure that the regularity
assumptions on v and o2 required in Theorem 6.2.4 are fulfilled. This completes the construction
of our model, and effectively provides an instance of a mean-field Atlas market model where the
market portfolio outperforms the equally weighted portfolio.

Example 6.5.7 leads to the following conclusion.

(C3) One can exhibit an example of a model where the market portfolio is optimal among all
p-diversity weighted portfolios. It is necessary that, in such a model, small stocks have a
smaller variance than large stocks, so that the volatility size effect is violated.
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Figure 6.4 — The variance function o2 for g = 1 and « taking integer values ranging from 3 (lowest
curve) to 8 (highest curve).

6.A Proof of Proposition 6.3.1

This appendix is dedicated to the proof of Proposition 6.3.1. We first prove (6.13).
Proof of (6.13). Let us fix T'> 0 and p > 0. By Theorem 6.2.1, for all ¢ € [0,T],

1
ZP(t) = / P Wy = R (epy@)) ) (epv<o>+p Sl v (F(Y (9)))dstp [y o (Fa (Y (5))dB(s)
u=0

o))

Sep||vuwT+<p2/2>HaQ||xT/ Pim(dy) = CP,
yeR

< ePMl=TE (epv<o>E (epf::00<Fs<Y<s>>>dB<s>

and Assumption (H) ensures that the right-hand side above is finite. |

We now address the second part of Proposition 6.3.1. In this purpose, we first state the following
auxiliary lemma.

Lemma 6.A.1. Under the assumptions of Proposition 6.5.1, for oll T > 0 and p > 0, for all
continuous function f:[0,1] = R,

lim IE( sup

n—r+00 te[0,T)

ﬁ@—ﬁ@oza

where, for all t >0,

1

FE(t) = %Zepyy)(t)f <%> . P ::/ PP () f(u)du.
i=1 u

=0
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Before giving the proof of Lemma 6.A.1, let us explain how to complete the proof of Propo-
sition 6.3.1: let us fix a continuous function f : [0,1] = R, p > 0 and T > 0. Then, for all
t e 0,7,

0

12(t)
where we denote by 1 the constant function equal to 1. Combining Lemma 6.A.1 with the Slutsky
theorem, and using the continuity of the mapping

(f, 1(2)

(@@reo.r1, WE)iepry) = (@)t [0,7]

y(t)

at all point ((z())tefo,): (¥(t))tefo,r) € (C([0,T],R))* such that, for all ¢ € [0,T], y(t) # 0, we
deduce that the sequence of processes ({f,II% (t))):cjo,r) converges in probability, in C([0, 77, R),
to the process ((f,I17(t))):e[0,r) introduced in Proposition 6.3.1. Thanks to the elementary bound

V=0,  [(SIRE)] < [[flloo;
we conclude that the convergences above also hold in LY(C([0,T],R)), for all g € [1, +00).

Proof of Lemma 6.A.1. Let us fix T > 0 and p > 0. The key observation is that, for all ¢ € [0, T,
the reordered vector (Y7 (t),...,V,\")(t)) writes

vie{l....n}, Vuel(i—1)/nj/n), VI () = (Hxv) (),

where (H * v]*) ™! refers to the pseudo-inverse of the empirical cumulative distribution function of
Y,1(t),...,Y"(t). Therefore, for all continuous function f : [0,1] — R, for all ¢ € [0, T],

n

n

~ ~ i/ —1 j 1
HOEO)S /u ’ (epwwm (W) (l) _ PF W) f(u)) du

j=1 =(-1)/n n
1 ny—1 —1 n i/n 1 J
< ||f||oo/ PH )" (u) _ pFy (u) du+2/ ePFe (W f <_> — f(u)|du.
u=0 j=1 u=(j—1)/n n
Combining the uniform continuity of f with (6.13) yields
n i/n 1 j
lim sup / ePFe () | f (—) — f(u)|du = 0. (6.20)
nEetelo, 1] 5= Ju=(i-1)/n "
We now fix M > 0 and write
1
/ ‘epww,’?)*l(u) — PPN dqy = IV (1) 4 T (8),
u=0
where .
IM(t) = / (Jertmin 00 — 70| A 1) du,
u=0
! 1 1 +
TM (1) = / Hepmwfr () _ opF M w)| _ M} du,
u=0
with [2]T := 2 Vv 0. In Step 1 below, we shall establish that
VM >0, lim E| sup IM(t)] =0, (6.21)
n—-+oo tE[O,T]

while Step 2 is dedicated to the proof of

lim sup E( sup Jy(t)) =0. (6.22)

M—+o00pn>1 te[0,T]
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Then, it follows from (6.20) and (6.21) that, for all M > 0,

limsupE | sup
n—+oo te[0,T]

fE(t) — f”(t)D < sup E( sup Jﬁ%)) :

n>1 te[0,T

and the conclusion stems from (6.22).
Step 1. Let us first note that, by Remark 6.2.2, for all ¢ € [0,T],

lim E(I)(t) =0,

n—-+o0o

so that, by the Slutsky theorem, the continuous process (I} (t))iecfo, 7] converges, in finite di-
mensional distribution, to 0. Taking for granted that the sequence of the laws of the processes
(I (t))tejo,r), m > 1 is tight, [18, Theorem 7.1, p. 80] implies that this sequence converges to 0
in probability in C([0,T],R). Then, (6.21) follows from the uniform boundedness of the process
(I (t))sejo,r) with respect to n.

To complete this step, it remains to prove that the sequence of the laws of the processes
(LM (t))teo,r)» n > 1 is tight. First, the sequence {I27(0),n > 1} is bounded by M, and therefore

the sequence of the laws of I} (0), n > 1 is tight. Thus, by the Kolmogorov criterion, it now
suffices to exhibit & > 0, § > 0 and C > 0 such that, for all ¢,s € [0,T],

vn>1,  E(|I}(t) — IM(s)|*) < C|t — s|'*°.
We first use the chain of elementary inequalities

Va1, x2,y1,Yy2 € R, |l — g1 AM — |2y — yo| A M| < |lzr — 1] — |22 — 2|
< o — @2+ [y1 — ve|

to rewrite, for all ¢, s € [0,7] such that s < ¢,

1 1

[ () — I ()] < / P (Hwr) ™ ) _ p(Her?) )| gy 4 / PPN ) _ PN | g

u=0 u=0

Let us now fix a > 2. By the Jensen inequality, the inequality above yields

[ () = L (s)]

1 o 1 . e
< 9ol </ ’ep(H*VZ”)’l(u) _ p(H*v[) ™ (w) du+/ ’epr (w) _ oPF (W) qq
u=0 u=0
(6.23)

Let us address the first term in the right-hand side of (6.23). Using the Jensen inequality again,

)

1 o n . . @
/ ‘ep(H*Vt"’)*l(u) _oPH )W) | 4y, = 1 E ‘epYi(t) — ePYn(s)
u=0 "=

t ; . p2
[ e (i) + B ) ar

On the one hand,
¢ i ) p2 ) a
B(] [ e (m;<r>+3<a;<r>>2) dr
t i
< (vl + Zlo%le ) =" [ m (i) an

and by the same arguments as in the proof of (6.13),

n

w1
<2 1(52

i=1

(03

[ peri00 (s )

1 n
+g;

vrel0,7], E (eaPYM) < oo,
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where the constant C7¥ does not depend on n. As a consequence,

=1y

(e

t 2 @ 2
i r i p i o p [e3
/, e (") (mn(r) + 3(0,1(7"))2) dr ) <Cp’ <p||7||oo + 5||02||oo) (t—s)".

=1

On the other hand, the Burkholder-Davis-Gundy inequality implies that there exists K > 0

depending only on « such that
«a a/2

E(
t 3
< Kp2||02||00(t75)a/271/ E(eapyn(r)) dr

< Kp?l|o”||oo(t — 5)*/2C3".

t . , , ¢ i ;
/ pepy’;(T)Ufz (T)dBl (7‘) / p262pYn(T) (g-:l (r))QdT

As a conclusion, there exists C’ > 0 such that

1
E (/ ’epwwm*l(u) _ eplHw) T ()
u=0

O(du) < C't — s]*/2,

The second term of (6.23) rewrites

1
/ ‘epr(u) _ PP (W)
u=0

where U is a uniform random variable on [0, 1]. Note that ePft has the same marginal distri-
bution as e?¥ ) and ePF> ' (U) has the same marginal distribution as ¢?¥ (). By (6.9) and (6.10),

1 (e
/ erri7t 0 epr ).
u=0

and the same arguments as for the first term in the right-hand side of (6.23) allow us to conclude
that the right-hand side above is bounded by C’(t — 5)*/2. As a conclusion,

“du—F (‘epr(U) _ oPFNU) ‘a) 7

L)

“du<E (’epnt) _ePY(s)

E (I (1) = I, (s)|) <2071C"(t = 5)°/2,

therefore the sequence of the laws of (IM(¢));>0, n > 1 is tight.
Step 2. Using the chain of elementary inequalities
Vo, 2’ € R, o —a'| = M]" <o — &' |L{jpmu >0
Sl =izl ivmszy + 12 = 2L gar> vy
<22 yjai>my2y + 200 L 0> 01 2}
we obtain

1

1
M (Hxvi) ™! (w) F (w)
I (f) < /u_o o Larrerpymtan sy py /u_o o Lm0 s p oy 40

By the Markov inequality,
bRy du< 2 [1 2eriwg
o e a2y = AL f L © b
so that (6.13) applied with 2p leads to

1
lim  sup / PP ()

-1 du =
M—=+00 4¢[0,1] Ju=0 {erfe W >M/2)
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We complete this step by proving that

1
p(H*v{") " (u) . =
Mlggoo iliI;]E (tesgé,pT] /u:o ¢ t Leraarpy 1‘“)zM/2}du> 0. (6.24)

To this aim, we first write

n

1
sup ] / . eP(H*Vt ) (U)]l{ep(H*VZL)il(u)ZM/Q}dU’ = sup — Z eng(t)]1

pY (1)
telo,T tef0,T] T = {e >M/2}

n

1 i)
= sup — el v
te(0,7) T ; e 2/2)

LS qup emitng
n i—1 t€[0,T]

n

IN

{ePYn® >N /2}

so that, owing to the exchangeability of the processes (Y,!(¢))ieo,77, - - - » (Y, (£))tefo, 17

1
(Hxv) " (u) Y2 (t)
E (t:[%%] /u_o e t ﬂ{ep(H*V{‘)l(u)zMﬂ}du) <E <t€s[lé?T] e? ]l{epYT}(t)>M/2}>
< E (Mo(T)L{ar,(m)>M/2}) »

where M, (T') = sup;c(o 1 ePYn () Hence, to obtain (6.24), it suffices to prove the uniform inte-
grability of the sequence of random variables (M,,(T)),>1; thus, it suffices to exhibit ¢ > p such
that

supE( sup eqY;(t)> < +o00. (6.25)
n>1 te[0,T)

To carry this task out, we fix ¢ > p. Proceeding as in the proof (6.13), we write

E| sup e ® | < ellhll=TE [ 0¥ (©) gup o4 /izo on(s)dB’ (s)
te[0,7] - t€(0,7]

= ellNl=TE [ Yn OF [ sup e?fizoon()dB () |y
te[0,T]

)

For all ¢t € [0, 7],
et fizo Ta (B () < p(1)2e(@/DlIo%T

where (E(t))¢>0 is the exponential martingale defined by
vt >0, E(t) := e(/?) Jizoon()dB (s)=(4/8) [/_o (0, (5))*ds

By Doob’s inequality,

E(tes[lépTE ’Y ) 4]E(E )Q‘Yl(()))

(eq JE, ok (s)dBY(s)— (% /4) [T (o} (5))%ds

v'(0))

(eqffo o ()dB(5)=(4°/2) [y (o5 () ds |y (0)) o(@®/D)10% [T

— 4@ /D[0P ]|T

As a consequence,

E( sup e Jizo Th (4B )|y

YY(0) | < de(@/2Io 1T
te[0,T
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so that, finally,

E( sup e?n® | < getlhll=T+@*/2)llo* [T (eqY;<o>)
te[0,T) N

:4eq\\'Y||ooT+(q2/2)||‘72H°°T/ eim(dy).
yeR

By Assumption (H), the right-hand side above is finite and does not depend on n. Therefore, (6.25)
is satisfied and the proof of (6.22) is completed. O

6.B Long time behaviour of the asymptotic capital measure

This appendix is dedicated to the proof of Lemma 6.3.2 and Proposition 6.3.4. We first discuss
the finiteness of

1
ZP = / PV (W) .
u=0

Lemma 6.B.1. Let us assume that the uniform ellipticity condtion (UE) and the equilibrium
condition (E1) hold, and recall the definition (6.12) of the critical diversity index p. > 0.

e if p. > 0, then for all p € [0,p.), ZP < +o0;

e for all p € (pc, +0), ZP = +o0.
Proof. We shall distinguish between the exponential case p. > 0 and the heavy-tailed case p. = 0.
Exponential case, p. > 0: then (1) < g. Let 7 > 0 be small enough for the inequalities o2(1) > 7

and g — (1) > n to hold. Recall that ¢*(1) > 0 due to Assumption (UE). Then, there exists
u* € [0,1) such that, for all v € [u*, 1],

so that, for all u € [u*,1),

o%(1) —n 1—u* O o%(1) +n . 1—u*
2(97(1)+77)10g(1 u)“(u) o )§2(97(1)n)1g(1U)'

As a consequence, for all p > 0, for all u € [u*, 1),

C-(n) /:u (1—0)PWdo < /:u "o < O (n) Liu (1—v) P+, (6.26)
where
B-(n) := p% C_ () = PV (1 — 7)8- ),

Certainly, Z? is finite if and only if the limit when u 1 1 of the central term in the inequality (6.26)
is finite.

e If p € [0, pc), then for  small enough, S+ (n) < 1, so that the right-hand side of (6.26) admits
a finite limit when u 1 1.

o If p > p., then for 7 small enough, 5_(n) > 1, so that the left-hand side of (6.26) grows to
400 when u 1 1.
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This completes the proof in the case p. > 0.

Heavy-tailed case, p. = 0: then v(1) = g. Note that we only have to address the case p > pc.
Let p > 0 and let n > 0 small enough for the inequality ap/(2n) > 1 to hold, where a :=
inf,cp,1)0%(u) > 0 due to Assumption (UE). Then, there exists u* € [0,1) such that, for all
v € [u*, 1],

['(v) = gv <n(l - v),

so that, for all u € [u*,1),

U(u) = ¥(u*) + /:u W@ng)dv > U(u*) + % (log(1 —u*) —log(1l —u)).

As a consequence,

eP¥ (1) > op¥(u)ta log(lfu*)/(%)(l _ u)*&p/(%),
and the choice of 1 ensures that the integral of the right-hand side above diverges to 400 in 1.
This completes the proof in the case p. = 0. O

Remark 6.B.2. At the criticality, whether ZP¢ = 400 or ZP¢ < 400 cannot be a priori deter-
mined. Indeed, on the one hand, for the choice of coefficients introduced in Example 6.3.3, it is
easily checked that ZP¢ = 4+00. On the other hand, assume that p. > 0 and the coefficients v and
o are chosen so that the asymptotic expansion of ¥ writes

U(u) = pic (—log(1 —u) — Blog (—log(1 —w))) + u%(l), 8> 1.

Then, it is straightforward to check that ZP¢ < +oo0.

We now complete the proof of Lemma 6.3.2.

Proof of Lemma 6.5.2. By Lemma 6.B.1, ZP < +oo for all p € [0,p.), so that the probability
distribution I is well-defined. We now fix a continuous function f : [0,1] — R and prove that the
function p — (f,II?) is continuous on [0, p.). Certainly, it suffices to prove that, for all p € [0, p.),

1 1
lim ? V) f(u)du = / PV £ () du. (6.27)

p'=p Jyu—0 u=0

Let us fix p € [0, +00). Then, for all u € (0,1),
lim e Y f(u) = e?¥ () f(u),
p'—=p

while, taking ¢ € (p,p.), we write
S O R Y (OO e

where we recall that [¢]" := 4 Vv 0. Tt easily follows from Lemma 6.B.1 that the right-hand side
above is integrable on [0, 1], so that (6.27) stems from the dominated convergence theorem. Note
that the same arguments allow to prove that, if ZP¢ < +oco, then the function p ~ (f,IIP) is
continuous on [0, pe|.
To complete the proof, it remains to show that, if ZP¢ = +oo, then lim,p, (f, II?) = f(1). In
this purpose, we assume that ZP¢ = +o0o0. Then, Fatou’s lemma immediately yields
1

lim Py = +o00.
pTpe Jyu—0

Let n > 0, then by the continuity of f, there exists u* € [0,1) such that, for all u € [u*,1],
Ff()—n < f(u) < f(1) +n. Let us define, for all p € [0, p.),

/ PV f(u)du / PV Wy,
— u:O1 , I(p) — Ju=0

T
/ P¥ W dy / PV Wy,
u=0 u=0
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and write

1
/ PV £ (u)du
)+ u=u*

1
/ PV () qu
u=0

I(p) + (f(1) =) (A = I(p)) < (f,TI7) < I;(p) + (f(1) +n)(1 = I(p)).
Observing that

(f,TP) = I¢(p

)

so that

*

/u Y () f(y)du

=0

*

< £l / <

lim sup
PTPe

we deduce that I(p) and I(p) vanish when p 1 p.. The conclusion is straightforward. O

We now prove Proposition 6.3.4. We shall use the following result regarding the convergence
in Wasserstein distance.

Lemma 6.B.3. Let (Gt)i>0 be a family of cumulative distribution functions on R and G be a
cumulative distribution function on R, such that:

o there exists ¢ > 1 such that limy_, 100 Wy (G, Goo) = 0,

e the probability distribution with cumulative distribution function G admits a positive den-
sity with respect to the Lebesque measure on R, so that both Goo and G} are continuous,
respectively on R and (0,1).

Then, for all y € R, limy_s o0 G¢(y) = Goo(y), and for all u € (0,1), lim;_s 4 oo G5 *(u) = G (u).

Proof. Since the Wasserstein distance metrizes the weak convergence, G; converges weakly to G .
This classically implies that Gt(y) converges to G (y) for all continuity point y € R of G [50,
Theorem 2.2, p. 86|, and G; *(u) converges to G2 (u) for all continuity point u € (0,1) of G [50,
Theorem 2.1, p. 85]. Since G, is continuous on R and G5! is continuous on (0, 1), then the proof
is completed. O

Proof of Proposition 6.3.4. Let us assume that the conditions of Theorem 6.2.4 and Proposi-
tion 6.3.1 are satisfied. Recall that the critical diversity index p. > 0 is defined in (6.12).

Suberitical case. Let us assume that p. > 0 and let p € [0, p.). Following §6.3.2.1, it suffices to
prove that, for all continuous function f : [0,1] — R,

1 _ 1 _
lim PP (W) f(y)du = / PF<" () £ (y)du, (6.28)

t—4o0 wu=0 u=0

where the cumulative distribution function Fs is defined by Theorem 6.2.4. Combining the latter
with Lemma 6.B.3, it is already known that, for all v € (0,1), lim;— 4o Ft_l(u) = F_'(u). Asa
consequence, and since f is bounded, (6.28) follows if we exhibit ¢ > p such that

1 =—1
sup/ e (W dy < +o0. (6.29)
t>0 Ju=0

In this purpose, let us fix ¢ > 0 such that p < ¢ < p. and remark that

1 -
/ etF Wy = E (eqY(t)) .
u=0

By Itd’s formula and (6.13),

$g (70) = £ (T OB, (E(T (1))
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where Eq(u) = ¢y(u) + ¢*0%(u)/2. Tt follows from a straightforward analysis of the function
q + bg(1) that, since ¢ < pe, then by(1) < 0. Therefore, by the continuity of b,, there exist n > 0
and u* € [0,1) such that, for all u € [u*, 1], by(u) < —n. As a consequence, for all ¢ > 0,

B (" T, (R(V (1))
=K (eqY(t)bq(Ft(Y( {ﬁt({/(t))@*}) +E (eq;(t)gq(ﬁt(?(t)))]l{ﬁt(?(t))zu*})
< E (OB, (Fu(¥ O 50y <ur ) — 7B (67 DL, 50503
< (Ballos +ME (™ VL7 50y <ey ) = 7E (7).

For all t > 0, the definition of F ! and the right continuity of F, yield, for all u € (0,1),
Ft(F Y(u)) > u. As a consequence,

~ 1
Y _
E (15 7yt —/

u=0

Fl(u v FYu x gF Y (u*
N T T /u:oeq SN0y < tetF W)

and the right-hand side converges to uredF= (w) < 400 when t — +00. As a consequence, there
exists C' < 400 such that

%E (emw) <C_4E (emt)) 7

and (6.29) follows from Gronwall’s lemma.
Supercritical case. For p > p. > 0, Theorem 6.2.4, Fatou’s lemma and Lemma 6.B.1 yield

1

lim ePFr (W dy = too. (6.30)
t—+oo w=0

Let n > 0. By the continuity of f, there exists u* € [0,1) such that, for all u € [u*,1], f(1) —n <
f(u) < f(1) + n. Besides, there exists M > 0 such that Fo (M) > u*. Then, for all t > 0,

/u 1 PP ) f(y)du = E (ePY“) f(ﬁt(f/(t))))

=0
_E (epf/(t)f(ﬁt(?(t)))]l{?(t)<M}) +E (ep?(t)f(ﬁt(f/(t)))]l{?(t)zM}) .
On the one hand, _
E (epy(t)f(Ft(Y(t)))]l{f/(t)dw}) < I f1leoe?™,

so that Y E(Y
O

lim =

t—+o0o E (epf/(t))

On the other hand, since Lemma 6.B.3 implies that lim;_, | ﬁt(M) = ﬁm(M), then for ¢ large
enough one has, for all y > M, Fy(y) > F;(M) > u*. Therefore, for ¢ large enough,
E (epY(t)f(Ft(Y(t)))]l{;(t)zM})

1 _
f()—n< E(ep?@)]l

< f(1) +mn,
{?<t>zM})

while E (ep?(t)]l{;,(tpM}) A (ep?(t)) converges to 1. As a conclusion,
1 =1 1 =1
ePF (W () du / ePF (W £ () du
0

f(1)y—n< 1t1m1nf v — < lim sup “*=—— < f(1)+ n,
e ePFT (W) 4y, oo ePFT (W) gy,

u=0 u=0
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and the proof of the supercritical case is completed.

Criticality, case ZPc = +00. Note that the proof in the supercritical case above only requires
that p be such that (6.30) holds. As soon as ZP¢ = 400, Fatou’s lemma implies that (6.30) holds
with p = pc, so that we similarly obtain that lim;, o (f, TIP<(t)) = f(1).

Criticality, case ZP¢ < +oo. We finally assume that ZP¢ < 4oo and prove (6.14). In this
purpose, we let £ € [—||f||co, ||f]loo] be the limit of a converging sequence ({f, 1IP<(¢x)))k>1, where
ti grows to infinity with k. We shall prove that

F)A(fIIP) << f(1) Vv (f,TTP). (6.31)

First, we deduce from Fatou’s lemma that there exists a subsequence of (t)r>1, that we still
index by k for convenience, such that

1 —
lim Pl Wy = I ¢ [/, +o0],
k——+oo wu=0

where

1 m—1
J ::/ ePefs Wy < +o00.
u=0

Let us now fix > 0. By the continuity of f, there exists u* € [0,1) such that, for all u € [u*, 1],
f(1)—n < f(u) < f(1) +n. Now let M > 0 be large enough for the inequality Fio (M) > u* to
hold. Then, for all £ > 1,

1 ~_q 1 ~_1
/_OePthk. ( >f(u)11{ﬁt;1(u)§M}du /_O el >f(u)11{ﬁt;1(u)>M}du

1 ~ 1 ~
_1 —1
/ Pl (W qy / Pl (W qy
u=0 u=0

On the one hand, since the equilibrium distribution does not weight points,

<fa 11Pe (tk)> =

1

1 -
. F 1 (w) _ F 2 (u _ _. M
Jm [ e Py can du = /uzoep WL y<anydu = 7,

and the limit is finite. As a consequence,
LB w)
c u
/ OeP th f(u)]l{ﬁtzl(U)SM}du JM
=

lim Zu= S

1
k——+o00 m-1 1
/ PP (@ gy,
u=0

where it is understood that the limit is null whenever I = 4oc0.
On the other hand, by Lemma 6.B.3, for k large enough, F;, (M) > u* so that

cf71 u
(f(1) —n) /u:O el | )]l{ﬁ,:(upM}d“

W )
< /U:O " (W F s anydu < (F(1) + ) L:O€p° L s A

therefore

1 -
iy
/ I sy <any du
1_ U

T ~
-1
/ ePeFuc Wy
u=0

1 ~ 1 -
ch1 u CFfl u
/ ePely, )f(“)]l{ﬁ,:(upM}d“ / ePeliy )1{ﬁt;1(u)gkj}du
H=0 S +n) | 1- ==

1 ~ 1 ~
/ epCFtk‘ (u) du / echtk‘ (u)du
u=0 u=0

IN




178 Le modéle d’Atlas en champ moyen

As a consequence,

rsw-n (-2 <o v g am (-5
I I I | I
where . B .
JH= L O s g can du = /u i IO 7 <y
By the dominated convergence theorem,
1 m—1
i I =Jp = /u . Pl (W) () du, i JM = J,

B A e B A )

We conclude by remarking that J/I € [0, 1], while
Iy Jpd

_ J
7 — Pc\
I JIi<f7H>I7

so that ¢ writes as a convex combination of (f,TIP¢) and f(1) and therefore satisfies (6.31). O
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Chapitre 7

Interprétation probabiliste de
systemes diagonaux paraboliques

7.1 Introduction

7.1.1 Parabolic system of nonlinear equations

Let d > 1 and A = (A',...,\%) : [0,1]¢ — R9. This chapter is dedicated to the study of
solutions
u=(u',...,u?): [0, +o0) x R — [0,1]%

to the diagonal parabolic system of nonlinear equations

1
O + XNV (0)0pu” = iaiu",

u?(0,x) = ug (),

Vy e {1,...,d}, (7.1)

where, for all v € {1,...,d}, u] is the cumulative distribution function (CDF) of a probability
distribution m” on R, which we shall write vj = H *m?” where H * - refers to the convolution with
the Heaviside function H.

Let us begin by giving a precise definition of the notion of weak solution to the system (7.1).

Definition 7.1.1 (Weak solution to (7.1)). A weak solution to the system (7.1) is a function

u=(u',...,u?):[0,400) x R —[0,1]¢

)

such that, for all v € {1,...,d}, 9,u? € LL ([0, +00) x R) and, for all ¢ € C(]0,+0o0) x R),

loc

“+o0
/ / A (u(t, x))0pu” (¢, ) (¢, x)dxdt
t=0 JaxeR (7.2)

/'+°° / u(t, x) <la§¢(t,x)+8t¢(t,z)> dxdt+/ ug (2)$(0, z)dz.
- en ) zeR

Throughout this chapter, we shall assume that A satisfies the following Lipschitz Continuity
assumption:

(LC) There exists Lic € [0, +00) such that
d

Vye{l,...,d}, Vu,velo,1]4, [A7(u) = N (v)| < Lic Z " — v

v'=1
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Of course, under Assumption (LC), the functions !, ..., A% are bounded on [0, 1], and we denote

Lp:= max su A7 (u)l.
5i= max, sup [VI(u)

In the purpose of addressing hyperbolic systems, which we shall do with a completely different
approach in Chapter 9, El-Hajj and Monneau established the following existence and uniqueness
result for the system (7.1).

Theorem 7.1.2. [55, Theorem 2.1] Assume that X satisfies (LC), and that, for all v € {1,...,d},
the probability distribution m” admits a bounded density with respect to the Lebesque measure on
R. Then, the system (7.1) admits a unique weak solution in the space

() (Wh==([0,T) x R))“,
T>0

and such that, for all v € {1,...,d},

[t [|Loe ((0,4-00)x®) < |[ug||Loe (R)-

In this chapter, we remove the assumption on the initial data and establish existence and
uniqueness of a solution in a different class of functions. Besides, we provide a probabilistic
representation of the solution. To this aim, we look for solutions u such that, for all ¢ > 0, for all
v €{1,...,d}, the function u”(t,-) remains the CDF of a probability distribution p; on R. Taking
the formal space derivative of (7.1), the family of probability distributions

pt:(pi}a"-vp(ti)v tZO,

is expected to solve, in the distributional sense, the system of nonlinear evolution equations

1
Opy = iaip,? + Ox (XY(H xpi(x),..., H *pf(x))p?) ,

Yy e {1,....d}, (7.3)

v _
py =m".

We shall look for mild solutions to the system (7.3), defined as follows. For all ¢ > 0, let us
denote by I'; the heat kernel

1 z?
Le(x) = P T )

and recall that

[10:T¢| | m) = Wor (7.4)

We furthermore denote by Pren(R) the space of probability densities with respect to the Lebesgue
measure on R.

Definition 7.1.3 (Mild solutions to (7.3)). A mild solution to the system (7.3) is a function
p=('...,p"): (0,400) = (PLep(R))’
such that, for allt >0, for all v € {1,...,d},
t
ple) =Losm'(@) ~ [ o s (Clpd@ds, e,
s=0
where, for all v € {1,...,d}, the function £[ps] is defined by

O'[ps)(z) == X' (H *pf(x), ..., H = pf(x)).
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7.1.2 Multitype rank-based system of particles

The system (7.3) is the system of Fokker-Planck equations satisfied by the marginal distribu-
tions of the diffusion process
X = (X'1),... ,Xd(t))tzo

solving the stochastic differential equation (SDE) in R¢

dX7(t) = X7 (H #pH(X(8)),..., H = p(X7(t)) dt +dW(2),

7.5
py is the law of X7 (¢), (7:5)

Yy e{l,...,d}, {

where W = (W1(t),...,W%(t));>0 is a standard Brownian motion in R¢, and X(0) is a random
variable in R?, independent of W, such that, for all v € {1,...,d}, the coordinate X7(0) has
marginal distribution m?” on R.

The SDE (7.5) is said to be nonlinear in McKean’s sense as the coefficients of the diffusion
depend on the law of the random variable X (¢) in R%. A classical linearisation procedure [108, |
to address such SDEs consists in introducing n copies X ,,..., Xy, of the process X, driven by
independent Brownian motions Wy, ..., W,,, and replacing the law of X in the coefficients of the
diffusion with the empirical distribution of the copies. Applying this procedure to the SDE (7.5),
one obtains n processes

Xkyn:(Xé,n(t),...,Xg,n(t))tzo, ke{l,...,n},
in R?, satisfying, for all k € {1,...,n}, for all v € {1,...,d},

= k,n

1< 1
dx; () =X EZH{X;NKXW (t)},...,gZn{x;{n(t)gxgm(t)} dt +dw](t),  (7.6)
j=1

j=1
where the processes
WkZ(Wkl(t),---7W;f(t))tZo, ke{l,...,n},

are independent standard Brownian motions in R?, and the random variables X; ,,(0), ..., X, »(0)
are independent from each other and independent of W1,..., W,,. For the sake of simplicity, we
shall assume that, for all k € {1,...,n},

X (0) = (X3, (0), ..., X1 (0) ~m' @ - @m, (7.7)

although any initial law for the Xy ,,(0)’s with marginal distributions m?!, ..., m?% would lead to

the same results. By the Girsanov theorem, weak existence and uniqueness hold for this system of
SDEs, while strong existence and uniqueness are due to Veretennikov [133].

The processes X!, describe the behaviour of a system of d x n Brownian particles evolving on
the real line accordirfg to the following rules:

e each particle has a label k € {1,...,n} and a type v € {1,...,d},

e the drift of each particle depends on the proportion of particles of each type located below
the particle.

In the scalar case d = 1, where there is only one type of particle, the system is called rank-based
as the drift of each particle only depends on its rank among the whole system [33, 84, 85]. In the
general case d > 1, the system shall be called multitype rank-based.

Let us finally define the empirical distribution of the particle system as the random probability

distribution
1 n
= — E 0
:LLn nkil Xk,n

on the space C([0, +00), R?) of continuous sample-paths in R? endowed with the topology of locally
uniform convergence. For any probability distribution P on this space, the marginal distribution
of P at time ¢t > 0 is denoted by P;, and the marginal distribution of the «-th coordinate at time
t > 0 is denoted by P;. The space of probability distributions on C([0, +00), R?) is endowed with
the topology of weak convergence.
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7.1.3 Results and outline
We can now state the main result of this chapter.

Theorem 7.1.4. Let us assume that the function A = (\', ..., \9) satisfies (LC).

(i) The sequence p, converges in probability to the law P of the unique weak solution to the
nonlinear SDE (7.5) in RY.

(ii) The function u = (u', ... ,u?) defined on [0,+0c) x R by, for all (t,z) € [0, +00) x R,
vy e {l,...,d}, uY(t,z) := H * P (),

is the unique weak solution to the system (7.1) such that (Oyu', ... 0,u?) is a mild solution
to the system of Fokker-Planck equations (7.3).

Remark 7.1.5. Under the assumptions of Theorem 7.1.2, let u = (u!,...,u?) refer to the weak

solution to the system (7.1) obtained in Theorem 7.1.2. Then, following [55, Equation (3.3)],
(Opul, ..., 0,ud) is a mild solution to the system of Fokker-Planck equations (7.3), therefore the
function u coincides with the solution that we obtain in Theorem 7.1.4.

Theorem 7.1.4 can be completed by the following convergence result for the empirical CDFs of
the particle system: for all n > 1, let us define the random function u,, = (u),...,u?) by, for all
(t,x) € [0,400) x R,

1
V’y € {15 B -ad}a ’U/;Yl(t,l‘) = H * (Mn)z(‘r) = g Z]I{X]Z’n(t)gx}'
k=1

Proposition 7.1.6. Under the assumptions of Theorem 7.1.4, let T > 0. Then, for all T € (0,T),
forally € {1,...,d},

n—+oo (t,x)e[r, T]xR

lim E < sup lu) (t, ) — Uv(ta$)|> =0,

and this limit holds true with 7 = 0 if m” does not weight points.

The chapter is organised as follows. We prove in Section 7.2 that mild solutions to the system
of Fokker-Planck equations (7.3) are unique and provide weak solutions to the system (7.1). The
nonlinear SDE (7.5) is addressed in Section 7.3, where it is formulated as a nonlinear martingale
problem. We check in Proposition 7.3.2 that the marginal distributions of the solutions to this
martingale problem are mild solutions to the system of Fokker-Planck equations (7.3), which allows
us to derive uniqueness of the nonlinear martingale problem. Finally, existence for the martingale
problem is obtained in Proposition 7.4.1 of Section 7.4 as the limit of the empirical distribution of
the particle system. This completes the proof of Theorem 7.1.4, and the proof of Proposition 7.1.6
is detailed in Subsection 7.4.2.

7.2 Mild solutions to the system of Fokker-Planck equations
This section is dedicated to the study of mild solutions to the system of Fokker-Planck equa-

tions (7.3).

Proposition 7.2.1. Assume that the function A = (!, ..., \%) satisfies (LC).

(i) If p= (p',...,p%) and q = (¢*,. .., q%) are mild solutions to (7.3), then for all t > 0, for all

vyed{l,...,d},
pi () = ¢/ (), dz-a.e..

(i) Let p = (p*,...,p%) be a mild solution to (7.3), and define the function u = (u*, ..., u?) :
[0, 400) x R — [0,1]¢ by, for all v € {1,...,d},

w7 (0,2) := H xm” (z), uY(t,z) := H * p] ().

Then u is a weak solution to the system (7.1).
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Proof. Let us first address (i). The proof follows the lines of Jourdain [$2, Lemma 2.3, p. 342]. Let
p=(p',...,p%) and q = (¢',...,q%) be mild solutions to (7.3). For allt > 0, for all v € {1,...,d},

t
7 = @l < [ 0T soll Pulp? ~ ke o s
5=0

thanks to the Fubini-Tonelli theorem and the Hausdorff-Young inequality.
By Assumption (LC), for all s > 0,

17 [pslpd — Olaslgd L @) < [1€7[Ps]pd — O pslad L) + 107 [Psled — Oasled |l @)

d
< Lp|lp = qUllur @) + Lic D [|(H = ( Y — a2 Nl ®
=1
and
d d
S OINH * (7 = a2 )l ) Z 1H # (07 = @)L @102 L1 2y

d
Z ||ps 7(]5 ||L1(R)7

since [|¢7||L1(r) = 1 as ¢ € Preb(R). Thanks to (7.4), we obtain

Z o — &/ llr@wy < (L + dLirc) / \/T Z I[p7 — ad|lL1 (r)ds.

y=1

Iterating the inequality yields

drds

d
,;sz - q;fyHLl(R) = (LB +dLLC / \/ﬁ/ \/r Z ||pr _qr”Ll

—dsdr

2
;(LB +dLic)?

[ oS-l [ —
r=0 =1 S — T
t d
=2(Lp +dLic)? / Z P = @ |2 rydr,
r=0 ,_

so that the Gronwall lemma ensures that, for all ¢ > 0,

d
> e = @ |l =0,
y=1

hence the result.

Let us now address (ii). We fix v € {1,...,d}. First, it is obvious that d,u” € L, ([0, +00) xR).
Now let ¢ € C2°([0, +00) x R) and check that (7.2) holds To this aim, we first note that, by the
Fubini-Tonelli theorem, for all ¢ > 0,

Hx(Dyxm?) =Ty % (H*mY) =Ty xug,

while the Fubini-Tonelli theorem combined with the Hausdorff-Young inequality and (7.4) yield

t

t
H */ |0:Tt—s| * |07 [ps]pl|ds < LB/ |0, T¢—s| * (H % p))ds
s=0

———ds < 400,

<L
B/ \/27rtfs
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therefore one can apply the Fubini theorem and get, for all z € R,

<H N / _ Oy, + (mps1pz>ds> (2) = / t Ti s (Ol a)ds.

As a consequence, for all t > 0,

wit) = Tor (o) - [ T (Opdp])(e)ds.

Since &'y = (1/2)92T, then

+oo
/ / Ty xuf(z) (%8£¢(t, x) + Opp(t, z)> dadt
t=0 z€eR

=0

+oo
= / / <1a§n atrt> xug (2)(t, v)dwdt — / ug (2)¢(0, z)da
f 2€R 2 zER
_ / ] (2)$(0, z)dz,
xz€R

where the use of the Fubini theorem is still allowed by (7.4). Similarly,
+oo t 1
Lo s (5086t + drote.0) ) dadt
t=0 z€R J5=0 2

- /:0OO /zeR /st—o (%33115 B atrt5> * (07[ps]pd) (w)dso(t, z)dzdt
+/+°°/ O'lpe](x)p] (z)$(t, v)dzdt
t=0 Jz€eR

+o00
_ / / N (u(t, 2))9pu (£, 2)6 (1, 2)dadt,
t=0 zeR

which completes the proof. ([l

7.3 The nonlinear martingale problem

We now formulate the nonlinear SDE (7.5) under the form of a nonlinear martingale problem.
In this purpose, we denote by

X = (XY(t),. .., X%t))i>0
the canonical process on C([0, +o0), R9).

Definition 7.3.1. A probability distribution P on C([0,+oc0),R?) is a solution to the nonlinear
martingale problem if:

(i) Pop=m!®---@md,
(ii) for all o € C3(R?), the process MP¥ defined by, for all t > 0,

t d 1
M2 (0) = (1) ~ 9E0) = [ S { IR 0)0,008(0) + 5080(K(s) | .

S

where (V[Ps](z) := A (H % PX(x),..., H x P4(x)), is a martingale under P.

The link between the nonlinear martingale problem and the system (7.1) is made in the following
proposition.

Proposition 7.3.2. Assume that the function X = (\!, ..., \?) satisfies (LC).
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(i) If P is a solution to the monlinear martingale problem, then, for all t > 0, for all v €
{1,...,d}, the probability distribution P, admits a density p] with respect to the Lebesgue
measure on R, and the mapping t — (p},...,pl) is a mild solution to the system of Fokker-
Planck equations (7.3).

(i) There is at most one solution to the nonlinear martingale problem.
Proof. Let us first prove (i). The proof follows the lines of Jourdain [32, Lemma 2.3, p. 342]. Let

P be a solution to the martingale problem. Following the classical argument exposed for example
in [94, Remark 4.12, p. 318|, we obtain that, under P, the process

Z X(s))ds,

—1Ys= O

where £[P|(x) := ((*[Ps](x1), ..., 0% P)(z%)) € R? for all x = (x!,...,2¢) € RY, is a standard
Brownian motion in R%. As a consequence, for all £ > 0, the boundedness of £[P,](x) together with
the Girsanov theorem imply that the probability distribution P, admits a density p; with respect
to the Lebesgue measure on R?. For all v € {1,...,d}, the marginal density p; is obtained by

p(z) = / pe(zt, . a7 T aD)dat - d2Y Y L dad

.....

We deduce from Tto’s formula that, for all ¢ > 0, for all ¢ € Cp?([0,] x R?),

| oltxp i

xeRd

= / #(0,x)m! @ - - @ m?(dx)
xER4

d

/S O/xeRd < L P(s,X) Z{ )0y (s, %) + %Zﬁd)(s,x)}) ps(x)dsdx.

Let us now fix v € {1,...,d}, ¢ € C(R), t > 0 and define ¢ € C3([0,¢] x RY) by
P(t,x) :=9(27),  (s,x) :=Tisxtp(a7), s<Lt.
Since, for all v # ~,
Oy ¢(s,x) =0, 83,¢(3,X) =0,
and

9,0(5,%) = Tuyw (&), 0u0(s,%) + 5026(s,%) = 0,

then Itd’s formula rewrites

/ ¥(x dx/ZERdFt*w( 2)m” (dz) / O/ZER ()8, Ty * ¥(2)p? (z)dsdz

t

= / Ty «m™(z)(x)da — / 0. Tt—s * (V[ Ps]pY) (x)dsy(z)dx
z€R? z€R Js=0

where we have used the Fubini theorem at the second line. We conclude that, dz-almost every-

where,

P@) =Toem'@) = [ 0T+ (ORI @)

which completes the proof of (i).

Let us now give a proof of the uniqueness result (ii). To this aim, let us take two solutions P
and @ to the nonlinear martingale problem. Then, by (i), for all ¢ > 0, for all v € {1,...,d}, the
probability distribution P, (resp. Q7 ) admits a density p; (resp. ¢;) with respect to the Lebesgue
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measure on R, and the mapping ¢ — (p;,...,p¢) (resp. t = (qi,...,q?)) is a mild solution to the
system of Fokker-Planck equations (7.3). By the uniqueness result (i) in Proposition 7.2.1, then,
for all v € {1,...,d}, for all ¢t > 0,

pl(r)=q/(z), da-ae.,
and we define
u¥(t,x) := H *p}(z) = H * q} (z).

Both P and @ solve the following linear martingale problem: find a probability distribution R on
C([0, +00), R?) such that

(1) R0:m1®...®md,

(ii) for all ¢ € CZ(R?), the process N¥ defined by, for all ¢ > 0,

t d 1
N#(0) = p(2(0) o020 — [ 3L E 00 00(6) + 020K as.

y=1
where £)(x) := N (ul(s,2),...,u’(s,)), is a martingale under R.
The solutions to this linear martingale problem are unique [129, Theorem 7.2.1, p. 187], therefore
P = @ and the proof of (ii) is completed. O

Remark 7.3.3. If P is a solution to the nonlinear martingale problem, then combining Proposi-
tions 7.2.1 and 7.3.2, we deduce that the function u = (u', ..., u?) defined by, for all v € {1,...,d},
for all (¢,z) € [0,400) X R,

u(t,z) := H * P, (x),
is a weak solution to the system (7.1). Besides, by (i) in Proposition 7.3.2, for all v € {1,...d},

for all t > 0 (resp. t > 0 if m” does not weight points), the function u?(¢,-) is continuous on R,
and

Vr € R, lim u7(s,z) = v (¢, x).

s—t

By the Dini theorem, we deduce that «” is continuous on (0, +00) x R (resp. [0, +00) x R).

7.4 The multitype rank-based particle system

In Subsection 7.4.1, we prove a law of large numbers for the empirical distribution of the particle
system, which provides us with a solution to the nonlinear martingale problem. Subsection 7.4.2
is dedicated to the proof of Proposition 7.1.6.

7.4.1 Law of large numbers for the particle system

Recall that the empirical distribution of the particle system is the random probability distri-
bution s, on C([0, +00), R?) defined by

1 n
==Y s
k=1
where the family of processes Xy, ,, = (X,%n t),... an,n(t))tZOa ke {1,...,n}, is the unique weak
solution to the SDE (7.6)-(7.7) in R4*",

Proposition 7.4.1. Under Assumption (LC), p, converges in probability to the unique solution
P to the nonlinear martingale problem.
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Proof. The proof is similar to Jourdain [32, (ii), Proposition 2.4, p. 346]. For all n > 1, let =,
refer to the law of w,: m, is a probability distribution on the space of probability distributions on
C([0, +00),R?). The proof is in two steps: in Step 1, we prove that the sequence (7, ),>1 is tight;
while in Step 2, we show that any limit 7, of a converging subsequence gives full measure to the
set of solutions to the nonlinear martingale problem. Then, the conclusion of the proof follows
from the uniqueness result for the martingale problem obtained in Proposition 7.3.2.

Step 1. Clearly, the processes Xy n,..., Xy n are exchangeable, in the sense that, for all per-
mutation o of {1,...,n}, the processes (Xy(1),n, -+ Xo(n),n) and (Xqp, ..., Xy, ) have the same
law. As a consequence, by [130, Proposition 2.2, p. 177], the tightness of the sequence (my,),>1 is
equivalent to the tightness of the sequence of the laws of X ,, in C([0, +00), R?). The latter point
easily follows from the boundedness of the functions A', ... A%

Step 2. Let mo be the limit of a converging subsequence of (m,)n>1, that we still index by
n for convenience. Let poo be a random variable with law 7, so that u, converges to pio in
distribution.

Clearly, To-almost surely, the marginal distribution of ji., at time 0 is m! ® - - - ® m?.

Fori>1,0<s1<---<s§<s<tpe C%(Rd) and ¢ : (R?)! — R continuous and bounded,
let us denote

0:={l,(s1,.-.,81,8,t), 0,9},

and define the functional Gy on the set of probability distributions on C([0,4+00), R%) by

Go(Q) = (Q. 9(X(s1), .., X(5)) (MU¥(t) — MV¥(s))),

where:

e X still refers to the canonical process on C([0,+o0), R9),

e the process M@¥ is introduced in Definition 7.3.1,

e for all measurable functional G : C([0, +00), R?) — R, (Q, G(X)) denotes the expectation of

G(X) under Q.

If a probability distribution @ on C([0, +00), R?) satisfies Go(Q) = 0 for all choice of 6, then it is
a solution to the nonlinear martingale problem. The remainder of the proof consists in proving
that, moo-almost surely, for all choice of 6, Gg(1i) = 0. We shall actually prove that, for all choice

of 0, moo-almost surely, Go(too) = 0, and conclude by taking € in a countable dense subset.
Therefore, we now fix 6 = {l, (s1,...,s1,8,t),¢, g}, and prove that

EG6(poo)| = 0,

where we recall that the law of po is moo. To this aim, for all ¢ > 1, we first define the continuous
approximation H*® of the Heaviside function H by

Vr € R, H'(x) = (1+ ix) 11 i<a<oy + Liz>o01,

and denote by G} the functional defined like Gy but with H* instead of H in the definition of the
process M@, Then, G} is continuous on the set of probability distributions on C([0,4+00), R%),
therefore _ _

¥iz 1, lim E(G(un)) =E (Gh(peo)) -
As a consequence, E|Gg ()| is lower than

limsup E |Go (1o0) — Gh (100 )| + limsup E |Gy (p )| + lim sup limsup E |G (11.) — Go(pn)| s (7-8)
n—+oo

t—+o00 i——+o00 n——+00

and we shall now prove that these three terms vanish.
First, Assumption (LC) allows to write, for all ¢ > 1,

. d t X ,
60) = G)| <l 3 10,6l (s [ 18 = 1 (o)} (011

v,y'=1 =*
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Since |H — H!| converges pointwise to 0, the dominated convergence theorem implies that the
right-hand side above converges to 0, m-almost surely, and applying the dominated convergence
again we deduce that

limsup E ‘ge(ﬂoo) - gé(ﬂoo)| =0.

1——+o00

Second, for all n > 1,

- % Zg(Xk(sﬂ, oo Xe(s1)) <<,0(Xk7n(t)) — o(Xpn(s))

Z (X7 ()0 (K (1)) + 202X (r)) b dr |
[ {r Loz, o)

and Itd’s formula yields

X (1) — (K5 /Z{W ) YT ()0, 9K (1) + 5020(Krn (1) |

=Y [ 0 t)ang )

y=1

so that

E [Go (n)| < VVE |Go(1n)]” < |l9llos

hence the second term in (7.8) vanishes.
Third, the same computations as for the first term yield

s d
> 110yl
y=1

. d t . ’
9300) = Golpa)| < Nl e 3 110yl (o [ 1 = H () (X7 ()

v v/—l

<lolletic 3 100l s 37 [T
vy'=1 k,k'=1
where we have used the fact that, for all z € R,
[H (@) = H'(2)] < Ljai<1/iy-

By exchangeability of the processes Xy 5, ..., Xy, n, we deduce that

d t
i 1 ! .
E |Gh(in) = Go(pin)| < llgllocLrc > II(%@IIOO/ (gP(IX?,n(T) — X{ (] <1/i)
vy'=1 r=e
n—1 ' .
+ P(IX],(r) = X3, (r)| < 1/z)> dr
so that ) _
lim sup E |G (11n) — Go ()|
n—-+oo
d t ,
<lglloLrc Y ||5w<p||oohmsup/ PIXT,, (1) — X3, (r)] < 1/i)dr
v, ,Y/ 1 r=s

Now, for all n > 1, v,+" € {1,...,d} and r € [s, ],
P(X7(r) — X3,,(r)] < 1/8) < P X7 (r) — X3,.(r)] < 1/, | X7 (r)] < V)
FP(XT, ()] > V).
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On the one hand,
B(X7,(r)] > Vi) S PX],,(0) + rLp + W (r) > Vi) + B(X],,(0) = rL + WY (r) < —Vi),

and the right-hand side does not depend on n since X f /n(O) has distribution 7" and is independent

of the Brownian motion W7}’ " Besides, for all r € [s, ],
im P(X7 (0)+rLg + W7 (r) > Vi) + P(X7,(0) — rLp + W) (r) < —Vi) =0,
1—+00 ’ ’
therefore, by the dominated convergence theorem,
t ’
hmsuphmsup/ P(| X, (r)] > Vi)dr = 0.

1—+o00 n—+400 =5

On the other hand, the Girsanov theorem combined with the Cauchy-Schwarz inequality yield, for
all v € [s, 1],

B(XT0(r) = X3 ()] < 1/ |XT, ()] < Vi)

< exp(rLB)P(IX T, (r) = X3,(0] < 1/i, |XT,(0)] < V)2,
where )N(f/n(r) = le/n(O) WY (), )N(;n(r) = X5 ,(0) + W3 (r) for a standard Brownian motion
(Wf’,W;) in R?, independent of (Xf’/n(()), X3 ,(0)). Using the trivial bound of the joint density
of (W} (r), W3 (r)) by 1/(2ar), we obtain

~ 1 ~ ~ 2
P(IX7,(r) — X3, (r)| < 1/i,|X7,,(r)] < Vi) < 3
’ ’ ’ ﬂ'r\/{

therefore

’ ’ 2
P(IX7,,(r) = X3, (0] < 1/ | X7, ()] < Vi) <) = exp(rLp)i~'/*.
’ ’ ’ r

As a consequence,
t
hmsuphmsup/ P(X7,(r) — X3, ()| <1/i,| X7, ()] < Vi)dr =0,
i—+oo n—4oo Jr=s ’ ’ ’

so that the third term in (7.8) vanishes and the proof is completed. O

7.4.2 Proof of Proposition 7.1.6

The proof of Proposition 7.1.6 relies on the following lemma, the proof of which can be found
in Jourdain [34, Corollary 1.7].

Lemma 7.4.2. Let P be a probability distribution on C([0,400),R) and 0 < 7 < T be such that,
for all t € [1,T], the probability distribution P; on R does not weight points. Then the mapping

Q— sup |H * Q¢(x) — H * Py(x)]
(t,x)€[T, TIxR

18 bounded and continuous at P.

Since, by Proposition 7.4.1, u, converges in distribution to P, we deduce from Lemma 7.4.2
that, for all v € {1,...,d}, for all 0 < 7 < T such that, for all ¢ € [r, T}, the probability distribution
P} on R does not weight points, then

lim E sup lul(t,x) —uY (¢, )| | =0.
n—+0oo ((t,m)E[T,T]X]R

By Proposition 7.3.2, the fact that the probability distribution P;’ does not weight points holds
true for all ¢ > 0, and of course for all £ > 0 if m” does not weight points. This completes the
proof of Proposition 7.1.6.
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Chapitre 8

La limite petit bruit de processus de
diffusion interagissant a travers leur
ordre

Ce chapitre reprend le contenu de Darticle [92], écrit avec Benjamin Jourdain et paru dans
Electronic Journal of Probability.

8.1 Introduction

8.1.1 Diffusions with small noise

The theory of ordinary differential equations (ODEs) with a regular drift coefficient and per-
turbed by a small stochastic noise was well developped by Freidlin and Wentzell [65]. For a
Lipschitz continuous function b : R™ — R™, they stated a large deviations principle for the laws
of the solutions X¢ to the stochastic differential equations dX¢(t) = b(X<(t))dt 4+ v/2edW (t), from
which it can be easily deduced that X€ converges to the unique solution to the ODE & = b(x)
when e vanishes. When the ODE & = b(z) is not well-posed, the behaviour of X€ in the small
noise limit is far less well understood.

In one dimension of space, Veretennikov [134] and Bafico and Baldi [9] considered ODEs exhibit-
ing a Peano phenomenon, i.e. such that b(0) = 0 and the ODE admits two continuous solutions
2t and ™ such that 27 (0) =27 (0) = 0, 1 (¢) > 0 and 2™ (¢) < 0 for ¢ > 0. Other solutions are
easily obtained for the ODE: as an example, for all T' > 0, the function 27 defined by z7(t) = 0 if
t < T and 23 (t) = a7 (t — T) if t > T is also a continuous solution to the ODE. The solutions =+
and x~ are called extremal in the sense that they leave the origin instantaneously. For particular
examples of such ODEs, it was proved in [134] and [9] that the small noise limit of the law of X¢
concentrates on the set of extremal solutions {z, 2~} and the weights associated with each such
solution was explicitely computed. In this case, large deviations principles were also proved by

Herrmann [77] and Gradinaru, Herrmann and Roynette [74].
In higher dimensions of space, very few results are available. Buckdahn, Ouknine and Quin-
campoix [33] proved that the limit points of the law of X ¢ concentrate on the set of solutions to the

ODE & = b(z) in the so-called Filippov generalized sense. However, an explicit description of this
set is not easily provided in general. Let us also mention the work by Delarue, Flandoli and Vin-
cenzi [47] in the specific setting of the Vlasov-Poisson equation on the real line for two electrostatic
particles. For a particular choice of the electric field and of the initial conditions, they showed that
the particles collapse in a finite time 7" > 0, so that the ODE describing the Lagrangian dynamics
of the two particles is singular at this time. After the singularity, the ODE exhibits a Peano-like
phenomenon in the sense that it admits several extremal solutions, i.e. leaving the singular point
instantaneously. Similarly to the one-dimensional examples addressed in [134, 9], the trajectory



194 Limite petit bruit de processus de diffusion interagissant a travers leur ordre

obtained as the small noise limit of a stochastic perturbation is random among these extremal
solutions.

8.1.2 Order-based processes

In this chapter, we are interested in the small noise limit of the solution X°€ to the stochastic
differential equation

VE>0,  X(t)=a"+ /t b(EX<(s))ds + V2eW (1), (8.1)
s=0

where 2° € R", b is a function from the symmetric group S, to R”, W is a standard Brownian
motion in R™ and, for = (x1,...,2,) € R", ¥z is a permutation o € S, such that z,) <
-+ < Zy(n). A permutation o € S, shall sometimes be represented by the word (o(1)---o(n)),
especially for small values of n. As an example, the permutation o € Ss defined by o(1) = 2,
0(2) =1 and ¢(3) = 3 is denoted by (213).

On the set Oy, := {x = (z1,...,2,) € R” : 3i # j,x; = x;} of vectors with non pairwise distinct
coordinates, the permutation Yz is not uniquely defined. For the sake of precision, a convention
to define Xx in this case is given below, although we prove in Proposition 8.1.1 that the solution
X€ to (8.1) does not depend on the definition of the quantity b(Xx) on O,,.

The solution X€¢ = (X5(¢),..., X5(t))i>0 to (8.1) shall generically be called order-based diffu-
ston process, as it describes the evolution of a system of n particles moving on the real line with
piecewise constant drift depending on their ordering. Note that, in such a system, the interactions
can be nonlocal in the sense that a collision between two particles can modify the instantaneous
drifts of all the particles in the system.

Section 8.2 is dedicated to the complete description of the case n = 2. Unsurprisingly, if the
particles have distinct initial positions 2 = (2, 29), then in the small noise limit they first travel
with constant velocity vector b(Xa?).

At a collision, or equivalently when the particles start from the same initial position, various
behaviours are observed, depending on b. To describe these situations, a configuration o € Sy is
said to be converging if by(1)(0) > by(2)(0), that is to say, the velocity of the leftmost particle is
larger than the velocity of the rightmost particle, and diverging otherwise. If both configurations

are converging, which writes
b1(12) > b2(12), ba(21) > b1(21),

and shall be referred to as the converging/converging case, then, in the small noise limit, the
particles stick together and form a cluster. The velocity of the cluster can be explicitely computed
by elementary arguments. Except in some degenerate situations, it is deterministic and constant.
If one of the configuration is converging while the other is diverging, which shall be referred to
as the converging/diverging case, then, in the small noise limit, the particles drift away from each
other with constant velocity vector b(o), where o is the diverging configuration. Finally, if both
configurations are diverging, which writes

b1(12) < b2(12), b2(21) < b1(21),

and shall be referred to as the diverging/diverging case, then the particles drift away from each
other with constant velocity vector b(c), where o is a random permutation in Sp with an explicit
distribution.

The study of the two-particle case is made possible by the fact that most results actually stem
from the study of the scalar process Z¢ := X{ — X5. In particular, our result in the diverg-
ing/diverging case is similar to the situation of [134, 9], in the sense that the zero noise equation
for Z¢ admits exactly two extremal solutions and exhibits a Peano phenomenon.

In higher dimensions, providing a general description of the small noise limit of X€ seems to
be a very challenging issue. As a first step, Sections 8.3 and 8.4 address two cases in which the
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function b satisfies particular conditions. In Section 8.3, we assume that there exists a vector b =
(b1,...,bn) € R™ such that, for all o € Sy, for alli € {1,...,n}, by(;)(0) = b;. In other words, the
instantaneous drift of the i-th particle does not depend on the whole ordering of (X{(¢t), ..., X5(t)),
but only on the rank of X{(t) among X{(¢),..., X5(t). In particular, the interactions are local
in the sense that a collision between two particles does not affect the instantaneous drifts of
the particles not involved in the collision. Such particle systems are generally called systems of
rank-based interacting diffusions. They are of interest in the study of equity market models [58,

, , 62, 78, 81, 80, 61, 59, 79] or in the probabilistic interpretation of nonlinear evolution
equations [25, 84, 89, 91, 48].

A remarkable property of such systems is that the reordered particle system, defined as the
process Y€ = (Y(t),...,Y,S(t))r>0 such that, for all ¢ > 0, (Yi(¢),...,Y,5(¢)) is the increasing
reordering of (X5(¢),...,X<(t)), is a Brownian motion with constant drift vector b, normally
reflected at the boundary of the polyhedron D,, = {(y1,...,yn) € R" : 4 < --- < y,}. By a
simple convexity argument, we prove that the limit of Y¢ when e vanishes is the deterministic
process & with the same drift b, normally reflected at the boundary of D,,.

The small noise limit £ turns out to coincide with the sticky particle dynamics introduced by
Brenier and Grenier [29], which describes the evolution of a system of particles with unit mass,
travelling at constant velocity between collisions, and such that, at each collision, the colliding
particles stick together and form a cluster, the velocity of which is determined by the global
conservation of momentum. This provides an effective description of the small noise limit of X*.

An important fact in the rank-based case is that, whenever some particles form a cluster in
the small noise limit, then for any partition of the cluster into a group of leftmost particles and a
group of rightmost particles, the average velocity of the leftmost group is larger than the average
velocity of the rightmost group. In Section 8.4 we provide an extension of this stability condition
to the general case of order-based diffusions. We prove that, when all the particles have the same
initial position, this condition ensures that in the small noise limit, all the particles aggregate into
a single cluster. However the condition is no longer necessary and we give a counterexample with
n = 3 particles.

To determine the motion of the cluster, we reinterpret the study of the small noise limit of X€ as
a problem of long time behaviour for the process X!, thanks to an adequate change in the space and
time scales. In the rank-based case, it is well known that X! does not have an equilibrium [115, 89]
as its projection along the direction (1,...,1) is a Brownian motion with constant drift. However,
under a stronger version of the stability condition, the orthogonal projection Z' of X! on the
hyperplane M,, = {(z1,...,2n) € R" : 21 + -+ - + 2, = 0} admits a unique stationary distribution
. We extend both the strong stability condition and the existence and uniqueness result for u to
the order-based case, and thereby express the velocity of the cluster in terms of p.

In the conclusive Section 8.5, we state some conjectures as regards the general small noise limit
of X¢, and we discuss the link between our results and the notion of generalized flow introduced
by E and Vanden-Eijnden [51].

8.1.3 Preliminary results and conventions
8.1.3.1 Definition of

For all z € R", we denote by Yz the set of permutations o € S,, such that To(1) S0 S Tg(n)-
The set Xz is nonempty, and it contains a unique element if and only if ¢ O,. The permutation
Yx is defined as the lowest element of Yz for the lexicographical order on the associated words.

8.1.3.2 Well-posedness of (8.1)

Throughout this chapter, z° € R refers to the initial positions of the particles, and a standard
Brownian motion W in R™ is defined on a given probability space (£, F,P,0). The filtration
generated by W is denoted by (Fi)i>0. The expectation under P,o is denoted by E,o.
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Proposition 8.1.1. For all € > 0, for all z° € R"™, the stochastic differential equation (8.1) admits
a unique strong solution on the probability space (2, F,Pyo) provided with the filtration (Fi)i>o.
Besides, Po-almost surely,

t
Vvt >0, / ]l{Xe(s)eOn}dS =0.
s=0

Proof. The strong existence and pathwise uniqueness follow from Veretennikov [133], as the drift
function = — b(Xx) is measurable and bounded, while the diffusion matrix is diagonal. The second
part of the proposition is a consequence of the occupation time formula [121, p. 224] applied to
the semimartingales X{ — X7, i # j. O

8.1.3.3 Convergence of processes

Let d > 1. For all T > 0, the space of continuous functions C([0,7],R?) is endowed with
the sup norm in time associated with the L! norm on R Let A€ = (A{(t),..., A5(t))i>0 be a
continuous process in R? defined on the probability space (Q, F,Pyo0).

e If a = (ai(t),...,aq(t))i>0 is a continuous process in R? defined on the probability space
(2, F,P,o), then for all p € [1,+00), A is said to converge to a in L (P,o) if

vT >0, hmEmo < sup Z|AE —a; ()P ) =0.

t€l0,7] ;=

o If a = (ai(t),...,aq(t))i>0 is a continuous process in R? defined on some probability space
(Q, F',P"), the process A is said to converge in distribution to a if, for all ' > 0, for all
bounded continuous function F : C([0,T],R%) — R,

li o (F(4)) = E/(F(a)),
where E’ denotes the expectation under P/, and, for the sake of brevity, the respective
restrictions of A€ and a to [0, 7] are simply denoted by A€ and a.

Finally, the deterministic process (t);>o shall simply be denoted by t.

8.2 The two-particle case

In this section, we assume that n = 2. Then, (8.1) rewrites

t t
Xe(t) = 29+ b(12) /_O ]l{Xf(s)ng(s)}ds +b(21) /_O ]l{Xf(s)>X§(s)}d5 + \/Q_GW(t) (8.2)

In the configuration (12), that is to say whenever X{(t) < X§(¢), the instantaneous drift of the
i-th particle is b;(12). Thus, in the small noise limit, the particles tend to get closer to each other
if b1(12) > b2(12), and to drift away from each other else. As a consequence, the configuration
(12) is said to be converging if b~ := b1(12) — b3(12) > 0 and diverging if b~ < 0. Similarly, the
configuration (21) is said to be converging if b+ := b1(21) — b2(21) < 0 and diverging if b* > 0.
The introduction of the quantities b~ and b is motivated by the fact that the reduced process
Z¢ = X{ — X satisfies the scalar stochastic differential equation

t
Z¢(t) = 20 + / ((Z(s))ds + 2V/eB(t), (8.3)
s=0
where 2% 1= 20 — 29, (2) := b~ 1 (,<0y + b 1 (.~} and B := (W; —W>)/V/2 is a standard Brownian
motion in R defined on (Q, F,P;), adapted to the filtration (F;)¢>o.
The description of the small noise limit of X € is exhaustively made in Subsection 8.2.1. Some
proofs are postponed to Appendix 8.A. In Subsection 8.2.2, the small noise limit of Z¢ is discussed.
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In the sequel, we use the terminology of [9] and call extremal solution to the zero noise version
of (8.2) a continuous function z = (x(t));>0 such that

¢
vt >0, z(t) =20 + / b(Xx(s))ds,
s=0
and, for all ¢t > 0, z(¢) & Os.

8.2.1 Small noise limit of the system of particles

To describe the small noise limit of X €, we first address the case in which both particles have
the same initial position, i.e. 2° € Oz. The zero noise version of (8.2) rewrites

t t
vVt >0, .T(t) =Y + b(12) /70 ]l{xl(s)gm(s)}ds + b(21) /70 ]1{11(5)>z2(5)}d8.

In the diverging/diverging case b~ < 0, b+ > 0, the equation above admits two extremal solu-
tions = and x* defined by 2~ (t) = 2° + b(12)t and x+ = 2° + b(21)t. In the converging/diverging
case b~ > 0, b* > 0, the only extremal solution is ™, and symmetrically, in the case b~ < 0,
bt < 0, the only extremal solution is ™. In all these cases, the small noise limit of X ¢ concentrates
on the set of extremal solutions to the zero noise equation, similarly to the situations addressed
in [134, 9].

Proposition 8.2.1. Assume that 2° € Os, and recall that x=(t) = 2% +b(12)t, 27 (t) = 2°+b(21)t.

(i) If b= < 0, b+ > 0, the process X¢ converges in distribution to pz™ + (1 — p)x™ where p is a
Bernoulli variable with parameter —b~ /(bT —b™).

(ii) If b= >0, bT > 0, the process X¢ converges in LL _(P,o0) to x7T.

loc

(iii) If b= < 0, b* <0, the process X¢ converges in L (Pyo) to x7~.

loc

In the converging/converging case b~ > 0, b+ < 0, there is no extremal solution to the zero
noise version of (8.2). Informally, in both configurations the instantaneous drifts of each particle
tend to bring the particles closer to each other. Therefore, in the small noise limit, the particles are
expected to stick together and form a cluster; that is to say, the limit of the distribution of X is
expected to concentrate on Os. The motion of the cluster is described in the following proposition.

Proposition 8.2.2. Assume that 2° € Oa, and that b~ >0, b+ < 0.
(iv) If b= — bT > 0, the process X¢ converges in L2 _(Pyo) to px~ + (1 — p)xt, where p =

loc
—bt/(b~ —bT) is the unique deterministic constant in (0,1) such that, for allt >0, pz~(t)+
(1—p)azt(t) € Os.
(v) If b= = b+ = 0, the process X converges in L2 _(Pyo) to pr~— + (1 — p)x™, where p is the
random process in (0,1) defined by

1

t
vVt >0,  p(t):= ;/70]1{W1<s>§w2<s>}d5-

Note that, in both cases, the small noise limit of X€ takes its values in Os.
In other words, in case (iv), the cluster has a deterministic and constant velocity v given by

ba(21)b1(12) — ba(12)b1(21)

v=phi(12) + (1= p)bi(21) = T o T o) + b (21

In case (v), both particles have the same instantaneous drift in each of the two configurations,
and the instantaneous drift of the cluster is a random linear interpolation of these drifts, with a
coefficient p(t) distributed according to the Arcsine law.

A common feature of Propositions 8.2.1 and 8.2.2 is that, in all cases, the small noise limit of
X€(t) is a linear interpolation of x~ (¢) and x™ () with coefficients p(t),1— p(t) € [0, 1]. Depending
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on the case at stake, p(t) exhibits a wide range of various behaviours: in case (i), it is random in
{0,1} and constant in time, in cases (ii) and (iii) it is deterministic in {0, 1} and constant in time,
in case (iv) it is deterministic in (0,1) and constant in time, and in case (v) it is random in (0, 1)
and nonconstant in time.

In view of (8.2), p(t) appears as the natural small noise limit of the quantity (¢(t)/t, where (¢
denotes the occupation time of X€ in the configuration (12):

t t
vEZ 0, C5(t) 11/ Lixgo)<xs(syds :/ Lize(s)<0pds,
s=0

where we recall that Z¢ = X — X§ solves (8.3). Indeed, Propositions 8.2.1 and 8.2.2 easily stem
from the following description of the small noise limit of the continuous process (€.

Lemma 8.2.3. Assume that 2° € O,.

(i) If b= < 0, bT > 0, then (¢ converges in distribution to the process pt, where p is a Bernoulli
variable with parameter —b~ /(bT — b7).

(i) If b= >0, b+t > 0, then (¢ converges in Li (Po) to 0.

loc
(i) If b= <0, bT <0, then ¢¢ converges in L (P.0) to t.
(i) If b= > 0, b+ < 0 and b= — b > 0, then (¢ converges in L (P.o) to pt, where p =
/(b — ).

(v) If b= = bt =0, then for all t > 0,

t
(1) = /foﬂ{wms)sm(s)}d&

Proof. The proofs of cases (i), (ii) and (iii) are given in Appendix 8.A. The proof of case (iv) is
an elementary computation and is given in Subsection 8.2.2 below. In case (v), there is nothing to
prove. O

Remark 8.2.4. In cases (ii), (iii), and (iv) above, the convergence is stated either in L{ (P,0)
or in L (P,0) as these modes of convergence appear most naturally in the proof. However, all
our arguments can easily be extended to show that all the convergences hold in LY (P,0), for all
p € [1,400). As a consequence, all the convergences in Proposition 8.2.1 and 8.2.2, except in
case (i), actually hold in L{ (P,0), for all p € [1, +00).

On the contrary, the convergence in the diverging/diverging case (i) cannot hold in probability.
Indeed, let us assume by contradiction that there exists 7" > 0 such that the convergence in
case (i) of Lemma 8.2.3 holds in probability in C([0,T],R). Then, for all ¢ € [0,T7], ¢(¢) converges
in probability to pt. Let us fix ¢ € (0,7T]. By Proposition 8.1.1, for all € > 0, the random variable
¢(t) is measurable with respect to the o-field F; generated by (W(s))scpo,- Thus, we deduce
that the random variable p is measurable with respect to F;. As a consequence, p is measurable
with respect to Fg+ := N>oFt, which is contradictory with the Blumenthal zero-one law for the
Brownian motion W.

We finally mention that in cases (i), (ii), (iii) and (iv), the small noise limit of the process ¢*

is a Markov process, which is not the case for the process (¢ itself.

Let us now address the case 29 ¢ Oy of particles with distinct initial positions. Let o = Xa°.
If by(1y(0) < by(2)(0), a pair of particles travelling at constant velocity vector b(c) with initial
positions z° never collides, and the natural small noise limit of X¢ is given by z(t) = 2° + b(o)t,
for all t > 0.

If by(1)(0) > by(2)(0), a pair of particles travelling at constant velocity vector b(c) with initial
positions z¥ collides at time t*(2°) := — (20 — 23)/(b1(0) — b2(0)) € (0,+00). The natural small
noise limit of X¢ is now described by z(t) = 2% + b(o)t for t < t*(2°), and for t > t*(2°), z(t) is
the small noise limit of X'¢(t —t*(2")), where X'¢ is a copy of X ¢ started at 2° + b(o)t*(2°) € Os.
In that case, at least the configuration o is converging, therefore there is neither random selection
of a trajectory as in case (i), nor random and nonconstant velocity of the cluster as in case (v).

These statements are straightforward consequences of the description of the small noise limit
of the process Z¢ with 20 # 0 carried out in Corollary 8.2.6 below.
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8.2.2 The reduced process

By Veretennikov [133], strong existence and pathwise uniqueness hold for (8.3); therefore, for
all e > 0, Z¢ is adaptated to the filtration generated by the Brownian motion B. As a consequence,
the probability of a measurable event A with respect to the o-field generated by (B(s))se[o,s for
some t > 0 shall be abusively denoted by P,o(A) instead of Po(A).

To describe the small noise limit of Z¢, we define 27 (t) = b=t and z*(¢) = b™t. Let us begin

with the case 20 = 0, which corresponds to z° € O,.
Proposition 8.2.5. Assume that 2° = 0. Then,

(i) if b= < 0 and bT > 0, then Z¢ converges in distribution to pz~ + (1 — p)z™, where p is a

Bernoulli variable of parameter —b~ /(bT —b7);

(ii) if b= >0 and b > 0, then Z¢ converges to z in Ll (Po);

(iii) if b= < 0 and bT <0, then Z¢ converges to z~ in Li, (Po);

(iv) if b= >0 and bT <0, then Z¢ converges to 0 in L2 (Po); more precisely,

loc

VT >0, Eo ( sup |Z6(t)|2> < (8V2 + 4)eT.

te[0,T)

Proof. Since Z¢(t) = b= (¢(t) + bt (¢t — C¢(t)) + 24/€B(t), cases (i), (ii) and (iii) are straightforward
consequences of the corresponding statements in Lemma 8.2.3, the proofs of which are given in
Appendix 8.A.

We now give a direct proof of case (iv). By the It6 formula, for all ¢ > 0,

|Z€(t))]> = 2 /:O Z¢(s)0(Z%(s))ds + 4\/2/:O Z¢(s)dB(s) + 4det.

If b© < 0 and b~ > 0, then for all 2 € R one has z£(z) < 0, therefore

|Z¢(t)|]? < 4\/2/:O Z¢(s)dB(s) + 4det.

For all t > 0, let us define
t
ME(t) :/ Z(s)dB(s);
s=0
and for all L > 0, let 77 := inf{t > 0 : |[Z°(t)| > L}. The process (M*(t A 71))¢>0 is a martin-
gale, therefore, for all t > 0, Eo(|Z¢(t A 71)|?) < 4€Eo(t A 71) < 4et, and by the Fatou lemma,
Eo(|Z¢(t)|?) < 4et. As a consequence, (M€(t)):>o is a martingale. For all T > 0,

Eo ( sup |Z€(t)|2> < 4\/eEq < sup Me(t)> + 4€T

(0,77 t€[0,7]

< 4v/e, | Eo ( sup Mﬁ(t)2> + 4eT

te[0,T)

< 8Ve/Eo (Me(T)2) + 4eT
= 8v/e, | Eo (/T Zﬁ(s)2d5> + 4eT

T
< 8/ / 4desds + 4€T = (8v/2 + 4)eT,
0

where we have used the Cauchy-Schwarz inequality at the second line, the Doob inequality at the
third line and the Itd isometry at the fourth line. This completes the proof of case (iv). O
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In case (iv) of Lemma 8.2.3, the computation of the small noise limit of ¢ is straightforward.

Proof of case (iv) in Lemma 8.2.3. Let T > 0. By case (iv) in Proposition 8.2.5, if z° € Oy and
b= >0, bt <0, then limeob=¢* +b"(t — ¢¢) = 0 in L (P,o). If b= — b* > 0 in addition, then

loc

this relation yields lim.jo (¢ = pt in L _(P,o), with p = —bT /(b= — b™). O

loc

We now describe the small noise limit of Z¢ in the case 2° # 0. Due to the same reasons as

in Remark 8.2.4, all the convergences below are stated in L{ (Pg) but can easily be extended to

loc
LY .(Py) for all p € [1,400). The proof of Corollary 8.2.6 is postponed to Appendix 8.A.

Corollary 8.2.6. Assume that z° > 0. Let us define t* = +oo if b+ > 0, and t* := 29/(=b") if
bt < 0. Then Z¢ converges in Li (P,o) to the process z* defined by:

loc

20+ bt ift <t*
vt >0, 2H(t) =4 0 ift>t* and b= >0,
b= (t—t*) ift>t" andb” <O.

A symmetric statement holds if 2° < 0.
Remark 8.2.7. For a given continuous and bounded function ug on R, the function «¢ defined by
V(t,z) € [0,400) x R, ut(t, z) := B, (ug(Z5(1)))

is continuous on [0, +00) x R owing to the Girsanov theorem and the boundedness of ¢. Follow-
ing [64, Chapter II], it is a viscosity solution to the parabolic Cauchy problem

Ot — £(2)0,u = 2€0,,uS,
u(0,-) = uo(").

Attanasio and Flandoli [8] addressed the limit of u¢ when e vanishes, for a particular function ¢
such that the corresponding hyperbolic Cauchy problem

Oput — £(2)0.u =0,
’U,C(O, ) = uO(')v

admits several solutions. In the diverging/diverging case b™ > 0, b~ < 0, we recover their result
of [8, Theorem 2.4] as u® converges pointwise to the function u defined by

up(z + b1t) if 2 >0,
u(t, z) = uo(;+ b7t) N if 2 <0,
ﬁw(b*t) + oot if 2 =0.

Note that, in general, u is discontinuous on the half line z = 0.

In the converging/converging case b* < 0, b~ > 0, u® converges pointwise to the function u
defined by

up(z + b1t) if z > —b't,
u(t,z) = ¢ up(z +b71t) if z < =07,
uo(0) if b7t <z<-btt

Note that w is continuous on [0, +00) x R, and constant on the cone —b~t < z < —bT¢.
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z
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Figure 8.1 — The characteristics of the conservation law in the diverging/diverging case. On the half
line z = 0, the value of u is a linear interpolation of the values given by the upward characteristic
and the downward characteristic.

Figure 8.2 — The characteristics in the converging/converging case. In the gray area, the value of
u 1s constant.

8.3 The rank-based case

In this section, we assume that there exists a vector b = (b1, ...,b,) € R™ such that, for all o €
Sy, foralli € {1,...,n}, by;)(0) = b;. In other words, the instantaneous drift of the i-th particle
at time ¢ only depends on the rank of X{(¢) among X5(¢),..., X5 (t). We recall in Subsection 8.3.1
that, in this case, the increasing reordering of the particle system is a Brownian motion with
constant drift, normally reflected at the boundary of the polyhedron D,, := {(y1,...,yn) € R™:
1 < -+ < yp}. Its small noise limit is obtained through a simple convexity argument, and

identified as the sticky particle dynamics in Subsection 8.3.2. The description of the small noise
limit of the original particle system is then derived in Subsection 8.3.3.

8.3.1 The reordered particle system

For all t > 0, let
(Y@, ..., Y, () € Dn

refer to the increasing reordering of
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ie. YE(t) = X5 (t) with 0 = £X¢(t). The increasing reordering of the initial positions 2° is

denoted by y°. The process Y¢ = (Y£(t),..., Y, (t))i>o shall be referred to as the reordered particle
system. It is continuous and takes its values in the polyhedron D,,. The following lemma is an
easy adaptation of [84, Lemma 2.1, p. 91].

Lemma 8.3.1. For all ¢ > 0, there exists a standard Brownian motion
ﬂe = (ﬂi (t)v s aﬂft(t))tzo
in R™, defined on (2, F,Pyo), such that

VE>0,  Y(t) =y + bt + V2eB5(t) + K(t), (8.4)
where the continuous process K¢ = (K$(t),...,K5(t))t>0 in R™ is associated with Y in D,, in
the sense of Tanaka [132, p. 165]. In other words, Y€ is a Brownian motion with constant drift

vector b and constant diffusion matrixz 2el,,, normally reflected at the boundary of the polyhedron
D,,; where I, refers to the identity matriz.

By Tanaka [132, Theorem 2.1, p. 170], there exists a unique solution
E=(&u(t),.. ., &a(t))i>0
to the zero noise version of the reflected equation (8.4) given by
VE>0,  £(t) =y + bt +k(t), (8.5)

where k is associated with & in D,,. An explicit description of £ as the sticky particle dynamics
started at y with initial velocity vector b is provided in Subsection 8.3.2 below.

Proposition 8.3.2. For all T > 0,

E,o < sup Z|YE ®)] ) (4V2n + 2n)eT

tel0, 7] ;=

Proof. By the It6 formula,

vt >0, Z Y5 (t) — gz(t)|2 — QZ/ZO(YZ-E(S) —&i(s))dK{(s)
+ 2; /S_O(éi(s) — Y£(s))dri(s)

+ 2V2e M€ (t) + 2net,

where

VE>0,  MS(t) = Z (Y (s) — &i(s))dBs(s).

s=0

Let |K€|(t) refer to the total variation of K€ on [0,¢]. Then, by the definition of K€ (see [132,
p. 165]), d|K€|(t)-almost everywhere, Y¢(t) € D,, and the unit vector k°(t) = (k§(t),...,kS(t))
defined by dK{(t) = k§(¢)d|K€|(t) belongs to the cone of inward normal vectors to D,, at Y(t).
Since £(t) € D,, and the set D,, is convex, this yields

> [0 ~aearics / Z (Vi“(s) = &(s)ks ()1 K| (s) <0,
and by the same arguments,
> [ 66 - i@anie) <o

sothat Y7 | [YViE(t) =& (t)|> < 2v/2eM<(t)+2net. The result now follows from the same localization
procedure as in the proof of Proposition 8.2.5, case (iv). O
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8.3.2 The sticky particle dynamics

Following Brenier and Grenier [29], the sticky particle dynamics started at y° € D,, with initial
velocity vector b € R” is defined as the continuous process

§= (El(t)a s 7£n(t))t20

in D,, satisfying the following conditions.
e For all i € {1,...,n}, the i-th particle has initial position & (0) = v, initial velocity b; and
unit mass.
e A particle travels with constant velocity until it collides with another particle. Then both
particles stick together and form a cluster traveling at constant velocity given by the average
velocity of the two colliding particles.

e More generally, when two clusters collide, they form a single cluster, the velocity of which is
determined by the conservation of global momentum.

Certainly, particles with the same initial position can collide instantaneously and form one or
several clusters, each cluster being composed by particles with consecutives indices. The determi-
nation of these instantaneous clusters is made explicit in [36, Remarque 1, p. 235].

Since the particles stick together after each collision, there is only a finite number M > 0 of
collisions. Let us denote by 0 = t° < t! < ... < tM < tM+1 — 4o the instants of collisions. For
all m € {0,..., M}, we define the equivalence relation ~,, by ¢ ~,, j if the i-th particle and the
j-th particle travel in the same cluster on [t™,#™*1). Note that if i ~,, j, then i ~, j for all
m’ > m. For all m € {0, ..., M}, we denote by v} the velocity of the i-th particle after the m-th
collision. As a consequence, for all t € [t™, t™F1),

Vie {1,...,n}, &) =&@E™) oMt —t™),

and )
1 =
=N
odp—ip 41 Z !
J=n
where {i1,...,i2} is the set of the consecutive indices j such that j ~,, i. The clusters are
characterized by the following stability condition due to Brenier and Grenier [29, Lemma 2.2,
p. 2322].

Lemma 8.3.3. For all t € [t™,t™TY), for all i € {1,...,n}, let i1,...,ia refer to the set of
consecutive indices j such that j ~., i. Then, either i1 = ig or

1 d 1 Zﬁ
-/ . .
vi' € {i1, ... iz — 1}, mzbjzig—i’_ _ bi-
Jj=u1 Jj=i'+1

The fact that & describes the small noise limit of the reordered particle system Y introduced
in Subsection 8.3.1 is a consequence of Proposition 8.3.2 combined with the following lemma.

Lemma 8.3.4. The process £ satisfies the reflected equation (8.5) in D,,.

Proof. The proof is constructive, namely we build a process k associated with & in D,, such that,
for allt > 0, £(t) = y°+bt+k(t). Following |34, Remark 2.3, p. 91|, # : [0, +00) — R" is associated
with £ in D, if and only if:
(i) & is continuous, with bounded variation |x| = |k1| 4+ - -+ + |kn| and &(0) = 0;
(ii) there exist functions y1,...,¥n+1 : [0,+00) — R such that, for all i € {1,...,n}, dr;(t) =
(7i(t) = vi+1(¢))d|&|(¢); and, d|k|(t)-almost everywhere,

Y1(t) = Yn41(t) =0,
Vie{2,...,n}, () >0, ~5(t)(&(t) —&-1(t)) =0.
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Let £(0) = 0 and let us define x;(t) = r;(t™) + (t — t™) (™ — b;) for all t € [t™ tmT1).
Then one easily checks that (8.5) holds. Besides, x is absolutely continuous with respect to the
Lebesgue measure on [0,+00), and its total variation |x| admits the Radon-Nikodym derivative
Uy i= >0 0™ = b;] on [t™,t™T1). As a consequence, £ satisfies (i).

It remains to prove that x satisfies (ii). For all m € {0,..., M}, for all t € [t™,¢+™*1), we define
Y1(t) = Yn+1(t) = 0 and:

o if /,, =0, for all i € {2,...,n}, v;(t) = 0;

o if 0, >0, forallie {2,...,n},

i—1

1
7i(t) =5 > (b — o),
m . .
J=n
where i1,...,12 is the set of the consecutive indices j such that j ~,, i, and we take the

convention that a sum over an empty set of indices is null.
Note that, in the latter case, 7v;, (t) = Yi,+1(t) = 0. This immediately yields dk;(t) = (vi(t) —
vi+1(t))d|k|(t) as well as v;(¢)(&(t) — &—1(t)) = 0. It remains to prove that ~;(t) > 0. If v;(¢t) =0
this is trivial. Else, by the construction above, the i-th particle belongs to the cluster composed
by the i1-th, ..., 7s-th particles, and i; < i < i5. By Lemma 8.3.3 applied with ¢/ =7 — 1,

1 2
i —ip Zb32i2f¢+1j§,bﬂ”

J=i1

As a consequence,

i—1 i—1

1 1
i(t) = — b, —v") = — b; — b;
7() gmz(] Ul) gm Z J 127114»12
j=i1 j=i1 j=i1
1 [i—it ib i— i ib -
Sl =il i 1 T
and the proof is completed. ([l

In the proof of Corollary 8.3.6, we shall use the following properties of the sticky particle
dynamics.

Lemma 8.3.5. The sticky particle dynamics has the following properties.

e Flow: Let y° € D, and let us denote by (£(t))i>0 the sticky particle process started at y°,
with initial velocity vector b. For a given 6 > 0, let us denote by (§'(s))s>0 the sticky particle
process started at £(0), with initial velocity vector b. Then, for all s >0, £(6 + s5) = £'(s).

e Contractivity: Let y°,y’° € D,, and let us denote by (£(t))i>0 and (€'(t))i>0 the sticky particle
processes respectively started at y° and y'°, with the same initial velocity vector b. Then, for

allt >0,
D olat) —¢ Z v — )|
=1 i=1

Proof. The flow property is a straighforward consequence of the definition of the sticky particle
dynamics. Let us address the contractivity property. In this purpose, we write

vt >0, ) =10 +bt+r(t), &)=y +bt+r (),
so that, for all t > 0,

Z &(t) — &) = Z vy — i’

+ Z; /s:O sgn(&i(s) — &i(s))dri(s) + Z /5:0 sgn(€l(s) — &(s))dwl(s),

i=1
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where sgn(-) is defined by

1 if x >0,
sgn(z) =< 0 if c =0,
-1 ifx<0.

We prove that

and the same arguments also yield

> [ swlelts) - GeNani(s) <o,

which completes the proof.
With the notations of Lemma 8.3.4,

Z/_O sgn(&i(s) — &(s))dri(s) = /_0 (Z sgn(&;(s) — &(s))(vi(s) — %Jrl(s))) d|k|(s)

— /:O <Z (sgn(&i(s) — &(s)) —sgn(&i—1(s) — &_1(s))) %(3)> d|kl(s),

=2

where we have used Abel’s transform as well as the fact that, d|«|(s)-almost everywhere, v;(s) =
Tnt+1(s) = 0. Now, d|s|(s)-almost everywhere, either v;(s) = 0 or ~;(s) > 0, in which case
§i(s) = &i—1(s) and therefore sgn(&;(s) — &i(s)) — sgn(§i-1(s) — &1 (s)) < 0 since &, (s) < §i(s).

As a conclusion,

/_0 <Z (sen(&i(s) — &(s)) —sgn(&i—1(s) — &_1(s))) %-(5)) dlr|(s) < 0,

1=2

and the proof is completed. O

8.3.3 Small noise limit of the original particle system

Proposition 8.3.2 describes the small noise limit of the reordered particle system Y°. We now
describe the small noise limit of the original particle system X¢. For all o € S,,, we denote by £,-1
the process (§,-1(1)(1), . .. ,5071(@(15)),520.

Recall that, for all z € R", Yz refers to the set of permutations o € S, such that z,) <
< Zg(n)- When at least two particles have the same initial position, i.e. 20 € O, £2° contains
more than one element. However, if each group of particles sharing the same initial position forms
a single cluster in the sticky particle dynamics, then, for all o,0’ € £z, the processes £,-1 and
&1 are equal.

Corollary 8.3.6. The small noise limit of the original particle system is described as follows.

1. If 220 contains a single element, or if, for all 0,0’ € ixo,ithe processes E,-1 and -1 are
equal, then X¢ converges in L2 (P,o) to &,—1 for any o € LaP.

loc

2. In general, X¢ converges in distribution to the process £,-1, where o is a uniform random
variable among Xa°.

Once again, by the same arguments as in Remark 8.2.4, in the first case above, the convergence
can be stated in Lf (P,0), for all p € [1,400), while if there exist at least 0,0’ € £z° such that
&,-1 # £,-1, then in the second case above, the convergence cannot hold in probability.
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Proof of Corollary 8.3.6. For all T > 0 and « > 0, let By (&, a) refer to the set of continuous paths
y € C([0,T], Dy) such that sup;c 7 maxi<i<n |yi(t) — &i(t)| < a. Owing to Proposition 8.3.2, for
all & > 0, lim, o ]P)mo(YE S BT(f,Oz)) =1.

Let us address the first part of the corollary. Let ¢ be a fixed permutation in £z°. Note that,
foralli € {1,...,n}, X7, (0) =Y$(0) = y?. Besides, for all ¢t > 0, the definition of X¢(¢) yields

Vie {15 ERE) n}a |X;(z) (t) - yzol < 1211?2{ |bk|t + \/2_6|W0(z) (t)|a

while the definition of £(¢) yields

j (1) — Y] < .
Vi e {17 7”}5 |§z(t) yz| = 121]?%(71 |bk|t

As a consequence, for all i € {1,...,n},

1<k<n

2 2
Xio ()~ &P <2 ((mkx e+ VR0 -+ (s okt )

<6 121?%("(1%02 + 8€(Wa(i) (t))Q.

Therefore, for a fixed T' > 0,

sup Z|XU(1 Z (6 max. (b T)? + 8¢ sup (Wg(i)(t))2>,

tel0,7) 521 t€[0,7]
so that
Eqo ( sup ZlXau '(f)|2]1{Ye¢BT<e,a>}>
€[0,7] i=1
< 6n max (bT)*P,o (Y€ & Br(€,a)) + 8neEpo | sup [Wi(t)]? |,
1<k<n te[0,T)
therefore
Va > 0, hmEzo ( sup Z |XO'(Z fi(t”?]l{YﬁgBT(f,a)}) = 0. (86)
t€[0,T) 5

We now fix > 0 such that, for all m € {0,..., M —1}, t™ < t™*+! —y, and for all m € {0,..., M},
we denote by I the interval [0V (™ — ), (#™+" —n) AT]. Then, one can choose a > 0 small
enough such that, for all m € {0,..., M}, for all 4,5 € {1,...,n} such that ¢ < j and i 7, j,

sup &(t) +a < tler}gn &(t) — a, (8.7)

tEIZI"

see Figure 8.3. In particular, if y = (y1,...,y5) € Br({,a) and t € I;" is such that y;(t) = y;(?),
then ¢ ~,, j. Here, it is crucial that either all the particles have pairwise distinct initial positions,
or that each group of particles sharing the same initial position forms a single cluster in the sticky
particle dynamics. Otherwise, for all a > 0, (8.7) would fail for m = 0.

Such a choice for a ensures the following assertion:

(¥) If @ > 0 satisfies (8.7), then on the event {Y¢ € Br(&,«)}, for all m € {0,..., M}, for all
te " foralli,j € {l,...,n} such that X¢, (t) = YS(t), then i ~p, j.
Before proving (x), let us show how this assertion allows to conclude: for all ¢ € [0, T, there exists
m € {0,..., M} such that ¢t € I". Let us fix i € {1,...,n} and j such that X7 (t) = Y (¢).
Then, by (%), j ~m 4. On the event {Y € Br(&,a)},
o if t € [t™, (t™ 1 —n) AT], then &;(t) = &(t), so that (X — &0 =1Y7(t) = &) < o
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In

th 2

Figure 8.3 — A trajectory of the sticky particle dynamics £ for n = 4 particles, with M = 2 collisions.
The initial positions of the particles are pairwise distinct. For n > 0 such that 0 < t! —n < t! <
t2 — 1, a > 0 is chosen small enough for the set Br (€, ) to satisfy the condition (8.7). A path y
in Br(&, «) is necessarily contained in the gray area.

e if m>1andt e [t™ —n,t™AT], then |§(t) — &(t)| = |§J(tm (™ —t) = &™) +
ot (1™ = )| < 2maxi<g<n |brln, so that | XZ ;) (1) — &()] < [V} (1) = &) +1€5(1) — &) <
a+2 maxi<i<n |bk|7].

As a conclusion,

2
sup XU i — &)Ly an <n (a + 2 max |bg 77> .
el T];| (i) O Liyeenr(c.a)} 1§k§n| |

Taking the expectation of both sides above, recalling (8.6), letting € | 0, « | 0 and finally n | 0,

we conclude that
151¢I{)1EZU ( sup Z|XU(1 & ()] ) =0.

t€[0,T]

Before addressing the second part of the corollary, let us prove the assertion (x). Let us
assume that a > 0 satisfies (8.7) and that Y € Br(§,a). Let m € {0,...,M}, ¢t € I;" and
i,j € {1,...,n} such that X7 (t) = Y7(¢). If i = j, then there is nothing to prove. Let us
assume that ¢ < j, the arguments for the case ¢ > j being symmetric. By the continuity of
the trajectories of X{,..., X} and the fact that X7, (0) = Y£(0), there exists a nondecreasing
sequence of times 0 <t; ;11 <--- <t;_1; <tsuchthat, forall ke {i,...,j—1}, XU(Z.) (tr k1) =
Yi(trkr1) = Yy (thry1). Certainly, there is an associated nondecreasing sequence of integers
0 <myiq1 <---<mj_1; < msuch that, for all k € {i,...,j — 1}, tkxt+1 € LT’“”““. By (8.7),
for all k € {i,...,j — 1}, k ~m, ., k+ 1, and since my 41 < m, then k ~,, k + 1. Due to the
transitivity of the relation ~,,, we conclude that ¢ ~,, 1 + 1 ~, -+ -~ 7.

Let us now address the second part of the corollary. Let us fix T > 0, § > 0 such that § < t' AT
and 1 > 0 such that § < t' —n, and form € {1,..., M —1},t™ < ™+ —y. We slightly modify (8.7)
as, for all m € {0,..., M}, we denote by I the interval [§ V (t™ — n), (™ —n) AT] and we
choose a > 0 small enough such that, for all m € {0,..., M}, for all i,5 € {1,...,n} such that
i< jand iy, j,

sup &(1) +o < inf &(1) — o, (8.8)
n,8

tEI;’?&
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see Figure 8.4. In particular, if y = (y1,...,y,) € Br(§, @) and t € I} is such that y;(t) = y;(t),
then i ~y, j; while, if ¢ € [0, d] is such that y;(¢) = y;(t), then &(0) = £;(0) although the relation
i ~g j does not necessarily hold.

Figure 8.4 — If some particles share the same initial position but instantaneously split into several
clusters, § is fixed in (0,¢! AT) and 7, « are taken small enough for (8.8) to hold.

Now let F : C([0,7],R") — R be a bounded and Lipschitz continuous function, with unit
Lipschitz norm. We shall prove that

lim o (F(X€)) = ! > F(&),

. 0
w0 |E£L‘ | cesx0
which leads to the second part of the lemma on account of the Portmanteau theorem [18, Theo-
rem 2.1, p. 16].
First, by the boundedness of F, lim¢ o E o (F(XE)]I{Y%BT(&&)}) = 0. Second,
Eoo (F(X)Liyeenrcan) = Y B (F(X)Liyeen(ea) sxo)=o))
ocES,
= Y Ew (F(X)(yeenr(em nxc()=0})
ocex0
as, on the event {Y° € Br(&,«)}, the continuity of the trajectories of X§,..., X¢ as well as the

choice of § and « imply that XX¢(§) € £z°. As a consequence,
. 1
]Emo (F(X )II'{YSEBT(S,Q)}) - |i$0| Z F(go'fl)

ocex0
<X

c€Xx0

)

. 1
Ego <F(X M {yeeBr(e.a).5X(6)=0} — 0] F(&- 1)>

and, for all o € a0,

Ego <F(Xe)]l{weBT(g,a),ZXe(a)—a} |Z:c0| F(§s— >}

< Ez“ (|F(X€) (50 1)| ]l{YGEBT(f a),XX¢(8)=c} ) (89)
1
+ [|F)|oo |Pro (Y€ € Br(§,a),2X(8) =0) — @ .
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Let us prove that the first term in the right-hand side of (8.9) vanishes. The Lipschitz continuity

of F yields
Emo (|F(XE) - F(§U*1>| IL{YEEBT(f a), er(é):‘f})
< Ego ( sup Z [ X5 () = &Ly eenrc,a), EXe(a)—a}>
tef0,1] =

By (8.8), forallt € [0,4], for all 4, j € {1,...,n} such that X7, (t) = Yf(t), then [ X7, (£)—&(t)] <
[Yi(t) = &)+ 1€ (1) = &(t)] < a+ 2max1§k§n |b;]6 if Y€ € Br(€,«). As a consequence,

: e (§)= <
Eqo (tg%pé]; X5y (t) = &P LiyeeBr(c.a).mxe (0 >—a}> < na+2 max [bi]6)”,
which vanishes when « | 0 and ¢ | 0.
Besides,
Eyo ( sup ZIXU @) i) {yeeBr (), ox¢ <6>—o—}>
tels,T] ;=1
=Eqo <H{ZX€(5)—U}EEU ( {S(;)uj}i) ] Z |XU(1 (0+s)— &0+ SHH{YSEBT(&“)} .75))
=1

")
7))

where, on the event {£X¢(0) = o} € Fs, (£/(s))s>0 refers to the sticky particle process started
at (Xg(l)(é) Xg(n)(é)) € D,,, with initial velocity vector b. On the one hand, on the event

{ZX¢() =0}, Lemma 8.3.5 yields
f)

< Eqo (ZIXU(Z( — &) yeeBr(c.a) fé)
i=1
]-})

since the choice of § ensures that, on the event {Y* € Br (¢, o), XX (0) = o}, X7 ;) (6) = Y;*(6) for

n}. On the other hand, let X'¢(s) := X(d 4 s) for all s > 0, and let Y’ be defined
sup Z | X5 (0 +8) = & () L{yeenrc.a) B)
€l0,7-4] ;4

sup XUZ E(s)|Lyyre s
iy 5]2' (i) ()| {Y’¢€Br_s(&,a)}

0,7-8 =5

+ Ego (II-{ZXC((S)—U}EmO ( sup Z € (s) = & (0 + 8)[LiyeeBrc,a)

< Ego (ﬂ{EXG(S)_U}ExU ( sup Z | X5 (0 +8) = &)L yeeBr(c.0)})
sE

€0,7-48) ;=1

zU ( sup Z |§ fz 5 + S)|11{Y€€BT(5 a)}

s€0,T— 511

<E, (Z YE(6) - 60 Lpyeerea

=1

< na,

alli e {1,...,
accordingly. Then

Lisxe(s)=c}Ezo (
f5> |

By Proposition 8.1.1, Pyo-almost surely on the event {¥X(6) = o}, o is the only element of
Y X¢(§) = X'%(0). Therefore, combining the Markov property with the first part of the proof,we

< Iisxre(0)=c}Ez0 (
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g

As a conclusion, the right-hand side of (8.9) vanishes when € L 0, & { 0 and n | 0.
We now address the second term in the right-hand side of (8.9). For all ¢ € ¥x°, the process

obtain that

Lz xre ()=} Ban < o D X0 () = €S LpyrecBr_s(ea))
SE =0 i=1

2
§n<o¢+2 max |bk|7]> .
1<k<n

X, .., X¢ solves the stochastic differential equation
( o(1) o(n)
noopt
A7 Z 0, 5'(1) (t) = y? —+ Z/ H{Xfy(i)(s):Yje(s)}bjds + \/Zwa(i) (t)
j=1 s=0
Since, for all ¢ € Xa?, (Wo(1)s-++sWony) is a standard Brownian motion, the uniqueness in

law for the solutions to the equation above (due to the Girsanov theorem or as a consequence
of Proposition 8.1.1 combined with the Yamada-Watanabe theorem) implies that the processes

(X;(l), ey Xg(n)) have the same distribution, for all ¢ € ¥z%. As a consequence,
Vo€ 32%  Pu(Y€€ Br(§,a),2X(0) =0) = mpxo(w € Br(¢,a)),
T
therefore )
E%PIO(YE € BT(&,O&), EXC((S) = O') = m,

and the second term in the right-hand side of (8.9) vanishes when ¢ |, 0. Letting e ] 0, « 1 0,7, 0
and, finally, § | 0, we conclude that

lim By (F(X) = = 3 F(&, 1),

€l |Z$O| ceXal

which completes the proof. [l

8.4 The order-based case

We now address the general case of order-based processes. If the initial condition z° € R™ is
such that the particles have pairwise distinct initial positions, i.e. 2° € O,,, by the same arguments
as in the two-particle case of Section 8.2, in the small noise limit the i-th particle travels at constant
velocity b;(Xx°) until the first collision in the system. Thus, the problem is reduced to the case
of initial conditions z° € O,, for which several particles have the same position. In this case, the
isolated particles have no influence on the instantaneous behaviour of the system, as they cannot
immediately collide with other particles. Up to decreasing the number of particles, the problem
can be reduced to the case of initial conditions where there are no isolated particles. Still, the
interactions inside each group of particles with the same initial position are likely to modify the
drifts of the particles in the other groups. In this section, we avoid such situations and assume that
all the particles in the system share the same initial position. Since the function X is invariant by
translation, there is no loss of generality in taking z° = 0.

In Subsection 8.4.1, we provide an extension of the stability condition of Lemma 8.3.3 for
the rank-based case, which ensures that the particles aggregate into a single cluster in the small
noise limit. We describe the motion of this cluster under a slighlty stronger stability condition
in Subsection 8.4.2. Finally, in Subsection 8.4.3, we exhibit the example of a system with three
particles for which the particles aggregate into a single cluster in the small noise limit, although
the stability condition is not satisfied.
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8.4.1 The stability condition

In the rank-based case addressed in Section 8.3, it is observed that, in the small noise limit,
if all the particles stick into a single cluster, then the velocities satisfy the stability condition that
for any partition of the set {1,...,n} into a leftmost subset {1,...,i} and a rightmost subset
{i +1,...,n}, the average velocity of the group of leftmost particles is larger than the average
velocity of the group of rightmost particles (see Lemma 8.3.3).

The purpose of this subsection is to extend this stability condition to general order-based drift
functions b. More precisely, the function b : S,, — R™ is said to satisfy the stability condition (SC)
if

1 [
Vo €8S,, Vie{l,...,n—1}, 2Zbo.(j)(a)z o) (0),s (SC)
=1

j=it1
which has to be understood as the extension of the stability condition of Lemma 8.3.3 in Section 8.3.

8.4.1.1 The projected system

Similarly to the two-particle case addressed in Section 8.2, in which the behaviour of (X§, X5)
heavily depends on the behaviour of the scalar process Z¢ = X{ — X§, the dimensionality of the
problem can be reduced by subtracting the center of mass of the system to the positions of the
particles. This amounts to considering the orthogonal projection Z¢ = (Z5(t), ..., Z5(t))>0 of X€
on the hyperplane M,, := {(z1, ...,2,) € R" : 21 + -+ + z, = 0}. The orthogonal projection of
R™ on M, is denoted by II and writes II = I,, — (1/n).J,, where I,, is the identity matrix and J,
refers to the matrix with all coefficients equal to 1. Then, Z€ is a diffusion on the hyperplane M,
and satisfies

VE>0,  Z°(t) = / t W(2Z¢(s))ds + V2e TIW (1)

where b := TIb. Note that the stability condition (SC) rewrites

VoeS,, Vie{l,...,n—1}, > by (0) > 0. (8.10)

8.4.1.2 Aggregation into a single cluster

In the small noise limit, all the particles X¥,..., X} stick together into a single cluster if and
only if Z¢ converges to 0. This is ensured by the stability condition (SC).

Proposition 8.4.1. Under the stability condition (SC), for all T > 0,

( sup Z|Z6 ) (424 2)(n — 1)eT.

te[0,T] ;=
Proof. By the It6 formula, for all ¢ > 0,
n t n
S|z = 2/ S ZE(s)I(2(s))ds + 22 ME(t) + 2¢(n — 1)1,
i=1 5=04=1
where
J#i

t) = Z/:O Zi(s)awil(s),  Wil(t) = (1 - %) Wi(t) — %ij 0)
S

Under the stability condition (SC), let us fix z = (21,...,2,) € M,, 0 = Xz and compute

n n n—1
Zzib?(o) = Z Zo(i) by (@ Z by (0 Z Zo(j) = Zo(j+1))
=1 =1 Jj=t

(8.11)

n—1 J
= Z(Zo(j) — Zo(j+1)) Z by (0),
j=1 i=1
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where we have used the fact that >7_, U(])( o) =0 as bH( ) € M,. Forall j € {1,...,n—1}, the
definition of o = Xz yields z,(;) — 25(j+1) < 0 while ZJ by z)( o) > 0 by (8.10). As a conclusion,

Vze M,, Y zbj(S2) <0.

=1

As a consequence, for all t > 0, S°7" | | Z(¢)|? < 2v/2eM€(t) + 2¢(n — 1), and the result follows
from the same localization procedure as in the proof of Proposition 8.2.5, case (iv) and the use of
the Kunita-Watanabe inequality to estimate

Eo(M*(T)?) = Eo({ Z Eo (/ (S)Zj(S)d<W¢H,WJH>(S)>

3,7=1

s, ¢ [ zoraomon/ [ zoram

1,j=1

> B ( /. Zf<s>2d<wiﬂ><s>> Eo ( /. Z;-<s>2d<WP><s>>

4,j=1

IN

I
ey
—
|
S|
N~

(]
=
S
N
N
Il S
=}
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where we have used the Cauchy-Schwarz inequality at the third line. O

8.4.2 Velocity of the cluster

According to Proposition 8.4.1, under the stability condition (SC), the particles stick together
and form a cluster in the small noise limit. The purpose of this subsection is to determine the
motion of the cluster.

8.4.2.1 The strong stability condition

In the two-particle case of Section 8.2, the stability condition (SC) corresponds to the case
of converging/converging configurations (iv) and (v) in Proposition 8.2.2. In order to rule out
degenerate situations such as case (v), in which the velocity of the two-particle cluster is random
and nonconstant, we introduce the following strong stability condition:

1 2
Vo €Sy, Vie{l,...,n—1}, = by(o) > () (0). (SSC)
! Jj=1 j=i+1
Similarly to (8.10), the strong stability condition (SSC) rewrites
b:= inf _inf b (0)>0. (8.12)

geS, 1<i<n—1 4
j=

Lemma 8.4.2. Under the strong stability condition (SSC), for all z = (z1,...,2n) € My,

Zzib?(Ez) <-b max X |z
i=1 ==

Proof. By (8.11) and (8.12), >-1"; 20! (0) =< —b(24(n) —20(1)), Where 0 = Xz. Since z,(1) < -+ <

Zo(n) and 21 + -+ + 2, = 0, it is an easy barycentric inequality that z,(,) — 2,(1) > maxi<i<n |2l
and the proof is completed. ([l
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8.4.2.2 Changing the space-time scale

Let X! refer to the solution to
¢
w0, Xt = / B(EX(s))ds + VW ().
s=0

In the rank-based case, the strong stability condition (SSC) was identified by Pal and Pitman [115,
Remark, p. 2187] as a necessary and sufficient condition for the law of process Z! = IIX! to
converge in total variation to its unique stationary distribution. In the order-based case, the
interpretation of the small noise limit of Z¢ in terms of the long time behaviour of the process Z'
can be made explicit through the following space-time scale change.

For all € > 0, let us define X¢(t) := eX'(t/¢). Then it is straightforward to check that there

exists a standard Brownian motion W€ in R™ on (2, F,Py) such that
t ~ o~
VE>0,  X(t) :/ b(EX(s))ds + V2eW*(t).
s=0

Since the solutions to the equation above are unique in law (as a consequence of the Girsanov
theorem, or by Proposition 8.1.1 combined with the Yamada-Watanabe theorem), we deduce that
the processes X¢ and X*¢ have the same distribution. As a consequence, the process Z¢ has the
same distribution as the process Z¢ defined by Z¢(t) = eZ'(t/e).

8.4.2.3 Long time behaviour of Z!

This paragraph is dedicated to the study of the stochastic differential equation
t
vt>0, Z(t)=2"+ / V(2 Z(s))ds 4+ V20TW (t), (8.13)
s=0

where 20 € M,,. When 2° = 0, the process Z' introduced above solves (8.13).

Lemma 8.4.3. For all 2° € M,,, the stochastic differential equation (8.13) admits a unique weak
solution in M, defined on some probability space endowed with the probability distribution P,o and
the expectation E,o. It generates a Feller semigroup in M,, in the sense that, for all continuous
and bounded function f : M, — R, the function z — E.(f(Z(t))) is continuous and bounded on
M,.

Proof. Any point z = (21,...,2,) € M, is parametrized by the vector of its first n — 1 coordinates
2 = (z1,...,2n—1) € R*~! through the continuous mapping ¢ : 2’ € R" 1 (21,..., 2,1, — (21 +
<o+ zp_1)) € M,. Therefore, it is equivalent to prove weak existence and uniqueness and the

Feller property for the stochastic differential equation

t

vt >0, Z'(t) = 2" +/ O (Sp(Z'(s)))ds + V2I'W (1), (8.14)
s=0
in R"~!, where (') (o) = (b!(0),...,bll_;(0)) and II’ is the rectangular matrix obtained by

removing the n-th line from II. Little algebra yields II'(I")* = I,,_1 — (1/n)J,—1 which is positive
definite. As a consequence, weak existence and uniqueness as well as the Feller property for (8.14)
follow from the Girsanov theorem. O

Proposition 8.4.4. Under the strong stability condition (SSC), the solution to (8.13) admits a
unique stationary probability distribution p, and it is positive recurrent in the sense that, for all
measurable and bounded function f: M, — R,

1
V20 € M,, lim -
t—4oo ¢

t
/ f(Z(s))ds = / Sfdu, P,o-almost surely.
s=0 M,
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Proof. The proof closely follows the lines of Pagés [113, Théoréme 1, p. 148], and we prove existence,
uniqueness and positive recurrence separately.

Proof of existence. The existence of a stationary probability distribution relies on the fact that
the function V' defined on M,, by V(z) = Y_"" , |2|* is a Lyapunov function for (8.13). Indeed, let
L refer to the infinitesimal generator of Z. By the It6 formula,

Ve My,  LV(2)=2) zb}'(L2) +2(n—1).
=1

By Lemma 8.4.2, under the strong stability condition (SSC),

< —b ) _
LV (z) < blrél%xn |zi| + 2(n — 1),

and the conclusion follows from Ethier and Kurtz [56, Theorem 9.9, p. 243].

Proof of uniqueness. The uniqueness of a stationary probability distribution is a consequence
of the regularity of the semigroup associated with the diffusion process Z’ in R*~! introduced in
the proof of Lemma 8.4.3. More precisely, since II'(IT")* is positive definite, it follows from the
Girsanov theorem that, for all 20 € R"~! for all t > 0, the distribution of Z '(t) is equivalent to the
Lebesgue measure on R"~1. By the same arguments as in the proof of [122, Proposition 8.1, p. 29|,
this implies that the process Z’ does not admit more than one stationary probability distribution.
The conclusion follows from the fact that the pushforward by the mapping ¢ induces a one-to-one
correspondance between the stationary distributions of Z’ and the stationary distributions of Z.

Proof of positive recurrence. Since p is the unique stationary probability distribution for the

Feller process Z, it is ergodic [122, Proposition 3.5, p. 8]; therefore the pointwise ergodic theo-
rem [122, Theorem 3.4, p. 8] ensures that, for all measurable and bounded function f : M, — R,
1t
for p-almost all z° € M,,,  P,o-almost surely, lim —/ f(Z(s))ds = fdp.
t=too t Ji—p M,

The extension of this statement to all initial condition 2% € M,, relies on the regularity of the
semigroup associated with Z, and we refer to Pagés [113, Théoréme 1, (b), p. 149] for a proof. O
8.4.2.4 Velocity of the cluster

The description of the small noise limit can now be completed under the strong stability
condition (SSC).

Proposition 8.4.5. Under the strong stability condition (SSC), the quantity

U::/ Ny bi(Xz)p(dz), (8.15)

with p given by Proposition 8.4.4, does not depend on i € {1,...,n}. Besides, X converges in
L2 (PO) to (’Uﬁ, N ,’Ut)tzo.

loc

Proof. For all o € S, let (S refer to the occupation time of the process £.X°¢ in o defined by

t
vt>0, () 5:/ Lizxe(s)=0}ds.
s=0
Certainly, for all i € {1,...,n},

VE>0,  X{(t)= > bi(0)CE(t) + V2eWi(t).

oceS,

On the other hand, for a fixed ¢ > 0,

G _1 [
=1 lszee=ayds
s=0
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has the same distribution as

1/t 1 [ e [V
- 1 Ze(s)=o ds = —/ 1 S(eZl(s/e)) =0 ds = —/ 1 SZY (u)=0c du.
1) teze=ads =7 | Leezeo=ads =1 | 1maw=a

By the weak uniqueness for the solution to (8.13), Proposition 8.4.4 can be applied to Z! and
yields
t/e

lim < Iiszi(w)=cydu = / Iis.—sdu, Pp-almost surely.
el0 t Ju=o 2EM,,

Thus, for all t > 0, the random variable Rf(t) := > . bi(0)(5(t) converges in probability,
in R, to the deterministic limit v;¢ where v; is the right-hand side of (8.15). As a consequence,

the process RS converges in finite-dimensional distribution to the process v;t. On the other hand,
since

wessh RO -RE=|[ nexe

< bi(o)|(t — s),
< max ()| (¢ -~ 5)

the modulus of continuity of RS is uniformly bounded with respect to e. Therefore, by the Arzela-
Ascoli theorem, the family of the laws of R is tight and, for all T > 0, R{ converges in probability,
in C([0,T],R), to the deterministic process v;t. Finally, since

EeD.T], RO < max bi(o)IT,

then RS is bounded on [0,7] uniformly in e, therefore the convergence of RS to v;t also holds

in LIQOC(IP’O). As a consequence, X = R + V2eW; converges to vt in LIQOC(IP’O), so that X€ con-
verges to (vit,...,vnt) in L (Pg). The fact that v; does not depend on i finally follows from
Proposition 8.4.1. O

Remark 8.4.6. In the two-particle case addressed in Section 8.2, the explicit computation of the
velocity of the cluster as a function of b was made possible by the fact that the two quantities
Cliz) (t) and Cfyy ) (t) satisfy the two independent relations

<(612) (t) + 4(621)(75) =t,
liz 1 (12)C 13 (£) + b1 (21)CGoy) (1) = 1im ba(12) ) (8) + 02(21) Gl ():

As soon as n > 3, under the stability condition (SC), the n! unknown quantities ¢(t), o € Sy,
satisfy the n independent relations

> =t
o€ESy
for alli € {1,...,n}, hfol Z bi(c)¢s(t) does not depend on i,
‘ oE€Sy

which is not enough to determine the small noise limit of the quantities (5(t), o € Sp.

Under the strong stability condition (SSC), another strategy to compute the velocity v of the
cluster cousists in a straightfoward application of the formula (8.15), which requires to compute
by solving the elliptic problem L*u = 0 on M, where the infinitesimal generator L of the solution
to (8.13) is constant on each cone {z = (z1,...,2,) € M,, : ¥z = o}, 0 € S,,. This task can
be carried out in the rank-based case [115, Theorem 8, p. 2187], and can easily be extended to
perturbations of this case where, letting b = (b1,...,b,) € R™ as in Section 8.3 and ¥’ : S,, —» R,
the drift of the i-th particle in the configuration o is given by b,-1(;) + b'(c). However, we were
not able to extend this approach to the general order-based case.



216 Limite petit bruit de processus de diffusion interagissant a travers leur ordre

8.4.3 A counterexample to necessariness

Unlike in the rank-based case, the stability condition (SC) and a fortiori the strong stability
condition (SSC) are not necessary for all the particles to aggregate into a single cluster in the
small noise limit. Indeed, consider the following example with n = 3: let b(123) = (A1, A2, A3),
b(132) = (11,m3,7m2) and by(1)(0) = 1, by2y(0) = 0, by(sy(0) = —1 for all o € Sz \ {(123), (132)}.
We choose (A1, A2, A3) and (11,72, 73) in such a way that the configuration (123) does not satisfy
the stability condition (SC), which is the case if for instance A\ < (A2 + A3)/2, but the particles
still aggregate into a single cluster in the small noise limit.

We only give the main idea of the counterexample, the details of the proof are of the same
nature as in Appendix 8.A. When X € is not in the configurations {(123), (132)}, the instantaneous
drifts of the particles tend to keep them close to each other. During an excursion of X°€ in the
configurations {(123), (132)}, i.e. an excursion of the first particle on the left of the two other
particles, the average velocity of the first particle writes v! = pA1 + (1 — p)n1, where p is the
relative amount of time spent in the configuration (123) during the excursion.

If the configurations (123) and (132) are such that Ay > A3 and 73 > 72, then in both configu-
rations (123) and (132), the subsystem composed by the second and the third particles is converg-
ing/converging in the sense of Section 8.2. As a consequence, the relative amount of time p spent in
the configuration (123) during the excursion approximately writes p = (3 —n2)/(A2 — Ag+ 13 —12).
Therefore, during the excursion, the average velocity of the subsystem composed by the second
and the third particles approximately writes

o2 N3A2 — 23
Ao — Az +m3—mg

Note that, by the definition of p,

A2 + A3

)772+773
2 P '

2

VP =pla+(L=php=ps+(1L—ps =p +(1-
The particles tend to get closer to each other if v! > v?3.

Let us fix some arbitrary values of A\a, A3, 72, 173 such that Ao > A3 and 73 > ny. This prescribes
a given value for p € (0,1). The key observation is that p does not depend on the values of A
and 7;. Of course, if A\; and 7; are chosen so that both (123) and (132) satisfy the stability
condition (SC), then A\; > (Ao + A3)/2 and n; > (2 + 13)/2, and the inequality v! > v is
straightforward. Let us now fix A\ < (A2 + A3)/2, so that the configuration (123) does not satisfy
the stability condition (SC): in this configuration, the first particle drifts away to the left of the
second and the third particles. But, since p and v2? do not depend on the value of 7, the latter
can be taken large enough for the inequality pA; + (1 —p)n1 > v?3 to hold, and therefore we recover
vt > v?. To sum up, the configuration (132) can be chosen ‘converging enough’ to balance the
‘diverging tendency’ of the configuration (123). As a consequence, the particles still aggregate into
a single cluster in the small noise limit, while the stability condition (SC) is not satisfied.

8.5 Conclusion

Let us conclude this chapter by stating a few conjectures as regards the general behaviour
of the process X€ in the small noise limit. Excluding the degenerate situations such as the case
b = b~ = 0 in Section 8.2 and recalling that, for all o € S, (¢(t) is the occupation time of X X¢
in the configuration o, we expect that the quantity

1
= lim =S (¢
Po 10 tCa( )
does not depend on ¢ for ¢t < t*, where ¢t* should be thought of as the smallest possible instant of
collision between two particles with distinct initial position in the small noise limit. Note that p =
(po)oes, 1s a probability distribution on S,,. It is either random, in which case the particle system
in the small noise limit randomly selects a trajectory among several possible ones, or deterministic,



8.A Proofs in the two-particle case 217

in which case the motion of the particle system in the small noise limit is deterministic. For a
given realization of p, the particles travel with constant velocity vector b” := s, pob(o) on
[0, t*].

Let us fix a realization of p. Then either all the particles drift away from each other without
aggregating into clusters, or several groups of particles aggregate into clusters. This is observed
on p as follows: in the first case, p = d,, where J, is the Dirac measure in the configuration o
corresponding to the order in which the particles drift away from each other. Then, b* = b(co) and
be(1)(0) < -+ < bg(n)(0). In the second case, let {i1,...,j1},...,{ix,...,jx} refer to the sets of
indices composing each of the k clusters, with k > 1, i1 < j; < -+ < i < jg. Then, the support
of p, i.e. the set of o € S, such that p, > 0, is exactly described by the set of products o' ---o*,
where (o!,...,0%) is such that, for all I € {1,...,k}, ol leaves the set {1,...,n} \ {is,..., 5}
invariant. As is noted in Remark 8.4.6, the detailed computation of the weights p, associated with
such permutations remains an open question.

As far as the law of the random probability distribution p is concerned, if there exists o € S,
such that by(1)(0) < -+ < by(n)(), then the support of the law of p is given by the set of the Dirac
distributions in each such o. The weights associated with each such ¢ can be computed by solving
an elliptic problem similar to the one introduced in the proof of Lemma 8.A.1 in Appendix 8.A,
in higher dimensions. To our knowledge, there is no explicit solution to such a multidimensional
problem.

If there is no permutation ¢ € S, such that b,1)(0) < --- < by(y)(0), then determining the
law of p in terms of b amounts to determining the sets of particles that can form clusters with
positive probability. This requires a combinatorial analysis of b that remains unclear to us.

The analysis of collisions above allows us to provide a global description of the small noise limit
of X¢: excluding again the degenerate situations such as the case b™ = b~ = 0 in Section 8.2, then
between two collisions, the particles travel with a constant velocity, either alone or into clusters,
depending on the outcome of the latest collision. At each collision, the velocity of all the particles
are modified, possibly randomly. The colliding particles can stick into clusters, and clusters of
particles not involved in the collision can be splitted.

The small noise limit of X¢ somehow behaves like the generalized flows introduced by E and
Vanden-Eijnden [51]. Indeed, it follows a deterministic trajectory, that has to be interpreted
as a solution to the zero noise ODE & = b(Xz) in an appropriate sense, then randomly selects
a new trajectory at each collision, i.e. at each new singularity for the ODE. But whereas E
and Vanden-Eijnden observed a loss of the Markov property for some particular examples of
generalized flows, which was also the case in the work by Delarue, Flandoli and Vincenzi discussed
in introduction [47], we conjecture that in the order-based case, the small noise limit remains a
(piecewise deterministic) Markov process. Indeed, the strong Markov property for the process X©
induces a loss of memory at the collision (see the proof of Corollary 8.2.6 in Appendix 8.A below),
so that the law of the small noise limit at a collision is the same as if the process restarts in the
current position.

8.A Proofs in the two-particle case

This appendix contains the remaining proofs in the two-particle case of Section 8.2; namely
the proofs of cases (i), (ii) and (iii) in Lemma 8.2.3 and the proof of Corollary 8.2.6.

When the particles have the same initial position, cases (i), (ii) and (iii) in Lemma 8.2.3
correspond to situations in which the small noise limit of X ¢ concentrates on the extremal solutions
x~ and z7T associated with diverging configurations. Similarly to [9], the computation of the
weights associated with = and x* in the diverging/diverging situation relies on the resolution
of a one-dimensional elliptic problem. This task is carried out in Subsection 8.A.1, in a slightly
more general framework, independent of the remainder of this chapter. The proofs of cases (i), (ii)
and (iii) in Lemma 8.2.3 are provided in Subsection 8.A.2.

The proof of Corollary 8.2.6, which addresses the small noise limit of Z¢ when 2° # 0, is given
in Subsection 8.A.3.
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8.A.1 Auxiliary results in the diverging/diverging case

Let a® : [0,400) = R, a~ : (—00,0] — R be bounded and continuous functions, such that
a=(0) < 0 and a*(0) > 0. We define the function a : R — R by a(z) := a™(2) if z > 0, and
a(z) := a~(2) if z < 0. By the Girsanov theorem, for all z° € R, the stochastic differential
equation

VE>0,  Z(t) =20+ /t a(Z(s))ds + 2v/eB(t), (8.16)
s=0

admits a unique weak solution defined on some probability space endowed with the probability
distribution P,o. The expectation under P,o is denoted by Fo.

Lemma 8.A.1. Let § := 1 Ainf{6 > 0: at(0) =0 or a=(—6) = 0} > 0. For all 6 € (0,6), let
75 :=1inf{t > 0:|Z(t)| = 8}. Then, for all 2° € [-§,0), 75 is finite P.o-almost surely, and

/y 6_0 exp (—% / y_o a+(x)dx) dy
/y O__éexp (216 / ’ (:U)dx) dy

The limit of the quantity above when € goes to 0 is given by the following corollary.

-1

Py(Z%(rs) =6) = | 1+

Corollary 8.A.2. Under the assumptions of Lemma 8.A.1, for any € > 0 and any function
d:(0,€) = (0,0) such that €/6(€) vanishes with e, then

a*(0)

lim Po(Z*(ma(0) = 9(0)) = x5y = a=(0)°

Proof of Lemma 8.A.1. Let 2° € R. Under P,o, for all ¢t > 0, the Ito6-Tanaka formula writes

t

1Z4(8)| = |°] + /  sn(Z(9)a(Z ())ds + 2EB(1) + L (1),

where the local time L at 0 of the semimartingale Z¢ is a nonnegative process, and the process
B defined by

vt >0,  B(t):= / sgn(Z¢(s))dB(s)

is a Brownian motion, due to Lévy’s characterization. Since § < 6, for all t < 75, a™(|Z¢(t)|) >
0 and a=(—|Z°(t)]) < 0, so that sgn(Z<(t))a(Z<(t)) > 0 and |Z(t)| > |20 + 2\/eB(t). As a
consequence, if [20] < & then 75 < inf{t > 0 : |2°| + 2\/eB(t) = 6}, which is known to be finite
P,o-almost surely [94, Remark 8.3, p. 96]. Hence, 75 is finite almost surely.

Let u be the solution to the elliptic problem on [—4, §]:

2eu” (2) + a(z)u'(z) = 0,
u(=0) =0, wu(d) =1,

given by
/ exp(—A(y)/2¢)d
Vz €[4, 4], u(z) yéz* ,
/ exp(—A(y)/2¢)dy
where A(y) := [7_ a(z)dz. Then uis C' on [—4, ], and v’ is absolutely continuous with respect to

g,
the Lebesgue measure, so that, under P,o, u(Z¢(-A7s)) is a martingale. By the martingale stopping
theorem, for all t > 0, F,o(u (Z (t A 7'5))) u(2%) and the dominated convergence theorem now
yields E,o(u(Z(7s))) = P.o(Z¢(15) = §) = u(2°). The conclusion follows from taking :° =0. O
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Proof of Corollary 8.A.2. The proof is based on the Laplace method. More precisely, we prove

that 59
€ 1 [Y 2¢
exp | —— at(z dx) dy ~ ——,
/y—O P ( 2¢ /z:O @) Y a*(0)

and the same arguments lead to

0 1 /0 2¢
exp _(fﬁ)dx) dy ~ ——=,
/y——(5(6) (26 el0 a (0)

which yields the expected result. Let us fix n € (0,1). Then by the right continuity of a™ in 0,
there exists xy > 0 such that, for all z € [0,z¢], (1 — n)a™(0) < a™(z) < (1 +n)at(0). As a
consequence,

d(e)Azxo (1 +77) > d(e)Azo 1 Y
exp / exp (——/ a*(x)dx) dy
/y—O ( 2e y=0 2e Jo—o
/\IU
[

IN

Computing both the left- and the right-hand side above and using the facts that a*(0) > 0 and
d(e)/e goes to +00 when € goes to 0, we deduce that

+ d(e)Axo 1 Yy 1
lim inf & ©) / exp <—/ a+(x)dz> dy > ——,
2 y 2¢ J, +

el0 € =0 =0

+ d(e)Azo 1 Yy 1
lim sup a_(())/ exp <—/ a+(x)dz> dy < ——.
€10 2¢ Jy—o 2¢ J.—o 1—n

+ 5(e) 1
a_<> exp ( +

2e y d(e)Axo

)dx) dy
Zo
<]l{5(6)>x0} 7 / exp( / a*(fﬁ)dw) dy
Y= =0
zo

at(0) 1
< ]1{5(6)>I0}2—(€ exXp (_Z /_O a+(1‘)d$) ;

where we used the fact that d(e) < 0 <1 by definition. The right-hand side above certainly
vanishes when € goes to 0. Since 7 is arbitrary, the proof is completed. o

Furthermore,

8.A.2 Remaining proofs in Lemma 8.2.3

Since, for all t > 0,
t
¢(t) = / 1 z¢(s)<0yds,
s=0

the process (¢ is measurable with respect to the filtration generated by the Brownian motion
= (W) — W) /v/2. Therefore, the convergences of cases (i), (i) and (iii) Lemma 8.2.3 are stated
in LIOC(IP’O), where the index 0 stands for the value of 2°.
Let us begin with the proof of case (ii). Since case (iii) is symmetric, the proof is the same.

Proof of (ii). Let us assume that b+ > 0, b~ > 0 and fix T > 0. For all ¢ € [0, T,

T
Eo ( sup §5(t)> S/ Po(Z¢(s) < 0)ds.
te[0,T] s=0

Before proving that, for all s € [0,T], Po(Z¢(s) < 0) vanishes with ¢ and concluding thanks to
the dominated convergence theorem, let us make the two following remarks.
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e Certainly, for all s >0, Z¢(s) > (b™ Ab™)t + 21/€B(s). Then, as soon as b~ > 0,

Vs € [0, 7], Po(Z¢(s) <0) <Py (B(S) < _(b+2/\7\/_be_)8)

and the right-hand side vanishes with e.

e In the general case, the density of Z¢(s) was derived by Karatzas and Shreve [93] but its
integration over the half line (—oco, 0] is not an easy computation.

We provide a rather elementary proof, based on the use of hitting times of the Brownian motion
and the strong Markov property for Z¢ [129, Theorem 6.2.2, p. 146]. For all § > 0, let us define
75 :=inf{t > 0: Z¢ = §}. Then, for all s € [0,T],

Po(Z¢(s) < 0) =Po(Z°(s) < 0,75 > 5) +Po(Z°(s) < 0,75 < 8)

s (8.17)
< Py(7s >s)+/ Po(Z¢(s) < 0,75 € dt).
=0

In the sequel, we shall choose ¢ as a function of €, going to 0 with €, at a rate ensuring that
both terms in the right-hand side above vanish.

Let us address the first of these terms. For all ¢ > 0, Z¢(t) > 2,/eB(t), therefore 75 < 05 :=
inf{t > 0 : 24/eB(t) = ¢}. Following [94, Remark 8.3, p. 96|, o5 converges in probability to 0 as
soon as §/+/€ goes to 0. Under this condition, Py(75 > s) vanishes for all s > 0.

Let us now address the second term in the right-hand side of (8.17). By the strong Markov
property,

S

Po(Z¢(s) < 0,75 € dt) = / Po(Z5(s) < O|r5 = t)Bo(r5 € dt)
t=0

o+

J

0
t
/
Po(inf{r > 0:6 +b*r +2yeB(r) = 0} < +00)Py(7s € dt)
t=0

< Po(inf{r >0:6 +b"r +2\/eB(r) = 0} < +00).

IN

Po(inf{r >t : Z°(r) = 0} < +o0|1s = t)Po(75 € dt)

® ||

(
Po(inf{r >t : 0 +b"(r —t) + 2v/e(B(r) — B(t)) = 0} < +oo|rs = t)Po(75 € dt)

s
0
0

@ ||

By [94, pp. 196-197], Po(inf{r > 0 : 6 + b*r + 2\/eB(r) = 0} < +00) = exp(—b"d/2¢), and the
latter vanishes as soon as €/d goes to 0. As a conclusion, taking § = €3/* allows to prove that the
right-hand side of (8.17) vanishes with ¢, and the proof is completed. ([l

We now address case (i).

Proof of case (i). Let us assume that b* > 0, b~ < 0 and fix T > 0. Let F': C([0,7],R) — R be
bounded and Lipschitz continuous, with unit Lipschitz norm. Our purpose is to prove that
bt —b~

leiﬁ)lEo(F(Ce)) =57 5= FO) + o= F ),

where we recall that ¢ denotes the process (t)¢>0. Then the conclusion follows from the Portmanteau
theorem [18, Theorem 2.1, p. 16].

For 6 > 0, let 75 := inf{t > 0 : |Z¢(t)| = d}. Note that the definition of 75 is not the same as
in the proof of case (ii) because of the absolute value. Then

bt b~
Eo(F(¢9)) — ﬁF(O) - ﬂF(t)‘

bt
bt —b—

b

< R
< bt — b

F(t) Y

Eo (F((C)ll{zs(m):(g}) — F(O)} +

Eo (F(C){ze(rs)=—s}) —
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and we prove that the first term of the right-hand side above vanishes with €. The same arguments
work for the second term.
By the Lipschitz continuity of F’,

Eo (F(C)Lz¢(ry)=s}) —

bt —b—

b+
< |Eo ((F(¢9) = FO) 1 ze(ry)=0) | + ‘F(O) (PO(ZE(”) =9 - b—) ‘

< Ko <]1{Z€(‘r5)_5} sup Ce(t)> + ‘F(O) (Po(ZE(Ta) =4) - b )‘

te[0,T) bt —b—

Owing to the uniqueness in law of solutions to (8.16) above, Corollary 8.A.2 ensures that the
second term in the right-hand side above vanishes as soon as €/ goes to 0. The first term satisfies

T
Eo (11{26(75)—5} sup CE(f)) =Eo (1{ze<m>—6} / ]l{ze<s><o}d8>
s=0

te[0,T
T
:/ Po(Z¢(75) = 6, Z°(s) < 0)ds.
s=0

We now prove that, for all s € [0,T], Po(Z¢(75) = 0, Z¢(s) < 0) vanishes for a suitable choice of §
depending on e. By the same arguments as in the proof of (ii),

Po(Z(15) = 6, Z°(s) < 0)

Po(Z(1s) = 6, Z°(s) < 0,75 > s) + Po(Z(75) = 0,Z°(s) < 0,75 < 5)
< Po(75 > 5) + Po(inf{r > 0:6 +bTr +2y/eB(r) = 0} < +00)

Po(7s > 8) + exp(—bT6/2¢).

The second term in the right-hand side above vanishes as soon as €/d goes to 0. To control the
first term, let us use the It6-Tanaka formula and compute

20 = [ sn(Z )65+ 20 [ sn(Z(s)AB(s) + 110,

=0

where the local time L€ at 0 of the semimartingale Z¢ is a nonnegative process. Besides, for all
z € R, sgn(z)l(z) > 0 and the process B defined by

B(t) = /  s(Z(9)dB(s)

is a Brownian motion, due to Lévy’s characterization. As a consequence, |Z¢(t)| > 2/eB(t),
therefore 75 < o5 := inf{t > 0 : 24/eB(t) = §}. By the same argument as in the proof of (ii),
Po(7s5 > s) vanishes as soon as §//¢ goes to 0. We complete the proof by letting § = €3/4. O

8.A.3 Proof of Corollary 8.2.6

Certainly, the cases 2° > 0 and 2° < 0 are symmetric, therefore we only address the case
29 > 0. Recall that, in this case, the process z* is defined by:

o if bt >0, 2¥(t) = 2° + bFt for all t > 0;
o if b¥ <Oand b~ >0, 2¥+(t) =20 + bFtif t < t*:=20/(—=b") and 2¥(¢) = 0 for t > t*;
e if bt <Oand b~ <0, 2+(t) = 20 + bTtif t <t* and 2¥(t) = b~ (t — t*) for t > t*.
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Proof of Corollary 8.2.6. Let us assume that z° > 0. Let 7. := inf{t > 0: Z¢(t) =0} = inf{t > 0:
20 +btt +2,/eB(t) = 0}. Following Karatzas and Shreve [0, Exercise 5.10, p. 197], the Laplace
transform of 7. writes

b+ZO zO (b+)2
-2 +2a ),
4e 2V 4e

Va >0, E.o(exp (—a7.)) = exp (—
so that one easily deduces that:
e if b >0, then for all T > 0, lim, o P,o(7e <T') =0,
e if bT < 0, then 7. converges in probability to t* = 2°/(—bT).
We first address the case b™ > 0. Then, for all T' > 0,

E.o < sup |Z°(t) — z%t)l)

te[0,T]

=E,o ( sup |Z¢(t) —zi(t)|]l{T€<T}> +E.,o ( sup |Z¢(t) —zi(t)|]l{T€>T}> ,

te[0,T] telo,T]
and
E.o ( up |z€<t>z¢<t>|n{ng}> =Ez < sup I<bb*><f<t>+2ﬁ3(t)']l{“g}>
+e[0,T] te[0,T
<o~ = bHTP(re < T) +2v/eEso | sup [B(t)|Lir<ry |,
te[0,T] -
while

Ezo ( sup |Ze(t) _Zi(t)lll{‘re>T}> = 2\/EE20 < sup |B(t)|]1{T£>T}> .

t€[0,T] te[0,T]

As a consequence,

E.o ( sup |Z¢(t) — zi(t)|> <|b7 = bT|TP(1 < T) + 2V/eE o ( sup |B(t)|> )

t€[0,T] t€[0,7]

and the right-hand side above easily vanishes with e.
We now address the case b+ < 0. Let us first define the random process z¢ by

204 bTt if t < 7o,
Vt>0,  zXt):=4{0 ift > 7 and b~ >0,
b= (t—7) ift>7.and b” <O.

Note that, for t > 7, z}(t) writes b'(t — 7), where b’ := b~ A 0. We now prove that, for all T > 0,

limE_ o < sup |Z¢(t) — zi(t)|> =0.

el0 t€[0,7]

In this purpose, we fix T' > 0 and write, on the one hand,

E.o <te[sup |Z€(t) —zi(t)|> =E.o <te[sup |2\/EB(t)|> < 2V/eE o ( sup |B(t)|> .

0,7 AT) 0,7 AT) te[0,7]
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On the other hand,

Ezo< sup IZE(t)Zi(tN)]Ezo (ﬂ{TSST} sup IZE(t)b’(tTe)l>

te[T AT, T) te(re,T]
fTe) )

where we have used the strong Markov property for the process (Z¢(t));>0 and the fact that
Z(1¢) = 0. It now follows from Proposition 8.2.5 that the right-hand side above vanishes with e.
To complete the proof, we finally check that

<E.,o ( sup |Z(s+7.) — b/s|>

s€[0,T)

=FE,o [E,o | sup |Z°(s+7)— Vs
s€[0,T]

=Eo< sup [Z°(s) —b’8|>,

s€[0,T)

limE.o ( sup |zH(t) — zl(t)|> = 0. (8.18)
€l0 te[0,T)

It follows from a straightforward analysis of |z¢(¢) — 2¥(¢)| that there exists C' > 0, depending on
bt and ¥, such that, for all ¢t € [0,7T], |2}(t) — 2¥(t)| < C(T A |7 — t*|). Since 7. converges in
probability to t* and the function ¢t — C(T A |t — t*|) is continuous and bounded, we obtain (8.18)
and the proof is completed. O
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Chapitre 9

Une dynamique des particules
collantes multitype approchant les
systemes diagonaux hyperboliques

Ce chapitre est issu d’un travail en collaboration avec Benjamin Jourdain et Régis Monneau.

9.1 Introduction

9.1.1 Diagonal hyperbolic systems
Let d > 1. This chapter is dedicated to the study of solutions
u=(u',...,u?):[0,+00) x R — R?

to the diagonal hyperbolic system

O + X7 (u)d,u” =0,
Vy edl,...,d}, 9.1
Tedl. ) {u%o,x)uz(x), &1
where, for all v € {1,...,d}, u} is a nonconstant, monotonic, and bounded function on R. Such

initia data can then be interpreted as cumulative distribution functions of bounded positive mea-
sures on the real line, and up to rescaling, there is no loss of generality in assuming that these
measures are probability measures on the real line. We shall therefore assume that there exist
probability measures m!, ..., m?% on R such that

Vy e {l,...,d}, u) = Hxm),

where H x- refers to the convolution with the Heaviside function H. Then, it is sufficient to assume
that the functions A!,..., A\? are only defined on [0, 1]¢.

The purpose of this chapter is to construct solutions u such that, for all time ¢ > 0, for all
v € {1,...,d}, the function u”(¢,-) remains the cumulative distribution function of a probability
measure on the real line. Such solutions will be called probabilistic solutions. In the scalar case
d = 1, Brenier and Grenier [29] introduced a system of sticky particles allowing to approximate
the entropy solution to the conservative form of (9.1). Our construction of probabilistic solutions
is based on the introduction and detailed analysis of a multitype version of this particle system,
that we call the Multitype Sticky Particle Dynamics.

9.1.2 Contents and outline of the chapter

The main achievements of the chapter are:
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1. the introduction, in Definition 9.2.12, of a notion of probabilistic solution to (9.1), which is
consistent with the notion of entropy solution of the conservative form of (9.1) in the scalar
case,

2. the construction of the Multitype Sticky Particle Dynamics and the derivation of an existence
result for the hyperbolic system (9.1), in Theorem 9.2.17, based on an approximation by this
particle system,

3. the derivation of uniform L? stability estimates on the particle system, that translate into
Wasserstein stability estimates for the semigroup of probabilistic solutions to the hyperbolic
system (9.1), in Theorem 9.2.25.

The Wasserstein distance arises from the theory of optimal transport, but turns out to be very
well adapted to our probabilistic approach for the hyperbolic system (9.1). Note that estimations
in Wasserstein distance have been obtained for the scalar case in [20], without relying on a particle
approximation though.

The chapter is organised as follows. The main definitions and results are stated in Section 9.2.
The Multitype Sticky Particle Dynamics is introduced in Section 9.3 and uniform LP stability
estimates are obtained in Section 9.4. Probabilistic solutions are finally constructed and described
in Section 9.5. Furthermore, Appendix 9.A contains the proofs of some technical results.

9.1.3 Notations and conventions

We introduce a few notations and conventions that we shall use throughout the chapter.

9.1.3.1 Bold symbols

Generically, bold symbols, such as u in (9.1), refer to objects of size d. Their coordinates, such
as u',...,u?, are written with thin characters, and labelled with a superscript Greek letter. This
letter is usually v € {1,...,d} or «, 8 when two distinct coordinates are at stake, in which case

we take the convention that a < .

9.1.3.2 Algebraic notations

For all z,y € R, we let x Ay := min{z,y} and x V y := max{x,y}. Given two sets A and B,
the union set A U B shall be denoted by A LI B whenever AN B = {.

9.1.3.3 Set of probability measures

Given a metric space E, the set of Borel probability measures on E is denoted by P(E). It is
endowed with the topology of weak convergence, which is defined with respect to the set Cy,(E) of
continuous and bounded functions from E to R.

Given two metric spaces E, I, a measurable function g : E — F, and u € P(E), the pushforward
measure of ju by the function g, denoted by pog=! € P(F), is defined by (uog=1)(B) = u(g~*(B))
for all Borel set B C F.

9.2 Main definitions and results

This section contains the main definitions and results of the chapter. The various assumptions
we shall make on the velocity field A are gathered in Subsection 9.2.1. A short presentation of
the scalar case, by which both our definition of solutions to the system (9.1) and our particle
system are inspired, is made in Subsection 9.2.2. The Multitype Sticky Particle Dynamics that we
introduce to approximate the solutions to (9.1) is described in Subsection 9.2.3.

The notion of probabilistic solution to the hyperbolic system (9.1) is defined in Subsection 9.2.4.
A first existence theorem is stated. Further stability properties of both the particle system and
the probabilistic solutions to (9.1) are detailed in Subsection 9.2.5.

A discussion of the links between our method and results and previous works is provided in
Subsection 9.2.6.
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9.2.1 Assumptions on the velocity field

Our results are stated under various assumptions on the function
A= 0 00,17 — RY,
that we now list.

We first introduce continuity conditions.
(C) Continuity: for all v € {1,...,d}, the function A" is continuous on [0, 1]%.

Under Assumption (C), the functions A!',..., A? are bounded and we define the family of finite
constants Lc ,, p € [1,400], by

d 1/P
Vp € [1,+00), Lcyp:= (Z sup w(u)v’) . Lgeso:= sup sup [A(u). (9.2)

o ue(0,1]¢ 1<y<du€]0,1]¢

(LC) Lipschitz Continuity: there exists Lyc € [0, +00) such that

d
Vye{l,...,d}, Vu,velo,1], [A7(u) = XN(v)| < Lic Z lu? =o'
v'=1

Of course, Assumption (LC) is stronger than Assumption (C).
The following Uniform Strict Hyperbolicity condition enables us to define the Multitype Sticky
Particle Dynamics.
(USH) Uniform Strict Hyperbolicity: there exists Lysn € (0, +00) such that

Vye{l,...,d -1}, inf  A'(u) — sup A'(u) > Lysn.
uE[O,l]d uE[O,l]d

Note that, under Assumptions (C) and (USH), the triangle inequality implies that Lysy < L¢,1.
Our stability estimates are finally obtained under the following Genuine Nonlinearity assump-
tion.

(GNL) For all y € {1,...,d}, A7 is C! on [0,1]¢ and

either  Vu € [0,1]4, 9,7 (u) > 0,
or vu € [0,1]4, 9.\ (u) <0,

where 0, A7 refers to the partial derivative of A7 with respect to u”.

Of course, Assumption (GNL) implies Assumption (LC). However, we shall state our results
under both assumptions whenever needed, although this is redundant. There are two reasons for
this distinction: first, these assumptions play very different roles in our proofs; in particular, our
quantitative stability estimates depend on the value of the constant Lyc but not on the suprema
of the functions |0,A\7|. Second, Assumption (GNL) can actually be relaxed to the Diagonal
Monotonicity assumption (DM) below, that no longer implies Assumption (LC). This relaxation
is discussed in Remark 9.5.12.

(DM) In the sense of distributions,

either  Vu e [0,1]%, 9,\7(u) >
or vu e [0,1]4,  9,\7(u) <

3

vy eA{l,...,d}, {



228 Dynamique des particules collantes multitype et systémes hyperboliques

9.2.2 The scalar case
In the scalar case d = 1, we drop the superscript notation and (9.1) rewrites
{ 0w + A(u)dpu = 0,

u(0,2) = ug(x),

where u : [0,400) x R = R, A: [0,1] — R and ug = H xm is the cumulative distribution function
of the probability measure m on R. For smooth solutions, this equation is equivalent to the scalar
conservation law

Opu + 0 (A =0,
v+ 0, (Aw) 03
u(0,z) = uo (),
where the fluz function A : [0,1] — R is defined by
Yu € [0,1], Au) == / A(v)dw.
v=0
Brenier and Grenier [29] introduced a space discretisation of the latter equation based on the

following Sticky Particle Dynamics: for all n > 1, consider a system of n particles evolving on the
real line, and such that
e the particle in k-th position has initial position 4 (0) € R, initial velocity A(k/n) and mass
1/n, where 21(0) < --- < 2,(0),
e between collisions, the particles travel at constant velocity,

e at collisions, the particles stick into clusters, the velocity of which is determined by the
conservation of mass and momentum.

This dynamics was introduced by Zel’dovitch [141] as a model of gravitational interaction, and we
refer to Subsection 9.3.1 for a detailed introduction.
The Sticky Particle Dynamics defines a continuous flow taking its values in the polyhedron

D, :={(x1,...,2n) ER" 127 <+ <z, },

a generical element of which shall be denoted by x = (x1,...,2,). The link between this par-
ticle system and the scalar conservation law (9.3) was established by Brenier and Grenier [29,
Theorem 2.1] and Jourdain [36, Theorem 1].

Theorem 9.2.1 (Convergence of the Sticky Particle Dynamics). Let us assume that the function
A is continuous on [0,1] and that the initial positions of the Sticky Particle Dynamics introduced
above are chosen so that the empirical distribution

1 n
n Z 69%(0)
k=1

converges weakly to m. Then, for all t > 0, denoting by (x1(t),...,x,(t)) € D,, the positions of
the sticky particles at time t, the empirical distribution

1 n
RO DA
k=1

converges weakly to the probability measure p1(t) on R, the cumulative distribution function of which
is the unique entropy solution to the scalar conservation law (9.3).

Remark 9.2.2. In [36], arbitrary initial data ug of bounded variation are considered, while in
the present chapter, we restrict our choice of initial data to monotonic and bounded functions.
Besides, we do not provide our notion of probabilistic solution to (9.1) with an entropy condition,
therefore we do not expect these solutions to be unique. We shall in fact observe in §9.5.3.1 that,
in general, uniqueness of probabilistic solutions does not hold.
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9.2.3 The Multitype Sticky Particle Dynamics

Sections 9.3 and 9.4 are dedicated to the introduction and study of a multitype system of
particles that extends the Sticky Particle Dynamics introduced above and allows to approximate
solutions to the hyperbolic system (9.1). It describes the evolution of d systems of n particles
evolving on the real line, each system being associated with a certain type of particle, such that:

e within each system, the particles evolve according to the Sticky Particle Dynamics with

initial velocities determined by the global ordering of the particles,

e at collisions between particles of different types, the velocities of the particles are modified
in order to take the new ordering into account.
This dynamics is called the Multitype Sticky Particle Dynamics (MSPD). A typical trajectory
of the MSPD is plotted on Figure 9.1.

Figure 9.1 — A typical trajectory of the MSPD with d = 4 types and n = 10 particles per type. The
horizontal coordinate refers to the physical positions of the particles, while the vertical coordinate
describes the time. Each color is associated with a type of particle. Particles of the same type
stick together at collisions, and the velocities may be modified at collisions with clusters of different

types.

As in the Sticky Particle Dynamics described above, the particles remain ordered within each
system, therefore the MSPD takes its values in the Cartesian product DZ := (D,,)?, a generical

element of which is called a configuration and denoted by x = (x!,...,x%), where, for all v €

{1’ e d}7

x' = (z],...,2)) € D,.
In the configuration x, the number z} refers to the position of the k-th particle of type . The set
of indices (v,k) € {1,...,d} x {1,...,n} is denoted by PZ, and the pair (v, k) is rather denoted
by v : k € P4



230 Dynamique des particules collantes multitype et systémes hyperboliques

In Section 9.3, we give a detailed construction of this dynamics under Assumption (USH). For
all initial configuration x € DZ, we denote by

D(x;t) == (®)(%:1))ykeps € Dyt

the positions of the particles at time ¢ > 0 in the MSPD started at x. Then we prove that
(®(:;t))¢>0 defines a continuous flow in D,

Remark 9.2.3. In Chapter 7, a probabilistic system of Brownian particles is introduced to ap-
proximate the solution to the parabolic system

oY 4+ XN (0)0,u) = €d?u”,
Yy e{l,....d}, ! (Z”” @

U’Y(O,l‘) = Ug ('T)’
where € > 0. This system is called multitype system of particles interacting through their rank.
Using the arguments introduced in Chapter 8 for the scalar case, the MSPD can be shown to
describe the limit, when the intensity e of the stochastic noise vanishes, of this system.

9.2.4 Probabilistic solutions to the system (9.1)

Our definition of a probabilistic solution heavily relies of the notion of cumulative distribution
function on the real line, the definition and a few properties of which are recalled in §9.2.4.1.
The definition of probabilistic solutions is given in §9.2.4.2, and a closedness property of the set
of probabilistic solutions is stated in §9.2.4.3. Theorem 9.2.17, which is an existence result for
probabilistic solutions, is detailed in §9.2.4.4.

9.2.4.1 Cumulative distribution functions

We first define and state a few properties of cumulative distribution functions (CDFs) on the
real line.

Definition 9.2.4 (Cumulative distribution function). A cumulative distribution function on the
real line is a nondecreasing and right continuous function F : R — [0,1] such that

lim F(x) =0, lim F(z)=1.

T——00 Tr——+00
CDFs are generically discontinuous and therefore can have jumps, defined as follows.

Definition 9.2.5 (Jumps). Let F' be a CDF on the real line. For all x € R, the jump of F at x
is defined by
AF(z) := F(z) — F(x7),

where
F(z7) :=lm F(y).

ytz

The following characterisation of CDFs is fundamental.

Lemma 9.2.6 (CDFs are actual cumulative distribution functions). The function F is a CDF on
the real line if and only if there exists a probability measure m € P(R) such that, for all x € R,
then F(x) = m((—o0,x]). In this case, F is said to be the CDF of m, and we denote F = H xm,
where H refers to the Heaviside function H(zx) := 1,50}

Certainly, for all z € R, AF(z) = m({z}), and whenever the latter quantity is positive, then x
is called an atom of m. Note that the set of atoms of m is at most countable, therefore dz-almost
everywhere, AF(x) = 0.

We now address the expectation of a measurable function f in the space L!(m) of integrable
functions with respect to m.
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Definition 9.2.7 (Expectation). If F is the CDF of m, then, for all f € L'(m), the expectation
of f under m is indifferently denoted

/zeRf(x)m(dx) — /zeRf(x)dF(x)'

The expectation of f under m can also be expressed in terms of the pseudo-inverse of F', defined
as follows.

Definition 9.2.8 (Pseudo-inverse). Let F' be a CDF on the real line. Then the pseudo-inverse of
F is the function F~1:(0,1) — R defined by

F~'(v) :=inf{z € R: F(z) > v}. (9.4)
The following properties of the pseudo-inverse are straightforward.

Lemma 9.2.9 (Properties of the pseudo-inverse). Let F' be a CDF on the real line.
(i) The function F~*:(0,1) — R is nondecreasing, left continuous with right limits; in partic-
ular, it is continuous dv-almost everywhere on (0,1).
(ii) For allv € (0,1), F(F~Y(v)") <v < F(F~1(v)).
(iii) For all x € R, for all v € (0,1), then F~*(v) < x if and only if v < F(z).

The expectation of f under m satisfies the following pseudo-inverse function formula.

Lemma 9.2.10 (Pseudo-inverse function formula). Let F' be the CDF of the probability measure
m on R. Then, for all f € L*(m),

/zeRf(x)dF(x) _ /Ul_of(F-l(U))dv_

Let us point out the fact that, with the notations introduced in Subsection 9.1.3 above, a
reformulation of Lemma 9.2.10 is m = U o (F~!)~1 where U refers to the Lebesgue measure on
[0,1].

Weak convergence of probability measures is characterised by CDFs as follows.

Lemma 9.2.11 (Weak convergence and CDFs). Let (my,)n>1 be a sequence of probability measures
on R and m € P(R). Let F,, := H xm,, and F := H *m. Then m,, converges weakly to m if and
only if, for all z € R such that AF(x) = 0, then F,(z) converges to F(x). In this case, F, (v)
converges to F~Y(v) for all continuity point v of F~1, therefore dv-almost everywhere in (0,1).

The equivalence between weak convergence and convergence of the CDFs outside of the atoms
of the limit is a classical result, see for instance [50, Theorem 2.2, p. 86]. The almost everywhere
convergence of pseudo-inverses is often used as a proof of the Skorokhod Representation Theorem
on the real line, see [50, Theorem 2.1, p. 85].

We finally introduce a few notations for functions u : [0,+00) x R — [0, 1] such that, for all
t >0, u(t,-) is a CDF on the real line. For such a function, for all ¢ > 0,
e the jump of u(t,-) at « € R is denoted by A, u(t, ) and worth A u(t, z) = u(t,x) —u(t,z™),
where u(t, z7) := limy, u(t, y),
e if m € P(R) is such that u(t,-) = H xm, then for all f € L'(m), the expectation of f under
m is denoted

[ rems) = [ j@aa),

and we have )

/ @t = [ g @),

v=0

where u(t,-)~1(v) refers to the pseudo-inverse of the CDF wu(t, -).
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9.2.4.2 Definition of probabilistic solutions

In order to define the notion of probabilistic solution to the system (9.1), we let C1-9(]0, +00) x
R, R9) refer to the set of continuous functions

@=(p' ..., 0% :[0,+00) x R = R?,

with compact support, such that, for all v € {1,...,d}, the partial derivative 0;¢" with respect
to the time variable is a continuous function on [0,+00) x R. The functions ¢ in this set shall be
used as test functions in the definition of probabilistic solutions to (9.1).

The main difficulty in defining a notion of solution to the system (9.1) is to make sense of the
product A7 (u)d,u”. Indeed, since we expect u?(t,-) to be a CDF on the real line for all ¢ > 0, the
function \7(u) is generically discontinuous at the atoms of the measure 9,u”, and therefore this
product cannot be defined in the distributional sense.

In the scalar case, it is easily checked that, if u(t,-) is a CDF for all ¢ > 0, then, for all function
¢ € C2°([0,+00) x R, R),

. /:O / el )Mt )t = /: / Ml (05

where
Mul(t,z) = /9_0 A((1 = 0)u(t,z™) + bu(t,z)) do

is the average value of A(u(t,z)) on the jumps of u(t,-). In other words, replacing A(u) with
Mu} and then interpreting the product A{u}dzu as the bounded measure with density AM{u} with
respect to the mesure d,u(t, -) on R, we obtain an equivalent formulation of the scalar conservation
law (9.3), which by Theorem 9.2.1 naturally captures the asymptotic behaviour of the Sticky
Particle Dynamics.

We proceed similarly for d > 2 and first take the convention that, at a space-time point (¢, x)
at which 7 is discontinuous, then the quantity

N(ut,z) = A7 (vt 2),...,u " (E2),ul (t2), Tt 2), .. ud(t, 2)
should take the average value of
Y (ul(t, z), .., u T ), w, YT (), . ud(, :L'))

for w € [u¥(t,x7),u (¢, z)]. Of course, this quantity can no longer be expressed as a function of
u?(t,x), and we introduce the following notation
1
A{u}(t,x) := / N (u(tz),. ., (L= 0 (ta7) + 0w (t,2),. .. L ud(t, z)) do (9.6)
0=0

as a substitute for A7(u(¢,x)) in (9.1). Note that the function A7{u} can be rewritten under the
more explicit form

AH{u}(t, z) = A7 (u(t, z))
if Ayu¥(t,x) =0, and

1 u” (t,x) B
A{u(t,z) = m /w_uw(t - A7 (ul(t,x), cou” 1(t,$),w,u7+1(t, x),... ,ud(t,x)) dw

otherwise.

We are now ready to introduce our notion of probabilistic solution.
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Definition 9.2.12 (Probabilistic solution to (9.1)). Under Assumption (C), a probabilistic solu-
tion to the hyperbolic system (9.1) is a measurable function

u=(u',...,u?):[0,400) x R — [0,1]%
such that:
(i) for allt >0, for all vy € {1,...,d}, then u7(t,-) is a CDF on the real line,
(ii) for all test function @ = (o', ..., %) € CLO([0, +o0) x R,RY),
d

= Z/t / (¢, 2)N{ub(t, 2)du (t, 2)dt,

where X\Y{u} is defined by (9.6) above.
Remark 9.2.13. In the point (ii) of Definition 9.2.12, the integral term

/e]R OV (t, )N {ul(t, z)du” (t, )

has to be understood as the expectation of the bounded function ¢7(¢,-)A"{u}(¢,-) under the
probability measure with CDF «?(¢,-). In addition, the point (ii) only makes sense if the function

m/ (e, )N b (t 2) e (1 2)

is measurable on [0, 400). This property is obtained by first applying Lemma 9.2.10 to rewrite

1
/ &1 ()N {u} (1, 2)do (1, ) = / & (a7 (1) )N {a (8 0 (8, ) (0))do.
z€R v=0
Now it is easily checked that the function
(t,0) = @7 (8, u7 ()" ()N {ub(t,u7 (¢, ) 7 ()

is measurable and bounded on the product space [0, +00) x (0,1), so that the conclusion follows
from the Fubini Theorem.
9.2.4.3 A closedness property

We now state an important closeness property for the set of probabilistic solutions to (9.1),
that shall allow us to construct solutions by approximation.

Proposition 9.2.14 (Closedness). Under Assumption (C), let (u,)n>1 be a sequence of functions

u, = (ul,...,ud):[0,+00) x R — [0, 1]¢
such that:
e for allm > 1, the function u, is a probabilistic solution to the system (9.1) with initial data
(ué,na s ’ug,n))

e forallt >0, for ally € {1,...,d}, there exists a CDF u"(t,-) on the real line such that, for
all z € R for which Azu?(t,x) =0, then

—
ngr}rloou (t,x) = u'(t, x),

o for all v, € {1,...,d} such that v # ~', dt-almost everywhere, then
Vz € R, Agu (t,2) Ay (t,2) = 0. (9.7)

Then the function u = (u',... ,u?) : [0,+00) x R — [0,1]¢ is a probabilistic solution to the
system (9.1) with initial data (ug,...,ud) defined by, for ally € {1,...,d}, for all x € R, uj(x) =
u”(0, x).

The proof of Proposition 9.2.14 is postponed to Subsection 9.A.1 in Appendix 9.A.
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9.2.4.4 Existence of a probabilistic solution

In this paragraph we establish a first existence result of probabilistic solutions to the sys-
tem (9.1). Of course, it is based on an approximation procedure by the MSPD. Therefore, we first
state the following proposition, the proof of which is detailed in Subsection 9.5.2.

Proposition 9.2.15 (The MSPD provides an exact solution). Let Assumptions (C) and (USH)
hold, and let us fix x € DZ. For all v € {1,...,d}, let us denote by u] the empirical cumulative
distribution function of the system of particles of type v in the configuration x; that is to say,

D Ai<ay
k=1

For allt > 0, let us denote by u7(t,-) the empirical cumulative distribution function of the system
of particles of type v in the configuration ®(x;t); that is to say,

Vr € R, ug(z) =

S|

1 n
k=1

Then the function u = (u',...,u) is a probabilistic solution to the system (9.1) with initial data

(ud, ..., ud).

We now want to combine Propositions 9.2.14 and 9.2.15 to construct probabilistic solutions
to systems (9.1) with arbitrary initial data. To this aim, we fix a vector m = (m?,...,m?) of

probability measures, and introduce a discretisation of m as follows.

Definition 9.2.16 (Discretisation operator). For all n > 1, we define the discretisation operator
Xn : P(R)Y — D2 by, for all m = (m*,...,m?) € P(R)?, x,m = x, where, for allv: k € P2,

(2k+1)/(2(n+1))
z} = (n+ 1)/ (H *m”)"H(w)dw.
w=(2k—1)/(2(n+1))

Then we prove in Subsection 9.5.2 the following approximation result.

Theorem 9.2.17 (Convergence of the MSPD). Let Assumptions (C) and (USH) hold, and let us
firm= (m',...,m?) € P(R)?. Forally € {1,...,d}, let us define

Vz € R, ug(z) := H xm" ().

For all n > 1, let u, refer to the probabilistic solution to the system (9.1) derived in Proposi-
tion 9.2.15 from the MSPD started at x,m.

Then, there exists an increasing sequence of integrers (ng)e>1 and a function u = (ul,... ,ut)
[0,4+00) x R — [0,1]¢ such that:
(i) the function u is a probabilistic solution to the system (9.1) with initial data (u}, ..., ud),

(ii) for allt >0, for all v € {1,...,d}, for all x € R such that A uY(t,x) =0, then

lim w) (t,2) =u"(t,z).

{——+o00
In particular, under the assumptions of Theorem 9.2.17, for all CDFs u},...,ud on the real
line, there exists a probabilistic solution to the system (9.1) with initial data (ug,...,ud).

9.2.5 Stability and semigroup properties

In this subsection, we address further properties of the probabilistic solutions obtained from
Theorem 9.2.17. A key ingredient is the LP stability result for the MSPD stated in Theorem 9.2.22
below, which naturally provides stability estimates in Wasserstein distance for the probabilistic
solutions to the system (9.1), and from which the semigroup property can also be deduced.

We begin by introducing the Wasserstein distances in §9.2.5.1. Then, Theorem 9.2.22 is stated
in §9.2.5.2. Finally, the Wasserstein stability estimates and the semigroup property are detailed
in Theorem 9.2.25 in §9.2.5.3.
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9.2.5.1 The Wasserstein distance

Our stability estimates are stated in Wasserstein distance, an introduction to which can be
found in Rachev and Riischendorf [120] or Villani [135].

Definition 9.2.18 (Wasserstein distance). Let m,m’ € P(R). Then, for all p € [1,400), we
define the Wasserstein distance of order p between m and m’ by

1/p
W, (m,m’) := inf / |z — 2’ |Pm(dzdx’) :
m< (z,z’')ER2

where the infimum runs over all the probability measures m € P(R?) such that, for all Borel sets
A A" CR,
m(A4 x R) =m(A), m(R x A") = m/(4).

The Wasserstein distance of order oo is defined by

Weo(m,m') := lim Wy(m,m').

p——+oo

Note that we allow the Wasserstein distances to take the value +o00, therefore they should rather

be referred to as pseudo-distances [135]. For the sake of simplicity, we shall keep the denomination
distance.

The Cartesian product P(R)? is endowed with the family of distances W,(, ), p € [1,+00], defined
by, for all m = (m!,...,m%),m’ = (m'},...,m') € P(R),

1/p
Vp € [1, +00), W(d) (m,m’) := (ZW mY, m'7 ) ,
(9.8)

WD (m,m') = sup W (m?,m").
1<<d

It is a peculiar feature of the dimension 1 that a measure m realising the infimum in Defini-
tion 9.2.18 is explicitly known, and independent of p. It is given by

m= U ((H sm) L (Hxm) )

where U refers to the Lebesgue measure on [0, 1] [120]. We deduce the following characterisation
of the Wasserstein distance.

Lemma 9.2.19 (Optimal coupling). Let m,m’ € P(R) and denote F := H*m, G := H xm/.
Then, for all p € [1,400),

1/p

W, (m,m') = ( / ) - G-1<v>|pdv) ,

while
Woo(m,m') = sup [F~'(v) — G~ (v)].
ve(0,1)
Note that, in particular,
Wi(m,m') = ||F — G|l ). (9.9)

Remark 9.2.20. In the case of empirical distributions, Lemma 9.2.19 provides a very conve-
nient expression of the Wasserstein distances. More precisely, let x = (x1,...,2,) and X' =
(y,...,2)) € Dy, and let us define

1< 1

== O == 0y

k=1 k=1
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Then, for all p € [1, 4+00),

and
Weo(m,m') = sup |xp — 27|
1<k<n
Following Remark 9.2.20, we introduce the following (normalised) L? distances on DZ.

Definition 9.2.21 (L distances on D2). For all x,y € D2, we define

n’

1/p
1
Vpel,400), x=yllp=|= > l=l -4 | .
n
ykePd (9.10)
lIx = ¥lloo := sup |2} —yl,
v:kePg

and, for p € [1,4+o0], we denote
By(x,0) ={y € Dy : [[x —yll, <8},  By(x,8):={y e Dy:|lx—yll, <d}.

Given x,y € DZ, and defining

'—1n(5 1n(5 "—1n6 1n(5
O SUTRINE D 50 %) IS £ SN St |
k=1 k=1 k=1

then it is straightforward that, for all p € [1, +o0],

1% = yllp = Wi (m, m’). (9.11)

9.2.5.2 Discrete stability estimates
Section 9.4 is dedicated to the proof of the following uniform stability estimates.

Theorem 9.2.22 (Uniform L? stability estimates for the MSPD). Under Assumptions (LC),
(USH) and (GNL), then for all p € [1,+0o<], there exists L, € [1,+00) such that, for allx,y € D2,
for all s,t >0,

1@(x;5) = @(y; D)llp < Lpllx = yllp + |t = s|Lc,p,

where we recall that L, is defined in (9.2), while L, is an explicit function of d, Lic and Lusu
but does not depend on n.

The value of £, is given in (9.42).

9.2.5.3 Construction of a stable semigroup

We now describe some properties of the probabilistic solutions obtained at Theorem 9.2.17,
namely stability estimates and the semigroup property. Of course, our stability estimates are
derived from the discrete estimates of Theorem 9.2.22. On account of (9.11), they are naturally
expressed in Wasserstein distance. We first need to introduce the following subset of P(R).

Definition 9.2.23 (W, stability class). For all m* € P(R)?, we denote by Pm~ the W stability
class of m* defined as the set of m € P(R)? such that

W (m*, m) < +o0,

where we recall the definition (9.8) of the distance ng).
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We shall prove in Subsection 9.5.4 the following property of the set Py«

Lemma 9.2.24 (Properties of Py ). For all m* € P(R)Y, the set Py~ is closed and separable for
the ng) topology.

We can now state the main result of this work. Its proof is detailed in Subsection 9.5.4.

Theorem 9.2.25 (Semigroup and stability properties of probabilistic solutions). Let Assump-
tions (LC), (USH) and (GNL) hold, and let m* € P(R)?. Then, there exists a family (S¢)¢>0 of
operators

g . P — P
'l m=(m',...,m%) — Sm=(S!m,...,S%m)

satisfying the following properties.
(i) For all m € Py, the function
u=(u',...,u?) :[0,400) x R — [0,1]%

defined by
Vy e {l,...,d}, u(t,z) := H * (Sym)(z),

is a probabilistic solution to the hyperbolic system (9.1) with initial data (ug,...,ud) defined
by
Yy e{l,...,d}, ug = H xm".

(i) For all p € [1,400], for all m,m’ € Py,«, for all s,t >0, then
W (S;m,Sim’) < £, W (m,m’) + [t — s|Lc,p.
Of course, for p > 1, both sides of the inequality may be infinite.
(iii) The family (S¢)i>0 is a semigroup on Ppx.

Let us highlight the fact that on account of (9.9), then for p = 1, the point (ii) of Theorem 9.2.25
rewrites as a classical L' stability estimate

d d
Dol (s) = 0 (e < L1 [[07(0,-) = v (0, )|y + [t = s|Le,n,
~y=1 y=1

on the probabilistic solutions u = (u!,...,u?) and v = (v!,...,v?%) to the hyperbolic system (9.1)

defined by
uwY(t,z) := H * (S]m)(z), v (t,z) == H * (S/m’)(x).

9.2.6 Discussion

Following the seminal work by Brenier and Grenier [29], see also Bouchut [27], the links be-
tween sticky particles and scalar conservation laws have received much attention, see in particular
Natile and Savaré [110] and Brenier, Gangbo, Savaré and Westdickenberg [28]; also Bressan and

Nguyen [31] for a study in higher dimensions. To our knowledge though, our study provides the
first instance of a sticky particle dynamics aimed at approximating hyperbolic systems of equations.

On the other hand, many similarities can be underlined between our Multitype Sticky Particle
Dynamics and the classical Wave Front Tracking method, for an introduction to which we refer
to Bressan [30], and which turns out to be very powerful in the study of conservative hyperbolic
systems, see e.g. Bianchini [17], which is also related with the further references [16, 10]. Stability
estimates are also obtained in [10, 17] for data of arbitrary total variation, which is in contrast
with the recent work by Ancona and Marson [4].

As far as monotone initial data are concerned, let us finally mention the article by Bolley,
Brenier and Loeper [20], in which Wasserstein stability estimates of the very same nature as our
Theorem 9.2.25 are obtained for the scalar case, but without relying on the approximation by a
particle system.
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9.3 The Multitype Sticky Particle Dynamics

In this section, we give a formal construction of the Multitype Sticky Particle Dynamics
(MSPD). We first recall some useful facts on the Sticky Particle Dynamics in Subsection 9.3.1.
The proper definition of the MSPD is given in Subsection 9.3.2, where a few elementary properties
of this dynamics are also stated.

9.3.1 The Sticky Particle Dynamics

In this subsection, we give a detailed introduction of the Sticky Particle Dynamics and state a
few properties of this dynamics.

9.3.1.1 Definition of the Sticky Particle Dynamics

Let us fix A = (A,...,\,) € R”. For all x = (21,...,2,) € Dy, the Sticky Particle Dynamics
started at x with initial velocity vector X is described as follows.

First, the k-th particle has initial position z; and initial velocity Ai, while its initial cluster is
determined by Definition 9.3.1.

Definition 9.3.1 (Initial clusters). The initial cluster of the k-th particle in the Sticky Particle
Dynamics started at x with initial velocity X is the largest set of consecutive indices {k,...,k} C
{1,...,n} such that:
e k<k<k,
& Iy == ‘TE’
o cither k =k, or for all j € {k,...,k —1},

1 L 1 .
——— > == > M (9.12)
okl k=3 w5

Clusters of particles then travel at constant velocity between collisions, and stick together at
collisions. The velocity of a cluster between two collisions is given by the average of the initial
velocities of the particles composing the cluster. Denoting by

SA(xt) = (1[N (x3), - -, on[N(x38)) € Dny

the positions of the particles at time ¢t > 0, we obtain a continuous process (¢[A](x;t))¢>0 taking
its values in D,,, that we call the Sticky Particle Dynamics started at x with initial velocity vector
. Clearly, this process has the flow property that, for all s,¢t > 0,

PN (st + 5) = SN (SN (x1); 5)-

Remark 9.3.2. It follows from a tedious but straightforward barycentric computation that if
— —
{k,...,k} and {k',...,k } are two sets of consecutive indices in {1,...,n} satisfying the three

conditions of Definition 9.3.1, then {k, ..., k}U{K/, ... ,E/} also satisfies these conditions. Therefore
there is no ambiguity in the definition of the initial cluster of the k-th particle.

Definition 9.3.3 (Clusters and their velocity). We denote by clug[A(x;0) the initial cluster of
the k-th particle, and for t > 0, we denote by clug[\|(x;t) the largest set of indices {k,...,k} of
the particles sharing the same position as the k-th particle at time t, that is, such that

SrN (i) =+ =GN (xst) = -+ = g [N (x1).

For allt > 0, the set clug[A](x;t) is called the cluster at timet of the k-th particle in the Sticky
Particle Dynamics started at x with initial velocity .
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Finally, the velocity of the cluster of the k-th particle at time t > 0 is defined by

wlNGa) = e Y R

IChu{AKX;ﬂlkﬂeduﬂmeﬂ

where |c| refers to the cardinality of the set c, so that

vt >0, ou[N(x;t) = 21 + /_0 vR[ N (x; 8)ds. (9.13)

Remark 9.3.4. Definition 9.3.3 can be completed by the following remarks.

(i) As is shown in [29, Lemma 2.2], in the case ¢ > 0, the set clug[\](x;t) necessarily satisfies
the condition (9.12). The latter is called the stability condition.

(ii) As a consequence of the definition of the velocity of a cluster, we have, for all ¢ > 0,

Vk e {1,...,n}, min \; < vp[A(x;t) < max ;. (9.14)

1<j<n 1<j<n

(iii) For all x € D,, and s,t > 0 such that s <¢, for all k € {1,...,n},

clug[N(x;8) C clug[A](x;1).
We finally give a representation of the process (v1[\|(x;1), . . ., vn[A](x; t))>0, the proof of which
follows from Lemma 8.3.4 of Chapter 8.

Lemma 9.3.5 (Representation of the velocities). For all A € R™, for all x € D,,, there exist right

continuous processes (y1[A(x5€)) >0, - - -, (1[N (X; £))e>0 with values in R such that, for allt > 0,

o A1) = YN (x;1) = 0,
o forallk € {2,...;n}, w[N(xt) > 0 and v [N (x; 1) (1N (x5 1) — dr—1[A](x:1)) = 0,
and, for all k € {1,...,n},

[N (%51) = M + k[N (x58) — Y1 [N (x5 1).

Remark 9.3.6. The processes (71[\|(x;1))i>0, - -, (Yn+1[A](x;))i>0 introduced in Lemma 9.3.5
can be interpreted as Lagrange multipliers associated with the constraint that ¢[\](x;¢) remain
in the polyhedron D,,. More precisely, it is shown in Lemma 8.3.4 of Chapter 8 that the process

(p[A](x;t))>0 is the unique solution, in the sense of Tanaka [132], to the normally reflected equation
vt >0, x(t) = x + M + K(t)

at the boundary of D,,, where k(t) is a reflection term, the total variation of which only grows
when x(t) is at the boundary of D,,.

9.3.1.2 Local Sticky Particle Dynamics
Let us fix T' > 0, x € D, and take a set K C {1,...,n} having the property that

Vke K, cdwuNxT)CK. (9.15)

In other words, K is the union of a certain number of clusters at time 7T'. By (iii) in Remark 9.3.4, for
all t € [0, T, all the particles of K belong to clusters contained in K. Writing K = {k1,..., k| |},
it is clear that the process
(D, [AI(x58), - -5 Doy A3 8) )0

follows the Sticky Particle Dynamics in D)k, with initial position vector (zy,,... s Tk, K‘) and
initial velocity vector (Ag,,. .., S\k‘ - ). This is a consequence of the fact that, in the Sticky Particle
Dynamics, the interactions between particles are local: when some particles collide and stick
together, this does not affect the motion of the other particles.
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Definition 9.3.7 (Local Sticky Particle Dynamics). As soon asT > 0,x € D,, and K C {1,...,n}
satisfy the condition (9.15), the process (¢k, [A\(X;1), ..., Gk i [N (X51)) is said to follow the Local
Sticky Particle Dynamics on [0,T], in the set

Dp = {(:Ckm"'axkuq) GRK:wlh < S-’I/‘kuﬂ}a

with initial velocity vector A = (g, .- ., j‘k\m) € RE,
For 0 <t < to, we shall also say that (¢p, [N (x;1),.. ., Py e N(x;t)) follows the Local Sticky
Particle Dynamics on [t1,to] if

(D (G (s t1)it = t1), - e (B (st )3 = 1)
follows the Local Sticky Particle Dynamics on [0,ty — t1].

For all p € [1,+00], we now give an estimation on the growth of the L? distance between two
realisations of the (Local) Sticky Particle Dynamics, with possibly distinct initial velocity vectors.

Proposition 9.3.8 (L” stability for the Local Sticky Particle Dynamics). Let x,y € D, and
A eRY LetT >0 and K = {ki,..., ki } C{1,...,n} such that the processes

(¢k1 [5‘] (X; t)s... a¢ku<\ [5‘] (X; t))tE[O,T]

and

(¢k1[ﬂ]( )""5¢k\}(\[ ]( ))tE[O T)

follow the Local Sticky Particle Dynamics on [0,T], with respective initial velocity vectors A\x and
ok defined as above.

(i) For allt € [0,T],

S 16N T) - el D < 3 lonlM (1) — el v )] + (T — 0 S 1w — e,

keK keK keK

(i) If X = [i, then for all t € [0,T], for all p € [1,+00),

Do IokN(sT) = dulal (v TP < Y lowN(x;8) — dwlal(vs )7,

keK keK

and

sup |or[N(x;T) — ¢ [ (v; T)| < sup |¢e[N (x5 t) — ow[f](y; 1)].
keK keK

Proof. Without loss of generality, we assume that K = {1,...,n}, so that Ay = X and jig = [i.
Now, by (9.13), for all p € [1, +00),

Z 6N T) — el (v TP =Y Ik N (x5 t) — dul)(y3 )]
k=1
+ Z/ PlkN (55 8) — drll (v5 9) P2 Dk [N (55 8) — i) (73 8)) {on[N (x58) — velal (v5 9) } s,

where we take the convention that |z|P=2z = 0 for p € [1, 2].
Using Lemma 9.3.5, we write, for all k € {1,...,n},

e[ (x5 8) — vrlal (vi 8) = M = T + 9 [N (55 8) — v [A](x5.8) — WAl (73 8) + e [ (33 ).

We shall prove below that, for all s € (¢,T7,

D 1ok IN G 8) = r[ml(v; )P (Sk N (x5 ) — drlal (v 9)) [N (x5.8) = 1[N (x55)} < 05 (9.16)
k=1
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then, by symmetry, the contribution of — {vx[a](v; s) — vk+1[E](v; $)} is also nonpositive, so that
we obtain

> lonlAlos ) = oulal TP < 3 onlAlls )~ ulalts o

k=1 ) ) ) k=1 )

£ - / PlowN (5 8) — el (v: )P~ (@r[N (x5 ) — dulj (s ),
k=1 s=t

from which (i) and the first part of (ii) easily follow. We derive the second part of (ii) by letting
p grow to infinity after having taken the power 1/p of both sides of the inequality above.

Let us now prove (9.16). To this aim, we fix s € (¢,7] and perform an Abel’s transform to
write

D18k 5) = il (v: )P (@r [N (x5 ) = Sl (v; 5)) {a [N (x5 8) = w1 [N (x5 5) }
k=1

= N )OSt [N (x5 5), dr—1 [ (v 9), D[N (% 5), D[] (v ),
k=2

where

IE, ¢80 = 1E= (e — ¢ = PTHE - ),
and we have applied Lemma 9.3.5 to remove 7y [A](x; s) and 7,41 [\](x; s). Using Lemma 9.3.5 again,
we recall that v[A](x;s) > 0 and if v, [A\](x;8) > 0, then ¢p_1[N(x;5) = ¢r[N(x; 5), while we still
have ¢r_1[f](v;s) < ék[i](y;s). The conclusion of the proof now follows from the elementary
observation that if ¢ = ¢ and ¢’ < ¢, then 9(¢',¢’,€,¢) <0. O

9.3.2 Definition of the MSPD

Let us now give a proper construction of the MSPD. First, in order to define the initial velocities
of the particles, we encode the global ordering of a configuration x € D in the set R(x) defined
by

R(x) = {(a:4,8:4) € (P)?:a < B,28 <af},
and we let N(x) refer to the cardinality of R(x).
Let us fix v : k € P? and, for all v/ # =, define w).,(x) €[0,1] by

- Z iy yikyere} iy <7,

’ k/zl
w:yyzk(x) = 1
~ > Namyangreoy £ >
k'=1

We can now define the initial velocity of the particle v : k£ in the MSPD started at x by

~ k/n
A (x) = n/’w—(k—l)/n A7 ( Way (%), - ,wz:kl(x),w,wzll(x), . ,wﬁ‘fck(x)) dw, (9.17)

and we denote

N (x) = (AN (x),...,\(x) €R",  Ax) := (A (x),...,2(x)) € (R")". (9.18)

Then, for all x € D¢, we define the Multitype Sticky Particle Dynamics started at x, and denote
by (®(x;t))i>0, the continuous process taking its values in D? and constructed as follows: as long
as there is no collision between particles of different types, each system evolves according to the
Sticky Particle Dynamics with initial velocities given by (9.17) above. When particles or clusters
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of different types collide, say at time t* > 0, then the initial velocity of the particle 7y : k is updated
to the value A} (®(x;t*)).

Under Assumption (USH), and whatever the composition of the clusters in each system, the
velocity of a cluster of type « is always larger than the velocity of a cluster of type 5 if a < .
Therefore, the set R(x) contains the pairs of particles (« : ¢, 8 : j) that will collide at a positive and
finite time in the MSPD started at x. At the first collision, say at time t* > 0, between clusters
of different types, then the fastest clusters cross the slowest clusters and the systems restart with
initial velocities determined by the set R(x) to which the pairs of particles (« : 4, 5 : §) involved in
the collision have been removed.

The outline of this subsection is as follows: in §9.3.2.1, we introduce and state a few properties
of the Typewise Sticky Particle Dynamics, which simply describes the joint evolution of d systems
of sticky particles, that do not interact with each other. A proper construction of the actual
MSPD is made in §9.3.2.2. Continuity properties of this dynamics are stated in §9.3.2.3 and a
peculiar formalism to describe collisions is introduced in §9.3.2.4. Finally, we emphasise the fact
that interactions remain local in the MSPD in §9.3.2.5.

9.3.2.1 The Typewise Sticky Particle Dynamics

This paragraph is dedicated to the study of the Typewise Sticky Particle Dynamcis, which is
defined as follows.

Definition 9.3.9 (Typewise Sticky Particle Dynamics). Let A = (A',...,\9) be a family of d
vectors
A =(],...,\)) eR™

The Typewise Sticky Particle Dynamics with initial velocity vector X is the flow (®[N](;t))e0
defined on DZ by, for all x = (x!,...,x%) € D4,

ve>0,  @RA(xt) = (9N (x's1), .. 0[N (x% 1))

In other words, (®[A](+;t))i>0 describes the joint evolution of d systems of n particles, where
the system of particles of type v follows the Sticky Particle Dynamics in D,, with initial position
vector X7 := (z7,...,2)) € D, and initial velocity vector A¥ € R"™, independently of the other
systems.

Applying (i) in Proposition 9.3.8 with K = {1,...,n} to each system already yields the fol-
lowing contraction property for the Typewise Sticky Particle Dynamics. Let us recall that || - ||;
refers to the (normalised) L! distance in DY, see (9.10).

Lemma 9.3.10 (L' contraction). For all A € (R™)¢, for all x,y € D%, for all s,t > 0 such that
s<t,
IR[A](x; 1) — A (y; t)[[1 < [|R[A(x;8) — RIAI(y3 8)]]1-

Let x € DZ. In order to define the MSPD started at x in §9.3.2.2 below, we shall of course
be concerned with the Typewise Sticky Particle Dynamics with initial velocity vector X(x) given
by (9.18), up to the first collision between particles of different types. Therefore, we introduce
the collision time ?;?}}B:j(x) associated with a pair (a : 4,5 : j) € R(x) as the time at which
the particles « : 7 and ( : j collide in the Typewise Sticky Particle Dynamics started at x. The
following lemma is a straightforward consequence of Assumption (USH) combined with (9.17), and
we do not give a proof.

Lemma 9.3.11 (Collision times). Under Assumption (USH), let x € D and (o : 3,8 : j) € (P%)?
such that o < 3.

(i) If (a: 1,8 : j) € R(x), then, for all t >0,

A (x;t) > BT [A(x)](x;t) + Lusnt.
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(i) If (a: 4,8 : j) € R(x), then there exists a unique t =: F;(:)il,lﬁrj (x) > 0 such that

A (x: 1) = DI A(X)](x: 1),

Then, for all s € [0,7<%, (x)],

T, B

PN (3 8) — BIAX)] (x5 8) > Lusu (7o, (x) — 5),

(e

while, for all s > ?aczc:)il,lﬁ:j (x),

BFA)](x;5) = B A))(x: 5) = Lusn(s — Tasia; (x)-
For all x € DZ, we now define t*(x) by

{ + o0 if N(x) =0,

t*(x) =
() min{750 5. (x), (4,8 : j) € R(x)} € (0,400)  otherwise.

(9.19)
For all x € D% such that N(x) > 1, we let x* := &)[X(x)](x, t*(x)). The following corollary of

Lemma 9.3.11 is a straightforward consequence of the flow property and the continuity of the
trajectories for the Typewise Sticky Particle Dynamics, therefore we do not give a proof.

Corollary 9.3.12 (Evolution up to t*(x)). Under the assumptions of Lemma 9.3.11, let x € D,
t < t*(x) and let us denote x' := O[A(x)](x;t). Then R(x') = R(x), A(X') = A(x) and t*(x') =
t*(x) — t. In addition, if N(x) > 1, then x"* = x* and R(x*) is a strict subset of R(x), so that

N(x*) < N(x).

9.3.2.2 Construction of the MSPD
We are now ready to define the MSPD started at x € D?.

Definition 9.3.13 (Multitype Sticky Particle Dynamics). Under Assumption (USH), for all x €
D4, the Multitype Sticky Particle Dynamics started at x is the process (®(x;t))i>0, with values in
D2 defined by
Py ot ft<t*
oo apen o TR i<,
O(x*;t —t*(x)) if t > t"(x).
Since N(x) is finite and Corollary 9.3.12 asserts that, for all x € D such that t*(x) < +oo,
N(x*) < N(x), then the process (®(x;t))¢>0 is well defined on [0, +00).

Let us recall that, for the Sticky Particle Dynamics with initial position vector x € D,, and
initial velocity vector A € R™, for all k € {1,...,n}, the process (vi[A](x;5))s>0 satisfies

vt >0, ou[N(x;t) = a1 + /_0 vr[N (x; 5)ds,

see Definition 9.3.3. Now, for all x € DZ, for all v : k € P2, we define the process (v} (x;5))s>0 by

o) = {HONOT (920
v (x" s —t(x)) if s > t7(x),
so that .
vt >0, Q) (x;t) = 2] + /S:O v} (x; s)ds.
We easily deduce from this definition and (9.14)-(9.17) that, for all x € D¢, for all t > 0,
inf  AN(u) <vl(x;t) < sup AV(u). (9.21)

u€l0,1]4 u€el0,1]4

We are now willing to define the cluster of a particle in the MSPD started at x, similarly to
Definition 9.3.3 above. In this purpose, we first introduce the notion of generical cluster.
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Definition 9.3.14 (Generical clusters). A generical cluster is a pair (v,{k,... ,k}), where v €
{1,...,d} is the type of the generical cluster and {k,...,k} is a set of consecutive indices in
{1,...,n}. To refer to the generical cluster ¢ := (v,{k,...,k}), we shall rather use the notation
c=": E ook

Let us give a few rules to manipulate generical clusters.

The type of a generical cluster ¢ is denoted by type(c) € {1,...,d}.
e The cardinality of a generical cluster ¢ = v : k---k is denoted by |c| and worth k — &k + 1.
e Fory :k'€¢ Pland c =~ :k---k, we shall write
vk ce
if and only if 4/ = v and &' € {k,...,k}. This set membership relation allows us to define

the inclusion relation a C b between generical clusters a and b as well as the union set a U b
and the Cartesian product a x b of two generical clusters a and b.

e A generical cluster v : k- - -k with a single element ~ : k shall rather be denoted by v : k. It
will always be clear from the context whether the notation « : k refers to a particle (that is,
an element of P9) or to a cluster containing a single particle.

We can now define the cluster of a particle in the MSPD started at x € D4.

Definition 9.3.15 (Cluster). The cluster of the particle v : k in the configuration ®(x;t) is the
generical cluster defined by

v clup [N (X)) (x5 1) if t < t*(x),
clu) (x*;t — t"(x)) if t > t*(x),

clu) (x;t) == {
where we recall that cluy [X"’ (x)](x7;t) was defined in Definition 9.3.3.

9.3.2.3 Continuity properties of the MSPD

In this paragraph, we state some continuity properties for the MSPD in Propositions 9.3.16
and 9.3.17, the proofs of which are postponed to Subsection 9.A.2 in Appendix 9.A.

Proposition 9.3.16 (Time continuity and flow). For all x € D, the process (®(x;t))i>0 has
continuous trajectories in DE. Besides, (®(+;t))i>0 defines a flow in DZ.

Proposition 9.3.17 (Continuity with respect to the initial configuration). Let x € DZ. Then,
for all e > 0, there exists 6 > 0 such that, for all y € Bi(x,9),

sup |[@(x;t) — @(y;t)[[1 < e
t>0

9.3.2.4 Collisions

We now introduce some notations to describe the collisions between particles of different type
in the MSPD. For all x € D2, for all (a: 14,3 : j) € (P4)? such that o < 3, let us define

(e

TC?}}B:j (x) ;= inf{t > 0: O (x;t) > <I)§ (x;t)}.

Certainly, Assumption (USH) ensures that 7%/, (x) < +o0; while 755 (x) > 0 if and only if

a:i,B:7
(a:i,0:7) € R(x). Besides, it is easily checked that
+ oo if N(x) =0
t*(x) = ’
min{7% 55 (x), (14,8 j) € R(x)} if N(x) > 1.

For all (a: 14,8 : j) € R(x), 7! ;(x) is nothing but the time at which the particles a : i and

i,

B : j collide in the MSPD started at x. This collision takes place at the location

Soitp () = 7 (Tl (%)) = ®F (s 7ells (%)) € R,
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and in the sequel, we shall denote by

Zeoll (x) = (€2, (x), 7%, (x)) € R x (0, +00)

—a:i,0:j a:t,fB:] a:t,fB:]

the space-time point of collision between « : i and 3 : j.

Note that, if (a: 4,8 :j) € R(x), then Tg?g}ﬁ:j (x) = 0, which is somehow consistant with the
intuitive idea that the collision between « : i and 8 : j happened ‘before the origin of times’, which
we shall refer to as the virtual past.

Assumption (USH) implies that the collision times Toctol”ﬂ j (x) have properties similar to those

~coll

described in Lemma 9.3.11 for the collision times 7.7 5., (x) in the Typewise Sticky Particle Dy-
namics. As a consequence, we state the following lemma without a demonstration.

Lemma 9.3.18 (Collision times in the MSPD). Let x € D¢ and (o : i,8 : j) € R(x). Then
T;?Zl}ﬂ:j (x) >0, and:

e forall s € [O,Tg?}}g;j (x)],

] (x: 5) — D (x;8) = Lusn (155155 (%) — 9),

coll

o forall s > 755 5.:(x),

B (x; 5) — P (x;8) = Lusn(s — o015, (x))-

9.3.2.5 Local interactions

We finally explain why the interactions in the MSPD remain local, in the sense of §9.3.1.2.
Indeed, according to Definition 9.3.13, if N(x) > 1, then at the first instant ¢*(x) of a collision
between two particles of different type, the whole system restarts with new initial velocities deter-

mined by A(x*). Therefore, the velocities of all the particles could be modified.
The following lemma ensures that only the velocities of the particles involved in a collision with
particles of another type at time t*(x) are actually modified. It is first useful to define the set

T (x) = {7505, (x)  (a 18,81 j) € R(x),v: k€ {a:i,B:j}} (9.22)

of instants at which the particle «y : k collides with particles of different type in the MSPD started
at x. For all T > 0, we also let

T= AT,

L(x) = {0 if the set 7,.x(x) N [0,T") is empty, (9.23)

max(75.x(x) N [0,T)) otherwise.
Note that 0 < T~ A Tk(x) < T.
Lemma 9.3.19 (Locality of the interactions in the MSPD). Let T,.x(x) be defined as above.
(i) For ally: k€ P2, if t*(x) & T:k(x), then
A (x7) = A (%)
(ii) For all T >0, for ally € {1,...,d}, if K C {1,...,n} is such that, for all k € K,
clu/(x;T) Cv: K

(with an obvious notation for ~ : K ), then the process {®](x;t) : k € K} follows the Local
Sticky Particle Dynamics, in the sense of Definition 9.3.7, on the interval [to, T| with

= T .
to := max T A Tyu(x),
with initial velocity vector A\ = (\¢)kex defined by

vk € K, e = AL (@(x;t0)).
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Proof. We first address (i) and let  : k € PZ such that t*(x) € T,.x(x). Then, due to the definition
of A\J(x*), it suffices to check that, for all 4" # ~,

We describe the case v/ < v, the reverse case is symmetric. The equality above holds if and only
if, for all k&' € {1,...,n},

(v :K,y:k)eR(x) ifandonlyif (v :k,v:k)eR(x"),

that is to say
zl, <z} if and only if o), (x;t%(x)) < @] (x;t%(x)),
k k k k

which obviously holds true since t*(x) ¢ 7,.x(x) implies that the particle v : k does not collide
with any particle 7' : k" on [0, t*(x)].

The point (ii) is now an easy consequence of the choice of ¢y, which ensures that, for all k € K,
the particle v : k does not collide with a particle of another type in the time interval (to,7). O

9.4 The uniform L? stability estimates

This section is dedicated to the proof of Theorem 9.2.22, and contains four subsections.

The preliminary Subsection 9.4.1 exposes some useful consequences of the Genuine Nonlin-
earity assumption (GNL). In Subsection 9.4.2; we introduce the notion of locally homeomorphic
configurations, which describes pairs of configurations x, y such that the trajectories of the MSPD
started at x and y locally look alike, and we prove uniform L' and L stability estimates for
such locally homeomorphic pairs of configurations. This provides us with local stability results in
Proposition 9.4.7. We derive global stability results in Subsection 9.4.3, thanks to an interpolation
procedure allowing to integrate our local stability estimates along a continuous path joining arbi-
trary configurations x and y and containing enough locally homeomorphic pairs of configurations,
see Proposition 9.4.11. We complete the proof of Theorem 9.2.22 in Subsection 9.4.4 by using a
classical interpolation argument between L! and L.

9.4.1 A few consequences of Assumption (GNL)

In this paragraph, we discuss some consequences of Assumption (GNL) on the behaviour of
the MSPD.

Lemma 9.4.1 below addresses the time evolution of the composition of clusters. Without
Assumption (GNL), the properties of the Typewise Sticky Particle Dynamics (see (iii) in Re-
mark 9.3.4) ensure that, between collisions with clusters of another type, clusters can only grow.
However, at collisions with clusters of a different type, nothing prevents clusters from splitting.

Assumption (GNL) provides us with a better control of the behaviour of the clusters at col-
lisions: denoting by v the type of the cluster, then either 9,A” > 0, in which case the cluster
will always contain a single particle (even if several particles share the same initial position, they
instantaneously drift away from each other after time 0); or 9,A” < 0 and clusters never split at
collisions.

Lemma 9.4.1 (Growth of the clusters). Let x € D and v : k € P%. Under Assumptions (USH)
and (GNL),

e for all s,t >0 with s <t, clu)(x;s) C clu)(x;t),
e if O,\7 >0, then, for allt >0, clu](x;t) =~ : k.

Before proving Lemma 9.4.1 below, we need to define the notion of left limit for clusters.

Definition 9.4.2 (Left limit of clusters). Let x € D¢ and v : k € PL. For allt > 0, let

to :=1inf{s € [0,t) : Vr € [5,1), N(®(x;7)) = N(®(x; 5))}.
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Then we define the left limit in t of the cluster clu) (x;t) by

clul (x;t7) := U clu) (x; s).
Se[to,t)
The quantity tg introduced in Definition 9.4.2 is nothing but the largest time before ¢ at which
a collision between clusters of different types occur in the MSPD started at x, or 0 if no such
collisions occurs; so that, on the time interval [tg, ), the evolution of the particles is only governed
by the Typewise Sticky Particle Dynamics. The cluster clu](x;¢™) can differ from clu) (x;t) for
two reasons:
e the particle v : k collides with another particle of type ~, which increases the size of the
cluster,
e the particle v : k collides with particles of another type, which changes the velocity of the
particles.
It is a property of the Typewise Sticky Particle Dynamics that, if the particle  : k does not collide
with a particle of another type at time ¢, then clu) (x;¢~) C clu](x;t). The proof of Lemma 9.4.1
essentially consists in checking that, under Assumption (GNL), this property remains true at
collisions with particles of another type.

Proof of Lemma 9.4.1. We first remark that, for all x € D2, for all generical cluster v : k- -k
such that z) = = x% and k > k, we have, for all k, k' € {k,...,k} such that k < ¥/,

o if 9\ > 0 then A}, (x) > A (x),
e if 9, A7 < 0 then A, (x) < A} (x).
Indeed, let us assume for instance that 9,A7 > 0, then
_ k' /n
W)X = [ N0, ) 00 ()

k/n
S AR T Rt RS S RN

k/n
—n [ (X (@ (), (K = B/, ()
w=(k—1)/n

f)\'y(w,ly:k(x), e Wy ,wf‘f:k(x))) dw

k/n w+(k'—k)/n
:n/ / N (wh (), ., wd(x))dw'dw > 0,
w=(k—1)/n

w!'=

where we have used the fact that, since z}, = x], then wv/k,( ) =w)] ( ) for all 4" # .

Let us now prove Lemma 9.4.1 by induction on N(x). First, let x € D such that N(x) = 0.
Then, for all £ > 0, ®(x; t) = ®[A(x)](x; t), therefore the first part of the lemma is a straightforward
consequence of (111) in Remark 9.3.4. Let v €{l,...,d} such that 9,A\7 > 0. Let t > 0 and k, ..., k

be a set of consecutive indices in {1,...,n} such that
Pi(x;t) = = @%(x; t).
If £ > é then the stability condition in Definition 9.3.3 fails: indeed, in this case, for all j €
{k, ...,k — 1}, the remark at the beginning of the proof yields
- zjj 3,(x) < M (x) < X Z 3 (x
j—k+1 = J j1(x .

As a consequence, clu) (x;t) = v : k.
We now let N > 0 such that the lemma holds for all x € D¢ with N(x) < N, and fix x € D2

such that N(x) = N + 1. For all t € [0,t*(x)), ®(x;t) = B[A(x)](x;1), therefore applying the
argument above already yields
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e for all s,t € [0,t*(x)) with s < ¢, clu)(x;s) C clu) (x;1¢),

e if O,\7 > 0, then, for all t € [0,t*(x)), clu](x;t) =~ : k.
Besides, since N(x*) < N, where we recall that x* = ®(x;t*(x)), then

e for all s,t € [t*(x),+00) with s < ¢, clu)(x;s) C clu) (x;1¢),

e if 9,\7 > 0, then, for all t € [t*(x), +00), clu) (x;t) = : k.
As a consequence, if 9,A7 > 0, then, for all ¢ > 0, clu)(x;t) = v : k, and, to complete the proof, it
remains to check that for 9,A7 <0,

clu (x; ¢ (x)7) C clu](x;t"(x)),

where clu) (x;t*(x)~) is defined in Definition 9.4.2. Let v : k---k := clu) (x;¢*(x)”). By Defini-
tion 9.3.3, since
i (%7 (%)) = -+ = p(x 17 (%)),

it suffices to check that the stability condition is satisfied by the quantities X;(x*), . ,X%(x*) If
k = k this is trivial, else let j € {k, ...,k —1}. Then, by the remark at the beginning of the proof,

T S AR
——— > ALE) =N ) >N ) —— Y AL,
J E+1k’:k ki]k/:j-i-l

therefore the stability condition is satisfied and clu) (x;t*(x)~) C clu)(x;t*(x)). The proof is
completed. |

Let y € {1,...,d} and k, k' € {1,...,n} with k # k’. Under Assumption (GNL), Lemma 9.4.1
implies that, for all x € D2, for all v : k € PY, the set

{t € (0,+00) : clu) (x;t7) # clu) (x;¢)}

is finite (it is actually empty if 9,A7 < 0), and each element of this set corresponds to a collision
between (the cluster containing) the particle « : k and another cluster of type +.

In the sequel of this section, collisions between clusters of the same type shall be referred to as
self-interactions. The space-time point of a self-interaction between particles v : k and v : k¥’ shall
be denoted by

E:/ezlkf,'y:k’ (X) € R x (0’ +OO)

The following technical result shall be used in Subsection 9.4.3.

Lemma 9.4.3 (Continuity of the composition of clusters). Under Assumptions (USH) and (GNL),
for allx € D2, for all t € (0,t*(x)) such that

Vy: ke P2, clul (x;t7) = clu) (x;t),
then there exists n > 0 such that, for all y € By(x,1n),
Vy: k€ P2, clul (y; t) = clu] (x;¢).
Proof. Let us first fix ¢’ € (0,¢) such that, for all s € [/, ¢], for all v : k € P2, clu] (x; s) = clu} (x; 1).
For 1 > 0 small enough, for all v : k and 7’ : k" such that clu] (x;t) # cluz: (x; ),
Vs € [t',1], (@) (x;8) — 7', @l (x;8) + 1IN [@Z: (x;8) — 1, (I)Z’/ (x;8) + 7] = 0;

besides; by Lemma 9.A.4, one can also choose 7’ small enough to ensure that, for all y' €
B1(®(x;t'),n'), then y' € D, R(y’) = R(®(x;t')) and t*(y') > t' — t (we refer to 9.A.4 for a
recall of the definition of the set D).
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By Lemma 9.3.10 combined with the flow property of Proposition 9.3.16, these conditions imply
that, for all y’ € By (®(x;t'),7'),

Vseltht],  lo@yss—t) = (x5l < Iy — (x5 )[h < 0.

We now want to fix i/ small enough to satisfy the conditions above, and such that, for all
v: ke Plify € Bi(®(x;t'),n), then clu)(y’,t — ') = clul(x;t). If ;A7 > 0, then by
Lemma 9.4.1, for all k € {1,...,n}, clu)(y’,t —t') = clu/(x;t) = v : k and there is nothing to
prove. Let us assume that 9,A7 < 0. Let k € {1,...,n} and denote v : k---k = clu) (x;¢). For
7’ small enough, for all y’ € By (®(x;t'),n), for all s € [t',#], clu](y’;s —#') C v :k---k and this
inclusion is an equality as soon as @] (y';s —t') = @%(y’; s —t'). Let us write

s—t’

D)(y';s—t) = ylg + / v (y'sr)dr,
r=0
s—t’
OU(y'ss —t) =y +/ vl (y'sr)dr,
r=0

and note that, by the same computation as at the beginning of the proof of Lemma 9.4.1, as long
as @) (y';s —t') < ©L(y';s —t'), then for all r € [0, 5 — '],

1
v (y's7) = i (ys7) = ~inf(=0,A7) =: p7 > 0.

Taking o' < p7(t —t'), for all v such that 9,7 < 0, therefore ensures that for all v : &, clu](y';t —
t') = :k---k with the same notations as above. By Proposition 9.3.17, there exists > 0 such
that, for all y € By1(x,7), then ®(y;t') € B1(®(x;t'),n’); which completes the proof. O

9.4.2 Local stability estimates

In this subsection, we establish local L! and L stability estimates on the trajectory of the
MSPD started at configurations x and y satisfying a certain local homeomorphic property. These
local stability results are stated in Proposition 9.4.7.

Let us give a brief overview of our argument. Given arbitrary configurations x and y in D2,
the properties of the Typewise Sticky Particle Dynamics described in Section 9.3 allow to derive
estimates on the distances ||®(x;t) — ®(y;t)||1 and ||P(x;t) — D(y;t)||oo under the condition that,
at all time ¢ > 0, either R(®(x;t)) = R(®(y;t)), i-e. the global ordering of the particles is the
same in both systems, or there exist two clusters a and b, with type(a) < type(d), such that the
sets R(®(x;t)) and R(®(y;t)) only differ by the subset a x b, i.e. the clusters a and b have collided
in one of the two systems but not yet in the other, while all the other particles are in the same
order in both systems.

This condition is introduced in §9.4.2.2 and called Local Homeomorphic condition (LHM).
A necessary condition for this property to hold is that, in both the MSPD started at x and y,
collisions between clusters of different type be binary, that is to say, do not involve more than two
types of particles. Such configurations are said binary colliding, and are studied in §9.4.2.1. In
particular, we introduce the notion of collision graph for a binary colliding configuration, which is
the natural structure encoding the geometric properties of the trajectory of the MSPD started at
this configuration.

Then, for two configurations x, y satisfying Condition (LHM), we prove in §9.4.2.3 and §9.4.2.4
that the study of both ||®(x;¢) — ®(y;t)||1 and ||®(x;t) — P(y;t)||eo reduces to the resolution of
a system of recursive inequations, set on the common collision graph of x and y. This system is
solved in §9.4.2.5.

9.4.2.1 Binary colliding configurations

Let us first denote by D the set of configurations x € D¢ such that, for all (o : i, 3 : j) € (P%)?
with a < 3, then z§* # xf Certainly, D is a dense open subset of D¢, The set B of binary colliding
configurations is defined as follows.
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Definition 9.4.4 (Binary colliding configurations). The set of binary colliding configurations
B C D2 is defined by x € B if and only if x € D and either N(x) = 0, or N(x) > 1 and, for all

(a:4,8:7),(a 4,0 :j) €R(x), then Egoilﬁ](x) = Eg‘:{ﬁ,ﬁ,u—, (x) implies o/ = « and ' = 5.

We recall that the space-time collision points Egoil 5.;(x) are defined in §9.3.2.4. Note that if
d <2, then B=D.

We now introduce a few notions to describe binary colliding configurations.

9.4.2.1.1 Collisions Let x € B, with N(x) > 1. We define the equivalence relation ~ on R(x)
by, for all (a:4,8:7), (¢ : 7,8 : j') € R(x),

(a:i,8:5)~ (4,8 :5) if and only if 25, (x) = EX0N 4 (%)

Let C(x) := R(x)/ ~ refer to the set of equivalence classes and M(x) > 1 denote the cardinality
of C(x). Each equivalence class ¢ € C(x) is naturally associated with a space-time point

E(x;¢) = (§(x3¢), T'(x5¢)) € R x (0, +00),
defined by
E(x;¢) = E‘;"ilﬁj(x) for any (a:4,5:7) € c.
In addition, Definition 9.4.4 implies that, for all ¢ € C(x), there exist a, 8 € {1,...,d} such
that o < 8 and, for all (o/ :¢',8": j') € ¢, &/ = a and §’ = . Letting

a:={a:icP?:38:5€ P (a:i,B:j)€c},
b:={B:jeP?:3a:ic P (a:i,B:j)ec}
it is easily checked that ¢ = a x b. Note that some of the clusters cluf(x; T'(x;¢)”) for a: i € a (or
cluf (x;T(x;¢)”) for B8 : j € b) can be distinct when self-interactions occur at the same space-time

point as the collision. However, after the collision, Lemma 9.4.1 ensures that the clusters remain
formed and therefore

V(a:4,8:7) €, cluf (x; T(x;¢)) = a, cluf(x;T(x; ¢)) =b.

In the sequel, we shall simply refer to the equivalence classes as collisions, and say that a cluster
¢ is involved in the collision ¢ = a x b if ¢ € {a, b}.
If x € B and N(x) = 0, we simply define M(x) = 0.

9.4.2.1.2 Collision graph Let x € B. For all v : k € P¢, we denote by C..;(x) the subset
of C(x) composed by the collisions ¢ = a x b such that v : k € a Ub. Note that C,.x(x) is empty
if the particle « : k does not collide with a particle of another type in the MSPD started at x.
Clearly, two distinct collisions ¢/, ¢ € C,.5(x) have distinct instants of collision T'(x;¢') # T'(x;¢),
since two distinct collisions involving the same particle -y : k cannot occur at the same time. As a
consequence, the increasing order of instants of collisions induces a total order on the set C..x(x),
to which we shall only refer as the order of collisions.
For all v € {1,...,d}, for all ¢, ¢ € C(x), we shall write

¢ B

whenever there exists k € {1,...,n} such that ¢,c € C,.x(x) and ¢ is the next element after ¢

for the order of collisions on C..x(x). Note that Lemma 9.4.1 ensures that if ¢’ = ¢, then for all
ke {l,...,n} such that ¢, c € C,.x(x), ¢ is the next element after ¢’ for the order of collisions on
Cyp(x).

The collision graph of a binary colliding configuration x is now defined as the oriented graph
with set of vertices C(x), and set of arcs induced by the relations ¢/ = ¢. If N(x) = 0 then the
collision graph of x is nothing but the empty graph.

By construction, an arc is naturally associated with at least a type v € {1,...,d}, and since
Assumption (USH) ensures that two particles of distinct type can only collide once, each arc
actually has a unique type. Besides, since ¢/ 5 ¢ implies that T'(x;¢/) < T(x;¢), there is no
oriented cycle in the collision graph.
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9.4.2.1.3 Numbering the collisions Let us now explain how to number the collisions ¢ €
C(x) in a consistant fashion with the partial order induced by the orientation of the collision graph.

Lemma 9.4.5 (Numbering the collisions). Under Assumptions (USH) and (GNL), let x € B,
with M := M(x) > 1. Then the set of collisions C(x) can be numbered in such a fashion ci,...,cpr
that, for allm’,m € {1,..., M} satisfying

Cm/ = Cmy
for some v € {1,...,d}, then m' < m.

Proof. Let us call leaves the collisions ¢ € C(x) such that there is no ¢ € C(x) pointing toward ¢
in the collision graph. Clearly, ¢ is a leaf if and only if, for all v : k € PZ such that ¢ € C,.(x),
¢ is the minimal element of C,.;x(x) for the order of collisions. Since there is no oriented cycle in
the collision graph, the set of leaves is nonempty, and this property remains true for all nonempty
subgraph of the collision graph obtained by removing a leaf and its adjacent arcs.

We now proceed as follows: we choose one leaf, call it ¢;, remove it from the graph together
with all the adjacent arcs, and restart the construction as long as the graph is nonempty. At the
m-th step, the selected collision ¢, is minimal among the remaining elements of all the sets C..x
to which it belongs for the order of collisions. This ensures that the numbering is consistent with
the partial order induced by the orientation of the collision graph. O

Remark 9.4.6. An effective way to proceed as in the proof of Lemma 9.4.5 is to number the
collisions in the increasing order of collision times. If two distinct collisions ¢/, ¢ have the same
collision time, then they cannot involve the same particle; therefore, any sort of such ties leads to
a numbering satisfying the conclusion of Lemma 9.4.5.

9.4.2.1.4 Last collision time For all v : k € PZ, we finally define Tgfzx(x) by

T;“%X(X) =0
if C,.x(x) is empty, and
ne(x) = ax T(x;c
T (%) X (x;¢)

otherwise.

9.4.2.2 Statement of the local stability estimates

Two configurations x,y € D¢ are said to satisfy the Local Homeomorphic condition (LHM) if:
(LHM-1) x,y € B and R(x) = R(y) =: R,
(LHM-2) x and y have the same collision graph, which in particular implies C(x) = C(y) =: C,
(LHM-3) for all ¢ € C, letting T~ (¢) := T'(x;¢) AT (y;¢) and TF(¢) := T'(x;¢) V T'(y;¢),
(a) for all arc ¢ 5 ¢, TT(¢') < T (c),
(b) for all («:4,8:j) €Ec=axb,

VEe [T (), TH(q)],  cuf(xit) =clul(y;t) =a, clu}(x;t) = cluf(y;t) = 0.

The time intervals [T~ (¢), T (c)] shall be referred to as collision intervals.
We are now able to state our local stability estimates.

Proposition 9.4.7 (Local stability estimates). Under Assumptions (LC), (USH) and (GNL), for
all x,y € D% satisfying Condition (LHM), then

sup [[@(x;t) — 2(y;t)|[1 < La]]x =yl
t>

sup [[@(x;1) — P(y;t)||oo < Lool[X — ¥lloos
t>
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where
L1:=(1440(d—1)exp(O(d—1))) exp (2@2d(d —1)exp (©(d — 1))) , (9.24)
Loo = (14 OdLy) exp(O(d — 1)), '
and I
_ Lic
[CRES Tos’

The proof of Proposition 9.4.7 is detailed in §9.4.2.3, §9.4.2.4 and §9.4.2.5 below. Throughout
these paragraphs, we fix x,y € D? satisfying Condition (LHM) and adopt the notations of Con-
dition (LHM) by denoting by R the set R(x) = R(y), by N = N(x) = N(y) its cardinality, by
C the set of collisions C(x) = C(y) and by M = M(x) = M(y) its cardinality. Besides, Condi-
tion (LHM-2) ensures that, for all 7 : k € PZ, the sets C,..(x) and C...(y) are the same, with the
same order of collisions. These sets are denoted by C.,.;. We finally denote

YRS = T () V TR ()

For all t >0 and v : k € PZ, we define
dp(t) = @) (x3) — @) (y3t)],
so that

1
1B(x;t) = @(y; )i == > di(t),  ||®(xt) = (yt)l|eo = sup di(t).
n ke Pd v:kePg

In §9.4.2.3 we provide local (in time) estimates on the growth of d/(t) inside and outside
collision intervals. In §9.4.2.4, we introduce an auziliary system that shall allow us to integrate
these estimates along the whole sequence of collisions, and we explain how this auxiliary system
can be coupled with the family of processes {(d)(t))i>0,7 : k € PZ}. In §9.4.2.5, we obtain a
bound on the auxiliary system that is transferred to the original processes ||®(x;t) — ®(y;t)||; and
[|®(x;t) — P(y;t)]|co thanks to the coupling argument developed in §9.4.2.4.

9.4.2.3 Preliminary estimates

Let us first collect the following preliminary estimates on the joint evolution of the family of
processes {(d} (t))¢>0,7 : k € P4}

Lemma 9.4.8 (Preliminary estimates). Let the assumptions of Proposition 9.4.7 hold.
(i) For allc=axbe C, for all t € [T~ (c), T+ (c)],

S a0 < (14 201) X arr @)+ Sl ¥ a0

ai€a ai€a B:j€Db

5 © B (- © o (=
S @< (1+ 20) X ar @)+ 2p Y (o),
B:j€b B:j€b ai€a

where we recall that © = Ly,c/Lysu-
(it) Let ¢ =axbe C, c€ {a,b} and v :=type(c). For ally: k € c, let us define t/; = T*(c')
if there exists ¢ € C,.i such that ¢ ¢, and tiy:k := 0 otherwise. Then, for all t <T~(c),

D Lpse i) < D Tpse 3di(E ),

vy:k€c vy:k€c

Y , Y (+
$UD Lz g di(t) < S0P Lz 3 i (t)-
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(#i) For allt >0, for all v in {1,...,d},

n n
D Lgsrmeydi(8) < Y Lgsrme i (THE),
k=1 k=1

su 1 max dV t) < su 1 max d’y H}ax
1§kI§)n {tZT’y:k } k( ) = 1§k2n {tzT—y;k } k( v:k )

Let us highlight the fact that . ; and T play similar roles in the respective cases (ii) and (iii).
Besides, owing to Condition (LHM-3b), in case (i), for all ¢ € [T~ (c), T (c)], all the quantities
d$(t), o : i € am, have the same value; similarly, all the quantities df (t), B : j € by, have the same
value. Hence, we also have

sup d2(0) < (14 101} sup dE(T(0) + Slal sup d7(T(0)

ai€a ai€a n B:jEb

] (C]
sup 7(0) < (14 2ol ) sup a2 () + 1o sup (7 (0),
B:jeb n B:j€b n ai€a

Proof of Lemma 9.4.8. We first address (i) and fix ¢ = a x b € C. Let us use (ii) in Lemma 9.3.19
to prove that the process {®%(x;t) : a : i € a} follows the Local Sticky Particle Dynamics on
[T~ (¢), T (c)]. By Condition (LHM-3b), for all a : 4 € a, clui*(x; 7% (¢)) = a. Besides, it follows
from Condition (LHM-3a) that the set 74.(x) as is defined in (9.22) has an empty intersection
with (77 (c),T"(c)). As a consequence, Lemma 9.3.19 asserts that the process {®¢(x;t) : « :
i € a} follows the Local Sticky Particle Dynamics on [T~ (¢), T (¢)], with initial velocity vector
(X?(x’))mea, where x' := ®(x; T (c)); similarly, the process {®¢(y;t) : @ : i € a} follows the
Local Sticky Particle Dynamics on [T~ (c), T (c)], with initial velocity vector (A% (y"))asica, Where
y' :=®(y; T~ (c)). We now apply (i) in Proposition 9.3.8 and obtain, for all ¢ € [T~ (¢), T (¢)],
DA< Y AT+ (=T () Y M) = AT )

)

< D AT+ (THO =T7(0) 3o W) =X

We shall estimate T (¢) — 7'~ (c¢) and the distance between initial velocity vectors separately.
On the one hand, let us fix (a: 4,5 : j) € a x b and assume for instance that T~ (¢) = T'(x;¢) <
T(y;c) =TT (c). Then ®¢(y; 7" (c)) = @f(y; T (c)), which rewrites

T+ ()
O (v;T7(c) = 2 (y: T (0)) = /_T( )(v?(y; s) = o] (yis))ds

owing to (9.13). On account of (9.21), the right-hand side above is larger than Lysu (Tt (c) —
T~ (c)), so that

TH0) = T(0) < (¥ (v T () — 97 (v: T ()

USH

= (B T ()~ B s T () + B T (0) — B (5 T (1))
USH

< (190 T (0) ~ B} T ()] + 256 T () — 5 (v, T (©)])
USH
1 _ S

= foe (€T (@) +az (@),

where we have used the fact that @?(X; T (c)) = ®¢(x; T (c)) since T~ (¢) = T(x;¢). Note that
the right-hand side above does not actually depend on the choice of (« : 4,3 : j) € a x b. Indeed,
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owing to Condition (LHM-3b), all the quantities d¥(T~(c)), o : i € a are equal, and all the
quantities df(T_(c)), B :j € b are equal. Therefore, we rather write

TH(e) =T (c) <

o IO+ o Y T (o)

LUSH fes

On the other hand, let us remark that, for all a: 7 € a,

o forall v ¢ {04,5} o (X) = wai(y"),

o loga() = wii )l < [bl/n.
Indeed, by the definition of w] .(x") and w_ ,(y’), the first item above easily follows if we check
that, for all v : k € P? such that v & {a, 8} (say v < a),

z)) <z if and only if  y,' <y

But let us assume for instance that xg < z* and yg > yi®. Then, the collision with v : k comes
after ¢ in C,.;(x), while it is either not in Ca.;(y), or it comes before ¢. This is a contradiction
with Condition (LHM-2). As far as the second point above is concerned, the same argument shows
that the particles 3 : j that do not belong to b have the same contribution in

1
_Z ’“>1/B}

3

and in
1 n
B AN
wa:i(y ) - n Zl ]l{yéaZy;B}a
j=

which is enough for the expected inequality to hold.
As a consequence, it follows from the definition of A and Assumption (LC) that, for all a : 4 € a,

LLC Lic,

A () = AX(y)| < 22,

so that we finally obtain

IRAUED SEACRC = £ D S CIES D RO}

ai€a ai€a B:7€b

whence the first inequality in the statement of (i) above. The second inequality follows by sym-
metry.

Let us now address (ii) and fix c = a x b € C, ¢ € {a,b} and v := type(c). As a preliminary
step, let us point out the fact that, for all v : k € ¢, the quantity tfw . defined above easily rewrites

= max{ (T ()™ A To3), (T~ (0)" A Ty}
where we recall the definition (9.23) of T~ A T.,(x) and T~ A T5.x(y). As a consequence, on the
time interval (tfw e L7 (¢)), the particle v : k does not collide with any particle of another type,
neither in the MSPD started at x nor in the MSPD started at y.

Let us denote by ] < --- < t; the ordered elements of the set {t k,'y k € c¢}. For all
Il € {1,...,r}, we denote by ¢ the set of particles v : k such that t’ x = t;. We also define
t..1:=T7(c) > t,.. Thanks to Condition (LHM-3b), for all I € {1,... 7“} the processes

{®l(xt):v:keciU---Ug} and {®l(y;t):v:kecU---Ug}
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follow the Local Sticky Particle Dynamics on [t}, ¢}, ,], with the same initial velocity vectors. As a

consequence, (i) in Proposition 9.3.8 yields, for all t € [t;, ], ],

Yo Ly pdit)= > )

vy:k€c vy:k€ciU---Ucy
Y+ — Y (4! Y (4!
< Y qW= Y )+ Y dith),
vy:k€ciU---Ucy vy:k€ciU---Uey—1 ~y:k€cy

therefore we obtain by induction that, for all ¢ < T (c),

S Mg g @O <D0 ST Al ) = > ().

vy:k€c =1 v:ke€c vy:kEc

Applying (ii) in Proposition 9.3.8 instead of (i), we similarly obtain

sup ]l{tzt;:k}d'g(t) < sup d’]l/(tiy:k)'
vy:kec vy:kec

Finally, (iii) is obtained by the same arguments as (ii): fixing v € {1,...,d} and denoting
by Ty < .-+ < T, the ordered elements of the set {TJ/*,k € {1,...,n}}, we obtain that, for all
I € {1,...,r}, the processes {®](x;t) : T0p* < Ti} and {®(y;t) : T < Ti} follow the Local
Sticky Particle Dynamics on [T}, T;+1) (where we take the convention that T,y; = 400), with the
same initial velocity vector. The conclusion follows in the same fashion as for (ii). |

9.4.2.4 Coupling with an auxiliary system

We first give a heuristic description of our argument.
Let ¢ = a x b € C. Applying the point (i) of Lemma 9.4.8 with ¢ = T (c¢), we obtain

> axre) = (14 1) X @)+ Slal ¥ afir o),

ai€a B:j€b

S ) < (14 2l ) X @)+ S0 Y ar o)

B:jEb B:j€Db ai€a

ai€a

(9.25)

and applying the point (ii) of Lemma 9.4.8 with ¢t = T (c) yields

ST ()< D> D AT+ Y d(0),

ai€a o S ui€a’ ai€a,t! =0

SN ()< > Y dirtn+ D> ),

B:jeb o B BiEY Bij€b,tl, =0

(9.26)

where a’ (resp. V') in the right-hand side refers to the cluster of type a (resp. () involved in the
collision ¢’.

For all ¢,¢ € C such that ¢/ = ¢, we denote (¢, ¢’) % (c,¢) where ¢ is the cluster of type 7
involved in the collision ¢/, and ¢ is the cluster of type v involved in the collision ¢. Besides, for
all v : k € P4 such that C..;, is nonempty, we denote (e,7 : k) 2 (¢, ¢), where ¢ is the cluster of
type v involved in the minimal collision ¢ of C.,.;; for the order of collisions, and e is a phantom
collision.

For all the pairs (¢, ¢) (including the pairs (e, : k)) defined above, let us denote

D(c,c) ==Y di(T™(c)),

vy:k€c
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where we take the convention that 7" (e) = 0. Then the right-hand side of both lines of (9.26)
rewrites under the more compact form

SN drTty+ >, dro)= > D(.d),

o % aii€a ai€a,t! =0 (¢,a") 3 (c,a)
S Y sres Y £0- Y )
crgc&jeb, B:j€b,ty, ;=0 (c’,b’)g(c,b)

and (9.25) now writes as the system of recursive inequations

D(c,a) < (1 + %|b|) Z D(¢,a) + %|a| Z D(¢, ),

(¢/,a") % (c,a) 605 (e,
o o (¢/,b) = (¢,b) (927)
Die,b) < [1+= D( V) + =1b D(d,d
eh<(1+26) X DEHETH Y DE)
(" 0') 2 (e,b) (¢/,a") = (c,a)

on the quantities D(c,a) and D(c,b), with the recursive structure of the collision graph completed
with the phantom collisions.

The auxiliary system that we introduce in this paragraph solves the system of recursive equa-
tions corresponding to (9.27), and therefore is expected to provide upper bounds on the quantities
D(c,¢), from which we shall finally obtain bounds on the evolution of ||®(x;t) — ®(y;t)||1 and
[|®(x;t) — P(y;t)||oo- This auxiliary system should naturally be defined as a sequence of positive
numbers (that we shall understand as masses) indiced by the pairs (c,¢) such that either ¢ = o
and c is a cluster containing a single particle, or ¢ € C' and c is a cluster involved in the collision c.

It is however more convenient to encode the structure of the collision graph through the num-

bering of collisions provided by Lemma 9.4.5, and therefore we let C' = {cq,...,cpr} be such a
numbering. The index 0 refers to phantom collisions. Then, the auxiliary system takes the form of
a sequence of functions Ejy, ..., Eys respectively defined on the sets Uy, ..., U of useful generical

clusters such that, at each step m € {1,..., M}, am,bm € Uy, and Ey,(am), Em (b)) are defined
by the recursive equations corresponding to (9.27), while the other elements of U, are:

e cither clusters ¢ such that there exists m’ € {1,...,m — 1} such that ¢ € {an,,bn/} and c
is not involved in the collisions ¢,/ 41, ..., tm—1, in which case E,,(c) = Ey(c) records the
mass of the cluster at its latest collision,

e or clusters containing a single particle v : & which is not involved in any of the collisions
€1, .., Cm, in which case E,, (v : k) = d}(0).

Let us insist on the fact that the set of useful generical clusters U,,, does generally not describe the
set of actual clusters in the MSPD started at x and y on the collision interval [T~ (¢, ), T (¢, )]; on
this interval, Condition (LHM-3b) ensures that a,, and by, are actual clusters in both the MSPD
started at x and y, but the other particles may belong to clusters of distinct compositions in the
MSPD started at x and in the MSPD started at y. Therefore U, records clusters as they were at
their latest collision before c,,,.

A formal construction of both the set of useful clusters and the auxiliary system is detailed
below.

9.4.2.4.1 The set of useful generical clusters U,, For all m € {0,..., M}, we define the
partition U, of P? into useful generical clusters as follows: Uy is the set of all single particles
v : k€ P¢ and for all m € {1,..., M}, U, is derived from U,,_, by aggregating the generical
clusters composing a.,,, together and the generical clusters composing b,,, together. Formally,

[ ] UO:Pg,
e for allm e {1,..., M}, we define

o = {a' €Up—1:d Can}, I:L = {b €Up_1:V Cbn},
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and let

U, = (um_1 \ (& U b?)) U {am, b}

It is straightforward to check that, for all m € {1,..., M}, if ¢ € Uy, \ {@m,bm}, then ¢ € Up, 1.
Then we also define
¢ = {c},

so that < is well defined on U,, and takes its values in the set of subsets of U,,_1. Note that, for

all m’,m € {1,..., M} such that ¢, 2 ¢, for some v € {1,...,d}, denoting by ¢’ the cluster of
type v involved in the collision ¢,,» and by c the cluster of type v involved in the collision ¢,,, then
= Unm/ U415 oo U —1 and ¢ € %

9.4.2.4.2 Definition of the auxiliary system We are now ready to introduce our auxiliary
system. It is the sequence of functions (E,,)o<m<n such that E,, is defined on U, as follows:

o forall c=7v:kely, Eo(c) =d](0),
o forallme {1,..., M},

(C]
Em(am) = (1+E|bm|) Z Em— 1 _|am| Z m— 1 bl

a’' €& b/em
(C] S}
Ep(bm) = 1+ —|an| Ep1 (V) + — b Em—1(
n n
b €bm o€

and, for all ¢ € U, \ {am, b}, Em(c) = Epm—1(c).
Note that, for all m € {0,..., M}, for all ¢ € Up,, Ep(c) > 0, and for m € {1,..., M}, then
)= Y Ena(d) (9.28)
e
The total mass of the auxiliary system is defined, for all m € {0,..., M}, by
Em = Z E,.(c)
cEUm
In particular,
&o
— = —. 9.29
he—ylh =& (9.29)

Besides, as a straightforward consequence of (9.28), for all m € {1,..., M}, &, > Em—1.
The coupling between the auxiliary system and the family of processes {(d} (t))¢>0,7 : k € P2}
works as follows.

Lemma 9.4.9 (Coupling with the auxiliary system). Let us assume that the conditions of Propo-
sition 9.4.7 hold.

(i) For allme{1,...,M},

> di(t) < Em(am), > d(t) < En(bm).

[T (Cm) T+(Cm)] Q:i€am tE[T (‘m) T+(cm)] B:jEbm

(i) For allt >0,

1 Enm £
120G t) = 2(y: )l = ~ Soodqty< sup 2=

yikepd 0<m<M T n
(i) For allt >0,

1
[@(x:t) = ®(y;t)|loo = sup dj(t) < sup sup —Ep(c).
yikePd 0<m< M cely, |
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Proof. The proof of (i) works by induction on m € {1,...,M}. Let m € {1,..., M} such that, if
m > 2, then

Z d?(TJr(cm’)) < By (am’)’ Z df(TJr(cm’)) < Epy (bm’)a
a:i€a,, B:j€b,,
for all m’ € {1,...,m —1}. By (i) in Lemma 9.4.8,

> oat (1+%|bm|) > dy(T |am| > dir

te[T— (Em) T+(Em) Qi€am i€am B1jE€bm

and by (ii) in Lemma 9.4.8,

Do AT (em) < Y di(th), S AT (en) < D di(thy),

a:i€am Q€M B:j€bm B:jE€Ebm

where ¢/, is TF(¢) if there exists ¢/ € C,.; such that ¢/ % ¢, and 0 otherwise; t,/ﬁzj in the second

inequality is defined similarly.
Let m1,...,mg < m — 1 be the indices of all the collisions ¢ such that ¢ = ¢,,, and for all
ke {1,...,K}, let us denote by aj,, the cluster of type a involved in the collision ¢,,,. Then

Yoodtu) =) > T )+ Y di0).

ai€am k=1 a:ieaink i€yt =0
Forall k € {1,..., K}, my <m — 1 so that

Y (T (em,)) < Emy(a),) =+ = Em-a(al,,),

o zEamk

while, for all « : 7 such that /., =0,

42(0) = Folasi) = -+ = Em-(a: ).
Clearly,
g;z:{a;nl,..., Uy, Y UA{a 0 € ap 2 1, = 0},
therefore
N d(th) < Y Emal(d).
at€am a €&
Similarly,
Yo Bt < Y Ena(d)
B:j€bm b’€l<)_m

and the conclusion follows from the definition of the auxiliary system.
We now address (ii) and (iii). Let us fix t > 0 and note that, at time ¢, a particle v : k € P2 is
in exactly one of the following cases:

1. there exists ¢ € Cy.; such that T~ (¢) < ¢ < T*(c),

2. t <0 and, for all ¢ € Co, ¢ & [T (¢), T (c)].

3. t> T;I}gX.

If the particle ~ : k is in case (1), let us note that, by Condition (LHM-3a), there is only one
¢ € Cy.; such that T (¢) <t < T7(c). Let ¢ denote the cluster of type 7 involved in this collision,

and p(c) denote the number of the collision ¢. Then, every particle v : k' € ¢ is also in case (1),
and by (i),

1
Z dz/ (t) < Eu(c) (C)a sup dzl (t) < HEH(C) (C),

ot
~ikl€ce vy:k'€c
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where the second inequality follows from the fact that all the quantities d}, (t) have the same value
for v : k' € c¢. Let us denote by Y1) the set of clusters ¢ obtained from all the particles v : k in
case (1). Then

Z dz(t)ﬁ Z E,u(c)(c)a sup dz(t) < sup —F

. Ic] u(e)(©)-
~ : k in case (1) ceu ) v+ k in case (1) ced@)

In case (2), let us denote by ¢ the smallest collision ¢ € C..; (for the order of collisions) such
that ¢ < T (c). Let ¢ refer to the cluster of type 7 involved in this collision, and, for all v : k" € ¢,
let us define t;:k, as in Lemma 9.4.8. Then, by (ii) in Lemma 9.4.8,

Z ]l{t’ B <ty dy (t) Z 11{t' <ty (¢ Yok )s

v:k'Ec v:k'€c
sup Ly <ty dy(t) < SUP Ly, <ty i (t ),
v:k'€E€c Ec

where the indicator functions allow to retain only the particles of ¢ that do not undergo collisions
on the time interval [¢t, T~ (c)]. For all such particle, that is, for all v : ¥’ € ¢ such that t’v:k, <t,

o if £/ ;, =0, then we let ¢ =~ : k" and u(c') =0,
e otherwise there exists ¢/ € C,.p such that ¢ 2 ¢, in this case we denote by ¢’ the cluster of
type v involved in the collision ¢ and let pu(c’) refer to the number of the collision ¢’.

In all cases, ¢’ € U,,(cr), and by (i),

Z dz,(t;:k,) < Een(d), sup d),(t vk’) E e (c).

~v:k'ec y:k'€c! n | /|

Denoting by U the set of clusters ¢ obtained as above from particles v : k in case (2), we
conclude that

1
Z d; (1) < Z E#(C/)(c’), sup d)(t) < sup —,E#(C/)(c’).
v : k in case (2) e v : k in case (2) e |C |
In case (3),

o if C,.; is empty, we define ¢ = v : k and p(c) =0,
e otherwise, we let ¢ be the largest collision in C.; and denote by c the cluster of type ~
involved in the collision ¢, while u(c) refers to the number of the collision .

Then ¢ € U,y and, by (i),

max max 1
> AL (TR < By (o), sup dy, (T&5) < HE#(C)(C).

’
~ik e vy:k'€c

Denoting by U®) the set of clusters ¢ obtained as above from particles 7 : k in case (3), we use (iii)
in Lemma 9.4.8 to conclude that

PO RS HTm) < Y By

v : k in case (3) ~ : k in case (%) ceU®)

sup dj(t) < sup dI(Ty) < sup —Epe(c).
v : k in case (3) v : k in case (3) ceU® |C|

Let us assemble the results obtained for cases (1), (2) and (3). Defining U* := UM U@ LU®),
we have shown that

Z dZ(t) < Z E,u(c)(c)a sup dZ(t) < sup

1
_E#(C) (C),
y:kePZ ceu* y:kePg ceu~ |c]

c
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and we now want to bound the right-hand sides of both inequalities by above. For the second
inequality, it is trivial that

1 1
sup —E,)(c) < sup sup —En(c),
ceu~ |c| 0<m<M cel,, |€|

and therefore the proof of (iii) is completed.

As far as (ii) is concerned, let us first note that, by the construction of V), 1®) and U®), y*
induces a partition of P¢. Then the conclusion of the proof stems from the following remark: for
all set U* of generalised clusters inducing a partition of P¢ and such that there exists a function

U —={0,...,M}

satisfying the property that
VCEU*, CGU#(C),

then

Z Eu(c) (C) <&wm.

ceU*
The latter remark easily follows from the construction of the sequence Uy, ...,Upr; combined
with (9.28). This yields (ii) and completes the proof. O

9.4.2.5 Bounding the total mass

As a consequence of Lemma 9.4.9, the local stability estimates of Proposition 9.4.7 are derived
from the following estimation on the total mass of the auxiliary system.

Lemma 9.4.10 (Estimation on the total mass). Under the assumptions of Proposition 9.4.7, the
total mass of the auxiliary system satisfies

Em < L&y,

where Ly is defined by (9.24). Besides,

1
sup sup —Em(C) <Ly sup dZ(O),
0<m<M c€lty, |C] y:kePg

where Lo is defined by (9.24).

The conclusion of Proposition 9.4.7 easily follows from the combination of Lemma 9.4.10
and (9.29).

Before proving Lemma 9.4.10, we introduce the notion of history of a cluster ¢ € U,, as the
set Hm(c) of generical clusters ¢ in U, with a different type from ¢ and such that, for all pair of
particles in ¢ x ¢, if these particles collide in the MSPD started at x (or, equivalently, y), then
the number of the collision belongs to {1,...,m}. If these particles do not collide in the MSPD
started at x (or, equivalently, y), then we think of this collision as having occurred in the virtual
past, and therefore include the cluster ¢’ in the history of ¢ as well.

Formally, we first define the sets Ry, ..., Ry by

Ry:=R=cU---Ucy,
Ry Z:Ro\C1:C2|_|'-'|_|C]u,

RM = @7

so that R,, contains the pairs of particles that will collide during the (m + 1)-th,..., M-th colli-
sions. Certainly, for a,b € U,, with a = type(a) < type(b) = 3, then whether (o : 4,8 :4) € R,, or
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(a:4,8:1) € Ry, does not depend on the choice of (o : ¢, : j) € a x b, and therefore we shall
commit a slight abuse of notation and write either a X b € R, or a X b & R,,.
For all m € {0,..., M}, for all ¢ € U,,,, we can now define

Hum(c) :={a € Uy, : type(a) < type(c),a x ¢ € Ry} U{b € Uy, : type(c) < type(b),c X b & Ry, }.

It is easily checked that, for all m € {1,..., M}, if ¢ € Up, \ {@m, bm }, then

Hmale)= || o, (9.30)

while by, € Hin(am), am € Hpm(bm) and

H
Vo' € by Hmo1(a)) = Homlam) \ {bm}, I €bpm, Hum1(0') = Hun(bm) \ {am}. (9.31)
We are now able to prove Lemma 9.4.10.

Proof of Lemma 9./.10. We first prove the following key estimation: for all m € {0,..., M}, for
all ¢ € Uy,

2 betm (o) 10l
En(c) < <1+ %) " > d0 —|c| > En®)]. (9.32)

v:k€c bEH m (c)

The proof works by induction on m € {0,...,M}. For m = 0, the inequality is trivial. Now let
m € {1,..., M} such that, for all ¢ € Uy,_1,

('-‘) Zb/EHWLfl(C/) |b/‘ (-—)
Ena@) < (142) S a0+ 2 Y B

y:kec! b eHm—1(c’)

Let us fix ¢ € U,,. On the one hand, if ¢ € {am, b},

Ser,, i V]

Ep(c) = En_1(c) < <1+ %) ' > d0)+ %q > Ena(t)

v:kec b'€Hm—1(c)

By (9.30),

Yoo Wl= 2 X W= Y0 Bl

Y EHom_1(c) bEHm () prey bEH n (c)

and similarly,

Y Bet)= XY Eaa®)< 3 Bl

b’ €Hm—1(c) beEHm(c) p 'y be“rtm(c)

thanks to (9.28). This yields (9.32).
On the other hand, if ¢ = a,,, we recall that

©
Em(am): <1+E|bm|) Z B, 1 _|am| Z B, 1
—
b eby,

a' €&

and write

Ie) Svren,, e 1V Ie)
> B 5 (149 S O+ 2w Y Baa®)

o’ €bm o’ €bim ai€a’ b €Hm—1(a’)
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By (9.31), for all o’ € &

Yoo W= ) bl
b EHm—1(a’) bE?l;[m(am)

bm

and similarly,

> Ena(t) = > B (V).

b/EHWL—l(a,) b,EHm,(awL)\{an}

But, by the definition of H,(ap,), if b € Hp(am) \ {bm} then b’ & {am,bn}, therefore E,,(b') =
E,,—1(V). As a consequence,

> Ena)= > En).

bIEHWL—l(a/) bEHm,(QWL)
bt

The elementary inequality

Ve >0, Vk>1, 14+ kx < (1+2),

(o gm)= ()"

while using (9.28) again leads to > m—1(0") < Ep,(by,). We deduce that

yields

b b,

[®) ZbeHm(am) [l (S) ®
FE < — E o il E >~
m(@m) < (1 + n) : d;'(0) + " |am| Em(b) | + n |am | Em (bm),
Q€A bEH m (am)
bbm

and obtain (9.32) easily.

We now note that, for all m € {0,..., M}, for all ¢ € Uy,

> bl<|B:ie P+ type(c)}| =n(d— 1),

bEH m (c)
therefore
O\ Zverm (e bl 0\ -1
<”_) < <1+—> <exp(O(d—1)).
n n
Besides,

bEHm (C)

so that (9.32) implies the crucial L — L! estimate

Em(c) <exp(0(d—1)) | Y d}(0) c|5 : (9.33)

vy:k€c

which allows to derive both the L' estimate and the L estimate.
Derivation of the L estimate. It is a straightforward consequence of the definition of F,, that,
forall m e {1,..., M},

a’ Etm b’GE
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By (9.33),

S Buoi(d) < exp (@(dl))( ) d$<o>+%am|sm1>,

a' €t Qi€ am

and similarly,

> B Sexp(@(d-1) (30 a0)+ Dbl |

vebm B:§Ebm
so that
4072
Em < 1+Fexp(®(d—1))|am||bm| Em—1
20 o
+—exp (6(d — 1)) | [bm| > d(0) +lam| Y d(0)
i€am B:jE€bm
462 lam||bm|
< <1+ FGXP(@(d* 1))> Em—1
20 o 5
+ —exp(©(d—1)) | [bn] Z d;*(0) + |am| Z d )
n at€am B:jEbm
whence

402 ZM,:1 |G |[bm]
En < (1+iexp (@(d—l)))

M

<&+ e ©@—1) Y (Ibal 3 (0) +lanl 3 a0)

m=1 ai€am B:j€bm

Forallm € {1,..., M}, am, X by, is a subset of R with cardinality |a.,||bm|, and for m’ < m, the

subsets Gy, X by = ¢y and ag, X by, = ¢, are disjoint. As a consequence, for all m € {1,..., M},
M
. . d(d—1
S laullbn] < 18I < ({078 ) € (B 0 < g =n2 2021,
m=1
therefore

2 Som—y lam|lbm]
<1 + 47% exp (O(d — 1))> < exp (20%d(d — 1) exp (©(d — 1))) .

Furthermore, for all o : i € P2,

Z ]l{a zeam}lbm| = Z Z Z ]l{(azﬂj )Eem} < n(d_ 1)

B#a j=1 m=1
so that
Zlb | Y A0 <nd—1) Y df(0) =n(d - 1)&,
i€am aziePd
and similarly,

M
D laml Y dj0)<n(d—1) Y df(0) =n(d-1)&,

m=1 B:jE€bm, B:j€bm
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which finally results in &y < £1&), with
L1 :=(1+40(d—1)exp (O(d — 1)) exp (20°d(d — 1) exp (O(d — 1))) .

Derivation of the L™ estimate. Let us divide both terms of (9.33) by |¢| to obtain

1

TEal0) Sexp(0(d—1) | 1 3 d10)+ e,

vy:kec

Owing to the L! bound obtained above, we write

1 (C]
L Z dz(O) + —&n < (14 060dLy) sup dz(o)’
|C| vl n v:kePZ

the right-hand side of which no longer depends neither on m nor on c¢. As a consequence,

1
sup sup —Em(C) <Ly sup dZ(O),
0<m<M c€lt, |€| y:keP

where Lo := (1 4+ 0dLy)exp(O(d — 1)). O

9.4.3 From local to global stability estimates

In this subsection, we explain how to remove Condition (LHM) from Proposition 9.4.7; namely,
we prove the following result.

Proposition 9.4.11 (Global stability estimate). Under Assumptions (LC), (USH) and (GNL),
for all x,y € D4,
sup [[8(xs1) — @(y: )1 < £1llx — vl

sup [|®(x;1) — @(y;t)|o0 < Lool|x = ¥lloo,
>0

where L1 and Lo, are given in Proposition 9.4.7.

Let us give a brief overview of the proof of Proposition 9.4.11. Since the arguments does not
depend on whether we work with the L! or the L>° distance, we only denote ||-||. Given x,y € DZ,
we roughly construct a continuous path joining x to y in D¢, with a length close to ||x —y/||, which
can be decomposed into small portions on which the local stability estimate of Proposition 9.4.7
can be applied. Then, it suffices to integrate these local stability estimates along the path.

This interpolation procedure is described at the end of the proof, namely in §9.4.3.3. To apply
it, we need to find a set of good configurations such that:

e good configurations can be found in the neighbourhood of the segment {(1 — p)x + py,p €
[0,1]}, which is a density property and will allow us to construct a path joining x to y with
a length close to ||x — y||,

e if z € DI and Z' is a good configuration close to z, then there exists a continuous path
joining z to z’ that can be decomposed into small portions, both extremities of which satisfy
Condition (LHM), which will allow us to use the local stability estimate of Proposition 9.4.7
on each portion.

The set of good configurations is introduced in §9.4.3.1. It is composed by binary colliding
configurations x such that, in the MSPD started at x, space-time points of self-interactions are
distinct from space-time points of collisions. The proof of the density of this set is postponed
to Subsection 9.A.3 of Appendix 9.A. The second property above relies on the radial blow-up of
singularities property, which is described in §9.4.3.2.
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9.4.3.1 Good configurations

We begin by introducing the set of good configurations G C DZ.

Definition 9.4.12 (Good configurations). A configuration x € D2 belongs to the set of good
configurations G if:

(i) x belongs the set B of binary colliding configurations,

(ii) for all ¢ = a x b € C(x), for all ¢ € {a,b}, for all v : k € ¢, clu}(x;T(x;¢)”) = ¢, where
clu) (x;t7) is defined in Definition 9./.2.

In other words, a good configuration is such that, at each collision between clusters of different
type in the MSPD started at x, the colliding clusters are already formed when they collide, see
Figure 9.2.

Figure 9.2 — The left-hand side of the picture shows the trajectory of the MSPD started at a
good configuration, since self-interaction space-time points are separated from collisions. On the
contrary, the right-hand side of the picture shows the trajectory of the MSPD started at a config-
uration that cannot be good, since two distinct clusters of the same type have a self-interaction at
the same time as they collide with a cluster of another type.

Lemma 9.4.13 (Density of G). Under Assumptions (USH) and (GNL), the set G is dense in D2.

The proof of Lemma 9.4.13 is postponed to Subsection 9.A.3 in Appendix 9.A.

9.4.3.2 Radial blow-up of singularities

Given a configuration x € D¢ and a good configuration y in the neighbourhood of x, we now
want to construct a path joining x to y that can be decomposed into small portions on which
Proposition 9.4.7 can be applied. To this aim, we call singularity a space-time point at which a
non binary collision, or both a collision and a self-interaction, occur in the MSPD started at x.
Note that a configuration y € D is good if and only there is no singularity in the MSPD started
at y. Then we remark that, if y € G is close enough to x, singularities in the MSPD started at x
are radially blown up in the MSPD started at y, in the sense that if one shrinks the the trajectory
of the MSPD started at y around the singularity, one obtains the trajectory of the MSPD started
at x.

In this paragraph, we first give a proper definition of the notion of locally homothetic con-
figurations x and y corresponding to the description above, then we use the radial blow-up of
singularities property to construct paths joining x to y with the expected properties.

For all x € D, let us first denote by

I(x) := Egoilﬁj(x) (e, 8:7) € R(x)}

the set of space-time points of collisions in the MSPD started at x. Of course, I(x) is the empty
set if N(x) = 0.
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For all space-time point = = (&, 79) € R x (0, +00), for all 6 € R, §, € (0, 7), we shall denote
by
565757 = [50 — 55,50 + 55] X [To — 57,7'0 =+ 5.,-] CRx (0, +oo)

the (d¢, 0-)-box around Z. The open segments (§o — d¢, &o + 0¢) X {70 — -} and (§ — ¢, o + d¢) ¥
{70 + &, } shall be referred to as the horizontal sides of the box.
Definition 9.4.14 (Proper covering of I(x)). Let x € D, with N(x) > 1. A proper covering of
I(x) is a pair (¢, 6;) such that:
e 5 >0, dr € (0,t*(x)),
e for all Z,=' € I(x) such that = # =/, then the intersection =97 NZ'%97 of the (¢, 0, )-bozes
around 2 and Z' is empty,
o for all 2 = (&o,70) € I(x),
— for all v : k € PZ such that there exists t € [10 — 0-,70 + 67| such that ®)(x;t) €
[0 — 55’ o+ 55]) then
Q) (x;70) = &o,

i.e. all the particles passing in the box are involved in the collision associated with =,

— for all particle v : k in the box,
Q) (x;70 — ;) € (o — 0¢, €0 +0¢) and P (x;70 + 67) € (§o — ¢, &0 + d¢),
i.e. the particle enters and exits the box by the horizontal side; besides,
Yt € [10 — -, 70)s clul (x;t) = clul(x; (10 — ;) 7)

and
Yt € 10,70 + 0+, clu) (x;t) = clu) (x;79),
i.e. self-interactions in the box can only occur at the space-time point =.
Given a proper covering (d¢, d,) of I(x), the set of (J¢, d-)-boxes around the points of I(x) is

drawn on Figure 9.3. Examples of boxes around space-time points of collisions, with dimensions
that do not define a proper covering, are shown on Figure 9.4.

2(55

-

26,

Figure 9.3 — An example of set of (d¢, d,)-boxes around the points of I(x).

Let us note that, under Assumption (GNL), a proper covering of I(x) always exists. Indeed,
since there is a finite number of self-interactions in the MSPD started at x, one can construct
d; € (0,t*(x)) small enough to ensure that, for all = = (£y,79) € I(x), the particles involved in
the collision associated with Z do not have self-interactions on the time interval [rg — d,, 70 + 6]
(except possibly at time 79). Besides, since the velocities are bounded, given a choice of ¢,, any
choice of d¢ such that

0¢ > 6-Lc,o (9.34)
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Figure 9.4 — The box on the left-hand figure contains a self-interaction at a distinct space-time
point from the collision. On the central figure, a particle enters the box by a vertical side. The
box on the right-hand figure is crossed by a particle that is not involved in the collision.

ensures that particles enter and leave the box by the horizontal sides. Finally, one can shrink §,
and keep ¢ satisfying (9.34) accordingly to obtain boxes small enough for being disjoint and not
being crossed by particles not involved in the corresponding collision.

We can now give a definition of locally homothetic configurations.

Definition 9.4.15 (Locally homothetic configurations). Let x € D. A configuration y € DZ is
said to be locally homothetic to x if y € D and either N(x) = N(y) = 0, or R(x) = R(y) and
there exists a proper covering (d¢,6-) of I(x) such that, for all ¢ = (£0,70) € I(x),

o forally: k € P¢ such that @) (x;10) = &, then

D L(y; 10 —07) € (0 — de, &0 + de), clu(y; 10 — 67) = clu)(x; 70 — d7),
D L(y; 10 +07) € (€0 — de, &0 + de), clu (y; 10 + 67) = clu)(x; 70 + d7),

e for all (a:4,58:j) € R(x) such that Eg’yﬂj (x) = Eo, then the space-time point of collision

2o 5.5 (y) belongs to the (8¢, 0, )-box around Eo, and for all p € [0,1], then

2 5, (L= p)x+ py) = (1= p)Z0 + pE% 5., (¥), (9.35)

o for ally € {1,...,d}, for all k, k' € {1,...,n} such that Efﬁlkfﬂ:k,(x) = Ey, then the space-

time point Eie:lgmk, (y) of the self-interaction belongs to the (d¢,d;)-box around Ey, and for

all p € [0,1], then
E%‘yef]kf.,'y:k’((l - p)X + py) = (1 - p)EO + pE?ye:lkf,’y:k’(y)' (936)

We shall sometimes precise that y locally homothetic to x with respect to the proper covering

(3¢, 6,).

Let us remark that if N(x) = 0 then any configuration y € D such that N(y) = 0 is locally
homothetic to x.

Lemma 9.4.16 (Radial blow-up of singularities). Under Assumptions (USH) and (GNL), let
x € D.

(1) If N(x) = 0, there exists k > 0 such that, for ally € B1(x,k), y € D and N(y) = 0 so that
y is locally homothetic to x.

(i1) If N(x) > 1, then for all proper covering (6-,0¢) of I(x), there exists k > 0 such that, for all
y € Bi(x,k), y is locally homothetic to y with respect to (6;,0¢).

Proof. The point (i) is a straightforward consequence of (i) in Lemma 9.A 4.

The proof of (ii) works by induction on N(x) > 1. Let us fix N > 0 such that the lemma
is satisfied for all x € D such that N(x) < N. Let x € D with N(x) = N + 1; in particular,
t*(x) < +00. Let (d¢, d-) be a proper covering of I(x).
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Using Lemma 9.A.4 again, we first obtain x; > 0 such that, for all y € By(x,x1), y € D and
R(x) = R(y)
Without loss of generality, let us assume that d, is small enough to satisfy

t=t"(x) + 0, < t*(x) + t*(x*) — 05,

and take J¢ small enough to satisfy (9.34), so that (¢, §-) remains a proper covering of I(x). Then,
on the time interval [0, t*(x) + -], the only collisions in the MSPD started at x occur at time ¢*(x),
possibly at different locations. Besides, ®(x;t') € D, N(®(x;t’)) < N, and if N(®(x;t')) > 1, then
(0¢,0,) remains a proper covering of I(®(x;t')). As a consequence, there exists s’ > 0 such that,
for all y' € B1(®(x;t'), '), then y’ is locally homothetic to ®(x;t') (with respect to (&¢,d,) if
N(®(x;t')) > 1). By Proposition 9.3.17, there exists ko > 0 such that, for all y € Bi(x,k2),
Bly;t') € By (®(x; ), ).

Combining Proposition 9.3.17 and Lemma 9.A.4, we obtain k3 > 0 such that, for all y €
Bl (X; ’13)7

o O(y;t*(x) —d;) € D and R(P(y;t*(x) — 0
o O(y;it*(x) +d;) € D and R(P(y; t*(x) + 0-)) = R(P(x; t*(x) +
and, for all v : k € P?

o if the particle v : k is involved in a collision at the space-time point (£y,t*(x)) in the MSPD
started at x, then for all ¢ € [t*(x) — d;,t*(x) + d;], P} (y;t) € (S0 — d¢, &0 + O¢),

e if the particle v : k is not involved in a collision at time ¢*(x) in the MSPD started at x,
then in the MSPD started at y, the particle v : k does not cross any of the (J¢, §-)-boxes
around points of I(x) on the time interval [0, t'].

These conditions ensure that, for all particle v : k involved in a collision at time ¢*(x) in the
MSPD started at x, then the corresponding particle enters and exits the (d¢,d-)-box around
(@) (x;t*(x)),t"(x)) by horizontal sides in the MSPD started at y; besides, all the collision and
self-interaction space-time points in which it is involved remain in the box.

Combining Proposition 9.3.17, Lemma 9.A.4 and Lemma 9.4.3, we finally construct x4 > 0
such that, for all y € By (x, k4), for all v: k € P4

clu) (y; t*(x) — ;) = clul (x; t*(x) — 6;), clu) (y; t*(x) 4+ 6;) = clu] (x; t*(x) + 67).

Note that Lemma 9.4.3 can be applied since the fact that (d¢,d,) is a proper covering of I(x) implies
that, on the time interval (¢*(x),t*(x) + 0,], there is no self-interaction in the MSPD started at x.

We can now define x := min{k1,...,x4} and fix y € Bi(x,x) and p € [0,1]. To complete the
proof, we first have to check that the homothetic relations (9.35) and (9.36) are satisfied for all
Eo = (&, 70) € I(x). We address the cases 19 = t*(x) and 79 > t*(x) separately, and shall proceed
in three steps. In Step 1, we prove that

(I)((l - p)x + PY; t* (X) - 67') = (1 - p)(I)(X; t* (X) - 67') + p(I)(y; t* (X) - 67')

In Step 2, we establish the homothetic relations (9.35) and (9.36) for 7y = ¢*(x), and we check
that

B((L— p)x+ pyi " (%) +8,) = (1 p)B(x; () +6,) + pB(y: t*(x) + 0. (9.37)

Finally, we apply an inductive argument to address the case 79 > ¢*(x) in Step 3.

Step 1. Since t*(y) > t*(x) — 6,, then for all ¢ € [0,t*(x) — d,], ®(x;t) = B[A(x)](x;t) and
®(y;t) = ®[A(y)](y;t). Besides, R(x) = R(y) so that A(x) = A(y). Let v : k € P% and let us
denote

c:= clu](x;t"(x) — d;) = clu) (y; t*(x) — d7).

Note that ||x — ((1 — p)x+ py)|[1 = p||x —¥[|1 < K4, therefore ¢ = clu]((1 — p)x + py; t*(x) — 0-).
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Let us now remark that the processes {®](x;t) : v : k € ¢}, {®l(y;t) : v : k € ¢} and
{®)((1 = p)x+ py;t) : v : k € ¢} follow the Local Sticky Particle Dynamics on [0, t*(x) — ¢, ], with
the same initial velocity vector. As a consequence, the center of masses

||Z<I>7xt ||Z<I>7y,, ||Z<I>7 p)X + py;t),
vy:k€c

travel at the same constant velocity

IIX:~V

vy:k€c
on [0,t*(x) — d;]. Thus,
1 1
- —8)=—
B kz p)x + py;t*(x) B

_ ||Z<I>'th +p||Z<I>”y, =07,

vy:k€c v:kec

>z (1= p)a] + oyl + (£ (%) = )AL (%))
vy:ke

which of courses rewrites, for all v : k € c,
Q) ((1—p)x+py;t*(x) —6;) = (1 — p)@L(x;t%(x) — 07) + p®) (y; t*(x) — d7)

and completes Step 1.

Step 2. Let v : k € PZ. If the particle 7 : k does not collide with a particle of another type
between times t*(x) — ¢, and t*(x) + 6, =: ¢ in the MSPD started at x (or equivalently y or
(1 — p)x +y), then the same arguments as in Step 1 using the Local Sticky Particle Dynamics
ensure that

DI ((1—p)x+py;t') = (1— p)@)(x;t') + p@) (y;t').

Otherwise, there exists a unique space-time point

Bo € {E25, (%) 1 (@ 14,81 ) € R(x), 75855 (%) € [t*(x) — 0, " (x) + 671},

such that all the collisions with particles of another type and all the self-interactions of the particle
v : k between times ¢*(x) — 6, and t*(x) + 0, in the MSPD started at x occur at the space-time
point Zy. By the definition of x, the particle v : k collides with the same particles of another
type and have the same self-interactions in the MSPD started at y, and the corresponding space-
time points of collisions and self-interactions belong to the (d¢,d.)-box around Zg; but of course,
they can be distinct. Let us denote by Z(y),...,= ) the sequence of these distinct space-time
points of collisions and self-interactions, ranked by the increasing order of the times of collisions
or self-interactions. For all [ € {1,..., L}, we write =) = ({1, 7)), so that

t*(x) — 0, < Ty < <7 < t*(x) + ;.

For alll € {1,..., L}, we finally denote by S; ;41 the space-time segment connecting E@ to By,
and let Sp; refer to the space-time segment connecting (@) (y;t*(x) — d-),t*(x) — d-) to Z(1), and
Sr,r+1 refer to the space-time segment connecting Z() to (®/(y;t*(x) + d7),t*(x) + d-).

We now define, for all I € {1,..., L},

=) = &y ) = (1= p)Zo + p=qy,

and similarly denote by S, ,, the space-time segment connecting E’(l) to E'(l +1) While Sp 1 refers
to the space-time segment connecting ((1 — p)®] (x;t*(x) — ) + p® (y; t*(x) — d;), t*(x) — d;) to
E{y) and S}, ;. refers to the space-time segment connecting ={;) to ((1 — p)®y(x;t7(x) +07) +
p@y(y:t*(x) + 07), (%) + 6-).
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Elementary geometric properties of the homothetic transform imply that, if p € (0, 1], then for
all 1 € {0,..., L}, the segments S ;41 and S, are parallel. As a consequence, if p € (0, 1], then

the process @) defined on [t*(x) — &,,t*(x) + &;] by
VZ € {Oa ceey L}7 Sl/,lJrl = {(q);:(t)a t)vt S [T(/l)vT(/lJrl)]}

(where T(’O) = t*(x) — I, T(’L+1) := t*(x) + d;), has the same slope as the process ®](y;-) on
each corresponding linear part, see Figure 9.5. Besides, if two particles v : k and ~ : k' are in the
same cluster on some linear part in the MSPD started at y, then it is clear that the corresponding
trajectories ®,’, ®,) coincide on the corresponding linear part.

t*(x) + 6-

Figure 9.5 — The trajectory of the MSPD started at x is plotted on the left-hand side of the figure,
while the trajectory of the MSPD started at y is plotted on the right-hand side. The trajectory
of the process ®’ is plotted in dashed lines. Each linear part is parallel to the corresponding part
in the trajectory of the MSPD started at y. The black lines represent the horizontal sides of the
box.

As a conclusion, the processes ®,)(t — (t*(x) — 6;)), t € [t*(x) — 6-,t*(x) + J;], for all v : k
such that
(@] (6 °(0), £ (x)) = Zo,

exactly describe the motion of the particles in the MSPD started at (1 — p)®(x;t*(x) — d,) +
p)®(y;t*(x) — 0,). Thanks to Step 1, we conclude that

Vt e [t'(x) = 6, t"(x) +6;], (1) = BL((1 - p)x + py3t),

which yields (9.35), (9.36) for all the collision and self-interaction space-time points for the particle
~ : k on the time interval [0, ¢']; besides,

PU((1—p)x+ py;t') = @7 () = (1 — p)@)(x; 1) + p@] (y; ).

This completes the proof of Step 2.
Step 3. Let (a:4,8:7) € R(P(y;t')) = R(P(x;t)), so that

ngcz)il,lﬁ:j (x), Tocf:)il,lﬂ:j (Y)a Tocf:)il,lﬂ:j((l - P)X + PY) >t
Then, by the flow property of the MSPD,
g (L= p)x+py) = 6215, (@((1 = p)x + py; 1))
= &0 (1= p)@(x;t") + p@(y;t))
= (1= p)Est s (R(x5) + p€il 5.5 (B (y3 1)),

where we used Step 2 at the second line and the fact that ®(y;t’) € By (®(x;t'),x’) at the third
line. Using the flow property for the MSPD again, we conclude that the right-hand side above
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rewrites (1—p) ;01” 1 (x)+p ;01” 1 (y). The very same arguments allow to address self-interactions

as well, and also yield

oo (1= p)x + py) = 75005.,(@((1 = p)x + py; ') —t/
= (1= p) (15955 (@(x: 1) = ') + p (75555 (D(y3 ') — t)
= (1= p)1s0i5(0) + p78s.5(¥),
which completes the proof. O

We now explain how to construct a path joining a configuration x to a good configuration y
close to x, along which pairs of configurations satisfy the Local Homeomorphic Condition (LHM).
For the sake of understandability, we first describe the case x € G in Lemma 9.4.17 below. Then,
the situation is actually very simple as, for y close enough to x, the locally homothetic property
implies that y € G and x,y satisfy Condition (LHM). The case of an arbitrary configuration
x € D2 (more precisely, x is taken in the dense subset D of D) is addressed in Lemma 9.4.18.

Lemma 9.4.17 (Construction of locally homeomorphic configurations, good case). Under the
assumptions of Lemma 9.4.16, let x € G, and if N(x) > 1, let (d¢,d,) be a proper covering of I(x).
Let k > 0 be given by Lemma 9.4.16. Then, for all y € Bi(x, k), the configuration y belongs to
the set G and the configurations x and 'y satisfy Condition (LHM).

Proof. If N(x) = 0, then there is nothing to prove. Let us assume that N(x) > 0, let (d¢,d,) be a
proper covering of I(x) and let k > 0 be given by Lemma 9.4.16, so that y is locally homothetic
to x with respect to (d¢, d-). In particular, R(x) = R(y) and if (a: 4,8 : j), (¢’ : ¢, 8 : j') € R(y)
are such that

=coll =coll

:‘gz?i,ﬁ:j(Y) = :‘g?:i’,ﬁ’:j’(y)’
then it necessarily holds

=coll =coll

‘:(Clcii,ﬁ:j (X) = :‘Z?:i’,ﬁ/:j’ (X)a
Since x € G C B, this implies that y € B. Besides, on account of the definitions of proper coverings
and good configurations, in the MSPD started at x, there is no self-interaction in the (¢, 6, )-boxes
around space-time points of collisions. Since the clusters at entry and exit of these boxes have the
same composition in the MSPD started at y, we deduce that self-interactions are separated from
collisions in the MSPD started at y. As a consequence, y € G.

We have already checked that x and y satisfy Condition (LHM-1). Condition (LHM-2), which
asserts that x and y have the same collision graph, is a trivial consequence of the equality of
clusters at entry and exit of boxes. Now if two collisions ¢’ and ¢ are such that ¢’ s ¢, then the
fact that

(B )’ N (E(x;0)) =0, E(y;d) € (B0 ), E(yie) € (E(x;0))°%,
implies that
TH)=T(x;)VT(y;¢) ST(x;¢) + 6, < T(x5¢) — 0, < T(x;¢) AT (y;¢) =T (c),

which yields Condition (LHM-3a). Finally, Condition (LHM-3b) is also a straightforward conse-
quence of the identity of the compositions of of clusters at entry and exit of boxes. O

When x is not a good configuration, say even not a binary colliding configuration, then one
can obviously not expect Condition (LHM) to hold for x and y chosen as in Lemma 9.4.17. As is
plotted on Figure 9.6, singularities can lead this condition to fail even for the locally homothetic
good configurations y and (1 — p)x + py when p is too far from 1. However, based on the radial
blow-up of singularities property described in §9.4.3.2, we prove in Lemma 9.4.18 below that,
for p* < 1, p* close to 1, then y and (1 — p*)x + p*y actually satisfy the Local Homeomorphic
Condition (LHM). Iterating the argument starting from (1 — p*)x + p*y instead of y, we obtain
that the geometric sequence (p*™),,>0 has the property that, for all m > 1, the configurations
(1= p*™ x4 p*™ ty and (1 — p*™)x + p*™y satisfy Condition (LHM).
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Figure 9.6 — The configurations y and y’ := (1 — p)x + py are both good configurations and they
are locally homothetic to x. In their collision graph, ¢; — ¢o2; however, for the choice of p on the
figure, then T'(y’;c1) > T'(y; c2), therefore Condition (LHM-3a) is not satisfied by the pair y,y’.

Lemma 9.4.18 (Construction of locally homeomorphic configurations, bad case). Under the as-
sumptions of Lemma 9.4.16, let x € D, and if N(x) > 1, let (d¢,6-) be a proper covering of I(x).
Let k > 0 be given by Lemma 9.4.16. Then, for all'y € Bi(x,k) NG, there exist p. € (0,1)
such that, for all m > 1, the configurations (1 — p 1)y + p7~x and (1 — p™)y + pTx satisfy
Condition (LHM).

Proof. Let y € Bi(x,k)NG. For all p € (0,1], it follows from Lemma 9.4.16 that the collisions
locally look alike in the MSPD started at y and at (1—p)x+py. This implies that (1—p)x+py € G;
and, for all p, p" € (0,1], R((1 = p)x + py) = R((1 - p')x + p'y) and (1 — p)x+ py, (1 = p')x+p'y
have the same collision graph, so that they satisfy Conditions (LHM-1) and (LHM-2).

Let us now explain how to construct p. € (0, 1) in such a way that, for all m > 1, the configura-
tions (1 —p" Yy +p" Ix and (1 — p™)y + px satisfy Conditions (LHM-3a) and (LHM-3b). Let

*

us denote C := C(y). For all ¢ € C, it follows from Lemma 9.4.16 that there exists a space-time
point Zg(c) such that

Vpe (0,1, E((1—p)x+py;c) = (1—-p)Zo(c) + pE(y;c),
and in particular, the collision times satisfy

Vpe (0,1,  T((1—p)x+py;c)=(1—p)To(c) + pT(y;c),

where we denote Zy(¢) = (£o(c), To(c)). Therefore, for all p € (0,1], (1 — p)x + py and y satisfy
Condition (LHM-3a) as soon as, for all ¢/, ¢ € C' such that ¢’ e,

(1= p)To(c") + pT'(y; ') V T(y; ') < (1 = p)To(c) + pT(y;¢) AT (y;c),
which is always the case if Z¢(c") # Ep(c) and reduces to

To(c) = T(y;¢)
To(e) = T(y;¢')

if Zp(¢’) = Zg(c) and either T'(y; ') < T(y;c) < To(c) or To(c) < T(y;¢’) < T(y;c). We denote
by p.1 the infimum of the set of p € (0,1) satisfying these conditions; then, for all p > p, 1,
(1 — p)x + py and y satisfy Condition (LHM-3a). Very similar arguments combined with the fact
that y € G allow us to construct p, 2 € (0, 1) such that, for all p > p. 2, (1 —p)x+ py and y satisfy
Condition (LHM-3b).

As a conclusion, let us define p, to be any number such that

p>

Px,1 V Px,2 < px < 1.
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Then we have proved that the pair of configurations y and (1—p.)x+p.y satifies Condition (LHM).
To complete the proof, we apply the same arguments starting from (1 — p.)x + p.y instead of y.
We obtain that, for all p € (0,1], the configurations

(L=p)x+p((1 = p)x+p.y) =1 —pp)x+ppsy  and (1 —p)x+puy
satisfy Condition (LHM-1) and (LHM-2). Besides, Condition (LHM-3a) holds as soon as

o> To(e) = T((L = pu)x + puyic) _ To(c) = T(y;c)
To(e) = T((1 — pe)x+ puy; ') To(c) = T(y; ')

for all ¢/, c € C((1 — p.)x + p.y) = C(y) such that ¢/ 5 ¢, Zo(¢) = Zo(c) and either
T((1 = p)x+ pey; ) <T((1 = po)x + payic) < To(c),

which reduces to T'(y;¢') < T(y;¢) < Tp(c), or
To(e) < T((1 = pe)x + puy; ¢) < T((1 = pe)x + pay;ic),

which reduces to To(c) < T(y;c’) < T(y;c). As a consequence, the conditions on p are the
same as above and taking the infimum over the admissible values of p yields the same quantity
p«1. Likewise, to ensure that (1 — p2)x + p?y and (1 — p.)x + p.y satisfy Condition (LHM-3b),
we obtain the same quantity p. 2 as above, therefore taking p = p. again, we conclude that the
configurations (1—p?)x+ p2y and (1 — p.)x+ p.y satisfy Condition (LHM). The proof is completed
by induction. O

9.4.3.3 Interpolation procedure

In this paragraph, we describe the interpolation procedure allowing to complete the proof of
Proposition 9.4.11.

Proof of Proposition 9.4.11. Let us begin by mentioning that the arguments of the proof do not
depend on the choice of the distance; in particular, continuity and density results are valid whatever

the choice of the distance since these distances are equivalent. Therefore, the notation || - || shall
indifferently refer to || - ||1 or || ||co. The corresponding stability constant shall simply be denoted
L

We first recall that D is dense in DZ and, by Proposition 9.3.17, for all ¢ > 0, the mapping
(x,y) = ||®(x;t) — ®(y;t)|| is continuous on (D%)2. As a consequence, it suffices to prove that,
for all t > 0, for all (x,y) € (D)?, ||®(x;t) — ®(y;1)|| < L||x -yl

We fix x,y € D and proceed by interpolation as follows. In Step 1, we split the segment

S:={(1-s)x+sy,s<|0,1]} (9.38)

into a finite number of segments
Sk :={(1 —s)x+ sy, s € [sk, Sk+1]}, kedo,...,K}, (9.39)
where 0 =: s9 < $1 < -+ < sg < Sk41 := 1 are such that, for all k¥ € {0,..., K}, for all

$ € (Sk,8k+1), (1 — 8)x+ sy € D. In Step 2, for all k € {0,..., K} and € > 0 small enough, we
define the segment S}, by

Spi={(1 —s)x+sy,s € [sk+ € Skt1 — €]}, (9.40)

and construct a piecewise linear and continuous path joining the extreme points of S},, with length
arbitrarily close to the length of Sj;, and allowing to apply Lemma 9.4.18 on a finite number of
linear parts of the path in Step 3. We let ¢ vanish and complete the interpolation procedure in
Step 4.
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Step 1. Let S be defined by (9.38). For all s € [0,1], (1 — s)x+ sy ¢ D if and only if there
exists (a : 4, :j) € (P%)? such that a < 3 and

(1—9)zf + sy =(1-— s)xf + syf,

which rewrites

s(zf—zf‘erf‘—yf):zf—zf‘,

B
J
which case there is at most one solution s € [0, 1] to the equation above, or :cf -z +y — yf =0
in which case there is no solution. We deduce that there is a finite number K > 0 of points
s € [0,1] such that (1 — s)x 4+ sy ¢ D and we index these points by their increasing ordering:
0 < s1 < --- < sg < 1. For the convenience of notation in the sequel of the proof, we define
s0:=0and sxy1 := 1, so that for all k € {0,..., K}, for all s € (s, sg+1), (1 —s)x+ sy € D. We
finally define the segments (Si)o<r<x as in (9.39).

Step 2. In this step we fix k € {0,..., K} and € > 0 such that s; + € < sg+1 — €. Then, the

segment S§ defined by (9.40) is a compact subset of D. Its length is worth

B

where we recall that x x$ # 0 since x € D. As a consequence, either z; —af +y — yf # 0 in

(1 = (sk41 — €))x + (sp1 — €)y — (1= (sk + €))x — (s& + €)yll = (k1 — sk — 2€)|[x — y]|.

Let us write

Si € | Bi(zk(2)),

zE S},

where, for all z € S5, we fix a proper covering of I(z) if N(z) > 1 and let x(z) be given by
Lemma 9.4.16. Let us extract a finite subcover Bi(z1, k(2z1)), ..., B1(z5,k(zr)) of S§ where, for
alll e {l,...,L}, z; € S;, writes (1 —o;)x+ oy with sp +e <01 <--- < op, < sp41 — €. We also
define 0¢ := s +¢€, op41 := Sp41—€ and zg := (1 —0¢)x+00Y, 2r+1 := (L —0r4+1)x+0r4+1y. Note
that, for all [ € {0, ..., L}, the intersection of Bj(z;, k(z;)) and Bi(z;+1, k(Zi+1)) is nonempty and
contains the set

{1 = s)x+sy,s € (o1 + K(z1), o141 — K(2z141)) }-

We finally fix > 0 and use the density of the set G (see Lemma 9.4.13) to construct
Z(),la .. aZIL,L+1 eg
such that, for all € {0,..., L}, z},,, € Bi(z1,k(z1)) N B1(Zi4+1, £(z14+1)), and in addition,

L

Szt — 2|l + l12h 141 = 2ol < (s1 — 51— 26| Ix =yl + .
=0

The quantities introduced in Step 2 are summarised on Figure 9.7.

Figure 9.7 — The segment S}, is drawn in dashed line, while the segment .S}, is drawn in solid line.
Gray circles stand for the open balls B1(z, £(z:)). The points zj q,...,2}, 1, are chosen in the
dense set G in order to ensure that the difference between the length of the red path and the length
(Sk+1 — Sk — 2¢)||x — y|| of S}, be smaller than 7.
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Step 3. As a continuation of Step 2, let us fix [ € {0,..., L}. We now prove

sup || (25 1) — (2403l < Lllz — 2,

and similar arguments shall also yield

Sup [|B(zi41;¢) — (2754150l < Lllzigr — 241l

By Step 2, z, € D and z;,, € Bi(z;,x(z1)) N G. As a consequence, Lemma 9.4.18 implies that
there exists p. € (0,1) such that, for allm > 1, (1—p* Nz +p0* '2;,,, and (1-p0" )z +pl 2 14y
satisfy Condition (LHM). Therefore, for all m > 1, Proposition 9.4.7 yields, for all ¢ > 0,

|R((1 = piM)z + 2 415 t) = L= PNz + pl 2 s DI < LT = p)|20 — 27044
We finally deduce from the triangle inequality that, for all M > 1,

N2((1 = pi")z + Pszf,lﬂ?t) — (214151
M
<Y R = Pz + pl 2y gyast) — (L= pl Nz + pl 00|

m=1
M
<L = p)z = 2|l = £ pM)lm = 7]
m=1

and use Proposition 9.3.17 to conclude that

sup [|®(zi; 1) - (274415011 < Lz — 2114411

Step 4. We finally complete the interpolation procedure described in the introduction of the
proof. First, it follows from Step 3 that

L
sup || ®(z0;t) — (zrq15t)|| <D sup ([0(zi; 1) — (2113 0)|| + |02 1413 8) — B(z141; 1))
>0 >0
L
< LY Nz =zl + 117100 — 2
=0

< L((sk41— sk —26)|[x —yl[+n).

Recalling that zg = (1 — (s + €))x + (sx + €)y and zr+1 = (1 — (Sk+1 — €)X + (Sp4+1 — €)y, and
letting n vanish, we obtain

SUp [[®((1= (s €))x+ (st )y ) = (1= (51 =€) xH (sk41 = )y3 )| < Llsk41 =8 =26) [x =V

Taking the limit of both sides when € vanishes and using Proposition 9.3.17, we finally write

sup [|®((1 — s)x + sky;t) — (1 — sp1)X + sp1y5 )| < Lsk+1 — su)[|x — |
t>0

and complete the proof thanks to the triangle inequality again. O

9.4.4 Proof of Theorem 9.2.22

Theorem 9.2.22 is obtained by interpolating the L' and L estimates of Proposition 9.4.11
thanks to the Riesz-Thorin Theorem.
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Proof of Theorem 9.2.22. Let us fix x,y € D% and s,t > 0. Then, for all p € [1, +o0],
12(x;5) = ©(y; t)llp < [|@(x;8) — Dy s)llp + [[R(y35) — D(y:t)lp,

and by (9.20-9.21), for all p € [1, 4+00),
t
/ r)dr

d n
1
[|®(y;8) — iy = ZZ
[|@(y;s) = @(y; D)lloc < [t = s|Lc oo

It now remains to prove that

p
<t =slP(Lop)”;

similarly,

12(x;5) = (y;9)[lp < Lpllx = yllp,

for some £, that depends neither on n nor on s. By Proposition 9.4.11, this is already the case
for p € {1, 4+00}.
We first extend ®(-;s) into a nonlinear operator of the vector space R¥*™ by defining, for all
% € RIxn,
(%) =: (m(x);5),

Rdxn N Dd
e _ _ "
{ ()

Y Y
Di<y<di<isn = (Bjyisy<disk<n

where

and, for all y € {1,...,d}, then 7}, <

Then, by Proposition 9.4.11, we have, for all X,y € R¥*",

- <z | refers to the increasing reordering of Z7,...,Z7.
(n) IRt

12(%) = 2(¥)ller < Lal[7(%) = 7(F)l[er < 1% = T[],
12(%) = @Il < Lool[T(X) = 7(§)lle=e < [IX = Flle,

where || - ||;1 and || - ||¢ refer to the usual £! and £°° norms on the vector space R?*". The second
inequality of both lines follows from the observation that, for all v € {1,...,d}, if we define

1 & 1 &
:525@7, m’ ::525@7 € P(R),
j=1 j=1

and

1 n
== > 84 € P(R?),
j=1
then, with the notations of Definition 9.2.18, m <%, and

1 n
/ o — o/ PPm(dede’) = = 3 (77 - 717,
(z,2')€R? nia
while Remark 9.2.20 yields

1 n

I Y

Wi( == 130y — "

k=1

with the notations of the definition of w. The conclusion follows from the minimality of the
Wasserstein distance.
We deduce that

o(x) — 0(y) = Dd((1 - 0)x + 0y)(x — y)do, (9.41)
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where the matrix D®(Z) is defined dz-almost everywhere and satisfies

IID2@)|[h < L1, [[[D2(2)|||o0 < Lo,
and ||| - |||, refers to the norm of operators on (R%™, || -||»). Applying the Riesz-Thorin Theo-
rem [32, Théoréme IV.29], we obtain that, dz-almost everywhere,
D2 ()|, < Ly,
with
L, :=LyPCisl e, (9.42)

Injecting this relation in (9.41), we conclude that
|12(%) = @(3)ller < Lpllx — Flev-

Taking X = x,¥ =y in D%, and p € (1, +00), we rewrite the inequality above as

d n d n
33 0 0sie) - Bl < (6 D3

1 k=1 vy=1k=1

and we conclude by dividing both parts of the inequality by n and taking the power 1/p. o

9.5 Construction of solutions

This section is dedicated to the construction of probabilistic solutions to the hyperbolic sys-
tem (9.1), based on the approximation by the MSPD. In particular, we prove Theorems 9.2.17
and 9.2.25. The outline of the section is as follows.

Subsection 9.5.1 contains preliminary definitions and results.

In Subsection 9.5.2, we prove the two following major results: on the one hand, the MSPD for
a fixed number of particles provides an ezact solution to the problem (9.1), with discrete initial
data; this is the contents of Proposition 9.2.15. On the other hand, when the number of particles
grows to infinity and the initial configurations are chosen according to a suitable discretisation
procedure, then the set of the trajectories of the MSPD is precompact. A precise statement is
given in Proposition 9.5.6. The proof of Theorem 9.2.17 then follows from these two results.

We discuss two properties of the probabilistic solutions thus obtained in Subsection 9.5.3.
More precisely, we show that probabilistic solutions to the hyperbolic system (9.1) are generally
not unique, and we describe the solution obtained by the limit of the MSPD in the case of the
Riemann problem.

The construction of the operators (S;):>¢ introduced in Theorem 9.2.25 and the proof of their
properties is finally detailed in Subsection 9.5.4.

9.5.1 Preliminary definitions

This subsection contains preliminary definitions and results concerning the set of probability
measures on the space of continuous trajectories in R

Definition 9.5.1 (Probability measures on the space of continuous trajectories). Let us denote

by C([0, +00), R?) the set of continuous trajectories from [0,400) to RY. It is endowed with the

topology of the uniform convergence on the compact sets of [0, +00), which makes it a metric space.
The set of Borel probability measures on C([0, +00), R?) is denoted

M := P(C(]0, +00), R%)).

We recall that it is endowed with the topology of weak convergence.
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For all t > 0 and v € {1,...,d}, let us introduce the projection operator

. C([0, +00), R%) - R

m)

¢ (X1(8),. .., XUs8))s>0 = X7(t)

Then 7, is clearly continuous, therefore the following lemma is straightforward.

Lemma 9.5.2 (Continuity of marginal distribution). For all ¢ > 0 and v € {1,...,d}, for all

w € M, let us denote by

pi = po ()7}

the marginal distribution of the ~v-th coordinate at time t of . Then, the mapping
pw €M u € P(R)

18 continuous.

9.5.2 Convergence of the MSPD

In this section, we establish a convergence result for the empirical distribution of the MSPD
which shall play a crucial role in the proofs of Theorems 9.2.17 and 9.2.25.

Definition 9.5.3 (Empirical distribution of the MSPD). Under Assumption (USH), for all x €
D2 the empirical distribution of the MSPD started at x is the probability measure

1 n
ulx] = " Z(g(@}c(x;t) ,,,,, & (x;t))iz0 © M,
k=1

where we recall the Definition 9.5.1 of the space M.

The marginal distribution of the y-th coordinate at time ¢ of u[x] is denoted by p[x].

9.5.2.1 Proof of Proposition 9.2.15

Let us fix x € Dz, and recall that Proposition 9.2.15 asserts that the function u = (u',... ,u?)
defined by

1 n
u’(t, x) = -~ Z Liay (xity<a)
k=1

is a probabilistic solution to (9.1). Let us note that, with Definition 9.5.3, this function rewrites

u?(t,x) = (H  w [x])(x).

By construction, for all ¢ > 0, for all v € {1,...,d}, u7(¢,-) is a CDF on the real line. In
order to prove that it is a probabilistic solution to the system (9.1), we have to check that, for
all v € {1,...,d}, the function u” is measurable on [0, 4+00) x R. This is a consequence of the
following lemma.

Lemma 9.5.4 (Measurability). Let u € P(C([0, +00),R)), and for all (t,z) € [0,400) X R, let us
define u(t,x) := H x ps(x). Then u is measurable on [0, +00) X R.

Proof. If, for all t > 0, the probability measure p; on R does not weight points, then H % u; is
continuous on R and by the Dini Theorem, v is continuous therefore measurable on [0, +00) x R.
In the general case, we replace H with its continuous approximation H; defined by, for all [ > 1,

0 if 2 < 1/,
Hx)=<¢ 1+1lz if -1/l<2x<0,
1 ifx >0,

and define (¢, ) := H; * u(z). Then, on the one hand, for all ¢ > 0, the function = — (¢, )
is continuous and nondecreasing on R, hence the Dini Theorem still implies that u; is continuous
therefore measurable on [0,4+00) x R. On the other hand, H;(z) converges to H(z) for all z € R,
therefore u is the pointwise limit of «;. This completes the proof. O
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We can now complete the proof of Proposition 9.2.15.

Completion of the proof of Proposition 9.2.15. On account of the discussion above, it remains to
check that u satifies (ii) in Definition 9.2.12. We first write the function \¥{u}, defined by (9.6),
in terms of the velocities of the particles. Let us fix

€ [0, +00) \ {&5g (), (@ 2, 81 j) € R(x)}-
Then, we claim that, for all v : k € P¢
X {ul(t, B](x: 1)) = o] (x: 1) (9.43)

where we recall the definition (9.20) of the right-hand side. Indeed, let v : k € P2, Let us write
x:=®)(x,t) and v : k- -k := clu/(x;t). Then

k-1 k F—k+1
Ot ) =20 W)=~ and Ag(ha) =T 5
n n n
As a consequence,
)\’Y{u}(tax) k ]{;+1 /w (t7x)"")U’Yil(t,fﬂ),w,uw+1(t,$),._.’ud(f,x)) dw.

The choice of ¢t implies that, for all v’ € {1,...,d} such that v # +/,
A (t ) =0,

therefore, for all &’ € {k, ..., k},

As a conclusion,

(u}(t,) = -
hence (9.43) holds dt-almost everywhere; therefore, for all v : k € P?
t
vt >0, Q) (x;t) = a} +/ A{u}(s, @) (x;s))ds.
s=0
We now fix ¢ = (1, ..., %) € CLO([0, +0) x R,R?) and, for all v € {1,...,d}, define )7 by

+oo
V(t,z) € [0,+0) X R, Y (t,x) ::/ O (t, y)dy.

=T

The chain rule formula for functions of finite variation [121, Proposition (4.6), p. 6] yields, for all
T >0, forall v: ke P?

T
YT, (1)) = 47(0, z) +/ (07 (1, @ (x:)) + Outp7 (1, L (6 1))N {u} (8, Di(x; 1)) di

t=0

=7(0, ) +/t (07 (¢, (1)) — @7 (¢, (6 1) AT {u} (1, P (x; 1)) d.

=0

Since ¢ has a compact support, the left-hand side above vanishes when T" grows to infinity, and
taking the average of both sides for k € {1,...,n} yields

0= / (0, 2)d /t / (O (1, 2) — @7 (1, )N {u (¢, ) dow? (¢, 2)dL.
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By the Fubini Theorem,

/ wumwmwa/ hgmﬂmM%@®=/ (0, y)ug (v)dy,
z€R (z,y)€ER? yeR

and we similarly obtain, for all t > 0,
| owrtadata) = [ oyt
rz€eR yeR

As a consequence,
/ / Or (L, y)u (¢, y)dydt+/ Rw”(O,y)ug(y)dy
ye
/ / V(t, 2) AN {u}(t, x)du? (¢, z)de,
t

and we complete the proof by taking the sum of both sides for v € {1,...,d}. O

9.5.2.2 Weak convergence of the initial discretisation

We now fix a vector m = (m?,...,m?) € P(R)?, and recall the Definition 9.2.16 of the discreti-
sation operator x,. The convergence of this discretisation operator is ensured by the following
lemma.

Lemma 9.5.5 (Weak convergence of the initial discretisation). Let m = (m!,...,m4) € P(R)%.
For alln > 1, let us denote x(n) := x,m. Then, the sequence of empirical distributions

M 1= %Z Sat(n),..at(m) € P(RY)
k=1
converges weakly to the probability measure m € P(R?) defined by
m:=Uo ((H+m")™", ... (Hx* md)’l)i1 ,
where U refers to the Lebesgue measure on [0, 1].

Proof. For alln > 1, for all v : k € P2, let us define

Q= ) (s ) )= )

2k+1
2(n+1) )

2(n+1)

so that 7' (n) < x7(n) < 2)°"(n). The probability measures /m;, and m;  on R? are defined by

For all (z!,...,2%) € R?, let us define
Qa1 g = (—oo,xl] X oo X (—oo,:vd] c R
Then we have, for all (z1,...,2%) € R?,
M Q) = T (Qr . ga) = T (Qr . pa)-

Let us prove that, as soon as m(9Q,:,  ,4) = 0, then both extremal sides above converge to
m(Qy1 .. za). To this aim, we observe that

mE=Uto ((H*ml)_l,...,(H*md)_l)_l,
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where
1 n
Ui: = - Z 6(2k:|:1)/(2(n+1)) € P(]0, 1]).
k=1

By an elementary Riemann sum argument, we obtain that both U and U} converge weakly to
U. Besides, the function

(H=m"™t . (Hxm%) ) (0,1) » R

is continuous U-almost everywhere. Therefore, by the Continuous Mapping Theorem [50, (2.3),
p. 87|, both m,, and m,} converge weakly to

Uo ((H*ml)_l,...,(H*md)_l)il = .

It now follows from the Portmanteau Theorem [18, (v), Theorem 2.1, p. 16] that, as soon as
za) =0, then

.....

. _ 4 _
ngr-ir-loo m, (Qxl ..... Id) = m(Qzl ..... xd)a
therefore by the squeeze lemma,

lim mn(Qzl,...,zd) = m(le,...,zd)'

n—-+oo

Following the second example in [18, Example 2.3, p. 18], this ensures that m,, converges weakly
to m. O

9.5.2.3 Weak convergence of the MSPD

We now prove the convergence of the whole MSPD when started at a discretisation of m. For
all x € D4 we recall the Definition 9.5.3 of u[x] € M.

Proposition 9.5.6 (Convergence of the MSPD). Under Assumptions (C) and (USH), let m =

(m',...,m?) € P(R) and, for all n > 1, let us denote x(n) := y,m. Then there evists an

increasing sequence of integers (ne)e>1 and film] € M such that

lim plx(ng)] = f[m] in M.
{——+o00
In addition, for all v,v" € {1,...,d} such that v # ~', dt-almost everywhere, the marginal proba-
bility measures iy [m] and [ [m] have distinct atoms.
Proof. Let m = (m?,...,m%) € P(R)%. For all n > 1, let us define x(n) as above. We first prove

that there exists a converging subsequence of (p[x(n)])n>1 in M. In this purpose, we fix T > 0
and denote by

1 n
Hio,m[x(n)] == - Z 8@ (x(m)it)ucro.ry € P(C([0,T],RY))
k=1

the empirical distribution of the restriction of the MSPD started at x(n) to [0,7]. Let us prove
that the sequence (o 7)[x(n)])n>1 is tight on C([0,T],R?) (see [18, pp. 8-9] for an introduction
to tightness). By [18, Theorem 7.3, p. 82|, which is a consequence of the Arzela-Ascoli Theorem,
this follows from:

e the tightness of the sequence of initial distributions

which stems from Lemma 9.5.5,
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o the fact that, by (9.21), for all n > 1, for all k € {1,...,n}, the process
(@1 () 1) . Dx(n)i )

satisfies the Lipschitz continuity condition
Z @y (x = ®p(x(n);s)| < [t = s|Lca,

with a constant that does not depend on n.

As a consequence, owing to the Prohorov Theorem [18, Theorem 5.1, p. 59|, there exists
a subsequence of (W, rj[x(n)])n>1 converging weakly to some probability measure fif,rj[m] on
C([0,T],R%). Letting T grow to infinity along some countable set and using a diagonal extraction
procedure, we deduce that there exists an increasing sequence of integers (ng),>1 and fijm] € M
such that p[x(ng)] converges weakly to some probability measure fijm] € M.

Let us now check that, for all v,7" € {1,...,d} such that v # +/, dt-almost everywhere, then

the probability measures [i} [m] and ﬁ:l [m] have distinct atoms. We note that this amounts to
proving that

+oo ,
| i el {() € B s = o/ e =0

=0
where {if [m] ® ﬂzl[m] denotes the product measure of [i)[m] and ﬁZ, [m] on R%.  Following
Lemma 9.5.2 and [18, (ii), Theorem 2.8, p. 23], then for all ¢ > 0, the probability measure
W) [x(ne)] @ uf [x(ne)] converges weakly to fij [m] ® p} [m] on R% Hence, for all ¢ > 0, the
Portmanteau Theorem [18, (iv), Theorem 2.1, p. 16] yields

i m) © 1 (] ({(z,2) €R?: | — '] < ¢})
< liminf 7 [x(ne)] @ e(no)]({(z.2') € R : |z —a'| < ),
—>+00

therefore by the Fatou lemma,

+OO ’
/t i fm] © 1) [m]({(z,2') € R? : |z — 2| < e})dt

=0

o0 ,
< lim inf / )@ ] e 0) € B2 o= of| < e

Now, for all ¢ > 1, by the Fubini Theorem,

o0 ,
/to wf [x(ne)] @ pf [x(ne)]({(z,2") € R?* : [x — | < e})dt

-/ - [t om0

EZ Z /: Loy oemin a7 ety < 4

By Lemma 9.3.18, for all v : k,y' : k' € P4 with v # «/,

+°°]l gt < 2¢
o e et <a) TS Too

As a consequence,
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and we complete the proof by letting e vanish. O

9.5.2.4 Proof of Theorem 9.2.17

We can now complete the proof of Theorem 9.2.17, which is a straightforward consequence of
Proposition 9.5.6 and does not rely on the stability estimates of Section 9.4.

Proof of Theorem 9.2.17. For all n > 1, let us denote by u,, the probabilistic solution to the
system (9.1) obtained from the MSPD started at y,m, with m = (m?!,...,m%) € P(R)4. On the
other hand, let us define the function u = (u!,...,u?) : [0, +o00) x R — [0,1]¢ by

Vi>0, Vyedl,...,d}, u(t, ) := (H * i} [m])(x),

where [ifm] is given by Proposition 9.5.6. Then, combining Proposition 9.5.6, Lemma 9.5.2 and
Lemma 9.2.11, we obtain that the function u satisfies the assumptions of Proposition 9.2.14. As a

consequence, u is a probabilistic solution to the system (9.1), with initial data (ug, . .. ,ug) defined
by ug := H+m?, and it is the limit, in the sense of (ii) in Theorem 9.2.17, of the sequence (uy, )¢>1.
This completes the proof of Theorem 9.2.17. O

9.5.3 Two remarks on the notion of probabilistic solution

We discuss the (non)uniqueness of probabilistic solutions to the hyperbolic system (9.1), as
well as the Riemann problem.

9.5.3.1 Nonuniqueness of probabilistic solutions
Let us fix x € D¢ and define X € D, by, for all v € {1,...,d}, for all k € {1,...,n},
Topo1 = Ty 1= Ty

Then the empirical distributions

n 2n
1 1
ol =~ ;%; ..... ey and polX]i= - ;5@; ,,,,, #)

are the same in P(Rd). As a consequence, by Proposition 9.2.15, the flows of marginal CDFs of
u[x] and u[X] are probabilistic solutions to the system (9.1) with the same initial data.

But let us assume that there exists v € {1,...,d} such that ,A7 > 0. Then, by Lemma 9.4.1,
in the MSPD started at X, the particles of type « instantaneously drift away from each other. As
a consequence, for all ¢ € (0,¢*(X)), the marginal distribution p;[X] has exactly 2n atoms, while
the marginal distribution w; [x] possesses at most n atoms. Therefore, the corresponding solutions
to the system (9.1) do not coincide.

As a conclusion, probabilistic solutions to the system (9.1) are generally not unique.

9.5.3.2 The Riemann problem

Let us assume that m = (do,...,d), that is to say, the initial data of the hyperbolic prob-
lem (9.1) write

0 ifx <0,
1 ifx>0.

ub(a) =+ = ul(@) ={

This choice of initial data is referred to as the Riemann problem.
For all n > 1, the configuration x(n) := x,m writes 2} (n) = 0, for all v : kK € P%. Then
N(x(n)) =0, and, for all ¢ > 0,

D(x(n); 1) = [A(x(n))](x(n); 1),



284 Dynamique des particules collantes multitype et systémes hyperboliques

where

_ k/n

N (x(n) = n/ N0, .., 0,w, 1., 1)dw.

w=(k—1)/n
In other words, the system of particles of type v follows the Sticky Particle Dynamics with initial po-
sition vector (0, ...,0) and initial velocity vector derived from the function A¥(0,...,0,-,1,...,1).
Of course, by Assumption (USH), there is no collision between particles of different type.
Then, by Theorem 9.2.1, the probabilistic solution obtained in Theorem 9.2.17 can be described

as follows: it is the function u = (u!,...,u?), where, for all 4y € {1,...,d}, u” is the unique entropy
solution of the scalar conservation law

{atuv + 0, (A (u")) =0,
u7(0,2) = H(x),

where H is the Heaviside function and
A7 (u) ::/ A7(0,...,0,0,1,...,1)dv.
v=0

The Riemann problem for the system (9.1) is therefore uncoupled into d independent scalar con-
servation laws.

9.5.4 Stability and semigroup properties

We finally address the proof of Theorem 9.2.25.
Throughout this subsection, we fix m* € P(R)? and work in the W; stability class Ppy-
introduced in Definition 9.2.23.

9.5.4.1 Further properties of the Wasserstein distance
We first prove Lemma 9.2.24.

Proof of Lemma 9.2.2/. Let m* € P(R)? and recall the Definition 9.2.23 of the W stability class
P If m* = (m*!, ..., m*9) is such that

d
S [ femt(an) < +oc,
y=1 z€R

then P, is the space of all vectors of probability measures m € P(R)? satisfying the same
integrability condition, and Lemma 9.2.24 follows from [135, Theorem 6.18|.

In the general case, it is clear from the definition of Py~ that it is sufficient to address the
case d = 1, therefore we now fix m* € P(R) and prove that the set P,,+ of probability measures
m € P(R) such that Wy(m, m*) < 400 is closed for the Wy topology and contains a countable
and dense subset. Closedness is obvious; let us address separability.

For all integer M > 2, let us denote by Pg;f” the set of probability measures on R equal to
the sum of the image m?, of the Lebesgue measure on [0,1/M]U[1 —1/M,1] by (H *m*)~! and
a finite linear combination of Dirac masses at rational points with rational coefficients. We prove
that the countable set

P = ) Py
M>2

is dense in Pp,«. To this aim, we fix m € P« and € > 0. For M large enough,

1/M 1
/ |(H*m)_1(u)—(H*m*)_l(u)|du—|—/ |(H *m)™ (u) — (H +m™) ™ (u)|du < <
u=0 u=1-1/M 2
It follows from the proof of [135, Theorem 6.18] that the image m™ of the uniform probability mea-

sure on [1/M,1—1/M] by (H+m)~! may be approximated by a finite linear combination ijl a;jdyz,
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of Dirac masses at rational points with rational coefficients such that Wy (m™, ZJJ 1050.;) < €/2.
Now
Y, /M
Wi |m mM+Z ————26,, §/ |(H *m) ™ (u) — (H *m™) ™ (u)|du
u=0

J
M -2
+ M W1 mM, Z aj(?zj

+[;1UMKH*m><w<H*mwwwm

<e

which concludes the proof. O

The convergence in Wasserstein distance of order p € [1, +00) implies the weak convergence on
P(R) [135, Theorem 6.9]. The converse is not true, but the Wasserstein distance however enjoys
the following lower semicontinuity property.

Lemma 9.5.7 (Lower semicontinuity of the Wasserstein distance). Let (my,),>1 and (m )n>1 be
two sequences of probability measures on R converging weakly to the respective limits m and m' in
P(R). Then, for all p € [1,400],

W, (m,m") < liminf W(m,,, m),).

n—-+oo
Of course, both terms of the inequality above can be infinite.

Proof. For p € [1,400), the result is proved in [135, Remark 6.12]. If p = +oo, then letting
F,:=Hxmy,, G, :=Hxm], F:=Hxsm,G:=Hxm/, Lemma 9.2.11 yields, for all continuity
point v of [F~1 — G~

[F~'(v) = G7H(v)| = lim IFrfl(v)*Gﬁl(v)l

n—-+o0o
<liminf sup |F, — = liminf W (my,, m.,).
fminf sup (B (1)~ G ()] = i ing Wos o)

Since the function |F~! — G~ is left continuous with right limits, we deduce that the bound above
holds for all v € (0,1), hence the expected result. O

In order to work with a distance on P(R) that can be compared with the Wasserstein distance
of order 1, but is weaker and only metrises weak convergence, we introduce the following modified
Wasserstein distance.

Definition 9.5.8 (Modified Wasserstein distance). For allm,m’ € P(R), let us define the modified
Wasserstein distance W1 (m, m’) by

Wl(m,m’) = inf / (lz — 2’| A1)m(dzda’),
(z,x")€ER?

m<m,
with the same notations as in the Definition 9.2.18 of the Wasserstein distance.
Then it is obvious that, for all m, m’ € P(R),
Wl(m, m') < Wy(m,m').

Besides, a sequence (my,)n>1 converges weakly to m € P(R) if and only if W, (my,, m) converges
to 0; this follows from [135, Corollary 6.13] since the distances |« — 2’| and | — 2’| A 1 induce the
same topology on R.
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9.5.4.2 W, convergence of the initial discretisation
We now address the convergence in Wasserstein distance of order 1 for the initial discretisation.

Lemma 9.5.9 (Wasserstein convergence of the initial discretisation). Let m,m’ € Pp«. Then,
for all p € [1,+0o0],

il — o[}, = WS (m, ')
Proof. Let us fix m = (m!,...,m?%),m’ = (mt,...,m'¥) € Pand v € {1,...,d}.

On the one hand, recall that by by Remark 9.2.20, ||x,m—x,m’||, is the W](gd) distance between
the empirical distributions of y,m and x,m’, therefore by Lemma 9.5.5 and Lemma 9.5.7, we
deduce that

légl_il_rg Xnm — xpm'[|, > W;(ad) (m,m’),

for all p € [1, +o0].
On the other hand, for all p € [1,+00), the Jensen inequality yields
d n
=

|[Xnm — XnmI”g =

(2k+1)/(2(n+1)) p
(n+ 1)/ ((H xm?) " (v) — (H * m”)_l(v)) dv
v=(2k—1)/(2(n+1))

S|

1 k=1
d

1 1-1/(2(n+1))
<l + / (Hsm") " () — (H *m') " (w)|" dv
NI Je=1/@2(n+1)
n+1
< T(W;()d) (ma m/))p,
therefore
lim sup ||xnm — xpm'[|, < Wi (m, m’),
n—-+oo
which completes the proof for p < +00. The case p = +oc is similar — actually easier. O

9.5.4.3 Construction of the operators (S;);>0

Following Lemma 9.2.24, the space Pm+ metrised by the ng) distance contains a countable
and dense subset PY .. Applying Proposition 9.5.6 to all m € P2 . and using a diagonal extraction
procedure, we obtain that there exists a sequence of increasing integers (n¢)¢>1 such that, for all
m € PO, u[x,m] converges weakly to a probability measure {ijm] in M.

Lemma 9.5.10 (W; stability of ). Under the assumptions of Proposition 9.5.6, then for all
m € PY., for all t >0, we have (fi} [m], ..., f¢[m]) € Pm-.

Proof. Let m = (m',...,m%) € P%.. Following Definition 9.2.23, since W(® (m* , m) < +oo, it
suffices to check that, for all ¢ > 0,

d
> Wi(m?, 5] [m]) < +oc.
~y=1

Combining Proposition 9.5.6, Lemma 9.5.2 and Lemma 9.5.7, we have

d d
> Wi(m”, 5 [m]) < liminf Y Wi (kg [xn, m], 1] [xn, m)).
y=1 y=1

{— 400

But using Remark 9.2.20 and Theorem 9.2.22, we rewrite

d

Zwl(ug[xnem]a H?[Xnem]) = [[Xn,m — @(xp,m;t)|[1 < tLc,,
y=1

which completes the proof. ([l
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We can now define (S;);>¢ as follows.

Proposition 9.5.11 (Construction of (S¢)i>0). Let the assumptions of Theorem 9.2.25 hold.
Then, for all m € Py, for all t > 0, for all v € {1,...,d}, there exists a probability measure
S/m € P(R) such that W} [xn,m] converges weakly to Sy m. Besides, for all t > 0,

S;m := (S}m,...,Sm) € Py, (9.44)

and for all m’ € Py,

sup W (S;m, S,m’) < £;W{? (m, m’). (9.45)
>0

Proof. We first prove the proposition in the case m € PY,.. Then, letting Sy m := p}[m], (9.44)
follows from Lemma 9.5.10. Taking in addition m’ € ’P and combining Proposition 9.5.6,
Lemma 9.5.2 and Lemma 9.5.7, we have

m*

ng)(Stm, Sim’) < hmmfZWl W) [Xn,m], 1 [Xn, m]).

{—~+00

By Theorem 9.2.22,

> Wi (1 [xn, ], 1] [xn,m]) = [|@(xn,m5 ) — @ (x,m';)|[1 < L[ X, — X[ |1,

and by Lemma 9.5.9,

lim ||xn,m — xn,m'[); = Wi (m, m'),
£——+00

which completes the proof of (9.45) for m,m’ € PY...

Since the set PQ,. is dense in P+ and the latter is closed for the ng) distance, we deduce that
the operator S; possesses a unique continuous extension to P+, which satisfies the same stability
estimate (9.45), for all m, m’ € Pp,«. To complete the proof, it remains to identify the abstract
object S;m with the weak limit, when ¢ grows to infinity, of (1} [xn,m], ..., ué[x,,m]). Following
the properties of the modified Wasserstein distance \7\71 introduced in Definition 9.5.8, this can be
done by proving that

d
él}gloo z_;Wl(S?m, W [xn,m]) = 0. (9.46)
To this aim, let us fix m = (m',...,m?) € Py, € >0 and m’ = (m'*,...,m'?) € PY. such

that
ng)(m, m') <e.

Then, for all t > 0, for all £ > 1,

M=
M~ =

1(S7'm, 1 [xn, m)

2
I

d
< Wi(S/m, S{m’) + Z Wi(S/m', 1 [xn,m']) + Z Wi (1] [xn, m'], 1) [Xn, m]).

1 y=1 y=1

Y

By the properties of W, and (9.45),

d d
ZWl(Szm, S/m’) < ZWl(Szm, Sym’) < L4 ZWl(mV,mW) < Lie.
y=1

y=1
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By the properties of Wl and the construction of the sequence (ng)r>1,

{— 400

d
lim "Wy (S7m’, w] [xn,m']) = 0.
y=1

By the properties of Wl and Theorem 9.2.22,

M=

d
Z Wi (1 [Xn, m'], 1 [Xn, m]) < Wi (K [Xn,m'], 1 [Xn, m])
y=1

2
Il

IA
iy
M=

W,y (Hg [an m/] ) Hg [an m] ) )

y=1
and it follows from Lemma 9.5.9 that
d d
égirgm;wl(ug[xwm’], Mg [xn,m]) = ;Wﬂm”,m’”) <e

As a consequence, we have

d
lim sup Z Wl (S;Yma Hz [Xn[m]) < 2‘6167

{— 400 =1

and we obtain (9.46) by letting e vanish. O

9.5.4.4 Proof of Theorem 9.2.25

Proposition 9.5.11 provides a family (S¢);>0 of operators on the Wy stability class Pm+. In this
paragraph, we check that this family of operators satisfies the conclusions of Theorem 9.2.25.

Proof of Theorem 9.2.25. Let (S¢)i>0 be given by Proposition 9.5.11 on Ppy-.

Proof of (i) in Theorem 9.2.25. Let us fix m = (m!, ..., m?) € Pp-. By Proposition 9.5.11, for
allt >0, for all vy € {1,...,d}, the probability measure ] [x,,m] on R converges weakly to Sy m.
Therefore, the very same arguments as in the proof of Theorem 9.2.17 show that the function
u= (ul,...,u?) : [0,400) x R — [0,1]¢ defined by u?(t,z) := H * (S{m)(x) is a probabilistic
solution to the system (9.1) with initial data uJ,...,ug given by uj := H +m".

Proof of (ii) in Theorem 9.2.25. Let m,m’ € Py« and s,¢ > 0. By Theorem 9.2.22, for all
¢ >1, then

WD (2 D], 1] Do m']) < Lo WP (g D, ml, 1 Do, m']) + [t = sl L

Wo obtain (ii) in Theorem 9.2.25 by applying the lower semicontinuity property of the Wasserstein
distance of Lemma 9.5.7 and the convergence result of the initial discretisation of Lemma 9.5.9,
which completes the proof.

Proof of (iil) in Theorem 9.2.25. Let m € Py« and let s,t > 0. We shall prove that

d
ZWI(Sersma S?SSm) = Oa
y=1

where the modified Wasserstein distance \7\71 was introduced in Definition 9.5.8. In this purpose,
we first remark that, by the flow property for the MSPD, for all ¢ > 1,

Vy € {1""’d}’ HZJrs[Xnem] = H?[‘P(Xnem? S)]
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therefore we write

d
ZWl(SZJrsm, S/Ssm) < ZWl S om, ) [xn,m]) + ZWl W) [P (xn,m; s)], S;Ssm).
y=1 y=1
On the one hand, Proposition 9.5.11 yields

lim Zwl t+s 7Ht+s[an ]) =0.

€~>+oo

On the other hand,

W (1 [2(xn,m; 5)], S;'Ssm)

M=

2

”M& Il

O (xn,m; 8], 1/ [xn, Ssm] +ZW1 ki [xn,Ssml, 5/S,m),

y=1
and using Proposition 9.5.11 again, we have
d —_—
eETm ;Wl(uz [Xn,Ssm], S/Ssm) = 0.

It therefore remains to prove that
d —

lim Z Wi (k! [@(xn,m; 8)], 1 [Xn,Ssm]) = 0.
=1

In this purpose, we use the control of \7\71 by W; and Theorem 9.2.22 to obtain

d d
D Wi (] [®(xn,m5 5)], 1 [, Sem]) < L1 Y Wi (13 [®(xn, m3; 8)], 13 [xn, Ssm])
y=1
< L1[®(Xn,m; 5) — Xn,Ssml|1.

We somehow have to prove that the evolution along the MSPD for a time s asymptotically com-
mutes with the discretisation operation when measured in ng) distance. Let us first note that
this is the case for the weak convergence: by Lemma 9.5.5, the empirical distribution of x,,S;m
converges weakly to S;m; while it follows from Proposition 9.5.11 that the empirical distribution
of ®(x,, m;s) converges weakly to the same limit Sy;m € P(R)%.

Let us now remark that by Theorem 9.2.22 and Lemma 9.5.9,

[|®(Xn,m; 5) = Xn,Ssm|oc < [[P(Xn,m;5) = Xn,mM|oo + |[Xn, M — Xn,Ssmloo
< SLC,oo JrWéfl;)(m, Ssm)v

and it follows from (ii) that w (m,Ssm) < sLc,oo- As a consequence, the right-hand side above
is lower than 2sL¢ o, therefore, letting x(ng) := ®(xn,m; s) and y(ng) := xn,Ssm,

d ng
[|@(Xn, m;8) — Xn,Ssm]|1 = Z > la(ne) = yjl (no)]
y=1k=1
d ng
= Z |:L'k ) 7(n4)| A (28Lc,00))
v:l k=1

d
-y / & — y| A (25Lc 00)m], (dzdy),

y=1 (z,y)€ER?
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where, for all v € {1,...,d}, the probability measure m), on R? is defined by

1 & _ =1
ma, = Y Sz = U o ((H % ud[@(xn,m; s)]) ™", (H * w3 [xn, Ssm]) ™) ™
k=1

Since both uf[®(xn,m;s)] and pg[xn,Ssm] converge weakly to SYm € P(R), one deduces from
Lemma 9.2.11 that m}, converges weakly to Uo ((H % SYm)~', (H % SYm)~")~!, which is a
probability measure concentrated on the diagonal in R%. Since (x,y) — |z — y| A (28Lc,00) is
continuous and bounded, one concludes that ||®(x,,m;s) — xn,Ssm||1 vanishes when ¢ grows to
infinity. O

Remark 9.5.12. Assumption (GNL) plays a crucial role in the proof of the discrete stability
estimates of Theorem 9.2.22. However, it can be relaxed to Assumption (DM) in the statement of
Theorem 9.2.25 according to the following idea: assume that X only satisfies Assumption (DM), and
in the Definition 9.5.3 of the empirical distribution of the MSPD on D2, replace the velocity field
A with some approximation A" satisfying Assumption (GNL) but having the same Lipschitz and
Uniformly Strict Hyperbolicity constants Li,c and Lysg as A. Then the proof of Proposition 9.5.6
can be adapted to yield the same tightness result, and the sequence of MSPD trajectories thus
obtained satisfies Theorem 9.2.22 with stability constants £, that only depend on d, Lic and
Lysn, while converging to a probabilistic solution to the system (9.1) with velocity field A. The
proof of Theorem 9.2.25 now works exactly the same.

9.A Proofs of technical results

9.A.1 Proof of Proposition 9.2.14

Before proving Proposition 9.2.14, we state and prove the technical Lemmas 9.A.1 and 9.A.2.
Lemma 9.A.1 (An extended pseudo-inverse function formula). Let ¢ : [0,1] x R — R be a
measurable and bounded function, and F be a CDF on the real line. Then

1

/ (1 0)F() + 0P (2),2)d0dF (z) = / (v, F~'(v))dv. (9.47)
z€R JO=0

v=0

Proof. Let us split the integral in the left-hand side of (9.47) in two parts, depending on whether
AF(z) =0 or AF(z) > 0. On the one hand, using Lemma 9.2.10,

xTE

/ / ﬂ{AF(z):O}g((l — Q)F(SC_) + HF(:C), :C)d@dF(:L‘) = / ]l{AF(Z):O}g(F(ZL'), :L')dF(:L')
z€R J =0 R

= /_0 ]I{AF(Ffl(U)):O}f(F(F_l(U)), F_l(’U))d’U,

and it follows from (ii) in Lemma 9.2.9 that, if AF(F~!(v)) = 0, then F(F~'(v)) = v. As a

consequence,

z€R JO=0

v=

1
H{AF(Ffl(U)):O}g('Uy F_l(’U))d’U.
0

On the other hand,
1
/ ) /6 Liar@sopf(1 — 0)F(z™) + 0F (), 2)d6dF ()
x€ =0

/U_O]l{AF<F1<u>>>0}/ (1= F(FY(v)") +0F(F~'(v)), F~'(v))dvdé

1 1 F(F~'(v)
— 1 “1y - 14 w,Fﬁ1 v))dwdv
/u_o (BFETOZ0 AR (F-1(v)) /w_F(Fl(v)) ( @)

1 1 1
Lw, F~1(v))
— 1 “1(y 1) ) <aw “1(p))} —————=dwdv.
/U:O o {AF(F~=1(v))>0,F(F~1(v)")<w<F(F~1( ))}AF(FA(U))
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The key observation here is that, if v € (0,1) is such that AF(F~1(v)) > 0, then, for all w such
that

F(F~H(v)7) <w < F(F~1(v)),

one has F~1(w) = F~1(v). As a consequence, the right-hand side above rewrites

1 1 —1
((w, F~'(v)
1 1y “1() - )<w —1(y dwdv
/u_o/_o {AF(F~1(v))>0,F(F~1(v)” )<w<F(F~*(v))} AF(F~1(v))

1 1 1
L(w, F~1(w))
— 1 1w 1) =) <w 1)) e dwdv
/J:O/:O (AP(P=1 ) >0, F(F= () ) <wS PP 0D} A (FT (1))

1 1 1
L(w, F~1(w)) /
= 1 “1(w _ 1 —1() - )<w —1(p))ydodw.
/ 0 {AF(F~1( ))>O}AF(F_1(1U)) Y {F(F~1(v)")<w<F(F~1(v))}

w=

We now complete the proof by checking that, dw-almost everywhere, if AF(F~!(w)) > 0 then

1
/_0 L r(Fr1 (o)) <w<F(F-1 (o))} dv = AF(F~ (w)).

To this aim, we note that for all w € (0, 1) such that AF(F~!(w)) > 0,

1
/70 Lp(p-1(0))<wsF(r-1())ydv = /ERH{F@)@SF(E)}dF(x)

= Z Lip@e)<w<r()AF(z),
z:AF(2)>0

where we have used Lemma 9.2.10 at the first line.
Recall that, by (ii) in Lemma 9.2.9, F(F~}(w)™) < w < F(F~!(w)). As a consequence, if w
is not taken from the countable set of values of F(z~) when z is an atom of dF, then the sum

above contains exactly one positive term, which corresponds to x = F~!(w) and therefore writes
AF(F~Yw)). O

Lemma 9.A.2 (Convergence of composed CDFs). Let (Fp,)n>1 and (Gp)n>1 be two sequences of
CDFs on R and F and G be two CDFs on R, such that:

e for all x € R such that AF(xz) =0, then lim,_, 1o Fp,(z) = F(x),
e for all x € R such that AG(z) = 0, then lim, 1o Gn(z) = G(z),
o for allx € R, AF(z)AG(z) = 0.

Then, dv-almost everywhere,

lim F,;'(v) = F'(v) and lim G.(F;'(v)) = G(F~(v)).

n—-+oo n—-+o0o

Proof. By Lemma 9.2.11, F,;1(v) converges to F~!(v), dv-almost everywhere in (0,1). We now
check that, for all z € R such that AG(z) > 0, then the set

{ve(0,1): F'(v) =z}

is negligible with respect to the Lebesgue measure on (0,1). Since the function F~! is nonde-
creasing, this set is an interval, and if there exists v < ¥ such that F~'(v) = F~1(v) = z, then
F(z7) <w < v < F(z), which is a contradiction with the fact that AF(z)AG(z) = 0.

As a consequence, dv-almost everywhere,

e F.1(v) converges to F~1(v),

o AG(F~'(v)) = 0.
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Let us fix v € (0,1) satisfying these two conditions, and write G, (F;!(v)) = G,(F~*(v)) +
Gn(F; 1 (v)) — Go(F~1(v)). On the one hand,

n

lim Gn(F~'(v)) = G(F~'(v)),

n—-+oo
since AG(F~!(v)) = 0. On the other hand, by the Dominated Convergence Theorem, for all € > 0,
there exists § > 0 such that
/ Tip-1(v)—s<a<r1(v)+5}dG(z) <€
zER
Besides, for n large enough, F,;1(v) € [F~1(v) —§ <2 < F~1(v) + §], so that

|Gn(F,H(0) = Gu(F~H(v))] < / R]l{Ffl(v)f&gngfl(v)+5}dGn($)-
xE

We now deduce from the characterisation of weak convergence on closed sets in the Portmanteau
Theorem [18, Theorem 2.1, p. 16] that

limsup |G, (F 1 (v)) — Gu(F~H ()] < e,

n—-+o0o -
which completes the proof. [l
We are now ready to prove Proposition 9.2.14.

Proof of Proposition 9.2.14. Let (u,)n>1 and u satisfy the assumptions of Proposition 9.2.14. Let
us fix ¢ = (p1,..., %) € CLO([0, +00) x R,R?) and vy € {1,...,d}. For all t > 0, the set of points
x € R such that A,u”(t,z) > 0 is at most countable, therefore dz-almost everywhere, u] (¢, x)
converges to u”(¢,z). By the Dominated Convergence Theorem, we deduce that

+oo
lim O (t, x)u) (t, x)dedt Jr/ (0, 2)u) (z)dx

nEo0 Ji—o  JaeR zeR
+oo
:/ / 8tg07(t,z)u7(t,:c)d:rdt+/ ©7(0, z)ug (x)dx.
t=0 JzeR zE€R

The main difficulty of the proof actually lies in checking that

hIJIrl / Y(t, )N {un }(t, x)dgu) (¢, x)dt = / / Y (t, 2) AN {u}(t, x)du” (¢, z)de.
n—+oo t
(9.48)
In the scalar case, (9.5) yields, for all ¢ > 0,

/ o(t, )M up }(t, 2)dyun(t, ) / Ouip(t, 2)A(un (t, x))de
z€R

and, similarly,

/ER (t, x)Mu}(t, x)du(t, x) / Op(t, z)A(u(t, z))dz,

so that the limit (9.48) is easy to obtain — at least for test functions having a continuous partial
derivative 0.

In the general case, Lemma 9.A.1 above allows us to rewrite (9.48) under the following equiv-
alent form:

lim / Wt w8, ) @)X (Wbl () 0, sy w8 ) (0))) dudt

n—-+o0o

/t / Yt ()T )N (W () TH)), (G uY (8 ) T (0) dudt.
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By the Dominated Convergence Theorem and thanks to the continuity of the functions ¢7(t,-)
and A7, this identity follows if we first prove that, dt-almost everywhere, dv-almost everywhere,
for all v,~" € {1,...,d} with v # ~+/,

lim w7 ) =w ()T ), i w) (Gul () T () = w0 () T ().

n—-+o0o n—-+o0o

These equalities are obtained by applying Lemma 9.A.2 above at all times ¢ such that
Ve eR,  Apul(t,x)Auul (t,x) =0.

On account of Condition (9.7), this is the case dt-almost everywhere, which completes the proof. [

9.A.2 Proofs of Propositions 9.3.16 and 9.3.17

This subsection contains the proofs of Propositions 9.3.16 and 9.3.17, which were stated
in §9.3.2.3 and describe some continuity properties of the trajectories of the MSPD.

Proof of Proposition 9.3.16. We prove by induction on N(x) that
(i) the process (®(x;t));>0 has continuous trajectories in D2,
(ii) for all s, > 0, ®(x;s8+t) = D(D(x; 5);t).

Let x € D? such that N(x) = 0. Then, by Definition 9.3.13,

V20, B(xit) = BAG)(xs 1),

and (i) follows from the continuity of the trajectories of (®[A(x)](x; t))t>0. Now, for all s,t > 0,
D(x;8+t) = PIA(X)](x;8 +t) and P(x;8) = P[A(x)](x;s) =: x'. By Corollary 9.3.12, N(x') =0
and A(x") = A(x). Hence,

B(D(x;5);t) = D(x';t) = DAX)](x'; 1) = PA()](R[A(X)](x; 5); 1)

and the flow property for (®[A(x)](:; t))i>0 yields

BACPAG(x; 5); 1) = BN (x55 +1) = (i 5+ 1),

which results in (ii).

Now let N > 0 such that, for all x € D% with N(x) < N, then (i) and (ii) are satisfied. Let
x € D? with N(x) = N + 1. In particular, N(x) > 1 so that t*(x) < 400, and for all t € [0, *(x)),
B(x;t) = B[A(x)](x;t). As a consequence, the function ¢ — ®(x;t) is continuous on [0,¢*(x)). On
the other hand, since N(x*) < N(x) = N +1, the function ¢ — ®(x;¢) is continuous on [t*(x), +00).
Therefore it remains to prove that the function ¢ — ®(x;t) is left continuous at the point ¢*(x),
where, by definition, it takes the value

D(x;t"(x)) = P(x*;t%(x) — t*(x)) = x¥,

and we recall that, by definition, x* = ®[X(x)](x;¢*(x)). As a consequence, the continuity of the
trajectories of (®[A(x)](x;1))i>0 yields

lim ®(x;t) = lim d[A(x x;t) = x" = d(x;t" (%)),
tht*(x) ( ) t1t* (x) [()]( ) ( ()>

which is the expected result.
We finally address (ii). Let s,¢ > 0.
Case s > t*(x). Then s+t > t*(x), so that, by Definition 9.3.13,

P(x;s+1t) = P(x*;5s+t—t%(x)) = D(x*;5" + 1),
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where s’ := s — t*(x) > 0. Since, by Corollary 9.3.12, N(x*) < N(x), then the flow property
for (®(x*;t))i>0 vields @(x*;s" +t) = O(P(x*;8');t) = P(P(x*;s — t*(x));t) and, using Defini-
tion 9.3.13 again, ®(x*;s — t*(x)) = ®(x;s). As a conclusion, ®(x; s +t) = ®(P(x;s);1).

Case s < t*(x). Then we write X' := ®(x;s) = ®[A(x)](x;5), and recall that, by Corol-
lary 9.3.12, A(x’) = A(x) and t*(x’) = t*(x) — s. By Definition 9.3.13,

q)(x/. t) = &)[X(XI)](XIQ t) ift <t (x'),
’ d(x*it — (X)) ift>t(x).

If t < t*(x') = t*(x) — s, then combining the flow property for (&)[X(x)](gt))tzo with the

equality A(x) = A(x), we obtain

SA)](x';1) = SAF(RAF)I(x; 5); 1) = SAX)](x; 5 + 1),

and, since s + ¢t < t*(x), the right-hand side above is worth ®(x;s + ¢).
If t > t*(x') = t*(x) — s, then by Corollary 9.3.12, x"* = x*, therefore it is straightforward that

D(x';t) = d(x*;t —t"(x) = D(x* 55+t — t¥(x)) = P(x; 8 + 1).
In both cases, we conclude that ®(®(x;s);t) = ¢(x';t) = P(x;s + t), which is (ii). O
Before detailing the proof of Proposition 9.3.17, we first define
t(x) :=inf{t > 0: N(®(x;t)) = 0}.

Certainly, if N(x) = 0 then (x) = 0, otherwise {(x) > 0, and an upper bound on t(x) can be
derived as follows.

Lemma 9.A.3 (Bound on #(x)). Under Assumption (USH), for all x € D such that N(x) > 0,

t(x) < sup{xf -z (a:4,8:j) e R(x)} < +o0. (9.49)

Luysu

Proof. Let x € DZ. Then, for all t > 0, we have ¢t > #(x) if and only if N(®(x;t)) = 0, which is
equivalent to the fact that, for all (a: 4,3 : j) € (P9)? with o < 3,

7 (x;1) > B (x:1),
that is to say,
¢
/ (v¥(x;8) — Uf(x; s))ds > xf -z
s=0

Recall that, by (9.21) and Assumption (USH), since the left-hand side above is larger than ¢ Lysn,
then a sufficient condition for this inequality to hold is that ¢ > (mf — x¢)/Lusn, which yields the
bound (9.49). O

Let us now recall that the dense open set D C D¢ is defined in §9.4.2.1 as the set of configu-
rations x € D2 such that, for all (a: 14,3 : j) € (P)? with a < 8, then & # xf
Lemma 9.A.4 (Properties of D). The set D has the following properties.

(i) For all x € D, there exists n > 0 such that, for all y € Bi(x,n), we have y € D and
R(x) =R(y)-
(i) The function t* defined in (9.19) is continuous on the set {x € D : N(x) > 1}.
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Proof. Let x € D. Let
1
n:= 3—min{|x? —xf|,(a 10,61 4) € (PYH? a0 < B} > 0.
n

Let y € Bi(x,n). Then, in particular, for all a : i € P%, |28 — y&| < nn. Let (a:4,8: j) € (P3)?
with a < 3.

If (:4,8:7) € R(x), then x]ﬁ — ¥ > 3nn. Since |:c]ﬁ - y]ﬁ| < nn and [z — ¥ < nn, we
deduce that yJB — y¥ > nn so that yf >y and («:4,8:j) € R(y).

Likewise, if (a: 4,8 : j) & R(x), then z§ — zf > 3nn and y§* — yf > nn so that (a:4,06:7j) &
R(y)-

As a conclusion, R(x) = R(y) and y € D.

We now prove that the function ¢* is continuous on the set {x € D : N(x) > 1}. Let us fix a
configuration x in this set. Let (yx)r>1 be a sequence converging to x in DZ. By the first part of
the lemma, there is no loss of generality in assuming that, for all k > 1, ||x — yx|[1 < n, where n
is defined in the first part of the proof, so that R(yx) = R(x). This allows us to write

t*(yx) = min{755 55 (ve), (@2 4,82 j) € R(x)}-

Let us fix (o : 4,5 : j) € R(x). We denote 7, := ?;?}}B:j(yk) and prove that limg_, oo 7% =
?;OZHB ;(x). On the one hand, the sequence (7x)x>1 is bounded. Indeed, combining Lemma 9.A.3

with the fact that R(yx) = R(x) and ||x — y&||1 < n, we obtain

T < (2§ — 2| +nn).

Lysu

On the other hand, let 7 > 0 refer to the limit of a converging subsequence of (74)x>1, that we
still index by k for convenience. For all y € D;il and t > 0, let

9y, 1) == A (y:t) — S (y; 1),

so that, for all y € By (x,7), 750} ,;(y) = t if and only if g(y,t) = 0. In particular, for all k > 1,
9(Yk,Tr) = 0, therefore

lg(x, )| = [g(x,7) — 9(ye: 7)| < [g(x,7) — g(x, )| + |9(x, %) — 9(¥k, 78)|-

By the continuity of the trajectories of the flow (®[A(x)](-; t))t>0, lg(x,7) — g(x, 7% )| vanishes when
k grows to infinity. Furthermore, Lemma 9.3.10 yields

S1g0c, ) — 90y mi)| < I RGI06 ) — BRG] (ki)
A5 71) — B RG]k )

< @A i) — DA (s 7)1
< |x =yl

and the right-hand side also vanishes when k grows to infinity. As a conclusion, g(x,7) = 0 so
that 7 = 7¢°L (x).

a:t,f3:5
Thus, for all («a : 4,8 : j) € R(x), the function ;5?1_11&]_ is continuous at x, and we complete
the proof by recalling that the minimum of a finite number of continuous functions remains a
continuous function. O

For initial configurations x € D, Lemma 9.A .4 can be completed by the following lemma.

Lemma 9.A.5 (Estimates on the collision times). Under Assumption (USH), for all x € D2, let

R/(x):={(a:4,8:j) € (PH?a< Bzl =y}
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and let us define ' >0 by
1
0= g-min{laf | (aci ) € (B’ a < By (et B 4) ¢ RI(x)),

where we take the convention that ' = +o0o whenever the minimum above is taken over an empty
set. Then, for all y € D& such that ||x — y||1 < n'Lusu/Lca,

inf{t > 0: R(2(y;1)) = R} < ——Ifx — v,
USH

while -
sup{t > 0: R(®(y:#)) = R(x)} > T
C,1

Proof. Let y € D¢ such that |[x — ylli < #'Lusi/Lc.. Recall that Lusy < Le.i, so that
l[x —y|l1 <7, which implies that

R(y) C R(x) UR/(x).

Let (a:4,8:7) € R(y).
o If (a:14,8:7) € R'(x), then by Assumption (USH),

1 n
11 B _ B B
Tavig (YY) < j— (y; — i) = j— (y; —o +af —yi) < Toon |[x =yl
o If (a:4,8:7j) € R(x), then by the boundedness of the velocities,
1 1 Iy’
1
o (V) 2 T () —9f) 2 (e —af| =) = T

Since the choice of y ensures that ||x —y||[1/Lusu < 21'/Lc,1, we conclude that, on the time
interval [n||x — y||1/Lusu, 2n1’ /Lc 1], then R(®(y; 1)) = R(x). O

We are now ready to prove Proposition 9.3.17.

Proof of Proposition 9.3.17. The proof works by induction on N(x).

Let us first fix € > 0 and x € D such that N(x) = 0. Let § > 0, and let y € B;(x,d). Then,
in particular, for all v : k € PZ, |z} — y/| < nd. We shall study separately ||®(x;t) — ®(y;¢)||: on
the intervals [0,%(y)) and [{(y), +00).

If #(y) = 0 then the interval [0,#(y)) is empty. If #(y) > 0, that is to say N(y) > 1, then we let
t €10,%(y)). Then

d n t
1
P(x;t) — P(y; )| < ||lx— — T(x:8) —v)(y;8)|ds < § + 2L¢ 1t.
10(x; ) — @(y; )|l < [[x Y||1+n7§_1k§_1/8_0|vk(x,8) vp(y;s)lds <6 +2Lca

Following Lemma 9.A.3,

ty) < : - sup{y; — y*, (a4, 8 j) € R(y)}.

and, for all (a: 4,8 :j) € R(y),

vl =yt =y — ol +af —af o -y <o — oyl + 2 -yl < nd,

where we have used the fact that N(x) = 0 so that xf < z$. As a consequence,

2n
sup [[96x0) - @yt < (14 foLea ) b
te[0,t(y)) USH
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We now study ||®(x;t) — ®(y;¢)|[1 for t > #(y). Letting x' := ®(x;t(y)), ¥y’ = ®(y;t(y))
and using Proposition 9.3.16, thls amounts to studying ||®(x";t) — ®(y’;¢)||1 for ¢ > 0. By the
definition of £, N(x') = N(y’) = 0, so that A(x') = A(y’). Hence, for all £ > 0, Lemma 9.3.10 yields

[@(x;1) = @(y'; )]l = [BA)](x'51) = A (Y 8)]1 < I =[]

Using the bound obtained on ||x’ — y’||; above, we finally deduce that

2n
supl[@(xit) — 00yl < (14 oL ) &
>0 USH

so that the conclusion follows from taking ¢ small enough for the inequality

2
(1 + i LC,l) 0<e
Luysn
to hold.

We now let N > 0 such that, for all x € D% such that N(x) < N, the conclusion of Propo-
sition 9.3.17 holds. Let us fix ¢ > 0 and x € Dz, such that N(x) = N + 1. We are willing to
construct 6 > 0 such that, for all y € B;(x, ),

sup [|®(x;1) — D(y:t)[[1 < e.
>0
First, by Corollary 9.3.12, N(x*) < N, therefore there exists §* > 0 such that, for all y € D<,
it [x* — (y; * () < 6", then

Sup [|B(x7; 1) — 2((y; " ()i )l < €,

that is to say, thanks to the flow property stated in Proposition 9.3.16,

sup ||@(x;1) — @(y;t)|[1 <e.
>+ (x)

We now prove that there exists § > 0 such that, for all y € B;(x, ), then SUPe(o, ¢+ ()] || P(X5 ) —
O(y;t)[|l1 < e and [|x* — @(y;t*(x))|[1 < ¢*; which we shall actually do at once by constructmg
d > 0 such that, for all y € By(x, ),

sup ||®(x;t) — P(y;t)|[1 < end”.
te[0,t*(x)]

To this aim, we first assume that x € D. Then, by (i) in Lemma 9.A.4, there exists 7 > 0 such
that, for all y € B;(x,n), then R(x) = R(y), and therefore A(x) = A(y) =: A. As a consequence,
for all t € [0,t*(x) At*(y)],

o(x;t) = DA(x;t),  D(y;t) = D[N(v;1),
so that Lemma 9.3.10 yields
vte [0,t"(x) At (y)l,  [[®(x58) = 2(y;H)llL < |x =yl

Letting x’ := ®(x;t*(x) A t*(y)), ¥’ := ®(y;t*(x) At*(y)), one still has the trivial bound, for all
te[tr(x) Atr(y), " (x)];

e(x;t) = @(y; )|l < |Ix" = ¥'[[1 + 2Lca(t = t7(x) At7(y))
<l =yl +2Lealt™ (%) =t (y)l-

As a conclusion, for y € D¢ such that ||x — y||; < n,

sup |[|®(x;1) = @(y; )|l < [[x = yll1 +2Lcat™(x) = t°(y)l-
te[0,t*(x)]
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By Lemma 9.A.4, there exists > 0 such that, for all y € D% such that |[x — y||; < §, the
right-hand side above is lower than € A §*. This completes the proof of the case x € D.

Without assuming that x € D, we proceed as follows. Let ' > 0 be given by Lemma 9.A.5.
Let us note that, since N(x) > 1, then ' < +o00. Besides, the proof of Lemma 9.A.5 shows that
t*(x) > 3nn’/Lc,1. Let us denote

Ho— 2nn’

€ (0,t*(x)).

C,1

Then ®(x;t') € D, and R(®(x;t')) = R(x). As a consequence, using the argument above, we
obtain that there exists §' > 0 such that, for all y € DZ such that ®(y;t') € By (®(x;t'),d’), then

sup |[|®(x3t) — D(y;t)|L < €N
teft’ t*(x)]

Now, for all y € D? such that ||x — y||1 < nn'Lusu/Lc,1, then
t" :=inf{t > 0: R(®(y;t)) = R(x)} </,

and
L
sup ||®(x;t) — ®(y;6)|[1 < ||x —y|}1 +2Lcat” < (1 + Qn#) [1x —yll1,
tel0,t"] USH
where the bound on t” follows from Lemma 9.A.5. On the other hand, using Lemma 9.A.5
again, we obtain that, on the time interval [t”,t'], R(®(y;t)) = R(x) = R(®(x;t)), therefore by
Lemma 9.3.10,
)=l

L
sup ||@(x;t) — @(y;1)[[1 < ||@(x;t") — D(y; t")||h < (1 + 2!
te[t”,t/] LUSH

As a consequence, letting

§ := min (nn'LUSH Ny )

Lci ' 14 2nLc/Lusn
we conclude that, for all y € B;(x, ),
|@(x;t") — (y; )|l < ¢,

while
sup [|®(x;t) — ®(y; 1)1 <,
telo,t’]

which completes the proof. O

9.A.3 Proof of Lemma 9.4.13

We now detail the proof of Lemma 9.4.13, which asserts that the set of good configurations G
is dense in DY,

Proof of Lemma 9.4.13. Let us begin the proof by recalling the chain of inclusions
GcBcDc D,

and that D is dense in D¢. As a consequence, it suffices to prove that, for all x € D, for all € > 0,
there exists y € G such that ||x — y||1 < e. The reader will not be surprised that the proof works
by induction on N(x).
If x € D and N(x) = 0, then x € G and there is nothing to prove. Now let N > 0 such that any
x € D with N(x) < N belongs to the closure of G. Let x € D with N(x) = N + 1; in particular,
t*(x) < +o00. Let us fix
t*(x) <t <t <t*(x)+t"(x*),
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Z t"

~~
~+
<

N

t*(x)

t=0

Figure 9.8 — The choices of ¢’ and ¢” to ensure that, on the time interval (¢*(x), t”], there is neither
self-interaction nor collision in the MSPD started at x.

such that, in the MSPD started at x, there is no self-interaction on the time interval (t*(x),t"),
see Figure 9.8. -

We shall prove in Step 1 below that, for all € > 0, there exists x’ € B;(x,¢€) and s’ € (0,¢*(x))
such that:

e in the MSPD started at x’, there is no self-interaction on the time interval [s', t*(x)],

e for all t > t*(x), P(x;t) = O(x';t).
As a consequence, we shall assume, without loss of generality, that x satisfies the following property:
there exists s’ € (0,t*(x)) such that, in the MSPD started at x, there is no self-interaction on the
time interval [s’, t*(x)], see Figure 9.9.

t=20

Figure 9.9 — The shrinking of particles having a self-interaction at time ¢*(x) allows to select
s’ < t*(x) such that there is no self-interaction on the time interval [s’,¢"].

_ Then, arguing as in the proof of Lemma 9.4.16, there exists €y > 0 such that, for all y €
Bl (X7 60),
1. y € D and R(y) = R(x),

2. P(y;s’) € D and R(P(y;s')) = R(P(x;5’)), which implies that, in the MSPD started at y,
there is no collision on the time interval [0, s'],

3. forall v: k € P?, clu](y; s') = cluj(x;8'),
4. ®(y;t') € D and R(P(y;t')) = R(P(x;t')), which implies that

{ari, 8 5) € R 750,00 € [0, 1]} = ({014, ) € R(y) : 7505,5(v) € (5,1}

i.e. the collisions in the MSPD started at x on the time interval [t*(x),t] (or, equivalently,
(s',t")) involve the same pairs of particles as the collisions in the MSPD started at y on the
time interval (s',¢),

5. ®(y;t"”) € D and R(®(y;t")) = R(®(x;t")), which implies that, in the MSPD started at y,
there is no collision on the time interval [/, ¢"],
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6. for all v : k € P4, clu)(y;t”) = clu) (x;t”), which implies that, in the MSPD started at y,
there is no self-interaction on the time interval [s',¢"].

Let us fix € € (0,¢]. The sequel of the proof is as follows: in Step 2, we construct yo €
Bi(x,¢€/2) such that, in the MSPD started at yq, the collisions on the time interval [0,t"] (or,
equivalently, (s',t')), are binary. Of course, ||x —yol||1 < €, therefore y( satisfies all the conditions
above; in particular, in the MSPD started at yg, the self-interactions are separated from collisions
on the time interval [0,¢”]. In Step 3, we show that there exists n € (0,¢/2] such that, for all
y € Bi(yo,n), the collisions on the time interval [0,#”] in the MSPD started at y remain binary.
In Step 4, we construct ' > 0 such that, for all y’ € By (®(yo;t'),n’), there exists y € Bi(yo,7)
such that ®(y';¢" —t') = ®(y;t").

Taking the result of these four steps for granted, let us explain how to complete the proof. By
construction, the collisions in the time interval [0,¢'] in the MSPD started at yo are binary and
separated from self-interactions. Besides, N(®(yo;t")) = N(®(x;t')) < N, therefore there exists
y' € B1(®(yo;t'),n') such that y’ € G. Let y € By(yo,n) be given by Step 4. Then, on the one
hand,

€
x =yl <llx=yolli +lyo =yl < 5 +n<e

while, on the other hand,

e sincey € Bj(yo,7), the collisions are binary and separated from self-interactions on the time
interval [0,¢"] in the MSPD started at y,
e since y' € G, the collisions are binary and separated from self-interactions in the MSPD
started at ®(y’;t" —t') = ®(y;t").
As a consequence of the flow property for the MSPD, y € G and the proof is completed.
Let us now give a detailed proof of Steps 1 to 4.
Step 1. We separate self-interactions from collisions by shrinking groups of particles involved
in self-interactions at time ¢*(x) around their center of mass, as is depicted on Figure 9.9. Let us
fix € > 0 and assume that there exist v € {1,...,d} and k < k such that

clu) (x;7(x)) = clul(x; " (x)) = v : k- &, cluy (x;7(x) ") # clul(x;t"(x)7),

that is to say, a self-interaction occurs at time ¢*(x) between the particles v : k,...,v : k. Note
that this implies that 0,A7 < 0. Let us define

%
1
5:2_7 xk’
kiEJrlk:k

and denote by x” the configuration in D¢ such that, for all v : k¥’ € P4,

' TSV T
(xp)z: _ T / if~ kK &y k- -k,
(1—p)&+ pz), otherwise,

for all p € [0,1]. Then, it is easily seen that, for all v’ : k' € v: k-- -k,
Vie[0,t], @ (xPt) = d(x;1).
Besides, we claim that
L inf{t > 0: @} (x";1) = ®L(x"; )} = pt*(x),
2. for all k € {k,...,k}, for all t > pt*(x), ®)(x";t) = ] (x";1),
3. forall k € {k,...,k}, for all t > t*(x), ®](x’;t) = @] (x;1).

The first point is obtained by elementary geometry if there is no self-interaction between times 0
and t*(x). Otherwise, let ¢1,..., ¢, denote the distinct elements of the set

{cu] (x;t*(x)7), k € {k, ..., k}}.
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Let us recall that in the proof of Lemma 9.4.16, we made the observation that, in the Local Sticky
Particle Dynamics, the center of mass travels at constant velocity whatever the composition of the
clusters. Applying this remark to each generical cluster ¢;, we write

t*(x) =inf{t > 0: @g(;(; t) = (I)%(i;t)},

where X is derived from x by the following procedure: for all ¢ € {1,...,r}, for all v : k € ¢,
replace the coordinate z; in x with

1
)= E z),.
|ci| ~y:k'€c;

Then, in the MSPD started at X, the particles v : k, ..., : k do not have self-interactions between
times 0 and t*(x), so that the argument above yields

inf{t > 0: ®J(x";t) = @%(ip;t)} = pinf{t > 0: ®)(X;t) = @%(;(; t)} = pt*(x),

where X” is derived from X in the same fashion as x” is derived from x. To complete the argument,
we now have to check that

inf{t > 0: ®}(x";1) = @%(x";t)} = inf{t > 0: ®)(X;t) = @%(Sip;t)}.

This follows from the fact that the operations mapping x to X and x to x” are commutative;
therefore the equality above is obtained by the same geometric arguments as in the case p = 1.
The second and third points above easily follow.
Finally, the configuration x” satisfies

17
I — x*||y = —L
n

M-

|§71'Z|5
k

I
|

so that for p close enough to 1, ||x — x”||1 < € while the self-interactions between the particles
v :k,...,v:kin the MSPD started at x” occur before pt*(x) < t*(x), without modifying neither
the trajectories of the other particles on [0,¢*(x)], nor the trajectories of all the particles after ¢*(x)
with respect to the MSPD started at x. Applying the argument to the finite number of groups of
particles having a self-interaction at time t*(x), we conclude that there exists x' € B;(x,¢€) and
s" € (0,t*(x)) such that, in the MSPD started at x’, there is no self-interaction in the time interval
[, (x)].

Step 2. We now blow up the non-binary collisions by shifting the initial positions, as is described
on Figure 9.10. Let us assume that there exist

71<"'<’Y7‘a T23a

such that, in the MSPD started at x, a collision occurs at the space-time point (£*,¢*(x)) between
clusters of type v1,...,7-. For alli € {1,...,7}, let us denote by ¢; the cluster of type ~; involved
in the collision. For § > 0, let us define the configuration x%! as follows: for all v: k € P4,

(291)) = x) ify:k&e3U---Uey,
k z +0 ify:kecsU---Uc.

Note that
0,1 0
[l =%l < —(es] + - + e ),

so that # can be chosen small enough to ensure that x?! € B, (x, €0), and therefore satisfies all the
conditions stated in the introduction of the proof. In particular, on the time interval [s',¢'], the
collisions in the MSPD started at x?! remain the same as in the MSPD started at x.

Then, it is straightforwardly checked that, in the MSPD started at x%1,
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o there is a binary collision between ¢; and ¢z at the space-time point (£*,t*(x)),
e there is a collision between cs, ..., ¢, at the space-time point (£* + 6,t*(x)),

o if 7; ; refers to the instant of collision between the clusters ¢; and c;, then
Vj€{3,...,r}, t*(X)<T17j<7'27j.

More precisely, the boundedness of the velocities yields

0
2Lc;1’

T1,j 2 t*(X) +

while Assumption (USH) yields
0

To,; < t*(x) + .
’ Lusn

Let us now define the configuration x?2 by, for all v : k € P,

(2%} ify:kde,U---Uey,

2L
($9,1)Z +0 (L C,1

0
@)} =

—1) ify:k€cuU---Uc.

USH

Then, the same arguments as above ensure that, for # small enough, in the MSPD started at x%2,
e there is a binary collision between ¢; and co at time t*(x),

e there are binary collisions between c3 and cq, then between c3 and co, at respective times
71,3 and 72,3 such that

* * 9
t (X)<T173<7'213§t (X)+ y
Lysu
e all the collisions between clusters c¢1, co, c3 on the one hand and cy4, ..., ¢, on the other hand

occur after the time t*(x) + 6/Lugn.

Iterating the argument, we finally construct a configuration x?"~2 such that
|x —x"2||, < C#

for some constant C' depending only on Lg 1, Lusu, n and d, and, for 6 small enough, in the
MSPD started at x?7=2 if 7;,; refers to the instant of collision between ¢; and c;, then, for all

Jje{3,...,r},
Tj—2,j-1 S T1j < To5 <+ < Tj_1.

We complete Step 2 by applying the argument to blow-up all the non-binary collisions, and finally
take 0 small enough for the resulting configuration yo to be such that ||x — yo||1 < €/2.

. — N 7'2’3

a!

Y2 V4

Figure 9.10 — Blowing up the non-binary collisions: the left-hand figure represents a collision
involving four clusters 71,...,74. In the central figure, the clusters 3 and ~4 are shifted on the
right of a distance 6. In the right-hand figure, the cluster ~4 is shifted on the right in order to
ensure that its first collision with one of the three other clusters occurs after 7 3, therefore after all
the collisions between the clusters 1, 72 and 3. The minimal shift distance remains proportional
to 0.

Step 3. We begin by noting that, for all n € (0,¢/2], for all y € Bi(yo,n), ||x — yl|1 < eo,
therefore y satisfies all the conditions stated in the introduction of the proof. In particular, in the
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MSPD started at y, there is no self-interaction on the time interval [s',¢”], while all the collisions
occuring on the time interval [0,¢”] actually occur on the time interval (s’,t'), and they involve
the same pairs of clusters than in the MSPD started at yg. By Step 2, it is known that the
corresponding collisions are binary in the MSPD started at yo. Let R refer to the subset of R(yo)
defined by

R:={(a:4,5:j) € R(yo) : 7655, (y0) € (5", ')} = R(yo) \ R(2(y0;1)).

By Proposition 9.3.17, one can construct 1 € (0,¢/2] such that, for all y € B (yo,7), for all (a :
i,ﬂ. : ?') ar}d (o : z‘f,gx . j) € R, if Eg‘:’gﬁ:j(yo) # E‘;‘?ﬁli,ﬁ,:j/(yo), then Eg‘f}{ﬁ:j(y) + Eg?{li,ﬁ,:j,(y).
This implies that, in the MSPD started at y, the collisions on [0, '] are binary.
Step 4. By Lemma 9.4.3, there exists 7] > 0 such that, for all y’ € B1(®(yo;t'),n}), for all
v:k€ P
clu) (y';t" —t') = clu] (yo; t).

Besides, by Lemma 9.A .4, there exists n, > 0 such that, for all y’ € By (®(yo;t'),n5), R(y’) =
R(®(yo;t')) and t*(y’) > " — ', which implies

[@(y'st" —t') — @(yo; ") < [ly" — ®(yo; )]s, (9.50)

thanks to Lemma 9.3.10.

For y’' € Bi(®(yo;t'),n} Anb) and y” := ®(y';t" — t'), we are willing to construct y, close to
vo, such that ®(y;t”) = y”. It is therefore necessary to describe how to follow the MSPD flow
backward, and we shall construct a process (V(y";s))sejo,¢+7—s] such that

Vs € [0,t" — ], O(U(y";s);t" —s)=y".

Of course, there is generically not a unique fashion to do so; since clusters containing several
particles in y” could split at any time s > 0. In order to ensure that ¥(y”;s) remains as close
as possible to ®(yo;t"” — s), we define the backward dynamics (¥(y”;s))sejo,¢—s 50 that clusters
never split.

Let us carry this task out by defining the backward frozen dynamics independently of the setting
of the proof. Let z € D4, and let ¢y, ..., cy, refer to the partition of P¢ into generical clusters such
that, for all v : k € P2, the generical cluster ¢; containing «y : k is the largest set of particles of
type v having the same position as 7 : k in the configuration z. The generical cluster ¢; shall be
called the frozen cluster of the particle v : k.

For all s > 0, we define the process (¥(z;s))s>0 as follows. For all [ € {1,...,L}, the initial
velocity of all the particles in the frozen cluster ¢; is set to

L > M), (9.51)

|Cl | v:k€c

Then, frozen clusters travel at constant velocity. When two frozen clusters of the same type collide,
they stick together and form a frozen cluster with velocity determined by conservation of mass
and momentum. When clusters of different type collide, say at time s*, they remain formed and
the new velocity of each cluster is given by (9.51), where z is replaced with ¥(z; s*) instead.

This backward frozen dynamics is generally not the MSPD with reverse velocity function —A;
since, in the latter dynamics, frozen clusters of a type v such that —9,A” > 0 would instantaneously
split. However, it can be interpreted as a variant of the MSPD, where the initial velocity of the
particle  : k in the frozen cluster ¢; is defined by (9.51) instead of —A)(z). This ensures that
frozen clusters do not split, and stick together at collisions with frozen clusters of the same type
— which we shall refer to as self-interactions for the backward frozen dynamics.

As a consequence, the proof of Proposition 9.3.17 can be slightly adapted to yield the following
statement: if z € DY and s > 0 are such that, in the backward frozen dynamics started at z, there
is no self-interaction on the time interval [0, s], then for all € > 0, there exists § > 0 such that, for
all z’ € By (z,0) having the property that the frozen clusters are the same in the configurations z
and z’, we have:
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e there is no self-interaction in the backward frozen dynamics started at z’ on the time interval
[0, s], which implies that the frozen clusters are the same in the configurations ¥(z;r) and
U(z';r) for all r € [0, s],

e the following continuity property holds:

sup || (z;7) — ¥(z's7)[|1 < e
rel0,s]

We shall refer to these two points as Property (x).

Let us now come back to the construction of y , close to yo, and such that ®(y;t"”) = y”. Let
vi = ®(yo;t”). Since there is no self-interaction in the MSPD started at yo on the time interval
[, "], then it is straightforwardly checked that, for all s € [0, — §],

U(yo;s) = ®(yo;t" — s).
Let € > 0 to be precised below. Let § > 0 associated to € by Property (), and let us define
n'=np Ay A6

Let us now fix y’ € B1(®(yo;t'),n’) and denote y” := ®(y’;¢"” —'). Then the fact that 7' < n} An)}
implies that the frozen clusters are the same in the configurations y” and yj, and (9.50) combined
with i/ < &' yield y” € Bi(y{,8). As a consequence, Property () ensures that: one the hand,
there is no self-interaction in the backward frozen dynamics started at y” on the time interval
[0,t" — '], therefore

Vse[0,t" =5,  o(U(y";s);t" —s) =y

on the other hand,
sup || W(y";s) — U(ygss)ll <,
se0,t" —s']

which in particular implies that
(y";t" = s") = @(yo; s)|lL < e.

Besides, the frozen clusters are the same in the configurations ¥(y”;t"” — s') and ®(yo; s’).
Recall the construction of 7 > 0 carried out in Step 3. To complete the proof, it remains to fix
a value of € ensuring that, for all z € By (®(yo; s'), €) having the same frozen clusters as ®(yo;s’),
one can construct a configuration y € Bj(yo,7) such that ®(y;s’) = z, and apply the result to
z = U(y”;t" — s'). In other words, we now have to take self-interactions into account, which
was not the case for the backward frozen dynamics. On the other hand, since s’ < t*(yo), we do
not have to care about collisions between clusters of different type, therefore the problem can be
addressed cluster by cluster. This enables us to use the following trick: for all frozen cluster ¢ in

D(yo;s'), for all v : k € ¢, let us define

yy = (yo)} + he,

where
he =z — ®/(yo;s')

does not depend on the choice of v : k in ¢. Then
lly = yol[1 <e

and by Proposition 9.3.17, € can be chosen small enough to prevent particles belonging to different
frozen clusters in ®(yp;s’) from colliding in the MSPD started at y. Under this condition, it is
easily checked that, for all s € [0, §], for all frozen cluster ¢ in ®(yo;s’),

Vy:k€Ec, ) (y;s) = @) (yo;s) + he.

In particular, ®(y;s’) = z and we complete the proof by taking ¢ < 7. O
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