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Résumé

Dans cette thèse, nous examinons les propriétés de régularité locale de certains processus
stochastiques multiparamètres définis sur RN

+
, sur une collection d’ensembles, ou encore sur

des fonctions de L2. L’objectif est d’étendre certains outils standard de la théorie des proces-
sus stochastiques, en particulier concernant la régularité hölderienne locale, à des ensembles
d’indexation qui ne sont pas totalement ordonnés.

Le critère de continuité de Kolmogorov donne classiquement une borne inférieure pour la
régularité hölderienne d’un processus stochastique indicé par un sous-ensemble de R ou RN .
Tirant partie de la structure de treillis des ensembles d’indexations dans la théorie des proces-
sus indicés par des ensembles de Ivanoff et Merzbach, nous étendons le critère de Kolmogorov
dans ce cadre. Différents accroissements pour les processus indicés par des ensembles sont
considérés, et leur sont attachés en conséquence des exposants de Hölder. Pour les processus
gaussiens, ces exposants sont, presque surement et uniformément le long des trajectoires, déter-
ministes et calculés en fonction de la loi des accroissements du processus. Ces résultats sont
appliqués au mouvement brownien fractionnaire set-indexed, pour lequel la régularité est con-
stante. Afin d’exhiber un processus pour lequel la régularité n’est pas constante, nous utilisons
la structure d’espace de Wiener abstrait pour introduire un champ brownien fractionnaire indicé
par (0,1/2]×L2(T, m), relié à une famille de covariances kh, h ∈ (0,1/2]. Ce formalisme permet
de décrire un grand nombre de processus gaussiens fractionnaires, suivant le choix de l’espace
métrique (T, m). Il est montré que la loi des accroissements d’un tel champ est majorée par
une fonction des accroissements en chacun des deux paramètres. Les techniques développées
pour mesurer la régularité locale s’appliquent alors pour prouver qu’il existe dans ce cadre des
processus gaussiens indicés par des ensembles ou par L2 ayant une régularité prescrite.

La dernière partie est consacrée à l’étude des singularités produites par le processus multi-
paramètre défini par kh sur L2([0, 1]ν, dx). Ce processus est une extension naturelle du mou-
vement brownien fractionnaire et du drap brownien. Au point origine de RN

+
, ce mouvement

brownien fractionnaire multiparamètre possède une régularité hölderienne différente de celle
observée en tout autre point qui ne soit pas sur les axes. Une loi du logarithme itéré de Chung
permet d’observer finement cette différence.

Mots clés: champs aléatoires, processus multiparamètres et set-indexed, régularité hölderi-
enne, mouvement brownien (multi)fractionnaire, mesures gaussiennes, espaces de Wiener ab-
straits, propriétés trajectorielles.
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Abstract

In this thesis, local regularity properties of some multiparameter, set-indexed and eventually
L2-indexed random fields are investigated. The goal is to extend standard tools of the theory of
stochastic processes, in particular local Hölder regularity, to indexing collection which are not
totally ordered.

The classic Kolmogorov continuity criterion gives a lower estimate of the Hölder regularity
of a stochastic process indexed by a subset of R or RN . Using the lattice structure of the in-
dexing collections in the theory of set-indexed processes of Ivanoff and Merzbach, Kolmogorov’s
criterion is extended to this framework. Different increments for set-indexed processes are con-
sidered, and several Hölder exponents are defined accordingly. For Gaussian processes, these
exponents are, almost surely and uniformly along the sample paths, deterministic and related to
the law of the increments of the process. This is applied to the set-indexed fractional Brownian
motion, for which the regularity is constant. In order to exhibit a process having a variable reg-
ularity, we resorted to structures of Abstract Wiener Spaces, and defined a fractional Brownian
field indexed by a product space (0,1/2]×L2(T, m), based on a family of positive definite kernels
kh, h ∈ (0, 1/2]. This field encompasses a large class of existing multiparameter fractional Brow-
nian processes, which are exhibited by choosing appropriate metric spaces (T, m). It is proven
that the law of the increments of such a field is bounded above by a function of the increments
in both parameters of the field. Applying the techniques developed to measure the local Hölder
regularity, it is proven that this field can lead to a set-indexed, or L2-indexed, Gaussian process
with prescribed local regularity.

The last part is devoted to the study of the singularities induced by the multiparameter pro-
cess defined by the covariance kh on L2([0, 1]ν, dx). This process is a natural extension of the
fractional Brownian motion and of the Brownian sheet. At the origin 0 of RN

+
, this multiparam-

eter fractional Brownian motion has a different regularity behaviour. A Chung (or lim inf) law
of the iterated logarithm permits to observe this.

Key words: random fields, multiparameter and set-indexed processes, Hölder regularity,
(multi)fractional Brownian motion, Gaussian measures, Abstract Wiener Spaces, sample path
properties.
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1.1 Multiparameter and set-indexed processes . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fractional Brownian motion and its extensions . . . . . . . . . . . . . . . . . . . 6

1.3 Gaussian measures and abstract Wiener spaces . . . . . . . . . . . . . . . . . . . 12

1.4 Regularity of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Main results of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Principaux résultats de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

The work presented here intersects several domains in the theory of stochastic processes,
and is concerned in particular with multiparameter and set-indexed processes, fractional pro-
cesses and their sample path properties. In terms that will be explained in this introduction, the
main question I tried to answer during my PhD (and that branched in several directions) can be
formulated like this: is it possible to define a fractional Brownian field with prescribed regularity

on a general metric space?

The study of stochastic processes is one of the oldest topic in probability theory, tracing
back to the early discovery of Brownian motion in the 19th century, attributed surprisingly to
the botanist BROWN (1828), and then popularized by BACHELIER (1900), EINSTEIN (1905) and
SCHMOLUCHOWSKI (1906), before the rigorous mathematical foundation of WIENER [149] in
1923. The diversity of disciplines Brownian motion has appeared in since the beginning is strik-
ing: biology, economy, physics, mathematics. One of the reasons for its success is the simplicity
in its definition and use, while it accounts for various invariance properties and limit theorems.
Brownian motion {Bt , t ∈ R+} is the Gaussian process started at 0 with stationary increments:

∀s ≥ 0, {Bt+s − Bs, t ∈ R+}
(d)
= {Bt , t ∈ R+} ,

and (statistical) self-similarity of order 1/2:

∀a > 0,
�

a−1/2Bat , t ∈ R+
	 (d)
= {Bt , t ∈ R+} .

As such, the sample paths of Brownian motion are random objects, whose fractal nature is closely
determined by the self-similarity index 1/2. Driven by the observation in turbulent fluid dynam-
ics of a different self-similarity index, KOLMOGOROV [81] defined what he called Wiener spirals,
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2 1. INTRODUCTION

by changing the self-similarity index into any parameter γ between 0 and 1. A few years later,
another physical observation led the hydrologist HURST [66] to notice that the Central Limit
Theorem failed in the statistical study of the run-offs of the Nile river. To resolve this issue,
Hurst proposed a different scaling in nH (n being the size of his dataset) with H 6= 1/2. This
phenomenon was later explained with the help of fractional Gaussian noises. The letter H was
inherited from Hurst, replacing often γ. Later, MANDELBROT [98] coined the term fractional

Brownian motion, referring to the fractal nature of this process, and gave a stochastic integral
representation:

BH
t
=

1
Γ (H + 1/2)

∫

R

�
(t − s)

H−1/2
+ − (−s)

H−1/2
+

�
dBs , t ∈ R+ ,

where x+ = x∨0. Compared to the Brownian motion (H = 1/2), the fractional Brownian motion
loses several properties: independence of increments, martingality, Markov property; but on the
other hand it provides more flexibility, notably as a modelling tool. Indeed its increments can
now express long or short-range dependence, the self-similarity can be chosen in (0, 1), etc.
Here, we shall focus on the continuity properties of the fractional Brownian motion, whose
sample paths are Hölder continuous of order “almost” H, and of its generalizations to more
general indexing sets.

In the remainder of this introduction, we present some tools and important results, as well
as essential references, that are necessary to understand the next chapters. They concern some
elements of the theory of multiparameter, and most of all, set-indexed processes; a presentation
of some Gaussian extensions of the Brownian motion, with important results in the regularity
theory of the sample paths of random fields; and a brief account of the theory of Gaussian
measures, in particular in abstract Wiener spaces. Hopefully, these reminders will permit to
make a self-contained presentation of our results, in the last part of this introduction.

1.1 Multiparameter and set-indexed processes

Questions related to the study of stochastic processes with a multidimensional (or even more
abstract) parameter set started to appear in the 1940’s. It is rather late if we compare it to the
development of multivariate and functional analysis at that time, but quite early compared to the
rise of modern probability, with the axiomatic of Kolmogorov in the 1930’s. It is indeed as natural
to study multiparameter processes as is to study functions of several variables. Multiparameter
processes allow to model more complex phenomena, and not all physical experiences depend on
a single “time” parameter. A typical example is the Poisson equation (that appears in gravitation,
electrostatics, etc.), which is a partial differential equation with no notion of time. For that
matter, there has been an increasing interest in stochastic partial differential equations over the
last thirty years, starting with the pioneering work of WALSH [147]. Perhaps more importantly,
generalizing stochastic processes to random fields raises many theoretical questions that were
irrelevant in the one-parameter case, one of which is the loss of total order: what does the
Markov property become? The martingale property? What does a Brownian motion look like?
Does it have a single extension? etc.

Historically, the first appearance of a multiparameter stochastic process is the Lévy Brownian
motion, which owes its name to Paul LÉVY [92]. The Brownian sheet followed quickly after, with
the work of the statistician KITAGAWA [80]. Both were studied a lot since then, but it seems that
the latter received more attention, due perhaps to its many uses in applications. A property that
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attracted early the attention of probabilists is the Markov property. LÉVY [91] defined the follow-
ing property: let {X t , t ∈ RN

+
} be a multiparameter process and put, for any Borel set U in RN

+
,

the σ-algebraFU = σ ({X t , t ∈ U}). X is sharp Markov with respect to a Borel set U ∈ RN
+

ifFU

and FU c are conditionally independent with respect to F∂ U , where U c and ∂ U denote respec-
tively the complementary set of U in RN

+
and its boundary. To the question whether extensions

of classical one-parameter Markov processes are sharp Markov, RUSSO [124] gave a positive an-
swer for processes with independent increments, which are sharp Markov with respect to finite
unions of rectangleswith sides parallel to the axes. For these processes, DALANG AND WALSH

[35] characterised completely the sets for which this Markov property holds. Observing that
certain important processes were not sharp Markov for elementary sets, such as the Brownian
sheet which is not Markov with respect to a simple triangle with vertices (0, 0), (0, 1), (1,0)
in R2

+
, MCKEAN [102] defined a weaker Markov property known as germ-Markov, by substitut-

ing ∩ε>0σ{X t , d(t, U) < ε} for F∂ U . As a consequence of this definition, RUSSO [124] proved
that the Brownian sheet is germ-Markov with respect to any open set, and MERZBACH AND NU-
ALART [104] proved that for point processes, the germ-Markov property is equivalent to the
sharp Markov property. Note that other definitions for multiparameter Markov properties were
given, that we do not discuss here.

Multiparameter martingales were initially studied on discrete subsets of RN
+

by CAIROLI [26]
in the early 1970’s. A detailed overview of this theory can be found in [76]. Soon after, WONG

AND ZAKAI [150] and CAIROLI AND WALSH [27, 148] introduced martingales in the plane and
developed a stochastic calculus for multiparameter processes. As for Markov processes, different
notions of “history” yield different type of martingales. See [68] for an survey of these different
kinds of history in a non-totally ordered setting.

Alongside were studied processes indexed by subsets of the Euclidean space, primarily as
Gaussian processes with CHENTSOV [30], but then from the point of view of empirical processes
(see DUDLEY [45] and many other after him). Many questions related to processes indexed by
sets of RN and empirical statistics can be found in the review made by PYKE [118] on limit the-
orems for empirical and partial-sum processes. Appearing as limit of these statistical processes,
we mention also some works on sample path properties of Gaussian processes indexed by sets
due to ALEXANDER [8], and Lévy processes indexed by sets in BASS AND PYKE [19]. Note that
among processes indexed by sets, Gaussian noises (as in [45, 8]) will play a particular role in
this thesis: on a measure space (T,T , m), a Gaussian white noise M with control measure m is
a centred Gaussian process indexed by sets of T with the following covariance:

E (M(A) M(B)) = m(A∩ B) , A, B ∈ T . (1.1)

These objects will appear in numerous situations, especially in relation with multiparameter
processes and the definition of Wiener integrals.

Paragraphs 1.1.1 and 1.1.2 deal with set-indexed processes in the sense of IVANOFF AND

MERZBACH [70], which is implicitely the sense given to “set-indexed” from now on. In case
a process would be indexed by sets not pertaining to this theory, we would call it a process
“indexed by sets”.

1.1.1 The set-indexed framework

The theory of set-indexed processes of Ivanoff and Merzbach appeared as the will to give a com-
mon treatment to two different fields of research: one that focused on processes indexed by sets,
such as spatial processes (Poisson and point processes, in particular) and random measures; and
another one that studied martingales indexed by directed sets. One of the major constraint that
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appeared in the construction of this theory was to reconcile, on the one hand, the need to have
a collection of sets which is rich enough so as to generate the Borel sets of the underlying met-
ric space; and on the other hand, not letting it be too large, in order to have processes with
“good” modifications (càdlàg, continuous, Hölder continuous, etc.). The framework of IVANOFF

AND MERZBACH [70] is a synthesis that provides a general structure. Besides, it has many ap-
plications in spatial statistics, empirical processes, stochastic geometry, random measures, etc.
for which we refer again to the book [70]. Recently, new set-indexed processes were defined:
set-indexed Lévy processes [63] and set-indexed fractional [60] and multifractional Brownian
motions [121]. These last two processes will be studied extensively in Chapters 2, 3 and 4 of
this thesis.

The set-indexed framework was designed for the needs presented above, which sometimes go
beyond what will be necessary in this thesis, which is why we drop here some of the assumptions
of [70]. The interested reader might have a look there for more details.
Let T be a locally compact complete separable metric and measure space, with metric d and
Radon measure m defined on the Borel sets of T .

Definition 1.1 (adapted from [70]). A nonempty class A of compact, connected subsets of T is

called an indexing collection if it satisfies the following:

1. ; ∈ A and for all A∈A , A◦ 6= A if A /∈ {;, T}.
2. A is closed under arbitrary intersections and if A, B ∈ A are nonempty, then A ∩ B is

nonempty. If (Ai) is an increasing sequence inA then
⋃

i Ai ∈A .

3. The σ-algebra σ(A ) generated byA is the collectionB of all Borel sets of T .

4. Separability from above: There exists an increasing sequence of finite subclasses An =

{;, An
1, ..., An

kn
} (n ∈ N, kn ≥ 1) of A closed under intersections and a sequence of functions

gn :A →An defined by

∀U ∈A , gn(U) =
⋂

V∈An
V◦⊇U

V

and such that for each U ∈A , U =
⋂

n∈N
gn(U) .

(Note: ‘(·)’ and‘(·)◦’ denote respectively the closure and the interior of a set.)

The gn’s will play the role of dyadic approximation, and are particularly relevant for the study
of the regularity of set-indexed processes, as we will see in Chapter 2. This definition implies
that an indexing collection cannot be dsicrete, because of the separability from above. We might
use several times the notationA (u) to indicate the set of finite unions of elements ofA . Let us
present a few examples of indexing collections:

• The first one produces the link with multiparameter processes. Let T = RN
+

and A =

{[0, t], t ∈ T}, where [0, t] =
�
s ∈ RN

+
: s ´ t

	
denotes the rectangle of all points between

0 and t (for the partial order). Processes indexed by A are equivalent to those defined
on T by the relation:

X t = X ([0, t]) , (1.2)

In the sequel, A will often be referred to as the class of rectangles. Hence, any multipa-
rameter process can be seen as a set-indexed processes. PutAn = {[0, t] : t i = ki2

−n, ki =

0, . . . , 22n, i = 1, . . . , N}. It is easy to verify thatA satisfies all the assumptions in the pre-
vious definition.
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• It is also possible to consider T = [−1,1]N or T = RN with the indexing collection A =
{[0, t], t ∈ T}.
• The lower layers A on T = [0,1]N are those compact subsets A of T such that A ⊇
[0, t], ∀t ∈ A. For the lower layers, A = A (u) which gives a hint that this class is
very rich. Indeed, we will see that processes such as Brownian motion are not continuous
onA .

• Let T = [0,τ]×SN , where τ > 0 and SN is the N -dimensional sphere, and letA = {[0, t]×
U(ϑ) : t ∈ [0,τ], ϑ ∈ [0,π]N−1 × [0,2π]}, with U(ϑ) = {t ∈ SN : t i ≤ ϑi , i = 1, . . . , N}
where t i are the angular coordinates. This collection can be interpreted as the history of
the regions U(ϑ) of the sphere.

Let us present two types of objects of particular importance in the set-indexed theory: the
class C and flows. The first one is an important indexing collection to study the increments of
set-indexed processes, built fromA :

C =
�

C = A\ ∪n
i=1Ai , A, A1, . . . , An ∈A , n ∈ N

	
.

Indeed, if X is an A -indexed process, ∆X is its increment process defined by the inclusion-
exclusion process:

∆XC = XA−
n∑

k=1

∑

j1<···< jk

(−1)k−1XA∩A j1
∩···∩A jk

.

This increment process permits to define set-indexed martingales and Markov processes, and
we will study the Hölder continuity of processes with respect to these increments. As forA (u),
C (u) indicates the set of finite unions of elements of C .
The second one is the concept of flow. A flow is an increasing and continuous path f from [0,1] to
A orA (u). It is often useful to find characterizations of set-indexed processes by the properties
of their projections on any flow. For instance, the classical martingale characterizations of the
Poisson process (due to Watanabe) and of the Brownian motion (due to Lévy) extend to their
set-indexed equivalents, and the proofs rely on flows. If X is an A -indexed process and f is a
flow, the projection of X on f is defined as X

f
t = X f (t).

1.1.2 Continuity of set-indexed Markov processes

In the set-indexed framework, the Markov property appeared in IVANOFF AND MERZBACH [69]
as an extension of the multiparameter sharp Markov property (in fact two other extensions are
considered). With a view to constructing set-indexed Markov processes, BALAN AND IVANOFF

[14] introducedQ-Markov processes, Q referring to a transition system. In this context, BALAN

[13] extended a result of BASS AND PYKE [19], proving that for stochastically continuous Markov
processes with independent increments, i.e. Lévy processes, a criterion mixing metric entropy of
the collection of sets and decay of the tails of the Lévy measure implies the existence of a right
continuous modification of such processes. We recall the following definitions:

Definition 1.2 (Q-Markov process). Let Q be a transition system, i.e. a system of transition

probabilities {QB,B′(x , Γ ), x ∈ R, Γ ∈ B(R), B, B′ ∈ A (u)} satisfying a Chapman-Kolmogorov

condition, and let X = {XU , U ∈ A} be a process with a unique extension on C (u) and (FU)U∈A
its minimal filtration. X is a Q-Markov process if for all U ⊆ V ∈A (u),

∀B ∈B(R), P(∆XV ∈ B|FU) =QU ,V (∆XU , B),
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where for U ∈A (u), FU =
∨

V∈A
V⊆U
FV .

Definition 1.3 (Inner limit-Outer continuity). Let Σ be a sub-indexing collection of A (u). A

set-indexed function x : A → R is said to satisfy the Σ-ILOC property (Inner Limit and Outer

Continuity) if it admits an extension ∆x on Σ for which, for any t ∈ T , there exist a real number

∆xA−t
such that:

∀ε > 0, there exist δt > 0 and ηt > 0 such that

∀V ∈ Σ with V ⊂ At \ {t}, m(At \ V )< δt ⇒ |∆xV −∆xA−t
|< ε,

and

∀W ∈ Σ with At ⊆W, m(W \ At)< ηt ⇒ |∆xW −∆xAt
|< ε.

In [63], set-indexed Lévy processes are constructed so as to have this property.
We have made some steps towards the proof of existence of ILOC modifications of a class

of Q-Markov processes that would correspond to Feller processes in the real-parameter setting,
in the sense that they can be approximated by set-indexed pseudo-Poisson processes (see [74,
Chapter 17] for approximation of Feller processes by pseudo-Poisson processes). However the
proof is incomplete and we chose not to present it here, but we thought it was important to
mention that there was a gap in the theory. We also mention a result of BALANÇA [15] on C -
Markov processes (another recently defined class of set-indexed Markov processes), who proved
the existence of outer-continuous modifications for multiparameter C -Feller processes.

1.2 Fractional Brownian motion and its extensions

1.2.1 Multiparameter and set-indexed extensions

We gave in the previous paragraph the origins of multiparameter and white noise extensions
of Brownian motion. We now present carefully the Lévy Brownian motion and the Brownian
sheet, which are the two distinct multiparameter extensions of the Brownian motion and we
will see that they can be both expressed as processes indexed by sets of RN , N ∈ N∗. Then, we
give a similar description of the multiparameter extensions of fractional Brownian motion, with
set-indexed representations, but this time there will be three distinct extensions.

The Brownian sheet is a tensorized process, in the sense that along any direction parallel to
an axis of RN , it is a Brownian motion. It is defined as the centred1 Gaussian process over RN

+

with covariance:

E (Ws Wt) =

N∏

k=1

(sk ∧ tk) , s, t ∈ RN
+

,

where s1, . . . , sN are the coordinates of the point s. The Brownian sheet can be viewed as a set-
indexed process via the analogy that we describe now. Let W be the Gaussian process indexed
by Borel sets of RN

+
with covariance:

E (W(U)W(V )) = λ (U ∩ V ) , U , V ∈B(RN
+
) , (1.3)

1We point out that all Gaussian processes will be centred, whether it is explicitely stated or not. This is only a matter
of convenience, since the addition of a mean function will not be of any trouble.
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where λ is the N -dimensional Lebesgue measure. The existence of this process is ensured by the
positive definiteness of (U , V ) 7→ λ(U ∩ V ). W is known as white noise2. Finally, one can easily
verify using (1.3) that Wt =W([0, t]), defined for t ∈ RN

+
, is a Brownian sheet.

The other multiparameter Brownian motion we mentioned is the Lévy Brownian motion. It is
a multiparameter Gaussian process with incremental variance ‖s− t‖ and stationary increments
in RN . Its covariance then reads:

E (Xs X t) =
1
2
(‖s‖+ ‖t‖ − ‖s− t‖) , s, t ∈ RN ,

where ‖ · ‖ is the Euclidean norm. Perhaps less standard is the representation of Lévy Brownian
motion as a set-indexed process. Let us describe the original construction that CHENTSOV [30]
provided in the late 50’s. Let SN denote the unit sphere of RN ant put (S,S ,µ) the measure
space made of S = SN × (0,∞), S the Borel sets of S and µ the product measure of the uniform
measure on SN with the Lebesgue measure on (0,∞). For any t ∈ RN , We consider sets in S
of the form:

Ut = {(s, r) ∈ S : r < (s, t)N} ,

where (·, ·)N denotes the Euclidean scalar product of RN . This set has a nice geometric interpre-
tation in terms of hyperplanes separating 0 and the point t (see [127, p.400] for details). It can
be shown that, for some positive constant cN ,

µ(Ut) = cN‖t‖ and µ(Ut △ Us) = cN‖t − s‖ ,

where Ut △ Us = (Ut \ Us) ∪ (Us \ Ut) is the symmetric difference of sets. We renormalize µ so
that µ(Ut) = ‖t‖. Let M be the Gaussian white noise on S with control measure µ. Then,

E (X t − Xs)
2 = E (M(Ut)−M(Us))

2 = µ(Ut △ Us)

= ‖t − s‖ .

Note that X is indeed a special instance of white noise (1.1) since its covariance reads:

E (X t Xs) =
1
2
(µ(Ut) +µ(Us)−µ(Ut △ Us)) = µ(Ut ∩ Us) .

Fractional processes will be the cental in this thesis. They represent a large class of processes
that encloses Brownian motion, and despite the natural apppearance of the latter in many prob-
abilistic phenomena, it can be interesting, from a theoretical or modelling point of view, to
relax certain hypothesis such as independence of increments, or simply change the order of self-
similarity. For these reasons, the class of fractional Brownian motions offers a wide range of
behaviours, in particular on their sample paths (for instance their modulus of continuity involve
the Hurst parameter, see Section 1.4.4) but also on their statistical properties (such as long-
range dependence). From the theoretical point of view, the loss of several properties3, such as
martingale and Markov property (except for Brownian motion), implies that proofs of results
on fractional Brownian motions must rely on different tools than those used for standard Brow-
nian motion. For instance, the law of the iterated logarithm proved by CHUNG in the late 40’s
used independence of increments4. This theorem was extended to fractional Brownian motion

2In the literature, white noise often refers to this process on RN
+ , rather than the more general one defined by (1.1),

however in this thesis we will encounter different white noises. Note that we consider only Gaussian noises.
3A good review of these properties (or lack of properties) can be found in the monograph by NOURDIN [109].
4In fact, this result concerned sums of independent random variables, but still holds for Brownian motion, by

invariance.
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almost half a century later [106], using completely different technique of local nondeterminism
and small deviations.

Let us recall briefly that the fractional Brownian motion of order H ∈ (0, 1] is the only H-self-
similar Gaussian process with stationary increments, extending the definition given for Brownian
motion at the beginning of this thesis. We shall write it BH , and it has covariance:

E
�
BH

t
BH

s

�
=

1
2

�
|t|2H + |s|2H − |t − s|2H

�
, t, s ∈ R .

For H = 1/2, notice that this is a Brownian motion.
The Lévy fractional Brownian motion is the fractional process associated to the Lévy Brownian
motion, whose covariance is:

E
�
X H

t
X H

s

�
=

1
2

�
‖t‖2H + ‖s‖2H − ‖t − s‖2H

�
.

This is positive definite for any H ∈ (0,1], according to Proposition A.4. Regarding the repre-
sentation of Lévy Brownian motion (H = 1/2) as a process indexed by sets, the Lévy fractional
Brownian motion is also a process indexed by the subsets of S :

E
�
X H

t
X H

s

�
=

1
2

�
µ(Ut)

2H +µ(Us)
2H −µ(Us△ Ut)

2H
�

.

A lot is known on the sample paths of the Lévy fBm. However, so far as we know, it is not very
much used in applications. This contrasts with the class of Brownian sheets, perhaps due to
the isotropy of the first one and the tensorized structure of the latter. The fractional Brownian
sheet appeared in KAMONT [75]. For a vector H = (H1, . . . , HN ) ∈ (0,1]N of Hurst parameters,
its covariance reads:

E
�
W H

t
W H

s

�
=

1
2N

N∏

k=1

�
|tk|2Hk + |sk|2Hk − |tk − sk|2Hk

�

Unlike the Brownian sheet (H = (1/2, . . . , 1/2)), we hardly see how the fractional Brownian
sheet could be related to a set-indexed process. Yet it is again possible by means of Takenaka
measures. Let us present now TAKENAKA’s construction [137] of fractional Brownian motion.
The underlying measure space is the set ZN of spheres of RN parametrized by their center and
radius (x , r) ∈ RN ×R+, with its Borel σ-algebra ZN . The indexing sets are given by:

Vt = {(x , r) ∈ Z : ‖x‖ ≤ r}△ {(x , r) ∈ Z : ‖x − t‖ ≤ r} ,

which can be interpreted as the set of spheres that separate 0 and t (we refer again to [127,
pp.402–405]). Then, for any H < 1/2, we define the measure µN ,H on ZN :

µN ,H(dx , dr) = r2H−N−1dxdr .

A correct renormalization of µN ,H (that is still denoted by µN ,H) gives:

µN ,H(Vs△ Vt) = ‖t − s‖2H , s, t ∈ RN .

Thus, we obtain another set-indexed representation for the Lévy fractional Brownian motion by
defining the white noise on ZN with control measure µN ,H . However, we now fix N = 1 and
another integer ν ∈ N∗, and for a Hurst vector H = (H1, . . . , Hν) ∈ (0,1/2)ν we tensorize the
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measure spaces (Z1,Z1, mH1
), . . . , (Z1,Z1, mHν

) and denote by µH the tensorized measure. We
have, for t1, . . . , tν, s1, . . . , sν ∈ R:

µH

�
Vt1
× · · · × Vtn

∩ Vs1
× · · · × Vsn

�
=

ν∏

k=1

µ1,Hk
(Vtk
∩ Vsk

)

= E
�
W H

t
W H

s

�
,

which shows that W H
t
= WH(Vt), where Vt = Vt1

× · · · × Vtn
and WH is the white noise with

control measure µH.

All these processes can be considered as particular cases of a class of Gaussian processes
defined on some measure space (T,T , m), with covariance kH :

kH(U , V ) =
1
2

�
m(U)H +m(V )H −m(U △ V )H

�

for H ∈ (0, 1]. Such covariances were defined and proved to be positive definite in HERBIN AND

MERZBACH [60], and used in the context of set-indexed processes. By extrapolation, we will
use them on the space of square integrable functions L2(T, m), for the reason that m(U △ V ) =

‖1U − 1V‖2L2 , that we also denote by m
�
(1U − 1V )

2
�2

. For any f , g ∈ L2(T, m), this reads:

kh( f , g) =
1
2

�
m( f 2)2h +m(g2)2h −m

�
( f − g)2

�2h
�

(1.4)

for h ∈ (0,1/2]. We changed the notation from H to h in order to emphasize the fact h does
not belong to (0,1]. In fact, the set-indexed fractional Brownian motion is originally defined
with this latter convention in [60], for it has the additional advantage to look more like the
covariance of the usual fractional Brownian motion, with a power 2h in the covariance. Yet, in
terms of L2(T, m) norm, the power is to the 4h.

Finally, there is a new multiparameter process defined easily from this covariance, with co-
variance on the rectangles of RN :

k
(N)

h
(s, t) =

1
2

�
λ([0, s])2h +λ([0, t])2h −λ([0, s]△ [0, t])2h

�
, (1.5)

where λ is the Lebesgue measure on RN . When N = 1, this process is a standard fractional
brownian motion of parameter h (and k

(1)
h

is still a covariance for h> 1/2). Hence, the process

B
h having covariance k

(N)

h
is a third extension of fractional Brownian motion. Unlike the Lévy

fBm and the fractional Brownian sheet, it is defined only for h ≤ 1/2. Besides, k
(N)

1/2 is the

covariance of the Brownian sheet, so that B
h can also be seen as a fractional extension of the

Brownian sheet. A thorough comparison of these three processes is carried out in [61].
The multiparameter process B

h will be the object of interest in Chapter 5, and will be referred
to as multiparameter fractional Brownian motion.

Remark 1.4. In the sequel, we will often consider multiparameter and set-indexed Gaussian pro-

cesses as processes indexed by functions of L2 spaces, for the reasons exposed above. Processes with co-

variance kh, without necesarily specifying the underlying measure space, will be called L2-fractional

Brownian motion and denoted by B
h. Note that we keep the same notation for the multiparameter

and the general L2(T, m)-indexed process. Hopefully, the context will be clear enough for the reader

to distinguish them.



10 1. INTRODUCTION

1.2.2 Fractional Brownian fields

Besides multiparameter extensions, other directions appeared in the literature to generalize frac-
tional Brownian motion. If one wishes to keep the Gaussian nature of this process, it is for
instance possible to weaken the increment stationarity assumption, which can be useful in ap-
plications. One may also want to let the Hurst parameter vary along the sample paths (to change
the self-similarity and regularity). This led to the definition of the multifractional Brownian mo-
tion in the 90’s, independently by PELTIER AND LÉVY VÉHEL [116] and BENASSI, JAFFARD AND

ROUX [20], a process that behaves locally as a fractional Brownian motion. We will study local
behaviours, such as local self-similarity, in Chapter 4.

Another related question is the statistical estimation of the Hurst parameter in models based
upon fractional Brownian motion. It was studied in several articles, including recently [25]
which gives an exact confidence interval. Given an estimation Ĥ of the Hurst parameter, we
might have to plug this parameter in a model, for instance a functional of some fractional Brow-
nian motion with hidden Hurst parameter H0. It is therefore important to know how the estima-
tion error influences the law of the model. We refer to the works of JOLIS ET AL. ([73] among a
series of related articles) for (multiple) integrals against fractional Brownian motion and their
approximation in law as Ĥ approaches H0. Ou result of Chapter 3 can be interpreted in that
sense.

For a function H : R+ → (0,1], one way to define a multifractional Brownian motion is to
use Mandelbrot’s integral representation, in which the constant parameter H is replaced by the
function H(t):

B
H(t)
t =

1
Γ (H(t) + 1/2)

∫

R

�
(t − s)

H(t)−1/2
+ − (−s)

H(t)−1/2
+

�
dBs , t ∈ R+ . (1.6)

This integral is in the sense of Wiener, with a deterministic integrand belonging to L2(R). Unless
stated otherwise, this will be the case of most of the stochastic integrals encountered here.

The following figure represents a sample path of a multifractional Brownian motion with a si-
nusoidal Hurst function:

Figure 1.1 – A multifractional Brownian motion with sinusoidal Hurst function

In (1.6), we can even let H vary independently of t. The result is a Gaussian process indexed
by the product set R+ × (0, 1], called fractional Brownian field in this thesis.
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Figure 1.2 – A sample path of a fractional Brownian field

The graph of the above realization of a fractional Brownian field appears to be continuous.
Proving the existence of (Hölder) continuous modifications of stochastic processes will be a
reccurrent problem in the next chapters.
By means of integral representations, other fractional fields can be defined, especially for the
multiparameter extensions of fractional Brownian motion (we refer in particular to HERBIN [57],
who studied multifractional Brownian sheets and Lévy multifractional Brownian motions). In-
stead of the multifractional process, we give the fractional fields:

• the Lévy fractional Brownian field:

X h
t
= ch

∫

RN

�
‖t − u‖h−N/2 − ‖u‖h−N/2

�
dWu , t ∈ RN , h ∈ (0, 1] ;

• the fractional Brownian sheet with varying Hurst parameter:

W h
t
= ch

∫

RN

N∏

n=1

�
|tn − un|hn−1/2 − |u|hn−1/2

�
dWu , t ∈ RN

+
, h ∈ (0,1]N ,

where ch and ch are normalizing constants. However, the lack of integral representation for
the multiparameter fractional Brownian motion means that there is no direct way to define a
fractional field extension. This remark is true for any other process with covariance given by kh

on some L2(T, m), with the notable exceptions of X h and W h above.

The term fractional Brownian field was used by several authors with different meanings, thus
we clarify what we will use it for. Generally, the term random field describes a stochastic process
whose index set is not R+, but for instance RN

+
, or any other abstract set T . In this thesis,

fractional Brownian field means a process indexed by (0,1/2] × L2(T, m), with the additional
constraint that the second coordinate is the set of Hurst parameters, and that for any fixed h in
(0,1/2], the fractional Brownian field has the law of a L2-fractional Brownian motion. We have
seen in the previous paragraph that the class of L2-fractional Brownian motion includes various
known processes. We summarize this in the following definition:
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Definition 1.5 (Fractional Brownian Field). Let (Ω,F ,P) be a probability space and (T,T , m) a

measure space. A fractional Brownian field B is a Gaussian random field on (0,1/2] × L2(T, m)

with values in R, such that for each h ∈ (0,1/2], B
h = {B(h, t), t ∈ L2(T, m)} is a L2-fractional

Brownian motion.

To construct a fractional Brownian field, one might think of “sticking” together a family of h-
fractional Brownian motions. However, unless these h-fractional Brownian motions are chosen
independently, the resulting field might not be Gaussian; and if they were chosen independent,
there is no hope to recover interesting regularity properties in the h direction. The existence of
fractional Brownian fields is proven in Chapter 3, alongside several regularity properties such as
continuity.

The reader might think, perhaps rightly, that we have led so far a laborious work of listing
some of the numerous extensions of Brownian motion. Even though we have not detailed yet the
regularity property we searched for, and despite the many motivations to look at such processes
that we tried to give here and there; if the reader remained unconvinced of the interest of
studying fractional Brownian fields, it would certainly be reasonable to leave the last word to
Michel Talagrand:

“Our motivation for extending results classical for Brownian motion to the (N , d,α)
Gaussian process is not the importance of this process, but rather that the case of Brow-

nian motion suffers from an over abundance of special properties; and that moving

away from these forces to find proofs that rely upon general principles, and arguably

lie at a more fundamental level. Fractional Brownian motion might not be an object of

central mathematical importance but abstract principles are."

M. TALAGRAND [143]

1.3 Gaussian measures and abstract Wiener spaces

1.3.1 Construction of Gaussian measures in infinite-dimensional spaces

In Chapters 3, 4 and 5, we will see that Gaussian processes are embedded into infinite-dimensional
spaces, considering their laws as Gaussian measures on these spaces, in an attempt to construct
new processes and to study their regularity. To explain this approach, let (Ω,F ,P) be a proba-
bility space and let us a consider a linear mapping F defined on RN with values in the space of
Gaussian random variables. Assume that for any x1, . . . , xp ∈ RN , (F(x1), . . . , F(xp)) is a centred
Gaussian random vector with covariance matrix given by the entries {(x i , x j)}i, j=1...p (where (·, ·)
is the Euclidean scalar product). The most simple example might be to put (U1, . . . , UN ) a family
of i.i.d. standard normal random variables and

Fω(x) =

N∑

k=1

Uk(ω) (x , ek) ,

where {ek, k = 1 . . . N} is an orthonormal basis of RN . In particular, the characteristic function
reads:

E
�
eiF(x)

�
=

∫

RN

ei(x ,z)µN (dz) = e−
1
2 ‖x‖2 , ∀x ∈ RN , (1.7)
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where µN is the standard Gaussian measure defined for all Borel sets A of RN by:

µN (A) =
1

(2π)N/2

∫

A

e−
1
2 ‖z‖2 dz .

Let us remark that F is a (linear) Gaussian process indexed by RN , and that µN is absolutely
continuous with respect to the Lebesgue measure of RN . Now, if RN is replaced by an infinite-
dimensional Hilbert space H, there cannot be a measure satisfying Equation (1.7). Otherwise,
since (x , en) → 0 as n → ∞ for any x ∈ H, the integral in (1.7) would converge to 0, while
exp(−‖x‖2/2) would remain constant. Besides, even though we will be able to deal with stan-

dard Gaussian measures5, the absolute continuity will not make any sense, since there does not
exist an analogue to the Lebesgue measure in infinite dimensions.

Despite these limitations, SEGAL [131] proved the existence on any separable Hilbert space
H of a linear mappping F having Gaussian marginals such that:

E (F(x) F(y)) = (x , y)H , x , y ∈ H .

This process is now referred to as the isonormal process. The law of F in H fails to be countably
additive, as we noticed in the previous paragraph. However, we can define a finitely additive
measure µ̃ on H which satisfies, for any p ∈ N, any measurable function Φ from Rp to R, any
x1, . . . , xp ∈ H and any Borel set A of R:

P
�
Φ(F(x1), . . . , F(xp)) ∈ A

�
= µ̃

�
C(Φ, x1, . . . , xp, A)

�
,

where C(Φ, x1, . . . , xp, A) =
�

y ∈ H : Φ((x1, y)H , . . . , (xp, y)H) ∈ A
	
. µ̃ is called a cylinder mea-

sure because it measures cylinder sets, that is sets of the form C = Π−1(A), where Π is an
orthogonal projection of H with finite-dimensional range, and A a Borel set of this range. The
pushforward measure of µ̃ by Π is then a (true) countably additive measure on the σ-algebra
of Borel sets of Π(H). In fact, letting N be the dimension of Π(H) and i be a linear isometry
between Π(H) and RN , we have for any cylinder set C = Π−1(A):

µ̃ (C) = µN (i(A)) .

Motivated by the works of WIENER [149], who had overcome the difficulty to define properly
the Brownian motion by constructing a cylinder measure on the space of absolutely continuous
functions and extending it to the Banach space of continuous functions, GROSS [56] defined
abstract Wiener spaces.

Theorem 1.6 (Gross, [56]). Let (H,‖ · ‖H) be a real separable Hilbert space. Assume that there

exists a seminorm ‖ · ‖1 on H such that for every ε > 0 there is a finite-dimensional projection Π0

such that for any finite-dimensional projection Π which is orthogonal to Π0, we have:

µ̃ ({x ∈ H : ‖Πx‖1 > ε})< ε .

The completion of H with respect to this seminorm is denoted by E, and S is the canonical injection

from E∗ to H∗ ≡ H. Then, µ̃ extends to a countably additive measure on the Borel sets of E,

satisfying: ∫

E

ei〈ξ,x〉 µ(dx) = e−
1
2 ‖Sξ‖2H , (1.8)

where 〈·, ·〉 denotes the dual pairing between E∗ and E.

5i.e. centred measures with “unit” variance, extending (1.7) in an infinite-dimensional space.
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H is densely embedded into E, and by (1.8), the embedding is also continuous. We will say that
the triple (H, E,µ) is an Abstract Wiener Space. ‖ · ‖1 is a measurable seminorm.

Another consequence of this theorem is that there exists a linear operator I that maps H into
L2(µ), defined by I (Sξ) = 〈ξ, ·〉 for any ξ ∈ E∗, and extended by linear isometry ({Sξ, ξ ∈ E∗}
is dense in H) to the whole space H. Following the terminology of [136], we call this mapping
the Paley-Wiener map. There is an obvious link between I and the isonormal process F on H,
since considering I (x) as a random variable on (E,B(E),µ), we have:

Eµ (I (φ) I (ψ)) = (φ,ψ)H , φ,ψ ∈ H .

This association shows that µ is the law of the isonormal process in an abstract Wiener space,
and is a true (i.e. countably additive) measure. The other important operator appearing here is
S. In the theory of Gaussian measures, S is the covariance operator of µ and can be represented
as:

Sξ=

∫

E

x 〈ξ, x〉 µ(dx) , (1.9)

where this integral is understood in the sense of Bochner. Sξ is an element of H and S is rea-
sonably called covariance operator since:

〈ξ′, Sξ〉=
∫

E

〈ξ, x〉 〈ξ′, x〉 µ(dx) =
�
Sξ′, Sξ

�2

H
.

Example 1.7. If H is the classical Cameron-Martin space, i.e. the Hilbert space of absolutely con-

tinuous functions on [0, 1],

H =

�
f (·) =

∫ ·

0

ḟ (t) dt : ḟ ∈ L2([0,1])

�
,

and if ‖ · ‖ is the sup-norm on H, then the completion of H with respect to ‖ · ‖ is the space of

continuous functions on [0,1] started at 0. The Wiener measure on this space is the law of the

Brownian motion.

Note that in any abstract Wiener space, H is in general called the Cameron-Martin space, or re-
producing kernel Hilbert space of µ. Some authors make a difference between these two notions
(although they are canonically isomorphic), but we will not need this distinction here. Abstract
Wiener spaces turned out to be a good framework for stochastic analysis, and the Cameron-
Martin space is the right space to define directional derivatives of functionals of the Wiener
process. This permitted to develop a stochastic calculus of variations, now famously referred to
as Malliavin calculus.

Remark 1.8. An alternative construction of infinite-dimensional Gaussian measures, inspired by

the theory of distributions, emerged at the same period with the impulse of Russian mathematicians.

In this way, ITO [67] defined random distributions on the space of infinitely differentiable functions

with compact support on R, and so did GEL’FAND [51]. Let us mention YAGLOM [154], who gave

an important spectral representation (that will be mentioned again in Chapter 5), ROZANOV [122],

MINLOS [105], who gave his name to the Bochner-Minlos theorem for nuclear spaces, and the

essential book of GEL’FAND AND VILENKIN [52], which gathers most of the results known on such

processes. This approach echoes the rise of the theory of distributions at that time, SCHWARTZ himself

contributing [130]. Take the following setup: L is a nuclear space (for instance the Schwartz space
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S (R)) and C is a positive definite continuous functional on L such that C(0) = 1. Then, the

theorem of Minlos tells us that there exists a unique probability measure µ on L ′ such that:

∫

L ′
ei〈ξ,x〉 µ(dx) = C(ξ) .

Thus, if L = S (R) and C(ξ) = exp(−‖ξ‖2
L2(R)

/2), µ is the Gaussian measure on the space of

tempered distributions. Then, any element ξ of L can be considered as a random variable on L ′
(with the Borel sets given by the topology on this nuclear space). Although we will not be dealing

with nuclear spaces, we mention this example as one of the extensions of Bochner’s theorem. Another

one for Hilbert spaces with Hilbert-Schmidt embedding is used in Chapter 5.

This construction on nuclear spaces has important interactions with theoretical physics, as
can testify the works of NELSON [107, 108] on construction of quantum fields, and many others
after him. In fact, Euclidean free fields can also be constructed on abstract Wiener spaces, as
explained in [136], and this approach was used in recent articles as [6] and [29]. Both reflect
the need that appeared in the late 50’s to give rigorous mathematical meaning to some objects
introduced by theoretical physicists, such as Feynman path integrals.

1.3.2 A general scheme to construct Gaussian processes

A practical tool to construct abstract Wiener spaces is the following theorem, which can be found
in [136, p.317].

Theorem 1.9. Let H and H ′ be two separable Hilbert spaces and u a linear isometry from H to

H ′. Assume that an abstract Wiener space (H, E,µ) is given. Then, there exists a separable Banach

space E′ ⊃ H ′ and a linear isometry ũ : E → E′ whose restriction to H is u and (H ′, E′, ũ∗µ) is an

abstract Wiener space (ũ∗µ denotes the push-forward measure of µ by ũ).

We will build Gaussian processes upon given covariances, to which we can associate special
Hilbert spaces:

Definition 1.10 (Reproducing Kernel Hilbert Space). Let (T, m) be a separable and complete

metric space and R a continuous covariance function on T × T. R determines a unique Hilbert space

H(R) satisfying the following properties:

i) H(R) is a space of functions on T → R;

ii) for all t ∈ T, R(·, t) ∈ H(R);

iii) for all t ∈ T, ∀ f ∈ H(R), ( f , R(·, t))H(R) = f (t) .

We shall use extensively the abbreviation RKHS for such spaces. H(R) can be constructed from
Span{R(·, t), t ∈ T}, completing this space with respect to the norm given by the scalar product
of the previous definition. The continuity of the kernel and the separability of T suffice to prove
that H(R) is itself separable [24].

Let R be a covariance kernel on T , and let (Ω,F ,P) be a complete probability space. Provided
that there exists one abstract Wiener space (some are presented in the next parapraph), Theorem
1.9 gives the existence of an abstract Wiener space (H(R), E,µ), and we can associate to this
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construction the isonormal process FR on H(R) with law µ on E. For some s, t ∈ T , we see that
hs = R(·, s) and ht = R(·, t) belong to H(R), and

E (FR(hs) FR(ht)) =

∫

E

〈I (hs), x〉 〈I (ht), x〉 µ(dx) = (hs, ht)H(R)

= R(s, t) ,

by the reproducing kernel property (we extended the dual pairing notation 〈·, ·〉 to I although it
is not an element of E∗). Thus, the restriction of the isonormal process given by X = {FR(ht), t ∈ T}
is a centred Gaussian process on T with covariance R, for which we provided a useful embed-
ding. In particular, we see that FR is a generalized version of X , in the sense of generalized
functions. This is the typical procedure we shall adopt in Chapter 3 for the family of covariances
{kh, h ∈ (0,1/2]}.

1.3.3 Examples of Wiener spaces

To end this section, let us describe the representation of some Gaussian random fields as abstract
Wiener spaces:

• The Brownian motion on [0,1] has covariance R(s, t) = s∧ t, hence its reproducing kernel
Hilbert space is generated by the functions R(·, t) =

∫ ·
0
1[0,t](u) du, for any t ∈ [0,1]. Thus,

it is not difficult to see that H(R) = H1
0([0, 1]), the Sobolev space of absolutely continuous

functions started at 0, with square integrable weak derivative. We obtain the following
representations:

R(s, t) = E(Bt Bs) = E
�
B(R(·, s)) B(R(·, t))

�
,

where B is the isonormal process on H(R). The supremum norm ‖ · ‖∞ is a measurable
norm [56], and the completion of H1

0([0,1]) with respect to this norm is the space of
continuous functions started at 0, C0([0,1]). The law of the Brownian motion in C0([0,1])
is the (standard) Wiener measure W , and we finally obtain the classical Wiener space
(H1

0([0,1]), C0([0, 1]),W ).
Note that this is the classical Wiener space, but this is not the only way to embed the RKHS
of Brownian motion in an abstract Wiener space. See Chapter 5 where we embed it into a
larger Hilbert space. We also remark that it is possible to define the classical Wiener space
on R+ instead of [0, 1], after a few minor changes (think that the space of continuous
functions started at 0, C0(R+), is not a Banach space for the sup-norm).

• The AWS of the fractional Brownian motion on [0, 1] was given by DECREUSEFOND AND

ÜSTÜNEL [39] in terms of fractional integrals. For h ∈ (0,1), let Rh denote the covariance
of the fBm, and Hh the RKHS of Rh. The reader is referred to [126, p.187], where the
meaning of the following integral operator is explained and proved to be an isometric
isomorphism from L2([0,1]) onto Hh:

Kh = I2h
0+x

1/2−h

0+ I
1/2−h

0+ xh−1/2 (for h≤ 1/2) , (1.10)

where Iα0+ is the right fractional integral of order α (note that a slightly modified operator
yields the same result for h ∈ (1/2, 1)). This operator has a kernel Kh(·, ·) and satisfies the
two properties that:

Rh(s, t) =

∫ 1

0

Kh(t, r) Kh(s, t) dr
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and its image is precisely the RKHS Hh of the fBm:

Hh = Kh

�
L2([0, 1])

�
≡ I

h+1/2
0+

�
L2([0, 1])

�
.

The last equivalence is an equality of vector spaces only, since the scalar products differ.
This Hilbert space can be embedded in C0([0, 1]), thus giving the AWS of the fractional
Brownian motion. This structure is explained at length in Chapter 3.

• The same way we deduced the RKHS of the Brownian motion gives for the Brownian sheet:

HN (W ) =

¨
ϕ(t) =

∫

[0,t]

f (s) λ(ds), t ∈ [0,1]N ; f ∈ L2([0, 1]N )

«
.

This space can be embedded in the space of continuous functions on [0, 1]N with null
values on the axes to get the abstract Wiener space of the Brownian sheet.

• It is interesting to see the difference with the Gaussian (massless) free field, which is
another Gaussian process on RN . For a bounded domain D of RN , letting H1(D) denote
the completion of the space of smooth functions with respect to the Dirichlet inner product:

( f , g)∇ =

∫

D

∇ f ∇g dλ ,

the Gaussian free field is the random variable h =
∑

k hk Uk, where {hk, k ∈ N} is a com-
plete orthonormal system of H1(D) and {Uk, k ∈ N} a family of i.i.d standard normal
random variable. In [133], it is proven that the sum converges almost surely in the space
(−∆)b L2(D), for any b > (N − 2)/4, and that the embedding is dense and continuous.

1.4 Regularity of stochastic processes

1.4.1 Classic theory

In this section, we go over some results concerning the regularity theory of random fields, which
gives conditions to derive almost sure boundedness, continuity and Hölder continuity of the
sample paths t 7→ X t of some process X indexed by a metric space (T, d). This theory is now well
established, and we recall first some results on general processes, before focusing on Gaussian
processes.

The general setting will be a metric space (T, d) with a property close to compactness. Of
course, since we will deal with local results, the properties below extend to σ-compact sets.
(T, d) is totally bounded if for any ǫ > 0, it can be covered by a finite number of balls of radius
at most ǫ. The minimal number of balls that are necessary to cover T is called metric entropy

and is denoted by N(T, d,ǫ). The rate at which N(T, d,ǫ) goes to 0 is a good indicator of the
“complexity” of the index set, and most regularity results are expressed in those terms. Note
that a compact set is totally bounded. We will also need the definition of diameter of a set
D(S) = sup{d(s, t), s, t ∈ S}.

On some probability space (Ω,F ,P), the properties that we propose to investigate: bound-
edness, continuity (or absolute continuity, since most of the time, we will be on compact sets);
involve quantities that make us look at objects of the form:

ΩX (F, S) = {ω ∈ Ω : X t ∈ F, ∀t ∈ S} ,
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for some Borel sets F of R (we assume throughout that processes are R-valued) and some mea-
surable subsets S of T . For these quantities to make sense from a probabilistic point of view, one
must either restrict S to be at most countable, or check that ΩX (F, S) ∈ F . In Appendix B, the
notion of separability for random fields is defined in a very general context. By a famous result of
DOOB [42, p.54], all processes indexed by RN have a separable modification, which implies that
the aforementioned quantities are measurable, as well as supt∈S X t and other related quantities.
In Appendix B, this is extended to any R-valued random field indexed by a separable metric
space. Hence, it will always be assumed that stochastic processes are separable.

The following general theorem illustrates these ideas:

Theorem 1.11. Let (T, d) be a totally bounded metric space. For any subset S ⊆ T, assume that

there is a real number p ≥ 1 such that:

(E(Xs − X t)
p)1/p ≤ d(s, t) , ∀s, t ∈ S .

If, in addition, the following entropic condition holds:

∫ D(S)

0

(N(S, d,ǫ))1/p dǫ <∞ ,

then X is almost surely bounded and

E

�
sup
s,t∈S

|Xs − X t |
�
≤ 8

∫ D(S)

0

(N(S, d,ǫ))1/p dǫ .

The last inequality even yields almost sure uniform continuity, by a direct application of Borel-
Cantelli lemma. Note also that to avoid technicalities, we did not express this result in the full
generality of Orlicz spaces (see Theorem 11.1 of [89]).

If (T, d) is the Euclidean space, we obtain with a similar but stronger condition on X , the
Kolmogorov’s continuity criterion. To this end, let us define the modulus of a process X on any
metric space:

ωX ,d(δ) = sup
s,t∈T :d(s,t)≤δ

|Xs − X t |

X is said to be Hölder continuous of order α > 0 if:

lim sup
δ→0+

δ−αωX (δ)<∞ a.s.

Theorem 1.12. Let X be a multiparameter process on RN satisfying, for some constants C , p > 0
and q > 0:

E (Xs − X t)
p ≤ C ‖s− t‖N+q ,

for any s, t ∈ RN . Then X has a modification which is almost surely α-Hölder continuous, for any

α ∈ [0, q/p).

The proof of this theorem can be found in the book on multiparameter processes by KHOSH-
NEVISAN [76]. Both proofs rely on the chaining idea, that we exploit in the setting of set-indexed
processes in Chapter 2.
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1.4.2 Regularity of Gaussian processes

In some sense, the structure of RN permits to obtain Kolmogorov’s continuity criterion6, while
without additional assumption the chaining would fail on any metric space. Hence, the structure
of the index set is a limiting factor for general stochastic processes, but the rapid decay of the tails
of the Gaussian distribution produces better results. We do not discuss here Gaussian processes
with stationary increments, for which precise modulus continuous of continuity were obtained
early (see for instance [99]). For general Gaussian processes, the first steps were made by
GARSIA, RODEMICH AND RUMSEY [50] with the real-variable lemma for processes on the real
line (but this extends to multiparameter processes). Note here that by modulus of continuity of
a process X on some metric space (T, d), it is generally meant a continuous increasing function
ψ : R+→ R+ with ψ(0) = 0, such that almost surely:

|Xs − X t | ≤ Cω ψ (d(s, t)) , ∀s, t ∈ T ,

where Cω is a random variable which is finite almost surely.
A major step forward was made by DUDLEY [44] who provided a modulus of continuity for

any Gaussian process on a totally bounded metric space (T, d), depending on the pseudo-distance
generated by the process: dX (s, t) =

p
E(Xs − X t)

2, and depending also on the metric entropy,
as follows:

Theorem 1.13 (Dudley’s modulus of continuity). Let X be a Gaussian process indexed by T and

assume that (T, dX ) is a totally bounded metric space. Then,

ψ(δ) =

∫ δ

0

Æ
log N(T, dX ,ǫ) dǫ

is a modulus of continuity for X , i.e. ∀δ > 0, ωX ,dX
(δ)≤ Cωψ(δ) almost surely.

To echo the previous paragraph 1.3, it is interesting to notice that Dudley transposed the problem
for X indexed by T to the canonical isonormal process indexed by {X t , t ∈ T} as a subset of the
Hilbert space L2(Ω,P) (with scalar product given by the covariance of X ).

The metric entropy integral almost characterizes continuity and boundedness of Gaussian
processes. Combining the upper bound of Dudley with Sudakov’s minoration gives:

Theorem 1.14. There are universal constants k1, k2 > 0 such that for any Gaussian process X

indexed by a set T ,

k1 sup
ǫ>0
ǫ
Æ

log N(T, dX ,ǫ)≤ E
�

sup
t∈T

X t

�
≤ k2

∫ D(T )

0

Æ
log N(T, dX ,ǫ) dǫ .

However, there are cases when the difference between the two bounds is not tight. This
gap in the theory was filled with the conjecture of FERNIQUE [49] using majorizing measures,
and proven by TALAGRAND [139] (see also his recent book [144] for a modern treatment of the
generic chaining).

6For the reader familiar with chaining, this can be understood as follows: in the chaining argument, the set of
dyadic numbers of order n forms a net, and the structure of RN implies that any dyadic number of order n has a
bounded, independently of n, number of dyadic neighbours of order n.
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1.4.3 Local Hölder regularity

Let us observe the example of a multiparameter process X whose law satisfies the hypothesis of
Kolmogorov’s criterion, so that we obtain:

lim sup
δ→0+

δ−αωX (δ)<∞ a.s.

for any α < q/p. We retain that the sample paths of X belong almost surely to the space of
α-Hölder continuous functions (denoted from now by C α) for any α < q/p, but we did not
prove that they were not in C β for β ≥ q/p. Besides, we obtained a global modulus, while X

might have slower variations, locally. This will become clear with our second example: let H be
a smooth function from [0,1] to (0, 1) and BH a multifractional Brownian motion on [0, 1] with
regularity function H. We could prove, as in [57], that the induced distance satisfies dH(s, t) ≤
|s− t|h ≡ dh(s, t), where h= inf[0,1] H(t). Since this implies that

N([0, 1]N , dH ,ǫ)≤ N([0,1]N , dh,ǫ) = ǫ−1/h ,

we obtain from Dudley’s modulus:

sup
s,t∈[0,1]:|s−t|≤δ

|BH
s
− BH

t
| ≤ωBH ,dH

(δh)≤ Cω

∫ δh

0

Æ
log N([0, 1], dH ,ǫ) dǫ a.s.

≤ Cω

∫ δh

0

Æ
log N([0, 1], dh,ǫ) dǫ a.s.

≤ Cω δ
h
Æ
− log(δh) a.s.

Hence, we are likely to miss the local behaviour of BH , on some subsets of [0, 1] where it would
be more regular than h.

For these reasons, we define Hölder exponents. On a metric space (T, d), the definition of
local Hölder continuity can be twofold, since it is no longer equivalent, in a ball of radius ρ,
to compare the local oscillations to ρα or to d(s, t)ρ (see the following example). Let f be a
mapping from T to R, let t0 ∈ T and denote by B(t0,ρ) the ball centred at t0 with radius ρ. We
define the pointwise Hölder exponent:

α f (t0) = sup

�
α : lim sup

ρ→0
sup

s,t∈B(t0,ρ)

| f (s)− f (t)|
ρα

<∞
�

,

and the local Hölder exponent:

eα f (t0) = sup

�
α : lim sup

ρ→0
sup

s,t∈B(t0,ρ)

| f (s)− f (t)|
d(s, t)α

<∞
�

.

Each one allows to measure the regularity of the function f . In general, we have

α̃ f ≤ α f ,

but the inequality can be strict, as in the following example.

Example 1.15. Consider the case of the metric space (R, | · |). Fix γ > 0 and δ > 0. Let f be a

chirp function defined by x 7→ |x |γ sin 1
|x |δ . The two Hölder exponents at 0 can be computed and

eα f (0) =
γ

1+δ < α f (0) = γ. We give in Figure 1.3 the graph of this funtion (blue) with its envelop

x 7→ ±|x |γ (red). Here, the envelop gives the pointwise regularity.
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Figure 1.3 – The chirp function

If f is a stochastic process, it is reasonable to expect that these exponents will depend on
ω ∈ Ω. By the result of Appendix B, we can assume (up to choosing a modification) that α f (t0)

and eα f (t0) are random variables, if (T, d) is separable.
If X is a Gaussian process, we define the deterministic pointwise Hölder exponent:

αX (t0) = sup

�
α; lim sup

ρ→0
sup

s,t∈B(t0,ρ)

E (Xs − X t)
2

ρ2α
<∞

�
(1.11)

and the deterministic local Hölder exponent:

eαX (t0) = sup

�
α; lim sup

ρ→0
sup

s,t∈B(t0,ρ)

E (Xs − X t)
2

d(s, t)2α
<∞

�
. (1.12)

HERBIN AND LÉVY VÉHEL [59] have shown the following result on uniform (along the sample
paths) Hölder regularity theorem:

Theorem 1.16. Let {X t , t ∈ RN
+
} be a Gaussian process, and assume that the functions t 7→

lim infu→t eαX (u) and t 7→ lim infu→t αX (u) are positive. Then, almost surely,

∀t ∈ RN
+

, lim inf
u→t

eαX (u)≤ eαX (t)≤ lim sup
u→t

eαX (u) ,

and

∀t ∈ RN
+

, lim inf
u→t

αX (u)≤ αX (t) .

In the latter case, even if the upper bound is missing, there is still P (αX (t) = αX (t)) = 1 for any

t ∈ RN
+

.

Note that the last assertion is weaker: permuting the two symbols “a.s.” and ∀ is not a trivial
operation. The definition and study of local Hölder regularity for set-indexed processes is the
main topic of Chapter 2.
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1.4.4 Exact modulus of continuity of fractional processes

We easily deduce from the last theorem that the fractional Brownian motion of parameter H ∈
(0,1) has Hölder exponents equal to H. Hence H rules the regularity of the fBm, in addition to
the other properties we already pointed out. However, this is not enough yet to decide whether
the sample paths belong to C H . The following result, expressed for the N -parameter Lévy frac-
tional Brownian motion, answers negatively due to the logarithm term that appears in. Indeed,
there exists a positive constant C1 such that the exact modulus of continuity of the Lévy fBm is:

lim sup
δ→0+

sup
s,t∈[0,1]N

‖s−t‖<δ

|BH
s
− BH

t
|

p
2δ2H log(δ−1)

= C1 a.s.

In the unidimensional case N = 1, we have C1 = 1. This is Lévy’s modulus of continuity of
Brownian motion when H = 1/2; for H < 1/2, this was proven originally in MARCUS [99] while
for H > 1/2, the first proof of this result we could find is due to KHOSHNEVISAN AND SHI [78]
as part of a much more powerful theorem. In the multiparameter case, this is a consequence of
the recent work of MEERSCHAERT, WANG AND XIAO [103, Theorem 4.1].

A local version of the previous modulus appeared initially in the works of Khinchine on
random walks, and is known as law of the iterated logarithm. It was extended to the Brownian
motion, and eventually we have for the N -parameter Lévy fBm of parameter H the existence of
a positive constant C2, such that at any point t ∈ RN

+
:

lim
δ→0+

sup
‖s‖<δ

|BH
t+s
− BH

t
|

p
2δ2H log log(δ−1)

= C2 a.s.

Hence, the local oscillations are closer to the modulus of H-Hölder continuity than they were
in the uniform result. Note that this result can again be found in [99] when H ≤ 1/2 in the
one-dimensional setting (and then C2 = 1), and follows from a theorem of OREY [112] for
H ∈ (0,1). The multiparameter result is again a consequence of [103, Theorem 5.6]. Another
form of the law of the iterated logarithm will draw our attention in Chapter 5. It is known as
Chung’s law of the iterated logarithm, following CHUNG [31], who was the first to consider the
lower rate of convergence for random walks (and Brownian motion as a consequence). MONRAD

AND ROOTZÉN [106] extended this to the fractional Brownian motion. For the N -parameter fBm,
it follows that there exists a constant cH , such that for any t ∈ RN

+
,

lim inf
δ→0+

sups:‖s‖<δ |BH
t+s
− BH

t
|

δH (log log(δ−1))−h/N
= cH a.s.

It is interesting to see that cH is unknown in general, but that bounds exist and depend on the
constant of small deviations of the fBm. If N = 1 and H = 1/2, the constant of the standard
Brownian motion is π/

p
8. We did not focus on fractional Brownian sheets (nor more generally

on anisotropic Gaussian fields), because it would require more care and the results of Chapter
5 are more easily compared to the Lévy fractional Brownian motion. On this topic, we refer to
[103] for the latest results and to XIAO [152] for a review.

Along the years, several variations appeared, among which the modulus of non-differentiability
(which is still open for the Lévy fBm) and functional laws such as Strassen’s, which are particu-
larly noteworthy.
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1.5 Main results of this thesis

The topics that are addressed in this thesis follow the work of Herbin and Merzbach on the
set-indexed fractional Brownian motion [60, 61, 62]. We extend it to processes whose Hurst
parameter is allowed to vary along the sample paths, as it was done for multifractional exten-
sions of multiparameter fractional Brownian processes. To carry out this program, we define
in Chapter 2 appropriate tools to measure the regularity of set-indexed processes and prove a
Kolmogorov criterion for set-indexed processes and a theorem similar to Theorem 1.16 for set-
indexed Gaussian processes. This Chapter was written in collaboration with Erick Herbin and
is available as a preprint [64]. In Chapter 3, we construct a L2-indexed fractional Brownian
motion via a representation on abstract Wiener spaces, and study its regularity properties using
the results of the previous chapter. This work is also available as a preprint [121]. Chapter
4 gathers several results related to the fractional Brownian field, among which a property of
local nondeterminism for the L2-fractional Brownian motion. Lastly, we establish in Chapter
5 a Chung’s law of the iterated logarithm for the multiparameter fractional Brownian motion
with covariance given in (1.5), thanks to sompe techniques of analysis on Wiener spaces. These
results appear in our last preprint [120].

In the terminology of Ivanoff and Merzbach (Definition 1.1), we recall that (An)n∈N is a
sequence of finite sub-collections ofA , and denote kn the size ofAn (kn = #An). In this abstract
setting, formulating minimal assumptions is often as important as proving the results themselves.
The assumption introduced in Chapter 2 and that we retain in the sequel is formulated as follows:

Assumption (HA ). Let dA be a (pseudo-)distance onA . Let us suppose that forA = (An)n∈N,
there exist positive real numbers qA and M1 such that:

1. For all n ∈ N,

sup
U∈An

dA (U , gn(U))≤ M1 k
−1/qA
n , (H1)

2. and the collection (An)n∈N is minimal in the sense that: setting for all n ∈ N and all
U ∈An,

Vn(U) = {V ∈An : V ) U , dA (U , V )≤ 3M1k
−1/qA
n },

the sequence (Nn)n≥1 defined by Nn =maxU∈An
#Vn(U) for all n≥ 1 satisfies

∀δ > 0,
∞∑

n=1

k−δ
n

Nn <∞. (H2)

The hypotheses (H1) and (H2) are thoroughly explained and discussed in Chapter 2. Let us
notice that in case of Gaussian processes, the hypothesis (H2) is no longer necessary. The first
theorem we obtained extends Kolmogorov’s continuity criterion:

Theorem (2.9). Let dA be a (pseudo-)distance on the indexing collectionA , whose subclassesA =
(An)n∈N satisfy Assumption (HA ) with a discretization exponent qA > 0. Let X = {XU ; U ∈A}
be a set-indexed process such that:

∀U , V ∈A , E (|XU − XV |α)≤ K dA (U , V )qA+β
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where K, α and β are positive constants. Then, the sample paths of X are almost surely locally

γ-Hölder continuous for all γ ∈ (0, βα ), i.e. there exist a random variable h∗ and a constant L > 0
such that almost surely:

∀U , V ∈A , dA (U , V )< h∗⇒ |XU − XV | ≤ L dA (U , V )γ.

Thus, a process which satisfies these assumptions belongs almost surely to the space of Hölder
continuous functions of order γ, when this space is defined for simple increments, i.e. of the
form XU − XV . We shall present results on the regularity with respect to increments on C , as
defined in Section 1.1.1. Before doing so, the next theorem improves on Kolmogorov’s criterion
to provide an almost sure value for the Hölder exponents of Gaussian processes. Let us recall that
the deterministic pointwise αX and local eαX Hölder exponents are defined on a general metric
space (see Section 1.4.3), and so they are on (A , dA ).

Theorem (2.35). Let X = {XU ; U ∈A} be a set-indexed centered Gaussian process, where (An)n∈N
and dA satisfy assumption (H1) of (HA ). Suppose that the functions U0 7→ lim infU→U0

α̃X (U) and

U0 7→ lim infU→U0
αX (U) are positive overA . Then, with probability one,

∀U0 ∈A , lim inf
U→U0

eαX (U)≤ eαX (U0)≤ lim sup
U→U0

eαX (U)

and

∀U0 ∈A , lim inf
U→U0

αX (U)≤ αX (U0) .

We already mentioned in this introduction how important the C -increments are in the study
of multiparameter and set-indexed processes. Without further assumption, the regularity on
C is likely to be more complicated than on A : for instance, the Brownian motion indexed
by rectangles of R2

+
(which are pinned at 0) is locally bounded and continuous, while on the

associated class C it is almost surely unbounded (see a similar example with proof in [5, p.28]).
Hence, we restricted the classC to increments of the form U \∪L

k=1Uk, where L is a fixed integer.
This leads to the definition of Hölder exponents on this class C L , and it is proved that they are
in fact independent of the choice of L. Therefore, they are denoted by αX ,C and eαX ,C .

Corollary (2.36). Let X = {XU , U ∈ A} be a centered Gaussian set-indexed process. If the sub-

collections (An)n∈N satisfy assumption (H1) of (HA ) and if the deterministic C -Hölder exponents

are finite, then for U0 ∈A ,

αX ,C (U0) = sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
V⊂U

E
�
|∆XU\V |2

�

ρα
<∞





a.s.

eαX ,C (U0) = sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
V⊂U

E
�
|∆XU\V |2

�

dA (U , V )α
<∞





a.s.

Finally, the results of this chapter are applied to the set-indexed fractional Brownian motion.
All exponents are proved to equal the Hurst parameter H almost surely, and under an additional
weak assumption, the pointwise exponent is also uniformly equal to H.

Theorem (2.38). Let BH be a set-indexed fractional Brownian motion on (T,A , m), H ∈ (0, 1/2].
Assume that the subclasses (An)n∈N satisfy assumption (H1) of (HA ). Then, the local and pointwise
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Hölder exponents of BH at any U0 ∈ A , defined with respect to the distance dm or any equivalent

distance, satisfy

P
�
∀U0 ∈A , eαBH (U0) = H

�
= 1

and if the additional Condition (2.22) holds,

P (∀U0 ∈A , αBH (U0) = H) = 1 .

In particular, the multiparameter fBm defined with the covariance (1.5) on rectangles of [0, 1]N ,

satisfies P
�
∀t0 ∈ [0, 1]N , αBH (t0) = eαBH (t0) = H

�
= 1.

Chapter 3 extends the work done in Chapter 2, in the sense that a multifractional field is
constructed to which we will apply Theorem 2.38. The fractional Brownian fields that are about
to be presented are indexed by some L2(T, m) spaces, but the restriction to indicator functions
implies that they can be seen as set-indexed processes.

First, we sketch the construction of a fractional Brownian field on [0, 1]. Let W be the
Wiener measure on the space W of continuous functions started at 0. Theorem 3.3 ensures
the existence of an operator Kh which maps Hh (as given in the construction of the AWS of the
fractional Brownian motion, Section 1.3.3) into W ∗, such that on the probability space (Ω,F ,P),
the following formula defines a fractional Brownian field on (0,1)× [0,1]:

∀(h, t) ∈ (0, 1)× [0, 1], Bh,t =

∫

W

〈KhRh(·, t), w〉 dBw ,

where B is a Gaussian white noise on W with control measure W (see Definition (1.1)). More-
over, Kh is built so that for each h ∈ (0,1) fixed, {Bh,t , t ∈ [0,1]} is a fractional Brownian
motion. Thus, B is indeed a fractional Brownian field in the sense of Definition 1.5.

Let now {kh(·, ·), h ∈ (0,1/2]} be the collection of covariances on L2(T, m) defined by (1.4).
For each h, let H(kh) be the reproducing kernel Hilbert space attached to kh, for which there
exists an abstract Wiener space (H(kh), Eh,µh), by the proposition given in Section 1.3.2. For
each h ∈ (0,1/2], there is a linear isometry between (Hh, W,Wh) eand (H(kh), Eh,µh), so we
deduce in Section 3.2.2 the existence of an operator K̃h from H(kh) into E∗1/2, such that the
process defined by:

∀(h, f ) ∈ (0,1/2]× L2(T, m), Bh, f =

∫

E

〈K̃hkh(·, f ), x〉 dW(x) ,

is a fractional Brownian field. It is then proven that this process has increments whose law
satisfies:

Theorem (3.15). Let B be a fBf on (0, 1/2]×L2(T, m). For anyη ∈ (0,1/4) and any compact subset

D of L2, there exists a constant Cη,D > 0 such that for any f1, f2 ∈ D, and any h1, h2 ∈ [η, 1/2−η],

E
�
(Bh1, f1 − Bh2, f2)

2
�
≤ Cη,D

�
(h2 − h1)

2 +m
�
( f1 − f2)

2
�2(h1∧h2)

�
.

Similarly, this type of result applies to some functionals of the fractional Brownian field which
appear as solutions of stochastic partial differential equations. In Section 3.3.2, we consider an
elliptic problem on a domain U ⊂ [0,1]2:

∆u= Ẇh1,h2 ,
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where Ẇh1,h2 is a fractional Gaussian noise on [0, 1]2 which can be “extracted” (more precisions
are given in the corresponding section) from a single fractional Brownian field. The solutions
are mild solutions, and the regularity of the laws when h1 and h2 vary in (0,1/2] is proven, and
is in adequation with the previous theorem.

These theorems are especially important from the point of view of the regularity of sample
paths, as the following proposition suggests. Let us recall that the natural distance on L2(T, m)

is dm( f , g) = m
�
( f − g)2

�1/2
.

Theorem (3.19). Let B be a fBf indexed on a compact subset I of (0,1/2], and K be a compact

subset of L2(T, m) of dm-diameter smaller than 1. Let ι = inf I . If the following Dudley integral

converges:

∫ 1

0

Æ
log N(K , dm,ǫ1/2ι) dǫ <∞ ,

then B indexed by I × K has almost surely continuous sample paths.

In the last part of this chapter, we consider an indexing collection A on the measurable
space (T, m). Let B be a fractional Brownian field on (0, 1/2] × L2(T, m). Let h be a function
indexed byA with values in (0, 1/2], and assume that for any U ∈ A , h(U) is smaller than its
local Hölder regularity at U . Such a function is called regular. The set-indexed multifractional

Brownian motion (SImBm) with regularity function h, denoted by {Bh

U
, U ∈ A}, is defined as

follows:
∀U ∈A , B

h

U
= Bh(U),1U

.

The right-hand side term is the initial fractional Brownian field valuated at (h, f ) = (h(U),1U),
where 1U is indeed an element of L2(T, m). This multifractional process verifies the following
regularity property:

Proposition (3.25). LetA be an indexing collection satisfying assumption (H1) of (HA ). Let B
h

be a SImBm onA with a regular function h. Then, almost surely,

∀U0 ∈A , eαB
h(U0) = hU0

and αB
h(U0)≥ hU0

.

We did construct a set-indexed multifractional Brownian motion, whose regularity can be pre-
scribed by a function h, producing the same effect than for the multifractional Brownian motion
on R.

Chapter 4 gathers several independent results concerning the L2-fractional Brownian mo-
tion (h fixed) and results on approximation of the L2-multifractional Brownian motion by L2-
fractional Brownian motions. A local self-similarity result is also presented.

Firstly, two different couples consisting of an increment stationarity property and a self-
similarity property are discussed. The first couple is similar to the multiparameter notions, while
the second one accounts for the measure m and prolong the ideas developed in the set-indexed
framework [62]. Each of these couples characterizes the L2-fBm, see Propositions 4.1 and 4.3.

In a second part, it is shown that for any h ∈ (0,1/2), the L2-fBm is locally nondeterministic,
that is:

Proposition (4.4). Let h ∈ (0, 1/2). There exists a positive constant C0 such that for all f ∈
L2(T, m) and for all r ≤ ‖ f ‖, the following holds:

Var
�
B

h
f
| Bh

g
,‖ f − g‖ ≥ r

�
= C0r2h.
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This property is wrong for h = 1/2, as discussed in Section 4.2. The property of local nonde-
terminism is a valuable tool for the study of the sample paths of processes which do not have
the Markov property. It allows for instance to get estimates for the small ball probabilities of
Gaussian processes.

Theorem (4.6). Let B
h be a L2-fractional Brownian motion of parameter h ∈ (0, 1/2) and K a

compact set in L2(T, m). Let dh denote the distance induced by B
h on L2. Assume that there exists a

function ψ such that for any ǫ > 0, N(K , dh,ǫ)≤ψ(ǫ) and ψ(ǫ)≍ψ(ǫ/2). Then, there are some

constants κ1,κ2 > 0 such that:

exp (−κ2 ψ(ǫ))≤ P
�

sup
f ∈K

|Bh
f
| ≤ ǫ

�
≤ exp (−κ1 N(K , dh,ǫ)) ,

This result is the first step towards the Chung law of the iterated logarithm of Chapter 5.
Finally we provide two results of approximation of a L2-mBm by L2-fractional Brownian motions.
Similarly to the set-indexed mBm, the L2-mBm is defined for a regularity function h : L2(T, m)→
(0,1/2]:

B
h

f
= Bh( f ), f , f ∈ L2(T, m) .

The first result states that it is possible to recreates a L2-multifractional Brownian motion from
piecewise L2-fractional Brownian motions, see Theorem 4.8.

The second approximation result concerns the tangent processes of the L2-mBm. The idea
of a tangent field appeared in FALCONER [47], and we prove that for a fractional Brownian field
B and h a function from L2(T, m) to (0, 1/2], the following process defined for any f0 ∈ L2(T, m)

and any ρ > 0 by:

Y
f0,α

f
(̺) = ̺−α

�
B

h

f0+̺ f
− B

h

f0

�
, f ∈ L2(T, m)

converges when ̺→ 0 to a L2-fBm:

Theorem (4.10). Let K be a compact of L2(T, m). Assume that h is regular and with values in

[η, 1/2−η] for some η ∈ (0, 1/4). Let ι = infK h( f ) (≥ η) and assume further the convergence of

Dudley’s integral on K: ∫ D(K)

0

Æ
log N(K , dm,ǫ1/2ι) dǫ <∞ .

Then, for α = 2h( f0), Y f0,α(̺) converges in law on the space of continuous functions C(K) as

̺→ 0, and the limit is a L2-fractional Brownian motion of parameter h( f0).

In Chapter 5, we try to answer a question left open by HERBIN AND XIAO [65] on the behaviour
of the multiparameter fractional Brownian motion near 0 (we recall that the multiparameter
fBm has covariance k

(ν)

h
as given in (1.5)). Local modulus of continuity of this process are non-

trivial, which could be guessed by observing the distance induced by the multiparameter fBm
on RN . Indeed, this distance is related to the distance dλ(s, t) = λ([0, s]△ [0, t]) where λ is the
Lebesgue measure on Rν, which is singular with respect to the Euclidean distance when ν ≥ 2
in any neighbourhood of 0. This singularity affects the regularity of the multiparameter fBm:
it is shown that Chung’s law of the iterated logarithm of this process at 0 is different from any
other point away from the axes.

Thanks to Theorem 4.6, we are able to compute a sharp estimate of the probability of small
deviations of the multiparameter fBm. This and a spectral representation theorem (Proposition
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5.8) allow to obtain a Chung law of the iterated logarithm at 0, with a lower bound given by the
following modulus:

Ψ
(ℓ)

h
(r) = rνh eΨ(ℓ)

h
(r) = rνh (log log r−1)−h/ν ,

and an upper bound given by the modulus: Ψ(u)
h
= rνh eΨ(u)

h
, where we prove the existence of

eΨ(u)
h

as a non-decreasing function started at 0, but without obtaining an explicit form. In both

cases, eΨ(ℓ)
h

and eΨ(u)
h

are negligible compared to rνh. The supremum of the multiparameter fBm
in the neighbourhood of 0 is denoted by Mh(r) = supt∈[0,r]ν |Bh

t
|, r ∈ [0, 1]. Then we obtained:

Theorem (5.1). Let h ∈ (0,1/2) and let Mh, Ψ
(ℓ)

h
and Ψ

(u)

h
be as above. We have almost surely:

lim inf
r→0+

Mh(r)

rνheΨ(ℓ)
h
(r)
≥ κh/ν

1 and lim inf
r→0+

Mh(r)

rνheΨ(u)
h
(r)
≤ κh/ν

2 ,

where κ1 ≤ κ2 are the constants appearing in the small deviations of the L2-fBm.

As in the article of MONRAD AND ROOTZÉN [106], this theorem is extended into a functional
law of the iterated logarithm, thus providing an invariance principle for the rescaled multipa-
rameter fBm. Following the notations of the previous theorem, we define two different scalings
given for any r ∈ (0,1) by:

η(h,ℓ)
r
(t) =

B
h(r t)

rνh
p

log log(r−1)
,∀t ∈ [0,1]ν

and

η(h,u)
r
(t) =

B
h(r t)

rνh
�
eΨ(u)

h
(r)
�−ν/2h

,∀t ∈ [0, 1]ν .

We obtain the speed of convergence and the set towards which η(h,u) and η(h,ℓ) converge:

Theorem (5.2). Let h ∈ (0, 1/2) and let Hν
h

denote the reproducing kernel Hilbert space of k
(ν)

h
.

Let ϕ ∈ Hν
h

having norm strictly smaller than 1. Then, there exist two positive and finite constants

γ(ℓ)(ϕ) and γ(u)(ϕ) such that, almost surely,

lim inf
r→0+

eΨ(ℓ)
h
(r)−1−ν/2h sup

t∈[0,1]ν
|η(h,ℓ)

r
(t)−ϕ(t)| ≥ γ(ℓ)(ϕ)

lim inf
r→0+

eΨ(u)
h
(r)−1−ν/2h sup

t∈[0,1]ν
|η(h,u)

r
(t)−ϕ(t)| ≤ γ(u)(ϕ) .

Note that when ϕ = 0, this implies the previous theorem.
Lastly, the Hausdorff dimension of the range of the multiparameter fractional Brownian mo-

tion is computed, and we observed that it does not capture the irregularity of this process at 0
(see Proposition 5.17). However, similarly to the chirp function (Example 1.15), the singularity
of the multiparameter fBm can also be measured in terms of local Hölder regularity, see Remark
5.18. To conclude, it is worth considering that there might exist a link, for general Gaussian
processes, between the local modulus of continuity in Chung’s form and a new local Hölder
exponent. This is discussed at the end of Chapter 5.
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1.6 Principaux résultats de la thèse

Les sujets abordés dans cette thèse succèdent aux travaux communs d’Erick Herbin et Ely Merzbach
sur le mouvement brownien fractionnaire set-indexed [60, 61, 62]. Nous poursuivons ce travail
et donnons un sens à une extension de ce processus dont le paramètre de Hurst est autorisé
à varier le long des trajectoires, de la même manière que des extensions multifractionnaires
avaient été construites pour les mouvements browniens fractionnaires multiparamètres. Pour
cela, le Chapitre 2 se propose de construire les objets permettant de mesurer la régularité locale
des processus set-indexed, qui permettront par la suite de travailler sur des processus set-indexed
dont la régularité hölderienne locale varie. Ce chapitre a été écrit en collaboration avec Erick
Herbin et fait l’objet d’une pré-publication [64]. Dans le Chapitre 3, nous abordons la construc-
tion d’un champ brownien fractionnaire représenté sur les espaces de Wiener et étudions ses
propriétés de régularité, à l’aide des résultats du chapitre précédent. Ce chapitre fait l’objet de
la pré-publication [121]. Le Chapitre 4 est un recueil de propriétés diverses liées au champ
brownien fractionnaire sur L2, dont une propriété de non-déterminisme local apparaissant dans
[121]. Enfin, nous établissons dans le Chapitre 5 une loi du logarithme itéré de Chung pour
le mouvement brownien fractionnaire multiparamètre de covariance (1.5), grâce notamment
à des techniques d’analyse sur les espaces de Wiener. Ces résultats font l’objet d’une dernière
pré-publication, [120].

Dans la terminologie d’Ivanoff et Merzbach (Définition 1.1), on rappelle que (An)n∈N est
une suite de sous-ensembles finis de A , et on note kn le cardinal de An (kn = #An). Dans ce
cadre abstrait, la formulation des hypothèses minimales est souvent tout aussi importante que
la démonstration des résultats eux-mêmes. L’hypothèse introduite au Chapitre 2 et que nous
retiendrons pour l’étude des processus set-indexed est la suivante:

Hypothèse (HA ). Soit dA une (pseudo-)distance sur A . Supposons que pour A = (An)n∈N, il

existe des nombres positifs strictement qA et M1 tels que:

1. pour tout n ∈ N,

sup
U∈An

dA (U , gn(U))≤ M1 k
−1/qA
n , (H1)

2. la collection (An)n∈N est minimale au sens où: si pour tout n ∈ N et tout U ∈An, on note

Vn(U) = {V ∈An : V ) U , dA (U , V )≤ 3M1k
−1/qA
n },

alors la suite (Nn)n≥1 définie par Nn =maxU∈An
#Vn(U) pour tout n≥ 1 vérifie:

∀δ > 0,
∞∑

n=1

k−δ
n

Nn <∞. (H2)

Les hypothèses (H1) et (H2) sont expliquées et discutées en détails dans le Chapitre 2. On
retiendra notamment que lorsque les processus sont gaussiens, l’hypothèse (H2) n’est plus néces-
saire. Le premier théorème obtenu étend le critère de continuité de Kolmogorov:

Théorème (2.9). Soit dA une (pseudo-)distance sur la classe d’indexationA , dont les sous-classes

A = (An)n∈N satisfont l’hypothèse (HA ) pour l’exposant de discrétisation qA > 0. Soit X =

{XU ; U ∈A} un processus set-indexed tel que:

∀U , V ∈A , E (|XU − XV |α)≤ K dA (U , V )qA+β
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où K, α et β sont des constantes strictement positives. Alors les trajectoires de X sont presque

surement localement γ-Hölder continues pour tout γ ∈ (0, βα ), c’est-à-dire qu’il existe une variable

aléatoire h∗ et une constante L > 0 telles que presque surement:

∀U , V ∈A , dA (U , V )< h∗⇒ |XU − XV | ≤ L dA (U , V )γ.

Ainsi, un processus vérifiant ces hypothèses appartient presque surement à l’espace des fonctions
Hölder continues d’ordre γ pour les accroissements simples, c’est-à-dire de la forme XU − XV .
Nous présenterons par la suite des résultats sur la régularité par rapport aux accroissements sur
C définis au Paragraphe 1.1.1. Avant cela, le prochain théorème raffine le critère de Kolmogorov
pour fournir une valeur presque sure aux exposants de Hölder pour les processus gaussiens.
On rappelle que les exposants déterministes ponctuel αX et local eαX sont définis sur un espace
métrique quelconque dans la Section 1.4.3, et le sont donc bien sur (A , dA ).

Théorème (2.35). Soit X = {XU ; U ∈A} un processus gaussien set-indexed, avec (An)n∈N et

dA vérifiant l’hypothèse (H1) de (HA ). Supposons ques les fonctions U0 7→ lim infU→U0
α̃X (U) et

U0 7→ lim infU→U0
αX (U) soient strictement positives surA . Alors avec probabilité 1,

∀U0 ∈A , lim inf
U→U0

eαX (U)≤ eαX (U0)≤ lim sup
U→U0

eαX (U)

et

∀U0 ∈A , lim inf
U→U0

αX (U)≤ αX (U0) .

Nous avons déjà mentionné dans cette introduction l’importance des C -accroissements pour
les processus multiparamètres et set-indexed. Sans rajouter d’hypothèses, la régularité sur C
s’avére rapidement plus compliquée que surA : considérons par exemple le mouvement brown-
ien indexé par les rectangles (attachés en 0) de R2

+
, puisque celui-ci a de bonnes propriétés de

régularité, alors que sur la classe C associée on peut montrer qu’il est presque surement non-
borné (voir l’exemple similaire du mouvement brownien indicé par les lower layers de [0,1]2

dans [5, p.28]). Nous avons donc restreint la classeC aux accroissements du type U \∪L
k=1Uk où

L est un entier fixé. On montre alors que les exposants de Hölder définis sur les accroissements
de C L ne dépendent pas du choix de L, raison pour laquelle on les note αX ,C et eαX ,C .

Corollaire (2.36). Soit X = {XU , U ∈ A} un processus gaussien set-indexed. Si les (An)n∈N
vérifient l’hypothèse (HA ) et si les exposants C -Hölder déterministes sont finis, alors pour tout

U0 ∈A ,

αX ,C (U0) = sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
V⊂U

E
�
|∆XU\V |2

�

ρα
<∞





p.s. ,

eαX ,C (U0) = sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
V⊂U

E
�
|∆XU\V |2

�

dA (U , V )α
<∞





p.s.

Enfin, les résultats de ce chapitre sont appliqués au mouvement brownien fractionnaire set-
indexed. Tous les exposants sont égaux p.s. au paramètre de Hurst H, et sous une hypothèse
supplémentaire assez faible, l’exposant ponctuel est même uniformément égal à H.
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Théorème (2.38). Soit BH un mouvement brownien fractionnaire set-indexed sur (T,A , m), H ∈
(0,1/2]. Supposons que les sous-classes (An)n∈N satisfont l’hypothèse (H1) de (HA ). Alors les

exposants de Hölder local et ponctuel de BH , définis par rapport à la distance dm, vérifient en tout

point U0 ∈A :

P
�
∀U0 ∈A , eαBH (U0) = H

�
= 1

et si la condition supplémentaire (2.22) est vérifiée,

P (∀U0 ∈A , αBH (U0) = H) = 1 .

En particulier, on a pour le fBm multiparamètre, défini par la covariance (1.5) sur les rectangles de

[0,1]N , que P
�
∀t0 ∈ [0,1]N , αBH (t0) = eαBH (t0) = H

�
= 1.

Le Chapitre 3 prolonge le travail du Chapitre 2, au sens où y est construit un processus mul-
tifractionnaire auquel le Théorème 2.38 s’applique, à la différence que le paramètre de Hurst est
désormais variable. Les champs browniens fractionnaires que nous construisons seront indicés
par des espace L2(T, m), et par restriction pourront être vus comme des processus set-indexed.

Donnons en premier lieu une construction du champ brownien fractionnaire sur [0,1]. SiW
est la mesure de Wiener sur l’espace des fonctions continues issues de 0, noté W , le Théorème
3.3 donne l’existence d’un opérateur Kh agissant sur l’espace de Hilbert Hh (celui de la con-
struction de l’espace de Wiener du mouvement brownien fractionnaire, Section 1.3.3) vers W ∗

permettant d’écrire que sur l’espace de probabilité (Ω,F ,P), l’expression suivante définie un
champ brownien fractionnaire sur (0,1)× [0,1]:

∀(h, t) ∈ (0, 1)× [0, 1], Bh,t =

∫

W

〈KhRh(·, t), w〉 dBw ,

où B est un bruit blanc sur W de mesure de contrôle W (voir la Définition (1.1)). De plus, Kh

est construit de sorte que pour h ∈ (0,1) fixé, {Bh,t , t ∈ [0, 1]} est un mouvement brownien
fractionnaire. Ainsi, B est bien un champ brownien fractionnaire au sens de la Définition 1.5.

Soit maintenant {kh(·, ·), h ∈ (0,1/2]} la famille de covariance sur L2(T, m) définie par (1.4),
avec pour chaque h, un espace de Hilbert à noyau reproduisant H(kh) auquel est associé un
espace de Wiener (H(kh), Eh,µh) par le procédé décrit dans le Paragraphe 1.3.2. Pour chaque
h ∈ (0,1/2], les espaces de Wiener (Hh, W,Wh) et (H(kh), Eh,µh) sont reliés par une isométrie
linéaire. On en déduit au Paragraphe 3.2.2 l’existence d’un opérateur K̃h défini sur H(kh) et à
valeurs dans E∗1/2, tel que le processus défini par:

∀(h, f ) ∈ (0, 1/2]× L2(T, m), Bh, f =

∫

E

〈K̃hkh(·, f ), x〉 dW(x) ,

est un champ brownien fractionnaire. Il est ensuite prouvé que ce processus a des accroissements
dont la loi vérifie le théorème suivant:

Théorème (3.15). Soit B un champ brownien fractionnaire sur (0,1/2] × L2(T, m). Pour tout

η ∈ (0,1/4) et tout compact D de L2, il existe une constante Cη,D > 0 telle que pour tous f1, f2 ∈ D,

et tous h1, h2 ∈ [η, 1/2−η],

E
�
(Bh1, f1 − Bh2, f2)

2
�
≤ Cη,D

�
(h2 − h1)

2 +m
�
( f1 − f2)

2
�2(h1∧h2)

�
.
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De la même manière, nous montrons comment ce type de résultat s’applique à des fonction-
nelles de certains champs browniens fractionnaires apparaissant comme solutions d’équations
aux dérivées partielles stochastiques. Dans la Section 3.3.2, nous considérons le problème ellip-
tique suivant, sur un domaine U ⊂ [0,1]2:

∆u= Ẇh1,h2 ,

où Ẇh1,h2 est un bruit gaussien fractionnaire sur [0,1]2 qu’on peut “extraire” (avant plus de pré-
cisions dans le paragraphe concerné) d’un seul et même champ brownien fractionnaire. Les so-
lutions de cette équation sont définies au sens mild, et la régularité des lois quand les paramètres
h1 et h2 varient dans (0, 1/2] est prouvée, et similaire à celle trouvée au théorème précédent.

Ces théorèmes sont particulièrement importants du point de vue de la régularité des trajec-
toires, comme nous pouvons le constater avec la proposition suivante. Pour cela, rappelons la

distance naturelle sur L2(T, m), dm( f , g) = m
�
( f − g)2

�1/2
.

Théorème (3.19). Soit B un champ brownien fractionnaire indicé par un sous-ensemble compact I

de (0, 1/2], et K un sous-ensemble compact de L2(T, m) de dm-diamètre plus petit que 1. Définissons

ι = inf I . Si l’intégrale de Dudley suivante converge:

∫ 1

0

Æ
log N(K , dm,ǫ1/2ι) dǫ <∞ ,

alors B indicé par I ×K admet une modification ayant des trajectoires presque surement continues.

Considérons désormais la collection set-indexedA définie sur l’espace mesurable (T, m), et
le champ brownien fractionnaire précédent défini sur (0,1/2] × L2(T, m). Soit h une fonction
indicé par A et à valeurs dans (0,1/2], dont on suppose qu’elle vérifie en tout point U ∈ A
que sa valeur en U est plus faible que sa régularité hölderienne en ce point. Une telle fonction
est dite régulière. Le mouvement brownien multifractionnaire set-indexed (SImBm) de fonction
de régularité h, noté {Bh

U
, U ∈A}, est défini comme suit:

∀U ∈A , B
h

U
= Bh(U),1U

.

Le membre de droite est donc le champ brownien fractionnaire initial évalué en (h, f ) = (h(U),1U),
où 1U est l’indicatrice de U ∈ A qui appartient donc bien à L2(T, m). Ce processus multifrac-
tionnaire vérifie la propriété de régularité suivante:

Proposition (3.25). Soit A une collection set-indexed vérifiant l’hypothèse (H1) de (HA ). Soit

h :A → (0, 1/2] une fonction régulière et B
h un SImBm surA de fonction de régularité h. Alors,

presque surement,

∀U0 ∈A , eαB
h(U0) = hU0

et αB
h(U0)≥ hU0

.

Nous avons donc construit un mouvement brownien multifractionnaire indicé par des ensem-
bles, dont la régularité peut être prescrite par une fonction h, au même titre qu’un mouvement
brownien multifractionnaire sur R.

Le Chapitre 4 est composé de plusieurs résultats indépendants concernant le L2-mouvement
brownien fractionnaire (h fixé) d’une part, et des résultats d’approximation du L2-mouvement
brownien multifractionnaire par des L2-mouvements browniens fractionnaires d’autre part. On
y trouvera également une propriété d’auto-similarité locale du champ brownien fractionnaire.
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Dans un premier temps, deux propriétés de stationarité des accroissements et deux propriétés
d’auto-similarité sont discutées. Deux couples stationarité des accroissements–auto-similarité
sont formés, le premier étant similaire à la définition multiparamètre, tandis que le deuxième
tient compte de la mesure m et permet de poursuivre la discussion entamée dans le cadre set-
indexed [62]. Pour chacun de ces couples, un théorème de caractérisation du L2-mouvement
brownien fractionnaire est exprimé (Propositions 4.1 et 4.3).

Dans une deuxième partie, il est prouvé que pour tout h ∈ (0,1/2), le L2-mouvement brown-
ien fractionnaire est localement non-déterministe, au sens où:

Proposition (4.4). Pour h ∈ (0, 1/2), il existe une constante strictement positive C0 telle que pour

tout f ∈ L2(T, m) et pour tout r ≤ ‖ f ‖, nous avons l’égalité suivante:

Var
�
B

h
f
| Bh

g
,‖ f − g‖ ≥ r

�
= C0r2h.

Cette propriété est fausse pour h = 1/2, ce qui est discuté dans la Partie 4.2. La propriété
de non-déterminisme local est un outils précieux pour l’étude des trajectoires des processus ne
possédant pas la propriété de Markov. Elle permet notamment d’obtenir les probabilités de
petites déviations pour les processus gaussiens.

Théorème (4.6). Soit B
h un L2-mouvement brownien fractionnaire de paramètre h ∈ (0, 1/2) et

K un compact de L2(T, m). Soit dh la distance induite par B
h sur L2. Supposons qu’il existe une

fonction ψ telle que ψ(ǫ)≍ψ(ǫ/2) au voisinage de 0, et que l’entropie vérifie N(K , dh,ǫ) ≤ ψ(ǫ)
pour tout ε > 0. Alors il existe deux constantes κ1,κ2 > 0 telles que:

exp (−κ2 ψ(ǫ))≤ P
�

sup
f ∈K

|Bh
f
| ≤ ǫ

�
≤ exp (−κ1 N(K , dh,ǫ)) .

Ce résultat est un premier pas vers la loi du logarithme itéré qui sera présentée par la suite.
Enfin, nous exposons des résultats d’approximation du L2-mBm par des L2-fBm. Comme dans le
cadre set-indexed, le L2-mBm est défini pour une fonction de régularité h : L2(T, m)→ (0,1/2]
par:

B
h

f
= Bh( f ), f , f ∈ L2(T, m) .

Le premier résultat consiste à reconstituer un L2-mouvement brownien multifractionnaire à par-
tir d’un processus qui est un L2-mouvement brownien fractionnaire par morceaux (voir Théorème
4.8). Le deuxième résultat d’approximation concerne les processus tangents du L2-mouvement
brownien multifractionnaire. Cette notion fut introduite par FALCONER [47], et nous montrons
que pour B un champ brownien fractionnaire et h une fonction de L2(T, m) à valeurs dans
(0,1/2], le processus défini en tout point f0 ∈ L2(T, m) et tout ρ > 0 par:

Y
f0,α

f
(̺) = ̺−α

�
B

h

f0+̺ f
− B

h

f0

�
, f ∈ L2(T, m)

converge lorsque ̺→ 0 vers un L2-mouvement brownien fractionnaire.

Théorème (4.10). Soit K un compact de L2(T, m). Supposons que h est régulière et à valeurs dans

[η, 1/2−η] pour un certain η ∈ (0,1/4). Soit ι = infK h( f ) (≥ η) et supposons la convergence de

l’intégrale de Dudley sur K:

∫ D(K)

0

Æ
log N(K , dm,ǫ1/2ι) dǫ <∞ .

Alors, pour α= 2h( f0), Y f0,α(̺) converge en loi dans l’espace des fonctions continues C(K) lorsque

̺→ 0, et la limite est un L2-mouvement brownien fractionnaire de paramètre h( f0).
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Le Chapitre 5 tente de répondre à une question laissée ouverte par HERBIN AND XIAO [65] sur
le comportement du mouvement brownien fractionnaire multiparamètre en 0 (dont on rappelle
que la covariance k

(ν)

h
est donnée par (1.5)). Les modules de continuité locaux de ce processus

sont non triviaux, ce dont on pouvait se douter en observant la distance induite par le processus.
En effet, celle-ci est liée à la distance dλ(s, t) = λ([0, s]△ [0, t]) où λ est la mesure de Lebesgue
sur Rν, qui est singulière par rapport à la distance euclidienne si ν≥ 2. Cette singularité affecte
la régularité du fBm multiparamètre: en effet, il est montré que la loi du logarithme itéré de
Chung en 0 est différente de celle pour tous les autres points loin des axes.

Grâce au théorème 4.6, on calcule les petites déviations du fBm multiparamètre. Ce résultat
et un théorème de représentation spectrale (Proposition 5.8) permettent de calculer une loi du
logarithme itéré de type Chung en 0, sous la forme d’une borne inférieure donnée par le module
suivant:

Ψ
(ℓ)

h
(r) = rνh eΨ(ℓ)

h
(r) = rνh (log log r−1)−h/ν ,

et d’une borne supérieure avec pour module: Ψ(u)
h
= rνh eΨ(u)

h
, où eΨ(u)

h
est une fonction croissante

partant de 0 dont on prouve l’existence, sans obtenir d’écriture explicite. Dans les deux cas, eΨ(ℓ)
h

et eΨ(u)
h

sont négligeables par rapport au terme rνh. Le supremum du fBm multiparamètre au
voisinage de 0 sera noté Mh(r) = supt∈[0,r]ν |Bh

t
|, r ∈ [0, 1]. On a alors:

Théorème (5.1). Soit h ∈ (0,1/2) et soit Mh, Ψ
(ℓ)

h
et Ψ

(u)

h
comme définis précédemment. Alors,

presque surement:

lim inf
r→0+

Mh(r)

rνheΨ(ℓ)
h
(r)
≥ κh/ν

1 et lim inf
r→0+

Mh(r)

rνheΨ(u)
h
(r)
≤ κh/ν

2 ,

où κ1 ≤ κ2 sont les constantes apparaissant dans les petites déviations du L2-fBm.

Comme dans l’article de MONRAD ET ROOTZÉN [106], ce théorème est étendu sous forme de
loi fonctionelle, qui donne un principe d’invariance pour le fBm multiparamètre correctement
renormalisé. Pour tout r ∈ (0,1), on définit comme dans le théorème précédent deux renormal-
isations:

η(h,ℓ)
r
(t) =

B
h(r t)

rνh
p

log log(r−1)
,∀t ∈ [0,1]ν

et

η(h,u)
r
(t) =

B
h(r t)

rνh
�
eΨ(u)

h
(r)
�−ν/2h

,∀t ∈ [0, 1]ν .

On obtient alors la vitesse de convergence ainsi que l’ensemble vers lequel convergent les pro-
cessus η(h,u) et η(h,ℓ).

Théorème (5.2). Soit h ∈ (0,1/2) et Hν
h

l’espace de Hilbert à noyau reproduisant de k
(ν)

h
. Soit

ϕ ∈ Hν
h

ayant une norme strictement inférieure à 1. Alors, il existe deux constantes strictement

positives et finies γ(ℓ)(ϕ) et γ(u)(ϕ) telles que, presque surement,

lim inf
r→0+

eΨ(ℓ)
h
(r)−1−ν/2h sup

t∈[0,1]ν
|η(h,ℓ)

r
(t)−ϕ(t)| ≥ γ(ℓ)(ϕ)

lim inf
r→0+

eΨ(u)
h
(r)−1−ν/2h sup

t∈[0,1]ν
|η(h,u)

r
(t)−ϕ(t)| ≤ γ(u)(ϕ) .
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Notons que lorsque ϕ = 0, on retrouve le théorème précédent.
La dimension de Hausdorff de l’image du fBm multiparamètre ne capture quant à elle pas

l’irrégularité de ce processus en 0, comme l’indique la Proposition 5.17. En revanche, tout
comme la fonction chirp (Exemple 1.15), la singularité du fBm multiparamètre se manifeste
aussi au niveau de la régularité hölderienne locale (Remarque 5.18). Pour conclure, il semble
envisageable que pour les processus gaussiens en général, il existe un lien entre le module de
continuité local de Chung et un nouvel exposant de Hölder local. Ceci est discuté à la fin du
Chapitre 5.
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2.1 Introduction

Sample path properties of stochastic processes have been deeply studied for a long time, starting
with the works of KOLMOGOROV, LÉVY and others on the modulus of continuity and laws of the
iterated logarithm of the Brownian motion. Since the late 1960s, these results were extended to
general Gaussian processes, while a finer study of the local properties of these sample paths was
carried out (we refer to BERMAN [21, 22], DUDLEY [43, 44], OREY AND PRUITT [113], OREY AND

TAYLOR [114] and STRASSEN [135], for the early study of Gaussian paths and their rare events).
Among the large literature dealing with fine analysis of regularity, Hölder exponents continue to
be widely used as a local measure of oscillations (see [16, 18, 87, 94, 146] for examples of recent
works in this area). Two different definitions, called local and pointwise Hölder exponents, are
usually considered for a stochastic process {X t ; t ∈ R+}, depending whether the increment
X t − Xs is compared with a power |t − s|α or ρα inside a ball B(t0,ρ) when ρ → 0. As an
example, with probability one, the local regularity of fractional Brownian motion {BH ; t ∈ R+}
is constant along the path: the pointwise and local Hölder exponents at any t ∈ R+ are equal to
the self-similarity index H ∈ (0,1) (e.g. see [59]).

This field of research is also very active in the multiparameter context and a non-exhaustive
list of authors and recent works in this area includes AYACHE [11], DALANG [34], KHOSHNEVISAN

[34, 79], LÉVY-VÉHEL [59], XIAO [103, 152, 153]. As an extension to the multiparameter one,
the set-indexed context appeared to be the natural framework to describe invariance principles
studying convergence of empirical processes (e.g. see [115]). The understanding of set-indexed
processes and particularly their regularity is a more complex issue than on points of RN . The

37
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simple continuity property is closely related to the nature of the indexing collection. As an
example, Brownian motion indexed by the lower layers of [0, 1]2 (i.e. the subsets A ⊆ [0,1]2

such that [0, t] ⊆ A for all t ∈ A) is discontinuous with probability one (we refer to [3] or
[70] for the detailed proof). As a matter of fact, necessary and sufficient conditions for the
sample path continuity property were investigated, starting with DUDLEY [44] who introduced
a sufficient condition on the metric entropy of the indexing set, followed by FERNIQUE [49] who
gave a necessary conditions in the specific case of stationary processes on RN . TALAGRAND gave
a definitive answer in terms of majorizing measures [139] (see [5] or [76] for a complete survey
and also [7, 8] for a LIL and Lévy’s continuity moduli for set-indexed Brownian motion). The
question was left open so far concerning the exact Hölder regularity of set-indexed processes.

A formal set-indexed setting has been introduced by IVANOFF AND MERZBACH in order to
study standard issues of stochastic processes, such as martingale and Markov properties (see
[68, 70]). In this framework, an indexing collection A is a collection of subsets of a measure
space (T, m), which is assumed to satisfy certains properties such as stability by intersection of its
elements. Section 2.2 of the present chapter uses these properties, instead of conditions on the
metric entropy, to derive a Kolmogorov-like criterion for Hölder-continuity of a set-indexed pro-
cess. The collection of setsA is endowed with a metric dA and a nested sequenceA = (An)n∈N
of finite subcollections ofA such that each element ofA can be approximated as the decreasing
limit (for the inclusion) of its projections on theAn’s. We consider a supplementary Assumption
(HA ) onA and dA which impose that: 1) the distance from any U ∈A toAn can be related

to the cardinal kn = #An, roughly by dA (U ,An) = O(k
−1/qA
n ), where qA is called the discretiza-

tion exponent of (An)n∈N; and 2) a minimality condition on the class (An)n∈N that is verified
in most cases. This is discussed in Section 2.2, together with the links between our assumption
and entropic conditions of previous works. We prove in Theorem 2.9: If {XU ; U ∈ A} is a set-
indexed process and α,β , K are positive constants such that E[|XU − XV |α] ≤ K dA (U , V )qA+β

for all U , V ∈A , then for all γ ∈ (0,β/α), there exist a random variable h∗ and a constant L > 0
such that almost surely

∀U , V ∈A ; dA (U , V )< h∗⇒ |XU − XV | ≤ L dA (U , V )γ.

Alternatively, Hölder-continuity can be based on the usual definition for increments of set-
indexed processes. Instead of quantities XU − XV , the increments of a set-indexed process
{XU ; U ∈ A} are defined on the class C of sets C = U0 \

⋃
1≤k≤n Uk where U0, U1, . . . , Un ∈ A

by the inclusion-exclusion formula

∆XC = XU0
−

n∑

k=1

∑

j1<···< jk

(−1)k−1XU0∩U j1
∩···∩U jk

.

This definition extends the notion of rectangular increments for multiparameter processes. For
instance, quantities like ∆[u,v]B = Bv − B(u1,v2)

− B(v1,u2)
+ Bu, where u ´ v ∈ R2

+
and B is the

Brownian sheet, were proved to be useful to derive geometric sample path properties of the
process (see e.g. some of the works of DALANG AND WALSH [36]). Let us notice that some
processes can satisfy an increment stationarity property with respect to these increments while
they do not for quantities XU − XV . Moreover, this inclusion-exclusion principle is very useful
when it comes to martingale and Markov properties. According to this definition, another way
to express the Hölder-continuity of X is |∆XC | ≤ L m(C)γ, for C ∈ C . This question is clarified
in Section 2.2.2.

The purpose of Hölder exponents is the (optimal) localization of the Hölder-continuity con-
cept. Following the previous discussion, the first definition for local and pointwise Hölder ex-
ponents is based on the comparison between |XU − XV | and a power dA (U , V )α or ρα in a
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ball BdA (U0,ρ) around U0 ∈ A when ρ → 0. Another definition compares |∆XC | for C =

U \
⋃

1≤k≤n Vk in C with dA (U , U0) < ρ and dA (U0, Vk) < ρ for each k, to a power m(C)α

when ρ → 0. As in the real-parameter setting, these two kinds of exponents, precisely defined
in Sections 2.3 and 2.3.1, provide a fine knowledge of the local behaviour of the sample paths.
In Section 2.4, the different Hölder exponents are linked to the Hölder regularity of projections
of the set-indexed process on increasing paths.

The pointwise continuity has been introduced in the multiparameter setting in [4] and in
the set-indexed setting in [63] as a weak form of continuity. In this definition, the point mass

jumps are the only kind of discontinuity considered. Without any supplementary condition on
the indexing collection, the set-indexed Brownian motion satisfies this property, even on lower
layers where it is not continuous. In Section 2.3.2, we define the pointwise continuity Hölder
exponent of a pointwise continuous process X by a comparison between ∆XCn(t)

with a power
m(Cn(t))

α when n →∞, where (Cn(t))n∈N is a decreasing sequence of elements in C which
converges to t ∈ T .

In the Gaussian case, we prove in Section 2.5 that the different aforementioned Hölder ex-
ponents admit almost sure values. Assumption (HA ) is the key to extend this result from the
multiparameter to the set-indexed setting. Moreover these almost sure values can be obtained
uniformly on A for the local exponent. However, this a.s. result cannot be obtained for the
pointwise exponent (even for multiparameter processes). Nevertheless, we proved that it holds
for the set-indexed fractional Brownian motion (defined in [60]) in Section 2.6, thus improving
on a result in the multiparameter case [59]. As this requires some specific extra work, we believe
that the uniform almost sure result might not be true for the pointwise exponent of any Gaus-
sian process. Finally, we also applied our results to the set-indexed Ornstein-Uhlenbeck (SIOU)
process [17], for which all exponents are almost surely equal to 1/2 at any set U ∈A .

2.2 Hölder continuity of a set-indexed process

In the classical case of real-parameter (or multiparameter) stochastic processes, Kolmogorov’s
continuity criterion is a useful tool to study sample path Hölder-continuity (e.g. see [76, 59]). In
this section, we focus on the definition of a suitable assumption on the indexing collection, that
allows to prove an extension of this result to the set-indexed (possibly non-Gaussian) setting.

2.2.1 Indexing collection for set-indexed processes

A general framework was introduced by Ivanoff and Merzbach to study martingale and Markov
properties of set-indexed processes (we refer to [68, 70] for the details of the theory). The struc-
ture of these indexing collections allowed the study of the set-indexed extension of fractional
Brownian motion [60], its increment stationarity property [62] and a complete characterization
of the class of set-indexed Lévy processes [63].

Let T be a locally compact complete separable metric and measure space, with metric d and
Radon measure m defined on the Borel sets of T . All stochastic processes will be indexed by a
classA of compact connected subsets of T .

In the whole chapter, the class of finite unions of sets in any collection D will be denoted by
D(u). In the terminology of [70], we assume that the indexing collectionA satisfies stability and
separability conditions in the sense of Ivanoff and Merzbach:

Definition 2.1 (adapted from [70]). A nonempty class A of compact, connected subsets of T is

called an indexing collection if it satisfies the following:
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1. ; ∈ A and for all A∈A , A◦ 6= A if A /∈ {;, T}.

2. A is closed under arbitrary intersections and if A, B ∈ A are nonempty, then A ∩ B is

nonempty. If (Ai) is an increasing sequence inA then
⋃

i Ai ∈A .

3. The σ-algebra σ(A ) generated byA is the collectionB of all Borel sets of T .

4. Separability from above: There exists an increasing sequence of finite subclasses An =

{;, An
1, ..., An

kn
} (n ∈ N, kn ≥ 1) of A closed under intersections and a sequence of functions

gn :A →An defined by

∀U ∈A , gn(U) =
⋂

V∈An
V◦⊇U

V

and such that for each U ∈A , U =
⋂

n∈N
gn(U) .

(Note: ‘(·)’ and‘(·)◦’ denote respectively the closure and the interior of a set.)

Standard examples of indexing collections can be mentionned, such as rectangles [0, t] of
RN , arcs of the circle S2 or lower layers. Some of them are detailed in Examples 2.5 and 2.6
below.

Distances on sets. In order to study the Hölder-continuity of set-indexed processes, we consider
a distance on the indexing collection. Along this chapter, we may sometimes specify the distance
onA that we are using. Among them, the following distances are of special interest:

• The classical Hausdorff metric dH defined on K \ ;, the nonempty compact subsets of T ,
by

∀U , V ∈K \ ;; dH(U , V ) = inf {ε > 0 : U ⊆ V ε and V ⊆ Uε} ,

where Uε = {x ∈ T : d(x , U)≤ ε};

• and the pseudo-distance dm defined by

∀U , V ∈A ; dm(U , V ) = m (U △ V ) ,

where m is the measure on T and △ denotes the symetric difference of sets.

Remark 2.2. In the case ofA =
�
[0, t]; t ∈ RN

+

	
, (s, t) 7→ dm([0, s], [0, t]) induces a distance on

RN
+

. This distance can be compared to the classical distances of RN ,

d1 : (s, t) 7→ ‖t − s‖1 =
N∑

i=1

|t i − si |,

d2 : (s, t) 7→ ‖t − s‖2 =
N∑

i=1

(t i − si)
2,

d∞ : (s, t) 7→ ‖t − s‖∞ = max
1≤i≤N
|t i − si |.
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If m is the Lebesgue measure λ on RN , the distance dλ is equivalent to d1, d2 and d∞ on any

compact of RN
+
\ {0}.

More precisely, for all a ≺ b in RN
+
\ {0}, there exist two positive constants ma,b and Ma,b such that

∀s, t ∈ [a, b]; ma,b d1(s, t)≤ λ([0, s]△ [0, t])≤ Ma,b d∞(s, t).

We refer to [58] for a proof of these assertions.

Total boundedness of indexing collections. As discussed in the introduction, the study of
continuity of stochastic processes is closely related to the control of the metric entropy of the
indexing collection. Following the conditions of Definition 2.1, some additional assumptions on
the collection A are required to guarantee that (A , dA ) is totally bounded (or at least locally
totally bounded). We recall that a metric space (T, d) is totally bounded if for any ε > 0, T can
be covered by a finite number of balls of radius smaller than ε. The minimal number of such
balls is called the metric entropy and is denoted by N(T, d,ε).

Before getting to the main assumption on the metric dA and the finite subclasses (An)n∈N
that approximateA , we notice that the sequence (kn)n∈N = (#An)n∈N is an increasing sequence
that tends to∞, as n→∞. This property comes from condition (4) in Definition 2.1. We will
say that (An, kn)n∈N is admissible if:

∀δ > 0,
∞∑

n=1

kn+1

k1+δ
n

<∞. (2.1)

This should not appear as a restriction anyhow, because: if (kn)n∈N was going to∞ too slowly,
it would suffice to extract a subsequence ; and in the opposite situation, the gap between one
scale to the other is too large and can then be filled with additional subclasses.

Assumption (HA ). Let dA be a (pseudo-)distance onA . Let us suppose that forA = (An)n∈N,
there exist positive real numbers qA and M1 such that:

1. For all n ∈ N,

sup
U∈An

dA (U , gn(U))≤ M1 k
−1/qA
n , (H1)

2. and the collection (An)n∈N is minimal in the sense that: setting for all n ∈ N and all
U ∈An,

Vn(U) = {V ∈An : V ) U , dA (U , V )≤ 3M1k
−1/qA
n },

the sequence (Nn)n≥1 defined by Nn =maxU∈An
#Vn(U) for all n≥ 1 satisfies

∀δ > 0,
∞∑

n=1

k−δ
n

Nn <∞. (H2)

The real qA is not unique and it depends a priori on the distance dA and the sub-semilattices
A = (An)n∈N. Such a real qA is called discretization exponent of (An)n∈N. Note that if Nn can
be bounded independently of n, then the last assumption is satisfied by admissibility of kn.

Remark 2.3. Without loss of generality, the distance dA can be normalized such that M1 = 1.
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Remark 2.4. The summability condition (H2) of Assumption (HA ) is close to the notion of entropy

with inclusion developped by Dudley [45] in the context of empirical processes. On the contrary to

the present work, [45] focused exclusively on the sample path boundedness and continuity in the

Brownian case.

The following example shows that Assumption (HA ) is satisfied in simple situations.

Example 2.5. • In the case of A = {[0, t]; t ∈ [0, 1] ⊂ R+}, the subclasses An (n ∈ N) are

commonly {[0, k.2−n]; k = 0, . . . , 2n}. The two (pseudo-)distances dH and dλ (where λ is the

Lebesgue measure on R) onA are equal to

dA : ([0, s], [0, t]) 7→ |t − s|,

and we have

∀k = 0, . . . , 2n − 1; dA ([0, k.2−n], [0, (k+ 1).2−n]) = 2−n.

Then the two conditions of Assumption (HA ) both are satisfied for qA = 1.

• In the case ofA =
�
[0, t]; t ∈ [0, 1] ⊂ RN

+

	
, the subclassesAn (n ∈ N) can be chosen as

�
[0,2−n.(l1, . . . , lN )]; 0≤ l1, . . . , lN ≤ 2n

	
.

Let U be a set inA . The distance (induced by the Lebesgue measure λ) between U and gn(U)

is the volume difference between the two sets. It can be easily bounded from above by the sum

of the volumes of the outer faces, minus a negligible residue

sup
U∈A

dλ(U , gn(U)) = sup
U∈A

λ(gn(U) \ U) = N .2−n + o(2−n).

Since kn = (2
n + 1)N , this leads to

dλ(U , gn(U)) = O(k
−1/qA
n ),

with qA = N and the other condition of Assumption (HA ) are satisfied.

On the contrary to the rectangles case, the following example shows that the collection of
lower layers of RN does not satisfy Assumption (HA ). We will see later that this result is not
surprising in the view of Theorem 2.9, since Brownian motion indexed by lower layers of [0,1]2

does not have a continuous modification, as can be seen for instance in [3, 70].

Example 2.6. Let A be the collection of lower layers of [0,1]2, i.e. the subsets A of [0, 1]2 such

that ∀t ∈ A, [0, t] ⊆ A. For all n ∈ N, letAn be the collection of finite unions of sets in the dissecting

collection of the diadic rectangles of [0,1]2, i.e.

An =

¨⋃

finite

[0, x] : 2n x ∈ Z2 ∩ (0, 2n]2

«
∪ {0} ∪ {;}.

Then, it can be shown that the cardinal kn of An satisfies kn ≥ 22n

for all n ∈ N. For all U ∈ An,

we can see that infV∈An,V)U dλ(U , V ) = 2−2n, hence there does not exist any qA such that 2−2n

and k
−1/qA
n are of the same order. Consequently the subclasses (An)n∈N cannot verify Assumption

(HA ).
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To conclude this section, we emphasize the fact that Assumption (HA ) implies the total
boundedness of (A , dA ). Since

∀n ∈ N, dA (U , gn(U))≤ k
−1/qA
n ,

An constitutes a k
−1/qA
n -net for all n ∈ N, and thus (A , dA ) is totally bounded.

2.2.2 Kolmogorov’s criterion

As (A , dA ) is not generally totally bounded, for any deterministic function f : A → R, we
consider the modulus of continuity on any totally boundedB ⊂A

ω f ,B (δ) = sup
U ,V∈B

dA (U ,V )≤δ

| f (U)− f (V )|.

Recall that the function f is said Hölder continuous of order α > 0 if for all totally bounded
B ⊂A one of the following equivalent conditions holds (e.g. see [76], Chapter 5)

(i)
lim sup
δ→0

δ−α.ω f ,B (δ)<∞.

(ii) There exists M > 0 and δ0 > 0 such that for all U , V ∈ B with dA (U , V ) < δ0, | f (U)−
f (V )| ≤ M .dA (U , V )α.

For any general set-indexed Gaussian process, Dudley’s Corollary 2.3 in [44] allows to com-
pute a modulus of continuity (giving the same kind of result than following Corollary 2.10).
This result holds under certain entropic conditions on the indexing collection, which are differ-
ent from these of our setting. Assumption (HA ) and more precisely its second condition allows
to prove a continuity criterion in the non-Gaussian case. Although Adler and Taylor [5] empha-
size that the Gaussian property is only used through the exponential decay of the tail probability
of the process in the proof of the previous results, they do not suggest any Kolmogorov crite-
rion for non-Gaussian processes. The following Theorem 2.9 do so in the general set-indexed
framework of Ivanoff and Merzbach, thanks to the discretization exponent.

Definition 2.7. A (pseudo-)distance dA onA is said:

(i) Outer-continuous if for any non-increasing sequence (Un)n∈N inA converging to U =
⋂

n∈N Un ∈
A , dA (Un, U) tends to 0 as n goes to∞ ;

(ii) Contractive if it is outer-continuous and if for any U , V, W ∈A ,

dA (U ∩W, V ∩W )≤ dA (U , V ).

Remark 2.8. The most important metrics in the context of set-indexed processes, dm and dH , are

contractive.

Assumption (HA ) on the subcollections (An)n∈N and the contractivity of the metric dA allow
to state the first important result of the chapter:
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Theorem 2.9. Let dA be a contractive (pseudo-)distance on the indexing collection A , whose

subclasses A = (An)n∈N satisfy Assumption (HA ) with a discretization exponent qA > 0. Let

X = {XU ; U ∈A} be a set-indexed process such that

∀U , V ∈A , E [|XU − XV |α]≤ K dA (U , V )qA+β (2.2)

where K, α and β are positive constants.

Then, the sample paths of X are almost surely locally γ-Hölder continuous for all γ ∈ (0, βα ), i.e.

there exist a random variable h∗ and a constant L > 0 such that almost surely

∀U , V ∈A , dA (U , V )< h∗⇒ |XU − XV | ≤ L dA (U , V )γ.

Proof. Let us fix γ ∈ (0, βα ) and denote D =
⋃

n∈NAn a countable dense subset of A . First, let
(a j) j∈N be any sequence of positive real numbers such that

∑
j∈N a j < +∞, and for n ∈ N such

that
∑

j≥n a j ≤ 1, we have

P

�
sup
U∈D
|XU − X gn(U)

| ≥ k
−γ/qA
n+1

�

≤ P
 
∃U ∈ D,

∞∑

j=n

|X g j+1(U)
− X g j(U)

| ≥ k
−γ/qA
n+1

!

≤ P
�
∃U ∈ D,∃ j ≥ n, |X g j+1(U)

− X g j(U)
| ≥ a jk

−γ/qA
n+1

�
(2.3)

≤ P
�
∃ j ≥ n, ∃V ∈A j+1, |XV − X g j(V )

| ≥ a jk
−γ/qA
n+1

�

≤
∞∑

j=n

∑

V∈A j+1

P

�
|XV − X g j(V )

| ≥ a jk
−γ/qA
n+1

�
.

Now applying successively Tchebyshev’s inequality, (2.2) and Equation (H1) of Assumption
(HA ),

P

�
sup
U∈D
|XU − X gn(U)

| ≥ k
−γ/qA
n+1

�
≤
∞∑

j=n

k j+1a−α
j

k
αγ/qA
n+1 sup

V∈A j+1

E
�
|XV − X g j(V )

|α
�

≤ K k
αγ/qA
n+1

∞∑

j=n

a−α
j

k j+1 sup
V∈A j+1

dA (V, g j(V ))
qA+β

≤ K k
αγ/qA
n+1

∞∑

j=n

a−α
j

k j+1

k j

k
−β/qA
j

.

The admissibility of (kn)n∈N implies that for δ > 0, and for n large enough (depending on δ),

k
αγ/qA
n+1 ≤ (k

αγ/qA
n )1+δ, so that:

P

�
sup
U∈D
|XU − X gn(U)

| ≥ k
−γ/qA
n+1

�
≤ K k

δαγ/qA
n

∞∑

j=n

a−α
j

k j+1

k j

k
−β/qA
j

k
γα/qA
n

≤ K k
δαγ/qA
n

∞∑

j=n

a−α
j

k j+1

k j

k
−(β−γα)/qA
j

.
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Since β −α.γ > 0, (aα
j
) j∈N can be chosen equal to (k

−(β−αγ)/3qA
j

) j∈N (which is indeed summable
because kn is admissible), and then:

P

�
sup
U∈D
|XU − X gn(U)

| ≥ k
−γ/qA
n+1

�
≤ K k

δαγ/qA
n

∞∑

j=n

k j+1

k j

k
−2(β−γα)/3qA
j

,

which finally leads to, for δ = (β −αγ)/(6αγ),

P

�
sup
U∈D
|XU − X gn(U)

| ≥ k
−γ/qA
n+1

�
≤ K k

−δαγ/qA
n

∞∑

j=n

k j+1

k j

k
−(β−γα)/3qA
j

.

Thus, this probability is summable and Borel-Cantelli’s theorem implies the existence of Ω∗ ⊂ Ω
with P(Ω∗) = 1 such that ∀ω ∈ Ω∗,

∃n∗(ω) ∈ N, ∀n≥ n∗,∀U ∈ D, |XU − X gn(U)
|< k

−γ/qA
n+1 . (2.4)

Now, we develop the same argument for the following probability:

P

�
sup

U∈An

sup
V∈Vn(U)

|XU − XV | ≥ k
−γ/qA
n+1

�
≤ kn Nn sup

U∈An

sup
V∈Vn(U)

P

�
|XU − XV | ≥ k

−γ/qA
n+1

�

≤ K Nn k
αγ/qA
n+1 k

−β/qA
n

≤ K Nn k
−(β−αγ)/2qA
n , (2.5)

where we used δ as in the previous paragraph. This is summable by (H2), hence there exists
Ω
∗∗ a measurable subset of Ω of probability 1 and n∗∗ a integer-valued finite random variable

such that on Ω∗∗:

∀n≥ n∗∗, sup
U∈An

sup
V∈Vn(U)

|XU − XV |< k
−γ/qA
n+1 . (2.6)

For any U , V ∈ D, there is a unique n ∈ N such that k
−1/qA
n+1 ≤ dA (U , V ) < k

−1/qA
n . Let In =

[k
−1/qA
n+1 , k

−1/qA
n ). Without any restriction, we assume that U ⊆ V . Indeed, if this not the case, we

shall consider XU−XV = XU−XU∩V+XU∩V−XV , where dA (U , U∩V )≤ dA (U , V ) by contractivity.
Since this implies that gn(V ) ∈ Vn(gn(U)), we will write, on Ω∗ ∩Ω∗∗, for any n≥ n∗ ∨ n∗∗:

sup
U ,V∈D

dA (U ,V )∈In

|XU − XV | ≤ sup
U ,V∈D

dA (U ,V )∈In

�
|XU − X gn(U)

| + |X gn(U)
− X gn(V )

|+ |X gn(V )
− XV |

�

≤ 3 k
−γ/qA
n+1 (2.7)

≤ 3 dA (U , V )γ,

as a consequence of Equations (2.4) and (2.6). Since Ω∗∩Ω∗∗ is of probability 1, we have proved
that there exist a constant L > 0 and a random variable h∗ such that

∀U , V ∈ D; dA (U , V )< h∗⇒ |XU − XV | ≤ L dA (U , V )γ a.s. (2.8)

In the last part of the proof, we need to extend (2.8) to the whole classA . From the outer-
continuity of dA , we can claim:
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On Ω∗, for all ε ∈ (0, h∗), for all U and V inA with dA (U , V )< h∗−ε, there exists n0 > n∗ such
that dA (gn(U), gm(V ))< h∗ for all n≥ n0 and m≥ n0. Thus by (2.8),

∀n> n0,∀m> n0; |X gn(U)
− X gm(V )

| ≤ L dA (gn(U), gm(V ))
γ. (2.9)

We define the process X̃ by

• ∀ω /∈ Ω∗, ∀U ∈A , X̃U(ω) = 0,

• ∀ω ∈ Ω∗,

– ∀U ∈ D, X̃U(ω) = XU(ω)

– ∀U ∈A \D, X̃U(ω) = limn→∞ X gn(U)
(ω).

Applying (2.9) with V = U , the outer-continuity property of dA implies that
�
X gn(U)

(ω)
�

n∈N
is a Cauchy sequence and then converges in R.

The process X̃ satisfies almost surely

∀U , V ∈A ; dA (U , V )< h∗⇒ |X̃U − X̃V | ≤ L. dA (U , V )γ.

Moreover,

• ∀U ∈ D, X̃U = XU almost surely.

• ∀U ∈A \D, by construction, X gn(U)

a.s.→ X̃U as n→∞.

Since E
�
|X gn(U)

− XU |α
�

converges to 0 when n→∞, the sequence
�
X gn(U)

�
n∈N converges

in probability to XU . Then, there exists a subsequence converging almost surely.
From these two facts, we get X̃U = XU a.s.

As in the multiparameter’s case, a simpler statement holds for Gaussian processes (see [76]
for a detailed study of the Kolmogorov criterion in the multiparameter frame).

Corollary 2.10. Let dA be a (pseudo-)distance on the indexing collection A , whose subclasses

A = (An)n∈N satisfy Assumption (HA ). Let X = {XU ; U ∈A} be a centered Gaussian set-indexed

process such that

∀U , V ∈A , E
�
|XU − XV |2

�
≤ K dA (U , V )2β

where K > 0 and β > 0.

Then, the sample paths of X are almost surely locally γ-Hölder continuous for all γ ∈ (0,β).

Proof. For any p ∈ N∗, there exists a constant Mp > 0 such that for all centered Gaussian random
variable Y , we have E

�
Y 2p

�
= Mp (E

�
Y 2
�
)p. Then,

∀U , V ∈A ; E
�
|XU − XV |2p

�
≤ K Mp dA (U , V )2pβ .

For all γ ∈ (0,β), there exists p ∈ N∗ such that 2pβ > qA , where qA is the discretization
exponent of (An)n∈N. By Theorem 2.9 the result follows.
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Remark 2.11. The proof of Theorem 2.9 shows that when Condition (H2) is removed from As-

sumption (HA ), the conclusion remains true when the hypothesis (2.2) is strengthened in

∀U , V ∈A ; E [|XU − XV |α]≤ K dA (U , V )2qA+β .

The result follows from the simple estimation Nn ≤ kn in Equation (2.5). In that case, the validity

of Corollary 2.10 persists, since the integer p can be chosen such that 2pβ > 2qA (instead of

2pβ > qA ).

As previously mentioned, the Brownian motion indexed by the lower layers of [0, 1]2 is
discontinuous with probability one (e.g. see Theorem 1.4.5 in [5] or [3, 70]). The previous
Theorem 2.9 and Corollary 2.10 do not contradict this fact, since the collection of lower layers
of [0,1]2 do not satisfy Assumption (HA ) according to Example 2.6 in the specific case of the
separating subclasses (An)n∈N mentioned there. This latter result is improved by the following
corollary of Theorem 2.9.

Corollary 2.12. Any subclasses (An)n∈N satisfying Condition (4) of Definition 2.1 for the indexing

collection of lower layers of [0, 1]2 do not satisfy Assumption (HA ).

Following the early work of Dudley, the restriction of the set-indexed Brownian motion to an
indexing collection satisfying certain conditions can admit a continuous modification. We refer
to [5] for a modern survey of these results. In particular, the set-indexed Brownian motion is
a.s. continuous over any Vapnik-Červonenkis class of sets (see Corollary 1.4.10 in [5]), as the
collection of rectangles of RN is an example.

Remark 2.13. According to Dudley’s Theorem (see Theorem 2.7.1 of Chapter 5 in [76] and also The-

orems 1.3.5 and 1.5.4 in [5]), the existence of a continuous modification of a centered GaussianA -

indexed process can be proved if (A , dA ) is totally bounded and∫ 1

0

p
log N(A ,ε) dε < +∞, where N(A ,ε) denotes the entropy function (relative to the distance

dA ).

Following the continuity on processes indexed by Vapnik-Červonenkis classes of sets and the role

of Assumption (HA ) in Theorem 2.9, we emphasize the fact that upper bounds for the entropy

function can be obtained in the two cases. Let us define

∀n ∈ N, φ(n) = k
−1/qA
n .

Let us also define, for ε ∈ (0, 1
2 ], n(ε) = inf{k : φ(k)< ε}.

From Condition (H1) of Assumption (HA ), for all U ∈A ,

dA (U , gn(ε)(U))≤ φ(n(ε))≤ ε,

which implies N(A ,ε)≤ kn(ε).

We can see easily that:

0< ε≤ k
−1/qA
n(ε)

,

which allows to get a bound for the entropy function (relative to the distance dA ),

N(A ,ε)≤ kn(ε) ≤ ε−qA . (2.10)
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In the case of a Vapnik-Červonenkis class D of sets in a measure space (E,E ,ν), the entropy

function (relative to the distance ν(•△ •)) is bounded as:

∀0< ǫ ≤ 1/2, N(D,ǫ)≤ Kǫ−2v | lnǫ|v , (2.11)

where K and v are positive constants (e.g. see [5], Theorem 1.4.9).

2.2.3 C -increments

So far, we only considered simple increments of X of the form XU − XV for U , V ∈ A not nec-
essarily ordered. However these quantities do not constitute the natural extension of the one-
parameter X t−Xs (s, t ∈ R+) to multiparameter (e.g. [76, 4, 57]) and set-indexed (e.g. [70, 62])
settings, particularly when increment stationarity property is concerned. This section is devoted
to usual increments of set-indexed processes, which extend the rectangular increments of mul-
tiparameter processes. Let us define, for any given indexing collection A , the collection C of
subsets of T , defined as

C = {U0 \ ∪k
i=1Ui; U0, U1, . . . , Uk ∈A , k ∈ N}.

This collection is used to index the process ∆X , defined by ∆XC = XU0
−∆XU0∩

⋃
i≥1 Ui

for C =

U0 \ ∪k
i=1Ui , where ∆XU0∩

⋃
i≥1 Ui

is given by the inclusion-exclusion formula

∆XU0∩
⋃

i≥1 Ui
=

k∑

i=1

∑

j1<···< ji

(−1)i−1XU0∩U j1
∩···∩U ji

. (2.12)

The existence of the increment process∆X indexed by C requires that for any C ∈ C , the value
∆XC does not depend on the representation of C .

Corollary 2.14. Under the hypotheses of Theorem 2.9 and if the distance dA on the class A is

assumed to be contractive, for each fixed integer l ≥ 1, for all γ ∈ (0,β/α), there exist a random

variable h∗∗ and a constant L > 0 such that, with probability one,

∀C = U \
⋃

i≤l

Vi with U , V1, . . . , Vl ∈A ,

max
i≤l
{m(U \ Vi)}< h∗∗⇒ |∆XC | ≤ L m(C)γ. (2.13)

For a proof of this result, see Appendix 2.7.1.

Corollary 2.14, as a result on the class C l =
�

U \ V ; U ∈A , V ∈B l
	

where

B l =
¦⋃l

i=1 Vi; V1, . . . , Vl ∈A
©

, does not extend to the whole C =
⋃

l≥1C l , as the follow-
ing example shows. The next result is an adaptation of an example in [5, 70] to the set-indexed
setting. It states that the Brownian motion can be unbounded on C whenA is the collection of
rectangles of [0,1]2.

Proposition 2.15. Let W be a Brownian motion indexed by the Borelian sets of [0, 1]2, i.e. a

centered Gaussian process with covariance structure

E[WCWC ′] = λ(C ∩ C ′), ∀C , C ′ ∈B([0, 1]2)
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where λ denotes the Lebesgue measure.

LetA be the collection of rectangles of [0,1]2. In the sequel, we consider the restriction on the class

C , related toA , of the Brownian motion defined above.

Then for all h > 0, all M > 0, and for almost all ω ∈ Ω, there exist sequences of sets (Cn(ω))n∈N,�
C ′

n
(ω)

�
n∈N in C such that λ(Cn(ω))∨λ(C ′n(ω))< h and for n big enough,

max{|WCn(ω)
(ω)|, |WC ′

n
(ω)(ω)|}>

M

8
.

Without any stronger condition than Assumption (HA ) on the sub-semilattices (An)n∈N, the
previous example of set-indexed Brownian motion dismisses a possible definition of the Hölder
continuity for stochastic processes of the form:

∃M > 0,∃δ0 > 0 : ∀C ∈ C with m(C)< δ0, |∆XC | ≤ M .m(C)α.

2.3 Hölder exponents for set-indexed processes

Back to the beginning of Section 2.2.2, localizing the two expressions (i) and (ii) for Hölder-
continuity leads to two different notions. Indeed, for the distance dA on A , if BdA (U0,ρ) (or
simply B(U0,ρ) if the context is clear) denotes the open ball centered in U0 ∈ A and whose
radius is ρ > 0, we get

(i)loc

lim sup
δ→0+

δ−q sup
U ,V∈BdA (U0,δ)

| f (U)− f (V )|<∞.

(ii)loc There exist M > 0 and δ0 > 0 such that

∀U , V ∈ BdA (U0,δ0), | f (U)− f (V )| ≤ M dA (U , V )q.

Although the conditions (i) and (ii) are equivalent, localizing around U0 ∈A only gives (ii)loc ⇒(i)loc .
This leads usually to consider two kinds of Hölder exponent at U0 ∈A :

• the pointwise Hölder exponent

α f (U0) = sup

�
α : lim sup

ρ→0
sup

U ,V∈B(U0,ρ)

| f (U)− f (V )|
ρα

<∞
�

, (2.14)

• and the local Hölder exponent

eα f (U0) = sup

�
α : lim sup

ρ→0
sup

U ,V∈B(U0,ρ)

| f (U)− f (V )|
dA (U , V )α

<∞
�

. (2.15)

Each one allows to measure the regularity of the function f . In general, we have

α̃ f ≤ α f , (2.16)

but the inequality can be strict.
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Remark 2.16. We can see that condition (i)loc is equivalent to q < α(U0), and condition (ii)loc

is equivalent to q < eα(U0). Then α̃ f ≤ α f is another statement for (ii)loc ⇒(i)loc . Note that the

discussion of this whole paragraph is not specific to indexing collection, but can be adapted to any

totally bounded metric space.

Example 2.17. Consider the case of the metric space (R, |.|). Fix γ > 0 and δ > 0. Let f be a

chirp function defined by t 7→ |t|γ sin 1
|t|δ . The two Hölder exponents at 0 can be computed and

eα f (0) =
γ

1+δ < α f (0) = γ.

This example shows that the sole pointwise exponent is not sufficient to describe the irregularity
of the function. The local exponent can see the oscillations around 0, while the pointwise expo-
nent cannot. These two notions can be applied to study sample path regularity of a stochastic
process.

In the case of Gaussian processes (see [59]), we define the deterministic pointwise Hölder

exponent

αX (U0) = sup

�
σ; lim sup

ρ→0
sup

U ,V∈B(U0,ρ)

E [XU − XV ]
2

ρ2σ
<∞

�

and the deterministic local Hölder exponent

eαX (U0) = sup

�
σ; lim sup

ρ→0
sup

U ,V∈B(U0,ρ)

E [XU − XV ]
2

dA (U , V )2σ
<∞

�
.

On the space (RN ,‖.‖), it is shown in [59] that for all t0 ∈ RN
+

, the pointwise and local Hölder
exponents of X at t0 satisfy almost surely

αX (t0) = αX (t0) and eαX (t0) = eαX (t0).

In the following sections, several other definitions are studied for Hölder regularity of set-
indexed processes. They are connected to the various ways to study the local behaviour of the
sample paths of X around a given set U0 ∈A .

2.3.1 Definition of Hölder exponents on C l

Following expression (2.12) for the definition of the increments of a set-indexed process, we con-
sider alternative definitions for Hölder exponents, where the quantities XU − XV are substituted
with ∆XU\V .

As stated in Section 2.2.3, it is not wise to consider ∆XU\V when U ∈ A and V ∈ A (u) are
close to a given U0 ∈A . Indeed, Proposition 2.15 shows that the quantity |∆XU\V | can stay far
away from 0 when m(U \ V ) is small, even in the simple case of a Brownian motion indexed by
[0,1]2. However, when U ∈ A and V is restricted to sets of the form V =

⋃
1≤i≤l Vi where l is

fixed and V1, . . . , Vl ∈A , the Hölder regularity can be defined from the study of ∆XU\V .
Fix any integer l ≥ 1 and set for all U ∈A and ρ > 0,

B l(U ,ρ) =

¨ ⋃

1≤i≤l

Vi; V1, . . . , Vl ∈A , max
1≤i≤l

dA (U , Vi)< ρ

«
.

The pointwise and local Hölder C l -exponents at U0 ∈A are respectively defined as

αX ,C l (U0) = sup





α : lim sup

ρ→0
sup

U∈BdA (U0,ρ)

V∈B l (U0,ρ)

|∆XU\V |
ρα

<∞





,
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and

eαX ,C l (U0) = sup





α : lim sup

ρ→0
sup

U∈BdA (U0,ρ)

V∈B l (U0,ρ)

|∆XU\V |
dA (U , V )α

<∞





.

The following result shows that the C l -exponents do not depend on l and, consequently,
they provide a definition of Hölder exponents on the class C . Moreover, these exponents can be
compared to the exponents defined by (2.14) and (2.15).

Proposition 2.18. If dA is a contractive distance, for any U0 ∈ A , the exponents αX ,C l (U0)

and eαX ,C l (U0) do not depend on the integer l ≥ 1. They are denoted by αX ,C (U0) and eαX ,C (U0)

respectively.

Moreover, for all U0 ∈A and all ω ∈ Ω,

αX ,C (U0)(ω)≥ αX (U0)(ω) and eαX ,C (U0)(ω)≥ eαX (U0)(ω).

Proof. We only detail the case of the pointwise exponent. The proof for the local exponent is
totally similar.
From the definition of the C l -exponents, since l ≥ l ′ implies B l ′(U0,ρ) ⊆B l(U0,ρ), it is clear
that

∀ω ∈ Ω,∀l ≥ l ′, αX ,C l (U0)(ω)≤ αX ,C l′ (U0)(ω).

For the sake of readability, we prove the converse inequality for l = 2, l ′ = 1 (the other cases are
very similar). For any ρ > 0, let U ∈ BdA (U0,ρ), and V = V1 ∪ V2 ∈ B l(U0,ρ) with V1, V2 ∈ A .
From the inclusion-exclusion formula,

|∆XU\V |= |XU − XU∩V1
− XU∩V2

+ XU∩V1∩V2
|

= |∆XU\V1
+∆XU\V2

−∆XU\(V1∩V2)
|

≤ |∆XU\V1
|+ |∆XU\V2

|+ |∆XU\(V1∩V2)
|.

We have dA (U0, V1)≤ ρ, dA (U0, V2)≤ ρ and

dA (U0, V1 ∩ V2)≤ dA (U0, V1) + dA (V1, V1 ∩ V2)

≤ dA (U0, V1) + dA (V1, V2)≤ 2dA (U0, V1) + dA (U0, V2)≤ 3ρ,

using dA (V1, V1 ∩ V2)≤ dA (V1, V2) from the contracting property of dA .
Then, for all α < αX ,C l′ (U0)(ω),

lim sup
ρ→0

sup
U∈BdA (U0,ρ)

V∈B l (U0,ρ)

|∆XU\V |
ρα

<∞,

which says that α < αX ,C l (U0)(ω). Thus, αX ,C l′ (U0)(ω)≤ αX ,C l (U0)(ω).
This inequality achieves to prove that αX ,C l (U0)(ω) does not depend on the integer l ≥ 1.

To prove the second part of the Proposition, it suffices then to prove the inequality for l = 1.
This is straightforward, since for a fixed U ∈ BdA (U0,ρ),

sup
V∈B1(U0,ρ)

|∆XU\V | ≤ sup
W∈BdA (U0,ρ)

|XU − XW |.

HenceαX (U0)≤ αX ,C l (U0). The inequality for the local exponent can be obtained identically,
or one can notice that it is a direct consequence of Corollary 2.14.

The converse inequality does not hold in general since quantities |XU−XV | cannot be obtained
from the increment process ∆X when U , V are not ordered.
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Remark 2.19. The previous definition of the pointwise Hölder exponent on C l is not equivalent to

the quantity

sup





α : lim sup

ρ→0
sup

U∈BdA (U0,ρ)

V∈B l : dA (U0,V )<ρ

|∆XU\V |
ρα

<∞





,

as the following example shows.

In the particular case of the indexing collection A equal to the rectangles of R2
+

and the distance

dλ = λ(• △ •) induced by the Lebesgue measure λ of R2, we show that the assertion (V ∈ B l :
dλ(U0, V )< ρ) is not equivalent to (V ∈B l(U0,ρ)).
Consider V1 = [0; (n2, n2 + 1

n )], V2 = [0; (n2 + 1
n , n2)] and U = [0; (n2 + 1

n , n2 + 1
n )]. We have

dλ(U , V1 ∪ V2) =
1
n2

while dλ(U , V1) = dλ(U , V2)≈ n.

Then, V1 ∪ V2 /∈B2(U ,ρ) for small ρ and it is not possible to control the quantity |XU −∆XV1∪V2
|

using |XU − XV1
|, |XU − XV1

| and |XU − XV1∩V2
| as was done in the previous proofs.

The notation αX ,C must be considered with care: Proposition 2.15 shows that the Hölder
exponents cannot be defined directly by taking the supremum on U ∈ A and V ∈ A (u) with
dA (U0, U)< ρ and dA (U0, V )< ρ (and then, on the class C ). This is the reason why the set V

is restricted to be inB l(U ,ρ).
The arguments of the proof of Proposition 2.18 in the particular case of l = 1 leads to: for

all ω,

αX ,C (U0)(ω)≥ sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
U⊂V

|XU(ω)− XV (ω)|
ρα

<∞





,

and

eαX ,C (U0)(ω)≥ sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
U⊂V

|XU(ω)− XV (ω)|
dA (U , V )α

<∞





.

The converse inequalities follow from the fact that the set of U , V ∈ BdA (U0,ρ) with U ⊂ V is
included in the set of U ∈ BdA (U0,ρ) and V ∈B1(U0,ρ). Then, we can state:

Corollary 2.20. If dA is a contractive distance, the pointwise and local Hölder C -exponents at

U0 ∈A are respectively given by

αX ,C (U0) = sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
U⊂V

|XU − XV |
ρα

<∞





,

and

eαX ,C (U0) = sup





α : lim sup

ρ→0
sup

U ,V∈BdA (U0,ρ)
U⊂V

|XU − XV |
dA (U , V )α

<∞





.
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2.3.2 Pointwise continuity

As previously mentioned, the set-indexed Brownian motion can be not continuous, when the
indexing collection is not a Vapnik-Červonenkis class (see [5, 70] for the detailed study).

In [63], a weak form of continuity is considered in the study of set-indexed Poisson process,
set-indexed Brownian motion and more generally set-indexed Lévy processes. In particular, the
sample paths of the set-indexed Brownian motion are proved to be pointwise continuous as a
set-indexed Lévy process with Gaussian increments. Notice that such a property does not require
Assumption (HA ) onA . We recall the following definitions:

Definition 2.21 ([63]). The point mass jump of a set-indexed function x : A → R at t ∈ T is

defined by

Jt(x) = lim
n→∞

∆xCn(t)
, where Cn(t) =

⋂

C∈Cn

t∈C

C (2.17)

and for each n≥ 1, Cn denotes the collection of subsets U \ V with U ∈An and V ∈An(u).

Definition 2.22 ([63]). A set-indexed function x :A → R is said pointwise continuous at t ∈ T

if Jt(x) = 0.

Let us recall that a subset A ′ of A which is closed under arbitrary intersections is called a
lower sub-semilattice ofA . The ordering of a lower sub-semilatticeA ′ = {A1, A2, . . .} is said to be
consistent if Ai ⊂ A j ⇒ i ≤ j. Proceeding inductively, we can show that any lower sub-semilattice
admits a consistent ordering, which is not unique in general (see [70]).
If {A1, . . . , An} is a consistent ordering of a finite lower sub-semilattice A ′, the set Ci = Ai \⋃

j≤i−1 A j is called the left neighbourhood of Ai inA ′. Since Ci = Ai \
⋃

A∈A ′,A*Ai
A, the definition

of the left neighbourhood does not depend on the ordering.

As in the classical Kolmogorov criterion of continuity, the pointwise continuity of a set-
indexed process X can be proved from the study of E[|∆XCn(t)

|p] when n goes to infinity.

Proposition 2.23. Let X = {XU ; U ∈A} be a set-indexed process and let Umax be a subset in A
such that m(Umax) < +∞ and assume that there exist p > 0, q > 1, N ≥ 1 and K > 0 such that

for all t ∈ Umax and all n≥ N,

E
�
|∆XCn(t)

|p
�
≤ K m(Cn(t))

q . (2.18)

Then, for any γ ∈ (0, (q − 1)/p), there exists an increasing function ϕ : N → N and a random

variable n∗ ≥ 1 satisfying, with probability one,

∀t ∈ Umax, ∀n≥ n∗, |∆XCϕ(n)(t)
| ≤ m(Cϕ(n)(t))

γ.

Proof. Up to restricting the indexing collection to {U ∩ Umax , U ∈ A}, we assume in this proof
that the indexing collectionA is included in Umax.

For all 0 < γ <
q− 1

p
, we consider Sn = sup

� |∆XCn(t)
|

m(Cn(t))
γ

; t ∈ Umax

�
, where Cn(t) is defined

in (2.17). When t ranges Umax, the subset Cn(t) ranges C l(An), the collection of the disjoint

left-neighbourhoods ofAn. Consequently we can write Sn = sup
§ |∆XC |

m(C)γ
; C ∈ C l(An)

ª
.
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For any integer p ≥ 1, we have

P(Sn ≥ 1)≤
∑

C∈C l (An)

P(|∆XC | ≥ m(C)γ)

≤
∑

C∈C l (An)

E [|∆XC |p]
m(C)γp

≤ K
∑

C∈C l (An)

m(C)q−γp .

Since q− γp > 1, we have

P(Sn ≥ 1)≤ K

 
∑

C∈C l (An)

m(C)

!
sup

C∈C l (An)

�
m(C)q−γp−1

	

≤ K m(Umax) sup
C∈C l (An)

�
m(C)q−γp−1

	

where the fact that the C ∈ C l(An) are disjoint is used. Up to choosing an extraction ϕ for
the sequence un = supC∈C l (An)

�
m(C)q−γp−1

	
, we can assume that un is summable. Hence the

Borel-Cantelli Lemma implies that for 0 < γ < (q − 1)/p, {Sϕ(n) < 1} happens infinitely often,
which gives the result.

Remark 2.24. Proposition 2.23 does not require Assumption (HA ) for the collection {An}n∈N and

the distance dm.

From Proposition 2.23, it is natural to define local Hölder regularity of a set-indexed process
by a comparison of ∆XCn(t)

to quantities m(Cn(t))
α with α > 0, when n is large.

Definition 2.25. The pointwise continuity Hölder exponent at any t ∈ T is defined by

α
pc

X (t) = sup

�
α : lim sup

n→∞

|∆XCn(t)
|

m(Cn(t))
α
<∞

�
.

According to Proposition 2.23, if X is a A -indexed process satisfying hypothesis (2.18), then
with probability one, αpc

X (t)≥ (q− 1)/p for all t ∈ Umax .

Remark 2.26. As in the continuity criterion (Theorem 2.9 and Corollary 2.10), the proof of Propo-

sition 2.23 can be improved for γ ∈ (0, (kq − 1)/kp) for any k ∈ N, when the process is Gaussian.

In that specific case, the upper bound for admissible values of γ is q/p (instead of (q− 1)/p).

2.4 Connection with Hölder exponents of projections on flows

In this section, we consider the concept of flow, which is a useful tool to reduce characterization
or convergence problems to a one-dimensional issue. Flows have been used to characterize:
strong martingales [70], set-Markov processes [14], set-indexed fractional Brownian motion
[62] and set-indexed Lévy processes [63].



2.4. Connection with Hölder exponents of projections on flows 55

Definition 2.27 ([70]). An elementary flow is defined to be a continuous increasing function

f : [a, b] ⊂ R+→A , i.e. such that

∀s, t ∈ [a, b]; s < t ⇒ f (s) ⊆ f (t)

∀s ∈ [a, b); f (s) =
⋂

v>s

f (v)

∀s ∈ (a, b); f (s) =
⋃

u<s

f (u).

A simple flow is a continuous function f : [a, b]→A (u) such that there exists a finite sequence

(t0, t1, . . . , tn) with a = t0 < t1 < · · · < tn = b and elementary flows fi : [t i−1, t i] → A (i =

1, . . . , n) such that

∀s ∈ [t i−1, t i]; f (s) = fi(s)∪
i−1⋃

j=1

f j(t j).

The set of all simple (resp. elementary) flows is denoted S(A ) (resp. Se(A )).

According to [62], we use the parametrization of flows which allows to preserve the incre-
ment stationarity property under projection on flows (it avoids the appearance of a time-change).

Definition 2.28 ([62]). For any set-indexed process X = {XU ; U ∈A} on the space (T,A , m) and

any simple flow f : [a, b]→A (u), the m-standard projection of X on f is defined as the process

X f ,m =
¦

X
f ,m
t =∆X f ◦θ−1(t); t ∈ θ ([a, b])

©
,

where θ is the function t 7→ m[ f (t)] and θ−1 its right inverse.

The importance of flows in the study of set-indexed processes follows the fact that the finite
dimensional distributions of an additiveA -indexed process X determine and are determined by
the finite dimensional distributions of the class {X f ,m, f ∈ S(A )} ([68], Lemma 6).

As the projection of a set-indexed process on any flow is a real-parameter process, its classical
Hölder exponents can be considered and compared to the exponents of the set-indexed process.
In the sequel, we study how regularity of flows connects the exponents αX (U0) (resp. eαX (U0))
and αX f ,m(t0) (resp. eαX f ,m(t0)), when U0 ∈A and f ◦ θ−1(t0) = U0.

For any U0 ∈ A , let us denote by S(A , U0) the subset of S(A ) containing all the simple
flows f : θ−1(I f )→A (u) such that there exists t0 > 0 satisfying f ◦ θ−1(t0) = U0, and where
I f is a closed interval of R+ containing a ball centered in t0. Such a t0 does not depend on the
flow f , since t0 = m(U0). In the same way, we define Se(A , U0) for elementary flows.

Lemma 2.29. Let f ∈ S(A , U0) and η > 0 such that B(t0,η) ⊂ I f . For all t ∈ B(t0,η), f ◦
θ−1(t) ∈ B

(u)

dm
(U0,η) = {A∈A (u) : m(A△ U0)< η}.

Proof. θ−1(t) = inf{x ∈ I f : θ (x)≥ t}. As θ is increasing, θ−1 is increasing as well. We assume
without loss of generality that t ≥ t0. Then,

dm( f ◦ θ−1(t), U0) = m
�

f ◦ θ−1(t)△ f ◦ θ−1(t0)
�

= m
�

f ◦ θ−1(t) \ f ◦ θ−1(t0)
�

= m( f ◦ θ−1(t))−m( f ◦ θ−1(t0))

= t − t0.
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Using Lemma 2.29, we can compare the Hölder regularity of X and the Hölder regularity of its
projections on flows.

Proposition 2.30. Let X = {XU ; U ∈A} be a set-indexed process on (T,A , m), with finite Hölder

exponents at U0 ∈A . Then,

inf
f ∈Se(A ,U0)

αX f ,m(t0) = αX ,C (U0)≥ αX (U0) a.s.

inf
f ∈Se(A ,U0)

eαX f ,m(t0) = eαX ,C (U0)≥ eαX (U0) a.s.

where the metric considered onA is dm.

Proof. The proof is only given for the pointwise Hölder exponent. The case of the local Hölder
exponent is totally similar.
From Proposition 2.18, the inequality αX ,C (U0)≥ αX (U0) for all ω ∈ Ω is already known.
The equality inf

f ∈Se(A ,U0)
αX f ,m(t0) = αX ,C (U0) follows from Corollary 2.20 and Lemma 2.29.

The natural question is then to wonder if the previous inequality could be improved in an
equality. The answer is generally no, as the following example shows.

Example 2.31. In this example, we only consider deterministic functions, instead of random pro-

cesses. Let F be a set-indexed function onA , the usual collection of rectangles of [0,1]2. Let U0 ∈A
and assume that F is α-Hölder continuous in U0, for some α ∈ (0, 1). We assume without loss of

generality that F(U0) = 0.

Let us divideA into four quadrants around U0 = [0, (x0, y0)] in the following manner:

Q1 = {[0, (x , y)] ∈A : x ≤ x0 and y < y0},
Q2 = {[0, (x , y)] ∈A : x ≤ x0 and y ≥ y0},
Q3 = {[0, (x , y)] ∈A : x > x0 and y ≥ y0},
Q4 = {[0, (x , y)] ∈A : x > x0 and y < y0}.

U0

0 1

S

Figure 2.1 – Value of G around U0
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Let us fix ε > 0. As F is α-Hölder continuous at U0, for all K > 0, there exists a sequence of sets in

A converging to U0 and such that

∀n≥ 0, |F(Un)|= |F(Un)− F(U0)|> K dA (Un, U0)
α+ε.

There is at least one of the quadrants in which there are infinitely many sets Un. Up to a rotation,

assume Q4 is this quadrant. We now assume (without restriction) that a subsequence of (Un)

belongs to a closed subset S ⊂Q4 (see figure 2.1).

Let G be a smooth function except maybe at U0, taking its values in [0,1] and such that G(U0) = 0
and G(U) = 0 for all U ∈ Q1 ∪Q2 ∪Q3 (see figure 2.1 above), and G(U) = 1 for all U ∈ S . We

denote by H the product of F and G.

Up to an extraction that we detailed previously, the sequence (Un)n∈N belongs to S . Then,

∀n≥ 0, |H(Un)− H(U0)|= |H(Un)|= |F(Un)|> K dA (Un, U0)
α+ε.

Thus, if H is β -Hölder continuous at U0, then the inequality β ≤ α holds necessarily.

For γ < α, there exist ρ > 0 and K > 0 such that

∀U ∈ BdA (U0,ρ), |F(U)|= |F(U)− F(U0)| ≤ K dA (U , U0)
γ.

Thus,

|H(U)− H(U0)|= |H(U)| ≤ G(U).|F(U)| ≤ K dA (U , U0)
γ.

We have built a function H which is α-Hölder continuous. On the other hand, the projection of H on

any elementary flow f ∈ Se(A , U0) is uniformly 0 and consequently, inf f ∈Se(A ,U0)
eαH f ,m =∞ > α.

2.5 Almost sure values for the Hölder exponents

2.5.1 Separability of stochastic processes

As in the real-parameter case, we prove that the random Hölder exponents of the sample paths
have almost sure values when the process is Gaussian: these values are determined in Theorems
2.34 and 2.35.

Defining Hölder exponents by expressions (2.14) and (2.15) leads us to ask whether they
are random variables, in order to consider measurable events related to these quantities. This
question was first answered by Doob (see [42]) for linear parameter space, see [76] for a con-
temporary exposition.

Definition 2.32 ([42]). A process {XU , U ∈A} is said separable if there exist an at most countable

collection S ⊂ A and a null set Λ such that for all closed sets F ⊂ R and all open set O for the

topology induced by dA ,

{ω : XU(ω) ∈ F for all U ∈ O ∩S } \ {ω : XU(ω) ∈ F for all U ∈ O } ⊂ Λ

This definition is well suited for set-indexed processes since we have the following:
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Theorem 2.33 (from [53, Theorem 2 p.153]). Any stochastic process from a separable metric

space with values in a locally compact space admits a separable modification. Hence, if the sub-

collections (An)n∈N and the metric dA satisfy Assumption (HA ), any R-valued set-indexed stochas-

tic process X = {XU ; U ∈A} has a separable modification.

We shall now consider that all our processes are separable. As a consequence, assuming
without any restriction on the probability space, variables such as supU∈O XU , for O an open
set of A , are indeed measurable. Hence the random Hölder coefficients aforementioned are
random variables.

2.5.2 Uniform results for Gaussian processes

Recall that according to Remark 2.11, Condition (H2) can be removed from Assumption (HA )
when the process X is Gaussian and therefore in all this section.

Theorem 2.34. Let X = {XU ; U ∈A} a set-indexed centered Gaussian process, where (An)n∈N
and dA satisfy Assumption (HA ). If the deterministic local Hölder exponent of X at U0 ∈ A is

positive and finite, we have

P
�
eαX (U0) = eαX (U0)

�
= 1 ,

and

P
�
αX (U0) = αX (U0)

�
= 1.

In a similar way to Theorem 3.14 of [59], we can also obtain almost sure results on the
exponents αX (U0) and eαX (U0) uniformly in U0 ∈A .

Theorem 2.35. Let X = {XU ; U ∈A} be a set-indexed centered Gaussian process, where (An)n∈N
and dA satisfy Assumption (HA ).

Suppose that the functions U0 7→ lim infU→U0
α̃X (U) and U0 7→ lim infU→U0

αX (U) are positive over

A . Then, with probability one,

∀U0 ∈A , lim inf
U→U0

eαX (U)≤ eαX (U0)≤ lim sup
U→U0

eαX (U) (2.19)

and

∀U0 ∈A , lim inf
U→U0

αX (U)≤ αX (U0). (2.20)

The proof of Theorem 2.34 is an adaptation of proofs in [57], but with a conceptual improvement
due to the well-suited formulation of Assumption (HA ), and a technical improvement in Section
2.7.2 that we obtained through Theorem 2.9. The proofs are detailed in Appendix 2.7.2. The
proof of Theorem 2.35 is given in Section 2.7.2.
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2.5.3 Corollaries for the C -Hölder exponents and the pointwise continuity exponent

Theorem 2.34 can be transposed to the C -Hölder exponent, and the pointwise continuity expo-
nent.
If X is a Gaussian set-indexed process, we define respectively the deterministic pointwise and
local C -Hölder exponents on one hand, for all integer l ≥ 1,

αX ,C l (U0) = sup
§
α : lim sup

ρ→0
sup

U∈BdA (U0,ρ)

V∈B l (U0,ρ)

E[|∆XU\V |2]
ρ2α

<∞
ª

,

eαX ,C l (U0) = sup
§
α : lim sup

ρ→0
sup

U∈BdA (U0,ρ)

V∈B l (U0,ρ)

E[|∆XU\V |2]
dA (U , V )2α

<∞
ª

and the deterministic pointwise continuity exponent on the other hand,

α
pc

X (t0) = sup

�
α : lim sup

n→∞

E[|∆XCn(t)
|2]

m(Cn(t))
2α

<∞
�

.

Similarly to Proposition 2.18, the pointwise and local deterministic exponents do not depend
on l. Hence they are denoted respectively by αX ,C (U0) and eαX ,C (U0).

Corollary 2.36. Let X = {XU , U ∈A} be a centered Gaussian set-indexed process.

If the subcollections (An)n∈N satisfy Assumption (HA ) and if the deterministicC -Hölder exponents

are finite, then for U0 ∈A ,

αX ,C (U0) = αX ,C (U0) a.s. and eαX ,C (U0) = eαX ,C (U0) a.s.

Proof. It suffices to prove the result for l = 1, which corresponds to V ⊆ U in the definition
of the standard Hölder exponent. Thus one can apply the previous proofs (Sections 2.7.2 and
2.7.2) which are still valid when restricted to V ⊆ U .

Corollary 2.37. Let X = {XU , U ∈ A} be a centered Gaussian set-indexed process. If the deter-

ministic exponent of pointwise continuity is finite, then for t0 ∈ T,

α
pc

X (t0) = α
pc

X (t0) a.s.

Moreover, for any Umax ∈A such that m(Umax)<∞,

P
�
∀t ∈ Umax , αpc

X (t)≥ α
pc

X (t)
�
= 1.

Proof. Fix t0 ∈ T . Let α < α
pc

X (t0). The inequality α < αpc

X (t0) a.s. is a direct consequence of
Proposition 2.23. This gives αpc

X (t0)≥ α
pc

X (t0) almost surely.

For the converse inequality, denote µ= α
pc

X (t0). Then for all ε > 0, there exist a subsequence�
Cϕ(n)(t0)

�
n∈N of (Cn(t0))n∈N and a constant c > 0 such that

∀n ∈ N∗, E
�
|∆XCϕ(n)(t0)

|2
�
≥ c m(Cϕ(n)(t0))

2µ+ε.
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For all n ∈ N, the law of the random variable
∆XCϕ(n)(t0)

m(Cϕ(n)(t0))
µ+ε

is N (0,σ2
n
). The previous in-

equality implies that σn → ∞ as n → ∞. Then for all λ > 0, the same computation as in
Lemmas 2.48 and 2.49 leads to

P

�
m(Cϕ(n)(t0))

µ+ε

∆XCϕ(n)(t0)

< λ

�
= P

�
∆XCϕ(n)(t0)

m(Cϕ(n)(t0))
µ+ε

>
1
λ

�

=

∫

|x |> 1
λ

1p
2πσn

exp

�
− x2

2σ2
n

�
.d x

=
1

2π

∫

|x |> 1
λσn

exp

�
− x2

2

�
.d x

n→+∞−→ 1.

Therefore the sequence

�
m(Cϕ(n)(t0))

µ+ε

∆XCϕ(n)(t0)

�

n∈N
converges to 0 in probability. As a consequence,

there exists a subsequence which converges to 0 almost surely. Then for all ε > 0, we have
almost surely αpc

X (t0)≤ µ+ ε. Taking ε ∈ Q+, this yields αpc

X (t0)≤ α
pc

X (t0) a.s.

The second equation is a direct consequence of Proposition 2.23.

2.6 Application: Hölder regularity of the set-indexed fractional
Brownian motion and the set-indexed Ornstein-Ülhenbeck
process

The various general results proved in Section 2.5 allow to describe the local behaviour of recent
set-indexed extensions of two well-known stochastic processes: fractional Brownian motion and
Ornstein-Ülhenbeck process.

2.6.1 Hölder exponents of the SIfBm

The local regularity of fractional Brownian motion BH = {BH
t

; t ∈ R+} is known to be constant
a.s. and given by the self-similarity index H ∈ (0,1). More precisely, the two classical Hölder
exponents satisfy, with probability one,

∀t ∈ R+, αBH (t) = eαBH (t) = H.

In [60, 62], a set-indexed extension for fractional Brownian motion has been defined and
studied. A mean-zero Gaussian process BH =

�
BH

U
, U ∈A

	
is called a set-indexed fractional

Brownian motion (SIfBm for short) on (T,A , m) if

∀U , V ∈A , E
�
BH

U
BH

V

�
=

1
2

�
m(U)2H +m(V )2H −m(U △ V )2H

�
, (2.21)

where H ∈ (0,1/2] is the index of self-similarity of the process.
In [58], the deterministic local Hölder exponent and the almost sure value of the local Hölder

exponent have been determined for the particular case of an SIfBm indexed by the collection
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{[0, t]; t ∈ RN
+
} ∪ {;}, called the multiparameter fractional Brownian motion. If X denotes the

RN
+

-indexed process defined by X t = BH
[0,t] for all t ∈ RN

+
, it is proved that for all t0 ∈ RN

+
,

eαX (t0) = H and with probability one, for all t0 ∈ RN
+

, eαX (t0) = H.
However, the local regularity has not been studied so far, in the general case of an indexing

collection which is not reduced to the collection of rectangles of RN
+

. Theorem 2.34, Theo-
rem 2.35 and Corollary 2.37 provide new results for the sample paths of SIfBm.

In Section 2.5, Theorem 2.35 failed to provide a uniform almost sure upper bound for the
pointwise Hölder exponent of a general Gaussian set-indexed process. In the specific case of
the set-indexed fractional Brownian motion, this result can be improved under some additional
requirement. We consider a supplementary condition on the collectionA and the distance dm:
there exists η > 0 such that ∀U0 ∈A ,

inf
ρ>0

sup
§

dm(U , gn(U))

ρ
; n ∈ N, U , gn(U) ∈ Bdm

(U0,ρ)
ª
≥ η . (2.22)

Theorem 2.38. Let BH be a set-indexed fractional Brownian motion on (T,A , m), H ∈ (0, 1/2].
Assume that the subclasses (An)n∈N satisfy Assumption (HA ).

Then, the local and pointwise Hölder exponents of BH at any U0 ∈ A , defined with respect to the

distance dm or any equivalent distance, satisfy

P
�
∀U0 ∈A , eαBH (U0) = H

�
= 1

and if the additional Condition (2.22) holds,

P (∀U0 ∈A , αBH (U0) = H) = 1.

Consequently, whenA is the collection of rectangles of RN
+

and m= λ is the Lebesgue measure, i.e.

BH is a multiparameter fractional Brownian motion, we have

P
�
∀U0 ∈A , αBH (U0) = eαBH (U0) = H

�
= 1.

Proof. From the definition of the set-indexed fractional Brownian motion, the following expres-
sion of the incremental variance,

∀U , V ∈A , E
�
|BH

U
− BH

V
|2
�
= m(U △ V )2H ,

directly implies that the deterministic pointwise and local Hölder exponents are equal to H. By
Theorem 2.34, the random exponents on an indexing collection satisfying Assumption (HA ) are
also equal to H.
For the uniform almost sure result on A , according Theorem 2.35, it remains to prove that
P (∀U0 ∈A , αBH (U0)≤ H) = 1. This fact is the object of the following Section 2.6.2.

For the particular case of the multiparameter fractional Brownian motion, it suffices to no-
tice that the collection A of rectangles of RN endowed with the Lebesgue measure λ satisfies
Condition (2.22).
Let us recall that for any U0 ∈ A , dλ(U0, gn(U0)) = N .2−n + o(2−n). Hence for a given ρ > 0,
choosing the smallest integer n such that N .2−n ≤ ρ/2 ensures that

dλ(U0, gn(U0))

ρ
≥ N .2−(n+1)

ρ
≥ 1

8
,

and that gn(U0) ∈ Bdλ
(U0,ρ).
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If the collectionA or the metric dm do not satisfy the additional requirement (2.22), then the
lower bound for the pointwise exponent remains true by Theorem 2.35: P (∀U0 ∈A , αBH (U0)≥ H) =

1.

In [60], it is shown that for all U , V ∈ A , E[|∆BH
U\V |2] = m(U \ V )2H . This implies that for

all U0 ∈A , eαBH ,C (U0) = αBH ,C (U0) = H, and so by Corollary 2.36:

eαBH ,C (U0) = αBH ,C (U0) = H a.s.

The case of the exponent of pointwise continuity needs to determine the behaviour ofE
�
|∆BH

C
|2
�

when C ∈ C (and not only C = U \ V ∈ C0, with U , V ∈ A as previously). In the specific case
of an SIfBm with H = 1/2, we can state:

Proposition 2.39. Let B be a Brownian motion onA . Then, for all t0 ∈ T,

α
pc

B (t0) = α
pc

B (t0) =
1
2

a.s.

A uniform lower bound in any Umax ∈A such that m(Umax)<∞, is given by:

P

�
∀t0 ∈ Umax , α

pc

B (t0)≥ α
pc

B (t0) =
1
2

�
= 1.

Proof. Since E
�
|∆BC |2

�
= m(C), the result follows from Corollary 2.37.

This property cannot be extended directly to any SIfBm for which H < 1/2, since we do not
have E

�
|∆BH

C
|2
�
= m(C)2H for all C ∈ C (see [60]). However, the results of Proposition 2.39

hold in the specific case of rectangles of RN , i.e. for the multiparameter fractional Brownian
motion (see Remark 2.46).

2.6.2 Proof of the uniform a.s. pointwise exponent of the SIfBm

In [2], the isotropic fractional Brownian field is proved to have a uniform pointwise exponent
equal to H using techniques such as local times; and in [16], the same result holds for the regular
multifractional Brownian motion (mBm), with a proof based on the integral representation of the
mBm. This result relies on tools that are not available in the set-indexed framework, although
some attempts have been made to introduce set-indexed local times ([71]).

In [16], the following technical lemma is proved for a multifractional Brownian motion. We
restrict it to fBm’s case:

Lemma 2.40. Let BH = {BH
t

, t ∈ R+} be a fractional Brownian motion of index H ∈ (0,1). Let

ε > 0, ρ > 0, 0 ≤ s < t, n ∈ N∗ and δu =
ρ
n . Then, let u0 = s and for all k ∈ {0, . . . , n},

uk+1 = uk +δu. We have the following:

P

�
n⋂

k=1

{|BH
uk
− BH

uk−1
|< ρH+ε}

�
≤
�

2p
2π

�n
�
ρH+ε

C .(δu)H

�n

,

where C is a constant depending only on H.
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In the sequel, for U ⊂ V ∈A , we denote by R( f , U → V ), the range of the elementary flow
f : [0, d]→A such that f (0) = U and f (d) = V , where d = dm(U , V ) (the distance considered
here is always dm = m(•△•)). HenceR( f , U → V ) is a totally ordered subset ofA which forms
a continuum. We also denote by Rn( f , U), the range R( f , U → gn(U)). Since the choice of a
particular f does not matter, these notations can be used without specifying f , considering that
a choice has been made.

Lemma 2.41. Let BH be a SIfBm on (A , T, m) of index H ∈ (0, 1
2 ]. Let U ∈ A , i ∈ N and

ρi = dm(U , gi(U)). Let ε > 0, n ∈ N∗. In anyRi( f , U), there exist an increasing sequence (U j)0≤ j≤n

such that U0 = U, Un = gi(U), and δU = dm(U j−1, U j) =
ρi

n for all j ∈ {1, . . . , n}. Then,

P

�
n⋂

k=1

¦
|BH

Uk
− BH

Uk−1
|< ρH+ε

i

©�
≤
�

2p
2π

�n
�
ρH+ε

i

σ

�n

where σ = C .(δU)H and C > 0 only depends on H. Equivalently, there exists a constant eC > 0,

which only depends on H, such that

P

�
n⋂

k=1

¦
|BH

Uk
− BH

Uk−1
|< ρH+ε

i

©�
≤
�eC nHρε

i

�n
. (2.23)

Proof. Let us consider the range Ri( f , U) of a flow f connecting U to gi(U). The standard
projection of X = BH on f is a standard fractional Brownian motion that we denote X f ,m =¦

X
f ,m
t , t ∈ [0,ρi]

©
. As usual, θ = m◦ f and in the present situation, θ : [0,ρi]→ [m(U), m(gi(U))].

For k ∈ {0, . . . , n}, let uk = m(U) + k.ρi

n and define Uk = f ◦ θ−1(uk). The Uk ’s contitute the se-
quence of the statement and we remark that

P

� p⋂

k=1

�
|XUk
− XUk−1

|< ρH+ε
n

	�
= P

� p⋂

k=1

¦
|X f ,m

uk
− X f ,m

uk−1
|< ρH+ε

n

©�
.

The result follows from Lemma 2.40.

The following Proposition 2.42 is the key result to prove the uniform almost sure upper
bound for the SIfBm.

Proposition 2.42. Let BH be a SIfBm on (A , T, m) of parameter H ∈ (0,1/2]. We assume that

(An)n∈N endowed with the distance dm satisfies Assumption (HA ) and that Condition (2.22) holds.

Then, with probability one, for all ε > 0, there exists a random variable h > 0 such that for all

ρ ≤ h(ω) and for all U0 ∈A ,

sup
U ,V∈BdA (U0,ρ)

��BH
U
− BH

V

��≥ ρH+ε.

Proof. Let us fix ε > 0. For all U ∈A , let ρn,U = dm(U , gn(U)) and pn,U = ⌊ρ−εn,U⌋. For all N ∈ N∗,
we consider the event

AN =
⋃

n≥N

⋃

U∈An

¦
∀V, W ∈ Rn( f , U), |XV − XW |< ρH+ε

n,U

©
.

We have

P(AN )≤
∑

n≥N

∑

U∈An

P
�
∀V, W ∈ Rn( f , U), |XV − XW |< ρH+ε

n,U

�

≤
∑

n≥N

∑

U∈An

P

�pn,U⋂

k=1

¦
|XUk
− XUk−1

|< ρH+ε
n,U

©�
,
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where U0, . . . , Upn,U
are defined as in Lemma 2.41.

Following equation (2.23) and since ρn,U = dA (U , gn(U)) ≤ k
−1/qA
n , there exist positive con-

stants C1 and C2 such that

P

�pn,U⋂

k=1

¦
|XUk
− XUk−1

|< ρH+ε
n,U

©�
≤
�
C1 ρ

ε(1−H)

n,U

�ρ−ε
n,U−1

≤
�

C2 k
−1/qA
n

�ε(1−H)(k
ε/qA
n −1)

.

Going back to the previous equation, we obtain

P(AN )≤
∑

n≥N

kn

�
C2 k

−1/qA
n

�ε(1−H)(k
ε/qA
n −1)

= RN .

Since kn is admissible, we can easily show that
∑

N∈N∗ RN <∞. Hence, Borel-Cantelli Lemma
implies the existence of a random variable N(ω) such that: with probability one, for all n≥ N(ω)

and for all U ∈An,

∃V, W ∈ Rn( f , U); |XV − XW | ≥ ρH+ε
n,U . (2.24)

For U0 ∈ A and ρ > 0, Assumption (2.22) gives the existence of Rn( f , U) ⊂ BdA (U0,ρ), for
some n≥ N(ω) and U ∈A such that ρn,U ≥ ηρ. Then, there exist V, W ∈A (the same that in
(2.24)), such that

|XV − XW | ≥ ρH+ε
n,U ≥ (ηH+ε) ρH+ε

which concludes the proof.

As a consequence of Proposition 2.42, with probability one, the random pointwise Hölder
exponent of a SIfBm is uniformly smaller than H (and thus, equal to H, by Theorem 2.35),
provided that Assumption (HA ) and the additional requirement (2.22) hold.

2.6.3 Hölder exponents of the SIOU process

Theorems 2.34 and 2.35 can be also applied to derive Hölder exponents of the set-indexed
Ornstein-Uhlenbeck (SIOU in short) process, studied in [17]. This process was introduced as an
example of set-indexed process satisfying some stationarity and Markov properties.

A mean-zero Gaussian process Y = {YU ; U ∈A}, whereA is an indexing collection on the
measure space (T, m), is called a stationary set-indexed Ornstein-Uhlenbeck process if

∀U , V ∈A , E[YU YV ] =
σ2

2γ
exp (−γ m(U △ V )) ,

for given positive constants γ and σ.

Fixing U0 ∈ A , and for all U , V close to U0 for the metric dm, E[|YU − YV |2] =
σ2

γ
(1 −

e−γ m(U△V )) implies that E[|YU −YV |2] = σ2 [m(U △ V ) + o(m(U △ V ))]. This leads to αY (U0) =

eαY (U0) = 1/2. Consequently, the following result follows directly from Theorem 2.35.
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Proposition 2.43. Let Y = {YU ; U ∈ A} be a stationary set-indexed Ornstein-Uhlenbeck process

on (T,A , m). Assume that the subclasses (An)n∈N ofA satisfy Assumption (HA ).

Then, the pointwise and local Hölder exponents satisfy, with probability one,

∀U0 ∈A , eαY (U0) =
1
2

and αY (U0)≥
1
2

and ∀U0 ∈A , αY (U0) =
1
2 a.s.

As another consequence of the previous remark, the equality holds for the C -Hölder exponents, for

all U0 ∈A , almost surely.

As mentioned in the case of the SIfBm, the computation of the exponent of pointwise conti-
nuity requires a fine estimation of the variance of the process over C . WhenA is the collection
of the rectangles of RN

+
, the estimation of E[|∆YCn(t)

|2] is easier, as the example of the SIOU
process shows.

Lemma 2.44. Let A =
�
[0, t] : t ∈ [0,1]N

	
endowed with the usual dissecting class (An) made

of the dyadics. Let t ∈ (0, 1)N , t = (t1, . . . , tN ) and define:

tn
j
=

§
t j if 2n t j ∈ N
2−n⌊2n t j + 1⌋ otherwise,

and t̃n
k
=

§
2−n⌊2n tk − 1⌋ if 2n tk ∈ N
2−n⌊2n tk⌋ otherwise.

Then,

Cn(t) = [0, (tn
1 , . . . , tn

N
)] \

N⋃

k=1

[0, (tn
1 , . . . , t̃n

k
, . . . , tn

N
)].

Proof. We recall that Cn(t), the left-neighbourhood of At in An, is defined as
⋂

C∈Cn

t∈C

C . In the

particular case of the rectangles, it corresponds to the expression given in the lemma.

As usual, let λ be the Lebesgue measure of RN . A direct consequence of this result is that
any Gaussian process X satisfying the assumptions of Corollary 2.10 satisfies, for all t ∈ [0, 1]N

and for all ω,
eαX ,C (At)≤ αX ,C (At)≤ αpc

X (t),

with respect to the Lebesgue measure λ and the distance dλ.
More precise results are available for the SIOU process and the SIfBm.

Proposition 2.45. Let Y = {YU : U ∈A} be a SIOU process, where A refers to the rectangles

of [0,1]N as in the Lemma 2.44. Then, the pointwise continuity of Y with respect to the Lebesgue

measure λ of RN satisfies

∀t0 ∈ [0,1]N , P
�
α

pc

Y (t0) = α
pc

Y (t0) =
1
2

�
= 1,

and,

P

�
∀t0 ∈ [0,1]N , α

pc

Y (t0)≥ α
pc

Y (t0) =
1
2

�
= 1.

Proof. For the sake of readability, the proof is written for N = 2. Let t = (t1, t2) ∈ [0,1]N .
To show there is no difference in the final result, we assume t1 is dyadic and t2 is not. Let
k, l ∈ N, k < 2l such that t1 = k.2−l . Let n ∈ N, n≥ l.
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First, we notice that, by Lemma 2.44,

Cn(t) =
�
0, (t1, 2−n⌊2n t2 + 1⌋)

�
\
��

0, (2−n⌊2n t1 − 1⌋, 2−n⌊2n t2 + 1⌋)
�
∪
�
0, (t1, 2−n⌊2n t2⌋)

�	
.

Re-writing this for short Cn(t) = An \
�

B1,n ∪ B2,n

	
, the inclusion-exclusion formula gives

E[|∆YCn(t)
|2] = E[Y 2

An
+ Y 2

B1,n
+ Y 2

B2,n
+ Y 2

B1,n∩B2,n
− 2YAn

YB1,n
− 2YAn

YB2,n

+ 2YAn
YB1,n∩B2,n

+ 2YB1,n
YB2,n
− 2YB1,n

YB1,n∩B2,n
− 2YB2,n

YB1,n∩B2,n
].

Combined with the covariance of the SIOU, a second-order Taylor expansion gives:

E[|∆YCn(t)
|2] = σ

2

2γ

�
8γ.2−2n + 16γ2.2−4n⌊2n t1⌋.⌊2n t2⌋+ o(2−2n)

�
.

Considering the fact that λ(Cn(t)) = 2−2n, the previous expansion implies α
pc

Y (t) =
1
2 . Therefore,

Corollary 2.37 gives the result.

Remark 2.46. With the notations of Proposition 2.45, we can consider the case of the SIfBm BH

indexed byA =
�
[0, t], t ∈ RN

+

	
∪ {;},

E
�
|∆BH

Cn(t)
|2
�
= m(An \ B1,n)

2H +m(An \ B2,n)
2H −m(An \ (B1,n ∩ B2,n)

2H

−m(B1,n△ B2,n)
2H +m(B1,n \ B2,n)

2H +m(B2,n \ B1,n)
2H .

Then, the same development as the previous proof gives α
pc

BH (t0) = H for all t0 ∈ [0, 1]N . Conse-

quently, we can state:

∀t0 ∈ [0, 1]N , P
�
α

pc

BH (t0) = α
pc

BH (t0) = H
�
= 1,

and,

P
�
∀t0 ∈ [0,1]N , α

pc

BH (t0)≥ α
pc

BH (t0) = H
�
= 1.
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2.7 Proofs of several technical results

2.7.1 Proof of Corollary 2.14

In order to prove Corollary 2.14, we need the following lemma:

Lemma 2.47. If the distance dA on the classA is contracting, then for U , V1, V2 ∈A ,

dA (U , V1)∨ dA (U , V2)≤ ρ⇒ dA (U , V1 ∩ V2)≤ 3ρ.

Moreover, for any integer l ≥ 1 and for all U , V1, . . . , Vl ∈A ,

max
i≤l
{dA (U , Vi)} ≤ ρ⇒ dA (U , V1 ∩ · · · ∩ Vl)≤ K(l) ρ,

for some constant K(l)> 0 which only depends on l.

Proof of Lemma 2.47. The proof relies on the triangular inequality and the contracting property
of dA .

Proof of Corollary 2.14. Assuming that gn can be extended toA (u) in the following way:

∀V1, . . . , Vp ∈A , gn

� p⋃

i=1

Vi

�
=

p⋃

i=1

gn(Vi) ,

the following inequality holds:

|XU −∆X∪Vi
| ≤ |X gn0

(U) −∆X gn0
(∪Vi)
|+
∑

j≥n0

|X g j+1(U)
− X g j(U)

|

+
∑

j≥n0

|∆X g j+1(∪Vi)
−∆X g j(∪Vi)

| . (2.25)

Since for all V1, . . . , Vp ∈A ,

∆X∪Vi
=

p∑

i=1

XVi
+ · · ·+ (−1)k−1

∑

i1<···<ik

X∩i1<···<ik
Vi
+ · · ·+ (−1)p−1XV1∩···∩Vp

,

one can express

|∆X gn+1(∪Vi)
−∆X gn(∪Vi)

| ≤
p∑

i=1

|X gn+1(Vi)
− X gn(Vi)

|+ . . .

+
∑

i1<···<ik

|X gn+1(∩i1<···<ik
Vi)
− X gn(∩i1<···<ik

Vi)
|+ . . .

+ |X gn+1(∩p

i=1Vi)
− X gn(∩p

i=1Vi)
|. (2.26)

Now assume that U , V1, . . . , Vp ∈ D. When p ≤ l, the number of terms in the right side of
inequality (2.26) is bounded by a constant, independent of the set V1, . . . , Vp ∈ A . Thus, there
exists a positive constant K2(l) such that

|∆X gn+1(∪Vi)
−∆X gn(∪Vi)

| ≤ K2(l) sup
W∈D
|X gn+1(W )

− X gn(W )
| . (2.27)
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Using the same sequence (a j) j∈N as in the proof of Theorem 2.9, and the above equation (2.27)
in the third inequality below:

P
�

sup
V1,...,Vp∈D

∑

j≥n0

|∆X g j+1(∪Vi)
−∆X g j(∪Vi)

| ≥ K2(l)k
−γ/qA
n0+1

�

≤ P
�
∃V1, . . . , Vp ∈ D,∃ j ≥ n0, |∆X g j+1(∪Vi)

−∆X g j(∪Vi)
| ≥ a jK2(l)k

−γ/qA
n0+1

�

≤ P
�
∃W ∈ D,∃ j ≥ n0, |X g j+1(W )

− X g j(W )
| ≥ a jk

−γ/qA
n0+1

�
.

We obtain the same expression (2.3) that we had in the proof of Theorem 2.9, thus the same

conclusion holds: if maxi≤l {m(U \ Vi)} ≤ k
−1/qA
n0

, then almost surely, k
−1/qA
n0

≤ h∗ implies that:

sup
V1,...,Vp∈D

∑

j≥n0

|∆X g j+1(∪Vi)
−∆X g j(∪Vi)

| ≤ K2(l) k
−γ/qA
n0+1 .

In the same way, the second term of the upper bound (2.25) is proved to be bounded by
K4(γ, qA ) m(C)γ, where K4(γ, qA )> 0 only depends on γ and qA .
The first term of (2.25) can be bounded by a finite sum (whose number of terms only depends
on l) of the form |X gn0

(U) − X gn0
(Vi1,...,ik

)|, where Vi1,...,ik = Vi1
∩ · · · ∩ Vik

for i1 < · · ·< ik ≤ l:

|X gn0
(U) −∆X gn0

(∪Vi)
| ≤

l∑

j=1

∑

i1<···<i j

|X gn0
(U) − X gn0

(Vi1,...,i j
)|. (2.28)

Finally, if maxi≤l {m(U \ Vi)} ≤ k
−1/qA
n0

, condition (H1) of Assumption (HA ) and Lemma 2.47
imply

dm(gn0
(U), gn0

(Vi1,...,i j
))≤ dm(gn0

(U), U) + dm(U , Vi1,...,i j
) + dm(Vi1,...,i j

, gn0
(Vi1,...,i j

))

≤ K(l) max
i≤l
{m(U \ Vi)}+ 2k

−1/qA
n0

≤ (K(l) + 2) k
−1/qA
n0

.

Hence, Theorem 2.9 implies that when k
−1/qA
n0

< (K(l)+2)−1 h∗, each term of equation (2.28) is
bounded by a quantity proportional to m(C)γ. Then, the random variable h∗∗ of the statement
can be chosen to be (K(l) + 2)−1 h∗ and the result follows.

2.7.2 Proof of Theorems 2.34 and 2.35

Lower bound for the pointwise and local Hölder exponents

A lower bound for the local Hölder exponent is directly given by Corollary 2.10.
For all U0 ∈A and all 0< α < eαX (U0), there exists ρ0 > 0 and K > 0 such that

∀U , V ∈ BdA (U0,ρ0); E
�
|XU − XV |2

�
≤ K dA (U , V )2α.

Therefore, the sample paths of X are almost surely ν-Hölder continuous in BdA (U0,ρ0) for all
ν ∈ (0,α), which leads to α≤ eαX (U0) almost surely. Then we get

P
�
eαX (U0)≥ eαX (U0)

�
= 1.
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By inequality (2.16), any lower bound for the local Hölder exponent is also a lower bound
for the pointwise exponent. Moreover it can be improved in the case of strict inequality 0 <
eαX (U0)< αX (U0).
For any ε > 0, there exist 0< ρ1 < ρ0 and M > 0 such that

∀ρ < ρ1, ∀U , V ∈ B(U0,ρ); E

�����
XU − XV

ραX (U0)−ε

����
2�
≤ M ρε.

Then setting γ = αX (U0) − ε, the exponential inequality for the centered Gaussian variable
XU − XV implies

P
�
|XU − XV | ≥ ργ

�
≤ exp

�
−1

2

ρ2γ

E[|XU − XV |2]

�
≤ exp

�
−1

2
Mρε

�
.

We consider the particular case ρ = k
−1/qA
n < ρ1 for n ∈ N large enough. Using the above

estimate in the proof of Theorem 2.9 still leads to equation (2.7), where we had that on Ω∗, for
all n≥ n∗:

sup
U ,V∈D

dA (U ,V )≤ρ

|XU − XV | ≤ 3ργ .

Hence this inequality gives:

sup
U ,V∈B(U0,k

−1/qA
N )

|XU − XV | ≤ C k
−γ/qA
N a.s.

and since the sequence
�

k
−1/qA
n

�
n∈N

is decreasing,

lim sup
ρ→0

sup
U ,V∈B(U0,ρ)

|XU − XV |
ργ

<∞ a.s.

Therefore, ∀ε > 0, αX (U0)≥ αX (U0)− ε almost surely and P (αX (U0)≥ αX (U0)) = 1.

Upper bounds for the pointwise and local Hölder exponents

As in [57], upper bounds for the pointwise and local Hölder exponents are given by the following
two lemmas. Their proof are totally identical to multiparameter setting.

Lemma 2.48. Let X = {XU ; U ∈A} be a centered Gaussian process. Assume that for U0 ∈ A ,

there exists µ ∈ (0, 1) such that for all ε > 0, there exist a sequence (Un)n∈N∗ of A converging to

U0, and a constant c > 0 such that

∀n ∈ N∗; E
�
|XUn
− XU0
|2
�
≥ c dA (Un, U0)

2µ+ε.

Then, we have almost surely

αX (U0)≤ µ.

Since the process X has a finite deterministic Hölder exponent, for µ= αX (U0), one can find
a sequence (Un) as in Lemma 2.48. Hence P(αX (U0)≤ αX (U0)) = 1.
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Lemma 2.49. Let X = {XU ; U ∈A} be a centered Gaussian process. Assume that for U0 ∈ A ,

there exists µ ∈ (0,1) such that for all ε > 0, there exist two sequences (Un)n∈N∗ and (Vn)n∈N∗ ofA
converging to U0, and a constant c > 0 such that

∀n ∈ N∗; E
�
|XUn
− XVn
|2
�
≥ c dA (Un, Vn)

2µ+ε.

Then, we have almost surely
eαX (U0)≤ µ.

As for the pointwise case, P(eαX (U0) ≤ eαX (U0)) = 1 follows from Lemma 2.49 with µ =
eαX (U0).

Proof of the uniform almost sure result

This section is devoted to the proof of Theorem 2.35. We only consider the local Hölder exponent.
The uniform almost sure lower bound for the pointwise exponent is proved in a similar way.

Starting with the lower bound, from Theorem 2.9, for all U0 ∈ A and all ε > 0, there is a
modification YU0

of X which is α-Hölder continuous for all α ∈ (0,eαX (U0)− ε) on BdA (U0,ρ0).

• In the first step, eαX is assumed to be constant over A . Hence the local Hölder exponent
of YU0

satisfies almost surely

∀U ∈ BdA (U0,ρ0), eαYU0
(U)≥ eαX − ε. (2.29)

The collection A is totally bounded, so it can be covered by a countable number of balls
of radius at most η, for all η > 0. Let B be one of these balls. For all U0 ∈A , we consider
ρ0 > 0 such that (2.29) holds. We have obviously

B ⊆
⋃

U0∈B

BdA (U0,ρ0).

For each open ball, there exists an integer n such that BdA (U0,ρ0)∩An 6= ; so that for V0 ∈
BdA (U0,ρ0)∩An, there exists an integer m0 such that U0 ∈ BdA (V0, 2−m0) ⊆ BdA (U0,ρ0).
Thus

B ⊆
⋃

BdA (V0, 2−m0),

where the union is countable. Each of these balls satisfies

P
�
∀U ∈ BdA (V0, 2−m0), eαX (U)≥ eαX − ε

�
= 1,

and sinceA is a countable union of balls BdA (V0, 2−m0), we get

P
�
∀U ∈A , eαX (U)≥ eαX − ε

�
= 1.

Taking ε ∈ Q∗
+

, we conclude that

P
�
∀U ∈A , eαX (U)≥ eαX

�
= 1. (2.30)

• In the general case of a not constant exponent eαX , for any ball B of radius η previously
introduced, we set β = infU∈B eαX (U)− ε, ε > 0. Then, there exists a constant C > 0 such
that

∀U , V ∈ B, E[|XU − XV |2]≤ C dA (U , V )2β .
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In a similar way as we proved (2.30), we deduce the existence of an event Ω∗ ⊆ Ω of
probability one such that for all ω ∈ Ω∗:

∀U ∈A , ∀n≥ 0, ∀ε ∈ Q∗
+

,

∀U0 ∈ BdA (U , 2−n), eαX (U0)≥ inf
V∈BdA (U ,2−n)

eαX (V )− ε.

By letting n→∞, the previous equation leads to

P

�
∀U0 ∈A , eαX (U0)≥ lim inf

U→U0

eαX (U)

�
= 1.

In order to prove the converse inequality (which holds only for the local exponent), we adapt
a proof in [59]. We first assume that eαX is constant onA .
Using the fact that D =

⋃
n∈NAn is countable, Lemma 2.49 gives

P(∀U ∈ D, eαX (U)≤ eαX ) = 1.

Let Ω′ ∈ F be the set of ω, such that eαX (U) ≤ eαX for all U ∈ D. Let U0 ∈ A \D. Let (U (i))i∈N
be a sequence in D converging to U0. On Ω′, eαX (U

(i)) ≤ eαX , for all i ∈ N. For each fixed i ∈ N,
there exist two sequences (V (i)

n
)n∈N and (W (i)

n
)n∈N in A converging to U (i) as n→∞, and for

all n ∈ N,

lim
n→+∞

|X
V
(i)
n
− X

W
(i)
n
|

dA (V
(i)
n , W

(i)
n )eαX+ε

= +∞.

As in [59], we build two other sequences (Vn)n∈N and (Wn)n∈N so that Vn → U0 and Wn → U0

and

lim
n→+∞

|XVn
− XWn

|
dA (Vn, Wn)

eαX+ε
= +∞.

This implies the expected inequality for all U0 ∈A .
The general case for eαX not constant is proved in the same way as for the lower bound.
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“Un professeur avait défini un objet abstrait comme un objet qu’on ne peut ni voir

ni toucher, et un objet concret comme un objet qu’on peut voir et toucher. Oui, avait

acquiescé un élève, mon caleçon, par exemple, est concret tandis que le vôtre est abstrait,

parce que je ne peux ni le voir ni le toucher.”

L. SCHWARTZ, Un mathématicien aux prises avec le siècle.

3.1 Introduction

In this chapter, we consider generalizations of fractional Brownian motion (fBm) in two direc-
tions: a) the family of fBm is considered for the different Hurst parameters as a single Gaussian
process indexed by (h, t) ∈ (0, 1)×R+; b) the “time” indexing is replaced by any separable L2

space. We prove that there exists a Gaussian process indexed by (0, 1/2] × L2(T, m), with the
additional constraint that the variance of its increments is as well behaved as it is on (0,1)×R+.

The study of the first generalization originated in the works [116, 20] on what is now known
as multifractional Brownian motion (mBm). The mBm can be introduced in a tractable way
following the approaches of [41, 12], where a fractional Brownian field (fBf) is primarily defined.
Recall that fractional Brownian field is understood in the sense of Definition 1.5. A mBm is then
built from a fBf and any given path in the h direction, {h(t), t ∈ R+}. In [12], the authors use
a wavelet series expansion of fBm to construct a fBf, while in [41], the harmonizable integral
representation of fBm is used. In both cases, harmonic analysis arguments allow to prove that
for any compact subset of R+, there is a constant C > 0 such that for any t in this compact, and

73
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any h, h′ ∈ (0,1),

E
�
Bh

t
− Bh′

t

�2 ≤ C (h− h′)2. (3.1)

This inequality is of some importance since it ensures the sample path regularity of the field in
h, while the behaviour with respect to the increments in t is already known.

More generally, we will consider processes over L2(T, m), and an important subclass formed
by processes restricted to indicator functions of subsets of T . In particular, multiparameter when
(T, m) = (Rd

+
, Leb.), and to a bigger extent set-indexed processes [60, 70], naturally appear

and thus motivate generalization b), besides the inherent interest of studying processes over
an abstract space. Therefore, our goal will be to construct a fractional Brownian field such
that inequality (3.1) holds when t is not in R+ anymore, but in some L2 space. We shall write
L2–fBf for any such fractional Brownian field, or simply fBf if the context is clear, and h-fBm
when looking at the L2–fBf with a fixed h. A h-fBm will have the following covariance: for each
h ∈ (0,1/2],

kh : ( f , g) ∈ L2 × L2 7→ 1
2

�
m( f 2)2h +m(g2)2h −m(| f − g|2)2h

�
. (3.2)

Note that according to Remark 2.10 of [60], kh is positive definite. m(·) on L2 denotes the
canonical linear functional associated to m,

∫
T
(·) dm.

This form of covariance is particularly interesting for several reasons: it was thoroughly
studied when restricted to indicator functions of some indexing collections, in particular in [60,
65], where it is the covariance of the set-indexed fractional Brownian motion (SIfBm) and of the
multiparameter fractional Brownian motion (mpfBm, a particular SIfBm indexed by rectangles
of Rd with Lebesgue measure). Also, this covariance belongs to a larger class of functions on a
metric space (S, d), of the form:

C(s, t) = 1/2 (d(t0, t) + d(t0, s)− d(t, s))

for s, t ∈ S, and an arbitrarily chosen origin t0 ∈ S. Whenever d is such that C(s, t) is positive
definite (see, for instance, [138] for a discussion), we call the resulting Gaussian process a Lévy
Brownian motion, after Paul Lévy, who introduced it in the Euclidean setting [92]. Accordingly,
the covariances will be said to be of the Lévy type. Let us assume that d is a metric such that
replacing it by d2 in C still yields a covariance. Then, by a result on Bernstein functions (see
Appendix A), defining CH by substituting d with d2H for some H ∈ (0,1] gives again a covariance,
and thus a process referred to as Lévy fractional Brownian motion. From this point of view,
m(| · − · |2)1/2 is the L2 metric, and kh is of the same form as CH (with H = 2h). Since CH is
positive definite for H ∈ (0, 1], it is coherent that h ∈ (0, 1/2] only. In the multiparameter setting
([57]), the most studied fractional Brownian processes include the Lévy fBm, with covariance
associated to the Euclidean distance: 2RH(t, s) = ‖t‖2H + ‖s‖2H − ‖t − s‖2H ; and the fractional
Brownian sheet, with covariance 2dRH(t, s) =

∏d

i=1{|t i |2Hi + |si |2Hi − |t i − si |2Hi}. Interestingly
in this setting, these covariances are not only of the Lévy type, but also of the form (3.2). It
is also possible to express the fractional Brownian sheet as a set-indexed Brownian motion,
although the constructed product measure depends on H. We recall these facts from Section
1.2.1 of the Introduction, where these ideas are developed. We will explore in section 3.3.2 this
construction, with an application to the regularity of solutions of a class of stochastic partial
differential equations. It should now be clear that the form of covariance (3.2) encompasses a
wide class of processes.

DECREUSEFOND AND ÜSTÜNEL [39] introduced a family of fractional operators on the Wiener
space W (i.e. the space of continuous functions on [0,1], started at 0), characterizing for each
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h ∈ (0,1) a Cameron-Martin space Hh. Using these fractional operators, we express the fractional
Brownian field as a white noise integral over the Wiener space:

�∫

W

〈KhRh(·, t), w〉 dBw, (h, t) ∈ (0,1)× [0,1]

�
,

where B is the white noise associated to the standard Gaussian measure of W , Kh is derived
from fractional operators appearing in [39], Rh is the covariance of the fBm, and 〈·, ·〉 denotes the
usual pairing between W and its topological dual W ∗. The advantage of this approach is to allow
the transfer of techniques of calculus on the Wiener space to any other linearly isometric space
with the same structure. Those spaces, called Abstract Wiener Spaces (AWS), were introduced
in his seminal work by GROSS [56]. Using the separability and reproducing kernel property
of the Cameron-Martin spaces built from the kernels kh, h ∈ (0,1/2], we prove the existence of
a fractional Brownian field B = {Bh, f , h ∈ (0, 1/2], f ∈ L2(T, m)} over some probability space
(Ω,F ,P). This is the topic of the second section, where the aforementioned notions are defined.

The third section is devoted to proving that the above L2-fBf B has good h-increments, as
in (3.1). These results rely on Hilbert space analysis and analytic function theory, and are to
be found first in Theorem 3.11 for a generalised version of the fBf (in the sense of generalised
processes [52]) and then in Theorem 3.15 for the L2-fBf. Some of the computations are reported
in Appendix 3.6.1. As an application of the first Theorem, we look at the L2(Ω)-continuity of
the mild solutions of a class of stochastic partial differential equations (SPDE) with additive
and anisotropic fractional noise, when the regularity of the noise changes. We remark that an
interest in the continuity with respect to the Hurst parameter of some functionals of the fBm
already appeared in the works of JOLIS AND VILES (see [73] and previous works).

Then, in the fourth section, we use the increment properties of the variance of the L2–fBf to
derive a sufficient condition for almost sure continuity. We express in Theorem 3.19 this condi-
tion under the form of a Dudley entropy integral which does not depend on the h coordinate.
This is an interesting application of the result of the previous part, since it means that many
regularity properties of the fBf can be obtained from the sole observation of the h-fBm, for any
fixed h.

We take a closer look at the Hölder regularity of the fBf in the fifth section, when the L2

indexing collection is restricted to the indicator functions of the rectangles ofRd (multiparameter
processes) or to some indexing collection (in the sense of [70]). This restriction permits to use
local Hölder regularity exponents, in the flavour of what was done in Chapter 2. When a regular
path h : L2→ (0,1/2] is specified, this defines a multifractional Brownian field as B

h

f
= Bh( f ), f ,

whose Hölder regularity at each point is proved to equal h( f ) almost surely.

3.2 Fractional processes in an abstract Wiener space

Let us start with a few general remarks. L2(T, m) with its classical dot product (·, ·)m will always
be assumed to be separable. This is the case, for example, when T is a locally compact metric
space with a countable basis, and m is a Borel measure (cf Chapter IV of [119]).
We recall that it is impossible to construct a “standard” countably additive Gaussian measure
on an infinite-dimensional Hilbert space (see, for instance, [86]). By “standard”, we mean that
every one-dimensional cylindrical projection of this measure is a standard Gaussian measure
over R. In particular, describing the law of a Brownian motion indexed over L2(T, m) in terms
of Gaussian measure is not straightforward. However, given a Hilbert space H and a cylindrical
measure µ on H, it is possible to embed this Hilbert space in a larger Banach space E such that
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µ is countably additive on E, as this will be exposed in the next paragraph. The most natural
process obtained from this construction is a Brownian process indexed by H. In order to produce
fractional variations of Brownian motion, we will make use of reproducing kernel Hilbert spaces
(RKHS), as defined in Definition 1.10.

We recall briefly the construction of GROSS [56] of an Abstract Wiener space on H equipped
with its scalar product (·, ·)H , and refer to Section 1.3 of the Introduction for more details. Let
µ̃ be the following cylindrical measure: for any cylindrical subset S ⊂ H, i.e. of the form S =

P−1(B), where P is an orthogonal projection of H with finite rank equal to n and B is a Borel
subset of P(H),

µ̃(S) =
1

(2π)n/2

∫

i(B)

e−‖x‖
2/2 dx ,

where i is a linear isometry between P(H) and Rn, ‖ · ‖ is the Euclidean norm. The measure
µ̃ is centred Gaussian, but is not countably additive on H when it is infinite-dimensional. The
following definition allows to extend µ̃ to a proper measure on a larger space. A measurable

norm is a norm ‖ · ‖1 on H such that for any ǫ > 0, there exists an orthogonal projection Pǫ with
finite rank such that for any finite-rank projection P which is orthogonal to Pǫ, the following
holds:

µ̃
�
{x ∈ H : ‖P x‖1 > ǫ}

�
< ǫ .

If such a norm exists, we may call E the completion of H with respect to this norm. Then,
(E,‖ · ‖1) is a Banach space in which (H,‖ · ‖H) is dense and such that the canonical injection is
continuous. The same relationship holds between their topological duals E∗ and H∗ (assimilated
to H in the following). The main result in [56] then reads: µ̃ extends to a countably additive
measure µ on all the cylinders of E.

From now on, the image of x∗ ∈ E∗ by the canonical injection will be denoted Sx∗ ∈ H.
A major consequence of Gross’s theorem is that there is a measure whose Fourier transform is
given by:

∀x∗ ∈ E∗,

∫

E

ei〈x∗,x〉 dµ(x) = e−
1
2 ‖Sx∗‖2

H , (3.3)

or, written in terms of the second moment:

∀x∗, y∗ ∈ E∗,

∫

E

〈x∗, x〉 〈y∗, x〉 dµ(x) = (Sx∗, S y∗)H .

The triple (H, E,µ) is an abstract Wiener space and H is referred as Cameron-Martin space of
the process µ. For the sake of completeness, we recall an important theorem already stated in
the Introduction that says that new abstract Wiener spaces can be easily constructed from others
that already exist.

Theorem 3.1 ([136]). Let H and H ′ be two separable Hilbert spaces and F a linear isometry from

H to H ′. Assume that an AWS (H, E,µ) is given. Then, there exists a Banach space E′ ⊃ H ′ and a

linear isometry F̃ : E→ E′ whose restriction to H is F and (H ′, E′, F̃∗µ) is an AWS (F̃∗µ denotes the

push-forward measure of µ by F̃).

In particular, starting from the AWS of continuous functions on [0,1] with the sup-norm and the
Wiener measure, it is possible to construct a large class of AWS. However, this does not mean
that all AWS are the same, sicne for a single Hilbert space, there can be an uncountable family of
AWS. However, starting from a Banach space and a measure, there is a unique Cameron-Martin
space explicitely constructed from it.
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Lemma 3.2 ([136]). 1. For any x∗ ∈ E∗, there is a unique gx∗ ∈ H such that (g, gx∗)H =

〈x∗, g〉 for all g ∈ H and it is realized by the covariance operator S : x∗ ∈ E∗ 7→ gx∗ ∈ H,

which is continuous, injective and of dense image in H.

2. If x ∈ E \ H, then sup{x∗∈E∗:‖Sx∗‖H≤1}〈x∗, x〉 =∞ and for any g ∈ H, the norm is given by

‖g‖H = sup{〈x∗, g〉, x∗ ∈ E∗ and ‖Sx∗‖H ≤ 1}.

3. There exists a sequence (x∗
n
) ∈ (E∗)N such that (Sx∗

n
)n∈N is an orthonormal basis of H.

Our approach in this section will be to identify abstract Wiener spaces related to the covari-
ance functions of the fractional Brownian motion:

∀s, t ∈ R+, Rh(s, t) =
1
2

�
|s|2h + |t|2h − |s− t|2h

�
,

h ∈ (0, 1], and operators providing links between these different AWS. Then, each fractional
Brownian motion is expressed as an integral in the standard Wiener space, eventually providing
a Gaussian field in t and h. The second step is to extend this object to another family of abstract
Wiener spaces based on the reproducing kernel Hilbert space (RKHS) of kh, relying heavily on
Theorem 3.1. Finally, we prove the resulting field has a “good” covariance structure, in the sense
of (3.1).

3.2.1 Rh in the standard Wiener space

The standard Wiener space on [0,1] is the triple consisting of the Banach space of continuous
functions started at 0, denoted by W ; the Cameron-Martin space H1 of absolutely continuous
functions started at 0 with square integrable weak derivative; and the Gaussian measure W on
W , characterized by equation (3.3) with appropriate change (E =W , H = H1 and µ=W ).

The norm on H1 is given by ‖g‖H1 = ‖ ġ‖L2 , where g(t) =
∫ t

0
ġ(s) ds. Using the Riesz repre-

sentation theorem on C([0,1]), any x∗ ∈ C([0, 1])∗ can be expressed as:

∀w ∈ C([0, 1]), x∗(w) =

∫ 1

0

w(t) Λx∗(dt) ,

with Λx∗ a finite signed Radon measure on [0, 1]. Besides, this equality yields for the total
variation of Λx∗ : |Λx∗ |([0, 1]) = ‖x∗‖. Thus, we shall assimilate x∗ with Λx∗ , writing:

∀x∗ ∈W ∗,∀w ∈W, 〈x∗, w〉=
∫

[0,1]

w(t) x∗(dt). (3.4)

We now characterize the existence of a family of fractional Wiener spaces, as described in
[39]: for any h ∈ (0, 1), there is a one-to-one operator Kh acting on L2([0, 1]) satisfying the
following properties:

1) The space Hh = Kh

�
L2([0, 1])

�
is a subspace of W . If we denote (·, ·)Hh

the scalar prod-
uct (‖ · ‖Hh

the norm) that makes Hh isometric to L2, and Wh the Gaussian measure whose
Fourier transform is characterized by (·, ·)Hh

, then (Hh, W,Wh) is an AWS. For h = 1/2:
(H1/2, W,W1/2) = (H

1, W,W ).

2) Let K∗
h

be the adjoint operator of Kh. When K∗
h

is restricted to W ∗, the operator Kh ◦K∗
h

is the
canonical injection from W ∗ to Hh and it is a kernel operator whose kernel is precisely Rh.
As a consequence, we use the same notation for both the operator and the kernel.
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3) Kh is a Hilbert Schmidt operator and has a kernel on [0,1]2 which is denoted Kh too, so that

for any g ∈ L2([0,1]), Kh g(t) =
∫ 1

0
Kh(t, s)g(s) ds. We notice that while the kernel Rh is

symmetric, Kh is not, as this will become clear.

This operator is given explicitely in Equation (1.10) of the introductory chapter. This is summa-
rized, for all h, by:

W ∗
K∗

h−→ L2([0,1])
Kh−→ Hh

R∗
h−→W.

More details on Kh are given along this section and in Appendix 3.6.1, especially its integral
formula ([39, 110]), while the link with fractional integrals is clearly established in [39]. For
t ∈ [0,1], we denote by δt the Dirac measure at point t, considered here as an element of W ∗.

Theorem 3.3. Let h ∈ (0,1) and H(Rh) be the RKHS of Rh. Then, H(Rh) ⊆ Hh and for any

f , g ∈ H(Rh), ( f , g)H(Rh)
= ( f , g)Hh

. Besides, there is a linear isometry J̃∗
h

from W ∗ to itself such

that for any η,ν ∈W ∗,

∫

W

〈J̃∗
h
η, w〉 〈J̃∗

h
ν, w〉 dW (w) = (Rhη, Rhν)Hh

. (3.5)

Furthermore, for all s, t ∈ [0, 1],

Rh(s, t) = (K∗
h
δs, K∗

h
δt)L2

= (Rhδs, Rhδt)Hh

=

∫

W

〈KhRh(·, s), w〉 〈KhRh(·, t), w〉 dW (w), (3.6)

with Kh : Hh→W ∗ defined by the relationship Kh = J̃∗
h
◦ R−1

h
.

Before proving this result, consider the following immediate application. For a white noise B
on W with control measureW on the probability space (Ω,F ,P), the following formula defines
a Gaussian random field on (0, 1)× [0,1]:

∀(h, t) ∈ (0,1)× [0,1], Bh,t =

∫

W

〈KhRh(·, t), w〉 dBw . (3.7)

Indeed, according to equation (3.6), the mapping w 7→ 〈KhRh(·, t), w〉 belongs to L2(W,W ).
In addition, the previous theorem shows that for fixed h, this process is a fractional Brownian
motion.

Remark 3.4. A similar two-parameter Gaussian field appeared for the first time in [12, 41], al-

though it was not expressed as an integral over the Wiener space. We present in Corollary 3.5 a

different form for (3.7).

Proof. By the definition of point 2), Rh is the operator Kh◦K∗h mapping W ∗ to Hh, with the kernel
Rh of the fractional Brownian motion. The assertion Rhδt = Rh(t, ·), for any t ∈ [0, 1], follows.
As a consequence, Rh(·, t) ∈ Hh for all t, which in turns suffices to prove that H(Rh) ⊆ Hh,
since H(Rh) is the completion of Span{Rh(·, t), t ∈ [0, 1]}. For the same reason, proving that
(·, ·)H(Rh)

= (·, ·)Hh
on H(Rh) amounts to show that for all s, t ∈ [0,1], (Rh(s, ·), Rh(t, ·))H(Rh)

=

(Rh(s, ·), Rh(t, ·))Hh
, where the first term in the equality is, by definition, equal to Rh(s, t). Then,
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we infer from point 2) (of the definition of the adjoint operator) that K∗
h
η can be evaluated in

the following manner:

∀ f ∈ L2, ( f , K∗
h
η)L2 = 〈η, Kh f 〉=

∫ 1

0

Kh f (t) η(dt) .

Applied to δt and taking into account point 3), this yields:

( f , K∗
h
δt)L2 = Kh f (t) =

∫ 1

0

Kh(t, s) f (s) ds

Thus K∗
h
δt = Kh(t, ·) in L2 and it follows that Kh ◦ K∗

h
δt =

∫ 1

0
Kh(·, r) Kh(t, r) dr which is also

equal to Rh(t, ·), as mentioned at the beginning of the proof. According to point 1), (·, ·)Hh

satisfies, for f , g ∈ Hh, ( f , g)Hh
= (K−1

h
f , K−1

h
g)L2 . As a consequence,

(Rh(·, t), Rh(·, s))Hh
= (K∗

h
δt , K∗

h
δs)L2

=

∫ 1

0

Kh(s, r) Kh(t, r) dr

= Rh(s, t) ,

and the first result follows.
To prove the second point, let us define Jh = Kh ◦K−1

1/2. From its definition, Jh is an isometric
isomorphism from H1/2 towards Hh, thus admitting a unique (linear) isometric extension to

W . Let J̃h be this extension and notice that the image space of J̃h is Hh

‖·‖1 , where ‖ · ‖1 is the

norm defined by ‖g‖1 = ‖J−1
h
(g)‖W , g ∈ Hh. It is clear that Hh

‖·‖1
= H1/2

‖·‖W
= W , and as a

consequence, (Hh, W, J̃h ∗W ) is the image of the standard Wiener space by the isometry Jh. In
particular, this identifies J̃h ∗W = Wh (these measures have the same Fourier transform). Let
J̃∗

h
: W ∗→W ∗ be the adjoint operator of J̃h. Then:

∫

W

〈J̃∗
h
η, w〉 〈J̃∗

h
ν, w〉 dW (w) =

∫

W

〈η, J̃hw〉 〈ν, J̃hw〉 dW (w)

=

∫

W

〈η, w〉 〈ν, w〉 d
�
J̃h ∗W

�
(w)

=

∫

W

〈η, w〉 〈ν, w〉 dWh(w)

= (Rhη, Rhν)Hh
.

Finally, (3.6) directly follows from (3.5), using the fact that Rh(·, t) = Rhδt .

To end this section, we show that the process defined by (3.7) is equal to the process that
appeared in [39]. This is no surprise, since the same operators are involved. However, we
include the proof for completeness.

Corollary 3.5. Let B a process as defined in equation (3.7). Then B has the same law as the process

B1 =
¦∫ 1

0
Kh(t, s) dWs, (h, t) ∈ (0, 1)× [0, 1]

©
.
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Proof. Since both processes are centred Gaussian it suffices to study their covariance. For any
(h, t), (h′, s) ∈ (0, 1)× [0, 1],

C1

�
(h, t), (h′, s)

�
=

∫ 1

0

Kh(t, u) Kh′(s, u) du=
�
K∗

h
δt , K∗

h′δs

�
L2 .

The covariance of B is also derived, leading to:

C2

�
(h, t), (h′, s)

�
=

∫

W

〈J̃∗
h
δt , w〉〈J̃∗

h′δs, w〉 W (dw) ,

and then, considering J̃∗
h
δt ∈W ∗ as a measure:

C2

�
(h, t), (h′, s)

�
=

∫

W

�∫ 1

0

∫ 1

0

w(u)w(v) (J̃∗
h
δt)(du) (J̃∗

h′δs)(dv)

�
W (dw)

=

∫ 1

0

∫ 1

0

�∫

W

w(u)w(v) W (dw)

�
(J̃∗

h
δt)(du) (J̃∗

h′δs)(dv)

=

∫ 1

0

∫ 1

0

R1/2(u, v) (J̃∗
h
δt)(du) (J̃∗

h′δs)(dv)

=
�
K∗1/2 J̃∗

h
δt , K∗1/2 J̃∗

h′δs

�
L2

.

Hence, we are to prove that for any h ∈ (0,1), K∗1/2 J̃∗
h

and K∗
h

are equal, as operators from W ∗

to L2[0,1]. The main ingredient is that when restricted to H1/2, J̃h is equal to Kh ◦ K−1
1/2. Then,

for any x∗ ∈W ∗, f ∈ L2[0, 1],
�
K∗1/2 J̃∗

h
x∗, f

�
L2
= 〈J̃∗

h
x∗, K1/2 f 〉

= 〈x∗, J̃hK1/2 f 〉
= 〈x∗, JhK1/2 f 〉
= 〈x∗, Kh f 〉,

where the third equality holds because K1/2 f ∈ H1/2.

Remark 3.6. We make a final remark in this section, with the definition of an extension of {Bh,t , (h, t) ∈
(0,1)× [0,1]} (or B1) to a generalised process (in the sense of [52]): {Bh,ξ, (h,ξ) ∈ (0,1)×W ∗},
where following (3.5),

Bh,ξ =

∫

W

〈J̃∗
h
ξ, w〉 dBw . (3.8)

3.2.2 Extended decomposition in an abstract Wiener space

Equipped with a tractable way of expressing a fractional Gaussian field given the reproducing
kernel Rh on [0,1], we now present how to extend this decomposition to any separable L2(T, m)

space with the family of kernels kh, h ∈ (0,1/2] introduced in (3.2). The RKHS of kh is written
H(kh).

For any h ∈ (0,1/2], Hh ⊃ H(Rh) and H(kh) are separable Hilbert spaces, so let us choose
a linear isometry between the two latter spaces and extend it to Hh. We call uh such a linear
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isometry and write Hh = uh(Hh). As a consequence of its definition, the restriction of uh to
H(Rh) is a linear isometry between H(Rh) and H(kh). Recall that the parameter h is restricted
to (0,1/2] because kh is not positive definite for h ∈ (1/2,1] (see [60] for a counterexample).
In the next section, we will be more specific about the choice of this isometry. uh is isometrically
extended to all of W as in Theorem 3.1, and the extension is denoted by ũh. By this very Theorem,
it is possible to define an abstract Wiener space which is the image of (Hh, W,Wh) by uh, and we
denote it (Hh, Eh,µh), where Eh = ũh(W ) and µh = (ũh)∗Wh, the pushforward measure ofWh by
ũh. The adjoint operator ũT

h
of ũh is the mapping from E∗

h
to W ∗ such that for any w ∈ W , any

w∗ ∈ E∗
h
, 〈w∗, ũh(w)〉 = 〈ũT

h
(w∗), w〉. Since the space associated to h = 1/2 plays a special part,

we just drop the h in the notations. Especially, (H, W,W ) denotes the standard Wiener space.
Now define K̃h = (ũ

T )−1 ◦Kh ◦ u−1
h

, the linear operator fromHh to E∗. For φ,ψ ∈Hh,

(φ,ψ)Hh
= (u−1

h
φ, u−1

h
ψ)Hh

=

∫

W

〈Khu−1
h
φ, w〉 〈Khu−1

h
ψ, w〉 dW (w)

=

∫

E

〈Khu−1
h
φ, ũ−1(x)〉 〈Khu−1

h
ψ, ũ−1(x)〉 d (ũ∗W ) (x)

=

∫

E

〈K̃hφ, x〉 〈K̃hψ, x〉 dµ(x) .

When applied to φ = kh(·, f ) and ψ = kh(·, g), for f , g ∈ L2(T, m), the previous relation reads:

kh( f , g) =

∫

E

〈K̃hkh(·, f ), x〉 〈K̃hkh(·, g), x〉 dµ(x) .

Definition 3.7 (fractional Brownian field). Let (Ω,F ,P) a probability space andW a white noise

on E associated to the measure µ. The following formula defines a Gaussian random field over

(0,1/2]× L2(T, m):

∀(h, f ) ∈ (0,1/2]× L2(T, m), Bh, f =

∫

E

〈K̃hkh(·, f ), x〉 dW(x) .

The previous calculus proves that for fixed h, this process has covariance (3.2), so B is a
L2–fBf as defined in the introduction. Noticeably, if Wh is a white noise of (Hh, Eh,µh), the
process: ¨∫

Eh

〈 kh(·, f ), x〉 dWh
x
, f ∈ L2(T, m)

«

and
�
Bh, f , f ∈ L2(T, m)

	
have the same law, where kh(·, f ) ∈ E∗

h
is the pre-image of kh(·, f ) by

the canonical injection of E∗
h
→Hh. The same calculus as in the proof of Corollary 3.5, shows

that the covariance of the new process is given by:

E
�
Bh, f Bh′,g

�
=
�
K−1

h
u−1

h
kh( f , .), K−1

h′ u−1
h′ kh′(g, .)

�
L2[0,1]

. (3.9)

Hence, the choice of the family of isometries {uh}h∈(0,1/2] matters.
Let us set up a family of isometries u= {uh}h∈(0,1/2] allowing the fBf to have good increments,

as discussed already. Let D = {tn, n ∈ N} be the set of dyadics in [0, 1]. Let h ∈ (0,1/2], then
from the definition of H(Rh), {Rh(·, t), t ∈ D} is a linear basis of this space (although the linear
independence is proved in the following lemma). We shall establish the existence of a family of
functions { fn ∈ L2(T, m), n ∈ N} such that {kh(·, fn), n ∈ N} is a linear basis forHh.
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Lemma 3.8. Let h ∈ (0, 1/2]. Let n ∈ N∗ and ( f0, . . . , fn) ∈ L2(T, m) be linearly independent.

Then, (kh(·, f0), . . . , kh(·, fn)) is linearly independent inHh.

The proof is reported in Appendix 3.6.2. This lemma suggests that we will choose a dense
(countable) linear basis of L2(T, m). This can be done as follows. L2(T, m) is a separable metric
space, hence it admits a countable topological basis1, so denote by (On)n∈N this basis of open sets
for the topology of L2(T, m). Let us prove inductively the existence of a dense linearly indepen-
dent family ( fn)n∈N. Let f0 ∈ O0 and assume that ( f0, . . . , fn) already exist. Fn = Span{ f0, . . . , fn}
is a finite-dimensional subspace of an infinite-dimensional space. Therefore Fn is of empty inte-
rior and one can pick fn+1 ∈ On+1 \ Fn. This mechanism provides a linearly independent family,
which is dense since its intersection with any On is non-empty.

From now on, { fn, n ∈ N} denotes such a family, and for any h ∈ (0, 1/2], Lemma 3.8 implies
that {kh(·, fn), n ∈ N} is linearly independent in H(kh). That { fn}n∈N is dense in L2 yields that
this is actually a spanning family of H(kh). Let us prove this last statement: let K ∈ H(kh),
so that there is a sequence of real numbers (αn)n∈N and a sequence (gn)n∈N of elements of
L2(m), such that

∑
n∈Nαnkh(·, gn) is equal to K in H(kh). Let ǫ > 0 and for any n ∈ N,

let ǫn = ǫ |αn|−1 (n+ 1)−2. For any n, there is fin
in the dense basis of L2(m) that satisfies

‖gn − fin
‖2h

L2 < ǫn. Let N ∈ N such that for all p ≥ N , ‖K −
∑p

n=0αnkh(·, gn)‖H(kh)
< ǫ. Then:

K −
p∑

n=0

αnkh(·, fin
)

Hh
≤
K −

p∑

n=0

αnkh(·, gn)

Hh
+


p∑

n=0

αnkh(·, gn)−
p∑

n=0

αnkh(·, fin
)

Hh

≤ ǫ +
p∑

n=0

|αn| ‖kh(·, gn)− kh(·, fin
)‖Hh

≤ ǫ +
p∑

n=0

|αn| ‖gn − fin
‖2h

L2

≤ 3ǫ .

The same reasoning shows that {Rh(·, tn), n ∈ N} is a basis for H(Rh).
�
R

h
(·, tn), n ∈ N

	
and�

k
h
(·, fn), n ∈ N

	
stand for the two corresponding orthogonal bases obtained from the Gram-

Schmidt process. Then, the linear map vh : H(Rh)→ H(kh) can be properly defined:

∀n ∈ N, vh

�
R

h
(·, tn)

�
=
‖R

h
(·, tn)‖

‖k
h
(·, fn)‖

k
h
(·, fn) . (3.10)

This mapping is an isometry. Enlarging the family
�
R

h
(·, tn), n ∈ N

	
into a complete orthogonal

system of Hh, vh is extended to an isometry uh mapping Hh to uh(Hh) =Hh. In the following vh

and uh are both denoted by uh. From now on, B will always refer to a fractional Brownian field
built from this particular kind of isometry.

3.3 Variance of the h-increments

This section is devoted to proving that the different fractional Brownian fields we can construct
satisfy inequalities of the type (3.1), and in particular the L2-fBf built with the family of isome-
tries we just introduced.

1any separable metric space is second-countable.
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3.3.1 The one-dimensional generalised fractional Brownian field

Firstly, the question is answered in the standard framework of the field indexed over (0, 1)× [0, 1],
and to a larger extent to the corresponding generalised field. Before the main result, we need
the following lemma and proposition, whose proofs are reported in Appendix 3.6.1.

Lemma 3.9. For every n ∈ N, R
h
(·, tn) is a positive linear functional, in the sense that for any

nonnegative function g ∈ Hh,
�
R

h
(·, tn), g

�
Hh
≥ 0.

Let W ∗
+

denote the set of positive linear functionals over W . As can be seen from equation (3.4),
any element of W ∗

+
can also be considered as a finite nonnegative measure.

Proposition 3.10. For all η > 0, there exists a constant Mη > 0, such that for all h1 < h2 ∈
(η, 1/2−η), for all ξ ∈W ∗

+
,

∫ 1

0

�
K∗

h2
ξ(u)− K∗

h1
ξ(u)

�2
du≤ Mη ((h2 − h1)L(h2 − h1))

2 ‖ξ‖2
H∗

h1

,

where for all x ∈ (−1, 1), L(x) = log(|x |−1)∨ 1 if x 6= 0, and 0 otherwise.

Theorem 3.11. Let Bh,ξ be the generalised fBf defined in (3.8). For all η > 0, there exists a constant

Mη > 0, such that for all h1 < h2 ∈ (η, 1/2−η), for all ξ ∈W ∗,

E
�
Bh1,ξ − Bh2,ξ

�2 ≤ Mη ((h2 − h1)L(h2 − h1))
2 ‖ξ‖2

H∗
h1

.

Proof. If ξ ∈W ∗, then it also belongs to H∗
h1

. Note that as an element of Hh1
, the image of ξ by

Rh1
reads:

Rh1
ξ=

∞∑

n=0

(Rh1
ξ, R

h1
(tn, ·))Hh1

‖R
h1
(tn, ·)‖2Hh1

R
h1
(tn, ·)

=

∞∑

n=0

¦
(Rh1

ξ, R
h1
(tn, ·))Hh1

∨ 0
©

‖R
h1
(tn, ·)‖2Hh1

R
h1
(tn, ·)−

∞∑

n=0

¦
−(Rh1

ξ, R
h1
(tn, ·))Hh1

∨ 0
©

‖R
h1
(tn, ·)‖2Hh1

R
h1
(tn, ·)

= Rh1
ξ+ − Rh1

ξ− .

Since ‖ξ‖2
H∗

h1

= ‖ξ+‖2H∗
h1

+ ‖ξ−‖2H∗
h1

, it suffices to notice that:

E
�
Bh1,ξ± − Bh2,ξ±

�2
=

K∗
h1
ξ± − K∗

h2
ξ±


2

L2
,

and then to apply Proposition 3.10 to ξ+ and ξ− (which are positive linear functionals of W ∗,
according to Lemma 3.9 and the density of Hh1

in W ).

While the W ∗-norm is rougher than a H∗
h
-norm, it suffices in the following application. In-

deed, the next proposition follows by taking ξ = δt ∈ W ∗
+

, t ∈ [0,1] because then ‖δt‖H∗
h
≤

Ch‖δt‖W ∗ = Ch, where Ch is the norm of the canonical injection from W ∗ to H∗
h
.

Corollary 3.12. The fractional Brownian field on (0, 1/2)× [0, 1] has a continuous version.
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Proof. For any t ∈ [0,1], any h1, h2 ∈ (0,1/2],

E
�
Bh1,t − Bh2,t

�2
= E

�
Bh1,δt

− Bh2,δt

�2
.

Proposition 3.11 then implies that for any η > 0, there is a constant Mη such that for all h1 <

h2 ∈ [η, 1/2−η], and all t ∈ [0,1],

∫ 1

0

�
K∗

h1
δt(u)− K∗

h2
δt(u)

�2
du≤ Mη (h2 − h1)

2 L(h2 − h1)
2‖δt‖W ∗

≤ Mη Ch1
(h2 − h1)

2 L(h2 − h1)
2 .

It follows that for all s, t ∈ [0, 1],

E
�
Bh1,s − Bh2,t

�2 ≤ 2E
�
Bh1,s − Bh2,s

�2
+ 2E

�
Bh2,s − Bh2,t

�2

≤ 2Mη Ch1
(h2 − h1)

2 L(h2 − h1)
2 + 2|t − s|2h2

≤ 2Mη Ch1
(h2 − h1)

2 L(h2 − h1)
2 + 2|t − s|2η.

The Kolmogorov continuity theorem allows to conclude that the fBf admits a continuous version
on [η, 1/2−η]× [0, 1], for any η > 0. The result is proved on (0, 1/2)× [0,1].

Remark 3.13. Working on Kh for h ≥ 1/2, we could in fact prove that the fBf has a continuous

modification on (0,1) × [0, 1]. See for instance [39] where it is proved that Kh, h ≥ 1/2, has an

analytic extension to (0, 1).

3.3.2 An application to the mild solutions of a family of stochastic partial differential

equations

In this section, we suggest an application of the previous results to the solutions of a class of
stochastic partial differential equations with additive fractional noises. Our aim is not to solve
them explicitly, but rather to prove the L2 continuity of the solutions when the regularity of
the (anisotropic) noise varies. The exposition is made on [0, 1]2, but extends easily to higher
dimensions.

It was proved in [28] that the tensor product of two abstract Wiener spaces is an abstract Wiener
space. This means that for h1, h2 ∈ (0,1), (Hh1

⊗̄Hh2
, W ⊗̄ǫW,Wh1

⊗Wh2
) is an abstract Wiener

space, where Hh1
⊗̄Hh2

is the completion of the algebraic tensor product Hh1
⊗ Hh2

with respect
to the norm given by the scalar product: ∀x1, x ′1 ∈ Hh1

, x2, x ′2 ∈ Hh2
, (x1 ⊗ x2, x ′1 ⊗ x ′2) =

(x1, x ′1)Hh1
(x2, x ′2)Hh2

; and where W ⊗̄ǫW is the completion of W ⊗W with respect to the norm
given by: ‖x‖ǫ = sup{|x∗1 ⊗ x∗2(x)| : ‖x∗1‖W ∗ = 1,‖x∗2‖W ∗ = 1}. Note that W ⊗̄ǫW is in fact
C0([0,1]2) with the sup-norm topology ([125] gives a detailed account on topological tensor
products), the space of continuous functions vanishing on the axes (this is an application of
the Stone-Weierstrass theorem). The canonical operator for this new Wiener space is the tensor
operator Rh1

⊗Rh2
(in fact, its continuous extension, but we keep the same notation for operators).

LetWh1,h2 be the white noise associated to the tensor Wiener space. Then, for (s, t) and (s′, t ′) ∈
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[0,1]2,

E

�∫

W ⊗̄ǫW
〈δs ⊗δt , w〉 dWh1,h2

w

∫

W ⊗̄ǫW
〈δs′ ⊗δt ′ , w〉 dWh1,h2

w

�

=
�
Rh1
⊗ Rh2

(δs ⊗δt), Rh1
⊗ Rh2

(δs′ ⊗δt ′)
�

Hh1
⊗Hh2

=
�
Rh1
δs, Rh1

δs′
�

Hh1

�
Rh2
δt , Rh2

δt ′
�

Hh2

= Rh1
(s, s′) Rh2

(t, t ′) .

The last expression is the covariance of an anisotropic (h1, h2)-fractional Brownian sheet (see
[152]). Thus, we shall also denote by {Wh1,h2

s,t , (s, t) ∈ [0, 1]2} this process, and write it as:

¨∫

[0,1]2
K∗1/2 ⊗ K∗1/2(δs ⊗δt)(u, v) dWh1,h2

u,v , (s, t) ∈ [0, 1]2
«

. (3.11)

Similarly, the process
¨∫

[0,1]2
K∗

h1
⊗ K∗

h2
(δs ⊗δt)(u, v) dWu,v , (s, t) ∈ [0, 1]2

«
, (3.12)

whereWu,v is the standard Brownian sheet of [0,1]2 (corresponding to h1 = h2 = 1/2), is equal
in distribution to the two aforementioned processes. This construction still holds with ξ= ξ1⊗ξ2

in the space Span{δs, s ∈ [0,1]} ⊗ Span{δs, s ∈ [0,1]} and to its completion with respect to the
norm ‖K∗

h1
⊗ K∗

h2
(ξ)‖L2 , that we denote by Vh1,h2

. This corresponds to the standard construction
of the Wiener integral with step functions. The image of Vh1,h2

by K∗
h1
⊗ K∗

h2
is denoted by Dh1,h2

and is the space of integrands of the (h1, h2)-fractional Brownian sheet. Besides, the processes
in (3.11) and (3.12) extended to Dh1,h2

, are equal in law. We note that the space of integrands
of the fractional Brownian sheet on R2 is partly described in [90], so that on [0,1]2, we will
consider D̃h1,h2

which consists of square integrable functions φ with support in [0,1]2, for which

there is an extension φ̃ ∈ L2(R2) with the same support and such that:
∫

R2

|F φ̃(λ1,λ2)|2|λ1|1−2h1 |λ2|1−2h2 dλ1dλ2 <∞ ,

where F is the Fourier transform. We note that D̃h1,h2
⊆ Dh1,h2

and that the equality is not
established (in the one-dimensional case, this requires some care, [72]).

This discussion shows that the generalised processes defined by (3.11) and (3.12) extend to
Vh1,h2

and are equal, which can be written as:

for any ξ ∈ Vh1,h2
, Ẇh1,h2

�
K∗1/2 ⊗ K∗1/2(ξ)

�
(d)
= Ẇ

�
K∗

h1
⊗ K∗

h2
(ξ)
�

. (3.13)

Consider now the following family of elliptic SPDEs with additive noise, on a bounded open
domain U ⊂ [0, 1]2 with smooth boundary:

∆u= Ẇh1,h2 on U , (Lh1,h2
)

and with the condition that u= 0 on ∂ U . It is assumed that all fractional noises below come from
a unique white noise W, i.e. that they can be written as in the right-hand term of (3.13). Let
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D̃h1,h2
(U) be the restriction of D̃h1,h2

to functions with support in U . Let GU be the Green function
associated to this problem, which is known to be locally integrable and gives a fundamental
solution to the Poisson problem on U , for any ϕ ∈ L2(U):

∆(GU ∗ϕ) = ϕ, where GU ∗ϕ(x , y) =

∫

U

GU ((x , y), (s, t))ϕ(s, t) dsdt , (x , y) ∈ U .

This type of equation with the Brownian sheet has already been considered in [111] (with a
reflection term), and u is a distributional (or mild, as studied in [33]) solution to this problem
if it acts on functions φ ∈ C∞

c
(U) in the following way:

〈u,∆φ〉=
∫

[0,1]2
φ(x , y) dWh1,h2

x ,y .

The last integral is a well-defined Wiener integral, since C∞
c
(U) ⊂ D̃h1,h2

(U) when h1 ≤ 1/2
and h2 ≤ 1/2 (which will be assumed from now). Plugging the fundamental solution into the
previous equation yields, for ϕ ∈ C∞

c
(U):

〈u,ϕ〉=
∫

[0,1]2
GU ∗ϕ(x , y) dWh1,h2

x ,y . (3.14)

For this last expression to make sense, we need GU ∗ ϕ to be in D̃h1,h2
(U). This is the case

if ϕ ∈ C∞
c
(U), and u can more generally be defined for any ϕ such that GU ∗ ϕ ∈ D̃h1,h2

(U).
It follows from the definition of Dh1,h2

(U) and (3.13) that if GU ∗ ϕ ∈ D̃h1,h2
(U), there exists

ξϕ ∈ Vh1,h2
(⊆ C0([0,1]2)∗) such that K∗1/2 ⊗ K∗1/2(ξϕ) = GU ∗ϕ. We can now state the following

regularity result:

Proposition 3.14. Let η ∈ (0,1/4). Let (h1, h2) and (h′1, h′2) be in (η, 1/2−η)2 such that h1 ≤ h′1
and h2 ≤ h′2, and let u(h1,h2)

and u(h′1,h′2)
be the mild solutions to (Lh1,h2

) and (Lh′1,h′2
) respectively.

Then, for all ϕ such that GU ∗ϕ ∈ D̃h1,h2
(U)∩ D̃h′1,h′2

(U),

E
�
u(h1,h2)

(ϕ)− u(h′1,h′2)
(ϕ)

�2
≤ Mη (h1 − h′1)

2 L(h1 − h′1)
2‖ξϕ‖2H∗

h1
⊗̄H∗

h2

+Mη (h2 − h′2)
2 L(h2 − h′2)

2‖ξϕ‖2H∗
h1
⊗̄H∗

h2

Proof. Recall first that D̃h1,h2
(U)∩D̃h′1,h′2

(U) is not empty since it contains C∞
c
(U), hence let ϕ be

such that GU ∗ϕ ∈ D̃h1,h2
(U)∩D̃h′1,h′2

(U). Let ξϕ be such that K∗1/2⊗K∗1/2(ξϕ) = GU ∗ϕ. According
to Equations (3.13) and (3.14), a mild solution of (Lh1,h2

) can be expressed as

〈u(h1,h2)
,ϕ〉=

∫

[0,1]2
K∗

h1
⊗ K∗

h2
(ξϕ)(x , y) dWx ,y .

Thus, the above expectation is in fact the L2([0, 1]2)-norm of K∗
h1
⊗K∗

h2
(ξϕ)−K∗

h′1
⊗K∗

h′2
(ξϕ). As ξϕ

may not have a tensorized form, we express it as the limit of elements of the form:
∑n

k=1 ξk⊗ξ′k ∈
C0([0,1])∗ ⊗ C0([0, 1])∗. This reads:
K∗

h1
⊗ K∗

h2

�
n∑

k=1

ξk ⊗ ξ′k

�
− K∗

h′1
⊗ K∗

h′2

�
n∑

k=1

ξk ⊗ ξ′k

�
2

L2([0,1]2)

≤ 2

K∗
h1
⊗ (K∗

h2
− K∗

h′2
)

�
n∑

k=1

ξk ⊗ ξ′k

�
2

L2

+ 2

K∗
h′2
⊗ (K∗

h1
− K∗

h′1
)

�
n∑

k=1

ξk ⊗ ξ′k

�
2

L2

,
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and up to an orthogonalisation procedure, we can assume that the ξ1, . . . ,ξn are orthogonal in
H∗

h1
(i.e. that (K∗

h1
ξi , K∗

h1
ξ j)L2 = ‖ξi‖H∗

h1
‖ξ j‖H∗

h1
δi j) and that the ξ′1, . . . ,ξ′

n
are orthogonal in H∗

h′2
.

Then, the tensor product on L2([0,1]2) implies that the first term in the above sum decomposes
as:

n∑

k=1

‖K∗
h1
ξk‖2L2[0,1] ‖(K∗h2

− K∗
h′2
)ξ′

k
‖2

L2[0,1] ,

which is now smaller than:

Mη(h2 − h′2)
2 L(h2 − h′2)

2‖Kh1
(·, ·)‖L2([0,1]2)

n∑

k=1

‖ξk‖2H∗
h1

‖ξ′
k
‖2

H∗
h2

,

using Theorem 3.11. The last sum is exactly ‖
∑n

k=1 ξk ⊗ ξ′k‖2H∗
h1
⊗̄H∗

h2

, which is the result of the

Proposition for elements of the algebraic tensor product. So by a density argument, this gives
the result for ξϕ.

3.3.3 The fractional Brownian field over L2

The L2-fBf, with a proper family of isometries defined in section 3.2.2, is now looked at. A slightly
better estimate is attained on the h-increments than on the previous results of this section, due
to the different underlying structure of the process. In particular, the result of this section would
not permit to obtain the previous estimate on solutions of SPDEs.

Theorem 3.15. Let B be a fBf on (0, 1/2]× L2(T, m). For any η ∈ (0,1/4) and any compact subset

D of L2, there exists a constant Cη,D > 0 such that for any f ∈ D, and any h1, h2 ∈ [η, 1/2−η],

E
�
(Bh1, f − Bh2, f )

2
�
≤ Cη,D (h2 − h1)

2 .

Proof. This proof is divided into two parts. In the first part, we show that for any n ∈ N, for any
f ∈ L2(m), h 7→ k

h
( f , fn) is analytic. This will be needed in the rest of the proof, while in the

second part we compute the main estimates. Like R
h
, k

h
is the Gram-Schmidt transform of kh :

for any f ∈ L2, k
h
( f , f0) = kh( f , f0) and ∀n≥ 1,

k
h
( f , fn) = kh( f , fn)−

n−1∑

j=0

�
k

h
(·, f j), kh(·, fn)

�
Hh

‖k
h
(·, f j)‖2Hh

k
h
( f , f j) (3.15)

= kh( f , fn) +

n−1∑

j=0

 
n−1∑

l= j

αh( fn, j, l)

!
kh( f , f j) , (3.16)

where the coefficients αh( fn, j, l) correspond to the inverse Gram-Schmidt transform. Note that
αh( fn, j, l) depends on n only through the terms (k

h
(·, f j), kh(·, fn))Hh

= k
h
( fn, f j), and we define

αh(g, j, l) by an obvious substitution. It is straightforward that for all f , g ∈ L2(m), h 7→ kh( f , g)

is analytic over h ∈ (0, 1/2) (in the sequel we will say, for short, that kh( f , g) is analytic). Hence,
proceding by induction, assume that for all f , g ∈ L2, k

h
( f , fn−1) and αh(g, j, l), for j ≤ n − 2

and j ≤ l ≤ n − 2, are analytic. We will show that all the terms in (3.15) are analytic. By
the preceding remarks, the choice of g is unimportant since, under the induction hypothesis,
k

h
(g, f j) is analytic. kh( f , fn) is analytic, as was previously stated, so it remains to assess the

terms in the sum of (3.15). For j ≤ n− 1, (k
h
(·, f j), kh(·, g))Hh

= k
h
(g, f j), which is analytic by

assumption. In particular, this is true for g = fn. Then, decomposing k
h
(·, f j) ( j ≤ n− 1) as in
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(3.16), ‖k
h
(·, f j)‖2 is a combination of sums and products of αh(g, p, l) (g = f j , p ≤ j − 1) and

of kh( fi , f j). Hence, it is analytic. The only term left to conclude this induction proof, is α(g, n−
1, n−1). The correspondence with (3.15) indicates that it is equal to−k

h
(g, fn−1) ‖kh

(·, fn−1)‖−2
Hh

.

Again, this is analytic by the induction hypothesis and what we just said on ‖k
h
(·, f j)‖2. All this

also holds for Rh and the corresponding quantities.
The analytic property will also be needed for:

h′ ∈ (0, 1/2] 7→
∫ 1

0

Kh(t, r)Kh′(s, r) dr ,

for any h ∈ (0,1/2], s, t ∈ [0,1]. In the proof of Lemma 3.1 of [39], the authors show that for

any s, t ∈ [0, 1], H ∈ (0,1) 7→
∫ 1

0
KH(t, r)KH(s, r) dr is analytic. A direct adaptation of their

proof suffices to show what we want.

Turning to the second part of this proof, let h1, h2 be fixed elements in Iη = [η, 1/2−η]. We
recall from (3.9) that:

E
�
(Bh1, f − Bh2, f )

2
�
=

∫ 1

0

�
K∗

h1
R−1

h1
u−1

h1
kh1
( f , ·)− K∗

h2
R−1

h2
u−1

h2
kh2
( f , ·)

�2
(u) du .

From the proof of Lemma 3.9, we recall that for any n ∈ N, K
h
(tn, ·) = K−1

h
R

h
(tn, ·) and that

{K
h
(tn, ·), n ∈ N} is an orthogonal family of L2. The decomposition of kh( f , ·) inHh gives:

K−1
h

u−1
h

kh( f , ·) =
∞∑

n=0

k
h
( f , fn)

K
h
(tn, ·)

‖R
h
(tn, ·)‖Hh

,

where the equality is in L2([0, 1]). By definition of K
h
, ‖K

h
(tn, ·)‖L2 = ‖Rh

(tn, ·)‖Hh
, so we will

drop the last norm in the above formula to consider that {K
h
(tn, ·), n ∈ N} is an orthonormal

family.
Therefore,

E
�
Bh, f − Bh′, f

�2
=

∞∑

n=0

k
h
( f , fn)Kh

(tn, ·)−
∞∑

n=0

k
h′( f , fn)Kh′(tn, ·)

2

L2 .

Let us define, for h, h′ in Iη = [η, 1/2−η],

uN (h, h′) =


N∑

n=0

k
h
( f , fn)Kh

(tn, ·)−
N∑

n=0

k
h′( f , fn)Kh′(tn, ·)

2

L2 . (3.17)

For now, we will assume that this converges uniformly in h, h′ ∈ Iη and f ∈ D, as N →∞. This
will be proved in the next paragraph. The limit is denoted by u(h, h′) and is the quantity we
are interested in. Let us show that h′ 7→ uN (h, h′) is analytic in h′ ∈ Iη, for any N ∈ N. For this
purpose, we rewrite it as:

uN (h, h′) =
N∑

n=0

k
h
( f , fn)

2 +

N∑

n=0

k
h′( f , fn)

2 − 2
N∑

i=0

N∑

j=0

k
h
( f , fi)kh′( f , f j)

�
K

h
(t i , ·), K

h′(t j , ·)
�

L2 .

The first term is a constant (N and h are fixed), while according to the first part of this proof, the
second term is analytic. The coefficients in the linear decomposition of K

h′(t j , ·) on Span{Kh′(t l , ·), l ≤
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j} are the one obtained in (3.16), making the appropriate adaptation to Rh. They are also ana-
lytic, for the reasons mentioned in the first part, and denoted βh′( j), by analogy with the αh’s of
the first part. Taking into account the analytic terms k

h
( f , fi)kh′( f , f j), we write the double sum

in uN (h, h′) in the following way (β becomes β̃ due to these multiplicative terms):

N∑

i=0

N∑

j=0

β̃h(i)β̃h′( j)
�
Kh(t i , ·), Kh′(t j , ·)

�
L2 .

It was proven in the first part that the scalar products are analytic, which finishes to prove our
assertion that uN is analytic in the second variable (and so, in the first variable too when the
second is fixed). Now, a standard result on analytic functions states that if a function is the
uniform limit on a compact of analytic functions, then it is itself analytic, and the sequence
of the derivative functions converges uniformly towards the derivative of the limit (see [123,
p.214]). So, u(h, h′) is analytic (h fixed) and its derivative reads:

u′(h, h′) = lim
N→∞

�
2

N∑

n=0

k
h′( f , fn)k

′
h′( f , fn)− 2

N∑

i=0

N∑

j=0

k
h
( f , fi)k

′
h′( f , f j)

�
K

h
(t i , ·), K

h′(t j , ·)
�

L2

− 2
N∑

i=0

N∑

j=0

k
h
( f , fi)kh′( f , f j)

�
K

h
(t i , ·), K ′

h′(t j , ·)
�

L2

�
, (3.18)

where the limit is uniform. In fact, it is also uniform in h and f , as an adaptation of the proof
of Theorem 10.28 of [123] (using Cauchy’s estimate) shows. The continuity in the first variable
of the partial sums uN (h, h′) follows the same line than for the second variable. The continuity
in f ∈ D of these partial sums is obvious from equation (3.16). As such, a limiting argument
implies that u′(h, h′) is continuous in both variables and in f ∈ D.

Hence,

Mu = sup
(h,h′)∈I2

η, f ∈D

|u′(h, h′)|<∞ .

We also have that M (2)
u
= sup(h,h′)∈I2

η, f ∈D |u′′(h, h′)| is finite. For the sake of brevity, we do not

develop the proof, which follows by applying the same arguments as we did on the first deriva-
tive. Furthermore, we have that u′(h1, h1) = 0. Indeed, the first two terms in (3.18) annihilates
when evaluated at h1, while the last one becomes:

∑

i≤ j

k
h1
( f , fi)kh1

( f , f j)
��

K
h1
(t i , ·), K ′

h1
(t j , ·)

�
L2
+
�
K

h1
(t j , ·), K ′

h1
(t i , ·)

�
L2

�

=
∑

i≤ j

k
h1
( f , fi)kh1

( f , f j)
d

dh

����
h=h1

�
K

h
(t i , ·), K

h
(t j , ·)

�
L2 ,

which is zero. Thus, the previous discussion and the mean value theorem applied on the second
order Taylor expansion of u(h1, h′) shows that, for h′ ∈ Iη,


∞∑

n=0

k
h1
( f , fn)Kh1

(tn, ·)−
∞∑

n=0

k
h′( f , fn)Kh′(tn, ·)

2

L2 ≤ M (2)
u
(h1 − h′)2 . (3.19)
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To conclude the proof, it remains to prove the uniform convergence in (3.17). We first notice
that:

sup
(h,h′)∈I2

η, f ∈D

|u(h, h′)− uN (h, h′)| ≤ sup
(h,h′)∈I2

η, f ∈D


∞∑

n=N+1

k
h
( f , fn)Kh

(tn, ·)−
∞∑

n=N+1

k
h′( f , fn)Kh′(tn, ·)

2

L2

≤ 2 sup
h∈Iη, f ∈D

∞∑

n=N+1

k
h
( f , fn)

2 + 2 sup
h′∈Iη, f ∈D

∞∑

n=N+1

k
h′( f , fn)

2 .

The initial problem now comes down to the proof that kh( f , f ) is the uniform limit in h ∈ Iη and
f ∈ D of

∑
k

h
( fn, f )2. Let ν > 0. We recall that for any g ∈ L2(T ), ‖kh( f , ·) − kh(g, ·)‖Hh

=

‖ f − g‖2h
L2 . It follows from the density of { fn}n∈N in L2(T ) that for any f ∈ L2, there is an index

α ∈ N such that ‖ f − fα‖L2 ≤ ν1/4η. In fact, the compactness of D implies that there is an integer
Nν such that D can be covered by balls of radius at most ν1/4η centered in { fα j

, j = 1 . . . Nν} ⊂
{ fn}n∈N. Besides, from the construction of

�
k

h
( fn, ·), n ∈ N

	
, kh( fα, ·) ∈ Span

�
k

h
( f j , ·), j ≤ α

	
.

As a consequence of the previous points, if f is in the ball centered in fα j
,

sup
h∈Iη

‖kh( f , ·)− kh( fα j
, ·)‖2Hh

= sup
h∈Iη

 
α j∑

n=1

�
k

h
( f , fn)− k

h
( fα j

, fn)
�2
+

∞∑

n=α j+1

k
h
( f , fn)

2

!

= sup
h∈Iη

‖ f − fα j
‖4h

L2

and therefore, suph∈Iη

∑∞
n=α j+1 k

h
( f , fn)

2 ≤ suph∈Iη
‖ f − fα j

‖4h
L2 which is less than ν. This finally

reads: for any N ≥ α=max j=1...Nν α j ,

sup
h∈Iη, f ∈D

|kh( f , f )−
N∑

n=1

k
h
( f , fn)

2|= sup
h∈Iη, f ∈D

∞∑

n=N+1

k
h
( f , fn)

2

≤ ν,

so the convergence is uniform and this ends the proof.

Let dm denote the distance induced by the L2(T, m) norm. Expressed in a more general form,
the following corollary is obtained from the previous result:

Corollary 3.16. For all compact subset D of L2(T, m) of dm-diameter smaller than 1, for any

η ∈ (0,1/4), there exists a constant C > 0 (depending on D and η) such that, ∀ f , f ′ ∈ D, ∀h, h′ ∈
[η, 1/2−η],

E
�
(Bh, f − Bh′, f ′)

2
�
≤ C (h′ − h)2 + 2 m

�
| f − f ′|2

�2(h∧h′)
. (3.20)

3.4 Continuity of the fractional Brownian field

In this section, we address the following question: under which conditions does the fBf have a
continuous modification? As this is often the case, the answer is closely related to metric entropy
of the indexing collection. We remark here that speaking of continuous modification of a process
requires the process to have a separable modification, in the sense of Doob. This is always the
case for multiparameter processes [76], but it is no longer clear when Rd is replaced by an L2
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space. Theorem 2 of [53, p.153] provides an answer when the process is indexed by a separable
metric space with value in a locally compact space, which includes the L2–fBf.

Following equation (3.20), on a subdomain D ⊂ L2 of dm-diameter smaller than 1:

E
�
(Bh, f − Bh′,g)

2
�
≤ 2C max

�
|h− h′|, m(| f − g|2)1/2

�4(h∧h′)
(3.21)

≤ 2C d
�
(h, f ), (h′, g)

�4(h∧h′)
,

where d is the product distance on (0, 1/2]× L2(T, m).
Let K̃ be a compact of L2(T, m) of dm-diameter less than 1, and a ∈ (0,1/2). Let η > 0,

Ka = [a, 1/2 − η] × K̃ and C =
�
Bh, f , (h, f ) ∈ Ka

	
be a subspace of L2(Ω). To measure the

distance between points, let δ be defined by δ(Bϕ1
, Bϕ2

) =
Æ
E(Bϕ1

− Bϕ2
)2, for ϕ1,ϕ2 ∈ Ka.

For any ǫ < 1, N(C ,δ,ǫ) denotes the metric entropy of C , that is, the smallest number of δ-balls
of radius at most ǫ needed to cover C . We will also make use of the notation N(ǫ) when the
context is clear, and denote by H(ǫ) the log-entropy log (N(ǫ)). We give a first result on the
modulus of continuity, which is a simple consequence of a famous theorem of Dudley [44] and
of inequality (3.21).

Proposition 3.17. Assume that there exist some M ,α ∈ R+, such that for all sufficiently small ǫ,

N(C ,δ,ǫ)≤ Mǫ−α. Then, the mapping x 7→ x2a
p
− log x is a uniform modulus of continuity for�

Bh, f , (h, f ) ∈ Ka

	
, meaning that there exists a measurable cω such that almost surely:

∀(h, f ), (h′, g) ∈ Ka, |Bh, f − Bh′,g | ≤ cω d
�
(h, f ), (h′, g)

�2a
Æ
− log d ((h, f ), (h′, g)) .

In particular, the fBf on Ka is a.s. Hölder-continuous for any b < 2a. Such exponential bounds
on the entropy appear frequently in statistics, for instance when C is a Vapnick-Cervonenkis class
with exponent ν:

∀ǫ > 1, N(C ,ǫ)≤ Kǫ−2ν| logǫ|ν.
See for instance [5] for a review of these properties. The conditions of the previous Proposition
are thus met on a Vapnick-Cervonenkis indexing class, choosing any α > 2ν.

Proof. The elements of Dudley’s Theorem are described as follows: let L be the isonormal process
over L2(Ω), that is, on the same probability space Ω, the centred Gaussian process whose co-
variance is given by E (L(X1)L(X2)) = E (X1X2), for all X1, X2 ∈ C . Thus E

�
(L(X1)− L(X2))

2
�
=

δ(X1, X2). Using a chaining argument and Borel-Cantelli lemma, Dudley proved that F(x) =∫ x

0

p
log N(C ,δ,ǫ) dǫ is a modulus of continuity (uniform, and potentially infinite) for the sam-

ple paths of L on C . A straightforward calculus shows that under the assumptions on the en-
tropy, x

p
− log x ≤ F(x) ≤ 2x

p
− log x for all x ∈ (0, e−1/2]. Hence, x

p
− log x is a modu-

lus of continuity of L. Let G : x ∈ R+ 7→ x2a, so that according to (3.21): δ(Bh, f , Bh′,g) ≤
G (d((h, f ), (h′, g))). Then, (h, f ) 7→ L(Bh, f ) and (h, f ) 7→ Bh, f have the same law so there exists
a measurable subset Ω̃ ⊆ Ω of measure 1, and a measurable cω such that for any ω ∈ Ω̃:

∀(h, f ), (h′, g) ∈ Ka, |Bh, f − Bh′,g | ≤ cω F
�
δ
�
(h, f ), (h′, g)

��

≤ cω F ◦ G
�
d
�
(h, f ), (h′, g)

��
.

The rest of this section is dedicated to improving this result, in various directions. First
we argue that studying entropy conditions for the fBf is essentially the same as studying the
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entropy of the h-fBm. This is the purpose of Theorem 3.19, preceded by the following technical
lemma. Then, in section 3.5.1, we will consider more specific indexing collections for which the
regularity results are more precise.

Lemma 3.18. Let (T1, d1) and (T2, d2) be two compact metric spaces and denote by d the product

distance on T1× T2. The log-entropies on (T1, d1), (T2, d2) and (T1× T2, d) are respectively denoted

by H1(ǫ), H2(ǫ) and H(ǫ). Then, the following lower and upper bounds on H hold (allowing the

integral to be infinite):

1
2

∫ 1

0

�Æ
H1(ǫ) +

Æ
H2(ǫ)

�
dǫ ≤

∫ 1

0

Æ
H(ǫ) dǫ ≤

p
2

∫ 1

0

�Æ
H1(ǫ) +

Æ
H2(ǫ)

�
dǫ. (3.22)

Proof. Let Bi(c, r) the open ball of (Ti , di) centred at c with radius r, i = 1,2. Let ǫ > 0 and
{B1

j
(c1

j
,ǫ) , 1 ≤ j ≤ N1(ǫ)} (resp. {B2

j
(c2

j
,ǫ) , 1 ≤ j ≤ N2(ǫ)}) be a ǫ-covering of T1 (resp. T2).

First notice that for the product distance d, one has B1
i
(c1

i
,ǫ)× B2

j
(c2

j
,ǫ) = Bd((c

1
i
, c2

j
),ǫ) fol all

(i, j) ∈ {1, . . . , N1(ǫ)} × {1, N2(ǫ)}. A first inequality follows:

N(T1 × T2, d,ǫ)≤ N1(ǫ) N2(ǫ) .

Reciprocically, if {B1(c1,ǫ), . . . , BN(ǫ)(cN(ǫ),ǫ)} is a ǫ-covering of T1 × T2, then each c j rewrites:
c j = (c

1
j
, c2

j
) and so B j(c j ,ǫ) = B1

j
(c1

j
,ǫ)× B2

j
(c2

j
,ǫ). Then we have:

Ti ⊆
N(ǫ)⋃

j=1

Bi
j
(c i

j
,ǫ) , i = 1,2.

Hence, N(ǫ)≥ N1(ǫ)∨ N2(ǫ). The upper and lower bounds in (3.22) follow.

Theorem 3.19. Let B be a fBf indexed on a compact subset I of (0,1/2], and K be a compact subset

of L2(T, m) of dm-diameter smaller than 1. Let ι = inf I . If the following Dudley integral converges:

∫ 1

0

q
log N(K , d2ι

m
,ǫ) dǫ <∞ , (3.23)

then B indexed by I × K has almost surely continuous sample paths.

Remark 3.20. Fernique showed in [49] that for a stationary process indexed onRd , the convergence

of the Dudley integral is a necessary condition (see [89, Chap.13], where the result is derived from

a majorizing measure argument combined with Haar measures for processes indexed on a locally

compact Abelian group). The extension of this result to increment stationary processes is explained

clearly in [100, p.251]. In the case of the h-fBm (increment stationary), the indexing collection is an

infinite-dimensional Hilbert space, hence it has no locally compact subgroups of noticeable interest.

Whether condition (3.23) is necessary remains open.

Proof. Remember that δ denotes the canonical pseudo-distance induced by the fBf. We prove
that the convergence of the integral (3.23) implies the convergence of this other integral:

∫ 1

0

Æ
log N(I × K ,δ,ǫ) dǫ ,
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which then implies the result, according to a famous theorem of Dudley [44]. For h, h′ ∈ I , and
f , f ′ ∈ K , and since ι > 0, it follows from Equation (3.21) that:

δ
�
(h, f ), (h′, f ′)

�
≤ C d

�
(h, f ), (h′, f ′)

�2ι
,

where d is still the product distance of dm and d1 (the absolute value distance on R). Note that
the previous inequality implies that the balls measured with distance δ are bigger than those

measured with d2ι, hence N(K ,δ,ǫ) ≤ N(K , d2ι,ǫ). Since
∫ 1

0

�
log(N(I , d2ι

1 ,ǫ))
�1/2

dǫ <∞,
Lemma 3.18 implies that the convergence of the Dudley integral for d2ι is equivalent to the
convergence of the Dudley integral for d2ι

m
. Hence the result.

Examples of indexing classes for which the fBf is a.s. continuous will be discussed in section
3.5. We simply recall that an object as simple as the Brownian motion indexed over the Borel
sets of [0,1]2, that is, the centred Gaussian process with covariance:

∀U , V ∈B([0,1]2), E (WU WV ) = λ(U ∩ V ) ,

is almost surely unbounded [5, p.28].

3.5 Applications to the regularity of the multiparameter and
set-indexed fractional Brownian fields

In this section, we present the fBf and the h-fBm in the more familiar framework of multipa-
rameter processes, enhancing the fact that these processes are rather different from the Lévy
fractional Brownian motion and the fractional Brownian sheet, as well as from their multifrac-
tional counterparts ([57]). This study is then extended to set-indexed processes. In both cases,
the meeting point will be that the fBf is now considered as a multifractional process, meaning
that on the indexing collection A (to be specified), we have a function h :A → (0, 1/2], and
denote B

h the process indexed over A defined by
�
Bh(U),U , U ∈A

	
. This framework allows to

establish more precise regularity results, such as the measure of local Hölder exponents.

3.5.1 Multiparameter multifractional Brownian motion

For some d ∈ N∗, let A = {[0, t], t ∈ [0,1]d}. Let B the fBf on L2([0, 1]d , m) where m is not
necessarily the Lebesgue measure. Then a multiparameter multifractional Brownian motion is
a process B

h defined for some function h : [0, 1]d → (0, 1/2] by:

∀t ∈ [0,1]d , B
h

t
= Bht ,1[0,t]

.

For h a constant function equal to 1/2, this is the usual Brownian sheet ofRd (when m= λd). For
any other constant function, this is neither the fractional Brownian sheet nor the Lévy fractional
Brownian motion, but a process called multiparameter fBm (mpfBm) with covariance:

E
�
B

h

s
B

h

t

�
=

1
2

�
m([0, s])2h +m([0, t])2h −m([0, s]△ [0, t])2h

�
,

where△ is the symmetric difference between sets. Some of the differences between this process
and the aforementioned are discussed in [60]. As stated in the introduction, one can also obtain
the Lévy fractional Brownian motion from the fBf, choosing another class A and a specific
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measure. Hence, the results of regularity for the Lévy fBm (or its multifractional counterpart,
see for instance [57]) follow from the results of the next subsection rather than this one.

In this case and unlike the previous section, the entropy ofA is perfectly known when m is
the Lebesgue measure2, and the Dudley integral is easily seen to be finite. Hence the fBf on A
has a continuous modification, and so does any multiparameter mBm. It is possible to establish
precise Hölder regularity coefficients. For easier comparison with prior works on mpfBm, we
will not use the distance dm but a variant defined as:

for s, t ∈ [0,1]d , d ′
m
(s, t) = m([0, s]△ [0, t]) .

Note that d ′
m
(s, t) = dm(1[0,s],1[0,t])

2. We explained in Remark 2.2 that this distance is equivalent
to the Euclidean distance when m is the Lebesgue measure and the set of indexing points stays
within a compact away from 0.

For a stochastic process X indexed on A , let us define the deterministic pointwise Hölder
exponent at t0 ∈A :

αX (t0) = sup

(
α : lim sup

ρ→0
sup

s,t∈Bd′m (t0,ρ)

E
�
|Xs − X t |2

�

ρ2α
<∞

)
,

where Bd ′
m
(t0,ρ) is the ball of the d ′

m
distance. Similarly, the deterministic local Hölder exponent

is:

eαX (t0) = sup

(
α : lim sup

ρ→0
sup

s,t∈Bd′m (t0,ρ)

E
�
|Xs − X t |2

�

d ′
m
(s, t)2α

<∞
)

.

We will compare these exponents to their stochastic analogue, straightforwardly defined getting
rid of the expectation in the above definitions. The random coefficients are denoted αX (t0) and
eαX (t0). This extends to continuous (deterministic) functions onA .

As the terminology is commonly accepted in the multifractional literature, a regular multi-
parameter mBm will be a fBf with a function h such that, at each point, the value of the function
is smaller than its local and pointwise exponents (ie ht ≤ αh(t)).

Proposition 3.21. Let B
h be a regular multiparameter mBm on [0, 1]d . Then, for all t0 ∈ [0, 1]d ,

both equalities hold almost surely:

αB
h(t0) = ht0

and eαB
h(t0) = ht0

.

When t0 6= 0, these equalities still hold true for the exponents defined replacing d ′
m

with the
Euclidean distance. This is another consequence of the equivalence between those distances on
a compact away from 0.

Proof. The first step is to evaluate αB
h(t0) and eαB

h(t0). Theorem 2.34 then states that a Gaus-
sian process X , indexed by a collection of sets satisfying certain technical assumptions has the
following property:

P (αX (t0) = αX (t0)) = 1 and P
�
eαX (t0) = eαX (t0)

�
= 1 . (3.24)

As discussed in Chapter 2, the technical assumptions are satisfied by the class A of rectangles.
A result of that sort actually originated in [59], but we use the one in Chapter 2 to introduce the
extended results of the following section on set-indexed processes.

2which is assumed until the end of this section.
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Let K be a compact of [0, 1]d with d ′
m

-diameter smaller than 1, whose interior contains t0.
As a consequence of the continuity of h, h(K) ⊆ [η, 1/2−η] for some η > 0. For all s, t ∈ B(ρ),
the ball centred in t0 of radius ρ,

E
�
B

h

t
− B

h

s

�2 ≥ 1
2
E
�
Bht ,t − Bht ,s

�2 −E
�
Bht ,s − Bhs ,s

�2

≥ 1
2

d ′
m
(s, t)2ht − Cη,K(ht − hs)

2 ,

where we used Theorem 3.15, and this inequality yields that for any α > infB(ρ) h:

E
�
B

h

t
− B

h

s

�2

d ′
m
(s, t)2α

≥ 1
2

d ′
m
(s, t)2 infB h−2α − C̃η,K d ′

m
(s, t)2 infBαh−2α .

The regularity property of h implies that for ρ sufficiently small, α can be chosen so that
infB(ρ)αh ≥ α > infB(ρ) h, and the previous inequality diverges as ρ→ 0. Hence

αB
h(t0)≤ lim

ρ→0
inf
B(ρ)

h= h(t0) .

The converse inequality follows from the result of Corollary 3.16 and the same reasoning.
Thus the deterministic exponents are both equal to ht0

, and the property (3.24) leads to the
result.

This result, which holds for all points, almost surely, is greatly strenghtened into paths prop-
erties by the following proposition:

Proposition 3.22. Let B
h be a regular multiparameter mBm on [0, 1]d . Then, almost surely,

∀t0 ∈ [0,1]d , eαB
h(t0) = ht0

and αB
h(t0)≥ ht0

.

Proof. This is a direct application of Theorem 2.35 and of the values of αB
h and eαB

h computed
in the proof of the previous proposition.

In the case of the SIfBm (see Section 2.6) or of the regular mBm ([59]), the previous uniform
lower bound of the pointwise exponent is an equality. This provides tangible argument for an
improvement of our result, but the question is left open for now.

3.5.2 Set-Indexed multifractional Brownian motion

This section is a discussion on a natural extension of the results on multiparameter processes
to a wider class of indexing collections. The framework of set-indexed processes of Ivanoff and
Merzbach [70], and the results of Chapter 2 provide a definition of Hölder exponents and fine
regularity results.

Let T be a locally compact complete separable metric and measure space with metric d and
Radon measure m defined on the Borel sets of T . We recall briefly the definition of an indexing
collection, as it appeared in Definition 2.1:

Definition 3.23. A nonempty class A of compact, connected subsets of T is called an indexing
collection if it satisfies the following:

1. ; ∈ A , and the interior A◦ 6= A if A 6= ; or T . In addition, there is an increasing sequence

(Bn)n∈N of union of sets ofA such that T = ∪∞
n=1B◦

n
.
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2. A is closed under arbitrary intersections and if A, B ∈ A are nonempty, then A ∩ B is

nonempty. The σ-algebra generated byA is equal toB , the collection of Borel sets of T .

3. [Separability from above], there exists a nested sequence of finite dissecting classesAn whose

elements approximate sets A ∈ A from above (they are bigger for the inclusion), and this

approximation is finer as n ∈ N increases, until it equals A at the limit.

The construction of a set-indexed multifractional Brownian motion relies on what was said
at the beginning of Section 3.5, and it follows that for all U ∈A , B

h

U
= BhU ,1U

is a well defined
set-indexed process. Its multiple Hölder coefficents are defined as in the multiparameter case
(think of point t0 as a set [0, t0] ∈ A in the previous paragraph), with respect to the distance
d ′

m
, defined for all U , V ∈A , by d ′

m
(U , V ) = m(U △ V ).

Under entropic assumptions described in Section 2.2, the results on local and pointwise
Hölder exponents, as presented for multiparameter processes, also hold for the SImBm:

Proposition 3.24. Let A be an indexing collection satisfying Assumption (HA ) (of Section 2.2).

Let B
h be a regular SImBm onA . Then, for all U0 ∈A , both equalities hold almost surely:

eαB
h(U0) = hU0

and αB
h(U0) = hU0

.

Proposition 3.25. Let A be an indexing collection satisfying Assumption (HA ). Let B
h be a

regular SImBm onA . Then, almost surely,

∀U0 ∈A , eαB
h(U0) = hU0

and αB
h(U0)≥ hU0

.

Finally, we note that there is no evidence of another (Gaussian) process with prescribed
regularity in a general set-indexed setting, other than the one we defined. In particular, the
(multi-)fractional Brownian sheet and Lévy fBm do not have extensions in the set-indexed set-
ting.
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3.6 Technical results

This section is an appendix that deals with several technical results that we delayed until the
end of this chapter.

3.6.1 A bound for the increments of K∗
h

in L2

This first appendix collects the proofs of the technical results of the beginning of section 3.3. We
recall that W ∗

+
denote the set of positive linear functionals over W , and that for all x ∈ (−1, 1),

L(x) = log(|x |−1)∨ 1 if x 6= 0, and 0 otherwise.

Proof of Lemma 3.9. For any t ∈ D, we write K
h
(tn, ·) = K−1

h
R

h
(·, tn). R

h
is the Gram-Schmidt

transform of Rh, which implies that R
h
(·, t0) = Rh(·, t0) and ∀n≥ 1,

R
h
(·, tn) = Rh(·, tn)−

n−1∑

j=0

�
R

h
(·, t j), Rh(·, tn)

�
Hh

‖R
h
(·, t j)‖2

R
h
(·, t j) . (3.25)

Hence, K
h

can be written:

K
h
(tn, ·) = Kh(tn, ·)−

n−1∑

j=0

�
R

h
(·, t j), Rh(·, tn)

�
Hh

‖R
h
(·, t j)‖2

K
h
(t j , ·)

= Kh(tn, ·)−
n−1∑

j=0

�
K

h
(t j , ·), Kh(tn, ·)

�
L2

‖K
h
(t j , ·)‖2L2

K
h
(t j , ·) , (3.26)

and this shows that {K
h
(tn, ·), n ∈ N} is the Gram-Schmidt orthogonal family of L2, obtained from

{Kh(tn, ·), n ∈ N}. Then for any g ∈ L2 such that g ≥ 0, the non-negativeness of Kh(t, s),∀t, s ∈
[0,1] (see the closed form (3.27)), implies that

∫ 1

0
g(s)Kh(tn, s) ds ≥ 0. Thus, if g is orthogonal

to the linear span of
�

K
h
(t0, ·), . . . , K

h
(tn−1, ·)

	
, it follows from (3.26) that

∫ 1

0
g K

h
(tn, ·) is non-

negative. It is obviously also the case if g ∈ Span
�

K
h
(t0, ·), . . . , K

h
(tn−1, ·)

	
, hence

�
K

h
(tn, ·), ·

�
L2

is a positive linear functional over Span
�

K
h
(t j , ·), j ∈ N

	
. This leads to the following partial re-

sult:
for any j ∈ N , R

h
(t j , tn) =

�
K

h
(tn, ·), Kh(t j , ·)

�
L2 ≥ 0 .

Now let g ∈ H(Rh) such that g ≥ 0. As any element of H(Rh), g can be approximated by a
sequence {Rh(·, tϕ j

), j ∈ N}. By continuity, R
h
(tϕ j

, tn) tends to (R(·, tn), g) as j goes to infinity.
Since we have seen that the first term is non-negative for any j ∈ N, this concludes the proof.

Before the proof of Proposition 3.10, we prove a useful technical lemma:

Lemma 3.26. For all h1 < h2 ∈ (0, 1/2), there exists a constant M̃h1
> 0 such that for all ξ ∈W ∗

+
,

∫ 1

0

sup
h∈[h1,h2]

�
K∗

h
ξ(u)

�2
du< M̃h1

‖ξ‖2
H∗

h1

.

Proof. Recall that K∗
h
ξ ∈ L2[0,1]. In [110, Chap. 5.1.3], for h< 1/2, Kh is given by the following

formula: ∀s, t ∈ [0, 1],

Kh(t, s) = ch

��
t(t − s)

s

�−(1/2−h)

+ (1/2− h) s1/2−h

∫ t

s

uh−3/2(u− s)h−1/2 du

�
1[0,t)(s) (3.27)

= ch (Ch(t, s) + (1/2− h)Dh(t, s)) ,
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where h 7→ ch is positive and infinitely differentiable. The second term of this sum is uniformly
bounded in s < t ∈ [0, 1] and h ∈ [h1, h2], while the first one diverges when t tends to s. Hence
for ε small enough, |t − s| < ε implies that Kh(t, s) ≤ Kh1

(t, s) uniformly in h ∈ [h1, h2], since
then,

�
t(t − s)

s

�−(1/2−h)

<

�
t(t − s)

s

�−(1/2−h1)

,

and the rest of Kh(t, s) is negligeable compared to this last expression. Hence for u ∈ [0, 1],

sup
h∈[h1,h2]

�
K∗

h
ξ(u)

�2
= sup

h∈[h1,h2]

�∫ 1

u

Kh(t, u) dξ(t)

�2

= sup
h∈[h1,h2]

�∫ u+ε

u

Kh(t, u) dξ(t) +

∫ 1

u+ε

Kh(t, u) dξ(t)

�2

≤ 2 sup
h∈[h1,h2]

�∫ u+ε

u

Kη(t, u) dξ(t)

�2

+ 2 sup
h∈[h1,h2]

�∫ 1

u+ε

Kh(t, u) dξ(t)

�2

.

According to the remark that on the set {(t, u, h) : |t − u| ≥ ε, h ∈ [h1, h2]}, Kh(t, u) is uniformly
bounded, there is a positive constant (possibly depending on ε) M such that Kh(t, u)/Kh1

(t, u)≤
M . Because ξ is a finite nonnegative Radon measure,

∫ 1

u+ε

Kh(t, u) dξ(t)≤ M

∫ 1

u+ε

Kh1
(t, u) dξ(t) .

It follows that:

sup
h∈[h1,h2]

�
K∗

h
ξ(u)

�2 ≤ 2

�∫ u+ε

u

Kh1
(t, u) dξ(t)

�2

+ 2M

�∫ 1

u+ε

Kh1
(t, u) dξ(t)

�2

,

and finally:
∫ 1

0

sup
h∈[h1,h2]

�
K∗

h
ξ(u)

�2
du≤ 2‖ K∗

h1
ξ ‖2

L2 + 2M‖ K∗
h1
ξ ‖2

L2

≤ M̃h1
‖ξ‖2

H∗
h1

.

A direct consequence of this equation is that the H∗
h1

-norm is bigger than any other H∗
h
-norm,

when h≥ h1.

Proof of Proposition 3.10. We first recall that for any h ∈ (0, 1/2], ξ ∈W ∗,
∫ 1

0

�
K∗

h
ξ(t)

�2
dt <∞,

as well as the facts that ξ is considered as a nonnegative measure, and that ch, Ch(·, ·) and Dh(·, ·)
are nonnegative quantities. For the sake of readability, we shall use the symbol ′ to denote the
h-derivation. For all s, t ∈ [0,1],

K ′
h
(t, s) = c′

h
Kh(t, s) + ch C ′

h
(t, s) + ch (1/2− h)D′

h
(t, s)− ch Dh(t, s), (3.28)

where

C ′
h
(t, s) = log

�
s−1 t(t − s)

�
Ch(t, s) ,

D′
h
(t, s) = (log s) Dh(t, s) + s1/2−h

�∫ t

s

(log u)uh−3/2 log(u− s)(u− s)h−1/2 du

�
1[0,t](s) .
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Each part in the sum of (3.28) will be treated separately, and each but C ′
h

using the Cauchy-
Schwarz inequality. The first part in (3.28) gives:

∫ 1

0

�∫ h2

h1

c′
h
K∗

h
ξ(s) dh

�2

ds ≤ (h2 − h1)

∫ 1

0

∫ h2

h1

�
c′

h

�2 �
K∗

h
ξ(s)

�2
dh ds .

For η > 0, the infinite differentiability and boundedness away from 0 of ch implies that there
exists a constant M1

η such that for all h ∈ [η, 1/2−η],
∫ 1

0

�
c′

h

∫ 1

0

Kh(t, s) dξ(t)

�2

ds ≤ M1
η ‖ξ‖2H∗

h

.

Now, Lemma 3.26 and Fubini’s Theorem imply that:

(h2 − h1)

∫ h2

h1

∫ 1

0

�
c′

h

∫ 1

0

Kh(t, s) dξ(t)

�2

ds dh≤ M̃1
η(h2 − h1)

2‖ξ‖2
H∗

h1

. (3.29)

For the rest of this proof, we might as well consider that ch is uniformly equal to 1.
Then for h ∈ [η, 1/2−η], we look at the second term in the sum of (3.28). Let αs ∈ (s, 1] such

that s−1αs(αs − s) = 1 if s ≤ 1/2 and αs = 1 otherwise. Since t 7→ s−1 t(t − s) is increasing and
maps [s, 1] to [0, s−1(1− s)], αs is uniquely defined. Let some ν > 0 such that h± ν ∈ (0,1/2).
Let us remark that u ∈ [1,∞) 7→ log(u)u−ν is bounded between 0 and (e ν)−1. Similarly,
u ∈ (0, 1] 7→ log(u)uν is bounded between −(e ν)−1 and 0. Thus for s ∈ (0,1), the map

t ∈ (s, 1] 7→ log
�
s−1 t(t − s)

�
C−ν(t, s)1{t>αs} + log

�
s−1 t(t − s)

�
Cν(t, s)1{t≤αs}

is uniformly bounded (in s and t) by −(e ν)−1 and (e ν)−1. We note that when s ≥ 1/2, the first
term in the sum is automatically zero. It follows that:

�∫ h2

h1

∫ 1

s

C ′
h
(t, s) dξ(t) dh

�2

=

�∫ αs

s

�
(s−1 t(t − s))h2−h1 − 1

�
Ch1
(t, s) dξ(t)

+

∫ h2

h1

∫ 1

αs

log
�
s−1 t(t − s)

�
C−ν(t, s)Ch+ν(t, s) dξ(t) dh

�2

≤ ((h2 − h1)L(h2 − h1))
2×

�∫ αs

s

(s−1 t(t − s))h2−h1 − 1
(h2 − h1)L(h2 − h1)

Ch1
(t, s) dξ(t)

�2

(3.30)

+ 2(e ν)−2(h2 − h1)

∫ h2

h1

�∫ 1

αs

Ch+ν(t, s) dξ(t)

�2

dh . (3.31)

(3.31) can be treated easily with Lemma 3.26, since it suffices to choose ν= η/2 so that h+ν ∈
[η, 1/2−η/2]. Thus, for the same reasons as in (3.28), we have that:

∫ h2

h1

∫ 1

0

2(e ν)−2

�∫ 1

αs

Ch+η/2(t, s) dξ(t)

�2

ds dh≤ 8(e η)−2 M̃2
h1
(h2 − h1)‖ξ‖2H∗

h1

≤ M̃2
η(h2 − h1)‖ξ‖2H∗

h1

.
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(3.30) requires more care since the same method would involve Ch−ν with h−ν occasionally
smaller than h1. For all s ∈ (0, 1), we define the application:

ψs(t, h) =
(s−1 t(t − s))h − 1

hL(h)

on the domain Ks = {(t, h) : s ≤ t ≤ αs, 0< h≤ 1−2η}. Because s−1 t(t − s) ∈ [0,1], it follows
that ψs(t, h)→ 0 as h→ 0. Hence ψs can be continuously extended to

Ko
s
= {(t, h) : s ≤ t ≤ αs, 0≤ h≤ 1− 2η} ,

which is compact. It follows from the last two remarks that ψs(t, h) is bounded by a constantq
M3
η which is independent of s, t, and h. Thus, the term in (3.30) is smaller than M3

η

�
C∗

h1
ξ(s)

�2
.

This finally yields, for the second term of (3.28):

∫ 1

0

�∫ h2

h1

∫ 1

s

C ′
h
(t, s) dξ(t) dh

�2

ds ≤ 8(e η)−2M̃2
η(h2 − h1)

2‖ξ‖2
H∗

h1

+M3
η ((h2 − h1)L(h2 − h1))

2 ‖ξ‖2
H∗

h1

. (3.32)

The same technique leads to the following bounds for D′
h
: first,

∫ 1

0

�∫ 1

s

(log s)Dh(t, s) dξ(t)

�2

ds =

∫ 1

0

�∫ 1

s

(log s)sν .s−νDh(t, s) dξ(t)

�2

ds

≤
∫ 1

0

(log s)2s2ν

�∫ 1

s

Dh+ν(t, s) dξ(t)

�2

ds

≤ (e ν)−2

∫ 1

0

�∫ 1

s

Dh+ν(t, s) dξ(t)

�2

ds .

Then,
∫ 1

0

�
s1/2−h

∫ 1

s

∫ t

s

(log u)uh−3/2 log(u− s)(u− s)h−1/2 du dξ(t)

�2

ds

≤
∫ 1

0

�
s1/2−(h−ν)sν

∫ 1

s

∫ t

s

(log u)uνuh−ν−3/2×

log(u− s)(u− s)ν(u− s)h−ν−1/2 du dξ(t)
�2

ds

≤ (e ν)−2

∫ 1

0

�
s1/2−(h−ν)

∫ 1

s

∫ t

s

uh−ν−3/2(u− s)h−ν−1/2 du dξ(t)

�2

ds

= (e ν)−2

∫ 1

0

�∫ 1

s

Dh−ν(t, s) dξ(t)

�2

ds .

So that, for ν= η/2, the estimates on Dh in the proof of Lemma 3.26 imply again:

∫ 1

0

�∫ 1

s

D′
h
(t, s) dξ(t)

�2

ds ≤ 16(e η)−2M̃4
η‖ξ‖2H∗

h1

. (3.33)
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All three inequalities (3.29),(3.32) and (3.33), put together with a bound on the last term
of (3.28) (which is easily obtained), end the proof.

3.6.2 Proof of Lemma 3.8

Proof. The proof is divided into two cases, depending on whether h = 1/2 or not. The case
h= 1/2 is immediate since k1/2( f , g) =

∫
f g dm. Then

∀g ∈ L2, λ1k1/2( f1, g) + · · ·+λnk1/2( fn, g) = 0⇒ λ1 f1 + · · ·+λn fn = 0

and this yields λ1 = · · ·= λn = 0 because ( f1, . . . , fn) was assumed to be linearly independent.

In the remaining of this proof, h ∈ (0,1/2). At first we look at the situation when n= 2, and
the proof is led in two steps, depending on whether m( f 2

1 ) = m( f 2
2 ) or not.

Assume first that m( f 2
1 ) 6= m( f 2

2 ). Using fractional integration as a linear operator over
the indicator functions of the form 1[0,t] straightforwardly implies that for s 6= t ∈ [0, 1],
(Rh(·, t), Rh(·, s)) is linearly independent. This technique extends to n ≥ 2 and we shall use
it later. Our problem in L2(T, m) reduces to the aforementionned one via the following trick: let
g ∈ L2(T, m) be non-zero and orthogonal to f1 and f2. Then, for any λ ∈ R:

kh( f1,λg) =
1
2

�
m( f 2

1 )
2h +λ4hm(g2)2h − |m( f 2

1 )−λ2m(g2)|2h
�

= Rh(t, uλ),

where t = m( f 2
1 ) and uλ = λ

2m(g2). Let s = m( f 2
2 ) which is different from t by hypothesis,

then the linear independence of (λ 7→ Rh(t, uλ),λ 7→ Rh(s, uλ)) implies the linear independence
of (kh( f1, .), kh( f2, .)) in H(kh).

Assume now we are in the case of f1 and f2 having the same norm (6= 0) and that kh(·, f1)

and kh(·, f2) satisfy: there is λ ∈ R such that kh(·, f1) = λkh(·, f2), ie ∀g ∈ L2(T, m),

m( f 2
1 )

2h −λm( f 2
2 )

2h = (λ− 1)m(g2)2h +m(| f1 − g|2)2h −λm(| f2 − g|2)2h. (3.34)

Applying this equality to g = f , λ has to be:

λ kh( f1, f2) = 2m( f 2
1 )

2h ,

and identically with g = f2, one obtains:

λ m( f 2
2 )

2h =
1
2

kh( f1, f2).

Thus λ2 = 1. If λ = 1, this is m(| f1 − g|2)2h = m(| f2 − g|2)2h,∀g ∈ L2, and we deduce that
f1 = f2. Let us prove that λ = −1 is impossible. Let us consider equation (3.34) applied to any
g which is orthogonal to f1 and f2 and such that m(g2) = m( f 2

1 ):

4m( f 2
1 )

2h = m(| f1 − g|2)2h +m(| f2 − g|2)2h

=
�
m( f 2

1 ) +m(g2)
�2h
+
�
m( f 2

2 ) +m(g2)
�2h

= 22h+1m( f 2
1 )

2h,

which is impossible whenever h 6= 1/2.
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In a second step, we extend the result for n ≥ 2: let f1, . . . , fn+1 ∈ L2 and assume that
kh(·, fn+1) is a linear combination of the family kh(·, f1), . . . , kh(·, fn). The coefficient in this lin-
ear combination are denoted (λn). Splitting the maps f1, . . . , fn into several groups inside which
they have the same norm, we index them differently: f1,1, . . . , f1,i1 , . . . , fl,1, . . . , fl,il where for all
j ∈ {1, . . . , l}, and all p, q ∈ {1, . . . , i j}, m( f 2

j,p) = m( f 2
j,q). Then, let g ∈ L2 be orthogonal to

span{ f1, . . . , fn+1}. We already computed that kh( fi , g) = Rh(m( f
2
i
), m(g2)). The linear combi-

nation is expressed, for all µ ∈ R, as follows:

kh( fn+1,µg) =

l∑

j=1

i j∑

k=1

λ j,kkh( f j,k,µ.g),

which is better understood in terms of Rh:

Rh

�
m( f 2

n+1),µ
2m(g2)

�
=

l∑

j=1

i j∑

k=1

λ j,kRh

�
m( f 2

j,k),µ
2m(g2)

�

=

l∑

j=1

 
i j∑

k=1

λ j,k

!
Rh

�
m( f 2

j,1),µ
2m(g2)

�
.

The linear independence for Rh thus commands that m( f 2
n+1) be equal to m( f 2

j,1) for some

j ∈ {1, . . . , l}. We will assume, without restriction, that j = 1. It is then necessary that
∑i1

k=1λ1,k = 1

and that for all j > 1,
∑i j

k=1λ j,k = 0. In case i1 < n, an induction on n ends the proof. Otherwise,
the situation is that m( f 2

1 ) = · · ·= m( f 2
n+1) and for all g ∈ L2:

m
�
( fn+1 − g)2

�2h
=

n∑

i=1

λim
�
( fi − g)2

�2h
.

Because fn+1 is linearly independent of f1, . . . , fn, there exists g orthogonal to every fi , i ≤ n but
which is not orthogonal to fn+1. Then, the previous equation reads:

�
m( f 2

n+1) +m(g2)− 2m(g fn+1)
�2h
=
�
m( f 2

1 ) +m(g2)
�2h

,

which is impossible due to the fact that m(g fn+1) 6= 0.
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In this chapter, we give further results on the L2-fractional Brownian motion (h fixed) and on
the L2-multifractional Brownian motion (h is a function of L2, see Section 3.5 for a description of
these processes). Except for the property of local nondeterminism and the estimate of the small
balls which will be used in the next chapter, the results of this section are largely independent of
the other chapters. They all have in common the fact that they extend properties of the standard
(multi)fractional Brownian motion in a natural way.

In the introductory chapter, it was recalled that the fractional Brownian motion of Hurst
parameter H ∈ (0, 1) is the only (up to normalisation of its variance) Gaussian process on R that
has stationary increments and self-similarity of order H. The Lévy fractional Brownian motion
of order H, whose covariance is given by:

E
�
X H

s
X H

t

�
=

1
2

�
‖s‖2H + ‖t‖2H − ‖s− t‖2H

�
, s, t ∈ RN ,

is self-similar of order H and has a strong increment stationarity property on RN , i.e. against
translations and rotations in RN :

∀g ∈ G (RN ), {X g(t) − X g(0), t ∈ RN} (d)= {X t , t ∈ RN} ,

where G (RN ) is the group of rigid motions of RN . Reciprocically, a Gaussian process having
these properties has the above covariance (see the monograph of SAMORODNITSKY AND TAQQU

[127, p.393]). There is no such characterization for the fractional Brownian sheet (see the
review by HERBIN AND MERZBACH [61]), and a tentative characterization for the set-indexed
fBm appeared in [62]. With the notions of self-similarity and increment stationarity introduced
in [62], we extend this characterization to the L2-fBm.

In section 4.2, we establish a sharp estimate on the small balls of the L2-fBm, in terms of
metric entropy (Theorem 4.6). This is a natural extension of a result due to MONRAD AND
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ROOTZÉN [106] for the fBm, and TALAGRAND [142] for the Lévy fBm. While doing so, a local
nondeterminism property of this process is proved, similar to the one originally established by
PITT [117] in the 1970’s.

Then we give various approximation results of the fractional Brownian field by L2-fractional
Brownian motion. If we draw a path on the fractional Brownian field by means of h : K →
(0,1/2] (K a compact of L2), the result is a L2-multifractional Brownian motion, which is con-
tinuous if h is continuous and if the finiteness of the Dudley integral in Theorem 3.19 is ensured.
On a partition {Kn}n=1,...,N of K , we put on each Kn a L2-fBm coming from the original fBf by
fixing the value of the parameter h close to h on Kn, and we prove that this construction ap-
proximates uniformly almost surely the L2-mBm. In [88], a similar result on the R-indexed
fractional Brownian field was used to provide a stochastic integral with respect to the multifrac-
tional Brownian motion. Finally we prove another approximation result (which is also known
in the multiparameter framework, see [57]), known as local self-similarity. This phenomenon
was described as soon as the multifractional Brownian motion was invented (see [116, 20]) and
accounts for the loss of self-similarity of this process. Instead, it is possible to define a tangent
process at each point t0 where the mBm is defined, whose self-similarity parameter will be h(t0),
if h (the regularity function of the mBm) is not too irregular. Similarly, we will exhibit the fact
that a L2-mBm locally looks like a L2-fBm.

The last section of this chapter is devoted to another key feature of set-indexed processes:
in [60], it was proved that the projection of the SIfBm on any flow (that is, increasing paths on
A ) is a time-changed (R-indexed) fractional Brownian motion. We will show that this is still
true when h can fluctuate on the indexing collection.
In all this chapter, ‖ · ‖ will denote the L2-norm.

4.1 Stationarity and self-similarity characterisation

We give two characterizations of the L2-fBm: the first one is very similar to the characterization
of the Lévy fBm, while the second one uses a notion of stationarity similar to the one defined
for set-indexed processes in [62]. As an exception, we use in this section the parametrization by
H ∈ (0, 1) for consistency with the multiparameter framework 1.

We start with the definitions. We will need the following group of transformations on L2:
consider the set G which is a restriction of the general linear group of L2 to bounded linear
mappings ϕ : L2→ L2 such that:

∀ f , g ∈ L2(T, m), ‖ f ‖= ‖g‖ implies that ‖ϕ( f )‖= ‖ϕ(g)‖ .

Let ̺ : G → R+ be the square of the operator norm and notice that for ϕ ∈ G , ‖ϕ( f )‖ =p
̺(ϕ) ‖ f ‖ and that ̺ is a group morphism.
We will say that a L2-indexed stochastic process X :

• is H–self-similar, if:

∀a > 0, {a−H Xa f , f ∈ L2} (d)= {X f , f ∈ L2} ; (SS1)

• is strongly H–self-similar, if:

∀ϕ ∈ G , {Xϕ( f ), f ∈ L2} (d)= {̺(ϕ)H X f , f ∈ L2} ; (SS2)

1instead of h ∈ (0, 1/2), hence recall that H = 2h.
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• is increment stationary in the strong sense, if for any ψ a translation or an orthogonal
transformation of L2:

{Xψ( f ) − Xψ(0), f ∈ L2} (d)= {X f − X0, f ∈ L2} ; (SI1)

• is m–increment stationary, if for any f1, . . . , fn ∈ L2 and g0, g1, . . . , gn ∈ L2 such that ( f1 −
g0, . . . , fn − g0) and (g1, . . . , gn) are isometric:

�
X f1
− X g0

, . . . , X fn
− X g0

� (d)
=
�
X g1

, . . . , X gn

�
. (SI2)

One can readily check that the L2-fractional Brownian motion satisfies all of the above prop-
erties. (SS1) and (SI1) are direct analogues of the multiparameter properties presented above.
They give a similar characterization:

Proposition 4.1. Let X be a L2-indexed Gaussian process which satisfies (SS1) of order H ∈ (0, 1)
and (SI1). Then X is a L2-fBm of Hurst parameter H.

Proof. This proof follows precisely the one given in [127, p.393], but we write it (with the
necessary modifications due to the passage to L2) for the sake of completeness.
The first step is to prove that X has mean 0. By self-similarity, it is clear that X0 = 0. Let f0 be a
unit vector of L2, and any f , g ∈ L2,

E
�
X f +g − X g

�
= E

�
X f − X0

�
= E(X f ) = E

�
X‖ f ‖ f0

�

= ‖ f ‖H E(X f0
) ,

where the first equality is (SI1) for a translation, the third is (SI1) for an orthogonal transfor-
mation mapping f to ‖ f ‖ f0, and the last equality is (SS1).
But self-similarity and rotation invariance also yield:

E
�
X f +g − X g

�
=
�
‖ f + g‖H − ‖ f ‖H

�
E(X f0

) .

The equality between the last two equations implies that E(X f0
) = 0, and so E(X f ) = 0, ∀ f ∈ L2.

The covariance follows with the same arguments:

E
�
X f − X g

�2
= E

�
X f −g

�2
= ‖ f − g‖2H E(X f0

)2 .

The L2-fBm is called standard if E(X f0
)2 = 1 for any unit vector.

Properties (SS2) and (SI2) may seem less obvious, but they appeared rather naturally in the
context of set-indexed processes. Let us recall a few facts and definitions from [62]. For A
an indexing collection on (T, m), m-stationarity for C0-increments is defined for an A -indexed
process X as: for any n ∈ N, any V ∈ A , and any increasing sequences (Ui)1≤i≤n and (Ai)1≤i≤n

of elements ofA satisfying m(Ui \ V ) = m(Ai) for all 1≤ i ≤ n,

�
XU1
− XU1∩V , . . . , XUn

− XUn∩V

� (d)
=
�
XA1

, . . . , XAn

�
. (m−C0)

Property (SI2) generalizes m-stationarity forC0-increments, since for increasing sequences (Ui)1≤i≤n

and (Ai)1≤i≤n of elements ofA satisfying m(Ui\V ) = m(Ai), (1U1\V , . . . ,1Un\V ) and (1A1
, . . . ,1An

)
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are isometric: for any k ≥ j,

m(1U j\V 1Uk\V ) = m
�
(U j \ V )∩ (Uk \ V )

�

= m(U j \ V )

= m(A j)

= m(1A j
1Ak
).

The property (SS2) is also a clear generalization of the self-similarity proposed in [62].

Remark 4.2. In [62], self-similarity and m-stationary C0-increments is proved to characterize the

law of the projections on elementary flows of a set-indexed Gaussian process (recall the definition of

flows 2.27), but this does not extend to simple flows. Since we know that the law of a set-indexed

process is characterized by its projections on simple flows (see for instance Lemma 6 of [68], but

knowing the law on elementary flows is not sufficient), (m−C0) is in fact too weak to characterize

the law of the set-indexed fractional Brownian motion.

Proposition 4.3. Let X be a L2-indexed Gaussian process. X is a L2-fractional Brownian motion

of parameter H ∈ (0,1) if and only if X satisfies (SI2) and (SS2) of order H.

Proof. We first prove that X is a mean zero process. Let f0 ∈ L2 be a unit vector, and for any
f , g ∈ L2 we have:

E
�
X f +g − X g

�
= E

�
̺(ϕ1)

H X f0
−̺(ϕ2)

H X f0

�

where ϕ1,ϕ2 ∈ G are such that f + g = ϕ1( f0) and g = ϕ2( f0). We also have, by (SI2), that:

E
�
X f +g − X g

�
= E

�
X f

�
= ̺(ϕ3)

HE(X f0
)

where ϕ3 ∈ G is such that f = ϕ3( f0). We know by definition of ̺ that ̺(ϕ1) = ‖ f + g‖2,
̺(ϕ2) = ‖g‖2 and ̺(ϕ3) = ‖ f ‖2. Hence, the equality between the last two equations implies
that: �

‖ f + g‖2H − ‖g‖2H
�
E
�
X f0

�
= ‖ f ‖2H E

�
X f0

�
.

Since this is true for any f , g ∈ L2, we must have E(X f0
) = 0, and so E(X f ) = 0, ∀ f ∈ L2.

To obtain the covariance, just notice by using (SI2) and (SS2) in the same fashion that:

E
�
(X f − X g)

2
�
= ‖ f − g‖2H

E
�
X 2

f0

�

‖ f0‖2H
= ‖ f − g‖2H E

�
X 2

f0

�
.

Therefore,

E
�
X f X g

�
=

1
2

�
E(X 2

f
) +E(X 2

g
)−E

�
(X f − X g)

2
��

=
1
2
E
�
X 2

f0

� �
‖ f ‖2H + ‖g‖2H − ‖ f − g‖2H

�

�
=

1
2
E
�
X 2

f0

��
m( f 2)2h +m(g2)2h −m

�
( f − g)2

�2h
� �

.

Finally, stationarity implies that E
�
X 2

f0

�
= E

�
X 2

g0

�
for any g0 of norm 1. The process with

E
�
X 2

f0

�
= 1 is sometimes called standard. In fact, apart from these characterization results, the

L2-fBm we consider are always assumed to be standard.
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4.2 Local nondeterminism and small balls

We study the link between the h-fBm and metric entropy, providing an estimate of the small
deviations of this process. In Theorem 4.6, a connection between the small deviations of the
h-fBm and metric entropy is expressed, opening the field of the measure of local properties of
the fBf in the next chapter, such as Chung laws of the iterated logarithm or measure of Hausdorff
dimension of the paths.

Perhaps the most general result on entropy and small ball probabilities over Wiener spaces
is due to GOODMAN [54] who showed that, for Kµ the unit ball of the RKHS of µ,

lim
ǫ→0

ǫ2H(Kµ,ǫ) = 0 ,

where H(Kµ,ǫ) is the log-entropy computed under the Banach norm (which makes Kµ compact
in the Banach space).
KUELBS AND LI [84] considerably refined this equality, establishing a link between the small balls
of a Gaussian measure and the metric entropy of Kµ. To state it, let us introduce some notation:
as x → a, we shall write f (x)≍ g(x) if

0< lim inf
x→a

f (x)/g(x)≤ lim sup
x→a

f (x)/g(x)<∞ .

Let us assume that there exists a function g such that g(x−1) is regularly varying at infinity2 and:

H(Kµ,ǫ)≍ g(ǫ) ,

as ǫ → 0. Since g is regularly varying, there exists β ≥ 0 and a slowly varying function at
infinity3 J such that g(ǫ) = ǫ−β J(ǫ−1). If 0 < β < 2 and BE(0,ǫ) denotes the ball of E centred
at 0 with radius ǫ, then:

− logµ (BE(0,ǫ))≍ ǫ−2β/(2−β)J
�
ǫ−1

�2/(2−β)
,

which means that if we were able to compute H(Kµ,ǫ), we could obtain the small deviations of
the fractional Brownian motion. In [84], it is mentioned that for Kµ the unit ball of the RKHS of
the fBm (that we identified in Chapter 3), computing H(Kµ,ǫ) is not trivial (this has not been
done, except if h= 1/2). Instead, we can recover H(Kµ,ǫ) from the small deviations (which will
not be needed), since we know that if Bh is a fBm, then:

− logP

�
sup

t∈[0,1]
|Bh

t
| ≤ ǫ

�
≍ ǫ−1/h, ∀ 0< ǫ < 1. (4.1)

This small deviation result was obtained in [106] with a probabilistic method. In Appendix C,
we explain how to obtain this result without probability and using the tools of Kuelbs and Li.

A multiparameter version (for the Lévy fBm) of (4.1) was obtained independently in [132,
142]. We will generalise this result for the h-fBm. The difference between our result and the
result of [84] is then discussed in Remark 4.7. The following lemma will be needed. It is
interesting in itself, since it establishes that for each h ∈ (0,1/2), the h-fBm is strongly locally

nondeterministic (SLND) in the following sense:

2i.e. a function such that there exists ρ ∈ R satisfying limx→∞ g(λ/x)/g(1/x) = λρ for all λ > 0.
3a regularly varying function with ρ = 0.
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Proposition 4.4. Let h ∈ (0, 1/2). There exists a positive constant C0 such that for all f ∈ L2(T, m)

and for all r ≤ ‖ f ‖, the following holds:

Var
�
B

h
f
| Bh

g
,‖ f − g‖ ≥ r

�
= C0r2h.

In order to prove this result, let us state the following lemma which will make up for the lack of
Fourier transform in E.

Lemma 4.5. For ϕ ∈ L2(µ), define:

Fϕ(x∗) =
∫

E

cos〈x∗, x〉 ϕ(x) µ( dx) , x∗ ∈ E∗.

Then for x∗,ϕ ∈ E∗:

Fϕ(x∗) 6= 0⇔ x∗ = λϕ, for some λ ∈ R \ {0}.

Proof. First assume that x∗,ϕ ∈ E∗ are linearly independent:

I =

∫

E

cos〈x∗, x〉 〈ϕ, x〉 dµ(x) =

∫

R2

cos(t1) t2 dµΣ(t1, t2)

=
1

2π
p

detΣ

∫

R2

cos(t1) t2 exp
�
−1

2
tT
Σ
−1t
�

dλ(t1, t2)

where Σ represents the covariance structure between the Gaussian random variables x∗ and ϕ
(defined on the probability space (E,B(E),µ)). Precisely,

Σ =

�
Eµ
�
〈x∗, ·〉2

�
Eµ (〈x∗, ·〉〈ϕ, ·〉)

Eµ (〈x∗, ·〉〈ϕ, ·〉) Eµ
�
〈ϕ, ·〉2

�
�

By the linear independence hypothesis on x∗ andϕ,Σ is not degenerated. Up to renormalization,
we can consider that the diagonal in Σ is 1. Let γ be the non-diagonal term. Then I reads:

I =
1

2π
p

detΣ

∫

R2

cos(t1) t2 exp
�
− 1

2− 2γ2
(t2

1 + t2
2 − γt1 t2)

�
dλ(t1, t2)

=
1

2π
p

detΣ

�
It1>0,t2>0 + It1>0,t2<0 + It1<0,t2>0 + It1<0,t2<0

�

=
1

2π
p

detΣ

�
It1>0,t2>0 + It1>0,t2<0 − It1>0,t2<0 − It1>0,t2>0

�

= 0.

The converse gives, up to a multiplicative constant, I =
∫
R

t exp
�
i t − t2/2

�
dt > 0, when

ϕ = x∗. Thus, whenever x∗ and ϕ are linearly dependent, I is non-zero.

Proof of Proposition 4.4. The proof for C0 ≥ 0 relies essentially on the metric structure of the co-
variance of fBm, from which follow increment stationarity and scale invariance of the process. As
such, the proof is the same as for the Lévy fractional Brownian motion in Rd , as it appeared first
in Lemma 7.1 of [117]. In his paper, Pitt used Fourier analysis to obtain C0 > 0. Although this
tool is finite-dimensional (because the Lebesgue measure is) and despite the non-existence of a
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standard infinite-dimensional Fourier transform, Gaussian measures provide a natural extension
to an infinite-dimensional framework. Using Pitt’s arguments, we obtain that for f̃ = (r/‖ f ‖) f :

Var
�
B

h
f
| Bh

g
,‖ f − g‖ ≥ r

�
= Var

�
B

h

f̃
| Bh

g
,‖ f̃ − g‖ ≥ r = ‖ f̃ ‖

�
= C0r2h.

If C0 was to be 0, there would exist a sequence of random variables Bn of the form Bn =
∑

j a j(n)B
h
g j

,

where ‖g j − f̃ ‖ ≥ ‖ f̃ ‖, such that Bn converges to B
h

f̃
in L2(P). Stated differently, the sequence

b∗
n
=
∑

j a j(n)〈K̃hkh(g j , ·), ·〉 converges to b∗ = 〈K̃hkh( f̃ , ·), ·〉 in L2(µ). Let F0 be a restriction
of the mapping F (see the previous lemma) defined by:

F0ϕ( f2) =

∫

E

cos
�
〈K̃hkh( f2, ·), x〉

�
ϕ(x) µ( dx) , f2 ∈ L2(T ),ϕ ∈ L2(µ).

Lemma 4.5 says that for any fixed f1 ∈ L2(T ), F0

�
K̃hkh( f1, ·)

�
( f2) is non-zero only if f2 ∈

L2(T ) is such that, for some λ ∈ R \ {0}, K̃hkh( f2, ·) = λK̃hkh( f1, ·). Hence it is non-zero only
if kh( f2, ·) = λkh( f1, ·). A by-product of the proof of Lemma 3.8 is that this equality can only
hold if f1 = f2. This implies that the support of F0 b∗

n
is included in {g j , j ∈ N} which is strictly

disjoint from the support of F0 b∗.
Applying the Cauchy-Schwarz inequality to |F0 b∗

n
( f ) − F0 b∗( f )|, one proves that for all

f ∈ L2(T ), F0 b∗
n
( f )→F0 b∗( f ) as n tends to infinity. This is a contradiction with the fact that

the supports are strictly disjoint.

Theorem 4.6. Let h ∈ (0,1/2), B
h a h-fractional Brownian motion and K a compact set in

L2(T, m). Then, for some constant κ1 > 0,

P

�
sup
f ∈K

|Bh
f
| ≤ ǫ

�
≤ exp (−κ1 N(K , dh,ǫ)) ,

and if there exists ψ such that for any ǫ > 0, N(K , dh,ǫ) ≤ ψ(ǫ) and ψ(ǫ)≍ψ(ǫ/2), then for

some constant κ2 > 0,

P

�
sup
f ∈K

|Bh
f
| ≤ ǫ

�
≥ exp (−κ2 ψ(ǫ)) .

Proof. The lower bound follows from Lemma 2.2 in [142] and is a general result for Gaussian
processes. The upper bound is specific to Lévy-type fractional Brownian motions and is a conse-
quence of the SLND property proved above, and of an argument of conditional expectations as
described in [106].

Let η > 0 and M(η) ⊂ K be a finite set of maximal cardinality, in the sense that for any
elements, f 6= g ∈ M(η) ⇒ ‖ f − g‖ ≥ η1/2h. The cardinal |M(η)| is generally referred to as
packing number. The elements of M(η) are arbitrarily ordered and denoted f1, . . . , f|M(η)|. Then,

P

�
sup
f ∈K

|Bh
f
| ≤ ǫ

�
≤ P

�
sup

f ∈M(η)

|Bh
f
| ≤ ǫ

�
,

and since the conditional distributions of a Gaussian process are Gaussian, the SLND property
of Lemma 4.4 implies that for any k ∈ {2, . . . , |M(η)|}:

P
�
|Bh

fk
| ≤ ǫ

�� B
h
f j

, j ≤ k− 1
�
= Φ(C−1

0 η
−1ǫ) ,
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where Φ is the cumulative distribution function of a standard normal random variable. By re-
peated conditioning,

P

�
sup

f ∈M(η)

|Bh
f
| ≤ ǫ

�
≤
�
Φ(C−1

0 η
−1ǫ)

�|M(η)|
.

As N(2ǫ)≤ |M(ǫ)|, taking η = ǫ/2 in the previous inequality yields:

P

�
sup
f ∈K

|Bh
f
| ≤ ǫ

�
≤ exp(−κ1N(ǫ)) ,

with κ1 = − logΦ(2C−1
0 )> 0.

Estimating the small balls of the fBf (i.e. when h is not fixed anymore) seems more com-
plicated. Talagrand’s lower bound estimate still holds, leading to: for K compact in (0,1/2)×
L2(T, m), P(sup(h, f )∈K |Bh, f | ≤ ǫ)≥ exp(−κ2 N(K , dB,ǫ)). A sharp estimate of this last entropy in
terms of the entropy on both coordinates would be required, while for the upper bound, the no-
tion of SLND for the fBf does not seem appropriate: intuitively, the regularity in the h-direction
contrasts with the nondeterminism studied above.

Remark 4.7. Theorem 4.6 is rather different from what is obtained via [84]. Indeed, their result

is concerned with the supremum of the process over the elements of the RKHS measured with the

Banach norm:

P

 
sup

ϕ∈BE∗
h
(0,1)
|Bh
ϕ| ≤ ǫ

!
= P

�
‖Bh‖Eh

≤ ǫ
�
= µh

�
BEh
(0,ǫ)

�

and µh

�
BEh
(0,ǫ)

�
=Wh (BW (0,ǫ)) by isometry. Meanwhile, it comes from (4.1) that:

Wh (BW (0,ǫ)) = P

�
sup

t∈[0,1]
|Bh

t
| ≤ ǫ

�
≍ exp

§
− 1
ǫ1/h

ª
,

which in general is different from our bound. This does not contradict the previous Theorem, because

of the difference between the Hilbert norm and the Banach norm.

A remark concerning fractional Brownian sheets. It has been said several times (see 1.2.1)
that fractional Brownian sheets could be represented as L2-fractional Brownian motions. This
is indeed true, but let us recall that for H ∈ (0,1/2)N , and µH the tensorized Takenaka measure
of Section 1.2.1, a fractional Brownian sheet on RN

+
of parameter H is the following L2-indexed

process:

E
�
W H

t
W H

s

�
=

1
2

�
µH(1Vt

) +µH(1Vs
)−µH

�
|1Vt
− 1Vs
|
��

.

where Vt is the set defined in 1.2.1. Hence it corresponds to h= 1/2, so the previous LND result
does not apply here, which agrees with the known fact that fractional Brownian sheets do not
have the strong LND property.

Our interpretation for h = 1/2 comes from the proof of the local nondeterminism (proof of
Proposition 4.4 where Lemma 3.8 fails to apply for h= 1/2): it happens exactly the same as for
the standard fractional Brownian motion on the line when H = 1, some linearity in the indexing
parameter appears and the process becomes “more deterministic”.
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4.3 Approximation of L2-multifractional Brownian motion by
L2-fBm

For an indexing set on which the fractional Brownian field has a continuous modification, we
define a process which is a piecewise L2-fractional Brownian motion based on a single white
noise, and that approximates uniformly almost surely a L2-multifractional Brownian motion.
This extends a Theorem of [88] on the approximation of (R-indexed) multifractional Brownian
motion. This result turned out to be of practical importance to build a stochastic calculus with
respect to multifractional Brownian motion.

4.3.1 Approximation in the L2 space

Let K be a compact subset of L2(T, m) with nonempty interior, and call a dissecting class any
collection {K j} j=1,...,J , J ∈ N which is a partition of K into disjoint sets having nonempty interior.
Let B be a fBf and h : K → (0,1/2] be a continuous mapping. We let

¦
{Kn

j
} j=1,...,n, n ∈ N

©

be a sequence of dissecting classes such that:

lim
n→∞

max
j=1,...,n

Dm(K
n
j
) = 0 , (4.2)

where Dm denotes the dm-diameter of subsets of L2. For each n ∈ N, each j = 1, . . . , n, let us
choose gn

j
an element of �Kn

j
. For any n ∈ N∗, the following process can be defined:

B
h,n
f
=

n∑

j=1

Bh(gn
j
), f 1{ f ∈Kn

j
} , ∀t ∈ K .

This is a piecewise L2-fBm, since on each Kn
j
, B

h,n has constant Hurst parameter. It provides

a good approximation of a L2-mBm with regularity function h, in the sense of the following
Proposition. We recall that the notation dm( f , g) refers to ‖ f − g‖L2(T,m).

Theorem 4.8. Let K be a compact subset of L2(T, m) and let B be a fBf on (0, 1/2] × K. Let

{{Kn
j
} j=1,...,n, n ∈ N} be a sequence of dissecting classes satisfying (4.2). Let η > 0 and assume that

h : K → [η, 1/2 − η] is a continuous function. If ι = infK h( f ) (≥ η), and K has finite Dudley

integral: ∫ ∞

0

q
log N(K , d2ι

m
,ǫ) dǫ <∞ ,

then B
h,n converges almost surely uniformly on K and in L2(Ω) towards the L2-mBm B

h.

Proof. By Theorem 3.19, the convergence of Dudley’s integral suffices to ensure that there exists
Ω
′ a measurable subset of Ω of probability 1, such that for all ω ∈ Ω′, B has a modification

which is continuous on [η, 1/2] × K , and thus uniformly continuous. Without restriction, we
assume that B is this modification. Let ε > 0, and for all ω ∈ Ω′, there exists δ such that, for
any h, h′ ∈ [η, 1/2], any f , g ∈ K ,

�
|h− h′| ∨ dm( f , g)

�
≤ δ⇒ |Bh, f (ω)− Bh′,g(ω)| ≤ ε . (4.3)
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Then, notice that:

sup
f ∈K

|Bh,n
f
− B

h

f
|= max

j=1,...,n
sup
f ∈Kn

j

|Bh(gn
j
), f − Bh( f ), f | . (4.4)

Let us fix ω ∈ Ω′ and δ as above. In the uniform continuity of h over K , let δ′ be such that for
f , g ∈ K , dm( f , g)< δ′ implies that |h( f )−h(g)| ≤ δ. Then, there is N large enough (depending
on ω) such that for any n≥ N ,

sup
j=1,...,n

Dm(K
n
j
)≤ δ′

which now implies that:
sup

f ,g∈Kn
j

|h( f )− h(g)| ≤ δ .

Finally, for n≥ N , Equations (4.3) and (4.4) give:

sup
f ∈K

|Bh,n
f
− B

h

f
| ≤ ε .

This proves the almost sure uniform convergence:

∀ω ∈ Ω′, lim
n→∞

sup
f ∈K

|Bh,n
f
(ω)− B

h

f
(ω)|= 0 .

The L2(Ω) convergence can be proved like this:

E
�
B

h,n
f
− B

h

f

�2
≤ Cη,K(h(g

n
j
)− h( f ))2

where j is determined by f ∈ K j
n
, and we applied the inequality given by Theorem 3.15. We

already mentioned that Dm(K
n
j
)→ 0 as n→∞, so the fact that dm(g

n
j
, f ) ≤ Dm(K

n
j
) gives the

L2(Ω) convergence.

4.3.2 Set-indexed version

This section provides a nice application of the previous result to the framework of set-indexed
processes. Here we simply describe a natural dissecting class and show how a set-indexed mul-
tifractional Brownian motion (SImBm) is approximated by a piecewise SIfBm.

Let A be an indexing collection on (T, m), endowed with the pseudo-distance dm. Let A ′
be a compact sub-indexing collection ofA . We may also work directly withA if {1A, A∈A} is
compact in L2(T, m). We recall the separability from above condition, as it appears in Definition
2.1. We assume that there exists an increasing sequence of finite subclasses of A , denoted by
An = {;, Un

1 , . . . , Un
kn
} for any n ∈ N. These classes are closed under intersections and we recall

the approximating functions gn :A →An defined by

∀U ∈A , gn(U) =
⋂

V∈An
V◦⊇U

V .

The dissecting classes are given by Cn
k
= {U ∈A ′ : gn(U) = Un

k
} for n ∈ N and k = 1, . . . , kn.

Condition (4.2) is satisfied if we assume for instance that Assumption (H1) from Chapter 2
is satisfied (this is really stronger than (4.2)). In fact, considering the general definition of
IVANOFF AND MERZBACH given in [70], (4.2) is satisfied because it is assumed that ∩n∈Ngn(U) =



4.3. Approximation of L2-multifractional Brownian motion by L2-fBm 113

U ,∀U ∈ A . According to Remark 2.13, Assumption (H1) also ensures that the Dudley integral
of Theorem 4.8 converges.

In Section 2.6, we have made the link betweenA -indexed and L2(T, m)-indexed processes.
We recall that the first one can be defined from the second, when valuated on indicator functions.
Thus we conclude by Theorem 4.8 that if B is a fBf on L2(T, m), if h is a continuous regularity
function onA ′ with values in [η, 1/2] for some η > 0, the piecewise SIfBm given by:

B
h,n
U = Bh(gn(U)),U =

kn∑

k=1

B
h(Un

k
)

U 1Cn
k
(U) , U ∈A ′

converges almost surely uniformly onA ′ towards the SImBm {Bh

U
, U ∈A ′}.

4.3.3 Local self-similarity

In the definition of the fractional Brownian field, authorizing the Hurst parameter to vary entails
the loss of self-similarity and L2-increment stationarity. We prove here that, as for the mBm
[116, 20] and its multiparameter extensions [57], these properties appear in a weak form, via a
tangent process Y . Let h be a continuous regularity function with values in (0, 1/2] and assume
that the local and pointwise Hölder exponents of h coincide and that h( f )< αh( f ). Here, αh( f )

is the exponent of local Hölder regularity with respect to the distance d ′
m

(i.e. the square of the
L2(T, m) distance, as in Section 3.5). The irregular case is probably more difficult since there is
no lower bound for the variance of the increments of the fBf, unlike the multiparameter case.
Hence we restrict here to h regular. At each f0 ∈ L2(T, m), define for any ρ > 0,

Y
f0,α

f
(̺) = ̺−α

�
B

h

f0+̺ f
− B

h

f0

�
, f ∈ L2(T, m) .

We will be interested in the limit as ̺→ 0.

Lemma 4.9. Let η > 0 and h : L2 → [η, 1/2 − η] be smaller than its Hölder regularity (i.e.

regular). Then the limit:

lim
̺→0
E
�
Y

f0,α
f
(̺)− Y f0,α

g
(̺)

�2
,

is finite and positive if and only if α = 2h( f0). Then, this limit is equal to ‖ f − g‖4h( f0), which

implies that {Y f0,α
f
(̺), f ∈ L2} converges in finite-dimensional distribution towards a L2-fBm of

parameter h( f0).

Proof. We first notice that for f , g ∈ L2,
r
E
�
Bh( f ), f − Bh( f ),g

�2 ≤
s
E
�
B

h

f
− B

h

g

�2
+

r
E
�
Bh( f ),g − Bh(g),g

�2
.

Hence, Theorem 3.15 implies that on a neighbourhood D0 of f0,

̺−α+2h( f0+̺ f )‖ f − g‖2h( f0+̺ f ) ≤
s
E
�
Y

f0,α
f
(̺)− Y

f0,α
g (̺)

�2
+̺−α

Æ
Cη,D0
|h( f0 +̺ f )− h( f0 +̺g)|

Let ε > 0 be such that 2ε ≤ αh( f0) − h( f0). If ̺ is small enough, the Hölder continuity of h

yields:

|h( f0 +̺ f )− h( f0 +̺g)| ≤ d ′
m
(̺ f ,̺g)αh( f0)−ε

≤ d ′
m
(̺ f ,̺g)h( f0)+ε

≤ ̺2h( f0)+2ε‖ f − g‖2h( f0)+2ε
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Thus, if we put α= 2h( f0), it results that:

lim inf
̺→0
E
�
Y

f0,α
f
(̺)− Y f0,α

g
(̺)

�2
≥ ‖ f − g‖4h( f0) .

The upper bound is more straightforward, since we can use Corollary 3.16, and the same Hölder
estimates on the increments of h. Let h̄ f0,D0

(̺) = inf{h( f0 + f ) : f ∈ ̺D0}.
s
E
�
Y

f0,α
f
(̺)− Y

f0,α
g (̺)

�2
≤ ̺−α

�Æ
Cη,D0
|h( f0 +̺ f )− h( f0 +̺g)|+ ‖̺ f −̺g‖2(h( f0+̺ f )∧h( f0+̺g))

�

≤ ̺−α
�Æ

Cη,D0
‖̺ f −̺g‖2h( f0)+2ε + ‖̺ f −̺g‖2h̄ f0,D0

(̺)
�

≤
�
1+̺2ε

Æ
Cη,D0

�
‖ f − g‖2h̄ f0,D0

(̺) , (4.5)

where ε and ̺ are chosen as above, and in particular, such that ̺ Dm(D0)≤ 1 (recall that Dm is
the diameter of a set, measured with dm). The continuity of h implies that h̄ f0,D0

(̺) converges
to h( f0) and this finishes the proof.

Theorem 4.10. Let K be a compact subset of L2(T, m). Let ι = infK h( f ) (≥ η) and assume the

convergence of the Dudley integral on K:

∫ ∞

0

q
log N(K , d2ι

m
,ǫ) dǫ <∞ .

Under the conditions of Lemma 4.9 and for α = 2h( f0), Y f0,α(̺) converges in law in the space of

continuous functions C(K) towards a L2-fBm of parameter h( f0).

Proof. We will use a general criterion for tightness of random fields (as for instance in KALLEN-
BERG [74, Corollary 14.9]). We shall use the notation

ωX (K , dm,δ) = sup
�
|X f − X g |, f , g ∈ K , dm( f , g)≤ δ

	

for the modulus of continuity of a process X on K measured with dm. Then, a sequence of random
fields {X n, n ∈ N} converges in law in C(K) if it converges in finite-dimensional distributions
and

lim
δ→0+

lim sup
n→∞

E (ωX n(K , dm,δ)∧ 1) = 0 .

The convergence of Dudley integral and Theorem 3.19 allows us to consider an almost sure
continuous version of Y f0,α(̺) on K . To make notations simpler, we denote this process Y (̺).
By Equation (4.5), if ε and ̺ are small enough (as in the proof of Lemma 4.9),

ωY (̺)(K , dm,δ)≤ sup
¦
|Yf (̺)− Yg(̺)|, dY (̺)( f , g)≤ (1+̺2ε

Æ
Cη,K) δ

2h̄ f0,K (̺)
©

≤ωY (̺)

�
K , dY (̺), 2δ2h̄ f0,K (̺)

�
,

where we bounded (1+̺2ε
Æ

Cη,K) by 2 (which is true for ̺ sufficiently close to 0).
From the general theory of Gaussian processes, we know (e.g. refer to [5, Corollary 1.3.4]) that
there exists a universal constant K > 0 such that:

E
�
ωY (̺)(K , dY (̺),δ)

�
≤ K

∫ δ

0

q
log N(K , dY (̺),ǫ) dǫ
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Hence,

E
�
ωY (̺)(K , dm,δ)∧ 1

�
≤ E

�
ωY (̺)(K , dY (̺),δ

2h̄ f0,K (̺))
�

≤ K

∫ 2δ
2h̄ f0,K (̺)

0

q
log N(K , dY (̺),ǫ) dǫ

≤ K

∫ 2δ
2h̄ f0,K (̺)

0

s
log N

�
K , 2d

2h̄ f0,K (̺)

m ,ǫ
�

dǫ

≤ 2K

∫ δ
2h̄ f0,K (̺)

0

Ç
log N

�
K , d2ι

m
,ǫ
�

dǫ

which is a well-defined integral. By continuity of h,

lim sup
̺→0+

E
�
ωY (̺)(K , dm,δ)∧ 1

�
≤ 2K

∫ δ2h( f0)

0

Ç
log N

�
K , d2ι

m
,ǫ
�

dǫ ,

and the continuity of the integral gives the desired result as δ→ 0+.

4.4 Projection on flows of the L2-multifractional Brownian motion

In this paragraph, the concept of flow (cf Definition 2.27 and [70]) is extended to L2(T, m). It
involves increasing functions with values in L2, which has to be understood for any function
Φ : [0, 1]→ L2(T, m), as:

s ≤ t ⇒ Φ(t)−Φ(s)≥ 0 m− almost everywhere.

Definition 4.11. A flow is a continuous increasing function from [0, 1] to L2(T, m).

We see that this definition is even simpler to express on L2 than it was on an indexing collection.
Identically, we have the definition of m–standard projection:

Definition 4.12. Let Φ be a flow and define the m-standard projection of a process X on L2(T, m)

as:

XΦ =
�

XΦ◦θ−1(t) , t ∈ [0,‖Φ(1)‖]
	

,

where θ−1 is the inverse of the continuous and increasing function θ : t 7→ ‖Φ(t)‖.
Proposition 4.13. Let B be a fractional Brownian field indexed by (0,1/2] × L2(T, m) and h :
L2(t, m)→ (0, 1/2] a continuous regularity function. For any flow Φ, B

h,Φ denotes the m–standard

projection along Φ of the L2-mBm. B
h,Φ is a standard multifractional Brownian motion on IΦ =

[0,‖Φ(1)‖], with regularity function h ◦Φ ◦ θ−1.

Proof. Let us choose a flowΦ. In the first place, we consider the process B
Φ = {Bh,Φ◦θ−1(t), (h, t) ∈

(0,1/2] × [0,‖Φ(1)‖]} which is, as we will see, a fractional Brownian field defined on a sub-
interval of R+. Let s < t ∈ [0,‖Φ(1)‖],

E
�
B
Φ

h,t B
Φ

h,s

�
= kh

�
Φ ◦ θ−1(t),Φ ◦ θ−1(s)

�

=
1
2

�
‖Φ ◦ θ−1(t)‖4h + ‖Φ ◦ θ−1(s)‖4h −

�
‖Φ ◦ θ−1(t)‖ − ‖Φ ◦ θ−1(s)‖

�4h
�

=
1
2

�
t4h + s4h − (t − s)4h

�
,
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where we used the fact that Φ is increasing. Hence for any h ∈ (0,1/2], B
Φ

h,· is a fractional

Brownian motion of parameter 2h, which confirms our claim that B
Φ is a fBf on IΦ. If h is

a regularity function on L2, h
′ = h ◦ Φ ◦ θ−1 is a regularity function on IΦ. Thus, Bh

′(·),· is a
multifractional Brownian motion over IΦ.

We proved that B
h,Φ is a multifractional Brownian motion in the widest acceptation of this

term (as for instance in [88, Definition 1.3] or in our introduction). However, we do not pro-
vide evidence that B

h,Φ has a more usual moving average or harmonizable representation, or
even more generally an integral representation as in [134]. This will be the topic of further in-
vestigations, as this would clearly give a strengthened legitimacy to our L2-fractional Brownian
field.
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5.1 Introduction

In the 1920’s, KHINCHINE introduced for the first time a law of the iterated logarithm for sums of
independent and identically distributed random variables. Thereafter, many works extended this
result and in particular CHUNG [31] presented a new law of the iterated logarithm for Brownian
motion of the lim inf type, thus capturing the slowest local oscillations. This law was general-
ized in numerous ways to Gaussian processes and Gaussian samples. A key step in establishing
Chung’s laws of the iterated logarithm (that we may hereafter abbreviate as LIL) for Gaussian
processes is usually to determine the small ball probabilities, together with good independence
properties.

In this chapter, we propose to determine a Chung’s law of the iterated logarithm for the
multiparameter fractional Brownian motion (multiparameter fBm for short), which is neither
increment stationary (see [106, 142, 151] and for a more general theory [103, 96, 97] where
this is an hypothesis) nor has an immediate decomposition into independent processes (as for
Brownian sheet [141]). We recall that the multiparameter fractional Brownian motion is a cen-
tred Gaussian process on Rν, ν ∈ N∗, with covariance defined for h ∈ (0, 1/2]:

k
(ν)

h
(s, t) =

1
2

�
λ([0, s])2h +λ([0, t])2h −λ([0, s]△ [0, t])2h

�
, (5.1)

where λ denotes the Lebesgue measure in Rν and △ is the symmetric difference of sets. This
is a special case of a family of covariance on sets introduced by HERBIN AND MERZBACH [60] to
define the set-indexed fractional Brownian motion, and extended to its most general expression

117
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in Chapter 3 to functions of L2(T, m). We also refer to the introduction of this thesis, where
this family of covariances is presented in details. Besides, h = 1/2 in (5.1) yields the usual
Brownian sheet. However, our results hold for h< 1/2 and cannot be extended to h= 1/2 (see
the discussion at the end of Section 4.2).

The (pseudo-)metrics induced by the Lévy fBm X h and the multiparameter fBm B
h, which are

defined respectively as dX h(s, t) =
q
E(X h

s
− X h

t )
2 = ‖s− t‖h and dB

h(s, t) = λ([0, s]△[0, t])h, are
in fact equivalent on a domain of Rν

+
that does not approach the axes. Thus, it is expected that

these processes will share certain sample path properties, at least away from the axes. This is the
purpose of HERBIN AND XIAO [65], where the authors propose a modulus of continuity, laws of
the iterated logarithm and the Hausdorff dimension of the level sets of B

h. These results coincide
with their analogue for the Lévy fractional Brownian motion, but for the law of the iterated
logarithm, which is a local result, this is only true away from the axes. The lack of stationarity
forbids here to conclude that these modulus are the same whatever the point we choose. We note
here that the same happens for the fractional Brownian sheet: its law of the iterated logarithm
(not Chung’s law) is known away from 0 (cf [103]), but not in the neighbourhood of the origin.
If t0 is not on the axes, the Chung’s law of the iterated logarithm given in [65] is:

lim inf
r→0+

�
log log(r−1)

�h/ν sup‖t‖≤r |Bh
t0+t
− B

h
t0
|

rh
= c , a.s. ,

for some deterministic c that may depend on t0. Near 0, we will show that the local modulus is
in fact of order rνh eΨh(r), where eΨh is a correcting term (i.e. negligible compared to rνh). Hence
the slowest local oscillations of the multiparameter fractional Brownian motion are of order rνh,
which differs significantly from rh (as soon as ν ≥ 2) and justifies this notion of singularity at
the origin. The main new ingredients are a sharp estimate of the small ball probabilities, and a
spectral representation in its abstract Wiener space of the multiparameter fBm.

This representation is related to stable measures in Banach spaces: we prove that for H the
RKHS of the ν-dimensional Brownian sheet, there exists an abstract Wiener space (H, E,µ) such
that for any h ∈ (0, 1/2), there is a strictly stable measure Γ h on E whose characteristic function
is given by exp(−1/2‖Sξ‖4h

H
), ξ ∈ E∗. This measure has a Lévy-Khintchine decomposition, with

Lévy measure∆h. I still denotes the Paley-Wiener map, and we let Bh be the white noise on the
Borel sets of E with control measure ∆h. Then, the multiparameter fractional Brownian motion
has the following expression:

B
h
t
=

∫

E

�
1− ei〈I (ϕt ),x〉

�
dBh

x
, t ∈ [0,1]ν ,

where ϕt(·) = λ(1[0,t]·) ∈ H.
We will prove a lower and an upper bound in Chung’s LIL. The modulus for the lower bound

is given by
Ψ
(ℓ)

h
(r) = rνh eΨ(ℓ)

h
(r) = rνh (log log r−1)−h/ν ,

and the modulus for the upper bound is Ψ(u)
h
= rνh eΨ(u)

h
, where eΨ(u)

h
is an increasing function

started at 0, whose existence is proven in Section 5.3, and related implicitely to the following
decay function of ∆h:

F(x) = sup
ϕ∈A

∫

‖x‖E<x

(1− cos〈I (ϕ), x〉) ∆α(dx) , (5.2)

where A is a compact subset of H, that we will define later in this chapter. For every h ∈ (0, 1/2),
let us finally define Mh(r) = supt∈[0,r]ν |Bh

t
|, r ∈ [0, 1].
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Theorem 5.1. Let h ∈ (0,1/2) and let Mh, Ψ
(ℓ)

h
and Ψ

(u)

h
be as above. Then we have almost surely:

lim inf
r→0+

Mh(r)

rνheΨ(ℓ)
h
(r)
≥ κh/ν

1 and lim inf
r→0+

Mh(r)

rνheΨ(u)
h
(r)
≤ κh/ν

2 ,

where κ1 ≤ κ2 are the constants appearing in the small deviations (see Equation (5.3)).

This result is not sharp, as we were unable to give the rate of decay of F . We discuss how this
gap could be filled at the end of Section 5.3.

In STRASSEN [135], while looking for an invariance principle for scaled random walks, the
author obtained the fact that the same scaling on a Brownian motion gives a family of processes
which is almost surely relatively compact in the unit ball of the Sobolev space H1

0 of continuous
functions started at 0 with square-integrable weak derivative. Functional laws of the iterated
logarithm have now been widely studied in the literature: CSÁKI [32] was the first to get a
rate of convergence for certain functions in this unit ball, and this result was extended by DE

ACOSTA [38] to scaled random walks, for any function of the unit ball of the RKHS (with radius
strictly smaller than 1). Then, we can mention the contributions of Goodman, Grill, Kuelbs, Li,
Talagrand, in particular in [55] and [85], where the authors bring a new understanding of the
rate of convergence towards the unit sphere in the general frame of Gaussian samples in Banach
spaces. Similarly to the standard LIL, the functional result for fractional Brownian motion was
also given by MONRAD AND ROOTZÉN [106]. So for the multiparameter fBm, let us define, for
r ∈ (0,1),

η(h,ℓ)
r
(t) =

B
h(r t)

rνh
p

log log(r−1)
,∀t ∈ [0,1]ν

and

η(h,u)
r
(t) =

B
h(r t)

rνh
�
eΨ(u)

h
(r)
�−ν/2h

,∀t ∈ [0, 1]ν

the lower and upper rescaled multiparameter fBm for which we seek an invariance principle.

Theorem 5.2. Let h ∈ (0, 1/2) and let Hν
h

denote the reproducing kernel Hilbert space of k
(ν)

h
. Let

ϕ ∈ Hν
h

having norm strictly smaller than 1. Then, there exist two positive and finite constants

γ(ℓ)(ϕ) and γ(u)(ϕ) such that, almost surely,

lim inf
r→0+

eΨ(ℓ)
h
(r)−1−ν/2h sup

t∈[0,1]ν
|η(h,ℓ)

r
(t)−ϕ(t)| ≥ γ(ℓ)(ϕ)

lim inf
r→0+

eΨ(u)
h
(r)−1−ν/2h sup

t∈[0,1]ν
|η(h,u)

r
(t)−ϕ(t)| ≤ γ(u)(ϕ) .

As usual, taking f = 0 yields the standard law of the iterated logarithm.
Observing the techniques of TALAGRAND [142] and XIAO [151], it appears that for the Lévy

fractional Brownian motion and similar processes, Chung’s law of the iterated logarithm and
the exact Hausdorff measure of the range of these processes could be obtained by means of
the same estimates. However, we will prove that the Hausdorff dimension does not grasp the
slow oscillations of the multiparameter fBm at the origin. The cause is again the non-increment
stationarity.
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Outline of this chapter. In section 5.2, we prove preliminary results. The new ideas essentially
lie in this section. They concern the small deviations around the origin 0, which are obtained
using the local nondeterminism of Chapter 4, and a spectral representation on the Wiener space
of this process. We prove Theorem 5.1 in Section 5.3 and Theorem 5.2 in Section 5.4. Hausdorff
dimension of the graph is computed in 5.5 and finally, a discussion on possible extensions of this
work is included in Section 5.6. The last section gathers a couple of technical results.

5.2 Small balls and spectral representation

5.2.1 Entropy estimate and small balls

Let us state the following basic observation on the metric induced by the multiparameter frac-
tional Brownian motion:

Lemma 5.3. For any a ∈ (0, 1), any b > a, there exist ma,b depending on a and b and Mb

depending on b only, such that for any s, t ∈ [a, b]ν,

ma,b‖s− t‖ ≤ λ ([0, s]△ [0, t])≤ Mb‖s− t‖

In particular, the upper bound holds even if s, t ∈ [0, b]. However, for any given α ∈ (0, 1), we have

that for all ε > 0, there exist s, t ∈ [0, 1]ν such that λ ([0, s]△ [0, t])≤ ǫ but ‖s− t‖ ≥ α.

Proof. The upper and lower bounds on λ ([0, s]△ [0, t]) are stated in Lemma 3.1 of [58] (up to
equivalence of l1 and l∞ distances with the Euclidean distance), except that there, the constant
in the upper bound is said to depend also on a. From their proof, it is clear that this is not
necessary.
To prove the last statement, let sn = (2

−n, b, . . . , b) ∈ [0, b]ν and tn = (b, 2−n, b, . . . , b) ∈ [0, b]ν.
It appears that λ ([0, sn]△ [0, tn])→ 0 as n→∞, while ‖sn − tn‖ increases to

p
2b.

Concerning notations, we will have to compare several distances, so dE will denote the Eu-
clidean distance in Rν, and for any h ∈ (0,1], dh is the following distance:

for s, t ∈ [0, 1]ν, dh(s, t) = λ ([0, s]△ [0, t])h .

When h = 1, we will prefer the notation dλ. Note that we will only consider results for h ≤ 1/2
because of the definition of B

h, but dh is still a distance for h ∈ (1/2, 1] (but no longer negative
definite which prevents the definition of a multiparameter fBm for such values). Accordingly,
Bh(t, r) is the ball of dh-radius r centred at t. If no subscript is written, this will be the Euclidean
ball. The notation ≍ between two functions f and g means that near a point a, f (x) = O(g(x))

and g(x) = O( f (x)). We recall that on a (pre-)compact metric space (T, d), the metric entropy
N(T, d,ǫ) gives, for any ǫ > 0, the minimal number of balls of radius ǫ that are necessary to
cover T .

Lemma 5.4. Let ν ∈ N, then the dλ-metric entropy of [0, 1]ν is, for ǫ small enough:

N([0,1]ν, dλ,ǫ)≍ ǫ−ν .

Proof. Let us remark that due to Lemma 5.3, dλ(s, t) ≤ M1dE(s, t), for any s, t ∈ [0,1]ν. Thus,
for any ball one has Bλ(t0, r) ⊇ B(t0, M−1

1 r). We can assert that:

N ([0, 1]ν, dλ,ǫ)≤ N
�
[0,1]ν, dE , M−1

1 ǫ
�
≍
�
M−1

1 ǫ
�−ν

,
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as ǫ→ 0. Conversely,

N ([0,1]ν, dλ,ǫ)≥ N ([1/2, 1]ν, dλ,ǫ)

≥ N
�
[1/2,1]ν, dE , m−1

1/2,1ǫ
�

≍
�
2m−1

1/2,1ǫ
�−ν

,

so both inequalities give the expected result.

Another proof of this lemma, geometric and combinatorial, can be found in Appendix 5.7.1. It
is more lengthy, but gives more explicit bounds in front of ǫ−ν, and an overview of the shape of
dλ-balls.

Proposition 5.5. For h < 1/2, there are constants κ1 > 0 and κ2 > 0 such that for any fixed

r ∈ (0,1) and any ǫ small enough (compared to r),

exp

�
−κ2

rν
2

ǫν/h

�
≤ P

�
sup

t∈[0,r]ν
|Bh

t
| ≤ ǫ

�
≤ exp

�
−κ1

rν
2

ǫν/h

�
(5.3)

Proof. First notice the isometry between the metric spaces ([0, 1]ν, dh) and the subset of H(kh)

defined by {kh(1[0,t], ·), t ∈ [0,1]ν}with the metric induced by the fBm on L2([0, 1]ν,λ). Hence,
we can apply Theorem 4.6, which states that (for h< 1/2), for any ǫ > 0,

− logP

�
sup

t∈[0,1]ν
|Bh

t
| ≤ ǫ

�
≍ N([0,1]ν, dh,ǫ) .

For any ǫ > 0, any t ∈ [0, 1]ν, the ball Bh(t,ǫ) is such that Bh(t,ǫ) = Bλ(t,ǫ
1/h). A direct

consequence is that N([0,1]ν, dh,ǫ) = N([0, 1]ν, dλ,ǫ1/h). Hence it suffices to calculate the
dλ-entropy to obtain the result for any h. Besides, B

h satisfies the subsequent self-similarity
property: for any r > 0,

�
B

h
t
, t ∈ [0, 1]ν

	 (d)
=
�

r−νh
B

h
r t

, t ∈ [0, 1]ν
	

.

Therefore, P
�
supt∈[0,r]ν |Bh

t
| ≤ ǫ

�
= P

�
supt∈[0,1]ν |Bh

t
| ≤ r−νhǫ

�
and so:

− logP

�
sup

t∈[0,r]ν
|Bh

t
| ≤ ǫ

�
≍ N

�
[0,1]ν, dλ, r−νǫ1/h

�
.

Lemma 5.4 permits to conclude.

Remark 5.6. This is different from the Lévy fBm X h for which the above log-probability is of the

order rνǫ−ν/h (see [142]). In fact, the small deviations of the multiparameter fBm away from the

axes are also different of those at 0, and similar to the Lévy fBm. Indeed, if t0 is not on the axes and

r is such that B(t0, r) ⊂ (0,∞)ν, the equivalence between distances dλ and dE yields, as ǫ→ 0:

− logP

�
sup

t∈B(t0,r)
|Bh

t
| ≤ ǫ

�
≍ N(B(t0, r), dE ,ǫ1/h)

≍
�

r

ǫ1/h

�ν
.
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5.2.2 Integral decomposition of the multiparameter fBm

The multiparameter fBm does not have independent increments, hence there is no spectral mea-
sure in the sense of YAGLOM [154]. Such a situation already appeared for the bifractional Brow-
nian motion in [146], but the difficulty was overcome due to the equivalence of the distances,
even near 0. These tricks could not work here. We shall use instead the L2-increment stationarity
in the Wiener space, to produce independent processes.

We recall a few notions about Gaussian measures on Banach spaces and abstract Wiener
spaces from the introductory chapter (see also [83, Lemma 2.1]). Let E be a separable Banach
space and µ a Gaussian measure on E. Let H be the completion of E∗ by the action of the
covariance operator S of µ, as defined in (1.9). This permits to define a sequence {ξn, n ∈ N}
in E∗, such that {Sξn, n ∈ N} is a complete orthonormal system (CONS) in H. Recall that I is
the Paley-Wiener map, defined as the isometric extension of the map ξ ∈ E∗ 7→ 〈ξ, ·〉 to a map
from H to L2(µ). Conversely, it is also possible to start from a separable Hilbert space and to
construct an embedding in a larger (Banach space), on which there exists a Gaussian measure
whose covariance will be related to the inner product on H. This is the abstract Wiener space
approach. In Chapter 3, starting from the reproducing kernel Hilbert space of the multiparameter
fBm, denoted Hh, built upon the kernel kh( f , g) = 1/2

�
λ( f 2)2h +λ(g2)2h −λ(( f − g)2)2h

�
for

f , g ∈ L2([0, 1]ν,λ), this led to the representation:

Wh
t
=

∫

E

〈I (kh(1[0,t], ·)), x〉 dWh
x

. (5.4)

For notational reasons that will become clear in the sequel, we write this process Wh instead of
Bh, but it is indeed the same L2-fBm as in Chapter 3.

Next we present a Lévy-Khinchine decomposition for negative-definite functions in abstract
Wiener spaces. Since this relies on an extension of Bochner’s theorem, we will need the following
lemma. In general, the embedding between H and E is continuous. We will need it to be Hilbert-
Schmidt. The following lemma states that starting from a separable Hilbert space H, it is possible
to find E and µ satisfying this property such that (H, E,µ) is an AWS.

Lemma 5.7. Let H be a separable Hilbert space. There is a separable Hilbert space (E,‖ · ‖) and a

Gaussian measure µ on E such that (H, E,µ) is an abstract Wiener space and the embedding H ⊂ E

is Hilbert-Schmidt.

Proof. Let us assume that there exists separable Hilbert spaces H0 and E0 such that H0 is densely
embedded into E0 by an operator R which is Hilbert-Schmidt, and that there exists a Gaussian
measure µ0 such that (H0, E0,µ0) is an abstract Wiener space. In that case, R is the covariance
operator. Let u be any linear isometry between H0 and H, and denote by (H, E,µ) the AWS given
by E = ũ(E0) and µ= ũ∗µ0, where ũ is the isometric extension of u (see [136, p.317]). Since
E0 is a Hilbert space, E is also a Hilbert space and the operator R′ = ũ ◦ R ◦ u−1 is the natural
embedding from H into E, and is of Hilbert-Schmidt type.
The existence of such a (H0, E0,µ0) triple follows either from examples as in sections 6 and 7 of
[85], or by the construction of the next paragraph.

Let us detail the Hilbert space structure of (H, E,µ) when E is a Hilbert space, and explain how
this permits to obtain sharper results. Let {xn, n ∈ N} be a complete orthonormal system of
(E, (·, ·)E). For each n, let λ2

n
be the variance of (xn, ·)E ∈ E∗ under µ. Note that

∑
n≥1λ

2
n
<∞,
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which follows from the fact that:

∑

n∈N
λ2

n
=
∑

n∈N

∫

E

(xn, x)2
E
µ(dx)

=

∫

E

‖x‖2
E
µ(dx) ,

and this quantity is finite (we know from FERNIQUE [48] that µ has exponential moments). Then
H is given by:

H =

¨
x ∈ E :

∞∑

n=1

�
(x , xn)E

λn

�2

<∞
«

. (5.5)

{hn = λn xn, n ∈ N} defines a CONS of H for the scalar product given by (x , hn)H = λ
−1
n
(x , xn)E ,

for any x ∈ H, and any n ∈ N. Then, one can check that H is densely and continuously embedded
into E.

This framework being set, we can now address the spectral decomposition itself. For any α ∈
(0,1], the application ξ ∈ E∗ 7→ ‖Sξ‖2α

H
is continuous (because of the inequality ‖ · ‖H ≤ C ‖ · ‖E∗)

and negative definite (by an argument on Bernstein functions, see Appendix A). Thus, according
to Schoenberg’s theorem, ξ 7→ exp(−t‖Sξ‖2α

H
) is positive definite for any t ∈ R∗

+
. It follows from

Lemma 5.7 and Sazonov’s theorem, according to which a Hilbert-Schmidt map is γ-radonifying1,
that since ξ 7→ exp(− 1

2‖Sξ‖2αH ) is continuous on H, it is the Fourier transform of a measure Γ α

on E, i.e:

e−
1
2 ‖Sξ‖2αH =

∫

E

ei〈ξ,x〉 dΓ α(x) .

As this will be useful, we already note that the measure Γ α is a strictly stable and symmetric
measure on E of index α, since it satisfies (we denote by bΓ α the Fourier transform of Γ α), for any
integer k, and any ξ ∈ E∗:

�bΓ α(ξ)
�k
= bΓ α(k1/2αξ) and bΓ α(−ξ) = bΓ α(ξ) .

In particular, we see that Γ α is infinitely divisible.
KUELBS [82] extended the spectral decomposition of α-stable measures on R (see e.g. [128,
pp.77–78]) to the Hilbert space setting. Shortly after this was also extended to Banach spaces,
and Theorem 2.4 and Corollary 2.5 of [10] (see also [37]) allow to assert that when α ∈ (0,1),
Γ
α has a Lévy measure ∆α and can be written:

∫

E

ei〈ξ,x〉 dΓ α(x) = exp

�∫

E

�
ei〈ξ,x〉 − 1− i

〈ξ, x〉
1+ ‖x‖E

�
∆
α( dx)

�
,

with ∆α satisfying
∫

E
(1∧ ‖x‖2

E
) ∆α( dx)<∞ and ∆α({0}) = 0. That α is strictly smaller than

1 is essential, and this will be assumed implicitly throughout the rest of this chapter. It follows,
cancelling the imaginary part (by symmetry of ∆α), that:

∀ξ ∈ E∗, −‖Sξ‖2α
H
= 2

∫

E

(cos〈ξ, x〉 − 1) ∆α( dx) (5.6)

1see for instance [155] for Sazonov’s theorem, and [23] for its use in a similar context, as well as the references
therein.
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In the finite dimensional setup,∆α is known explicitely and appears in the spectral represen-
tation of the Lévy fractional Brownian motion, as in [142]. In fact, Corollary 2.5 of [10] gives a
radial decomposition of ∆α in terms of a finite measure σα defined on the Borel sets of the unit
ball S = {x ∈ E : ‖x‖E = 1}, such that for any borel set B of E:

∆
α(B) =

∫ ∞

0

dr

r1+2α

∫

S
1B(r y) σα( dy) . (5.7)

Besides, σα( dy) = ∆α ({x ∈ E : ‖x‖E ≥ 1 and x/‖x‖E ∈ dy}). The previous discussion is
summarized in the following proposition.

Proposition 5.8. Let (H, E,µ) be any abstract Wiener space such that E is a Hilbert space and the

embedding H ⊂ E is Hilbert-Schmidt. Let α ∈ (0, 1). Then there exists a non-trivial Lévy measure

∆
α on E such that Equation (5.6) is satisfied, and that can be radially decomposed as in (5.7).

In the sequel, H will be specifically the RKHS of the Brownian sheet in Rν, that is, the Hilbert
space with kernel {λ(g·), g ∈ L2([0,1]ν)}, where λ is the Lebesgue measure of Rν and for
g ∈ L2([0,1]ν), λ(g·) is the mapping:

f ∈ L2([0, 1]ν) 7→
∫

[0,1]ν
f g dλ.

H is a separable Hilbert space and we endow it with E and µ chosen as in Lemma 5.7 to get
an AWS. Then ∆α denotes the Lévy measure discussed in the previous paragraphs. Let Bα be
the (Gaussian) white noise on E with control measure ∆α, and define the stochastic process
{Bα/2
ξ

,ξ ∈ E∗} by:

B
α/2
ξ
=

∫

E

�
1− ei〈ξ,x〉� dBα

x
.

The variance of the increments reads ( (·) denotes complex conjugation):

Var
�
B
α/2
ξ
− B

α/2
ξ′

�
= E

�
(B
α/2
ξ
− B

α/2
ξ′ )(B

α/2
ξ
− B

α/2
ξ′ )

�

=

∫

E

�
ei〈ξ,x〉 − ei〈ξ′,x〉� �e−i〈ξ,x〉 − e−i〈ξ′,x〉�

∆
α( dx)

= 2

∫

E

(1− cos〈ξ− ξ′, x〉) ∆α( dx)

= ‖S(ξ− ξ′)‖2α
H

.

Hence this process has the following covariance:

E
�
B
α/2
ξ

B
α/2
ξ′

�
=

1
2

�
‖Sξ‖2α

H
+ ‖Sξ′‖2α

H
− ‖S(ξ− ξ′)‖2α

H

�
.

By analogy with the Paley-Wiener map I that maps H to L2(µ), let Iα be the mapping from E∗

to L2(∆α) such that Iα(ξ) = 1− ei〈ξ,·〉, and extend it to H using I by simply putting Iα(ϕ) =
1− ei〈I (ϕ),·〉, for any ϕ ∈ H. Similarly to I (ϕ) in L2(µ), Iα(ϕ) is a well-defined isometry from
(H,‖ · ‖2α

H
) to L2(∆α). Thus, B

α is a well-defined process on H.
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Example 5.9 (Spectral representation of the multiparameter fBm). In this context, for any f , g ∈
L2([0,1]ν), λ( f ·) and λ(g·) are in H, which yields for h= α/2:

E
�
B

h
λ( f ·) B

h
λ(g·)

�
=

1
2

�
λ( f 2)2h +λ(g2)2h −λ(( f − g)2)2h

�
,

and for f = 1[0,s] and g = 1[0,t], this is a multiparameter fBm of index h, as defined in equation

(5.1).

Remark 5.10. Wh defined by (5.4) on H(kh) and B
α/2 on H (when α= 2h) are different processes:

they are not defined on the same spaces, and the first one is a linear application for fixedω, which is

not true for the second. Nevertheless, we have just seen in the previous example that {Wh
kh( f ,·), f ∈

L2([0, 1]ν)} and {Bα
λ( f ·), f ∈ L2([0,1]ν)} are equal in distribution. This implies that they have the

same RKHS. In particular, we will be interested only in the multiparameter process, which means

that the RKHS is given by

Hν
h
= Span

¦
k
(ν)

h
(t, ·), t ∈ [0, 1]ν

©
,

where k
(ν)

h
(t, ·) = kh(1[0,t],1[0,·]) and the completion is with respect to the scalar product given by:

�
k
(ν)

h
(t, ·), k

(ν)

h
(s, ·)

�
h,ν
= k

(ν)

h
(t, s) .

To conclude this section, we present inequalities on∆α that will be useful in the proof of the
LIL. These are extensions of the truncation inequalities of LOÈVE [95, p.209]. For any r ∈ [0, 1],
let us define the subset A(r) of H:

A(r) =
�
ϕs,t ; s, t ∈ [0, r]ν

	
, (5.8)

where ϕs,t = λ
�
1[0,t]△[0,s]·

�
. Note that A(r) is a subset of H.

Lemma 5.11. For any a > 0 and ϕ ∈ A(1), we have:

∫

‖x‖E<a

(1− cos〈I (ϕ), x〉) ∆α(dx)≤ ‖ϕ‖2α
H

F(aΦ) , (5.9)

where F is the function defined in Equation (5.2) with A= A(1), and F continuously decreases to 0.

Besides, there is a constant C(α)> 0 such that for any b > 0 and ϕ ∈ H,

∫

‖x‖E>b

(1− cos〈I (ϕ), x〉) ∆α(dx)≤ C(α)b−2α . (5.10)

Proof. We start with the first inequality, that we prove by approximation of ϕ by elements of
E∗. Let Φ denote the norm of ϕ. Let (ζ′

n
)n∈N = {(z′n, ·)E , n ∈ N} be a sequence of E∗ such

that Sζ′
n

belongs to the H-sphere of radius Φ and converges to ϕ in H. For all n, let ζn and zn

be the associated normalized (in E∗ and E) vectors and (λ′
n
)n∈N be the family of norms in H:

λ′
n
= ‖Sζn‖H . Note that if ϕ ∈ H\S(E∗), λ′

n
→ 0 as n→∞. By construction, λ′

n
= Φ‖ζ′

n
‖−1

E∗ > 0.
Then, the radial decomposition (5.7) of σα yields:

∫

‖x‖E<a

(1− cos〈ζ′
n
, x〉) ∆α(dx) =

∫ a

0

dr

r1+2α

∫

S

�
1− cos

�
rΦ

λ′
n

(zn, y)E

��
σα(dy)

= Φ2α

∫ aΦ

0

du

u1+2α

∫

S

�
1− cos

�
u

λ′
n

(zn, y)E

��
σα(dy) ,
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where we applied the change of variable u = Φr. The last integral converges in L2(σα), so this
reads:
∫

‖x‖E<a

(1− cos〈I (ϕ), x〉) ∆α(dx) = Φ2α

∫ aΦ

0

du

u1+2α

∫

S
(1− cos〈uI (ϕ/‖ϕ‖H), y〉) σα(dy)

≤ Φ2αF(aΦ) ,

which gives (5.9). Finally, F decreases continuously to 0 since the mapping:

(ϕ,x) ∈ A(1)× [0, 1] 7→
∫

‖x‖E<x

(1− cos〈I (ϕ/‖ϕ‖H), x〉) ∆α(dx)

is continuous on a compact (A(1) is compact as the continuous image of [0,1]ν × [0,1]ν).

To show (5.10) holds, we use a simple inequality on the cosine function:
∫

‖x‖E>b

(1− cos〈ξ, x〉) ∆α( dx)≤ 2

∫

‖x‖E>b

∆
α( dx)

≤ 2

∫ ∞

b

dr

r1+2α
σα(S )

≤ 2σ(S )
2− 2α

b−2α .

This concludes the proof of this lemma.

5.3 Chung’s law of the iterated logarithm

In this section, we prove Theorem 5.1. The abstract Wiener space is the same as in the end of the
previous section. We recover the notation h instead of α so that by the previous construction,
for any fixed h ∈ (0, 1/2), there exists a measure ∆2h producing the spectral representation of
the h-multiparameter fBm. We will simply write ∆ for ∆2h in the sequel.

Remark 5.12. The case h = 1/2 is special since it corresponds to the Brownian sheet. Its be-

haviour differs very much from the h-multiparameter fBm, h < 1/2, although we recall that the

1/2-multiparameter fBm is the Brownian sheet. This difference is due to the loss of the property of

local nondeterminism, which the multiparameter fBm possesses when h < 1/2, which is discussed

at the end of Section 4.2. For more information on small deviations and Chung’s law of the iterated

logarithm of the Brownian sheet, we refer to [141].

Proof of Theorem 5.1. The proof will be carried out in three steps. In the first, we obtain the
lower bound for some constant β1. In the second and third steps, we follow the scheme proposed
in [106], but with the addition of methods related to the infinite dimensional setting described
above.

1) Let γ > 1, rk = γ
−k and β1 = (κ1/(1+ ε))

h/ν, where κ1 is the constant in the upper bound
of the small deviation probability of B

h. The upper bound in the small deviations (5.3) implies:

∞∑
P
�
Mh(rk)≤ β1Ψ

(ℓ)

h
(rk)

�
≤
∞∑

exp
¦
−κ1β

−ν/h
1 log log(r−1

k
)
©

≤
∞∑
(logγk)−(1+ε) <∞ ,
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where the sums start at k large enough (i.e. so that β1(log logγk)−h is small enough, as in
Proposition 5.5). Then, the Borel-Cantelli lemma gives:

lim inf
k→∞

Mh(rk)/Ψ
(ℓ)

h
(rk)≥ β1 a.s.

so for rk+1 < r ≤ rk:

Mh(r)/Ψ
(ℓ)

h
(r)≥ Mh(rk)/Ψ

(ℓ)

h
(rk+1)≥ β1

Ψ
(ℓ)

h
(rk)

Ψ
(ℓ)

h
(rk+1)

≥ (κ1/(1+ ε))
h/ν γ−νh .

This is true for any ε > 0,γ > 1, hence we get the following lower bound:

P

�
lim inf

r→0

Mh(r)

Ψ
(ℓ)

h
(r)
≥ κh/ν

1

�
= 1 . (5.11)

2) Now, let κ2 be the constant in the lower bound of the small balls, and define β2 = κ
h/ν
2 .

For some small (fixed) η > 0, we define the sequence (εk)k∈N∗ by:

εk = F−1
�
(log k)−2h/ν−2η

�
. (5.12)

By Lemma 5.11, F is a continuous increasing function on any interval [0, T] such that F(0) = 0.
Thus, εk is a well-defined sequence which converges to 0 and satisfies:

(log k)h/νp
−F(εk) logF(εk)

→∞ as k→∞ .

Let’s define another sequence (rk)k∈N∗ by the following induction:

r1 = 1 and ∀k ≥ 2, rk+1 = rk F(εk)
1/(2νh) ε

2/ν
k+1 . (5.13)

One can now choose eΨ(u)
h

to be any increasing continuous function on [0, 1], satisfying the fol-
lowing set of conditions: for any k ∈ N∗,

eΨ(u)
h
(rk) = (log k)−h/ν . (5.14)

We recall that for a given eΨ(u)
h

, chosen as above,Ψ(u)
h

is defined byΨ(u)
h
(r) = rνh eΨ(u)

h
(r) , r ∈ [0,1].

For these parameters, the lower bound in the small deviations of B
h implies:

∞∑
P

�
sup

t∈[0,rk]
ν

|Bh
t
|/Ψ(u)

h
(rk)≤ β2

�
≥
∞∑

exp
¦
−κ2(β2

eΨ(u)
h
(rk))

−ν/h
©

≥
∞∑ 1

k
=∞ , (5.15)

where the sums start at k large enough (i.e. so the hypothesis of Proposition 5.5 is satisfied).
This is not enough to prove the expected result, because these events are not independent. We
will fix this using an idea that appeared in [142] and [106], to create independence by means of
increment stationarity. Since this last property is not satisfied by the multiparameter fractional
Brownian motion, we shall rely instead on the spectral representation obtained in the previous
section.
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We recall that ϕt = λ(1[0,t]·), t ∈ [0,1]ν is an element of H. For a family of disjoint intervals
{Ik = (ak, ak+1], k ∈ N}, where (ak)k∈N is an increasing sequence of R+ such that ak →∞ (ak

will be specified later), we define the following processes:

B
h,k
t
=

∫

‖x‖E∈Ik

�
1− ei〈I (ϕt ),x〉

�
dB∆

x
, t ∈ [0,1]ν (5.16)

B̃
h,k
t
= B

h
t
− B

h,k
t
=

∫

‖x‖E /∈Ik

�
1− ei〈I (ϕt ),x〉

�
dB∆

x
, t ∈ [0, 1]ν . (5.17)

Let Σ denote the covariance operator of B
h and Σk denote the covariance operator of the B

h,k. It
is clear that Σ−Σk is a positive semi-definite operator. Hence, Anderson’s correlation inequality
[9] applies and we get, for all k ∈ N:

P

�
sup

t∈[0,rk]
ν

|Bh,k
t
|/Ψ(u)

h
(rk)≤ β2

�
≥ P

�
sup

t∈[0,rk]
ν

|Bh
t
|/Ψ(u)

h
(rk)≤ β2

�
.

As a consequence of Equation (5.15), we see that:

∑

k≥1

P

�
sup

t∈[0,rk]
ν

|Bh,k
t
|/Ψ(u)

h
(rk)≤ β2

�
=∞ .

Since the events
¦

supt∈[0,rk]
ν |Bh,k

t |/Ψ(u)h
(rk)≤ β2

©
, k ∈ N, are independent, the reciprocal of

Borel-Cantelli lemma yields that almost surely,

lim inf
k→∞

sup
t∈[0,rk]

ν

|Bh,k
t
|/Ψ(u)

h
(rk)≤ β2 . (5.18)

3) For any k ∈ N∗, let ak = r
−ν/2
k

εk. Note that (5.13) implies that:

ak+1r
ν/2
k
= rk+1 F(εk)

−1/4h ε−1
k+1 ≥ F(εk)

−1/4h . (5.19)

In particular, ak+1r
ν/2
k

goes to infinity. Now, Lemma 5.11 acts on the incremental variance of

B̃
h,k

as follows: for any s, t ∈ [0, rk]
ν, letting ϕs,t = ϕs −ϕt ,

Var
�
B̃

h,k
s
− B̃

h,k
t

�
= Var

�
B̃

h,k
ϕs,t

�

=

∫

‖x‖E<ak

�
1− cos〈I (ϕs,t), x〉

�
∆(dx) +

∫

‖x‖E≥ak+1

�
1− cos〈I (ϕs,t), x〉

�
∆(dx)

≤ C
�
‖ϕs,t‖4h

H
F
�
ak ‖ϕs,t‖H

�
+ a−4h

k+1

�
(5.20)

≤ C
�
r2νh

k
F(ak r

ν/2
k
) + a−4h

k+1

�

≤ C r2νh
k

�
F(εk) + (ak+1 r

ν/2
k
)−4h

�
,

for some positive constant C , where ‖ϕs,t‖2H = λ([0, s]△ [0, t]) ≤ λ([0, rk]
ν) = rν

k
. Thus, for

this choice of rk and ak, letting D2
k

denote this incremental variance, the previous equation and
(5.19) give:

D2
k
= sup

s,t∈[0,rk]
ν

Var
�
B̃

h,k
s
− B̃

h,k
t

�

≤ 2C r2νh
k

F(εk) ,
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which decreases faster than sups,t∈[0,rk]
ν Var

�
B

h
s
− B

h
t

�
(as k→∞). By a Gaussian concentration

result, we will see that Dk will permit us to obtain an upper bound for the large deviations of

B̃
h,k

. Let d̃h,k be the distance induced by this process. We have just seen that d̃h,k ≤ dh. Thus, as
already noticed (for instance in the proof of Theorem 3.19), the metric entropy of a set computed
with d̃h is smaller than the one computed with dh.

∫ Dk

0

Ç
log N([0, rk]

ν, d̃h,k,ǫ) dǫ ≤
∫ Dk

0

Æ
log N([0, rk]

ν, dh,ǫ) dǫ

≤
∫ Dk

0

√√√
log

�
κ

rν
2

k

ǫν/h

�
dǫ ,

where for some κ > 0, the upper bound for N([0, rk]
ν, dh,ǫ) is due to the link with the small

balls of B
h and the estimate given in Proposition 5.5.

∫ Dk

0

Ç
log N([0, rk]

ν, d̃h,k,ǫ) dǫ ≤
s
ν

h
κh/νrνh

k

∫ p2Cκ−h/ν
p

F(εk)

0

Æ
log x−1 dx

≤ C1rνh
k

Æ
−F(εk) log(C2F(εk)) ,

where we made the change of variable x = ǫ κ−h/νr−νh
k

, and C1 and C2 are given by:

C1 =

√√Cν

h
, C2 = 2Cκ−2h/ν .

By Talagrand’s lemma [142], if u> u0(k) := C1rνh
k

p
−F(εk) log(C2F(εk)),

P

�
sup

t∈[0,rk]
ν

|B̃h,k
t
| ≥ u

�
≤ exp

�
− (u− u0(k))

2

D2
k

�
.

Let ε > 0. In order to replace u by εβ2Ψ
(u)

h
(rk), one notices that:

Ψ
(u)

h
(rk)

u0(k)
=

eΨ(u)
h
(rk)

C1

p
−F(εk) log(C2F(εk))

,

and this quantity goes to infinity, by definition of εk in (5.12) and eΨ(u)
h

in (5.14). Thus, the
concentration inequality applies replacing u with εβ2ψh(rk) for k big enough, so that:

P

�
sup

t∈[0,rk]
ν

|B̃h,k
t
| ≥ εβ2

eΨ(u)
h
(rk)

�
≤ exp

�
−
(εβ2

eΨ(u)
h
(rk)− u0(k))

2

D2
k

�

≤ exp

�
−u0(k)

2

D2
k

�
εβ2Ψ

(u)

h
(rk) u0(k)

−1 − 1
�2
�

≤ exp

�
−C1

p
− log(C2F(εk))

2C

�
εβ2Ψ

(u)

h
(rk) u0(k)

−1 − 1
�2
�

= (C2F(εk))
−C3

�
εβ2Ψ

(u)

h
(rk) u0(k)

−1−1
�2

,
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whose sum is finite, since ψh(rk)u0(k)
−1 diverges and F(εk) goes to 0. Hence, applying once

again the Borel-Cantelli lemma, we have almost surely,

lim inf
k→∞

sup
t∈[0,rk]

ν

|B̃h,k
t
|/Ψ(u)

h
(rk)≤ εβ2 .

Therefore, combining this with (5.18), we see that almost surely:

lim inf
k→∞

sup
t∈[0,rk]

ν

|Bh
t
|/Ψ(u)

h
(rk)≤ (1+ ε)β2 .

Since this is true for any ε > 0, we obtain the expected upper bound:

P

�
lim inf

r→0

Mh(r)

Ψ
(u)

h
(r)
≤ κh/ν

2

�
= 1 . (5.21)

We end this part with a discussion on the consequences of the rate of decay of F. We see that
to make this lim inf result precise, we would need to find eΨ(u)

h
explicitely, which depends only on

the rate of decay of F near 0. For instance, if we were able to prove that F(x)≤ xγ for some γ > 0,

as x→ 0, then some computations lead to the conclusion that eΨ(u)
h
(r) =

�
log log(rC)

�−h/ν
, where

C = −ν−2(1+ 4h/γ), is a function for which (5.14) holds. Since in that case eΨ(u)
h
(r) ∼ eΨ(ℓ)

h
(r)

as r → 0, we would get

P

�
lim inf

r→0

Mh(r)

rνh(log log(r−1))−h/ν
∈ [κh/ν

1 ,κh/ν
2 ]

�
= 1 .

Note that in this situation, a 0−1 law (which is explained in Remark 5.13) implies that the above
limit is constant almost surely. A faster rate woul yield the same conlusion, while a slower rate
for F would certainly mean that eΨ(ℓ)

h
converges to 0 too quickly.

Remark 5.13. (0− 1 law of the multiparameter fBm if F(x) ≤ xγ.) The following is very similar

to the 0−1 law presented in [96]. Let Fn be the σ-algebra generated by the process
∑∞

k=n
B

h,k and

let F∞ = ∩n≥1Fn be the tail σ-algebra. According to Kolmogorov’s 0−1 law, any event A in F∞
is trivial, i.e. P(A) = 0 or 1. Thus, if the event:

A=

n
lim inf

r→0
Mh(r)/Ψh(r) = constant

o

belongs to F∞, we will have proved the theorem.

Fix n ∈ N∗. We know from Lemma 5.11 and the first part of Equation (5.20) that

sup
s,t∈[0,1]ν

Var

�
n−1∑

k=1

B
h,k
s
−

n−1∑

k=1

B
h,k
t

�
≤ Kdλ(s, t)2h F(andλ(s, t)1/2)

≤ Kaγ
n

dλ(s, t)2h+γ/2 .

Thus, Kolmogorov’s continuity criterion for multiparameter Gaussian processes implies that
∑n−1

k=1 B
h,k

is almost surely (dλ-)Hölder-continuous of order h+ γ/4− ε, for any ε ∈ (0, 1). For ε < γ/4, this

implies that almost surely:

lim inf
r→0

sup
t∈[0,r]ν

��∑n−1
k=1 B

h,k
t

��
Ψh(r)

≤ lim inf
r→0

λ([0, r]ν)h+γ/4−ε

rνhΨ̃h(r)
= 0 .
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Here Ψh = Ψ
(u)

h
, since we have seen that if F(x) ≤ xγ, we would obtain the same upper and lower

modulus. As a consequence, we have almost surely that:

lim inf
r→0

Mh(r)/Ψh(r) = lim inf
r→0

sup
t∈[0,r]ν

��
∞∑

k=n

B
h,k
t

��/Ψh(r) ,

which is a Fn-measurable random variable. Hence A is a tail event.

5.4 Functional law of the iterated logarithm

We prove Theorem 5.2. As in the previous part, we also have values for γ(ℓ)(ϕ) and γ(u)(ϕ):

γ(ℓ)(ϕ) =
1p
2
κ

h/ν
1 (1− ‖ϕ‖2h,ν)

−h/ν and γ(u)(ϕ) =
1p
2
κ

h/ν
2 (1− ‖ϕ‖2h,ν)

−h/ν .

Thanks to the preliminary tools of Section 5.2, we have almost all the ingredients to follow the
proofs of [38, 106], and the following technical lemma is adapted from these papers. The norm
of Hν

h
(see Remark 5.10) is denoted by ‖ · ‖h,ν and we will also abbreviate supt∈[0,1]ν | f (t)| =

‖ f ‖∞.

Lemma 5.14. For 0< s < r < u< e−1 and ϕ ∈ Hν
h
,

�
log log r−1

�h/ν+1/2 ‖η(h,ℓ)
r
−ϕ‖∞ ≥

�
s log log u−1

u log log s−1

�hν �
log log s−1

�h/ν+1/2 ‖η(h,ℓ)
s
−ϕ‖∞

−M1

�
log logu−1

�h/ν+1/2
�

u− s

u

�h

‖ϕ‖h,ν

−
�
log logu−1

�h/ν+1/2

√√�
1−

�
s

u

�2νh log log s−1

log log u−1

�
‖ϕ‖∞ ,

where M1 is the constant in Lemma 5.3 which corresponds to b = 1.

For the proof of this lemma, one can refer to appendix 5.7.2 .
We recall the following nice proposition from [106] 2, concerning the Gaussian measure of

shifted convex sets:

Proposition 5.15. Let µ be a Gaussian measure on a separable Banach space E. For any convex,

symmetric, bounded and measurable subset V of E of positive measure, if ϕ belongs to the RKHS of

µ, then

lim
t→∞

t−2 (logµ(V + tϕ)− logµ(V )) = −1
2
‖ϕ‖2µ .

Proof of Theorem 5.2. This proof is divided into two parts: the first one to give the lower bound
on γ(ϕ), and the second one for the upper bound.

I) Proof of the lower bound
Let ε > 0 and γ1 defined by:

γ1 =

�
κ1

(1+ ε)

�h/ν

(1− ‖ϕ‖2
h,ν)
−h/ν .

2It existed before in the literature, in a more general form. See the references therein.
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We recall that eΨ(ℓ)
h
(r) = (log log r−1)−h/ν, so that the following events, defined for k ∈ N by:

Ak =
¦
eΨ(ℓ)

h
(rk)
−1−ν/2h‖η(h,ℓ)

rk
−ϕ‖∞ ≤ γ1

©

for some decreasing sequence rk (explicited later), will be written:

Ak =

nr−νh
k

B
h(rk·)−

q
2 log log r−1

k
ϕ


∞
≤ γ1(log log r−1

k
)−h/ν

o
.

Let δ > 0 and δ < ε(1− ‖ϕ‖2
h,ν). By Proposition 5.15, and then by the small deviations of B

h,
we have for k large enough (depending on δ),

logP(Ak)≤ logP

�
sup

t∈[0,1]ν
|Bh(rk t)| ≤ γ1rhν

k
(log log r−1

k
)−h/ν

�
− (log log r−1

k
)(‖ϕ‖2

h,ν −δ)

≤ −(1+ ε)(1− ‖ϕ‖2
h,ν)(log log r−1

k
)− (log log r−1

k
)(‖ϕ‖2

h,ν −δ) .

This implies that

P(Ak)≤ exp
¦
−
�
1+ ε(1− ‖ϕ‖2

h,ν)−δ
�

log log r−1
k

�
.

Now we put:
rk = exp {−k y(k)} ,

where

y(k) =
log log k

(log k)h−1+1
.

Since we chose δ appropriately, ε(1− ‖ϕ‖2
h,ν)−δ is positive, and

∞∑
P(Ak)<∞ ,

where the sum is over k large enough, according to the previous remarks. Therefore, almost
surely,

lim inf
k→∞

�
log log r−1

k

�h/ν+1/2
sup

t∈[0,1]ν
|ηrk
(t)−ϕ(t)| ≥ 1p

2
γ1 .

To obtain the result for r → 0, we use Lemma 5.14 with u= rk, s = rk+1 and r in between. Then

�
log log r−1

�h/ν+1/2 ‖ηr −ϕ‖∞ ≥
�

rk+1 log log r−1
k

rk log log r−1
k+1

�hν �
log log r−1

k+1

�h/ν+1/2 ‖ηrk+1
−ϕ‖∞ (⋆)

−M1

�
log log r−1

k

�h/ν+1/2
�

rk − rk+1

rk

�h

‖ϕ‖h,ν (⋆⋆)

−
�
log log r−1

k

�h/ν+1/2

√√√
�

1−
�

rk+1

rk

�2νh log log r−1
k+1

log log r−1
k

�
‖ϕ‖∞ .

(⋆ ⋆ ⋆)

Note that by the inequality e−x ≥ 1− x , and the decrease of y(k) (for k large),

rk+1

rk

≥ 1− {y(k+ 1) log (y(k+ 1))− y(k) log (y(k))}

≥ 1− y(k+ 1) .



5.4. Functional law of the iterated logarithm 133

Thus, the ratio in Equation (⋆) converges to 1. Likewise, the ratio in (⋆⋆) is smaller than y(k+1)h,
so that:

�
rk − rk+1

rk

�h �
log log r−1

k

�h/ν+1/2 ≤ y(k+ 1)h (log (k y(k)))h/ν+1/2

≤ (log log(k+ 1))h

(log(k+ 1))h+1
(log k)h/ν+1/2

�
1+

log y(k)

log k

�h/ν+1/2

,

which clearly goes to 0. For the last term (⋆ ⋆ ⋆),

�
log log r−1

k

�2h/ν+1
�

1−
�

rk+1

rk

�2νh log log r−1
k+1

log log r−1
k

�

≤
�
log log r−1

k

�2h/ν
§

log(k y(k))− log ((k+ 1)y(k+ 1))

+ log ((k+ 1)y(k+ 1))
�
1− (1− y(k+ 1))2hν

�ª

≤
�
log log r−1

k

�2h/ν
§

log(k y(k))− log ((k+ 1)y(k+ 1))

+ 2νh y(k+ 1) log ((k+ 1)y(k+ 1))
ª

.

One can show that log (k y(k))− log ((k+ 1)y(k+ 1))∼ −k−1, thus

�
log log r−1

k

�2h/ν {log(k y(k))− log ((k+ 1)y(k+ 1))}

converges to 0, and so does the remaining term, since:

�
log log r−1

k

�2h/ν
y(k+ 1) log ((k+ 1)y(k+ 1))∼ (log k)2h/ν−1−h−1+1 log log(k+ 1)

and the sum of the exponents 1+ 2h/ν− h−1 − 1 is strictly negative (ν≥ 1 and h< 1/2).

II) Proof of the upper bound

The proof of Theorem 5.1 and Proposition 5.15 allow to make a quick proof for this bound.

Let us denote γ2 = κ
h/ν
2

�
1− ‖ϕ‖2

h,ν

�−h/ν
. Let us put rk and ak as in steps 2) and 3) of the proof

of the LIL. Again, put B
h,k and B̃

h,k
the processes defined by (5.16) and (5.17). As in [106], we

define the following events, for any ε > 0:

Ak(ε) =

§r−νh
k

B
h(rk·)−

p
2
�
eΨ(u)

h
(rk)

�−ν/2h
ϕ


∞
≤ γ2(1+ ε) eΨ(u)h

(rk)

ª

Bk(ε) =

§r−νh
k

B
h,k(rk·)−

p
2
�
eΨ(u)

h
(rk)

�−ν/2h
ϕ


∞
≤ γ2(1+ ε) eΨ(u)h

(rk)

ª

Ck(ε) =
nr−νh

k
B̃

h,k
(rk·)


∞
≥ γ2ε eΨ(u)h

(rk)

o
.

This time, we apply Proposition 5.5 and Proposition 5.15 to deduce the existence of a small
δ > 0 such that for k large enough, we obtain a lower bound on the probability of the event
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Ak(ε):

logP(Ak(ε))≥ logP

�
sup

t∈[0,1]ν
|Bh(rk t)| ≤ γ2(1+ ε)r

hν
k
eΨ(u)

h
(rk)

�
−
�
eΨ(u)

h
(rk)

�−ν/h �
‖ϕ‖2

h,ν +δ
�

≥ −(1+ ε)−ν/h
�
1− ‖ϕ‖2

h,ν

��
eΨ(u)

h
(rk)

�−ν/h
−
�
eΨ(u)

h
(rk)

�−ν/h �
‖ϕ‖2

h,ν +δ
�

≥ − log k
�
(1+ ε)−ν/h

�
1− ‖ϕ‖2

h,ν

�
−
�
‖ϕ‖2

h,ν +δ
��

.

Therefore, choosing δ small enough to ensure that −(1+ ε)−ν/h
�
1− ‖ϕ‖2

h,ν

�
−
�
‖ϕ‖2

h,ν +δ
�

is
greater than −1 implies that:

∞∑

k=1

P(Ak(ε))≥
∞∑

k=1

k
−(1+ε)−ν/h

�
1−‖ϕ‖2

h,ν

�
−
�
‖ϕ‖2

h,ν+δ
�

=∞ .

All that remains to notice is that:

Ak(ε) ⊂ Bk(2ε) ∪ Ck(ε) ⊂ Ak(3ε) ∪ Ck(ε) ,

and that the choice of ak and rk implies that
∑
P(Ck(ε))<∞ (as in the proof of Theorem 5.1).

The rest follows strictly the proof of [106].

As in Remark 5.13, if F were proven to have fast decay, the same 0− 1 law that we used for
the Chung’s law would give the same conclusion, i.e. that there is a constant between γ(ℓ)(ϕ)
and γ(u)(ϕ) such that almost surely:

lim inf
r→0+

(log log(r−1))h/ν+1/2 sup
t∈[0,1]ν

|η(h,ℓ)
r
(t)−ϕ(t)|= γ(ϕ) .

We end this part on laws of the iterated logarithm with a remark concerning the previous
result when ‖ϕ‖h,ν = 1. This case was studied a lot in the literature, as it yields a different rate
of convergence. In fact, part I) of the previous proof can be directly adapted to give:

lim inf
r→0+

(log log(r−1))h/ν+1/2 sup
t∈[0,1]ν

|ηr(t)−ϕ(t)|=∞ a.s. ,

if ‖ϕ‖h,ν = 1. The exact rate when ‖ϕ‖h,ν = 1 was computed in many situations and we believe
that standard techniques (as in [38, 106]) and our spectral representation and small deviations
will permit to compute the exact rate in the functional law of the iterated logarithm on the unit
sphere for the multiparameter fBm.

5.5 Hausdorff dimension of the range of the multiparameter fBm

Let us first recall the definition of a Hausdorff measure and of Hausdorff dimension. Following
[46], let Φ : R+ → R+ be a continuous and increasing function, which we call gauge function.
Let the diameter be the set function defined by diam(A) = sup{‖s − t‖ : s, t ∈ A} for any subset
A of Rν. For any δ > 0, we call δ–cover of A a family {Ai} of subsets of Rν of diameter smaller
than δ and such that A⊆ ∪iAi . Then for any A⊂ Rν,

µΦ(A) = lim
δ→0

inf

¨∑

i

Φ(diam(Ai)) : {Ai} is a δ− covering of A

«
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defines the Hausdorff measure on Rν with gauge function Φ.
A case of special interest is when the gauge function is Φ(x) = x s, and we denote by µs the
Hausdorff measure. Then the Hausdorff dimension of a set A⊂ Rν is:

dimH(A) = inf {s > 0 : µs(A) = 0}= sup {s > 0 : µs(A) =∞} .

In general, it can happen that a set A has Hausdorff dimension s but that µs(A) is either 0 or
∞. So choosing a special gauge function such that µΦ(A) ∈ (0,∞) gives more information on
A. A measure having this property will be called an exact Hausdorff measure on A. For more
information on the measure of random sets associated to stochastic processes, one can refer to
the survey paper by TAYLOR [145].

The method to prove Chung’s LIL is known to rely on the same estimates than the method
to compute the exact Hausdorff measure of the range of a Gaussian process with stationary
increments. To make the expostion clearer, we assume that F(x) ≤ xγ, which in the opposite
case would require arrangements that do not alter our point. We refer to XIAO [151, Prop. 3.1],
which extends the work of TALAGRAND [142, Prop. 4.1] on the Lévy fractional Brownian motion,
to formulate the following probabilistic estimate:

Proposition 5.16. There exists a constant δ > 0 such that for any r0 < δ:

P
�
∃r, r2

0 ≤ r ≤ r0, Mh(r)≤ Ψ(ℓ)
h
(r)
�
≥ 1− exp

�
−
q

log(r−1
0 )
�

.

Proof. Adapting the proof that led to Equation (5.21) gives the result, as in the proof of Propo-
sition 4.1 of [142].

Hence, it is tempting to think that, as in the case of the Chung’s LIL, this yields a singularity
at 0 on the Hausdorff measure. Precisely, if B

h was increment stationary, we would obtain the
following Hausdorff measure:

µΦ
�
B

h([0,1]ν)
�
∈ (0,∞) a.s. ,

where
Φ(x) = x1/h log log(x−1) .

This would in turn imply that the Hausdorff dimension of B
h([0,1]ν) is equal to 1/h. However,

this is not the case, as seen in the following (partial, we only compute the Hausdorff dimension)
result: in some sense, the Hausdorff measure of the range of the multiparameter fBm on a
rectangle containing 0 does not “see” the singularity.

Proposition 5.17. Let us assume that ν≤ hd. Then,

dimH

�
B

h([0,1]ν)
�
=
ν

h
a.s.

Proof. The Hausdorff dimension of the image of a set I ⊂ [0, 1]ν by the multiparameter fBm has
been computed in [58], when I does not intersect the axes. When ν ≤ hd, this result says that
dimH(B

h(I)) = ν/h. Since I is included in [0, 1]ν, this implies that:

dimH

�
B

h(I)
�
≤ dimH

�
B

h([0,1]ν)
�

,

so it remains to prove the upper bound. To do this, a result of ADLER [1] relates the Hausdorff
dimension of the range of an increment stationary Gaussian process to its Hölder regularity.
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Since our process is not increment stationary, we cannot use it directly, but instead we rely on
Corollary 2.7 of [58] that gives an upper bound for the Hausdorff dimension of the range of a
(non-increment stationary) Gaussian process, in terms of the infimum of its deterministic local
Hölder exponent (as defined in (1.12)). Thus, it suffices to compute this coefficient at any point
of [0, 1]ν.
If t0 is not on the axes, we already know that eαB

h(t0) = h. Let us prove that the same happens
on the axes, and since this is enough to prove it at 0, let t0 = 0. Let ρ > 0 and s, t ∈ B(0,ρ).
Lemma 5.3 implies:

λ ([0, t]△ [0, s])2h

‖t − s‖2α ≤ λ ([0, t]△ [0, s])2h

M2α
1 λ ([0, t]△ [0, s])2α

where M1 is the constant of Lemma 5.3. The last expression is bounded on B(0,ρ)whenever α≤
h. Therefore, eαB

h(0) ≥ h. In the opposite situation, let u ∈ B(0,ρ/2) with positive coordinates
and sn, tn ∈ B(0,ρ) such that sn = (u1+1/n, u2, . . . , uν) and tn = (u1, u2+1/n, u3, . . . , uν) defined
for any n ∈ N. Then, for n large enough, sn, tn ∈ B(0,ρ) and

λ ([0, tn]△ [0, sn])
2h

‖tn − sn‖2α
=

n−2h(u1u3 . . . uν + u2 . . . uν)
2h

2hn−2α
.

This is unbounded as n→∞ (if α > h), which proves that eαB
h(0)≤ h.

Now, by Corollary 2.7 of [58],

dimH

�
B

h([0,1]ν)
�
≤ ν

inft0∈[0,1]ν eαB
h(t0)

=
ν

h
,

which completes the proof.

Remark 5.18. We have shown in the course of this proof that eαB
h(0) = h. Another aspect of the

singular behaviour of B
h at 0 lies in the fact that the pointwise Hölder exponent (defined in (1.11))

is different from eαB
h(0), since αB

h(0) = νh. Indeed,

sup
s,t∈B(0,ρ)∩[0,1]ν

λ ([0, t]△ [0, s])≤ λ ([0,ρ]ν) = ρν

and

sup
s,t∈B(0,ρ)∩[0,1]ν

λ ([0, t]△ [0, s])≥ sup
t∈B(0,ρ)∩[0,1]ν

λ ([0, t]) =
ρν

νν/2
,

so that

αB
h(0) = sup

�
α > 0 : lim

ρ→0

(ρν)2h

ρ2α
<∞

�
= νh .

A third Hölder exponent was introduced in [58], specifically to give a lower bound for the local

Hausdorff dimension of the range of random fields. The deterministic local subexponent is defined,

for a random field X , as:

αX (t0) = sup

�
α > 0 : lim

ρ→0
inf

s,t∈B(t0,ρ)

E (Xs − X t)
2

‖s− t‖2α <∞
�

.

This exponent also differs from the local Hölder exponent when t0 = 0, and we have for ν≥ 2:

eαB
h(0) = h< νh= αB

h(0) = α
B

h(0) .

However, all these exponents are equal (for the multiparameter fBm) when t0 is not on the axes

(this is a simple consequence of Lemma 5.3).
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5.6 Perspectives

Getting the rate of decay of F is probably the best and most obvious way to improve the results
of this chapter. However, there are several reasons to believe that this is difficult.

Then, the LIL we obtained holds for a non-increment stationary Gaussian random field. We
believe that for certain locally non-deterministic Gaussian processes possessing a form of L2-
increment stationarity, there might be a general link between the local Hölder subexponent and
Chung’s law of the iterated logarithm. What is missing at this stage is a spectral representation
of L2-increment stationary Gaussian random fields (here we only have it for fractional processes,
using stable measures).

With the tools of this chapter, other topics of inquiries for the multiparameter fBm include
the multiple points as in [143], some limsup random fractals as in [40] and [101], and more
generally [77].
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5.7 Technical results

This section is an appendix for this chapter, gathering a couple of independent technical results.

5.7.1 Metric entropy under dλ

Proof of Lemma 5.4. We write the proof for ν = 2. It extends to larger values of ν but becomes
much more difficult to write. The idea is to decompose [0, 1]2 into layers (disks centred at
0) of width 2ǫ, and count the number of balls inside each of these layers. So let B0,1 be the
ball centred at 0. This ball, the first layer, and all the points we will need are drawn in Figure
5.1. For the first layer, let O1,1 =

�
(2ǫ)1/2, (2ǫ)1/2

�
such that d1(O, O1,1) = 2ǫ. For layer p,

Op,1 =
�
(2pǫ)1/2, (2pǫ)1/2

�
. Layer p consists of a covering of points whose distance from the

origin O is between (2p− 1)ǫ and (2p+ 1)ǫ. For each p, n, denoteBp,n the ball centred in Op,n

of radius ǫ. We now work on the first layer and extend the result to other layers by similarity.
The balls are symmetric with respect to the axis y = x , so we shall only work on the lower side
of this axis. Denoting A1,1 the extremal point of B1,1 which is at distance 3ǫ of O, and B1,1 its
counterpart at distance ǫ of 0 (see figure), the furthest point from O1 whose ǫ-ball contains A1,1 is
O1,2 =

�
(9ǫ/2)1/2, (8ǫ/9)1/2

�
. Since, B1,1 =

�
(2ǫ)1/2, (ǫ/2)1/2

�
, B1,1 ´ O1,2 and so d1(B1,1, O1,2) =

ǫ. Thus O1,2 is a good candidate. Iterating the process, A1,2 has the same first coordinate as O1,2

and B1,2 the same second coordinate. The general scheme is this one:






xO1,n+1
yO1,n+1

= 2ǫ
xA1,n+1

yA1,n+1
= 3ǫ

xO1,n+1
= xA1,n

yA1,n+1
= yO1,n+1

so that for all n, xO1,n+1
= 3ǫ/yO1,n

= 3/2 xO1,n
. Finally:

O1,n+1 =

��
3
2

�n

(2ǫ)1/2,
�

2
3

�n

(2ǫ)1/2
�

,

and denoting n1 the number of balls within the first layer, ie twice the smallest integer such that
O1,n1

/∈ [0,1]2, it easily comes that:

n1 = 2E

�
log

�
(2ǫ)−1/2

�

log(3/2)

�
+ 1 ,

where E[·] denotes the integer part. This extends to any layer p into:

Op,n+1 =

��
2p+ 1

2p

�n

(2pǫ)1/2,
�

2p

2p+ 1

�n

(2pǫ)1/2
�

, (5.22)

and thus np reads:

np = 2E

�
log

�
(2pǫ)−1/2

�

log(1+ 1/2p)

�
+ 1 . (5.23)

Considering the first Op,1 not in [0, 1]2, there are at most P (ǫ) = E[(2ǫ)−1] + 1 layers. Unless
specified otherwise, we will just write P for P (ǫ). This family is a covering of [0, 1]2,
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Figure 5.1 – Balls of dλ

Thus,

N([0,1]2, dλ,ǫ)≤
P∑

p=0

np

= 1+
P∑

p=1

np

≤ 1+P + 2
P∑

p=1

log
�
(2pǫ)−1/2

�

log(1+ 1/2p)

≤ 1+P −
P∑

p=1

log (p/P )
log(1+ 1/2p)

. (5.24)

To obtain the lower bound, we use the packing number D([0, 1]2, dλ,ǫ), which represents
the biggest number of disjoint balls of radius ǫ on [0, 1]2. It is well-known that D(ǫ)≤ N(ǫ/2).
It suffices to prove that the balls centred in {

�
Op,n+1

�
n∈{0,...,np}

, p ∈ {0, . . . ,P }} with radius ǫ/2

are disjoint. It follows then that:

N(ǫ/4)≥ D(ǫ/2)≥ 1+P −
P∑

p=1

log (p/P )
log(1+ 1/2p)

,

or after renormalization:

N(ǫ)≥ 1+P (4ǫ)−
P (4ǫ)∑

p=1

log (p/P (4ǫ))
log(1+ 1/2p)

. (5.25)

Hence, it remains to evaluate this sum, for which we rely on the following inequality:

∀x ∈ [0, 1/2], x − x2

2
≤ log(1+ x)≤ x ,



140 5. SINGULARITIES OF THE MULTIPARAMETER FRACTIONAL BROWNIAN MOTION

thus obtaining:

P∑

p=1

(2p) log (p/P )≥
P∑

p=1

log (p/P )
log(1+ 1/2p)

≥
P∑

p=1

(2p)
log (p/P )
1− (4p)−1

≥ 4
3

P∑

p=1

(2p) log (p/P ) .

By convergence of Riemann sums:

1
P

P∑

p=1

p

P log
�

p

P
�
=

∫ 1

0

x log x dx +O(P −1)

= −1
4
+O(P −1) .

Finally, equations (5.24) and (5.25) yield:

1
2
P (4ǫ)2 +O(P (4ǫ))≤ N([0, 1]2, dλ,ǫ)≤ 2

3
P (ǫ)2 +O(P (ǫ)) ,

and the result follows.

5.7.2 Proof of Lemma 5.14

For the original proof, see Lemma 5.3 of [38]. We make here the necessary modifications.

�
log log r−1

�h/ν+1/2 ‖η(h,ℓ)
r
− f ‖∞ =

(log log r−1)h/ν

rνh

B
h(r·)− rνh

Æ
log log r−1 f


∞

≥ (log log r−1)h/ν

rνh

B
h(s·)− rνh

Æ
log log r−1 f

�
s

r
·
�
∞

≥ (log log u−1)h/ν

uνh

B
h(s·)− rνh

Æ
log log r−1 f

�
s

r
·
�
∞

.

Now choosing a = sνh
p

log log s−1 and b = uνh
p

log log u−1,
B

h(s·)− rνh
Æ

log log r−1 f

�
s

r
·
�
∞
≥
B

h(s·)− a f

∞ − b

 f − f

�
s

r
·
�
∞
− (b− a)‖ f ‖∞

and we find a bound for each of the last two terms (the first one is exactly the one given in the
Lemma). We need the following inequality for f ∈ Hν

h
, s, t ∈ [0,1]ν:

| f (s)− f (t)|2 ≤ M1‖s− t‖2h‖ f ‖2
h,ν ,

which follows from approximation of f by linear combinations of simple functions of the form
λ(1[0,t i]

1[0,·]) and the upper bound in Lemma 5.3 (where the constant M1 comes from). Thus,

−b
(log logu−1)h/ν

uνh

 f − f

�
s

r
·
�
∞
≥ −M1

�
log log u−1

�h/ν+1/2
�

1− s

u

�h

‖ f ‖h,ν .

For the last term, we use the fact that:

b− a ≤
Æ

u2νh log log u−1 − s2νh log log s−1 ,

which ends the proof of this lemma.



Bernstein and negative definite

functions A
Our goal is not to provide a comprehensive list of definitions and results on the topic of Bernstein
functions and negative definiteness. For this we refer to [129] (mainly to Chapter 3 and 4), from
which the sequel can be deduced. Instead, we give as few definitions as possible to understand
the last proposition of this appendix, which I believe gives a good understanding of the range of
the Hurst parameter, depending on the nature of the index set.

Let (G,+) be an Abelian group. In concrete situations, G will be the Euclidean space of a
Hilbert space, such as L2(T, m).

Definition A.1. A function f : G→ R is negative definite if f (−x) = f (x), and

n∑

j,k=1

λ jλk

�
f (x j) + f (xk)− f (x j − xk)

�
≥ 0 ,

for any n ∈ N, any x1, . . . , xn ∈ G and any λ1, . . . ,λn ∈ R.

Below, we give a definition of Bernstein functions that some consider as a characterization,
preferring another definition that we omit here.

Definition A.2. A Bernstein function is a function f : R+ → R+ that admits a Lévy-Khintchine

decomposition:

f (x) = a+ bx +

∫ ∞

0

�
1− e−λx

�
µ(dλ) ,

where a, b ∈ R+ and µ is a measure on R+ satisfying
∫∞

0
(1∧λ) µ(dλ)<∞.

The following lemma of Schöenberg [129, p.36] will provide an essential tool in the proof
of Proposition A.4.

Lemma A.3. f : G → R is negative definite if and only if any of the two following equivalent

assertions hold:

1. f (0) ≥ 0, f (−x) = f (x) and for any x1, . . . , xn ∈ G, and any λ1, . . . ,λn ∈ R such that∑n

j=1λ j = 0, the following holds:

n∑

j,k=1

λ jλk f (x j − xk)≤ 0 .

141
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2. f (0)≥ 0 and x 7→ exp(−t f (x)) is positive definite for any t > 0.

Proposition A.4. Let α ∈ (0,1]. Let H be a separable Hilbert space. Then x 7→ ‖x‖2α is negative

definite. In other words,

(x , y) 7→ ‖x‖2α + ‖y‖2α − ‖x − y‖2α

is positive definite.

Proof. We assume without restriction that H = L2(T, m). Indeed, if H is not a L2 space, we
choose a linear isometry between H and a separable L2(T, m) space.
Let λ1, . . . ,λn ∈ R and x1, . . . , xn ∈ H. We prove that x 7→ ‖x‖2 is negative definite.

n∑

j,k=1

λ jλk

�
‖x j‖2 + ‖xk‖2 − ‖x j − xk‖2

�
= −2

n∑

j,k=1

λ jλk

�
x j , xk

�

= 2
n∑

j,k=1

λ jλk

∫

T

x j xk dm

= 2

∫

T

n∑

j,k=1

λ jλk x j xk dm

= 2

∫

T

 
n∑

j=1

λ j x j

!2

dm≥ 0 .

The authors of [129] remarked at the beginning of Chapter 3 that the function x 7→ xα on R+ is
a Bernstein function for α ∈ [0, 1]. Hence, this function has a Lévy-Khintchine decomposition,
for which a and b can be seen to equal 0. To prove negative definiteness, it more convenient to
use Schöenberg’s characterisation: let λ1, . . . ,λn ∈ R be such that

∑n

j=1λ j = 0,

n∑

j,k=1

λ jλk ‖x j − xk‖2α =
∫ ∞

0

n∑

j,k=1

λ jλk

�
1− e−λ‖x j−xk‖2

�
µ(dλ)

= −
∫ ∞

0

n∑

j,k=1

λ jλke−λ‖x j−xk‖2 µ(dλ)≤ 0 ,

since the second assertion of Schöenberg’s characterisation ensures that
∑n

j,k=1λ jλke−λ‖x j−xk‖2

is non-negative. This ends the proof.



Separability of stochastic processes B
This topic comes up many times in this thesis, see in particular Section 1.4 of the introduction,
so we provide here complete definitions and proofs in a very general setting. We adapt a proof
due to DOOB [42, p.54]. In this book, only processes indexed by a linear space are considered,
while in GIKHMAN AND SKOROKHOD [53, pp.163–167], processes can be indexed by a separable
metric space. Here, we transpose essentially the same proof assuming only that the index set
is a topological second countable space. If it is metric, then it is the same than assuming it is
separable.

Let (T,O ) be a topological space. We assume that this space is second-countable, i.e. that
there exists a countable subset eO ⊆ O such that any open set of O can be expressed as a union
of elements of eO .
A process {X t , t ∈ T} is separable if there exists an at most countable set S ⊂ T and a null set Λ
such that for all closed sets F ⊂ R and all open set O ∈ O ,

{ω : Xs(ω) ∈ F for all s ∈ O ∩ S} \ {ω : Xs(ω) ∈ F for all s ∈ O} ⊂ Λ.

This definition is different of the one found in [42], where the space is “linear”, in that these
authors consider the previous equation only when O is an interval. However when restricted to
a vector space, these definitions coincide.

Theorem B.1 (Doob’s separability theorem). Let (T,O ) be a second-countable topological space.

Any stochastic T -indexed process X = {X t ; t ∈ T} has a separable modification.

It should be noted that this modification has values in R, the compactification of R. This does not

affect the topology on R, and the probability that any such separable process attains ±∞ is 0.

Hence, this consequence of Doob’s separability theorem is commonly forgotten.

Let us prove this theorem. J is the collection of all closed intervals in R with rational or
infinite endpoints, �J is the analogous of J with open sets, and C is the collection of all closed
subsets of R. Let also denote K the sets that are finite unions of open or closed intervals with
rational or infinite endpoints.

Lemma B.2. There exists a countable set S ⊂ T such that for any fixed t ∈ T, the following is a

null set:

Nt =
⋃

A∈K
{ω : Xs(ω) ∈ A f or al l s ∈ S, X t(ω) /∈ A} .
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Proof. Temporarily, fix some Borel set A⊂ R and let t0 be any point in T and

ǫ1 = sup
t∈T

P(X t0
∈ A, X t /∈ A).

Having constructed distinct t1, t2, . . . ,∈ T and ǫ1 ≥ ǫ2 ≥ · · · ≥ ǫk define

ǫk+1 = sup
t∈T

P(X t j
∈ A for all 1≤ j ≤ k, X t /∈ A).

Clearly, ǫ1 ≥ ǫ2 ≥ · · · ≥ ǫk+1. Moreover, one can always choose some tk+1 ∈ T \ {t1, . . . , tk}
such that:

P(X t j
∈ A for all 1≤ j ≤ k, X tk+1

/∈ A)≥ ǫk+1

2
.

Thus,

∞∑

k=2

ǫk ≤ 2
∞∑

k=2

P(X t j
∈ A for all 1≤ j ≤ k− 1, X tk

/∈ A)

= 2P(X tk
/∈ A for some k ≥ 2)<∞.

In particular, limk→∞ ǫk = 0. So for any Borel set A⊂ R, there exists a countable set TA such
that

sup
t∈T

P(Xs ∈ A for all s ∈ TA, X t /∈ A) = 0.

Then define S = ∪A∈K TA which is countable. Indeed, K can be written:

K =
∞⋃

n=1

�
A1 ∪ · · · ∪ An : A1, . . . , An ∈ J ∪ �J

	
.

Lemma B.3. For each t ∈ T,

⋃

A∈C
{ω : Xs(ω) ∈ A f or al l s ∈ S, X t(ω) /∈ A} ⊂ Nt .

Proof. Any A∈ C can be written as A= ∩∞
n=1An, where An ∈K . By the previous lemma, for any

such A∈ C and A1, A2, · · · ∈ K ,

{ω : Xs(ω) ∈ A for all s ∈ S, X t(ω) /∈ An}
⊂ {ω : Xs(ω) ∈ An for all s ∈ S, X t(ω) /∈ An}
⊂
⋃

E∈K
{ω : Xs(ω) ∈ E for all s ∈ S, X t(ω) /∈ E}= Nt .

To conclude, we notice that A= ∩n≥1An and the result follows.

Proof of the Theorem. Let O ∈ eO and apply Lemma B.3 to the stochastic process {X t ; t ∈ O} to
conclude the existence of null sets Nt(O) and a countable set SO ⊂ O such that

⋃

A∈C
{ω : Xs(ω) ∈ A for all s ∈ SO, X t(ω) /∈ A} ⊂ Nt(O).



145

Since eO is countable, S∗ =
⋃

O∈ eO SO is countable. Similarly, for all t ∈ T , Λt =
⋃

O∈ eO Nt(O)

is a null set. Define

RO(ω) = {Xs(ω); s ∈ O ∩ S∗}.

RO may include the values ±∞. RO is closed and nonempty in R∪{±∞}. For any t ∈ T , define
the random set

Rt =
⋂

O∈ eO : t∈O

RO.

Clearly, Rt ⊂ R∪ {±∞} is closed and nonempty, for all ω ∈ Ω. Moreover,

if t ∈ T and ω /∈ Λt , then X t(ω) ∈ Rt(ω). (B.1)

Now we can start building the desired modification of X . For all ω ∈ Ω and all t ∈ S∗, define
eX t(ω) = X t(ω). If t /∈ S∗ and ω /∈ Λt , define also eX t(ω) = X t(ω). Finally, whenever t /∈ S∗ and
ω ∈ Λt , define eX t(ω) to be some designated element of Rt(ω). Since P(Λt) = 0 for each t ∈ T ,
P(eX t = X t) = 1.

It remains to show that eX is separable. Fix A∈ C and O ∈ eO , and suppose ω satisfies:

eXs(ω) ∈ A for all s ∈ O ∩ S∗.

If s ∈ O ∩ S∗ but ω /∈ Λt , eXs(ω) = Xs(ω) ∈ RO(ω) ⊂ Rs(ω) ⊂ A, since A is closed. Similarly, if
s ∈ O, but s /∈ S∗ and ω /∈ Λt , then eXs(ω) = Xs(ω) ∈ RO(ω) ⊂ A, by equation (B.1). Define

Λ =
⋃

s∈S∗

Λs.

Since S∗ is countable, Λ is a null set. It is also chosen independently of all A∈ C and O ∈ eO .
Finally we have shown that

�
ω : eXs(ω) ∈ A, ∀s ∈ O ∩ S∗

	
∩Λc ⊂

�
ω : eXs(ω) ∈ A, ∀s ∈ O

	
,

and it is clear that

�
ω : eXs(ω) ∈ A, ∀s ∈ O ∩ S∗

	
⊃
�
ω : eXs(ω) ∈ A, ∀s ∈ O

	
.

The last two inclusions imply that

�
ω : eXs(ω) ∈ A, ∀s ∈ O ∩ S∗

	
\
�
ω : eXs(ω) ∈ A, ∀s ∈ O

	
⊂ Λ.

We conclude with the fact that any U ∈ O can be written U = ∪∞
n=1On where On ∈ eO ,∀n.

Hence the last equation remains true for U:

�
ω : eXs(ω) ∈ A, ∀s ∈ U ∩ S∗

	
\
�
ω : eXs(ω) ∈ A, ∀s ∈ U

	
⊂ Λ ,

since Λ was built independently of all O ∈ eO .
This proves the separability of eX .
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Remark B.4. This theorem ensures that random variables such as inft∈O X t , supt∈O X t , lim inft→t0
X t

or lim supt→t0
X t are indeed measurable. For any open set O ∈ O and λ ∈ R:

§
sup
t∈O

X t ≤ λ
ª
= {X t ≤ λ, for all t ∈ O}

= {X t ≤ λ, for all t ∈ O ∩ S} ∩ {X t ≤ λ, ∀t ∈ O \ S}
= {X t ≤ λ, for all t ∈ O ∩ S} \
{{X t ≤ λ, for all t ∈ O ∩ S} \ {X t ≤ λ for all t ∈ O}}

The last part of the equality is included in a null set according to the theorem, thus assuming without

restriction that the probability space is complete, it is also a null set. Hence the subset ofΩ considered

above is measurable.

Application to set-indexed processes. For set-indexed processes of IVANOFF AND MERZBACH

[70] and their applications, the necessity of the existence of a separable modification was pointed
out in Chapter 2 and in [63]. Given a set T andA a collection of subsets of T , we assume that
there is a distance dA on A . Hence it is required that the topology induced by dA is second-
countable. This happens for instance when (A , dA ) is totally bounded, which is always assumed
in this thesis.



Analytic calculus of the small deviations

of the fractional Brownian motion C
This paragraph echoes a remark made at the beginning of Section 4.2, where we recall the
(analytic) link established by KUELBS AND LI [84] between the small ball values of a Gaussian
measure and the metric entropy of its RKHS. These authors note that it seems difficult to compute
the metric entropy of the RKHS of the fractional Brownian motion, except for H = 1/2, and so
to recover the small deviations analytically. Without computing directly the metric entropy of
the RKHS, we propose another analytic method for H > 1/2. All the material needed here is
covered in the article of LI AND LINDE [93] but we try to see it with another perspective.

Lemma 2.2 of [142] gives a general lower bound for the small deviations of a Gaussian
process X , of the form:

P

�
sup
t∈T

|X t | ≤ ǫ
�
≥ exp (−K N(T, dX ,ǫ)) , ∀ǫ > 0 ,

for some positive constant K , where N(T, dX ,ǫ) is the ǫ-metric entropy of T measured with the
distance induced by X , and N(T, dX ,ǫ) is assumed to be regularly varying. It is recalled that the
upper bound was obtained in [106] using local nondeterminism.
Although Li and Linde claim that this bound is not sharp for many Gaussian processes1, it is
indeed for fractional Brownian motion. Note that this result was proved analytically in [140]
for Gaussian measures. Bearing in mind Mandelbrot and Van Ness’ integral representation of
fractional Brownian motion, the rules of fractional calculus yield that the process BH , defined
for H > 1/2 and for a Brownian motion B by:

BH
t
= aH

∫ 0

−∞

�
(t − s)H−1/2 − (−s)H−1/2

�
dBs + bH

∫ t

0

(t − s)H−3/2 Bs ds, ∀t ∈ [0, 1]

=: ZH(t) + bHWH+1/2(t)

is a fractional Brownian motion of parameter H (with the appropriate choice of constants aH

and bH). We refer to Theorem 6.2 of [93] for a proof of this result, and notice that under this
form, WH+1/2 is in fact a fractional integral of Brownian motion of order H − 1/2.

Hence, Anderson’s inequality [9] implies:

P

�
sup

t∈[0,1]
|BH

t
| ≤ ǫ

�
≤ P

�
sup

t∈[0,1]
|bHWH+1/2(t)| ≤ ǫ

�
.

1They even indicate that this is the reason that pushed them to produce the results of [93], which are more precise
than Talagrand’s bound.
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The upper bound of the small deviations of WH+1/2 is given exactly in Theorem 6.2 of [93].
Nevertheless, we want to emphasize that this does not come from a probabilistic estimate by
sketching the proof of this result. Let us denote I

β

0+ the right fractional integral (or Riemann-
Liouville fractional integral) of order β . For H > 0, let

en

�
I

H+1/2
0+ : L2[0, 1]→ C[0, 1]

�
= inf

¦
ǫ > 0 : N

�
I

H+1/2
0+ (K),‖ · ‖,ǫ

�
≤ 2n−1

©

where K is the unit ball of L2[0, 1] and I
H+1/2
0+ (K) is a compact subset of C[0,1] with the sup-

norm ‖ · ‖, since H + 1/2 > 1/2. Next, we simply denote this quantity by en. We refer to
Proposition 6.1 of [93] where it is shown that en ¼ n−H−1/2. A brief calculus suffices to deduce
that

log N(I
H+1/2
0+ (K),‖ · ‖,ǫ)¼ ǫ−1/(H+1/2) .

For H ∈ (0, 1), it is known (see Section 1.3.3 and [39]) that I
H+1/2
0+ (K) is the same vector

space as the RKHS of the fractional Brownian motion of parameter β − 1/2. Therefore, the link
between the entropy of the RKHS and the small balls, as in [84] or Theorem 1.1 iii) of [93],
reads here:

− logP

�
sup

t∈[0,1]
|BH

t
| ≤ ǫ

�
¼ ǫ−2(H+1/2)−1/(2−(H+1/2)−1)

¼ ǫ−2/H .

This is the correct upper bound for the small deviations of the H-fBm, and local nondeterminism
was not used to derive it.
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