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Summary: Landslide inventory mapping and monitoring are indispensable for hazard 
assessment and disaster management. The enhanced availability of VHR satellites, UAVs and 
consumer grade digital cameras offers a great potential to support those tasks at regional and 
local scales, and to complement established techniques such as in situ instrumentation, radar, and 
laser scanning. A lack of image processing tools for the efficient extraction process-relevant 
information from different types of optical imagery still complicates the exploitation of optical 
data and hinders the implementation of operational services. This doctoral thesis is dedicated to 
the development and application of image processing techniques for the mapping, 
characterization and monitoring of landslides with optical remote sensing data. A comprehensive 
review of innovative remote sensing techniques for landslide monitoring shows the potential and 
limitations of available techniques and guides the selection of the most appropriate combination 
of sensors – platforms – image analysis methods according to the observed process and end-user 
needs. For the efficient detection of landslides after major triggering events at the regional scale, 
a method for rapid mapping combining image segmentation, feature extraction, supervised 
learning is developed. For detailed landslide investigations at the local scale, this study 
elaborates image processing chains for detection of surface fissures in time-series of UAV 
images as geo-indicators of landslide activity, the measurement of horizontal surface 
displacements from VHR satellite images using stereo-photogrammetric and image correlation 
methods, and 3D measurements from terrestrial photographs based on multi-view open-source 
photogrammetry. 
 

Keywords: Landslide, Mapping, Monitoring, Optical remote sensing, Earth observation, Image 
classification, Machine learning, Photogrammetry, Image correlation 
 
Résumé: La cartographie, l'inventaire et le suivi de glissements de terrain sont indispensables 
pour l'évaluation de l'aléa glissements de terrain et la gestion des catastrophes. La disponibilité 
croissante des satellites THR, des drones et des appareils photo numériques grand public offre un 
grand potentiel pour soutenir ces tâches à l'échelle régionale et locale en complément de 
techniques établies telles que l'instrumentation in-situ, radar, et les acquisitions par scanner laser. 
Un manque d'outils de traitement d'image pour l’extraction efficace d’informations pertinentes à 
partir de différents types d'imagerie optique complique encore l'exploitation des données 
optiques et entrave la mise en œuvre de services opérationnels. Cette thèse est consacrée à 
l'élaboration et l'application de techniques de traitement d'image pour la cartographie, la 
caractérisation et la surveillance des glissements de terrain en exploitant des données d'imagerie 
optique. Un état de l'art approfondi des techniques de télédétection innovantes pour la 
surveillance des glissements de terrain est proposé et démontre le potentiel et les limites des 
techniques et propose des critères pour le choix des capteurs disponibles (plateformes et 
méthodes d'analyse d'images) selon le processus observé et les besoins des utilisateurs. Pour la 
cartographie rapide des glissements de terrain lors de catastrophes majeures, une méthode qui 
combine segmentation d'image et apprentissage supervisé est développée pour l'analyse des 
images satellitaires THR à travers plusieurs exemples en Chine, au Brésil, à Haïti, en Italie et en 
France. Pour l'analyse de glissements de terrain à l'échelle locale, la recherche a élaboré des 
chaînes de traitement d'images pour la détection de fissures à partir de séries temporelles 
d'images de drones comme possible géo-indicateurs de l'activité des glissements, la mesure des 
champs de déplacements horizontaux à partir d'images satellitaires THR utilisant en utilisant des 
méthodes stéréophotogrammétrie et par corrélation d’image, et les mesures 3D à partir de 
photographies terrestres basées sur des méthodes de photogrammétrie multi-images. 
 
Mots-clés: Glissement de terrain, Cartographie, Surveillance, Observation de la Terre, 
Télédétection optique, Classification d'images, Apprentissage automatique, Photogrammétrie, 
Corrélation d'images 
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RESUME LONG 
 
Au cours du siècle dernier (1903-2004), environ 16.000 personnes ont été tuées par des 
glissements de terrain en Europe et la perte économique estimée s'élève à 1700 millions US 
$ (Nadim et al., 2006). Les mécanismes des glissements de terrain ne sont pas encore bien 
compris (van Asch and Malet, 2009), et les méthodes d'évaluation de l'aléa et du risque se 
sont pas standardisées (van Westen et al., 2006). La création d'inventaire et de catalogues 
d'évènements est le fondement d'une évaluation quantitative. Leur élaboration et leur mise à 
jour est un travail considérable et les résultats incluent toujours un degré élevé de 
subjectivité. (Wills and McCrink, 2002). Plus précisément, les occurrences spatiales et 
temporelles, le type de mouvement, l'intensité du phénomène (par exemple exprimé en terme 
de vitesses de déplacement) et d'autres paramètres descriptifs doivent être intégrés à ces 
inventaires à l’échelle régionale et à l’échelle locale. Les challenges dans ce domaine 
concernent surtout la cartographie régionale post-événement et la caractérisation détaillée du 
type de glissement de terrain, de sa géométrie et de son intensité. Celle-ci inclut le suivi 
continu de pentes instables afin de collecter des séries quantitatives sur les déplacements et 
les volumes, et plus généralement afin de prévoir les événements et de mettre en place des 
systèmes d’alerte. 
 
Les progrès notables (résolution spatiale et spectrale, répétitivité des mesures) et la 
diversification des technologies dans le domaine de la télédétection passive (imagerie optique 
issue de plateformes d'acquisition terrestre, aérienne et spatiale) ont considérablement 
amélioré les capacités de cartographie et de surveillance des versants instables. Dans ce 
contexte, la télédétection passive contribue à améliorer les connaissances sur la cinématique 
des glissements de terrain. Les technologies de télédétection active (imagerie radar et 
LiDAR) sont également couramment utilisées pour l'investigation de glissements de terrain. 
En particulier, l’interférométrie radar est utilisée dans des services opérationnels de gestion 
des risques. Cependant, l’interférométrie radar et les données LiDAR comportent plusieurs 
limitations telles qu’une couverture spatiale et temporelle limitée et des coûts élevés.  
L'imagerie optique est une technologie de télédétection rentable et polyvalente dont le 
potentiel est, à l’heure actuelle, sous-utilisé car elle permettrait de fournir des informations 
complémentaires et de surmonter plusieurs limitations des techniques actuelles. 
 
Dans ce contexte, l'objectif de ce travail de thèse est de proposer des techniques de traitement 
des images optiques, robustes et le plus automatisée possible, afin d’exploiter au mieux le 
volume de données disponibles pour caractériser et suivre les glissements de terrain. Il s’agit 
également de développer/proposer des chaînes de traitement d’images opérationnelles 
adaptées aux images optique à Très Haute Résolution (THR) issues des satellites, des drones 
et des appareils photographiques numériques ‘grands publics’. Ces développements sont 
destinés à la cartographie rapide des glissements de terrain à l'échelle régionale, et à leur 
caractérisation détaillée et à leur suivi, à l'échelle locale. Les objectifs spécifiques de la 
recherche sont les suivants : 
 
• le développement d'une chaîne de traitement générique des images satellite à Très Haute 
Résolution (THR) spatiale, pour la cartographie rapide des glissements de terrain, fondé sur 
des algorithmes d'apprentissage automatique et sur une approche d’analyse d’images dite 
‘orientée objet’ (OBIA; Object-Based Image Analysis) ; 
• le développement et la mise en œuvre d'un algorithme d'apprentissage actif afin de réduire 
le besoin de données d'entraînement avec une attention particulière accordée aux contraintes 
spatiales et à l'incertitude liée à la vérité terrain ; 
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• le développement d'une méthode d’analyse d’images pour détecter des indicateurs 
géologiques d'instabilités (e.g. fissures de surface) ; 
• l'élaboration d’une chaîne de traitement afin de mesurer les déplacements de la surface d’un 
glissement de terrain à partir d’images satellites THR monoscopiques et stéréoscopiques ; 
• l'adaptation et la comparaison de bibliothèques de photogrammétrie open-source pour la 
reconstruction 3D de la surface d’un glissement de terrain et le suivi des déplacements à 
partir des photographies terrestres. 
 
Une analyse approfondie des innovations technologiques récentes dans le domaine de la 
surveillance des glissements de terrain par télédétection est présentée dans le chapitre 1. 
Celui-ci fournit un aperçu détaillé des systèmes et des méthodes de traitement actuellement 
disponibles. Des critères permettant de comparer les différentes techniques et méthodes sont 
proposés. Les capacités et les limites de chacune des techniques sont comparées sur la base 
de critères tels que les résolutions spatiale, spectrale, temporelle, la couverture spatiale, la 
précision de la mesure, les coûts des données et de traitement et la maturité de la méthode. 
Au final, selon les types de glissements de terrain, leurs vitesses de déplacement, et leurs 
échelles d'investigations, des directives sont proposées aux utilisateurs afin de choisir la 
technologie la plus adaptée.  Celles-ci s’adressent à la fois aux scientifiques et aux 
gestionnaires du territoire en charge de la cartographie des glissements de terrain et de la 
gestion des risques. 
 
Le chapitre 2 porte sur le développement, l'implémentation et la validation des chaînes de 
traitement  génériques pour la cartographie des glissements de terrain à partir de données 
multi-sources (images satellites THR, photographies aériennes et données topographiques). 
Plusieurs algorithmes pour la segmentation d'image, pour l’extraction et la sélection 
d’attributs et pour l'apprentissage supervisé sont adaptés et combinés dans des chaînes de 
traitement. Les techniques développées sont appliquées et validées pour la cartographie des 
glissements de terrain sur cinq sites d’étude (en Chine, au Brésil, à Haïti, en Italie et en 
France). Les résultats obtenus sur l’ensemble des sites d’étude sont satisfaisants en termes de 
précision des classifications. 

De nouveaux attributs particulièrement adaptés à la reconnaissance des glissements de 
terrain sont proposés et ont montré leur généricité. Les améliorations en termes de précision 
de classification sont significatives sur chaque site d’étude. Une méthode supervisée 
innovante permet de sélectionner les attributs les plus pertinents. Elle permet de réduire la 
complexité de l’apprentissage automatique et elle améliore son efficacité et sa précision. Les 
relations entre la segmentation (paramètre d’échelle), l'importance des différents attributs des 
objets et la précision des résultats sont étudiées. Les résultats montrent qu’une sur-
segmentation fournit généralement des précisions plus élevées. Des programmes de ré-
échantillonnages stratifiés sont également proposés et permettent de compenser les biais qui 
résultent du déséquilibre de la taille des classes. 

Afin de réduire le temps d’apprentissage des données d’entrainements dans le 
processus supervisé, un algorithme d'apprentissage actif original, qui utilise les contraintes 
spatiales et le coût en terme de temps d’étiquetage, lors du processus de sélection des 
échantillons, est proposé. Ce nouveau plan d'échantillonnage fondé sur un nombre réduit de 
régions, permet de diminuer considérablement le temps d’étiquetage de l’utilisateur. Une 
comparaison, entre les erreurs restantes et les incertitudes calculées sur la base des 
cartographies expertes, révèle que la précision obtenue est dans la plage de la variance entre 
plusieurs experts. Cela indique que la chaîne de traitement proposée peut être utilisée pour 
des applications opérationnelles de cartographie rapide pour lesquelles la qualité finale est 
comparable à une cartographie experte et manuelle. 
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Le chapitre 3 décrit le développement et l'application de techniques de télédétection pour 
l'acquisition d'information sur les structures de surface, les déplacements et les volumes des 
glissements de terrain à l'échelle locale à partir d'images satellites THR, de drones et de 
photographies terrestres. 

Une première méthode de traitement d'images combine l’utilisation de filtres 
gaussiens originaux, d'opérateurs de morphologie mathématique et des méthodes d’analyse 
d'images orientées-objets pour la cartographie semi-automatique des fissures à partir de séries 
d'images de drones. Les cartes qui en résultent sont validées avec des cartes expertes 
(interprétation manuelle) sur l'évolution des fissures par rapport aux vitesses de déplacement 
et à la géométrie de la surface de glissement.  

Une deuxième chaîne de traitement est ensuite proposée pour le calcul des modèles de 
surface à haute résolution spatiale et des champs de déplacement à partir d'images satellites 
THR. Elle est appliquée à trois sites différents et elle permet de mesurer des taux de 
déplacement horizontal avec une précision, pour la première fois, décimétrique. De plus, une 
telle précision peut être obtenue sans points de contrôle au sol, ce qui est un atout essentiel 
pour l'automatisation de la surveillance opérationnelle dans un futur proche. L’ensemble des 
données bi-temporelles analysées couvre une période de deux mois et les champs de 
déplacement obtenus permettent de mieux comprendre les taux de déplacement. 

Enfin, trois chaines de traitement de données multi-stéréoscopiques sont proposées 
afin de reconstruire des surfaces tridimensionnelles. Les résultats sont comparés en termes de 
capacité de reconstruction multi-dates et de suivi 3D de glissements de terrain à partir des 
photographies terrestres. Les comparaisons avec des données LiDAR terrestre et aérien 
montrent que la stéréophotogrammétrie à partir des bibliothèques open-source permet 
d’atteindre des précisions semblables mais avec un coût d’équipement et de fonctionnement 
nettement inférieur. Les volumes et les taux de déplacement 3D sont conformes, 
respectivement, aux mesures à partir de nuages de points LiDAR et aux observations GNSS. 
La détection des changements entre nuages de points permet la quantification des processus 
géomorphologiques dominants (éboulements, ruissellement) et donne un aperçu des champs 
de déformation pendant les phases d'accélération. 
 
En conclusion, bien que l'utilisation de l’imagerie optique comme outil opérationnel dans les 
investigations de glissements de terrain nécessite encore des développements, les méthodes 
proposées dans cette thèse de doctorat sont très prometteurs et pour certains utiles dans un 
contexte opérationnel de surveillance de versants instables.  
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Introduction 
 

The term landslide is defined as ”… the movement of a mass of rock. earth or debris 
down a slope” (c.f. Cruden, 1991) and includes different types such as slides, topples, falls 
and flows (Cruden and Varnes, 1996). Landslides are an important agent in the evolution of 
mountain ranges (Larsen and Montgomery, 2012) and a major natural hazard with severe 
socio-economic impacts worldwide (Nadim et al., 2006; Kjekstad and Highland, 2009; 
Petley, 2012). In the context of climate change, there is a “high confidence” that changes in 
the hydro-meteorological pattern (precipitation, air temperature) and melting of the 
permafrost will affect slope stability in some regions of the world (IPCC, 2012). 

The reduction of landslide hazard not only depends on spatio-temporal information 
about the frequency and distribution of landslides, and of their predisposing and triggering 
factors, but also on the quantification and understanding of landslide kinematics and the 
underlying mechanical processes. Main tasks in landslide hazard assessment and risk 
management are the construction of landslide inventories, the fast characterization of 
landslide processes in case of disaster, long-term landslide monitoring, and landslide 
forecast/warning with statistical or process-based models.  
 

Earth Observation techniques in landslide investigations 
 

Remote sensing techniques can be employed at different spatial scales to gather 
information about the distribution and kinematics of landslides, and about their conditioning 
factors (Metternicht et al., 2005; van Westen et al., 2008; Guzzetti et al., 2012; Kirschbaum et 
al., 2012). Especially in mountainous terrains, remote sensing provides a valuable tool to 
obtain spatially distributed information, and is a complement or alternative to time-
consuming and often only point-wise in-situ measurements. 

 
Evolution of landslide remote monitoring from 1900 to present day 
 
The first documented cases for the systematic application of remote sensing in landslide 
investigations can be traced back to use of theodolites and triangulation networks (Figure 
0-1a) for the monitoring of deep-seated movements in the Swiss Alps (Ganz, 1914). The 
possibility to document landslides and their impacts with photographs resulted from the 
invention of photography in the early 19th century. One of the earliest conserved examples 
are pictures of a rockslide that destroyed the village of Elm (Swiss Canton of Glarus, Figure 
0-1b) on 11 September 1881 and was attributed to improper mining practices (Heim, 1882). 
A remarkable example for those early works is a series of trigonometric measurements 
(Figure 0-1a) carried out at the Monte Arbino (between 1889 and 1928) which documented 
the movement and acceleration of a large rockslide and led to the evacuation of 14 houses 
before the final failure on 2 October 1928 (Figure 0-1c). It can be considered as the first 
successful application of remote sensing for landslide early warning (Zölly, 1948; Bonnard, 
2006). At about the same time, continuous trigonometric measurements at the Kilchenstock 
(Linthal, Swiss Alps) permitted to document the relationship between displacement and 
meteorological variables for the first time. Based on the observed acceleration an evacuation 



 

- 2 - 
 

of the town of Linthal was issued but the predicted large failure never happened (Heim, 
1932). 

The first photo-theodolites were developed in the 1920s and quickly adopted for 
topographic surveys. A first example for the use of such instruments on slope processes is 
given in  Finsterwalder (1931) who documented glacier displacement during the late 1920s. 
This technique also permitted to estimate the volume of the Monte Arbino rockslide as 
approximately 20 million m3 (Zölly, 1948). 
 

 
Figure 0-1: Historical examples for the use of remote sensing in landslide investigations. (a) The 
trigonometric network at the Monte Arbino in the late 1920s (Zölly, 1948). (b) Terrestrial 
photographs showing the impact of the 11 September 1881 rockslide on the village Elm (taken by 
Richard, T. Waedensweil in September 1881, archive of the ETH-Zürich). (c) Terrestrial photograph 
of the Monte Arbino rockslide taken short after a major rockslide on 2 October 1928 (Zölly, 1948). 
(d) Stereoscopic image-pair recorded on 13 April 1973 showing the Sewickley Water Works 
(Pennsylvania, USA) landslide (Pomeroy, 1982). 
 
The first aerial photographs were recorded in 1858 but only with the enhancement of the 
stereoautograph (a predecessor of modern stereo-plotters); in the 1910s, precise elevation 
measurements from stereo-pairs of aerial photographs became possible and greatly facilitated 
topographic surveys. While the scientific literature before the Second World War reveals no 
applications of stereoautographs to landslides, the visual interpretation of aerial photographs 
quickly became a commonly used technique for their recognition. A great interest in black 
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and white and near-infrared aerial photographs arose from extensive highway construction 
after Second World War in the U.S. Significant efforts were made to refine methods and 
training for visual image interpretation with emphasize on stereoscopic image analysis 
(Figure 0-1 d). As a result, first handbooks and guidelines for the use of aerial photography in 
landslide investigation were developed (e.g. Johnstone et al., 1953; Cleaves, 1961; Rib and 
Liang, 1978). 

A breakthrough for Earth Observation was the launch of the first Landsat satellite 
(1972) which, for the first time, provided images of the earth surface at regular intervals and 
with global coverage. An important step toward images with higher resolution was the 
invention of a charge-coupled device (CCD), in 1969 at AT&T Bell Labs, which soon after 
led to the launch of the first digital military satellite with a CCD sensor (KH11, USA, 1976). 
The first civilian satellite that used this technology was the French SPOT satellite launched in 
1986. Several studies demonstrated that the visual detection of large landslide features is 
possible with LANDSAT (30m.pixel-1, Figure 0-2a) and SPOT (10m.pixel-1) images but a 
clear delineation of the affected area was generally not possible (Mantovani et al., 1996). 
Consequently, researchers started to develop new methods for change detection and image 
matching targeting the delineation of affected areas (Nichol and Wong, 2005) and 
displacement measurements (Scambos et al., 1992; Yamaguchi et al., 2003), respectively. 

The first civilian Synthetic Aperture Radar (SAR) satellite ERS-1, launched in 
1991, was the first system to provide global coverage of SAR images with a revisit time of 
only 35 days. As a consequence, research dedicated to the enhancement of interferometric 
methods for the generation of digital elevation models (DEMs) and ground displacement 
measurements flourished (Bamler and Hartl, 1998) and resulted in the first measurement of a 
coseismic displacement field from space (Massonnet et al., 1993). A first application of SAR 
interferometry to the monitoring of landslide was demonstrated for the La Clapière landslide 
and deviated only a few millimetres from ground measurements (Fruneau et al., 1996). 
Similar results were reported from the application of Ground-Based InSAR (GB-InSAR) for 
landslide monitoring providing high temporal and spatial resolution at accuracies better than 
2 mm (Tarchi et al., 2003). 

Another milestone in Earth Observation was set with the launch of the IKONOS 
satellite in 1999 which became the first civilian satellite with sub-metre resolution and 
opened the door for a new generation of very high resolution (VHR) satellites. VHR 
satellites provide images with spatial resolution comparable to traditional aerial surveys 
(Figure 0-2c, d) but with global coverage and short revisit times of up to one day. The visual 
interpretation of VHR satellite images recently became widespread for landslide inventory 
mapping but it was also recognized early that more automated image analysis techniques 
should be developed to fully exploit the regularly acquired images (Hervás et al., 2003). Due 
to the development of enhanced methods for image orientation and matching during the last 
decade, displacement measurements based on aerial stereo-photogrammetry (Casson et al., 
2003) and VHR satellite images (Delacourt et al., 2004) came more and more into focus. 

Laser technology was invented in the 1960s. The first laser-based electronic distance 
meters (EDMs) became available in the mid-1960s and the first theodolites with an integrated 
EDM (also termed electronic tacheometer or total station) was released in the 1970s (Rüeger, 
1990). In recent years, Light Detection and Ranging (LiDAR) has greatly reshaped the 
practices in topographic surveying as it allows a very dense spatial sampling of the 
topography (Figure 0-2e) with centimetre accuracy. Applications of LiDAR in landslide 
research comprise mapping, monitoring of displacement and deformation, as well as 
volumetric analysis (Jaboyedoff et al., 2010). 
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Figure 0-2: Examples of remote sensing datasets with different spatial resolutions for the La Valette 
landslide (South French Alps). (a) Natural-colour composite of a Landsat 7 ETM image (30 m) 
captured in 2009, (b) Natural-colour composite of a RapidEye image (5 m) captured in 2009, (c) 
Aerial photograph (IGN, 0.5 m) captured in 2009 image (d) Pan-sharpened Pleiades images (0.5 m) 
captured in 2012, (e) Shaded relief image derived from a LiDAR DTM (0.5 m) scanned in 2009, and 
(f) Hillshade image derived from a stereo-photogrammetric surface model (0.5) derived from Pleiades 
stereo-pairs captured in 2012. 
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Recently, emerging technologies that have some potential for the observation of landslides 
comprise hyperspectral remote sensing (Sterzai et al., 2010), airborne geophysics (Supper et 
al., 2013) and also bathymetry for the investigation of submarine landslides (Hough et al., 
2011).  

This historical overview shows the increasing number and diversity of remote 
sensing techniques that can be employed for landslide observation. It also demonstrates that 
changes in the practice of landslide investigations are not only driven by the increasingly 
better understanding of the underlying processes and resulting hazards, but often also by 
technological innovations. 

 

Applications and limitations of modern remote sensing technologies for 
landslide investigations: from mapping and monitoring to services 
 
Emerging remote sensing technologies are typically not designed specifically for landslide 
observation and, therefore, often require adaptation and validation to exploit their capabilities 
for research and operational applications. This process of adaptation has to take into account 
the application scenarios and general tasks that need to be realized for different stages of 
landslide investigations and management. 

 
Based on the risk management cycle as a conceptual framework, three possible stages in the 

application of remote sensing techniques can be distinguished (Figure 0-3). 
 

 Rapid mapping is the fast analysis of images and elaboration of maps depicting 
affected areas, the number of landslides and their size immediately after major events 
to support disaster response. 

 Characterization comprises detailed investigations of the landslide types, sub-parts, 
activity state and volumes but also the collection of information on preparatory and 
triggering factors as a base for hazard assessment. 

 Monitoring is the periodic and/or permanent acquisition and analysis of a series of 
observations over time to gather information about temporal changes of specific 
landslides or potentially unstable areas. Continuous monitoring is beneficial to 
progress in landslide process understanding, evaluation of the effectiveness of 
mitigation measures, and as a component of Early-Warning Systems (EWS).  

 
Rapid mapping typically targets map creation at a regional scale while more detailed 
characterization and monitoring often requires site specific investigations. 
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Figure 0-3: Rapid mapping, characterization and monitoring as stages of landslide remote sensing in 
the risk management cycle (modified after Alexander, 2002 and ; Glade et al., 2005). Priority tasks for 
landslide investigations (green circle) are shown in relationship to the temporal course of disasters 
(yellow circle) and the corresponding phases in the risk management cycle (orange circle).Relevant 
information that can be gathered at each stage with remote sensing techniques are listed within the 
grey boxes. 
 
Numerous orbital satellites, airborne platforms and ground-based remote sensing systems are 
currently operational or planned for the near future, and in principle are able to provide 
valuable input for all three stages of a landslide investigation (Metternicht et al., 2005; 
Delacourt et al., 2007; van Westen et al., 2008; Guzzetti et al., 2012). Mantovani et al. (1996) 
argued that the use of remote sensing for landslide investigations is still not full exploited and 
Metternicht et al. (2005) renewed this point of view several years later. They concluded (1) 
that manual stereoscopic image analysis was still the prevailing standard for landslide 
mapping, (2) that kinematic surveys (monitoring) have been mostly undertaken with 
interferometric techniques, and (3) that data availability was still an issue. Due the multitude 
of available remote sensing systems, the issue of data availability has been largely resolved in 
recent years. However, the storage, distribution, harmonization, and analysis of large image 
archives and terabytes of daily incoming data still pose major challenges and are often 
the bottlenecks that hinder the dissemination of required information to end users. 
Considering the great diversity of landslide processes and site characteristics, it also remains 
difficult to evaluate the potential and limitations of different remote sensing technologies for 
specific sites and integrate them with in-situ and process-based models. 
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A series of recent European research projects have addressed the exploitation of new remote 
sensing datasets and processing techniques to furnish services for rapid mapping and 
emergency response (SAFER, 2007-2013; LAMPRE, 2013 - 2015) and the detection and 
monitoring of surface deformation (SLAM, 2003-2005; TERRAFIRMA, 2003-2012; 
PREVIEW, 2005 - 2008; DORIS, 2007-2013). On the long-term, those efforts target the 
integration of rapid mapping, characterization, monitoring, and the direct 
dissemination of the results to end users. 

Most of the resulting services rely on the use of SAR interferometry (from ground-
based and spaceborne systems) which has proven mature for operational use. SAR has the 
ability to operate weather independent and detect millimetre displacement with high 
accuracy. However, this technology provides only the Line-Of-Sight (LOS) component of the 
3D surface displacement, has limited coverage (e.g. north facing slopes cannot be monitored) 
and is not adapted to displacement rates exceeding several centimetre per month or to rapid 
mapping tasks after large triggering events.  

LiDAR systems have also become a mature technology for landslide investigation 
focusing mainly on structural analysis of rock slopes, the quantification of sediment budget 
and displacement between different time periods (Jaboyedoff et al., 2010). It must be 
distinguished here from (passive) optical remote sensing since LiDAR has the unique 
capability to penetrate dense vegetation and yields 3D point-cloud representations of the 
terrain with very high accuracy. However, the costs for hardware and operation of LiDAR are 
still relatively high and its application is currently limited to short-term measurements for 
local investigations or intervals of several years for regional surveys. 

Visual image interpretation is still the most common use of optical images in 
landslide investigations. Though, methods for semi-automatic image analysis, displacement 
measurements and 3D reconstruction, have been developed they are not employed frequently 
and generally not ready for operational use in integrated services. 

 
Potential and current limitations for the use of optical data in landslide 
investigations 
 
For the investigation of landslides several characteristics of optical remote sensing systems 
suggest optical imaging as a valuable complement or alternative to established remote 
sensing techniques such as LiDAR and SAR. The capabilities of optical remote sensing 
systems are determined by features of the sensors, the supporting platforms and the image 
analysis techniques used to extract information. 

In general optical sensors record the intensity of light in three bands of the visible 
spectra, whereas most satellites include also additional bands in the near-infrared and longer 
wavelength and are sometimes considered as optical sensors in a broader sense (Prasad et al., 
2011). Recent progress in sensor manufacturing (CCD and complementary metal–oxide–
semiconductor, CMOS) has lowered the costs of high-resolution optical imaging 
significantly during the last 20 years (Figure 0-4a). 

Since the imaging process is passive little or no external power sources are required 
which allows the manufacturing of very compact and light-weight devices.  Compared to 
SAR and LiDAR, optical imaging sensors are, therefore, more easily supported by different 
platforms (Figure 0-5) allowing to adapt the spatial scales, timing and mode of image 
acquisition with more flexibility. 
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Figure 0-4: Some key dates for modern optical remote sensing systems. (a) Spatial resolution and 
revisit time of operational and scheduled medium resolution and VHR optical satellites (according to 
specification of space agency and private operators). The entry “Constellation” stands for the 
combination of Pleiades and Spot satellites which operate in the same orbital plane but phase shifted 
by 90°. (b) Evolution of costs (inflation adjusted) in €.pixel-1 for selected number of digital cameras 
since 1992 (compiled from different online resources). 
 
Many different optical remote sensing systems and image products are nowadays available on 
the market. Systems with a significant potential for applications in landslide investigations 
comprise handheld cameras, airplanes (more recently also UAVs), and most notably VHR 
satellites (Figure 0-4b) with short revisit time and spatial resolutions that depict characteristic 
features of different landslide types and could also be exploited for displacement 
measurements.  
 
An inherent limitation of optical imaging is its dependence on direct sight contact with the 
targeted object which does in general not allow investigating landslide under dense 
vegetation and limits the frequency of spaceborne observations in high latitudes and the 
tropics where cloud cover is more persistent throughout the year. In central Europe, the mean 
average cloud cover varies between 50% and 70% depending on the season and decreases 
towards the Mediterranean (Malberg, 1973). 

Image processing techniques for the analyses of optical data comprise image 
classification, feature and change detection, image correlation and stereo-photogrammetry, 
which in principle allow rapid landslide mapping, displacement monitoring and volume 
estimation. Image correlation of VHR satellite images, for example, can be used to overcome 
limitations of SAR interferometry for the monitoring of displacement rates that exceed 
1 m.year-1. Comprehensive empirical studies also suggested aerial photogrammetry 
photogrammetric methods as a cost-efficient alternative to LiDAR providing denser point 
clouds and similar accuracies (Cramer and Haala, 2010; Leberl et al., 2010) . 
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Figure 0-5: Overview of the approximate operational ranges relative to the earth surface of platforms 
for optical remote sensing (modified after  Kerle et al., 2008). The bars below the platform indicate 
the operational ranges and darker grey shades imply more common application of the platform at a 
particular height. 
 

Considering the outlined advantages it is somewhat surprising that, in contrast to SAR 
interferometry and LiDAR, optical remote sensing is still not used as an operational tool 
for landslide mapping and monitoring. The reasons for this shortfall can be traced back to 
a lack of adapted image processing techniques that address the specific information needs 
of landslide investigations while being sufficiently generic to remain applicable for a broad 
range of different landslide types and environmental settings. 

Classical pixel-based image analysis methods are ill-suited to extract complex 
patterns from VHR images and Object-Based Image Analysis (OBIA) has evolved as a key 
concept to address shortcomings trough sequential image processing comprising 
segmentation and classification (Blaschke, 2010). Several studies have addressed the use of 
OBIA for landslide mapping and characterization with heuristic methods to translate expert 
knowledge into machine executable rule sets (Barlow et al., 2006; Moine et al., 2009; Martha 
et al., 2010a; Martha et al., 2011; Martha et al., 2012; Lacroix et al., 2013). Despite 
successful applications of rule-based classifiers in a number of case studies their elaboration 
remains time-consuming and subjective. Rule-based approaches provide very limited 
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transferability for the analysis noisy and variable input (Russell and Norvig, 2009) which is 
especially true when dealing with different study sites, variable landslide processes, and 
diverse image datasets. Generic machine learning algorithms have proven to be versatile tool 
to learn complex concepts automatically from labelled examples but their use in the context 
of landslide mapping has not been studied so far. 

Precise sub-pixel image matching techniques have been developed, and applied to 
measure landslide surface displacement with airborne and spaceborne images (Kääb, 2002; 
Delacourt et al., 2004; Casson et al., 2005; Leprince, 2008; Debella-Gilo and Kääb, 2011) 
However, currently available techniques are specialized in the analysis of medium resolution  
images to measure large displacement (several meters) with limited accuracy or require aerial 
image datasets and ground control which are in many cases not available. A better 
exploitation VHR satellites images could yield more regular and accurate measurements and 
consequently better integration of the derived displacement fields with in situ measured time-
series. The scientific literature currently provides no example for an end-to-end processing 
chain that allows displacement monitoring with VHR satellite images fully independent of 
external data sources. Potential pitfalls and accuracies are consequently unknown and impede 
further steps towards robust and precise operational tools. 

Multi-temporal high-resolution surface models that enable the quantification of 
surface changes and 3D displacement can be obtained with terrestrial stereo-
photogrammetry. Several case studies have demonstrated the value of terrestrial 
photogrammetry for rock mass characterization (e.g. Sturzenegger and Stead, 2009b, a) but, 
complex processing chains have hindered a frequent use of this technique for monitoring over 
longer time periods. Progresses in computer vision and photogrammetry have recently 
converged in a new class of algorithms (e.g. Hirschmuller, 2008; Snavely et al., 2008; 
Deseilligny and Clery, 2011) that greatly simplify the surface reconstruction from optical 
images but their potential and limitations for landslide monitoring are currently not well 
understood. 
 

Research objectives 
 
As a consequence of the potential benefits and current limitations for the operational use of 
remote sensing techniques outlined in the previous sections, this doctoral thesis is dedicated 
to the development and extensive validation of image processing methods for landslide 
mapping, characterization and monitoring with a focus on image analysis methods for optical 
data.  

Considering the outlined tasks for remote sensing at different scales and the great 
diversity of landslide processes, site characteristics and available remote sensing 
technologies, the following research objectives are pursued: 

 
 The development of a generic image processing chain for the rapid mapping of 

landslides from VHR optical images based on OBIA and machine learning 
algorithms; 

 The formulation and implementation of an active machine learning algorithm to 
reduce the need for training data under special consideration of spatial constraints and 
ground truth uncertainty; 

 The development of an image analyses workflows to detect landslide surface features 
which can be considered as indicators of landslide activity; 
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 The elaboration of processing chains for the measurement of landslide surface 
displacement with spaceborne VHR monoscopic and stereoscopic images; 

 The adaptation and comparison of open-source photogrammetry libraries for landslide 
surface reconstruction and displacement monitoring with terrestrial photographs. 

 
To tackle those objectives, this work takes an interdisciplinary approach combining methods 
of image classification and segmentation, machine learning, photogrammetry, computer 
vision, pattern recognition and statistical computing. The design, implementation and 
validation of image processing techniques should consider principles, paradigms, and ideas 
from remote sensing science, computer science, geomorphology and geophysics as well as 
the specific needs of end users such as risk managers.  
 

Outline of the thesis 
 

This thesis manuscript is subdivided in three chapters addressing successively (1) the 
establishment of criteria for the selection of remote sensing techniques for landslide 
monitoring, (2) the development of automated processing techniques for landslide mapping at 
regional scales, and (3) the development of automated processing techniques for landslide 
investigation at local scales. The chapters are organized along a series of published peer-
reviewed papers and of manuscripts currently under review. 
 
Chapter 1 provides a comprehensive review of recent innovations in the monitoring of 
landslides with remote sensing techniques. A catalogue of criteria is proposed to compare 
their capabilities and guidelines for the selection of the most appropriate technique for 
different landslide types, displacement rates, study scales, and environmental settings are 
provided. The criteria are furnished to aid operational decision making, and include 
information on the spatial resolution, accuracy and coverage, data and processing costs, and 
maturity of the method.  
 
Chapter 2 presents the development, implementation and validation of image processing 
chains for rapid landslide mapping at the regional scale. The developed methods are based on 
a combination of image segmentation, feature extraction, and feature selection with the 
Random Forest (RF) machine learning algorithm. The RF algorithm is adopted as a base 
classifier for an active learning approach which combines criteria for sample uncertainty and 
diversity to reduce the amount of required training data. It is demonstrated that considering 
spatial constraints and actual costs at the side of the user provides significant performance 
improvements above approaches that optimize only the number of samples. Dedicated 
sampling schemes that resolve the potential bias in class-imbalanced problems are proposed 
and tested. Applications on VHR images captured mainly in the aftermath of large triggering 
events (Haiti earthquake, Wenchuan earthquake in China, Messina storm in Italy, Nova 
Friburgo storm in Brazil) are provided and validation is performed against expert mappings. 
Finally the uncertainties of expert mappings and relationships with the probabilistic outputs 
of the machine learning algorithm are investigated. 
 
Chapter 3 presents three different approaches for the monitoring and detailed local 
characterization of landslides with optical imagery.  



 

- 12 - 
 

Section 3.1 presents a semi-automatic processing chain to map landslide surface 
fissures with multi-temporal UAV images. The developed processing chain combines 
Gaussian matched filters and an OBIA heuristic for the reduction of false positive detections 
and is assessed against results from expert image interpretation in terms of area, density, and 
orientation. The method can be used to derive indicators for landslide activity and an analysis 
of the pattern and evolutions of the detected fissures provides insights into underlying 
mechanical processes. 

Section 3.2 introduces the combined use of satellite stereo-photogrammetry and sub-
pixel image correlation for surface displacement measurements. The influence of the number 
of ground-control points is evaluated and the quality of the resulting surface models is 
compared to aerial LiDAR point clouds. The obtained displacement rates are compared with 
in situ measurements. 

Section 3.3 addresses the use of Multi-View Stereo-photogrammetry (MVS) and 
Structure-from-Motion (SfM) for the 3D surface reconstruction and monitoring of an active 
landslide with photographs acquired at the ground. Different open-source libraries that 
combine approaches from computer vision and classical close-range photogrammetry are 
evaluated and the results of three different pipelines are compared with terrestrial and aerial 
LiDAR scans. Seasonal image acquisitions over a period of three years are used for multiple 
reconstruction and the resulting point clouds are compared with a cloud-to-cloud method to 
detect significant surface changes. The proposed pipeline provides insights into the seasonal 
dynamics of the geomorphological processes and reliable volume and 3D displacement 
measurements. 
 

Research environment 
 
The research carried out in the thesis has been embedded in two international research 
projects dedicated to the development of quantitative risk assessment tools for landslides at 
the European level (SafeLand, 2009-2011) and to the development of spatio-temporal data 
mining techniques for the monitoring of soil erosion (FOSTER, 2011-2014). It was supported 
by two host institutions at the University of Strasbourg, namely the Laboratoire Image, Ville, 
Environnement (LIVE, UMR 7362 CNRS) and the Institut de Physique du Globe de 
Strasbourg (IPGS, UMR 7516 CNRS), and by the Faculty of Geo-Information Science and 
Earth Observation (ITC) at the University of Twente (Enschede, Netherlands). Support was 
also provided by the Observatoire Multidisciplinaire des Instabilités de Versants (SNO-INSU 
OMIV). 
During the course of this thesis several collaborations with researchers outside the host 
institutions have been established: 
 

 Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube, 
UMR 7357 CNRS), University of Strasbourg: T. Lampert, C. Kurtz, N. Lachiche, P. 
Gançarski ; 

 Department of Earth Science, University of Florence: P. Lu, N. Casagli, V. Tofani, S. 
Segoni; 

 Institute of Geophysics, University of Stuttgart: U. Niethammer, S. Rothmund; 
 Laboratoire Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution 

(MATIS), Institut Géographique National en Ecole Nationale des Sciences 
Géographiques: M. Pierrot-Deseilligny 
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 Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, Université 
Claude Bernard Lyon : P. Allemand 

 Centre de Recherches en Environnement Terrestre (CRET), Université de Lausanne 
(C. Michoud, A. Abellan, M. Jaboyedoff) 
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1. Chapter	 1	 ‐	 Setting	 the	 scene:	 Remote	
sensing	techniques	for	landslide	monitoring.	
Review	and	selection	criteria	for	users	
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Objectives: This chapter provides a review of innovative remote sensing techniques that 
have emerged during the last decade and which are potentially useful or already 
operational for landslide monitoring. First, criteria are proposed to compare their 
capabilities and, second, guidelines for the selection of the most appropriate technique for 
monitoring different landslide types, displacement rates and environmental settings are 
provided. The guidelines are furnished to aid operational decision making, and include 
information on the spatial resolution, accuracy and coverage, data and processing costs, 
and maturity of the method. 

This chapter is based on: 
 
 Stumpf, A., Malet, J.-P., Kerle, N., Michoud, C., Tofani, V., Segoni, S., Michoud, C., 

Jaboyedoff, M., Casagli, N. In Review. Selecting appropriate remote sensing 
techniques for landslide monitoring: Review and selection criteria for users. Earth 
Science Reviews. 
 

 Stumpf, A., Malet, J.-P., Kerle, N. (Eds.) 2011. Creation and updating of landslide 
inventory maps, landslide deformation maps and hazard maps as input for QRA using 
remote-sensing technology. SafeLand Deliverable D4.3. Available at 
http://www.safeland-fp7.eu. 

 
 Stumpf, A., Kerle, N., Malet, J.-P. (Eds.) 2011. Guidelines for the selection of 

appropriate remote sensing technologies for monitoring different types of landslides. 
SafeLand Deliverable 4.4. Available at http://www.safeland-fp7.eu 
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 Introduction	1.1
 
In recent years, several technical and scientific improvements have increased the potential 
use of remotely-sensed data (e.g. ground-based, airborne and spaceborne techniques) for 
mapping and monitoring landslides (Metternicht et al., 2005; Delacourt et al., 2007; Joyce et 
al., 2009; Jaboyedoff et al., 2010; Guzzetti et al., 2012). The reliability and effectiveness of 
the available instruments have been enhanced, providing a wide range of suitable solutions to 
measure different quantities such as displacement rates (Abellán et al., 2009; Heid and Kääb, 
2012; Travelletti et al., 2012) or volumes (Chen et al., 2006; Martha et al., 2010b; Oppikofer 
et al., 2012). Relevant advances have also been made in the modelling and in the 
interpretation of ground movements (Clague and Stead, 2012) and the derivation of 
mechanical parameters from remote sensing observations (Booth et al., 2013; Travelletti et 
al., In Review). As a consequence, users can select the most appropriate observation strategy 
from a variety of technologies and analysis methods taking into account technical issues, 
economic budgets, environmental factors and specific features of the targeted landslide. 

Among numerous improvements in sensor technology and analysis methods, several 
advances stand out. Recent launches of a new generation of optical and Synthetic Aperture 
Radar (SAR) satellites with shorter repeat-pass cycles and higher spatial resolutions (e.g. 
Pleiades 1A&1B, Spot 6&7, WorldView-2, Geoeye-1, TerraSAR-X, Cosmo-Skymed, 
Sentinel 1&2, ALOS-2) result in better capabilities to acquire data over wide areas shortly 
after major triggering events and disasters and at regular intervals. Related methods for the 
processing of optical (Guzzetti et al., 2012; Heid and Kääb, 2012; Poli and Toutin, 2012) and 
SAR (Hooper et al., 2012) satellite images enable to exploit the abundant data more 
efficiently and with greater accuracy. For active ground-based remote-sensing systems such a 
Light-detection and Ranging (LiDAR) and ground-based SAR (GB-SAR), several 
commercial systems with improved performance have become available over the past few 
years (Jaboyedoff et al., 2010; Intrieri et al., 2012). Unmanned Aerial Vehicles (UAVs) and 
consumer-grade digital cameras have become more affordable and related photogrammetric 
processing methods (Snavely et al., 2008; Furukawa and Ponce, 2010; Rothermel et al., 2012; 
Deseilligny et al., 2013) have reached a higher degree of automation accessible also to non-
experts in the field of photogrammetry. 

Many of these new developments have already been consolidated in operative 
monitoring scenarios, but enhancements are proposed at a fast rate as scientific research 
continuously pushes remote sensing techniques further, mainly because of the need to 
establish warning systems (Allasia et al., 2013; Intrieri et al., 2013) and services.  

Despite technological advances, it remains complex to evaluate the applicability of 
different techniques for a monitoring campaign at a specific site and difficult to obtain a 
complete overview of their potential and limitations for the process at hand. One of the main 
limitations is the absence of established criteria for the selection of the most appropriate 
remote sensing data and processing methods. Another limitation is the commonly noticeable 
gap between the most advanced scientific improvements proposed at the academic level and 
the techniques currently employed in operational warning systems by the risk managers. 

The motivation of this work is linked to the fast evolution of technologies observed in 
the last ten years which had a strong impact on landslide mapping and monitoring, and drove 
the current understanding of slope movements.  

Guzzetti et al. (2012) have recently provided a detailed review of classical and 
innovative methods for regional landslide inventory mapping including remote sensing as 
well as field methods. Among many new valuable tools, they emphasized the use of VHR 
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satellite images and LiDAR but also the great need for standards and thorough uncertainty 
analysis of the resulting maps. In earlier reviews, Metternicht et al. (2005) treated the use of 
remote sensing for landslide hazard assessment while van Westen et al. (2008) provided an 
overview of geospatial datasets for landslide risk assessment. A brief summary of remote 
sensing techniques for the analysis of landslide kinematics has also been provided by 
Delacourt et al.  (2007) and  Jaboyedoff et al. (2010) gave a detailed review of the application 
of LiDAR. 

In contrast to previous works, this article targets in particular technologies for 
landslide monitoring (as defined in section 1.2.1) and details criteria that should be 
considered for the selection of the most appropriate techniques. The proposed criteria (section 
1.2.2) consider aspects of the landslide process (type, size, displacement rates, etc.), 
technological issues such as the measurement accuracy and the temporal resolution, as well 
as external factors such as financial constraints and risk management strategies. The article 
does not target to provide a comprehensive review of the immense body of literature on 
landslide monitoring but provides an overview of available techniques and the most recent 
innovations (section 1.3). 

The outcome of this work is a set of inter-related graphs and guidelines that can be 
used by scientists and risk managers to obtain an overview of methods and technologies 
suitable for their particular needs (section 1.4). Some current applications and challenges are 
discussed in section 1.5. 
 

 Definitions:	 landslide	 monitoring	 and	 decision‐aiding	1.2
criteria	

 Landslide observation 1.2.1
Monitoring is essential to understand and predict the behaviour of landslides, and forecast the 
nature and timing of the slope deformation and potential catastrophic failures. Monitoring is 
defined here as the periodic acquisition and analysis of a series of observations over time to 
gather information on spatial and temporal changes of relevant parameters. Ideally, the spatial 
extent, the observation intervals (irregular or regular; campaigns or continuous operating 
systems) and the employed techniques are determined at the beginning of a monitoring 
campaign to achieve a spatially and temporally consistent coverage on a repetitive basis. The 
observation intervals may range from several months to near real-time observations (Figure 
1-1a), and are in the latter case frequently integrated into warning systems. This definition 
excludes unique observations and most change detection techniques, which are generally 
used for landslide detection, mapping and fast characterization in response to large triggering 
events. Detection is understood as the recognition of new landslides from space- or airborne 
remote sensing data; event-based rapid mapping is defined as fast semi-automatic image 
processing for change detection and target detection; and fast characterization is defined as 
the retrieval of information on the failure mechanism, the volume involved, and the run-out 
length for a quick assessment as a base for hazard for emergency planning. 

 Criteria to select the most appropriate remote sensing techniques 1.2.2
The choice of the most appropriate monitoring techniques is conditioned by a number of 
different factors. Landslide-related criteria comprise the landslide type, size and expected 
displacement rates. External criteria include the configuration of the site, the surface 
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conditions, financial and logistic constraints, the current risk management phase and the 
scientific objectives of the study. Technological criteria correspond to the capability of 
particular remote sensing techniques. Many of them are interrelated (Figure 1-1b-c). 

Technological criteria inherent to different monitoring techniques are the main focus 
of this review. The considered criteria are the measurement accuracy, measurement distances, 
ground sampling distances, spatial coverage, temporal resolution, quality of the obtained 
measurements, costs for data acquisition and processing, expected elaboration time, 
portability of the acquisition system and maturity of the technique. For each quantitative 
criteria, parameter values are provided where possible; otherwise, nominal scales are adopted 
for qualitative criteria such as the information content of the measurements and the 
portability of the system (Table 1-1). Typical ranges are provided to represent the variability 
that results from different sensor systems, processing algorithms, noise, operator experience 
and other factors. 
 

 
 
Figure 1-1: Definition, criteria and platforms for the remote sensing of landslides (a) Relationship 
between observation frequency and different tasks in landslide investigations. (b) External and 
landslide-related criteria that determine the most appropriate choice of (c) platforms and sensor 
systems for landslide monitoring techniques. 
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Table 1-1: Catalogue of evaluation criteria. 
 

Technological criteria 
Criteria Scale range Explanation 

Spatial coverage Point, local (e.g. 
slope), regional 

Typical scales at which the measurements are 
carried out. 

Information type 1D One component of the displacement or change 
along a spatial axis or along the Line-Of-Sight 
(LOS) of the sensor. 

2D 2D displacement (mostly horizontal components) 
at a point or spatially distributed 3D 
displacement field 

3D 3D displacement at a point or spatially 
distributed 3D displacement field. 

Volume Volumes and volume changes of the moving 
mass. 

Surface features Time and space evolution of surface features. 
Spatial resolution mm to hm Typical spacing of individual measurements 
Temporal resolution seconds to months Typical time lag between individual 

measurements. 
Distance to target m to km Distances to target at which the measurement 

device can be employed. This category is not 
relevant for satellite systems that operate in fixed 
orbital heights. 

Measurement accuracy mm to dm, 
mm3 to 10 m3 for 
volumes 

Accuracy of the measured quantities such as 
displacement rates, volumes and the location of 
surface features 

Operation mode Continuous Automatic measurements can be carried without 
human intervention for long time periods. 

Campaigns Measurements require regular human 
intervention and are thus typically carried at 
intervals of several days, weeks or months. 

Approximate 
elaboration time 

minutes to month Approximate time lag between the measurement 
of the system and the final results. 

Approximate costs 10 to 100.000 € Typical costs including installation and operation 
of the system as well as the data processing 

Technological maturity Concept Technical design and potential applications have 
been proposed. 

Prototype Working prototypes have been tested in a limited 
number of experiments. 

Case-studies Operating systems have been tested for landslide 
monitoring in the field for short time periods. 

Commercial Working systems and processing software are 
commercially available and have been tested on 
several landslides for long time periods. 

Mature Potential and limitations of the technique are 
well understood and it has been applied in 
established monitoring programs. 
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Table 1-1: Continued. 
  

Landslide-related factors 
Landslide type 
Surface displacement 
rates 
Monitoring scale 

 Not applicable  The technique is not useful for this particular 
category. 

Probably not 
applicable 

It is very unlikely that the technique is useful for 
this particular category, however exceptions may 
exist. 

 Applicable in few 
cases 

The technique could be applicable but 
restrictions must be expected. Possible 
alternatives should be considered. 

Suitable in many 
cases 

The technique has been used in several case 
studies for the same landslide type/ displacement 
rate/ scale. Further criteria should be carefully 
checked before decision is made. 

 Ideal in many cases In many applications, this technique has 
provided excellent results for the same landslide 
type/displacement rate/scale. 

External factors 
Surface conditions - Included in the discussion in section 1.3 
Site configuration - Included in the discussion in section 1.3 

 
To assess landslide-related factors, all available knowledge about the movement patterns 
should be compiled and a number of criteria for the choice of the remote sensing technique 
should be considered. Three landslide-related criteria can be distinguished. The scheme of 
Cruden and Varnes (1996) provides a process-based classification into fall, topple, rotational 
slide, translational slide, spreads and flows (Figure 1-2a). Complex landslides types combine 
several of those movement patterns. Understanding the underlying mechanical processes is 
important to evaluate in which parts of the slope displacement as well as volume- and surface 
changes are likely to occur. The applied remote sensing technique should capture at least the 
main component of the change which typically concentrates in a certain direction. Particular 
robust techniques should be adopted if a loss of coherence of the moving mass is likely. Since 
the size and spatial distribution of the targeted landslides vary considerably, the scale of the 
study typically constitutes a trade-off between spatial coverage and detail. Most available 
ground-based techniques target local measurements, whereas spaceborne techniques cover 
large areas (PST-A, 2008; Cuenca et al., 2011; Cigna, 2012). 

The expectable displacement rates are closely linked to the landslide type and 
constitute a further criterion. Possible displacement rates (Figure 1-2b) vary by orders of 
magnitude ranging from a few millimetres per year to several meters per second (Cruden and 
Varnes, 1996) and, therefore, have a strong influence on the applicable technique and the 
choice of the observation frequency. Displacement rates often change over time and in 
response to rain, snowmelt or ground-shaking. The evolution of the slope movement (Figure 
1-2c) should be reviewed in order to obtain a reliable estimate of the range of possible 
velocities. For previously in-active or non-investigated areas where little historic information 
is available, inventory maps and susceptibility maps (e.g. spatial occurrence) need to be 
prepared in advance to guide the monitoring efforts. The applicability of different remote 
sensing techniques according to the landslide type, expected displacement rates and the 
monitoring scale is evaluated with a rating scale including “not applicable”, “probably not 
applicable”, “applicable in few cases”, “suitable in many cases” and “ideal in many cases”. 
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Figure 1-2: First order landslide classification according to (a) the type of movement and (b) the 
displacement rates (modified after Cruden and Varnes, 1996). Note that falls and topples are different 
failure mechanisms but are grouped together here since the site geometries and main component of 
the displacement vector are very similar. (c) Generalized phases of landslide activity (Vaunat and 
Leroueil, 2002) and typically corresponding risk management phases. 
 
External factors are closely interlinked and include the site configurations, the surface 
conditions (vegetation, snow, and soil humidity), as well as financial and logistic constraints. 
Such issues are discussed together with the technological aspects in section 1.3. 

In practice, the current risk management strategy and the scientific objectives of the 
study play an important role. The classical risk management phases are prevention,  response, 
recovery and reconstruction (Alexander, 2002) and in the context of landslide investigations 
they are closely related to different phases of activity (Figure 1-2c). The usefulness of a 
technique for prevention (e.g. early warning) is governed by its capability to acquire 
measurements with high robustness, accuracy and temporal resolution, whereas during other 
management phases, criteria such as spatial coverage and instrument portability can gain 
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greater importance. In practice financial and logistic constraints are probably the most crucial 
aspects when setting up and operational monitoring systems over longer time periods. The 
development of generally applicable scenarios for the use of remote sensing techniques in 
different risk scenarios would have to involve complex economic, political, organizational 
and ethical aspects and is beyond the scope of this article. However, costs, elaboration time 
and portability of different remote sensing techniques are assessed and provide criteria that 
can be confronted with the available resources.  
 

 Remote	sensing	techniques	for	landslide	monitoring	1.3
 
According to the utilized platforms, remote sensing can be grouped in spaceborne, airborne 
and ground-based techniques. Among hundreds of currently operational EO satellite systems, 
polar-orbiting SAR and optical satellites with high- and very high spatial resolution are the 
most relevant for landslide monitoring. Airborne platforms are very diverse and range from 
airships operating at up to 40 km altitude to remote controlled platforms flying only a few 
meters above the ground (Kerle et al., 2008). Classical airborne surveys continue to be a 
valuable tool for landslide mapping at regional scales, while UAVs are more adapted for 
local acquisition at narrow time-intervals that are often desirable for monitoring campaigns. 
Ground-based acquisitions can be carried out from fixed view points, with handheld devices 
or from mobile platforms (swimming vessels, cars). Remote sensing techniques such as sonar 
and seismic profiling are frequently used for the mapping and characterization of submarine 
landslides (Prior et al., 1982; Canals et al., 2004; Lastras et al., 2006; Talling et al., 2007; 
Hough et al., 2011). Since monitoring is typically not an issue for submarine landslides, these 
latter techniques are not included in this review. 

 Digital Image Correlation (DIC) from space- and airborne sensors 1.3.1
High-resolution optical and SAR images from satellite and airborne platforms are commonly 
used for landslide inventory mapping (Guzzetti et al., 2012). Related image analysis 
techniques exploit mainly multi-spectral data (Martha et al., 2010a; Stumpf and Kerle, 2011; 
Mondini et al., 2013; Stumpf et al., 2013a), time-series of panchromatic images (Martha et 
al., 2012; Lacroix et al., 2013) and in some cases also high-resolution SAR amplitude images 
(Singhroy and Molch, 2004). Though hyperspectral imaging has some potential to provide 
relevant indicators on the evolution of soil properties (Sterzai et al., 2010) and vegetation 
disturbances, the use of time-series for landslide analysis has not yet been explored.  

For monitoring purposes, image matching can be used to derive 2D displacements 
from satellite and airborne images. If images from multiple view angles are available, it is 
also possible to reconstruct the topographic surface, quantify surface changes and measure 
3D displacements. 2D displacements are commonly derived using Digital Image Correlation 
(DIC) techniques from series of panchromatic satellite images or high resolution SAR 
amplitude images spaceborne DIC and from series of aerial images airborne DIC. 

Space- and airborne DIC with optical images has been employed in numerous case 
studies using both VHR satellite images and aerial photographs (Powers et al., 1996; Kääb, 
2002; Casson et al., 2003; Delacourt et al., 2004; Leprince et al., 2008; Delacourt et al., 
2009a; Debella-Gilo and Kääb, 2011; Mackey and Roering, 2011; Booth et al., 2013) to 
measure 2D displacement with decimetre accuracy. A comparison of several image matching 
algorithms for optical images is provided in Heid and Kääb (2012) The quality of the derived 
displacement fields varies significantly among different matching algorithms but the 
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geometric accuracy of input data, and post-processing of the derived displacement fields is in 
many cases more important for the final accuracy. For landslide monitoring, an image 
resolution of 2.5 m (e.g. SPOT 5) and higher should be considered. Automatic matching 
algorithms can theoretically provide the sub-pixel precision at 1/50 of a pixel but due to noise 
and co-registration errors a maximum accuracy of 1/5 of pixel should be expected in practical 
applications. DIC is more robust in tracking large displacements (several m.yr-1) than other 
techniques (such as DInSAR for instance) but temporal decorrelation still becomes an issue if 
surface changes are too large (i.e. no homologous features are preserved). Optical image 
acquisition is weather-dependent and suitable images are often only available at intervals of 
several months or years. In principle, it is possible to combine images from different sensors 
(Delacourt et al., 2004) but, as a consequence, decorrelation is more likely and image series 
acquired with the same sensor are, therefore, preferable. Decorrelation also arises over 
vegetated areas even if the time-lag between the acquisitions is short (e.g. weeks). 

Most DIC techniques use a window-based search to match areas with a similar 
appearance among two images. The window size typically ranges between 3x3 and 64x64 
pixels. A larger window size is more robust (e.g. better correlation over areas with large 
vegetation patches) but also reduces the resolution of the obtained vector field. An important 
aspect of the image processing preceding DIC is precise co-registration and ortho-
rectification which typically requires a number of well distributed tie points (image to image), 
ground-control points (GCPs, image to ground) with known 3D coordinates and an adequate 
surface geometry (Digital Elevation Models; DEM). Ideally, each image should be ortho-
rectified with a DEM representing the surface at the time of the image acquisition. For 
practical reasons, DEMs are typically not updated at narrow time intervals (< 1 yr.) and 
therefore slope parallel displacement (no changes in z) is assumed when the same DEM is 
used for the ortho-rectification of multiple images. Especially at off-nadir view angles, a 
deviation from this hypothesis and inherent DEM errors reduce the accuracy of the 
displacement estimates (Van Puymbroeck et al., 2000). However, it has been demonstrated 
that generally those errors are not severe and accurate displacement measurements can be 
obtained even without GCPs and a coarse external DEM (Berthier et al., 2005; Stumpf et al., 
Submitted) if the relative orientation of the images is accurately modelled with tie points. 
Using slope parallel displacement as hypothesis allows converting 2D vectors into 3D 
displacement estimates through projection on the DEM but for many landslides important 
changes in the z-axis will introduce severe errors (Reeh et al., 2003) 

For more than a decade, spaceborne DIC has also been applied for measuring co-
seismic surface displacements (Michel et al., 1999; Erten et al., 2009) and glacier motion 
(Strozzi et al., 2002) from SAR amplitude images. The terminology SAR Offset tracking is 
then also used as an alternative to DIC. The basic principles of DIC applied on optical and 
SAR amplitude images are similar but two main differences are noteworthy. First, due to the 
distinct physics of SAR imaging, the correlation between image patches is sometime 
evaluated with a different similarity measure than for optical images (Michel et al., 1999; 
Erten et al., 2009). Second, the 2D displacements do not correspond to horizontal 
components but to the range and the azimuth. With most SAR satellite systems, the ground 
resolution in the azimuth is generally lower than in the range direction (~ factor 2) resulting 
in inferior results in the azimuth direction. For applications over wide area in high-mountain 
areas, a correction of topographic effects is recommendable (Kobayashi et al., 2009). For 
applications in flat terrain or areas with rather small topographic variations, such corrections 
are dispensable if the perpendicular baseline between the images is small (1-200 m, 
Raucoules et al., 2013). To avoid resampling artefacts, it is also preferable to estimate the 
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displacement first in the image geometry and project the derived measurements afterwards to 
the ground geometry (De Michele et al., 2010). SAR Offset tracking can be applied on SAR 
images in L-, C-, and X-band but denser (spatially and temporally) and more accurate 
measurement can be obtained with VHR X-band satellites. TerraSAR-X and CosmoSkymed 
are also more flexible in acquisition programming and thus have better capability to acquire 
images for the same site from different orbits, and thus view angles (Raucoules et al., 2013). 

Ascending and descending orbits of SAR satellites can be combined to retrieve full 
3D displacement (Rocca, 2003). While this idea has been realized for large scale co-seismic 
deformation (e.g. De Michele et al., 2010), such application to landslides is still limited. A 
first application to landslide monitoring is reported in Raucoules et al. (2013) measuring 
displacement of up to 20 m.yr-1 with a precision of 0.1 m. Combining acquisitions from 
ascending and descending orbits allows measuring full 3D displacements, which is 
particularly valuable for landslides with complex displacement patterns. 

Though several airborne SAR systems exist (Reigber et al., 2013), SAR Offset 
tracking has been used almost exclusively with satellite images. A promising example for 
measuring glacier motion from airborne SAR is given in Prats et al. (2009). High-resolution 
airborne SAR has a great potential for displacement monitoring (DIC and interferometry), 
estimation of soil parameters, and the investigation of the 3D structure of vegetation and 
man-made objects. However, currently the processing chain is still rather complex and the 
costs for repeated local and regional surveys are very high (Reigber et al., 2013). 

 Stereo-photogrammetry from space- and airborne sensors 1.3.2
Series of stereo-images can be exploited to reconstruct the surface topography and monitor its 
evolution over time. Airborne stereo-photogrammetry [airborne SP] has been applied in 
many studies to analyse archived aerial photographs typically for one particular landslide 
(Henry et al., 2002; Walstra et al., 2004; Casson et al., 2005; Brückl et al., 2006; Walstra et 
al., 2007; Baldi et al., 2008; Dewitte et al., 2008; Schwab et al., 2008; Kasperski et al., 2010; 
Prokešová et al., 2010; Fernández et al., 2012). The parallax shift between multiple stereo-
pairs allows reconstructing the surface and vertical changes; associated orthophotographs can 
be used to track horizontal displacements. Such techniques typically achieve decimetre 
accuracy (sometimes metric with older aerial photographs) and provide very valuable 
information about horizontal displacement and vertical changes in the past. However, they 
are somewhat limited to monitor the current evolution since aerial surveys are only carried 
out at large time intervals (typically several years).  

UAV photogrammetry can be considered as a special case of airborne SP and allows 
more flexible and cost-effective image acquisition than classical aerial surveys and several 
examples of UAV-based landslide monitoring have been provided (Eisenbeiss, 2009; 
Niethammer et al., 2010; Niethammer et al., 2011a; Rothmund et al., 2013). Niethammer et 
al. (2011a) reported a vertical RMSE of 0.3 m when compared to terrestrial LiDAR and 
uncertainty of ~0.5 m in the horizontal component. Employing low-cost UAV for landslide 
monitoring on a regular base and in response to disasters is still complicated by the fact that 
many GCP targets have to be distributed over the study site. The direct georeferencing  with 
integrated GPS and IMU is an active field of research and recent studies show that decimetre 
accuracy of the georeferencing can be achieved (Turner et al., In Press). In this context, the 
additional costs for a larger UAV and GPS components may be worthwhile to circumvent the 
need for a large number of GCPs. An interesting aspect regarding the image processing is the 
increasing availability of open-source and low-cost software (e.g. Snavely et al., 2008; 
Furukawa and Ponce, 2010; Deseilligny et al., 2013) that enable also inexperienced users to 
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obtain high quality results. UAV systems that integrate other sensor types such as LiDAR and 
SAR are under active development (Nagai et al., 2009; Wallace et al., 2012) but to the best of 
our knowledge no such system has yet been employed for the investigation of landslides. The 
very high spatial resolution of UAV images (typically ~5 cm) does not only allow 
quantitative analyses of surface changes but also permits to analyse the distribution and 
evolution of small surface features (fissures, lobes, boulders) which are useful indicators for 
the underlying mechanical processes (Walter et al., 2009; Stumpf et al., 2013b). There is 
currently still some uncertainty about legal aspects for the operation of UAVs in public 
airspace and regulations (if in place) vary from country to country. A useful overview of 
national and international policies can be found in Maddalon et al. (2013) and national 
authorities might be consulted for clarification. 

Spaceborne stereo-photogrammetry [spaceborne SP] follows similar principles than 
classical airborne SP, whereas the spatial resolution (currently 0.5 x 0.5 m), geolocation 
accuracy of the input images and results of the processing are generally lower than with 
airborne SP. Until recently, spaceborne SP has mainly been used for volume estimation after 
catastrophic failures and vertical errors (in the range 2 – 6 m) have been reported (Tsutsui et 
al., 2007; Martha et al., 2010b). Consequently, volume estimates with an uncertainty of ~ 
20% can be achieved after additional co-registration of the extracted surface models (Martha 
et al., 2010b). 

Despite promising case studies on spaceborne SP in the context of landslide 
monitoring, its application for long-term monitoring is, so far, limited. This can be attributed 
to the relatively long intervals between suitable images and the common assumption that a 
large number of GCPs is needed. However, it has been demonstrated that a single GCP is 
often sufficient to correct most of the bias in the sensor model (Fraser and Hanley, 2005) and 
in some cases even dispensable with only minor losses in the absolute positional error 
(Reinartz et al., 2006). It should also be noted that tie points which can be extracted 
automatically suffice to accurately recover the surface models and relative displacement for 
different epochs (Stumpf et al., Submitted). However, the absolute position of the derived 
surface will comprise errors of the sensor model which may pose problems for the validation 
and integration with ground measurements. The latest generation of VHR satellites have 
significantly shorter repeat-pass cycles (~ 5 days) and enhanced stereo capabilities at spatial 
resolutions of 0.5 m. Resulting datasets can be exploited to reduce the measurement interval 
to a few months with horizontal errors of ~0.1 m  even without GCPs (Stumpf et al., 
Submitted).  

The possibility to obtain 2D displacement fields and volume estimates makes DIC and 
stereo-photogrammetry complementary technologies especially for tracking displacement 
rates of > 1 m.yr-1. Ideally, time-series should be acquired at constant sun- and view-angles. 
Before purchasing archived images or for planning acquisitions, high-resolution DEMs 
should be exploited to simulate and avoid cast shadows. However, despite considerable 
advances in stereo-photogrammetric algorithms, the processing still depends on highly 
specialized software and the processing of time-series cannot be easily automated. Open-
source projects for image-matching and satellite photogrammetry are under active 
development and will provide good alternatives in the near future (Tinel et al., 2012; 
Deseilligny et al., 2013). 

Radargrammetry can be considered as a special case of spaceborne SP since it 
exploits the parallax shift between stereo-pairs of SAR amplitude images. While the 
principles of this approach have been laid out several decades ago, only recent high 
resolution SAR satellites (Cosmo-Skymed, TerraSar-X, RADARSAT-2, and ALOS-2) 
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provide sufficient resolution to obtain high quality surface models. Several techniques to 
increase accuracy and alleviate the computational intensive process have been proposed 
recently but errors of at least 2 m in flat terrain (and worth in mountainous terrain) are 
observed (Balz et al., 2013; Capaldo, 2013; Nascetti, 2013) and limit the applicability for 
landslide monitoring. 

 DIC and stereo-photogrammetry from ground-based sensors 1.3.3
Similar to space- and airborne techniques, terrestrial stereo-photogrammetry relies on 

basic principles of image matching and stereo-vision. It targets the reconstruction of surfaces 
and displacement from multiple images acquired on the ground. Early works on the 
application of this technique to landslide monitoring date back to before the 1980s (see 
Chandler and Moore, 1989 ; Lane et al., 1993 and refrences therein) but still required metric 
cameras and a significant amount of expertise. The emergence of affordable consumer-grade 
SLR cameras greatly simplified image acquisition, storage and processing, but also raised 
new issues for the photogrammetric processing of images captured with non-metric cameras. 
Algorithms and software implementations were enhanced mainly by the photogrammetric 
and computer vision community focusing, respectively, on higher precision or greater 
automation (Fraser and Edmundson, 2000). In particular, self-calibration now enables an 
accurate calibration of SLR camera lenses (Remondino and Fraser, 2006) and the 
convergence of photogrammetric and computer vision techniques provides both high 
automation and accuracy (Barazzetti et al., 2009). 

Image correlation of monoscopic time-series [terrestrial DIC] is commonly applied in 
soil and fluid mechanics for laboratory scale measurements (Adrian, 2005; Pan, 2011), 
whereas still relatively few field applications to landslides are reported in the scientific 
literature. Recently, Travelletti et al. (2012) demonstrated the possibility to monitor 2D 
surface displacement with a fixed installed camera including a detailed analysis of the 
sources of potential errors. The relative error of the measurement was generally below 20% 
of reference ground-based GNSS observations, and resulted mainly from the use of a mono 
date DEM used to convert monoscopic measurements from image into ground geometry. 
They showed that the camera programming should be adapted to the seasonal variations of 
the sun angles and quantified errors related to the scene depth, the view angle and the camera 
orientation. A similar monitoring approach was recently applied in Motta et al. (2013).  

The problem of a mono date DEM can be resolved using a stereo- or multi-view 
camera setups (terrestrial SP) as already applied occasionally for glacier monitoring 
(Kaufmann, 2012; Rivera et al., 2012). Kaufmann (2012) reported an accuracy of ± 5 cm.yr-1 
indicating a great potential of time-lapse stereo for landslide monitoring. To the best of our 
knowledge no study has been conducted yet in this direction.  

An alternative to fixed camera setups is the acquisition of photographs with a 
handheld camera from different view angles. This allows the construction of surface models 
at multiple time steps and resolves the dependency on external DEMs. The related 
approaches for 3D reconstruction are commonly referred as Structure-from-Motion and 
Multi-View stereo-photogrammetry (SfM-MVS). Images can be recorded at low cost and 
numerous software are available commercially and in the public domain (Snavely et al., 
2008; Furukawa and Ponce, 2010; Rothermel et al., 2012; Deseilligny et al., 2013; Wu, 
2013). The technique has been applied in several geomorphological studies (James and 
Robson, 2012; Westoby et al., 2012; Bretar et al., 2013) but applications to landslide 
monitoring have rather focused on UAV surveys (Section 1.3.2). An example for the 
application of terrestrial SfM-MVS for landslide monitoring has recently been provided by 
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(Stumpf et al., In Review-a) suggesting an RMSE between 0.05 and 0.2 m (with a ground-
based LiDAR survey as a reference) of the resulting models. The study showed the 
possibility to quantify surface changes, displaced volumes and 3D displacement vectors. 
Achieving a relatively homogeneous accuracy over the entire slope still depends on some 
optimization of the acquisition geometry by the operators. However, the quality of the results 
closely resembles terrestrial and airborne LiDAR acquisitions and hence SfM-MVS should 
be considered as a versatile and cost-efficient alternative to costly laser scans. 

For larger displacement rates (> m.day-1), the temporal resolution of time-lapse 
photography is often to low and video cameras are employed instead. This technique has 
been used many times to study the velocity and behaviour of debris flows. Early works 
include the application of spatial filtering methods to measure surface velocity in image 
coordinates (Itakura and Suwa, 1989; Inaba et al., 2000). In Arattano and Marchi (2000), 
results of a simple method for projecting the image displacements into 3D ground geometry 
are presented. Compared to ultrasonic measurements, the error was never larger than 9% but 
also depends on the availability of an external surface model after the debris flow event. A 
bibliography of debris-flow studied with videos can be found in Itakura et al. (2005) and 
more recent examples in large scale experiments are given in Iverson et al. (2010), McCoy et 
al. (2010) and Kean et al. (2011). Videos also provide important qualitative evidence for the 
behaviour (surges, presence of boulders) of the events (Arattano and Marchi, 2008; 
Prochaska et al., 2008). 

 Electronic distance meters and total stations ground-based surveys 1.3.4
Electronic Distance Meters [EDM] and theodolites are classical tools for landslide 
monitoring and are continuously used for displacement measurements at high temporal 
resolution and centimetre accuracy. EDMs are based on the same principles than LiDAR 
systems but are significantly cheaper and can be operated automatically to measure 
displacement along the direction of the laser beam at distances up to 1000 m with specifically 
designed prism targets (Oswald, 2003; Manetti and Steinmann, 2007). Since EDMs only 
allow to measure distances in the direction of the laser beam, they are typically combined 
with robotized theodolites (also called tacheometer) in integrated systems [Total stations]. 
For automated measurements with high precision, Total Stations are often operated in 
combination with defined prism targets allowing to measure distances of more than 2000 m 
(Castagnetti et al., 2013; Giordan et al., 2013) and to obtain an accurate 3D estimate of the 
position.. 

Several modern image-assisted total stations can also be operated in a reflectorless 
mode that allows measuring 3D coordinates of up to 20 points per second (Abed and 
Abdullah, 2013). Such systems can be considered as a sort of low-density LiDAR that can be 
used to calculate sediment budgets (Tsai et al., 2012) or to asses global changes in the slope 
inclination (Yang et al., 2007). A closer integration of Total Stations with photogrammetric 
measurements has a great potential to automate near real-time 3D displacement 
measurements without the need of prism targets (Scherer and Lerma, 2009) but the 
implementations of such systems for landslide monitoring has so far been limited (Thuro et 
al., 2009; Paar et al., 2012). EDMs are also integrated in laser range finders which have 
proven useful for landslide mapping (Santangelo et al., 2010) but the accuracy of such 
systems is in the range of meters and, therefore, currently too low for monitoring 
applications. 
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 LiDAR point-clouds from airborne and ground-based platforms 1.3.5
Light Detection and Ranging (LiDAR) technology is available for the geoscience community 
since the 1990s (Shan and Toth, 2009) and became a commonly used tool during the last ten 
years. A comprehensive review on the use of LiDAR in landslide investigations is given in 
Jaboyedoff et al. (2010). Therefore, only some key points and more recent developments are 
summarized here. 

For airborne LiDAR [ALS] surveys at regional scale, the laser scanner is usually 
mounted on an airplane and the spatial resolution varies between meters and decimetres. For 
higher point density with local coverage, helicopters are often used with a steerable sensor 
that allows a better coverage of very steep slopes and vertical cliffs. For the scanning 
landslides under dense vegetation, a high point density is very important since fewer pulses 
will reach the topographic surface (Razak et al., 2011). The absolute accuracy of the point 
clouds depends on several factors such as the scanning distance, the incidence angle of the 
slope and the quality of the georeferencing which is typically based on the position and 
orientation of the sensor recorded with an on-board GPS and IMU during the flight (direct 
georeferencing). The absolute accuracy of scanning systems is often specified with 5-35 cm 
(Optech, 2013) but strongly depends on the flight height and the incidence angle of the laser 
pulse at ground (Ussyshkin et al., 2008). A detailed analysis of error sources and possible 
corrections in the context of glacier monitoring can be found in Joerg et al. (2012). A 
convenient way to correct systematic errors (translation, rotation) between multi-date scans is 
to use the Iterative Closest Point (ICP) algorithm over stable areas (Kumari et al., 2011) but 
generally decimetre uncertainties cannot be avoided. 

Airborne LiDAR is one of the few remote sensing techniques that allow the 
investigation of landslide under dense vegetation (Razak et al., 2011; Van Den Eeckhaut et 
al., 2012) but its value for monitoring is limited by the fact that repeated surveys are cost-
intensive. Examples for the monitoring of landslide dynamics with hourly frequency exist 
(Favalli et al., 2010) but for landslide monitoring the temporal resolution is typically rather 
yearly and constrained to specific sites (Roering et al., 2009; Mackey and Roering, 2011; 
Ventura et al., 2011). The temporal resolution of 3D measurements can be significantly 
increased by combining airborne and terrestrial LiDAR (Ghuffar et al., 2013). 

Compared to airborne acquisitions, terrestrial LiDAR [TLS]) can be employed with a 
much higher temporal and spatial resolution and has become an important tool for the 
monitoring of rockfalls, earthflows and debris flows (Jaboyedoff et al., 2010). The accuracy 
of the scanning device depends on the distance to the object (1-3000 m) and typically ranges 
between 1 and 2 cm. The detection of millimetre displacements is possible in some cases 
through averaging over a sufficiently large spatial neighbourhood (Abellán et al., 2009). TLS 
not only provides the possibility to quantify displacement rates and volumes but also to infer 
the geometry of past and potential future failures through the analysis of structural features 
(Jaboyedoff et al., 2009). 

Abellán et al. (2013) provide a comprehensive overview of acquisition, pre-
processing and analyses steps of TLS for the characterization, volume estimation and 
displacement monitoring on rock slopes. The most common application of TLS is indeed the 
quantification of rockfall volumes on steep cliffs (Rosser et al., 2005; Abellán et al., 2011), 
which, if repeated at high temporal resolution, can be used to establish magnitude-frequency 
curves (Rosser et al., 2007; Barlow et al., 2012).  

For slow-moving landslides, TLS can be employed to derive 1D-3D displacement 
vectors and different analysis techniques have been developed for this purpose. A simple 
approach is the interpolation of continuous surfaces and differencing of the components to 
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measure changes in the vertical direction. This method poses problems if the considered 
surface is not globally flat and more advanced algorithms have been proposed to compute the 
displacements along the surface normals of interpolated meshes (EDF-R&D, 
TelecomParisTech, 2013) or along the surface normals directly estimated on the point clouds 
(Lague et al., 2013). However, resulting displacements are still only 1D and do not fully 
exploit the 3D nature of the scanned data. 
 2D displacement can be measured using DIC techniques on a shaded relief of the 
interpolated surface (Travelletti et al., 2008) of from synthetic images derived from a 
projection of the LiDAR point cloud into a common plane (Aryal et al., 2012). A drawback 
of those methods is the underlying assumption that all displacements are parallel to the slope 
(or the defined plane) and still not all components can be recovered. 

The currently most commonly used technique to recover 3D displacement is a 
piecewise rigid alignment of point clouds using ICP (Teza et al., 2007) or a least square 
approach (Monserrat and Crosetto, 2008). Both methods are based on the assumption that 
some rigid features are preserved in the point-clouds over time. Such approaches can provide 
displacement measurements (translation and rotation) with centimetre accuracy but usually 
require significant manual intervention to identify areas that can be matched. Displacement 
can also be measured manually through the identification of homologous surface features 
among the point clouds time-series (Oppikofer et al., 2008) but the associated errors might be 
too high if centimetre displacement should be detected (Oppikofer et al., 2009). 

An alternative approach to derive 3D displacement from TLS time-series has been 
proposed recently in Travelletti et al. (In Review). The method is based on the application of 
DIC on a 2D image of the interpolated surface and the projection of the derived displacement 
on the real ground geometry. It yields accuracies equivalent to those obtained with ICP but 
requires significantly less manual intervention. A further interesting method for 3D motion 
estimation has recently proposed in Ghuffar et al. (2013) adopting a hierarchical framework 
for range flow estimation on relative coarse DEMs (> 1m. pixel-1) derived from airborne and 
terrestrial LiDAR.. 

 SAR interferometry from spaceborne platforms 1.3.6
Spaceborne SAR interferometry is commonly applied to monitor landslides at both regional 
and slope scales. The SAR imaging process is significantly less weather sensitive than optical 
systems and yields complementary information (phase, amplitude and polarization) of the 
radar beam backscattered at the ground (Richards, 2009). Relevant information for landslide 
monitoring can be extracted with Differential SAR interferometry (DInSAR) and image 
matching techniques exploiting the phase and amplitude information, respectively. 

Classical SAR interferometry [Classical DInSAR] exploits the phase difference 
between a pair of radar images with a temporal baseline that depends on the repeat pass-cycle 
of the satellite (46 days for ALOS PALSAR to 4 days with Cosmo-Skymed). Numerous case 
studies have shown that this technique can be used to measure landslide deformation along 
the Line-Of-Sight (LOS) with accuracies in the range of centimetres to millimetres (Strozzi et 
al., 2005; Delacourt et al., 2009b; Roering et al., 2009; García-Davalillo et al., 2013; 
Nikolaeva et al., 2013; Schlögel et al., in elaboration)Some studies have demonstrated the use 
of DInSAR with C-band (Squarzoni et al., 2003; Bulmer et al., 2006; Riedel and Walther, 
2008) and X-band satellite sensors (Motagh et al., 2013) for landslide monitoring. L-band is 
less sensitive to decorrelation and, therefore, more suitable for classical DInSAR processing 
(García-Davalillo et al., 2013; Nikolaeva et al., 2013). C-band and X-band are generally more 
prone to temporal decorrelation resulting from surface changes and large displacements. The 
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maximum displacement that can be recovered theoretically without ambiguity depends on the 
wavelength and is 46.8 cm.year−1 for L-band, 14.6 cm.year−1 for C-band and ~25cm.year−1 

(11 days revisit time) for X-band. Additionally L-band can penetrate sparse vegetation. At the 
moment, however, no L-band SAR satellite is operational and until the launch of ALOS-2 
(scheduled for 2014) and only historical archives (ALOS 2006-2012) are available. It is 
possible to overcome those theoretical limits with simple hypothesis on the kinematics of the 
landslide (only downslope movement) but careful manual intervention in the phase 
unwrapping is required (Crosetto et al., 2013a). 

To overcome some of those issues, advanced DInSAR methods have been developed. 
Since its original introduction by (Ferretti et al., 1999, 2001), many variants of the Permanent 
Scatterers approach (PS-InSAR) have been proposed (see Colesanti and Wasowski, 2006 and 
references therein). They all have in common that many interferograms are constructed using 
one master image out of a time-series of at least 15-20 SAR images. Pixels with a coherent 
scattering mechanism over time (PS points) typically correspond to infrastructures or rock 
faces oriented toward the sensor that are used to measure ground displacement with 
millimetre accuracy. Thereby some of the shortcomings of classical DInSAR such as 
temporal decorrelation and atmospheric noise can be circumvented. The number of PS points 
is typically very high in urban environments and reduces over rural and vegetated areas. 
SBAS (Berardino et al., 2002) is a further approach for interferometric processing that does 
not rely on the presence of PS points. Instead of selecting one master image the algorithm 
selects image pairs with small temporal and satellite baseline to construct a series of 
interferograms that can be combined via singular value decomposition. Compared to classical 
DInSAR the technique is more robust to temporal and decorrelation and provides accuracies 
similar to those of PS-InSAR. Indeed PS-InSAR and SBAS are complementary and methods 
to combine them have been proposed (Hooper et al., 2012). Recent algorithmic enhancements 
of PS-InSAR (Ferretti et al., 2011) can significantly increase the points density by exploiting 
also pixels that qualify as distributed scatterers and first applications for landslide 
investigations have been reported (Tamburini et al., 2011; Iasio et al., 2012). Other 
techniques are dedicated to the correction of atmospheric effects in small baseline approaches 
(NSBAS, Jolivet et al., 2011) and denoising of interferograms time-series (MulSAR, Pinel-
Puyssegur et al., 2012). It has been demonstrated that their combination can significantly 
enhance the result of interferometric processing chains for the monitoring of tectonic uplift 
(Grandin et al., 2012) but yet those techniques have not been applied for landslide monitoring. 

InSAR techniques are generally dependent on the presence of targets with a temporal 
coherent backscattering mechanism. If the natural environment does not comprise such 
objects artificial targets, corner reflectors can be installed. The most commonly used targets 
are metallic trihedral corner reflectors. Their in-situ installation involves additional costs and 
several considerations of the orientation of the slope, the orientation of the reflectors and the 
distance between the reflectors in relation to the displacement rates (Crosetto et al., 2013a). 
Several studies have employed corner reflectors using C-band and X-band interferometry for 
landslide monitoring (Xia et al., 2004; Fu et al., 2010; Bovenga et al., 2012a; Crosetto et al., 
2013a). 

Both Classical and Advanced InSAR techniques are applicable in the different 
microwave bands but the latest generation of SAR satellites provides several advantages that 
are noteworthy. TerraSAR-X and CosmoSkymed are satellite constellations operating in X-
band and can provide much higher spatial and temporal resolution than previous missions. At 
a minimum (somewhat exceptional) revisit time of 4 days (CosmoSkymed), the maximal 
displacement that could be measured without ambiguity may exceed 60 cm.yr-1. The main 
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advantage of X-band SAR is the enhanced resolution in azimuth and range directions which 
can reach up to 1 m and significantly increases the density of measurement points. So far, 
landslide monitoring studies have exploited X-band SAR at average revisit times between 11 
and 29 days and displacement rates between 10 mm.yr-1 and 12 cm.yr-1 have been identified 
(Notti et al., 2010; Ling et al., 2011; Bovenga et al., 2012b; Herrera et al., 2013; Motagh et al., 
2013). 

In summary the choice of input data and processing methods should consider the 
expected displacement rates, the site configuration and the coherence of the movement. 
However, several common limitations of InSAR techniques must be taken into account for 
the planning of a monitoring campaign. Though L-band SAR provides capabilities to 
penetrate sparse vegetation, the results of DInSAR generally degrade significantly in 
vegetated areas. Similarly no meaningful measurements can be obtained for snow-covered 
surfaces and areas with strong surface changes (e.g. erosion, accumulation). As mentioned 
above there is some ambiguity if the displacement rate of the landslide exceeds a quarter of 
the wavelength of the microwaves. For relatively large coherent movements with well-known 
displacement patterns, this condition can sometimes be relaxed with manual intervention in 
the phase unwrapping but requires additional processing time and expertise. 

One of the most crucial aspects for the applicability of DInSAR in specific study is 
the geometry of the site. The polar-orbiting trajectory of the satellites makes the measurement 
insensitive to any displacement that occurs in the North-South direction. Relatively steep 
slopes (e.g. > 23˚, depending on the LOS geometry, Colesanti and Wasowski, 2006) will 
suffer from shadowing and foreshortening. For optimal coverage, data from ascending and 
descending orbits should be combined. Topographic datasets can be exploited in advance to 
analyse if a suitable imaging geometry is possible (Plank et al., 2012) and additional 
databases for landcover and infrastructure can be exploited to pre-compute the expected 
density of PS points (Plank et al., 2013).  

Many considerations regarding the site characterisitcs and displacement rates are 
rather fundamental and will also apply to future satellite missions. However, the upcoming 
Sentinel-1 mission will provide publically available C-band images at a repeat-pass cycle of 
only 6 days (at least over Europe) and significantly extend the capabilities to measure faster 
displacement rates with higher precision and at lower costs (Rucci et al., 2012). 

 SAR interferometry from ground-based platforms 1.3.7
Most currently available ground-based SAR (GB-SAR) systems are operated in the Ku-band, 
while also systems with longer wavelength (X-band, C-band, S-band) are being tested (see 
Iwe, 2012 for a recent review). Longer wavelength are significantly more robust to temporal 
decorrelation, atmospheric affects and vegetation but provide lower spatial resolution and 
decrease the accuracy of the distance measurements from millimetre to centimetre (Luzi, 
2010). Operational commercial GB-SAR systems are available but the development is on-
going and proposed upgrades will significantly lower the systems costs and enhance the 
imaging frequency (Tarchi et al., 2013). In contrast to real-aperture radar, current SAR 
systems are faster and lighter (Pieraccini, 2013), whereas developing real-aperture prototypes 
(Strozzi et al., 2012) may narrow this performance gap in the near future. 

Current limitations in the use GB-SAR are decorrelation at high displacement rates 
and atmospheric disturbances as well as the 1D (LOS) nature of the measurement. A recently 
proposed analysis method for GB-SAR adopts a classical window-based matching technique 
on the amplitude images and thereby enables to measure 2D displacement in azimuth and 
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range direction. The technique has already been applied to monitor landslide displacement 
and yields sub-pixel accuracy corresponding to centimetre errors (Crosetto et al., 2013b). 

The first field campaigns using GB-SAR interferometry for landslide monitoring have 
been carried out more than a decade ago (Pieraccini et al., 2003; Antonello et al., 2004) and 
many subsequent studies enhanced the performance of the processing methods (Noferini et 
al., 2005; Pipia et al., 2008) and extended its use for long-term monitoring and integration 
into early warning systems (e.g. Casagli et al., 2010; Intrieri et al., 2012). A fixed installation 
of one entire system is preferable and standardized setups have been proposed (Tofani et al., 
2013b) to avoid temporal decorrelation and co-registration errors. Continuous monitoring on 
surfaces with sparse vegetation and even permanent snow cover is possible (Casagli et al., 
2010) but millimetre accuracy is only achieved for bare soil and rock surfaces. Averaging of 
interferograms and multi-look processing can be used to reduce atmospheric effects and noise 
from surface changes but compromises the temporal and spatial resolution. 

 Geophysical measurements from airborne platforms 1.3.8
Airborne geophysics consists in a variety of remote sensing techniques such as gamma-ray 
spectrometry, airborne magnetics, gravimetry and airborne electromagnetics (Thomson et al., 
2007). Most of those techniques have been initially developed for mineral and ground-water 
exploration and only recently are being exploited for landslide research (Supper et al., 2008; 
Pfaffhuber et al., 2010; Baroň et al., 2013; Supper et al., 2013).  

The helicopter-based system recently used in Supper et al. (2013) and Baroň et al.  
(2013) includes an electromagnetic measurement system (to provide electrical resistivity 
within the subsurface down to a maximum 100 m in depth), a gamma ray spectrometer (to 
measure the concentration of radioactive elements in the first 0.30 m of the subsurface), and a 
passive microwave antenna. Since the soil water content is closely related to microwave 
emission the measurements can be used as a proxy for the soil moisture in the first 0.10 m of 
the subsurface (Supper et al., 2013). 

Airborne geophysics is still a rather new technique for the investigation of landslides. 
In contrast to other remote sensing techniques it does not target to measure displacement rates 
and volumes but has the advantage to provide valuable information about the depth of the 
moving mass and the structure of the sub-surface. Supper et al. (2013) were for instance able 
to localize present and future unstable slopes, explore the general structure of a landslide and 
the regional geological context. The added value of repeated surveys for monitoring might be 
limited and constrained by the limited number of world-wide operational systems. 
 

 Guidelines	 for	 the	 selection	 of	 the	 appropriate	 remote	1.4
sensing	techniques	
 
This section provides a detailed evaluation of the proposed criteria (Section 1.2.2) that can be 
used as rule sets for the choice of the most appropriate technique for different monitoring 
scenarios. 

Most available remote sensing techniques for landslide monitoring can provide local 
and regional coverage and information about the 3D displacement and volume changes. A 
notable exception is spaceborne SAR interferometry [classical and advanced DInSAR] which 
only provides displacement measurements in the LOS direction (Figure 1-3a, b). The 
information that can be derived from airborne geophysics is unique in the sense that a 
detailed image of the subsurface structures, volumes and physical parameters can be 
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obtained. Besides quantitative information (e.g. point clouds), LiDAR and optical remote 
sensing techniques also yield images of the surface that can be interpreted manually or semi-
automatically to observe diagnostic features at the surface (fissures, lobes, boulders, 
vegetation disturbance). 

Ground-based techniques yield higher spatial and temporal resolution for local 
monitoring. For a better interpretation of the spatial resolution (Figure 1-3c), it is important to 
consider that it refers to horizontal resolution for spaceborne DIC, spaceborne SP and 
airborne DIC, to the resolution in azimuth and range for SAR techniques, to the 3D points 
spacing for ALS, TLS and terrestrial SP and to 3D cell resolution for airborne geophysics. 
While the spatial and temporal resolutions (Figure 1-3c, d) for spaceborne systems are 
determined by the specifications of the sensor, the resolution of ground-based techniques is 
variable and only limited by the distance to the target (Figure 1-3e) and, eventually, the 
available resources for data transmission, storage and processing. 
 

 
 
Figure 1-3: Capability of remote sensing techniques for landslide monitoring regarding (a) spatial 
coverage, (b) resulting information type, (c) spatial resolution, (d) temporal resolution and (e) distance 
to the target. Sub-categories such as SAR distance meter (SAR-DM) and different microwave bands 
are distinguished for criteria where their value range differs. 
 
Among many relevant satellite missions which are planned or scheduled for the near future 
(ALOS-2, Cartosat-3, WorldView-3), the ESA Sentinel mission stands out since all captured 
images will be publicly available without charges (ESA-Copernicus, 2013) and because of its 
high temporal frequency. Sentinel-2 (scheduled for launch in late 2014) provides optical 
images with a maximum spatial resolution of 10 m and a repeat pass cycle of 5 days. A 
comparatively high co-registration accuracy of better than 0.3 pixel is foreseen (Drusch et al., 
2012) yielding continuous time-series whose value for DIC monitoring of slow and moderate 
moving landslide should be explored (Figure 1-4a). 

Regarding the measurement accuracy (Figure 1-4a), three main groups of remote 
sensing techniques can be distinguished. First, ground-based and spaceborne SAR as well as 
Total Station surveys can achieve measurements with only millimetre and sub-millimetre 
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errors and are therefore especially valuable for the monitoring of small displacements. X-
band SAR is currently one of the most accurate techniques, whereas the costs of data and 
satellite scheduling are relatively high (Figure 1-4d). C-band SAR with the forthcoming 
Sentinel-1 (scheduled to be launched in early 2014) has the potential to yield sub-millimetre 
accuracy (Rucci et al., 2012) at significantly reduced costs (Figure 1-4d). Second, ALS, TLS, 
and terrestrial and airborne (UAV) SP typically achieve centimetre and decimetre accuracy. 
Third, accuracy of spaceborne DIC and spaceborne SP is usually not higher than several 
decimetres. Note that the accuracies refer to the measured quantities such as LOS 
displacements, heights, 3D point positions and 3D displacements and must be extrapolated to 
obtain derivates such as volumes. Airborne geophysics provides very precise measurements 
of resistivity, gamma and microwave radiation but the delineation of structural units can 
comprise uncertainties in the range of a few metres. 

The possibility to operate a remote sensing technique continuously without significant 
intervention (Figure 1-4b) is conditioned by the capability of the sensor to provide continuous 
time-series and the availability of automatic processing chains. Due to short repeat-pass 
cycles and automated processing chains, spaceborne SAR systems qualify for continuous 
measurements. Also, ground-based systems including optical cameras, GB-InSAR and Total 
Stations can record data continuously over longer time periods (several months and even 
longer). Other systems for TLS and spaceborne SP can only be used for permanent or 
campaign surveys since issues such as the data volume and the required manual intervention 
in the processing chain do currently not allow automatic operation. 

Figure 1-4c provides an overview of the approximate elaboration time which marks 
the time lag between the acquisition of data and the completion of the final results. Since the 
elaboration time depends on the experience of the operator, the size of the dataset (e.g. 
number of SAR images, size of LiDAR point clouds), requirements of external data sources 
(e.g. GCPs) and the computational resources, only indicative ranges are provided. It shows 
that the analysis phase requires several days or weeks with most remote sensing techniques 
which limits their use for early warning. Automated Total Stations and GB-InSAR, at the 
opposite, provide results already a few seconds or minutes after the measurement process and 
are frequently integrated into Earl-Warning Systems (Casagli et al., 2010; Cardellini and 
Osimani, 2013; Michoud et al., 2013). 

The approximate costs of the technique (Figure 1-4d) include costs for the 
instrumental equipment, the processing software, the field installation and the required 
manpower. The costs were evaluated based on publicly available (in 2013) price lists of 
instruments and sensors, data providers and space agencies, inquiries at private companies 
and the experience of the partners within the SafeLand European project. In general, the costs 
represent the current state-of-the-art and are likely to reduce as new spaceborne, airborne and 
ground-based systems enter the market. Especially free data from the forthcoming Sentinel 
missions 1 & 2 will nullify data costs for the acquisition of SAR images (Figure 1-4d). For 
historical analysis, techniques, (such as spaceborne SAR, spaceborne DIC and spaceborne 
SP can greatly benefit from large image archives that sometimes span over several decades 
(e.g. ERS-1/2, airborne photographs after 1945) and are available at low costs or even free of 
charge. For continuous monitoring with state-of-the-art satellite systems (e.g. TerraSAR-X, 
Pleiades), costs are still relatively high especially if scheduled acquisitions are requested. 
This generally also applies for ALS surveys and airborne geophysical surveys. 

It is however important to note that those techniques are rather designed for regional 
applications (Figure 1-7) and are therefore relatively cost-efficient when price per area is 
concerned. 



 

- 36 - 
 

The expenses for the use of GB-InSAR, TLS and Total Stations are dominated by the costs of 
the hardware and leasing. Shared use among institutions and/or study areas is often 
appropriate for such systems. 

UAVs and especially optical cameras can be considered as low-cost systems and 
entry-level models are already available for a few hundred EUR. Additional costs for 
terrestrial DIC and SP typically arise from fixed installations which require power supplies, 
data transmission systems and sometimes additional data loggers. The prices for high-end 
civil UAVs easily exceed 10.000€ but can carry higher payloads that allow the integration of 
navigational systems and high quality SLR cameras reducing the need for GCPs and 
generally providing significantly more accurate results. 
 

 
 
Figure 1-4: Capability of remote sensing techniques for landslide monitoring regarding (a) 
measurement accuracy, (b) operation mode, (c) approximate elaboration time, (d) approximate costs 
and (e) technological maturity. Sub-categories such as SAR distance meter (SAR-DM) and different 
microwave bands are distinguished for criteria where there value range differs. 
 
The applicability of remote sensing techniques to a particular landslide type (Figure 1-5) has 
to involve several aspects. Especially, the geometry of the measurement should be able to 
capture the principal component of the movement and the largest extension of the moving 
mass. Consequently many spaceborne and airborne techniques are for example less suitable 
for the monitoring of falls and topples (Figure 1-5a) since only a small fraction of the moving 
surface is visible from a quasi-vertical view point and the resolution and accuracy of the 
techniques are generally too low. On the contrary, spaceborne SAR and GB-InSAR are very 
well adapted to measure very small displacement preceding falls and topples. In many cases, 
they are also suitable for the monitoring of rotational slides where the movement is 
distributed over various components (Figure 1-5b). It has been demonstrated that Classical 
DInSAR techniques can be used to detect and characterize also translational landslides 
(Nikolaeva et al., 2013) but the most important component of the movement along the slope 
is not very well depicted. 
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Different ground-based techniques are applicable to a variety of landslide types but their use 
is problematic for the monitoring of spreads (Figure 1-5d) which mainly occur in flat or low 
gradients terrains where it is typically difficult to obtain a near-vertical view on the surface. 
In this assessment, ALS is depicted as an ideal tool for most landslides types since the high 
costs for frequent surveys are not considered at this point. 

Translational and rotational slides display rather coherent displacement with little 
deformation, whereas flows and spreads typically comprise strong deformation of the moving 
mass along with significant changes of the surface. The latter can yield decorrelation when 
using SAR techniques, and to a lesser extent terrestrial and airborne DIC (Figure 1-5e). 

The suitability of remote sensing techniques for different displacement rates (Figure 
1-6), is mainly determined by their temporal resolution (Figure 1-3d) and the accuracy of the 
measurement (Figure 1-4a). In general, most available techniques can only be employed to 
measure extremely slow to slow movements (Figure 1-6a-c) but possible choices for 
moderate to extremely rapid velocity are limited (Figure 1-6d, e). Notable exceptions are GB-
InSAR, robotized Total Stations, and terrestrial SP and DIC based on videos. It should be 
noted in this context that video-based SP and DIC are mature measurement techniques in 
experimental mechanics (Sutton et al., 2009) but are rarely used for landslide monitoring. 
This must be attributed to the fact that rapid slope failures also exceed the reaction time for 
the installation of such specialized devices and hence rapid movements have in practice been 
rarely observed with dedicated cameras (Arattano and Marchi, 2000). The high measurement 
accuracies of SAR techniques make them particularly well adapted for the monitoring for 
extremely slow and very slow movements (Colesanti and Wasowski, 2006). Due to phase 
ambiguity and repeat pass cycles, spaceborne SAR systems cannot provided reliable 
measurement, at displacement rates exceeding ~1.5 m.year-1 (Figure 1-6a, b), whereas GB-
InSAR systems have a much higher temporal resolution (several minutes) and are therefore 
applicable even for displacement rates up to several decimetres per hour (Figure 1-6d). 

Figure 1-7a provides an overview of the suitability of the evaluated techniques for 
monitoring applications at different scales considering aspects such as spatial coverage 
(Figure 1-3a), measurement accuracy and costs (Figure 1-4a, e). Most techniques are 
dedicated for surveys at the local (or slope) scale (Figure 1-7b). Exceptions are EDMs, Total 
Stations and GB-InSAR which can be employed efficiently for point-wise observation 
(Figure 1-7a), and Spaceborne SAR techniques which have also been used for regional 
surveys (Figure 1-7c). Airborne DIC and SP, Airborne LiDAR as well as Spaceborne DIC 
and SP are applicable in some cases for monitoring at the regional scale (Figure 1-7c) but 
comprise disadvantages regarding costs and/or accuracy. 
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Figure 1-5: Suitability of remote sensing techniques for the monitoring of different landslide types 
including (a) falls and topples, (b) rotational slides, (c) translational slides, (d) spreads and (e) flows. 
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Figure 1-6: Suitability of remote sensing techniques for the monitoring of different displacement rates 
including (a) extremely slow, (b) very slow, (c) slow (d) moderate (e) rapid – extremely rapid. 
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Figure 1-7: Suitability of remote sensing techniques for landslide monitoring for (a) point-wise 
surveys, at (b) local scale and (c) regional scale. 
 

 Current	applications	and	challenges	1.5
 
In this section, the types of information and current limitations that can be expected from the 
use of different techniques are discussed and exemplified with selected case studies. 

 Long term measurement of 1D displacements 1.5.1
Figure 1-8 illustrates two typical examples of the use of SAR interferometry for landslide 
monitoring. (Casagli et al., 2006) detail one of the first operational applications of GB-InSAR. 
The GB-InSAR system was placed at an average distance of 1800 m from the monitored slope 
and operated for a short period of 5 days. This allowed to follow the evolution of an entire 
rockslide at a great level of detail (Figure 1-8a) and to prepare warning scenarios for the local 
administration. More recently, it has been demonstrated that continuous measurements can be 
extended over periods of several weeks to years (Herrera et al., 2009; Casagli et al., 2010). 
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Since LOS displacement maps can be obtained in near-real time, the integration into EWS is 
becoming more and more common (e.g. Intrieri et al., 2012). In general, GB-InSAR is a very 
versatile technique and limitations such as the LOS geometry and high costs of the system are 
often outweighed by the high accuracy and resolution of the measurements. Compared to 
spaceborne SAR techniques GB-InSAR is much more robust to temporal decorrelation and 
measurements even with permanent snow cover have been reported (Casagli et al., 2010). 
 

 
Figure 1-8: LOS displacement rates derived from (a) GB-InSAR at the Monte Beni (modified after 
Casagli et al., 2006) and, (b) Advanced InSAR (PS-InSAR with ENVISAT times series) at Santo 
Stefano d’Aveto landslide (modified after Tofani et al., 2013a) 
 
Several further techniques such as airborne and space-borne SP can provide 1D 
measurements (through DEM differencing), whereas spaceborne interferometry is today 
probably the most commonly used technique in this context. Classical and Advanced DInSAR 
start to bridge the gap between classical mono-date inventory maps and continuous 
monitoring allowing not only inferring different activity states but also providing spatially 
distributed quantitative information on the displacement (Figure 1-8b). The LOS nature of the 
measurement and reduced resolution on slopes facing away from the satellite can be 
overcome to some extent by combining ascending and descending orbits. The great 
advantage of spaceborne DInSAR is the combination of high accuracy and large spatial 
coverage. However, several limitations should be kept in mind. First, due to the geometry of 
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the radar images, not all parts of the slopes are captured and in mountainous terrain the 
coverage does often not exceed about third of all known landslides (Cascini et al., 2009, 
2010; Righini et al., 2011). Second, some advanced techniques inherently assume a linear 
displacement model and therefore systematically underestimate displacement exceeding one 
quarter of the microwave wavelength (Tofani et al., 2013a). This issue has also been 
illustrated in a remarkable benchmark study on the monitoring of non-linear deformation 
associated with mining activities by testing different PS-InSAR approaches (Raucoules et al., 
2009).  

The launch of the first satellite in the Sentinel series is now foreseen for spring 2014 
(ESA, 2013) and will provide free access to C-band SAR  data at repeat pass cycles of 12 
days (6 days with two satellites). Such short time intervals will yield ideal conditions for 
interferometric LOS measurements with millimetre accuracy (Rohmer and Raucoules, 2012; 
Rucci et al., 2012) but also pose new challenges in terms of data volume that will require 
advanced infrastructure for efficient processing and possibly new tools for the analysis of the 
derived displacement fields (e.g. Julea et al., 2011). 

 Long-term measurement of 2D displacements 1.5.2
While 2D displacement fields have been derived with terrestrial DIC techniques (Travelletti 
et al., 2012) and through analyses of derivates of ALS/TLS point clouds (Daehne et al., 2011), 
the most commonly used sources for input data are currently airborne (Figure 1-9a) 
spaceborne optical (Figure 1-9b) and SAR amplitude images. For long-term observations, 
archives of airborne photographs can be exploited and allowed for example the reconstruction 
of the historical evolution of La Clapière landslides  over several decades (e.g. Casson et al., 
2005). This provided quantitative insights in the evolution of the slope and the derive 
displacement fields can also be exploited to derive further physical parameters on strain, 
geometry and rheology of a moving mass (Booth et al., 2013).  Also (Mackey et al., 2009) 
exploited time series of aerial photographs and reconstructed the movement of an active 
landslide over a period of more than 40 years. To measure of present day landslide 
displacement at shorter time intervals several case studies have explored the use of VHR 
satellite images (Delacourt et al., 2004; Debella-Gilo and Kääb, 2012) but only from bi-
temporal datasets and with metre accuracies. The need for GCPs is commonly considered as 
a bottleneck for the construction of longer time series from VHR satellites and only recently 
it has been demonstrated in  (Stumpf et al., Submitted) that decimetre accuracy can be 
achieved without ground control (Figure 1-9b). 

Currently operational VHR satellites have similar resolution, radiometric 
characteristics and sensor models. Combining optical images from airborne platforms and 
different satellite platforms could significantly enhance the currently rather limited temporal 
resolution. Available software solutions for aero-triangulation, stereo-photogrammetry and 
ortho-rectification are highly specialized and not designed to easily combine images from 
different platforms. Further development is needed in this context to establish end-to-end 
processing chains that enable to exploit archived datasets and increasing the increasing 
amount of daily incoming data flows (e.g. CNES 4 satellite constellation comprising Pleiades 
1A/1B and SPOT 6/7). The upcoming Sentinel-2 will provide images at a maximum 
resolution of 10 m which could be exploited for measurements of displacement rates above 1 
m. Since the instrument yields publicly available data with favourable radiometric and 
geometric accuracies at no costs it's the applicability of DIC techniques should be exploited. 
Also terrestrial DIC with optical images is generally sensitive to weather conditions but 
provides significantly higher temporal and spatial resolution than space- and airborne systems, 
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and therefore a better possible integration with other physical parameters measured in-situ. 
For qualitative monitoring of displacement patterns, a single monoscopic camera can be used 
(Travelletti et al., 2012). To alleviate the requirement of an external DEM, stereo-camera 
setups frequently used in experimental mechanics are currently being installed operationally 
on several landslides (Gance et al., In Press). 
 

 
 
Figure 1-9: 2-D displacement fields for (a) the Clapière landslide derived from ortho-rectified 
airborne photographs (modified after Booth et al., 2013) and (b) the La Valette landslide derived from 
ortho-rectified Pleiades images. 
 

 Long-term measurement of 3D displacements and volume changes 1.5.3
The currently most commonly applied remote sensing techniques capable of capturing all 
three components of the movement are based on LiDAR acquisitions (in particular TLS). The 
measurements are usually based on point-cloud matching and several case studies have 
demonstrated centimetre (in some cases even millimetre) accuracy for different types of 
landslides (Teza et al., 2007; Monserrat and Crosetto, 2008; Oppikofer et al., 2008; 
Travelletti et al., 2008; Abellán et al., 2009; Oppikofer et al., 2009). However, point-
matching algorithms depend on the preservation of rigid features among point-clouds from 
different dates. Several algorithms to address this issue have been recently proposed (Wu et 
al., 2012; Ghuffar et al., 2013; Travelletti et al., In Review) and should be further evaluated in 
case studies to fully exploit the 3D information contained in very dense point clouds. Figure 
1-10b provides an example of innovative 3D displacement measurements obtained from the 
analysis of derivates (depth map) of very dense point clouds acquired by TLS.  

First results regarding the measurement of 3D landslide displacement from space 
(through the correlation of amplitude images) have been presented in Raucoules et al. (2013) 
and are encouraging in terms of accuracy and spatial coverage (Figure 1-10a). The analysed 
dataset, originated from a specifically scheduled acquisition campaign of TerraSAR-X 
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scenes, allowed a very short time lag between ascending and descending orbits. Sentinel-
1will have a time-lag between ascending and descending orbits of approximately 12 days. 
While it has been argued in Rucci et al. (2012) that the azimuth resolution of Sentinel-1 will 
be to coarse for 3D measurements, (Jung et al., 2013) provided evidence that decimetre 
accuracy in the azimuth direction is possible. 
 

 
Figure 1-10: 3D-displacement fields derived from (a) correlation of TerraSAR-X amplitude image at 
the La Valette landslide (modified after Raucoules et al., 2013) and  (b) correlation of depth maps 
derived from multi-temporal terrestrial LiDAR derived at the toe of the Super-Sauze landslide 
(modified after Travelletti et al., In Review). 
 
Total stations are standardized and accurate instruments for measurements of 3D 
displacements and volumes. Recent enhancements lead to a new generation of robotized total 
stations that can provide quick point-wise 3D measurements without the need of reflectors at 
the surface. A largely automated tracking of natural 3D points (no prism reflectors) is 
currently not possible but dedicated prototypes are being developed (Reiterer et al., 2009). 
 
Measurements of volumes can be accomplished with a wide range of techniques including 
spaceborne SP (e.g. Tsutsui et al., 2007; Martha et al., 2010b), airborne SP (e.g. Kerle, 2002; 
Dewitte et al., 2008), and terrestrial SP and TLS (e.g. Chen et al., 2006; Baldo et al., 2009; 
James and Robson, 2012; Stumpf et al., In Review-a). Currently, TLS (Figure 1-10b,Figure 
1-11a) and terrestrial SP (Figure 1-11a) are the most interesting techniques for the 
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quantification of sediment budget since they allow a temporal resolution of up to a few days 
and are generally more accurate than space- and airborne techniques. Sediment budgets with 
high temporal frequency are especially important to establish magnitude-frequency laws for 
rockfall events (Barlow et al., 2012; Rosser et al., 2013) which can be used for probabilistic 
forecasts. 
  

 
 
Figure 1-11: Exemplary results of techniques with 3D measurement capabilities. (a) 3-D displacement 
maps and volume estimates for a collapse at the Eiger massive derived from multi-temporal terrestrial 
LiDAR scans (modified after Oppikofer et al., 2008), and (b) surface changes and volume estimation 
for the main scarp of the Super-Sauze landslide based on multi-temporal terrestrial photogrammetry. 
 

 Surface and subsurface features 1.5.4
Beside quantitative measurements of surface displacements and volumes, remote sensing 
images also convey a large amount of qualitative information such as the presence and 
evolution of surface fissures, and compression lobes on clayey slopes or fractures and dipping 
planes on rock slopes. While in practice such qualitative parameters are difficult to integrate 
into threshold-based EWS and real-time monitoring, they are important for a better 
understanding of the underlying mechanical processes. It is for example still difficult to 
derive quantitative information from coincidental video recordings of debris flows but they 
provide unique documents that help to understand natural processes which otherwise can only 
be studied with dedicated experiments. Other examples include the mapping an interpretation 
of surface fissures in VHR optical images (Figure 1-12a) for which also semi-automatic 
approaches have been suggested (Stumpf et al., 2013b), and the structural analysis of high-
resolution LiDAR DTMs (Figure 1-12b) for which dedicated software tools have been 
developed (Jaboyedoff et al., 2009). Airborne geophysics (Figure 1-12c) is still a rather new 
technique for the investigation of landslides and unique regarding the possibility to obtain 
information about the subsurface and technique can provide valuable information about the 
depth and structure of the moving mass (Baroň et al., 2013; Supper et al., 2013). Further case 
studies are required to explore its potential for repeated surveys and the landslide research 
community can certainly learn a lot from previous experiences in fields such as agriculture 
(George and Woodgate, 2002) and hydrogeological studies (Paine and Minty, 2005). 
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Figure 1-12: (a) Example for the semi-automatic detection of surface fissures in UAV images 
(modified after Stumpf et al., 2013b), (b) the visual interpretation of a high-resolution Airborne 
LiDAR DTM to locate superficial and deep-seated discontinuities (modified after Travelletti et al., 
2013) and (c) subsurface resistivity derived from and airborne geophysical surveys (modified after 
Supper et al., 2013). 
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 Conclusion	1.6
 
In this work, we reviewed the current state-of-the-art of remote sensing techniques for 
landslide monitoring and developed a catalogue of criteria that can be adopted as guidelines 
to select the most appropriate techniques in different monitoring scenarios. The catalogue 
includes several technological aspects such as spatial coverage, temporal resolution, 
measurement accuracy and costs, but also their suitability for different landslide types, 
displacement rates and targeted scale of a study. The different types of information that can 
be expected from different techniques have been illustrated with a number of selected 
examples. The fact that different techniques can yield very different types of information 
often suggests a complementary use of techniques, especially when the same type of input 
data can be exploited (e.g. interferometry applied on SAR phase values, and DIC applied on 
amplitude values). 

Despite the diversity of the evaluated techniques, a few general conclusions can be 
drawn. For the use of remote sensing in EWS, there are currently only few techniques (Total 
Station, GB-InSAR, terrestrial stereo-photogrammetry only at daylight) which are 
sufficiently fast, accurate and robust to be useful. For other options, such as LiDAR or 
spaceborne techniques it is still necessary to increase the temporal resolution by at least one 
order of magnitude, which cannot be expected at reasonable costs in the near future. In any 
case, remote sensing techniques should rather be regarded as a supplementary tool in EWS to 
obtain spatially distributed information complementing point-wise in-situ measurements. 

All reviewed techniques have significantly advanced in the last decade and are very 
valuable for long-term observations that improve both decision making and scientific 
understanding. Due to the greater variety of available remote sensing systems, the access and 
acquisition is now less problematic but at the same time the development of automated 
analysis techniques and standardized products and services is becoming more challenging. 
While some advanced InSAR techniques already provide capabilities to process large 
datasets, time-series analysis of multi-sensor optical data, for example, is still associated with 
significant manual intervention. Also the size of datasets resulting from VHR optical satellite 
or high-resolution LiDAR surveys reaches, in many cases, already the limit of commercial 
and public domain software and often requires to subset or downsample the original dataset. 
To resolve such issues, a closer collaboration of the landslide research community with 
computer scientists has to be envisaged. Open-source based initiatives like the Orfeo Toolbox 
(OTB Development Team, 2013) for the development of automated image analysis tools 
seem a promising approach in this direction. 

Several remote sensing techniques can provide full 3D information about volumes 
and in principle many further parameters such as strain, geometry and rheology can be 
derived from such type of information. Recent studies (Booth et al., 2013; Travelletti et al., 
2013) are taking first steps towards the inversion of mechanical parameters from remotely 
sensed displacement and further integration of remote sensing and landslide modelling is 
desirable to fully exploit the acquired data. 

Many of the criteria evaluated in this review are linked to technological aspects of 
currently available sensors, platforms and analysis algorithms which change quickly as 
technology evolves. An overview of the main evaluated criteria and additional information 
regarding available systems, data providers, research institutions, private companies and new 
case studies should therefore be established and maintained to provide up-to-date criteria for 
operational and scientific landslide monitoring. 
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2. Chapter	 2:	 Very	 High	 Resolution	 optical	
satellite	images	for	landslide	mapping	at	the	
regional	scale	
 

 
 

 

Objectives: Rapid landslide inventory mapping after major triggering events is essential 
for immediate disaster response and the assessment of future hazards. It is a tedious and 
time-consuming task if approached with filed work and manual image interpretation and 
still poses great challenges for automatic image analysis. The objective of this chapter is 
the development and validation of accurate and robust image processing chains to 
facilitate rapid landslide mapping with VHR optical satellite images at the regional scale. 
Considering the great diversity of landslide types, environmental settings and image 
sources, the domain-specific objectives are: 

 The development of a generic image processing method for rapid and accurate 
mapping of landslides after major triggering events; 

 The quantification of uncertainties in the mapping; 
 The assessment of time requirements for the use of the image processing chain. 

For the implementation of the image processing chain, our research targets as much as 
possible the use of universal landslide features, and the provision of automated tools for 
the reduction of manual labor. More specifically, the technical objectives are: 

 The design of relevant objet-based image features combining spectral, shape, 
textural and topographic information; 

 The proposition of a framework to rank and select relevant features based on 
labeled examples; 

 The development of stratified and Active Learning (AL) sampling schemes that 
accounts for class-imbalance and reduces the need for training data. 

 
Methods: A combination of image segmentation, feature extraction, feature selection and 
machine learning techniques is employed to implement the processing chain. The Random 
Forest (RF) algorithm is adopted as a base algorithm and dedicated stratified- and AL 
sampling schemes are developed to address class-imbalance and the reduction of required 
training data, respectively. The AL algorithm combines criteria for sample diversity to 
select the most beneficial sampling areas and a statistical analysis of spatial auto-
correlation is considered to optimize the size of the sampling area. 

This chapter is based on: 
 
• Stumpf, A., Kerle, N., 2011. Object-oriented mapping of landslides using Random 

Forests. Remote Sensing of Environment 115, 2564–2577. 
 
• Stumpf, A., Lachiche, N., Malet, J.-P., Kerle, N., Puissant, A., In Press. Active learning 

in the spatial domain for remote sensing image classification. IEEE Transactions on 
Geoscience and Remote Sensing, 16 pages, 10.1109/TGRS.2013.2262052. 
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 Landslide	mapping	at	regional	scales:	user	requirements	2.1
 
Landslide inventory maps should depict the location, the type and ideally also the timing of 
slope failures. They are typically prepared from different sources (images, field work) to 
characterize the affected areas, and to initiate hazard assessment. The spatial and temporal 
patterns of landslides are also studied to quantify long-term evolution of slope movements in 
mountainous landscapes, and underline relationships to tectonic and hydro-climatic processes 
(Guzzetti et al., 2012). Visual image interpretation and field surveys are the prevailing 
methods for inventory mapping but require several months or even years of manual labour. 
Semi-automatic image analysis methods have been proposed but are not frequently used in 
practice since their quality generally lacks behind expert mappings (Guzzetti et al., 2012). 

No common standards for the preparation of landslide inventory have been 
established yet (Guzzetti et al., 2012) which is probably related to the fact that different 
applications require different types of information.  

Firstly, for analysing the spatial distribution of landslides and its relation to triggering 
factors (abundant rainfall, snowmelt or fault rupture processes), knowledge on the location 
and size of landslides is typically sufficient (e.g. Guzzetti et al., 2002; Harp et al., 2010; 
Gorum et al., 2013). Reliable volume measurements over large areas are generally difficult 
but approximations can be derived from empirical relationships between area and volume 
(Parker et al., 2011). 

Secondly, for characterizing landslide damages after severe triggering events and in 
the case of disasters, it is important to provide immediate information of the location and 
extent of the affected areas rather than a detailed characterization of the phenomena. 

Thirdly, for landslide hazard analysis, detailed information on landslide types and on 
landslide sub-units (source area, run out area) is necessary for proper assessments (Fell et al., 
2008; Van Den Eeckhaut and Hervás, 2012).  

Lastly, large disagreements in the mappings are generally observed among experts 
both in terms of total landslide affected areas (Carrara, 1993; Ardizzone et al., 2002; Galli et 
al., 2008; Fiorucci et al., 2011) and in terms of landslide classification. Such disagreements 
have to be critically quantified to ensure reproducible results, and provide measures of the 
uncertainties. 

Considering the absence of established map standards, the immediate need for maps 
of affected areas, and the unknown degree of uncertainty in the differentiation of landslide 
types, the mapping of landslides is treated here as a binary problem (i.e. an area is affected by 
a landslide or not). 

The domain-specific objectives of this chapter are: 
 The development of a generic image processing method for rapid and accurate 

mapping of landslides after major triggering events; 
 The quantification of uncertainties in the mapping; 
 The assessment of time requirements for the use of the image processing chain. 

The processing chain is developed and tested on different mountain environments 
recently affected by landslides of different type and size and triggered by different causes 
(large earthquakes, intense rainstorms). The selected study cases are depicted in Figure 2-1. 
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Figure 2-1: Location and key dates for the events/sites investigated in chapter 2. The base map 
displays the distribution of fatal landslides (black dots) between 2003 and 2010 (Petley, 2012). 
 

 Classification	 of	 optical	 imagery	 for	 landslide	mapping:	2.2
current	limitations	

 
VHR satellite and aerial images convey rich spectral, textural and contextual information 
about objects on the ground. An important indicator of landslide occurrence in a landscape is 
the disturbance or removal of vegetation and the exposure of bare soils; however, other 
features regarding the morphology of the surface and the spatial context are typically required 
for an accurate identification.  

Classical per-pixel classifiers based on spectral values are not suitable to exploit the 
rich geometric information conveyed in VHR images. Furthermore, the intra-class variability 
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of spectral values augments and interclass variability reduces with increasing spatial 
resolution leading to deteriorating class separability if only pixel values are considered 
(Bruzzone and Carlin, 2006) 
To better exploit spatial and contextual information, sequential image processing by 
segmentation, feature extraction and classification was proposed by Kettig and Landgrebe 
(1976) and has strongly evolved in recent years under the name Object-Based Image Analysis 
(OBIA), (Blaschke, 2010). Several studies have addressed the use of OBIA for landslide 
investigations and employed heuristic methods to translate expert knowledge into machine 
executable rule sets (Barlow et al., 2006; Martha et al., 2010a; Martha et al., 2011; Martha et 
al., 2012; Lacroix et al., 2013). Advantages of such rule-based approaches are the possibility 
to benefit from domain knowledge of geoscientists, efficient execution of rule sets, and a high 
degree of transparency since most rules are formulated explicitly. Considering the great 
diversity of landslide types, environmental conditions and image types, it is, however, hard to 
generate rule sets that generalize to all possible situations, and the elaborated rule sets still 
strongly depend on the subjective judgment of the operator. OBIA allows the extraction of 
hundreds of image features (spectral values, gradients, shapes, spatial relationships, 
hierarchical representations, topographic variables, etc.) and even for trained experts it is 
general difficult to select and prioritize features and arrange rules in such a high dimensional 
space. 

Early research in Artificial Intelligence (AI) in the 1960s put great expectation in the 
development of rule-based systems that imitate human problem-solving protocols. Such 
systems can find solutions to constrained and well-structured problems but it has been 
realized that “When information extraction must be attempted from noisy or varied input …. 
It is too hard to get all the rules and their priorities right; it is better to use a probabilistic 
model rather than a rule-based model”(Russell and Norvig, 2009). 

Machine learning offers a wide range of generic probabilistic and discriminative 
models to learn complex concepts from labelled data automatically and thereby overcomes 
many limitations of rule-based systems. In our work, the Random Forest (RF) algorithm 
(Breiman, 2001) is adopted as a generic classifier which requires very little tuning of free 
parameters and provides inherent measures to rank the importance of the input features. The 
classification accuracy achieved with this algorithm depends on several factors such as the 
representation of data in the feature space, class-overlap and class-imbalance (He and Garcia, 
2009) as well as representativeness of available training data. 

Considering these issues, the specific technical objectives of this chapter are: 
 The design of relevant objet-based image features combining spectral, shape, textural 

and topographic information; 
 The proposition of a framework to rank and select relevant features based on labelled 

examples; 
 The development of stratified and Active Learning (AL) sampling schemes that 

accounts for class-imbalance and reduces the need for training data. 
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 Object‐oriented	mapping	 of	 landslides	 from	VHR	 optical	2.3
imagery	using	Random	Forests	
 

 
 
This section describes the development of a generic supervised image processing chain for 
landslide mapping from VHR satellite and aerial images in combination with topographic 
data. Algorithms for image segmentation, feature extraction, feature selection and supervised 
learning are adapted and combined in a processing chain. The developed technique is applied 
and validated at different study sites. Relationships between the segmentation scale, the 
importance of different object features and the accuracy of the resulting maps are studied in 
detail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This section is based on: Stumpf, A., Kerle, N., 2011. Object-oriented mapping of 
landslides using Random Forests. Remote Sensing of Environment 115, 2564–2577. 
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1. Introduction

During the last century (1903–2004) approximately 16,000 people
were killed by landslides in Europe (Nadim et al., 2006), while in other
parts of the world even single events can have comparable
dimensions (20,000 in Peru, 1970, 29,000 in China, 2008)(Kjekstad
& Highland, 2009; Petley, 2009). The mean annual costs of landslides
in Italy, Austria, Switzerland and France are estimated between USD
1–5 billion for each of the countries (Kjekstad & Highland, 2009). The
assessment of associated risks, a prerequisite for disastermitigation, is
still a difficult task, with comprehensive landslide inventories being
the most commonly used source for quantitative landslide hazard and
risk assessment at regional scales (van Westen et al., 2006).

Landslide inventories have traditionally been prepared combining
the visual interpretation of aerial photographs and field work, which
to date remains the most frequently followed approach for the
elaboration of inventory maps in scientific studies and by adminis-
trative bodies (Hervás & Bobrowsky, 2009). Despite its time-
consuming and labor intensive nature, however, results still include
a large degree of subjectivity (Galli et al., 2008), and incur the risk of
omissions due to limited site access or aerial survey campaigns only
being mounted with some delay, when landslide traces are starting to
disappear.

Notable advances are being made in the detection of surface-
displacements from active (e.g. Cascini et al., 2010) and passive (e.g.
Debella-Gilo & Kääb, 2011) spaceborne sensors, allowing for detailed
monitoring of ground-deformations. Those techniques depend on a
coherent signal over time and are applicable for the mapping of slow
to extremely slow moving landslides (b13 m/month after Cruden &
Varnes, 1996) with a sparse vegetation cover. For the automated
mapping of dormant landslides under forest high-resolution surface
models from airborne laser scans provide new opportunities (e.g.
Booth et al., 2009). However, most hazardous landslides reach
considerable velocities and can typically only be mapped in a post-
failure stage, for which optical airborne and satellite images are the
commonly chosen data sources. Large events with thousands of
individual landslides such as recently in China (earthquake, 2008),

http://dx.doi.org/10.1016/j.rse.2011.05.013
mailto:stumpf24883@itc.nl
mailto:kerle@itc.nl
http://dx.doi.org/10.1016/j.rse.2011.05.013
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Haiti (earthquake, 2010) and Brazil (rainfall, 2011) illustrate the
immense challenges posed for any non-automated mapping
approach.

The large fleet of existing and planned very high resolution (VHR)
satellites allows to record inexpensive imagery within days or even
hours after a given landslide event, and a number of studies have
already addressed the development of more automatic techniques for
landslide mapping with VHR images (Barlow et al., 2006; Borghuis
et al., 2007; Hervás & Rosin, 1996; Joyce et al., 2008; Lu et al., 2011;
Martha et al., 2010; Nichol &Wong, 2005; Rau et al., 2007;Whitworth
et al., 2005). Most of them targeted themapping of fresh features after
rapid slope failures, but a few works also demonstrated the potential
of optical data for the identification of slow-moving and dormant
landslides (Hervás & Rosin, 1996; Whitworth et al., 2005).

Proposed approaches may be generally classed into pixel-based
and object-based techniques, both including methods for the analysis
of monotemporal and multitemporal imagery, and often making use
of ancillary datasets such as digital elevation models (DEMs). Pixel-
based approaches include unsupervised (Borghuis et al., 2007) and
supervised classification (Joyce et al., 2008), as well as change
detection techniques (Hervás et al., 2003; Nichol & Wong, 2005;
Rau et al., 2007). Although those techniques consider to some extent
additional geometric constrains, such as minimum size, minimum
slope or non-rectangular shapes, they rely mainly on the spectral
signal of individual pixels. To exploit better the information content of
local pixel neighborhoods, Hervás and Rosin (1996) conducted a
systematic statistical evaluation of texture measures for landslide
mapping and found texture features after Haralick et al. (1973)
especially useful to highlight hummocky surfaces often associated
with landslides. Similarly, more recent studies concluded that the
integration of texture improves the image classification andmay yield
more accurate maps (Carr & Rathje, 2008; Whitworth et al., 2005).

In general there is an emerging agreement in the remote sensing
community that unsatisfactory results of per-pixel analysis can often
be attributed to the fact that geometric and contextual information
contained in the image is largely neglected (e.g. Blaschke, 2010). This
is especially true at higher resolutions, with a higher spectral variance
leading to increased intra-class variability and typically lower
classification accuracies (Woodcock & Strahler, 1987). Further
challenges arise due to the typically lower number of spectral bands
of modern VHR sensors and a higher sensitivity to co-registration
errors at higher resolutions. To address such issues object-oriented
analysis (OOA), also often referred to as object-based image analysis
(OBIA), became a widely spread concept for many geoscientific
studies to exploit geometric and contextual image information of
multi-source data (Blaschke, 2010).

Image segmentation and classification resemble human cognition
to some degree and have inspired a number of researchers to transfer
existing knowledge in machine executable rule sets. Such rule sets
have already been used for landslide mapping as a self-contained
classification scheme (Barlow et al., 2003), prior to supervised
classification (Barlow et al., 2006), for the post-processing of pixel-
based classification (Danneels et al., 2007), and for change detection
with multi-temporal images (Lu et al., 2011). Martha et al. (2010)
emphasized the importance of exploiting a range of features as widely
as possible, and developed a complex set of decision rules, including
36 particular thresholds, to detect and classify landslides of 5 different
types in the High Himalayas.

Expert rule sets are a very transparent solution for the exploitation
of domain knowledge but comprise two main limitations: (i) the
difficulty to decide which descriptive features are actually significant,
and (ii) their restricted generic applicability for different input data
types and under variable environmental conditions. Professional OOA
software solutions readily provide hundreds of potentially useful
object metrics, and further customized features enrich this great
variety. They allow the user high flexibility in setting up efficient
- 58 
automated processes, but the selection of significant features remains
a challenging and time-consuming task.

Feature selection in high-dimensional datasets is an important
task in many fields such as bioinformatics (Saeys et al., 2007) or
hyperspectral remote sensing (e.g. Guo et al., 2008), and typically
targets a better performance of the algorithm classifying the data and/
or the investigation of causal relationships. A few object-oriented
studies already addressed statistical feature selection for land cover
mapping from VHR imagery (e.g. Laliberte & Rango, 2009; Van Coillie
et al., 2007), but no such efforts have been in the context of landslide
mapping. Little is known about the robustness, efficiency, scale-
dependency and generic applicability of the object-features and
thresholds proposed in individual studies. Considering the great
variety of landslide types, environmental conditions and available
imagery this largely prevents the transferability of proposed methods
and the development of operational workflows.

Machine learning algorithms, such as Random Forests (RF, Breiman,
2001), have demonstrated excellent performance for the analyses of
many complex remote sensing datasets (Gislason et al., 2006; Lawrence
et al., 2006;Watts et al., 2009). RF is based on ensembles of classification
trees and exhibits many desirable properties, such as high accuracy,
robustness against over-fitting the training data, and integrated
measures of variable importance (Diaz-Uriarte & Alvarez de Andres,
2006). However, like many other statistical learning techniques RF is
bias-prone in situations where the number of instances is distributed
unequally among the classes of interest. Under class-imbalance in fact
most classifiers tend to be biased in favor of the majority class, and vice
versamay underestimate the number of cases belonging to theminority
class (He & Garcia, 2009). Experiments on synthetic datasets suggest
that such biases are combined effects of class imbalance and an overlap
of the classes in feature space (e.g. Denil & Trappenberg, 2010). As
landslides typically cover only minor fractions of a given area, class-
imbalance is an inherent issue that affects the probabilistic assessments
of slope susceptibility (Van Den Eeckhaut et al., 2006), and may
complicate the application of machine learning algorithms for image-
based inventory mapping.

The objective of this study was to investigate the applicability and
performance of the RF learning algorithm in combination with OOA to
reduce the manual labor in landslide inventory mapping with VHR
images. Assuming that a sample-based framework combining both
techniques could be a flexible and efficient solution for many real-
world scenarios, VHR imagery recorded by state-of-the-art systems
(Geoeye-1, IKONOS, Quickbird, and airborne) at four different sites
was analyzed. To achieve an accurate and robust image classification it
was of particular interest to determine which image object metrics
efficiently distinguish landslide and non-landslide areas. Training and
testing samples were derived from existing landslide inventories, and
a RF-based feature selection method (Diaz-Uriarte & Alvarez de
Andres, 2006) was adopted to evaluate the capability of a broad set of
object metrics (color, texture, shape, topography) and their sensitivity
to changing scales of the image segmentation. Class-imbalance and
-overlap were expected to be critical points for the application of the
RF, and we further investigated if an iterative resampling scheme
could be used to design training sets that lead to a balance between
commission and omission errors. The efficiency of this approach was
evaluated at each test site with different segmentation scales and in
scenarios where 20% of the image objects would be available for
training.

2. Study sites and data

VHR images collected in the immediate aftermath of two recent
major earthquakes, as well as from two sites affected by non-seismic
landslides, were used in this study (Table 1). The areas are
characterized by a great diversity of environmental settings, landslide
processes and image acquisition conditions, and in this manner
-



Table 1
Overview of analyzed images and topographic data.

Test site Haiti Wenchuan Messina Barcelonnette

Sensor Geoeye-1 IKONOS Quickbird Aerial photograph
Spectral bands 4-band multispectral 4-band multispectral 4-band multispectral 3-band natural Color
Pixel size (multispectral/panchromatic) [m] 2/0.5 4/1 2.4/0.61 0.5/–
Sensor Tilt [°] 2.7 15.7 3.1 n.a.
Nominal collection azimuth [°] 343.8 62.7 343.3 n.a
Solar zenith angle [°] 45.6 19.2 45.6 –

Sun angle azimuth [°] 150.2 119.3 161.7 –

Date (days after the event) 13/01/2010 (1) 23/05/2008 (11) 10/8/2009 (8) 07/2004 (n.a.)
Test area [km²] 1 4 1 1
landslide affected areas [%] 9.6 15.1 19.6 8.7
DEM resolution (Source resolution) 10 m (1 m LiDAR DSM) 10 m (20 m contour lines) 10 m (1 m LiDAR DSM) 10 m (1 m IFSAR DSM)
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simulate realistic test cases with imagery that is typically available
shortly after major events.

2.1. Test site 1: Momance River — Haiti

On January 12, 2010 an earthquake with a moment magnitude of
7.0 struck Haiti. It was caused by the rupture of a previously unknown
system of a blind thrust fault (Hayes et al., 2010) and claimed
approximately 230,000 victims. Landslides caused extensive yet
unquantified damage at several locations (Eberhard et al., 2010),
and an increased frequency of slope failures and debris flows can be
expected during future rainfall events. The study site is located at the
Enriquillo fault line, which forms a tectogenetic valley followed by the
Momance River. The slopes are between 20 to 50° steep and show a
large number of shallow debris and rock slides. Most of the gentler
terrain sections are under agricultural use by hundreds of scattered
family farms. Due to erosion bare soils are exposed at several
locations, and the valley bottom is covered by fluvial gravel bars
and fresh landslide deposits. Geoeye-1 imagery was recorded one day
after the event.

2.2. Test site 2: Wenchuan town — China

The rupture of the Longmenshan fault system on May 12, 2008
(ML=8.0) triggered more than 60,000 individual slope failures
(Gorum et al., in press), and approximately 30,000 of the 80,000
casualties can be attributed to the impact of landslides (Tang et al.,
2010). The county capital, Wenchuan town, is located on both sides of
the Min River at 1330 m.a.s.l. and is surrounded by steep terrain with
average slopes of approximately 30°. The town and its surroundings
were seriously affected by a large number of mainly shallow
translational landslides, which are concentrated on the steepest
slopes in proximity to the drainage lines. Already before the event
those terrain units were rather sparsely vegetated and showed
bedrock outcrops at several locations. The main land cover types are
degraded mountain forest and terraced field crops, which extend to
slopes of up to 35°. Because the harvest was underway at the time of
the initial rupture, many fields were barren and showed similar
spectral characteristics as newly triggered landslides. IKONOS
imagery was acquired 11 days after the main shock.

2.3. Test site 3: Messina — Italy

On the 1st of October 2009 a series of debris flows struck several
catchments a few kilometers south of the city of Messina/Sicily. The
debris flows were triggered by extraordinarily intense rainfall in the
afternoon of that day, which had been preceded by prolonged intense
rainfall at the end of September. Thirty-one people were killed during
the event and the direct economic loss was estimated as almost US$
825 million (Civil-Protection-Sicily, 2010). The affected area com-
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prises ten small and medium size catchments that rise from sea level
to about 700 m in the Peloritani Mountains. The present land cover
types comprise bare ground, crop-, shrub- and grassland, deciduous
forest and rural built-up areas. Most of the landslides were initiated as
shallow debris flows or slides at the upper slopes, and evolved into
rapid hyper-concentrated flows along their way through the drainage
network. The Quickbird imagery was recorded 7 days after the event.

2.4. Test site 4: Barcelonnette Basin — France

The Barcelonnette Basin is located in the South French Alps and
characterized by a mountain climate with Mediterranean influence.
The area is known for the large number of slow-moving active
landslides, and in the present study a small subset comprising the
Super Sauze active slow-moving mudslide (Malet, 2003) was
examined. The task here was mainly to distinguish the landslide
body from the surrounding badlands, and since the affected area is
one compact object this rather corresponds to an image segmentation
task. The available imagery is a natural color aerial photograph
recorded in summer 2004.

2.5. Landslide inventories

The reference inventories for Wenchuan, Messina and Barcelonn-
ette are based on field work and visual interpretation of aerial
photographs as well as VHR satellite imagery. As detailed field
investigations of the earthquake-induced landslides in Haiti have not
yet been completed, the corresponding inventory is based on the
interpretation of remote sensing products only. To minimize the risk
of miss-mapping we considered pre-and post-event VHR satellite
imagery from multiple sensors (IKONOS, Geoeye-1, WorldView-2)
and a post-event LiDAR DEM for the manual delineation of affected
areas.

3. Methods

At each test site we selected subsets (Fig. 1) that include landslides
and spectrally similar objects, such as river plains, urban areas, roads,
badlands and barren fields. A scalable segmentation algorithm
(Section 3.1) was applied on the images from each area, and a
comprehensive set of object metrics was calculated (Section 3.2).
These processing steps (Fig. 2 a) were performed with eCognition®
software, which implements nearest neighbor interpolation to
resample coarser image layers to the resolution of the finer
panchromatic layers. Subsequent to segmentation and metric calcu-
lation the landslide inventories compiled from field work and visual
image interpretation (Section 2.5) were used to create a sample
database with all objects assigned either as landslide objects (OLS) or
non-landslide objects (ONLS, Fig. 2 b). Each image object containing at
least 50% of landslide-affected area was labeled as OLS, and all others
-



Fig. 1. Analyzed areas at the different test sites. a) Momance River, Haiti (Momance river in blue), b) Wenchuan, China (Min River in blue), c) Messina, Italy, d) Barcelonnette basin,
France. White outlines indicate the landslide areas.
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as ONLS. Such a majority criterion was considered as the most logical
choice because it minimizes the overall amount of miss-labeled areas,
while retaining also marginal cases that may provide useful
information for the classifier training. To evaluate a comprehensive
set of object metrics (Table 2) for the discrimination of landslides and
unaffected areas, all OLS and an equally sized random sample of ONLS,
were used at all test sites and scales, respectively. They were
introduced in the RF-based approach for feature evaluation and
reduction (Fig. 2 c) proposed by Diaz-Uriarte and Alvarez de Andres
(2006), and described in greater detail in Section 3.3.1.

Non-relevant features were subsequently removed and the data
were split into training and testing sets (Fig. 2 d1). To account for
spurious effects of class-imbalance and class-overlap, an iterative
scheme for the adjustment of the training set was developed and
tested (Fig. 2 d2, Section 3.3.2.). The classification accuracy of the
approachwas finally assessed on a test set comprising 80% of all image
objects (Fig. 2 d3).

3.1. Image segmentation

Image segmentation generates the building blocks of OOA, and the
delineation quality of the target objects has a direct influence on the
accuracy of the subsequent image classification. Numerous image
segmentation algorithms have been developed in the last decades and
applied in remote sensing image analysis (Dey et al., 2010), all of them
aiming at the delineation of relatively homogeneous and meaningful
segments.

The multi-resolution image segmentation (MRIS) implemented in
eCognition® software is a frequently used algorithm in Earth science
- 60 
studies (Blaschke, 2010). MRIS is a region-growing segmentation
algorithmwhich, starting from individual pixels, merges themost similar
adjacent regions, as long as the internal heterogeneity of the resulting
object does not exceed the user defined threshold scale factor (Benz et al.,
2004). Proposed statistical optimizationmethods (e.g. Drăguţ et al., 2010)
may allow an objectification of the choice of the scale parameter if the
targeted objects or processes exhibit a single operational scale. However,
slope failures and surrounding land cover elements feature several orders
ofmagnitudes involumeandarea, promptingother researchers to look for
automatic optimisation at multiple scales (Martha et al., in press).

To evaluate the impact of changing segmentation scales on the
feature space and class separability, image segmentation was
performed at 15 different scales (10, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 70, 80, 90, and 100). The segmentation results depend on data
characteristics such as spatial resolution, the number of bands, image
quantization and the scene characteristics. The same scale factor does
not necessarily yield comparable objects in different scenes, but
increasing the scale factor for the segmentation of the same dataset
will generally lead to larger object sizes. Thus, it is possible to emulate
increasingly coarser representations of the same scene and compare
resulting trends among the tested sites.

The MRIS framework offers the possibility to assign different
weights to spectral bands and shape of segments. All multi-spectral
bands (blue, green, red, and near-infrared [NIR]) were equally
weighted with a value of one, while the panchromatic channel of
the satellite images was assigned a weight of four, allowing a balance
of multispectral and finer panchromatic data in the segmentation. The
shape criteria were weighted with zero and, consequently, not
considered in the segmentation.
-
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3.2. Calculation of image object metrics

This section provides an overview of features adopted from
previously studies (Table 2), and introduces a number of further
object metrics that were calculated subsequent to the image
segmentation (Fig. 2 a). Spectral features previously recommended
in the literature (Table 2) comprise band intensities, band ratios,
principal component (PC) transform and brightness, and respective
mean values were calculated per image object. The mean brightness
(B) was defined as the sum of the object means in the visible and
Table 2
Overview of features used to identify landslides in previous works and adopted for this st
Number in brackets indicates the number of features used with the aerial photographs.

Tested features

Spectral information Spectral bands
PC
Band ratios (blue/green, green/red, red/NIR)
Brightness
MaxDiff

Texture GLCMall dir. (Ent., Mean, Cor., Con., Stdv.)

Geometric Shape index, compactness, roundness
Length–width ratio

Auxiliary data Hillshade
Slope

Combined metrics Object direction/flow direction
GLCMflow.dir. (Ent., Mean, Cor., Con., Stdv.)
GLCM (Ent., Mean, Cor., Con., Stdv.)
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panchromatic band (ci visð Þ) divided by the number of corresponding
bands (nvis).

B =
1
nvis

∑
nvis

i=1
ci visð Þ

The same bands were considered to calculate MaxDiff for each
object, defined as the absolute value of the difference of the minimum
udy. Most of the studies combined several attributes and are listed only exemplarily.

No. Case study

5 (3) (e.g. Nichol & Wong, 2005)
4 (3) (Forsythe & Wheate, 2003)
3 (2) (e.g. Rau et al., 2007)
1 (Martha et al., 2010)
1 This study
25 (15) (Carr & Rathje, 2008; Hervás & Rosin, 1996;

Martha et al., 2010; Whitworth et al., 2005)
3 (Moine et al., 2009)
1 (Martha et al., 2010; Martha et al., in press)
1 (Martha et al., 2010)
1 (Borghuis et al., 2007; Danneels et al., 2007)
1 (Martha et al., 2010; Martha et al., in press)
25 (15) This study
25 (15) This study

-
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object mean (min ci visð Þ
� �

) and the maximum object mean (max ci visð Þ
� �

),
divided by the object brightness B.

MaxDiff =
min ci visð Þ

� �
−max ci visð Þ

� ����
���

B

To quantify surface textures a variety of derivatives of the Grey
Level Co-occurrence Matrix (GLCM) has been adopted in previous
landslide studies (Table 2). Considering their large computational
burden and frequent reports on strong correlations among several
GLCM derivatives (Hall-Beyer, 2007; Laliberte & Rango, 2009), a
subset of five texture measures was selected for this study. Those are
contrast (Con.), correlation (Cor.), entropy (Ent.), standard deviation
(Stdv.) and Mean. For a detailed formulation of the GLCM and
derivatives we refer to Haralick et al. (1973) and here only recall
that the co-occurrence frequencies of grey-levels are typically
counted in symmetric matrices for pixels neighboring directly at 0°
(N–S), 45° (NE–SW), 90° (E–W) or 135° (SW–NE), respectively.
Rotation-invariance of a GLCM derivative can be achieved by
calculating its mean or minimum value among all four directions
(e.g. Pesaresi et al., 2008), or by summing up the four directional
GLCMs (GLCMall dir.) before the calculation of the derivative. The latter
technique is implemented in eCognition (Trimble, 2011) and was
used in this study to calculate five rotation-invariant texturemeasures
per band directly for each image object.

Rotation-invariance is desirable for many applications but fails to 
capture directional patterns in the grey-value distribution. Landslide-
affected surfaces often show downslope-directed texture patterns 
that are potential diagnostic features to distinguish them from 
surfaces with texture patterns oriented at the strike of the slope 
(Fig. 3). In order to quantify such patterns better, additional 
directional texture measures were derived from two directional 
GLCMs; one computed along the hydrological flow direction (GLCMflow

dir.) and one perpendicular to it (GLCM˪ flow dir.). For this purpose flow 
direction rasters (Jenson & Domingue, 1988) were derived from the 
respective DEMs (10 m resolution, Table 1) and their latticeswere 
superimposed on the images. For each resulting 10×10 m grid cell 
two directional GLCMs were calculated according to the direction (and
Fig. 3. Exemplary comparison between the rotation-invariant and topographically-guide
panchromatic channel. White arrows indicate the hydrological flow direction within the m
GLCMflow dir. Cor. tend to be lower and values of GLCM flow dir. Cor. tend to be higher. Hence, th
flow direction (e.g. fields, streets).
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the normal) indicated in the flow direction raster. Fig. 3 shows this 
exemplarily for GLCM Correlation, where the flow direction in each 
squared cell is aligned at 45°, and the two directional GLCMs 
consequently consider the grey-levels of pixels neighboring at 45°
(GLCMflow dir.Cor.) or 135° (GLCM˪ flow dir.Cor.), respectively.

Ratio features (GLCM⏊) were subsequently calculated for each 
squared cell simply as the quotient of the texture measures computed 
in flow direction and their counterparts computed in the perpendic-
ular direction. Contrast, correlation, entropy, standard deviation and 
Mean from GLCMflow dir. and their respective GLCM ratios are also 
referred to as topographically-guided texture measures. They were 
computed on all image bands in a 10×10 m grid and finally converted 
into raster layers with a pixel size of 10 m. This corresponds to 10 
additional layers per band, where each image object (Section 3.1) 
obtains the mean layer value within its extent. Together with the 
texture measures from GLCMall dir. and a number of object metrics 
characterizing mean spectral values, shape and topographic metrics, a 
total of 96 and 62 features per image object were calculated for the 
satellite imagery and aerial photograph, respectively (Table 2).
3.3. Random Forests

Since the fundamental works on ensemble decision trees (e.g.
Breiman, 2001), Random Forests (RF) have already provided
promising results in fields such as genomics (Diaz-Uriarte & Alvarez
de Andres, 2006), ecology (Cutler et al., 2007) and remote sensing
(Lawrence et al., 2006; Watts et al., 2009).

Small changes in the training data induce a high variance in single
classification trees and often lead to rather low classification accuracies
(Breiman, 1996). The underlying idea of RFs is to growmultiple decision
trees on random subsets of the training data and related variables. For
the classification of previously unseen data, RFs take advantage of the
high variance among individual trees, letting each tree vote for the class
membership, and assigning the respective class according to the
majority of the votes. Such ensembles demonstrate robust and accurate
performance on complex datasetswith little need for fine-tuning and in
the presence of many noisy variables. Furthermore, integrated pro-
cedures for variable assessment and selection, and freely available high-
d GLCM Cor. at the Messina test site. The texture measures are calculated on the
easured cells. For linear structures along the flow direction (debris flows) values of

eir ratio (GLCMCor.) is typically lower for linear structures aligned perpendicular to the

-
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quality software implementations, make RFs an interesting tool to be
combinedwithOOA. In thisworkweextensivelyused therandomForest
package (Liaw, 2010) and its extension for variable selection varSelRF
(Diaz-Uriarte, 2010) implemented in the R statistical programming
environment (R-Development-Core-Team, 2009).

3.3.1. Evaluation and selection of object metrics
As a starting point we were interested in object metrics that are

actually helpful to distinguish landslides from other image objects,
and in understanding how their performances depends on the scale of
the image segmentation. For this purpose a RF–based variable
importance measure was used to evaluate the object metrics at each
test site with 15 different segmentation scales (10–100). RF offers a
number of internal measures to estimate the importance of employed
variables for the accuracy of a given classification. The properties of
those measures have been intensively studied in recent years, and the
so-called permutation importance is considered a computationally
tractable choice for the screening of large datasets (Nicodemus et al.,
2010). The permutation importance, subsequently termed variable
importance (VI), is calculated as follows.

The original training data are resampled randomly (with replace-
ment) to create a training set (trainn, Fig. 2 c) and build a classification
tree. Considering a total number ofm extracted object-features (Fig. 2
a) at each tree node a subset

ffiffiffiffiffi
m

p
features is randomly selected and

tested for the best split. Approximately one third of the instances are
left out of the training set and remain as out-of-bag sample (OOBn,
Fig. 2 c) that can be used to assess the classification accuracy of the
tree. The importance of a feature mj for the correct classification is
estimated by permuting the feature values within the OOBn sample
and calculating the difference of prediction accuracies before and after
the perturbation. The VI of the variable mj (VIj, Fig. 2 c) results from
averaging the permutation importance of mj over a large number of
trees (N=5000, Fig. 2 c). In the present study it provided a measure
for the utility of the different objectmetrics to distinguish betweenOLS
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and ONLS. In order to give equal weight to both classes, at each test site
all OLS and an equal number of randomly sampled ONLS were taken
into account. VIs were calculated for all variables at the 15 different
segmentation scales (Section 3.1), where the overall number of
sample objects varied between a few hundred at the coarsest scale
and more than 60,000 at the finest scale.

Diaz-Uriarte and Alvarez de Andres (2006) proposed to compute
the VI from a large RF (N=5000) to obtain an initial variable ranking
and then proceed with an iterative backward elimination of the least
important variables. In each iteration the least important 20% of the
features are dropped, a new RF (N=2000) is trained with the
remaining feature set, and the OOB sample is used to assess its miss-
classification rate (OOB error). The final features set is selected
according to the RF that produces the lowest OOB error (Fig. 4). In the
present study this procedure was used to determine the set of object
metrics that were used for the construction of the final RF classifiers
(Fig. 2 d1–3).

3.3.2. Balancing of error rates and accuracy assessment
At all four test sites landslides covered only minor fractions of the

scene (Table 1). This is a typical situation leading to an imbalance
between OLS and ONLS, and potentially introduces a bias of the
classification towards the over-represented non-affected area. Pre-
liminary test runs adopting naturally imbalanced training sets indeed
demonstrated serious underestimation of the landslide class, suggest-
ing the presence of the class-imbalance problem. Such biases are
undesirable in any manual or automated landslide mapping, because
an over- or underestimation of the affected areas would generally lead
to a respective over- or underestimation of the associated hazards and
risks.

Numerous methods to account for such effects have been proposed
in the context of different statistical learning techniques. For logistic
regression they may involve prior corrections and weighting methods
(King & Zeng, 2001) or asymptotical coefficient estimates for infinite
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class imbalance (Owen, 2007). Many approaches have also been
developed for nonparametric learning algorithms such as RF, and may
be grouped into resampling, cost-sensitive learning and kernelmethods
(He & Garcia, 2009). None of the methods proposed so far provides a
universal advantage in all situations, but it has been demonstrated that
an undersampling of themajority class is a beneficiary strategy inmany
different setups (Blagus & Lusa, 2010; Burez & Van den Poel, 2009). The
sampling of a balanced training set might in some situations be
sufficient to compensate class-imbalance when using RF (e.g. Fusaro
et al., 2009), but the optimal class distribution will generally depend on
the specific method and studied case (Burez & Van den Poel, 2009).

For the analysis of class imbalance and the final accuracy
assessment only the previously selected object metrics were used.
20% of each dataset were sampled randomly for training (Tr20, Fig. 2
d1–2) and the remaining 80% were used as test set (Te80, Fig. 2 d3). To
estimate the class ratio in the training sample that leads to a balance of
commission and omission errors an iterative procedure was imple-
mented and tested, where Tr20 was split repeatedly into subsets for
training (trainsub) and testing (testsub, Fig. 2 d2). The parameter βi was
defined as the ratio of OLS and ONLS in the current trainsub, and changed
systematically to approximate a target value βn yielding a balance
between user's and producer's accuracy on the testsub. In each
iteration 20% of the OLS and βi-fold number of ONLS were sampled
randomly from Tr20 to train a RF (N=500) and assess the
classification accuracies on the remainder testsub (Fig. 2 d2). The
procedure started from a balanced class distribution (βi=1) and in
each step βi increased by 0.1 (Fig. 2 d2). The underlying assumption
was that the estimated βn could be applied to adjust the class-balance
for the entire training set Tr20, and would also yield balanced user's
and producer's accuracies in the classification of the actual test set
Te80.

For each βi the procedure was repeated ten times using replicates
of trainsub and testsub randomly sampled from Tr20. Mean error rates
and their standard deviations were calculated from ten runs, and in
cases where the observed variance in the resulting learning curves
were too high for the determination of a unique βn the number of
random replicates was increased (Section 4.3.1).

To assess the accuracy of the described RF framework, RFs
(N=500) were trained with βn-adjusted subsets of Tr20, and applied
on the remainder 80% test sample (Te80, Fig. 2 d3). At each test site the
sample balancing and accuracy assessments were performed exem-
plarily at a fine, medium and small segmentation scale (10, 30, and
70), and compared to reveal the effects of the segmentation on the
user's, producer's and overall accuracies.

4. Results and discussion

4.1. Effects of scale on variable importance and selection

In none of the examined cases the OOB error reduced if more than
77 object metrics were introduced, and on average only about one
third of the pre-selected metrics were detected as useful. In most
cases the OOB error remained rather stable or increased if all variables
were used. Especially at the test sites Haiti and Barcelonnette many of
the object metrics provided only minor further enhancements. This is
reflected by flat parts of the respective curves in Fig. 4, where slight
changes of the object characteristics can have a stronger impact on the
position of the OOB error minima, which was the criterion for the
model selection. Consequently, among all segmentation scales there is
a high variability in the observed overall number of selected features
(boxplots Fig. 4), which coincides with those flat parts of the curves.
Larger segmentation scales generally yield fewer sample objects, and
consequently the standard error of the OOB error estimate increased
(Fig. 4). It should be considered that in situations where the number
of samples becomes much smaller than the number of features, the
feature selection method can deteriorate strongly (Diaz-Uriarte &
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Alvarez de Andres, 2006; Yu et al., 2006). However, this was not an
issue in the present study because even at the largest segmentation
scales the number of sample objects was at least twice the number of
features.

Selecting the model with the lowest OOB error is a rather
conservative strategy that may retain some redundant and partially
correlated variables. However, it was suitable for the present study in
order to retain all useful features and targeting a maximal predictive
accuracy. For applications where the smallest set of features with
causal relationships is important (e.g. Diaz-Uriarte & Alvarez de
Andres, 2006) a further reduction might be desirable, but no further
enhancements of the predictive accuracy can be expected.

Although the absolute number of selected object metrics strongly
depended on the particular test site and segmentation scale, some
features emerged as significant in most cases and should be further
highlighted. Unsurprisingly, metrics related to spectral information
resulted as the most important ones for all test cases and scales
(Table 3). The band ratios and PC that depict the contrast between
vegetated and non-vegetated areas ranked with a particularly high
variable importance (VI). Object means of the slope and hillshade
layers significantly reduced the error rates, but in most cases their
relative importance decreased with larger segmentation scales
(Fig. 5). Shape metrics displayed a rather contrary behavior (Fig. 6),
and generally contributed little to the reduction of the error rates.
Only for larger segmentation scales at Wenchuan and Messina, where
the segments more closely approached the elongated shape of the
landslides, shape metrics were selected by the selection procedure.
They have been reported as useful after initial spectral classification
steps (Martha et al., 2010; van der Werff & van der Meer, 2008), but
provide little additional information within the tested sample-based
framework.

However, the VI ranks of the most important spectral and textural
metrics exhibited low variability among the different segmentation
scales (σ in Table 3) and were not subject to a persistent trend. The
topographically-guided GLCM Con., Cor. and Ent. helped to reduce the
OOB error at all tested sites and largely outperformed the rotation-
invariant GLCMs. Furthermore, the topographically-guided GLCM Con.
was apparently more efficient when derived from the higher
resolution panchromatic channels. Both rotation-invariant and topo-
graphically-guided versions of GLCM Mean and Stdv. were frequently
included in the selected models, but the rotation-invariant versions
were in most cases ranked higher, indicating that the topographic
control did not enhance the significance of GLCM Mean and Stdv.
Although GLCMs have been previously adopted for landslide mapping
(e.g. Martha et al., 2010) the proposed topographic control on their
calculation provides significant enhancement (Fig. 4), andmakes such
object metrics potentially useful for the automated mapping of
various geomorphological processes.

Although the optimal choice of the texture measures depends to a
certain degree on the application, it is interesting to note that Clausi
(2002) highlighted Con., Cor. and Ent. as particularly useful GLCM
derivatives for the recognition of sea ice, and Laliberte and Rango
(2009) concluded that Con., Ent. and Stdv. are the most suitable
texture measures for rangeland mapping.

4.2. Effects of the feature reduction on the predictive accuracy

The OOB errors reported during the feature selection process
(Fig. 4) are not suitable to assess the predictive accuracies of the
models because (i) in a real case only a fraction of the OLS would be
available for training, (ii) the set of optimal features may differ among
subpopulations (Diaz-Uriarte & Alvarez de Andres, 2006), and (iii) the
overall OOB error does not inform about commission and omission
errors.

Those facts motivated a further experiment in which the training
sets included only 20% of all OLS (number of OLS in Table 4) and an
-



Table 3
The 20 object metrics with the highest average variable importance rank among all 15 tested scales and at each respective test site. The number of scales at which the variable has
been selected (nsel), and the standard deviation of the rank among all 15 scales (σrank), are provided as indicators for the stability of the variable importance.

Messina Haiti Wenchuan Barcelonnette

Feature nsel/σrank Feature nsel/σrank Feature nsel/σrank Feature nsel/σrank

Red/NIR 15/0.0 Red/NIR 15/0.0 Red/NIR 15/0.0 Blue/Green 15/0.0
NIR 15/0.2 Slope 15/0.2 PC 2 15/0.0 PC 2 15/0.0
PC 1 15/0.4 Green/red 15/0.4 Red 15/0.5 Max. Diff. 15/1.0
Max. Diff. 15/1.2 Red 15/1.2 Green/red 15/1.0 Blue 15/0.8
GLCMflow.dir. Con. PAN 15/1.6 PC 1 15/1.6 Blue 15/0.5 PC 3 15/1.8
GLCMflow.dir. Cor. PAN 15/2.2 Blue 14/2.2 Blue/green 15/1.0 Slope 15/2.6
Blue/Green 15/3.9 Blue/green 15/3.9 Green 15/0.6 Hillshade 15/1.4
GLCM Cor. PAN 15/2.4 Green 14/2.4 PC 1 15/1.1 PC 1 9/2.9
GLCM Con. PAN 15/3.0 PC 2 14/3.0 Brightness 15/1.0 GLCMflow.dir. Con. Blue 9/2.4
GLCM Cor. Red 15/4.4 PAN 14/4.4 Slope 15/2.8 Brightness 9/2.1
GLCM Cor. Green 15/4.3 GLCMflow.dir. Con. PAN 15/4.3 PAN 15/1.9 Green/red 8/2.5
Blue 15/6.8 NIR 13/6.8 GLCM Con. PAN 15/1.3 GLCMflow.dir. Con. Red 9/3.4
Slope 15/4.4 Hillshade 12/4.4 GLCM Cor. Green 13/2.7 GLCMflow.dir. Cor. Blue 7/2.4
GLCM Cor. blue 15/4.9 GLCMflow.dir. Cor. PAN 13/4.9 GLCM Cor. blue 14/3.0 GLCMflow.dir. Con. Green 8/3.3
GLCM Con. blue 15/3.8 Max. Diff. 14/3.8 GLCM Con. blue 13/2.9 GLCMflow.dir. Con. red 9/3.4
PC 2 14/7.8 Brightness 13/7.8 GLCM Cor. red 12/4.0 Green 6/2.8
GLCM Con. red 15/3.9 GLCM Con. PAN 12/3.9 Max. Diff. 14/4.0 GLCMflow.dir. Con. green 7/2.8
GLCMflow.dir. Cor. blue 15/3.9 PC 3 11/3.9 GLCMflow.dir. Cor. PAN 13/2.4 Red 7/2.2
GLCMflow.dir. Con. blue 15/5.1 GLCM Cor. PAN 10/5.1 NIR 10/8.5 GLCM Con. blue 5/5.4
GLCM Con. green 15/4.7 GLCMflow.dir. Ent. blue 9/4.7 GLCM Con. green 11/3.7 GLCMflow.dir. Ent. blue 4/2.5
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equal number ONLS, which were randomly sampled from the entire
population. The training sets consequently comprised between 3%
(Barcelonnette) and 11% (Wenchuan) of the datasets, while the
classification accuracies were assessed on the remaining test sets in
terms of correctly classified objects.

RFs (N=500) were trained and tested using once all object
features and once only the previously selected feature subsets
(Section 4.2). As expected the F-measures, which are the harmonic
means of user's and producer's accuracies, indicated a generally lower
predictive power than the OOB errors, but also enhanced accuracies if
only the previously selected object metrics were used (Fig. 7).
Especially for the cases Messina and Barcelonnette, with rather low
overall accuracies, the feature reduction enhanced the F-measures by
up to 5%.

More importantly, the test revealed that a balanced training
sample did not provide balanced user's and producer's accuracies, and
the RF overestimated the landslide area in all cases (Fig. 7). It could be
argued that for hazardous processes such as landslide an over-
1

30

59

88

10 30 50 70 90

R
an

k

R² = 0.632

R² = 0.186 (not significant)
R² = 0.515

R² = 0.682

Haiti Slope
Wenchuan Slope
Messina Slope
Barcelonnette Slope

R² = 0.3842

R² = 0.8598
R² = 0.6276

R² = 0.8162

1

30

59

88

10 30 50 70 90

R
an

k

Scale

Haiti Hillshade
Wenchuan Hillshade
Messina Hillshade
Barcelonnette Hillshade

Fig. 5. Relationships between the VI-ranks of slope and hillshade and the segmentation
scales. Linear regression lines fitting the data series show the overall trends, and their
significance was tested at pb0.05 level.
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detection might be easier to accept than omission. However,
uncertainties in landslide inventories propagate forward into suscep-
tibility assessment (e.g. Galli et al., 2008), and a high error of
commission would lead to unrealistic overestimates of the associated
hazard and risks. Under the assumption that in a real case it might be
an acceptable additional labor to provide further ONLS samples, the
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k
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k
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Fig. 6. Dependency of the variable importance of shape-metrics on the segmentation
scale for the different test sites. Especially with small scale factors (b25) the
segmentation did not generate landslide objects and non-landslide objects with
distinguishable shapes. Only the length–width ratio (b, between scale 30 and 80) and
the shape index (c, scaleN55) had some impact on the accuracy.
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Table 4
Final accuracy assessment for all test sites at three exemplary segmentation scales. Accuracies show the average performance of RFs (N=500), trained with 20% of the OLS and
βn−fold amount of ONLS, applied to the test set Te80.βo is the original class-ratio of the entire population. The mean accuracies and their standard deviations were calculated over
50 randomly resampled replicates of Tr20. The best results for each test site are indicated with bold numbers.

Scale βn(βo) User's
accuracy
[%]

Producer's
accuracy
[%]

Farea [%] Fobj [%] βn-adjusted Tr20

OLS ONLS % of all objects

Haiti 10 3.0 (5.8) 88.8±0.1 85.7±0.2 87.1±0.1 89.7±0.1 4512 13536 11.7
30 2.3 (4.2) 82.8±1.2 87.1±0.9 84.9±0.7 88.3±0.3 564 1297 12.8
70 2.6 (4.0) 88.5±1.1 72.4±1.3 79.6±0.7 88.5±0.5 149 387 14.3

Wenchuan 10 2.7 (3.4) 81.3±0.1 81.1±0.1 81.2±0.1 80.5±0.1 6535 17645 17.0
30 2.5 (3.0) 81.2±0.4 77.1±0.5 0.791±0.2 80.3±0.2 570 1425 17.4
70 2.0 (2.6) 77.7±0.9 75.3±1.1 76.5±0.6 79.9±0.6 125 250 16.5

Messina 10 1.8 (4.2) 72.9±0.3 74.6±0.2 73.7±0.1 73.0±0.1 6135 11043 10.8
30 1.9 (4.1) 69.0±1.2 60.9±0.9 64.7±0.4 59.2±0.4 663 1260 11.3
70 1.9 (3.7) 64.3±2.0 59.8±1.3 62.0±0.8 60.5±1.1 125 238 11.9

Barcelonnette 10 4.7 (9.5) 77.8±1.0 78.0±0.5 77.9±0.4 76.5±0.2 1810 8507 10.8
30 5.5 (11.5) 74.7±2.1 75.9±1.8 75.2±1.0 67.4±0.8 237 1304 10.1
70 4.9 (12.1) 63.3±5.6 88.6±2.3 73.3±3.5 65.3±2.7 46 226 8.9
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next section of this paper examines a procedure to balance user's and
producer's accuracy.

4.3. Accuracy assessment

The balancing of under- and over-detection and the final accuracy
assessment (Fig. 2 d1–3) were performed at three exemplarily selected
scales (10, 30, and 70) with the previously selected features and in a
scenario where 20% of the data would be available for training. The
datasets were split (Fig. 2 d1) into a training subset (Tr20), used for the
estimation of the class balance and the classifier construction, and a
testing subset for the final accuracy estimate (Te80).

4.3.1. Estimates of βn from the training samples (Tr20)
For all cases we observed a strong over-prediction of landslide areas

if a class-balanced training sample was employed. The over-prediction
problem was more pronounced for Messina and Barcelonnette, where
already visual examination of the images suggested a higher class-
overlap than in the two other areas. In controlled experiments such a
behavior of classifiers has been explained by a higher density of positive
examples in the class-overlap region (e.g. García et al., 2007).

Nevertheless, the iterative increase of βi described in Section 3.3.2
(Fig. 2 d1), which corresponds to a relative increase of ONLS in the
training sample (trainsub), was an efficient strategy to adjust the
balance of user's and producer's accuracies in the test sets (testsub). At
Scale
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Fig. 7. Comparison of the accuracies of correctly classified objects before (all) and after (sel) v
scales. 20% of all OLS and an equal number ONLS are used for the training of a RF (N=500).
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all test sites the estimated ratios of βn (Fig. 8) resembled solutions that
were a trade-off between the natural class-distribution (Table 4) and
a completely balanced sample. The highest βn estimates were
obtained for the Barcelonnette dataset, where also the over prediction
problem was most prominent.

Larger segmentation scales generally lead to a smaller number of
image objects, and the 20% benchmark for the proportion of training
data consequently translated into a reduced number of training samples
over constant areas. Fig. 8 shows that the reduced number of sample
objects resulted in an increasingly large variability in the test set
accuracies, and yielded larger uncertainties in the estimation ofβn. It can
be demonstrated that in such cases an increased number of random
replications for each βi still led to smoother converging curves with one
unique crossing (Fig. 8). However, it should also be stressed that the
estimation of βn still only provides an intelligent guess on the design of
the training sample for the classification of “unknown” image objects.
The efficiency of theestimatedβn, to generate anRFwithbalanceduser's
and producer's accuracies was examined for the test set Te80 as
described in the final section of this paper.

4.3.2. Estimation of the accuracy on the test set (Te80)
The majority class (ONLS) in the training sample (Tr20) was under-

sampled according to the estimated ratio βn. A RF (N=500) was
constructed from the βn-adjusted Tr20 and applied to the remainder
test set Te80 to assess the efficiency of the βn estimate and the overall
user’s accuracy
producer’s accuracy
F-measure

l     all   sel    all        

           Messina   Barcelonnette

sel all        sel all        sel all        sel all        sel
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-



β

A
cc

ur
ac

y
A

cc
ur

ac
y

A
cc

ur
ac

y
A

cc
ur

ac
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βn≈3.0 βn≈2.3 βn≈2.6

βn≈2.7 βn≈2.5 βn≈2.0

βn≈1.8 βn≈1.9

βn≈4.7

user’s acc.

prod.’s acc.

H
ai

ti
 W

en
ch

ua
n

 M
es

si
na

B
ar

ce
lo

nn
et

te

Scale 10  Scale 70

βn ≈4.9

β

βn≈1.9

β

n=10

βn ≈5.5

0.
4

0.
6

β
1 2 3 4 5 6 7 1 2 3 4 5 6 71 2 3 4 5 6 71 2 3 4 5 6 7

n=10 n=10 n=250

n=250

Scale 30 Scale 70

Fig. 8. Estimates of the class balance (βn) in the training sample that lead to a balance of the mean user's (dashed black line) and mean producer's accuracies (solid black line).
Accuracies are expressed in terms of image objects. The means of the accuracies for each βwere calculated from 10-fold random replicate runs (n=10). The grey margins show the
corresponding standard deviations. For learning curves with high variance additionally figures from 250 random replicate runs (n=250) are presented.

A. Stumpf, N. Kerle / Remote Sensing of Environment 115 (2011) 2564–2577
accuracy (Fig. 2 d3). The accuracy was assessed in terms of objects
(Table 4, Fobj) and, to provide a final accuracy estimate for the entire
approach, furthermore by comparing the classified areas with the
landslides and non-landslide areas in the manually elaborated
inventories (Table 4, user's accuracy, producer's accuracy, Farea).
Each test was repeated with 50 βn-adjusted randomly sampled
replicates of Tr20. The means and standard deviations of the achieved
accuracies were calculated from the 50 runs and are displayed in
Table 4. Although it did not solve the problem entirely, the strategy
provided a significantly better balance between user's and producer's
accuracies than could be achieved with the natural class distribution
or an ad hoc balanced training sample (Fig. 7).

The accuracies in terms of correctly predicted area generally
decreased for larger segmentation scales. At the test sites Haiti and
Wenchuan this must be attributed to an increasing misfit between
segmented object boundaries and the reference inventory leading to
greater impurities within mixed objects. This means that the
misclassified area increased due to a stronger generalization of the
segments with a larger scale factor, the predictive accuracy of the RF
(expressed by Fobj, Table 4) remained nearly constant among the
different scales.

Conversely, for Messina and Barcelonnette Fobj was consistently
lower than Farea (Table 4), and the classifier performance decreased
significantly with larger scale factors. The comparatively higher areal
accuracy can be explained by the fact that the average size of correctly
- 67
classified objects was greater than those of misclassified objects.
Spectral confusion and hence the importance of additional textural
and topographic features was higher for the classification of the
datasets from Barcelonnette and Messina (Table 3, Fig. 4). Leaving
such features unconsidered during the segmentation may contribute
to a higher class-overlap and a consequently lower Fobj at larger scales.

The general observations for theMessina test site confirmoncemore
that omission is an especially likely error for themappingof debrisflows
(Barlow et al., 2006; Lu et al., 2011), due to a high probability of
occlusions in the local topography and beneath the remaining
vegetation. At the Barcelonnette site most of the spectrally very similar
badlands (Fig. 1 d)were successfully distinguished (Fig. 9 d) through the
combination of spectral, textural and morphological features. Spatial
clustering of missed areas at the crown and the toe of the landslide
(Fig. 1 d, Fig. 9 d) indicates that such a landslide complex might be still
better treated as a multi-class problem.

In summary, the RF classifier provided relatively high accuracies of
up to 87% for the test sites Haiti and Wenchuan, while in the case of
Messina the best model reached an accuracy of 73%. Those figures are
in a similar range as the results of other recent studies on landslide
mapping from optical imagery (Barlow et al., 2006; Lu et al., 2011;
Martha et al., 2010). Though the quantities of employed samples are
not always explicitly mentioned (Barlow et al., 2006; Nichol & Wong,
2005), all proposed solutions depend on the availability of some sort
of training data. Once the samples are provided, the framework
 -



Fig. 9. Results with a segmentation scale of 10, after feature selection and balancing of the error rates as indicated in Table 4 at a, Haiti b, Wenchuan c, Messina and d, Barcelonnette.
Correctly classified areas include the samples used for training.
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presented in this paper has the potential to run fully automated with
different image types, and liberates the user from the selection of
appropriate features and thresholds. At each of the four test sites a
medium resolution DEM, one VHR resolution image, and the reported
numbers of training objects were sufficient for an efficient perfor-
mance of the RF classifiers. In most practical situations such kind of
data will be available, and the described algorithms may provide a
generic approach to map the overall affected area more efficiently
before site and data specific tasks, such as the classification of
landslide types (Barlow et al., 2006; Martha et al., 2010), are targeted.
In situations where more data (e.g. pre-event imagery) are available
the proposed framework is suitable to accommodate a large variety of
additional datasets and object metrics, which may be used to further
increase the mapping accuracies.

In order to differentiate individual landslides and provide map
products with less dispersed class distributions (Fig. 9) the current
architecture still needs enhancements. This is closely related to the
observed fact that high-level features such as shape are better
exploited on larger scales (Section 4.1). The design of a hierarchical
algorithm that robustly and efficiently incorporates sample data and
relevant features in the classification, and delineation of image objects
among a number of different scales, remains a major challenge, and
with potential benefits for many remote sensing applications.

It also has to be noted that at this point we only explored the
technical aspects of the supervised framework in relatively small test
- 68 
areas. A detailed analysis of the impact of sample quality and quantity
provided by different users and over larger areas was beyond the
scope of the present study, while research in this direction is certainly
desirable before an operational use of the technique.

5. Conclusions

Previously proposed methods for object-oriented mapping of
landslides fromVHR images are highly reliant onmanual thresholding
and a subjective selection of suitable features, making it difficult to
adapt them to new locations and datasets. To overcome such issues
this study investigated the use of image segmentation and the
Random Forest framework for feature selection and image classifica-
tion. A variety of VHR remote sensing images and different landslide
processes was analyzed with the RF data-mining technique to
evaluate useful image object metrics, the influence of the segmenta-
tion scale, and the consequences of class-imbalance.

Although the optimal set of object metrics varies considerably
from case to case, a number of spectral, topographic, and textural
features are generally useful. Rotation-invariant and topographically-
guided GLCMs provide complementary information to distinguish
affected from non-affected areas, while topographically-guided GLCM
derivatives introduced in this paper provide more significant
enhancements. They also appear potentially useful for the automated
mapping of other geomorphological processes such as gully erosion
-
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(Shruthi et al., in press) or fluvial sediments. The range of potentially
useful object metrics for landslide mapping and other applications
seems still not fully exploited, and data mining techniques such as RF
are valuable tools to ease feature selection for machine learning, or to
guide experts during the elaboration of knowledge-driven rule sets.
Our results indicate that feature reduction leads to an improved image
classification, but also that not all significant features can be fully
exploited with one particular segmentation scale.

Class-imbalance and class-overlap caused severely imbalanced
error rates at all test sites. An iterative scheme to estimate a
compensating class balance for the training data was found to
enhance substantially the balance of user's and producer's accuracies.
In the presented setup, accuracies between 73% and 87% were
achieved when 20% of the total area was provided for training.

In the short term further enhancements are certainly possible
through the integration of ancillary datasets such as pre-event
imagery or the exploration of additional object metrics. More research
is needed to optimize the segmentation process, which at present is
based on spectral information solely. An initial sample-based estimate
of the variable importance might thereby be an interesting tool to
decide which further layers should be included in the segmentation.
The processing time for a small test area can be streamlined to a few
hours on a standard desktop PC, while for larger areas the RFs can
easily be implemented for parallel processing, and the scale factor
may provide an interesting parameter to trade between accuracy and
processing time.
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 Active	 learning	 for	 the	 reduction	 of	 labeling	 costs	 in	2.4
image	classification	experiments	
 

 
 
As demonstrated in Section 2.3, supervised machine learning is a versatile tool that can be 
adapted to different image datasets and domain objectives. The drawback of the approach 
developed in Stumpf and Kerle (2011) is the extensive need for training samples which must 
be a good representation of the underlying classes and their distribution in the feature space. 
Preparing the training data still depends on visual image interpretation and/or field surveys 
whose implementation is costly especially to cover large areas.  

Therefore, this section addresses the formulation, implementation and performance of 
a new active learning (AL) heuristic targeting the reduction of labeling costs and its 
application to landslide mapping.  

The first occurrence of AL in the machine learning literature can be traced back to the 
1990’s (Zhang and Veenker, 1991) and refers to the hypothesis that a machine learning 
algorithm will perform better with less training data if some control on the selection of the 
training data is given. AL methods have already been introduced for remote sensing image 
classification (Tuia et al., 2009) but it will be shown that important aspects of the sample 
distribution and user interaction have been largely neglected so far. In particular a region-
based strategy is proposed to identify the most valuable and interesting sample region on 
which the users should focus their efforts (Figure 2-2). 
 

 
Figure 2-2: Simplified representation of the AL heuristic developed in our work (modified after 
Settles, 2010). 

This section is based on: Stumpf, A., Lachiche, N., Malet, J.-P., Kerle, N., Puissant, A., 
In Press. Active learning in the spatial domain for remote sensing image classification. 
IEEE Transactions on Geoscience and Remote Sensing, 16 pages, 
10.1109/TGRS.2013.2262052. 
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Active Learning in the Spatial Domain for
Remote Sensing Image Classification

André Stumpf, Nicolas Lachiche, Jean-Philippe Malet, Norman Kerle, and Anne Puissant

Abstract—Active learning (AL) algorithms have been proven
useful in reducing the number of required training samples for re-
mote sensing applications; however, most methods query samples
pointwise without considering spatial constraints on their distri-
bution. This may often lead to a spatially dispersed distribution
of training points unfavorable for visual image interpretation or
field surveys. The aim of this study is to develop region-based
AL heuristics to guide user attention toward a limited number
of compact spatial batches rather than distributed points. The
proposed query functions are based on a tree ensemble classi-
fier and combine criteria of sample uncertainty and diversity to
select regions of interest. Class imbalance, which is inherent to
many remote sensing applications, is addressed through stratified
bootstrap sampling. Empirical tests of the proposed methods are
performed with multitemporal and multisensor satellite images
capturing, in particular, sites recently affected by large-scale land-
slide events. The assessment includes an experimental evaluation
of the labeling time required by the user and the computational
runtime, and a sensitivity analysis of the main algorithm param-
eters. Region-based heuristics that consider sample uncertainty
and diversity are found to outperform pointwise sampling and
region-based methods that consider only uncertainty. Reference
landslide inventories from five different experts enable a detailed
assessment of the spatial distribution of remaining errors and the
uncertainty of the reference data.
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TABLE OF SYMBOLS

H Vote entropy.
pi Fraction of votes for the ith class.
W× Queried region.
w Edge length of the squared query region.
MH Entropy map.
μH Mean local vote entropy.
x, y x, y coordinates on the regular search grid.
G Search grid.
g Cell size of the search grid.
X Training set.
n Number of iterations.
U Unlabeled pool.
S Set of queried samples.
s Individual samples in different sets.
fun Selected diversity function.
c Individual samples in a candidate set.
σd Standard deviation of the feature space distances

between the candidate batch and the training set.
|Wm| Cardinality of the candidate set.
ρk(X, c) Euclidean distance between a candidate sample and

its nearest training point in feature space.
m Number of candidate regions.
Wm Candidate set.
H× Cross-entropy.
vD Volume of the unit ball.
R

D D-dimensional feature space.
D Number of features.
ψ Digamma function.
|X| Cardinality of the training set.
k Order of the nearest neighbor search.
ti Minimum variable importance threshold.
F F-measure.

I. INTRODUCTION

MACHINE learning algorithms have become important
tools for the extraction of environmental information

from remote sensing images. State-of-the-art supervised algo-
rithms, such as support vector machines (SVMs), artificial neural
networks, and ensemble-based learning methods [1], have al-
ready been developed, among others, for land cover analysis [2],
[3], biophysical parameter estimation [4], [5], change and anom-
aly detection [6], [7], and geomorphological mapping [8], [9].
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Supervised algorithms are adaptable to a broad range of
problems but depend on the availability of training data, which,
in remote sensing, are typically obtained through cost- and
labor-intensive field work or time-consuming visual image
interpretation. Active learning (AL) has evolved as a key
concept to reduce annotation costs and generally refers to
systems where the learning algorithm receives some control
over the selection of additional training data during several
iterations [10], [11]. Common strategies are to query the labels
for samples with high uncertainty, which can be measured by
the ambiguity of the posterior probabilities [12], the distance to
the decision boundary [13], or the disagreement of a classifier
committee [14].

Recently, several AL heuristics have been introduced for re-
mote sensing applications and demonstrated promising results
in the classification of multi- and hyperspectral images [15]–
[17]. Iterative retraining of the learning algorithm is typically
a computational bottleneck and can be addressed with batch-
mode query functions [18], [19] that select more than one
sample per iteration. In addition to uncertainty criteria, these
models also incorporate sample diversity in order to reject
candidates that are highly uncertain but are largely redundant
among each other [15].

Most AL approaches assume that annotation costs linearly
depend on the size of the required training set (e.g., pixels in
most cases) and, therefore, aim to reduce the overall number of
queried samples. However, recent studies on practical applica-
tions of AL have demonstrated that real annotation costs can
vary considerably depending on how the labeling is performed,
among instances and annotators, and may change with the
number of queried instances [20], [21]. Leaving real annotation
costs unconsidered in many cases still hinders a successful
transfer of AL algorithms to real-world applications [20].

The acquisition of training data for remote sensing appli-
cations depends to a large degree on the spatial distribution
of the queried instances; however, very few studies have in-
tegrated spatial constraints into the AL algorithm [22], [23].
Most proposed AL algorithms select samples only according to
their position in feature space, which typically yields a point-
wise dispersed distribution of the training data in geographic
space and incurs the risk of revisiting (during image interpre-
tation or field work) the approximately same spatial location
several times. Human scene interpretation generally involves
the assessment of high-level contextual features [24], whereas
pointwise queries do not exploit full interpreter knowledge of
the spatial context around a particular point. This suggests that
queries, which allow focusing on certain spatial subsets of an
area of interest, are a strategy that is more aligned with human
perception.

To address such issues, we propose region-based query
strategies that select compact spatial batches with high sample
uncertainty and diversity. Some key ideas of this approach have
already been discussed in [25], whereas here, a more complete
formulation, including new query criteria, considerations of
class imbalance and expert uncertainties, and a thorough
experimental evaluation, is provided. The proposed region-
based AL is employed for a two-class problem and tested on
very-high-resolution (VHR) optical remote sensing images

depicting geographic sites affected by large-scale landslide
events. The visual interpretation of VHR images is a common
approach for the collection of training data for applications
such as land cover classification, and it is still the prevailing
standard for landslide inventory mapping typically performed
by trained experts who annotate affected areas with marker
tools on the image. Landslide inventory mapping is, therefore,
a challenging problem for the development of semiautomatic
image analysis techniques and a suitable example to investigate
the effects of different labeling strategies.

This paper is organized in seven sections. Section II intro-
duces closely related works on AL, and Section III details
the developed methodology and baseline methods used for
comparison. Section IV describes the data sets used for a series
of experiments. Section V details the experimental design to
evaluate the performance of the AL heuristics and the labeling
time required by users. Section VI discusses corresponding re-
sults, and Section VII concludes on the outcomes of this work.

II. RELATED WORKS ON AL

A review of advances in AL methods has been recently given
in [11], and a comprehensive overview of AL algorithms devel-
oped for the analysis of remote sensing images was provided in
[15]. As in the present study, most approaches assume that all
target classes are known a priori to initialize the AL algorithm,
whereas probabilistic approaches that also allow for the
discovery of new classes are more suitable if this assumption
is no longer fulfilled [26], [27]. The general underlying idea of
most AL approaches is to initialize a machine learning model
using a small training set and to exploit the model state and/or
the data structure to iteratively select the most valuable samples
that should be labeled by the user and added to the training set.
With relatively few queries and labeled samples, an AL strategy
should ideally yield at least the same accuracy as an equivalent
classifier trained with many randomly selected samples.

Large-margin heuristics based on SVMs are frequently
adopted for the design of AL algorithms in remote sensing
applications [15] and have already been used as a base learner
for a conceptual open-source software implementation to com-
bine the benefits of object-oriented image analysis and AL [28].
Committee-based heuristics that select samples according to
the maximum disagreement of an ensemble of classifiers have
achieved promising results in a recent AL benchmark challenge
[29] but are less frequently adopted for remote sensing [17]. For
both approaches, iterative retraining of the classifier is typically
a computational bottleneck for large data sets, and it has been
demonstrated that batch-mode query functions, which consider
the uncertainty and diversity of the samples [18], [19], are able
to reduce the number of iterations significantly.

A very different approach to AL has been taken in recent
studies for semantic image segmentation by iteratively explor-
ing hierarchical data representations [30], [31]. They high-
lighted the benefits of integrating additional spatio-contextual
features into the feature vector but did not explicitly con-
sider the distribution of the queried samples in geographic
space. Pasolli et al. [23] considered spatial distances among
points to enhance margin-based sampling for pointwise queries.
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Increasing the distances among the queried points beyond the
range of spatial autocorrelation generally encourages querying
less correlated and more representative samples. Liu et al. [22]
formulated an AL heuristic as a traveling salesman problem
to minimize the travel distances to the most uncertain points
and, thereby, attempt to reduce the overall traveling costs. They
showed that incorporating the uncertainty at each location as a
form of reward for the traveled distances performed better than
baseline methods considering only the distance. More recently,
Demir et al. [32] have addressed the issue that traveling costs in
field surveys are typically not directly related to the Euclidean
distance but depend on more complex variables such as the
terrain and route network. They demonstrated that considering
auxiliary information on the terrain and the route network helps
reduce the traveling time compared with batch-mode AL [18]
without considering spatial costs.

In contrast to the aforementioned works, this study is focused
on labeling time to identify samples during visual image inter-
pretation rather than on traveling time needed in field surveys.

III. PROPOSED METHODS

The developed AL algorithm follows the query-by-
committee (QBC) strategy, where the next sample is chosen
according to the maximum disagreement of an ensemble [14].
The random forest (RF) algorithm [33] is used to generate
tree ensembles with 500 fully grown trees. The disagreement
of the ensemble is quantified with vote entropy H , which is
computed as

H = −
∑

i=(0,1)

pi ∗ log(pi) (1)

where pi denotes the fractions of the trees voting for the
respective classes i ∈ {0, 1}. Here, only a binary classification
problem (0—nonlandslide; 1—landslide) is considered, but the
vote entropy can be easily extended to multiple probabilities in
a multiclass setting, and it has been suggested to normalize the
measure with respect to the number of classes [34]. It should
also be noted that other uncertainty measures can be used when
the learner is a probabilistic or large-margin-based classifier
[11]. Based on the notion of uncertainty, a simple strategy
would be to iteratively select the sample with the highest vote
entropy to be labeled by the user. However, since classifier
retraining is computationally expensive, it is generally desir-
able to query samples in batches, and for the aforementioned
reasons, it appears advantageous to focus labeling efforts on
compact spatial subsets of the area of interest.

A. Region-Based QBC (QBCR)

The problem of finding the most uncertain region W× on the
map is addressed by sliding window W with a desired window
size w (wx = wy) on entropy map MH to compute the mean
local vote entropy μH at each position (x, y), as expressed in

μH(x,y) =
1

w2

wx∑
i=−wx

wy∑
j=−wy

MH(x+ i, y + j). (2)

Fig. 1. Projection of the vote entropy values from (a) the centers of gravity of
the segments on (b) a regular search grid at four different resolutions. For the
example, the size of the search window was held constant at 100 m × 100 m
to illustrate the uncertainty of the location of W× at different search grid
resolutions.

In (2), i and j denote indexes on a regular raster grid. The
sliding window could be directly employed on the regular grid
of an input image if the classification process is performed
at the pixel level; however, with large images (> 1000×
1000 pixels), computation will be rather slow and will hinder a
near real-time user interaction. If learning and classification are
performed on the level of segments resulting from a presegmen-
tation of the image (see Section IV-B), image segments can be
represented by their centers of gravity, marking the spatial point
coordinates to which the entropy values of the segments are
assigned. For an efficient search of the local maximum, the cen-
ters of gravity are first projected onto a regular grid G (search
grid) with a certain grid cell size g (gx = gy) to compute the
mean entropy of all points per grid cell (see Fig. 1). The sliding
window is subsequently applied to the search grid to locate the
global maximum. Fig. 1(b) shows the effect of changing the res-
olution of the search grid at a constant search window size (w =
100 m) and illustrates the uncertainty in the position of the max-
imum, which typically is <= g/2. As a tradeoff between good
location accuracy and fast computation, we set g = 20 m except
for search window sizes w < 60 m, where g = w/3 was used.

Tests with finer search grids did not reveal any enhanced
learning performance. Based on this sliding-window method,
a region-based query function can be formulated to query, in
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each iteration, the labels of all samples contained in region
W× maximizing μH . The corresponding query function is
formulated as

W× = arg max
W∈MH

μH(W ). (3)

Subsequently, all samples with a center of gravity that is
spatially contained within W× are queried. For a binary classi-
fication, it is then convenient to ask the user to identify only the
positive examples and automatically assign all nonlabeled sam-
ples as negative examples. This method is further referred to as
QBCR and described in the pseudocode under Algorithm 1.
Note that step 4 creates a buffer around all W queried in
previous iterations to avoid querying previously labeled parts of
the image. The algorithm yields queries with high average un-
certainty of the samples within the batch but does not guarantee
that the queried samples provide complementary information.
In an extreme case, all samples in the batch can be highly uncer-
tain but carry largely redundant information. One of the key re-
quirements for batch-mode AL is, therefore, to enforce diversity
among the samples queried in each iteration [15], [18], [29].

Algorithm 1: QBCR

Inputs:
X1: Initial training set
n: Number of iterations
w: Size of the region/spatial-batch
U : Pool of unlabeled samples
g: Grid cell size of search grid G
Output:
Si: Set of unlabeled samples to be included in the training

set in each iteration

FOR i ≤ n DO
1. Train an RF with the current training set Xi

2. Use the RF to cast votes and compute the vote entropy for
each unlabeled sample s ∈ U

3. Project the location of all s ∈ U on regular search grid G
with a desired resolution g to compute μH with a sliding
window of size w

4. IF i>1 THEN Mask out all parts of G within a distance
< w/2 from any queried W in earlier iterations

5. Find region W× according to (3)
6. Query the labels for all samples Si contained within W×

7. Add all samples s ∈ Si to training set Xi+1 and remove
them from the unlabeled pool U

ENDFOR

B. Region-Based QBC Considering Sample
Diversity (QBCRD)

The combination of criteria for sample uncertainty and diver-
sity has already been addressed in SVM-based studies, using
clustering techniques to partition candidate sets of uncertain
samples and avoid sampling of redundant instances that fall
into the same clusters [18], [19], [35]. The spread of queried

Fig. 2. Example calculations of diversity measures σd and H× for two
candidate batches in a simplified 2-D feature space. Candidate batch B is
preferable since contained samples have a higher spread away from the already
known training points and provides a better representation of the boundary
between the two classes.

samples in the input space and along the separating hyperplane
is thereby increased, which leads to a better representation of
the data space and the decision boundary. For the region-based
query strategy developed in this work, the composition of the
batches is preconstrained by the coverage of the spatial window,
and the proposed clustering techniques are, therefore, not di-
rectly applicable. However, distance metrics used for clustering
can also be employed to directly measure the dispersion of
samples in feature space and thereby quantify the diversity of
the batch. To this end, two distinct measures are proposed. The
first one, which is formulated in (4), is σd, which represents the
standard deviation of the Euclidean distances ρk(X, c) between
each of the samples in the candidate batch (c ∈ Wm) and their
respective nearest training point (s ∈ X). Thus

σd =

√
1

|Wm| − 1

∑
c∈Wm

(
ρk(X, c)− ρk(X, c)

)2

. (4)

Here, |Wm| denotes the cardinality of the candidate set. In
general, a larger σd indicates a higher feature space spread
of the contained samples in relation to the already acquired
training data (see Fig. 2). The corresponding query function
formulated in (5) can be used to select the region with the
highest standard deviation out of m candidate batches. Thus

W× = arg max
Wm∈MH

σd(W
m). (5)

A second measure is the cross-entropy H× between the
training and the candidate set. The calculation of H× depends
mainly on the mean logarithmic distances of the samples in the
candidate batch (c ∈ Wm) to their k-nearest neighbors (kNNs)
in the training set (s ∈ X) and is defined as

H×(Wm, X)=log (vD|X|)−ψ(k)+
D

|Wm|
∑

c∈Wm

log ρk(X, c)

(6)

where vD is the volume of the unit ball in R
D, D is the number

of features, ψ is the digamma function, and |X| denotes the
cardinality of the training set [36]. The measure H× is proposed
here as a utility criterion to quantify the distinctiveness of the
samples in the candidate batch with respect to the already
available training data. The corresponding query function is
formulated as

W× = arg max
Wm∈MH

H×(Wm). (7)
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The implementation in [37] was used to compute H× for
each candidate batch setting k = 1. Fig. 2 illustrates that can-
didate regions with a higher σd or H× are generally preferable
since the contained samples yield a better exploration of previ-
ously undersampled parts of feature space.

To avoid the exploration of feature dimensions, which are
less relevant or even useless for the separation of the considered
classes, it is possible to constrain the distance computation to
only those features that are beneficial according to the current
model state. The RF algorithm offers an internal measure for
variable importance, which is based on the instances that are left
unconsidered [or out-of-bag (OOB)] in the bootstrap samples
used for the construction of the individual classification trees
[33]. The properties of different variants of this measure have
been analyzed in recent studies with artificial and real-world
data sets [38]–[40]. Here, the mean decrease in accuracy when
a variable is randomly permuted is adopted, since it is more
robust in the presence of many potentially correlated variables
[41]. Threshold ti is introduced to define the minimum variable
importance for which a feature will still be included in the
calculation of the kNN distances.

Algorithm 2: QBCRD

Inputs:
X1: Initial training set
n: Number of iterations
w: Size of the region/spatial-batch
m: Number of preselected candidate regions
ti: Minimum variable importance threshold for the

inclusion of a feature in the distance calculation
fun: Diversity function (5) or (7)
U : Pool of unlabeled samples
g: Grid cell size of search grid G
Output:
Si: Set of unlabeled samples to be included in the training

set in each iteration

FOR i ≤ n DO
1. Train an RF with the current training set Xi

2. Use the RF to cast votes and compute the vote entropy for
each unlabeled sample s ∈ U

3. Project the location of all s ∈ U on regular search grid G
with a desired resolution g compute μH with a sliding
window of size w

4. IF i>1 THEN Mask out all parts of G within in a distance
< w/2 from any queried W in earlier iterations

6. Find the m nonoverlapping candidate regions Wm accord-
ing to (3)

7. Select out of m candidate regions the final region W× that
maximizes the selected diversity function fun computed
on all features with a variable importance > ti

8. Query the labels for all samples Si contained within W×

9. Add all samples s ∈ Si to training set Xi+1 and remove
them from the unlabeled pool U

ENDFOR

Fig. 3. Learning curves of an RF classifier (average and standard deviations
over ten runs) in dependency of the size of the training set sampled (a) with
SPCOSA and simple random sampling and (b) with the pointwise AL scheme
(QBCP ) at different batch sizes.

In [18], [19], and [35], the criteria for uncertainty and diver-
sity are combined by preselecting a number of m candidates
with high uncertainty and by choosing among the candidates
the instances with the highest diversity. A similar method
is adopted in this work, whereas out of m nonoverlapping
candidate regions (Wm), the one with the highest diversity (σd

or H×) is selected for the final query. This algorithm integrates
criteria for uncertainty and diversity and from now on will be
referred to as QBCRD (Algorithm 2), where QBCRDσ and
QBC×

RDH are the two different versions depending on the
adopted diversity criteria.

C. Baseline Methods for Comparison

The ability of AL heuristics to reduce the annotation costs
is commonly assessed through comparison with simple ran-
dom sampling. Nevertheless, systematic or stratified sampling
designs are more frequently applied in remote sensing studies
since they usually yield more accurate estimates of environmen-
tal variables than simple random sampling [42]. A stratification
of the study area according to previously existing maps or
preliminary image analysis is often adopted to encourage a
representative sampling of all target classes. In cases where
it is difficult to obtain a priori information about the suitable
strata, sampling schemes that target a homogenous spatial
distribution of the sampling points can be applied without prior
information. An implementation of such a spatial coverage
sampling (SPCOSA) scheme has been recently proposed [43]. It
makes use of the k-means algorithm to divide a given area into
spatially homogenous clusters and provides additional points
at the most undersampled localitions. Fig. 3(a) indicates the
amount of performance increase of an RF classifier trained with
samples randomly derived and with SPCOSA and demonstrates
that SPCOSA is preferable to assess the effectiveness of AL
heuristics in the spatial domain.

The second baseline method used in this study is a simple
pointwise AL heuristic (QBCP ), which, initialized with just one
sample per class, queries in each iteration the unlabeled instance
with the highest vote entropy of the RF at each iteration. This
method is very similar to the query-by-bagging algorithm pro-
posed in [44], whereas the training of an RF involves not only
bagging but also random feature selection during the construc-
tion of each tree. Fig. 3(b) illustrates that QBCP run in batch-
mode yields only suboptimal results and that QBCP run with
single queries per iteration is the more interesting benchmark.
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Fig. 4. (a) Geoeye-1 image of the BRAZIL study site (01/20/2011) and
agreement rate of the landslide inventories of five experts. (b) Overall number
of clicks per expert (E1–E5). (c) Example landslide as outlined (white) by E1.
(d) Ikonos-2 image of the CHINA study site (06/01/2008) and the correspond-
ing single expert landslide inventory.

IV. STUDY SITES

The first study site (Brazil) used for the experimental evalua-
tion of the methods is located in the Serrana Mountains around
Nova Friburgo (Brazil) and extends over 10.5 km2. On January
11–12, 2011, the region was affected by heavy thunderstorms,
triggering thousands of shallow landslides [45]. The second
study site (China) is located at the eastern margin of the Tibetan
Plateau around Wenchuan County and extends over 36 km2.
On May 12, 2008, a Mw 7.9 earthquake occurred in the region,
triggering approximately 60 000 landslides [46].

A. Geospatial Data Sets

Geoeye-1 satellite imagery of the Brazil site was acquired
after the event on January 20, 2011 [see Fig. 4(a)] and before
the event on May 26, 2010. The ground spatial resolution of

Fig. 5. Variograms derived from 5% subsamples of the four bands of the
postlandslide image for (a) the BRAZIL data set and (b) the CHINA data set.

the data set is 2 m for the multispectral and 0.5 m for the
panchromatic bands. A further pre-event image with a coarser
resolution (30 m) was acquired by the Landsat 5 satellite on
September 4, 2010. A pre-event image that resembles optical
sensors with intermediate resolution (e.g., such as the current
SPOT-5 or the forthcoming Sentinel-2 [47]) was simulated
by resampling the Geoeye-1 image of May 26, 2010 to a
resolution of 10 m using bicubic interpolation. All images were
orthorectified using the ASTER Global Digital Elevation Model
[48, ASTER GDEM] with a spatial resolution of 30 m. Between
the pre- and post-event Geoeye-1 images, 22 tie points were
manually selected to update the rational polynomial function
(RPC) and thereby enhance the coregistration. The residual
root mean square error (RMSE) of the updated RPC model
was 14.7 m.

For the China site, Ikonos-2 imagery was acquired after the
event on July 1, 2008 [see Fig. 4(d)]. The ground spatial resolu-
tion of Ikonos-2 is 4 m for the multispectral bands and 1 m for
the panchromatic band. A pansharpened (1-m pixel resolution)
and orthorectified product with an expected geolocation RMSE
of 5 m is used. At both sites, a number of terrain variables
(slope, hillshade at the times of image acquisition, hydrological
flow direction, and the average distances to the mountain ridge
[47]) were calculated.

Using a semivariogram analysis with an exponential model
fit [49], it is possible to measure the spatial autocorrelation of
the gray values within the images and gain quantitative insights
into the spatial structure of the observed areas. Fig. 5 shows
that, depending on the spectral bands, the effective range of
the spatial autocorrelation varies between 93 and 245 m for
the Brazil data set and between 207 and 468 m for the China
data set. The significantly increased range of the autocorrelation
in the near-infrared (NIR) band is related to large vegetated
areas with relatively homogenous NIR reflectance, whereas the
reflectance in the visible bands captures changes in the surface
color with higher spatial frequencies. It provides an indication
for the minimum size of the sampling windows, which should
be sufficiently large to capture spatial variability beyond locally
autocorrelated characteristics. Note that only random subsam-
ples of the images (5%) were used for the semivariograms (see
Fig. 5); however, no significant changes were observed when
using different random subsamples.

In order to obtain reliable estimates of the performance and
variance of AL routines, it is typically necessary to repeat
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the routine several times with variable starting conditions.
Therefore, it is mostly not feasible to integrate user interaction
directly in the evaluation of AL algorithms, and most studies
rely on readily prepared ground truth data sets. It has, however,
been documented that landslide mapping by multiple experts is
subjected to considerable uncertainties [50], [51], and it is gen-
erally desirable to assess uncertainties of ground truth data used
for algorithm evaluation [52], [53]. To address this issue for the
Brazil data set, five alternative landslide inventories (E1–E5)
are independently prepared by five expert geomorphologists
through joint interpretation of the two available VHR resolution
images and the DEM.

Even in the absence of an ultimate ground truth, the avail-
ability of multiple-expert maps allows for the estimation of
a lower bound for the mapping error. Optimistically assum-
ing that the majority vote is correct, expert judgements that
contradict the majority vote can be regarded erroneous, and
the lower error bound can be estimated as a function of the
expert disagreement [52]. For the five expert inventories, a
lower error bound of 1.1% can be estimated for any of the five
maps. This low error rate applies to the full map and results,
to some degree, from the sparsely distributed landslide class.
A higher error rate of 16.1% results if only pixels marked by
at least one of the experts would be considered. To analyze
further the interexpert variability, the F-measure F , which is
not prone to class imbalance [54], was computed for each
pair of experts. The highest agreement between two experts
was indicated by F = 0.86 (and the lowest by F = 0.71).
Considering that a learning algorithm that perfectly predicts
the mapping of one expert would inevitably commit errors with
respect to the mapping of a second expert, the expert agreement
suggests an upper bound for the accuracy achievable with any
automatic method on this particular problem. In this context,
the uncertainty of each expert can be regarded as a type of
inherent stochastic noise [55], which cannot be fitted without
sacrificing the generalization to the maps of the other experts.
A possible strategy to reduce this type of noise would be to
combine the different ground truths (e.g., by majority vote).
However, this would also lead to positively biased classification
results in comparison to a real-world scenario where multiple
ground truths are typically not available.

In order to select one of the Brazil inventories for the experi-
ments, the number of clicks used by the experts is assessed and
compared as a proxy for the degree of detail of the mapping.
While it is generally difficult to assess the level of expertise, the
amount of clicks can serve as an indicator for the level of detail
and time investment by the expert. Fig. 4(b) illustrates that
the most clicks were used for the elaboration of inventory E1,
which was therefore chosen as a reference in the benchmarking
of the different AL heuristics. For the significantly larger China
data set, it was only feasible to obtain one reference landslide
inventory, which is displayed in Fig. 4(d).

B. Segmentation and Feature Extraction

The multiresolution image segmentation algorithm [56,
MRIS] was adopted, considering only spectral information of
the post-event images and equal weights for all spectral bands.

The region-growing algorithm comprises a scale parameter,
which is a threshold for the maximum allowed increase in
the segment’s variance during a merging operation. It has
been demonstrated that statistical methods can help constrain
the choice of the scale parameter for knowledge-based image
classification [57], whereas oversegmentation with a small scale
factor was found to yield higher classification accuracy in a
supervised framework [9]. Consequently, the scale parameter
was set to 20, corresponding to strong oversegmentation of
landslides and most other landscape features. For all segments,
a broad set of features describing the spectral characteristics,
texture, shape, topographic variables and contrasts to neighbors
are calculated. The object features are selected according to
previous studies on the object-oriented mapping of landslides
[9], [58]. Additional features, such as flow accumulation [59],
average distance to the ridge [60], mean contrast to neighbors
[61], and certain band ratios [62], are selected considering the
known prevalence of landslides in certain topographic positions
and typical spectral characteristics such as high contrast to
surrounding vegetated areas.

Only certain combinations of all available features are used
in the experiments to simulate typical scenarios of accessible
data sets (see Section V-A). The class membership of the
segments is assigned according to the maximum overlap with
the reference landslide inventory maps (E1 for the BRAZIL
data set). For the spatial queries described in the next sec-
tion, segments are represented by their center of gravity. The
segmentation results, the extracted features, and the R imple-
mentation of the methods are available at http://eost.unistra.fr/
recherche/ipgs/dgda/dgda-perso/andre-stumpf.

V. EXPERIMENTAL DESIGN

All experiments are carried out using the RF algorithm with
500 trees. To address class imbalance, stratified bootstrap sam-
pling [63] is used for the implementation of the region-based
methods so that each tree in the ensemble is built on a balanced
training sample. The advantages of this strategy are discussed
in Section VI-D. The number of maximum AL iterations is
defined before the start of each run, and each run is repeated
at least ten times with random seeds in order to estimate the
mean prediction accuracy values and standard deviations on the
unlabeled set. The initiation of each run is performed through
stratified random sampling in order to ensure the presence of at
least one example per class for the first iteration.

All segments of the data sets are labeled, and therefore,
learning can be performed on the full map. This is different
from the experimental designs of recent AL studies in remote
sensing, where the data sets comprised reference labels only for
subsets of the image [15], [17]–[19]. To avoid preconstraining
the pool and to provide the query function with access to the
full unlabeled pool, random prepartitioning of the data set into
an unlabeled pool and test set was also avoided. Instead, for
each iteration, the query functions move instances from the
unlabeled pool into the training set, and the test set error is
assessed on the full unlabeled pool of samples. For all exper-
iments, the test set error, the OOB error, the system runtime,
and the identifier of queried samples are recorded. In addition,
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Fig. 6. Expert labeling time for the Brazil data set with (a) marker-based
labeling of regions (N = 30) according to different window sizes and (b) with
pointwise labeling (N = 50). (c) Marker-based labeling times per segments
and pixels contained within each region.

the labeling time required by the user was experimentally
evaluated, as described in the next section. Altogether, this
permits the analysis of three important aspects of an AL system:
1) How often will the user be asked (number of iterations)? 2)
How long will it take the user to answer the query (labeling
time)? 3) How long will the user have to wait between the
queries (computational time)?

A. Labeling Time

The costs of field surveys are highly dependent on the
particular application and environmental conditions. It is con-
sequently difficult to estimate related costs a priori, and re-
peated field experiments that would be required to support the
development of an algorithm are not practical. However, for
many applications, sampling is based on image interpretation,
and the time requirement for image interpretation can be easily
assessed. Two alternative labeling strategies for image inter-
pretation are considered, one being the pointwise annotation
of individual samples queried by a pointwise AL method, and
the second being the annotation with a brush-like tool within
compact regions queried by a region-based AL method. To eval-
uate the required labeling time for both strategies, sequences of
post-event image subsets around points (N = 50) queried by a
pointwise AL strategy (QBCP ), and around regions (N = 30)
queried by a region-based AL method (QBCR) are presented
to a domain expert. For the labeling of regions, the expert is
provided with a brush-like marker tool with adjustable size
and asked to mark all the landslide area, assuming that the
unmarked area will be automatically assigned as background.
For the Brazil data set, the expert was asked to mark five nested
subsets (20, 60, 100, 150, and 200 m) of each displayed region
successively from the smallest to the largest nested subset [see
Fig. 6(a)]. The required annotation time for each region and
each of the respective subsets is recorded in order to assess

not only the overall time per region but also the relationship
between the window size and required time. For the China data
set, the experiment is performed at only one window size of
200 m. The choice of the window size is guided by the mean
effective range of the spatial autocorrelation as determined
through the semivariogram analysis in Section IV-B. For the
pointwise queries, labeling is performed with a single click,
signaling a positive or a negative example. For both labeling
strategies, the expert is given the possibility to zoom in and
out as needed, and the annotation time is recorded from the
moment the subset was displayed until the expert completed
the identification.

Fig. 6 provides a comparison of the labeling time for regions
and individual points in the Brazil data set. In both cases, the
probability density distributions of the labeling times show a
bimodal distribution [see Fig. 6(a) and (b)] that can be linked to
two categories of queries, namely, simple regions (unique ho-
mogenous land cover, no landslides) and more complex regions
(abundance of landslides, complex landslide boundaries).

B. Sensitivity Analysis for Different Sampling Window Sizes

Experiments on the Brazil data set are dedicated to analyzing
the effects of different window sizes on the performance of the
region-based AL heuristics and to compare their performance
with the pointwise query function and SPCOSA. Considering
the range of spatial autocorrelation, it can be assumed that
a sufficiently large window size would encourage the inclu-
sion of uncorrelated samples in one batch and, at the same
time, guarantee a distance between sampling regions beyond
the range of autocorrelation. In order to test this assumption,
the region-based AL heuristics (see Section III-A and B)
are tested at five different window sizes with edge lengths
w = {20, 60, 100, 150, 200 m}. The diagonals of these squared
windows range from 28.2 to 282.4 m and covered a distance
range in which relevant semivariance changes are observed
within the Brazil study site (see Fig. 5). The parameters for
the QBCRD heuristics that determine the number of candidate
regions and the minimum variable importance are kept constant
at m = 3 and ti = 0.01, respectively. For these experiments, a
stacked feature vector including object features from the pre-
and post-event Geoeye-1 imagery (see Table I) is used.

C. Sensitivity Analysis of Parameter Settings in QBCRD

Further experiments are carried out to evaluate the sensitivity
of the parameters that control the number of candidate regions
and the minimum variable importance for the calculation of
σD and H× within QBCRD. Four respective experiments are
dedicated to test the influence of the preselection of more
or fewer candidate regions with m = {2, 3, 4, 5}, keeping the
window size constant at an intermediate value of w = 100 m
and ti = 0.01. In a second setup, five different values of ti =
{0, 0.01, 0.02, 0.03} are tested, keeping the number of candi-
date regions and the window size constant at m = 3 and w =
100 m, respectively. Learning is performed with all features
from pre- and post-event Geoeye-1 images (see Table I) for
the Brazil data set, and each AL routine is repeated 30 times
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TABLE I
OVERVIEW OF THE DATA SETS RESULTING FROM IMAGE SEGMENTATION AND FEATURE EXTRACTION

TABLE II
OVERVIEW OF THE DIFFERENT TESTED POSTDISASTER

SCENARIOS AT THE BRAZIL STUDY SITE

starting from randomly seeded runs to assess mean prediction
accuracy values and standard deviations.

D. Performance on Different Data Sets

A final set of experiments is carried out in order to assess
the robustness of the proposed methods on different data sets.
These included tests on the China data set at a window size
of w = 200 m and a simulation of data scenarios typically
encountered in disaster response mapping using the Brazil data
set at a window size of w = 100 m. With the wide range of
operational and forthcoming steerable VHR satellites, postdis-
aster images with submeter resolution can be acquired within
hours after a given event. Pre-event images, contrarily, are
often only available in historical archives and from sensors with
coarser spatial resolution dedicated to long-term environmental
monitoring. In this context, four different scenarios of data
availability (see Table II) are evaluated. On the China data set,
tests were performed to compare SPCOSA, QBCP , QBCRμ,
and QBC×

RDH . The abovementioned experiments on the Brazil
data set already evaluated the performance of those different
methods, and hence, only QBC×

RDH and QBCRDσ are tested
to evaluate their robustness in the different scenarios. The
learning curves are averaged over 30 random seeded runs, and
the parameters for the diversity criteria are kept constant at
ti = 0.01 and m = 3.

VI. RESULTS AND DISCUSSION

A. Sampling Window Size

Fig. 7 depicts the outcome of the experimental comparisons
of the baseline methods (SPCOSA, QBCP ) and the proposed

region-based AL heuristics on the Brazil data set. For all tested
window sizes (w = {60, 150} are not displayed in Fig. 7), the
region-based queries generally yield steeper learning curves,
outperforming SPCOSA and pointwise query method QBCP

in terms of runtime, labeling time, and number of iterations.
The region-based algorithms query a significantly greater

overall number of samples and are computationally more com-
plex than pointwise queries, leading to longer runtimes per
iteration. However, since the overall number of iterations is
lower when querying a limited number of spatial batches,
significantly less overall computational runtime is required for
the same accuracy level [see Fig. 7(a)].

Multiplying the mean time requirements for pointwise label-
ing and marker-based labeling of regions [see Fig. 6(a) and (b)]
with the number of iterations, the time expenditure of a user of
the proposed methods is estimated. Fig. 7(b) shows that all three
region-based queries (QBCRμ, QBCRDσ, and QBC×

RDH)
yield steeper learning curves at all window sizes and result in
a reduction in labeling time compared with QBCP . Depending
on the window size, the average labeling time was reduced from
37.9% (w = 200 m) to 72.2% (w = 60 m) when comparing
the learning curves of QBC×

RDH to the pointwise heuristic
QBCP over all accuracy levels. At intermediate window sizes
(20 m < w < 200 m), these gains tended to be more important
(from 57.9% to 72.2%).

It is shown in Fig. 7(a) and (b) that at w = 200 m, the region-
based heuristics quickly reach a plateau, whereas QBCP ap-
proximates and slightly exceeds the same accuracy level in
later iterations. Consequently, the proposed methods still yield
important overall time savings in early iterations but provide
slightly lower final accuracy values when selecting a large
window size. This is probably because a large window size
(w = 200 m, diagonal = 283 m) significantly beyond the range
of spatial autocorrelation (143 m; see Fig. 5) does not help
increase the variance captured per query region. The fact that
the batch size (window size) cannot be arbitrarily increased
without sacrificing the performance of the AL model is consis-
tent with other studies using batch-mode AL with uncertainty
and diversity criteria on remote sensing data sets [18], [19]
and points toward a lower sample variance per batch when the
ratio between |X| and the number of model updates (iterations)
decreases.

Since larger sampling windows result in fewer iterations
and, consequently, lower computational runtimes, changing the
window size constitutes a tradeoff parameter that enables the
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Fig. 7. Learning curves for comparison between the baseline sampling methods (SPCOSA and QBCP ) and the proposed region-based queries (QBCRμ,
QBCRDσ , and QBC×

RDH ) on the Brazil data set for three of the five tested window sizes. Accuracy gains are plotted with respect to (a) the computational
runtime, (b) the labeling time derived by multiplying mean labeling times as detailed in Section V-A with the number of iterations, and (c) the number of iterations
(early iterations, including 20 additional runs for the estimation of mean and variance). The mean time reduction rate was computed over all accuracy levels as the
mean difference between the QBC×

RDH -curve and the nearest corresponding points on the QBCP -curve. For better visibility, the learning curves for SPCOSA
are only presented in the first column.

user to choose between more frequent labeling on small batches
(smaller window size) or accepting longer waiting times be-
tween the labeling of fewer larger and more time consuming but
fewer spatial batches (larger window size). In the experiments, a
good tradeoff was provided by w = 100 m (diagonal = 141 m),
which approximately coincides with the mean effective range
of the autocorrelation measured on the gray values of the image
bands (143 m; see Fig. 5).

Regarding performance differences between QBCRμ,
QBCRDσ, and QBC×

RDH , Fig. 7(c) shows the learning curves
for the early iterations from 30 random seeded runs. At the
smallest window size (w = 20) QBC×

RDH and QBCRμ yield

very similar learning curves, whereas QBCRDσ performs the
worst over the first 20 iterations. This suggests that σD be-
comes a less robust diversity measure when computed with
fewer samples in the training and candidate set. In addition,
QBC×

RDH appears to be more robust to changes in the window
size and outperformed QBCRμ and QBCRDσ, particularly at
w = {150, 200 m}.

On the one hand, the integration of an explicit diversity
criteria enables further reduction in the labeling costs, whereas
on the other hand, the higher computational complexity of
QBCRDσ and QBC×

RDH results in longer runtimes when
compared with the simpler QBCRμ heuristic [see Fig. 7(a)].
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Fig. 8. Learning curves on the Brazil data set for (a) and (b) QBCRDσ

and (c) and (d) QBC×
RDH in dependency of changes in parameters ti and

m compared with QBCRu at w = 100 m.

Fig. 7(c) also includes a comparison of the proposed region-
based methods (QBCRμ, QBCRDσ, and QBC×

RDH) with
QBCP and SPCOSA in terms of iterations. While it should be
kept in mind that comparison of region-based and pointwise
queries in this way ignores the different labeling and compu-
tational costs, it illustrates the considerably lower number of
queries sent to the user, which is an important issue for the
design of an AL system.

B. Influence of Parameters m and ti and m in QBCRD

Fig. 8 illustrates the performance of QBCRDσ and
QBC×

RDH on the Brazil data set according to changes in
the main parameters m and ti. The AL heuristic, which does
not consider the sample diversity (QBCRμ), marks the lower
bound of the obtained learning curves. This confirms that the
proposed diversity criteria are useful in further reducing the
labeling time in the early iterations of the training process.

Furthermore, it demonstrates that, within the evaluated pa-
rameter range, the performances of QBCRDσ and QBC×

RDH

are at least competitive with QBCRμ, no matter which values
are set for m and ti.

For the tested parameter values, both heuristics tend to per-
form better with a higher number of m candidate regions [see
Fig. 8(a) and (c)]. For the choice of ti, the results give no clear
indication that discarding features with low variable importance
yields any advantage. For QBC×

RDH , the best performance is
achieved using all available features in each iteration for the
computation of the cross-entropy (see Fig. 8(d); ti = 0.00).
This suggests the use of a simpler version of QBC×

RDH without
the computation of the variable importance and parameter ti.
However, the remaining experiments are carried out with the
default settings introduced above (m = 3; ti = 0.01) to not
positively bias the final results.

Fig. 9. Learning curves for the comparison of SPCOSA, QBCP , QBCRμ,
and QBC×

RDH on the China data set in terms of (a) computational runtime
and (b) labeling time.

Fig. 10. Comparison of the performance of (a) QBCRDσ and
(b) QBC×

RDH in the four different data set scenarios for the Brazil data set.

C. Performance on Different Data Sets

Outcomes of the evaluation of SPCOSA, QBCP , QBCRμ,
and QBC×

RDH on the China data set are presented in Fig. 9
and show a significantly better learning performance in terms
of runtime and labeling time of the proposed region-based
methods than SPCOSA and QBCP . In terms of labeling time,
QBC×

RDH reduces the required time (mean time reduction
over all accuracy levels) by 56% when compared with the
pointwise queries [see Fig. 9(b)] and outperform the purely
uncertainty-based QBCRμ method. QBC×

RDH also yields the
highest overall accuracy resulting in F = 0.76. Due to its
lower complexity, QBCRμ provides slight advantages in terms
of computational runtime [see Fig. 9(a)]. The performance
increase with the developed region-based methods is consistent
with the experimental results on the Brazil data set.

Fig. 10 displays the results of the two region-based AL
heuristics that integrate diversity criteria (QBCRDσ and
QBC×

RDH) when tested in the four different scenarios for
the Brazil data set. Unsurprisingly, both algorithms reach the
best performance when pre- and post-event images are VHR
(scenario 4). Degrading the pre-event images to a 10-m reso-
lution (scenario 3) yielded a rather small loss in accuracy (F-
measure), which was, on average, less than 1% beyond the
tenth iteration. The use of medium resolution (scenario 2) or the
complete absence of pre-event imagery (scenario 1), however,
led to a significant loss in accuracy, which was, on average,
5.5% and 5.7% beyond the tenth iteration.

Within the first ten iterations, QBC×
RDH yielded greater im-

provement (steeper learning curve) from scenario 4 to scenario 3
compared to QBCRDσ. This demonstrates that QBC×

RDH

heuristics exploit the additionally available data more
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Fig. 11. (a) Ratio of landslide and nonlandslide samples (β) in the training set queried with regular and stratified bootstrap sampling. Effects of class imbalance
with (b) regular bootstrap sampling and (c) stratified bootstrap sampling where the majority class is downsampled to the size of the minority class in each iteration.
The displayed results were obtained applying QBC×

RDH at w = 100 m on the Brazil data set but are representative for positive effects of stratified bootstrap
sampling observed in all experiments.

efficiently in the first iterations. Beyond the tenth iteration, no
significant performance difference between the two heuristics
could be noted. In general, the results suggest that both AL
heuristics (QBCRDσ and QBC×

RDH) remain efficient in re-
ducing labeling costs when using lower resolution pre-event
images or post-event images only. However, the achievable
overall accuracy decreases with coarser or missing pre-event
imagery due to general loss of information. Considering the
rather small losses in overall accuracy with the 10-m resolution,
pre-event images, and free access to such type of images in the
near future [47], scenario 3 appears as the most feasible for the
application of the proposed algorithm in practice.

D. Effects of Class Imbalance and Stratified
Bootstrap Sampling

Class imbalance is a frequent challenge for the application
and design of machine learning algorithms [54] and intrinsic
to landslide mapping where affected areas usually cover only
minor fractions of the landscape.

In certain cases, iterative resampling can be effective to
approximate a class balance in the training set that will lead to
a balance of user’s and producer’s accuracy on the test set [9].
The underlying assumption is that the training set was sampled
at random and, therefore, represents well the underlying class
distribution. However, this does not typically apply to a training
set obtained with an AL algorithm, since the queries are inten-
tionally biased toward the regions in feature space where class
overlap and class imbalance become less pronounced. It has
been previously reported that this bias typically yields a more
balanced training sample and can alleviate the class imbalance
problem [54]. Fig. 11(a) illustrates that this also applies in
our experiments, where the class imbalance in the queried
training sets is considerably lower than in the full data sets.
It is observed that the queries are particularly directed toward
regions with abundant occurrences of landslides, which must be
regarded as a positive attribute of the AL heuristics. Fig. 11(a)
also shows that class imbalance in the training set becomes
slightly higher when using stratified bootstrap sampling [63]
for the tree construction (all described experiments).

Fig. 11(b) displays the results of QBC×
RDH when using

regular bootstrap sampling, yielding a considerable bias toward
the nonlandslide class, an underdetection of the affected area,
and a relatively low producer’s accuracy. Integrating stratified
bootstrap sampling in the tree construction during the AL
iterations leads to convergence during the learning process and
provides a significantly higher F-measure than training with
the regular bootstrap sampling [see Fig. 11(c)]. The inversion
of the balance between user’s and producer’s accuracy when
stratified bootstrap sampling is applied can be explained by the
combined effect of queries and downsampling, which yields an
overrepresentation of the landslide class in the overlap region
of the two classes in feature space [64].

E. Spatial Distribution of Errors and Uncertainties

To investigate the causes of the remaining classification er-
rors, 40 iterations of QBC×

RDH are performed with the initially
chosen standard parameter settings (m = 3; ti = 0.01;w =
100 m) on the Brazil data set. The resulting landslide map
and related errors are displayed in Fig. 12(a). The spatial
batches queried during 40 iterations [see Fig. 12(c)] cover
0.4 km2 and correspond to 3.8% of the entire study area. The
achieved accuracy values [see Fig. 12(b)] are consistent with
the mean accuracy values estimated through cross-validation in
previous experiments, and F = 0.73 is above the lowest (F =
0.71) and below the highest (F = 0.86) interexpert agreement
rate. Assuming that all queried samples were correctly labeled,
the accuracy of the full map would be F = 0.81. In this context,
it is important to note that a pointwise labeled training set
contributes significantly less to the overall accuracy of the
entire map.

The obtained landslide map is used to analyze the distri-
bution of the classification errors in dependence of a few
factors that are suspected to favor misclassification, namely,
proximity to the landslide boundary, occurrence of shadows,
and certain terrain positions. Fig. 12(a) illustrates that errors
are clustered in certain regions and particularly along landslide
boundaries. This is illustrated through quantitative compari-
son of the frequency density distributions of the distances to
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Fig. 12. (a) Final map results for the Brazil study site after 40 iterations with
QBC×

RDH (m = 3, ti = 0.01, and w = 100 m). (b) Accuracy measure for
the classification of the test set and the full map, assuming that all queried
samples have been correctly labeled. (c) All 40 regions queried for training.

landslide boundaries of false positives (FPs), false negatives
(FNs), and all landslide samples [see Fig. 13(a)]. FNs con-
centrate along the boundaries of larger clearly visible land-
slides and, while introducing errors in the overall area, do not
typically hinder the detection of the respective landslides. On
the contrary, FPs are rather located some distant from actual
landslides.

The presence of shadows [see Fig. 13(b)] could not be clearly
related to an increased misclassification rate, whereas FPs had
a slightly higher object brightness related to infrastructure and
other anthropogenic features with high reflectance. Many of
such FPs are located in the upper parts of the slopes, whereas
FN errors display slight prevalence at the lower slopes [see
Fig. 13(c)].

Analogous to the ensemble vote entropy (1), the five avail-
able expert mappings [see Fig. 4(a)] enable the computation
of a map of the vote entropy of expert geomorphologists. The
vote entropy of the experts can be considered as a measure for
the uncertainty of the reference data, and it is interesting to
compare this inherent uncertainty with the uncertainty of the
RF classifier and the distribution of errors. Fig. 13(d) clearly
shows that image objects with high expert vote entropy are also

Fig. 13. Frequency distribution of classification errors for the map in
Fig. 12(a) in relationship to (a) the distance to the landslide boundary,
(b) the object brightness, (c) the distance to the most proximate ridge along the
slope, and (e) the vote entropy of the expert geomorphologists. (d) Relationship
between expert vote entropy and ensemble vote entropy.

much more frequently evaluated as uncertain by the classifier.
Fig. 13(e) complements this picture, showing that most of the
correctly classified objects coincide with areas of low expert
uncertainty, whereas FNs are particularly concentrated in areas
with high expert vote entropy. It can be inferred that the true
class of the latter is highly uncertain, and efforts to increase
classification accuracy for those samples will be prone to failure
because an improvement with respect to one expert map will
result in a performance decrease with respect to the opposing
opinion of another expert. On the contrary, more than half of the
FPs overlap with areas where all experts agreed [see Fig. 13(e)].
The fact that all experts agreed on those samples suggests
that they exploit relatively unambiguous image features in
their judgement, making those samples interesting candidates
for the design of enhanced object features. This group of
samples might also be more reliable to evaluate algorithmic
improvements since class membership does not depend on the
respective ground truth.

VII. CONCLUSION

This work was dedicated to the integration of spatial con-
straints in the design of an AL algorithm to avoid a spatially 
dispersed distribution of queried samples and consequently re-
duce the sampling costs for remote sensing applications. Using 
the RF classifier and the QBC framework, three different AL 
methods are proposed to select interesting regions rather than 
individual sampling points. The developed heuristics make use 
of criteria for sample uncertainty and diversity and are 
evaluated for landslide mapping for two reference data sets 
using mono- and multitemporal images from different satellite 
sensors. To address class imbalance, which is an inherent issue 
for landslide mapping and many other remote sensing appli-
cations, all region-based AL heuristics are implemented using 
stratified bootstrap sampling for the construction of individual 
trees in the ensemble. This strategy helps achieve significantly
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better balance between the user’s and the producer’s accuracy
and, furthermore, reduce the computational time for training
and classification.

The overall performance is quantified by accuracy gains
(F-measure) in dependency of the number of iterations, run-
time, and labeling time and compared with spatial coverage
sampling and a pointwise query function. The comparison
demonstrated that querying compact spatial batches signifi-
cantly reduced the required number of iterations and, therefore,
the labeling time and the computational runtime. The size
of the spatial search window can be regarded as a tradeoff
parameter that controls the size of the queried batches. A
semivariogram analysis is adopted to assess the range of the
spatial autocorrelation as an a priori estimate of potentially
suitable window sizes. A systematic assessment indicates that
region-based heuristics are efficient over a range of different
window sizes. More favorable results are achieved with window
sizes close to the mean effective range, whereas significantly
larger window sizes rather lead to performance decay.

Two of the proposed region-based AL heuristics combined
(QBCRDσ and QBC×

RDH) sample uncertainty with additional
measures to select the most diverse batch among uncertain can-
didate regions. Particularly in early iterations, they frequently
provide steeper learning curves than purely uncertainty-based
heuristics (QBCRμ). QBCRDσ and QBC×

RDH comprise two
tuning parameters, namely, the number of candidate regions m
and a variable importance threshold ti. The impact of param-
eter changes on the algorithm performance is tested through
experimentation showing that both algorithms benefited from
a higher number of candidate regions (m > 2), whereas the
omission of less important features (ti > 0.0) does not lead to
an enhanced performance. In terms of required labeling time,
QBC×

RDH provides the best performance (particularly in early
AL iterations), whereas the purely uncertainty-based QBCRμ

requires less computational time and provides competitive re-
sults (particularly in later AL iterations). In comparison to
pointwise queries, QBC×

RDH helps reduce labeling time by
56.0% on the China data set and by up to 78.2% on the Brazil
data set.

The results of 40 iterations of QBC×
RDH on the Brazil data

set are examined to gain a better understanding of the causes
and distribution of remaining errors. Querying 3.8% of the
study area for training provided a test set error of F = 0.73.
Remaining errors are found to be spatially clustered and partic-
ularly FNs concentrated at the boundaries of manually mapped
landslides. Although it is well understood that reference data
sets from experts and other sources typically bear considerable
uncertainties, their impact on the evaluation of image clas-
sification and feature detection still remains unconsidered in
most remote sensing studies [53], [65]. The availability of five
expert inventories at the Brazil study site enables comparison
of the uncertainty of the expert judgment with the uncertainty
of the classification and the distribution of remaining errors.
A strong positive relationship between expert and classifier
uncertainty is found as well as prevalence of FNs in areas where
experts disagreed, showing that the corresponding samples are
inherently difficult and should be considered as uncertain rather
than as real errors. This issue and the fact that the classifi-

cation accuracy already exceeded the agreement of the most
disagreeing experts suggest that further studies must address
uncertainties in the ground truth to achieve real enhancements
for similar types of problems.

The region-based AL methods reduce labeling time when
sampling through a visual interpretation of VHR images and
are also a valuable tool to guide field sampling surveys that
typically bear significantly higher costs for the analysis of
low- and medium-resolution images. The employed criteria
for sample uncertainty and diversity can be easily adapted for
applications to multiclass problems, and the use of the proposed
framework for applications such as land cover mapping could
be an interesting direction for further research.
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 Discussion	and	perspectives	2.5
 
It has been demonstrated that a combination of image segmentation, feature extraction, 
feature selection and supervised learning provides a generic framework for accurate landslide 
mapping in diverse environmental settings and with a great variety of VHR images from 
airborne and satellite systems. It was found that a small segmentation scale (over-
segmentation) is preferable to obtain high classification accuracies corroborating previous 
findings for land cover classification (Smith, 2010). A RF-based feature selection method 
allowed selecting the most relevant features and permitted to reduce the complexity of the 
machine learning model while yielding comparable or even higher classification accuracies. 
It is also noteworthy that image segmentation reduces the number of samples by two orders 
of magnitude (compared to the number of pixels) and thereby greatly reduces the 
computational complexity of training and classification. Specifically designed textural and 
topographic-based features were found to significantly improve the class separability. The 
developed stratified resampling scheme allowed compensating the biases resulting from 
inherent class-imbalances. 

A new AL heuristic was proposed which, contrariwise to previous approaches, 
considers spatial constraints on the sample selection, and costs in terms of labeling time. The 
developed region-based query function reduced significantly the labeling time required by the 
user when compared to point-wise queries, spatial-coverage sampling and random sampling. 
An evaluation of different scenarios in terms of data availability enabled to quantify the 
benefits of combining pre- and post-event VHR images (Lu et al., 2011, Appendix 1). A 
thorough assessment of the uncertainties of expert mappings reveals that the errors of the 
elaborated processing chain are not higher than the disagreement among multiple expert 
maps. 

 The experimental evaluation of different segmentation scales in this study suggests 
that over-segmentation provides higher accuracies when supervised learning is employed. 
Techniques for segmentation optimization with respect to the spectral variance of the 
resulting segments (Drǎguţ et al., 2010; Martha et al., 2011) provide no guarantee to enhance 
the class separability for supervised learning. However, exploiting labelled samples and user 
interactions also during the segmentation (Tuia et al., 2012; Kurtz et al., In Press, Appendix 
2) appears as a promising approach to extend the developed processing chain in the future.  

The employed set of object-based features was specifically designed for landslide 
mapping and has proven generic in a variety of different scenarios. Further enhancements 
could be achieved through the use of hierarchical object features based on multi-level 
segmentations and integration of auxiliary maps depicting land cover and geological units. In 
this context, the employed feature selection framework constitutes a versatile tool to evaluate 
the relevance of new features. Since the design of object-specific features requires 
considerable expertise and time, emerging approaches for unsupervised feature learning (e.g. 
Coates and Ng, 2012; Coates et al., 2013) appear as a promising approach to exploit the 
constantly growing archives of optical earth observation data. 

 The proposed AL heuristic is, in principle, ready for operational use but would benefit 
from a further optimization to reduce computational costs and the time lag for the feedback 
loops. Other high-performance parallel implementations of the Random Forest algorithm are 
now publicly available (e.g. Schwarz et al., 2010) and should be tested in this context. In a 
recent study, we observed that support vector machines (SVM) provided slightly higher 
classification accuracies (Lampert et al., In Review, Appendix 3) but comprise drawbacks of 
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initial tuning of the hyper-parameters and scale less efficiently than the RF algorithm to large 
datasets.  

The evaluation of the elaborated AL algorithm showed a significant reduction of the 
time required by the user for image interpretation and it can be expected that also sampling 
based on field surveys would benefit from the possibility to focus on a few relevant sampling 
areas rather than on hundreds of distributed points. Further efforts to take AL forward to 
practical remote sensing applications should consider the design and implementation of user-
friendly interfaces and experimental evaluations in the framework of field surveys. The AL 
algorithm described in 3.3 could be extended with strategies to optimize the initialization of 
the sampling (Pasolli et al., 2013) and compared with cost-functions that takes the road 
network and different modes of transport into account (Demir et al., In Press).  

Tests in real world applications should be addressed before further algorithmic 
developments since it may well turn out that the final accuracy and practical constraints (e.g. 
the point of departure in the field) are more important than gains of a few hours for the 
collection of the samples. Care should be taken to minimize the amount of free parameters 
that a potential user has to adjust, and to interact with experts in field surveys and image 
interpretation during the design of the system. 
  For reasons explained in 2.1, in this work, landslide mapping has been addressed as a 
binary problem. This is still an important limitation of the presented approach if inventory 
maps that comprise information about the landslide type or different landslide units are 
required. The RF algorithm is a multi-class classifier and hence directly applicable for the 
differentiation of multiple categories as long as training data for each class are provided. The 
features proposed in 2.3 and 2.4, however, would have to be extended and refined 
substantially to depict subtle differences among different landslide types. The problem is ill-
posed since many features that are relevant for the identification of particular landslide type 
cannot be exploited before the affected areas have been identified. Two- or multi-stage 
strategies that implement mapping and characterization phases in separate steps could help to 
resolve this issue, and the processing chains developed in this thesis could be used as the first 
mapping step. We also addressed this issue in a further study with a hierarchical top-down 
framework that is based on successive analysis of multi-resolution remote sensing images and 
provided promising results (Figure 2-3) for the delineation of landslide parts (i.e. source, 
transport zone, toe) (Kurtz et al., In Press, Appendix 2). 
 The RF and AL framework proposed in this chapter have been tested with multiple 
image types and topographic datasets. Significant accuracy gains were observed when 
combining pre-and post-event images and further enhancements can be expected through the 
integration of time series that could capture seasonal trends and long-term land cover 
changes. Medium resolution satellites (Landsat 8, upcoming Sentinel-2) provide free access 
to such time-series and could be integrated as additional spectral features in the proposed 
framework. Such an approach should consider radiometric and atmospheric corrections to 
assure consistency of the absolute values over time and might also benefit from similarity 
measures that take into account the temporal structure of the time series (Petitjean et al., 
2012). 

Finally, it has been demonstrated in this chapter that a combination of specifically 
designed object-based features and machine learning algorithms allows the mapping of 
landslide affected areas with accuracies that are comparable to the variance among multiple 
experts. Indeed the uncertainty of the image classification strongly correlates with the 
uncertainty of the expert mappings. Endeavours towards further enhancements should not 
neglect this issue. A subsequent study was conducted to quantify the effects of ground truth 
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uncertainty and evaluate different methods for combining multiple-expert annotations 
(Lampert et al., In Review, Appendix 3). It showed that the performance ranking of different 
detection methods depends to a large degree on the considered ground truth dataset and hence 
the performance of the expert who created it. Consequently, whenever possible, multiple 
ground truth datasets should be collected to assess the intrinsic variance of the mapping and 
thereby the maximum accuracy that can be expected from an automatic mapping. This is 
probably not feasible in practical applications (e.g. landslide mapping after major events) and 
uncertainty maps (e.g. vote entropy) resulting from the classification process can be used as a 
proxy to spatially visualize the quality of the landslide mapping. 

 

 
 
Figure 2-3: Exemplary results obtained with a top-down hierarchical image analysis approach for the 
delineation of different sub-parts of the La Valette landslide. Input images are from (a) LANDSAT 
TM (30 m), (b) RapidEye (5 m) and (c) an aerial survey (0.5 m). Classification results derived at (d) 
level 1, (e) level 2 (landslide delineation) and (f) level 3 (sub-part delineation) are shown. The 
accuracy (F-measure) of the classification was assessed against reference maps (g-h) elaborated by 
experts. The F-measures in brackets indicate the accuracies when the segmentation was learned at 
other landslides that occurred in the same geological setting and transferred to the La Valette 
landslide. 
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Synthesis of the research findings on landslide mapping at regional scales: 
 
Main results: The research presented in this chapter was dedicated to the creation of a 
generic image processing chain for accurate and rapid landslide mapping at the regional 
scale with VHR optical images. Particular emphasizes was given to the reduction manual 
labor and time requirements at the side of the user and the assessment of mapping 
uncertainties and errors. The elaborated processing chains combine algorithms for image 
segmentation, feature extraction, feature selection and supervised learning and their 
general applicability was validated with a broad set of VHR images at several different 
study sites. A variety of general and tailored object features was evaluated with an 
innovative feature selection method and helped to identify a broad set of features that are 
generically applicable for operational use. Developed stratified and active learning 
sampling schemes were shown to effectively compensate class-imbalance and reduce the 
need for training data significantly. Mapping errors of the elaborated processing chain are 
not higher than the disagreement among multiple expert maps and encourage their use for 
operational landslide mapping especially in the aftermath of intense triggering events. 
 
Perspectives: The developed processing chain currently addresses landslide mapping as a 
binary classification problem. The employed machine learning algorithms are suitable for 
multi-class classification and would enable the extension of the proposed framework for   
the differentiation of different landslide types. To allow a better exploitation of higher 
level object features multi-stage strategies differentiating detection and classification are a 
promising approaches. The feature selection method presented in this work is suitable for 
screening high-dimensional representations of the image data, whereas the possible range 
of relevant object features is still not fully exploited. Further attributes encoding high-
level image information and trends in satellite image time-series are likely to promote a 
further reduction of the mapping error. Unsupervised feature learning methods should be 
considered as a possible tool to facilitate the engineering of new features automatically 
from archived data. 
Our research demonstrated the significant impact of ground truth uncertainty on the 
evaluation of automatic image analyses methods and further investigations should 
quantify such uncertainties whenever possible. The definition of common standards for 
landslide inventory mapping and uncertainty measures should be targeted to ensure 
reproducible and comparable results among different study sites and investigations. 
The developed processing chain has a great potential to be used as an operational tool for 
landslide mapping but still requires some optimization of the computational efficiency 
(e.g. parallel execution), the design of a user friendly interface and tests in real-time 
applications. Care should be taken to minimize the amount of free parameters that a 
potential user has to adjust, and to interact with experts in field surveys and image 
interpretation during the design of the system. 
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3. Chapter	 3:	 Multi‐platform	 optical	 data	 for	
landslide	 monitoring	 and	 characterization	
at	the	local	scale	
 
 

 

Objectives: Dedicated image analysis techniques are required for the characterization and 
quantification of landslide kinematics and underlying mechanical processes at the local 
scale. The objective of this chapter is the development of processing chains for acquiring 
spatially distributed information on surface displacements and related surface features 
testifying the landslide activity. In this context, the domain-specific objectives are: 

 The generation of fissure maps from low-altitude aerial surveys to estimate 
landslide activity and enhance the understanding of the relationship between fissure 
formation, bedrock geometry and deformation in soft rock slopes; 

 The quantification of horizontal displacement fields from VHR satellite images to 
extend ground-based point-wise measurements; 

 The quantification of 3D surface displacement and transported volumes with 
terrestrial multi-view photogrammetry 

These objectives are tackled through the elaboration of three dedicated image processing 
chains applied to VHR satellites images, UAV images, and terrestrial photographs. More 
specifically, the technical objectives are to: 

 Develop a computer vision approach for the mapping of surface fissures in UAV 
image time-series; 

 Develop a processing chain combining spaceborne stereo-photogrammetry and 
Digital Image Correlation (DIC) to generate high-resolution surface models and 
measure the horizontal surface displacement of several active landslides; 

 Develop a processing chain to obtain multi-date dense point clouds and surface 
models from multi-view terrestrial photographs, as an alternative to the acquisition 
of LiDAR point clouds. 

 
Methods: The elaboration of the image processing chains in this chapter departs from 
existing algorithms for line detection, image segmentation, as well as hierarchical- and 
subpixel image correlation. A medical image analysis algorithm for the detection of blood 
vessels in the human retina is adapted for the detection of surface fissures and 
complemented with an OBIA heuristic to exploit high-level image information. Algorithms 
for bundle-block adjustment, hierarchical DSM extraction, orthorectification and sub-pixel 
image correlation are combined to measure surface displacement from VHR satellite 
images, and extended with a dedicated post-processing routine for image denoising. Based 
on open-source libraries for tie point extraction, bundle-adjustment and dense matching, 
three pipelines for the extraction of dense point clouds from terrestrial photographs are 
implemented. An innovative cloud-to-cloud change detection method is adopted to assess 
the quality of the resulting models against LiDAR scans and detect significant surface 
changes.
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 Landslide	 monitoring	 and	 characterization	 at	 the	 site	3.1
scale	
 
Surface displacement rates and the volumes involved are key parameters (1) to estimate the 
hazard associated with a specific landslide, (2) to complement long-term monitoring 
experiments for the determination of thresholds for early warning, and (3) to estimate the 
geometry and mechanical properties of unstable slopes. 
Most commonly used techniques for displacement measurements are in-situ instruments such 
as GNSS (Figure 3-1b), inclinometers, extensometers and crack-meters (Malet et al., 2002). 
The resulting time series can be correlated with other physical parameters such as pore water 
pressures and rainfall amounts (Figure 3-1c) and lead to a better understanding of the 
relationship between displacement and environmental triggering factors. 

Frequently used remote sensing techniques comprise Total Station measurements 
(Figure 3-1a), GB-SAR and TLS surveys. Several studies have also demonstrated the 
possibility to derive horizontal displacement measurements from optical satellite images and 
aerial photographs (Delacourt et al., 2004; Casson et al., 2005; Leprince et al., 2008; Debella-
Gilo and Kääb, 2012) and more recently also 3D displacement from SAR amplitude images 
(Raucoules et al., 2013). Currently those measurements are of limited use for the integration 
in long-term monitoring experiments (e.g. landslide observatories) because of coarse image 
resolutions resulting in low accuracies or long-time intervals between subsequent 
observations. However, with the latest generation of VHR optical satellites, observation 
intervals of only a few days and decimetre accuracy get into reach, and could complement 
point-wise in-situ measurements with spatially distributed information on the displacement 
field. 

Landslides typically feature complex 3D displacement and deformation patterns, and 
the displaced volumes can vary by several orders of magnitudes. The quantification of all 
displacement components and volumes of slope failures is consequently necessary to arrive at 
a comprehensive understanding of the underlying geomechanical processes. Monoscopic 
satellite images permit to recover the horizontal component of the displacement and 
photogrammetry with VHR stereo-pairs is currently limited to meter accuracy. TLS and ALS 
surveys permit to obtain dense surface representations (point clouds) with centimetre to 
millimetre accuracy and have become a frequently used technique (Jaboyedoff et al., 2010). 
Limiting factors for the application of LiDAR are still the relatively high cost of the 
equipment, the large data volumes that hinder fixed permanent installations and additional 
expenses if aerial surveys are desired.  

Terrestrial photogrammetry permits detailed 3D surface reconstruction and 
displacement measurements and several case studies have demonstrated the value of this 
technique for rock mass characterization (Sturzenegger and Stead, 2009b) and historical 
reconstructions of landslide evolution (Kaufmann, 2012). Recently, Travelletti et al. (2012) 
demonstrated that a fixed installation of a consumer-grade SLR camera permits to obtain time 
series of the 3D displacement field (Figure 3-1d) with intervals of only a few days. Resulting 
displacement fields permit a more detailed description of the spatial and temporal patterns of 
acceleration and mass accumulation than point-wise measurements, and thereby help to refine 
conceptual and numerical landslide models. With only one camera, the approach is not fully 
3D and still depends on the availability of frequently updated surface models but could be 
extended with stereo and multi-view camera setups. 
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Figure 3-1: Examples illustrating the diversity of displacement time series and fields derived from 
local monitoring systems. (a) Mean annual velocity of the la Clapière landslide between May 2003 
and January 2006 derived from Total Stations surveys (omiv.osug.fr), (b) XYZ displacement 
components of the Super-Sauze landslide from May to December 2011 with three permanent GNSS 
stations (http://eost.u-strasbg.fr/omiv/), (c) 7 day time series of displacement measurements derived 
with an inclinometer and comparison with time series of the pore-water pressure and melt- and rain 
water (Matsuura et al., 2008), and (d) displacement field of the Super-Sauze landslide for the period 
1–4 June 2008 derived from correlation of terrestrial photographs (Travelletti et al., 2012). 
 
Other indicators of landslide activity can be used in long-term observation experiments. For 
instance, in soft-rock slopes and sediments, the analysis of surface fissures may indicate the 
development of future failures (Krauskopf et al., 1939; Shreve, 1966; Chowdhury and Zhang, 
1991; Abramson et al., 2001; Khattak et al., 2010) and their observation and interpretation 
can contribute to a better understanding of the controlling physical processes (McCalpin, 
1984; Fleming and Johnson, 1989; Parise, 2003). Surface fissures also influence the sub-
surface slope hydrology which in turn affects the ground-water system and the kinematic 
response of the slopes (Malet et al., 2005; Krzeminska et al., 2009; van Asch et al., 2009). 
Maps of surface fissures and other deformation features (Figure 3-2) can be obtained by 
extensive field surveys either through the direct visual observation of the topography 
(Fleming et al., 1999; Meisina, 2006) or through the indirect measure of seismic wave 
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propagation in tomography setups (Grandjean et al., 2011). While Sowers and Roster (1978) 
stated that aerial photographs do not reach sufficient spatial resolution, the increasing 
availability of UAV surveys has changed this situation (Niethammer et al., 2011a).  

 

 
 
Figure 3-2: Maps depicting fissures at the right flank of the Aspen Grove landslide in (a) August 1983 
and (b) August 1984 (modified after Fleming and Johnson, 1989). The fissure pattern indicates shear 
stress and the evolution of two sub-parallel strike-slip faults at the boundary of the landslide. 

 
The domain-specific objectives of this chapter are: 
 The generation of fissure maps from low-altitude aerial surveys to estimate landslide 

activity and enhance the understanding of the relationship between fissure formation, 
bedrock geometry and deformation in soft rock slopes; 

 The quantification of horizontal displacement fields from VHR satellite images to 
extend ground-based point-wise measurements; 

 The quantification of 3D surface displacement and transported volumes with 
terrestrial multi-view photogrammetry 

 
The study sites investigated in this chapter are located in the South French Alps (Figure 3-3). 
Image processing chains are developed and tested in particular at three large landslides 
developed in clay-shales (Super-Sauze, La Valette, Poche) and monitored by the INSU 
Landslide Observatory OMIV (Observatoire Multi-Discplinaire des Instabilités de Versants). 
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Figure 3-3: Locations of the study site in the South French Alps and overview of the three landslides 
investigated in this chapter. 

 

 Image	 matching	 and	 feature	 detection	 for	 landslide	3.2
monitoring:	current	limitations	

 
The detection and extraction of linear features from digital images is probably one of the 
most fundamental problems addressed in the field of pattern recognition. First general 
approaches for edge detection have been proposed in the 1980s (Marr and Hildreth, 1980; 
Canny, 1986) but the detection of linear features remains an active field of research in many 
disciplines such as medical research (Fraz et al., 2012), earth science (Shao et al., 2011) and 
signal processing  (Lampert and O’Keefe, 2010). In particular the detection of blood vessels 
in images of the human retina has been studied intensively for many years now since the 
structure of the vessels is an important indicator for cardiovascular and ophthalmologic 
diseases and manual delineation of the fine vessel structures is a tedious and time-consuming 
task (Fraz et al., 2012). Also the detection and mapping of fine fissure structures depicted in 
UAV images would benefit from automated detection techniques that support visual image 
interpretation. However, the characteristics of UAV images and the surface fissures are 
significantly different from medical images depicting blood vessels and hinder a direct 
application of available detection algorithms. 
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Sub-pixel image matching algorithms have been developed and applied in many studies 
(Kääb, 2002; Delacourt et al., 2004; Casson et al., 2005; Leprince, 2008; Debella-Gilo and 
Kääb, 2011) to measure landslide surface displacement with airborne and spaceborne images 
(Figure 3-4). Theoretically DIC can yield sub-pixel accuracy but, image orientation, co-
registration, decorrelation and especially the accurate modelling of topographic distortions 
still pose several limitations and high demands on the quality of the input datasets (e.g. up-to-
date high-resolution topographic data, airborne stereo-pairs). 
 

 
 
Figure 3-4: North-south deformation map of the La Clapière landslide derived from image correlation 
of (a) an aerial and a Quickbird image (1999 and 2003) and (b) two aerial images between 1995 and 
1999. DC stands for decorrelation and marks areas where no significant measurement could be 
obtained (Delacourt et al., 2004). 
 
The latest generation of agile VHR satellites provide enhanced geolocation accuracy and 
capabilities for the acquisition of monoscopic and stereo images at shorter time intervals. 
Stereo-photogrammetry and orthorectification can be used to extract high-resolution surface 
models and distinguish the topographic component (parallax shift) from the surface 
displacement preceding sub-pixel image correlation. Such processing strategies have been 
explored with medium resolution satellite images and aerial photographs for measurements of 
displacement exceeding several meters. (Kääb, 2002; Delacourt et al., 2004; Casson et al., 
2005). One of the most agile and accurate satellite systems currently operational is the 
Pleiades constellation of the French CNES (Greslou et al., 2013) but its use for displacement 
measurements has not been explored yet. Limited knowledge about potential pitfalls, 
accuracies and the demands on ground control for the exploitation of resulting VHR images 
impedes further steps towards robust and precise operational tools. 

Several case studies have demonstrated the value of terrestrial photogrammetry to 
measure surface displacements of landslides (Cardenal et al., 2008; Fernández et al., 2012; 
González-Díez et al., 2013) or rock glaciers (Kaufmann, 2012). Applications for the 
characterization of rock masses were also developed (Sturzenegger and Stead, 2009b, a). 
However, the proposed methods are often very case specific, and require significant expertise 
and manual intervention. As a consequence multi-date applications are difficult and the time 
lag between two observations is often more than one year. 
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Progress in computer vision and photogrammetry have recently converged in a new class of 
algorithms (e.g. Hirschmuller, 2008; Snavely et al., 2008; Deseilligny and Clery, 2011) that 
greatly simplify the surface reconstruction from multiple optical images. Those new 
algorithms and techniques are commonly referred as Structure-from-Motion (SfM) and 
Multi-View Stereo-photogrammetry (MVS) and have already been implemented in a number 
of commercial, open-source and web-based processing tools. Several geoscience researcher 
have already employed commercial and open-source implementations  (Westoby et al., 2012) 
focusing mainly on the processing of UAV images. However, possible benefits of those new 
tools for landslide monitoring with terrestrial photographs have not yet been explored and the 
accuracy and limitations of different processing pipelines are poorly understood. 
 To address these current limitations for displacement measurements and mapping of 
surface features, the technical objectives of this chapter are to: 

 Develop a computer vision approach for the mapping of surface fissures in UAV 
image time series; 

 Develop a processing chain combining spaceborne stereo-photogrammetry and 
Digital Image Correlation (DIC) to generate high-resolution surface models and 
measure the horizontal surface displacement of several active landslides; 

 Develop a processing chain to obtain multi-date dense point clouds and surface 
models from multi-view terrestrial photographs, as an alternative to the acquisition of 
LiDAR point clouds. 
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 Characterization	 of	 landslide	 dynamics	 through	 image‐3.3
based	 mapping	 of	 surface	 fissures	 from	 low‐altitude	 aerial	
surveys	for	the	investigation	
 

 
 
This section describes the development and application of an image processing chain to 
detect and map landslide surface fissures at the surface of slow-moving landslide from multi-
date low-altitude aerial surveys. The implemented processing chain exploits low-level image 
information with Gaussian-matched filters and morphological filtering with an OBIA post-
processing routine that take into account higher-level image information, topographic data 
and the formative mechanical processes. Five images recorded with UAVs and other aerial 
platforms over a period of four years are analysed and the resulting fissure maps are 
compared to expert mappings in terms of area, density, and orientation for accuracy 
assessment. It is found that the proposed processing chain produced relatively few false 
positives and true positive rates up to 65%. The analysis is further extended for mappings on 
the slope scale and permitted to establish relationships between an increased fissure density 
and increasing displacement rates. The multi-temporal analysis shows that the similar fissure 
patterns recurrently emerge at the same positions indicating stress patterns that closely 
correlate with the geometry the underlying stable sliding surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This section is based on: Stumpf, A., Malet, J.-P., Kerle, N., Niethammer, U., Rothmund, 
S., 2013. Image-based mapping of surface fissures for the investigation of landslide 
dynamics. Geomorphology 186, 12-27, 10.1016/j.geomorph.2012.12.010. 
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The development of surface fissures is an important indicator for understanding and forecasting slopemovements.
Landslide investigations therefore frequently include the elaboration and interpretation ofmaps representing their
spatial distribution, typically comprising intensive field work and instrumentation. It is only recently that aerial
photography with sub-decimetre spatial resolution is becoming more commonly available and opens a window
to analyse such features from a remote sensing perspective. While these data are in principle helpful to elaborate
maps from image interpretation techniques, there is still no image processing technique available to extract
efficiently these geomorphological features. This work proposes a largely automated technique for the mapping
of landslide surface fissures from very-high resolution aerial images. The processing chain includes the use of
filtering algorithms and post-processing of the filtered images using object-oriented analysis. The accuracy of
the resulting maps is assessed by comparisons with several expert maps in terms of affected area, fissure density
and fissure orientation. Under homogenous illumination conditions, true positive rates up to 65% and false positive
rates generally below 10% are achieved. The resulting fissure maps provide sufficient detail to infer mechanical
processes at the slope scale and to prioritize areas for more detailed ground investigations or monitoring.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Observations of features and structural patterns of earth surface
landforms can reveal information on the origin and mechanisms
controlling the geomorphological processes. Structural geology and
geomorphology have developed comprehensive concepts to delin-
eate geomorphological units and structure types from remote sensing
images, and infer about mechanical processes without necessarily
measuring displacement, deformation or the applied forces directly
(Melton, 1959; Davis and Reynolds, 1996; Passchier and Trouw,
2005; Pollard and Fletcher, 2005). Surface discontinuities observed
in rocks and sediments have proven to be valuable indicators of the
deformation history and stress pattern of the slope. For landslide
analysis, their observation and interpretation can contribute to a
better understanding of the controlling physical processes and help
in the assessment of the related hazards (McCalpin, 1984; Fleming
and Johnson, 1989; Parise, 2003). In hard-rock slopes, the analysis
of structural discontinuities (faults, bedding planes, joints, and frac-
tures) allows us to characterize potentially unstable areas (Hoek
and Bray, 1981; Matheson, 1983; Priest, 1993; Selby, 1993; Günther
et al., 2004; Jaboyedoff et al., 2004; Glenn et al., 2006). In soft-rock
slopes and sediments, the analysis of surface fissures may indicate
the development of future failures (Krauskopf et al., 1939; Shreve,
alet).

l rights reserved.
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1966; Chowdhury and Zhang, 1991; Abramson et al., 2001; Khattak
et al., 2010) and is often considered as a geo-indicator of the activity
stage of a landslide. In sediments, the surface fissure characteristics
also influence water infiltration and drainage, which in turn affect
the ground-water system and the kinematic response of slopes to
hydrological events (Malet et al., 2003, 2005a; van Asch et al., 2009).

Maps of surface deformation features can be obtained by extensive
field surveys either through the direct visual observation of the topogra-
phy (Fleming et al., 1999; Meisina, 2006) or through the indirect mea-
sure of seismic wave propagation in tomography setups (Grandjean et
al., 2011; Bièvre et al., 2012). Relatively large fissures on landslides may
also be discernible in Very-High-Resolution (VHR) spaceborne images
(Glenn et al., 2006; Youssef et al., 2009), but typically, those structures
reachwidths in the decimetre-range and at present only airborne photo-
graphs provide sufficient detail for their detection in the centimetric
range. Recent studies (Eisenbeiss, 2009; Niethammer et al., 2011a)
have shown that VHR images acquired from unmanned aerial vehicles
(UAVs) are cost-efficient data sources for the monitoring of landslide
surfaces with sub-decimetric image resolution. Especially small UAVs
with payloads below 5 kg and operating altitudes below 2000 m are
expected to be employed much more frequently in coming years (Frost
and Sullivan Co., 2007) thoughmore specific regulations for their opera-
tional use are being discussed at national and international levels (Prats
et al., 2012; Watts et al., 2012).

Visual interpretation of VHR imagery is a classical method in geo-
morphology, but it remains subjective, and rather impractical for
 -
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repetitive observations or the inspection of large areas. An increasing
number of studies therefore targeted the development of automated
techniques to extract relevant features from imagery (Graham et al.,
2010; Martha et al., 2010; Stumpf and Kerle, 2011). Although the
detection and extraction of linear features is a fundamental operation
in digital image processing (Quackenbush, 2004; Mendonca and
Campilho, 2006; Papari and Petkov, 2011), relatively few studies have
explored the application of automatic approaches for the mapping of
geomorphologically relevant linear features (Baruch and Filin, 2011;
Shruthi et al., 2011).

Considering the increasingly widespread availability of sub-
decimetre resolution images from UAVs and other airborne platforms,
this study targeted the development of a semi-automatic image analysis
technique to support geomorphologists in the detection, mapping and
characterization of landslide surface fissures from VHR aerial images.
In this context, the term “semi-automatic” expresses that the technique
requires user input to be adapted for different image types and environ-
mental settings. The developed method is based on a combination
of Gaussian directional filters, mathematical morphology and object-
oriented image analysis (OOA) and was tested on a set of multi-
temporal VHR images acquired at the Super-Sauze landslide (southeast
French Alps). The obtained results were compared tomanual mappings
carried out by experts combining image interpretation and field
surveys.

2. Types of surface fissure observed on landslides

Detailed observations of landslide surface fissures were provided by
Krauskopf et al. (1939) who adapted analogies from structural geology
for their interpretation and distinguished between strike–slip struc-
tures, normal faults, graben structures and compression structures. In
addition, Ter-Stephanian (1946) noticed the mechanical significance
of surfacefissures and elaborated a classification scheme relatingfissure
morphology and location within the landslide mass to corresponding
mechanical processes. This included a first-order differentiation be-
tween upper extension, side friction, central compression, and lower
creep-on cracks. Although some authors used similar classification
schemes (Bombard, 1968), the adopted terminology varies among
different authors and affected lithologies (Fleming and Johnson, 1989;
Cruden and Varnes, 1996; Fleming et al., 1999; Walter et al., 2009),
and the terms crack and fissure are often used synonymously to refer
to a variety of surface discontinuities.

Here, fissure is adopted as a generic term for open fractures on the
topographic surface of a natural slope. At first instance, transversal, lon-
gitudinal and diagonal fissures are distinguished according to their main
orientation axes relative to the dip of the slope. This terminology can be
used ad hoc to classify fissures solely based on geometric properties
observed in the field or in an image. A more refinedmechanical classifi-
cation such as provided in Ter-Stephanian (1946)will generally require
considerations of the fissure patterns, the involved material and the
local geometry of the slip surface. The term crack is used in this manu-
script when referring to genetic processes described within classical
fracture mechanics (Anderson, 2005). It should be noted that the term
crack is also often adopted to refer to shrinking–swelling induced
fractures (Malet et al., 2003) which are not the objective of this study.

Classical fracture mechanics postulates tensile opening, sliding and
tearing as the three basic modes for crack propagation (Fig. 1a). The
concept has been developed for brittle material but is also adopted to
explain fracturing of plastic materials at high deformation rates
(Schulson and Duval, 2009). Surface fissures may develop from a
combination of all three modes, whereas in practice, considering the
relatively low tensile fracture toughness of most geomaterials
(Backers, 2004; Ke et al., 2008; Schulson and Duval, 2009), tensile
fracturing can be expected to dominate the formation of fissures at
the free surfaces of a landslide. However, interpreting tension cracks
as a direct indicator for a purely tensile stress regime may often fall
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too short. In fact, tensile fracturing may also result from relaxation of
tensile stresses that originate from deformation induced by shearing
and compression as well (Wang and Shrive, 1995). A mechanical inter-
pretation and classification of the fissures must therefore consider the
fissure pattern, material and landslide geometry.

Fig. 1b–d illustrates three typical fissure patterns that are fre-
quently used as geoindicators of specific deformation processes in
the above-cited studies. One commonly observed example for such
patterns is the formation of en-echelon fissure arrays (Fig. 1c), often
also termed Riedel shears (Riedel, 1929). They accommodate tensile
stress and shear stress typically resulting from shear in the bounding
zone of blocks moving with different displacement rates. Certain pat-
terns such as arrays of transversal fissures (Fig. 1b) are typically asso-
ciated with tension in the steeper upper slopes, whereas fissures
resulting from compression and lateral extension (Fig. 1d) are more
typically associated with gentler slopes in the transit and accumula-
tion zones of landsides (Sowers and Royster, 1978). For landslides
with a complex geometry, the position of those fissure patterns
may however deviate considerably from this simple scheme
(Niethammer et al., 2011a).

3. Study site and data

The Super-Sauzemudslide is an active slow-moving landslide located
in the Barcelonnette Basin in the Southern French Alps (Fig. 2) that
developed in weathered black marls in the 1960s, and features highly
variable displacement rates (from 0.01 to 0.40 m·day−1) controlled by
the local hydrological conditions (Malet et al., 2005a). The landslide
measures 950 m from the main scarp to the toe, and is up to 150 m
wide. The moving mass has a clay-rich matrix containing up to 30%
coarse gravel as well as larger boulders and blocks (Malet et al.,
2005a). The surface displays the signs of deformation in the form of
ridges, bulges, lobes and fissures but also markers of surface erosion
such as rills and small gullies. Unlike surrounding stable areas the land-
slide surface is largely bare and only at a few locations, especially at its
toe, cushion plants form small vegetation patches. Fissure widths of
0.01–0.40 m, lengths of more than 1.0 m and depths of up to 1.5 m
(Espinosa, 2009) can be observed in the field (Fig. 4b). During the last
15 years, the landslide has been investigated through numerous moni-
toring campaigns including in-situ geophysical measurements, terrestri-
al and airborne LiDAR (light detection and ranging) and the acquisition
of VHR optical imagery. In the VHR airborne optical images, the fissures
can be recognized as dark curvilinear structures (Fig. 2c–e) as soon as
their width approaches one pixel in size. Previous studies (Malet, 2003;
Niethammer et al., 2011a;Walter et al., 2012) already discussed relation-
ships between the observed fissure patterns (Fig. 2c–e) and strain
resulting from a spatially heterogeneous displacement field and interac-
tions between moving mass and the stable bedrock. However, a full
reconstruction of the complex bedrock geometry that may allow for a
more detailed characterisation of the underlying deformation mecha-
nisms has been conducted only recently (Travelletti and Malet, 2012).

3.1. Airborne acquisitions of VHR optical imagery at the Super-Sauze
landslide

Between April 2007 and October 2009, diverse imaging systems
and airborne platforms were used to acquire VHR images of the land-
slide at five different dates (Fig. 3). In July 2008, October 2008, and
October 2009, a low-cost UAV system equipped with compact camera
was operated at flight heights between 100 and 250 m yielding im-
ages of the surface with a ground resolution between 0.03 and
0.10 m. The individual images were corrected for barrel lens distor-
tion, rectified according to ground control points (GCPs) measured
with differential GPS (DGPS), and finally merged into one large
orthomosaic. Further details on the image acquisition and processing
were provided by Niethammer et al. (2010, 2011b) who quantified
 -



Fig. 1. Generic types of surface fissures and their typical spatial occurrence within a landslide mass. (a) Modes of fracture propagation: mode I (opening), mode II (sliding) andmode
III (tearing). (b) Fissures developing predominately in mode I and resulting from tensile stress. (c) Fissures developing predominately in mode I and resulting from shear stress.
(d) Fissures developing predominantly in mode I resulting from compressive stress and lateral expansion. (e) Division of a landslide mass (Sowers and Royster, 1978).
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the residual positional error (x–y) for the October 2008 images with
0.5±0.57 m within the boundaries of the sliding area. The UAV
images for July 2008 and October 2009 are expected to provide better
positional accuracies because they were orthorectified using eleva-
tion models that were generated from a photogrammetric analysis
of the images.
Fig. 2. Oblique view of the Super-Sauze landslide combining a hillshade image derived from
(hashed black line), transport and accumulation zone (black outline), and area of interest for
ridges, (c) longitudinal fissures, (d) diagonal fissures at the boundary of the active part, an
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During the two airborne LiDAR surveys in May 2007 and July 2009
(see Section 3.2), two orthomosaics of optical images with full cover-
age of the landslide were recorded using medium format cameras
(Fig. 3) mounted on, respectively an airplane and a helicopter. The
surveys used fully integrated systems for direct georeferencing and
orthorectification with LiDAR surface models (see Section 3.2),
an airborne LiDAR DTM (July 2009) and a UAV image (October 2008). (a) Main scarp
the multi-temporal analysis (white square). UAV image subsets show (b) compression

d (e) and transversal fissures.
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Fig. 3. Subsets of orthophotographs (see location in thewhite bounding box in Fig. 2a) acquired at five different dates with details of the acquisition systems and image ground resolutions.
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which in general provide sub-decimetre positional accuracy in the
x–y plane (Vallet, 2007).

For the study presented here, additionally 60 homologous tie
points on stable areas were manually selected in the available images
and showed a mean relative alignment error of 0.76±0.82 m among
the different acquisitions.

Further details on the adopted camera systems and the resolutions
of the images resulting from the five surveys are summarized in Fig. 3.
The figure also illustrates the considerable radiometric differences
among the five images originating from illumination changes, seasonal
variations and the distinct characteristics of the sensors. The scenes for
May 2007, October 2008 and October 2009were acquired under cloudy
conditions with diffuse sky radiation and consequently show a more
homogenous illumination of the surface. The scenes for July 2008 and
July 2009 in contrast were recorded under sunny sky yielding strong
contrast and many cast shadows. The latter are more prominent in the
image for July 2008 which was recorded in the morning hours, at a
relatively low sun angle. Although available methods for absolute and
relative radiometric correction can be employed for the radiometric
alignment of satellite images (Hong and Zhang, 2008; Vicente-Serrano
et al., 2008), to the best of our knowledge, no approach exists to accu-
rately align the radiometry of sub-decimetre images from different sen-
sors,with substantial changes in illumination, a complex topography and
changing surface characteristics. Initial test using histogram-matching,
linear-regression (Schott et al., 1988) and iteratively re-weighted regres-
sion (Canty and Nielsen, 2008) did not provide satisfactory results. Con-
sequently, no radiometric normalization was performed and the image
analysis technique was designed and tested with radiometric diverse
imagery.

In order to calibrate adjustable parameters of the detection algo-
rithm to the targeted fissures and the variable scene characteristics,
the processing was first tested on a subset of the terrain covering
~14,000 m2 in the central part of the landslide (Figs. 2a and 3). This
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section was characterized by different fissure patterns and recorded
during all surveys (including July 2008 and October 2009 which did
not yield full coverage of the surface). Subsequently, the developed
workflow was applied on the full scenes for a comprehensive map-
ping and analysis of the fissure distribution. Corresponding results
for the full extent of the Super-Sauze landslide and their mechanical
significance are discussed in Section 5.2.

3.2. LiDAR DTM

Two airborne LiDAR surveys were conducted in May 2007 and July
2009, respectively. The first survey used a Riegl LMS-Q560 laser scan-
ner mounted on an airplane flying 600 m above the ground and
resulted in a mean point density of 0.9 pts m−2 after vegetation fil-
tering. The residual 3D positional error of the ground points was
quantified as 0.12 m. The second survey was conducted with a Riegl
Q240i laser scanner mounted on a helicopter and after vegetation
filtering resulted in a mean point cloud density of 3.2 pts m−2. The
residual 3D positional error of the ground points was 0.07 m. Contin-
uous surface rasters with a pixel size of 0.5 m were interpolated from
the respective point clouds using Delaunay triangulation. The
resulting surface was then adopted for the extraction of the principal
hydrological drainage lines.

3.3. Reference datasets: expert maps of surface fissures

Reference mappings of the fissure characteristics (type and distri-
bution) were elaborated by an expert geomorphologist familiar with
the study site. The fissures were first identified on-site during a field
survey carried out in October 2009 at the same time as the acquisition
of the UAV images. The position of the fissures was mapped using a
dGPS survey and terrestrial photographs. Then image interpretation
rules were defined to identify and digitize the fissures on the images
 -
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as polyline vectors using a 2D view and at a scale of 1:250. The image
interpretation rules were then applied to the four other images in
order to elaborate an expert fissure map for each date. The resulting
five maps were adopted as a reference to assess the performance of
the semi-automatic method.

4. Image processing methods

While first generic edge detection operators were already proposed
in the 1980s (Marr and Hildreth, 1980; Canny, 1986), the extraction of
linear features from imagery remains a challenging task in many disci-
plines such asmedical research (Mendonca and Campilho, 2006), earth
science (Shao et al., 2011; Shruthi et al., 2011) or signal processing
(Lampert and O'Keefe, 2011). For our focus, the specific challenges
posed for an automation of fissure detection can be summarized as
follows:

• The approach should be scalable to apply for variable fissure sizes
and image resolutions, and as insensitive as possible to variable ra-
diometric image characteristics;

• The technique should not respond to edges but enable the detection
of dark curvilinear structures that may be oriented at any direction.
Classical techniques such as Sobel operator and the Canny detectors
(González and Woods, 2008) have been designed specifically for
edge detection and are not directly applicable;

• The complex micro-topography, the presence of rock blocks and
gravels as well as small patches of vegetation yield highly textured
images. Consequently, the approach should enable us to smooth out
spurious signals from the noisy background while still retaining
small partially disconnected linear features of interest. Contextual
scene information should be taken into account to resolve ambigu-
ities of the local features.
Fig. 4. Images of surface fissures. (a) Subset (see extent in Fig. 3) of the UAV image from Octo
approximated with Gaussian curves. (b) Field photograph taken in October 2009.
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Considering these challenges, a processing workflow including
three main stages was developed. Firstly, a set of scalable Gaussian fil-
ters is applied to detect fissure candidates and suppress responses at
edges. Secondly, a set of morphological filters is used to close small
gaps along the extracted candidates. Thirdly, an object-oriented pro-
cedure is followed to eliminate some of the false positives exploiting
higher-level scene information with contextual rules.
4.1. Stage 1: extraction of fissure candidates using a Gaussian matched
filtering algorithm

A particularly well-studied example for the detection of dark curvi-
linear structures is the extraction of dark blood vessels in photographs
of the human retina. Based on the observation that the cross-profiles of
the vessels resembles a Gaussian distribution, Chaudhuri et al. (1989)
proposed the use of a matched filter (MF) that is essentially a Gaussian
convolution kernel subtracted by its own mean value. As illustrated in
Fig. 4a, the cross-sections of surface fissures can be approximated with
a Gaussian distribution and an MF scaled to the size of the fissure will
give a peak response when crossing the fissure at an angle of approxi-
mately 90°. Because the MF still yields errors such as false detections at
step edges (Fig. 5a, c) numerous extensions (Hoover et al., 2000; Sofka
and Stewart, 2006) and alternative approaches (Mendonca and
Campilho, 2006; Soares et al., 2006) have been developed. Recently,
Zhang et al. (2010) proposed modification to the original MF filtering
approach integrating a first order derivative of a Gaussian function
(FDOG) to locally adapt the thresholds separating dark lines from
non-target features. Compared to other state-of-the-art algorithms
their approach provided competitive accuracies while being a compu-
tationally efficient and hence easier to apply on the large images
resulting from VHR remote sensing.
ber 2008 showing typical fissure patterns and (I–IV) grey-value profiles (green channel)
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Fig. 5. Illustration of the principles of the Gaussian filtering for (a–c and f–h) a simpli-
fied 1-D case, (d and i) a 3D visualization of 2D filters and (e and j) the filter responses
for the image subset in Fig. 4a. See text for details.
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For this study, a similar approach was implemented in ENVI-IDL
4.8 (ITT Visual Information Solutions). The algorithm and its parame-
terization are detailed below.

The MF is a two dimensional kernel defined in the x-direction by an
inverted Gaussian profile (Fig. 5b), and in the y-direction by replicates
of the same profile (Fig. 5d). It may be denoted as:

MF ¼ g x; y;σð Þ ¼ − 1ffiffiffiffiffiffi
2π

p
σ
e

x2

2σ2

� �
−m; for xj j ≤ 3σ ; yj j ≤ L=2 ð1Þ

where σ denotes the standard deviation of the Gaussian functions and
relates to the width of the targeted feature. To centre the kernel on
zero, it is subtracted by its own mean m. The extent of the kernel in
the x-direction is typically constrained to 3σ, whereas L defines the ex-
tent of the kernel in the y-direction and can be related to the length of
the fissures. Because the matched filter still yields false responses at
dark and bright step edges (Fig. 5c) Zhang et al. (2010) proposed to
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use the response of the FDOG to locally adjust the thresholds which
are applied to classify the MF response into fissure and non-fissure
structures. In analogy to Eq. (1), the first order derivative filter may
be denoted as:

FDOG ¼ g′ x; y;σð Þ ¼ − 1ffiffiffiffiffiffi
2π

p
σ3

e
x2

2σ2

� �
; for xj j ≤ 3σ ; yj j ≤ L=2 ð2Þ

Fig. 5f illustrates that the FDOG responds with a single peak to
edges but with a zero crossing at the centre of the idealized fissure.
A simple mean filter can be applied to broaden the zero crossing
into a plateau covering the whole width of the fissure (Fig. 5f).
Subtracting the smoothed FDOG response from the MF response
will attenuate the signal at edges while at the position of the fissure
the full response is retained (Fig. 5h).

Since the orientation of the fissures is a priori unknown, multiple
rotated versions of the Gaussian filters are applied to the image and
for each pixel only the maximum response value is retained. This corre-
sponds to finding the angle θmax(x,y) whichmaximizes the filter response
at a given position in the image I(x,y) using:

θmax x;yð Þ ¼ argmax I x;yð Þ⊗MFθ
� �

; for 0<θi≤π ð3Þ

where ⊗ denotes the convolution operator and θ the orientation of the
MF.

The calculation of the maximum response image R can then be
obtained with:

R x;yð Þ ¼ I x;yð Þ⊗MFθ max x;yð Þ
h i

> 0 ð4Þ

where all negative response values are automatically set to zero and
only values greater than zero are retained. The FDOG filter is rotated
according to the determined θmax(x,y) and the corresponding response
image D can be derived by:

D x;yð Þ ¼ I x;yð Þ⊗FDOGθmax x;yð Þ⊗M
���

��� ð5Þ

where M denotes the above-mentioned mean filter used to broaden
the zero crossing to the width of the fissures.

While Zhang et al. (2010) used a very broad mean filter with a
fixed size, we suggest to use a kernel size that matches the width of
the Gaussian kernel (6σ) and is thereby related to the width of the
targeted features (Fig. 5a, f). In contrast to early studies where the
FDOG response was used to locally adapt the threshold (Zhang
et al., 2010) the final response image �R is obtained by subtracting
the FDOG from the GMF response using:

R x;yð Þ ¼ R x;yð Þ−Ct � D x;yð Þ ð6Þ

where Ct denotes a user defined trade off parameter to adjust the
sensitivity of the detection with typical range of values between 3
and 4. A threshold T is defined by:

T ¼ μ�R þ 2 σ�R ð7Þ

where μ�R is the mean of the response image �R andσ�R is the respective
standard deviation.

A binary fissure candidate map Fmap is obtained by applying the
threshold T on the response image �R using:

R x;yð Þ ≥T x;yð Þ : Fmap ¼ 1 and R x;yð ÞbT x;yð Þ : Fmap ¼ 0: ð8Þ

The thresholding after subtraction of the FDOG response was
found to provide a generally more robust attenuation of undesired
 -
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Table 2
Summary of the thresholds adopted in the object-oriented post-processing routine. See
text for details.

Feature Thresholds

Shadow Redb100⁎, 40⁎⁎
Shadow ratio ≤0.33
Vegetation Ratio blue≤0.33+Otsu
Relative border to vegetation ≤0.15
Minimum angular difference >13°
Minimum length (clean up) ≥0.4 m
Minimum area (clean up) >0.1 m2

Minimum fissure density (clean up) >1%.10 m−2

⁎ For May 2007, July 2008 and October 2008.
⁎⁎ For July 2009 and October 2009.

Table 1
Parameter set of the Gaussian filters scaled according to the respective image resolution.

Image date May 2007 July 2008 October 2008 July 2009 October 2009

Pixel size [m] 0.10 0.10 0.08 0.05 0.05
σ [pixel] 0.60 0.60 0.75 1.20 1.20
L [pixel] 10 10 12 20 20
nθ 36 36 36 36 36
Ct 3.0 3.0 3.0 3.0 3.0
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edge responses than the technique previously applied by Zhang et al.
(2010).

In summary, the user needs to specify four simple parameters,
namely (1) the scale of the filter kernels in terms of σ, (2) the length
L of the kernel, (3) the constant Ct of the thresholding sensitivity and
(4) the number of orientations nθ at which the filters are calculated. In
this study, nθ was kept constant at 36 for all experiments, whereas, if
computational time becomes an issue, the angular resolution may be
reduced to 12 steps without major losses of accuracy. To determine σ
a tool was created, which allows drawing profiles on the image
and automatically estimates the fitting Gaussian function (Fig. 4).
Cross-profiles of the smallest fissures visible in the image with the
coarsest resolution (0.1 m pixel−1) were best fitted by Gaussian
curves with σ≈0.6. To ensure a homogenous scale of the detected
features among all images, the kernel can be scaled by changing σ
relative to the image resolution. If, for instance, the image resolution
is increased to 0.08 m pixel−1, a value of σ≈0.75 yields a kernel with
the same physical size (Table 1). The same applies to the filter length
L which was estimated at 1 m corresponding to the typical minimum
length of the fissures. Resampling of the images can thereby be
avoided. In our experience, σ establishes the lower bound for the
width of the targeted features, whereas the filters still remain sensi-
tive to features which are up to 5 times larger. For the choice of σ it
is also helpful to note that the discrete kernel cannot represent
FDOG functions with σ≤0.5.

To assess the sensitivity of the parameters and to determine a suitable
threshold parameter Ct, a sensitivity analysis was carried out on a subset
of the October 2008 image. Based on a visual assessment, values of L=
1 m and σ=0.75 were found suitable for the detection of the fine fissure
structures. The preliminary analysis also showed that increasing the pa-
rameters L and σ directs the detection towards more elongated and
broader features, whereas in general the sensitivity of those parameters
is rather low compared to the influence of the threshold Ct. Values of
Fig. 6. Strategy used to connect broken line segments. (a) Working principle of the hit- and
for the plausible pixel neighbourhoods.
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Ct={0.0, 1.0, 2.0, 3.0, and 4.0} were tested and based on a visual assess-
ment of the outputs, a value of Ct=3 was established for an optimal
trade-off between detection rate and the amount of false positives. The
final parameter set is summarized in Table 1.

4.2. Stage 2: connection of broken lines using structuring elements

The highly textured surface of the landslide constitutes a noisy
background that affects the detection especially at section where
the fissures are very thin or partially occluded. While a human oper-
ator can easily interpolate broken lines through perceptual grouping
(Metzger, 1975), this needs special attention for a semi-automated
mapping technique.

To close small gaps between broken line segments of the detected
candidates, a hit-or-miss transform algorithm (Serra, 1982) was
used. The transform assigns a value of 1 to each pixel whose local
neighbourhood fulfils the criteria defined by hit-and-miss structures
(Fig. 6a), also known as structuring elements. They were defined to
address all plausible 3-by-3 neighbourhoods representing small gaps
in the detection starting from four prototype hit-structures shown in
Fig. 6b. The respective miss-structures (Fig. 6c) are typically derived
by simply inverting the prototype hit-structures, and both elements
were rotated (Fig. 6d) to test for a total number of 24 possible
neighbourhood arrangements. Exceptional cases were thereby the
structuring elements for closing directly diagonal gaps, where an
extended neighbourhood was used for the hit-and-miss structures
(Fig. 6b, c) to prevent connections of lines running parallel to each
other.
miss transform, (b) hit structures, (c) miss structures and (d) respective rotations used

-

image of Fig.�6


Fig. 7. Illustration of the automatic threshold detection for the intermediate mapping of vegetation. (a) Subset of the October 2008 image at the toe of the landslide. (b) Ratio blue.
(c) Initial thresholding at ratio blueb0.33 to obtain vegetation candidates (yellow). (d) Histogram of the vegetation candidates with the automatically selected threshold. (e) Final
map of the vegetation (green).
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The connectivity of the line segmentswas also particularly important
for the subsequent object-oriented post-processing, where objects con-
stitute from pixels groups connected in a Von Neumann neighbourhood
(four adjacent pixels at each side), and small isolated objects could be
disregarded as noise.

4.3. Stage 3: object-oriented analysis for false positive removal

Due to visually similar objects, such as linear erosion features (rills
and small gullies) and elongated shadows induced by the micro-
topography, the fissure candidates resulting from the described filtering
routine may still comprise numerous false positive detections. While a
human interpreter can differentiate most of the false positives assessing
the geospatial context of the scene, the efficient use of such information
with automated systems is a challenge for object-oriented image
Fig. 8. Illustration of the object-oriented post-processing routine. (a) Fissure candidates tha
filter scale. The fissure candidates aligned with the linear structures at angles below ±13°
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analysis. To exploit the contextual scene information for an automatized
refinement of the extracted fissure candidate maps, an object-oriented
routine that integrates spatial reasoning into an explicit form was
elaborated and implemented using eCognition 8.64 (Trimble, 2011).
The routine included the following steps:

1) The ratio of shadow around the detections is evaluated and candi-
dates with a ratio of shadow pixels in their smallest enclosing cir-
cle above 33% are regarded as false detections induced by shadings
of the micro-topography. This ratio threshold was determined
empirically through visual inspection of the candidate fissures,
and selected to capture elongated false detections with one side
lying fully in shaded zones. The threshold for shadow can thereby
be adjusted according to the illumination conditions and the
dynamic range of the image (Table 2).
t overlapped with linear structures. (b) Linear structure detected at a ten times greater
were removed.

 -
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Fig. 9. Example of comparison of the obtained fissure maps with the expert mapping for October 2010 (fissures in red). (a) Area with relatively high agreement of the mapped
fissure patterns. (b) Area with relatively high rate of false negatives and false positives. The scale of the representations corresponds approximately to the scale used for the expert
mapping (1:250).
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Fig. 10. Receiver operating characteristics (ROC) plots for the fissured area at different map resolutions. The sky conditions for the five different dates are indicated.
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2) Further false detections may result from vegetation which typically
shows a lower reflectance in the green and red channel compared
to the blue. The blue ratio in the sum of all channels is consequently
typically below one third for vegetated areas. The suitable value
varies slightly with the illumination conditions and the season,
and Otsu's method (Otsu, 1979) was employed to automatically
adapt to such changes. Through an iterative testing of all possible
values, Otsu's method determines threshold value that maximizes
Fig. 11. Correlation between fissure density estimates at 5 m raster resolution based on sem
bottom display the R2 coefficient at different raster resolutions.

- 11
variance between two classes in an image. Hence, constraining the
search space to all pixels with a ratio blue below 33%, the algorithm
was used to determine the thresholds that maximize the contrast
between vegetation and the background (Fig. 7). Fissure candidates
covered by the resulting vegetation class, or having a relative
border length larger than 0.15, were subsequently removed.

3) Another class of frequent false detections resulted from linear ob-
jects such as rills, gullies and nearly vertical steps at the landslide
i-automatic detections and expert mappings from the five images. The bar plots at the

1 -
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flanks, which may locally obtain similar characteristics as the
targeted fissures. To test for the presence of larger linear features
and evaluate their relationship with fissure candidates, a strategy
to suppress additional false positives was required. For the mapping
of the larger linear elements, two sources were adopted. First drain-
age lines were extracted from the LiDAR DTMs using hydrological
standard tools (Tarboton et al., 1991) and enlarged with a
surrounding buffer of 0.5 m. A second approach was to repeat the
Gaussian filtering with the parameter set indicated in Table 1, but
with a two times increased scale σ and a five times coarser image
resolution (resampled with bilinear interpolation). This is equiva-
lent to a search with a 10 times larger scale providing a sufficiently
large scale difference to assure that none of the detected linear fea-
tures would correspond to fissures. The linear objects extracted
with both approaches were virtually overlaid with the fissure can-
didates, and the difference of the orientations of their respective
centre lines was adopted as criteria to evaluate if the fissure
candidate was in fact part of a larger linear object or constitutes
an independent structure (Fig. 8). Image-based measurements of
the angular offset of the fissured indicated a minimum offset of
about ±13°. Considering that the lowest effective friction angle
values measured for the landslide material are α′=26° (Malet et
al., 2005b), the thresholds are consistent with the orientation of
α′/2 that the Coulomb criterion predicts for the orientation of
shear fissures at the landslide boundary (Tchalenko, 1970).

4) A last filtering step was implemented by removing all candidates
with length not longer than 0.4 m and an area smaller than
0.1 m2. Finally, all fissure candidates falling in areas with a fissure
class density lower than 1% in a surrounding neighbourhood of
10 m2 were considered as noise and also removed.

Table 2 displays that most adopted thresholds were kept the same
among all the images and only the classification rule for the shadow
areas was adapted in order to compensate radiometric differences
in the input images.
5. Results and discussion

5.1. Comparison with multi-temporal manual mappings

The primary output of the developed processing routine is a map
of the detected fissures represented by polygons. Applying a
Delaunay triangulation that extracts the skeleton of those polygons
(Trimble, 2011), a 2D line representation, which enables a more
immediate comparison with expert mappings, can be obtained.

Fig. 9 displays an example of comparison between an expert map
and the result of the semi-automatic detection. A first visual assess-
ment of the obtained maps suggested better agreement of the fissure
patterns in areas with high contrast and low texture (Fig. 9a), where-
as false positives and false negatives concentrated in sections with
low contrast and increased surface texture (Fig. 9b).

For a quantitative assessment of the mapping accuracy, the
obtained results were compared with the expert mappings in the cen-
tral part of the landslide (Fig. 9c) at all five dates. While several accura-
cy measures for geographic line datasets have been already proposed,
there is still no consensus about one generally applicable technique
and the metrics should be selected according to the problem at hand
(Ariza-López and Mozas-Calvache, 2012). Here, we focus on three cru-
cial aspects of the map accuracy that may have direct implications for
their further use, namely the size of the affected (e.g. fissured) area,
the length and density of the fissures, and their orientation.
Fig. 12. Rose diagram plots with mean orientation (red line) and error statistics for the me
visualization, the rose diagrams where plotted over a hillshade of the landslide surface and
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5.1.1. Size of the fissured area
Tveite and Langaas (1999) suggested an accuracy measure for line

datasets based on repeated buffering and overlay operations of
detected and reference line datasets. A similar strategy was adopted
in this study by repeatedly calculating true positive and false positives
rates from two raster data representing the detections and the expert
mapping at increasingly coarser resolutions. The raster data were cal-
culated at 10 cm steps for resolutions between 0.1 and 1.0 m, and
each pixel was assigned as fissured or non-fissured area according to
the presence or absence of a fissure in the detections and the reference
map, respectively. The resulting receiver operating characteristics
(ROC) plots are presented (Fig. 10). The analysis showed a correspon-
dence with the expert maps at true positive rates typically above 40%
and up to 65%. The false positive rates were below 5% except for the
scenes recorded with full sunlight where false positive rates up to 9%
could be observed (Fig. 10).

5.1.2. Fissure length and density
Hydrological models that integrate the influence of surface fis-

sures on infiltration and preferential flow have demonstrated that
the fraction of fissures per unit area is an important parameter with
considerable influence on the modelled water storage (Malet et al.,
2005a; Krzeminska et al., 2011). Such models are typically generated
at slope scale with grid resolutions below 10 m. To assess the accura-
cy of the extracted maps with respect to this potential application, the
fissure density was calculated as the line length in circular sliding
windows with diameters between 2 and 10 m, and compared
among automated detection and expert mappings.

The regression plots in Fig. 11 illustrate the correlation of the fissure
density estimates with a 5 m circular sliding window yielding coeffi-
cient of determination (R2) typically above 0.5. The regression analysis
further indicated generally higher densities resulting from the
semi-automatic detection originating from false positive detections
but also from a stronger generalization of the fissure line drawings
within the expert mapping. Exceptions from this general trend are
the results obtained from the image of July 2008 which was recorded
at a low sun incidence angle leading to a relatively low R5m

2 =0.36.
The bar plots in Fig. 11 display generally higher R2 values at increasing
resolutions of the density raster. This is a well-known effect of spatial
aggregation on correlation statistics (Gotway and Young, 2002) but
also reflects the contrast between stronger discrepancies of local details
and a better correspondence of the global fissure pattern pictured in
the respective maps. The highest correlation was observed among the
mappings for May 2007 with R10m

2 =0.88 indicating that the lower res-
olution of the corresponding input image was not an important factor
for the accuracy of the detection.

5.1.3. Fissure orientation
As outlined in the Introduction section, different fissure patterns

may signal respective mechanical processes, and statistics of the princi-
pal fracture orientation often allow us to estimate the directions of the
principal stresses (Pollard and Fletcher, 2005). The fissure orientations
were quantified as a third factor to assess the accuracy of the extracted
maps using rose diagrams frequently employed for the analysis and in-
terpretation of two dimensional orientation data (Jammalamadaka and
SenGupta, 2001). Rose diagrams with a bin width of 10° were comput-
ed on a 10 m regular grid for the semi-automatic detections and the
expert mappings at all five dates. Considering the length and direction
of each bin expressed as a respective vector the preferred fissure orien-
tation within a grid cell can be calculated by summing the vectors over
all bins. Taking into account all cells containing fissures in both the
an fissure orientation per 10 m grid cell for the test area at the five different dates. For
the scatterplot angles were centred at 90°.

 -
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Fig. 13. Pseudo 3D view showing the landslide dynamics inferred from the fissure patterns detected in the aerial images of (a) May 2007 and (b) October 2008. (c, d, and e) Close up
views for October 2008 showing inferred landslide dynamics and stress vectors. The results are overlaid on a hillshade model of the topography of the stable bedrock proposed by
Travelletti and Malet (2012).
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expert map and the semi-automatic detection, the mean absolute error
(MAE) of themean orientations provides a quantitative measure for the
orientation accuracy.

The rose diagrams plots and error statistics in Fig. 12 depict MAE
values between 9.7° and 22.5° for the five dates. The detections on
the three scenes recorded under cloudy sky resulted inMAE not larger
than 10.7°, whereas the error rate clearly exceeded 20° with the
scenes of July 2008 and 2009 recorded with full sunlight at the sur-
face. The lower orientation accuracies are largely consistent with
the relatively low accuracies in terms of area (see Section 5.1.1) and
density (see Section 5.1.2) resulting from the detection at the latter
two dates.

5.2. Fissure patterns as possible geoindicators of deformation processes

For a comprehensive interpretation of the detected fissure pat-
terns at the scale of the entire slope, the scenes of May 2007, October
2008 and July 2009 offering a full coverage of the landslide, have been
analysed. However, considering the relatively low detection accuracy
on the sunlit images of July 2009, the interpretation was focused es-
sentially on the scenes of 2007 and 2008 spanning also over a period
with displacement rates significantly above the average annual rates
(Travelletti, 2011).

Comparing the detection results of May 2007 (Fig. 13a) and October
2008 (Fig. 13b), a significant increase in the abundance of fissures
could be noted for the entire landslide. This can be attributed to a
phase of strongly increased displacement rates (up to 3.5 m day−1)
in early June 2008 (Travelletti, 2011) preceding the UAV survey in
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October 2008. However, in October 2008, the displacement rates al-
ready consolidated again at average rates between 0.01 and
0.03 m day−1, most of the fissures induced in June were preserved
and evolved at the surface until October. This view is supported by
the results obtained for the test area with the five scenes (Figs. 10
and 11) picturing rather a transient evolution than a complete reorga-
nization of the fissure patterns. Despite partially strong disagreement
in the absolute measured fissure density, both expert maps and
semi-automatic mapping showed an increase in fissure density after
May 2007, with higher values in October 2008 (Fig. 11) than directly
after the peak displacement in spring. Pluviometric records for the
area in 2008 show the relatively dry summer season with a cumulative
rainfall of 110 mm for the month of July, August and September,
suggesting that the increased fissure density in October is partially
caused by an increased brittleness of the upper soil layer that dried
out during summer.

Besides the general increase in the amount of fissures, it is intrigu-
ing to observe that at several local plots, similar fissure patterns can be
observed at approximately the same positions through time (Figs. 12
and 13a,b), despite maximal displacements of up to 55 m between
October 2008 and October 2009 (Niethammer et al., 2011a). This indi-
cates the recurrent continuous in-situ formation where the fissures
provide a close representation of the local strain field, similar as
observed for the evolution of glacier crevasses (Harper et al., 1998).

Previous studies (Malet, 2003; Niethammer et al., 2011a; Walter et
al., 2012) already observed close relationships between the occurrence
of fissures and the geometry of the stable bedrock at the Super-Sauze
landslide. They also noted a general contrast between higher water
 -
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content and rather ductile behaviour in the lower subsurface (b1 m)
and typically lower water content of the topsoil yielding more brittle
behaviour at the surface. The surface fissures can therefore be under-
stood as the response to stresses induced in the topsoil through cou-
pling with ductile strain in the deeper subsurface. A similar model
was already described by Fleming and Johnson (1989) and adopted as
a basis to qualitatively estimate the patterns of flow and stresses from
a joint-interpretation (Fig. 13) of the detected fissure patterns and a
geometrical model of the stable bedrock (Travelletti and Malet, 2012).

Considering the bedrock geometry and a formation of the open fis-
sures normal to the direction of the least compressive stress (Pollard
and Fletcher, 2005), three different flow field patterns leading to the
fissure formation at the Super-Sauze landslide can be suggested.
First, lateral shear at external and internal landslide boundaries
aligned with the general flow field leads to the formation of diagonal
shear fissure arrays (Fig. 13e). Second, longitudinal compressive and
tensile strain related to abrupt changes in the slope of the sliding sur-
face induces tensile stresses at the surface that results in transversal
fissure arrays (Fig. 13c). Third, divergence of the flow field over topo-
graphic ridges and at the outlets of confining topographic channels
induces lateral extension and tensile stresses resulting in longitudinal
fissure arrays (Fig. 13d). At several locations, those processes overlap
and lead to the formation of mixed structures such as a radial fissure
patterns displayed in Figs. 4 and 13c, resulting from lateral shear and
longitudinal strain, and from a divergent stress field, respectively.

5.3. Accuracy and related uses

Deformation patterns at the surface of landslides are important indi-
cators for the mechanical processes, whereas the elaboration of detailed
maps of such features remains a challenging and time-consuming task.
While Sowers and Royster (1978) still argued that aerial photographs
do not reach sufficient resolution for such mappings, modern digital
sensors and new aerial platforms such as UAVs today provide the neces-
sary level of detail. Furthermore, this study demonstrated the possible
use of a semi-automatic image processing chain for the extraction of
surface fissure maps.

The accuracy of the method was assessed by comparisons with ex-
pert maps and demonstrated heterogeneous areal accuracies with true
positive rates of up to 65% and false positive rates generally below
10%. In addition, the orientation accuracy showed a variable quality of
the resulting maps with mean deviations between 9.7° and 22.5°. The
fissure densities derived from both maps have significant correlations
(R2=0.36–0.78), whereas the semi-automatic detections yield typically
higher estimates. Interestingly, this difference is more pronounced with
the images of 2009 (Fig. 10) reflecting the contrast between increased
semi-automatic detection rates at higher resolutions and the fixed
scale of the expert mapping. Contrariwise, the best agreement among
detection and expert maps was measured for the scene of May 2007
showing that the lower resolution does not necessarily yield lower accu-
racies. Generally, lower accuracies were observed for the scenes
recorded with full sunlight at the surface in July 2008 and 2009, and
the worst results were obtained for July 2008 when images were
recorded at a relatively low sun incidence angle. Since the direct sun-
light induces shading that affects the local contrast and global image
normalization methods cannot alleviate this problem, image acquisition
with diffuse skylight appears to be the generally better option.

In the initial stage of the processing chain, a low-level linear feature
detector is used. Similar techniques yield competitive results in medical
image analysis (Zhang et al., 2010), whereas the accuracies achieved
with aerial images in this study are still significantly lower. This must
be attributed to the generally higher complexity of outdoor scenes
and at the moment still requires additional steps and parameters to
take the contextual scene information into account. The use of an
OOA heuristic-based post-processing technique proved useful for the
removal of false positives and helped to objectify the image analysis
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by transferring expert knowledge in an explicit form. The analysis still
relies on a number of fixed thresholds which may hinder an easy trans-
fer of the entire processing chain to a different geographic area. This
concerns especially parameters that require knowledge of the local
processes (e.g. minimum fissure length and effective friction angle),
while thresholds that can be determined directly from the image (e.g.
shadows and vegetation) may be adjusted more effortlessly.

The development of surface fissures precedes and accompanies
especially slow- and very slow-moving landslides (Cruden and
Varnes, 1996) making the developed technique particularly applica-
ble to such types of landslides and to potentially unstable slopes.
However, the spatial resolution of the acquired images must at least
match, or should ideally exceed, the width of the targeted fissures,
and the vegetation must be sufficiently sparse to permit direct view
on the bare ground. The results of this study demonstrate that if
those requirements are met, the obtained fissure maps can already
provide sufficient accuracy to infer the landslide dynamics and me-
chanical processes at the slope scale (see Section 5.2). Density maps
from both semi-automatic and expert mappings show a strong spatial
and temporal variability of the fissure abundance pointing toward
important local and temporal contrasts in the infiltration capacity
which may need considerations in the design of hydro-mechanical
models. An analysis of the evolution and mechanics of individual fis-
sures will however require higher temporal resolution and terrestrial
cameras have recently been installed at the surface of the landslide to
record imagery for further research in this direction. It would also be
desirable to test the developed technique for the investigation of
other landslides with different characteristics in order to validate a
more general applicability of the approach and the mechanical inter-
pretation of the observed fissure dynamics.

The OOA heuristics already considers multi-scale information to
some degree (see Section 4.3), whereas for further methodological im-
provements an explicit integration of an automatic scale selection tech-
nique at the low-level filtering stage appears as a promising approach to
further reduce heuristics and tuneable parameters (Stumpf et al., 2012).
The first and second stages of the proposed method are generic for the
detection of dark linear features, and could in principle also be applied
to detect other geomorphological and geological structures with similar
characteristics. The proposed technique might be of interest for
the mapping of gullies (Shruthi et al., 2011), geological lineaments
(Mallast et al., 2011), ice-glacier crevasses (Vaughan, 1993) or tectoni-
cally induced fractures (Allmendinger and González, 2010), sufficiently
larger to be depicted in sub-metre satellite images.

Considering the intrinsic disagreement in expert mappings of lin-
ear features, especially in the inter- and extrapolation of lines (Sander
et al., 1997), further studies should also include an assessment of the
uncertainties of reference maps since their quality can strongly bias
the evaluation of different alternative approaches (Lampert et al.,
submitted for publication).

6. Conclusions

This study developed an image processing chain to extract surface
fissures from heterogeneous sets of VHR aerial images and tested the
approach with a challenging multi-temporal set of images recorded at
the Super-Sauze landslide for five different dates. The first two stages
of the developedworkflow combine families of Gaussianmatched filters
and morphological filters, and are followed by an object-oriented analy-
sis to reduce the amount of false positive detection using contextual in-
formation and auxiliary topographic information. The detection results
can be represented in raster maps or optional by centre skeleton lines.

Under homogenous illumination conditions a comparison of the re-
sults with expert mapping demonstrated detection rates of up to 65%
and orientation errors below 10°. Contrary, the technique is relatively
sensitive to shading effects at full sunlight and prone to errors especially
at low sun incidence angle. A joint-interpretation of obtained fissure
-
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maps and of a 3D geometrical model of the stable bedrock demonstrat-
ed their complementary use for a better understanding of the geomor-
phological and geomechanical processes, such that the detected fissure
pattern may be used for first approximation for mechanical processes
in the recent deformation history of a slope. Possible directions for fur-
ther research are the reduction of tuneable parameters and a more im-
mediate exploitation of multi-scale information, as well as an adaption
of the technique to other linear features with geomorphological and
geological relevance.
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 Measuring	 landslide	 horizontal	 surface	 displacements	3.4
from	VHR	optical	satellite	imagery	
 

 
 
This section describes the elaboration of a processing chain combining spaceborne stereo-
photogrammetry, orthorectification and sub-pixel image correlation to measure the horizontal 
surface displacement of three different landslides from VHR satellite images. To the best of 
our knowledge, it is the first study that explores the use of VHR satellite images for 
displacement measurements without external topographic information and ground control. 
The influence of the number of ground-control points on the accuracy of the image 
orientation, the extracted DSM and displacement rates is quantified with independent 
measurements. The accuracy of the generated stereo-photogrammetric DSM is assessed 
through comparison with ALS surveys and shows RMSEs between 1.34 m and 15.2 
depending on the type of land cover and the topographic position. Surface displacements are 
measured through sub-pixel image correlation and the observed rates are compared with in-
situ permanent GNSS measurements. The comparison shows a maximum error of 0.13 m 
which is one order of magnitude more accurate than what has been previously achieved with 
spaceborne optical images. It is also demonstrated that the technique can be applied without 
ground control points and no significant loss in accuracy which greatly facilitates its use for a 
broad range of applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This section is based on: Stumpf, A., Malet, J.-P., Allemand, P., Submitted. Stereo-
photogrammetry and displacement monitoring with Pleiades VHR satellite images, ISPRS 
Journal of Photogrammetry and Remote Sensing, 33p. 
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 Introduction 3.4.1
The monitoring of earth surface deformation is indispensable for the understanding of 
tectonic and geomorphological processes and the assessment of associated hazards. In 
particular, continuously active landslides are a major natural hazard threatening infrastructure 
and human settlements. Active landslides are controlled mainly by hydro-meteorological 
triggers and their behaviour is, therefore, sensitive to short- and long-term environmental 
changes. 

During the last two decades, remote sensing has become an important tool to 
investigate landslide kinematics measuring 1D Line-Of-Sight (LOS) and 2D horizontal 
surface displacements (Delacourt et al., 2007; Stumpf et al., In Review-b). SAR 
interferometry has proven its ability to provide highly precise motion measurements (Ferretti 
et al., 2001; Berardino et al., 2002; Hooper, 2008) but yields only LOS displacement vectors 
with limited spatial coverage and range of measurable velocities. Image correlation of optical 
satellite and aerial images is often used to infer the 2D horizontal component of co-seismic 
and tectonic deformation (Leprince et al., 2007), glacier flow (Kääb, 2002; Heid and Kääb, 
2012), landslides (Delacourt et al., 2007; Booth et al., 2013) and other earth surface processes 
(Vermeesch and Drake, 2008; de Michele et al., 2012). Theoretically DIC yields sub-pixel 
accuracy but image orientation, co-registration, georeferencing, decorrelation and especially 
the accurate modelling of topographic distortions are still challenging issues that have to be 
carefully addressed (Berthier et al., 2005; Scherler et al., 2008). 
 So far most studies have made use of medium and high-resolution satellite images and 
reported uncertainties (RMS or standard deviations) in the measured displacements of 1-4 m 
with Landsat and ASTER  (Leprince et al., 2007; Scherler et al., 2008; Heid and Kääb, 2012; 
Redpath et al., 2013) and 0.3 m – 1 m with SPOT images  (Van Puymbroeck et al., 2000; 
Michel and Avouac, 2002; Berthier et al., 2005; Binet and Bollinger, 2005; Taylor et al., 
2008). The proposed methods are well adapted to measure displacements which are greater 
than one meter and coherent over large areas (e.g. glacier flow, coseismic slip). 
 Landslides, however, feature displacement fields with strong variability in space and 
time requiring observations with high temporal and spatial resolution. So far the use of 
spaceborne- and airborne DIC for landslide investigations has been constrained to historical 
reconstructions of cumulative displacement for time-intervals of several years limiting its 
operational use for monitoring and other applications. In Delacourt et al. (2004) and Casson 
et al. (2005) aerial stereo-pairs were exploited the remove the topographic component of the 
observed shifts. The analysis permitted to reconstruct the long-term dynamics of the La 
Clapière landslide but comprised the need of distributed ground-control points (GCPs) and 
errors of up to 2 m. 

The latest generation optical satellites features shorter repeat-pass cycles and higher 
spatial resolutions (e.g. Pleiades, Spot 6-7, Geoeye-1, WorldView-2). It consequently 
provides enhanced capabilities for the acquisition of monoscopic and stereo images at shorter 
time intervals. Since both multi-temporal images and stereo-pairs can be derived from the 
same system stereo-photogrammetry, orthorectification and DIC could be applied using 
satellite images only, without any external topographic information or ground control.  

This study investigates the use of VHR satellite images for measurements of landslide 
surface displacement with a particular focus on the impact of minimal or missing ground 
control. Pleiades satellite images acquired over the Ubaye valley (Southern French Alps) are 
analysed to measure the surface displacement of three active landslides over a period of two 
month. A processing chain comprising bundle adjustment, stereo-photogrammetric extraction 
of digital surface models (DSMs), and sub-pixel DIC is proposed and the accuracy of the 
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extracted motion fields is compared with permanent GNSS stations. A series of experiments 
is carried out to assess the impact of minimal or no ground control, and to quantify the 
accuracy of the sensor orientation and the extracted DSMs. To the best of our knowledge the 
study is the first to explore the use of Pleaides satellite images for displacement 
measurements and the first application of VHR satellite images only for the observation of 
landslide deformation. 

In section 3.4.2, the adopted processing chain and analysed datasets are presented, the 
results are discussed in section 3.4.3 and conclusions are drawn in section 3.4.4. 

 Data and Methods 3.4.2
A prerequisite for accurate displacement measurements is the precise co-registration of multi-
temporal images and the removal of the parallax resulting when the same topographic surface 
is observed from different view angles. This involves the compensation of biases in the 
original rational polynomial function (RPF) sensor model (section 3.4.2.1) and the 
orthorectification of the images with an accurate DSM (section 3.4.2.2). The method 
employed for sub-pixel correlation is explained in section in section 3.4.2.3 and an approach 
for the removal of noise and clutter based on the multi-spectral bands is detail in section 
3.4.2.4. The accuracy assessment and datasets processed in this study are described in the 
sections 3.4.2.5 and 3.4.2.6., respectively. 

3.4.2.1 RPF bias compensation through bundle block adjustment 

During the last decade, RPFs have been widely accepted as a generic an accurate alternative 
to rigorous sensor models. Unlike rigorous sensor models, RPFs do not describe the interior 
and exterior orientation of the on-board camera but model the relationship between image 
coordinates and ground-coordinates with a rational polynomial that typically comprises 80 
coefficients. The interior orientation of cameras used in VHR satellites can be considered as 
stable, whereas ground-positional errors result from uncertainties about exterior orientation 
parameters (pitch, raw, yaw, ephemeris) and a possible drift of those parameters over time 
(Grodecki and Dial, 2003). Depending on the satellite RPFs of modern VHR sensors yield 
geolocation accuracies in the range of 10-20 m (Hoja et al., 2008; Lussy et al., 2012) which is 
clearly not sufficient for a direct application of stereo-photogrammetry and sub-pixel image 
correlation. However, the errors can be greatly reduced using tie points and ground control 
points (GCPs) to estimate correction parameters. Several studies have demonstrated that 
least-square bundle-adjustment can yield geolocation accuracies of one meter and better 
(Grodecki and Dial, 2003; Fraser and Hanley, 2005). 

Several commercial software solutions with end-to-end modules for satellite stereo-
photogrammetry and bundle-adjustment are available and in this study the Leica 
Photogrammetric Suite (LPS, Intergraph, 2013) was employed for this purpose. All images (3 
panchromatic, and 1 multispectral) were brought in to one single block and automatic tie 
point extraction was performed with an least-square image matching technique based on 
principles described in Gruen (1985). We used a 7x7 pixel correlation window and the 
minimum correlation coefficient was set 0.8. This resulted in a total number of 126 tie points. 
The residual errors of the tie points in the image space were checked and all points with 
residuals higher than 0.5 pixels were removed (~18% of the total number of points). Bias 
correction was performed through RPF bundle adjustment using an iteratively re-weighted 
least-square approach. The least-square approach allows defining prior weights for the 
observations (GCPs, and tie points). The RMSE of the GCPs was estimated with at 0.21 m 
(see section 3.4.2.6) and the uncertainty of the measurements in image space at 0.33 pixels. 
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The maximum number of least-square iterations was set to ten but convergence was usually 
reached after only three iterations.   

The bias compensation can be performed with different error models being either a 
constant shift or two terms for shift and drift (Fraser and Hanley, 2005). Both error models 
were tested with a varying number of GCPs to assess the impact on DSM accuracy and 
displacement measurement. At least, 15 independent check points were reserved in all 
experiments to evaluate the residual errors after bundle adjustment. 

3.4.2.2 DSM extraction and orthorectification 

The quality of the RPF refinement can be judged by the residual errors of the tie and check 
points locations. For a precise description of the image-to image correspondence the residual 
error should generally not exceed 1 pixel. The optimal strategy for the subsequent extraction 
of the DSM generally depends on the characteristics of the terrain. We employed a 
hierarchical least square image matching algorithm (e.g. Zhang and Gruen, 2004) combined 
with techniques for the removal of outliers through principal component analysis (Xu et al., 
2008). Area-based matching is performed in the image geometry considering epipolar 
constraints imposed by the refined sensor models. 

In epipolar geometry, the topographic height relates directly to parallax shift in the x-
direction and hence the search for correspondences can be reduced to a 1D search along the 
epipolar lines. Residual errors of the image orientation (i.e. the refined RPCs) can result in 
undesired offsets in the y-direction which can be partially compensated by extending the 
search with some pixels tolerance in the y-direction. The cost function for the matching is the 
normalized cross-correlation. Considering the rugged mountain topography of the study area 
are relatively small window size of 7 by 7 pixel was selected to avoid strong smoothing of the 
topographic surface.  The search range in the y-parallax was to one pixel to compensate for 
residual errors in the image co-registration. 

DSMs with a pixel spacing of 0.5 m (WGS84 UTM 32) were extracted and used 
together with the refined RPFs for the orthorectification of all panchromatic and multi-
spectral bands.  

3.4.2.3 Sub-pixel image correlation 

In recent years several sub-pixel image correlation techniques have been developed and 
applied in many tectonic and co-seismic deformation studies (Leprince et al., 2007; 
Hollingsworth et al., 2013) and for the analysis of glacier (Kääb, 2002; Heid and Kääb, 2012) 
and landslide (Delacourt et al., 2004; Debella-Gilo and Kääb, 2011) motion. In a recent study 
Heid and Kääb (2012) compared the performance of state-of-the art image correlation 
techniques and found the correlator implemented in COSI-Corr (Leprince et al., 2007) to be 
the most robust approach. We used the implemented algorithm for sub-pixel image matching 
through phase correlation in the frequency domain. The algorithm is based on a robust 
coarse-to-fine scheme and a sub-pixel matching method with a theoretical precision of 1/50 
pixel. A hierarchical scheme with iteratively decreasing windows sizes (64, 32, and 16) was 
used to measure the east-west (EW) and north-south (NS) components of the surface 
displacement from the orthorectified panchromatic satellite images. The values were used for 
the number of robustness iterations and masking thresholds were set to 2 and 0.8, 
respectively. 
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3.4.2.4 Post-processing 

Displacement fields derived from DIC usually comprise important fractions of noise resulting 
from various factors such as instrumental sensor noise, changes in the illumination 
conditions, surface changes, random patterns of natural surfaces and atmospheric effects. 
This typically requires post-processing steps such as mean filtering and the removal of false 
matches over stable terrain. Glaciers respect well defined boundaries that persist over long 
time periods and allow to remove false matches outside the boundaries of the moving mass 
manually (Heid and Kääb, 2012). For landslides, however, this is not a reliable strategy since 
previously stable terrains at the boundaries of a moving mass frequently destabilize and new 
unstable zones can develop elsewhere. In order to provide objective post-processing steps 
adapted to landslides, a dedicated routine that considers multi-spectral information and terrain 
variables was developed. 

Most VHR satellites do not only collect panchromatic images but also multispectral 
bands that convey rich information on the spectral characteristics of different land cover 
types. This information can be exploited to delineate areas where decorrelation and noise 
must be expected. 

Optical data are generally not applicable to monitor displacements under dense 
vegetation and, since the repeating patterns of a dense canopy are likely to generate false 
matches, it is better to disregard such areas from the analysis. To this end, the near-infrared 
and red bands are used to compute the Normalized Difference Vegetation Index (NDVI). 
Further, a Gaussian mixture model (Benaglia et al., 2009) is employed to model the NDVI 
histogram with two normal distribution corresponding to sparse and dense vegetation, 
respectively. A threshold (ݐேூ) for the separation of the two classes can be defined with 
Eq. 1: 
 

ேூݐ ൌ ேூ.ௗ௦ߤ െ ேூ.ௗ௦ߪ2 Eq.1
 
where ߤேூ.ௗ௦  and ߪேூ.ௗ௦  are the mean and the standard deviation of the normal 
distribution corresponding to sparse and dense vegetation. A conservative threshold on the 
Digital Numbers (DN) of the panchromatic images (DN < 110) further allows the 
identification of areas with strong shading, which due to low contrast are another source of 
false matches. The two masks for dense vegetation and shaded areas are combined and 
refined with morphological filters to remove patches smaller than the size of the correlation 
window. The final mask is then applied to suppress corresponding pixels in the raster 
resulting from sub-pixel image correlation. 

The generated DSMs can be exploited to extract topographic variables such as slope 
and aspect. Any displacement that deviates more than 135˚ from the local aspect of the slope 
can be considered as inconsistent and is consequently suppressed. In some cases also prior 
knowledge about the expected landslide displacement rates may exist and can be used to filter 
all measurements that exceed the range of likely displacement rates. As this study targets the 
monitoring of slow-moving landslides over a period of two months, a displacement rate of 2 
m.month-1 was considered as an upper bound. The described post-processing chain (Figure 
3-5) was implemented in R (R Core Team, 2013) to enable complete automation of the 
routine. 

The described steps target the reduction of false matches, whereas a final filtering is 
still recommendable to account for noise in the remaining detections. The Non-Local Mean 
Filter (NLMF) (Buades et al., 2008) has proven good abilities for effective image denoising 
and preservation of local details at the same time. The filter takes into account the Signal-to-
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Noise Ratio (SNR) computed during the image correlation and implemented as a module in 
COSI-Corr. The main parameters of the filter are the standard deviation of the Gaussian 
kernel (σ=1.6), the search radius (11 pixels) and the patch size (5 by 5 pixels). 

 

 
 
Figure 3-5: Schematic flow chart for the implemented post-processing routine (see section 3.4.2.4) for 
details. 
 

3.4.2.5 Accuracy assessment 

The accuracy of the processing chain is evaluated by considering three different aspects. 
(i) The quality of the image orientation is evaluated based on the residuals of the tie points 
and check points. (ii) The accuracy of the resulting DSM is quantified through comparison 
with airborne LiDAR surveys over stable terrain. (iii) The displacement fields are evaluated 
qualitatively for consistency with prior knowledge on the landslide processes and 
quantitatively through comparison with permanent on-site GNSS observations. 

3.4.2.6 Processed datasets 

The Pleiades satellite constellation comprises two identical satellites (Pleiades 1A launched 
17/12/2011 and Pleiades-1B launched 02/12/2012). The two satellites have a phased sun-
synchronous orbit with an orbital height of 694 km enabling short revisit times of up to 4 
days. Panchromatic images are acquired with a ground sampling distance of approximately 
0.7 m at Nadir and delivered with a nominal resolution of 0.5 m. Four multispectral bands 
(blue, green, red, and near infrared) are recorded simultaneously and delivered with a 
nominal resolution of 2 m. The images processed in this study (Figure 3-6) were acquired by 
Pleiades 1A over the Ubaye Valley (Barcelonnette, Southern French Alps) at two subsequent 
dates. 
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A monoscopic image was acquired in early August 2012 and a stereo-pair was 
recorded 59 days later. None of the images was recorded with the same incidence angle 
which must be considered as the default since satellite programming for Pleiades does not 
allow exact specifications of the view angle. 

 

 
Figure 3-6: Overview of the panchromatic Pleiades images processed in this study. 
 
Ground control points were extracted on stable terrain from LiDAR point clouds and 
associated orthophotographs from 2007, 2009 and 2012. A total number of 55 GCPs (Figure 
3-7) was derived targeting stable natural objects (e.g. salient boulders) at proximity of the 
landslides and man-made objects such as cross roads and road markings. The datasets were 
available in the French Lambert 3 projection (Geoid heights IGN 69) and hence the GCPs 
had to be re-projected into ETRS89 TM32 (ellipsoid heights GRS80) to be consistent with 
the sensor model of the Pleiades satellite (WGS84 UTM 32). 

The absolute error of the ground control points derived from the airborne LiDAR 
surveys is a composition of georeferencing errors (RMSE=0.12 m), scan errors (RMSE=0.16 
m) and the uncertainty in the coordinate transformation (RMSE=0.01-0.05 m). Assuming that 
the terms are independent, the cumulative error (RMSEሻ

 can be computed with Eq. 2: 
 

RMSE ൌ ඥ0.12ଶ  0.16ଶ  0.05ଶ
మ

ൌ 0.21 m Eq.2

The latest aerial survey was carried out on 29/08/2012 and covered the Ubaye valley 
and the Super-Sauze landslide. The raw point cloud (comprising all returns) has an average 
point density of 90 pts.m-2 and was interpolated with a natural neighbour interpolator to a 
regular DSM raster (0.5 m pixel size) matching the grid of DSMs extracted from the Pleiades 
stereo-pairs. 

The La Valette and the Super-Sauze landslides are monitored by the French Landslide 
Observatory (OMIV) with several permanent GNSS receivers providing measurements of the 
surface displacement with millimetre accuracy. In the time period between the image 
acquisitions three stations were operational and were used to quantify the accuracy of the 
correlation-based measurements. 

 



 

- 127 - 
 

 
 
Figure 3-7: Distribution of control points, tie points and GCPs in the study area. The outlined subsets 
mark (a) the La Valette landslide, (b) the municipality of Barcelonnette, (c) the Super-Sauze landslide, 
and (d) the Poche landslide. 
 

 Results and Discussion 3.4.3
To evaluate the influence of the number of GCPs and different models employed for RPF 
refinement on the accuracy of the DSMs and motion measurements, four experiments were 
carried out using no GCPs, 5 GCPs and 40 GCPs with a simple translational bias correction, 
and 40 GCPs with a bias correction comprising two parameters for translation and drift. The 
results of those experiments and the derived displacement fields are presented and discussed 
in the subsequent sections. 

3.4.3.1 Bundle adjustment 

Residual errors in image and ground space after bundle adjustment are reported in Table 3-1. 
As can be expected, the residual errors in ground space reduced when more GCPs are used.  
The differences between using 5 and 40 GCPs are generally not larger than 0.1 m and the 
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enhancements that result from the use of and additional parameter to compensate for drift 
seem more important. The analysis suggest that the use of a small number of GCPs (5-10) 
and an error model that addresses translation and drift is close to optimal and only very small 
enhancements can be expected by collecting additional control points. This trend and the 
magnitude of the residual errors is consistent with several other studies on bias compensation 
with VHR satellite images (e.g. Fraser and Hanley, 2005; Aguilar et al., 2013). A correction 
without GCPs led to high residual errors especially in the z-axis. While the relative 
orientation among the images (indicated by the residuals in images  space) is not significantly 
worse compared to the models with control points, the bias of the absolute ground 
coordinates is significantly higher than reported in other studies (Fraser and Hanley, 2005; 
Toutin et al., 2012; Aguilar et al., 2013). 
 
Table 3-1: Residual errors in image and ground space after bundle adjustment for four different 
models. The highest accuracies are marked in green and red highlights the high ground residuals when 
no GCPs are used. 
  
 

No GCPs 5 GCPs 40 GCPs 
40 GCPs 

translation +drift 
 Control 

RMSE 
Check 
RMSE 

Control 
RMSE 

Check 
RMSE 

Control 
RMSE 

Check 
RMSE 

Control 
RMSE 

Check 
RMSE 

Ground X 
[m] 

N/A 3.80 0.06 0.46 0.24 0.44 0.21 0.41 

Ground Y 
[m] 

N/A 12.08 0.39 0.58 0.50 0.60 0.23 0.27 

Ground Z 
[m] 

N/A 34.19 0.04 0.60 0.06 0.50 0.06 0.50 

Image X 
[pxl.] 

N/A 0.27 0.27 0.25 0.28 0.24 0.27 0.24 

Image Y 
[pxl.] 

N/A 0.26 0.30 0.16 0.32 0.16 0.27 0.16 

Total 
Image 
[pxl.] 

0.27 0.21 0.32 0.23 

 

3.4.3.2 DSM accuracy 

To analyse how the residual errors after bundle adjustment affect the quality of the DSM, 
stereo-reconstruction was performed with all four refined sensor models. While the general 
surface structure and level of detail depicted in the resulting DSM was very similar with all 
four models but Figure 3-8 shows that the residuals of the bundle adjustment without GCPs 
results in an offset of approximately 35 m in the z-axis. For the three reconstructions 
performed with GCPs, the mean elevation difference to the LiDAR ranges from -1.16 m (40 
GCPs, translation) to -1.43 m (5 GCPs, translation). This bias is mainly caused by the 
stereophotogrammetric reconstruction yielding a relatively smooth surface in which many 
fine structures depicted in the LiDAR are truncated. Overall the RMSE of the DSMs shows 
only a minor influence of the number of GCPs ranging from 2.92 m (40 GCPs, translation) to 
3.03 5 GCPs, translation). 

Currently there are relatively few studies that analysed the stereophotogrammetric 
capabilities of Pleiades. Bernard et al. (2012) tested different imaging configurations over 
dense urban areas. Compared to ground points on bare earth, the RMSE of the models ranged 
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between 0.49 m and 1.17 m. Poli et al. (2013) quantified the accuracy of Pleiades stereo-
models through comparison with a LiDAR DSM providing results that are more comparable 
to this study. The evaluation focused on an assessment over a dense urban area showing 
RMSE of 6.1-6.7 m. We observed that the errors are more important for dense urban areas 
(Figure 3-8) but the maximum RMSE was only 4.6 m. The analysis shows a good agreement 
of the stereophotogrammetric models and the LiDAR DSM with a minimum RMSE of 2.4 m 
over urban areas with low building density. 

 

 
 
Figure 3-8: Accuracy assessment for the DSMs resulting from four different sensor models through 
subtraction from LiDAR DSM over the town of Barcelonnette. The analysis shows minor variations 
among the models generated with GCPs but important differences depending on the land cover. 
 
A second analysis was carried out contrasting the LiDAR and the stereophotogrammetric 
DSMs at the Super-Sauze landslide (Figure 3-9). Compared to the results obtained for the 
municipality of Barcelonnette, the RMSEs were generally higher ranging between 5.6 m (40 
GCPs, translation) and 5.9 m (5 GCPs, translation). Relative to the model based on 5 GCPs, 
the use of all 40 GCPs resulted only in minor enhancement of the total RMSE ranging from 
0.03 m (translation and drift) to 0.28 m (translation). This corroborates what was already 
observed in the residual errors after bundle adjustment. Only small benefits can be expected 
from the collection of more than 5-10 GCPs. 

The overall RMSEs for the DSM at the Super-Sauze landslide (Figure 3-9) are 
significantly higher than for the Barcelonnette test site (Figure 3-8) which can be explained 
by the steeper topography and the stronger vegetation cover on the stable parts around the 
landslide. Indeed for steep slopes, which were partially shaded at the time of the acquisition 
of the stereo-pair, the RMSE is 15.2 m and thereby significantly higher than for vegetated 
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areas with moderate slopes (RSME = 4.65 m) and for moderate slopes without vegetation 
(RSME = 1.34 m). The latter must be considered as representative for the accuracy achieved 
for the landslide body and indicates a satisfactory quality of the reconstruction for the zones 
targeted in this study. 

The absolute heights of the DSMs without GCPs are strongly biased compared to the 
LiDAR DSMs resulting in RMSEs between 35.6 m (Figure 3-8) and 41.9 m (Figure 3-9). 
However, the relative orientation of the adjusted block shows very low residuals in the image 
space (Table 3-1) and could consequently still be used for relative displacement 
measurements (section 3.4.3.3). 
 

 
 
Figure 3-9: Accuracy assessment for the DSMs resulting from four different sensor models through 
subtraction from LiDAR DSM at stable areas around the Super-Sauze landslide. The analysis shows 
minor variations among the models generated with GCPs but important differences depending on the 
type of land cover and topographic position. 
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3.4.3.3 Displacement fields 

Considering the low residual check point error of the model with 40 GCPs (translation only, 
Table 3-1) and the slightly higher accuracy of the resulting DSMs, it was considered as the 
primary option for displacement measurements. Although the complete omission of all GCPs 
yields a significant bias in the absolute coordinates of the resulting model, it could yield 
accurate motion measurements since the image block remains consistent in relative terms. 
Since measurements without the need for GCPs would greatly facilitate the automated 
processing of longer time series, it was considered as the second option in this study. Figure 
3-10 shows that the motion fields for the La Valette landslide derived with and without 
GCPs. The general pattern of movement shows higher displacements at the scarp (maximum 
of 0.82 m) and gradually decreasing displacements downslope. This pattern is consistent with 
field observations and previous remote sensing studies at the La Valette landslide (Squarzoni 
et al., 2003; Delacourt et al., 2007; Leprince et al., 2008; Raucoules et al., 2013).Figure 3-10 
indicates that the results obtained with or without GCPs are, though not identical, indeed very 
similar. Slightly higher displacements in the central part of the landslide are observed without 
GCPs (Figure 3-10b) but from visual comparison alone it is not obvious which of the two 
models provides the more accurate results. 

 

 
 
Figure 3-10: Displacement field of the La Valette landslide between 07/08/2012 and 05/10/2012 using 
(a) 40 GCPs and (b) no GCPs. The position of the permanent GNSS receivers  operational in this 
period is indicated. 
 
The displacement field obtained for the Super-Sauze landslide (Figure 3-11) shows a strong 
motion (maximum 2.15 m) at the central part of the landslide and a gradually decreasing rate 
further downslope. The fact that the pattern of movement changes significantly over time 
does not allow a direct comparison with previous studies but the general distribution of the 
motion could be confirmed by field observation a few days after the acquisition of the 
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Pleiades stereo-pairs. The stability of the upper most part of the landslide (Figure 3-11) is 
also consistent with terrestrial photogrammetric measurements in Stumpf et al. (In Review-a). 
Terrestrial photogrammetry indicates horizontal displacements at the central part of up to 
4.0 m for the period 05/07/2013 to 09/10/2012 suggesting a decrease in displacement rates 
during the summer. 
 Similarly to the displacement fields at La Valette, the results for Super-Sauze show 
only slight differences between measurements with GCPs (Figure 3-11a) and without (Figure 
3-11b). Overall the values are slightly lower without GCPs and an additional hotspot with 
locally high displacement rates (corresponding to a step in the topography of the sliding 
surfaces) is depicted (Figure 3-11b). 
 

 
Figure 3-11: Displacement field of the Super-Sauze landslide between 07/08/2012 and 05/10/2012 
using (a) 40 GCPs and (b) no GCPs. The positions of two permanent GNSS stations which were 
operational in this period are indicated. 
 
Of the three investigated sites, the Poche landslide displayed the slowest movement during 
the observed period. The highest displacements (maximum 0.44 m) are observed in the 
central part (Figure 3-12). As for the other sites, the results obtained with GCPs and are very 
similar to those without ground control, while the measurement without GCPs contains more 
noise (Figure 3-12b). The magnitude and spatial pattern of the displacement field is 
consistent with the long-term kinematics observed during the last 50 years (< 1m.year-1 in the 
lower part of the slope) but displacement regime is highly variable over time and knowledge 
about the recent kinematics is limited. 

La Valette and Super-Sauze are monitored with permanent GNSS receivers whose 
measurements were compared with the image-based velocities. Table 3-2 shows that the 
highest deviation of the 2D displacement with 40 GCPs is 0.13 m (LVAL1, N-component) 
and 0.13 m if no GCPs were used (SAUZ 2, N-component). The observed errors with 40 
GCPs suggest RMSEs in the E-component (RMSEE) of 0.04 m, in the N-component 
(RMSEN) of 0.10 m and a total RMSE (RMSET) of 0.11 m. Surprisingly without GCPs the 
figures are slightly lower and correspond to RMSEE = 0.04 m, RMSEN = 0.08 m, RMSET = 
0.08 m. 



 

- 133 - 
 

 
 
Figure 3-12: Displacement field of the Poche landslide between 07/08/2012 and 05/10/2012 using (a) 
40 GCPs and (b) no GCPs. The area marked with a question sign indicates a coherent displacement 
pattern of a potential previously undiscovered instability. 
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Table 3-2: Comparison of the image-based motion measurements with three permanent GNSS 
stations at La Valette and Super-Sauze. The most accurate image-based measurements are highlighted 
in bold. The values in brackets correspond to the original pixel values before post-processing. 
 
 LVAL1 SAUZ1 SAUZ2 

 
GNSS

Image 
correlation 

GNSS
Image 

correlation 
GNSS 

Image 
correlation 

  40 
GCPs 

no 
GCPs 

 
40 

GCPs 
no 

GCPs 
 

40 
GCPs 

no 
GCPs 

E 
0.00 

-0.02 
(-0.05) 

-0.06 
(-0.03) 

0.07 
0.10  

(-0.06) 
0.07 

(2.88) 
0.15 

0.13 
(0.33) 

0.17 
(0.13) 

N 
-0.01 

0.12 
(0.21) 

-0.06 
(0.09) 

0.23 
0.23 

(0.29) 
0.22 

(-0.66) 
0.58 

0.46 
(0.43) 

0.45 
(0.21) 

Total 
horizontal 

0.01 
0.12 

(0.22) 
0.07 

(0.09) 
0.24 

0.25 
(0.30) 

0.23 
(2.96) 

0.60 
0.48 

(0.55) 
0.48 

(0.25) 
 

Considering that only three GNSS receivers were available, those figures are not 
statistically significant but, nevertheless, indicate that decimetre accuracy can be achieved 
with the described processing chain and that the availability of ground control is not essential 
for accurate measurements. Without GCPS a residual shift in x (3.80 m) and y (12.08 m) 
causes an offset of 1-2 pixel between the correlation images (8 m resolution) and the 
coordinates of the GNSS receivers. However, since the displacement of the observed 
landslides is relatively coherent over such distances this does not lead to an increased error. 
More in general, a lack of ground control seems to have no significant influence on the 
observed magnitude of the displacement, whereas, if a precise integration with in situ 
instruments is desired, the collection of a few precise GCPs should be considered. 

Table 3-2 contains the measured displacements before the post-processing and 
indicating that the routine is not only useful for the removal of false positives but also 
improves the accuracy of the measured values. It should be recalled that the processed dataset 
comprised only one stereo-pair and consequently all images were orthorectified with the 
same DSM. Implicitly, this comprises the assumption that all movement which occurred 
between the two time steps is slope parallel (i.e. the surface relative height among different 
surface parts does not change). This is a reasonable assumption for glacier flow and the short 
time-period addressed in this study. However, multiple stereo-pairs will be required to 
account for significant changes in the terrain topography over longer time periods. 

Compared to previous studies, using aerial images for the tracking of landslide motion 
(Delacourt et al., 2004; Casson et al., 2005) the residual errors are one order of magnitude 
smaller and in the same range than pixel-offset tracking techniques applied on SAR 
amplitude images (Raucoules et al., 2013). The possibility to reach decimetre accuracy with 
VHR satellite images using little or no ground control makes the elaborated processing chain 
potentially useful for seasonal monitoring of slow- and very-slow moving landslides or the 
reconstruction of the displacement measurement from image archives. 

A bottleneck is still that processing chain involves two specialized commercial 
programs which increases the cost of the applications and hinders full automation. The use of 
an alternative image correlation technique implemented in open-source software (Deseilligny 
et al., 2013) could resolve this issue partially. However, there is currently no accurate and 
free tool for RPF bundle adjustment available and specialized commercial software is 
indispensable for the time being. 
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 Further studies could evaluate the applicability of the proposed approach for other 
landslide types and surface displacement phenomena and the possibility to integrate 
displacement measurements derived from SAR interferometry and other sources to 
reconstruct all 3D components. An interesting option in this context is also the use of 
multiple stereo-pairs which theoretically enable the recovery of 3D surface displacement 
form disparity measurements directly in the image geometry. 
As recently demonstrated in Booth et al. (2013) physical quantities such as the depth of the 
sliding surface and rheological parameters can be estimated from remotely sensed 
displacement fields and further research in this direction is needed to fully exploit the 
obtained measurements (e.g. assimilation in numerical models). A further possibility that 
arises from measurements without ground control is the application of correlation-based 
techniques for mapping purposes complementing services provided by SAR interferometry. 

 Conclusion 3.4.4
This study investigated the use of VHR satellite images for landslide displacement 
measurements with a particular focus on the reduction of ground control requirements. A 
processing chain comprising RPF bundle adjustment, DSM extraction, sub-pixel image 
correlation and post-processing was elaborated and used to quantify the surface displacement 
of three active slow-moving landslides. 

Three Pleiades satellite images (1 monoscopic, one stereo-pair) were processed and a 
number of experiments allowed to quantify the accuracy of refined sensor models and 
extracted DSM for four scenarios differing mainly in the amount of available ground control. 
The analysis showed that GCPs are important for an accurate absolute georeferencing of the 
DSM of the displacement maps but have little impact on the absolute values of the measured 
displacement. A comparison of the extracted DSMs with airborne LiDAR surveys showed 
RMSE between 1.34 and 15.2 m depending mainly on the type of land cover at the surface. 
For the derived displacement fields a maximum error of 0.13 m was observed weather 40 
GCPs were used or only relative orientation was performed without any GCPs. 

To the best of our knowledge, study provides the first example for displacement 
measurements from VHR satellite images without ground control and external DEMs. 
Considering the limited number of processed datasets and validation measurements (i.e. three 
GNSS receivers), the results must be considered preliminary. We target in particular to 
exploit additional stereo-datasets that have been acquired for the same study areas and use an 
open-source correlator for better automation. Also the post-processing routine could be 
further enhanced taking into account additional topographic variables. 
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 3D	 landslide	 displacement	 monitoring	 and	 volume	3.5
estimation	using	multi‐view	terrestrial	photogrammetry	
 

 
 
The research work presented in this section targets the elaboration of a photogrammetric 
processing chain for the monitoring of landslide dynamics in terms of surface changens, 3D 
displacement measurements and estimation of the transported volumes. It explores the use of 
SfM and MVS algorithms for the straightforward computation of accurate surface models 
(i.e. point clouds) and the derivation of relevant information through cloud-to-cloud change 
detection and point matching. Terrestrial photographs of a slow-moving landslide are 
acquired with a consumer-grade handheld camera for five different epochs. Based on publicly 
available and open-source software libraries, three different pipelines are elaborated and 
parameterized, and their accuracy is assessed through comparison with terrestrial and 
airborne LiDAR surveys. The most accurate of the three pipelines yields surface models that 
approach the quality of LiDAR. Change detections over a period of 2 years allow a detailed 
assessment of the seasonal dynamics of the landslide; the possibility to estimate volumes and 
3D displacement estimates are illustrated for the most active parts of the landslide. Volumes 
and displacement rates derived from the photogrammetric processing chain are in close 
agreement with measurements based on terrestrial LiDAR and permanent GNSS 
observations. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

This section is based on: Stumpf, A., Malet, J.-P., Allemand, P., Deseilligny, M.-P., 
Skupinski, G., In Review. Terrestrial multi-view photogrammetry for landslide 
monitoring, Journal of Geophysical Research., 48 p. 
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 Introduction 3.5.1
Digital Elevation Models (DEMs) are indispensable information sources in the geosciences. 
Modern remote sensing technologies have greatly facilitated their creation and frequent 
updating for applications in geomorphology, hydrology, geophysics and natural hazards 
research. Spaceborne observations are valuable sources for obtaining topographic information 
on global and regional scale whereas local scale studies typically require more precise 
measurements at higher spatial resolution, which can be derived with airborne/terrestrial 
photogrammetry or laser scanning. In particular Light-Detection and Ranging (LiDAR) is 
being employed in an increasingly large number of applications providing very accurate 
surface representations and the capability to penetrate vegetation (Heritage and Large, 2009; 
Jaboyedoff et al., 2010). However, the costs of the equipment and the logistics of a LiDAR 
surveys are currently still rather high and, therefore, acquisition at high temporal resolutions 
are not always feasible. Conventional photogrammetric techniques with metric and non-
metric cameras are a frequently employed alternative for a wide range of applications (Fryer 
et al., 2007) but comprise high demands on the image acquisition geometry, ground control, 
processing software and the experience of the operator (Henry et al., 2002; Fryer et al., 2007). 

Great advances of the photogrammetry and computer-vision communities in pose-
estimation and bundle-adjustment (Triggs et al., 2000; Hartley and Zisserman, 2004 ), camera 
self-calibration (Fraser, 1997; Pollefeys et al., 1999) as well as feature-based and area-based 
image matching (Lowe, 2004; Pierrot-Deseilligny and Paparoditis, 2006; Hirschmuller, 2008; 
Furukawa and Ponce, 2010) have recently converged in a new class of photogrammetric 
algorithms and tools that enable more flexible 3D surface reconstruction from unordered non-
metric image collections. They are summarized under the terms ‘Structure-from-motion’ 
(SfM, Ullman, 1979); being the process of estimating camera parameters and sparse point-
clouds, and Multi-View Stereo (MVS), which is the process of deriving dense surface models 
once the correspondence among multiple cameras has been established. Many proposed 
approaches for SfM and MVS are now implemented in commercial software (AgiSoft 
PhotoScan, Pix4D, PhotoModeler Scanner, Trimble Inpho), web-based services 
(Microsoft Photosynth, Autodesk 123D, Arc3D, Cubify Capture) as well as in free and 
open-source software (Snavely et al., 2008; Furukawa and Ponce, 2010; Deseilligny and 
Clery, 2011; Rothermel et al., 2012; Wu, 2013). 

The geoscience community has already started to take great interest in those new tools 
and began to explore their capabilities for a number of applications (Westoby et al., 2012; 
Fonstad et al., 2013). An overview of recent studies is provided in Table 3-3. Among many 
factors that condition the accuracy of SfM-MVS (e.g. camera, lens, acquisition geometry, 
quality of the ground control, illumination conditions, and processing software) the distance 
to the object is probably the most influential. Imaging distances between 1.8 m and 2400 m 
have been explored resulting in accuracies that are generally between 0.04 m and 1.68 m. An 
exception constitutes the application of SfM-MVS  in vegetation studies where the errors can 
amount to several meters (Table 3-3). 
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Table 3-3: Overview of geoscience studies applying SfM and MVS. 
  

Subject Sensor 
platform 

Distances Employed 
tools 

Reference 
data 

(accuracy) 

Reported 
Accuracy 

Reference 

Coastal 
cliff 

Boat ~20 m 
Photosynth, 

Bundler(Snavely 
et al., 2008), 

Patch-based MVS 
algorithm 
(PMVS2, 

Furukawa and 
Ponce, 2010) 

LiDAR (>0. 
015 m) 

RMSE, 0.07 
m 

(James and 
Robson, 

2012; James 
and Varley, 

2012) 

Volcanic 
dome 

Helicopter 
500–2400 

m 
dGPS (0.1 m) 

RMSE, 1.30 
- 1.68m 

Forest 
canopy 

Aerial kite 40 m Agisoft Photoscan 

Aerial 
LiDAR (not 

reported, 
typically 0.2-

0.3 m) 

0.80 - 5.69 
(Mean ± 
RMSE,  
ground 

points), 3.9–
10.9 m 

(RMSE, 
regression 
estimate of 

canopy 
heights) 

(Dandois and 
Ellis, 2010, 

2013) 

Sparsely 
vegetated 

coastal 
area 

UAV 40–50 m Bundler, PMVS2 
Total station 
and dGPS 
(0.02 m) 

0.03-0.04 m 
(Harwin and 

Lucieer, 
2012) 

Antarctic 
mossbeds 

UAV 50 m Agisoft Photoscan 
dGPS (0.02 -

0.04 m) 
0.04 m 

(Lucieer et 
al.) 

Alpine 
landslide 

UAV ~200 m Bundler, PMVS2 
Terrestrial 

LiDAR 
(0.01-0.03 m) 

0.25 m 
(Niethammer 
et al., 2011b) 

Glacier UAV 300-400 m Trimble Inpho 
dGPS (0.05 

m) 
0.18 - 0.63 m 

(Whitehead 
et al., 2013) 

Volcanic 
lava 

flows 

Terrestrial 
photographs 

~1.8 m Apero-MicMac not available 

Not 
available. 

(mm 
resolution) 

(Bretar et al., 
2013) 

 
Though researchers have already explored the use of SfM-MVS tools in geoscience 

applications there are no studies that compare different pipelines making it problematic for 
interested users to select among the variety of different tools. This also applies to some extent 
for the choice of several algorithm parameters whose values are typically not reported. 
Several benchmark studies have evaluated MVS algorithms for toys (Seitz et al., 2006) or 
architectural outdoor scenes (Strecha et al., 2008). Remondino et al. (2012) also provided a 
comparative analysis of open-source tools for SfM on artificial objects and architectural 
environments. However, natural scenes yield fundamentally different image characteristics 
(Torralba and Oliva, 2003) and are typically more challenging in terms of surface 
characteristics, illumination and constraints on the view geometry. In Fallourd et al. (2010) 
and Travelletti et al. (2012) it has been demonstrated that terrestrial time-lapse photography is 
a valuable tool  for the monitoring of landslides and glaciers but multi-view photogrammetry 
has not yet been tested in this context. Therefore further studies are required to explore the 
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potential and limitations of different SfM-MVS for multi-temporal geomorphological 
surveys. 

Reliable accuracy assessments require reference measurements with known greater 
precision and dGPS and LiDAR scans are currently among the most accurate techniques. 
While long GPS observation sessions (typically > 3 hours) can yield millimetre accuracy 
(Malet et al., 2002), short sessions during photogrammetric campaigns typically comprise 
errors in the range of a few centimetres. Especially in rugged terrain it should further be 
considered that ground control points (GCPs) cannot be measured on very steep slopes and 
rugged surfaces introducing a potential bias. Terrestrial and aerial LiDAR scans provide 
spatially distributed point clouds at accuracies between 0.02 and 0.15 m, respectively 
(Jaboyedoff et al., 2010) and have been used for to assess the error of SfM-MVS techniques 
in several studies. In many cases the obtained points clouds are interpolated to continuous 
surfaces before comparison (Dandois and Ellis, 2010; Niethammer et al., 2011b; James and 
Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013) which is not ideal since 
interpolation artefacts bias the accuracy estimates or the measured changes over time. Tools 
for more direct comparison of points clouds are widely used for co-registration and temporal 
change detection among LiDAR scans (Lague et al., 2013; EDF-R&D, TelecomParisTech, 
2013) and might also be more appropriate in this context. 

Therefore, the target of this work is to contribute to the on-going efforts to exploit 
SfM-MVS as a measurement technique in geoscience studies. The objective is to investigates 
the possibility to use freely available processing tools (Deseilligny and Clery, 2011; Wu et 
al., 2011; Deseilligny et al., 2013; Wu, 2013) for the monitoring of active landslides. 
Landslides occur frequently in high mountain terrain where the rugged topography, 
vegetation and fast changing weather conditions constitute a challenging environment for the 
application of photogrammetric techniques. In section 2 the study site (Super-Sauze 
landslide) is introduced together with the acquisition protocols of the terrestrial photographic 
surveys. The ground-control datasets obtained from LiDAR and dGPS surveys are explained 
in detail. Section 3 provides an overview of three SfM-MVS pipelines and details the 
implemented algorithms. Special attention is given to the significance and optimization of 
different algorithm parameters of the three SfM-MVS pipelines and methods for direct point 
cloud comparison. In section 4 the accuracy of photogrammetric models is assessed through 
comparison with LiDAR point clouds. In Section 5 change detection is performed to quantify 
the surface changes and dynamics of the landslide over a period of two years and Section 6 
provides a discussion of current limitations, potentials and possible pitfalls of the survey 
design. 
 

3.5.1.1 Study site and data acquisition 

The Super-Sauze landslide (Figure 3-13a) is a clay-rich slow-moving slope movement 
located in the Southern French Alps. The landslide initially developed in the 1960s through 
retrogressive failures of the main scarp and is highly controlled by the local hydrology, 
climate and the accumulation of new material from successive failures at the main scarp. 
During the last decade several in-situ and remote sensing studies have contributed to a better 
understanding of its kinematics (e.g. Malet et al., 2002; Niethammer et al., 2011a; Travelletti 
et al., 2012; Stumpf et al., 2013b). Multi-technique displacement observations suggest a long-
term average displacement rates of 0.01-0.03 m.day-1 (Malet et al., 2002) but regularly,  daily 
cumulative displacements larger than 6 m are observed (Travelletti et al., 2012). The site is 
characterized by a rugged topography comprising vertical and overhanging cliffs as well as 
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quasi-horizontal surfaces. The eastward-adjacent slopes are largely forested, whereas 
badlands and several sub-parallel ridges border the landslide to the west. Constraints on 
possible view points, low incidence angles and occlusion make such type of terrain generally 
challenging for terrestrial photogrammetric measurements. 

Regular acquisitions of terrestrial photographs in a MVS setup have been carried out 
since October 2011 in regular intervals (Table 3-4). Field campaigns are typically limited to 
the time between early May and late October since snow cover prohibits photogrammetric 
and most other measurements during the rest of the year. A Nikon D700 camera has been 
used, the focus has been set to infinity, and care has been taken to obtain a good trade-off 
between sufficiently short exposure time and large depth of field (narrow aperture) during all 
acquisitions. 

Two target zones were monitored by photogrammetry. A first acquisition protocol 
was setup to reconstruct the evolution of the main scarp (Figure 3-13a) at five dates for the 
period October 2011-July 2013. The images were recorded in a surface-parallel linear array 
of panoramic shots yielding distances to the targeted surface between 20 m and 200 m. 
During the first survey images were recorded only at a reduced resolution (2128x1416) and in 
JPEG format, whereas for all subsequent surveys full resolution (4256x2832) images were 
stored in native Nikon (NEF) file-format to avoid information loss. A 60 mm lens was used at 
all dates except in July 2012 when a 35 mm lens was used to also investigate the influence of 
the focal length on the reconstruction. A second acquisition protocol was setup to obtain a 
full-scene model for the entire landslide in October 2012 and July 2013. Images were 
captured in a half circular array along the limits of the landslide (Fig. 1a) using a 35 mm lens. 
The distance to the surface varied between approximately 50 m and 1000 m. 

The reference point clouds used in this study were acquired with a terrestrial (Optech 
ILRIS-3D) and aerial (Riegl LMS-Q560) laser scanner. To provide full coverage of the scarp, 
multiple terrestrial scans were carried out from different view angles aligned subsequently 
with the Iterative Closest Point (ICP) algorithm (InnovMetric, 2010). The scans were 
performed at an average distances between 3 and 800 m resulting in a ground-point density 
generally greater than 100 pts.m2. While the theoretical accuracy of the terrestrial LiDAR 
scans is in the range of ± 0.01 m (Jaboyedoff et al., 2010), the alignment error generally 
amounted to an RMSE of 0.02-0.03 m (Travelletti, 2011). The aerial LiDAR survey was 
acquired on 29 August 2012 with an average flight height of 800 m above the surface 
resulting in an average ground-point density of approximately 90 pts.m2. The accuracy of the 
airborne point-cloud is influenced by scanning, georeferencing and reprojection errors and 
typically between 0.20-0.30 m (Travelletti, 2011).  

In addition, a set of 35 ground targets were used for georeferencing the point clouds.  
The target centres were measured with dGPS during the last photogrammetric acquisition on 
18 July 2013. The 3D measurement error of the dGPS was reported with 2.5 cm in the 3 
directions. 
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Figure 3-13: (a) Location and overview of the Super-Sauze landslide with possible view points for the 
image acquisition. (b) Exemplary reconstruction results (unscaled sparse point cloud, 19 July 2013) 
illustrating the camera acquisition protocol for the full scene reconstruction. Cameras positions are 
depicted by red/green icons. 
 
Table 3-4: Overview of the collected data during the photographic, LiDAR and dGPS surveys. 
 
Main scarp 20-Oct-11 5-Jul-12 9-Oct-12 14-May-13 18-Jul-13 

# images 88 106 168 130 265 
Focal length (mm) 60 35 60 60 60 

Resolution 2128x1416 4256x2832 4256x2832 4256x2832 4256x2832 
Terrestrial LiDAR ILRIS-3D ILRIS-3D ILRIS-3D   

Distance (m) 3-800 3-800 3-800   
Point density (pts.m-2) > 100 > 100 > 100   

RMSExyz (m) 0.02-0.03 0.02-0.03 0.02-0.03   

Landslide body 29-Aug-12 10-Oct-12 19-Jul-13 

# images 401 401 
Focal length (mm) 35 35 

Resolution 4256x2832 4256x2832 
Airborne LiDAR  LMS-Q560    

Distance (m)  ~ 800    
Point density (pts.m-2)  ~ 90    

RMSExyz (m)  0.20-0.30    
 

 Data processing 3.5.2
The different surface reconstruction pipelines tested in this study are based on open-source 
libraries and follow the common SfM-MVS sequence starting from the extraction of 
homologous image points, estimation of camera parameters and bundle adjustment, and a 
final dense reconstruction. 
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VisualSfM (VSfM) is a freely-available software implementing algorithms for SIFT (Lowe, 
2004) point extraction on graphical processing units (GPUs) (Wu, 2007), pose-estimation and 
multi-core bundle adjustment (Wu et al., 2011; Wu, 2013) for which source code is also 
partially available.. 

PMVS2 is a patch-based multi-view stereo algorithm (Furukawa and Ponce, 2010) 
targeting dense reconstruction after camera correspondence has already been established. The 
algorithm can be scaled to large reconstruction problems using a related cluster multi-view 
stereo (CMVS) algorithm (Furukawa et al., 2010).  

Apero-MicMac is an open-source software for multi-view photogrammetry 
(Deseilligny et al., 2013). The project comprises tools for tie-point extraction (Tapioca), 
pose-estimation, camera-calibration, bundle-adjustment (Apero, Deseilligny and Clery, 
2011), dense-matching (MicMac) and georeferencing as well as various further tools 
dedicated to miscellaneous tasks such as point cloud extraction, creation of masks, and 
orthorectification. The source code was compiled under Linux. 

Three different pipelines combing VSfM with CMVS (VSfM+CMVS), Apero with 
CMVS (Apero+CMVS), and Apero with MicMac (Apero+MicMac) are compared. All 
processing was performed on a workstation with 8 cores, 36GB RAM and an NVIDIA 
Quadro 600 GPU. A general overview of all processing steps is provide in Figure 3-14 and 
detailed in the following sections. 

 

 
 
Figure 3-14: Generalized workflow for the reconstruction pipelines, accuracy assessment and change 
detection. See indicated text sections for details. 
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3.5.2.1 Pose estimation, camera calibration and bundle adjustment 

For the robust estimation of all camera parameters, a large number of homologous points has 
to be identified among the different images.  
For the tie point extraction with VSfM, it is necessary to convert the native NEF images to 
JPG format. For computational speed SIFT points are typically not extracted from the 
original very high resolution images and the maximum image dimension (width) was set to 
2128 pixels when running the GPU SIFT (Wu, 2007) implemented in VSfM. 

In order to provide a fair comparison, the tie point extraction in MicMac was also 
performed with a maximum image dimension of 2128 pixels. The corresponding module 
provides an interface for point-matching based on the open-source SIFT implementation 
SIFT++ (Vedaldi and Fulkerson, 2008). The code is parallelized for efficient computation 
and automatically filters outliers if there are less than 5 mutual matches among the 10 nearest 
neighbours (in the image space) of each matching point pair.  

VSfM and Apero (the MicMac tool for the estimation of camera parameters) 
implement both an incremental reconstruction algorithm where the primary criteria for the 
selection of the initial pair are the maximum number of point matches.  In VSfM, intrinsic 
camera parameters such as the focal length are initially retrieved form the EXIF tags and the 
five-point algorithm (Nister, 2004) is used to estimate the camera poses of the initial image 
pairs. The projection of the next camera (the image with the highest number of already 
projected tie points is selected) relative to initial pair is estimated using a direct linear 
transform inside a RANSAC routine (Hartley and Zisserman, 2004 ) and the focal length as 
recorded in the EXIF tags. After a defined number of images has been added, sparse bundle 
adjustment is used regularly to re-estimate a 8 parameter model for each camera (1 for focal 
length, 1 for radial distortion, 3 for rotation, and 3 for translation) minimizing the squared 
reprojection error of all matching points. The minimization problem is solved with a method 
adapted for large scale reconstruction problems (thousands of images) and combines a 
classical Levenberg-Marquardt algorithm with the Preconditioned Conjugate Gradients 
algorithm (Agarwal et al., 2010). For greater efficiency the algorithm is implemented in 
parallel and the number of full bundle adjustment steps decreases as the model size increases. 
An important aspect is that all camera parameters (including focal length and radial 
distortion) can vary among all reconstructed cameras. For a more detailed explanation of the 
implemented algorithms the reader is referred to (Agarwal et al., 2010; Wu et al., 2011; Wu, 
2013). 

In Apero the initial pair with the maximum number of mutual matching points is 
selected and both the eight-point algorithm and the direct linear transform are used within a 
RANSAC routine (Hartley and Zisserman, 2004 ) to estimate the relative camera poses (6 
parameters derived from the essential matrix). Based on the L1 norms of the angular residual 
of the projection, the better solution is selected. The next image (the one with the highest 
number of already projected tie points is selected) is added and its pose is estimated relative 
to the already reconstructed views using the three-point algorithm (Haralick et al., 1994) 
within a RANSAC routine. The focal length at this stage is extracted from the EXIF tags and 
lens distortion parameters are set to zero. After a certain number of images has been added 
(default maximum 4), a bundle adjustment is performed through a Levenberg-Marquardt 
optimization minimizing the squared reprojection error of all matching points. During this 
step only the pose parameters are refined. When all images have been added in the 
reconstruction, a subsequent sequence of bundle adjustment iterations is launched to estimate 
the lens parameters according to a lens model selected by the user. Apero implements a 
number of different lens models and for the presented study a model with ten degrees of 
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freedom (1 for the focal length, 2 for the distortion centre, 3 for the radial distortion, 2 for the 
decentric distortion, and 2 for affine parameters) was used. A few final iterations are used to 
re-estimate the camera poses with the determined lens model and apply stricter criteria for the 
removal of outliers in the sparse point cloud. It is generally recommendable to perform auto-
calibration only on a subset of the image sequence to avoid that cumulating matching errors 
propagate into the lens model. With Apero this issue can be addressed by performing the 
explained calibration step initially with a subset of suitable images (typically 10-15), and 
adding all further views incrementally starting from the previous estimated poses and a fixed 
lens model. During the reconstruction, the global and per-image residual errors and the used 
number of point-matches are reported and can serve as indicators to identify the overall 
quality of the sparse reconstruction and unstable views. For further details the reader is 
referred to (Deseilligny and Clery, 2011; Pierrot-Deseilligny and Clery, 2012; Deseilligny et 
al., 2013). 
 

3.5.2.2 CMVS-PMVS 

PMVS is a dense matching algorithm comprising three steps of matching, patch expansion 
and filtering. The matching step is performed by point-wise matching of Harris and 
Difference-of-Gaussians feature points. A patch of a certain size (in pixels in the reference 
image) is than defined around each matching point and the depth and orientation of the 
surface are estimated minimizing a discrepancy measure under epipolar constraints. The 
discrepancy measure is based on the normalized cross-correlation (NCC) of the patch 
intensity values among all images used for its reconstruction. Only cameras whose view 
direction is not too different from the direction of the estimated surface normal and whose 
photo-discrepancy measure is not too high are used. 

In the patch-expansion step, neighbouring cells of already reconstructed patches are 
probed.  The surface normals are initialized from the already determined neighbour and the 
depth is initialized according to the ray intersection of the included images (images in which 
the patch is visible). Orientation and depth of the patch are re-estimated minimizing the 
photo-discrepancy measure and further views in which the new patch is visible according to 
the estimated depth map are added. 

The final step concerns the filtering with criteria combining visibility constraints, the 
photo-discrepancy score, and a form of regularization where the projection of a patch in all 
images should at least contain 25% of its projected neighbours. The expansion and filtering 
steps are typically iterated three times. A more thorough description of the algorithm is 
provided in Furukawa and Ponce  (2010). 

Furukawa et al. (2010) proposed CMVS to cluster the output of SfM reconstructions 
before dense matching. The algorithm forms clusters of well-connected views (sharing many 
matching points) and removes redundant views while preserving good coverage of the scene. 
The maximum size of the cluster can be specified by the user in order to split the 
reconstruction in subsets that can be handled by the hardware at hand. 
PMVS requires undistorted images and both VSfM and MicMac include tools to undistort the 
input images with the determined lens model. Preliminary test were performed after the first 
image acquisition testing different parameter settings. Considering hardware constraints, 
model coverage and the amount of visually apparent errors the set of parameters summarized 
in Table 3-5 was found to provide the best results possible with the hardware available for 
this study. 
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Table 3-5: Overview of the main parameter settings used for CMVS-PMVS. 
 

Parameter 
Value 

(default) 
Explanation 

CMVS cluster 
size 

40 (-) Larger view clusters require more than 36 GB RAM 

Level 0 (1) Do computation with full resolution images 

csize 2 (2) 
At least one patch in every csize x csize pixel square region is 
reconstructed. Smaller csize can increase the point density but 
required more than 36 GB RAM. 

Patch size 14 (7) Slower but more robust reconstruction 
nImin 3 (3) Point which are visible in less nImin images are removed 

t 0.7 (0.7) 
Patches with a normalized cross correlation score below this value are 
rejected 

 

3.5.2.3 Multi-Image Correlation MicMac 

The core library of MicMac is a hierarchical MVS image correlation algorithm for dense 
reconstruction. Several aspects of the algorithm are described in Deseilligny et al. (2013), 
whereas here only a  high-level overview of the main steps and parameters when working in 
“ground-image geometry” is provided. One base image Ib and at least two matching images 
Im must be selected and the 3D object surface will be estimated as the depth relative to Ib. 
Matching is performed projecting squared patches Ws of a size s * s pixel between all images 
involved according to the known epipolar geometry constraints (Figure 3-15a) and the 
minimum and maximum depth Zmin and Zmax, respectively. The algorithm is initialized with 
downsampled version of the original images (e.g. 1/32 of the original dimension) and Zmin 

and Zmax are estimated from the minimum and maximum distances in the sparse point cloud. 
The similarity of the projected patches is evaluated via the NCC and the mean correlation 
coefficient among all image combination is computed for each possible disparity value 
(inversely related to the depth). Based on the mean correlation coefficient a matching cost 
Cmatch can be computed, which takes the value 0 if the image patches are perfectly similar and 
increases with dissimilarity. The range of probed disparity values is discretized according to a 
parameter Zstep. 

The goal of this process is to determine for each pixel in Ib a corresponding disparity 
value D for which the global matching cost Cglob is minimal. The resulting disparity map is 
prone to comprise numerous outliers if Cglob is based on the NCC alone and that is why a 
second term (ܥ௧௦) is added to the cost function penalizing different disparities among 
neighboring pixels and promoting the smoothness of the surface. The global cost function is 
indicated in Eq. 3: 

ܥ ൌ ܥ௧

ே

ୀଵ

  ௧௦ܥ

௧௦ܥ ൌ ߙ ∗  ܦ

ܦ  ௫ܦ ⇒ ௧௦ܥ ൌ 	∞     Eq. 3 
 

, where ܥ௧௦  is a regularization term that depends on the disparity gradient among 
neighbouring pixels (D). The strength of the regularization is controlled by the factor ߙ. 
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Surface discontinuities translate into strong changes in the disparity of neighboring pixels and 
to preserve such features ܥ௧௦ increases to infinity if D exceeds the threshold	ܦ௫. 

 

 
 
Figure 3-15: Schematic representation of the different steps and parameters of MiMac’s dense 
matching algorithm. (a) Epipolar constraints on the matching according to the determined image 
orientation, (b) aggregation of matching costs and smoothness term to determine the minimum-cost 
path along one scanline, (c) multi-directional aggregation of the costs and approximation of the 
minimum cost surface via dynamic programming, and (d) buffering operation with uncertainties to 
constrain the search space for the next iteration. 
 

In traditional scanline optimization (Scharstein and Szeliski, 2002), the minimum of  
  is determined as the minimum-cost path in the disparity map along one scanline (Figureܥ
3-15b). While this enables very efficient computation, it does not take into account 
information from neighbouring pixels outside the scanline and yields streaking effects. This 
issue can be resolved using the semi-global matching (SGM) technique proposed in 
Hirschmuller (2008)  where ܥ is determined through the aggregation of minimum-cost 
paths from several directions on the disparity map (Hirschmuller, 2008; Deseilligny et al., 
2013). The number of different directions should provide good coverage of the image and is 
typically set to 16 (8 in Figure 3-15c). After the multi-directional aggregation a minimum-
cost cost surface can be determined efficiently via dynamic programming. 
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Starting from downsampled versions of the original image the algorithm determines a 
first approximation of the surface at a coarse resolution. This approximation serves as a prior 
to constrain the search during the subsequent step at the next finer resolution. A similar 
approach that combines SGM with a hierarchical scheme has recently been proposed in 
Rothermel et al. (2012). 

The uncertainties on this prior are expressed by the two parameters ZDilAlt (in 
multiples of Zstep) and ZDilPlan (in pixel of the disparity map). The minimum/maximum 
disparities are computed in a neighbourhood of ZDilPlan pixel and ZDilAlt is subtracted/added to 
it, respectively. The resulting two disparity surfaces serve as a bound on the search in the next 
finer resolution step (Figure 3-15d).  

The final iteration is typically carried out on the full resolution images and since the 
disparity is estimated in integer multiples of Zstep a final interpolation step is added to obtain a 
floating point depth map. 

MicMac provides standard procedures for dense matching but enhanced results might 
be obtained if the parameters are tuned for the reconstruction at hand. Table 3-6 contrasts the 
parameters of three different schemes that were tested when processing the first acquisition in 
20-Oct-11. In the customized routine the matching step on full resolution is repeated three 
times with a reduced Zstep for greater sub-pixel precision, decreasing uncertainty parameters 
and an adaptive median filter to remove outliers. Also ܦ௫ is set to a rather low value in 
order to preserve depth discontinuities that are abundant in the rugged topography.  Figure 
3-16 shows exemplary results of the dense matching with three different settings and 
demonstrates that the additional steps in the customized scheme significantly reduce the 
amount of noise and justify the additional computation time (Table 3-6). It should be noted 
that the routine ‘Standard 2’ provides better coverage since the threshold on Cmatch is more 
conservative. Consequently fewer areas are masked out and the increased runtime can 
partially be attributed to this. However, the customized scheme was used for all further 
processing to not compromise the accuracy of the resulting models. 

 

 
Figure 3-16: Comparison of exemplary point-clouds sections obtained with the three tested matching 
schemes (Table 3-6) of MicMac. A very smooth section of a ridge at the foot of the scarp is shown 
(unscaled model for an acquisition at the scarp in October 2011). The red line marks the average 
surface along the displayed ridge. Note that the scaling of x- and z-axes are in coordinates arbitrarily 
fixed during the SfM step. 
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Table 3-6: Overview of parameter settings for three tested MicMac matching schemes (see text for 
details). 
 
General parameters Standard 1 Standard 2 (Malt) Customized 
Parameter name Value Value Value 

Zmin 
0.3 * the minimum 

distance in the sparse 
point cloud 

0.5 * the minimum 
distance in the sparse 

point cloud 

0.3 * the minimum 
distance in the sparse 

point cloud 

Zmax 
3 * the minimum 

distance in the sparse 
point cloud 

3 * the minimum 
distance in the sparse 

point cloud 

3 * the minimum 
distance in the sparse 

point cloud 
NbDir 8 7 8 

Cmatch threshold 0.4 0.2 0.4 
 0.05 0.02 0.05 ߙ

 ௫ 3.0 2.0 1.0ܦ
Min. number of images 3 3 3 

    
Changing parameters Zstep, ZDilPlan, ZDilAlt, s Zstep, ZDilPlan, ZDilAlt, s Zstep, ZDilPlan, ZDilAlt, s 
Resolution    

32 0.5, 3, 4, 3 0.8, 3, 4, 3 0.5, 3, 4, 3 
16 0.5, 3, 4, 3 0.4, 3, 4, 3 0.5, 3, 4, 3 

8 0.5, 3, 4, 3 
0.4, 3, 4, 3 
 (௫=1ܦ)

0.5, 3, 4, 3 

4 0.5, 3, 4, 3 
0.4, 3, 4, 3 
 (௫=1ܦ)

0.5, 3, 4, 3 

2 0.5, 3, 4, 3 
0.4, 3, 4, 3 
 (௫=1ܦ)

0.5, 3, 4, 3 

1 0.5, 3, 4, 3 
0.2, 1, 1, 3 
 (௫=1ܦ)

0.3, 3, 4, 3 + 
adaptive median 
filter with s=5 

1 Interpolation step Interpolation step 
0.3, 1, 2, 5 + 

adaptive median 
filter with s=5 

1 -  0.3, 1, 1, 3 
1 -  Interpolation step 

Runtime for the model of 
the subset in Figure 3-16 
(1 base and 6 matching 

images) 

303.5 s 435.4 s 559.3 s 

 
Currently the base images still have to be selected manually. The MicMac library 

comprises optional tools to create masks constraining the area that should be modelled. 
Ideally, the selected base images should provide a normal view of the surface, have sufficient 
neighbouring views with support from multiple directions and provide good coverage of the 
scene. For the selection of the matching images the library provides a tool which, based on 
the view angle and coverage relative to the base image, automatically determines a ranking of 
the most suitable matching images. In general the six highest ranked images were selected, 
whereas in few cases it was necessary to adjust the selection to account for occlusion and 
large differences in the object distance. 
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3.5.2.4 Georeferencing, accuracy assessment and change detection 

The dense point clouds from all three pipelines (VSfM+CMVS, Apero+CMVS, 
Apero+MicMac) were visually inspected (Cignoni et al., 2008) and obvious outliers (point 
patches far from the average surface, unnatural correlation artefacts) were manually removed.  
Both CMVS and MicMac typically yield overlapping point clouds originating from multiple 
view clusters and base images, respectively. Redundant points in those overlapping areas 
were removed and preference was given to the point clouds with higher density. 
The models of the scarp for which no GCPs were available were referenced directly after the 
generation of the dense-point clouds. The models for 20-Oct-2011, 5-Jul-2012, 9-Oct-2012 
were georeferenced with respect to the corresponding terrestrial LiDAR acquisitions (using 
Polyworks, (InnovMetric, 2010)). For a coarse alignment (rotation, translation, scaling), four 
homologous points were selected manually and the ICP algorithm was used to refine the 
alignment (rotation, translation). The model of the scarp for 14-May-2013 was georeferenced 
by the same procedure but the SfM-MVS model of the previous date was used as a reference. 
The georeferencing of the remaining models was performed with GCPS using the Campari 
tool which is part of the MicMac library. Campari is an interface to the Apero algorithm and 
allows integrating both tie points and GCPs in the bundle adjustment. A related graphical 
interface is used to mark the position of the GCPs directly in the images. The uncertainty of 
the ground and image measurements is provided by the users and constitutes weights for the 
least-square optimization. Table 3-9 (Section 3.5.3) summarizes the number of involved 
GCPs and their respective uncertainties which were set according to the errors of the 
respective reference measurements. 
To assess the accuracy of the point clouds resulting from the three SfM-MVS pipelines, the 
datasets were compared against the terrestrial LiDAR scans taken at the same date. One of 
the most commonly used approaches for point-cloud comparison is to interpolate a surface 
from one of the two point clouds and compute the distance along the surface normal (cloud-
to-mesh, C2M). This approach has proven to provide very accurate measurements but poses 
problems in areas where the point clouds do not overlap (due to inaccurate interpolation of 
the surface). To obtain accurate measurements is it hence necessary to remove all non-
overlapping areas during time-consuming manual editing. 

Lague et al. (2013) proposed a technique (M3C2) that does not require an explicit 
surface interpolation but estimates the surface normals and distances directly from the point 
clouds. In a first step the surface normals at each point are computed considering all points in 
neighbourhood of the size D/2 (the scale factor). The normals can be computed from one 
reference cloud (typically the earlier date) or averaging the normals of the two point clouds. 
Subsequently the distances are calculated at each point as the mean distance between all 
points in a neighbourhood of the size d/2 (the projection scale). An additional parameter pmax 
defines the length of the projection cylinder and thereby the maximum distance of points 
considered in the computation. The scale D should be chosen sufficiently large to make the 
distance measurement independent of the surface roughness and a range of 0.3 m < d < 2m 
for the projection scale is recommended (Barnhart and Crosby, 2013; Lague et al., 2013). 

For the accuracy assessment, we focused on the first three acquisitions at the scarp 
and tested both comparison methods (C2M, M3C2). In order to obtain accurate and 
comparable results non-overlapping parts of the point clouds were removed manually 
beforehand. The C2M implementation in CloudCompare (EDF-R&D, TelecomParisTech, 
2013) was used and the LiDAR point clouds were interpolated to form the reference mesh 
using a Delaunay triangulation with a local least-square plane approximation. The parameters 
for the M3C2 algorithm were adapted according to the surface roughness and the maximum 
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expected changes. For the accuracy assessment the surfaces are relatively similar and hence a 
rather small scale D and pmax are sufficient. Since the LiDAR point cloud is assumed to 
provide the more accurate surface representation, it is reasonable to use it for the estimation 
of the normals. As the general shape of the surface varies considerably over time larger scale 
parameters were selected to promote a greater robustness of the distance calculation. For the 
same reason the normals were estimated as the average from both point-clouds. The 
calculation of the confidence interval is based on the local surface roughness and the 
registration error which can be set to account for both referencing and measurement errors 
(see Lague et al., 2013 for further details). Table 3-7 provides an overview of the parameter 
settings. An interesting feature of the M3C2 algorithm is the possibility to estimate a 95%-
confidence interval for significant changes between two point clouds. 
 
Table 3-7: Parameter settings for the M3C2 algorithm for the accuracy assessment and the change 
detection.  
 

M3C2 
parameter 

Accuracy assessment: 
target scarp 

Change detection: 
target scarp 

Change detection 
target: landslide body 

D 5 m 10 m 15 m 
d 0.5 m 1.0 m 1.5 m 
pmax 5 m 7 m 7 m 
Normal 
computation 

LiDAR 
Average normal from 

both point clouds 
Average normal from 

both point clouds 
Registration 
error 

- 0.1 m 0.2 m 

 Accuracy assessment and comparison of different open-source SfM-3.5.3
MVS pipelines 
An overview of some quality indicators for the reconstructed dense point clouds is provided 
in Table 3-8. As a general strategy for the use of Apero, 10-15 images were selected for lens 
self-calibration and the bundle adjustment was repeated several times adding images 
successively, while keeping the lens model fixed and using the estimated poses from the 
previous run for initialization. It was targeted to integrate all collected images, however, 
views with high residuals, blur or unfavourable illumination conditions were removed during 
a final bundle adjustment aiming at a reduction of the residuals below 0.5. For the full scene 
acquisition of 9-Oct-12 a block of 69 images remained unconnected and could not be used for 
the modelling. Also with VSfM it was possible to integrate most of the images for the first 
three surveys of the landslide scarp. Since no residuals are reported by the tool no refinement 
was carried out. An attempt to reconstruct the full scene of 9-Oct-12 resulted in several 
disconnected blocks. Since none of them provided satisfactory coverage of the landslide 
dense matching was not pursued. In Table 3-8 also the number of points is compared 
illustrating that MicMac provides a significantly denser point clouds (and coverage, see 
section 3.5.4.1).  

To evaluate the accuracy of the three tested SfM-MVS workflows the results were 
compared against the corresponding terrestrial LiDAR scans and the mean-absolute error 
(MAE), the root-mean-squared error (RMSE) and the mean distance (MD) between the two 
clouds are reported. While MD does not reflect the accuracy of the 3D model it was found to 
be a useful indicator for a potential bias after scaling and co-registration via ICP. Figure 3-17 
shows that the MD is at most 1.3 cm and generally below 0.07 cm which is in all cases only a 
minor fraction of the RMSE. The results of the direct georeferencing with Apero are reported 
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in Table 3-8 and the residuals were found to be within the uncertainty of the GCP sources 
(Table 3-4). A visual inspection of stable areas in the full scene photogrammetric models of 
19-Jul-13 and the airborne LiDAR point clouds revealed a small systematic residual 
misalignment. This could be attributed to inaccuracies in the georeferencing of the airborne 
LiDAR data which generally dominates the absolute error in the point  location (Ussyshkin 
and Smith, 2006).  To address this issue the ICP algorithm was employed to align all point 
clouds to the full scene photogrammetric reconstruction of 19-Jul-13. In general we found 
direct georeferencing during bundle adjustment to be the more convenient strategy since it is 
easier to locate GCPs on the photos than within the point clouds and further processing 
within additional software can be avoided. 
 
Table 3-8: Quality indicators for the sparse reconstructions and dense point clouds. 
 

Model 
Scarp 20-

Oct-11 
Scarp 5-
Jul-12 

Scarp 9-
Oct-12 

Full scene 
9-Oct-12 

Scarp 14-
May-13 

Scarp 18-
Jul-13 

Full scene 
19-Jul-13 

Reconstructed 
views (total) 
with Apero 

84 (88) 106 (106) 142 (168) 332 (401) 130 (130) 244 (265) 401 (401) 

Global residuals 
(pixel) 

0.458 0.325 0.497 0.460 0.474 0.496 0.433 

Reconstructed 
views (total) 
with VSfM 

82 (88) 106 (106) 164 (168) 209 (401) - - - 

# points        
VSfM+CMVS 1,646 k 12,679 k 12,645 k - - - - 
Apero+CMVS 1,693 k 15,563 k 15,843 k - - - - 

Apero+MicMac 14,233 k 27,613, k 23,628 k 44,395 k 49,971 k 67,042 k 48,378 k 
 
Table 3-9: Summary of the direct georeferencing with GCPs. 
 

 Full Scene October 2012 
Full Scene 
July 2013 

Scarp July 
2013 

GCP source 
Orthophoto+Aerial LiDAR 

(Salient objects on stable areas) 

dGPS 
measured 

targets 

dGPS 
measured 

targets 
Number 31 35 11 

Ground uncertainty 0.25 m 0.05 m 0.05 m 
Image uncertainty 1 pixel 0.5 pixel 0.5 pixel 

Residuals after 
compensation 

0.32 ± 0.20 m 0.05 ± 0.04 m 0.10 ± 0.05 m 
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The two tested methods for the distance computation (C2M, M3C2) provide very similar 
results but M3C2 results in slightly lower errors estimates (the maximum RMSE difference 
between both was 1.6 cm). Manual masking of non-overlapping areas is a pre-requisite for 
the application of C2M and higher error estimates are likely if small non-overlapping areas 
have not been recognized correctly. Consequently the M3C2 was considered as the more 
reliable estimator and used for change detection throughout the rest of the study. 

The RMSEs of the obtained models (Figure 3-17) were between 2.7 cm and 7.5 cm. 
Among the different workflows Apero+MicMac provided the most accurate point clouds 
(RMSE 2.7 cm - 5.6 cm) and VSfM+CMVS yielded slightly higher errors (RMSE 5.7 – 7.5 
cm). In this context it is worth noting that the uncertainty of the terrestrial LiDAR is within a 
range of 2-3 cm and at an RMSE of 2.7 cm it is, therefore, not possible to state with certainty 
if the LiDAR or the photogrammetric point cloud is more accurate. Apero+CMVS provided 
accuracies similar to VSfM+CMVS except for 5-Jul-12 where it improved the RMSE by 1.3 
cm. This is probably related to the fact that a 35 mm lens with greater distortion was used for 
this acquisition and the more complex lens model used in Apero generally compensate the 
distortion better than the simple lens model used in VSfM. The acquisition with the 35 mm 
lens yielded the most accurate results indicating that the reduced ground sampling distance 
with a wider angle lens was not a significant factor. The greater overlap among the different 
views provided a better redundancy of the tie-point network and probably promoted the more 
accurate pose estimations (cf. residuals in Table 3-8).  

In general all three pipelines provided accurate models for the scarp and considering 
the high degree of automation of the VSfM+CMVS the pipeline still provides very 
competitive results. However, since the full scene reconstruction did not succeed with 
VSfM+CMVS and Apero+MicMac provided the more accurate results it was used for the 
processing of all remaining models. 
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Figure 3-17: Comparison of three SfM-MVS pipelines (VSfM+CMVS, Apero+CMVS, 
Apero+MicMac) against terrestrial LiDAR scans. MAEs, RMSEs, and mean differences from two 
different point-cloud comparison methods are reported. 
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 Temporal evolution of the Super-Sauze landslide 3.5.4
In this section, the results of the change detection (M3C2) are reported and relationships with 
geomorphological processes during the monitored period are discussed. The possibility to 
obtain volume estimates and 3D displacement vectors are illustrated exemplarily.  

3.5.4.1 Quantification and interpretation of retrogression at the main scarp 

Over the monitored period, significant chances were observed for all time intervals and the 
maximum detected differences amounted to between -5.20 m (ablation, Figure 3-21a) and 
7.13 m (accumulation, Figure 3-20a). According to the co-registration error set to 0.1 m 
(Table 3-7), the minimum significant change at 95% confidence was 0.2 m (Figure 3-18b, 
Figure 3-19b,Figure 3-20b, Figure 3-21b).  

Figure 3-22a provides a synoptic view of the scarp indicating areas of major changes 
that will be discussed in further detail. 

The first period (8.5 months, autumn-early summer) was dominated by ablation 
resulting from rockslides, rockfalls and runoff on the scree slopes at the base of the scarp. 
The source of a medium size rockslide could be detected at the eastern end of the scarp and 
its volume was estimated at approximately 1090 m3 (compared to 1050 m3 from terrestrial 
LiDAR, Figure 3-18a). 

During the following period (~3 months, summer to autumn), only minor rockfalls 
and rockslides occurred. Some minor ablation that was registered at the central part could be 
traced back to errors in the photogrammetric model of 05-07-2012 since it appeared as a 
positive change during the subsequent period (compare Figure 3-19a, Figure 3-20a). 
The subsequent period (~5 months, autumn to spring) was characterized by important activity 
constituted by major rockfalls, rockslides, runoff and accumulation of the resulting sediments 
at the base of the scarp (Figure 3-20a). The major rockslide that occurred at the western part 
of the scarp was only partially covered by the photogrammetric models but a lower bound for 
the released volume was estimated at approximately 2530 m3. The high magnitude of changes 
is consistent with the prolonged winter and high snow accumulation resulting in extensive 
thaw-freeze cycles and an abundance of melt-water in early spring. 

The last period (~2 months, summer-autumn) was again dominated by ablation 
resulting from runoff induced erosion of the scree slopes. The rockslide zone at the western 
part of the scarp, which was activated during the previous time interval, preserved a strong 
activity (1350 m3; Figure 3-21a) and some minor rockfall events could be detected. 
In summary the change detection provided a detailed picture of the surface evolution and 
main processes at the scarp (Figure 3-22). Residual false detections could be excluded 
through the interpretation of successive periods and the overall accuracy of the method was 
found satisfactory for process monitoring and volume estimation. 
It is noteworthy that owing the complex surface topography the coverage obtained from the 
initial surveys was not fully satisfactory but could be successively increased building on the 
experience of previous surveys (Table 3-10). 
 
Table 3-10: Coverage of the photogrammetric models of the main scarp relative to the terrestrial 
LiDAR surveys 
 

Date 
20-Oct-

11 
5-Jul-

12 
9-Oct-

12 
14-May-

13 
18-Jul-

13 
Coverage (% of projected LiDAR 
points) 

42.9% 63.0% 76.0 % 72.7% 80.7% 
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The coverage has been computed as the percentage of terrestrial LiDAR points that could be 
projected on the photogrammetric point clouds using the M3C2 algorithm. The last survey 
indeed resulted in a point cloud that closely approaches the coverage of the terrestrial LiDAR 
surveys and encourages further use of SfM-MVS for the monitoring of complex surfaces in 
high-mountain environments. 
 

 
 
Figure 3-18: (a) Photogrammetry-based change detection and geomorphological interpretation for the 
period 20-10-2011 till 05-07-2012. (b) SfM-MVS reconstruction for the 20-10-2011 and significant 
changes. 
 
 

 
 
Figure 3-19: (a) Photogrammetry-based change detection and geomorphological interpretation for the 
period 05-07-2012 till 09-10-2012. Some false detections resulting from errors in the model of 05-07-
2012 are indicated (black ellipse). (b) SfM-MVS reconstruction for the 05-07-2012 and significant 
changes. 
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Figure 3-20: (a) Photogrammetry-based change detection and geomorphological interpretation for the 
period 09-10-2012 till 14-05-2013. Some false detections resulting from errors in the model of 05-07-
2012 are indicated (black ellipse). (b) SfM-MVS reconstruction for the 05-07-2012 and significant 
changes. 
 
 

 
 
Figure 3-21: (a) Photogrammetry-based change detection and geomorphological interpretation for the 
period 14-05-2013 till 19-07-2013. (b) SfM-MVS reconstruction for the 14-05-2013 and significant 
changes. 
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Figure 3-22: (a) Synthetic view (Aerial LiDAR and Orthophotograph 29-08-2012) of the scarp. Areas 
with major detected changes are indicated. (b) SfM-MVS reconstruction for the 19-07-2013. 

3.5.4.2 Quantification and interpretation of the landslide dynamics 

Preliminary change detections between the photogrammetric models and the aerial LiDAR 
over stable zones close to the landslide showed an RMSE between 0.08 m and 0.17 m for the 
full scene models (Figure 3-23, Figure 3-25). Consequently, a co-registration error of 0.20 m 
was used for the computation of the confidence interval during the change detection with the 
full point clouds (see also Table 3-7). Three change detections were carried out. One between 
the aerial LiDAR and the MVS point cloud of 10-Oct-2012, a second between the two MVS 
point clouds of 10-Oct-2012 and 19-Jul-2013 and a third one to capture the cumulative 
displacement between the date of the aerial LiDAR acquisition (29-Aug-2012) and the 19-
Jul-2013. Their results are presented in Figure 3-23, Figure 3-24 and Figure 3-25, 
respectively. At an estimated co-registration error of 0.2 m the minimum displacement that 
can be detected at 95% confidence is 0.4 m. The maximum measured change over the full 
monitored period (324 days) varied between -6.88 m and 4.77 m and shows a strong 
activation of almost the entire landslide as well as a major rockfall at the scarp and 
corresponding accumulation (Figure 3-25). While the area directly below the main scarp 
remained relatively stable, a secondary scarp formed several meters further downslope and 
currently constitutes the most active part of the landslide. This secondary scarp was already 
active during the first 42 days (29-Aug-2012 till 10-Oct-2012) and downslope displacement 
induced surface changes between -3.52 m and 2.50 m. Minor detected changes include 
rockfalls and scree accumulation at the main scarp as well as traces of a translational failure 
in the central part of the landslide body (Figure 3-23). Several further areas were classified 
with significant changes but a closer inspection of the photogrammetric point cloud (10-Oct-
2012) revealed errors in the reconstruction as their origin. Three respective areas are 
indicated in Figure 3-23. They have in common that they were all imaged from large 
distances and relatively oblique incidence angles (<30˚) at which fine structures such as small 
thalwegs and gullies could not be carved out correctly. To address the issue dedicated images 
for those error prone areas were recorded during the second acquisition (19-Jul-2013) and 
enabled to reduce the amount of artefacts and resulting false positive changes (Figure 3-25). 
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Figure 3-23: Change detection results (29-08-2012 till 10-10-2012) for the full landslide and their 
geomorphological interpretation. The inserted histograms show the residual error between the 
photogrammetric point cloud and aerial LiDAR. Vegetated areas were masked out for better 
visualization.   
 

The activity at the secondary scarp increased in the 282 days period between 10-Oct-
2012 and 19-Jul-2013. The general change pattern indicates a strong displacement from the 
central part of the landslide (mainly negative distances) towards the lower part (mainly 
positive distances, Figure 3-24a). Notable features include the progression of the previously 
initialized translational failure (Figure 3-24b), lobes that displayed coherent downslope 
movement (Figure 3-24 c) and a significant advancement of the landslide toe. The depicted 
rockfalls and accumulations resemble the results of the change detection at the main scarp 
(compare Figure 3-20, Figure 3-21). Volumes released from two source areas were estimated 
at 260 m3 and 3760 m3 (Figure 3-24a), which proved to be consistent with estimates from the 
scarp models for the same areas and time periods (230 m3 and 3710 m3, respectively). Errors 
in MVS model of 10-Oct-2012 hindered to track the evolution of deeply incised gullies at the 
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central part of the landslide for the two sub-periods (Figure 3-23, Figure 3-24). However, 
reconstruction of the respective area could be significantly enhanced with the 
photogrammetric model of 19-Jul-2013 and the cumulative change detection indicates an 
incision of the central gully of up to 0.8 m (Figure 3-25a). 

 

 
Figure 3-24 (a) Change detection results (10-Oct-2012 till 19-Jul-2013) for the full landslide, and their 
geomorphological interpretation. Vegetated areas were masked out for better visualization.  Subsets of 
a terrestrial photograph show (b) the final state of a detected translational failure and (c) lobes that 
displayed coherent downslope movement. 
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Figure 3-25: Cumulative change detection results (29-Oct-2012 till 19-Jul-2013) for the full landslide, 
and their geomorphological interpretation. The inserted histograms show the residual error between 
the photogrammetric point cloud and aerial LiDAR. Vegetated areas were masked out for better 
visualization.   
 

The general pattern of the observed movement is consistent with previous studies of 
the landslide dynamics (Malet et al., 2002; Travelletti et al., 2012). However, due to the flow-
like behaviour of the landslide, the largest component of the 3D displacement is typically 
parallel to the slope and hence an important component of the displacement is not comprised 
in the distances measured normal to the surfaces. To illustrate the possibility to quantify full 
3D displacement vectors two sub-areas where analysed in greater detail. One analysis focuses 
on the most active part at the secondary scarp and a second analysis targets to validate the 
obtained displacement vectors through a comparison with a permanent GPS stations installed 
on the landslide. The rather strong displacement during the monitored period affected two out 
three GPS station and consistent measurements thus were only available from one of the 
stations. The respective subsets are indicated in Figure 3-23. 
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To measure 3D displacement at the exact position of the GPS the corresponding 
points in the aerial LiDAR point clouds were aligned manually (simple translation) to the 
position of the GPS as depicted in the MVS point clouds. The same procedure was performed 
for points on a pillar with solar panels next to the GPS. Displacement vectors are obtained 
from the point coordinates before and after the transforms. The results of this analysis are 
shown in Figure 3-26 indicating a total displacement of 3.62 m measured among the different 
point clouds, whereas the permanent GPS indicates a total displacement of 3.15 m. The 0.47 
m difference accumulates errors in the absolute geolocation, the co-registration, the point 
clouds and errors induced by the matching process. The residual georeferencing error of the 
MVS model for 19-Jul-2013 was only 0.05 ± 0.04 m and the relative RMSE over stable areas 
after alignment only 0.17 m maximum. To understand the comparatively high error of the 
displacement measurement it is important to note that fine structures such as the GPS station 
are generally over-generalized due to the regularization in the photogrammetric modelling. 
This was especially true for the model of 10-Oct-2012 in which the GPS position was imaged 
from a relatively remote position (~ 700 m). It explains the greater deviation for the period 
29-Aug-2012 till 10-Oct-2012. Thus the relative error of 0.47 m can be considered as an 
upper bound for the displacement estimates for the central most active part where matching 
was performed on well-defined boulders using the ICP algorithm for fine registration. 

 
 
Figure 3-26: 3D displacement vectors measured via point matching among the different point clouds 
and a comparison with permanent GPS measurements. 
 
The 3D displacement measurements for the central part of the landslide were carried out 
through piecewise alignment (translation and rotation) of rigid blocks that could be identified 
in at least two of the three point clouds. The ICP algorithm was used for fine registration, 
whereas, if the distances were larger than 1 m, an initial guess for the translational component 
was provided manually. The measurements for the period 29-Aug-2012 till 10-Oct-2012 
suggest a maximum displacement of 4.69 m with at most 3.83 in the z-component and 2.70 m 
in the horizontal component (Figure 3-27a). During the second period (10-Oct-2012 till 19-
Jul-2013) the displacement increased up to 25.55 m with a maximum 22.76 m in the x-y 
component and a maximum of 11.82 m in z direction (Figure 3-27b). In relative terms this 
corresponds to average maxima of 1.12 cm.d-1 for the time between late August and early 
September, and 0.90 cm.d-1 for the following months until mid-July of the next year. A 
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meaningful interpretation those figures, however, must considered that displacement typically 
decreases  significantly during the winter month and only takes up again in spring. 

 
 
Figure 3-27: 3D displacement vectors measured on rigid structures via ICP between (a) the aerial 
LiDAR of 29-Aug-2012 and MicMac point cloud of 10-Oct-12, and (b) the MicMac point cloud of 
10-Oct-12 and 19-Jul-2013. (c) Terrestrial photograph showing the subset of analysed area. 
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 Potential and limitations of terrestrial SfM-MVS for landslide 3.5.5
monitoring 
Similar to several previous studies (see Section 3.5.1) we found that SfM-MVS should be 
considered as an accurate and cost-effective technique to obtain 3D information for 
geomorphological studies. The use of different open-source SfM-MVS pipelines was 
evaluated for terrestrial landslide monitoring and it was demonstrated that a MicMac-based 
pipeline can provide accuracies and coverage which approach the quality of terrestrial and 
aerial LiDAR if the geometry of the image acquisition is well adapted to the surveyed object. 
Using the M3C2 algorithm for change detection allowed taking into account the quantified 
errors and establishing a 95% confidence for the reliable detection of changes above 20 cm at 
the landslide scarp and above 40 cm at the slope scale. Remaining outliers could be traced 
back to local artefacts in the 3D reconstruction and excluded through multi-temporal analyses 
and considerations of the spatial context of erosion, accumulation and displacement. A 
displacement measurement at the location of a permanent GPS station suggested a maximum 
error of 0.47 m and rockfall volume estimates differed by 4% from the respective volumes 
calculated from terrestrial LiDAR.  

Despite those encouraging results and a high degree of automation, several potential 
pitfalls deserve further consideration since they may increase the need for manual 
intervention in the pipeline and compromise the accuracy. A non-trivial aspect of terrestrial 
MVS in complex natural landscapes is the planning of the acquisition geometry. Practical 
guidelines for acquisition planning with buildings, indoor spaces and cultural artefacts can be 
found in Luca et al. (2013) and Wenzel et al. (2013) but it remains difficult to provide general 
rules for natural terrain. Smaller base-to-height ratios (i.e. short distances between 
neighbouring views) diminish the accuracy of the surface reconstruction, while larger 
baselines complicate the matching. The MicMac library includes a tool for image selection 
and an overly dense linear network is preferable to not risk unconnected image clusters. The 
angle between neighbouring views must not exceed 15˚ and their overlap should be greater 
80%. Motion blurs and changes in the lens parameters (e.g. auto-focus) should be avoided. 
The surveys were conducted under variable weather conditions ranging from bright sunshine 
to light rain. However, diffused lighting (i.e. clouded sky) and no rain are ideal to avoid 
effects from shadows and noise. Each surface should be visible in 3-6 well separated views 
and include ideally one view close to nadir. For the landslide terrain investigated in this study 
nadir views could not be obtained for all positions and many of the remaining artefacts must 
be attributed to this issues. At sites where the terrain is even more unfavourable for terrestrial 
imaging at nadir alternative platforms such as UAVs should be considered. To fully 
understand the constraints of a specific site it is generally recommendable to conduct at least 
one preliminary survey to optimize the protocol for operational monitoring. For future 
operational monitoring at the investigated landslide, it is recommended to integrate the 
acquisition protocols for the scarp and the landslide body (~500 images) to avoid multiple 
processing chains. Tools for the optimization of the camera network based on preliminary 
video acquisitions have been recently proposed (Alsadik et al., 2013) and should be tested for 
the optimization of acquisition geometry in natural terrain. A further option could be near-
real-time user interaction to determine the next best viewing position (e.g. Hoppe et al., 
2012), which however requires a direct downlink from the camera to a computer and might 
not be easy to implement in the field.  

A general limitation of landslide monitoring with passive optical sensors is the 
inability to penetrate vegetation. The reconstructed surfaces over vegetated areas represent an 
average canopy surface and due to high surface roughness and random pattern generally incur 
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large errors. The Super-Sauze landslide is very sparsely vegetated and the manual removal of 
few vegetated areas was straightforward. For more complex settings an automated point 
cloud classification with dedicated tools (Brodu and Lague, 2012) might be desirable. In 
SfM-MVS point clouds the vertical structure of the vegetation is represented much poorer 
than in LiDAR point clouds, whereas RGB colour information that can be mapped 
automatically to each 3D point provides useful features not available with LiDAR. 

Regarding the georeferencing we found direct referencing with photogrammetric 
targets during the SfM phase to be a more convenient strategy than establishing point to point 
correspondence after dense matching. In cases of limited GPS accuracy the ICP algorithm 
proofed to be a valuable tool to resolve residual alignment errors (translation and rotation). 
An intermediate solution that was not explored in this study would be to resolve the model 
scale with a scale bar that must be visible in at least two images and recover translation and 
rotation through matching of the dense point clouds of stable terrain. In any case it is 
indispensable for the alignment to include a sufficiently large proportion of stable and 
vegetation-free terrain within the reconstruction, which should be kept in mind during the 
image acquisition. For the validation of displacement rates we recommend measurements at 
clearly visible photogrammetric targets rather than GPS antenna.  

 Conclusion 3.5.6
This study investigated the use of structure-from-motion and multi-view stereo pipelines for 
the terrestrial monitoring of landslides. In a comparative assessment of different open-source 
solutions the MicMac library yielded the more accurate results, whereas VisualSfM and 
PMVS permitted a higher degree of automation. Compared to LiDAR the RMSE did 
generally not exceed 0.2 m for the reconstruction of the entire landslide and 0.06 m for the 
reconstruction of the main scarp. The M3C2 algorithm was found to be a versatile and 
accurate tool for the reliable detection of changes and the possibility to obtain volume and 3D 
displacement estimates was illustrated for especially active zones. It could be demonstrated 
that at the slope scale terrestrial multi-view photogrammetry is sufficiently accurate to detect 
surface changes in the range of decimetres. Thus, the technique currently remains less precise 
than terrestrial LiDAR or dGPS but provides spatially distributed information at significant 
lower costs and is, therefore, valuable for many practical landslide investigations. 

An option that has not been explored in this study is the possibility to measure 3D 
displacement from temporal sequence of stereo-pairs which is a technique frequently used 
experimental mechanics (Sutton et al., 2009). The determination of 3D vectors through 
matching in the image space can be expected to provide more precise results than matching 
of the resulting point clouds. More frequent acquisitions might be required in this context to 
avoid temporal decorrelation. The planning and optimization of the image acquisition 
protocols still remains challenging in complex natural terrain and further research is needed 
to establish tools that enable an a more straightforward optimization of  camera network for  
operational monitoring. 
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 Discussion	and	perspectives	3.6
 
The research presented in this chapter was dedicated to the development, elaboration and 
validation of image processing techniques and workflows for the detailed characterization 
and monitoring of landslides at the local scale. 

In section 3.3 it was demonstrated that the adaptation of medical image processing 
algorithms and OBIA permits the detection of surface fissures from low-altitude surveys. 
The interpretation of resulting maps provided valuable insights into the patterns of stress and 
strain acting on the surface and allowed to detail relationships between displacement rates, 
the geometry of the sliding surfaces and the formation of the fissures. The obtained maps are 
also useful as an input for the parameterization of  hydro-mechanical models that take into 
account preferential flows and mechanical feedbacks (Krzeminska et al., 2012).  

The developed image processing chain provides one example how modern image 
processing techniques can valorise the resulting images for landslide investigation. It also 
suggests that further qualitative and quantitative information could be extracted by adapting 
pattern recognition, texture analysis or image-based grain-size analysis (e.g. for the analysis 
of rockfall deposits). While the developed OBIA routine is rather application specific, the 
Gaussian-matched filters are generically applicable for the detection of linear features and 
could be interesting for further geoscientific application such as the mapping of linear erosion 
features (e.g. gullies), tectonic fractures or glacier crevasses. 

The main limitations of the employed processing techniques are (i) the sensitivity of 
the Gaussian-matched filters to illumination conditions resulting in higher errors with direct 
sun light at low sun elevation angles and (ii) a significant number of free parameters that 
must be calibrated by the users, and (iii) relatively low true positive rates. In subsequent 
studies, we addressed some of those issues and implemented an extension of the Gaussian-
matched filters that follows a multi-scale framework for automatic scale selection. This 
eliminates to adjust the scale parameter manually and provides results better to manually-
tuned single scale detectors (Figure 3-28). As part of further studies on the influence of 
ground truth uncertainties on the comparison between different detectors, we also 
benchmarked several low-level line detectors for the detection of surface fissures. Though the 
Gaussian matched filter was ranked second among nine state-of-the-art detectors, it was also 
found that an algorithm based on supervised learning and Gabor wavelets (Soares et al., 
2006) provided more accurate results (Figure 3-29). The algorithm requires no manual tuning 
and could serve as a more robust low-level detector enhancing the developed processing 
chain. 
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Figure 3-28: Comparative accuracy assessment of (a, e) single scale detection and (b, f) multi-scale 
detection against (c, g) two expert mappings. (d, h) The ROC analysis shows that the multi-scale 
detector yields accuracies (area under the curve – AUC) comparable or better to single scale 
detection. 
   

 
Figure 3-29: Comparison between two low-level feature detectors for the detection of landslide 
surface fissures. (a) Probabilistic outputs of supervised approach (Soares et al., 2006), Response of a 
Gaussian filter as proposed in Stumpf et al. (2013b) , (c) the input image and (d) the average 
precision-recall curves (Lampert and Gancarski, In Review) with respect to ten different expert maps. 
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In Section 3.4, a processing chain for displacement measurements from VHR satellites 
images was developed and applied to derive the displacement fields of three active slow-
moving landslides. Measured displacement rates and surface heights were compared with 
GNSS measurements and airborne LiDAR surveys respectively. The analysis revealed that 
the resulting DSMs comprise metric errors that vary strongly depending on the land cover 
type, whereas the displacement measurements showed an unprecedented accuracy with 
maximum errors of 13 cm. Furthermore, it was demonstrated that this accuracy can be 
achieved without ground control points. The analysed images covered a time period of two 
month and the obtain displacement fields provided important insights in the magnitude of the 
seasonal displacement rates and changes in the spatial pattern of the activity. 

The achieved accuracy of the horizontal displacement measurement is approximately 
one order of magnitude higher than results from previous studies using medium- and high 
resolution satellites but also aerial images. The study suggests the possibility to measure 
horizontal displacement accurately without ground control which enables greater automation 
of the processing chain and opens the door for more continuous monitoring of landslides and 
other surface deformation processes. While in this research only a bi-temporal dataset was 
available, an extension to multi-date measurements could be easily achieved through 
integration of images from multiple time steps into one single bundle adjustment block. 
Further case studies with longer-time series and applications to other landslide-types and 
environmental conditions are needed to explore full potential and limitations of the proposed 
processing chain. 

Besides, general limitations of optical imaging (e.g. occlusion through vegetation, 
shadows and clouds), the proposed processing chain is only limited by the availability of 
suitable datasets and salient objects that remain stable over the targeted monitoring period. 
Spaceborne stereo-pair image acquisition is currently possible at a minimum price of 3250 € 
(100 km2) while archived stereo-data can be assessed at a minimum of 500 € (25 km2) and 
prices are likely to decrease in the near future. The requirement of stable objects may 
complicate the applicability to deformation phenomena that extend over entire VHR images 
(e.g. coseismic displacement) and then requires some prior knowledge about the extent of the 
motion in order to exclude moving points from the RPF bias compensation. 

Another limitation is currently the distribution of the processing chain over several 
specialized commercial and open-source environments which implies a long learning curve 
for the use of the technique and hinders full automation. Open source solutions for precise 
image correlation are available (Deseilligny et al., 2013) and could resolve this issue 
partially. However, there is currently a lack of open software solutions for precise RPF 
bundle adjustment. The Orfeo toolbox developed by CNES (http://blog.orfeo-toolbox.org/) 
provides some promising features for RPF bundle adjustment that, with further development, 
could fill this gap. 

A further promising research direction would be the integration of multi-sensor 
satellite data, which would significantly enhance the possibilities to exploit historical 
archives and help to reduce the time-intervals between subsequent observations. RPFs 
delivered with the latest generation of VHR satellite images provide a generic sensor model 
that makes multi-sensor adjustment possible. However, differences in the spatial resolution 
and radiometric characteristics of different sensors pose high demands on the robustness of 
automatic tie point detectors and image matching algorithms. The availability of multiple 
stereo-pairs in principle could also enable to recover the full 3D surface displacements from 
disparity measurements in the imaging geometry which would avoid intermediate steps of 
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DSM generation and orthorectification and possibly make the processing chain more 
efficient and precise. 

On the long-term, further efforts are also needed to better exploit the derived 
displacement fields to infer other physical landslide parameters such as strain, subsurface 
geometry and material parameters. This will require the development of new inversion 
techniques and a better integration of the measurements with conceptual and numerical 
landslide models. 
 
In Section 3.5 the potential of open-source terrestrial photogrammetry for landslide 
surface reconstruction and 3D monitoring was investigated at the Super-Sauze landslide 
over a period of 2 years. Three different processing chains were established and their main 
algorithm parameters were detailed and adapted for the generation of high-resolution surface 
models in a high mountain environment with complex topography. A comparison of the 
resulting 3D point clouds with terrestrial LiDAR surveys revealed that a customized pipeline 
implemented with the MicMac library yielded higher accuracies approaching those of 
terrestrial LiDAR point clouds (RMSE 0.027–0.060 m) and airborne LiDAR point clouds 
(RMSE 0.08-0.17 m). The spatial coverage relative to the LiDAR surveys was 43% in the 
worst case but could be improved to more than 80% trough successive optimization of the 
imaging geometry. In all cases, the point density was generally significant higher when 
compared to the LiDAR scans. 

While those results are comparable or better than figures presented in earlier studies, 
it must be noted that the accuracies depend strongly on the application domain and the 
imaging distance to the object, and are, thus, not directly comparable. Volumes estimates for 
rockslides that occurred at the main scarp of the landslide and 3D displacement measurement 
were found to be in line with the quantities obtained from LiDAR surveys and permanent 
GNSS observations. An innovative cloud-to-cloud change detection method was employed 
and permitted to differentiate significant changes with high confidence from residual errors. 
The detected changes and measured 3D displacement vectors revealed an initial activation of 
in the central part of the landslide that intensified and gradually progressed downslope at the 
end of a prolonged winter with abundant snowfall. Seasonal cycles of strong ablation and 
sediment runoff could be observed at the main scarp of the landslide. 

The main contributions of this work lie in establishing and validating an accurate 
SfM-MVS pipeline and demonstrating the feasibility to accurately monitor seasonal landslide 
dynamics with terrestrial photogrammetry at the slope scale. Once a suitable processing chain 
is established the operational costs for data acquisition and SfM-MVS processing are minimal 
and render photogrammetric surveys a tool that should be always considered in landslide 
investigations. 

Current limitations and potential pitfalls have been discussed in detailed at the end of 
the manuscript in section 3.5 and are summarized again here. Though the underlying 
algorithms are relatively robust to variable baselines and illumination the planning of the 
imaging geometry in natural terrain is not a trivial task and at least basic knowledge on 
photogrammetric principles and the site characteristics are indispensable. Complex 
topography might also constrain the possibility to obtain nadir and at sites where the terrain is 
unfavourable for terrestrial imaging at nadir alternative platforms such as UAVs should be 
considered. Again it should be stressed that optical imaging has very limited capabilities to 
penetrate the vegetation and decorrelation is likely over densely areas. This hinders reliable 
measurements of surface displacement and deformation over densely vegetated surfaces. For 
georeferencing we found direct referencing with photogrammetric targets to be a more 
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reliable strategy than establishing point to point correspondence after dense matching. For a 
sustainable use of the ground control points during long-term monitoring they should be 
installed at fixed positions on stable terrain and be evenly distributed on the slope. 

Enhancing the accuracy and automation of SfM-MVS algorithm remains an active 
field of research. The improving processing chains and decreasing costs of SLR digital 
cameras are likely to render the use of this technique for landslide investigations more and 
more attractive in the future. To further exploit the capabilities of SfM-MVS for landslide 
monitoring several possible research directions are prominent. 

To step forward to more continuous monitoring and integration with in situ 
measurement systems, the fixed installation of stereo setups is a promising option. The 
MicMac library tested in this study provides the option to resolve the scaling of the model 
from a scale bar visible within at least two views and could be adapted to derive metric 
displacement vectors without further ground control. Stereo-camera rigs with known 
baselines could provide similar capabilities but have yet not provided accurate field 
measurements over long distances. 

In this study, 3D displacement measurements have been realized with a classical 
point-matching algorithm that is frequently employed for the analysis of terrestrial LiDAR 
point clouds. This involves several steps namely the computation of disparity maps, depth 
maps and the subsequent point matching. More accurate measurements could be obtained by 
computing first 2D displacements in the image geometry and inversion of the 3D 
displacement with a least-square approach. 

On the long-term, obtained measurements should be exploited to derive physical 
quantities such as the depth of the movement or the rheological parameters. This will require 
closer integration with conceptual and numerical models of the landslide and time series 
derived from in situ measurements. 
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Synthesis of the research findings on landslide monitoring at local scales: 
 
Main results: The research presented in this chapter set out to develop new image 
processing chains for the retrieval of surface displacements, transported volumes and 
surface fissure maps that enable to complement historical and point-wise observations, 
and to infer the slope dynamics. An image analysis workflow for the mapping of surface 
fissures was established combining Gaussian matched filterers, mathematical morphology 
and OBIA. The joint interpretation of the resulting maps, displacement rates and bedrock 
geometry permitted to correlate increased fissure density and increasing displacement 
rates, patterns of stress with abrupt changes of the underlying bedrock geometry. A 
processing chain for the computation of high-resolution surface models and displacement 
fields from VHR satellite images was elaborated and enabled measurements of the 
horizontal displacement rates with unprecedented decimeter accuracy. Furthermore, it was 
demonstrated that this accuracy can be achieved without ground control points which will 
greatly facilitate the automation for operational monitoring in the future. The analyzed bi-
temporal datasets covered a time period of two month and the obtain displacement fields 
provided important insights in the magnitude of the seasonal displacement rates and 
changes in the spatial pattern of the activity compared to historical. Three different 
pipelines for high resolution surface reconstructions from multi-view terrestrial 
photographs were elaborated and compared regarding their capability for multi-temporal 
reconstruction and 3D monitoring of landslides. Comparisons with terrestrial and airborne 
LiDAR surveys showed that open-source stereo-photogrammetry can achieve similar 
accuracies and higher point-cloud density at significantly lower costs. Cloud-to-cloud 
change detection and matching allowed the quantification of the dominant 
geomorphological processes (e.g. rockslides, sediment runoff) and insights into 
deformation patterns emerging during acceleration phases. 
 
Perspectives: UAVs are becoming increasingly frequently used in landslide investigations 
and the application of the proposed image processing method for fissures mapping with 
more frequent surveys could help to better characterize the seasonal dynamics of the 
fissure formation and to establish quantitative relationships with displacement rates, 
rainfall and pore water pressure. Multi-scale and supervised extensions investigated in this 
study should be considered to improve the mapping accuracy and would help to also 
measure the fissure width as an additional parameter. The possible integration of fissure 
maps in hydro-mechanical models has been described recently and the developed image 
processing chain could facilitate the elaboration of such maps. The mapping of linear 
features investigated in other geoscientific fields (e.g. gully erosion, seismo-tectonic 
fractures) could also benefit from proposed feature detectors. 
The possibility to measure horizontal surface displacement from VHR satellite images at 
decimeter accuracy and without ground control opens the door for a number of possible 
applications. Further efforts are required for a full automation of the processing chain and 
especially the development of an open-source library for precise bundle adjustment would 
close an important gap in the chain of publicly available tools. The integration of multi-
sensor datasets will be an important step for the construction of long-term continuous time 
series and could benefit from the high geolocation accuracy of SAR X-band satellites.  
Ongoing research is targeting the derivation of physical parameters such as strain, 
landslide geometry and material properties from the derived displacement fields. 
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Enhancing the accuracy and automation of SfM-MVS algorithm remains an active field of 
research and landslide monitoring with terrestrial cameras will certainly benefit from those 
efforts. To step forward to more continuous monitoring and integration with in situ 
measurement systems the fixed installation of stereo setups is a promising option. More 
accurate measurements could be obtained by computing first 2D displacements in the 
image geometry and inversion of the 3D displacement with a least-square approach. On 
the long-term obtained measurements should be combined with conceptual and numerical 
landslide models to derive physical quantities such as the depth of the movement or 
rheological parameters. 
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General Conclusion 
 
Detailed investigations of landslides at regional and local scales is indispensable for a better 
understanding of the governing geomechanical processes, the assessment of the associated 
hazards, and their forecast for early warning. Those investigations comprise tasks of landslide 
detection and mapping, characterization of the landslide type, geometry and intensity as well 
as continuous monitoring to construct parameter time series and issue warnings. 

 The immense progress and diversification of remote sensing technologies has 
significantly enhanced our capabilities to map and monitor slope movements with increasing 
accuracy and spatial and temporal resolutions. SAR and LiDAR have become commonly 
adopted technologies in landslide investigations. Especially SAR interferometry can be 
considered as a mature technique for the use in operational services. Still, both techniques 
comprise several limitations such as limited spatio-temporal coverage or high costs. Optical 
imaging is a cost-efficient and versatile remote sensing technology that provides 
complementary information and overcomes several current limitations. 

The doctoral research described in this thesis was dedicated to the development of 
automated and robust image analyses techniques to better exploit the potential value of 
optical data (from different platforms) for rapid landslide mapping at the regional scale, 
and for detailed characterization and monitoring at the local scale.  

Considering the great diversity of modern remote sensing systems and processing 
techniques a comprehensive review of recent innovations in the application of remote sensing 
for landslide monitoring was undertaken and presented in Chapter 1. The review provides a 
detailed overview of currently available systems and processing methods and elaborates 
criteria that help to contrast different possible solutions for landslide monitoring. The 
capabilities and limitations of all techniques are compared based on criteria such as spatial 
resolution and coverage, accuracy, data and processing costs, and maturity of the method. 
Rule sets for the selection of the most suitable remote sensing technologies according to 
different landslide types, displacement rates and observational scales are proposed. The rule 
sets target scientists and end-users in charge of landslide research and risk management. 

Chapter 2 addressed the development, implementation and validation of generic 
supervised image processing chains for landslide mapping from VHR satellite and aerial 
images in combination with topographic data. Algorithms for image segmentation, feature 
extraction, feature selection and supervised learning were adapted and combined in 
successive processing chains. The developed techniques were applied and validated on five 
remote sensing datasets at different study sites and achieved satisfactory accuracies in all test 
cases.  

A Random Forest (RF) based feature selection method allowed selecting the most 
relevant features and permitted to reduce the complexity of the machine learning model while 
yielding comparable or even higher classification accuracies. New object-based features 
particularly engineered for the recognition of landslides were found to be generically 
applicable and provided significant improvements of the classification accuracy in all tested 
cases. Relationships between the segmentation scale, the importance of different object 
features and the accuracy of the resulting maps were studied in detailed and showed that 
over-segmentation generally provided higher accuracies. The implementation of stratified 
resampling schemes allowed compensating the biases resulting from inherent class-
imbalances. A new Active Learning (AL) heuristic was proposed which, contrariwise to 
previous approaches, considers spatial constraints on the samples selection, and costs in terms 
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of labeling time instead of number of samples. The developed region-based sampling scheme 
significantly reduced the labeling time required by the user. An in-depth analysis of the 
remaining errors and comparison with the mapping uncertainties among multiple experts 
revealed that the achieved accuracy is within the range of the variance among multiple 
experts. This indicates that the proposed processing chain could be used for operational 
applications providing map products whose quality is comparable to manual mappings. 

Chapter 3 described the development and application of remote sensing techniques to 
acquire spatially distributed information on surface structures, displacements and transported 
volumes at the local scale. Three dedicated image processing chains were developed for the 
extraction of spatio-temporal information on the landslide dynamics from VHR satellites 
images, UAV images and terrestrial photographs. First, an image processing workflow that 
combines Gaussian matched filters, mathematical morphology and OBIA methods for the 
generation of surface fissure maps from multi-date UAV images. The resulting maps were 
validated with expert mappings and interpreted regarding the evolution of the fissures in 
relation to displacement rates and bedrock geometry. Second, a complete processing chain for 
the computation of high-resolution surface models and displacement fields from VHR 
satellite images was elaborated and enabled measurements of the horizontal displacement 
rates with unprecedented decimetre accuracy. Furthermore, it was demonstrated that this 
accuracy can be achieved without ground control points which will greatly facilitate the 
automation for operational monitoring in the future. The analysed bi-temporal datasets 
covered a time period of two months and the obtained displacement fields provided important 
insights in the magnitude of the seasonal displacement rates. Third, three different pipelines 
for high resolution surface reconstructions from multi-view terrestrial photographs were 
elaborated and compared regarding their capability for multi-temporal reconstruction and 3D 
monitoring of landslides. Comparisons with terrestrial and aerial LiDAR scans showed that 
open-source stereo-photogrammetry can achieve similar accuracies and higher point-cloud 
density at significantly lower costs. Estimated volumes and 3D displacement rates were 
found to be in line with LiDAR and GNSS-based measurements, respectively. 
 

While the use of optical image analysis as an operational tool in landslide 
investigations will still require additional efforts, we believe that this thesis provides several 
contributions which bring this goal within closer reach and encourage further research on this 
topic. Future studies could consider the following key directions. 

To enable the operational use of the developed AL algorithms for landslide mapping 
and possibly other applications in disaster response (e.g. damage mapping), important aspects 
will be to optimize and parallelize the implemented algorithms and complement them with a 
user-friendly interface enabling real-time interaction. Experiments in simulated or real-world 
rapid mapping scenarios should be envisaged at the prototyping stage ensuring that it is 
robust and will be accepted by users during image interpretation and field work. To handle 
the large volumes of data resulting from current satellite missions such as Sentinel-2, it 
seems recommendable to implement such a system on dedicated computational 
infrastructure. Segmentation and feature extraction can be carried out offline and a web-
interface might be an interesting option to facilitate access to the service. 

Additional series of Pleiades series stereo-pairs have been acquired to construct 
longer displacement time series for the landslides investigated in the Ubaye valley. Further 
collaborations with the OTB development team (CS Company) and the Laboratoire Méthodes 
d'Analyses pour le Traitement d'Images et la Stéréorestitution are envisaged to arrive at an 
integrated open-source based framework for stereo reconstruction and displacement 
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measurements. An important aspect for future research will be the development of and open-
source tool for RPF bundle adjustment which would fill an important gap in the chain of 
available open-source tools. Multi-temporal stereo-pairs in theory enable the least-square 
inversion of full 3D displacement from directly from disparity measurements in the image 
geometry and would help to better track the complex deformation patterns of landslides. 

The experiences in this research with terrestrial photogrammetry for landslide 
monitoring support the continuation and optimization of the acquisition protocols for the 
Super-Sauze landslide and  encouraged the installation of new fixed stereo camera setups 
for continuous 3D measurements. The high frequency displacement measurements obtained 
with this system will help to establish quantitative relationships with other physical 
parameters such as pore-water pressure, height of the ground-water table and seismic signals 
emitted by the landslide. The latter are being recorded continuously with broadband seismic 
antenna and will be correlated with the observed displacement, rock falls and fissure 
formation to better pinpoint the sources of micro-seismicity and investigate the potential role 
of the signals for monitoring and early warning. 
 To fully exploit displacement fields and time series measured from satellites, aerial 
platforms, and terrestrial cameras, it will be of great importance to develop better approaches 
for the derivation of physical parameter such as strain, depth and material properties. This 
will require a closer integration of remote sensing and data mining techniques with 
conceptual and numerical landslide models, which should be envisaged as interdisciplinary 
research project involving geomorphologist, geophysicist, geographers and computer 
scientists. 
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Object-Oriented Change Detection
for Landslide Rapid Mapping

Ping Lu, André Stumpf, Norman Kerle, and Nicola Casagli

Abstract—A complete multitemporal landslide inventory, ide-
ally updated after each major event, is essential for quantitative
landslide hazard assessment. However, traditional mapping meth-
ods, which rely on manual interpretation of aerial photographs
and intensive field surveys, are time consuming and not efficient
for generating such event-based inventories. In this letter, a semi-
automatic approach based on object-oriented change detection
for landslide rapid mapping and using very high resolution op-
tical images is introduced. The usefulness of this methodology is
demonstrated on the Messina landslide event in southern Italy that
occurred on October 1, 2009. The algorithm was first developed
in a training area of Altolia and subsequently tested without
modifications in an independent area of Itala. Correctly detected
were 198 newly triggered landslides, with user accuracies of 81.8%
for the number of landslides and 75.9% for the extent of landslides.
The principal novelties of this letter are as follows: 1) a fully
automatic problem-specified multiscale optimization for image
segmentation and 2) a multitemporal analysis at object level with
several systemized spectral and textural measurements.

Index Terms—Change detection, landslide, object-oriented
analysis (OOA), rapid mapping.

I. INTRODUCTION

LANDSLIDING is a major natural hazard with growing
global concern. A recent study has indicated landslide oc-

currences to be geomorphological indicators of global climate
change [1], similar to Jakob and Lambert [2], who reported
that the potential influence of climate change is reflected in an
increase of landslide frequency. For a successful quantitative
landslide hazard assessment, a compilation of historical event-
based landslide inventory is crucial [3].

Traditionally, landslide mapping has relied on visual inter-
pretation of aerial photographs and intensive field surveys.
However, for mapping of large areas, those methods are
time consuming, creating a gap that remote sensing has been
increasingly filling. Due to restrictions in spatial resolution,
traditional optical satellite imagery, such as acquired by the
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Landsat Thematic Mapper (TM), has limited utility for land-
slide studies [4]. More recently, high-resolution images and
Light Detection and Ranging (LiDAR) elevation derivatives
have started to offer an alternative way for effective landslide
mapping. Most research works, however, have been focusing on
pixel-based analysis. For example, Borghuis et al. [5] employed
unsupervised image classification in automated landslide map-
ping using Satellite Pour l’Observation de la Terre 5 (SPOT-5)
imagery. McKean and Roering [6] also successfully delineated
landslide features using measures of surface roughness from
LiDAR digital terrain model (DTM). With increasing spatial
resolution, however, pixel-based methods have fundamental
limitations in addressing particular landslide characteristics due
to finite spatial extent. Only those object characteristics allow
landslides to be further assigned to different type classes and
other features of similar appearance to be discarded. Such
methods focusing on features instead of pixels are the basis of
object-oriented analysis (OOA).

OOA, which is based on image segmentation and subse-
quent classification of derived image primitives, represents a
more advantageous approach for analyzing high-resolution data
because image pixels can be meaningfully grouped into net-
worked homogeneous objects and noise consequently reduced
[7], [8]. Moreover, OOA offers a potentially automated ap-
proach for landslide mapping, with a consideration of spectral,
morphological, and contextual landslide features supported by
expert knowledge [9], thus allowing a cognitive approach that is
comparable to visual image analysis. Nonetheless, so far, very
few studies have used OOA for landslide mapping. Preliminary
efforts by Barlow et al. [10] and Martin and Franklin [11]
focused on automatic landslide detection using low-resolution
Landsat Enhanced TM Plus (ETM+) images. The methodology
was further improved by Barlow et al. [12] through the use
of higher resolution SPOT-5 data, as well as an inclusion of
more robust geomorphic variables. Moreover, Martha et al.
[9] integrated spectral, spatial, and morphometric features to
successfully recognize and classify five different types of land-
slides in difficult terrain in the High Himalayas. These studies
show the increasing utility and potential of OOA in detecting
and mapping landslides rapidly. However, all of the proposed
approaches tend to fail in situations where both fresh and older
landslides are present and prevent an accurate event-related
landslide inventory.

A potential solution could be the integration of pre-event
image data. Change detection from satellite imagery before
and after a landslide event has already been proven useful for
identification of newly triggered landslides at pixel-based level.
Most frequently, change detection has been based on image
ratios and image differencing with a defined threshold [4]. In
addition, image subtraction and postclassification comparison
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Fig. 1. General flowchart of landslide mapping by OOA change detection. (RXD) Reed–Xiaoli detector. (SAM) Spectral angle mapper. (PC) Principal
component. (GLCM) Gray-level co-occurrence matrix.

have been attempted. For example, Nichol and Wong [13]
reported that a postclassification comparison using a maximum
likelihood classifier produced a detection rate of 70%. Park and
Chi [14] introduced the concept of change detection into OOA,
using very high resolution (VHR) images before and after
landslide occurrence. However, their aim was only to recognize
change/nonchange objects, without further efforts to remove
those false positives from the “changed” objects. The approach
is apparently only suited for situations where all major changes
are induced by landslides and all landslides occurred in forested
terrain.

The purpose of this letter is to introduce a new approach for a
rapid mapping of newly triggered landslides using an objected-
oriented change detection technique. The methodology aims
at a semiautomatic and rapid analysis with a minimum of
operator involvement and manual analysis steps. Compared to
conventional approaches for landslide mapping, this approach
benefits from the following: 1) an image segmentation with
problem-specified scale optimization and 2) a multitemporal
analysis at object level with several systemized spectral and
textural metrics.

II. METHODOLOGY

The adopted methodology includes two parts: 1) image seg-
mentation with multiscale optimization and 2) classification of
landslide objects. The general methodology is shown in Fig. 1.
Two QuickBird images were used in the study, acquired on
September 6, 2006 and October 8, 2009, with 0.3% and zero
cloud cover, respectively. For each image, only four multispec-
tral bands [blue, green, red, and near infrared (NIR)] with a spa-
tial resolution of 2.4 m were used, i.e., without pansharpening
with the 0.6-m panchromatic band, to avoid artefacts introduced
by image fusion and to increase the efficiency of computation
time. Moreover, the 2.4-m resolution is sufficient for landslide

mapping. In addition, a 1-m DTM was created from airborne
LiDAR data acquired on October 6–19, 2009, shortly after the
event, with a maximum point density of 8 points/m2 (vertical
and horizontal accuracies: 15 and 40 cm, 1-σ). The spectral
analysis was performed with ENVI 4.7 software. The OOA and
textural analysis were implemented in eCognition Developer 8.

The application of this approach is demonstrated by a case
study in Messina Province of Sicily, southern Italy. During
the night of October 1, 2009, intensive prolonged rainfall
(ca. 223 mm in 7 h) affected several catchments south of
Messina city. Numerous debris flows and shallow landslides
were triggered, and 31 people were reported dead. Two of
the most damaged areas are studied, including a training area
of Altolia (ca. 1.8 km2) for algorithm development and a
larger independent testing area of Itala (ca. 8.1 km2). The
latter allows the robustness and transferability of the algorithm
(without any change of rule set and parameter thresholds) and
the corresponding accuracy to be assessed by comparison with
a manually mapped landslide inventory.

A. Image Segmentation With Scale Optimization

Image segmentation defines the building blocks for object-
oriented image analysis and, to ease further analysis, should
aim at meaningful delineation of targeted real-world objects.
However, considering the complex characteristics of landslides,
including land cover variance, illumination difference, diver-
sity of spectral behavior, and size variability, it is difficult
to delineate each individual landslide as a single object [9].
Notwithstanding this difficulty, over- and undersegmentation
can be reduced by means of a multiscale optimization approach.

The multiresolution segmentation based on fractal net evo-
lution approach (FNEA) implemented in Definiens eCognition
[7] was employed for the initial segmentation, parameterized
according to the specific needs of event-based rapid mapping
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Fig. 2. Detailed view of the image segmentation at (a) a fixed scale of 30, (b) a specified scale of 200, and (c) a described multiscale optimization. The dotted
ellipses are used to highlight (a) over- and (b) undersegmentation of landslides.

of landslides, and incorporated in a multiscale optimization rou-
tine. FNEA requires the user to define weights for input layers
(bands), as well as a scale parameter that defines the maximum
allowed heterogeneity within individual segments. Catastrophic
slope failures typically remove the vegetation and result in high
ratios between the red and NIR bands. These bands are also the
least affected by atmospheric effects and were assigned equal
weights wc. The scale parameter is consequently defined as

f =
∑
c

wc(nmrg · σc,mrg)− (no1 · σc,o1 + no2 · σc,o2) (1)

with n corresponding to the number of pixels within an object
and σc to the standard deviation of pixel values within the
band c. Since FNEA performs the most homogeneous merge
in the local vicinity [15], the subscripts indicate objects prior
to merge (o1 and o2) and the respective resulting object after
merging (mrg). The fact that suitable values for f usually
need to be determined by the user in time-consuming “trial-
and-error” procedures has previously been identified as one
of its major limitations [15]. Statistical optimization methods
(e.g., [16] and [17]) allowed the choice of the scale parameter
to be made more objective, provided that targeted elements
exhibit one operational scale. However, slope failures feature
several orders of magnitudes in volume and area, which prohibit
the definition of one single scale parameter. To overcome this
difficulty, Esch et al. [18] proposed a multilevel segmentation
optimization procedure, which iteratively compares the spectral
characteristics of image objects generated at multiple scales.
A simplified version of this approach, which uses less spectral
information and an automatically derived threshold, was used
in this study.

In an initial step, the image was segmented with two hierar-
chical scales (f1 = 5 and f2 = 10). The mean Percentage Dif-
ference (mPD) between subobject level (L1) and superobject
level (L2) was calculated as

mPD =
|νL1 − νL2|

νL2
(2)

where ν is the ratio of the intensities in the NIR and red
bands of the respective sub- and superobjects. Each subobject
whose mPD exceeds the mean mPD of all subobjects by more
than 2σ was consequently classified as a “real” subobject and
transferred to the superobject level

real object =

{
1, mPD > 2σmPD

0, else.
(3)

In this sense, 2σmPD replaced the user-defined thresholds
introduced by Esch et al. [18]. In the next step, the similarity
of transferred adjacent subobjects (ob1 and ob2) was evaluated
by their intensity difference in the NIR and red bands. Similar
objects were merged according to the following condition:

simob1,ob2 =

⎧⎨
⎩

1, (0.5 ∗ |REDob1 −REDob2|
+ 0.5 ∗ |NIRob1 −NIRob2|) < 10

0, else.
(4)

The procedure was repeated for a total of 11 scales (15, 20,
30, 50, 70, 100, 150, 200, 300, 500, and 700), where, in each
step, the result of the previous cycle became the subobject level,
and according to the next larger scale factor, a number of objects
were merged to create a superobject level above. With each
iteration, further objects exceeding the initially derived 2σmPD

were transferred to the next level. The complete procedure aims
to provide a segmentation that represents sufficiently distinct
objects independent of their particular scale.

Fig. 2 shows the segmentation result of the multiscale opti-
mization on the postevent imagery. Compared to the original
FNEA with only one segmentation scale [Fig. 2(a) and (b)],
image segmentation using multiscale optimization [Fig. 2(c)],
although still facing some difficulties to delineate every indi-
vidual landslide, decreases the degree of over- and underseg-
mentation and is able to capture better landslides as image
objects among a number of different scales. Furthermore, the
optimization runs fully automatically and liberates the user
from a time-consuming trial-and-error evaluation of the optimal
parameterization for the image segmentation.

B. Classification of Landslide Objects

Landslide classification in previous studies has become in-
creasingly complex. While initial works were largely restricted
to the digital number values of multispectral bands, later in-
dices such as Normalized Difference Vegetation Index, differ-
ent texture measures, digital elevation model derivatives, and
externally prepared vector layers (e.g., of flow accumulation
and stream networks) or shadow masks were employed [9].
The landslide detection approach presented here makes use of
additional spectral and textural measurements: change detec-
tion using temporal principal component analysis (PCA), im-
age matching through spectral angle mapper (SAM), anomaly
detection by the Reed–Xiaoli detector (RXD), and textural
analysis with gray-level co-occurrence matrix (GLCM). The
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derivatives of PCA, SAM, and RXD were calculated as separate
layers and incorporated in OOA as features of each object that
were derived during the hierarchical segmentation.

The change detection was first carried out using temporal
PCA, an image transformation of stacked pre- and postevent
images based on eigenvector analysis of their image covariance
matrix [19]. Temporal PCA combined all eight bands of the
pre- and postevent QuickBird images (four bands each) and
transformed these bands into eight uncorrelated components.
The components which concentrate changes have relatively
smaller eigenvalues and can be determined by visual inspection
[20]. An assessment of the principal components in the training
area revealed that the signatures of newly triggered landslides
were primarily concentrated in the fourth principal component
(PC4). The minor components beyond PC4 were mainly com-
posed of residuals of the transformation, in most cases noise.
In the training area, landslide candidates were preliminarily
chosen from PC4 using a membership function calculated from
ten selected samples of landslide objects. This membership
function was then incorporated in the algorithm of classification
and later employed without modification in the testing area. A
further inspection of remaining false positives, such as roads,
deforestation areas, and water, revealed relatively low values
of those objects in the second principal component (PC2), and
values < −300 were found to be suitable threshold for their
removal.

Since shadows were also possibly recorded as changes in
PCA, a spectral matching image between the pre- and postim-
ages was created using SAM [21] and then imported in OOA.
The purpose of SAM is to remove the influence of these subtle
spectral changes due to illumination differences and viewing
angle variation. The matching image derived from SAM esti-
mated spectral similarity by comparing spectral angle differ-
ences in terms of image space between the pre- and postevent
QuickBird images. For both images, each pixel was represented
by a spectrum identified as a 4-D vector with specified length
and direction. As SAM only considers the angle between the
spectral vectors but not the vector length, it is less sensitive
to changes due to illumination and shadowing [21]. Exclud-
ing objects with low SAM values (SAM < 0.09) allowed a
removal of spectral false positives that resulted from subtle
spectral changes in illumination, as well as shadow, which
cannot always be excluded from the change component of PCA.

In addition, in order to remove false positives, such as urban
areas as well as existing outcrops and clear-cuts, the RXD
anomaly detector [22] was used to estimate spectral anomalies
based on the pre-event image. Assuming that urban areas, de-
forestation, roads, and other infrastructure demonstrate spectral
signatures that are significantly different from the background,
RXD can be used to highlight those areas. In this letter,
RXD was applied on the pre-event imagery to detect spectral
anomalies that existed already before the event, which are
consequently excluded as newly triggered landslides. A created
anomaly image was then derived and employed as an additional
layer in eCognition. Objects with large RXD values were con-
sidered as spectral anomalies, and a threshold of RXD > 16
was defined to exclude these anomalous false positives.

Following the spectral processing that identified landslide
candidate objects, a texture analysis of a 1-m LiDAR DTM
was performed after merging those candidates. The texture

Fig. 3. Testing area of Itala. (a) Fourth component of PCA. (b) Second
component of PCA. (c) Matching image of SAM. (d) Result of RXD anomaly
detection on pre-event image. (e) (Green) False positives detected using
GLCMmean. (f) (Yellow) Final result of detected landslides.

TABLE I
ACCURACY ASSESSMENT FOR OOA-MAPPED LANDSLIDES

analysis was performed on elevation data for the purpose of
analyzing topographic variability, using second-order statistics
of the widely applied GLCM [23]. The objective is to remove
false positives with low-frequency elevation variation, such as
undisturbed or unfractured areas, homogeneous flat surfaces,
and objects with low height variation (i.e., roads and water
bodies). Texture features calculated from GLCMmean were
used in our study. Neighboring pixels in all directions (0◦,
45◦, 90◦, and 135◦) were considered for the GLCM genera-
tion, accounting for the potential different aspects of landslide
objects. Objects with low GLCMmean values were considered
to be false positives, and a threshold of GLCMmean < 126.7
was defined. The remaining landslide candidates were then
classified as final output of newly triggered landslides.

III. RESULT AND ACCURACY ASSESSMENT

The algorithm developed based on the training area of Altolia
was directly applied in the testing area of Itala, without any
change in membership function values and defined thresholds.
The intermediate derivatives and final outputs for the testing
area are shown in Fig. 3. To evaluate the accuracy of this
approach, OOA-derived landslides were compared with a man-
ually mapped landslide inventory. The accuracy assessment was
carried out for the number and the spatial extent of mapped
landslides (Table I), both of which are considered critical in a
subsequent quantitative landslide hazard and risk assessment.
The number of landslides is useful for a quantitative estimate
of the temporal probability of landslide occurrence, whereas
the spatial extent of landslide is beneficial for the estimate of
probability of landslide size through the landslide frequency-
area statistics [3].

The accuracy assessment calculates the commission and
omission errors, which are measures of the user’s and pro-
ducer’s accuracies of the mapped landslides, respectively. For
the spatial extent of landslides, a user’s accuracy of 75.9%
and a producer’s accuracy of 69.9% were achieved. In terms
of the number of landslides, user’s and producer’s accuracies
of 81.8% and 69.5%, respectively, were reached. For both the
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number and spatial extent of landslides, the results show a
lower producer’s than user’s accuracy: Specifically, ca. 31% of
manually mapped landslides were omitted in the OOA-based
detection. This indicates an overestimation of false positives
during their classification, accompanied with an underestima-
tion of true positives obtained from the membership function
of the selected samples. Further improvements should include a
more accurate definition of these thresholds for classifying false
positives and a more careful selection of representative samples.

IV. CONCLUSION

This letter has described a novel approach of object-oriented
change detection for rapid mapping of newly triggered land-
slides after major events, using VHR satellite images and
LiDAR data. The approach used a transparent semiautomatic
mapping technique that reduces the user involvement to the
determination of a few thresholds for a systemized predesigned
OOA work process. First, a problem-specific multiscale
optimization of FNEA was proposed to reduce the degree of
over- and undersegmentation of landslides among a number
of different scales, avoiding a time-consuming trial-and-error
evaluation of the optimal segmentation parameters that has
characterized most OOA research works in the past. Second,
change detection using image transformation of PCA was not
only found to be useful for a preliminary selection of landslide
candidates from PC4 but also enabled a removal of false pos-
itives directly from PC2. Third, the matching image derived
from SAM allowed the detection of subtle spectral changes
from the change of spectrum vector direction. Fourth, spectral
anomalies detected by RXD in the pre-event image allowed
the removal of false positives, such as landslides that already
existed before the landslide event. Finally, surface texture
measures based on a 1-m LiDAR DTM were incorporated to
remove false positives with low-frequency elevation variation.

For the case study in Messina, the approach achieved user’s
and producer’s accuracies of 75.9% and 69.9%, respectively,
for the extent of landslides, and 81.8% and 69.5%, respectively,
for the number of landslides. Although the accuracy of the au-
tomatic approach does not entirely match what can be achieved
in manual mapping, it provides an efficient supplement for
traditional methods. The chosen spectral object features are
expected to be useful to accommodate multispectral informa-
tion from a great variety of different sensors. The proposed
thresholds typically need further adjustment for the application
in other cases, whereas in the presented example, the visual
inspection of one-fifth of the study area was sufficient for this
purpose. Moreover, it should not be forgotten that considerable
time can be saved for landslide mapping because the manual
drawing of landslides boundaries is replaced by image segmen-
tation. Hence, for an effective landslide hazard assessment, the
approach provides an efficient tool to retrieve lacking temporal
data for an event-based landslide inventory, thus allowing the
assessment of temporal probability and magnitude of landslide
events for a quantitative hazard assessment.
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Appendix 2: Kurtz et al. In Press. Hierarchical 
extraction of landslides from multiresolution 

remotely sensed optical images. 
 
Kurtz, C., Stumpf, A., Malet, J.-P., Puissant, A., Gançarski, P., Passat, N., In Press. 
Hierarchical extraction of landslides from multiresolution remotely sensed optical images. 
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1 Hierarchical extraction of landslides from multiresolution 
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Abstract9

The automated detection and mapping of landslides from Very High Resolution (VHR) images present several chal-

lenges related to the heterogeneity of landslide sizes, shapes and soil surface characteristics. However, a common 
geomorphological characteristic of landslides is to be organized with a series of embedded and scaled features. These 
properties motivated the use of a multiresolution image analysis approach for their detection. In this work, we propose 
a hybrid segmentation/classification region-based method, devoted to this specific issue. The method, which uses im-

ages of the same area at various spatial resolutions (Medium to Very High Resolution), relies on a recently introduced 
top-down hierarchical framework. In the specific context of landslide analysis, two main novelties are introduced to 
enrich this framework. The first novelty consists of using non-spectral information, obtained from Digital Terrain 
Model (DTM), as a priori knowledge for the guidance of the segmentation/classification process. The second novelty 
consists of using a new domain adaptation strategy, that allows to reduce the expert’s interaction when handling large 
image datasets. Experiments performed on satellite images acquired over terrains affected by landslides demonstrate 
the efficiency of the proposed method with different hierarchical levels of detail addressing various operational needs.

Keywords: landslide mapping, VHR images, multiresolution region-based analysis, hierarchical approach, binary10

partition tree, domain adaptation11

1. Introduction12

1.1. Context13

In the field of Earth observation, a new generation of sensors with meter and sub-meter resolution has led to an14

increased production of Very High Resolution (VHR) optical images (Benediktsson et al., 2012), and to improved op-15

erational capabilities for monitoring geohazards. Especially, several studies demonstrated that such kind of imagery16

enables to inventory and delineate landslide-affected areas (Nichol and Wong, 2005; Barlow et al., 2006; Martha et al.,17
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2010; Mondini et al., 2011; Stumpf and Kerle, 2011), providing valuable information for the estimation of potential18

19 risks to infrastructures and human lives. Comprehensive landslide inventory maps should ideally also provide infor- 
20 mation about the respective sub-parts of each single landslide which are often characterized by different kinematic 
21 patterns. Such type of spatial information on landslide sub-units is of paramount importance for quantitative hazard 
22 assessments (Thiery et al., 2007) and the identification of landslide that are more prone to imminent acceleration or 
23 fluidization (Raucoules et al., 2013). VHR satellite images contain sufficient spatial details to depict small geomor- 
24 phological surface features such as faults, scarps, fissures, rock blocks and lobes, and should in principle also enable an 
25 analysis at the level of sub-parts composing a landslide. However, established concepts of landslide geomorphology, 
26 such as a first order differentiation between source area, transport area and toe (Figure 1), do not directly correspond 
27 to spectrally homogeneous pixels or regions in VHR images. Indeed, the different sub-parts appear heterogeneous 
28 as they generally contain different kinds of basic elements with a specific spatial organization (e.g., different kinds 
29 of fissures, different sizes and shapes of rock blocks, etc.). Consequently, by opposition to lower resolution images 
30 (Yilmaz, 2009; Kayastha et al., 2013), landslides can be considered as hierarchies of complex patterns composed by 
31 sub-objects of interest. One may notice that the conceptual model in Figure 1 allows us to identify potentially useful 
32 features (e.g., slope gradient, slope curvature, differences in altitude) to distinguish the different landslide sub-parts.

Due to the expanding fleet of VHR optical satellites such as the French PLEIADES constellation (de Lussy et al.,33

34 2005), the challenges associated with VHR images are gaining increasingly greater importance in the context of 
35 landslide mapping (Guzzetti et al., 2012). On the one hand, the size and the complexity of the images make the visual 
36 analysis a time consuming and error prone task (Galli et al., 2008; Fiorucci et al., 2011). On the other hand, state-of- 
37 the-art image analysis tools, which are usually considered for the mapping of landslides from lower resolution images, 
38 rely on radiometric homogeneous hypotheses of the landslides represented in the images. Consequently, these tools 
39 cannot handle the new levels of spatial details provided by VHR images (Blaschke, 2010). Therefore, new image 
40 analysis methodologies have to be proposed for the hierarchical mapping of landslides from VHR optical satellite 

41 images.

1.2. Related works42

In this context, various region-based approaches have been proposed to automate the extraction of landslides from43

44 VHR images (Barlow et al., 2006; Martha et al., 2010; Lu et al., 2011; Stumpf and Kerle, 2011; Lahousse et al., 
45 2011; Hölbling et al., 2012; Stumpf et al., 2013). In opposition to pixel-based approaches that mainly use spectral and 
46 textural information (Townshend et al., 2000; Mallinis et al., 2008), region-based approaches enable to consider high- 
47 level (e.g., contextual, geometrical) features to describe the objects to be classified. Indeed, region-based approaches 
48 enable to transfer high-level knowledge in computer-accessible features leading to discriminatory decision sets. Such 
49 decision sets have been employed for the mapping of landslides from HR (Martha et al., 2010) and multi-temporal 
50 VHR images (Lu et al., 2011). Stumpf et al. (2013) have also proposed a supervised framework to automatically select 
51 discriminative features among a multitude of potentially useful ones. Nevertheless, most of the proposed approaches 
52 do not consider the hierarchical organization of the objects of interest (Benz et al., 2004), that is a serious drawback 
53 when dealing with VHR optical satellite images.

To tackle this issue, two key-concepts can be considered: using multiple images, and using multiple spatial res-54

55 olutions. On the one hand, multiple images provide complementary information, that can enrich each other. This is
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Figure 1: Schematic partition of a landslide into sub-units (source area, transport area and toe) and their typical geomorphological features. 
The image depicts the distinguished sub-units on an aerial photograph (50 cm, © IGN, 2008) and shows the heterogeneous surfaces including 
deformation features such as fissures and different sizes of rock blocks. This example illustrates that geomorphological definitions do not correspond 
directly to spectrally homogeneous areas depicted in the remote sensing images.

specifically true in the case where such images gather different radiometric values, that then carry various semantic56

57 information. On the other hand, using images at multiple spatial resolutions provides hierarchical links between their 
58 respective radiometric information. (In particular, the availability of a large range of spatial resolutions, from Medium 
59 Spatial Resolution (MR, 30–5 m) to VHR images, has already led to methods for the extraction of hierarchical pat- 
60 terns (Akcay and Aksoy, 2008; Wemmert et al., 2009; Gaetano et al., 2009). These considerations motivate our use 
61 of multiple images at multiple spatial resolutions (Chang et al., 2007). In particular, we propose to take advantage of 
62 this potential spatial (Sun et al., 2003) and radiometric enrichment to propose a multiresolution representation of the 
63 data, leading to a hierarchical unsupervised region-based approach.

1.3. Contributions64

Based on these considerations, a top-down hierarchical region-based framework has been recently proposed by65

Kurtz et al. (2012) to segment and classify multiresolution images from the lowest to the highest resolution, and66

then finally extract complex patterns from VHR images. This top-down hierarchical approach (TDHA) constitutes a67

generic and versatile framework. In this work, we propose to adapt and improve it, in order to efficiently deal with the68

case of landslide mapping from remote sensing imagery.69

From a methodological point of view, our contributions are twofold. Firstly, we propose to integrate topographic70

71 and morphometric a priori knowledge derived from non-spectral data, namely Digital Terrain Model (DTM), for
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72 guiding the segmentation/classification process. This strategy has shown promising results in the context of mapping 
73 shallow landslides with pixel-based approaches (Mondini et al., 2013). In our approach, this knowledge is used for the 
74 construction of the hierarchical image representation data structure, namely a binary partition tree (BPT) (Salembier 
75 and Garrido, 2000) considered for the segmentation. It is also used to enrich the feature space in the context of 
76 a multiresolution classification procedure (Kurtz et al., 2 010). This enriched TDHA is described in Subsection 2.1. 
77 Secondly, we propose a new strategy that allows to reduce the experts’ interaction when handling large image datasets. 
78 Indeed, the proposed TDHA uses experts’ knowledge via the interactive definition of segmentation examples for each 
79 semantic class, and at each resolution. Based on the domain adaptation paradigm (Daumé III and Marcu, 2006), 
80 whose relevance has already been proved for classification of satellite images (Bruzzone et al., 1999; Bahirat et al., 
81 2012), we propose a strategy that enables to reduce a minima the error-prone and time-consuming task that consists 
82 of providing segmentation examples. This domain adaptation strategy is described in Subsection 2.2.

From an applicative point of view, the proposed method has been used for analysing multiresolution image datasets83

and map different landslide sub-units. These experiments, described in Section 3, demonstrate the efficiency of the84

proposed method with different hierarchical levels of detail, addressing various operational needs.85

To the best of our knowledge, this work constitutes the first application of a top-down hierarchical strategy, dealing86

with multiresolution images, for landslides monitoring purpose.87

2. Methodology88

This section presents the proposed workflow for the segmentation/classification of landslides from multiresolution89

satellite images. Subsection 2.1 provides a description of the TDHA, and how it is enhanced by integrating morphome-90

tric a priori knowledge derived from DTM. Subsection 2.2 details the proposed domain adaptation strategy enabling91

to use the knowledge learned on a reference source dataset to automatically process another dataset representing the92

same type of objects.93

2.1. Top-down hierarchical approach for segmentation/classification of landslide multiresolution images94

The proposed TDHA, summarized in Figure 2, takes as input a multiresolution set of n images I1, . . . , In (in95

our case, n = 3 images are considered: one MR, one HR and one VHR image). It provides as output n segmenta-96

tion/classification maps computed using a top-down strategy. It performs n successive steps (one per spatial resolution97

image). Each step is composed of:98

• an example-based hierarchical segmentation (see Figure 2-¬, and Subsection 2.1.1);99

• a multiresolution clustering (see Figure 2-, and Subsection 2.1.2).100

This approach is mainly based on an iterative decomposition strategy: at each resolution/step, the output is embedded101

into the next resolution image to be processed as input of the next step (see Figure 2-®).102

2.1.1. Example-based hierarchical segmentation103

Overview. The segmentation of a satellite image is a complex task since the different objects of interest do not104

necessarily share the same spatial scale. To deal with this issue, the segmentation step is divided into k different sub-105

steps, applied independently to a group of similar thematic ground areas (k is set by the expert and corresponds to the106
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Figure 2: Workflow overview of the proposed TDHA (see text).

number of thematic ground areas extracted by the multiresolution clustering approach from the previous resolution107

image, see Subsection 2.1.2).108

Each sub-step requires a segmentation example interactively defined by the expert (Figure 2-¬). Segmentation109

is performed by using a hierarchical strategy based on Binary Partition Trees (BPTs) (Salembier and Garrido, 2000;110

Salembier and Wilkinson, 2009; Valero et al., 2010; Benediktsson et al., 2011; Alonso-González et al., 2012). Thus,111

defining a segmentation example consists of providing a cut of the BPT. To this end, a software has been designed112

to visualize the segmentation results for different cuts in real-time (see Subsection 3.2). The expert can interactively113

parse the tree to select a set of nodes producing the required tree-cut example (Figure 3). The experts’ behavior is114

then learned. More precisely, a tree-cut example is represented by a set of centroids (modeled by color histograms115

and spatial features) using a clustering algorithm. This example is automatically reproduced in the similar thematic116

ground areas of the image by using a cutting strategy that processes all the associated BPTs.117

Technical description.118

Building a BPT: The BPT of a multivalued image I : E → V with B spectral bands Vb, is built in a bottom-up119

approach (i.e., from its leaves to its root). The leaves of the tree are composed by the regions belonging to the initial120

partition. Practically, the initial partition of E is generally composed by the flat zones of I. The remaining nodes are121

obtained by successively merging couples of (already defined) nodes of the tree. Such couples of nodes are generally122
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Binary Partition TreeSegmentation results

Set of nodes

SSet of nodes

Set of nodes

Scale 1

Scale 2

Scale 3

Figure 3: An example of BPT associated to an HR image (the number of nodes is significantly reduced, for sake of readability). The nodes of the

tree are depicted by color disks (the root is the highest node). The colors of the nodes (from yellow to red) symbolize the decrease of the similarity

measureOr between two neighboring regions (and thus, also the decrease of the function α controlling the trade-off betweenOr andOg). For the

sake of visualization, three partitions associated to three cuts of the BPT are depicted.

chosen as spatially adjacent, thus leading to a partition of E. The root node represents the entire image support E.123

A huge number of distinct BPTs may be obtained for a same initial partition of E. In order to decide which BPT124

is the most relevant, it is then necessary to define the priority of the fusions between nodes. A BPT generation then125

relies on two main notions: a region model (which specifies how regions are characterized), and a merging criterion126

(which defines the similarity of neighboring regions and thus the merging order).127

The basic models and criteria used in most image segmentation approaches generally rely on radiometric homo-128

geneity hypotheses (Garrido et al., 1998). Such models are well adapted to process MR images, but when dealing129

with VHR images, other geometric and/or spatial features require consideration. Morphological features related to130

the sensed ground surface, can provide relevant information for the delineation of the landslides and their sub-parts.131

They can be obtained from DTM and are typically linked with distinct geomorphological processes (Anders et al.,132

2011). Morphological features such as the slope and the curvature of the regions (see Figure 1) can be considered to133

characterize the nodes during the construction of the BPT.134

We propose to rely on both the increase of the ranges of the intensity values (for each spectral band) and on the135

morphological features of the regions in order to merge in priority objects composing the landslide sub-parts. In the136

sequel, the chosen region model and merging criterion are defined.137

Region model: A node/region Ri ⊆ E is modeled here by a couple of values

Mr(Ri) = 〈(v−b (Ri), v+b (Ri))〉Bb=1 (1)

Mg(Ri) = (slop(Ri), curv(Ri)) (2)

where v?b provides the extremal values for the b-th spectral band in I, while slop and curv are functions providing

the slope and the curvature, respectively. Broadly speaking, Mr and Mg provide (low-level) spectral and geometrical

information. During the merging process, the region model of two merged regions Ri and Rj is then provided by

Mr(Ri ∪Rj) = 〈(min{v−b (Ri), v−b (Rj)},max{v+b (Ri), v+b (Rj)})〉Bb=1 (3)

Mg(Ri ∪Rj) = (slop(Ri ∪Rj), curv(Ri ∪Rj)) (4)
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While Mr is derived directly from the image, values for the slope slop and the curvature curv are obtained as the first138

and the second order derivatives of a DTM representing the topographic surface. (Further details on the computation139

of the derivatives from the DTM at different spatial scales are provided in Subsection 3.1.2.)140

Merging criterion: At each step, the algorithm determines the pair of most similar connected regions minimizing

the increase of the ranges of the intensity values (for each spectral band) and having similar morphological properties.

This leads to the following merging criteria

Or(Ri, Rj) =
1

B

B∑
b=1

max{v+b (Ri), v+b (Rj)} −min{v−b (Ri), v−b (Rj)}
v+b (E)− v−b (E)

(5)

Og(Ri, Rj) =
1

2
(|slop(Ri)− slop(Rj)|+ |curv(Ri)− curv(Rj)|) (6)

The similarity measure between two neighboring regions Ri and Rj are then computed as:141

O(Ri, Rj) = α.Or(Ri, Rj) + (1− α).Og(Ri, Rj) (7)

with α ∈ [0, 1], where Or(Ri, Rj) and Og(Ri, Rj) have been normalized. In practice, the closer the nodes are to the142

root, the less relevant Or is. Consequently, the weight α can be defined as a function depending directly on the value143

ofOr (and decreasing whenOr increases). In particular, it has been experimentally observed that a standard Gaussian144

formulation145

α(Or) = exp(−O2
r) (8)

provides a satisfactory behavior of the merging function O (Kurtz et al., 2011).146

Based on these chosen model regions and merging criterion, the BPT is built, as exemplified in Figure 3. As a147

148 concern of the merging criterion, a part of the BPT nodes may be affected by outlier regions composed of very small 
149 sets of pixels with extremely low or high intensity values (Equation (5)). This behavior could seriously affect the 
150 resulting partitions extracted from the BPT, then leading to over-segmentation results. This issue is handled               
151 by the classification step that will aggregate smaller regions to larger ones based on their spectral and morphological 
152 similarities (e.g., , a small region with extreme values surrounded by a larger region with different values but with the 
153 same altitude and slope).

2.1.2. Multiresolution clustering154

155 Overview. The classification of the segments created by the previous step is performed by using a multiresolution      
156     clustering  approach (Kurtz et al., 2010) to automate as much as possible the global process (which is already affected 
157     by a semi-automatical segmentation step). Instead of characterizing the segments extracted at the current resolution by 
158    using classical features (e.g., color, texture, shape), we use their decompositions at the next resolution (Figure 2-).         
159     To this end, for each segment, a class-based histogram is computed modeling its composition in terms of radiometric 
160  clusters into the next resolution image. A classical clustering approach – here, the K-MEANS (MacQueen, 1967) – is 
161        then performed to create c groups of segments sharing similar features where c is set by the expert (we also offer the 
162       possibility to instantiate this methodology with a supervised classification approach). Once these groups have been

created, the expert selects and recognizes them to match with potential thematic ground classes (e.g., Cluster 1 →163

Vegetation, . . . , Cluster c→ Landslide).164
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These c clusters are then embedded into the next resolution image to be processed as input of the next step165

(Figure 2-®) and segmented into sub-clusters of interest. Practically, the c clusters are then considered in the next166

resolution image as the k groups of thematic ground areas to be segmented, and new BPTs are built inside these167

groups of segments (see Subsection 2.1.1). This original strategy enables to cluster into similar groups (at the current168

resolution), regions sharing similar image characteristics at the next considered resolution.169

Technical description.170

As stated above, the multiresolution clustering approach used in the proposed TDHA is mainly based on the notion171

of color class-based histogram to characterize the segments to be classified. These multiresolution features are well172

adapted to deal with MR and HR images to enable the extraction/classification of the whole structure of the landslides.173

In the specific case of the classification of the landslide sub-units (i.e., source area, transport area, toe) from VHR174

images, it is also relevant to consider the morphological features of the data during their classification. Consequently,175

we consider both the radiometric and the spatial properties of the ground during the classification of the regions176

extracted from the VHR images. In this way, we propose to characterize each segment extracted from the VHR177

images using the following features:178

• the radiometric average value of each spectral band A1, . . . , AB ;179

• the slope value slop;180

• the curvature value curv;181

• the normalized altitude value alt.182

Indeed, preliminary experiments have shown that morphological features could enable separation of the different183

classes related to the considered object of interest. In particular (see Figure 4) slope and normalized altitude seem to184

be powerful features to discriminate the landslide sub-units.185

2.2. Domain adaptation strategy186

The classical domain adaptation approaches act by transferring the learned model (in general, a classifier) from a187

training to a target dataset for which a priori information is not available. We propose hereinafter a wise extension of188

such approaches enabling the transfer of a segmentation established interactively by an expert on a geographic subset189

of a remote sensing dataset to automatically process the data in a target region of interest.190

2.2.1. Transfer of the learned elements191

Once a multiresolution set of images has been processed (i.e., segmented and classified) in a training area, it192

becomes possible to transfer the learned segmentation examples and clusters to process the set of images for target193

regions of interest. The underlying idea is that a specific landslide (or sub-units of a landslide) extracted from a194

particular ground unit will present similar spatial and radiometric characteristics as other landslides within the same195

geographic ground unit. Consequently, we assume that the landslides (and their sub-components) from the training196

and the target area can be characterized with similar geometrical and radiometric (i.e., slope, curvature, normalized197

altitude) features.198

For the processing, we transfer the following elements from the training area to the target one:199
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Figure 4: Probability density distributions of the morphological features for the landslide sub-units at the La Valette landslide. (a) Local slope at

a window size of 200 m. (b) Local curvature at a window size of 200 m. (c) Altitude normalized by the range of altitude values over the entire

landslide.

• the K tree-cut examples provided by the expert (for each thematic ground area of each resolution image in the200

training area) during the hierarchical example-based segmentation step201

K = k1 + · · ·+ kn sets of color histograms and geometrical features (9)

These K examples can be used as input of the example-based segmentation approach to run the cutting strategy202

on the BPTs built for the different thematic ground areas of the images. This approach enables to automatically203

segment the n images at the target area;204

• the C centroids of the clusters (related to the different resolution images) learned during the multiresolution205

clustering step (and their potential associated semantic label, e.g., Cluster 1→ Vegetation class)206

C = c1 + · · ·+ cn sets of centroids (10)

These C centroids can be used as input of the multiresolution clustering approach to classify the segments207

automatically created by the example-based segmentation approach.208

2.2.2. Robustness to statistical variability209

Due to potential differences in the environmental conditions (e.g., differences in atmospheric conditions, sun in-210

211 cidence angle, variations of the lithology, possible changes in surface soil moisture), the statistical distributions of the 
212 data in the target area may differ from the training area in a similar manner than between different datasets (Bahirat 
213 et al., 2012). Consequently, the statistical properties of the transferred learned elements could not be relevant to effi- 
214 ciently segment and classify the images at the target area. For instance, if the distribution of the color values is shifted 
215 from the training to the target area, the tree-cut examples provided by the expert during the hierarchical example- 
216 based segmentation step (modeled by color histograms) could not be adapted to segment the images composing the 
217 target area. Indeed, the algorithm used to repeat the segmentation examples on the remaining parts of the images is
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mainly based on the computation of a distance between pairs of histograms and most of the classical distance (e.g.,218

the Euclidean one) are sensitive to the translation of the color values.219

To deal with this issue, a solution consists of using a more robust distance to compute the similarity between220

histograms. We propose to use the constrained Dynamic Time Warping (DTW) similarity measure to compare the221

considered histograms (Sakoe and Chiba, 1978). Indeed, this similarity measure enables small distortions on the222

radiometric axis (Petitjean et al., 2012a).223

Let H(A) = 〈H1(A), H2(A), . . . ,Hv(A)〉 and H(B) = 〈H1(B), H2(B), . . . ,Hv(B)〉 be two histograms of v224

bins. The similarity measure is computed as225

DTWλ(H1···i(A), H1···j(B)) =


+∞ if |i− j| ≥ λ

|Hi(A)−Hj(B)|+min


DTWλ(H1···i−1(A), H1···j−1(B))

DTWλ(H1···i(A), H1···j−1(B))

DTWλ(H1···i−1(A), H1···j(B))

otherwise

(11)

where λ ∈ Z represents the tolerance of distortions on the radiometric axis andHx···y(?) represents the sub-histogram226

〈Hx(?), . . . ,Hy(?)〉. This similarity measure requires larger computation times than the Euclidean distance, but227

provides better results. Associated to this measure, different averaging methods have been recently proposed (Petitjean228

et al., 2011; Petitjean and Gançarski, 2012) in order to define efficiently the mean histograms.229

Since the centroids of the clusters learned during the multiresolution clustering step are modeled by class-based230

histograms (and robust spatial features), they are more adapted to deal with the statistical variability among the con-231

sidered areas. Consequently, these elements can be transferred without adapting them to the statistical distribution of232

the target area.233

3. Experiments234

The datasets used to test the proposed method are described in Subsection 3.1. In order to allow the expert235

to actually test the proposed multiresolution methodology, a software has been designed. This tool is described in236

Subsection 3.2. The evaluation protocol is presented in Subsection 3.3 while the experimental settings and the results237

obtained are presented in Subsection 3.4.238

3.1. Data239

3.1.1. Multiresolution images240

The study area is the Barcelonnette basin (South East French Alps) which is characterized by specific slope,241

242 lithological, and climate conditions favoring the triggering of landslides of different sizes (Malet et al., 2005). Here 
243 ,three subsets comprising the La Valette, the Poche and the Super-Sauze slow-moving landslides are examined        
244 (Figure 5). These landslides have a similar spatial organization with the presence of a more or less circular (in the 
245 horizontal plane) scarp area and an elongated transit zone narrower than the source area. These geometrical features 
246 are characteristic of flow-like landslides. Moreover, the three landslides have developed in the same lithology (e.g.,   
247 black marls) and feauture bare soils at the surface; the radiometric values observed on
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Figure 5: Study area: overview of the Barcelonnette basin (South East France) and of the three large active landslides considered in this experiment.

This map has been built from an HR image (5 m) acquired in 2009 (© RAPIDEYE).

consider three datasets (denoted LA VALETTE, POCHE and248 each landslide are therefore in the same range. We then 
SUPER-SAUZE) composed each of:249

• a LANDSATTM MR (30 m) multispectral image with seven spectral bands (denoted as I1);250

• a RAPIDEYE HR (5 m) multispectral image with five spectral bands (denoted as I2);251

• a VHR (50 cm) ortho-image, geometrically corrected, with three spectral bands (denoted as I3).252
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Figure 6: Multiresolution images of the three datasets. Top to bottom lines: LA VALETTE, POCHE, SUPER-SAUZE. Left column: MR images

(30 m) acquired in 2009 (© LANDSATTM). Center column: HR images (5 m) acquired in 2009 (© RAPIDEYE). Right column: VHR images

(50 cm) acquired in 2009 (© IGN).

In order to avoid temporal issues, all these images have been acquired in Summer 2009. All the data are georeferenced253

254 in the same local cartographic projection (Lambert I). This guarantees the feasibility of the multiresolution approach. 
255 Figure 6 presents the images composing the three datasets considered in these experiments.

3.1.2. Terrain parameters256

For each dataset, a DTM with a spatial resolution of 3.4 m is available. These models have been derived from257

three LiDAR surveys acquired in Summer 2009. From these DTMs, a slope gradient image and a curvature image are258

computed. In the classical case, the computation of the raster files corresponding to these gradient images is usually259
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Figure 7: Illustration of the multiscale resampling approach of the DTM used on the LA VALETTE dataset. This figure shows the influence of the

window size parameter % on the computation of the slope and curvature of the terrain.

done in a 3 m × 3 m neighborhood moving window. However, when dealing with a high spatial resolution DTM,260

this small size of neighborhood captures a lot of local details that are not relevant for the general partitioning of the261

landslide. To deal with this issue a solution consists of resampling the obtained raster files to enable the consideration262

of more general structures (e.g., scarp, track, toe). Since simple resampling to coarser resolution would lead to a loss of263

information, we propose in these experiments to use a multiscale approach (Wood, 1996) that allows the computation264

of resampled images with variable window sizes via a least square fitting strategy. We have experimentally assessed265

the impact of the main parameter % (i.e., the longitudinal curvature window size – expressed in meters) by setting it266

to different successive values (3, . . . , 115) and found that % ≥ 39 corresponds to a scale adapted to deal with the267

different structures of interest that need to be extracted (Figure 7).268

These gradient images have been resampled successively to 5.0 m and 0.5 m spatial resolution images in order to269

270 process the HR and VHR images composing the datasets. In addition, these resulting images have been georeferenced

271 in the same local cartographic projection as the one used for the considered multiresolution optical images.

3.1.3. Levels of analysis272

To evaluate the efficiency of the proposed methodology, several tests have been performed to extract hierarchies273

of complex patterns in the three datasets. The TDHA was run with three images as input (n = 3) in order to extract274

three levels of details:275

• Level 1. Large natural areas from the MR images I1: spatial separation between mineral and vegetated areas.276

• Level 2. Landslides structures from the HR images I2: landslide bodies and surrounding crests and gullies.277
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• Level 3. Landslides sub-parts from the VHR images I3: source area, transport area and toe.278

For Levels 1 and 2, the principal task was mainly to distinguish the landslide bodies from the surrounding crests and279

gullies, and since the affected area is one compact object this rather corresponds to an image segmentation task.280

3.2. Software281

In order to allow the expert to test the proposed multiresolution methodology, a software tool has been designed to282

interactively browse each BPT in a “threshold-like” approach in order to determine the most satisfactory segmentation283

examples (globally, and/or by refining one or several branches).284

Due to the pre-processing of the data structures, the short computation time (less than 30 seconds of CPU) enables,285

in particular, to carry out several segmentations to finally select the best one. We have also developed (and integrated286

in this software) a TIFF library which allows to load only the subdivisions of the images that are necessary to the287

current segmentations. This library enables to reduce the memory resources required by the application.288

This tool has been implemented using the Java MUSTIC library and the Orfeo Toolbox (OTB) framework. Both289

are open source libraries and are freely available1. It is planned to fully integrate the proposed methodology into these290

libraries and to distribute this software under a free license.291

3.3. Evaluation protocol292

Two evaluation protocols have been used to assess the efficiency of the TDHA:293

1. visual analysis of the segmentation/classification results (for Level 1): a grade between 1 (bad accuracy) and 10294

(high accuracy);295

2. quantitative accuracy assessment with comparisons to ground-truth maps (for Levels 2 and 3).296

To perform quantitative accuracy assessment, the classification results have been compared to certified ground-truth297

maps by using different quality indexes. The ground-truth maps are based on field work and visual interpretation of298

(V)HR satellite imagery. Figure 8 presents the ground-truth maps used in the experiments to evaluate the accuracy of299

the classification results.300

We describe hereinafter the quality indexes considered in this study. The first index that has been used is the

average F-measure F corresponding to the mean, for each class, of the obtained F-measures. To this end, for each

thematic class, the best corresponding clusters (in terms of partitions) were extracted. Then, we have computed: the

percentage of false positives (denoted by f (p)), the percentage of false negatives (denoted by f (n)) and the percentage

of true positives (denoted by t(p)). These measures are used to estimate the precision P and the recallR of the results:

P =
t(p)

t(p) + f (p)
(12)

R =
t(p)

t(p) + f (n)
(13)

1The MUSTIC Java library, developed by some of the authors, can be downloaded at the following url: http://icube-bfo.unistra.

fr/fr/index.php/Plateformes. The OTB framework is an open source set of tools for remote sensing data exploitation. It has been

developed by the French Space Agency (CNES) to promote the use and the exploitation of the images derived from the PLEIADES systems

(de Lussy et al., 2005). It can be downloaded at the following url: http://otb.cnes.fr.
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Figure 8: Ground-truth maps associated to the three datasets. Top to bottom lines: LA VALETTE, POCHE, SUPER-SAUZE. Left column: HR

images (5 m) acquired in 2009 (© RAPIDEYE). Center column: Level 2. Landslide structures (in red). Right column: Level 3. Landslide sub-parts:

source area (in brown), transport area (in blue) and toe (in light green).

For each experiment, we have then computed the geometrical mean P of the obtained precisions and the geometrical301

meanR of the obtained recalls. Finally, we have computed the mean F-measure F which is the harmonic mean of the302

mean precision and the mean recall:303

F = 2 · P.RP +R (14)

The second index that has been computed is the Kappa index K, which is a measure of global classification accuracy304

(Congalton, 1991). As the results provided by the K-MEANS algorithm are sensitive to the initialization step of the305

algorithm, each classification run has been repeated ten times. We have then computed the variance value σ obtained306
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(a) (b)

Figure 9: Extract of the results (Level 2) obtained from the HR image of the LA VALETTE dataset. (a) Segmentation result obtained by considering

only the radiometric information. (b) Segmentation result obtained by considering both the radiometric and the spatial information. The borders of

the regions are depicted in red.

for each considered evaluation index and for each series of runs.307

The computation of these class-specific indexes requires the matching of classes of interest with clusters extracted308

by the unsupervised classification approach. To this end, we have used an automatic strategy, which consists of309

selecting the clusters that maximize the overlapping with the corresponding class.310

3.4. Experimental study311

3.4.1. General settings312

To process the three considered datasets, the TDHA has been parametrized as follows. The example-based hi-313

erarchical segmentation step and the multiresolution clustering step have been iteratively run three times (n = 3) to314

extract the objects of interest linked to the three considered scales. To perform, K = 11 tree-cut examples have been315

provided by the expert (k1 = 1, k2 = 4, k3 = 6) and C = 20 clusters have been extracted (c1 = 4, c2 = 6, c3 = 10).316

The values of these parameters have been chosen in agreement with the experts in landslide analysis to enable the317

extraction of the different land-cover classes. For instance for the MR images (c1 = 4), four clusters have been318

extracted corresponding respectively to four land-cover classes: high reflecting mineral areas, low reflecting mineral319

areas, herbaceous vegetation areas and forest areas.320

Preliminary experiments with the example-based hierarchical segmentation approach have shown that using tree-321

cut examples modeled by 10 color histograms, each one composed of 100 bins is sufficient to produce relevant results.322

One may notice that the multiresolution clustering approach did not directly find all the appropriate clusters with323

respect to the different classes of object of interest. To tackle this problem, the standard solution consists of extracting324

a higher number of clusters than the number of thematic classes contained in the expected results. Once these clusters325

have been extracted, the expert could recognize and manually associate them to natural landcover classes.326
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Figure 10: Classification results obtained from the three datasets (that have been processed independently). Top to bottom lines: LA VALETTE,

POCHE, SUPER-SAUZE. Left column: Level 1 obtained from MR images. Center column: Level 2 obtained from HR images. Right column:

Level 3 obtained from VHR images.

3.4.2. Extension of TDHA for landslide detection327

To validate the extension of TDHA to landslide detection, and in particular the interest of the use of spatial328

features, we have compared the results obtained by introducing or not these features both in the segmentation and in329

the classification steps.330

Segmentation step. In order to evaluate the interest of constraining the way to build the BPTs by using or not the spa-331

tial features, we have run the segmentation step by varying the α parameter of the merging criterion (see Equation (7))332

to different values.333
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Table 1: Evaluation results on the LA VALETTE, POCHE, SUPER-SAUZE datasets. Each dataset has been processed independently.

Levels Features Visual evaluation

1. Landslide position Multires. histograms 8/10 7/10 5/10

Evaluation with ground-truth maps

F ± σ K± σ F ± σ K± σ F ± σ K± σ

2. Landslide body Multires. histograms 0.63± 0.01 0.41± 0.02 0.57± 0.01 0.39± 0.02 0.61± 0.01 0.40± 0.02

3. Landslide sub-parts Exp1 (A1, A2, A3) 0.65± 0.01 0.38± 0.01 0.63± 0.02 0.37± 0.01 0.64± 0.02 0.38± 0.01

Exp2 (A1, A2, A3, slop) 0.67± 0.02 0.41± 0.02 0.65± 0.01 0.40± 0.02 0.67± 0.01 0.42± 0.02

Exp3 (A1, A2, A3, curv) 0.65± 0.02 0.40± 0.01 0.64± 0.02 0.38± 0.02 0.63± 0.02 0.38± 0.01

Exp4 (A1, A2, A3, slop, curv) 0.67± 0.01 0.41± 0.02 0.67± 0.01 0.48± 0.02 0.66± 0.02 0.41± 0.01

Exp5 (A1, A2, A3, slop, curv, alt) 0.69± 0.02 0.42± 0.01 0.68± 0.02 0.42± 0.01 0.67± 0.02 0.42± 0.02

LA VALETTE POCHE SUPER-SAUZE

The first segmentation experiment has been performed by only considering the radiometric region model of the334

nodes during their fusions. To this end, the weight α has been set to 1.0 in the equation of the merging criterion.335

The second segmentation experiment has been performed by considering both the radiometric and the geometrical336

region models of the nodes during their fusions. To this end, the weight α has been defined as stated in Equation (8).337

Once the images of the different datasets have been segmented by the hierarchical segmentation step, the resulting338

regions have been classified using the proposed multiresolution clustering approach. To evaluate the quality of these339

segmentation results, we focus on the results of the HR images (Level 2) for the three datasets.340

After classification, the comparisons between the classified regions resulting from the first experiment (i.e., radio-341

metric model) and the ground-truth maps have shown Kappa values and F-Measures of (K = 0.38 and F = 0.61) for342

the LA VALETTE dataset, (K = 0.36 and F = 0.54) for the POCHE dataset and (K = 0.37 and F = 0.58) for the343

SUPER-SAUZE dataset.344

After classification, the comparisons between the classified regions resulting from the second experiment (i.e.,345

both radiometric and geometric models) and the ground-truth maps have shown Kappa values and F-Measures of346

(K = 0.41 and F = 0.64) for the LA VALETTE dataset, (K = 0.40 and F = 0.58) for the POCHE dataset and347

(K = 0.41 and F = 0.62) for the SUPER-SAUZE dataset.348

To assess visually the differences between the segmentation results obtained by considering or not the spatial349

information, Figure 9 focuses on the segmentation results of the HR image of the LA VALETTE dataset. One can350

see that the segmentation results obtained with the proposed landslides extension of the TDHA are spatially more351

consistent and regular than the results obtained without considering the spatial information. These quantitative and352

visual accuracy assessments show that considering spatial features during the segmentation step of the TDHA enables353

to enhance the segmentation of landslides.354

- 230 -



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Classification step. After the segmentation step, the resulting regions have been classified using the proposed mul-355

tiresolution clustering approach. The regions extracted at Level 1 and Level 2 have been characterized using com-356

position histograms and the classification maps obtained have been visually or quantitatively evaluated. For Level 3,357

different combinations of radiometric and spatial features have been used to characterize the regions to be classified:358

• Experiment 1: (A1, A2, A3) the radiometric mean value of each spectral band;359

• Experiment 2: (A1, A2, A3, slop) the radiometric mean value of each spectral band combined with the slope360

value;361

• Experiment 3: (A1, A2, A3, curv) the radiometric mean value of each spectral band combined with the curva-362

ture value;363

• Experiment 4: (A1, A2, A3, slop, curv) the radiometric mean value of each spectral band combined with the364

slope and the curvature values;365

• Experiment 5: (A1, A2, A3, slop, curv, alt) the radiometric mean value of each spectral band combined with366

the slope, the curvature and the altitude values.367

368 As the altitude information of the regions represent absolute values extracted from the DTM, they can differ from 
369 one landslide to another and then cannot be sufficiently discriminative to separate the regions composing the different 
370 sub-units of the landslides. To deal with this issue, we have normalized the altitude values of the regions by using the 
371 global structure of the landslides extracted at Level 2. To this end, we assume that a landslide has a slope structure.

372       By noting altmax and altmin its highest and lowest altitude, respectively, we then affect to each region Ri ⊆ E
373      composing the landslide a normalized altitude value computed as:

altnorm(Ri) =
alt(Ri) − altmin
altmax − altmin

(15)

374

Results obtained on the three datasets are shown on Figure 10. For each level of analysis, the classification maps375

obtained are represented. The results of the visual and quantitative accuracy assessments are presented in Table 1.376

Figure 10 (left column) presents the results for the extraction of large natural areas (Level 1) from the MR im-377

ages. The mineral parts (orange, red clusters) and the vegetation parts (light green, dark green clusters) are correctly378

separated by the process. Furthermore, the landslides are correctly located in the image.379

Figure 10 (center column) presents the results for the extraction of the landslides structures (Level 2) from the380

HR images. The landslide body is correctly delineated in the classification result and the different kinds of vegetation381

(light green, dark green clusters) are correctly separated by the process.382

Finally, Figure 10 (right column) shows the results for the extraction of the landslide sub-parts (Level 3) from the383

VHR images.384

To compare the impact of the different spatial features used during the classification of the regions extracted at385

Level 3, Figure 11 shows the classification results obtained on the LA VALETTE using the different combinations of386

features. One can note that the more discriminative spatial features are the slope and the altitude values, that enable387

to accurately separate the landslide structure in the different sub-parts of interest. This visual study is also confirmed388

by the results of the comparisons with the ground-truth maps presented in Table 1.389
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Figure 11: Classification results at Level 3 obtained from the VHR image of the LA VALETTE dataset. Top left: ground-truth map. Top cen-

ter: experiment 1 (A1, A2, A3). Top right: experiment 2 (A1, A2, A3, slop). Bottom left: experiment 3 (A1, A2, A3, curv). Bottom center:

experiment 4 (A1, A2, A3, slop, curv). Bottom right: experiment 5 (A1, A2, A3, slop, curv, alt).

3.4.3. Domain adaptation experiment390

Experimental protocol. To evaluate the interest of the presented domain adaptation strategy, learning transfer experi-391

ments have been carried out:392

• SUPER-SAUZE → LA VALETTE: the SUPER-SAUZE area has been used as training area while the LA393

VALETTE area has been used as target area;394

• LA VALETTE → POCHE: the LA VALETTE area has been used as training area while the POCHE area has395

been used as target area;396

• POCHE→ SUPER-SAUZE: the POCHE area has been used as training area while the SUPER-SAUZE area has397

been used as target area.398

Practically, the K = 11 tree-cut examples (provided by the expert during the example-based segmentation step) and399

the C = 20 centroids of the clusters (learned during the multiresolution clustering step) which are resulting from the400

processing of the training area, have been transferred to automatically process the target dataset. However, as different401

specific thematic classes (i.e., mineral and/or vegetated clusters) are not present in the considered target datasets, the402

segmentation examples and the learned clusters corresponding to these classes have not been considered during the403

transfer step.404
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Table 2: Evaluation results of the domain adaptation experiments. For each experiment one dataset has been used as training dataset while another

one has been used as target one.

Levels Features Visual evaluation

1. Landslide position Multires. histograms 7/10 6/10 5/10

Evaluation with ground-truth maps

F ± σ K± σ F ± σ K± σ F ± σ K± σ

2. Landslide body Multires. histograms 0.61± 0.02 0.38± 0.02 0.56± 0.01 0.38± 0.02 0.59± 0.01 0.38± 0.01

3. Landslide sub-parts Exp1 (A1, A2, A3) 0.63± 0.01 0.37± 0.01 0.59± 0.02 0.36± 0.02 0.62± 0.01 0.37± 0.01

Exp2 (A1, A2, A3, slop) 0.65± 0.01 0.40± 0.02 0.61± 0.01 0.39± 0.02 0.65± 0.02 0.41± 0.02

Exp3 (A1, A2, A3, curv) 0.65± 0.02 0.40± 0.01 0.61± 0.01 0.37± 0.01 0.61± 0.01 0.39± 0.02

Exp4 (A1, A2, A3, slop, curv) 0.65± 0.01 0.39± 0.01 0.58± 0.02 0.48± 0.02 0.65± 0.02 0.40± 0.01

Exp5 (A1, A2, A3, slop, curv, alt) 0.66± 0.02 0.42± 0.01 0.63± 0.02 0.41± 0.01 0.65± 0.02 0.42± 0.02

SUPER-SAUZE → LA VALETTE LA VALETTE → POCHE POCHE → SUPER-SAUZE

The impact of the λ parameter (required for the computation of the constrained DTW similarity measure) on the405

quality of the obtained segmentation/clustering results has been tested. We recall that this parameter represents the406

tolerance of distortions on the radiometric axis between the bins of pairs of color histograms during their comparisons407

(see Equation (11)). It enables to deal with the statistical variability of the datasets during the transfer of the learned408

knowledge. To study the impact of λ, we have run the domain adaptation experiments on images at different resolu-409

tions, by varying the parameter (λ = 0, 5, 10, 15, 20, 25, . . . , 100). As the considered color histograms are composed410

each of 100 bins, the maximal value of λ is 100. Each experiment has then been assessed by using the evaluation411

measures presented previously.412

Domain adaptation results. Evaluation results obtained on the domain adaptation experiments are presented in Ta-413

ble 2. The results obtained on the three datasets are slightly lower when the segmentation examples and the clusters414

learned are transferred from another dataset than when they are learned directly. However, such results are sufficient415

to detect landslides. Furthermore, these experiments show that it is possible to maximize the potential of the expert-416

defined segmentation examples (and thus to reduce the time spent by the expert) to process several large datasets417

sensed over similar hazardous territories.418

Impact of the λ parameter. We discuss hereinafter the impact of the choice of the λ parameter value during the419

learning transfer step. The result of this impact-study is presented in Figure 12. From λ = 0 to λ = 20, the quality420

of the segmentation and clustering results increases. In particular, best results are obtained when λ = 15 for the (LA421

VALETTE→ POCHE) experiment and when λ = 20 for the (POCHE→ SUPER-SAUZE) experiment. After λ = 20422

the quality of the results remains stable.423
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(a) Results for the LA VALETTE → POCHE experiment.

λ = 20
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(b) Results for the POCHE → SUPER-SAUZE experiment.

Figure 12: Impact study of the λ parameter for the computation of the constrained Dynamic Time Warping similarity measure.

Such experiments confirm our original assumption: the automatic reproduction step of the tree-cut examples is424

directly affected by the differences between the statistical distributions of the data composing the training area and the425

target one. However, the results obtained show that the use of the constrained DTW similarity measure to compare426

the considered histograms is a relevant strategy to deal with this issue.427

Nevertheless, a too high value of λ can increase the computation times. Experiments show that λ = 15 is a good428

balance between time-cost constraints and the desired accuracy of the segmentation results for the considered images.429

430       Discussion. We show in this study that the hierarchical segmentation and classification models learned on a first 

431 dataset sensed over a particular landslide can be re-used in order to automatically process other datasets sensed over 
432 the same kind of landslide. An actual limit is that the proposed approach requires that the multiresolution images 
433 used for the mapping only cover the landslide surface (and not a larger heterogeneous region with different types of 
434 landslides). A potential solution to this issue would consist of integrating the TDHA to a landslide mapping framework 
435 initialized with a landslide detection approach (Stumpf et al., 2013). Such a detection step could be performed from a 
436 low resolution image covering a large heterogeneous area composed of various landslides. The TDHA approach could 
437 then be used for the fine mapping of a particular landslide selected by the detector. The domain adaptation strategy 
438 could then be used to automatically process other landslides of the large area.

439 3.4.4. Comparisons with related works

To highlight the relevance of the proposed top-down multiresolution methodology for landslide mapping, we440

441 compared the results obtained within this framework to those obtained with other related methodologies. In particular, 
442 we considered two specific segmentation approaches, based on a bottom-up strategy and that can be used to extract 
443 the sub-parts of the landslides directly from the VHR images (i.e., in a monoresolution fashion).

More precisely, the TDHA has been compared to the standard Mean-Shift algorithm (Comaniciu and Meer, 2002)444

445 and a region-merging algorithm (based on both image spectral and textural characteristics) (Baatz and Schape, 2000) 
446 which have shown satisfactory results in the context of remote sensing image segmentation. We have used the OTB

447 implementation of the Mean-Shift segmentation algorithm with manually selected parameter values and an implemen-
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448 tation of the region-merging segmentation algorithm provided in the Definiens eCognition software. The segmentation 
449 maps provided by these two algorithms have been classified in the same way as we did in the TDHA.

The results obtained on the three datasets (LA VALETTE, POCHE, SUPER-SAUZE) have shown that the average450

451 percentages of sub-parts of the landslides well recognized are comparable to those obtained with the TDHA. Indeed,

452       the proposed multiresolution methodology enables to extract a large part of the objects of interest (K = 0.43 and

F = 0.69) while these scores reach (K = 0.40 and F = 0.64) with the Mean-Shift algorithm and (K = 0.38 and453

F = 0.61) with the region-merging algorithm. A qualitative analysis carried by two experts in landslide mapping has454

455 also confirmed these quantitative results.

This comparative study suggests that the proposed top-down multiresolution methodology provides better results456

457 than the ones obtained with a bottom-up strategy applied on VHR images. Furthermore, the TDHA enables to extract 
458 different levels of objects of interest while most of the other related approaches enable only the extraction at a single 
459 semantic level. This multiscale property leads to a better understanding of the observed scenes and their compositional 
460 structures which is a crucial need when dealing with the mapping of geohazards. In addition, our methodology is 
461 interactive and thus intuitive to configure for the expert who needs to process rapidly huge mass of data.

4. Conclusion462

This article has introduced a novel approach for the detection of landslides from multiresolution sets of images. It463

is based on a top-down multiresolution hierarchical approach that takes advantage both of geomorphological informa-464

tion for guiding the segmentation/classification steps, and of a domain adaptation strategy to optimize and minimize465

the expert’s interaction.466

From a methodological point of view, it constitutes an original solution to address the issues linked to the analysis467

of VHR images. Based on a multiresolution paradigm, the proposed approach enables to deal with such images468

without being convoluted by the large size and the level of details of these data. Furthermore, this partitioning approach469

authorizes to adapt the scale of the segmentation process to restricted areas of the images instead of segmenting the470

whole dataset using only one segmentation parameter. To reduce the amount of time spent by the expert to supervise471

the global extraction process, it has been proposed to re-use the knowledge learned on a first dataset in order to472

automatically process other datasets. We have seen that considering the DTW criteria as similarity measure when473

comparing the knowledge extracted from a training area to the one extracted from a target area, enables to deal with474

the variability in the statistical distribution of the data, and then to enhance the classification process.475

From an applicative point of view, this article has proposed a novel strategy to address the issues linked to the476

analysis of geohazards. Experiments performed on three sets of multiresolution satellite images were carried out to477

evaluate the robustness of this methodology in the context of the extraction of natural landslides. These experiments478

have provided satisfactory and accurate classification results which may be further used for operational needs, in479

particular for the assessment of natural disasters in hazardous areas.480

This work opens up various research perspectives. As methodological perspectives, the choice of the considered481

spatial features in the segmentation and in the classification processes has to be deeply studied. For instance, textural482

and topological features could be used. We also plan to validate the proposed methodology by using other segmen-483

tation strategies. Finally, we plan to study more formally the robustness of the learning transfer step to deal with484
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different kinds of landslides and images. As technological perspectives, the coming pair of SENTINEL-2 satellites485

will provide at the same time images with different spatial and radiometric resolutions (four bands at 10 m, six bands486

at 20 m and three bands at 60 m at a high temporal frequency. Coupled with VHR images sensed by the PLEIADES487

satellites, these images will offer important properties of temporal and multiresolution complementarity adapted to488

deal with landslides extraction. In this context, we plan to study new trends to extend the proposed approach to deal489

with such properties by using dedicated multitemporal approaches (Petitjean et al., 2012b).490
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Abstract Although agreement between annotators has been
studied in the past from a statistical viewpoint, little work
has attempted to quantify the extent to which this phenomenon
affects the evaluation of computer vision object detection
algorithms. Many researchers utilise ground truth in exper-
imentation and more often than not this ground truth is de-
rived from one annotator’s opinion. How does the difference
in opinion affect an algorithm’s evaluation?

Four examples of typical computer vision problems are
chosen, and a methodology is applied to each to quantify the
inter-annotator variance and to offer insight into the mecha-
nisms behind agreement and the use of ground truth. It is
found that when detecting linear objects annotator agree-
ment, in terms of the number of pixels, is very low. The
agreement in object position, linear or otherwise, can be
partially explained through basic image properties. Auto-
matic object detectors are compared to annotator agreement
and it is found that there is a clear relationship between the
two. Several methods for calculating ground truths from a
number of annotations are applied and the resulting differ-
ences in the performance of the object detectors are quan-
tified. It is found that the rank of a detector is highly de-
pendent upon the method used to form the ground truth. It
is also found that although the STAPLE and LSML ground
truth estimation methods appear to represent the mean of
the performance measured using the individual annotations,
when there are few annotations, or there is a large vari-
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ance in them, these estimates tend to degrade. Furthermore,
one of the most commonly adopted annotation combina-
tion methods—consensus voting—accentuates more obvi-
ous features, which results in an overestimation of the al-
gorithm’s performance. Finally, it is concluded that in some
datasets it may not be possible to state with any confidence
that one algorithm outperforms another when evaluating upon
one ground truth and a method for calculating confidence
bounds is discussed.

Keywords Evaluation · Ranking · Performance · Feature
Detection · Agreement · Annotation · Ground Truth ·
Gold Standard Ground Truth · Expert Agreement · ROC
Analysis · Precision · Recall

1 Introduction

The evaluation of computer vision algorithms often requires
ground truth data. The difficulty presented by this is that a
gold standard ground truth can be costly to obtain (if possi-
ble at all). It is therefore commonly assumed that the opin-
ion of one (or more) annotator(s) approximates this gold
standard ground truth. Nevertheless, annotators rarely agree
completely when giving their opinion and this disagreement
can be characterised as bias, the tendency of an annotator to
prefer one decision over another, and variance, the natural
variation that one annotator will have to the next (or them-
selves at a later date) (Warfield et al, 2008). This poses a
problem when evaluating computer vision algorithms: how
does the difference in the annotator’s opinion affect an algo-
rithm’s evaluation?

This work is intended to highlight the effects of vari-
ability in the ground truth (GT) on the design, training and
evaluation of objects detectors. Thus it provides an empir-
ical investigation into the effects of using different ground
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truths when evaluating an object detector or segmentation
algorithm.

This investigation focusses on four case studies, all of
which embody a typical computer vision problem—object
detection. These four case studies are: the segmentation of
natural images (referred to as the Segmentation case study),
the identification of fissures in aerial imagery (referred to
as the Fissure case study), the identification of landslides in
satellite imagery (referred to as the Landslide case study),
and the identification of blood vessels in medical imagery
(referred to as the Blood Vessel case study). The true ground
truth of these data sets (which are referred to as the gold
standard ground truth) can never be deduced from the im-
agery. For example in the fissure detection problem, this in-
formation cannot be known without full knowledge of the
geophysical forces acting upon the terrain and similar limi-
tations can be found in each of the datasets. This limitation is
typical in many computer vision applications: medical imag-
ing, remote sensing, and natural scene analysis, to name
but a few. Furthermore, there exist many objects in these
datasets that can cause false-positive and false-negative er-
rors, making them ideal to study annotator and detector agree-
ments.

Many statistical studies investigate the modelling of agree-
ment and disagreement, particularly in ranking and classi-
fication problems, in which several objects are to be cate-
gorised. Nevertheless, the literature is lacking studies into
annotator agreement in image segmentation and object de-
tection. Those that do exist focus on developing methods for
estimating the gold standard ground truth from a number of
annotations (Biancardi and Reeves, 2009; Burl et al, 1994;
Kauppi et al, 2009; Langerak et al, 2010; Li et al, 2011;
Smyth et al, 1994; Warfield et al, 2004, 2008). These meth-
ods are rarely employed in real-world algorithm evaluation,
where often experimentation is limited to one annotation,
which is taken to be the gold standard. Some public datasets
do, however, offer segmentations obtained from different
annotators: The Berkeley Segmentation Dataset (Arbelaéz
et al, 2011), the Digital Retinal Images for Vessel Extraction
Database (DRIVE), the Lung Image Database Consortium
image collection (Armato et al, 2011), and the STructured
Analysis of the Retina (STARE) project database (Hoover
et al, 2000), for example.

Through performance evaluation ground truth data of-
ten influences an algorithm’s design, the choice of an algo-
rithm’s parameter values, and also influences the structure of
the training data itself. It is therefore important to quantify
the effect that different ground truths have on the algorithm’s
reported performance. Relying on the opinion of one anno-
tator allows for the learning of that annotator’s bias in the
problem, but it does not necessarily result in a model that is
effective at locating the true detections. This problem can,
of course, be circumvented when the images are captured in

tightly controlled conditions or are synthetically generated
from a model (Lampert and O’Keefe, 2011), in these cases
a gold standard ground truth is relatively trivial to calculate.
In remote sensing and medical imaging problems, and those
concerning natural images, however, this is not the case.

The following assumptions regarding the problem’s char-
acteristics are implicitly made within this study. In computer
vision problems, true positive locations tend to be spatially
correlated (objects tend not to be lone pixels but a number
of pixels within close proximity to each other) and are also
correlated with some image properties (those that tend to
be used as features for classification algorithms). Further-
more, it is assumed that the annotators are not malicious in
producing their annotation, are not producing annotations at
random, and are not simply following low-level cues in the
image but are instead able to draw upon some higher-level
knowledge that allows them to distinguish between objects
that belong to the negative class but share the same low-level
image properties as those objects that constitute the positive
class.

Therefore the objectives of this study are:
– to highlight the fact that the evaluation of a detector may

be biased when only one annotation is used;
– to provide a general comparison between algorithms de-

signed to infer the gold standard ground truth;
– and to investigate the effect that different ground truths

have upon a detector’s reported performance.
This paper is organised as follows. The following section

presents a review of the most relevant work found in the lit-
erature. Section 3 describes the experimental methodology
that will be followed in each of the case studies included in
this paper. This methodology is followed and applied to sev-
eral different datasets in Sections 4.2, 4.3, 4.1, and 4.4, and a
discussion of these results is presented in Section 5. Finally
the conclusions of the study are presented in Section 6.

2 Related Work

In a classic study Smyth et al (1994) analyse the uncer-
tainty of an annotator’s judgement in marking volcanoes in
synthetic aperture radar images taken from the Magellan
spacecraft as it orbited Venus. The authors assume a stochas-
tic labelling process, to account for intra-annotator variabil-
ity, and outline the probabilistic free-response ROC analysis
that integrates the uncertainty of an annotator’s judgement
directly into the performance measure.

As previously mentioned, there exists a number of meth-
ods for estimating the gold-standard ground truth from two
or more annotations. There also exists a body of work from
the medical domain in which practitioners manually seg-
ment anatomical scans, which are subsequently warped to
match novel scans in order to estimate their segmentations
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(termed multi-atlas segmentation). Although this isn’t strictly
estimating gold-standard ground truth, the methods for com-
bining multiple annotations are relevant and therefore they
are included in the following review (those citations orig-
inating from this domain have squared brackets). Kauppi
et al (2009) take GTs as the intersection (consensus), fixed
size neighbourhoods of the points marked by each annotator,
and a combination of the two. The authors conclude that the
intersection method is preferential as the highest detector
performance is achieved using it. Numerous weighted ex-
tensions to the voting framework have been proposed based
upon global [Sabuncu et al, 2010], local [Artaechevarria
et al, 2009; Isgum et al, 2009; Sabuncu et al, 2010], semi-
local [Sabuncu et al, 2010; Wang et al, 2013], and non-local
[Coupé et al, 2011] information.

Probably the most popular gold-standard ground truth
estimation method originating form the medical domain is
proposed by Warfield et al (2004), named simultaneous truth
and performance level estimation (STAPLE) in which the
annotator performances (sensitivity and specificity) and the
gold-standard ground truth are simultaneously estimated within
a maximum-likelihood setting; the optimisation being solved
using expectation-maximisation (a variant for handling con-
tinuous labels has been proposed by Warfield et al (2008)
and Xing et al (2011)). The same authors also propose an
approach in which the bias and variance of each annotator
is estimated instead of the performance measure (Warfield
et al, 2008) and another variant that account for instabilities
in the annotator performance measures (Commowick and
Warfield, 2010). Much subsequent work has concentrated on
the STAPLE algorithm: removing its assumption that anno-
tator performances are constant throughout the data [Asman
and Landman, 2011a] (Asman and Landman, 2012a; Com-
mowick et al, 2012), and COLLATE (Asman and Landman,
2011b), which accounts for spatial variability in task diffi-
culty. Landman et al (2010) point out that in research and
clinical environments it is not often possible to obtain mul-
tiple annotations made over the whole dataset. Extensions
to handle multiple partial but overlapping annotations have
therefore been proposed (Commowick and Warfield, 2010;
Landman et al, 2010, 2013).

Kamarainen et al (2012) propose a simpler alternative to
STAPLE by maximising the mutual agreement of annotator
ratings. This approach avoids the use of priors, and does not
introduce areas that did not appear in the original annota-
tions. Langerak et al (2010) argue, however, that STAPLE
fails when annotator uncertainty varies considerably due to
the fact that the STAPLE algorithm combines all of the an-
notators’ labellings. Instead they propose the selective and
iterative method for performance level estimation (SIMPLE)
algorithm in which only labels that are deemed reliable are
taken into account. Li et al (2011) propose a probabilistic ap-
proach that uses level sets in which the likelihood function

is inspired by the STAPLE algorithm (LSML). To overcome
the susceptibility of the STAPLE algorithm to strongly di-
verging annotations, however, they accept that the contribu-
tion of an annotator’s judgement should be dependent upon
their performance but differently to STAPLE they measure
the amount of detail in an annotator’s marking and add a
constraint to the energy function that imposes a prior model
on the shape of the outcome, thus forming the LSMLP algo-
rithm. Biancardi and Reeves (2009) state that the STAPLE
algorithm (even with the Markov random field extension)
and simple voting strategies assume that the pixels are spa-
tially independent. A novel voting procedure is introduced
to overcome this. It is preceded by a distance transforma-
tion that attributes positive values to the inside boundary of
a GT segmentation, which increase towards its centre, and
decreases negatively outside the segment border; and thus
the truth estimate from self distances (TESD) algorithm is
introduced (Biancardi and Reeves, 2009).

A new direction that has recently gained interest is to
combine the information derived from the manual annota-
tions with that derived from the image to imply the loca-
tion of objects-of-interest. Yang and Choe (2011) follow this
path and propose a method that incorporates the warping er-
ror to preserve topological disagreements between the es-
timated gold-standard ground truth and the annotations. A
number of extensions to the STAPLE algorithm have also
been proposed [Asman and Landman, 2012b, 2013; Liu
et al, 2013] which incorporate the image’s intensity values,
as well as the performance of multiple experts, to transfer
the labelling of one image onto that of another. Moreover,
Asman and Landman [2012c] propose to combine a locally
weighted voting strategy with information derived form the
image’s intensity.

The Berkeley segmentation dataset contains five-hundred
images, each having five GTs. The authors include the level
of annotator agreement within their evaluations (Arbelaéz
et al, 2011), which provides a valuable reference when inter-
preting the results. Using the earlier Berkeley 300 database,
(Martin et al, 2001) present a statistical analysis of the vari-
ation observed within the annotations (Martin et al, 2001).
They notice that independent annotators tend to be consis-
tent, with low inter-annotator error (the same pixel tends to
be included in the same region by different annotators). Al-
though it was also observed that the number of segments in
the same image identified by different annotators can vary
by a factor of ten.

Finally, a novel branch of supervised machine learning
that implicitly exploits multiple annotations has come into
focus. Either using many annotators or by using increasingly
popular crowd sourcing systems such as Amazon’s Mechan-
ical Turk, which presents its own problems (Raykar et al,
2009).
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3 Methodology

The methodological evaluation will be centred around four
aspects: Annotator Agreement; Annotator Analysis; Anno-
tator Agreement and Detector Performance; and Ground Truths
and Reported Detector Performance. Scripts to recreate the
results presented henceforth are available on-line1.

3.1 Data

The data used in each of the case studies can be modelled as
an image, I : {0, 1, . . . , X � 1} ⇥ {0, 1, . . . , Y � 1} 7! R
where X is the image’s width and Y its height.

For each study, N annotators have provided manual mark-
ings containing the locations of the objects that are of im-
portance to the study. The case studies are binary detection
problems therefore each annotator marks each image pixel
to indicate the presence of the object under study (there-
fore each annotation has the value one where the annotator
perceives the object to exist and zero otherwise). The re-
sult of this is N binary maps describing the location of the
objects according to each annotator. As such, each annota-
tor’s output is modelled as a function M

n

: {0, 1, . . . , X �
1} ⇥ {0, 1, . . . , Y � 1} 7! {0, 1}, where 0 and 1 repre-
sent the absence and presence of the object respectively and
n = 1, . . . , N .

3.2 Annotator Agreement

The first stage of analysis is intended to test the level of
agreement between the annotators in each case study, and
to expose the image properties that promote this agreement.

Smyth (1996) presents a method for calculating the lower
bound on error that can occur in a set of annotations relative
to the (unknown) gold-standard ground-truth. This bound is
defined to be

ē � 1

XYN

Y�1X

y=0

X�1X

x=0

N�max {A(x, y), N �A(x, y)} (1)

where A(x, y) is the number of annotators that labelled pixel
(x, y) as containing the object-of-interest, as defined in Equa-
tion (2). The minimum of Equation (1) is reached when all
annotators agree and the maximum (which can only ever
reach 0.5) when there is maximum disagreement—when the
decision is evenly split—it is therefore a measure closely re-
lated to the entropy of the annotators’ agreement. The min-
imum acceptable value quoted by the author is 10% and as
such this measure provides a method to validate the quality
of the experimental data used within each case study.

1
https://sites.google.com/site/tomalampert

Also to this end, the per-pixel annotator agreement is
calculated. The agreement is simply the number of annota-
tors that have marked each pixel, such that

A(x, y) =

NX

n=1

M

n

(x, y), (2)

and the agreement as a function of the number of annotators,
1  n  N , is calculated such that

ˆ

A(n) =

1

|C|

X�1X

x=0

Y�1X

y=0

�

B

(x, y) (3)

where B = {(x, y) | A(x, y) � n}, �
B

is the indicator
function, and C = {(x, y) | A(x, y) > 0}.

These functions allow for the testing of significant cor-
relations between annotator agreement and different proper-
ties of the image—a means to uncover at least part of the rea-
son behind the variance of agreement. Each of the datasets
present different features but where applicable the follow-
ing features will be tested: intensity, contrast, and each of
the colour channels. The Pearson’s r correlation coefficient
will be used and since the sample size for the analysis is
extremely large it will be tested for significance to 99% con-
fidence.

In the case that the image is colour, intensity is calcu-
lated such that I(x, y) = 0.2989·R(x, y)+0.5870·G(x, y)+

0.1140 ·B(x, y). Image contrast in a colour image is calcu-
lated using the Michelson contrast measure within a 3 ⇥ 3

local neighbourhood such that

c(x, y) =

max(i,j)2W

xy

L(i, j)�min(i,j)2W

xy

L(i, j)

max(i,j)2W

xy

L(i, j) + min(i,j)2W

xy

L(i, j)

(4)

where L(i, j) is the image’s tone component, obtained by
converting the colour image into the CIELAB colour space,
and W

xy

is the set of co-ordinates that define the neighbour-
hood of L(x, y). Image contrast in a grey scale image is cal-
culated as above but L(x, y) = I(x, y). As contrast is taken
within a local neighbourhood, to make a fair comparison the
maximum agreement is taken within the same neighbour-
hood when their correlation is calculated.

3.3 Annotator Analysis

A number of the gold-standard ground-truth estimation meth-
ods evaluated in this research weight annotations based upon
the ’performance’ of each annotator. This is based upon the
assumption that some annotators may produce more accu-
rate annotations when compared to others, and that the more
reliable annotators can be identified through inter-annotator
comparisons.
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To examine the inter-annotator variability, cluster analy-
sis using the pairwise F1-score between the annotator mark-
ings is conducted. The F1-score (He and Garcia, 2009), cal-
culated between participants i and j, is defined as

F

ij

= 2

p

ij

r

ij

p

ij

+ r

ij

, (5)

and this quantity is therefore the harmonic mean of precision
(p

ij

) and recall (r
ij

). Note that the F1-score is robust in the
presence of class-imbalance (in most of the case studies, the
number of non-object pixels greatly outnumbers those indi-
cating the presence of an object) since it does not take into
account true-negative classifications (He and Garcia, 2009).
Hierarchical clustering is performed using Ward’s minimum
variance implemented with the Lance-Williams dissimilar-
ity update formula by linking pairs of annotations with the
highest pair-wise F1-score and repeating this until all anno-
tations are included.

As a principled way of identifying outliers within the
group of annotations, the mean F1-score difference (1�F

ij

)
between each annotator and all other annotators is calcu-
lated. Those that have a mean difference greater than the
average plus one standard deviation are labelled as outliers.

Following the example of Saur et al (2010), and to high-
light any individual differences between the annotators, each
is compared to the group’s consensus, calculated such that

(x, y) =

⇢
1 if 1

N

A(x, y) � ⌧ ,

0 otherwise, (6)

where ⌧ = 0.5, by calculating the Sensitivity, Specificity,
Positive Predictive Value (PPV), Negative Predictive Value
(NPV) and Cohen’s kappa coefficient. This will allow for
specific tendencies of the outliers to be identified.

3.4 Annotator Agreement and Detector Performance

After analysing the properties of agreement and the annota-
tors, it follows to investigate the relationship between anno-
tator agreement and detector performance. To this end four
detectors are selected from the case study domains and ap-
plied to the object detection problem at hand (every effort
was made to select the best performing detectors within each
domain). Each of these detectors is evaluated using ground
truths calculated at increasing levels of agreement according
to Eq. (6), ⌧ = 1/N, 1/(N � 1), . . . , 1.

It is common to measure detector performance through
ROC curve analysis, however, recent literature points out
that this may overestimate performance when applied to highly
skewed datasets and therefore precision-recall (P-R) curves
are preferable (Davis and Goadrich, 2006; He and Garcia,
2009). Nevertheless, precision is sensitive to the ratio of
positive to negative instances in the dataset, � = N

p

/N

n

.
To overcome this Flach (2003) proposes to analytically vary

the class skew in the precision measure and Lampert and
Gançarski (submitted) to integrate this added dimension, thus
forming a ¯P-R, curve. This allows ¯P-R curves derived from
GTs containing different class skews to be compared, i.e.
GTs derived from different levels of agreement, and for a
fair representation of detector performance in problems in
which the class skew is a priori unknown. This measure is
defined such that

¯

P (✓) =

1

⇡

0
2 � ⇡

0
1

Z
⇡

0
2

⇡

0
1

⇡

0TP(✓)
⇡

0TP(✓) + (1� ⇡

0
)�FP(✓)

d⇡

0 (7)

where ✓ is the threshold on the detector’s output, TP(✓) and
FP(✓) are the number of true positive and false positive de-
tections, and � = N

p

/N

n

is the ratio of positive to negative
instances in the dataset. Interpolation between ¯P-R points
(Lampert and Gançarski, submitted) allows accurate area
under curve (AUC) measures to be taken.

To assess the relationship between annotator agreement
and detector output two correlation coefficients will be mea-
sured (to 99% confidence). The first being the correlation
calculated within locations identified as objects by any an-
notator (CCO) and the second in the whole image (CCI).
The first of these highlights the relationship between the de-
tector output and annotator agreement in positive locations
of the image. The second includes any false positive detec-
tions that the detector may make, and therefore the absolute
value of these correlations in addition to the difference be-
tween them indicate how reliable the detector is.

3.5 Ground Truths and Reported Detector Performance

The final question that this research intends to investigate is:
by how much is the reported performance of an algorithm
affected by using different ground truths?

To this end several GTs are calculated according to Eq.
(6): the combined annotations where ⌧ = 1/N , i.e. objects
of interest that any annotator marked (Any-GT); the con-
sensus of half of the annotators, or majority vote, in which
⌧ = 0.5 (0.5-GT); and the consensus of three-quarters of
the annotators, where ⌧ = 0.75 (0.75-GT). Also included
are gold standard GT estimations calculated using STAPLE
(Warfield et al, 2004) (without assigning consensus votes
(Commowick et al, 2012)), SIMPLE (Langerak et al, 2010),
and LSML (Li et al, 2011) (using the 50% agreement as an
initial estimate and 1000 iterations). Furthermore, an addi-
tional GT is determined by excluding those outliers iden-
tified in Section 3.3 and then combining the remaining ac-
cording to Eq. 6 using ⌧ = 0.5 (Excl-0.5-GT).

Two forms of evaluation are investigated. The first being
the relative detector ranking, ranked according to the area
under the ¯P-R curve. And the second being the variability
observed in the absolute value of the the ¯P-R curves.
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Fig. 1 An example of the natural images used within this case study.

4 Experimental Results and Analyses

In this section is presented the results of applying the method-
ology to each of the case studies included in this investiga-
tion.

4.1 Segmentation Case Study

We start the analysis using the standard dataset for evaluat-
ing segmentation algorithms.

4.1.1 Data

The Berkeley 300 (colour) dataset is used herein, however,
as numerous annotators were used to annotate the images
the whole dataset cannot be used. Instead, the largest sub-
set of images for which the same annotators performed the
segmentation was found (the user IDs are not available for
the Berkeley 500 dataset, which is why the older Berke-
ley 300 dataset was used). This subset was determined to
be the images: 65033.jpg, 157055.jpg (presented in Figure
1), 385039.jpg, 368016.jpg, and 105019.jpg. For which the
same five annotators (user IDs 1123, 1105, 1109, 1115 and
1121) performed the manual segmentations. Each image was
concatenated to form one large image, in which X = 1595

and Y = 479, and the same process was used to form one
GT for each of the annotators.

4.1.2 Annotator Agreement

The lower-bound on error according to Smyth’s calculation
is low at ē � 2.6611%. A pictorial example of the agree-
ment upon segmentation boundaries is presented in Figure
2. In which it is obvious that there is a high level of agree-
ment on segmentation boundaries that correspond to impor-
tant aspects of the image (the people for example), however,
there are other large segmentation boundaries that are only

1
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4

5

Fig. 2 Annotator agreement of segmentation boundary locations.
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Fig. 3 Percentage of agreement (in pixels) as a function of the number
of annotators.

Table 1 Pearson’s r correlation coefficients between image features
and agreement.

Feature r p
Intensity 0.0017 0.1403
Contrast 0.3245 0.0000
Red �0.0017 0.1293
Green 0.0026 0.0249
Blue 0.0326 0.0000

marked by one annotator (those on the trellis forming the
right half of the image’s background, for example). The level
of agreement as a function of the number of experts is pre-
sented in Figure 3. It should be noted that annotator agree-
ment attributed to the Berkeley dataset falls in an exponen-
tial manner and the level of agreement between all of the
annotators is very low.

In the segmentation problem the objects to be detected
(the segments) do not fit into a definable feature set, they
are instead defined as the boundary between two objects,
and the features of these objects are also not strictly defined.
This is reflected in the statistical study presented in Table
1 in which it is found that agreement is correlated with the
image’s contrast and not intensity nor colour profile.

4.1.3 Annotator Analysis

The relatively low levels of agreement are also reflected in
the pairwise differences in F1-scores upon which the den-
drogram in Figure 4 is based. The differences are relatively
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Fig. 4 Dendrogram describing the F1-score difference relationships
between each annotator’s marking. The dashed box depicts the inliers
(see Section 4.1.3).

Table 2 Sensitivity (Sens.), specificity (Spec.), positive predictive
value (PPV), negative predictive value (NPV) and Cohen’s kappa co-
efficient of the participants when compared to the consensus (rounded
to four decimal places).

Sens. Spec. PPV NPV kappa
A1 0.7694 0.9845 0.5634 0.9939 0.6399
A2 0.6373 0.9886 0.5921 0.9905 0.6034
A3 0.7853 0.9785 0.4882 0.9943 0.5892
A4 0.7309 0.9822 0.5166 0.9929 0.5933
A5 0.7275 0.9649 0.3509 0.9927 0.4548

high and range from 0.545 to 0.68. One outlier is identified,
A5 (the mean F1-score difference was found to be 0.6016,
its standard deviation 0.0280 and A5 resulted in a difference
of 0.6454), who also results in the lowest specificity, posi-
tive predictive value, and kappa coefficient as demonstrated
in Table 2. The variance in the annotations are again under-
lined by the lowest specificities observed in all of the case
studies.

4.1.4 Agreement and Detector Performance

The top four performing segmentation algorithms that are
listed on the Berkeley dataset web page2 were selected to
form part of this case study. These are: REN (Ren and Bo,
2012), gPb-ucm (UCM) (Arbelaéz et al, 2011), Global Prob-
ability of Boundary (GP) (Maire et al, 2008), and XREN
(Ren, 2008). The integration limits of the ¯P-R curves were
⇡

0
1 = 0.0000 and ⇡

0
2 = 0.0428, which were found to be

⇡

0
1 = µ � 3� and ⇡

0
2 = µ + 3� where µ is the mean of the

skew found within the Berkeley dataset and � its standard
deviation (Lampert and Gançarski, submitted). This case study
deviates slightly from the prescribed methodology as it is
common when evaluating segmentation algorithms to loosen
the definition of true-positive detections to account for devi-
ations in the location of detected boundaries, as discussed

2
http://www.eecs.berkeley.edu/Research/

Projects/CS/vision/grouping/segbench/bench/

html/algorithms.html

by Martin et al (2004). True-positive detections are accumu-
lated if a detection is within a certain distance of a ground
truth boundary (or multiple ground truths). In these experi-
ments the allowed distance is taken to be the default found
with the Berkeley benchmark code—0.0075 times the length
of the image’s diagonal (this matching is performed in the
original individual images, not the composite image, to avoid
boundaries being matched between separate images). The
images that are part of the training set (images 105019.jpg
and 368016.jpg) are removed from this point forward.

One further modification to the methodology was made
to better suite the definition of segmentation. In the follow-
ing case studies the act of taking low agreement GTs (� 1,
for example) resulted in the delineation of objects that have
been marked by the specified number of annotators, how-
ever, in this problem the result of this threshold on agree-
ment is a GT with segmentation boundaries that have mul-
tiple pixel widths (as annotators may agree upon the bound-
ary’s existence but not on its exact location). This causes
an unfair penalty on the algorithm because a segmentation
algorithm is designed to detect single pixel segmentation
boundaries. Therefore, each GT is thinned prior to its use
to reduce any boundaries that are more than one pixel wide
to widths of a single pixel, and in doing so any individual,
low agreement, markings that the annotators may have made
are preserved.

Although the evaluation methodology has been modi-
fied, Figure 5 demonstrates that the same trends as will be
found in the subsequent case studies are visible. The GTs
used in these experiments are calculated according to Eq. (6)
by setting ⌧ = 1/N, 1/(N � 1), . . . , 1, and thus each curve
represents the performance of the detector in identifying ob-
jects with a certain minimum level of annotator agreement.
It is observed that in the higher recall ranges, the perfor-
mance of all the detectors increases in line with agreement
in a predictable manner. As will also be seen in the landslide
case study, however, the lower recall range produces a dif-
ferent picture and this phenomenon will be explored further
in the aforementioned case study. The effects of the large
variability in annotator opinion start to be noticed, the corre-
lations, although significant, are much lower than in the fol-
lowing case studies, and the ¯P-R curves are clearly less pre-
dictable. Another factor that has a detrimental impact upon
the correlation coefficients presented in Table 3 is that the
detectors in this study tend to result in responses that deviate
from the true location of the segment (as defined by the an-
notations). This, coupled with the fact that the detectors out-
put detection boundaries that have a width of one pixel and
not a smooth decrease in response with distance from the
boundary, lowers the overall correlation values (and this is
the reason for which the segmentation community has pro-
posed the modification to the evaluation framework that has
been followed in this case study).
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Fig. 5 P̄recision-recall curves describing the detectors’ performances using different levels of agreement as the ground truth.

Table 3 Pearson’s r correlation coefficients between detector outputs
and the annotator agreement; CCO is calculated within the pixels
marked as a segment by the annotators, and CCI the whole image. The
p-values are all 0.0000 (to four decimal places).

Detector CCO CCI CCI�CCO
UCM 0.2686 0.3663 +0.0977
GP 0.1603 0.2746 +0.1143
XREN 0.2633 0.3206 +0.0573
REN 0.2089 0.3119 +0.1030

4.1.5 Ground Truths and Reported Detector Performance

It appears from Figure 5 that the REN detector is the best
performing detector in these images (which is in accordance
with the overall Berkeley ranking). This is corroborated us-
ing the rankings of the detectors when evaluated using dif-
ferent ground truths, see Table 4, the REN detector is con-
sistently at the top. Overall, however, three rankings are ob-
served depending upon which GT is used for evaluation (or
which evaluation strategy is used). The first being produced
by the Berkeley framework (BF) (Martin et al, 2004) alone,
which includes all five annotations and relaxes the TP con-
dition by matching a detection to any positive marking that
is within the allowed distance in any of the annotations. The
second ranking is produced by six of the GTs and the third
by seven, although the best performing detector remains the
same in all three. To illustrate these ranks, the ¯P-R curves for
all four detectors evaluated using the BF, STAPLE-GT, and
0.75-GT are plotted in Figure 6, there are therefore represen-
tative ground truths from each ranking presented in Table 4.

Interestingly, the worst performing method, UCM, pro-
duces the highest correlations in Table 3 and the best per-
forming produces the third highest correlations, however, as
has been discussed in the previous subsection,this could be
due to a peculiarity of the data (low annotator agreement
on segment locations). Due to the discrepancy between the
segmentation evaluation framework (with tolerance on the
exact location of the boundary) and the computation of the
correlation coefficients (at the exact pixel location) a con-
current interpretation must be regarded with care. As it will

Table 4 Detector rankings evaluated using each ground truth (mea-
sured by the area under the P̄-R curve). The GTs that result in these
are: Ranking #1 — Berkeley evaluation framework (A1–A5); Ranking
#2 — A4, A5, Any-GT, LSML-GT, STAPLE-GT; Ranking #3 — A1,
A2, A3, 0.5-GT, 0.75-GT, Excl-0.5-GT, SIMPLE-GT.

Rank 1 Rank 2 Rank 3
REN REN REN
GP GP XREN

UCM XREN GP
XREN UCM UCM

be shown in the following case studies, the absolute values
and differences of CCO and CCI can be related to the per-
formance of a detector in the ¯P-R framework but the rela-
tionship is not always linear.

To finalise the current case-study the evaluation of the
REN algorithm against a number of differently estimated
GTs is presented. Figure 7 demonstrates that there is a large
variation in the level of performance, which is to be expected
as there is a large variation between each annotation (see
Section 4.1.3). At the extreme of this variance is the eval-
uation methodology commonly used to evaluate segmenta-
tion algorithms using the Berkeley dataset. Because of the
generous leniency that is given when calculating true posi-
tive detections over multiple annotations, the performance is
vastly greater than when testing against any of the individual
annotations alone.

The 0.75-GT, 0.5-GT and SIMPLE-GT overestimate per-
formance (particularly in the higher Recall ranges) and Any-
GT underestimates performance when compared to the re-
maining GTs. The STAPLE-GT and LSML-GT are also within
the lower performance estimates in the upper recall range,
but they seem to model the mean of the individual annota-
tions in the lower recall ranges. It is assumed that this is a
consequence of the large variance observed in the annota-
tions. It was found that the Excl-0.5-GT and SIMPLE-GT
ground truths were very similar as they are both derived the
same principle (removing the outliers and then voting), and
therefore the detector’s performance relative to both are also
similar.
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Fig. 7 P̄recision-recall curves of the REN detector assuming differing
ground truths.

4.2 Fissure Case Study

The following case study is concerned with the detection of
fissures in remotely sensed images.

4.2.1 Data

The data is obtained from the Super-Sauze landslide in the
Barcelonnette basin, southern French Alps, using an unmanned
aerial vehicle to obtain high resolution images. Further in-
formation regarding this dataset is present in the literature
(Niethammer et al, 2011). An area of interest, where X =

5 m

Fig. 8 The area of interest used within this case study.

1425 and Y = 906, was extracted from the data and is pre-
sented in Figure 8. Very little colour information is present
in this type of image and it was therefore converted to grey
scale using the standard formula: I(x, y) = 0.2989·R(x, y)+

0.5870 ·G(x, y) + 0.1140 ·B(x, y).
Thirteen annotators (N = 13) were enlisted to manu-

ally mark the pixels in the (RGB) image that formed part
of a fissure. Within this section, each of these participants
will be referred to as A1–A13. The level of expertise ranged
from expert geomorphologists familiar with the study site
(2), non-experts familiar with fissure formation and/or de-
tection (5), and contributors without any a priori knowledge
(6). Prior to beginning the marking experiment, all the an-
notators were given a twenty minute presentation to intro-
duce the basic physics of crack formation and the character-
istics of the targeted fissures. The annotators then indepen-
dently marked the pixels which they believed to form part
of a fissure, taking as much time as they required to com-
plete the task (this ranged from 2–3 h). The annotators were
instructed to perform the marking on a level in which they
could see individual pixels clearly, but were encouraged to
zoom out to gain information related to the context of the
area being marked.

4.2.2 Annotator Agreement

Smyth’s lower error bound estimate is found to be ē � 1.26%,
i.e. the average error rate amongst the thirteen annotators.
This value is well within the 10% limit that is recommended
(Smyth, 1996). This value is also considerably lower than
the error bound of 20% stated by Smyth in the study of
agreement within labelling volcanoes in satellite images of
Venus, in which the signal-to-noise ratio of the object is
much lower than in this study.

The annotator agreement attributed to this case study is
presented in Figure 9 and Figure 10. The first thing to notice
is how little agreement exists between all annotators (a sim-
ilar finding to that of the Segmentation case study)—out of
all of the pixels that were marked as fissures only 0.6979%
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Fig. 10 Percentage of agreement (in pixels) as a function of the num-
ber of annotators.

Table 5 Pearson’s r correlation coefficients between image features
and agreement. The p-values are both 0.0000 (to four decimal places).

Feature r
Intensity �0.2245
Contrast 0.4027

are agreed upon by all thirteen annotators. It is also worth
noting that the level of agreement decreases exponentially as
a function of the number of annotators. This is also common
to the Segmentation dataset in which the objects of interest
also form linear structures.

The correlation coefficients between agreement and a
number of the image’s features are presented in Table 5.
There is a large and significant correlation between contrast
and agreement, indicating that fissures on a lighter back-
ground are easier to see and are therefore marked by a greater
number of annotators. A negative correlation is found be-
tween annotator agreement and image intensity as fissures
are dark features within the image. These correlations both
indicate that relative and absolute intensity values are im-
portant features in this problem, perhaps because darker fis-
sures are easier to see and so attract more agreement. This
is in contrast to the previous case study, in which the object
features are not strictly defined and therefore only contrast
resulted in a considerable correlation.
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Fig. 11 Dendrogram describing the F1-score difference relationships
between each annotation. Key: ne — non-expert; ie — expert with pre-
vious experience of fissure mapping in imagery; and fe — expert with
experience in the recognition of such fissures in the field. The dashed
box depicts the inliers (see Section 4.2.3).

4.2.3 Annotator Analysis

A dendrogram describing the relationship between the an-
notators’ pairwise F1-scores is presented in Figure 11. It
would be expected that more than one cluster emerges from
the data, splitting the different experience levels; however,
this isn’t the case and annotators of varying levels of exper-
tise are quite homogeneously mixed. This indicates that no
group is overly biased in favour of one particular decision.

Annotators A1, A4, and A11 are identified as falling out-
side of one standard deviation of the mean F1-score differ-
ence to all other annotators. These same annotators achieve
considerably lower sensitivity when compared to the con-
sensus. They also achieve lower kappa coefficients, and PPVs—
indicating that, when compared to the consensus, these an-
notators fail to identify a majority of the fissures and/or pro-
duce more ‘false negative’ and ’false positive’ detections.
The mean F1-score difference (1�F

ij

) is found to be 0.5765
and the standard deviation 0.0459, these annotators fall out-
side this threshold having a mean difference of 0.6716, 0.6321,
and 0.6287 (corresponding to A1, A4, and A11 respectively).

It is illustrated by these results that all of the annotators
are reliable in detecting negative instances of fissures, indi-
cated by high specificity and negative predictive values, due
to the highly skewed nature of the problem in which nega-
tive instances constitute a high proportion of the data. High-
lighting the difficulty and uncertainty in detecting positive
instances however are low sensitivity and PPVs.
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Table 6 Sensitivity (Sens.), specificity (Spec.), positive predictive
value (PPV), negative predictive value (NPV) and Cohen’s kappa co-
efficient of the participants when compared to the consensus (rounded
to four decimal places).

Sens. Spec. PPV NPV kappa
A1 0.5595 0.9847 0.2893 0.9950 0.3722
A2 0.7518 0.9911 0.4860 0.9972 0.5848
A3 0.7526 0.9945 0.6018 0.9972 0.6647
A4 0.5705 0.9906 0.4032 0.9952 0.4656
A5 0.6429 0.9938 0.5362 0.9960 0.5797
A6 0.6244 0.9926 0.4834 0.9958 0.5392
A7 0.9380 0.9866 0.4377 0.9993 0.5907
A8 0.7897 0.9906 0.4828 0.9976 0.5937
A9 0.6894 0.9926 0.5106 0.9965 0.5814
A10 0.6659 0.9925 0.4969 0.9963 0.5636
A11 0.5799 0.9899 0.3905 0.9953 0.4596
A12 0.7461 0.9937 0.5672 0.9972 0.6399
A13 0.8738 0.9836 0.3719 0.9986 0.5143

4.2.4 Annotator Agreement and Detector Performance

During this case study a number of detectors were selected
and their ability to detect fissures in the area of interest was
evaluated by calculating ¯P-R curves. The current state-of-
the-art linear feature detectors were selected from the litera-
ture, namely:

– CrackTree (Zou et al, 2012);
– EDLines (Akinlar and Topal, 2011);
– a linear classifier trained using 2D Gabor wavelet (✏ =

4, a = 2, 3, 4, 5, and k0 = 3) and inverted grey-scale
features (2D GWLC) (Soares et al, 2006);

– LSD (von Gioi et al, 2010);
– Percolation (Yamaguchi and Hashimoto, 2010);
– grey scale thresholding;
– Gaussian filter matching (Stumpf et al, 2012), � = 1

(Gauss);
– Top-Hat transform (4 pixel radius circular structuring el-

ement);
– and the Centre-Surround (C-S) transform (using a 3⇥ 3

pixel neighbourhood) (Vonikakis et al, 2008).

Where public source code was not available the respective
authors kindly agreed to run the algorithm on the data and
provide a number of outputs, calculated using a range of pa-
rameter values. Using publicly available code ensured that
the implementations were true to the author’s intentions and
also allows for reproducibility of these results. As the 2D
GWLC method is a supervised learning algorithm a random
subset of the image, 569 ⇥ 362 pixels in size, was used as
a training set (16% of the image), the GT was defined ac-
cording to Eq. (6) using ⌧ = 1/N , and the training area was
excluded from the test set. It should therefore be noted that
the 2D GWLC results are derived using less data than the
comparisons, however, they have low standard deviation and
should therefore be comparable. Within this case study the

Table 7 Pearson’s r correlation coefficients between detector outputs
and annotator agreement; CCO is calculated within the pixels marked
as a fissure by the annotators, and CCI the whole image. The p-values
are all 0.0000 (to four decimal places).

Detector CCO CCI CCI�CCO
2D GWLC 0.5563 0.5166 �0.0397
Gauss 0.5293 0.4711 �0.0582
C-S 0.6387 0.5259 �0.1128
Top-Hat 0.5187 0.2780 �0.2407

¯P-R integration limits are set to be ⇡

0
1 = 0.1 and ⇡

0
2 = 0.5

(from ten times as many negative as positive instances to a
balanced dataset) to reflect the large range of skews that can
be observed in a remote sensing application.

Out of the evaluated detectors four clearly demonstrated
superior performance over the others (2D GWLC, Top-Hat,
C-S, and Gauss). The ¯P-R curves derived from these detec-
tors are presented in Figure 12. A striking observation is that
the performance of all the detectors increases in line with
agreement in a predictable manner. Assuming that the more
agreed upon fissures are the most obvious, this result indi-
cates that the detectors extract similar features to those that
aid an annotator’s decision. There is, however, a large differ-
ence between the detection rate of high and low agreement
fissures—detection of the lower is not a trivial matter and the
decision most likely needs to be augmented with high-level
information that is not exploited by these detectors.

Regarding the correlation between detector output and
annotator agreement, the C-S detector produces the strongest
CCO and CCI correlations. It does have, however, one of
the largest drops between the two, indicating that the detec-
tor has low sensitivity. The ¯P-R curves give greater depth to
this finding: the low sensitivity dominates at the low agree-
ment decision boundary but the detector results in the high-
est performance at the high agreement decision boundaries.
The 2D GWLC detector’s output results in the second high-
est correlation with agreement over the whole image, and
also exhibits the lowest drop in correlation between the two
tests, indicating (relatively) low false positive rates. A large
drop in correlation, along with a low absolute correlation, is
observed with the top-hat detector, and indeed in Figure 12
the curves are skewed towards lower precision values. Over-
all, these correlation coefficients indicate that a detector’s
performance increases as the agreement upon the object in-
creases and those detectors resulting in the lowest drop in
correlation result in a tighter spread of ¯P-R curves.

4.2.5 Ground Truths and Reported Detector Performance

The rankings of the detectors’ performance (measured as
AUC) when evaluated using different GTs was determined,
and three rankings emerged, as described in Table 8. These
rankings the results of the correlation analyses, the 2D GWLC
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Fig. 12 P̄recision-recall curves describing the detectors’ performances using different levels of agreement as the ground truth.

Table 8 Rankings of detectors evaluated using each ground truth
(measured by the area under the P̄-R curve). The GTs that result in
these ranks are: Ranking #1 — A2, A4, A6, A11, Any-GT, LSML-GT,
STAPLE-GT, Excl-0.5-GT; Ranking #2 — A1, A3, A5, A7–A10, A12,
A13, 0.5-GT, SIMPLE-GT; Ranking #3 — 0.75-GT.

Rank 1 Rank 2 Rank 3
2D GWLC 2D GWLC C-S

Gauss C-S 2D GWLC
C-S Gauss Gauss

Top-Hat Top-Hat Top-Hat

detector is consistently ranked first (by 19 of the GTs) and
the top-hat detector last. These correspond to the highest and
lowest drops in correlation observed in the previous section,
see Table 7. Furthermore, a majority of the individual an-
notations give the same ranking as the SIMPLE-GT, and
0.5-GT ground truths, however, when the 0.75-GT, Any-GT,
STAPLE-GT, and LSML-GT ground truths are under con-
sideration, the ranking is perturbed. Therefore, the method
of calculating the GT influences the detectors’ ranking. More
importantly, the ranking derived using a 75% voting strategy
is in disagreement with that obtained using all of the thirteen
annotator judgements individually, and this appears to be in
contradiction to what should be expected. To illustrate these
ranks, the ¯P-R curves for all four detectors evaluated using
the STAPLE-GT, 0.5-GT, and 0.75-GT are plotted in Figure
13, each colour represents one of the rankings presented in
Table 8 (to be concise, subsequent case studies only present
the table of rankings).

The ¯P-R curves of the 2D GWLC, obtained using each
of the GTs, are presented in Figure 14. The effects of the
voted GTs (0.5-GT, 0.75-GT and SIMPLE-GT) become ev-
ident; these ¯P-R curves overestimate the performance of the
detector (in comparison to the other GTs), and seem to act
as generous estimations of the upper bound on the detec-
tor’s performance derived from the individual annotations.
The curves calculated using the GTs of the outlying anno-
tators (Section 4.2.3) give relatively lower estimates of per-
formance. Apart from these, the curves of all the annotators
are tightly clustered, in which the Any-GT appears to act as
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Fig. 13 P̄recision-recall curves of all four detectors evaluated using the
STAPLE-GT giving Ranking #1 (R1), 0.5-GT giving Ranking #2 (R2),
and 0.75-GT giving Ranking #3 (R3).

a lower bound on the performance and those obtained us-
ing the STAPLE-GT and LSML-GT ground truths appear
to approximately model the mean performance obtained us-
ing the remaining individual annotations. It should be noted,
however, that the LSML technique is highly dependent upon
the initial estimation.

It was found that when applied to this dataset the Excl-
0.5-GT and SIMPLE-GT ground truths were essentially the
same (99.84% of the pixels were identical) as they are both
derived the same principle (removing the outliers and then
voting), the detector’s performances relative to both were
therefore approximately equal and therefore only the SIMPLE-
GT ground truth is included in this analysis.
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Fig. 14 P̄recision-recall curves of the 2D GWLC detector assuming
differing ground truths.

4.3 Landslide Case Study

In this section we analyse another geographic remote sens-
ing dataset, the goal of which is to identify landslides in
satellite imagery.

4.3.1 Data

The dataset is derived from Geoeye-1 satellite images with
four spectral bands (blue, green, red near infra-red) and a
nominal ground resolution of 50 cm. The image presented
in Figure 15 was captured at Nova Friburgo, Brazil shortly
after a major landslide event in January 2011 and covers ap-
proximately 10 km2 (X = 5960 and Y = 5960 pixels).
A second image was recorded by the same satellite in May
2010 and depicts the ground conditions before the event.

Five annotators (N = 5), who were all familiar with
landslide mapping in remote sensing images, were asked in-
dependently to mark the outlines of the landslide affected
areas. For the image interpretation pre-event and the post-
event satellite images were visualized using a natural color
scheme on the RGB bands. Additionally a digital elevation
model (ASTER-GDEM-VALIDATION-TEAM, 2011) with
a nominal resolution of 30 m was available to the annotators
to visualize the terrain characteristics. The annotators were
free to zoom in and out as needed and no time limit was
given.

4.3.2 Annotator Agreement

The overall error bound according to Smyth is ē � 1.1012%,
a similar level to that found in the Fissure dataset. The agree-
ment of the annotators in the location of the landslides is

1 km

Fig. 15 The Geoeye-1 satellite image used within this case study
(RGB channels).

Table 9 Pearson’s r correlation coefficients between image features
and agreement. The p-values are all 0.0000 (to four decimal places).

Feature r
Intensity 0.0609
Contrast 0.0310
Near-IR �0.2766
Red 0.1841
Green �0.0115
Blue 0.0200

presented in Figure 16. It can be noticed that the character-
istics of the objects of interest differ to those of the previous
problem. Here a landslide forms an two-dimensional area
and previously the fissures typically form linear structures.
The effect of this becomes clear in Figure 17, in which the
level of agreement falls linearly with respect to the number
of annotators. Indicating that disagreement typically occurs
along the borders of the objects (indeed, if the outlines of the
GT annotations are used agreement drops approximately ex-
ponentially).

The image features that produce the highest correlation
with annotator agreement are the near infra-red and the red
colour channels. This follows what would be expected as the
near infra-red channel is typically used for vegetation identi-
fication, which is removed during a landslide. Furthermore,
the soil in this area is typically reddish brown in appearance
and therefore the red channel gives good distinction between
landslide and non-landslide affected areas.
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Fig. 16 Annotator agreement of landslide locations (overlaid on top of
the near infra-red image band).
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Fig. 17 Percentage of agreement (in pixels) as a function of the num-
ber of annotators.

4.3.3 Annotator Analysis

Each annotator was compared to the others by calculating
pairwise F1-scores and the resulting dendrogram is presented
in Figure 18. In this case-study, each of the annotators were
geographers familiar with the detection of landslides in re-
motely sensed imagery. This is reflected in the low inter F1-
score difference (1 � F

ij

), which ranges from 0.14 to 0.28

(by comparison this range was approximately 0.4 to 0.75 in
the previous case study). Nevertheless, by taking the mean
difference between all other annotators and thresholding to
within one standard deviation of this value, one outlier is
identified and this is A2 (the mean difference was found to
be 0.2044 and its standard deviation 0.0275, A2 resulted in
a mean difference of 0.2438). This annotator also results in
the lowest of the sensitivity and negative predictive values
(when compared to the consensus opinion) presented in Ta-
ble 10. On average, sensitivity, PPV and kappa are higher
than in the previous case study, indicating that the features
used for the identification of landslides are more clearly de-
fined and understood by the annotators.
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Fig. 18 Dendrogram describing the F1-score difference relationships
between each annotation. The dashed box depicts the inliers (see Sec-
tion 4.3.3).

Table 10 Sensitivity (Sens.), specificity (Spec.), positive predictive
value (PPV), negative predictive value (NPV) and Cohen’s kappa co-
efficient of the participants when compared to the consensus (rounded
to four decimal places).

Sens. Spec. PPV NPV kappa
A1 0.9280 0.9942 0.8837 0.9966 0.9007
A2 0.7499 0.9972 0.9276 0.9883 0.8222
A3 0.8797 0.9978 0.9502 0.9943 0.9097
A4 0.9713 0.9837 0.7380 0.9986 0.8300
A5 0.9419 0.9945 0.8893 0.9972 0.9107

4.3.4 Agreement and Detector Performance

Implementations of four of the most popular classification
algorithms were selected (due to their proven strength in
real-world applications) and were applied to this problem.
Namely the random forest (RF) (Liaw and Wiener, 2002),
support-vector machine (SVM) (Meyer, 2009), k-nearest neigh-
bours (KNN) (Li, 2012), and a neural network (ANN) (Ven-
ables and Ripley, 2002) algorithms. After fine scale image
segmentation, 101 object features describing the spectral char-
acteristics, texture, shape, topographic variables and neigh-
bourhood contrast were extracted. The resulting dataset is
available on-line3 and a detailed description of the feature
extraction methods are given in the literature (Stumpf et al,
accepted).

Each classifier was trained upon samples from a ran-
domly selected square subset covering 10% of the area of
interest (each classifier was trained using the same subset).
The number of trees in the RF were fixed at 500 and 10 vari-
ables were tested for the splits at each node. The SVM was
employed with a radial basis kernel and parameters C =

10 and � = 0.004 determined through an exhaustive grid
search. The ANN was single layer network with a logistic
activation function. An exhaustive grid search to optimize
the weight decay function and the number of nodes resulted

3
http://eost.unistra.fr/recherche/ipgs/dgda/

dgda-perso/andre-stumpf/data-and-code/
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Table 11 Pearson’s r correlation coefficients between detector outputs
and annotator agreement; CCO is calculated within the pixels marked
as a landslide by the annotators, and CCI the whole image. The p-
values are all 0.0000 (to four decimal places).

Detector CCO CCI CCI�CCO
RF 0.6497 0.7829 +0.1332
KNN 0.6072 0.7551 +0.1479
SVM 0.6503 0.7992 +0.1489
ANN 0.6417 0.7565 +0.1148

in values of 0.1 and 7, respectively. Likewise, a grid search
for the number of nearest neighbours resulted in k = 23 for
the KNN algorithm. The parameter tuning was performed
through bootstrap resampling of the training data and the
area under the ROC curve as a performance measure. The
¯P-R integration limits were set to ⇡

0
1 = 0.01 and ⇡

0
2 = 0.10

to reflect typical ratios of affected and unaffected areas after
large scale landslide triggering events (Malamud et al, 2004;
Parker et al, 2011).

The ¯P-R curves resulting from each of these classifiers
are presented in Figure 19. They largely follow the trend
that was found in the previous case study—as agreement in-
creases the performance of the classifier also increases. Ex-
cept that, a similar trend to that observed in the Segmen-
tation case study is observed in the lower recall range, in
which the tendency for precision to increase with agreement
is reversed. This phenomenon can be explained by analysing
the correlations between annotator agreement and the detec-
tor outputs presented in Table 9. It should be noticed that
in all of the cases CCI is higher than CCO. Indicating that
the detector output strengths agree with annotator agreement
within landslide locations and even more over the whole im-
age. This implies that there is a relatively low FP detection
rate, which at the lower recall ranges result in high preci-
sion values. As the agreement threshold is increased, how-
ever, the landslide areas that have increasingly stronger fea-
tures form the GT, and these also have the highest detec-
tion strengths according to each detector. The high overall
CCI correlations imply that as the lower agreement objects
are removed from the GT they are instead being detected
as false positive detections, thus reducing precision in the
lower recall ranges as annotator agreement increases.

4.3.5 Ground Truths and Reported Detector Performance

In this case study only one ranking emerges: SVM, RF, ANN,
and KNN. The SVM is ranked as the best detector and the
KNN the worst, and these correspond to the highest and low-
est CCO and CCI correlations observed in the previous sec-
tion (see Table 7). There is a united consensus in the detector
ranking—which was not observed in the previous case stud-
ies. This could be due to the lower inter-annotator variabil-
ity observed in this problem, which allows the gold-standard
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Fig. 20 P̄recision-recall curves of the RF detector assuming differing
ground truths (the 0.5-GT and SIMPLE-GT ground truths are identi-
cal).

GT estimation methods to better model all of the opinions.
The performance of the classifiers in this study is largely
similar and with greater annotator variance this could result
in more perturbations to the rankings, however due to the
low annotation variance this is not the case.

The lower degree of variance is also observed in the ¯P-
R curves resulting from each GT—as presented in Figure
20—the variance in performance, although existing, is much
lower than in the previous case studies. Similar trends can
still be implied however. The GT derived from 75% agree-
ment gives a higher estimate of the detector’s performance
compared to the other GT estimation methods. The 50%
agreement GT and that calculated using SIMPLE produce
identical performance curves. STAPLE and LSML tend to
produce ground truths that model the performance within
the bounds of that estimated by the individual annotations.
And Any-GT gives a (relatively speaking) pessimistic out-
look of the detector’s performance.

4.4 Blood Vessel Case Study

In this section we move onto the third domain of study,
the medical domain. The STructured Analysis of the Retina
(STARE) dataset was created for the evaluation of retinal
blood vessel detection algorithms.

4.4.1 Data

The dataset consists of twenty colour retinal images, which
for the purposes of this study are treated as a single image in
which X = 2800 and Y = 3025. An example image is pre-
sented in Figure 21. A mask was formed which delineates
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Fig. 19 P̄recision-recall curves describing the detectors’ performances using different levels of agreement as the ground truth.

Fig. 21 An example of the retinal images used within this case study.

the pixels that fall outside the retina by thesholding the in-
tensity of the red channel at a value of 40 (the black area in
Figure 21) and these pixels were excluded from the experi-
ments. The dataset contains two annotations which delineate
the pixels that are part of the blood vessels.

4.4.2 Annotator Agreement

This dataset produces the highest lower error-bound accord-
ing to Smyth, at ē � 3.1123%. The reason for this will be
discussed in Section 5, however, it is well below the 10%
limit recommended by Smyth. An image depicting an ex-
ample of the level of annotator agreement observed in this
dataset is presented in Figure 22. The percentage of agree-
ment is presented in Figure 23, with only two data points
it is hard to make any general observations, however, the
decrease in agreement seems to follow that observed in the
fissure dataset, in which the objects of interest have similar
characteristics (both being networks of linear structures).

There is a low correlation between all of the image fea-
tures and annotator agreement, except in the green colour
channel, in which a negative correlation is found indicating

1

2

Fig. 22 Annotator agreement of blood vessel locations.
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Fig. 23 Percentage of agreement (in pixels) as a function of the num-
ber of annotators.

Table 12 Pearson’s r correlation coefficients between image features
and agreement.

Feature r p
Intensity �0.0861 0.0000
Contrast �0.0026 0.0000
Red 0.0050 0.0000
Green �0.1495 0.0000
Blue �0.0007 0.0087

that blood vessels are suitably identified by the absence of
the green component.
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Table 13 Sensitivity (Sens.), specificity (Spec.), positive predictive
value (PPV), negative predictive value (NPV) and Cohen’s kappa co-
efficient of the participants when compared to the consensus (rounded
to four decimal places).

Sens. Spec. PPV NPV kappa
A1 0.6536 1.0000 1.0000 0.9417 0.4956
A2 0.9358 1.0000 1.0000 0.9887 0.5702

4.4.3 Annotator Analysis

The dendrogram is not included in this case study as no out-
liers can be identified with only two annotations. The F1-
score difference (1 � F

ij

) calculated between the two an-
notations was found to be 0.2583 meaning that they give
fairly consistent markings. The statistics in Table 13 are not
as informative as in the previous case studies due to the low
number of annotators and this highlights one of the issue of
estimating ground truths using few annotations and such sta-
tistical comparisons. Nonetheless, we can infer from them
that A2 marked a much larger number of blood vessels com-
pared to A1 due to A2 having a high sensitivity and A1 not
(in this case the 50% agreement GT that these statistics are
calculated according to contains locations that any of the an-
notators marked, hence the specificity and PPV being one).

4.4.4 Agreement and Detector Performance

The four detectors selected for this case-study were the Matched-
Filter Response (MSF) (Hoover et al, 2000), Linear Clas-
sifier (LMSE), k-nearest neighbours (KNN), and Gaussian
Mixture Model (GMM). The LMSE, KNN and GMM clas-
sifiers were implemented using the MLVessel software pack-
age (Soares et al, 2006), which extracted features based upon
the inverted green channel, and the response of Gabor wavelets
at scales 2–5 applied to the inverted green channel. The first
five images (im0001–5) of the dataset were used exclusively
for training. The integration limits of the ¯P-R curves were
⇡

0
1 = 0.023 and ⇡

0
2 = 0.235, which were found to be ⇡

0
1 =

µ � 3� and ⇡

0
2 = µ + 3� where µ is the mean of the skew

found within a number of retinal image datasets and � its
standard deviation (Lampert and Gançarski, submitted).

Although only two annotations exist in this dataset, the
same trend is visible as with all the other datasets—as the
threshold on agreement increases, so does performance. Fur-
thermore, it can be observed that three of the ¯P-R curves
overlap within the lower recall ranges (LMSE, KNN, and
GMM), and one does not (MSF). These three correspond
to the correlations observed in Table 14 that increase from
CCO to CCI and the fourth that does not overlap results in a
decrease between CCO and CCI.

Table 14 Pearson’s r correlation coefficients between detector outputs
and annotator agreement; CCO is calculated within the pixels marked
as a blood vessel by the annotators, and CCI the whole image. The
p-values are all 0.0000 (to four decimal places).

Detector CCO CCI CCI�CCO
MSF 0.3923 0.3573 �0.0350
GMM 0.5833 0.8133 +0.2300
LMSE 0.4168 0.5950 +0.1782
KNN 0.4361 0.6952 +0.2591

Table 15 Detector rankings evaluated using each ground truth (mea-
sured by the area under the P̄-R curve). The GTs that result in these
are: Ranking #1 — A1, 0.75-GT, SIMPLE-GT; Ranking #2 — A2,
0.5-GT/Any-GT, STAPLE-GT; Ranking #3 — LSML-GT.

Rank 1 Rank 2 Rank 3
GMM GMM GMM
MSF KNN KNN

LMSE MSF LMSE
KNN LMSE MSF

4.4.5 Ground Truths and Reported Detector Performance

The better performing detector is GMM and Figure 25 presents
its performance measured using the ground truth estimation
methods selected for this study. Due to the limited number of
annotations the Any-GT, 0.5-GT, and Excl-0.5-GT ground
truths are identical (as no outliers can be identified).

Once again, three rankings emerge from the evaluation
of detector performance using different ground truths, and
these are presented in Table 15. Having a large difference
in performance puts the GMM detector consistently on the
top. Nevertheless, there is still a large difference in the per-
formance of the remaining three detectors (see Figure 24)
and the ranking of these is not consistent. The MSF detec-
tor, for example, achieves the lowest performance in Figure
24 and the lowest correlation with annotator agreement (Ta-
ble 14), however, depending upon the GT that is taken, this
detector is placed second, third, or last!

The results presented in Figure 25 reveal different find-
ings to those in the other case studies. The LSML-GT forms
the lower bound on the reported performance and the STAPLE-
GT is equal to the 0.5-GT (and also the Any-GT), and there-
fore forms a lower bound estimate. Whereas previously (but
to a lesser extent in the Segmentation case study) the STAPLE-
GT and LSML-GT ground truths represented a mean esti-
mate of the performance measured using the individual an-
notations. Once more the 0.75-GT ground truth results in
a higher estimate of performance than that obtained using
each of the individual annotations.
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Fig. 24 P̄recision-recall curves describing the detectors’ performances using different levels of agreement as the ground truth.

Recall

P̄r
ec

is
io

n

A1, A2
STAPLE-GT
SIMPLE-GT
LSML-GT
0.5-GT/Any-GT
0.75-GT

0.0

0.0 0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

Fig. 25 P̄recision-recall curves of the GMM detector assuming differ-
ing ground truths (the curve obtained using STAPLE-GT overlaps that
obtained using 0.5-GT).

5 Discussion

The following discussion is divided into two parts, the first
provides a summary of the results presented in the previous
section along with their implications, and the second part
presents general recommendations that can be derived from
these implications .

5.1 Summary of Results

It has been shown that the performance of a classifier in-
creases as GTs are formed using increasingly higher agree-
ment levels. Forming a GT using an agreement of 50% gen-
erally increases the reported performance of a detector to a
range that is far greater than that obtained using all of the
individual annotations. Kauppi et al (2009) conclude that
the intersection method (consensus) is preferential as it re-
sults in the highest detector performance. Nevertheless, this
study gives indication that the method in fact over estimates

performance and focusses on evaluating a detector against
the most obvious objects in the image. Raising the level of
agreement at which the GT is calculated simply exaggerates
this tendency.

One factor that has a stabilising effect on reported per-
formance is a lower variance of the annotations. The Land-
slide dataset contains the lowest variance between annota-
tions (because landslides are areal objects and not linear
structures) and this is reflected in the spread of the perfor-
mance curves and in the stability of the detector ranking.
In this study the curves are relatively tightly clustered, and
choosing any of the GTs for evaluating an algorithm would
have resulted in similar reported performance. On the other
end of the scale the Segmentation dataset contained the largest
variance of annotations, and the reported performances also
contain the largest variance. This is in contrast to the find-
ings of Martin et al (2001) who found a large amount of
agreement by comparing the regions that the segmentations
contain and not the segments themselves. This also affected
the gold-standard ground truth estimation methods, where
in the other case studies the STAPLE and LSML methods
typically modelled the ‘mean’ performance of the individ-
ual annotators, whereas in this dataset they actually resulted
in the lowest performance curves. These methods both com-
bine annotations based upon the annotator’s statistical pro-
file and given that there is a large variance in this dataset this
may not be appropriate. In this situation removing the out-
lier annotations and performing consensus voting appears to
be more stable (see the Segmentation case study). In other
case studies this method also reported similar performances
to that obtained using the STAPLE and LSML algorithms
(except in the Fissure case study).

By and large, when the variance between annotations
is relatively low (for example in the Landslide case study
in which the F1-score differences range from 0.14 to 0.28)
the STAPLE and LSML methods provide GTs that report
a performance within the middle of that reported by each
of the individual annotations. Nevertheless, as noted above,
this is not the case when the variance increases or few anno-
tations are available (as in the Blood Vessel case study) and
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this seems to be in line with other studies (Langerak et al,
2010). The SIMPLE algorithm was proposed to overcome
these limitations in situations in which annotator uncertainty
varies considerably (Langerak et al, 2010), and indeed, in
these situations it does seem to offer an improvement (see,
for example, the Segmentation and Blood Vessel case stud-
ies). Nevertheless, when the variance in annotator agreement
is not so extreme SIMPLE seems to result in an overestima-
tion of performance (see the Fissure dataset for example).

All of the detectors produced medium to high correla-
tions between their output and the agreement of the annota-
tors. It can be stated that a detector’s performance increases
as the agreement upon the object increases and those de-
tectors resulting in the lowest drop in correlation result in a
tighter spread of ¯P-R curves. This seems intuitive as agree-
ment should be higher for more obvious objects and, assum-
ing that the detector is effective, these should also elicit the
highest detector responses. This translates to increasingly
higher ¯P-R curves as GTs with higher levels of agreement
are used. Unexpectedly however, when the correlation of the
detector output and agreement increases from within object
locations (CCO) to the whole image (CCI), precision de-
creases in lower recall ranges. Surprisingly, this reduction
in precision indicates an accurate detector because as agree-
ment increases lower-agreement objects are removed from
the GT but the detector still detects them as false positive
detections. This could be an indication that some of the an-
notators have missed important objects in the image, which
the detector considers to be true positives. If this is correct, it
indicates that the algorithm is performing better than the an-
notators at detecting these objects and by feeding back these
locations to the annotators for confirmation, this could be a
way of improving the ground truth reliability.

The image features included in this study account for a
high proportion of the observed agreement (it should be kept
in mind these features are not independent of each other),
but these only capture local low-level information, ignoring
any higher level and global queues and knowledge that the
annotators exploit. This is compounded by the agreement
level GT curves, which generally show that there is a large
difference between the detection rate of high and low agree-
ment objects—detection of the lower is not a trivial matter
and the decision most likely needs to be augmented with
high-level information that is not exploited by these detec-
tors.

In all but one of the case studies it has been shown that
the rank of a detector is dependent upon the GT used in
the evaluation. It can therefore be stated that the variance
in performance observed when evaluating two detectors us-
ing different ground truths is not equal and furthermore, the
position of the performance measured using the same GTs
within this range is not constant between detectors. Three
different rankings were observed in three of the four case

studies. In one occasion the top ranked detector changed de-
pending upon the GT, however, in most cases the top ranked
detector remained constant. This is partly due to the fact that
these top ranked detectors are considerably superior to the
remaining three and, had their performance been closer, this
would not have been the case. The effects of ranking become
more obvious in the Blood Vessel case study, in which the
detector that produces the worst correlation with annotator
agreement (MSF: CCO = 0.3923 and CCI = 0.3573) was
placed second, third and fourth in each of the three emer-
gent rankings, even though it is clearly the worst perform-
ing of the evaluated detectors. Moreover, taking the 50% or
75% consensus GTs does not necessarily result in a detector
ranking that is the consensus of the ranks obtained using the
individual annotations (see, for example, Tables 8 and 15).
In fact, it can produce a ranking that has nothing in common
with these individual rankings (Table 8).

The most consistent ranking was observed using the Land-
slide dataset—the case study that presented the most sta-
ble set of annotations (those with the least variance between
them). The lower inter-annotator variability observed in this
problem allowed the gold-standard GT estimation methods
to better model all of the annotations.

The largest minimum bound on error, ē, was found in the
Blood Vessel case study although the Segmentation and Fis-
sure case studies produced the lowest pairwise F1 scores (in
fact the agreement between the two annotators in the Blood
Vessel case study is relatively high). This uncovers two pe-
culiarities with Smyth’s calculation (see Equation (1)) when
used with only two, and an odd number of, annotators: the
maximum of ē is reached when the maximum disagreement
amongst the annotators takes place. On either side of this
maximum ē decreases symmetrically. First, when only two
annotators are present, N = 2, any disagreement results in
the maximum of the function since [N�max{A(x, y), N�
A(x, y)}]/N 2 {0, 0.5}. Secondly, when an odd number of
annotators are present this term can not reach the theoretical
maximum of 0.5, and therefore all disagreements contribute
less than in the case of two annotators. Thus although the F1

score attests to greater agreement in the Blood Vessel case
study, it receives a higher minimum bound on the error.

As has been shown in the Segmentation case study. The
evaluation framework adopted in the segmentation domain,
through accounting for variances observed in the annota-
tions, yields an overly optimistic algorithm performance when
compared to the traditional precision-recall evaluation frame-
work. Moreover, the Berkeley framework produces an unique
ranking that is not observed using any of the individual an-
notations or combinations therefore.
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5.2 Recommendations

Comparing annotators and deciding upon outliers based solely
upon inter-annotator performance is not a reliable method
even though it offers reasonable modelling of—what could
be described as—the average performance when correctly
implemented (the SIMPLE, and to some extent the LSML,
algorithms for example). Several counter examples can be
easily proposed, such as a situation in which all but one an-
notator is inaccurate, a case in which the accurate annotator
would be deemed an outlier and removed. Furthermore, an
inaccurate annotation could in fact contain all of the true
positive positions but have low specificity, other annotations
may have low sensitivity and therefore removing the ’out-
lier’ implies discarding valuable information that may not
be possible to infer using other means. As Smyth (1996)
states “Without knowing ground truth one can not make any
statements about the errors of an individual labeller”.

Over simplistic methods to utilise all of the available
annotations (voting) have been shown to fail. More sensi-
tive algorithms, such as STAPLE, take a step in the right
direction. Nevertheless, these algorithms still rely on the as-
sumption that the gold-standard ground-truth can be inferred
through measuring the performance of the annotators in re-
lation to each other. The most promising advances have started
to integrate information derived from image properties into
the process, and it has been shown herein that these proper-
ties indeed correlate with annotator agreement. Care should
be taken, however, as this produces a somewhat circulatory
solution in which the image features used by the detection
algorithms are also used to decide upon which objects the al-
gorithms are evaluated. Furthermore, in some domains cor-
relation strengths between annotator agreement and image
features decrease when moving from within object locations
to the whole image. Demonstrating that these properties are
not uniquely tied to the objects of interest and employing
this source of information risks introducing false positive
locations to the inferred ground truth.

In other fields of science, progress has been made on
improving the rating of annotator performance by gathering
meta-data along with the annotations. The Cooke method
(Cooke, 1991) prescribes that the annotators are asked to
estimate a credible interval of probable values along with
their concrete answer, and furthermore they are also asked
to answer multiple questions on topics from their field that
have known answers. This information is used to weight the
annotator’s contribution in relation to their accuracy in this
estimation and thus, has been shown to be more accurate
than consensus voting (Aspinall, 2010).

It is clear that evaluating upon different ground truths,
whether these are annotations or some merging thereof, re-
veals different trends in the performance of classification
algorithms. Synonymously different images reveal different

algorithm strengths during evaluation and, as such, large datasets
are used to smooth the differences and reveal the best overall
performing algorithm. However laborious it may be, the pre-
sented work implies that an algorithm should also be eval-
uated using different ground truths, the spread of measured
performance quantified and used as a test as to whether the
observed differences in performance are significant or not.

The variance of the annotations, and thus the variance
of the algorithm’s measured performance, is indicative of
the number of annotations that should be collected to give
an accurate measure of performance. The Landslide dataset,
for example, exhibits low annotator variance and this is re-
flected in the spread of ¯P-R curves, which are relatively tightly
clustered. Performance bounds can therefore be reliably es-
timated with few annotations. The Segmentation annotations,
in contrast, exhibit large variance and so do the resulting ¯P-
R curves. Under these conditions (and those in which few
annotations are available, such as in the Blood Vessel case
study) it may not be possible to state whether one algorithm
outperforms another with any certainty. It is clear therefore
that additional study into the nature of the problem should
be conducted, and more annotations collected, before an al-
gorithm is deemed to outperform another.

A viable approach to achieve this does appear to be pos-
sible. In all of the evaluated datasets the Any-GT and high
agreement level ground truths (0.5-GT or 0.75-GT) appear
to model the lower and upper bounds (respectively) on the
spread of measured performance. This may offer a means
of measuring the performance overlap between two algo-
rithms, which would be characteristic of the confidence that
can be attributed to any measured differences in performance.

This approach accepts that there exists imperfections in
the individual annotations, which are included in the Any-
GT but assuming that a perfect detector is created these im-
perfections cause the performance to degrade and simply
decreases the lower bound on performance (and therefore
represents the uncertainty inherent in the problem). Further-
more, there is a high likelihood that these imperfections are
removed at high agreement levels (since they are variations
of individual annotators). The upper bound, therefore is sta-
ble with respect to these and the true, unknown, detector
performance is contained somewhere within these bounds.

6 Conclusions

This paper set out to quantify the effects of obtaining ground
truth data from multiple annotators in a computer vision set-
ting. It has also taken some steps towards identifying which
properties of the image are related to agreement amongst
the annotators. Statistical analyses of the GTs in each case
study lead to the quantification of the differences between
the annotations. A number of gold-standard GT estimation
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methods were evaluated, including removing the outlier an-
notations, and it was found that the STAPLE and LSML al-
gorithms find a balance between all annotations when their
variance is low. The other GTs that were evaluated, formed
by taking objects that any of the annotators marked, and
thresholding at 50% and 75% agreement, tend to form lower
and upper bounds on detector performance. The performance
measured when using the GT derived by removing outlier
annotations and then taking the consensus vote approaches
that of STAPLE and LSML in all but one of the case study.
It does, however, appear to be more stable when the annota-
tions have high variability.

It can be concluded that the rank of a detector is highly
dependent upon which GT estimation algorithm is used. In
some cases the GTs calculated by voting result in detec-
tor ranks that are in discordance with each of the individ-
ual annotations. The ¯P-R curves obtained using the voted
GTs also appear to be outliers when compared to those of
the remaining GTs, suggesting that these commonly em-
ployed GT estimation methods overemphasise detector per-
formance in comparison to individual annotator opinions.
Furthermore, under some conditions, a detector with a low
correlation between its output and annotator agreement can
be placed above those that have vastly better correlated out-
puts.

Similarly to evaluating an algorithm over a data set that
contains multiple images, it is concluded that an algorithm
should be evaluated using multiple ground truths. The vari-
ance of performance that is observed using these different
ground truths can then be used to quantify the confidence in
the observed performance differences. In situations in which
there are few annotations available, or when the inter-annotator
variance is high, further study into the nature of the prob-
lem should be conducted as these conditions imply that it is
not possible to state that one algorithm outperforms another
with any confidence. Therefore, whenever possible the in-
trinsic uncertainties of annotator judgements should be as-
sessed before the evaluation of object detectors, since the
absolute performance measure and the relative ranking of
detectors may vary considerably according to the employed
GT.

The possibility to estimate the true detector performance
through the variability of annotator opinion would be an in-
teresting avenue to follow. Assuming that the performances
derived using different GTs are observations of a hidden
variable, it may be possible to estimate its true value—the
gold standard performance. Much research is dedicated to
inferring the gold-standard GT, however, this is a complex
problem in which many assumptions need to be made, and
the proposed approach may bypass some of these.

An additional question that arises from this study is:
which metric should rate an estimated gold standard? Gen-
erally speaking the gold standard is unknown and therefore

comparison is impossible. Restricting the evaluation to the
individual annotations assumes high specificity and sensitiv-
ity. Removing annotators, however, assumes inability com-
pared to the consensus, but do those removed have true in-
sight into the problem? It is clear however that detector per-
formance should not be used to evaluate a gold standard es-
timation.
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Arbelaéz P, Maire M, Fowlkes C, Malik J (2011) Con-
tour detection and hierarchical image segmentation. IEEE
Trans PAMI 33(5):898–916

Armato S, McLennan G, Bidaut L, McNitt-Gray M, Meyer
C, Reeves A, Zhao B, Aberle D, Henschke C, Hoffman
E, Kazerooni E, MacMahon H, Van Beeke E, Yankele-
vitz D, Biancardi A, Bland P, Brown M, Engelmann R,
Laderach G, Max D, Pais R, Qing D, Roberts R, Smith
A, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish
G, Jude C, Munden R, Petkovska I, Quint L, Schwartz
L, Sundaram B, Dodd L, Fenimore C, Gur D, Petrick N,
Freymann J, Kirby J, Hughes B, Casteele A, Gupte S, Sal-
lamm M, Heath M, Kuhn M, Dharaiya E, Burns R, Fryd
D, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft B
(2011) The lung image database consortium (LIDC) and
image database resource initiative (IDRI) : A completed
reference database of lung nodules on CT scans. Medical
Physics 38:915–931

Artaechevarria X, Munoz-Barrutia A, de Solorzano CO
(2009) Combination strategies in multi-atlas image seg-
mentation: application to brain MR data. IEEE Trans Med
Imag 28(8):1266–1277

Asman A, Landman B (2011a) Characterizing spatially
varying performance to improve multi-atlas multi-label
segmentation. In: Proc. of the 22nd int. conf. on Infor-
mation processing in medical imaging, pp 85–96

Asman A, Landman B (2011b) Robust statistical label fu-
sion through COnsensus level, Labeler Accuracy, and
Truth Estimation (COLLATE). IEEE Trans Med Imag
30:1179–1794

Asman A, Landman B (2012a) Formulating spatially vary-
ing performance in the statistical fusion framework. IEEE
Trans Med Imag 31:1326–1336

- 261 -



22 Thomas A. Lampert et al.

Asman A, Landman B (2012b) Non-local STAPLE: An
intensity-driven multi-atlas rater model. In: Proc. of
the 15th Int. Conf. on Medical Image Computing and
Computer-Assisted Intervention, vol 3, pp 426–434

Asman A, Landman B (2012c) Simultaneous segmentation
and statistical label fusion. In: Proc. SPIE Medical Imag-
ing 2012: Image Processing, vol 8314

Asman A, Landman B (2013) Non-local statistical label fu-
sion for multi-atlas segmentation. Medical Image Analy-
sis 17(2):194–208

Aspinall W (2010) A route to more tractable expert advice.
Nature 463:294–295

Biancardi A, Reeves A (2009) TESD: A novel ground truth
estimation method. In: Medical Imaging 2009: Computer-
Aided Diagnosis, vol 7260, pp 72,603V–72,603V–8

Burl MC, Fayyad UM, Perona P, Smyth P (1994) Auto-
mated analysis of radar images of Venus: Handling lack
of ground truth. In: ICIP, vol 3, pp 236–240

Commowick O, Warfield S (2010) Incorporating priors on
expert performance parameters for segmentation valida-
tion and label fusion: a maximum a posteriori STAPLE.
In: Proc. of the 13th Int. Conf. on Medical Image Com-
puting and Computer Assisted Intervention, pp 25–32

Commowick O, Akhondi-Asl A, Warfield S (2012) Estimat-
ing a reference standard segmentation with spatially vary-
ing performance parameters: Local MAP STAPLE. IEEE
Trans Med Imag 31(8):1593–1606

Cooke R (1991) Experts in Uncertainty: Opinion and Sub-
jective Probability in Science. Oxford University Press
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