Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Convection et perte de masse des étoiles évoluées : l'environnement circumstellaire à haute résolution angulaire

Miguel Montargès Directeurs de thèse : Pierre Kervella & Guy Perrin

LESIA - Observatoire de Paris

École Doctorale Astronomie & Astrophysique d'Ile-de-France (ED 127)

Soutenance de thèse - 20 octobre 2014

Miguel Montargès

Convection et perte de masse des étoiles évoluées : l'environnement circumstellaire à haute résolution angulaire

Plan

- Photosphère et enveloppe moléculaire proche des SGR
- 3 L'environnement circumstellaire de L₂ Puppis
- 4 Conclusion et perspectives

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

L'évolution chimique de l'Univers

TABLEAU PÉRIODIQUE DES ÉLÉMENTS

(il y a 13,6 milliards d'années)

- $\bullet~\sim75\%$ $^1\text{H},\sim0,001\%$ D
- ullet \sim 25% 4 He, \sim 0,001% 3 He
- m ullet $\sim 10^{-10}$ de 7 Li
- Faibles traces de Be

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

L'évolution chimique de l'Univers

	GROUPE																	
															N I V)	18 VIIIA	
DE .	1 1.0079	(MAINTENANT)												http://www.periodni.com/fr/				
¥ 1	H	(MAINTENANT)																He
F	HYDROGÊNE	LENE 2 ILA													15 VA	16 VIA	17 VIIA	HÊLIUM
	3 6.941	4 9.0122		5 10.811 6 12.011 7 14.007 8 15.999 9 18.998													10 20.180	
2	Li	Be													N	0	F	Ne
	LITHUM	a street.uum													AZOTE	OXYGÊNE	FLUOR	NEON
	11 22.990	80 12 24.305												14 28.086	15 30.974	16 32.055	17 35.453	18 39.948
3	³ Na Mg												Р	S	CI	Ar		
	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 VB	<u>6 VIB</u>	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.955	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.95	35 79.904	36 83.798
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANESE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468	38 87.62	39 88.905	40 91.224	41 92.906	42 95.96	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NORUM	MOLYBOENE	TECHNÉTIUM	RUTHÉNIUM	RHODIUM	PALLADIUM	ARGENT	CADMUM	INDIUM	ETAIN	ANTIMOINE	TELLURE	KODE	XÉNON
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	CESIUM	BARYUM	Lanthanide	HAFNUM	TANTALE	TUNGSTÊNE	RHÉNIUM	OSMUM	RIDIUM	PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONIUM	ASTATE	RADON
-	87 (223)	88 (226)	89-103	104 (267)	105 (268)	106 (271)	107 (272)	108 (277)	109 (276)	110 (281)	111 (280)	112 (285)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()
7	Fr	Ra	Ac-Lr	IRÍ	Db	Sg	IBh	IHS	MIt	Ds	Rg	Cm	Uwć	IFI	Uup	Lv	Uws	Uuo
	FRANCIUM	RADIUM	Actinides	RUTHERFORDIUM	DUBNUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARINSTADTIUM	ROENTGENIUM	COPERNICIUM	UNUNTRUM	FLEROVIUM	UNUNPENTIUN	LIVERMORIUM	UNUNSEPTIUM	UNUNOCTIUM
				LANTHAN	DES											c	opyright © 2012	2 Eni Generalić
				57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.95	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05	71 174.97
				La	Ce	Pr	Nd	TPmn	Sm	En	Gd	Th	Dv	Ho	Er	Tm	Yb	Lu
			LANTHANE	CÉRIUM	PRASECONVE	NÉDOYWE	PROMÉTHIUM	SAMARIJA	EUROPIUM	GADOLINUM	TERBAM	DYSPROSIUM	HOLMUM	ERBIJM	THULUM	YTTERBUM	LUTÉTIUM	
				ACTINIDES														
			89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
				Ac	Th	Pa	U	Np	IPm	Am	Cm	IBlk	Cf	IEs	Fm	Md	No	ILI
				ACTINUM	THORIUM	PROTACTINUM	URANUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNUM	ENSTENUM	FERMAN	MENDELÉVIUM	NOBELIUM	LAWRENCIUM

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Les étoiles : creusets de la nucléosynthèse

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Les étoiles : creusets de la nucléosynthèse

• Séquence principale : fusion de H en He

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Les étoiles : creusets de la nucléosynthèse

- Séquence principale : fusion de H en He
- Etoiles évoluées : fusion jusqu'au Fe (jusqu'au Pb avec le processus-s)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Les étoiles : creusets de la nucléosynthèse

- Séquence principale : fusion de H en He
- Etoiles évoluées : fusion jusqu'au Fe (jusqu'au Pb avec le processus-s)
- Supernova ($M > 10 M_{\odot}$) : éléments les plus lourds

Miguel Montargès

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives 000

Les nébuleuses planétaires

Crédits : HST

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

L'environnement des SuperGéantes Rouges (SGR)

Vue d'artiste (ESO)

Les interrogations

Étoiles de masse $< 10~M_{\odot}$:

• Comment former une nébuleuse planétaire non-sphérique (bi-polaire) ?

Étoiles de masse $> 10~M_{\odot}$:

- Comment est déclenchée la perte de masse des SGRs?
- Quels sont les mécanismes de condensation de la poussière ?

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

La nécessité de la Haute Résolution Angulaire

Crédits : P. Kervella

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Résolution d'un télescope classique

Résolution d'un télescope de 8,2 m de diamètre à 1,6 μ m :

$$heta_0 = 1,22 rac{\lambda}{D} \sim 50 ext{ mas}$$

Avec une atmosphère à 1,6 μ m :

$$\theta_0 = 1,22 \frac{\lambda}{r_0} \sim 650 \text{ mas}$$

0000000000000000

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives 000

Principe de l'optique adaptative

Crédits : LESIA/Observatoire de Paris

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Un exemple concret avec la Lune

Crédits : NAOS

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Vers une meilleure résolution angulaire

- $\theta_0 = 1,22\frac{\lambda}{D}$
- $\theta_0 = 50$ mas pour un UT des VLT
- Diamètre de Bételgeuse : \sim 42 mas

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

La solution : l'interférométrie

Crédits : ESO

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

• Obtention d'un interférogramme

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

• Obtention d'un interférogramme

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

- Obtention d'un interférogramme
- Caractéristique : degré complexe de cohérence mutuelle μ(u, v)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

- Obtention d'un interférogramme
- Caractéristique : degré complexe de cohérence mutuelle μ(u, v)
- $|\mu(u,v)| = |V| = \left| \frac{l_{\max} l_{\min}}{l_{\max} + l_{\min}} \right|$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Principe de l'interférométrie (en bref)

* Théorème de Zernike Van-Cittert :

$$\mu(u, v) = \frac{\mathsf{TF}(\mathrm{source})}{l_{\mathrm{source}}^{\mathrm{tot}}}$$

Photosphère et enveloppe moléculaire proche des SGR

Principe de l'interférométrie (en bref)

Théorème de Zernike Van-Cittert : *

$$\mu(u, v) = \frac{\mathsf{TF}(\mathrm{source})}{l_{\mathrm{source}}^{\mathrm{tot}}}$$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

* Théorème de Zernike Van-Cittert :

$$\mu(u, v) = \frac{\mathsf{TF}(\mathrm{source})}{l_{\mathrm{source}}^{\mathrm{tot}}}$$

•
$$V_{\rm UD} = \frac{J_1(\pi \times \mathrm{fs} \times \theta_\star)}{\pi \times \mathrm{fs} \times \theta_\star}$$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

* Théorème de Zernike Van-Cittert :

 $\mu(u, v) = \frac{\mathsf{TF}(\mathrm{source})}{l_{\mathrm{source}}^{\mathrm{tot}}}$

- $V_{\rm UD} = \frac{J_1(\pi \times f_S \times \theta_{\star})}{\pi \times f_S \times \theta_{\star}}$
- $\rightarrow \mbox{ Lien interférogramme} \leftrightarrow \mbox{ distribution } \\ \mbox{ lumineuse de la source }$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

* Théorème de Zernike Van-Cittert :

 $\mu(u, v) = \frac{\mathsf{TF}(\mathsf{source})}{l_{\mathsf{source}}^{\mathsf{tot}}}$

•
$$V_{\rm UD} = \frac{J_1(\pi \times \mathrm{fs} \times \theta_\star)}{\pi \times \mathrm{fs} \times \theta_\star}$$

- $\rightarrow \mbox{ Lien interférogramme} \leftrightarrow \mbox{ distribution } \\ \mbox{ lumineuse de la source }$
- ightarrow Observations avec un télescope monolithique \sim interférométrie

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Principe de l'interférométrie (en bref)

 $\star\,$ Théorème de Zernike Van-Cittert :

 $\mu(u, v) = \frac{\mathsf{TF}(\mathrm{source})}{I_{\mathrm{source}}^{\mathrm{tot}}}$

•
$$V_{\rm UD} = \frac{J_1(\pi \times fs \times \theta_\star)}{\pi \times fs \times \theta_\star}$$

- → Lien interférogramme ↔ distribution lumineuse de la source
- ightarrow Observations avec un télescope monolithique \sim interférométrie
- ightarrow Interférométrie longue base
 - = échantillonage plan (u, v)

00000000000000

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Interférométrie : les observables

3 observables :

• Visibilité = Amplitude de la TF (1 base)

00000000000000

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Interférométrie : les observables

3 observables :

- Visibilité = Amplitude de la TF (1 base)
- A Phase perturbée par l'atmosphère

0000000000000

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Interférométrie : les observables

3 observables :

- Visibilité = Amplitude de la TF (1 base)
- A Phase perturbée par l'atmosphère
- → Clôture de phase = Somme des phases mesurées par 3 bases différentes

Miguel Montargès

000000000000000

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Interférométrie : les observables

3 observables :

- Visibilité = Amplitude de la TF (1 base)
- A Phase perturbée par l'atmosphère
- → Clôture de phase = Somme des phases mesurées par 3 bases différentes
 - Variable : fréquence spatiale (B/λ)

Plan

Photosphère et enveloppe moléculaire proche des SGR

- 3 L'environnement circumstellaire de L₂ Puppis
- 4 Conclusion et perspectives

Différents programmes d'observation

- Jan. 2011 : Bételgeuse, VLTI/AMBER, 3T, MR spectrale
- ⇒ Photosphère + environnement moléculaire
- \Rightarrow Montargès et al. 2014, A&A (sous presse)
 - 2012-2014 : Bételgeuse, VLTI/PIONIER, 4T, BR spectrale
- \rightarrow Exécution des observations 2013 (au Chili) et 2014 (depuis Meudon)
- \Rightarrow Suivi de la photosphère
 - 2014 : Antarès, VLTI/PIONIER, 4T, BR spectrale
- ightarrow PI des observations et exécution (depuis Meudon)
- \Rightarrow Vue inédite de la convection

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Bételgeuse : α Orionis

Quelques chiffres

- *m* (*visible*) = 0,42
- *m*(*IR*) = −4,05
- $L = 10^5 L_{\odot}$
- $M = 21 \pm 2 M_{\odot}$
- $R = 897 \pm 211 \ R_{\odot}$
- *d* = 197 ± 45 pc
- $v_{rad} \sim$ 22 km.s⁻¹
- Type spectral : M2lb

Crédits : Oisin Trust

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Un laboratoire de la perte de masse des SGR

 Verhoelst et al. (2006) ont suggéré que Al₂O₃ pouvait être un noyau de condensation pour la poussière

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Un laboratoire de la perte de masse des SGR

- Verhoelst et al. (2006) ont suggéré que Al₂O₃ pouvait être un noyau de condensation pour la poussière
- Josselin & Plez (2007) ont proposé que la convection pouvait initier la perte de masse
Un laboratoire de la perte de masse des SGR

- Verhoelst et al. (2006) ont suggéré que Al₂O₃ pouvait être un noyau de condensation pour la poussière
- Josselin & Plez (2007) ont proposé que la convection pouvait initier la perte de masse
- $\bullet\,$ Auriere et al. (2010) ont découvert un champ magnétique de \sim 1 G

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Précédentes observations

• Uitenbroek et al. 1998 :

Spectroscopie UV avec HST \rightarrow point chaud + champ de vitesse

Conclusion et perspectives

Précédentes observations

• Uitenbroek et al. 1998 :

Spectroscopie UV avec HST \rightarrow point chaud + champ de vitesse

• Haubois et al. 2009 :

Interférométrie IR avec IOTA \rightarrow points chauds + reconstruction d'image

Précédentes observations

- Uitenbroek et al. 1998 : Spectroscopie UV avec HST \rightarrow point chaud + champ de vitesse
- Haubois et al. 2009 : Interférométrie IR avec IOTA → points chauds + reconstruction d'image
- Ohnaka et al. 2011 : Interf. IR avec VLTI/AMBER → Modèle : mouvements de CO

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Bételgeuse avec VLTI/AMBER

- Observations le 1^{er}, 2 et 3 janvier 2011
- Bande K entre 2,1 et 2,45 μm à MR spectrale (R ~ 1500)
- Étalons interférométriques : HR 1543, HR 2275, HR 2469, HR 2508 et HR 3950
- Nature particulière de la cible : réduction spécifique

Couverture (u,v)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Analyse préliminaire

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Domaine continu - Modèles analytiques

Domaine continu ($\lambda \in [2,1;2,245 \ \mu m]$)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Domaine continu - Modèles analytiques

Domaine continu ($\lambda \in [2,1;2,245 \ \mu m]$)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Domaine continu - Modèles analytiques

Domaine continu ($\lambda \in [2,1;2,245 \ \mu m]$)

 $\begin{array}{ll} \theta_{\rm DU} = 40.9 \pm 0.52 \mbox{ mas;} & \chi^2_r = 5.27 \mbox{ (continu)} \\ \theta_{\rm ACB} = 41.8 \pm 0.57 \mbox{ mas;} & \alpha = 0.10 \pm 0.02; & \chi^2_r = 4.89 \mbox{ (pointillés)} \end{array}$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Domaine continu - Modèles analytiques

Domaine continu ($\lambda \in [2,1;2,245 \ \mu m]$)

 $\begin{array}{l} \theta_{\rm DU} = 40,9\pm0,52 \mbox{ mas;} \quad \chi^2_r = 5,27 \quad (\mbox{continu}) \\ \theta_{\rm ACB} = 41,8\pm0,57 \mbox{ mas;} \quad \alpha = 0,10\pm0,02; \quad \chi^2_r = 4,89 \quad (\mbox{pointill}\mbox{és}) \\ \Rightarrow \mbox{ Ecarts au-delà de 60 } \mbox{arcsec}^{-1}:\mbox{structures photosphériques} \; (\chi^2_r > 50) \end{array}$

Ajuster des simulations RHD à des données interférométriques (Chiavassa et al. 2011) :

• Disposer d'un modèle stellaire (CO⁵BOLD, Freytag et al. 2012)

- Disposer d'un modèle stellaire (CO⁵BOLD, Freytag et al. 2012)
- Laisser le modèle évoluer suffisamment longtemps

- Disposer d'un modèle stellaire (CO⁵BOLD, Freytag et al. 2012)
- Laisser le modèle évoluer suffisamment longtemps
- Prendre (beaucoup) de « clichés » (autant de réalisations du motif convectif)

- Disposer d'un modèle stellaire (CO⁵BOLD, Freytag et al. 2012)
- Laisser le modèle évoluer suffisamment longtemps
- Prendre (beaucoup) de « clichés » (autant de réalisations du motif convectif)
- Effectuer des rotations (méconnaissance de l'orientation sur le ciel)

- Disposer d'un modèle stellaire (CO⁵BOLD, Freytag et al. 2012)
- Laisser le modèle évoluer suffisamment longtemps
- Prendre (beaucoup) de « clichés » (autant de réalisations du motif convectif)
- Effectuer des rotations (méconnaissance de l'orientation sur le ciel)
- TF pour obtenir les observables interférométriques

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Domaine continu - Simulations RHD

Paramètre	Bételgeuse	Modèle	
M (M _☉)	11,6	12	
L (L _☉)	$1,\!27 imes10^5$	89477	$\chi^2_{r} = 7.47$
R (R⊙)	897	846,0	<i>N</i> / 1,11
T _{eff} (K)	3640	3430	
$\log(g)$	-0,3	-0,354	

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

VLTI/AMBER - Domaine continu - Simulations RHD

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Bandes d'absorption de CO et H₂O ($\lambda \in [2,245;2,45\mu m]$)

Modèle de couche fine au LTE (Perrin et al. 2004)

ightarrow 5 paramètres : θ_{\star} , θ_{MOL} , T_{MOL} , N_{CO} , N_{H_2O}

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Bandes d'absorption de CO et H₂O ($\lambda \in [2,245;2,45\mu m]$)

Modèle de couche fine au LTE (Perrin et al. 2004)

- ightarrow 5 paramètres : θ_{\star} , θ_{MOL} , T_{MOL} , N_{CO} , N_{H_2O}
- $\rightarrow~$ Paramètres non-indépendants : cartes de χ^2

Bandes d'absorption de CO et H₂O ($\lambda \in [2,245;2,45\mu m]$)

• $\chi^2_r \sim 6$

 $ightarrow R_{
m MOL} =$ 1,22 \pm 0,02 R_{*}

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Données AMBER : bilan

- Mesure du diamètre apparent dans le domaine continu
- Signature de la convection identifiée par les simulations RHD
- Caractéristiques de l'enveloppe moléculaire de H₂O et CO

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Bételgeuse avec VLTI/PIONIER

- 3 époques (2012, 2013 and 2014) sur 2 configurations du VLTI
- → Suivi du diamètre de l'étoile
- \rightarrow Analyse de la convection de l'étoile

(Observations CHARA/MIRC perdues pour cause de mauvais temps en 2012 et 2013)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

VLTI/PIONIER - Janvier 2012

- 4 télescopes
- Bande H, BR spectrale (R \sim 40)
- 1 étoile étalon : Sirius (à 27° de Bételgeuse)
- Diaphragmes pour diminuer le flux incident

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives 000

VLTI/PIONIER - Janvier 2012

Ajustement aux fréquences spatiales < 38 arcsec⁻¹

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/PIONIER - Janvier 2012

Ajustement aux fréquences spatiales < 38 arcsec⁻¹

 $\Rightarrow \chi_r^2$ élevé + variation de diamètre de 25 %

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/PIONIER - Février 2013

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/PIONIER - Février 2013

• 4 étoiles étalons (d < 10° de Bételgeuse)

• Densité neutre pour diminuer le flux incident

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives 000

VLTI/PIONIER - Février 2013

Ajustement aux fréquences spatiales < 38 arcsec⁻¹

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/PIONIER - Février 2013

Ajustement aux fréquences spatiales < 38 arcsec⁻¹

 $\Rightarrow \chi_r^2$ élevé + variation de diamètre de 10 %

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

VLTI/PIONIER - Janvier 2014

Ajustement aux fréquences spatiales < 38 arcsec⁻¹

 $\Rightarrow \chi_r^2$ élevé et variation de diamètre de 6 %

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Problématique de l'anomalie du 1er lobe

 Données 2011 : échantillonnage suivant une seule direction du plan (u, v)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Problématique de l'anomalie du 1er lobe

- Données 2011 : échantillonnage suivant une seule direction du plan (u, v)
- Présente en 2012, 2013 et 2014

Problématique de l'anomalie du 1er lobe

- Données 2011 : échantillonnage suivant une seule direction du plan (u, v)
- Présente en 2012, 2013 et 2014
- Clôtures de phase incompatibles avec une « simple » élongation de l'étoile

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

La signature d'un point chaud

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives 000

Principe de l'ajustement

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Principe de l'ajustement

- Difficulté : taille de l'étoile non-indépendante du point chaud
- \rightarrow Cartes de χ^2 fonctions de la position ; θ_{ACB} , α_{ACB} et ($I_{\star} I_{spot}$) ajustés sur chaque cellule, pour différentes tailles de point chaud
L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Principe de l'ajustement

- A Difficulté : taille de l'étoile non-indépendante du point chaud
- \rightarrow Cartes de χ^2 fonctions de la position ; θ_{ACB} , α_{ACB} et ($I_{\star} I_{spot}$) ajustés sur chaque cellule, pour différentes tailles de point chaud
- ⇒ Valeurs préliminaires pour un ajustement L-M des paramètres

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Meilleur ajustement - Janvier 2012

 $\chi^2_r = 34,4$ (fréquences spatiales < 50 arcsec⁻¹)

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Meilleur ajustement - Février 2013

 $\chi_r^2 = 43.3$ (fréquences spatiales < 50 arcsec⁻¹)

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Meilleur ajustement - Janvier 2014

 $\chi^2_r = 51,6$ (fréquences spatiales < 50 arcsec⁻¹)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Basses fréquences spatiales : discussion

• $\chi^2_r > 30 \rightarrow$ Utilisation d'une gaussienne non-symétrique ?

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Basses fréquences spatiales : discussion

- $\chi^2_r > 30 \rightarrow$ Utilisation d'une gaussienne non-symétrique ?
- Compagnon?

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Basses fréquences spatiales : discussion

- $\chi_r^2 > 30 \rightarrow$ Utilisation d'une gaussienne non-symétrique ?
- Compagnon?
- \rightarrow Exclu par les clôtures de phase + distance à la primaire (0,1")

Basses fréquences spatiales : discussion

- $\chi_r^2 > 30 \rightarrow$ Utilisation d'une gaussienne non-symétrique ?
- Compagnon?
- \rightarrow Exclu par les clôtures de phase + distance à la primaire (0,1")
- \Rightarrow Basses fréquences spatiales = suivi d'un point chaud (diamètre étoile ~ 42 mas)

L'environnement circumstellaire de L2 Puppis 000000000

 $\chi^2_r \sim 32$

Conclusion et perspectives

Hautes fréquences spatiales : simulations RHD (2013)

Paramètre	Bételgeuse	Modèle	
M (M $_{\odot}$)	11,6	12	
L (L _☉)	$1,\!27 imes10^5$	$9,\!19 imes10^4$	
${\sf R}~({\sf R}_\odot)$	897	830	
T _{eff} (K)	3640	3487	
$\log(g)$	-0,3	-0,335	

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis 000000000 Conclusion et perspectives

Hautes fréquences spatiales : discussion

- Difficulté : basses fréquences spatiales
- → Essayer un recollement de la transformée de Fourier?

Bételgeuse avec VLTI/PIONIER : perspectives et bilan

- Suivi d'un point chaud sur la photosphère
- 4^{ème} et dernière époque pour décembre 2014
- Travail en cours pour la modélisation des hautes fréquences spatiales
- Question : que représente une mesure du diamètre suivant une seule direction du plan (*u*, *v*)?
- Article en préparation

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Antarès : *a Scorpii*

Crédits : http ://www.abc.net.au/science/starhunt/

Quelques chiffres

- *m* (visible) = 0,91
- m(IR) = -3,79
- $M = 15 \pm 5 M_{\odot}$
- $\theta \sim 37$ mas
- *d* ~ 170 pc
- Type spectral : M0.5lab

L'environnement circumstellaire de L2 Puppis

Conclusion et perspectives

Observations d'Antarès avec VLTI/PIONIER

- Bételgeuse est-elle un cas particulier ?
- Meilleur échantillonnage du plan (u, v)
- ightarrow Observations en avril-mai 2014
 - 3 étoiles étalons à d < 3° d'Antarès

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Modèle de disque assombri

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Modèle de disque assombri

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Analyse par des simulations RHD

Paramètres	Antarès	Modèle	-
M (M⊙)	15 ± 5	6,0	$\chi^2_r = 10.3$
$\log(L/L_{\odot})$	$4,\!88\pm\!0,\!23$	$4,\!38\pm\!0,\!01$	
R (R _☉)	680	$376,7\pm0,5$	\rightarrow Défaut par rapport à la
T _{eff} (K)	3660 ± 120	$3710\pm\!20$	meilleure simulation.
$\log(g)$	-0,3	$0,\!047 \pm 0,\!001$	

Perspectives

- Analyse inédite de la convection d'une SGR
- Écarts au disque ACB plus faible en hautes FS comparée à Bételgeuse

Plan

- Photosphère et enveloppe moléculaire proche des SGF
- 3 L'environnement circumstellaire de L₂ Puppis
 - Conclusion et perspectives

Introduction	

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

L₂ Puppis ID card

- M5III, étoile variable SRa (type Mira) : P = 141 j
- Déplacement astrométrique périodique de 9,5 mas (Hipparcos)
- $\bullet~$ La plus proche des étoiles AGB (64 $\pm\,4$ pc, $m_V\sim5)$
- Magnitude moyenne en augmentation depuis \sim 20 ans (Bedding et al. 2002)

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

L₂ Puppis ID card

- M5III, étoile variable SRa (type Mira) : P = 141 j
- Déplacement astrométrique périodique de 9,5 mas (Hipparcos)
- $\bullet~$ La plus proche des étoiles AGB (64 $\pm\,4$ pc, $m_V\sim5)$
- Magnitude moyenne en augmentation depuis \sim 20 ans (Bedding et al. 2002)

hotosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Imagerie IR VLT/NACO

Optique adaptative

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Imagerie IR VLT/NACO

- Optique adaptative
- $\bullet~$ Utilisation du lucky-imaging (cubes de 5 000 poses de $\sim 5~ms)$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Imagerie IR VLT/NACO

- Optique adaptative
- Utilisation du lucky-imaging (cubes de 5000 poses de \sim 5 ms)
- 12 filtres à bande étroite en bandes JHKL

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Imagerie IR VLT/NACO

- Optique adaptative
- Utilisation du lucky-imaging (cubes de 5000 poses de \sim 5 ms)
- 12 filtres à bande étroite en bandes JHKL
- Observation d'étoiles FEP pour la déconvolution (β Col)

Miguel Montargès

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Imagerie IR VLT/NACO

- Optique adaptative
- Utilisation du lucky-imaging (cubes de 5000 poses de \sim 5 ms)
- 12 filtres à bande étroite en bandes JHKL
- Observation d'étoiles FEP pour la déconvolution (β Col and α Lyn)

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Images déconvoluées

Miguel Montargès

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Modélisation de l'étoile

Observations VLTI/VINCI

- L2 Pup observée par VLTI/VINCI début 2001
- Bande K ($\lambda = 2,0-2,4 \ \mu m$)

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Modélisation de l'étoile

Observations VLTI/VINCI

- L2 Pup observée par VLTI/VINCI début 2001
- Bande K ($\lambda = 2,0-2,4 \mu m$)

A Prise en compte de l'environnement circumstellaire

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Modélisation de l'étoile

Observations VLTI/VINCI

- L2 Pup observée par VLTI/VINCI début 2001
- Bande K ($\lambda = 2,0-2,4 \ \mu m$)
- A Prise en compte de l'environnement circumstellaire

Modèle retenu

- $\rightarrow R = 123 R_{\odot}$
- ightarrow M5III SED de la grille ATLAS

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

RADMC-3D : code de transfert radiatif Monte-Carlo

(Dullemond 2012)

Utiliser le code

- Étape 1 : grille, densités de poussières, et caractéristiques de l'étoile
- \rightarrow Étape 2 : simulation Monte-Carlo \Rightarrow température de la poussière
- \rightarrow Étape 3 : diffusion \Rightarrow image

RADMC-3D : code de transfert radiatif Monte-Carlo

(Dullemond 2012)

Utiliser le code

- Étape 1 : grille, densités de poussières, et caractéristiques de l'étoile
- ightarrow Étape 2 : simulation Monte-Carlo \Rightarrow température de la poussière
- \rightarrow Étape 3 : diffusion \Rightarrow image

Contraintes/Paramètres

- Paramètres : géométrie, lois de densité, nature des poussières
- Contraintes : morphologie, photométrie

otosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Paramètres ajustés

Géométrie du disque

$$H(r) = H_{\text{ext}} \left(\frac{r}{R_{\text{ext}}}\right)^{\alpha}$$

Densité du disque

$$\sigma^{i}(r) = \sigma^{i}_{ext} \left(\frac{r}{R_{ext}}\right)^{\beta}$$

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Paramètres ajustés

Géométrie du disque

$$H(r) = H_{\text{ext}} \left(\frac{r}{R_{\text{ext}}}\right)^{C}$$

Densité du disque

$$\sigma^{i}(r) = \sigma^{i}_{\text{ext}} \left(\frac{r}{R_{\text{ext}}}\right)^{\beta}$$

Disque (morphologie + photométrie)

- R_{int} = 6 UA
- R_{ext} = 120 UA
- $\alpha = -3,5$
- $H_{ext} = 0.8$ rad
- Inclinaison = 84°

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Paramètres ajustés

Géométrie du disque

 $H(r) = H_{\text{ext}} \left(\frac{r}{R_{\text{ext}}}\right)^{\alpha}$

Densité du disque

$$\sigma^{i}(r) = \sigma^{i}_{\text{ext}}\left(\frac{r}{R_{\text{ext}}}\right)$$

ß

Disque (morphologie + photométrie)

- R_{int} = 6 UA
- R_{ext} = 120 UA
- $\alpha = -3,5$
- $H_{ext} = 0.8$ rad
- Inclinaison = 84°

Poussière (photométrie)

- $\beta = 0.8$
- MgFeSiO₄ (Olivine)
 - $\sigma_{ext} = 7 \times 10^{-8} \text{cm}^{-2}$
 - $r_{\text{grains}} = 0.1 \,\mu\text{m}$
- MgFeSi₂O₆ (Pyroxene)

•
$$\sigma_{ext} = 1 \times 10^{-7} \text{ cm}^{-3}$$

• $r_{\text{grains}} = 0.3 \,\mu\text{m}$

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Modèle final : photométrie

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Modèle final : images

Miguel Montargès
Photosphère et enveloppe moléculaire proche des SGR	L'environnement circumstellaire de L2 Puppis	Conclusion et perspectives
000000000000000000000000000000000000000	00000000	

Bilan

 Imagerie directe d'un disque autour de la plus proche étoile AGB (Kervella, Montargès et al. 2014, A&A)

Photosphère et enveloppe moléculaire proche des SGR	L'environnement circumstellaire de L2 Puppis	Conclusion et perspectives
000000000000000000000000000000000000000	00000000	

Bilan

- Imagerie directe d'un disque autour de la plus proche étoile AGB (Kervella, Montargès et al. 2014, A&A)
- Collimation du vent stellaire ? Compagnon ?

	Photosphère et enveloppe moléculaire proche des SGR	L'environnement circumstellaire de L2 Puppis	Conclusion et perspectives
00000000000000000	000000000000000000000000000000000000000	00000000	000

Bilan

- Imagerie directe d'un disque autour de la plus proche étoile AGB (Kervella, Montargès et al. 2014, A&A)
- Collimation du vent stellaire ? Compagnon ?
- \rightarrow Progéniteur d'une future nébuleuse planétaire bipolaire?

The Ant (Mz3)

Plan

Introduction

- 2 Photosphère et enveloppe moléculaire proche des SGR
- 3 L'environnement circumstellaire de L₂ Puppis
- 4 Conclusion et perspectives

Introduction	Photosphère et enveloppe moléculaire proche des SGR	L'environnement circumstellaire de L ₂ Puppis	Conclusion et perspectives
Conclusio	n		

- Confirmation de la réalité de la convection des SGR
- + Comparaison Bételgeuse/Antarès

000000000000000000000000000000000000000			
Conclusion			

- Confirmation de la réalité de la convection des SGR
- + Comparaison Bételgeuse/Antarès
- Caractérisation de l'enveloppe moléculaire sur Bételgeuse

Introduction	Photosphère et enveloppe moléculaire proche des SGR	L'environnement circumstellaire de L ₂ Puppis	Conclusion et perspectives ●○○
<u> </u>			

Conclusion

- Confirmation de la réalité de la convection des SGR
- + Comparaison Bételgeuse/Antarès
- Caractérisation de l'enveloppe moléculaire sur Bételgeuse
- Premier suivi de l'évolution de la surface d'une étoile autre que le Soleil
- ightarrow Lien avec la perte de masse et/ou la convection ?

	Photosphère et enveloppe moléculaire proche des SGR	L'environnement circumstellaire de L2 Puppis	Conclusion et perspective
0000000000000	000000000000000000000000000000000000000	00000000	000

Conclusion

- Confirmation de la réalité de la convection des SGR
- + Comparaison Bételgeuse/Antarès
- Caractérisation de l'enveloppe moléculaire sur Bételgeuse
- Premier suivi de l'évolution de la surface d'une étoile autre que le Soleil
- ightarrow Lien avec la perte de masse et/ou la convection ?
 - Découverte d'un disque de poussière autour de L2 Puppis
- ightarrow Renforce le scénario de formation des NP bipolaires
- ightarrow Disque sculpté par un compagnon?

Introduction	

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis

Conclusion et perspectives

Perspectives

- Observations de Bételgeuse avec VLTI/PIONIER en décembre 2014
- Analyse comparative d'observations du CSE en UV (HST) et IR (VLT/NACO)
- Observations IRAM et ALMA acceptées
- $\rightarrow\,$ Poursuite de ce programme d'observation des SGR (VLT/SPHERE, VLTI/GRAVITY, VLTI/MATISSE)
- ightarrow Elargissement de l'échantillon
- ightarrow Poursuite des observations de L2 Puppis

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L2 Puppis 000000000 Conclusion et perspectives

Perspectives

- Observations de Bételgeuse avec VLTI/PIONIER en décembre 2014
- Analyse comparative d'observations du CSE en UV (HST) et IR (VLT/NACO)
- Observations IRAM et ALMA acceptées
- $\rightarrow\,$ Poursuite de ce programme d'observation des SGR (VLT/SPHERE, VLTI/GRAVITY, VLTI/MATISSE)
- ightarrow Elargissement de l'échantillon
- ightarrow Poursuite des observations de L₂ Puppis

1.34e07 5.37e07 1.22e06 2.16e06 3.38e06 4.86e06 6.61e06 8.65e06 1.09e05

Introduction

Photosphère et enveloppe moléculaire proche des SGR

L'environnement circumstellaire de L₂ Puppis

Conclusion et perspectives

Miguel Montargès