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Informatique
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Résumé

A mesure que les réseaux s’étendent, ils deviennent de plus en plus susceptibles de

défaillir. En effet, leurs nœuds peuvent être sujets à des attaques, pannes, corruptions de

mémoire... Afin d’englober tous les types de fautes possibles, nous considérons le modèle

le plus général possible : le modèle Byzantin, où les nœuds fautifs ont un comportement

arbitraire (et donc, potentiellement malveillant). De telles fautes sont extrêmement dan-

gereuses : un seul nœud Byzantin, s’il n’est pas neutralisé, peut déstabiliser l’intégralité

du réseau.

Nous considérons le problème d’échanger fiablement des informations dans un réseau

multi-sauts malgré la présence de telles fautes Byzantines. Des solutions existent mais

nécessitent un réseau dense, avec un grand nombre de voisins par nœud. Dans cette

thèse, nous proposons des solutions pour les réseaux faiblement connectés, tels que la

grille, où chaque nœud a au plus 4 voisins.

Dans une première partie, nous acceptons l’idée qu’une minorité de nœuds corrects

échouent à communiquer fiablement. En contrepartie, nous proposons des solutions qui

tolèrent un grand nombre de fautes Byzantines dans les réseaux faiblement connectés.

Dans une seconde partie, nous proposons des algorithmes qui garantissent une commu-

nication fiable entre tous les nœuds corrects, pourvu que les nœuds Byzantins soient

suffisamment distants. Enfin, nous généralisons des résultats existants à de nouveaux

contextes : les réseaux dynamiques, et les réseaux de taille non-bornée.
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Abstract

As modern networks grow larger and larger, they become more likely to fail. Indeed,

their nodes can be subject to attacks, failures, memory corruptions... In order to en-

compass all possible types of failures, we consider the most general model of failure: the

Byzantine model, where the failing nodes have an arbitrary (and thus, potentially ma-

licious) behavior. Such failures are extremely dangerous, as one single Byzantine node,

if not neutralized, can potentially lie to the entire network.

We consider the problem of reliably exchanging information in a multihop network de-

spite such Byzantine failures. Solutions exist but require a dense network, where each

node has a large number of neighbors. In this thesis, we propose solutions for sparse

networks, such as the grid, where each node has at most 4 neighbors.

In a first part, we accept that some correct nodes fail to communicate reliably. In

exchange, we propose quantitative solutions that tolerate a large number of Byzantine

failures, and significantly outperform previous solutions in sparse networks. In a second

part, we propose algorithms that ensure reliable communication between all correct

nodes, provided that the Byzantine nodes are sufficiently distant from each other. At

last, we generalize existing results to new contexts: dynamic networks, and networks

with an unbounded diameter.
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Chapter 1

Introduction

In this chapter, we introduce the context of our study, present our objectives and our

approach, then explain the organization of this dissertation.

1.1 Context

In today’s fast moving world, networks are omnipresent. The most famous example is

the Internet, but there are plenty of other applications. For instance:

• Sensor networks collecting physical data such as temperature, pressure, humidity,

or detecting forest fires (see Figure 1.1).

• Large computers grids for distributed calculation, such as physical simulations or

data analysis (see Figure 1.2).

• Opportunistic networks of smartphones in crowded areas, such as subway stations

or commercial centers (see Figure 1.3).

• Networks of mobile robots exploring dangerous or impracticable environments,

such as radioactive or underwater zones (see Figure 1.4).

However, as networks grow larger and larger, they become more likely to fail. Indeed,

the nodes of the network can be subject to failures, attacks, crashes, memory corrup-

tions... This is a major issue, as complex systems are often “as weak as their weakest

component”.

1
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Figure 1.1: The GreenOrbs sensor network for ecological surveillance in the forest,
collecting data such as temperature, humidity, illumination, and carbon dioxide titer.

Source: http://www.greenorbs.org/

Figure 1.2: A Google data center.
Source: http://www.google.com/about/datacenters/

Figure 1.3: Public Inaugural Ball at the Walter E. Washington Convention Center,
2013. Almost everyone is equipped with a mobile computing device, which makes an
excellent field for the deployment of wireless opportunistic networks. See, for instance:

http://anr-crowd.lip6.fr/

http://www.greenorbs.org/
http://www.google.com/about/datacenters/ 
http://anr-crowd.lip6.fr/
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Figure 1.4: Cooperative swarming and exploration with TinyTeRP miniature robots.
Source: http://robotics.umd.edu/2014_REU/projects.php

1.2 Fault tolerance

To overcome this difficulty, the concept of fault tolerance [1] has been introduced. The

idea is to design networks such that, even if a small number of elements fail, this does

not lead to the global failure of the system.

Many models of node failure have been studied so far, such as crash-stop failures [2],

transient faults [3] or memory corruption [4]. In order to encompass all possible models

of node failure, we have chosen to study the most general model: the Byzantine model

[5], where the failing nodes have a totally arbitrary (and thus, potentially malicious)

behavior. In other words, tolerating Byzantine failures implies to ensure that there exists

no strategy, however unlikely it may be, enabling the Byzantine nodes to destabilize the

network.

1.3 Our objective

In this dissertation, our goal is to enable the correct nodes to reliably broadcast infor-

mation throughout the network. For instance:

• In a sensor network, the information can be a physical data such as luminosity or

temperature.

• In a network of mobile robots, the information can be the position of the current

robot or the identifiers of neighbor robots.

http://robotics.umd.edu/2014_REU/projects.php
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• In a computing grid, the information can be the result of a local calculation.

This is illustrated in Figure 1.5.

Figure 1.5: Example of information broadcast. The left node sends a “blue” message
to its neighbors, which transmit it to their own neighbors, and so forth. Eventually,

every node receives the “blue” message.

In this context, Byzantine failures are extremely dangerous. Indeed, one single Byzantine

node, if not neutralized, can potentially lie to the entire network about the information

broadcast by any correct node. This is illustrated in Figure 1.6.

Figure 1.6: Example of information broadcast with a Byzantine node. Here, the
upper-right node is Byzantine, and broadcasts a “red” message to make the network
believe that “red” is the information sent by the left node (which is not the case).

Therefore, to solve this problem, we have to design Byzantine-resilient algorithm to

broadcast information.

1.4 The field of distributed algorithmics

The classical approach to design algorithms is to implement and test them, in a real

network or in a network simulator. However, is the case of Byzantine failures, this

approach would require to make restrictive hypotheses on the behavior of Byzantine
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nodes. Therefore, nothing guarantees that our experimentations encompass the worst

possible situation and the worst possible strategy they could adopt.

We thus adopt a more theoretical approach: distributed algorithmics [6–8]. The idea is

to prove mathematical properties on the proposed algorithm – for instance, proving that

under a certain condition, the Byzantine nodes will never be able to lie to a correct node,

whatever their behavior may be. We can thus provide very strong guarantees about the

reliability of the network.

1.5 Organization of the thesis

This dissertation is organized as follows:

• In Chapter 2, we make a state of the art of previous works on this topic, and

explain our contributions.

• In Chapter 3, we present our model for network analysis, and introduce some

general definitions.

• In Part I, II and III, we present our contributions. A general overview of these

contribution is given at the end of Chapter 2.

• In Chapter 10, we conclude and discuss about future perspectives.





Chapter 2

Related works and our

contribution

In this chapter, we present the related works on the topic, then explain our contribution.

The chapter is organized as follows:

• In Section 2.1, we situate our focus in the domain of Byzantine-resilient algorithms.

• In Section 2.2, we present the works that are closely related to our focus.

• In Section 2.3, we show the limits of existing solutions.

• In Section 2.4, we give a general overview of our contributions.

2.1 Our focus

In this section, we situate our focus in the domain of Byzantine-resilient algorithms.

This is graphically summarized in Figure 2.1.

2.1.1 The Byzantine generals problem

The concept of Byzantine failure was introduced by Leslie Lamport, Robert Shostak and

Marshall Pease in their paper “The Byzantine Generals Problem” [5]. This problem is

based on the following metaphor.

Several generals of the Byzantine army (see Figure 2.2) are surrounding an enemy city.

They must decide on a common plan: “attack” (let us say 0) or “retreat” (let us say

7
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Figure 2.1: Graphical representation of our focus

1). As each general defends a different position, the generals can only communicate

by sending messengers. However, there may be traitors among the generals. Thus, the

problem is the following: we must find an algorithm enabling the loyal generals to always

unanimously decide on a plan (“attack” or “retreat”) or not decide at all.

Figure 2.2: A scene from the Byzantine-Bulgarian wars (5th century)

In this metaphor, the generals represent the nodes of the network, and the messengers

represent the communication channels. The loyal generals correspond to correct nodes,

and the traitors correspond to Byzantine nodes. As we do not know the strategy of the

traitors, we must therefore guarantee that there exists no strategy enabling the traitors

to confuse the loyal generals. It was shown that, to solve this problem, it is necessary

and sufficient to have 3k + 1 generals, k being the maximal number of traitors.

The generality of this model has inspired a lot of subsequent works. Indeed, as we

assume that the behavior of Byzantine nodes is totally arbitrary, they can represent any

type of node failure. For instance, the Byzantine nodes can adopt a malicious strategy



Chapter 2. Related works and our contribution 9

(like broadcasting false messages), but also act randomly, do not act at all (like a crashed

node) or even behave like a correct node. Therefore, if we tolerate Byzantine failures,

we also tolerate any weaker (that is, more specific) model of node failure.

Note that, even if we consider that only the nodes can fail, it implictly encompasses the

case where the communication channels can fail. Indeed, to represent a faulty channel, in

it sufficient to consider that one of the two nodes connected to this channel is Byzantine.

2.1.2 Cryptographic and non-cryptographic approaches

There are two main approaches to deal with Byzantine failures.

• The first one is cryptography [9–13]. The idea is to use digital signatures to au-

thenticate the sender across multiple hops. Thus, as the Byzantine nodes do not

know some cryptographic secrets, they are not able to lie to correct nodes.

• The second one is non-cryptographic. Here, the idea is to make the assumption

that there are only a minority of Byzantine failures. Therefore, if the correct

nodes constitute themselves into a “voting system”, they are likely to obtain the

majority of the votes, and to mask the effect of Byzantine nodes. This is the case,

for instance, of the algorithm solving the Byzantine generals problem [5] (see 2.1.1).

Cryptography has a lot of advantages: for instance, the Byzantine generals problem [5]

can be solved with an unlimited number of Byzantine failures using cryptography [11].

Also, to ensure reliable communication in a multihop network, it is sufficient that a

correct path exists between the two communicating nodes [13].

However, we have chosen not to study cryptography in this dissertation. Our 3 initial

reasons were the following:

• First, as stated previously, the idea of cryptography is to use the fact that the

Byzantine nodes do not know some cryptographic secrets. However, if we want

to consider Byzantine failures in the strong sense of the term, we must assume

that they can adopt any strategy, however unlikely it may be. Therefore, we must

assume that the Byzantine nodes are omniscient, and in particular, know any

cryptographic secret.

• Second, even if we admit that the Byzantine nodes do not know some cryptographic

secrets, manipulating asymmetric cryptography (with public and private keys)

requires a lot of computing resources [14]. This may not always be available in low
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energy networks, such as wireless sensor networks [15, 16] or autonomous robots

networks [17]. Also, we could use symmetric cryptography, but then, the problem

becomes to reliably exchange cryptographic keys, which is equivalent to reliably

exchanging messages.

• Third, using cryptography implies to rely on a central authority that initially

distributes cryptographic keys. Therefore, this initial infrastructure is an “Achilles

heel” of the network: if it fails, the whole network fails. Here, we would like to

have a totally decentralized network, where any element can fail independently

without compromising the whole system.

In addition, the recent Heartbleed bug [18], discovered in the widely deployed OpenSSL,

showed that cryptography is not unconditionally reliable. For these reasons, in the

following of this dissertation, we focus on non-cryptographic approaches.

Besides, the defense in depth paradigm [19] advocates the use of multiple layers of

security controls. Therefore, cryptographic and non-cryptographic strategies can be effi-

ciently combined. For instance, if the cryptography-based security layer is compromised

by a bug, a virus or intentional tampering, a cryptography-free communication layer can

be used to safely broadcast a patch or to update cryptographic keys.

2.1.3 Fully connected networks and multihop networks

Most cryptography-free works about Byzantine failures consider a fully connected net-

work: each process can communicate directly with any other process [5, 20–23]. There-

fore, if there are n processes, each process must have n − 1 communication channels.

This may be a problem for large networks, as the number of communication channels per

node may be physically limited. Thus, in the following, we consider Byzantine failures

in multihop networks: only some pairs of processes (called neighbors) are linked by a

communication channel. Therefore, two distant nodes must rely on intermediary nodes

to communicate. This is illustrated in Figure 2.3.

Also, note that a fully connected network is often an abstraction of a multihop network

where peer-to-peer communications are assumed to be reliable. Thus, conceiving algo-

rithms for reliable communication in multihop network is sometimes a necessary step to

execute algorithms designed for fully connected networks.
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Figure 2.3: Fully connected network (left) and multihop network (right)

2.1.4 Space local and time local algorithms

In multihop networks, a notable class of algorithms tolerates Byzantine faults with either

space or time locality.

• Space local algorithms [24–26] try to contain the fault as close to its source as

possible. That is, they ensure that the nodes at a certain distance from Byzantine

failures satisfy the desired property. This is only applicable to the problems where

the information from remote nodes is unimportant, such as vertex coloring, link

coloring or dining philosophers.

It was shown that, if the problem involves nodes interacting at distance d, it is

impossible to contain Byzantine failures with a radius smaller than d [25]. Thus,

the local containment approach is not applicable to reliable communication, as it

involves nodes at an arbitrary distance.

• Time local algorithms [27–31] try to limit the number of times where correct nodes

are disturbed by Byzantine nodes (disruption time). Yet, time local algorithms

presented so far can hold at most one Byzantine node, and are not able to mask

the effect of Byzantine actions.

Time locality can also be related to the paradigm of self-stabilization [3]. Self-

stabilizing algorithms assume that the nodes of the network can have any faulty

initial state. This can represent the fact that some nodes are Byzantine during a

certain laps of time, then come back to a correct behavior.

In this thesis, we consider the problem of reliably exchanging information in the presence

of Byzantine failures. None of these approaches is applicable to this problem.
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2.2 Closely related works

In this section, we introduce the problem investigated in this thesis, and present the

existing works on this topic.

2.2.1 The problem of reliable communication

As stated previously, we consider the following setting: a multihop communication net-

work where some nodes may be Byzantine, and where cryptography is not allowed.

We consider the problem of reliable communication. A more formal definition of this

problem is given in Chapter 3. For the moment, let us just give an informal description.

Let p and q be two correct nodes of the network. The node p wants to broadcast a

specific message m to the rest of the network. In a network where all nodes are correct,

the following would happen: p sends m to its direct neighbors, that in turn send it to

their neighbors – and so forth, until every correct node receives the message. Let us call

this an unsecured broadcast.

In out setting however, some nodes may be Byzantine, and broadcast false messages.

Thus, some correct nodes may believe that p sent a message m′ 6= m, which is not true.

Our goal is to design algorithms that ensure that the correct message (and only the

correct message) is received. We say that an algorithm ensures reliable communication

between p and q if q always eventually receives and accepts the message from p, and

never accepts a false message pretending to be from p. This property must hold for any

possible behavior of the Byzantine nodes.

Very few non-cryptographic algorithms exist for this problem. They can be split in two

categories: the local vote, and the vote on multiple paths. Let us present those existing

solutions.

2.2.2 Local vote

As seen in 2.2.1, in the case of simple broadcast, a node accepts and forwards a message

as soon at it is received from one neighbor. Thus, one single Byzantine node is sufficient

to initiate the broadcast of a false message. In [32], Koo proposed a simple solution

to limit the power of Byzantine nodes: to accept and forward a message, a node must

receive it, not from one, but from k distinct neighbors (k > 1). Thus, if less than k

neighbors are Byzantine, they will never be able to cooperate to initiate the broadcast

of a false message. This is illustrated in Figure 2.4. The only exception is for the
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initiator of the message: as its neighbors know that it is the source, they accept its

message directly.

Figure 2.4: Certified Propagation Algorithm with k = 2

Although this algorithm is very simple, its analysis is not trivial. In [32], the setting is a

radio network of nodes spatially organized on a grid. Each node is neighbor with nodes

that are located within a certain radius (assumed to be greater than 1). Here, the criteria

on Byzantine failures is the fraction of Byzantine neighbors per correct node. Both upper

and lower bounds are given for this problem. When less than a 1/4π fraction of neighbors

are Byzantine, the algorithm always ensures reliable communication between all pairs

of correct nodes. On the other hand, if we have more than a 1/π fraction of Byzantine

neighbors, there exists no algorithm ensuring reliable communication.

This result was later improved in [33], where the limit fraction of Byzantine neighbors is

extended to 1/4. In [34], a formula is given to determine whether or not this algorithm

works for a given communication graph. At last, [35] showed the optimality of this result:

if this algorithm does not ensure reliable communication on a given graph, then neither

does any other algorithm (when the criteria is on the fraction of Byzantine neighbors).

2.2.3 Vote on multiple paths

Another strategy is to send the message through several disjoint paths between the

sender and the receiver. The receiver collects the messages from different paths, then

decides on the message to accept with a majority vote. Thus, if only a minority of paths

are corrupted by a Byzantine node, the correct message is accepted. This is illustrated

in Figure 2.5, with one corrupted path over three.

Here, we consider that up to k nodes may be Byzantine in the whole network. A first

paper [36] showed that, to ensure reliable communication, it was necessary and sufficient

that the network is (2k+1)-connected – that is, there exists at least 2k+1 disjoint paths

between each pair of nodes. Yet, this solution requires that each correct node is aware
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Figure 2.5: Example of vote on multiple paths

of the global topology of the network. This requirement was released in [37], where the

topology of the network can be unknown.

The principle of the algorithm used to show the sufficient condition is the following:

each node has a unique identifier, and the message registers the identifiers of the nodes

that forward it. Thus, the receiver can check whether or not two paths are disjoint. The

number of disjoint paths to collect before accepting the message determines the level of

security of the algorithm: to tolerate k Byzantine failures with certainty, at least 2k+1

disjoint paths must be collected.

The proof of the necessary condition relies on Menger’s theorem [38], which ensures the

equivalence between node cut and connectivity: the number of disjoint paths between

two nodes p and q is also the minimal number of nodes that should be removed to

disconnect p from q. Thus, if we only have 2k disjoint paths, the message received by q

is entirely determined by 2k nodes. As k of them may be Byzantine, by symmetry, it is

impossible to ensure that the correct message is accepted.

2.3 Limits of existing solutions

In this section, we show the limits of the aforementioned solutions.

2.3.1 Motivation

This thesis started with the following observation: both aforementioned solutions implic-

itly assume a dense network – that is, each node must have a large number of neighbors

(for the local vote), and the network must have a high connectivity (for the vote on

multiple paths). Thus, we raise the following question: what happens if the network is

more sparsely connected?
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To answer this question, we consider a simple and regular topology: the grid (see Fig-

ure 2.6), where each nodes has at most 4 neighbors. This topology appears in many

applications, such as large-scale computation grids for industrial simulations [39]. A

more formal definition is given in Chapter 3

Figure 2.6: A 7× 7 grid

Let us see what happens to both existing solutions on a grid. Note that the following

remarks are also valid for less regular sparse networks.

2.3.2 Local vote

The Certified Propagation Algorithm (see 2.2.2) does not work on a grid. To understand

this, let us consider the nodes of Figure 2.7. Let us consider the most tolerant setting

of the CPA: to accept a message, a node must receive it from only two neighbors.

Figure 2.7: Limits of the CPA on a grid

Let us assume that the node A is the source. As the nodes of type B are neighbor with

the node A, they directly accept its message. Then, as each node of type C has two

neighbors of type B, they also accept and forward the message.

But then, no node of type D has more than one neighbor of type B and C. Thus, no

node of type D accepts the message, and the broadcast stops here.
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2.3.3 Vote on multiple paths

The vote on multiple paths (see 2.2.3) works on a grid, but tolerates at most one Byzan-

tine failure. To understand this, let us suppose that 2 nodes are Byzantine, and let us

consider any sender and receiver. As the behavior of Byzantine nodes is arbitrary, it

is possible that they start broadcasting a false message before the sender is activated.

Thus, the receiver will receive a false message from 2 disjoint paths. Then, as the re-

ceiver has at most 4 neighbors on a grid, it will receive the correct message from at most

2 disjoint paths. As both correct and false messages have 2 votes each, the receiver will

not be able to decide on a message to accept. Thus, at most one Byzantine node can be

tolerated here.

2.4 Our contribution

In this section, we give a general overview of our contributions.

As seen in 2.3, existing solutions can tolerate at most one Byzantine failure on a grid.

Thus, our initial motivation is the following: to design algorithms that tolerate many

Byzantine failures on a grid, and in other loosely connected networks.

This dissertation is organized in 3 parts:

• In Part I, we accept the idea that a minority of pairs of nodes may fail to commu-

nicate reliably, and propose algorithms that tolerate a large number of Byzantine

failures with this concession.

• In Part II, we give algorithms that ensure perfect reliable communication provided

that Byzantine failures are sufficiently distant.

• In Part III, we present extensions of existing solutions.

2.4.1 Part I: Quantitative Byzantine tolerance

In this part, we make a concession to counterbalance the low connectivity of the grid:

we accept the idea that some pairs of nodes may fail to communicate reliably, provided

that we ensure reliable communication between a majority of pairs of nodes.

In Chapter 4, we assume that the nodes know the topology of the network, and propose

an algorithm based on control zones (arbitrary sets of nodes that filter false messages).

We provide a methodology to determine whether two given nodes communicate reliably
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or not. Then, with Monte-Carlo simulations, we show that this algorithm significantly

outperforms previous solutions on a grid.

In Chapter 5, we now assume that the nodes do not know their position in the network,

and propose an algorithm based on bounded disjoint paths. We then make a general

comparison of available solutions.

2.4.2 Part II: Qualitative Byzantine tolerance

In this part, we propose algorithms that ensure reliable communication between all pairs

of correct nodes, provided that the Byzantine failures are sufficiently distant.

In Chapter 6, we show than any 3-connected network admits a particular cycle decom-

position. For instance, a grid can be decomposed in elementary square cycles, and a

planar graph in elementary polygons. We give an algorithm that ensures perfect reliable

communication when the distance between Byzantine failures is more than twice the

diameter of the largest cycle. Then, we make this algorithm self-stabilizing : the nodes

retrieve correct outputs even if the initial state of their variables is corrupt and totally

arbitrary.

In Chapter 7, we consider a 8-connected lattice network. On this network, the Certified

Propagation Algorithm [32] works provided that there is no critical pair - that is, a pair

of Byzantine nodes that are too close from each other. We give an algorithm that can

tolerate several critical pairs, provided that these pairs are sufficiently spaced.

2.4.3 Part III: Extensions

In this last part, we present extensions of existing solutions:

In Chapter 8, we extend the results of [36, 37] and give the necessary and sufficient

condition to tolerate k arbitrarily placed Byzantine nodes in a dynamic network (where

the topology can vary with time). We then study the satisfaction of this condition in

several case studies.

In Chapter 9, we consider a grid with a uniform rate of Byzantine failures (each node

has a probability λ to be Byzantine). In this setting, all aforementioned solutions fail if

the size of the grid grows larger and larger. We propose a fractal algorithm that ensures

a constant communication probability, however large the grid may be.





Chapter 3

Model and definitions

In this chapter, we provide general definitions and explain our model.

3.1 Definitions

3.1.1 Graph

A graph is a tuple (V,E) where:

• V is the set of nodes.

• E ⊆ V × V is the set of edges.

The nodes represent the processes of the network, and the edges represent the commu-

nication channels. Two nodes linked by an edge are said to be neighbors.

3.1.2 Paths

Definition 3.1 (Path). A sequence of nodes (u1, . . . , un) is a path connecting u1 and

un if, ∀i ∈ {1, . . . , n− 1}, ui and ui+1 are neighbors.

Definition 3.2 (Disjoint paths). Two paths (u1, . . . , un) and (v1, . . . , vm) are disjoint

if {u1, . . . , un} ∩ {v1, . . . , vm} = ∅. They are internally disjoint if {u2, . . . , un−1} ∩
{v2, . . . , vm−1} = ∅. A set of paths {P1, . . . , PN} is a set of disjoint paths if ∀{i, j} ⊆
{1, . . . , N}, Pi and Pj are disjoint.

19
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3.1.3 Metric

Definition 3.3 (Degree). The degree of a node is the number of neighbors of this node.

The degree of a network is the maximal degree of its nodes.

Definition 3.4 (Distance). We say that two nodes p and q are at distance d if the

shortest path (u1, . . . , un) connecting p and q is such that n = d.

Definition 3.5 (Diameter). The diameter of a network is the maximal distance between

two nodes of this network.

3.1.4 Connectivity

Definition 3.6 (Connected set of nodes). As set S of nodes is connected if, ∀{p, q} ⊆ S,

there exists a path connecting p and q.

Definition 3.7 (Node cut). As set of nodes X is a node cut isolating a node p from a

node q if, after the removal of the nodes of X, there exists no path connecting p and q.

X is a node cut isolating a set of nodes P from a set of nodes Q if, ∀p ∈ P and ∀q ∈ Q,

X is a node cut isolating p from q.

Definition 3.8 (Connectivity). The connectivity of the network is C if, for any nodes

p and q, there exists a set of C disjoint paths Ω such that, ∀(u1, . . . , un) ∈ Ω, p and u1

(resp. q and un) are neighbors.

3.1.5 Topologies

At last, let us define 4 network topologies that will be used in the following: the grid,

the torus, the hexagonal grid ans the hexagonal torus.

Definition 3.9 (Grid and torus). A N ×M grid (resp. torus) is a network such that:

• Each node has a unique identifier (i, j), with 1 ≤ i ≤ N and 1 ≤ j ≤M .

• Two nodes (i1, j1) and (i2, j2) are neighbors if and only if one of these two condi-

tions is satisfied:

– i1 = i2 and |j1 − j2| = 1 (resp. 1 or M)

– j1 = j2 and |i1 − i2| = 1 (resp. 1 or N)
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Figure 3.1: A 7× 7 grid (left) and torus (right)

This is illustrated in Figure 3.1. The torus can be seen as a continuous version of the

grid, where the upper (resp. right) side is connected to the lower (resp. left) side.

Now, let us define the hexagonal grid (resp. hexagonal torus), which is obtained by

removing edges of a grid (resp. torus).

Definition 3.10 (Hexagonal grid and torus). A N×M hexagonal grid (resp. hexagonal

torus) is a N ×M grid (resp. torus) with several edges removed: ∀(i, j) ∈ {1, . . . , N −
1} × {1, . . . ,M}, if i+ j is odd, we remove the channel between (i, j) and (i+ 1, j). We

also remove the potential nodes with only one neighbor.

This transformation is illustrated in Figure 3.2.

Figure 3.2: Turning a grid into a hexagonal grid.

3.2 Model

In this section, we present our hypotheses and the specification of the problem.

3.2.1 Hypotheses

We make the same hypotheses as the closely related previous works [32–37]:
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• The nodes are independent processes, and two neighbor nodes can send messages

to each other. We assume that any message sent is eventually received. However,

we make no hypotheses on synchronicity: a message can be received at any time.

• Some nodes are correct, and follow a given algorithm. The other are assumed to

be Byzantine, and have an unknown arbitrary behavior. Thus, we never make any

hypotheses on the behavior of Byzantine nodes.

• Each node has a unique identifier. Besides, we assume that the communication

channels are authenticated : when a node p receives a message from a neighbor q,

p known the identity of q. Thus, a Byzantine node cannot forge its own identity.

3.2.2 Problem

Each node p holds a message p.m0, and wants to broadcast this message throughout

the network. We say that a node q accepts a message m from p when it considers that

m = p.m0 (that is, p is the author of the message m).

Definition 3.11 (Reliable communication). For two correct nodes p and q, we have

reliable communication from p to q when the two following conditions are satisfied:

• If q accepts m from p, then necessarily, m = p.m0 (in other words, q never accepts

a false message pretending to be from p).

• The node q always eventually accepts p.m0 from p (the correct message is eventu-

ally accepted).

We also say that q is reliable for p. Is p is also reliable for q, we say that p and q

communicate reliably.

Definition 3.12 (Reliable node set). For a given correct node p, we say that a set of

correct nodes S is reliable for p if ∀q ∈ S, q is reliable for p. A set of correct nodes S is

simply reliable if ∀{p, q} ⊆ S, p and q communicate reliably.

In the following, we refer to the attribute X of a node p by p.X. We say that a node

multicasts a message when it sends it to all its neighbors.
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Quantitative Byzantine tolerance
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Chapter 4

Control Zones

In this chapter, we propose a first algorithm to tolerate a large number of Byzantine

failures in sparse networks.

For this purpose, we make the following concession: we accept that a small minority of

correct nodes fail to communicate reliably. In exchange, we show that we can tolerate

an important number of Byzantine failures while preserving reliable communication

between a large majority of correct nodes.

We propose a protocol based on control zones and authorizations. Intuitively, control

zones act as filters in the network: they limit the diffusion of Byzantine messages.

The chapter is organized as follows:

• In Section 4.1, we describe our protocol.

• In Section 4.2, we explain how to theoretically determine whether or not two given

correct nodes communicate reliably.

• In Section 4.3, we use this theoretical methodology to statistically evaluate the

performances of our protocol, and compare it with existing solutions.

The results of this chapter were published in the conferences AlgoTel [40], ICDCS [41]

and in the journal TPDS [42].

4.1 Algorithm

In this section, we give an informal description of our protocol, define the notion of

control zone and describe the algorithm.
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4.1.1 Informal description

A correct node p tries to broadcast a tuple (p,m0). The nodes receiving this tuple

assume that m0 is the message broadcast by p. Yet, a Byzantine node can broadcast a

tuple (p,m1), with m1 6= m0, to make the network believe that p broadcast m1.

To limit the action of Byzantine nodes, we define a set of control zones. A control zone

is defined by:

• Its core, an arbitrary set of nodes.

• Its boundary, a node-cut isolating the core from the rest of the network.

An example of control zone is given in Fig. 4.1. The important point is that messages

must pass through the boundary to access the core.

Figure 4.1: Example of control zone)

Here is the main idea of the protocol:

• When a message enters the core of a control zone, an authorization is broadcast

on its boundary. This message, unlike standard messages, is not affected by other

control zones.

• When the same message wants to exit the core, this authorization is required.

This mechanism does not disturb the broadcasting of correct messages.

Now, suppose that a Byzantine node is in the core of the control zone, and sends a false

message (p,m1), whereas p is not in the core of the control zone. Then, this message

never gets the authorization to exit the core, as it never entered it. This is illustrated

in Fig. 4.2.
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Figure 4.2: Principle of a control zone

Intuitively, this mechanism of control zones enables to limit the broadcast of Byzantine

messages. The underlying idea is to define a lot of control zones on the network, in-

tersecting each other, in order to minimize the broadcast of Byzantine messages. For

instance, if a Byzantine node lies on the boundary of a first control zone, it can broad-

cast authorizations for its own false messages. However, if a second control zone with

a correct boundary surrounds this Byzantine node, its messages will never cross the

second control zone, even if they have the authorizations for the first control zone.

4.1.2 Control zones

Definition 4.1 (Control zone). A control zone is a tuple (Core,Boundary) of disjoint,

connected node sets, such that Boundary is a node-cut isolating Core from the rest of

the network.

We denote the core and the boundary of a control zone z by core(z) and boundary(z).

Before running the protocol, we choose an arbitrary set Ctr of control zones that will

be used in the protocol. For each correct node p, let p.myCtr be the set of control zones

z ∈ Ctr such that p ∈ boundary(z). We assume that, for each zone z ∈ myCtr, p knows

which nodes belong to core(z) and boundary(z).

4.1.3 Description of the protocol

In our protocol, two types of messages can be exchanged:
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• Standard messages, of the form (s,m): a message claiming that the node s (source)

broadcast m.

• Authorization messages, of the form (s,m, z): a message authorizing the standard

message (s,m) to exit the control zone z.

Each node possesses three memory sets:

• Wait: set of messages received, but waiting for an authorization (initially empty).

When (s,m, q) ∈Wait, it means that p received the standard message (s,m) from

a neighbor q.

• Auth: set of authorizations received (initially empty). When (s,m, z) ∈ Auth, it

means that p has received the authorization for the standard message (s,m) on

the control zone z.

• Acc: set of accepted messages (initially empty). When (s,m) ∈ Acc, it means that

p has received (s,m) and all the corresponding authorizations, and has sent it to

its neighbors.

At last, each correct node p obeys to the four following rules.

INIT - Initial broadcast. Executed initially.

• Send (p,m0) to all neighbors.

• Add (p,m0) to Acc.

• ∀z ∈ myCtr, send (p,m0, z) to all neighbors.

ENTER - Message entering control zones. Executed when a standard message

(s,m) is received from a neighbor q.

• If (s,m) ∈ Acc, ignore it.

• Else, add (s,m, q) to Wait.
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DIFF - Diffusion of authorizations. Executed when an authorization message

(s,m, z) is received from a neighbor q.

• If (s,m, z) ∈ Auth, or q /∈ boundary(z), ignore it.

• Else:

– Add (s,m, z) to Auth.

– Send (s,m, z) to all neighbors.

EXIT - Message exiting control zones. Executed when an element (s,m, q) of

Wait verifies the following condition: ∀z ∈ myCtr such that q ∈ core(z) and s /∈ core(z),
we have (s,m, z) ∈ Auth.

• Add (s,m) to Acc.

• Send (s,m) to all neighbors.

• ∀z ∈ myCtr, send (s,m, z) to all neighbors.

4.2 Reliability properties

In this section, we give a theoretical methodology to determine the set of nodes that

always communicate reliably, for a given placement of Byzantine nodes.

First, let us explain why this methodology is necessary to correctly evaluate the protocol.

4.2.1 Motivation

To evaluate the performances of our protocol, a natural idea would be to directly sim-

ulate it. However, in the presence of Byzantine failures, things are not that simple.

Indeed, simulating the protocol would imply to make restrictive assumptions on the

order of activation of nodes, the order of reception of messages and the behavior of

Byzantine nodes. This would considerably weaken the model, as nothing guarantees

that we encompass the worst possible cases. In particular, as the behavior of faulty

nodes is restricted (thus not totally arbitrary), these nodes cannot be called Byzantine

anymore.

Therefore, instead of simulating the protocol, we provide a deterministic technique that,

for a given set of Byzantine nodes, returns a set of correct nodes that always communi-

cate reliably, independently of the order of execution and of the behavior of Byzantine
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nodes. Thus, with this methodology, we can evaluate our protocol in Section 4.3 without

adding restrictive assumptions.

Note that this methodology is not to be computed by correct nodes (which do not know

the position of Byzantine nodes). This is an external view of the network.

The rest of the section is organized as follows:

• In 4.2.2, we provide some definitions.

• In 4.2.3, we explain how to determine the optimal safe node set, that is: the set

of nodes that never accept any false message.

• In 4.2.4, we explain how to construct the optimal communicating node set, that

is: the set of nodes that always accept the message of a given correct node p.

• In 4.2.5, we use the two aforementioned sets to determine the optimal reliable node

set, that is: the set of nodes that always accept the message of p, and never accept

any false message. Then, we show that all the nodes of this set communicate

reliably.

• In 4.2.6, we evaluate the message complexity.

4.2.2 Definitions

We say that a correct node p accepts a message (s,m), when (s,m) is added to the set

p.Acc. A message (s,m) is correct if s is correct and m = s.m0. Else, it is false.

Definition 4.2 (Safe node set). A node is safe if it never accepts a false message, in

any possible execution. A set of nodes is safe if all its nodes are safe.

Definition 4.3 (Communicating node set). Let p be a correct node. A set of nodes S

is communicating for p if each node of S eventually accepts (p, p.m0), in any possible

execution.

4.2.3 Determination of a safe node set

Let us give a methodology to determine the optimal safe node set (see Definition 4.2).

The condition for the existence of a safe node set is that each Byzantine node belongs

to the core of a control zone with a correct boundary. Then, all the nodes that are not

“enclosed” with a Byzantine node are safe.
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In Theorem 4.4, we explain how to determine this set. In Theorem 4.5, we show that

this set is optimal.

Theorem 4.4 (Determination of a safe node set). For each Byzantine node b, let Z(b)

be the set of control zones z ∈ Ctr such that:

• b ∈ core(z)

• All the nodes of boundary(z) are correct.

Then, if for each Byzantine node b, Z(b) is not empty, S = V −
⋃

b∈Byz

⋂
z∈Z(b) core(z)

is a safe node set.

Proof. The proof is by contradiction. Let us suppose the opposite: let (s,m1) be a false

message (that is, s is correct and m1 6= s.m0), and let v be the first correct node such

that:

1. v ∈ S

2. v accepts (s,m1), that is: v is not safe.

Obviously, v did not accept (s,m1) in INIT, as m1 6= s.m0. So it was in EXIT. Thus,

there exists (s,m1, q) ∈ v.Wait verifying the condition of EXIT. And the only way for

(s,m1, q) to have joined v.Wait, is that v received (s,m1) from q in ENTER. Thus, two

possibilities:

• Either q is a correct node, and accepted (s,m1) in EXIT. As v is the first node to

verify (1) and (2), it implies that q /∈ S.

• Or q is a Byzantine node. Then, according to our hypotheses, q /∈ S.

So, in both cases, we have q /∈ S. Therefore, q ∈
⋃

b∈Byz

⋂
z∈Z(b) core(z). Let b be the

Byzantine node such that q ∈
⋂

z∈Z(b). As q ∈
⋂

z∈Z(b) is neighbor with v /∈
⋂

z∈Z(b),

according to Definition 4, there exists z ∈ Z(b) such that v ∈ boundary(z).

Then, by definition of myCtr (see 2.3), z ∈ v.myCtr. As (s,m1, q) verifies the condition

of EXIT, z ∈ v.myCtr implies that (s,m1, z) ∈ v.Auth.

The only way for (s,m1, z) to have joined v.Auth, is that v received (s,m1, z) in DIFF

from a neighbor in boundary(z). Let u be the first node of boundary(z) to send (s,m1, z).

According to our hypotheses, the nodes of boundary(z) are correct, so u is correct. And
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u did not send (s,m1, z) in DIFF: otherwise, it would not be the first to do so. So it

was in EXIT, implying that u accepted (s,m1). So u verified (1) and (2) before v. This

contradiction achieves the proof.

Theorem 4.5 (Tightness of Theorem 4.4). The set S of Theorem 4.4 (possibly empty)

contains all safe nodes.

Proof. The proof is by contradiction. Let us suppose the opposite: there exists a safe

node v such that v /∈ S. Let s be a correct node, and let m1 /∈ s.m0. Let us suppose

that each Byzantine node b sends the following messages to its neighbors:

• (s,m1)

• ∀z ∈ Ctr such that b ∈ boundary(z): (s,m1, z)

As v is safe, v a priori never accepts (s,m1).

First, let us suppose that there exists a Byzantine node b such that Z(b) is empty, that

is: there exists no control zone z ∈ Ctr such that b ∈ core(z) and all the nodes of

boundary(z) are correct. Let (u0, . . . , un) be a path such that u0 = b and un = v, and

let k ≥ 1 be the first integer such that uk never accepts (s,m1). Therefore:

• Either uk−1 is Byzantine, and sends (s,m1) to uk.

• Or uk−1 is correct, and eventually accepts (s,m1). Therefore, uk−1 eventually

sends (s,m1) to uk in EXIT.

So, in both cases, uk eventually receives (s,m1) from uk−1, and adds (s,m1, uk−1) to

uk.Wait. Let z ∈ uk.myCtr be a control zone such that uk−1 ∈ core(z) and s /∈ core(z).

• First, let us suppose that b /∈ core(z).

– If there exists a Byzantine node b′ such that b′ ∈ boundary(z), as boundary(z)

is connected, there exists a path P of nodes of boundary(z) connecting b′ to

uk. As b′ sent (s,m1, z) to its neighbors, by induction over P , uk eventually

adds (s,m1, z) to uk.Auth.

– Otherwise, as b /∈ core(z), according to Definition 4, there exists k′ < k

such that uk′ ∈ boundary(z) and uk′ 6= b. As boundary(z) is connected,

there exists a path P of nodes of boundary(z) connecting uk′ to uk. As uk′

eventually accepts (s,m1), uk′ eventually sends (s,m1, z) to its neighbors.

Thus, by induction over P , uk eventually adds (s,m1, z) to uk.Auth in DIFF.
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So, in both cases, we eventually have (s,m1, z) in uk.Auth.

• Now, let us suppose that b ∈ core(z). As Z(b) is empty, there exists a Byzantine

node b′ in boundary(z). As boundary(z) is connected, there exists a path P of

nodes of boundary(z) connecting b′ to uk. As b′ sent (s,m1, z), by induction over

P , all the nodes of P eventually add (s,m1, z) to Auth in DIFF, including uk.

So, ∀z ∈ uk.myCtr, we eventually have (s,m1, z) in uk.Auth. Therefore, uk eventually

accepts (s,m1) in EXIT. This contradiction achieves the proof.

Now, let us suppose that, for each Byzantine node b, Z(b) is not empty. Then, as

S = V −
⋃

b∈Byz

⋂
z∈Z(b) core(z), v ∈

⋃
b∈Byz

⋂
z∈Z(b) core(z). Let b be the Byzantine

node such that v ∈
⋂

z∈Z(b) core(z).

As ∀z ∈ Ctr, core(z) is connected,
⋂

z∈Z(b) core(z) is also connected. Therefore, there

exists a path (u0, . . . , un) of nodes of
⋂

z∈Z(b) core(z) such that u0 = b and un = v. Let

k ≥ 0 be the greatest integer such that uk is Byzantine. ∀k′ ∈ {k + 1, . . . , n}, according

to the definition of
⋂

z∈Z(b) core(z), there is no control zone z ∈ uk′ .myCtr such that

uk′−1 ∈ core(z). Therefore, by induction over P = (uk, . . . , un), all the nodes of P

eventually accepts and send (s,m1), including un = v. This contradiction achieves the

proof.

4.2.4 Determination of a communicating node set

Let us give a methodology to determine the optimal communicating node set (see Defi-

nition 4.3) for a given correct node p.

In the following, we give a condition to construct a communicating node set for p “node

by node”. Let S be a communicating node set for p, and let v be a correct node. Then,

the theorem tells us if S ∪ {v} is communicating for p, and so forth. To initiate the

construction of S, we take S = {p}.

In Theorem 4.6, we explain how to determine this set. In Theorem 4.7, we show that

this set is optimal.

Theorem 4.6 (Construction of a communicating node set). Let p be a correct node, and

let S be a communicating node set for p. Let v be a correct node verifying the following

condition:
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1. v has a neighbor u ∈ S

2. ∀z ∈ v.myCtr such that u ∈ core(z) and p /∈ core(z), there exists a path of correct

nodes on boundary(z) connecting v and some node w ∈ S.

Then, S ∪ {v} is also communicating for p.

Proof. As S is communicating for p, u eventually accepts (p, p.m0) in EXIT, and sends

it to v. Then, according to ENTER, we eventually have (p, p.m0, u) ∈ v.Wait. Now, let

Z be the set of control zones z ∈ v.myCtr such that u ∈ core(z) and p /∈ core(z). Let

us show that ∀z ∈ Z, we eventually have (p, p.m0, z) ∈ v.Auth.

Let z ∈ Z. According to (2), there exists a path (w0, . . . , wn) of correct nodes of

boundary(z), such that w0 ∈ S and wn = v. Let us prove the following property Pi by

induction, ∀i ∈ {1, . . . , n}: we eventually have (p, p.m0, z) ∈ wi.Auth.

• First, let us show that P1 is true. As S is communicating for p, w0 ∈ S eventually

accepts (p, p.m0). So, according to EXIT, w0 sends (p, p.m0, z) to w1. If we

already have (p, p.m0, z) ∈ w1.Auth, P1 is true. Otherwise, as w0 ∈ boundary(z),

according to DIFF, (p, p.m0, z) is added to w1.Auth, and P1 is also true.

• Let us suppose that Pi is true, for i < n. As (p, p.m0, z) ∈ wi.Auth, according

to DIFF, wi sent (p, p.m0, z) to its neighbors. If we already have (p, p.m0, z) ∈
wi+1.Auth, Pi+1 is true. Otherwise, as wi+1 ∈ boundary(z), according to DIFF,

(p, p.m0, z) is added to wi+1.Auth, and Pi+1 is also true.

Therefore, Pn is true, and we eventually have (p, p.m0, z) ∈ v.Auth.

So we eventually have (p, p.m0, u) ∈ v.Wait and, ∀z ∈ Z, (p, p.m0, z) ∈ v.Auth. Thus,

according to EXIT, v eventually accepts (p, p.m0). Therefore, S ∪{v} is communicating

for p.

Theorem 4.7 (Tightness of Theorem 4.6). Let p be a correct node, and let S be a

communicating node set for p constructed with Theorem 4.6. Let S be any communicating

node set for p. Then, S′ ⊆ S.

Proof. The proof is by contradiction. Let us suppose the opposite: there exists at least

one correct node of S′ that does not belong to S.
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Let there be an execution where the Byzantine nodes did not send any message, where

all the nodes of S have accepted (p, p.m0), and no other node has accepted (p, p.m0) yet.

Such an execution is possible, as the construction of S with Theorem 3 does not require

that any node x /∈ S accepts (p, p.m0). Then, let v be the first node of S′− S accepting

(p, p.m0).

As v 6= p, according to EXIT, it implies that there exists a node u such that . . .

1. (p, p.m0, u) ∈ v.Wait

2. ∀z ∈ v.myCtr such that u ∈ core(z) and p /∈ core(z), (p, p.m0, z) ∈ v.Auth

According to (1), v received (p, p.m0, u) from u in ENTER. As no Byzantine node sent

any message, u is correct and sent (p, p.m0), implying that u accepted (p, p.m0). Thus,

as v is the only node of V − S that accepted (p, p.m0), u ∈ S.

According to (2), v received (p, p.m0, z). Let (u0, . . . , un) be a sequence of nodes such

that u0 = v, ui received (p, p.m0, z) from ui+1, and un didn’t receive (p, p.m0, z). As no

Byzantine node sent any message, the nodes {u1, . . . , un} are correct. Therefore, they

sent (p, p.m0, z) in DIFF, implying that they belong to boundary(z). Let w = un. As

w is correct and didn’t receive (p, p.m0, z), w sent (p, p.m0, z) in EXIT, implying that

w accepted (p, p.m0). Thus, according to our hypothesis, w ∈ S. Thus, (u0, . . . , un) is a

path of correct nodes of boundary(z) connecting v and w ∈ S.

Therefore, v has a neighbor u ∈ S verifiyng the conditions of Theorem 3. So v should

belong to S: contradiction. Thus, the result.

4.2.5 Determination of a reliable node set

Let us give a methodology to determine the maximum reliable node set (see Defini-

tion 3.12) for a given correct node p. For this purpose, we simply make the intersection

of the two aforementioned safe and communicating node sets.

In Theorem 4.8, we explain how to determine this set. In Theorem 4.9, we show that

this set is optimal. At last, in Theorem 4.10, we show that all the nodes of this set

communicate reliably.

Theorem 4.8 (Determination of a reliable node set). Let p be a correct node. Let SA

be a safe node set (determined with Theorem 4.4). Let SB be a communicating node set

for p (determined with Theorem 4.6). Then, S = SA ∩ SB is a reliable node set.
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Proof. Let u ∈ S. As u ∈ SA, u never accepts a false message. As u ∈ SB, u eventually

accepts (p, p.m0). Then, according to Definition 3.12, S is reliable.

Theorem 4.9 (Tightness of Theorem 4.8). Let p be a correct node, and let S be a

reliable node set for p constructed with Theorem 4.8. Let S be any reliable node set for

p. Then, S′ ⊆ S.

Proof. The proof is by contradiction. Let us suppose the opposite: there exists v ∈ S′

such that v /∈ S. Therefore, two (non-exclusive) possibilities:

• Either v /∈ SA. Therefore, as v is safe, SA is not the optimal safe node set, which

contradicts Theorem 2. Thus, the result.

• Or v /∈ SB. Therefore, as v eventually accepts (p, p.m0), SB is not the optimal

communicating node set for p, which contradicts Theorem 4. Thus, the result.

Theorem 4.10 (Set of nodes communicating reliably). Let p be a correct node, and let

S be the reliable node set for p constructed with Theorem 4.8. Then, all the nodes of S

communicate reliably.

Proof. As S = SA ∩ SB, let (p0, . . . , pn) be the history of construction of SB with

Theorem 3, with p0 = p. ∀i ∈ {0, . . . , n}, Let Si = {p0, . . . , pi}. Let us prove the

following property Pi by induction: ∀(s, q) ∈ S2
i , q eventually accepts (s, s.m0).

P0 is true, as S0 = {p}. Now, let us suppose that Pi is true, ∀i ∈ {1, . . . , n}. To show

that Pi+1 is true, we have to show that . . .

1. ∀s ∈ Si, pi+1 eventually accepts (s, s.m0).

2. ∀q ∈ Si, q eventually accepts (pi+1, pi+1.m0).

The proof of (1) is the same as the proof of Theorem 3, if we replace (p, p.m0) by

(s, s.m0). Now, let us show that (2) is true. As pi+1 verifies the conditions of Theorem 3,

let v = pi+1, and let u and w be the corresponding nodes of Theorem 3. Let q ∈ Si, and

let Z be the set of control zones z ∈ v.myCtr such that u ∈ core(z).

First, let us establish two preliminary results:
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• (a) Initially, v sends (v, v.m0) to u. According to ENTER, (v, v.m0, v) is added to

u.Wait. As there is no control zone z ∈ Ctr such that v ∈ core(z) and v /∈ core(z),
the condition of EXIT is directly satisfied. Thus, u eventually accepts (v, v.m0).

• (b) Let z ∈ Z, and let x ∈ Si ∩ boundary(z).

– As z ∈ v.myCtr, v sent (v, v.m0, z) in INIT.

– According to (2), there exists a path of correct nodes of boundary(z) con-

necting v and w.

So, for the same reason as in Theorem 3, w eventually receives the authorization

(v, v.m0, z). As Si is a set of correct nodes, w ∈ Si and boundary(z) is connected,

there also exists a correct path on boundary(z) between w and y. Then, similarly,

x eventually receives (v, v.m0, z).

Now, let there be a configuration in which we have reached the states described in

(a) and (b). Then, in such a configuration, (v, v.m0) becomes indistinguishable from

(u, u.m0). Indeed, the only part of the protocol that could distinguish these messages is

the condition of EXIT, for the nodes of boundary(z) with z ∈ Z. But, as we have reached

the state described in (b), all these nodes have received the authorizations (v, v.m0, z),

z ∈ Z. So EXIT behaves the same way in both cases. Thus, as q eventually accepts

(u, u.m0), q eventually accepts (v, v.m0).

Therefore, Pi+1 is true. Thus, by induction, Pn is true: ∀(s, q) ∈ S2
B, q accepts (s, s.m0),

and, symmetrically, s accepts (q, q.m0). Therefore, as SA is safe, according to Defini-

tion 9, all the nodes of S = SA ∩ SB communicate reliably.

4.2.6 Message complexity

In addition, let us evaluate the message complexity of our protocol, when the whole

network is a reliable node set.

We define the following parameters:

• n, the number of nodes of the network.

• d, the degree of the network, that is: the maximal number of neighbors of a node.

• NCtr, the number of control zones in Ctr.

• NBound, the maximal number of nodes in the boundary of a control zone.
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Let u be any node. Let us evaluate the number of messages related to u:

• All nodes once accept and send (u, u.m0) to their neighbors, which makes at most

dn messages.

• All nodes on the boundary of a control zone z once send (u, u.m0, z) to their

neighbors, which makes at most dNBoundNCtr messages.

Thus, at most dn(n + NBoundNCtr) messages are sent in the network. Therefore, if we

assume that NBound is bounded and that NCtr is O(n), the message complexity is O(n2),

the same as an unsecured broadcast protocol.

4.3 Experimental evaluation

In this section, we provide an experimental evaluation of our protocol. We explain our

motivations, then describe the setting and the methodology. Next, we comment on the

results, and make a comparison with existing solutions.

4.3.1 Motivations

A classical approach to deal with Byzantine failures is to consider the “worst case”

placement of a given number of Byzantine nodes. However, with this approach, tolerat-

ing more Byzantine failures implies increasing the network connectivity. As we consider

sparsely connected networks here, we are more interested in quantitative fault tolerance.

Therefore, we assume a random distribution of Byzantine failures. Our metric is the

communication probability, that is: the probability that two nodes communicate reliably.

In practice, there are many situations where the Byzantine failures occur randomly. First

of all, the Byzantine failures can simply model the probability that each node has to

misbehave (memory overflow, bit flips, etc . . . ). Also, in the case of an external attack,

the Byzatine adversary does not always choose the position of Byzantine nodes. This

is the case, for instance, in a peer-to-peer overlay, where each node joining the network

receives a random identifier, and therefore a random position in the virtual topology.

Besides, many virus propagation mechanisms use random epidemic schemes to spread

across networks.
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4.3.2 Setting

We use 100× 100 square and hexagonal grids for our evaluation (see Definition 3.9 and

3.10).

In this evaluation, we use concentric control zones. A concentric control zone of width

n is a tuple (Coren, Boundaryn) defined as follows:

• Core1 is a single node.

• Core2 is an elementary cycle (here, a square of 4 nodes, or a hexagon of 6 nodes).

• Boundaryn is the smallest cycle that isolates Coren from the rest of the network.

• Coren+2 is the union of Coren and Boundaryn.

An example of such control zones is given in Figure 4.3 (for a square grid) and Figure 4.4

(for a hexagonal grid).

Figure 4.3: Example of square control zones

Figure 4.4: Example of hexagonal control zones
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We say that we run the protocol at order W if we use all concentric control zones of

width 1, 2, . . . ,W . This parameter enables us to modulate the number of control zones

used by the protocol.

Note that, if the nodes know their position in the grid (their (i, j) identifier) and the

order W , they can easily determine to which control zones they belong. Therefore, there

is no need to describe each control zone node by node.

4.3.3 Methodology

For a given number nB of randomly distributed Byzantine failures, we would like to

evaluate the probability P (nB) that two correct nodes communicate reliably. For this

purpose, we use a Monte-Carlo method:

• We generate a large number of random placements of nB Byzantine nodes.

• For each placement, we randomly choose two correct nodes, and check if they

communicate reliably. If they do, the simulation is a success.

• On a large number of simulations, the fraction of successes approaches P (nB).

To check is two nodes communicate reliably, we proceed as follows:

• We randomly choose two correct nodes p and q.

• We use Theorem 4.8 to construct the optimal reliable node set S for p.

• If q belongs to S, according to Theorem 4.10, p and q communicate reliably.

In Figure 4.5, we give a toy example illustrating the construction of a reliable node set

on a square grid, for an order W = 3 (see 4.3.2). Let us comment on this figure step by

step.

1. First, we determine the optimal safe node set, using Theorem 4.4. As each Byzan-

tine node belongs to a control zone with a correct boundary, the safe node set is

not empty. The blank zones correspond to the intersections of the cores contain-

ing Byzantine nodes. Here, having control zones of width 3 is an advantage: if we

only had W = 2, for instance, the upper-left group of Byzantine nodes would be

impossible to neutralize.
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Figure 4.5: Example of construction of a safe, communicating and reliable node set

2. Then, we construct the optimal communicating node set for p, using Theorem 4.6.

We notice that some correct nodes, surrounded by too many Byzantine nodes,

cannot be added to to this set. Here, having control zones of width 3 is a drawback:

the presence of these zones make the conditions of Theorem 4.6 harder to satisfy,

which limits the size of the communicating node set.

3. Finally, we determine the optimal reliable node set for p, using Theorem 4.8. Ac-

cording to this theorem, we simply take the intersection of the two aforementioned

sets.

4.3.4 Results

We present the simulation results in Figure 4.6 and 4.7. Let us comment on these results.

1. The first plot represents the safety probability – that is, the probability of existence

of a safe node set (see Theorem 4.4). This probability increases with the order.

Indeed, when we increase the number of control zones, we increase the probability

to satisfy the conditions of Theorem 4.4.

2. The second plot represents the mean size of the reliable node set, when it exists –

that is, the fraction of correct nodes covered by the reliable node set. This fraction

decreases with the order. Indeed, when we increase the number of control zones,

we make the conditions of Theorem 4.6 harder to satisfy. Thus, the construction

of the communicating node set is made more difficult.

3. At last, the third plot represents the communication probability P (nB). In the

previous plots, we showed that increasing the order of the protocol had a positive
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Figure 4.6: Simulation results on a 100× 100 grid.
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Figure 4.7: Simulation results on a 100× 100 hexagonal grid.
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influence on the existence of a reliable node set, but a negative influence on its

size. Therefore, a compromise between these two tendancies appears for order 3,

for which the communication probability is optimal.

This last point suggests the existence of an optimal number of control zones, for a given

topology.

4.3.5 Comparison with existing solutions

The classical Certified Propagation Algorithm [32] does not work in square and hexag-

onal grid: there are not enough channels to confirm and retransmit a message directly.

Among the existing solutions, the only protocol that actually works on square or hexag-

onal grids is Explorer [37]. This solution consists in generating node-disjoint paths

between each pair of nodes. Therefore, if, for instance, 1 path among 3 is corrupted by a

Byzantine node, this is unimportant, as we still have a strict majority of correct paths.

The protocol given in [37] tolerates at most 1 Byzantine failure in square and hexagonal

grids, whatever its position is. However, this does not use the fact that the nodes knows

their position in the network. Therefore, in order to have a fair comparison, we used

a modified version of Explorer, where the messages follow optimal predetermined paths

between each pair of nodes. Thus, we now have good probabilities to tolerate more than

1 Byzantine nodes. The performances of the modified Explorer are represented in the

last plot of Figure 4.6 and 4.7.

We thus observe that our protocol outperforms the modified Explorer by a significant

margin. For example, if a communication probability of 0.99 is required, Explorer can

tolerate at most 5 (resp. 3) Byzantine failures in a square (resp. hexagonal) grid, while

our protocol can tolerate at least 120 (resp. 70) Byzantine failures.

In terms of message complexity, according to the formula given in 4.2.6, our protocol

requires 49 times more messages than a simple unsecured broadcast (at order 3 on a

square grid). This additional cost remains proportional to the number of nodes, whereas

Explorer requires a number of messages that grows exponentially with the number of

nodes.

4.4 Conclusion

In this chapter, we proposed an algorithm based on predetermined control zones. We

gave a theoretical methodology to determine whether or not two nodes communicate
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reliably, for a given placement of Byzantine nodes. Using this methodology, we evaluated

the performances of our protocol on grids, with a tunable number of control zones. For

a communication probability of 0.99, our protocol outperforms previous solutions with

a factor 20.

As pointed out in 4.3.4, there seems to exist an optimal number of control zones: too

much or two few control zones lead to bad performances. Rigorously determining the

optimal set of control zones for a given network topology remains a challenging open

problem. Also, we used regular lattices for our evaluation, but an interesting problem

would be to define control zones dynamically (for instance, in a network of mobile

robots).





Chapter 5

Fixed disjoint paths

In this chapter, we propose an alternative to Chapter 4 in the case where the nodes do

not know their position in the network. As the methodology is similar, we recommend

to read Chapter 4 first.

In Chapter 4, a certain level of topology knowledge is required to compute control zones.

However, this hypothesis is difficult or impossible to satisfy in many types of networks,

such as self-organized wireless sensor networks or peer-to-peer overlays.

Here, we assume that the nodes do not know their position, and propose an algorithm

using a fixed number of disjoint paths to accept and forward messages. The chapter is

organized as follows:

• In Section 5.1, we describe the algorithm.

• In Section 5.2, we explain how to determine a reliable node set.

• In Section 5.3, we evaluate and compare the performances of our protocol with

simulations.

A first version of these results was published in the DISC conference [43]. The final

version was published in the journal JPDC [44].

5.1 Algorithm

5.1.1 Informal description

Each correct node s wants to broadcast a message s.m0 to the rest of the network.

47
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First, s.m0 is directly accepted and retransmitted by the neighbors of s. Then, to accept

a message, the other correct nodes must receive confirmations from several distinct

nodes, through a fixed number of disjoint paths. For instance, in Figure 5.1, the right

node accepts a message if and only if it is received through 3 disjoint paths of at most

H1 = 3 (resp H2 = 4 and H3 = 2) hops. The same requirement stands for every correct

node. Once the message is accepted, the node retransmits it for more distant nodes,

and the same principle is repeated over and over.

Figure 5.1: Principle of the protocol: correct case.

This specific setting of the protocol can be described by the tuple (H1, H2, H3) = (3, 4, 2).

More generally, a setting of the protocol is described by a tuple (H1, . . . , Hn), each Hi

being a positive integer. The integer n (not to confuse with the number of nodes) and

the values Hi are assigned arbitrarily: we do not know a priori their impact on the

global performances, which is studied further in Section 5.3.

The underlying idea is as follows: if the Byzantine nodes are sufficiently spaced, they

cannot cooperate to make a correct node accept a false message. Indeed, with setting

(3, 4, 2), a correct node can accept the first false message only if there exists 3 distinct

Byzantine nodes distant of at most 3 (resp. 4 and 2) hops. This critical case is illustrated

in Figure 5.2.

Figure 5.2: Principle of the protocol: critical case.

However, if, for instance, the third Byzantine node is located at more than 2 hops (e.g.

3 hops), the false message is never accepted. This is illustrated in Figure 5.3. This

intuitive idea is demonstrated further in Theorem 5.1.
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Figure 5.3: Principle of the protocol: safe case.

5.1.2 Description of the algorithm

The setting of the protocol is described by a n-tuple of integers (H1, . . . , Hn), with

0 ≤ H1 ≤ · · · ≤ Hn, known by all correct nodes. These values, should be considered

as an inherent part of the protocol: they are hard-coded with the rest of the algorithm,

and are not to be learned by correct nodes. The problem of the choice of the parameters

(H1, . . . , Hn) is discussed further in Section 5.3. Note that previous solutions [32–34,

36, 37] also have fixed parameters. Let H = maxi∈{1,...,n}Hi.

The correct nodes can send and receive tuples of the form (s,m,Ω), where m is the

message broadcast by s (or pretending to be it) and Ω is a set containing the identifiers

of nodes already visited by the message. This set is used to certify that the paths are

actually disjoint. The Byzantine nodes can, of course, forge and forward any message of

the form (s,m,Ω).

Each correct node p holds a dynamic set p.Rec, where the tuples (s,m,Ω) received

are recorded. Each correct node p initially multicasts (p, p.m0, ø), then executes the

following algorithm:

• When a tuple (s,m,Ω) is received from a neighbor q:

– If q = s:

∗ Accept m from s and multicast (s,m, ø).

– If q /∈ Ω and card(Ω) < H:

∗ Add (s,m,Ω ∪ {q}) to p.Rec.

∗ Multicast (s,m,Ω ∪ {q}).

• When there exists s, m and (Ω1, . . . ,Ωn) such that:

1. ∀i ∈ {1, . . . , n}, we both have (s,m,Ωi) ∈ p.Rec and card(Ωi) ≤ Hi

2. ∀{i, j} ⊆ {1, . . . , n}, Ωi ∩ Ωj = ø

Then, accept m from s and multicast (s,m, ø).
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5.2 Reliability properties

In this section, we give a methodology to characterize the pairs of nodes that always

communicate reliably, for a given placement of Byzantine nodes. The motivation are

the same as in Chapter 4.

In 5.2.1, we give the condition for safety, that is: no correct node can accept a false

message. In 5.2.2, we give a methodology to characterize which pairs of correct nodes

communicate reliably. In 5.2.3, we show the tightness of our conditions. In 5.2.4, we

show a linear message complexity.

5.2.1 Safety

We give a condition on the placement of Byzantine nodes to ensure that no correct node

ever accepts a false message. The following theorem is the demonstration of the intuitive

idea exposed in 5.1.1, and partially shows the correctness of our algorithm. However,

this condition is not sufficient to ensure that the correct nodes actually accept the good

messages: this aspect is studied further in 5.2.2.

Theorem 5.1 (Safety). For a given correct node u, let Critical(u) be the following

proposition: there exist at least n distinct Byzantine nodes (b1, . . . , bn) and n internally

disjoint paths (X1, . . . ,Xn) such that, ∀i ∈ {1, . . . , n}, Xi is a path of at most Hi hops

connecting u and bi.

If, for every correct node u, Critical(u) is false, then no correct node ever accepts a

false message.

Proof. The proof is by contradiction. Let us suppose the opposite: for every correct

node u, Critical(u) is false, yet at least one correct node accepts a false message. Let

s be a correct node, and let v be the first correct node to accept a message m 6= s.m0

from s. In the following, we show that Critical(v) is necessarily true, contradicting the

previous statement. This contradiction proves the result.

As v is correct and accepts m from s, according to the protocol, there exists (Ω1, . . . ,Ωn)

such that, ∀i ∈ {1, . . . , n}, (s,m,Ωi) ∈ v.Rec and card(Ωi) ≤ Hi.

Consider now a given index i ∈ {1, . . . , n}, and let q0 = v. Let P i
k be the follow-

ing proposition: there exists a path (q1, . . . , qk), with {q1, . . . , qk} ⊆ Ωi, such that

qk−1 received (s,m,Ωi − {q1, . . . , qk}) from qk ∈ Ωi − {q1, . . . , qk−1}. In our notations,

{q1, . . . , qk−1} = ø for k = 1.



Chapter 5. Fixed disjoint paths 51

• First, we show that P i
1 is true. According to the protocol, the statement (s,m,Ωi) ∈

v.Rec implies that v received (s,m,Ωi − {q1}) from a node q1 ∈ Ωi. It is actually

possible, as card(Ωi − {q1}) ≤ Hi − 1 < H. So P i
1 is true.

• Now, let us suppose that P i
k is true, for k < card(Ωi). So qk sent (s,m,Ωi −

{q1, . . . , qk}) to qk−1. Let us suppose that qk is correct. Then, according to the

protocol, it implies that qk received (s,m,Ωi−{q1, . . . , qk+1}) from a node qk+1 ∈
Ωi−{q1, . . . , qk}. It is actually possible, as card(Ωi−{q1, . . . , qk+1}) ≤ Hi−k−1 <

H. So either P i
k+1 is true or qk is Byzantine.

Therefore, by induction:

• Either there exists an index k ∈ {1, . . . , card(Ωi)− 1} and a path (q1, . . . , qk) such

that qk is Byzantine. Let bi = qk, and let Xi be the path (v, q1, . . . , qk).

• Or P i
card(Ωi)

is true, and qcard(Ωi) sent (s,m,Ωi − {q1, . . . , qcard(Ωi)}) = (s,m, ø) to

qcard(Ωi−1). The node qcard(Ωi) cannot be s, as m 6= s.m0. Also, it cannot be a

correct node, as v is the first correct node to accept m from s. So qcard(Ωi) is nec-

essarily Byzantine. Let bi = qcard(Ωi), and let Xi be the path (v, q1, . . . , qcard(Ωi)).

In both cases, the path Xi connects v and bi with at most card(Ωi) ≤ Hi hops.

For {i, j} ⊆ {1, . . . , n}, the path Xi and Xj are internally disjoint if (Ωi − {bi}) ∩
(Ωj − {bj}) = ø. As v is correct and accepts m from s, according to the protocol:

∀{i, j} ⊆ {1, . . . , n}, Ωi∩Ωj = ø. Therefore, the paths (X1, . . . ,Xn) are disjoint, and the

nodes (b1, . . . , bn) are distinct. Thus, Critical(v) is true. This contradiction achieves

the proof.

5.2.2 Reliability

Here, we suppose that the condition of Theorem 5.1 is satisfied: no false message can

be accepted by a correct node. We now consider a given correct node s, and give a

methodology to characterize a set of nodes reliable for s.

Similarly to Chapter 4, the following theorem enables to construct a set of nodes reliable

for s step by step: for a given set R of nodes reliable for s, and a given correct node v,

Theorem 5.2 tells us if v is also reliable for s.
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Theorem 5.2 (Reliability). Let s be a correct node, and let us suppose that the condition

of Theorem 5.1 is satisfied (for every correct node u, Critical(u) is false). Let R be a

set of nodes reliable for s, and let v /∈ R be a correct node. If there exist at least

n distinct nodes {r1, . . . , rn} ⊆ R and n disjoint correct paths (X1, . . . ,Xn) such that,

∀i ∈ {1, . . . , n}, Xi is a path of at most Hi hops connecting v and ri, then v is also

reliable for s.

Proof. According to Theorem 5.1, no correct node can accept a false message. So, if a

correct node accepts a message, this is necessarily a correct message.

We consider a given index i ∈ {1, . . . , n}. Let Xi = (q0, . . . , qM ), with q0 = ri and

qM = v. By definition, we have M ≤ Hi ≤ H. Let us prove the following property P i
k

by induction, ∀k ∈ {1, . . . ,M}: the node qk eventually receives (s, s.m0, {q0, . . . , qk−2})
from qk−1. In our notations, {q0, . . . , qk−2} = ø for k = 1.

• First, we show that P i
1 is true. As R is set of nodes reliable for s, the node ri ∈ R

eventually accepts s.m0 from s. According to the protocol, it implies that ri also

multicasts (s, s.m0, ø). So q1 eventually receives (s, s.m0, ø) from q0 = ri, and P i
1

is true.

• Now, let us suppose that P i
k is true for k ≤ M . As qk−1 /∈ {q0, . . . , qk−2}, and

card({q0, . . . , qk−2}) < M ≤ H, qk eventually multicasts {q0, . . . , qk−1}. So qk+1

eventually receives {q0, . . . , qk−1} from qk, and P i
k+1 is true.

So P i
M is true and the node qM = v eventually receives (s, s.m0, {q0, . . . , qM−2}) from

qM−1. As qM−1 /∈ {q0, . . . , qM−2} and card({q0, . . . , qM−2}) < M ≤ H, v eventually

adds (s, s.m0, {q0, . . . , qM−1}) to the set v.Rec. Let Ωi = {q0, . . . , qM−1}.

So, ∀i ∈ {1, . . . , n}, we have (s, s.m0,Ωi) ∈ v.Rec and card(Ωi) < Hi. Besides, as the

paths (X1, . . . ,Xn) are disjoint, ∀{i, j} ⊆ {1, . . . , n}, we have (Ωi−{ri})∩(Ωj−{rj}) = ø.

Thus, as the nodes (r1, . . . , rn) are distinct, we have Ωi ∩ Ωj = ø. Therefore, according

to the protocol, v eventually accepts s.m0. Thus, v is reliable for s.

5.2.3 Bounds tightness

We now show that the condition for safety (Theorem 5.1) is tight, and that the method-

ology to characterize the reliable nodes (Theorem 5.2) is optimal in a safe network.
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Theorem 5.3 (Bounds tightness for Theorem 5.1). If the condition of Theorem 5.1 is

not satisfied, it is impossible to guarantee that the network is safe.

Proof. Let us suppose the opposite: the condition of Theorem 5.1 is not satisfied, yet the

network is safe, that is: no correct node can accept a false message. As the condition of

Theorem 5.1 is not satisfied, there exists at least one correct node u such that Critical(u)

is true. In other words, there exist at least n distinct Byzantine nodes (b1, . . . , bn) and

n disjoint paths (X1, . . . ,Xn) such that, ∀i ∈ {1, . . . , n}, Xi is a path of at most Hi hops

connecting u and bi.

Thus, it is possible that the Byzantine nodes (b1, . . . , bn) unanimously multicast (s,m′, ø),

with m′ 6= m. If so, with a reasoning similar to the proof of Theorem 5.2, we show that u

eventually accepts m′ from s. Therefore, the network cannot be safe. This contradiction

completes the proof.

Theorem 5.4 (Bounds tightness for Theorem 5.2). Suppose that the network is safe,

and let s be a correct node. Then, the set constructed with Theorem 5.2 contains all the

nodes reliable for s.

Proof. Let us suppose the opposite: the set R constructed with Theorem 5.2 does not

contain all the nodes reliable for z. Let R′ be the set of nodes reliable for s.

Let there be an execution where all the nodes of R accept s.m0 from s, but no other

correct node accepted s.m0 from s so far. Such an execution is possible, as the construc-

tion of R with Theorem 5.2 does not require that any node u /∈ R accepts s.m0 from

s.

Let v be the first node of R′−R to accept s.m0 from s in the following of the execution.

Then, by a reasoning similar to the proof of Theorem 5.1, we show that there must exist

at least n distinct nodes (u1, . . . , un) that have previously accepted s.m0 from s, and n

disjoint correct paths (X1, . . . ,Xn) such that, ∀i ∈ {1, . . . , n}, Xi is a path of at most Hi

hops connecting v and ri.

As the only correct nodes that have previously accepted s.m0 from s are the nodes of

R, we have {u1, . . . , un} ⊆ R, and the condition of Theorem 5.2 is satisfied for R and

v. So v could actually be added to R, and R is not the largest set of nodes reliable for s

that can be constructed with Theorem 5.2. This contradiction completes the proof.
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5.2.4 Message complexity

We now evaluate the message complexity of our protocol – that is, the number of tuples

(s,m,Ω) sent by the correct nodes. We only consider the case where all nodes are

correct, as the Byzantine nodes can send as many messages as they want.

Let |V | be the number of nodes, and let ∆ be the maximal degree of the network –

that is, the maximal number of neighbors for a single node. Let s be a correct node.

According to our protocol, when a node v accepts s.m0 from s, it sends (s, s.m0, ø) to

each neighbor, which makes at most ∆ messages. Then, each neighbor of v multicasts

(s, s.m0, {v}), which makes at most ∆+∆2 messages. This process is repeated H times,

which makes at most ∆ + ∆2 + · · ·+ ∆H = O(∆H) messages. So, O(∆H |V |) messages

related to s are sent by the protocol, which makes O(∆2H |V |2) messages in total.

Therefore, if we consider that the degree ∆ and protocol parameter H are bounded (for

instance, in a torus network, where ∆ = 4), the message complexity is O(|V |2): the

same as an unsecured broadcast protocol.

5.3 Evaluation of the protocol

In this section, we perform simulations to compare the performance of different settings

of our protocol. We also provide a quantitative comparison with previous solutions, and

show the improvement.

5.3.1 Settings

Let us choose a reasonable set of settings (H1, . . . ,Hn) for our simulations, and explain

this choice.

First, we exclude the case n = 1, which corresponds to an unsecured broadcast (see 5.1.1).

Besides, any setting with n > 4 would not work: n disjoint paths are required, and a

node has only 4 neighbors. Therefore, we restrain ourselves to n ∈ {2, 3, 4}.

Then, we introduce the notion of minimal setting.

Definition 5.5 (Minimal setting). For a given network, and for n ≥ 1, a setting

(H1, . . . ,Hn) is:

Smaller than a setting (H ′1, . . . ,H
′
n) if, ∀i ∈ {1, . . . , n}, Hi ≤ H ′i, and there exists

j ∈ {1, . . . , n} such that Hj < H ′j .
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Covering if, when there are no Byzantine nodes, all nodes are reliable.

Minimal if no smaller setting is covering.

We therefore choose the minimal settings for a torus network, for n ∈ {2, 3, 4}:

• Setting A: (1, 2)

• Setting B: (1, 2, 5)

• Setting C: (1, 3, 3)

• Setting D: (1, 2, 5, 5)

This choice is motivated by the two following reasons:

1. Any smaller setting is not covering, and therefore does not enable reliable broad-

cast.

2. Any greater setting requires longer paths. This would only increase the probability

to have Byzantine nodes on the paths, and reduce the safety probability without

any compensation.

Of course, we do not claim that this preliminary choice is optimal. Rigorously deter-

mining the optimal settings remains a challenging open problem.

5.3.2 Results

Let λ be the Byzantine rate, that is: the probability for a node to be Byzantine.

The simulation results are presented in Figures 5.4 and 5.5. Figure 5.4 corresponds

to a 10 × 10 torus, and Figure 5.5 corresponds to a 50 × 50 torus. For each case, we

represented the probability that the network is safe (no correct node can accept a false

message), then the communication probability, varying λ. Note that the scale is different

for Figure 5.4 and Figure 5.5.

First, let us comment on the probability that the network is safe, according to Theo-

rem 5.1.

• This probability increases with the complexity of the setting (2 paths for setting

A, 3 paths for settings B and C, 4 paths for setting D). Indeed, as we use more

paths, it becomes less likely to have a critical placement of Byzantine nodes (see

Figure 5.2).
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Figure 5.4: Simulation results on a 10× 10 torus.

• This probability decreases with the size of the network. Indeed, for a given Byzan-

tine rate, the frequency of critical placements increases with the size of the network.

Besides, the disparities between the different settings also increase with the size:

the results on Figure 5.5 are more dispersed than on Figure 5.4.

Now, let us comment on the communication probability.

• There seems to exist an optimal setting of the protocol. Indeed, increasing the

number of paths makes the safety conditions of Theorem 5.1 easier to satisfy, but

the reliability conditions of Theorem 5.2 harder to satisfy. Therefore, there is a

compromise to find. This is illustrated in Figure 5.4, where setting D (the most

complex setting) offer the best safety probability, but also the worst communication

probability.



Chapter 5. Fixed disjoint paths 57

Figure 5.5: Simulation results on a 50× 50 torus.

• Besides, the size of the network impacts this optimum. Indeed, on in Figure 5.5,

setting D now offers the best communication probability for the Byzantine rates

λ > 0.005. However, this is not the case for smaller Byzantine rates.

Therefore, setting C offers the best performances in both networks. We use this setting

for the comparison with previous solutions.

5.3.3 Comparison with previous solutions

Finally, we provide a quantitative comparison with previous solutions.

According to our hypotheses, the nodes are not aware of their position on the network.

Therefore, our protocol must be compared with other protocols that still work despite

this constraint and the low degree of the network. This is only the case of protocol [37].
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Let us suppose that we want to guarantee a communication probability P (λ) of at least

0.99 on a 50× 50 torus. Then, we can tolerate a Byzantine rate λ of:

– 4× 10−6 with an unsecured broadcast

– 5× 10−5 with protocol [37]

– 2× 10−3 with our protocol (improvement of factor 40)

These performances are to be compared with the protocol of Chapter 4 (Control Zones),

which only works when the nodes know their position in the network. With this protocol,

we can tolerate a Byzantine rate of 8 × 10−3. As we can see, assuming that the nodes

do not know their position still has a cost in term of performances, and filling this gap

remain a challenging open problem.

All these solutions are represented in Figure 5.6, on a logarithmic scale.

Figure 5.6: Comparison of existing protocols on a logarithmic scale (50× 50 torus).

5.3.4 Application to other topologies: the hexagonal torus

In this section, we discuss the possibility to apply our scheme to other topologies. As an

example, we consider the case of the the hexagonal torus. In this topology, each node

has 3 neighbors instead of 4.

The minimal settings on this topology (following the methodology used in previous

sections) are the following:

• Setting E: (1, 3)

• Setting F : (2, 2)



Chapter 5. Fixed disjoint paths 59

Figure 5.7: Simulations results on a 10× 10 hexagonal torus

• Setting G: (1, 3, 7)

• Setting H: (2, 2, 10)

• Setting I: (2, 6, 6)

We performed simulations on a 10× 10 hexagonal torus. The results are represented on

Figure 5.7. Setting E and F give exactly the same results, thus we represented it on the

same plot.

We notice that the setting has very few influence here. As previously, the settings

with 3 parameters ensure a better safety than those with only 2 parameters. Yet, the

settings with 2 parameters ensure a better communication probability. Indeed, when the

setting has 3 parameters, the nodes with Byzantine neighbors cannot accept the correct

message, as they only have 2 correct neighbors.
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We also plotted the performances of both unsecured broadcast and solution [37]. To

achieve a communication probability of 0.99, our protocol can tolerate a 1.2 × 10−3

Byzantine rate on a 10× 10 hexagonal torus (versus 5× 10−3 on a 10× 10 torus). Thus,

the removal of channels seems to have a negative impact on the performances. However,

we still tolerate a Byzantine rate 10 times higher than solution [37].

5.4 Conclusion

In this chapter, we proposed a paremeterizable approach for Byzantine-resilient broad-

cast in sparsely connected networks, with a minimal number of hypotheses. We showed

that, by properly tuning the parameters of the protocol, we can optimize the fault-

tolerance in the presence of randomly distributed Byzantine failures, and outperform

previous solutions in the same setting. However, the absence of position knowledge still

has a strong impact on Byzantine tolerance.

To go further, it would be interesting to experiment this approach on less regular net-

works, such as sensor networks, robot networks or peer-to-peer overlays, where the lack

of global positioning is a common assumption. Also, a motivating open challenge is to

obtain theoretical probabilistic guarantees with global network parameters (diameter,

node degree, connectivity...) in order to automatically compute the optimal parameter

settings.



Part II

Qualitative Byzantine tolerance

61





Chapter 6

Cycle decomposition

In this chapter, we propose algorithms that ensure perfect reliable communication: all

pairs of correct nodes communicate reliably.

Existing algorithms use conditions on the number [36, 37] or the density [32–35] of

Byzantine failures. This density was represented by the maximal number of Byzantine

failures per correct node. In sparse networks however, this criteria is too strong, as we

have seen in Chapter 2. Therefore, we consider a more relaxed density criteria: the

minimal distance between two Byzantine failures.

Here is the content of the chapter:

• We first show than any 3-connected network admits a particular cycle decompo-

sition. For instance, a grid can be decomposed in elementary square cycles, and a

planar graph in elementary polygons.

• Then, we give an algorithm that ensures perfect reliable communication when the

distance between two Byzantine failures is more than twice the diameter of the

largest cycle.

• At last, we give a self-stabilizing version of the previous algorithm: the nodes

retrieve correct outputs even if the initial state of their variables is corrupt and

totally arbitrary. Thus, by combining tolerance to both transient and permanent

failures, we achieve one of the strongest possible level of fault tolerance.

The chapter is organized as follows. In Section 6.1, we describe the cycle decomposition

of the network. In Section 6.2, we describe the problems and present algorithms to solve

them. In Section 6.3, we show some topology properties. At last, in Sections 6.4 and

6.5, we prove the correctness of our algorithms.

63
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These results were published in the SRDS conference [45]. Some preliminary elements

were also published in the conferences AlgoTel [46] and DISC [43].

6.1 Cycle decomposition

Let us define the notion of Z-resilient network (see Definition 6.4). For this purpose,

we first give some definitions.

Definition 6.1 (Cycle). A set of nodes C is a cycle if there exists a path (u1, . . . , un)

containing all the nodes of C, such that u1 and un are also neighbors. A cycle is correct

if all its nodes are correct.

Definition 6.2 (Connected set of cycles). An arbitrary set of cycles S of the network

is connected if, ∀{C,C ′} ⊆ S, there exists a sequence (C1, . . . , Cn) of cycles of S such

that C1 = C, Cn = C ′ and, ∀i ∈ {1, . . . , n− 1}, Ci and Ci+1 have at least two nodes in

common.

To illustrate, the grey sets of cycles of Figure 6.1 and 6.2 are connected in the sense of

Definition 6.2.

Definition 6.3 (Resilient decomposition). An arbitrary set of cycles S of the network

is a resilient decomposition if, for each pair of nodes p and q, there exists a connected

set S(p, q) ⊆ S of at most ∆ cycles such that:

1. Each cycle of S(p, q) contains p and not q.

2. Each neighbor of p (distinct from q) belongs to a cycle of S(p, q).

An example of such sets S(p, q) is given in Figure 6.1 and Figure 6.2.

Definition 6.4 (Z-resilient network). A network is Z-resilient if there exists an arbitrary

set of cycles S of the network such that S is a resilient decomposition, and the diameter

of the cycles of S is at most Z.

For instance, in a torus network (see Figure 6.1), the set of square cycles is a resilient

decomposition. Thus, a torus is a 2-resilient network. Similarly, in a planar graph

network (see Figure 6.2), the set of polygonal cycles is a resilient decomposition. As the

diameter of the largest cycle is 2, this network is also 2-resilient.

More generally, in Theorem 6.6 (see Section 6.3), we show that any 3-connected network

admits a resilient decomposition.
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Figure 6.1: Example of set of cycles S(p, q) on a torus. Here, the cycles are the
elementary squares.

Figure 6.2: Example of set of cycles S(p, q) on a planar graph. Here, the cycles are
the elementary polygons.

In the following, we are interested in Z-resilient networks where Z is small compared to

the network diameter. This is the case of networks where the nodes are homogeneously

distributed in a bidimensional or tridimensional space, and are neighbors with the closest

nodes – for instance, a network of sensors or mobile robots.

6.2 Algorithms

In this section, we describe our algorithm for reliable communication. Then, after in-

troducing the problem of self-stabilizing reliable communication, we describe our second

algorithm.

6.2.1 Hypotheses

We consider a Z-resilient network, and we assume that the minimal distance between

two Byzantine nodes is strictly greater than 2Z. Let D be the diameter of the network.
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We assume that the time between two activations of a same node has an upper bound

T1. Similarly, the time for a message to cross a communication channel has an upper

bound T2. Let T = max(T1, T2). Note that this bound T is unknown to the correct

nodes, and that our algorithms do not use any time primitive. This bound is only used

to evaluate the global broadcast time.

6.2.2 Algorithm 1: reliable communication

Let us present an algorithm that ensures reliable communication in at most 8D∆2ZT

time units. The correctness proof of this algorithm is given in Theorem 6.13 (see Sec-

tion 6.4).

Informal description

Each correct node p initially multicasts p.m0, and its correct neighbors accept p.m0

from p. Then, the nodes send tuples (p,m,X), where p is the supposed initiator of the

message m, and X is a set recording the nodes visited by this message. This message

can visit at most Z nodes.

When a correct node has received (p,m,X) and (p,m,X ′) through two disjoint set of

nodesX andX ′, it acceptsm from p and multicasts (p,m, ∅). Then, the same mechanism

is repeated until each correct node accepts m from p.

The underlying idea is that two Byzantine nodes can never cooperate to make a correct

node accept a false message, as a message can cross at most Z hops, and the distance

between Byzantine nodes is more than 2Z.

Each correct node p has a memory set p.Rec, initially empty, to register the messages

received. We say that a node multicasts a message when it sends this message to all its

neighbors.

Description of Algorithm 1

When p is activated, it executes the following algorithm:

1. If p is activated for the first time: multicast p.m0.

2. If m is received from a neighbor q: accept m, multicast (q,m, ∅) and never accept

another message from q.

3. If (s,m,X) is received from a neighbor q, with q /∈ X and |X| < Z: add (s,m,X ∪
{q}) to p.Rec and multicast it.
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4. When there exists s, m, X and X ′ such that X ∩X ′ = ∅, (s,m,X) ∈ p.Rec and

(s,m,X ′) ∈ p.Rec: accept m from s, multicast (s,m, ∅) and never accept another

message from s.

6.2.3 Self-stabilizing reliable communication

We now consider a stronger version of the previous problem: in addition of tolerating

permanent Byzantine nodes, we must also recover from any arbitrary initial state (that

e.g. results from every node being transiently Byzantine). In other words, we now

assume that the local memories of nodes and channels can initially contain any element.

More precisely, at time t = 0:

• For each correct node, any local memory used in our algorithm can contain any

element.

• Each communication channel {p, q} can contain any message sent by p, but not

yet received by q.

This arbitrary initial state can represent the temporary violation of the density require-

ment of permanent Byzantine nodes. We present an algorithm that ensures reliable

communication despite any arbitrary initial state in 6.2.4.

6.2.4 Algorithm 2: self-stabilizing reliable communication

Let us present an algorithm that ensures reliable communication despite any arbitrary

initial state in at most 12D∆2ZT time units. The correctness proof of this algorithm is

given in Theorem 6.20 (see Section 6.5).

The interest of Algorithm 1 compared to Algorithm 2 is that it uses shorter messages.

Indeed, Algorithm 1 requires the messages to register up to Z node identifiers. Algorithm

2 requires to register up to K = 4D∆2Z node identifiers.

Besides, Algorithm 2 does not terminate: indeed, if it was the case, the initial configura-

tion could be a wrong terminal configuration, and we would not have the self-stabilization

property. However, the transient faults only cause a finite number of wrong messages.

In particular, as a torus is a 2-resilient network (see Section 6.1), this algorithm ensures

reliable communication in a torus network despite any arbitrary initial state, provided

that the distance between Byzantine failures is greater than 4.
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Informal description

The previous algorithm cannot work if we assume an arbitrary initial state. Indeed, in

the initial state, the broadcast of false messages can already be initiated, and it becomes

impossible to distinguish authentic messages from false messages.

We thus adopt a different strategy. First, we remove the limit of Z nodes identifiers.

Therefore, when a message broadcast by a correct node p reaches a correct node q, all

the nodes visited by the message are registered.

The node q waits until it receives a same message from p through several different

paths. Then, it checks if the fusion of these paths can reconstitute a sequence of cy-

cles (C1, . . . , Cn) such as described in Definition 6.2. We call this a (p, q)-valid set of

sequences (see Definition 6.5). If yes, q accepts the message from p.

The interest of this mechanism is the following: as the distance between Byzantine nodes

is more than 2Z, a (p, q)-valid set contains at least one correct path connecting p to q,

which ensures that the message is correct. Besides, the fake sequences of node identifiers

resulting from the arbitrary initial state are eliminated after a certain time.

Each correct node p has a memory set p.Rec, but this set can now initially contain any

element. Besides, a correct node q can already have accepted any message from a node

p. Later, q can accept another message from p, which replaces the previous one, and so

forth.

Definitions

Let K = 4D∆2Z.

Definition 6.5 ((p, q)-valid set of sequences). Let Ω be a set of sequences (u1, . . . , un)

of node identifiers. Let G(Ω) be the graph (V,E) such that:

• V is the set of node identifiers of the sequences of Ω.

• E is the set of pairs of node identifiers {p, q} such that there exists (u1, . . . , un) ∈ Ω

and i ∈ {1, . . . , n− 1} such that p = ui and q = ui+1.

We say that Ω is (p, q)-valid if:

• ∀(u1, . . . , un) ∈ Ω, u1 = p and un = q.

• G(Ω) can be decomposed in a sequence (C1, . . . , Cm) of cycles of diameter at most

Z, such that p ∈ C1, q ∈ Cm and ∀i ∈ {1, . . . ,m − 1}, Ci and Ci+1 have at least

two elements in common.
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• For each path (u1, . . . , un) of G(Ω) such that u1 = p, un = q and n ≤ K,

(u1, . . . , un) ∈ Ω.

Description of Algorithm 2

When a correct node p is activated, it executes the following algorithm:

1. Multicast (p, p.m0, (p)).

2. If (s,m, (u1, . . . , un)) is received from a neighbor q, with un = q and n ≤ K: add

(s,m, (u1, . . . , un, p)) to p.Rec and multicast it.

3. When there exists s, m and a (s, p)-valid set Ω such that, ∀X ∈ Ω, (s,m,X) ∈
p.Rec: accept m from s, and ∀(m′, X ′) such that (s,m′, X ′) ∈ p.Rec, remove

(s,m′, X ′) from p.Rec.

6.3 Topology properties

In this section, we prove the results that only concern the communication graph, inde-

pendently of the algorithms.

In 6.3.1, we show that any 3-connected graph admits a resilient decomposition, as

claimed in Section 6.1. In 6.3.2, we show that the set of correct cycles is connected,

which is a key property fort the correctness proofs of our algorithms.

6.3.1 Resilient decomposition

Theorem 6.6. If the network is 3-connected, there exists a resilient decomposition.

Proof. Let us suppose that the communication graph G is 3-connected.

Let p and q be two nodes. Let u and v be two neighbors of p. Let G′ be the graph

obtained by removing the nodes p and q from G. As G is 3-connected, at least 3 nodes

must be removed to disconnect the graph. Thus, G′ is connected. Let (u1, . . . , un) be

the shortest path in G′ such that u1 = u and un = v. Let C(u, v) = {p, u1, . . . , un}.
According to Definition 6.1, C(u, v) is a cycle in G.

As G is 3-connected, p has at least 2 neighbors distinct from q. Let (v1, . . . , vm) be a

sequence containing all the neighbors of p distinct from q, with m ≤ ∆. ∀i ∈ {1, . . . ,m−
1}, let Ci = C(vi, vi+1). At last, let S(p, q) = {C1, . . . , Cm−1}.

Let us show that S(p, q) satisfies the properties of Definition 6.3:
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• ∀i ∈ {1, . . . ,m − 1}, Ci and Ci+1 have the nodes p and vi+1 in common. Thus,

according to Definition 6.2, S(p, q) is connected.

• By definition, S(p, q) contains m− 1 cycles. As m ≤ ∆, S(p, q) contains less than

∆ cycles

• Let Ci be a cycle of S(p, q). Then, by definition of C(u, v), Ci contains p, and does

not contain q.

• Let vi be a neighbor of p. If i = m, vi belongs to Cm−1. Otherwise, vi belongs to

Ci. Thus, each neighbor of p belongs to a cycle of S(p, q).

Therefore, S =
⋃
{p,q}∈V S(p, q) is a resilient decomposition, according to Definition 6.3.

6.3.2 Connected sets of cycles

Let us show that the set of correct cycles is connected in the sense of Definition 6.2. This

property in used in the correctness proofs of our algorithms, to show that the correct

messages always manage to broadcast between Byzantine nodes.

For this purpose, we first show that each pair of correct nodes is connected by a bounded

correct path (Lemmas 6.7 and 6.8). Then, we show that each pair of correct cycles is

connected by a bounded set of cycles (Lemmas 6.9 and 6.10).

Lemma 6.7. Let b be a Byzantine node. Let u and v be two neighbors of b. Then, there

exists a correct path of at most ∆Z hops connecting u and v.

Proof. Let q be any node distinct from b, u and v.

First, let us show that b is the only Byzantine node of the cycles of S(b, q). Indeed, let

us suppose the opposite: a cycle of S(b, q) contains a Byzantine node b′ 6= b. Then, the

Byzantine nodes b and b′ are on the same cycle, and are distant from at most Z hops:

contradiction. Therefore, b is the only Byzantine node of the cycles of S(b, q).

Let C (resp. C ′) be two cycles of S(b, q) such that u ∈ C (resp. v ∈ C ′). As S(b, q)

is connected, according to Definition 6.2, there exists a sequence (C1, . . . , Cn) of cycles

of S(b, q) such that C = C1, C ′ = Cn and ∀i ∈ {1, . . . , n − 1}, Ci and Ci+1 have at

least two nodes in common. As S(b, q) contains at most ∆ cycles, n ≤ ∆. Thus, as b is

the only Byzantine node of Ci and Ci+1, Ci and Ci+1 have at least one correct node in

common. Let ui be that node. Let u0 = u and un = v.
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Let us show the following property Pi by induction, ∀i ∈ {0, . . . , n}: there exists a

correct path of at most iZ hops connecting u and ui.

• P0 is true, as u = u0.

• Let us suppose that Pi is true, for i ∈ {0, . . . , n − 1}. Then, as {ui, ui+1} ⊆ Ci+1

and b is the only Byzantine node of Ci+1, there exists a path of at most Z nodes

of Ci+1 connecting ui and ui+1. Thus, Pi+1 is true.

Therefore, Pn is true, and there exists a correct path of at most nZ ≤ ∆Z hops con-

necting u and un = v. Thus, the result.

Lemma 6.8. Let p and q be two correct nodes. There exists a correct path of at most

2D∆ hops connecting p and q.

Proof. As D is the network diameter, let P be a path of n hops connecting p and q,

with n ≤ D. If P is correct, the result follows.

Otherwise, let b be a Byzantine node of P . As the distance between two Byzantine

nodes is more than 2Z, b has two correct neighbors u and v on P . Thus, according to

Lemma 6.7, there exists a correct path of at most ∆Z hops connecting u and v. Thus,

we can replace b by this path, and we obtain a new path P ′ that does not contain b.

We repeat this process for each Byzantine node of P , until we get a fully correct path.

As the distance between two Byzantine nodes is more than 2Z, there are at most 1 +

D/2Z ≤ D/Z Byzantine nodes in P . Thus, the final correct path contains at most

D + ∆ZD/Z ≤ 2D∆ hops.

Lemma 6.9. Let p be a correct node. Let u and v be two correct neighbors of p. Then,

there exists a connected set X containing at most ∆ correct cycles of diameter at most

Z, such that u and p (resp. v and p) belong to a cycle of X.

Proof. First, let us choose a particular node q.

If all the nodes at distance Z or less from p are correct, let q be any node distinct from

p, u and v.

Otherwise, let b be a Byzantine node at distance Z or less from p. Let us show that b is

the only Byzantine node at distance Z or less from p. Indeed, let us suppose that there
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exists another Byzantine node b′ in this situation. Then, b (resp. b′) is at Z hops or less

from p, and the distance between b and b′ is at most 2Z: contradiction. Let q = b.

Now, let us show that we can take X = S(p, q):

• By definition, S(p, q) is connected, contains at most ∆ cycles, and Z is an upper

bound of the diameter of the cycles of S(p, q).

• Let C be a cycle of S(p, q). By definition, C does not contain q. As the diameter

of C is at most Z, all the nodes of C are at Z hops or less from p. Therefore, as

all the nodes at Z hops or less from p and distinct from q are correct, C is correct.

Thus, all the cycles of S(p, q) are correct.

• For each neighbor w of p, there exists a cycle of S(p, q) containing w. Therefore,

there exists a cycle C (resp. C ′) of S(p, q) containing u and p (resp. v and p).

Thus, the result, if we take X = S(p, q).

Lemma 6.10. Let p and q be two correct nodes. Then, there exists a connected set Y

containing at most 2D∆2 correct cycles of diameter at most Z, such that p (resp. q)

belongs to a cycle of Y .

Proof. According to Lemma 6.8, there exists a correct path (u0, . . . , un), with n ≤ 2D∆,

such that u0 = p and un = q. Let us prove the following property Pi by induction,

∀i ∈ {1, . . . , n}: there exists a connected set Xi, containing at most i∆ correct cycles of

diameter at most Z, such that p (resp. ui) belongs to a cycle of Xi.

• First, let us show that P1 is true. Let v be a correct neighbor of p distinct from

u1. Then, according to Lemma 6.9, there exists a connected set X containing at

most ∆ correct cycles of diameter at most Z, such that p and u1 (resp. p and v)

belong to a cycle of X. Thus, P1 is true, if we take X1 = X.

• Now, let us suppose that Pi is true, for i ∈ {1, . . . , n}. Let C be the cycle of

Xi containing ui. Let v be a correct neighbor of ui in C. Then, according to

Lemma 6.9, there exists a connected set X containing at most ∆ correct cycles of

diameter at most Z, such that ui and v (resp. ui and ui+1) belong to a cycle of

X. Let C ′ be the cycle of X containing ui and v. Then, as C and C ′ share two

nodes, Xi ∪X is connected, and contains at most (i + 1)∆ cycles. Thus, Pi+1 is

true, if we take Xi+1 = Xi ∪X.

Therefore, Pn is true. Thus, the result, as n ≤ 2D∆.
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6.4 Correctness proof of Algorithm 1

Let us show that Algorithm 1 ensures reliable communication in at most 8D∆2ZT time

units. For this purpose, we first show that the correct nodes can only accept correct

messages (Lemma 6.11). Then, we show that they always eventually accept any correct

message (Lemma 6.12 and Theorem 6.13).

Lemma 6.11. Let p and q be two correct nodes. Then, if q accepts m from p, we

necessarily have m = p.m0.

Proof. Let us suppose the opposite, and let q be the first correct node to accept a message

m 6= p.m0 from p. The node q cannot accept m from p in step 2 of our algorithm, as p

only multicasts p.m0. Thus, it was in step 4. Implying that there exists X and X ′ such

that X ∩X ′ = ∅, (p,m,X) ∈ q.Rec and (p,m,X ′) ∈ q.Rec.

Let us show that there exists a Byzantine node b ∈ X at Z hops or less from q. For

this purpose, let us suppose the opposite, and let us show the following property Pi by

induction, ∀i ∈ {0, . . . , |X|}: there exists a correct node ui at i hops or less from q and

a set Xi ⊆ X such that ui multicasts (p,m,Xi) and |Xi| ≤ Z − i.

• As (p,m,X) ∈ q.Rec, (p,m,X) was added to q.Rec in step 3 of our algorithm. It

implies that |X| ≤ Z and that p multicasts (p,m,X). Thus, P0 is true if we take

u0 = q and X0 = X.

• Now, let us suppose that Pi is true, for i ∈ {0, . . . , |X| − 1}. As ui multicasts

(p,m,Xi), according to step 3 of our algorithm, it implies that there exists a node

v ∈ Xi ⊆ X such that ui receives (p,m,Xi−{v}) from v. As v is at i+1 ≤ |X| ≤ Z
hops or less from q, according to our hypothesis, v cannot be Byzantine. Thus, v

is correct, and Pi+1 is true if we take ui+1 = v and Xi+1 = Xi − {v}.

Thus, P|X| is true, and u|X| multicasts (p,m, ∅), which was necessarily in step 2 of our

algorithm. It implies that u|X| accepts m from p before q: contradiction. Thus, there

exists a Byzantine node b ∈ X at Z hops or less from q.

Similarly, there exists a Byzantine node b′ ∈ X ′ at Z hops or less from q. Thus, as

X ∩X ′ = ∅, there exists two distinct Byzantine nodes b and b′ distant from 2Z hops or

less: contradiction. Thus, the result.

Lemma 6.12. Let p be a correct node, and let C be a correct cycle of diameter at most

Z in the communication graph. Let us suppose that two nodes u and v of C accept p.m0

from p before date t. Then, all nodes of C accept p.m0 from p before date t+ 4ZT .
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Proof. According to Lemma 6.11, a correct node can only accept p.m0 from p.

Let w be a node of C such that, if one of the 3 nodes {u, v, w} is removed, there still

exists a path of nodes of C connecting the two remaining nodes in at most Z hops.

Thus, there exists two internally disjoint paths (u1, . . . , un) and (v1, . . . , vm) of nodes of

C, with u1 = u, v1 = v, un = vm = w, n ≤ Z and m ≤ Z. Let X0 = Y0 = ∅, and for

i 6= 0, let Xi = {u1, . . . , ui} and Yi = {v1, . . . , vi}.

Let us show the following property Pi by induction, ∀i ∈ {1, . . . , n}: ui multicasts

(p, p.m0, Xi) before date t+ 2iT .

• As u1 = u accepts p.m0 from p before date t, according to our algorithm, u

multicasts (p, p.m0, ∅) before date t. Thus, P0 is true.

• Let us suppose that Pi is true, for i ∈ {0, . . . , n−1}. As ui multicasts (p, p.m0, Xi)

before t + 2iT , ui+1 receives (p, p.m0, Xi) from ui before t + 2(i + 1)T . Thus, as

|Xi| < n ≤ Z, according to step 3 of our algorithm, ui+1 multicasts (p, p.m0, Xi+1)

before t+ 2(i+ 1)T , and Pi+1 is true.

Therefore, Pn is true, and un = w multicasts (p, p.m0, Xn) before date t+2nT ≤ t+2ZT .

According to step 3 of our algorithm, it implies that we have (p, p.m0, Xn−1) ∈ w.Rec
before t + 2ZT . Similarly, we have (p, p.m0, Ym−1) ∈ w.Rec before t + 2ZT . Thus, as

Ym−1 ∩Xn−1 = ∅, according to step 4 of our algorithm, w accepts p.m0 from p before

t+ 2ZT .

Now, let w′ be any correct node of C. If w′ ∈ {u, v, w}, the result follows. Otherwise,

according to the choice of w, we can take two nodes {u′, v′} ⊆ {u, v, w} such that there

exists two internally disjoint paths (u′1, . . . , u
′
n′) and (v′1, . . . , v

′
m′) of nodes of C, with

u′1 = u, v′1 = v, u′n′ = v′m′ = w′, n′ ≤ Z and m′ ≤ Z. Then, by a perfectly similar

reasoning, w′ accepts p.m0 from p before t+ 4ZT . Thus, the result.

Theorem 6.13. Let p and q be two correct nodes. Then, q accepts p.m0 from p before

date 8D∆2ZT , and never accepts another message from p.

Proof. According to Lemma 6.11, a correct node can only accept p.m0 from p.

If p and q are neighbors, according to our algorithm, q accepts p.m0 from p before date

2T , and then never accepts another message from q. Thus, the result. Now, let us

suppose that p and q are not neighbors.
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According to Lemma 6.10, there exists a sequence of correct cycles (C1, . . . , Cn) of

diameter at most Z in the communication graph, such that p ∈ C1, q ∈ Cn, n ≤ 2D∆2

and ∀i ∈ {1, . . . , n− 1}, Ci and Ci+1 have at least two nodes in common.

Let us show the following property Pi by induction, for i ∈ {1, . . . , n}: all the nodes of

Ci accept p.m0 from p before date 2T + i4ZT .

• Let u and v be the two neighbors of p in C1. Then, according to step 1 and 2 of

our algorithm, u and v accept p.m0 from p before date 2T . Thus, according to

Lemma 6.12, P1 is true.

• Let us suppose that Pi is true, for i ∈ {1, . . . , n− 1}. Then, as Ci and Ci+1 have

two nodes in common, according to Lemma 6.12, Pi+1 is true.

Therefore, Pn is true, and q accepts p.m0 from p before date 2T + n4ZT ≤ 2T +

8D∆2ZT ≤ 9D∆2ZT . Besides, according to our algorithm, q never accepts another

message from p. Thus, the result.

6.5 Correctness proof of Algorithm 2

Let us show that Algorithm 2 ensures reliable communication despite any arbitrary initial

state in at most 12D∆2ZT time units. In 6.5.1, we show that the effects of the arbitrary

initial state dissipate after a certain time. In 6.5.2, we show that messages are regularly

accepted. At last, in 6.5.3, we show that we always achieve reliable communication.

6.5.1 Self-stabilization

Let us show that any problematic message resulting from the arbitrary initial state is

eliminated after 2KT time units.

For this purpose, we introduce the notion of real sequence (see Definition 6.14). A

real sequence is a sequence of nodes that corresponds to a correct path after the last

Byzantine node. In Lemma 6.15, we show that after 2KT time units, all the sequences

attached to messages are real. Therefore, after 2KT time units, the lies can only come

from the permanent Byzantine nodes, and not from the arbitrary initial state.
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Definition 6.14 (Real sequence). A sequence of node identifiers (u1, . . . , un) is real if

n ∈ {2, . . . ,K − 1} and:

• Either (u1, . . . , un) is a correct path is the communication graph.

• Or there exists k ∈ {1, . . . , n − 1} such that uk is a Byzantine node, uk+1 is a

correct neighbor of uk, and (uk+1, . . . , un) is a correct path in the communication

graph.

Lemma 6.15. Let p and q be two correct nodes. Let us suppose that (p,m,X) is added

to q.Rec after date 2KT . Then, X is necessarily a real sequence. Besides, if X is a

correct path in the communication graph, m = p.m0.

Proof. Let us suppose the opposite: X is not a real sequence. As (p,m,X) is added

to q.Rec, according to our algorithm, X is necessarily a sequence (u1, . . . , un), with

n ∈ {2, . . . ,K} and un = q. For i ∈ {1, . . . , n − 1}, let Xi = (u1, . . . , un−i) and

Yi = (un−i, . . . , un).

Let us show the following property Pi by induction, ∀i ∈ {1, . . . , n− 1}: Yi is a correct

path in the communication graph and un−i multicasts (p,m,Xi) after date 2(K − i)T .

• As (p,m,X) is added to q.Rec after date 2KT > 0, according to our algorithm,

q = un necessarily receives (p,m,X1) from un−1. It implies that un−1 multicasts

(p,m,X1) after date 2(K − 1)T > 0. If un−1 is Byzantine, according to Defini-

tion 6.14, X is real: contradiction. Thus, un−1 is correct, and Y1 = (un−1, un) is a

correct path. Thus, P1 is true.

• Now, let us suppose that Pi is true, for i ∈ {1, . . . , n − 2}. As un−i multicasts

(p,m,Xi) after date 2(K − i)T > 0, according to our algorithm, un−i necessarily

receives (p,m,Xi+1) from un−i−1. It implies that un−i−1 multicasts (p,m,Xi+1)

after date 2(K − i− 1)T > 0. If un−i−1 is Byzantine, according to Definition 6.14,

X is real: contradiction. Thus, un−i−1 is correct. Therefore, as Yi is a correct path

and un−i−1 is a correct neighbor of un−i, Yi+1 is also a correct path. Thus, Pi+1

is true.

Therefore, Pn−1 is true, and X = Yn−1 is a correct path in the communication graph.

Thus, according to Definition 6.14, X is a real sequence: contradiction. Thus, the first

part of the result. Besides, in the case where X is a correct path in the communication

graph, as Pn−1 is true, u1 = p multicasts (u1,m,Xn−1) = (p,m, (p)) before date 2(K −
n+ 1)i > 0. Thus, according to our algorithm, we necessarily have m = p.m0.
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6.5.2 Regular acceptance

Let us show that, for each pair of correct nodes p and q, q accepts a message from p

each 2KT time units (whether or not this message is correct).

For this purpose, we show that q receives messages from p through each path of length

K (Lemma 6.16). Then, we show that these paths reconstitute the sequence of cycles

required by our algorithm for acceptance (Lemma 6.17).

Lemma 6.16. Let X = (u1, . . . , un) be a correct path in the communication graph, with

n ∈ {2, . . . ,K−1}, and let t be a date. Then, (u1, u1.m0, X) is added to un.Rec between

t and t+ (2K − 1)T .

Proof. Let us show the following property Pi by induction, ∀i ∈ {1, . . . , n − 1}: ui+1

multicasts (u1, u1.m0, Xi) between t and t+ (2i+ 1)T , with Xi = (u1, . . . , ui+1).

• First, let us show that P1 is true. As u1 is activated between t and t + T , u1

multicasts (u1, u1.m0, (u1)). Thus, as u2 receives (u1, u1.m0, (u1)) between t and

t + 3T , according to step 2 of our algorithm, u2 multicasts (u1, u1.m0, (u1, u2)).

Thus, P1 is true.

• Now, let us suppose that Pi is true, for i ∈ {1, . . . , n − 2}. As ui+1 multicasts

(u1, u1.m0, Xi) between t and t+ (2i+ 1)T , ui+2 receives (u1, u1.m0, Xi) between

t and t + (2(i + 1) + 1)T . Thus, as |Xi| ≤ n ≤ K, according to step 2 of our

algorithm, ui+2 multicasts (u1, u1.m0, Xi+1). Thus, Pi+1 is true.

Therefore, Pn−1 is true, and un multicasts (u1, u1.m0, X) between t and t+ (2(n− 1) +

1)T ≤ t + (2K − 1)T . Implying that (u1, u1.m0, X) is added to un.Rec between t and

t+ (2K − 1)T . Thus, the result.

Lemma 6.17. Let p and q be two correct nodes, and let t be a date. Then, between t

and t+ 2KT , q accepts a message from p.

Proof. According to Lemma 6.10, there exists a sequence (C1, . . . , Cm) of correct cycles

of diameter at most Z, such that p ∈ C1, q ∈ Cm, m ≤ 2D∆2 and ∀i ∈ {1, . . . , n − 1},
Ci and Ci+1 have at least two nodes in common.

Let Ω be the set of paths (u1, . . . , un) such that u1 = p, un = q, n ≤ K, and forall

i ∈ {1, . . . , n}, ui belongs to a cycle of (C1, . . . , Cm). As 2Zm ≤ K, each node and

each edge of a cycle of (C1, . . . , Cm) is contained by at least one path of Ω. Therefore,

according to Definition 6.5, Ω is (p, q)-valid.



Chapter 6. Cycle decomposition 78

According to Lemma 6.16, ∀X ∈ Ω, (p, p.m0, X) is added to q.Rec between t and

t+ (2K − 1)T . Thus, two possibilities:

• Either one of these tuples (p, p.m0, X) has been removed between t and t+ (2K −
1)T . According to step 3 of our algorithm, it implies that q accepts a message

from p between t and t+ 2KT .

• Or, at date t+(2K−1)T , ∀X ∈ Ω, we have (p, p.m0, X) ∈ q.Rec. As q is activated

between t+ (2K − 1)T and t+ 2KT , according to step 3 of our algorithm, as Ω is

valid, q accepts p.m0 from p.

Thus, in all cases, q accepts a message from p between t and t+ 2KT .

6.5.3 Reliable communication

At last, let us show that our algorithm ensures reliable communication. For this purpose,

we show that after a certain time, a message accepted is necessarily correct (Lemmas 6.18

and 6.19). Then, we show that the correct messages are eventually and definitively

accepted (Theorem 6.20).

Lemma 6.18. Let p and q be two correct nodes. Let Ω be a (p, q)-valid set such that,

∀X ∈ Ω, X is a real sequence. Then, at least one of these sequences is a correct path in

the communication graph.

Proof. Let us suppose the opposite: Ω does not contain any sequence that corresponds

to a correct path in the communication graph.

As the sequences of Ω are real, according to Definition 6.14, it implies that ∀X =

(u1, . . . , un) ∈ Ω, there exists k ∈ {1, . . . , n− 1} such that uk is a Byzantine node, uk+1

is a correct neighbor of uk, and (uk+1, . . . , un) is a correct path in the communication

graph. Thus, these Byzantine nodes uk form a node cut on G(Ω), and the subgraph G′

containing q after the cut is a subgraph of the communication graph.

As Ω id (p, q)-valid, G(Ω) can be decomposed in a sequence (C1, . . . , Cm) of cycles of

diameter at most Z, such that p ∈ C1, q ∈ Cm and ∀i ∈ {1, . . . ,m−1}, Ci and Ci+1 have

at least two elements in common. Let i ∈ {1, . . . , n} be the smallest integer such that a

node of Ci belongs to G′. As G(Ω) is 2-connected, Ci contains at least two Byzantine

nodes. As the diameter of Ci is at most Z, the distance between these two Byzantine
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nodes in G′ is at most 2Z. Therefore, as G′ is a subgraph of the communication graph,

the distance between these two Byzantine nodes is at most 2Z: contradiction. Thus,

the result.

Lemma 6.19. Let p and q be two correct nodes. After date 4KT , if q accepts m from

p, then we necessarily have m = p.m0.

Proof. According to Lemma 6.15, after date 2KT , if a tuple (p,m,X) is added to q.Rec,

then X is a real sequence. According to Lemma 6.17, between dates 2KT and 4KT , q

accepts a message from p. According to our algorithm, it implies that ∀(m′, X ′) such

that (p,m′, X ′) ∈ q.Rec, (p,m′X ′) was removed from q.Rec. Therefore, after date 4KT ,

∀X such that (p,m,X) ∈ q.Rec, X is a real sequence.

As q accepts m from p, according to our algorithm, there exists a (p, q)-valid set Ω

such that ∀X ∈ Ω, (p,m,X) ∈ q.Rec. As all the sequences of Ω are real, according to

Lemma 6.18, Ω contains a least one sequence X0 = (u1, . . . , un) that is a correct path

in the communication graph. Thus, as (p,m,X0) ∈ q.Rec, according to Lemma 6.15,

m = p.m0.

Theorem 6.20. Let p and q be two non-neighbors correct nodes. Then, after date

6KT = 12D∆2ZT , q has accepted p.m0 from p, and never accepts another message

from p.

Proof. According to Lemma 6.19, after date 4KT , if q accepts a message from p, this

is necessarily p.m0. Thus, according to Lemma 6.17, between dates 4KT and 6KT , q

accepts p.m0 from p, and then never accepts another message from p.

6.6 Conclusion

In this chapter, we proposed a distance-based approach for Byzantine resilience. Both

regular and self-stabilizing reliable communication can be achieved within a linear time.

An open question would be to show the tightness of this distance criteria. Also, another

interesting extension would be to combine self-stabilization and tolerance to dynamic

changes in the network topology.





Chapter 7

Tolerating critical pairs

In the Chapter 6, we proposed solutions assuming a minimal distance between two

Byzantine nodes. In other words, there must be no critical pair, a critical pair being a

pair of Byzantine nodes that are too close from each other.

In this chapter, we show that it is also possible to tolerate critical pairs, provided that

there is a minimal distance between two critical pairs. We provide an algorithm and

show its correctness on a lattice topology.

We present the motivation in Section 7.1, the setting in Section 7.2, the algorithm in

Section 7.3, and the correctness proof in Section 7.4.

This work is a collaboration with Pr. Toshimitsu Masuzawa from Osaka University

(Japan).

7.1 Motivation

We consider a 8-connected lattice network, as illustrated in Figure 7.1.

Figure 7.1: A 5× 5 8-connected lattice.
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According to Chapter 6, we can ensure reliable communication provided that the dis-

tance between two Byzantine nodes is strictly greater than 2. In this setting, this pro-

tocol corresponds to the simple Certified Propagation Algorithm [32], where a message

must be received from 2 neighbors to be forwarded.

Yet, if two Byzantine nodes are at distance 2 or less, they can cooperate to make a

correct node accept and forward a false message. Let us call such a pair of Byzantine

nodes a critical pair.

In this chapter, we propose an algorithm that tolerates critical pairs, provided that the

critical pairs themselves are sufficiently distant. This is illustrated in Figure 7.2. The

previous algorithm can tolerate the Byzantine nodes of case A. This new algorithm can

tolerate both cases A and B.

Figure 7.2: Improvement of the algorithm.

7.2 Setting

Let N ≥ 10. We consider a network where:

• Each node corresponds to a tuple (i, j), with 1 ≤ i ≤ N and 1 ≤ j ≤ N .

• Two nodes (i1, j1) and (i2, j2) are neighbors if |i1 − i2| (resp. |j1 − j2|) equals 0, 1
or N .

Let d(p, q) be the distance between two nodes p and q.

Definition 7.1 (Critical pair). A critical pair is a pair {b, b′} of Byzantine nodes such

that d(b, b′) ≤ 2.

The distance between a node p and a critical pair {b, b′} is min(d(p, b), d(p, b′)), and the

distance between two critical pairs {b1, b′1} and {b2, b′2} is min(d(b1, b2), d(b
′
1, b2), d(b1, b

′
2),

d(b′1, b
′
2)).



Chapter 7. Tolerating critical pairs 83

Let H = 21. In the following, we assume that the distance between two critical pairs is

at least H + 3.

7.3 Algorithm

7.3.1 Informal description

The principle of algorithm [32] is the following: to forward a message, a node must

receive it from two neighbors. This is illustrated in Figure 7.3.

Our algorithm can be seen as a recursion of the previous algorithm. Let a voting path be

a sequence of nodes along which a message can broadcast w.r.t. algorithm [32]. Here, to

forward a message, a node must receive it from two disjoint voting paths of a bounded

length. Thus, a single pair of Byzantine nodes is not sufficient to initiate the broadcast

of a false message. This is illustrated in Figure 7.4.

Figure 7.3: Principle of the previous algorithm.

Figure 7.4: Principle of our algorithm.

7.3.2 Description of the algorithm

Each correct node has two memory sets Rec and Rec′, initially empty.

Each correct node p executes the following algorithm.

1. Initially, accept p.m0 from p and multicast (p, p.m0, ∅).

2. When (s,m,Ω) is received from a neighbor q, with q /∈ Ω:

• If q = s, accept m from s and multicast (s,m, ∅).

• Add (s,m,Ω ∪ {q}, q) to Rec.

3. When there exists s, m, Ω, Ω′, q and q′ such that q �= q′, (s,m,Ω, q) ∈ Rec,

(s,m,Ω′, q′) ∈ Rec and |Ω ∪ Ω′| ≤ H:
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• Multicast (s,m,Ω ∪ Ω′).

• Add (s,m,Ω ∪ Ω′) to Rec′.

4. When there exists s, m, Ω and Ω′ such that (s,m,Ω) ∈ Rec′, (s,m,Ω′) ∈ Rec′,
Ω ∩ Ω′ = ∅ and |Ω|+ |Ω′| ≤ H:

• Accept m from s.

• Multicast (s,m, ∅).

7.4 Correctness proof

7.4.1 Definitions

Definition 7.2 (Voting path). A voting path is a sequence (u1, . . . , un) of distinct correct

nodes, with n ∈ {3, . . . ,H + 1}, such that ∀i ∈ {3, . . . , n}, there exists j ∈ {1, . . . , i− 2}
such that ui is neighbor with both ui−1 and uj .

Definition 7.3 (Reliable node). Let s be a correct node. A correct node p is reliable

for s if p always eventually accepts s.m0 from s.

Definition 7.4 (Square). A set of four nodes {p, q, r, s} is a square if there exists i and

j such that p = (i, j), q = (i + 1, j), r = (i, j + 1) and s = (i + 1, j + 1). A square is

correct if all its nodes are correct.

Definition 7.5 (Square path). A sequence of squares (S1, . . . , Sn) is a square path

connecting S1 and Sn if ∀i ∈ {1, . . . , n− 1}, |Si| ∩ |Si+1| = 2.

Definition 7.6 (Square path). A sequence of squares (S1, . . . , Sn) is a square path

connecting S1 and Sn if ∀i ∈ {1, . . . , n− 1}, |Si| ∩ |Si+1| = 2.

Definition 7.7 (Connected set of squares). A set of squares X is connected if, for each

pair of squares (S, S′) of X, there exists a square path of X connecting S and S′.

7.4.2 Proof

In Theorem 7.15, we show that for any correct nodes s and p, p is reliable for s.

Lemma 7.8. Let s be a correct node. If a correct node accepts a message m from s,

then m = s.m0.
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Proof. Let us suppose the opposite. Let p be the first correct node to accept a message

m from s such that m 6= s.m0. According to the algorithm, it implies that there exists

Ω and Ω′ such that (s,m,Ω) ∈ p.Rec′, (s,m,Ω′) ∈ p.Rec′, Ω∩Ω′ = ∅ and |Ω|+ |Ω′| ≤ H.

Let us suppose that there exists no critical pair {b, b′} ⊆ Ω at distance |Ω| + 1 or less

from p. Let p0 = p and Ω0 = Ω. Let us prove the following property Pi by induction,

∀i ∈ {0, . . . , |Ω|+ 1}: there exists a correct node pi at distance i or less from p and a set

Ωi ⊆ Ω such that (s,m,Ωi) ∈ pi.Rec′ and |Ωi| ≤ |Ω| − i.

• P0 is true, as (s,m,Ω) ∈ p.Rec′.

• Let us suppose that Pi is true, for i ∈ {0, . . . , |Ω|}. As (s,m,Ωi) ∈ pi.Rec
′,

according to step 3 of the algorithm, there exists s, m, X, X ′, q and q′ such that q 6=
q′, (s,m,X, q) ∈ pi.Rec, (s,m,X ′, q′) ∈ pi.Rec and Ωi = X ∪X ′. As (s,m,X, q) ∈
pi.Rec, according to step 2 of the algorithm, it implies that pi received (s,m, Y )

from q, with q /∈ Y and X = Y ∪{q}. The same is also true for q′ and X ′. Besides,

{q, q′} ⊆ Ωi ⊆ Ω.

As pi is at distance i ≤ |Ω| or less from p, q and q′ are at distance |Ω|+ 1 or less

from p. Thus, as there exists no critical pair {b, b′} ⊆ Ω at distance |Ω| + 1 or

less from p, it is impossible that both q and q′ are Byzantine. Therefore, there

exists a correct node v ∈ {q, q′} that sent (s,m,Z), with v /∈ Z and Z ∪ {v} ⊆ Ωi.

Thus, Z ⊆ Ω and |Z| ≤ |Ωi| − 1 ≤ |Ω| − (i + 1). Besides, as p is the first correct

node to accept m from s, (s,m,Z) was necessarily sent in step 3 of the algorithm,

implying that (s,m,Z) ∈ v.Rec′.

Therefore, Pi+1 is true, if we take pi+1 = v and Ωi+1 = Z.

Thus, P|Ω|+1 is true, implying that there exists a set Ω|Ω|+1 such that |Ω|Ω|+1| ≤ −1:

contradiction. Therefore, there exists a critical pair {b1, b′1} ⊆ Ω at distance |Ω| + 1 or

less from p.

By a similar reasoning, there exists a critical pair {b2, b′2} ⊆ Ω′ at distance |Ω′| + 1

or less from p. As Ω ∩ Ω′ = ∅, {b1, b′1} and {b2, b′2} are not the same critical pair. As

|Ω|+|Ω′| ≤ H, the distance between {b1, b′1} and {b2, b′2} is at most |Ω|+|Ω′|+2 ≤ H+2:

contradiction. Thus, the result.

Lemma 7.9. Let s be a correct node, and let (u1, . . . , un) be a voting path. If u1

and u2 are reliable for s, then we eventually have (s, s.m0,Ω) ∈ un.Rec
′, with Ω ⊆

{u1, . . . , un−1}.
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Proof. Let us prove the following property Pi by induction, ∀i ∈ {3, . . . , n}: we eventu-

ally have (s, s.m0,Ωi) ∈ ui.Rec′, with Ωi ⊆ {u1, . . . , ui−1}.

• As u1 and u2 are reliable for s, according to the algorithm, u1 and u2 eventually

multicast (s, s.m0, ∅). According to Definition 7.2, u3 is neighbor with u1 and u2.

Thus, according to step 2 of the algorithm, we eventually have (s, s.m0, {u1}, u1) ∈
u3.Rec and (s, s.m0, {u2}, u2) ∈ u3.Rec. Thus, according to step 3, we eventually

have (s, s.m0, {u1, u2}) ∈ u3.Rec
′, and P3 is true. Besides, u3 eventually multicasts

(s, s.m0, {u1, u2}). Thus, we eventually have (s, s.m0, {u1, u2, u3}, u3) ∈ u4.Rec

and (s, s.m0, {uj}, uj) ∈ u4.Rec, with j ∈ {1, 2}. Therefore, for the same reason,

P4 is true.

• Let i ∈ {4, . . . , n − 1}, and let us suppose that ∀k ∈ {1, . . . , i}, Pk is true. Let

j ∈ {1, . . . , i − 1} be such that ui+1 and uj are neighbors. As Pj and Pi are

true, we eventually have (s, s.m0,Ωj) ∈ uj .Rec′ and (s, s.m0,Ωi) ∈ ui.Rec′, with

Ωi ⊆ {u1, . . . , ui−1} and Ωj ⊆ {u1, . . . , uj−1}. According to the algorithm, it

implies that uj eventually multicasts (s, s.m0,Ωj) and that ui eventually multi-

casts (s, s.m0,Ωi). Thus, we eventually have (s, s.m0,Ωj ∪ {uj}) ∈ ui+1.Rec and

(s, s.m0,Ωi ∪ {ui}) ∈ ui+1.Rec. Let Ωi+1 = Ωi ∪ Ωj ∪ {ui, uj} ⊆ {u1, . . . , ui}. As

|Ωi+1| ≤ i ≤ n− 1 ≤ H, according to step 3, we eventually have (s, s.m0,Ωi+1) ∈
ui+1.Rec

′, and Pi+1 is true.

Thus, Pn is true. Thus, the result.

Lemma 7.10. Let s be a correct node. Let (u1, . . . , un) and (v1, . . . , vm) be two voting

paths such that un = vm, n+m ≤ H + 2, {u1, . . . , un−1} ∩ {v1, . . . , vm−1} = ∅, and u1,

u2, v1 and v2 are reliable for s. Then, un is also reliable for s.

Proof. According to Lemma 7.9, we eventually have (s, s.m0,Ω) ∈ un.Rec′ and (s, s.m0,

Ω′) ∈ un.Rec
′, with Ω ⊆ {u1, . . . , un−1} and Ω′ ⊆ {v1, . . . , vm−1}. Thus, Ω ∩ Ω′ = ∅

and |Ω| + |Ω′| ≤ n + m − 2 ≤ H. Therefore, according to step 4 of the algorithm, un

eventually accepts s.m0 from s. Thus, the result.

Lemma 7.11. The set of correct squares is connected in the sense of Definition 7.7.

Proof. Let S and S′ be two correct squares. Let (S1, . . . , Sn) be a square path connecting

S and S′ (this path may contain Byzantine nodes). Let us show that we can fix this

path to obtain a correct square path.
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Let k be the first integer such that Sk is not a correct square, and let k′ > k be the first

integer such that Sk′ is a correct square. Let b be a Byzantine node of Sk.

• If b does not belong to a critical pair, then all the nodes at distance 2 or less from

b are correct. Therefore, there exists a connected set of correct squares X such as

represented in Figure 7.5.

• If b belongs to a critical pair {b, b′}, then all the nodes at distance 2 or less from

either b or b′ are correct (otherwise we would have two critical pairs that do not

respect the distance hypothesis). Therefore, there exists a connected set of correct

squares X such as represented in Figure 7.6 (a similar set exists for each possible

relative placement of b and b′).

Figure 7.5: Connected set of correct squares around a single Byzantine node.

Figure 7.6: Connected set of correct squares around a critical pair.

Therefore, there exists a square path (Z1, . . . , Zm) of squares of X such that Z1 = Sk

and Zm = Sk′ . Therefore, we can fix the square path (S1, . . . , Sn) into (S1, . . . , Sk−1,

Z1, . . . , Zm, Sk′+1, . . . , Sn), so that this new path does not contain b. We repeat the

process until we obtain a square path that does not contain any Byzantine node.

Lemma 7.12. Let s be a correct node. There exists a correct square S such that all the

nodes of S are reliable for s.
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Proof. If s belongs to a correct square, let S = {s, p, q, r} be this correct square. As p,

q and r are neighbors of s, according to the algorithm, all the nodes of S are reliable for

s.

Now, let us suppose that s does not belong to a correct square. Then, we are in a

situation such as represented in Figure 7.7 (or a symmetrical situation), involving a

critical pair {b, b′}. Let us suppose that the node s corresponds to the coordinates (0, 0)

on the lattice. Let:

• P1 = ((1, 0), (1,−1), (2, 0))

• P2 = ((−1, 0), (−1, 1), (−2, 1), (−1, 2), (0, 2), (0, 3), (1, 2), (1, 1), (2, 1), (2, 0))

• P3 = ((1, 0), (1,−1), (2,−1))

• P4 = ((−1, 0), (−1,−1), (−2,−1), (−1,−2), (0,−2), (0,−3), (1,−3), (1,−2),

(2,−2), (2,−1))

According to our hypothesis, all the nodes at distance 2 or less from b or b′ are correct.

Therefore, according to Definition 7.2, P1, P2, P3 and P4 are voting paths. Besides, all

the correct neighbors of s are reliable for s. Thus, according to Lemma 7.10, the nodes

(2, 0) and (2, 1) are reliable for s. Thus, all the nodes of the square {(1, 0), (1,−1), (2, 0),

(2,−1)} are reliable for s. Thus, the result.

Figure 7.7: Configuration where a node s does not belong to a correct square.

Lemma 7.13. Let S be the square formed by the nodes of coordinates (0, 0), (0, 1), (1, 0)

and (1, 1). Let s be a correct node, and let us suppose that all the nodes of S are correct

and reliable for s. Let us suppose that the nodes of coordinates (0, 2) and (1, 2) are also

correct. Then, the node (0, 2) is reliable for s.

Proof. First, let us suppose that the nodes (−1, 1) and (2, 1) are correct. Let:

• P1 = ((0, 0), (0, 1), (−1, 1), (0, 1))
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• P2 = ((1, 0), (1, 1), (2, 1), (1, 2), (0, 1))

Then, for the same argument as in the proof of Lemma 7.12, the node (0, 2) is reliable

for s.

Now, let us suppose that there exists a Byzantine node b which is either (−1, 1) or (2, 1).

Then, for the same argument as in the proof of Lemma 7.11, there exists a connected

set X of correct squares such as represented in Figure 7.5 or Figure 7.6 (depending on

whether b belongs to a critical pair {b, b′} or not), which contains S, (0, 2) and (1, 2).

Thus, there exists a voting path P3 = (u1, . . . , un) such that {u1, un} = {(0, 0), (1, 0)},
un = (0, 2) and ∀i ∈ {0, . . . , n}, u1 belongs to a square of X. By analyzing all possible

placements of b and possibly b′, it is possible to have n ≤ 20

Thus, as P4 = ((1, 1), (0, 1), (0, 2)) is also a voting path, for the same argument as in the

proof of Lemma 7.12, the node (0, 2) is reliable for s. Thus, the result.

Lemma 7.14. Let s be a correct node, and let p be a correct node that belongs to a

correct square S. Then, p is reliable for s.

Proof. According to Lemma 7.12, there exists a correct square S′ such that all the nodes

of S′ are reliable for s. According to Lemma 7.11, there exists a square path (S1, . . . , Sn)

of correct squares such that S1 = S′ and Sn = S. Let us prove the following property

Pi by induction, ∀i ∈ {1, . . . , n}: all the nodes of Si are reliable for s.

• P1 is true, as S1 = S′.

• Let us suppose that Pi is true, for i ∈ {1, . . . , n−1}. Then, Si (resp. Si+1) is equiv-

alent to the square {(0, 0), (0, 1), (1, 0), (1, 1)} (resp. {(1, 0), (1, 1), (2, 0), (2, 1)}) of

Lemma 7.13, with the appropriate translations, rotations and symmetries. Thus,

according to Lemma 7.13, the node corresponding to (2, 0) is reliable for s, and so

is the node corresponding to (2, 1) (by symmetry). Thus, Pi+1 is true.

Theorem 7.15. Let s and p be two correct node. Then, p is reliable for s.

Proof. If p belongs to a correct square, according to Lemma 7.14, p is reliable for s.

Otherwise, we are in a situation such as represented in Figure 7.7 (if we replace s by

p), or a symmetrical situation. Let us suppose that p corresponds to the coordinates

(0, 0) on Figure 7.7. Then, the nodes (−1, 0), (−1, 1), (1, 0) and (1, 1) belong to correct
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squares, and are reliable for s according to Lemma 7.14. Thus, ((−1, 1), (−1, 0), (0, 0))

and ((1, 1), (1, 0), (0, 0)) are voting paths. Therefore, according to Lemma 7.10, p = (0, 0)

is reliable for s.

7.5 Conclusion

In this chapter, we proposed an algorithm tolerating pairs of close Byzantine nodes.

Thus, we have a higher probability to tolerate a given placement of Byzantine nodes.

An interesting extension would be to keep applying this principle recursively to tolerate

close critical pairs, and so forth. Also, we elaborated on the case where 2 votes are

required to forward a message. Yet, in the case where k > 2 votes are required, this idea

could be generalized to tolerate critical groups of k Byzantine failures.
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Chapter 8

Dynamic networks

In this chapter, we give the condition for reliable communication in a dynamic [47]

network, in the presence of up to k arbitrarily placed Byzantine failures.

In a static network, the condition is the existence of 2k + 1 disjoint paths between the

source ad the sink. However, this result relies on Menger’s theorem [38], which ensures

the equivalence between node cut and connectivity. Unfortunately, this theorem cannot

be generalized to dynamic networks [48].

Figure 8.1: Counterexample to Menger’s theorem in dynamic graphs. Black arrows
represent arcs that are present at that time.

A simple counterexample is given in Figure 8.1, where at least two nodes must be

removed in order to disconnect the source from the sink: for example, the two nodes

that are adjacent to the source. However, it is impossible to find two node-disjoint paths

between the source and the sink: there exist one path between the source and the sink

at time 1, one path at time 2, and one dynamic path that spans two edges at time 1

and one edge at time 2; yet, any two of those three paths share at least one node.

The chapter is organized as follows:

• In Section 8.1, we present the model and give basic definitions.
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• In Section 8.2, we describe our algorithm, then prove the necessary and sufficient

condition for reliable communication.

• In Section 8.3, we apply this condition to several case studies.

This work is a collaboration with Pr. Xavier Defago from Japan Advanced Institute of

Science and Technology.

8.1 Preliminaries

8.1.1 Network model

We consider a continuous temporal domain R+ where dates are positive real numbers.

We model the system as a time varying graph, as defined by Casteigts, Flocchini, Quat-

trociocchi and Santoro [47], where vertices represent the processes and edges represent

the communication links (or channels). A time varying graph is a dynamic graph rep-

resented by a tuple G = (V,E, ρ, ζ) where:

• V is the set of nodes.

• E ⊆ V × V is the set of edges.

• ρ : E × R+ → {0, 1} is the presence function: ρ(e, t) = 1 indicates that edge e is

present at date t.

• ζ : E×R+ → R+ is the latency function: ζ(e, t) = T indicates that a message sent

at date t takes T time units to cross edge e.

The discrete time model is a special case, where time and latency are restricted to integer

values.

8.1.2 Definitions

Informally, a dynamic path is a sequence of nodes a message can traverse, with respect

to network dynamicity and latency.

Definition 8.1 (Dynamic path). A sequence of distinct nodes (u1, . . . , un) is a dynamic

path from u1 to un if and only if there exists a sequence of dates (t1, . . . , tn) such that,

∀i ∈ {1, . . . , n− 1} we have:
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• ei = (ui, ui+1) ∈ E: there exists an edge connecting ui to ui+1.

• ∀t ∈ [ti, ti + ζ(ei, ti)], ρ(ei, t) = 1: ui can send a message to ui+1 at date ti.

• ζ(ei, ti) ≤ ti+1 − ti: the aforementioned message is received by date ti+1.

We now define the dynamic minimal cut between two nodes p and q as the minimal

number of nodes (besides p and q) one has to remove from the network to prevent the

existence of a dynamic path between p and q. Formally:

• Let Dyn (p, q) be the set of node sets {u1, . . . , un} such that (p, u1, . . . , un, q) is a

dynamic path.

• For a set of node sets Ω = {S1, . . . , Sn}, let Cut (Ω) be the set of node sets C such

that, ∀i ∈ {1, . . . , n}, C ∩ Si 6= ∅ (C contains at least one node from each set Si).

• Let MinCut (Ω) = minC∈Cut(Ω) card(C) (the size of the smallest element of Cut (Ω)).

If Cut(Ω) is empty, we assume that MinCut (Ω) = +∞.

• Let DynMinCut (p, q) = MinCut (Dyn (p, q)).

8.2 Algorithm and condition for reliable communication

In this section, we describe our Byzantine-resilient multihop broadcast protocol. This

algorithm is used as a constructive proof for the sufficient condition for reliable communi-

cation. We then prove the necessary and sufficient condition for reliable communication.

8.2.1 Informal description

Let us suppose that a node p wants to broadcast a message m. To each message, we

attach the set of nodes that have been visited by this message since it was sent (that is,

we use (p,m, S), where S is a set of nodes already visited by m since p sent it).

As the Byzantine nodes can send any message, in particular, they can forward false

tuples (p,m, S). Therefore, a correct node only accepts a message when it has been

received through a collection of dynamic paths that cannot be cut by k nodes (where

k is a parameter of the algorithm, and supposed to be an upper bound on the total

number of Byzantine nodes in the network).

Focusing on minimal cut instead of node-disjoint paths (unlike [37]) makes this approach

robust to high network dynamicity, as demonstrated in Lemma 8.6.
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8.2.2 Variables

Each correct node u maintains the following variables:

• u.m0, the message that u wants to broadcast.

• u.Ω, a dynamic set registering all tuples (s,m, S) received by u.

• u.Acc, a dynamic set of confirmed tuples (s,m). We assume that whenever (s,m) ∈
u.Acc, u accepts m from s.

Initially, u.Ω = {(u, u.m0, ø)} and u.Acc = {(u, u.m0)}.

8.2.3 Algorithm

Each correct node u obeys the three following rules:

1. Initially, and whenever u.Ω or the local topology of u change: multicast u.Ω.

2. Upon reception of Ω′ through channel (v, u): ∀(s,m, S) ∈ Ω′, if v /∈ S then append

(s,m, S ∪ {v}) to u.Ω.

3. Whenever there exist s, m and {S1, . . . , Sn} such that ∀i ∈ {1, . . . , n}, (s,m, Si ∪
{s}) ∈ u.Ω and MinCut ({S1, . . . , Sn}) > k: append (s,m) to u.Acc.

8.2.4 Main theorem

Let us consider a given dynamic graph, and two given correct nodes p and q. Our main

result is as follows:

Theorem 8.2. For a given dynamic graph, A k-Byzantine tolerant reliable communi-

cation from p to q is feasible if and only if DynMinCut (p, q) > 2k.

Proof. The proof of the “only if” part is in Lemma 8.3. The proof of the “if” is in

Lemma 8.6.

Lemma 8.3 (Necessary condition). For a given dynamic graph, let us suppose that there

exists an algorithm ensuring reliable communication from p to q. Then, we necessarily

have DynMinCut (p, q) > 2k.
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Proof. Let us suppose the opposite: there exists an algorithm ensuring reliable commu-

nication from p to q, and yet, DynMinCut (p, q) ≤ 2k. Let us show that it leads to a

contradiction.

As we have DynMinCut (p, q) = MinCut (Dyn (p, q)) ≤ 2k and MinCut (Dyn (p, q)) =

minC∈Cut(Dyn(p,q)) card(C), there exists an element C of Cut (Dyn (p, q)) such that

card(C) ≤ 2k. Let C1 be a subset of C containing k′ elements, with k′ = min(k, card(C)).

Let C2 = C − C1. Thus, we have card(C1) ≤ k and card(C2) ≤ k.

According to the definition of Cut (Dyn (p, q)), C contains a node of each possible dy-

namic path from p to q. Therefore, the information that q receives about p are completely

determined by the behavior of the nodes in C.

Let us consider two possible placements of Byzantine nodes, and show that they lead to

a contradiction:

• First, suppose that all nodes in C1 are Byzantine, and that all other nodes are

correct. This is possible since card(C1) ≤ k.

Suppose now that p broadcasts a message m. Then, according to our hypothesis,

since the algorithm ensures reliable communication, q eventually accepts m from

p, regardless of what the behavior of the nodes in C1 may be.

• Now, suppose that all nodes in C2 are Byzantine, and that all other nodes are

correct. This is also possible since card(C2) ≤ k.

Then, suppose that p broadcasts a message m′ 6= m, and that the Byzantine nodes

have exactly the same behavior as the nodes of C2 had in the previous case.

Thus, as the information that q receives about p is completely determined by

the behavior of the nodes of C, from the point of view of q, this situation is

indistinguishable from the previous one: the nodes of C2 have the same behavior,

and the behavior of the nodes of C1 is unimportant. Thus, similarly to the previous

case, q eventually accepts m from p.

Therefore, in the second situation, p broadcasts m, and q eventually accepts m′ 6= m.

Thus, the algorithm does not ensure reliable communication, which contradicts our

initial hypothesis. Hence, the result.

Lemma 8.4 (Safety). Let us suppose that all correct nodes follow our algorithm. If

(p,m) ∈ q.Acc, then m = p.m0.
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Proof. As (p,m) ∈ q.Acc, according to rule 3 of our algorithm, there exists {S1, . . . , Sn}
such that, ∀i ∈ {1, . . . , n}, (p,m, Si ∪ {p}) ∈ q.Ω, and MinCut ({S1, . . . , Sn}) > k.

Suppose that each node set S ∈ {S1, . . . , Sn} contains at least one Byzantine node. If

C is the set of Byzantine nodes, then C ∈ Cut ({S1, . . . , Sn}) and card(C) ≤ k. This is

impossible because MinCut ({S1, . . . , Sn}) > k. Therefore, there exists S ∈ {S1, . . . , Sn}
such that S does not contain any Byzantine node.

Now, let us use the correct dynamic path corresponding to S to show that m = m0. Let

n′ = card(S∪{p}). Let us show the following property Pi by induction, ∀i ∈ {0, . . . , n′}:
there exists a correct node ui and a set of correct nodes Xi such that (p,m,Xi) ∈ ui.Ω
and card(Xi) = card(S ∪ {p})− i.

• As S ∈ {S1, . . . , Sn}, (p,m, S ∪ {p}) ∈ q.Ω. Thus, P0 is true if we take u0 = q and

X0 = S ∪ {p}.

• Let us now suppose that Pi+1 is true, for i < n′. As (p,m,Xi) ∈ ui.Ω, according

to rule 2 of our algorithm, it implies that ui received Ω′ from a node v, with

(p,m,X) ∈ Ω′, v /∈ X and Xi = X ∪ {v}. Thus, card(X) = card(Xi) − 1 =

card(S ∪ {p})− (i+ 1).

As v ∈ Xi and Xi is a set of correct nodes, v is correct and behaves according

to our algorithm. Then, as v sent Ω′, according to rule 1 of our algorithm, we

necessarily have Ω′ ⊆ v.Ω. Thus, as (p,m,X) ∈ Ω′, we have (p,m,X) ∈ v.Ω.

Hence, Pi+1 is true if we take ui+1 = v and Xi+1 = X.

By induction principle, Pn′ is true. As card(Xn′) = 0, Xn′ = ø and (p,m, ø) ∈ un′ . As

un′ is a correct node and follows our algorithm, the only possibility to have (p,m, ø) ∈
un′ .Ω is that un′ = p and m = p.m0. Thus, the result.

Lemma 8.5 (Communication). Let us suppose that DynMinCut (p, q) > 2k, and that

all correct nodes follow our algorithm. Then, we eventually have (p, p.m0) ∈ q.Acc.

Proof. Let {S1, . . . , Sn} be the set of node sets S ∈ Dyn (p, q) that only contain correct

nodes. Similarly, let {X1, . . . , Xn′} be the set of node sets X ∈ Dyn (p, q) that contain

at least one Byzantine node.

Let us suppose that MinCut ({S1, . . . , Sn}) ≤ k. Then, there exists C ∈ Cut ({S1, . . . , Sn})
such that card(C) ≤ k. Let C ′ be the set containing the nodes of C and the Byzan-

tine nodes. Thus, and C ′ ∈ Cut ({S1, . . . , Sn} ∪ {X1, . . . , Xn′}) = Cut (Dyn (p, q)), and

card(C ′) ≤ 2k. Thus, MinCut (Dyn (p, q)) ≤ 2k, which contradicts our hypothesis.

Therefore, MinCut ({S1, . . . , Sn}) > k.
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In the following, we show that ∀S ∈ {S1, . . . , Sn}, we eventually have (p, p.m0, S∪{p}) ∈
q.Ω, ensuring that q eventually accepts p.m0 from p.

Let S ∈ {S1, . . . , Sn}. As S ∈ Dyn (p, q), let (u1, . . . , uN ) be the dynamic path such

that p = u1, q = uN and S = {u2, . . . , uN−1}. Let (t1, . . . , tN ) be the corresponding

dates, according to Definition 8.1. Let us show the following property Pi by induction,

∀i ∈ {1, . . . , N}: at date ti, (p, p.m0, Xi) ∈ ui.Ω, with Xi = ø if i = 1 and {u1, . . . , ui−1}
otherwise.

• P1 is true, as we initially have (p, p.m0, ø) ∈ p.Ω.

• Let us suppose that Pi is true, for i < N . According to Definition 8.1, ∀t ∈
[ti, ti + ζ(ti, ui)], ρ(ei, t) = 1, ei being the edge connecting ui to ui+1.

– Let tA ≤ ti be the earliest date such that, ∀t ∈ [tA, ti + ζ(ti, ui)], ρ(ei, t) = 1.

– Let tB ≤ ti be the date where (p,m,Xi) is added to ui.Ω.

– Let tC = max(tA, tB).

Then, at date tC , either ui.Ω or the local topology topology of ui changes. Thus,

according to rule 1 of our algorithm, ui multicasts Ω′ = ui.Ω at date tC , with

(p, p.m0, Xi) ∈ Ω′.

As ζ(ei, ti) ≤ ti+1− ti ≤ ti+1− tC , ui+1 receives Ω′ from ui at date tC + ζ(ei, ti) ≤
ti+1. Then, according to rule 2 of our algorithm, (p, p.m0, Xi ∪ {ui}) is added to

ui+1.Ω.

Thus, Pi+1 is true if we take Xi+1 = Xi ∪ {ui}.

By induction principle, PN is true. As u1 = p, XN = {u1, . . . , uN−1} = S ∪ {p}, and we

eventually have (p, p.m0, S ∪ {p}) ∈ q.Ω.

Thus, ∀S ∈ {S1, . . . , Sn}, we eventually have (p, p.m0, S ∪ {p}) ∈ q.Ω. Then, as

MinCut ({S1, . . . , Sn}) > k, according to rule 3 of our algorithm, (p, p.m0) is added

to q.Acc.

Lemma 8.6 (Sufficient condition). Let there be any dynamic graph. Let p and q be two

correct nodes, and k denote the maximum number of Byzantine nodes. If DynMinCut (p, q) >

2k, our algorithm ensures reliable communication from p to q.

Proof. Let us suppose that the correct nodes follow our algorithm, as described in Sec-

tion 8.2. First, according to Lemma 8.4, if (p,m) ∈ q.Acc, then m = p.m0. Thus,

when q accepts a message from p, p is necessarily the author of this message. Then,
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according to Lemma 8.5, we eventually have (p, p.m0) ∈ q.Acc. Thus, q eventually re-

ceives and accepts the message broadcast by p. Therefore, our algorithm ensures reliable

communication from p to q.

8.3 Case Studies

In this section, we apply the aforementioned condition to several case studies: cyclic

network, participants interacting in a conference, robots moving on a grid and agents

in the subway. We thus show the benefit of using a multihop algorithm for reliable

communication.

8.3.1 A deterministic dynamic toy network

Let n > 0, and let (p1, . . . , pn) and (q1, . . . , qn) be two sequences of nodes. We consider

the dynamic network Tn where, at date t ∈ {0, 1, 2, . . . }, pi is connected to qi+t mod n.

This is illustrated in Figure 8.2. Using our main theorem (Theorem 8.2), we are able to

exactly characterize the Byzantine resilience of Tn.

Figure 8.2: Case study: a deterministic dynamic toy network T4.

Theorem 8.7. In Tn, to ensure reliable communication between any two pairs of correct

nodes, it is necessary and sufficient that n > 2k and t ≥ 2k+ n− 1, where k denote the

maximum number of Byzantine nodes in the network.

Proof. Let P = {p1, . . . , pn} and Q = {q1, . . . , qn}. Let u and v be two nodes.

• If u ∈ P and v ∈ Q, let i and d be such that u = pi and v = qi+d mod n. Thus,

DynMinCut (u, v) = 0 if t < d, and +∞ otherwise. The same holds if u ∈ Q and

v ∈ P (by symmetry).

• If u ∈ Q and v ∈ Q, let i and d be such that u = qi and v = qi+d mod n. Thus,

DynMinCut (u, v) = 0 if t < d, and min(t − d + 1, n) otherwise. The same holds

if u ∈ P and v ∈ P (by symmetry).
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Thus, as the maximal value of d is n − 1 (e.g., when u = q1 and v = qn), m =

min(u,v)∈V×V DynMinCut (u, v) = 0 if t < n − 1, and min(t − n + 2, n) otherwise.

Now, according to Theorem 8.2, m > 2k is necessary and sufficient to enable reliable

communication between any pair of correct nodes.

First, let us show that the condition of Theorem 8.7 is necessary. Let us suppose the

opposite: n ≤ 2k or t < 2k + n − 1, and m > 2k. Then, if n ≤ 2k, as m ≤ n, we get

m ≤ 2k: a contradiction. If t < 2k + n − 1 and k = 0, then t < n − 1 and m = 0: a

contradiction. Hence, the condition is necessary.

Then, let us show that the condition of Theorem 8.7 is sufficient. As t ≥ 2k+n−1 ≥ n−1,

we have m = min(t−n+2, n). Besides, as t ≥ 2k+n−1, it foàllows that t−n+2 ≥ 2k.

Thus, as n > 2k, we have m > 2k, and the condition is sufficient.

In particular, with t = 2n, we can tolerate roughly one fourth of Byzantine nodes.

8.3.2 A real-life dynamic network: the Infocom 2005 dataset

In this section, we consider the Infocom 2005 dataset [49], which is obtained in a con-

ference scenario by iMotes capturing contacts between participants. This dataset can

represent a dynamic network where each participant is a node and where each contact

is a (temporal) edge. We consider an 8-hour period during the second day of the confer-

ence. In this period, we consider the dynamic network formed by the 10 most “sociable”

nodes (our criteria of sociability is the total number of contacts reported). We assume

that at most one on these nodes may be Byzantine (that is, k = 1).

Let p and q be two correct nodes. Let us suppose that p wants to transmit a message

to q within a period of 10 minutes. After 10 minutes, three types of communication can

be achieved:

• Simple communication: there exists a dynamic path from p to q.

• Reliable communication: the condition for reliable communication from p to q

identified in Theorem 8.2 is satisfied.

• Direct communication: p meets q directly.

If we want to ensure reliable communication despite one Byzantine node, the simplest

strategy is to wait until p meets q directly. Let us show now that relaying the message

(e.g. using our algorithm as presented in Section 8.2) is usually beneficial and that our

approach realizes a significant gain of performance.
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Figure 8.3: Reliable communication between 10 most sociable nodes of the Infocom
2005.

Figure 8.3 represents the percentage of pairs of nodes (p, q) that communicate within 10

minutes, according to the date of beginning of the communication. We can correlate the

peaks with the program of the conference: the first period corresponds to morning

arrivals during the keynotes; the peak between 10:30 and 11:00 corresponds to the

morning break; the peak starting at 12:30 corresponds to the end of parallel sessions and

the departure for lunch. As it turns out, many pairs of nodes are able to communicate

reliably, even though they are unable to meet directly. For instance, at 9:30, all pairs of

nodes are effectively able to reliably exchange information, even though only two thirds

of them come into direct contact. This means that relaying the information is actually

effective and desirable.

8.3.3 Probabilistic mobile robots on a grid

We consider a network of 10 mobile robots that are initially randomly scattered on a

square grid.

At each time unit, a robot randomly moves to a neighbor vertex, or does not move

(the new position is chosen uniformly at random among all possible choices). Let

position(u, t) be the current vertex of the robot u at date t. We consider that two

robots can communicate if and only if they are on the same vertex. Our setting in-

duces the following dynamic graph G = (V,E, ρ, ζ): V = {u1, . . . , u10}, E = V × V ,

ρ((u, v), t) = 1 when position(u, t) = position(v, t) and ζ((u, v), t) = 0.

Let p and q be two correct robots, and suppose that up to k other robots are Byzan-

tine. We aim at evaluating the communication time, that is: the mean time to have

DynMinCut (p, q) > 2k (Our condition for reliable communication established in Theo-

rem 8.2). For this purpose, we ran more than 10000 simulations, and represented the

results on Figure 8.4, 8.5, 8.6 and 8.7. Let us comment on these results.
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Figure 8.4: Mean communication time (10× 10 grid)

Figure 8.5: Probability to satisfy our condition for reliable communication (10 × 10
grid)
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Figure 8.6: Mean communication time depending on the number of robots

Figure 8.7: Mean communication time divided by the number of vertices
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First, Figure 8.4 represents the mean communication time on a 10 × 10 grid, for all

possible values of k. The time first increases with k, then stabilizes for k > 3. Indeed,

for k > 3, due to the number of robots, the condition DynMinCut (p, q) > 2k is satisfied

if and only if p and q are on the same vertex: reliable multihop communication is

impossible and only source to destination direct communication is feasible.

Then, Figure 8.5 represents the cumulative probability to satisfy our reliable communi-

cation condition on a 10 × 10 grid, with respect to time. As expected, this probability

decreases when k increases. We also notice that this probability increases linearly at

first with respect to time.

Also, Figure 8.6 represents the mean communication time according to the number of

robots. With only 2 robots, we must wait for the source to meet the sink directly. How-

ever, when the number of robots increases, reliable multihop communication becomes

increasingly more interesting. Also, we notice that, for every two robots that we add,

it becomes possible to tolerate one more Byzantine fault in multihop communication.

This illustrates the condition DynMinCut (p, q) > 2k.

Finally, we study the influence of the size of the grid. We observe that the mean

communication is roughly proportional to the number of vertices in the grid (that is,

N2 for a grid of width N). Figure 8.7 represents the ratio between the communication

time and the number of vertices. This value seems to converge, or at least to increase

very slowly with the size of the grid.

As we can see, the reliable multihop communication approach can be an interesting

compromise. For instance, let us consider a 10×10 grid. The basic communication time

is 63 time units. Now, let us suppose that we want to tolerate one Byzantine failure. If

we wait for the source to meet directly with the sink, the mean communication times

increases by 194% from the fault-free case. If we use our algorithm instead, it increases

by only 81%.

8.3.4 Mobile agents in the Paris subway

We consider a dynamic network consisting of 10 mobile agents randomly moving in

the Paris subway. The agents can use the classical subway lines (we exclude tramways

and regional trains). Each agent is initially located at a randomly chosen junction

station – that is, a station that connects at least two lines. Then, the agent randomly

chooses a neighbor junction station, waits for the next train, moves to this station, and

repeats the process. We use the train schedule provided by the local subway company

(http://data.ratp.fr). The time is given in minutes from the departure of the first
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train (i.e., around 5:30). We consider that two agents can communicate in the two

following cases:

1. They are staying together at the same station.

2. They cross each other in trains. For instance, if at a given time, one agent is in a

train moving from station A to station B while the other agent moves from B to

A, then we consider that they can communicate.
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Figure 8.8: Mean communication time (subway)

We provide the same plots as in 8.3.3: the mean communication time (see Figure 8.8)

and the probability to satisfy the condition for reliable communication (see Figure 8.9).

The results are very similar to those of 8.3.3, which suggests that the topology used for

the simulations has only a minor qualitative influence.

The basic communication time is 131 minutes. Again, let us suppose that we want to

tolerate one Byzantine failure. If we wait for the source to meet the sink directly, the

mean communication time increases by 174%. If we use our algorithm, it increases only

by 75%, which shows that there is a clear benefit in terms of latency.

8.4 Conclusion

In this chapter, we gave a necessary and sufficient condition for reliable communication

in a dynamic network that is subject to Byzantine failures. Unlike in static networks, it



Chapter 8. Dynamic networks 107

Figure 8.9: Probability to satisfy the condition for reliable communication (subway)

turns out the the existence of dynamic paths that are not node-disjoint is not necessarily

harmful, as long as the dynamic minimal cut remains sufficiently high. The sufficiency

part of our condition is constructive, as we provide an algorithm for optimally broadcast-

ing a message in this context (with respect to the number of Byzantine nodes tolerated).

We demonstrated the benefits of this protocol in several case studies, both in synthetic

example and in real dynamic networks.

Our result implicitly considers a worst-case placement of the Byzantine nodes, which is

the classical approach when studying Byzantine failures in a distributed setting. Study-

ing variants of the Byzantine node placement, and the associated necessary and sufficient

condition for enabling multihop reliable communication, constitutes an interesting path

for future research.





Chapter 9

Fractal Byzantine tolerance

In this chapter, we propose the very first algorithm tolerating a uniform rate of Byzantine

failures in an unbounded network.

Let us consider the following setting: a N × N grid network where each node has a

probability λ to be Byzantine. In this setting, all previous solutions (including those

presented in this dissertation) have the same weakness: when N approaches infinity, the

probability that two correct nodes communicate reliably (communication probability)

approaches zero.

We present the first algorithm having the following property: for λ < 10−5, the com-

munication probability is greater than 1 − 4λ, independently of the size N of the grid.

Therefore, this algorithm is scalable in term of Byzantine resilience.

The chapter is organized as follows:

• In Section 9.1, we describe our algorithm.

• In Section 9.2, we prove the claims.

• In Section 9.3, we extend our result to a 3-dimensional grid.

A first version on these results has been published in the ICDCN conference [50].

109
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9.1 Algorithm

9.1.1 Informal description

Our protocol is defined on a sequence of grid networks G1, G2, G3 . . . of increasing size,

Gn being a 10n × 10n grid. The main idea is to use the protocol on Gn to define the

protocol on Gn+1, and so forth.

On G1, we use an existing protocol that can tolerate one Byzantine failure on a 10× 10

grid. Then, to each node p of Gn, we associate a cluster of nodes G(p) on Gn+1, G(p)

being a 10× 10 grid (see Figure 9.1, where this principle is illustrated with 3× 3 grids).

The idea is that G(p) must simulate the behavior of p, and always tolerate at least one

Byzantine failure.

Figure 9.1: Principle of the protocol (with 3× 3 grids)

For this purpose, we use the following mechanism. First, on each cluster G(p), we use

the same protocol as G1, so that the nodes can locally broadcast messages in G(p). In

parallel, each node of G(p) simulates the behavior of p. When the algorithm of p requires

to send a message to a neighbor q, the border nodes of G(p) send the message to their

neighbor in G(q). Then, each border node of G(q) locally broadcasts the message. The

nodes of G(q) accept this message from p when they locally receive it from at least 6

border nodes.

Figure 9.2 shows how a message passing in Gn is simulated on Gn+1, with the afore-

mentioned mechanism. The 6 confirmation messages ensure that the message passing is

reliable, despite the presence of at most one Byzantine node per cluster (see Section 9.2).

The interest of this fractal definition lies in its probabilistic guarantees. Indeed, with a

uniform rate of Byzantine failures, the communication probability takes the form of a
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Figure 9.2: Example of message passing

n-factors product (see Theorem 9.2). This product is converging for a sufficiently low

Byzantine rate.

9.1.2 Description of the algorithm

In our setting, each node knows its coordinates (i, j) on the grid.

Let Gn be a 10n × 10n grid (with n ≥ 1). To each node p of Gn located at (i, j), we

associate a cluster of nodes G(p) of Gn+1, such that the node (x, y) of G(p) corresponds

to the node (10i+ x, 10j + y) of Gn+1. Thus, each node of Gn+1 belongs to a cluster.

As G(p) is a 10× 10 grid, the nodes of G(p) use the protocol of G1 to locally broadcast

messages. On G1, we use the protocol of Chapter 5 with setting (1, 2). Now, let us

explain how to construct the protocol of Gn+1 with the protocol of Gn.

Inductive definition. When a node s0 of Gn+1 wants to broadcast a message m0,

it locally broadcasts m0 in its cluster G(p0). The nodes of G(p0) accepting m0 from s0

consider that p0 wants to broadcast M0 = (s0,m0). Then, in each cluster G(p) of Gn+1,

each correct node u ∈ G(p) simulates the behavior of p as follows:

• When p wants to send M to q, if a neighbor v of u belongs to G(q), u sends (q,M)

to v.

• When u has accepted (q,M) from at least 6 nodes of G(p) having a neighbor in

G(q), u considers that p received M from q.

• When p accepts (s0,m0) from p0, u accepts m0 from s0.
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9.2 Correctness proof

In this section, we prove the probabilistic guarantees of the algorithm.

For this purpose, we first provide a methodology that, for a given placement of Byzan-

tine failures, returns a reliable node set. Then, we use this methodology to prove the

probabilistic guarantees.

Similarly to the protocol, this methodology is defined by induction. To determine a

reliable node set on G1, we use the methodology described in Chapter 5. Then, assuming

that we can determine a reliable node set on Gn, we explain how to determine a reliable

node set on Gn+1.

Let us suppose that, for a given set Corr of correct nodes on Gn, we have a function

Reln(Corr) returning a reliable node set. Let us use the function Reln to define a

function Reln+1.

Lemma 9.1. For a given set Corr of correct nodes of Gn+1, the following function

returns a reliable node set:

Reln+1(Corr) =
⋃

p∈Reln(Corr′)RelG(p), where . . .

• RelG(p) is a reliable node set on G(p).

• Corr′ is the sets of nodes p of Gn such that G(p) contains at most one Byzantine

node.

Proof. First, let us show that the behavior of Reln(Corr′) is perfectly simulated by the

sets RelG(p), p ∈ Reln(Corr′). Indeed, let us suppose the opposite. Then, there exists a

node u ∈ RelG(p) such that . . .

1. Either p reaches a state that u cannot reach.

2. Or u reaches a state that p cannot reach.

Let us show that both cases lead to a contradiction.

(1) Let p be the first node to reach a state that a node u ∈ RelG(p) cannot reach. It

implies that p received a message m from a neighbor q that u cannot receive. As u is

the first node in this situation, all the nodes of RelG(q) having a neighbor v in G(p)

eventually send m to v. As G(p) and G(q) contain at most one Byzantine node, by

analyzing all possible cases, we show that we always have at least 6 nodes of RelG(q)
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with a neighbor in RelG(p). Thus, at least 6 nodes of RelG(p) locally broadcast (q,m).

Then, as RelG(p) is a reliable node set, according to the protocol, u eventually receives

m from q: contradiction.

(2) Let u ∈ RelG(p) be the first node to reach a state that p cannot reach. It implies that

u received a message that p cannot receive. Thus, according to the protocol, u accepted

a message from at least 6 nodes of G(p) having a neighbor in a cluster G(q). As G(p)

and G(q) contain at most one Byzantine node, by analyzing all possible cases, we show

that we always have at least 6 nodes of RelG(p) with a neighbor in RelG(q). Thus, as only

10 nodes of G(p) have a neighbor in G(q), at least one node of RelG(q) sent a message

that q cannot send. So u is not the first node in this situation: contradiction.

Now, let s0 and r0 be two nodes of Reln+1(Corr). Let G(p0) and G(q0) be the clusters

containing theses nodes. As Reln(Corr′) is a reliable node set, q0 accepts (s0,m0) from

p0 if and only if p0 broadcasts (s0,m0). Thus, as the behavior of Reln(Corr′) is perfectly

simulated by Reln+1(Corr), r acceptsm0 if and only if s broadcastsm0. Thus, the result.

Theorem 9.2. For a Byzantine rate λ < 10−5, the communication probability is greater

than 1− 4λ.

Proof. Let µ = 1−λ. First, let us evaluate the probability P (µ) that a correct node of a

cluster G(p) belongs to RelG(p). According to Lemma 9.1, RelG(p) exists if at most one

node of G(p) is Byzantine. Thus, as G(p) contains 100 nodes, P (µ) = µ100 + 100α(1−
µ)µ99, α being the probability that a correct node belongs to RelG(p) when G(p) contains

exactly one Byzantine node. Let us consider all possible placements of this Byzantine

node: in 64 cases (resp. 32 and 4), RelG(p) contains 99 nodes (resp. 98 and 96). Thus,

we have α = (64× 99 + 32× 98 + 4× 96)/(99× 100).

Now, let us evaluate the fraction Fn(µ) of correct nodes that belong to Reln(Corr).

Let us show by induction that Fn(µ) ≥
∏i=n

i=1 P
i(µ), P i being the ith application of the

function P . The property is true for n = 1, as F1(µ) = P (µ). Now, let us suppose that

the property is true at rank n. According to Lemma 9.1, a correct node u belongs to

Reln+1(Corr) if and only if u ∈ RelG(p) and p ∈ Reln(Corr′). The event u ∈ RelG(p)

happens with probability P (µ), and if so, the event p ∈ Reln(Corr′) happens with a

probability greater than Fn(P (µ)). Thus, Fn+1(µ) ≥ P (µ)Fn(P (µ)) =
∏i=n+1

i=1 P i(µ),

and the property is true at rank n+ 1.
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At last, let us give a lower bound of this n-factors product. The function P (µ) = µ100 +

100α(1−µ)µ99 is convex for µ > 1−10−5: P ′′(µ) < 0 (where P ′′ is the second derivative

of P ), and thus P (µ) > f(k, µ) = 1− k(1− µ), with k = (1− P (1− 10−5))/(1− 10−5).

Then, by induction, Pn(µ) ≥ f(kn, µ), and therefore Fn(µ) ≥
∏i=n

i=1 f(kn, µ).

As ∀n ≥ 6, kn ≤ 1/n2, we have Fn(µ) . . .

• ≥
∏i=6

i=1 f(kn, µ)
∏i=n

i=7 (1− λ/i2)

• ≥
∏i=6

i=1 f(kn, µ) sin(π
√
λ)/
√
λ (Wallis formula [51])

• ≥ (1−
√

2λ)(1−
√

2λ)

• ≥ 1− 2λ

A sufficient condition for two correct node to communicate reliably is that they belong

to Reln(Corr). Thus, the communication probability is greater than Fn(µ)2 ≥ 1− 4λ.

For instance, if λ < 10−5, the communication probability if greater than 0.9999.

9.3 The 3D grid case

The aforementioned result assumes a 2-dimensional grid topology. However, our scheme

can easily be extended to other regular topologies, where the structure repeats itself at

each new scale. We illustrate this using a 3-dimensional grid topology.

Definition 9.3 (3-dimensional grid network). A N×N×N grid is a network such that:

• Each node has a unique identifier (i, j, k) with 0 ≤ i < N , 0 ≤ j < N and

0 ≤ k < N .

• Two nodes (i1, j1, k1) and (i2, j2, k2) are neighbors if and only if one of these three

conditions is satisfied:

– i1 = i2, j1 = j2 and |k1 − k2| = 1.

– j1 = j2, k1 = k2 and |i1 − i2| = 1.

– k1 = k2, i1 = i2 and |j1 − j2| = 1.
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Here, let Gn be a 3n × 3n × 3n grid (with n ≥ 1). To each node p of Gn located at

(i, j, k), we associate a cluster of nodes G(p) of Gn+1, such that the node (x, y, z) of

G(p) corresponds to the node (3i+ x, 3j + y, 3k + z) of Gn+1. We keep using the same

protocol.

Let us show that we obtain even better results with this new topology (the requirement

about λ is λ < 10−3 instead of λ < 10−5).

Theorem 9.4. In this new case, for a Byzantine rate λ < 10−3, the communication

probability is greater than 1− 2λ.

Proof. Lemma 9.1 also remains valid: again, by analyzing all possible cases, we show

that we always have at least 6 nodes of RelG(q) with a neighbor in RelG(p).

The proof of Theorem 9.2 should be modified as follows:

• As G(p) contains 27 nodes, P (µ) = µ27 + 27α(1− µ)µ26.

• In all cases, RelG(p) contains 26 nodes. Thus, α = 1 here.

• As P (µ) is convex for µ > 1−10−3, P (µ) > f(k, µ), with k = (1−P (1−10−3))/(1−
10−3).

• As ∀n ≥ 1, kn ≤ 1/n2, we have Fn(µ) ≥
∏i=n

i=1 (1 − λ/i2) ≥ 1 −
√

2λ. Thus, the

communication probability is greater than 1− 2λ.

9.4 Conclusion

In this chapter, we proved that it is possible to tolerate a uniform Byzantine rate in

an unbounded network. Our approach is constructive and has been exemplified in 2D

and 3D grid networks. As an open problem, we have the strong intuition that our

approach could be generalized to less regular topologies, such as planar graphs. Also, this

fractal approach for Byzantine broadcast could also be transposed to other distributed

problems, such as consensus, leader election, mutual exclusion, etc.





Chapter 10

Conclusion

In this chapter, we summarize the contributions of this thesis, and discuss about future

perspectives. We also make the list of our publications during this thesis.

10.1 Summary of contributions

Part I: Quantitative Byzantine tolerance

In this part, we proposed a quantitative approach to bypass the difficulty of Byzantine

tolerance in sparse network. The idea is that, since we accept that some nodes may be

Byzantine, we can reasonably accept that some correct nodes do not deliver the correct

messages, provided that a majority of correct nodes achieve reliable communication.

We considered two settings. In the first case (Chapter 4), the nodes have a sufficient

level of topology knowledge to compute control zones that filter Byzantine messages. In

the second case (Chapter 5), we released this hypothesis, and proposed a strategy based

on multiple confirmation paths.

In both cases, we gave a theoretical methodology that, for a given set on Byzantine

nodes, returns a set of nodes communicating reliably. This methodology is necessary

to correctly evaluate the algorithms, as we cannot make hypotheses on the behavior of

Byzantine nodes.

Finally, we made a statistical evaluation of both solutions, and showed that they sig-

nificantly outperform previous solutions in the case of randomly distributed Byzantine

failures. Also, we notice that having a certain degree of topology knowledge (control

zones versus fixed disjoint paths) is an important advantage in terms of Byzantine re-

silience.

117
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Part II: Qualitative Byzantine tolerance

In this part, we came back to the classical approach where all correct nodes are required

to communicate reliably. An existing criteria is on the density of Byzantine failures,

which may be represented by the fraction of Byzantine neighbors per correct node.

However, in sparse network, this criteria may be difficult or impossible to satisfy. Thus,

we considered a more tolerant density criteria: the distance between Byzantine failures.

In Chapter 6, we studied the relationship between this distance and a particular cycle

decomposition of the network. We showed that reliable communication was possible

when the minimal distance D between two Byzantine failures is twice the diameter of

the largest cycle (for instance, D > 4 in a torus network). We then generalized this

algorithm to make it self-stabilizing, that is: resilient to both transient and permanent

failures.

In Chapter 7, we considered the case where this distance criteria is locally violated by

some critical pairs of Byzantine nodes. We showed that such critical pairs can still be

tolerated, provided that they are themselves sufficiently distant. This recursive strategy

is a first step towards the fractal algorithm proposed in Chapter 9.

Part II: Extensions

In this part, we extended our scope in two directions.

In Chapter 8, we considered the case of dynamic networks, where the topology can vary

with time. We generalized the condition for reliable communication in the presence of k

arbitrarily placed Byzantine failures to this new setting. Then, with several case studies,

we showed the interest of multihop reliable communication, instead of waiting that the

source meets the sink directly (assuming that it is possible).

In Chapter 9, we considered the case of a network which size is not bounded, and can

grow indefinitely. We proposed the first algorithm that can tolerate a uniform rate

of Byzantine failures in this setting. For this purpose, we gave a fractal structure to

our algorithm, which, we believe, could also be used to solve several other distributed

problems.

10.2 Perspectives

At last, let us discuss about future research perspectives raised by our works.
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Application to real life networks. In an important part of our works, we con-

sider regular network topologies: grids, lattices, planar graphs... Indeed, the regularity

of these topologies is an advantage to prove theoretical results and to easily perform

simulations. Such regular networks exist in several applications (such as hub grids for

distributed computation). However, an important class of modern networks are less

regular: sensor networks, social networks...

Yet, such networks still have a certain level of regularity. For instance, fire sensors in a

forest are scattered in a roughly homogeneous way, and the average members of a social

network have roughly the same number of friends. Thus, it may be possible to grasp

this regularity and extend our approaches to such graphs.

Probabilistic analysis. Most of our works (except Chapter 9) provide deterministic

theoretical results (probabilistic guarantees are obtained by simulation). Indeed, lattice

networks are not an easy setting for elegant probabilistic proofs. However, it would be

interesting to consider networks where the topology itself obeys to probabilistic param-

eters. This way, we could be able to directly obtain probabilistic guarantees, varying

parameters such as the diameter, the average node degree...

Combining strategies. We have investigated several strategies of fault tolerance in

this dissertation, and a lot of other strategies exist. Thus, an interesting idea would be

to combine two or more strategies to improve their guarantees. For instance, we could

try to combine the local vote and the vote on multiple paths.

Increasing the resilience of the network. In Chapter 6 and 8, we have seen that

it was possible to combine Byzantine tolerance with self-stabilization (in other words,

tolerance to transient failures) and with dynamic changes in the network topology. To go

further, we could combine both aforementioned settings, and also add other constraints:

nodes joining and leaving to network, homonymy, anonymity... Overcoming all these

difficulties together would achieve the highest possible level of fault tolerance.

10.3 List of publications

Here is the current list of works published during this PhD (November 2014). All these

publications have gone through a peer review process (except for the invited paper).
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10.3.1 International journals

• Alexandre Maurer and Sébastien Tixeuil, Containing Byzantine Failures with Con-

trol Zones. In IEEE Transactions on Parallel and Distributed Systems (TPDS),

February 2014.

• Alexandre Maurer and Sébastien Tixeuil, Byzantine Broadcast with Fixed Disjoint

Paths. In Journal of Parallel and Distributed Computing (JPDC), November 2014.

• Alexandre Maurer and Sébastien Tixeuil, Tolerating random Byzantine failures in

an unbounded network. In Parallel Processing Letters (PPL), accepted with minor

revisions.

10.3.2 International conferences

• Alexandre Maurer and Sébastien Tixeuil, Limiting Byzantine Influence in Mul-

tihop Asynchronous Networks. In IEEE International Conference on Distributed

Computing Systems (ICDCS 2012).

• Alexandre Maurer and Sébastien Tixeuil, On Byzantine Broadcast in Loosely Con-

nected Networks. In International Symposium on Distributed Computing (DISC

2012).

• Alexandre Maurer and Sébastien Tixeuil, A Scalable Byzantine Grid. In Interna-

tional Conference on Distributed Computing and Networking (ICDCN 2013).
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IEEE Symposium on Reliable Distributed Systems (SRDS 2014).

10.3.3 French conferences

• Alexandre Maurer and Sébastien Tixeuil, Confinement de fautes Byzantines dans

les réseaux multi-sauts asynchrones. In Rencontres Francophones pour les Aspects
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Chapter 11

Résumé de la thèse en français

Ce chapitre est un résumé de la thèse en français. Il suit le plan général de la thèse, on

peut donc se référer aux parties correspondantes pour davantage de détails.

Introduction

Dans le monde actuel, les réseaux informatiques prennent de plus en plus d’importance.

On pense bien sûr à Internet, mais il existe bien d’autres applications : réseaux de

capteurs, grilles de calcul, réseaux opportunistes de téléphones cellulaires, réseaux de

robots explorant des environnements dangereux...

Cependant, à mesure que les réseaux s’étendent, ils deviennent de plus en plus sus-

ceptibles de défaillir. En effet, les nœuds du réseau peuvent être sujets à des pannes,

attaques, corruptions de mémoire... On est face à un problème de taille, car les systèmes

complexes sont souvent “aussi fragiles que leur plus petit composant”.

Pour faire face à cette difficulté, le concept de tolérance aux fautes a été introduit [1].

L’idée est de concevoir des systèmes qui continuent de fonctionner normalement même

si un ou plusieurs éléments défaillent.

De nombreux modèles de fautes existent, mais afin de tous les englober, nous avons

choisi d’étudier le modèle de faute le plus général possible: le modèle Byzantin [5],

où les nœuds fautifs ont un comportement totalement arbitraire (donc imprévisible et

potentiellement malveillant). Tolérer des nœuds Byzantins implique donc de garantir

qu’il n’existe aucune stratégie, aussi improbable soit-elle, permettant à ces nœuds de

déstabiliser le réseau.
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Dans cette thèse, notre objectif est de permettre aux nœuds corrects (non-Byzantins) de

disséminer une information de façon fiable à travers le réseau. Cette information peut

être la mesure d’un capteur, la position d’un robot, le résultat d’un calcul local... Cette

dissémination est illustrée en Figure 11.1.

Figure 11.1: Exemple de dissémination d’information dans un réseau multi-sauts. Le
nœud de gauche envoie un message “bleu” à ses voisins, qui le transmettent à leurs
propres voisins, et ainsi de suite, jusqu’à ce que tous les nœuds reçoivent le message.

Dans ce contexte, les fautes Byzantines sont extrêmement dangereuses. En effet, une

seule faute Byzantine, si elle n’est pas neutralisée, peut potentiellement mentir à l’ensemble

du réseau, en diffusant ou retransmettant de fausses informations. Cela est illustré dans

la Figure 11.2.

Figure 11.2: Exemple de dissémination d’information avec un nœud Byzantin. Ici, le
nœud en haut à droite est Byzantin, et diffuse un message “rouge” afin de faire croire

au réseau que le nœud de gauche a envoyé ce message (ce qui n’est pas le cas).

Par conséquent, il nous faut concevoir des algorithmes de communication tolérants

aux fautes Byzantines. L’approche classique pour concevoir des algorithmes est de les

implémenter puis de les tester. Cependant, dans le cas de fautes Byzantines, cela impli-

querait de faire des hypothèses restrictives sur le comportement des nœuds Byzantins,

et rien ne garantirait alors que l’on prend en compte les pires situations possibles.

On adopte donc une approche plus théorique : l’algorithmique distribuée [6–8]. L’idée

est de prouver des propriétés mathématiques sur les algorithmes que l’on propose – par
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exemple, montrer qu’aucun message incorrect ne sera jamais accepté, quelle que soit la

configuration. On peut ainsi obtenir des garanties très fortes sur la fiabilité du réseau.

Dans la section suivante, nous passons en revue les solutions existantes et expliquons

notre contribution. Nous présentons ensuite nos résultats dans les Parties I, II et III.

Travaux existants et notre contribution

Une manière de neutraliser des nœuds malveillants est de recourir à la cryptographie

[9, 10] : les nœuds utilisent des signatures numériques pour authentifier l’émetteur à

travers les multiples retransmissions. La cryptographie a de nombreux avantages, mais

nous avons choisi de la laisser de côté pour plusieurs raisons.

Tout d’abord, la cryptographie n’est pas inconditionnellement fiable, comme l’a montré

le récent bug Heartbleed [18]. Il est donc intéressant de combiner des couches de com-

munication cryptographiques avec des couches non-cryptographiques (paradigme de la

“défense en profondeur”). Par ailleurs, la cryptographie implique un élément cen-

tral qui distribue les clés cryptographiques. Par conséquence, si cet élément défaille,

l’ensemble du réseau défaille. Or nous voulons un système où chaque élément peut

défaillir indépendamment des autres, sans pour autant compromettre le fonctionnement

global.

On s’intéresse donc aux solutions non-cryptographiques. On peut les regrouper en deux

familles : le vote local et le vote sur chemins disjoints.

• Le vote local [32–35] consiste à ne transmettre un message que si on l’a reçu de k

voisins différents. Ainsi, si il y a moins de k voisins Byzantins par nœud correct,

ils ne peuvent jamais collaborer pour initier la diffusion d’un message mensonger.

Cela est illustré en Figure 11.3.

Figure 11.3: Vote local avec k = 2.
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• Le vote sur chemins disjoints [36, 37] consiste à envoyer un message de l’émetteur

au récepteur en empruntant plusieurs chemins disjoints, puis à effectuer un vote

à la réception. Ainsi, si une minorité de chemins sont corrompus par un nœud

Byzantin, cela est sans importance, car la majorité de votes corrects l’emportera.

Cela est illustré en Figure 11.4.

Figure 11.4: Exemple de vote sur chemins disjoints.

Ces solutions ont cependant des limites. En effet, elles nécessitent des réseaux forte-

ment connectés, où chaque nœud possède un grand nombre de voisins. On peut donc

légitimement se poser la question suivante : qu’advient-il de ces solutions dans un réseau

plus faiblement connecté ? On prendra l’exemple de la grille (voir Figure 11.5), où

chaque nœud a au plus 4 voisins.

Figure 11.5: Une grille 7× 7.

Sur une grille :

• Le vote local ne fonctionne pas. En effet, même dans la version la moins exigeante

de cet algorithme (k = 2), seuls les 8 nœuds entourant l’émetteur peuvent accepter

le message. Au-delà, il n’y a pas assez de canaux pour obtenir les 2 confirmations

requises.
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• Le vote sur chemins disjoints fonctionne, mais tolère au plus une faute Byzantine.

En effet, à partir de 2 fautes Byzantines, le récepteur est susceptible de recevoir 2

votes corrects et 2 votes mensongers, et ne peut plus décider.

Cela nous amène au fil rouge de cette thèse : concevoir des algorithmes qui tolèrent les

fautes Byzantines dans des réseaux faiblement connectés, où les solutions existantes ont

de faibles performances.

Cette thèse est organisée en 3 parties :

• La Partie I présente des algorithmes qui tolèrent les fautes Byzantines de manière

quantitative : on accepte la possibilité que certains nœuds corrects soient “sacrifiés”

dans la foulée, afin de pouvoir tolérer un grand nombre de fautes Byzantines en

contrepartie.

• La Partie II revient à une approche plus classique (tolérance qualitative), où tous

les nœuds corrects doivent communiquer fiablement. On considère ici un critère

de densité de fautes adapté aux réseaux faiblement connectés : la distance entre

les nœuds Byzantins.

• Enfin, la Partie III étend des résultats existants à de nouveaux contextes : les

réseaux dynamiques, et les réseaux dont la taille tend vers l’infini.

Partie I : Tolérance quantitative

Dans cette partie, nous proposons des solutions permettant de tolérer un grand nombre

de fautes Byzantines dans des réseaux faiblement connectés. Afin d’y parvenir, nous

faisons la concession suivante : on accepte qu’une minorité de nœuds corrects échouent

à communiquer fiablement. On cherche donc à optimiser la probabilité de communication

– c’est-à-dire, la probabilité d’avoir une communication fiable entre deux nœuds corrects.

Nous proposons deux solutions :

• La première utilise des ensembles de nœuds appelés zones de contrôle, dont le

rôle est de “filtrer” les messages Byzantins. Cette solution tolère un grand nom-

bre de fautes Byzantines, mais nécessite que les nœuds aient un certain degré de

connaissance de la topologie du réseau.

• La seconde s’intéresse au cas où cette connaissance n’est pas disponible, et où les

nœuds ignorent leur position dans le réseau. On propose alors une alternative

basée sur l’utilisation de chemins disjoints bornés.
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Zones de contrôle

Cette section résume les résultats du Chapitre 4. Ces résultats ont été publiés dans les

conférences AlgoTel [40], ICDCS [41] et dans le journal TPDS [42].

Nous proposons ici un algorithme basé sur des zones de contrôle. Une zone de contrôle est

constituée d’un ensemble de nœuds connexe, le “cœur”, et d’une “frontière” qui isole le

cœur du reste du réseau. L’idée est donc que tout nœud du cœur qui veut communiquer

avec l’extérieur doit passer par la frontière. Un exemple de zone de contrôle est donné

en Figure 11.6.

Figure 11.6: Exemple de zone de contrôle.

Le fonctionnement d’une zone de contrôle est illustré en Figure 11.7. Supposons qu’un

nœud correct retransmette un message (p,m0) – c’est-à-dire, un message affirmant qu’un

nœud p a diffusé l’information m0. Lorsque ce message pénètre dans la zone de contrôle,

deux choses se produisent. D’une part, le message continue à se diffuser dans le cœur

de la zone de contrôle. D’autre part, une autorisation pour ce message est diffusée sur

la frontière. Lorsque ce message voudra sortir du cœur, cette autorisation sera requise.

Figure 11.7: Principe de fonctionnement d’une zone de contrôle.
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Supposons maintenant qu’un nœud Byzantin situé dans le cœur diffuse un message

mensonger (p,m1) – c’est-à-dire, un message prétendant que p a diffusé m1 6= m0, ce

qui n’est pas le cas. Comme ce message n’est pas issu de p mais du cœur de la zone

de contrôle, il n’a jamais pénétré dans la zone, et aucune autorisation n’a été diffusée.

Ainsi, ce message mensonger ne pourra jamais s’échapper du cœur. L’idée est bien sûr

de définir, non pas une, mais un grand nombre de zones de contrôle, afin de minimiser

la diffusion de messages mensongers.

On souhaite à présent évaluer les performances de cet algorithme. Comme dit plus

haut, il n’est pas possible de simuler directement un algorithme en présence de fautes

Byzantines, car cela implique de faire des restrictions hasardeuses sur le comportement

des nœuds Byzantins. Pour surmonter cette difficulté, nous adoptons donc une approche

hybride :

• Dans un premier temps, nous démontrons une formule qui, pour un réseau donné,

un ensemble de zones de contrôle donné et un ensemble de nœuds Byzantins donné,

détermine précisément l’ensemble des nœuds corrects qui communiqueront tou-

jours fiablement quoiqu’il arrive.

• Dans un second temps, nous utilisons cette formule pour faire une évaluation

statistique de notre algorithme : on génère plusieurs distributions aléatoires de

nœuds Byzantins, et pour chacune, on détermine la fraction de nœuds corrects

qui communiquent fiablement. Sur un grand nombre d’expériences, on peut ainsi

estimer la probabilité de communication avec une bonne précision.

Nous appliquons cette méthodologie à une grille 100 × 100, avec des zones de contrôle

carrées. Nous mettons en lumière un phénomène intéressant : si il y a trop peu de zones

de contrôle, les performances sont mauvaises, mais si il y en a trop, c’est également le

cas. Il semble donc exister un nombre optimal de zones de contrôle.

Nous comparons ensuite cet algorithme aux solutions précédentes dans le même contexte.

Si l’on souhaite obtenir une probabilité de communication de 99%, on peut tolérer plus

de 120 fautes Byzantines avec des zones de contrôle, contre moins de 5 avec les solutions

existantes.

Chemins disjoints bornés

Cette section résume les résultats du Chapitre 5. Ces résultats ont été publiés dans la

conférence DISC [43] (version partielle) et dans le journal JPDC [44] (version complète).
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Nous considérons ici un contexte où les nœuds ignorent leur position dans le réseau, et

ne peuvent donc pas constituer de zones de contrôle. C’est par exemple le cas dans un

réseau de robots ou de capteurs éparpillés aléatoirement sur un terrain inconnu.

Nous proposons donc l’algorithme suivant : pour accepter et retransmettre un message,

un nœud doit le recevoir de plusieurs nœuds distincts, par plusieurs chemins disjoints

et de longueur bornée. Par exemple, sur la Figure 11.8, pour accepter et retransmettre

le message, le nœud de droite doit le recevoir via un premier chemin d’au plus H1 = 3

sauts, un second chemin d’au plus H2 = 4 sauts et un troisième chemin d’au plus H3 = 2

sauts.

Figure 11.8: Principe de l’algorithme.

Ce paramétrage particulier peut être décrit par le triplet (3, 4, 2). Pour être plus général,

nous considérons par la suite un paramétrage quelconque (H1, . . . , Hn). Bien entendu,

si ces n nœuds sont Byzantins, alors ils peuvent collaborer pour initier la diffusion d’un

message mensonger. Mais s’ils sont suffisamment distants les uns des autres, cela ne se

produira jamais.

De la même façon que pour les zones de contrôle, nous prouvons tout d’abord une formule

permettant de déterminer les nœuds corrects qui communiquent fiablement. Puis nous

effectuons une évaluation statistique sur des tores (un tore étant une grille “continue”).

Nous montrons un phénomène similaire à celui observé dans le cas des zones de contrôle :

il semble exister un paramétrage optimal, ni trop simple, ni trop complexe.

Nous effectuons finalement une comparaison générale des solutions disponibles sur un

tore 50 × 50. Si l’on veut une probabilité de communication de 99%, alors on peut

tolérer un taux de Byzantins (probabilité qu’un nœud soit Byzantin) λ = 4× 10−6 avec

un algorithme de diffusion simple et non-sécurisé. Ce taux passe à 5 × 10−5 avec les

solutions précédentes, et à 2 × 10−3 avec notre algorithme (soit une amélioration de

facteur 40).

Bien entendu, on obtient de meilleurs résultats avec les zones de contrôle (λ = 8×10−3),

mais cela requiert des hypothèses supplémentaires.
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Partie II : Tolérance qualitative

Dans cette partie, nous proposons des algorithmes qui garantissent une communication

fiable entre tous les nœuds corrects.

De tels algorithmes ont été proposés dans [32–35]. Afin de prouver leurs garanties, ces so-

lutions font l’hypothèse que la “densité” des fautes Byzantines est limitée de la manière

suivante : la fraction de voisins Byzantins par nœud correct est bornée. Cependant,

comme nous l’avons vu, ce critère est trop exigeant pour des réseaux faiblement con-

nectés. Nous considérons donc un critère de densité plus souple : la distance minimale

entre 2 nœuds Byzantins.

Nos contributions sont les suivantes :

• Nous proposons une décomposition particulière d’un réseau quelconque en cycles

élémentaires, puis nous donnons un algorithme qui garantit une communication

fiable lorsque la distance entre fautes Byzantines est plus de deux fois le diamètre

du plus grand cycle. Nous rendons également cette solution auto-stabilisante [3].

• Nous étudions ensuite la possibilité de tolérer des “paires critiques”, c’est-à-dire,

des paires de nœuds Byzantins qui ne respectent pas la distance minimale. Nous

montrons que nous pouvons également tolérer des telles paires critiques, pourvu

qu’elles soient elles-mêmes suffisamment distantes.

Décomposition en cycles

Cette section résume les résultats du Chapitre 6. Ces résultats ont été publiés dans les

conférences AlgoTel [46], DISC [43] (version partielle) et SRDS [45] (version complète).

Nous remarquons tout d’abord que tout graphe 3-connexe admet une décomposition

en cycles élémentaires qui vérifie certaines propriétés. Un exemple simple est le tore,

où les cycles élémentaires sont les “carrés” qui le composent. Un exemple plus général

est le graphe planaire, où les cycles sont alors les polygones délimités par les arêtes

(voir Figure 11.9). Mais une décomposition similaire existe également pour des graphes

non-planaires.

Nous faisons alors l’hypothèse suivante sur le placement des nœuds Byzantins : la dis-

tance minimale entre deux nœuds Byzantins doit être plus de deux fois le diamètre du

plus grand cycle. Par exemple, dans le cas du tore, cette distance doit être strictement

supérieure à 4.
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Figure 11.9: Exemple de graphe planaire.

Cette hypothèse nous permet d’avoir la propriété suivante : entre deux nœuds corrects,

il existe toujours un “chemin cyclique correct” – c’est-à-dire, une suite de cycles formés

de nœuds corrects telle que chaque cycle a au moins deux nœuds en commun avec le

suivant. Cette propriété est centrale dans la preuve des algorithmes qui suivent.

Nous proposons donc un premier algorithme qui garantit une communication fiable dans

ce contexte. Le principe de l’algorithme est qu’un nœud doit recevoir un message via

deux chemins disjoints d’au plus Z sauts pour le retransmettre, Z étant le diamètre du

plus grand cycle. Ainsi, la distance entre les nœuds Byzantins étant supérieure à 2Z,

ils ne peuvent jamais collaborer pour initier la diffusion d’un message mensonger. Par

ailleurs, la propriété précédente sur les chemins cycliques assure la diffusion des messages

corrects.

Nous rendons ensuite cet algorithme auto-stabilisant [3] : en plus de tolérer les fautes

Byzantines permanentes, notre algorithme doit garantir une communication fiable à

partir de n’importe quel état initial des nœuds corrects. Autrement dit, en plus de

tolérer des fautes Byzantines permanentes, notre algorithme tolère également un nombre

illimité de fautes transitoires, dont l’effet est représenté par l’état initial arbitraire du

réseau. On atteint ainsi l’un des plus haut niveau possible de tolérance aux fautes.

Tolérer des paires critiques

Cette section résume les résultats du Chapitre 7. Ce travail est une collaboration avec

le Pr. Masuzawa de l’université d’Osaka (Japon).

On considère un tore 8-connexe, où chaque nœud est voisin avec les 8 nœuds qui

l’entourent. Dans un tel réseau, l’algorithme précédent garantit une communication

fiable lorsque la distance minimale entre deux fautes Byzantines est supérieure à 2.
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Cependant, cette garantie s’effondre si nous avons une “paire critique”, c’est-à-dire, une

paire de nœuds Byzantins qui sont distants de 2 sauts ou moins.

Nous proposons ici un algorithme capable de tolérer de telles paires critiques, pourvu

qu’elles soient elles-mêmes suffisamment distantes. Cela est illustré sur la Figure 11.10.

L’algorithme précédent ne garantit une communication fiable que dans le cas A. Celui

que nous proposons ici garantit une communication fiable dans les cas A et B.

Figure 11.10: Amélioration de l’algorithme.

Le principe de l’algorithme peut être vu comme une récursion du vote local. Dans le cas

le plus simple du vote local, un message est retransmis s’il est reçu de la part de deux

voisins distincts. Ici, un message est retransmis s’il est reçu par deux parcours disjoints,

de longueur bornée, qui correspondent chacun au mécanisme de propagation du vote

local. Cela est illustré en Figure 11.11.

Figure 11.11: Principe de l’algorithme.

Ainsi, pour qu’un message mensonger se diffuse, il faut la collaboration de deux paires

critiques suffisamment proches. Nous montrons que si la distance minimale entre deux

paires critiques est supérieure à 23, nous avons une communication fiable. Par la

suite, nous pouvons imaginer des algorithmes qui continuent d’appliquer ce principe

récursivement, ou utilisent le même principe avec plus de deux votes.

Partie III : Extensions

Dans cette dernière partie, nous élargissons des solutions existantes à de nouveaux con-

textes. Nos contributions sont les suivantes :
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• Nous généralisons la condition de communication fiable en présence de k fautes

Byzantines aux réseaux dynamiques [47], où la topologie varie au cours du temps.

Nous appliquons ensuite cette condition à divers cas d’étude : participants qui

interagissent dans une conférence, robots se déplaçant sur une grille et agents dans

le métro parisien.

• Nous considérons le cas d’un réseau dont la taille peut être augmentée à l’infini.

Dans un tel contexte, aucun algorithme existant ne permet de tolérer un taux de

Byzantins constant. Nous proposons un mécanisme fractal qui permet de résoudre

ce problème pour des taux de Byzantins suffisamment faibles.

Réseaux dynamiques

Cette section résume les résultats du Chapitre 8. Ce travail est une collaboration avec

le Pr. Defago du Japan Advanced Institute of Science and Technology.

La condition pour tolérer k fautes Byzantines arbitrairement placées dans un réseau

statique est qu’il existe 2k+1 chemins disjoints entre l’émetteur et le récepteur [36, 37].

La preuve de ce résultat repose sur le théorème de Menger [38], qui garantit l’équivalence

entre coupe minimale et connectivité. Cependant, ce théorème n’est pas généralisable

aux réseaux dynamiques [48]. Cela est illustré sur la Figure 11.12, où il faut supprimer au

minimum 2 nœuds pour déconnecter l’émetteur du récepteur, mais où il est impossible

de trouver 2 chemins disjoints.

Figure 11.12: Contre-exemple du théorème de Menger dans les graphes dynamiques.

Nous généralisons ici cette condition aux réseaux dynamiques. Pour cela, nous intro-

duisons la notion de chemin dynamique : un chemin le long duquel un message peut se

propager, en prenant en compte les délais de transmission et la dynamicité du réseau. La

condition est alors l’existence d’un ensemble de chemins dynamiques entre l’émetteur et

le récepteur, de telle sorte qu’il soit impossible d’interrompre tous ces chemins en supp-

rimant 2k nœuds. Cette condition est nécessaire et suffisante. Nous donnons également

un algorithme de communication fiable pour le cas où cette condition est satisfaite.
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Dans un second temps, nous appliquons cette condition à plusieurs cas d’étude. Nous

considérons tout d’abord le graphe des interactions entre participants de la conférence

Infocom 2005 [49]. On s’intéresse aux dix participants les plus “sociables”, et à leur

capacité à communiquer dans un intervalle de 10 minutes. Les résultats sont représentés

en Figure 11.13.

Figure 11.13: Communication fiable lors de la conférence Infocom 2005.

La communication est dite directe lorsque deux participants se rencontrent, simple

lorsqu’ils peuvent échanger un message indirectement, et fiable lorsque cette commu-

nication indirecte tolère une faute Byzantine. Ainsi, si on veut tolérer une faute Byzan-

tine, il est intéressant d’utiliser notre algorithme plutôt que d’attendre que l’émetteur

et le récepteur se rencontrent en personne. Par exemple, à 9h30, tous les participants

parviennent à communiquer fiablement de cette façon, alors que seulement deux tiers se

rencontrent directement.

On considère ensuite un réseau de 10 robots mobiles se déplaçant aléatoirement sur une

grille 10× 10. Il faut en moyenne 63 unités de temps pour une communication simple.

Pour une communication directe, ce délai augmente de 194%, alors qu’il n’augmente

que de 81% pour une communication fiable. On obtient des résultats similaires avec

des agents se déplaçant aléatoirement dans le métro parisien, en prenant en compte

les horaires des rames. Dans les deux cas, notre algorithme permet un gain de temps

notable par rapport à la communication directe.

Tolérance fractale

Cette section résume les résultats du Chapitre 9. Une partie de ces résultats ont été

publiés dans la conférence ICDCN [50].

Nous considérons ici une grille où chaque nœud a une probabilité λ d’être Byzantin.

Cela peut représenter, par exemple, le taux de défaillance de chaque nœud. Dans ce

contexte, toutes les solutions précédentes, y compris celles proposées dans cette thèse,

ont la même faiblesse : pour un λ donné, quand la taille de la grille augmente, la

probabilité de communication tend vers 0.
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En effet, pour chacune de ces solutions, il existe un “motif critique” de nœuds Byzantins

qui, sur une grille, entrâıne une diffusion incontrôlée de messages mensongers. Pour un

λ constant, lorsque la taille de la grille augmente, la probabilité d’avoir un tel motif

critique tend vers 1, et par conséquent, la probabilité de communication tend vers 0.

Nous proposons ici le premier algorithme qui surmonte ce problème. Sa propriété est

la suivante : pour λ < 10−5, la probabilité de communication est toujours supérieure à

1 − 4λ, quelle que soit la taille de la grille. Nous avons ainsi une solution scalable en

terme de tolérance aux Byzantins.

Pour cela, nous utilisons un algorithme fractal. Nous considérons une série de grilles Gn

de taille croissante, Gn étant une grille 10n × 10n. Ainsi, à chaque nœud p de Gn+1,

on peut associer une sous-grille G(p) de taille 10× 10 sur Gn+1. Cela est illustré sur la

Figure 11.14, avec des grilles 3× 3.

Figure 11.14: Découpage fractal de la grille.

L’algorithme est défini de la façon suivante. Sur G1, nous utilisons un algorithme exis-

tant. Puis, nous utilisons l’algorithme sur Gn pour définir l’algorithme sur Gn+1. Cette

définition fractale nous permet d’avoir une probabilité de communication sous la forme

d’un produit infini convergent, d’où les résultats. On montre également des résultats

similaires sur une grille 3D.

Conclusion

Dans cette thèse, nous nous sommes intéressés au problème de la communication fiable

en présence de fautes Byzantines dans les réseaux faiblement connectés. Nous avons

tout d’abord proposé des solutions quantitatives qui tolèrent un grand nombre de fautes

Byzantines et assurent une communication fiable entre une majorité de nœuds corrects.

Nous avons ensuite proposé des solutions qualitatives basées sur la distance minimale
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entre les nœuds Byzantins. Enfin, nous avons généralisé des résultats existants aux

réseaux dynamiques et aux réseaux de taille non-bornée.

Ces résultats conduisent à plusieurs perspectives de recherche. Tout d’abord, nous pou-

vons adapter ces solutions à des réseaux réels, à la topologie moins régulière. Nous

pouvons également envisager une analyse probabiliste théorique de ces algorithmes. En-

fin, nous pouvons combiner ces approches entre elles et ajouter de nouvelles contraintes

afin d’atteindre un degré de tolérance aux fautes encore plus élevé.





Bibliography

[1] Peter Alan Lee and Thomas Anderson. Fault tolerance, principles and practice.

Dependable Computing and Fault-Tolerant Systems, 3:51–77, 1990.

[2] Flavin Cristian. Understanding fault-tolerant distributed systems. Communications

of the ACM CACM Homepage archive, 34(2):56–78, 1991.

[3] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[4] P.A. Santeler, K.A. Jansen, and S.P. Olarig. Fault tolerant memory, April 24 2001.

URL http://www.google.com/patents/US6223301. US Patent 6,223,301.

[5] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[6] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press,

2000.

[7] Nicola Santoro. Design and Analysis of Distributed Algorithms. Wiley, 2007.

[8] Michel Raynal. Distributed Algorithms for Message-Passing Systems. Springer,

2013.

[9] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI,

pages 173–186, 1999.

[10] Vadim Drabkin, Roy Friedman, and Marc Segal. Efficient byzantine broadcast in

wireless ad-hoc networks. In DSN, pages 160–169. IEEE Computer Society, 2005.

ISBN 0-7695-2282-3.

[11] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in con-

stantinople: Practical asynchronous byzantine agreement using cryptography. Jour-

nal of Cryptology, 18(3):219–246, 1982.

[12] R. Perlman. Network layer protocols with byzantine robustness. CSAIL Publications

and Digital Archive, 1989.

139

http://www.google.com/patents/US6223301


Bibliography 140

[13] Nikodin Ristanovic, Panos Papadimitratos, George Theodorakopoulos, Jean-Pierre

Hubaux, and Jean-Yves Le Boudec. Adaptive message authentication for multi-hop

networks. International Conference on Wireless On-Demand Network Systems and

Services, 2011.

[14] John Talbot and Dominic Welsh. Complexity and Cryptography: An Introduction.

Cambridge University Press, 2006.

[15] Peter Alan Lee and Thomas Anderson. Wireless sensor networks: a survey. Com-

puter Networks, 38(4):393–422, 2002.

[16] G. de Meulenaer, F. Gosset, O.-X. Standaert, and O. Pereira. On the energy

cost of communication and cryptography in wireless sensor networks. In IEEE

International Conference on Wireless and Mobile Computing, 2008.

[17] G.T. Sibley, M.H. Rahimi, and G. Sukhatme. Robomote: a tiny mobile robot

platform for large-scale ad-hoc sensor networks. In IEEE International Conference

on Robotics and Automation, 2002.

[18] The Heartbleed Bug (http://heartbleed.com).

[19] R. Lippmann, K. Ingols, C. Scott, and K. Piwowarski. Validating and restoring

defense in depth using attack graphs. IEEE Military Communications Conference,

2006.

[20] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. McGraw-Hill Publishing Company, New York, May 1998. ISBN

0-07-709352. URL http://www.cs.technion.ac.il/~hagit/DC/. 6.

[21] D. Malkhi, Y. Mansour, and M.K. Reiter. Diffusion without false rumors: on

propagating updates in a Byzantine environment. Theoretical Computer Science,

299(1–3):289–306, April 2003. ISSN 0304-3975.

[22] D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. Efficient update diffusion in byzan-

tine environments. In The 20th IEEE Symposium on Reliable Distributed Systems

(SRDS ’01), pages 90–98, Washington - Brussels - Tokyo, October 2001. IEEE.

ISBN 0-7695-1366-2.

[23] Y. Minsky and F.B. Schneider. Tolerating malicious gossip. Distributed Computing,

16(1):49–68, 2003.

[24] Toshimitsu Masuzawa and Sébastien Tixeuil. Stabilizing link-coloration of arbitrary

networks with unbounded byzantine faults. International Journal of Principles and

Applications of Information Science and Technology (PAIST), 1(1):1–13, December

2007. URL http://210.119.33.7/paist/paper/2008_12/TOC2008_12.pdf.

http://www.cs.technion.ac.il/~hagit/DC/
http://210.119.33.7/paist/paper/2008_12/TOC2008_12.pdf


Bibliography 141

[25] Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzantine faults. In

21st Symposium on Reliable Distributed Systems (SRDS 2002), pages 22–29. IEEE

Computer Society, 2002.

[26] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-stabilizing

link-coloring protocol resilient to byzantine faults in tree networks. In Principles of

Distributed Systems, 8th International Conference, OPODIS 2004, volume 3544 of

Lecture Notes in Computer Science, pages 283–298. Springer, 2005.
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