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Introduction

This document presents a synthesis of most of my research works on probability theory

and mathematical finance. I choose to regroup the results among four chapters that can be

gathered into two main parts.

The first part concerns the probabilistic representations and approximations of stochas-

tic optimal control problems and is composed by the two first chapters.

Chapter 1 deals with the representation of optimal control problems by Backward

Stochastic Differential Equations (BSDEs for short). We first consider some specific control

problems where the allowed strategies are sequences of interventions. Namely, the consid-

ered problems are impulse control and optimal switching. In the first section, we provide

a representation of Feynman-Kac type for the associated PDEs by means of constrained

BSDEs with jumps. We then focus in the second section on an existing representation for

optimal switching given by BSDEs with oblique reflections. We weaken the assumptions

under which the existence and uniqueness of solutions for such equations hold. Unfortu-

nately, the representation by BSDEs with oblique reflections does not cover the general

case of a completely controlled diffusion. By considering a family of such BSDEs, we ex-

tend this representation for general switching problems. As we get two kinds of equations

representing the same control problem, a natural question is to find a link between them.

We answer this question by relating the solutions to BSDE with oblique reflections and

constrained ones. In the third section we turn to the continuous time control case. We

show that the representation by constrained BSDEs still holds for such problems.

In Chapter 2, we focus on the numerical approximation of optimal control problems.

We first consider the approximation of optimal switching problems. In the first section, we

present a discrete-time approximation result for BSDEs with oblique reflections. We then

provide in the second section a discretization algorithm based on quantization methods. In

the third section, we focus on the continuous time control case. Using the representation

we get in the first chapter, we propose a discrete time approximation. Using the shaking

coefficient method of Krylov and the switching approximation of Barles and Jacobsen, we

get convergence rates improving those existing in the literature.

The second part of this manuscript focuses on the mathematical modeling of financial

markets. It is composed by the two last chapters.

In Chapter 3, we present models on imperfection in financial markets. In the first section

we consider an optimal liquidation problem in an illiquid market. This model allows to take
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into account the costs due to the lack of liquidity. We characterize the optimal wealth and

an associated optimal liquidation strategy. We then consider in the second section the

problem of super-replication under investment constraints. More precisely, we look for

necessary and sufficient conditions on the model to ensure that the super-replication price

of a given contingent claim equalize the replication price of a modification of this contingent

claim. This question is actually related to a first order viability for BSDEs. By adapting

the existing result on zero order viability to our case, we derive such necessary and sufficient

conditions. Finally, we study in the third section an optimal switching problem under state

constraints arising from energy management.

Chapter 4 is dedicated to models with progressive enlargement of filtrations. We con-

sider in the first section an optimal investment problem under multiple default risk. Using

a decomposition approach we characterize the optimal value and an optimal investment

strategy. We then use this decomposition approach in a dynamic way. This allows to

solve quadratic BSDEs with jumps in the second section. Finally, in the third section, we

consider a mean-variance hedging problem up to a default time arising from the valua-

tion of insurance contracts. Using BMO-properties of BSDEs we characterize an optimal

investment strategy and the optimal value.
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Notations

For a vector x ∈ Rd, xi denotes its i-th component and |x| its euclidean norm. We denote

by Rd×d the set of d×d real matrices and Sd the subset of sysmetric elements of Rd×d. For

M ∈ Rd×d, Tr[M ] denotes the trace of M , M .j its j-th column and M i,j the i-th coefficient

of M .j . The transpose of a vector or a matrix y is denoted by y⊤ and the product scalar

x⊤y between x and y is denoted by x · y whenever it exists. Finally, for x ∈ Rd and

k ∈ {1, . . . , d}, x(k) denote the vector of Rk composed by the k first components of x.

For E ⊂ Rd, we denote by C1,2([0, T ]×E) the set of functions ϕ : (t, x) ∈ [0, T ]×E 7→
ϕ(t, x) ∈ R that admits a continuous first order derivative ∂tϕ w.r.t. the variable t and a

continuous second order derivative D2ϕ w.r.t. the variable x.

In the sequel, we fix a probability space (Ω, T ,P). We suppose that this probability space

is endowed with a d-dimensional Brownian motion W and we denote by F the complete

and right-continuous filtration generated by W .

We also suppose that the probability space is endowed with a Poisson random measure

µ defined on R+ ×E, with E a Borelian subset of Rq, and independent of W . We suppose

that µ admits the compensator
∫ .
0 λ(de)ds where λ is a finite measure defined on the Borel

algebra B(E) of E. We denote by G = (Gt)t≥0 the right-continuous and complete filtration

generated by W and µ.

Finally, we suppose that (Ω, T ,P) is also endowed with a finite ordered sequence of

random times (τk)1≤k≤n:

P

(
τ1 ≤ τ2 ≤ · · · ≤ τn

)
= 1,

and a sequence of random marks (ζk)1≤k≤n valued in E. We denote by H = (Ht)t≥0 the

smallest right continuous and complete filtration generated by W and for which τ1, . . . , τn

are stopping times and each random mark ζk is Hτk -measurable for all k ∈ {1, . . . , n}. We

denote by η the random measure associated to the sequence (τk, ζk)1≤k≤n:

η =
n∑

k=1

δτk,ζk

with δ the Dirac measure.

For a given filtration J defined on (Ω, T ,P), we denote by

• S2
J
(resp. S2

J,c) the set of J-adapted càdlàg (resp. continuous) processes Y valued in
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R such that

‖Y ‖S2 := E

[
sup

t∈[0,T ]
|Yt|2

] 1

2

< ∞,

• S∞
J

(resp. S∞
J,c) the set of J-adapted càdlàg (reps. continuous) processes Y valued in

R such that

‖Y ‖S∞ := inf
{
c ∈ R : P

(
sup

t∈[0,T ]
|Yt| ≤ c

)
= 1

}
< ∞,

• L2
J
(W ) the set of J-predictable processes Z valued in Rd such that

‖Z‖L2(W ) := E

[ ∫ T

0
|Zs|2ds

] 1

2

< ∞,

• K2
J
(resp. K2

J,c) the set of non-decreasing processes K ∈ S2
J
(resp. K ∈ S2

J,c) such

that K0 = 0.

We also denote by

• L2(µ) the set of G-predictable processes U valued in Rd such that

‖U‖L2(µ) := E

[ ∫ T

0

∫

E
|Us(e)|2λ(de)ds

] 1

2

< ∞,

• L2(η) the set of H-predictable processes U valued in R such that

‖U‖L2(η) := E

[ ∫ T

0

∫

E
|Us(e)|2η(de, ds)

] 1

2

< ∞,
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Part I

Probabilistic representations and

approximations
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Chapter 1

Representation of stochastic

control problems

Optimal control of stochastic systems is the study of optimization problems where the

underlying controlled system evolves with some uncertainty. It has numerous applications

in decision making problems, especially in economics and finance. Therefore, this theory

has attracted a lot of interest in the last decades. In particular, numerous papers investigate

the numerical approximations of such problems. A possible approach is to use Monte Carlo

methods by setting convenient probabilistic representations.

We present in this chapter our results on such representations of optimal control prob-

lems. More precisely, we consider representation by BSDEs. In Section 1.1, we focus on

a specific class of control problems where the allowed strategies are sequences. For such

problems we present a representation by constrained BSDEs. We then consider in Section

1.2, a class of BSDEs related to optimal switching problems for which we present the results

we get. Finally, we deal in Section 1.3 with the BSDE representation of classical continuous

time control problems.

The content of this chapter follows from the articles [CEK11], [EK14b], [KMPZ10] and

[KP14]. For the sake of clarity, we present specific versions of results obtained in [KMPZ10]

and [KP14] and we refer to these articles for the general presentation.

1.1 Sequential control and constrained BSDEs

In many decision making problems, continuous time strategies do not fit with the reality of

the situation. This is the case for instance in financial markets where investors are subject

to frictions which prevent them from trading too many times. An alternative to continuous

time control models consists in considering that the allowed strategies are sequences. This

is the case of impulse control and optimal switching problems.

In [KMPZ10], we focus on the impulse control problem that is described as follows. We

consider a set of strategies α = (νk, βk)k≥1 with

• (νk)k≥0 a nondecreasing sequence of stopping times representing the trading times of

the investor,
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• βk an Fνk -measurable random variable representing the level of intervention.

For such a strategy α, we consider the controlled diffusion Xα defined by

Xα
s = X0 +

∫ s

0
b(Xα

u )du+

∫ s

0
σ(Xα

u )dWu +
∑

νi≤s

γ(Xα
ν−i

, βi), (1.1.1)

We then are given a reward and terminal payoff function f and g and a cost function c.

The impulse control problem consists in computing the following quantity

sup
α=(νi,βi)i

E
[
g(Xα

T ) +

∫ T

0
f(Xα

s )ds+
∑

νi≤T

c(Xα
ν−i

, βi)
]
.

The value function associated to this impulse control problem is proved to be a solution to

the quasi-variational inequality (QVI for short)

min
[
− ∂v

∂t
− Lv − f , v −Mv

]
= 0, (1.1.2)

where L is the local second order operator defined by

Lv(t, x) = = b(x).Dv(t, x) +
1

2
tr[σ(x)σ(x)⊺D2v(t, x))] ,

and M is the nonlocal semilinear operator

Mv(t, x) = sup
e

[
v(t, x+ γ(x, e)) + c(x, e)

]
.

To construct a BSDE representation for this QVI, we follow the idea of [Bou09] which

consisting in relating this PDE to a stochastic target problem with a jump part that cannot

be controlled. More precisely, we replace the strategy α by a Poisson random measure µ

and we denote by X the new underlying process.

Using the PDE (1.1.2), we get by a formal application of Itô’s formula that the processes

Yt = v(t,Xt) satisfies

Yt = g(XT ) +

∫ T

t
f(Xs)ds+KT −Kt −

∫ T

t
ZsdWs

−
∫ T

t

∫

E

(
Us(e)− c(Xs− , e)

)
µ(ds, de), (1.1.3)

where Zt = σ⊤(Xt−)Dv(t,Xt−), Ut(e) = v(t,Xt− + γ(Xt− , e))− v(t,Xt−) + c(Xt− , e), and

Kt =
∫ t
0 (−

∂v

∂t
− Lv − f)(s,Xs)ds. Since v satisfies (1.1.2), we see that K is a continuous

(hence predictable), nondecreasing process, and U satisfies the constraint:

− Ut(e) ≥ 0. (1.1.4)

The idea is then to view (1.1.3) and (1.1.4) as a BSDE with jump constraints, and we expect

to retrieve v(t,Xt) by solving the “minimal” solution (Y, Z, U,K) ∈ S2
G
×L2

G
(W )×L2(µ)×

K2
G
to this constrained BSDE in the following sense: for any other solution (Y ′, Z ′, U ′,K ′) ∈

S2
G
× L2

G
(W )× L2(µ)×K2

G
, we have Y ≤ Y ′.
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To the best of our knowledge, the first study of constrained BSDEs appear in [BH98b,

BH98a] where constrained BSDEs are solved by weak convergence methods. Then, [CKS98]

uses a convex duality approach to study constrained BSDEs. The general case is treated

by [Pen99].

In the mixed Brownian-Poison case, the same approach has been used to derive ex-

istence and uniqueness of a solution in [Roy06] for the study of decomposition theorems

for nonlinear expectations. Here, we also follows Peng’s approach to study our constrained

BSDE and under classical assumptions on the coefficients, we get the existence of a minimal

solution as soon as a solution exists. The proof consists introducing a sequence of BSDEs

where the jump part is penalized ensure that it satisfy the constraint asymptotically. Then

using weak convergence methods, we show that this sequence converges to the minimal

solution of the constrained BSDE.

We then relate this minimal solution (Y, Z, U,K) to an extension of PDE (1.1.2) by

allowing the function f and the nonlocal term M to depend on the first order derivative.

More precisely, we get from the Markov property of our model a deterministic function v

such that

Yt = v(t,Xt) , t ∈ [0, T ] .

We then show that the function v is a viscosity solution to a general version of the QVI

(1.1.2). The proof relies on a penalization argument which allows to work in the classical

framework. Then using relations between BSDEs with jumps and Integral PDE (see e.g.

[BBP97]), and the stability results for PDEs (see [Bar94]), we get the viscosity property.

In [EK09], we extend this representation to another sequential control problem called

optimal switching. In this case, the set of admissible strategies corresponds to the sequences

α = (νk, βk)k≥1 where (νk)k is a nondecreasing sequence of F-stopping times and βk is an

Fτk -measurable random variable valued in the finite set {1, . . . ,m}. For such a strategy,

the controlled process Xα is defined by

Xα
t = X0 +

∫ t

0
b(Xα

s )ds+

∫ t

0
σ(Xα

s )dWs , t ≥ 0. (1.1.5)

The optimal switching problem is then given by

sup
α=(νi,βi)i

E
[
g(Xα

T , αT ) +

∫ T

0
f(Xα

s , αs)ds+
∑

νi≤T

c(Xα
νi , , βi−1, βi)

]
. (1.1.6)

where f and g are given and represent a reward and terminal payoff function, c is a cost

function and αs =
∑

k≥0 βk1[νk,νk+1)(s) for s ∈ [0, T ]. This problem can be seen as a mix

between the classical control problems and impulse control since the strategy α influences

the drift and the volatility of the controlled process and also induces jumps on the gain via

the cost function c. Due to the presence of cost for the change of regime, the associated

value function depends on the initial condition (t, x) ∈ [0, T ]×Rd of the diffusion but also on

the initial regime i ∈ {1, . . . ,m}. This leads to a multidimensional dynamic programming
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equation of the form

min
[
− ∂v

∂t
− Lv − f, v −Mv

]
= 0 on [0, T )× R̄

d × {1, . . . ,m}, (1.1.7)

min
[
v − g, v −Mv

]
= 0 on {T} × R̄

d × {1, . . . ,m}. (1.1.8)

where L is the second order local operator defined by

Lv(t, x, i) =
(
b.Dv +

1

2
tr[σσ⊺D2v)]

)
(t, x, i)

and M is the nonlocal operator defined by

Mv(t, x, i) = max
1 ≤ j ≤ m

j 6= i

[
v(t, x, j)− c(x, i, j)

]

for all t ∈ [0, T ], x ∈ Rd and i ∈ {1, . . . ,m}. To set a representation by constrained BSDE,

we first suppose that the random measure µ is defined on R+×{1, . . . ,m}. Then, we replace
the switching strategy α by the random measure µ. This leads to consider the process I

defined by

It = i+

∫ t

0

∫

{1,...,m}
(a− Is−)µ(da, ds) , t ≥ 0 ,

instead of the process (αs)s. The associated constrained BSDE takes the following form:

find the minimal solution (Y, Z, U,K) ∈ S2
G
× L2

G
(W )× L2(µ)×K2

G
to

Yt = g(XT , IT ) +

∫ T

t
f(Xs, Is)ds+KT −Kt −

∫ T

t
ZsdWs (1.1.9)

−
∫ T

t

∫

E

(
Us(e)− c(Xs, Is− , e)

)
µ(ds, de),

From the Makov feature of our model, we get the existence of a function v that links Y

to X: Yt = v(t,Xt, It). Using a penalization argument we obtain that the function v is a

viscosity solution to (1.1.7)-(1.1.8).

1.2 BSDEs with oblique reflexions

We focus in this section on another class of BSDEs that provides a representation for the

values of optimal switching problems. These BSDEs are multidimensional and have oblique

reflections. More precisely, they take the following form : find (Y, Z,K) ∈ [S2
F,c ×L2

F
(W )×

K2
F,c]

d such that





Y i
t = ξi +

∫ T
t f i(s, Ys, Z

i
s)ds−

∫ T
t Zi

sdWs +Ki
T −Ki

t , 0 ≤ t ≤ T ,

Y i
t ≥ maxj∈I{Y j

t − Cij
t } , 0 ≤ t ≤ T ,

∫ T
0 [Y i

t −maxj∈I{Y j
t − Cij

t }]dKi
t = 0 , 0 ≤ i ≤ d ,

(1.2.10)

where
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• ξ = (ξ1, . . . , ξd) is an FT -mesurable random variable such that E[|ξ|2] < +∞,

• f : Ω× [0, T ]×Rd ×Rd×d → Rd is a progressive function called driver and satisfying

the integrability condition

E

[ ∫ T

0
|f(t, 0, 0)|2dt

]
< +∞,

and the Lipschitz condition: there exists a constant L > 0 such that

|f(t, y, z)− f(t, y′, z′)| ≤ L
(
|y − y′|+ |z − z′|

)

for all y, y′ ∈ Rd, z, z′ ∈ Rd×d et t ∈ [0, T ],

• Ci,j , i, j ∈ {1, . . . , d}, are progressive processes.

As far as we know, these BSDEs appear for the first time in [HJ07] in the particular

case of two regimes, i.e. d = 2, and a driver not depending on (Y, Z). The general case is

then studied by Hu and Tang in [HT10] where the existence and uniqueness of solutions

is proved in the case of constant cost processes and a diagonal driver, i.e. each line of the

driver depends only on the corresponding line of the unknown (Y, Z):

f i(y1, . . . , yd, zi) = f(yi, zi) pour tout y, zi ∈ R
d et i ∈ {1, . . . , d} .

Then the result is generalized in [HZ10] where the authors allow the generator to depend

on all the component of Y but with the following monotonicity condition:

the function yj 7→ f(y1, . . . , yj−1, yj , yj+1, . . . , yd, zi) is increasing

for all (y1, . . . , yj−1, yj+1, . . . , yd) ∈ R
d−1, zi ∈ R

d et i ∈ {1, . . . , d}.
We notice that for such BSDEs with general driver, we cannot use a fixed point proce-

dure to prove existence and uniqueness of solutions. The main reason is that the oblique

projection operator has a Lipschitz constant greater than 1. Therefore usual arguments to

prove that the classical decoupling scheme is contracting do not work anymore.

In [CEK11], we use a new approach that apply a fixed point procedure for Lipschitz

drivers. This is done via the introduction of a convenient one dimensional dominating

BSDE and the use of a standard comparison theorem. In particular our result get rid of

the previous monotonicity assumption.

As we presented above, BSDEs with oblique reflections provide representation for value

functions associated to optimal switching problems under the form (1.1.6). More precisely,

[HT10] relate such a value function to a weak solution of a BSDE with oblique reflections.

To get such a result the authors specify the controlled dynamics (1.1.5) by assuming firstly

that the volatility σ is not controlled and secondly that b is of the form b = σµ where µ is

a bounded function from Rd to Rd.

They consider the following BSDE with oblique reflections: find (Y i, Zi,Ki)1≤i≤m ∈
(S2

F,c × L2
F
(W )×K2

F,c)
m such that





Y i
t = g(XT , i) +

∫ T
t

(
f(Xs, i)− Zi

sµ(Xs, i)
)
ds−

∫ T
t Zi

sdWs +Ki
T −Ki

t ,

Y i
t ≥ maxj∈I{Y j

t − ci,j(t)}, 0 ≤ t ≤ T ,
∫ T
0 [Y i

t −maxj∈I{Y j
t − ci,j(t)}]dKi

t = 0, 1 ≤ i ≤ m ,

(1.2.11)
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where X is the diffusion defined by

Xt = X0 +

∫ t

0
σ(Xs)dWs , ∀t ≥ 0. (1.2.12)

Using a Girsanov transform argument, The authors prove under Lipschitz assumptions

on the coefficients that there exists a weak solution (∗P,∗W,∗X,∗ Y,∗ Z) to the decoupled

FBSDE (1.2.12)-(1.2.11) such that

∗Y i0
0 = sup

α=(νk,βk)k : β0=i0

E
[
g(Xα

T , αT ) +

∫ T

0
f(Xα

s , αs)ds+
∑

νk≤T

c(Xα
νk
, , βk−1, βk)

]
,

for i0 ∈ {1, . . . ,m}.
In [EK14b], we consider the general case: we allow the volatility function σ to be

controlled by the switching strategy, and we consider a general drift function. In the spirit

of [DHH10], we introduce a family of reflected BSDE depending on couple (ν, ξ) with ν

an F-stopping time valued in [0, T ] and ξ an Fν-measurable random variable taking values

in Rd. Such a couple represents the initial condition of the underlying diffusion. For each

initial condition, we consider a BSDE with oblique reflection driven by a diffusion with

initial condition (ν, ξ). Such a family is large enough to allow for the consideration of

change of regimes in the diffusion by passing from a reflected BSDE to another one of

this family. To do this we prove a flot property of this family of BSDE w.r.t. the initial

condition (ν, ξ). Using the reflection times of a well chosen sequence of BSDE, we derive an

optimal strategy and the optimal value, which extends the existing representation results.

As detailed in the previous section, optimal switching problems can also be represented

by another kind of equations which are one dimensional constrained BSDEs with jumps.

Therefore one can wonder if there is a link between constrained and obliquely reflected

BSDEs. We address this issue in [EK14a] where we show that BSDEs with oblique reflec-

tions can be seen as a particular case of constrained BSDEs with jumps. To prove such a

result, we face two main difficulties. Firstly these two kind of BSDEs do not have the same

structure since the first ones are multidimensional and only driven by W and the second

ones are one dimensional and driven by W and also µ. The second difficulty comes from

the minimality that is imposed to the constrained solutions. Indeed, we do not have any

analytical characterization, as e.g. in the reflected case with the skhorokhod condition, and

we do not precisely know the behavior of the nondecreasing component K.

We address the first difficulty by constructing a jump process from the solution of

the BSDE with oblique reflections (1.2.10) as follows. We suppose here that the random

measure µ is defined on R+ × {1, . . . , d} and has a finite intensity λ. Denote by I the

random process taking the value charged by the random measure µ i.e. if µ =
∑

k≥1 δνk,γk
then It = γk for t ∈ [νk, νk+1). We then consider the solution (Y, Z,K) to the BSDE with

oblique reflections (1.2.10) and define the processes Ỹ , Z̃ and Ũ by

Ỹt = Y It
t , Z̃t = Z

I
t−

t and Ũt(i) = Y i
t − Y

It−
t−

, (1.2.13)
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for t ∈ [0, T ] and i ∈ {1, . . . ,m}. Such a triple seems to be a good candidate to be minimal

solution to a constrained BSDE. We then define the coefficients

ζ = ξIT , (1.2.14)

g(t, y, z, u) = f I
t− (t, (y + ui1I

t−
6=i)i∈I , z) , (t, y, z, u) ∈ [0, T ]× R× R

d × R
m , (1.2.15)

hi(t, y, z, v) = v − Ci,I
t− (i, t, y, z, v) ∈ I × [0, T ]× R× R

d × R , (1.2.16)

and consider the constrained BSDE with jumps: find the minimal solution (Y, Z, U,K) ∈
S2
G
× L2

G
(W )× L2(µ̃)×K2

G
to

Yt = ζ +

∫ T

t
g(s, Ys, Zs, Us)ds+KT −Kt

−
∫ T

t
Zs.dWs −

∫ T

t

∫

{1,...,m}
Us(i)µ(ds, di), (1.2.17)

for all t ∈ [0, T ] and the constraint

hi(t, Yt− , Zt, Ut(i)) ≥ 0, almost everywhere on Ω× [0, T ]× {1, . . . ,m} . (1.2.18)

The link between constrained and obliquely reflected BSDEs is given by the following

result.

Theorem 1.2.1. Suppose that assumptions ensuring existence and uniqueness of a solu-

tions to (1.2.10) are satisfied and let (Y, Z,K) be solution to (1.2.10). Then there exists a

process K̃ ∈ K2
G

such that (Ỹ , Z̃, Ũ , K̃) is the minimal solution to the constrained BSDE

with jumps (1.2.17)-(1.2.18) with coefficients given by (1.2.14)-(1.2.15)-(1.2.16).

To deal with the second difficulty, i.e. the minimality condition, we use the character-

ization of the minimal solution as the limit of penalized BSDEs. We first show that the

link (1.2.13) remains true for the penalized BSDE associated to constrained and obliquely

reflected BSDEs. Then the convergencence gives the minimality of the solution Ỹ .

1.3 HJB equations

We turn in this section to the case of continuous time control. More precisely, we consider

the following HJB equation:

∂v

∂t
+ sup

a∈A

[
b(., a).Dv +

1

2
tr(σσ⊺(., a)D2v) + f(., a)

]
= 0, on [0, T )× R

d, (1.3.19)

v(T, .) = g, on R
d,

where A is a subset of Rq. It is well-known (see e.g. [Pha10]) that such nonlinear PDE is

the dynamic programming equation associated to the stochastic control problem

sup
α

E

[ ∫ T

0
f(Xα

s , αs)ds+ g(Xα
T )

]
,
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where Xα is the solution to the controlled SDE:

dXα
s = b(Xα

s , αs)ds+ σ(Xα
s , αs)dWs,

given a predictable control process α valued in A. The study of Feynman-Kac represen-

tations for HJB PDEs is an important subject since it opens the way to new numerical

approximation methods. Therefore, it has attracted a lot of interest and generated an im-

portant literature over the recent years. One can actually decompose this problem into two

main cases.

In the first one, we suppose that the volatility function is not controlled. Assume

moreover, that σσ⊤ is of full rank, then the HJB equation (1.3.19) reduces into a semi-

linear PDE:

∂v

∂t
+

1

2
tr(σσ⊺(x)D2v) + F (x, σ⊺Dv) = 0, (1.3.20)

where F is a function depending on f , b and σ. In this case, we know from the seminal

works by Pardoux and Peng [PP90, PP92], that the (viscosity) solution v to the semi-linear

PDE (1.3.20) is connected to the BSDE:

Yt = g(X0
T ) +

∫ T

t
F (X0

s , Zs)ds−
∫ T

t
ZsdWs, t ≤ T, (1.3.21)

through the relation Yt = v(t,X0
t ), with a forward diffusion process

dX0
s = σ(X0

s )dWs.

The second case with controlled diffusion coefficient σ(x, a) associated to fully nonlinear

PDE is challenging and led to recent theoretical advances. In [Pen05], the author intro-

duces the concepts of G-Brownian motion B, and G-expectation EG to represent the PDE

associated to optimal investment under volatility uncertainty. Moreover, G-expectation is

closely related to second order BSDE studied in [STZ12], namely the process Yt = v(t, Bt)

satisfies a 2BSDE, which is formulated under a nondominated family of singular proba-

bility measures. This gives a nice theory and representation for nonlinear PDE, but it

requires a non degeneracy assumption on the diffusion coefficient, and does not cover gen-

eral HJB equation (i.e. control both on drift and diffusion arising for instance in portfolio

optimization).

We provide in [KP14] an alternative BSDE representation including general HJB equa-

tion, formulated under a single probability measure (thus avoiding nondominated singular

measures), and under which the forward process can be simulated. The idea, used in

[KMPZ10] for quasi variational inequalities arising in impulse control problems, is the fol-

lowing. Suppose that the random measure µ is defined on [0,+∞)×A. Let us then consider

the BSDE with jumps

Yt = g(XT ) +

∫ T

t
f(Xs, Is)ds−

∫ T

t
ZsdWs −

∫ T

t

∫

A
Us(a)µ̃(ds, da), (1.3.22)
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with µ̃ is the compensated measure of µ and X is the forward regime switching diffusion

process defined by

dXs = b(Xs, Is)ds+ σ(Xs, Is)dWs,

where I is the pure jump process valued in A and taking the value charged by the random

measure µ. The linear BSDE (1.3.22) is the Feynman-Kac formula for the linear integro-

partial differential equation (IPDE):

∂v

∂t
+ b(x, a).Dv +

1

2
tr(σσ⊺(x, a)D2v) (1.3.23)

+

∫

A
(v(t, x, a′)− v(t, x, a))λ

A
(da′) + f(x, a) = 0, (t, x, a) ∈ [0, T )× R

d ×A,

v(T, x, a) = g(x), (x, a) ∈ R
d ×A, (1.3.24)

through the relation: Yt = v(t,Xt, It). Moreover, under some additional assumptions, we

can also identify the jump component U of BSDE (1.3.22) as follows:

Ut(a) = v(t,Xt, a)− v(t,Xt, It−) , (t, x, a) ∈ [0, T ]× R
d ×A.

In particular, if we impose the constraint

U ≤ 0 (1.3.25)

we obtain that the function v does not depend on the variable a ∈ A. In particular, PDE

(1.3.26) becomes

∂v

∂t
+ b(x, a).Dv +

1

2
tr(σσ⊺(x, a)D2v) + f(x, a) = 0

for all a ∈ A. Taking the supremum over a, we get the HJB PDE. Our main result can be

stated as follows.

Theorem 1.3.2. Suppose that the functions b, σ, f and g are Lipschitz continuous. Then

constrained BSDE (1.3.22)-(1.3.25) admits a unique minimal solution. Moreover, there

exists a function v : [0, T ]× Rd → R such that

Yt = v(t,Xt) , t ∈ [0, T ]

and v is the unique viscosity solution to HJB PDE (1.3.19) in the class of function with

polynomial growth.

The main task is to derive the key property that v does not actually depend on a, as

a consequence of (1.3.25). This issue is a novelty with respect to the sequential framework

of [KMPZ10] where there is a positive cost at each change of the regime I, while the cost

is identically degenerate to zero in this case. The proof relies on sharp arguments from

viscosity solutions, inf-convolution and semiconcave approximation, as we don’t know a

priori any continuity results on v.
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1.4 Perspective

We aim at extending the BSDE representation of HJB equations presented above to Isaac-

Hamilton-Jacobi-Bellman (IHJB for short) PDEs. These PDEs correspond to the dynamic

programming equations of Markov stochastic differential games (see e.g. [BCR04, BL08,

BCQ12]). To this end we first need to generalize the notion of constrained BSDE. We

then propose to consider doubly reflected BSDEs by imposing two constraints with two

nondecreasing processes operating with an opposite sign. The main chalenge is then to well

define a notion of solution for such doubly constrained BSDEs. In particular, we need to

replace the minimality by a maxi-minimality i.e. a maximal solution in a set of minimal

solutions. We then hope to use such a definition of solutions to take into account the

nonlinearity of min−max-type appearing in IHJB PDEs.
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Chapter 2

Probabilistic approximations

In numerical analysis, possible alternatives to deterministic algorithms are probabilistic

methods. Such alternatives provide new approximations that can sometimes be simpler to

implement and even improve the convergence rates of classical methods.

We present in this chapter our results on probabilistic numerical approximations for

optimal control problems. Section 2.1 presents a discrete time approximation for BSDEs

with oblique reflections which are related to optimal switching problems. In Section 2.2,

we consider a discrete time scheme for system of quasi-variational inequalities related to

optimal switching problems. Finally, Section 2.3 investigates the continuous time control

case. Using the jump constrained BSDE representation presented in the previous chapter,

we propose a discrete-time scheme for which we present the convergence results we get.

The content of this chapter follows from the articles [CEK12], [GKP12], [KLP14b] and

[KLP14a].

2.1 Discrete-time approximation of BSDEs with oblique re-

flexions

A major interest of BSDE representations for stochastic optimal control problems or par-

tial differential equations comes from the ability to use them to derive efficient numerical

approximation schemes. Such approximations were introduced in [BT08] and [Zha04] and

consist in a backward discrete-time computation which involves conditional expectations

that can be computed by different methods (regressions, Malliavin calculus or quantiza-

tion). These schemes have been extended to several cases allowing to consider the addition

of a jump component (see [BE08]), reflected solutions (see [BC08, Cha09]) or quadratic

drivers (see [Ric11]). However, there still remain important cases that are not covered by

the literature.

In [CEK12], we consider a case related to optimal switching. It concerns the discrete

time approximation of Markov BSDEs with oblique reflections which take the following
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form




Y i
t = gi(XT ) +

∫ T
t f i(Xs, Y

i
s , Z

i
s)ds−

∫ T
t Zi

sdWs +Ki
T −Ki

t , 0 ≤ t ≤ T ,

Y i
t ≥ max1≤j≤d{Y j

t − cij(Xt)}, 0 ≤ t ≤ T ,∫ T
0 [Y i

t −max1≤j≤d{Y j
t − cij(Xt)}]dKi

t = 0 , 1 ≤ i ≤ d ,

(2.1.1)

where X is the solution of a forward Stochastic Differential Equation (SDE). As in [MZ05,

BC08, Cha09], we first introduce a discretely reflected version of (2.1.1), where the reflection

occurs only on a deterministic grid ℜ = {r0 := 0, . . . , rκ := T} of [0, T ]:

Y ℜ
T = Ỹ ℜ

T := g(XT ) ∈ Q(XT ),

and {
Ỹ ℜ
t = Y ℜ

rj+1
+
∫ rj+1

t f(Xu, Ỹ
ℜ
u , Zℜ

u )du−
∫ rj+1

t Zℜ
u dWu ,

Y ℜ
t = Ỹ ℜ

t 1t/∈ℜ + P(Xt, Ỹ
ℜ
t )1t∈ℜ,

(2.1.2)

for j ≤ κ− 1 and t ∈ [rj , rj+1), where P(Xt, .) is the oblique projection operator on Q(Xt),

for t ≤ T . The set valued function Q being defined by

Q(x) =
{
y ∈ R

d : yi ≥ max
1≤j≤d

{yj − cij(x)} for all i ∈ {1, . . . , d}
}
.

Extending the approach of Hu and Tang [HT10], we observe that the solution to (2.1.2)

interprets as the value process of a one-dimensional optimal BSDE switching problem with

switching times belonging to ℜ. This allows to prove a key stability result for this equation.

We control the distance between (Y ℜ, Zℜ) and (Y, Z) in terms of the mesh of the reflection

grid. Due to the obliqueness of the reflections, the direct argumentation of [BC08, Cha09]

does not apply. Using the reinterpretation in terms of switching BSDEs, we first prove

that Y ℜ approaches Y on the grid points with a convergence rate of order 1
2 − ε, ε > 0

uniformly on ℜ, whenever the cost function is Lipschitz and f is bounded in z. Imposing

more regularity on the cost functions, we control the convergence rate of (Y ℜ, Zℜ) to (Y, Z)

uniformly on the interval [0, T ].

We then consider an Euler type approximation scheme associated to the BSDE (2.1.2)

defined on π = {t0, . . . , tn} by Y ℜ,π
T := g(Xπ

T ) and, for i ∈ {n− 1, . . . , 0},




Z̄ℜ,π
ti

:= (ti+1 − ti)
−1E

[
Y ℜ,π
ti+1

(Wti+1
−Wti)

′ | Fti

]
,

Ỹ ℜ,π
ti

:= E

[
Y ℜ,π
ti+1

| Fti

]
+ (ti+1 − ti)f(X

π
ti , Ỹ

ℜ,π
ti

, Z̄ℜ,π
ti

) ,

Y ℜ,π
ti

:= Ỹ ℜ,π
ti

1ti /∈ℜ + P(Xπ
ti , Ỹ

ℜ,π
ti

)1ti∈ℜ ,

(2.1.3)

whereXπ is the Euler scheme associated toX. It is now well known, see e.g. [BT08, Zha04],

that the convergence rate of the scheme (2.1.3) to the solution of (2.1.2) is controlled by

the regularity of (Y, Z) through the quantities

E

[
∑

i<n

∫ ti+1

ti

|Y ℜ
t − Y ℜ

ti |2dt
]

and E

[
∑

i<n

∫ ti+1

ti

|Zℜ
t − Z̄ℜ

ti |2dt
]

,

with Z̄ℜ
ti =

1
ti+1−ti

E

[∫ ti+1

ti
Zℜ
t dt | Fti

]
, for i ≤ n.
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Using classical Malliavin differentiation tools, we prove a representation for Zℜ, extend-

ing the results of [BC08, Cha09] to the system of discretely reflected BSDEs (2.1.2). We

deduce the expected regularity results on (Y ℜ, Zℜ) and obtain in a very general setting

the convergence of (2.1.3) to (2.1.2). However, due to the obliqueness of the reflections,

the projection operator P(X, .) is Lipschitz continuous with a Lipschitz constant LP > 1,

leading to a convergence rate including the term |LP |κ|π|1/4, where we recall that κ is the

number of points in the reflection grid ℜ. Since LP > 1, this lead to a poor logarithmic

convergence rate for the approximation of (2.1.1). In the particular case where f does not

depend on z, we are able to get rid of the |LP |κ term and get polynomial convergence

rates. We use an innovative approach relying on comparison results to get a control of the

involved quantities.

Combining the previous estimates, we deduce the convergence of the discrete time scheme

(2.1.3) to the solution of (2.1.1) with a convergence rate of order 1
2 − ε, ε > 0, on the grid

points, whenever ℜ = π and f does not depend on Z. Whenever the cost functions are

constant, all the previous estimates hold true with ε = 0. Let us emphasize that all these

results are obtained without any assumption on the non-degeneracy of the volatility σ.

2.2 Discretization and quantization methods for optimal swit-

ching problems

In the previous section, we consider the discrete time approximation of BSDEs with oblique

reflections. These equations are related to optimal switching problem and thereby provide

an approximation procedure for optimal switching problems. Unfortunately, the general

case of controlled diffusion is not covered by BSDEs with oblique reflections and a natural

question is to set such a procedure for switching problems with controlled diffusion.

We address this issue in [GKP12] where we consider the discrete time approximation of

systems of variational inequalities with inter-connected obstacles related to optimal switch-

ing and taking the form:

min
[
− ∂vi

∂t
− b(x, i).Dvi −

1

2
tr(σ(x, i)σ(x, i)⊺D2vi)− f(x, i) , (2.2.4)

vi −max
j 6=i

(vj − c(x, i, j))
]

= 0 on [0, T )× R
d,

together with the terminal condition vi(T, x) = g(x, i), for any i = 1, . . . , q. These equations

can be solved by analytical methods (finite differences, finite elements, . . .), but are known

to require heavy computations, especially in high dimension.

We propose probabilistic numerical methods based on dynamic programming and op-

timal quantization methods combined with a suitable time discretization procedure for

computing the solution to optimal multiple switching problem. We first study a time dis-

cretization of the optimal switching problem by considering an Euler-type scheme with step

h = T/m for the regime-dependent state process (Xt) controlled by the switching strategy

α:

X̄tk+1
= X̄tk + b(X̄tk , αtk)h+ σ(X̄tk , αtk)

√
h ϑk+1, tk = kh, k = 0, . . . ,m, (2.2.5)
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where ϑk, k = 1, . . . ,m, are iid, and N (0, Id)-distributed. We then introduce the optimal

switching problem for the discrete-time process (X̄tk) controlled by switching strategies

with stopping times valued in the discrete time grid {tk, k = 0, . . . ,m}. The convergence

of this discrete-time problem is analyzed, and we prove that the error is in general of order

(h log(1/h))
1

2 , and of order h
1

2 ,as for optimal stopping problems, when the switching costs

c(x, i, j) ≡ c(i, j) do not depend on the state process. Arguments of the proof rely on

a regularity result of the controlled diffusion with respect to the switching strategy, and

moment estimates on the number of switches. This improves and extends the convergence

rate result in [CEK12] derived in the case where X is regime-independent.

Next, we propose approximation schemes by quantization for computing explicitly the

solution to the discrete-time optimal switching problem. Since the controlled Markov chain

(X̄tk)k cannot be directly quantized as in standard optimal stopping problems, we adopt

a Markovian quantization approach in the spirit of [PPP04], by considering an optimal

quantization of the Gaussian random vector ϑk+1 arising in the Euler scheme (2.2.5). A

quantization tree algorithm is then designed for computing the approximating value func-

tion, and we provide error estimates in terms of the quantization errors ‖ϑk − ϑ̂k‖p and

state space grid parameters. Alternatively, in the case of regime-independent state process,

we propose a quantization algorithm in the vein of [BP03] based on marginal quantization

of the uncontrolled Markov chain (X̄tk)k and we establish Lp-error estimates in terms of

quantization errors ‖X̄tk − X̂k‖p.

2.3 Approximation of HJB equations by control randomiza-

tion

In the two previous sections, we have considered sequential optimization problems. Since

we have presented in the first chapter a BSDE representation for HJB equations, one can

wonder if such a representation can be used to derive an approximation scheme.

We address this question in [KLP14b] and [KLP14a]. We consider fully nonlinear gen-

eralized HJB equation of the form:





∂v

∂t
+ sup

a∈A

[
b(., a).Dv +

1

2
tr(σσ⊺(., a)D2v) + f(., a, v)

]
= 0, on [0, T )× Rd,

v(T, .) = g, on Rd.
(2.3.6)

We recall that in the particular case where f(x, a) does not depend on v and Dv, this partial

differential equation (PDE) is the dynamic programming equation for the stochastic control

problem:

v(t, x) = sup
α

E

[ ∫ T

t
f(Xα

s , αs)ds+ g(Xα
T )

∣∣∣Xα
t = x

]
, (2.3.7)

with controlled diffusion in Rd:

dXα
t = b(Xα

t , αt)dt+ σ(Xα
t , αt)dWt,
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and where α is an adapted control process valued in a compact space A of Rq. Numerical

methods for parabolic partial differential equations (PDEs) are largely developed in the

literature, but remain a big challenge for fully nonlinear PDEs, like the HJB equation

(2.3.6), especially in high dimensional cases (see [FTW08] for a review of some deterministic

and probabilistic approaches).

We propose a new probabilistic numerical scheme for HJB equation, relying on the

following Feynman-Kac formula for HJB equations obtained by randomization of the control

process α.

We consider the minimal solution (Y, Z, U,K) to the backward stochastic differential

equation (BSDE) with nonpositive jumps:




Yt = g(XT ) +
∫ T
t f(Xs, Is, Ys, Zs)ds+KT −Kt

−
∫ T
t ZsdWs −

∫ T
t

∫
A Us(a)µ̃(ds, da), 0 ≤ t ≤ T,

Ut(a) ≤ 0,

(2.3.8)

with a forward Markov regime-switching diffusion process (X, I) valued in Rd×A given by:

Xt = X0 +

∫ t

0
b(Xs, Is)ds+

∫ t

0
σ(Xs, Is)dWs

It = I0 +

∫

(0,t]

∫

A
(a− Is−)µ(ds, da),

where we suppose that the random measure µ is defined on R+ × A. We provide a an

approximation of the minimal solution Y to this constrained BSDEs in two steps. The first

step consists in the approximation of the constraint U ≤ 0. Unfortunately, we cannot use

the same approach as before for reflected BSDEs, since the jump component U is defined

in an L2-type space. Therefore, imposing the constraint only on a finite time grid does not

modify the solution. Instead, we use another approach which relies on the link between the

component U and Y . In particular, the constraint U ≤ 0 is equivalent to impose Y to have

nonpositive jumps. We then introduce a new kind of BSDEs called discretely constrained

BSDEs where the nonpositive jump constraint operates only at the times of a finite grid

π = {t0 = 0 < t1 < . . . < tn = T} of [0, T ]. These equations take the following form

Y π
T = Yπ

T = g(XT ) (2.3.9)

and

Yπ
t = Y π

tk+1
+

∫ tk+1

t
f(Xs, Is,Yπ

s ,Zπ
s )ds (2.3.10)

−
∫ tk+1

t
Zπ
s dWs −

∫ tk+1

t

∫

A
Uπ
s (a)µ̃(ds, da) ,

Y π
t = Yπ

t 1(tk,tk+1)(t) + ess sup
a∈A

E

[
Yπ
t

∣∣Xt, It = a
]
1{tk}(t) , (2.3.11)

for all t ∈ [tk, tk+1) and all 0 ≤ k ≤ n− 1, with X a diffusion process. We notice that the

component Y π has negative jumps at times tk thanks to (2.3.11).

Under additional assumptions, we provide an error estimate for the convergence of the

discretely jump-constrained BSDE as the mesh of π goes to zero. More precisely, we get a
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rate of 1
10 and improve it to 1

6 in the case where f does not depend on the component Y .

The proof relies on the combination of BSDE methods and PDE arguments adapted from

the shaking coefficients approach of Krylov [Kry00] and switching systems approximation

of Barles, Jacobsen [BJ07].

We then consider an Euler type approximation scheme associated to the BSDE (2.3.9)-

(2.3.10)-(2.3.11) defined on π by





Ȳ π
T = Ȳπ

T = g(X̄π
T )

Z̄π
tk

= E

[
Ȳ π
tk+1

Wtk+1
−Wtk

tk+1−tk

∣∣Ftk

]

Ȳπ
tk

= E

[
Ȳ π
tk+1

∣∣Ftk

]
+ (tk+1 − tk) f(X̄

π
tk
, Itk , Ȳπ

tk
, Z̄π

tk
)

Ȳ π
tk

= ess sup
a∈A

E

[
Ȳπ
tk

∣∣Ftk , Itk = a
]
, k = 0, . . . , n− 1,

(2.3.12)

To deal with the term ess sup
a∈A

appearing in this scheme, we introduce an error operator

involving the essential supremum w.r.t. the value of the process I at each time tk of the

grid π. Then using classical arguments on BSDE discretization, we prove that Ȳ π − Y π

converges to zero as the mesh of π goes to zero with a rate 1
2 .

Using a comparison argument, we prove that the components Yπ and Y π are upper-

bounded by Y . This domination and the previous rates induce an asymmetric convergence

rate for the global error: we get a convergence rate of 1
2 for the negative part of the error

between Y and Ȳ π and a convergence rate of 1
10 that can be improved to 1

6 for the positive

part of the same error.

We also notice that a byproduct of this scheme is an approximation of the optimal

control given by argmaxa∈A E

[
Ȳπ
tk

∣∣Ftk , Itk = a
]
at each time tk.

To get a computable scheme, we approximate the conditional expectations that arise

from (2.3.12). We use empirical least-squares regressions, as this method provides a para-

metric estimate in feedback form of the optimal control. We finally test our scheme on

different examples. In particular, we consider the case of a linear quadratic stochastic

control problem where the controlled diffusion is defined by

dXα
s = (−µ0X

α
s + µ1αs) dt+ (σ0 + σ1αs) dWs ,

and the value function is given by

v (t, x) = supα E
[
−λ0

∫ T
t (αs)

2 ds− λ1 (X
α
T )

2
∣∣∣Xα

t = x
]
.

We choose this simple example since there exists an analytical solution (see [YZ93]) to

which our results can be compared in order to assess the accuracy of our method. An

optimal Markov control is then given by

α∗ (t,Xt) = A (t)Xt +B (t)

where A and B are two functions depending on the coefficients λ0, λ1, µ0, µ1, σ0 and σ1.

We set the parameters to the following values:
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Figure 2.1: Optimal coefficients vs. theoretical values
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For the numerical simulation, we use n = 52 time-discretization steps, and a sample

of M = 106 Monte Carlo simulations. As can be seen from the comparison on Figure 2.1,

our estimates of the control coefficients are very accurate. Regarding the value function,

our method provides the estimate v̂ (0, 0) = −5.761. The theoretical value being equal to

−5.705, this means a relative error of 1%.

2.4 Perspective

A natural question that appears in mathematical finance is the numerical computation of

super-replication prices in the case where the investor is subject to investment constraints.

Unfortunately, there is a lack of efficient numerical methods for the computation of such

prices. From a probabilistic point of view, this question is related to the numerical approx-

imation of Brownian BSDEs with constraint on the Z-component of the solution. Such

a constraint is much more involving than the reflected case where the constraint is only

imposed on the Y -component. Indeed, one have to understand how to properly modify the

process Y so as for Z to satisfy the constraint. Together with J.-F. Chassagneux and R.

Elie, we have obtained partial results on this question and we aim at extending them to

the general case.
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Part II

Mathematical modeling in finance
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Chapter 3

Market imperfection models

In the classical financial theory, the completeness of the market leads, under the no ar-

bitrage assumption, to the definition of a unique fair price for a given continent claim.

Unfortunately, this completeness property requires unrealistic assumptions (liquidity of the

market, no constraints on the trading strategies, no transaction costs,. . .). Therefore, one

has to take into account the imperfections of the market to get relevant valuations for

contingent claims.

In this chapter, we present our results on market imperfection models. We first in-

vestigate in Section 3.1 the optimal portfolio liquidation in an illiquid market where the

investor is subject to liquidity costs and risks. We then turn to imperfections related to

constraints on financial markets. In Section 3.2, we consider an optimal investment prob-

lem under portfolio constraints. We provide a necessary and sufficient condition under

which the super-replication under portfolio constraints can be reduced to the replication

of a modification of the continent claim. Finally, we consider in Section 3.3 an optimal

switching model under state constraints that comes from energy management problems.

The content of this chapter follows from the articles [CEK14], [KP10] and [Kha14].

3.1 Optimal portfolio liquidation under liquidity risk

Understanding trade execution strategies is a key issue for financial market practition-

ers, and has attracted a growing attention from the academic researchers. An important

problem faced by stock traders is how to liquidate large block orders of shares. This is a

challenging issue due to the following dilemma. By trading quickly, the investor is subject

to higher costs due to market impact reflecting the depth of the limit order book. Thus,

to minimize price impacts, it is generally beneficial to break up a large order into smaller

blocks. However, more gradual trading over time results in higher risks since the asset value

can vary more during the investment horizon in an uncertain environment.

We concentrate in [KP10] on this issue and we study the optimal liquidation of a

portfolio. In the literature, there are two main formulations for optimal trading problems:

the discrete time and the continuous time ones. We choose to adopt an intermediary model

by considering an impulse control framework. Such a formulation combines the advantages
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of the continuous time models by allowing the use of stochastic calculus techniques, and

the realistic modeling of trading strategies by considering discrete-time exchanges.

We consider a financial market composed by two assets. The first one is a non risky

asset with interest rate supposed to be equal to zero. The second one is a risky asset P

following a Black & Scholes dynamics:

dPt = Pt

(
bdt+ σdWt

)
, t ≥ 0 .

We assume that the investor can only trade discretely on [0, T ]. The trading strategies are

then modeled through an impulse control strategy α = (νn, βn)n≥0 with

• (νk)k≥0 nondecreasing stopping times representing the trading times of the investor,

• βk an Fνk -measurable random variable valued in R and giving the number of shares

of stock purchased if βk ≥ 0 or sold if βk < 0 at time νk.

For such a strategy the number of shares of stock Yt held by the investor at time t follows

the dynamics

Yt = Yνn for νn ≤ t < νn+1 and Yνn+1
= Yνn + βn+1,

for all n ≥ 0.

To take into account the costs that can appear due to the illiquidity of the market, we

suppose that at each intervention time νn, the price paid by the investor for βn shares of

stock is not Pνnζn but Pνnf(βn, νn+1−νn) where f is an impact function. Such a framework

allows to take into account the bid-ask spread in the limit order book via the dependence

of f on βn. Moreover, this model also take into account the temporary market price impact

penalizing rapid execution trades since f depends on the lag time νn+1 − νn between two

interventions.

In this framework, the amount in the bank account X evolves according to the following

dynamics

Xt = Xνn for νn ≤ t ≤ νn+1 and Xνn+1
= Xνn − βnPνnf(βn, νn+1 − νn)

A key issue in line of the banking regulation and solvency constraints is to define in an

economically meaningful way the portfolio value of a position in stock at any time. We

address this issue by introducing the liquidation value of a portfolio and imposing

• a no-short selling constraint on the trading strategies, i.e. Yt ≥ 0 for t ∈ [0, T ],

• a solvency constraint by asking the strategy α to keep the liquidation value, i.e. the

wealth the investor gets if he/she immediately sells all the shares of stock he/she

holds, positive on the time interval [0, T ].

We then consider the optimal liquidation problem

sup
α∈A : YT=0

E

[
U(XT )

]
.
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where A denotes the set of strategies satisfying the no-short selling and solvency constraints

and U is a utility function representing the preferences of the investor. We define a value

function v associated to this optimization problem. This function v takes classically the

time variable t, the stock price p, the cash amount x and the number of shares of stock y

as arguments but also an additional variable θ which represents the initial lag time from

the last intervention. We first relate the value function v to a quasi-variational inequality

of the form

min
[
− ∂v

∂t
− ∂v

∂θ
− Lv, v −Mv

]
= 0 on [0, T )× S̄ (3.1.1)

min
[
v − UL, v −Mv

]
= 0 on {T} × S̄ (3.1.2)

where L is the second order local operator associated to the diffusion P , M is a nonlocal

operator associated to the change of the system (X,Y ) at each intervention, and S̄ is

the domain associated to the no-short selling and solvency constraints. Using dynamic

programming arguments, we first prove the following result.

Theorem 3.1.1. The value function v is a constrained viscosity solution to (3.1.1)-(3.1.2).

We then turn to the characterization of the value function as the unique solution to the

quasi-variational inequality. Unfortunately, we are not able to prove a comparison result for

the PDE (3.1.1)-(3.1.2). One reason is that there is a singularity of the controlled system at

β = 0. More precisely, the impact function f generates a transaction cost that can be very

small for very small number of traded shares of stock. In particular, this prevent from using

the classical method which consists in the construction of a strict super-solution. Instead,

we provide two weaker characterizations of the value function.

We first show that the value function is the minimal constrained viscosity solution to

the quasi-variation inequality (3.1.1)-(3.1.2) under some growth and boundary conditions.

To prove this minimality result we consider an approximation vε of the original problem

v consisting in the addition of a positive utility cost ε at each transaction. This leads to

a PDE for which we can construct a strict super-solution and then prove a comparison

theorem. We show that vε is dominated by any constrained solution to (3.1.1)-(3.1.2) and

that vε converges to v as ε goes to 0.

In the second characterization, we introduce a family (vε)ε>0 of value functions associ-

ated to the same model with an additional fixed transaction cost ε. We then show that these

value functions are uniquely determined by their associated PDEs and that they converge

to the initial value function v as ε goes to 0. Let us mention that this last convergence is

used in [GMP13] to set numerical methods for the computation of v.

3.2 Exact replication and investment constraints

After considering liquidity frictions for optimal investment problems, we turn to portfolio

constraints. In uncertainty periods for the economy, regulatory institutions are lead to

impose more and more restrictions to the investors, in order to reduce systemic risks. The

optimal investment problems under constraints have then attracted a lot of interest from
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the academic literature. As noticed in [KK96], the uniqueness property of a fair price for a

given continent claim fails to be satisfied in the case where the admissible portfolio strategies

are subject to additional constraints. Instead, there is a closed interval of arbitrage free

prices. A commonly considered prudential pricing methodology consists in selecting the

upper bound of this interval. This so-called super-replication price coincides with the

minimal initial amount of money required to constitute an admissible portfolio strategy

satisfying the constraints and whose terminal value dominates the claim of interest. The

super-replication price under convex delta constraints has been thoroughly studied in the

literature. In [CK93], the authors obtain a dual representation of the super-replication price

in terms of a well chosen set of risk neutral probabilities. In [CKS98], closely related to the

previous work, the super-replication price process is shown to be the unique solution of a

Backward Stochastic Differential Equation (BSDE) with constraints on the gain process.

All these works mainly rely on probabilistic and duality arguments. In a Markovian setting,

the super-replication price is characterised using direct dynamic programming arguments

and PDE techniques, see [ST03] and [BTM05].

Despite all these studies, the super-replication price remains difficult to compute in

practice. A specific case where this computation is easier is the classical one-dimensional

Black & Scholes model. In [BCS98], the authors prove that the super-replication price of a

derivative g(ST ) under convex delta constraints coincides with the unconstrained replication

price of a so-called facelift transform FK [g](ST ) of this claim. Here the facelift operator is

FK is defined by

FK [g](x) = sup
y∈Rd

g(x+ y)− δK(y) , x ∈ R
d ,

with δK the support function of the convex set K of constraints. In the multidimensional

case simple counterexamples can be constructed to prove that this property does not hold

anymore. We then focus in [CEK14] on a necessary and sufficient condition under which

the noteworthy result of [BCS98] extends to general local volatility models in dimension d

of the form

dSt = σ(St)dWt , t ≥ 0,

with σ : Rd → Rd×d the local volatility function. To this end we define the set ˘∂K of

points y ∈ ∂K where there exists a unique normal vector n(y). For such an y ∈ ˘∂K we

associate a family (nℓ(y))2≤ℓ≤d such that
(
n(y), n2(y), . . . , nd(y)

)
is an orthonormal basis

of Rd. Then we have the following result.

Theorem 3.2.2. Suppose that the local volatility function σ belongs to C1(Rd,Rd×d). Con-

sider the two following conditions.

(i) For any l.s.c. and lower bounded payoff function h satisfying E
[
FK [h](ST )

]
< ∞ for

any initial condition in the support of σ, the super-replicating price and strategy of

h(ST ) under K-constraint coincides with the exact replicating price and unconstrained

strategy of the facelifted claim FK [h](ST ).
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(ii) The following holds true:

∂x
[
Tr

(
n⊤
ℓ (y)σσ

⊤(.)nk(y)
)]
n(y) = 0 , 2 ≤ k, ℓ ≤ d , (3.2.3)

for all y ∈ ˘∂K.

Then (i) implies (ii) and the reverse implication holds whenever σ is uniformly elliptic.

To exhibit condition (3.2.3), we use a BSDE representation of the replicating strategy by

a multidimensional BSDE with terminal condition ∇g(ST ). In the case where g is already

a facelift transform we get ∇g(ST ) ∈ K. Thus the problem remains to find necessary

and sufficient conditions for the solution of a BSDE to be valued in K as soon as its

terminal condition is valued in K. Such a question has been studied in [BQR00], where

the authors provide necessary and sufficient conditions on the driver for the viability of the

solution of a BSDE in K for any terminal condition valued in K. In our case, the problem

is a bit more complicated since the considered terminal conditions are only gradient of

functions. However, we get a specific generator corresponding to our model which simplifies

the problem. In particular, we take advantage of the linear structure which allows to prove

that the problem for general convex sets can be reduced to half spaces.

We also apply this result to financial examples. We show that hypercubes are the

only convex sets for which facelifting allows to get rid of the portfolio constraints in a

multidimensional Black & Scholes model. This property also extends to multidimensional

local volatility models where each asset follows its own dynamics.

3.3 Energy management and optimal switching under state

constraint

In the previous section, the imperfection of the market is described by a constraint on the

trading strategies. In other situations, the constraint can also be imposed to the state of the

considered system. In this situation, the strategies become also constrained since they must

keep the system in the constraint domain. This is the case for energy management models,

where the limited storage capacities induce a constraint on the quantity of produced energy.

Traditionally, the energy markets were only reduced to major energy companies due to the

heavy production and storage infrastructures that are required. With the liberalization

of the recent years, energy markets become more open since smaller investors are allowed

to rent storage facilities and they can trade energy commodities. Therefore, the energy

management issue become an important question for financial practitioner.

This question is studied in [CL09] through the optimal switching model. They first

model the optimal energy management as an optimal switching problem under state con-

straints and they provide a verification theorem in the case where the associated PDE

admits a smooth solution. Then they provide a numerical algorithm to approximate the

value function.

In [Kha14], we concentrate on the optimal switching problem under state constraints to

weaken the assumption of existence of a smooth solution. We consider a general switching

problem with a controlled underlying diffusion constrained to stay in a given closed set.
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The study of optimal control problems under constraints is quite technical in general and

leads to impose regularity conditions on the constraint domain as in [Kat94]. Moreover, the

characterization of the value function relies on a continuity property (see [Son86a, Son86b,

Kat94]) which fails to be true for optimal switching problems under state constraints as

simple counterexamples can show.

We use a different approach which allows to characterize the value function associated to

the weak formulation of an optimal switching under state constraints. We suppose that for

a switching control α = (νk, βk)k, the controlled system evolves according to the following

SDE:

dXα
t = µ

(
Xα

t , αt

)
dt+ σ

(
Xα

t , αt

)
dWt , (3.3.4)

where αs =
∑

k≥0 βk1[νk,νk+1)(s) for s ∈ [0, T ]. We then consider the weak formulation of

optimal switching under state constraints:

sup
(Ω,A,P,W )

sup
α∈AŌ

E

[
g(Xα

T ) +

∫ T

0
f(Xα

s , αs)ds−
∑

νk≤T

c(βk−1, βk)
]

and we define v as the associated value function. Here AŌ is the set of strategies α that

keep the controlled diffusion Xα in the constraints domain Ō.

In this framework a switching strategy α can be seen as a random variable valued in(
[0, T ] × {1, . . . ,m}

)N
. From Tychonov theorem, we get the compactness of this space

which allows to prove the tightness and hence the convergence in law of a subsequence

of a given sequence of strategies. Then from Skorokhod representation theorem, we are

able to provide a probability space on which we have an almost sure convergence. We

apply this compactness result to an almost optimal sequences associated to unconstrained

switching problem penalized out of the constraints domain. This allows firstly to prove that

that the limit strategy is optimal and secondly that the value function satisfies a dynamic

programming principle. We then relate the value function v to a system of variational

inequalities of the form

min
[
− ∂v

∂t
− Lv − f, v −Mv

]
= 0 on [0, T )× Ō × {1, . . . ,m}, (3.3.5)

min
[
v − g, v −Mv

]
= 0 on {T} × Ō × {1, . . . ,m}. (3.3.6)

where L is the second order local operator defined by

Lv(t, x, i) =
(
µ.Dv +

1

2
tr[σσ⊺D2v)]

)
(t, x, i)

and M is the nonlocal operator defined by

Mv(t, x, i) = max
1 ≤ j ≤ m

j 6= i

[
v(t, x, j)− c(x, i, j)

]

for all t ∈ [0, T ], x ∈ Ō and i ∈ {1, . . . ,m}. Using this dynamic programming principle we

get the following result
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Theorem 3.3.3. Suppose that the value function v is locally bounded. Then it is a con-

strained viscosity solution to (3.3.5)-(3.3.6).

We then turn to the uniqueness. Unfortunately, we are not able to prove a comparison

result for the system of quasi variational inequalities (3.3.5)-(3.3.6). Instead we provide

under some additional assumptions a weaker characterization as follows.

Theorem 3.3.4. The value function v is the maximal constrained viscosity solutions in

the class of function satisfying a polynomial growth condition.

To prove this maximality result, we use the convergence of unconstrained penalized

value functions to v, together with classical uniqueness results for unconstrained systems

of variational inequalities.

3.4 Perspective

We present our current research projects related the results presented above.

Portfolio constraints in money amount or wealth proportion. A natural question

is wether one can exhibit a necessary and sufficient condition for the result of Section 3.2 in

the case where the portfolio constraints are written in terms of amount of money or wealth

proportion. Indeed, constraints on the proportion or money amount are more realistic.

Unfortunately, our approach fails in such a modelization since the geometric properties

used before do not hold anymore. This topic is currently under study with R. Elie and his

PhD student R. Dumitrescu.

Numerical approximation for constrained switching problems. Optimal switch-

ing problems under state constraints seems to be general enough to represent many financial

situations. Unfortunately, there is not any numerical procedure for the approximation of

the value function in the general case. We therefore propose to study the discrete time

approximation of optimal switching problems under state constraints. A first approach can

be based on the approximation unconstrained penalized problems as done in [BPTW12] for

BSDEs. We also hope to work directly on the constrained system of variational inequalities

to provide a numerical scheme.
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Chapter 4

Progressive enlargement of

filtrations in finance

An important concern for the financial practitioners is to face the risks resulting from

possible jumps of the assets. As these jumps can be dependent of the other parameters

of the market, the modelization by continuous processes and independent jumps does not

cover all the situations. To take into account this dependence, a growing literature proposes

to model financial markets with jumps by the powerful theory of enlargement of filtrations.

Since this theory has been extensively studied in the last decades, numerous results can be

use d to investigate financial issues.

This chapter presents the results related to financial modeling by progressive enlarge-

ment of filtrations. Section 4.1 presents a multiple default risk model in which an optimal

investment problem is studied using a decomposition approach. This decomposition ap-

proach is dynamically used in Section 4.2 where existence and uniqueness result are provided

for general BSDEs in a progressively enlarged filtration. These results are then applied to

solve a utility maximization in a market with jumps. Finally Section 4.3 deals with a mean-

variance hedging problem up to a default time where an optimal strategy is characterized

by an associated BSDE.

The content of this chapter follows form results contained in [JKP13], [KL12] and

[KLN13].

4.1 Optimal investment under multiple default risk

In financial instability periods, one of the main concerns of financial practitioners is to

manage default phenomena and contagion effects that can follow. In [JKP13], we address,

with Y. Jiao and H. Pham, an investment problem in such a framework. We consider

multiple default events corresponding for example to the defaults of multi credit names or

to counterparty defaults, and contagion effects meaning that defaults on some assets may

induce loss or gain on the others.

A usual formulation is to consider the default-free assets price process as an Itô pro-

cess governed by the d-dimensional Brownian motion W and the jumps are described by
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random default times, associated to a marked point process. Then the study of the op-

timal investment problem leads to Hamilton-Jacobi-Bellman integro-differential equations

in a Markov framework, and more generally to Backward Stochastic Differential Equations

(BSDEs) with jumps.

We extend the optimal investment problem in this multiple defaults context by using an

approach initiated in [JP11] in the single default time case, and further developed in [Pha10]

in the multiple defaults with random marks case. This approach consists in considering the

progressive enlargement H of the brownian filtration F by a sequence (τk, ζk)1≤k≤n where

τ1, . . . , τn represent the jump times of the assets and ζk the size of the jump occurring at

time τk. To be able to compute expectations in the enlarged filtration H, we suppose the

existence of a conditional joint density for the sequence of random times and marks with

respect to the filtration F.

(HD) There exists an F-predictable⊗B(Rn
+)⊗ B(En)-measurable function α such that

P[(τ1, . . . , τn, ζ1, . . . , ζn) ∈ dθde|Ft]

= αt(θ
1, . . . , θn, e1, . . . , en)dθ1 . . . dθnν1(de

1)
n−1∏

k=1

νk+1(e
(k), dek+1) .

for all t ≥ 0, with ν1 a nonnegative Borel measure on E and νk+1 a nonnegative transition

kernel on Ek × E.

We recall that for x ∈ Rn and k ∈ {1, . . . , n}, x(k) denotes the vector (x1, . . . , xk).

We then consider a financial market composed by d assets with values defined by a d-

dimensional H-adapted process S. We suppose that the process S has the following decom-

posed form

St = S0
t 1t<τ1 +

n−1∑

k=1

Sk
t (τ

(k), ζ(k))1τk≤t<τk+1 + Sn
t (τ

(n), ζ(n))1τn≤t ,

where Sk is a F-optional⊗B(Rk
+)⊗ B(Ek) measurable process with dynamics

dSk
t (θ

(k), e(k)) = Diag
(
Sk
t (θ

(k), e(k))
)(
bkt (θ

(k), e(k))dt+ σk
t (θ

(k), e(k))dWt

)
t ≥ θk .

Here, bk and σk are F-predictable⊗B(Rk
+)⊗B(Ek)-measurable processes, valued respectively

in Rd and Rd×d. To take into account the contagion risk in this model, we suppose that each

default time may induce a jump in the assets portfolio. This is formalized by considering

a family of indexed processes γk, k = 0, . . . , n − 1, which relates the processes Sk, k =

0, . . . , n− 1, as follows

Sk+1
θk+1(θ

(k+1), e(k+1)) = Sk
θk+1−(θ

(k), e(k)) ∗
(
1d + γkθk+1

(θ(k), e(k), ek+1)
)

for each (θ, e) ∈ Rn
+ ×En where ∗ stands for the product component by component and 1d

denotes the vector in Rd with all components equal to 1.

A trading strategy in this d-assets portfolio model is an H-predictable process π. Thanks

to the decomposition result proved originally by T. Jeulin in [Jeu80] and generalized by H.
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Pham in [Pha10], such a process π can be written as

πt = π0
t 1t≤τ1 +

n−1∑

k=1

πk
t (τ

(k), ζ(k))1τk<t≤τk+1 + πn
t (τ

(n), ζ(n))1τn≤t , (4.1.1)

for all t ≥ 0, with π0 a F-predictable process and πk a F-predictable ⊗B(Rk
+) ⊗ B(Ek)-

measurable process for each k = 1, . . . , n. For such a strategy π and an initial endowment

x the associated wealth can be written

Xt(x) = X0
t (x)1t<τ1 +

n−1∑

k=1

Xk(x)t(τ
(k), ζ(k))1τk≤t<τk+1 +Xn(x)t(τ

(n), ζ(n))1τn≤t ,

for all t ≥ 0, where Xk is the wealth associated to the strategy πk is the reference filtration

F. In particular the relative jumps γ appears in the dynamics of the processes Xk as follows

Xk+1
θk+1(x) = Xk

θk+1−(x) + πθk+1γkθk+1 .

We then consider an investor with preferences described by the utility function U : x 7→
− exp(−px), who can trade in the d-assets portfolio following an admissible trading strategy

π and has to deliver at maturity T an option of payoff HT , modeled by a bounded HT -

measurable random variable. The optimal investment problem is then defined by

V0(x) = supE
[
U
(
Xx,π −HT

)]
.

Our approach relies on the decomposition of this optimization problem into n optimization

problems corresponding to the situation on each interval [τk, τk+1] as follows. The terminal

value function is given by

V n(x, θ, e) = ess sup
πn

E

[
U
(
Xn

T (x)−Hn
T )α

n
T (θ, e)

∣∣Fθn

]

and the value function V k are recursively defined by

V k(θ(k), e(k)) = ess sup
πk

E

[
U
(
Xk

T (x)−Hk
T

)
αk
T (θ

(k), e(k)) +

∫ T

θk

∫

E
V k+1

(
Xk

θk+1
+ πk

θk+1
.γkθk+1(e

(k+1)), θ(k+1), e(k+1)
)
νk+1(e

(k), dek+1)dθk+1
∣∣Fθk

]
.

Here,the functions αk
t are the marginals of α w.r.t. (θ(k), e(k)) on the set {θk+1 > t}. They

are defined recursively by αn
T (θ, e) = αT (θ, e) and

αk
t (θ

(k), e(k)) =

∫ ∞

t

∫

E
αk
t (θ

(k), s, e(k), r)dsνk+1(e
(k), r)

for all (θ, e). We then link this system of value functions to a recursive system of BSDEs

in the filtration F. Using the exponential form of the utility function U and the additive

property of the wealth process, we prove that the value functions should be written under

the form

V k
t (x, θ

(k), e(k)) = U
(
Xk

t (x)− Y k
t (θ

(k), e(k))
)
, θk ≤ t ≤ T, (4.1.2)
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for k = 0, . . . , n. From the martingale optimality principle, we show that the processes

Y 0, . . . , Y n can be written as solutions to BSDEs. More precisely, (Y n, Zn) should satisfy

(En) Y n
t (θ, e) = Hn

T (θ, e) +
1

p
lnαT (θ, e)

+

∫ T

t
fn(r, Zn

r , θ, e)dr −
∫ T

t
Zn
r .dWr, θn ≤ t ≤ T,

where the generator fn is defined by

fn(t, z, θ, e) = inf
π

{p

2

∣∣z − σn
t (θ, e)

′π
∣∣2 − bn(θ, e)′π

}
(4.1.3)

and the processes (Y k, Zk) should satisfy the recursive system of BSDEs in F:

(Ek) Y k
t (θ

(k), e(k)) = Hk
T (θ

(k), e(k)) +
1

p
lnαk

T (θ
(k), e(k))

+

∫ T

t
fk(r, Y k

r , Z
k
r , θ

(k), e(k))dr −
∫ T

t
Zk
r .dWr, θk ≤ t ≤ T,

with a generator fk defined by

fk(t, y, z, θ(k), e(k)) =

inf
π

{p

2

∣∣z − σk
t (θ

(k), e(k))′π
∣∣2 − bkt (θ

(k), e(k))′π

+
1

p
U(y)

∫

E
U
(
π.γkt (θ

(k), e(k), ek+1)− Y k+1
t (θ(k), t, e(k), ek+1)

)
νk+1(e

(k), dek+1)
}

The generators of our system of BSDEs (En)-(Ek) do not satisfy the usual Lipschitz or

quadratic growth assumptions. In particular, in addition to the growth condition in z for

fk, there is an exponential term in y via the utility function U(y), which prevents from a

direct application of existence results for BSDEs known in the literature.

To deal with this issue, we proceed by truncation. We consider some approximating

BSDEs where the generator is penalized in the infimum and exponential terms. More

precisely, we introduce the following truncated driver

fk,N (t, y, z, θ(k), e(k)) = inf
π, |(σk

t )
′π|≤N

{p

2

∣∣z − σk
t (θ

(k), e(k))′π
∣∣2 − bkt (θ

(k), e(k))′π

+
1

p
U(max(−N, y))

∫

E
U
(
π.γkt (θ

(k), e(k), ek+1)− Y k+1
t (θ(k), t, e(k), ek+1)

)
νk+1(e

(k), dek+1)
}

We can use the existing results on quadratic BSDEs (see [Kob00]), and we get the existence

and uniqueness of a solution (Y k,N , Zk,N ) for eachN ≥ 1. Then, the idea consists in proving

that for N large enough we can get rid of the truncation. We first prove a uniform bound

for the sequence Y k,N which allows to remove the truncation in the utility term U of the

driver. To get rid the truncation term on π, we then show that the optimum points πk,N

are also uniformly bounded. Finally, for N large enough, we get a solution (Y k,N , Zk,N ) to

the BSDE with driver fk.

We then use these solutions to provide a verification theorem. We show that if (Y k, Zk),

k = 0, . . . , n is a solution to the recursive system of BSDEs (En)-(Ek), then (4.1.2) holds
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true for all k = 0, . . . , n. Using the BMO-properties of the solutions Zk we provide an

optimal strategy π̂ defined by the terms appearing in the decomposition (4.1.1) as follows

π̂k
t (θ

(k), e(k)) ∈ argmin
π

{p

2

∣∣Zk
t (θ

(k), e(k))− σk
t (θ

(k), e(k))′π
∣∣2 − bkt (θ

(k), e(k))′π

+
1

p
U(Y k

t (θ
(k+1), e(k)))

∫

E
U
(
π.γkt (θ

(k+1), e(k), ek+1)− Y k
t (θ

(k), t, e(k), ek+1)
)
ν
k+1

(e(k), dek+1)
}
,

for k = 0, . . . , n and t ∈ [0, T ].

4.2 BSDEs and progressive enlargement of filtrations

In financial mathematics, the study of portfolio management generally leads to solve optimal

control problems. A commonly spread approach to deal with such problems is to relate

them to a specific BSDE. Then, solving this BSDE provides the optimal value and an

optimal strategy. However, for general BSDEs with jumps, the results are far from being

numerous as for the continuous case. In particular, quadratic BSDEs with jumps have not

been completely studied.

In [KL12], we focus, with T. Lim, on this issue. We consider general BSDEs in the

progressive enlargement H of the filtration F by the sequence of random times (τk)1≤k≤n

and random marks (ζk)1≤k≤n. We make the following density assumption on the random

times and marks.

(HD’) There exists an F-predictable⊗B(Rn
+)⊗ B(En)-measurable function γ such that

P[(τ1, . . . , τn, ζ1, . . . , ζn) ∈ dθde|Ft]

= γt(θ
1, . . . , θn, e1, . . . , en)dθ1 . . . dθnde1 . . . den .

for all t ≥ 0. p

This assumption allows to get basic properties for our progressive enlargement model.

It first provides the existence of an absolutely continuous compensator λt(e)dedt for the

random measure η(de, dt). Secondly, it allows to extend the stochastic integral w.r.t. W to

the space L2
H
(W ). With this extension of the stochastic integral, we are able to consider

BSDEs of the following form: find (Y, Z, U) ∈ S2
H
× L2

H(W )× L2(η) such that

Yt = ξ +

∫ T

t
f(s, Ys, Zs, Us)ds−

∫ T

t
ZsdWs −

∫ T

t

∫

E
Us(e)η(de, ds), (4.2.4)

for all t ∈ [0, T ] where

• ξ is an HT -measurable random variable of the form:

ξ =

n∑

k=0

ξk(τ (k), ζ(k))1τk≤T<τk+1 , (4.2.5)

with ξ0 FT -measurable and ξk FT ⊗B(Rk
+)⊗B(Ek)-measurable for each k = 1, . . . , n,
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• f : [0, T ] × Ω × R × Rd × Bor(E,R) → R is an H-predictable⊗B(R) ⊗ B(Rd) ⊗
B(Bor(E,R))-measurable. function. Here Bor(E,R) denotes the set of Borel func-

tions from E to R, and B(Bor(E,R)) is the borel algebra on Bor(E,R) related to

the point wise convergence topology.

We recall that for x ∈ Rn and k ∈ {1, . . . , n}, x(k) denotes the vector (x1, . . . , xk). in

particular τ (k) = (τ1, . . . , τk) and ζ(k) = (ζ1, . . . , ζk).

To prove the existence of solutions to such equations, we use the decomposition result

which relates H-predictable to F-predictable processes. It says that any H-predictable

process X can be written under the form

Xt = X0
t 1t≤τ1 +

n−1∑

k=1

Xk
t (τ

(k), ζ(k))1τk<t≤τk+1 +Xn
t (τ

(n), ζ(n))1τn<t , (4.2.6)

for all t ≥ 0, with X0 a F-predictable process and Xk a F-predictable⊗B(Rk
+) ⊗ B(Ek)-

measurable process for each k = 1, . . . , n. We then extend this result to decompose the

driver f of BSDE (4.2.4) under the form

f(t, y, z, u) =
n∑

k=0

fk(t, y, z, u, τ (k), ζ(k))1τk<t≤τk+1 , (4.2.7)

with f0 an F-predictable⊗B(R) ⊗ B(Rd) ⊗ B(Bor(E,R))-measurable function and fk an

F-predictable⊗B(R)⊗B(Rd)⊗B(Bor(E,R))⊗B(Rk
+)⊗B(Ek)-measurable function for each

k = 1, . . . , n. Decompositions (4.2.5) and (4.2.7) lead formally to solve a coupled recursive

systme of n BSDEs in the filtration F defined by

Y n
t (θ, e) = ξn(θ, e) +

∫ T

t
fn

(
s, Y n

s (θ, e), Zn
s (θ, e), 0, θ, e

)
ds

−
∫ T

t
Zn
s (θ, e)dWs , θn ∧ T ≤ t ≤ T , (4.2.8)

and

Y k
t (θ

(k), e(k)) = ξk(θ(k), e(k)) +

∫ T

t
fk

(
s, Y k

s (θ
(k), e(k)), Zk

s (θ
(k), e(k)),

Y k+1
s (θ(k), s, e(k), .)− Y k

s (θ
(k), e(k)), θ(k), e(k)

)
ds

−
∫ T

t
Zk
s (θ

(k), e(k))dWs , θk ∧ T ≤ t ≤ T ,

(4.2.9)

We then obtain the following general existence result.

Theorem 4.2.5. Assume that (HD’) holds. Suppose that equations (4.2.8) and (4.2.9)

admit solutions (Y n(θ, e), Zn(θ, e) and
(
Y k(θ(k), e(k)), Zk(θ(k), e(k)) for all (θ, e). Suppose

also that these solutions satisfy

sup
(k,θ,e)

‖Y k(θ(k), e(k))‖S∞ < ∞ , (4.2.10)
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and

E

[ ∫ ( ∫ θ1∧T

0
|Z0

s |2ds+
n∑

k=1

∫ θk+1∧T

θk∧T
|Zk

s (θ
(k), e(k))|2ds

)
γT (θ, e)dθde

]
< ∞ ,

then BSDE (4.2.4) admits a solution (Y, Z, U) ∈ S∞
G

× L2
G
(W )× L2(η) given by





Yt = Y 0
t 1t<τ1 +

n∑

k=1

Y k
t (τ

(k), ζ(k))1τk≤t<τk+1 ,

Zt = Z0
t 1t≤τ1 +

n∑

k=1

Zk
t (τ

(k), ζ(k))1τk<t≤τk+1 ,

Ut(.) = U0
t (.)1t≤τ1 +

n−1∑

k=1

Uk
t (τ

(k), ζ(k), .)1τk<t≤τk+1 ,

(4.2.11)

with Uk
t (τ

(k), ζ(k), .) = Y k+1
t (τ (k), t, ζ(k), .)− Y k

t (τ
(k), ζ(k)) for each k = 0, . . . , n− 1.

We notice that the jump component U is written as the difference between Y k+1 and

Y k at each jump time τk. This corresponds to the jump of the process Y thanks to the

decomposition appearing in the first one of (4.2.11). The proof of this general existence

result consists first in checking the measurability properties for the processes Y , Z and U

given by (4.2.11) and showing that this triple satisfies equation (4.2.4).

We apply this general result to the case of a driver with quadratic growth and we get the

existence of a solution for BSDEs with bounded terminal condition and uniformly continu-

ous driver with quadratic growth. Under additional assumptions, in particular hypothesis

(H) i.e. any F-martingale remains a G-martingale, we also get the uniqueness for solutions

to quadratic BSDEs with jumps. This uniqueness result is a consequence of a general com-

parison theorem which allows to compare the solutions of two BSDEs as soon as we can

compare their terminal conditions and their drivers.

We then use these existence and uniqueness results to solve an optimal management

problem in a market with jumps. We suppose that the market is composed by two assets.

• The first one is a riskless asset with an interest rate supposed to be equal to zero.

• The second one is a risky asset S subjects to some counterparty risks. We suppose

that S evolves according to the following dynamics

St = S0 +

∫ t

0
Su−

(
budu+ σudWu +

∫

E
βu(e)η(de, du)

)
, 0 ≤ t ≤ T .

We then consider the following utility maximisation problem

V (x) := sup
π∈A

E
[
− exp(−α(Xx,π

T −B))
]
, (4.2.12)

with
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• B an HT -measurable random variable representing a contingent claim under the form

B =
n∑

k=0

Bk(τ (k), ζ(k))1τk≤T<τk+1
,

where B0 is FT -measurable and Bk is FT ⊗ B(Rk
+) ⊗ B(Ek)-measurable for each

k = 1, . . . , n,

• Xx,π is the wealth of the portfolio with initial endowment x and self financing strategy

π. Its dynamics is then given by

Xx,π
t = x+

∫ t

0
πsbsds+

∫ t

0
πsσsdWs +

∫ t

0

∫

E
πsβs(e)η(de, ds)

for all t ∈ [0, T ].

To characterize the maximal expected utility V (x) defined by (4.2.12), we consider the

following BSDE

Yt = B +

∫ T

t
h(s, Zs, Us)ds−

∫ T

t
ZsdWs −

∫ T

t

∫

E
Us(e)µ(de, ds) , 0 ≤ t ≤ T ,

where the driver h is defined by

h(t, z, u) := inf
π

{α

2

∣∣∣πσt −
(
z +

bt
ασt

)∣∣∣
2
+

∫

E

exp(α(u(e)− πβt(e)))− 1

α
λt(e)de

}

−ϑtz −
|bt|2

2|σt|2α
,

for all (t, z, u) ∈ [0, T ] × R × Bor(E,R). This BSDE falls into the previously studied

framework. We therefore get existence and uniqueness of a solution (Y, Z, U) ∈ S∞
G

×
L2
G
(W )×L2(η). Using a duality method as in [HIM05], we get the following characterisation

of the maximal expected utility

V (x) = − exp(−α(x− Y0)) , (4.2.13)

where Y0 is the initial value of the unique solution (Y, Z, U) to (4.2.13). The solution to

BSDE with data (B, h) also provides a sufficient condition for an investment strategy π̂ to

be optimal for the problem (4.2.12). This sufficient condition writes

π̂t ∈ argmin
π

{α

2

∣∣∣πσt −
(
Zt +

bt
ασt

)∣∣∣
2
+

∫

E

exp(α(Ut(e)− πβt(e)))− 1

α
λt(e)de

}
,

for all t ∈ [0, T ].

4.3 Mean-variance hedging up to a default time

In most of financial markets, the completeness assumption fails to be true. In particular,

investors cannot always hedge the financial products that they are interested in. One
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possible alternative approach to deal with this problem is the mean-variance hedging. For

a given contingent claim with payoff H at the maturity T and an initial endowment x, the

mean-variance hedging consists in finding an investment strategy π∗ such that the terminal

value V x,π∗

T of the portfolio with initial capital x and strategy π∗ minimizes the mean square

error

E

[∣∣Xx,π
T −H

∣∣2
]

over all possible investment strategies π. In [KLN13], we focus, with T. Lim and A.

Ngoupeyou, on the mean-variance hedging problem over a random horizon. More pre-

cisely, we consider a contingent claim H with maturity T ∧ τ where τ is a random time.

We suppose that H can be decomposed as follows:

H = Hb
1T<τ +Ha

τ 1T≥τ ,

where T < ∞ is a fixed deterministic terminal time. We then study the mean-variance

hedging problem over the horizon [0, T ∧ τ ] defined by

inf
π

E

[∣∣Xx,π
T∧τ −H

∣∣2
]
.

Such a framework is particularily adapted to insurance issues. Indeed, if the random time

τ represents the loss time of an insured and T the maturity of the contract, the insurer has

to deliver an amount H at time T ∧ τ which takes different values in the cases T < τ (no

loss for the insured) and τ ≤ T (the insured suffered a loss).

The mean-variance hedging problem with deterministic horizon T is one of the classical

problems in mathematical finance and has been considered by several authors via two main

approaches. The first one is based on martingale theory and projection arguments and the

second one considers the problem as a quadratic stochastic control problem and describes

the solution using BSDE theory.

A major part of the literature on mean-variance hedging focuses on the continuous case

where both approaches are used (see e.g. Delbaen and Schachermayer [DS96], Gouriéroux

et al. [GLP98], Laurent and Pham [LP99] and Schweizer [Sch96] for the first approach, and

Lim and Zhou [LZ02] and Lim [Lim02] for the second one).

In the discontinuous case, the mean-variance hedging problem is considered by several

papers. In [Ara05], the author uses a projection approach for general semimartingale price

processes model whereas in [Lim06] the problem is considered from the point of view of

stochastic control for the case of diffusion price processes driven by a Brownian motion

and a Poisson process. The author provides under a so-called “martingale condition” the

existence of solutions to the associated BSDEs. In the recent paper [JMSS12], the authors

combine tools from both approaches, which allows them to work in a general semimartingale

model and to give a description of the optimal solution to the mean-variance hedging via

the BSDE theory. Then, they provide an equivalence between the existence of an optimal

strategy and the existence of a solution to an associated BSDE. In some specific examples

they show the existence of a solution to the BSDE, but the problem remains open in the

general case.
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In our case, we consider a financial market that is composed by a riskless bond with

zero interest rate and a risky asset S.

We denote by H the enlargement of F by the (single) random time τ . We suppose that

the jump process N = 1[τ,+∞) admits a compensator of the form
∫ .∧τ
0 λtdt, and we denote

by M the associated compensated martingale. We assume that assumption (H) holds true

true. In our case this means that W remains a Brownian motion for the filtration H. We

then suppose that the price process (St)t≥0 of the risky asset is modeled by the linear

stochastic differential equation

St = S0 +

∫ t

0
Ss−(µsds+ σsdWs + βsdMs) , ∀t ∈ [0, T ] . (4.3.14)

The wealth process Xx,π corresponding to an initial amount x ∈ R and a trading strategy

π, is then given by

Xx,π
t = x+

∫ t

0

πr
Sr−

dSr ,

for t ≥ 0. We then consider the problem

inf
π

E

[∣∣Xx,π
T∧τ −H

∣∣2
]
. (4.3.15)

For this problem we propose to look for a solution under the form proposed by [JMSS12].

Then using the martingale optimality principle, we derive a system of three coupled BSDEs

in the filtration H. To solve this system, we proceed in two steps. The first one consists in

using the decomposition result of Jeulin [Jeu80] to get an equivalent system of BSDEs in

the Brownian filtration F. In the second step we make a precise analysis of these BSDEs.

Indeed, their generators do not satisfy assumptions under which there are existence and

uniqueness results and we have to deal with the specific form of these equations. We proceed

by truncation and we establish uniform estimates on the truncated solutions to show that

the truncation can be dropped as soon as its coefficient is large enough. Once we get three

solutions (Y, Z, U), (Y,Z,U) and (Υ,Ξ,Θ) to our system of three coupled BSDEs in H, we

can derive an optimal strategy π∗ for the problem (4.3.15) defined by

π∗
t =

(Yt− −X∗
t−)(µtYt− + σtZt + λtβtUt) + σtYt−Zt + λtβtUt(Yt− + Ut)

|σt|2Yt− + λt|βt|2(Ut + Yt−)
, (4.3.16)

for all t ∈ [0, T ], where X∗ is solution to the SDE

X∗
t := x+

∫ t

0

π∗
r

Sr−
dSr , t ≥ 0 .

Our verification theorem is stated as follows.

Theorem 4.3.6. The strategy π∗ given by (4.3.16) is optimal for the mean-variance problem

(4.3.15) and we have

E

[∣∣Xx,π∗

T∧τ −H
∣∣2
]

= min
π

E

[∣∣Xx,π
T∧τ −H

∣∣2
]

= Y0|x− Y0|2 +Υ0 .

The proof of this verification theorem uses the BMO properties of the solutions to the

BSDEs to prove that the process X∗ is well-defined. Then the integrability properties of

the solution X∗ allows to get the optimality of π∗.
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4.4 Perspective

With C. Blanchet-Scaillet, E. Chevalier and T. Lim we plan to apply the progressive en-

largement of filtration approach to the valuation of insurance products. More precisely, we

aim at studying variable annuities contracts with minimum guarantees. These guaranteed

contracts are highly demanded on financial markets and their valuation is a challenging

issue. An important risk faced by the seller of a variable annuities contract concerns the

characteristics of the buyer. In particular, the insurer has to take into account the behavior

of the insurer, i.e. how does he/she withdraw money, and his/her exit time, i.e. death

time, from the contract. We plan to study an indifference pricing approach that takes into

account these risks. We propose to use the progressive enlargement approach to model the

death time of the insured. Concerning the risk generated by the investor, we propose to

consider the worst case for the seller: we suppose that the buyer chooses the withdrawal

strategy that minimizes the expected utility of the seller. We then hope to characterize the

indifference price of variable annuities contacts in such a framework.
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