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Abstract(

(

Plankton plays a key role in the global carbon cycle. It is therefore important to project 

the evolution of plankton community structure and function in a future high-CO2 world. 

Several experimental results reported at the community level have shown increased rates of 

primary production as a function of increasing pCO2 and few multi-driver experiments have 

been performed. However, the great majority of these experiments have been performed 

under high natural or nutrient-enriched conditions and very few data are available in areas 

with naturally low levels of nutrient and chlorophyll i.e. oligotrophic areas such as the 

Mediterranean Sea, although they represent a large and expanding part of the ocean surface.  

Several approaches have been used during this thesis to investigate the effects of 

ocean warming and acidification on plankton communities in the NW Mediterranean Sea. 

One approach, restricted to the investigation of ocean acidification effects alone, was the use 

of mesocosms. In the Bay of Calvi (experiment #1; summer 2012 during 22 days), the 

community was very efficient in recycling nutrients and showed important regenerated 

production while in the Bay of Villefranche (experiment #2; winter/spring 2013 during 11 

days) the community was characterized by a more autotrophic state and larger new 

production. A third experiment was set-up to investigate the combined effects of ocean 

acidification and warming in small containers in the Bay of Villefranche (experiment #3; 

March 2012; post-bloom conditions).  

All experiments were conducted under low nutrient conditions with communities 

dominated by small species (e.g. haptophytes, cyanobacteria, chlorophytes). During the third 

experiment, biomass of populations decreased throughout the experiment (12 days), except 

cyanobacteria (mostly Synechococcus spp.) that significantly increased during that period. 

This increase was even more pronounced under elevated temperature, albeit the combination 

with elevated pCO2 tended to limit this effect. For the three experiments, ocean acidification 

alone had no effect on any of the metabolic processes, irrespective of the methods used (O2-

LD, as well as 
18

O, 
13

C and 
14

C labelling) while during the multi-driver experiment #3, ocean 

warming led to enhanced gross primary production as measured by the 
18

O labelling 

technique. Specific biomarkers, polar lipid fatty acids, were used in combination with 
13

C 

labelling to assess group primary production rates. This confirmed that ocean acidification 

alone did not favour any phytoplankton group under our experimental conditions. 

Based on our findings and on an extensive literature review, it appears that most (57 

%) of the experiments performed to date have shown no effect of ocean acidification alone 

while ocean warming seem to have an effect on plankton composition and production. 

Furthermore, plankton biomass in ecosystems dominated by small phytoplankton species 

appears insensitive to elevated CO2. It remains, for the moment, impossible based on these 

findings to provide a general concept on the effect of ocean acidification on plankton 

communities. However, it appears that ocean acidification will likely not lead to increased 

biomass and primary production rates for most communities, as it was previously anticipated. 

Furthermore, although warming will likely lead to increased primary production, it appears 

that small species with a low capacity for export will be favoured. If this proves to be a 

widespread response, plankton will not help mitigating atmospheric CO2 increase through an 

enhancement of the biological pump. 

 

Key words: ocean acidification, ocean warming, plankton community, primary 

production, oligotrophic area, Mediterranean Sea, stable isotope, mesocosm 

 



Résumé 

 

Le plancton a un rôle crucial dans le cycle du carbone. Il est donc primordial de 

projeter son évolution dans le contexte de changement climatique. Une partie des résultats 

rapportés au niveau des communautés planctoniques montrent une stimulation de la 

production primaire avec l’augmentation de concentration en CO2 et très peu d’expériences 

combinant plusieurs facteurs ont été faites. Qui plus est, les expériences ont été réalisées 

majoritairement dans des conditions naturellement élevées ou enrichies en sels nutritifs et très 

peu de données existent dans les zones naturellement pauvres en nutriments et chlorophylle a, 

c’est à dire dans les zones oligotrophes telles que la mer Méditerranée, bien que ces régions 

représentent une surface importante et en expansion de la surface de l’océan.  

Plusieurs approches ont été utilisées au cours de cette thèse pour étudier les effets du 

réchauffement et de l’acidification de l’océan sur des communautés planctoniques dans le NO 

de la Méditerranée. Une des approches, restreinte à l’effet de l’acidification seule, a été 

l’utilisation de mesocosmes. En Baie de Calvi (expérience #1; été 2012 sur 22 jours) la 

communauté étudiée présentait un efficace processus de recyclage des sels nutritifs ainsi 

qu’une production régénérée importante alors que dans le Baie de Villefranche (expérience 

#2; hiver/printemps 2013 durant 11 jours) la communauté était caractérisée plutôt par un 

système autotrophe et par une production nouvelle dominante. Une troisième expérience a été 

réalisée pour étudier les effets synergétiques de l’acidification et du réchauffement de l’océan 

(expérience #3; March 2012; post-bloom). 

 Toutes les expériences ont ainsi été menées dans des conditions de faibles 

concentrations en sels nutritifs avec des communautés dominées par des petites espèces 

phytoplanctoniques telles que des haptophytes, cynaobacteries et chlorophytes. Lors de 

l’expérience #3, toutes les populations ont décliné au cours de l’expérience (12 jours) à 

l’exception des cyanobactéries (principalement Synechococcus spp.) qui ont significativement 

augmenté durant cette période. Cette augmentation était d’autant plus prononcée dans les 

conditions de température plus élevée, bien que l’augmentation concomitante de CO2 ai eu 

tendance à limiter cet effet. Pour les trois expériences, l’acidification de l’océan seule n’a pas 

montré d’effet sur les taux métaboliques quelque soit la méthode utilisée (O2-LD, marquage 

au 
18

O, 
13

C et 
14

C) alors que durant l’expérience #3, les conditions élevées en température ont 

favorisé la production brute déterminée par la méthode de marquage 
18

O. Des biomarqueurs 

spécifiques, les acides gras des lipides polaires, utilisés de façon combinée avec du marquage 

au 
13

C a permis la détermination des productions primaires par groupe. Ceci a confirmé que 

l’acidification de l’océan seule n’a pas particuliérement favorisé un groupe phytoplanctonique 

par rapport à un autre dans nos conditions expérimentales. 

Basé sur nos résultats et sur une revue de littérature, il apparait que la plupart des 

expériences (57 % des études) réalisées jusqu’à maintenant n’ont pas montré d’influence 

notoire de l’acidification de l’océan seule sur les communautés planctoniques, alors que le 

réchauffement de l’océan semble avoir plus d’effet sur la composition et la production 

planctonique. De plus, la biomasse dans les écosystèmes dominés par des petites espèces de 

phytoplancton semble être insensible à l’augmentation de CO2. A l’heure actuelle, il est 

impossible, basé sur ces résultats, de fournir un concept général de l’effet de l’acidification de 

l’océan sur les communautés planctoniques. Cependant il semble que l’acidification 

n’augmentera pas la biomasse et la production primaire pour la majorité des communautés. 

Qui plus est, bien que le réchauffement de l’ocean pourrait augmenter la production primaire, 

il semble que les petites expèces présentant de faibles capacités d’export pourraient être 

favorisées. Si cela s’avére être une réponse générale, le plancton pourrait ne pas participer à 

l’atténuation de l’augmentation de CO2 atmosphérique par une plus forte pompe biologique. 

Mot-clés: acidification de l’océan, réchauffement de l’océan, communauté 

planctonique, production primaire, mer Méditerranée, isotope stable, mesocosme 
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1. The Anthropocene 

A working group of researchers of the International Union of Geological Science  

(IUGS) is preparing to release a report in 2016 to state whether the Earth has entered a new 

geological era called the Anthropocene (from anthrôpos ‘human’ and kainos ‘recent’) and, if 

so, when this new era was reached (Crutzen and Stoermer, 2000). Simultaneously, the 

Intergovernmental Panel on Climate Change (IPCC) has produced a fifth report on climate 

change. The conclusions of this report are clear: human activities are responsible for 

environmental perturbations caused by carbon dioxide (CO2) and other greenhouse gases. 

Furthermore, it states that emissions at an unprecedented rate are transgressing planetary 

boundaries for the safety of humanity (Rockstöm et al., 2009).  

The definition of the Anthropocene or anthropogenic global change (i.e. changes 

related to human activities) cover several aspects such as land use changes, deforestation or 

changes in biogeochemical cycles such as nitrogen cycle but also expansion of mankind in 

number and exploitation of Earth’s resources (Crutzen and Stoermer, 2000). However, all 

those aspects of the Anthropocene cannot be presented in details in this Introduction. Here 

two aspects of the effect of human activities are emphasized and are specifically related to 

excessive CO2 emissions by human activities in the atmosphere and affecting the ocean. 

Indeed, since the industrial revolution, human activities release significant amounts of 

CO2 to the atmosphere through burning of fossil fuel and land use changes (Figure I-1a) 

leading to atmospheric and ocean warming (Figure I-1b; Levitus et al., 2001). Depending on 

human's development and behaviour, different CO2 emission scenarios can be made and an 

increase of 0.6 to 5 °C in the ocean for 2100 have been established through several models, 

although projections are difficult due to regional and temporal (from daily to inter-annual) 

variability. 

Besides ocean warming by heat transfer, the ocean absorbs about 25% of the CO2 

emissions (Le Quéré et al., 2013). Carbon dioxide, as other gases, exchanges with its 

dissolved form at the ocean surface forming carbonic acid (H2CO3), a weak acid that rapidly 

dissociates to bicarbonate ions (HCO3
-
), carbonate ions (CO3

2-
) and protons (H

+
; Figure I-2). 

The sum of seawater CO2, HCO3
-
 and CO3

2-
, is termed dissolved inorganic carbon (CT). 
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Figure I-1. Last fifty years global climate change indicators a) continuous atmospheric CO2 

concentration increase from the time series of Mauna Loa (Hawaii) in red and South Pole in 

black and CMIP5 model for 1950 to 2100 using different Representative Concentration 

Pathways (RCP) with historical data (black line) and coloured lines different RCPs (see 

legend in figure) for b) global sea surface temperature and c) global mean ocean surface pH 

decrease. Modified from IPCC 2013 report: a) Summary for Policymarkers (Figure SPM 4); 

b) Chapter 11 (Figure 11.19) and c) Summary for Policymarkers (Figure SPM 7). 
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Figure I-2. Atmosphere-Ocean CO2 exchanges and carbonate chemistry equilibrium. Source: 

Rokitta (2012). 

 

 

 

These chemical species are at equilibrium under specific conditions of temperature, 

salinity and pressure. A change in pH or CO2 alters the speciation and preponderance of the 

different elements.  At present seawater pH (~8.1 pH units on the total scale), the major part 

of CT is present in bicarbonate form (91%; Figure I-3). Due to the increase in atmospheric 

CO2 partial pressure (pCO2), more CO2 is dissolved into the ocean, increasing the 

concentration of CT, CO2, HCO3
-
 and H

+
 and decreasing the concentrations of CO3

2-
 and pH. 

This process is known as ‘ocean acidification’ (OA; Doney et al., 2009, Gattuso and Hansson, 

2011). It is estimated that pH of surface waters has decreased by 0.1 pH units since 1900 and 

that it will decrease by an additional 0.06 to 0.34 pH units by 2100 depending on the CO2 

emission scenario considered (IPCC, 2013 in Chapter 3; Figure I-1c). CO2 dissolution in the 

ocean is sensitive to temperature, dissolution being larger in cold than in warm waters, thus 

future ocean warming will decrease the capacity of the oceans to store CO2.  
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Figure I-3. Bjerrum plot (temperature = 20 °C, salinity = 32) showing the distribution in 

percentage of total dissolved inorganic carbon (CT) of the different species as a function of pH 

in total scale (pHT). Vertical line is the present ocean pHT and dashed line is pHT expected for 

the end of the century (~ -0.35 pH unit) showing the shift towards more bicarbonate (HCO3
-
) 

and CO2 and less carbonate (CO3
2-

). Modified from Rokitta (2012). 

 

 

The rapid flow of publications on OA prompted the compilation of an expert survey 

by Gattuso et al. (2012) which assessed the current knowledge and confidence level for 

several statements regarding ocean acidification and its effect on the ocean. While the 

chemical process of ocean acidification is very well documented leading to very high levels of 

confidence, the biological and biogeochemical responses are associated with much lower 

confidence levels. It appears that there is a lack of knowledge regarding the response of the 

plankton community to ocean acidification in various regions of the ocean, especially in 

the context of a concomitant warming (multi-stressors studies). 
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2. Carbon pump 

The ocean is the largest active reservoir of carbon on Earth and absorbs about 2.6 ± 0.5 Pg 

C yr
-1

 (Le Quéré et al., 2013). Carbon uptake is controlled by two mechanisms: the solubility 

and biological pumps (Figure I-4). The solubility pump is the process mentioned above: CO2 

dissolves in the ocean and is sequestered to the ocean interior by water masses sinking at high 

latitudes. The biological pump is the transport of organic matter from the surface to the deep 

sea. It is considered that about 50% of the global Earth primary production occurs in the 

ocean (Field et al., 1998), despite the fact that it represents less than 1% of the global 

photosynthetic biomass (Antoine et al., 1996; Behrenfeld and Falkowski, 1997). Oceanic 

primary production has, therefore, a key role in carbon cycle and climate regulation.  

 

The majority of carbon fixation in the surface layer is performed by pelagic 

phytoplankton, which uses CO2 and converts it to organic matter (OM) through 

photosynthesis (~50 PgC yr
-1

; Field et al., 1998). This reaction is powered by light and 

requires nutrients (nitrogen and phosphate being the main macro-nutrients), following the 

simplified photosynthetic reaction:  

Nutrients + light + CO2,aq + H2O -> O2 + CH2O 

In addition, the production of calcareous structures by many planktonic or benthic species in 

the ocean counteracts the CO2 sequestration during photosynthesis and calcium carbonate 

production represent about 0.8-1.4 PgCaCO3 yr
-1

 (Feely et al., 2004). Indeed, calcifying 

organisms use bicarbonate ions to build their skeleton and the production of calcium 

carbonate releases CO2: 

Ca
2+

 + 2 HCO3
-
 -> CaCO3 + H2O + CO2

 

The organic matter produced in the surface layers can be exported to the deep sea. However, 

heterotrophs (e.g. bacteria, flagellates) remineralise this OM in surface layers through 

respiration, consuming O2 and releasing CO2 back to seawater. Although most of the 

community respiration is due to bacteria, it must be stressed that part of the respiration is 

realised by autotrophs during both light and dark periods. It has been estimated that about 

70% of the OM produced in the mixed layer is recycled while 30% is exported to the deep sea 

(Falkowski et al., 1998) where it is partially remineralised by bacteria. Finally, only 1-3% of 

the OM produced in the surface layer is definitely buried in the sediments (De La Rocha and 

Passow, 2007) while approximately 13-30% of the CaCO3 produced is ultimately stored in 

the sediment (Feely et al., 2004; Sarmiento and Gruber, 2006). 
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Figure I-4. Representation of the solubility pump, the biological pump and carbonate pump. 

From Rokitta (2012). 

The surface ocean is not homogeneous in terms CO2 exchanges with the atmosphere. The 

solubility capacity depends on the ocean surface temperature as CO2 dissolves more in cold 

than warm waters. In addition, the potential for carbon sequestration also depends on the 

metabolic status of the plankton community in the surface mixed layer, controlled by the 

balance between community gross primary production (GPP) and respiration (CR), i.e. the net 

community production (NCP) defined as the production of organic matter after it has been 

respired by all plankton communities (NCP = GPP – CR, if CR is expressed as a positive 

process). An ecosystem is autotrophic, and potentially a CO2 sink for the atmosphere, when 

GPP exceeds CR (NCP > 0). Conversely, in a heterotrophic system, CR exceeds GPP (NCP < 

0) with potentially a source of CO2 for the atmosphere. Primary production and respiration 

can push ecosystems towards being CO2 sinks or sources. However, the ecosystem 

metabolic state does not always imply a air-sea CO2 flux as it depends on the CO2 

partial pressure at the air-sea interface (Gattuso et al., 1998).  
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The capacity for producing organic matter in the surface layer depends on environmental 

conditions such as temperature, water-column structure (mixed vs. stratified), irradiance and 

nutrient availability. In the classical plankton food-web, described as the production of 

phytoplankton species grazed by zooplankton which are subsequently consumed by higher 

trophic levels, high nutrient concentrations are required. In addition to this food web, the 

microbial loop describes the use of dissolved organic carbon (DOC) released by 

phytoplankton (about 10-15 % of the particulate primary production; Baines and Pace, 1991) 

and zooplankton, as a substrate for bacterial growth and leading to the recycling of nutrients. 

Classic food-web and microbial loop exist as a continuum of trophic structure and the 

predominance of one path relative to the other depends on the nutrient availability (Legendre 

and Rassoulzadegan, 1995) that also influence the metabolic balance of the ecosystem. The 

remineralisation by bacteria is also subject to temperature control by an inverse function 

(Rivkin and Legendre, 2001) and therefore influences scope for carbon export to the deep-sea. 

Finally, the capacity for carbon sink also depends on the phytoplankton community 

composition as phytoplankton species with calcium carbonate (e.g. coccolithophores) or 

silicate (e.g. diatoms) structures have better ballast properties and are fast-sinking particles 

(Klaas and Archer, 2002). 

 

3. The evolution of plankton community in the Anthropocene 

The ongoing environmental perturbations such as ocean acidification and warming 

could have profound effects on the functioning of plankton community.  As a result, the 

strength of the biological pump could be affected, thereby altering the carbon storage capacity 

of the ocean   

3.1 Effect of ocean warming 

Temperature exerts a positive effect on phytoplankton metabolic rates as observed in 

laboratory culture (Eppley, 1972) and at sea (Regaudie-de-Gioux and Duarte, 2012), although 

a recent study suggests that phytoplankton carbon-specific production rates mostly depend on 

nutrient supply rather than on temperature (Marañon et al., 2014). However, photosynthesis 

and respiration exhibit different sensitivities to temperature. Phytoplankton growth and 

photosynthesis are less affected by a temperature increase (irradiance and nutrient availability 

exert tighter controls) than bacterial and heterotrophic respiration (López-Urrutia et al., 2006). 



Chapter I-Introduction to the plankton community in the Anthropocene 

 

 8 

Thus, warmer conditions should increase respiration and therefore altering carbon cycling by 

promoting heterotrophy.  

However, experimental evidence for this process is still missing and contradictory 

results have been reported. For instance, in Kiel Fjord (Germany) the effect of temperature 

has been investigated during two mesocosm experiments. During the first experiment, 

enhanced respiration was measured in warmer treatments, diminishing the CT drawdown. 

Additionally, a shift toward a larger accumulation of dissolved organic carbon (DOC) 

(Wohlers et al., 2009) and higher C:N ratio of the dissolved organic matter (DOM) in warmer 

treatments (Engel et al., 2011) were found. In contrast, in the second experiment, CT uptake as 

well as particulate organic carbon (POC) and DOC increased in the warmer treatments 

(Taucher et al., 2012). The differences in CT drawdown during these two experiments were 

attributed to the different species of diatoms present in the community (Skeletonema costatum 

vs. Dactyliosolen fragilissimus), but could also be due to differing irradiance and temperature 

levels.  

Plankton species have different metabolic thermal optima and a rapid change of 

average temperature could cause shifts in the community structure with some species 

benefiting from warmer conditions and adapting better than others (Lürling et al., 2013). 

Mesocosms and in situ data show that small species are favoured under warmer conditions 

(Sommer and Lengfellner, 2008; Morán et al., 2010; Peter and Sommer, 2012; Daufresne et 

al., 2009). This would have consequences on carbon export efficiency, as some phytoplankton 

species (e.g. diatoms and coccolithophores) have better ballasting properties than others. In 

addition, not all phytoplankton have the same food quality (lipids content and stoichiometric 

ratios) and therefore energy transfer capacity to higher trophic levels (zooplankton, fishes) 

differs (Dickman et al., 2008) with, for example, diatoms (large species) presenting better 

food quality than cyanobacteria (Müller-Navarra et al., 2000).  

A full understanding of the effect of ocean warming on the plankton community, 

requires to consider both the direct effect of increased temperature on metabolic rates, and the 

indirect effect due to nutrient depletion in surface layers, as well as increased irradiance at 

high latitudes, caused by stronger stratification (Behrenfeld et al., 2006; Lewandowska et al., 

2014). Indeed, satellite observations reported a decline of ~ 1% of the global median per year 

in surface plankton biomass during the last decade (Boyce et al., 2010). However, faster 

nutrient remineralisation by bacteria could offset the decrease in phytoplankton biomass by 

earlier bacterial activity peak after phytoplankton bloom, that tighten the coupling between 

phytoplankton and bacteria (Hoppe et al., 2008). Temperature is recognized as a major 
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parameter controlling plankton community structure and dynamics and there are still 

uncertainties on how the plankton community will evolve in the future warmer ocean. 

Finally, it is very likely that, as the efficiency of the carbon pump and its evolution in a 

warmer ocean seems to be closely related to nutrient regime and community 

composition (Boyce et al., 2010; Taucher and Oschlies, 2011), important regional 

variations will be observed in the coming decades.  

3.2 Effect of ocean acidification 

Higher levels of CO2 in seawater lead to an ocean acidification, an environmental 

perturbation that could also affect phytoplankton metabolism. Phytoplankton acquires 

dissolved inorganic carbon to produce organic matter, using CO2 as a substrate for 

photosynthesis despite the low affinity for CO2 of rubilose-1,5-bisphosphate carboxylase 

oxygenase (RuBisCO), a key enzyme involved in photosynthetic carbon fixation (Raven and 

Johnston, 1991) and limited diffusion capacities of CO2 in water. To overcome these 

limitations, marine phytoplankton have developed carbon concentrating mechanisms (CCMs; 

Giordano et al., 2005) to raise CO2 concentrations in the vicinity of RuBisCO involving 

carbonic anhydrase activities or bicarbonate transport through the cell for example 

(Reinfelder, 2011). An increase in CO2 would increase the diffusion of CO2 in the cells and 

may therefore benefit primary producers by lowering the energy cost of carbon acquisition, 

increasing CO2 diffusion through the cell membranes (Raven et al., 2005) and reducing CO2 

leakage (Rost et al., 2006). Different CCMs have been developed by phytoplankton species 

varying within and among groups, it is therefore expected that organisms will be differently 

affected by CO2 increase, potentially causing shifts in the plankton community composition 

(e.g. Rost et al., 2008).  

 

3.2.1. Single cells cultures 

The majority of early laboratory experiments performed on single species have shown 

enhanced carbon fixation (e.g. Buitenhuis et al., 1999; see Riebesell and Tortell, 2011 for 

comprehensive review on this section) however some species, such as coccolithophore 

strains, have shown a neutral (e.g. Langer et al., 2006) or inhibitive effect under nitrate 

limitation (e.g. Sciandra et al., 2003). Coccolithophores have been more studied than other 

species for the impact of ocean acidification on calcification, with decreases in calcification 

rates (e.g. Riebesell et al., 2000) observed in most of the studies, although contradictory 

results showing neutral or enhanced calcification have also been reported (e.g. Iglesias-



Chapter I-Introduction to the plankton community in the Anthropocene 

 

 10 

Rodriguez et al., 2008). Differences in the strains used have been shown to be critical and 

repetitions of experiments on some strains have not always led to the same results (see 

Riebesell and Tortell, 2011 for details).  

 

3.2.2. Community studies 

The contradictory results obtained at the species level indicated that extrapolation 

from monocultures to assemblages is not straightforward. The investigation of the effect of 

ocean acidification at community level is therefore necessary.  

Initial experimental work at the community level has reported an increase (~ 15 %) of 

14
C fixation under high pCO2 conditions (Hein and Sand-Jensen, 1997) in the South Atlantic 

Ocean. The first large mesocosm experiments (> 10 m
3
) performed in the North Sea (PeECE 

2001, 2003 and 2005) have shown different responses. Only one of these three experiments 

have shown an increase in primary production under high pCO2 conditions (Egge et al., 2009) 

while no change in primary production was found in the first and second experiments (Delille 

et al., 2005 for PeECE I; unpublished data for PeECE II, see Egge et al., 2009). Other 

experiments carried out in different oceanic regions, with different incubation volume, have 

led to increased primary production (e.g. Tortell et al., 2008) or to no effect (e.g. Tortell et al., 

2002; Yoshimura et al., 2013). The recent Svalbard mesocosm experiment showed no clear 

trend in net community production and community respiration over the whole period 

(Silyakova et al., 2013; Tanaka et al., 2013), but found decreased NCP when considering only 

the post-bloom period. However, 
14

C carbon fixation increased with increasing pCO2 levels 

(Engel et al., 2013). In this experiment, the community response was not straightforward and 

possibly related to the change in community composition over the different phases (before 

and after nutrient addition). However, the different methods for measuring primary 

production did not show the same results, so the conclusions of this experiment should be 

regarded with caution, although they reveal the complexity of the community metabolic 

response to ocean acidification under different physiological states conditioned by nutrient 

availability.  

It is thought that species with less efficient CCMs under present day CO2 

concentrations should benefit more from increased CO2, while species with efficient CCMs 

should be less affected (Rost et al., 2008; Low-Décarie et al., 2014). Studies focusing on the 

effect of increased pCO2 on community composition have also shown some contradictory 

results, with either a shift towards more diatoms (Tortell et al., 2002; 2008), towards less 

silicified species and smaller species, or no change (e.g. Nielsen et al., 2012; Yoshimura et al., 
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2013). In addition, Yoshimura et al. (2013) investigated the ocean acidification response at 

two sites in the North Pacific. In the Bering Sea, a decrease in dissolved organic carbon 

production at high pCO2 was found, while at the second site in the Pacific no CO2 effect was 

found, probably due to different community compositions. 

The results and findings of the experiments performed in close-to-in-situ conditions 

(mesocosms or on-deck bottle incubations) have generated contradictory and ambiguous 

responses, failing to establish consistent responses to ocean acidification. The first hypothesis 

of enhanced primary production under ocean acidification, due to higher CO2 substrate 

availability, has been challenged in the last few years as more experiments have been 

performed. It seems that the response of the plankton community to ocean acidification 

depends on the oceanic provinces, nutrient conditions, community composition and 

other unidentified processes (e.g. grazing).  

3.3 Combined effects of warming and acidification 

Ocean acidification and ocean warming (OW) will occur concomitantly and the 

interactive effects of both factors must be taken into consideration. Only few studies have 

reported their combined effects on plankton community. In the Bering Sea, an increase in 

carbon fixation under warmer conditions irrespective of pCO2 level with a shift toward 

smaller nanophytoplankton species was measured (Hare et al., 2007) and a similar experiment 

led to the same conclusions in the North Atlantic Ocean (Feng et al., 2009). Both experiments 

suggest a greater influence of temperature compared to pCO2, with some interactive effects. 

An increase in carbon fixation under combined OA and OW was observed in mesocosm 

experiments (Kim et al., 2013) where, despite no change in the POC concentrations, enhanced 

DOC production at high temperature and/or CO2 treatments (Kim et al., 2011) was measured. 

The bacterioplankton community structure has also been investigated under combined OA 

and OW using mesocosms (Lindh et al., 2013). OA alone had a limited impact, while 

temperature was the major driver causing shifts in species composition and synergistic effect 

of both factors might increase the species selection, highlighting the need to perform studies 

combining the two stressors. There is a distinct lack of studies on the combined effect of 

OA and OW, despite it is important to know the possible interactions between these 

stressors and to know which driver could have the greatest impact on the plankton 

community in order to have realistic projections models.  
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Figure I-5. Map showing locations of experiments on ocean acidification (OA; black points) or ocean acidification and warming (OA + OW; red 

triangles) effects on the plankton community undertaken from 1990 to 2014. The black line represents transect from Hein and Sand-Jensen 

(1997). The grey point offshore the north-west African coast was an experiment performed in January 2014 in Canary Islands which will be rerun 

in winter 2014 by KOSMOS team (Kiel, Germany). The grey circles in the Arctic and Antarctic are the cruises of the Sea Surface consortium 

UKOA performed in 2011 and 2012 that are currently unpublished. The black circle is also from the UKOA cruise of June-July 2011, which will 

be published in a special issue of Biogeosciences. The black point in the Bermuda area was a study with a community dominated by 

cyanobacteria (Synechococcus and Prochlorococcus). Map source: Wikimedia commons. 

?"
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4. Oligotrophic areas under anthropogenic perturbation 

Most of the experiments discussed in the previous section were performed in relatively 

eutrophic conditions or with nutrient addition during the experiment and were mainly carried 

out in relatively cold waters (Figure I-5). However, there is an important diversity of oceanic 

provinces (Longhurst et al., 1995), from the less productive areas (ultra-oligotrophic) to very 

productive areas (eutrophic). About 50 % of primary production on Earth takes place in the 

ocean although more than 60 % of its surface being associated with low productivity, termed 

oligotrophic areas. A decreased nutrient availability and expansion of low productive 

regions are projected in a high CO2 world, as enhanced thermal stratification is 

expected to lead to surface layer nutrient depletion (Polovina et al., 2008; Irwin and 

Oliver, 2009).  

Although it is important to assess the capacity of oligotrophic provinces for carbon 

uptake, and further storage, and its evolution under climate change, their trophic state (i.e. 

auto- vs heterotrophy) is still under debate (Ducklow and Doney, 2013), as to whether these 

areas are autotrophic (Williams et al., 2013) or heterotrophic (Duarte et al., 2013). As 

reviewed in the previous section, the effects of OA and/or OW on metabolic processes are 

still poorly understood and the biological response to climate change seems to be conditioned 

by the ecosystem conditions, e.g. nutrient availability, community composition. Therefore, the 

different biological responses in different oceanic regions must be investigated in order to 

gain a better understanding on the response of the global ocean to future environmental 

conditions. However, oligotrophic areas have been chronically under sampled with 

respect to the effect of climate change.  

 

Case study: The Mediterranean Sea 

The Mediterranean Sea (MS) is considered as an oligotrophic area exhibiting a gradient 

from mesotrophic (western basin) to ultra-oligotrophic (eastern basin). It is semi-enclosed, 

warm, deep and presents higher salinity and total alkalinity levels than in the open ocean. 

Mediterranean waters can, therefore, absorb more CO2 than the open ocean waters. The 

western and eastern basins differ in their carbonate chemistry; the western basin exhibits a 

lower total alkalinity than the eastern basin and the opposite pattern is seen for CT (higher CT 

in the western than in the eastern basin). Based on satellite observations, it is estimated that 

the MS, as a whole, acts as a small sink of CO2 (0.24 Gt C yr
-1

), with the western basin acting 
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as a sink (8.94 Gt C yr
-1

) and the eastern basin as a source (8.4 Gt C yr
-1

; D’Ortenzio et al., 

2008).  

It has been suggested that the MS shifted from a source of CO2 (0.62 Gt C yr
-1

) in 1960 to 

a sink (-1.98 Gt C yr
-1

) in 1990, but this was not accompanied by a significant decrease in pH 

using a surface layer box model couple with datasets available (Louanchi et al., 2009). 

However using data collected at the DYFAMED site, changes in surface water carbonate 

chemistry in the western basin were estimated and these suggest that pH has decreased by 

0.15 pH units since the industrial revolution (Touratier and Goyet, 2011). It has been 

predicted that a decrease by another 0.3 to 0.4 pH units will occur for the end of the century in 

the Northwestern MS (Geri et al., 2014). From time series (1975-2004) located in the NW 

Mediterranean sea it has been estimated that temperature increased during this period with a 

rate of 0.026 to 0.033 °C yr
-1 

(Bensoussan et al. 2009). Using satellite observations it has been 

estimated that surface temperature in the MS has increased by 0.03 to 0.05 °C yr
-1

 in the 

western and eastern basins respectively corresponding to an increase of 0.66 and 1.1 °C over 

the time considered (1985-2006) and with noticeable seasonal variability (Nykjaer, 2009). 

This sea surface temperature increase rate was also found for the period 1982-2012 and 

CMIP5 projections predicted a further increase of 2.6 °C for 2100 for the worst case scenario 

(RCP 8.5; Shaltout and Omstedt, 2014), with significant seasonal and spatial variability. 

Experiments on the effects of climate change on the Mediterranean plankton community 

are very scarce. On the western French coast, the mesocosm facilities of the Mediterranean 

platform for Marine Ecosystems Experimental Research (MEDIMEER) have set up a 

mesocosm facility in the Thau lagoon, that was used to carry out the first studies on the effect 

of environmental perturbation on plankton community. So far, the experiments mainly 

focused on the effects of increased nutrients, irradiance and temperature rather than ocean 

acidification effect. Vidussi et al. (2011) and Fouilland et al. (2013) showed that temperature 

had a greater effect than irradiance, increasing the abundance of ciliates and flagellates and 

decreasing the abundance of bacteria and copepods. The effects of the temperature increase 

on the community structure was accompanied by enhanced autotrophic processes that suggest 

a strengthening of the carbon pump under warmer conditions. These results cannot be 

extrapolated to the rest of the Mediterranean Sea because coastal lagoons have distinct 

environmental characteristics as well as different community compositions than open sea 

oligotrophic areas.   

Currently, the best approximations on the effects of climate change on plankton 

community arise from time series of in situ and satellite observations, causing difficulty in 
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identifying which environmental parameter causes the biological modification. In the Bay of 

Calvi (Corsica, France), a decrease in biomass from 1979 to 1998 was detected (Goffart et al., 

2002) and was associated to changes in nutrient concentrations resulting from reduced winter 

mixing. A shift toward smaller species (picoplankton and nanoflagellates) and a decline of 

diatoms, associated with more regenerated production and increased primary production per 

unit of chlorophyll, have been suggested and linked to increased cyanobacteria abundance at 

DYFAMED site in the Ligurian Sea (Marty and Chiavérini, 2002). Shifts in species 

assemblages and phenology, and decreased richness of the dinoflagellate Ceratium, have been 

linked to ocean warming based on time series and historical data (Tunin-Ley et al., 2009). 

To date, and to the best of our knowledge, there has not been any reported 

experiments on the combined effects of ocean acidification and/or warming on the 

Mediterranean plankton community, despite the fact that the MS reacts rapidly to 

external perturbations.  

 

5. Objectives and experimental approaches followed in this thesis 

This work investigates the effects of ocean acidification and warming on the plankton 

community of the Northwestern Mediterranean Sea focusing on several major questions: 

 What is the effect of ocean acidification on the metabolic rates of a plankton 

community maintained in close-to-natural conditions? 

 Which groups benefit or are negatively affected by ocean acidification? 

 What is the effect of ocean acidification and warming on plankton community 

structure and functioning? 

To assess these questions, different approaches have been used in terms of experimental 

set-up (bottle incubations vs. mesocosms) and metabolic rate measurement methods (O2 light-

dark, 
14

C and 
18

O labelling). Moreover, a relatively novel approach based of 
13

C labelling 

coupled with biomarker analyses has been used in order to trace carbon flow between the 

different compartments of the community and to estimate specific-carbon fixation rates. 
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Outline of the thesis 

The chapters correspond to the different questions and approaches used (Figure I-6). 

Chapter II discusses the effects of ocean acidification on metabolic rates measured using 

different methods during two mesocosm experiments performed in the NW Mediterranean 

Sea. During the same experiments, a 
13

C labelling study was undertaken to investigate group-

specific responses to ocean acidification, the results of which are reported in chapter III. In 

chapter IV, the effects of ocean acidification and warming on a post-bloom community were 

studied in smaller volumes. Chapter V synthesizes the results of all three studies and 

discusses them in a more general context.  

 

 

Figure I-6. Diagram presenting the objective of the thesis. 
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1. Context of mesocosm experiments  

In the frame of the MedSeA project (7
th

 framework European project; http://medsea-

project.eu), two mesocosm experiments were performed in the Northwestern Mediterranean 

Sea. These experiments were coordinated by the “Laboratoire d’Océanographie de 

Villefranche” (LOV-UMR 7093) in June-July 2012 in the Bay of Calvi (STARESO station, 

Corsica, France) and in February-March 2013 in the Bay of Villefranche (LOV, France). The 

mesocosm facilities were developed at LOV in the frame of the DUNE project 

(http://www.obs-vlfr.fr/LOV/DUNE/index.html) and were designed to avoid any 

contamination (e.g. metals) from the structures (Guieu et al., 2010).  

The mesocosm set-up and general conditions will be fully described in Gazeau et al. 

(in prep, a). However, for clarity, we will briefly provide here some informations on the 

experimental set-up, study sites, as well as main results concerning hydrological conditions 

(temperature and salinity), carbonate chemistry and pigments. These data will introduce the 

results on plankton metabolism (Chapter II.2) and stable isotope analysis coupled with 

biomarkers (Chapter III.2).  

 

1.1 Mesocosms acidification and sampling 

For both experiments, a pCO2 gradient approach has been chosen with 3 controls and 

6 mesocosms with increasing pCO2 levels. The gradient approach, has been preferred to the 

replicated ANOVA approach because of the restricted number of mesocosms and the high 

probability to lose one of the replicates making statistical analyses impossible. Furthermore, 

the gradient approach allows the study of the community response to various pCO2 levels in 

order to evaluate any non-linear impacts and potentially identify tipping points (Barry et al., 

2010).  

To acidify the mesocosms, seawater was pumped, sieved through 5 mm to remove 

large organisms, and stored in a clean tank for acidification by bubbling CO2 gas until 

complete saturation (pH < 5). A determined volume of CO2 saturated seawater was then 

added to each “high-CO2 perturbation” mesocosm over the 12 m depth with a diffusing 

system. The volume to add was determined using the “pmix” function of the Seacarb R 

package (Lavigne et al., 2014). The pH of the “perturbation” mesocosms was gradually 

decreased over a period of 4 days. The mesocosms were referred to as C1 to C3 for the 
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controls and P1 to P6 for the “perturbation” mesocosms, with increasing pCO2 levels. At both 

sites, three groups (clusters) of three mesocosms were installed and each cluster was 

composed of a control, medium and high CO2 level mesocosm (cluster K1: C1, P1, P4; 

cluster K2: C2, P2, P5; cluster K3: C3, P3 and P6; Figure II-1). 

 

 

Figure II-1. Mesocosms deployed in the Bay of Calvi showing the different clusters and 

mesocosms (see text for more details). The platforms used to sample the mesocosms are also 

visible. Incubations for processes measurements (metabolic rates, nitrogen fixation, etc…) 

were suspended below the incubation line at the depth of mean irradiance in the mesocosms 

(~6 m in the Bay of Calvi and ~4 m in the Bay of Villefranche).  

 

The sampling in the mesocosms started at the end of the acidification period (referred 

to as d0). Three, integrated 5 L water-samplers (Hydro-Bios) were used (one by cluster) to 

sample the water column from 0 to 10 m in each mesocosm, as well as outside the mesocosms 

(OUT) for some parameters. The sampled water was then transferred to subsampling bottles, 

specific to each measured parameter/process and brought to the laboratory. Samples for core 

parameters were taken on a daily basis at 8:30 am (local time). Every 2 days, additional 

parameters were sampled at 10:00 am and samples for metabolic process determination (e.g. 

nitrogen fixation, O2 metabolism, bacterial production, etc) were taken every other day before 

sunrise, i.e. 4:00 am in the Bay of Calvi (BC) and 5:00 am in the Bay of Villefranche (BV). 

CTD, fluorometry, dissolved oxygen and PAR profiles from 0 to 10 m were performed daily 

(at midday in BC and at 10:00 am in BV), by means of a SBE19plusv2. Following the 

protocol of Czerny et al. (2013a), N2O gas was added in one mesocosm to estimate air-sea gas 

Incubation line Sampling platforms Cluster K1 (C1, P1, P4) 

Cluster K2 (C2, P2, P5) Cluster K3 (C3, P3, P6) 
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transfer velocities, under the assumption that this gas is not influenced by biological activity. 

Mesocosm volume was estimated, for calculation of the elemental budgets by adding a known 

amount of seawater saturated with sodium chloride (NaCl) (Czerny et al., 2013b). 

 

Pigment concentrations were used with CHEMTAX for determination of 

phytoplankton groups that are reported in the next sections. This analysis was performed 

using an input matrix adapted to the Mediterranean Sea (Rodriguez et al., 2006; Not et al., 

2007). The carbonate chemistry was calculated using Seacarb package based on measurement 

of alkalinity (AT), dissolved inorganic carbon (CT), salinity and temperature. The other 

parameters reported here, are from personal communications: J. Louis (LOV, France) for 

nutrient levels, P. Pitta (HCMR, Greece) for flow cytometry data in the Bay of Calvi and from 

M.-L. Pedrotti (LOV, France) in the Bay of Villefranche, and V. Taillandier (LOV, France) 

for CTD data. The following section reports solely on parameters that are relevant for 

understanding the results of this thesis (i.e. metabolic rates and stable isotopes coupled with 

biomarkers) and interpretation of these results is based on discussion with other scientists 

involved in the experiments.    

 

1.2 Main results of Corsica mesocosm experiment 

The Corsican coast is isolated from more productive waters at the centre of the 

Ligurian Sea, due to the uplift of the Ligurian Current along the coastal area (Figure II-2). The 

Bay of Calvi (NW Corsica, France; Figure II-2) was chosen as being typical of the 

oligotrophic conditions of low nutrient and low chlorophyll (LNLC) levels. Furthermore, the 

site “Pointe de la Revelatta”, where mesocosms were moored, is a protected area 

(http://www.conservatoire-du-littoral.fr) with restricted car access, few constructions and no 

river discharge. All these conditions make the site characteristic of clean oligotrophic areas, 

representative of offshore waters.  

In June and July 2012, the construction and installation of the nine mesocosms took 

place from June 4
th

 to 19
th

. The acidification period took 4 days and sampling started on June 

24
th

. The experiment lasted 22 days (until July 16
th

). However, due to high wind speeds, 

sampling could not be done at the end of the experiment (June 15
th

) and the last sampling day 

considered for data analysis is July 14
th

 (i.e. 20 day experimental period).  
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Figure II-2. Localisation of the study sites. Upper map: general view of the area with 

hydrological features. Lower left map: the Bay of Calvi and localisation of Stareso marine 

station, mesocosms were moored in front of the station by 20 m depth. Lower right map: the 

Bay of Villefranche with localisation of the Laboratoire d’Océanographie de Villefranche 

(LOV) and Point B time series, mesocosms were moored at 20 m depth in front of LOV. 

Source: upper panel from Goffart et al. (2002); lower left from Jadot et al. (2002); lower right 

from Gomez and Gorsky (1998). 
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The pH and pCO2 evolutions over the experimental period are presented in Figure II-

3. The natural decrease in pCO2 in the high-CO2 mesocosms was due to sea-air exchange. The 

different mesocosms were, from the beginning to the end of the experiment, clearly separated 

in terms of pH, except P4, P5 and P6 at the end of the experiment that tended to be similar in 

term of pH and pCO2. Initial and final dissolved inorganic carbon (CT) and alkalinity (AT) 

concentrations are presented in Table II-1. As expected, AT did not differ between mesocosms 

but increased over time by ca. 20 µmol kg
-1

, following the general, increasing trend of 

salinity. At the end of the experiment, salinity was higher inside than outside the mesocosms 

due to evaporation. Temperature increased over the experiment, similarly to conditions 

outside the mesocosms (from 21.5 °C to 24.2 °C). CTD profiles show a homogeneous water 

column most of the days, except from days 5 to 8 where a thermal stratification occurred in all 

mesocosms and was also observed in the bay (Figure II-4a).  

 

Tableau II-1. Initial and final concentrations of dissolved inorganic carbon (CT) and total 

alkalinity (AT) in µmol kg
-1

 as mean integrated value over the 10 m depth in the nine 

mesocosms deployed in the Bay of Calvi in June/July 2012 (see text for more details). 

Concentrations measured in the bay (outside mesocosms; OUT) are also presented. 

 OUT C1 C2 C3 P1 P2 P3 P4 P5 P6 

CT            

initial 2225 2231 2227 2224 2282 2320 2335 2364 2408 2428 

final 2232 2220 2229 2226 2261 2285 2304 2330 2326 2329 

AT           

initial 2532 2529 2530 2428 2527 2529 2529 2530 2529 2530 

final 2544 2548 2549 2544 2550 2549 2552 2548 2446 2554 

 

 

 

 

 



Chapter II-Ocean acidification and plankton metabolism in LNLC areas 

 

 22 

 

Figure II-3. Partial pressure of CO2 (pCO2; upper panel) and pH on the total scale (pHT; lower 

panel) inside and outside the mesocosms deployed in the Bay of Calvi (left) and the Bay of 

Villefranche (right).  

 

Figure II-4. Temperature (top) and salinity (bottom) profiles in the Bay of Calvi (BC; left) and 

Villefranche (BV; right) in mesocosm C1. In BC, thermal stratification is clearly visible on 

days 5 to 8. In BV, the intrusion of seawater from outside at the end of the experiment is 

clearly visible in both salinity and temperature profiles.  
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Initial, in situ, nutrient, particulate organic matter and chlorophyll a concentrations 

were low, as expected for this summer period (Table II-2). Nitrogen (NOx = NO3
-
 + NO2

-
) and 

phosphate (DIP) were always below 150 and 26 nmol L
-1

, respectively and were similar 

inside and outside the mesocosms.  

Chlorophyll a in the bay varied from 0.10 to 0.19 µg L
-1

 (Figure II-5) during the 

course of the experiment. Haptophytes dominated the phytoplankton community with 

biomass around 0.04 µg L
-1

, followed by cyanobacteria, chlorophytes and pelagophytes. Then, 

dinoflagellates and praesinophytes were detected with concentrations below 0.01 µg L
-1

 and 

diatoms were quasi absent in the bay.  

Inside the mesocosms, during the course of the experiment chlorophyll a showed an 

increasing trend from d0 to d10 with very low concentrations from 0.06 to 0.09 µg L
-1

 (Figure 

II-5). The most abundant phytoplankton groups were haptophytes and cyanobacteria. During 

the first days of the experiments, haptophytes tended to decrease in biomass while 

cyanobacteria increased and after d6, concentrations were relatively constant for both 

populations at levels of about 0.018 ± 0.004 and 0.018 ± 0.003 µg L
-1

, respectively. 

Synechococcus (cyanobacteria) abundance (determined by flow-cytometry) did also show an 

increase from d0 to d10 and then decreased. Chlorophytes increased during all the experiment 

from 0.010 to 0.020 µg L
-1

, their biomass being as important as cyanobacteria biomass at the 

end of the experiment. Pelagophytes, dinoflagellates and diatoms were then the most 

important populations in terms of biomass with concentrations around 0.005 µg L
-1

. While 

dinoflagellates and diatom concentrations were relatively constant throughout the experiment, 

pelagophytes presented a peak on d14 (biomass of 0.014 ± 0.004 µg L
-1

), a peak that is also 

visible on chlorophyll a values (Figure II-5).  Bacteria and virus abundances were constant 

(data not shown).  
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Tableau II-2. In situ concentrations of nitrate + nitrite (NOx) and phosphate (DIP), silicate 

(Si), ammonium (NH4
+
), particulate organic nitrogen and carbon (PON and POC) and 

chlorophyll a (chl a) when sampling started (d0; June 24
th

 in the Bay of Calvi and February 

21
st
 in the Bay of Villefranche. When data at d0 were not available, values have been 

measured on February 22
nd

 (d1; *). 

 

 

 

 

 

 

 

Figure II-5. Chlorophyll a concentrations during the experiments in the Bay of Calvi (left) 

and the Bay of Villefranche (right). Data before sampling started (day 0) have been provided 

by CTD profiles, while high performance liquid chromatography started on day 0. Colours 

and shapes represent the different mesocosms.  
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 NOx DIP Si NH4
+ PON POC chl a 

 (nmol L-1) (µmol L-1) (µg chl a L-1) 

Bay of Calvi 49.8 34.8 1.9 0.15 0.58 5.5 0.12 

Bay of Villefranche 1166* 10.3 1.4* 0.06* 0.81* 7.96* 0.95 
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1.3 Main results of Villefranche mesocosm experiment 

The objective of the second experiment was to follow the response of a plankton 

community to ocean acidification, during the bloom period (mesotrophic conditions) in order 

to compare with results obtained in the Bay of Calvi during the oligotrophic summer period. 

Based on the long-term (> 10 years) analysis of chlorophyll a dynamics in the Bay of 

Villefranche, the period February to March was identified as the period presenting the highest 

probability of capturing a bloom. Therefore, the construction and installation of the nine 

mesocosms took place from February 4
th

 to 15
th

 in front of the laboratory (Figure II-2). The 

acidification period took 4 days and sampling started on February 21
st
 for 16 days (until 

March 9
th

). However, during two days (March 6
th

 and 7
th

) there was a strong windstorm and a 

large swell that broke the bags. The openings in the bags were not immediately identified but 

the vertical CTD salinity profiles clearly show outside seawater intrusion, (Figure II-4b) thus 

the data can only be used until March 5
th

 (12 days). As the experiment ended, chlorophyll 

increased in the bay and it has been decided to continue collecting samples for core 

parameters and primary production to acquire an interesting set of high-frequency data in the 

Bay of Villefranche during a bloom period. This dataset and its interpretation are provided in 

Appendix A. 

The pH and pCO2 evolution over 12 days are presented in Figure II-3. The decrease in 

pCO2 in the high-CO2 mesocosms was much sharper than during the Corsica experiment; P4 

rapidly joined the P3 level and at day 3 the P4 level was below P3. Wind speeds and, 

consequently, air-sea gas exchange velocities were much higher than during the Corsica 

experiment (one order of magnitude higher), explaining part of the rapid decrease. In addition, 

the plankton community was mostly autotrophic during the experiment and acted as a sink of 

CO2. Initial and final CT and AT concentrations are presented in Table II-3. AT did not differ 

between mesocosms but increased over time by 15 µmol kg
-1

. Temperature varied around 13 

± 0.5 °C over the course of the experiment and was similar to outside levels. CTD profiles 

showed a homogeneous water column, except at the end of the experiment when external low 

saline water entered the bags (Figure II-4b).  
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Table II-3. Initial and final concentrations of dissolved inorganic carbon (CT) and total 

alkalinity (AT) in µmol kg-1 as mean integrated value over the 10 m depth in the nine 

mesocosms deployed in the Bay of Villefranche in February/March 2013 (see text for more 

details). Concentrations measured in the bay (outside mesocosms; OUT) are also presented. * 

measured on March 4th. 

 OUT C1 C2 C3 P1 P2 P3 P4 P5 P6 

CT           

initial 2269 2285 2269 2270 2341 2385 2401 2418 2453 2498 

final 2293 2293 2273 2287 2317 2305* 2324 2313 2339 2310* 

AT           

initial 2557 2559 2561 2561 2561 2562 2560 2565 2563 2564 

final 2560 2562 2561 2562 2565 2563* 2562 2556 2556 2562* 

 

Initial in-situ nutrient, particulate organic matter and chlorophyll a concentrations are 

presented in Table II-2. DIP concentrations were always below 20 nmol L
-1

 inside 

mesocosms, similar to outside conditions, except for d6 when DIP in the bay reached 22 nmol 

L
-1

, while in the mesocosms, DIP remained at ca. 10 nmol L
-1

. During the acidification period, 

NOx decreased, leading to concentrations below 0.5 µmol L
-1

 inside the mesocosm while, in 

the bay, concentrations were ca.1.2 µmol L
-1

.  

Despite this difference in nutrient availability, chl a concentrations were the same 

inside and outside the mesocosms. Chlorophyll a data from the time series of the Bay of 

Villefranche in 2013 (Point B) showed that our experiment took place between a pulse of Chl 

a and the bloom (data not shown). Diatoms, prasinophytes, pelagophytes, haptophytes and 

cryptophytes were dominant in the bay, with relatively similar concentrations, between 0.10 

and 0.15 µg L
-1

, which increased from d5 to the end of the experiment. When the experiment 

ended, these populations continued to increase to a final concentration of 0.25 µg L
-1

. Another 

group composed of dinoflagellates, chlorophytes and cyanobacteria was constant in terms of 

biomass at around 0.05 µg L
-1

.  

After closing the bags, the plankton community rapidly consumed nutrients initially 

present in the mesocosms, which led to a different community structure. When sampling 

started (d0), chl a concentrations in the mesocosms were, on average, 1.1 ± 0.1 µg L
-1 

and 

decreased to 0.80 ± 0.07 µg L
-1

 at the end of the experiment. The most important species in 

terms of biomass were haptophytes, which increased during the acidification period until d3 

to reach a maximum of ca. 0.37 ± 0.05  µg L
-1

, and then decreased to the end of the 
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experiment to 0.28 ± 0.03 µg L
-1

. Cryptophytes and pelagophytes were the second most 

important populations, presenting the same dynamics than haptophytes. Prasinophytes and 

diatoms showed opposite patterns, decreasing during the acidification period, until d4, and 

then increasing to the end of the experiment. The biomass for these species, varied from 0.05 

to 0.15 µg L
-1

. Chlorophytes, cyanobacteria and dinoflagellates were the least important 

populations with concentrations below 0.05 µg L
-1

. Cyanobacteria (based on pigments, as 

well as Synechococcus (cyanobacteria) abundance based on flow-cytometry) increased during 

the experiment. In all mesocosms, bacterial abundances increased over the experiment while 

virus abundance was constant (data not shown).   
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2. No effect of ocean acidification on planktonic metabolism in the NW 

oligotrophic Mediterranean Sea: results from two mesocosm studies 
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Abstract 

Oligotrophic areas account for about 30% of oceanic primary production and are projected 

to expand in a warm high CO2 world. Changes in primary production in these areas could 

have important impacts on future global carbon cycling. To assess the response of primary 

production and respiration of plankton communities to increasing partial pressure of CO2 

(pCO2) levels in Low Nutrient Low Chorophyll areas, two mesocosm experiments were 

conducted in the Bay of Calvi (Corsica, France) and in the Bay of Villefranche (France) in 

June-July 2012 and February-March 2013 under different trophic state, temperature and 

irradiance conditions. Nine mesocosms of 50 m
3
 were deployed for 20 and 12 days 

respectively, and were subjected to seven pCO2 levels (3 control and 6 elevated levels). The 

metabolism of the community was studied using several methods based on in situ incubations 

(oxygen light-dark, 
18

O and 
14

C uptake). Increasing pCO2 had no significant effect on gross 

primary production, net community production, particulate and dissolved carbon production, 

as well as on community respiration. These two mesocosms experiments, the first performed 

under low nutrient and low chlorophyll, suggest that in large areas of the ocean, increasing 

pCO2 levels may not lead to a significant change of plankton metabolic rates and to sea 

surface biological carbon fixation. 
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2.1 Introduction 

Oceanic primary production represents about 50% of global primary production (Field et 

al., 1998) and plays a key role in climate regulation. The balance between the gross primary 

production (GPP) of autotrophic organisms and community respiration (CR) of both 

autotrophic and heterotrophic organisms determines the net community production (NCP), 

revealing the capacity of a system to sequester carbon via the biological pump. Production 

and consumption of organic matter depend on the composition of the plankton community 

and are constrained by environmental parameters such as nutrient availability (i.e. nitrogen, 

phosphorus, silicon concentration, ratios and chemical forms), light availability and 

temperature. The increase in the partial pressure of CO2 (pCO2) in the ocean and consequent 

decrease in seawater pH, so-called ocean acidification (Gattuso and Hansson, 2011), might 

also influence the metabolism of planktonic organisms and marine communities.  

Many laboratory studies, focused on phytoplankton strains maintained in culture, have 

been performed to test the response of primary production to increased pCO2, with contrasting 

results reported. While diatoms appear to generally benefit from an increase in CO2, the 

response of coccolithophores is more variable: from increased production to neutral or even 

inhibitory effects under nitrogen limitation (see comprehensive review by Riebesell and 

Tortell, 2011). Phytoplankton use inorganic carbon to produce organic matter, however many 

species are limited by the low CO2 affinity of the RuBisCO, an enzyme involved in CO2 

fixation (Raven and Johnston, 1991). To compensate for this low CO2 affinity, some species 

have developed carbon concentrating mechanisms (CCMs; Giordano et al., 2005). As the 

efficiency of these CCMs can be highly variable between species, it is expected that 

organisms will be differently affected by CO2 increases and shifts in the plankton community 

composition might therefore occur (Rost et al., 2008). Another drawback of single strain 

culture experiments is that the heterotrophic component of plankton communities is, for the 

most part, not taken into consideration. Yet, a possible indirect effect of elevated pCO2 on 

bacteria has been suggested and linked to changes in phytoplankton activity (Grossart et al., 

2006). Autotrophic organisms can indeed release dissolved organic carbon (DOC), which can 

in turn be used by bacteria for growth and respiration. An increase in DOC production under 

elevated pCO2 could therefore have an impact on the bacterial community (see also Liu et al., 

2010). 

Experiments have recently been conducted to assess the effects of ocean acidification on 

natural plankton assemblages with results showing either increased photosynthesis and/or net 

community production with increasing pCO2 (e.g., Riebesell et al., 2007; Egge et al., 2009) or 
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no effect (e.g., Hare et al., 2007; Tanaka et al., 2013). Some of these experiments at the 

community level have been conducted using pelagic mesocosms. This approach is considered 

to be closer to the “real world” because large mesocosms enclose a significant volume of 

seawater containing an entire plankton community with environmental conditions (e.g., 

temperature, irradiance, water motion) within the mesocosm similar to those prevailing in situ 

(Riebesell et al., 2010, 2013).  

Most of the experiments have been performed in high-nutrient or nutrient-enriched 

systems and very few experiments have been reported in low nutrient areas (Yoshimura et al., 

2010). Yet, pelagic primary production is highly variable between oceanic provinces and 

more than 60% of the open ocean is considered to be oligotrophic (i.e. low nutrient). Despite 

their low nutrient concentration and relatively low productivity, these areas represent about 

30% of oceanic primary production (Longhurst et al., 1995). Furthermore, it has been 

suggested that oligotrophic areas will expand as a result of ocean warming (Polovina et al., 

2008), with potential implications for ocean biogeochemistry and primary production (Irwin 

and Oliver, 2009). Although the metabolic status of open ocean waters is still hotly debated 

(Duarte et al., 2013; Williams et al., 2013), any change due to ocean acidification and/or 

warming will undoubtedly have profound impacts on the biological carbon pump and carbon 

cycle. The Mediterranean Sea, a semi-enclosed sea, is characterized by low nutrient and low 

chlorophyll (LNLC) concentrations, although depending on the location and season, trophic 

conditions can be defined as ranging from mesotrophic to ultra-oligotrophic (D’Ortenzio and 

d’Alcalà, 2009).  

To test whether ocean acidification will affect plankton community composition and 

functioning in oligotrophic areas, two mesocosm experiments were performed in the 

Northwestern Mediterranean Sea during two contrasting periods (winter vs. summer), in the 

framework of the European Mediterranean Sea Acidification in a Changing Climate project 

(MedSeA; www.medsea-project.eu). Here, we report on the effects of ocean acidification on 

planktonic metabolism (gross primary production, net community production, particulate and 

dissolved carbon production as well as community respiration), as measured using several 

methods (the oxygen light-dark, 
14

C and 
18

O labelling techniques). 
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2.2 Material and Method 

2.2.1. Study sites and experimental set-up 

One mesocosm experiment was conducted in the Bay of Calvi (BC; Corsica, France) 

in summer (June-July 2012) and the other one in the Bay of Villefranche (BV; France) during 

the transition between winter and spring (February-March 2013). The experimental set-up and 

mesocosm characteristics are described in a companion paper (Gazeau et al., in prep, a). 

Briefly, for each experiment, nine mesocosms of ca. 50,000 L (2.3 m in diameter and 12 m 

deep) were deployed for 20 and 12 days in BC and BV, respectively. Once the bottom of the 

mesocosms was closed, CO2 saturated seawater was added to obtain a pCO2 gradient across 

mesocosms ranging from ambient levels to 1,200 µatm (see Table 2 and 3 for BC and BV, 

respectively), with three control mesocosms (C1, C2 and C3) and six mesocosms with 

increasing pCO2 (P1 to P6). Measurements of planktonic metabolism started after the end of 

the CO2 manipulation, on 24 June 2012 and 22 February 2013 for BC and BV, respectively. 

Before sunrise (04:00 in BC and 05:00 in BV; local times are used throughout this paper), 

depth-integrated sampling (0 to 10 m) was performed using 5 L Hydro-Bios integrated water 

samplers and distributed into various incubation bottles (see below). An incubation line was 

moored near the mesocosms and incubations took place at the depth of mean irradiance over 

the 12 m depth of the mesocosms (6 m for BC and 4 m for BV; see section on irradiance 

below for more details). During both experiments, net community production (NCP) and 

community respiration (CR) were determined using the oxygen light-dark method every two 

days. Gross primary production (GPP) was measured using the 
18

O-labelling method (GPP-

18
O) every 4 days during the BC experiment, while rates of particulate organic (PP-

14
C) and 

dissolved organic production (DO
14

Cp) were determined every two days using the 
14

C 

labelling technique during the BV experiment. 

2.2.2. Irradiance 

Surface irradiance (photosynthetically active radiation; PAR) was measured 

continuously during the two experiments using a LI-192SA sensor connected to a LI-1400 

data logger (see Gazeau et al., in prep, a). The depth of mean irradiance was estimated at the 

start of each mesocosm experiment based on PAR profiles (0 to 12 m) performed using a 

biospherical QSP-2200 PAR sensor mounted on a CTD SBE 19plusV2. Thereafter, PAR 

profiles (0 to 12 m) were conducted daily at the incubation sites to estimate vertical 

attenuation coefficients (Kd[PAR]). For each incubation day, the mean daily irradiance at the 

incubation depth was calculated using surface PAR and the attenuation coefficient. 
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2.2.3. Oxygen light-dark method 

From each mesocosm, 15 biological oxygen demand (BOD; 60 mL) bottles were 

filled, among which five were immediately fixed with Winkler reagents and used to estimate 

initial dissolved oxygen (O2) concentrations. Five transparent bottles were incubated in situ 

on the incubation line for 24 h to estimate NCP. In order to estimate CR, 5 bottles were 

incubated for 24 to 36 h in the dark in a laboratory incubator at in situ temperature (ca. 23 °C 

for BC and ca. 13 °C for BV). Upon completion of the incubations, samples were fixed with 

Winkler reagents. O2 concentrations were measured using an automated Winkler titration 

technique with potentiometric end-point detection. Analyses were performed with a Metrohm 

Titrando 888 and a redox electrode (Metrohm Ag electrode). Reagents and standardizations 

were similar to those described by Knap et al. (1996). NCP and CR were estimated by 

regressing O2 values against time, and CR were expressed as negative values. Gross primary 

production (GPP-O2) rates were calculated as the difference between NCP and CR. The 

combined errors were calculated as S.E. x–y = √(S.E.x
2
 +S.E.y

2
).  

2.2.4. GPP-
18

O method 

In BC, every 4 days, water samples from each mesocosm were transferred into eight 

transparent glass bottles (60 mL) and sealed. Three bottles were immediately poisoned with 

10 µL of a saturated mercury chloride (HgCl2) solution in order to estimate the initial O2 

isotopic composition. The remaining five transparent glass bottles were spiked with 100 µL of 

97% H2
18

O in order to reach a δ18
O-H2O enrichment of 650‰ and were incubated in situ 

from sunrise to sunset. Upon completion of the incubation, samples were poisoned using 10 

µL of HgCl2, and stored upside down in the dark at room temperature pending analysis. 

Isotopic measurements were performed at Leuven University (Belgium). A headspace of 3 

mL was created with helium and allowed to equilibrate for 30 min in order to measure 
18

O-

O2. The extracted water was then injected into helium-flushed vials for 
18

O-H2O 

measurements. Pure CO2 (100 µL) was then added and samples were allowed to equilibrate 

for 24 h. δ18
O-H2O was therefore measured as δ18

O-CO2. Determinations of δ18
O-O2 and 

δ18
O-CO2 were performed on an elemental analyzer (Flash HT/EA) coupled to a Delta V 

Isotope-ratio Mass Spectrometer (IRMS). An overflow technique was used to limit air 

contamination of the needle. For δ18
O-O2, the internal standard used to correct the data and 

monitor instrumental drift was air from the outside. For δ18
O-CO2, a calibration was 

performed against Vienna Standard Mean Ocean Water (VSMOW). GPP-
18

O rates (µmol O2 

L
–1

 d
–1

) were calculated using the following equation (Kiddon et al., 1995):  
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GPP-
18

O = [(δ
18

O–O2final − δ
18

O–O2init) / (δ
18

O-H2O - δ
18

O–O2init)] x O2init  

where δ
18

O-O2init and δ
18

O-O2final are measured δ
18

O-O2 before and after incubation (‰), 

δ
18

O-H2O is the final isotopic composition of the labelled seawater (‰), and O2init is the O2 

concentration before incubation (µmol O2 L
–1

). The overall error was estimated using a 

Monte-Carlo procedure where one thousand values were randomly chosen between the mean 

± S.D. of each measured parameter and the mean ± S.E. of each computed parameter is 

reported. 

2.2.5. 
14

C primary production 

In BV, every 2 days, water samples from each mesocosm were transferred to four culturing 

flasks (40 mL) and spiked with 10 to 50 µCi of a 
14

C-labelled sodium bicarbonate solution. 

Three flasks were incubated in situ for 24 h (sunrise to sunset). The remaining flask was 

immediately poisoned with 1 mL of a borax-buffered formaldehyde solution filtered through a 

0.2 µm syringe tip filter and stored in the laboratory to estimate abiotic 
14

C labelling. After 24 

h, the samples were brought back to the laboratory and 3 mL was gently filtered through 0.2 

µm polycarbonate filters directly into scintillation vials for DO
14

Cp measurements (López-

Sandoval et al., 2011). Scintillation vials were closed with a gas-tight rubber stopper and 

plastic centre wells containing a GF/A filter soaked with 200 µL of ß-phenylethylamine. 

Then, 75 µL of hydrochloric acid (HCl; 50%) was injected into the vial in order to transform 

14
C-DIC to 

14
CO2, which was trapped by the ß-phenylethylamine while 

14
C-labelled DOC 

remained in the seawater.  

The remaining 37 mL was then filtered through 0.4 µm polycarbonate filters (25 mm 

diameter) and rinsed with freshly filtered (0.7 µm) seawater. Filters were placed in 

scintillation vials that were closed with gas-tight rubber stopper and centre wells with a GF/A 

filter soaked with ß-phenylethylamine, as for DO
14

Cp. One mL of phosphoric acid (H3PO4; 

1%) was injected through the rubber stopper onto the filter in order to dissolve 
14

C-particulate 

inorganic carbon (Balch et al., 2000). After another 24 h, the centre wells and soaked GF/A 

filters were placed separately into fresh scintillation vials. Scintillation cocktail (15 mL; 

Ultima Gold MV, Perkin Elmer) was added to the vials containing the DOC (DO
14

Cp) and the 

PC filter (PP-
14

C) and activities were determined on a Packard Tri Carb (1600 CA) 

scintillation counter. Disintegrations per minute (DPM) were converted to production rates 

(after correction from abiotic 
14

C labelling) using dissolved inorganic carbon concentrations 

measured in the mesocosm (Gazeau et al., in prep, a) and an isotopic discrimination factor of 

1.05. In order to verify the initial spike activity, 100 µL of seawater from 3 to 6 random 
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culture flasks were removed and placed in a scintillation vial containing 200 µL of ß-

phenylethylamine and these were counted on the scintillation counter. The percentage of 

extracellular release (PER) was calculated as DO
14

Cp/(PP-
14

C + DO
14

Cp) (López-Sandoval et 

al., 2011). 

2.2.6. Data analysis, statistics and data availability 

Results are reported as mean value ± standard error (S.E.) as well as the average over 

all mesocosms ± standard deviation (S.D.) when specified. Cumulative metabolic rates were 

calculated for the whole experimental period. Values for days when no incubations were 

performed were obtained by linear interpolation and the cumulative values were then summed 

up for the experimental period. The pCO2 values used for the representation of cumulative 

metabolic rates are the average pCO2 over the experimental period for each mesocosm. To 

test for pCO2 increase effects, the relationship between cumulated metabolic rates and pCO2 

were realised using linear regressions. Linear regressions were also used to test for 

relationships between production rates with time and PAR, while Model-II linear correlation 

were used to compare metabolic rates obtained with the different measurements methods. All 

linear regression and correlation were performed using the R software (R Core Team, 2013) 

and were considered significant at a probability p < 0.05. The data sets are freely available on 

Pangaea, in the Bay of Calvi: http://doi.pangaea.de/10.1594/PANGAEA.810331 and in the 

Bay of Villefranche: http://doi.pangaea.de/10.1594/PANGAEA.835117.  

 

2.3 Results 

2.3.1. Summer conditions (Bay of Calvi) 

The initial temperature, salinity, and concentrations of nutrients and chlorophyll a inside 

and outside the mesocosms in the Bay of Calvi (BC) are shown in Table II-4 while the initial 

and mean pCO2 values over the experiment are presented in Table II-5. Further details can be 

found in Gazeau et al. (in prep, a). At the start of the experiment (day 0), the concentration of 

nitrogen (NOx = nitrate + nitrite) was similar inside and outside the mesocosms. In contrast, 

the concentrations of dissolved inorganic phosphate (DIP) and chlorophyll a were lower 

inside than outside the mesocosms (Table II-4).  

NCP ranged from -2.7 ±!0.3 to 2.9 ±!0.4 µmol O2 L
-1

 d
-1

 over the experimental period of 

20 days (Figure II-6a). The lowest and highest values were measured in the control 

mesocosms, respectively C3 on day 16 and C1 on day 10. NCP was negative on day 0 and 
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tended to increase and reached a maximum value on day 8 or 10 (day 20 for P2), depending 

on the mesocosm. After this period of increase, NCP remained close to metabolic balance (ca. 

0!µmol O2 L
-1

 d
-1

) until the end of the experiment. CR varied from -3.6 ±!0.2 to 0.2 ±!0.4 

µmol O2 L
-1

 d
-1

 (Figure II-6b). The lowest and highest values were measured in C2 on day 10 

and P6 on day 2, respectively. Similar to NCP, the highest CR rates were measured on day 10 

in all mesocosms apart from P2 for which the highest rate was measured on day 16 (-2.63 ±!

0.20 µmol O2 L
-1

 d
-1

).  

 

Table! II(4.!Average environmental conditions at day 0 in all mesocosms (mean! ±! S.D.): 

temperature, salinity as well as concentrations of nitrate + nitrite (NOx), inorganic phosphate 

(DIP) and chlorophyll a"(chl a). BC refers to the Bay of Calvi (Corsica, France) and BV to the 

Bay of Villefranche (France). * measured on February 19
th

.!

 

GPP-O2 ranged from -0.7 ±!1.1 to 5.5 ±!0.5 µmol O2 L
-1

 d
-1

 (Figure II-6c). The lowest and 

highest rates were both measured in C1, on day 12 and day 10, respectively. After a stable 

period from day 0 to day 6, GPP-O2 increased to reach a maximum value on day 10 for all 

mesocosms except C3 and P4, for which maximum values were reached on day 14 and day 8, 

respectively. GPP-
18

O varied from 0.0 ±!0.1 to 1.7 ±!0.1 µmol O2 L
-1

 d
-1

 (Table II-5). The 

lowest value was measured in C2 on day 0, while the highest value was measured in P4 on 

day 16. GPP-
18

O was relatively stable during the experiment, showing a slight increase until 

day 16 and a decrease on day 20 (except for C2, which decreased from day 12). GPP-
18

O 

rates were generally lower than GPP-O2, with no significant correlation (r
2
 < 0.01, p > 0.05, n 

= 52).  

Temperature  NOx  DIP  chl a 
    

°C 
Salinity  

nmol L
-1

  nmol L
-1

   µg L
-1

  

BC 24 June 2012            

Mesocosm Average  22.1 37.9 47.1 22.8  0.06 

 S.D. < 0.01 < 0.01 ± 14.2 ± 4.1 ± 0.01 

 Outside   22.2 38.0 49.8 34.8 0.12 

BV 21 Feb 2013            

Mesocosm Average  13.2 38.1 128.5 10.4  1.1 

 S.D. < 0.01 < 0.01 ± 29.6  ± 2.2  ± 0.1 

 Outside    13.2 38.1   1166 *  10.3  0.95 
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Figure II-6. Net community production (NCP; a and d), community respiration (CR; b and e) 

and gross primary production (GPP-O2; c and f) as a function of time during the experiment in 

the Bay of Calvi (left) and in the Bay of Villefranche (right).  
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Table II-5. Gross primary production estimated by the 
18

O labelling technique (GPP-
18

O; 

µmol O2 L
-1

 d
-1

) in the Bay of Calvi. Mean rates and associated standard errors (S.E.) are 

reported. For each mesocosm, the pCO2 level on day 0 and averaged over the experimental 

period (20 days) are also reported (further details in Gazeau et al., in prep, a).  

  Mesocosm C1 C2 C3 P1 P2 P3 P4 P5 P6 

 

Initial pCO2 

(µatm)  463 455 452 595 716 774 901 1174 1327 

 

Mean pCO2 

(µatm) 429 427 429 508 586 660 747 828 990 

Day                     

0 Mean 1.05 0.03 0.62 1.4 0.29 0.1 1 0.25 0.13 

 S.D. 0.16 0.19 0.14 0.38 0.12 0.13 0.2 0.24 0.17 

4 Mean 0.75 0.91 0.93 1.01 0.95 0.48 0.85 0.88 0.89 

 S.D. 0.02 0.08 0.09 0.1 0.11 0.11 0.09 0.17 0.1 

8 Mean 1.07 0.86 0.99 0.63 0.81 0.15 1.04 1.17 1.29 

 S.D. 0.11 0.13 0.1 0.11 0.04 0.13 0.04 0.11 0.09 

12 Mean 1.28 1.14 1.44 0.85 1.52 1.41 1.5 0.96 1.21 

 S.D. 0.06 0.09 0.16 0.05 0.08 0.13 0.07 0.15 0.07 

16 Mean 1.12 0.28 1.36 1.36 1.53 1.02 1.68 1.42 1.23 

 S.D. 0.14 0.06 0.05 0.15 0.1 0.09 0.13 0.07 0.1 

20 Mean 0.98 0.48 0.77 0.63 1.04 0.76 0.94 0.76 0.91 

 S.D. 0.1 0.09 0.07 0.06 0.05 0.15 0.12 0.11 0.05 

 

Cumulative NCP average over all nine mesocosms was -1 ± 8 µmol O2 L
-1

 and varied 

between -11.9 ±!1.8 and 13.6 ±!1.2 µmol O2 L
-1

 (Figure II-7a) depending on the mesocosm 

with the lowest rates measured in C2, C3 and P3 and the highest estimated in P5. There was 

no significant trend in cumulative NCP with increasing pCO2 (r = 0.44, p > 0.05, n = 9). The 

average cumulative CR was -29 ±!4 µmol O2 L
-1

, with no significant trend with increasing 

pCO2 (r = 0.30, p > 0.05, n = 9). The cumulative GPP-O2 and GPP-
18

O were on average 28 ±!

6 µmol L
-1

 and 20 ±!4 µmol O2 L
-1

, respectively. For both methods there was no significant 

trend with increasing pCO2 (r = 0.47, p > 0.05, n = 9 and r = 0.17, p > 0.05, n = 9, 

respectively). Mean daily PAR at 6 m (Figure II-8) was constant through time (r = 0.04, p > 

0.05, n = 10) varying from 180 and 330 µmol photon m
-2

 s
-1

. GPP-O2 and GPP-
18

O (r = 0.54, 

p < 0.05, n = 88 and r = 0.27, p < 0.05, n = 54, respectively) and NCP (r = 0.30, p < 0.05, n = 

90) were significantly related to the PAR at 6 m. For all the results reported here, when 

metabolic rates were normalised to chlorophyll a concentrations as a best proxy for 

phytoplankton biomass, the same results were obtained either on the effect of pCO2 increase 

or relationship between methods and with PAR.  



Chapter II-Ocean acidification and plankton metabolism in LNLC areas 

 

 39 

2.3.2. Winter-spring conditions (Bay of Villefranche) 

The initial temperature, salinity, and concentrations of nutrients and chlorophyll a inside 

and outside the mesocosms in BV are shown in Table II-4 while initial and mean pCO2 values 

over the experiment are presented in Table II-6. Further experimental details can be found in 

Gazeau et al. (in prep, a). When sampling started (day 0), NOx concentrations were higher 

outside than inside the mesocosms (Table II-4) and remained higher outside the mesocosm 

during the experimental period (Louis et al., in prep). In contrast, DIP and chlorophyll a 

concentrations inside and outside the mesocosms were initially similar (Table II-4).  

NCP varied from -2.0 ±!0.4 to 2.8 ±!0.5 µmol O2 L
-1

 d
-1

 (Figure II-6d). The lowest and 

highest values were both in C1, on day 1 and on day 9, respectively. NCP generally increased 

(r = 0.57, p < 0.05, n = 52) throughout the experiment from negative (heterotrophic system) to 

positive values (autotrophic system). NCP was negative on day 1 for all mesocosms except 

C3, P2 and P4 whereas, on day 5, all mesocosms had positive NCP. CR ranged from -3.7 ±!

0.4 to 0.02 ±!0.47 µmol O2 L
-1

 d
-1

 (Figure II-6e). The lowest value was measured in P3 on day 

1 and the highest in P6 on day 9. CR rates generally decreased with time (r = 0.63, p < 0.05, n 

= 54): the highest rates being measured on day 1 (overall mean: -2.6 ±!0.6 µmol O2 L
-1

 d
-1

) 

and the lowest rates being measured on day 9 (overall mean: -0.9 ±!0.6 µmol O2 L
-1

 d
-1

). GPP-

O2 ranged from 0.8 ±!0.6 to 3.6 ±!0.6 µmol O2 L
-1

 d
-1

 (Figure II-6f) with a slight increasing 

trend as a function of time (r = 0.43, p < 0.05, n = 54). 

Cumulative NCP average over all nine mesocosms was 7.4 ±!2.6 µmol O2 L
-1

 and varied 

from 3.7 ±!0.8 to 11.8 ±!1.6 µmol O2 L
-1

 (Figure II-7b). Cumulative CR was on average -17.3 

±!2.8 µmol O2 L
-1

 and, as for cumulative NCP, minima and maxima were measured in control 

mesocosms (C1 and C3, respectively) while the average GPP-O2 was 24.7 ±!2.7 µmol O2 L
-1

. 

Cumulative NCP, CR and GPP-O2 did not show any significant trend with increasing pCO2 

(NCP: r = 0.06, p > 0.05, n = 9; CR: r = 0.04, p > 0.05, n = 9 and GPP-O2: r = 0.02, p > 0.05, 

n = 9).  
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Figure II-7. Cumulative rates of net community production (NCP; full diamonds), community 

respiration (CR; empty circles) as well as gross primary production estimated using the 

oxygen light-dark (GPP-O2; empty triangles) and the 
18

O labelling (GPP-
18

O; asterisk) 

techniques in the Bay of Calvi (a, duration: 20 days) and in the Bay of Villefranche (b, 

duration: 12 days). pCO2 is the mean value for each mesocosm during the experiment.  

 

 

 

 

Figure II-8. Irradiance at the incubation depth in the Bay of Calvi (empty triangle) and in the 

Bay of Villefranche (circles) as a function of time.  
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Table II-6. Particulate and dissolved primary production (PP-
14

C and DO
14

C) during the 

experiment in the Bay of Villefranche. Rates are reported as mean value ± S.D. µmol C L
-1

. 

For each mesocosm, the pCO2 level on day 0 and averaged over the experimental period (12 

days) are also reported (further details in Gazeau et al., in prep, a). NA indicates the absence 

of data and ND that no replicates were available.  

  Mesocosm C1 C2 C3 P1 P2 P3 P4 P5 P6 OUT 

 

Initial pCO2 

(µatm)  378 347 350 494 622 690 477 932 1250 350 

 

Mean pCO2 

(µatm) 357 356 352 456 486 544 545 719 941 370 

Day                       

PP-
14

C                     

3 Mean 0.54 0.53 0.35 0.56 0.47 0.62 0.49 0.44 0.48 0.35 

 S.D. 0 0.03 0 0.04 0.03 0.01 0.01 0 0.06 0 

5 Mean 0.97 0.78 0.89 0.75 1.07 0.92 1.03 0.92 1.24 0.8 

 S.D. 0.01 0.03 0.01 0.08 0.02 0.06 0 0.07 0.01 0.04 

7 Mean 0.74 0.67 0.37 0.56 0.77 0.53 0.71 0.7 0.65 0.59 

 S.D. 0.08 0.06 0.03 0.01 0.02 0.05 0.16 0.09 0.13 0.03 

9 Mean 1.08 1.08 0.91 0.79 1.09 0.92 0.95 0.89 0.96 0.6 

 S.D. 0.04 0.17 0.1 0.07 0.05 0.06 0.13 0.02 0.05 0.02 

11 Mean 0.54 0.8 0.64 0.74 0.99 0.9 1.06 0.73 1.06 0.43 

  S.D. 0.09 0.18 0.04 0.03 0.08 0.2 0.11 0.08 0.11 0.02 

DO
14

C production                   

3 Mean 0.15 0.14 0.16 0.31 0.23 0.13 0.17 0.17 0.38 0.26 

 S.D. 0 ND 0 0 0 ND 0 0 0 ND 

5 Mean 0.4 0.95 0.28 1.18 0.67 0.47 0.34 0.76 0.37 0.23 

 S.D. 0.01 0 0 ND 0.02 0.01 0 0 0 0 

7 Mean 0.28 0.19 NA 0.12 0.09 0.16 0.59 0.19 0.21 0.07 

 S.D. 0.01 ND NA ND 0 0 ND 0 0 ND 

9 Mean 0.28 0.16 0.19 0.17 0.15 0.15 0.16 0.18 0.25 0.15 

 S.D. 0 0 0 0 0 ND 0 0 0 0 

11 Mean 0.26 0.18 0.17 0.29 0.26 0.12 NA 0.21 0.27 0.33 

 S.D. 0.01 0 0 0.01 0.01 ND NA 0 0 ND 

 

Primary production measured with the 
14

C labelling technique did not exhibit any change 

with time and was highly variable from one day to the next (Table II-6). PP-
14

C were slightly 

lower outside than inside the mesocosms and varied from 0.35 ± 0.00 to 0.80!±!0.04!µmol C 

L
-1

 d
-1

 (Table II-6). During the first part of the experiment (from day 3 to 5), DOC production 

rates (DO
14

Cp) were highly variable both between days and between mesocosms. During the 

second part of the experiment (from day 7 to the end), this variability decreased and rates 

were relatively constant with an overall average of 0.21 ±!0.11 µmol C L
-1

 d
-1

 (Table II-6). 

TO
14

C production rates (PP-
14

C + DO
14

Cp) varied from 0.50 ±!0.0 to 2.6 ±!0.1 µmol C L
-1

 d
-1

. 
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PER generally decreased throughout the experiment (r = -0.58, p < 0.05, n = 52) and averaged 

25!±!12% (from 11 to 61%).  

Cumulative PP-
14

C, DO
14

Cp and TO
14

C averaged 7.1!±!0.8, 2.6!±!0.6 and 9.6!±!0.9!µmol 

C L
-1

 respectively and did not show any trend with increasing pCO2 (Figure II-9; PP-
14

C: r = 

0.46, p > 0.05, n = 9; DO
14

Cp: r = 0.05, p > 0.05, n = 9 and TO
14

C: r = 0.38, p > 0.05, n = 9, 

respectively).  

 

 

Figure II-9. Cumulative production rates estimated by the 
14

C method during the experiment 

in the Bay of Villefranche. PP-
14

C: particulate primary production; DO
14

Cp: dissolved 

organic carbon production; TO
14

C: total organic carbon production. pCO2 is the mean value 

for each mesocosm during the experiment. 

Oxygen light-dark and 
14

C primary production methods were compared without the first 

day as O2-LD method provided negative values for NCP that cannot be measured with 
14

C 

method. Using data from days 3 to 11, NCP was not significantly correlated with TO
14

C rates 

(r
2
 = 0.06, p > 0.05, n = 43) but was correlated with PP-

14
C (r

2
 = 0.21, p < 0.05, n = 45). PP-

14
C was closer to NCP than to GPP-O2 (see comparable cumulative values between NCP and 

PP-
14

C) with GPP-O2 always higher than PP-
14

C. Significant correlations were found between 

GPP-O2 and TO
14

C (r
2
 = 0.14, p < 0.05, n = 43) and between GPP-O2 and PP-

14
C (r

2
 = 0.31, p 

< 0.05, n = 45). PAR at 4 m significantly increased during the experiment from 30 to 190 

µmol photon m
-2

 s
-1

 (Figure II-8; r = 0.80, p < 0.05, n = 6). GPP-O2 and NCP increased 

significantly with PAR (r = 0.40, p < 0.05, n = 54 and r = 0.76, p < 0.05, n = 54, respectively). 

For all the results reported, when metabolic rates were normalised to chlorophyll a 
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concentrations as a best proxy for phytoplankton biomass, the same results were obtained 

either on the effect of pCO2 increase or relationship between methods and with PAR.  

2.4 Discussion 

Characteristics of the study sites 

The mesocosms were initially filled with seawater with very low nutrient and chlorophyll 

concentrations (NOx < 0.10!µmol L
-1

; DIP < 26 nmol L
-1

;
 
chl a < 0.25 µg L

-1
) in the Bay of 

Calvi to low nutrient and chlorophyll concentrations (NOx < 1.2 µmol L
-1

; DIP < 20 nmol P 

L
-1

;
 
chl a < 1.5 µg L

-1
) in the Bay of Villefranche. The conditions in BC were typical of the 

summer stratified period. The initial concentration of nutrients was higher in BV than in BC 

but nutrients were rapidly consumed and concentrations were relatively low when sampling 

started. Both experiments were therefore characteristic of low nutrient low chlorophyll areas 

(LNLC). 

Although the availability of nutrient and chlorophyll a concentrations were higher during 

the spring-winter in BV, GPP rates based on the oxygen light-dark method were similar 

during the two experiments. This suggests that during the winter period in BV, the 

community was limited by nutrients as well as light and temperature. The chlorophyll a data 

obtained at Point B in BV in 2013 revealed that no real bloom occurred that year, although 

chlorophyll concentrations were maximal in April (Gazeau et al., in prep, a). Although GPP 

was roughly identical during the two experiments, cumulative NCP was close to 0 in BC, 

suggesting a metabolic balance. In contrast, cumulative NCP was above 0 in BV, suggesting 

autotrophy. As a consequence of different trophic states and temperature levels between the 

two experimental sites and periods, surface waters were a source of CO2 for the atmosphere in 

BC (initial pCO2 of 430 µatm above atmospheric equilibrium; see Gazeau et al., in prep, a) 

and a sink of CO2 in BV (initial pCO2 of 350 µatm below atmospheric equilibrium; see 

Gazeau et al., in prep, a). The sink status of BV in winter is in agreement with times-series 

data (De Carlo et al., 2013). The environmental and trophic conditions of the two study sites 

were oligotrophic summer conditions in BC and pre-bloom mesotrophic conditions in BV. 

Metabolic rates measured during both experiments were within the range of previously 

reported rates in coastal locations of the Mediterranean Sea (Navarro et al., 2004; Gazeau et 

al., 2005; González et al., 2008; Bonilla-Findji et al., 2010; Ridame et al., 2014) and in open 

waters (Regaudie-de-Gioux et al., 2009; López-Sandoval et al., 2011). More specifically, the 

heterotrophic conditions encountered at BC were consistent with the summer heterotrophic 

conditions reported in the Bay of Palma in 2001 (Navarro et al., 2004; Gazeau et al., 2005). 
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Furthermore, the values of GPP reported in the present study were below the threshold for 

metabolic balance (minimum GPP necessary to balance CR) as determined during a 

Mediterranean Sea transect performed in summer and late-spring of 2006 and 2007 (4 µmol 

O2 L
-1

 d
-1

; Regaudie-de-Gioux et al., 2009). Very few data are available using the GPP-
18

O 

method in the Mediterranean Sea, however rates measured in June-July in BC were in the 

range of those found in BV during the same time period in 2003 by González et al. (2008) and 

much lower than those determined in March 2012 in BV by Maugendre et al. (accepted, see 

Chapter IV). In mesocosm experiments conducted during summer 2008 and 2010 in Corsica, 

primary production rates measured in the control mesocosm using the 
13

C labelling technique 

over 24 h (~ 0.3 - 0.4 µmol C L
-1

 d
-1

; Ridame et al., 2014) fall in between our rates of GPP 

and NCP as this method has been shown to provide rates over 24 h incubations much lower 

than those estimated with the O2-LD technique (Hashimoto et al., 2005).  

In BV, GPP-O2 was lower than the values reported by González et al. (2008) for a similar 

period in winter-spring. This emphasises the pre-bloom conditions and the likely limitation of 

metabolic processes by temperature and light. PP-
14

C was on average 34 ±!9% of GPP-O2 

while TO
14

C represented 48 ±!16% of GPP-O2. These percentages are in the range of 40 to 

80% reported by Robinson et al. (2006) for the oligotrophic Atlantic Ocean. The release of 

labelled DOC (DO
14

Cp) was low but could be measured accurately (S.D. ±! 0.002). PER 

averaged 25 ±!12% which is close to the value ~ 20% reported by Marañón et al. (2005) over 

a wide range of primary production rates and to the value of 23.5% measured in the Almeria-

Oran front (Fernández et al., 1993). However, this is slightly lower than values measured in 

two Mediterranean bays (41%; González et al., 2008) and in the open Mediterranean Sea in 

June-July 2008 (37%; López-Sandoval et al., 2011). 

GPP-O2 exhibited relatively large changes in BC with a maximum value measured on day 

10. It could be related to the high abundance of the cyanobacteria Synechococcus spp. and 

autotrophic picoeukaryotes (Gazeau et al., in prep, this issue). Navarro et al. (2004) have 

shown that a bloom of Synechococcus led to autotrophic conditions in the Bay of Palma in 

summer 2002. Also, water column stratification and PAR were higher on that day (Gazeau et 

al., in prep, a). In BV, NCP increased throughout the experiment while GPP-O2 only 

increased slightly. The increase in NCP is related to a weaker CR, probably caused by a 

decrease in particulate organic matter available for the heterotrophs (Celussi et al., in prep).  

No correlation was found between GPP measured by the O2 light-dark and the 
18

O 

labelling techniques in BC. This is in agreement with previous results obtained in the Bay of 

Villefranche by Maugendre et al. (accepted, see Chapter IV), although González et al. (2008) 
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reported a significant correlation at the same location. However, it must be stressed that the 

BC experiment was performed during the low productive summer period while González et 

al. (2008) established their correlation across a much wider range of GPP. In BV, 
14

C primary 

production was closer to NCP than GPP as it is expected for 24 h incubations (Marra and 

Barber, 2004).  

Effects of ocean acidification on community metabolism 

The effect of ocean acidification was investigated at two sites typical of LNLC with three 

controls and six CO2-enriched levels. Despite different metabolic states (heterotrophy vs 

autotrophy) and period (summer vs pre-bloom), the same absence of response was observed at 

the two locations. The analysis of all cumulative rates of particulate and dissolved material 

indicates a neutral effect of CO2 enrichment. This suggests that in the short term of the 

experiments (12 to 20 days) and under nutrient limitation, pCO2 levels as projected for the 

next decades may not have significant effects on plankton community metabolism. It is in 

contrast with the hypothesis of enhanced production with increasing pCO2 suggested by 

previous experiments performed at community level under nutrient replete conditions. In fact, 

with the exception of Yoshimura et al. (2010), all previous experiments have been conducted 

with high nutrient and/or nutrient addition in cold waters (Table II-7).  

The mesocosm experiment performed in situ in an Arctic Fjord showed that the plankton 

community was quite sensitive to an increase in pCO2, although conclusions diverged 

depending on the measurement method. Tanaka et al. (2013) found that cumulative NCP was 

not affected by pCO2 over the whole experimental period, but was negatively affected after 

the increase in chlorophyll a which followed nutrient addition. Engel et al. (2013) found that 

primary production measured by 
14

C uptake significantly increased with increasing pCO2. 

Other experiments have been performed using smaller mesocosms in the coastal North Sea 

(Bergen, Norway) as part of the PeECE project. The three consecutive experiments (2001, 

2003 and 2005) showed different effects on primary production. During the first experiment, 

no effect was found on primary production using the oxygen light-dark method in a bloom 

dominated by the coccolithophore Emiliania huxleyi (Delille et al., 2005). No effects were 

also found during the second experiment in 2003 (unpublished data; see in Egge et al., 2009). 

In contrast, an increase of cumulative PP-
14

C was measured during a nutrient-induced diatom 

bloom in a similar experimental set-up and at the same location (Egge et al., 2009; Table II-

7). This enhanced production was not detected using the oxygen light-dark method and was 

attributed to a lack of precision in the measurements or to an absence of effect (Egge et al., 

2009). The diverse response of primary production at the same location during the PeECE 
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project could also be attributed to differences in nutrient concentrations and irradiance which 

also strongly influence the community composition as well as in phytoplankton community 

composition. Indeed, as highlighted in a recent study, the initial community composition and 

ratios between phytoplankton species have more effect than ocean acidification on plankton 

community functioning (Eggers et al., 2014).  

During a microcosm (9 L bottles) experiment performed in the Okhotsk Sea (Yoshimura 

et al., 2010), nutrient concentrations were below detection limits and chlorophyll a 

concentrations were similar to those observed in the present study (~ 0.1 - 0.3 µg chl a L
-1

; 

Table 4). While increasing pCO2 levels had no effect on POC production, DOC accumulation 

decreased significantly (Yoshimura et al., 2010). The lack of effect on POC production is in 

agreement with the results reported in the present study but the decrease in DOC 

accumulation is in contrast with the lack of effect on DO
14

Cp in the Bay of Villefranche. Such 

difference might be due to the different timings relative to the bloom. In BC and BV the 

experiments were performed, respectively, in summer and pre-bloom conditions, while in the 

Okhotsk Sea the experiment was conducted after the spring-bloom with very low pCO2 (~ 

200 µatm). Furthermore, their range of pCO2 levels was small, with a maximum pCO2 of 

about 590 µatm) corresponding to one of the lowest pCO2 used in the present study. The 

differences in initial plankton community state and assemblages between the experiments 

might explain that, contrary to the Okhotsk Sea, we did not detect any effect on the dissolved 

compartment.  

Plankton communities in the ocean can be limited or co-limited by macronutrients (Low 

Nutrient Low Chlorophyll; LNLC) or by micronutrient such as iron (Fe) preventing 

phytoplankton growth even under high nutrient levels (High Nutrient Low Chlorophyll; 

HNLC). In contrast to other experiments which focused on the effect of iron addition in 

combination or not with pCO2 (Hare et al., 2007; Hopkinson et al., 2010; Sugie et al., 2013), a 

study was recently performed in iron-limited areas of the Bering sea and of the North Pacific 

(Yoshimura et al., 2013). While no effect of pCO2 was found in the North Pacific, in the 

Bering Sea, quantitative and qualitative changes in the production of particulate and dissolved 

organic matter were observed with increasing pCO2. As large cells dominated the community 

in the Bering Sea while in the North Pacific small eukaryotes were more abundant (Table II-

7), Yoshimura et al. (2013) attributed these contrasting responses to differences in plankton 

community composition (Table II-7) and suggested that oceanic communities dominated by 

small species are less sensitive to increased pCO2. Since ocean acidification research begun, it 

has been hypothesised that phytoplankton species with relatively inefficient carbon 
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concentration mechanisms (CCMs) will be favoured in future conditions by decreasing the 

energetic cost for CO2 acquisition while species with an efficient CCM will be less impacted 

except if down regulating of CCM activity occur, reducing energetic cost and being 

advantageous for these species (Rost et al., 2003, 2008; Riebesell et al., 1993). Many studies 

have tried to evaluate CCMs efficiency of different phytoplankton groups however the 

diversity of CCMs within and among phytoplankton groups makes relatively difficult to 

establish a clear rule on which group will be favoured or not (see Rost et al., 2008 and 

references therein). The plankton communities studied here were dominated by small species 

(i.e., Cyanobacteria (Synechococcus spp.), haptophytes, pelagophytes, cryptophytes and 

chlorophytes; Gazeau et al., in prep, this issue), which seem to have relatively efficient CCMs 

under current and future CO2 condition and were therefore not impacted. However, a 

theoretical approach led to a different hypothesis (Flynn et al., 2012), suggesting that small 

phytoplankton species are less adapted to changes in their local pH while larger cells must 

face larger pH variations at short time scale (day or hours). Our data do not support this 

hypothesis.  

In conclusion, this perturbation experiment was carried out in a typical LNLC area in two 

sites with different metabolic status (summer and pre-bloom periods). In both experiments, no 

effect of ocean acidification on community metabolism could be detected. Plankton 

communities were limited by nutrient availability and an increase in CO2 concentrations had, 

not surprisingly, no effect on community metabolic rates. Although the present study was not 

performed during a phytoplankton bloom, which is very limited in time and biomass in the 

study area, our results suggest that biological carbon fixation in oligotrophic areas such as the 

NW Mediterranean Sea will not be enhanced by CO2 enrichment. If these results hold true for 

all oligotrophic areas, there would be no negative feedback of the biological pump to 

atmospheric CO2 increase. However, short perturbation events stimulating metabolic rates, 

such as Saharan dust deposition, nutrient fertilization (for example by water column mixing, 

land run off) could induce a different response to ocean acidification and should be 

investigated in these areas in the future. Finally, as ocean acidification can act synergistically 

with other CO2-related perturbations such as ocean warming, it is of the utmost importance 

for future studies to consider interactions with other drivers related to climate change. 
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Table II-7. Effects of ocean acidification as observed during previous experiments under different environmental conditions. The range in 

nitrogen (NOx = nitrate + nitrite), phosphate (DIP) and chlorophyll a (chl a) concentrations as well as temperature (T) and the main 

phytoplankton groups are presented. LOD: below detection limit and ND: not determined.  

Experiment, location 

and year  

T                         

(°C) 

NOx      

(µmol L
-1

) 

DIP  

(µmol L
-1

) 

chl a        

(µg L
-1

) 

Main phytoplankton 

group 

Effect on metabolic rates or 

main result  
Reference  

Low nutrient concentrations        

Bay of Calvi, NW 

Mediterranean (2012) 

21.5 to 

24.5 
< 0.04 < 0.01 

0.04 to 

0.19 

Haptophytes and 

Cyanobacteria  

No effect on community  

metabolism 

this study; 

pers. comm. 

Bay of Villefranche, 

NW Mediterranean 

(2013) 

13 ± 0.5 < 1.2 < 0.01 
0.36 to 

1.27 

Haptophytes and 

Cryptophytes 

No effect on community  

metabolism 

this study; 

pers. comm. 

Oshtock Sea (2006) 13.5 
0.02 to 

0.05 

0.22 to 

0.25 
0.2 to 4 

Synechococcus spp. and < 

5 µm eukaryotes  

Respectively, no and less 

particulate and dissolved 

organic carbon accumulation  

Yoshimura et 

al. (2010)  

Nutrient addition        

PeECE I Bergen (2001) 10 to 13 LOD to 17 LOD to 0.5 1 to 12.5 

Temporal shift from 

Synechococcus spp. to 

Emiliania hux. 

No effect on organic matter 

production  

Delille et al. 

(2005)  

PeECE II Bergen 

(2003) 
8 to 10 LOD to 9 LOD to 0.5 

0.2 to 

4.2 

Temporal shift from E. 

hux. to diatoms  

Small species more affected, 

no effects on metabolic rates  

Engel et al. 

2008; (Egge, 

unpublished 

data); (Engel, 

unpublished 

data)  

PeECE III Bergen 

(2005) 
9 to 11.5  LOD to 15 LOD to 0.6 1.5 to 13 

Temporal shift from 

diatoms & E. hux. to 

flagellates  

Increase in primary 

production (
14

C labelling over 

24 h) but no effect on net 

community production (O2)  

Egge et al. 

(2009)  
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Experiment, location 

and year  

T                         

(°C) 

NOx      

(µmol L
-1

) 

DIP (µmol 

L
-1

) 

chl a        

(µg L
-1

) 

Main phytoplankton 

group 

Effect on metabolic rates or 

main result  
Reference  

Svalbard (2010) 2 to 5.5 0.1 to 5.5 0.09 to 0.4 
0.22 to 

0.31 

Haptophytes and 

Mixotrophes  

Respectively no and negative 

effect on oxygen and 
13

C 

measurements methods on net 

community production, for 

whole period 

Tanaka et al. 

(2013); 

Kluijver et al. 

(2013); Engel 

et al. (2013)  

Iron limited areas         

Bering Sea (2007) 8.4 16 1.5 
0.39 to 

2.4 
Diatoms (65 %) 

Increase in particulate organic 

carbon  accumulation 

North Pacific (2007) 9.2 16 1.4 
0.21 to 

2.8 

Ultraeukaryotes and 

Synechococcus spp. 

No effect on particulate 

organic carbon  accumulation 

Yoshimura et 

al. (2013)  
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1. Preambule 

In the following study, experimental enclosures were enriched with carbon-13 and 

group-specific incorporation rates were estimated based on the 
13

C signature of specific 

molecules: polar lipid fatty acids (PLFA). These PLFA are cell membrane components that 

allow discriminating between different phytoplankton groups as well as bacteria, i.e. 

biomarkers. They are synthesized de novo during cell growth (Figure III-1) and therefore 

reflect the production of newly produced material. Furthermore, in contrast to neutral lipids, 

they have a relatively constant concentration between individuals. Finally, PLFA have short 

turnover times providing therefore a good indicator of the living biomass.   

PLFA terminology is expressed as X:YωZ or X:Y (n-Z), X being total number of 

carbon atoms in the fatty acid, Y is the number of double bonds (or unsaturated bonds) in the 

chain and Z is the precise position of the first unsaturated bond from the terminal carbon. 

There are different types of PLFA: saturated FA (SFA; no double bound), mono-unsaturated 

FA (MUFA) and poly-unsaturated FA (PUFA).  

 

 

Figure III-1. Major biosynthesis fatty acids pathways in marine algae. Extracted from 

Dalsgaard et al. (2003), modified after Gurr and Harwood (1991) and Cook (1996).  
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2. Carbon-13 labelling studies show no effect of ocean acidification on Mediterranean 

plankton communities 

 

Note: The manuscript as presented here is not the final version but has been reviewed by all 

co-authors at the time to submit the thesis and will require some modifications before 

submission during December 2014 in the special issue with other “MedSeA mesocosm 

experiments” manuscripts. Therefore, if necessary, please refer to the more recent version of 

the manuscript than the one available at the time of submitting this thesis manuscript. 

Journal: Special Issue in Estuarine, Coastal and Shelf Science 
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Abstract 

The effect of ocean acidification on the flow of carbon within a plankton community was 

investigated in two bays of the Northwestern Mediterranean Sea. In the Bay of Calvi 

(Corsica, France; summer 2012) and in the Bay of Villefranche (France; winter/spring 2013), 

nine off-shore mesocosms (~50 m
3
) were deployed among which 3 served as controls and 6 

were enriched with CO2 to reach pCO2 levels from 450 to 1350 µatm and 350 to 1250 µatm in 

the Bay of Calvi and the Bay of Villefranche, respectively. The experiments were performed 

in two different seasons and under contrasting plankton physiological states. At the start of 

the experiment, all mesocosms were enriched with inorganic 
13

C in order to follow carbon 

transfer from dissolved inorganic to bulk particulate organic carbon, as well as to 

phytoplankton (mixotrophs and autotrophs) and to bacteria by means of biomarkers (specific 

phospholipids fatty acids). Estimated group specific primary production rates and growth 

rates suggest a relatively higher mixotrophic activity and nutrient remineralisation in the Bay 

of Calvi (summer) while in the Bay of Villefranche (winter/spring), autotrophic activity was 

clearly dominating. The increase in pCO2 did not have any effect on total or group specific 

production rates and on the transfer of recently fixed carbon to heterotrophic bacteria. These 

experiments were the first conducted in a warm oligotrophic waters and suggest that ocean 

acidification may not significantly impact plankton carbon flows under nutrient limiting 

conditions. 
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2.1 Introduction 

Carbon dioxide (CO2) concentration in the atmosphere are increasing at an 

unprecedented rate in Earth history due to human activities, warming the lower atmosphere 

and the ocean. As about 25 % of the emitted CO2 dissolves in seawater (Le Quéré et al., 2013) 

forming carbonic acid and releasing protons, the acidity of the ocean is also increasing (i.e. 

ocean acidification; Gattuso and Hanson 2011). The effect of ocean acidification on plankton 

community has recently raised important concerns as plankton plays a key role in the global 

carbon cycle and marine food webs. Primary production, community respiration and organic 

matter (OM) export to the deep-sea, the so-called biological pump, are the main biological 

controls of the fluxes of CO2 from the atmosphere to the ocean. As CO2 is the main substrate 

for photosynthesis and as RuBisCO activity is not optimal at the concentrations of CO2 

present in ocean surface waters, primary production could potential benefit from an increase 

of CO2 concentrations as a consequence of ocean acidification. However, as RuBisCO 

enzyme presents low affinity for CO2 in water, most phytoplankton groups have developed 

carbon concentration mechanisms (CCMs; Giordano et al., 2005) the efficiency of which is 

species-dependent (Reinfelder, 2011). It is therefore expected that while some species will be 

favoured by ocean acidification, others will not, leading to shifts in community structure. 

Therefore, community compositions as well as primary production of specific phytoplankton 

groups are important information to elucidate the response carbon fixation and export 

capacity to ocean acidification. Furthermore, the plankton community comprises autotrophs, 

heterotrophs and mixotrophs, which are involved in many ecological interactions among 

which dissolved organic production and consumption that differ between species. Dissolved 

organic carbon (DOC) production and concentration have been shown to be sensitive to 

increased CO2 levels, either positively or negatively (e.g. Yoshimura et al., 2010; Engel et al., 

2013) confirming the need to study natural assemblages rather than individual species or 

strains.  

Several experiments have recently been conducted at the community level to assess 

the effects of ocean acidification on the structure and functioning of plankton communities in 

different areas of the ocean. So far, these experiments provided variable and sometimes 

conflicting results, preventing to derive a general concept on the effects of ocean acidification 

(see Riebesell and Tortell, 2011 for review). For instance, in some studies, ocean acidification 

has been shown to modify the community structure towards more diatoms (Tortell et al., 

2002; 2008) or towards smaller species (Brussaard et al., 2013). In other studies, no changes 
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were found (Nielsen et al., 2010; 2012). Furthermore, most of these experiments have been 

conducted in cold nutrient-rich or with experimentally added nutrient concentrations to 

deliberately induce a bloom. There is therefore a strong lack of data for warm, low nutrient 

and low productive regions although these areas represent a vast majority of the surface ocean 

(> 60 %, Longhurst et al., 1995). Also, most of the experiments have been performed during a 

natural or artificial phytoplankton blooms that only occur during a restricted period of the 

year and may not reflect the physiological state of plankton community and ecosystem trophic 

state for most of the year. Therefore the response of plankton communities to ocean 

acidification under undisturbed conditions, i.e. without nutrient addition and natural 

assemblages, is poorly known. This work is a contribution towards filling this knowledge gap. 

The Mediterranean Sea is oligotrophic for most of the year and locations despite the 

fact that several bioregions have been identified (D’ortenzio and D’Alcalà, 2009). The 

decrease in pH in this sea has been estimated to be ~ 0.15 pH units since the industrial 

revolution (Touratier and Goyet, 2009) and an additional decrease of 0.3 to 0.4 units pH is 

foreseen for the end of the century (Geri et al., 2014). The effect of ocean acidification on 

plankton community has been investigated based on mesocosm experiments conducted in two 

different sites of the Northwestern Mediterranean Sea (Gazeau et al., in prep, a). In this 

Chapter, we report on the use of inorganic carbon 13 (
13

C) enrichment to trace the flow of 

carbon from the inorganic to the organic compartments. In addition to 
13

C-labelling, analyses 

of phospholipids fatty acids (PLFA) biomarkers provided taxonomic information. PLFA are 

cell membrane components produced by phytoplankton and bacteria, that occur in relatively 

fixed proportion in cells and that allow distinguishing among large groups of organisms 

(Middelburg, 2014). Moreover, PLFA are rapidly degraded after cell death and therefore 

largely reflect the activity of living cells (Boschker and Middelburg, 2002).  The combination 

of 
13

C stable isotope labelling with biomarkers analyses has been used to determine 

production rates at taxa-specific (Dijkman et al., 2009) and at community level (Van Den 

Meersche et al., 2004, 2011; De Kluijver et al., 2010; 2013) as it can be performed directly in 

large mesocosms. This Chapter reports on the first 
13

C labelling study on plankton 

communities in the frame of an experiment on ocean acidification effects in the 

Mediterranean Sea, enabling to test for its limits in low nutrient and relatively unproductive 

areas.  
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2.2 Material and Method 

2.2.1 Study sites, experimental set-up and sampling 

Two mesocosm experiments were carried out in the Bay of Calvi (BC; Corsica, 

France) in June-July 2012 and in the Bay of Villefranche (BV; France) in February-March 

2013. The experimental set-up and mesocosm characteristics are described in Gazeau et al. (in 

prep, a) and in chapter II of the thesis. In brief, for each experiment, nine mesocosms of ca. 50 

m
3
 (2.5 m in diameter and 12 m maximum depth) were deployed for 20 and 11 days in BC 

and BV, respectively. Once the bottom of the mesocosms was closed, CO2 saturated seawater 

was added in steps over 3 days to obtain a pCO2 gradient from ambient levels to an intended 

1,200 µatm, with three control mesocosms (C1, C2 and C3) and six mesocosms with 

increasing pCO2 (P1 to P6). During the last day of CO2 saturated seawater addition, 
13

C 

sodium bicarbonate (NaH
13

CO3; 99 %) was added to each mesocosm to increase the δ
13

C 

signature of dissolved inorganic carbon pool (δ
13

C-DIC) to ca. 200 ‰ in BC and 100 ‰ in 

BV. In BC, on day 11, a second addition of NaH
13

CO3 was performed to better constrain 

production rates and resulted in an enrichment of ca. 250 ‰.  

Every morning, depth-integrated samplings (0 – 10 m) were performed using 5 L 

Hydro-Bios integrated water samplers and sampled seawater was used for various analyses 

such as particulate organic matter (Gazeau et al., in prep, c), nutrient (Louis et al., in prep) 

and pigment concentrations (Gazeau et al., in prep, b). Every other day, samples were taken 

for microbial diversity analyses, performed using flow cytometry techniques (Celussi et al., in 

prep). Daily samples for δ
13

C-DIC, δ
13

C-particulate organic carbon (δ
13

C-POC) and δ
13

C-

phospholipid (polar) fatty acid (δ
13

C-PLFA) analyses were taken at the beginning (day 0 to 15 

in BC and day 0 to 4 in BV) and every second day toward the end of the experiments. The 

sediments traps were emptied every day in BC or every other day in BV and samples were 

immediately preserved with pH buffered formol. In BC, the final zooplankton net haul (200 

µm mesh size) was performed in each mesocosm at the end of the experiment. Unfortunately, 

a storm caused an unintended opening of the mesocosms on day 13 (Gazeau et al., in prep, a 

for details; and in chapter II) no zooplankton net haul could be done in BV.  

 Samples for δ
13

C-POC were immediately filtered on pre-weighted and pre-combusted 

25 mm GF/F using 0.5 to 1 L of collected seawater. Filters were dried at 60 °C and stored in a 

dry place pending analysis. For δ
13

C-DIC analyses, 20 mL of seawater was gently transferred 

to glass vial avoiding bubbles and vials were sealed after being poisoned with 10 µL saturated 

HgCl2 and stored upside-down at room temperature in the dark pending analysis. The δ
13

C-
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PLFA samples were gently filtered through 47 mm pre-combusted GF/F filters using a known 

volume of seawater of ca. 4 L of seawater and were stored at – 80 °C. Zooplankton samples 

of the final net haul were transferred to filtered seawater for half an hour to empty their guts. 

One to ten individuals of the two species Paracalanus spp. and Oncaea spp., that were found 

in nearly all mesocosms, were transferred to pre-combusted tin cups and were stored at – 80 

°C for later organic δ
13

C content analyses. For sediment trap samples, swimmers larger than 1 

mm were removed and the remaining samples were rinsed, centrifuged and freeze-dried. In 

BC, as a consequence of low amounts of material especially at the end of the experiment, 

daily samples were pooled as follows: d5-7, d8-10, d11-14 and d15-19. Total particulate 

matter was weighed for flux determination and subsamples were used for POC and δ
13

C-POC 

measurements. At the time of presenting the manuscript for this thesis, POC concentration 

and 
13

C-POC measurements in sediment traps for the experiment in BV are still being 

processed. 

2.2.2 Laboratory analysis 

All sample preparations and measurements for δ
13

C analyses were performed at the 

Netherlands Institute of Sea Research (NIOZ-Yerseke; The Netherlands). POC samples were 

analyzed for organic carbon content and isotope ratios on an elemental analyser (Thermo 

Electron Flash EA 1112) coupled to a Delta V isotope ratio mass spectrometer (IRMS). For 

δ
13

C-DIC analyses, a helium headspace (3 mL) was created in the vials and samples were 

acidified with 2 µL of phosphoric acid (H3PO4, 99%) to transfer all DIC to gaseous CO2. 

After equilibration, the CO2 concentration in the headspace and its isotopic composition were 

measured on an EA-IRMS. PLFA were extracted using a modified Bligh and Dyer method 

(Middelburg et al., 2000). In brief, after total lipids extraction in a methanol:chloroform mix, 

lipids were separated into different polarity classes on a column separation using previously 

heat activated silica. After elution with chloroform and acetone, the methanol fraction was 

collected and PLFA were derivatized to fatty acid methyl esters (FAME). The standards 12:0 

and 19:0 were used as internal standards. Concentrations and δ
13

C of individual PLFA were 

measured using gas chromatography-combustion isotope ratio mass spectrometry (GC-c-

IRMS; Middelburg et al., 2000; De Kluijver et al., 2010; 2013). In BC, due to very low 

concentrations, the daily PLFA samples were pooled by two days after the extraction step.  

2.2.3 Data analysis 

Carbon isotope data are expressed in the delta notation (δ) relative to Vienna Pee Dee 

Belemnite (VPDB) standard and are presented as specific enrichment (∆δ
13

C) and 
13

C 
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incorporation (Middelburg, 2014). The specific enrichment ∆ was calculated as δ
13

C sample –

δ
13

Cbackground with δ
13

Cbackground being the isotope ratio under natural conditions (before 
13

C 

addition). The carbon isotope ratio was calculated as Rsample = (δ
13

Csample/1000+1) x RVPDB, 

with RVPDB = 0.011237. The 
13

C fraction was calculated as: 
13

F = 
13

C/(
13

C+
12

C) = R/(R+1). 

The excess 
13

C was obtained as ∆
13

F = 
13

F sample - 
13

Fbackground. Incorporation were then 

calculated as 
13

C-concentration = ∆
13

F x C (µmol L
-1

; De Kluijver et al., 2010) with C being 

POC or PLFA concentrations in µmol L
-1

. In order to directly compare values between 

mesocosms, data were corrected for the different initial δ
13

C-DIC using a correction factor 

calculated as the ratio between δ
13

C-DIC in each mesocosm to the average δ
13

C-DIC in all 

mesocosms at d0. This ratio varied from 0.92 to 1.21 in BC and from 0.72 to 1.22 in BV.  

δ
13

C-DIC data were corrected for air-sea gas exchanges using the method described in De 

Kluijver et al. (2013).   

The PLFAs ai15:0 and i15:0 were used as specific biomarkers for gram-positive and -

negative bacteria although the more abundant 18:1ω7c is sometimes used for gram-negative 

bacteria but this PLFA can also be found in some phytoplankton species. For phytoplankton, 

different PLFAs were detected depending on the site and higher PLFA concentrations and 

more diversity were detected in BV than in BC. Based on the dynamics of 
13

C enrichment, 

two phytoplankton groups were considered: one with fast and one with delayed incorporation. 

In BC, PLFA that showed delayed incorporation were 16:2ω4, 20:4ω6, 20:5ω3 and 22:6ω3 

and these are characteristic for diatoms and (mixotrophic) dinoflagellates. Their 

concentration-weighted δ
13

C and sum of concentrations were used to describe a general group 

considered as mixotrophs (Dalsgaard et al., 2003; Dijkman et al., 2009; De Kluijver et al., 

2013). PLFAs that showed quick incorporation were 18:4ω3 and 18:3ω3 and their weighted 

isotope value was used for autotrophic phytoplankton with chlorophytes and haptophytes. 

Similarly, in BV, a slowly incorporating group containing 16:4ω3, 16:4ω1; 20:5ω3 and 

22:6ω3 was defined as mixotrophs (i.e. diatoms, dinoflagellates and praesinophytes). The fast 

incorporating group (18:3ω3, 18:4ω3, 18:5ω3(12-15) and 18:5ω3(12-16)) was used to 

characterize autotrophs, with chlorophytes, haptophytes, cryptophytes and autotrophic 

dinoflagellates. The sum of characteristic PLFA concentrations were converted to total carbon 

concentration using conversion factors (µg C PLFA / µg C cell) of 0.01, 0.06 and 0.05 for 

bacteria, autotrophs (high incorporation rates) and mixotrophs (low incorporation rates), 

respectively (Van Den Meersche et al., 2004; Dijkman et al., 2009; De Kluijver et al., 2013). 

Bacterial biomass was also converted to cell abundance using a carbon content of 20 fg cell
-1

 

(Lee and Fuhrman, 1987).  
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Primary production rates were calculated based on 
13

C incorporation in POC as well as in 

PLFA characteristic of each phytoplankton group (autotrophs and mixotrophs) and bacteria, 

using the equation: 

PP = [(∆ 
13

Fbiomass*C biomass)/∆t – (
13

Fmean;biomass* ∆C biomass )/∆t)] / [
13

Fmean;DIC – 
13

Fmean;biomass]  

in µmol C L
-1

 d
-1

 with, 
13

Fbiomass the 
13

C fraction in the considered biomass (PLFA autotrophs, 

mixotroph, bacteria or POC), Cbiomass the concentration of the considered biomass in µmol C 

L
-1

; ∆t is the time interval in days (d
-1

), 
13

Fmean;biomass is the average 
13

C fraction in the 

considered biomass (PLFA or POC) for the time interval and 
13

Fmean;DIC is the average 
13

C 

fraction in DIC for the considered time interval. 

2.2.4 Model 

Having isotope enrichment data (∆δ
13

C) at multiple time steps allows using simple sink-

source isotope ratio model based on that of Hamilton et al. (2004) in which the isotopic 

composition of a consumer is altered by the uptake of the source compartments minus any 

losses.  This model is based on the assumption that biomass of consumers is constant with 

time and allows estimating the turnover rate of the phytoplankton and bacterial groups (r). 

Here we apply a phytoplankton-bacteria-detritus model among which two phytoplankton 

types are considered (Phyto1 and Phyto2). For this system, the set of equations reads: 

d ∆ δ
13

CPhyto1 / d t = rP1 (∆ δ
13

CDIC - ∆ δ
13

CPhyto1) 

d ∆ δ
13

CPhyto2 / d t = rP2 (∆ δ
13

CDIC - ∆ δ
13

CPhyto2) 

d ∆ δ
13

Cbact / d t = rbac (∆ δ
13

CPhyto1 - ∆ δ
13

Cbac) 

d ∆ δ
13

Cdet / d t = rPhyto1 (∆ δ
13

CPhyto1 - ∆ δ
13

Cdet) + rPhyto2 (∆ δ
13

CPhyto2 - ∆ δ
13

Cdet) + rbac (∆ 

δ
13

Cbac - ∆ δ
13

Cdet) 

This model was implemented in R software (r core team 2013) using packages FME and 

deSolve (Soetaert and Petzoldt, 2010; Soetaert et al., 2010) and was applied to the global 

experimental periods. Some more details on the model can be obtained in Van Oevelen et al. 

(2006) and De Kluijver et al. (2010). This simple modelling approach allows derivation of 

model parameters (with uncertainty), which then can be regressed against CO2 level to test for 

an ocean acidification effect. By the end of the experiment stable isotope patterns approached 

steady state and the ratio of the enrichment in consumers (∆δ
13

Ccons) to the enrichment of the 

substrate (∆δ
13

Csubst) can then be used to quantify the dependency of consumers on the 

resource. 
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2.2.5 Statistics  

Results on isotope ratio, isotope concentrations and biomasses are reported as average ± SD 

of the nine mesocosms. Cumulative production was calculated as the sum of production rates 

calculated from the equation for the available experimental period. Linear interpolation was 

used for the days when no production rates are available. The pCO2 used for the 

representation of cumulative productions were the average pCO2 over the considered 

experimental period for each mesocosm. Linear regressions of cumulative rates against pCO2 

were used to test for ocean acidification effects. Model-II linear regressions were used to 

compare PLFA and chlorophyll a concentration. All regressions were performed using the R 

software (version 3.1; www.r-project.org) and were considered significant at a probability α = 

0.05.  

 

Figure III-2. Average ∆δ
13

C in the nine mesocosms deployed in a) the bay of Calvi in summer 

2012 and b) the bay of Villefranche in winter/spring 2013 reported as mean ± SD for 

dissolved inorganic carbon (DIC; black points); particulate organic carbon in the water 

column (POC; black square), autotroph phytoplankton (light green square), mixotrophs (dark 

green points) and bacteria (orange square).   

 

2.3 Results 

2.3.1 Bay of Calvi 

Labelling results: DIC and POC 

The addition of NaH
13

CO3 led to an increase of ∆δ
13

C-DIC in all mesocosms to an 

average 224 ± 16 ‰ that steadily decreased to a minimum of 194 ± 12 ‰ at d10 before the 

second addition was performed. This latter further increased ∆δ
13

C-DIC to 270 ± 13 ‰ 
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(Figure III-2 a). The 
13

C-DIC concentration varied during the whole experimental period from 

7.3 to 4.2 µmol 
13

C L
-1

 and accounted for 0.19 to 0.30 % of total DIC concentration and 

followed the same pattern (Figure III-3a) as described for ∆δ
13

C-DIC. The decrease in 
13

C-

DIC concentrations occured in all mesocosms independent of pCO2 level.  Losses through air-

sea exchange were negligible (< 0.7 % 
13

C-DIC; data not shown).  

Incorporation into POC was rapid and a first plateau starting at d9 was reached with an 

average ∆δ
13

C-POC of 86 ± 8 ‰. The second addition of NaH
13

CO3 on d11 led to a further 

increase in ∆δ
13

C-POC until d15 when a second plateau was reached (122 ± 18 ‰; Figure III- 

2a). The 
13

C-POC concentration (Figure III-3b) varied, following the same pattern as ∆δ
13

C-

POC, from 3.6 to 58.2 10
-4

 µmol 
13

C L
-1

. Average ratio of ∆δ
13

C-POC / ∆δ
13

C-DIC reached a 

maximum of ca. 0.54 at the end of the experiment (Table III-1), but remained below 1 

implying that not all the particulate material had been labelled during the experimental period.  

Phytoplankton and bacteria dynamic: labelling and biomass 

The averaged ∆δ
13

C-mixotroph steadily increased until d12 to 139 ± 18 ‰ and the 

second NaH
13

CO3 addition on d11 allowed an increase to 179 ± 36 ‰ (Figure III-2a). The 

autotrophs incorporated label much faster and on d6 a first saturation plateau was reached at 

165 ± 11 ‰. After the second NaH
13

CO3 addition, ∆δ
13

C-autotroph increased again until the 

end of the experiment to 217 ± 36 ‰ (Figure III-2a). The ∆δ
13

C-bacteria steadily increased to 

reach a final average maximum of 155 ± 24 ‰ (Figure III-2a). The 
13

C content of autotrophs, 

mixotrophs and bacteria increased (Figure III-4a, b, c) during the experiment, irrespective of 

the pCO2 level. The ratio of ∆δ 
13

C-all phytoplankton(mixotrophs+autotrophs) / ∆δ
13

C-DIC reached 

an averaged maximum of 0.78 ± 0.04 on d20 while the averaged ratio ∆δ 
13

C-bacteria / 

∆δ
13

C-DIC was 0.59 ± 0.21 (Table III-1). ∆δ
13

C-bacteria / ∆δ
13

C-all phytoplankton averaged 

0.80 ± 0.15 at the end of the experiment. The model fit to the data (Figure III-5) and did 

provide an average growth rates value for all the mesocosm of 0.50, 0.20 and 0.10 d
-1

 for 

autotrophs, mixotrophs and bacteria respectively and were independent of pCO2 levels. The 

bacteria isotope ratio (∆δ
13

C) was below isotope ratio of autotrophs and mixotroph. The 

models fit similarly if bacteria are parameterised to grow on auto- or mixo-trophs.   
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Figure III-3. 
13

C-biomass (µmol 
13

C L
-1

) in the nine mesocosms (C1 to P6) deployed in the 

Bay of Calvi in summer 2012 (left) and in the Bay of Villefranche in winter/spring 2013 

(right) for dissolved inorganic carbon (DIC; upper panels) and particulate organic carbon 

(POC; lower panels).  

 

The biomass of mixotrophs increased over the experimental period from 0.025 to 0.15 

µmol C L
-1

 while the biomass of autotrophs was lower and varied from  ~ 0.01 to 0.04 µmol 

C L
-1 

(Figure III-6a). The dynamics of chlorophyll a (Gazeau et al., in prep, b) and total 

phytoplankton biomass based on PLFA were similar and both variables were significantly 

correlated between (n = 106, r
2
= 0.14, p < 0.01). Bacterial biomass calculated based on PLFA 

varied from 0.025 to 0.10 µmol C L
-1

 (Figure III-6a) and converted to cell abundance was 

higher than measured by flow cytometer (FC) by one order of magnitude and PLFA and FC 

presented a similar dynamics (data not shown).  The biomass based on PLFA for 

phytoplankton, mixotrophs and bacteria varied independently of pCO2 levels.  
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Primary production based POC and PLFA 

Based on POC labelling, net production rates (NCP-
13

C) varied from 0.00 to 1.02 

µmol C L
-1

 d
-1

 with large variations between mesocosms and sampling days (data not shown). 

Cumulative productions ranged from 2.62 to 3.24 µmol C L
-1

 (Figure III-7) with no 

significant trend with increasing pCO2 (n = 9; r = 0.05; p > 0 .05). Mixotroph production rates 

(delayed incorporation group) varied between 0.00 and 0.03 µmol C L
-1

 d
-1

. The lowest 

cumulative productions were measured in P5 and P6 (0.02 µmol C L
-1

) and the highest was 

measured in P2 (0.12 µmol C L
-1

; Table III-2). These cumulative productions rates did not 

show any trend with increasing pCO2 levels (n = 9; r = 0.14; p > 0.05). As autotrophic 

biomass was much lower, it was very difficult to obtain precise estimates of autotroph 

primary production rates, especially in C2 that was not taken into consideration. Calculated 

autotroph production rates varied from 0.000 to 0.005 µmol C L
-1

 d
-1

. Cumulative production 

ranged from 0.00 to 0.03 µmol C L
-1

 with no significant CO2 effect (Table III-2; n = 9; r = 

0.09; p > 0.05). No dynamics was observed for NCP-
13

C but group-specific phytoplankton 

production rates based on PLFA showed an identical pattern for both groups: i.e. from d2 to 

d8, production rates tended to decrease and then increased until d12. After that day, the 

variability among mesocosms was too important and hid any general dynamics. Bacterial 

production rates were close to 0 over the experiment with cumulative values ranging from < 

0.01 to 0.04 µmol C L
-1

 and no significant effect of increasing pCO2 (Table III-2; n = 9; r = 

0.04 p > 0.05). 

 

Table III-1. Final ratio for the 
13

C enrichment of different particulate organic compartments: 

bulk particulate organic carbon (POC), all phytoplankton (phyto = autotrophs + mixotrophs) 

and bacteria, relative to final 
13

C enrichment of dissolved inorganic carbon (DIC) or 

phytoplankton.  

 Bay of Calvi Bay of Villefranche 

∆δ
13

C-POC /∆δ
13

C-DIC 

 

0.54 ± 0.04 

 

0.89 ± 0.10 

 

∆δ
13

C-phyto /∆δ
13

C-DIC 0.78 ± 0.04 

 

1.04 ± 0.12 

 

∆δ
13

C-bact /∆δ
13

C-DIC 

 

0.59 ± 0.21 

 

0.80 ± 0.13 

 

∆δ
13

C-bact /∆δ
13

C-phyto 

 

0.80 ± 0.15 

 

ND 
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Figure III-4.  
13

C-biomass (µmol 
13

C L
-1

) in the nine mesocosms (C1 to P6) and average 

(dashed line) deployed in the Bay of Calvi in summer 2012 (left) and in the Bay of 

Villefranche in winter/spring 2013 (right) for autotroph (upper panels), mixotrophs (middle 

panels) and bacteria (lower panels).  

 

 

 

 

 











     




































































    









































































Chapter(III*Carbon-13 labelling studies and biomarkers analysis 

 on Mediterranean plankton communities(

! 64!

Zooplankton and sediment traps 

Specimens of the copepods Paracalanus spp. were present in samples from all 

mesocosms except P1 and P2 while Oncaea spp. was not found in samples from mesocosm 

P3. Paracalanus has shown a higher specific enrichment (∆δ 
13

C; average 108 ± 10 ‰) than 

Oncaea (average 60 ± 10 ‰). Both species were less labelled in P6 (the highest pCO2 

treatment) but there was no significant effect of pCO2 on zooplankton 
13

C enrichment (Figure 

III-8; Paracalanus: n = 7, r = - 0.73, p > 0.05; Oncaea: n = 8, r = - 0.31, p > 0.05). Export to 

sediment traps was fast as after 2 days an increased in 
13

C was measured (Figure III-9). The 

cumulated 
13

C-POC in sediment traps increased steadily independent of pCO2 level (linear 

regression on daily cumulated labelled material: n = 9, r = 0.33, p > 0.05). Despite no 

significant differences between mesocosm, C2 and P1 presented lower values than the other 

mesocosms.  

 

 

Figure III-5. The model output (solid lines) fitted to the data (points) for all mesocosms 

deployed a) in the Bay of Calvi in summer 2012 and b) in the Bay of Villefranche in 

winter/spring 2013. δ
13

C of particulate organic carbon (POC), autotrophs, mixotrophs and 

bacteria based on polar lipids fatty acid (PLFA) 
13

C incorporation.  
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2.3.2 Bay of Villefranche 

Labelling results: DIC and POC 

The addition of NaH
13

CO3 led to an increase in ∆δ
13

C-DIC to 92 ± 15 ‰ that steadily 

decreased to a minimum of 34 ± 11 ‰ until d11 (Figure III-2b). The 
13

C-DIC concentration 

varied during the whole experimental period between 0.5 and 2.9 µmol 
13

C L
-1

, accounting for 

0.02 to 0.12 % of total DIC and followed the same pattern (Figure III-3c) as described for 

∆δ
13

C-DIC. Losses by air-sea exchange calculated during the experiment were important and 

were depended on the considered mesocosm. Control mesocosms presented similar negative 

air-sea fluxes while perturbed mesocosms (P1 to P6) presented positive fluxes with a 
13

C 

outgasing up to 3 % of 
13

C-DIC in the most acidified mesocosms (P5 and P6). This degassing 

can explain part of the rapid decrease in 
13

C-DIC observed during the experiment.  

Incorporation into POC was rapid and on d6 a plateau was reached with ∆δ
13

C-POC 

(average 35 ± 7 ‰; Figure III-2b). 
13

C-POC concentrations varied, following the same pattern 

as ∆δ
13

C-POC, from 3.6 to 58.2 10
-4

 µmol 
13

C L
-1

 (Figure III-3d). The ratio of ∆δ 
13

C-POC / 

∆δ 
13

C-DIC reached a maximum of ca. 0.90 (Table III-1) at the end of the experiment when 

nearly all the particulate material had been labelled.  

Phytoplankton and bacteria dynamic: biomass and labelling 

The ∆δ
13

C-mixotrophs steadily increased until d6 to 39 ± 5 ‰ while ∆δ
13

C-autotrophs 

reached 53 ± 8 ‰. ∆δ
13

C-bacteria was similar to ∆δ
13

C-mixotroph with ∆δ
13

C of 36 ± 5 ‰ on 

d6 (Figure III-2b). After that day, ∆δ 
13

C-DIC, POC and PLFA were at isotopic equilibrium 

and no other NaH
13

CO3 addition could be done to stimulate further 
13

C incorporation into 

particulate matter (Figure III-2b) due to the storm (see 2.2 Material and Method). The 
13

C-

biomasses have shown more variability between mesocosms than during the experiment in 

the Bay of Calvi and varied independently of pCO2 level (Figure III-4 d, e, f). Bacteria were 

very difficult to detect with PLFA during this experiment (Figure III-4f). Ratio of ∆δ 
13

C-all 

phytoplankton / ∆δ 
13

C-DIC reached an averaged maximum of 1.04 ± 0.12 meaning that all 

13
C was incorporated into particulate phytoplankton biomass (Table III-1). A final ∆δ 

13
C-

bacteria / ∆δ 
13

C-DIC ratio could not be calculated as bacterial PLFA and isotope analyses 

failed for the samples toward the end of the experiment due to problems during PLFA 

extraction. The model implemented for the first 9 days (Figure III-5b) has provided growth 

rates of 0.40 d
-1

 for autotroph, 0.12 d
-1

 for mixotrophs and 0.50 d
-1

 for bacteria. The model 

implies that bacteria derive their DOC from autotrophs as bacterial isotope ratio was similar 

or higher than isotope ratio of mixotrophs.  
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The biomass estimated with PLFA for the two phytoplankton groups were higher than 

in Bay of Calvi (10 to 20 fold) and tended to decrease over the course of the experiment (9 

days; Figure III-6b) with large variability between mesocosms. Furthermore, autotrophs and 

mixotrophs phytoplankton showed similar concentrations. The biomass from chlorophyll a 

(data not shown; Gazeau et al., in prep, b) and PLFA were not significantly correlated (n = 60, 

r
2
= 0.06, p > 0.05). Bacterial biomass based on PLFA was about the same as in Bay of Calvi 

but were difficult to measure during this experiment and large differences between 

mesocosms were observed (Figure III-6b) masking any general temporal dynamics. The 

bacterial PLFA concentration converted to cell number (total average 6.6 10
6
 cells mL

-1
) were 

one order of magnitude higher than bacterial abundance determined by flow cytometry (total 

average 8.3 10
5
 cells mL

-1
) showing an increase in abundance from d4 to d9. The biomass 

based on PLFA for autotrophs, mixotrophs and bacteria varied independently of pCO2 levels.  

 

 

 

Figure III-6. Average biomass concentration in all nine mesocosms deployed in the Bay of 

Calvi (summer 2012; a) and in the Bay of Villefranche (winter/spring 2013; b) for bacteria 

(orange full squares), mixotrophs (green full circles) and autotrophs (green empty circles).  

 

Primary production based POC and PLFA  

Net community production based on 
13

C-POC incorporation (NCP-
13

C) was 

decreasing over the experiment. At d0, NCP-
13

C averaged 1.04 ± 0.22 µmol C L
-1

 d
-1

 (slightly 

higher than measured by 
14

C-PP; 0.85 ± 0.18 µmol C L
-1

 d
-1

; see Chapter 2) and on d6 

reached a minimal value of -0.09 ± 0.41  µmol C L
-1

 d
-1

. As 
13

C-POC equilibrated with 
13

C-

DIC already on d6, it was not possible to calculate production rates after that day. Cumulative 

production from day 0 to 6 varied from 2.9 to 6.3 µmol C L
-1

 in P4 and C3 respectively and 
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were not correlated to increased pCO2 (Figure III-7; n = 9, r = - 0.09, p > 0.05).  

Mixotroph production rates were constant during the four first days of the experiment 

and averaged 0.12 ± 0.03 µmol C L
-1

 d
-1

 during the whole experiment. Cumulative rates 

ranged from 0.50 (in P1 and P6) to 0.91 (in C3) µmol C L
-1

 and were not significantly 

correlated with increasing pCO2 levels (Table III-2; n = 9, r = - 0.06, p > 0.05). Contrary to 

mixotrophs, autotrophs showed a general decrease in production rates over the course of the 

experiment (from 0.28 ± 0.05 µmol C L
-1

 d
-1

 on d0 to 0.02 ± 0.04 µmol C L
-1

 d
-1

 on d4). 

Cumulative production did not show any trend with increasing pCO2 levels (n = 9, r = - 0.44, 

p > 0.05) and ranged from 0.66 to 1.24 µmol L
-1

 in P6 and C3 respectively (Table III-2). 

Zooplankton and sediment traps  

As mentioned in the Material and Method section, no samples were available for 

zooplankton. At the time of submitting this thesis, sediment traps samples from the 

experiment in BV have been prepared and analyses for 
13

C-POC and POC will be performed 

in before the end of 2014 at the Laboratoire d’Océanographie de Villefranche. These data will 

be incorporated in the present manuscript for submission in December 2014. 

 

 

Figure III-7. Cumulative net community production rates based on production rates) based on 
13

C-POC incorporation (NCP-
13

C; µmol C L
-1

) as a function of averaged pCO2 levels during 

the experimental periods considered, in the Bay of Calvi (full triangles) and Villefranche 

(empty circles).  
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Figure III-8. Final isotopic signature (∆δ 
13

C in ‰) of the zooplankton species Paracalanus 

spp. and Oncaea spp. as a function of average pCO2 levels in each mesocosm over the 

experimental period, during the experiment conducted in the Bay of Calvi in summer 2012.  

 

 

 

Figure III-9. Cumulative 
13

C enrichment of the sediment trap organic particles in all 

mesocosms (C1 to P6) during the experiment conducted in the Bay of Calvi. 
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Table III-2. Cumulative production (µmol C L
-1

) in all mesocosms (C1 to P6) of fast incorporating phytoplankton species (autrotrophs), slow 

incorporating phytoplankton species (mixotrophs) and bacteria during the experiments in the Bay of Calvi (BC) and in the Bay of Villefranche 

(BV). Mean pCO2 value for the period considered (µatm). 

 C1 C2 C3 P1 P2 P3 P4 P5 P6 

BC  

Mean pCO2     

(µatm) 

429 427 429 508 586 660 747 828 990 

Autotrophs 0.03 ND 0.01 0.01 0.03 -0.01 0.02 0.02 -0.01 

Mixotrophs 0.10 0.04 0.07 0.04 0.12 0.07 0.10 0.02 0.02 

Bacteria 0.02 0.004 0.02 0.02 0.04 0.01 0.006 0.02 0.02 

BV 

Mean pCO2     

(µatm) 

 

356 

 

351 

 

346 

 

469 

 

516 

 

591 

 

606 

 

824 

 

1095 

Autotrophs 1.00 0.76 1.24 0.89 0.95 1.04 0.68 1.03 0.66 

Mixotrophs 0.66 0.53 0.90 0.53 0.68 0.87 0.60 0.98 0.49 
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2.4 Discussion 

Carbon-13 enrichment was very successful with a good incorporation into pelagic 

particulate organic matter and subsequent transfer to bacteria and zooplankton as well as 

export to sediment traps. The 
13

C incorporation in all compartments of the plankton 

communities investigated allowed a quantitative and qualitative description of the dynamics 

of these communities. The two study sites presented different initial characteristics with 

summer stratified in BC and pre-bloom conditions in BV, although both being characterized 

by low nutrient and low chlorophyll a levels (chl a < 1.3 µg chl a L
-1

; see Gazeau et al., in 

prep, a and Chapter II of the thesis). In chapter II, metabolic rates results have shown a near 

metabolic equilibrium (oscillating around 0 µmol O2 L
-1

 d
-1

) in BC while in BV the systems 

clearly tended to the autotrophic state. The net community and group-specific production 

rates determined in this chapter also support these findings, although the temporal dynamics 

were not always similar between methods. Indeed, in BV, NCP-
13

C decreased while NCP 

measured with the oxygen light-dark technique (NCP-O2) increased during the course of the 

experiment with a NCP-O2 evolving toward a more autotrophic system and no clear trend 

could be observed based on the 
14

C technique (see chapter II). These measurements were 

obtained through small volume incubations over 24 h that seem to have favoured 

phytoplankton production, potentially by presenting more nutrient availability at the cells 

surroundings or modifying seawater movement and irradiance. In BC, autotrophs and 

mixotrophs production rates and NCP-
13

C  have shown an increase till day 10 that is 

consistent with gross primary production rates measured with the oxygen light-dark method. 

This increase was associated to a stratification event and an increase in Synechococcus spp. 

abundance (see chapter II). Nevertheless, NCP-
13

C measured directly in the mesocosm were 

more elevated in BV than in BC suggesting that the community in BV was more autotrophic. 

In addition, in BC, mixotroph production and biomass exceeded the autotrophs ones 

suggesting an efficient nutrient recycling to support phytoplankton production even under 

very low nutrients levels. In BV, autotrophs and mixotrophs biomasses were almost similar 

while autotroph production rates exceeded mixotroph production, suggesting that the 

ecosystem was more based on new production rather than regenerated production.  

These mesocosm 
13

C labelling studies are the first to be performed under maintained low 

nutrient conditions and with low phytoplankton biomass. The restricted sampling volume (~ 4 

L) due to sampling protocol, made the determination and quantification of PLFA difficult. 

However, PLFA remained useful tools to understand the functioning of an ecosystem in 
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particular when combined with stable isotope analysis (Middelburg, 2014). Following De 

Kluijver et al. (2013), the conservative approach using large phytoplankton groups based on 

incorporation pattern were used to obtain taxa-specific groups. This was motivated in our 

study by the very low concentrations of PLFA. Although PLFA are good taxonomic markers, 

most are shared by several phytoplankton groups and as in the Mediterranean Sea, very few 

studies have been conducted on PLFA and, as the PLFA composition of each species present 

should be known (Zelles, 1999) to avoid misinterpretation, it was therefore decided to link 

groups of specific PLFA to taxa. Moreover, conversion factors used in this study to estimate 

carbon biomass from PLFA concentrations were based on the analysis of phytoplankton 

strains sampled in estuaries and productive areas or cultures under replete nutrient conditions. 

This certainly introduced some errors in the estimates of absolute biomass and production 

reported here. Conversion factors are used as indicators and because the uncertainty resulting 

from their use is expected to occur similarly in all mesocosms, thus they do not explain the 

potential effect of elevated CO2.   

The different net community production, phytoplankton group-specific and bacteria 

production rates as well as PLFA based biomasses obtained during the two experiments did 

not show any relationship with increasing pCO2 levels. This is fully in agreement with the 

absence of CO2 effect reported in chapter II on primary production rates measured by other 

incubation methods  (O2 light-dark and 
18

O, 
14

C labelling). Biomasses based on PLFA 

concentrations have not shown any effect of ocean acidification that is consistent with 

pigment analyses, phytoplankton cell counts (Gazeau et al., in prep, b) and bacterial 

abundances (Celussi et al., in prep). Despite differences in absolute biomass concentration, 

biomasses of phytoplankton based on PLFA and chlorophyll a have shown similar temporal 

dynamic. The same dynamic but different absolute value were also observed for bacteria 

abundances based on PLFA and flow cytometry. In addition to the uncertainties linked to the 

use of inappropriate conversion factors, bacterial PLFA take into account free-living and 

attached bacteria while flow cytometry takes into account only free-living bacteria, potentially  

explaining the important differences observed between the two methods. The zooplankton 

isotopic signature at the end of the experiment in BC did not show any pCO2 effect albeit high 

CO2 levels tended to have lower ∆δ
13

C for both species collected and would correspond to 

lower zooplankton grazing in these mesocosms.  Sediment traps were placed at 12 m and 

therefore are not representative of a real export below the euphotic zone. They were also in 

the daily migration depth of some zooplankton and despite most of the swimmers were 

removed they can contribute for a large fraction of settling material in terms of weight and 
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organic carbon content. Nevertheless, freshly exported particulate matter in the BC was not 

sensitive to increase CO2 and is consistent with the fact that no effect was measured in total 

and group-specific production rates as well as with the fact that transparent exopolymeric 

particles (TEP) were not affected by increased CO2 levels (Luculano et al., in prep).  

To date, only one mesocosm experiment has been performed following the same set-up 

(50 m
3
 off-shore mesocosms) and 

13
C enrichment protocol (De Kluijver et al., 2013). During 

this experiment in Arctic waters (hereafter called Svalbard), the effects of ocean acidification 

on production rates and carbon fluxes were subtle and differed following the phase considered 

(before vs after nutrient addition). During this first 12 days, nutrient (nitrogen as nitrate and 

nitrite as well as phosphate) concentrations were close to or below detection limits of the 

conventional methods used suggesting there were low similarly to our experiments. Although 

chlorophyll a concentrations were similar between the experiment in BV and in Svalbard, 

POC concentrations were 2 to 3 times higher in Svalbard (~ 20-30 µmol L
-1

; Schulz et al., 

2013) than in BV (~10 µmol L
-1

). The phytoplankton communities were composed of small 

species with haptophytes in all three experiments (BC, BV and Svalbard; Schulz et al., 2013; 

Gazeau et al., in prep, b) and communities differed by the presence of other small species 

such as cyanobacteria (mostly Synechococcus spp.) in BC and pelagophytes in BV that were 

absent or not reported as such in Svalbard where nano- and pico-phytoplankton were reported 

(Brussaard et al., 2013). It is now believed that plankton community response to ocean 

acidification depends on environmental conditions and a recent study has highlighted the 

preponderant role of the community structure to respond to ocean acidification (Eggers et al., 

2014). Phytoplankton species have several carbon concentration mechanisms (CCMs), which 

efficiencies differ among species (e.g. Rost et al., 2008; Reinfelder, 2001). Therefore 

increasing CO2 levels could beneficiate to some species that could down-regulate CCM 

activities and save energy to enhance primary production. The initial ratio of diatoms, 

dinoflagellates and cyanobacteria could thus be responsible for large differences in the 

response to ocean acidification (Eggers et al., 2014). Our results suggest that natural 

assemblages with larger proportion of haptophytes, cyanobacteria (mostly Synechococcus 

spp.) and other small phytoplankton species will be insensitive to ocean acidification in terms 

of primary production and biomass. Similarly, in Svalbard, NCP-
13

C as well as NCP-O2 did 

not change with pCO2 but group-specific production rates have shown different responses 

with enhanced and decreased production rates for autotrophs and mixotrophs, respectively. 

Comparing these three large mesocosm experiments comfort the idea that small differences in 

plankton communities can lead to different responses to ocean acidification. However the 



Chapter(III*Carbon-13 labelling studies and biomarkers analysis 

 on Mediterranean plankton communities(

! 73!

differences cannot be measured using common methods of metabolic rates measurement 

despite the different responses within the community and analyses of labelled 
13

C-PLFA have 

proven to be an appropriate tool. Therefore global primary production does not reflect the 

ecological response due to inadequate methods and ocean acidification could have more 

influence on plankton community composition than on primary production (Hein and Sand-

Jensen, 1997). 

The fact that no effect of ocean acidification was detected in the two experiments 

performed at two locations and seasons in the NW Mediterranean Sea for the different 

parameters measured (production rates, biomasses, grazing and export) is very coherent. 

Considering mesocosms are representative of natural conditions, our findings suggest that 

ocean acidification would have a limited effect on plankton community structure and carbon 

transfer within pelagic compartments in oligotrophic areas. In addition, the different 

responses obtained between the two oceanic provinces compared (Arctic vs Mediterranean 

Sea) shows the necessity to have a regional approach while studying the biological response 

to climate change (Häder et al., 2014). Temperature, nutrient availability, plankton 

community composition and other unidentified parameters are major environmental and 

biological aspects that control the effect of human-induced perturbations such as ocean 

acidification. 
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The effect of oceanwarming and acidificationwas investigated on a natural plankton assemblage froman oligotrophic area, the bay of Villefranche

(NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control

(!360 matm, 148C), elevated pCO2 (!610 matm, 148C), elevated temperature (!410 matm, 178C), and elevated pCO2 and temperature

(!690 matm, 178C). Nutrients were already depleted at the beginning of the experiment and the concentrations of chlorophyll a (chl a), hetero-

trophic prokaryotes and viruses decreased, under all treatments, throughout the experiment. Therewere no statistically significant effects of ocean

warming and acidification, whether in isolation or combined, on the concentrations of nutrients, particulate organic matter, chl a andmost of the

photosynthetic pigments. Furthermore, 13C labelling showed that the carbon transfer rates from 13C-sodium bicarbonate into particulate organic

carbon were not affected by seawater warming nor acidification. Rates of gross primary production followed the general decreasing trend of chl a

concentrations andwere significantly higher under elevated temperature, an effect exacerbatedwhen combined to elevatedpCO2 level. In contrast

to the other algal groups, the picophytoplanktonpopulation (cyanobacteria,mostly Synechococcus) increased throughout the experiment andwas

more abundant in the warmer treatment though to a lesser extent when combined to high pCO2 level. These results suggest that under nutrient-

depleted conditions in theMediterranean Sea, ocean acidification has a very limited impact on the plankton community and that small species will

benefit from warming with a potential decrease of the export and energy transfer to higher trophic levels.

Keywords: climate change, ocean acidification, ocean warming, oligotrophic area, plankton community, primary production.

Introduction
Anthropogenic carbon dioxide (CO2) emissions are responsible for

an important increase in atmospheric CO2 partial pressure (pCO2).

The consequences of CO2 emissions are an increase of surface ocean

temperature expected to rise by 2–48C by the end of this century

based on the current emission rates (IPCC, 2013). About 25%of an-

thropogenic CO2 emissions are absorbed by the ocean (Le Quéré

et al., 2013), generating profound modifications of the ocean car-

bonate chemistry and referred to as “ocean acidification”. The pH

of the surface ocean has decreased by 0.1 units since the beginning

of the industrial era and is projected to decrease by an extra 0.3–

0.4 units by the end of the present century (Orr, 2011). Seawater

warming and acidification are expected to significantly affect the

carbon cycle through the changes in the functioning of marine

organisms and communities.

CO2 fluxes between the atmosphere and the ocean are partly

driven by biological activity. In the surface mixed layer, the

balance between the autotrophic fixation of CO2 by primary produ-

cers and the consumption/mineralization of organic matter by the

whole plankton community is referred to as the net community

production (NCP). A system is referred to as autotrophic when

production exceeds consumption and heterotrophic when con-

sumption ishigher thanproduction.Dependingon the atmospheric

pCO2 and sea surface temperature, the surface oceanpotentially acts
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as a sink of CO2 for the atmosphere (Gattuso et al., 1998) when the

surface mixed layer exports organic matter to the deep ocean.

Primary producers have then a key role on carbon cycle and

climate regulation.

In many marine plants and algae, RuBisCO, a key enzyme

involved in CO2 fixation, is generally limited at environmental

CO2 concentrations. An increase in CO2 could therefore enhance

phytoplankton photosynthesis and growth (Riebesell et al., 2007).

However, experimental studies reported contrasting effects of ele-

vated CO2 on photosynthesis: stimulating, neutral or even inhibi-

tory effects were found (see review by Riebesell and Tortell, 2011

and references therein). Such different responses could be due to

species-specific differences in the efficiency of carbon concentrating

mechanisms (CCMs; e.g. Giordano et al., 2005). Depending on the

efficiencyof their CCM, some specieswill benefit fromelevatedCO2

conditions while others will not, provoking changes in community

composition. Shifts toward smaller (e.g. Yoshimura et al., 2010) or

larger phytoplankton cells (Tortell et al., 2002) have been observed

while no change in the taxonomic composition have been reported

for communities acclimated to large seasonal pH changes (Nielsen

et al., 2012). Changes in community composition could have

consequences on ecological processes (such as modifications of

energy transfer to higher trophic levels) and biogeochemical

cycling (i.e. modifications of the export to the deep ocean;

Riebesell et al., 2007). With respect to ecosystem function, several

studies have shown enhanced carbon fixation and an increase in

the organic carbon to nitrogen ratio (e.g. Riebesell et al., 2007),

while others reported limited or no effect (Feng et al., 2009).

Projected warming is also expected to significantly affect marine

organisms and communities. Culture experiments and in situ sam-

pling have shown increasedmetabolic rates as temperature increases

(e.g. Eppley, 1972;Regaudie-de-GiouxandDuarte, 2012).However,

as thermal tolerance greatly differs between species, some will face

conditions outside of their tolerance range and will be forced

to move their ecological niches (Gao et al., 2012 and references

therein). Several experiments have shown that warming could

induce a shift towards smaller phytoplankton species (Sommer

and Lengfellner, 2008) as well as a tighter coupling between phyto-

plankton and bacteria with possible consequences on reminerali-

zation and carbon export (Hoppe et al., 2008). Furthermore,

phytoplankton exhibits higher nitrogen to phosphate requirements

in warmer conditions (Toseland et al., 2013), which might also

impact biogeochemistry.

In recent years, an experimental effort has been initiated to inves-

tigate the effect of bothdrivers at the community level.Elevated tem-

perature combined or not with elevated pCO2 has been shown to

enhance photosynthetic rates (Hare et al., 2007; Feng et al., 2009)

as well as enhanced dissolved organic carbon relative to particulate

organic production (Kim et al., 2011). A recent study focusing on

the short- (2 weeks) and long-term (1 year) response of a diatom

community showed that elevated pCO2 and temperature, whether

combined or taken in isolation, had an effect on the community

structure, with a stronger influence of warming which induces a

loss in species richness (Tatters et al., 2013). Another study sup-

ported the predominant effect ofwarming comparedwith acidifica-

tion on bacterial phylogenetic composition (Lindh et al., 2013).

Nutrient availability is suspected toalsohave strongeffects on the

community response to ocean warming and acidification (Hare

et al., 2007) and the great majority of past experiments have been

performed under nutrient replete conditions. However, a large

part (.60%) of the open ocean is characterized by oligotrophic

conditions with very low nutrient concentrations and rates of

primary production (Dodds and Cole, 2007). Although the meta-

bolic status (auto- vs. heterotrophic) of these areas is still under

debate (Duarte et al., 2013; Williams et al., 2013) oligotrophic

provinces represent !30% of global oceanic primary production

(Longhurst et al., 1995). Therefore, changes in the community com-

position and functioning in these regions could lead to significant

changes in the global oceanic CO2 sink. The Mediterranean Sea is

a largely enclosed sea, presenting trophic status varying frommeso-

trophic in the Northwestern region to extremely oligotrophic in

the Eastern basin. Despite these environmental constraints, the

Mediterranean Sea hosts from 4 to 18% of the Earth’s marine

biodiversity (Bianchi and Morri, 2000) with a high percentage of

endemic species. There is a growing concern on the effects of

climate change and ocean acidification in this area, although, to

the best of our knowledge, no experiment on the effect of elevated

temperature and pCO2 on natural plankton communities have

been conducted to date.

In the present study, a Mediterranean plankton community

sampled in winter was exposed to elevated temperature and pCO2

as projected for the end of the century (respectively, +38C and

×2 pCO2). During 12 days, experimental bottles were placed in a

control and a temperature-regulated outdoor tank. Parameters

and processes such as carbonate chemistry, nutrients, particulate

organicmatter, pigments, cells abundance, andprimary production

were monitored regularly. Stable carbon isotope tracers (13C) were

also used to measure carbon fixation.

Material and methods

Experimental setup

Avolume of 300 l of seawater was sampled in the bay of Villefranche

(France; 43840′N, 7818′E) at 5 m on 14 March 2012. Pumping was

performed by a trace-metal clean pump activated by pressurized

air from a diving tank, preventing any damage on the organisms.

Seawater was sieved onto a 200-mm mesh to remove large

organisms.

In the laboratory, seawater was transferred to an acid-cleaned

300 l tank. Labelled 13C-sodium bicarbonate was added to a final

concentration of 19 mmol l21 corresponding to 0.83% of total

dissolved inorganic carbon (DIC) concentration and increasing

d13C-DIC by 760‰. A first set of 4 l acid-cleaned polycarbonate

(PC) bottles (n ¼ 24) was filled and hermetically sealed. CO2-

saturated filtered seawater was gently mixed with the remaining

water to reach a calculated pCO2 of !750 matm. This elevated

pCO2 seawater was then distributed to 4 l acid-cleaned polycarbon-

ate bottles (n ¼ 24). Half of the ambient and elevated pCO2 bottles

were placed in a 2 m3 tank installed on the pier of the Laboratoire

d’Océanographie de Villefranche with a continuous flow of in situ

seawater (20 l min21). The other half was placed in another identi-

cal tank in which temperature was maintained at ca. 38C above

in situ temperature. The four treatments, including three replicates

bottles per sampling day, were: Control (C; ambient pCO2 and tem-

perature), OceanWarming (OW; ambient pCO2 and elevated tem-

perature), Ocean Acidification (OA; elevated pCO2 and ambient

temperature), and Greenhouse (G; elevated pCO2 and tempera-

ture). The bottles were gently stirred every day to keep particles sus-

pended. Light (natural sunlight) conditions were similar between

the different treatments and were representative of surface condi-

tions (!1 m depth). On several occasions, photosynthetic active

radiation (PAR) was measured in the tanks with a spherical sensor

Page 2 of 12 L. Maugendre et al.
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connected to an LICOR data logger, and daily (sunrise–sunset)

averages ranged between 1025 and 1213 mmol photons m22 s21.

Temperature was measured with a Seabird SBE37 temperature

sensor and temperature in the elevated temperature tank was regu-

lated using a COREMA# controller. Temperature regulation was

performed throughout the experiment but, due to a technical

problem, data were not logged on the first day.

Sampling and analyses

After 2, 4, 8, and 12 days (thereafter referred to as d2, d4, d8, and

d12), three bottles of each treatment were removed from the

tanks. Samples for DIC were stored in 60 ml brown borosilicate

bottles and poisoned with 10 ml saturated solution of mercuric

chloride (HgCl2). For total alkalinity (AT) determination, 500 ml

was filtered through 47 mm GF/F filter, poisoned with HgCl2 and

preserved at 48C pending analysis. Aliquots of 20 ml for the deter-

mination of inorganic phosphate (PO4
3−), nitrate and nitrite

(NOx = NO3
− +NO2

−) were filtered through 0.2 mm polycar-

bonate filters cleaned with Merck Suprapur hydrochloric acid and

rinsed with 18.2 MV cm21 ultra pure water. Samples were stored

in 125 ml polyethylene (PE-HD) flasks, cleaned with Merck

Suprapur hydrochloric acid, and acidified with Merck Ultrapur

HCl, and finally processed using a spectrophotometric method

with a LiquidWaveguide Capillary Cell optic fibre, allowing the de-

termination of nanomolar concentrations phosphate andNOxwith

detection limits of 1 and 9 nmol l21, respectively, and a precision

(coefficient of variation) of "7% for both parameters (Adornato

et al., 2007; Zimmer and Cutter, 2012). Samples for the determin-

ation of silicate were stored in acid-cleaned PE vials, poisoned

with a saturated solution of HgCl2 and kept at 48C pending analysis

using an AXFLOWAA3 auto–analyzer. A 2 ml aliquot of seawater

was added to 80 ml of glutaraldehyde for the analysis of community

composition. Samples were snap-frozen in liquid nitrogen and

kept at 2808C pending analysis on a FACSCalibur flow cytometer.

For pigment analyses, 0.5–1 l of seawater were filtered on 25 mm

GF/F membranes which were stored at 2808C pending extraction

and analysis on an Agilent Technologies 1200 series following the

protocol of Ras et al. (2008). For particulate organic carbon

(POC) concentration and its isotopic signature (d13C-POC), 1 l of

seawater was filtered through pre-combusted and preweighted

25 mm GF/F filters under low pressure. Filters were dried at 608C

for 24 h then stored at room temperature in the dark. For measure-

ment of d13C-DIC, samples (20 ml) were poisoned with 10 ml of

HgCl2 and stored at room temperature in the dark. The remaining

seawater in each4 l polycarbonate bottlewasused formeasurements

of community metabolism (see below).

DIC was determined immediately after opening the bottles on

triplicate 1.2 ml subsamples using an inorganic carbon analyser

(AIRICA, Marianda, Kiel, Germany) coupled to an infrared gas

analyser (LI-COR 6262). This instrument was calibrated before

sample analysis against a certified reference material provided by

A. Dickson (Scripps Institution of Oceanography, San Diego, CA,

USA; batch 114). The average precision (SD) of all measurements

(n ¼ 52; ran in triplicates) was 0.7 mmol kg21. ATwas determined

on triplicate 50 ml subsamples by potentiometric titration on a

Metrohm Titrando 80 titrator coupled to a glass electrode

(Metrohm, electrode plus) and a thermometer. The pH electrode

was calibrated daily on the total scale using TRIS buffers of salinity

35 provided by A. Dickson. Measurements were carried out at 258C

and ATwas calculated as described by Dickson et al. (2007). Along

the experiment, standards provided by A. Dickson (batch 108)

were used to check precision and accuracy (n ¼ 18; 2.9 and

3.7 mmol kg21, respectively). The parameters of the carbonate

system were determined from DIC, AT, temperature, and salinity

using the R package seacarb (Lavigne et al., 2014). To take into

account the uncertainty of the measured input parameters during

the calculation of the carbonate chemistry parameters, a Monte-

Carlo procedure was applied. One thousand values were randomly

chosen between the mean+ SD of each measured parameter and

mean+ SD of each computed parameters is reported.

POC samples were analysed for organic carbon content and

isotope ratios on an elemental analyser (Thermo Electron Flash

EA 1112) coupled to a Delta V isotope ratio mass spectrometer

(IRMS). For DIC isotope analyses, a 2 ml helium headspace was

created in the vials and samples were acidified with 2 ml of phos-

phoric acid (H3PO4; 99%). After equilibration for 30 min, the

CO2 concentration and its isotopic composition in the headspace

were measured on the EA-IRMS.

Data of the 13C-labelling study were expressed in the delta nota-

tion (d) relative to Vienna Pee Dee Belemnite standard. The carbon

isotope ratio was calculated as

Rsample =
d13Csample

1000+ 1

( )

× RVPDB, with RVPDB = 0.0111797.

The 13C fraction was calculated as:

13F =
13C

13C+ 12C
=

R

R+ 1
,

where R ¼
13C/12C.

The excess 13C was obtained as D13F ¼
13Fsample 2

13Fbackground.
Absolute incorporation rateswere calculated as 13C-POC ¼ D13F ×

[POC]sample (mmol C l21; De Kluijver et al., 2010).

Finally, 13C-concentrations were converted to total fresh POC:

New - POC =
D13FPOC

D13FDIC

( )

× [POC],

whereD13FPOCandD
13FDIC are the excess values, [POC] is aconcen-

tration in mmol C l21.

NCP is then calculated as:

NCP−13C =
DNew - POC

Dt
,

where DNew-POC is the differences between two consecutive

sampling days.

Primary production and community respiration

NCP (NCP-O2) and community respiration (CR-O2) were mea-

sured using the oxygen light–dark technique. Gross community

production was measured using the 18O-labelling method (gross

primary production, GPP-18O).

Before sunrise, three 60 ml biological oxygen demand bottles

were sampled from each PC bottle. One bottle was immediately

fixed with Winkler reagents to determine the initial O2 concentra-

tion. A transparent and a dark bottle were incubated in the

outdoor tanks for 24 h for estimating NCP-O2 and CR-O2, respect-

ively. O2 concentrations were measured using an automated

Winkler titration technique with potentiometric endpoint detec-

tion. Analyses were performed with a Metrohm Titrando 888 with

Effect of ocean warming and acidification on a plankton community Page 3 of 12
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a Metrohm ion electrode. Reagents and standardizations were

similar to those described by Knap et al. (1996). NCP-O2 and

CR-O2were estimated by regressing O2 values against time, and

CR was expressed as negative values. GPP (GPP-O2) was calculated

as the difference betweenNCP-O2 andCR-O2. The combined errors

were calculated as:

SEx−y =

!!!!!!!!!!!!!

(SE2x) + SE2y

√

.

For the 18O-labelling technique, sampleswere transferred fromeach

PC bottle to two 60 ml transparent glass bottles and sealed. One

bottle was directly poisoned with 10 ml saturated solution of

HgCl2 to estimate the natural isotopic composition and the other

bottle was spiked, with 50 ml of 97% H2
18O to reach a final isotopic

composition d18O-H2O of 335‰. After 12 h incubations in the

outdoor tank (from sunrise to sunset), samples were poisoned

using HgCl2 and stored upside down in the dark at room tempera-

ture pending analysis.Measurementswere performed atKULeuven

(Belgium). A headspace of 3 ml was created with helium and

allowed to equilibrate for 30 min (18O-O2 measurements). The

extracted water was injected into helium-flushed vials (18O-H2O

measurements). Pure CO2 (100 ml) was then added and samples

were allowed to equilibrate for 24 h. d18O-H2O was therefore mea-

sured asd18O-CO2. Determinations ofd18O-O2 andd
18O-CO2were

accomplished using an elemental analyzer (Flash HT/EA) coupled
to aDelta V IRMS. An overflow techniquewas used to limit air con-

tamination of the needle. Ford18O-O2, the internal standard used to

correct the data and survey instrumental deviation was air from the

outside. Ford18O-CO2, a calibrationwasperformedwithaVSMOW

standard. GPP rates (mmol O2 l
21 d21) were calculated using the

following equation (Kiddon et al., 1995):

GPP-18O =
d18O-O2 final- d

18O-O2 init

d18O-H2O-d
18O-O2 init

[ ]

× [O2]init,

where d18O-O2 init and d18O-O2 final are measured d18O-O2 before

and after incubation (‰), respectively, d18O-H2O is the final

isotopic composition of the labelled water (‰), and [O2]init is the

O2 concentration before incubations (mmol l21). The overall error

was estimated using a Monte-Carlo procedure as described earlier.

Statistics and data availability

Data are presented as averages+ SD (or +SE for metabolic rates).

Due to the small numberof replicates (×3), PERMANOVAanalyses

wereperformedusing theRpackageRVAideMemoire (Hervé, 2013)

to test for differences in parameters/processes between the four

different treatments. These analyses were performed considering

two interacting factors (pCO2 and temperature) and one blocking

factor (time) over 1000 permutations and a significant effect was

considered when p , 0.05. Cumulative metabolic rates were calcu-

lated for the whole experimental period. Values for days when no

incubations were performed were obtained by linear interpolation

and the cumulative valueswere then summedup for the experimen-

tal period. The data reported here as well as complementary para-

meters are freely available in Pangaea: http://doi.pangaea.de/10.
1594/PANGAEA.834159

Results
In the two tanks, temperature naturally varied by#28Cbetweenday

and night (Figure 1). The natural average temperature was 14.3+

0.38Cwhile it was on average 17.2+ 0.78C in the elevated tempera-

ture tank (average difference: 2.88C). In treatments C and OW,

pCO2 was on average 364+ 14 matm (pHT 8.12+ 0.02) and

414+ 12 matm (pHT 8.07+ 0.01), respectively. Elevated pCO2

conditions were on average 613+ 22 matm (pHT 7.92+ 0.01)

and 690+ 28 matm (pHT 7.88+ 0.02) for treatments OA and G,

respectively. The targeted pCO2 levels were not reached most

likely as a consequence of significant outgassing while bottles were

filled. AT averaged for all treatments was 2568+ 4 mmol kg21

(Table 1) and did not vary significantly between treatments and

sampling days (Table 2).

All dissolved inorganic nutrients were close to the detection

limit. The concentration of NOx and silicate did not vary between

treatments (Table 2; Figure 2a and b) but the phosphate concentra-

tion was significantly lower under elevated pCO2 (F ¼ 13.19,

p , 0.05; Table 2, Figure 2c). Phosphate was on average 13+

1 nmol P l21 and NOx (NO3
− +NO2

−) concentrations remained

constant (75+ 20 nmol N l21), after an initial decrease between

d0 and d2 (Figure 2b). Silicate concentrations did not vary with

time and averaged 1.0+ 0.1 mmol Si l21 (Figure 2a).

The concentration of POC did not significantly differ between

treatments (Table 2) with an overall mean of 11+ 1 mmol C l21

(Figure 3a). PON concentrations were low (mean: 0.8+

0.1 mmol N l21), except on d2 in the OW and OA treatments

where concentrations reached 1.9+ 0.4 mmol N l21 (Figure 3b).

The particulate organic C : N ratio was high with a global average

of 15+ 1 (6+ 1 for OW and OA on d2) and was not different

between treatments (Table 2). As for POC and PON, the concentra-

tion of chlorophyll a (chl a) did not differ between treatments

(Table 2) but varied significantly throughout the experiment

(Figure 3c). It increased from an overall mean of 0.9+ 0.1 mg l21

on d0 to 1.1+ 0.0 mg l21 on d2. After d2, it decreased in all treat-

ments to reach an average final concentration of 0.3 , 0.1 mg l21.

In terms of phytoplankton group succession during the

experiment, diatoms (as represented by fucoxanthin pigments),

prymnesiophytes (19′-hexanoyloxyfucoxanthin), and cyanobacteria

(zeaxanthin) were detected in the samples with a large dominance

Figure 1. Temperature during the experiment. Blue: in situ
temperature (Control and Ocean Acidification treatments). Red:
in situ + 38C (Ocean Warming and Greenhouse treatments).
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 b
y
 g

u
est o

n
 O

cto
b
er 1

, 2
0
1
4

h
ttp

://icesjm
s.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://doi.pangaea.de/10.1594/PANGAEA.834159
http://icesjms.oxfordjournals.org/


of prymnesiophytes (28% on average; Figure 4a–c). Variations in

the concentration of diatoms and prymnesiophytes were similar

to chl a variations, i.e. an increase during the first 2 days followed

by a general decrease. Variations in zeaxanthin concentrations indi-

cate that the abundance of cyanobacteria increased from d0 to d8

then declined at the end of the experiment. This is consistent with

flow cytometer data which show the same dynamics for the cyano-

bacteria Synechococcus (Figure 4f) with a significant correlation

between the two techniques (HPLC and flow cytometry; r ¼ 0.86,

p , 0.01, n ¼ 52). The abundance of Prochlorococcus, another

cyanobacteria, increased until d4 then decreased (data not

shown). Pigments and flow cytometry data showed a specific re-

sponse to elevated temperature alone for cyanobacteria (zeaxanthin:

F ¼ 6.98, p , 0.05; Synechococcus by flow cytometry: F ¼ 6.11, p ,

0.05; Table 2, Figure 4c and f). The abundance of pico-eukaryotes

was significantly different at elevated pCO2 (F ¼ 8.69, p , 0.05;

Table 2), a difference that could be attributed to a transient higher

abundance of this group in the OA treatment on d2 (data not

shown). The abundance of viruses and heterotrophic prokaryotes

decreased with time (Figure 4d and e). There was no difference

between treatments for heterotrophic prokaryotes (Table 2,

Figure 4d) and a significant temperature effect was found for

viruses (F ¼ 5.57, p , 0.05; Table 2) due to two very high values

in theCandOAtreatments ond8 (Figure 4e), this effect disappeared

when these two values were omitted.

Based on the O2 light–dark technique, no significant difference

between treatments was observed for the consideredmetabolic pro-

cesses (NCP-O2, GPP-O2, and CR-O2; Table 2). NCP-O2 ranged

from 21.6+0.8 to 2.8+0.2 mmol O2 l
21 d21 while CR-O2 ranged

from 24.3+0.8 to 20.8+1.3 mmol O2 l
21 d21 (Figure 5a and b).

GPP-O2 varied from 20.15+1.5 to 5.74+3.1 mmol O2 l
21 d21

(Figure 5c). NCP-O2 did not show a clear temporal trend except

for G treatment for which NCP-O2 decreased from autotrophic

to heterotrophic conditions throughout the experiment and in

general, very large variations were observed for all treatments

(Figure 5a). GPP-18O followed the decreasing trend of chl a

(Figure 5d) andwas significantly increased under elevated tempera-

ture (F ¼ 15.82, p , 0.01; Table 2) with a significant interaction

with pCO2 (F ¼ 7.28, p , 0.05). No significant correlation was

found between GPP estimated by the two methods (GPP-18O and

GPP-O2; r ¼ 0.26, p . 0.05, n ¼ 48). The cumulative GPP-18O

was 33.0+ 3.4 and 29.0+ 2.3 mmol O2 l
21 for C and OA treat-

ments, respectively. OW and G treatments presented higher

cumulative values with 34.8+ 2.3 and 38.5+ 2.4 mmol O2 l
21,

respectively.

d13C-DIC in natural sample was !3‰ (data not shown) and

reached, as expected, 759+ 18‰ after addition of labelled
13C-sodium bicarbonate. 13C-DIC did not significantly change

during the course of the experiment and did not differ between

treatments (Figure 6a, Table 2). The transfer from labelled DIC to

POC was very rapid and efficient, allowing the detection of
13C-POC enrichment on the first sampling day (d2; Figure 6b),

and saturation was achieved already at d4. 13C-POC enrichment

did not differ between treatments (Table 2). Dd13C-POC increased

to a final enrichment of 501+ 23‰. NCP-13C was lower than

NCP-O2 exhibiting a decreasing trend (Table 3) and did not signifi-

cantly differ between treatments (Table 2). Cumulative NCP-13C

was 11.8+ 0.6 and 11.4+ 0.2 mmol C l21 for C and OA, respect-

ively. The warmer treatments had slightly higher values of 12.3+

0.3 and 12.1+ 0.5 mmol C l21 for OW and G, respectively.

Discussion
This experiment was designed to study the effects of oceanwarming

and acidification on the composition and functioning of an oligo-

trophic plankton community in the coastal NW Mediterranean

Sea. The elevated temperature condition was very well controlled

with an average offset between ambient and elevated temperature

of 2.8+ 0.48C. The current rate of warming in the coastal NW

Mediterranean Sea has been estimated to range from 0.026 to

0.0338C yr21 (Bensoussan et al., 2009), although temperature pro-

jections are difficult to obtain due to large regional differences.

Given these rates, the average 2.88C temperature increase as

applied in our study was representative for the end of the century.

Although pCO2 was lower than targeted and therefore lower than

commonly used in similar perturbation studies, high-pCO2 values

of !610–690 matm correspond to the level of atmospheric CO2

projected for 2060 according to the RCP 8.5 scenario

(Meinshausen et al., 2011).

The in situ sampling was performed 1 day after the maximum

surface chl a concentration was measured in the Bay of Villefranche

(data not shown; but see http://somlit-db.epoc.u-bordeaux1.fr/
bdd.php). Consequently, nutrients were depleted with levels very

close to detection limits. NOxwas consumed rapidly in all treatments

during the first 2 days of the experiment (from d0 to d2) and its

Table 1. Carbonate chemistry parameters in the control (C), ocean
warming (OW), ocean acidification (OA), and greenhouse (G)
treatments (average+ SD).

Alkalinity
(mmol kg21)

DIC
(mmol kg21)

pCO2

(matm)
pHT

Day 0

C 2566+ 1 2278+ 0 366+ 2 8.11 , 0.01

OW 2567+ 2 2286+ 0 428+ 1 8.05 , 0.01

OA 2570+ 2 2386+ 0 622+ 3 7.91 , 0.01

G 2565+ 1 2352+ 0 618+ 2 7.92 , 0.01

Day 2

C 2566+ 2 2283+ 2 377+ 2 8.10 , 0.01

OW 2563+ 0 2284+ 2 431+ 5 8.05 , 0.01

OA 2565+ 1 2371+ 6 586+ 18 7.94+ 0.01

G 2566+ 4 2374+ 2 666+ 2 7.89 , 0.01

Day 4

C 2566+ 2 2270+ 3 356+ 6 8.12 , 0.01

OW 2566+ 2 2273+ 1 405+ 1 8.07 , 0.01

OA 2568+ 2 2383+ 3 620+ 17 7.92+ 0.01

G 2566+ 3 2386+ 3 716+ 22 7.86+ 0.01

Day 8

C 2568+ 5 2277+ 4 363+ 12 8.12+ 0.01

OW 2567+ 1 2279+ 1 415+ 1 8.06 , 0.01

OA 2567+ 1 2385+ 4 629+ 13 7.91 , 0.01

G 2573+ 3 2380+ 2 669+ 14 7.89 , 0.01

Day 12

C 2577+ 11 2281+ 6 359+ 23 8.12+ 0.02

OW 2569+ 1 2275+ 3 404+ 5 8.07 , 0.01

OA 2568+ 0 2383+ 2 617+ 4 7.92 , .01

G 2569+ 5 2387+ 8 708+ 22 7.87+ 0.01

Average

C 2569+ 5 2278+ 5 364+ 14 8.12+ 0.02

OW 2566+ 2 2279+ 6 414+ 12 8.07+ 0.01

OA 2568+ 2 2382+ 6 613+ 22 7.92+ 0.01

G 2568+ 3 2377+ 12 690+ 28 7.88+ 0.02

Total alkalinity (AT) and dissolved inorganic carbon (DIC) were measured,
while the partial pressure of CO2 (pCO2) and pHT were estimated based on
DIC and AT using seacarb (see the Material and method for more details).

Effect of ocean warming and acidification on a plankton community Page 5 of 12

 b
y
 g

u
est o

n
 O

cto
b
er 1

, 2
0
1
4

h
ttp

://icesjm
s.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://icesjms.oxfordjournals.org/


concentration significantly decreased while chl a concentration

increased rapidly to amaximumond2. This important chl a increase

after enclosure, followed by decline owing to the depletion of

inorganic nutrient, was also reported in other bottle experiments

(De Madariaga and Fernandez, 1990; Scarratt et al., 2006) and can

be due to a containment effect. In addition, it must be stressed that

sieving onto 200 mmmost likely limited the abundance of large zoo-

plankton releasing predation pressure during the first days but

favouring growth of micro-heterotrophs that in turn grazed on

small phytoplankton. Although degradation pigments representative

for grazer faecal pellets (phaeophytin a and phaeophorbid a) were

close or even below detection limit throughout the experiment

(datanot shown), suggesting that therewerenoorvery few zooplank-

tonic organisms, as the available seawater volume for sampling was

not sufficient, zooplankton abundances were not estimated during

this study. Based on pigment concentrations, prymnesiophytes

were the dominant species and all phytoplankton groups decreased

in abundance along the experiment, except for cyanobacteria. The

dominance of small phytoplankton and the general decrease in

biomass are consistent with post-bloom, nutrient-depleted condi-

tions. Cyanobacteria and prymnesiophytes present a higher surface

vs. volume ratio and have a higher affinity for nutrients than larger

phytoplankton, cyanobacteria being even more competitive and

able to grow under these very low nutrient conditions (e.g. Eppley

et al., 1969; Irwin et al., 2006). The dominance of pico- and nano-

planktonic species at the end of the bloom period has already been

observed in the Bay of Villefranche (Sheldon et al., 1992). While chl

a concentrations showed very clear variations during the experiment,

it was not the case for POC. These values presented large variations in

between replicates and could explain the fact that we did not observe

any temporal variation in POC.

The rates of community metabolism are comparable with those

measured during a previous experiment performed in the bay of

Villefranche inMarch2003 (González et al., 2008).However, in con-

trast to this study, GPP-18OandGPP-O2were not correlated during

our experiment. This can be explained by the relatively small range

of valuesmeasured during our study in contrast to the large range of

values (different seasons, depth, and sites) presented by González

et al. (2008). Due to the limited amount of water available in the

4 l bottles, NCP-O2 and CR-O2 rates have been measured without

replication. This led to relatively large uncertainties in the determi-

nations of these rates and, even more important, in the estimates of

GPP-O2. Although the samenumberof sampleswere available to es-

timate GPP-18O rates, the errors associated with this method were

much smaller than with the O2 light–dark techniques as GPP-O2

is estimated based on two values (NCP- and CR-O2) associated to

large uncertainties. Therefore, the 18O-labelling approach appears

much more reliable for estimating GPP rates than the classical

Table 2. Results of the permutational analysis of variance for selected parameters and processes.

pCO2 temperature pCO2: temperature

F p F p F p

Carbonate chemistry

Alkalinity 0.029 0.874 0.974 0.362 0.686 0.458

DIC 696.193 0.001* 0.171 0.685 0.656 0.443

pCO2 555.319 0.001* 0.175 0.688 1.000 0.341

pH 678.988 0.001* 0.048 0.831 1.191 0.2917

Nutrients

NOx 4.017 0.078 0.551 0.482 0.792 0.387

PO4
3
− 13.187 0.005* 0.038 0.836 2.589 0.152

Silicate 0.969 0.376 0.350 0.587 1.652 0.222

Particulate organic matter

POC 0.039 0.837 1.956 0.184 0.875 0.377

PON 0.000 0.990 0.135 0.729 3.240 0.093

POC : PON 0.050 0.855 0.030 0.876 3.713 0.079

Pigments

Chl a 1.832 0.216 1.146 0.303 0.006 0.934

Fucoxanthin 1.254 0.285 0.548 0.479 0.004 0.966

19′-Hexafucoxanthin 0.384 0.537 2.570 0.125 0.210 0.656

Zeaxanthin 0.017 0.902 6.983 0.027* 0.037 0.842

Flow cytometry

Synechococcus 0.332 0.566 6.106 0.028* 0.084 0.781

Pico-eukaryotes 8.694 0.016* 3.094 0.114 1.615 0.235

Nano-prokaryotes 0.057 0.816 0.093 0.788 0.042 0.837

Heterotrophic prokaryotes 0.145 0.729 1.392 0.268 0.002 0.974

Viruses 0.656 0.465 5.571 0.040* 0.291 0.588
13C labelling

13C-DIC 1.746 0.204 0.214 0.642 4.592 0.057
13C-POC 2.124 0.165 2.105 0.052 0.120 0.738

Metabolic rates

GPP-18O 0.003 0.956 15.824 0.006* 7.283 0.021*

GPP-O2 0.218 0.642 1.257 0.324 0.179 0.668

NCP-O2 0.074 0.776 769.0 0.769 0.539 0.483

CR-O2 0.139 0.728 1.683 0.240 0.035 0.849

NCP-13C 0.867 0.368 2.526 0.155 0.020 0.901

The “*” indicate significant effect (p, 0.05).
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light–dark technique when rates are low and only a small sample

volume is available. However, it must be stressed that the
18O-labelling techniques does not allow estimating CR, which is

critical for determining the autotrophic vs. heterotrophic behaviour

of the community. Nevertheless, the observed decrease in GPP-18O

during the experimentwasconsistentwith thedecrease in thephyto-

plankton biomass indicated by the pigments analyses.

The 13C enrichment was successful and showed decreasing

primary production rates along the experiment which is consistent

with the observed decrease in phytoplankton biomass and GPP

measured by the 18O method. However, the NCP estimated based

on the 13Cmethod (NCP-13C), representing the freshly labelledma-

terial producedbyphytoplankton,was lower thanNCPestimatedby

the light–darkmethod (NCP-O2). TheNCP-
13CandNCP-O2were

measured from incubation in different volumes (60 ml vs. 4 l) and

over different periods (24 h vs. 2 or more days), which might

explain part of this difference.Moreover, it is likely that, a significant

part of the organicmaterial produced was released in the DOCpool

(WoodandVanValen, 1990; Lopez-Sandoval et al., 2011)whichwas

not measured during our experiment.

Figure 2. Concentration of inorganic nutrients as a function of time:
(a) silicate, (b) NO

x
(NO3

−

+ NO2
−), and (c) phosphate. Control (C),

ocean warming (OW), ocean acidification (OA), and greenhouse (G)
treatments. Symbols are for the three replicates of each treatment.
Lines: solid (C), dashed (OA), dotted (OW), and dotted–dashed (G).

Figure 3. Particulate organicmatter and chl a as a function of time: (a)
POC, (b) particulate organic nitrogen (PON), and (c) chl ameasured
by HPLC. Control (C), ocean warming (OW), ocean acidification (OA),
and greenhouse (G) treatments. Symbols are for the three replicates of
each treatment. Lines: solid (C), dashed (OA), dotted (OW), and
dotted–dashed (G).
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During the recent years, an experimental effort to study ocean

warming and acidification effects at the plankton community level

has been initiated; however, there is still a clear lack of information

for low productive oceanic regions (oligotrophic) that represent an

important, andexpanding surfaceof the global ocean (e.g. Irwinand

Oliver, 2009), having then a significant role in carbon cycling. The

present experiment was designed to investigate the effect of both

ocean acidification and warming under conditions that prevail for

most of the year in the oligotrophic Mediterranean Sea, i.e. very

low nutrient availability and a community dominated by small

phytoplankton species.

In our study, no significant effects of elevated temperature and/or
CO2 were found for most parameters and processes (Table 2). As

reported in other experiments (e.g. Feng et al., 2009), C:N ratio was

not affected either by temperature or CO2. The pCO2 effect detected

on the phosphorus concentration is most likely due to sampling

Figure 4. Pigments (left panels) and flow cytometer counts (right panels) as a function of time: (a) fucoxanthin (typically diatoms),
(b) 19′-hexanoyloxyfucoxanthin (19′-hex; prymnesiophytes), (c) zeaxanthin (cyanobacteria), (d) abundance of heterotrophic prokaryotes,
(e) abundance of viruses, and (f) abundance of Synechococcus. Control (C), ocean warming (OW), ocean acidification (OA), and greenhouse
(G) treatments. Symbols are for the three replicates of each treatment. Lines: solid (C), dashed (OA), dotted (OW), and dotted–dashed (G).
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and/or analytical uncertainty. Indeed, during the whole experiment,

concentrations varied within a very small range of+5 nmol l21 and

for most of the sampling days, differences between replicates were

larger than between treatments. The GPP-18O rates were higher in

warmer treatment and even more enhanced when combined with

highCO2 conditions.This is inagreementwithobservedstimulations

of the metabolism by temperature (Eppley, 1972; Toseland et al.,

2013). Our data also support the previous findings of studies with

higher nutrient levels in which elevated pCO2 exerts a moderate

effect on primary production rates unless it is combined with an in-

crease in temperature (bottles incubation,3 l;Hare et al., 2007; Feng

et al., 2009). An experiment performed in larger volumes (3000 l) has

shown an increase in DOC production as well as photosynthetic

activity and decrease in POC production in warmer and high CO2

level conditions while gross community production remained

unchanged (Kim et al., 2011, 2013).

It must be mentioned that although no study combining both

drivers were conducted in oligotrophic conditions, ocean acidifica-

tion alone has been reported to decrease DOC production in the

nutrient-depleted Okhotsk Sea at high CO2 level while POC produc-

tion was unchanged (Yoshimura et al., 2010). Furthermore, in iron-

limited areas (Bering Sea and North Pacific) presenting similar chl

a level than in our study, effects of ocean acidification were investi-

gated and have shown different effect on POC and DOC accumula-

tion that have been related to differences in community structure

(Yoshimura etal., 2013). Indeedat the sitewhere smallphytoplankton

species (70% picoaukaryotes and 20% Synechococcus) were domin-

ant, no effect was detected, as in our study, while at the site where

diatoms were dominating (75%), POC accumulation was smaller

at high CO2 levels. In our study, cyanobacteria (comprising

Synechococcus and Prochlorococccus spp.) is the only taxonomic

group that has shown enhanced abundance in warmer conditions

though to a lesser extent when combined with high CO2 level.

Indeed, while the increasing tendency in both warming and green-

house treatments was similar during the first sampling days, elevated

pCO2 appeared as unfavourable to this population after day 8 of our

experiment. This is partially consistent with single-cell experiments

that have shown no effect of increased CO2 alone on Synechococcus

Figure 5. Communitymetabolism as a function of time: (a) NCP (NCP-O2), (b) CR (CR-O2), (c) gross primary production using theO2 techniques
(GPP-O2), and (d) gross primary production using the 18O-labelling technique (GPP-18O). Control (C), ocean warming (OW), ocean acidification
(OA), and greenhouse (G) treatments. Symbols are for the three replicates of each treatment. Lines: solid (C), dashed (OA), dotted (OW), and
dotted–dashed (G).
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growth rates and significant effects of temperature alone or in com-

bination with acidification (greenhouse; Fu et al., 2007). However,

in contrast to our results, growth rates were not significantly different

between the elevated temperature and the greenhouse treatments.

Furthermore, the same study reported no effect on Prochlorococcus,

while increased abundances in the warmer treatment were observed

in our study (data not shown). Finally, in a natural community of

Synechococcus and Prochlorococcus spp. carbon fixation rates were

also not affected by acidification under both nutrient replete and

P-limited conditions (Lomas et al., 2012).

Extrapolating our findings to in situ oceanic conditions and

facilitating potential future comparison studies necessitates a

discussion on the limits of the experimental design considered in

the present study. Indeed, it must be stressed that our experiment

was performed in relatively small-enclosed bottles (4 l) that un-

doubtedly led to some confinement effects which constrained the

plankton community response (i.e. no turbulence, no nutrient re-

supply, no movement through the euphotic zone, etc.; Scarratt

et al., 2006). In our study, cyanobacteria species observed during

the incubations were not N2 fixers; however, it must be stressed

that some strains have been shown to increase their N2 fixation

rates under high CO2 conditions (e.g. Hutchins et al., 2009). The

presence ofN2fixers species in the community couldhavehad influ-

enced the results reported here. In addition, seawater was sieved

through 200 mm to remove large organisms meaning that we did

not take into account the complete community and therefore

these findings are valid only when top-down control is negligible

(Kim et al., 2013). Any potential change in the top-down pressure,

due to change in macrozooplankton enhanced grazing in warmer

and/or acidified condition, was therefore not investigated in this

study. To assess the potential effect of climate change on communi-

ties of two ormore trophic levels and trophic interactions (e.g. from

phytoplankton to macrozooplankton), large mesocosm (!50 m3)

studies are more appropriate as whole communities can be

trapped and in situ temperature, irradiance and water masses are

maintained close to “real world” conditions (Riebesell et al., 2010,

2013).

Itmust be stressed that a rise in primary productionwith elevated

temperature is not foreseen on a global scale asmany studies report a

decrease of primary production as a consequence of a stronger strati-

fication of the water column which limits nutrient supply to the

surface mixed layer (Bopp et al., 2005). The observed increase in

abundance of cyanobacteria in the warmer treatments in our study

is in accordance with in situ observations, as it is recognized that

these species have awider temperature range than other phytoplank-

ton species. Cyanobacteriawill probably benefit from climate change

as long as the temperature does not exceed their thermal tolerance

(Morán et al., 2010; O’Neil et al., 2012). A potential shift toward

small species could lead to diminished energy transfer to microzoo-

plankton as their lipid content is much lower than it is for larger

phytoplankton species (e.g. Von Elert and Wolffrom, 2001).

Furthermore, the carbon export efficiency depends on the commu-

nity structure and a shift to smaller species will probably lead to a

less efficient carbon export under elevated temperature (Bopp et al.,

2005). As nutrients (N and P) were highly limiting, the absence of

effect by ocean acidification alone does not appear as a surprise.

Unfortunately, no data on dissolved organic nutrient concentrations

are available andwe could not precisely investigate anymodifications

innutrient acquisitionmechanisms (inorganic vs. organic) under the

different treatments.Nevertheless, as no change of plankton commu-

nity composition and functioning were shown at elevated pCO2, it

appears that the community did not take advantage of the increased

CO2 availability. To conclude, this study on the combined effect of

both drivers has shown that ocean acidification and warming in iso-

lationdonothave the sameeffectoncellsabundancesandproduction

rates than when combined, emphasizing the need to study these two

drivers synergistically.
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Supplementary Material 

 

 

Supplementary Material: Figure SM-IV-1. Picture of the experiment showing the two outdoor 

tanks on the pontoon in Villefranche-sur Mer (left) and the + 3°C with the 4 L bottles, the 

heater and pump for water circulation (right).  
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This chapter aims at synthesising the results presented in the previous chapters and to 

discuss them in a more general context through an extensive literature review.  

Plankton community in a high pCO2 LNLC area 

The aim of this work was to provide data on plankton community response to two 

anthropogenic drivers, ocean warming and acidification in ecosystems that have been 

chronically under studied although they represent a large portion of the ocean surface area and 

global primary production: oligotrophic regions. Past experiments have been mainly focused 

on eutrophic or mesotrophic systems (e.g. Tortell et al., 2002) or conducted with nutrient 

enrichment (e.g. Riebesell et al., 2007) and provided contradictory results on the effect of 

these stressors on the structure and functioning of plankton communities, leading to the 

absence of a general consensus. Furthermore, very few experiments combining ocean 

acidification and warming have been performed.  

The Mediterranean Sea was selected as a study area with low nutrient low chlorophyll 

(LNLC) levels in the frame of the European MedSeA project. The potential effects of ocean 

warming and/or acidification in this region were assessed following three null hypotheses: 

 

1. Ocean acidification will affect phytoplankton primary production 

During the two mesocosms experiments that have been conducted in the Northwestern 

Mediterranean Sea, the response of plankton metabolic rates to six levels of CO2 following a 

gradient approach was assessed with different methods to overcome the limitations inherent to 

each technique. In addition, another experiment performed in smaller volumes was conducted 

to test for the effect of an increase in pCO2 to a value of ~700 µatm, in combination or not 

with an increase in temperature (~3 °C). These three experiments were conducted at different 

periods: during the summer-stratified period and under pre-bloom conditions (winter/spring) 

for the mesocosm experiments and after the bloom for the experiment performed in small 

volumes. For all these experiments, seawater had low concentrations of nutrients and 

chlorophyll levels and no nutrient was added. Measured plankton metabolic rates were within 

the range of rates previously reported for this area at the periods considered. The results of 

these experiments have shown no effect of increased pCO2 alone on particulate and dissolved 

primary production nor on community respiration. These results obtained in nutrient-depleted 

conditions are not supporting the hypothesis that increasing CO2 levels will enhance primary 

production by lowering the CO2 acquisition cost for phytoplankton species (e.g. Riebesell, 

2004).  
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2. Some species will be more affected than others by ocean acidification 

It is suspected that some phytoplankton groups will be favoured compared to others due to 

differences in the efficiency of their carbon concentrating mechanisms (CCMs; e.g. 

Reinfelder, 2011). During the two mesocosm experiments, 
13

C enrichment was performed in 

order to trace and quantify carbon flows within the plankton community. This methodological 

approach, coupled to isotopic analysis of biomarkers (phospholipid fatty acid; PLFA) on 

plankton community has, to the best of our knowledge, never been used in relatively 

unproductive plankton communities such as those found in most of the Mediterranean Sea. 

This approach has successfully provided insights on carbon fixation rates by different 

phytoplankton groups and confirmed the absence of a CO2 effect on these communities, in 

agreement with results obtained with other methods (see previous hypothesis). However, 

determination of PLFA has proven to be difficult under the tested conditions because 

concentrations were very low and their profiles in Mediterranean species are unknown. 

Further developments of this interesting technique are necessary to improve its reliability in 

oligotrophic seas. This will be further discussed in the “Conclusion and perspectives” section.  

 

3. Under multiple-stressors such as ocean acidification and warming, the effect of one 

driver dominates 

Ocean acidification and ocean warming will occur concomitantly and both drivers have 

potential effects on plankton community. Their combined effects were investigated by means 

of a bottle experiment that was conducted in the Bay of Villefranche. While the abundance of 

most phytoplankton species, bacteria and viruses communities collapsed over the 12 days of 

the experiment, the abundance of cyanobacteria (mostly Synechococcus and 

Prochlorococcus) increased with enhanced abundance in the warmer treatment. In the 

treatment combining ocean acidification and warming, higher CO2 levels tended to limit this 

increase. This could have consequences on carbon export to deeper layers (e.g. Bopp et al., 

2005) and to higher trophic levels as cyanobacteria populations have lower nutritive value 

than other phytoplankton species (e.g. Von Elert and Wollfrom, 2001). Gross primary 

production rates were also enhanced in warmer conditions. These results, suggest that the 

Mediterranean plankton community response is mainly driven by temperature increase rather 

than by acidification despite some interactions between drivers, emphasizing the necessity of 

performing multi-drivers experiments.  
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The present work has brought some clues to the questions raised by the scientific 

community during the last decades about the effect of climate change on plankton 

communities. All together, the experiments performed in this work have provided coherent 

results and all showed that ocean acidification will likely have limited impacts on plankton 

communities of the NW Mediterranean Sea and that ocean warming could favour the 

abundance and production of small species such as cyanobacteria that have a low capacity for 

carbon export. Under low concentration of nutrients and chlorophyll a levels, the metabolic 

rates measured were unchanged by the increase in CO2. This does not seem very surprising 

as, nitrogen and phosphorus were more limiting than CO2 that was abundant enough to 

support the phytoplankton CO2 demand. As a consequence of low nutrient availability, 

metabolic rates were not affected by the increase in CO2 availability, as no other resources 

were available for photosynthesis. Increasing seawater temperature by 3 °C relative to control 

did however increase metabolic rates despite the low nutrient concentration.  

The response of plankton community to climate change seems to be mostly driven 

by environmental parameters other than those of the carbonate system (i.e. nutrient 

availability, light, temperature, etc). These parameters, that determine plankton 

community temporal dynamics and structure, are very variable in space and time. 

Therefore, the effect observed in the NW Mediterranean Sea might not be found in 

other low nutrient systems, this will be further discussed in the next section.  

 

Ocean acidification effect on plankton community in other ecosystems 

In the discussion section of the previous chapters, our results were compared with 

those of similar experiments. Here we propose a comprehensive review of the ocean 

acidification effect on plankton metabolism and biomass based on an extensive literature 

survey. For about 20 years now, experiments on ocean acidification have been performed and 

there is a need for the scientific community to clarify the recent knowledge and try to find a 

consensus to communicate with more certainties on the biological response to this driver. 

Indeed, after several years of experiments on the effect of ocean acidification on plankton 

community it seems that its response depends on the region, plankton community 

composition and the nutrient availability. Since the last review of Riebesell and Tortell 

(2011), several experiments looking specifically at ocean acidification effect at plankton 

community level have been performed in different locations. 
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Twenty experiments have been reported at different locations (Table V-1) and data on 

biomass and primary production have been collected through 23 different publications (from 

1997 to 2014). Half of these publications have been published in the last 3 years. Details on 

chlorophyll a levels (as a proxy for biomass) and primary production rates measured in these 

experiments are available in Appendix B. In order to provide quantitative data, the response 

ratio for chlorophyll a (RR-chl a) and primary production (RR-PP) were calculated as the 

ratio of the effect at elevated CO2 level relative to control conditions at each time step. As in 

several experiments only final biomass and production values were available, thus only final 

response ratios were considered for all studies, except for the Svalbard experiment for which 

final response ratios at the end of each experimental phase were considered. Depending on the 

experiment, different values of CO2 levels have been tested in areas with different initial 

pCO2 conditions. Therefore, we selected only studies with elevated CO2 levels lower than 4x 

initial control pCO2 levels. Finally, when an effect was reported at several CO2 levels, 

response ratios were calculated for each level. When no effect was detected despite different 

tested CO2 levels it was reported as a single value of 1. For most of the experiments, data 

were available in the papers and/or in the ocean acidification database hosted in the World 

Data Centre Pangaea (http://www.pangaea.de). However, the nutrient and chlorophyll a data 

from Hein and Sand-Jensen (1997) and Riebesell et al. (2000) were not available. As these 

experiments have been performed in locations of frequently sampled sites, initial chlorophyll 

a concentrations were taken from the AMT cruise reports 

(http://www.bodc.ac.uk/projects/uk/amt/cruise_programme/) and Wong et al. (2005), 

respectively. 
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Table V-1. List of experiments considered in our literature survey. 

Location Date  Reference 
Number of 

related pub.  

Number of 

studies 
Additional information 

S Atlantic - 

Hein and Sand-Jensen 

(1997) 1 18 

Few environmental parameters 

details 

N Pacific 1998-1999 Riebesell et al. (2000) 1 5 

Few environmental parameters 

details 

Bergen, Norway (PeECE I) 2001 see Riebesell et al. (2008) 2 1 Nutrient addition 

Bergen, Norway (PeECE 

II) 2003 see Riebesell et al. (2008) 1 1 Nutrient addition 

Bergen, Norway (PeECE 

III) 2005 see Riebesell et al. (2008) 3 1 Nutrient addition 

Oshtock Sea, NE Pacific 2006 Yoshimura et al. (2010) 1 1  

Ross Sea, Antartica 2006 Tortell et al. (2008) 1 1  

Denmark 2007 Nielsen et al. (2010) 1 2  

Bering Sea and N Pacific 2007 Yoshimura et al. (2013) 1 2  

Tasmania 2007 Nielsen et al. (2012) 1 1  

N Pacific 2008 Endo et al. (2013) 1 2 Fe enrichment 

Japan 2009 Hama et al. (2011) 1 1 Nutrient addition 

Godvari estuary, India 2009 Biswas et al. (2011) 1 2  

Bering Sea 2009 Sugie et al. (2013) 1 2 Fe enrichment 

BATS station, Atlantic 2009-2010 Lomas et al. (2012) 1 3 Cyanobacteria population 

Svarlbard 2010 see Riebesell et al. (2013) 4 1 Nutrient addition 

Weddel sea, Antartica 2010 Hoppe et al. (2013) 1 2 Fe enrichment 

NW European continental 

shelf 2011 Richier et al. (2014) 1 5  

Bay of Calvi, Corsica 2012 this thesis 1 1  

Bay of Villefranche, France 2013 this thesis 1 1  
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The entire database has been first explored by counting the number of studies. It is 

considered as a study here: 1) different geographical sites (e.g. Yoshimura et al., 2013 have 

performed two studies) except for Hein and Sand-Jensen (1997) who did 18 stations and 

Riebesell et al. (2000; 5 studies) as there are no available information on the different 

sampling stations, 2) results from different experimental conditions tested in one site (e.g. iron 

limited or replete conditions; Richier et al. (2014) have performed 5 studies), 3) when 

different measurement methods are available for one experiment they have been considered as 

different studies (e.g. for PeECE III in 2005 there are three studies for metabolic rates) and 4) 

specifically to the Svalbard mesocosm experiment the three temporal phases have been 

considered as different studies.  

In total 31 and 38 studies for RR-chl a and RR-PP respectively, have been taken into 

account. Most (~ 60%) of the studies reported no effect of ocean acidification on chlorophyll 

a and/or primary production (Figure V-1) while ~ 22% reported a positive effect and 16% of 

the studies have shown a negative effect. 

 

The first hypothesis that can be tested, based on this dataset, is whether the lack of 

ocean acidification effect on plankton biomass and primary production is more prevalent 

under low nutrient concentration. In oligotrophic areas, plankton communities being nutrient-

limited, an increase in CO2 will lead to an increase in primary production and biomass. This is 

not validated here as the response ratio of chlorophyll a and primary production response 

ratios did not show any clear pattern when related to dissolved inorganic nitrogen (NOx as 

nitrate and nitrite; Model II linear regression; RR-chl a: n = 52, r
2
 = 0.06, p > 0.05; RR-PP: n 

= 71, r
2
 < 0.01, p > 0.05) and phosphorus (DIP; RR-chl a: n = 52, r

2
 = 0.01, p > 0.05; RR-PP: 

n = 70, r
2
 < 0.01, p > 0.05) concentrations or NOx/DIP ratio (RR-chl a: n = 52, r

2
 = 0.06, p > 

0.05; RR-PP: n = 70, r
2
 < 0.01, p > 0.05).  
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Figure V-1. Number of studies expressed as a percentage showing a positive effect 

(stimulation; yellow bars), no effect (blue bars) and negative effect (inhibition; red bars) for 

all the studies considered. RR-chl a and RR-PP stand for response ratio of chlorophyll a and 

primary production respectively and the number of studies are indicated in parenthesis.  

 

The second hypothesis that can be tested is whether the initial chlorophyll a 

concentrations determines the response of a community to increased pCO2 (Figure V-2). A 

low initial chlorophyll a biomass might be related to relatively unproductive ecosystems due 

to environmental limitations (such as nutrient but also irradiance, temperature, etc…) thus an 

increase in CO2 will have no effects. This hypothesis is partly supported by the data as shown 

with Model II linear regressions using the logarithm of initial chlorophyll a concentrations, 

although only for biomass (RR-chl a: n = 52, r
2
 = 0.18, p < 0.05), while for primary 

production, no significant relationship was found (RR-PP: n = 70, r
2
 = 0.03, p > 0.05). 

Keeping in mind that most experiments did not show any CO2 effect, studies with initial chl a 
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≥ 0.5 µg L
-1

 present the tendency to be more often positively affected by increased CO2, with 

some exceptions.  

A third hypothesis to test is whether community composition rather than biomass and/or 

nutrient availability determines the response to ocean acidification. Indeed, phytoplankton 

species have different CO2 supply requirements and have adapted to some extent to marine 

environmental constrains through evolution (e.g. CCM). Studies for which RR-chl a < 1 

presented community compositions dominated by diatoms and dinoflagellates, communities 

with RR-chl a = 1 were almost exclusively composed of cyanobacteria (mainly 

Synechococcus) and small haptophytes and studies with RR-chl a > 1 were a mix of studies 

with dinoflagellates, cryptophytes as well as small haptophytes and cyanobacteria. For RR-

PP, no general trend is found as communities dominated by diatoms, dinoflagellates, 

cyanobacteria or haptophytes presented RR-PP < 1. It must be noticed that papers almost 

never provide a quantitative method to describe community structure. Different analytical 

methods were used to quantify diversity and abundance such as flow cytometry, microscopy 

cell counts and/or pigment analyses and therefore some species could be present but not 

measured. For example, Synechococcus and Prochlorococcus are very well quantified by 

flow cytometry but not all studies use this method. In the early days of ocean acidification 

research, several experiments performed on single species in culture have shown that 

increased CO2 enhances photosynthesis, carbon fixation, growth rates and elemental 

composition (see Riebesell and Tortell, 2011 for a review). Single strain cultures of 

cyanobacteria have, for example, shown increase in photosynthesis, cell division and 

elemental composition in response to ocean acidification (see Riebesell and Tortell, 2011 for 

review; Fu et al., 2007). However, this is not supported by experiments conducted on 

communities dominated by this group, in which no effect (this thesis; Yoshimura et al., 2010; 

2013; Lomas et al., 2012) or even a negative effect (Paulino et al., 2008; post-bloom 

conditions) have been observed. There is the exception of Endo et al. (2014) who reported an 

increased cyanobacteria biomass in the North Pacific under increased pCO2. It seems that 

only looking at the community composition and physiological characteristics of the species 

present is not sufficient to explain the different biological responses observed. The sum of the 

species-specific responses does not reflect the response of the natural assemblages. We 

suggest that it is more likely that the initial ratio of the different phytoplankton groups will 

explain the differences. Indeed, as it has been recently demonstrated, the initial ratio between 

cyanobacteria, diatoms and dinoflagellates has more effect on biomass dynamics than ocean 
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acidification (Eggers et al., 2014). Small differences in species composition can then cause 

large differences in ecosystem functioning (Eggers et al., 2014) and could partly explain the 

marge variability of responses observed for primary production rates (RR-PP). However, this 

does not explain why similar communities with similar relative species composition are 

positively or negatively affected by ocean acidification.  

 

 

Figure V-2: Response ratio for chlorophyll a (upper panel) and primary production (lower 

panel) relative to initial chlorophyll a concentration (µg L
-1

; log scale). The colour gradient 

corresponds to initial nitrogen (NOx) concentration (µmol L
-1

), black is used when no data 

were available. 
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A fourth hypothesis is that the type of trophic pathway dominating the ecosystem at 

the period at which the experiment is performed is important as well as the experimental set-

up. Throughout the year the dominant trophic pathway, i.e. classic vs. microbial food web, 

shifts along a continuum based on nutrient availability, hydrological conditions and predation 

pressure by zooplankton. Trophic interactions in the community could therefore dampen 

ocean acidification effects (Rossoll et al., 2013) through changes in the grazing pressure on 

the different phytoplankton groups. This hypothesis is very difficult to test as many studies do 

not report on grazing rates or secondary producers composition. Furthermore, it must be 

stressed that most experiments do not consider the complete community as seawater is usually 

sieved to remove large organisms (e.g. in our experiments).  

  

The initial hypothesis that, plankton communities are not influenced by increased CO2 

has not been verified based on this literature review and a conceptualization of ocean 

acidification effects based on nutrient levels cannot be proposed. The same is true for initial 

community composition that did not allow to fully explain the differences observed between 

experiments. Primary production is a key parameter in climate change research as it partly 

determines the ability of an ecosystem to store or release CO2 in/from the ocean. The response 

of primary production to acidification is more complex to conceptualize than biomass. As 

suggested by Hein and Sand-Jensen (1997), the relative abundance of species in the natural 

assemblages will be more likely impacted than primary production. As discussed previously, 

most studies performed at community level have shown unchanged primary production rates 

as obtained by several incubation and analytical methods. This neutral effect would have 

profound consequences, as in contrast to what had been initially suggested (e.g. Riebesell et 

al., 2007), the biological pump will not increase as a consequence of ocean acidification and 

thus will not help sequestering anthropogenic carbon in the ocean while the solubility pump 

will decrease as a consequence of warming.  

In the literature review, experiments combining both ocean acidification and warming 

have not been selected. Although very few experiments have looked at the combined effect of 

these drivers (Feng et al., 2009; Hare et al., 2007; Kim et al., 2008; 2011; Kim et al., 2013), 

they converged to the conclusion that ocean warming will lead to enhanced primary 

production rates with little or no interaction with ocean acidification. Our findings support the 

fact that ocean warming could have more effect than ocean acidification on plankton 

communities structure and functioning. 
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The experimental approaches used in this thesis as well as in past experiments are 

associated to some common limitations. These experiments do not allow investigating the 

long-term effect of ocean acidification and warming under close to in situ conditions while 

following seasonal variability. It can be expected that plankton communities evolves to adapt 

to future high CO2 conditions and take advantages of these environmental modifications. 

Furthermore, even though this work has partly considered two drivers, others stressors exist in 

the natural environment and have not been taken into consideration in the present study. 

These two limitations are related to the complexity of marine ecosystems and it is of the 

utmost importance for future research to take into account these limitations in the 

experimental design and data reporting in order to refine our projections of plankton 

structure and functioning in a high CO2 ocean.  

  

Thus, based on these experimental findings, we are still unable to derive a consensus 

view of the response of biomass and primary production response to ocean acidification while 

some models have proposed a conceptualization of phytoplankton biomass and C:N 

stoichiometry responses to increased CO2 levels (Verspagen et al., 2014). In agreement with 

our results, Verspagen et al. (2014) suggested that phytoplankton biomass is not likely 

influenced by ocean acidification in oligotrophic waters although the phytoplankton 

carbon:nutrient ratio would likely increase. Although models are useful tools for projecting 

future effects of anthropogenic stressors, an over-simplification of the models certainly leads 

to ignore most of the complexity of marine ecosystems. For example, Flynn et al. (2012) 

projected that small species will be more impacted by ocean acidification than large cells as 

they are less used to large pH changes in their immediate surroundings. This is definitely not 

supported by our results nor by the literature review that we performed, potentially because 

this model involves too many inadequate assumptions such as the one considering that all 

phytoplankton cells as spherical and non-motile objects with neutral buoyancy, obviously 

very unlikely to occur in nature.  

Experiments at the community level, are more appropriate to take into consideration 

these natural aspects although no experimental design is exempt of bias. Within the 

experimental approaches and designs available, the use of large mesocosm facilities allows 

being as close as possible to “real-world” conditions. Over the last 30 years, mesocosms (here 

defined as large volumes > 1 m
3
) have been increasingly used (see Riebesell et al., 2010 for 

review) to gather data on the response of plankton communities to climate change (see 
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Stewart et al., 2013 for a comprehensive review). Natural environmental conditions such as 

light, seawater movement, and temperature changes are well reproduced although caution 

must be taken before making generalisation (Stewart et al., 2013). In large mesocosm 

systems, two or more trophic levels can be investigated simultaneously but the numbers and 

types of drivers that can be tested are limited for technical reasons (i.e. cost, logistics). To 

overcome this limitation, some experiments have been performed using semi-continuous 

cultures (e. g. Hutchins et al., 2003) but this requires installation and the algae are maintained 

under a constant physiological state (e.g. growth phase or stationary phase) that does not 

reflect in situ conditions as plankton's physiology naturally varies following variations in 

environmental conditions. Batch cultures (simple closed bottles) have also been used and are 

easier to set-up. Despite the inconvenience of the bottle effect, experiments in small volumes 

allow replication and a good control on the perturbed parameter, which is not always possible 

in larger volumes. The two different approaches (large mesocosm and small bottles) appear as 

complementary tools to investigate the effects of climate change on plankton community. 

One of the directions highlighted the last years for future experiments is the 

complementary use of perturbation experiments (such as mesocosm), field observations 

(using natural gradients and time series for example) and modelling activities. This will 

require strong collaboration between experimentalists and modellers as well as 

interdisciplinary and coordination in the scientific community. 
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The three experiments that were conducted at different sites and periods during this 

thesis have shown coherent results and suggest that ocean acidification alone will not lead to 

significant modifications of plankton metabolic rates (i.e. net community production and 

respiration and gross primary production) as measured by different methods in the NW 

Mediterranean Sea. However, combined effects between ocean warming and acidification 

have been found. Ocean warming have enhanced gross primary production and shifted 

plankton community structure toward species that are less efficient for carbon export to deep-

sea and higher trophic level.  

Although metabolic processes as measured by different methods did not always 

correlate, due to differences in terms of incubation volume and time, they were within the 

range of rates reported in similar areas of the Mediterranean Sea. In addition, a technique to 

estimate group-specific production rates and carbon flow within the community based on 

carbon 13 labelling combined with the analysis of biomarkers (polar lipids fatty acids, PLFA) 

has been successfully applied for the first time in the frame of a mesocosm experiment in the 

Mediterranean Sea. Results have comforted the idea that ocean acidification alone does not 

lead to significant modifications in community structure and functioning and provided 

coherent results on group-specific production rates.  

However, as the detection of these PLFA has sometimes been difficult in our samples, 

there is a strong need to adapt the experimental and analytical protocols to limit the 

uncertainties that remain with this technique in oligotrophic areas. First of all, it would be 

necessary to adapt filtration speeds and filters pore size with the purpose to improve the 

detection of bacterial PLFA that has proven difficult during our experiments. Furthermore, it 

would be necessary for future experiments to establish the PLFA composition of species or 

group of species (through culture experiments) commonly found in the Mediterranean Sea as 

well as to determine PLFA to carbon conversion factors specifically for this region. Using 

PLFA and carbon isotope analyses with labelling studies could then be used to investigate the 

carbon cycle in these regions in a quantitative (e.g. measure of primary production) and 

qualitative (e.g. food web links) way with details on the different plankton compartments.  

This thesis has allowed filling a gap by performing experiments in a chronically 

understudied area (i.e. oligotrophic provinces) and under undisturbed nutrient level 

conditions. To complement experimental data acquired during this thesis, a literature survey 

has shown that the majority of the studies have reported no effect of ocean acidification alone 

on biomass and primary production. Although the amount of experiments focused on ocean 

acidification effect on plankton communities has drastically increased in the past few years, it 
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remains impossible to propose a general concept to understand and project in which 

conditions and at which locations this stressor will have an effect on plankton structure, 

biomass and production in future decades. In addition, very few studies performed at 

community level have considered ocean acidification in combination to other relevant drivers 

(e.g. ocean warming, nutrient availability, irradiance). The few multiple drivers experiments 

perfromed have shown that ocean acidification does not act as a primary driver, although 

possible interactions between these drivers are commonly reported.  

At global scale, the fact that marine primary production seems mostly resilient to 

ocean acidification could have large consequences on global climate change. Indeed, in a 

situation in which plankton communities do not adapt to future high CO2 conditions by fixing 

more carbon in surface layers, they will not help mitigating atmospheric CO2 increase. In 

addition, ocean warming seems to favour small phytoplankton species that have lower carbon 

export efficiency as well as decrease solubility pump. These findings indicate that plankton 

communities might not help mitigating atmospheric CO2 increase by enhanced biological 

carbon pump. In order to confirm these findings and project future structure and functioning 

of plankton communities, more time and research efforts are needed.  

To do so, several methodological approaches can be used to investigate the effect of 

climate change on plankton communities and are complementary. All together, micro- and 

meso-cosmes, field studies, time series and modelling can provide clues to predict the effect 

of climate change through a strong and efficient international collaboration. For all of them, 

time is required (years or more exactly decades) that scientific community does not have and 

this is one of the most critical issues faced by the scientific community: research takes time 

while policy makers and funding agencies require quick answers. Furthermore, this survey on 

the effects of ocean acidification at community level is only a first step and efforts should be 

pursued to take into account carbon:nutrient supply, elemental composition, taxonomic 

composition and other parameters that characterise a plankton community. For this, more 

work is needed particularly to quantify the plankton community structure using mean cell 

size, abundances or other proxies that are not always available. This will provide a review of 

the current knowledge on ocean acidification effect at community level as shown by 

experimental work that could ultimately be compared to model projections.  
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Context 

As mentioned in chapter II, at the end of the mesocosm experiment we have decided to 

continue samplings in the bay during few more days in order to acquire high-frequency data 

during a bloom in this area. Indeed, when it was clear that the bags had been damaged by the 

storm and it was not possible to follow the experiment, levels of chlorophyll a increased in 

the Bay of Villefranche suggesting a potential bloom. The material was already set-up thus it 

was an opportunity to measure some parameters and metabolic rates in the Bay of 

Villefranche. The complete list of parameters and processes is presented in Table A-1.  

 The weekly-based monitoring at Point B in the Bay of Villefranche started in 1957 for 

core parameters such as temperature, nutrients and chlorophyll (see http://somlit.epoc.u-

bordeaux1.fr) and more recently for pigments, flow cytometry and carbonate chemistry (see 

http://www.lov.obs-vlfr.fr/fr/missions_d_observation.html). However, data on primary 

production are much more scarce. Results on metabolic rates obtained during the mesocosm 

experiment in the Bay (referred to as OUT) using the 14C method were complemented by this 

monitoring over a few days and provided an interesting time series. In addition, we have 

taken the opportunity of having all experimental set-ups available to perform a comparison of 

three different incubation methods to assess primary production rates: O2 light-dark, 14C and 

13C labelling 

 

Table A-1. Parameters and processes measured during the monitoring  

 

 

 

 

Parameter Method and/or instrument Name of the person the data belong to

T°, S, O2, … CTD-Seabird SBE 19plus V2 F. Gazeau and C. Guieu

Irradiance LI-192SA quantum sensor (LI-COR) F. Gazeau and C. Guieu

Nitrogen and Phosphate Nano-molecular detection method C. Guieu and J. Louis

DIC AIRICA F. Gazeau and S. Alliouane

Alkalinity Titration F. Gazeau and S. Alliouane

Pigments HPLC F. Gazeau and C. Guieu

Cell abundance Flow cytometry M-L Pedrotti

Taxonomy Uthermol F. Gazeau and C. Guieu
14C PP, DOC and CF Micro-difusion Technique L. Maugendre

O2-LD Winkler titration F. Gazeau, M. Gaubert and L. Maugendre
13C-PP 13C measurment on EA-IRMS L. Maugendre

Elemental composition Elemental Analyser (EA) L. Maugendre

TEP Spectrophotometry M-L Pedrotti
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Material and Method 

 

Samplings for the monitoring were performed before sunrise using a 5 L integrated 

sampler and a CTD for 6 days from March 13th to 18th 2013. Carbonate chemistry, pigments 

and metabolic rates presented here were sampled as described in Gazeau et al. (in prep, a) and 

in chapter II for oxygen light-dark (O2-LD) and 14C production measurements. In addition to 

these methods already described, the 13C-PP method was used over 24 hours incubations 

(Hama et al. 1983). Details of the protocol follow.   

 

In the laboratory, 500 mL of water was filtered through a pre-weighted and pre-

combusted GF/F filter for initial POC and 13C-POC measurements. In 2 L seawater, 30 mg of 

99 % 13C-sodium bicarbonate were added. A subsample of 20 mL for 13C-DIC analyses was 

immediately taken and spiked with 10 µL of HgCl2 saturated solution. Labelled seawater was 

then transferred into three 2.5 L polycarbonate transparent bottles and in one dark bottle. 

Bottles were firmly closed and incubated for 24 h on the incubation line located next to the 

mesocosms with the O2-LD and 14C bottles. Upon completion of the incubations, all bottles 

were removed and O2-LD and 14C samples were treated as described in Chapter 2. For the 13C 

samples, seawater was filtered through pre-combusted and pre-weighted GF/F filters and 

dried at 50 °C. 13C-POC and 13C-DIC samples was then analysed as described in Chapter 3. 

Carbon uptake in the light and in the dark (in µmol C L-1 d-1) were then calculated following 

the equation of Hama et al. (1983): 

ρ = ((ais – ans) / (aic – ans)) x (C / t) x 24 

where, ais is the atomic % of 13C in the incubated sample (atomic % 13C-POC final); ans is the 

atomic % in the natural sample (initial); aic is the atomic % in the dissolved inorganic carbon; 

C is the final POC concentration in the incubated sample (µmol L-1) and t is the incubation 

time (hours). Primary production was then obtained by removing dark incorporation to light 

incubation: 

PP* = ρL - ρD  

with ρL the light incorporation and ρD the dark incorporation.  

A discrimination factor (f) can also be taken into account to correct the difference in 

molecular weight between 13C and 12C, a value of 1.025 was used here (Hama et al. 1983). 

Corrected primary production is then expressed as: 

PP = PP* x f 
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Results and Discussion 

The purpose of this Appendix is not to fully describe and analyse the results obtained 

during this monitoring. Indeed, all data collected during these days are not presented here 

(nutrient, flow cytometry, TEPs etc) and will be integrated at a later stage in the frame of a 

collective study. Here, we will focus only on carbonate chemistry, chlorophyll a, pigments 

and metabolic rates.  

Environmental conditions and metabolic rates dynamic 

Carbonate chemistry was very constant during those days, with typical pH value of 

8.10 pH unit and pCO2 varying between 357 to 383 µatm (Table A-2). Chlorophyll a in the 

Bay was higher than during the mesocosm experimental period. Indeed, before March 4th, chl 

a was never higher than 0.94 µg Chl a L-1. During the monitoring, chl a slightly decreased 

from 1.26 to 1.10 µg Chl a L-1. This comforted the idea that the bloom did not start during the 

mesocosm experiment and the term “pre-bloom conditions” as used in chapter II is then 

justified.  

 

Table A-2. Carbonate chemistry measured from dissolved inorganic carbon (DIC) and total 

alkalinity (TA) allowing calculation of the other parameters: pH, pCO2, bicarbonate and 

carbonate ions, saturation state for aragonite (omega_Ar) and calcite (omega_Ca). Seacarb 

package (version 3.0) was used with Flag 15 (Lavigne, Epitalon and Gattuso 2014). A 

constant temperature of 13.2 °C and salinity of 37.8 psu were used.  

 

Date 09/03/13 13/03/13 14/03/13 15/03/13 16/03/13 17/03/13 18/03/13 

DIC            

(µmol kg-1) 
2286   2281   2291   2283  2287   2276 2281  

TA                 

(µmol kg-1) 
2559 2551 2558 2555 2559   2559  2558  

pHT 8.10 8.10 8.10 8.10 8.10 8.12 8.11 

pCO2                 

(µatm) 
375 376 384 375 377 358 367 

HCO3
-               

(µmol kg-1) 
2077 2072 2084 2074 2078 2061 2069 

CO3
2-                  

(µmol kg-1) 
195 193 191 194 194 201 197 

ΩAr 2.9 2.9 2.9 2.9 2.9 3.0 3.0 

ΩCa 4.5 4.5 4.5 4.5 4.5 4.7 4.6 
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All production rates collected are presented in Figure A-1 and Table A-3. At the start 

of the monitoring, GPP-O2 and NCP-O2 presented higher values than during the mesocosm 

experiment and rates decreased over time (Figure A-1) as nutrient decreased. NCP-O2 were 

always positive showing that the community was autotrophic.  

14C-PP rates were also measured outside during the mesocosm experiment and were 

never higher than 0.80 µmol C L-1 d-1 while during the monitoring values higher to 1 µmol C 

L-1 d-1 were frequently measured (Figure A-2). As during the mesocosm experiment, 14C-PP 

rates were lower than oxygen-based rates (GPP-O2) except at the end of the monitoring 

(Figure A-1).  DO14C production increased during the monitoring and percentage of 

extracellular release (PER) increased from 9.9 to 33 %.  

 

 

 

 

Figure A-1. Production rates measured with the oxygen light-dark technique (O2-LD), 14C and 
13C labelling techniques. In green (O2-LD), net community production rates (NCP-O2, empty 

diamonds), gross primary production (GPP-O2; full triangles) and community respiration 

(CR-O2; full circles). In red (14C), 14C particulate primary production (14C-PP; full squares) 

and dissolved production (DOCp; full triangles) and in blue the 13C particulate production 

(13C-PP; open diamonds).  
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Table A-3. Chlorophyll a (chl a) concentrations as well as all metabolic rates values collected 

during the monitoring. Particulate and dissolved production measured by 14C technique (14C-

PP and DOCp, respectively); percentage of extracellular release (PER; PER = 

DOCp/(DOCp+14C-PP); calcification determined with 14C labelling (CF); net community 

production (NCP); community respiration (CR); gross primary production (GPP); particulate 

primary production with 13C incubation (13C-PP*) and corrected for differences in molecular 

weight (13C-PP). 

 

Date 09/03/13 13/03/13 14/03/13 15/03/13 16/03/13 17/03/13 18/03/13 

chl a                

(µg L-1) 
0.85 1.26 1.13 1.12 1.04 1.00 

1.10 
14C-PP           

(µmol C L-1 d-1) 
1.05 1.38 0.74 1.27 1.33 0.83 

1.00 

DOCp           

(µmol C L-1 d-1) 
0.12 0.15 0.09 0.15 0.27 0.28 

0.50 

PER                     

(%)  
10.00 9.87 14.49 10.27 21.37 24.90 

33.40 

CF                  

(nmol C L-1 d-1) 
0.01 0.01 0.08 0.04 0.05 0.01 

0.04 

NCP              

(µmol O2 L
-1 d-1) 

- 4.49 2.31 1.24 1.67 1.01 
0.46 

CR              

(µmol O2 L
-1 d-1) 

- -0.55 -1.78 -1.94 -0.97 -0.25 
-0.40 

GPP              

(µmol O2 L
-1 d-1) 

- 5.03 4.09 3.19 2.64 1.26 
0.87 

13C light 

incoporation           

(µmol C L-1 d-1) 

- 1.12 1.45 1.26 1.27 0.66 

0.42 
13C dark 

incoporation           

(µmol C L-1 d-1) 

- 0.06 0.05 0.04 0.04 0.03 

0.01 
13C-PP*           

(µmol C L-1 d-1) 
- 1.06 1.40 1.22 1.23 0.63 

0.40 
13C-PP           

(µmol C L-1 d-1) 
- 1.09 1.44 1.25 1.26 0.65 

0.41 
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A shift in community structure occurred as observed by pigment contents. Indeed, 

small Haptophytes (based on 19’ hexanoyloxyfucoxanthin pigment) increased in biomass 

while Diatoms (based on fucoxanthin) decreased. As samplings were performed before 

sunrise (around 6:30 am), PAR in the water column by CTD profile were not measured and 

extinction coefficient were not calculated. Instead, the mean surface irradiance during the 

incubations was used and varied during the monitoring from 40 to 280 µmol photon m-2 s-1. 

Only 14C-PP rates significantly correlated with PAR (linear regression, n = 6, r = 0.93, p < 

0.05; Figure A-3). 13C-PP rates also showed an increasing trend with increasing PAR levels 

although not significant (Figure A-3). 

 

 

Figure A-2. Primary production rates in the Bay of Villefranche using the 14C-PP technique: 

during the mesocosm experiment (before March 5th, full line), and during the monitoring 

(after dotted line).  

 

 

Comparison of the different methods 

The carbon-based measurements were closed despite there had some diverging data 

points due either relatively low 14C (March 14th) or 13C (March 18th) measurements. As a 

consequence of the small number of measurements, the correlation between 14C and 13C-PP 

was not significant (r = 0.23, p > 0.05). Increasing the number of measurement might improve 

this correlation. These first results are however encouraging for the use of 13C as an 

alternative to radioactive 14C even if the method needs perfection, especially in the 

determination of 13C-DOC that remains technically difficult.  
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Figure A-3. Relation between PAR and production rates based on the 13C and 14C techniques. 

 

Concluding remarks 

Even if this analyse of the monitoring is not complete here, it has allowed to clarify two 

points: 

- The mesocosm experiment has been performed under pre-bloom conditions as 

shown by chlorophyll a and 14C-PP measurements after the end of the experiment. 

- The 13C-PP method has provided results close to those obtained with 14C-PP and 

the method was pretty simple to set-up and sample analyses are trivial as soon as the 

equipment is available.  

As perspectives on this work: 

- Primary production rates measured outside during this period have to be related to 

nutrient concentrations and all the results collected outside the mesocosm during 

this winter-spring period could be related to the weekly Point B time series data.  

- A deeper analysis of pigment concentrations together with flow cytometry data 

would be interesting as it appears that the community has rapidly shifted due to 

weather conditions. 

- Extra tests of the 13C-PP method and improvements of the techniques to measure 

13C-DOC should be performed to refine this method that could replace to some 

extent the radioactive 14C-PP method. 
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Appendix(B.(Table(with(data(collected(from(the(literature(used(for(the(general(

discussion(of(the(thesis((chapter(V).((

Location!indicates!geographical!information’s!of!the!experiment.!BATS!for!Bermuda!

Atlantic!Time;series!Study!station;!NW Med Sea for NW Mediterranean Sea (our 

experiments) and NW Europ Cont Shelf for NW European continental shelf (Richier et al. 

2014)!

Production! measurement! methods! provide! information! on! the! method! used! for! the!

measure!of!production.!With!14C;PP!for!primary!production!based!on!14C!labelling!with!

incubation! time! indicated! in! parenthesis;! 18O;GPP! for! gross! primary! production!

measured! by! 18O! labelling;! O2;LD! for! the! oxygen! light;dark! method! providing! net!

community! production;! photochemical! quantum! efficiency! of! Photosystem! II! (photo.!

quantum!eff.!PS!II)!as!determined!using!Fast!Repetition!Rate!flurometer!(FRRf)!or!by!the!

pulse! amplitude! modulated! (PAM)! fluorymetry;! particulate! organic! carbon! (POC)!

accumulation!relative!to!chlorophyll!a!(chl!a).!

Site! or! experiment! details! to! distinguish! the! different! studies! by! the! period,! sites,! the!

nutrient!conditions,!the!iron!(Fe)!state!or!the!name!of!the!experiment!(PeECE!for!Pelagic!

Ecosystem!CO2!Enrichment!I,!II!and!III).!

Publications!from!which!the!data!have!been!collected!are!indicated!and!references!can!

be!found!in!the!Reference!section!of!the!thesis.!!

Incubation!volume!in!litre;!duration!of!the!experiment!in!day;!mean!temperature!(temp)!

in! °C! during! the! study;! initial! chlorophyll! a! (init! chl! a)! in! µg! chla! L;1.! Initial! nitrogen!

(initial!NOx=nitrate+nitrite)! and!phosphate! (initial! PO4)! in!µmol! L;1.!pCO2! is! the! initial!

pCO2! level! in! µatm! and! relative! pCO2! is! the! initial! pCO2! level! tested! relative! to! the!

control.!Response! ratio! calculated! for! chlorophyll! a! and!primary!production! (RR;chl!a!

and! RR;PP! respectively).! The! main! phytoplankton! groups! reported! in! the! study! are!

indicated!when!available.!



Location Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  

Production 

measurement 

method 

 

Site or 

experiment 

details 

 
  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

BATS, N 

Atlantic 14C-PP (2-3h) 

September 

2009 

Lomas et al. 

(2012)  2.8 28 0.05 5 0.5 800 2.5 1 1 

Synechococcus and 

Prochlorococcus 

communities 

Bay of 

Calvi, NW 

Med Sea 

18O-GPP (12h); 

O2-LD; NCP-
13C  

Maugendre et 

al. in prep-a,b 

(Chapter II & 

III) 50000 20 24 0.06 0.05 0.02  1 1 1 

Haptophytes and 

cyanobacteria 

(mostly 

Synechococcus) 

NW Europ 

Cont Shelf FRRf site E5 

Richier et al. 

(2014) 4 4 13.9 0.2 0.26 0.05 1000 2.6 0.16 0.88 

Dinoflgellates, 

picoeukaryotes and 

Synechococcus 

NW Europ 

Cont Shelf FRRf site E5 

Richier et al. 

(2014) 4 4 13.9 0.2 0.26 0.05 750 2 0.2 0.9 

Dinoflgellates, 

picoeukaryotes and 

Synechococcus 

NW Europ 

Cont Shelf FRRf site E5 

Richier et al. 

(2014) 4 4 13.9 0.2 0.26 0.05 550 1.5 0.83 1 

Dinoflgellates, 

picoeukaryotes and 

Synechococcus 

N Pacific 14C-PP (6-9h)  

Riebesell et 

al. (2000)  9 13 0.2 5  800 1  1 Coccolithophores 

SW Atlantic 

transect 14C-PP (2h)  

Hein & Sand-

Jensen (1997)  0.08  0.2   850 2  1.15  

SW Atlantic 

transect 14C-PP (2h)  

Hein & Sand-

Jensen (1997)  0.08  0.2   1250 3  1.15  

N Pacific 

POC/chl a 

production  

Yoshimura et 

al. (2013) 12 14 9.2 0.21 16 1.4  1 1 1 

70% 

ultraeukaryotes and 

20% 

Synechococcus 

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Southern 

coast of 

Japan   

Hama et al. 

(2011) 500 15 12 0.25 12 1.4 800 1.9 0.17  

Diatoms, 

cryptophytes, 

haptophytes, 

dinoflagellates and 

prasinophytes 

Oshtock 

Sea, NW 

Pacific 

POC 

accumulation  

Yoshimura et 

al. (2010) 9 14 13.5 0.31 0.05 0.25 480 2.4 1 0.29 

Synechococcus, 

picoeucaryotes and 

bacteria but few 

diatoms and 

dinoflagellates, 

Oshtock 

Sea, NW 

Pacific 

POC 

accumulation  

Yoshimura et 

al. (2010) 9 14 13.5 0.31 0.05 0.25 590 2.9 1 0.29 

Synechococcus, 

picoeucaryotes and 

bacteria but few 

diatoms and 

dinoflagellates, 

Oshtock 

Sea, NW 

Pacific 

POC 

accumulation  

Yoshimura et 

al. (2010) 9 14 13.5 0.31 0.05 0.25 280 1.4 1  

Synechococcus, 

picoeucaryotes and 

bacteria but few 

diatoms and 

dinoflagellates, 

BATS, N 

Atlantic 14C-PP (2-3h) March 2010 

Lomas et al. 

(2012)  3.2 19 0.34 5 0.5  1 1 1 

Synechococcus and 

Prochlorococcus 

communities 

N Pacific PAM 

Fe limited 

experiment 

Endo et al. 

(2013) 12 14 14 0.34 14 1.2  1 1 1 

Diatoms, 

haptophytes and 

Synechococcus 

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Bering Sea, 

N Pacific 

POC/chl a 

production  

Yoshimura et 

al. (2013) 12 14 8.4 0.39 16 1.5 600 2 0.7 0.5 

Dominant diatoms 

(65 %) 

Bering Sea, 

N Pacific 

POC/chl a 

production  

Yoshimura et 

al. (2013) 12 14 8.4 0.39 16 1.5 960 3.2 0.9 0.7 

Dominant diatoms 

(65 %) 

Bering Sea, 

N Pacific 

POC/chl a 

production  

Yoshimura et 

al. (2013) 12 14 8.4 0.39 16 1.5 1190 4 1 0.7 

Dominant diatoms 

(65 %) 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

replete 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 7 2 0.47 5.5 0.4 345 1.93 0.76 0.3 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

replete 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 7 2 0.47 5.5 0.4 254 1.42 0.76 0.47 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

replete 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 7 2 0.47 5.5 0.4 667 3.74 1.09 1.74 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

replete 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 7 2 0.47 5.5 0.4 595 3.34 1.15 0.36 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

replete 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 7 2 0.47 5.5 0.4 423 2.37 1.18 1.26 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

replete 

Tanaka et al. 

(2013) 50000 7 2 0.47 5.5 0.4 667 3.74  0.57 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

replete 

Tanaka et al. 

(2013) 50000 7 2 0.47 5.5 0.4 345 1.93  0.73 

Pico- and nano-

plankton 



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

replete 

Tanaka et al. 

(2013) 50000 7 2 0.47 5.5 0.4 254 1.42  0.85 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

replete 

Tanaka et al. 

(2013) 50000 7 2 0.47 5.5 0.4 423 2.37  0.1 

Pico- and nano-

plankton 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

replete 

Tanaka et al. 

(2013) 50000 7 2 0.47 5.5 0.4 595 3.34  0.49 

Pico- and nano-

plankton 

Bering Sea, 

N Pacific 

Photo. quantum 

eff. PS II 

Fe added 

experiment 

Suggie et al. 

(2013) 12 8 8.2 0.5    1 1 1 

Diatoms and 

dinoflagellates 

Bergen, 

Norway    

PeECE II 

(2003)   

Engel et al. 

(2008) 20000 20 10 0.5 9 0.5  1 1  

Several diatoms 

species and some 

Emiliana huxleyi 

Bergen, 

Norway   14C-PP (4h) 

PeECE II 

(2003)   

Egge 

(unpublisehd) 20000 20 10 0.5 9 0.5  1  1 

Several diatoms 

species and some 

Emiliana huxleyi 

Bergen, 

Norway   O2-LD 

PeECE II 

(2003)   

Engel  

(unpublished) 20000 20 10 0.5 9 0.5  1  1 

Several diatoms 

species and some 

Emiliana huxleyi 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

before 

nutrient 

addition 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 9 2 0.62 0.03 0.05 368 2.01 0.88 0.58 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

before 

nutrient 

addition 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 9 2 0.62 0.03 0.05 269 1.47 1.05 1.79 

Nanophytoplankton 

and haptophytes 

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

before 

nutrient 

addition 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 9 2 0.62 0.03 0.05 476 2.6 1.14 1.55 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

before 

nutrient 

addition 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 9 2 0.62 0.03 0.05 681 3.72 1.87 1.61 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean O2-LD 

before 

nutrient 

addition 

Tanaka et al. 

(2013) 50000 9 2 0.62 0.03 0.05 681 3.72  1 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean O2-LD 

before 

nutrient 

addition 

Tanaka et al. 

(2013) 50000 9 2 0.62 0.03 0.05 476 2.6  1 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean O2-LD 

before 

nutrient 

addition 

Tanaka et al. 

(2013) 50000 9 2 0.62 0.03 0.05 269 1.47  1 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean O2-LD 

before 

nutrient 

addition 

Tanaka et al. 

(2013) 50000 9 2 0.62 0.03 0.05 368 2.01  1 

Nanophytoplankton 

and haptophytes 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

depleted-

post bloom 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 6 5 0.65 2.1 0.1 586 3.4 0.97 2.65 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

depleted-

post bloom 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 6 5 0.65 2.1 0.1 396 2.29 1.05 2.87 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

depleted-

post bloom 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 6 5 0.65 2.1 0.1 237 1.37 1.06 1.42 

Presence of 

Diatoms and 

Dinoflegellates 



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

depleted-

post bloom 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 6 5 0.65 2.1 0.1 314 1.82 1.07 0.62 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean 14C-PP (24h) 

nutrient 

depleted-

post bloom 

Schulz et al. 

(2013); Engel 

et al. (2013) 50000 6 5 0.65 2.1 0.1 540 3.13 1.25 2.76 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

depleted-

post bloom 

Tanaka et al. 

(2013) 50000 6 5 0.65 2.1 0.1 396 2.29  1.18 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

depleted-

post bloom 

Tanaka et al. 

(2013) 50000 6 5 0.65 2.1 0.1 586 3.4  0.92 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

depleted-

post bloom 

Tanaka et al. 

(2013) 50000 6 5 0.65 2.1 0.1 540 3.13  1.18 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

depleted-

post bloom 

Tanaka et al. 

(2013) 50000 6 5 0.65 2.1 0.1 237 1.37  1.35 

Presence of 

Diatoms and 

Dinoflegellates 

Svalbard, 

Arctic 

Ocean O2-LD 

nutrient 

depleted-

post bloom 

Tanaka et al.. 

(2013) 50000 6 5 0.65 2.1 0.1 314 1.82  1.12 

Presence of 

Diatoms and 

Dinoflegellates 

BATS, N 

Atlantic 14C-PP (2-3h) April 2010 

Lomas et al. 

(2012)  1.5 19 0.69 5 0.5  1 1 1 

Synechococcus and 

Prochlorococcus 

communities 

NW Europ 

Cont Shelf FRRf site E3 

Richier et al. 

(2014) 4 4 15.3 0.75 0.56 0.06  1 1 1 

Dinoflagellates and 

Synechococcus 

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Bering Sea, 

N Pacific 

Photo. quantum 

eff. PS II 

Fe limited 

experiment 

Suggie et al. 

(2013) 12 8 8.2 1 18.1 1.47 600 1.6 0.5 0.88 

Diatoms and 

dinoflagellates 

Bergen, 

Norway 

O2-LD; 14C-PP 

(24h) 

PeECE I 

(2001)  

Delille et al. 

(2005); Engel 

et al. (2005) 11000 19 11 1 15.3 0.5  1 1 1 

Initially 

Synechococcus 

with a temporal 

shift to Emiliana 

huxleyi 

Tasmania PAM  

Nielsen et al. 

(2012) 2.5 14 16 1 0.2 0.5  1 1 1 

Diatoms and 

dinoflagellates 

Bay of 

Villefranche, 

NW Med 

Sea 

14C-PP (24h);  

O2-LD; NCP-
13C  

Maugendre et 

al. in prep-a,b 

(Chapter II & 

III) 50000 11 13 1.1 0.13 0.01  1 1 1 

Haptophytes, 

Cryptophytes and 

Synechococcus 

Godvari 

River, India O2-LD low DIP 

Biswas et al. 

(2011) 5.6 5 28 1.2 6.91 0.55 650 2 2 1.23 

Diatoms and 

cyanobacteria 

NW Europ 

Cont Shelf FRRf site E4 

Richier et al. 

(2014) 4 4 14.6 1.5 0.87 0.12 550 1.4 1 1.1 

Dinoflagellates, 

cryptophytes and 

Synechococcus 

Bergen, 

Norway NCP-CT 

PeECE III 

(2005)  

Riebeselle et 

al. (2007); 

Bellerby et al. 

(2008) 27000 25 10 1.5 14 0.7 700 2 1 1.41 

Initially diatoms 

and Emiliana 

huxleyi with 

temporal shift to 

flagellates and 

cyanobacteria 

               

               

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Bergen, 

Norway NCP-CT 

PeECE III 

(2005)  

Riebeselle et 

al. (2007); 

Bellerby et al. 

(2008) 27000 25 10 1.5 14 0.7 1050 3 1 1.75 

Initially diatoms 

and Emiliana 

huxleyi with 

temporal shift to 

flagellates and 

cyanobacteria 

NW Europ 

Cont Shelf FRRf site E4 

Richier et al. 

(2014) 4 4 14.6 1.5 0.87 0.12 750 1.8 1.7 1.3 

Dinoflagellates, 

cryptophytes and 

Synechococcus 

NW Europ 

Cont Shelf FRRf site E4 

Richier et al. 

(2014) 4 4 14.6 1.5 0.87 0.12 1000 2.5 2.2 1.3 

Dinoflagellates, 

cryptophytes and 

Synechococcus 

Bergen, 

Norway O2-LD 

PeECE III 

(2005)  

Egge et al. 

(2009) 27000 25 10 1.5 14 0.7  1  1 

Initially diatoms 

and Emiliana 

huxleyi with 

temporal shift to 

flagellates and 

cyanobacteria 

Bergen, 

Norway 14C-PP (4h) 

PeECE III 

(2005)  

Egge et al. 

(2009) 27000 25 10 1.5 14 0.7 700 2  1.15 

Initially diatoms 

and Emiliana 

huxleyi with 

temporal shift to 

flagellates and 

cyanobacteria 

               

               

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Bergen, 

Norway 14C-PP (4h) 

PeECE III 

(2005)  

Egge et al. 

(2009) 27000 25 10 1.5 14 0.7 1050 3  1.25 

Initially diatoms 

and Emiliana 

huxleyi with 

temporal shift to 

flagellates and 

cyanobacteria 

Godvari 

River, India O2-LD high DIP 

Biswas et al. 

(2011) 5.6 5 28 2.34 7.58 3.2 244 1.5 1.22 0.86 

Diatoms and 

cyanobacteria 

Godvari 

River, India O2-LD high DIP 

Biswas et al. 

(2011) 5.6 5 28 2.34 7.58 3.2 363 2 1.4 1.57 

Diatoms and 

cyanobacteria 

Denmark 14C-PP (2h)  

Nielsen et al. 

(2010) 2.5 14 17.9 2.5 0.65 0.18  1 1 1 

Diatoms, 

cryptophytes, 

prasinophytes and 

dinoflagellates 

NW Europ 

Cont Shelf FRRf site E1 

Richier et al. 

(2014) 4 4 11.3 3.5 1.06 0.09 550 1.5 1.06 1 

Dinoflagellates and 

cryptophytes 

NW Europ 

Cont Shelf FRRf site E1 

Richier et al. 

(2014) 4 4 11.3 3.5 1.06 0.09 750 2 1.2 1 

Dinoflagellates and 

cryptophytes 

NW Europ 

Cont Shelf FRRf site E1 

Richier et al. 

(2014) 4 4 11.3 3.5 1.06 0.09 1000 2.8 1.3 1 

Dinoflagellates and 

cryptophytes 

NW Europ 

Cont Shelf FRRf site E2 

Richier et al. 

(2014) 4 4 11.8 3.8 0.28 0.14  1 1 1 

Diatoms and 

dinoflagellates 

Denmark 14C-PP (2h)  

Nielsen et al. 

(2010) 2.5 14 10.7  1.05 0.27  1 1 1 

Diatoms, 

cryptophytes, 

prasinophytes and 

dinoflagellates 

               



Location 

Production 

measurement 

method 

Site or 

experiment 

details Publications Volume Duration Temp 

Initial 

chl a 

Initial'

NOx 

Initial'

PO4 

Initial 

pCO2 

Relative 

pCO2 

RR-

chl 

a 

RR-

PP 

Main community 

composition 

  
  

  L day ° C µg chl 

a L-1 

µmol 

L-1 

µmol 

L-1 

µatm      

Denmark 14C-PP (2h)  

Nielsen et al. 

(2010) 2.5 14 10.7  1.05 0.27  1 1 1 

Diatoms, 

cryptophytes, 

prasinophytes and 

dinoflagellates 

Ross sea, S 

Ocean 14C-PP (24h)  

Tortell et al. 

(2008) 4 14 0    380 3.8  1.25 Diatoms 

Weddel Sea, 

S Ocean 14C-PP (24h) 

Fe limited 

experiment 

Hoppe et al. 

(2013) 4 24 2  29 2  1  1 

Diatom-dominated 

assemblage 

Weddel Sea, 

S Ocean 14C-PP (24h) 

Fe added 

experiment 

Hoppe et al. 

(2013) 4 24 2  29 2 390 2  1.4 

Diatom-dominated 

assemblage 

Weddel Sea, 

S Ocean 14C-PP (24h) 

Fe added 

experiment 

Hoppe et al. 

(2013) 4 24 2  29 2 800 4  1.9 

Diatom-dominated 

assemblage 
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Oceanography,( UPMC*Paris( 6( (6( months).& Effect& of& ocean& acidification& on& plankton&

metabolism.&

&

Public'education'and'outreach'

&

2012'to'2014:&CoXrealisation&«&Ocean&acidification»&topic&for&Mon(Océan(et(Moi&website.&&

Creation& and& Webmaster& of& 2& blogs& for& the& scientific& mission& MedSeA& Mesocosms&

Stareso& (http://medseastareso2012.obsXvlfr.fr)& and& Villefranche&

(http://medseavillefranche2013.obsXvlfr.fr).&

2014'May:& Preparation&and&presentation&of& “High&CO2&world”& for& an&audience&of& subX

divers&of&French&federation&(FFESSM)&in&the&frame&of&a&course&in&marine&biology.&

2013'October:&Organisation&and&animation&of&the&workshop&«&Ocean&acidification»&for&

the&science&festival&in&the&laboratory.&&

2013'June:&Organisation&and&animation&of&the&workshop&«&Ocean&acidification»&for&the&

Researchers’s&spring&in&Nice.&

&

Teaching'activities'

&

Being&located&away&from&my&university&no&teaching&have&been&performed.&

&

August'29th'2014:&Animation&of&a&discussion&and&debate&on&Science&and&society,&Ethical&

issues&in&research&within&IMMERSION's&course&titled:&Seas&and&Marine&Organisms&at&the&

convergence&between&Philosophy&and&Biology.&

&

&

&
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SCIENTIFIC'PUBLICATIONS&

Manuscript'accepted'in'a'peerCreviewed'journal:'

&

Accepted&in&ICES&Journal&of&Marine&Science,&August&2014.&

Maugendre(L.,(Gattuso(J.*P.,(Louis(J.,(De(Kluijver(A.,(Marro(S.,(Soetaert(K.(and(Gazeau(F.&&

Effect& of& ocean& warming& and& acidification& on& a& plankton& community& in& the& NW&

Mediteranean&Sea.&&

&

Manuscripts'in'preparation'for'peerCreview'journal'(submission'in'a'special'issue'for'

MedSeA'mesocosm'in'Estuarine,'Coastal'and'Shelf'Science):'(2/5'as'first'author)'

'

• Maugendre(L.,(Gattso(J.*P.,(Poulton(A.,(Delisanti(W.,(Gaubert(M.(and(Gazeau(F.&&

No& effect& of& ocean& acidification& on& planktonic& metabolism& in& the& NW& oligotrophic&

Mediterranean&Sea:&results& from&two&mesocosm&studies.& (submission&early&October&

2014)&

• Maugendre( L.,( Gattso( J.*P.,( De( Kluijver( A.,( Soetaert( K.,( van( Oevelen( D.,( Middelburg( J.(

J.and(Gazeau(F.((

CarbonX13& labelling&studies&show&no&effect&of&ocean&acidification&on&Mediterranean&

plankton&communities.&(submission&early&November&2014)&

• Gazeau(F.,(Sallon(A.,(Lejeune(P.,(Gobert(S.,(Maugendre(L.,(Louis(J.,(Alliouane(S.,(

Taillandier(V.,(Louis(F.,(Obolensky(G.,(Grisoni(J.*M.,(Delissanti(W.(and(Guieu(C.&&

First&mesocosm&experiments&to&study&the&impacts&of&ocean&acidification&on&the&

plankton&communities&in&the&NW&Mediterranean&Sea&(MedSeA&project).&(submission&

date:&01/10/2014)&

• Gazeau(F.,(Sallon(A.,(Maugendre(L.,(Giani(M.,(Celussi(M.,(Michel(L,(Gobert(S.(and(Borges(

A.V.&Impact&of&elevated&CO2&on&pelagic&production&and&carbon&fluxes&in&an&

Mediterranean&mesocosm&study.&(submission&date:&01/02/2015)&

• Gazeau(F.,(Guieu(C.,&Rees(A.(Celussi(M.,(Maugendre(L.,(Pitta(P.(and(other(people((under(

discusson)(

Resilience&of&plankton&communities&to&ocean&acidification&in&a&low&nutrient&low&

chlorophyll&(LNLC)&area.&(will&be&the&synthesis&of&the&mesocosm&experiments&of&the&

special&issue)&

&

International'conferences:&&

&

Poster& at& the& ''Third& Symposium& on& the& Ocean& in& a& High& CO2&World'.& September& 2012,&

Monterey,&California,&USA.&&

Maugendre(L.,(Gattuso(J.*P.(and(Gazeau(F.&&

Effects& of& ocean& acidification& and& warming& on& a& natural& planktonic& community& in&

Mediterranean&Sea.&&

&

Oral'presentation'in''IMBER'Open'Science'Conference'.'June'2014,'Bergen,'Norway.''

'

Maugendre(L.,(Gattuso(J.*P.,(Louis(J.,(De(Kluijver(A.,(Marro(S.,(Soataert(K.(and(Gazeau(F.&&

Effect& of& ocean& warming& and& acidification& on& a& plankton& community& in& the& NW&

Mediteranean&Sea.&&
&

&
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IMPLICATION'IN'LABORATORY'AND'UNIVERSITY&

Student' representative& of& the& Observatoire& Océanologique& de& Villefranche& (2012X

2014).&&

&

Student'representative&of&the&doctoral&school&129&(2014X2014).&

&

CoCinitiation& of& student& seminars& in& the& Laboratoire& d’Océanographie& de& Villefranche&

(LOV)&which&are&no&organised&by&the&representative&students&of&the&LOV.&

&

Initiation' and' head' of' the' organisation' team& (budget,& speaker& invitation,&

communication,&…)&of&the&first&edition&of&the&Young&Researcher&Day&in&the&Observatoire&

Océanologique& de& Villefranche.& This& day& aim& to& reunite& people& (research,& student,&

technician)& from&the& two& laboratory&of& the&OOV&as&well&as&people&external& to& the&OOV&

with& topic:& Science&what&do&you& think&about& it?&With& the&presence&of&Gilles&Boeuf&and&

Christian&Sardet.&&
&

&

SKILLS'&

Initiative& spirit,& investment,& contribute,& linking& people& and& disciplines,& transfer& of&

knowledge,&advice,&animate,&sailing&

&

Autonomy,& human& and& material& planification,& relation& with& partners,& realisation& and&

monitoring&budget&

&

Writing'skills:&scientific&papers;&application&for&funding&agencies&

&

Scientific' methods:& carbonate& chemistry& calculation& (Seacarb& method);& dissolved&

inorganic& carbon& measurement& with& AIRICA& analyser;& alkalinity& measurement& by&

titration;& dissolved& oxygen& measurement& by& titration;& dissolved& organic& carbon&

sampling& and& analysis;& lipids& extractions;& stable& isotope& analysis& using& mass&

spectrometers;&carbon&radioactive&manipulation&and&authorisation&

&

MISCELLANEOUS'&

Scientific'expertise'

Reviewing&of&a&scientific&article&for&Biogeosciences&Discussion&(2014)&

&

English&–&read,&written&and&spoken&(B2&level&of&the&CECRL)&

Spanish'–&good&oral&and&written&comprehension,&good&oral&expression&

&

&

&

&

&

&

&
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OTHER'WORKING'EXPERIENCES&

Departmental(Laboratory(of(analysis(IDHESA(

Plouzané,(France((

2010'August:'laboratory'technician,&&

PhysicoXchemical&analysis&of&drinking&waters,&swimming&pools,&seawaters&(summer&

period&quality&control)&

Yacht(Club(of(St(Pierre(Quiberon(

Saint*Pierre(Quiberon,(France((

2009'August:'Secretary,&&

Reception,&enrolment,&accounts,&….&

Information(office(

Arradon,(France((

2008'August:'Tourism'information'office,&&

Tourist’&reception&and&advices&on&the&activities&available&in&the&region&(Brittany)&

&

Departmental(Laboratory(of(analysis((

Saint(Avé,(France((

2007'JulyCAugust:'laboratory'technician&&

Department&of&bacteriology:&analysis&of&drinking&water,&swimming&pools&water,&

seawater&(summer&period&quality&control).&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&
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BUDGET'OF'THE'THESIS'PROJECT&

&

&

Nature of costs

Human ressources PhD candidate salary

Salary of the person in charge of the mesocosm organisation

Salary for technician in Corsica

Salary for technician in Villefranche

Master internship in Corsica

Master internship in Villefranche

Computer material Laptop and screen

Hard drive

Campaigns Corsica (passenger ferry, food, accomodation) for 1 person

Travels Yerseke (The Netherlands)

December 2011

May 2012

November 2012

June 2013

March 2014

Leuven (Belgium)

May 2012

August 2012

Southampton (UK)

May 2012

Travel of Dr Alex Poulton for 14C technique training

February 2013

Conferences Monterey (USA)                                          September 201

Bergen  (Norway)                                                June 2014

Trainings MedSeA workshop (Athens, Greece)             September 2011

Training in Paris at the doctoral school insitute

November 2013

March 2014

Summer schools                                                 

                                           Villefranche sur Mer - Juiy 2013

                                              Helsinki (Finland) - July 2014

Chemical prducts Carbon 13

Carbon 14

Oxygen 18

Others

Analyses and shipmCarbon 13 and biomarkers        Yerseke

Oxygen 18                                Leuven

Carbon 13-DOC                        Canada

Consumables

Total

Distribution financial burden € % 

 UPMC 52373 44.2

League of European Reseach University (summer school july 2014) 500 0.4

 MedSeA and eFOCE projects, LOV and supervisors research grants 65782 55.4

12690

118655

NC* information not communicated and which were part of the MedSeA mesocosm project lead by the LOV therefore 

related to the thesis project 

3770

720

8800

3630

2425

146

100

1500

8620

3920

1000

1880

1000

127

1000

500

500

765

1800

1000

145

4922

900

1000

725

NC*

NC*

NC*

2400

1670

Amount (TTC €)

51000

NC*
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FLYER'OF'THE'YOUND'RESEARCHER'DAY&

'

'


