N

N

Contributions to the Autonomy of Ubiquitous Software
Systems

Romain Rouvoy

» To cite this version:

Romain Rouvoy. Contributions to the Autonomy of Ubiquitous Software Systems. Software Engi-
neering [cs.SE]. Université de Lille 1, Sciences et Technologies, 2014. tel-01091798

HAL Id: tel-01091798
https://theses.hal.science/tel-01091798
Submitted on 8 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01091798
https://hal.archives-ouvertes.fr

Université
de Lille

SCIENCES
ET TECHNOLOGIES

HABILITATION A DIRIGER DES RECHERCHES DE
L’UNIVERSITE LILLE 1, SCIENCES ET TECHNOLOGIES

Spécialité
Informatique

Ecole doctorale Sciences Pour I'Ingénieur (Lille)

Présentée par

Romain ROUVOY

Sujet de I'habilitation :

Contributions to the Autonomy
of Ubiquitous Software Systems

soutenue le 05 décembre 2014

devant le jury composé de :

M. Pierre BOULET Président

M. Ivica CRNKOVIC Rapporteur
Mme Valérie ISSARNY Rapporteur
Mme Nalini VENKATASUBRAMANIAN Rapporteur
M. Frank ELIASSEN Examinateur
M. Lionel SEINTURIER Examinateur

iii

Acknowledgments

Contents

1 Elasticity of Ubiquitous Systems 1
1.1 Motivations L e e e e e 1
1.2 Contributions L 1

1.2.1 Programing Elastic Software Components in the Small 2
1.2.1.1 The REMORA Component Model 2

1.2.1.2 The REMOWARE Reconfiguration Model 4

1.2.2 Programing Elastic Software Architectures in the Large 7
1.2.2.1 Elastic Architecture Patterns L 7

1.2.2.2 FRASCALA: An Architecture-Specific Language 8

1.2.3 Programing Elastic Mobile Applications at Scale 12
1.2.3.1 Resource-Oriented Software Computations 12

1.2.3.2 Programing Mobile Actors with MACCHIATO 13

1.3 Synthesis o L 17

2 Contextualization of Ubiquitous Systems 21
2.1 Motivations oL e e e 21
2.2 Contributions L e 21

2.2.1 Hierarchic Modeling of Software Context 22
2.2.1.1 The COSMOS Context Processing Framework 22

2.2.1.2 A Focus on Context Stabilization Algorithms 24

2.2.2 In-breath Context Monitoring and Orchestration in the Wild 26
2.2.2.1 The APISENSE® Crowd-Sensing Platform 27

2.2.2.2 A Focus on Task Orchestration Algorithms 31

2.2.3 In-depth Context Monitoring and Processing in Real-time 32
2.2.3.1 The POWERAPI Middleware Solution 33

2.2.3.2 A Focus on Application Component Energy Consumption 35

2.3 Synthesis 37

3 Self-Adaptation of Ubiquitous Systems 41
3.1 Motivations oL e e e 41
3.2 Contributions L e 41

3.2.1 White-Box Self-Optimisation of Software Architectures 42
3.2.1.1 Discovery and Integration of Third-Party Services 42

3.2.1.2 MUSIC: Optimisation Driven by the Quality of Service 44

3.2.2 White-Box Self-Adaptation in Ubiquitous Environments 46
3.2.2.1 SpACES: Enabling Ubiquitous Feedback Control Loops 47

3.2.2.2 Self-Optimizing the Application Configuration 50

3.2.3 Black-Box Design of Feedback Control Loops 51
3.2.3.1 Design of Feedback Control Loops 51

3.2.3.2 CoRrONA: A Reflective Implementation of Feedback Control Loops 55

3.3 Synthesis 57

4 Conclusions & perspectives 61
4.1 Main Results o e 61

4.2 Perspectiveso e e e 62

Introduction

This manuscript intends to provide a summary of the researches that I have been contributing to and leading for
the last 8 years. While the broad scope of my research belongs to distributed systems and software engineering,
this document reports on the contributions we developed along the axis of ubiquitous software systems. This
particular category of systems has been catalyzed by the release of a new generation of mobile phones in
2007, while I was starting as a postdoctoral position at the University of Oslo. Since that, the emergence of
smartphones, like the iPhone or the Android devices, upsets computer science by making such small computers
ubiquitous and continuously connected. With 1.4 billion active smartphones by the end of 2014,' ubiquitous
software systems are not only changing the distribution of processing capabilities, but also raise interesting
research challenges. Among others, how do we program applications that are potentially expected to run for
billions of processors? How to account for computing resources that are sporadically available? How to conciliate
performance and energy consumption? How to take benefit from the context in which the mobile device is
immersed? How the explosion of mobile devices may affect server-side infrastructures?

Such questions can be addressed under different perspectives by the research community and we decided
to focus our efforts on the improvement of the autonomy of such ubiquitous software systems. In particular,
we consider that, by giving mobile devices the capability to reason about themselves, they can autonomously
decide to seamlessly adapt to the best fitting configuration depending on the current context of execution. To
provide such a capability, we consider that a ubiquitous software system requires to build on three pillars:)
a modular programming abstraction to expose and control the reconfiguration capacities of the system under
control, i) a flexible context middleware solution to monitor both internal and external conditions that can
affect the execution of the system, and ¢ii) an open decision-making component to conciliate constraints and
opportunities in order to take informed decisions on the most appropriate reconfigurations to be operated.

The state-of-practice in the development of ubiquitous software systems may tend to neglect software engi-
neering considerations on behalf of energy or resources consumptions. However, such choices not only prevent
reuse of application parts, but also penalize dynamic reconfiguration scenarios by transmitting a monolithic
binary image to be loaded by the target device, inducing a undesired energy penalty. Context monitoring is
a concern, which has been studied by various domains, from operating systems to human-computer interac-
tions. Nevertheless, the context of a ubiquitous software system does not only cover the monitoring of internal
events that are produced by the target device. In particular, a ubiquitous context can also be impacted by the
surrounding environment, as external events being directly perceived by the mobile device or not. A flexible
solution to context monitoring undoubtedly favors the quality of the decisions to be taken by the system. Fi-
nally, such decisions cannot only be based on declarative approaches that assumes a comprehensive knowledge
of the operational condition of an ubiquitous software system. By definition, a ubiquitous software system can
run in unexpected situations and should therefore be able to deliver the best quality of service in light of the
heuristics it has been configured with.

Each of these pillars raises some key challenges to be addressed by the research community. However,
more that the individual solutions we developed to address them, we consider that a valuable result of our
approach lies in the combination and the complementarity of the approaches we propose. The research results
that are summarized in this document are therefore oriented towards providing new abstractions to program,
contextualize, and adapt ubiquitous software systems. Nonetheless, we have been continuously working on
these three axis by trying to foster cross-fertilizations across the approaches we were developing. Ultimately,
the path we have been following leads to the emergence of feedback control loops as an appropriate concept to
address the challenge of autonomic ubiquitous software systems. We therefore consider that the experience we
gained by addressing the challenges reported in this document are providing an interesting basis to leverage the

1https ://www.abiresearch.com/market-research/product/1004938-smartphone-technologies-and-markets

vii

viii CONTENTS

development of autonomic ubiquitous software systems. The remainder of this document is therefore organized
as follows:

Chapter 1 focuses on the first pillar and the contributions we developed to improve the elasticity of software
components. In particular, we consider the different scales of component-based software engineering by
reporting first on programing in the small with REMORA (cf. Section 1.2.1) as a solution to develop
component-based sensor nodes. Then, we consider challenges of programing component-based systems in
the large and we promote FRASCALA (cf. Section 1.2.2) as a solution to capture software architecture
patterns that can be easily reused and configured. Finally, we detail the design of a middleware solution,
named MACCHIATO (cf. Section 1.2.3) that intends to leverage the development of ubiquitous software
systems that have the capability to stretch beyond the boundaries of the hosting mobile device;

Chapter 2 addresses the second pillar and describes the models we developed to collect and process context
both in breadth and in depth. We start by reporting on the COSMOS context model (cf. Section 2.2.1)
that we use to model context policies as hierarchies of context information that are correlated. From this
generic model, we derive APISENSE® (cf. Section 2.2.2), as an innovative approach to gather context
information at the scale of a crowd and thus offering another dimension of reasoning for ubiquitous software
systems. We also derive PowerAPI (cf. Section 2.2.3) as an example of in depth context monitoring
solution based on the COSMOS model. This approach illustrates how context can percolate into a system
to better capture the traceability between a given context information and the software artifact it connects;

Chapter 3 covers the last pillar and more specifically the issue self-adaptation of ubiquitous applications. We
first report on the contributions we developed within the MUSIC adaptation middleware (cf. Section 3.2.1)
to deliver a technology-agnostic abstraction that we used to reason on the integration of third-party
software services in a mobile application. This first contribution has then been extended by SPACES
(cf. Section 3.2.2) to consider the discovery of adaptation policies and to sketch the design principles of
feedback control loops, notably by introducing the concept of context-as-a-Resource. This second step
has been further extended in CORONA (cf. Section 3.2.3), by collaborating to the definition of a domain-
specific modeling language for the definition of feedback control loops and their projections on specific
target platforms, like SCA, an industrial component model;

Chapter 4 concludes this document by providing a summary of our main achievements during the last 8 years
and provides some insights on the research directions we intend to pursue along the upcoming years.

CHAPTER].

Elasticity of Ubiquitous Systems

1.1 Motivations

The principles of self-adaptation of software systems rely on the capability to model and then to modify some
properties of the underlying software systems in order to cope with changes observed internally or in their
surrounding environment. However, providing such an intrinsic capability to alter the structure or the behavior
of a software system in a controlled way is not natively supported by most of the mainstream programming
languages. This statement is strengthened in the area of ubiquitous computing, where ubiquitous devices
(e.g., smartphones, smartwatches, sensors) are subjects to resource constraints, which usually encourage system
developers to trade software engineering principles for performance or energy considerations.

Although programming models for constrained environments [AS11; LG09] have been released more re-
cently than most of the mainstream programming languages, they still heavily build on traditional program-
ming principles (e.g., functions, objects or procedures) and offer a limited support for modularity and runtime
adaptation [Fow04; Van08; MP11]. Therefore, various component-based framework approaches have been
investigated to enforce the separation of concerns and to leverage the adaptation at runtime of software sys-
tems [LWO7; Sei+12; Cou+08; EHLO7]. In the area of ubiquitous systems, one can cite the FIGARO [MPAOS]
and MADAM [Flo+06] initiatives to deliver modular yet efficient programming abstractions that can be used to
support the runtime adaptation process of embedded devices, such as wireless sensors or mobile devices. These
solutions provide the basics for adjusting the structure of a ubiquitous software system according to operating
conditions. Yet, such middleware solutions usually exhibit a wide diversity of conceptual and programming
abstractions that prevent their wider adoption by software developers. In addition to that, these approaches
do not intend to promote the development of components at large and they lack of support for assembling
and controlling complex software architectures. Finally, considering the diversity of execution substrates in
ubiquitous systems, software components should be sufficiently runtime-agnostic to opportunistically exploit
the resources made available by the surrounding environment.

The objective of this chapter is to report on our vision and our achievements in the area of the development
of elastic ubiquitous software systems. By elastic, we mean ubiquitous systems that can reshape their software
architecture to accommodate the available resource in a given deployment environment and at a certain point of
time. To support such an elasticity, we advocate that standard component models can be ported to support the
development of embedded devices both in the small and in the large. By reusing the concepts of state-of-the-
art component models, the Service Component Architecture (SCA) ! in particular, we believe that developers
can easily approach the development of ubiquitous software systems independently of the variety of hardware
platforms to be considered. Interestingly, the adoption of such a common abstraction leverages the definition
of software architectures spanning several computing nodes, from sensors to smarphones and to server-side
infrastructures. By reasoning on a common architecture, distributed adaptation scenarios can be envisioned to
move from user-centric adaptations to collaborative optimizations.

1.2 Contributions

Our vision is supported in this chapter by reporting on three contributions we developed along the last years.
The first contribution, REMORA (cf. Section 1.2.1), targets challenges for programming in the small and presents
a component model for programming and reconfiguring wireless sensor nodes. Then, the second contribution,
FRASCALA (cf. Section 1.2.2), targets challenges for programming in the large and describes a domain-specific
language for programming software architecture patterns. Finally, the third contribution, MACCHIATO (cf.

LSCA: http://wuw.oasis-opencsa.org/sca

2 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

Section 1.2.3), focuses on challenges for programming elastic software systems and reports on a mobile actor
programming model.

1.2.1 Programing Elastic Software Components in the Small

Wireless Sensor Networks (WSNs) have rapidly emerged because of their applications in real-world environ-
ments. However, WSNs differ from the conventional distributed systems in many aspects. Resource scarceness
is the most important uniqueness of WSNs. Sensor nodes are often equipped with a limited energy source
and a processing unit with a small memory capacity. Additionally, the network bandwidth is much lower than
for wired communications and radio-based operations are the dominant energy consumer within a sensor node.
These factors make the way to develop WSN applications quite critical and also different from the other existing
network systems. Firstly, the existing diversities in WSN hardware and software platforms have brought the
same order of diversity to programming models for such platforms [SGO08]. Moreover, developers’ expertise in
state-of-the-art programming models become useless in WSN programming as the well-established discipline
of program specification is largely missing in this area. Secondly, the structure of programming models for
WSNs are usually sacrificed for resource usage efficiency, thereby, the outcome of such models is usually a piece
of tangled code hardly maintainable by its owner. Finally, application programming in WSNs is mostly car-
ried out very close to the operating system, forcing developers to learn low-level system programming models.
This not only diverts the programmer’s focus from the application logic, but also needs low-level programming
techniques, which imposes a significant burden on the programmer.

From a software composition perspective, the way to implement WSN applications is also becoming in-
creasingly important as today’s sensor software not only consists of application and system modules, but also
includes various off-the-shelf, third-party software products, such as middleware services. Ideally, such inte-
grations should be realized through a meta-level abstraction with minimum programming effort. This, in fact,
indicates the capability of a WSN programming model to facilitate the development of middleware services
and their integration to target application software. The ability to tune the sensor software for a particular
use-case or application domain is the other major issue in this context. As sensor nodes are typically equipped
with a limited memory capacity, operating system developers need to keep the size of system modules as small
as possible in order to preserve enough memory space for application modules, and they also have to ensure
the portability of system software to various sensor platforms. This mostly leads to software artifacts with
either degraded functionality not satisfying all end-user expectations, or suffering from the lack of modularity
and maintainability. One solution to tackle this problem is to consider the operating system as a collection of
well-defined services deployable on a minimized kernel image so that the programmer has the ability to involve
only application-required system services in the process of software installation. Therefore, this can bring a sig-
nificant efficiency to resource usage in sensor nodes by avoiding installing a single monolithic operating system
for any application.

1.2.1.1 The Remora Component Model

Component-based programming provides an high-level programming abstraction by enforcing interface-based
interactions between system modules and therefore avoiding any hidden interaction via direct function call,
variable access, or inheritance relationships. This abstraction rather offers the capability of black-box integration
of modules in order to simplify configuration and maintenance of software systems. Module reusability and
provision of standard API are some other advantages of adopting component-based software development [Szy02;
Bac+00]. Although using this paradigm in earlier embedded systems was relatively successful [Van—+00; Gen+02;
Han+04; P154+-08], most of the efforts in the context of WSNs remain inefficient or limited in the scope of use.
The TINYOS programming model, named NESC [Gay-+03], is perhaps the most popular component model for
WSNs. Whereas NESC eases WSN programming, this component model remains tightly bound to the TINYOS
platform. Other proposals, such as OPENCOM [Cou+08] and THINK [Fas+02], are either too heavyweight for
WSNs, or not able to support event-driven programming, which is of high importance in WSNs.

In this section, we therefore report on some results on REMORA, a lightweight component model designed for
resource-constraint embedded systems, including WSNs [Tah+10; Tah+11b]. The strong abstraction promoted
by this model allows a wide range of embedded systems to exploit it at different software levels from Operating
System (OS) to application. To achieve this goal, REMORA provides a very efficient mechanism for event
management, as embedded applications are inherently event-driven. WSN applications in our approach are
built out of components conforming to the REMORA component model. The key design principles of REMORA
include:

XML-based component description. The first design goal emphasizes simplicity and generality of the
technique for describing REMORA components. In REMORA, we therefore adopt XML technologies to describe

1.2. CONTRIBUTIONS 3

components. The basis for the XML schema we defined is the Service Component Architecture (SCA) notations
in order to provide a uniform component model covering components from sensors to the Internet, as well as
to accelerate standardization of component-based programming in WSNs. As SCA was originally designed for
large-scale systems-of-systems [OSO], REMORA extends SCA with its own architectural concerns to achieve
realistic component-based programming in WSNs. The component description contains the specifications of its
services, references, producers, consumers, and properties (cf. Figure 1.1a). A service can expose a REMORA
interface, which is a separate XML document specifying the functions provided by the component, while a
reference indicates the operations required by the component as an interface (cf. Listing 1.1b). Likewise, a
producer identifies an event type generated by a component, whereas a consumer specifies component’s interest
on receiving a particular event.

1 <componentType name="app.BlinkApp">

2 <service name="iSensorApp">

3 <interface.remora name="core.boot.api.ISensorApp"/>
4 </service>

5 <reference name="ilLeds">

6 <interface.remora name="core.peripheral.api.ILeds">
7 </reference>

Leds ! ILeds
I
-2 () IsensorApp

Timer ! r | [Jtoggle 9 <property name="toggle" type="xsd:short">0</property>
. |
TimerEvent 11 <producer/>

12 <consumer operation="timerExpired">
OSerwce DProduoe DProperty 13 <event.remora name="aTimeEvent" type="TimerEvent"/>

Y Reference 2] Consume 14 </consumer>

. . . 16 <libraries>
(a) A simple REMORA-based application. |, <include name="stdio" type="SystemLib"/>

18 </libraries>
19 </componentType>

(b) SCA description of the Blink component.

Figure 1.1: Remora application

C-like language for component implementation. REMORA components are written in a C-like language
enhancing the C language with features to support component-based and structured programming. The other
objective in this enhancement is to attract both embedded systems programmers and PC-based developers to-
wards high-level programming in WSNs. The component implementation is a C-like program containing three
types of operations:) operations implementing the component’s services, i) operations processing events, and
i1i) component’s private operations. Listing 1.2a presents the excerpt of the Blink implementation. This C-like
code implements the single function of the interface ISensorApp (runApplication) and handles TimerEvent—
whose structure is described in Listing 1.2b—within the timerExpired function. In the runApplication
function, we specify that the TimerEvent generator (aTimeEvent.producer) is configured to generate period-
ically TimeEvent every three seconds. The last command in this function is also to notify the TimerEvent
generator to start time measurement. When time is expired, the timer sets the attributes of aTimeEvent (e.g.,
latency) and then the Remora framework calls the timerExpired function.

1 void runApplication(){ 1 <events>
2 printf ("--- Starting Blink Application ---"); 2 <remora-events>
3 short periodic = 1; 3 <event-type name="TimerEvent"
4 this.aTimeEvent.producer.configure (3*xCLOCK_SECOND, 4 castType="unicast"
5 periodic); 5 observation="manual">
6 this.aTimeEvent .producer.start(); 6 <attribute name="latency" type="xsd:int"/>
7} 7 <configlnterface>
8 <operation name="configure'">

9 void timerExpired (){ 9 <in name="interval" type="xsd:int"/>
10 if (this.toggle == 0){ 10 <in name="periodic" type="xsd:short"/>
11 this.ileds.onLeds (LEDS_RED); 11 </operation>
12 this.toggle = 1; 12 </configlnterface>
13 } else { 13 </event-type>
14 this.ileds.offLeds (LEDS_RED); 14 </remora-events>
15 this.toggle = 0; 15 <!-- add other application event types here —-->
16 T 16 <os-events>
17 printf ("Time elapsed after interval: %d", 17 <! -- describe 0OS-events here -->
18 this.aTimeEvent.latency); 18 </os-events>
19} 19 </events>
(a) C-like implementation of Blink component. (b) XML description of events in REMORA.

Figure 1.2: Remora application

4 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

OS abstraction layer. The REMORA component framework is integrated with the underlying operating
system through a well-defined OS-abstraction layer. This thin layer can be developed for various WSN oper-
ating systems supporting the C language, such as Contiki. This feature ensures the portability of REMORA
components towards different OSs. The abstraction provided by REMORA becomes more valuable when the
component framework is easily configured to reuse OS-provided features, such as event processing and task
scheduling. Figure 1.3a illustrates the four main phases of an application deployment. The REMORA devel-
opment box encompasses artifacts supporting component specification. Events description and components
configuration are used to describe system events and components assembly, respectively. Components and in-
terfaces are also described in separate XML documents, one for each. External types are a set of C header files
containing application’s type definitions. The last group of elements in this box are C-like implementation files
of components in which OS libraries may be called through a set of System APIs implemented by REMORA
runtime components. Note that there is no hard-coded dependencies between REMORA implementers and the
native API of the underlying OS (e.g., Contiki) to ensure portability of REMORA components towards different
OSs. In the next phase, the REMORA engine reads the elements of the development box and also OS libraries
in order to generate the REMORA framework including the source code of components and OS-support code.
Then, application object file will be created through OS-provided facilities and finally deployed on sensor nodes.

Event Producer

Event

RemoRrA Development Box REMORA Engine REMORA Application Event
import generate) 7y realize Conlf. Interface 0 consumer
TN N RY os Attribute 1 :f‘ -
Events Interface External Types L4 %J L4 support Attribute n | _realize Obsrv. Interface 9
Description || | Description Definition '
[N
ot 1"t make .
{ s dinclude (e dispatcher

xml>
Component Application %
=3 | P
_CIEm R | REMORA Framework

<xml> C-likecode Operating System AAA
Components C?mponenl Remora-based Sensor Hardware | | | OS-events
Configuration mplementation System APls A

REMORA Runtime
Sensor Node l
(a) Development process of REMORA-based applications. (b) Event management mechanism in REMORA.

Figure 1.3: Remora framework

Event handling. Event-driven programming is a common technique for programming embedded systems as
memory requirements in this programming model is very low. Besides the support for events at the operating
system level in embedded systems, we also need to consider event handling at the application layer. REMORA
therefore proposes an high-level support of event generation and event handling, which makes it one of the key
features of our contribution. In particular, REMORA achieves this goal by reifying the concept of event as a
first-class architectural element simplifying the development of event-oriented scenarios. Events in our frame-
work are categorized into two classes: application-events and OS-events. Application-level events are generated
by the REMORA framework (like TimerEvent in the Blink application), while the latter are generated by the
sensor operating system. In other words, the only difference of these two types is the source of event generation.
To process OS-events at the application level, the REMORA runtime features mechanisms to observe OS-events,
translate them to corresponding application-level events, and publish them through OS-event producer compo-
nents. During the first two steps of Figure 1.3b, the event consumer can configure event generation and control
event observation by calling the associated interfaces realized by the event producer component (cf. lines 4-6
in Figure 1.2a). Step 3 is dedicated to polling the producer component to observe event occurrence. The event
producer is polled by the REMORA framework through a dispatcher function in the producer. The REMORA
runtime listens only to application-requested OS-events, and delivers the relevant ones to the framework. The
REMORA framework then forwards the event to the corresponding OS-event producer component by calling
its dispatcher function—e.g., user_button is a Contiki-level event that should be processed by the REMORA
component UserButton. This component then generates an high-level UserButtonEvent and publishes it to the
REMORA framework. Finally, in step 4, upon detecting an event in the dispatcher function, the producer com-
ponent creates the associated event, fills the required attributes, and publishes it to the REMORA framework.
The framework in turn forwards the event to the interesting components by calling their event handler function.

1.2.1.2 The RemoWare Reconfiguration Model

As already mentioned, WSNs are being extensively deployed today in various monitoring and control applica-
tions by enabling rapid deployments at low cost and with high flexibility. However, the nodes of a WSN are
often deployed in large number and inaccessible places for long periods of time during which the sensor software,
including Operating System (OS) and application, may need to be updated for several reasons. First, a deployed

1.2. CONTRIBUTIONS)

WSN may encounter sporadic faults that were not observable prior to deployment, requiring a mechanism to
detect failures and to repair faulty code [Yan+07; Cao+08]. Second, in order to maintain long-lived WSN
applications, we may need to remotely patch or upgrade software deployed on sensor nodes through the wireless
network. Third, the requirements from network configurations and protocols may change along the application
lifespan because of the heterogeneity and distributed nature of WSN applications [Cos07]. Therefore, due to
storage constraints, it is infeasible to proactively load all services supporting heterogeneity into nodes and hence
requirement variations are basically satisfied through updating the sensor software. Finally, the increasing num-
ber of WSN deployments in context-aware environments makes reconfiguration and self-adaptation two vital
capabilities, where a sensor application detects internal and external changes to the system, analyzes them, and
seamlessly adapts to the new conditions by updating the software functionalities [Tah+08b; RC03].

When a sensor network is deployed, it may be very troublesome to manually reprogram the sensor nodes
because of the scale and the embedded nature of the deployment environment, in particular when sensor nodes
are difficult to reach physically. Thus, the most relevant form of updating sensor software is remote multi-
hop reprogramming exploiting the wireless medium and forwarding the new code over-the-air to the target
nodes [WZCO06]. The early solutions in this field focused on upgrading the full software image. Although these
provide maximum flexibility by allowing arbitrary changes to the system, they impose a significant cost by
distributing wirelessly a large monolithic binary image across the network. DELUGE [HCO04] is one of the most
popular approaches in this category, offering a functionality to disseminate code updates for applications written
for TINYOS [Lev+404]. Therefore, in this section, we focus on component-based reprogramming in WSNs and
reconsider REMORA in order to enable compositional component reconfiguration [McK+04] in WSNs. The
dynamicity of REMORA is achieved by the principles of in-situ reconfigurability, which refer to fine-grained
delimitation of static and dynamic parts of sensor software at design-time in order to minimize the overhead
of post-deployment updates. This also enables programmers to tune the dynamicity of the WSN software in
a principled manner and decide on the reconfigurablility degree of the target software in order to tune the
associated update costs. The run-time system supporting the in-situ reconfiguration of REMORA components
is called REMOWARE.

In-situ reconfigurability A fundamental challenge in enabling component-based reconfiguration in WSNs
is how to efficiently provide this feature with minimal overhead in terms of resource usage. The ultimate goal of
the in-situ reconfiguration model is to address this challenge. The main principles of the in-situ reconfiguration
model are:

1. The reconfiguration system updates only the component code, while the component state(s) can either
be left unchanged or updated by the programmer. In particular, the reconfiguration model provides the
programmer with the choice of either preserving the old component state(s) or updating it(them) with
user-specified values when completing the reconfiguration;

2. To preserve efficiency, the reconfiguration model enables the programmer to tune the overall overhead
of the reconfiguration framework according to the degree of dynamicity of the system, as well as sensor
platform capabilities. This is achieved by distinguishing between reconfigurable and non-reconfigurable
components during software design before compiling and deploying the final sensor software. Using this
strategy, the additional overhead imposed by defining an inherent static component as a dynamic compo-
nent will be eliminated.

3. The scope of reconfiguration for a given component is limited to its internal design while preserving
its architectural description. This constraint implies the in-situ reconfiguration model does not support
interface-level reconfiguration. Hence, there is no need to manage a dynamically typed language at run-
time, which is indeed heavyweight for sensor platforms.

4. The reconfiguration model supports adding of new components and removing existing ones. In such cases,
the binding/unbinding mechanism for loaded/unloaded components imposes only a minimal fized overhead
to the system, regardless of the size of the application and the number of reconfigurable components.

In REMORA, a component conforming to the above principles is referred to as an in-situ reconfigurable
component.

Neighbor-aware binding. Dynamic binding is one of the primary requirements of any component-based
reconfigurable mechanism. A major hurdle in porting state-of-the-art dynamic component models to WSNs is
their binding-support constructs, which are memory-consuming, such as Microsoft COM’s vtable-based function
pointers [MIC93], CORBA Component Model’s POA [OMGO06], OPENCOM’s binding components [Cou+08],
and FRACTAL’s binding controller [Bru+06]. This is due to the fact that most of those component models are es-
sentially designed for large-scale systems with complex requests, such as interoperability, streaming connections,
operation interception, nested components, and interface introspection.

6 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

In REMORA, we aim at reducing the memory and processing overhead of the binding model, while supporting
all the basic requirements for a typical dynamic binding. To this end, we propose the concept of neighbor-
aware binding based on the principle of in-situ reconfigurability. The neighbors of a component are defined
as components having service-reference communications or vice-versa with the component. Neighbor-aware
coupling therefore refers to identifying the type of bindings between a component and its neighbors based on
the reconfigurability of each side of a specific binding, as well as the service provision direction.This is viable
if the reconfiguration system can distinguish static modules from dynamic modules and the programming
abstraction can provide meta-information about the interaction models between modules. These issues are
jointly addressed by REMOWARE, where it relies on component-based updates to tackle the latter and proposes
a partial-dynamic/partial-static configuration model for software modules to achieve the former.

The physical locations of services provided by a dynamic component are not stable and change whenever
the component is reconfigured. Therefore, to invoke a service function provided by a reconfigurable component
(dynamic functions), either from a static or from a dynamic component, we need to provide an indirect calling
mechanism. To do that, the direct invocations within the caller component should be replaced by a delegator,
forwarding function calls to the correct service address in the memory. This delegator retains the list of dynamic
service functions along with their current memory addresses in the Dynamic Invocation Table (DIT).

Component addition and removal Obviously, adding new components and removing existing ones are two
basic requirements to a component-based reconfiguration framework. For instance, we may decide to unload a
data logger component due to the energy overhead caused by writing log data in the external flash memory.
The main concern in removing an existing component is how to handle communications referring to a removed
component’s services. Since a removable component should be defined as a dynamic component, its functions
are dynamic and indexed in the DIT. Therefore, after removing a component we can simply map its dynamic
functions to a dummy global function with an empty body. This function, included in the REMOWARE libraries,
is designed to prevent fatal errors occurring due to the absence of removed components’ functions. In this way,
other components dependent to an unloaded service can continue to run without exceptions.

For newly added components, the same process of dynamic linking, discussed above, can be applied, while
the main issue being how to bind the new component to components that include invocations to its services.
Note that prior to loading the new component, such invocations are redirected to the above dummy global
function. The same solution proposed for component removal can be used for component addition, but vice-
versa. When a new component is uploaded, the DIT is searched for the name of all functions of the added
component. If an entry is found, the corresponding function address is corrected. Otherwise, a new entry will
be inserted to the DIT with the name and address of the new function for future binding.

In-situ program memory allocation In contrast to the full software image updating model, modular
upgrade solutions need a reliable code memory allocation model in order to avoid memory fragmentation and
minimize the wasted space in the memory. Unfortunately, this issue has received little attention in the literature.
Most module-based reconfiguration models either omit to consider dynamic memory allocation in sensor nodes
or rely on the capabilities of OSs for dynamic memory allocation. For instance, CONTIKI pre-allocates only
‘one’ contiguous fixed-size memory space at compile time in the hope that the updated module fits this pre-
allocated space. We therefore propose an hybrid dynamic program memory allocation model based on the
notion of in-situ memory allocation and first-fit strategy. In-situ memory allocation indicates that the updated
component is tentatively flashed in its original code memory space instead of being moved to another block of
memory. The immediate concern of this model is how to fit the updated component to its original memory
space when it is larger than the previous version. This issue is addressed by the pre-allocated parameter—the
extra memory that should be pre-allocated for each dynamic component. REMOWARE sets a default value for
this parameter (i.e., 10% in the current version) applied to all reconfigurable components, while the developer
can update this value for all components or a particular one. If an updated component cannot fit in its original
memory space (including pre-allocated area), the first-fit strategy comes into play by simply scanning the free
spaces list until a large enough block is found. The first-fit model is generally better than best-fit because it
leads to less fragmentation.

We expect this hybrid approach to be an efficient program memory allocation model due to the following
reasons. Firstly, updated components do not differ significantly from the older versions. Hence, on average there
will be a minor difference only between the size of the updated one and the original component. Secondly, the
developer has the ability to feed the memory allocation model with information which is specific to a particular
use case and specifies a more accurate tolerance of dynamic component size.

Retention of component state Retaining the state of a component during reconfiguration is of high im-
portance, e.g., for a network component buffering data packets, it is necessary to retain its state before and

1.2. CONTRIBUTIONS 7

after the reconfiguration. When considering state retention during the reconfiguration, it is very important to
provide a state definition mechanism leading the programmer to a semantic model of global variables definition.
In typical modular programming models the programmer may define global variables that are never required
to be global (stateless variables). Therefore, the reconfiguration system is forced to retain all global variables
(including stateless ones), resulting in additional memory overhead. In contrast, introducing the concept of
state in component models like REMORA prevents the programmer from defining unnecessary global variables,
leading to less memory overhead when the reconfiguration system implements state retention.

When an updated version of a component is being linked to the system, REMOWARE retains the previous
version’s state properties in the data memory and transfers them to the state properties of the updated version.
This is feasible as the set of component properties never changes and the state structure of the updated
component is therefore the same as previous versions. One may need to reset the value of component properties
or assign a new set of values to them when reconfigured. REMOWARE addresses this by calling the pre-
defined onlLoad function—implemented by the updated component—whenever the component is successfully
reconfigured. It means that if the programmer intents to set new values to component properties after the
reconfiguration, he/she must implement the onLoad function.

Quiescent state for reconfiguration. Reaching a quiescent state (i.e., temporarily idle or not processing
any request) before initiating a component reconfiguration is a critical issue in any reconfiguration mechanism.
REMOWARE, as any middleware framework, runs over the OS and therefore this issue is addressed depending on
the process/task management model of the sensor OS. For example, the current REMOWARE implementation
relies on CONTIKI’s process management system to run the reconfiguration task. CONTIKI processes adopt a
run-to-completion policy without preemption from the scheduler. Therefore, yielding of a process is explicitly
requested from the functional code and when the yielding point is reached by a process, a quiescent state is also
reached for the component executed within this process. As a result, the reconfiguration process is atomic in
the sense that it cannot be preempted until completion. Using REMOWARE on OSs that offer a preemptable
task model needs a careful consideration of the safe state problem.

Extensive evaluations of the REMORA component model and the REMOWARE reconfiguration framework
are detailed in [TRE10; Tah+11b; Tah+11a] and [Tah+08a; Tah+09a; Tah+13], respectively.

1.2.2 Programing Elastic Software Architectures in the Large

The above section has demonstrated how software components can be applied in the small to design and imple-
ment constrained ubiquitous systems, like wireless sensor network applications, while promoting software engi-
neering principles, such as reusability and separation of concerns. To scale out these principles, programming
component-based systems in the large requires to compose software components into software architectures.
However, most of the state-of-the-art Architecture Description Languages (ADL) that are used nowadays to
build such software architectures mostly provide a declarative syntax [BR00; DHT01; Kha+01; BCL12]. Unfor-
tunately, adopting such a declarative approach does not scale with the number of components and rather hinders
the elasticity of software architectures, by encouraging software architecture to clone architectural descriptions
due to the lack of support for capturing and tuning reusable software architectural patterns.

We therefore believe that software architects need a more flexible approach to cope with the definition of
domain-specific architectures by leveraging general purpose ADLs. In this section, we therefore introduce the
FRASCALA framework as an adaptive architectural framework that can be used to scale ADLs in order to
catalyze the definition and to improve the reliability of software architectures—i.e., FRASCALA is a framework
for building “& la carte” ADLs. In particular, we promote a layered approach to isolate the definition of the
architectural models from the language statements used to describe software architectures.

1.2.2.1 Elastic Architecture Patterns

As already introduced, ubiquitous software systems are characterized by the deployment of software components
on a large number of constrained devices (e.g., sensors, smartphones), which are expected to collaborate more
or less directly to support the execution of a ubiquitous application. More specifically, one can observe that
programming component-based ubiquitous systems at large can lead to the design of redundant, and potentially
complex, pieces of architectures. Furthermore, such pieces of software architectures may require to be adapted
at design-time or at runtime depending the conditions of execution. We therefore propose to implement elastic
patterns as canonical forms of architecture fragments that can be stretched to accommodate the application
requirements. In particular, the key limitations of existing approaches to design elastic software architecture
can be summarized as follows:

8 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

Style lock-in. Architectural patterns are usually imposed by styles like pipe and filters [MMO3], component-
based [CSS11], or layered architectures [Abi+05a]. The adoption of an architectural style therefore congeals
the concepts that can be used by the architect to design the application. However, by constraining
the vocabulary and the semantics of the architectural constructions, the architect has to map domain-
specific concepts to general purpose architectural constructions. Incidentally, this mapping breaks the
traceability between domain requirements and architectural constructions, potentially diluting domain-
specific knowledge (e.g., constraints) into general-purpose architectural constructions.

Lack of reuse. Software architectures, like any software artifacts, can be subject to be (partly) reused from
systems to systems. However, the architecture description languages provide a limited granularity for
reuse. For example, the component-based architecture style promotes the component (atomic or compos-
ite) as a unit of package and reuse. Nonetheless, partial assemblies (so called fragments) can be worth to
extract, capitalize and reuse whenever they address a common issue in a family of systems.

Lack of extensibility. Existing architecture description languages can often be extended with new keywords
and constructions to address a specific concern. However, the design of such a language is a tedious
process which requires the specification of a grammar and the implementation of the associated interpreter
to convert the context policy descriptions into software architectures. Any modification to be integrated
into this DSL would require to reconsider the design of the grammar as well as the implementation of the
interpreter, which can be considered as cumbersome in a prototyping phase.

Lack of elasticity. Existing software architecture description languages focus on the description of the initial
structure of a system with a limited support for foreseen evolutions. Even if some runtime platforms are
equipped with middleware controller to adjust the architecture along time, such uncontrolled evolutions
can lead to a strong divergence with regards to initial requirements.

To address the above issues, our proposition mainly advocates to move from declaring a software architecture
to a more imperative style to foster the adoption of domain-specific architecture languages. In particular, we
believe that, by doing so, one can quickly benefit from the programming support of general purpose languages to
efficiently implement the concepts of architecture types [MMO3], architectural constraints [GHRO07], architectural
patterns and architecture fragments, and even introduce domain-specific architecture languages. Most of these
concepts are not new and some architecture languages partly address these features in the literature [ACNO02;
Abi+05a]. Our proposition therefore intends to conciliate these features and foster the prototyping of new
constructions to improve the quality of software architectures. We therefore support the idea that the definition
of elastic software architectures has to build on a flexible architecture description language.

1.2.2.2 FraSCAla: An Architecture-Specific Language

FRASCALA is a framework for prototyping the definition of Architectural Description Languages (ADL). The
objective of FRASCALA is to leverage the construction of ADLs by providing an homogeneous environment
to introduce new architectural concepts according to domain-specific requirements. Although it mostly targets
prototyping activities, FRASCALA promotes a structured approach to build ADLs by adopting an incremental
design approach.

Design First, FRASCALA defines a meta-model to introduce the essential concepts required to prototype an
ADL (cf. Figure 1.4a). In particular, a Concept is used to introduce a new architectural element in the model,
and is structured as a composition of Controllers. A Controller can be considered as a mixin [Bru+06] isolating
a specific concern of the Concept. The identification of Controllers fosters their reuse by several Concepts and
it enables a Concept to be assembled “a la carte". This means that this meta-model composes the conceptual
kernel of FRASCALA and can be used to prototype any ADL. For example, instances of this meta-model can
be used to describe a specific architectural style associated to an ADL.

In the context of this section, we focus on the definition of an ADL conforming to the principles of
Component-Based Software Engineering [CSS11]. In particular, we demonstrate that FRASCALA can be used
to describe a generic component model, which can be incrementally refined towards a more concrete component
model and ultimately a domain-specific component model. Figure 1.4b depicts the generic component model
we designed using the stereotypes introduced by the FRASCALA meta-model. This model is strongly inspired
from the FRACTAL component model, as described in [Bru+06].

Following this process, Each FRASCALA model can be further refined to fit the specificities of a given
component model (e.g., Service Component Architecture standard [Bei07]). Although not imposed by our
approach, the definition of such a generic component model provides an architectural pivot, which can be used
to automatically instrument concrete component models (e.g., introspection, verification).

1.2. CONTRIBUTIONS

«concept»
Annotation

A o A
extends extends «concept» «concept»
. R Membrane Gate
0.. 1 16 controls 0. Annotation «controller» Annotation
composes Annotation ’
Concept &—Lﬁ Controller
= «concept» «controller» «concept»
Membrane Name Gate
0.* AN name: String [/ N\
i Parameter Dt bt
Element introduces «concept» «controller»
+ name: String SubMembrane Owner
0.* i .
) + ;pt:?nf I_' goo:ea: «controller» B2 | «concept»
points + multiple: Booleal Port 0. Port
«concept» -
A Comporen o
Membrane -*| Propert
Reference Value Froperty pery
« » |connectors | N
Connector 0.*| Connector |edges
«concept» (&
Composite «controller» [CQmponents
(a) FraSCAla Meta-Model. Membrane S Composite Q-I

(b) Component-based Meta-Model.

Figure 1.4: FraSCAla design

Implementation Model-Driven Engineering technologies like the Eclipse Modeling Framework (EMF) [Ste+09]
provide advanced frameworks for describing meta-models, models as well as their graphical or textual syntaxes.
However, these frameworks tend to suffer from their intrinsic complexity and do not provide much elasticity to
support the definition of modular ADLs. In particular, the definition of a new concept usually requires to gener-
ate the associated classes and to modify the concrete syntaxes in order to support this concept. However, such
invasive modifications conflict with our objective to build ADLs “d la carte" by composing architectural con-
cepts on-demand. Furthermore, the definition of EMF models, as well as concrete syntaxes, introduces a steep
learning curve, which is not expected when prototyping architectural constructions. Another direction could be
to encode FRASCALA models with an executable meta-modeling language, such as KERMETAZ. Nonetheless,
extending the KERMETA language with embedded DSL constructions seems to be currently a complex engi-
neering task. For these reasons, we investigated another approach, which consists in exploiting an advanced
general-purpose programming language like Scala [0de06; OZ05] not only to implement the FRASCALA models,
but also to provide a textual syntax and to describe software architectures. This reflective approach provides an
homogeneous environment to quickly define and exploit new software architectural constructions. In particular,
FRASCALA benefits from Scala’s support for type inference, genericity, implicit definition, trait, closures, as
well as native XML support.

Listing 1.5b3 therefore reports a Scala code excerpt of three of the component-based controllers we previously
introduced. Concretely, each Controller defined in the model is encoded as a trait, which is a construction
provided by Scala to isolate a specific concern (cf. lines 1, 5 & 10). Traits map a Parameter in the model to
a variable (using the keyword var, cf. lines 2, 7 & 12), while generic concepts can be mapped to an abstract
type (using the keyword type, cf. lines 6 & 11). The resulting Scala implementation defines the foundations of
a component model, which remains agnostic from any technology.

Once a target model is defined, FRASCALA introduces the associated language by constraining this model
with a concrete syntax. This concrete syntax introduces the keywords of the ADL as well as the associated
operations it supports for describing software architectures. The reader can refer to [RM12] or our GitHub
repository 4 for further details on this mapping.

Ilustration As a matter of illustration, we use the Service Component Architecture (SCA) [Bei07; Sei+12]
as a target architecture style that is used to deploy distributed systems. SCA is a set of OASIS’s specifications
for building distributed applications based on Service-Oriented Architecture (SOA) and CBSE principles. In
Figure 1.6 we start by reporting on equivalent software architecture descriptions based on the XML-based
descriptors defined by the SCA standard (cf. Figure 1.6a) and the FraSCAla-based approach we promote
(cf. Figure 1.6b). Although XMI-based description supports extensions to be defined, the definition of such
extensions is bound to variability points allowed by the core schema. Furthermore, XML-based descriptions

’http://www.kermeta.org

3In all listings, texts in red are Scala or FRASCALA keywords, texts in blue are FRASCALA type and variable identifiers, while
texts in green are string constants.

4FRASCALA: https://github.com/rouvoy/frascala

10 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

1 trait NameController { 1 trait Gate extends NameController
2 var name: String = _ 2 with OwnerController with AnnotationController
3%}
4 trait PortAnnotation extends Annotation {
5 trait OwnerController { 5 type OWNER <: Port
6 type OWNER 6}
7 var owner: OWNER = _
8} 8 trait Port extends Gate {
9 type ANNOTATION <: PortAnnotation
10 trait AnnotationController { 10 type OWNER <: PortController
11 type ANNOTATION <: Annotation 11}
12 var annotations = Set [ANNOTATION]()
13} 13 trait MembraneAnnotation extends Annotation {
14 type OWNER <: Membrane
15}

(a) Component-based Controllers.

17 trait Membrane extends NameController
18 with AnnotationController {

19 type ANNOTATION <: MembraneAnnotation
20

22 trait ComponentMembrane extends PortController
23 with PropertyController

(b) Component-based Concepts.

Figure 1.5: FraSCAla framework

are purely declarative, which requires an appropriate assembly engine to parse and process the definition to
implement the semantics of the model. In this example, we therefore show how we can achieve a similar
expressivity by using an embedded DSL to leverage current limitations of declarative ADLs. We also show
that our approach remains compatible with these declarative ADLs by providing mapping facilities to dump
a FRASCALA definition into a standard SCA one. Using FRASCALA, 34 lines of code in Scala are sufficient
to describe both the architecture and the implementation of an HelloWorld application, which is equivalent to
an ArchJava description [Abi+05a]. The noise introduced by the Scala notation remains limited (37 characters
out of the 787 for the whole definition) compared to the flexibility brought by this approach.

1 <composite name="Helloworld" 1 object Helloworld extends Composite("Helloworld") {

2 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 2 val cnt = property[Int]("counter") is 3

3 <property name="counter" value="3"/>
4 val srv = new component("Server") {

5 <component name="Server'"> 5 property [Int]("count") from cnt

6 <property name="counter" value="$counter"/> 6 val s = service("s") exposes Javal[Servicel

7 <service name="s"> 7 } uses Bean[Server]

8 <interface.java interface="Service"/>

9 </service> 9 new component("Client") {

10 <implementation.java class="Server"/> 10 property [Stringl ("header") is ">> "

11 </component> 11 val r = service("r") exposes Java[Runnable]
12 reference("s") targets srv.s

13 <component name="Client"> 13 } uses Bean[Client]

14 <property name="header" value=">> "/>

15 <service name="r"> 15 service("run") promotes components("Client").r

16 <interface.java interface="Runnable"/> 16 }

17 </service>

18 <reference name="s'" target="Server"/> L.

19 <implementation.java class="Server"/> (b) FraSCAla deSCI“lpthIl,

20 </component>

22 <service name="run" promote="Client/run"/>
23 </composite>

(a) Standard SCA description.

Figure 1.6: FraSCAla SCA style

Architecture patterns The last feature of FRASCALA consists in supporting the definition of architectural
patterns. Software architecture patterns are a powerful construction for isolating reusable fragments of software
architecture descriptions. By enabling the definition of architectural patterns, FRASCALA captures domain-
specific architectures as advanced patterns. These patterns are then included in the base ADL as new statements,
which can be immediately used to ease the definition of a complex software architecture.

SCA Intent Pattern As a first example of architectural pattern, we propose to reflect the concept of
SCA intent [Bei07] as an SCA component. In SCA, an intent isolates a crosscutting concern, which can then
be woven into one or several ports in order to intercept service invocations. This mechanism is expected to be

1.2. CONTRIBUTIONS 11

used for implementing non-functional services, such as transaction demarcation or authentication. However,
the implementation of such capabilities usually requires the intent to interact with third part services, such as
a transaction service or a key store. Therefore, an elegant way for describing an intent consists in adopting a
reflective approach and to use SCA components to describe the intent itself [Sei+12].

Listing 1.7a therefore illustrates the definition of a new concept intent, which is defined as a composite
component promoting a specific service. The implementation of the intent component (whose definition is
mentioned as a parameter of the intent) is therefore expected to conform to the interface IntentHandler
specific to the FRASCATI framework. However, the technology used to implement this intent is left open by
the definition of the architectural pattern in order to accommodate the different programming languages that
can be used to realize an intent.

1 case class intent(id: String,impl:Scalmplementation) 1 object LoggedHelloworld extends Helloworld {

2 extends Composite(id) { 2 val log = intent("Logger", Script("logger.py"))
4 val comp = new component (id+"-intent") { 4 components ("Client") weaves log

5 import org.ow2.frascati.tinfi.api.IntentHandler 5 components ("Server").services("s") weaves log
6 service("intent") exposes Java[IntentHandler] 6 weaves(log)

7 } uses impl 7}

9 service("intent") promotes comp.services("intent") .

10} (b) Example of Logging Intent.

(a) Intent Pattern.

Figure 1.7: Intent Pattern in SCA

Once defined, the intent pattern becomes available as a new keyword of the ADL and can be directly used
to leverage the definition of more complex architectures. Listing 1.7b provides an example of architecture
extension, which uses a legacy architecture definition (described in Listing 1.6b) to introduce a logging intent
implemented in Python (cf. line 2). An intent can be declared once and reused in several places. In this
example, the logging intent is woven within all the components of the composite component including services
and references (cf. line 4), as well as all the services of the surrounding composite component (cf. line 5). Here
one could note that the parameters given to the foreach method of Set are anonymous functions. From this
definition, the FRASCALA framework is able to produce the set of artifacts required to deploy this architecture,
including not only the architecture descriptor for the extended HelloWorld application, but also the one for the
intent definition.

Delegation Chain Pattern Another example of architectural pattern, which is commonly used in the
literature, is the component-oriented version of the delegation chain design pattern [Abi+05b; Gam+94]. This
architectural pattern consists in chaining a list of components that provide and require compatible ports. While
this kind of architectural pattern is relatively difficult to describe with a declarative approach, FRASCALA lever-
ages functional programming to ease the definition of such parametric patterns. Listing 1.8a therefore reports
on the definition of the delegation chain in FRASCALA. This pattern takes a list of component implementa-
tions as a parameter. The pattern automatically builds and composes the components by connecting the first
component to the second and so on.

1 trait DelegationChainPattern extends Composite { 1 object ChainedHelloworld extends Helloworld
2 def delegate(id:String, itf:Scalnterface, 2 with DelegationChainPattern {
3 impls:List[ScaImplementation]): 3 val code = List(Bean[MessageFilter], Bean[Decorator])
4 List [component] = 4 val chain = delegate("s", Javal[Service], code)
5 impls match {
6 case Nil => Nil 6 wire (components ("Client").references("s"),
7 case impl :: tail => { 7 chain.head.services("s"))
8 val chain = delegate(id, itf, tail) 8 wire(chain.last.references("s-delegate"),
9 components ("Server").services("s"))
10 new component (id+"-proxy"+tail.size) { 10 ¥
11 service (label) exposes itf
12 val del = reference(id+"-delegate") . .
13 del targets chain.head.services(id) (b) Example of Delegation Chain.
14 } uses impl) :: chain
15 3+ }

(a) Delegation Chain Pattern.

Figure 1.8: Delegation chains in SCA

Once defined, the resulting architectural pattern can be used within the target architecture as described
in Listing 1.8b. This code excerpt extends the Helloworld architecture we defined in Listing 1.6b to include a

12 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

delegation chain that filters and decorates the messages that are exchanged between the client and the server.
The value chain is used to store the list of components that are created by the function delegate(). As the
components of the delegation chain are automatically linked, the architect does only have to connect the first
and the last component of the delegation chain to the client and the server components, respectively.

Discussion. By exploiting the capabilities of the Scala programming language, FRASCALA supports the
definition of parametric architecture templates that can be used to isolate repetitive patterns. The two examples
we provide illustrate two different approaches to define reusable architectural patterns. The definition of the
delegation chain as a function is recommended when the concepts do not need to be extended and/or the
pattern is a compound result (a list of components in the case of the delegation chain). The definition of the
intent as a composite component is rather advised when the architect is interested in specializing a concept
to introduce dedicated attributes or functions. Furthermore, the delegation chain can be used to apply the
pipe and filter architectural style in a component-based software architecture, which is not supported by the
state-of-the-art approaches, thus breaking the style lock-in we previously identified. Using software architecture
patterns based on this delegation chain pattern automatically stretch according to the number of components
to be included in the chain and the architect does not have to check the consistency of the description manually.
Finally, software architecture patterns defined with FRASCALA can embed domain-specific verifications (e.g.,
the delegation chain should be made of 10 elements at most) and rules (e.g., connect the provided and required
ports upon insertion of a new element), which is one of the ongoing work in this area.

1.2.3 Programing Elastic Mobile Applications at Scale

Software architectures are therefore becoming pieces of artifacts that tend to continuously evolve over time
depending on evolution of user requirements, and contextual conditions. The latter is a key property of mobile
systems, which should not only have the capability to run on a large diversity of devices (with different hardware
characteristics), but also to adjust their behavior upon availability of resources (e.g., GPS signal).

While the success of mobile devices has been catalyzed by the emergence of mobile applications, the pro-
gramming models that are applied in the development of these applications do not sufficiently take into account
the limitations of mobile devices. In particular, most of nowadays mobile applications (e.g., social networks, RSS
readers, mobile shopping) are rich client applications that interact with remote servers to download application-
level data and process it locally. Although mobile device capacities keep improving, this model of distribution
significantly consumes both network bandwidth and device battery as application features keep evolving. This
is particularly perceived by end users, whose mobile phone’s lifespan hardly exceeds a day or two.

Beyond the traditional client-side (mobile apps) or server-side (web apps) models, several research ap-
proaches have already investigated the automatic partitioning of an application according to various optimiza-
tion objectives (CPU usage, network consumption), but most of them are considering pre-defined deployments
of applications. This issue has already been acknowledged by the scientific community [LT11], and various
solutions—mostly based on code offloading approaches—have been proposed to optimize the battery lifespan
and the network bandwidth [Cue+10; GRA12; Giu+09; Yan+13].

We believe that these approaches can be further extended by including pervasive resources in the partitioning
process in order to opportunistically offload network-consuming tasks on remote nodes, depending on the context
and the preferences of the user. This section therefore reports on the MACCHIATO middleware framework as
a solution to develop elastic applications that can adjust their deployment upon opportunities. By bringing
data processing closer to their source, MACCHIATO automatically reduces the bandwidth consumption and
improves the battery lifespan of the device. Incidentally, the adoption of this programming model provides the
opportunity to develop applications that can keep executing beyond the boundaries of the mobile device and
automatically notify the end user of relevant content, for example.

1.2.3.1 Resource-Oriented Software Computations

End users are using much more kinds of connected devices than ever before. Web applications currently cope
with this ever-growing diversity of terminals by developing several versions of their websites (desktop, mobile)
and are even developing dedicated mobile applications. Even if frameworks, such as Cordova®, promote a
multi-devices programming model for web applications, in practice developers often have to deal with several
technologies and languages in order to build their web applications, forcing them to manage different versions.
Among the key limitations of the state-of-the-art, we identify the following ones:

Lack of portability In current mobile systems, the proliferation of the ways to access to the same services
results in a duplication of code with the same functionalities, thus leading to additional development costs.

5 Apache Cordova: http://cordova.apache.org

1.2. CONTRIBUTIONS 13

For each service exposed by a given provider, client components, such as websites, Android-based and iOS-
based applications, will query this service using different frameworks and therefore different programming
languages. From the client side, the querying logic part, which defines equivalent functionalities, is
duplicated for each framework (e.g., Java for Android devices, Objective-C or Swift for iOS devices and
JavaScript for browsers). This duplication of languages and frameworks generally leads to many difficulties
in the development and the maintenance phases of the system.

Lack of elasticity Current programming models consider at design-time a static partitioning of tasks between
the client and the server sides. However, this decision—driven by the developer’s assumptions—may lead
to performance bottlenecks and energy leaks. The application programming model should rather release
such constraints to assume that a given task—i.e., a piece of code—can be executed anywhere.

Lack of serendipity Most of pervasive applications are connected to the Internet before being connected to
the physical resources surrounding them. Pervasive systems should have the capability to discover and
learn from their surrounding environment to propose new features to the end user.

In this work, our intuition is that pervasive applications can partly take inspiration from the map/reduce
programming model by bringing data processing tasks closer to their source and exploiting the availability of
surrounding computing resources. As data consumed from the Internet by these applications are generally
filtered and aggregated before being displayed to the end user, the solution we introduce seamlessly uploads
processing tasks whenever it detects that the bandwidth consumption can be reduced.

The approach we adopt is therefore inspired from Computational REST (CREST) [Ere+07] and promotes
the exposure of processing tasks a as a resource that can be remotely triggered. Beyond the approach promoted
by CREST, we rather design offloadable processing tasks as mobile actors that can move across execution nodes.
The implementation of this approach is summarized in Figure 1.9 and described in the rest of this section.

Client Execution Node Server Execution Node

! OpenlD Authentication

1
D POST /application/actor | Server
SErVel
o T GET /credentials !
% i user credentials !—J
[1
s} 1 create |
% | sandbox
1
S i deploy actor
% : resource URI [Actor Resource |
! |
update i i
routing ' !
table ! Application
—_— e T —— e e el e — -
o ! POST message E Server
£ D GET /resource !
)
D ! data
_g | data :|
w D I
L ! |
< : :
! Ll

Figure 1.9: Offloading and communicating with actors.

1.2.3.2 Programing Mobile Actors with Macchiato

Development. One of the key contributions we report in this section is the implementation of an actor
programming model with a scripting language. Scripting languages are becoming mainstream for the develop-
ment of both server-side applications (e.g., Node.js) and mobile applications (e.g., PhoneGap). Indeed, their
adoption is no more limited to the implementation of presentation layers, but now covers business layers using
event-driven, asynchronous I/O to minimize overhead and maximize scalability. We therefore build on such pro-
gramming models in order to introduce the principles of actor programming [HBS73] to improve the application
elasticity. An actor is a first-class stateless software entity that reacts to incoming messages, sends messages
to other actors, and even creates new actors. Each actor is identified by a unique address. As messages can be
sent in parallel, this paradigm is concurrent by design.

Figure 1.10 illustrates part of the implementation of a custom newsreading application using the MACCHIATO
framework. In MACCHIATO, an actor is an entity whose behavior is defined as a JavaScript function that takes
a message and a context as parameters (lines 8-13). While the message encloses all the information related
to the request to be processed, the context stores the metadata related to the execution context. Results are
processed by future objects [BH77], which are automatically triggered whenever the data is made available by
executing the when closure, thus supporting non-blocking workflows (lines 18-20). Beyond traditional actor

14 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

programming models, we borrow the concept of binding from component models as the communication path
between two actors (line 24-25) in order to leverage the assembly of reusable actors.

1 macchiato.deploy(function(factory) {

2 var feeds = {

3 "Reuters" : "http://feeds.reuters.com/reuters/scienceNews",
4 "CNN" : "http://rss.cnn.com/rss/edition_technology.rss",
5 "LeMonde" : "http://www.lemonde.fr/rss/tag/sciences.xml"

6 };

8 factory.create("heartbeat-actor").as(function(message, context) {
9 // broadcast an empty message every 10 seconds

10 context.setInterval (function() {

11 context.send ({});

12 }, 10000);

13 IDH

15 for (var feedname in feeds) {

16 var actorId = "rss-" + feedname + "-actor";

17 factory.create(actorId).as(function(message, context) {

18 context.http.get (context.params.url).when(function(content) {
19 context.send (content);

20 b

21 }).withContext ({

22 "url" : feeds[feedname]

23 1

24 factory.bind ("heartbeat -actor").to(actorId);

25 factory.bind(actorId).to("display-actor");

26 }

27 1) ;

Figure 1.10: Programming actors in M ACCHIATO.

We believe that adopting JavaScript as a foundation for our middleware framework opens up for the de-
ployment of MACCHIATO on a large variety of connected devices, such as mobile phones, tablet PCs, connected
TVs, desktop computers, and Cloud environments. In particular, the MACCHIATO framework allows developers
to deploy application actors from web browsers to mobile applications or application servers, without taking
care of the execution environment specificities.

Atop of standard JavaScript interpreters, the MACCHIATO middleware implements a distributed event bus
that uses Web standards, such as HTTP and WebSockets, as well as message-oriented middleware, such as
Google Cloud Messaging®, to exchange requests and data across the network (cf. Figure 1.11). The routing
schemes used by the framework to distribute the messages between nodes are computed from the topology
associated to the graph of actors. This approach avoids the use of expensive flooding techniques traditionally
observed in distributed event based systems [BV05] to seamlessly forward events and messages within a cluster
of connected devices.

g0l sl 2

AEEEE Applicati

gL Sl &t : pplication

Q2| 2 S| of i

5)l< xJ,
[Actor Programming Model]
-

Distributed Event Bus

[Local Event Bus][Message Router][Local Event Bus]
A\

—

'Script Interpreter][Network][Scriptlnterpreter%

Figure 1.11: Overview of the MACCHIATO Middleware Architecture.

Management. Achieving the elasticity of mobile applications requires the system to be aware of its internal
structure and its surrounding environment. This knowledge, which is continuously updated with information
collected from monitoring activities, requires to be consolidated within a dedicated runtime model [Mor+09].
This runtime model, maintained by the mobile device, integrates the graph of actors used by the application,
the deployment plan of these actors on the available nodes, and various metrics reflecting the current context
of execution (e.g., volume of data exchanged between actors, connectivity to other execution nodes).

6Google Cloud Messaging (GCM): http://developer.android.com/google/gcm

1

14
15
16
17

1.2. CONTRIBUTIONS 15

This runtime model is not only used by the MACCHIATO middleware to reason on the optimal configuration
of the applications, but also to operate seamless reconfigurations on the deployed actors. Such reconfiguration
operations are themselves implemented as actors located on the mobile device, which receive from the distributed
event bus specific messages enclosing introspection or reconfiguration actions. A reconfiguration message is
composed of a set of primitive actions: add/remove actors, create/delete a binding between actors, offload
an actor to a remote node. This reconfiguration is executed atomically by the actor—i.e., either all the
reconfiguration primitives succeed or none of them is executed, leaving the system in a consistent state in case
of failure of the reconfiguration process (e.g., a remote execution node disappearing from the environment).

macchiato.deploy (function(factory) {
// removes an actor from the application
factory.remove ("rss-LeMonde-actor");

// creates a new filtering actor

factory.create("filter-CNN-actor").as(function(msg, ctx) {
// filtering code

1

// injects the new actor in the application
factory.unbind("rss-CNN-actor").from("display-actor");
factory.bind("rss-CNN-actor").to("filter-CNN-actor");
factory.bind("filter-CNN-actor").to("display-actor");
}).onFail (function () { // failover code
}).when(function () { // success callback
context.send(aMessage).to(message.actorname);

b
Figure 1.12: Supporting dynamic reconfigurations as actors with MACCHIATO.

We use the scripted actors as well as the runtime model not only as a foundation to develop pervasive appli-
cations, but also to develop several middleware services that are used by MACCHIATO to continuously optimize
the configuration of the applications running on the user device. More specifically, the specificities of perva-
sive environments require to integrate discovery protocols, context monitoring, and continuous optimization as
middleware services in order to deal with the relative instability of the execution conditions.

Discovery. Part of the runtime model maintained by M ACCHIATO consists of a list of execution nodes that
can be used to offload mobile actors. To discover these execution nodes, MACCHIATO includes two discovery
actors based on two different techniques: a domain registry and a service discovery protocol.

On the one hand, the domain registry is used to discover the execution nodes made available from the
Internet. These nodes are registered in the domain registry based on the domain they are associated to (e.g.,
reuters.com). Whenever an actor submits a request to a specific URL, the MACCHIATO middleware searches
for candidate execution nodes that are available for the associated domain. The candidate nodes for this domain
are automatically added to the runtime model and attached to the related actor(s) as alternative deployment
hosts. Such remote execution nodes are expected to be exposed by data providers in order to offer a better
quality of service to pervasive applications exploiting their data.

On the other hand, the integration of service discovery protocols covers the discovery of execution nodes
in the vicinity of the end user, such as laptop or desktop station available at home. In particular, we use the
Simple Service Discovery Protocol (SSDP), which is part of the Universal Plug and Play (UPnP) standard.
This protocol allows nodes to discover private execution nodes, only accessible from the local network. Such
nodes are exposed to the MACCHIATO middleware by starting an instance. These private execution nodes are
attached to the actors running on battery-powered devices to power-plugged stations in order to save battery
without being impacted by the network latency.

Monitoring. For each of the execution nodes registered in the runtime model, the MACCHIATO middleware
monitors the network quality, and injects this information into the runtime model, in order to estimate the
quality of service offered by these alternative deployment hosts and to take this information into account during
the optimization process. In particular, MACCHIATO monitors the execution of the pervasive applications to
observe the messages that are exchanged between the actors. While all the actors are initially deployed on the
mobile phone, some of them are interacting with remote servers. The bindings identified in the runtime model
are therefore annotated with the volume of data exchanged between actors as well as with remote services.
Figure 1.13 depicts a graphical representation of such a data exchange graph automatically built and updated
by the MACCHIATO middleware services.

While the base layer of the runtime model reflects the software architecture of the pervasive application,
annotations are used to enrich the model with contextual informations. For example, actor annotations are used

16 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

S1 Execution server
Graph cut 2 N2
" In21
Smartphone 112kb | |Out21
Nl 28Kb
« A4

Y WEeng
W NLNZAS . 5}4/4

8Kb -5
GUI "B (AL 3100 =
W A3 |335 ZKb. A5

N1,N2,N3 ! N1,N2,N3
! Outs3
; 4Kb
D Fake actor/Service In53
i 56Kb
Fixed actor S2 ‘
’ N3 | Execution server
Moveable actor N3

Figure 1.13: Example of application data exchange graph.

to tag an actor that can be offloaded or not, while binding annotations are used to report on the volume of data
exchanged between actors. This open metadata format leverages the integration of additional informations that
can be used by the MACCHIATO middleware to manage the pervasive applications it hosts. The MACCHIATO
middleware services (e.g., management, monitoring) are in charge of maintaining a causal connection between
the runtime models and the instances of application.

The resulting graph therefore contains two kinds of actor nodes: static actors (or services) and mobile
actors (with their list of potential execution nodes). It also includes weights on the graph edges to reflect the
connectivity of two actors.

Optimisation. The MACCHIATO middleware reason on this runtime model to find an optimal deployment of
actors given the current execution conditions. The resolution of the optimization problem consists in cutting the
data exchange graph into partitions that minimizes an objective function. This function expresses the volume
of data that is exchanged across the network by the various actors of the pervasive application. To solve this
optimization problem, we use a boolean satisfaction and optimization (SAT) solver that we configure with a
linear pseudo-boolean objective function [LP10]. The data exchange graph previously described is a directed
graph G = {A, B}, where each node A,, reflects to an actor, and each edge B, corresponds to an active
binding between actors B,,,, and B, ,,. We also include a set of candidate execution nodes N = {Ny, ..., N, }
and we declare a boolean variable for each pair of actor and execution node. This can be represented by
A1N1 . AoNn
ANy ... A,N,
executed on exactly one node. For each row of the boolean matrix, we therefore define the following constraint:

Osrc

the following matrix: (. To find a valid application distribution, each actor should be

o
>~ A;N; = 1. The objective function to be optimized by the solver can be defined as follows:
j=1

m n o n n
min (Z > aix | AiN; — AN+ 30 3 Y Bik x vB, % | Bi,,.N; — Bi,,., Nk >
i=1j=1 i=1j=1k=1

The first part of the objective function represents the cost to migrate an actor A; from his current location
N ;_1 to the location in the evaluated distribution N;. That takes into account the connection speed between
nodes and the volume of data upload required to transfer the actor. a;; is the cost to migrate an actor ¢ from
its current location to execution node j. The second part in the function estimates the cost incurred by the
exchange of data between actors located across the network. 3;; is the communication cost between execution
node 7 and execution node j. It is computed from the monitored latency and the type of connection between
nodes (Ethernet, WiFi, or 3G). 7p, is the volume of data measured on the binding B; by the monitoring service.

The resolution of this problem is triggered along the execution of the pervasive application. Depending on the
complexity of the software architecture and the number of candidate execution nodes, finding an optimal solution
to the problem might become time- and resource-consuming. To overcome this issue, the solver supports the
selection of a sub-optimal solution by setting a timeout. Finally, as the reasoner is automatically triggered upon
changes observed in the runtime model, a steadiness parameter is used to adjust the reactivity of the middleware
to the evolution of its environment. The selected solution is then compared to the current application deployment
in order to generate the reconfiguration script that will offload some of the actors on the most suitable execution

1.3. SYNTHESIS 17

nodes (cf. Figure 1.12). While the adoption of an actor programming model leverages the issue of migrating
application states as actors are stateless by definition, the context of an actor is serialized as a JSON document
during the offloading process. The reconfiguration script is sent to the application management actor, which
will operate the reconfiguration of the pervasive application. In order to tolerate the potential failures of remote
execution nodes, the application management actor keeps a copy of local actors. Whenever the distributed event
bus fails to deliver a message to a remote actor, the message is automatically forwarded to the local copy of
this actor.

Consumptions. We measure the network consumption of an application developed with M ACCHIATO, and
we compare it with two other versions of the same application: a) one running exclusively on the mobile phone
and b) one statically offloading all the actors to a remote execution node. The developed application is a RSS”
newsreader. This application periodically looks for updates on several news servers and displays only new
articles retrieved from the feed. In our evaluation scenario, we simulate 20 RSS feeds, which are updated every
30 seconds.

6000 450 - |
5 Client only :: ----- §4OO ---------------- Client c?nly ' — — =
x> 5000 Dynamic offloading and = Dynamic offloading ’
8 = = Systematic offloading :,,,,5 E 350 = == Systematic offloading
> 4000 A ..E
Q
3 2250 L — e
2 3000 @ e
< =0 g N
Y i
© 2000 - ©

annd °
1000 wid
— e —
0

(a) download during simulation (b) upload during simulation

Figure 1.14: Network consumption of a RSS newsreader application.

Figure 1.14 reports on the total volume of data received (a) and sent (b) by the phone along the scenario.
This covers all data exchanged over the wireless connection of the mobile phone, including payload and network
overhead. While the adoption of offloading reduces the amount of data received by the phone by a factor
of 9, the solution based on a static offloading strategy causes sending 2.4 times more data than the solution
proposed by MACCHIATO. This intuition is further confirmed by Figure 1.15, which is a projection of the
energy consumption model defined by Kalic et al [KBK12], and clearly shows that reducing the bandwidth
consumption positively impacts the battery lifespan of the mobile device, with an improvement of 28% of the
battery consumption compared to a static offloading strategy. While offloading an actor can be considered as
penalizing the application, MACCHIATO only uploads the most network-greedy actors in order to better balance
the upload/download trade-off.

140000000
smssissanes Client Only
Dynamic offloading

— — Static offloading

120000000

100000000
80000000
60000000 ;..wm...:':
40000000

20000000

0

Figure 1.15: Energy consumption of a RSS newsreader application.

1.3 Synthesis

This chapter described our key contributions in the area of the design and the implementation of elastic
ubiquitous systems. Beyond our contributions to the FRASCATI middleware platform [Loi+11la; Loi411b;
MRS11la; MRS11b; Sei+12], we have been investigating the adoption of the SCA standard by alternative forms of
software systems. In particular, as part of a sustainable research collaboration with Frédéric Loiret at Inria and

"RSS specification: http://www.rssboard.org/rss-specification

18 CHAPTER 1. ELASTICITY OF UBIQUITOUS SYSTEMS

Amirhosein Taherkordi and Frank Eliassen from the University of Oslo®, we have been porting SCA to WSN in
order to better structure the development of components in the small and to support the dynamic reconfiguration
of WSN applications in the wild. The major contributions have been published at DCOSS’11 [Tah+10], in
Oxford The Computer Journal [Tah+11b], and in ACM Transactions on Sensor Networks [Tah+13].

Then, at a larger scale, we considered the elasticity that can be introduced in the design of component-based
software architectures. As part of a collaboration with Philippe Merle from Inria, we defined a novel approach
to express software architecture patterns that can be adjusted upon requirements. This solution is built as a
flexible domain-specific architecture language that can be used to describe canonical forms of SCA assemblies
and stretch them according to situations. The resulting software framework, FRASCALA, has been published
at CBSE’12 [RM12].

Finally, we have been considering alternative forms of components for the development of elastic mobile
applications. As part of the MACCHIATO collaborative project? with LABRI, Auchan, and Webpulser, we have
been developing an asynchronous component model based on the principles of actors that can automatically
offload part of their tasks on remote execution nodes. The foundations of MACCHIATO, developed with Nicolas
Petitprez and Laurence Duchien, have been published at DAIS’12 [PRD12]. Interestingly, the MACCHIATO
middleware illustrates two other challenges of elastic computing systems that are further described in the
remainder of this document: the monitoring of the environmental context of a ubiquitous system (cf. Chapter 2)
as well as its self-adaptation at run-time (cf. Chapter 3).

Publications associated to this chapter

[Loi+11a] Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, and Philippe Merle. “Software Engineering
of Component-Based Systems-of-Systems: A Reference Framework”. In: 14th ACM SIGSOFT
International Symposium on Component-Based Software Engineering (CBSE’11). Ed. by Springer.
Boulder, United States, June 2011, pp. 61-65.

[Loi+11b) Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero, Kevin Sénéchal, and Ales
Plsek. “An Aspect-Oriented Framework for Weaving Domain-Specific Concerns into Component-
Based Systems”. In: Journal of Universal Computer Science (J.UCS) 17.5 (Mar. 2011), pp. 742—
776.

[MRS11a] Philippe Merle, Romain Rouvoy, and Lionel Seinturier. “A Reflective Platform for Highly Adaptive
Multi-Cloud Systems”. In: 10th International Workshop on Adaptive and Reflective Middleware
(ARM’2011) at the 12th ACM/IFIP/USENIX International Middleware Conference. Lisbon, Por-
tugal, Dec. 2011, pp. 1-7.

[MRS11b] Philippe Merle, Romain Rouvoy, and Lionel Seinturier. “FRASCATI: Adaptive and Reflective
Middleware of Middleware”. In: 12th ACM/IFIP/USENIX International Middleware Conference
- Tutorial. Lisbon, Portugal, Dec. 2011.

[PRD12] Nicolas Petitprez, Romain Rouvoy, and Laurence Duchien. “Connecting your Mobile Shopping
Cart to the Internet-of-Things”. In: 12th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS’12). Ed. by Karl M. Goschka and Seif Haridi. Vol. 7272.
LNCS. Stockholm, Sweden: Springer, June 2012, pp. 236—243.

[RM12] Romain Rouvoy and Philippe Merle. “Rapid Prototyping of Domain-Specific Architecture Lan-
guages”. In: 15th International ACM SIGSOFT Symposium on Component-Based Software Engi-
neering (CBSE’12). Ed. by Magnus Larsson and Nenad Medvidovic. Bertinoro, Italy: ACM, June
2012, pp. 13-22.

[Sei+12] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio Schiavoni, and Jean-
Bernard Stefani. “A Component-Based Middleware Platform for Reconfigurable Service-Oriented
Architectures”. In: Software: Practice and Ezxperience 42.5 (May 2012), pp. 559-583.

[Tah4+08a] Amirhosein Taherkordi, Frank Eliassen, Romain Rouvoy, and Quan Le-Trung. “ReWiSe: A New
Component Model for Lightweight Software Reconfiguration in Wireless Sensor Networks”. In:
On the Mowve to Meaningful Internet Systems: OTM 2008 Workshops. Springer Berlin Heidelberg,
2008, pp. 415-425.

8successively funded by Egide PHC (AURORA), Inria Associate Team (SEAS), and Inria North European Lab (SOCS) programs:
http://seas.ifi.uio.no
9funded by Fonds Unique Interministériel (FUT): http://macchiato.fr

1.3. SYNTHESIS 19

[Tah4+09a] Amirhosein Taherkordi, Romain Rouvoy, Quan Le-Trung, and Frank Eliassen. “Supporting Lightweight
Adaptations in Context-aware Wireless Sensor Networks”. In: st International COMSWARE
Workshop on Context-Aware Middleware and Services (CAMS). Vol. 385. ACM International
Conference Proceeding Series. Dublin, Ireland: Mélanie Bouroche et al., June 2009.

[Tah+09b] Amirhosein Taherkordi, Quan Le-Trung, Romain Rouvoy, and Frank Eliassen. “WiSeKit: A Dis-
tributed Middleware to Support Application-level Adaptation in Sensor Network”. In: 9th IFIP
International Conference on Distributed Applications and Interoperable Systems (DAIS). Ed. by
Twittie Senivongse and Rui Oliveira. Vol. 5523. Lecture Notes in Computer Science. Lisbon, Por-
tugal, June 2009.

[Tah+10] Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain Rouvoy, Quan Le-Trung,
and Frank Eliassen. “Programming Sensor Networks Using REMORA Component Model”. In:
6th IEEE International Conference on Distributed Computing in Sensor Systems (DC0SS’10).
Santa Barbara, California, United States, June 2010, p. 15.

[Tah+11a] Amirhosein Taherkordi, Frank Eliassen, Daniel Romero, and Romain Rouvoy. “RESTful Service
Development for Resource-constrained Environments”. In: REST: From Research to Practice. Ed.
by Erik Wilde and Cesare Pautasso. Springer, 2011, pp. 221-236.

[Tah+11b] Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, and Frank Eliassen. “A Generic Component-
based Approach for Programming, Composing and Tuning Sensor Software”. In: The Computer
Journal 54.2 (Feb. 2011), pp. 1-19.

[Tah+13] Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, and Frank Eliassen. “Optimizing Sen-
sor Network Reprogramming via In-situ Reconfigurable Components”. In: ACM Transactions on
Sensor Networks 9.2 (May 2013), pp. 1-37.

[TRE10] Amirhosein Taherkordi, Romain Rouvoy, and Frank Eliassen. “A Component-based Approach for
Service Distribution in Sensor Networks”. In: 5th International Workshop on Middleware Tools,
Services and Run-Time Support for Sensor Networks. Bangalore, India: ACM, Nov. 2010, pp. 22—
28.

CHAPTER 2

Contextualization of Ubiquitous Systems

2.1 Motivations

Ubiquitous systems are expected to run in a wide diversity of, and potentially unforeseen, operational conditions.
Beyond their resilience to changes in their deployment environment, such software systems may also need to
sense and monitor their surroundings to inform the end user and eventually take appropriate actions. Context
monitoring has therefore emerged as a key capability in various domains to connect software systems to the
underlying hardware platform or to the physical world (in the case of ubiquitous systems) [BDRO07; HSKO09;
SW10; Per+14]. Nevertheless, providing such support is not always straightforward and raises several key
challenges for the scientific community.

These challenges have been emphasized by two massive trends that recently changed the IT landscape:
Cyber-physical systems' and Cloud computing?. While cyber-physical systems are now surrounding us due
to a massive deployment and adoption (e.g., smartphones, smartwatches, Internet of Things [IoT] devices),
cloud computing has democratized the principles of everything as a service (XaaS) and fostered various forms
of visualization through software-defined systems [Ban+11]. Incidentally, this evolution in software systems
motivates the issue of the context monitoring scalability according to several dimensions. The first dimension
refers to the capability of inferring high-level contextual situations from a large volume of raw data collected
in the wild or from a device. Hardware (e.g., accelerometer) or software (e.g., performance counters) sensors
tend to continuously produce raw data that a context monitoring solution has to quickly filter, process, and
convert it into information that can be used by an application or understood by a user. The second dimension in
scalability balances in-breadth and in-depth context monitoring. In-breadth monitoring deals with the capability
to collect context data at large using, for example, a crowd of mobile devices [Lan+10; Kha+13]. This requires
the development of smart mechanisms to orchestrate the retrieval of context information at large to support
the analysis of collective behaviors (e.g., the virtual machines of a data center, a fleet of company cars). In-
depth monitoring addresses the capability to dig into a software-defined system to collect and process context
information at any level of visualization. Similar to reflection, a software-defined system—Ilike an application
running in a virtual machine—may require introspection capabilities and access to contextual information
collected by any layer of the encapsulating infrastructure (e.g., hypervisor, physical machine). Furthermore,
no matter the considered dimension of scalability, the resource consumption of context monitoring has to be
carefully optimized as this service should not impact the performances of the overall system.

The objective of this chapter is therefore to report on our contributions in the area of scalable context
monitoring and processing solutions. Our definition of scalability takes into account the various dimensions
we exemplified and thus we propose novel middleware solutions to efficiently process context at large. Beyond
the support for self-adaptation decision heuristics, which will be described in Chapter 3, these context-aware
middleware systems can been perceived as software microscopes that clearly helps researchers and engineers to
better understand the behavior of a software system. This perspective has raised the need for the development
of robust software components to provide better insights on the conditions under which a software systems may
be immersed and therefore one can help to adjust its capabilities accordingly.

2.2 Contributions

Building on the principles of component-based software architectures we introduced in the previous chapter, we
have investigated the design and the implementation of middleware solutions to address in-breadth and in-depth

Thttp://en.wikipedia.org/wiki/Cyber-physical_system
2http://en.wikipedia.org/wiki/Cloud_computing

21

22 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

context monitoring. In particular, we report on the APISENSE® distributed platform as a solution to deal
with crowd-sensing activities (cf. Section 2.2.2). Then, we introduce the PowerAPI library as a middleware
solution to estimate the power consumption of software at various granularities (cf. Section 2.2.3). Both of these
solutions are inspired by COSMOS, a context processing framework built with resource optimization in mind,
which we introduce hereafter (cf. Section 2.2.1), and used as a reference model for developing our contributions.

2.2.1 Hierarchic Modeling of Software Context

Our work in the area of contextualization of ubiquitous systems considers that any context information requires
to be processed prior to be consumed. In particular, given that context sensors tend to produce raw data, one
needs to filter, aggregate, and convert such data into added-value information for an application. Figure 2.1
illustrates the complexity that can result from combining several context policies for developing a ubiquitous
application. This example is part of a ubiquitous application that can be used by a family shopping in a
mall with a mobile device®. This application allows them to share information, to consult product prices, to
download discount tickets, to be notified of advertisements, to access additional information and comments
about a product, or to find the location of a product or a shop in the mall. The parents want their children
to remain in the mall, with their devices connected whenever possible, so that everybody knows the location
of the other family members. Nevertheless, children can disconnect for some periods of time in order to save
their battery. While walking in the mall, the eldest girl sees an advertisement indicating that a dressing
store proposes a RFID tag-based service for helping choose clothes. All these features are based on different
network technologies, such as Bluetooth or WiFi, and require the application to adapt itself depending on
network connectivity and context information availability. Even if each high-level context information relates
to a particular functionality and focuses on a precise set of lower-level context information, some intermediate
context information may be shared and useful for several context policies. For example, the WiFi download
enabled situation is associated to the functionality supporting the download of a discount ticket: It allows the
application to know when the functionality is available. The detection is performed by monitoring the quality
of the WiF1i link. The WiFi browsing enabled situation is built upon the previous one and allows the application
to enable and to configure a browsing facility to access comments about a product or to find its location in the
mall. Therefore, we model context information (in the upper part of the picture) as hierarchies of context trees
with the possibility of sharing sub-trees between policies.

RFID tag observation Bluetooth observation W'Zﬂ‘:&‘zz'"g Group Membership
enabled enabled Service
Bluetooth notification (with location) @* Adaptation situation
enabled WiFi download enabled pLc
detection
Decision stabilisation Data interpretation
Disconnection Failure
RFID tag readabl Bl h d b WiFi adjusted bit rate detector detector
& (> (with location)
. — . Connectivity
ility detector §
User preference’:
change detector .{ Battery Connectivity Average Average bit rate i@
lifespan detecto%) link quality if variable
RFID tag Advertisement Battery Battery Bluetooth WiFi link WiFi Is bit rate Heartbeat

presence preference charge state time left link quality quality bit rate variable? counters Location

Data gathering

RFID tag } User preference Battery | @ Bluetooth WiFi | Q Q 4 Periodic Heartbeat
manager manager manager Sender/Receiver
@ Tag call @ Registry call ﬁ System call ﬁ System call @ System call ﬁ Network call

Legend: 'f Blocking notification }_ Blocking observation @ Active observer é Active notifier (> Active observer and notifier

Figure 2.1: Example of Complex Context Policy.

2.2.1.1 The COSMOS Context Processing Framework

COSMOS is a component-based framework for processing context information in ubiquitous context-aware
applications [CRS07; CRS08; RCS08]. COSMOS is therefore a middleware toolkit that supports the implemen-
tation of context policies, such as the one above described.

COSMOS decomposes context observation policies into fine-grained units called context nodes. A context
node is context information modeled by a software component. COSMOS organizes context nodes into hier-
archies to form context policies. The relationships between context nodes are sharing and encapsulation. The
sharing of a context node—and, by implication, of a partial or complete hierarchy—corresponds to the sharing

3This scenario is a use case of the French project CAPPUCCINO (http://www.cappucino.fr).

2.2. CONTRIBUTIONS 23

of part or all of a context policy. Context nodes at a hierarchy’s leaves (the bottom-most elements in Figure 2.1,
with no descendants) encapsulate raw context data obtained from collectors (such as operating system probes,
sensors near the device, user preferences in profiles, and remote devices). Context nodes should provide all the
inputs necessary for reasoning about the execution context, which is why COSMOS considers user preferences
as context data. A context node’s role is thus to isolate the inference of high-level context information from
lower architectural layers responsible for collecting context data.

Figure 2.2a depicts the mapping from a context policy tree to the associated component-based software
architecture. Context nodes are classified into two categories: leaves and other nodes. Leaves of the hierarchy are
ContextNodes extended to contain one or several components that receive context information from an external
entity. This external entity may be the operating system or another framework, being built with COSMOS or
not, component-oriented or not. For instance, a WiFi resource manager can obtain the corresponding context
information directly from the operating system (through system calls) or can encapsulate a (legacy) framework
dedicated to the reification of system resources. Nodes of the graph which are not leaves are extended to contain
one or several other context nodes. For example, a context node may compute the battery charge state of a
terminal by encapsulating two other context nodes, the first one computing the battery charge state and the
second one computing the battery time left.

Context nodes are also equipped with properties which define their behavior with respect to the context
management policy:

Passive vs. active. A passive node obtains context information upon demand. A passive node must be
invoked explicitly by another context node (passive or active). An active node is associated to a thread
and initiates the gathering and/or the treatment of context information. The thread may be dedicated
to the node or be retrieved from a pool. A typical example of an active node is the centralization of
several types of context information, the periodic computation of a higher-level context information, and
the provision of the latter information to upper nodes.

Observation (pull) vs. notification (push). The observation reports containing context information are
encapsulated into messages that circulate from the leaves to the root of the hierarchies. When the
circulation is initiated at the request of parent nodes or client applications, it is an observation. In the
other case, this is a notification.

Blocking or not. During an observation or a notification, a node that treats the request can be blocking or
not. During an observation, a non-blocking context node begins by requesting a new observation report
from each of its child nodes, and then updates its context information before answering the request of
the parent node or the client application. During a notification, a non-blocking node computes a new
observation report with the new context information just being notified, and then notifies the parent node
of the client application. In the case of a blocking node, an observed node provides the most up-to-date
context information that it possesses without requesting child nodes, and a notified node updates its
state without notifying parent nodes. In addition, a node can be configured for a unique observation or
notification if its state is immutable. Finally, the observation of a node can raise exceptions, for instance
when the physical resource is not present or in case of a configuration problem. On demand, the thrown
exception can be masked to parent nodes or client applications, and default values can be provided in

that case.
1 object WiFiDetector extends Policy {
2 val WiFiMgr = new sensor[WirelessInterfacel {
| 3 parameter ("resourceName","ethl")
\ a Sﬁ:mm 4 }.isActiveObserver.isBlockingObserver
pull-out — ity |
° Sontext ._Eh?::;"teyr: reoendt 6 val WiFiConnect = new node[ConnectivityDetector] {
Operator_L(._‘____::g__:l : e I node [Average] consumes WiFiMgr.get ("link-quality")
push pull hi —('Message' fsml.!z;flree?:r’nerface
B :ull—ml iManager: -*({ealecton) 9 val AvgWiFiBitRate = new node[AverageIf] {
@ intertace binding 10 consumes (WiFiMgr.get ("bit-rate", "is-variable"))
° o e CONtext] I:l 11 } }.isActiveObserver.isActiveNotifier
Context Node B|™™™| ===, ...
Node A purou| NOd€ C [Sushou | = — (shared) 13 new node[AdjustedBitRate] {
14 consumes (WiFiConnect)
15 consumes (WiFiConnect.AvgWiFiBitRate)
(a) Architecture of COSMOS Context Node. 163 }

(b) Composing a Context Policy with FRASCALA.

Figure 2.2: COSMOS Framework

COSMOS policies can be described using FractalADL [Bru+06; Lec+07] or FRASCALA. For the sake
of brevity, Listing 2.2b reports only on the resulting ADL notation that can be used to describe a context
policy. Therefore, as illustrated in Listing 2.2b, the architect describes the architecture of a context policy

24 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

using keywords such as Policy, sensor or node, which are more straightforward than generic component-based
constructions.

Thanks to the definition architecture patterns, COSMOS can provide the developer with pre-defined generic
context nodes that can be configured upon requirements: sensor nodes for collecting raw data, memory nodes,
such as averagers, translation nodes, data mergers with different quality of service, abstract or inference nodes,
such as additioners, thresholds nodes, etc. Note that in a classical context manager architecture the first nodes
constitute the collectors, most of the other ones are part of the interpretation layer, while the last thresholds
based ones serve to identify situations. In COSMOS, each class of nodes can be used in every layers, hence
leveraging the expressiveness power of context policies.

The implementation of the COSMOS framework is based on three existing frameworks: FRACTAL, DREAM,
and SAJE. FRACTAL [Bru+06] is the component model of the ObjectWeb consortium for open-source mid-
dleware. FRACTAL defines a lightweight, hierarchical and open component model (see http://fractal.
objectweb.org). We use Julia [Bru406], which is a Java implementation of FRACTAL. We also take ad-
vantage of the numerous tools available for this component model, such as FRACTAL ADL, FPath, and Fraclet
(a Java 5 annotation-based programming model) [RMO09], and DREAM [LQS05]—a FRACTAL component li-
brary for the construction of message-oriented middleware (MOM) and the fine-grained control of concurrency
management with thread pools and message pools. Finally, SAJE [Cou+03] is a framework for gathering
data from system resources. COSMOS is available under the GNU LGPL license and can be downloaded
from http://picoforge.int-evry.fr/projects/cosmos. Extensive performance measurements are reported

in [CRS07].

2.2.1.2 A Focus on Context Stabilization Algorithms

In order to optimize the decision making processes captured by context policies, context stabilization mech-
anisms can be identified as a crosscutting concern when processing context. Context regions [Ati+03] is an
example of stabilization mechanism which advocates a strict partition of the context space, in oder to reduce
the adaptation side-effects. However, such mechanisms solve the stabilization problem only partially. In partic-
ular, context regions do not handle properly application behavior during the transition phases from one state
to another. More powerful and complex stabilization mechanisms based on machine learning algorithms are
suggested in many works like [Dar07; Wu03]. Nonetheless, despite some good results in predicting application
behavior, they tend to suffer from weak reactivity in the learning phase.

Classification. To address the crosscutting nature of stabilization algorithms, we propose to integrate stabi-
lization algorithms as generic context nodes to be woven into context policies. However, as the application of
different stabilization algorithms may result in different Qualities of Context (QoC) [SWVO0T7], which requires
stabilization mechanisms to be classified according to their properties. In particular, we based our classification
on the following three criteria:

1. Algorithmic complexity refers to the maximum number of steps required by an algorithm for different
configuration sets and possible inputs values;

2. Execution speed denotes the minimal time required for an algorithm consuming an input vector v; to
produce a valid output v;.

3. Data scope describes the type (nominal, ordinal, numeric) of data that can be given as input for an
algorithm.

Although only a few works in the state-of-the-art [Pad+05; TC04] directly address stabilization issues for
self-adaptive applications, stabilization issues are ubiquitous in most of the works that are related to context
reasoning or context fusion of information [RRMO06; Pad+05; Dar07]. Most of the stabilization algorithms or
techniques can be categorized into five groups:

Filtering techniques. These techniques focus on data-filtering using statistic or parametric-based algorithms.
For example, in MoCoA [RRMO06]—a framework for the management of network applications—data fil-
tering is achieved on the basis of geographical or temporal constraints.

Threshold techniques. For algorithms of this group, the stabilization is realized by checking the system
state with regards to threshold values. The heartbeat (HB) algorithm described in [TC04]—used for the
stabilization of network connectivity failure in a mobile environment—is an example of a threshold-based
technique.

Refresh techniques. The principle of these techniques is to update the system with new contextual infor-
mation only when certain conditions are fulfilled. Usually these conditions are expressed in the form of
time-based constraints or events/actions constraints.

Probabilistic schemas. For algorithms that belong to this group, stabilization is reached by inferring the
system state from probabilities and previous states of the system, for example Kalman Filter [Pad+05]

2.2. CONTRIBUTIONS 25

or Hidden Markov Model [SAHOT].
Uncategorized. This last group encloses all the algorithms that that does not fit in the previous categories,
because they use ad hoc methods to handle the stabilization of the system.

When studying the stabilization mechanisms presented in the literature, we find out that they do not have
the same data scope—i.e., they do not process the same type of data. In our classification, the data scope
criteria is based on the data type categories proposed by Mayrhofer et al. [MRF03]. Mayrhofer et al. suggest
that primitive types of contextual information can be grouped in four categories: i) Nominal data (qualitative)
includes values in a dataset on which no order relationship has been or can be defined. A special case are binary
features with S = {0, 1};) Ordinal data (rank) covers values of a set with a defined order relationship; %)
Numerical data (quantitative) encompasses values of an ordered set with predefined operations (an algebraic
field). It can be further distinguished according to the density of values in the discrete (S € Z) or continuous
(S € R) set; i) Interval data refers to intervals instead of single values.

Table 2.1 reports our classification of stabilization mechanisms according to primitive contextual information
types. We use the annotation “y/,/” to express that an algorithm targets the data group, while “/” expresses
that an algorithm can target the data group by applying some simple conversions. Table 2.1 shows that
depending on their implementation, stabilization algorithms usually do not have the same data scope. We use
this classification to recommend the suitable stabilization mechanisms depending on the data type associate to
the context node to be woven—i.e., stabilized.

Nominal Ordinal Numerical Interval
Delta operators [BBF02] Vv Vv
Buffor [RRMOG] N 7 N N
Warm-up time [Bra+07b] Vv Vv Vv Vv
Context regions [Ati+03] VvV Vv Vv
Sensitivity (speed, acceleration) [Pad+05] VvV Vv
Switch [Pad+05] Vv VvV Vv N
Statistical Techniques (average, variance) Nava Vv
Filtering techniques
Statistical filtering vV Vv
Parametric filtering (time, localisation) Vv vV NV Vv
Treshold techniques
Simple threshold vV VvV N4
Double threshold Vv NN Vv
Double double threshold (hysteresis) [TC04] vV VvV Vv
Refresh techniques
Parametric refresh (T) VvV vV VvV Vv
Event/Action refresh Vv vV Vv NV
Probabilistic schemas
Fuzzy Togic [Dar07] Y 7 N N
Markov chain [SAHO07] vV VvV V4
Bayesian network [SAHO7] Nav; Vv
Dempster-Shaffer theory [SAHO7] VvV Vv

Table 2.1: Classification of stabilization techniques according to contextual information categories.

Composition. In order to meet the flexibility requirements for the efficient stabilization of context policies,
we define a composition model for stabilization algorithms. Our composition model defines how to combine
different stabilization techniques or mechanisms in order to provide a flexible stabilization mechanism for the
application. The model therefore consists of two strategies of composition: horizontal and vertical compositions.

Horizontal composition. Although learning-based stabilization algorithms, like Dempster-Shaffer The-
ory (DST) [Wu03] or Bayesian Networks (BN) are efficient in predicting contextual changes, they introduce
a latency in detecting variations in the application environment. This weakness can be compensated by asso-
ciating learning-based algorithms to other algorithms with a lower latency. Horizontal composition therefore
consists in executing concurrently several stabilization algorithms. The idea behind this concept is to benefit
from passive and reactive stabilization techniques by combining them adequately. The detection of irregular
application behavior can be obtained by combining a reactive algorithm like Delta Operator, and less reactive
algorithm like DST algorithms, which are combined by a Composition Rule (CR). A CR can be a function like
“f(Un,Vny1) = max(v,,vp41)”, where vy, v,11 are context values, or a complex rule considering the QoC.

26 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

Hence, using this composition model can help to improve the accuracy of the stabilization process while keeping
the reactivity of the system at a reasonable level.

Vertical composition. Vertical composition in our approach consists in applying two or more stabilization
algorithms in sequence. In [SAHOT7], Sekkas et al. suggest that it can be interesting in terms of performance for
stabilization of context information to apply successively several stabilization algorithms on the same sample
of data. The authors compare the efficiency of using Bayesian Networks (BN), Dynamic Bayesian Networks
(DBN), and Fuzzy Logic (FL) independently or in a combined way. In our approach, we believe that the
combination of algorithms using wvertical composition can increase the efficiency of the stabilization process.
In order to limit the overhead introduced by the use of several algorithms, cheap (execution) algorithms are
found at the bottom of the stabilization chain while expensive algorithms are on the top of the architecture.
This association rule is mostly justified by the fact that the amount of processed data decreases from the
bottom to the top, thus more costly algorithms at the top of the architecture would have to process less data,
decreasing by the same way the overall cost of the stabilization process, which is tightly bound to the amount
of context-information processed.

Figure 2.3 illustrates from left to right these two composition types and their combination. This combination
of both composition models can be used in order to meet accuracy and efficiency properties of the stabilization
process. The data source in Figure 2.3 stands for any data provider since the stabilization strategies described
can be applied on any data coming from monitoring activities (before the decision making block) and on data
coming from adaptation activities (after the decision making block).

Horizontal composition Vertical composition Horizontal + Vertical composition

Application

T 1

Application Application

1

e Stabilization algorithm
@ Composition rule

Figure 2.3: Compositions of Context Stabilization Algorithms in Context Policies.

jorizontal composition

Vertical composition

Discussions. By integrating stabilization algorithms into context policies, we raise the quality of context and
provide users or decision heuristics with stable indicators that can be used to reason on the current state of
the system or the status of the surrounding environment [NRS10a; NRS09]. While these algorithms are made
reusable in COSMOS, they may need to be tuned appropriately in order to be efficient.

Along our research activities, we have been applying the principles of COSMOS to several contexts, from
wireless sensor networks [Tah+08b], to smart-homes [Par412b], to mobile devices [Rom+10a; Rom+10c], and
even to server-side infrastructures [Nou+12b]. The next two sections are going to further detail how we recently
derive to the context model promoted by COSMOS to address the specific cases of in-breath monitoring of mobile
devices (cf. Section 2.2.2) and in-depth monitoring of energy consumption (cf. Section 2.2.3).

2.2.2 In-breath Context Monitoring and Orchestration in the Wild

For years, the analysis of contextual traces has contributed to better understand user behaviors and habits [Liu+09].
For example, the Urban Mobs initiative* visualizes SMS or call activities in a city upon the occurrence of ma-
jor public events. These activity traces are typically generated from GSM traces collected by the cellphone
providers [Soh+06]. However, getting access to such GSM traces is often subject to constraining agreements
with the mobile network operators, which restrict their publication, and have a scope limited to telecom data.

We therefore believe that cellphones represent a great opportunity to collect a wide range of crowd con-
textual traces. Largely adopted by populations, with more than 968 million units sold in 2013 (against 680

4http://www.urbanmobs . fr

2.2. CONTRIBUTIONS 27

millions in 2011) according to Gartner institute®, smartphones have become a key companion in people’s dai-
lylife. Not only focusing on computing or communication capabilities, modern mobile devices are now equipped
of a wide range of sensors enabling scientist to build a new class of datasets. Using cellphones to collect con-
textual traces contributed by users is reported in the literature either as participatory sensing [Bur+06], which
requires explicit user actions to share sensors data, or as opportunistic sensing where the mobile sensing appli-
cation collect and share data without user involvement. These approaches have been largely used in multiple
research studies including traffic and road monitoring [Bia+11], social networking [Mil+10] or environmental
monitoring [Mun+09]. However, developing a sensing application to collect a specific dataset over a given pop-
ulation in not trivial. Indeed, a participatory and opportunistic sensing application needs to cope with a set of
key challenges [CHKO08; Lan+10], including energy limitation, privacy concern and needs to provide incentive
mechanisms in order to attract participants.

These constraints are making difficult, for scientists non expert in this field, to easily collect at large realistic
datasets for their studies. But more importantly, the developed ad hoc applications may neglect privacy and
security concerns, resulting in the disclosure of sensible user information. With regards to the state-of-the-art
in this field, we therefore observe that current solutions lack of reusable approaches for collecting and exploiting
crowd activity traces, which are usually difficult to setup and tied to specific data representations and device
configurations. We therefore believe that crowd-sensing platforms require to evolve in order to become more
open and widely accessible to scientific communities. In this context, we introduce APISENSE, an open crowd-
sensing platform targeting multiple research communities, and providing a lightweight way to build and deploy
opportunistic sensing applications in order to collect dedicated datasets.

2.2.2.1 The APISENSE® Crowd-Sensing Platform

APISENSE® extends the context model we introduced with COSMOS to deal with multiple sources of context—
i.e., the mobile devices—and builds on some of the programming models we described in Chapter 1 to implement
a crowd-sensing platform supporting in-breadth monitoring of context information. The distributed architecture
of APISENSE® combines a standard mobile application to be installed by participants on their own mobile
phone, with a Cloud-hosted backend infrastructure to control the deployment of context policies and get access
to collected context information [Par412a; HRS13b; Qui+13; Had+14]. The APISENSE® platform therefore
distinguishes between two roles. The former, called scientist, is a researcher who wants to define and deploy an
context policy over a large population of mobile users. The platform therefore provides a set of services allowing
her /him to describe context policy requirements in a domain-specific language, deploying it over a subset of
participants and connect other services to the platform to extract and reuse dataset collected in other contexts
(e.g., visualization, analysis, replay). The scientist is offered a web environment to define, deploy, and store
the collected dataset. In order to increase the dynamicity of context policies, the APISENSE® platform uses
a script-oriented approach to describe and compose context policies. The latter is the mobile phone user, also
called participant. The APISENSE® platform provides a mobile application allowing to download experiments,
execute them in a dedicated sandbox and upload collected datasets to the APISENSE® server. The mobile
application provides several mechanisms in order to keep the control of user privacy and battery lifespan.

Context collection. To reduce the learning curve, we decided to adopt a standard scripting language in order
to ease the description of context policies by the scientist. We therefore propose the APISENSE® scripting
language as an extension of JavaScript and Python, which provides an efficient mean to describe an experiment
without a specific knowledge of mobile device programming technologies (e.g., Android SDK). The choice of
JavaScript and Python was mainly motivated by their native support for JSON (JavaScript Object Notation),
which is a lightweight data-interchange format reducing the communication overhead. For example, Listing 2.4a
describes the piece of script to be written by a scientist interested in collecting geolocated GSM signal strength
traces. This script is triggered whenever the position of the participant changes and builds a new contextual
trace out of the collected data.

Each context policy is associated with a local database used to store the collected traces in the mobile
device. FEach trace collected by the policy is stored in the database before to be aggregated and sent to
APISENSE® server-side infrastructure. In this example, the script requires to access two context nodes: the
location sensor node to collect periodic updates of the device’s geographical location, while the GSM sensor
node monitors the GSM signal strength level. When the state of an active sensor is updated, the system creates
an event and triggers the handlers associated to this event. As we are interested in collecting location and
GSM signal strength level only when the location of the user changes, the scientist implements the function
onLocationStateChanged as shown in Listing 2.4a. The function can access raw sensor data via the event loc
passed as a parameter. The last step consists in describing the content of the context trace. The APISENSE®

Shttp://www.gartner.com/newsroom/id/2665715

28 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

Asynchronous call (push Synchronous call (pull
1 // Event and action triggered when the user moves onLocationChanged(...) - D B
2 $location.onLocationChanged ({provider : ["network"l}, onNetworkstateChanged|...) = =1
3 function(loc) { onBatteryStateChanged(...) ~ onPhonecall(...) Savetrace Mediacapture Survey Notify
4 return $trace.add ({ subscribes
5 lat: loc.latitude (),
6 lon: 1loc.longitude(),
7 time: loc.time(), event |
8 ss: $gsm.signalStrengthlLevel () publishes | e [/ ' action
9 s ALY E‘ anl
10 1) Locati User Device Battery
Ocation nteraction State State
Facade

(a) GSM Signal Strength Policy.
(b) APISENSE® Scripting Language.

Figure 2.4: APISENSE® Programming Model.

scripting language provides several helpers in order to build traces for geolocation standard formats, such as
GPS Exchange Format (GPX) or Keyhole Markup Language (KML). In addition to these helpers, the scientist
is free to define a custom representation and return an object directly in JSON representation.

In addition to the sensors reported in this example, the APISENSE® scripting language supports a wide
range of features to declare the data to be collected during a sensing experiments including traditional sensors
proposed by smartphone technologies, such as Bluetooth, call statistics, application status (installed, running)
in the case of opportunistic sensing, as well as a support for participatory sensing using surveys (filling out a
form, taking a picture or a video) as illustrated in Figure 2.4b. In APISENSE, context sensors are exposed as
Facades, which group push- and pull-based methods to interact with a given class of sensors (e.g., accelerometer,
GPS, camera, battery). By subscribing to events (e.g., onLocationChanged), the context policy can therefore be
notified of the occurrences of a specific event (whose type is bound to the subscription method) and eventually
produce a context trace.

User privacy. In addition to this script, the scientist can define privacy filters to limit the volume of data to
be collected on the field and to enforce the privacy of the participants. In particular, APISENSE® currently
supports two types of policy filters:

Area filter allows the scientific to specify a geographic area where the data requires to be collected. In our
example, this area maps to the place where the scientist is interested in collecting the GSM signal (e.g.,
campus area). This filter guarantees the participants that no data is collected and sent to the APISENSE®
server outside of this area.

Period filter allows the scientific to define a time period during which the experiment should be active and
collect data. In our example, this period can be specified during the office hours in order to discard data
collected during night, while the participant is expected to be at home.

Mobile application. Although our solution could be extended to other Operating Systems, the APISENSE®
mobile application is currently based on the Android operating systemS.

A participant willing to be involved in an experiment proposed by a scientist can download and install
the APISENSE® mobile application and create an account on the server-side infrastructure. Once registered,
the HTTP communications between the mobile device of the participant and the infrastructure are authen-
ticated and encrypted in order to reduce potential privacy leaks when transferring the collected datasets to
the APISENSE® server. From these, the participant can connect to the Experiment Store component (cf.
Figure 2.7), download and run one or multiple sensing experiments proposed by scientists.

Facades bridge the Android SDK with the Script engine. This abstraction covers two roles: a security role
to prevent malicious calls of critical code and a accessibility role to leverage the development of context policies
as illustrated in Listing 2.4a. Although the last generation of smartphones provides very powerful computing
capabilities, the major obstacle to realize continuous sensing application refers to their energy restrictions.
Therefore, in order to reduce the communication overhead with the remote server, which tends to be energy
consuming [Sha09], datasets are uploaded only when the mobile phone is plugged. In particular, the Battery
manager component monitors the battery state and triggers the Network manager component when the battery
starts charging in order to send all the collected datasets to the server-side infrastructure. Additionally, this
component monitors the current battery level and suspends the Script engine component when the battery level
goes below a specific threshold (20% by default) in order to stop all active context policies. All the privacy
rules defined by the participants are interpreted by the Privacy Manager component, which suspends the Script

6Prototype applications are also available for iOS and Windows Phone.

2.2. CONTRIBUTIONS 29

Bee.sense
Bee.sense Bee.sense Bee.sense
Experiment Experiment Experiment
(javascript) (python) (javascript)

Battery X)
Manager Script engine (javascript, python)

Trigger Privacy Manager
data upload

(encryption, access control)

Upload data
g Network Database | Battery | Accelerometer | GPS

load scri Facad
scripts. g I Theert seript Facade Facade acade Facade

HTTPS/JISON
<]

Android Software DevelopmentKit (SDK)

Figure 2.5: Architecture of the APISENSE® Mobile Application

engine component if one this rules is triggered. The last category of privacy rules refer to authorization rules,
which prevent context policies to access raw context data if the user does not want to share this information.
Additionally, an embedded mechanism use cryptography hashing (SHA-1) to prevent context policies to collect
sensitive raw data, such as phone numbers, SMS content, or address book.

User incentives In order to attract participants, a crowd-sensing platform has to provide appropriate levers
to target a critical volume of context information. As cited by [Dut409], one key challenge when cellphone
are used as research platforms is to incite users to contribute to a given experiment. Even if crowd-sensing
applications represent a great interest for scientists, it does not offer any particular service to the participants,
but still consumes their resources (e.g., battery, bandwidth). To help scientist to motivate participants, we
provide an incentive support encouraging participants to collect relevant datasets.

As the APISENSE® mobile application provides several mechanisms to control the access to sensors, the
rewarding mechanism is based on the quality and the volume of context traces produced by participants.
Therefore, the more sensors are activated by participants and the more context traces are uploaded to the
APISENSE® server-side infrastructure, the more credits the participants receive for their contributions. The
credits can be configured by the scientist in order to privilege the retrieval of specific data. For example, the
scientist can allocate more credits to the GPS traces in order to balance to the energy consumption and the
privacy sensitive of this sensor. The assigned credits are then used by the scientist to provide participant
rankings, involvement badges, or even coupons to reward the users.

The participant is therefore free to disable some of the sensors for privacy or energy reasons (cf. Figure 2.6),
but in this case, she/he will receive less credits when uploading the collected dataset. Depending on the data
consistency that the scientist expects, she/he can keep or filter out partial activity traces from the dataset by
executing an XQuery extraction [HRS13a].

r whl@ el fflo Wl 1218w
REGITE

Marker OFF Done Privacy Sensor

Battery Info
Hardware Info

Wifi

Network Location Info
Accelerometer Sensor
Temperature Sensor

Pressure Sensor

Light Sensor Info

Sms

Bluetooth Info

Figure 2.6: APISENSE® Privacy Filters

Server-side infrastructure. The main objective of APISENSE® is to provide to scientist an open platform,
which is extensible and configurable in order to be reused in various contexts. To achieve this goal, we designed
the server-side infrastructure of APISENSE® as an SCA distributed system (cf. Figure 2.7). In particular, we
believe that SCA provides an flexible foundation for the APISENSE® infrastructure by accommodating a wide

30 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

diversity of programming languages and communication protocols in order to efficiently support the variety of
user requirements.

P / <<<<< S Data Gathering Node

G L N

(‘ 3ol Experiment -
\-..m_,,.mv,.,.} [—— Manager E
Experiment Store

Analysis:Data

N ‘ Export Collector:Geo
ff [Scientist Service

Frontend

Scientists Que_rv
Service
1) Create Experiment

2) Publish Experiment
3) Query dataset Statistics
Service Jrivayc:Sanitizer
@J **** i Participant

,,,,,,,,,,,,,,, Frontend Dataset

Participants

Handler

1) Upload dataset (Scala) privacy:Filters
2) Get Statistics

soCloud

- SCA Composite SCA Service —— SCA wire (local)

Ved “"\AA‘

14

Mearmnomancined |
External Platforms ‘ ‘ SCA Component SCA Reference SCA bindi

Figure 2.7: Architecture of the APISENSE® Server Infrastructure.

All the components building the server-side infrastructure of APISENSE® are hosted by a cloud infrastruc-
ture. The Scientist Frontend and Participant Frontend components are the endpoints for the two categories of
users involved in the platform. Both components define all the services that can be invoked remotely by scientists
or participants. These remote services are exposed as a REST resources. Additionally to the components hosted
in the cloud, scientists can develop and deploy their own components in order to tune the platform according to
their requirements. In order to ease the adoption of the APISENSE® platform and manage services provided
by the platform, we developed a Web interface. Thus, this choice does not require the scientist to install any
specific software on her/his computer and it leverages the burden of handling network-level configurations in
order to deploy and maintain a server infrastructure to store the data collected by the participants.

Deployment model. Once a context policy is declared using the APISENSE® scripting language, a scientist
can publish it into the Fzperiment Store component in order to make it available to participants. Once published,
two deployment strategies can be considered for deploying experiments. The former, called pull-based approach,
is a proactive deployment strategy where participants download the list of experiments from the remote server.
The latter, push-based approach, propagates the experiments list updates to the mobiles devices of participants.
In the case of APISENSE, the push-based strategy would induce a communication and energy overhead and, in
order to leave the choice to participants to select the experiments they are interested in, we adopted the pull-
based approach as a deployment strategy. Therefore, when the mobile device of a participant connects to the
Ezxperiment Store, it sends its characteristics (including hardware, current location, sensor available and sensors
that participants want to share) and receives the list of experiments that are currently published. The scientists
can configure the Ezperiment Store to limit the visibility of their experiments according the characteristics of
participants. In order to reduce the privacy risk, device characteristics sent by participants are not stored by
the infrastructure and scientist cannot access to this information.

Additionally, the Experiment Store component is also used to update the behavior of the context policy
once deployed in the wild. When an opportunistic connection is established between the mobile device and
the APISENSE® server, for example when collected datasets are uploaded, the version of the context policy
deployed in the mobile device is compared to the latest version published in the server. The context policy
is automatically updated with the latest version without imposing participants to re-download manually the
whole experiment. In order to avoid any versioning problem, each uploaded dataset includes a key encoding
the version of the context policy used to collect data. Thus, scientists can configure the Fxperiment Store
component in order to keep or discard datasets collected by older versions of the context policy.

Energy consumption. Our first evaluation aims at assessing the battery lifespan impact of the APISENSE®
mobile application. The curve labelled as APISENSE in Figure 2.8a reports on the result of this experiment,

2.2. CONTRIBUTIONS 31

which has been executed on a Samsung Galaxy S based on Android 2.2. As we can observe, the baseline
experiment tends to have a very small impact on the battery lifespan, thus highlighting the low overhead
induced by the APISENSE® mobile application. Then, a second experiment evaluates the impact of energy-
consuming sensors that can be used to collect data (cf. Figure 2.8a). For this experiment, we developed three
additional scripts, which we deployed separately. The first script, labelled APISENSE® + Bluetooth, triggers
a Bluetooth scan every minute and collect both the battery level as well as the resulting Bluetooth scan. The
second script, APISENSE® + GPS, records every minute the current location collected from the GPS sensor,
while the third script, APISENSE® + WiFi, collects a WiFi scan every minute. These experiments demonstrates
that, even when stressing energy-consuming sensors, it is still possible to collect data during a normal day of work
without plugging the mobile phone (40% of battery left after 10 hours of pulling the GPS sensor). Furthermore,
as reported by Figure 2.8b, APISENSE® provides a better footprint than FUNF [Aha+11] in term of power
consumption.

4200

100 == \ T
B ST Voo
. e 4180 |- 1
80 | R —— A Saa T
g e 2 4160 | 1
= 60F 1 = EREE el
g g -
z S 4140 | a0
& a0 e -
©
[+e]
4120 |- 4
20 APISENSE ——— o Android Native Application
APISENSE + GPS - - - - Funf - - - -
APISENSE + Bluetooth ---------- Bee.sense ---------
APISENSE + WiFi —-—-— 4100 ! ! ! | | ;
0 L . . ! ! 0 200 400 600 800 1000 1200 1400
0 100 200 300 400 500)
Time (s)
Time (min)

(b) Power consumption of APISENSE® and existing solu-

(a) Energy consumption per type of context information. tions

Figure 2.8: APISENSE® Performances.

2.2.2.2 A Focus on Task Orchestration Algorithms

The distribution of collaborative tasks over a group of nodes has been studied by the community to address the
issue of geographical coverage [ZWS04]. However, most of these works build on predictable mobility models
to address this issue, while it is hardly possible to influence or predict the mobility of humans when using
their mobile phone to collect data in the wild. We therefore leverage the concept of wvirtual sensor [CB10] as a
solution to deal with the dynamic orchestration of context policies according to some coverage objectives (e.g.,
geographic area, time period).

Listing 2.1 illustrates a context policy used to monitor the mobile Internet access quality at large in the
area of Paris. The context policy is first described (lines 1-7), as in the previous example (cf. Listing 2.4a),
and consists in collecting the mean latency of 10 ping requests to an Internet probe (line 6). Then, the script
specifies that we are interested in receiving contributions from participants using a mobile connection (lines
9-11), which we rank according to their battery level (highest battery comes first, lines 12-13). Finally, we
specify the geographic area coverage (Paris with an accuracy of 500 meters, line 14), the time period coverage
(at least 30 minutes every hour, line 15), and the redundancy of sensing measures (2 measures are required by
be meaningful, line 16).

1 $experiment.create().sense(function() {

2 $location.onLocationChanged (function(loc) {

3 return $trace.add ({

4 operator : $gsm.operator (),

5 loc: [loc.latitude(), loc.longitude()],

6 latency : $network.ping(10,"http://...").mean});
7 b

8 }).accept (function() {

9 if (network.connectionType() != "WiFi"){

10 return {battery : $battery.level ()}

11 } else return UNDEFINED;
12 }) . rank (function (users) {

13 return users.sort("battery", function(x,y) { return y-x; });
14 }) . geoCoverage ([[50.614291,3.13282] ,[50.604159,3.15239]1],"500 m")
15 .timeCoverage("30 min","1 hour")

16 .duplicate (2)

Listing 2.1: Monitoring of the Network Quality in Paris

32 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

Algorithm 1 is triggered depending on the targeted coverage (methods geoCoverage and timeCoverage)
specified by the script. It first checks that the redundancy property can be ensured (|active Devices| < duplicate)
before identifying all the active devices that are not already executing a context policy. These candidate devices
are then notified to check their eligibility by executing the handler accept defined in Listing 2.1 and report the
computed score (here the battery level). This score is used to rank all the device responses (using the handler
rank), which are incrementally requested to execute the context policy for a given period until the expected
number of redundant measures is reached.

Algorithm 1 APISENSE® Algorithm for Orchestrating Context Policies
Require:

connectedDevices : List of connected devices

activeDevices : List of active devices

t : Time threshold

(tstartstena) : Temporal properties of the sensing task

duplicate : Maximum number of devices to assign the sensing task

if |activeDevices| < duplicate then
candidate Devices < connectedDevices \ active Devices
if |candidateDevices| # 0 then
available Devices < ()
broadcast TaskRequestEvent(candidate Devices)
repeat
device(id, properties) < receive()
available Devices < availableDevices U device(id, properties)
until timeout ¢ is reached
for i = 0 — (|activeDevices| — duplicate) do
device + ranking(available Devices)
activeDevices < activeDevices U device
available Devices <+ available Devices \ device
notify TaskExecutionRequest(device, tstart, tstop)
end for
end if
end if

In terms of performances, Figures 2.9a and 2.9b demonstrates that the use of context policy orchestration
provides a geographic coverage that is equivalent to individual sensing, while it drastically improves the battery
lifespan of involved mobile devices.

100 M Individual e

1 coll(1000 m) 0

96 o5

Batterylevel (%)

Spacial Coverage (%)

88

B4

v
|
I
1
'
T
1
1
T
'
'
'
'
T
1
'
o

1000 3000 5000 7000 9000

o s

Time (minutes)

Number of devices
(b) Energy consumption per device depending on strate-

(a) Geographic coverage when using policy orchestration.)
gies.

Figure 2.9: APISENSE® Context Policy Orchestration Performances.

2.2.3 In-depth Context Monitoring and Processing in Real-time

Beyond the contributions we proposed for in-breadth context monitoring, we have also been considering in-
depth context monitoring and processing in the area of green computing. Energy consumption of computers
and software is becoming a major factor in designing, building and using sustainable technologies. The topic of
energy is becoming mainstream, as more approaches, software, hardware and technologies are being proposed
for energy management, optimization or measurement. Information and Communication Technology (or ICT)
accounted for 2% of global carbon emissions in 2007 [Gar07] or 830 MT'COze (Metric Tonne Carbon Dioxide

2.2. CONTRIBUTIONS 33

equivalent), and is expected to grow to 1,430 MTCOge in 2020 [Web08]. On the other hand, in term of
energy consumption, ICT consumed up to 7% of global power consumption (or 168 Gigawatt, or GW) in
2008 [Ver+10]. This number is expected to double by 2020 to 433 GW, or more than 14.5% of global power
consumption [Ver+10]. These numbers show that although ICT could help to reduce energy consumption
and carbon emissions of other domains, its own carbon footprint and energy consumption is predicted to
rapidly grow. The need to optimize energy efficiency of ICTs is therefore a necessity for the next years and
decades [NRS11].

Modern software and computer infrastructures are increasingly distributed, based on a wide diversity of
devices, and require the usage of software services, either cloud-based or local. These software and devices are
constantly powered up and connected, from mobiles devices, to servers in data centers, and desktop computers
(e.g., continuously powered during working hours or leisure time). While middleware solutions can be considered
as a candidate to automatically optimize the energy consumption of such systems, software ecodesign remains a
critical issue that has been weakly addressed over the last years, apart from mobile computing and wireless sensor
networks. Nonetheless, offering such a support requires the development of appropriate tools and methodologies
to understand the power consumption of software systems in depth. In particular, system administrators and
developers require to understand how to split the power consumption of software along different artifact levels
(processes, modules, classes, methods, etc.) in order to identify potential energy leaks and opportunities of
optimizations.

We fully support this vision and we propose to apply our expertise in context-aware middleware solution
to report and analyze the energy consumption of software systems at any scale: from runtime processes to
method calls. We propose to advance the state-of-the-art in the area of green computing [NRS13a; NRS13b]
by delivering a middleware solution that can provide accurate estimation of the power consumption in real-
time without using any third-party power meter. In particular, we apply the principles of COSMOS to infer
the power consumption of a software process from raw system metrics (resource utilization) provided by the
operating system. Then, we show that such a context policy can be further extended to account for the power
consumption of process internals like classes or methods.

2.2.3.1 The PowerAPI Middleware Solution

Methodology. For measuring the energy consumption of applications, we adopt a software-based estimation
methodology, which is composed of four steps that are summarized in Figure 2.10:

1. We collect utilization data of hardware resources. This step is necessary for modeling the total
energy consumption of the monitored hardware resources. For each resource, data is collected directly
from the hardware interface (if available), or through the operating system APIs or tools;

2. We use energy models in order to estimate the total energy consumption of the hardware
resource. These models compute the energy consumed by a hardware component based on its runtime
characteristics (e.g., voltage and frequency for a CPU), and its physical properties (e.g., Thermal Design
Power or TDP for a CPU);

3. We collect resource utilization of the hardware resources by software applications. We consider
that each process (identified by a unique PID) is a separate application. Software running using multiple
processes is managed by calculating the sum of the energy consumption of its processes. Resource utiliza-
tion is monitored at runtime through the operating system. For example, we use the proc file system (or
procfts) in Unix systems in order to collect information about the percentages of utilization of each CPU
frequency by the monitored application;

4. We apply our energy models to estimate the energy consumed by the application on a
specific hardware resource. The total energy consumption of software is therefore the sum of its
energy consumption on each monitored hardware component.

Energy consumption

Resources utilization () of software

by software T

Energy consumption
Applications @ of hardware

A
r Manufacturers
Operating System @Utilization o documentation

hardware resources

Energy Models

Hardware

i

Figure 2.10: Methodology of measurement at application level.

34 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

CPU power model. We propose a power model for the CPU, which is based on the standard equation for
modeling the power consumption of Complementatry Metal Ozxide Semiconductor (CMOS) components:

PLY, =ex fxV? (2.1)

Where f is the frequency, V' the CPU voltage and ¢ a constant value depending on the hardware materials (such
as the capacitance and the activity factor). Thanks to this relation, we note that power consumption does not
always linearly depends on CPU utilization. This is due to Dynamic Voltage and Frequency Scaling (DVFES)
and also to the fact that power depends on the voltage (and subsequently the frequency) of the processor.
Therefore, a simple CPU utilization profiler is not enough in order to estimate the power consumption of the
CPU or software. The dynamic variables in the standard model of Formula 2.1, frequency f and voltage V,
are obtained through the OS at runtime, while the static variable ¢ cannot be obtained directly. The latter
is actually a set of data describing the physical CPU characteristics (e.g., capacitance or activity factor).
Manufacturers may provide this constant although in most cases it is missing. In order to compute this value,
we use the existing relation between the overall power of a processor and its Thermal Design Power (or TDP)
value. TDP represents the power required by the cooling system of a computer to dissipate the heat generated
by the processor along execution. It is generally related to a extreme state, such as the maximum frequency
and voltage. However, TDP is not a perfect estimation of the power consumption of a processor. According
to [Riv+07], a factor of 0.7 is to be applied to the relation between the TDP and the power consumption.
Therefore, the power consumption of the processor can be modeled as follows:

PLERrVTor o007 x TDP (2.2)
Where frpp and Vppp represent the frequency and the voltage of the processor within the TDP state, respec-

tively. The benefit of using the TDP in our model is that TDP is a value provided by most manufacturers.
Based on Formula 2.2, our model in Formula 2.1 can be used to estimate the constant ¢ as follows:

PLrpeVror — o frpp x V2pp =~ 0.7 x TDP (2.3)
thus ¢ is modeled as:
0.7x TDP
oo DTXTDP. 2.4
fTDP X VTDP
Therefore, to compute the power consumption of a CPU, we apply the following model:
0.7xTDP

phy =~ X fxV? (2.5)

2
fTDP X VTDP

The Intel Pentium M processor have a TDP of 24.5 W for the maximum frequency of 1.6 GHz and voltage
1.484 V [Int04]. Thus, its constant c is estimated by Formula 2.4 to 4.86716803 x 107.

CPU activity and power consumption. In order to estimate the power consumption of an application,
we need to monitor its resources usage, in particular its CPU activity. We choose to identify applications by
their processes, and the latter by their Process IDentifiers (PID). We calculate the process CPU activity as a
ratio between CPU time for the PID and the global CPU time—i.e., the time the processor is active for all
processes—during a duration d, as follows:

PID gy _ LCPU
Ucpo(d) = %(d) (2.6)

Finally, the power consumption of a process is the product of the power consumption of the CPU for all
applications, with the CPU usage of the monitored PID. This product is modeled for a certain frequency as
follows:

0.7 x TDP tEID
Pl = Ty fxV2x-CPU(4 2.7
CPU frpp x Vipp ! tCPU() 27)

When the processor supports DVFS, the CPU power consumption for a process Popy is equal to the average
of the CPU power of each frequency balanced by the CPU time of all frequencies:

f)
Zfefrequencies PCPU X tC’PU

Popy = (28)

!
Zfefrequencies tCPU

2.2. CONTRIBUTIONS 35

Implementation issues. We provide a system level library, called POWERAPI [Bou+13; BRS13; SR13],
which implements our power models in order to measure the energy consumption of software at runtime. Each
process can therefore be monitored for its power consumption with an accuracy equivalent to hardware power
meters (cf. Figure 2.11a. The library also offers energy differentiation values based on hardware resources, such
as giving the energy consumed by the process on the CPU, or on the network or on other supported hardware
resources. POWERAPI’s architecture is modular as each of its components is represented as a power module
(see Figure 2.11b). A sensor module is responsible for gathering operating system related information for the
module. For example, it gathers the number of bytes transmitted by the network card, and the time spent by
the CPU at each of the processor frequencies (when DVFS is supported). A formula module uses the above
power model to estimate the power consumption per process by using both information gathered by the sensor
module and information based on hardware characteristics. POWERAPI is implemented in Scala’ and is based

on an event-driven architecture based on the Akka asynchrnous middleware®.

*l
70} e
e CPU Memory All
s Disk Fil
60 ﬁf/ ’ Graphic ’ Console 1S e ’ Graphic
e Listeners
’ﬁ?SO r L7
= ‘4{ g { Event Bus]
g 40 - e API
s

f 30t et Publish

CPU

Disk

Subscribe

\,
N
\

Memory

Disk

10+ ’// + CPU core Stress
s’ — — FitSum
4

i L L L L

0 10 20 30 40 50 60 70 80
Power meter (watt)

Sensors Formulae

(b) PowerAPI architecture.

(a) PowerAPI accuracy.

Figure 2.11: PowerAPI.

Technology impact. Thanks to PowerAPI, we can raise the awareness of software developers on the power
consumption of the solution they developed. For example, we run an experiment to compare the energy
consumption of several implementations of a same application, the Hanoi tower?, which is available in 111
different versions. We measured several executions of a subset of these implementations to illustrate the impact
of programming languages on the energy efficiency. Although they cannot be generalized without further
investigations, these measures provide interesting insights to developers and even chief information officers on
strategic decisions to be made with regard to software sustainability. In particular, while the current trend tends
to encourage the adoption of scripting languages on the server side (e.g., Node.js, Django), one can observe
that the script interpreters may introduce a huge power overhead to the developed system. Even if this has to
be balanced with other metrics like the learning curve or the maturity of the language, an orientation towards
Java-based technologies would tend to minimize the energy footprint of the system. The efficiency of Java over
native language like C or C++ can be explained by VM-level optimizations (in particular, JIT compilation),
but the use of appropriate compiler options (e.g., =02 or -03 for gcc) can benefit to native languages. We also
investigate the impact of algorithms by comparing iterative and recursive strategies. In the specific case of the
Tower of Hanoi, the recursive strategies exhibit a smaller energy footprint, independently of the options selected
during the compilation. While this observations should carefully be considered and cannot be generalized as
such, we rather advocate the benefit of supporting process-level power monitoring as a tool to advise developers
on alternative implementations of their system.

2.2.3.2 A Focus on Application Component Energy Consumption

Methodology. Beyond the evaluation of technologies and algorithmic strategies, our solution can also dive
into the code of applications to spot potential energy hotspots or leaks. We provide this deeper level of power
monitoring by extending the POWERAPI methodology with the following steps:

"http://www.scala-lang.org
8http://akka.io
9http://www.kernelthread.com/projects/hanoi

36 CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

Tower of Hanoi, recursive algorithm Tower of Hanoi algorithms, Energy in joule
100000 1800

= Energy (joule)

10000

1000

100

Recursive Tterative

Java Ct++ c Pascal Ocaml Prolog Python Perl

C++ 02 03 C++ 02 03

(a) Programming language impact. (b) Algorithm strategies and compilation options impact.

Figure 2.12: Measuring the energy consumption of software.

1. We first collect statistics about the application’s software and hardware resources utilization. Information,
such as methods durations, CPU time, or the number of bytes transferred through the network card, are
collected and classified at a finer grain, e.g., for each method of the application.

2. Next, a correlation phase takes place to correlate the application-specific statistics with the application
level energy information. Per-method energy consumption information is estimated using our power
model.

3. Finally, the energy consumption per method is displayed to the user and can be exposed as a service.

Implementation. JALEN is an extension of POWERAPI implemented as a Java agent that hooks to the
Java Virtual Machine during its start, and monitors and collects energy related information of the executed

application. JALEN uses statistical sampling to collect metrics from the JVM on running methods, and to
correlate them with our power models:

1. We first follow a two cycle approach: a big monitoring cycle where power consumption of software is gath-
ered from application level monitoring using POWERAPI and a small monitoring cycle where statistical
information is collected on each running method.

2. During the small monitoring cycle, we collect the number of times a method appears in our statistical
sampling (measured at a higher frequency). For example, two method AT and BT are executing for 10
seconds, and the big cycle is 1 second and the small cycle is 10 milliseconds. The method AT is captured 7
times during the small cycle while BT is captured 3 times. Each of these methods have different execution
times and CPU utilization, therefore both methods are scheduled and executed accordingly (for example,
method BT waits for a network answer, thus the JVM executes AT during the wait).

3. We then correlate theses statistics with the CPU time of threads (gathered from the JVM), in order to
estimate the energy consumption of methods.

JALEN can report three types of energy consumption on methods:

Gross energy refers to aggregated energy consumption, which means the energy consumption per method
and including all the methods it invokes, including Java’s JDK methods (such as java.* methods);

Net energy identifies the energy consumption of methods’ statements as it excludes any other methods invo-
cations from the estimation;

Library energy groups the net consumption of methods (filtered by canonical name) and can be used, for
example, to monitor the energy consumption of a specific library used by the application.

Energy hotspots. We stress Jetty’s asynchronous REST web application example (async-rest) using ApacheBench.

The latter uses 25 concurrent users with 100,000 requests. The first observation from Figure 2.13a is that

the 10 most energy consuming methods of Jetty consume the vast majority of the energy: 92.18%. Specifi-

cally, two methods consume nearly 60% of the energy: org.eclipse.jetty.util.BlockingArrayQueue.poll

(29.92%) and org.eclipse.jetty.util.resource.JarFileResource.exists (29.88%). Five other methods
(util.resource.JarFileResource.newConnection, io.SelectorManager$ManagedSelector.select,
io.ChannelEndPoint.flush, server.ServerConnector.accept, and io.SelectorManager$ManagedSelector.wakeup)
consume between 3% and 11%, while the energy consumption of the remaining methods is negligible (less then

1%).

In addition to detecting hotspots at the methods level, our approach can detect most energy consuming
classes. Figure 2.13b outlines the 6 most consuming classes of Jetty during our experimentation. These

2.3. SYNTHESIS 37

““Energy percentage of total ~ =*Number of incovations

35 50000 Energy percentage of Jetty classes
45000 server.ServerConnector
40000 . . 4%
util.resource FileResource Others
35000 4% 4%
30000 io.ChannelEndPoint
25000 7%
20000
15000
10000
5000 i0.SelectorManager util.resource.JarFileResou
0 $ManagedSelector

10%

(b) Class-level energy consumption.

(a) Method-level energy consumption.

Figure 2.13: Measuring the energy consumption of software.

6 methods consume together 96.02% of the total energy consumed by Jetty classes. The remaining 129
classes consume the rest: 3.97%. We observe that two classes consumes more than 70% of the energy:
util.resource.JarFileResource (40.93%) and util.BlockingArrayQueue (30.07%).

The detailed results of the experiments we performed with POWERAPT are available in [Nou+12a; NRS14b)

2.3 Synthesis

This chapter reports on our main contributions in the area of scalable context monitoring and processing. The
roots of this work, namely COSMOS, build on a collaboration established with Denis Conan from Institut Mines-
Télécom, Télécom SudParis and have been further developed as part of the CAPPUCINO collaborative project!'?
with Auchan, Norsys, and SI3SI. The results of this work have been published at DAIS’07 conference [CRS07]
and IEEE Distributed Systems Online [RCS08]. Based on these foundations, we have been investigating both
in-breadth and in-depth context monitoring.

As part of the PhD thesis of Nicolas Haderer [Had14], we contributed to the delivery of an open crowd-
sensing platform to support the monitoring of context in breadth by leveraging the wisdom of the crowd and
using the smartphones of volunteer participants. While this work has been published at Cloud’12 [Par+12a]
and DAIS’13 [HRS13b] conferences, it is worth to notice that the developed solution resonates in other scientific
communities. For example, we keep collaborating with Simon Charneau, Alan Ouakrat, and Vassily Rivron on
the PRACTIC experiment'!, which proposed through the APISENSE® platform [Had+13a; Had+13b]. The
APISENSE® platform is also already used by the telecom industry and the ip-label'? company to monitor
the quality of Internet access from mobile devices. The APISENSE® platform is currently supported by Inria
through the ADT (Action de Développement Technologique) ANTDROID (2012-2014) and CROWDLAB (2014-
2016).

As part of the PhD thesis of Adel Noureddine [Nould|, we considered the issue of inferring the power
consumption of software components in depth. Initiated during the ECONHOME collaborative project'? with
OrangeLabs, STMicroelectronics, Comsis, our work on providing power consumption estimation has been re-
leased as an Open-Source Software on GitHub (http://www.powerapi.org). Published at the ASE’12 confer-
ence [Nou+12b] and in the Journal of Automated Software Engineering [NRS14a], this solution has also been
selected by the Web Energy Archive (WEA) project!4, funded by ADEME, to report on the power consumed by
end-user when browsing 100 selected websites. The POWERAPI library is currently supported by Inria through
the ADT ESURGEON (2013-2015).

0funded by Fonds Unique Interministériel (FUT)
Mhttp://beta.apisense.fr/practic
2http://www.ip-label.com

Bfunded by Fonds Unique Interministériel (FUT)
Mhttp://webenergyarchive.com

38

CHAPTER 2. CONTEXTUALIZATION OF UBIQUITOUS SYSTEMS

PhD thesis supervisions associated to this chapter

[Had14]

[Noul4]

Nicolas Haderer. “APISENSE : une plate-forme répartie pour la conception, le déploiement et
lexécution de campagnes de collectes de données sur des terminaux intelligents”. PhD thesis.
Université Lille 1, Sciences et Technologies, Nov. 2014.

Adel Noureddine. “Towards a Better Understanding of the Energy Consumption of Software Sys-
tems”. PhD thesis. Université Lille 1, Sciences et Technologies, Mar. 2014.

Publications associated to this chapter

[Bou+13]

[Bra+07b]

[BRS13]

[CRS07]

[CRS08]

[Had+13a]

[Had+13b]

[Had+14]

[HRS13a]

[HRS13D)

[Nou+12a]

[Nou+12b]

[NRS09]

[NRS10a]

[NRS11]

Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “PowerAPI: A Soft-
ware Library to Monitor the Energy Consumed at the Process-Level”. In: ERCIM News 92 (Jan.
2013), pp. 43-44.

Gunnar Brataas, Svein Hallsteinsen, Romain Rouvoy, and Frank Eliassen. “Scalability of Decision
Models for Dynamic Product Lines”. In: Proceedings of the International Workshop on Dynamic
Software Product Line (DSPL). Sept. 2007, pp. 23-32.

Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. “Mesurer la consommation en énergie
des logiciels avec précision”. In: 01 Business & Technologies (Jan. 2013).

Denis Conan, Romain Rouvoy, and Lionel Seinturier. “Scalable Processing of Context Information
with COSMOS?”. In: 7th IFIP International Conference on Distributed Applications and Interop-
erable Systems. Paphos, Cyprus, 2007, pp. 210-224.

Denis Conan, Romain Rouvoy, and Lionel Seinturier. “COSMOS : composition de noeuds de
contexte”. In: Technique et Science Informatiques (TSI) 27.9-10 (2008), pp. 1189-1224.

Nicolas Haderer, Christophe Ribeiro, Romain Rouvoy, Simon Charneau, Vassili Rivron, Alan
Ouakrat, Sonia Ben Mokhtar, and Lionel Seinturier. “Le capteur, ¢’est vous !” In: L’Usine Nouvelle
3353 (Nov. 2013), pp. 74-75.

Nicolas Haderer, Romain Rouvoy, Christophe Ribeiro, and Lionel Seinturier. “APISENSE: Crowd-
Sensing Made Easy”. In: ERCIM News 93 (Apr. 2013), pp. 28-29.

Nicolas Haderer, Fawaz Paraiso, Christophe Ribeiro, Philippe Merle, Romain Rouvoy, and Li-
onel Seinturier. “A Cloud-based Infrastructure for Crowdsourcing Data from Mobile Devices”. In:
Cloud-based Software Crowdsourcing. Ed. by Wenjun Wu. Springer, 2014.

Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier. “A preliminary investigation of user
incentives to leverage crowdsensing activities”. In: 2nd International IEEE PerCom Workshop on
Hot Topics in Pervasive Computing (PerHot). San Diego, United States: IEEE Computer Society,
Mar. 2013, pp. 199-204.

Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier. “Dynamic Deployment of Sensing Experi-
ments in the Wild Using Smartphones”. In: 13th International IFIP Conference on Distributed Ap-
plications and Interoperable Systems (DAIS). Ed. by Frangois Taiani and Jim Dowling. Vol. 7891.
LNCS. Firenze, Italy: Springer, June 2013, pp. 43-56.

Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. “A Preliminary Study
of the Impact of Software Engineering on GreenlT”. In: First International Workshop on Green
and Sustainable Software. Zurich, Switzerland, June 2012, pp. 21-27.

Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. “Runtime Monitor-
ing of Software Energy Hotspots”. In: ASE - The 27th IEEE/ACM International Conference on
Automated Software Engineering - 2012. Essen, Germany, Sept. 2012, pp. 160-169.

Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. “Towards a Stable Decision-Making Mid-
dleware for Very-Large-Scale Self-Adaptive Systems.” In: BElgian-NEtherlands software eVOLu-
tion seminar (BENEVOL). Louvain-la-Neuve, Belgium, 2009.

Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. “A Flexible Context Stabilization Ap-
proach for Self-Adaptive Application”. In: COMORFEA - (PERCOM). Mannheim, Germany, Mar.
2010, pp. 7-12.

Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “Supporting Energy-driven Adaptations
in Distributed Environments”. In: 1st Workshop on Middleware and Architectures for Autonomic
and Sustainable Computing. Paris, France, May 2011, pp. 13-18.

2.3. SYNTHESIS 39

[NRS13a] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “A review of energy measurement ap-
proaches”. In: ACM SIGOPS Operating Systems Review 47.3 (Dec. 2013), pp. 42—49.

[NRS13b] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “A Review of Middleware Approaches
for Energy Management in Distributed Environments”. In: Software: Practice and Ezperience 43.9
(Sept. 2013), pp. 1071-1100.

[NRS14a] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “Monitoring Energy Hotspots in Soft-
ware”. In: Journal of Automated Software Engineering (2014).

[NRS14b] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “Unit Testing of Energy Consumption
of Software Libraries”. In: Symposium On Applied Computing. Gyeongju, Korea, Republic Of,
Mar. 2014, pp. 1200-1205.

[Par4+12a] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel Seinturier. “A Fed-
erated Multi-Cloud PaaS Infrastructure”. In: 5th IEEE International Conference on Cloud Com-
puting. hawaii, United States, June 2012, pp. 392-399.

[Par+12b] Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, and Lionel Seinturier. “A
Middleware Platform to Federate Complex Event Processing”. In: Sizteenth IEEE International
EDOC Conference. Beijing, China: Springer, Sept. 2012, pp. 113-122.

[Qui+13] Clément Quinton, Nicolas Haderer, Romain Rouvoy, and Laurence Duchien. “Towards Multi-
Cloud Configurations Using Feature Models and Ontologies”. In: 1st International Workshop on
Multi-Cloud Applications and Federated Clouds. Prague, Czech Republic, Apr. 2013, pp. 21-26.

[RCS08] Romain Rouvoy, Denis Conan, and Lionel Seinturier. “Software Architecture Patterns for a Context-
Processing Middleware Framework”. In: IEEE Distributed Systems Online 9.6 (2008), pp. 1-13.

[RMO09] Romain Rouvoy and Philippe Merle. “Leveraging Component-Based Software Engineering with
Fraclet”. In: Annals of Telecommunications 64.1-2 (Jan. 2009).

[SR13] Lionel Seinturier and Romain Rouvoy. “Informatique : Des logiciels mis au vert”. In: J’%innove en
Nord Pas de Calais (Nov. 2013).

[Tah+08b] Amirhosein Taherkordi, Romain Rouvoy, Quan Le-Trung, and Frank Eliassen. “A self-adaptive
context processing framework for wireless sensor networks”. In: Proceedings of the 3rd international
workshop on Middleware for sensor networks. ACM. 2008, pp. 7-12.

CHAPTER 3

Self-Adaptation of Ubiquitous Systems

3.1 Motivations

Ubiquitous software systems have the capacity to exploit the resources discovered in their vicinity to enhance
the experience of end-users. While the discovery of nearby resources builds on a rich family of established service
discovery protocols like Universal Plug-and-Play (UPnP) [Don+08|, Service Location Protocol (SLP) [Gut99],
or Bluetooth SDP [Cha+10], the integration of discovered resources is often left to the responsibility of the de-
veloper. Although some works [Rav+06; FGB11] have been focusing on unifying the discovery of heterogeneous
resources, including semantic [Mok+08] and interoperability [Cap+14] issues, this still implies that a developer
is expected to be aware a priori of potential resources to be met by the end-user and therefore to adjust the
behavior of the software system depending on the availability of these resources.

However, the rise of the Internet of Things (IoT) and the growing connectivity of devices open up the
opportunities for building opportunistic distributed systems that can optimize themselves according to specific
objectives (e.g., quality of service, power consumption). To go beyond the development of predictable configu-
rations working with predefined things, ubiquitous software systems should develop the capability to reason on
their configuration and on their environment in order to take appropriate decisions on behalf of the end-user.
While automatic decision-making requires the delivery of up-to-date contextual information (cf. Chapter 2), it
also requires the availability of fine-grained reconfiguration mechanisms to support the self-optimization of the
system at runtime. In particular, we promote software components in the small and in the large (cf. Chapter 1)
as a suitable substrate to support the self-adaptation of self-adaptive ubiquitous software systems. Based on
these two building blocks that we previously described, we propose to close the loop by investigating different
approaches to address the issue of decision-making in ubiquitous environments.

The objective of this chapter is to report on the contributions we developed in the area of self-adaptive
ubiquitous systems. Starting from white-box approaches which are able to reason on the software architecture
of a ubiquitous system, we shift towards black-box solutions that control the self-adaptation of a system at the
edges, using so called touchpoints. This shift also highlights our perception and the associated implementation
of the principles of autonomic computing community [Kep05]. In particular, we advocate the adoption of ex-
plicit feedback control loops as first class entities of future software systems. By making explicit the dynamics
of software systems, we believe that we do not only consider different implementations of the decision-making
layer—including approaches borrowed from the control theory—but we can also support the continuous evolu-
tion of self-adaptive software systems, from early system identification phases, to adaptive control strategies.
This approach allows system administrators to graft and compose self-adaptive policies onto legacy software
systems.

3.2 Contributions

While keeping in mind the context modeling approaches we introduced with COSMOS (cf. Section 2.2.1), we
illustrate how such a model dedicated to context inference has been evolving towards a model for modeling
reflective feedback control loops. We therefore start by reporting on the premises of self-adaptive ubiquitous
middleware that we developed as part of the QUA and MUSIC middleware solutions (cf. Section 3.2.1). Then,
we introduce the concept of ubiquitous feedback control loop (cf. Section 3.2.2) as a solution to adapt the
decision-making layer to the environment. We conclude by proposing a modeling approach that bends context
policy to implement an explicit control layer for legacy systems (cf. Section 3.2.3).

41

42 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

3.2.1 White-Box Self-Optimisation of Software Architectures

In this work, we consider ubiquitous systems designed and developed using software components (cf. Chapter 1),
while raw context data is collected in real-time by a middleware solution deployed on the device (cf. Chapter 2).

Planning-based adaptation principles. Planning-based adaptation of a component-based application refers
to the capability of a system to adapt to changing user needs and operating conditions by exploiting knowledge
about its composition and Quality of Service (QoS) characteristics of its constituting components [Flo+06;
GERO08; Gei+09]. In this approach, this knowledge is provided in the form of a QoS-aware model, which
describes the abstract composition of software components, the relevant QoS dimensions and how they are af-
fected when varying the actual component configuration. This model is exploited by the adaptation middleware
to select, connect, and deploy a configuration of component realizations providing the best utility [Bra407a;
SROT7; KDO7]. The utility measures the degree of fulfillment of user preferences while optimizing device resource
utilization. The model describes the abstract composition as a set of roles collaborating through ports, which
represent either functionality provided to or required from collaborating components. Properties and property
predictor functions associated with the ports define how the QoS properties and resource needs of components
are influenced by the QoS properties of the components they depend on. A port has a type defining the func-
tionality represented by the port in terms of interfaces and protocol. Component realizations implement ports
and a component realization can be used in a role if the ports match (same type). Component realizations
are atomic or composite. A composite realization is itself an abstract composition and allows for recursive
decomposition. Constraints are predicates over the properties of the constituting components of a composition,
which restrict the possible combinations of component realizations (e.g., configuration consistencies) [Flo+06;
KRGO08; Gei+09]. The model is represented at runtime as plans within the middleware. A plan reflects a com-
ponent realization and describes its ports and associated property predictors as well as implicit dependencies
on the hosting platform (e.g., platform type and version). In the case of an atomic component realization, it
also contains a reference to the class, which realizes the component. In the case of a composite realization, the
plan describes the internal structure in terms of roles and ports and the connections between them. Variation
is obtained by describing a set of possible alternative realizations of the roles.

Then, planning refers to the process of selecting the components that make up an application configuration
providing the best possible utility to the end-user. This process will be triggered at start-up of the application
and at run-time when the execution context suddenly changes. When such an adaptation process is triggered
for a particular type, the planning middleware iterates over the plans associated to the roles. For each plan,
it resolves the plan dependencies and evaluates the configuration suitability to the current execution context
by computing the predicted properties. The predicted properties are input to the normalized utility function
that computes the expected utility of the evaluated application configuration [Flo+06; GERO08; Gei+09]. The
utility function of an application is provided by the developer and is typically expressed as a weighted sum of
dimensional utility functions where the weights express user preferences—i.e., relative importance of a dimension
to the user. A dimensional utility function measures user satisfaction in one property dimension.

Plans offer an interesting abstraction to reason on the quality of a wide variety of software artifacts. While
we have already demonstrated the reflective nature of component-based software architectures to integrate
other software engineering paradigms [Loi+1la; Loi+11b; Sei+12] (cf. Section 1.2.2), we have adopted a
similar approach to reason on heterogeneous software artifacts and thus implement self-adaptive behaviors
that can automatically weave aspects [RBE0S; Ali+10; REB09], plug context sensors [Pas+08], reconfigure the
underlying middleware [Rou-+08a], or integrate dependability mechanisms [RVE08; REB09] based on the work
done as part of the PhD thesis of Eli Gjgrven [GER08; GRE08]. In the remainder of this section, we explore on
the integration of ubiquitous services to opportunistically exploit external services whenever the quality they
provide improve the overall utility of the ubiquitous application. The proposed approach therefore consists in
spontaneously exploiting remote services in order to relieve the mobile device and improve the overall quality
of service. This approach complements connector-based solutions [Gra+11] that enable the interoperability of
services that were not designed to interact.

3.2.1.1 Discovery and Integration of Third-Party Services

Consuming ubiquitous services. In SOA-based computing environments, an application typically uses
one or more services, which possibly depend on further services and so on. Thus, a large number of computers
owned and administrated by different organizations may potentially be involved. This problem is aggravated
when we deal with several applications running concurrently. Thus, optimizing utility over the entire set of
involved computers is likely to be intractable both from a technical and administrative point of view. Therefore,
we have to delineate the scope of an adaptation to be more tractable. To this end, we introduce the notion
of adaptation domain and the distinction between internal and external services. An adaptation domain is

3.2. CONTRIBUTIONS 43

a collection of platform instances controlled by one adaptation manager. It includes one distinguished node
(e.g., a handheld device), which represents a permanent binding to a user. This node acts as the nucleus
around which the adaptation domain forms dynamically as auxiliary nodes come and go. The movement of
nucleus nodes or changes in connectivity due other phenomena causes the dynamic evolution of an adaptation
domain. Adaptation domains may overlap in the sense that auxiliary nodes may be members of multiple
adaptation domains. This adds to the dynamics and increases the complexity because the amount of resources
the auxiliary nodes are willing to provide to a particular domain may vary depending on the needs of other
served domains. The user of a nucleus node may start and stop applications or shared components, and the
set of running components is adapted by the adaptation manager according to these user actions and context
changes, taking into account the resource constraints. Clearly, it makes a difference whether a role is bound by
instantiating a component implementation running in the adaptation domain where a system is built (private
instance), by using a service provided by a component instance already running there (internal service), or
by connecting to a service provided by a third party (external service). In the first two cases, the adaptation
manager building the system must provision the resources and has control of the provided service level. In the
latter case, the service level is outside the control of the adaptation manager, and it is necessary to negotiate
a Service Level Agreement (SLA) with the service providers in order to compare the suitability of services by
different providers and weight against deploying an internal service. External services may be provided by other
adaptation domains or by third party providers (also referred to as external or legacy services) according to the
following process:

Discovery of services and service levels. As already mentioned, providers make their services accessible to
third parties according to specific discovery protocols. The middleware platform supports an extensible set
of discovery protocols allowing the detection of services available in the service landscape. The discovery
of a service triggers the retrieval of its service description, which includes information on the service
capabilities, semantics, and possibly the offered service level(s) or QoS properties in form of an agreement
template. The service description and, if available, the related agreement template are then converted to
service plans, each one reflecting an alternative realization for the service level;

SLA negotiation. The planning phase involves the evaluation of the available plans, for selecting the compo-
sition optimizing the utility of the applications running on the device. The utility depends on the QoS
properties predicted by the services, whose value can be static or dynamic. Static properties consist of
fixed values that do not change over the time. Dynamic property values can change according to the
current status of the service. Evaluating the actual QoS values for such properties requires a process of
negotiation with the service provider. The current negotiation protocol is inspired by the WS-Agreement
specification [HLW09] (for both the definition and the creation/monitoring of SLAs), where the provider
enriches the service description with an agreement template and the consumer fills in the template to cre-
ate and submit an agreement offer. The offer creation is driven by Service Level Objectives (SLO), which
are conditions defined at application or configuration level and act as pre-defined criteria for negotiating
an SLA contract. Once the provider has accepted the offer, the agreed property values are reflected in
the plan;

SLA provisioning. Whenever a service available in the landscape is selected for use as a result of the adap-
tation reasoning, the middleware platform instantiates service proxies. These proxies act as local repre-
sentatives of the remote services and encapsulate the communication protocol necessary to access them
in a location-transparent way. They are created by a binding framework, which provides dedicated proxy
factories. Each factory supports a particular communication protocol to export or import a service. Dur-
ing the binding phase, the SLA contract associated with the selected plan is provisioned and enforced by
the involved parties, which includes the reservation of computing resources and the deployment of SLA
monitoring facilities [KL03; Erl05; MPMO05];

SLA monitoring. For the purpose of SLA monitoring, the service proxy is instrumented with appropriate
monitoring mechanisms according to the content of the SLA contract (e.g., response delay, result quality).
Both parties are responsible for checking the status of the agreement and for taking proper actions in
case of violation of the agreement. Thus, after the creation of an agreement, the middleware platform, at
any given time, must be able to check the current state of the agreement itself. When an agreement is
not fulfilled anymore, the middleware platform must terminate it and trigger a new adaptation process in
order to detect a new set of available services and to select among them the best candidate to replace the
one breaking the contract. SLA-enabled service providers handle the state model of an agreement and
of its constituting terms, and make them accessible to consumers in form of readable properties of the
agreement.

On the consumer side, the middleware architecture is responsible for checking the state of an agreement
according to predefined policies (e.g., at given intervals or when detecting that the expected performance of a
service is degrading). By querying the service provider for the agreement state, it is possible to detect whether
the agreement has been violated or not. In case of violation, the consumer terminates explicitly the agreement

44 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

by invoking a terminate operation on the provider side (since there might be costs associated to the usage of
the service), and discards the related service plan, hence triggering a new adaptation process.

Providing ubiquitous services. Hosting both applications and components providing services to the outside
world in an adaptation domain complicates the adaptation reasoning. In addition to the user owning the device,
there are also external service consumers, which may have conflicting needs (expressed in the SLA). Fortunately,
the utility function approach lends itself quite naturally to cope with such situations. Our solution is to treat
shared components providing services to external clients in the same way as applications and equip them
with their own utility function, computing the degree of fulfillment of active SLAs. Using the weights, the
overall utility function balances the utility to the owner of the device against the utility to service clients.
This information about user preferences is included in user profiles. Another difficulty is related to property
prediction. For shared services, the resources needed by the component to guarantee a certain QoS often
depend on the number of consumers. Hence, property predictor functions for shared services must take this
into account. The key step for providing ubiquitous services includes:

Publishing of services and service levels. By publishing its description using the discovery protocols sup-
ported by the MUSIC platform, a service running on a node can be made available to other nodes within
the adaptation domain. Each service description encloses the service type as well as an agreement tem-
plate describing the static QoS properties that are provided by this service. QoS dimensions referring to
dynamic properties of the application are unbound in order to be fixed at a later time depending on the
capabilities and the processing load of the hosting node;

SLA negotiation. The MUSIC platform supports the negotiation of agreements by playing the role of a
service provider. Whenever a service consumer selects one of the published services, the MUSIC platform
receives an agreement offer for consuming this service. The MUSIC platform applies the negotiation
heuristics to decide whether to accept or reject this offer by taking the current resource availability into
account. This heuristics predicts the impact of accepting the offer with regards to agreements that have
been already accepted. If the resulting impact does not trigger any violation of previous agreements, the
MUSIC platform creates an agreement, which keeps track of the negotiation process;

SLA provisioning. When a service consumer requests an internal service, the MUSIC platform checks that
the requested service refers to an accepted agreement. Then, the binding framework instantiates a service
skeleton—i.e., a local representative of the service consumer—which reflects the ongoing agreement and
implements one of the supported communication protocols (e.g., SOAP or RMI). Invocations received via
the service skeleton are delegated to the service instance locally deployed on the node;

SLA monitoring. Depending on the negotiated properties agreed in the agreement, the service skeleton is
instrumented with context sensors, which are responsible for monitoring the agreement. The MUSIC
platform provides a library of sensors for observable properties (e.g., invocation latency) as part of its
context middleware. If one of the sensors detects a violation in one of the dimensions of the agreement, it
notifies the MUSIC platform about this violation, which results in the notification of the service consumer
and the termination of the agreement.

3.2.1.2 MUSIC: Optimisation Driven by the Quality of Service

To support the above-mentioned SOA principles [Erl05], we have integrated new components into the MUSIC
Platform (cf. Figure 3.1), which has been developed as part of European research project. As MUSIC is
independent of a particular technology, various implementations of these components can be developed (e.g.,
Web Service, CORBA, RMI, or UPnP).

Discovery support. More specifically, the Service Discovery is responsible for publishing and discovering
services using different discovery protocols. The Remoting Service is responsible for the exporting of services at
the service provider side, and for the binding to these services at the service consumer side. Whenever a service
is exported, it is enabled to accept requests from (remote) service consumers. Each service description defining
the provided functionalities and containing the necessary information for the consumer to access the service
can be published by the service discovery. If the service provider offers additional guarantees for the published
services, agreement templates are published in addition to the service description.

The service discovery supports the dynamic registration of discovery listeners. A discovery listener can have
interest for particular services and can enforce customized policies to handle them. For example, the Remote
Platform Discovery Listener is particularly interested in finding remote instances of the MUSIC platform in
order to provide information about the MUSIC platforms connected to the applications. The SLA Discovery
Listener is interested in finding services accompanied with an SLA support. Upon the discovery of services, the
service discovery notifies the registered discovery listeners by passing them the service descriptions. Since plans
are the base for the Adaptation Manager to perform planning-based adaptation, the discovery listeners create

3.2. CONTRIBUTIONS 45

IAdaptailonManaQ lPIanManage;
m) pm)|

|PlanListener

¢—[F =

Service
Discovery

SLA %P JRemotlng
Service

Monnonng

[so|se| SLA
ectivesi Negotiation

SOA Support :

Figure 3.1: SOA configuration of the MUSIC platform.

service plans based on the service descriptions and the agreements negotiated by the SLA Negotiation. Plans for
remote services are generated whenever services are discovered; hence plans are available when the adaptation
manager triggers an adaptation at a later time. Plans are automatically discarded and removed from the Plan
Repository whenever remote services disappear or for some reason become unavailable to the middleware.

The distributed instances of the MUSIC platform form a federation such that the service discovery on
different platforms can interact with each other. Hence, MUSIC platform A can be aware of a service, which is
published using a protocol supported by MUSIC platform B and not supported by A. If the remoting service on
platform A supports the appropriate communication protocol, A is able to bind to that service which it would
not be able to discover alone.

Agreement templates can be either static or allow for dynamic negotiation. Furthermore, a service may be
offered at a predefined set of service levels. When the service discovery detects such a service, it first generates
an abstract service plan enclosing structural and behavioral metadata related to the service. Then, in order to
reflect the alternative service levels, the service discovery publishes an extended version of the service plan for
each service level into the plan repository. Such a service level plan inherits the metadata of the service from
the abstract service plan and extends it with the additional QoS properties described by the particular service
level (e.g., service accuracy and cost).

Adaptation support. The adaptation manager is then able to compare each available service level when
applying the reasoning heuristics. Since service negotiation is a time critical factor for an efficient planning
process, it should be resolved as soon as possible. In MUSIC, the negotiation is generally performed during
service discovery for static QoS properties (e.g., service cost) described by the service levels. The resulting static
QoS property values are included into the service plan such that the predicted properties can automatically
report them at a later time. However, in presence of a flexible service level [KL03; HLW09], the negotiation
becomes dynamic, meaning that the SLA is negotiated during the planning process. Dynamic negotiation is
particularly required when the adaptation manager needs to reason about up-to-date QoS properties (e.g.,
current service accuracy). In this case, the predicted properties, when evaluated by the reasoning heuristics,
delegate the negotiation of the requested property to the SLA negotiation. The negotiation protocol is driven
by SLOs, which are predefined criteria for negotiating SLA [KLO03].

Reconfiguration support. The Configuration Executor generally iterates over the plans composing the new
configuration in order to reconfigure the application. As previously described, the configuration executor distin-
guishes between plans which refer to available services and plans which refer to services that are not available
yet. In order to benefit from remote services, the configuration executor now faces a third case: If the plan
refers to a remote service available in the environment, the configuration executor uses the Remoting Service
to generate a specific component that will act as a service proxy. A service proxy is a local representative of
the remote service. In particular, it implements the service type described by the application components and
encapsulates the communication necessary to access the remote service. By invoking the service proxy, a service
consumer interacts with the remote service in a location-transparent way—i.e., as if the remote service is a
local one.

The remoting service supports the dynamic integration of binding frameworks. During the binding phase,
the SLA associated with the selected plan is provisioned and enforced by the involved parties. For the purpose
of monitoring, the service proxy is instrumented with appropriate monitoring mechanisms by the component

46 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

SLA Monitoring according to the content of the SLA (e.g., response delay, result quality). The SLA monitoring
is responsible for checking the status of the agreement for taking proper actions in case of its violation.

Monitoring support. As an example of performing SLA monitoring in ubiquitous environments, the service
proxy implements a disconnection detection algorithm. This disconnection support is inspired by the principles
of ambient programming [Ded+06]. When loosing the connection to a remote service, the proxy stores the
incoming service requests in a queue and returns a non-blocking future object to the application. The future
object includes actions that are triggered whenever the connection is resolved to process the result of the request.
If the connection is lost for a long period, the service proxy terminates the agreement via the component SLA
negotiation. Subsequently, the SLA monitoring removes the associated service level plan from the plan repository
to trigger an adaptation of the application. During the reconfiguration process, the request queue is transferred
to the new component (or service proxy) that will be selected and deployed by the middleware.

Discussion. While the above approach provides an interesting abstraction level for reasoning on the under-
lying software architecture and the variability dimension that can be considered (components, aspects, remote
services, etc.), it offers a limited visibility on the adaptation policy used to operate the control of the ubiquitous
application. Furthermore, in this approach, the reasoning process is driven by the mobile device based on its
own knowledge of alternative configurations and cannot import the rules, constraints, or knowledge related to
the surrounding environment. In the following section, we therefore go beyond this solution by making the
adaptation process ubiquitous, thus releasing and externalizing the control beyond the boundaries of the mobile
device.

3.2.2 White-Box Self-Adaptation in Ubiquitous Environments

To reify the adaptation process, we employ the MAPE-K model as well as the notion of business process [Coa99;
Coa99]. In particular, regarding the definition of process, we can see that the realization of context-based
adaptation requires the execution of a sequence of tasks, in a specific order to meet the goal of changing the
structure or/and behavior of applications according to the environment state. Furthermore, the distributed
nature of the adaptation and the consequent modularization of the adaptation responsibilities (i.e., monitoring,
analysis and execution) bring into play different participants as well as the roles that they need to hold.
Therefore, to build our solution, we start by modeling this kind of adaptation as a process.

Adaptation as a process. Figure 3.2 depicts this process following the BPMN notation [Whi04]. As it
can be seen, we identify four main roles: Information Source, Context Provider, Adaptation Orchestrator and
Application Client. The Information Source role is held by entities in the environment providing relevant
information for the adaptation process. Mobile devices and sensors are examples of entities having this role.
For its part, the Context Provider role has responsibilities associated with the collection of data from the
different sources, the processing of this data and the production of context information that will enable the
Adaptation Orchestrator for determining the required configurations on the Client Application. Depending on
how the adaptation is tackled, the roles of Context Provider and Adaptation Orchestrator can be held by the
same entity. Consequently, the functionality for executing the adaptation can be distributed between different
entities:

Data gathering belongs to monitoring phase of the MAPE-K model and consists in collecting raw data from
information sources. Once the data is gathered, this block detects if there is a significant change in the
context to trigger the adaptation.

Context processing consumes the data collected in the data or context gathering tasks to produce high level
information that will be used to decide the required reconfigurations.

Context gathering consists in the retrieval of the context information for identifying adaptation situations.
The information can be explicitly requested from the context provider (pull mechanism) or the context
consumer can be notified (push mechanism);

Identification of the new configuration for the adaptive application is computed by using the collected
context information. The context processing, context gathering and identification of the new configuration
tasks compose the analysis phase;

Determination of the configuration script is required, once the required configuration is established, to
identify the atomic actions to execute in order to meet the target configuration (e.g., adding, deleting
and/or replacing a component). This task is part of the planning phase of the MAPE-K model;

Adaptation information gathering allows the collection of reconfiguration scripts. The task makes part of
the execution phase together with the adaptation execution task;

Adaptation Execution is the final task of the adaptation process and consists in the reconfiguration of the
ubiquitous application—i.e., the execution of the reconfiguration script.

3.2. CONTRIBUTIONS 47

- =
£ |8
g |=
=
AN
Get data !
— 1
: -t T
c
|2 . Significant
g 5 Data Gathering Changes?
2=
o
o
=
% R '————"————‘ Continue
8 [| Context Processing?
© I Processing /I
£ TTTY T
1
|
|
1
Retrieve context information: | Send con_lext
,_information
| 1
o | 1
=1 g 1 :
2| (g i .
s ! '
s ! i
T Y y !
[*]
sl v | [N r-————————============== i
B
7}
g of v 1 <) | Tmosooo \ I
3] %‘ Context Identification of the
o E o Ergc_es_s[\g _ ,' New Configuration
c
K]
k5|
Q|
§ o Y
g Determination of the
c Required Actions to
n—“_’ Meet the Configuration
e =
1
— |
———-—--———————————————E-—-' Send adaptation information
T O
[
E 5|s v . 5
& S |5 IA cf:laptattl_o n Adaptation
s |= 2|5 niormation Execution
s |0g2 Gathering
g " gld

Figure 3.2: Context-Aware Adaptation Process Definition

3.2.2.1 Spaces: Enabling Ubiquitous Feedback Control Loops

In order to face the adaptation challenge in ubiquitous environments, we propose the architecture presented
in Figure 3.3 to implement our ubiquitous Feedback Control Loops (FCLs) [Rom+10c]. We choose FCLs to
support dynamic reconfigurations because they provide a clear isolation of the different steps of the adaptation
process. This feature allows us to distribute the concerns in several entities and reduce the coupling between
them. We qualify these FCLs as "ubiquitous" because they have the capacity to assemble themselves at runtime.
This means that some parts of the loop can dynamically join and leave. Furthermore, the low coupling between
the FCL parts promotes their integration at runtime with others ubiquitous FCLs.

The underlying motivation behind the adoption of FCLs consists in considering that the adaptation process
can be considered as a flow of information that starts from raw context information and is incrementally
processed and transformed by the FCL to ultimately produce reconfiguration scripts to be executed by the
application under control. To support, this idea at a platform level, we apply in SPACES a RESTful approach.
This solution considers resources as first class entities, which control interactions between resource producers
and consumers. Therefore, we start the design of our solution by modeling context information as resources.

Context as a Resource. In CBSE, software connectors foster the separation and modularization of concerns.
In particular, they encapsulate the transfer of control and data, and non-functional services (e.g., persistency,
messaging and invocation) [TMDO09; Crn02] helping to keep the application functionality focused on the domain
specific concerns. Therefore, we leverage on this concept to support independence of context information and
communication mechanisms as well as loose-coupling between producers and consumers in our solution. The
SPACES connectors expose information as resources accessible via different protocols and formats, and using

48 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

logic identifiers. This means that the SPACES connectors separate the distribution concerns from the context
management tasks but they still keep a clear division of the different responsibilities associated with such
distribution. In particular, SPACES connectors promote multiple implementations of the interaction mechanisms
to deal with protocol heterogeneity in ubiquitous environments. For example, beyond traditional protocols, the
SPACES connectors can abstract the message-oriented [LQS05] paradigm as well as a peer-to-peer [Hu+07]
middleware approach as a resource-oriented binding.

Therefore, by encapsulating the context mediation in these connectors, we do not impact the process of the
context information and we provide a first step for uncoupling the interacting entities: We hide the remote
interactions from the context processing in order to integrate entities in a transparent way. Then, we need
to identify, find, access and represent these resources. This is achieved by integrating the REST principles of
the triangle of nouns, verbs, and content types within SPACES connectors. Nonetheless, because of the context
providers and consumers mobility, we also need to consider the establishment of interactions at runtime.

Ubiquitous Resources. To address the challenges raised by the ubiquitous environment, we also include
discovery protocols and Quality of Context (QoC) as part of the SPACES connectors. This extension leverages
the discovery and the selection of context providers at runtime when required and opens the possibility of
establishing spontaneous communications [ZMNO5] to deal with mobility of services and clients in ubiquitous
environments.

SPACES connectors promote the usage of existing discovery protocols such as UPnP, SLP and Bluetooth
SDP. By using standard protocols, we make the location of providers easier since it is not necessary to develop
new and complex discovery protocols. Furthermore, we foster interoperability with legacy services, which can
be advertised with standard protocols in the environment. On the other hand, to benefit from the metadata
describing the context information (i.e., QoC attributes) and mantain the SPACES connectors flexibility in terms
of interactions, we consider three design aspects of the service discovery protocols [ZMNO5]:

Provider invocation: In general, the process for using located services at runtime has different steps, which
include discovery, selection and access of remote providers. Regarding the access step, some protocols
define the underlying communication mechanisms. For example, UPnP states SOAP [Box+00] in order to
invoke operations—i.e., actions in the UPnP vocabulary—on the available services. However, the adoption
of a single communication mechanism in ubiquitous environments, where variability in terms of resources
and protocols is the rule rather than the exception, limits the applicability of this kind of protocols.
Hence, to face this lack of flexibility, SPACES connectors extend the discovery protocols by making context
resources accessible via different interaction mechanisms. In this way, we offer the possibility to choose
the most suitable protocols for exchanging in both, the consumer and provider sides. Furthermore, if the
discovery protocol, such as SLP or Bluetooth SDP, does not define the communication mechanism, we
complement it by using the supported protocols by the connectors.

Description and attribute definition: A provider description gives information about the type and oper-
ations supported by the service. Protocols, such as SLP, provide an additional service characterization
by means of attributes. Therefore, in SPACES connectors we benefit from these attributes definition for
expressing interaction protocols that can be used to access the provider as well as QoC information. This
additional information is used in the provider selection phase.

Provider selection: In order to select the required service, SDPs apply a basic filter that considers the service
type and name. Others protocols offer more specialized searches by defining restrictions on the attributes
of the required providers. In ubiquitous connectors, we use these specialized searches to select providers
by considering relevant properties for context information consumers—i.e., QoC attributes. If the SDP
does not offer the specialized search option, SPACES connectors include an additional filter to ensure that
the discovered providers will satisfy the requirements.

The implementation details of SPACES connectors are reported in [Mél+10a; Mél+10b; Mél+11; Rom+10a;
Rom+10b; Rom+10d; Rom+13].

Global Feedback Control Loops. In our design of a ubiquitous FCL (cf. Figure 3.3), the Controller encapsu-
lates the functionalities required for monitoring, analyzing and planning. This means that the Controller detects
the availability of new services, collects the information from the mobile devices (that join and leave the envi-
ronment), processes the retrieved information and decides the required reconfigurations for the context-aware
applications. These applications can be either deployed on the mobile devices or be one of the available services
in the environment (e.g., Multimedia Server). Consequently, the Controller requires to dynamically locate the
service that operates reconfigurations of the context-aware applications. In particular, the mobile device and
Multimedia Server enclose the execution part of our FCL. Moreover, the mobile device also hosts monitoring
responsibilities since it notifies the Controller when changes in the provided context information occur (e.g., the

3.2. CONTRIBUTIONS 49

battery level decreases or increases). Thus, the mobility of the different elements (mobile devices and services)
in the FLC makes necessary the definition of ubiquitous FCL.

Home Control Sy) Controller §
====== RPC (SOAP) Module
,H’ ggggg T2 Store

&KX Adaptatiol (22X ¢

(
:,:. - Reconfiguration

Context
Policy

Reconfiguration SCA Platform
3 Engine (FScript) 2> > D (FraSCAti)

'3

g ¢ Executor ‘ Rule Engine

] T) | EZKAdaptation Tz 7 07 SN N e

g I[]l Triggering Context ’,’ | A 9

g g Processing X S \\ g

Reconfiguration ¢
I 0 Engine Sy sLsCA Piatform 5 !
T .

f r FSecript (FraSCAti) \ uB g

0 g 0000 000000oo— = Adadptation _hunumej § ‘Toocccoccccoccccccccocs

| — = |
N ———— 00

0 i < "

ﬂ e F5. PUPNPTV & 1 Multimedia § |

1 UB M=.==c:=.=.=.= Server;g g

E’ Server Runtime | | g g

0 i 00

0 0

0 $0 0

03 0

i B

0 i

g] 0

o J

i
{ 0| Legend:
! >) SCAsenice » »—> > SCAwire (local)

{ |Third-party provider SCA component SCA composite D SCA referenceDD SCA wire (remote)
UB Ubiquitous Binding

Policy
Mobile F

Reconfiguration SCA Platform
Engine (FScript) (FraSCAme)

Figure 3.3: Design of an Ubiquitous Feedback Control Loop in a Smart Home Scenario.

In order to build the Ubiquitous FCLs, we use the same SCA component model that we use for REMORA (cf.
Section 1.2.1) and FRASCALA (cf. Section 1.2.2). This means that the self-adaptive applications are designed
as SCA applications. As already stated, the SCA selection is motivated because it structures SOA applications
keeping the advantages of this approach in terms of loose-coupling and reuse. Furthermore, by using a unified
model approach, such as SCA, we provide support for adaptation at platform and application layers. The
SCA usage also fosters the incorporation of the SPACES connectors, which bring discovery capabilities and a
data-centric approach into SCA. In particular, these bindings support the notion of Context as a Ubiquitous
Resource.

Local Feedback Control Loops. The idea of having ubiquitous FCLs is to benefit from the most powerful
entities in the environment in order to determine the required reconfigurations considering the context infor-
mation and available services in the environment. However, in these global control loops we need to consider
the possible communication problems between the devices hosting the adaptive application and the entities
deciding the reconfigurations. In particular, the following issues should be considered:

1. What happen if the context information cannot be sent to the Adaptation Server?

2. What happen if the adaptation takes a lot of time?

3. What happen if the reconfiguration service of the adaptive application is no longer available when the
required configuration is decided?

4. If the adaptation of several applications is managed at the same time, how to guarantee the consistency
a distributed reconfiguration?

To deal with the first two issues we define Local Feedback Control Loops. Similar to the MUSIC approach (cf.
Section 3.2.1), these loops introduce a certain autonomy degree in the entities hosting the adaptive applications
because they provide support for making local decisions based on reactive FCA (Event-Condition-Action)
rules [Pro+13a; Pro+13b]. However, the idea is to keep as simple as possible the local decisions because they
are conceived as an auxiliary mechanism for the Global Feedback Control Loops. Furthermore, the entities
hosting the applications have a limited knowledge about the environment. This means that these entities do
not have access to all the available context sources and are not aware of the available services. Therefore, the
decision-based on an incomplete knowledge should not have an important impact on the application structure.
The changes should be limited to component parametrization and the disabling and enabling of functionalities
of the application.

The decisions that can be made by local loops include simple application recovery and application deac-
tivation. The data used in these simple decisions are the resource information (e.g., battery level, available
memory), connection state and user preferences (if they are stored in the device). These informations are
independently processed and there is no consolidation of the adaptation decision as in the ubiquitous FCLs.

50 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

The global loops aggregate the decisions from the different context policies. These policies, running on the
most powerful devices in the environment, collect information from different sensors, devices and consider the
service availability in order to determine the application configuration. Therefore, the global loops have the
capability of determining the addition, elimination or modification of the flexibility points that make part of
the applications.

3.2.2.2 Self-Optimizing the Application Configuration

In the previous section, we gave an overview of our Ubiquitous FCLs and the different elements that compose
them. In this section, we focus on the analysis phase of the FCL, which is associated with the Decision Maker
from Figure 3.2. In particular, we propose an alternative to rules based on Constraint Satisfaction Problems
(CSPs) techniques [Apt03; Gam+12; Par+12c]. This mechanism selects a new valid configuration regarding,
for example, the cost associated with resource consumption (e.g., memory or energy), the adaptation (e.g., in
terms of bindings that we need to add or remove) or QoS [Xia08] (e.g., user satisfaction or response time). In
this way, we provide adaptation considering not only the current context but also dimensions for providing an
optimized application that guarantees a better user experience.

Our mechanism for selecting the most suitable configuration, inspired by [BBB07; NL03], assumes that an
application provides a set of functionalities, each of which is reified by one or several components. Some of
these functionalities are mandatory, i.e., they have to be always present in the application and therefore the
components that implement them represent the application kernel. The optional functionalities are the flexibility
points (or variation points) of the architecture. We exploit these variations points in order to determine the
functionalities that have to be added or modified according to the context changes.

In order to make the decision related with the new configuration, we also require some information provided
by entities holding the Client Application and Decision Maker roles. The former has to keep the list of flexibility
points associated with the current application configuration. This information is deployed with the application
and updated each time that it is reconfigured. The latter has the list of mandatory components that define the
application kernel and the different component configurations associated with each flexibility point. Further-
more, the entity holding the Decision Maker also includes the list of dependencies between the flexibility points.
These dependencies define ezxclude and require relationships.

In our mechanism, we associate with each adaptation situation a context policy that identifies a concrete
need for changing a flexibility point or functionality in the application. The results of different context policies
are aggregated for defining the new required configuration—i.e., the variation points that need to be modified.
In Ubiquitous FCLs, several policies can be associated with the same functionality. Such policies can be
triggered at the same time by context changes and can select different implementations of the point. In these
cases, we need to apply our mechanism in order to decide the final new configuration of the application. Thus,
by modularizing the changes of each flexibility point in context policies we simplify the selection of the new
configuration.

The output of the Decision Maker component is the new configuration as a list of implementations. Each
implementation is associated with a specific flexibility point. In order to determine the required actions for
reaching this configuration, we apply the set differences between the current and the new configurations.

We use the difference Con finitial \ Con frarger to identify the optional flexibility points which implementation
has to be removed. In a similar way, with Confiorget \ Confinitiai we determine the implementation points
to be added. Then, thanks to the isolation of flexibility points fostered by the context policies, we select the
scripts that must be executed. In particular, each flexibility point is associated with a reconfiguration script
that specifies the components to be added (resp. removed) for incorporating (resp. eliminating) a specific
implementation. In the planning we also determine the order to apply the configuration. To do it, we consider
the require relationships between the flexibility points for deciding what script should be applied first. In this
analysis, we assume that there is no loops in the require dependencies between the points. If this case appears,
we consider it that it is a design problem in the application and therefore we can not guarantee the application
consistency. Then, in the presence of loop dependencies, we do not execute any reconfiguration.

Discussion. We consider the approaches developed in MUSIC (cf. Section 3.2.1) and SPACES (cf. Sec-
tion 3.2.2) as white-box middleware solutions that assumes a deep and complete knowledge of the controlled
software architectures to provide a self-adaptive control of ubiquitous systems. With regard to the expertise we
developed along these two projects, we can report the following observations regarding FCLs:

1. FCLs provides a relevant abstraction to model and operate self-adaptive control steps from context
monitoring to software reconfiguration;

3.2. CONTRIBUTIONS 51

2. Each of the building blocks of a FCL can exhibit a strong variability (e.g., decision-making block
based on utility functions, CSP models, rules, etc.);

3. The context processing model promoted by COSMOS (cf. Section 2.2.1) provides a tangible foun-
dation for modeling FCLs;

4. The design of FCLs requires a dedicated tool-chain to focus on control concerns and to ease the
integration of FCLs into software systems.

From these observations, we therefore believe that both MUSIC and SPACES can be leveraged into a solution
that would consider FCLs as first class entities and thus offer a dedicated environment to design and implement
autonomic control on top of legacy systems [Fri4+11]. By aiming at going beyond an adaptation middleware
framework, we intend to raise the level of abstraction of FCLs to isolate the control design from implementation
issues by taking benefit from software engineering best practices. By considering legacy software systems, we
raise the challenge of black-bor adaptation as the capability to bring autonomic control on top of software
systems that are not designed to be adapted and/or provide a limited visibility on their internals.

3.2.3 Black-Box Design of Feedback Control Loops

This section therefore reports on the latest approach we investigated to integrate self-adaptive policies into
legacy software systems. Based on the above observations, we propose to revisit the design of FCLs by taking
inspiration from the control theory community, while bringing the benefits of software engineering.

In particular, in the area of control theory, even though supporting tools, such as MATLAB, SIMULINK, or
SYSWEAVER [NBRO6], provide code generation capabilities, the integration of the generated controller into the
target system still requires an extensive handcrafting of a non-trivial code that results in significant accidental
complexities. Moreover, these tools mostly target embedded real-time systems rather than distributed enterprise
systems.

We therefore propose to provide a comprehensive solution to design FCLs, and thus go beyond the design
of controllers. By doing so, we propose an incremental and modular approach to support the full lifecycle of an
autonomic system, from the system identification phase to the design of controllers and even the introduction
of adaptive control.

3.2.3.1 Design of Feedback Control Loops

This section outlines our approach for integrating adaptation mechanisms into software systems through control
theory centric architecture models. A more detailed description is provided in [Kril3].

Principles and Design Decisions Generality (applicability to a wide range of target platforms and adap-
tation scenarios), wvisibility (explicit FCLs, their processes and interactions), and composability (fine-grained
reusable elements representing the FCL processes) are all well-identified requirements for FCL engineering [MPS08;
ST09; Bru+09; Che+09]. In order to meet these requirements, we structure the approach around a DSML with
an actor-oriented design. The key advantage of a DSML is the possibility to raise the level of abstraction at
which the FCLs are described and directly use the FCL domain concepts. Moreover, DSMLs are particularly
suitable for automated reasoning and implementation code synthesis [KT08]. Since FCLs are inherently con-
current, we choose an actor-oriented design [Hew77] representing the FCL processes as message-passing actors.
The actor model allows to implement FCLs without worrying about thread safety, it is scalable [HO09] and
seamlessly supports remote distribution.

For illustration, we use the Apache overload control FCL (cf. Figure 3.4) from Hellerstain et al. [Hel+04,
§4.6.2]!, which can be considered as a simple adaptation mechanism. It adjusts the maximum number of simul-
taneous connections (MC') based on the difference between reference (M EM™*) and actual (M EM) memory
usage.

MEM* MC Apache MEM
—_— Controller Web >
Server

Figure 3.4: Apache overload control block diagram

1For simplicity, we only use the case with one controller.

52 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

Feedback Control Definition Language Combining the principles of actor-oriented components (cf. Sec-

tion 1.2.3) and the COSMOS context policies (cf. Section 2.2.1), our approach is based on an actor-oriented com-
ponent meta-model for representing FCLs abstractions, called Feedback Control Definition Language (FCDL) [KCF14].
The components are actor-like entities called Adaptive Elements (AE) that are connected into hierarchically
composed networks that form closed FCLs.

FCDL syntax. An AE defines properties and input/output ports through which it communicates with
other AEs using either data-driven (push) and demand-driven (pull) mode. Once an AE receives a message,
it executes its associated behavior whose result may or may not be sent further to the connected downstream
elements which in turn will cause them to react and so on and so forth. An AE can be passive—i.e., triggered by
a message—or active—i.e., triggered by an external event (e.g., a file modification). The ports and properties
data values are statically typed and FCDL further supports parametric polymorphism. We recognize the
following types of AE: a sensor (raw information collection), an effector (changes propagation), a processor
(data processing and analyzing), and a controller (decision making). FCDL also contains a composite type that
can be created from both atomic AEs and other composites. It can define ports, which are used to promote ports
of the contained elements. Furthermore, a composite is also the primary unit of deployment. Figure 3.5 shows
an FCDL model implementing the FCL from Figure 3.4. The figure uses an informal FCDL graphical notation.
The PeriodicTrigger is an active processor. It periodically pulls memory utilization (M EM) from SysMem
sensors and in turn pushes the value to the Controller that computes a new MC' configuration to be applied
by the SetApacheConf effector. The M EM™ value is modeled as a property of the controller. Conceptually,

ApachelLoadControl
sensor controller
MEM in input MEM in input
out output out output
mem scheduler controller mcConf
active || : SysMem : PeriodTrigger : Controller : SetApacheConf || effeotor

processor

Figure 3.5: A FCDL model of Apache overload control

each AE can be seen as a target system itself, and as such it can provide sensors and effectors enabling the AE
reflection. This is a crucial feature permitting to hierarchically organize multiple FCL [KCO03] in an uniform
way and therefore realize complex control schemes from elementary building blocks.

FCDL semantics. The execution semantics is based on the Ptolemy [Eke+03] push-pull model of compu-
tation [Zha03]. We further adapt a notion of Interaction Contracts (IC) to precisely define allowed interactions
of AE [Cas+11]. An IC specifies what ports activate an AE, what inputs might be pulled during AE ex-
ecution, and what outputs might push results. For example, the IC associated with PeriodicTrigger is
(self; | (input); ft (output?)). It denotes an interaction caused by a self activation, pulling data from the
input port and conditionally pushing data to the output port. ICs allow for asserting certain architectural
properties (e.g., consistency, determinacy, completeness) and they denote the type of the associate activa-
tion function making the generated source code both prescriptive (guiding developers) and restrictive (limiting
developers to what the architecture allows).

Local adaptation As an illustrative case study, we use ZNN, a news service [CGS09], which is one of the
exemplar case studies proposed by the Software Engineering for Adaptive and Self-Managing Systems (SEAMS)
research community. ZNN control objective is content adaptation whereby the delivered content quality (e.g.,
degraded image quality) is reduced when the server is under heavy load. This has been well studied by
Abdelzaher et al. [AB99; Abd00; ASBO02], providing a control theoretic approach, which we integrate into ZNN
using FCDL. The aim of the adaptation is to maintain the web server load at a certain pre-set value. The
server content is pre-processed and stored in M trees where each one offers the same content, but of a different
quality and therefore size. At runtime, a given URL request, e.g. photo. jpg, is served from either /full/pho-
to.jpg or /degraded/photo. jpg depending on the current load of the server. Since the resource utilization is
proportional to the size of the content delivered, offering the content from the degraded tree helps to reduce
the server load.

Controller design Abdelzaher et al. [AB99; ASB02] proposes two controllers: a simple integral controller
and a more sophisticated proportional integral controller. Due to the space limitations, in this section we only
consider the former one, however, from the software architecture perspective, the only difference between
them is the type of AE that is instantiated. The focus of FCDL is to facilitate the controller integration
into software system not to develop of the controller itself. The controller input is the web server utilization

3.2. CONTRIBUTIONS 53

U = aR + bW that is periodically computed using request rate R = ; and delivered bandwidth W = Z;w,
where a and b are platform constants? and Y7, > w are the number of requests and the amount of bytes
sent over some period of time ¢, respectively. The controller output is the severity of the adaptation action
G =G+ K/E =G+ K;(U*—U) where K; is the controller integral gain, U* is the target utilization (set
by a system administrator) and U is the observed utilization. It determines which content tree should be used
ranging from G = M, servicing all requests using the highest quality content tree to G = 0 in which case all

requests are rejected.

Architecture Figure 3.6 shows one possible integration of the above controller into the target system
using FCDL. For the decision-making part we create an AE, IController, that implements a general integral
controller. Once a new value (U) is pushed into its input, it computes and pushes the control input (G). Both
the integral gain (K7) and the reference input (U*) are represented as the controller properties. The monitoring
part periodically computes server utilization U. Both the R and W can be obtained from Apache access log
file. We create an active sensor, FileTailer, that activates every time a file content changes pushing out the
modified part. The connected AccessLogParser extracts the number of requests r, the size of the responses w
and pushes the values into the connected counters requestCounter and responseSizeCounter. To compute
utilization U, the sum of requests > r and response size > w has to be converted into request rate R and
bandwidth W—i.e., the number of requests and sent bytes over certain time period t. We reuse the periodic
trigger, which by pulling its input causes LoadMonitor to compute U using the accumulated Y 7, > w sums.
In the reconfiguration part, the FileWriter updates the web server URL rewrite rules reflecting the newly
computed content tree.

- requestCounter
ApacheQOS _ - AT QOSControl
controller active sensol -7 loadMonitor utilizationController
- | in et @ o sum Z " LoadMonitor : IController
in requests r in requests .
out contentTree r out utilization U in input

out outpy |

effector ~ sensor

\
in sum in requests

9911]UBJUCO INO

3 w in size
> S
- control < - in input out size Z w scheduler
composite _actve IS : QOSControl |- < . : PeriodTrigger
processor [[:= ~ o responseSizeCounter
@ 8 G e : Accumulator
processor || & |
5 5 ApacheWebServer
= Hinds _oﬁl Size o
> @ in lines m value 2
po I ; el 0 | @) Q)] g
connection || @ out FoaTaEt) in contentTree 8 gut_ requests out lines <
< 3
- - - server ™ £ accessLogParser accessLog adaptor
port :ApacheWebServer\ ~~_|3 : AccessLogParser : FileTailer : FileWriter

promotion

Figure 3.6: Apache content delivery control

To demonstrate composition, the presented elements are assembled into three composites ApacheQ0S, QOS-
Control and ApacheWebServer, representing the main composite that will be deployed, the control, and the
target system, respectively. This makes a clear separation of concerns and easy to switch from web server
implementation to another.

Implementation FCDL models are implemented in a domain-specific language called Fxtended Feedback
Control Definition Language (XFCDL). It is a textual DSL for authoring FCDL models that further supports
modularization and AE implementation using a Java-like expression language Xbase®. Listing 3.1 shows an
excerpt? of the IController AE. Line 1 defines a new active polymorphic processor type with data type
parameter T, followed by ports declaration (lines 2-4) and property definition (line 6). Line 7 specifies an IC

and line 10 provides its implementation directly in Xbase.

Distributed Adaptation Next, we extend the adaptation to cover distributed ZNN deployment on a pool
of replicated servers with a load balancer.

Controller design The distributed deployment consists of a server pool S with n servers and one load
balancer. Each server S; runs locally the previously developed ApacheQ0S FCL computing its target content
tree G;. In order to maintain the highest QoS, the load balancer dynamically schedules the arriving requests
to a server s € S that provides the least degraded content: content_tree (s) = max (content_tree (59)).

2cf. Abdelzaher et al. [AB99; ASB02]
3 A statically typed Java-like expression language http://bit.1ly/imr36bt
4The complete XFCDL code is available from the companion website http://fikovnik.github.io/Actress/ICAC14.html

1
2
3
4

=N o

54 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

active processor PeriodicTrigger<T> {
push in port output: T
pull in port input: T
self port selfport: long // self port for self-activation
property initialPeriod: Duration = 10.seconds
act activate(selfport; input; output?)
implementation xbase {
act activate { output.put(input.get) }
}
}

Listing 3.1: XFCDL code of PeriodicTrigger AE

Architecture Figure 3.7 depicts the FCL architecture representing the distributed control. The Local-
ApacheQOS runs at each of the server §;, encapsulating the local ApacheQ0S FCL. The LoadBalancerControl
runs on the load balancer controlling the scheduler using the above equation.

ApacheQOS LocalApacheQOS

hostname contentTreeWithHost scheduler
: Hostname :Tuple2 ~~ :PeriodTrigger

in requests

out contemTreg

out contentTree

control
: QOSControl

in contentTree

out requests
server server contentTree contentTreePub
: ApacheWebServer : ApacheQOS :Queue : EventBusPublisher

LoadBalancerControl

contentTree (g, : G, contentTreeMin ctrl
: MapStore { } : MapMaxKey : LoadBalancerController

Sn: Gn

i
in hostname

out output

out output in input

in input

(83, Gi)

out hostname
S

scheduler
out output : PeriodTrigger in value

contentTreeSub IbForwardHost
: EventBusSubscriber : FileWriter

Figure 3.7: Distributed QoS Management Control FCLs

The load balancer FCL first collects the content tree (G) status of all the participating servers using dis-
tributed publish/subscribe event bus. An advantage of using an event bus is that it does not need to be a
priori aware of all the participating servers. In FCDL, an event bus is facilitated by two AEs: the publisher
(EventBusPublisher) and the subscriber (EventBusSubscriber). We use key-value tuples of servers S; (server
hostname) with their corresponding content trees G;. The G; is obtained from a newly promoted ApacheQ0S
port contentTree so that the G is available from the outside. The pushed (S;, G;) entries are received by the
EventBusSubscriber and aggregated using the MapStore AE, which is a map storage. The server with the
highest G is selected by the MapMaxKey AE and consequently used to update the load balancer scheduling rules.

System identification Controllers for software systems are usually driven by “black bozr” models derived
from experimental runs collecting data and statistical model constructions. An experimental run consists of
observing the effect of control inputs on the measured outputs. In FCDL, this can be facilitated by designing
an open loop architecture in which target system touchpoints are used to set control inputs and observe/log
corresponding system outputs. For example, Figure 3.8 shows an architecture model for tuning the previous
controller into an open loop that can exercise the system on a range of inputs and log its outputs. Instead of
connecting a controller output into the ApacheWebServer content tree input, we connect it directly to a value
generator, a discrete sine wave.

Adaptive control An adaptive control improve FCL portability to load conditions and platform resource
capacities that have not been anticipated during the system identification [AS06]. In FCDL, an adaptive control
is facilitated by the model reflection. Figure 3.9 depicts an architecture of adaptive control for local content
delivery adaptation FCL that reuses part of the system identification developed above.

3.2. CONTRIBUTIONS 55

utilization Systemldentification
: UtilizationMonitor sample: Tuple2

U

out utilization

in requests,

in inputt

I input2 scheduler log

% e : PeriodTrigger - FileWriter

T w

contentTree: FileReader
out size

G out output .
out requestsU contentTree

server: ApacheWebServer contentTree: SineWave

Figure 3.8: Apache content delivery control. The UtilizationMonitor contains the requestCounter, response-
SizeCounter and loadMonitor elements from Figure 3.7.

AdaptiveApacheQOS AdaptiveControl
adaptiveControl: AdaptiveControl g U sample adaptiveController
Sfia--------- BERR Tuple2 : AdaptiveController
<

in contentTree .
Ky

out output

out KI

contentTree
: Queue

meta-control
layer

in utilization

U G in input2 scheduler

2
8
=
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr sH--- : PeriodTrigger
N £ in input out output
o o
& £
2 5 z
£] .
3 control]| 9 QOSControl utilizationController Krfl£
P El . S
T |W . qoscontrol |G H U h : IController --1|2
T A R 3 |) 4
|3
$ L 5 w
: .
@ out requests D CEAHIED Z . Sw scheduler out output 5
) P loadMonitor : PeriodTrigger G @ §
: LoadMonitor 3

: ApacheWebServer

Figure 3.9: Adaptive control for Apache content delivery controller

The aim is to perform an online profiling of the target system (relation between U and G), based on
which we estimate the controller parameters (K). First the IController is extended with a provided effector
to allow to change K; at runtime. Next, we reuse the part of the architecture developed for the system
identification and we create an AdaptiveController for the parameter estimation. It can be implemented
using an adaptive controller as shown by Lu et al. [Lu402] or by constructing a dynamic system model as
proposed by Filieri et al. [FHM14]. Finally, we encapsulate the corresponding elements into a new composite
AdaptiveControl that can be placed on the top of the previous FCL developed.

Adaptive control is one example of the FCDL reflection capabilities, which can also be used to design
adaptive monitoring, or to organize multiple FCLs using various control schemes, such as hierarchical control.

3.2.3.2 Corona: A Reflective Implementation of Feedback Control Loops

While FCDL provides a domain-specific modeling language to better support and formalize the description of
the dynamics of software systems, the latter have to be instrumented at runtime in order to implement the
self-adaptive policies described using FCDL. CORONA therefore proposes a modular infrastructure to generate
the middleware glue that implements the FCLs to be deployed atop of the software system to be controlled.
The first contribution of CORONA lies in the delivery of a component-based implementation of the FCLs, based
on the SCA standard and the FRASCATI middleware platform [NRS10b]. The second contribution consists
in providing a modular generation tool-chain that can accommodate different code generators and verification
tools. Both of these contributions are shortly described below.

Component-based FCLs To improve the traceability of FCL entities, CORONA promotes the adoption of
software components as first-class entities that are used at runtime. Therefore, in CORONA, FCLs consist of
a set of potentially distributed components that collaborate together to maintain desired attributes for the
controlled system. In particular, CORONA uses the SCA standard as a supporting technology for designing and
deploying the FCLs described with FCDL. Both the composition of AEs and their logic (cf. Listing 3.1) are
therefore transferred to SCA components and the SCA glue is automatically generated to deliver a deployable

56 CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

artifact. The composition patterns of AEs are converted to FRASCALA architectural patterns as reported in
the case of COSMOS (cf. Figure 2.2).

Beyond the conformance to an industry standard, which support several programming languages and commu-
nication protocols, the choice for SCA is also motivated by the benefits to be gained from middleware platforms
like FRASCATI. Indeed, in the case of CORONA, FRASCATI provides a reflective support for introspecting
and reconfiguring FCLs at runtime. This approach is the extension of the work reported in Section 3.2.2 and
therefore proposes a systematic way to build FCLs from domain-specific models. Additionally, this approach
covers the stabilization policies reported in Section 2.2.1 as a solution to stabilize both context information and
control decisions. Finally, although it has not been thoroughly demonstrated yet, the proposed approach can
be ported to the adaptation of WSN applications, as described in [Tah+09b], based on the lightweight REMORA
component model we introduced in Section 1.2.1. In particular, the support for alternative component run-
time is made possible by the development of a modular tool-chain that can integrate several back-ends for the
implementations of FCLs entities.

FCL generation tool-chain CORONA does not only provide a mapping of FCDL descriptions to SCA
components, but it also provides a supporting infrastructure to automatically generate the software artifacts
that are required to deploy the FCL atop of the controlled system. Therefore, CORONA provides a modular tool-
chain that load the FCDL description into memory, as an EMF model, perform verifications and transformations
on this internal representation before triggering source code and artifact generators to produce the above
discussed component-based implementation. Nonetheless, [Kril3] proposes an alternative implementation target
for FCDL descriptions based on actors and using the Akka library. Figure 3.10 reports on the tool-chain and
its components, which are implemented according to the SCA standard.

F———————— Design Support——— —— Runtime Support——

— >
Architecture SCA Simulation
Model Model Support

g
IR Artefacts
Model i i i

DSL Model ([5| L ~|Generation A Reconfiguration| |,
™ Loader (FCY) ™ Support (SCA) Support i
< ; i
Y — ~ AV
\ \ FDe(ng”k_ _|Verification| | 4 _ | Model Deployment |
\ eeabaci Support (Promela) Support |
\ |

——— - — - Runtime Feedback - —-—-—-—-—"=-—"—"—-—- -

Figure 3.10: SCA architecture of the CORONA tool-chain.

Among the available tool-chain components, REMORA introduces a support for handling the conflicts that
can be potentially raised by concurrent FCLs competing for shared resources and a support for automatically
assigning the FCLs components to deployment nodes according to specific optimization objectives:

Conflict checker The conflict checker is a tool that implements a set of algorithms that analyze the
control architecture to detect potential conflicts. The conflict checker provides feedbacks to developers when
some conflicts are found in the control system architecture.

The verification generator is implemented as an SCA composite. It takes as input the architecture model
of the FCL. This tool is automatically triggered by the CORONA tool-chain before the generation of the source
code. However, even if it is strongly recommended, developers can decide to follow or not the warnings generated
by this tool without prejudices for the generation of the source code.

Deployment helper The deployment helper provides a tool to developers of FCLs to tackle the issue of
the distributed deployment of the control loop. The deployment helper uses Constraint Satisfaction Problem
(CSP) techniques [Apt03] to assign control elements among available resources of the managed system. The
assignment of a control element to a specific host resource is done by enriching the architectural model of the
control loop with adequate annotations. The deployment helper tool can be used for example, in the context
of a developer who wants to optimize the distribution of the control loop components at runtime, knowing the
network topology of the deployment infrastructure. The optimization of the distribution through the deployment
helper can be done according to criteria like the bandwidth between host machines.

The deployment helper tool is implemented as an SCA composite. It requires the control loop architecture
model and the network topology model as input, and generates a control loop architecture model enriched with

3.3. SYNTHESIS 57

annotations as output. This architecture model contains annotations that drive CORONA compiler during the
generation of the source code, and the deployment script.

3.3 Synthesis

This third chapter provided an overview of our contribution in the area of the design and the implementation
of self-adaptive software systems. Initiated as part of the IST FP6 MUSIC project, to which I participated
from 2007 to 2009, we have been working with Frank Eliassen, Eli Gjgrven, Svein Hallsteinsen, Ulrich Scholz
and Mickaél Beauvois on the design of technology-agnostic adaptation framework [Gjgll] that can contin-
uously reason on the optimization of a variety of software artifacts (components, services, aspects, sensors,
etc.) independently of mechanics and reconfiguration semantics imposed by the implementations of these arti-
facts. This work has been published in several conferences, including CBSE’08 [GER08], DAIS’08 [Oud+08],
SC’08 [Rou+08b], DADS’09 [REBO09] as well as a chapter in the book on software engineering for self-adaptive
systems [Rou+09], published as an outcome of the 1st Dagstuhl seminar on Software Engineering for Self-
Adaptive Systems (SefSAS).

The results of this work have then been applied as part of the CAPPUCINO collaborative project® to consider
the self-adaptation of ubiquitous software systems distributed across a set of computing nodes. As part of
Daniel Romero’s PhD thesis [Rom11], we have therefore introduced the principles of context as a resource to
extend the work done on COSMOS to deal with the full adaptation cycle of adaptive software systems and
to consider the discovery of adaptation policies. This approach has also been adopted in the context of our
research collaboration with the University of Oslo and published at DAIS’12 [Rom+10a; Rom+13].

This work has been further extended in the context of the SALTY collaborative project® and a research
collaboration with Philippe Collet and Filip Krikava to provide a comprehensive solution to the design of
feedback control loops. The PhD thesis of Russel Nzekwa [Nzel3] provided a reference implementation for
component-based FCLs and demonstrated the benefits of reasoning on domain-specific models. Beyond the
publication of this work at ICAC’14 [KCR14], our results have been reported during the 3rd Dagstuhl seminar
on Software Engineering for Self-Adaptive Systems (SefSAS) [Roul4].

PhD thesis supervisions associated to this chapter

[Gjpl1] Eli Gjgrven. “Enabling Self-Adaptation by Applying a Technology Agnostic Middleware with
Support for Integration”. PhD thesis. University of Oslo, Dec. 2011.

[Nzel3] Russel Nzekwa. “Building Manageable Autonomic Control Loops for Large Scale Systems”. PhD
thesis. Université Lille 1, Sciences et Technologies, July 2013.

[Rom11] Daniel Romero. “Context as a Resource: A Service-Oriented Approach for Context-Awareness”.
PhD thesis. Université Lille 1, Sciences et Technologies, July 2011.

Publications associated to this chapter

[Ali+10] Mourad Alia, Mikaél Beauvois, Yann Davin, Romain Rouvoy, and Frank Eliassen. “Components
and Aspects Composition Planning for Ubiquitous Adaptive Services”. In: 36th EUROMICRO
International Conference on Software Engineering and Advanced Applications (SEAA’10). Ed. by
Michel Chaudron. Lille, France: ACM, 2010, pp. 1-6.

[Bra4+-07a] Gunnar Brataas, Jacqueline Floch, Romain Rouvoy, Pyrros Bratskas, and George A Papadopou-
los. “A basis for performance property prediction of ubiquitous self-adapting systems”. In: Inter-
national workshop on Engineering of software services for pervasive environments. ACM. 2007,
pp- 59-63.

[Fri4-11] Marc Frincu, Norha Villegas, Dana Petcu, Hausi Muller, and Romain Rouvoy. “Self-Healing Dis-
tributed Scheduling Platform”. In: 11th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid). Ed. by Carlos Varela. Newport Beach, CA, United States: IEEE,
2011, pp. 225-234.

[Gam+12] Nadia Gamez, Daniel Romero, Lidia Fuentes, Romain Rouvoy, and Laurence Duchien. “Constraint-
based Self-adaptation of Wireless Sensor Networks”. In: 2nd International Workshop on Adaptive
Services for Future Internet. Bertinoro, Italy, Sept. 2012, pp. 20-27.

5funded by Fonds Unique Interministériel (FUT)
6funded by Agence Nationale de la Recherche (ANR)

58

[GEROS]

[GREOS]

[KCR14]

[Mél+10a]

[Mél+10b)]

[Mél+11]

[NRS10b)]

[Oud-+08]

[Par+12¢]

[Pas+08]

[Pro+13a]

[Pro+13b)

[RBEOS]

[REB09)

[Rom+10a]

[Rom+10b]

CHAPTER 3. SELF-ADAPTATION OF UBIQUITOUS SYSTEMS

Eli Gjgrven, Frank Eliassen, and Romain Rouvoy. “Experiences from developing a component
technology agnostic adaptation framework”. In: Component-Based Software Engineering. Springer
Berlin Heidelberg, 2008, pp. 230-245.

Eli Gjgrven, Romain Rouvoy, and Frank Eliassen. “Cross-layer self-adaptation of service-oriented
architectures”. In: Proceedings of the 3rd workshop on Middleware for service oriented computing.
ACM. 2008, pp. 37—42.

Filip Krikava, Philippe Collet, and Romain Rouvoy. “Integrating Adaptation Mechanisms Us-
ing Control Theory Centric Architecture Models: A Case Study”. In: ICAC' - 11th International
Conference on Autonomic Computing. USENIX. Philadelphia, United States, 2014.

Rémi Mélisson, Philippe Merle, Daniel Romero, Romain Rouvoy, and Lionel Seinturier. “Recon-
figurable Run-Time Support for Distributed Service Component Architectures”. In: Automated
Software Engineering, Tool Demonstration. Antwerp, Belgium, Sept. 2010, pp. 171-172.

Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier. “Supporting Pervasive and
Social Communications with FraSCAti”. In: 28 (June 2010). Ed. by Electronic Communications
of EASST, pp. 1-13.

Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier. “An SCA-based approach
for Social and Pervasive Communications in Home Environments”. In: Scientific Annals of Com-
puter Science 21.1 (2011), pp. 151-173.

Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. “Modelling Feedback Control Loops for
Self-Adaptive Systems”. In: Third International DisCoTec Workshop on Context-Aware Adap-
tation Mechanisms for Pervasive and Ubiquitous Services. Amsterdam, Netherlands, Apr. 2010,
pp. 1-6.

Johannes Oudenstad, Romain Rouvoy, Frank Eliassen, and Eli Gjgrven. “Brokering planning

metadata in a P2P environment”. In: Distributed Applications and Interoperable Systems. Springer
Berlin Heidelberg, 2008, pp. 168—181.

Carlos Andrés Parra, Daniel Romero, Sébastien Mosser, Romain Rouvoy, Laurence Duchien, and
Lionel Seinturier. “Using Constraint-based Optimization and Variability to Support Continuous
Self-Adaptation”. In: 27th ACM Symposium on Applied Computing (SAC’12), 7th Dependable and
Adaptive Distributed Systems (DADS) Track. Trento, Italy, Mar. 2012, pp. 486-491.

Nearchos Paspallis, Romain Rouvoy, Paolo Barone, George A Papadopoulos, Frank Eliassen, and
Alessandro Mamelli. “A pluggable and reconfigurable architecture for a context-aware enabling
middleware system”. In: On the Move to Meaningful Internet Systems: OTM 2008. Springer Berlin
Heidelberg, 2008, pp. 553-570.

Lucas Provensi, Frank Eliassen, Roman Vitenberg, and Romain Rouvoy. “Improving Context
Interpretation by Using Fuzzy Policies: The Case of Adaptive Video Streaming”. In: 28th ACM
Symposium on Applied Computing (SAC) - 8th Track on Dependable and Adaptive Distributed
Systems (DADS). Ed. by Karl M. Goschka, Rui Oliveira, Peter Pietzuch, and Giovanni Russello.
Vol. 1. Best paper award. Coimbra, Portugal: ACM, Mar. 2013, pp. 415-422.

Lucas Provensi, Frank Eliassen, Roman Vitenberg, and Romain Rouvoy. “Using fuzzy policies
to improve context interpretation in adaptive systems”. In: ACM SIGAPP Applied Computing
Review 13.3 (Sept. 2013), pp. 26-37.

Romain Rouvoy, Mikaél Beauvois, and Frank Eliassen. “Dynamic aspect weaving using a planning-
based adaptation middleware”. In: Proceedings of the 2nd workshop on Middleware-application
interaction: affiliated with the DisCoTec federated conferences 2008. ACM. 2008, pp. 31-36.

Romain Rouvoy, Frank Eliassen, and Mikaél Beauvois. “Dynamic planning and weaving of depend-
ability concerns for self-adaptive ubiquitous services”. In: Proceedings of the 2009 ACM symposium
on Applied Computing. ACM. 2009, pp. 1021-1028.

Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rouvoy,
and Frank Eliassen. “RESTful Integration of Heterogeneous Devices in Pervasive Environments”.
In: 10th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS’10). Ed. by Frank Eliassen and Ruediger Kapitza. Vol. 6115. LNCS. Amsterdam, Nether-
lands, France: Springer, June 2010, pp. 1-14.

Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Pierre Carton. “Service Discovery in
Ubiquitous Feedback Control Loops”. In: 10th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS’10). Ed. by Frank Eliassen and Ruediger Kapitza.
Vol. 6115. LNCS. Amsterdam, Netherlands, France: Springer, June 2010, pp. 113-126.

3.3. SYNTHESIS 59

[Rom+10c]

[Rom+-10d]

[Rom+13]

[Rou+08a]

[Rou+08b]

[Rou+09]

[Roul4]

[RVE0S]

[SR07]

Daniel Romero, Romain Rouvoy, Lionel Seinturier, Sophie Chabridon, Denis Conan, and Nicolas
Pessemier. “Enabling Context-Aware Web Services: A Middleware Approach for Ubiquitous Envi-
ronments”. In: Enabling Context-Aware Web Services: Methods, Architectures, and Technologies.
Ed. by Michael Sheng, Jian Yu, and Schahram Dustdar. Chapman and Hall/CRC, May 2010,
pp. 113-135.

Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Frédéric Loiret. “Integration of Hetero-
geneous Context Resources in Ubiquitous Environments”. In: 36th EUROMICRO International
Conference on Software Engineering and Advanced Applications (SEAA’10). Ed. by Michel Chau-
dron. Lille, France: ACM, 2010, p. 4.

Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rouvoy, and
Frank Eliassen. “The DigiHome Service-Oriented Platform”. In: Software: Practice and Ezxperience
43.10 (Oct. 2013), pp. 1143-1239.

Romain Rouvoy, Mikaél Beauvois, Laura Lozano, Jorge Lorenzo, and Frank Eliassen. “MUSIC:
an autonomous platform supporting self-adaptive mobile applications”. In: Proceedings of the 1st
workshop on Mobile middleware: embracing the personal communication device. ACM. 2008, p. 6.

Romain Rouvoy, Frank Eliassen, Jacqueline Floch, Svein Hallsteinsen, and Erlend Stav. “Com-
posing components and services using a planning-based adaptation middleware”. In: Software
Composition. Springer Berlin Heidelberg, 2008, pp. 52-67.

Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge Lorenzo,
Alessandro Mamelli, and Ulrich Scholz. “Music: Middleware support for self-adaptation in ubig-
uitous and service-oriented environments”. In: Software engineering for self-adaptive systems.
Springer Berlin Heidelberg, 2009, pp. 164-182.

Romain Rouvoy. “Feedbacks Control Loops as 1st Class Entities - The SALTY Experiment”. In:
Software Engineering for Self-Adaptive Systems: Assurances (Dagstuhl Seminar 18511). Ed. by
Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese. Dagstuhl, Germany, Mar. 2014,
p- 12.

Romain Rouvoy, Roman Vitenberg, and Frank Eliassen. “Enhancing Planning-Based Adaptation
Middleware with Support for Dependability: a Case Study”. In: Electronic Communications of
the EASST 11 (2008).

Ulrich Scholz and Romain Rouvoy. “Divide and conquer: scalability and variability for adaptive
middleware”. In: International workshop on Engineering of software services for pervasive envi-

ronments: in conjunction with the 6th ESEC/FSE joint meeting. ACM. 2007, pp. 35-39.

CHAPTER 4

Conclusions & perspectives

This chapter concludes the thesis. We first provide a summary of the contributions reported in the manuscript
and then discuss on short-term and long-term perspectives for the research in this area.

4.1 Main Results

The results reported in this manuscript are structured along three complementary axes, which we consider
as the pillars of self-adaptive software systems: an elastic component model, an efficient context processing
middleware, and a robust decision-making engines.

Elastic component models. Our contributions in this area demonstrate that the principles of Component-
Based Software Engineering (CBSE) can be adopted at several scales of software systems: from constrained
sensors, to mobile devices, to server-side infrastructures. Beyond the available standards—both in the industry
and the academia—we believe that the adoption of CBSE not only improves the quality of software, but also
leverages their evolution over time. In particular, we demonstrate with REMORA that CBSE not only eases the
development of components in the small, but also provides an implicit support for fine-grained reconfigurations
(cf. Section 1.2.1). Thanks to REMORA, WSN application developers can develop reusable building blocks that
they can compose upon needs. Given the tight integration with hardware components, REMORA provides a
solution to compose and tune software components as they assemble the physical sensors. This modular structure
also leverages the evolution over time of these software components in order to upgrade the version of driver
without distributing and flushing the whole image of the WSN application. With FRASCALA, we demonstrate
that components can be composed in the large by fostering reusable architectural patterns (cf. Section 1.2.2).
Given the complexity of nowadays software systems, declarative architecture description languages do not scale
anymore and rather tend to add another dimension of complexity. The approach we propose with FRASCALA
captures the intention of the software architect to ensure that the requirements are met by the developers
and therefore leverages the description of large-scale software architectures. Finally, we demonstrate with
MACCHIATO that components can be spontaneously migrated across nodes to optimize the quality of service of
the applications (cf. Section 1.2.3). While this contribution belongs to the long tail of offloading frameworks
that have been recently published in the literature, MACCHIATO promotes the adoption of Resource-as-a-Service
as a new orientation for the development of ubiquitous software. This orientation highlights the importance
of data and knowledge to be exchanged between application components. Given the cost of communicating
and processing data in ubiquitous devices, MACCHIATO considers an application as a graph of data processing
components, which can be dynamically assigned to nodes discovered in the environment of the application. The
introduction of dynamic reconfigurations driven by optimization heuristics emphases the nature of the other
contributions we developed in our research: context processing and decision making. All theses contributions
have been published in acknowledged conferences (DCOSS, CBSE) and journals (The Computer, ACM TOSN)
to value the quality of our contributions. The research along this axis has been developed as part of a long-lived
collaboration with the University of Oslo as well as a national research project funded by FUI (Macchiato).

Efficient context processing middleware. Context-awareness represents the second pillar of self-adaptive
software systems and focuses on collecting data related to non-functional aspects of an application that might
impact its execution. To address this concern, we first developed a general context inference model, named
COSMOS, which intends to reflect the context inference processing chain as a graph of context nodes that
incrementally transform raw metrics collected in the field into more intelligible context situations, which can be
exploited by an application or a middleware solution to reason on the environment of a system (cf. Section 2.2.1).
Based on this context inference model, we addressed with APISENSE® the challenges of in-breadth context

61

62 CHAPTER 4. CONCLUSIONS & PERSPECTIVES

monitoring in the area of mobile crowd-sensing (cf. Section 2.2.2). APISENSE® enables mobile crowd-sensing
as-a-service and proposes to collect dataset in field by orchestrating such sensing tasks across a crowd of mobile
devices. In APISENSE®, crowd-sensing tasks are privacy-aware scripts that are dynamically deployed and
controlled from the Cloud. By optimizing the execution crowd-sensing tasks, we demonstrate that we can
reduce the energy consumed by individual mobile devices, yet ensuring a similar quality of the resulting dataset
(e.g., geographic or time coverage). Another dimension of context monitoring we consider in our work refers to
in-depth monitoring in the context of automatic power consumption inference. In particular with POWERAPI,
we investigate how the coarse-grained power consumption context information reported by a power meter can be
distributed across the applications running on the operating system and even across the software components
and the methods making these applications (cf. Section 2.2.3). We therefore propose to model the power
consumption of software process and application components in order to better understand this dissipation
process. The proposed power models are implemented in POWERAPI to provide online feedback on the power
consumption at different levels and to locate energy hotspots. All theses contributions have been published
in acknowledged conferences (ASE, DAIS) and journals (IEEE DSOnline, Wiley SPE, Springer ASE, ACM
SIGOPS) to value the quality of our contributions. The research along this axis has been developed as part
of a collaboration with the Telecom SudParis institute as well as a national research project funded by FUI
(EconHome).

Robust decision-making engines. The third pillar of self-adaptiveness links the two previous ones and
covers the intelligence to be included into a ubiquitous system in order to give it the capability to modify its
structure or its behavior in order to optimize some specific objective (e.g., the quality of service, the energy
consumption). We first addressed this challenge in the context of MUSIC, a white-box adaptation middleware
that seeks to optimize the utility of a ubiquitous application by evaluating alternative configurations that can
be composed from software resources available in the environment (cf. Section 3.2.1). In particular, we have
investigated how service-oriented resources can be discovered and incorporated in such an adaptation middleware
platform to improve the utility of a mobile application. This approach has been extended to optimize the utility
independently of the software artifacts that can influence it and we demonstrated the integration of aspects as
another kind of artifact that can be integrated in such a technology-agnostic reasoning engine. Based on this first
contribution, we have investigated the discovery of adaptive behaviors in the context of distributed software
systems. This capability builds on the concept of feedback control loop, which we consider as an extension
of a COSMOS context policy and reflect it as part of the software architecture of the considered system
(cf. Section 3.2.2). By doing so, we can reason on the distribution of the adaptation process and even reify
adaptation policies as ubiquitous resources that can be discovered by a mobile device, thus applying different
decisions depending on the environment in which it is immersed. The principle of feedback control loop as a
first class entity of software systems is further developed as part of FCDL, a domain-specific modeling language
that focuses on the elicitation of self-adaptive behaviors in black-box legacy systems (cf. Section 3.2.3). The
model proposed by FCDL fosters reuse of feedback control loop entities and is reflective to support the design
and the implementation of adaptive control solutions. With CORONA, we propose a reference implementation
of FCDL that automatically maps feedback control loops definition to component-based software architectures
based on the SCA standard. Furthermore, CORONA offers a modular tool-chain to reason on the feedback
control loops definition to include verifications like policy conflicts detection as well as optimizations like the
deployment planning. All theses contributions have been published in acknowledged conferences (CBSE, DAIS)
and journals (SPE) to value the quality of our contributions. The research along this axis has been developed
as part of a collaboration with the University of Nice as well as a national research project funded by ANR
(SALTY) and a European project funded by IST FP6 (MUSIC).

4.2 Perspectives

While this document reports on the results we achieved during the last 8 years of activity in the area of self-
adaptive software systems, we believe that there is still a wide range of challenges to be investigated based on
the experience and the solutions we developed up to now. In particular, the following paragraphs describe 6
promising research directions for the research community that we intend to address by working in collaboration
with different scientific disciplines.

Power consumption of complex systems. Based on the work we developed with POWERAPI, one can
observe that both hardware and software architectures are getting more and more complex to understand. Due
to this complexity, it is more and more difficult to trace how the activity of software artifacts impacts the power
consumption of the system as a whole. Not only application servers, but also mobile devices are now built
on multi-core architectures that include power-saving technologies (dynamic voltage/frequency scaling, hyper-
threading, dynamic overclocking, etc.). However, no matter the variety of optimizations made available at the

4.2. PERSPECTIVES 63

hardware level, if the system adopts greedy strategies with regards to resources, power-saving technologies are
becoming inefficient. We therefore advocate that software developers and system administrators require better
tools to take informed decisions on the optimization to apply in order to minimize the energy footprint of their
systems. In this area, we collaborate with ADEME (Agence De I’Environnement et de la Maitrise de I’énergie)
and the University of Neuchétel to develop a middleware toolkit based on POWERAPI that can be used to
build software-defined power meters. In particular, such a middleware toolkit aims at addressing the challenge
raised by the visualization of systems and to reason on the power consumption of applications hosted by virtual
machines, for example. With regards to the design of an autonomic control of systems that would be driven
by the energy consumption, we believe that the combination of software defined power meters with machine
learning solutions can foster the emergence of smart energy saving solutions that can reduce the energy footprint
of systems by learning from their past executions.

Crowd behaviors in cyber-physical environments. Based on the work we developed with APISENSE®,
we are able to offer a mobile crowd-sensing platform (http://apisense.io) to the research community that
can be used by anyone to collect realistic dataset in the field through the principles of volunteer computing. This
approach already benefits to other sciences, like human sciences with PRACTIC (http://beta.apisense.fr/
practic), and we believe and it can be adopted by other research communities. The upcoming challenge in
this area therefore consists in building a citizen observatory that would raise a massive adoption to scale our
approach and provide a robust scientific tool for the research communities. This involves the study and the
development of incentives to motivate and inform citizens on the value of research initiatives. In particular, we
intend to further contribute to the METROSCOPE consortium and provide a solution to monitor the quality of
Internet access as it it perceived by end-users. While telecom operators are continuously monitoring the core
Internet network, they fail to capture the end-to-end quality of experience of their customers, nor customers can
understand the root causes of access problems they may encounter. We therefore believe that APISENSE® can
offer a win-win opportunity for both telecom operators and customers to improve the quality of their Internet
access by considering network measures from a wide diversity of devices, locations, and ISPs to clarify potential
causes of bottlenecks. Another example of promising application refers to the analysis of user mobility patterns
in the context of smart cities. In this area, APISENSE® can offer an open alternative to city departments
to help them to improve their public transport offer, fix and optimize their road infrastructure, and monitor
environmental indicators. By better connecting the citizens to the city, we believe that mobile crowd-sensing
platforms can play a key role in the emergence of smart cities.

Decentralized and privacy-aware crowd-sensing algorithms. In most of the crowd-sensing experiments
we considered, user privacy plays a keystone role in the adoption of crowd-sensing tasks by the participants.
APISENSE® embeds privacy mechanisms to control the conditions under which data traces are produced. In
particular, the participants can disable specific sensors upon preferences, define privacy areas around sensitive
places (house, work, etc.), and privacy periods for disabling the crowd-sensing tasks. Nevertheless, these
mechanisms are still subject to privacy leaks, in particular when reporting the location of participants. The
idea in this area, in extension of the concept of virtual sensor used in APISENSE®, would therefore be to
better take benefit of the wisdom of the crowd to improve the privacy of its individuals. While some theoretical
algorithms have been already published in this domain, their actual implementation in the field remains an open
issue. Nevertheless, the delivery of a decentralized solution to orchestrate tasks and collect data in the wild
more and more appears as key feature of future crowd-sensing platforms. We therefore intend to investigate
the development of in situ group communication layers to foster the support of collaborative crowd-sensing
computations over the air—i.e., before that the data reach the server-side infrastructure. By building a crowd-
sensing overlay network composed of mobile devices and trusted resources (e.g., a set-up box in a house), one
could expect better resilience in terms of privacy and even energy consumption if we consider the results we
obtained with MACCHIATO by sharing and offloading computation-intensive tasks.

Crowd-assisted software development. Another perspective for the work we developed in APISENSE®
consists in leveraging the wisdom of the crowd to improve the quality of mobile software developments. The
emergence of smartphones and app stores have throttled the development of mobile applications by promising
developers to run their applications on thousands of mobile devices. Nevertheless, although Software Develop-
ment Kits (SDK) leverage this activity, the development of mobile applications remains a complex task since
it needs to take into account the variety of target devices as well as key concerns like the energy consumption
of applications. In particular, even though developers can thoroughly test their application using continuous
integration infrastructures, applications might still crash once deployed on users’ mobile devices because of
unexpected configuration settings or conditions of execution. In this area, we propose to establish an umbilical
cord between the developer and the instances of her/his application deployed in the field to collect and under-
stand potential errors that may arise in the hands of their users. The objective of this continuous connection is

64 CHAPTER 4. CONCLUSIONS & PERSPECTIVES

to capture the quality of experience of users in order to provide a fast feedback to the developers. In particular,
we target the case of automatic bug fixing by crystallizing crash reports of a community of users into test cases
that can be used by developers to reproduce field errors. Such crowdsourced unit tests can then be used as
an input for feeding automatic bug repair technics to generate application patches. Given the number and the
diversity of mobile devices using an application, one can even consider the deployment of several patches in the
field to study in the wild the best response to the proposed fix. Exploiting the wisdom of the crowd can also
be considered for a community of developers to capitalize on the best practices in terms of mobile application
developments. In particular, app stores can be seen as repositories of binary code that can be mined to extract
a valuable knowledge that can be used to improve the quality of software developments. As part of a new
collaboration with Université du Québec A Montréal (UQAM), we are therefore investigating the automatic
analysis of design patterns and anti-patterns that are included in the mobile applications published by app
stores. This activity intends to contribute to the development of smarter app stores, having the capability to
advice the developers on potential errors or threats that can affect their application prior to their publication.

Adaptive Big Data processing. Based on the work we developed to improve the design of self-adaptive
distributed systems with FCDL, we are targeting the specific case of adaptive big data processing. As nowadays
software systems trigger a deluge of data, many big data processing platforms have emerged to provide offline or
online analytics algorithms to extract indicators or knowledge out of huge mass of input data. While we intend
to use some of these approaches to address the above mentioned perspective, big data processing frameworks
also need a better support for elasticity. In particular, as part of the DATALYSE collaborative project!. We
are considering the application of FCDL to apply the control theory principles to the design of a controller
that protects a MapReduce framework against resource exhaustions (e.g., memory, disk) and optimizing their
execution by considering the availability of spare resources. In particular, we consider the case of virtualized
big data platforms that build on a Cloud computing infrastructure as an opportunity to scale by provisioning
the appropriate resources. Nevertheless, such an adaptive provisioning support needs to build on an accurate
resource forecasting framework that can absorb the delay of resource provisioning by predicting the ideal
quantity of resources that would be required in a near future to process the incoming requests. The design and
the implementation of such a service requires to learn and continuously maintain a prediction model that will be
used by a resource optimization controller. By composing and orchestrating such protection and optimization
controllers using FCDL, we intend to deploy elastic MapReduce frameworks.

Defensive autonomic control. More generally, beyond the conviction that the application of control theory
can be highly beneficial in the context of autonomic control, we think that FCDL can provide an interesting
contribution in the area of defensive control of software systems. More specifically, control theory provides solid
foundations for building controllers including guarantees by design (e.g., convergence/stability) as long as a set of
assumptions on the input signal(s) and the disturbance(s) hold. Nonetheless, if one of these assumptions breaks
for some unexpected reason, then the controller might not work as expected and lead the controlled system in
an unstable state. To address this issue, we can adopt the principles of assertions and defensive programming
to the case of feedback control loops. The idea would be to monitor the input signals/disturbances reported
by sensors in order to %) filter out out-of-scope values or i) trigger or escalate alarms to implement some kind
of Service-Level Agreement (SLA) between the controlled system and the controller: As long as the SLA is
fulfilled, the controller can ensure the provision of exhibited assurances. Given to the reflective nature of the
feedback control loops, assertions can be consumed by sensors of a meta-level feedback control loop that takes
care that adaptations operate as expected. When escalating, an upper feedback control loops might decide to
suspend the controller and reconfigure/replace with an alternative implementation, possibly generated on the
fly. This issue is an example of the benefits that can be derived from combining two disciplines: control theory
and software engineering.

Lfunded by the Projet d’Investissement d’Avenir (PIA) program: http://www.datalyse.fr

Bibliography

Contributions
Journals
[CRS08] Denis Conan, Romain Rouvoy, and Lionel Seinturier. “COSMOS : composition de noeuds de
contexte”. In: Technique et Science Informatiques (TSI) 27.9-10 (2008), pp. 1189-1224.
[Loi+11b) Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero, Kevin Sénéchal, and Ales

Plsek. “An Aspect-Oriented Framework for Weaving Domain-Specific Concerns into Component-
Based Systems”. In: Journal of Universal Computer Science (J.UCS) 17.5 (Mar. 2011), pp. 742
776.

[Mél4+10b] Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier. “Supporting Pervasive and
Social Communications with FraSCAti”. In: 28 (June 2010). Ed. by Electronic Communications
of EASST, pp. 1-13.

[Mél+11] Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier. “An SCA-based approach
for Social and Pervasive Communications in Home Environments”. In: Scientific Annals of Com-
puter Science 21.1 (2011), pp. 151-173.

[NRS13a] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “A review of energy measurement ap-
proaches”. In: ACM SIGOPS Operating Systems Review 47.3 (Dec. 2013), pp. 42—49.

[NRS13b] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “A Review of Middleware Approaches
for Energy Management in Distributed Environments”. In: Software: Practice and Ezperience 43.9
(Sept. 2013), pp. 1071-1100.

[NRS14a] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “Monitoring Energy Hotspots in Soft-
ware”. In: Journal of Automated Software Engineering (2014).

[Pro+13b] Lucas Provensi, Frank Eliassen, Roman Vitenberg, and Romain Rouvoy. “Using fuzzy policies
to improve context interpretation in adaptive systems”. In: ACM SIGAPP Applied Computing
Review 13.3 (Sept. 2013), pp. 26-37.

[RCS08] Romain Rouvoy, Denis Conan, and Lionel Seinturier. “Software Architecture Patterns for a Context-
Processing Middleware Framework”. In: IEEE Distributed Systems Online 9.6 (2008), pp. 1-13.
[RMO09] Romain Rouvoy and Philippe Merle. “Leveraging Component-Based Software Engineering with

Fraclet”. In: Annals of Telecommunications 64.1-2 (Jan. 2009).

[Rom+13] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rouvoy, and
Frank Eliassen. “The DigiHome Service-Oriented Platform”. In: Software: Practice and Ezperience
43.10 (Oct. 2013), pp. 1143-1239.

[RVEOS] Romain Rouvoy, Roman Vitenberg, and Frank Eliassen. “Enhancing Planning-Based Adaptation
Middleware with Support for Dependability: a Case Study”. In: Electronic Communications of
the EASST 11 (2008).

[Sei+12] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio Schiavoni, and Jean-
Bernard Stefani. “A Component-Based Middleware Platform for Reconfigurable Service-Oriented
Architectures”. In: Software: Practice and Ezxperience 42.5 (May 2012), pp. 559-583.

65

66

[Tah-+11b]

[Tah-+13]

CHAPTER 4. CONCLUSIONS & PERSPECTIVES

Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, and Frank Eliassen. “A Generic Component-
based Approach for Programming, Composing and Tuning Sensor Software”. In: The Computer
Journal 54.2 (Feb. 2011), pp. 1-19.

Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, and Frank Eliassen. “Optimizing Sen-
sor Network Reprogramming via In-situ Reconfigurable Components”. In: ACM Transactions on
Sensor Networks 9.2 (May 2013), pp. 1-37.

Book chapters

[Had-+14]

[Rom+10c]

[Rou+09]

[Tah+11a]

Nicolas Haderer, Fawaz Paraiso, Christophe Ribeiro, Philippe Merle, Romain Rouvoy, and
Lionel Seinturier. “A Cloud-based Infrastructure for Crowdsourcing Data from Mobile Devices”.
In: Cloud-based Software Crowdsourcing. Ed. by Wenjun Wu. Springer, 2014.

Daniel Romero, Romain Rouvoy, Lionel Seinturier, Sophie Chabridon, Denis Conan, and
Nicolas Pessemier. “Enabling Context-Aware Web Services: A Middleware Approach for
Ubiquitous Environments”. In: Enabling Context-Aware Web Services: Methods, Architectures,
and Technologies. Ed. by Michael Sheng, Jian Yu, and Schahram Dustdar. Chapman and
Hall/CRC, May 2010, pp. 113-135.

Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge Lorenzo,
Alessandro Mamelli, and Ulrich Scholz. “Music: Middleware support for self-adaptation in
ubiquitous and service-oriented environments”. In: Software engineering for self-adaptive
systems. Springer Berlin Heidelberg, 2009, pp. 164-182.

Amirhosein Taherkordi, Frank Eliassen, Daniel Romero, and Romain Rouvoy. “RESTful Service
Development for Resource-constrained Environments”. In: REST: From Research to Practice.
Ed. by Erik Wilde and Cesare Pautasso. Springer, 2011, pp. 221-236.

Conferences

[Ali+10]

[CRS07]

[Fri+11]

[GEROS]

[HRS13b)

[KCR14]

[Loi+11a)]

[Nou+12a]

Mourad Alia, Mikaél Beauvois, Yann Davin, Romain Rouvoy, and Frank Eliassen. “Components
and Aspects Composition Planning for Ubiquitous Adaptive Services”. In: 36th EUROMICRO
International Conference on Software Engineering and Advanced Applications (SEAA’10). Ed. by
Michel Chaudron. Lille, France: ACM, 2010, pp. 1-6.

Denis Conan, Romain Rouvoy, and Lionel Seinturier. “Scalable Processing of Context Information
with COSMOS”. In: 7th IFIP International Conference on Distributed Applications and Interop-
erable Systems. Paphos, Cyprus, 2007, pp. 210-224.

Marc Frincu, Norha Villegas, Dana Petcu, Hausi Muller, and Romain Rouvoy. “Self-Healing Dis-
tributed Scheduling Platform”. In: 11th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid). Ed. by Carlos Varela. Newport Beach, CA, United States: IEEE,
2011, pp. 225-234.

Eli Gjgrven, Frank Eliassen, and Romain Rouvoy. “Experiences from developing a component
technology agnostic adaptation framework”. In: Component-Based Software Engineering. Springer
Berlin Heidelberg, 2008, pp. 230-245.

Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier. “Dynamic Deployment of Sensing Experi-
ments in the Wild Using Smartphones”. In: 13th International IFIP Conference on Distributed Ap-
plications and Interoperable Systems (DAIS). Ed. by Frangois Tafani and Jim Dowling. Vol. 7891.
LNCS. Firenze, Italy: Springer, June 2013, pp. 43-56.

Filip Krikava, Philippe Collet, and Romain Rouvoy. “Integrating Adaptation Mechanisms Us-
ing Control Theory Centric Architecture Models: A Case Study”. In: ICAC' - 11th International
Conference on Autonomic Computing. USENIX. Philadelphia, United States, 2014.

Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, and Philippe Merle. “Software Engineering
of Component-Based Systems-of-Systems: A Reference Framework”. In: 1/th ACM SIGSOFT
International Symposium on Component-Based Software Engineering (CBSE’11). Ed. by Springer.
Boulder, United States, June 2011, pp. 61-65.

Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. “A Preliminary Study
of the Impact of Software Engineering on GreenlT”. In: First International Workshop on Green
and Sustainable Software. Zurich, Switzerland, June 2012, pp. 21-27.

4.2. PERSPECTIVES 67

[Nou+12b)]

[NRS14b]

[Oud-+08]

[Par+12a]

[Par+12b)]

[Par+12¢]

[Pas+08]

[PRD12]

[Pro+13a)

[REBOY]

[RM12]

[Rom+10a]

[Rom-+10b]

[Rom+10d]

[Rou+08b]

Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. “Runtime Monitor-
ing of Software Energy Hotspots”. In: ASE - The 27th IEFE/ACM International Conference on
Automated Software Engineering - 2012. Essen, Germany, Sept. 2012, pp. 160-169.

Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “Unit Testing of Energy Consumption
of Software Libraries”. In: Symposium On Applied Computing. Gyeongju, Korea, Republic Of,
Mar. 2014, pp. 1200-1205.

Johannes Oudenstad, Romain Rouvoy, Frank Eliassen, and Eli Gjgrven. “Brokering planning
metadata in a P2P environment”. In: Distributed Applications and Interoperable Systems. Springer
Berlin Heidelberg, 2008, pp. 168-181.

Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel Seinturier. “A Fed-
erated Multi-Cloud PaaS Infrastructure”. In: 5th IEEE International Conference on Cloud Com-
puting. hawaii, United States, June 2012, pp. 392-399.

Fawaz Paraiso, Gabriel Hermosillo, Romain Rouvoy, Philippe Merle, and Lionel Seinturier. “A
Middleware Platform to Federate Complex Event Processing”. In: Sizteenth IEEE International
EDOC Conference. Beijing, China: Springer, Sept. 2012, pp. 113-122.

Carlos Andrés Parra, Daniel Romero, Sébastien Mosser, Romain Rouvoy, Laurence Duchien, and
Lionel Seinturier. “Using Constraint-based Optimization and Variability to Support Continuous
Self-Adaptation”. In: 27th ACM Symposium on Applied Computing (SAC’12), Tth Dependable and
Adaptive Distributed Systems (DADS) Track. Trento, Italy, Mar. 2012, pp. 486-491.

Nearchos Paspallis, Romain Rouvoy, Paolo Barone, George A Papadopoulos, Frank Eliassen, and
Alessandro Mamelli. “A pluggable and reconfigurable architecture for a context-aware enabling
middleware system”. In: On the Move to Meaningful Internet Systems: OTM 2008. Springer Berlin
Heidelberg, 2008, pp. 553-570.

Nicolas Petitprez, Romain Rouvoy, and Laurence Duchien. “Connecting your Mobile Shopping
Cart to the Internet-of-Things”. In: 12th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS’12). Ed. by Karl M. Goschka and Seif Haridi. Vol. 7272.
LNCS. Stockholm, Sweden: Springer, June 2012, pp. 236-243.

Lucas Provensi, Frank Eliassen, Roman Vitenberg, and Romain Rouvoy. “Improving Context
Interpretation by Using Fuzzy Policies: The Case of Adaptive Video Streaming”. In: 28th ACM
Symposium on Applied Computing (SAC) - 8th Track on Dependable and Adaptive Distributed
Systems (DADS). Ed. by Karl M. Goschka, Rui Oliveira, Peter Pietzuch, and Giovanni Russello.
Vol. 1. Best paper award. Coimbra, Portugal: ACM, Mar. 2013, pp. 415-422.

Romain Rouvoy, Frank Eliassen, and Mikaél Beauvois. “Dynamic planning and weaving of depend-
ability concerns for self-adaptive ubiquitous services”. In: Proceedings of the 2009 ACM symposium
on Applied Computing. ACM. 2009, pp. 1021-1028.

Romain Rouvoy and Philippe Merle. “Rapid Prototyping of Domain-Specific Architecture Lan-
guages”. In: 15th International ACM SIGSOFT Symposium on Component-Based Software Engi-
neering (CBSE’12). Ed. by Magnus Larsson and Nenad Medvidovic. Bertinoro, Italy: ACM, June
2012, pp. 13-22.

Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rouvoy,
and Frank Eliassen. “RESTful Integration of Heterogeneous Devices in Pervasive Environments”.
In: 10th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS’10). Ed. by Frank Eliassen and Ruediger Kapitza. Vol. 6115. LNCS. Amsterdam, Nether-
lands, France: Springer, June 2010, pp. 1-14.

Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Pierre Carton. “Service Discovery in
Ubiquitous Feedback Control Loops”. In: 10th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS’10). Ed. by Frank Eliassen and Ruediger Kapitza.
Vol. 6115. LNCS. Amsterdam, Netherlands, France: Springer, June 2010, pp. 113-126.

Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Frédéric Loiret. “Integration of Hetero-
geneous Context Resources in Ubiquitous Environments”. In: 36th EUROMICRO International
Conference on Software Engineering and Advanced Applications (SEAA’10). Ed. by Michel Chau-
dron. Lille, France: ACM, 2010, p. 4.

Romain Rouvoy, Frank Eliassen, Jacqueline Floch, Svein Hallsteinsen, and Erlend Stav. “Com-
posing components and services using a planning-based adaptation middleware”. In: Software
Composition. Springer Berlin Heidelberg, 2008, pp. 52-67.

68

[Tah+09b]

[Tah+10]

CHAPTER 4. CONCLUSIONS & PERSPECTIVES

Amirhosein Taherkordi, Quan Le-Trung, Romain Rouvoy, and Frank Eliassen. “WiSeKit: A Dis-
tributed Middleware to Support Application-level Adaptation in Sensor Network”. In: 9th IFIP
International Conference on Distributed Applications and Interoperable Systems (DAIS). Ed. by
Twittie Senivongse and Rui Oliveira. Vol. 5523. Lecture Notes in Computer Science. Lisbon, Por-
tugal, June 2009.

Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain Rouvoy, Quan Le-Trung,
and Frank Eliassen. “Programming Sensor Networks Using REMORA Component Model”. In:
6th IEEE International Conference on Distributed Computing in Sensor Systems (DC0OSS’10).
Santa Barbara, California, United States, June 2010, p. 15.

Workshops

[Bra+07a]

[Bra+07b]

[Gam+12]

[GREOS]

[HRS13a]

[MRS11a]

[NRS09]

[NRS10a]

[NRS10b)]

INRS11]

[Qui+13]

[RBEOS]

[Rou-+08al

Gunnar Brataas, Jacqueline Floch, Romain Rouvoy, Pyrros Bratskas, and George A Papadopou-
los. “A basis for performance property prediction of ubiquitous self-adapting systems”. In: Inter-
national workshop on Engineering of software services for pervasive environments. ACM. 2007,
pp. 99-63.

Gunnar Brataas, Svein Hallsteinsen, Romain Rouvoy, and Frank Eliassen. “Scalability of Decision
Models for Dynamic Product Lines”. In: Proceedings of the International Workshop on Dynamic
Software Product Line (DSPL). Sept. 2007, pp. 23-32.

Nadia Gamez, Daniel Romero, Lidia Fuentes, Romain Rouvoy, and Laurence Duchien. “Constraint-
based Self-adaptation of Wireless Sensor Networks”. In: 2nd International Workshop on Adaptive
Services for Future Internet. Bertinoro, Italy, Sept. 2012, pp. 20-27.

Eli Gjgrven, Romain Rouvoy, and Frank Eliassen. “Cross-layer self-adaptation of service-oriented
architectures”. In: Proceedings of the 3rd workshop on Middleware for service oriented computing.
ACM. 2008, pp. 37-42.

Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier. “A preliminary investigation of user
incentives to leverage crowdsensing activities”. In: 2nd International IEEE PerCom Workshop on
Hot Topics in Pervasive Computing (PerHot). San Diego, United States: IEEE Computer Society,
Mar. 2013, pp. 199-204.

Philippe Merle, Romain Rouvoy, and Lionel Seinturier. “A Reflective Platform for Highly Adaptive
Multi-Cloud Systems”. In: 10th International Workshop on Adaptive and Reflective Middleware
(ARM’2011) at the 12th ACM/IFIP/USENIX International Middleware Conference. Lisbon, Por-
tugal, Dec. 2011, pp. 1-7.

Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. “Towards a Stable Decision-Making Mid-
dleware for Very-Large-Scale Self-Adaptive Systems.” In: BElgian-NEtherlands software eVOLu-
tion seminar (BENEVOL). Louvain-la-Neuve, Belgium, 2009.

Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. “A Flexible Context Stabilization Ap-
proach for Self-Adaptive Application”. In: COMOREA - (PERCOM). Mannheim, Germany, Mar.
2010, pp. 7-12.

Russel Nzekwa, Romain Rouvoy, and Lionel Seinturier. “Modelling Feedback Control Loops for
Self-Adaptive Systems”. In: Third International DisCoTec Workshop on Context-Aware Adap-
tation Mechanisms for Pervasive and Ubiquitous Services. Amsterdam, Netherlands, Apr. 2010,
pp. 1-6.

Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “Supporting Energy-driven Adaptations
in Distributed Environments”. In: 1st Workshop on Middleware and Architectures for Autonomic
and Sustainable Computing. Paris, France, May 2011, pp. 13-18.

Clément Quinton, Nicolas Haderer, Romain Rouvoy, and Laurence Duchien. “Towards Multi-
Cloud Configurations Using Feature Models and Ontologies”. In: 1st International Workshop on
Multi-Cloud Applications and Federated Clouds. Prague, Czech Republic, Apr. 2013, pp. 21-26.

Romain Rouvoy, Mikaél Beauvois, and Frank Eliassen. “Dynamic aspect weaving using a planning-
based adaptation middleware”. In: Proceedings of the 2nd workshop on Middleware-application
interaction: affiliated with the DisCoTec federated conferences 2008. ACM. 2008, pp. 31-36.

Romain Rouvoy, Mikaél Beauvois, Laura Lozano, Jorge Lorenzo, and Frank Eliassen. “MUSIC:
an autonomous platform supporting self-adaptive mobile applications”. In: Proceedings of the 1st
workshop on Mobile middleware: embracing the personal communication device. ACM. 2008, p. 6.

4.2. PERSPECTIVES 69

[SRO7) Ulrich Scholz and Romain Rouvoy. “Divide and conquer: scalability and variability for adaptive
middleware”. In: International workshop on Engineering of software services for pervasive envi-
ronments: in conjunction with the 6th ESEC/FSE joint meeting. ACM. 2007, pp. 35-39.

[Tah4+08a] Amirhosein Taherkordi, Frank Eliassen, Romain Rouvoy, and Quan Le-Trung. “ReWiSe: A New
Component Model for Lightweight Software Reconfiguration in Wireless Sensor Networks”. In:
On the Mowve to Meaningful Internet Systems: OTM 2008 Workshops. Springer Berlin Heidelberg,
2008, pp. 415-425.

[Tah+08b] Amirhosein Taherkordi, Romain Rouvoy, Quan Le-Trung, and Frank Eliassen. “A self-adaptive
context processing framework for wireless sensor networks”. In: Proceedings of the 3rd international
workshop on Middleware for sensor networks. ACM. 2008, pp. 7-12.

[Tah+09a] Amirhosein Taherkordi, Romain Rouvoy, Quan Le-Trung, and Frank Eliassen. “Supporting Lightweight
Adaptations in Context-aware Wireless Sensor Networks”. In: Ist International COMSWARE
Workshop on Context-Aware Middleware and Services (CAMS). Vol. 385. ACM International
Conference Proceeding Series. Dublin, Ireland: Mélanie Bouroche et al., June 2009.

[TRE10] Amirhosein Taherkordi, Romain Rouvoy, and Frank Eliassen. “A Component-based Approach for
Service Distribution in Sensor Networks”. In: 5th International Workshop on Middleware Tools,
Services and Run-Time Support for Sensor Networks. Bangalore, India: ACM, Nov. 2010, pp. 22—
28.

Dissemination

[Bou+13] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. “PowerAPI: A
Software Library to Monitor the Energy Consumed at the Process-Level”. In: ERCIM News 92
(Jan. 2013), pp. 43-44.

[BRS13] Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. “Mesurer la consommation en énergie
des logiciels avec précision”. In: 01 Business & Technologies (Jan. 2013).

[Had+13a] Nicolas Haderer, Christophe Ribeiro, Romain Rouvoy, Simon Charneau, Vassili Rivron,
Alan Ouakrat, Sonia Ben Mokhtar, and Lionel Seinturier. “Le capteur, ¢’est vous !” In: L’Usine
Nouwelle 3353 (Nov. 2013), pp. 74-75.

[Had+13b] Nicolas Haderer, Romain Rouvoy, Christophe Ribeiro, and Lionel Seinturier. “APISENSE:
Crowd-Sensing Made Easy”. In: ERCIM News 93 (Apr. 2013), pp. 28-29.

[Mél4+10a] Rémi Mélisson, Philippe Merle, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
“Reconfigurable Run-Time Support for Distributed Service Component Architectures”. In:
Automated Software Engineering, Tool Demonstration. Antwerp, Belgium, Sept. 2010,
pp. 171-172.

[MRS11b] Philippe Merle, Romain Rouvoy, and Lionel Seinturier. “FRASCATI: Adaptive and Reflective
Middleware of Middleware”. In: 12th ACM/IFIP/USENIX International Middleware Conference
- Tutorial. Lisbon, Portugal, Dec. 2011.

[Roul4] Romain Rouvoy. “Feedbacks Control Loops as 1st Class Entities - The SALTY Experiment”. In:
Software Engineering for Self-Adaptive Systems: Assurances (Dagstuhl Seminar 13511). Ed. by
Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese. Dagstuhl, Germany, Mar.
2014, p. 12.

[SR13] Lionel Seinturier and Romain Rouvoy. “Informatique : Des logiciels mis au vert”. In: J’innove en
Nord Pas de Calais (Nov. 2013).

Bibliography for the Elasticity of Ubiquitous Systems

[Abi+05a] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley R. Schmerl, Nagi H. Nahas, and
Tony Tseng. “Modeling and implementing software architecture with Acme and ArchJava”. In:
Proceedings of the 27th International Conference on Software Engineering (ICSE) (2005).

[Abi+05b] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley R. Schmerl, Nagi H. Nahas, and
Tony Tseng. “Modeling and implementing software architecture with acme and archJava”. In:
ICSE. ACM, 2005, pp. 676-677.

70

[ACN02]

[AS11]
[Bac+00]

[BCL12]

[Bei07]
[BH77]

[BROO]

[Bru+-06]

[BVO5]

[Cao+08]

[Cos07]

[Cou+08]

[CSS11]

[Cue+10]

[DHT01]

[EHLO7]

[Ere+07]

[Fas+02]

[Flo+06]

[Fow04]

CHAPTER 4. CONCLUSIONS & PERSPECTIVES

J. Aldrich, C. Chambers, and D. Notkin. “ArchJava: connecting software architecture to imple-
mentation”. In: Proceedings of the 24th International Conference on Software Engineering. ICSE
2002 (2002).

Building Applications and Android Sdk. The Android Developer * s Cookbook. 2011, p. 355.

Felix Bachmann, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred Long, John Robert,
Robert Seacord, and Kurt Wallnau. Technical Concepts of Component-Based Software Engineer-
ing. Tech. rep. CMU/SEI-2000-TR~008. Pittsburgh, PA, USA: Carnegie Mellon Software Engi-
neering Institute, May 2000.

Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. A systematic review of software ar-
chitecture evolution research. 2012.

Beisiegel, M. et al. Service Component Architecture. http://www.osoa.org. 2007.

Henry C Baker Jr and Carl Hewitt. “The incremental garbage collection of processes”. In: ACM
SIGART Bulletin. Vol. 12. 64. ACM. 1977, pp. 55-59.

T. Batista and N. Rodriguez. “Dynamic reconfiguration of component-based applications”. In:
Software Engineering for Parallel and Distributed Systems, 2000. Proceedings. International Sym-
posium on (2000).

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani.
“The FRACTAL component model and its support in Java”. In: Softw., Pract. Exper. 36.11-12
(2006), pp. 1257-1284.

Roberto Baldoni and Antonino Virgillito. “Distributed event routing in publish/subscribe com-
munication systems: a survey”. In: DIS, Universita di Roma La Sapienza, Tech. Rep (2005), p. 5.

Qing Cao, Tarek Abdelzaher, John Stankovic, Kamin Whitehouse, and Ligian Luo. “Declarative
tracepoints: a programmable and application independent debugging system for wireless sensor
networks”. In: SenSys ’08: Proceedings of the 6th ACM conference on Embedded network sensor
systems. Raleigh, NC, USA: ACM, 2008, pp. 85-98.

Paolo et al. Costa. “The RUNES Middleware for Networked Embedded Systems and its Appli-
cation in a Disaster Management Scenario”. In: PERCOM ’07: Proceedings of the Fifth IEEE
International Conference on Pervasive Computing and Communications. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 69-78.

Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin Lee, Jo Ueyama,
and Thirunavukkarasu Sivaharan. A generic component model for building systems software. 2008.

Ivica Crnkovic, Judith A. Stafford, and Clemens A. Szyperski. “Software Components beyond
Programming: From Routines to Services”. In: IEEFE Software 28.3 (2011), pp. 22-26.

Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer
Chandra, and Paramvir Bahl. “MAUI: making smartphones last longer with code offload”. In:
Proceedings of the 8th international conference on Mobile systems, applications, and services.
ACM. 2010, pp. 49-62.

E.M. Dashofy, A. van der Hoek, and R.N. Taylor. “A highly-extensible, XML-based architecture
description language”. In: Proceedings Working IEEE/IFIP Conference on Software Architecture
(2001).

Clement Escoffier, Richard S. Hall, and Philippe Lalanda. “IPOJO: An extensible service-oriented
component framework”. In: Proceedings - 2007 IEEE International Conference on Services Com-
puting (SCC). 2007, pp. 474-481.

Justin R Erenkrantz, Michael Gorlick, Girish Suryanarayana, and Richard N Taylor. “From rep-
resentations to computations: the evolution of web architectures”. In: Proceedings of the the 6th
joint meeting of the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. ACM. 2007, pp. 255—264.

Jean-Philippe Fassino, Jean-Bernard Stefani, Julia L. Lawall, and Gilles Muller. “Think: A Soft-
ware Framework for Component-based Operating System Kernels”. In: Proceedings of the General
Track of the annual conference on USENIX Annual Technical Conference (ATEC). Berkeley, CA,
USA: USENIX Association, 2002, pp. 73-86.

Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli Gjgrven.
“Using architecture models for runtime adaptability”. In: IEEE Software 23 (2006), pp. 62-70.

Martin Fowler. Inversion of Control Containers and the Dependency Injection pattern. 2004.

4.2. PERSPECTIVES 71

[Gam+94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. 1st ed. Addison-Wesley Professional, Nov. 1994.

[Gay—+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. “The
nesC language: A holistic approach to networked embedded systems”. In: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation (PLDI). San
Diego, California, USA: ACM, 2003, pp. 1-11.

[Gen+02] Thomas Genssler, Alexander Christoph, Michael Winter, Oscar Nierstrasz, Stéphane Ducasse,
Roel Wuyts, Gabriela Arévalo, Bastiaan Schénhage, Peter O. Miiller, and Christian Stich. “Com-
ponents for embedded software: the PECOS approach”. In: Proceedings of the International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). Grenoble,
France: ACM, 2002, pp. 19-26.

[GHRO7] Simon Giesecke, Wilhelm Hasselbring, and Matthias Riebisch. “Classifying architectural con-
straints as a basis for software quality assessment”. In: Advanced FEngineering Informatics 21
(2007), pp. 169-179.

[Giu+09] Toana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso. “Calling the cloud:
enabling mobile phones as interfaces to cloud applications”. In: Middleware 2009. Springer, 2009,
pp. 83-102.

[GRA12] Toana Giurgiu, Oriana Riva, and Gustavo Alonso. “Dynamic software deployment from clouds to

mobile devices”. In: Middleware 2012. Springer, 2012, pp. 394-414.

[Han+04] Hans Hansson, Mikael Akerholm, Ivica Crnkovic, and Martin Torngren. “SaveCCM - A Compo-
nent Model for Safety-Critical Real-Time Systems”. In: Proceedings of the 30th EUROMICRO
Conference. Washington, DC, USA: IEEE Computer Society, 2004, pp. 627-635.

[HBST73] Carl Hewitt, Peter Bishop, and Richard Steiger. “A universal modular actor formalism for artificial
intelligence”. In: Proceedings of the 3rd international joint conference on Artificial intelligence.
Morgan Kaufmann Publishers Inc. 1973, pp. 235-245.

[HC04] Jonathan W. Hui and David Culler. “The dynamic behavior of a data dissemination protocol for
network programming at scale”. In: SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems. New York, NY, USA: ACM, 2004, pp. 81-94.

[KBK12] Goran Kalic, Iva Bojic, and Mario Kusek. “Energy consumption in android phones when using
wireless communication technologies”. In: MIPRO, 2012 Proceedings of the 35th International
Convention. IEEE. 2012, pp. 754-759.

[Kha+01] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R.N. Taylor. “xADL: enabling architecture-
centric tool integration with XML”. In: Proceedings of the 84th Annual Hawaii International Con-
ference on System Sciences (2001).

[Lec+07] Matthieu Leclercq, Ali Erdem Ozcan, Vivien Quéma, and Jean-Bernard Stefani. “Supporting
Heterogeneous Architecture Descriptions in an Extensible Toolset”. In: ICSE. IEEE, 2007, pp. 209—
219.

[Lev+04] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo, David Gay, Jason Hill,
Matt Welsh, Eric Brewer, and David Culler. “TinyOS: An operating system for sensor networks”.
In: Ambient Intelligence. Berlin, Germany: Springer Verlag, 2004, 15—148.

[LGO09] Philip Levis and David Gay. “TinyOS Programming”. In: ReVision 28 (2009), p. 2006.

[LP10] Daniel Le Berre and Anne Parrain. “The Sat4j library, release 2.2 system description”. In: Journal
on Satisfiability, Boolean Modeling and Computation 7 (2010), pp. 59-64.

[LT11] Eemil Lagerspetz and Sasu Tarkoma. “Mobile search and the cloud: The benefits of offloading”.

In: Pervasive Computing and Communications Workshops (PERCOM Workshops), 2011 IEEE
International Conference on. IEEE. 2011, pp. 117-122.

[LWO07] Kung-Kiu Lau and Zheng Wang. Software Component Models. 2007.

[McK+04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. “Composing
Adaptive Software”. In: Computer 37.7 (2004), pp. 56—64.

[MIC93] MICROSOFT COM. www.microsoft.com/com. 1993.

[MMO3] Nikunj R. Mehta and Nenad Medvidovic. Composing architectural styles from architectural prim-
itives. 2003.

[Mor+09] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. “Taming dynamically adap-
tive systems using models and aspects”. In: Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society. 2009, pp. 122-132.

72

[MP11]
[MPAOS]

[0de06]

[OMGO6]
[0Z05]

[P15+08]

[RCO03]

[SGOg]
[Ste+09]
[Szy02]
[Van-+00]
[Van08]
[WZC06]

[Yan+07]

[Yan+13]

CHAPTER 4. CONCLUSIONS & PERSPECTIVES

Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks. 2011.

Luca Mottola, Gian Pietro Picco, and Adil Amjad Sheikh. “FiGaRo: Fine-grained software re-
configuration for wireless sensor networks”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 4913
LNCS. 2008, pp. 286-304.

Martin Odersky. “The Scala experiment: can we provide better language support for component
systems?” In: POPL. ACM, 2006, pp. 166-167.

OMG. CORBA Component Model Specifications. http://www.ong.org/spec/CCM/4.0. 2006.

Martin Odersky and Matthias Zenger. “Scalable component abstractions”. In: OOPSLA. ACM,
2005, pp. 41-57.

Ales Plsek, Frédéric Loiret, Philippe Merle, and Lionel Seinturier. “A component framework for
java-based real-time embedded systems”. In: Proceedings of the 9th ACM/IFIP/USENIX Interna-
tional Conference on Middleware (Middleware). Leuven, Belgium: Springer-Verlag, 2008, pp. 124—
143.

Anand Ranganathan and Roy H. Campbell. “A middleware for context-aware agents in ubiquitous
computing environments”. In: Middleware ’03: Proceedings of the ACM/IFIP/USENIX Interna-
tional Conference on Middleware. Rio de Janeiro, Brazil: Springer-Verlag, 2003, pp. 143-161.

Ryo Sugihara and Rajesh K. Gupta. “Programming models for sensor networks: A survey”. In:
ACM Transactions on Sensor Networks (TOSN) 4.2 (2008), pp. 1-29.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling
Framework 2.0. 2nd. Addison-Wesley Professional, 2009.

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd edition.
Boston, MA, USA: Addison-Wesley, 2002.

Rob Van Ommering, Frank Van der Linden, Jeff Kramer, and Jeff Magee. “The Koala Component
Model for Consumer Electronics Software”. In: Computer 33.3 (2000), pp. 78-85.

Robbie Vanbrabant. Google guice: Agile lightweight dependency injection framework. 2008, pp. 1—
181.

Qiang Wang, Yaoyao Zhu, and Liang Cheng. “Reprogramming wireless sensor networks: challenges
and approaches”. In: IEEE Network 20.3 (2006), pp. 48-55.

Jing Yang, Mary Lou Soffa, Leo Selavo, and Kamin Whitehouse. “Clairvoyant: a comprehensive
source-level debugger for wireless sensor networks”. In: SenSys ’07: Proceedings of the 5th in-
ternational conference on Embedded networked sensor systems. Sydney, Australia: ACM, 2007,
pp. 189-203.

Seungjun Yang, Yongin Kwon, Yeongpil Cho, Hayoon Yi, Donghyun Kwon, Jonghee Youn, and
Yunheung Paek. “Fast Dynamic Execution Offloading for Efficient Mobile Cloud Computing”. In:
IEFEFE International Conference on Pervasive Computing and Communications (PerCom). Vol. 18.
2013, p. 22.

Bibliography for the Contextualization of Ubiquitous Systems

[Aha+11]

[Ati+03]

[Ban+11]

[BBF02]

[BDRO7]

N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland. “Social fMRI: Investigating and shaping
social mechanisms in the real world”. In: Pervasive and Mobile Computing (2011).

Michael Atighetchi, Partha P. Pal, Christopher C. Jones, Paul Rubel, Richard E. Schantz, Joseph
P. Loyall, and John A. Zinky. “Building Auto-Adaptive Distributed Applications: The QuO-APOD
Experience”. In: Distributed Computing Systems Workshops. IEEE, May 2003, pp. 104-109.

Prith Banerjee, Richard Friedrich, Cullen Bash, Patrick Goldsack, Bernardo A. Huberman, John
Manley, Chandrakant Patel, Parthasarathy Ranganathan, and Alistair Veitch. “Everything as a
service: Powering the new information economy”. In: Computer 44 (2011), pp. 36-43.

Céline Boutros Saab, Xavier Bonnaire, and Bertil Folliot. “PHOENIX: A Self Adaptable Moni-
toring Platform for Cluster Management”. In: Cluster Computing 5.1 (2002), pp. 75-85.

Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware systems.
2007.

4.2. PERSPECTIVES 73

[Bia+11] James Biagioni, Tomas Gerlich, Timothy Merrifield, and Jakob Eriksson. “EasyTracker: automatic
transit tracking, mapping, and arrival time prediction using smartphones”. In: 9th Int. Conf. on
EmbeddedNetworked Sensor Systems. Seattle, WA, USA: ACM, Nov. 2011.

[Bur+00] J.A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M.B. Srivastava.
“Participatory Sensing”. In: (2006).

[CB10] NM Chowdhury and Raouf Boutaba. “A survey of network virtualization”. In: Computer Networks
54.5 (2010), pp. 862-876.

[CHKO08] D. Cuff, M. Hansen, and J. Kang. “Urban Sensing: Out of the Woods”. In: Communications of
the ACM 51.3 (2008).

[Cou+03] L. Courtrai, F. Guidec, N. Le Sommer, and Y. Mahéo. “Resource Management for Parallel Adap-
tive Components”. In: IEEE IPDPS Workshop on Java for Parallel and Distributed Computing.
Nice, France, Apr. 2003, pp. 134-141.

[Dar07] Waltenegus Dargie. “The Role of Probabilistic Schemes in Multisensor Context-Awareness”. In:
5th IEEE International Conference on Pervasive Computing and Communication workshops (Per-
Com’07). IEEE, 2007, pp. 27-32.

[Dut+09] P. Dutta, P.M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and A. Woodruff. “Common
Sense: Participatory Urban Sensing Using a Network of Handheld Air Quality Monitors”. In: 7th
ACM Conf. on Embedded Networked Sensor Systems. ACM. 2009.

[Gar07] Gartner. “Green IT: The New Industry Shockwave”. In: Gartner. Presentation at Symposium/ITXPO
Conference, 2007.

[HSK09] Jong-yi Hong, Eui-ho Suh, and Sung-Jin Kim. Context-aware systems: A literature review and
classification. 2009.

[Int04] Intel. Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor. White Paper. Mar.
2004.

[Kha+13] Wazir Zada Khan, Yang Xiang, Mohammed Y Aalsalem, and Quratulain Arshad. “Mobile Phone
Sensing Systems: A Survey”. In: IEEE Communications Surveys & Tutorials 15 (2013), pp. 402
427.

[Lan+10] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew
T. Campbell. “A survey of mobile phone sensing”. In: IEEE Communications Magazine 48 (2010),
pp. 140-150.

[Liu+09] L. Liu, C. Andris, A. Biderman, and C. Ratti. “Uncovering Taxi Driver’s Mobility Intelligence
through His Trace”. In: IEEFE Pervasive Computing (2009).

[Mil+10] Emiliano Miluzzo, Nicholas D. Lane, Hong Lu, and Andrew T. Campbell. “Research in the App
Store Era: Experiences from the CenceMe App Deployment on the iPhone”. In: 1st Int. Work. Re-
search in the Large: Using App Stores, Markets, and other wide distribution channels in UbiComp
research. 2010.

[MRF03] Rene Mayrhofer, Harald Radi, and Alois Ferscha. “Recognizing and Predicting Context by Learn-
ing from User Behavior”. In: International Conference on Advances in Mobile Multimedia. Sept.
2003, pp. 25-35.

[Mun+09] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard, R. West, and
P. Boda. “PEIR, The Personal Environmental Impact Report, as a Platform for Participatory
Sensing Systems Research”. In: 7th Int. Conf. on Mobile Systems, Applications, and Services.
ACM. 2009.

[Pad+05] Amir Padovitz, Arkady Zaslavsky, Seng Wai Loke, and Bernard Burg. “Maintaining Continuous
Dependability in Sensor-Based Context-Aware Pervasive Computing Systems”. In: 38th Annual
Hawaii International Conference on System Sciences (HICSS’05). IEEE Computer Society, 2005.

[Per+14] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos. “Context aware
computing for the internet of things: A survey”. In: IEEE Communications Surveys and Tutorials
16 (2014), pp. 414-454. arXiv: 1305.0982.

[Riv+07] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos Kozyrakis. “Joule-
Sort: a balanced energy-efficiency benchmark”. In: Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’07. Beijing, China: ACM, 2007, pp. 365—
376.

74 CHAPTER 4. CONCLUSIONS & PERSPECTIVES

[RRMO06] Couto Antunes da Rocha, Ricardo, and Endler Markus. “Middleware: Context Management in
Heterogeneous, Evolving Ubiquitous Environments”. In: IEEE Distributed Systems Online 7.4
(2006).

[SAHO7] Odysseas Sekkas, Christos B. Anagnostopoulos, and Stathes Hadjiefthymiades. “Context Fusion

Through Imprecise Reasoning”. In: IEEFE International Conference on Pervasive Services. IEEE,
2007, pp. 88-91.

[Sha09] J. Sharkey. “Coding for life-battery life, that is”. In: Google IO Developer Conf. 2009.

[Soh+06] Timothy Sohn, Alex Varshavsky, Anthony LaMarca, Mike Y. Chen, Tanzeem Choudhury, Ian E.
Smith, Sunny Consolvo, Jeffrey Hightower, William G. Griswold, and Eyal de Lara. “Mobility
Detection Using Everyday GSM Traces”. In: 8th Int. Conf. on Ubiquitous Computing. Vol. 4206.
LNCS. Orange County, CA, USA: Springer, 2006.

[SW10] Aamna Saeed and Tabinda Waheed. “An extensive survey of context-aware middleware archi-
tectures”. In: 2010 IEEE International Conference on Electro/Information Technology, EIT2010.
2010.

[SWVO0T] Kamran Sheikh, Maarten Wegdam, and Marten Van Sinderen. “Middleware support for quality of
context in pervasive context-aware systems”. In: Proceedings - Fifth Annual IEEE International
Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2007.
2007, pp. 461-466.

[TCO04] Lynda Temal and Denis Conan. “Failure, Connectivity and Disconnection Detectors”. In: Ist
French-speaking Conference on Mobility and Ubiquity Computing (UbiMob’04). ACM, 2004, pp. 90—
97.

[Ver+10] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. Demeester. “Overall ICT foot-
print and green communication technologies”. In: Proceedings of the 4th International Symposium
on Communications, Control and Signal Processing. 2010, pp. 1-6.

[Web08] Molly Webb. SMART 2020: enabling the low carbon economy in the information age, a report by
The Climate Group on behalf of the Global eSustainability Initiative (GeSI). GeSI, 2008.
[Wu03] Huadong Wu. “Sensor Data Fusion for Context-aware Computing using Dempster-shafer Theory”.

PhD thesis. Carnergie Mellon University, Pittsburgh, 2003.

[ZWS04] Shu Zhou, M-Y Wu, and Wei Shu. “Finding optimal placements for mobile sensors: wireless
sensor network topology adjustment”. In: Emerging Technologies: Frontiers of Mobile and Wireless
Communication, 2004. Proceedings of the IEEE 6th Circuits and Systems Symposium on. Vol. 2.
IEEE. 2004, pp. 529-532.

Bibliography for the Self-Adaptation of Ubiquitous Systems

[AB99] Tarek F. Abdelzaher and Nina T. Bhatti. “Web server QoS management by adaptive content
delivery”. In: 7th International Workshop on Quality of Service. IWQoS. London: IEEE, 1999,
pp. 216-225.

[Abd00] Tarek F. Abdelzaher. “Modeling and performance control of Internet servers”. In: 39th IEEE
Conference on Decision and Control. Vol. 3. IEEE, 2000, pp. 2234-2239.

[Apt03] Krzysztof Apt. Principles of Constraint Programming. New York, NY, USA: Cambridge University
Press, 2003.

[AS06] Tarek F. Abdelzaher and John A. Stankovic. “Feedback Control Architecture and Design Method-

ology for Service Delay Guarantees in Web Servers”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 17.9 (Sept. 2006), pp. 1014-1027.

[ASBO02] Tarek F. Abdelzaher, Kang G. Shin, and Nina T. Bhatti. “Performance guarantees for Web server
end-systems: a control-theoretical approach”. In: IEEE Transactions on Parallel and Distributed
Systems 13.1 (2002), pp. 80-96.

[BBBO07] Mikagl Beauvois, Djamel Belaid, and Guy Bernard. “A Planning Framework for Dynamic Config-
uration in Mobile Environments”. In: GIIS’07: 1st International Workshop on Seamless Services
Mobility (SSMO). 2007.

[Box+00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk,
Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.
org/TR/2000/NOTE-SOAP-20000508. May 2000.

4.2. PERSPECTIVES 75

[Bru+09]

[Cap+14]

[Cas+11]

[CGS09]

[Cha+10]

[Che+09]

[Coa99]
[Crn02]

[Ded+06]

[Don+08]
[Eke-+03]

[Ex105)
[FGB11]

[FHM14]

[Gei+09]

[Gra+11]

[Gut99]
[Hel+04]

[Hew?77]

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, H. Kienle, Marin Litoiu,
H. Miiller, M. Pezze, and Mary Shaw. “Engineering Self-Adaptive Systems Through Feedback
Loops”. In: Software Engineering for Self-Adaptive Systems (2009), pp. 48-70.

Mauro Caporuscio, Marco Funaro, Carlo Ghezzi, and Valérie Issarny. “\emph{ubi}REST: {A}
RESTful Service-Oriented Middleware for Ubiquitous Networking”. In: Advanced Web Services.
Ed. by Athman Bouguettaya, Quan Z Sheng, and Florian Daniel. Springer, 2014, pp. 475-500.

Damien Cassou, Emilie Balland, Charles Consel, and Julia Lawall. “Leveraging software architec-
tures to guide and verify the development of sense/compute/control applications”. In: 38rd In-
ternational Conference on Software Engineering. ICSE. New York, New York, USA: ACM Press,
2011, p. 431.

Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Evaluating the effectiveness of the Rain-
bow self-adaptive system”. In: Jth ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS. IEEE, May 2009, pp. 132-141.

Goutam Chakraborty, Kshirasagar Naik, Debasish Chakraborty, Norio Shiratori, and David Wei.
“Analysis of the Bluetooth device discovery protocol”. In: Wireless Networks 16 (2010), pp. 421—
436.

Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper An-
dersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo,
Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor
Karsai, Holger Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi Miiller,
Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, Jon Whittle, Rogério
Lemos, et al. “Software Engineering for Self-Adaptive Systems: A Research Roadmap”. In: Soft-
ware Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science 5525 (June 2009).
Ed. by Betty Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, pp. 1-26.

Workflow Management Coalition. Workflow Management Coalition Terminology Glossary. 1999.

Ivica Crnkovic. Building Reliable Component-Based Software Systems. Norwood, MA, USA: Artech
House, Inc., 2002.

Jessie Dedecker, Tom van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolfgang De Meuter.
“Ambient-Oriented Programming in AmbientTalk”. In: ECOOP 2006 — Object-Oriented Program-
ming. Vol. 4067. 2006, pp. 230-254.

Andrew Donoho, Jose Costa-requena, Tom Mcgee, Alan Messer, Andrew Fiddian-green, and John
Fuller. “UPnP™ Device Architecture 1.17. In: Architecture (2008), pp. 1-136.

J. Eker, J.W. Janneck, E.A. Lee, J. Ludvig, S. Neuendorffer, and S. Sachs. “Taming heterogeneity
- the Ptolemy approach”. In: IEEFE 91.1 (Jan. 2003), pp. 127-144.

Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. 2005, p. 760.

Carlos A Flores-Cortés, Paul Grace, and Gordon S Blair. “SeDiM: {A} Middleware Framework
for Interoperable Service Discovery in Heterogeneous Networks”. In: TAAS 6.1 (2011), p. 6.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. “Automated Design of Self-Adaptive Soft-
ware with Control-Theoretical Formal Guarantees”. In: Proc. 36th International Conference on
Software Engineering. ICSE. Hyderabad, 2014.

Kurt Geihs, Paolo Barone, Frank Eliassen, Jacqueline Floch, Rolf Fricke, Eli Gjgrven, Svein O.
Hallsteinsen, Geir Horn, Mohammad Ullah Khan, Alessandro Mamelli, George A. Papadopoulos,
Nearchos Paspallis, Roland Reichle, and Erlend Stav. “A comprehensive solution for application-
level adaptation”. In: Software - Practice and Experience 39.4 (2009), pp. 385-422.

Paul Grace, Nikolaos Georgantas, Amel Bennaceur, Gordon S. Blair, Franck Chauvel, Valérie Is-
sarny, Massimo Paolucci, Rachid Saadi, Betrand Souville, and Daniel Sykes. “The CONNECT
architecture”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). Vol. 6659 LNCS. 2011, pp. 27-52.

Erik Guttman. “Service location protocol: automatic discovery of IP network services”. In: IEEE
Internet Computing 3 (1999), pp. 71-80.

J.L. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury. Feedback control of computing systems.
Wiley Online Library, 2004, p. 451.

Carl Hewitt. “Viewing control structures as patterns of passing messages”. In: Artificial Intelli-
gence 8.3 (June 1977), pp. 323-364.

76

[HLWO09]
[HO09)]

[Hu+07]

[KC03]

[KCF14]

[KDO7]
[Kep05]

[KL03]

(KRGOS]
[Kril3]
[KTO8]

[LQS05]

[Lu+02]

[Mok-+08]

[MPMO05]

IMPS08]

[NBROG6]

[NLO3]

[Rav+06]

[ST09]

CHAPTER 4. CONCLUSIONS & PERSPECTIVES

Sebastian Hudert, Heiko Ludwig, and Guido Wirtz. “Negotiating SLLAs-An approach for a generic
negotiation framework for WS-agreement”. In: Journal of Grid Computing 7 (2009), pp. 225-246.

Philipp Haller and Martin Odersky. “Scala Actors: Unifying thread-based and event-based pro-
gramming”. In: Theoretical Computer Science 410.2-3 (Feb. 2009), pp. 202—-220.

Xiaoming Hu, Yun Ding, Nearchos Paspallis, Pyrros Bratskas, George A Papadopoulos, Paolo
Barone, and Alessandro Mamelli. “A Peer-to-Peer based infrastructure for Context Distribution in
Mobile and Ubiquitous Environments”. In: Proceedings of 3rd International Workshop on Context-
Aware Mobile Systems (CAMS’07). Vilamoura, Algarve, Portugal, Nov. 2007.

Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic Computing”. In: Computer
36.1 (Jan. 2003), pp. 41-50.

Filip Krikava, Philippe Collet, and Robert France. “ACTRESS: Domain-Specific Modeling of
Self-Adaptive Software Architectures”. In: Symposium on Applied Computing (SAC), track on
Dependable and Adaptive Distributed Systems (DADS). ACM. Gyeongju (Korea), Mar. 2014.

Jeffrey O. Kephart and Rajarshi Das. “Achieving self-management via utility functions”. In: IEEE
Internet Computing 11 (2007), pp. 40-48.

Jeffrey 0. Kephart. “Research challenges of autonomic computing”. In: Software Engineering
(2005).

Alexander Keller and Heiko Ludwig. “The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services”. In: Journal of Network and Systems Management 11 (2003),
pp. 57-81.

Mohammad Ullah Khan, Roland Reichle, and Kurt Geihs. “Architectural constraints in the model-
driven development of self-adaptive applications”. In: IEEE Distributed Systems Online 9 (2008).

Filip Krikava. “Domain-Specific Modeling Language for Self-Adaptive Software System Architec-
tures”. PhD thesis. University of Nice Sophia-Antipolis, 2013.

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press, 2008.

Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. “DREAM: A Component Frame-
work for Constructing Resource-Aware, Configurable Middleware”. In: IEEE Distributed Systems
Online (DSO) 6.9 (Sept. 2005), pp. 1-12.

Ying Lu, Tarek Abdelzaher, Chenyang Lu, and Gang Tao. “An adaptive control framework for
QoS guarantees and its application to differentiated caching”. In: 10th International Workshop on
Quality of Service. IWQoS. TEEE, 2002, pp. 23-32.

Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie Issarny, and Yolande Berbers.
“EASY: Efficient semAntic Service discoverY in pervasive computing environments with QoS and
context support”. In: Journal of Systems and Software 81 (2008), pp. 785-808.

Graham Morgan, Simon Parkin, and C Molina-Jimenez. “Monitoring middleware for service level
agreements in heterogeneous environments”. In: Challenges of Expanding Internet: E-Commerce,
E-Business, and E-Government. IFIP International Federation for Information Processing 189
(2005), pp. 79-93.

Hausi Miiller, Mauro Pezze, and Mary Shaw. “Visibility of control in adaptive systems”. In:
Proceedings of the 2nd international workshop on Ultra-large-scale software-intensive systems -
ULSSIS ’08. ULSSIS. New York, New York, USA: ACM Press, 2008, pp. 23-26.

Dionisio De Niz, Gaurav Bhatia, and Raj Rajkumar. “Model-Based Development of Embedded
Systems: The SysWeaver Approach”. In: 12th IEEE Real-Time and Embedded Technology and
Applications Symposium. RTAS c. 2006.

Sandeep Neema and Akos Ledeczi. “Constraint-guided self-adaptation”. In: Proceedings of the 2nd
international conference on Self-adaptive software: applications. IWSAS’01. Balatonfüred,
Hungary: Springer-Verlag, 2003, pp. 39-51.

Pierre Guillaume Raverdy, Oriana Riva, Agnés De La Chapelle, Rafik Chibout, and Valérie Is-

sarny. “Efficient context-aware service discovery in multi-protocol pervasive environments”. In:
Proceedings - IEEFE International Conference on Mobile Data Management. Vol. 2006. 2006.

Magzeiar Salehie and Ladan Tahvildari. “Self-adaptive software: Landscape and research chal-
lenges”. In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4.2 (2009), pp. 1-
42.

4.2. PERSPECTIVES 77

[TMDO09] Richard N. Taylor, Nenad Medvidovic, and Irvine E. Dashofy. Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons, Jan. 2009.

[Xia08] XiPeng Xiao. Technical, Commercial and Regulatory Challenges of QoS: An Internet Service
Model Perspective. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.
[Zha03] Yang Zhao. A Model of Computation with Push and Pull Processing. Tech. rep. Technical Mem-

orandum UCB/ERL M03/51, University of California, Berkeley, 2003.

[ZMNO5] Fen Zhu, Matt W. Mutka, and Lionel M. Ni. “Service Discovery in Pervasive Computing Envi-
ronments”. In: IEEE Pervasive Computing 4.4 (2005), pp. 81-90.

