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PREAMBLE 
 

The human body is in permanent contact with millions of microbes that live around it, on it or 
within it. The immune system, in all its complexity ensures the maintenance of our internal 
homeostasis. Numerous cellular and molecular actors participate in time and space in the 
orchestration of the immune response. These actors have been classified as part of the innate 
or adaptive immune systems. The innate system is characterized by an immediate antigen 
non-specific response. It is constituted by cells at the barrier surfaces and several types of 
immune cells such as macrophages, granulocytes, mast cells, eosinophils and natural killer 
cells. The adaptive immune system is characterized by a response that is specific to the 
pathogen. This specific response is provided by B and T lymphocytes and generates a long-
term immunological memory. 

At the interface between these two systems we find dendritic cells (DCs). These cells detect 
when the tissue microenvironment equilibrium is perturbed, and they sense, capture and 
process foreign antigens. First, activated DCs help in the recruitment of innate actors to the 
tissue.  Then they migrate to the lymph nodes where they activate naïve T cells in an antigen-
dependent manner, activating the adaptive immune response. To link a specific T cell 
response to the type of inflammation, DCs integrate multiple signals provided by the 
inflammatory milieu. As a first level of complexity, the type of T cell antigen-specific 
response depends on the type of antigen and molecules that activated the DCs. A second level 
of complexity is added by the fact that DCs constitute a heterogeneous and dynamic 
population and different DC subsets are associated with specific T cell outcomes. 

In the context of allergic inflammation, DCs are activated by tissue factors that instruct them 
to induce an excessive immune response to certain non-pathogenic antigens called allergens. 
One of these factors is Thymic Stromal Lymphopoietin (TSLP), a cytokine produced by the 
skin keratinocytes that activates DCs. TSLP-activated DCs mediate the recruitment and 
activation of innate cells such as basophils and eosinophils and induce the differentiation of 
naïve T cells into effector cells with a pro-allergic phenotype, called inflammatory Th2.  

To induce a Th2 polarization, TSLP-activated DCs need to get in contact with the naïve T 
cells in the lymph nodes, yet the mechanism by which TSLP-treated DCs migrate is unknown. 
Although TSLP has been shown to stimulate several immune cells in the murine system, 
interestingly in humans, TSLP preferentially targets primary DCs. The DC subsets activated 
by TSLP may have differential implications in TSLP-linked allergic disorders. Nevertheless, 
human DC diversity and the potential differential effects of TSLP on human DC subsets 
remain unexplored. In this context, I dedicated my PhD work to the study of TSLP effects on 
human DC subsets. I assessed the differential response of human DC subsets to TSLP and 
studied the effects of TSLP s on DC migration.   

As a framework of my study, I will introduce DCs, their ontogeny, function and classification 
into subsets. Then, I will introduce our current knowledge on human TSLP biology and the 
role of TSLP-activated DCs in the human immune response.  
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My results will be presented in three chapters. First, I will present a submitted article showing 
that TSLP and TGF-β synergize to induce Langerhans cell differentiation from BDCA1+ but 
not BDCA3+ blood DCs. Then I will present our published results showing that TSLP induces 
DC migration. Finally I will present a manuscript in preparation assessing the molecular 
mechanisms implicated in TSLP-induced DC migration.  

In the discussion section at the end of this manuscript I will put my results in perspective to 
published studies in related topics. 

In the appendix, I will show ongoing work on the study of TSLP effects on DC subsets and 
other projects in which I collaborated during my PhD thesis.    
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1.1 DENDRITIC CELLS: HISTORY OF A MAJOR DISCOVERY 
 

The first evidence of the existence of DCs was made by a medical student called Paul 
Langerhans in 1868  [1, 2]. He had discovered in epidermal tissue sections, what he thought 
was a new cell type of the nervous system that was named then Langerhans cells (LCs) 
(Figure 1-1). The origin of LCs and their link to immunology was not known. The major 
discovery in the history of DCs was made in 1973 when Ralph Steinman and Zanvil Cohn 
identified a new cell type in the spleens of mice [3]. They found that these cells were different 
from macrophages and other leukocytes and because they had tree-like cytoplasmic 
extensions they decided to name them dendritic cells (Figure 1-1). Within few years they 
enriched this spleen population and did functional studies revealing the potent T cell-
activating capacity of DCs [4]. In the meanwhile, LCs were ontogenically linked to 
melanocytes [5] and to keratinocytes [6]. They were also linked to histiocytes when they were 
found within the bone and lung lesions of patients suffering from a disease called first 
“histiocytosis X” (later on called LC histiocytosis) [7]. The demonstration that LCs were bone 
marrow-derived leukocytes, and several studies showing their immunological role [8, 9], led 
to the final recognition of LCs as DCs in 1985 by Gerold Schuler and Ralph Steinman [10]. 
This last study showed that LCs, after several days in culture, acquired a mature DC 
phenotype and induced a strong response in naïve T cells. 

The three major criteria defining DCs were proposed by Steinman in 1991 [11]: (1) dendritic 
morphology, (2) constitutive expression of high levels of major histocompatibility complex 
(MHC) class two molecules and (3) capacity to induce proliferation of naïve CD4 T cells in a 
mixed leukocyte reaction. 

In the last 30 years, the studies of DC biology have multiplied and have rapidly shed new 
light on their origin and function.  Today, DCs are still considered to be the most powerful 
stimulators of naïve T cells and the key cells initiating and shaping the immune cell response.  

 

Figure 1-1: Stellar morphology of dendritic cells. 

Left, a Langerhans cell seen by Paul Langerhans in 1686, adapted from Jolles, S., 2002. Right, a 
dendritic cell seen by Ralph Steinman in 1973, Steinman, R. 1973.  
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1.2 ORIGIN OF HUMAN DENDRITIC CELLS  
 

The DC pool needs to be continuously maintained in the organism. Different factors and cells 
participate in this process. DC requirements and sources differ in steady-state and 
inflammatory conditions. The purpose of this chapter is to review our current knowledge on 
the origins of human DCs and the missing links in DC generation during inflammation. Due 
to their particular development, a separated paragraph will be dedicated to LC ontogeny. 
Finally a brief description of the transcription factors that are involved in DC development 
will be given.  

 

1.2.1 FROM MICE TO HUMANS 
 

Human DCs are generated on a regular basis from hematopoietic stem cells (HSCs) located in 
the bone marrow. Several experiments in mice, of isolation and further transplantation of bone 
marrow precursor cells, have helped to clarify the ontogeny of DC and monocyte-macrophage 
lineages [12, 13].  

The current models propose that bone marrow HSCs, characterized by the expression of the 
surface molecule CD34, give rise to non-self renewing multipotent progenitors which give 
rise to proliferating progenitors that gradually become lineage-restricted. Two early 
committed progenitors have been identified in mice and human, the common lymphoid 
precursors (CLPs) and the common myeloid precursors (CMPs) [14]. For a long time it was 
believed that the CLPs gave rise to the lymphoid lineages and plasmacytoid dendritic cells 
(PDCs) whereas the CMPs gave rise to monocytes, macrophages and DCs. Today, we know 
that both precursors maintain the capacity to generate DCs and PDCs [15, 16] depending 
mainly on the expression of Fms-like tyrosine kinase 3 ligand (Flt3L) [17-19].  Indeed, Flt3L 
injection, in humans leads to massive expansion of blood PDCs and DCs [20]. 

A scheme showing all the intermediate precursor populations that give rise to DCs in mice 
and humans is depicted in Figure 1-2.  

In mice it has been proposed that in addition to CMPs there are also granulocyte-macrophage 
precursors (GMPs) and macrophage/DC progenitors (MDPs) (Figure 1-2A). The MDPs give 
rise to monocytes and to common DC precursors (CDPs). The CDPs further develop into 
PDCs and precursors for DCs (pre-DCs) that do not have anymore the potential to give rise to 
monocytes.  At a steady state, pre-DCs are found in the bone marrow, the blood and the 
spleen. They acquire further surface phenotype and morphology of DCs and enter the 
peripheral tissues, including the lymphatic tissues [13, 21].  

The equivalents of MDPs and CDPs have not yet been described in humans. Yet, it has been 
shown that there are progenitors with combined myeloid and lymphoid potentials [22]. GMPs 
and the multi-lymphoid progenitors (MLPs) appear to have DC potential. The circulating 
human blood precursors of DCs (equivalents of mice pre-DCs) must exist. However, a clear 
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phenotype, distinct from those of the terminally differentiated DCs has not been identified 
(Figure 1-2B). I will detail the precursor capacity of human blood DC subsets, and the 
hypothesis that these cells may be the equivalents of the murine pre-DCs, in the “General 
discussion and perspectives” chapter of this manuscript. 

During inflammatory conditions, other cellular precursors of DCs have been found. In vitro 
experiments with human cells have shown that exposure to cytokines such as granulocyte-
macrophage colony-stimulating factor (GM-CSF) and Interleukin (IL)-4, induces the 
differentiation of human monocytes into immature DCs [23]. An addition of proinflammatory 
cytokines such as Tumor Necrosis Factor (TNF)-α [24], microbial products such as 
lipopolysaccharide  (LPS) or T cell-derived CD40L further activates them into mature DCs 
whereas exposure to macrophage colony-stimulating factor (M-CSF) induces monocytes to 
differentiate into macrophages. This confirms mice studies showing that under inflammatory 
conditions, blood monocytes give rise to macrophages and DCs [21]. DCs can also be 
generated in vitro from CD34+ HSCs isolated from human peripheral blood or cord blood. 
This differentiation is dependent on Flt3L and further GM-CSF and TNF-α stimuli [25, 26]. 
This suggests that under inflammatory conditions, the CD34+ HSC circulating in human blood 
could be a new source of DCs besides monocytes. Finally, the possibility that inflammatory 
tissue signals activate the potential precursor role of blood DCs remains elusive and will be 
discussed later in this manuscript.  
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Figure 1-2 : Dendritic cell ontogeny.  

A. Dendritic cell development in mice. B. Dendritic cell development in human. Grey arrows show 
undetermined relationships. Pointed arrows show the precursor-cell relationships under inflammatory 
conditions. (HSCs, hematopoietic stem cells; CMPs, common myeloid precursors; CLPs, common 
lymphoid precursors, GMPs, granulocyte-macrophage precursors; MDPs, macrophage/DC 
progenitors;  CDPs, common dendritic cell precursors; pre-DCs, precursors for dendritic cells; MDCs 
myeloid dendritic cells, PDCs, plasmacytoid dendritic cells;  MLPs, multi-Lymphoid progenitors, LCs 
Langerhans cells).  
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1.2.2 LANGERHANS CELL ORIGINS 
 

LCs have been shown to have a particular ontogeny. Recent experiments in mice showed that 
in contrast to other DCs, LCs develop from an embryonic precursor that colonizes the 
epidermis before birth. Then, in the adult mouse, LCs self-renew from unknown local 
precursors in the epidermis [27] (Figure 1-2). 

In human, these findings are confirmed by the fact that LCs proliferate in situ [28-30] and 
donor LCs were shown to persist in human skin that was transplanted into immunodeficient 
mice [31]. Moreover, human limb transplants showed that donor LCs persist for years [32, 
33]. Finally, several reports have shown that there are proliferating cells in the bulge region of 
the hair follicle that could contribute to LC generation [34].  

The fact that mice lacking the transforming growth factor (TGF)-β1 do not have LCs [35] 
shows that this factor is essential for LC development. Studies in humans confirmed this 
finding; TGF-β1 is required for the in vitro generation of LCs from human CD34+ precursors 
[36, 37] or CD14+ monocytes [38] (Figure 1-2). In addition it was recently shown that the 
macrophage colony-stimulating factor receptor (M-CSFR) is required for the development of 
LCs in mice. The high affinity ligand of this receptor, IL-34, might be essential for the 
development of LCs precursors, LCs differentiation, survival or proliferation [28]. Further 
experiments on IL-34 and human LC development are needed to translate this finding into 
human biology.   

The in vitro generation of LCs from CD34+ precursors and CD14+ monocytes confirmed that 
in humans, just as in the mouse model, blood precursors are recruited to renew LCs in 
inflammatory conditions [39]. Blood CD34+ cells stimulated with a combination of Fl3L, 
GM-CSF, TNF-α and TGF-β, as well as CD14+ monocytes stimulated with GM-CSF, IL-4 
and TGF-β differentiate into bona fide LCs [23, 37, 38]. This shows that as opposed to steady 
state conditions, in inflammatory contexts tissue –derived cytokines can trigger the 
differentiation of circulating precursors into LCs.  

Whether blood DCs can differentiate into LCs under inflammatory conditions remains 
controversial. Ito, T et al. showed that a fraction of human blood CD1a+ DCs stimulated with 
GM-CSF, IL-4, and TGF-β can give rise to LCs in vitro [40]. However in my experience and 
also as published by other groups [41], human blood DCs do not express CD1a at the cell 
surface or at the gene transcriptional level [42]. This discrepancy might be due to the use of 
different cell isolation methods. To obtain the CD1a+ DCs, Ito, T. et al. enriched the DC 
fraction of peripheral mononuclear cells, by magnetically depleting CD3+ (Lymphocytes) and 
CD14+ (monocytes) cells. This depletion was followed by a positive selection of CD4+ cells 
(DCs) and further sorting of lineage (CD3, CD7, CD14, CD16, CD19) –negative and CD1a+ 
cells.  Monocytes can express CD4 marker [43]. And CD14+ monocytes that may have 
escaped the depletion can have been selected. Activated monocytes can further down-regulate 
CD14 and up-regulate CD1a. Whether CD4 positive selection may have activated the 
monocytes is not clear.  
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To my knowledge, Ito, T. et al study is the only published work that assesses human DCs 
capacity to differentiate into LCs. The possibility that inflammatory cytokines from the tissues 
can instruct human blood CD1a- DCs to differentiate into LCs remained unknown. The data 
presented in the first section of the “Results” chapter reveal the capacity of blood DCs to 
differentiate into LCs. 

 

1.2.3 TRANSCRIPTION FACTORS INVOLVED IN DENDRITIC CELL 
DEVELOPMENT 

 

Recent descriptions of human DC deficiency have been helpful to identify several 
transcription factors implicated in DC development [44-46]. 

By analogy to mice, it seems that Ikaros, PU.1, Gfi1 and Id2 are involved in DC development 
in humans. These transcription factors regulate genes that encode proteins of the early 
hematopoiesis (such as Flt3, Il7r, and Stat3); therefore their mutations lead to severe defects 
in global hematopoiesis [45].   

More specific transcription factors are linked to DC ontogeny. This is for example the case of 
E2-2; indeed, human deficiency on E2-2 leads to a PDC impaired function [47]. 

Moreover, mutation of GATA-binding factor 2 (GATA2) is the cause of a DC deficiency 
called DC, monocyte, B and natural killer lymphoid deficiency [48]. The loss of GATA2 is 
characterized also by the absence of MLPs and diminished GMPs numbers. The transcription 
factor IRF8 was found to compromise DC and monocyte development as well. But in contrast 
to the GATA2 mutation, the IRF8 mutation is associated to an expansion of all the progenitor 
compartments [49]. 

A transcription factor mutation affecting exclusively DC development has not yet been 
identified and could have important implications in our comprehension of DC generation 
under inflammatory conditions. A common transcription factor to all human DC subtypes has 
been found: zbtb46 [50, 51], but its contribution to human DC development has not been 
clarified. 
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1.3 LYFE CYCLE OF HUMAN DENDRITIC CELLS  
 

It is important to understand that a single DC may induce different T cell outcomes depending 
on the combination of signals that the DC receives. The purpose of this chapter is to highlight 
the special features that allow DCs to sense a wide range of signals from the tissue 
microenvironment and differentially induce particular T cell responses. In a separated 
paragraph, I will present the model of DC and DC precursor migration to the lymph nodes and 
the tissues. The particular effects of TSLP on human DC biology will be addressed later in the 
introduction.  

 

1.3.1 DENDRITIC CELL CHARACTERISTICS AND FUNCTION 
 

Fully differentiated, patrolling DCs are found in almost all the peripheral tissues at steady 
state. They get activated when they sense a particular threat.  

Indeed, DCs express a broad set of receptors that allow them to recognize danger signals. 
Through different cytokine and chemokine receptors, they recognize microenvironment 
signals secreted by the neighboring cells in response to microbes. Through the pattern 
recognition receptors (PRRs) they recognize conserved molecules from microbes called 
pathogen-associated molecular patterns (PAMPs) [52]. These receptors include the Toll-like 
receptors (TLRs), C-lectins, NOD like receptors and RIG-I like receptors. These recognize 
different molecules from glycoproteins and polysaccharides to double or single stranded 
nucleic acids.  Finally the Fc and complement receptors allow DCs to capture antigens from 
microbes and apoptotic cells.  

Once they get activated, DCs change their morphology, and phenotype. They up-regulate 
major histocompatibility molecules, costimulatory molecules (CD80, CD83, CD86 and 
CD40) and chemokine receptors that trigger migration [53]. All these changes enable them to 
interact with T cells. Nevertheless they first secrete inflammatory mediators, cytokines and 
chemokines that induce the recruitment and activation of different actors of the innate 
immune response such as granulocytes, natural killer cells, and other DCs (Figure 1-3) [10, 
48].  

Next, they enter the afferent lymphatics and reach the draining lymph nodes were they present 
the captured antigens to T cells. The endogenous proteic antigens are loaded onto MHC 
molecules of class I to be presented to cytotoxic T cells expressing the surface marker CD8. 
This response leads to cell apoptosis. The exogenous proteic antigens are bound to MHC class 
II molecules and presented to T cells expressing the surface marker CD4 leading to a T helper 
cell response [54]. The exogenous molecules can also be presented in the context of MHC 
class I molecules to CD8 T cells, a process called cross-presentation.  DCs indeed, cross-
present exogenous antigens that can come from infected neighboring cells, or when they are 
infected themselves. The CD8 cytotoxic T cell response leads to the apoptosis of the infected 
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cell. This mechanism is also required for antitumoral responses even if the mechanisms are 
not well understood yet [55]. Finally the lipidic antigens are presented through the CD1 (a-d) 
molecules to T cells and natural killer T cells.  

In conclusion, DCs interact directly and indirectly with all the cell types responsible for the 
regulation of the innate and adaptive immune systems. The way DCs induce particular 
immunological responses that are adapted to the requirements of the inflammatory milieu, 
will be presented in the next chapter. 

 

 

Figure 1-3: Dendritic cells at the interface between innate and immune systems. 
Adapted from Ueno H. et al., 2010.  

Immature dendritic cells capture antigens at the periphery and become activated. They release 
inflammatory mediators in situ. They process the captured antigen and in parallel acquire a mature 
phenotype. They migrate through the afferent lymphatics to the lymph nodes to present the antigens to 
the CD4 T and CD8 T cells. T helper cells develop into follicular T helper cells that induce B cell 
activation to antibody secreting cells, T regulatory cells that mediate tolerance and T helper cells 
inducing Th1, Th2 and Th17 responses. T helper cells activate the cytotoxic CD8 T cells to induce 
clearance of infected cells. (DC, dendritic cells; Tfh, T follicular helper cells; B, B lymphocyte; Tregs, 
T regulatory cells; Th, T helper cells; CTL, cytotoxic T lymphocytes; Ab, antibody). 
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1.3.2 T CELL POLARIZATION BY DENDRITIC CELLS  
 

The special feature of DCs in comparison with other antigen-presenting cells is their unique 
capacity to prime naïve CD4 T cells leading to the generation and proliferation of antigen-
specific helper and memory T cells [54].  

DCs and T cells interactions in the lymph nodes are complex and give rise to different types 
of T cell responses that depend on the priming of the DCs themselves. Therefore depending 
on the activating stimuli (tissue factors), DCs express one or another combination of what can 
be called DC factors, cytokines and surface molecules, which are sensed by naïve T cells. 
Then, the naïve T cells get differentiated into different types of T helper cells. The T helper 
cells secrete T cell factors that define the type of T cell response (Figure 1-3). 

In summary, DCs activated by intracellular bacteria and viruses, can produce large amounts of 
IL-12, and induce T helper cells that secrete IFNγ and TNF-α. This T helper response is called 
Th1 (Figure 1-4). 

DCs activated by extracellular microbes such as helminthes induce T cells that produce IL-4, 
IL-5, and IL-13. This immune response is called a Th2 response. It characterizes the allergic 
responses (Figure 1-4).  

DCs secreting variables amounts of IL-1b, IL-23, IL-6 and TGF-β induce a Th17 response. 
The T helper cells induced are characterized by the secretion of IL-17A, IL-17F and IL-22 
(Figure 1-4). They are responsible for immunity against extracellular microbes and fungi. 
They promote an important neutrophil response and are often linked to autoimmune diseases 
such as psoriasis. 

The Th1, Th2 and Th17 are not the only T cells that result from the DC-T interaction. In fact, 
DCs can also induce regulatory T cells that have an important role in the immunological 
tolerance [56]. The priming of T regulatory cells seems to be achieved at the steady state, by 
the constant presentation of self antigens in the context of MHC class I, or when DCs 
stimulate T cells while expressing low amounts of costimulatory molecules. T regulatory cells 
regulate the immune response through the secretion of IL-10 and TGF-β and play an 
important role in the responses towards human microbiota (Figure 1-4). 

Finally, concerning B cell activation, it is known that a group of T helper cells, present in the 
B follicular zones induce the B cell activation. It has been proposed that there are different T 
follicular helper cells depending on the DC-T cell priming (Figure 1-4).  Moreover, the DCs 
also directly induce the activation of B cells and their differentiation to antibody-secreting 
cells [57] (Figure 1-3). 
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Figure 1-4: Dendritic cells induce different T cell responses.  

Immature dendritic cells become activated by different microbes and tissue factors. Differentially 
activated DCs induce the polarization of naïve T cells into Th1, Th2, Th17 Tregs (regulatory T cells) 
and Tfh (T follicular helper cells). The different T cell profiles are defined by the cytokines secreted.   

 

In order to prime naïve T cell differentiation, tissue-residing DCs must travel considerable 
distances, from the inflammation sites, to lymph nodes. Moreover, the peripheral pools must 
be replenished with new DCs.  In the next chapter, the different molecules that are implicated 
in the process of DC migration will be reviewed.  

 

1.3.3 HUMAN DENDRITIC CELL MIGRATION  
 

Although free antigen can enter the afferent lymphatics and be presented by resident DCs in 
the lymph nodes [58] (Figure 1-3), DCs get activated in the periphery and migrate themselves 
to the lymph nodes to present the antigens. Again, most of our knowledge about DC 
trafficking comes from studies in mice mainly on LC migration.  

LCs are retained in the epidermis through the expression of E-cadherin that mediates their 
binding to keratinocytes [59]. During inflammation, the DCs themselves and the surrounding 
cells secrete IL-1β and TNF-α that induce the down-regulation of E-cadherin and the up-
regulation of the chemokine receptor CCR7 that mediates the lymph node homing [60-62]. 
Indeed, CCR7 has been shown to mediate migration of mouse skin DCs to lymph nodes under 
inflammatory and even steady state conditions [63]. Although in this last case, much less is 
known.  



INTRODUCTION 
 

21 

The two ligands of CCR7, CCL19 and CCL21 are expressed by the endothelial cells of the 
lymphatic vessels in the dermis. This means that first LCs need to migrate from the epidermis 
to the dermis. This seems to be mediated by the interaction between the chemokine receptor 
CXCR4 present in mature LCs and its ligand CXCL12 present in the dermis [53, 64-66] 
(Figure 1-5). 

Once in the dermis, non-soluble CCL21 gradients guide the LCs into the lymphatic vessels 
[67, 68]. LCs squeeze through the gaps present in the basement membrane and are driven to 
the lymph nodes by a passive flow [69].  

Finally, once in the lymph nodes, gradients of CCL19 and CCL21 will further guide the DCs 
to the T cell zone [70].  

Besides chemokine – chemokine receptor interactions, there are other molecules implicated in 
the entrance of DCs to the lymphatics. Mature DCs also upregulate the receptor for 
sphingosine-1-phosphate, an inflammatory molecule implicated in leukocyte migration. 
Nevertheless its role in DC trafficking is still not defined [71].  

Proteases such as the matrix metalloproteases (MMPs) are expressed by mature DCs. 
Activated LCs secrete MMP-2 and MMP-9 that help them to degrade the surrounding 
collagen matrix and trespass epidermal basal membrane [72]. The matrix metalloproteases 
can also act in DC migration via their action on chemokines, indeed they can mediate 
chemokine proteolysis into agonistic or antagonistic chemotactic fragments [73]. 

Finally during inflammation the lymphatic endothelial cells upregulate adhesion molecules 
such as E-selectin, ICAM-1 and Vcam-1 that interact with integrins expressed by mature DCs 
[74]. Nevertheless migration of DCs into the lymph nodes seems to be a process independent 
from integrins [75]. 

DC precursor migration from blood to the peripheral organs is less well understood. CCR6 is 
a skin-homing receptor that is mainly expressed on differentiated LCs. It binds to the CCL20 
chemokine present in the epidermis. The LC precursors (monocytes and CD34+ HSC) express 
low levels of CCR6; instead they highly express CCR2 that allows them to bind the CCL2 
present in the dermis. Under inflammatory conditions, both CCL2 and CCL20 are secreted, 
and LC precursors can be recruited to the dermis through CCR2 and give rise to LCs that will 
be attracted to the epidermis through CCR6 [27, 76].   

The model of LC migration is depicted in Figure 1-5.  Excluding the dermis-epidermis 
passage, this model can be applied to DCs in general. Indeed monocytes and immature DCs 
express CCR1, CCR2, CCR3 and CCR5 that allow them to reach the inflamed tissues [53]. 
These chemokine receptors are down-regulated upon activation and replaced by high levels of 
CCR7 that allow them to reach the lymph node. 

This model implies that the microenvironment inflammatory signals regulate the chemokine 
receptors on the surface of the DCs. However the tissue factors that regulate DC precursor 
homing to the inflamed tissues are less known. In particular the tissue factors that allow 
CCR6 up-regulation by DC precursors remain poorly defined.  
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Figure 1-5 : Model of Langerhans cell migration.  

First, Langerhans cells sense a threat in the epidermal layer, they get activated and upregulate the 
chemokine receptor CXCR4. This receptor allows LCs to sense a gradient (light blue background) of 
its ligand, CXCL12 that directs them to the dermis. Once in the dermis the expression of CCR7 
receptor allows them to bind CCL19 and CCL21 expressed by the afferent lymphatic epithelial cells 
and in the lymph nodes. On the other hand, Langerhans cells precursors in the blood express CCR2 
that mediates their homing to the dermis. There, the expression of CCR6 allows them to sense CCL20 
gradients that will position them in the epidermis. (PAMPS, pathogen-associated molecular patterns; 
TF, tissue factors; K, keratinocytes; LC, Langerhans cells).  
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1.4 HUMAN DENDRITIC CELL SUBSETS 
 

During my PhD thesis, in 2010, several publications appeared showing functional differences 
between human blood DC subsets. These functional differences represent a second level of 
complexity in the induction of T cell responses. I was studying TSLP effects on DC migration 
and my interest in the function of DC subsets led me to address the differential response of 
DC subsets to TSLP stimulation. The DC population is heterogeneous and the different 
subsets have overlapping phenotypes, therefore the purpose of this chapter is to present the 
DC diversity in human blood, lymphoid organs and tissues in a comprehensive way. After 
defining the nature and phenotype of the DC subsets, I will dedicate a paragraph to the studies 
that have assessed the functional differences between DC subsets. 

Increasing evidence has highlighted the fact that the DC population is heterogeneous. 
Initially, LCs and PDCs were defined as different types of DCs [10, 77]. Then, the study of 
human blood, skin, lymph nodes, thymus and other tissues has confirmed the presence of 
several dynamic subsets of DCs in different maturation states [41]. Today, gene 
transcriptomic data on these different subsets are available. The comparison between the 
genes expressed in one or another sub-population has allowed defining their correspondent 
gene signatures.  Statistical tools such as the hierarchical clustering and principal component 
analysis allow the unbiased and simultaneous analysis of all the genes (variables) from the 
different sub-populations and, preserving the variance of the data, provide a summary of the 
information were the similarities and differences between the datasets is easier to interpret.  
Furthermore the different signatures can be confronted to several public databases and 
translated as profiles enriched for different biological relevant gene sets (gene enrichment 
analysis). These types of analysis have further highlighted the different gene expression 
profiles of DC subsets and the relationships between them [42, 78-81]. 

In general the DC subsets can be defined according to the expression of different 
combinations of surface markers that allow their isolation from different human samples. 
Several studies attempted to correlate these different phenotypes to distinct functions in the 
immune response in steady-state and pathological conditions [25, 78, 82]. Nevertheless, no 
exclusive surface markers or functions can be attributed to the distinct subsets and their 
clearest classification may be the one linked to their location. Therefore I will present the 
different DC subsets according to their anatomical distribution based on the latest review of 
Collin et al on human DC subsets [83]. A summary of the different DC subsets and their 
phenotypes is shown in Figure 1-7 and Table 1-1. 
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1.4.1 BLOOD DENDRITIC CELLS 
 

The blood DC subsets are very well characterized in humans and seem to be the ones that 
replenish the tissue and lymphoid organs pools. The first study in 1993, characterizing blood 
DC compartment, defined three initial subsets according to the surface markers CD33 and 
CD14 [84]. This study included a population of monocytes (CD33+CD14bright) and two 
populations of DCs, (CD33dimCD14dimCD16- or CD33brightCD14dimCD16-).  

Later on in 2000, Dzionek et al, described blood DC subsets as we know them today; they 
used the surface markers BDCA-2 and BDCA-4 to identify PDCs, BDCA-1, and BDCA-3 to 
identify two subsets of myeloid DCs [85].  

By inmmunohistological techniques like the Giemsa/May Grunwald staining, PDCs have a 
smooth, round, plasma-cell morphology; they display an eccentric kidney-shaped nucleus and 
have a violet basophilic cytoplasm that contains a pale Golgi zone. Myeloid BDCA-1+ and 
BDCA-3+ DCs are less rounded cells, with numerous short processes and more 
hyperlobulated nuclei (Figure 1-6).  

The three blood DC subsets express high levels of major histocompatibility complex class II 
molecules (HLA-DR) and lack typical lineage markers such as CD3 (T cells), CD19/CD20 (B 
cells) and CD56 (natural killer cells) [86]. 

 

 

Figure 1-6: Blood and tonsillar dendritic cell morphology. Adapted from Segura et al., 
2013. 

These images correspond to Giemsa/May-Grunwald staining of sorted DC subsets from the tonsils. 
PDCs are round-shaped and have a lymphoid-like morphology. The myeloid BDCA-1+ and BDCA-3+ 
subsets present short cytoplasmic processes and lobulated nuclei. (Bar corresponds to 10 μm). 

  

BDCA-1+PDCs BDCA-3+
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1.4.1.1 PLASMACYTOID DENDRITIC CELLS 
 

PDCs constitute between 1 to 2 % of peripheral blood mononuclear cells (PBMCs). They are 
very different from DCs. They have round plasma-cell morphology and the capacity to secret 
large amounts of type-1 interferons after viral encounter [77, 87, 88].  

In terms of surface markers, they are distinguished by the expression of CD123 (IL-3 
receptor), BDCA-2 and BDCA-4 and the lack of myeloid surface markers (CD11c and 
CD11b). They express the endosomal nucleic acid–sensing TLR7 and TLR9 that allow them 
to recognize single-stranded RNA, and unmethylated CpG-containing DNA respectively [89]. 
The response to these stimuli is rapid IFN secretion, which helps the activation of natural 
killer and B cells, establishing PDCs as a key link between innate and adaptive immunity.  

PDCs circulate in the blood and enter the T cell rich areas of lymphoid organs through the 
high endothelial venules. Under steady-state conditions they are hardly found in peripheral 
tissues. 

 

1.4.1.2 MYELOID DENDRITIC CELLS   
 

DCs are characterized by the expression of the myeloid surface markers CD11c, CD13, CD33 
and CD11b. As PDCs, they also express CD4. They do not express at the steady state CD14 
or CD16 which characterize human blood monocyte subsets.  

They are separated into two subsets, the BDCA-1+ and the BDCA-3+ subset (also called CD1c 

and CD141, respectively).  In the last two years, several studies including cross-species 
comparisons of transcriptomic profiles, have shown that these two subsets are the equivalent 
of the mice myeloid subsets CD8α- and CD8α+ respectively [90-93]. Nevertheless these two 
subsets in mice show clear functional differences that are less evident in their human 
counterparts.   

 

BDCA-1+ DENDRITIC CELLS 

BDCA-1+ DCs are the major population of human DCs. They are approximately 1% of 
PBMCs. Besides the typical myeloid antigens, they also express CD172 (also named SIRPα). 

The expression of the TLRs 1 to 8 allows them to recognize several pathogen associated 
molecules as LPS, flagellin and double stranded RNAs. They express dectins 1 (CLEC7a) and 
2 (CLEC6A) that account for fungi recognition, DEC205 and macrophage mannose receptor 
(CD206) [42]. Once activated, they are very good stimulators of naïve CD4 T cells, and are 
also able to cross-present antigens to CD8 T cells [91, 94].  
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Depending on the antigen and TLR involved, they prime different types of T cell responses, 
owing to their capacity to secrete different combinations of the cytokines TNF-α, IL-8, IL-10, 
IL-12 and IL-23 [95].   

 

BDCA-3+ DENDRITIC CELLS 

This is the minor subset in human blood; it corresponds to 0.1% of PBMCs. The expression of 
the lectin CLEC9A, the chemokine receptor XCR1, the cellular adhesion molecule Necl2, and 
high TLR3 have identified them as the human counterpart of the CD8α+ mouse subset [90-93, 
96, 97]. Via CLEC9A, these cells have a good capacity to take up necrotic material from dead 
cells, and via TLR3 and 8 they can sense viral nucleic acids.  Mice CD8α+ cells have been 
functionally defined as “cross-presenting” cells in opposition to the CD8α- cells. Human 
blood BDCA-3+ cells can indeed cross-present antigens to CD8 T cells, but as opposed to 
mice, they cannot be defined as the main cross-presenting subset as the BDCA-1+ has a 
similar capacity [55, 94]. They can secrete the cytokines TNF-α, CXCL10, and IFNλ and IL-
12 [41, 92, 95].   

Careful attention must be taken for their isolation, as BDCA-3 surface marker can be up-
regulated upon maturation by other DC subset as well [85].  

 

1.4.2 DENDRITIC CELL SUBSETS IN THE SECONDARY LYMPHOID ORGANS 
 

The spleen and tonsils do not receive lymphatic flux. Therefore DC subsets in these organs 
are more likely resident cells coming from blood. In contrast, in the lymph nodes there are 
resident cells coming probably form blood and cells that have migrated from the peripheral 
organs. 

 

1.4.2.1 TONSILS 
 

In human tonsils, DCs are found mainly in the T cell zones and also in the germinal centers. 
The phenotype of DC populations was first described based on the expression of HLA-DR, 
CD11c, CD13 and CD123 by Summers et al. [98]. The initially identified HLA-DRmodCD11c-

CD123+, HLA-DR highCD11c+ and HLA-DRmod CD11c+CD13+ cells turned out to be the 
PDCs, and the DC subsets BDCA-1+ and BDCA3+ respectively [80]. These subsets are 
present at frequencies of 62.9%, 32.5% and 4.6% of lineage negative mononuclear cells 
respectively [80]. There is also a population of CD14+ cells that has been shown to have a 
macrophage-like morphology [99]. Tonsillar human subsets express higher amounts of TLR, 
C-lectin, cytokine and chemokine receptors than their blood counterparts, but they still 
present an unactivated phenotype at the steady-state [80, 94]. The immune-cytological 
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morphology of tonsillar DCs is equivalent to the one of blood DCs (Figure 1-6). In contrast to 
blood subsets, the tonsillar subsets do not cycle, confirming the fact that they are terminally 
differentiated cells [99]. 

 

1.4.2.2 SPLEEN 
 

In the human spleen, DCs correspond to less than 1% of mononuclear cells. They are found in 
the periphery of the white pulp, the T cell zone and also the B cell zone [100].  Due to human 
tissue sample availability, tonsils are better characterized than spleen. Nevertheless we know 
that both organs contain the same subsets of DCs and that in general, in both cases DCs are 
found mainly in an unactivated state and do not express costimulatory molecules [94, 99, 
100]. 

 

1.4.2.3 LYMPH NODES 
 

Human lymph nodes contain PDCs and different DC subsets in the T cell zones. Angel C. et 
al showed in 2009 that in human lymph nodes there were CD209+ cells expressing different 
combinations of CD206, CD14 and CD68, and cells expressing CD1a, CD207 and CD208.  
He suggested that the populations expressing CD209 were resident cells in the lymph nodes 
and the populations expressing CD1a, CD207 and CD208 came from the periphery [101].  
Therefore, this suggested that we could find lymph nodes resident DCs and DC that had 
emigrated from distant sites. Van de Ven et al also studied the presence of DC subsets in 
human lymph nodes finding two subsets (CD1ahi and CD1aint) that would come from the skin 
and one subset (CD1a-CD14-) of resident cells [82]. A fourth subset (CD1a-CD14+) would 
correspond to macrophages and not to DCs. 

Finally a recent work from Segura et al, showed that human lymph nodes contain six different 
populations of DCs [99]. The largest population corresponds to PDCs (around 80% of lineage 
negative and HLADR+ cells). Then the CD11c+CD14- cells (30%) can be further divided into 
BDCA-1+, BDCA-3+ (or Clec9A), CD1a+, CD206+ and LCs (30%, 6%, 15%, 20% and 5% of 
CD11c+CD14- cells respectively). They also found CD14+ cells that correspond to 
macrophages. 

This study showed that while PDCs, BDCA-1+ and BDCA-3+ DCs are also found in several 
lymph nodes, the CD1a+, CD206+ and LC populations are found only in the skin-draining 
lymph nodes, showing that the first three populations are resident cells, and the other three 
correspond to populations that have migrated from the skin. They also suggested that the 
CD206+ population found in the lymph nodes corresponds to the CD14+ population present in 
the dermis that would lose the CD14 marker before entering the lymph node.   
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The resident populations have an unactivated phenotype as in the spleen and tonsils. It has 
been shown that these populations can capture, process and present soluble free antigens that 
reach the lymph nodes through the afferent lymphatics [58]. The populations coming from the 
skin have a more activated phenotype, they express several costimulatory molecules and the 
lymph node homing chemokine receptor CCR7.  

 

1.4.3 DENDRITIC CELLS IN THE THYMUS 
 

Little is known today about the different DC subsets present in human thymus. In 2001, 
Bendriss-vermare et al and Vandenabeele et al showed that human thymus contains PDCs and 
two subsets of mature DCs, CD11c+CD11b-CD45ROlow and CD11c+CD11b+CD45ROhigh DCs 
[102, 103]. The equivalent of these subsets to the ones found in other locations is not known. 
The thymic DCs derive from a thymic precursor, they are present in the cortex and the 
medulla of the thymus where they positively and negatively select the thymocytes [104]. 
Therefore they are more importantly involved in the presentation of self-antigens and the 
induction of central tolerance.  

 

1.4.4 DENDRITIC CELL SUBSETS IN PERIPHERAL TISSUES 
 

DCs are present in almost all the peripheral tissues except the brain [105]. Excluding LCs, all 
contain the same type of DC subsets [41]. Nevertheless the best characterized peripheral 
tissue in humans is still the skin.  

For many years, LCs were considered as the only DCs present in the skin and mucosae, until 
1993 when Nestle et al defined two additional DC subsets in the dermis, the CD1a+ and the 
CD14+ dermal DCs [106].  In mice there is a population of Langerin+ dermal cells, but these 
have not been identified in humans [107]. In steady-state conditions no PDCs are found in the 
peripheral tissues. 

Langerhans cells are found in the basal and supra-basal layers of the epidermis and in the 
respiratory, gastric and vaginal tracts mucosae. They are characterized by a high expression of 
CD1a, the expression of CD207 (langerin) and the absence of CD14 [108].  

The hallmarks of LCs are the Birbeck granules. These rod-shaped compartments contain 
langerin and are part of the endosomal pathway [109] [110]. No essential specific function has 
been attributed to these granules. Indeed, a single individual reported to lack Birbeck 
granules, owing to a heterozygous point mutation in langerin gene, showed no particular 
functional phenotype [111, 112]. Moreover some reports claimed that pig’s skin epidermal 
LCs do not have Birbeck granules at all [113].  
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LCs also express adhesion molecules like CLA (cutaneous lymphocyte associated protein), 
Epcam and E-cadherin that mediate their adhesion to keratinocytes. They express the 
chemokine skin-homing receptor CCR6 and upon activation they upregulate CCR7 to migrate 
to the lymph nodes [114].   

Dermal DCs are divided in two HLADR+ subsets. The dermal CD1a-CD14+ and the 
CD1adimCD14- referred as CD14+ and CD1a+ cells respectively [25]. The dermal CD1a+ are 
more or less 40% of CD45+ cells in digested skin, whereas, CD14+ are less abundant (less 
than 10%)[115]. 

It has been difficult to relate these dermal subsets to the BDCA-1+ and BDCA-3+ subsets 
identified in blood and in the lymphoid organs. Haniffa et al have recently tried to find these 
equivalences, finally describing three dermal DC subpopulations [41]. Within the Lineage- 
and HLA-DR+ populations of the skin, they defined first a CD14+subset. Then within the 
CD14- cells, a subset of CD11c+BDCA-1+CD1a+ BDCA-3 +and- cells and a new subset of 
CD11cloBDCA-1+CD1aloBDCA-3hi cells. In this study they suggested that these two last 
subsets are related to the BDCA-1+ and BDCA-3+ blood subsets respectively, and that the 
new BDCA-3hi was ignored until now due to the fact that the other subsets might upregulate 
BDCA-3 marker as well. They found that the CD14+ subset is more similar to monocytes and 
therefore would probably arise from this blood population. 

In general, DC subsets in the tissue seem to be more activated than their blood counterparts, 
nevertheless it is difficult to identify if this happens in vivo or whether it is related to the 
different isolation protocols used. 

Finally, under inflammatory conditions, the blood monocytes have been implicated in the 
generation of infiltrating inflammatory DCs [116]. These cells express BDCA-1, CD1a, 
CD206, FcεR1, SIRPα and no CD209 or CD16. They stimulate TH17 cells. Inflammatory 
DCs were before identified as inflammatory epidermal and iNos producing DCs (IDECS and 
TiPs) in atopic dermatitis and psoriasis respectively [117, 118]. They prime completely 
different T cell responses and therefore prove that different inflammatory DCs rise out from 
monocytes in different pathological conditions [119]. 

In summary, the final global characterization of the different human subsets of DCs has 
highlighted the relationship between them. Today, more than a classification that depends on 
an activation state, different combinations of surface markers have been defined to identify 
different sub-populations of DCs that are repeatedly found in several tissues. We are now able 
to distinguish between populations that reside in the different sites from populations that are 
migrating. The existence of DC subsets opens up a new field of research concerning their 
functional differences and their differential implications under inflammatory conditions.  
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Figure 1-7: Human dendritic cell subset distribution in different anatomical sites.  

Plain arrows represent direct relationships. Excepting inflammatory DCs, which have a developmental 
relationship with monocytes, all the other plain arrows represent relationships based on migration and 
homing to the different locations. Pointed arrows represent only suggested relationships.  
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Table 1-1 : Dendritic cell subset phenotypes at steady state.  

Transcriptomic profiles have given rise to complete phenotypes of the human DC subsets. In this table 
we present the major characteristic CD1, PPRs, adhesion molecules and chemokine receptors of each 
subset. The black color means protein expression, red color means RNA expression. (PRR, pattern 
recognition receptors; SLO, secondary lymphoid organs).  

CD1 PRRs
ADHESION 

MOLECULES
CHEMOKINE 
RECEPTORS

FUNCTION REFERENCES

CD1a- CLEC6a+ CD11chi CCR2+ They secrete CCL3, TNFα,  and IL-12 when stimulated through TLR7/8.
Mittag, D. 2011

CD1c+ CLEC7a+ CD11b+ CCR5+
They efficiently induce Th1 and Th2 responses if they are in tonsils, but more efficiently Th1 than Th2 if 
they are in blood. Segura, E. 2012

DEC205+ CD62L+ CCR7+ in SLO
They crosspresent if they come from tissue, the ones from blood crosspresent only if they are 
stimulated with TLR ligands. Segura, E. 2012

CD206+ CLA+ CXCR4+ in SLO
TLR1+ CX3CR1+

TLR2+

TLR3+

TLR4+

TLR5+

TLR6+

TLR7+

TLR8+

SIRP1a+

CD1a- CLEC9a+ CD11clo CCR2+ in SLO They secrete low CCL3 and TNFα,  and IL-12 when stimulated through TLR7/8 Mittag, D. 2011

CD1c- DEC205+ CD11b- CCR5+ They secrete TNFα, CXCL10, IFNλ and little IL-12.
Haniffa, M. 2012; 
Lauterbach, H. 2010

CD206+ in SLO MRC2+ CCR7+ in SLO
They efficiently induce Th1 and Th2 responses if they are in tonsils, but more efficiently Th1 than Th2 if 
they are in blood. Segura, E. 2012

TLR1+ Necl2+ CXCR4+ in SLO
They crosspresent if they come from tissue, the ones from blood crosspresent only if they are 
stimulated with TLR ligands. Segura, E. 2012

TLR2+ CD62L+ CX3CR1+ in SLO
TLR3+ CLA+ XCR1+

TLR6+

TLR8+

MRC2+

CD1a+ CD207+ CD11clo CCR2- Upon CD40L stimulation, they produce IL-8 and IL-15. Kletchevsy, E. 2008
CD1c+ DEC205+ CD11b- CCR5- Efficient crosspresenting capacity. Kletchevsy, E. 2008

CD206- Epcam + CCR6+ They stimulate effitiently naïve CD4 and CD8 T cells. They induce preferentially Th2 responses. Kletchevsy, E. 2008
CD208+ E-cadherine+ CCR7lo Possible role in tolerance. They induce proliferation of autologous memory Tregs. Seneschal, J. 2012
CD209- CXCR4+ When stimulated with VitD3 they induce TGF-β -secreting Tregs. van der Aar, A.M. 2011
CLEC9a- CX3CR1+ Induction of TH17 response Mathers, A.R. 2009
TLR1+ Induction of Th22 response Fujita, H. 2009
TLR2+

TLR3+

TLR6+

TLR7+

SIRP1a+

CD1a+ DEC205+ CD11c+ CCR2- Upon CD40L stimulation, they produce IL-8 and IL-15. Kletchevsy, E. 2008
CD1c+ CD206+ CD11b+ CCR5+ Efficient crosspresenting capacity. Kletchevsy, E. 2008

CD208+ CCR6-

They stimulate effitiently naïve CD4 and CD8 T cells. They induce preferentially a Th2 reponse. Their 
phenotype is intermediate between LCs and CD14+ dermal DC. Kletchevsy, E. 2008

CD209- CCR7+

CLEC9a- CXCR4+

TLR1+

TLR2+

TLR3+

TLR6+

TLR7+

SIRP1a+

CD1a- DEC205+ CD11c+ CCR2- Upon CD40L stimulation, they produce IL-1β, IL-6, IL-8, IL-10, IL-12, TGF-β, TNFα and GM-CSF. Kletchevsy, E. 2008
CD1c+ CD206+ CD11b+ CCR7lo They prime CD4 T cells to induce isotype switch on naïve B cells and Igs secretion. Kletchevsy, E. 2008

CD209+ CX3CR1+ They do not stimulate efficiently naïve CD4 and CD8 T cells Kletchevsy, E. 2008
CLEC9a- Poor crosspresenting capacity. Kletchevsy, E. 2008
TLR1+

TLR2+

TLR3+

TLR6+

TLR7+

SIRP1a+

CD1alo CLEC9A+ CD11clo XCR1+ Efficient crosspresenting capacity. Haniffa, M. 2012
CD1c+ TLR3+

CD1a+ CD206+ CD11c+ They produce IL-1, IL-6, TNFα, IL-12, IL-23. Segura, E. 2013

CD1c+ FcεR1+ CD11b+
 They can prime Th1 and Th2 responses in atopic dermatitis (IDECS) and Th1 and Th17 responses in 
psoriasis. 

Nakano, K.L. 2009; 
Hammad, H. 2010

SIRP1a+ In sinovial and ascitis fluids from reumathoid arthritis and cancer patiens they induce Th17 responses. Segura, E. 2013

SKIN BDCA3

INFLAMMATORY DC

BLOOD AND SLO 
BDCA-1 (CD1c)

BLOOD AND SLO 
BDCA-3 (CD141)

SKIN LC

SKIN CD1A

SKIN CD14
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1.4.5 DIFFERENT SUBSETS SUGGEST DIFFERENT FUNCTIONS 
 

As the study of different subsets of DCs in human blood and tissues samples evolved, several 
attempts to link the phenotypic differences to different functions and T cell profile induction 
have been made. 

In mice, functional specializations have been attributed to the different DC subsets. For 
example CD8α+ and CD103+ subsets are specialized in the activation of CD8+ T cells [120]. 
These two subsets are also enabled with the capacity to cross-present antigens. In the case of 
CD4+ T cell priming, the different mice subsets CD8α+, CD8α-, CD103+ and LCs show 
different behaviors depending on the signal triggering the DC activation [120].  Nevertheless 
it has been shown that adoptive transfer of antigen-pulsed CD8α+ versus CD8α- DCs 
differentially induces Th2 versus Th1 responses [121, 122]. Moreover, it has been shown that 
targeted CD8α+ and CD8α- DCs induce CD8+T and CD4+T cell responses respectively [123].  

In humans, it is clear that PDCs are more involved than DCs in antiviral responses. Moreover, 
already in 1999, Rissoan et al. established, for the first time, a direct link between different 
sup-populations of DCs (DC1 and DC2) and different T helper cell profiles (Th1 and Th2) 
[124]. Nevertheless the DC subsets have overlapping functions concerning cross-presentation, 
tolerance induction and Th1, Th2, Treg, and Th17 primings. The functional differences 
between human DC subsets are less clear than in murine model. A summary of the 
overlapping functions of human DC subsets is shown in Table 1-1. 

In the case of skin DCs, there is evidence that functional differences between LCs and dermal 
CD14+ cells exist.  For example, Kletchevsky et al, compared functionally human skin subsets 
[25]. They found that CD14+ dermal DCs stimulated with CD40 secrete IL-1α, IL-6, IL-8, IL-
10, IL-12 GM-CSF and TGF-β, whereas LCs stimulated with CD40 only secrete IL-15 and 
small amounts of IL-8. Even if LCs and CD14+ DCs were both able to induce naive B cell 
production of IgM, CD14+ and not LCs were able to induce isotype switching to IgG and IgA. 
On the other hand LCs stimulated better naïve CD4+T cell proliferation than CD14+ cells, and 
primed a Th2 cell response.  They were also found to be more efficient in the induction of 
antigen specific CD8+Tcells and cross-presentation. Moreover, it was later shown by the same 
authors that LCs stimulated a better cytotoxic response through the secretion of IL-15 while 
IL-10 and TGF-β secreted by dermal CD14+ inhibited this response [125]. These studies 
suggest that dermal CD14+ cells preferentially activate B cells while LCs preferentially prime 
a Th2 cell response.  

In tolerance induction, LCs and dermal cells were also found to behave differently. LCs were 
shown to induce a higher proliferation of autologous memory Treg cells than the dermal DCs 
[126]. Concerning Th17 differentiation controversial results were found. Mathers et al showed 
that LCs had a superior capacity than dermal DCs in the generation of Th17 cells [127], yet, 
Fujita et al found no Th17 induction by LCs but the induction of IL-22 secreting T cells [128]. 
In general several functions have been attributed to LCs [127-129]. Controversial results are 
often attributed to different protocols of isolation of the skin DCs.  
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In the case of blood BDCA-1+ and BDCA-3+ subsets, the cross-presenting capacities have 
been extensively evaluated giving rise to controversial results. First, the comparison between 
human blood BDCA-1+ and BDCA-3+ subsets let to the conclusion that after activation with a 
TLR3 ligand, poly-IC, BDCA3+ cells were specialized in antigen cross-presentation [41, 90, 
91, 130]. Secondly, tonsillar BDCA3+ cells were also found to be more efficient at cross-
presenting death associated antigens than the BDCA-1+ counterpart. These results led to the 
conclusion that BDCA-3+ cells as the murine CD8α+ cells were specialized in cross-
presentation. As non activated DCs are have a poor cross-presentation capacity [94], these 
results were obtained activating DC subsets with TLR3 ligands that preferentially stimulate 
BDCA-3+ cells. Therefore, Segura et al, used tonsillar BDCA-1+and BDCA-3+ subsets (which 
are per se more activated than  the blood counterparts) and showed that both cell subsets are 
equally able to cross-present soluble antigens in the absence of additional activation stimuli 
[94]. This result was further confirmed by two other studies showing that these subsets have 
the same cross-presenting capacities but different TLR stimulation requirements [131, 132].  

These studies infer that human DC subsets overlap in their functions, and that the functional 
specialization of DC subsets can be in part attributed to their differential capacities to sense 
single stimuli. Uncoupling differential activation of DC subsets induced by the signals of the 
microenvironment (e.g. TLR activation requirements) from their functional specializations 
remains a big challenge. Another factor to take into account is the isolation procedure. 
Different protocols of DC isolation result often in controversies as it is the case of Th17 
induction by LCs. DC functional differences are mainly evaluated in the context of the T cell 
responses. However differential DC subset secretion of cytokines and chemokines may 
mediate different innate immune responses. 

To study the functional differences between human DCs cell subsets stimulatory signals that 
activate the DC subsets to the same extent must be used. One of these stimulatory signals 
could be the cytokine TSLP. To address functional differences between blood BDCA-1+ and 
BDCA-3+ DCs, I used TSLP as a model of inflammatory tissue factors. Therefore the 
following chapters of my introduction will address our current knowledge on human TSLP 
biology, and its role in the immune system through the activation of DCs.  
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1.5 THYMIC STROMAL LYMPHOPOIETIN BIOLOGY IN HUMANS 
 

TSLP is a cytokine secreted by epithelial cells and keratinocytes at the barrier surfaces like 
the skin and the mucosa. It is detected in atopic dermatitis lesional skin and not in healthy 
skin or non-lesional skin; this highlights its important role in allergic disorders [133]. In 
humans the main responders to this cytokine are the DCs [134]. TSLP primed DCs (TSLP-
DCs) induce Th2 cells and are closely linked to the initiation of the allergic immune responses 
[133]. Nevertheless a homeostatic role has been attributed to TSLP -DCs in the thymus and 
the periphery [135, 136]. Although mice studies have greatly helped us to understand TSLP 
role in the immune system, TSLP biology in humans differs in comparison to the mouse 
model.  

The purpose of this chapter is to review the knowledge gathered until now about human TSLP 
and its implications in health and disease. I will present first TSLP and TSLP receptor 
characteristics followed by TSLP effects on DCs and its role in allergic disorders and immune 
tolerance. At the end I will present in depth two main studies addressing TSLP –treated PDC 
and DC functions in immune tolerance and TSLP-treated LC implication in allergy.   

 

1.5.1 TSLP AND TSLP RECEPTOR 
 

TSLP was first identified in the supernatants of a murine thymic stromal cell line. It was 
described as a factor supporting B cell growth and thymocyte survival [137]. Later on, this 
factor was cloned in mice and humans and defined as a member of the hematopoietic 
cytokines family [134, 138, 139]. The homology between the human and mouse protein was 
found to be poor (43% of the amino acid sequence) [134]. In humans, TSLP messenger RNA 
was identified in skin keratinocytes, lung fibroblasts, bronchial epithelial cells, mammary 
epithelial cells, smooth muscle cells and activated mast cells [133]. By inmmunohistological 
techniques, TSLP has been found in the crypts of the tonsillar epithelium, the Hassals 
corpuscles in the thymic stroma and the apical layers of lesional skin in atopic dermatitis 
[133, 135].  

The TSLP receptor was cloned in mice and humans as a heterodimeric receptor constituted by 
the TSLPR chain and the IL-7Rα chain [140, 141]. It was found that TSLP binds to its 
receptor with high affinity only if the two chains are expressed. Moreover, the IL-7Rα chain 
is needed to trigger an intracellular signal [141]. In the case of TSLPR the homology between 
mice and humans was also found to be poor (39% aminoacid sequence). 

The TSLP receptor complex has a restricted expression. Both chains of the receptor are 
expressed mainly by dendritic cells [134].  It has been reported that CD4T cells can also 
respond to TSLP in vitro [142]. Although this has been well established in mice, in humans 
CD4T cells do not seem to co-express both chains of the receptor, or do it very poorly 
considering the levels reached by DCs [134]. 
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TSLP signaling pathway implicates the phosphorilation of STAT3 and STAT 5 [143]. These 
factors are activated by several other cytokines. In the case of human DCs, TSLP activates the 
JAK-STAT pathway by inducing the phosphorilation of janus activating kinases 1 and 2. It 
was shown that it also induces the phosphorilation of STAT 1, 4 and 6, AKT, and the MAPKs 
ERK and JNK. Finally it triggers the nuclear translocation of the NF-κB members, p50, p52 
and RelB [143]. However the study of TSLP receptor signaling on human primary DCs is 
very difficult due to the scarcity of these cells and the detailed signaling pathway is still 
unknown. A recent study by Pandey et al on a murine pro-B cell line (Ba/F3) transfected with 
the human TSLPR complex implicates additional molecules in the signaling pathway of TSLP 
[144]. This last study suggest that different members of the Src and Tec kinases families (Btk, 
Lyn and Tec), and the protein phosphatases Ptpn6 (Shp-1) and Ptpn11 (Shp2) participate in 
the protein complex activated downstream TSLP signaling.  

 

1.5.2 TSLP EFFECTS ON HUMAN DENDRITIC CELL FUNCTION 
 

TSLP strongly activates DCs in vitro. It triggers the up regulation of MHC class I molecules 
and of costimulatory molecules CD80, CD83, CD86 and CD40 [133]. It also enhances DC 
survival in culture. TSLP-DCs, as opposed to LPS, CD40L or IL-7 treated DCs do not secrete 
IL-12, IL-6 or IL-1 α/β, cytokines described as Th1 polarizing signals. Instead, they were 
shown to produce large amounts of the chemokines CCL17 (TARC) and CCL22 (MDC), IL-8 
and eotaxin-2 known to recruit Th2 cells, neutrophils and eosinophils respectively [133]. 
Moreover, TSLP-DCs induce a potent proliferation of allogenic naïve CD4 T cells in vitro 
and the primed T cells produce high levels of IL-4, IL-5 and IL-13 compared to DCs 
stimulated with LPS, CD40L or IL7 [133]. These T cell cytokines are characteristic of the 
Th2 profile. Nevertheless, this Th2 profile is unconventional as CD4 T cells primed by TSLP-
DCs do not secrete IL-10 but considerable levels of TNF-α. Therefore, as opposed to a 
conventional Th2 profile it has been named “inflammatory Th2 profile” [133]. In the context 
of allergic inflammation, IL-10 is recognized as an anti-inflammatory cytokine whereas TNF-
α is one of the most potent pro-inflammatory cytokines involved [145, 146]. Thus the 
inflammatory Th2 cells primed by TSLP-DCs have a critical role in the development of 
uncontrolled allergic inflammation. 

It has been shown that TSLP-DCs capacity to induce the inflammatory Th2 profile is 
mediated by the up-regulation of the surface molecule OX40L [147] (Figure 1-8). Indeed, the 
use of a neutralizing antibody against OX40L changed the T cell profile induced by TSLP-
DCs to a profile characterized by the absence of Th2 cytokines and TNF-α and the secretion 
of IL-10. The current model proposes that the OX40L expression by human TSLP-DCs in the 
absence of IL-12 secretion, induces the secretion of the Th2 cytokines and TNF-α, whereas, 
the presence of IL-12 induces a Th1 profile and the subsequent production of IL-10 [143]. 
The IL-12 production is dependent on the activation of STAT4 and interferon regulatory 
factor 8 which are not induced by TSLP. In contrast, OX40L promoter has NF-κB binding 
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sites, and it is known now, that is the p50 unit that mediates its transcription upon TSLP 
binding [143](Figure 1-8). 

In conclusion, TSLP generates an environment for Th2 response development, first, by 
inducing Th2-attracting chemokines, and second, by inducing Th2 cells through the up-
regulation of OX40L in the absence of IL-12.  

 

 

Figure 1-8 : TSLP induces a Th2 profile. Adapted from Ito, T. et al 2012.  

TLR ligands and CD40L induce the activation of STAT4 and IRF8 leading to the secretion of IL-12 
and the priming of a Th1 response. By contrast TSLP does not induce STAT4 and IRF8 activation. It 
induces OX40L in an Nf-κB dependent way; in the absence of IL-12, OX40L triggers a Th2 response. 
Through STAT5 and 6 activation, TSLP triggers the secretion of CCL17 and CCL22 chemokines, 
characterizing further the Th2 response.  

 

1.5.3 TSLP AND ALLERGIC DISORDERS 
 

The different allergic states are characterized by an exaggerated immune response against a 
harmless antigen. The type of T cell response linked to allergy is the previously mentioned 
Th2 response.  

TSLP has been linked for a long time to different allergic disorders. First, because it was 
found to be present in the skin lesions of patients suffering from atopic dermatitis and second 
because it induces an inflammatory Th2 response [133]. Moreover, the human TSLP gene is 
found close by the Th2 cytokine gene cluster locus [134].  
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TSLP production has been reported not only in atopic dermatitis, but also in other allergic 
disorders such as atopic asthma [148], allergic rhinitis [149] and atopic keratoconjuntivitis  
[150]. 

In the case of atopic dermatitis, elevated serum TSLP levels were reported in children [151] 
although it has not been possible to detect TSLP in adult serum.  In the case of atopic asthma, 
TSLP has been reported in the broncoalveolar fluids of the patients, correlated with the 
severity of the disease [148], but it is not known if the levels in serum are elevated. Allergic 
rhinitis is often linked to asthma. It has been reported that TSLP is produced in these patients 
in the airway mucosa [149]. Finally in atopic keratoconjuntivitis, TSLP is produced by the 
epithelial cells of the cornea [150]. 

In the case of all these allergic disorders, TSLP-DCs first help in the recruitment of Th2 cells 
through the secretion of CCL17 and CCL22. The chemokines IL-8 and eotaxin-2 attract also 
neutrophils and eosinophils to the site of inflammation. TSLP also activates mast cells to 
produce Th2 cytokines in the presence of IL-1β and TNF-α [152].  These initial steps already 
trigger an innate phase of allergic inflammation. Then, once in the secondary lymphoid organs 
TSLP-DCs prime naïve CD4+ and CD8+ T cells towards inflammatory Th2 cells that will be 
further recruited to the inflammatory site [133, 153] (Figure 1-9).  

The regulatory factors that trigger TSLP production are slowly being elucidated. Today we 
know that TSLP promoter has NF-kB binding sites and that its expression is NF-kB-
dependent. Indeed, TNF-α and IL-1β can induce TSLP production by human airway epithelial 
cell lines in an NF-κB dependent way [154].  This effect can be promoted also by the Th2 
cytokines IL-4 and IL-13 that synergize with TNF-α and IL-1α to induce the TSLP secretion 
[155]. Moreover, 9is –retinoic acid blocks the binding of NF-κB to human TSLP promoter 
and therefore the induction of TSLP by IL1-β on human epithelial cells [156]. Staphylococcus 
Aureus membrane has been shown to induce TSLP production by human keratinocytes in a 
TLR-2/6 dependent way [157]. However the mechanism of this induction and the implication 
of NF-kB pathway in this process are unknown.  

In mice, it has been shown that the in skin keratinocytes TSLP production is regulated by the 
vitamin D receptor and the retinoic X receptor complex. This complex represses the 
production of TSLP. It was shown that vitamin D treatment, leads to vitamin D receptor 
binding and separation from retinoic X receptor therefore blocking the transcription 
repression function of the complex, triggering TSLP production and the development of an 
atopic dermatitis phenotype [158]. In line with these findings, in humans, the topical 
administration of Vitamin D3 analogues induces TSLP production in human psoriatic skin 
lesions [159].  

These results would imply that Vitamin D treatment or oral supplementation could increase 
the risk of developing TSLP-related allergic disorders. However the different clinical studies 
linking Vitamin D3 treatment and serum levels to the development of allergy have given 
controversial results [160]. In many cases researchers have found that the serum levels of 
Vitamin D are inversely correlated to asthma and atopic dermatitis and its severity. Other 
studies have shown that high doses of Vitamin D might, on the contrary, contribute to the 
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development of atopic diseases [160]. Moreover Vitamin D has been shown to induce the 
production of the antimicrobial peptide LL-37 that has been shown to inhibit TSLP 
production by poly-IC treated keratinocytes [161].  These studies show that Vitamin D may 
be implicated in the development of allergy at different levels, and that further larger 
prospective and controlled trials are required to conclude on the benefits and disadvantages of 
Vitamin D treatment in the context of TSLP-linked allergic disorders. 

Besides LL-37, the Th17 cytokines IL-17A and IL-17F have been also shown to inhibit TSLP 
production by human skin explants; furthermore, Th17 polarizing cytokines inhibit the Th2 
response induced by TSLP primed-DCs [162] suggesting that there might be several different 
factors that inhibit TSLP production.  

Even if the initial regulation factors leading to TSLP secretion by keratinocytes and epithelial 
cells are not fully understood, the link between TSLP and allergic disorders is clear enough 
today to justify the development of two blocking antibodies against TSLP that are currently 
been tested by two pharmaceutical societies (MERCK and AMGEN) in phase I trials.  

 

 

Figure 1-9: TSLP role in allergic disorders.  (Adapted from Delost, M. unpublished) 

Allergen and antigen activated keratinocytes secrete TSLP.  Mast cells are activated by the allergen 
and the TSLP and secrete proinflammatory Th2 cytokines. Upon TSLP activation DCs secrete 
chemoattractant chemokines that help in the recruitment of eosinophils, basophils and Th2 
inflammatory CD4T cells. TSLP-stimulated DCs mature and migrate to the secondary lymphoid 
organs to prime an inflammatory Th2 response.  The inflammatory cytokines IL-4, and TNF-α induce 
further TSLP secretion by the skin keratinocytes. The Th2 cytokines are implicated in the activation of 
B cell and the secretion of IgE. 
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1.5.4 TSLP AND IMMUNE HOMEOSTASIS 
 

It has been suggested that TSLP also has an important role in the maintenance of the immune 
homeostasis. 

TSLP is found in the Hassall corpuscles in the human thymic medulla. These structures are 
constituted by thymic epithelial cells, and it has been suggested that it is the place where dead 
thymocytes are removed and developing thymocytes mature [135]. Moreover, human thymic 
DCs can be activated by TSLP. It has been suggested that such TSLP activated DCs in the 
thymic medulla have an essential role in the selection of self-reacting thymocytes and the 
development of T regulatory cells [135]. Indeed isolated human thymic DCs form prolonged 
conjugates with autologous CD4 T cells, secrete IL-2 and bind CD28, all features required for 
T regulatory cells generation [135]. Moreover TSLP-DCs in contrast to IL-7, CD40L, or poly-
IC activated DCs induce the expansion of human single positive thymocytes and their 
differentiation to T regulatory cells characterized by the expression of the transcription factor 
forkhead box 3 (FoxP3)[135].    

In the periphery, under physiological conditions, TSLP is found in the epithelial crypts in the 
human tonsils in close link to activated CD208+ (DC-LAMP) activated DCs [136] . TSLP-
DCs specifically induce the expansion of autologous naïve CD4T cells in the absence of other 
antigens. The resulting T cells have a central memory T cell phenotype 
(CD45RO+CCR7+CD27+CD62L+) and the potential to be further differentiated to Th1 or Th2 
cells. This suggests that TSLP plays an important role in the maintenance of peripheral T cell 
homeostatic expansion [136]. 

This hypothesis is further supported by several studies in mice showing that TSLP can 
promote the differentiation of FoxP3+ T regulatory cells in the periphery and the thymus [163, 
164]. Finally in mice, it has also been shown that TSLP is important to maintain gut 
homeostasis [165, 166]. 

 

1.5.5 TSLP AND DENDRITIC CELL SUBSETS 
 

Most of the information about TSLP effects on DCs comes from studies on total blood DCs. I 
have already discussed that the DC population is heterogeneous. The different DC subsets 
could have specific roles in the development of the TSLP-linked allergic response or the 
TSLP induced immune homeostasis. Nevertheless there are no studies assessing particularly 
the differential effects of TSLP in DC subsets. There are only two studies that address, 
independently and not comparatively, TSLP effects on different types of DCs. First a study by 
Hanabuchi et al on human thymic PDCs [167] , second a study by Ebner et al on human LCs 
[168]. These studies will be described in the following chapters.  
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1.5.5.1 TSLP-STIMULATED PLASMACYTOID DENDRITIC CELLS 
 

Shino Hanabuchi and colleagues, showed that human blood PDCs expressed constitutively 
IL-7Rα and upon stimulation with TLR-7 and TLR-9 ligands (R848 and CpG-B), they 
expressed TSLPR chain as well.  Other stimuli as IL-3 and CD40L, CpG-C, Herpes simplex 
virus, or influenza A also induced the TSLPR chain up-regulation, highlighting that activated 
PDCs can express the complete TSLP receptor complex. They showed that upon TSLP 
stimulation, these cells further up-regulated costimulatory molecules and secreted CCL17 and 
CCL22. Although, consistent with their nature they still produced large amounts of IFN-α. 
They assessed the function of TSLP treated PDCs (TSLP-PDCs) in vitro and showed that they 
induced the expansion and differentiation of thymocytes into FoxP3+ T regulatory cells. 
Moreover, besides the results obtained after culture, they showed that thymic PDCs expressed 
TSLP receptor complex at the steady state and co-localized with T regulatory cells in the 
human thymic medulla. These results position TSLP-PDCs as important players in the 
development of central immune tolerance. 

Interestingly, in this article they compared the T regulatory cells generated by TSLP-DCs and 
the TSLP-PDCs, and showed that the first ones preferentially induced IL-10lo TGF-β hi T 
regulatory cells, whereas the later induced an opposed phenotype, IL-10hi TGF-β lo [167]. 
These two different types of T regulatory cells had been already identified in the human 
thymus and the periphery [169]. Although TSLP-DCs and TSLP-PDCs could contribute 
differentially to their generation, the aim of this publication was not to compare differential 
effects of TSLP on DCs and PDCs. The stimulation of PDCs by TSLP required a previous 
TSLPR induction by different TLR ligands that were not systematically applied to DCs. 
Therefore there is no evidence that the differential induction of Tregs by TSLP-DCs and 
TSLP-PDCs relies on differential effects of TSLP in these populations. The fact that PDCs get 
further activated by TSLP treatment and secrete CCL17 and CCL22 together with the 
capacity of both, TSLP-PDCs and TSLP-DCs to induce Tregs cells shows that TSLP function 
is conserved in DCs and PDCs and highlights more similarities than differences in TSLP 
effects on these populations.  

 

1.5.5.2 TSLP- STIMULATED LANGERHANS CELLS 
 

Susanne Ebner and colleagues studied TSLP effects on human skin LCs. The aim of their 
study was to validate previous TSLP effects observed on blood DCs [133] in primary LCs.  

They used two different protocols to isolate the human skin LCs. One protocol of epidermis 
digestion followed by CD1a+ selection, gave rise to “freshly-isolated LCs”. These cells were 
further treated with or without TSLP or GM-CSF. In the second protocol LCs were allowed to 
emigrate from cultured human skin epidermal explants for three days in the presence or 
absence of TSLP. This resulted in “migratory LCs” [168].   
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In this study, they showed that after TSLP stimulation, freshly-isolated LCs had an increased 
survival at 48h in comparison with GM-CSF stimulated LCs or unstimulated ones. Upon 
TSLP treatment, freshly-isolated LCs cells up-regulated the costimulatory molecules CD86 
and CD83. They already expressed CD40 and CD80 before TSLP stimulation and no further 
up-regulation was observed upon TSLP. 

The “migratory LCs” had a fully activated phenotype even in the absence of TSLP; they 
strongly expressed CD86, CD83, CCR7, and CD40. Nevertheless CD80 was the only co-
stimulatory molecule still further up-regulated by TSLP treatment in agreement with the 
pervious results on TSLP-DCs [133].  

In allogeneic mixed leukocyte reaction experiments, they did not see significative differences 
in T cell proliferation between migratory LCs in the presence or absence of TSLP. The 
freshly-isolated LCs stimulated with TSLP for 48 hours, had a higher immunostimulatory 
capacity than GM-CSF stimulated LCs or unstimulated ones on the same experiments. The 
different behavior of migratory LCs and freshly-isolated LCs in  this experiment is certainly 
due to the fact that emigrated LCs have since the beginning, an activated phenotype and the 
differences between TSLP-treated or untreated LCs become less clear.  

The migratory LCs in the presence or absence of TSLP were further evaluated for their 
capacity to produce CCL17 and IL-12. Migratory LCs, un-stimulated, or stimulated with 
either TSLP or CD40L secreted CCL17. Stimulation with TSLP and CD40L resulted in a 
higher level of CCL17 and in any of the cases they found production of IL-12. In co-culture 
experiments with naïve CD4 T cells, they found that TSLP-treated migratory LCs induced a 
Th2 polarization that was higher than in the absence of TSLP. 

Finally in this study they see that emigrated LCs in the presence of TSLP are more abundant. 
They suggested that TSLP induced the migration of LCs from the skin, in accordance to what 
had been proposed before by Soumelis et al, [133]. Yet, the authors conclusions are based on 
indirect observations, in particular, they did not compare TSLP treated and untreated LCs in 
migration experiments. In their experiments, the higher counts of LCs emigrating from the 
skin in the presence of TSLP can be related to TSLP effects on LC survival.  

The results from Ebner et al. show that TSLP-treated primary LCs behave in a similar way 
than TSLP-DCs. Nevertheless the authors did not compare in their experiments TSLP-LCs 
and TSLP-DCs.  

Although in these two studies, Hanabuchi, et al. and Ebner et al., addressed TSLP effects in 
PDCs and LCs they do not allow us to conclude on the differential effects of TSLP on human 
DC subsets. Furthermore no evidence allows us to conclude on TSLP induction of DC 
migration. These were the subjects that I decided to address specifically during my PhD 
thesis, using a combination of specific and large-scale approaches. 
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2 OBJECTIVES 
 

In this introduction, I summarized the essential role that DCs play in the organization and the 
response of the immune system; from the early studies that resulted in their identification to 
their ontogeny and the recent description of different subtypes in several sites of the human 
body. I also reviewed the studies suggesting that the different DC subsets have different 
functions. Nevertheless I pointed out that functional specialization of DC subsets in humans is 
not as clear-cut as in the mouse system and that we need to look further for specific different 
functions of human DC subsets the immune system. 

Owing to its strong capacity to activate DCs, TSLP is directly linked to DC biology. I 
summed up our current knowledge about human TSLP biology and reviewed the mechanisms 
implicated in TSLP-DCs induction of Th2 responses. Nevertheless we don’t know if and how 
TSLP instructs the DCs to migrate to the lymph nodes to meet the naïve T cells.  

DC subsets might differentially participate in the development of TSLP-linked allergic 
disorders or in the maintenance of the immune homeostasis. Still we do not know if different 
DC subsets can respond to TSLP and if they respond in the same way.  

In this context, I decided to focus my PhD work on: 

1- The differential effects of TSLP on different subtypes of DCs. 

2- The induction of DC migration by TSLP. 

3- The mechanisms implicated in TSLP-DC migration.  

The study of the differential effects of TSLP on DC subsets led me to the observation that 
TSLP induced a particular skin-homing pattern of chemokine receptors on blood BDCA-1+ 

DCs. These findings led me to explore if TSLP was implicated in the recruitment of skin-DC 
precursors or the generation of skin-DCs under inflammatory conditions. I found that TSLP in 
combination with TGF-β induced the differentiation of blood BDCA-1+ cells into LCs. This 
work will be presented as a submitted manuscript, in the first section of the results chapter. 

I joined an ongoing project, in the team of V. Soumelis, that addressed whether TSLP could 
trigger human DC migration or not. By directly assessing the migratory capacity of TSLP 
treated DCs in comparison to other activating stimuli; we showed definitive evidence of the 
induction of migration of DCs by TSLP. These results will be presented as a published article, 
in the second section of the results chapter. 

As a further step, I decided to study which were the molecular mechanisms implicated in 
TSLP-induced DC migration. I explored the involvement of chemokines and their receptors in 
this process. These results will be presented as a manuscript in preparation in the third and last 
part of the results chapter. 
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DENDRITIC CELL ISOLATION 

 

Dendritic cell isolation from human blood 

Buffy coats were obtained from healthy adult blood donors at the Saint Louis hospital site of 
the “Etablissement Français du Sang”. PBMC’s were isolated by Ficoll density gradient 
centrifugation (Ficoll-Paque; GE Healthcare). Total DC fraction was enriched using the Pan-
DC Enrichment kit (EasySep; Stem cell). Total DCs, (Lineage- CD11c+ CD4+) and DC 
subsets, (Lineage- CD11c+ CD4+ BDCA-1+ or Lineage- CD11c+ CD4+BDCA-3+) were 
purified to 99% by FACS sorting (ARIA II BD).   

 

Dendritic cell isolation from human tonsils 

Tonsils from healthy patients undergoing tonsillectomy were obtained from the “Hôpital 
Necker” (Paris, France) in accordance with hospital ethical guidelines. Samples were cut into 
small fragments, digested with 0.8 mg/ml Collagenase IV (Worthington) in the presence of 25 
ug/ml DNase (Roche) for 15 min at 37°C in CO2 –independent medium (Gibco). After 
incubation the supernatant was recovered and the digestion was repeated 2 or 3 times. The 
remaining tissue was filtered on a 40-µm cell strainer (BD) and washed in PBS. Light density 
cells from this suspension were isolated by Ficoll density gradient centrifugation (Ficoll-
Paque; GE Healthcare). DCs were enriched by depletion of cells expressing CD3, CD15, 
CD19, CD56, CD14 and CD235a using antibody-coated magnetic beads and magnetic 
columns according to the manufacturer’s instructions (Miltenyi Biotec). Tonsillar DCs 
subsets, (Lineage- CD11c+ CD4+ BDCA-1+ or Lineage- CD11c+ CD4+BDCA-3+) were 
purified to 99% by FACS sorting (ARIA II BD).   

 
FLOW CYTOMETRY 

Nonspecific binding and cell adhesion were blocked using PBS supplemented with 1% human 
serum (BioWest) and EDTA 2mM (Gibco). Cells were stained for 15 minutes at 4 degrees 
with different combinations of specific antibodies or their isotype-matched control antibodies. 
DAPI was always added before acquisition in a LSRII or Fortessa (BD) analysers. Data were 
analyzed with FlowJo software (Tree Star). The list of the antibodies used during this study is 
presented in the following table. 
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Table 3-1 : List of the antibodies used during this study. 

 

CELL CULTURE 

DC subsets from blood and tonsils were seeded at 1 × 106/ml in flat-bottom 96-well plates in 
RPMI containing 10% FCS, 1% pyruvate, 1% HEPES, and 1% penicillin-streptomycin 
(Gibco). Cells were cultured for different times in the absence (untreated) or presence of 50 
ng/mL TSLP (R&D Systems).When indicated, other treatments were used. When stated in the 
text, 200 ng/mL PTX (Calbiochem), 2.5 ng/mL TNF-α (R&D Systems), 1 μg/mL 
lipopolysaccharide (LPS; Sigma-Aldrich), 100 ng/mL GM-CSF (Miltenyi) or 10ng/ml TGF-β 
(Prepotech) were added to the culture medium. Cell death after culture was assessed using 
DAPI and AnnexinV (Miltenyi Biotec) double staining by FACS. 

 

CD34-DERIVED LANGERHANS CELL GENERATION 

Blood CD34+ cells were isolated from PBMCs by positive selection using anti-CD34-coated 
magnetic beads and magnetic columns according to manufacturer’s instructions (Miltenyi). 
CD34+ cells were cultured for 9–10 days in Yssel medium supplemented with 10% fetal calf 

Antibody Fluorochrome Company Antibody Fluorochrome Company
Annexin FITC R & D anti-CD3 FITC BD
anti-BDCA-1 PE BioLegend anti-CD34 PE BD
anti-BDCA-1 PerCP eFluor 710 eBioscience anti-CD4 PECY5 Immunotech
anti-BDCA-3 APC Miltenyi anti-CD4 APC Miltenyi
anti-BDCA-3 PE Miltenyi anti-CD4 VIOB Miltenyi
anti-BDCA-3 Vioblue Miltenyi anti-CD4 VioGreen Miltenyi
anti-CCR1 AF647 BioLegend anti-CD40 FITC BD
anti-CCR2 AF647 BioLegend anti-CD45 APCCY7 BD
anti-CCR4 PECY7 BD anti-CD64 FITC BD
anti-CCR5 AF647 BioLegend anti-CD80 FITC BD
anti-CCR6 APC BD anti-CD80 AF700 ExBIO
anti-CCR7 FITC BD anti-CD83 FITC BD
anti-CD11b PECY7 BioLegend anti-CD83 PERCP/CY5.5 BioLegend
anti-CD11c APC BD anti-CD83 FITC BD
anti-CD11c PE BD anti-CD86 FITC BD
anti-CD11c PECY5 BD anti-CX3CR1 BIO eBioscience
anti-CD11c PECY7 BioLegend anti-CXCR1 APC BD
anti-IL7Rα FITC eBioscience anti-CXCR2 FITC BioLegend
anti-IL7Rα PE eBioscience anti-CXCR3 APC BD
anti-CD14 FITC BD anti-CXCR4 PECY7 BioLegend
anti-CD14 QDOT605 Invitrogen anti-E-cadherine APC R & D
anti-CD16 FITC BD anti-EpCAM PerCP/Cy5.5 BioLegend
anti-CD19 FITC Miltenyi anti-FcεPRI PE eBioscience
anti-CD1a FITC BD anti-HLA-DR AF700 BioLegend
anti-CD1a PECYY5 BD anti-HLA-DR APC eFluor 780 eBioscience
anti-CD206 APC BioLegend anti-TSLPR APC Biolegend
anti-Langerin PE Immunotech anti-TSLPR PE eBioscience
anti-Langerin FITC Miltenyi Streptavidin PECY7 eBioscience
anti-CD209 BIO Miltenyi
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serum (FCS), penicillin/streptomycin and 50 ng/ml GM-CSF (Miltenyi), 100 ng/ml Flt3-
ligand (R&D Systems), and 10 ng/ml TNF-α (R&D Systems). Culture media and cytokines 
were refreshed on day 5 of culture and 10ng/ml TGF-β (Prepotech) was added for the last 4 
days of culture. DC subsets were isolated by cell sorting on a FACSAria instrument after 
staining for CD1a, CD207 and CD14. 

 

BLOCKING TSLP EXPERIMENTS 

For some experiments TSLP-treated or untreated DC culture conditioned media were used. 
TSLP blocking antibody or its correspondent isotype control (100 ug/mL; R&D Systems) 
were added to the conditioned media for one hour at 37°C before usage. A second set of DCs 
were cultured for 24 hours in these TSLP-blocked or unblocked conditioned media. 

 

SUPERNATANT ANALYSIS 

Total DCs and DC subsets supernatants were collected after 20 to 24 hours of culture in 
RPMI medium (Gibco), containing 10% FCS, 1% pyruvate, 1% HEPES, and 1% penicillin-
streptomycin with or without TSLP and were kept at -80°c until assayed. Global chemokine 
production was assessed for 3 independent donors, using a 48 human chemokine protein array 
(Raybiotech) following the protocol of the manufacturer. Specific measurements for human 
CCL17 and CCL22 were done by ELISA (R&D Systems). CCL3, CCL4, CCL5, CXCL8, 
CXCL10 and CX3CL1 were measured by Cytometric Bead Array Flex Set (BD Bioscience). 
MMP12 was measured by Luminex analysis technology (Millipore). 

 

MORPHOLOGICAL ANALYSIS 

 

Immunofluorescence 

To determine the cytoskeleton architecture, DCs were cultured on poly-lysine–coated 
coverslips for 24 hours and examined by epifluorescence microscopy. Cells were fixed in 4% 
paraformaldehyde in PBS for 15 minutes at room temperature, permeabilized by 0.05% 
Saponin in PBS 0.2% BSA for 10 minutes at room temperature. For localization of 
filamentous actin, cells were incubated with Cy3-phalloidin (Invitrogen) for 45 minutes. 
Localization of α-tubulin was achieved by incubation for 1 hour with a rat anti–human α-
tubulin antibody (Serotec) followed by incubation for 30 minutes with Alexa-488 goat anti–
rat (Invitrogen). Coverslips were mounted in Fluoromount (Sigma). Fluorescence images 
were obtained by an epifluorescence microscope (Leica) fitted with appropriate filter sets.  

Polarization was assessed after ImageJ picture analysis, by calculating the ratio between the 
two main perpendicular axes for each cell. 
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Electron-microscopy 

Freshly sorted blood BDCA-1+ dendritic cells were cultured with 50ng/ml of TSLP (R&D 
Systems) and 10ng/ml TGF-β (Prepotech) for three days in RPMI containing 10% FCS, 1% 
pyruvate, 1% HEPES, and 1% penicillin-streptomycin (Gibco). After three days, cells were 
stained for CD1a and Langerin. Sorted CD1a+Langerin+ cells were seeded in Alcian Blue-
Coated coverslips (Sigma) for 1 hour.  Cells were fixed in 2 % glutaraldehyde in 0.1 M 
phosphate buffer, pH 7.4 for 1h, postfixed for 1h with 2% buffered osmium tetroxide, 
dehydrated in a graded series of ethanol solution, and then embedded in epoxy resin. Images 
were acquired with a digital camera Keen View (SIS) mounted on a Tecnai 12 transmission 
electron microscope (FEI Company) operated at 80kV. 

 

MIGRATION EXPERIMENTS 

The transwell system was used to test cell migration. This system is constituted by an upper 
and a lower compartment separated by a filter that allows the passage of small cells. Cells that 
are seeded in the upper compartments and that have migrated can be recovered in the lower 
compartment and can be counted. 

Collagen type I (5 μg/mL rat tail collagen type I; BD Bioscience) coated transwells (Costar, 
3-μm pores) were placed in 96-well plates filled with 200 μL of RPMI containing 10% FCS, 
1% pyruvate, 1% HEPES, and 1% penicillin-streptomycin (Gibco) medium. Overnight treated 
DCs (1 × 106/mL) with and without TSLP and PTX were re-suspended in 50 μL of  culture 
medium, added to the upper chamber of the transwells, and incubated at 37°C for 6 hours. 
SDF-1 (100 ng/mL; Prepotech) was added to the lower chamber as a positive control to 
induce DC migration where mentioned. After 6 hours, living cells (DAPI negative) in the 
upper and the lower chambers of the transwell were counted by FACS using counting beads 
(Polybead; Biovalley). Results were expressed as percentage of total counted viable DCs. 

 
CD4 T HELPER DIFFERENTIATION 

CD4 naïve T cells (CD4+CD45RA+CD25-CD45RO-) were isolated from blood buffy coats 
after Ficoll density gradient centrifugation (Ficoll-Paque GE Healthcare), enrichment (CD4 T 
cell Isolation kit; Miltenyi Biotec) and further FACS purification; Purity was higher than 
98%. Naïve CD4 T cells were cultured with allogeneic DCs or DC subsets at 5:1 ratio in 
XVIVO 15 medium (Lonza). After 6 days of co-culture, T cells were washed, counted, re-
seeded at 1 × 106/mL in flat-bottom 96-well plates and re-stimulated for 24 hours with anti-
CD3/CD28 microbeads (Dynal). To obtain typical Th0, Th1, Th2 and Th17 profiles, naïve T 
cells were stimulated with polarizing cytokines for 6 days before re-stimulation, as previously 
reported [170]. Th0 profile was obtained in the absence of polarizing cytokines, Th1 was 
obtained using 10 ng/ml of IL-12 (R&D), Th2 was obtained using 25 ng/ml of IL-4 (R&D) 
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and Th17 was obtained using 10 ng/ml of IL-1β (R&D), 20 ng/ml of IL-6 (R&D), 100 ng/ml 
IL-23 (R&D) and 1 ng/ml of TGF-β (Prepotech).  

Cell culture supernatants were collected and cytokine measurement was performed by 
Cytometric Bead Array Flex Set (BD Biosciences) and multiplex bead assay (Millipore, 
Milliplex MAP Human TH17 Magnetic Bead Panel) on a Bio-Plex-200 reader (Biorad). 

 
GENE EXPRESSION PROFILING 

Total RNA was extracted from primary human blood dendritic cells, directly after sorting or 
after 6 hours culture with and without TSLP (50 ng/mL; R&D Systems) or 2.5 ng/mL TNF-α 
(R&D Systems), using the Rneasy micro kit (Qiagen). Samples were then double amplified 
and labeled according to the protocol recommended by Affymetrix for hybridization to 
Human Genome U133 Plus 2.0 arrays. Microarray data were normalized using the GC-RMA 
algorithm and expression levels were centered, reduced and log-normalized on base 2. Probes 
with no annotation were removed from analysis. Genes with small profile ranges (in the low 
50% of the global distribution) were filtered out using the Matlab function generangefilter. 
Differential analysis was done with a t-test (function mattes). A gene was declared as 
differentially expressed when exhibiting a p-value of less than 5% and an absolute fold-
change of at least 2. 

 

STATISTICAL ANALYSIS 

The statistical analysis was performed using Prism (GraphPad Software). Comparisons 
between different conditions were performed using the Wilcoxon paired test. Statistical 
significance was retained for p values below 0.05.  The principal component analysis (PCA) 
of T cell profiles was performed using the FactoMineR package [171] of the R software 
(version 2.15.0). The two first components of the PCA resume about 80% of the total inertia. 
The barycenters were computed from the set of observations in each condition and projected 
into the PCA plot. In addition, 95% confidence ellipses were drawn around the barycenters. 

 

QUANTITATIVE PCR 

Total RNA was extracted from DC subsets after 24 hours culture with and without TSLP (50 
ng/mL; R&D Systems) using the Rneasy micro kit (Qiagen). To synthesize cDNA I used a 
mix containing random hexamers, oligo (dT) 15 (Promega) and the reverse transcriptase 
Superscript II (Invitrogen). Transcripts were quantified by real-time quantitative PCR on a 
Light Cycler 480 II (Roche) using TaqMan Gene Expression Assays (Applied Biosystems) 
and QPCR mix (Nalgene). We used the flowing probes from Applied Biosystems. The 
following probes were used B2M (Hs99999907_m1); GAPDH (Hs99999905_m1); HPRT1 
(HS 99999909_m1); RPL34 (Hs00241560_m1); CCL3 (HS 00234142_m1); CCL4 
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(Hs99999148_m1); CCL17 (HS 00171074_m1) and CCL22 (Hs01574247_m1). All the Cts 
were normalized to the housekeeping gene B2M (beta 2 microglobulin). 

 



 

 

 

 

 

RESULTS 
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Human blood BDCA1 dendritic cells differentiate into bona fide Langerhans cells with 
Thymic Stromal Lymphopoietin and TGF-β. 

 

Carolina Martinez-Cingolani, Maximilien Grandclaudon, Mabel Jouve, Raphaël Zollinger, 
Vassili Soumelis. 

 

 

It has been shown that in vitro human monocytes and CD34+ bone marrow precursors 
stimulated with different combinations of cytokines, can give rise to DCs and LCs [23, 38]. 
This suggests that in humans, as in mice, DCs and LCs can be generated by such precursors 
under inflammatory conditions. The observation that TSLP triggered a skin-phenotype on 
blood DCs encouraged us to study the implication of this inflammatory cytokine on skin-DC 
generation.  

We started this study first analyzing the expression of skin-related molecules on 
transcriptomic data of TSLP-DCs. We found TSLP-DCs strongly up-regulated CD1a, a 
molecule characterizing dermal DCs and LCs. Furthermore, TSLP-DCs up-regulated CD207 
(Langerin) and CCR6 which are related specifically to human epidermal LCs.  

As the human blood DC compartment is constituted by two different subsets, BDCA-1+ and 
BDCA-3+ cells, we decided to check which of these subsets was contributing to the observed 
phenotype. We found that only the BDCA-1+ cells were able to up-regulate the CD1a 
molecule upon TSLP treatment. However we could not detect CD207 protein expression. In 
previous works, an essential role in LC generation had been accorded to TGF-β [35]. 
Accordingly, when we stimulated BDCA-1+ DCs with a combination of TGF-β and TSLP we 
obtained a population of cells co-expressing CD1a and CD207. We further checked if this 
population could also be generated from tonsillar BDCA-1+ DCs finding that only blood 
BDCA-1+DCs could differentiate into CD1a+CD207+ cells. By electron-microscopy we 
detected Birbeck granules in the CD1a+CD207+ cells, defining them as LCs. Therefore we 
could conclude that TSLP and TGF-β induced the differentiation of blood BDCA-1+ DCs into 
LCs (TSLP-LCs).  

Further characterization showed that TSLP-LCs were activated and had a skin-homing 
chemokine receptor phenotype. At the functional level, we assessed the capacity of TSLP-
LCs to induce naïve T cell activation and polarization. We found that similarly to TSLP-DCs 
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and to primary LCs, TSLP-LCs induced aTh2 differentiation. However TSLP-LCs induced 
IL-9 and the secretion of TNF-α and IL-6 by T helper cells. 

Overall our results show first that human blood BDCA-1+ DCs have a progenitor capacity. 
Secondly they provide evidence of functional differences in DC subsets from blood and 
tonsils. Finally they introduce a novel role of TSLP in the ontogeny of LCs under 
inflammatory conditions. This work opens new perspectives in the study of inflammatory 
cytokines differential effects on DC subsets. 
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Abstract 

The ontogeny of human Langerhans cells (LCs) under inflammatory conditions remains 

poorly characterized, in particular the nature of LC precursors and the factors that may drive 

LC differentiation. Here we report that Thymic Stromal Lymphopoietin (TSLP), a 

keratinocyte-derived cytokine involved in skin inflammation, cooperates with transforming 

growth factor (TGF)-β for the generation of LCs. We show that primary human blood BDCA-

1+, but not BDCA3+ dendritic cells (DCs), stimulated with TSLP and TGF-β harbor a typical 

CD1a+Langerin+ skin LC phenotype. Electron microscopy established the presence of Birbeck 

granules, an intra-cellular organelle specific to LCs. LC differentiation was not observed from 

tonsil BDCA1+ and BDCA3+ subsets. TSLP-LCs had a mature phenotype with high surface 

levels of CD80, CD86, and CD40. They induced a potent CD4+ T helper cell expansion, and 

differentiation into Th2 cells with increased production of TNF-α and IL-6, as compared to 

CD34-derived LCs. Our findings establish a novel LC differentiation pathway from BDCA1+ 

blood DCs relevant to skin inflammatory conditions. Therapeutic targeting of TSLP may 

interfere with skin LC repopulation from circulating precursors. 
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Introduction 

Langerhans cells (LCs) of the epidermis are the main antigen presenting cells in the skin, and 

play a major role in maintaining homeostasis [1, 2], inducing a protective immune response to 

invading pathogens [3], but also promoting and sustaining pathogenic chronic skin 

inflammation [4, 5]. Given the importance of skin as a natural interface with the environment, 

it is critical to maintain a pool of epidermal LCs in a regulated manner at steady state, and 

also allow for the recruitment and/or de novo differentiation of LCs during inflammation. In 

the mouse, it was shown that LCs homeostasis at steady state could be achieved through the 

differentiation of local proliferating precursors [6]. During inflammation, circulating 

monocytes were the main source of newly differentiated LCs [7], in a process depending on 

M-CSF [8, 9] and TGF-β [10, 11].  

In the human, LC ontogeny, as well as the link between LCs and other dendritic cell (DC) 

subsets has remained controversial. Human LCs were shown to be of hematopoietic origin 

[12, 13]. In vitro studies have shown that CD1a+ LC-like cells could be differentiated from 

CD34+ hematopoietic progenitors [14]. Monocytes were also described as a possible source of 

LCs when cultured with GM-CSF, IL-4 and TGF-β [15]. After transplantation, LCs of donor 

origin have been observed in the skin of the host for up to 10 years [16], suggesting the 

presence of a local precursor that remains to be identified. However, the pathways leading to 

LC differentiation during inflammation are still poorly defined, both in terms of 

differentiation factors, and of possible LC precursor cells. In particular, it is not known 

whether blood CD1a-negative DCs may serve as LC precursors and acquire a bona fide LC 

phenotype. The recent identification of the BDCA1+ and BDCA3+ subsets of human DCs [17] 

raises additional questions on their ability to further differentiate into another DC subset.  
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Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine playing a critical 

role in skin inflammation, in particular atopic dermatitis [18], and psoriasis (Volpe, 

unpublished), by strongly activating blood DCs [19].  Through a systematic transcriptomic 

analysis of TSLP-activated DCs, we unexpectedly identified markers that have been 

associated with a skin-homing potential as well as with a LC phenotype. Addition of TGF-β 

synergized with TSLP leading to the differentiation of bona fide Birbeck granule-positive 

LCs. 
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Results and discussion 

TSLP induces a skin-like transcriptional signature in human blood DCs 

In order to get a detailed insight into molecular changes induced by TSLP in human blood 

DCs, we performed a transcriptomic analysis of TSLP-activated blood DCs, as compared to 

freshly purified, Medium-, and TNF-activated DCs after 6 hours of culture (Figure 1). 

Affymetrix U133 plus 2.0 chips were used for transcriptomic analysis of 5 independent 

donors (data will be available on GEO). Among TSLP differentially-regulated genes, we 

identified molecules associated with skin homing (CCR6), LC phenotype (CD1a, CD207 

(Langerin), and LC function (MMP12, CCL17), as determined by a literature-based survey 

(Figure 1A). CD205 was also described on LCs [20] and up-regulated by TSLP (Figure 1A). 

Conversely, genes not expressed in LCs were also not found among TSLP-induced genes, for 

example CD209 (DC-Sign) and CD14 (Figure 1A). Overall, this revealed a LC-like signature 

suggesting that TSLP may be involved in LC differentiation of blood DCs. 

TSLP and TGF-β synergize for the differentiation of Langerhans cells from blood 

BDCA1+ DCs 

Langerhans cells are usually defined by their co-expression of CD1a and CD207. First, we 

used flow cytometry to assess the expression of CD1a and CD207 on TSLP-activated blood 

DCs after sorting of the BDCA1+ and BDCA3+ subsets. We found a strong and consistent 

induction of CD1a by TSLP in the BDCA1+ subset, matching our microarray data, but not in 

BDCA3+ DCs (data not shown). However, CD207 was induced inconsistently and at low 

levels (Median 6.2%; Range 2.1 to 33.5 %) (Figure 2A). Because of the importance of TFG-β 

in skin homeostasis, and its established role in the differentiation of LCs [11], we 

hypothesized that it may potentiate the effects of TSLP. Although TGF-β alone induced 

significant amounts of CD207 after 24 hours on BDCA1+ DCs, it did not promote CD1a 
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expression, which indicates a partial LC phenotype (Figure 2A). Importantly, combination of 

TSLP and TGF-β resulted in a synergistic effect on BDCA1+ DCs with differentiation of a 

large proportion (25.6±2.2%) of CD1a+CD207+ cells (Figure 2A), a phenotype typical of LCs. 

However, BDCA3+ DCs remained refractory to LC differentiation even with the TSLP+TGF-

β combination (Figure 2A). 

A standard method to induce human LC differentiation is from CD34+ hematopoietic 

progenitors in the presence of Flt3-ligand, TNF-α, GM-CSF and TGF-β [2, 21]. LC 

differentiation was effective in 85% of normal blood donor buffy coats (11 of 13), with an 

average 4.1±0.8% CD1a+CD207+ LCs (Figure 2A), as compared to a 71% differentiation 

efficiency (32 of 45), with 25.6±2.2% CD1a+CD207+ LCs when using TSLP and TGF-β on 

BDCA1+ DCs. These results show that TSLP and TGF-β induce an effective LC 

differentiation from blood BDCA1+ DCs. In our hands, BDCA1+ DCs were found to be more 

potent LC precursors as compared to CD34 progenitors.  

Our data show that human blood BDCA1+ DCs retain a potential to differentiate into another 

DC subset, suggesting that this subset is not terminally differentiated. In order to address the 

differentiation potential of secondary lymphoid tissue DCs, we repeated these experiments 

using BDCA1+ and BDCA3+ subsets purified from human tonsils. Neither of these subsets 

was able to differentiate into LCs with TSLP and TGF-β (Figure 2A), suggesting that 

lymphoid tissue environment may induce a block in their differentiation potential.  

Since tonsil DCs, as well as blood BDCA3+ DCs, did not differentiate into LCs in response to 

TSLP, we questioned whether they were able to respond to TSLP. By flow cytometry, 

BDCA1+ and BDCA3+ subsets from both blood and tonsil expressed the two chains of the 

TSLP receptor complex, IL-7R-alpha and TSLPR (Figure 2B). Accordingly, all subsets 

responded to TSLP activation, as assessed by surface CD80 expression (Figure 2B). 
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TSLP-induced Langerhans cells express Birbeck granules 

Although CD1a and CD207 are typical of a LC phenotype, Birbeck granules are the most 

specific and distinctive feature of human LCs [22]. We assessed by electron microscopy the 

presence of Birbeck granules on the CD1a+CD207+ population differentiated from blood 

BDCA-1+ DCs after 1 to 3 days of stimulation with TSLP and TGF-β (Figure 3). On the 

sorted CD1a+CD207+ cells, at day 1, we could not observe any structure reminiscent of the 

double-membrane rod-shaped cytoplasmic organelles typical of Birbeck granules, even with a 

combination of TSLP and TGF-β (data not shown), although we could not exclude a low 

number of these structures that could have been missed by careful examination. Nevertheless, 

typical Birbeck granules appeared by day 3 in the sorted DCs cytoplasm (Figure 3), 

suggesting a minimum amount of time required for organelle formation. The CD1a and 

CD207 single positive, as well as double negative cells, were consistently negative for 

Birbeck granules (data not shown). 

TSLP-induced Langerhans cells bear a mature phenotype and skin-homing receptors 

In order determine   the phenotype of TSLP-induced LCs (TSLP-LCs), we assessed the 

expression of surface markers characteristic of DC lineage, maturation state, and homing 

receptors. TSLP-LCs expressed higher levels of CD1a and CD207 as compared to blood 

BDCA-1+ DCs treated with optimal doses of either TSLP or TGF-β alone, confirming the 

synergistic effect of these cytokines on LC generation (Figure 4A). We found low levels of 

FcεRI expression as previously reported in skin-isolated LCs [20], and CD206 (Mannose 

Receptor 1) previously reported to be expressed by DCs and macrophages from human 

inflammatory fluids [23]. Other markers of inflammatory DCs such as CD14 and CD11b were 

absent in TSLP-LCs (Figure 4A). In comparison to TSLP-induced LCs, CD34+-derived LCs 

expressed   CD11b and higher levels of CD206 (Supplemental Figures 1 and 2).  
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It has been shown that TSLP strongly activates total human blood DCs inducing the 

expression of HLA-DR, CD80, CD86 and CD40 [18]. Accordingly, TSLP-LCs expressed 

high levels of HLA-DR and CD80 (Figure 4B). Nevertheless they expressed significantly 

lower amounts of CD86 and CD40 as compared to TSLP-treated BDCA-1+ DCs, consistent 

with a down-regulation of these markers by TGF-β.  TSLP-derived LCs were found to 

express lower levels of CD83, CD86 and CD40 in comparison to CD34+ derived LCs but 

higher levels of HLA-DR and CD80 (Supplemental Figures 1 and 2).  

It has been suggested that under inflammatory conditions, LC precursors reach the dermis 

through the expression of the chemokine receptor CCR2. In  a second step, they up-regulate 

CCR6 that allows them to reach the epidermis [6], where E-cadherin mediates their binding to 

keratinocytes [24]. Activated LCs down-regulate E-cadherin and reach the lymph nodes 

through the sequential involvement of CXCR4 [25] and CCR7 [26].  We found that TSLP-

LCs expressed lower levels of CCR2, as compared to medium, TGF-β or TSLP-treated 

BDCA-1+ DCs, but higher levels of CCR6 (Figure 4C). Neither E-cadherin nor the epithelial 

cell adhesion molecule Epcam, characterizing LCs were found to be expressed in any of the 

conditions. TSLP-LCs expressed lower levels of CCR7 and CXCR4, compared to untreated 

and TGF-β-treated BDCA-1+ cells (Figure 4C). These results suggest that under inflammatory 

conditions, CCR2 and CCR6 may act in a coordinated manner to induce the sequential 

recruitment of TSLP-LC to the dermis and then epidermis. CD34+-derived LCs expressed 

CCR2, CCR7, E-cadherin and higher levels of CCR6 than TSLP-LCs (Supplemental Figures 

1 and 2). Therefore CD34+-derived LCs have a mixed skin and lymph node homing 

phenotype.  
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Induction of T-helper (Th) differentiation by TSLP-induced BDCA1-derived LCs 

A major function of LCs is to induce naïve CD4+ T cell activation and differentiation into Th 

effectors. TSLP-LCs induced a 2-3 fold expansion of naïve CD4+ T cells after 6 days of co-

culture, which was slightly higher than CD34-LCs (Figure 5A).  

Primary and CD34-derived skin LCs were shown to induce Th2 differentiation [2]. In our 

study, TSLP-LCs also preferentially induced CD4+ Th cells to produce IL-4, IL-5, and IL-13, 

at levels similar or higher to/than CD34-derived LCs (Figure 5B). This indicates that our 

system recapitulates important features of primary LCs [2]. However, consistent with LCs 

generated under inflammatory conditions, TSLP-LCs induced Th cells producing higher 

levels of TNF-α and IL-6, as compared to CD34-LCs (Figure 5B), which may be closer to 

steady-state LCs. Interestingly, we found that TSLP-LCs, similar to TSLP-DCs that did not 

differentiate into LCs, induced high levels of IL-9 production by Th cells, which were not 

observed with CD34-derived LCs (Figure 5B). IL-9 production by CD4+ T cells has been 

attributed to a subset of Th2 cells that develops into Th9 cells under TGF-β influence [27] and 

has been associated to TSLP-linked allergic disorders [28]. Our results suggest that TSLP 

may trigger intrinsic TGF-β production by BDCA-1+ DCs which supports previous reports of 

autocrine TGF-β signal requirement for LC generation [10]. 

In order to get a global integrated view of Th cytokine profiles generated with different DCs, 

we used principal component analysis, a multivariate approach which reduces the 

dimensionality of the data by extracting the smallest number of components that account for 

most of the variation in our data.  . It appeared that CD34-LC-induced Th profile was closer to 

Medium-DC and TGF-β-DC (Figure 5C), all three DC being potentially more relevant to 

steady-state conditions. TSLP-LCs were more similar to TSLP-DCs than to TGF-β-DCs 

(Figure 5C), suggesting a dominance of the inflammatory environment as represented by 
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TSLP. Importantly, TSLP-LCs were distinct from CD34-LCs at the global Th cytokine profile 

level, confirming that these two subsets have different functional features, and may be 

involved in different types of physiopathological conditions. 

In conclusion we provide definitive evidence that blood BDCA-1+ DCs differentiate into LCs 

in the presence of TSLP and TGF-β. This defines a novel LC differentiation pathway in the 

human. TSLP-LCs had characteristic features of primary epidermal LCs, including expression 

of CD1a and CD207, presence of cytoplasmic Birbeck granules, and priming for Th2 

differentiation. However, they also had distinctive functional features, including induction of 

IL-9, as well as inflammatory cytokines TNF-α and IL-6, in Th cells. Although monocytes 

can differentiate into LCs with GM-CSF, IL-4, and TGF-β [15], the relevance of this cytokine 

combination to physiopathology has remained elusive. Our study provides a direct link 

between the skin inflammatory microenvironment, and LC differentiation, bringing new 

insight into LC generation from blood precursors during inflammation. Future studies may 

determine whether other inflammatory mediators may also harbor an LC differentiation 

capacity. Dissecting DC subset diversity at steady-state and inflammation may facilitate the 

therapeutic manipulation of the immune response, and its tailoring to specific types of 

inflammation. 
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Material and methods 

Samples and cell isolation 

Buffy coats were obtained from healthy adult blood donors at the Saint Louis hospital site of 

the Etablissement Français du Sang. Peripheral blood mononuclear cells (PBMCs) were 

isolated by Ficoll density gradient centrifugation (Ficoll-Paque; GE Healthcare). Total DC 

fraction was enriched using Pan-DC Enrichment kit according to the manufacturer’s 

instructions (EasySep; Stem cell). Total DCs, (Lineage- CD11c+ CD4+) and DC subsets, 

(Lineage- CD11c+ CD4+ BDCA-1+ or Lineage- CD11c+ CD4+BDCA-3+) were purified to 99% 

by FACS sorting (ARIA II BD). Blood CD34+ cells were isolated from PBMCs by positive 

selection using anti-CD34-coated magnetic beads and magnetic columns according to 

manufacturer’s instructions (Miltenyi). Tonsils from healthy patients undergoing 

tonsillectomy were obtained from Hôpital Necker (Paris, France) following the hospital 

ethical guidelines. Tonsils were cut into small fragments and digested with 0.8 mg/ml 

Collagenase IV (Worthington) and 25 ug/ml DNase (Roche) for 15 min at 37°C in C02 –

independent medium (Gibco). After incubation the supernatant was recovered and the 

digestion was repeated 2 or 3 times. The remaining tissue was filtered on a 40-µm cell strainer 

(BD) and washed in PBS. Following Ficoll density gradient centrifugation, DC fraction was 

by magnetic depletion of cells expressing CD3, CD15, CD19, CD56, CD14 and CD235a 

according to the manufacturer’s instructions (Miltenyi Biotec). Tonsillar DC subsets, 

(Lineage- CD11c+ CD4+ BDCA-1+ or Lineage- CD11c+ CD4+BDCA-3+) were purified to 99% 

by FACS sorting (ARIA II BD).   

Flow Cytometry 

Cells were stained with FITC anti-CD3 (BD), FITC anti-CD14(BD) or Qdot605 anti-

CD14(Invitrogen), FITC anti-CD16 (BD), FITC anti-CD19 (Miltenyi), PECy5 anti-CD11c 
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(BD), APC or VioGreen anti-CD4 (Miltenyi), APC eFluor 780 anti-HLA-DR (eBioscience), 

PerCP eFluor 710 anti-BDCA1 (eBioscience),  APC, PE or VioBlue anti-BDCA3 (Miltenyi), 

PE anti-CD207/Langerin (Immunotech) or FITC anti-CD207/Langerin (Miltenyi), PECy5 or 

FITC anti-CD1a (BD), FITC anti-IL7Rα (eBioscience), APC anti-TSLPR (BioLegend), FITC 

anti-CD80 (BD) or AlexaFluor 700 anti-CD80 (ExBio), FITC anti-CD83,  (BD), FITC anti-

CD86 (BD), FITC anti-CD40 (BD), PECy5 anti-CD206 (BioLegend), PECy7 anti-CD11b 

(Biolegend), AlexaFluor 647 anti-CCR2 (BioLegend), APC anti-CCR6 (BD), FITC anti-

CCR7 (BD), PECy7 anti-CXCR4 (BioLegend), PE anti-FcεRI (eBioscience), FITC anti-

CD64 (BD), APC anti-ECadherin (R&D), PECy7 anti-EPCAM (BioLegend) and biotinilated 

anti-CD209 (Miltenyi) followed by PECy7 streptavidin (eBioscience) staining.  

Nonspecific binding and cell adhesion were blocked using PBS supplemented with 1% human 

serum (BioWest) and EDTA 2mM (Gibco). Cells were stained for 15 minutes at 4 degrees 

with different combinations of specific antibodies or their isotype-matched control antibodies. 

DAPI (Sigma-Aldrich) was added before acquisition in a LSRII or Fortessa (BD) analysers. 

Data were analyzed with FlowJo software (Tree Star).  

Cell culture 

Myeloid DC subsets from human blood and tonsils were seeded at 1 × 106/mL in flat-bottom 

96-well plates cultured in RPMI containing 10% heat inactivated fetal calf serum 

(FCS/BioWest), 1% pyruvate (Gibco), 1% HEPES (Gibco), and 1% penicilin-streptomycin 

(Gibco). Cells were cultured for the indicated time in the absence or presence of 50 ng/mL 

TSLP (R&D Systems) and 10 ng/mL of TGF-β (Prepotech). The CD1a+ Langerin+ 

Langerhans cells were sorted on a FACSAria instrument. 

Peripheral blood CD34+ cells were cultured for 9–10 days in Yssel medium supplemented 

with 10% heat inactivated FCS, penicillin/streptomycin 50 ng/ml GM-CSF (Miltenyi), 100 
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ng/ml Flt3-ligand (R&D Systems), and 10 ng/ml TNF-α (R&D Systems). Culture media and 

cytokines were refreshed on day 5 of culture and 10 ng/mL of TGF-β was added for the last 4 

days of culture. CD14+CD1a-, CD14-CD1a+Langerin-, and CD14-CD1a+Langerin+ cells were 

isolated by cell sorting on a FACSAria instrument. 

Electron microscopy 

After 1 and 3 days of culture with TSLP and TGF-β, the BDCA-1+ DCs differentiated into 

CD1a+ Langerin+ Langerhans cells were sorted and seeded in Acian Blue-Coated coverslips 

(Sigma) for 1 hour.  Cells were fixed in 2 % glutaraldehyde in 0.1 M phosphate buffer, pH 7.4 

for 1h, postfixed for 1h with 2% buffered osmium tetroxide, dehydrated in a graded series of 

ethanol solution, and then embedded in epoxy resin. Images were acquired with a digital 

camera Keen View (SIS) mounted on a Tecnai 12 transmission electron microscope (FEI 

Company) operated at 80kV. 

CD4 T helper cell differentiation 

Naïve CD4 T cells (CD4+CD45RA+CD25-CD45RO-) were isolated from blood buffy coats 

after Ficoll density gradient centrifugation (Ficoll-Paque GE Healthcare), enrichment (CD4 T 

cell Isolation kit; Miltenyi Biotec) and further FACS sorting purification; Purity was higher 

than 98%. Naïve CD4 T cells were cultured with allogeneic BDCA-1+ or CD34+-derived 

antigen presenting cells at a 5:1 ratio in XVIVO 15 medium (Lonza). After 6 days of co-

culture, T cells were counted, re-seeded at 1 × 106/mL in flat-bottom 96-well plates and re-

stimulated for 24 hours with anti-CD3/CD28 microbeads (Dynal). Cell culture supernatants 

were collected and cytokine measurement was performed by multiplex bead assay (Millipore, 

Milliplex MAP Human TH17 Magnetic Bead Panel) on a Bio-Plex-200 reader (Biorad). 
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Gene expression profiling 

Total RNA was extracted from DCs, directly after sorting (Ex-vivo) or after 6 hours culture 

with and without TSLP (50 ng/mL; R&D Systems) and TNF-α (2.5 ng/mL; R&D Systems), 

using the RNeasy kit (Qiagen). Samples were then double amplified and labeled according to 

the protocol recommended by Affymetrix for hybridization to Human Genome U133 Plus 2.0 

arrays. The microarray data are available in the (Gene Expression Omnibus) GEO database. 

Data were normalized using the GC-RMA algorithm and expression levels were centered, and 

reduced. Probes with no annotation were removed from analysis. Genes with small profile 

ranges (in the low 50% of the global distribution) were filtered out using the Matlab function 

generangefilter.  

Statistical analysis 

Wilcoxon paired test and paired Student’s t test were performed using Prism (GraphPad 

Software) at a significance level of 5%. The principal component analysis (PCA) of T cell 

profiles was performed using the FactoMineR package [29] of the R software (version 

2.15.0). The two first components of the PCA resume about 80% of the total inertia. The 

barycenters were computed from the set of observations in each condition and projected into 

the PCA plot. In addition, 95% confidence ellipses were drawn around the barycenters.  
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Figure legends 

Figure 1: Gene profile of TSLP-treated blood DCs and skin DCs 

(A) aGene transcripts expression on purified blood DCs directly after sorting (Ex-vivo) or 

after a 6 hour treatment with medium alone or supplemented with TSLP or TNF-α. Genome 

wide expression was determined by Affymetrix chips Human Genome U133 Plus 2.0 

microarray analysis.  bExpression described in the literature by Santegoets [20], Nestle [30], 

Rust [31]and Lundberg [32]. Langerhans cells (LC); Dermal Dendritic Cells (DDC); Not 

determined (nd). Signal intensity levels: -, ≤200; +, 200-500; ++, 500-5000; +++, ≥ 5000. 

(B) Data represent signal intensity levels for the correspondent gene transcripts under the 

different conditions (Ex-vivo n=5, medium and TNF-α n=3, TSLP n=4). 

Figure 2: TSLP and TGF-β induce the differentiation of blood BDCA-1+ DCs into LCs 

(A) Upper panel: Representative flow cytometry density dot plots of CD207 and CD1a 

expression by human blood and tonsillar BDCA-1+ and BDCA-3+ DCs after 24h treatment 

with and without TSLP and TGF-β. Blood CD34+-derived LCs after treatment with Flt3-L, 

TNF-α, GM-CSF and TGF-β (Cocktail) are shown as a positive control of the staining. 

Quadrants were adjusted to the matching correspondent isotype controls. Numbers represent 

the percentage of viable cells. Lower panel:  Quantification of the percentage of viable cells 

differentiated into CD1a+CD207+ LCs, CD207+ and CD1a+ cells for all the conditions. Each 

dot represents an independent experiment. *p ≤0.05**p ≤ 0.005 ***p ≤ 0.0005, Wilcoxon 

non-parametric paired test was used. Bars represent medians. 

(B) Left panel: Representative Flow cytometry density plots of TSLP receptor and IL-7 

receptor α chains by human blood and tonsillar BDCA-1+ and BDCA-3+ DCs. Quadrants 

were adjusted to the matching correspondent isotype controls. Numbers represent the 
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percentage of viable cells. Below, percentage of viable cells expressing both chains of TSLP 

receptor. Right panel: Representative histograms of CD80 expression by human blood and 

tonsillar BDCA-1+ and BDCA-3+ DCs after 24h culture with and without TSLP. Plain 

histograms represent the matching correspondent isotype controls and numbers represent 

specific median fluorescence intensities (MFIs). Below, quantification of MFIs for CD80 for 

4 independent donors. 

Figure 3: Birbeck granules on blood BDCA-1+ DCs treated with TSLP and TGF-β 

After 3 days of culture with TSLP and TGF-β blood BDCA-1+ derived LCs were sorted 

according to the expression of CD1a and CD207. Electronmicroscopy pictures show the 

presence of LC characteristic Birbeck granules in the cytoplasm (arrows). The Birbeck 

granules shown in the lower pictures correspond to different independent cells. 

Figure 4: TSLP- LCs expression of myeloid, maturation markers and skin-homing 

receptors. 

Representative histograms of the expression of myeloid lineage molecules (A), activation 

markers (B) and skin-homing receptors (C) by human blood BDCA-1+ after 24h culture with 

or without TSLP or TGF-β. Data on BDCA-1+ DCs treated with both TSLP and TGF-β 

correspond to the CD1a+ CD207+ cells. Plain histograms represent the matching 

correspondent isotype controls and numbers represent specific median fluorescence intensities 

(MFIs). n= 4 to 11 

Figure 5: TSLP-LCs induce a Th2 profile on naive CD4+ T cells. 

BDCA-1+ DCs subsets were stimulated with or without TSLP and TGF-β for 24h. CD34+ 

cells were stimulated with Flt3-L, TNF-α, GM-CSF and TGF-β (Cocktail). CD34+- derived 

LCs and BDCA-1+ -derived LCs were sorted according to CD1a and CD207 expression and 
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cultured with allogeneic naive CD4+T cells for 6 d before T cell restimulation. Symbols 

represent cells purified from the same donor. 

(A) T cell expansion was assessed by calculating the ratio of the number of T cells at the end 

of the culture divided by the number of T cells plated at the start of the culture. **p ≤ 0. 

Paired T test was used. Bars represent medians. 

(B) Data represent cytokine concentration at the end of the culture measured by multiplex 

bead array. *p ≤0.05**p ≤ 0.005 Paired T test was used. Bars represent medians. 

(C) Principal Component Analysis (PCA) analysis showing the resemblance of the naïve T 

cell profiles (secretion of 13 cytokines) induced under the different conditions. Components 1 

and 2 were selected as the axes explaining most of the data variance. The crosses represent 

individual donors (n=4). The squares represent the barycenters. Confidence ellipses at 95% 

are depicted in each condition. 
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Supplemental figure legends 

Supplemental Figure 1: CD34- LCs expression of myeloid, maturation markers and 

skin-homing receptors. 

Representative histograms of the expression of myeloid lineage molecules (A), activation 

markers (B) and skin-homing receptors (C) by human CD34- derived LCs. Cocktail: Flt3-L, 

TNF-α, GM-CSF and TGF-β.  Plain histograms represent the matching correspondent isotype 

controls and numbers represent specific median fluorescence intensities (MFIs). n= 5 

Supplemental Figure 2: TSLP-LC and CD34- LCs expression of myeloid, maturation 

markers and skin-homing receptors. 

Quantification of MFIs for myeloid lineage molecules (A), activation markers (B) and skin-

homing receptors (C) by human TSLP-LCs and CD34- derived LCs. Each dot represents one 

donor. Bars represent medians. *p ≤0.05**p ≤ 0.005 ***p ≤ 0.001 Wilcoxon paired test was 

used. 
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CCR2 - - - - - - Lundberg, K. 2013
CCR6 - - - + - + Santegoets, S. 2008
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Supplemental Figure 1
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Supplemental Figure 2
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The human cytokine TSLP triggers a cell-autonomous dendritic cell migration in 
confined environments. 

 

Maria-Isabel Fernandez, Mélina L. Heuzé, Carolina Martinez-Cingolani, Elisabetta Volpe, 
Marie-Hélène Donnadieu, Matthieu Piel, Bernhard Homey, Ana-Maria Lennon-Duménil and 
Vassili Soumelis. 

Blood 2011/118-14: 3862-3869 

 

The concept that TSLP may induce DC migration emerged from an initial observation by 
Soumelis et al. They noticed that in atopic dermatitis lesional skin, the strong expression of 
TSLP was associated with the absence of Langerin+ cells in the epidermis and the appearance 
of activated DCs and Langerin+ cells in the dermis [133] . In the study presented here, we 
directly assessed the capacity of TSLP to trigger DC migration.  

To this end we assessed the effects of TSLP on in vitro migration of human blood primary 
DCs using collagen I coated and uncoated transwells (see Materials and methods). This 
system allowed us to show that TSLP induced chemokinesis of primary human DCs. This was 
not the case for the other activating stimuli applied to DCs such as LPS, Influenza virus (Flu), 
TNF-α and GM-CSF. 

By immunofluorescence staining of TSLP-treated DCs (TSLP-DCs) we showed that TSLP, as 
opposed to other stimuli, induced a polarization of the actin and microtubule cytoskeleton in 
DCs. Myosin-II, an essential molecule for leukocyte migration, was found to be present in the 
uropod and in the nuclear edge of the cells suggesting contractibility of this area. Using 
microfabricated channels that enabled us to assess three-dimensional cell migration under 
confinement, we found that TSLP-induced migration was myosin-II-dependent. This system 
was designed to mimic the tight intercellular areas constituted by epithelial cells that DCs 
need to confront to emigrate from the tissue.  

TSLP activates DCs and can trigger the secretion of at least two chemokines (CCL17 and 
CCL22) [133]. Since chemokines are known to regulate cell migration [61, 62], I particularly 
assessed whether TSLP itself was required to trigger DC-migration or whether there was a 
role for TSLP-induced molecules acting in an autocrine manner. To test this, I collected the 
supernatants of TSLP-DCs after a 24 hour culture. These supernatants contained TSLP and 
the factors secreted by the DCs after TSLP treatment (Supplemental Figure 2). To assess 
specifically the effects of the secreted factors, I blocked direct TSLP effects using an anti-
TSLP neutralizing antibody. DCs treated for 24 hours with this blocked supernatants were 
assessed for their capacity to migrate in collagen I-coated transwells. A percentage of 
migration was calculated taking into account the cell count in the lower chamber divided by 
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the total cell count (low and upper chambers). As DCs constitutively express CXCR4 and 
migrate towards its ligand SDF-1 (CXCL12) [181, 182], I used it in the lower chamber of the 
transwells as a chemoattractant and a positive control of the intrinsic capacity of the cells to 
migrate. CD80 surface expression was evaluated in the different conditions as a marker of 
TSLP-induced maturation of DCs.  

TSLP-DC culture supernatants induced DC migration to the same levels (41.4 ± 9 %) than 
recombinant human TSLP (42.3 ± 5 %). Interestingly, when TSLP effect was neutralized in 
TSLP-DC culture supernatants, DC migration was inhibited to the levels of spontaneous 
migration (18.7 ± 4 % and 20.3 ± 4 % respectively).TSLP-DC unblocked supernatants 
induced CD80 expression and when TSLP was neutralized CD80 expression was inhibited. 
These results showed that TSLP-induced secreted molecules were not sufficient to 
recapitulate neither the migration effect nor the maturation effect induced by TSLP on DCs. 

Overall our data showed that TSLP triggered DC migration through the polarization of DCs 
and the activation of the molecular motor myosin-II. This was important to link TSLP 
stimulation of DCs in peripheral organs like the skin, to the ability of TSLP-DCs to activate 
naïve T cells in the lymph nodes.  

We showed that TSLP was required to induce DC maturation and migration suggesting direct 
effects of TSLP on these processes. As a further step I wanted to determine which were the 
molecular mechanisms implicated in TSLP-induced migration. This is the subject of a second 
work that is still in preparation.  
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Dendritic cells (DCs) need to migrate in
the interstitial environment of peripheral
tissues to reach secondary lymphoid or-
gans and initiate a suitable immune re-
sponse. Whether and how inflamed tis-
sues instruct DCs to emigrate is not fully
understood. In this study, we report the
unexpected finding that the epithelial-
derived cytokine TSLP triggers chemoki-
nesis of resting primary human DCs in a
cell-autonomous manner. TSLP induced

the polarization of both microtubule and
actin cytoskeletons and promoted DC
3-dimensional migration in transwell as
well as in microfabricated channels that
mimic the confined environment of periph-
eral tissues. TSLP-induced migration re-
lied on the actin-based motor myosin II
and was inhibited by blebbistatin. Accord-
ingly, TSLP triggered the redistribution of
phosphorylated myosin II regulatory light
chain to the actin cortex, indicating that

TSLP induces DC migration by promoting
actomyosin contractility. Thus, TSLP pro-
duced by epithelial cells in inflamed tis-
sue has a critical function in licensing
DCs for cell-autonomous migration. This
indicates that cytokines can directly trig-
ger cell migration, which has important
implications in immune physiopathology
and vaccine design. (Blood. 2011;118(14):
3862-3869)

Introduction

Competence of dendritic cells (DCs) to induce the differentiation of
naive T cells into effector T cells relies on their ability to migrate
from the peripheral sites of inflammation to the secondary lym-
phoid organs where T-cell priming takes place.1,2 During this
process, DCs must emigrate out of peripheral tissue and move
through a variety of narrow spaces, such as tight intercellular
junctions in epithelia, basal membrane, extracellular matrix, and
endothelia. This motility is in part orchestrated by chemokine
gradients, such as CCL19 or CCL21, which dictate the directional-
ity of the movement toward lymphoid organs where these chemo-
kines are abundantly expressed.3 Whether endogenous signals
produced by injured tissue at the inflammatory site can instruct
DCs to migrate is currently unknown.

Cytokines are proteins that act through specific surface recep-
tors to modulate critical cellular functions, such as cell prolifera-
tion, differentiation, and survival.4 They are important components
of the inflammatory microenvironment. Their precise function in
inducing or modulating cell migration has not been elucidated.
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived
cytokine that strongly activates DCs and initiates a Th2 type of
CD4 T-cell response.5 It plays a critical role in allergic diseases and,
in particular, atopic dermatitis where it is highly produced by
keratinocytes in human lesions6 and mouse models.7,8 Thus, TSLP
mediates a cross-talk between inflamed epithelia and the innate
immune response.5

Previous studies from our group and others suggested that TSLP
may be associated with Langerhans cell migration in situ6 and ex
vivo.9 In this study, we demonstrate that TSLP is sufficient to

induce the polarization, and 3-dimensional and confined migration
of human DC in vitro, through the actin-based motor protein,
myosin II. This constitutes a novel property of cytokines in
triggering a cell-autonomous DC migration in interstitial spaces.

Methods

Blood DC purification and culture

CD11c� DCs were purified to 99% by FACS sorting from buffy coats of
healthy adult volunteer blood donors (Crozatier Blood Bank) as previously
described.6 Freshly sorted CD11c� DCs were cultured in RPMI containing
10% FCS, 1% pyruvate, 1% HEPES, and 1% penicilin-streptomycin. Cells
were seeded at 1 � 106/mL in flat-bottom 96-well plates in the absence
(untreated cells) or presence of 50 ng/mL TSLP (R&D Systems), 2.5 ng/mL
TNF (R&D Systems), 20 �g/mL influenza virus (H1N1, A/PR/8/34 strain;
Charles River Laboratories), 1 �g/mL lipopolysaccharide (LPS; Sigma-
Aldrich), or 100 ng/mL GM-CSF (BruCells).

Immunofluorescence

To determine the cytoskeleton architecture, DCs were cultured on poly-
lysine–coated coverslips for 24 hours and examined by epifluorescence
microscopy. Cells were fixed in 4% paraformaldehyde in PBS for 20 min-
utes at room temperature, permeabilized by 1% Triton X-100 in PBS for
5 minutes, and blocked with 1% BSA in PBS for 20 minutes at room
temperature. For localization of filamentous actin, cells were incubated
with Cy3-phalloidin (Invitrogen) for 30 minutes. Counting of the number of
polarized DCs from 5 different donors assessed polarization index.
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Polarization was expressed as proportion polarized cells respect to total
number of cells. Localization of �-tubulin was achieved by incubation for
1 hour with a rat anti–human �-tubulin antibody (Serotec). Myosin II was
detected by a rabbit anti–human myosin II heavy chain antibody (BTI)
followed by incubation for 30 minutes with Alexa-488 goat anti–rabbit
(Invitrogen). Coverslips were mounted in ProLong Gold antifade reagent
(Invitrogen). Fluorescence images were obtained by an epifluorescence
microscope (Leica) fitted with appropriate filter sets. For phospho-myosin
II light chain and actin staining, cells were permeabilized in 0.2% BSA,
0.05% saponin for 10 minutes, and antibodies were diluted in the same
solution. Phospho-myosin II light chain was detected with a rabbit
anti–phospho-myosin light chain 2 (pMLC2; Rockland) followed by
incubation with Alexa-488 goat anti–rabbit antibody. For quantification of
pMLC2 association to actin, images were acquired on an epifluorescence
Nikon microscope (Eclipse 90i Upright) with a 100� objective. After
deconvolution, colocalization was quantified on each plane by the colocal-
ization analysis program of Metamorph and represented as the percentage
of pMLC2 area colocalized with actin area. For each cell analyzed, the
result is expressed as a mean of all the planes.

Transwell DC migration

Uncoated or collagen type I (5 �g/mL rat tail collagen type I; BD
Biosciences) coated transwells (Costar, 3-�m pores) were placed in 96-well
plates filled with 200 �L of DC culture medium. Overnight treated DCs
(1 � 106/mL) with TSLP, TNF, LPS, influenza virus, or GM-CSF were
resuspended in 50 �L of this solution, added to the upper chamber of the
transwells, and incubated at 37°C for 6 hours. CCL20 (500 ng/mL; R&D
Systems) was added to the lower chamber as a positive control to induce
DC migration where mentioned. After 6 hours, cells in the upper and the
lower chambers of the transwell were counted. Results were expressed as
percentage of total DCs.

DC migration in microchannels

The microfluidic device was fabricated in polydimethylsiloxane (PDMS).10

The PDMS piece, with embedded microchannels and holes for the inlet and
outlet ports, and a glass Iwaki chamber (Milian) were activated in a plasma
cleaner (PDC-32G Harrick) and bonded to each other. The chambers were
left under strong vacuum for 5 minutes in the plasma cleaner, and plasma
was turned on to render the top surface of the PDMS and the inlet and outlet
holes hydrophilic. Fibronectin solution at 50 �g/mL was placed on top of
the inlet and outlet ports. The solution spontaneously invaded the channels,
and all air bubbles were resorbed into the PDMS because of the previous
vacuum treatment. Fibronectin was incubated for 1 hour at room tempera-
ture, then washed with PBS, and then replaced by cell culture medium. The
cells were concentrated, and micropipette tips containing the cells were
inserted in the inlet port. Cells fell inside the port, bound to the bottom
coverslip, and started migrating. They entered the channels spontaneously,
without any mechanical or chemical stimulation.

Phase-contrast images at various positions in the chambers were
recorded with time lapses of 1-2 minutes during 6-10 hours, using an
automated microscope (Nikon Eciplse TE1000-E, and Olympus X71, with
a Marzhauser motorized stage and an HQ2 Roper camera) equipped with an
environmental chamber for temperature, humidity, and CO2 (Life Imaging
Services). Cells remained alive and motile during the entire period of
recording.

Kymograph extraction and instantaneous velocity analysis

Without any intervention from the user, a program written in C��, taking
as input an image sequence, provides as output a set of kymographs
corresponding to each channel by automatically performing motion compen-
sation, background subtraction, channel detection, and kymograph compu-
tation. A number of parameters are accessible when the program is started.
Each resulting kymograph is an image that contains, in each horizontal line,
the gray values found along a given channel at a given time point. The
consecutive time points form the consecutive lines of the image, with time
zero at the top. This allowed us to reduce large datasets into a smaller set of

images. Specifically, 1 image per channel was obtained, which contains all
the necessary information for cell movement analysis. The space dimension
perpendicular to the channel length that contains no information was
suppressed. The program first performed image cleaning: indeed, at 10�
magnification, with phase-contrast microscopy, 4-�m-wide channel dis-
plays a strong contrast, and cells in the channels are hardly visible on
original images. Moreover, because of fast movements of the stage to get
enough positions recorded at a high temporal rate, image sequences
displayed slight jiggling because of repositioning errors. Subpixel phase
correlation11 and robust multiresolution estimation of translation motion
model were used for registration. Then background subtraction was done
before the computation of the kymograph. The background was estimated
by taking the average intensity along the image sequence. To produce
kymographs, first, channels were detected using the Hough transform. An
average width for the lines was defined as the half the distance between
2 channels (this parameter can be varied). Intensities of the kymographs
were then defined as the maximum intensity inside the bound of the line
encountered perpendicularly to it.

Kymographs were then analyzed using homemade routines in MAT-
LAB. Cell signature was identified in each line, and the cells’ center of mass
and boundaries were found. Statistics and graphs were extracted from the
data using MATLAB.

Blebbistatin treatment of DCs

To study the role of myosin II in the morphology of TSLP-DCs, cells were
incubated for 12 hours in TSLP with or without 50�M blebbistatin on
poly-lysine–coated slides to permit the polarization of cells. To analyze the
importance of myosin II in DCs migration, untreated or pretreated DCs for
24 hours were incubated during the migration time with 50�M blebbistatin
in collagen-coated transwells. For the migration analysis in microchannels,
cells were pretreated with 50�M blebbistatin and then concentrated and
inserted in the microchannels.

Statistical analysis

Statistical analysis of the differences between experimental groups was
performed using a nonparametric ANOVA (Mann-Whitney test). Differ-
ences were considered statistically significant when P was � .05. Results
were expressed as mean � SD.

Results

TSLP directly induces chemokinesis of primary human DCs

To address the role of TSLP in DC migration, we analyzed its
impact on in vitro migration of nonactivated and activated primary
human DCs using uncoated semipermeable filters (Transwells). We
observed that � 7% of untreated DCs showed a spontaneous
baseline migration (Figure 1A). Two TLR ligands, LPS and
influenza virus (flu), which strongly activate DCs, did not induce
DC migration (Figure 1A). This equally applied to GM-CSF, a
cytokine produced by epithelial cells and leukocytes during
inflammation. On the contrary, TSLP-treated DCs (TSLP-DCs)
became highly efficient for migration in the absence of exogenous
chemokines, with up to 30% migrating cells, equivalent to a
CCL20-driven chemotaxis (Figure 1A). Thus, TSLP was able to
induce 2-dimensional migration of human DCs ex vivo.

Next, we analyzed the ability of TSLP-DCs to migrate through
the 3-dimensional space of collagen type I–coated filter. TSLP-DCs
became highly efficient for migration (Figure 1B) contrary to
TNF-DCs, which migrated comparably to untreated DCs. LPS, flu,
and GM-CSF did not induce human DC migration (Figure 1B),
similar to uncoated transwells (Figure 1A). TSLP-induced DC
migration was detectable as soon as 3 hours after TSLP exposure
(supplemental Figure 1A, available on the Blood Web site; see the
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Supplemental Materials link at the top of the online article), in
accordance with the up-regulation of TSLP receptor expression by
human DCs in culture (data not shown). TSLP-DC migration was
dose-dependent and could be activated at TSLP concentrations
� 1 ng/mL TSLP (supplemental Figure 1B). To discriminate
between chemokinesis and chemotaxis, we added TSLP to the
lower chamber of the transwell. This did not affect the migration of
untreated DCs, excluding chemotactic properties of TSLP (data not
shown).

The fact that TSLP could induce DC migration independently of
exogenous factors indicated a cell-autonomous mechanism. How-
ever, this does not exclude a role for TSLP-induced molecules
acting in an autocrine manner. To address whether TSLP itself was
required or whether TSLP-induced secreted factors could recapitu-
late the increase in DC migration, we performed experiments using
TSLP-DC supernatants in the presence and absence of an anti-
TSLP blocking monoclonal antibody (mAb; supplemental Figure 2).

First, we assessed CD80 expression as a marker of DC activation.
TSLP induced a strong up-regulation of CD80, which was inhibited
by anti-TSLP mAb (supplemental Figure 2A). TSLP-DC superna-
tants, which contained both TSLP and TSLP-induced secreted
molecules, had a similar effect on CD80 expression compared with
TSLP alone. This effect was almost completely blocked by
anti-TSLP mAb, indicating that TSLP-induced secreted molecules
were not sufficient to recapitulate the maturation effect of TSLP
(supplemental Figure 2A). In a parallel set of experiments, we
assessed DC migration in transwell under similar conditions as for
CD80 expression (supplemental Figure 2B). TSLP and TSLP-DC
supernatant both increased DC migration, and their effect was
inhibited by anti-TSLP blocking mAb (supplemental Figure 2B).
This showed that TSLP was required for the induction of a
cell-autonomous DC migration and that TSLP-induced secreted
molecules could not recapitulate this effect.

TSLP induces a marked polarization of the cytoskeleton of DCs

The cell-autonomous TSLP-induced DC motility suggested that
cell-intrinsic mechanisms might be involved. Because cell polariza-
tion is an essential feature for cell locomotion, we questioned
whether TSLP could induce the polarization of human DCs. To
address this hypothesis, we performed a detailed analysis of
TSLP-DC morphology. Untreated human DCs cultured on poly-
lysine-coated coverslips appeared mostly round, with actin fila-
ments enriched at the cell cortex as well as in podosomes, which
are actin-rich adhesion structures that form close contacts with the
substrate and are most likely involved in cell motility12,13

(Figure 2A). A similar morphology was observed in DCs activated
by influenza virus (Figure 2A). LPS induced the formation of
multiple dendritic expansions and the dissolution of podosomes, as
previously described14 (Figure 2A). Remarkably, TSLP treatment
increased the fraction of polarized cells from 12% (spontaneous
polarization) to 43% (P � .05; Figure 2A-B). In these cells, the
nucleus was located at one cell pole, whereas the other was formed
by a long and thin uropod. Podosomes were dissoluted in many
cells, but when present they clustered predominantly in the
perinuclear area where actin filaments were enriched (Figure 2A).
As observed for the actin cytoskeleton, the microtubule network
was also reorganized in TSLP-treated DCs, with the microtubule-
organizing center localized behind the nucleus at the level of the
uropod, as previously described in polarized T cells (Figure 2C).
Microtubule-organizing center polarization was not observed in
untreated or LPS-treated DCs (Figure 2C; supplemental Figure 1C).
Interestingly, spontaneous DC polarization was significantly inhib-
ited by TLR ligands, such as flu and LPS (Figure 2B). In
conclusion, TSLP induced an important reorganization of the cell
cytoskeleton, leading to the polarization of human DCs, which may
license DCs for migration.

TSLP induces myosin II-dependent DC motility

It was recently shown that the actin-based motor protein myosin II
is essential for the 3-dimensional movement of mouse leukocytes.15

Thus, we addressed its role in TSLP-induced human DC motility.
Myosin II consists of 2 heavy chains whose N-terminus contains a
globular head that includes the actin- and adenosine triphosphate
(ATP)-binding sites, and of 2 regulatory light chains (MLCs),
whose phosphorylation status controls the activity of the protein
motor. When phosphorylated, MLC binds to myosin II heavy chain
and triggers ATP hydrolysis followed by head displacement toward
the plus-end of actin filaments, resulting in actomyosin contraction.

Figure 1. TSLP induces chemokinesis of resting DCs in a cell-autonomous
manner. (A) Purified blood DCs were precultured in medium (untreated), TSLP,
influenza virus (Flu), LPS, or GM-CSF. After 24 hours, cells were washed, counted,
and seeded in equal numbers in the upper chamber of an uncoated transwell system
in the absence of chemotactic factors. After 6 hours, DCs migrating into the lower
chamber were harvested and counted. Data are represented as percentage of input
DCs. In the positive control, CCL20 was used in the lower chamber during migration
as a chemotactic factor. Data are mean � SD; n 	 7. *P � .05 vs untreated.
(B) Primary blood DCs were precultured in medium, TSLP, TNF, influenza virus (Flu),
LPS, or GM-CSF. After 24 hours, cells were washed, counted, and seeded in equal
numbers in the upper chamber of a collagen-coated transwell system in the absence
of chemotactic factors. After 6 hours, DC migration was quantified. Data are
represented as percentage of input DCs. In the positive control, CCL20 was added in
the lower well. Data are mean � SD; n 	 5. *P � .05 vs untreated.
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In TSLP-DCs, myosin II heavy chain showed a cortical distribution
and was found to be preferentially associated with actin filaments
in the cell uropod (Figure 3A), as was described for mouse
leukocytes.15,16 Moreover, myosin II accumulated also in the
nuclear edge of DCs (Figure 3A), suggesting contractibility of this
area. Importantly, TSLP-induced myosin II redistribution was also
observed for activated phospho-MLCs in TSLP-DCs (Figure 3B).
Quantification after 3-dimensional reconstruction showed an increase in
the colocalization of phospho-MLC and actin after TSLP treatment
(Figure 3C), suggesting an increased actomyosin contractility.

To directly address the role of myosin II in TSLP-induced DC
polarization, we inhibited myosin II-ATPase activity using its
specific inhibitor blebbistatin.17 Inhibition of myosin II prevented
TSLP-induced DC polarization (Figure 4A). Blebbistatin-treated
DCs displayed an elongated cellular shape with multidirectional
extensions.18 Last, we questioned whether loss of cytoskeleton

polarization affected the migration of DCs. Blebbistatin treatment
decreased the TSLP-DC migration through collagen-coated semiperme-
able filter (from 30% to 11%; P � .01; Figure 4B). Migration of
TSLP-DCs was inhibited by doses as low as 20�M blebbistatin
(supplemental Figure 3). We conclude that myosin II activity is essential
for both polarization and migration of human DCs induced by TSLP.

TSLP promotes DC migration in the confined environment of
microfabricated channels

In vivo, DCs migrate in confined spaces, and recent evidence
shows that the geometry of tissues directly impacts the require-
ments and mechanisms involved in cell movement.15 To assess
whether TSLP may impact human DC migration in tissues, we used
micro-fabricated channels that mimic the constrained interstitial
space of peripheral tissues.19 Live cell imaging of DC migration

Figure 2. TSLP induces polarization of the DC cytoskeleton. (A) DCs
on poly-lysine–coated coverslips were cultured in medium (untreated),
influenza virus (Flu), LPS, or TSLP. Cells were stained for actin (red) and
DAPI (blue) and observed under a fluorescence microscopy. Podosomes
appeared as round actin-stained formations. Actin skeleton was reorga-
nized in a polarized manner in TSLP-DCs. Data are from one representa-
tive of 5 independent experiments. (B) After 24 hours of culture, DCs with a
polarized actin skeleton were quantified. Results are represented as
percentage of total DCs. Data are mean � SD; n 	 5. *P � .05 vs
untreated. �P � .05 vs TSLP. (C) After 24 hours of culture, DCs were
stained with an anti–�-tubulin mAb (green) and DAPI (blue). TSLP-DCs
showed a reorganization of the microtubules. Data are from 1 representa-
tive of 5 independent experiments.

HUMAN TSLP-INDUCED DC MIGRATION 3865BLOOD, 6 OCTOBER 2011 � VOLUME 118, NUMBER 14



revealed that TSLP-DCs were more efficient in reaching the border
and entering the 4-�m-wide channels than untreated cells
(Figure 5A; supplemental Videos 1-2). This effect of TSLP resulted
in increased numbers of DCs traveling along microchannels at a
given time after TSLP pretreatment (Figure 5A). For each migra-
tion experiment, sequential pictures of cells migrating along
microchannels were visualized as kymographs, which were used to
analyze persistence and calculate instantaneous velocities
(Figure 5B). Once inside the channels, TSLP-DCs were more
persistent and displayed a more regular and continuous movement
compared with untreated DCs (changes of direction in movement
inside channels: 10% of TSLP-DCs vs 32% of untreated-DCs;
Figure 5B-C). No significant migration was observed when treating

DCs with flu (supplemental Video 3). We found no significant
difference between the median instantaneous speed of TSLP-DCs
and untreated DCs, both reaching � 11 �m/min in both conditions
(5D). Similar results were obtained for maximal DC velocities
(Figure 5D). We conclude that TSLP promotes the motility of DCs
in confined environments but did not modify their velocity.

To assess whether the increased ability of TSLP-DCs to enter
microchannels results, at least in part, from TSLP-induced polariza-
tion, we analyzed whether TSLP-induced human DC motility was
compromised when inhibiting myosin II activity. Blebbistatin
treatment of TSLP-DCs reduced by 50% their ability to enter
microchannels (Figure 6A). Similar results were obtained using
ML7/Y27632, a combination of 2 MLC phosphorylation inhibitors
(Figure 6A), confirming the specificity of the inhibitory process to
myosin II. 4,6-Diamidino-2-phenylindole (DAPI)/annexin V stain-
ing showed no significant change in DC viability when either
myosin II inhibitors were added to TSLP, indicating that the
inhibition of DC migration was not the result of an increased cell
death (supplemental Figure 4). The velocity of TSLP-treated DCs
was also decreased on myosin II inhibition, confirming the
involvement of actomyosin contraction in DC migration in con-
fined environments. In addition, blebbistatin modified the velocity
distribution of TSLP-treated DCs: whereas 70% of TSLP-DCs
exhibited velocities � 10 �m/min, only 32% of blebbistatin-treated
TSLP-DCs did so (Figure 6B). We conclude that myosin II activity
is required for TSLP-treated DCs to initiate a polarized movement
and maintain high speed during motion along microchannels.
Altogether, our results revealed that TSLP has the unexpected
capacity to induce DC polarization in a myosin II-dependent
manner, thereby licensing DCs to migrate in confined spaces.

Discussion

DC migration is a complex process that involves multiple cell-
intrinsic and extrinsic factors.2,20 Chemokines are important play-
ers that orchestrate migration and mostly act through chemoattrac-
tion, guiding the responding cell toward its target tissue
destination.3,21 The contribution of local inflammation in peripheral
tissue is generally viewed as permitting and/or facilitating the
action of chemokines in several ways: (1) danger signals can
induce DC maturation and the up-regulation of chemokine recep-
tors1,2; (2) inflammatory mediators, such as leukotrienes, can
potentiate the effect of certain chemokines22; and (3) edema and
vasodilation have a facilitating effect by promoting the nonspecific
influx but also emigration of various immune cell types. In our
study, we provide new evidence for an active role of the inflamed
tissue in instructing DCs to migrate through the production of the
cytokine TSLP.

It is commonly accepted that DC activation and migration are
coupled, essentially through the induction of CCR7,1 which would
guide DCs toward secondary lymphoid organs through a CCL21
gradient.3 Accordingly, DC-activating cytokines, such as GM-CSF
and TNF, promoted Langerhans cell emigration in skin ex-
plants.23-25 Our data challenge this view in many aspects. First, we
did not observe any effect of GM-CSF and TNF in triggering a
cell-autonomous DC migration. This suggests that cofactors pro-
vided by the tissue environment in the skin explants may be
required. Alternatively, these cytokines may act indirectly on other
skin cell types, which would support subsequent DC migration.
Second, TLR ligands (LPS and flu) did not induce DC migration,
although they promote strong DC maturation. This is in keeping

Figure 3. TSLP induces redistribution and colocalization of actin and phospho-
myosin II light chain. (A) After 24 hours of culture, TSLP-DCs were stained for
myosin II (green), actin (red), and DAPI (blue). TSLP-DCs acquired a polarized
morphology, and actin and myosin filaments largely colocalized. Data are from
1 representative of 3 independent experiments. (B) DCs on poly-lysine–coated
coverslips were cultured in medium, TSLP, or LPS for 20 hours. Cells were stained for
F-actin (red) and pMLC9 (green). Images were acquired as z-series, deconvoluted,
and reconstructed as a maximum-intensity projection of all the planes. (C) Quantifica-
tion of the mean percentage of pMLC area colocalized with F-actin area. For each
cell, the percentage is a mean of all the planes. Data are mean � SEM of
2 independent experiments; n 	 20. ***P � .005.
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with another study showing that early LPS activation inhibited
mouse DC migration,26 which may favor an efficient antigen
uptake and processing at the site of inflammation.19 Thus, some
DC-activating factors induce maturation without migration, whereas
TSLP efficiently couples both functional responses. This suggests
that the interplay between TLR ligands and proinflammatory
cytokines at the inflammatory site may be important to coordinate
maturation and migration in DCs.

To demonstrate the ability of TSLP to induce a 3-dimensional
migration, we used microfabricated channels that enable cell
confinement during motion and thus mimic the microenviron-
ment encountered by DCs in the constrained interstitial spaces
of peripheral tissues and lymphoid organs.19 Microchannels
impose a directional migration to DCs, which facilitates the
automatic extraction from important cell numbers of accurate
measurable parameters, which cannot be achieved in systems,
such as 3-dimensional artificial collagen matrices.19 We could
demonstrate that, although TSLP did not increase the cell
velocity compared with untreated DCs, it triggered the entry and
subsequent migration of DCs inside the microchannels. This
may reflect the first steps in the emigration of DCs out of the
epithelium that necessitates the passage through constricted
intercellular areas, the basal membrane, and the fibrotic connec-
tive tissue of the dermis.

The finding that epithelial-derived TSLP can instruct DCs to
migrate reveals inflamed tissue as an important player in the
complex regulation of DC migration. It will be important to
identify other tissue-derived factors that may share with TSLP the
ability to induce cell-autonomous chemokinesis and confined
migration of DCs. The chemokinetic properties of TSLP open

numerous perspectives for our understanding and pharmacologic
manipulation of DC migration in settings, such as vaccination.
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Figure 5. TSLP promotes DC migration in the confined environment of
microchannels. (A) After 20 hours of culture in medium or TSLP, DCs were added in
the starting chamber of the microchannel system. They were allowed to spontane-
ously enter the fibronectin-coated 4-�m-wide channels, and phase-contrast images
were recorded. The number of cells entering the channels dramatically increased
after TSLP activation of DCs (arrow indicates an individual cell inside a microchan-
nel). (B) Representative kymograph of an untreated DC and a TSLP-DC generated
by sequential pictures of a DC within a microchannel. We can see the untreated DC
changing direction several times during the recording. Raw phase-contrast images
were processed to analyze cell movement as described in “Kymograph extraction
and instantaneous velocity.” (C) After 20 hours of culture, DCs were allowed to
spontaneously enter the fibronectin-coated 4-�m-wide channels, and phase-contrast
images were recorded. Changes of direction through the channels were quantified for
individual cells. TSLP-DCs exhibited a more straight movement. Only 10% of
TSLP-DCs show changes in direction inside the microchannels. (D) Kymographs
obtained in panel C were processed and analyzed to extract instantaneous speed of
individual cells. The distributions of median and maximal speed of DCs precultured in
control medium (left panels) or with TSLP (right panels) are not significantly different
(P � .05). Data are from one representative of 3 independent experiments.

Figure 6. Myosin II-ATPase activity is essential for DC confined migration.
(A) After a pretreatment of 20 hours with TSLP in the absence or presence of
blebbistatin (50�M) or a mix of ML7/Y27632 (10�M/10�M), DCs were loaded in the
entry chamber of the channels. The number of DCs entering the channels during a
12-hour time-lapse movie was quantified. TSLP induced a 4-fold increase in the
capacity of DCs to enter microchannels compared with control. Blebbistatin and
ML7Y27632 significantly inhibited TSLP-induced migration. Data are mean � SD;
n 	 3. **P � .01. ***P � .005. (B) After 20 hours of culture in the absence or
presence of blebbistatin (50�M), DCs were loaded in the entry chamber and allowed
to spontaneously enter in the channels. Phase-contrast images were recorded.
Kymographs were processed and analyzed to extract instantaneous speed of
individual cells. Distribution of the median speed of DCs precultured in TSLP in the
absence or presence of blebbistatin is significantly different (P � .05). Data are from
1 representative of 2 independent experiments.
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Kymograph extraction and instantaneous velocities analysis 
Without any intervention from the user, a program written in C++, taking as input an image 
sequence provides as output a set of kymographs corresponding to each channel by automatically 
performing motion compensation, background subtraction, channels detection and kymographs 
computation. A number of parameters are accessible when the program is started. Each resulting 
kymograph is an image which contains, in each horizontal line, the grey values found along a 
given channel at a given time point. The consecutive time points form the consecutive lines of 
the image, with time zero at the top. This allowed us to reduce large data sets into a smaller set of 
images. Specifically, one image per channel was obtained, which contains all the necessary 
information for cell movement analysis. The space dimension perpendicular to the channels 
length that contains no information was suppressed. The program first performed image 
cleaning: indeed, at 10× magnification, with phase contrast microscopy, 4 µm wide channel 
display a strong contrast and cells in the channels are hardly visible on original images. 
Moreover, due to fast movements of the stage in order to get enough positions recorded at a high 
temporal rate, image sequences displayed slight giggling, due to re-positioning errors. Sub pixel 
phase correlation (26) and robust multi-resolution estimation of translation motion model was 
used for registration. Then background subtraction was done before the computation of the 
kymograph. The background was estimated by taking the average intensity along the image 
sequence. To produce kymographs, first, channels were detected using the Hough transform. An 
average width for the lines was defined as the half of the distance between two channels (this 
parameter can be varied). Intensities of the kymographs were then defined as the maximum 
intensity inside the bound of the line encountered perpendicularly to it. 
 
Kymographs were then analysed using homemade routines in Matlab. Cell signature was 
identified in each line and the cells center of mass and boundaries were found. Statistics and 
graphs were extracted from the data using Matlab. 



 
 
 
 
Figure S1. Kinetics and dose-response of TSLP-induced DC migration 
(A) DCs were cultured with different TSLP concentrations for different duration from 1 to 48h 
and seeded in equal numbers in the upper well of collagen-coated transwells. TSLP-DC 
migration was observed starting at 3h of pre-activation, and up to 48h. Data are represented as 
number of migrated cells from one representative of two independent experiments. (B) DCs were 
cultured with different TSLP concentrations for 24h and seeded in equal numbers in the upper 
well of collagen-coated transwells. TSLP-DC migration can be activated at TSLP concentrations 
higher than 1 ng/ml. Data are represented as % of input from one representative of two 
independent experiments. (C) LPS-activated DCs show a non polarized morphology as assessed 
after tubulin staining (green). 



 
 
 
 
Figure S2. TSLP effect on DC activation and migration is not dependent on TSLP-DC 
secreted factors 
(A) DC isolated from a first donor were cultured in medium with or without TSLP (50ng/ml) for 
20 hours. Cell culture supernatants were stored at 80°C until we isolated DC from a second 
donor. TSLP-DC culture supernatants were incubated with Anti-TSLP antibody or its 
correspondent isotype for 2 hours at 37°C. DC from the second donor were incubated for 20 
hours with different treatments: medium with or without TSLP (50ng/ml), the previously TSLP-
DC supernatant with Anti-TSLP or isotype and untreated-DC supernatant. DC activation was 
determined by flow cytometry based on CD80 expression. (B) DC migration was evaluated using 
collagen-coated transwells in the absence of chemotactic factors. Cells were seeded in equal 
numbers in the upper chamber and after 6h, DC present in the lower and upper chambers were 
harvested and counted by FACS using beads. Data are represented as % of total cell counts. In 
the positive control, CXCL12 was used in the lower chamber during migration as a chemotactic 
factor. Each dot corresponds to a different donor of DC and a different cell culture supernatant. 
*(p<0.05 Wilcoxon test) 



 
 
 
 
Figure S3. Blebbistatin inhibits TSLP-induced DC migration in a dose-dependent manner 
DC migration was assayed in collagen I-coated transwells in the absence or presence of 
increasing concentrations of blebbistatin, a specific myosin II inhibitor. 



 
 
 
 
Figure S4. Effect of Myosin II inhibitors on TSLP-DC viability 
DCs were cultured in medium with or without TSLP (50ng/ml) in the presence or absence of 
blebbistatin (50 µM) or ML7 and Y27632 inhibitors (10 µM) for 20 hours. Cell viability was 
determined by flow cytometry using Annexin V and DAPI staining. Data shown are 
representative of 3 experiments. 
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Molecular mechanisms implicated in TSLP induction of dendritic cell migration. 

 

Carolina Martinez-Cingolani, Raphael Zollinger and Vassili Soumelis. 

 

Mature DCs need to migrate from the periphery to the secondary lymphoid organs to activate 
the immune adaptive response [54]. They follow chemokine gradients that guide them 
through the interstitial spaces of the tissue to the lymph vessels and the lymph nodes [183]. 
The microenvironment signals that activate DCs often regulate their expression of chemokine 
receptors enabling them to sense these gradients. In this process a major role has been 
attributed to the lymph node chemokines CCL19 and CCL21 and their receptor CCR7 [62]. 
Indeed, inflammatory stimuli trigger DC up-regulation of CCR7 to a point that this receptor is 
often used as a marker of the activated state of DCs. We showed in the preceding chapter that 
TSLP triggered DC migration. This process was found to be independent of the chemokine 
secretion induced by TSLP on DCs. However we did not study whether TSLP could induce 
chemokine receptor regulation on DCs. Therefore we could not completely exclude the 
possibility that TSLP induced the expression of a chemokine receptor that indirectly mediated 
TSLP-induced migration.  

In this study, I assessed in a systematic way the implication of chemokine receptors on TSLP-
induced migration. My results led to the conclusion that a G protein coupled receptor (GPCR) 
such as the chemokine receptors was indeed, implicated in TSLP-induced migration although 
we were not able to identify it. The blood DC compartment is constituted by two subsets. A 
mayor subset characterized by the cell surface expression of the marker BDCA-1 and a minor 
subset characterized by the expression of the marker BDCA-3. In the field of human DC 
biology, these two subsets have been exhaustively evaluated for their differential functions in 
the immune system.  I decided to test whether TSLP induced a differential migration on blood 
DC subsets finding differences relevant to their function. 

  



PUBLICATION 3 
 

102 

TSLP-induced DC migration is partially dependent on a G protein coupled receptor 

 

Chemokine receptors are members of the GPCR superfamily. They are characterized by the 
presence of a small G inhibitory protein α (Giα) that is involved in the intracellular signaling 
triggered by chemokine ligands. The pertussis toxin (PTX) has the capacity to bind 
irreversibly to the Giα and inhibit the intracellular signaling pathway upon chemokine 
receptor binding [182].  

To test if a chemokine receptor was implicated in TSLP-DC induced migration, I cultured 
primary human blood DCs with and without TSLP in the presence or absence of PTX. After a 
24 hours culture, I assessed cell migration using collagen I-coated transwells. Cells were 
allowed to migrate for 6h and the percentage of migration was calculated as the percentage of 
cells in the lower chamber related to the total cell count. The inhibition of SDF-1 
chemoattraction by PTX pretreatment was used as a control of the inhibiting capacity of PTX 
in my experiments. As previously shown, I found that TSLP enhanced DC chemokinesis. The 
percentage of migrating cells after treatment was 44 ± 5 % as compared to the spontaneaous 
migration of the untreated cells, 27 ± 4 % (Figure 4-1). Pretreatment with PTX inhibited 
TSLP-induced migration on DCs by 1.7 fold (28 ±5 %), to the same levels as the spontaneous 
migration (Figure 4-1).   

 

 

Figure 4-1: TSLP-induced DC migration is PTX – sensitive. 

Percentage of migrating cells relative to total cell count. As a positive control SDF-1 was used in the 
lower compartment as a chemotactic factor. *p ≤0.05**p ≤ 0.005 ***p ≤ 0.0005, Wilcoxon non-
parametric paired test was used. Bars represent medians.  
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As PTX is a toxin, I checked if the inhibition of TSLP-induced migration by PTX was due to 
a decreased DC viability. I found that TSLP increased DC survival by 2.2 fold. PTX did not 
affect either untreated or TSLP-treated DC survival (Figure 4-2A).  I also tested if PTX could 
affect TSLP receptor expression by DCs and therefore their capacity to respond to TSLP. 
Nevertheless there was no difference in the surface expression of neither of the two chains of 
TSLP receptor complex after treatment with PTX (Figure 4-2B). Moreover, CD80 expression, 
up-regulated by TSLP, was not affected by PTX treatment suggesting that TSLP receptor was 
functional in all the cases and that PTX did not affect TSLP-DC maturation (Figure 4-2C). 
Therefore I could conclude that the PTX inhibition of TSLP-induced DC migration was not 
due to a decreased survival or to a down-regulation of TSLP receptor complex by DCs.  

 

Figure 4-2: PTX does not affect DCs viability, TSLP receptor expression and function. 

(A) Left: Representative flow cytometry density plots of DCs treated with and without TSLP and with 
and without PTX for 24 hours and stained for Annexin V and DAPI viability stainings. Right: 
percentage of Annexin V and DAPI double negative viable cells in the different conditions. Each dot 
corresponds to an independent experiment. Bars represent means. ***p ≤ 0.0005 (Wilcoxon non-
parametric paired test).  
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(B) Left: Representative flow cytometry density plots of DCs treated with and without TSLP and with 
and without PTX for 24 hours and stained for IL7-Rα and TSLPR chains of TSLP receptor complex. 
Right: percentage of double positive cells (IL7-Rα and TSLPR chains) expressing TSLPR complex for 
four independent donors. Symbols represent cells purified from the same donor. Bars represent means. 

(C) Left: Representative flow cytometry histograms of DCs treated with and without TSLP and with 
and without PTX for 24 hours and stained for CD80 expression Filled histograms represent matching 
isotypic controls. Right: Specific median intense fluorescence (MFI) for CD80 staining. Each dot 
corresponds to an independent experiment. Bars represent means. **p ≤0.005 (Wilcoxon non-
parametric paired test). 

 

PTX was found to inhibit also the spontaneous migration of untreated DCs (Figure 4-1). 
Moreover, the treatment with PTX of the TSLP-DCs did not inhibit migration to the lowest 
values of the PTX single-treated cells (Figure 4-1). Therefore PTX could inhibit the 
spontaneous, TSLP-independent migration of DCs or inhibit TSLP-dependent migration by 
blocking a GPCR chemokine receptor. Previously we had shown that TSLP-induced DC 
migration was linked to a cytoskeleton polarization of TSLP-DCs [184] therefore I decided to 
test to which extent a GPCR could be involved in TSLP-induced polarization of DCs. 

 

TSLP- induced polarization is dependent on GPCR 

 

To check if a GPCR could be involved in TSLP induced polarization of DCs, I treated DCs 
with and without TSLP and PTX for 24 hours and stained the actin and microtubule 
cytoskeleton to evaluate cell polarization by immunofluorescence (Figure 4-3A). I analyzed 
cell morphology by calculating a ratio between the two main axes of the cells’ shape; a ratio 
close to 1 corresponds to a round-shaped cell, whereas a ratio different from 1 implies an 
elongated shape (Figure 4-3A). The obtained results confirmed that TSLP-induced a clear 
polarization of DCs with the appearance of a large uropod, the nucleus displacement to the 
rear of the cell and the MTOC formed next to the nucleus. The axes ratio of TSLP-treated 
cells in comparison to control was significantly higher (2.4 ± 0.06 versus 1.5 ± 0.02) (Figure 
4-3B). In accordance to the results obtained in the previous migration experiments I found 
that when PTX was added to the TSLP-DC cultures, the number of polarized cells decreased 
significantly (Figure 4-3B). In my previous experiments of migration I had observed that PTX 
could also inhibit the spontaneous migration of DCs (Figure 4-1). Nevertheless PTX did not 
have an effect in the number of spontaneously polarized cells in the untreated control 
condition.  
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Figure 4-3 : TSLP-induced DC polarization is dependent on a G protein-coupled 
receptor.  

(A) Pictures showing the immunofluorescence staining of an example of an unpolarized cell in the 
medium condition and a polarized cell after TSLP treatment. Cells were stained for actin (red), DAPI 
(blue) and tubulin (green). The two main axes of the cell are depicted illustrating the way the axes 
ratio was calculated for each cell.  

(B) Upper panel: Representative pictures of three independent experiments. DAPI nucleus staining is 
shown in blue and tubulin in green.  Lower panel:  Quantification of the axes ratio in the different 
conditions. Results are represented as the log2 of the axes ratio. ***p ≤ 0.0001 calculated using a one 
way ANOVA test and Dunn’s post-test. Bars represent medians.  
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These results showed that PTX treatment inhibited TSLP-dependent polarization of DCs. 
Moreover they suggested that PTX inhibited the TSLP-dependent migration of DCs and not 
only the background spontaneous migration. We could conclude that a PTX–sensitive GPCR, 
induced by TSLP treatment on DCs, was implicated in TSLP-DC polarization and thus likely 
also in TSLP-DC migration. As chemokine receptors (PTX–sensitive GPCRs) are largely 
implicated in leukocyte migration [185], I decided to check whether TSLP induced the 
expression of a chemokine receptor that could explain the induction of chemokinesis on DCs. 

 

The analysis of the chemokine receptors and ligands expressed by TSLP-DCs does not 
highlights the implication of chemokine loops on TSLP-induced migration 

 

To see if TSLP induced the up-regulation of chemokine receptors on DCs, I screened a gene 
expression profile database of primary blood DCs treated or not with TSLP. This database had 
previously been developed in our team. I checked the chemokine gene expression of primary 
blood DCs fresh (ex-vivo), untreated or stimulated either with TSLP or TNF-α for six hours 
(Table 4-1). I found that TSLP-DCs expressed CCR1, CCR2, CCR5, CCR6, CCR7, CXCR1, 
CXCR2, CXCR3, CXCR4, CXCR7 and CX3CR1 at the mRNA level. Whereas the majority 
of chemokine receptor expression levels were equivalent in the medium and TSLP conditions, 
CXCR4 and CX3CR1 seemed to be down-regulated and CCR6 and CXCR7 seemed to be up-
regulated by TSLP-DCs and not TNF-α treated DCs (Table 4-1). Statistical analysis showed 
statistically significant differential gene expression only for CCR6 receptor expression (p 
value lower than 0.05 and 2 fold change). These results showed that TSLP could indeed 
modify the chemokine receptor expression by DCs. 
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Table 4-1 : Differential chemokine receptor gene expression of chemokine receptors by 
TSLP-DCs.  

Chemokine receptor transcripts expression on purified blood DCs directly after sorting (Ex-vivo) or 
after a 6 hour treatment with medium alone or supplemented with TSLP or TNF-α. Genome wide 
expression was determined by Affymetrix chips Human Genome U133 Plus 2.0 microarray analysis. 
Signal intensity levels: -, ≤50; +, 50-100; ++, 100-1000; +++, 1000-5000; ++++, 5000-10000; +++++, 
≥ 10000. 

 

Gene expression data were confirmed by the analysis of protein expression for chemokine 
receptors by flow cytometry on DCs treated overnight with or without TSLP (Figure 4-4). In 
line with the mRNA expression, CCR6 was found to be up-regulated and CXCR4 and 
CX3CR1 down-regulated significantly after TSLP stimulation. Nevertheless CXCR3 was not 
found to be up-regulated whereas CCR7 seemed to have a higher surface expression after 
TSLP treatment (Figure 4-4). All the chemokine receptors expressed by TSLP-DCs at the 
mRNA were analyzed except CXCR7 which is a silent receptor at the signaling level [186]. 
These results showed that TSLP significantly induced the expression of the chemokine 
receptors CCR6 and CCR7. Therefore these chemokine receptors could be involved in TSLP-
induced DC migration if their correspondent ligands were found to be available in the cell 
culture media. 

  

RECEPTOR Ex-vivo Medium TSLP TNF-α

CCR1 CCL3 CCL7 CCL5 CCL14 CCL16 CCL23 CCL15 CCL4 + ++ ++ +
CCR2 CCL2 CCL12 CCL13 CCL7 CCL8 CCL4 ++ ++ ++ -
CCR3 CCL13 CCL7 CCL5 CCL15 CCL8 CCL11 CCL24 CCL26 CCL28 - - - -
CCR4 CCL17 CCL22 CCL2 CCL3 CCL5 - - - -
CCR5 CCL4 CCL3 CCL5 CCL8 +++ ++++ ++++ +++
CCR6 CCL20 - - ++ -
CCR7 CCL19 CCL21 ++ +++++ +++++ +++++
CCR8 CCL1 - - - -
CCR9 CCL25 - - - -
CCR10 CCL28 CCL27 - - - -

IL8RA/CXCR1 CXCL6 IL8/CXCL8 + + + +
IL8RB/CXCR2 CXCL1 CXCL2 CXCL3 CXCL5 CXCL7 CXCL6 IL8/CXCL8 + + + +
CXCR3 CXCL9 CXCL10 CXCL11 CXCL4 + + ++ ++
CXCR4 CXCL12 +++++ +++++ ++++ +++++
CXCR5 CXCL13 - - - -
CXCR6 CXCL16 - - - -
CXCR7 CXCL12 CXCL11 + + ++ +

XCR1 XCL1 XCL2 - - - -

CX3CR1 CX3CL1 +++ +++ ++ +++

D6 CCL2 CCL3 CCL4 CCL5 CCL7 CCL8 CCL12 CCL13 CCL14 CCL17 CCL22 - - - -
DARC CCL2 CCL5 CCL11 CCL13 CCL14 CXCL1 CXCL2 CXCL3 CXCL7 CXCL8 - - - -
CCR11 CCL19 CCL21 CCL25 CXCL13 - ++ - +

SEQUESTRATING

Blood myeloid DCs
LIGANDS

CXC SUBFAMILY

C SUBFAMILY

CX3C SUBFAMILY

CC SUBFAMILY
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Figure 4-4 : Differential chemokine receptor surface protein expression of chemokine 
receptors by TSLP-DCs. 

Data represent the surface expression of chemokine receptors on 24 hour TSLP treated and untreated 
DCs as determined by flow cytometry. Data represent specific mean fluorescence intensity. *p 
≤0.05**p ≤ 0.005, Wilcoxon non-parametric paired test was used. Bars represent means. 

 

In parallel to the chemokine receptor expression analysis, I tested which were the possible 
chemokine ligands available in the culture media during migration. First I tested if they were 
supplied by the serum added to the medium. DCs treated with and without TSLP for 24 hours 
were washed, starved for one hour in serum-free media or not starved and seeded in equal 
numbers in the upper chamber of the transwell system in the absence of chemotactic factors. 
RPMI medium supplemented with or without serum was used during migration.  I found that 
DCs migrated overall less in serum-free medium than in serum-supplied medium. 
Nevertheless TSLP still induced a higher DC migration compared to medium-DCs in serum-
free culture medium (3.6 fold increase). These results suggested that serum could not be the 
source of the ligand (Figure 4-5).  
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Figure 4-5: TSLP induces DC migration in serum-free conditions. 

Percentage of migrating cells relative to total cell count. As a positive control SDF-1 was used in the 
lower compartment as a chemotactic factor.  Black dots represent migration in serum-supplemented 
medium, blue dots represent migration in serum-free conditions. Symbols represent cells from the 
same donor.  *p ≤0.05, Wilcoxon non-parametric paired test was used. Bars represent medians. 

 

I analyzed, using a chemiluminiscence-based protein array, a total of 38 chemokine ligands in 
the untreated and TSLP-DCs culture media (Figure 4-6). As expected, I found that the 
chemokines CCL17 and CCL22 were differentially secreted by TSLP-DCs. Surprisingly, 
CCL3 and CCL4 were also found to be differentially induced by TSLP (Figure 4-6). 
Nevertheless TSLP-DCs did not express differentially their correspondent receptors (CCR4 
for CCL17 and CCL22 and CCR1, CCR2 and CCR5 for CCL3 and CCL4) (Figure 4-4). 
Moreover, I did not find either the presence of CCR6 ligand CCL20 or the CCR7 ligands 
CCL19 and CCL21 (Figure 4-6). 
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Figure 4-6 : TSLP-DC chemokine secretion. 

Data represent the mean optical densities obtained for 38 different chemokines evaluated in the 24 
hours culture supernatants of medium and TSLP-treated DCs. The analysis was done using a 
chemiluminiscence protein array. Fresh media with and without TSLP were used as background 
controls. n=3. 

  

The analysis of TSLP-induced chemokine receptors and chemokine ligands did not reveal a 
known chemokine receptor-ligand match. These results did not provide enough evidence to 
implicate the tested chemokine-chemokine receptors in TSLP-induced migration. I evaluated 
the GPCR-chemokine receptors that are the most well known and the ones recognized for 
their capacity to affect general leukocyte migration [182]. Nevertheless, on one hand, 
chemokines have been shown to regulate the activity of chemokine receptors different from 
their cognate correspondent receptor [187]. On the other hand, the intracellular pathways of 
chemokine receptors have been shown to be activated by molecules different from their 
cognate chemokine ligand [188, 189]. Finally there are other protein and lipid molecules that 
can affect leukocyte migration through a GPCR. These different possibilities explaining the 
involvement of a GPCR in TSLP-induced DC migration and polarization will be analyzed in 
the discussion of this manuscript.  

In these experiments using total DCs, I had not been taking into account that blood DC 
compartment is constituted by two subsets the BDCA-1+ and the BDCA-3+ DCs. In my 
previous experiments I had been evaluating mainly the effects of TSLP on BDCA-1+ DCs as 
BDCA-3+ DCs represent a small percentage of total DCs (less than 10%). As blood DC 
subsets may respond differently to TSLP, I decided to test if TSLP induced migration in both 
of these subsets. 
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TSLP-induced migration is restricted to BDCA-1+ blood DC subset 

 

To see if TSLP differentially induced the migration of blood DC subsets, I cultured primary 
human blood DCs with and without TSLP and assessed again a 6 hours migration using 
collagen I-coated transwells. The fractions in the upper and lower compartments of the 
transwells were recovered, and viable cells were counted. These fractions were also stained 
with anti-human BDCA-1 and BDCA-3 antibodies to evaluate by flow cytometry the 
differential migration of the blood subsets. I used SDF-1 in the lower chamber of the 
transwells as a positive control of the ability of the cells to migrate (Figure 4-7A). Both cell 
types migrated towards SDF-1 chemokine, suggesting that they both have the intrinsic 
capacity to migrate. Nevertheless BDCA-3+ cells were found to stay in the upper 
compartment, and seemed to be less migratory than BDCA-1+ after TSLP treatment (Figure 
4-7A). 

To assess specifically TSLP induction of migration in both subsets, I isolated BDCA-1+ and 
BDCA-3+ blood cells by cell sorting. The cells were cultured independently for 24 hours with 
and without TSLP. As in the previous experiments, I tested migration for 6 hours (Figure 
4-7B). My results confirmed that both subsets had the capacity to migrate towards SDF-1. 
Nevertheless, BDCA-3+ cells migrated 1.4 fold less than BDCA-1+ cells towards SDF-1 and 
6.9 fold less than BDCA-1+ cells in the medium condition (Figure 4-7B).  As previously 
shown for total DCs, TSLP induced significantly the migration of BDCA-1+ cells (42.05 ± 
6.9%) in comparison to the untreated cells (24 ± 3.1%). Interestingly, TSLP did not induce 
BDCA-3+ cell migration at all (3.5 ± 1% in the medium condition and 1.1 ± 0.4% in TSLP 
condition) (Figure 4-7B). 
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Figure 4-7: TSLP induces migration only on BDCA-1+ subset of blood dendritic cells. 

(A) Flow cytometry density plots showing BDCA-1 and BDCA-3 stainings of total DCs present on the 
upper and lower cellular fractions of the transwell system after a 6 hour migration. Numbers represent 
the percentage of viable cells from each subset. Data are representative of three independent 
experiments. 

(B) Percentage of migrating cells relative to total cell count. BDCA-1 and BDCA-3 cell migration was 
assessed independently. As a positive control SDF-1 was used in the lower compartment as a 
chemotactic factor. *p ≤0.05, Wilcoxon non-parametric paired test was used. Bars represent means. 
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These data showed that TSLP induced migration only on BDCA-1+ subset. As this differential 
behavior could be due to differences in the expression TSLP receptor by the subsets I checked 
the expression of both of its chains (TSLPR and IL-7Rα) on blood BDCA-1+ and BDCA-3+ 
DCs. I also analyzed TSLP capacity to activate these cells as a proof of TSLP receptor 
function.  

TSLP receptor complex was found to be expressed equally by BDCA-1+ and BDCA-3+ DCs 
(Figure 4-8A). Moreover I found that after 24 hour culture with TSLP, BDCA-1+ and BDCA-
3+ DCs acquired both a mature phenotype. TSLP was able to induce CD80, CD86 and CD40 
in both subsets as compared to the medium condition (Figure 4-8B). CD83 was not found to 
be up-regulated by TSLP in the BDCA-1+ subset and BDCA-3+ cells expressed CD83 already 
at high levels in the medium condition and did not further up-regulated this marker in the 
presence of TSLP. Overall these data showed that TSLP was able to activate BDCA-1+ and 
BDCA-3+ DCs in a similar way demonstrating that TSLP receptor is equivalently functional 
on both subsets.  I also evaluated BDCA-1+ and BDCA-3+ cell survival upon TSLP treatment. 
No differences in cell viability between TSLP-BDCA-1+ and TSLP-BDCA-3+ DCs were 
found (Figure 4-8C). 

These results show that TSLP differential induction of migration on blood BDCA-1+ and 
BDCA-3+ subsets is neither due to a difference in TSLP receptor expression and function nor 
to a difference in DC subsets viability. This suggests that the differential migration induced by 
TSLP on blood DC subsets may be due to the activation of different signaling pathways in 
these cells.   
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Figure 4-8: Blood DC subsets express a functional TSLP receptor 

(A) Representative Flow cytometry density plots of TSLP receptor and IL-7 receptor α chains by 
human blood BDCA-1+ and BDCA-3+ DCs. Quadrants were adjusted to the matching correspondent 
isotype controls. Numbers represent the percentage of viable cells. n=4. 

(B) Left: Histograms representing the surface expression of the activation markers by TSLP-treated 
BDCA-1+ and BDCA-3+ cells, plain histograms represent the matching correspondent isotype control. 
A representative donor is shown. Numbers represent specific median fluorescence intensity. 
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Right: Median fluorescence intensity for 4 independent experiments is shown for each marker. 
Symbols represent cells from the same donor. The bars represent means.  

(C) Left: density plots representing the staining of DAPI and Annexin V on TSLP-treated BDCA-1+ 
and BDCA-3+ cells. A representative donor is shown. Right: percentage of DAPI-Annexin V- viable 
cells in the different conditions. Each dot corresponds to an independent donor. Symbols represent 
cells from the same donor. The bars represent means.  

Altogether our results suggested that TSLP used a GPCR to induce DC migration and 
polarization, although our screening of known chemokine receptors was not enough to 
determine its identity. The differential migration triggered by TSLP on blood DC subsets 
together with the equal capacity of these sub-populations to respond to TSLP suggest 
functional differences and specific TSLP-signaling pathways in blood BDCA-1+ and BDCA-
3+ DCs. To identify these different signaling pathways we are currently generating 
transcriptomic profiles of TSLP treated blood BDCA-1+ and BDCA-3+ DCs.  Importantly the 
differential response to TSLP may stand for a differential implication of blood DC subsets in 
TSLP-linked inflammation. 
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DISCUSSION 

 

DC migration is a complex process that requires the coordinated contribution of different 
types of secreted, extracellular and intracellular molecules [183]. This step is essential for the 
initiation of an efficient immune response. We had previously shown that TSLP, a 
proinflammatory cytokine that activates DCs, induces DC migration through the cell 
cytoskeleton re-organization and the activation of actin-motor myosin II [184]. In the present 
study, I showed that TSLP- DC migration and polarization are affected by PTX treatment and 
therefore are dependent on a GPCR. As chemokine receptors are PTX-sensitive GPCRs and 
are tightly linked to DC migration [53], I systematically studied the gene and protein 
expression of chemokine receptors and ligands regulated by TSLP on DCs. TSLP induced the 
up-regulation of CCR6 and CCR7 and the down regulation of CXCR4 and CX3CR1. 
Moreover TSLP not only induced CCL17 and CCL22 as previously reported [133], but also 
CCL3 and CCL4. Although my results reveal a TSLP regulation of chemokine and 
chemokine receptors on DCs we could not find enough evidence linking this to TSLP-induced 
migration. There are several other possibilities that may explain the involvement of a GPCR 
in TSLP-induced DC migration. 

1- Besides the interaction with their cognate correspondent receptors, chemokines have been 
shown to cooperate with each other to trigger cell migration [190, 191]. An example of this 
cooperation is the synergy between CXCR3 and CXCR4 ligands in PDCs. Indeed CXCR3 
ligands have been shown to be implicated in the migratory response of PDCs towards SDF-1, 
a CXCR4 ligand, without affecting the expression of CXCR4 itself [190, 191].  Moreover, it 
has been reported that CCL17 is required for murine cutaneous DC random and directed 
migration independently of the expression of CCL17 receptor, CCR4 [187]. Indeed, Stutte et 
al. showed that, in a murine model of atopic dermatitis, CCL17 deficient LCs failed to 
emigrate from the skin. In vitro, CCL17 deficient DCs had an impaired migration toward 
CCR7 ligands and also a reduced random migration (haptokinesis). This was not linked to an 
altered chemokine receptor expression but rather to a reduction in intracellular Ca2+ release. 
As CCL17 affected migration independently of CCR4 expression the authors suggested the 
existence of a different extra CCL17/CCL22 receptor.  

Therefore, even if we could not find a specific matching couple implicated in TSLP-DC 
migration we cannot rule out the possibility that TSLP-induced chemokines, such as CCL17, 
act through a different known or unknown receptor that is up-regulated by TSLP. To assess 
this possibility, the independent use of specific neutralizing antibodies against TSLP-induced 
chemokines (CCL17, CCL22, CCL4 and CCL3) and chemokine receptors (CCR6 and CCR7) 
should highlight their contribution in TSLP-DC migration.  

2-Besides chemokines, inflammatory lipid mediators have been shown to regulate indirectly 
or directly, DC migration. The Prostaglandin E2 and the cysteinyl leucotrienes have been 
shown to regulate DC migration towards CCR7 ligands without affecting CCR7 expression 
[192] [193]. Nevertheless the mechanisms that trigger the activation of CCR7 receptor by 
these bio-active lipids are not known. Lipid mediators such as sphingosine-1 phosphate and 
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lysophosphatidic acid trigger mature DC migration upon binding to their own specific GPCRs 
[71, 194].  Therefore, these bioactive lipids and their correspondent receptors need to be 
assessed for their implication in TSLP-DC induced migration.  

3- Finally, it has been shown that GPCRs can be activated in the absence of their cognate 
ligand by the ligands of tyrosine kinase receptors (RTKs). This effect is known as GPCR-
RTK “transactivation” or “GPCR jacking” and can lead to the induction of cell migration 
[188]. An example of a ligand-independent mechanism of GPCR jacking is the case of the 
insulin-like growth factor -1 (IGF-1) -mediated migration in metastatic human breast cancer 
cell lines. Upon IGF-1 binding, IGF-1R co-precipitates with CXCR4 and the G protein 
subunits, Giα2 and Gβ, suggesting the activation of an intracellular proteic complex that 
results in cell migration [195]. Interestingly GPCR-RTK crosstalk was first highlighted by the 
fact that PTX altered the RTK signaling without affecting its expression. The specificity of 
this mechanism to RTKs remains unexplored. Little is known about the intracellular events 
downstream TSLPR signaling and some of our preliminary data show that PTX affects TSLP 
induced molecules at the transcriptional level (data not shown). Therefore we cannot exclude 
the possibility of a cross-communication between GPCRs and TSLPR. Nevertheless using our 
primary DC culture system, it is very challenging to prove this hypothesis, as experiments 
such as the immunoprecipitation of TSLPR would require very large amounts of protein.   

Our experiments using isolated BDCA-1+ and BDCA-3+ blood DC subsets show that 
although untreated blood BDCA-3+ were more mature than BDCA-1+ cells, as previously 
reported [132], both subsets had  the same capacity to respond to TSLP. However, TSLP 
induced migration was restricted to BDCA-1+ blood subset. This result reveals that TSLP has 
differential effects on blood DC subsets. The differences between TSLP-BDCA-1+ and TSLP-
BDCA-3+ DCs can be used as a tool to determine whether TSLP-induced migration is linked 
to a differential chemokine receptor/ligand or bioactive lipid regulation.  

Importantly, the differential migration of TSLP-DC subsets suggests that BDCA+3 DCs may 
need additional stimulation to migrate towards the lymphoid organs and may reach the lymph 
nodes in a delayed way in comparison to BDCA-1+ DCs. Additional experiments including 
activated innate actors such as mast cells, eosinophils and basophils can be designed to mimic 
the allergic inflammatory microenvironment and assess TSLP-treated BDCA-3+ cell 
migration. The differential response of blood DC subsets to TSLP opens new perspectives on 
the roles played by DC sup-populations in TSLP linked inflammation. 
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What we define as the inflammatory microenvironment is a network of multiple cell types of 
the innate and adaptive immune systems. They communicate with each other through direct 
interactions and through the secretion of a wide variety and combinations of cytokines and 
soluble mediators. Dendritic cells have the unique capacity to sense these signals from the 
environment and to induce the activation and differentiation of naïve T cells. The generated T 
cell response must be suited to the type of inflammation. This is ensured by DCs at two levels. 
First DCs are functionally plastic. This means that their behavior is subdued to the integrated 
signals. Secondly, the DC population is diverse. Indeed, different DC subsets have different 
functional specializations. I will discuss here the main results I obtained concerning their 
different functional specializations. In my study TSLP represents a model for an inflammatory 
signal that is provided by the microenvironment, and human blood DC subsets were evaluated 
for their differential capacity to respond to this signal. The purpose of this discussion is to 
highlight the relevance of my work, its limitations and its perspectives. 

 

5.1  Human blood DC subsets as DC precursors. 
 

In mice, blood DC subsets are defined as pre-DCs owing to their capacity to give rise to the 
tissue-resident DCs [21]. In humans, the equivalents of pre-DCs have not been found yet. It 
has been suggested that sub-populations of DCs from blood give rise to their correspondent 
subsets in the tissues [41], but a direct demonstration was lacking. Our results show that 
TSLP + TGF-β induce the differentiation of blood BDCA-1+ DCs into LCs, and indicate that 
blood BDCA-1+ still have a precursor capacity. Several questions arise from these results. The 
first one is whether other inflammatory factors may also induce blood BDCA-1+ DC 
differentiation into LCs. In vitro experiments show that human blood CD34+ precursors 
stimulated with GM-CSF, TNF-α, FlT3L and TGF-β [23, 36], as well as blood monocytes 
stimulated with IL-4, GM-CSF, and TGF-β [38] can give rise to LCs. The effect of these 
cocktails of cytokines on the precursor capacity of blood BDCA-1+ remains to be explored.  

Another question concerns the specificity of BDCA-1+ blood DCs to give rise to LCs. In our 
study we showed that blood BDCA-3+ DCs and tonsillar DC subsets did not differentiate into 
LCs upon TSLP + TGF-β treatment. Whether these subsets still have a precursor capacity is 
not clear. Lymph nodes and tonsillar BDCA-1+ and BDCA-3+ subsets do not cycle as opposed 
to their blood counterparts [99] suggesting that in the tissues, DC subsets become more 
terminally differentiated. This could explain their reduced precursor capacity; however, blood 
BDCA-1+ and BDCA-3+ DCs cycle to the same extent [99]. BDCA-3+ DCs may also have 
precursor capacities but may need a different stimulation to give rise to other populations.  

In our study we show that TSLP is required to induce CD1a up-regulation by blood BDCA-1+ 
DCs, and that CD207 expression depends on further stimulation with TGF-β. Together these 
stimuli gave rise to the differentiation into LCs of only a fraction of BDCA-1+ cells. Whether 
the other fractions correspond to BDCA-1+ cells that differentiated into dermal DC 
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populations is not known. Indeed, it is possible that BDCA-1+ DCs give rise to DC 
populations other than LCs. This possibility and the required stimuli still need to be explored.   

 

5.2  Relevance of TSLP + TGFβ -derived LCs to human pathology 
 

The fact that TSLP acts in coordination with TGF-β to induce blood BDCA-1+ DC 
differentiation into LCs can be relevant to human physiopathology in two ways. First BDCA-
1+ DC –derived LCs may have a relevance to TSLP-linked pathologies and secondly, TSLP 
could be relevant to LCs-related pathologies.  

 

Relevance of LCs to TSLP-linked pathologies 

TSLP is linked to atopic dermatitis, atopic asthma and other allergic disorders [133, 148, 
149]. LCs have been shown to play an essential role in the initiation of the allergic 
inflammation in atopic dermatitis. First, in atopic dermatitis lesions, epidermal LCs, up-
regulate IgE-binding FcεRI receptor, which enhances the presentation of IgE-bound allergens 
[196, 197]. Moreover, LCs have been shown to preferentially induce the Th2 profile that 
characterizes the allergic response [25]. Finally TSLP-DCs have been shown to secrete Th2-
attracting chemokines (CCL17 and CCL22) and induce a strong Th2 response [133]; the same 
behavior is obtained by human primary LCs treated with TSLP [168].  

Although the role of LCs in atopic rhinitis and asthma is less known, these disorders together 
with atopic dermatitis constitute a classical triad that often occurs in the same patients [198]. 
Whether epidermal LCs represent a common physiopathological mechanism remains to be 
explored.   

TSLP and TGF-β are present in the allergic microenvironment [133, 199, 200]. Therefore 
they could induce the differentiation of recruited blood BDCA-1+ DCs into LCs, which can be 
relevant for the maintenance of the allergic state. Although an immunoregulatory role has 
been attributed to TGF-β in atopic dermatitis patients [201], the presence of TNF-α may 
counteract this role [200]. Indeed, we found that TGF-β could be responsible for the down-
regulation of CD86 and CD40 in TSLP + TGF-β -derived LCs, and not in CD34+-derived 
LCs; these last have been stimulated with a TNF- α (present in the differentiation cocktail). 
This suggests that TNF-α may inhibit the TGF-β immune modulation. Moreover, in our 
experiments TGF-β did not affect the Th2 profile induced by TSLP + TGF-β -derived LCs, 
suggesting that TGF-β does not interfere with their possible active role in the generation of 
the allergic response.   

There is a single article in which TSLP implication on LCs development in atopic dermatitis 
has been addressed [202]. Indeed, Chorro L. et al, used a murine model in which vitamin D3 
treatment induced TSLP production and atopic dermatitis features in the mice skin.  They 
shown that vitamin D –treated mice have more LCs per skin mm3 than ethanol-treated 
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controls. They attribute this increase to a burst in local LC proliferation in situ and showed 
that there was little contribution from bone marrow- derived progenitors. However they did 
not test the possible contribution of blood-derived precursors to this phenotype. The 
proliferation of LCs was dependent on Vitamin D treatment. However they found that there 
was no difference in LC proliferation between wild-type and TSLP knockout mice treated 
with vitamin D. These results suggest that in this model of atopic dermatitis, TSLP is not 
involved in the local proliferation of LCs. However a diminished number of LCs by mm3 in 
TSLP knockout mice in comparison to wild-type after vitamin D suggest that TSLP might 
still contribute to the increased number of LCs seen in the atopic dermatitis epidermis. 
However the authors did not comment on this and further experiment will be required to test 
TSLP implications in atopic dermatitis LCs numbers. 

TSLP is also present in psoriatic lesions (Volpe et al, unpublished results). The role of LCs in 
this disease remains controversial. Different studies have found diminished, increased, or 
equal numbers of LCs in the psoriatic lesions [174, 203, 204]. However Volpe et al showed 
that skin DCs stimulated with TSLP + CD40L secrete IL-23 and induce Th17 cells, pointing 
to a significant role of skin DCs in psoriasis (Volpe et al unpublished results). Therefore the 
differentiation of blood BDCA-1+ DCs into LCs upon TSLP + TGF-β stimulation may be 
relevant to the pathophysiology of psoriasis.  

Relevance of TSLP to LC-linked pathologies 

Dermatopathic lymphadenitis is a disease in which a skin inflammatory lesion leads to an 
enlargement of one draining lymph node. The lymph node is enriched in LCs [205]. Geissman 
et al. characterized these LCs [173] and showed that they had mainly an immature phenotype 
(they did not express CD83 or CD86). In vitro experiments using monocyte-derived DCs 
showed that despite further stimulation with TNF-α or bacterial products, monocyte-derived 
LCs did not show a mature phenotype. However, these cells could efficiently migrate towards 
CCR7 ligands. We proposed that TGF-β could be responsible for the down-regulation of 
CD86 and CD40 in TSLP + TGF-β -derived LCs, and that further stimulation with 
inflammatory cytokines such as TNF–α may induce a full activation profile. Further 
experiments specifically testing this hypothesis could solve the controversy. Although 
Geissman’s study suggests that LCs in the lymph nodes of dermatopathic lymphadenitis 
patients represent LCs migrating from the epidermis, it does not define the precursors or the 
function of these cells. The presence of TSLP in the lesions giving rise to this disease could 
highlight a potential role of blood BDCA-1+ DC -derived LCs in this pathology.  

The most important pathology in humans that implicates LCs, is Langerhans cell histiocytosis 
(LCH). This pathology is characterized by the accumulation of LC-like cells in the bone, skin 
and other tissues [206]. It has features of a neoplastic but also immune/inflammatory disorder 
[207].  The origin of LCH cells remains controversial. These cells were found to express 
similar gene expression levels than primary LCs. Nevertheless, large scale analysis of 
transcriptomic profiles, clustered primary LCs and LCH cells in independent groups [208]. 
This suggested that LCH cells may not derive from primary LCs, but rather from a common 
precursor. The wide distribution of the lesions, points towards blood monocytes and CD34+ 
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precursors as ideal candidates. However it has also been proposed that LCH cells derive from 
epidermal LCs undergoing transcriptional re-programming [207]. These controversies have 
not been solved yet.  

It has been determined that several cytokines relevant to LC generation (GM-CSF, Flt3L, M-
CSF) are present in the serum of LCH patients [209]; however TSLP has never been 
evaluated in these patients. TSLP + TGF-β -derived LCs did not express E-cadherin, but high 
levels of CCR6, as it has been reported for LCH cells [210, 211]. Our results suggest blood 
BDCA-1+ DCs as a new possible precursor of LCH cells. A comparison between LCH cells, 
primary epidermal LCs, CD34+ and monocyte -derived LCs as well as TSLP + TGF-β blood 
BDCA-1+ -derived LCs might contribute to define the cellular source of LCH cells.    

Finally to reconcile the fact that different blood precursors have been associated to LC 
generation in inflammatory conditions, I would like to cite the work of Sere et al. [212]. They 
showed, that in the murine model, LCs were generated at least in two waves. The first wave 
implicated monocyte-generation of short-term LCs whereas the second implicated CD34+ -
generation of long-term LCs. Although this has not been evidenced in humans, it implies that 
the precursor imprints special characteristics on the generation of LCs and their life-time. 
Blood BDCA-1+ DC -derived LCs could represent a more direct and immediate source of LCs 
in inflammatory conditions.  

 

5.3  Differential migration of TSLP blood BDCA-1+ and BDCA-3+ DCs 
 

We provided in our study direct evidence of TSLP-induced DC migration. However TSLP did 
not affect the directionality of this migration. Rather than chemotaxis, the effects of TSLP on 
DC migration were more related to chemokinesis (random migration) than to directed 
migration. In my attempt to find an involvement of chemokine receptors on TSLP-induced 
migration, I could not find a chemokine candidate explaining this process. However, I found 
that a GPCR was implicated in TSLP-induced DC migration. These results were already 
discussed. However the TSLP differential induction of migration on blood DC subsets raises 
several questions. 

The first question concerns the fact that blood BDCA-3+ DCs do not migrate upon TSLP 
treatment. We propose that BDCA-3+ DCs may need additional signals to be able to reach the 
lymph nodes. The nature of these stimuli remains to be determined. However if additional 
factors from the inflammatory milieu are required, it may be possible that BDCA-3+ DCs 
reach the lymph nodes in a delayed way. This “two-step process” has already been proposed 
by Gilliet et al [153]. Indeed they show that in order to induce effective cytotoxic cells, TSLP-
DCs need further stimulation with CD40L. In appendix 1, I show that blood BDCA-3+ DCs 
stimulated by TSLP, do not secrete chemokines (CCL17, CCL22, CCL3, CCL4) as opposed 
to TSLP-treated blood BDCA-1+ DCs. These data support the idea that blood BDCA-3+ and 
BDCA-1+ DCs respond differentially to TSLP. Even if we could not find significant 
differences in the T cell profile induced by these subsets (appendix 1), the differential 
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chemokine secretion suggests that blood subsets have different functions in the innate phase 
of the inflammatory response and in the recruitment of other cell types. Moreover, it provides 
an additional possible link between chemokine secretion and migration.  

DCs need to reach the lymph nodes and stimulate naïve T cells. The fact that TSLP induced 
DC migration provided a missing link between TSLP activation of DCs in the periphery and 
the induction of a Th2 profile. However, we did not provide evidence for the directionality of 
this migration. In the case of total DCs, we found the up-regulation of both CCR7 and CCR6, 
and down-regulation of CXCR4. While CCR7 is linked to lymph node homing [53], CCR6 is 
defined as a skin homing molecule [66]. Down-regulation of CXCR4 characterizes the 
homing in both directions. This suggested that TSLP -stimulated blood DCs had the capacity 
to migrate to the lymph nodes and to the periphery. However, TSLP + TGF-β -derived LCs 
expressed a skin homing phenotype, suggesting that they participate in the replenishment of 
LCs in the epidermis under inflammatory conditions. Soumelis et al. had observed that the 
presence of TSLP in atopic dermatitis lesions was associated with the depletion of Langerhans 
cells in the epidermis, and their enrichment in the dermis, suggesting an emigration away 
from the epidermis [133].  However the presence of higher numbers of LCs in the dermis can 
also reflect the process of differentiation of newly recruited blood BDCA-1+ cells into LCs.  

The abilities of TSLP to induce migration towards the lymph nodes and towards the skin are 
not necessarily exclusive.  While TSLP might trigger the homing to the lymph nodes in some 
resident cells, such as fully mature LCs and DCs, it may trigger the recruitment to the 
epidermis in more immature cells, like blood circulating BDCA-1+ DCs entering the dermis.  

Therefore DC subsets responding actively to TSLP might be differentially directed to 
different sites. A systematic assessment of chemokine receptor expression on TSLP –treated 
DC subsets should clarify this hypothesis.  

The last point I would like to discuss is the fact that activation, migration and function of 
different DC subsets can be uncoupled. We previously discussed the uncoupling of activation 
and migration, when we showed that other activating stimuli different from TSLP did not 
trigger DC migration (Publication 2). As blood BDCA- 3+ cells get fully activated by TSLP 
but do not migrate, the activation of DC subsets by TSLP might also be uncoupled from 
migration. To experimentally determine if the activation induced by a particular ligand on DC 
subsets is uncoupled from its specific function is a challenging task. In the case of blood DC 
subsets, differences in cross-presentation have been attributed to different stimulation 
requirements [94]. We showed that blood DC subsets get equally activated by TSLP but still 
behave in a different way upon TSLP treatment. This shows that DC subset function can be 
uncoupled from the activation induced by TSLP.  

 

Finally our study showed that even if TSLP promotes an equal activation of different blood 
and tonsillar DC subsets, there is a differential response to this inflammatory cytokine. TSLP 
stimulation revealed precursor capacities of blood BDCA-1+ DCs, their migration and 
chemokine secretion and did not induce these properties on blood BDCA-3+ cells or tonsillar 
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DC subsets. However TSLP imprinted the induction of a Th2 inflammatory profile on blood 
BDCA-1+ and BDCA-3+ subsets and on TSLP + TGF-β -derived LCs. Further analysis of 
TSLP signaling pathways and gene expression profiles on several blood, tonsillar and skin -
DC subsets may reveal other functional differences of TSLP-treated DC subsets and their 
differential implication in the inflammatory response. 
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7.1 APPENDIX 1 
 

Other effects of TSLP on blood dendritic cell subsets 

 

TSLP induces a differential chemokine secretion on DC subsets 

I evaluated TSLP capacity to induce the gene expression and the secretion of CCL3, CCL4, 
CCL17 and CCL22 chemokines. I found that TSLP was able to induce the gene expression of 
these chemokines only in the BDCA-1+ subset (Figure 7-1). BDCA-3+ cells were not found to 
express TSLP-induced chemokine genes. Moreover, CCL3 and CCL4 were detectable at the 
protein level only in TSLP-treated BDCA-1+ cells and not in medium-treated BDCA-1+ cells 
or BDCA-3+ cells. CCL17 and CCL22 were found to be secreted at high levels by TSLP-
treated BDCA-1+ cells. In some cases we could detect CCL17 and CCL22 secretion by TSLP-
treated BDCA-3+ cells, but in most of the cases the levels for these cytokines were below the 
limits of the assay detection. Therefore we could conclude that TSLP-induced CCL3, CCL4, 
CCL17 and CCL22 chemokine secretion is restricted to BDCA-1+ blood DC subset.  

 

 

Figure 7-1: TSLP-induced chemokine secretion is restricted to BDCA-1+ DC subset. 

Upper panels: Chemokine gene expression on 24h-treated BDCA-1+ and BDCA-3+ DCs. Normalized 
expression is shown as B2M fold expression as determined by real-time qPCR. The bar represents the 
mean. 

Lower panels: Chemokine protein quantification on 24h-treated BDCA-1+ and BDCA-3+ DCs cell 
culture supernatants. The bar represents the mean and the red line represents the threshold of 
sensitivity of quantification method. CCL3 and CCL4 were measured by cytometric bead array (CBA) 
and CCL17 and CCL22 were measured by ELISA. Each dot represents an independent donor **p ≤ 
0.005 ***p ≤ 0.0005, Wilcoxon non-parametric paired test was used. 
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TSLP induces a Th2 profile in both blood DC subsets 

TSLP-treated DCs induce an inflammatory Th2 cytokine profile on naïve CD4+ helper T cells 
[133]. To evaluate the functional properties of TSLP-treated DC subsets, I purified human 
naïve T cells (CD4+CD45RA+ ) from peripheral blood and cultured them with 24hour TSLP-
treated BDCA-1+ or BDCA-3+ cells at a 1:5 ratio. After 6 days of co-culture, I recovered 
washed and counted the T cells, and re-stimulated them for 24hours with anti-CD3 and anti-
CD28 beads. In parallel, naïve T cells were unstimulated (Th0), or stimulated with polarizing 
cytokines before re-stimulation to induce typical TH1, Th2 and Th17 profiles as reported 
previously [170]. At the end of the culture, I assessed the proliferation of T cells and the 
presence, in the culture supernatants, of 13 different cytokines characterizing Th1, Th2, and 
Th17 profiles. I found that both DC subsets, stimulated with TSLP, induced proliferation of 
allogeneic naïve CD4+ T cells. TSLP-BDCA-1+ cells induced a stronger proliferation of T 
cells tan BDCA-3+ cells after TSLP treatment (Figure 7-2A). Principal component analysis of 
the secreted cytokine profiles was used to determine the degree of similarity between the 
profiles induced by DC subsets on T cells. The T cells co-cultured with TSLP-treated BDCA-
1+ and BDCA-3+ DCs were found close together and closer to the Th2 profile than the T cells 
co-cultured with untreated DCs (Figure 7-2B). The T cells co-cultured with untreated BDCA-
1+ and BDCA-3+ DCs were found close together and closer to the Th0 and the Th1 profiles 
(Figure 7-2 B). TSLP-BDCA-1+ induced naïve CD4+T cells to produce higher amounts of IL-
4 (p < 0.05), IL-5 (not significant, p=0.06), IL-13 (p < 0.05,) and TNF-α (not significant) 
compared to undertreated BDCA-1+ cells (Figure 7-2C). Similarly, TSLP-BDCA-3+ induced 
naïve CD4+T cells to produce these same cytokines at significant higher levels than the 
untreated BDCA-3+ counterpart (all p < 0.05) (Figure 7-2C). 

Consistent with the PCA analysis, TSLP treated BDCA-1+ and BDCA-3+ DCs did not induce 
a differential secretion of IL-5, IL-13 and TNF-α. Statistical difference was only reached 
when comparing the IL-4 induced cytokine production (p=0.03). INF-γ was not induced by 
either of the TSLP treated subsets (Figure 7-2C).  
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Figure 7-2: Functional properties of TSLP-treated BDCA-1+ and BDCA-3+ DCs  

DC subsets were stimulated with or without TSLP for 24h and cultured with allogeneic naive CD4+T 
cells for 6 d before T cell restimulation. Cytokine cocktails were used before restimulation to polarize 
naive T cells into typical Th1, Th2 and TH17 cells. Symbols represent cells purified from the same 
donor. 

(A) T cell expansion was assessed by calculating the ratio of the number of T cells at the end of the 
culture divided by the number of T cells plated at the start of the culture. *p ≤0.05, Wilcoxon non-
parametric paired test was used. Bars represent medians. 

A

C

B

T CELL EXPANSION

0

5

10

15 **
*

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

FO
LD

 E
XP

AN
SI

O
N

IL- 4

0

1000

2000

3000

4000 **
*

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

pg
/m

l

IL- 5

0

1000

2000

3000

4000 *p=0.06
n.s.

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

pg
/m

l

IL-13

0

5000

10000

15000 **
n.s.

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

pg
/m

l

TNF-α

0

5000

10000

15000 *
n.s.

n.s.

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

pg
/m

l

IFN-γ

0

5000

10000

15000

20000
20000

30000

40000
n.s.

n.s.p=0.06

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

pg
/m

l

IL-10

0

2000

4000

6000

8000 * p=0.06
n.s.

BDCA-1
- + TSLP

BDCA-3
- +

CD4/28BEADS

Polarizing
Cytokines - - - -

- - - -

Th1 Th2 Th17-

pg
/m

l

PRINCIPAL COMPONENT 2 (18%)

PR
IN

C
IP

AL
 C

O
M

PO
N

EN
T 

1 
(3

4%
)



APPENDIX 
 

144 

(B) Resemblance of the naïve T cell profiles induced under the different conditions by Principal 
analysis Component (PCA). n=6 Principal component 1 and 2 were selected as the axes explaining 
most of the data variance. The ellipses join the data obtained for each condition. 

(C) Data represent cytokine concentration at the end of the culture measured by cytometric bead array 
(CBA). Polarizing Cytokines: Th1, IL-12; Th2, IL-4; Th17, IL-1β, IL-6, TNF-α, TGF-β and IL-23. *p 
≤0.05, Wilcoxon non-parametric paired test was used. Bars represent medians. 

 

In this appendix, I show that only the blood BDCA-1+ cells are able to secrete CCL17 and 
CCL22 after TSLP treatment. Moreover, I had found that TSLP also induced the secretion of 
CCL3 and CCL4 by total blood DCs. Here I show that the secretion of these two chemokines 
is also restricted to the BDCA-1+ subset. These data are in accordance with recently published 
data by Ziegler S. F., et al which show that the murine BDCA-1+ DC counterpart (bone 
marrow- derived CD11b+ DCs) secrete CCL17 and are able to migrate [213]. However in 
their study they did not systematically compared TSLP effects on other DC subsets. To study 
the possible functional differences between TSLP-treated BDCA-1+ and BDCA-3+ DCs I 
evaluated their capacity to induce naïve CD4+ T cell proliferation and polarization. My results 
show that both subsets are able to induce naïve CD4+ T cell proliferation. Both subsets 
triggered the CD4+ T cell polarization towards a Th2 profile. TSLP-BDCA-1+ cells were 
found to be superior in inducing T cell proliferation and BDCA-3+ cells were found to trigger 
a higher secretion of IL-4, IL-5 and IL-13 although additional experiments are required to 
reach statistical significance. 

In inflammatory conditions, the chemokines secreted by resident DCs have an important role 
in the recruitment of other immune cells that help to sustain the inflammatory response [214]. 
CCL3 and CCL4 are able to recruit T cells, and innate actors such as neutrophils, eosinophils, 
basophils, NK cells, monocytes and DCs. Moreover CCL17 and CCL22 are known to be able 
to recruit Th2 cells in the allergic inflammation [215]. The differential secretion of these 
chemokines by BDCA-1+ and BDCA-3+ DCs after TSLP treatment suggests that these subsets 
have a differential involvement in the innate phase of the allergic inflammation. In TSLP-
linked allergic disorders BDCA-3+ DCs would contribute poorly to the generation of the 
immune cell infiltration. Nevertheless both subsets prime naïve CD4+ T cells into Th2 cells 
suggesting that both subsets have an equivalent participation in the acquired phase of the 
allergic response.  

These results are in line with our previous experiments that suggest that the differential 
response to TSLP by blood DC subsets may be linked to different roles in the induction of the 
inflammatory response. 
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Telomere shortening is a major source of chromosome instability 
(CIN) at early stages during carcinogenesis. However, the mecha-
nisms through which telomere-driven CIN (T-CIN) contributes to 
the acquisition of tumor phenotypes remain uncharacterized. We 
discovered that human epithelial kidney cells undergoing T-CIN 
display massive microRNA (miR) expression changes that are not 
related to local losses or gains. This widespread miR deregulation 
encompasses a miR-200-dependent epithelial-to-mesenchymal 
transition (EMT) that confers to immortalized pre-tumoral cells 
phenotypic traits of metastatic potential. Remarkably, a miR sig-
nature of these cells, comprising a downregulation of miRs with 
conserved expression in kidney, was retrieved in poorly differenti-
ated aggressive renal cell carcinomas. Our results reveal an unan-
ticipated connection between telomere crisis and the activation 
of the EMT program that occurs at pre-invasive stages of epithe-
lial cancers, through mechanisms that involve miR deregulation. 
Thus, this study provides a new rational into how telomere insta-
bility contributes to the acquisition of the malignant phenotype.

Introduction

Telomere shortening is frequently detected at early stages of human 
epithelial cancers (1,2) and likely contributes to chromosome instabil-
ity (CIN), a hallmark of cancer cells (3,4). Recent studies on the evolu-
tion of genome instability in cancer have identified distinctive patterns 
of CIN that could be explained by a mechanism of breakage-fusion-
bridge (BFB) cycles following telomere dysfunction (5). However, 
the contribution of such rearrangements to tumor progression remains 
largely uncharacterized. On the other hand, mouse models with short 
telomeres have demonstrated that telomere-driven CIN (T-CIN) plays 
a central role in the promotion and progression of epithelial cancers 
through amplifications and losses of cancer genes (6–10). Moreover, 
it has been recently shown that a transient period of T-CIN followed 
by the reactivation of telomerase contributes to the acquisition of the 

metastatic phenotype, presumably by the selection of clones carry-
ing mutations in specific loci (11). However, the genetic elements 
impinged upon by T-CIN in human tumors, particularly from epithe-
lial origin, remain largely undetermined.

MicroRNAs (miRs) are small non-coding RNAs that play a critical 
role in gene expression regulation through post-transcriptional silenc-
ing (12). As miRs participate in key cellular processes that are dis-
rupted in cancer cells, it is not surprising that the altered expression 
of these molecules has been found in several types of human cancers 
(13). Interestingly, it has been shown that miR genes are located in 
cancer-associated genomic regions that are preferentially affected by 
genome instability events (14). In this study, we have used human 
epithelial kidney cells (HEK cells), a well-established in vitro model 
of progressive telomere instability, to study the impact of T-CIN in 
the expression of miRs and the biological consequences that might be 
relevant for the acquisition of tumor phenotypes.

Materials and methods

Cell culture
HEK cells were maintained under standard culture conditions in a humidified 
5% CO2 atmosphere at 37°C in modified Eagle’s culture media without deoxy-
ribonucleases (Invitrogen) and supplemented with 10% fetal bovine serum, 
essential amino acids and sodium pyruvate. Cell growth was monitored by 
cell counting and population doublings (PDs) were calculated by using the 
formula: number of PDs = (log [final count] – log [initial count])/0.301.

Cell transfection
For plasmid transfections, DNA was purified by standard methods using the 
Maxiprep kit (Qiagen) and 20 µg of plasmids were used to transfect the cells. 
The following plasmids were used: pSV3 Neo (simian virus 40 [SV40]), 
pLXSP-hTERT Puro (human telomerase reverse transcriptase [hTERT]), 
pBabe Puro (rat sarcoma viral oncogene homolog [RAS])  and pRetro-Super 
(shATM). Medium was changed 6 h after transfections and antibiotic selec-
tion was initiated in the following 24–48 h. For HEK cells, 0.5 µg/ml of puro-
mycin and up to 450  µg/ml of G418 were used. Selection is completed in 
1 week after which non-transfected controls have died off. Transfections of 
miRs were carried out using synthetic miR Precursor Molecules (Ambion Pre-
miR) and Lipofectamine 2000 (Invitrogen) as transfection reagent. Cells were 
transfected with a mixture of pre-miR-200a, pre-miR-200b, pre-miR-141 and 
pre-miR-200c at a final concentration of 100 nM. An equivalent amount of 
Precursor Negative Control (Ambion) was used as control. Cells were trans-
fected twice with an interval of 48 h and then analyzed.

Western blot
Cells were harvested at 75% confluence and lysed in RIPA buffer with protease 
(Roche) and phosphatase (Thermo scientific) inhibitors. Protein quantifications 
were performed using the Pierce BCA Protein Assay kit (Thermo scientific), 
and 20–40 µg protein was analyzed either in 3–8% Tris-acetate or in 4–12% 
Bis-Tris gels. Broad range protein marker (Fermentas) was used as ladder. 
Transfer was performed for 2 h at 25 V or for 10 min when an iBlot gel transfer 
system (Invitrogen) was used. Blocking was performed with 5% milk or 5% 
bovine serum albumin for 1–2 h at room temperature for phosphorylated 
proteins and primary antibodies were incubated at 4°C overnight. Detection 
was performed using the ECL plus kit (Amersham) and photos were taken 
at different exposition times. The following antibodies with their respective 
specifications were used: mouse monoclonal 419 (LT-SV40; provided by Dr 
Silvia Bacchetti) dilution 1:1000; mouse monoclonal (ataxia telangiectasia 
mutated [ATM]) (Abcam; Ref. ab2618) dilution 1:500; mouse monoclonal 
pATM (Rockland; Ref. 200-301-400) dilution 1:500; rabbit polyclonal 
CHK2 (Abcam; Ref. ab8108) dilution 1:500; rabbit polyclonal pCHK2 (Cell 
Signalling; Ref. 2661) dilution 1:500; rabbit polyclonal H2AX (Abcam; Ref. 
ab11175) dilution 1:500; mouse monoclonal pH2AX (Millipore; Ref. 05-636) 
dilution 1:500; rabbit polyclonal (telomeric repeat binding factor 2 [TRF2])  
(Novus Biologicals; Ref. NB110-57130) dilution 1:500; mouse monoclonal 
Pan-cytokeratin (Sigma; Ref. C2562) dilution 1:50 000; mouse monoclonal 
E-cadherin (BD Biosciences; Ref. 610182) dilution 1:5000; rabbit polyclonal 
transforming growth factor-β1/2/3 (Santa Cruz Biotechnology; Ref. sc-7892) 

Abbreviations:  BFB, breakage-fusion-bridge; CIN, chromosome instability; 
DDR, DNA damage responses; ER-SV40, early region of SV40; EMT, epi-
thelial-to-mesenchymal transition; HEK cells, human epithelial kidney cells; 
hTERT, human telomerase reverse transcriptase; miR, microRNA; RT–qPCR, 
real-time–quantitative PCR; SSC, standard saline citrate; SV40, simian virus 
40; T-CIN, telomere-driven CIN.
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dilution 1:200; mouse monoclonal Beta-actin (Santa Cruz Biotechnology; Ref. 
sc-47778) dilution 1:30 000 and rabbit polyclonal (zinc finger E-box binding 
homeobox 1 [ZEB1]) (Abcam; Ref. ab64098) dilution 1:500.

Southern blot
DNA extractions were performed by using the method of phenol–chloroform 
previous digestion with proteinase K. For teloblot, 5–10 µg DNA was digested 
with 50U HinfI and RsaI enzymes overnight. Then, samples and DNA marker 
(Low Range PFG marker, Biolabs) were loaded onto an 1% agarose gel in 
0.5× Tris–Borate–EDTA buffer. The clamped homogeneous electric field 
(CHEF) electrophoresis conditions  are as follows: initial pulse: 0.1 s; final 
pulse: 2.5 s; time: 8 h and voltage: 200 V or 6 V/cm2. Gels were stained with 
ethidium bromide for 10 min and destained with Nanopure water for 20 min. 
DNA was broken with a ultraviolet crosslinker set to 1800 × 100 KJ (about 
1 min). Gels are denatured and transferred in alkaline conditions (0.6 M NaCl, 
0.4 M NaOH) for up to 48 h. Fixation and neutralization steps were performed 
in 0.4 N NaOH for 15 min and in 2× standard saline citrate (SSC), respectively. 
Prehybridization was carried out overnight at 42°C using 1/50 of Boehringer 
blocking reagent. The probe (20 pmol) was labeled with γ-adenosine triphos-
phate and hybridizations were carried out overnight at 42°C. (Sequence 25 bp 
CCTAACCCTAACCCTAACCCTAACC.) Membranes were washed with 2× 
SSC, 0.1% sodium dodecyl sulfate at room temperature for 5 min; 0.2× SSC, 
0.1% sodium dodecyl sulfate at 37°C for 2 min and final wash with 2× SSC. 
Then, the membranes were exposed for 1–2 days and scanned for analysis.

Immunofluorescence
The day before, 20  000 cells per well were seeded on microscope slides 
(Thermo scientific). For F-actin staining, cells were washed with phosphate-
buffered saline 1× and fixed in 3% formaldehyde and 2% sucrose for 15 min. 
Next, cells were washed twice and permeabilized for 10 min. Stock solutions 
of phalloidin–tetramethylrhodamine isothiocyanate (TRITC) (Sigma) con-
jugates have been made in dimethyl sulfoxide at 0.5 mg/ml and is used at a 
concentration of 1:400 in phosphate-buffered saline for 40 min at room tem-
perature. Cells were washed several times to remove the conjugate and stained 
with 0.5 mg/ml 4′,6-diamidino-2-phenylindole.

Migration/invasion assays
Wound healing assays were performed in cells at 75% confluence by scratch-
ing with a p200 pipette tip. Images were captured at 0, 6 and 12 h. At least 10 
images at each time point in two independent experiments were used for analy-
sis and the percentage of invaded area at each time was estimated for quan-
tifications. For matrigel invasion assays, chambers were rinsed with media 
without serum 4 h before the assay. Then, a coat of matrigel (diluted one-third 
in media without serum) is applied in the upper side of the chamber and incu-
bated for 1 h. A total of 200 000 non-starved cells were seeded for analysis; 
10% fetal bovine serum was used as chemoattractant on the bottom side of the 
chamber. Cells were allowed to traverse the matrigel and filter for a period of 
72 h after which they were fixed with methanol for 15 min and stained with 
0.2% crystal violet in water for 1 h. Cells from the upper side of the chamber 
were removed with cotton swabs. A total of 10 images from two independent 
experiments were taken for quantifications.

Array-comparative genomic hybridization
To characterize genome instability in HEK cells, human CGH 4 × 72K Whole-
Genome Tiling Arrays (NimbleGen) were used. This platform carries syn-
thetic probes representing loci spaced on average of every 40 Kb. HA1-Early 
cells were used as normal controls of hybridizations. DNAs for analyses were 
diluted at 100–200 ng/µl and quality was checked by Nanodrop and Qubit 
(Invitrogen). Labeling reactions (Cy3 normal/Cy5 tumoral) were performed 
by random priming method using the BioPrime kit (Invitrogen) and 500 ng 
DNA. After precipitation, DNA was quantified again and hybridizations were 
performed at 42°C overnight in hybridization chambers. After washing steps, 
slides were scanned using Genepix 400B (Axin scanner). Data were uploaded 
to the VAMP (Visualization and Analysis of array-CGH, Transcriptome and 
other molecular profiles) platform at the Curie Institute (12) and CGH data 
were normalized by using Micro-Array Normalization of array-CGH data 
(MANOR) (13) and segmented by using Gain and Loss Analysis of DNA 
(GLAD) (14).

RNA sequencing
Total RNA was purified from immortalized and non-immortalized CIN− and 
CIN+ HEK cells using miRNEasy (Qiagen). Quality of preparations was checked 
using Agilent Bioanalyzer 2100 and only RNAs with a RNA integrity number 
(RIN) > 8.5 were used for subsequent analyses. Small (20–22 nt) RNA libraries 
were prepared in duplicate with size-purified RNA isolated from two different 
batches of cells. Approximately, 100 μg of total RNA was submitted to the ImaGif 
platform (Gif-sur-Yvette, France) for Illumina sequencing. This procedure was 

performed by fractionating total RNA using polyacrylamide gel electrophoresis 
to isolate 18–30 nt small RNAs. 3′ and 5′ adapters were ligated to the small RNAs 
and constructs were amplified following real-time–PCR (RT–PCR) following the 
conditions specified in the 36 cycles Sequencing Kit v5 (FC1045001, Illumina) 
protocol. The small RNA library was sequenced using a Solexa/Illumina GA-IIx 
Genome analyzer. Small RNA sequences were analyzed using the ncPRO-seq 
pipeline (http://ncproseq.sourceforge.net/) (15). Briefly, reads were mapped to the 
human genome (hg19) using the Bowtie aligner (16) allowing up to 20 genomic 
match positions. The genomic positions of mature miRs and miR* were obtained 
from the miRBase database (17). Aligned reads were then considered to corre-
spond to a mature miR (or miR*) only if the aligned position did not differ from 
the annotated position of the mature miR (or miR*) by more than 2 bp. In order 
to be able to compare miR expression levels and profiles between libraries, miR 
read counts were normalized using a two-step procedure. The normalized miRs 
read counts were then assessed for differential analysis using the R/Bioconductor 
package DESeq (18) and miRs with an adjusted P value (adj P < 0.05) were 
reported as significant.

Expression profiling of mature miRs
Screening for miR expression was performed using the Affymetrix miRNA 
Galaxy arrays following the manufacturer’s protocol. Raw data were uploaded 
onto the VAMP platform, normalized using standard procedures and analyzed. 
Differentially expressed miRs between CIN− and CIN+ HEK cells were identified 
using a t-test. For validation, quantitative analysis of mature miRs was performed 
using the RT–quantitative PCR (RT–qPCR) miRCURY system from (EXIQON). 
Briefly, 250 ng of DNase-treated RNA was used to prepare complementary DNAs 
in three independent RT reactions, and qPCR reactions were carried out using 
miR-specific locked nucleic acid (LNA) primers in a Roche instrument LC480. 
The expression of hsa-miR-31 was used as endogenous control for normalization 
and relative quantifications were calculated with the 2−∆∆CT method (19).

Expression profiling of pre-miRs
A total of 178 precursors were analyzed using the MiRmaid miRNA 
Precursors RT–qPCR primer set (Eurogentec). Universal RT reactions were 
purified and then amplified using specific pre-miR primers. The qPCR reac-
tion was performed in ABI Prism 7500 thermal cycler (Applied Biosystems). 
Amplifications with Ct values > 38 and unspecific amplifications (more than 
two peaks in the melting curve) were considered not reliable for analysis. 
The geometric mean of three control genes (5S, TBP, HBMS) was used for 
normalization (20). A second method of normalization was performed using 
the average of the whole set of miRs present in the same PCR plate (21). 
Analysis of differentially expressed miR was performed using a two-tail 
t-test. The false discovery rate was controlled using the Benjamini–Hochberg 
procedure, and a P value <0.05 was considered significant. All the analyses 
were performed using R software with Bioconductor packages and custom 
functions defined at the Institut Curie Bioinformatics group (http://bioinfo.
curie.fr/projects/ema).

Expression profiling of primary miRs
RNA samples were treated with DNase using TURBO-DNA-free (Ambion). The 
protocol includes a universal RT reaction step using the high-capacity RNA-to-
cDNA kit (Applied Biosystems) followed by detection of pri-miRs in qPCR using 
specific Taqman Pri-miRNA assays (Applied Biosystems). In addition, a Taqman 
assay for RNU24 was used for normalization. The qPCR reaction was performed 
in ABI Prism 7500 thermal cycler (Applied Biosystems). Relative quantifications 
were calculated with the 2−∆∆CT method (19).

Transcriptome analysis
Gene expression profiling was performed using the U133 Plus 2.0 Array 
platform that contains 47 000 transcripts. Complementary DNA synthesis, 
fragmentation and hybridization were carried out following an optimized 
protocol at the Institut Curie Translational Platform. After scanning, data 
were normalized using GC robust multi-array average (GCRMA) and non-
detected probesets were removed (using a threshold of 3.5 in log scale on the 
maximal value for each probeset), leaving 25 022 probesets for the analysis. 
Clustering analyses were performed using Pearson’s correlation as distance 
and Ward’s linkage. Differentially expressed genes between pre-crisis and 
post-crisis samples were assessed with t-test and false discovery rate was 
controlled by Benjamini–Hochberg procedure.

Clinical samples
A series of 33 human renal clear cell carcinomas were obtained from the 
French Kidney Cancer Consortium co-ordinated by S.Richard. This study was 
approved by the ethical committee of Le Kremlin-Bicêtre University Hospital, 
France. All patients had provided informed consent before surgery for use of 
their tumors for further investigation, and samples were frozen immediately 
in liquid nitrogen. RNAs were extracted using Trizol reagent (Invitrogen) 
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according to the manufacturer’s instructions, and quality and quantity were 
assessed by Agilent Bioanalyzer 2100. Hybridization was performed by the 
Genomics Platform of Gustave Roussy Institute (Villejuif, France) using miR 
8 × 16K Agilent Human v3 (G4470C) in one color.

Results

HEK cells model of T-CIN
In this model, primary HEK cells are transfected with the early region 
of SV40 (ER-SV40), which drives the expression of both large T and 
small t antigens, to allow them to divide 80–90 times before entering 
crisis, a period characterized by massive cell death due to rampant 
CIN (22) (Figure 1A). We have shown previously that T-CIN takes 
place around population doubling 50 (PD50) and is driven by the 
shortest telomeres in these cells (23). Using a particular clone (HA1), 
isolated after introduction of ER-SV40, it is possible to reproducibly 
recover telomerase positive post-crisis cells with critically short tel-
omeres, whereas other clones (HA2–HA5) never give rise to survivors 
(22) (Figure 1A–C). On the other hand, the introduction of hTERT in 
clones HA1 and HA5 before PD50 allows the immortalization of cells 
without CIN (HA1-early and HA5-early), whereas introduction of 
hTERT after this point in clone HA5 leads to immortalization of kar-
yotypically abnormal CIN+ cells (HA5-late) as determined by array-
comparative genomic hybridization (Figure  1A and Supplementary 
Figure S1, available at Carcinogenesis Online).  This system provides 
a perfect experimental setup to study the impact of T-CIN on gene 
expression and the derived biological consequences by comparison of 
CIN+ versus CIN− cells.

HEK cells with T-CIN exhibit massive miR deregulation
To explore the extent to which T-CIN impacts the gene expression 
landscape, we chose to monitor miRs, as it has been suggested that 
genomic regions carrying these genes may be preferentially affected 

by genome instability events (24). We performed a comparison of the 
miR expression profiles between CIN+ and CIN− cells derived from 
the same HEK-ER-SV40 clone using a next-generation sequencing 
approach (Supplementary Figure S2A, available at Carcinogenesis 
Online). We found that of about 1008 miRs that are detected in HA5-
derived cells, 538 (53.3%) were significantly deregulated (adj P < 0.05) 
in HA5-late versus HA5-early cells (Figure 2A and Supplementary 
Table S1, available at Carcinogenesis Online). A comparison between 
the 1038 miRs expressed in HA1-derived cells revealed a similar 
result, with 395 miRs (38.1%) significantly deregulated (adj P < 0.05) 
in post-crisis PC1 versus HA1-early cells (Supplementary Figure S2B 
and Table S2, available at Carcinogenesis Online). In all, 138 miRs 
presented variations in the same direction (Supplementary Figure 
S2C, available at Carcinogenesis Online), suggesting that a signifi-
cant proportion of miRs were similarly affected, independently of the 
genome instability history of both clones. This assumption was con-
firmed using array hybridization in additional HEK cells, in which 
around 16% of miRs were deregulated in CIN+ versus CIN− cells 
(P  <  0.05) (Supplementary Figure S3A and Table S3, available at 
Carcinogenesis Online). Although array hybridization is less sensitive 
than massive sequencing, there is a significant correlation between 
the expression changes detected by both methods (Supplementary 
Figure S3B, available at Carcinogenesis Online). Furthermore, a frac-
tion of the differentially expressed miRs was confirmed by RT–qPCR 
(Supplementary Figure S3C, available at Carcinogenesis Online). 
Intriguingly, these validated miRs have been found deregulated in 
human renal cell carcinomas (25,26).

To determine whether the miR deregulation exhibited by cells with 
T-CIN is restricted to mature strands, we examined the expression 
of pre-miRs using the same set of RNA samples. A total of 172 pre-
miRs were measured by RT–qPCR, from which 102 were expressed 
across the HEK cells. An unsupervised clustering analysis readily dis-
tinguished CIN+ from CIN− cells and, similarly to the sequencing 

Fig. 1.  HEK cell model for analysis of T-CIN. (A) Primary HEK cells were transfected with ER-SV40 at early PDs, and clones HA1–HA5 were immediately 
obtained. CIN due to telomere shortening initiates at PD50 and leads to repeated BFBs. Cells entered crisis after PD80 and clones HA2–HA5 died off, whereas 
spontaneous reactivation of telomerase in clone HA1 allowed recovering five post-crisis cells (PC1–PC5) in independent experiments. Cells without CIN before 
PD50 (CIN− cells, in orange) were immortalized through introduction of hTERT in clones HA1 and HA5 and remained karyotypically stable (early cell lines). 
Exogenous immortalization of cells >PD50 (CIN+ cells, in blue) was also achieved in clone HA5 (HA5-late cells). (B) Western blot analysis to examine the 
expression of LT-SV40 in the panel of HEK cells. (C) Southern blot for assessment of telomere length shows shorter telomeres in CIN+ post-crisis HEK cells.
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data for mature strands, this deregulation was significant for half of 
the pre-miRs analyzed (adj P  <  0.05) (Supplementary Figure S4A 
and Table S4, available at Carcinogenesis Online). There is also a 
significant correlation between the expression changes detected for 
pre-miRs and mature strands (Supplementary Figure S4B, available at 
Carcinogenesis Online). To further test whether this miR deregulation 
is also reflected at the level of transcription, we measured the expres-
sion of some primary strands (pri-miRs) in HA5-late versus HA5-
early cells (Supplementary Figure S4C, available at Carcinogenesis 
Online). Most, albeit not all, tested miRs showed a co-deregulation 
at the levels of both primary and mature strands, suggesting that tran-
scription contributes to miR deregulation in the context of T-CIN.

Collectively, these data indicate a massive deregulation of miR 
expression associated with T-CIN. Notably, changes in miR expres-
sion are completely prevented if telomerase is introduced before, but 
not after, the initiation of T-CIN (Supplementary Figures S3A and 
S4A, available at Carcinogenesis Online), demonstrating that tel-
omere instability is responsible for the observed miR deregulation. As 
this miR deregulation could be related to genomic aberrations induced 
by T-CIN, we closely examined the array-comparative genomic 
hybridization profiles of immortalized CIN+ HEK cells. Intriguingly, 
only 12 miR-altered loci in at least three out of six CIN+ cells overlap 
a significant change in the expression of pre-miRs (Supplementary 
Figure S4D and Table S5, available at Carcinogenesis Online), sug-
gesting that genomic gains and losses had a limited contribution to the 
miR deregulation in cells that underwent T-CIN.

Ongoing T-CIN triggers transcriptional miR deregulation in the 
absence of an overt DNA damage response
To determine the time at which T-CIN induces the miR deregu-
lation, we monitored proliferating, non-immortalized HEK cells 

before and after the initiation of CIN. We found that changes in 
the expression of most of the mature miRs examined were similar 
in clones HA1 and HA5 (Supplementary Figure S5A, available at 
Carcinogenesis Online), with increased deregulation with increas-
ing passages, and a maximum fold change in crisis. When pre-
miRs were monitored, a shift in the global expression profile was 
detected in cells undergoing active T-CIN, a few passages after the 
initiation of BFBs (Figure 2B and C). This massive deregulation 
was similar in different clones as well as in polyclonal populations 
and did not induce changes in cell growth kinetics (Figure  2C). 
Interestingly, the detected changes affected in a similar way miRs 
belonging to the same family or to the same genomic cluster 
suggesting a concerted transcriptional response. In fact, we also 
detected changes in the expression of pri-miRs, which also tend 
to accumulate soon after the initiation of CIN (Supplementary 
Figure S5B, available at Carcinogenesis Online), demonstrat-
ing that T-CIN directly impacts the expression of miRs at the 
transcriptional level.

It has been shown that DNA damage responses (DDR) impact miR 
expression (25). To test whether the miR transcriptional deregula-
tion induced by T-CIN is linked to a DDR due to telomere shorten-
ing (26,27), we evaluated the presence of marks for DDR activation 
by western blot . HEK cells examined after the initiation of T-CIN 
did not exhibit the classic marks for DDR activation by the time we 
detected the first changes in pri-miR or pre-miR expression levels 
(PD55-60) (Supplementary Figure S6A, available at Carcinogenesis 
Online), suggesting that the miR deregulation induced by T-CIN did 
not require a strong DDR. Supporting this interpretation is the fact 
that a partial depletion of ATM did not prevent the pre-miR changes 
exhibited by cells undergoing T-CIN (Supplementary Figure S6B–D, 
available at Carcinogenesis Online).

Fig. 2.  T-CIN triggers widespread miR deregulation. (A) Comparison of miR expression profiles between HA5-late (CIN+) and HA5-early (CIN−) cells using 
RNA-Seq data. The number of reads (log2) for each miR (n = 538) was plotted for both cell lines. Black lines indicate 2-fold changes. Upregulated miRs in HA5-
late are shown in red, whereas those that are downregulated are shown in green. (B) Pre-miR expression profiles of clones HA1, HA5 and polyclonal populations 
at equivalent PDs were detected by RT–qPCR. Primary cells, as well as two other clones (HA2 and HA3), were also analyzed at early passages. The normalized 
expression of each precursor against the mean of three housekeeping genes (∆CT) was used to generate the heatmap, where red indicates high expression and 
green indicates low expression. The color bar indicates the magnitude of expression in log2 scale. Clustering was performed only for pre-miRs using Euclidean 
distance metric. (C) Growth curves of clones HA1, HA5 and polyclonal populations undergoing T-CIN.
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To determine whether the miR deregulation induced by T-CIN can be 
also found in situations of telomere dysfunction that are independent of 
telomere shortening, we evaluated miR expression changes upon depletion 
of TRF2, an essential component of the telomeric shelterin complex that 
prevents the recognition of chromosome extremities by the DNA damage 
machinery (28). As complete loss of TRF2 induces growth arrest (29), 
we aimed at achieving a partial depletion to allow cells to cycle and to be 
chronically exposed to telomere dysfunction. Three rounds of transfections 
with a specific small interfering RNA against TRF2 led to 70% depletion 
of the protein (Supplementary Figure S7A, available at Carcinogenesis 
Online). This depletion was associated with a 3-fold increase in the 
percentage of cells with more than two telomere dysfunction-induced foci, 
as compared with cells transfected with the small interfering RNA control, 
indicating the presence of DNA damage due to uncapped telomeres 
(Supplementary Figure S7B and C, available at Carcinogenesis Online). 
Although TRF2 depletion leads to changes in expression of some mature 
miRs that were also observed in cells undergoing T-CIN (Supplementary 
Figure S7D, available at Carcinogenesis Online), the impact was quite 
different at the level of pri-miRs, which showed lower expression upon 
TRF2 depletion (Supplementary Figure S7E, available at Carcinogenesis 
Online), whereas cells reaching crisis pri-miRs tend to be upregulated. 
This experiment, while supporting the notion that telomere dysfunction 
influences miR transcription, suggests that different mechanisms of 
telomere uncapping may have a different biological outcome.

T-CIN leads a miR-200-dependent transdifferentiation
In order to examine the biological consequences of the miR deregula-
tion induced by T-CIN on cell phenotypes, we focused on the miR-200 

because members of this family were downregulated in CIN+ cells in 
most of the comparisons we performed. We confirmed by RT–qPCR 
that the cluster located on 1p36.33 (miR-200a and miR-200b), which 
is robustly expressed in primary and CIN− cells, was significantly 
downregulated in CIN+ cells. Similarly, the miR-200 cluster located 
on 12p13.31 (miR-141 and miR-200c), which is poorly expressed 
in primary and CIN− cells, was further downregulated (Figure 3A). 
The miR-200 family has been directly implicated in the induction of 
epithelial-to-mesenchymal transition (EMT) (30,31), a physiological 
phenomenon during organismal development, which is also consid-
ered relevant for metastasis (32). This prompted us to examine the 
phenotypical features of CIN+ HEK cells.

Microscopic evaluation revealed that CIN+ cells have lost the 
rounded, cobblestone morphology typical of epithelial cells and display 
a more elongated, spindle-like shape typical of fibroblasts with a charac-
teristic orientation of actin microfilaments (Figure 3B). In addition, all—
but one—CIN+ cells showed modified expression of epithelial markers, 
E-cadherin and cytokeratins, and enhanced expression of transforming 
growth factor-β and ZEB1, two well-known EMT inducers (Figure 3C). 
We also detected a change in the proportion of cells expressing CD24 
(epithelial) or CD44 (mesenchymal) surface markers(33), which 
becomes readily evident in crisis (Figure  3D), as well as enhanced 
migration and invasion capacities in CIN+ cells (Supplementary Figure 
S8A–C, available at Carcinogenesis Online), suggesting that CIN+ HEK 
cells underwent transdifferentiation. In keeping with these observations, 
transcriptome analyses identified 878 genes differentially expressed 
between CIN+ and CIN− cells that are involved in EMT-related signal-
ing pathways (Supplementary Figures S9A and B and Table S6, avail-
able at Carcinogenesis Online); indeed several genes downregulated in 

Fig. 3.  HEK cells that underwent T-CIN display an EMT-like phenotype. (A) Expression levels of the miR-200 family, relative to the mean expression of hsa-
Let7 and hsa-miR-365 (housekeeping) as detected by RT–qPCR in CIN− and CIN+ cells. Error bars indicate standard error of the mean from three independent 
RT reactions. (B) Phase contrast microscopy (×40) (upper) and phalloidin–TRITC staining (bottom) in HA5-early and HA5-late cells. (C) Expression patterns 
of E-cadherin, cytokeratins, ZEB1 and transforming growth factor-β in CIN− and CIN+ cells. Ponceau staining is shown as loading control. (D) Intensities of 
surface markers CD44 and CD24 in CIN− and CIN+ cells as detected by flow cytometry.
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CIN+ cells are involved in kidney development (Supplementary Table 
S7, available at Carcinogenesis Online), supporting the notion that 
T-CIN impinges on the differentiation program of renal epithelial cells. 
To test whether the downregulation of the miR-200 family in CIN+ 
HEK cells is responsible for the observed EMT, as described for other 
epithelial systems (30–32), we transfected these cells with a mixture of 
pre-miRs representing the miR-200 family (Figure 4). This experiment 
shows that re-expression of these miRs in CIN+ HEK cells is sufficient 
to restore the epithelial phenotype (Figure 4).

The miR expression signature of post-crisis HEK cells is displayed 
by advanced renal cell carcinomas
Several studies have shown a deregulated expression of miRs in 
renal cell carcinomas when compared with normal tissues (34,35). 
Some of the miR changes frequently found across published studies 
include overexpression of members of the miR-17–92 cluster, miR-
224 and miR-34a, as well as downregulation of members of the miR-
200 family and the miR-143/145 cluster, the latter being associated 
with early renal cancer relapse (26). Remarkably, all these miRs are 
deregulated in HEK cells undergoing T-CIN, and this deregulation 
persists in immortalized CIN+ cells. Because short telomeres are 
associated with a high incidence of chromosome abnormalities (36) 
and higher risk of renal cancer (37), we examined the in vivo relevance 
of the miR expression pattern acquired by HEK cells upon T-CIN. To 
this end, we defined a signature composed of a set of 20 miRs that 
were significantly downregulated in post-crisis HEK cells and which 
belong to a core signature of miRs expressed in normal kidney tissues 
(38). This signature was used to interrogate a set of human renal cell 
carcinomas (Gad et  al., in preparation). Unsupervised clustering 

analysis indicated that this miR signature correctly classifies 28 out 
of 33 renal tumors (Figure 5 and Supplementary Table S8, available 
at Carcinogenesis Online). Outstandingly, advanced renal carcinomas 
with the highest Fuhrman’s nuclear grade and tumor stage are 
considered poorly differentiated and exhibit, as post-crisis HEK cells, 
low expression levels of these miRs.

Discussion

This work provides unprecedented evidence indicating that T-CIN in 
human epithelial cells induces widespread changes in miR expres-
sion ultimately leading to a major perturbation in the differentiation 
program. Interestingly, T-CIN impacts miR expression at the tran-
scriptional level soon after the initiation of BFB cycles in the absence 
of a strong DDR. Given the reproducibility of miR expression 
changes in clonal and polyclonal cell populations in which chromo-
some rearrangements accumulate stochastically, it is very likely that 
this transcriptional activity is independent of local rearrangements. 
Alternatively, there is a possibility, although this remains to be shown, 
that changes in miR expression are linked to pervasive epigenetic 
changes. Such changes could be related either to the spreading in cis 
of chromatin changes that reach far away from the point of double-
strand breaks or to the activation in trans of chromatin remodeling 
complexes able to impact the transcription program of the cell.

Remarkably, the miR deregulation induced by T-CIN recapitulated 
the most common miR expression changes described in renal can-
cers that have been proposed to be associated with tumor progression. 
Specifically, we showed that a downregulation of the miR-200 family 
is directly responsible for the activation of the EMT program in CIN+ 
cells. Of note, although telomere crisis and EMT have been proposed 

Fig. 4.  Re-expression of the miR-200 restores the epithelial phenotype of CIN+ HEK cells. (A) Immortalized HEK CIN+ cells (HA5-late and PC1) were 
transfected twice at 48 h interval either with a mixture of pre-miR-200 or with a scrambled pre-miR preparation used as negative control (UR). The histogram 
shows the restored expression of mature miR-200, as detected by RT–qPCR. The expression value of each miR was normalized against the mean of hsa-Let7 
and hsa-miR-365 used as housekeepings. Error bars indicate standard error of the mean from three independent RT reactions. (B) Phase contrast of CIN+ cells 
transfected with control UR or pre-miR-200 (upper) and phalloidin–TRITC staining (bottom) were used to monitor changes in morphology. (C) The expression 
of ZEB1, a repressor of E-cadherin and well-known target of the miR-200 family, was evaluated by RT–qPCR in CIN+ cells 48 h after the last transfection with 
control UR or pre-miRs-200. The histogram shows the expression of ZEB1 relative to B2MG used as housekeeping, for each condition. Error bars indicate standard 
error of the mean from three independent RT reactions; ***P < 0.001 (unpaired t-test). (D) Western blot analysis of E-cadherin 48 h after the last transfection of 
CIN+ cells with control UR or pre-miRs-200. HA5-early cells (CIN−) are showed as positive control for comparison. B-actin was used as loading control.
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to occur at pre-invasive lesions of epithelial cancers (39,40), this is the 
first time that a connection between these two phenomena is firmly 
established. Indeed, our results appear to be relevant for the onco-
genic process in vivo because the miR expression pattern displayed by 
transdifferentiated post-crisis HEK cells was also retrieved in poorly 
differentiated, high-grade renal tumors.

The EMT program has been fully documented as being required 
for the acquisition of metastatic potential (41). Intriguingly, however, 
post-crisis HEK cells are poorly tumorigenic (data not shown), as 
opposed to immortalized HEK cells expressing oncogenic RAS 
(42). Nevertheless, as circulating tumor cells can be detected at early 
stages during tumorigenesis (40), our data support a model whereby 
telomere shortening at early stages of human epithelial cancers might 
promote the acquisition of the malignant phenotype, perhaps with 
post-crisis cells reflecting an intermediate step in the road to oncogenic 
transformation. Therefore, we provide a new mechanistic rational to 
understand the long-standing association among aging, short telomeres 
and the progression of carcinomas toward the metastatic disease. 

Conclusions

This study shows that in the context of telomere instability, there is a vast 
deregulation in miRs transcription that is not connected with correspond-
ing DNA copy number changes. We demonstrated that HEK cells that 
have traversed a period of T-CIN both display low expression levels of 
genes and miRs that are normally expressed in kidney tissue and undergo 
a miR-200-dependent EMT. Importantly, a miR signature of HEK post-
crisis cells was found in high-grade undifferentiated aggressive cancers 
of the same tissue origin, suggesting that in vitro transformation models 
could help us to understand the mechanisms by which tumor cells adapt 
their gene programs and acquire aggressive phenotypes.

Supplementary material

Supplementary Tables 1–8 and Figures 1–9 can be found at http://
carcin.oxfordjournals.org/
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