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Introduction

Almost eleven years have passed through since my PhD in Theoretical Physics at Ecole Normale
Supérieure in Paris under the supervision of Prof. Bernard Julia. My thesis was about dual-
ities in M-theory and in supergravity theories involving various (recent) mathematical domains
ranging from (real) algebraic geometry, super Kac-moody algebras to number automorphic forms.
We have shown that the bosonic sector of supergravity theories, describing the low-energy limit
of superstring theories/M-theory in ten and eleven dimensions, can be derived from a truncated
Borcherds super-algebra, extending the U-duality symmetries (see [PhD1, PhD2, PhD3]). These
super-algebras pop up naturally as the Picard group of del Pezzo surfaces. These U-duality sym-
metries are a key tool to infer the strong coupling regime (inaccessible from perturbative string
theories) of string theories (see [PhD4] for the computation of the effective Lagrangian of non-
perturbative orientifold planes using U-symmetries, and automorphic forms).

After a short position at Imperial college in the Theoretical Physics department, I moved to
quantitative finance, first at Barclays Capital in London and then to Société Générale in Paris.
The present report is an overview of my research activity in an investment bank, mainly Société
Générale. Although this research focuses and applies mainly to option pricing, I will emphasize the
ramifications with numerous mathematical fields such as optimal transport, analysis on Riemannian
geometry and numerical solutions of non-linear partial differential equations. New interesting
mathematical questions emerge naturally from practical problems.

In comparison with the academic world, doing applied mathematics in industry requires producing
(robust) numerical algorithms - the mathematical analysis coming at the end. As a conclusion,
our research is strongly linked with numerical algorithms and all the subjects described below
have lead to a numerical implementation. Some of them have been implemented at an industrial
scale. In particular, the question of solving high-dimensional non-linear PDEs is a central theme,
overviewed in Chapter 3.

We have decided to present our research activity in three (connected) parts (see my mathematical
planisphere, Figure 1). Parts of these subjects are original, specially in the fields of mathematical
finance. We can mention:

• Introduction of the martingale optimal transportation problem.

• A stochastic approach to the Skorohod embedding problem.

• New peacock processes.
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• Risk-neutral weighted Monte-Carlo.

• Use of (geometrical) heat kernel expansion for deriving short-time asymptotics of implied
volatility for (stochastic) volatility models.

• Use of 2-BSDE schemes for uncertain volatility models.

• Use of McKean particle method for solving various calibration issues in mathematical finance.

• Generalization of branching processes for solving some semi-linear PDEs and some non-
Markovian BSDEs.

• Use of supersymmetries for the classification of solvable stochastic differential equations.

In Chapter 1, starting from the computation of model-independent bounds for exotic options, we
introduce a new martingale version of the Monge-Kantorovich optimal transport problem (see [A2,
A3, A4, S1, S2, S3, S4]). In this chapter, we will highlight the main differences with the optimal
transport problem. This field has been popularized recently by various schools and conferences
(including Polytechnique 2012, IHP 2013, Vienna 2013, Amsterdam 2014, ...). We outline also
connections with the Skorohod embedding problem, for which we deduce new solutions in the
case of multi-marginals, and path-wise (stochastic) inequalities. This topics will be covered in a
forthcoming monograph “Martingale optimal transport” written with my collaborator Nizar Touzi
from Ecole Polytechnique.

In Chapter 2, we summarize our work on asymptotic expansions of stochastic volatility models
(in short SVM) (see [A7, A10, A11, A12, A13, B1]). The small-maturity behavior of the implied
volatility is obtained using short-time heat kernel expansion on complete Riemannian manifolds.
The large-strike behavior is studied by using Gaussian estimates of Schrödinger-like equations.
This part is extensively developed in my first book [B1] “Analysis, Geometry, and Modeling in
Finance: Advanced Methods in Option Pricing,” published by Chapman and Hall. Our toy model
will be the SABR model which is connected to the geometry of the Poincaré plane. Various
recent meetings (including Vienna 2009, Berlin 2011, London 2013 ...), with partial focus on small
time asymptotic, perturbation theory, heat kernel methods, large deviations, and so on, have paid
tribute to this development.

In Chapter 3, we focus on stochastic representations of second-order non-linear partial differential
equations (see [B2, A1, A5, A6, A8, A9]). Due to the no-arbitrage condition in mathematical
finance, we will treat exclusively the parabolic case. This subject is extensively covered in the book
[B2] “Nonlinear Option Pricing” written with my former colleague Julien Guyon. We give a short
overview of nonlinear PDEs arising in finance. As these PDEs suffer for the curse of dimensionality,
their numerical solutions require probabilistic methods such as backward stochastic differential
equations, particle method, and branching diffusions. The proposal numerical algorithms will be
illustrated by various real-life problems such as pricing in uncertain volatility models, calibration of
local stochastic volatility models, and counterparty valuation adjustment. Finally, we sketch a new
method based on branching diffusions indexed by Malliavin’s weight, suitably renormalized, that
lead to a forward Monte-Carlo scheme that can eventually tacked the resolution of fully nonlinear
parabolic PDEs [P4].
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We have tried to give a pedagogical presentation of our research topics motivated by our activity
in investment banking. Technical details are reported in our research papers and in our books.
In particular main results are often presented under some restrictive assumptions and illustrated
by simple numerical examples. Readers can consult my research papers and books for detailed
proofs and additional numerical examples. For further reference, published articles are cited with
the index A, submitted papers with the index S and our books with the index B. Sections which
present research proposals that we think deserve further analysis, eventually explored with PhD
students, are marked with the symbol ♣.

Acknowledgements

First I would like to thank my main collaborator Nizar Touzi at Ecole Polytechnique for our fruitful
collaborations on optimal transport and numerical solutions of nonlinear PDEs. I hope that we can
continue to interact, eventually sharing PhD students together. I would like also to thank Bruno
Bouchard, who kindly accepts to supervise my HDR habilitation, for his help and his support
during the preparation of this thesis.

I want to express my deep gratitude to my Rapporteurs Peter Friz, Mete Soner and Denis Talay. It
is a great honor to have them as referees. Special thanks also to Bruno Bouchard, Yann Brenier,
Nicole El Karoui and Nizar Touzi.
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Chapter 1

Martingale optimal transport

In this chapter, we present our research on a new constrained version of the optimal transport.
We will try to highlight the new differences between the optimal transport and its martingale
counterpart and motivate this topic in the context of mathematical finance. The martingale opti-
mal transport that we introduced in an internal publication in 2010 was substantially developed
with our coworkers at Ecole Polytechnique and Vienna university. Our contribution is two-fold:
On a practical side, it allows to better understand payoffs that can be well-hedged by Vanilla
options. On a theoretical side, martingale optimal transport leads to new results in probability
and mathematical finance: new solutions to the multi-marginals Skorohod embedding problem,
a new approach for deriving path-wise inequalities, new peacock processes and robust hedging.
This subject has attracted much attention: various summer schools and workshops (Polytechnique
http://www.cmap.polytechnique.fr/~euroschoolmathfi12/, ETH, Vienna, Amsterdam) have
been devoted to it. Also various reading groups in Mathematical Finance (THU Berlin, Imperial
College http://www3.imperial.ac.uk/mathfin/events/readinggroup, ...) on the applications
of this new optimal transport have been created.

This chapter originates for our research papers [A2, A3, A4, S1, S2, S3, S4]. In what follows, I
assume for the sake of simplicity a zero interest rate. Although optimal transport is now developed
in various monograph (see e.g [107]), we present in the next section a short introduction highlighting
the main features that will be generalized in the martingale version.

1.1 Introduction

Optimal transport, first introduced by G. Monge in his work “Théorie des déblais et des remblais”
(1781), has recently generated widely interest in various mathematical domains as highlighted by
the last Fields medallist C. Villani (2010). Let us mention the analysis of non-linear (kinetic)
partial differential equations arising in statistical physics such as McKean-Vlasov PDE, infinite-
dimensional linear programming, mean-field limits, convergence of particle methods and study of
Ricci flows in differential geometry.
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2 CHAPTER 1. MARTINGALE OPTIMAL TRANSPORT

Despite its numerous ramifications in analysis and probability, optimal transport had not yet
attracted the attention of academics/practitioners in financial mathematics. However, various
long-standing problems in quantitative finance can be tackled using the framework of optimal
transport: calibration of (hybrid) models on market smiles, arbitrage-free construction of smiles,
computation of efficient model-independent bounds for exotic options, ...

The main problem, when evaluating an exotic option, is how to choose an “appropriate” pricing
model, a model being characterized by a martingale measure. “Appropriate” means here that the
model allows to capture the main risks of the exotic option under consideration: At-the-money
volatility, skew, forward volatility, forward skew,... One may impose that the model is calibrated
to a set of (liquid) market instruments or matches some historical levels. Because Vanilla options
are liquid, hence the most suitable hedge instruments, the model has to comply with their market
prices. In mathematical terms, the marginals of the probability measure, for a discrete set of
dates are given. Only a few models such as the Dupire local volatility [41] or (multi-factor) local
stochastic volatility models [A7, A9] can achieve efficient calibration to Vanilla options.

We follow a different route. Instead of postulating a model, we focus on the computation of
model-independent bounds consistent with Vanillas, eventually additional instruments such as
VIX futures. By duality, we will show that these bounds are attained by some arbitrage-free
models. The computation of model-independent bounds for exotic options can then be framed
as a constrained optimal transportation problem. The dual Kantorovich-like formulation can be
interpreted as a robust sub/super-hedging strategy.

This problem will be also linked with the Skorohod embedding problem which consists in building
a stopping time τ such that a Brownian motion stopped at that time has the same law than a
probability PT : Bτ ∼ PT . In option pricing layman’s term, by the Dambis-Dubins-Schwarz time
change theorem, it consists in building an arbitrage-free model consistent with T -Vanillas for some
maturity date T . Finally, we show that the martingale optimal framework is an efficient tool for
deriving path-wise (stochastic) inequalities.

1.2 Optimal transport in a nutshell

As our approach in martingale optimal transport follows closely the analysis in classical optimal
transport, we review in this section key notions in optimal transport such as Monge-Kantorovich
duality and Brenier’s theorem. We give its interpretation in mathematical finance. As a conse-
quence, instead of presenting the main results in the setup of Polish spaces X, we focus on the
simple case X = R+, eventually Rd. Our main reference is Chapter 1, 2, 3 and 5 in [107].

Let us start with two assets S1 and S2 evaluated at the same maturity date T and consider a payoff
c(s1, s2) depending on these two underlyings. c is an upper semi-continuous function with linear
growth. We assume that T -Vanilla options on each asset are traded on the market for all strikes.
We can then deduce the T -marginal distributions

Pi(K) = ∂2
KC

i(K), i = 1, 2

where Ci(K) is the market value of a call option with strike K and maturity T on asset i. The
second-order derivative is defined almost everywhere as Ci(K) is a convex function. Below we
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denote S1 (resp. S2) the random variable such that S1 ∼ P1 (resp. S2 ∼ P2). We assume that the
first moment of P1 (resp. P2) is finite equal to the spot value at t = 0: S0

1 (resp. S0
2).

The model-independent super-replication price is then defined as

MK2 = inf
P∗(P1,P2)

EP1

[u1(S1)] + EP2

[u2(S2)] (1.1)

where P∗(P1,P2) is the set of all measurable functions (u1, u2) ∈ L1(P1)× L1(P2) such that

u1(s1) + u2(s2) ≥ c(s1, s2) (1.2)

for P1-almost all s1 ∈ R+ and P2-almost all s2 ∈ R+. This static super-replication strategy consists

in holding European payoffs u1(s1) and u2(s2) with (t = 0) market prices EP1

[u1(S1)], EP2

[u2(S2)]
such that the intrinsic value of this portfolio u1(s1) + u2(s2) is greater than the payoff c(s1, s2).
In practice, these European payoffs can be replicated by holding a strip of put/call T -Vanillas
through the Taylor expansion:

u1(s1) = u1(s0
1) + u′1(s0

1)(s1 − s0
1) +

∫ s01

0

u′′1(K)(K − s1)+dK +

∫ ∞
s01

u′′1(K)(s1 −K)+dK

Derivatives are understood in the distribution sense.

Optimal transport formulation

The linear program (1.1), called the Monge-Kantorovich formulation of optimal transport, can be
dualized by introducing a (positive) Kuhn-Tucker multiplier (i.e., a probability measure on R2

+)
associated to the inequality (1.2):

MK2 = sup
P∈P(P1,P2)

EP[c(S1, S2)] (1.3)

with P(P1,P2) = {P : S1
P∼ P1, S2

P∼ P2}. This dual expression coincides with the Kantorovich
formulation of optimal transport. This result is known as the Kantorovich duality. Note that the
optimal transport is usually presented in textbooks with an inf instead of a sup.

The optimization MK2 consists therefore in maximizing the cost function EP[c(S1, S2)] over the
(convex) set of joint measures P with marginals P1 and P2. For an upper semi-continuous cost
function, as the set P(P1,P2) is weakly compact from Prokhorov’s theorem, the maximum is
attained. Moreover, the value of the infimum does not change in the right-hand side of (1.1) if one
restricts the definition of P∗(P1,P2) to functions (u1, u2) which are bounded and continuous. For
further reference, we quote the following theorem that proves that the infimum is attained by a
pair (u, u∗) of lower semi-continuous c-convex functions

MK2 = inf
u∈Cb

EP1

[u∗(S1)] + EP2

[u(S2)] (1.4)

with u∗(s1) = sups2∈R+
{c(s1, s2)− u(s2)}.
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Note that all references in optimal transport present first the primal (1.3) and then the dual
formulation (1.1). In the context of mathematical finance, the dual (1.1), being interpreted as
the robust upper bound of the fair value of c, has a clear financial interpretation and therefore is
presented first.

Below, we give an example of applications of the (classical) optimal transport in the construction
of arbitrage-free currency cross-rate smiles, drawn from [A2].

Example 1.2.1 (Illiquid currency cross-rate smile) We consider the arbitrage-freeness of a
currency cross-rate smile using the smiles of two related exchange rates. More precisely, let us
consider Vanilla payoffs on the exchange rates linking the following three currencies: JPY, US
dollars and Australian dollars. We denote the dollar price of one Japanese Yen at maturity T by

S1 ≡ S
$/JPY
T and likewise the dollar price of one Australian dollar by S2 ≡ S

$/AUD
T . The value of

one JPY in Australian dollars is then given by S3 ≡ S
AUD/JPY
T = S2/S1. Hence, a cross-rate call

option is equivalent to an option to exchange one asset for the other asset and its payoff equals
(S2−KS1)+. The triangle consisting in T -Vanillas on S1, S2 and S3 is arbitrage-free if the bound
MK3 (≤ 0) defined below is zero:

MK3 = inf
P∗(P1,P2,P3)

EP1

[u1(S1)] + EP2

[u2(S2)] + EP3

[S1u3(S3)]

where P∗(P1,P2,P3) is the set of continuous functions on L1(P1)× L1(P2)× L1(P3) such that

u1(s1) + u2(s2) + s1u3(s2/s1) ≥ 0

for P1-almost all s1 ∈ R+, P2-almost all s2 ∈ R+. Indeed if MK3 < 0, then the arbitrage can be
locked in by buying the static portfolio u1(s1) + u2(s2) + s1u3(s2/s1) at the price MK3. MK3 is
equivalent to (see Equation 1.4)

MK3 = inf
u1∈L1(P1),u2∈L1(P2)

EP1

[u1(S1)] + EP2

[u2(S2)]− EP3

[S1u
∗
3(S3)]

with u∗3 is the (multiplicative) inf-convolution of u1 and u2:

u∗3(s3) ≡ inf
s1∈R+

1

s1
{u1(s1) + u2(s3s1)}

MK3 defines a linear program that can be solved with a simplex algorithm. A triangle arbi-
trage is detected if MK3 6= 0, meaning by duality that the subset of probability measures on R2

+,

P(P1,P2,P3) ≡ {P : S1
P∼ P1, S2

P∼ P2,
∫
x2P(x,Kx)dx = P3(K) ∀K ∈ R+}, is empty.

1.2.1 Fréchet-Hoeffding solution

Under the so-called Spence-Mirrlees condition, c12 ≡ ∂s1s2c > 0, the optimal transport (1.3) can
be solved explicitly. Let F1, F2 denote the cumulative distribution functions of P1 and P2. For the
sake of simplicity, we will assume that P1 does not give mass to points and c ∈ C2. The optimal
measure P∗ has the form

P∗(ds1, ds2) = δT (s1) (ds2)P1(ds1)
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with T the push-forward of the measure P1 onto P2: T (x) = F−1
2 ◦ F1(x). The optimal upper

bound is given by

MK2 =

∫ 1

0

c(F−1
1 (u), F−1

2 (u))du

This optimal bound can be attained by a static hedging strategy consisting in holding European
payoffs u1(s1) ∈ L1(P1), u2(s2) ∈ L1(P2) with market prices EP1

[u1(S1)] and EP2

[u2(S2)]:

MK2 = EP1

[u1(S1)] + EP2

[u2(S2)]

with

u2(x) =

∫ x

0

c2(T−1(y), y)dy, u1(x) = c(x, T (x))− u2(T (x))

The intrinsic value of this static European portfolio super-replicates the payoff at maturity:

u1(s1) + u2(s2) ≥ c(s1, s2) , ∀ (s1, s2) ∈ R+ × R+

T is refereed as the Brenier map (or Fréchet-Hoeffding) pushing forward P1 to P2. This solution
coincides with the Monge solution where the Monge optimal transport is by definition given by

M2 = sup
PMonge(P1,P2)

EP[c(S1, S2)]

with the set PMonge(P1,P2) = {PT ∈ P(P1,P2) : PT (ds1, ds2) = δT (s1) (ds2)P1(s1)}. Note that
this problem is more involved as the constraint on T is nonlinear (see section on Monge-Ampère
equation). It is therefore simpler to start with the (relaxed) Monge-Kantorovich formulation and
then show that it coincides with the Monge problem.

Example 1.2.2 (Basket option, c(s1, s2) = (s2 + s1 −K)+) By applying Fréchet-Hoeffding so-
lution, the upper bound for a two-asset basket option is attained by

u2(x) = (x− ȳ)+

u1(x) = (T (x) + x−K)+ − (T (x)− ȳ)+

T (x) = F−1
2 ◦ F1(x)

with ȳ defined by T (K − ȳ) = ȳ.

1.2.2 Brenier’s solution

The Fréchet-Hoeffding solution has been generalized in the case Rd by Brenier [22] first in the case
of a quadratic cost function and then extended to concave payoff c = c(s1 − s2) by Gangbo and
McCann [55] and others:
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Theorem 1.2.3 (Brenier - c(s1, s2) = −|s1 − s2|2/2) If P1 has no atoms, then there is a unique
optimal P∗, which is a Monge solution:

P∗ = δT (s1) (ds2)P1(s1)

with T = ∇u. ∇u is the unique gradient of a convex function which pushes forward P1 to P2:
∇u#P1 = P2.

Note that this theorem has been generalized to a strictly concave, superlinear cost function
c(s1, s2) = c(s1 − s2). The Brenier map is then

T (x) = x−∇c∗(∇u)

for some c-convex function u which is uniquely fixed by the requirement T#P1 = P2. c∗ is the
Legendre transform of c. If we assume that P1 and P2 are absolutely continuous with respect to
the Lebesgue measure, P1(dx) ≡ p2(x)dx, P2(dx) ≡ p2(x)dx, and T ∈ C1, this implies that u is
then solution of a Monge-Ampère equation:

det (1−∇(∇c)∗(∇u)) =
p1(x)

p2(T (x))

Note that this nonlinear PDE arises in mathematical finance - see for example the problem of
quantile hedging [25] - through the following stochastic representation

sup
σ∈S+

d ,det(σ)=1

Tr[σ∇2u] + f(x) = 0

where S+
d denotes the set of nonnegative symmetric d-dimensional matrices. This corresponds

to an (infinite-horizon) HJB control problem in an multi-asset uncertain volatility models (see
Chapter 3).

1.2.3 Some symmetries

Spence-Mirrlees condition

The Spence-Mirrlees condition is very natural from a financial point of view. If we shift the payoff
c by some European payoffs U1 ∈ L1(P1), U2 ∈ L1(P2):

c̄(s1, s2) = c(s1, s2) + U1(s1) + U2(s2)

then the Monge-Kantorovich bound for c̄ should be

MK2(c̄) = MK2(c) + EP1

[U1(S1)] + EP2

[U2(S2)]

The payoff c̄ is precisely invariant under the Spence-Mirrlees condition : c̄12 = c12.
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Mirror coupling: co-monotone rearrangement map

Similarly, the upper bound under the condition c12 < 0 is attained by the co-monotone rearrange-
ment map

T (s1) = F−1
2 ◦ (1− F1(−s1))

This can be obtained by applying the parity transformation P(s1, s2) = (−s1, s2). For each
measure P matching the marginals P1 and P2, we can associate the measure P∗P matching the
marginals P∗P1 and P2 with cumulative distributions 1−F1(−s1) and F2(s2). We conclude as the
Monge-Kantorovich bounds for c and c̃(s1, s2) ≡ c(−s1, s2) coincides as EP[c] = EP∗P[c̃]. Similarly,
by replacing c by −c, we obtain that the co-monotone rearrangement map gives the lower bound
under the condition c12 > 0.

1.2.4 Multi-marginals and infinitely-many marginals case

Most of the literature on optimal transport focuses on the 2-asset case. For applications in mathe-
matical finance, it could be interesting to study the case of a Vanilla multi-asset payoff c(s1, . . . , sn)
depending on n assets evaluated at the same maturity date. We define the n-asset optimal trans-
portation problem (by duality) as

MKn = sup
P∈P(P1,...,Pn)

EP[c(S1, . . . , Sn)]

with P(P1, . . . ,Pn) = {P : Si
P∼ Pi, ∀i = 1, . . . , n}. This problem has been studied by Gangbo

[54] and recently by Carlier [29] (see also Pass [98]) with the following requirement on the payoff:

Definition 1.2.4 (see [29]) c ∈ C2 is strictly monotone of order 2 on Rn+ if for all (i, j) ∈
{1, . . . , n}2 with i 6= j, all second order derivatives ∂ijc are positive.

We have

Theorem 1.2.5 (see [54, 29]) If c is strictly monotone of order 2, there exists a unique optimal
transference plan for the MKn transportation problem, and it has the form

P∗(ds1, . . . , ds2) = P1(ds1)

n∏
i=1

δT i(s1)(dsi), T i(s1) = F−1
i ◦ F1(s1) , i = 2, . . . , n

The optimal upper bound is

MKn =

∫
c(x, T2(x), . . . , Tn(x))P1(dx)

An extension to the infinite many marginals case has been obtained recently by Pass [99] who
studies

MK∞ = sup
P : Xt

P∼Pt, ∀t∈(0,1]

E[h

(∫ 1

0

Xtdt

)
]
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where h is a convex function. Let Ft the cumulative distribution of Pt. Define the stochastic
process Xopt

t (ω) = F−1
t (ω) , ω ∈ [0, 1]. The underlying probability space is the interval [0, 1] with

Lebesgue measure. We have

Theorem 1.2.6 (see [99]) The process Xopt
· is the unique maximizer in MK∞.

1.2.5 Link with Hamilton-Jacobi equation

Here we take a cost function c(s1, s2) = L(s1−s2) with L a strictly concave function such that the
Spence-Mirrlees condition is satisfied. From formulation (1.4), one can link the Monge-Kantorovich
formulation to the solution of an Hamilton-Jacobi equation through the Hop-Lax formula:

Proposition 1.2.7 (see e.g. [107])

MK2 = inf −EP1

[u(0, S1)] + EP2

[u(1, S2)]

where the supremum is taken over all continuous viscosity solutions u to the following HJ equation:

∂tu(t, x) +H(Du) = 0 , H(p) ≡ inf
q
{pq − L(q)} (1.5)

In the next section, we introduce a martingale version of optimal transport, first developed in [A3,
A4] where we have obtained a Monge-Kantorovich duality result. In [S2, S3, S4], we explicitly
solve the martingale optimal transport for a large class of cost functions. A constrained martin-
gale version is presented in [S1] and in [A2] we focus on numerical implementations. We briefly
summarized the main results below.

1.3 Martingale optimal transport [A2,A3,A4,S1,S2,S3,S4]

Here, we consider a payoff c(s1, s2) depending on a single asset evaluated at two dates t1 < t2.
As above, we assume that Vanilla options of all strikes with maturities t1 and t2 are traded and
therefore, one can imply the distribution of S1 and S2 (here S1 ≡ St1 , S2 ≡ St2). The model-
independent upper bound, consistent with t1 and t2 Vanilla options, can then be defined as a
martingale version of the above optimal transport problem MK2:

M̃K2 ≡ inf
M∗(P1,P2)

EP1

[u1(S1)] + EP2

[u2(S2)]

where M∗(P1,P2) is the set of measurable functions u1 ∈ L1(P1), u2 ∈ L1(P2) and h a bounded
continuous function on R+ such that

u1(s1) + u2(s2) + h(s1)(s2 − s1) ≥ c(s1, s2) (1.6)

for P1-almost all s1 ∈ R+ and P2-almost all s2 ∈ R+. This corresponds to a semi-static hedging
strategy which consists in holding European payoffs u1 and u2 and applying a delta strategy at t1,
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generating a P&L h(s1)(s2 − s1) at t2 with zero cost. Note that in comparison with the optimal

transport MK2 previously reported, we have M̃K2 ≤ MK2 due to the appearance of the function
h.

At this point, a natural question is how the classical results in optimal transport generalize in the
present martingale version. In particular, the quadratic cost which is the main example in optimal
transport is here degenerate (see below). We follow closely our introduction of optimal transport
and explain how the various concepts previously explained extend to the present setting. Our
research partly originates from a systematic derivation of Skorohod embedding solutions and par-
ticle methods for non-linear McKean stochastic differential equations appearing in the calibration
of financial models (see Chapter 3). From a practical point of view, the derivation of these optimal
bounds allows to better understand the risk of exotic options as illustrated in the next example.

Example 1.3.1 (Forward-start options, see A2) We consider model-independent bounds for
forward-start options with payoff (s2/s1 − K)+. We assume that we are calibrated to Eurostock
implied volatilities (pricing date= 2 Feb. 2010) at time t1 = 1 year and t2 = 1.5 years with N = 18
strikes ∈ [30%, 200%]. The dual reads as (with K0

1 = K0
2 = 0 corresponding to forward prices)

min
ν,(ωj1),(ωj2),h(·)

ν +

N∑
j=0

ωj1C(t1,K
j
1) +

N∑
j=0

ωj2C(t2,K
j
2)

F (s1, s2) ≥
(
s2

s1
−K

)+

, ∀ (s1, s2) ∈ (R+)2

with F ≡
∑N
j=0 ω

j
1 (s1 −Kj)

+
+
∑N
j=0 ω

j
2 (s2 −Kj)

+
+ ν + h(s1)(s2 − s1) and C(ti,K) the market

value of a call of maturity ti and K. We have compared the upper and lower bounds against prices
produced by various (stochastic) volatility models commonly used by practitioners (see Fig. 1.1):
Local volatility model [41], Bergomi model [19] which is a two-factor variance curve model and the
local Bergomi model [A6,A9] which has the property that it is calibrated to the Vanilla smile. The
LV and local Bergomi models have been calibrated to the Eurostock implied volatility (pricing date=
2 Feb. 2010). The Bergomi model has been calibrated to the variance-swap term structure.

We should emphasize that lower and upper bounds for each strike K correspond to a different
martingale measure (see below our duality result). This is not the case if we do not include the
martingality constraint as the upper/lower bounds are attained by the Fréchet-Hoeffding bounds for
each strike.

For K = 1, the difference between the implied volatility given by the upper bound and the Bergomi
model is around 10%. This result shows that forward-start options are poorly constrained by Vanilla
smiles. As a conclusion, the (common) practise to calibrate stochastic volatility model on Vanilla
smiles to price exotic options (depending strongly on forward/skew volatility) is inappropriate:
Forward-start options are poorly hedged by t1 and t2 Vanilla options.
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Figure 1.1: Implied volatility for cliquet options. Lower/Upper bounds versus (local) Bergomi and
LV models for cliquet options (quoted in Black-Scholes volatility×100). Parameters for the Bergomi
model: σ = 2.0, θ = 22.65%, k1 = 4, k2 = 0.125, ρ = 34.55%, ρSX = −76.84%, ρSX = −86.40%.

1.3.1 Dual formulation [A2]

In [A4], we have established a dual version. We set

M̃K
∗
2 = sup

P∈M(P1,P2)

EP[c(S1, S2)] (1.7)

where M(P1,P2) = {P : EP[S2|S1] = S1, S1
P∼ P1, S2

P∼ P2} denotes the set of (discrete)
martingale measures on R2

+ with marginals P1 and P2. AsM(P1,P2) is convex and weakly compact
(see [A4]), the dual is attained by an extremal point. In principle from Krein-Milman’s theorem,
the spaceM(P1,P2) can be reconstructed from its extremal points (that can be obtained by looking
at a specific cost function).

The set M(P1,P2) is feasible (i.e., non-empty) if and only if P1,P2 have the same mean S0 and
P1 ≤ P2 are in convex order (see Kellerer, [83], and section 2.2 in [12]) meaning that

EP1

[(S1 −K)+] ≤ EP2

[(S2 −K)+], ∀ K ∈ R+

In financial term, we exclude calendar spread arbitrage opportunities (on call options). The neces-
sary condition can easily be obtained by applying the Jensen inequality on (S2−K)+. The sufficient
condition can be deduced by explicitly building a martingale measure matching marginals P1 and
P2 from the Dupire local volatility model (see e.g. [70]).
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Assum(c): Let c : R2
+ → [−∞,∞) be an upper semi-continuous function such that

c+(s1, s2) ≤ K · (1 + s1 + s2) (1.8)

on (R+)2 for some constant K.

Theorem 1.3.2 (see A4) Assume that P1 ≤ P2 are Borel probability measures on R+ with first

moments S0 and assumption Assum(c) holds. Then there is no duality gap, i.e. M̃K
∗
2 = M̃K2.

Moreover, the primal value M̃K
∗
2 is attained, i.e. there exists a martingale measure P∗ ∈M(P1,P2)

such that M̃K
∗
2 = EP∗ [c]. In general, the dual is not attained (see [A4] for a counterexample).

The function h is interpreted as the Lagrange multiplier associated to the martingale condition.
This result has generated new research in the field of robust hedging (see e.g. [2, 5, 12, 13, 14, 26,
38, 39, 106]). In [A3], we have generalized our duality result in a continuous-time setup. We also
mention [38].

As previously mentioned, note that the quadratic cost, c(s1, s2) = (s2 − s1)2 is degenerate in the
present martingale version as

EP[(S2 − S1)2] = EP2

[S2
2 ]− EP1

[S2
1 ], P ∈M(P1,P2)

meaning that the cost value is identical for all P ∈ M(P1,P2). In OT, one can prove that the
minimization can be restricted to the class of c-convex function (see equation 1.4). A similar result
holds in MOT where the c-convex property is replaced by the concave envelope:

Proposition 1.3.3 (see A4) Assume that P1 ≤ P2 are Borel probability measures on R+ with
first moments S0 and assumption Assum(c) holds. Then

M̃K
∗
2 = sup

u∈L1(P2)

EP1

[(c(S1, ·)− u(·))∗∗(S1)] + EP2

[u(S2)] (1.9)

where for a function g, g∗∗ denotes its concave envelope, i.e., the smallest concave function greater
or equal to g.

1.3.2 A discrete martingale Fréchet-Hoeffding solution [S4]

In this section (see [S4] for details), we solve explicitly M̃K2 under the martingale Spence-Mirrlees
condition ∂s1s2s2c > 0. This gives a martingale measure, similar in spirit to the Fréchet-Hoeffding
solution: Under the new condition ∂s1s2s2c > 0, the optimal measure is payoff-independent and
depends only on the marginals P1 and P2. Moreover, we will show that this condition guarantees
that the dual infimum is attained which was not guaranteed from our previous duality result.
The optimal measure is no more supported on a single map T as it was for Fréchet-Hoeffding’s
solution. Indeed, the martingale constraint can not be fulfilled in this case (except in the trivial
case P1 = P2):

EP∗ [(S2 − S1)|S1 = s1] = T (s1)− s1 6= 0
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for

P∗(ds1, ds2) = δT (s1)(ds2)P1(ds1), T (x) = F−1
2 ◦ F1(x)

As a straightforward guess, we will assume that P∗ is supported along two maps s2 = Td(s1) and
s2 = Tu(s1). This intuition comes from [72] where the authors consider the problem of finding
the optimal upper bound on the price of a forward-start straddle |s2 − s1| and from an old result
of Dubins, Schwarz [40] that characterizes the extreme points of the space of all distributions
of discrete martingales as those that possess these two properties : (a) S0 is fixed and (b) the
conditional distribution of each Sk given the past up to time k − 1 is almost surely a two-valued
distribution. This result should be put in light with the fact that a pricing binomial model is
(market) complete, and therefore a payoff can be dynamically replicated under this model. Indeed,
if we take for granted that the dual is attained, the duality result implies that the payoff can be
perfectly dynamically replicated

u1(s1) + u2(s2) + h(s1)(s2 − s1) = c(s1, s2), P∗ − as

for the optimal martingale measure P∗.

Assum(P1,P2): For the sake of simplicity, we will assume that δF ≡ F2 − F1 has a global unique
maximum m. The general case is considered in [S4]. We define P∗ ∈M(P1,P2) as

P∗(ds1, ds2) = P1(ds1)
(
q(s1)δTu(s1)(ds2) + (1− q(s1))δTd(s1)(ds2)

)
,

q(x) =
x− Td(x)

Tu(x)− Td(x)

with the maps Td(x) ≤ x ≤ Tu(x), Tu increasing, Td decreasing defined by

Tu(x) = Td(x) = x, x ≤ m
Tu(x) = F−1

2 (F1(x) + δF (Td(x)) (1.10)

T ′d(x) = − Tu(x)− x
Tu(x)− Td(x)

F ′1(x)

F ′2(Td(x))− F ′1(Td(x))

In Figure (1.2), we have plotted the maps Td and Tu corresponding to two log-normal densities
with variances 0.04 and 0.32 (increasing in the convex order). Note that the expression for the
map Tu(x) looks like the Fréchet-Hoeffding solution, except the presence of the additional term
δF (Td(x)) arising from our martingale condition.

We next introduce a remarkable triple of dual variables (u∗1, u
∗
2, h
∗) corresponding to a smooth

coupling function c. The dynamic hedging component h∗ is defined up to an arbitrary constant
by:

h∗
′

=
cs1(., Tu)− cs1(., Td)

Tu − Td
, ∀ x ≥ m (1.11)

The payoff function u∗2 is defined up to an arbitrary constant by:

u∗
′

2 = cy(T−1
u , .)− h∗ ◦ T−1

u , ∀ x ≥ m (1.12)

= cy(T−1
d , .)− h∗ ◦ T−1

d , ∀ x < m. (1.13)
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Figure 1.2: Maps Td and Tu built from two log-normal densities µ and ν with variances 0.04 and
0.32. m = 0.731.

The corresponding function u∗1 is given by:

u∗1(s1) = EP∗[c(S1, S2)− u∗2(S2)|S1 = s1

]
(1.14)

= q(s1)
(
c(s1, .)− u∗2

)
◦ Tu(s1) +

(
1− q(s1)

)(
c(s1, .)− u∗2

)
◦ Td(s1), s1 ∈ R+.

Theorem 1.3.4 (see S4) Assume that P1 ≤ P2 are Borel probability measures on R+ with first
moments S0 and assumption Assum(P1,P2) holds. Assume further that u∗+1 ∈ L1(P1), u∗+2 ∈
L1(P2), and that the partial derivative of the coupling function cs1s2s2 exists and cs1s2s2 > 0 on
R2

+. Then:
(i) (u∗1, u

∗
2, h
∗) ∈M∗(P1,P2),

(ii) the strong duality holds for the martingale transportation problem, P∗ is a solution of M̃K
∗
2,

and (u∗1, u
∗
2, h
∗) is a solution of M̃K2:

EP∗[c(S1, S2)] = M̃K
∗
2 = M̃K2 = EP1

[u∗1(S1)] + EP2

[u∗2(S2)].

In Table (1.1), we compare various results in optimal transport and in the martingale counterpart.
We have seen that OT is linked to the Hamilton-Jacobi equation. In MOT (in particular in our
approach to the Skorohod embedding problem), Hamilton-Jacobi-Bellman PDEs will naturally
appear.
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OT, MK2 MOT, M̃K2

supP,S1∼P1,S2∼P2 EP[c(S1, S2)] supP,S1∼P1,S2∼P2,E[S2|S1]=S1
EP[c(S1, S2)]

infu1,u2 EP1

[u1(S1)] + EP2

[u2(S2)] infu1,u2,h EP1

[u1(S1)] + EP2

[u2(S2)]
u1(s1) + u2(s2) ≥ c(s1, s2) u1(s1) + u2(s2) + h(s1)(s2 − s1) ≥ c(s1, s2)

infu EP1

[u∗(S1)] + EP2

[u(S2)] infu EP1

[(c(S1, ·)− u(·))∗∗(S1)] + EP2

[u(S2)]
(co)-monotone map: c12 > 0 (co)-monotone martingale map: c122 > 0

Table 1.1: Optimal Transport versus Martingale Optimal Transport. u∗(s1) ≡ sups2{c(s1, s2) −
u(s2)} and u∗∗(·) denotes the concave envelope of u(·) which is the smallest concave function
greater or equal to u.

1.3.3 Martingale Brenier’s solution ♣

We consider MOT in Rd+ and note Si1 the i-component of S1 ∈ Rd+. Note that this situation is not
very common in finance as the (known) marginals are usually one-dimensional (e.g. Vanillas). A
notable exception arise in fixed income and foreign exchange markets (see example 1.2.1) where
Vanillas on spread swap rates, i.e., S2

1 −KS1
1 , are quoted on the market. The dual reads

M̃K2 = inf
u1∈L1(P1),u2∈L1(P2),(hi(·))1≤i≤d

EP1

[u1(S1)] + EP2

[u2(S2)]

such that u1(s1) + u2(s2) +
∑d
i=1 h

i(s1)(si2 − si1) ≥ c(s1, s2), ∀ s1, s2 ∈ Rd+. Taking for granted
that the dual is attained, the (strong) duality result implies that

u1(s1) + u2(s2) +

d∑
i=1

hi(s1)(si2 − si1) = c(s1, s2), P∗ − a.s.

We have d + 2 unknown functions (u1, u2, (h
i(·))1≤i≤d) (defined on (a subset of) Rd+) and it is

tempting to guess that the optimal martingale measure P∗ is localized on some maps (Tα). For
each map - denoted schematically by T - we should have:

u1(s1) + u2(T (s1)) +

d∑
i=1

hi(si1)(T i(s1)− si1) = c(s1, T (s1)), ∀ s1 ∈ Rd (1.15)

∂si2u2(T (s1)) + hi(s1) = ∂si2c(s1, T (s1)), ∀ i = 1, . . . , d, ∀s1 ∈ Rd (1.16)

On the primal side, the minimal number of maps (in order to get a martingale measure) should be
d+ 1:

P∗(ds1, s2) =

d+1∑
i=1

qi(s1)δTi(s1)(ds2)

where the functions (qi)1≤i≤d+1 are uniquely fixed by the algebraic equations:

d+1∑
i=1

qi = 1,

d+1∑
i=1

qi(s1) (Ti(s1)− s1) = 0
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An open problem is to extend our approach in d = 1 to Rd+. We intend to address this problem in
our future research.

1.3.4 Symmetries in MOT [S4]

Martingale Spence-Mirrlees condition

The martingale counterpart of the Spence-Mirrlees condition is cs1s2s2 > 0. This condition is
natural in the present setting. Indeed, the optimization problem should not be affected by the
modification of the coupling function from c to c̄(s1, s2) ≡ c(s1, s2)+U1(s1)+U2(s2)+h(s1)(s2−s1)

for any U1 ∈ L1(P1), U2 ∈ L1(P2), and h ∈ L0, the new optimal cost being M̃K2 + EP1

[U1(S1)] +

EP2

[U2(S2)]. Since c̄s1s2s2 = cs1s2s2 , it follows that the condition cs1s2s2 > 0 is stable for the above
transformation of the coupling function. In particular, note that c̄s1s2 = cs1s2 + h′(s1) 6= cs1s2 .

Mirror coupling: the right-monotone martingale transport plan

Suppose that cs1s2s2 < 0. Then, the upper bound M̃K2 is attained by the right-monotone martin-
gale transport map

P∗(ds1, ds2) = P1(ds1)
(
q(s1)δT̄u(s1)(ds2) + (1− q(s1))δT̄d(s1)(ds2)

)
, q(x) =

x− T̄d(x)

T̄u(x)− T̄d(x)

where (T̄d, T̄u) is defined as in (1.10) with the pair of probability measures (P̄1, P̄2):

FP̄1(s1) ≡ 1− F 1
P (−s1), and FP̄2(s2) ≡ 1− F 2

P (−s2).

To see this, we rewrite the optimal transportation problem equivalently with modified inputs:

c̄(s1, s2) ≡ c(−s1,−s2), P̄1
(
(−∞, s1]

)
≡ P1

(
[−s1,∞)

)
, P̄2

(
(−∞, s2]

)
≡ P2

(
[−s2,∞)

)
,

so that c̄s1s2s2 > 0, as required in Theorem 1.3.4. Note that the martingale constraint is preserved
by the map (s1, s2)→ (−s1,−s2).
Suppose that cs1s2s2 > 0. Then, the lower bound problem is explicitly solved by the right-monotone
martingale transport plan. Indeed, it follows from the first part of the present remark that:

inf
P∈M(P1,P2)

EP[c(S1, S1)
]

= − sup
P∈M(P1,P2)

EP[− c(S1, S2)
]

= EP̄∗
[
c(S1, S2)

]

1.3.5 Martingale McCann’s interpolation ♣

In this section, we recall McCann’s interpolation theory. Our reminder follows closely Chapter 5
in Villani’s book [107]. Here we consider the case Rd, although our martingale extension focuses
only on the real line. Two probability measures P0 and P1 (not necessarily in convex order here)
can be (trivially) linearly interpolated by Pt = (1 − t)P0 + tP1 with t ∈ [0, 1]. In mathematical
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physics, one often consider minimization of functionals on the space of probability measures P (Rd):
infP∈P (Rd) F(P). The proof of the existence of a unique minimizer is greatly simplified if we can
prove that the functional F is strictly convex. However classical examples such that

F2(P) ≡
∫
Rd×Rd

W (x− y)P(dx)P(dy) (1.17)

do not satisfy this property even if W is strictly convex. Indeed, a straightforward computation
gives

d2

dt2
F2(Pt) = 2

∫
W (x− y) (P0(dx)P0(dy)− P1(dx)P0(dy)− P0(dx)P1(dy) + P1(dx)P1(dy))

for which it is not possible to conclude the convex property. This was McCann’s original motivation
[84] for introducing a new notion of probability interpolation and convexity which can handle the
above example. His approach is strongly linked to Brenier’s theorem in optimal transport as
described below.

Let’s take a strictly concave cost c = c(s1−s2) on Rd. According to Brenier’s theorem, there exists
a gradient of a convex function u such that

[1−∇c∗(∇u)]#P0 = P1

McCann’s displacement interpolation [P0,P1]t of two probability measures P0 and P1 is then defined
by

[P0,P1]t ≡ [1− t∇c∗(∇u)]#P0, t ∈ [0, 1]

Note that by construction Pt=0 = P0 and Pt=1 = P1. A subset P of P (Rd) is said to be displacement
convex if it is stable under displacement interpolation. A functional F defined on a displacement
convex subset P is displacement (resp. strictly) convex if for all P0,P1 in P, the function t →
F ([P0,P1]t) is (resp. strictly) convex. In particular, the functional F2 is displacement convex
if W is convex [84]. One can then show the existence of a unique minimizer [84] of F using
this displacement convex property. For applications in mathematical finance, one can consider
minimizations of functionals defined on a subset of P (R) totally ordered with respect to the convex
order. Note that in comparison with the usual convex interpolation, McCann’s interpolation does
not preserve the convex order property: If P0 ≤ P1, then we have not P0 ≤ [P0,P1]t ≤ P1.

Using the framework of MOT, we define the convex order interpolation of two measures P0 ≤ P1

defined on R as

Definition 1.3.5 (Martingale convex interpolation)

[P0,P1]t = Law(Xt), t ∈ [0, 1]

where the random variable Xt is defined by a two step Markov chain: Xt = X(1− t) + tTu(X) with

probability q(x) ≡ x−Td(x)
Tu(x)−Td(x) , Xt = X(1− t) + tTd(X) with probability 1− q(x) and X ∼ P0.

By construction, this interpolation preserves the convex order property as this Markov chain is a
martingale. Note that the linear interpolation Pt = (1− t)P0 + tP1 preserves also the convex order
property. We explain in the next section why our interpolation seems better.
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Application

We introduce a subset Pc.o. of the space of probability measures, absolutely continuous with respect
to the Lebesgue measure on R, totally ordered with respect to the convex order property. Here we
assume that this space is stable under convex order displacement interpolation: if P0 and P1 are
in Pc.o. (and therefore without loss of generality we take P0 ≤ P1) then [P0,P1]t ∈ P for t ∈ [0, 1].
Note that P is a convex set in the usual sense. We say that a functional on Pc.o. is displacement
(resp. strictly) convex order if the map t→ F (Pt) is (resp. strictly) convex on [0, 1].

The functional F2 introduced above (1.17) is an example of displacement (resp. strictly) convex
order functional. This example is not convex in the usual sense. This is why our notion seems
better. Our definition (in particular the fact that q remains time independent under convex order
interpolation) seems to be the right definition. As an application of the convex order interpolation,
we have

Theorem 1.3.6 (see a similar theorem in OT, Theorem 5.32 in [107]) Consider the follow-
ing functional F2(P) defined on Pc.o. (see the definition above) where W is strictly convex. Then,
there is at most one minimizer for F2(P) on Pc.o..

This result is obvious as F2(P) is strictly convex with respect to the martingale convex interpolation.

1.3.6 Multi-marginals extension [S4]

A natural extension of our 2-period MOT is to consider the multi-marginal case (n > 2) where the
dual formulation is

M̃Kn = sup
P∈M(P1,...,Pn)

EP[c(S1, . . . , Sn)]

where M(P1, . . . ,Pn) = {P : Si
P∼ Pi,EP

ti−1
[Si] = Si−1, i = 1, . . . , n}. This problem was solved in

the classical optimal transport problem in [29, 54] (see Section 1.2.4). In our present martingale

version, by using a Markov property, and a specific class of cost functions, c =
∑n−1
i=1 c

i(si, si+1)
with cisisi+1si+1

> 0, it is natural to guess that the optimal martingale measure will be supported

by 2 × n maps (T id, T
i
u) satisfying ODEs (1.10) with F1 and F2 replaced by Fi and Fi+1. More

precisely, we have

Theorem 1.3.7 (see S4) Suppose P1 ≤ . . . ≤ Pn in convex order, with finite first moment,
P1, . . . ,Pn−1 have no atoms, and let Assumption Assum(Pi,Pi+1) hold true for δF = Fi+1 − Fi,
for all 1 ≤ i < n. Assume further that

• ci have linear growth, that the cross derivatives cixyy exist and satisfy cixyy > 0,

• u1∗
i , u

2∗
i satisfy the integrability conditions (u1∗

i )+ ∈ L1(Pi), (u2∗
i )+ ∈ L1(Pi+1). u1∗

i , u
2∗
i

are defined as in (1.11, 1.12, 1.14) with ci substituted to c and (T iu, T
i
d) substituted to (Tu, Td).
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Maturity (years) VSmkt Upper Lower
0.4 18.47 18.45 16.73
0.6 19.14 18.70 17.23
0.9 20.03 19.63 17.89
1.4 21.77 21.62 19.03
1.9 22.89 23.06 19.63

Table 1.2: Implied volatility for discrete-monitored variance swap as a function of the maturity.
Lower/upper bounds versus market prices (quoted in volatility ×100).

Then, the strong duality holds, the transference map

P∗(ds) = P1(ds1)

n−1∏
i=1

(
qi(si)δT iu(si)(dsi+1) + (1− qi(si))δT id(si)(dsi+1)

)
is optimal for the martingale transportation problem M̃Kn, and (u∗, h∗) is optimal for the dual
problem, i.e.,

EP∗ [c(S1, . . . , Sn)] =

n∑
i=1

EPi [u∗i ].

with u∗i (si) ≡ 1i<nu
1∗
i + 1i>1u

2∗
i−1, i = 1, . . . , n.

As an useful application in mathematical finance, this result gives the robust lower and upper
bounds of a discrete-monitored variance swap delivering at a maturity T , the discrete realized
variance of log-returns: −2/T

∑N
i=1 ln2 si+1/si. We have compared these bounds against market

values denoted VSmkt for the DAX index (2-Feb-2013) and different maturities (see Table 1.2). The
prices are quoted in volatility ×100. Note that for maturities less than one year, our upper bound is
below the market price, highlighting an arbitrage opportunity. In practice, this arbitrage disappears
if we include transaction costs for trading vanilla options with low/high strikes. Moreover, we have
assumed that vanilla options with all maturities are traded.

1.3.7 Infinitely-many marginals extension [S3]

At this point, we now introduce a continuous time martingale transportation (MT) problem with
full marginals constraints, as the limit of the multi-marginals MT recalled in previous section.
Namely, given a family of marginals (Pt)t∈(0,T ], we consider all the continuous time martingales
satisfying the marginal constraints, and optimize w.r.t. a class of cost functions.

Let Ω ≡ D([0, T ],R+) denote the canonical space of all càdlàg paths on [0, T ], S the canonical
process and F = (Ft)0≤t≤T the canonical filtration generated by S. We denote by M∞ the
collection of all martingale measures on Ω, i.e. the collection of all probability measures on Ω
under which the canonical process S is a martingale. St=0 is fixed to S0. By Karandikar [82],
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there is an non-decreasing process (〈S〉t)t∈[0,1] defined on Ω which coincides with the P-quadratic
variation of S, P-a.s. for every martingale measure P ∈ M∞. Denote also by 〈S〉c· the continuous
part of the non-decreasing process 〈S〉·.

Given a family of marginals (Pt)0<t≤T , denote by M∞((Pt)0<t≤T ) the collection of all martin-

gale measures on Ω such that St
P∼ Pt for all t ∈ (0, T ]. In particular, following Kellerer [83],

M∞((Pt)0<t≤T ) is nonempty if and only if the family (Pt)0<t≤T is non-decreasing in convex or-
dering and t 7→ Pt is right-continuous.

We introduce a cost function C : Ω→ R ∪ {−∞,∞} by

C(x) ≡ 1

2

∫ T

0

cyy(xt,xt)d〈x〉ct +
∑

0≤t≤T

c(xt− ,xt), ∀x ∈ Ω,

where the integral and the sum are defined as the difference of the positive and negative parts,
under the convention ∞−∞ = −∞, e.g.∫ 1

0

cyy(xt,xt)d〈x〉ct ≡
∫ 1

0

(
cyy(xt,xt)

)+
d〈x〉ct −

∫ 1

0

(
cyy(xt,xt)

)−
d〈x〉ct

The cost function c is assumed to satisfy

Assumption .1 The cost function c : R2
+ → R is in C3(R2

+) and satisfies

c(x, x) = cy(x, x) = 0 and cxyy(x, y) > 0, ∀x ≤ y (1.18)

We then formulate a continuous time MT problem under full marginals constraints by

M̃K∞ ≡ sup
P∈M∞((Pt)0<t≤T )

EP[C(S·)
]
. (1.19)

Martingales matching marginals: An optimal transport point of view

A Monge-Kantorovich dual formulation for M̃K∞ is provided in [S3]. The solution of this MOT
should provide a martingale measure with marginals (Pt)0<t≤T . Building such a martingale mea-
sure is a difficult task and, although only few examples are known, this issue has generated a lot
of research in probability and mathematical finance. In mathematical finance layman’s terms, this
measure is connected to an arbitrage-free model calibrated exactly to the full Vanilla smile. The
first example, commonly used by practitioners in quantitative finance in part due to this prop-
erty, is the local volatility model introduced by B. Dupire [41] and defined by a one-dimensional
Markovian SDE

dSt = σloc(t, St)dWt, σloc(t,K)2 = 2
∂tC(t,K)

∂2
KC(t,K)

with C(t,K) = EPt [(St−K)+]. A second example is provided by so-called local stochastic volatility
models that are described by nonlinear McKean SDEs:

dSt = at
σloc(t, St)√
E[a2

t |St]
dWt
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We will expand on this model in the last chapter when we discuss the particle method - a subject
connected to classical optimal transport. The last example pops up when considering the Skoro-
hod embedding problem (in short SEP) - see also next section: It consists in finding a stopping
time τ such that Bτ ∼ PT with B· a Brownian motion, PT a marginal distribution and Bt∧τ is
required to be uniformly integrable. From the Dambis-Dubins-Schwarz theorem, all continuous
local martingale St (with limt→∞〈S〉t =∞) can be converted into a Brownian subordinated by its
quadratic variation: St = B〈S〉t . Taking 〈S〉T = τ , St describes an arbitrage-free model calibrated
to T -Vanillas. A solution of SEP is the Azema-Yor solution [11] where the stopping time τ is
described at the first time to reach a barrier:

τ = inf{t > 0 : ΨAY,PT (Bt) ≤ B∗t }

with B∗t = max0<s<tBs the running maximum and ΨAY is the Hardy-Littlewood barycenter
function depending on the marginal PT (implied from T -Vanilla options)

ΨAY,PT (x) =
EPT [ST 1ST>x]

EPT [1ST>x]

From this solution, one can derive a martingale in M∞((Pt)0<t≤T ) under the strong assumption:
the barycenter functions ΨAY,Pt are increasing in time [90], i.e. ΨAY,Ps(x) ≤ ΨAY,Pt(x) for all
0 < s < t. The corresponding martingale is St = Bτt with

τt = inf{s > 0 : ΨAY,Pt(Bs) ≤ B∗s} (1.20)

This martingale is a pure jump Lévy process for which one can explicitly characterize its infinites-
imal generator [90]. Alternative pure jump Lévy processes with a local intensity, depending on
the time t and St, have been built in [31] and can be calibrated to all continuous-time marginal
distributions (Pt)0<t≤T totally ordered with respect to the convex order. In the next section, we
show that the martingales obtained from the limit n→∞ of our discrete optimal measures P∗ and
P∗ belong to the class of local Lévy processes (see [S3] for technical details). These martingales
are remarkable as they are the optimal solutions (upper and lower bounds) of our continuous-time

martingale optimal transport problem M̃K∞ (under assumption .1).

Infinitely-many marginals: optimal solutions [S3]

We denote f(t, ·) (resp. F (t, ·)) the continuous strictly positive density (resp. cumulative distri-
bution) of St at time t implied from t-Vanilla option prices. We will assume that there exists a
unique local maximizer of ∂tF (t, ·) that we denote m(t) (see [S3] for the general case).

Heuristic derivation

In the continuous-time limit ∆t ≡ t2− t1 → 0, one can guess that the solution of ODEs (1.10) can
be written at the first order in ∆t for s > m(t) as

Tu(t, s) = s+ ju(t, s)∆t

Td(t, s) = s− jd(t, s)
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with jd(t, s) = ju(t, s) = 0 , ∀ s ≤ m(t). Plugging this expression into the ODE system, we get for
all s > m(t):

1− ∂sjd(t, s) = −ju(t, s)

jd(t, s)

f(t, s)

∂tf(t, s− jd(t, s))
(1.21)

∂s(ju(t, s)f(t, s)) + ∂tf(t, s) = −ju(t, s)

jd(t, s)
f(t, s) (1.22)

The master equation, associated to this binomial model, is

f(t+ ∆t, s) =

(
f(t, s)1s≤m(t) −

ju(t, s)

jd(t, s)
1s<m(t)

f(t, s)

(1− ∂sjd(t, s))
∆t

)
+

(
1− ju(t, s)

jd(t, s)
∆t

)
f(t, s)

1 + ∂sju(t, s)∆t
1s>m(t)

with s − jd(t, s) = s, s + ju(t, s)∆t = s, and where we have used that the probability to jump

downwards at t is q(t, s) = ju(t,s)
jd(t,s) ∆t. By taking formally the limit ∆t→ 0 in the above equation,

we obtain the following Fokker-Planck equation:

∂tf(t, s) = −ju(t, s)

jd(t, s)

f(t, s)

(1− j′d(t, s))
1s<m(t) −

ju(t, s)

jd(t, s)
f(t, s)1s>m(t) − ∂s (ju(t, s)f(t, s)) 1s>m(t)

(1.23)

The infinitesimal generator appearing in the above Fokker-Planck equation is obtained from a
compensated pure jump (Markovian) martingale with compensator

ν(dt, dz) = δ(z + jd(t, St−))
ju(t, St−)

jd(t, St−)
1St−>m(t)dzdt (1.24)

The dynamics for the stock price is given by

dSt =

∫
R
z (N(dt, dz)− ν(dt, dz))

where N(dt, dz) is the counting measure associated with the (downwards) jumps. This jump
process corresponds to a local Lévy model as introduced in [29]. A similar construction can
be obtained for the anti-monotone rearrangement martingale which corresponds to compensated
upward jumps. We obtain :

Theorem 1.3.8 (see S3) The martingale transport problem (1.19) is solved by the local Lévy
process (1.24). Moreover, we have

EP∗[C(X·)
]

= µ(λ∗),

where the optimal value is given by

µ(λ∗) =

∫ T

0

∫ ∞
m(t)

ju(t, s)

jd(t, s)
c
(
s, s− jd(t, s)

)
f(t, s) ds dt.
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Fake Brownian motion [S3]

These two jump processes give rise two new examples of (non-continuous) fake Brownian motions
(if we take for ft the density of a Brownian motion). A fake Brownian motion is a local martingale
with the same marginals as a Brownian motion. We also refer to Albin [4], Fan, Hamza and
Klebaner [48], Hamza and Klebaner [60], Hirsch et al. [71], Hobson [72], Oleszkiewicz [95] etc. for
other solutions and related results.

Let Pt ≡ N (0, t). By direct computation, we have m(t) = −
√
t. In this case, it follows that Td(t, s)

is defined by the equation:∫ s

Td(t,s)

(s− ξ)(ξ2 − t)e−ξ
2/2tdξ = 0 for all s ≥ m(t).

By direct change of variables, this provides the scaled solution Td(t, s) ≡ t1/2T̂d
(
t−1/2s

)
, where:

T̂d(s) ≤ −1 is defined for all s ≥ −1 by

∫ s

T̂d(s)

(s− ξ)(ξ2 − 1)e−ξ
2/2dξ = 0.

i.e.

e−T̂d(s)2/2
(

1 + T̂d(s)
2 − sT̂d(s)

)
= e−s

2/2.

Similarly, we see that ju(t, s) ≡ t−1/2ĵu
(
t−1/2s

)
, where

ĵu(s) ≡ 1

2

[
s− T̂d(s)e−(T̂d(s)2−s2)/2

]
=

1

2

[
s− T̂d(s)

1 + T̂d(s)2 − sT̂d(s)

]
for all s ≥ −1.

We have plotted the maps T̂d(s) and T̂u(s) ≡ s + ĵu(s) in Figure 1.3. A similar construction can
be achieved for self-similar marginals (see [S3]).

1.4 Constrained martingale optimal transport

Some variants in optimal transport have been studied recently. In [85], the authors introduce an
optimal transportation with capacity constraints, which consists in minimizing a cost among joint
densities P with marginals P1 and P2 and under the capacity constraint

P(s1, s2) ≤ P̄(s1, s2)

for some prior joint density P̄(s1, s2). In [29], optimal transports with congestion are considered.
In this section, we present two variants of our martingale optimal transport. The first one involves
a constraint on the VIX future [S1] and the second one involves a penalty entropy term [A2].
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Figure 1.3: Fake Brownian motion: Maps T̂d and T̂u.

1.4.1 VIX constraints [S1]

VIX futures and VIX options, traded on the CBOE, have become popular volatility derivatives.
The VIX index at a future expiry t1 is by definition the 30-day variance swap volatility, computed
by replication using market prices of listed S&P500 options (at t1):

VIX2
t1 ≡ − 2

∆
Et1

[
ln

(
St2
F t2t1

)]
(1.25)

=
2

∆

(∫ St1

0

P (t1, t2,K)

K2
dK +

∫ F
t2
t1

0

C(t1, t2,K)

K2
dK

)

with ∆ = t2 − t1 and P (t1, t2,K) (resp. C(t1, t2,K)) the undiscounted market price at t1 of a put
(resp. call) option with strike K and maturity t2. The payoff of a call option on VIX expiring at
t1 with strike K is (VIXt1 −K)

+
. Below, the market value (at t = 0) for the VIX future (i.e.,

K = 0) is denoted VIX.

For technical reason, we will assume that the random variables (St1 , St2 ,VIXt1) are supported on
a compact interval I1 × I2 × IX ⊂ (R∗+)3. For further reference, we denote by M(P1,P2,VIX) the
set of all martingale measures P on the (pathspace) I1× I2 having marginals P1, P2 with mean S0

and such that VIX = EP[VIXt1 ].

We define our constrained optimal transport for a VIX call option expiring at t1 with strike K as
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Definition 1.4.1

MKvix ≡ inf
u1∈L1(P1),u2∈L1(P2),λ∈R,hS ,hX

EP1

[u1(St1)] + EP2

[u2(St2)] + λVIX

such that for all (s1, s2, x) ∈ I1 × I2 × IX ,

u1(s1) + u2(s2) + λ
√
x+ hS(s1, x)(s2 − s1) + hX(s1, x)

(
− 2

∆
ln

(
s2

s1

)
− x
)
≥
(√
x−K

)+
(1.26)

where the functions hS , hX : I1 × IX → R are assumed to be bounded continuous functions on
I1 × IX , u1 ∈ L1(P1) and u2 ∈ L1(P2). Note that this defines a linear semi-infinite infinite-
dimensional programming problem. The variable x should be interpreted as the t1-value of a
log-contract −2/∆ ln s2

s1
, i.e., the square of the VIX index VIX2

t1 . Note that we have ensured that

the above inequality is valid for all s1 and s2, not just P1×P2 almost surely. As explained in [107]
(see section 1.1), this can be achieved by allowing u1 and u2 to take values in R∪{+∞}. Indeed, we
introduce negligible sets N1 and N2 such that the inequality holds true for all (s1, s2) ∈ N c

1 ×N c
2 ,

and redefine the values of u1 and u2 to be +∞ on N1, N2 respectively.

We establish a dual version which is connected to a martingale optimal transport problem:

Theorem 1.4.2 (duality, see S1) Assume that P1, P2 are probability measures respectively on
I1 and I2 such that M(P1,P2,VIX) is non-empty. Then,

MKvix = max
P∈M(P1,P2,VIX)

E[(VIXt1 −K)
+

]

This is part of the proof that we have a max and not only a sup, meaning that the seller’s price
(resp. buyer’s price) is attained by a martingale measure, i.e., a model, calibrated to the t1 and t2
Vanilla smiles and to the VIX future.

The dual corresponds to the maximization of the expectation of a VIX payoff with respect to
a martingale measure with marginals P1, P2 and with the constraint on the VIX future VIX =

EP[
√
EP
t1 − (2/∆) lnSt2/St1 ]. Note that as this additional constraint, not present in the original

martingale optimal transport, is nonlinear with respect to the (martingale) measure P, this optimal
transport problem is more involved. Our variant involves a martingale constraint but also a non

linear constraint VIX = EP[
√
EP
t1 [−(2/∆) lnSt2/St1 ]]. As a crucial step, by introducing a delta

hedging on a forward log-contract −2/∆ ln s2/s2, this problem has been converted into a linear
programming problem that can be solved with a simplex algorithm. Note that a similar trick is
used in [25] for converting a quantile hedging approach into a super-replication problem. Under
technical conditions on the marginal P2, this optimal transport can be solved explicitly (see [S1]).
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1.4.2 Entropy penalty [A2]

The main drawback of the (robust) super-replication approach, appearing in the definition of the
martingale optimal transport, is that the martingale measure (i.e., arbitrage-free model), which
achieves the super-replication strategy, can be very different from those generated by (stochastic
volatility) diffusive models traders commonly use. As an example, the upper bound given marginals
(such that the associated Hardy-Littlewood barycenter functions are increasing in time) for an
increasing payoff on the maximum of a martingale is reached by Azema-Yor’s martingale (see
equation 1.20) belonging to the class of local jump Lévy models. In the following, we show that
this drawback can be circumvented. To this end, we introduce the Kullback-Leibler relative entropy
between two probability measures P and P0 (see [107] for a review of various properties of this
distance):

H(P,P0) = EP
[

ln
dP
dP0

]
, P is absolutely continuous w.r.t. P0

= +∞ , otherwise

Following the same route as in the super-replication section, we impose that our model matches
market marginals at each date (ti)i=1,··· ,n (eventually market instruments (ca)a=1,··· ,N )

M̃K
λ

n ≡ sup{EP[c(St1 , . . . , Stn)] : P ∈M(P1, · · · ,Pn) , H(P,P0) ≤ λ} (1.27)

We have added the constraint H(P,P0) ≤ λ with λ a positive parameter. By setting λ = 0,
the feasible set is empty except if the prior measure P0 is a martingale measure and satisfies the
marginal constraints. In this case, we get

M̃K
0

n = EP0

[c]

By taking the limit λ =∞, we obtain our initial martingale optimal transport:

M̃Ksn = M̃Kn

The parameter λ provides an interpolation between prices given either by the prior (risk-neutral)
model or the (robust) super-replication strategy.

Such an approach was explored in [7], [8], [9]. The martingality constraints seem to have been
unnoticed, in particular in [7] and [9], resulting in pricing models that are not arbitrage-free. The
authors stated in [7]: “In this paper, we study an algorithm for selecting a risk-neutral probability
that minimizes the relative entropy, or Kullback-Leibler entropy, with respect to a given prior
distribution.” We would like to emphasize that the density is not risk-neutral as long as the
martingality constraint is not fulfilled. This is confirmed in proposition 4 in [8], where the drift of
the diffusion measure P∗ is computed and found to be different from the risk-free interest rate.

The probability measure P which achieves the maximum (the supremum is attained - see Theorem
1.4.3) is payoff-dependent. In order to get a payoff-independent measure, we could introduce a
new primal problem:

P0 ≡ inf{H(P,P0) : P ∈M(P1, · · · ,Pn)}
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A variant of this primal, without the connections to model calibration, has been studied by many
authors in the context of optimal portfolio choice under exponential utility (see for instance [34,
46]).

The dual formulation reads

M̃K
λ ∗
n ≡ inf

(ui(·))1≤i≤n,(hi(·))1≤i≤n,ζ∈R+

n∑
i=1

EPi [ui(Si)]

+ζ
(
λ+ lnEP0

[eζ
−1(c−

∑n
i=1 ui(Si)−

∑n
i=1 hi(S1,...,Si−1)(Si−Si−1))]

)
(1.28)

Here the Lagrange multiplier ζ ∈ R+ corresponds to the additional constraint H(P,P0) ≤ λ.

Theorem 1.4.3 (see A2) Assume that the set {P ∈ M(P1, · · · ,Pn) , H(P,P0) ≤ λ} is non-
empty. Let c : Rn+ → [0,∞) be an upper semi-continuous function so that

c(s1, . . . , sn) ≤ K · (1 + |s1|+ . . .+ |sn|) (1.29)

on Rn+ for some constant K. Then there is no duality gap M̃K
λ ∗
n = M̃K

λ

n. The supremum is
attained by the optimal measure P∗ given by the Gibbs density

dP∗

dP0
=

e(ζ∗)−1(c−
∑n
i=1 u

∗
i (Si)−

∑n
i=1 h

∗
i (Si−Si−1))

EP0 [e(ζ∗)−1(c−
∑n
i=1 u

∗
i (Si)−

∑n
i=1 h

∗
i (Si−Si−1))]

(1.30)

where ((u∗i (·))1≤i≤n, (h
∗
i (·))1≤i≤n, ζ

∗) achieves the infimum in (1.28).

The sagacious reader will note that a similar duality result is used for proving Talagrand’s in-
equalities in optimal transport. Also the relative entropy can be replaced by any convex functional
f(P).

1.4.3 American options ♣

The martingale optimal transport problem in the case of a two-period Bermudan option with an
exercise payoff g(S) at t1 and t2 is defined as

MKAme ≡ inf
u1,u2,h1,h2

EP1

[u1(S1)] + EP2

[u2(S2)]

such that

u1(s1) + u2(s2) + h1(s1)(s2 − s1) ≥ g(s1), ∀ s1, s2 ∈ R+ : exercise at t1

u1(s1) + u2(s2) + h2(s1)(s2 − s1) ≥ g(s2), ∀ s1, s2 ∈ R+ : exercise at t2

Here we have two delta functions h1(s1) and h2(s1) because our delta hedging strategy depends
at t1 on the value St1 and also if the payoff g has been exercised or not. The dual is then

MKAme = sup
p1(s1,s2)≥0,p2(s1,s2)≥0

∫
g(s1)p1(ds1, ds2) +

∫
g(s2)p2(ds1, ds2)
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such that ∫
(s2 − s1)p1(s1, s2)ds2 = 0,

∫
(s2 − s1)p2(s1, s2)ds2 = 0∫

(p1(s1, s2) + p2(s1, s2))ds2 = P1(s1),

∫
(p1(s1, s2) + p2(s1, s2))ds1 = P2(s2)

In the particular case g convex, the optimal dual is

u∗1(s1) = 0, u∗2(s2) = g(s2), h∗1(s1) = −g′(s1), h∗2(s1) = 0

The optimal cost is reached by taking p1(ds1, ds2) = 0 and p2 an arbitrary martingale measure

with marginals P1 and P2. Indeed, we have MKAme ≤ EP2

[g(St2)] and we deduce by weak duality
the optimality of our guess. An open problem that we wish to address in our future research is the
following: Apart for this trivial case, could this MOT be solved explicitly?

1.5 Link with Skorohod embedding problem [A3, S2]

1.5.1 Probabilistic framework

Let Ω ≡ {ω ∈ C([0, T ],R+) : ω0 = 0} be the canonical space equipped with the uniform norm
‖ω‖∞ ≡ sup0≤t≤T |ωt|, B the canonical process, P0 the Wiener measure, F ≡ {Ft}0≤t≤T the
filtration generated by B. S0 is some given initial value in R+, and we denote

St ≡ S0 +Bt for t ∈ [0, T ].

For any F−progressively measurable process σ and satisfying
∫ T

0
σ2
sds < ∞, P0−a.s., we define

the probability measure on (Ω,F):

Pσ ≡ P0 ◦ (Sσ)−1 where Sσt ≡ S0 +

∫ t

0

σrdBr, t ∈ [0, T ], P0 − a.s.

Then S is a Pσ−local martingale. We denote by PS the collection of all such probability measures
on (Ω,F). The quadratic variation process 〈S〉 = 〈B〉 is universally defined under any P ∈ PS ,
and takes values in the set of all nondecreasing continuous functions. We shall then focus on the
subset P∞ of PS consisting of all measures P such that S is a P-uniformly integrable martingale.

1.5.2 Model-free super-hedging problem

For all P ∈ P∞, we denote:

H2
loc(P) ≡

{
H ∈ H0(P) :

∫ T
0
H2
t d〈B〉t <∞, P− a.s.

}
,

Under the self-financing condition, for any portfolio process H, the portfolio value process

Y Ht ≡ Y0 +

∫ t

0

Hs · dBs, t ∈ [0, T ], (1.31)
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is well-defined P−a.s. for every P ∈ P∞, whenever H ∈ H2
loc. Let ξ be an FT−measurable random

variable. We introduce the subset of martingale measures:

P∞(ξ) ≡ {P ∈ P∞ : EP[ξ−] <∞}.

The reason for restricting to this class of models is that, under the condition that EP[ξ+] < ∞,
the hedging cost of ξ under P is expected to be −∞ whenever EP[ξ−] =∞. As usual, in order to
avoid doubling strategies, we introduce the set of admissible portfolios:

H(ξ) ≡
{
H : H ∈ H2

loc and Y H is a P− supermartingale for all P ∈ P∞(ξ)
}
.

In addition to the continuous-time trading, we assume that the investor can take static positions
in T -Vanilla options. The T -European option defined by the payoff λ(ST ) has an un-ambiguous
market price defined by

µ(λ) =

∫
λdµ

We denote below ξλ ≡ ξ − λ. The set of European payoffs which may be used by the hedger are
naturally taken in the set

Λµ(ξ) ≡
{
λ ∈ Λµ : sup

P∈P
EP[(ξλ)+] <∞}, where Λµ ≡

{
λ : λ ∈ L1(µ)

}
. (1.32)

The superreplication upper bound is defined by:

Uµ(ξ) ≡ inf
{
Y0 : ∃ λ ∈ Λµ(ξ) and H ∈ H(ξλ), Y

H,λ

T ≥ ξ,P− a.s. for all P ∈ P∞(ξλ)
}
, (1.33)

where Y
H,λ

denotes the portfolio value of a self-financing strategy with continuous trading H in
the primitive securities, and static trading λ in the T -Vanillas:

Y
H,λ

T ≡ Y0 +

∫ T

0

HsdBs − µ(λ) + λ(ST ), (1.34)

indicating that the investor has the possibility of buying at time 0 any derivative security with
payoff λ(ST ) for the price µ(λ). Uµ(ξ) is an upper bound on the price of ξ necessary for absence of
strong (model-independent) arbitrage opportunities: selling ξ at a higher price, the hedger could
set up a portfolio with a negative initial cost and a non-negative payoff under any market scenario.
The next result gives a dual formulation of the robust superhedging:

Proposition 1.5.1 (see A3) Assume that supP∈P∞ EP[ξ+] <∞. Then:

Uµ(ξ) = inf
λ∈Λµ(ξ)

sup
P∈P∞

{
µ(λ) + EP[ξ − λ(ST )

]}
.

It could be tempting to permute the inf and the sup - we obtain

Uµ(ξ)
?
= sup

P∈P∞
inf

λ∈Λµ(ξ)

{
µ(λ) + EP[ξ − λ(ST )

]}
= sup

P∈P∞,ST∼µ
EP[ξ]
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So providing we could justify this minimax argument, our robust superhedging is connected to a
martingale optimal transport: we maximize the cost EP(ξ] over the space of martingale measure
with T -marginal µ and P0 = δS0

. If we assume that the payoff ξ(ST ,MT ,mT , 〈S〉T ) depends only
on the spot ST , the running maximum MT , minimum mT or the quadratic variation 〈S〉T at T , by
doing a stochastic time change, Uµ can be framed as a constrained perpetual American options:

Uµ(ξ) = sup
τ∈T : Bτ∼µ

EP[ξ(Bτ , max
0≤s≤τ

Bs, min
0≤s≤τ

Bs, τ

)
]

This problem corresponds then to the determination of an (optimal) stopping time τ∗ such that
Bτ∗ ∼ µ. This is a Skorohod embedding problem (SEP). The use of SEP for deriving model-
independent bounds for exotic options consistent with T -vanillas was pioneered by D. Hobson in
the case of lookback options [65] and then by B. Dupire in the case of options on variance [44].

Note that this approach should give a remarkable solution of SEP as the associated martingale St
has the property to maximize the expectation of the payoff ξ over the class of arbitrage-free models
calibrated to T -Vanilla options. This link between optimal transport and SEP has been recently
explored in [14].

Although most known solutions of SEP share this optimality property, this property was checked
in a second step in the original papers on SEP. Our approach consisting in solving this problem
of perpetual American options implies at the beginning that our solution to SEP satisfies an
optimality property. In the next section, we show on the simple example of a payoff ξ = g(MT )
depending on an increasing function on the running maximum MT how to reproduce Azema-
Yor’s solution [11]. Although the derivation of this solution is simple using martingale techniques
(mainly a stopped Azema-Yor’s martingale), we highlight that our method is straightforward and
can easily handle more complicated examples. The determination of a SEP synthetists in the
analytical resolution of a one (eventually two)-dimensional time-homogeneous obstacle problem.
In particular, following the main steps sketched below, one can show that the optimality of Azema-

Yor’s solution is still valid with a payoff ξ = g(ST ,MT ) where s → ∂mg(s,m)
m−s is a nondecreasing

function for all s < m (see [S2]). Our approach can also tackle the multi-marginals SEP (see [S2]
and section below).

1.5.3 Azema-Yor’s solution revisited [A3]

The aim of this section is to reproduce within our framework Azema-Yor’s solution to the Skorohod
embedding problem which gives the optimal bound for options written on the maximum of an
underlying: ξ = g(MT ) with MT = maxs≤T Ss. g is a nondecreasing function. Here we do not
reproduce our proof in [A3] but instead sketch the derivation highlighting the main ideas and the
novelty of our approach. We note

uλ(s,m) ≡ sup
τ∈T

E[gλ(B∗τ )|B0 = s,B∗0 = m]

with B∗τ ≡ max0≤s≤τ Bs and gλ(s,m) ≡ g(m)− λ(s). Then, Uµ(ξ) can be written as

Uµ(ξ) = inf
λ∈Λµ(ξ)

{
µ(λ) + uλ(S0, S0)

}
. (1.35)
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uλ satisfies in the viscosity sense the variational equation

max
(
gλ(s,m)− uλ(s,m), ∂2

su
λ(s,m)

)
= 0 , s ≤ m (1.36)

with the Neumann condition ∂mu
λ(m,m) = 0. As an ansatz for the optimal stopping time, we

take

τ∗ = inf{t > 0 : Bt ≤ Ψλ(B∗t )}

with Ψλ(·) : [S0,∞])→ R. uλ satisfies the following system:

∂2
su

λ(s,m) = 0 , Ψλ(m) < s < m

∂mu
λ(m,m) = 0 : (normal reflection)

uλ(Ψλ(m),m) = g(m) : (instantaneous stopping)

that we complete by the additional requirement (the delta is smooth at the boundary)

∂su
λ(Ψλ(m),m) = 0 : (smooth fit)

This can be solved explicitly:

uλ(s,m) = g(m) +

∫ s∨Ψλ(m)

Ψλ(m)

(s− x)λ′′(x)dx (1.37)

In order to satisfy the obstacle problem, we should impose that λ is a convex function. Due to the
normal reflection condition, the optimal stopping boundary Ψλ(m) is the solution of the ODE:

Ψ′λ(m)λ′′(Ψλ(m))(m−Ψλ(m)) = g′(m) (1.38)

which should stay below and never hit the diagonal in R, i.e. Ψλ(m) < m for all m. Note that
as no initial conditions are specified, the solution of this ODE (and the solution of the variational
equation (1.36)) is not unique. Finally, by restricting the infimum over λ to the smaller set of λ
convex, we get that

Uµ(ξ) ≤ inf
λ(·) conv

(
g(S0) +

∫ S0

Ψλ(S0)

(S0 − x)λ′′(x)dx+

∫ ∞
0

λ′′(x)Cµ(T, x)dx

)

with Cµ(T, x) ≡ Eµ[(ST − x)+]. By doing the change of variable x = Ψλ(y) and plugging the
expression (1.38) for λ′′(·) in the above equation, we get

inf
Ψλ(·)

g(S0) +

∫ ∞
0

{(S0 −Ψλ(y))1Ψλ(y)∈[Ψλ(S0),S0] + Cµ(T,Ψλ(y))} g′(y)

y −Ψλ(y)
dy

Pointwise minimization gives

(S0 − y)1Ψλ(y)∈[Ψλ(S0),S0] + (y −Ψλ(y))∂2C
µ(T,Ψλ(y)) + Cµ(T,Ψλ(y)) = 0
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By setting y = Ψ−1
λ (x), we get

(S0 −Ψ−1
λ (x))1x∈[Ψλ(S0),S0] + (Ψ−1

λ (x)− x)∂2C
µ(T, x) + Cµ(T, x) = 0

for which the solution is

Ψ−1
µ (x) =

x∂2C
µ(T, x)− Cµ(T, x)

∂2Cµ(T, x)
=

Eµ[ST 1ST≥x]

Eµ[1ST≥x]
(1.39)

This reproduces Azéma-Yor’s solution [11]. As a byproduct, we obtain a path-wise inequality
corresponding to the interpretation of the upper bound in terms of robust super-replication:

Uµ(g) +

∫ T

0

HtdSt + λ∗(ST )− µ(λ∗) ≥ g(MT ), P− a.s. for all P ∈ P∞(ξλ
∗
)

with

Hs = ∂su
λ∗(St,Mt), λ∗

′′
(Ψµ(m))Ψ′′µ(m) =

g′(m)

m−Ψµ(m)

This could be justified from a classical verification argument using Itô’s formula.

A similar approach can be used for payoffs depending on the spot, minimum and maximum (in
preparation). As seen previously, Azema-Yor’s solution is sill optimal if we include the information
of all Vanillas with maturities less than T in the case of barycenter functions ΨAY,Pt(x) increasing
in time. The optimal upper bound Uµ depends then only on the (terminal) T -Vanillas. Below, we
explain how to extend this result when this assumption is not satisfied.

1.5.4 Multi-marginals [S2]

The key ingredient for the solution of the present n−marginals Skorohod embedding problem turns
out to be the following minimization problem:

C(m) ≡ min
ζ1≤...≤ζn≤m

n∑
i=1

(
C(ti, ζi)

m− ζi
− C(ti, ζi+1)

m− ζi+1
1{i<n}

)
for all m ≥ S0, (1.40)

where C(ti, x) = EPi [(Sti − x)+]. We report the following result:

Theorem 1.5.2 (see S2) Let g be a non-decreasing function and assume that P1 ≤ . . . ≤ Pn. Let
ζ∗1 (m), . . . , ζ∗n(m) be a solution to (1.40) for a fixed m. Then,

Uµ(ξ) ≤ U ≡ g(S0) +

n∑
i=1

∫ ∞
S0

( ci(ζ∗i (m))

m− ζ∗i (m)
−

ci(ζ
∗
i+1(m))

m− ζ∗i+1(m)
1{i<n}

)
dg(m). (1.41)

Moreover, there exist λ ∈ Λµn, and trading strategies H = Hstock +H fwd ∈ H(ξλ), explicitly given

in [S2], such that U = g(S0) +
∑n
i=1 EPi [λi(Sti)] and

U +

n∑
i=1

λi(Sti)−
n∑
i=1

EPi [λi(Sti)] +

n∑
i=1

Hti−1
(Sti − Sti−1

) ≥ g(MT ) for all ω ∈ Ω. (1.42)

Assume further that P1, . . . ,Pn satisfy Assumption A in [94]. Then, equality holds in (1.41).
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1.6 Stochastic inequalities

Mass transportation provides a power tool to study some functional inequalities with geometric
content. Let us mention the optimal Sobolev inequality, entropy-entropy production inequalities,
transportation inequalities. In this section, we explain how martingale mass transportations can
provide similar results. We illustrate this on Doob’s inequality and Burkholder-Davis-Gundy’s
inequality for p = 1. As a byproduct, we obtain path-wise inequalities. Alternative approaches are
presented in [2, 13, 14].

1.6.1 Doob’s inequality revisited

Let St be a càdlàg positive martingale starting at S0 at t = 0. Doob’s inequality states that

E[Mp
T ] ≤ Sp0 +

(
p

p− 1

) 1
p

E[SpT ] , ∀ p > 1

The derivation of this inequality (with the optimal constant
(

p
p−1

)
) can be framed into the compu-

tation of a robust upper bound of the payoff Mp
T within the class of arbitrage-free models calibrated

to T -power options with payoff SpT (this section originates for an internal presentation at Société
Générale). Following our discussion on Azema-Yor’s solution, we define

Uµ = inf
λ∈R

uλ(S0, S0) + λE[SpT ]

where uλ(s,m) = supτ∈T Es,m[(B∗τ )p − λBpτ |B0 = s,B∗0 = m]. uλ is a viscosity solution of the
variational inequality:

max
(
mp − λsp − uλ(s,m), ∂2

su
λ(s,m)

)
= 0 , s ≤ m

with the Neumann condition ∂mu
λ(m,m) = 0. Using a similar ansatz for the optimal stopping

time as in Azema-Yor’s solution, we derive a solution (1.37) and Ψ satisfies (1.38) with λ(x) = λxp.
Solutions are ψλ(m) = c m with λ(p− 1)cp−1(1− c) = 1 and c < 1. This implies that

Uµ ≤ Sp0 +
1

(p− 1)cp−1(1− c)
E[SpT ]

Taking the infimum over c ∈ (0, 1), we obtain

Uµ ≤ Sp0 +

(
p

p− 1

)p
E[SpT ]

The supremum was reached for c∗ = (p−1)
p and λ∗(p−1)(c∗)p−1(1− c∗) = 1. Finally we check that

our guess stopping time τ∗ = inf{t > 0 : Bt ≤ c∗B∗t } is optimal. From our stochastic control
approach, we obtain the path-wise inequality:

Uµ +

∫ T

0

∂su
λ∗(Ss,Ms)dSs + λ∗ (SpT − E[SpT ]) ≥Mp

T , P− a.s. for all P ∈ P∞

A similar inequality was provided recently using an alternative approach [2].
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1.6.2 Burkholder-Davis-Gundy inequality revisited ♣

Another classical result in stochastic analysis is the Burkholder-Davis-Gundy (in short BDG)
inequality which states that for any p ≥ 0 there exists universal constants c1(p) and c2(p) such
that for all local martingales S with S0 ≡ 0 and stopping time T , the following inequality holds

c1(p)E[V
p
2

T ] ≤ E[Mp
T ] ≤ c2(p)E[V

p
2

T ]

Here Vt ≡ 〈S〉t denotes the quadratic variation and Mt ≡ max0<s<t St the running maximum. For
continuous local martingales, this statement holds for all p > 0.

As stated in Peskir, Shiryaev [101], “the question of finding the best possible values for c1(p) and
c2(p) appears to be of interest. Its emphasis is not so much on having these values but more on
finding a method of proof which can deliver them.” In the case where E[Mp

T ] is replaced by E[SpT ],
the optimal constants can be computed by the method of time change as described in [101], Section
10.

For the BDG inequalities, only partial results are known: For p = 2, the best constants are c1(2) = 1
and c2(2) = 4 (See [101] Section 20). One is deduced from Doob’s inequality and the other from
the stopping time τ = inf{t > 0 : |Bt| = 1} with B a one-dimensional Brownian motion. Quite
recently, for p = 1, Burkholder [27] obtains c1(1) = 1/

√
3 and Osekowski [96] c2(1) ' 1.4658.

Pecatti and Yor [100] shows that if we consider the subclass of continuous martingale, the constant
1/
√

3 is no longer optimal and could be replaced by 1/
√

2. In this section, we reproduce the
optimal constant for p = 1 (for a refined BDG version) and provide also an (optimal) path-wise
version of this inequality. The case p > 1 is still in progress.

Theorem 1.6.1 (Optimal BDG p = 1, see also [96] Theorem 4.1) For all stopping times T ,
for all local continuous martingales S

E[MT ] ≤ S0 + c2(1)E[
√
VT ] (1.43)

with c2(1) ' 1.30693 is the optimal constant, solution of

e
t2∗
2 = t∗

∫ t∗

0

e
u2

2 dy

This bound corresponds to the path-wise inequality

S0 + c2(1)E[
√
VT ] + c2(1)

(√
VT − E[

√
VT ]
)

+

∫ T

0

−M ′
(
Ss−Ms√

Vs

)
M ′(−c2(1))

+ 1

 dSs ≥MT , P− a.s. for all P ∈ P∞ (1.44)

with M(x) ≡M(− 1
2 ,

1
2 ,

x2

2 ). M(a, b, c) is Kummer’s confluent hypergeometric function.

Note that if we take the expectation of the inequality (1.44), we obtain (1.43). The above path-
wise inequality (1.44) has a nice interpretation in mathematical finance. The BDG inequality
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(for p = 1) corresponds to the computation of a model-independent bound for a lookback payoff
MT with maturity T consistent with the (market) price of (normal) volatility swap with payoff√
VT . This bound can be super-replicated by a strategy involving at t = 0 a cash amount S0 +

c2(1)E[
√
VT ], a static hedge of the payoff

√
VT with weight c2(1) and finally a delta hedging

hs = A1(1)M ′
(
Ss−Ms√

Vs

)
+ 1√

2

(
Ss√
Vs

)
.

Our derivation follows closely our section on Azema-Yor’s solution and Doob’s inequality. Here we
consider the general case p ≥ 1 and specialized to p = 1 later one. We have that for all stopping
time T ,

E[Mp
T ] = E[Mp

T − λV
p
2

T ] + λE[V
p
2

T ] ≤ inf
λ∈R

sup
τ

E[Mp
τ − λV

p
2
τ ] + λE[V

p
2

T ]

We set below uλ(s,m, v) ≡ supτ Es,m,v[Mp
τ − λV

p
2
τ ] and

E[Mp
T ] ≤ inf

λ∈R
uλ(S0, S0, 0) + λE[V

p
2

T ]

uλ(s,m, v) solves the dynamic programming equation

max

(
mp − λv

p
2 − uλ, 1

2
uλss + uλv

)
= 0, s ≤ m

subject to the Neumann condition um(m,m, v) = 0. As stated in Peskir and Shiryaev [101],
section 20, this non-linear problem is inherently three-dimensional and quite difficult to solve.
In fact this PDE can be converted into a two-dimensional PDE, quite similar to the variational
equation (1.36) appearing in Azema-Yor’s solution. We simplify this equation with the change of

variables uλ(s,m, v) = v
p
2Uλ

(
x ≡ s√

v
, y ≡ m√

v
, z ≡ 1√

v

)
. It is clear that the function uλ(s,m, v)

should scale as αp when x→ αx, m→ αm and v → α2v. This scaling symmetry implies that the
function Uλ is independent of z and therefore solves a two-dimensional PDE:

max
(
yp − λ− Uλ(x, y), Uλxx + pUλ − xUλx − yUλy

)
= 0, x ≤ y, y ∈ R+

subject to the Neumann condition Uλy (y, y) = 0. The derivation of the optimal BDG inequality is
then achieved by guessing a solution of the above equation of the form

Uλ(x, y) = yp − λ, ∀ x ∈ (−∞, ψλ(y)]

Uλxx + pUλ − xUλx − yUλy = 0, ∀ x ∈ [ψλ(y), y]

Uλy (y, y) = 0

Uλ(x, y) ≥ yp − λ, ∀ x ∈ [ψλ(y), y]

Uλx (ψλ(y), y) = 0

where the optimal stopping time is

τψλ = inf
{
t > 0 : St ≤

√
Vtψλ

(
Mt√
Vt

)}
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The solution for p = 1 is

Uλ(x, y) = − M(x− y)

M ′(−c2(1))
+ x

and λ∗ = c2(1) is solution of M(−c2(1)) = 0. The super-replication property could be justified
from a classical verification argument using Itô’s formula. The analysis of the case p > 1 deserves
further study.
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Chapter 2

Asymptotics of implied volatility:
A geometric approach

In this chapter, we consider short-time and large-strike asymptotics of implied volatility for local
and time-homogeneous stochastic volatility model. Our approach, started in 2004, uses powerful
geometrical methods such as short-time heat kernel expansion on Riemannian manifolds. As a
striking application, this approach allows to derive a short-time arbitrage-free smile for the well-
known SABR model making a beautiful connection with the geometry of the Poincaré plane.
Our approach has generated an intensive research of both a theoretical and practical nature. Let
us mention two international conferences on this subject http://www.math.nyu.edu/~laurence/
vienna-Sabr-bis.htm and http://www2.imperial.ac.uk/~ajacquie/WorkshopLDP/index.html.

2.1 Motivation: risk model issues

As a full-blown model generates by construction arbitrage-free Vanillas, it is quite natural to (a)
choose a basic model, (b) parameterize a Vanilla smile using the model’s parameters. The model
itself is only used as a fitting tool. In 2002 Hagan-al [61] derived an approximate expression for the
smile of the SABR model that holds for short maturities and strikes near the money. The SABR
formula has then become a standard in fixed income markets. The SABR model, depending on 4
parameters α, β, ρ, ν, is a stochastic volatility model (in short SVM) specified by the SDE:

dSt = C(St)atdWt, C(x) = xβ

dat = νatdZt, a0 = α, d〈W,Z〉t = ρdt

The approximate implied volatility for a strike K and a maturity T in the short-time limit at zero
order in the maturity (i.e. independent of T ) and for strikes near the money is (see last equation

37

http://www.math.nyu.edu/~laurence/vienna-Sabr-bis.htm
http://www.math.nyu.edu/~laurence/vienna-Sabr-bis.htm
http://www2.imperial.ac.uk/~ajacquie/WorkshopLDP/index.html
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in [61])

σBS(T,K) =
α ln S0

K∫ S0

K
du
C(u)

z

x(z)
+O(T )

where z = ν
σ

S0−S
C(
√
SS0)

and x(z) = ln

(√
1−2ρz+z2+z−ρ

1−ρ

)
. In 2004, just beginning in the model

validation group at Barclays Capital, I was asked to audit this formula. It turned out that once
calibrated on market Vanillas, the T -marginal implied by the SABR formula can become negative
(highlighting the presence of arbitrage) for large maturity T ≥ 10 years (standard value in fixed
income markets) and for small and large strikes. In particular for large strikes, we obtain for the
(first order) SABR formula (β ∈ [0, 1))

σBS(T,K) ∼K→∞ eβ lnK

This asymptotic behavior, applied to the case β = 1, is in contradiction with a result by Lee [86]
that states that the large-strikes asymptotics cannot grow faster than linearly in lnK with a slope
depending on the existence of higher moments. Since the high-strike smile is arbitrageable, the
price of Constant Maturity Swap obtained by static replication from swaption smiles is infinite.
From these risk model issues, I have started (a) correcting the short-time asymptotics SABR
formula (specially the small and large-strike behavior) and (b) deriving a similar formula for
arbitrary (time-homogeneous) SVM. For example, one would like to include a mean-reversion
drift in the volatility (called λ-SABR in [A11]). Hagan-al derivation is not straightforward and
require performing a multiple of (judicious) change of variables. A generalization to other SVMs
seemed quite difficult at that time. It turns out that the right framework is short-time heat
kernel expansions on Riemannian manifold and the (corrected version of) SABR formula is a
reminiscence of the geometry of geodesic curves in the Poincaré hyperbolic plane (see Figure 2.1).
A similar approach (albeit less geometrical and only restricted to the zero-order) was performed
by Avellaneda and al [10] for a basket smile in the case of a multi-local volatility model and by
Berestycki and al [18] independently at the same time. This approach is extensively covered in
my book [B1]. Then, this topics has generated a lot of research. One can cite some extensions for
time-dependent local and stochastic volatility models (see e.g. [56, 58]) and some other alternative
methods (as the large deviation approach, Watanabe-Malliavin calculus) that can take care of some
stochastic volatility models that can not be covered by our geometric approach (see e.g. [50]). For
example, the Heston model is connected to an incomplete manifold (see Remark 2.2.2).

2.2 From risk model issues to geometry [B1,A10,A11,A12]

A (time-homogeneous) one-factor SVM depends on two SDEs, one for the asset S and one for the
volatility a. Let us denote X = (Xi)i=1,2 = (S, a), with initial conditions α = (αi)i=1,2 = (S0, a0).
These processes Xi

t satisfy the following SDEs

dXi
t = bi(Xt)dt+ σi(Xt)dW

i
t , d〈W i,W j〉t = ρijdt (2.1)

with the initial condition Xi
0 = αi and b1 = 0. Here [ρij ]i,j=1,2 is the (constant) correlation matrix.
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Poincare Disk

Upper half plane

Moebius Transformation

Geodesics

Geodesic

Geodesic

Figure 2.1: Poincaré disk D and upper half-plane H2 with some geodesics. In the upper half-plane,
the geodesics correspond to vertical lines and to semi-circles centered on the horizon =(z) = 0 and
in D the geodesics are circles orthogonal to D.

From [42], we have that X1
t admits the same marginals as the one-dimensional SDE

dX̄1
t = Σ(t, X̄1

t )dWt

if the square of the local volatility function Σ(τ, S) is equal to the square of the stochastic volatility
d〈lnX1

t 〉/dt when the forward X1
τ is fixed to S:

Σ2(τ, S) = E[(σ1(Sτ , aτ ))2|Sτ = S]

=

∫∞
0

(σ1(S, a))2p(S, a|S0, α)da∫∞
0
p(S, a|S0, α)da

where p(τ, x|α) - assumed to exist if the diffusion is hypo-elliptic - is the conditional probability. In
order to obtain an asymptotic expression for the implied volatility, we will (a) derive a short-time
asymptotic expansion for the local volatility, then (b) use a short-time asymptotic relation between
the implied volatility and the local volatility σ(τ, S) (see [17] for the zero-order term and [B1] for
the first order correction). The density p satisfies the backward Kolmogorov equation (the time
has been reverted τ = T − t)

∂p

∂τ
= bi∂ip+ gij∂ijp , (i, j) = S, a (2.2)

Here gij ≡ 1
2ρijσ

iσj and ∂i ≡ ∂
∂αi . In (2.2), we have used the Einstein summation convention.

We will adopt this Einstein convention throughout this chapter. In the next section, we will show
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how to derive an asymptotic short-time conditional probability p for any multi-dimensional time-
homogeneous stochastic volatility models (2.1), not necessarily two-dimensional, using the heat
kernel expansion on a Riemannian manifold. As these tools are not commonly used (and known)
by people working in mathematical finance and probability theory, we give below a short reminder
of the key notions.

2.2.1 Heat kernel on a Riemannian manifold

In this section, PDE (2.2) will be interpreted as a heat kernel on a general smooth n-dimensional
manifold M (here we have that i, j = 1 · · ·n) without boundary, endowed with the metric gij (see
[B1], Chapter 4 for details). Note that the coordinates {αi} (resp. {xi}) will be noted {xi} (resp.
{yi}) below in order to be consistent with our (geometric) notation.

The inverse of the metric gij is defined by

gij =
1

2
ρijσ

iσj

and the metric (ρij inverse of ρij , i.e., ρijρjk = δik)

gij = 2
ρij

σiσj
(2.3)

We denote g ≡ det[gij ]. The differential operator

D = bi∂i + gij∂ij

which appears in (2.2) is a second-order elliptic operator of Laplace type. We can then show that
there is a unique connection ∇ on L, a line bundle over M , and Q a unique smooth section of
End(L) = L ⊗ L∗ such that

D = gij∇i∇j +Q

= g−
1
2 (∂i +Ai)g

1
2 gij(∂j +Aj) +Q

Using this connection ∇, (2.2) can be written in the covariant way, i.e.,

∂

∂τ
p(τ, x|y) = Dp(τ, x|y) (2.4)

If we take Ai = 0 and Q = 0 then D becomes the Laplace-Beltrami operator ∆ = g−
1
2 ∂i

(
g

1
2 gij∂j

)
.

We may express the connection Ai and Q as a function of the drift bi and the metric gij by
identifying in (2.4) the terms ∂i and ∂ij with those in (2.2). We find

Ai =
1

2

(
bi − g− 1

2 ∂j

(
g1/2gij

))
(2.5)

Q = gij (AiAj − bjAi − ∂jAi) (2.6)
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Note that the Latin indices i,j · · · can be lowered or raised using the metric gij or its inverse gij .
For example Ai = gijAj and bi = gijb

j . The components Ai = gijAj define a local one-form

A = Aidxi. We deduce that under a change of coordinates xi
′
(xj), Ai undergoes the co-vector

transformation Ai′∂ixi
′

= Ai. Note that the components bi don’t transform as a vector. This
results from the fact that the SDE (2.1) has been derived using the Itô calculus and not the
Stratonovich one.

Next, let’s introduce the Christoffel’s symbol Γkij which depends on the metric and its first deriva-
tives

Γkij =
1

2
gkp(∂jgip + ∂igjp − ∂pgji) (2.7)

(2.5) can be re-written as

Ai =
1

2
(bi − gpqΓipq)

Note that if we define

p′ = eχ(τ,x)−χ(τ=0,x=α)p (2.8)

then p′ satisfies the same equation as p (2.4) but with

A′i ≡ Ai − ∂iχ (2.9)

Q′ ≡ Q+ ∂τχ (2.10)

The transformation (2.8) is called a gauge transformation. The reader should be aware that the
transformation (2.9) only applies to the connection Ai with lower indices. The constant phase
eχ(x=α,τ=0) has been added in (2.8) so that p and p′ satisfy the same boundary condition at τ = 0.
Mathematically, (2.8) means that p is a section of the line bundle L and when we apply a (local)
Abelian gauge transformation, this induces an action on the connection A (2.9). In particular,
if the one-form A is exact, meaning that there exists a smooth function χ such that A = dχ
then the new connection A′ in (2.9) vanishes. See chapter 4 in [B1] for an interpretation of this
transformation as a Girsanov change of measure.

The asymptotic resolution of the heat kernel (2.4) in the short time limit is an important problem
in Theoretical Physics and in Mathematics. In Physics, it corresponds to the solution of the
Euclidean Schrödinger equation on a fixed space-time background and in Mathematics, the heat
kernel - corresponding to the determination of the spectrum of the Laplacian - can give topological
information (e.g. the famous Atiyah-Singer index theorem). The following theorem proved by
Minakshisundaram-Pleijel-De Witt-Gilkey gives the complete asymptotic solution for the heat
kernel on a Riemannian manifold.

Theorem 2.2.1 (See [20] for a precise statement) Let M be a Riemannian manifold without
boundary. Then for each x ∈M , there is a complete asymptotic expansion

p(τ, x|y) =

√
g(y)

(4πτ)
n
2

√
∆(x, y)P(y, x)e−

σ(x,y)
2τ

∞∑
n=1

an(x, y)τn , τ → 0 (2.11)
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• Here, σ(x, y) is the Synge world function equal to one half of the square of geodesic distance
|x− y|g between x and y for the metric g. This distance is defined as the minimizer of

|x− y|g = min
C

∫ T

0

√
gij
dxi

dt

dxj

dt
dt

and t parameterizes the curve C. The Euler-Lagrange equation gives the following geodesic
differential equation which depends on the Christoffel’s coefficients Γijk (2.7)

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0 (2.12)

• ∆(x, y) is the so-called Van Vleck-Morette determinant

∆(x, y) = g(x)−
1
2 det

(
−∂

2σ(x, y)

∂x∂y

)
g(y)−

1
2 (2.13)

with g(x) = det[gij(x, x)]

• P(y, x) is the parallel transport of the Abelian connection along the geodesic from the point
y to x

P(y, x) = e−
∫
C(y,x)

Aidxi (2.14)

• The ai(x, y), called the heat kernel coefficients, are smooth sections Γ(M ×M,L�L∗). The
first coefficient is simple

a0(x, y) = 1 , ∀ (x, y) ∈M ×M

The other coefficients are more complex. However, when evaluated on the diagonal x = y, they
depend on geometric invariants such as the scalar curvature R. The non-diagonal coefficients can
then be computed as a Taylor series when x is in a neighborhood of y. The first diagonal coefficients
are fairly easy to compute by hand. Recently an(x, x) has been computed up to order n = 8. These
formulas become exponentially more complicated as n increases. For example, the formula for a6

has 46 terms.

2.2.2 Riemann surfaces

In our geometric framework, a SVM corresponds to a Riemann surface. In particular, the SABR
corresponds to the Poincaré hyperbolic plane. This identification allows us to find an exact solution
to the SABR model with β = 0 (see Section 2.4.1). Furthermore, we will derive a general asymptotic
implied volatility for any stochastic volatility model. This expression only depends on the geometric
objects that we have introduced before (i.e., the geodesic distance and the parallel transport).
Although our formulation can handle arbitrary SVMs, we will assume that σ1(S, a) = C(S)a as
all SVMs that have been introduced in the literature fit this class.
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The metric associated to a one-factor SVM defined by (2.1) is (using (2.3)) in the coordinates [x, y]
(i.e., isothermal coordinates - see below)

ds2 = eφ(y)(dx2 + dy2) (2.15)

with the conformal factor

F (y) ≡ eφ(y) =
2

a(y)2(1− ρ2)
(2.16)

We have introduced the variables q(S) =
∫ S
f0

dx
C(x) and ξ(a) =

∫ a
·

u
σ(u)du and the new coordinates

x = q(f)− ρξ(a) (2.17)

y = (1− ρ2)
1
2 ξ(a) (2.18)

Note that this metric exhibits a Killing vector ∂x as the conformal factor does not depend on the
coordinate x. Due to this Killing vector field, the geodesic equation is completely integrable (in
terms of quadrature) and we have (see [B1] Chapter 4 for details) the geodesic distance d between
two points (x1, y1) and (x2, y2) in closed-form

d(x1, y1, x2, y2) =

∫ y2

y1

F (y)dy√
F (y)− C2

(2.19)

with the constant C = C(x1, y1, x2, y2) determined by the equation

x2 − x1 =

∫ y2

y1

C√
F (y)− C2

dy (2.20)

From this expression, one can compute the exact short-time limit (at the zero-order) of the implied
volatility (see Chapter 6 in [B1] and [A11]). As far as I know, no alternative (non-geometric)
method can reproduce this result.

The scalar curvature is given by

R =
σ(a)2

a

(
σ′(a)

σ(a)
− 2

a

)
(2.21)

Table 2.2.2 shows the conformal factors and the curvatures associated to the commonly used SVMs.

The metric associated to the SABR model is the standard hyperbolic metric on the Poincaré
half-plane H2 = {z ∈ C : =(z) ≥ 0} in the coordinates [x, y]

ds2 =
2

ν2

(
dx2 + dy2

y2

)
(2.22)

The 3/2-model corresponds to the metric on C ≈ R2. The scalar curvature is always non-negative
and therefore we do not have a SVM exhibiting the metric on the two-dimensional sphere S2.
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Name Conformal factor Scalar curvature
Geometric F (y) ∼ y−2 R = −1

3/2-model F (y) ∼ e
−2y√
1−ρ2 R = 0

SABR F (y) ∼ y−2 R = −1

Heston F (y) ∼ y−1 R = −2a−2 < 0

Table 2.1: Example of metrics for SVMs. ∼ means modulo a multiplicative constant factor.

A SVM is therefore connected to a non-compact Riemann surface. The short-time behavior of
the fundamental solution p(t, x|y) to the heat kernel is valid when x and y are not on each other
cut-locus. Surprisingly, for commonly used SVMs, the underlying manifold is a Cartan-Hadamard
manifold, i.e., the scalar curvature is non positive for which the cut-locus is empty (see equations
2.21). Global conditions for hypoelliptic diffusions replacing the “not-in-cutlocus” requirement
were recently derived in [36, 37].

Remark 2.2.2 (Heston model) The most commonly used SVM, the Heston model, has a neg-
ative scalar curvature diverging at a = 0. This is a true singularity1 and the manifold is not
complete. The heat kernel expansion explained above is no more applicable as long as the volatility
process can reach the singularity a = 0.

The n-dimensional hyperbolic space Hn appears naturally when considering a Libor market model
where the Libors are driven by a common log-normal volatility process where n is the number of
Libors (see [A12]).

2.2.3 Unified Asymptotic Implied Volatility [B1]

The general asymptotic implied volatility at the first order (for any (time-homogeneous) one-factor
SVMs) , depending implicitly on the metric gij (2.3) and the connection Ai (2.5) on our Riemann
surface, is given by (see Chapter 6 in [B1] for a derivation)

σBS(T,K, gij ,Ai) =
ln(Kf0 )∫K

f0

df ′√
2gSS(c)

{1 +

gSS (c)T

12

(
−3

4

(
∂fg

SS (c)

gSS (c)

)2

+
∂2
fg
SS (c)

gSS (c)
+

1

K2

)
+

TgSS
′
(c)

2gSS(c)φ′′ (c)

(
ln
(
∆gP2

)′
(c)− φ′′′ (c)

φ′′ (c)
+
gSS

′′
(c)

gSS′ (c)

)
}

+O(T 2) (2.23)

with φ = d2(x, α). Here c is the volatility a which minimizes the geodesic distance d(x, α) on the
Riemann surface (with x = (K, a)). In particular, we obtained

lim
τ→0

E[C(Sτ )2a2
τ |Sτ = S] = C(S)c2

1The Heston model behaves as an (Euclidean) black hole.
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where c = argmin
a

d((S, a), α).

∆ is the Van Vleck-Morette determinant (2.13), g is the determinant of the metric and P is the
parallel gauge transport (2.14). The prime symbol ′ indicates a derivative according to a. In the
specific case of the SABR model, one obtains the exact zero-order term (see [18], Chapter 6 in
[B1], [A11]):

σBS(T, f) =
ln f

f0

vol(f)
+O(T )

with vol(f) = 1
ν ln

(
qν+αρ+

√
α2+q2ν2+2qανρ

α(1+ρ)

)
with q =

∫ f
f0

dx
C(x) . Note that for β < 1, we have

σBS ∼|K|→∞
ν

1− β

which is consistent with Lee’s moment formula, in comparison with the original Hagan-al formula.
This result is proved when ρ = 0 in [16].

2.3 Large-strike behavior: Gaussian estimates ♣ [B1]

In this section, we explain how large-strike behavior of implied volatility can be deduced for time-
homogenous local volatility models. We conclude with some research proposal for the case of
SVMs. A first step in the study of the implied volatility wings is achieved by the Lee moment
formula [86], previously mentioned, which translates the behavior of the wings in the existence of
higher moments for the forward. This formula states that the implied volatility is at-most linear
in the moneyness k = lnK/f0 as |k| → ±∞ with a slope depending on the existence of higher
moments.

For example, when all the moments exist, we have

lim sup
k→±∞

VBS(τ, k)2

|k|
= 0, VBS(τ, k) ≡ σBS(τ, k)

√
τ

If we apply this result to the Black-Scholes log-normal process, the lim sup is rough as the implied
volatility is flat. Moreover, the Lee moment formula is quite hard to use as we generally don’t have
at hand an analytical conditional probability, hence the difficulty to examine the existence of higher
moments. The moment formula was recently sharpened by Benaim and Friz [53] and Gulisashvili
[59] who show how the tail asymptotics of the log stock price translate directly to the large-strike
behavior of the implied volatility. Their tail-wing formula reliably informs us when the lim sup in
Lee moment formula [86] can be strengthened to a true limit. From this formula, we want to find
the large strike asymptotics of the implied volatility for a time-homogeneous local volatility model
using sharp Gaussian estimates for Schrödinger operators. This approach is covered in Chapter 10
in [B1] .
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2.3.1 Time-homogeneous local volatility model

We assume that under P, the forward f follows a one-dimensional, time-homogeneous regular
diffusion on an interval I ⊂ R+:

dft = C(ft)dWt

with ft=0 = f0. The so-called local volatility C(f) is a positive continuous function on I. The
Itô infinitesimal generator L associated to the backward Kolmogorov equation for the conditional
probability p(t, f |f0) is

Lp(t, f |f0) =
1

2
C(f0)2∂2

f0p(t, f |f0)

We now convert the backward Kolmogorov equation into a simpler form. For this purpose, we
assume that C ′(f) and C ′′(f) exist and are continuous on I in order to perform our (Liouville)

transformation. By introducing the new coordinate s =
√

2
∫ f0
·

df ′

C(f ′) which can be interpreted

as the geodesic distance (Lamperti’s transformation), one can show that the new function P (t, s)
defined by

p(t, f |f0) = P (t, s)

√
2C(f0)

C(f)
3
2

(2.24)

satisfies a (Euclidean) one-dimensional Schrödinger equation

(∂2
s +Q(s))P (t, s) = ∂tP (t, s) (2.25)

The time-homogeneous potential is

Q(s) =
1

2
(lnC)

′′
(s)− 1

4
((lnC)

′
(s))2 (2.26)

where the prime ′ indicates a derivative according to s. Table 2.3.1 is a list of examples of potentials
for a few particular time-homogeneous LV models. By applying Itô-Tanaka’s formula on a call
payoff max(ft−K, 0), we obtain that a European call option C(τ, k) with maturity τ and log-strike
k can be rewritten as a local time formula:

C(τ, k) = max(f0 −K, 0) +

√
C(K)C(f0)√

2

∫ τ

0

P (t, s(K))dt (2.27)

Gaussian estimates of Schrödinger semigroups

The history of Gaussian estimates of parabolic PDEs is quite rich starting with the works of Nash
and Aronson on Gaussian estimates for Laplacian heat kernel equation. By Gaussian estimates, we
mean in short that the fundamental solution P (t, s) can be bounded by two Gaussian distributions

c1pG(c2t, s|s0) ≤ P (t, s) ≤ C1pG(C2t, s|s0)
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LV Model C(f) Potential
Black-Scholes f Q(s) = − 1

8

Quadratic af2 + bf + c Q(s) = − 1
8 (b2 − 4ac)

CEV fβ , 0 ≤ β < 1 QCEV (s) = β(β−2)
4(1−β)2s2

LCEV f min
(
fβ−1, εβ−1

)
sε ≡

√
2ε1−β

(1−β)

with ε > 0 QLCEV (s) = QCEV (s) ∀ s ≥ sε
QLCEV (s) = − 1

8ε
2(β−1) ∀ s < sε

Table 2.2: Example of potentials associated to LV models.

with pG(t, y|x) = 1

(4πt)
1
2

exp(− (y−x)2

4t ) the Gaussian heat kernel and {Ci, ci}i=1,2 some constants.

The fundamental solution of (2.25) satisfies Gaussian bounds provided that the potential Q(s)
belongs to the Kato class:

Definition 2.3.1 (Autonomous Kato class) We say that Q(·) is in the Kato class K if

lim
δ→0

sup
x∈R

∫ δ

0

dt

∫
R
dy|Q(y)|pG(t, y|x) = 0

One can check that the models listed in (Table 2.3.1) except the CEV model (due to the singularity
at s = 0) belong to the Kato class.

Assuming that the scalar potential (2.26) associated to a separable local volatility function be-
longs to the Kato class, we have the Gaussian bounds on the function P (t, s). This inequality
directly translates on an estimation of the fundamental solution p(t, f |f0) using the relation be-
tween p(t, f |f0) and its gauge-transform P (t, s) (2.24)

c1e
c2tpG(t, s) ≤ C(f)

3
2√

2C(f0)
p(t, f |f0) ≤ C1e

C2tpG(t, s) (2.28)

In the following example, we will check the (asymptotic) validity of these Gaussian estimates for
the CEV model, although the potential Q does not belong to the Katô class, for which we know
analytically the conditional probability (this is the case for the LCEV model).

Example 2.3.2 (CEV model) The CEV model is a LV model for which the local volatility func-
tion is a power of the forward: C(f) = fβ, with 0 < β < 1. A closed-form expression for the
conditional probability is given by

p(t, f |f0) =
f

1
2−2β

(1− β)t

√
f0e
− f

2(1−β)+f2(1−β)0
2(1−β)2t I 1

2(1−β)

(
(ff0)1−β

(1− β)2t

)
where I is the modified Bessel function of the first kind. As

I 1
2(1−β)

(x) ∼x→∞
1√
2πx

ex
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we deduce that the large forward limit exhibits a Gaussian behavior√
2C(f0)

C(f)
3
2

p(t, f |f0) ∼ 1√
4πt

e−
s(f)2

4t (2.29)

with s(f) =
∫ f
· x
−βdx. The potential associated to the CEV model is

Q(s) =
β(β − 2)

4(1− β)2s2

By plugging our Gaussian estimates for the conditional probability (2.28) into the expression (2.27)
and by doing the integration over the time t, we obtain lower and upper bounds for the fair value
of a European call option. Then using Benaim-Fritz result [53], we can directly translate the
Gaussian bounds on the call option into bounds on the implied volatility. For a time-homogeneous
local volatility model, we obtain

Theorem 2.3.3 (See Chapter 10 in [B1) ] By assuming that the quantity − 1
2 ln(C(K))+ s(K)2

4τ
is a regularly varying function with index α > 0 (in k or K) and that the potential (2.26), associated
to a time-homogeneous LVM, belongs to the Kato class K, the large strike behavior of the implied
volatility is given by

VBS(τ, k)2

k
∼k→∞ Ψ

(
− 1

2 ln(C(K)) + s(K)2

4τ

k

)

with Ψ(x) = 2− 4(
√
x2 + x − x) and s(K) =

√
2
∫K
f0

dx
C(x) . Moreover, if s(K) is the leading term,

we have that the large-strike behavior of the implied volatility involves the harmonic average of the
local volatility function

σBS(τ, k) ∼k→∞
√

2k

s(K)
(2.30)

Remark 2.3.4 The regularly varying assumption is not needed if we use the refined result of
Gulisashvili [59]. Note that the limit (2.30) is the Berestycki-Busca-Florent formula ([17]): In the
limit τ → 0, the implied volatility is the harmonic mean of the local volatility, namely

lim
τ→0

σBS(τ, k) =

√
2k

s(K)

Therefore assuming that Q belongs to the Kato class, the large-strike and short-time behaviors
coincide.

As an example, we obtain the following tail estimates for the implied volatility in the (L)CEV
model
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Example 2.3.5 ((L)CEV model) For 0 ≤ β < 1,we have

σBS(k, τ) ∼k→∞
k(1− β)

K1−β (2.31)

and for β = 1, we have σBS(τ, k) ∼k→∞ 1.

We have not been able to perform a similar analysis for SVMs. Gaussian estimates for Schrödinger’s
heat kernel equation have been obtained by assuming that the scalar curvature is bounded for below
- see the famous paper by Li and Yau [88]. This assumption is not satisfied for commonly used
SVM, except the SABR model for which R = −1 for which a similar analysis can be performed.
The study of large-strike asymptotics for SVMs deserves further study. A recent breakthrough
was achieved in [36, 37, 53] where the authors obtain the large-strike asymptotics of a correlated
Stein-Stein model using a Varadhan-type estimate in a small-noise regime.

2.4 Solvable local and SVMs [A13]

In [A13], we classify time-homogeneous local and stochastic volatility models for which the Kol-
mogorov equation can be exactly solved in terms of (sum of) hypergeometric functions. One of
the main example in this classification is the SABR model with β = 0.

2.4.1 Normal SABR

For the SABR model with β = 0, the function Q and the potential A vanish. p satisfies a heat
kernel equation where the differential operator D reduces to the Laplace-Beltrami operator on H2:

∂p

∂τ ′
= ∆H2p (2.32)

≡ y2(∂2
x + ∂2

y)p (2.33)

with τ ′ = ν2τ
2 Therefore solving the Kolmogorov equation for the normal SABR model (i.e., β = 0)

is equivalent to solving this (Laplacian) heat kernel on H2. Surprisingly, there is an analytical
solution for the heat kernel on H2 (2.32) found by McKean. The exact conditional probability
density p depends on the hyperbolic distance d(z, z′) and is given by

p(τ ′, d) =

√
2e−

τ′
4

(4πτ ′)
3
2

∫ ∞
d(z,z′)

be−
b2

4τ′

(cosh b− cosh d(z, z′))
1
2

db

From this expression, one can derive an exact expression for call options (see Chapter 6 in [B1]).
Note that swaption smiles on JPY markets can be properly calibrated with β = 0 (this was the
case in 2004-2005).
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2.4.2 Superpotential and local volatility

We have seen that the Kolmogorov equation for time-homogeneous local volatility model can be
cast into a Schrödinger equation. A similar reduction can be performed for SVMs in which the
connection A is exact and therefore can be eliminated by a gauge transformation. Below, we sketch
our approach in the case of a local volatility model which involves the supersymmetrisation of the
Schrödinger equation:

−
(
∂2
s +Q(s)

)
φλ(s) = λφλ(s) (2.34)

where φλ(s) are eigenvectors of the self-adjoint (or self-adjoint extensions) Schrödinger operator
∂2
s +Q. Let us write (2.34) as

λφ
(1)
λ = A†1A1φ

(1)
λ (2.35)

where we have introduced the first order operator A1 and its adjoint A†1 (with respect to L2 scalar
product)

A1 = ∂s +W (1)(s) , A†1 = −∂s +W (1)(s)

W (1) is called a superpotential which satisfies the Riccati equation

Q(1)(s) = ∂sW
(1)(s)−W (1)(s)2 (2.36)

Surprisingly, this equation is trivially solved for our specific expression for Q (even with a drift
µ(f)!, see [A11])

W (1)(s) =
1

2

d lnσ(1)(s)

ds
(2.37)

Next, we define the Scholes-Black equation by intervening the operator A1 and A†1

λφ
(2)
λ (s) = A1A

†
1φ

(2)
λ (s)

= −
(
∂2
s +Q(2)(s)

)
φ

(2)
λ (s) (2.38)

This corresponds to a new Schrödinger equation with the partner potential

Q(2)(s) = −∂sW (1) − (W (1))2 (2.39)

By plugging our expression for the superpotential (2.37) in (2.39), we have

Q(2) = −1

2
(lnσ(1))

′′
(s)− 1

4
(lnσ(1))

′
(s)2 +

µ(1)′(s)√
2σ(1)(s)

− µ(1)(s)2

2σ(1)(s)2
(2.40)

Now we want to show that provided that we can solve the equation (2.35), then we have auto-

matically a solution to (2.38) and vice versa. The SUSY-partner Hamiltonians H1 = A†1A1 and

H2 = A1A
†
1 obey the relations A†1H2 = H1A

†
1 and H2A1 = A1H1. As a consequence H1 and H2
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are isospectral: It means that the strictly positive eigenvalues all coincide and the corresponding
eigenvectors are related by the supercharge operators A1 and A†1:

� If H1 admits a zero eigenvalue (i.e., broken supersymmetry), we have the relation

φ
(1)
0 (s) = Ce−

∫ sW (1)(z)dz , λ(1) = 0

φ
(2)
λ (s) = (λ)−

1
2A1φ

(1)
λ (s) , λ(2) = λ(1) = λ 6= 0 (2.41)

φ
(1)
λ (s) = (λ)−

1
2A†1φ

(2)
λ (s)

� If H1 (and H2) doesn’t admit a zero eigenvalue (i.e., unbroken supersymmetry)

λ(2) = λ(1) = λ 6= 0

φ
(2)
λ (s) = (λ)−

1
2A1φ

(1)
λ (s)

φ
(1)
λ (s) = (λ)−

1
2A†1φ

(2)
λ (s)

It can appear that the Scholes-Black equation is much simpler to solve than the Black-Scholes
PDE. This leads to a classification of solvable one and two dimensional SDEs where the conditional
density can be written as a sum of hypergeometric functions (see [A11] for details). This approach
using the supersymmetric structure of the Schrödinger operator leads to a large classification
extending the works in [3, 30]. We illustrate this with the CEV process with β = 2/3 for which
the supersymmetric partner is a Wiener process.

Example 2.4.1 (CEV with β = 2/3 and Bachelier process) The superpotential associated with
the CEV process is given by

W (1)(s) =
β

2s(1− β)

with the flat coordinate s =
√

2f1−β

(1−β) ∈ [0,∞) . The potential (2.36) is

Q(1)(s) =
β(β − 2)

4(1− β)2s2

from which we deduce the partner potential (2.39)

Q(2)(s) =
β(2− 3β)

4(1− β)2s2

This partner potential corresponds to the potential of a CEV process df = fBdW with B depending
on β by

B(B − 2)

(1−B)2
=
β(2− 3β)

(1− β)2

Surprisingly, we observe that for β = 2
3 , Q(2)(s) cancels and the corresponding partner local volatil-

ity model is the Bachelier model df = dW for which the heat kernel is given by the normal distri-
bution. The eigenvectors of the supersymmetric Hamiltonian partner H2 = −∂2

s to H1 are given
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by (with the absorbing boundary condition φλ(0) = 0)

φ
(2)
λ (s) =

sin(
√
λs)√

4πλ
1
4

with a continuous spectrum R+. Applying the supersymmetric transformation (2.41), we obtain
the eigenvectors for the Hamiltonian H1 = −∂2

s + 2
s2 corresponding to the CEV process with β = 2

3

φ
(1)
λ (s) = λ−

1
2

(
−∂s +

1

s

)
φ

(2)
λ (s)

=
1√

4πλ
3
4

(
−
√
λ cos(

√
λs) +

sin(
√
λs)

s

)

By integration, we obtain the fair value for a European call option

C(τ,K) = max(f0 −K, 0) +
(f0K)

1
3

√
2

∫ ∞
0

dλ
(1− e−λτ )

λ
φ

(1)
λ (s)φ

(1)
λ (s0)

This expression can be integrated out and written in terms of the cumulative distribution. The fact
that the CEV model with β = 2

3 depends on the cumulative normal distribution and is therefore
related to the heat kernel on R+ has been observed empirically by numerous authors. Here we
have seen that it corresponds to the fact that the supersymmetric partner potential vanishes for this
particular value of β.



Chapter 3

Numerical solutions of non-linear
parabolic PDEs

The valuation of European options in the Black-Scholes paradigm evolves organically linear second
order parabolic partial differential equations (PDEs). The optionality in American-style options,
or market imperfections not taken into account in the Black-Scholes framework, such as illiquidity,
transaction costs, delta and gamma constraints, uncertain volatilities, uncertain default intensities,
different rates for lending and borrowing, and counterparty risk lead in turn to nonlinear parabolic
PDEs. So do the calibrations of local stochastic volatility models and local correlation models to
market prices of Vanilla options. Some examples of nonlinear PDEs arising in quantitative finance
are shortly listed in Table 3.1. Some of them will be expanded in the next section. This chapter
is extensively covered in the book “nonlinear option pricing” and in our research papers (see
[B2,A1,A5,A6,A8,A9]). Our main contributions in this field are the resolution of calibration issues
in mathematical finance (for local stochastic volatility models, hybrid models, local correlation
models, ...) using particle method for McKean nonlinear PDEs, the use of 2-BSDEs for uncertain
volatility models and the introduction of the so-called marked branching diffusions generalizing
the McKean branching diffusions.

3.1 Some examples of non-linear PDEs

In this section, we describe various nonlinear PDEs that appear in finance. Some of them are
connected to stochastic control problems (i.e., Hamilton-Jacobi-Bellman PDEs). Then, we will de-
scribe for each example a (new) probabilistic algorithm that can handle the curse of dimensionality
of these high-dimensional PDEs.

53
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Table 3.1: Examples of nonlinear PDEs arising in option pricing. Σ(Γ) denotes the volatility in
the nonlinear PDE ∂tu+ 1

2Σ(∂2
xu)2x2∂2

xu = 0

Transaction costs Σ(Γ)2 = σ2 +
√

2
π
kσ√
δt

sign(Γ)

Illiquid market Σ(Γ)2 = σ2

(1−εxΓ)2

American option max
(
∂tu+ 1

2σ
2x2∂x2u, g − u

)
= 0

Uncertain default rate model ∂tu+ 1
2σ

2x2∂2
xu+ λ(t, u)(uD − u) = 0

Uncertain volatility model Σ(Γ)2 = σ21Γ≥0 + σ21Γ<0

Local stochastic volatility model −∂tp+ 1
2∂

2
x(σ2(t, x, p)p(t, x)) = 0

Local correlation model −∂tp+ 1
2∂

2
x1

(σ2
1p) + 1

2∂
2
x2

(σ2
2p)

+∂x1x2(ρ(t, x1, x2, p)σ1σ2p) = 0
Counterparty risk ∂tu+ 1

2σ
2x2∂x2u+ λ(t)(u+ − u) = 0

3.1.1 Uncertain volatility models

We model the asset St by a positive local Itô (Ft,P)-martingale:

dSt = σtStdWt

The volatility, which is an Ft-adapted process, is unspecified for the moment. Let us then consider
an option delivering some payoff FT at maturity T which is some function of the asset path
(St, 0 ≤ t ≤ T ). In the uncertain volatility model (in short UVM) introduced in [6, 89], the
volatility is uncertain. As a minimal modeling hypothesis, we assume only that the volatility is
valued in a compact interval [σ, σ]. We then define the time-t value ut of the option as the solution
to a stochastic control problem:

ut = sup
[t,T ]

EP[FT |Ft] (3.1)

Here sup[t,T ] means that the supremum is taken over all (Ft)-adapted processes (σs)t≤s≤T such that
for all s ∈ [t, T ], σs belongs to the domain [σ, σ]. The choice (3.1) can be justified by showing that ut
corresponds to the seller’s super-replication price under the assumption of uncertain volatility (see
[35] and our section 1.5.2 on Skorohod embedding problem which corresponds to the case σ = 0 and
σ =∞). For Vanilla payoffs FT = g(ST ), the HJB PDE is the so-called Black-Scholes-Barenblatt
equation:

∂tu(t, s) +
1

2
s2Σ

(
∂2
su(t, s)

)2
∂2
su(t, s) = 0, (t, s) ∈ [0, T )× R∗+ (3.2)

u(T, s) = g(s), s ∈ R∗+
with Σ(Γ) = σ1Γ<0 + σ1Γ≥0. In multi-asset case, the Hamiltonian becomes

H(S,Γ) =
1

2
max

(σα,ραβ)1≤α<β≤d∈D

d∑
α,β=1

ραβσασβSαSβΓαβ

This is a fully non-linear second-order parabolic PDE.
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3.1.2 Local stochastic volatility models

A local stochastic volatility model (LSVM) is defined by the following SDE for the forward ft of
maturity T

dft = atftσ(t, ft)dWt (3.3)

where at is a (possibly multi-factor) stochastic process. It can be seen as an extension to the
Dupire local volatility model (LVM), or as an extension of a stochastic volatility model (SVM).
In an SVM, one handles only a finite number of parameters (volatility-of-volatility, spot/volatility
correlations, etc.). As a consequence, one is not able to perfectly calibrate to the whole implied
volatility surface. In order to be able to calibrate exactly market smiles, one “decorates” the
volatility of the forward with a local volatility function σ(t, f).

From [41], this model is exactly calibrated to market smiles if and only if

σDup(t, f)2 = σ(t, f)2EP[a2
t |ft = f ] (3.4)

where

σDup(t, f)2 =
∂tC(t, f)

1
2f

2∂2
fC(t, f)

(3.5)

is the Dupire local volatility that is inferred from the market Vanilla smile. C(t, f) is the market
price (at time 0) of a call option with strike f and maturity t written on the forward of maturity
T .

Once the requirement that market marginals have to be calibrated exactly has been taken into
account, SDE (3.3) can be rewritten as

dft = ft
σDup(t, ft)√
EP[a2

t |ft]
atdWt (3.6)

The local volatility function depends on the joint pdf p (t, f, a) of (ft, at):

σ(t, f, p) = σDup(t, f)

√ ∫
p(t, f, a′)da′∫
a′2p(t, f, a′)da′

(3.7)

This is an example of McKean SDEs. A McKean equation for an n-dimensional process X is an
SDE in which the drift and volatility depend not only on the current value Xt of the process, but
also on the probability distribution Pt of Xt:

dXt = b(t,Xt,Pt) dt+ σ(t,Xt,Pt) · dWt, Pt = Law (Xt) , X0 ∈ Rn (3.8)

where Wt is a d-dimensional Brownian motion.
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Example 3.1.1 (McKean-Vlasov SDEs) The basic prototype for a McKean equation is given
by the McKean-Vlasov SDE, where for 1 ≤ i ≤ n and 1 ≤ j ≤ d

bi (t, x,Pt) =

∫
bi(t, x, y)Pt(dy) = E

[
bi(t, x,Xt)

]
(3.9)

σij (t, x,Pt) =

∫
σij(t, x, y)Pt(dy) = E

[
σij(t, x,Xt)

]
Here the drift is just the mean value

∫
bi(t,Xt, y)Pt(dy) of some function bi(t,Xt, ·) with respect

to the distribution Pt of Xt, and likewise for the volatility. We will also assume that b(t, x, y) and
σ(t, x, y) are Lipschitz in x and y.

The probability density function p(t, y)dy ≡ Pt(dy) of Xt is solution to the Fokker-Planck PDE:

− ∂tp(t, x)−
n∑
i=1

∂i
(
bi(t, x,Pt)p(t, x)

)
+

1

2

n∑
i,j=1

∂ij

(
d∑
k=1

σik(t, x,Pt)σjk(t, x,Pt)p(t, x)

)
= 0 (3.10)

with the initial condition limt→0 p(t, x) = δ(x−X0) It is nonlinear because bi(t, x,Pt) and σik(t, x,Pt)
depend on the unknown p.

In [105, 92], uniqueness and existence are proved for equation (3.8) if the drift and volatility
coefficients are Lipschitz-continuous functions of x (and a linear growth condition) and Pt, with
respect to the so-called Wasserstein distance (this is verified for the McKean-Vlasov SDEs). Note
these conditions are not fulfilled by SDE (3.6) and therefore the uniqueness and existence result
is not obvious. Our numerical tests in [B2, A6] indicates that this SDE is not well-defined (i.e.,
the calibration procedure is not working even with a large number of particles or with a PDE
implementation) if the smile produced by the naked SVM (i.e. σ(t, f) = 1) is very different
from the market smile. The mathematical analysis deserves further studies ♣. A partial result
exists: in [1] it is shown that the calibration problem for a LSVM is well posed but only (a) until
some maturity T ∗, (b) if the volatility-of-volatility is small enough, and (c) in the case of suitably
regularized initial conditions - hence the result does not apply to Equation (3.10) because of the
initial Dirac mass.

3.1.3 Counterparty risk valuation

The recent financial crisis has highlighted the importance of credit valuation adjustment (in short
CVA) when pricing derivative contracts. Bilateral counterparty risk is the risk that the issuer of
a derivative contract or the counterparty may default prior to the expiry and fails to make future
payments. This market imperfection leads naturally for Markovian models to semilinear PDEs.
More precisely, the nonlinearity in the pricing equation affects none of the differential terms and
depends on the positive part of the mark-to-market value of the derivative upon default. In short,
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depending on the (modeling) choice of the mark-to-market value of the derivative upon default,
we will get two types of semilinear PDEs that can be schematically written as

∂tu+ Lu+ r0u+ r1u
+ = 0, u(T, x) = g(x) (3.11)

and

∂tu+ Lu+ r0u+ r1M + r2M
+ = 0, u(T, x) = g(x) (3.12)

∂tM + LM + r3M = 0, M(T, x) = g(x)

L is the Itô generator of a multi-dimensional diffusion process and the ri’s are functions of t and
x.

PDE derivation

We assume that the issuer is allowed to dynamically trade d underlying assets X1, . . . , Xd. Addi-
tionally, in order to hedge his credit risk on the counterparty name, he can trade a default risky
bond, denoted PCt . Furthermore, the values of the underlyings are not altered by the counterparty
default which is modeled by a Poisson jump process. For the sake of simplicity, we consider a
constant intensity. This assumption can be easily relaxed, in particular the intensity can follow an
Itô diffusion. For use below, expressions with a subscript C denote counterparty quantities. We
consider the case of a long position (for the counterparty) in a single derivative whose value we
denote u. In practice netting agreements apply to the global mark-to-market value of a pool of
derivative positions - u would then denote the aggregate value of these derivatives. The processes
Xt =

(
X1
t , . . . , X

d
t

)
∈ Rd+ and PCt satisfy under the risk-neutral measure P (we assume the market

model is complete)

dXt

Xt
= rdt+ σ(t,Xt).dWt

dPCt
PCt

= (r + λC)dt− dJCt

with Wt a d-dimensional Brownian motion, JCt a jump Poisson process with intensity λC and r the
interest rate. The no-arbitrage condition and the completeness of the market give that e−rtu(t,Xt)
is a P-martingale, characterized by

∂tu+ Lu+ λC (ũ− u)− ru = 0

where L denotes the Itô generator of X and ũ the derivative value just after the counterparty has
defaulted. At the default event, ũ is given by

ũ = RM+ −M−

with M the mark-to-market value of the derivative to be used in the unwinding of the position
upon default and R the recovery rate. Indeed, if the mark-to-market value M is positive, meaning
that M should be received from the counterparty, only a fraction RM will be received in case of
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default of C (it is usual to take R = 0.4). If the mark-to-market value M is negative, meaning
that M should be received by the counterparty, we will pay M in case of default of C.

In the case of bilateral counterparty risk, the above PDE is replaced by

∂tu+ Lu+ λC (ũC − u) + λB (ũB − u)− ru = 0

with

ũB = M+ −RM−

and λB the issuer’s default intensity. For the sake of simplicity, we focus only on the unilateral
counterparty risk below.

There is an ambiguity in the market about the convention for the mark-to-market value to be
settled at default. There are two natural conventions : the mark-to-market of the derivative is
evaluated at the time of default with provision for counterparty risk or without.

1. Provision for counterparty risk, M = u:

∂tu+ Lu− (1−R)λCu
+ − ru = 0, u(T, x) = g(x) (3.13)

This PDE is semilinear.

2. No provision for counterparty risk (M(t, x) = e−r(T−t)Et,x[g(XT )]):

∂tu+ Lu+ λC
(
RM+ −M− − u

)
− ru = 0, u(T, x) = g(x) (3.14)

∂tM + LM − rM = 0, M(T, x) = g(x)

PDE (3.14) is here linear.

3.2 Second-order BSDEs and UVM [A8]

1-BSDEs, first introduced by Pardoux-Peng [97], provide a probabilistic representation of solutions
of nonlinear parabolic PDEs, generalizing the Feynman-Kac formula. However, the corresponding
PDEs cannot be nonlinear in the second order derivative and are therefore connected to HJB
equations with no control on the diffusion term. In [32], Cheridito et al. provide a stochastic
representation for solutions of fully nonlinear parabolic PDEs by introducing a new class of BSDEs,
the so-called second order BSDEs (in short 2-BSDEs). Existence and uniqueness is studied in [103].

In [A8], we start applying 2-BSDEs to the option pricing in the UVM. Note that an alternative
numerical approach relying on a parametrization of the optimal frontier is also provided. A similar
study was independently performed in [47] for fully nonlinear HJB arising in the theory of portfolio
optimization and a convergence result is derived. Note that the schemes proposed in [A8] and [47]
are different.



3.2. SECOND-ORDER BSDES AND UVM [A8] 59

From (3.3), the 2-BSDE associated to the BSB equation is

dXα
t = σ̂αXα

t dW
α
t , d〈Wα,W β〉t = ρ̂αβdt, 1 ≤ α < β < d

dYt = −H(Xt,Γt)dt+

d∑
α=1

Zαt � σ̂αXα
t dW

α
t (3.15)

dZαt = Aαt dt+

d∑
β=1

Γαβt σ̂βXβ
t dW

β
t

YT = g(XT )

� denotes the Stratanovich convention. We are free to choose the diffusion σ(·, ·), we pick a
lognormal dynamics for X with some constant volatility σ̂α and some constant correlation ρ̂αβ .

3.2.1 The algorithm

A numerical scheme for the BSB 2-BSDE reads:

Scheme UVM:

Xα
ti = Xα

0 e
−(σ̂α)2

ti
2 +σ̂αWα

ti , E[∆Wα
ti∆W

β
ti ] = ρ̂αβ∆ti

Ytn = g(Xtn) (3.16)

Yti−1
= E[Yti |Xti−1

]

+

H(Xti−1
,Γti−1

)− 1

2

d∑
α,β=1

ρ̂αβ σ̂ασ̂βXα
ti−1

Xβ
ti−1

Γαβti−1

∆ti

(∆ti)
2σ̂ασ̂βXα

ti−1
Xβ
ti−1

Γαβti−1

= E

[
Yti

(
UαtiU

β
ti −∆tiρ̂

−1
αβ −∆tiσ̂

αUαtiδαβ

) ∣∣∣∣∣Xti−1

]

with Uαti ≡
∑d
β=1 ρ̂

−1
αβ∆W β

ti . Compared to the scheme used in [47], we have changed the discretiza-
tion for the Gamma Γ by introducing explicitly the Malliavin weight for a lognormal diffusion
with volatility σ̂ and correlation ρ̂. This scheme performs better in our numerical experiments. A
different conclusion was reached in [47] where their scheme was shown to perform better. Note
that in [47] the payoffs tested are smooth (g(x) = xη).

Scheme (3.16) requires computing d(d+1)
2 + 1 conditional expectations at each discretization date.

For this purpose, as for the valuation of American options, one can use different choices. Parametric
regressions are used in [57] and Malliavin’s weights in [24] in the case of 1-BSDEs.

The final meta-algorithm for pricing can be summarized by the following steps:

1. Simulate N1 replications of X with a lognormal diffusion.
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Table 3.2: Call spread valued using the BSDE approach. The true price (PDE) is CPDE = 11.20.
∆ is the time step discretization and 2M1 is the number of MC paths used.

∆ M1 12 13 14 15 16 17

1/2 Price 11.08 11.07 11.06 11.06 11.06 11.06
1/4 Price 11.01 11.12 11.06 11.07 11.11 11.11
1/8 Price 10.74 10.55 10.73 11.01 11.04 11.11

2. Apply the backward algorithm (3.16) using a regression approximation. In a high-dimensional
problem, the parametric regression is the most appropriate.

3. Simulate N2 independent replications of X using the gamma functions computed at the
previous step. This last step is needed in order to obtain a low-biased result (a similar step
is performed in the Longstaff-Schwartz algorithm for American options).

Call spread. (See Table 3.2) Let us test our algorithm in the case of a call spread option with
payoff (XT − K1)+ − (XT − K2)+. We pick K1 = 90 and K2 = 110. The true price (PDE) is
CPDE = 11.20 and the Black-Scholes price with the mid-volatility is CBS = 9.52.

3.3 McKean SDEs and calibration in mathematical finance
[A6,B2]

In this section, for the sake of simplicity, we consider as a toy example the calibration of a local
volatility model with stochastic interest rate on market smiles:

dSt = rtStdt+ σ(t, St)dWt (3.17)

where rt is a stochastic interest rate. This model is commonly used by practitioners when pricing
long-dated power reverse dual currency notes in foreign-exchange markets. For more than a decade,
all attempts for designing Monte Carlo algorithms resulted in approximate methods: even if one
used an infinite number of Monte Carlo paths, and an infinitesimal discretization time step, one
would not exactly reprice the market smile. The particle algorithm, proposed in [A6] (see also [79]
in the case of a local correlation model) and extensively developed in [B2], is an elegant simulation
technique for McKean SDEs. We use this powerful tool to build an exact calibration algorithm:
if one uses this algorithm with an infinite number of Monte Carlo paths, and an infinitesimal
discretization time step, one exactly reprices the market smile.

Proposition 3.3.1 (see Chapter 9 in [B2) ] Model (3.17) is exactly calibrated to the market
smile (i.e. St ∼ Pt for all t ≤ T ) if and only if

σ(t,K)2 = σDup(t,K)2 −
EP[D0t

(
rt − r0

t

)
1St>K ]

1
2K∂

2
KC(t,K)

(3.18)
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for all (t,K), with r0
t = −∂t lnP0t (with P0t the market price of a bond of maturity t) and

σDup(t,K)2 =
∂tC(t,K) + r0

tK∂KC(t,K)
1
2K

2∂2
KC(t,K)

3.3.1 Malliavin’s disintegration

We now give another expression of the contribution of stochastic interest rates to local volatility
(see [B2,A6] for details). Numerical implementation of the particle algorithm using the alternative
formula proves to produce a much more accurate and smooth estimation of the local volatility for
far from the money strikes. As a consequence, it is very useful for extrapolation purposes. To
derive this new formula, we will make use of the Malliavin calculus.

From the martingale representation theorem

rt − r0
t =

∫ t

0

σtr(s)dB
t
s, r0

t = EPt [rt]

with σtr(s) an adapted process. Note that, from Clark-Ocone’s formula, σtr(s) = EPt
s [DBt

s rt] with

DBt

s the Malliavin derivative with respect to the Brownian motion Bt driving the rate rt, and Es
the conditional expectation given Fs, the natural filtration of all the Brownian motions used. The
application of Clark-Ocone’s formula to the process 1St>K gives

P0t

EPt [
(
rt − r0

t

)
1St>K ]

1
2K∂

2
KC(t,K)

=
2

K

∫ t

0

EPt [σtr(s).D
Bt

s St|St = K] ds (3.19)

We call this trick a Malliavin “disintegration by parts”, because it transforms an unconditional
expectation involving the Heaviside function 1St>K into a conditional expectation given St = K.
The Malliavin integration by parts formula goes the other way round and was used in [51, 52]
to obtain probabilistic representation of Greeks. Note that the second derivative ∂2

KC(t,K) of
the call option with respect to strike cancels out in the right hand side of Equation (3.19). This
is fortunate as the computation of this term is sensitive to the strike interpolation/extrapolation

method. Also, both EPt [
(
rt − r0

t

)
1St>K ] and K∂2

KC(t,K) are very small for strikes K that are
far from the money. Numerically, this 0/0 ratio can be problematic. There is no such problem
in the right hand side of Equation (3.19), because of the Malliavin disintegration by parts. This
makes the Malliavin representation of the contribution of stochastic interest rates to local volatility
very useful in practice, in particular when one wants to design an accurate extrapolation of the
contribution of stochastic interest rates to local volatility for strikes that are far from the money.

3.3.2 The algorithm: toy example

We consider a local volatility model where the short rate follows a Ho-Lee model, for which the
volatility σr(s) = σr is a constant. A bond of maturity T is given in this model by

PtT =
Pmkt

0T

Pmkt
0t

exp

(
σ2

r (T − t)2t

2
− σr(T − t)BTt

)
(3.20)
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with a volatility σTP (t) = −σr(T − t) and Pmkt
0T the (t = 0) market price of a bond of maturity T .

From Proposition 3.18 and using formula (3.19), the local volatility is (see [B2,A6] for details)

σ
(
t,K,PTt

)2
= σDup(t,K)2 − 2ρσr

EPT [P−1
tT VtUt|St = K]

EP [P−1
tT |St = K]

− 2σ2
r

EPT [P−1
tT Vt (tΘt − Λt) |St = K]

EPT [P−1
tT |St = K]

(3.21)

with the tangent processes

dVt
Vt

= St∂Sσ(t, St)
(
dWT

t +
(
ρσTP (t)− σ(t, St)

)
dt
)
, V0 = 1

Ut =

∫ t

0

σ(s, Ss)

Vs
ds, Θt =

∫ t

0

ds

Vs
, Λt =

∫ t

0

Θsds

We have checked the accuracy of our calibration procedure on the DAX market smile (30-May-11).
We have chosen σr(s) = 6.3 bps per day (1% per year) and set the correlation between the stock
and the rate to ρ = 40%. The time discretization ∆t = tk+1 − tk has been set to ∆t = 1/100
and we have used N = 210 or N = 212 particles. After calibrating the model using the particle
algorithm, we have computed Vanilla smiles using a (quasi) Monte Carlo pricer with N = 215

paths and a time step of 1/250. Figure 3.1 shows the implied volatility for the market smile (DAX,
30-May-11) and the hybrid Ho-Lee/Dupire model for maturities 4 years and 10 years. When we
use the Malliavin representation, the computational time is around 4 seconds for maturities up to
10 years with N = 210 particles (12 seconds with N = 212). Our algorithm definitively outperforms
a (two-dimensional) PDE implementation and can handle multi-factor models. In practise, this
algorithm converges with N = 210/211 particles.

Note that our particle algorithm can be applied to numerous calibration issues in mathematical
finance. Indeed marginals are always one-dimensional and therefore, these problems are connected
to similar McKean SDEs for which the particle algorithm (eventually combined with Malliavin’s
disintegration) applies (see [B2] for examples).

3.4 Marked branching diffusions and CVA [A5,A1,B2]

Branching diffusions have been first introduced by McKean and Skorohod [91, 104] (see also Ikeda,
Nagasawa, and Watanabe [74, 75, 76]) to give a probabilistic representation of the Kolmogorov-
Petrovskii-Piskunov (KPP) PDE and more generally of semilinear PDEs of the type

∂tu+ Lu+ β(t)

( ∞∑
k=0

pku
k − u

)
= 0 in [0, T )× Rd (3.22)

u(T, x) = g(x) in Rd
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Figure 3.1: DAX (30-May-11) Implied volatilities T = 4Y, T = 10Y. Ho-Lee parameters: σr(s) =
6.3 bps per day, ρ = 40%. Computation time with ∆t = 1/100, N = 210 on a full 10Y implied
volatility surface with a Intel Core Duo c©, 3 Ghz, 3 GB of Ram: 4s.

with β ≥ 0. Here the nonlinearity is a power series in u where the coefficients pk are required to
be nonnegative and sum to one:

f(u) ≡
∞∑
k=0

pku
k,

∞∑
k=0

pk = 1, 0 ≤ pk ≤ 1 (3.23)

The probabilistic interpretation of such an equation goes as follows (see [74, 75, 76]). Let a
single particle start at the origin, follow an Itô diffusion on Rd with generator L, after a mean
β(·) exponential time (independent of X) dies and produces k descendants with probability pk
(k = 0 means that the particle dies without generating offspring). Then, the descendants perform
independent Itô diffusions on Rd (with the same generator L) from their birth locations, die
and produce descendants after a mean β(·) exponential times, etc. This process is called a d-
dimensional branching diffusion with a branching rate β(·). β can also depend spatially on x or be
itself stochastic (Cox process). This birth-death process describes a so-called Galton-Watson tree.

At this stage, PDE (3.22) should be compared with the semilinear PDE (3.11) arising in the pricing
of counterparty risk where f(u) = u+. It seems too restrictive and unreasonable to approximate
the nonlinearity u+ by a polynomial of type (3.23). A natural question is therefore to search if
the probabilistic interpretation of the KPP PDE, leading to a forward Monte Carlo scheme, can
be generalized to an arbitrary analytical nonlinearity for which the PDE is

∂tu+ Lu+ β(t)(F (u)− u) = 0, u(T, x) = g(x) (3.24)
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with F (u) =
∑∞
k=0 aku

k a convergent power series in u on an interval [−R,R]. For example, could
we cover the case F (u) = u(1−u)(u− ε) +u cited in [91] and not covered by branching diffusions?

For convenience, we write F as

F (u) =

∞∑
k=0

ākpku
k

for some probabilities pk that we leave unspecified for the moment. We have pk 6= 0 and āk = ak
pk

for ak 6= 0, and set pk = 0 and āk = 0 otherwise. We show below that a probabilistic interpretation
of (3.24) can be achieved by counting the branchings of each monomial uk.

Assumption (Comp): In order to have uniqueness in the viscosity sense, we assume that PDE
(3.24) satisfies a comparison principle for sub- and supersolutions with appropriate growth condi-
tions.

For each Galton-Watson tree, we denote ωk ∈ N the number of branchings of monomial type uk,
i.e., the number of branchings where the dying particle gives birth to exactly k descendants. We call
this tree endowed with the number of branchings a marked Galton-Watson tree. The descendants
are drawn with an arbitrary distribution pk (see an “optimal” choice in [B2]). We then define the
multiplicative functional:

û(t, x) = Et,x
[ NT∏
i=1

g(ziT )

∞∏
k=0

āωkk

]
, ωk = ] branchings of type k (3.25)

where we recall that

āk =

{
ak/pk if ak 6= 0
0 otherwise

and ziT is the position of the i-th particle at time T .

We now state the main result in [A5]:

Theorem 3.4.1 Let us assume that û ∈ L∞([0, T ]×Rd) with ||û||∞ < R. Then the function û(t, x)
is a viscosity solution to (3.24). If (Comp) holds, then û(t, x) is the unique viscosity solution.

The requirement û ∈ L∞([0, T ]× Rd) can be checked using the following proposition

Proposition 3.4.2 (see A5) Let us assume that g ∈ L∞(Rd). Set p(s) ≡ β
(
−s+

∑∞
k=0 |ak|||g||k−1

∞ sk
)
.

1. Case
∑∞
k=0 |ak|||g||k−1

∞ > 1: We have û ∈ L∞([0, T ] × Rd) (as defined by (3.25)) if there
exists X ∈ R∗+ such that ∫ X

1

ds

p(s)
= T
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In the particular case of one branching type k 6= 1, the sufficient condition for convergence
reads as

|ak|||g||k−1
∞

(
1− e−βT (k−1)

)
< 1

2. Case
∑∞
k=0 |ak|||g||k−1

∞ ≤ 1: û ∈ L∞([0, T ]× Rd) for all T .

Note that, as expected, our blow-up criterion does not depend on the probabilities pk. For ak = pk
and ||g||∞ ≤ 1, we are in Case 2 and our algorithm converges as it was proved for McKean KPP
branching processes.

1-BSDEs and path-dependent PDEs [A1]

Theorem 3.4.1 was generalized in the case of 1-BSDEs where PDE (3.24) is replaced by a so-called
path-dependent PDE, introduced in the linear case by Dupire [43] using functional Itô calculus
and extended in the nonlinear case by [45].

Let Ω0 ≡
{
ω ∈ C([0, T ],Rd) : ω0 = 0

}
be the canonical space of continuous paths with initial

value 0, F0 the canonical filtration and Λ0 ≡ [0, T ] × Ω0. For every (t, ω) ∈ Λ0, denote ‖ω‖t ≡
sup0≤s≤t |ω(s)|. Then the canonical process B(ω) = {Bt(ω) ≡ ωt, 0 ≤ t ≤ T} for all ω ∈ Ω0,
defines a Brownian motion under the Wiener measure P0.

Let µ : Λ0 → Rd and σ : Λ0 → Sd be F0−progressively measurable processes. Suppose further that
for every 0 ≤ t ≤ t′ ≤ T and ω, ω′ ∈ Ω0,

|µ(t, ω)− µ(t′, ω′)|+ |σ(t, ω)− σ(t′, ω′)| ≤ C
(√
|t− t′|+ ‖ωt∧· − ω′t′∧·‖T

)
(3.26)

for some constant C > 0, and σσT (t, ω) ≥ c0Id for some constant c0 > 0. We denote, for every
(t,x) ∈ Λ0, by t,xX the solution of the following SDE under P0:

Xs = xs, ∀s ≤ t and Xs = xt +

∫ s

t

µ(r,X·)dr +

∫ s

t

σ(r,X·)dBr, ∀s > t. (3.27)

Suppose that ψ : Ω0 → R is a non-zero, bounded Lipschitz continuous function, and F : (t,x, y) ∈
Λ0×R→ R is a function Lipschitz in y such that for every y, F (·, y) defined on Λ0 is F0−progressive.
We consider the following BSDE:

Yt = ψ( 0,0X·) +

∫ T

t

F (s, 0,0X·, Ys)ds−
∫ T

t

ZsdBs, P0 − a.s., (3.28)

where the generator F has the following power series representation in y, locally in (t,x):

F (t,x, y) ≡ β
( ∞∑
k=0

ak(t,x)yk − y
)
, (t,x) ∈ Λ0, (3.29)
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for some constant β > 0, and some sequence (ak)k≥0 of bounded scalar F0−progressive functions
defined Λ0. We also assume that every ak is uniformly 1/2−Hölder-continuous in t and Lipschitz-
continuous in ω.

Denoting by |.|0 the L∞(Λ0)-norm, we now formulate conditions on the power series

`0(s) ≡
∑
k≥0

|ak|0 sk and `(s) ≡ β
[
|ψ|−1

0 `0(s|ψ|0)− s
]
, s ≥ 0, (3.30)

so as to guarantee the existence and uniqueness of a solution of the backward SDE (3.28).

Assumption .2 (i) The power series `0 has a radius of convergence 0 < R ≤ ∞, i.e. `0(s) <∞
for |s| < R and `0(s) =∞ for |s| > R. Moreover, the function ` satisfies either one of the following
conditions:

(`1) `(1) ≤ 0,
(`2) or, `(1) > 0 and for some ŝ > 1, `(s) > 0,∀s ∈ [1, ŝ) and `(ŝ) = 0.

(`3) or, `(s) > 0,∀s ∈ [1,∞) and
∫ s̄

1
1
`(s)ds = T, for some constant s ∈ (1, R

|ψ|0 ).

(ii) The terminal function satisfies |ψ|0 < R.

Under Assumption .2, one proves in Theorem 2.13, [A1] that the solution (Yt, Zt) to the BSDE
can be written in terms of a marked branching diffusion. The proof uses the notion of viscosity
solutions for a path-dependent PDE.

3.4.1 Algorithm

The algorithm for solving (3.24) or (3.28) can be described by the following steps:

1. Simulate the processes Xt (with infinitesimal generator L) and the Poisson default time with
intensity β. Note that the intensity β can be stochastic (Cox process).

2. At each default time, produce k descendants with probability pk (see [B2] for an “optimal”
choice).

3. Evaluate for the particles alive the payoff

NT∏
i=1

g(ziT )

M∏
k=0

(
ak
pk

)ωk
where ωk denotes the number of branchings of type k.

In this example, we consider the degenerate PDEs:

∂tv1 + x∂av1 +
1

2
σ2x2∂2

xv1 + β(v2
1 − v1) = 0, PDE1 (3.31)

∂tv2 + x∂av2 +
1

2
σ2x2∂2

xv2 + β(−v2
2 − v2) = 0, PDE2 (3.32)
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N Fair (PDE1) Stdev (PDE1) Fair (PDE2) Stdev (PDE2)
12 5.69 0.16 5.36 0.16
14 5.61 0.08 5.23 0.08
16 5.50 0.04 5.15 0.04
18 5.52 0.02 5.16 0.02
20 5.53 0.01 5.16 0.01
22 5.54 0.00 5.17 0.01

Table 3.3: MC price quoted in percent as a function of the number of MC paths 2N . PDE pricer
(PDE1) = 5.54. PDE pricer (PDE2) = 5.17 (CPU PDE: 10 seconds). T = 2 years. Nonlinearity
for PDE1 (resp. PDE2): F1(u) = u2 (resp. F2(u) = −u2). For completeness, the price with β = 0
(which can be obtained using a classical Monte Carlo pricer) is 6.52.

with v1(T, x, a) = v2(T, x, a) = g(x, a) = (a− 1)+. These PDEs correspond to the backward SDEs

dXt = σXtdBt, X0 = 1 (3.33)

dAt = Xtdt, A0 = 0 (3.34)

dYt = −β (F (Yt)− Yt) dt+ ZtdBt, YT = g(XT , AT ) (3.35)

with the nonlinearities F1(y) = y2 and F2(y) = −y2. In our numerical experiments, we have taken
a diffusion coefficient σ = 0.2 and a Poisson intensity β = 0.1, and the maturity T = 2 or T = 5
years. For T = 2 years (resp. 5 years), the probability of default is around 0.18 (resp. 0.39).

Our branching diffusion algorithm has been checked against a two-dimensional PDE solver with
an ADI scheme (see Tables 3.3, 3.4). The degenerate PDEs have been converted into elliptic PDEs

by introducing the process Ãt =
∫ t

0
Xsds+ (T − t)Xt, satisfying dÃt = (T − t)dXt.

Note that our algorithm converges to the exact PDE result as expected and the error is properly in-
dicated by the Monte Carlo standard deviation estimator (see column Stdev). In order to illustrate
the impact of the non-linearity F on the price v, we have also reported the price corresponding
to β = 0. The application of this forward Monte-Carlo scheme to CVA requires a polynomial
approximation of u+. See [B2], Section 3.4.6 for an automatic construction of such a polynomial
approximation.

3.5 Marked Malliavin branching diffusions ♣ [P4]

What is appealing with the marked branching algorithm is that we get a forward Monte-Carlo
scheme. In particular our algorithm can take care of path-dependent payoffs - this is hardly
impossible with deterministic methods. As being forward and not backward as in the case of
the BSDE algorithm, this scheme does not require computing conditional expectations which are
difficult, specially in high-dimensional. The BSDE approach still suffers from the curse of dimen-
sionality, a BSDE scheme can be seen as a finite element method. This is not the case of our
branching algorithm. We conclude this chapter with a proposal for an extension of our marked
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N Fair (PDE1) Stdev (PDE1) Fair (PDE2) Stdev (PDE2)
12 7.40 0.25 5.63 0.26
14 7.28 0.12 5.60 0.13
16 7.20 0.06 5.47 0.07
18 7.24 0.03 5.48 0.03
20 7.24 0.02 5.50 0.02
22 7.24 0.01 5.51 0.01

Table 3.4: MC price quoted in percent as a function of the number of MC paths 2N . PDE pricer
(PDE1) = 7.24. PDE pricer (PDE2) = 5.51 (CPU PDE: 25 seconds). T = 5 years. Nonlinearity
for PDE1 (resp. PDE2): F1(u) = u2 (resp. F2(u) = −u2). For completeness, the price with β = 0
(which can be obtained using a classical Monte Carlo pricer) is 10.24.

branching diffusions to fully non linear PDEs where the branching diffusions will be weighted by
some Malliavin’s weights.

Before considering the fully nonlinear case, we explain the flavor of this algorithm on (one-
dimensional) linear PDEs.

Linear PDEs

Consider a one-dimensional SDE which can be converted using Lamperti’s transformation into

dXt = A(Xt)dt+ dBt

The function defined by u(t, x) = e−β(T−t)E[ψ(XT )|Xt = x] is solution of

∂tu+
1

2
∂2
xu+ β (α(x)∂xu− u) = 0, v(T, x) = ψ(x)

with α(x) ≡ A(x)
β . We see this linear PDE as an heat kernel equation with a (non)linearity α(x)∂xv.

If the (non)linearity was α(x)v, we can use the branching diffusion: we simulate a Poisson intensity
β and at each default, we generate a single descendant with weight α(Xτ ). With the derivative
term α(x)∂xv, the above algorithm is modified by introducing a weight given by the Malliavin’s
weight for the first order derivative: E[ψ(XT )|Xt = x] can be represented as

e−β(T−t)E[ψ(XT )|Xt = x] = E[FT |Wt = x], FT ≡ ψ(WT )

]Default∏
i=1

α(W ·τi)
Wτi −Wτi

τi − τi−1
(3.36)

where (Wτi −Wτi)/(τi − τi−1) corresponds to the Malliavin weight for the delta. This representa-
tion gives an exact discretization scheme for a one-dimensional SDE as it requires only the (exact)
simulation of a Brownian motion and a constant Poisson’s intensity. Note that exact an simula-
tion of one-dimensional SDEs has been first considered in [21] but uses a rejection sampling for
simulating the Girsanov weight.
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Renormalization

From a numerical point of view, note that the functional FT is singular in the region where
τi+1− τi → 0 and the variance of our algorithm diverges. We suggest to cure this instability using
a renormalization procedure. For example, the term ψ(Wt1 + ∆W1)∆W1

∆t1
, which is singular when

∆t1 → 0, can be replaced by

(ψ(Wt1 + ∆W1)− ψ(Wt1))
∆W1

∆t1

where the added counterterm ψ(Wt1)∆W1

∆t1
has zero mean value. If ψ ∈ C1

b then |ψ(Wt1 + ∆W1)−
ψ(Wt1)| ≤ K|∆W1| and the singularity disappears.

The overall renormalization scheme (eliminating automatically the singularity when τi+1− τi → 0)
can be obtained by introducing additional fictive particles: First, at each default τi, we create with
probability 1 an independent particle, denoted A, following a Brownian motion up to time τi as
explained previously. Second, we create a new Galton-Watson tree which is the concatenation of
the previous one at time τi with a fictive particle, created at τi, which follows the Brownian motion
of particle A Wτi+1

−Wτi weighted by a null volatility. Each Galton-Watson tree follows then this
construction. Besides the global weight associated to each Galton-Watson tree, each tree is also
weighted by (−1)Number of fictive particles created. In Figure 3.2, we have plotted all Galton-Watson
trees up to 2 default with the associated counterterms. These trees correspond to the expansion:

E[ψ(x+W1)1τ>T ] + E[{(ψ(x+WT )− ψ(x+Wτ1))α(x+Wτ1)}WT −Wτ1

T − τ1
1τ1<T ] +

E[{((ψ(x+WT )− ψ(x+Wτ2))α(x+Wτ1)α(x+Wτ2) +

(−ψ(x+Wτ1 +WT −Wτ2) + ψ(x+Wτ1))α(x+Wτ1)2
)
}Wτ2 −Wτ1

τ2 − τ1
WT −Wτ2

T − τ2
1τ1<T 1τ2<T ]

+ . . . (3.37)

Note that by construction the terms in brackets cancel when the Brownian increments WT −Wτ2

and/or Wτ2 −Wτ1 cancel.

A toy semi-linear PDE

We now consider a KPP-type PDE where the nonlinearity f(∂xu) depends on the first order
derivative ∂xu:

∂tu+
1

2
∂2
xu+ β (f(∂xu)− u) = 0 , u(T, x) = ψ(x)

with f(x) =
∑
k akx

k =
∑
k
ak
pk
pkx

k. This PDE can be tackled by (a) doing a Fourier expansion
in space and then interpreting the non linear integral equation satisfied by the Fourier modes in
terms of (marked) branching process. This approach was used in [87] to study the incompressible
Navier-Stokes equation in R3. New classes where global existence and uniqueness can be proven
are derived from this representation.
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Figure 3.2: Galton-Watson trees with its renormalization up to 2 defaults. For each Galton-Watson
tree, each line except the first line is weighted by the Malliavin weight and each dot is weighted
by α(z) with z the position of the particle at this point. The red line correspond to the simulation
with a zero volatility.

Example 3.5.1 (Burgers equation) We consider the Burgers equation, f(∂xu) = −u∂xu + u.
This can be seem as a toy model for the Navier-Stokes PDE. We impose periodic boundary condition
and let u(t, x) =

∑
k û(t, k)eikx. Then, we obtain that each mode û(t, k) satisfies

dû(t, k)

dt
= k2û(t, k) +

i

2
û⊗ û(t, k)

where ⊗ denotes a convolution product with respect to a specific kernel. The numerical solution
of the Burgers equation can be obtained by simulating this infinite number of particles indexed by
their mode. Each particle moves (deterministically) with a drift k2 and at each default (modeled
by a Poisson intensity = 1), each particle with a mode k dies and gives birth to two new particles
with modes k1 and k2 such that the impulsion is conserved: k = k1 + k2.

This representation of nonlinear PDEs in terms of branching diffusions in the Fourier space still
suffers from the curse of dimensionality as we need to simulate an infinite number of modes. It
is thus natural to search a real space branching representations. This question is open for the
Navier-Stokes equation. Following the above subsection, u can be represented stochastically -
written schematically

u(t, x) = Et,x[

NT∏
i=1

ψ(Xi
T )
∏
k=0

(
ak
pk

)ωk∏
MalliavinWeightDelta]
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Figure 3.3: Galton-Watson trees with its renormalization up to 2 defaults for the Burgers equation
- Here f(u) = u∂xu. Green lines are weighted by a Malliavin weight. The red line, weighted by a
Malliavin weight, corresponds to a particle driven with a null volatility (renormalization scheme).

where X is a stochastic process with infinitesimal generator L and MalliavinWeightDelta denotes
the Malliavin weight for the delta (for L) between τi and τi+1. Due to the singularity τi−τi−1 → 0,
this functional needs to be renormalized by introducing counterterms with zero mean. Following
our previous discussion, each Galton-Watson tree should be normalized. For illustration purpose,
let us take f(u) = u∂xu. The interaction u∂xu means that at each default, we will generate two
particles - one of type 0 and one of type 1 that will create a Malliavin weight. Each time a particle
of type 1 is generated, a new Galton-Watson tree which is the concatenation of the previous one
and the particle of type 1 is replaced by a fictive particle driven by a null volatility. In Figure 3.3,
we have plotted all Galton-Watson trees up to two defaults.

The analysis of this algorithm is a work in progress with X. Tan and N. Touzi [P4]. We hope that
it can lead to a robust forward Monte-Carlo for general semilinear parabolic second-order PDE.
The renormalization procedure for the fully nonlinear case is much more involved and we wish to
address it in our future research.
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[11] Azéma, J. and Yor, M. (1979). Une solution simple au problème de Skorokhod, Séminaire de
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Mathematics, Birkhäuser Basel (2006).

[102] Rachev, S. T. and Ruschendorf, L. : Mass Transportation Problems. In Vol. 1: Theory. Vol.
2: Applications. Springer, Berlin, 1998.

[103] Soner, M., Touzi, N., Zhang, J. : Wellposedness of second order backward SDEs, Probability
Theory and Related Fields, 153, 149-190.

[104] Skorohod, A.V. : Branching diffusion processes, Theory Probab. Appl., 9(3), 445449, 1965.

[105] Sznitman, A.S. : Topics in propagation of chaos, Ecole d’été de probabilités de Saint-Flour
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