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Reduced Order Models, Forward and

Inverse Problems in Cardiac Electrophysiology

Abstract: This PhD thesis is dedicated to the investigation of the forward and the
inverse problems in cardiac electrophysiology. Since the equations that describe the
electrical activity of the heart can be very demanding from a computational point
of view, a particular attention is paid to the reduced order methods and to their
application to the electrophysiology models.

First, we introduce the mathematical and numerical models of electrophysiology
and we implement them to provide for simulations that are validated against various
qualitative and quantitative criteria found in the medical literature. Since our
model takes into account atria and ventricles, we are able to reproduce full cycle
Electrocardiograms (ECG) in healthy configurations and also in several pathological
cases.

Then, few reduced order methods are investigated for the resolution of the elec-
trophysiology equations. The Proper Orthogonal Decomposition (POD) method
is applied for the discretization of the electrophysiology equations in different con-
figurations, as for instance the simulation of a myocardial infarction. Also, the
method is used in order to solve some parameters identification problems such as
the identification of an infarcted zone using the Electrocardiogram measures and
the efficient simulation of restitution curves. To circumvent some limitations of the
POD method, an innovative reduced order method based on the Approximated Lax
Pairs (ALP) is investigated. This method is applied to the forward and inverse
problems. Finally, a new reduced order algorithm is proposed, based on the ALP
and the Discrete Empirical Interpolation methods. This new approach significantly
improves the efficiency of the original ALP algorithm and allow us to consider more
complex models used in electrophysiology.

Keywords: Mathematical modelling, Cardiac electrophysiology, Computational
Electrocardiogram, Inverse problem, Reduced order method, Proper orthogonal
decomposition, Approximated Lax pairs.





Modèles d’ordre réduit, problèmes

directs et inverses en électrophysiologie cardiaque

Resumé: Cette thèse de doctorat est consacrée à l’étude des problèmes direct et
inverse en électrophysiologie cardiaque. Comme les équations qui décrivent l’activité
électrique du cœur peuvent être très couteuses en temps de calcul, une attention
particulière est apportée aux méthodes d’ordre réduit et à leur applications aux
modèles de l’électrophysiologie.

Dans un premier temps, nous introduisons les modèles mathématiques et
numériques de l’électrophysiologie cardiaque. Ces modèles nous permettent de
réaliser des simulations numériques que nous validons à l’aide de plusieurs critères
qualitatifs et quantitatifs trouvés dans la littérature médicale. Comme notre modèle
prend en compte les oreillettes et les ventricules, nous sommes capables de reproduire
des cycles complets d’électrocardiogrammes (ECG) à la fois dans des conditions
saines et dans des cas pathologiques.

Ensuite, plusieurs méthodes d’ordre réduit sont étudiées pour la résolution des
équations de l’électrophysiologie. La méthode Proper Orthogonal Decomposition
(POD) est appliquée pour la discrétisation des équations de l’électrophysiologie
dans plusieurs configurations, comme par exemple la simulation d’un infarctus du
myocarde. De plus, cette méthode est utilisée pour résoudre quelques problèmes
d’identification de paramètres comme localiser un infarctus à partir de mesures d’un
électrocardiogramme ou simuler une courbe de restitution. Pour contourner les
limitations de la POD, une nouvelle méthode basée sur des couples de Lax approchés
(Approximated Lax Pairs, ALP) est utilisée. Cette méthode est appliquée aux
problèmes direct et inverse. Pour finir, un nouvel algorithme, basé sur les méthodes
ALP et l’interpolation empirique discrète, est proposé. Cette nouvelle approche
améliore significativement l’efficacité de l’algorithme original ALP et nous permet de
considérer des modèles plus complexes utilisés en électrophysiologie cardiaque.

Mots-clés: Modellisation mathématique, Électrophysiologie cardiaque, Électro-
cardiogramme, Problèmes inverses, Méthodes d’ordre réduit, Proper Orthogonal
Decomposition, Couples de Lax approchés.
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Introduction

Thesis general context

Cardiac electrophysiology is the science that studies the electrical activity of
the heart. One of the most used exams providing an accurate recording of the
heart’s activity is the Electrocardiogram (ECG). This medical procedure represents
a fast, noninvasive and inexpensive technique. The measure of the heart’s electrical
activity with an ECG allows a medical doctor to make a diagnosis. In the future,
the mathematical modelling and the numerical simulation may also help to better
exploit these signals and to improve the diagnosis and the prognosis.

Mathematical and numerical modelling allows us to represent the heart behavior.
In particular, the idea is to reconstruct the cardiac electro-mechanical activity using
some measures like the ECG. In this manuscript we will concentrate only on the
electrical part and we will neglect the heart’s mechanics.

In order to address the inverse problem of electrocardiology, i.e. reconstruct the
electrical potential of the heart from an ECG, we choose to start from an accurate
forward model that can describe this phenomenon. The equations which describe
the cardiac electrical activity are called bidomain equations [Tun78]. It is a system
of two partial differential equations which is coupled with a model describing the
ionic exchanges between cardiac tissue cells. The resolution of these systems need
some accurate numerical methods, such as the finite elements, which can be very
expensive from a computational point of view. In the purpose of using these models
for the resolution of the inverse problem and to make numerical tools useful for the
clinicians, it is necessary to reduce as much as possible the computational time of
the simulations. To decrease the computational time, we propose to use reduced
order methods. These methods are used in several scientific computing fields. They
are based on the idea of decreasing the number of degrees of freedom by adding some
information hidden in the solution of the problem.

In the last decade, the cardiac electrophysiology modelling has been one of the
main subjects of interest of REO team, in collaboration with the MΞDISIM team
(previously MACS) of Inria–Saclay. Previous works developed in REO team provided
accurate numerical simulations of cardiac electrophysiology equations, this was the
context for instance of the PhD work of Nejib Zemzemi [Zem09]. A particular
attention has been paid to the parameters identification problem. Also, the first
applications of reduced-order methods with Proper Orthogonal Decomposition have
been proposed.
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The principal contributions of this work deal with the forward and inverse
electrophysiology problems and with the application of reduced-order methods to
both problems. The mathematical and numerical models used in [Zem09] have been
improved in order to provide more realistic results, including simulations on the
whole heart (atria and ventricles) and full cycle electrocardiograms computation
in various pathological cases too. The results have been validated against various
criteria found in the medical literature. Some reduced order models have been applied
to the cardiac electrophysiology equations in several contexts and also used in the
inverse problems of parameters identification and state estimation. In particular, the
Proper Orthogonal Decomposition has been used and adapted for the simulation
and the identification of a myocardial infarction. Also, some new approaches of
the reduced-order models based on Approximated Lax Pairs have been applied to
electrophysiology equations and used in a data assimilation technique to estimate
the state of the system.

Thesis outline

In Chapter 1 the principal models used in this work are introduced. A description
of the heart physiology and electrical activity is provided. We introduce the reader
to the domain of electrophysiology and electrocardiograms with some historical notes
on the subject. Then, the mathematical models used in cardiac electrophysiology
are detailed. Finally, the state-of-art on cardiac electrophysiology inverse problems
and on reduced-order methods is provided.

In Chapter 2 we detail the improvement accomplished in the numerical simulations
of electrocardiograms. This work provides full cycle electrocardiograms thanks to the
coupling of the ventricles geometry (volume domain) to the atria geometry (surface).
In fact, a modelling effort has been made in order to couple these two structures since
atria are a thin surface and need specific model equations. Also, the introduction of
a more realistic and complete geometry allowed us to provide accurate simulations
of several pathologies. This work is in collaboration with Annabelle Collin, PhD
student in MΞDISIM team, and Jean-Frédéric Gerbeau and is part of a paper that
has to be submitted.

Chapter 3 provides some theoretical results on the estimates of some parameters
of the electrophysiology equations. These results are obtained in collaboration with
Muriel Boulakia.

In Chapters 4 and 5 the Proper Orthogonal Decomposition (POD) method is
applied to cardiac electrophysiology. In particular, in Chapter 4 the POD method is
used for the simulation of electrocardiograms when some parameters of the model
change and for the simulation of myocardial infarction. Also, the method is applied
to the identification of four of the parameters of the model and to the identification
of the infarcted region with a Genetic Algorithm. This work is in collaboration with
Muriel Boulakia and Jean-Frédéric Gerbeau and it is part of a published paper.

In Chapter 5 we introduce the definition of the restitution curve and we use it for
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the identification of some of the ionic parameters. Also, this definition is extended
to the electrocardiogram measures and the identification of the parameters using
some synthetic data reproduced with the POD method.

Chapters 6, 7 and 8 deal with a new reduced order method based on Approximated
Lax Pairs (ALP), which has been introduced by Gerbeau and Lombardi in [GL14].
These works have been developed in collaboration with Damiano Lombardi, researcher
in the REO team, and Jean-Frédéric Gerbeau.

The method is applied to electrophysiology equations in Chapter 6 in some
particular challenging settings such as the heterogeneity of some parameters and
source terms which are unknown.

In Chapter 7 we deal with some inverse problems. In particular the reduced-order
method introduced in Chapter 6 is applied to a data assimilation technique in order to
estimate the state in two configurations: the identification of a source term location
using some synthetic Micro-Electrode Arrays measures, and the estimation of the
epicardial potential using some electrodes vest measures on a simplified geometry.

In Chapter 8 a new reduced-order approach based on Approximated Lax Paris
and Discrete Empirical Interpolation Methods is introduced. The method is applied
to the electrophysiology equations and the possible developments of this method are
exposed.

Finally, the main conclusions are drawn.

Most of the chapters can be read independently, except for Chapters 7 and 8
whose comprehension in strictly linked to Chapter 6. However, we suggest a reading
in the order proposed by the author.
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Introduction (Français)

Contexte général de la thèse

L’électrophysiolgie cardiaque est la science qui étudie l’activité électrique du cœur.
L’un des examens les plus utilisés permettant d’avoir une mesure précise de l’activité
électrique du cœur est l’électrocardiogramme (ECG). Cet outil médical représente
une technique rapide, non invasive et peu coûteuse. La mesure de l’activité électrique
du cœur par l’ECG permet aux médecins d’établir un diagnostic. Dans le futur, la
modélisation mathématique et la simulation numérique permettront peut-être de
mieux exploiter ces signaux, et d’améliorer le diagnostique et le pronostique.

La modélisation mathématique et numérique permet de fournir une représentation
du comportement du cœur. En particulier, l’idée est de pouvoir reconstruire l’activité
électro-méchanique cardiaque à partir de mesures de type électrocardiogramme. Dans
ce manuscrit on se concentrera uniquement sur l’aspect électrique du cœur.

Pour pouvoir résoudre le problème inverse de l’électrocardiologie, c’est à dire
reconstruire le potentiel électrique du cœur à partir d’un ECG, nous choisissons de
nous baser sur un modèle direct précis qui décrit ce phénomène. Les équations qui
décrivent l’activité électrique cardiaque sont appelées les équations bidomaine [Tun78].
Il s’agit d’un système de deux équations aux dérivées partielles couplé à des modèles
décrivant les échanges ioniques entre les cellules du tissus cardiaque qui peuvent
être constituées de plusieurs équations différentielles. La résolution de ces systèmes
nécessite des modèles numériques précis, ce qui implique que les simulations qui
en découlent peuvent être très couteuses en temps avec des méthodes de résolution
telle que la méthode des éléments finis. Dans le but d’utiliser ces modèles pour la
résolution du problème inverse et de rendre ces outils numériques utilisables par les
cliniciens, il est nécessaire que les simulations soient le plus rapide possible. Pour
diminuer les temps de calculs, on propose d’utiliser des méthodes d’ordre réduit. Le
principe de ces méthodes, utilisées dans plusieurs domaines de calcul scientifique,
est de diminuer le nombre de dégrés de liberté tout en ajoutant des informations
apportées par la solution du problème.

Durant la dernière décennie, l’électrophysiologie cardiaque a été l’un des prin-
cipaux sujets d’intérêt de l’équipe REO, en collaboration avec l’équipe MΞDISIM
(anciennement MACS) de l’Inria–Saclay. Les travaux précédents de l’équipe REO
ont fourni des simulations numériques précises des équations de l’électrophysiologie
cardiaque, comme par exemple dans la thèse de doctorat de Nejib Zemzemi [Zem09].
Une attention particulière a été apportée au problème d’idéntification de paramètres.
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Les premières applications de modèles d’ordre réduit avec la Proper Orthogonal
Decomposition furent de plus proposées.

Les contributions principales de cette thèse portent sur les problèmes direct et
inverse de l’électrophysiologie cardiaque, et à l’application de modèles d’ordre réduit
à ces problèmes. Les modèles mathématiques et numériques utilisés dans [Zem09] ont
été améliorés pour fournir des résultats plus réalistes, comprenant des simulations sur
un cœur entier (oreillettes et ventricules) et le calcul d’un électrocardiogramme pour
un cycle cardiaque complet sur des cas sains mais aussi pour différentes pathologies.
Les résultats ont été validés à l’aide de divers critères issus de la littérature médicale.
Des modèles d’ordre réduit ont été appliqués aux équations de l’électrophysiologie
cardiaque et utilisés aussi dans le problème inverse d’identification de paramètres et
d’estimation d’état. En particulier, la Proper Othogonal Decomposition a été utilisée
et adaptée pour la simulation et l’identification d’un infarctus du myocarde. De
plus, de nouvelles techniques de réduction de modèle basées sur des couples de Lax
approchés ont été appliquées aux équations de l’électrophysiologie et utilisées dans
une technique d’assimilation de données pour estimer l’état du système.

Plan de thèse

Dans le chapitre 1, les principaux modèles utilisés dans ce travail sont introduits.
Une description de la physiologie du cœur et de son activité électrique sont fournis.
Nous introduisons l’électrophysiologie et les électrocardiogrammes avec des notes
historiques sur le sujet. Ensuite, les modèles mathématiques utilisés en électrophysi-
ologie cardiaque sont détaillés. Finalement, un état de l’art sur les problèmes inverses
de l’électrophysiologie cardiaque et sur les méthodes d’ordre réduit est présenté.

Dans le chapitre 2, nous détaillons les améliorations apportées par la simulation
numérique des électrocardiogrammes. Ce travail reproduit numériquement un cycle
complet de l’électrocardiogramme grâce au couplage de la géométrie des ventricules
(domaine volumique) et de la géométrie des oreillettes (domaine surfacique). Un effort
de modélisation a été effectué pour coupler ces deux structures puisque les oreillettes
sont une surface fine et ont besoin d’un modèle adapté. De plus, l’introduction
d’une géométrie plus réaliste et complète nous a permis de fournir des simulations
plus précises de plusieurs pathologies. Ce travail a été fait en collaboration avec
Annabelle Collin, doctorante dans l’équipe MΞDISIM, et Jean-Frédéric Gerbeau et
fait partie d’un article qui doit être soumis.

Le chapitre 3 présente des résultats théoriques sur l’estimation de quelques
paramètres des équations de l’électrophysiologie. Ces résultats ont été obtenu en
collaboration avec Muriel Boulakia.

Dans les chapitres 4 et 5, la méthode de la Proper Orthogonal Decomposi-
tion (POD) est appliquée à l’électrophysiologie cardiaque. En particulier, dans le
chapitre 4, la méthode de la POD est utilisée pour la simulation des électrocar-
diogrammes quand certains paramètres du modèle varient et pour la simulation
d’un infarctus du myocarde. De plus, cette méthode est combinée à une méth-
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ode d’algorithme génétiques afin d’identifier quatre des paramètres du modèle et à
identifier un l’infarctus. Ces travaux ont été effectués en collaboration avec Muriel
Boulakia et Jean-Frédéric Gerbeau et font partie d’un article publié.

Dans le chapitre 5, nous introduisons la notion de courbes de restitution et
nous l’utilisons pour l’identification de certains paramètres ioniques. De plus, cette
définition est élargie aux mesures de l’électrocardiogramme et à l’identification de
paramètres en utilisant des données synthétiques obtenues avec la méthode de la
POD.

Les chapitres 6, 7 et 8 concernent une nouvelle méthode d’ordre réduit basée sur
des couples de Lax approchées (ALP – Approximated Lax Pairs), qui a été introduite
par Gerbeau et Lombardi [GL14]. Ces travaux ont été développés en collaboration
avec Damiano Lombardi, chercheur dans l’équipe REO, et Jean-Frédéric Gerbeau.

La méthode est appliquée aux équations de l’électrophysiologie dans le chapitre 6
dans des configurations particulièrement complexes comme des hétérogénéités de
paramètres et de termes source “inconnues”. Ces chapitre décrit les résultat d’un
papier, en phase de revision, en collaboration avec Damiano Lombardi et Jean-
Frédéric Gerbeau

Dans le chapitre 7, nous nous intéressons à plusieurs problémes inverses. En
particulier, la méthode presentée au chapitre précédent est appliquée à une technique
d’assimilation de données pour estimer l’état dans deux configurations différentes:
l’identification de la localisation d’un terme source en utilisant des mesures syn-
thétiques de Micro-Electrode Arrays, et l’estimation du potentiel de l’épicarde en
utilisant des mesures de type veste d’électrodes sur une géométrie simplifiée.

Dans le chapitre 8, une nouvelle méthode d’ordre réduit basée sur les couples
de Lax approchés et sur la méthode d’interpolation empirique discrete (DEIM –
Discrete Empirical Interpolation Method) est introduite. La méthode est appliquée
aux équations de l’électrophysiologie et les possibles développements de la méthode
sont exposés.

Enfin, les conclusions principale de le thèse sont exposées.

La plupart des chapitres peuvent être lus indépendamment les uns des autres,
à l’exception des chapitres 8 et 7 dont la compréhension est liée au chapitre 6.
Cependant, nous suggérons une lecture dans l’ordre proposé par l’auteur.
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Chapter 1

Cardiac electrophysiology: model,

equations, inverse problems

and approximations

In this chapter we present the models used in this thesis. The main aim of this work is

to present some techniques on reduced models for the so-called forward and inverse problems

of cardiac electrophysiology. All the elements needed to the understanding of the next

chapters are given: a brief description of the heart physiology and the cardiac electrical

activity; the definition of the Electrocardiogram with some historical notes on its origins;

the mathematical models used to represent the cardiac electrical potential and the electrical

potential on the body skin, which is necessary to build the Electrocardiogram. Then, some

specific mathematical notions are illustrated. First, the inverse problems in cardiography

are presented. Second, we give a description of the Reduced Order Models largely used in

this thesis.
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1.1 Introduction

To better understand the works presented hereafter, we present here the main
useful fields. First, we introduce the cardiac electrophysiology from a medical point
of view. In particular, in Section 1.2, we give some basic skills on the heart physiology
with a detailed description of its electrical activity. Using these notions, in Section 1.3
we present an overview on the cardiac electrophysiology, giving some historical notes
on the origin of the Electrocardiogram and a detailed description of it.

Second, we illustrate the main mathematical instruments useful in the next
chapters. In Section 1.4 the equations used in cardiac electrophysiology are described:
the bidomain equations [Tun78] to model the heart potential, the ionic models useful
to approximate the ionic exchanges in the cardiac tissue, and the equations used to
model the potential in the rest of the body (torso). In Section 1.5, we focus on the
inverse problems in electrophysiology, with a particular attention to the “classical”
inverse problem of reconstruction of the electrical potential on the heart surface
using some skin potential measures. Finally, in Section 1.6 we give a description of
Reduced-Order Methods, in particular we briefly describe the standard technique of
the reduced basis [MR02], we better analyze the Proper Orthogonal Decomposition
method [KV01, RP04] largely used in the next chapters, and we introduce the
Approximated Lax Paris methods [GL14], which will be detailed in Chapters 6 and 8.

1.2 Heart physiology

The cardiovascular system consists of the blood, the heart and the blood vessels.
In this section we give a brief description of the main actor of the cardiovascular
system: the heart. We first present from a medical point of view the heart geometry,
location and functions. Then, we concentrate on the blood and electrical cycles.
Finally, we describe the electrical cycle at a microscopical scale, giving a description
of the main ionic exchanges that give rise to the cardiac electrical activity.

1.2.1 Heart geometry and location

The heart is a hollow muscle whose role is to pump the blood to the body’s
blood vessels. Blood must be constantly pumped to reach body cells and organs,
most of human organs cannot survive more than a few minutes without supply of
oxygenated blood. In order to accomplish this, the heart beats more than 100,000
times every day.

The heart is located in the chest between the lungs, behind the sternum and
above the diaphragm and about two-thirds of the mass of the heart lies on the left
of the body’s midline (see Figure 1.1). It is a relatively small organ: about 12cm
long, 9cm wide at its broadest point, and 6cm thick, with an average mass of 300 g
in adult males [TD08]. The shape of the heart is similar to a cone lying on its side.
The base of the heart is its posterior surface and the apex is the tip of the lower
chamber (see Figure 1.3 top-left).
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Figure 1.1: Heart location in the thoracic cavity.

It is divided into four chambers: two atria and two ventricles (see Figure 1.2).
The two superior ones are the atria that receive blood from the veins, the inferior ones
are the ventricles that pump blood into the aorta and arteries. In particular, the right
atrium forms the right border of the heart and receives blood from superior vena cava,
inferior vena cava and coronary sinus, and it pumps it into the left ventricle through
tricuspid valve. The left atrium receives blood from the lungs through four pulmonary
veins and pumps it into the left ventricle through the bicuspid (mitral) valve. Also,
blood is pumped from the right ventricle into the pulmonary trunk, which divides
into right and left pulmonary arteries, through the pulmonary valve, and from the
left ventricle into the ascending aorta through the aortic valve. Atria and the right
ventricle are about 2-3mm and 4-5mm in average thickness respectively, while the
left ventricle is the thickest chamber with an average thickness of 1-15mm [TD08].
The ventricles are thicker than atria since they pump blood under higher pressure
over greater distance. In particular, the right and left ventricles act as two separate
pumps, the right one pumps blood only to the lungs while the left one pumps blood
at higher pressure in the rest of the body, that is why its walls are the thickest. At
every heart beat, each chamber contracts in order to push a volume of blood into
ventricles or arteries.

1.2.2 Blood and electrical cardiac cycles

The contractions of atria and ventricles are jointed to the electrical activity of
the heart. The electrical activity is autorhythmic, i.e. it is independent from the
blood supply and continues even if the heart is removed from the body, for instance
for a transplantation. The source of the cardiac electrical activity is a network of



1.2. Heart physiology 13

RIGHT
ATRIA

LEFT
ATRIA

RIGHT
VENTRICLE

LEFT
VENTRICLE

AORTA

PULMONARY
TRUNK

LEFT
PULMONARY

VEINS

RIGHT
PULMONARY

VEINS

SUPERIOR
VENA CAVA

INFERIOR
VENA CAVA

Figure 1.2: Heart geometry with vessels.

muscle fibers, the so-called conduction system, that generates action potentials that
trigger heart contractions. The conduction system defines the electrical pathway
which the cardiac action potential propagate through and that allows the chambers
to contract successively.

The cardiac cycle is summarized into five phases, schematized in Figures 1.4
and 1.5:

1. The cardiac excitation starts from the sinoatrial (SA) node, in the right
atria (see Figure 1.3 top-right). The cells placed in the SA node act as
a pacemaker: their resting potential is not stable, so they spontaneously
depolarize to threshold. When the threshold is reached, the action potential is
triggered and propagates throughout atria. Since atria are depolarized, they
contract. Then, tricuspid and mitral valves open and let blood through into
ventricles.

2. After propagating in the atria, the action potential reaches the atrioventricular
(AV) node, located in the cardiac septum, between atria and ventricles (see
Figure 1.3 bottom-left). The action potential propagates through the bundle of
His, which is the unique electrical connection between atria and ventricles since
a fibrous skeleton preventing conduction is present elsewhere. Through the
bundle of His, the action potential enters the ventricles, propagates through
the septum and reaches the apex of the heart. After the injection of the blood
in the ventricles, tricuspid and mitral valves close.

3. The Purkinjie fibers conduct the action potential from the apex of the heart to
the rest of the myocardium. Consequently, the ventricles contract, aortic and
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1. Atrial depolarization

3. Ventricular depolarization/
Atrial re-polarization

2. Action potential
through the septum

4. Ventricular re-polarization

5. Resting potential

Figure 1.5: Electrical cardiac cycle: from resting potential (blue) to action potential
(red) and viceversa.
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pulmonary valves open and the blood is injected into aorta and pulmonary
arteries. Also, during this phase, atria are re-polarized and lead to atria
relaxation.

4. At the end of ventricles contraction, their repolarization takes place. At
the same time, atrial relaxation let the blood inject through venæ cava and
pulmonary veins.

5. Finally, the whole heart is at resting potential. Ventricular muscle relaxes too,
and let the blood flow in through tricuspid and mitral valves.

1.2.3 Electrical cycle at microscopic scale

At the microscopic scale, each cell follows an electrical cycle (see Figure 1.6). In
order to describe the cell state, the so-called membrane potential is measured, which
is the difference between the extra- and the intra-cellular potentials.

• First, the cell has a stable resting membrane potential. When the action
potential reaches the cell, its sodium ion channels, also called voltage-gated
fast Na+ channels, open. The opening of these channels let the Na+ flow into
the cell and produces a rapid depolarization and contraction.

• Second, a plateau phase is observed, the cell remains depolarized and contracted.
The partial opening of voltage-gated slow Ca2+ channels let calcium get into
the cell while several voltage-gated K+ channels also open and let potassium
ions leave the cell. Therefore, the plateau is given by the equilibrium between
inflowing Ca2+ and outflowing K+ ions.
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• Then, the action of Na/K pump induces the decreasing of the K+ ions concen-
tration into the cell. The repolarization starts, the cell potential decreases and
it relaxes again.

• Finally, potassium channels close and Na+/Ca2+ exchangers let sodium flow
back into the cell and calcium flow out, bringing back the cell to its resting
potential.

1.3 Cardiac electrophysiology

We introduce the reader to cardiac electrophysiology by presenting some historical
notes on the discovery of electrical activity of the heart at each heart beat. Then,
a detailed description of the standard 12 lead Electrocardiogram introduced by
Einthoven is given. Finally, an overview on the numerical approximation advances is
given.

1.3.1 From Descartes “animal spirits”. . .

Since the 16th century, physicists, medical doctors and philosophers have been
interested in the causes of living movements. The first work stating that the blood and
the nervous system are the causes of the body movements is due to René Descartes,
French Philosopher (1596–1650) best known for the philosophical statement “Cogito
ergo sum”. The post-mortem treatise Passions of the Soul (Les passions de l’âme) is
published in 1662. Descartes defines the “animal spirits” as produced in the blood
and responsible for the body movements. These spirits function in a capacity similar
to modern medicine’s nervous system. The treatise was published after his death
since he abandoned the work because of persecution of other radical thinkers such as
Galileo Galilei. [Wik14b]

After Descartes work, many experiments have been conducted on the subject.
Between 1664 and 1668 several studies on living muscles induced to give up the
idea of an “animal spirit” and suggest the modern definition of nervous system. The
mechanist theory of the french philosopher was first disproved by a Dutchman, Jan
Swammerdam, who conduced studies on a frog. He observed that after removing
the heart from a living frog, the frog was still capable of swimming, while it could
not anymore after the ablation of the brain. It was during its dissection that the
muscled twitched after the stimulation of several nerves. Few years later his first
experiment on frogs, Swammerdam refines his theory on nerve conduction observing
the movement of a muscle suspended in a glass tube caused by the irritation of the
nerves with a silver wire. The movement of the muscle was probably due to the
induction of a small electrical charge. [GJ96]

In the latest 1700s, two italians gave the main contribution to modern electro-
physiology. In 1786, the italian anatomist Luigi Galvani showed that a direct contact
with an electrical generator leads to a muscle contraction. Later, he proved that an
electrical stimulation of a frog’s heart leads to cardiac muscular contraction. Only
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In 1774, the electricity was used for the first time for a medical purpose. The Humane
Society, later called Royal Humane Society, was funded in London to promulgate the
idea of attempting to resuscitate the deads.
Few months after the foundation of the Human Society, the first case of “resuscitation”

using electrical shock was published. A 3-year-old child named Catherine Sophie
Greenhill had been pronounced dead after she felt from the first storey window. A
society member, an apothecary named Squires, occurred to the scene within twenty
minutes and, after the “consent of the parents”, he proceeded to give the child several
shocks with a portable electrostatic generator to various parts of the body without any
apparent success. After several minutes, upon transmitting a few shocks through the
thorax, he perceived a small pulsation. This treatment caused her to regain pulse and
respiration, and she recovered fully, after a time in coma.

The resuscitation of little Catherine Greenhill was probably the first successful cardiac
defibrillation of a human being. In 1788, the Human Society member Charles Kite
awarded a silver medal for advocating the resuscitation of victims in cardiac arrest and
developing his own electrostatic revivifying machine. [Har90]

few years later, in 1792, Alessandro Volta, Italian Scientist and inventor, showed
that the electrical current is generated by the combination of two dissimilar metals,
disproving the theory of “animal electricity” from Galvani. Of course, both of them
were right, saying that the electrical current comes on one side from the animal
tissue and on the other one from the metals. [GJ96]

Two other italians, Leopoldo Nobili, Professor of Physics at Florence, and Carlo
Matteucci, Professor of Physics at the University of Pisa and student of Nobili,
pursued the research on the field. Nobili, who was working to support the theory
of animal electricity, felt demonstrated it: in 1827, he detected the current flow in
the body of a frog from muscles to spinal cord. The main improvements are due
to Matteucci who, in 1838, showed that an electric current accompanies each heart
beat. He tried to demonstrate the conduction in nerves but his instruments were not
sensitive enough. [GJ96]

The first description of “action potential” accompanying each muscular contraction
was given by Emil Du Bois-Reymond, a German physiologist, in 1834. He was capable
of detecting the small voltage potential of resting muscles and the decreasing of this
potential with muscle contractions. Du Bois-Reymond divided the signal that he
detected into different parts which he called “disturbance curves”: “o” was the stable
equilibrium point, and p, q, r and s were the other points of the deflection. [GJ96]

In the early 1870s, two British physiologists, John Burdon Sanderson and Frederick
Page, recorded for the first time the heart’s electrical current. In 1878, they reported
that each heart beat is accompanied by an electrical variation consisting of two phases,
this was the first description of ventricular depolarization and repolarization. The
first phase, later called QRS, was characterized by a disturbance of short duration
“in which the apex becomes positive”, while the second one “in which the apex tends
to negativity” was much longer. [Fye94]
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The “galvanometer” is the first instrument which measures and record electricity. The
term “galvanometer", in common use by 1836, was derived from the Italian researcher
Luigi Galvani. The first instruments, called “tangent” galvanometer, relied on the
Earth’s magnetic field and had to be oriented before use.

Later, “astatic” galvanometer becomes independent of the Earth’s magnetic field and
operates in any orientation. In 1858, William Thompson (Lord Kelvin), Professor of
Natural Philosophy at Glasgow University, invented the “mirror galvanometer” that was

String galvanometer. Source: [Alp].

able to detect very rapid current changes. In 1867,
Thompson improved his instrument including the
recording of the detected currents onto paper.
Edward Weston extensively improved the design. By

1888, Weston had patented and brought out a commer-
cial “portable” form of the instrument, transportable
from place to place.

This is essentially what an ECG is, a sensitive
galvanometer. [Wik14a]

In the same years, at the St. Mary’s Hospital Medical School in London, August
D. Waller made several experiments leading him in 1887 to the first recorded human
electrocardiogram. He connected electrodes to the front and the back of a man’s
chest showing that each heart beat was “accompanied by an electrical variation”, and
he proved that the electrical activity preceded the heart contraction. Also, he made
the first step towards the modern bipolar leads, affirming that it was not necessary
to apply the electrodes to the subject’s chest: “if the two hands or one hand and one
foot be plugged into two dishes of salt solution connected with the two sides of the
electrometer, the column of mercury will be seen to move at each beat of the heart,
though less than when the electrodes are strapped to the chest”. [Fye94]

Willem Einthoven saw Waller demonstration on his dog Jimmy at the First
International Congress of Physiologists in Basel in 1889. As Einthoven, many
physiologists assisted to Waller’s demonstration and pursued the experiments. In
1891, two british physiologists of University College of London,William Bayliss and
Edward Starling, showed a triphasic variation accompanying (or preceding) each
heart beat, later called P, QRS and T, while Waller identified only two. In 1895,
Einthoven published his first paper on the subject where he claimed the presence
of five distinguished deflections during each heart beat, including drawings of these
deflections that he called P, Q, R, S and T. Einthoven, knowing the limitations
of the instruments used, improved the string galvanometer in order to record high
frequency. His studies on the electrical devices used to measure the cardiac electrical
activity owned Einthoven to win the Nobel Prize in Medicine in 1924.
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Figure 1.7: An early commercial ECG machine, built in 1911 by the Cambridge
Scientific Instrument Company. Source: [Wik14c].

The five deflections introduced by Einthoven where labelled PQRST following the
convention introduced by Descartes using letters of the second half of the alphabet. Since
N and O have other meanings in mathematics, P was the first available letter, and Q,
R, S, T and eventually U were simply the next.

An ECG strip recorded by Einthoven’s original string galvanometer. Source: [Alp].
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1.3.2 . . . through modern Electrocardiography . . .

Since Einthoven first measures, many advances in electrocardiography have been
made. The instrumentation has evolved from a cumbersome laboratory apparatus
to compact electronic systems. Also, the modern Electrocardiogram includes 12
standard leads (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6) given by 9
electrodes placed on the skin (see Figure 1.8 left). The leads are of two types:
bipolar and unipolar. Bipolar leads are the tracing of the voltage difference between
two electrodes and have a positive and a negative pole, while in unipolar leads
the negative pole is given by a composite pole made up of signals from multiple
electrodes.

The 12 leads are divided into three groups. The so-called limb-leads I, II and III
are bipolar leads whose electrodes are placed on the right arm (R), on the left arm
(L) and on the left foot (F ). These electrodes form the so-called Einthoven triangle,
an inverted equilateral triangle, formed by the two shoulders and the pubis, with the
heart at the center that produces zero potential when voltages are summed up (see
Figure 1.8 top-right). Lead I is given by the voltage between left arm and right arm
electrodes (see Figure 1.8 bottom-right), lead II by the voltage between the left foot
and the right arm, and lead III between the left foot and the left arm:

I = v(L)− v(R), II = v(F )− v(R), III = v(F )− v(L). (1.1)

Next, aVR, aVL and aVF are called augmented limb leads. They are derived from
the same electrodes as limb leads, but they are unipolar leads since their negative
pole is given by the Wilson central terminal, or Wilson lead, defined by

VW =
1

3

(
v(R) + v(L) + v(F )

)
. (1.2)

Lead augmented vector right (aVR) has the positive electrode on the right arm (R)
and its negative electrode is a combination of the left arm (L) electrode and the left
foot (F ) electrode, which “augments” the signal strength of the positive electrode on
the right arm:

aVR = v(R)−
1

2

(
v(L) + v(F )

)
=

3

2

(
v(R)− VW

)
. (1.3)

In the same way, augmented vector left lead (aVL) has its positive pole on the left
arm:

aVL = v(L)−
1

2

(
v(R) + v(F )

)
=

3

2

(
v(L)− VW

)
(1.4)

and augmented vector foot (aVF) has its positive pole electrode on the left foot:

aVF = v(F )−
1

2

(
v(R) + v(L)

)
=

3

2

(
v(F )− VW

)
. (1.5)

Leads aVR, aVL, aVF need to be amplified of a factor 3/2 because the signal is too
small to be useful since their negative pole is given by the Wilson lead.
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I = v(L)− v(R)

V1 V2

V3
V4 V5

V6

R L

F
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ECG first lead (bipolar)ECG 9 electrodes

VW

R L

F

Figure 1.8: Standard 12-lead ECG electrodes position, Einthoven triangle and first
lead definition.

Finally, leads V1, . . . , V6, called precordial leads, are unipolar leads whose
positive pole is placed on the chest and negative one is the Wilson lead. On the
opposite of augmented limb leads, precordial leads do not need any augmentation.
Then they are defined by

V1 = v(V1)− VW , V4 = v(V4)− VW ,

V2 = v(V2)− VW , V5 = v(V5)− VW ,

V3 = v(V3)− VW , V6 = v(V6)− VW .

(1.6)

The typical ECG of a heart beat consist in six deflections, called P, Q, R, S, T
and U wave. The last one is usually invisible since it is hidden by the T wave. The
P wave represents atrial depolarization, the QRS complex occurs during ventricular
depolarization and hides atrial repolarization, and the T wave during ventricular
repolarization, see Figure 1.10. In a normal healthy heart, the baseline is equivalent
to the isoelectric line and represents the periods in the cardiac cycle when there are
no currents. In the same way, the interval between the P wave and the QRS complex,
and between the QRS and the T wave, respectively called PQ and ST segments, are
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Figure 1.9: Representation of the 12 ECG leads on the frontal plane (left and middle)
and on the horizontal plane (right).

isoelectric too.

At each time instant, the depolarization (resp. repolarization) front is defined as
the limit between the depolarized cardiac region and the resting one (resp. between
the repolarized cardiac region and the depolarized one). Along the depolarization
fronts, several elementary dipoles, independently indicated by a vector, form the
so-called activation front that can also be represented by a vector. If all the cardiac
vectors of a cardiac cycle are jointed together, the Vectocardiogram (VCG) is obtained.
The VCG is represented by three loops, the first represents the atrial depolarization,
the second which is much bigger represents the ventricular depolarization (see
Figure 1.11) and the third one the ventricular repolarization.

The limb leads and the augmented leads are the representation of the depolariza-
tion (or repolarization) on the frontal plane, see Figure 1.1. In particular, the limb
leads are the projection of the cardiac vector on the edges of the Einthoven Triangle
as show in Figure 1.9 left, while the augmented limb leads are the (augmented)
projection on the bissectrices of the translated Einthoven triangle (Figure 1.9 middle).
On the opposite, the precordial leads V1, . . . , V6 are the representation of the cardiac
vector on the horizontal plan with different angles as shown in Figure 1.9 right.

Let us better analyze the ventricular depolarization and the QRS complex
generation in the first lead. In Figure 1.11 the lead I is built using the cardiac
vector represented on the left of Figure 1.11. The cardiac vector is projected onto
the Einthoven triangle: the top edge of the triangle represents the lead I, with its
positive pole on the right (left arm, L) and its negative pole on the left (right arm,
R), the left between F and R represents the lead II and the right edge F -L the lead
III. First, the septum is depolarized from left to right leading to a small negative
depolarization vector on the first lead axes, which corresponds to the small negative
Q wave (first line of Figure 1.11). Second, the depolarization front spreads through
the septum in the direction of the apex of the heart, generating a depolarization
vector of higher amplitude to the apex which leads to the generation of the R wave
(second line of Figure 1.11). Then, the depolarization front reaches the epicardium
from the apex to the base of the heart, generating a low intensity dipole which
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Figure 1.10: First lead waves generation.

corresponds to the S wave (third line of Figure 1.11). Finally, all the ventricular
tissue is depolarized, leading to the isoelectric ST segment.

1.3.3 . . . to numerical simulations of electrocardiograms

The first attempts at simulating ECGs based on partial differential equations were
proposed only in the late 1980s. The first models, which appeared between the 1970s
and 1980s, were not based on the membrane equations. In 1978, the first numerical
simulation of ECG was proposed by Miller and Geselowitz [MIG78a, MIG78b], the
heart wavefront was approximated by the mean direction of a sheet of current
dipoles and the surface potentials were calculated using this discrete set of current
dipoles. These models were called cellular automata: only action potential could be
approximated, its duration was preassigned and there were no interaction between the
depolarization and the subsequent repolarization sequences. As shown in Figure 1.12,
results were very promising, but a lot of modelling work still had to be done.

Many advances have been made in the next years: a PDEs-based model that
approximated the intra- and extra-cellular potentials, the so-called bidomain equa-
tions, was proposed by Tung in his PhD dissertation [Tun78], see Section 1.4; cardiac
anisotropy caused by fibers orientation was introduced [CFCV+82, WOH+95]; torso
inhomogeneities were investigated [VOH89]; and accurate numerical approximations
were proposed. Since the implementation and the computational costs in order to
obtain accurate simulations with membrane and intra- and extra-cellular conductive
medium were unfeasible for the date, see [BP84], few years occurred before the first
simulation based on a PDEs model was provided. In the early 1990s, Colli Fran-
zone et al. [CFGR90, CFG93] used a reaction-diffusion model based on realistic ionic
currents and a bidomain model for electronic interactions to provide very accurate,
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Figure 1.11: Ventricular depolarization, first lead QRS complex generation and
associated Vectocardiogram (VCG).
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FIGURE 17

a resting potential 5 mV less in magnitude than the
endocardial sites. The resulting surface potential distri-
bution during the early portion of the S-T segment was
similar in appearance to those obtained during the T
wave with magnitudes on the order of 0.1 mV. Thus, even
relatively small variations in transmembrane resting po-
tential can result in significant S-T segment deviations in
the surface electrocardiogram.

These results indicate that the major features of the
isopotential surface maps for normal human subjects
during ventricular activation and recovery can be ex-
plained on the basis of the distribution of intracellular

I .

potentials in the myocardium and the distance and
boundary effects in the torso. In this study, no attempt
was made to represent torso volume conductor inhomo-
geneities such as the lungs and the blood masses in the
ventricles. Simulation studies have indicated that the
lungs may have only a small effect on the surface potential
distributions.'

1
' '

6
 The blood masses in the ventricles ap-

pear to be significant quantitatively,"' but may play a
secondary role in determining the patterns of the isopo-
tential lines on the torso surface. Further studies are
necessary to demonstrate whether the effects of the blood
masses are sufficient to justify the increased complexity
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FIGURE 18 The simulated standard 12-lead ECG.

Figure 1.12: First simulation of 12-lead ECG with a multiple dipoles approximation.
Source: [MIG78a].

but expensive, simulations on a 3D small block of myocardial tissue including rotat-
ing anisotropy. It is only in 1998 that Huiskamp used the anisotropic monodomain
electronic interaction, coupled with Drouhard-Roberge–Beeler-Reuter membrane
equations [DR86], in order to perform a simulation of a complete myocardial action
potential cycle in a realistic ventricles 3D model, including fibers rotation [Hui98].

In the last decade, many attempts to improve ECGs numerical simulations have
been made. We can cite for instance [PDG03, TDP+04, PDV09, BCF+10, MDFG12].
The increasing accuracy of heart geometries, ionic models including physiological
models, cardiac tissue models, etc. leads to realistic simulations of ECGs including
healthy and pathological cases. In these works, the heart is approximated by a
realistic geometry of the ventricles, then only the QRS complex and the T wave
are simulated. More recently, many papers [HC00, KST+11, CGH+13] considered
atria electrophysiology simulations but without providing ECGs. We will show in
Chapter 2 how to model a complete (atria and ventricles) heart which leads to a full
cycle ECG including P, QRS and T waves.

1.4 Cardiac electrophysiology models

In this section, we introduce mathematical models largely used in cardiac electro-
physiology. In particular, we present the so-called bidomain equations [Tun78], which
are the most used model for the cardiac electrical potential. Bidomain equations are
coupled with some ionic models, hereafter we present the two that are the most used
in the next chapters: the Fitzugh-Nagumo model [Fit61, NAY62], and the Mitchell
and Schaeffer one [MS03]. In order to obtain an Electrocardiogram, a body potential
model (called in what follows torso model) is presented and coupled to the bidomain
equations. Finally, some specific approximation and the numerical schemes used in
this thesis are presented.
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1.4.1 The bidomain and the monodomain equations

As explained in Section 1.2, the heart tissue is composed of two parts: the
cardiac muscle cells, whose domain is called the intra-cellular domain, and the rest
of the media, which is called the extra-cellular domain. We denote by ΩH the heart
domain, and Ωi and Ωe respectively the intra- and the extra-cellular domains such
that ΩH = Ωi ∪Ωe and Ωi ∩Ωe = ∅. The membrane junction between the intra- and
the extra-cellular domains is denoted by Γm = Ωi ∩ Ωe.

The bidomain equations, introduced by Tung [Tun78] are based on the Ohm’s
law and the conservation of the charge. Let us call ji and je respectively the electric
currents in the intra- and extra-cellular domains. Applying the Ohm’s law, their
expression is given by

ji = σi∇ui,

je = σe∇ue,
(1.7)

where σi,e and ui,e are respectively the conductivity tensors (their expressions are
given below, see Secetion 1.4.4) and the electrical potential in the intra- (resp. extra-)
cellular domain.

The electric currents ji, je can be separated into two components: the surface
charge µi,e changes due to the membrane capacitor behavior, and the total ionic
current Itot

ion that measures the current exchanges from Ωi to Ωe. Then, we obtain

∂µi

∂t
+ Itot

ion = ji · n,

∂µe

∂t
− Itot

ion = −je · n,

(1.8)

where n is the unit normal pointing from Ωi to Ωe.

To obtain the bidomain equations, an assumption is in order: the surface charge
is supposed to be linearly proportional to the transmembrane potential Vm = ui −ue:

µi = CmVm (1.9)

where Cm is the capacitance per unit area of membrane. Then, equations (1.8)
and (1.9) lead to the first equation of the bidomain model at the microscopic scale

Cm
∂Vm

∂t
+ Itot

ion = ji · n. (1.10)

Also, the conservation law is applied on the membrane Γm to the electric currents,
which leads to the second equation of the bidomain model at microscopic scale

ji · n = −je · n, (1.11)

Using the definition of transmembrane potential and equations (1.7), the bidomain
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equations (1.10), (1.11) can be written in terms of Vm and ue at microscopic scale:




Cm
∂Vm

∂t
+ Itot

ion − σi∇Vm · n− σi∇ue · n = 0, on Ωi,

−(σi + σe)∇ue · n− σi∇Vm · n = 0, on Γm.
(1.12)

Equations (1.12) represent a discrete description of the model on the intra- and
extra-cellular domains Ωi, Ωe. An homogenization is necessary to write the continuous
material equations at the macroscopical scale. We do not detail the homogenization
step and refer to the original work of Tung [Tun78], and to more recent works as for
instance [HP10] and [Col14]. This homogenization leads to the classical formulation
of the bidomain equations on the whole heart domain ΩH (keeping the same notation
as for the microscopic scale for the sake of simplicity)





Am

(
Cm

∂Vm

∂t
+ Iion

)
−∇ ·

(
σi∇Vm

)
−∇ ·

(
σi∇ue

)
= AmIapp,

−∇ ·
(
(σi + σe)∇ue

)
−∇ ·

(
σi∇Vm

)
= 0,

(1.13)

where Am is the ratio of membrane area per unit volume, and the total ionic current
has been separated into the ionic exchanges current Iion and the applied exterior
stimulus Iapp.

Concerning the boundary conditions, we first assume that the intra-cellular
current ji does not spread outside the heart domain, that reads

σi∇ui · n = 0, on ∂ΩH, (1.14)

or in terms of transmembrane potential and extra-cellular potential

σi∇ue · n+ σi∇Vm · n = 0, on ∂ΩH, (1.15)

where n is the outer normal of ∂ΩH. Second, in all the works presented in this
manuscript, the heart is considered isolated from the surrounding domain, called in
what follows “torso”. Then, the second boundary condition for equations (1.13) reads

σe∇ue · n = 0, on ∂ΩH. (1.16)

A discussion on the possibility of a strong coupling between heart and torso, and on
the related boundary conditions, is given in Section 1.4.3.

A simplified model, called monodomain model rises from the bidomain one. The
monodomain model only considers the transmembrane potential. This model is used
for instance in Chapters 3 and 6 for its simplicity, but it is unusable when we are
interested in calculating the ECG. The monodomain model reads




Am

(
Cm

∂Vm

∂t
+ Iion

)
−∇ ·

(
σi∇Vm

)
= AmIapp, in ΩH × (0,T )

σi∇Vm · n = 0, on ∂ΩH × (0,T ).
(1.17)
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The model is obtained directly form equations (1.13) by assuming that the intra-
and the extra-cellular conductivity tensors have the same anisotropic ratio σi = λσe.
More details about the conductivity tensors anisotropy and their approximation are
given in Section 1.4.4.

1.4.2 Ionic models

In this section, we describe the term Iion of equations (1.13), i.e. the so-called
ionic current. We also present two ionic models which are the most used in this
work: the FitzHugh-Nagumo ionic model [Fit61, NAY62] (see Chapter 3 and 6) and
the Mitchell and Schaeffer ionic model [MS03] (see Chapters 4, 5, 8 and part of
Chapter 2).

The ionic current represents the transmembrane exchanges through ionic channels,
exchangers and pumps, as shown in Figure 1.6. This term gives rise to an action
potential which propagates in the cardiac tissue, as explained in Section 1.2. In
general, it depends on the transmembrane potential and on some gate variables
w = (w1, . . . , wn) that takes into account the opening and closing of ionic channels
and some concentrations. Most of the ionic models read





Iion = Iion(Vm,w),
∂w

∂t
+ g(Vm,w) = 0,

(1.18)

where the second equation takes into account the time variation of the gate variables
w and depends on the ionic model.

The first ionic model that has been presented is the Hodgkin-Huxley model [HH52]
in 1952. It is a physiological model, first formulated for neurons and then adapted
for electrophysiology by Noble [Nob62]. The ionic current is divided into three terms
(sodium, potassium and leakage currents), and it contains three ODEs for three
ionic variables. Many models have been derived from the Noble model with higher
number of currents and variables and an increasing complexity. We cite for instance
the Luo-Rudy model [LR94], adapted for the ventricular action potential, and the
Courtemamche-Ramirez-Nattel mode [CRN98] for the atria (see Section 2.C) used
in Chapter 2.

On the opposite to the physiological models, which are more precise but can rise to
high computational costs due to the number of equations, there are phenomenological
models. Phenomenological models are easier and contain in general less ODEs and
variables, but they are often precise enough to obtain good numerical results. The
first phenomenological model which has been derived is the FitzHugh-Nagumo
model [Fit61, NAY62]. This model has only one gate variable w and reads





Iion(vm,w) = kvm(vm − a)(1− vm)− w,
∂w

∂t
= γvm − βw,

(1.19)

where vm is the adimensionalized transmembrane potential, vm = (Vm−Vmin)/(Vmax−
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Vmin), where Vmin and Vmax are the minimal and maximal values of Vm, typically
Vmin = −80mV, Vmax = 20mV, and k, a, β and γ are positive constants linked to the
steepness of the depolarization and depolarization fronts, and to the length of each
phase of the cycle. An estimation on the parameters k and γ of the FitzHugh-Nagumo
model is given in Chapter 3, and the model is used in Chapter 6 taking advantage of
the fact that it is polynomial.

The model which is the most used in this work is the Mitchell and Schaeffer ionic
model [MS03]. This model is very similar to the FitzHugh-Nagumo one. Among its
advantages, the role of each parameter is described in a more explicit way and the
depolarization and repolarization fronts are less steep. On the opposite side, it is a
non-polynomial model. The Mitchell and Schaeffer model reads





Iion(vm,w) = w
v2m(vm − 1)

τin
−

vm
τout

,

∂w

∂t
=





1− w

τopen
, vm < vgate

−w

τclose
, vm > vgate

(1.20)

where vgate is the so-called change-over voltage, and τin, τout, τopen, τclose are the
ionic parameters. In particular, τin and τout are related to the steepness of the action
potential respectively during the depolarization and repolarization phases, and τopen,
τclose to the length of the plateaux, as shown in Figure 1.13. The Mitchell and Scheffer
model is largely used in the works presented in the next chapters, in particular an
analysis of some properties of the model is given in Chapter 5.

1.4.3 The body diffusion problem and heart-torso
coupling conditions

In order to compute the ECG, i.e. to measure the potential on the skin, an
efficient simulation of the electrical potential diffusion in the torso is in order. Let
us denote by ΩT the body domain (excluding the heart, see Figure 1.8 left) and uT

the electric potential in this domain. The torso domain is considered as a passive
conductor so a simple Poisson problem has to be solved:

∇ · (σT∇uT) = 0, in ΩT, (1.21)

where σT is the conductivity coefficient. For more details on this problem and its
derivation, see for instance [Sac04], [PBC05] or [SLN+06]. The media is considered

τin τout τopen τclose vgate
1.0 10.0 30.0 50.0 0.13

Table 1.1: Ionic parameters for Mitchell and Schaeffer model (1.20).
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Figure 1.13: Potential vm (blue) and gate variable w (green) for one electrical cycle
with Mitchell and Schaeffer ionic model (1.20). Parameters are taken as in Table 1.1.

isotropic and in this work we take into account only three tissues:

σT =





σl
T, in the lungs
σr

T, in the ribs
σt

T, elsewhere.
(1.22)

Dealing with the coupling conditions between the heart and the torso, many
choices can be made. The natural one is to consider the continuity of the potential
and of the current between the two domains. Then, the complete model reads




Am

(
Cm

∂Vm

∂t
+ Iion

)
−∇ ·

(
σi∇Vm

)
−∇ ·

(
σi∇ue

)
= AmIapp, in ΩH

−∇ ·
(
(σi + σe)∇ue

)
−∇ ·

(
σi∇Vm

)
= 0, in ΩH

∇ · (σT∇uT) = 0, in ΩT,

uT = ue, on Σ,

−σT∇uT · nH = σe∇ue · nH, on Σ,

σT∇uT · nT = 0, on Ωext
T ,

(1.23)
where Σ := ΩH ∩ ΩT, Ωext

T := ∂ΩT \ Σ and nH,T are respectively the outer normal
from ΩH to ΩT and from ΩT to the external domain.

This problem is of very high computational cost, thus an approximation is needed.
A possibility is to consider that the heart is isolated, see equations (1.15), (1.16).
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This simplification is studied for instance in [BCF+10] and it is shown that it does
not impact the shape of the ECG but only the amplitude. Then, only the continuity
of the potential is imposed when the torso potential is solved:





∇ · (σT∇uT) = 0, in ΩT,

uT = ue, on Σ,

σT∇uT · nT = 0, on Ωext
T .

(1.24)

In this case, the operator that links the boundary condition ue to the solution
of (1.24) is linear. So, when solving the discrete problem, in order to compute the
ECG, the so-called transfer matrix can be applied. This technique is used to compute
the ECG in all the works presented in this thesis, except when specified. For more
details about the computation of the transfer matrix see [BCF+10].

Finally, it exists a third possibility which is based on the resistor-capacitor
behavior of the pericardium. This condition has been introduced in [BCF+10] and
it is used in Chapter 2 when modeling the full (atria and ventricles) heart domain.
In particular the boundary condition reads

Rp(σT∇uT) · nH = RpCp
∂(uT − ue)

∂t
+ (uT − ue) (1.25)

where Cp and Rp are respectively the capacitance and the resistance coefficients of
the pericardium. More details about this condition can be found in Section 2.3.4 or
in [BCF+10].

1.4.4 Other approximations

Concerning the cardiac tissue, the cells properties change compared to their posi-
tion into the muscle. In particular, in order to obtain the ECG T-wave described in
the previous section, which corresponds to the ventricular repolarization, the duration
of the plateau has to be different in epicardial, mid-myocardial and endocardial cells
of the ventricles. The depolarization front spreads through the ventricular muscle
from the endocardium to the mid-myocardium, and finally reaches the epicardium,
while the repolarization goes in the opposite direction from the external tissue to the
interior one. A representation of the action potential of cells belonging to the three
layers is given in Figure 1.14. In order to obtain different action potential curves, the
τclose parameter takes different values: in the left ventricle three layers are considered
(τ epi

close, τ
Mcell
close , τ endo

close ), while the right ventricle it is considered homogeneous (τRV
close).

The values are given in Table 1.2. More details about the separation into the three
layers can be found in [BCF+10].

Am Cm τin τout τopen τ endo
close τMcell

close τ epi
close τRV

close vmin vmax vgate
200 10−3 16 360 100 120 130 140 90 −80 20 −67

Table 1.2: Ionic parameters for heart model.



34

−

−

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−

−

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Endo

Mcell

Epi

RV

Figure 1.14: Synthetic layers of endocardial, mid-myocardial and epicardial cells in
the left ventricle and action potentials obtained with the Mitchell and Schaeffer ionic
model (1.20). Parameters are taken as in Table 1.2.

The last approximation that is in order deals with cardiac fibers. The heart
muscle is characterized by a fiber architecture that enforces the electrical signal to
propagate faster along these directions. In order to take into account the anisotropy
in the intra- and extra-cellular media, the conductivity tensors read

σi,e = σt
i,eI+ (σl

i,e − σt
i,e)~a⊗ ~a, (1.26)

where I denotes the identity matrix, σt
i,e indicate the intra- and extra-cellular

conductivity coefficients in the fiber direction and σl
i,e across the fibers, and ~a is a

unit vector parallel to the local fiber direction. The fibers orientation is illustrated
in Figure 1.15. For more information, we cite for instance [BCF+10].

1.4.5 Numerical approximation

All the simulations presented in this work are computed using the finite element
library FELiScE1. The equations are discretized in space with a Finite Element
Method (FEM) and in time with a Backward Differentiation Formula (BDF) of
order 2, except for the Reduced-Order Models whose discretization is detailed when
necessary, while the ionic model is solved using an explicit method of order 2 as
shown below.

1http://felisce.gforge.inria.fr – A brief description of the library, the implementation of
the electrophysiology into the code and the author contributions is given in Appendix A.

http://felisce.gforge.inria.fr
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(a) Front view (b) Back view

Figure 1.15: Fibers architecture

The weak form of equations (1.13), (1.15), (1.16) reads
for all t > 0 find Vm(·,t) ∈ H1(ΩH), ue(·,t) ∈ H1(ΩH)/R, w(·,t) ∈ L∞(ΩH), such that





Am

ˆ

ΩH

(
Cm

∂Vm

∂t
+ Iion

)
ϕ+

ˆ

ΩH

(
σi∇Vm + σi∇ue

)
·∇ϕ = Am

ˆ

ΩH

Iappϕ,
ˆ

ΩH

(
(σi + σe)∇ue + σi∇Vm

)
·∇ψ = 0,

Iion = Iion(Vm,w),
∂w

∂t
+ g(Vm,w) = 0, in ΩH,

(1.27)
for all ϕ ∈ H1(ΩH), ψ ∈ H1

0 (ΩH), where H1(Ω)/R := {v : v ∈ H1(Ω),
´

Ω v = 0}.
From (1.27), the semi-discretization formulation can be obtained, in the finite

dimensional spaces of continuous piecewise affine functions Vh ⊂ H1(ΩH), Uh ⊂

H1(ΩH)/R, Wh ⊂ L∞(ΩH).
For all T > 0, let N ∈ N

∗ be a given integer and consider a uniform partition of
the time interval [0,T ], tn = nδt, for all n ≥ 0 with t0 = 0, tN = T . Let us denote
by (V n

m , u
n
e , w

n) the approximation of the solution (Vm,ue,w) at time tn in the finite
dimensional space Vh × Uh ×Wh. Then, using the discretization method described
above, the solution at each time-step n ≥ 0 is computed as follows

1. compute the second order extrapolation: Ṽm = 2V n
m − V n−1

m ;

2. solve the ionic model for wn+1 : δt−1
(3
2
wn+1−2wn+

1

2
wn−1

)
+g(Ṽm, w

n+1) = 0

(nodal-wise);

3. evaluate the ionic current: Iion = Iion(Ṽm,w
n+1);
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4. find (V n+1
m ,un+1

e ), with
´

ΩH
un+1

e = 0, solution of the system

Am

ˆ

ΩH

(
Cmδt

−1(
3

2
V n+1

m − 2V n
m +

1

2
V n−1

m ) + Iion

)
ϕh +

ˆ

ΩH

σi∇V n+1
m ·∇ϕh+

ˆ

ΩH

σi∇un+1
e ·∇ϕh = Am

ˆ

ΩH

Iapp(t
n+1)ϕh,

ˆ

ΩH

(
(σi + σe)∇un+1

e + σi∇V n+1
m

)
·∇ψh = 0,

(1.28)
for all ϕh ∈ Vh, ψh ∈ Uh.

1.5 Inverse problems in cardiac electrophysiology

One of the goal of this work is to make some attempts in cardiac electrophysiology
inverse problems. The aim of the inverse problems is to reconstruct the electrical
activity of the heart assuming that we have access to some measurements of the
electrical potential uT on part of the torso skin. This problem has been investigated
in the last four decades and many strategies have been proposed.

The first approach that has been proposed was to estimate equivalent electrical
dipoles [MKI+77, GRS84]. Later, the problem of recovering the heart surface
potential, or the epicardial potential, was addressed. We will call this problem the
“classical” inverse problem [BRS77, BTR00, WKJ11], was introduced. Finally, a new
approach consists in estimating the transmembrane potential by solving an inverse
problem on the whole (heart and torso) domain.

In this section, we give an overview on the classical inverse problem, which is
known to be ill-posed, and on some regularization techniques. Second, we briefly
present the transmembrane potential estimation problem. Finally, we introduce the
problem of identification of some parameters useful to reconstruct the heart electrical
activity which will be largely used in the next chapters.

1.5.1 The “classical” inverse problem of electrocardiography

The most widely used formulation of the electrocardiology inverse problem is
related to the so-called forward problems (1.13), (1.15), (1.16), and (1.24). It can
be formalized as: let d be a given function in H1/2(∂Ωext

T ),

find g ∈ H1/2(∂ΩH) s.t. R(g) = d, (1.29)

where R is a linear mapping such that

R : H1/2(∂ΩH) → H1/2(∂Ωext
T ) , R(g) = uT(g)|∂Ωext

T
,

corresponding to a measure of the potential on the body surface. The measure can
be given on a part of the body surface. For instance, d can be the standard 12 lead
ECG, as shown in Chapter 4, or only the first ECG lead, see Chapter 5, or it can be
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issued from an electrodes vest [PBC05, SLN+06], see Chapters 2 and 6.
In order to solve problem (1.29), a least squares method can be applied. Then,

the related minimization problem reads:

min
g∈V

||R(g)− d||2L2(∂ΩT), (1.30)

where V = H1/2(∂ΩH).
The inverse problem (1.29) is known to be an ill-posed problem, i.e. R−1 is

unbounded and small errors on the observation d may lead to larger errors on the
solution g. Many techniques have been proposed to approximate this problem by a
well-posed one. Let us briefly describe some standard approaches to the regularization
of the inverse problem in its discrete formulation.

A first approach to the reconstruction of the heart surface potentials has been
proposed by Barr, Ramsey and Spach [BRS77]. The potential uT related to a body
surface point x ∈ ∂Ωext

T depends linearly on the heart surface potential ue. This
relation can be expressed on the discretized unknowns by the fact that

ϕT = AϕH, (1.31)

where ϕT is the torso surface potential discretized on a finite number N of points of
∂ΩT, ϕH is the heart surface potential on a finite number M of points of ∂ΩH, and
A is an N ×M transfer matrix, whose coefficients only depend on the geometry of
the epicardial and the body surfaces. The matrix A is in general not squared, and
ATA is poorly conditioned. Then, the solution of a regularized problem associated
to problem (1.31) will be written in a general form as

ϕH = A†
λ(ϕT) (1.32)

where A†
λ is the regularized inverse. The regularized inverse can be calculated using

different techniques, the most widely used are the Tikhonov regularization [MRR88],
the use of temporal information [OR92, GH98], or the Truncated Singular Value
Decomposition or truncated Total Least Square [FGHO97, PBC05].

1.5.1.1 Tikhonov regularization

The Tikhonov regularization modifies the minimization function by adding a
smooth term, as small as possible. The approximated objective function of the
minimization problem for each time t is defined by

Jλt = ||AϕH − ϕT||2 + λ2t ||TϕH||2 (1.33)

where T ∈ R
N×N is a constraint matrix, and λt is the constraint parameters that

depends on the time t. Then A†
λt

reads

A†
λt

= (ATA+ λ2tT
TT )−1AT . (1.34)
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The Tikhonov regularization order depends on the constraint matrix T . A
zeroth-order regularization is obtained applying T = I, where I is an identity
matrix; a first-order regularization can be computed imposing T = G, where G
represents a discrete approximation to the surface gradient operator; and a second-
order regularization corresponds to T = L, where L is a discrete approximation to
the surface Laplacian operator. A zeroth-order regularization can be viewed as a
constraint on the amplitude of the solution, a first-order one on the surface gradient
and a second-order one on the surface curvature.

Many studies on the Tikhonov regularization have been conducted, e.g. [MRR88],
and they showed that zeroth-order Tikhonov regularization performs as well as the
higher order ones. Better results can be obtained with large values of λt in the case
of second or third order regularization.

1.5.1.2 Truncated Singular Value Decomposition (TSVD)

The Truncated Singular Value Decomposition (TSVD) regularization
method [FGHO97, PBC05] aims to find a λt-rank approximation Aλt of the transfer
matrix A using the truncated SVD of A:

Aλt = UλtΣλtVλt (1.35)

where Σλt is the diagonal matrix of the first λt eigenvalues of A and Uλt , Vλt contain
the first λt left and right eigenvectors of A, respectively. Then, A†

λt
reads

A†
λt

= V T
λtΣ

−1
λt
UTλt . (1.36)

The efficiency of the TSVD method has been studied [PBC05] and its performance
is often indistinguishable from the zeroth-order Tikhonov regularization one.

1.5.1.3 Time dependant regularization

None of the studied regularization techniques for the electrocardiography inverse
problem takes into account the time dependency of the solution. As a matter of fact,
the discretized minimization problem (1.30) has to be solved at each time step τ =

0, . . . ,M . An approach that takes into account this time dependency [OR92, GH98]
suggests to add a regularization term that imposes a continuity on the solution:

min
gτ∈V

||R(gτ )− dτ ||2L2(∂ΩT) + ε||gτ − gτ−1||2V . (1.37)

With this technique, small oscillations of the solution can appear. Moreover,
the choice of the initial state of the solution strongly influences the solution of the
inverse problem.
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1.5.2 Transmembrane potential reconstruction problem

More recently, another approach has been proposed [MSM+04], which is the
estimation of the transmembrane potential using the second equation of the bidomain
model (1.13)

−∇ ·
(
(σi + σe) ·∇ue)−∇ ·

(
σi ·∇Vm) = 0, in ΩH. (1.38)

In practice, the torso diffusion equations are solved on the whole body (heart and
torso) domain, for a continuous variable u = ue1ΩH

+ uT1ΩT
, where 1Ω is the

indicator function on Ω. Then, the coupled system reads

−∇ ·
(
σ ·∇u) = f(x,t), in ΩH ∪ ΩT, (1.39)

where σ = (σi + σe)1ΩH
+ σT1ΩT

, and f is zero in ΩT while it can be viewed as a
source term in ΩH. Then, solving the inverse problem is equivalent to getting the
source term of (1.39).

The “classical” inverse problem and this new approach were compared
in [MSM+04]. The authors conclusion is that the new formulation is more promising
since it is based on a stronger biophysical a priori. Still, the transmembrane potential
approach is ill-posed and must be regularized, too. Many attempts have been made
on the subject, e.g. [LLH06] where four variants of L2-Tikhonov regularization
are compared, and [NCL07] where a H1-Tikhonov regularization is used. Also,
in [NCL07] the identification of the myocardial infarction location is solved using
a combined technique within the estimation of the transmembrane potential and a
level set technique. This approach is then generalized in [WKMJ13] to more general
objective functions and constraints in order to identify ischemic regions, investigating
two different regularizations: the Tikhonov regularization and the Total Variation
regularization.

1.5.3 Parameters identification inverse problem

The inverse problems of electrocardiology that we presented above often require
good regularization techniques in order to be solved. In particular, we point out that
none of them takes advantage of the fact that the heart equations are known. An
alternative way to solve the inverse problem is the following one: if we suppose that
the heart model is good enough, then we can imagine that the only source of error
when a simulation is run with the model itself is due to the parameters. This leads to
the parameters identification inverse problem: we use some ECG or electrodes vest
type measures in order to estimate the parameters of the bidomain equations or of
the ionic model. Of course, the forward problem needs to be as accurate as possible.
In this thesis we present some attempts made in parameters estimation using different
techniques: a minimization problem is solved in Chapter 4 with genetic algorithms,
the so-called restitution curve rising from long-time simulations ECG is used in
Chapter 5, while a data assimilation technique is applied in Chapter 6.
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1.6 Reduced Order Methods: a brief overview

The forward and inverse problem in electrophysiology are known to be very
challenging from a computational cost point of view. In order to reduce this
computational cost, various Reduced-Order Methods (ROM) have been applied
in this work. Let us first give a brief overview on the ROM and in particular on two
of the main techniques in ROM.

For the sake of convenience, let us consider a generic parabolic problem on a
bounded domain Ω ⊂ R

d for all t > 0

∂u

∂t
−∇ · (D∇u) = f(u,t), (1.40)

with some proper boundary and initial conditions. Let us write the problem in its
variational form:
for any t > 0, find u(t) ∈ V ⊆ H1(Ω) such that

d

dt

(
u(t), v

)
+ a

(
u(t),v;D

)
=

(
f(u(t),t), v

)
, (1.41)

for all v ∈ V , where a
(
u,v;D

)
=

(
D∇u,∇v

)
and (·,·) indicates the L2 inner product.

In order to describe the ROM, let us introduce a finite element discretization of this
problem, by considering a discrete subset VN ⊂ V , of dimension N . The Galerkin
approximation of the problem reads: for any t > 0, find uN (t) ∈ VN ⊆ H1(Ω) such
that

d

dt

(
uN (t), vN

)
N

+ aN
(
uN (t),vN ;D

)
=

(
f(uN (t),t), vN

)
N
, (1.42)

for all vN ∈ VN , where (·,·)N indicates the inner product in the finite space VN .
ROM aims to decrease the computational costs of the spatial discretization by

approximating the Galerkin problem in a subspace of VN , VN ⊂ VN , of dimension
N ≪ N . Many techniques for the choice of the space VN exist, we briefly present
two different approaches: the Reduced-Basis approach [MR02], used in Appendix B,
and the Proper Orthogonal Decomposition (POD) [KV01, RP04], used in Chapters 4
and 5. Also, an introduction to a new approach based on Lax Pairs Approximation
(ALP) [GL14], used in Chapters 6 and 8, is given.

1.6.1 Reduced Basis

The Reduced Basis method was first introduced in [NP80] for non-linear de-
flections in composite materials in aerospace fields. In [MR02] the methods was
mathematically reformulated, allowing the resolution of steady elliptic problems
affine in parameters. The method is mainly divided into an offline and an online
phases that let take advantage of (possibly expensive) preliminary computations
to decrease the resolution time. Later, many works to improve the offline phase,
e.g. [MPR02, RHP07, RNPD09, DR09, HKB13], gave also some a priori error
estimators.
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To briefly resume the methods, let us consider the problem (1.40) in a steady
case:

∇ · (D∇u) + f(u) = 0. (1.43)

If we suppose that the conductivity term D is constant (real, positive), then prob-
lem (1.43) can be written in its variational form as:
find u ∈ V ⊆ H1(Ω) such that

Da
(
u,v

)
+
(
f(u), v

)
= 0, (1.44)

for all v ∈ V , where a
(
u,v

)
=

(
∇u,∇v

)
.

The offline step consists in computing a reduced basis of size N ≪ N which is
the space generated by a set S of finite element solutions of the problem for different
values of D:

S = (uN (D1), . . . , uN (DN )). (1.45)

where (D1, . . . , DN ) are a given set of parameters.
For all D ∈ R+, the approximated solution uN (D) can be written in the reduced

form as

û(D) =

N∑

i=1

αiuN (Di), (1.46)

and the Galerkin approximation of the reduced problem reads: find û(D) =

(α1, . . . , αN ) such that
DKN û(D) + FN = 0, (1.47)

where the matrix KN and the vector FN elements can be computed in the offline
phase:

[KN ]i,j =
(
∇uN (Di),∇uN (Dj)

)
, [FN ]i = f(uN (Di)). (1.48)

Then, the online step is very quickly solved since the matrix KN is of small size. We
remark that here we presented a scholar case in the purpose of giving an idea of the
method, of course it is applicable in more complicated cases where, for example, the
conductivity parameter D is constant in each subdomain of a given partition of Ω.

1.6.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) method was introduced in the
1960s by Lumley [Lum67] for the analysis of turbulent flows, discovering that the
principal components corresponded to some coherent spatial structures that occurred
cyclical in time. Later, with the introduction of the Galerkin approximation for the
Naver-Stokes equations, the idea to approximate the solution in the space generated
by a finite number of principal components arises. Also, more recently, several
developments of this technique have been proposed, e.g. [KGAB11, CF11, WABI12].
Let us briefly recall the procedure to build a POD basis which will be used later in
Chapters 4, 5 and 6.

We consider the Galerkin approximation in a finite space VN = span{ϕ1, . . . , ϕN}
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of the solution of (1.40): for all x ∈ Ω and t ∈ [0,T ] it reads

u(x,t) ≃
N∑

k=1

ak(t)ϕk(x), (1.49)

where N is the dimension of VN . In general, the basis functions ϕk are given a priori,
for example they can be elements of the finite element basis, Legendre polynomials
or Chebyshev polynomials, and the coefficients ak = ak(t) depend on the choice
of the basis. In this case, the basis functions are determined independently of the
solution to compute. If we suppose that the basis is orthonormal, i.e.

ˆ

Ω
ϕi(x)ϕj(x)dx = δij , ∀i,j = 1, . . . , N (1.50)

where δij is the Kronecker function, then the coefficients ak of (1.49) can be written
as

ak(t) =

ˆ

Ω
u(x,t)ϕk(x)dx, (1.51)

and then

u(x,t) ≃
N∑

k=1

〈u(·,t), ϕk〉ϕk(x), (1.52)

where 〈·,·〉 is the L2(Ω) inner product.

Contrary to the FE basis, the POD basis is obtained from the data of the solution
u(x,ti) at M time instants t1, . . . , tM . The POD basis is obtained as the solution of
the following problem: find the orthonormal functions {ϕk}Nk=1, N ≪ N , where N
is for instance the dimension of a finite element discretization, which minimize

M∑

i=1

||u(x,ti)−
N∑

k=1

〈u(·,ti), ϕk〉ϕk(x)||2L2(Ω). (1.53)

In practice, we consider M realizations of u(·,ti), 1 ≤ i ≤ M , which are
given at N different points x1, . . . , xN , e.g. the vertices of a finite element eval-
uation. Then, the set of data U = {u(t1), . . . ,u(tM )} is arranged in a ma-
trix called Snapshot Data Matrix A = [u(t1) . . .u(tM )], A ∈ R

N×M , where
u(ti) = [u(x1,ti), . . . , u(xN ,ti)]

T ∈ R
N . Then the solution of the minimization

problem (1.53) will be expressed thanks to the truncated Singular Value Decomposi-
tion (SVD) of length N of A.

Let us explain in details how the minimization problem (1.53) is solved. We
recall that the SVD of A is the factorization

A = UΣV † (1.54)

where U ∈ R
N×N and V ∈ R

M×M are (non unique) orthogonal matrices and
Σ ∈ R

N×M is the diagonal matrix of singular values ordered by decreasing order,
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and V † denotes the transpose of V .

Let us consider the finite element solution such that for each time ti, i = 1, . . . ,M ,

u(x,t) ≃
N∑

k=1

uk(ti)ψk(x), (1.55)

where VN = {ψ1, . . . , ψN } is the finite element space, and let us define the finite
element mass matrix M ∈ R

N×N , Mij = 〈ψi, ψj〉, the associated inner product
(u,v) = uTMv and the M-norm ||u||2M = uTMu, for any u,v ∈ R

N . Assume that
the POD basis functions {ϕk}Nk=1 are in the linear space spanned by the finite element
functions {ψk}Nk=1

ϕk(x) =

N∑

j=1

ϕ̂k,jψj(x). (1.56)

Then, the minimization problem (1.53) writes as

min
ϕ1,...,ϕN

M∑

i=1

||u(ti)−
N∑

k=1

(u(ti), ϕk)ϕk||2M. (1.57)

The minimization problem (1.57) can be written in a matrix representation as a
minimization problem in the Frobenius norm2

min
Z∈RN×N s.t. ZTZ=IN

||Â− ZZT Â||2F (1.58)

where IN is the N dimensional identity matrix, Â ∈ R
N×M is defined by Â =

(M1/2)TA, and Z ∈ R
N×N is Z = (M1/2)TΦ, with Φ = [ϕ̂1 . . . ϕ̂N ] ∈ R

N×N . Thus,
we are looking for a N dimensional basis Φ such that ZZT Â is the best approximation
of Â compared with all subspaces of dimension N . Then, thanks to Eckart-Young
theorem3, the solution is given by the truncated SVD of Â of length N

ÂN = UNΣNV
T
N (1.59)

where ΣN = diag(σ1, . . . , σN ) is the diagonal matrix of the N first singular values of
Â, UN corresponds to the first N columns of U and VN to the first N rows of V .

Finally, we find that Φ solves

(M1/2)TΦ = UN . (1.60)

The coefficients of the POD basis functions are defined by the solution of (1.60).

2The Frobenius norm is defined by ||B||F =

√

√

√

√

n
∑

i=1

σ2
i (B), where n = rank(B), and σi are the

singular values of any matrix B.
3[EY36] min

X:rank(X)≤k
||A−X||F = ||A−Ak||F where Ak is the truncated SVD of A.
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1.6.3 Reduce Order Method based on Approximated Lax Pairs

A new technique has been recently proposed in [GL14], called ALP method since
it is based on Approximated Lax Pairs. The main difference with the methods
presented above relies on the fact that the space where the solution is approximated
evolves in time. The initial basis is built using an approximated Lax pair [Lax68],
and then this basis evolves according to the dynamics of the specific problem. This
approach is particularly useful to solve with front propagations such as cardiac
electrophysiology equations. It is therefore applied to monodomain and bidomain
equations in Chapter 6. We invite to consult the dedicated chapter for a complete
description of the method. Finally, a new formulation of the ALP model that uses
the Discrete Empirical Interpolation (DEIM) [CS10b] method is detailed and applied
to bidomain equations in Chapter 8.



Chapter 2

Numerical simulations of full

electrocardiogram cycle

This chapter is dedicated to the simulation of full cycles of the electrical activity of

the heart and the corresponding body surface potential. The model is based on a realistic

torso and heart anatomy, including ventricles and atria. One of the specificities of our

approach is to model the atria as a surface, which is the kind of data typically provided by

medical imaging for thin volumes. The bidomain equations are considered in their usual

formulation in the ventricles, and in a surface formulation on the atria. Two ionic models

are used: the Courtemanche-Ramirez-Nattel model on the atria, and the “Minimal model

for human Ventricular action potentials” (MV) by Bueno-Orovio, Cherry and Fenton in the

ventricles. The heart is weakly coupled to the torso by a Robin boundary condition based

on a resistor-capacitor transmission condition. Various ECGs are simulated in healthy and

pathological conditions (left and right bundle branch blocks, Bachmann’s bundle block,

atrioventricular block, Wolff-Parkinson-White syndrome). To assess the numerical ECGs,

we use several qualitative and quantitative criteria found in the medical literature. Our

simulation tool can also be used to generate the signals measured by a vest of electrodes.

We illustrate this capability at the end of the chapter.

The results presented in this chapter lead to the manuscript

Elisa Schenone, Annabelle Collin, Jean-Frédéric Gerbeau. Numerical simulations of

full electrocardiogram cycle, Submitted.
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2.1 Introduction

An electrocardiogram (ECG) is a recording of the electrical activity of the
heart [MP95, War75]. The standard 12-lead ECG is obtained from 9 electrodes
located on the body surface, as detailed in Section 1.3. This non-invasive and
inexpensive procedure is probably the most used clinical tool for the detection
of cardiac pathologies. The motivation for the modeling and the simulation of
ECGs is twofold. First, the ECG is a simple output of the complex simulation
of the cardiac electrical activity: while the latter is difficult to validate without
invasive measurements, the former is easy to assess by a medical expert. Second,
the simulation of ECGs can be viewed as a step toward the inverse problem of
electrocardiography (see e.g. [NCL07, WKMJ13, LLH06, JXS+08]) as shown in next
chapters. Indeed, the inverse problem can be reformulated as a problem of identifying
the parameters of the model used to simulate ECGs, see for instance Chapter 4.
From this perspective, the design of a model based on biophysical principles and able
to produce ECGs in healthy and pathological condition is an important endeavor.
This is the main purpose of this study.

Many attempts at simulating ECGs can be found in the literature [Hui98,
LBG+03, KSW+07]. A brief overview is given in Section 1.3. The simulation
of 12-lead ECG based on partial differential equations (PDE) appeared during the
last decade [PDG03, TDP+04, PDV09, BCF+10, MDFG12]. More recently, a focus
on the T-wave was proposed in [HK14]. Because of the difficulty in imaging and
modeling the atria, all these studies only consider the ventricles. As a consequence,
they cannot produce the P-wave of the ECG. On the contrary, papers considering
atria, as [HC00, KST+11], usually do not include ventricles and do not provide
ECGs. Recently, a full cycle electrocardiogram was proposed in [SMLD13], but for
an idealized geometry. To our knowledge, the present work is the first one to propose
a full cycle ECG – including the P, QRS and T waves – based on a real anatomy of
the heart and on the simulation of a PDE biophysical model.

Another limitation of the existing works on ECG simulation is their lack of precise
evaluation of the results. This question is indeed delicate since a “healthy ECG”
is not a unique object, and there is no obvious metric to measure the discrepancy
between this somehow fuzzy notion and the result of a simulation. In this paper, we
gather many criteria, found in the medical literature, that can be used to assess both
qualitatively and quantitatively the numerical ECGs. We show that our healthy
ECG fulfills almost all the qualitative and quantitative properties of real ECGs,
which is a significant progress with respect to the state of art. Pathological cases are
also investigated in order to show the capability of our model to predict the features
used by medical doctors to detect a disease.

Here is a brief description of our approach. A standard 3D bidomain model
is used for the ventricles [Tun78, Sac04] and a recent asymptotic surface-based
bidomain model is used for the atria [CCG12, CGH+13]. Two different ionic models
are considered: the physiological model proposed by Courtemanche, Ramirez and
Nattel in [CRN98] on the atria, and the “Minimal model for human Ventricular action
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Left Ventricle Volume (ml) Mass (g) Mitral (cm) Aortic (cm)
Measures 53.7 111.3 2.9 2.3
Reference 46± 11 112± 27 2.5± 0.4 2.3± 0.2

Left Atrium Major axis (cm) Area (cm2) Volume (ml) Pulm. Veins (cm)
Measures 4.65 15.9 47 1.14− 1.45
Reference 3.4± 0.6 17.5± 2.5 58± 34 1.3± 0.2

Table 2.1: Comparisons of the model dimensions with typical end-systolic values
found in the literature [CM07, HPF+05, OSTW82, ERBL+10, ZBMHO94, CWS+95,
JHR+08].

potentials” (MV) model proposed by Bueno-Orovio, Cherry and Fenton in [BOCF08]
in the ventricles. The coupling conditions between the heart and the body are based
on the resistor-capacitor coupling condition presented in [BCF+10].

The outline of this chapter is as follows. In Section 2.2, the geometry of the heart
used for the simulation is described. It is based on a surface region for the atria and a
volume region for the ventricles. Its main characteristics are compared with those of
a normal human heart. Section 2.3 deals with the biophysical modeling of the atria
and the ventricles and the coupling condition with the rest of the body. Section 2.4
concerns the simulations of the standard 12-lead ECG. A healthy case is given and
validated against numerous criteria used to assess real electrocardiograms. Some
pathological cases are also studied: left and right bundle branch blocks, Bachmann’s
bundle block, atrioventricular block, and the Wolff-Parkinson-White syndrome which
is a pathology caused by the presence of an abnormal accessory electrical conduction
pathway between the atria and the ventricles. In the last part of this section, we
investigate the impact of the ionic models on the ECGs by using in the ventricle and
in the atria the phenomenological Mitchell-Schaeffer model [MS03]. In Section 2.5,
we show that our simulator can also produce signals that are richer than the standard
ECG. As an illustration, we analyse the potential measured by a “virtual electrode
vest” made of 1216 electrodes. In particular, the correlation between the signals of
different electrodes is studied. We also give an analysis of the dependence of the
electrode measures with respect to their positions on the body.

2.2 Whole heart mesh

To obtain full cycle ECGs, the first step is to build a whole heart realistic mesh.
The ventricles can be easily obtained from medical imaging and meshed in 3D. On
the contrary, the atria have a very thin wall which makes them difficult to image in
3D. In addition, generating a 3D mesh on these very thin volumes would dramatically,
and uselessly, increase the computational cost. For these reasons, we choose to model
the geometry of the atria as a surface. We therefore obtain an hybrid mesh, made of
tetrahedra in the ventricles and of triangles in the atria.
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Figure 2.1: Whole heart mesh (right) and body mesh (left).

The heart model is obtained from an anatomical data set called Zygote1. The
3-matic software is used to obtain a surface mesh satisfying the standard quality
criteria of a finite element mesh, and Yams [Fre01] to refine the surface mesh. Then,
the volume of the two ventricles is meshed using Gmsh [GR09]. We can see in Figure 2.1
different views of the whole mesh, which contains about 230,600 tetrahedra, 73,500
triangles and 67,300 vertices. A simplified mesh of the body (Fig. 2.1), including the
lungs and the ribs, is also built from the Zygote data set and the aforementioned
software. The body mesh contains 408,171 tetrahedra, 89,222 triangles and 85,196
vertices.

The mechanical deformation of the heart is not taken into account in this
work (see for instance [AANQ11, RBAP+13]). The dimensions of the fixed domain
correspond to the end of the systole (small ventricles, large atria). Table 2.1 shows a
comparison of a few dimensions of the geometrical model with standard end-systolic
values. The following quantities are compared: left ventricle volume and mass,
mitral and aortic valves diameters, left atrium major axis, area, volume and four
pulmonary veins diameters. We observe a good agreement with the values found in
the literature [CM07, HPF+05, OSTW82]. We also have a good agreement for the
diameters of mitral [ERBL+10] and aortic [ZBMHO94] valves, the surface of the left
atrium [CWS+95, JHR+08].

Cardiac tissue has a fiber architecture. The electrical conductivity is higher along
the fibers than in the transverse direction. This implies that the fiber orientation
is very important in the study of the electrical activity of the heart. To identify
and to prescribe the fibers at the endocardium and at the epicardium of the atria,
we use [HASQ02, HSQ09, KST+11]. As we can see in Figure 2.2 (top), the fibers
orientation may vary extremely quickly across the thickness. The colors represent

1www.3dscience.com

www.3dscience.com
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Figure 2.2: Fibers directions at the atrial endocardium (top-left) and atrial epicardium
(top-right), and in ventricles (bottom).

the angle θ defined as half of the angular difference between the endocardium and
the epicardium. We use [NH00, Str79] to prescribe the fibers in the ventricles, see
Figure 2.2 (bottom).

Figure 2.3 represents a schematic view of the heart conduction system in a
healthy heart: the sinus and atrioventricular nodes, the Bachmann’s bundle and the
Purkinje fibers. In this work, the atrio-ventricular node and the Purkinje fibers are
not explicitly modeled (see below).

2.3 Modeling assumptions

In this section, we present the electrophysiology equations and the ionic models
used in the ventricles and the atria. We also present the coupling conditions between
the atria and the ventricles and between the heart and the body.

2.3.1 Bidomain model

In order to describe the electrical potential in the heart we used the standard
nonlinear reaction-diffusion bidomain equations (see for instance [Sac04, SLC+06]).
As previously described in Section 1.4, in terms of extracellular potential ue and
transmembrane potential Vm = ui − ue, with ui the intracellular potential, the
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Figure 2.3: Heart conduction system.

bidomain model reads




Am

(
Cm

∂Vm

∂t
+ Iion(Vm,,w1, . . . , wn)

)
− div(σi · ∇Vm)− div(σi · ∇ue) = AmIapp

−div((σi + σe) · ∇ue)− div(σi · ∇Vm) = 0

(2.1)
in B × (0,T ), where B denotes the 3D domain of interest, Am is a positive constant
denoting the ratio of membrane area per unit volume, Cm the membrane capacitance
per unit surface, Iion the ionic current which depends on n ionic variables w1, . . . ,
wn and Iapp a given applied stimulus current.

We make the standard assumption that the extracellular current does not flow
through the epicardium, so that the first boundary condition is

(σe · ∇ue) · n = 0, in ∂B × (0,T ). (2.2)

The second boundary condition comes from the fact that, by definition, the intra-
cellular current does not propagate outside the heart [Tun78]

(σi · ∇ue) · n = −(σi · ∇Vm) · n, in ∂B × (0,T ). (2.3)

In order to define the Iion term, equations (2.1) must be coupled with a ionic model,
i.e. a system of nonlinear ordinary differential equations (ODEs). For the ventricular
domain, we apply the “Minimal model for human Ventricular action potentials” (MV)
introduced in [BOCF08]. MV is a phenomenological model associated with three
ionic currents, three gate variables, and governed by 28 parameters. Its expression
and parameters are briefly reported in Appendix 2.B.

As previously explained, the fiber architecture of the cardiac muscle is considered.
In order to include the anisotropy between the orthogonal and the tangent direction
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of the fibers, the conductivity tensors σi and σe are defined by

σi,e = σv,t
i,e I + (σv,l

i,e − σv,t
i,e ) τ ⊗ τ ,

where I denotes the 3D identity matrix, the vector τ is of unit length and parallel to
the local fiber direction, and σv,l

i,e and σv,t
i,e are respectively the conductivity coefficients

in the intra- and extra-cellular ventricular medium measured along and across the
fiber direction.

The bidomain model can be rewritten in weak form as follows. For all t > 0, find
Vm(·,t) ∈ H1(B), ue(·,t) ∈ H1(B) and w1(·,t), . . . , wn(·,t) ∈ L∞(B) with

´

B ue = 0,
such that





Am

ˆ

B

(
Cm

∂Vm

∂t
+ Iion(Vm,w1, . . . ,wn)

)
φ+

ˆ

B

(
σi ·

(
∇Vm +∇ue

))
· ∇φ

= Am

ˆ

B
Iappφ

ˆ

B

(
(σi + σe) · ∇ue

)
· ∇ψ +

ˆ

B

(
σi · ∇Vm

)
· ∇ψ = 0

(2.4)
for all φ, ψ ∈ H1(B) such that

´

B ψ = 0. Under some regularity assumptions, we
have existence and uniqueness of a solution of the bidomain model, see e.g. [BCP09].
The hypothesis

´

B ue = 0 is necessary in order to have uniqueness and we show in
Section 2.3.3 how to adapt this condition when atria and ventricles are coupled.

2.3.2 Surface bidomain model

As explained in Section 2.2, it is more convenient to work with a surface mesh for
the atria. The electrophysiology model set on this surface is the one proposed and
analyzed in [CCG12], derived from the volume bidomain model, and defined over
the midsurface of the thin region. This surface-based model was obtained from a
rigorous asymptotic analysis and was specifically designed for thin cardiac structures.
It takes into account the strong anisotropy variations across the thickness and it is
extremely attractive in term of computation time compared to its 3D counterpart.
We denote by S the midsurface of the wall and we denote by H1(S) the associated
space. The surface-based bidomain model can be rewritten in weak form as follows:
for all t > 0, find Vm(·,t) ∈ H1(S), ue(·,t) ∈ H1(S) and w1(·,t), . . . , wn(·,t) ∈ L∞(S)
with

´

S ue = 0, such that





Am

ˆ

S

(
Cm

∂Vm

∂t
+ Iion(Vm,w1, . . . , wn)

)
φ+

ˆ

S

(
σi ·

(
∇Vm +∇ue

))
· ∇φ

= Am

ˆ

S
Iappφ

ˆ

S

(
(σi + σe) · ∇ue

)
· ∇ψ +

ˆ

S

(
σi · ∇Vm

)
· ∇ψ = 0

(2.5)
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for all φ, ψ ∈ H1(S) such that
´

S ψ = 0. We denote by σa,l
i,e and σa,t

i,e the conductivity
coefficients in the intra- and extra-cellular atrial medium measured along and across
the fiber direction. We define the intra- and extra-cellular diffusion tensors σi and
σe by

σi,e = σa,t
i,e I + (σa,l

i,e − σa,t
i,e )

[
I0(θ)τ0 ⊗ τ0 + J0(θ)τ

⊥
0 ⊗ τ⊥0

]
, (2.6)

where I denotes the identity tensor in the tangential plane, τ0 is a unit vector
parallel to the local fiber direction on the atria midsurface, and τ⊥0 such that (τ0,τ

⊥
0 )

gives an orthonormal basis of the tangential plane. We use the fibers direction
at the endocardium and at the epicardium to define the fibers direction τ0 on
the atria midsurface and the angle variation θ between the endocardium and the
epicardium. The effect of angular variations appears in the model with the coefficients
I0(θ) =

1
2 + 1

4θ sin(2θ) and J0(θ) = 1− I0(θ). Note that J0(θ) = 0 (and I0(θ) = 1) if
and only if θ = 0, which corresponds to a constant direction in the thickness and then
σi,e = σa,t

i,e I + (σa,l
i,e − σa,t

i,e ) τ0 ⊗ τ0. By contrast, important angular variations make
I0 decrease and J0 increase in (2.6) and the diffusion becomes more isotropic. In
[CGH+13] this model was compared to several 3D models proposed in the literature
[DGSJ12, HC00, MLW+09].

The physiological model introduced by Courtemanche, Ramirez and Nattel
in [CRN98] – a classic atrial model – is considered (12 ionic currents and 20 other
variables). The two atria are connected only by two regions, the Bachmann bundle
and the Fossa Ovalis. A brief description of the model and its parameters are
reported in Appendix 2.C, we refer to [CGH+13] for more details.

2.3.3 Simulations on the whole heart

Coupled model

From a mathematical point of view, volume and surface models are incompatible.
It would be erroneous to solve them separately because the uniqueness criterion
for the first model is not consistent with the second one. As seen in Sections 2.3.1
and 2.3.2, the unique solution ue(·,t) ∈ H1(B) of (2.4) is s.t.

´

B ue = 0 and the
unique solution ue(·,t) ∈ H1(S) of (2.5) is s.t.

´

S ue = 0. This is why we consider a
whole domain B ∪ S and a new global criterion. The resulting coupled problem is
well-posed at the discrete level, but its mathematical analysis remains to be done.
Let Ωh = Bh ∪ Sh, where Bh is the mesh of the ventricles and Sh is the mesh of
the atria, and let Lh be the line such that Bh ∩ Sh = Lh. We denote by γ

Ω̃
u the

restriction of a function u to a subdomain Ω̃. The finite dimensional approximation
spaces Vh and V0

h are then defined by: vh ∈ Vh if and only if vh is continuous in
Ωh, γBh

vh ∈ H1(Bh), γSh
vh ∈ H1(Sh), and uh ∈ V0

h if and only if uh ∈ Vh and
´

Bh
uh = 0. Using (2.4), (2.5), the full model reads: find (Vm,h, ue,h) ∈ Vh ×V0

h such
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σa,t
e σa,l

e σa,t
i σa,l

i σs,t
e

9.0 10−4 2.5 10−3 2.5 10−4 2.5 10−3 7.5 10−7

Table 2.2: Atria conductivity parameters (S.cm−1).

σv,t
e σv,l

e σv,t
i σv,l

i

6.0 10−4 2.0 10−3 2.0 10−4 2.0 10−3

Table 2.3: Ventricles conductivity parameters (S.cm−1).

that ∀φ ∈ Vh, ψ ∈ V0
h,





Am

ˆ

Lh

(
Cm

∂Vm,h

∂t
+ Iion(Vm,h, . . .)

)
φ+

ˆ

Sh

(
σi ·

(
∇Vm,h +∇ue,h

))
· ∇φ

+

ˆ

Bh

[
σi ·

(
∇Vm,h +∇ue,h

)]
· ∇φ = Am

ˆ

Lh

Iappφ
ˆ

Sh

(
(σi + σe) · ∇ue,h + σi · ∇Vm,h

)
· ∇ψ

+

ˆ

Bh

(
(σi + σe) · ∇ue,h + σi · ∇Vm,h

)
· ∇ψ = 0.

(2.7)

Connection surface

As previously mentioned, the atrioventricular node is the only pathway for the
electrical signal between the atria and the ventricles. From a physiological point
of view, a fibrous skeleton separates atria boundaries from ventricles epicardium.
This layer isolates the atrial cells from the ventricular ones [MTT11, MdBV+96].
We propose to model this fibrous skeleton with a thin layer of the atrial surface,
represented on the left of Figure 2.4. The idea is that in this area there is only a
low conduction of the extracellular potential. In this region, denoted by Sc ⊂ S, the
intracellular conductivity is set to zero and the extracellular conductivity denoted
by σs,t

e is very low (see Table 2.2). Finally, the surface and volume bidomain
equations (2.7) are solved simultaneously on this “hybrid” domain with

σi,e = σv,t
i,e I + (σv,l

i,e − σv,t
i,e ) τ ⊗ τ ,

σi,e = σa,t
i,e I + (σa,l

i,e − σa,t
i,e )

[
I0(θ)τ0 ⊗ τ0 + J0(θ)τ

⊥
0 ⊗ τ⊥0

]
, in S \ Sc,

σi = 0, and σe = σs,t
e I, in Sc.

Parameters and applied currents

The values of the membrane parameters are Am = 200.0 cm−1 and Cm =

10−3 mF.cm−2 for the whole heart. The conductivity takes different values de-
pending on the region in the ventricles and atria (Tables 2.3, 2.2).

In the atria, the regions of fast conduction are the Bachmann bundle (BB), see
Figure 2.3, the Crista Terminalis (CT) and the pectinate muscles (PM). By contrast,
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Figure 2.4: Surface connection between the atria and the ventricles (left) and Kent
bundle (right).

regular tissue PM CT BB FO
7.8 11.7 31.2 46.8 3.9

Table 2.4: Maximal conductance gNa in the different atrial areas (nS.pF−1).

the Fossa Ovalis (FO) is a region of slow conduction. In order to model the different
propagation velocities, we modify the values of gNa, the maximal conductance of the
Na2+ current INa. Table 2.4 gives the parameters used for gNa. Furthermore, the
action potential duration is forced to be shorter, i.e. the parameter gKs is five times
bigger than in [CRN98].

In the ventricles, we modify the duration of the plateau too. In the MV model, we
change the values of τso1 parameter in order to reduce the action potential duration
for epicardial, endocardial and midmyocardial cells. This heterogeneity is considered
in the left ventricle, for the positivity of T wave [YA98]. In the right ventricle,
the cells are considered homogeneous and their parameters are taken as in the left
ventricle epicardium, except for τso1 (Table 2.5).

Activation is initiated at the sinus node with a stimulus of 2ms which triggers a
depolarization wavefront in the atria (Figure 2.3). For the sake of simplicity, the
atrioventricular node, which is the only electrical connection between the atria and
the ventricles, is not modeled with a sophisticated physiological model. Instead,

EPI ENDO M RV
[BOCF08] 30.0181 40.0 91.0 /

Heart 25.0 40.0 61.0 26.0

Table 2.5: Changed ionic parameter τso1 of MV compared to [BOCF08].
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the excitation is triggered in the ventricle after a parameterized delay (in healthy
condition, we choose to start it at 190ms). Similarly, the fast conduction in the
Purkinje fibers (Figure 2.3) is modeled with a predefined stimulus pattern: a time-
dependent thin subendocardial layer is activated by an external current on both
right and left ventricle. A description of a a ventricular external stimulus is given
in [BCF+10] for more details.

Simulation results

The various simulations of this work are performed with the finite element library
FELiScE2, developed at Inria by the REO and MΞDISIM teams. The numerical
methods used to solve problem (2.7) are presented in [BCF+10]. Figure 2.5 shows a
full cardiac cycle. The corresponding first lead electrocardiogram is also represented.
The electrical signal starts at the sinus node where the atrial depolarization (AD) be-
gins. By 50ms the wave quickly spreads along the Crista Terminalis as a consequence
of the high conductivity in this part. Importantly, because of the rapid conduction
in the Bachmann bundle, the wave spreads to the left atrial appendage and activates
a substantial part of the left atrial wall. The depolarization of the right and left
atria terminates at 100ms and 110ms, respectively. The ventricular depolarization
begins at 190ms. During this period, the atrial repolarization (AR) occurs. As we
can see in the figure, at 200ms the endocardium of the ventricles rapidly depolarizes.
Then, the wave propagates across the ventricles. The repolarization ends at 430ms
in the right ventricle and at 470ms in the left ventricle.

2.3.4 Coupling with the body

The last step in order to obtain an electrocardiogram is to couple the heart model
with a diffusion problem in the rest of the body

− div(σT∇uT) = 0, in ΩT , (2.8)

where the electrical conductivity σT takes different scalar values in the ribs and the
lungs (see [BP03] and Table 2.6).

On the body surface ∂Ωext
T , an homogeneous Neumann boundary condition is

imposed σT∇uT · n = 0. To define the transmission conditions at the heart-body
interface ∂ΩH, we assume that the extracellular current does not flow through the
pericardium (isolated heart assumption)

σe · ∇ue · n = 0 (2.9)

and we consider the resistor-capacitor conditions presented in [BCF+10]

Rp(σT∇uT) · n = RpCp
∂(ue − uT)

∂t
+ (ue − uT) (2.10)

2http://felisce.gforge.inria.fr – A brief description of the library, the implementation of
the electrophysiology into the code and the author contributions is given in Appendix A.

http://felisce.gforge.inria.fr
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Figure 2.5: Simulations of heart depolarization in a healthy case with the corre-
sponding electrocardiogram first lead.
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Figure 2.6: Simulations body potential of heart depolarization in a healthy case
(Figure 2.5), with coupling condition (2.10).
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σbody
T σbones

T σlungs
T

3.0 10−2 1.2 10−2 2.0 10−3

Table 2.6: Body conductivity parameters (S.cm−1).

where Cp and Rp stand for the capacitance and resistance of the pericardium,
respectively.

Condition (2.9) is an approximation that has been shown not to affect too much
the shape of the ECG in [BCF+10]. It allows us to solve the heart-body system as a
one-way coupled problem, which dramatically reduced its computational cost.

Condition (2.10) allows us to model the fact that the transmission of potential
through the pericardium is not perfect, and can be different for the ventricles and
the atria. We take Rp = 102 Ω.cm2 on the surface in contact with the ventricles and
Rp = 105 Ω.cm2 on the surface in contact with the atria. We neglect the capacitor
effect by taking Cp = 0 mF.cm2 in (2.10). The transmission between the heart and
the body is therefore modeled as a Robin boundary condition

Rp(σT∇uT) · n+ uT = ue, on ∂ΩH . (2.11)

Figure 2.6 shows the body surface potential corresponding to the simulation shown
in Figure 2.5.

2.3.5 Electrocardiogram computation

A standard electrocardiogram is based on the body surface potential recorded
by 9 electrodes (ΓECG = {R,L,F,V1, . . . ,V6}, see Figure 2.7). These measures are
combined to define 12 differences of potential, known as the 12 leads of the standard
ECG

I = uT (L)− uT (R) aV R = 1.5(uT (R)− uw)

II = uT (F )− uT (R) aV L = 1.5(uT (L)− uw)

III = uT (F )− uT (L) aV F = 1.5(uT (F )− uw)

V 1 = uT (V1)− uw V 4 = uT (V4)− uw
V 2 = uT (V2)− uw V 5 = uT (V5)− uw
V 3 = uT (V3)− uw V 6 = uT (V6)− uw

where uw = 1
3(uT (L) + uT (R) + uT (F )) is the Wilson potential. A more detailed

description of the ECG is given in Section1.3 or for instance [MP95].

2.4 Healthy and pathological numerical simulations of
electrocardiograms

In this Section, we present the ECGs provided by the aforementioned model
in healthy and pathological conditions. The healthy ECG is obtained by carefully
choosing the parameters of the model in order to match most of the qualitative and
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Figure 2.7: Standard 9 electrodes locations and first and second ECG leads.

quantitative features of a physiological ECG. To obtain the pathological ECGs, the
approach is different: starting from the nominal values corresponding to a healthy
ECGs, we modify the parameters in order to model the physical characteristics of
the pathology. Then we observe the effects of these modifications on the numerical
ECG, and we compare its features with the ones described in the literature. It is
important to emphasize that, for the pathological cases, the parameters are not
intentionally fixed to match a given ECG. Thus, if the ECGs obtained after modeling
the diseases match the main features observed on real patients, it gives confidence in
the prediction capabilities of the model.

2.4.1 Healthy electrocardiograms

Figure 2.9 shows the simulated electrocardiogram in healthy conditions, corre-
sponding to the simulation of Figure 2.5. An electrocardiogram is typically described
by distinguishing five events during the heartbeat, called P, Q, R, S and T “waves”
(we will keep this standard terminology even though these events have nothing to
do with waves). The P wave corresponds to the atrial depolarization, the QRS
complex corresponds to the ventricular depolarization, the T wave corresponds to
the ventricular repolarization. The typical durations of each wave, or each interval,
are given in Table 2.7.

Table 2.7 also presents the durations of the simulated healthy ECG of Figure 2.9.
These durations are obtained in the numerical ECG from the landmarks defined
according to the following rules: the P wave (resp. QRS complex) starts if 1% of
the atria (resp. ventricles) is activated (i.e. if the transmembrane potential Vm is
greater than a threshold voltage Vgate); the P wave (resp. QRS complex) ends when
99% of the atria (resp. ventricles) are activated; the T wave starts when 20% of the
ventricles are repolarized (i.e. Vm ≤ 0); the T wave ends when 99% of the ventricles
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P PR Q QR S QRS QT
wave interval wave interval wave interval interval

Typical < 0.12 0.12 < 0.04 < 0.03 V1-V2 < 0.04 < 0.10 0.35
ECG to 0.21 < 0.05 V5-V6 to 0.45

Healthy 0.08 0.19 0.015 0.015 V1-V2 0.01 0.04 0.29
Simul. 0.02 V5-V6

Table 2.7: Durations of the simulated healthy ECG of Figure 2.9 compared with
typical durations [War75] (seconds).

are fully repolarized (Vm ≤ 0). If the minimal value of vm is Vmin = −80mV and
its maximal value Vmax = 20mV, we define Vgate = −67mV, which corresponds to a
threshold voltage θw = 0.13 in the MV model.

Table 2.8 gives the main features of each wave in a normal electrocardiogram.
Note that the simulated ECG verifies almost all the expected criteria. We only
observe a discrepancy in the aVL lead, but this lead is not the most important one
for the ECG interpretation.

To qualitatively assess the waves amplitude and orientation, the schematic
presented in Figure 2.10 is very convenient. It is adapted from [War75] and shows
the normal variations of wave amplitude measured in adults. A visual comparison of
Figures 2.9 and 2.10 shows that, for almost every lead, each wave of our numerical
ECG is in the range of the normal values. Note that in Figure 2.10, the length of
each wave was arbitrarily chosen as its maximal normal duration. This is the reason
why the full PQRST duration is so long in this schematic.

Here is another qualitative assessment. The R wave is known to have an important
property in the precordial leads: it uniformly progresses from a RS complex in V1-V2
to a QRS complex in V5-V6 via a RS complex in V3-V4. The top of Figure 2.8,
which represents this R variation, is extracted from [War75]. The bottom of the
same Figure shows the results of our simulation. Again, the qualitative agreement is
very satisfactory.

A last qualitative comment is in order: we note that the P wave presents some
oscillations in all the leads of the numerical ECG. The explanation of these oscillations
is the brutal changes of the fibers’ direction in the atria. It is also possible that the
surface representation of the atria accentuate these oscillations.

2.4.2 Pathologic electrocardiograms

In this Section, we modify the protocol of the simulation that provided the
healthy ECG (Figure 2.9) in order to simulate different cardiac pathologies. Then
we verify if the numerical ECGs present the main features that allow a medical doctor
to detect the pathology. The different pathologies are schematically represented in
Figure 2.11, along with the most important leads in each case.
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Wave/Interval Description Simulated ECG
≤ 0.25mV X 0.2mV

P wave positive I, II, V3 to V6 X

negative aVR X

limb leads ≤ 25% of R X

Q wave precordial leads ≤ 15% of R X

always negative X except for aVL
limb leads ≤ 2mV X

R wave precordial leads ≤ 3mV X

always positive, negative in aVR X

R wave progression, see Figure 2.8 X

always negative X

S wave small I, II, V5, V6 X

important V1 to V3 X

−0.05mV to 0.1mV X

ST interval isoelectric X

displacement of 0.02mV in V1, V3 X

T wave positive I, II, V3 to V6 X

negative aVR (follow the QRS) X

Table 2.8: Criteria for a typical electrocardiogram [War75] compared with simulated
ECG of Figure 2.9.
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Figure 2.8: R wave progression in the precordial leads: schematic view from [War75]
in the top, and simulated ECG in the bottom.
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Figure 2.9: Healthy electrocardiogram corresponding to simulation of Figure 2.9
(voltages (mV) versus time (ms)).
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Figure 2.10: Typical variations of amplitude measurements in adults healthy
ECG [War75].
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∆

∆

Figure 2.11: Different pathologies.

2.4.2.1 Left and right ventricular block

We start with a left or a right bundle branch block. In a healthy case, the right
and the left ventricles are activated simultaneously. Now, in order to simulate a left
(or a right) bundle branch block, the initial activation is blocked in the left (resp.
right) ventricle. In the top-left of Figure 2.11, we can see a left ventricular block. In
order to obtain a left (resp. right) bundle branch block, the depolarization of the
left (resp. right) Purkinje fibers is delayed as indicated in [BCF+10]. Results are
reported in Figure 2.12 for the left and right bundle branch blocks. We recognize the
main characteristics reported in the medical literature: larger QRS, lead V1 without
Q-wave [MP95], leads V1 and V6 similar to those presented in Figure 2.11 (top left).
The QRS-complex exceeds 0.12 seconds in both cases. Furthermore, it can be seen
in Figure 2.12 that the duration between the beginning of the QRS complex and its
last positive wave in V1 (resp. V6) exceeds 0.04 seconds which is a known sign of
right (resp. left) bundle branch block [MP95].

2.4.2.2 Bachmann’s bundle block

In the heart conduction system, the Bachmann’s bundle connects the left atrium
with the right atrium and is the preferential path for the electrical activation of the
left atrium. A Bachmann’s bundle block is represented at the top-right of Figure 2.11.
It is characterized by the presence of P-wave duration that equals or exceeds 0.12
seconds and presents usually a bimodal morphology, especially in leads I, II, aVF
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Figure 2.12: Left and Right Bundle Brunch Block, see Section 2.4.2.1 – Healthy case
in red, LBBB in blue and RBBB in green (voltages (mV) versus time (ms)).

and the lead III becomes biphasic, as we can see in Figure 2.11. This is a very
specific sign of left atrial enlargement [Net69, MP95]. We simulate it by decreasing
the maximal conductance gNa = 7.8 in the Bachmann’s bundle. The results are
given in Figure 2.13. The more important the block, the more negative the P wave
on lead III. A negative P wave in the third lead corresponds to the retrograde
depolarization of the left atrium. The morphology of the simulated P wave is in
very good agreement with the criteria given in [BdLGVn+99, BdLPC+12] for various
degrees of Bachmann’s bundle blocks.
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Figure 2.13: A Bachmann’s Bundle Block, see Section 2.4.2.2 – Healthy case in red,
BBB in blue (voltages (mV) versus time (ms)).
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Figure 2.14: Wenckebach atrioventricular block (voltages (mV) versus time (ms)),
see Section 2.4.2.3.

2.4.2.3 Atrioventricular block

An atrioventricular block (or AV block) is a damage of the conduction between
atria and ventricles. Under normal conductions, the atrioventricular node is activated
by the atrial wave and it delays the activation by approximately 0.12 seconds.
This delay is extremely important since it allows the atria to eject all their blood
into the ventricles before the ventricular contraction. The bottom-left of Figure
2.11 represents an atrioventricular block. There are different degrees and types of
atrioventricular blocks [MP95]. We consider here a Wenckebach atrioventricular
block. To obtain it, we progressively increase the ventricular activation time: the
delay between atrial and ventricular stimulus is 190 ms in the first beat, 220 ms
in the second one, 260 ms in the third one, and at the fourth beat the ventricles
are not stimulated at all. The Wenckebach block is characterized by a progressive
prolongation of the PR interval on consecutive beats followed by a blocked P
wave. After the missing QRS complex, the PR interval resets and the cycle repeats.
Figure 2.14 correctly represents these features.

2.4.2.4 Wolff-Parkinson-White syndrome

The Wolff-Parkinson-White syndrome is one of the numerous pathologies of the
conduction system of the heart. It corresponds to a pre-excitation syndrome and is
caused by the presence of an abnormal electrical conduction pathway between the
atria and the ventricles, named the Kent bundle. Electrical signals travel down this
abnormal pathway and may stimulate the ventricles prematurely. In the bottom-
right of Figure 2.11, we can see a schematic of the Wolff-Parkison-White syndrome.
We model the abnormal pathway by stimulating a ventricle area near of the atria
represented at the right of Figure 2.4. The Wolff-Parkinson-White syndrome is
commonly diagnosed with the electrocardiogram [RBKM99]. It is characterized by a
delta wave, a slurring of the initial segment of the QRS complex, due to the arrival
of the impulses at ventricles via the abnormal route, which is associated with a short
PR interval. Another feature is a QRS complex widening with a total duration
greater than 0.12 seconds. We can indeed observe these characteristics, in particular
the delta wave in Figure 2.15.
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Figure 2.15: Wolff-Parkinson-White syndrome, see Section 2.4.2.4 – Healthy case in
red and WPW in blue (voltages (mV) versus time (ms)).

τin τout τopen τ endo
close τMcell

close τ epi
close τRV

close Vmin Vmax Vgate

4.0 90.0 300.0 120.0 100.0 80.0 90.0 −80.0 20. −67.0

Table 2.9: Mitchell and Schaeffer parameters and constants (different values of τclose
are given because of an heterogeneous tissue is considered, see [BCF+10]).

2.4.3 Comparison with the Mitchell-Schaeffer model

In this section we are interested in the impact of the ionic model on the ECG
simulation. The membrane current are now described with the Mitchell-Schaeffer
model [MS03] which is a one-current phenomenological ionic model, offering interest-
ing properties with a very limited number of parameters. Equations are reported in
Appendix 2.A.

The Mitchell-Schaeffer model is applied with the same conductivity parameters
(except for some atrial areas, see below) and the same initial stimulus as described
above. Table 2.9 gives the value of the Mitchell-Schaeffer parameters, with the
scaling used in [BCF+10]. In order to correctly reproduce the T wave, we take into
account three layers of cells in the left ventricles and an homogeneous tissue in the
right ventricle as described in Section 2.3.3. The τclose parameter varies according to
the type of cell (Table 2.9). On the atria surface, the repolarization “propagates” in
the same direction as the depolarization. We therefore take a constant value for τclose,
equals to 100 ms. As previously explained, we changed the values of the maximal

regular tissue PM CT BB FO

σa,ti 2.5 10−4 4.5 10−4 7.5 10−4 1.19 10−3 2.5 10−4

σa,te 9.0 10−4 1.35 10−3 2.7 10−3 4.3 10−3 9.0 10−4

σa,li 2.5 10−3 4.5 10−3 1.09 10−2 1.86 10−2 2.27 10−3

σa,le 2.5 10−3 4.5 10−3 1.09 10−2 1.86 10−2 2.27 10−3

Table 2.10: Atrial conductivity parameters (all in S.cm−1) for the Mitchell-Schaeffer
model.
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Figure 2.16: ECGs obtained with different ionic models – Courtemanche/MV ionic
model in red and Mitchell and Schaeffer model in blue (voltages (mV) versus time
(ms)).

conductance gNa in the different atrial areas in the Courtemanche-Ramirez-Nattel
model in order to take into account these bundles. The Mitchell-Schaeffer model
does not allow the same flexibility then we decide to directly modify the value
of conductivity parameters. The atrial conductivities are modified as reported in
Table 2.10 in order to represent the different slow and fast bundles.

Figure 2.16 shows the ECGs obtained with the Mitchell and Schaffer (MS)
model and the combined Courtemanche/MV model. We can see that the results are
reasonably close. With the MS model some oscillations in the P wave and the QRS
complex are fixed, but the R wave progression in precordial leads is less precise and
the T wave of V2 and V3 is not satisfactory. It is interesting to note that the results
of the simulations are robust with respect to the choice of the ionic model: the
Courtemanche/MV model in general gives better results, but it can be replaced by
the MS model in order to reduce the computational costs and the model complexity
without affecting too much the ECG. This remark is especially important if the ECG
simulator has to be used for inverse problems as presented for instance in Chapters 4
and 5: in that case, a model with a reduced number of parameters may be more
attractive.
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2.5 Electrodes vest

In the previous sections, we focused on the 12-lead ECG because it is widely
used in practice, and it can be easily assessed with the medical literature. But our
simulator can of course provide more sophisticated measurements, like those obtained
with electrode vests.

Electrodes vest 2 clusters 3 clusters

4 clusters 5 clusters

6 clusters

1

2

3

4

5 6

1

Figure 2.17: Human body mesh, “electrode vest”(left) and clustering results (right).
From left-top to right-bottom clustering agglomeration, from 2 to 6 clusters.

Many studies have been carried out on this topic: on the forward problem and
the analysis of the number of electrodes, see for instance [HG97, HUvO99]); on
the inverse problem of reconstruction of the potential on the heart surface, see for
instance [PBC05, SLN+06]. Our objective here is less ambitious: we just show an
example of a statistical analysis that can be done with the measures provided by our
ECG simulator.

To do so, we simulate a virtual “electrode vest” which contains NECG = 1,216

electrodes. Figure 2.17 (left) shows the measures points which are all the nodes
of the mesh in the red region of the torso. The heart geometry used in this study
contains N∂ΩH

= 28,510 boundary vertices. We compute the body surface potential
as described in Section 2.3.

We are interested in analyzing the electrode signals with respect to their positions
on the body. In order to divide the signals into different groups, an agglomerative
hierarchical clustering analysis is applied to the 1,216 measures. Clustering is a
statistical technique used to classify data based on similarities, or distances, between
them. In particular, in agglomerative hierarchical clustering method, at the beginning
each individual (data) represents a group itself. Then, these groups are merged
together according to their decreasing distance. The procedure is schematized in
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Figure 2.18: Principal components analysis on electrode vest signals.
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Figure 2.19: Clustering agglomeration of electrodes measures potential using eu-
clidean distance and complete linkage. Colors represent the clusters of points as
shown in Figure 2.17.

Figure 2.19: the bottom of the clustering tree represents the 1,216 signals, the top
represents a unique group. In order to measure the similarity between data, an
Euclidean distance is used

dist(Vi,Vj) =

√∑

n

(
Vi(tn)− Vj(tn)

)2 (2.12)
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where Vi, i = 1, . . . ,1216, represents an electrode signal. Last, we need to define
a linkage method, i.e. the criteria used to merge groups. Here we use a complete
linkage, i.e. the distance between two groups is defined as the maximal distance
between the data of the first group and the data of the second one

dist(Ci,Cj) = max
k,h

(
dist({Vk ∈ Ci}, {Vh ∈ Cj})

)
(2.13)

where Ci represents the i−th cluster. For further details on the clustering analysis
we refer for instance to [JW07].

In Figure 2.17 we show the agglomeration procedure from 2 to 6 clusters. First,
the division into two clusters indicates a separation between the heart region (purple
area of Figure 2.17) and the rest of the vest (green region). Second, a division into
2 parts underlies the atria-ventricular axes (separation of green and yellow zones).
Then, we can see from the clustering agglomeration plot of Figure 2.19, that the
separations into 4, 5 and 6 groups (blue, orange and red areas) are made at very
closed distances. The last subdivision we consider is made of 6 groups. In Figure 2.20
we plot the signals belonging to the 6 clusters and their center values. The center
values of each cluster are computed as the point minimizing the distance between
itself and the other points of the cluster

mi = argmin
j

(∑

k

dist(Vj ,Vk)
)
, ∀i. (2.14)

Then, we re-apply the principal components decomposition on the 6 centers
of the cluster, the points indicated in Figure 2.17 (right). Comparing results of
Figure 2.21 with Figure 2.18 we observe that the first principal component is again
much larger than the other ones, and the same curves represent the first, second and
third principal components.

The two approaches – the principal components decomposition and the hierarchi-
cal clustering analysis – suggest that it is not necessary to have a very high number
of skin electrodes to describe the body surface potential. It seems that a limited
number of correctly positioned electrodes would be enough to represent most of the
features of the signal. A deeper analysis of the number and the locations of the
electrode goes beyond the scope of this study. The purpose here was just to illustrate
that our simulator could be used to generate more general signals than the standard
12-lead ECGs.

2.6 Chapter conclusions

We have presented a comprehensive model for the simulation of full cycle ECGs.
The main ingredients are: volume bidomain equations in the ventricles with the
MV ionic model, surface bidomain equations in the atria with the Courtemanche
ionic model, a one-way coupling between the heart and the torso through a resistor
transmission condition.
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Figure 2.20: Signals in different clusters as shown in Figure 2.17(right). Black lines
indicate the “mean” point (points of Figure 2.17(right)).

This modeling effort has provided a healthy ECG whose quality can be assessed
with several qualitative and quantitative criteria reported in the medical literature.
Four pathological cases have been investigated: left and right bundle branch blocks,
Bachmann’s bundle block, AV block and Wolff-Parkinson-White syndrome. In the
healthy case, we have shown that similar results could been obtained with the
one-current phenomenological ionic model proposed by Mitchell and Schaeffer.

This work can be improved in different directions. More physiological model
of the atrio-ventricular node and the Purkinjie fibers could be included. A strong
coupling with the torso could be done to assess the impact of the isolated heart
assumption. The electromechanical simulations presented in [CFG+09] could be
extended to include the atria and performed with the present electrical model of the
heart.
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Figure 2.21: Principal components analysis on 6 electrodes signals.

2.A Mitchell and Schaeffer ionic model [MS03]

We report here the Mitchell and Schaeffer ionic model [MS03] used in Section 2.4.3.
A detailed description of this phenomenological one-current model is given in Sec-
tion 1.4.2. Some equations properties linked to the study of restitution curves are
illustrated in Chapter 5. Also, it is used in many parts of this thesis work, for
instance in Chapter 4 in order to simulate a myocardial infarction and to the related
parameters investigation.

The Mitchell and Schaeffer equations read

Iion(v,w) = w
v2(1− v)

τin
− v

τout

dw

dt
=





1− w

τclose
, v ≤ vgate

− w

τopen
, v > vgate

(2.15)

Concerning this Chapter, the parameters used are given in Table 2.9.
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2.B Minimal model for human Ventricular action
potentials (MV) [BOCF08]

Dealing with the ventricular part of the mesh, in this Chapter we used the
Minimal model for human Ventricular action potentials (MV) [BOCF08]. The MV
model is a phenomenological model, more accurate than the Mitchell and Schaeffer
one, and it has been adapted to the ventricular tissue including midmyocardial,
epicardial and endocardial cells. It is associated with three ionic currents, Jfi, Jso

and Jsi, and three gate variables, v, w, s, and governed by 28 parameters.

The ionic current Iion is given by the sum of the currents

Iion = Jfi + Jso + Jsi. (2.16)

The currents are defined by

Jfi = −H(u− θv)(u− θv)(uu − u)
v

τfi
,

Jso = (1−H(u− θw))
u− uo

τo
+
H(u− θw)

τso
,

Jsi = −H(u− θw)
ws

τsi
,

(2.17)

where u is the transmembrane potential, H(x) is the standard Heaviside function
and the gate variables are solution of the equation system

∂tv = (1−H(u− θv))
v∞ − v

τ−v
−H(u− θv)

v

τ+v
,

∂tw = (1−H(u− θw))
w∞ − w

τ−w
−H(u− θw)

w

τ+w
,

∂ts =
(1 + tanh(ks(u− us)))/2− s

τs
.

(2.18)

Several parameters depends on the voltage variable u and are defined by

τ−v = (1−H(u− θ−v ))τ
−
v1 +H(u− θ−v )τ

−
v2 ,

τ−w = τ−w1
+ (τ−w2

− τ−w2
)(1 + tanh(k−w (u− u−w)))/2,

τso = τso1 + (τso2 − τso1)(1− tanh(kso(u− uso)))/2,

τs = (1−H(u− θw))τs1 +H(u− θw)τs2 ,

τo = (1−H(u− θo))τo1 +H(u− θo)τo2 ,

(2.19)

and the infinity values are given by

v∞ =

{
1, u < θ−v
0, u ≥ θ−v

w∞ = (1−H(u− θo))(1− u/τw∞) +H(u− θo)w
∗
∞.

(2.20)

The rest of the parameters are given in Table 2.11.
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EPI ENDO M
uo 0 0 0

uu 1.55 1.56 1.61

θv 0.3 0.3 0.3

θw 0.13 0.13 0.13

θ−v 0.006 0.2 0.1

θo 0.006 0.006 0.005

τ−v1 60 75 80

τ−v2 1150 10 1.4506

τ+v 1.4506 1.4506 1.4506

τ−w1
60 6 70

τ−w2
15 140 8

k−w 65 200 200

u−w 0.03 0.016 0.016

τ+w 200 280 280

τfi 0.11 0.1 0.078

τo1 400 470 410

τo2 6 6 7

τso1 30.0181 40 91

τso2 0.9957 1.2 0.8

kso 2.0458 2 2.1

uso 0.65 0.65 0.6

τs1 2.7342 2.7342 2.7342

τs2 16 2 4

ks 2.0994 2.0994 2.0994

us 0.9087 0.9087 0.9087

τsi 1.8875 2.9013 3.3849

τw∞ 0.07 0.0273 0.01

w∗
∞ 0.94 0.78 0.5

Table 2.11: Parameters for MV model as reported in [BOCF08]. In the numerical
simulations of this Chapter, the parameter τso1 is modified as indicated in Table 2.5.
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2.C Courtemanche, Ramirez and Nattel ionic
model [CRN98]

The Courtemanche–Ramirez–Nattel (CRN) model [CRN98] is a physiological
model described by 12 ionic currents and 20 other variables. The model has been
developed in order to describe the human atrial action potentials properties.

The general formulation reads

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L +

Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca, (2.21)

where each term of the Iion describes a ionic or pump current. In particular, INa

represents the fast Na+ current , IK+ represents the Inward rectifier K+ current,
Ito and IKur respectively are the implementations of the Transient outward and the
Ultrarapid rectifier K+ currents, the terms IKr and IKs implement respectively the
rapid and the slow delayed rectifier K+ currents, ICa,L is the L-type slow inward
Ca2+ current, INaK gives the Na+–K+ pump and INaCa the Na+/Ca2+ exchanger
current. For the rest of the currents, their definitions and the PDEs governing the
model, we invite to refer to the original formulation in [CRN98].

A schematic representation of currents, pumps and exchanges is given in Fig-
ure 2.22. Three intracellular compartments are included: myoplasm, sarcoplasmic
reticulum (SR) release compartment and SR uptake compartment. The main param-
eters are given in Table 2.12.
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Figure 2.22: Schematic representation of Courtemanche, Ramirez and Nattel ionic
model [CRN98]. Inspired from [Col14].



2.C. Courtemanche, Ramirez and Nattel ionic model 77

Definition Value
Vcell Cell volume 20,100 µm3

Vi Intracellular volume 13,668 µm3

Vup SR uptake compartment volume 1,109.52 µm3

Vrel SR release compartment volume 96.48 µm3

[K+]o Extracellular K+ concentration 5.4 mM
[Na+]o Extracellular Na+ concentration 140 mM
[Ca2+]o Extracellular Ca2+ concentration 1.8 mM
gNa Maximal INa conductance 7.8 nS/pF
gK1 Maximal IK1 conductance 0.09 nS/pF
gto Maximal Ito conductance 0.1652 nS/pF
gKr Maximal IKr conductance 0.0294 nS/pF
gKs Maximal IKs conductance 0.129 nS/pF
gCa,L Maximal ICa,L conductance 0.1238 nS/pF
gb,Ca Maximal Ib,Ca conductance 0.00113 nS/pF
gb,Na Maximal Ib,Na conductance 0.000674 nS/pF

INaK(max) Maximal INaK 0.60 pA/pF
INaCa(max) Maximal INaCa 1,600 pA/pF
Ip,Ca(max) Maximal Ip,Ca 0.275 pA/pF
Iup(max) Maximal Iup 0.005 mM/ms

KQ10

Temperature scaling factor
3

for IKur and Ito kinetics
γ Voltage dependence parameter for NaCa 0.35

Km,Na(i) [Na+]i half-saturation constant for INaK 10 mM
Km,K(o) [K+]o half-saturation constant for INaK 1.5 mM
Km,Na [Na+]o half-saturation constant for INaCa 87.5 mM
Km,Ca [Ca2+]o half-saturation constant for INaCa 1.38

ksat Saturation factor for INaCa 0.1

kdel Maximal release rate for Irel 30 ms−1

Kup [Ca2+]i half-saturation constant for Iup 0.00092 mM

[Ca2+]up(max)
Maximal Ca2+ concentration

15 mM
in uptake compartment

[Cmdn]max
Total calmodulin concentration

0.05 mM
in myoplasm

[Trpn]max
Total troponin concentration in myoplasm

0.07 mM
in myoplasm

[Csqn]max
Total calsequestrin concentration

10 mM
in SR release compartment

Km,Cmdn
[Ca2+]i half-saturation constant

0.00238 mM
for calmodulin

Km,Trpn
[Ca2+]i half-saturation constant

0.0005 mM
for troponin

Km,Csqn
[Ca2+]rel half-saturation

0.8 mM
constant for Iup

Table 2.12: Parameters for CRN model as reported in [CRN98]. In the numerical
simulations of this Chapter, the maximal conductance gNa is modified as indicated
in Table 2.4.
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Theoretical study of the estimate

of some parameters of the

FitzHugh-Nagumo ionic model

In this chapter, we derive some stability estimations linked to the identification

of parameters in models of cardiac electrophysiology. In particular, we deal with the

monodomain equations coupled with the FitzHugh-Nagumo ionic model. First, we present

some results on the regularity of the solution. Second, we study the estimation of some

reaction parameter which appears in the definition of the ionic current, and the estimation

of some parameter in the second equation.

The results presented in this chapter lead to the manuscript

Muriel Boulakia, Elisa Schenone, Theoretical study of the estimate of some

FitzHugh-Nagumo model parameters, To be submitted.
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3.1 Introduction

We are concerned with the estimation of some parameters of the Monodomain
equations previously described in Section 1.4.1. Let Ω be a bounded and regular
domain in dimension 3. We define Q = (0,T ) where T > 0 is fixed. The monodomain
equations read





Am

(
Cmut + Iion(u,w)

)
− div(σm∇u) = AmIapp, Q

wt + f(u,w) = 0, Q

u(t = 0) = u0, Ω

w(t = 0) = w0, Ω

(3.1)

with homogeneous Dirichlet boundary conditions

u = 0, (0,T )× ∂Ω

coupled with the FitzHugh-Nagumo ionic model [Fit61, NAY62]

{
Iion(u,w) = ku(u− a)(u− 1) + w

f(u,w) = βw − γu
(3.2)

where u denotes the transmembrane potential and w the ionic variable.

In particular, we first introduce the problem which motivates our study, give
some definitions and the state of the art concerning equations system similar to the
Monodomain model (3.1). Then some regularity results on the solution of (3.1) are
given. At last, we look for an estimation of the reaction parameter k of the first
equation of (3.2) and an estimation of the parameter γ of the second one.

3.2 State of the art and motivation

Let us write the Monodomain equations coupled with Fitzhugh-Nagumo ionic
model on Q under the form





ut −∆u = kg(u)− w, Q

wt = γu− βw, Q

u = 0, (0,T )× ∂Ω

u(t = 0) = u0, Ω

w(t = 0) = w0, Ω

(3.3)

where
g(u) = u(u− a)(1− u). (3.4)

Let us assume that there exists umin > 0 such that

u(t,x) ≥ umin, ∀(t,x) ∈ Q. (3.5)
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Also, we assume that k,γ,β are parameters which only depend on space and satisfy

0 < a(x) < 1, k(x) > 0, γ(x) > 0, β(x) > 0, ∀x ∈ Ω, (3.6)

k, γ, β ∈ L∞(Ω), and that there exists M > 0 such that

||k||L∞(Ω) + ||γ||L∞(Ω) + ||β(x)||L∞(Ω) ≤M. (3.7)

In this work we are interested in the estimation of some parameters of the ionic
model, in particular k and γ, using the measure of the solution on a small domain or
for a fixed time. The inverse problem of parameter identification is then solved with
different techniques in the next chapters.

The solution of the second equation can be easily written as

w(t,x) = w0(x)e
−tβ(x) +

ˆ t

0
γ(x)u(τ,x)e−τβ(x)dτ. (3.8)

Thus, the first equation of (3.3) may be viewed as a reaction-diffusion equation
with a memory term. Even in the linear case, having a memory term may lead to
difficulties in the theory of control and inverse problems.

In [GI13] the null controllability of heat equations with memory is studied. In
particular, [GI13] deals with a system of type





yt −∆y +

ˆ t

0
ydτ = 0, Q

y = v, (0,T )× ∂Ω

y(t = 0) = y0, Ω

(3.9)

where v ∈ L2((0,T ) × Ω) is a control function acting on the boundary of the
system. The null controllability property for system (3.9) reads as follows: given
y0 ∈ L2(Ω), there exists a control v ∈ L2((0,T )× ∂Ω) such that the corresponding
solution of (3.9) satisfies y(T,·) ≡ 0 in L2(Ω). It is well-known from literature (see
for instance [FI96, Ima95]) that the heat equation satisfies the property of null
controllability, while in [GI13] it is proved that the property is not satisfied for a
memory system such as (3.9). This is due to the fact that the observability inequality
does not hold for this system. As we will see, the inequality is also a key point to
prove stability estimates to identify some parameters of the model.

A related problem is addressed in [CSRZ14] where the null controllability of
a model of viscoelasticity consisting of a wave equation with viscous Kelvin-Voigt
and frictional damping is studied with a control acting on tie. The solution of this
problem can be written as the first component of the solution of the following system
of equations

{
yt −∆y + (b− 1)y = z, Q

zt + z = 1ω(t)h+ (b− 1)y, Q
(3.10)



3.3. Regularity of the solution 83

where b ∈ L∞(Ω) is the frictional damping, h = h(t,x) is the control and ω(t), for
any 0 < t < T , is a subset of Ω where the control is applied. Thus, this system
corresponds to the coupling of a linear parabolic equation and an ODE. If the control
domain is fixed, then the controllability result does not hold. This is due to the
presence of the ODE which induces a lack of propagation in space-like direction.
Thus, the authors consider a control with support which covers the whole domain Ω

and get an observability inequality for the coupled system (3.10).
Due to these remarks, it would not be possible to derive a global observability

inequality for our coupled system (3.3). However we will see that we can get stability
estimates for the identification of some parameters of the model.

Getting a global inequality for the monodomain equation coupled with an ODE
would have allowed to prove stability estimates for more general ionic systems. In
our case, we will use the fact that w can be expressed explicitly with respect to u
(see (3.8)) and this will allow to get stability estimates for the identification of some
parameters of the model.

3.3 Regularity of the solution

In this section we deal with the regularity of the solution of equations (3.3) which
will be useful in the parameters estimations of Sections 3.4 and 3.5.

Proposition 3.1

Let (u,w) be the solution of equations system (3.3), with initial conditions u0, w0

and parameters k, a, γ, β which staisfy (3.6)-(3.7).
If u0 ∈ L2(Ω), w0 ∈ L2(Ω), then

u ∈ L∞(0,T ;L2(Ω)) ∩ L∞(0,T ;H1(Ω)) ∩ L∞(0,T ;L4(Ω))

w ∈ H1(0,T ;L2(Ω).
(3.11)

and

||u||L∞(0,T ;L2(Ω)) + ||u||L2(0,T ;H1(Ω)) + ||u||2L4(0,T ;L4(Ω)) + ||w||L∞(0,T ;L2(Ω)) ≤
C(||u0||L2(Ω), ||w0||L2(Ω)). (3.12)

If u0 ∈ H1(Ω), u0 = 0 on ∂Ω and w0 ∈ L2(Ω), then

u ∈ L∞(0,T ;H1(Ω)) ∩H1(0,T ;L2(Ω)) ∩ L∞(0,T ;L4(Ω))

w ∈ H1(0,T ;L2(Ω).
(3.13)

and

||u||H1(0,T ;L2(Ω)) + ||u||L∞(0,T ;H1(Ω)) + ||u||2L∞(0,T ;L4(Ω)) + ||w||H1(0,T ;L2(Ω)) ≤
C(||u0||H1(Ω), ||w0||L2(Ω)). (3.14)
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Proof of Proposition 3.1.

First, we consider equations (3.3), we multiply the first one for u and the second one
for w, and integrate over Ω the sum of them. According to hypotheses (3.6), there
exist k0 > 0 and β0 > 0 such that k ≥ k0 and β ≥ β0. Then, using hypotheses (3.5)
and (3.6), we obtain

1

2

d

dt

ˆ

Ω
|u|2dx+

ˆ

Ω
|∇u|2dx+ k0

ˆ

Ω
|u|4dx+

1

2

d

dt

ˆ

Ω
|w|2dx+ β0

ˆ

Ω
|w|2dx ≤

ˆ

Ω

(
k(1 + a)|u|3 − ka|u|2 + (γ − 1)uw

)
dx ≤

ˆ

Ω

(k0
2
|u|4 + C1|u|2 + C2|w|4

)
dx. (3.15)

which leads to

1

2

d

dt

ˆ

Ω
|u|2dx+

ˆ

Ω
|∇u|2dx+ k0

ˆ

Ω
|u|4dx+

1

2

d

dt

ˆ

Ω
|w|2dx+ β0

ˆ

Ω
|w|2dx ≤

C

ˆ

Ω
(|u|2 + |w|2)dx. (3.16)

Applying Gronwall Lemma and integrating in time on (0,T ), we conclude

||u||2L∞(0,T ;L2(Ω)) + ||u||2L2(0,T ;H1(Ω)) + ||u||4L4(0,T ;L4(Ω)) + ||w||2L∞(0,T ;L2(Ω)) ≤
C(||u0||L2(Ω), ||w0||L2(Ω)). (3.17)

Second, we multiply the first equation of (3.3) by ut and the second one by wt
and integrate the sum of them over Ω

ˆ

Ω
|ut|2dx+

1

2

d

dt

ˆ

Ω
|∇u|2dx+

1

4

d

dt

ˆ

Ω
k|u|4dx+

ˆ

Ω
|wt|2dx+

1

2

d

dt

ˆ

Ω
β|w|2dx ≤

ˆ

Ω

(
k(1 + a)|u|2ut −

ka

2
|u||ut|+ utw + γuwt

)
dx ≤

C

ˆ

Ω

(
|u|4 + |u|2 + |w|2

)
dx+

1

2

ˆ

Ω

(
|ut|2 + |wt|2

)
dx. (3.18)

Then, integrating in time over (0,T ) and thanks to (3.17), we have

||u||H1(0,T ;L2(Ω)) + ||u||L∞(0,T ;H1(Ω)) + ||u||2L∞(0,T ;L4(Ω)) + ||w||H1(0,T ;L2(Ω)) ≤
C(||u0||H1(Ω), ||w0||L2(Ω)). (3.19)
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Proposition 3.2

Let the initial condition of (3.3) be such that u0 ∈ H2(Ω), w0 ∈ L2(Ω). Then the

solution of (3.3) satisfies

u ∈W 1,∞(0,T ;L2(Ω)) ∩H1(0,T ;H1(Ω)) ∩ L∞(0,T ;H2(Ω))

w ∈W 1,∞(0,T ;L2(Ω))
(3.20)

and

||u||W 1,∞(0,T ;L2(Ω)) + ||u||H1(0,T ;H1(Ω)) + ||u||L∞(0,T ;H2(Ω)) + ||w||W 1,∞(0,T ;L2(Ω)) ≤
C(||u0||H2(Ω), ||w0||L2(Ω)). (3.21)

Moreover if (
∆u+ kg(u)− w

)
(t = 0) = 0, ∂Ω. (3.22)

then

u ∈ H2(0,T ;L2(Ω)) ∩W 1,∞(0,T ;H1(Ω)) ∩ L∞(0,T,H2(Ω))

w ∈ H2(0,T ;L2(Ω))
(3.23)

and

||u||H2(0,T ;L2(Ω)) + ||u||W 1,∞(0,T ;H1(Ω)) + ||w||H2(0,T ;L2(Ω)) ≤
C(||u0||H2(Ω), ||w0||L2(Ω)). (3.24)

with parameters k,a,γ,β which satisfy (3.6)-(3.7).

Proof of Proposition 3.2.

First, we take the time derivative of equations (3.3)

{
utt −∆ut = kgt(u)− wt, Q

wtt = γut − βwt, Q
(3.25)

with initial condition

ut(t = 0) = ∆u0 + kg(u0)− w0

wt(t = 0) = γu0 − βw0
(3.26)

and compatibility condition (3.22). Now, we proceed as in the proof of Proposition 3.1.
We multiply the first equation of (3.25) by ut and the second one by wt, and we
sum up them together. There exist k0 > 0 and β0 > 0 such that k ≥ k0 and β ≥ β0.
Then, using hypotheses (3.5) and (3.6), we obtain that the integral over Ω is given
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by

1

2

d

dt

ˆ

Ω
|ut|2dx+

ˆ

Ω
|∇ut|2dx+ C

ˆ

Ω
|ut|2dx+

1

2

d

dt

ˆ

Ω
|wt|2dx+

β0

ˆ

Ω
|wt|2dx ≤ C

ˆ

Ω

(
|ut|2 + |wt|2

)
dx (3.27)

since
ˆ

Ω
gt(u)utdx =

ˆ

Ω

(
− 3|u|2|ut|2 + 2(1 + a)u|ut|2 − a|ut|2

)
dx (3.28)

that, using Proposition 3.1, leads to

C

ˆ

Ω
|ut|2dx ≤ C

ˆ

Ω
|u|2|ut|2dx ≤

ˆ

Ω

(
ε|u|2|ut|2 + C|ut|2

)
dx. (3.29)

Then, integrating in time over (0,T ), we have

||u||W 1,∞(0,T ;L2(Ω)) + ||u||H1(0,T ;H1(Ω)) + ||w||W 1,∞(0,T ;L2(Ω)) ≤
C(||u0||H2(Ω), ||w0||L2(Ω)). (3.30)

Also, we consider the elliptic equation for all t ∈ (0,T )

{
∆u = −kg(u) + ut + w, Ω

u = 0, ∂Ω
(3.31)

where the right-hand side belongs to L∞(0,T ;L2(Ω)). Then, for this steady problem,
we have

||u(t)||H2(Ω) ≤ C(||u0||H2(Ω), ||w0||L2(Ω)) (3.32)

for all t ∈ (0,T ), and u ∈ L∞(0,T ;H2(Ω)) →֒ L∞(0,T ;L∞(Ω)).

Second, we consider the integral over Ω of the sum of the first equation of (3.25)
multiplied by utt and of the second one multiplied by wtt
ˆ

Ω
|utt|2dx+

1

2

d

dt

ˆ

Ω
|∇ut|2dx+ C

d

dt

ˆ

Ω
|ut|2dx+

ˆ

Ω
|wtt|2dx+

1

2

d

dt

ˆ

Ω
β|wt|2dx ≤

ˆ

Ω

(
ε|utt|2 + C|ut|2 + ε|wtt|2 + C|wt|2

)
dx (3.33)

that leads to

C

ˆ

Ω
|utt|2dx+

1

2

d

dt

ˆ

Ω
|∇ut|2dx+ C

d

dt

ˆ

Ω
|ut|2dx+ C

ˆ

Ω
|wtt|2dx+

β0
2

d

dt

ˆ

Ω
|wt|2dx ≤ C

ˆ

Ω

(
|ut|2dx+ |wt|2

)
dx. (3.34)
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So, integrating in time on (0,T ) we conclude

||u||H2(0,T ;L2(Ω)) + ||u||W 1,∞(0,T ;H1(Ω)) + ||w||H2(0,T ;L2(Ω)) ≤
C(||u0||H2(Ω), ||w0||L2(Ω)). (3.35)

Proposition 3.3

Let (u,w) be the solution of equations system (3.3) with initial condition u0 ∈
H4(Ω), w0 ∈ H2(Ω). Also, let us assume that the parameters k,a,γ,β satisfy (3.6)-
(3.7) and that k ∈ H2(Ω) and a ∈ H2(Ω).

Then the solution (u,w) satisfies

u ∈W 2,∞(0,T ;L2(Ω)) ∩H2(0,T ;H1(Ω)) ∩W 1,∞(0,T ;H2(Ω))

w ∈W 2,∞(0,T ;L2(Ω)).
(3.36)

and

||u||W 2.∞(0,T ;L2(Ω)) + ||u||H2(0,T ;H1(Ω)) + ||w||W 2,∞(0,T ;L2(Ω)) ≤
C(||u0||H4(Ω), ||w0||H2(Ω)) (3.37)

Proof of Proposition 3.3.

We consider the second order time derivative of (3.3)

{
uttt −∆utt = kgtt(u)− wtt, Q

wttt = γutt − βwtt, Q
(3.38)

We use the same technique of the proofs as in Propositions 3.1 and 3.2: we
integrate over Ω the sum of the first equation of (3.38) multiplied by utt and of the
second one multiplied bywtt. First, we consider
ˆ

Ω
kgtt(u)uttdx =

ˆ

Ω
k
(
(−3|u|2 + 2(1 + a)u− a)utt + (−6u+ 2(1 + a))|ut|2

)
uttdx.

(3.39)
Then

C

ˆ

Ω
|utt|2dx ≤

ˆ

Ω
k
(
3|u|2 + a

)
|utt|2dx ≤ C

ˆ

Ω

(
|utt|2 + utt

)
dx (3.40)

since k ≥ k0, a ≥ a0 and, thanks to Propositions 3.1 and 3.2, u ∈ L∞(Q) and
ut ∈ L∞(0,T ;L6(Ω)). Thus, we obtain

1

2

d

dt

ˆ

Ω
|utt|2dx+

ˆ

Ω
|∇utt|2dx+ C

ˆ

Ω
|utt|2dx+

1

2

d

dt

ˆ

Ω
|wtt|2 + β0

ˆ

Ω
|wtt|2dx ≤

C

ˆ

Ω

(
|utt|2 + |wtt|

)
dx. (3.41)
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To conclude, we integrate in time on (0,T )

||u||W 2.∞(0,T ;L2(Ω)) + ||u||H2(0,T ;H1(Ω)) + ||w||W 2,∞(0,T ;L2(Ω)) ≤
C(||u0||H4(Ω), ||w0||H2(Ω)). (3.42)

Last, since u ∈W 2,∞(0,T ;L2(Ω)) ∪H2(0,T ;H1(Ω)), then

∆u = ut − kg(u) + w ∈W 1,∞(0,T ;L2(Ω)). (3.43)

So, we obtain u ∈W 1,∞(0,T ;H2(Ω)) and conclude the proof.

3.4 Estimation of reaction parameter

We are first interested in giving an estimation on the reaction parameter k which
appears in the first equation of (3.3). We consider the perturbed system with respect
to k 




ut −∆u = kg(u)− w, Q

wt = γu− βw, Q

u(t = 0) = u0, Ω

w(t = 0) = w0, Ω

u = 0, (0,T )× ∂Ω

(3.44)

where u0 ∈ H4(Ω) and w0 ∈ H2(Ω), k ∈ H2(Ω) and there exists M > 0 such that
||k||L∞(Ω) ≤M .

First, we define π = k−k, p = u−u and q = w−w. Then the difference between
equations (3.3) and (3.44) leads to

{
pt −∆p+ kp3 = F − q

qt = γp− βq,
(3.45)

where
F = πg(u) + kh(p,u) (3.46)

and
h(p,u) = (−a+ 2(1 + a)u− 3u2)p+ (1 + a− 3u)p2. (3.47)

Then, if q(T/2) is known, the solution of the second equation is given by

q(t,x) = q(T/2,x)e−(t−T/2)β(x) +

ˆ t

T/2
γ(x)p(τ,x)e−(τ−T/2)β(x)dτ. (3.48)



3.4. Estimation of reaction parameter 89

Proposition 3.4

Let us consider a nonempty open set ω included in Ω. Let (u,w) be the solution

of (3.3) with initial conditions

u0 ∈ H2(Ω), w0 ∈ L2(Ω)

and (u,w) be the solution of (3.44) with initial conditions

u0 ∈ H4(Ω), w0 ∈ H2(Ω).

We suppose that k, γ, β, a satisfy (3.6)-(3.7), a, k ∈ H2(Ω) and that there exists

C1 > 0 such that

g(u;T/2,x) ≥ C1, ∀x ∈ Ω, ∀T > 0. (3.49)

Then, for all T > 0, there exists C2 > 0 depending on u,w such that

||π||L2(Ω) ≤ C2

(
||p(T/2)||H2(Ω) + ||p(T/2)||3L6(Ω) + ||q(T/2)||L2(Ω) + ||p||H1(0,T ;L2(ω))

)
(3.50)

where p = u− u, q = w − w, and π = k − k.

Proof of Proposition 3.4.

First, we consider the time derivative of the system of equations (3.45)

{
ρt −∆ρ = G− ν

νt = γρ− βν,
(3.51)

where ρ = pt and ν = qt and

G = −3kp2ρ+ πgt(u) + kht(p,u), (3.52)

with
gt(u) = ut(−3u2 + 2(1 + a)u− a) (3.53)

and

ht(p,u) = ut[(2(1+a)−6u)p−3p2]+ρ[−a+2(1+a)u−3u2+2(1+a−3u)p]. (3.54)

Let us define a function ψ in Ω such that

• ψ ∈ C2(Ω)

• ψ > 0 in Ω, ψ = 0 on ∂Ω

• |∇ψ| > 0 in Ω \ ω.

We define, for all λ > 0, the following weights for all (t,x) ∈ Q

ϕ(t,x) =
e2λ||ψ||∞ − eλψ(x)

t(T − t)
(3.55)
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and

η(t,x) =
eλψ(x)

t(T − t)
. (3.56)

First, we evaluate the first equation of (3.45) at a fixed time T/2

ρ(T/2,x)−∆p(T/2,x) + kp3(T/2,x) = πg(u;T/2,x) + kh(p,u;T/2,x)− q(T/2,x).

(3.57)

Then, we integrate on Ω the square of (3.57) with weight e−2sϕ(T/2,x) and obtain
ˆ

Ω
e−2sϕ(T/2,x)π2|g(u;T/2,x)|2dx ≤

ˆ

Ω
e−2sϕ(T/2,x)|ρ(T/2,x)|2dx+

ˆ

Ω
e−2sϕ(T/2,x)(|∆p(T/2,x)|2 + |p(T/2,x)|6)dx+

ˆ

Ω
e−2sϕ(T/2,x)|h(p,u;T/2,x)|2dx+

ˆ

Ω
e−2sϕ(T/2,x)|q(T/2,x)|2dx (3.58)

since k ∈ L∞(Ω).

First, we notice that the third term of the right-hand side is bounded by (3.49)
ˆ

Ω
e−2sϕ(T/2,x)|h(p,u;T/2,x)|2dx ≤

ˆ

Ω
e−2sϕ(T/2,x)

(
|p(T/2,x)|2 + |p(T/2,x)|6

)
dx.

(3.59)
By this way, all the terms in the right-hand side, except the first one, well correspond
to measurement of p and q at time T/2. Let us bound the first term in the right-hand
side

J1 =

ˆ

Ω
e−2sϕ(T/2,x)|ρ(T/2,x)|2dx =

¨

Q0

d

dt
(e−2sϕ|ρ|2)dxdt ≤

¨

Q0

2e−2sϕ(|ϕt||ρ|2 + |ρ||ρt|)dxdt ≤
¨

Q0

C(T,λ)e−2sϕ(s2η2|ρ|2 + (s2η)−1|ρt|2)dxdt (3.60)

where Q0 = (0,T/2) × Ω, since |ϕt| ≤ C(T,λ)|η|2. Then, we apply the classical
Carleman inequality introduced in [FI96] for the heat equation (3.51) satisfied by ρ,
and obtain that for s and λ large enough

J1 ≤
C

s

¨

Q
e−2sϕ(|G|2 + |ν|2)dxdt+ C

¨

Qω

e−2sϕs2η3|ρ|2dxdt (3.61)

where Qω = (0,T ) × ω. Then, using the definition of G given by (3.52) and the
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definition of ν = qt given by the second equation of (3.45) we obtain

J2 =

¨

Q
e−2sϕ(|G|2 + |ν|2)dxdt ≤ C

¨

Q
e−2sϕ(|ρ|2 + |p|4 + |p|2)dxdt+

¨

Q
e−2sϕ|q|2dxdt+ C

¨

Q
e−2sϕ|π|2dxdt (3.62)

since a,k,γ, β satisfy (3.6)-(3.7) and u,ut satisfy Propositions 3.2 and 3.3. Let us
consider the second integral of the right-hand side of (3.62). Using the solution given
by (3.48) we obtain

J3 =

¨

Q
e−2sϕ|q|2dxdt ≤ C

¨

Q
e−2sϕ(t,x)−2(t−T/2)β(x)|q(T/2,x)|2dxdt+

C

¨

Q
e−2sϕ

( ˆ t

T/2
|p(τ,x)|2dτ

)
dxdt ≤

C

ˆ

Ω
e−2sϕ(T/2)|q(T/2,x)|2dx+ C

¨

Q
e−2sϕ|p|2dxdt (3.63)

Then, for s large enough

J1 ≤ C

¨

Qω

e−2sϕs2η3|ρ|2dxdt+ C

s

¨

Q
e−2sϕ

(
|p|2 + |p|4

)
dxdt+

C

s

ˆ

Ω
e−2sϕ(T/2)|q(T/2,x)|2dx+

C

s

¨

Q
e−2sϕπ2dxdt. (3.64)

The last integral to take into account deals with the terms with p. According to
Proposition 3.2, u,u ∈ L∞(Q), thus we obtain

¨

Q
e−2sϕ|p|4dxdt ≤ ||p||2L∞(0,T ;L∞(Ω))

¨

Q
e−2sϕ|p|2dxdt. (3.65)

Then, using the definition of pt = ρ, we can write

J5 =

¨

Q
e−2sϕ|p|2dxdt ≤ C

¨

Q
e−2sϕ

(
|p(T/2,x)|2 +

ˆ t

T/2
|ρ(τ,x)|2dτ

)
dxdt ≤

C

ˆ

Ω
e−2sϕ(T/2,x)|p(T/2,x)|2dx+ C

¨

Q
e−2sϕ|ρ|2dxdt. (3.66)

since ϕ(T/2) ≤ ϕ(t) for all t ∈ (T/2,T ).
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Finally, using (3.59), (3.64) and (3.66), we find
ˆ

Ω
e−2sϕ(T/2,x)π2|g(u;T/2,x)|2dx ≤ C

¨

Qω

e−2sϕs2η3|ρ|2dxdt+
ˆ

Ω
e−2sϕ(T/2,x)(|∆p(T/2,x)|2 + |p(T/2,x)|2 + |p(T/2,x)|6)dx+

ˆ

Ω
e−2sϕ(T/2,x)|q(T/2,x)|2dx+

C

s

¨

Q
e−2sϕπ2dxdt. (3.67)

Then, for s large enough, using hypotheses (3.49) we conclude the proof.

3.5 Estimation of a parameter in the second equation

We are now interested in giving an estimation of the parameter γ which appears
in the second equation of (3.3). Let us call û,ŵ the solution for the parameter γ̂ of
system 




ût −∆û = kg(û)− ŵ, Q

ŵt = γ̂û− βŵ, Q

û(t = 0) = û0, Ω

ŵ(t = 0) = ŵ0, Ω

û = 0, (0,T )× ∂Ω

(3.68)

which is a perturbed version of (3.3) with respect to γ.
We define α = γ − γ̂, z = u − û and v = w − ŵ. Then, taking the difference

between (3.3) and (3.68) we obtain

{
zt −∆z + kz3 = kh(z,û)− v

vt = αû+ γz − βv
(3.69)

where h(z,u) is defined as in (3.47). If we suppose that we know the solution v for a
fixed time T/2, T > 0, for all x ∈ Ω, the solution of the second equation of (3.69)
can be written as

v(t,x) = v(T/2,x)e−(t−T/2)β(x) +

ˆ t

T/2

(
α(x)û(τ,x) + γ(x)z(τ,x)

)
e−(τ−T/2)β(x)dτ.

(3.70)

Proposition 3.5

Let ω be a nonempty open set included in Ω. Let (u,w) be the solution of (3.3)
with initial conditions

u0 ∈ H4(Ω), w0 ∈ H2(Ω)

and (û, ŵ) be the solution of (3.68) with initial conditions

û0 ∈ H4(Ω), ŵ0 ∈ H2(Ω).
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We suppose that k, γ, β, a satisfy (3.6)- (3.7), and k, a ∈ H2(Ω).

Then, for all T > 0, δ > 0, there exists C > 0 depending on z, v such that

||α||L2(Ω) ≤ C
(
||z(T/2 + δ)||H2(Ω) + ||v(T/2)||L2(Ω) + ||z||H1(0,T ;L2(ω))

)
(3.71)

where z = u− û, v = w − ŵ and α = γ − γ̂.

Proof of Proposition 3.5.

First, we define ζ = zt and ξ = vt. Taking the time derivative of equations (3.69) we
obtain {

ζt −∆ζ = Y

ξt = αût + γζ − βξ
(3.72)

where
Y := −kζ3 + kht(z,û)− ξ (3.73)

and ht(z,û) is defined by (3.54).

We define some functions as in the proof of Proposition 3.4. First a function ψ in
Ω defined as in the Proof of Proposition 3.4. Second, we pick a function θ ∈ C∞(0,T )

such that

θ(t) =





(
t(T − t)

)−1
, 0 < t ≤ T/2− 2δ

strictly decreasing, T/2− 2δ < t ≤ T/2

constant, T/2 < t ≤ T/2 + δ

strictly increasing, T/2 + δ < t ≤ T/2 + 2δ

θ(T − t), T/2 + δ < t ≤ T

(3.74)

and for all λ > 0 and δ ∈ (0, T/2), we define the following weights

ϕ(t,x) = θ(t)
(
e2λ||ψ||∞ − eλψ(x)

)
, (t,x) ∈ Q (3.75)

η(t,x) = θ(t)eλψ(x), (t,x) ∈ Q (3.76)

where ||ψ||∞ = ||ψ||L∞(Ω).

We consider the first equation of (3.69) for a fixed time T/2 + δ, then

ζ(T/2+δ, x) = ∆z(T/2+δ, x)+k(x)z3(T/2+δ, x)+kh(z,û;T/2+δ, x)−v(T/2+δ, x)
(3.77)

where v is defined by (3.70) and α is the parameter we are interested in. Then, if we
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take the square and integrate on Ω with the weight e−2sϕ(T/2+δ), we obtain

ˆ

Ω
e−2sϕ(T/2+δ,x)

∣∣∣
ˆ T/2+δ

T/2

(
α(x)û(τ,x) + γ(x)z(τ,x)

)
e−(τ−T/2)β(x)dτ

∣∣∣
2
dx ≤

ˆ

Ω
e−2sϕ(T/2+δ)|ζ(T/2 + δ,x)|2dx+

ˆ

Ω
e−2sϕ(T/2+δ)

(
|∆z(T/2 + δ,x)|2dx+ |z(T/2′ + δ,x)|6

)
dx+

ˆ

Ω
e−2sϕ(T/2+δ)|h(z,û;T/2 + δ, x)|2dx+

ˆ

Ω
e−2sϕ(T/2+δ)−2δβ(x)|v(T/2,x)|2dx. (3.78)

Since β, γ ∈ L∞(Ω), ϕ(t) ≥ ϕ(T/2) for all t ∈ (T/2,T ), and u,û satisfy (3.5), we
can write

ˆ

Ω
e−2sϕ(T/2+δ,x)|α(x)û(τ,x)|2dx ≤ C

ˆ

Q
e−2sϕ|z|2dxdt

ˆ

Ω
e−2sϕ(T/2+δ)|ζ(T/2 + δ,x)|2dx+

ˆ

Ω
e−2sϕ(T/2+δ)

(
|∆z(T/2 + δ,x)|2dx+ |z(T/2′ + δ,x)|6

)
dx+

ˆ

Ω
e−2sϕ(T/2+δ)|h(z,û;T/2 + δ, x)|2dx+

ˆ

Ω
e−2sϕ(T/2+δ)−2δβ(x)|v(T/2,x)|2dx. (3.79)

As in the Proof of Proposition 3.4, the third term of the right-hand side is
bounded as in (3.59). Thus, all the terms in the right-hand side, except the first one,
correspond to measurements of v at time T/2 and z at time T/2 + δ. Let us then
consider the first term in the right hand-side of (3.79). Since e−2sϕ(t) → 0 when
t→ 0, we have

I1 =

ˆ

Ω
e−2sϕ(T/2+δ,x)|ζ(T/2 + δ,x)|2dx =

ˆ T/2+δ

0

ˆ

Ω

(
e−2sϕ|ζ|2

)
t
dxdt ≤

C(T,λ)

¨

Q
2e−2sϕ

(
sη2|ζ|2 + |ζ||ζt|

)
dxdt ≤

C(T,λ)

s

¨

Q
e−2sϕ

(
(sη)−1|ζt|2 + (sη)3|ζ|2

)
dxdt (3.80)

since |ϕt| ≤ C(T,λ)η2 and ϕ(t) ≥ ϕ(T/2 + δ) for all t ∈ (T/2 + δ,T ).

We apply the Carleman estimate introduced by [FI96] and obtain

I1 ≤
C

s

¨

Q
e−2sϕ|Y |2dxdt+ C

¨

Qω

e−2sϕs2η2|ζ|2dxdt ≤
¨

Q
e−2sϕ

(
|ζ|2 + |z|2 + |ξ|2

)
dxdt+ C

¨

Qω

e−2sϕs2η2|ζ|2dxdt (3.81)

since ut, ût ∈ L∞(Q) thanks to Proposition 3.3, and a,k ∈ L∞(Ω). Then, for s large
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enough

I1 ≤
C

s

¨

Q
e−2sϕ

(
|z|2 + |ξ|2

)
dxdt+ C

¨

Qω

e−2sϕs2η2|ζ|2dxdt. (3.82)

Second, we consider the first term of the right-hand side of (3.82) and apply
again the Carleman estimate introduced by [FI96], then

I2 =

¨

Q
e−2sϕ|z|2dxdt ≤

¨

Q
e−2sϕη3|z|2dxdt ≤

C

s3

¨

Q
e−2sϕ

(
|z|6 + |h(z,û)|2 + |v|2

)
dxdt+ C

¨

Qω

e−2sϕη2|z|2dxdt ≤

C

s3

¨

Q
e−2sϕ

(
|z|2 + |v|2

)
dxdt+ C

¨

Qω

e−2sϕη2|z|2dxdt (3.83)

since u,û ∈ L∞(Q). For s large enough

I2 ≤
C

s3

¨

Q
e−2sϕ|v|2dxdt+ C

¨

Qω

e−2sϕη2|z|2dxdt. (3.84)

Third, we consider the second term of the right-hand side of (3.82) and use the
definition of ξ = vt given by (3.69), then

I3 =

¨

Q
e−2sϕ|ξ|2dxdt =

¨

Q
e−2sϕ|αû− γz − βv|2dxdt ≤

C

¨

Q
e−2sϕ|α|2dxdt+ C

¨

Q
e−2sϕ

(
|z|2 + |v|2

)
dxdt (3.85)

since β ∈ L∞(Ω).
Finally, we consider the weighted integral of |v|2 in the right-hand side of(3.85).

Then, according to (3.70),

I4 =

¨

Q
e−2sϕ|v|2dxdt ≤

¨

Q
e−2sϕ−2(t−T/2)β(x)|v(T/2,x)|2dxdt+

¨

Q
e−2sϕ

∣∣∣
ˆ t

T/2

(
α(x)û(τ,x) + γ(x)z(τ,x)

)
e−(τ−T/2)βdτ

∣∣∣
2
dxdt ≤

C

ˆ

Ω
e−2sϕ(T/2,x)|v(T/2,x)|2dx+ C

ˆ

Ω
e−2sϕ(T/2,x)|α|2dx+

C

¨

Q
e−2sϕ

( ˆ t

T/2
|z(τ,x)|2dτ

)
dxdt ≤

C

ˆ

Ω
e−2sϕ(T/2,x)|v(T/2,x)|2dx+ C

ˆ

Ω
e−2sϕ(T/2,x)|α|2dx+

C

¨

Q
e−2sϕ|z|2dxdt (3.86)

since ϕ(t) ≥ ϕ(τ) for all τ ∈ (T/2,t), β,γ ∈ L∞(Ω), û ∈ L∞(Q), and for s large
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enough.
From (3.84)-(3.85), for s large enough we have

I2 + I3 ≤ CI4 + C

ˆ

Ω
e−2sϕ(T/2,x)|α|2dx+ C

¨

Qω

e−2sϕs−1η2|z|2dxdt. (3.87)

Also, from (3.82), using (3.86)-(3.87) we obtain

I1 ≤
C

s
||v(T/2,x)||2L2(Ω) +

C

s

ˆ

Q
e−2sϕ(T/2,x)|α|2dxdt+ C

¨

Qω

e−2sϕs−2η2|z|2dxdt+

C

¨

Qω

e−2sϕsη2|ζ|2dxdt. (3.88)

Finally, from (3.79), (3.88), for s large enough, we conclude the proof.

Remark 3.1

Contrary to the estimation given in Proposition 3.4 of the parameter k which appears

in the first equation of (3.3), in this section we deal with a parameter, γ, which is

in the second equation of the system. Then, it is strictly necessary to consider two

different time instants, T/2, T/2 + δ, δ > 0, and to have an observation of the first

variable, z, at time T/2 + δ and an observation of v at time T/2. If δ is equal to

zero, the integral in time of the left side of (3.79) would be null and no estimation

on α could be possible.

3.6 Chapter conclusions

An estimation of two ionic parameter of the FitzHugh-Nagumo ionic model has
been presented. First, in Proposition 3.4 we gave an estimation on the reaction
parameter k that appears in the first equation of the ionic model. Second, in
Proposition 3.5 an estimation on γ, which is one of the parameters that appear in
the second equation of the ionic model, is obtained. These preliminary results, are
obtained on a restricted number of the parameters of the model. Future works could
investigate the stability of the others parameters of the model, and then apply this
estimation in the parameters identification problems.



Chapter 4

Reduced-order modeling and parameters

identification with

Proper Orthogonal Decomposition

In this chapter we present a reduced-order model based on proper orthogonal

decomposition (POD) applied to bidomain equations of cardiac electrophysiology. In

particular, we focus on the simulation of a myocardial infarction. First we discuss about

this pathology and on how to reproduce it thanks to the properties of a ionic model. Then

we introduce a POD method in order to obtain realistic electrocardiograms. Finally, the

reduced-order model is used in an inverse problem solved by an evolutionary algorithm in

order to identify the infarction locations from synthetic electrocardiograms.

The results presented in this chapter lead to the manuscript

Muriel Boulakia, Elisa Schenone, Jean-Frédéric Gerbeau. Reduced-order modeling for

cardiac electrophysiology. Application to parameter identification. International

Journal for Numerical Methods in Biomedical Engineering, Volume 28, Issue 6-7,

Pages 727-744, 2012.
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4.1 Introduction

The bidomain equations that used to model the cardiac electrophysiology is
known to be very demanding from a computation viewpoint [CFP04, SPM08]. To
reduce its complexity, reduced-order models based on physical arguments can be
considered. For example, assuming that the anisotropy ratios of the electrical
conductivity tensors are the same in the intra and extracellular media, the simplified
monodomain model can be derived as shown in Section 1.4.1. Another example
of physical simplification is given by the Eikonal model that essentially describes
the propagation of the activation front [Kee91, PTH02]. Here, we follow another
route: keeping the physics of the model fixed, we reduce the complexity of its
discretization by using a Galerkin basis adapted to the kind of solutions that are
looked for. This basis can be computed by different approaches. In this chapter,
we show one of the most popular one, which is known as the Proper Orthogonal
Decomposition (POD) or Karhunen-Loève method. This approach has been used
in many fields of science and engineering, but to the best of our knowledge, not for
the equations of cardiac electrophysiology. A first application is described in [BG11]
where various configurations of interest are considered, such as perturbation of some
parameters. POD seems promising in some configurations while in other it has to be
used with much care. In this chapter we are interested in applying this technique to
perturbation of some parameters and myocardial infarction modeling while Chapter 5
deals with the application to long-time simulations. In all these cases, the results
are assessed through the corresponding electrocardiogram (ECG). After a recall of
the model, in Section 4.3 the POD method is described, while we invite to read
Section 1.6.2 for its general formulation. A description of infarction pathology and
its numerical modeling are given in Section 4.4.2.1. In Sections 4.4.2.2 and 4.5 we
present its application to perturbation of some parameters and myocardial infarction.
First, we look at the forward problem. Second, the reduced-order model is used with
an evolutionary algorithm to identify some parameters or the location of infarcted
regions from the ECGs. The main conclusions of the study are then summarized in
Section 4.6.

4.2 Presentation of the model

The electrical activity in the heart is modeled by the bidomain equations (see for
instance [Sac04, SLC+06]). We briefly recall the main equations used in this chapter.
For a detailed description of the models and parameters used in this work we invite
the reader to refer to Section 1.4.

Let us consider the heart domain ΩH. Then the bidomain equations read on
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σl
i σl

e σt
i σt

e σlung
T σrib

T σtorso
T

3.0× 10−3 3.0× 10−3 3.0× 10−4 1.2× 10−3 2.4× 10−4 4× 10−5 6× 10−4

Table 4.1: Conductivity parameters in the torso, σT and conductivity tensor pa-
rameters in the heart according to fibers orientation, σl

e,i longitudinal values, σt
e,i

transversal values.

τin τout τopen τclose τRV
close τ endo

close τmcell
close τ epi

close vgate vmin vmax

16 360 300 100 120 130 140 90 −67 −80 20

Table 4.2: Ionic parameters.

ΩH × (0,T ), T > 0,




Am

(
Cm

∂vm
∂t

+ Iion(vm,w)
)
− div(σi∇vm)− div(σi∇ue) = AmIapp(x,t)

−div((σi + σe)∇ue)− div(σi∇vm) = 0

(4.1)
where ui and ue are respectively the intra- and the extra-cellular potential and
vm := ui − ue is the transmembrane potential. In this chapter we consider the
Mitchell and Schaeffer ionic model [MS03] that writes





Iion(u,w) = −wu
2(1− u)

τin
+

u

τout

∂w

∂t
=





1− w

τopen
, u < ugate

− w

τclose
, u > ugate

(4.2)

where ugate is the changeover voltage, and τin, τout, τopen, τclose the ionic parameters.
Although this model describes in a very simplified way the ionic exchanges, it allows
to recover realistic action potentials at the cell scale.

We made the assumption of uncoupling heart-torso domains as described in
detail in Section 1.4.3. Thanks to this assumption, the heart problem can be solved
independently of the torso problem. Then, in order to obtain the ECGs, a linear
operator, called transfer matrix, is computed and applied to the heart extra-cellular
potential solution (see Section 1.4.3). A complete description of non-pathological
ECG is given in Chapter 2.

Finally, some appropriate modeling assumptions are made: for instance, we
consider cell heterogeneity in heart tissue, anisotropy of the conductivity tensor
according to fiber direction, a simplified model of His bundle. We refer to [BCF+10]
and to Chapter 1 for a description of the modeling choices made in our study.

All the simulations are performed on an idealized geometry of ventricles based
on two ellipsoids (see [SMC+06]). The spatial discretization is based on the finite
element method, and the time discretization is performed using the second order
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Backward Differentiation Formula implicit scheme with an explicit treatment of the
ionic current. The mesh contains 418,465 tetrahedra, the time-step is fixed to 0.5ms,
and the parameters of the model (4.1)-(4.2) are given in Table 4.1 and 4.2.

4.3 Proper Orthogonal Decomposition method

The bidomain equations (4.1) are known to be very demanding from a computa-
tion viewpoint, thus we apply a reduced-order method to reduce the computational
time. In general, to solve numerically a PDE system with a reduced-order method,
the solution is approximated by a Galerkin projection on a finite space whose di-
mension is much smaller than the dimension of a typical finite element space. In
this work we use a method based on the Proper Orthogonal Decomposition (POD).
Essentially, POD is a linear procedure that creates an orthogonal basis using a given
collection of input data, e.g. some finite element method solutions of the problem
itself. The principle of the POD method is briefly recalled in Section 1.6.2. We refer
for instance to [KV01, RP04] for more details.

4.4 Application of POD to forward problems

In this section, the reduced-order model is used in different configurations and
compared with the full-order one. It is important to note that the accuracy is not
assessed on the whole solution, but only on the ECG, which is considered as the
‘output of interest’ of these simulations.

4.4.1 POD for changed parameters problems

A POD basis is computed for a given set of parameters. We consider in this
section what happens when this basis is used to solve a reduced-order model with
different parameters. Our investigation is restricted to τin, τclose, Am, Cm since it has
been shown in [BCF+10] that they are the ones the ECG is the most sensitive to.

Let us first consider a perturbation of τclose, which mainly affects the repolarization
phase, that is, the T-wave in the ECG. In our model, the heart is divided in four
regions where τclose takes different constant values. We consider the value in the
epicardium of the left ventricle τ epi

close and in the right ventricle τRV
close. A POD basis of

80 vectors is first constructed with (τ epi
close,τ

epi
close) = (100,100). Then, the corresponding

reduced-order model is solved with(τ epi
close,τ

epi
close) = (80,130). Figure 4.1 (left) shows

that the full and reduced models are in good agreement. We only refer to the
first lead of the ECG for convenience, but the same trend is observed on the other
leads. It is interesting to note that the experiment used to generate the POD basis
(with (τ epi

close,τ
epi
close) = (100,100)) has a negative T-wave (Figure 4.1 right). It is

therefore not trivial that the reduced model is able to provide the correct (positive)
T-wave. If, instead of considering the ECG only, we compare the extracellular
potential ue of the full and reduced models, the relative difference is 2.3× 10−2 in
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Euclidean norm in ΩH × [0,T ], with T = 500ms. The full 3D solutions are therefore
in good agreement too.

Consider now perturbations of τin, Am, Cm and τRV
close. Simulations are run

with τin = 0.8, Am = 200, Cm = 10−3 and τRV
close = 120. We compare the ECGs

obtained with the full-order model and with the reduced-order model corresponding
to a POD basis generated with τin = 1.5, Am = 200, Cm = 2× 10−3 and τRV

close = 50.
Despite some differences (slight temporal shift or difference of amplitudes, see
Figure 4.2 left), the results reasonably match. Again, this matching is not trivial
because the ECG corresponding to the values used to generate the POD basis looks
totally different (see Figure 4.2 right).
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Figure 4.1: Left: First lead of the ECGs with (τ epi
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close) = (80,130). Comparison

between the full model (dotted red line) and the reduced model (black line) with the
POD basis generated with (τ epi
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4.4.2 Full and reduced-order simulation of an infarction

We are now interested in the simulation of a myocardial infarction both with
a full order method and a POD approach. We first describe the procedure used
to simulate an infarction with a full order method and then we introduce a POD
approximation of the problem.

4.4.2.1 Simulation of myocardial infarction

Heart attacks are one of the leading causes of death for both men and women
worldwide. The myocardial infarction (also called heart attack) is the consequence
of the occlusion of a coronary artery, that causes a deficit of blood in a heart region
(ischemia). If the ischemia is left untreated during a long period of time, it can cause
an infarction (damage or death of part of the myocardium). One of the tests that
can be used to detect heart muscle damage is the ECG.

There are two main kinds of myocardial infarctions: transmural and subendocar-
dial. The last ones involve only a small area in the subendocardial wall of the left
ventricle, while the transmural ones are usually the result of a complete occlusion of
blood supply and they extend through the whole thickness of the heart muscle. In
this work we consider the most common and dangerous ones, left ventricle transmural
infarctions. Left ventricle transmural infarctions can be classified according to their
position in the heart into posterior, anterior, lateral and inferior.

We simulate this pathology by modifying the ionic model in order to block ionic
exchanges. In an infarcted area, the extra-cellular concentration of ions K+ increases,
as explained in details in [PCL07]. The heart tissue is not conductive any more, this
leads to a lack of oxygen and consequently to a reduction of Adenosine Tri Phosphate
molecules (ATP) production. The deficiency of ATP disturbs the depolarization
whose active exchanges occur, i.e. with expenditure of energy, and prevents the
Na/K pump to be activated, so the flux of ions K+ and the associated current are
negligible.

During the repolarization phase we will act on the associated current. In order
to reduce the K+ current we will decrease the inward current with respect to the
outward one by modifying the parameters of the ionic model. In this work our ionic
model is the Mitchell and Schaeffer ionic model (4.2) described in section 4.2.

We will model the defect by dividing the parameter τout by 10 in the infarcted
region. With more sophisticated ionic models, we could, for example, modify the
behavior of the extracellular potassium [PCL07].

According to electrocardiology books [Dub00, PCF+07], the main consequence
of an infarction on a real ECG is an elevation or a depression of the ST segment in
different leads. The magnitude of this elevation or depression and the leads where
theses changes are visible depend on the position of infarction. In particular, the
main features we should find are as follows:

• in the case of a posterior infarction: a depression in the ST segment in the V1
and V2 leads;
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Figure 4.3: Simulated ECG: red line represents the healthy case, blue line the
transmural myocardial anterior infarction and green one the posterior infarction.

• in the other cases: an elevation in the ST segment with an inverted T wave;

• in the case of an anterior infarction, we should look at V1, V2 or V3, in the case
of a lateral infarction at I or aV L and for an inferior infarction at II, III or
aV F .

Figures 4.3 and 4.4 show the simulated ECG for the main kinds of infarction: in
Figure 4.3, the anterior and the posterior ones, and in Figure 4.4, the lateral and
the inferior ones. The result is not very good for the inferior infarction: as expected
we see an ST elevation in II, but we also observe an important ST elevation in the
last three leads, a depression in III and no sign on aVF, which is not expected.
The difficulty of simulating the inferior infarction is probably due to the fact that
this zone is very close to the initial activation region. It also seems that the QRS
complex are not exactly as they should be. Nevertheless, we find as expected a
depression (resp. elevation) of the ST segment in V1, V2 and V3 leads in presence
of a posterior (resp. anterior) infarction. We also find an ST elevation in I and
aVL in presence of a lateral infarction. In conclusion, the results obtained with the
full-order model for the ST segments are very satisfactory for the anterior, posterior
and lateral infarctions.

4.4.2.2 POD application to myocardial infarction

We now propose to investigate the same situations with the reduced-order model.
Particularly we would like to build a unique POD basis which can be used to solve a
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Figure 4.4: Simulated ECG: red line represents the healthy case, blue line the
transmural myocardial inferior infarction and green one the lateral infarction.

problem with a generic infarction point.

We first generate the POD basis from the simulation of a heart beat in a healthy
case (i.e., without infarction): we run a 400ms simulation for a healthy test case,
with a time-step of 0.5ms, keep snapshots every 2ms and obtain a basis of 100 vectors.
Then, we use this basis to simulate an infarction centered in the arbitrary red point
P indicated by the arrow in Figure 4.5.

A comparison of the green line (reduced-order model) and blue line (full-order
model) in Figure 4.6 shows that this basis does not allow to approximate accurately
the ECG. A look at the transmembrane potential (Figure 4.7) shows that the POD
basis derived from the simulation of a healthy heart beat is indeed unable to capture
the sharp variation induced by the infarcted region. This explains the poor results
observed on the ECG.

In general, we observe that if we use a POD basis generated for a given infarction
area, this POD basis will give very poor results if we use it for a simulation with
another infarction area. To improve the approximation property of the POD basis,
we propose to enrich the POD basis by collecting the snapshots for different infarction
points. More precisely, 100 snapshots are taken from an healthy case and 50 snapshots
for each infarction of the 18 points shown in Figure 4.5. Moreover, because most of
the solution variation occurs during the first 100ms, half of the snapshots are taken
in this period and the other half between 100 and 400ms. Then, a POD basis of 100
vectors is computed as usual.

This new POD basis is used to simulate the infarction on the red point P indicated
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Figure 4.5: The mesh and the 18 points used to build the infarction POD basis.
The red point out of the mesh lines, indicated by the pink arrow, is the point P
considered in the example.

in Figure 4.5. A comparison of the results obtained with the full and reduced-order
models is given in Figure 4.9. Although the results look better than with a basis
coming from a pure healthy case, we observe that the solution seems to superimpose
the solutions coming from all the nearest infarction points. As a result, the infarcted
area seems too large with the reduced-order model during the repolarization phase,
which induces a difference of the ST elevations in the corresponding ECG. Indeed,
we see in Figure 4.8 that the curves of the ECGs have a similar shape, but different
magnitude for the full and reduced-order models. This discrepancy would probably
be reduced by refining the grid of the precomputed infarcted regions.

4.5 Application of POD to the identification of some pa-
rameter

In this section, we propose an application in parameter identification of the
POD method described in the previous section. The first application deals with
the identification of the four parameters considered in Section 4.4.1. In the second
application, we are interested in recovering the position of an infarction modeled as
in Section 4.4.2.1. Note that in this preliminary study, the reference ECGs used for
the identification are synthetic, i.e. previously computed by the model itself.

4.5.1 Optimization method

Let us present the method which has been used in a general setting. The
parameter identification is carried out by minimizing the discrepancy between a
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Figure 4.6: Simulated ECGs for an infarction centered in an arbitrary point P with
a POD basis generated from the healthy case: ECG with the full model (blue line),
ECG with the POD (green line) and healthy full order ECG (red line).

(a) Complete model(left) and reduced-order
model (right) at t = 80 ms.

(b) Complete model(left) and reduced-order
model (right) at t = 200 ms.

Figure 4.7: Simulation of an anterior infarction using the complete model (left
column) and the reduced model (right column) with a POD basis generated from
the healthy case at different time steps.
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Figure 4.8: Simulated ECGs for an infarction centered in an arbitrary point P with
a POD basis generated from the healthy case and the infarction simulations: ECG
with the full model (blue line), ECG with the POD (green line) and healthy full
order ECG (red line).

(a) Complete model(left) and reduced-order
model (right) at t = 70 ms.

(b) Complete model(left) and reduced-order
model (right) at t = 200 ms.

Figure 4.9: Simulation of anterior infarction using the complete model (left column)
and the reduced model (right column) with a POD basis generated from the healthy
case and the infarction simulations at different time steps.
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reference ECG and the ECG provided by the model with a given set of parameters.
More precisely, let us denote by n ∈ N

∗ the number of parameters and by θ ∈ R
n

the vector of parameters we are looking for in a subset I of Rn. The subset I is
given by I1 × . . .× In where Ij ⊂ R is an interval where the value θj is assumed to
be. The following cost function

J(θ) =

ˆ T

0
|VI − V ref

I |2 + . . .+ |V6 − V ref
6 |2dt (4.3)

is minimized with respect to θ ∈ I, where VI, . . . , V6 are the 9 ECG leads given by
the simulation for the value θ of the parameters (we consider the three Einthoven
leads VI, VII, VIII and the six precordial leads V1, . . . , V6) and V ref

I , . . . , V ref
6 the same

leads of the reference ECG. This functional will be approximated by

J(θ) = δt
M∑

i=1

(
|VI,i − V ref

I,i |2 + . . .+ |V6,i − V ref
6,i |2

)
, (4.4)

where Wi is the numerical approximation of W (ti) for W = VI, . . . , V6, V
ref
I , . . . , V ref

6 .
This optimization problem is solved by an evolutionary algorithm (see [DEA07,

CS10a]). We briefly indicate its main steps, for the sake of completeness. First,
an initial population of elements, called individuals, is randomly created. Then,
the algorithm modifies the population to promote the best individuals according
to the cost function. Considering Np elements (θ1, . . . , θNp) ∈ INp corresponding
to different values of the parameters to identify, the population is regenerated Ng

times, where Ng corresponds to the number of generations. At each generation, J
is evaluated for each individual, and the population evolves from a generation to
another, following three stochastic principles inspired from the Darwinian theory of
evolution of species

• Selection: promote the individuals whose value by the cost function is small,
the members whose cost function is smaller are preserved in the next generation,
whereas those with a high cost function are killed;

• Crossover: create from two individuals a new one by doing a barycentric
combination with random and independent coefficients, a linear combination
of the two selected vectors is performed to create a new member θ ∈ R

n (for
more details see Algorithm 2 in Appendix 4.A);

• Mutation: consist of replacing an individual by a new one randomly chosen in
its neighborhood, that is, a member whose values are closer to the referred one
in the sense of an Euclidean norm. In our case, the amplitude of the mutation
becomes smaller when the number of generations increases (for more details
see Algorithm 3 in Appendix 4.A).

At each generation, a one-elitism principle is added to make sure to keep the best
individual of the previous population. To summarize the algorithm, a pseudo-code is
reported in Algorithm 1 in Appendix 4.A.
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Among its advantages, the genetic algorithm can easily be run in parallel. More-
over, unlike deterministic descent methods, which require the computation of the
gradient of the cost function, it can be very easily implemented. Its main flaw is to
require a large number of evaluations of the direct problem, and because the initial
population is chosen randomly, the minimization process has to be run several times.
To reduce the number of exact evaluations, we have considered the approximate
genetic algorithm on the basis of a surrogate model strategy (see [CS10a]). The idea
is to approximate the cost function for a part of the population, taking advantage
of the growing database of exact evaluations. The approximation is carried out
by interpolation with radial basis functions. The maximum number Nex of total
exact evaluations is fixed, and the number of exact evaluations decreases at each
generation. For instance, in the case of an initial population of Np = 80 members
and a fixed number of Ng = 15 generations, we impose the maximum total number of
exact evaluations Nex = 600; typically, we impose all evaluations to be exact during
the first four or five generations, then the number of exact evaluations decreases
constantly at each generation (see [CS10a]).

Even with the approximate genetic algorithm, solving the optimization problem
is still very time-consuming. Our strategy is thus to speed up the evaluation of the
cost function by using the reduced-order model.

4.5.2 Identificatio of four parameters

In this section, we test our identification strategy for the four parameters τin, Am,
Cm and τRV

close. The reference ECG used in the cost function is the one computed in
Section 4.4.1 obtained with the full-order model for the values (τin, Am, Cm, τ

RV
close) =

(0.8,200,10−3,120). The values of (τin, Am, Cm, τ
RV
close) are searched for in the set

[0.5,1.5]× [100,300]× [5× 10−4,2× 10−3]× [50,150].

The key point is to perform the “exact” evaluations required by the optimization
algorithm with the reduced-order model. Results presented in Table 4.3 are obtained
with 80 POD modes and with the following parameters for the genetic algorithm:
Np = 120, Ng = 12 and Nex = 850. Just to give an idea, the computational time
was about 2 days on a PC with 16Go of RAM and using six processors Intel Xeon
3.2 GHz. Each one of the 800 time-steps of the “exact” evaluation requires about 3.5
seconds using the full-order model, while it is reduced to about 0.5 second using the
reduced model. If the 850 “exact” evaluations were performed with the full-order
model, the computational time will be unacceptable (more than two weeks). The
time needed to compute the POD basis is negligible with respect to the time needed
by the overall simulation.

The accuracy of the reduced-order model is satisfactory when the four parameters
of interest vary within a reasonable range. It is therefore possible to work with a
POD basis generated for a single set of parameter θ0. This is the approach referred
to as M1 in Tables 4.3 and 4.4. Nevertheless, to improve the accuracy, it is possible
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(τin, Am, Cm, τ
RV
close) Relative error Value of J

M1 with θ0 = θ10 (0.95,185,9.3× 10−4,126) 9.6 3.05
M1 with θ0 = θ20 (0.93,162,1.05× 10−3,128) 11.7 7.4

M2 (0.86,179,10−3,123.5) 5.2 2.15

Table 4.3: Identification of (τin, Am, Cm, τ
RV
close) (Reference value (0.8,200,10−3,120)).

(τin, Am, Cm, τ
RV
close) Relative error Value of J

M1 with θ0 = θ10 (0.83,184.2,1.02× 10−3,123.1)) 4.1 2.2
M1 with θ0 = θ20 (0.91,153,1.09× 10−3, 126.4) 12.3 7.55

M2 (0.83,189,1.01× 10−3,123.2) 3 2.05

Table 4.4: Identification of (τin, Am, Cm, τ
RV
close) (Reference value (0.8,200,10−3,120))

with a larger population.

to use many POD bases computed “off-line” for different values of θ taken in a finite
subset A of I. Next, for a given value θ ∈ I, the POD basis used for the resolution
corresponds to the closest value of θ ∈ A. This is the approach M2 in Tables 4.3
and 4.4.

The relative error is the mean relative error given by the following formula:

1

4

( |τin − 0.8|
0.8

+
|Am − 200|

200
+

|Cm − 10−3|
10−3

+
|τRVclose − 120|

120

)
.

Here, θ10 = (1,200,10−3,100), θ20 = (1.3,170,1.4× 10−3,90) and in the last line of the
table, we have considered the POD method M2 with A given by

A =
{
0.5; 1; 1.5} ×

{
100; 200; 300

}
× {5× 10−4; 10−3; 1.5× 10−3; 2× 10−3

}
(4.5)

×
{
50; 100; 150

}
.

The genetic algorithm is run several times and the results shown corresponds
to a mean value. On this example, we see that method M2 allows approximately
to divide the error by 2. The price of this improvement was to compute 108 POD
bases. Although this computation was done off-line, this approach therefore requires
a significant computational effort. A larger population has also been considered in
Table 4.4 with Np = 300, Ng = 20 and Nex = 1700. Here again, we notice that
method M2 allows to improve the identification results.

4.5.3 Identification of a myocardial infarction

Finally, we are interested in estimating the location of an infarcted area, modeled
as explained before. The infarcted area corresponds to a sphere of fixed radius and
we want to recover its center denoted by P . Thus we want to identify 3 parameters
corresponding to the coordinates θ = (xP ,yP ,zP ) of P .

We want to minimize the discrepancy between a reference and a simulated ECG,
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using the genetic algorithm reported in Section 4.A. The key point is to perform
the exact evaluations required by the optimization algorithm with the reduced-order
model.

We consider the minimization function (4.4). The reference ECG is obtained by
solving the complete model for an infarction area centered at point P as described in
Section 4.4.2.2. The genetic algorithm is run with Np = 80, Ng = 15 and Nex = 600.
The point P is only searched for in the left ventricle domain.

The results are reported in Figures 4.10 and 4.11. The reference ECG (blue
lines in Figure 4.10) is well approximated by the one obtained from the resolution
of the genetic algorithm (green lines). The identified infarcted region is actually
very close to the reference one (Figure 4.11). The solution of the genetic algorithm
can be improved by including more off-line experiments, as indicated at the end of
Section 4.4.2.2.

For a different approach to tackle this problem, we refer to [NLT07]. An interesting
possibility to investigate could be to enrich the cost function giving more weight to
the ST deviation, as suggested in [GPF+04].

4.6 Chapter conclusions

We have presented some results obtained with a reduced-order model of elec-
trophysiology based on the POD method. A well-known difficulty of reduced-order
modeling is to identify those situations where the reduced-model can be considered
as reliable. We do not claim that we have answered this difficult question in this
chapter. Nevertheless, our experiments may suggest some general trends. First,
the reduced-order model seems quite robust when the ionic current parameters are
perturbed. This may have interesting applications for example to estimate the ionic
current parameters in an optimization loop. Second, a reduced-order model based
on a single simulation is totally inadequate to approximate a situation with a spatial
change in the parameter: this has been shown in the present study for an infarcted
region; in [BG11] the same observation was made for the initial activation region.
A natural strategy consisting of precomputing several POD bases with different
sets of parameters, or a single POD basis from different experiments, proved to be
satisfactory in the cases we have considered. Nevertheless, this solution requires
an important off-line effort, which makes it difficult to apply with more than a few
parameters. Alternative strategies have therefore to be investigated in future works.
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Figure 4.10: Simulated ECG for an infarction located in point P : blue line represents
the simulated reference ECG and green line the ECG corresponding to the infarcted
center found with the resolution of a genetic algorithm. Red line gives the healthy
reference case.

(a) Complete model(left) and reduced-order
model (right) at t = 80 ms.

(b) Complete model(left) and reduced-order
model (right) at t = 300 ms.

Figure 4.11: Simulation of an anterior infarction using the complete model (left
column) and the reduced model (right column) with a POD basis generated from
the healthy case at different time steps.
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4.A Genetic algorithm

Algorithm 1 Genetic Algorithm

Choice an initial population P1 ⊂ I s.t. ∀x ∈ P0, xi ∈ [ximin,x
i
max]

ng = 1
while ng < Ng do

evaluate J(x) ∀x ∈ Png

m = minx∈Png
J(x)

Xng = argminx∈Png
J(x)

elitism :
if ng > 2 and J(Xng−1) < m then
xing

= Xng for a random i
end if
for k from 1 to Np/2 do

selection of (xαng
,xβng)

replace (xαng
,xβng) with (yαng

,yβng) by crossover

replace (yαng
,yβng) with (zαng

,zβng) by mutation
end for
ng = ng + 1
Png = Png

⋃
Xnew

end while
return X = argminx∈PNg

J(x)

Algorithm 2 Crossover

for each couple X(i),X(i+ 1) do
u = random coefficient ∈ [0,1]
Xnew(i) = uX(i) + (1− u)X(i+ 1)

end for
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Algorithm 3 Mutation

for each member of the population X(i) do
u1 = random coefficient ∈ [0,1]
u2 = random coefficient ∈ [0,1]
if u1 < 1/2 then
Xnew(i) = X(i) + u2(Xmax −X(i))

else
Xnew(i) = X(i) + u2(X(i)−Xmin)

end if
end for





Chapter 5

Long-time simulations and

Restitution Curves with POD

This chapter is dedicated to the study of restitution curves and parameters estimation.

Restitution curve (RC) is the relationship between the time of depolarization and the time

of previous repolarization of a cell. In this work we consider the Mitchell and Schaeffer ionic

model in order to study RC and to investigate some parameters estimation. The Mitchell

and Schaeffer model is a phenomenological ionic model which naturally gives rise to an

analytical expression of the RC. Previous works used an asymptotic parametrization of

this curve, holding under strong model assumptions. As these assumptions do not hold for

a complete heart model, we propose a new parametrization which holds for any general

parameters choice. First, we use it to estimate the parameters of a zero dimensional model

and then we extend the parameters identification method to a three dimensional system. In

the last case, the restitution curve is deduced from a synthetic Electrocardiogram (ECG).

This definition of ECG-based RC was introduced by Manriquez et al. in 2006.
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5.1 Introduction

First, let us give the definition of a Restitution Curve (RC). The restitution curve
is the dependence between diastolic interval (DI) and the successive duration of a
cardiac action potential (APD). The RC corresponds to the graph of the APD with
respect to the previous DI. In the case of a single cell model the DI corresponds
to the time during which the transmembrane voltage vm is smaller than (or equal
to) the changeover voltage vgate, while the APD is the time during which the vm is
greater than vgate.

In this work, we focus on the Mitchell and Schaeffer ionic model [MS03] introduced
in Section 1.4.2. One of the advantages of this phenomenological model is that it
exhibits a new phenomenon that does not occur for other phenomenological models:
it naturally give rise to the dependence of the APD as a function of the previous
DI. A parametrization of the RC has been introduced in [MS03] under some strong
assumption on the parameters. In Section 5.3 we propose a new parametrization of
the RC which allows us to relax the assumptions on the parameters. Then, we use
this new parametrization in order to identify some parameters in an adimensional
case.

The RC is known to be important in the understanding of some arrhyth-
mias [QXGW10, MS03]. The notation of RC can be extended to the whole heart
looking at the ECG first lead. DI and APD can be respectively compared to the
TQ time, time between the end of T wave and the beginning of the Q wave of
the next beat, and the QT time (see Figure 5.5a). This idea has been introduced
in [MZM+06] and is a way to generalize the notion of restitution curve at the scale
of the whole heart. A RC based on ECG is a much more accessible measurement
and could allow us to detect pathologies at the scale of the heart.

The simulation of the restitution curve is extremely challenging for 3D models
since it requires several dozen of heart beats, whereas the simulation of one heart
beat is already very demanding.

In Section 5.5 we reproduce RC based on ECG thanks to 3D numerical simulations.
First, we introduce a POD basis in order to run the long time simulations needed to
build the RC. Then we use the parametrization introduced in Section 5.3 in order to
identify some of the ionic parameters.

5.2 Presentation of the models

The electrical activity in the heart is modeled by the bidomain equations as shown
in Section 1.4.1. The extracellular potential ue and the transmembrane potential vm
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are solutions in the heart domain ΩH of the following system




Am(Cm
∂vm
∂t

+ Iion(vm,w))− div(σi∇vm)− div(σi∇ue) = AmIapp(x,t)

−div((σi + σe)∇ue)− div(σi∇vm) = 0
∂w

∂t
+ g(vm,w) = 0

(5.1)
where the functions Iion and g depend on the choice of the ionic model. In this work
we consider the Mitchell and Schaeffer ionic model [MS03] described in Section 1.4.2





Iion(v,h) = −hv
2(1− v)

τin
+

v

τout

g(v,h) =





h− 1

τopen
, v < vgate

h

τclose
, v > vgate

(5.2)

where vgate is the changeover voltage, and τin, τout, τopen, τclose are the ionic parame-
ters. In particular, we are interested in analyzing the behavior of this model in the
case of accelerated beats in order to get the related RC, in both 0D and 3D cases.

5.3 Restitution Curve definition

We first deal with a zero dimensional system. Then we consider equations for all
t ≥ 0 




dv

dt
+ Iion(v,h) = Iapp(t)

dh

dt
+ g(v,h) = 0

(5.3)

coupled with ionic model (5.2). Let us consider the potential v and the gate variable
h varying between 0 and 1. We observe that the potential v depends on the inward

current Jin = h
v2(1− v)

τin
and the outward current Jout =

v

τout
,

dv

dt
= Jin − Jout, (5.4)

where the parameters τin and τout are time constants. The gate variable h describes
the opening and closing of the ionic channel gate. In particular, it takes value 1
when the gate of the inward current is completely open and takes value 0 when the
gate is closed. The behavior of h depends on two parameters, τopen and τclose, that
respectively regulate the opening and closing phases.

Mitchell and Schaeffer, in [MS03] parametrize the RC under the assumption

τin ≪ τout ≪ τopen, τclose (5.5)
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Figure 5.1: Potential v and gate variable h for one electrical cycle of a 0D model.
By default, parameters are taken as in Table 5.1.

We want to generalize the results of [MS03], neglecting condition (5.5). In their
paper this assumption is the basis of most of the relations they find out, even if they
point out that it does not hold for all physiological models. Moreover, in the 3D
simulation, see for instance [BCF+10] or Chapters 2 and 4, this assumption will not
be satisfied.

Let us analyze with precision a cycle of depolarization, see Figure 5.1a. We start
from the rest state, it corresponds to point (v,h) = (0, 1) at initial time t = 0. The
cell electrical cycle is divided into four phases. First, as the gate is open (h = 1), the
sodium ions Na+ enter into the cell, this creates an inward ionic current (Iion < 0). So,
the potential v increases quickly to 1, i.e. the cell depolarizes, with the characteristic
time τin while the gate variable h is almost constant.

Then the gate closes, i.e. the gate variable h decreases from 1 to its local minimal
value hmin. During the phase of plateau the ionic current is negligible, the potential
v is almost constant for a time of order τclose.

The repolarization phase follows the plateau. The Na/K pump creates an outward
ionic current (Iion > 0), so the potential v decreases rapidly during a time of order
τout and the ionic channel is still closed (h(t) ≃ hmin).

Finally, during the fourth phase the cell tends to go back to rest and the gate
variable increases, h(t) ≃ 1. The inward currents are balanced with the outward
currents, so Iion ≃ 0 and the potential v is constant.

Let us stimulate a cell at time t = 0, as shown in Figure 5.1a. We define t0 > 0

τin τout τopen τclose vgate
1.0 10.0 30. 50. 0.13

Table 5.1: Ionic parameters for 0D model.
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Figure 5.2: On the left hand side, potential v and gate variable h for some electrical
cycles of a 0D model. On the right hand side, the associated Restitution Curve. By
default, parameters are taken as in Table 5.1.

the time of the beginning of the APD and t∗ > t0 the time corresponding to the end
of the APD, i.e.

• t0 is the first t > 0 such that v(t0) = vgate, with v(t) < vgate for any t < t0 and
v(t) > vgate for any t ∈ (t0, t∗);

• t∗ > t0 is the first time such that v(t∗) = vgate, with v(t) > vgate for any
t ∈ (t0,t∗) and v(t) < vgate for any t > t∗.

The local minimal value of the gate variable h is reached at time t∗, hmin := h(t∗).
Then, the solution of the second equation of (5.3) can be calculated analytically

h(t) =





1, 0 < t ≤ t0
e−(t−t0)/τclose , t0 < t ≤ t∗

1− (1− hmin)e
−(t−t∗)/τopen , t > t∗.

(5.6)

In order to study the RC, we consider a sequence of different periods beats. We
can prove that results do not change in case of accelerated, decelerated or random
beats. Let us consider a sequence of n = 50 beats of period between 100 and 400ms.
We define respectively |APDk| and |DIk| the action potential duration and the
diastolic interval of the k-th beat, for any k = 1, . . . ,n (see Figure 5.2a) and we call
respectively t0k and t∗k the beginning of the k-th APD and DI.

Let us take, as previously, the initial solution (v,h)(t = 0) = (0,1). If we stimulate
the system (5.3) for a sequence of times t̃k > t∗k, for any k = 1, . . . , n, then the
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solution of the second equation of (5.3) is given by

h(t) =





1, t ≤ t0
h(t0k)e

−(t−t0
k
)/τclose , t ∈ APDk = (t0k, t

∗
k)

1− (1− h(t∗k))e
−(t−t∗

k
)/τopen , t ∈ DIk = (t∗k, t

0
k+1).

(5.7)

Proposition 5.1

The Action Potential duration of the k + 1-th beat, |APDk+1|, is related to the

Diastolic Interval of the previous beat, |DIk|, by equation

|APDk+1| = τcloseln
1− (1− h(t∗k))e

−|DIk|/τopen

h(t∗k+1)
. (5.8)

Proof. The system of equations (5.3) admits a continuous solution. Then, according
to the continuity of the gate variable h at time t∗k for any k ≥ 1 we have

h(t∗k) = h(t0k)e
−|APDk|/τclose . (5.9)

Using the expression of h(t0k) given by (5.7), we obtain

h(t∗k) = (1− (1− h(t∗k−1))e
−|DIk−1|/τopen)e−|APDk|/τclose , (5.10)

then
h(t∗k)e

|APDk|/τclose = (1− (1− h(t∗k−1))e
−|DIk−1|/τopen), (5.11)

which leads to the conclusion of the proposition.

Remark 5.1

If we consider that the local minimum of h, h(t∗k) is constant, hmin = h(t∗k), for all

k ≥ 1, then expression (5.8) leads to

|APDk+1| = τcloseln
1− (1− hmin)e

−|DIk|/τopen

hmin

, (5.12)

which is the expression given by [MS03]. A discussion on the value of hmin is given

in the next paragraph.

5.3.1 On the minimal value of the gate variable

To find out an analytical expression of hmin which depends on the ionic parameters,
Mitchell and Schaeffer suppose in [MS03] that the solution (v,h) is on the nullcline
of the first equation of (5.2) (see Figure 5.1b) thus it satisfies equation

0 = h
v2(1− v)

τin
− v

τout
, (5.13)
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so the relation between h and v is given by

h =
τin
τout

1

v(1− v)
. (5.14)

Then, the minimal feasible value for h is

h̃min = 4
τin
τout

, (5.15)

since v ∈ (0,1).
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Figure 5.3: Gate variable h vs potential v for one electrical cycle of a 0D model. By
default, parameters are taken as in Table 5.1.

In Figure 5.1b we show the values of h in function of v in two cases. The blue
line gives the value for parameters in Table 5.1 while the green line is computed with
a smaller value of τin = 0.01 and τout = 0.1, i.e. assumption (5.5) is satisfied only
in the second case. We point out that the ratio between τin and τout is constant in
both cases, τout

τin
= 10, so that the related nullcline (red line) is the same. We remark

that the minimum of h corresponding to the green line (assumption (5.5) true) is
close to the approximated value h̃min given by (5.15), while the minimum of the blue
one (assumption (5.5) false) is smaller than h̃min. We can explain this difference if
we look at the four different phases. The main condition that has to be respected to
correctly evaluate the minimum value of h is that τout ≪ τopen, i.e. that the third
phase should be negligible compared to the last one. So if we take a smaller τout this
phase is quicker and h stays close to the approximated value.

In order to better investigate the link between the minimal value of h and the
ionic parameters, we first compare solutions with different ratio between τin and τout.
In particular, we change the value of τout, from 6.0 to 14.0, and take the value of the
other parameters as in Table 5.1. In Figure 5.3a we can see that the minimal value
of h decreases for higher values of τout/τin as expected, but in any case is always
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far from h̃min. On the other hand, we investigate the relationship between the hmin

and the changeover voltage vgate. In Figure 5.3b we observe a dependence of hmin to
vgate. In particular, hmin increases for smaller values of vgate. This confirms that the
approximation of hmin by h̃min (5.15) may be strongly inaccurate in many cases.

Let us summarize and say that h admits a global minimal value for any parameter
set such that τout > 4τin. The minimal value of h can be approximated by h̃min only
if τout ≪ τopen, while in general it depends on the ratio τin/τout and the voltage vgate.
Thus, the advantage of the RC expression (5.12) compared to the parametrization
given by [MS03] is that it holds for any parameters such that τout > 4τin and and
any random stimulation sequence.

5.3.2 On the asymptotic value of the RC

Let us better analyze the asymptotic value of the RC given by (5.12). We want
to identify the maximal admissible value of the APD. We suppose that the longest
APD is related to a stable initial state, i.e. (v,h) = (0,1). In order to reach a stable,
state the previous DI is supposed to tend to +∞. Then, we define

APD∞ := lim
|DIk|→∞

|APDk+1| = −τcloseln(hmin). (5.16)

5.4 Parameters identification in 0D case

We observed in the previous section that the RC expression (5.12) perfectly fit
some synthetic data, then this equation can be used for the estimation of some
parameters. In particular, two ionic parameters can be identified, τopen and τclose,
within the longest feasible APD.

We simulate a sequence of n = 50 beats of random period, varying from 100ms to
500ms, on a single cell model (5.2)-(5.3). Parameters take values given by Table 5.1
and stimulation times t̃k > t∗k, for any k = 1, . . . , n as described in Section 5.3. In
Figure 5.2a the potential v and the gate variable h are plotted for several beats. We
observe that the hypothesis of constant minimal value hmin is numerically verified.

We then build the corresponding RC which will be the reference curve, see
Figure 5.2b, and we use their RC to find out the parameters θ = (τopen, τclose, APD∞).
Referring to [MZM+06], we apply a non-linear least square method to minimize the
error between the reference curve and the analytical one obtained from equation (5.12).
We use the software R1 to calculate these parameters. The exact solution is θ∗ =
(30,50,87.359), while the estimated solution is θ = (30.01,49.89,87.33) which is
very close to the exact one. The third and fourth columns of Table 5.2 represent
respectively the standard deviation of the estimated parameter and the inverse of
the relative confidence interval length. We can observe that the standard error is
small and that the t-value is more than 103 for all the parameters, which means that
our solution is estimated with a tiny incertitude.

1http://www.r-project.org/

http://www.r-project.org/
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Parameters Estimate Std. Error t-value
τopen 30.01 1.157 10−2 2.594 103

τclose 49.89 4.271 10−2 1.168 103

APD∞ 87.33 7.182 10−4 1.21585 105

Table 5.2: Results obtained with the NLS R algorithm for the curve of Figure 5.2b
of a single cell model. Starting point of the algorithm is θ0 = (40,40,100). The
algorithm converges is 4 iterations and Residual standard error is 4.347 10−3 on 47
degrees of freedom. The exact solution is θ∗ = (30,50,87.359).

τin τout τopen τ endo
close τMcell

close τ epi
close τRV

close vmin vmax vgate
16 360 100 120 130 140 90 −80 20 −67

Table 5.3: Ionic parameters for heart model.

5.5 Parameters identification with an ECG-based RC

Let us now try to extend the previous study to the 3D problem where the
restitution curve is based on the ECG. A long sequence of accelerated beats simulation
is run on a simplified heart geometry and the corresponding ECG is obtained with
a weak coupling with the thorax as described in Section 1.4.3. The simulation of
accelerated heart beat ECG is very challenging from a computational point of view
because of the long time simulations and the fact that ECG may be modified when
frequency increases. Furthermore, this test presents a medical interest because it
can highlight arrhythmia like fibrillation. In order to reduce the computational cost,
we propose to apply the POD technique introduced in Section 1.6.2.

Let us first validate the accuracy of the POD method for high frequency simula-
tions. A one-beat finite element simulation is first run. Second, the POD basis is
constructed from this simulation (in particular it is sufficient to keep the first 400ms
of the solution). Finally, the POD basis is used for a long sequence of accelerated
beats. The first beat lasts 1.1 second, which corresponds to an initial heart frequency
of about 55 beat per minute. Then the heart rate increases and, after 10 seconds, it
reaches a frequency of 110 bpm. We remind that normal heart frequency is between
60 and 100 bpm. When the frequency is higher than 100 bpm, this corresponds to
tachycardia and ECG shape becomes unusual.

Figure 5.4 shows the first lead of the ECG obtained with finite element and POD
methods. We observe that the two solutions are, as expected, perfectly superposed
during the whole simulation.

Once the POD basis is validated, we are interested in using this POD basis to
run the parameter identification procedure introduced in the previous section. We
run a POD simulation of 60 accelerated beats, frequency varies from 50 beats per
minute to 120 bpm. The ionic parameters values are given in Table 5.3. Let us notice
that τclose has four values because we have considered different tissues polarization
properties. In particular, in the right ventricle its value is given by τRV

close, near the
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Figure 5.4: Simulated ECG for long period (10 seconds) for accelerated beats (55
beats per minute to 110 bpm) with the finite element method (continuous line) and
with the POD (dotted line).
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(b) ECG-based RC. Red points and line are the
QT/TQ values and the fitted curve for the esti-
mated parameters. The green and blue lines are
the analytical curve (5.12) for the exact values
τclose = τMcell

close and τclose = τ
epi

close respectively.

Figure 5.5: Results from a 75 accelerated beats simulation on the heart domain with
parameters of Table 5.3.
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Parameters Estimate Std. Error t-value
τopen 369.3480 7.1018 55.81

τclose 63.4092 0.9488 66.83

APD∞ 337.7764 0.2443 1382.79

Table 5.4: Results obtained with the NLS R algorithm for the curve of Figure 5.5b:
ECG-based RC. Starting point of the algorithm is θ0 = (200,200,400). The algorithm
converges is 6 iterations and Residual standard error in 0.1503 on 57 degrees of
freedom. The exact solution is θ∗ = (300, [90, 140], 335). The parameter τclose is
heterogeneous and takes four different values depending on its geometry location:
120 in the right ventricle, 130 on left ventricle endocardium, 90 on left ventricle
epicardium and 140 in left ventricle medium cells.

left ventricle endocardium it is τ endo
close , τdpi

close at the left ventricle epicardium and τMcell
close

in the left ventricle myocardium. For more details about the tissue heterogeneity we
refer to Section 1.4.4.

As mentioned above, an ECG-based RC is the relationship between the QT time
and the previous TQ period (Figure 5.5a). Using the T-wave detection algorithm
implemented in [ZIMM+05], we obtain the RC in Figure 5.5b (red dots). We observe
that the trend of this curve is very close to the blue line which corresponds to
equation (5.12) whose ionic parameters are given in Table 5.3, with τclose = τ epi

close, to
confirm that the ECG-based RC is related to the standard RC based on APD and
DI.

In order to identify the ionic parameters τopen, τclose and the asymptotical value
of the RC APD∞ we use a nonlinear least square method, within the software R.
Results are reported in Table 5.4, exact solution is θ∗ = (300, [90, 140], 335). The
APD∞ is found with small error and incertitude, while ionic parameters are more
difficult to estimate. A 15% relative error is committed on the estimation of τopen

and a 30% relative error is committed on the estimation of τclose if the exact solution
is assumed to be the τ epi

close value. Furthermore, the t-value for ionic parameters
reported in Table 5.4 tell us that an incertitude on this estimation is admitted. We
remark that the τclose value that we should look for is not the τ epi

close value, but a sort
of mean value which is not specified. Then, the error committed on the identification
of the parameters it is not a good estimator since a more appropriate value of the
mean τclose value could be found.

A remark is in order. The error committed on the evaluation of the parameters is
only a partial indicator of the estimation. In fact, we have considered τclose = τ epi

close

while four different values are taken into account in the simulation of the reference
RC. This, suggest us to consider a “mean” τclose value whose expression could be
subject of future works.
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5.6 Chapter conclusions

In this chapter, we have proposed a new parametrization of the RC for Mitchell
and Schaeffer ionic model (5.2) which is valid in a more general setting. The use
of the RC in electrophysiology may represent a new and very fast method for the
identification of some parameters. In a one-cell model results with the proposed new
parametrization leads to satisfactory solutions and allows to estimate the parameters
τopen and τclose. We prospect that the estimation of the parameter hmin may lead to
the identification of other ionic parameters such as vgate or the rate between τin and
τout. The study of ECG-based RC is promising too. The estimated values of the
ionic parameters are not precise but the approach based on RC represents a costless
technique and the result given by this method can be used for instance as an initial
guess of iterative methods.





Chapter 6

Reduced Order Model with

Approximated Lax Pairs

In this chapter a reduced-order method based on Approximated Lax Pairs (ALP) is

applied to the integration of electrophysiology models. The main characteristic of ALP

method is the time dependence of the basis. In other reduced-order methods, such as the

Proper Orthogonal Decomposition used for instance in Chapters 4 and 5, the basis on

which the solution is searched evolves in time according to the problem dynamic. Second,

contrary to other reduced-order methods, ALP is not based on an off-line/on-line strategy

then it is well adapted in case for instance of variable parameters. In this chapter, the

method is tested on two and three dimensional electrophysiology test-cases, of increasing

complexity. The solutions are compared to the ones obtained by a finite element method.

The reduced-order simulation of pseudo-electrocardiograms based on ALP is proposed in

the last part.

The results presented in this chapter lead to the manuscript

Damiano Lombardi, Jean-Frédéric Gerbeau, Elisa Schenone. Reduced Order Model in

Cardiac Electrophysiology with Approximated Lax Pairs. To appear in Advances

in Computational Mathematics, Special Issue on MoRePas.
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6.1 Introduction

This work is devoted to application of a reduced-order method based on Ap-
proximated Lax Pairs (ALP) to cardiac electrophysiology. ALP method has been
introduced in [GL14] where the ability of this method to handle propagation phenom-
ena was considered. In the present work, we focus more specifically on its behavior
for parametric problems.

From a Reduced-Order Modeling (ROM) standpoint, cardiac electrophysiology
is a challenging context. Indeed, the systems describing the electrical activation of
tissues are nonlinear, they exhibit front propagations, and they depend on many
parameters. For example, the possible presence of infarcted regions requires a
modification of the space dependence of some reaction parameters. Similarly, the
possible initiation of ectopic stimulations yields source terms which can change in
space and in time. Consequently, as shown in Chapter 4 in the case of an infarcted
region, a suitable basis can be found but a very large space of parameters has to be
visited in order to cover all the possible scenarios.

The ability to deal with parametric systems is one of the main issues in model re-
duction. We refer for instance to [RHP07] for a discussion on affinely parametrized el-
liptic partial differential equation systems. The standard methods of model reduction
are often based on the construction of a database of pre-computed simulations. Proper
Orthogonal Decomposition is a paradigmatic example, as we showed in Chapter 4 and
which is widely used in many applications (see e.g.[AF08, HLB96, KVX04, Sir89]).
The need of a database can become an issue when dealing with high dimensional
parametric spaces, since the construction of the database can be extremely demand-
ing both in time and memory. The method ALP considered in this work does
not rely on a database. It therefore avoids the need of an off-line exploration of a
large parametric space. Instead, it makes a basis evolve in a way dependent on the
dynamics of the solution. In all the examples given in this work, the method will
be systematically compared to a full-order model obtained by finite element. For
illustration purposes only, it will also be compared to the POD computed from a
“simple” set of precomputed solutions.

The structure of the Chapter is as follows. In Section 6.2, the ALP method is
detailed. The general principle of the method is recalled in Section 6.2.1, useful
complements are presented in Section 6.2.4, then the necessary steps to apply the
method to the monodomain and bidomain equations are presented in Sections 6.3.1
and 6.3.2 respectively. In Section 6.4 various numerical experiments are proposed.
The first example is a 2D propagation in an isotropic uniform medium. Then, a
synthetic infarction is simulated and the problem of ectopic stimuli is investigated.
The last case is the 3D simulation of a pseudo-electrocardiogram. Some perspectives
of the present study, that are strongly related to the method introduced in Chapter 8,
are presented in the conclusion.



134

6.2 The ALP method

In this section the reduced-order method used in the present work is detailed. It
is hereafter derived for a generic PDE of the form:

∂tu = F (u,∂(n)x u), (6.1)

where u(x,t), x ∈ Ω ⊆ R
d, t ∈ (0,1) is the solution of the PDE, with specified initial

and boundary conditions. For simplicity, F (u,∂(n)x u) will be denoted by F (u).
The basic idea of the method, first proposed in [GL14], is to define a time evolving

modal expansion of the form

û(x,t) =

NM∑

i=1

βi(t)ϕi(x,t), (6.2)

where û is the low dimensional approximation of the PDE solution, βi(t) is the
representation of û in the space defined by the NM modes ϕi(x,t). In order to
completely define the basis evolution, an equation and an initial condition for the
modes have to be specified. Other works in the literature deal with this type of
decomposition. Recent examples are the dynamic low-rank decomposition (see for
instance [KL07]), the orthogonal field equations (see [SP09]) and the bi-orthogonal
decomposition method presented in [CHZ13a, CHZ13b] to integrate stochastic PDEs.

The hypothesis and the governing equations of the ALP method are detailed in
the remainder of this section. It will be assumed that 〈ϕi,ϕj〉 = δij , ∀t, where 〈·,·〉 is
the standard L2(Ω) scalar product, δij is the Kronecker delta.

Among all the possible formalisms that allow us to define a time-traveling mode
expansion, an operator-based approach is chosen. The modes are retrieved in the
set of the eigenfunctions of a time varying operator Lχ which linearly depends upon
the solution of the partial differential equation. The operator is represented by
its spectrum and its eigenfunctions, which evolve under the action of an evolution
operator (the same for all the eigenfunctions), denoted by M. When applied to
integrable systems of equations, these operators are the representation of a Lax pair,
as pioneered in [Lax68].

6.2.1 Time-dependent basis construction

In this section, we gather the main results presented in [GL14]. The modes are,
at every time instant, a subset of the eigenfunctions of a linear (with inverse compact)
selfadjoint operator of Schrödinger-type associated to the potential −χu

Lχ(u)ϕi = λiϕi, (6.3)

(6.4)

where u is the solution of (6.1), χ is a real scalar parameter and L is typically −∆,
or any other linear selfadjoint elliptic operator. Then, the modes ϕi are defined as
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the eigenfunctions of Lχ(u):

Lχ(u)ϕ := Lϕ− χu(x,t)ϕ. (6.5)

The choice of the operator is arbitrary (to some extent), and it will be commented
in the last part of this work. Let us assume that u has the regularity that justifies
the following steps of the derivation.

The operator evolves in time since it depends upon the solution of the PDE. This
has important consequences for parametric systems, as it will be investigated by
means of numerical experiments. Moreover, it is linear , selfadjoint with a compact
inverse for every time, i.e. it defines, for every time, an orthonormal basis which is a
complete basis of L2(Ω).

Let Q(t) be an orthogonal application (QTQ = QQT = Id) such that ϕm(t) =
Q(t)ϕm(0), ∀m. Taking the time derivative, we have

∂tϕm(t) = ∂tQ(t)ϕm(0) = ∂tQ(t)QT (t)ϕm(t). (6.6)

Thus, defining the operator M(t) = ∂tQ(t)QT (t), the dynamic satisfied by the basis
function is defined by

∂tϕm(t) = M(t)ϕm(t). (6.7)

Note that MT = Q∂tQ
T = −∂tQQT = −M, indeed M is skew-symmetric.

To derive the relations between Lχ and M, we take the time derivative of the
mode definition (6.3)

(Lχ − λiI)∂tϕi = λ̇iϕi + χFϕi, (6.8)

(Lχ + [Lχ,M])ϕi = λ̇iϕi, (6.9)

where we define the commutator [L,M] = LM−ML. This equation defines the
modes evolution. Remark that the PDE expression enters explicitly in the modes
evolution. Since the whole modal set is a complete basis, this equation provides a
way to compute a smooth change of basis and the representation of this change may
be represented on the basis itself, at each time.

6.2.2 Links with the Lax Pairs

Although this is not necessary for what follows, let us briefly show the links
between (Lχ,M) with the operators introduced by Lax in his seminal work [Lax68].
To integrate a class of nonlinear evolution PDEs, Lax introduced a pair of linear
operators L(u) and M(u), where u denotes the solution of the PDE. These operators
play the same role as in the previous section: the operator L(u) is defined as in (6.5)
and its eigenfunctions are propagated by M(u) as in (6.7). Lax focused on those
particular cases when L(t) is orthogonally equivalent to L(0), ie when there exists Q(t)

orthogonal such that L(t) = Q(t)L(0)QT (t). Then, defining as before M = ∂tQQ
T ,

we have
∂tQ

TLQ+QT∂tLQ+QTL∂tQ = 0, (6.10)
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left-multiplying by Q and right-multiplying by QT , we obtain the Lax equation:

L+ [L,M] = 0, (6.11)

A comparison of (6.10) and (6.11), shows that in those cases the eigenvalues satisfy
∂tλm = 0. In other words, when equation (6.11) is satisfied, operators L and M are
said to be a Lax pair.

6.2.3 Reduced order approximation of the Lax operators

The following proposition shows that it is possible to compute an approximate rep-
resentation of M(u) and to derive an evolution equation satisfied by the eigenvalues
of Lχ(u).

Proposition 6.1 ([GL14])

Let u be a solution of equation (6.1). Let Lχ(u) be defined by (6.3). Let NM ∈ N
∗.

For m ∈ {1, . . . ,NM}, let λm(t) be an eigenvalue of Lχ(u(x,t)), and ϕm(x,t) an

associated eigenfunction, normalized in L2(Ω). Let M(u) be the operator defined

in (6.7). Then the evolution of λm is governed by

∂tλm = −χ〈F (u)ϕm, ϕm〉, (6.12)

and the evolution of ϕm satisfies, for p ∈ {1, . . . ,NM},

〈∂tϕm, ϕp〉 =Mmp(u), (6.13)

with




Mmp(u) =
χ

λp − λm
〈F (u)ϕm, ϕp〉, if p 6= m and λp 6= λm,

Mmp(u) = 0, if p = m or λp = λm.
(6.14)

We will denote by M(u) ∈ R
NM×NM the skew-symmetric matrix whose entries are

defined by Mmp(u).

The proof of this proposition is based on a direct computation and it is shown in
detail in [GL14]. The matrix M is a representation of the operator M on the modes
at time t. This representation is convenient from a computational standpoint since it
can easily be obtained from the expression F (u) defining the PDE (6.1), without any
a priori knowledge of M(u). With this approximation of M(u), the evolution of the
modes can be computed according to the nonlinear dynamics of the system. This is
an important difference with standard reduced-order methods, like POD, where the
modes are fixed once for all. To set up a reduced order integration method, only a
small number NM of modes will be retained.

Equation (6.3) defines a Hilbert basis, which is used to approximate the solution
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u ∈ L2(Ω):

ũ(x) =

NM∑

m=1

βmϕm(x). (6.15)

Proposition 6.1 gives an approximated way to propagate the eigenmodes and the
eigenvalues. Function F (u) is approximated by

F̃ (u) =

NM∑

m=1

γmϕm. (6.16)

Using these approximations in the PDE (6.1), the following holds

NM∑

m=1

β̇mϕm + βm∂tϕm =

NM∑

m=1

γmϕm.

Projecting this relation on ϕp, and using (6.13), the expression of the PDE on the
reduced basis is obtained

β̇ +Mβ = γ.

Defining Θij = 〈F̃ (u)ϕj , ϕi〉), (6.12) and (6.13) are approximated by

λ̇i = −χΘii,

and, for λi 6= λj ,

Mij =
χ

λj − λi
Θij ,

respectively. The third order tensor 〈ϕkϕj , ϕi〉 is denoted by Tijk. By definition

Θij = 〈F̃ (u)ϕj , ϕi〉 =
NM∑

k=1

γkTijk.

Computing the time derivative of Tijk gives

Ṫijk = 〈∂tϕkϕj ,ϕi〉+ 〈ϕk∂tϕj ,ϕi〉+ 〈ϕkϕj , ∂tϕi〉.

Thus
Ṫijk = {M,T}(3)ijk, (6.17)

where

{M,T}(3)ijk =
NM∑

l=1

(MliTljk +MljTilk +MlkTijl).

For the specific problem of interest, a relation linking γ and β will be also derived.
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The set of equations which describes the dynamics in the reduced order space is





β̇i +

NM∑

m=1

Mimβm − γi = 0,

λ̇i + χ

NM∑

m=1

Tiimγm = 0,

Ṫijk = {M,T}(3)ijk,

Mij =
χ

λj − λi

NM∑

m=1

Tijmγm,

γi = γi(β),

(6.18)

for i,j,k = 1 . . . NM.

Remark 6.1

The complexity of the resolution of system (6.18) scales with N3
M. As a consequence,

the method is only efficient when a small number of basis functions is sufficient

to reach the desired accuracy. This actually happens in many cases, as shown in

Section 6.4.3. For the cases when a higher number of modes is required, a less

expensive variant of the method is currently under investigation, see next chapter.

6.2.4 Complements on the ALP method

6.2.4.1 Evolution of more complex tensors

In the previous section, it was shown how the third order tensor Tijk evolves in
time. Depending on the partial differential equation of interest, other tensors may
appear in equation (6.18)5. For the electrophysiology problems considered in this
work, it will be useful to study the following type of tensor

Ai1,...,ik :=

ˆ

Ω
ℓ1(ϕ1) . . . ℓk(ϕk) dΩ, (6.19)

where the ℓi are linear operators which commute with time. The time evolution
equation for this tensor reads

∂tAi1,...,ik =

k∑

h=1

ˆ

Ω
ℓi(∂tϕh) . . . ℓk(ϕk) dΩ =

k∑

h=1

NM∑

l=1

MhlAi1,...,il,...,ik . (6.20)

Let us consider an example with a fourth-order tensor

Dijkh =

ˆ

Ω
ℓ1(ϕiϕj)ℓ2(ϕkϕh) dΩ. (6.21)
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Then, differentiating in time

∂tDijkh = {M,D}(4)ijkh =

NM∑

l=1

MilDljkh+

NM∑

l=1

MjlDilkh+

NM∑

l=1

MklDijlh+

NM∑

l=1

MhlDijkl.

(6.22)
This will be used in Section 6.3.1.

6.2.4.2 Reconstruction in the high dimensional space

The reconstruction of the solution in the high dimensional space is now detailed.
Contrary to standard approaches, this step is not trivial since the basis is time-
evolving.

The derivative of the modes can be approximated in the space defined by the
modes at the current time instant as follows:

∂tϕi ≈
NM∑

h=1

Mhiϕh, (6.23)

where the matrices M ∈ R
NM×NM have been computed during the integration stage.

The practical implementation of the algorithm is the following. The modes are
extracted at the very beginning by solving the spectral problem. The initial space is
Φ(0) := span{ϕ1(x,0),...,ϕNM

(x,0)}.
Then, at every time instant a two-step scheme is applied. First, the modal space

Φ is updated:
Φ(n+1) = Φ(n) +∆tH(M,∂tΦ), (6.24)

where Φ ∈ R
N×NM and H denotes an integration scheme (that can be either explicit

or implicit).
For instance, if a second order Crank-Nicolson scheme is used, the update reads:

Φ(n+1) = Φ(n) +
∆t

2

(
Φ(n+1)M (n+1) +Φ(n)M (n)

)
. (6.25)

In general the scheme does not guarantee that the eigenfunctions at time t(n+1) are
orthonormal. Hence, in a second step, a Modified Gram-Schmidt orthogonalization is
applied to the space Φ. The cost of the operation scales as 2N × (NM)2 and therefore
is linear in the high order dimension N . In this work this simple reconstruction was
adopted and proved to be sufficiently precise.

Remark 6.2

For a better accuracy, the following alternative procedure could be used. An orthog-

onal complement can be added to the approximation of the time derivative:

∂tϕi =

NM∑

h=1

Mhiϕh + ri, (6.26)
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where 〈ri,φ〉 = 0. To compute it, the expression of the derivative is injected into the

equation governing the modes dynamics and projected on a basis orthogonal to the

modes. Let us introduce Ψ = span {ψ1,...,ψN⊥
} such that Ψ ⊥ Φ. At initial time the

orthogonal basis is chosen as Ψ = span {ϕNM+1,...,ϕNM+N⊥
}. Then:

NM∑

h=1

Mhi(Lχ − λiI)ϕh + (Lχ − λiI)ri = λ̇iϕi + Fϕi. (6.27)

The linear system determining ri is obtained by projecting the equation onto Ψ:

〈(Lχ − λiI)ri,ψj〉 = 〈Fϕi,ψj〉. (6.28)

When this correction is taken into account, the cost of the method is higher. Indeed,

at each time step, the set of [Φ,Ψ] have to be orthonormalized with the MGS method,

leading to a cost proportional to 2N × (NM +N⊥)
2. For the test cases of the present

work, this improvement did not improve significantly the results.

6.3 ALP in cardiac electrophysiology

We are now interested in applying the ALP method to the electrophysiology equa-
tions. We first derive the ALP algorithm for the monodomain equations [CFPT05]
introduced in Section 1.4

Am(Cm
∂vm
∂t

+ Iion(vm,w))− div(σm∇vm) = AmIapp

∂w

∂t
− g(vm,w) = 0, (6.29)

coupled with the FitzHugh-Nagumo ionic model [Fit61, NAY62]

Iion(u,w) = su(u− a)(u− 1) + w

g(u,w) = ε(γu− w)
(6.30)

with boundary conditions
σm∇vm · n = 0 (6.31)

Second, we extend the method to Bidomain equations [Tun78]

Am

(
Cm

∂vm
∂t

+ Iion(vm,w)
)
− div(σi∇vm)− div(σi∇ue) = AmIapp

−div((σi + σe)∇ue)− div(σi∇vm) = 0
∂w

∂t
− g(vm,w) = 0

(6.32)

with boundary conditions

σi∇ue · n+ σi∇vm · n = 0

σe∇ue · n = 0.
(6.33)
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More details about the models are given in Section 1.4.

6.3.1 ALP for the monodomain equations

In order to apply the technique described above we couple (6.29) to the FitzHugh-
Nagumo ionic model and write it as a unique system

AmCm∂tvm = f(vm,w),

∂tw = g(vm,w), (6.34)

where

f(vm,w) = Amsvm(vm − a)(1− vm)−Amw + div(σm∇vm) +AmIapp, (6.35)

and
g(vm,w) = ε(γvm − w). (6.36)

The first step to apply the ALP method is to define a linear operator Lχ. For
the present work, the operator Lχ is defined as

Lχ(u)ϕ = −div(σm∇ϕ)− χuϕ, (6.37)

and the modes ϕi are solutions of the eigenproblem

Lχ(u)ϕi = λiϕi. (6.38)

Let us remark that the conductivity σm being a tensor, the modes set can account
for some physical anisotropy due to the presence of cardiac fibers.

The eigenproblem is symmetric positive definite. In the examples presented
below it is solved using a Krylov-Schur method with a Lanczos decomposition (resp.
B-Lanczos for the generalized eigenproblem). Although only NM modes have to be
computed, this step may be expensive. But it is worth noticing that it is solve only
once, before the resolution of the reduced order model. In addition, the initial basis
does not depend on the PDE parameters (except the conductivity tensor σm). Thus,
the same initial basis can be used for different sets of parameters.

Let us now approximate the solution of equations (6.34) in the low dimensional
space defined by the NM modes ϕi(x,t) which are the first NM eigenfunctions defined
by (6.38). The transmembrane potential vm can be approximated by

v̂m =

NM∑

i=1

βi(t)ϕi(x,t). (6.39)

We choose to approximate the ionic variable in the same reduced order space and
write

ŵ =

NM∑

i=1

µi(t)ϕi(x,t), (6.40)
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where ŵ is the low dimensional approximation of w, µi(t) is the representation of ŵ
in the reduced order space Φ.

Using these Galerkin approximations, we can write

f(vm,w) ≈ −Amsa

NM∑

i=1

βiϕi +Ams(a+ 1)

NM∑

i,j=1

βiβjϕiϕj +

−Ams

NM∑

i,j,k=1

βiβjβkϕiϕjϕk −Am

NM∑

i=1

µiϕi +

+

NM∑

i=1

βidiv(σm∇ϕi) +AmIapp(x,t). (6.41)

Using the approximation of vm in the reduced space Φ, from equations (6.37)-(6.38)
we find

− div(σm∇ϕi)− χ

NM∑

j=1

βjϕjϕi = λiϕi, ∀i = 1, . . . ,NM. (6.42)

Let us substitute the first term of (6.42) in (6.41). Then the approximation of
f(vm,w) writes

f ≈ −Amsa

NM∑

i=1

βiϕi −
NM∑

i=1

λiβiϕi +Ams(a+ 1)

NM∑

i,j=1

βiβjϕiϕj − χ

NM∑

i,j=1

βiβjϕiϕj +

−Ams

NM∑

i,j,k=1

βiβjβkϕiϕjϕk −Am

NM∑

i=1

µiϕi +AmIapp(x,t). (6.43)

We can now project expression (6.43) onto Φ. Then we define the projection of f ,
γp ∀p = 1, . . . ,NM, as

γp := −Ama

NM∑

i=1

βi〈sϕi, ϕp〉 −
NM∑

i=1

λiβi〈ϕi, ϕp〉 −Am

NM∑

i=1

µi〈ϕi, ϕp〉+

+Am(a+ 1)

NM∑

i,j=1

βiβj〈sϕiϕj , ϕp〉 − χ

NM∑

i,j=1

βiβj〈ϕiϕj , ϕp〉+

−Am

NM∑

i,j,k=1

βiβjβk〈sϕiϕj , ϕkϕp〉+Am〈Iapp, ϕp〉. (6.44)

Let us assume that the applied stimulus is approximated by

Iapp(x,t) =

L∑

l=1

hl(t)zl(x).
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If we use the orthonormality of Φ, equation (6.44) can be written as

γp = −λpβp −Amµp −Ama

NM∑

i=1

Bipβp +Am(a+ 1)

NM∑

i,j=1

βiβjWijp +

−χ
NM∑

i,j=1

βiβjTijp −Am

NM∑

i,j,k=1

βiβjβkYijkp +Am

L∑

l=1

hl(t)〈zl, ϕp〉, (6.45)

where we define the matrix B, and the third and fourth order tensors T , W , Y as

Bij := 〈sϕi, ϕj〉 ∀i,j = 1, . . . ,NM,

Tijk := 〈ϕi, ζjk〉 ∀i,j,k = 1, . . . ,NM,

Wijk := 〈sϕi, ζjk〉 ∀i,j,k = 1, . . . ,NM,

Yijkh := 〈sζij , ζkh〉 ∀i,j,k,h = 1, . . . ,NM,

(6.46)

and the functions ζ by

ζij := ϕiϕj ∀i,j = 1, . . . ,NM.

Note that these tensors are computed once for all at the initialization phase. Then
they are simply propagated according to their respective evolution equation.

Dealing with the second equation of (6.34), we write the projection of the
approximated function g(vm,w) as

ηp := 〈g, ϕp〉 = ε(γβp − µp), ∀p = 1, . . . ,NM. (6.47)

Then, to solve equations (6.34) with the ALP method we have to compute at each
time iteration the quantities

β̇i +

NM∑

j=1

βjMji = γi,

µ̇i +

NM∑

j=1

µjMji = ηi,

(6.48)

where γi, ηi, for i = 1, . . . , NM are defined by (6.45) and (6.47). The complete
set of equations that describe the dynamics is defined by (6.18)-(6.45)-(6.47), with
equations (6.48) replacing the first equation of (6.18).

Remark 6.3

Note that in the derivation of the ALP equations presented above, the diffusion

term was eliminated in equation (6.43) by taking advantage of the modes definition

in terms of the Schrödinger operator. Roughly speaking, a third order tensor is

introduced, whose computation does not require modes differentiation. This is not

the only possibility. Indeed, if the second term of (6.42) is substituted in (6.41), the
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approximation of f(vm,w) writes

f ≈ −Amsa

NM∑

i=1

βiϕi −
Ams(a+ 1)

χ

NM∑

i=1

λiβiϕi −
Ams

χ2

NM∑

i=1

λ2i βiϕi +

−Am

NM∑

i=1

µiϕi −
Ams(a+ 1)

χ

NM∑

i=1

βidiv(σm∇ϕi)−
Ams

χ2

NM∑

i=1

λiβidiv(σm∇ϕi) +

+

NM∑

i=1

βidiv(σm∇ϕi) +
Ams

χ

NM∑

i,j=1

βiβjdiv(σm∇ϕi)ϕj +AmIapp(x,t). (6.49)

Equation (6.49) is then projected onto Φ. Let us make the same assumptions

as below, i.e. separable form space-time sources. Then, the projection of f , γp
∀p = 1, . . . ,NM is therefore defined as:

γp := −Amµp −Am

NM∑

i=1

(a+
a+ 1

χ
λi +

1

χ2
λ2i )Bipβi +

NM∑

i=1

Am

(a+ 1

χ
+

1

χ2
λi
)
βiVip +

−
NM∑

i=1

βiEip −
Am

χ

NM∑

i,j=1

βiβjUijp +Am

L∑

l=1

hl(t)〈zl, ϕp〉, (6.50)

where we define the matrices B, E, V and the third order tensors U as

Bij := 〈sϕi, ϕj〉 ∀i,j = 1, . . . ,NM,

Eij := 〈σm∇ϕi,∇ϕj〉 ∀i,j = 1, . . . ,NM,

Vij := 〈sσm∇ϕi,∇ϕj〉 ∀i,j = 1, . . . ,NM,

Uijk := 〈σm∇ϕi,∇(ζjk)〉 ∀i,j,k = 1, . . . ,NM.

(6.51)

This way to proceed is attractive from a reduced-order modeling standpoint, since

it allows to get rid of the fourth-order projection tensor appearing when the Galerkin

projection of the FitzHugh-Nagumo ionic current is considered. For standard ROM

based on Galerkin projection the cost is ∝ N4
M, while for ALP, by taking advantage

of the definition of the potential in the Schrödinger operator, the cost of the ROM is

∝ N3
M. A discussion on the cost and scalability of other ROM approaches is provided

in [CBMF11, RVC12]. An effective method to deal with non-polynomial equations

and to avoid the computation of high-order projection tensors could be the DEIM

approach proposed in [CS10b]. A comparison and an application to these methods

to ALP will be the object of further works.

6.3.2 ALP for the bidomain equations

To discretize the bidomain equations in the low dimension space Φ and apply
the ALP method, as in Section 6.3.1, we first choose the initial reduced order space.
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The operator Lχ defined for this problem is given by

Lχ(u)ϕ = −div(σi∇ϕ)− χuϕ (6.52)

where σi is the intracellular conductivity tensor, indicated in the following as σi.

The second step is the discretization of equations (6.32). We can write the system
as

AmCm∂tvm = f(vm,ue,w),

∂tw = g(vm,w),

q(vm,ue) = 0,

(6.53)

where

f(vm,ue,w) = Amsvm(vm − a)(1− vm)−Amw + div(σi∇vm)+

+div(σi∇ue) +AmIapp,

g(vm,w) = ε(γvm − w),

q(vm,ue) = −div((σi + σe)∇ue)− div(σi∇vm).

(6.54)

The projection onto the space Φ of the first equation of (6.54) gives

γp := −λpβp −Amµp − λpξp −Ama

NM∑

i=1

βjBij +Am(a+ 1)

NM∑

i,j=1

βiβjWijp +

−χ
NM∑

i,j=1

βiβjTijp − χ

NM∑

i,j=1

βiξjTijp −Am

NM∑

i,j,k=1

βiβjβkYijkp +

+Am

L∑

l=1

hl(t)〈zl, ϕp〉, ∀p = 1, . . . , NM, (6.55)

and the projection of function g gives

ηp := ε(γβp − µp), ∀p = 1, . . . , NM. (6.56)

The projection of function q gives a low dimensional linear system defined by

NM∑

j=1

Qijξj = −
NM∑

j=1

Eijβj , ∀j = 1, . . . , NM, (6.57)

where matrices Q and E are defined as

Qij := 〈(σi + σe)∇ϕi,∇ϕj〉 ∀i,j = 1, . . . ,NM

Eij := 〈σi∇ϕi,∇ϕj〉 ∀i,j = 1, . . . ,NM.
(6.58)

To summarize, the set of equations which describes the dynamics of system (6.32) in
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the reduced order space is




β̇ +Mβ − γ = 0,

µ̇+Mµ− η = 0,

λ̇i + χ

NM∑

m=1

Tiimγm = 0, i = 1 . . . NM

Ṫ = {M,T}(3),
Ẇ = {M,W}(3),
Ẏ = {M,Y }(4),
Ḃ = [M,B],

Q̇ = [M,Q],

Ė = [M,E],

Mij =
χ

λj − λi

NM∑

m=1

Tijmγm, i,j = 1 . . . NM

γ = γ(β,ξ,µ),

η = η(β,µ),

Qξ = −Eβ.

(6.59)

6.4 Numerical experiments

This section is devoted to numerical experiments. First, we consider the propa-
gation of an electrical signal in a homogeneous tissue on a 2D domain. Then, some
examples of spatial and temporal heterogeneity in parameters and source terms are
proposed. The last application deals with pseudo-electrocardiograms and involve the
bidomain equations coupled to a diffusion problem on a 3D domain.

6.4.1 Preliminary comments about POD

In the following numerical simulations, our main objective is to compare ALP
with the finite element method (FEM). In some cases, we also compare ALP with
the Proper Orthogonal Decomposition (POD), a “classical” technique described in
Section 1.6.2 and applied in Chapters 4 and 5.

An important remark is in order. POD is a way to approximate a space spanned by
off-line solutions, and the result strongly depends on this space. When the parameters
of the problems vary, it is necessary to consider a large number of configurations in
order to build an off-line space as rich as possible. In electrophysiology, this strategy
was carried out for example in Chapter 4 or in [BSG12]. In the present chapter, we
only consider a very simple set of precomputed solutions: the ones obtained with
nominal values of parameters. Thus, our POD results correspond to a best case
scenario when the nominal values are used to run the reduced-order model, but to a
(possibly) very bad scenario when the parameters are modified. In the latter case,
it would be clearly possible to improve the POD results by enlarging the off-line
dataset as described in Chapters 4, but this would require to explore a huge number
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of configurations in the off-line stage. Although possible, this was not done here
since POD was not the main topic of this work.

6.4.2 A few comments on the choice of χ

The ALP basis depends upon a real positive scalar parameter χ, that influences
the spectrum and the eigenfunctions of the operator Lχ.

The spectrum of the operator is discrete (the domain is bounded), real, and it
can be divided into two parts: one corresponding to negative eigenvalues and one to
positive (or null) eigenvalues. The larger the value of χ, the higher is the number of
negative eigenvalues. The larger the value of χ, the more peaky the eigenfunctions
corresponding to negative eigenvalues. Thus, this parameter can be viewed as a
characteristic length for the modes corresponding to negative eigenvalues. Let us
illustrate this with a 1D numerical test case.

The domain is Ω = [0,1], the potential is the Gaussian y = exp(−250(x− 0.5)2).
A piecewise linear finite element discretization is adopted, with N = 256. In Figure
6.1(a) the number of negative eigenvalues is shown for several values of the parameter
χ. For χ = 0, there are no negative eigenvalues. The number of negative eigenvalues
increases with χ. In Figure 6.1(b) the relative L2 error in the reconstruction of the
potential is shown when only the first mode is used, as a function of χ. There is
a minimum for χ ≈ 2000. This is related to the the fact that, for low values of χ
the first mode has a characteristic length much higher than that of the gaussian
potential, so that the reconstruction is poor. On the opposite, when χ is too large,
the mode tends to a Dirac delta and it cannot represent the potential in a good way.
The behavior of the first mode, when χ is varied, is shown in Figure 6.2(a).

Let us comment on the difference between the eigenfunctions corresponding to
the negative spectrum and the eigenfunctions corresponding to the positive one. In
Figure 6.2(b) the first four modes are shown when χ = 2000. The first two modes
correspond to the negative spectrum. Their shape is soliton-like: it is featured by
a characteristic length and localized in space. The modes 3 and 4 correspond to
the positive spectrum. They are sinus-like global modes, of increasing frequency,
perturbed by the potential.

In practice, the value of χ is chosen after a preliminary numerical test, on a given
setup, and depends on the domain size as well as on the L2 norm of the potential.
It is chosen in such a way that the initial datum is represented with a low relative
error in the space spanned by few modes.

6.4.3 Homogeneous parameters 2D case

We consider a 2D square domain [0,1]2, discretized with a P1 finite element
mesh composed of 5,878 vertices, and the monodomain equations (6.29) with the
parameters reported in Table 6.1. Concerning the ALP method, we solve the
equations presented in Section 6.3.1. ALP results are compared with those obtained
with the full order model (FEM) and the POD. The POD basis is generated by
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Figure 6.1: Properties when χ is varied.
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Figure 6.2: Eigenfunctions behavior.
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considering snapshots from the homogeneous 2D tissue propagation. For FEM
simulations a second order Backward Difference method is used with time step
δt = 0.1ms, while in the reduced order cases an Explicit Euler method is considered
(time step δt = 0.01ms).

First we run a FEM simulation with the applied stimulus defined as

Iapp(x,t) = h(t)z(x), (6.60)

where h is defined by
h(t) = H(t)−H(t− 5), (6.61)

H denotes the Heaviside function, and z is defined by

z(x) = 0.04 · 1Ωc , Ωc = {(x,y) s.t. |(x− 0.25, y)| ≤ 0.25}. (6.62)

In order to build the initial time ALP basis Φ(0) we consider the solution vm of
the FEM simulation after 5ms. The basis is computed solving equation (6.38) with
χ = 15. POD basis is generated by considering snapshots from the FEM simulation:
100 snapshots are retained with a sampling time of 0.5ms. The POD model is built
by Galerkin projection.

Let us compare FEM and ROM solutions for ROM dimension space NM = 25.
We observe good agreement between FEM solution and POD one (see first and last
columns of Figure 6.3). ALP solution is in good accordance with FEM one, too (see
first and second columns of Figure 6.3).

Then, we compare the relative L2(RN ) norm errors between FEM solution and
ROM ones, computed by

error2(tn) =
|u(n)FEM − u

(n)
ROM|2

|u(n)FEM|2
(6.63)

for each time iteration tn, n ≥ 0, where | · |2 denotes the discrete norm |v|2 =
∑

i v
2
i ,

and u(n)FEM, u(n)ROM, represents the FEM, respectively ROM, solution at time tn in the
high dimensional space R

N . We compute the errors varying the dimension of ALP
space: NM = 15, 20, 25, 30. In Figure 6.4 we observe the decreasing values of ALP
error with respect to the space dimension. In particular, each continuous curve (ALP
errors) has a relative minimum after 20ms, i.e. when the depolarization front is
already gone and the repolarization has not started yet. The relative error increases
for any value of NM after 30 to 35ms, which represents the exit of the repolarization
from the domain, this is due to some boundary effects caused by the low dimensional

A2D
m (Ω.mV−1) A3D

m (Ω.mV−1) Cm(mA.ms.cm−2) σm s a ε γ

2000.0 500.0 0.1 1 0.2 0.075 0.04 0.2

Table 6.1: Physical and ionic parameters.
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vm
0.0 1.00.5

Time = 5 ms

Time = 15 ms

Time = 20 ms

Time = 25 ms

Figure 6.3: Comparison between FEM (left column), ALP (χ = 15, NM = 25) in
the center and POD (NM = 25) on the right for the homogeneous tissue test case
(section 6.4.3). Four different times are considered, namely t = 5, 15, 20, 25ms.
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Figure 6.4: Relative errors in L2 norm for the homogeneous tissue test case (sec-
tion 6.4.3), varying the number of modes used, for ALP method (continuous lines,
χ = 15) and POD (dotted line).

approximation. We observe the same behavior for the POD curve, too (dotted line).
Finally, we remark that ALP relative error with 25−30 modes is less than 10 percent
during the whole simulation. We point out that the POD method gives an optimal
solution because of the basis is build ad hoc. As we observe in next sections, the
POD basis is not as efficient for any perturbation of the signal.

Concerning the computational costs of the algorithm, the gain of the ALP method
for the monodomain equations (6.29) with NM = 25 modes was investigated. When
a full reconstruction in the physical space is performed, the gain is about 20%

compared to the FEM, including all the stages of the method. This speedup is clearly
insufficient, and its improvement is the object of an on-going work (see Chapter 8).
However, it is worth noticing that, in many applications, the reconstruction in the
FE space is not necessary. As will be shown in Section 6.4.6, this is for example the
case when only an output of interest depending linearly on the solution is needed.
In this case, the update of the basis can be avoided and the ALP method has a
computational cost which is one order of magnitude smaller than that of FEM (a
speedup of about 8 was observed in our simulations).

6.4.4 Heterogeneous ionic parameters

A test case with heterogeneous ionic parameter s is presented in this section,
which is challenging from a ROM point of view. Indeed, s(x) is a function of the space,
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Figure 6.5: Relative errors in L2 norm for the heterogeneous ionic parameter test
case (section 6.4.4), varying the number of modes used, for ALP method (continuous
lines, χ = 15) and POD (dotted line).

it is a distributed parameter that belongs to a high dimensional (infinite dimensional)
space. For the reduced-order techniques that rely on the pre-computation of solutions,
this would increase in a significant way the database dimension and the cost of the
offline phase. In particular, for the test case considered, the expression of s(x) reads:

s(x) = s0 · 1Ω\Ωs
+ s1(x) · 1Ωs , (6.64)

Ωs = {(x,y) | (0 ≤ x ≤ 0.5), (0.25 ≤ y ≤ 0.75)} , (6.65)

s1(x) = s0
36y − 7

20
. (6.66)

The value of the parameter s0 is reported in Table 6.1. There is a square subdomain
in which the ionic parameter s is modified, its value is linear with respect to y: being
only 1/10 with respect to the nominal one in the inferior border (y = 0.25) and s0
in the upper boundary (y = 0.75). This can be seen as a schematic representation of
an obstacle for the depolarization waves.

The ALP method was applied to this scenario. It is worth noting that the initial
condition for this simulation is the same as for the homogeneous test case, so that
the initial modes set is exactly the same. The ALP ROM was integrated, taking
χ = 15 and a time step δt = 0.01ms. In Figure 6.5 the L2 relative error between the
FEM solution and the reconstruction of the ALP-ROM one is shown as function of
time, varying the number of modes used. The errors are larger with respect to those
observed for the homogeneous test case presented in the previous section. This can
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vm
0.0 1.00.5

Time = 15 ms

Time = 20 ms

Time = 25 ms

Time = 30 ms

Figure 6.6: Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the
center and POD (NM = 25) on the right for the heterogeneous parameter test case
(section 6.4.4). Four different times are considered, namely t = 15, 20, 25, 30ms.
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vm
0.0 1.00.5

t = 5 ms t = 15 ms

t = 25 ms t = 30 ms

Figure 6.7: Evolution of the first mode for ALP-ROM when heterogeneous parameter
test case (section 6.4.4) is integrated, at four different times: t = 5, 15, 25, 30ms.

be explained by considering that in presence of an obstacle the dynamics is complex
and a larger number of modes is needed to render it. As expected the error decreases
when the number of modes is increased and it is less than 10% when NM = 30 modes
are used. The error globally increases in time, but it is not monotonically increasing.
The peaks observed corresponds to boundary interactions of the depolarization wave.
The dashed lines are the relative errors of the POD reduced-order model when
N

(POD)
M = 30 and N (POD)

M = 60. The error has peaks larger than 100% in both cases,

and for N (POD)
M = 60 it is overall comparable to ALP when NM = 15.

A qualitative comparison between ALP and POD solutions is proposed in Fig-
ure 6.6, at four different instants: t = 15,20,25,30ms. The FEM solution is represented
on the left column, ALP is in the center and POD on the right. The POD model is
not accurate enough out of database and it is not able to account for the dynamics in
the presence of an obstacle, if this has not been taken into account in the database.
The POD modes number has to be increased up to N (POD)

M = 60 in order to start
having a realistic behavior. On the contrary, ALP performance is remarkable, all the
features of the solution are represented. The errors mainly concern the front shape
(which is often less sharp than the FEM one) and the boundary interactions.

In Figure 6.7 the time evolution of the first Schrödinger mode is considered, at
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Figure 6.8: Relative error in L2 norm for ALP (χ = 25) and POD with NM = 30 for
the distributed source test case (see section 6.4.5).

four different times, t = 5, 10, 25, 30ms. The mode basically evolves as the solution
does. Indeed, the modification in the ionic parameter s(x) makes the modal set
evolve in order to match the dynamics of the system.

6.4.5 Source terms

In this section space-time sources are considered. The synthetic test presented
hereafter is a schematized example of a realistic ectopic pacemaker. The proposed
test case is as follows. The wave starts from the same initial condition as for the
previous test cases. At t = 60ms a source term is applied of the form:

Iapp(x,t) = [H(t− 60)−H(t− 65)]z(x),

z(x) = 0.04 · 1Ωc ,
(6.67)

where H denotes the heaviside function and

Ωc = {(x,y) s.t. |(x,y − 0.75)| ≤ 0.25}.

This is a challenging test case from a model-reduction point of view. Indeed, for a
method relying on a database construction, a large number of stimulation locations
and times should be pre-computed and the ROM usually performs poorly out-of-
database.

The test was performed by varying the number of modes used. The initial
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vm
0.0 1.00.5

Time = 65 ms

Time = 80 ms

Time = 85 ms

Time = 90 ms

Figure 6.9: Comparison between FEM (left column), ALP (χ = 15, NM = 25) in
the center and POD (NM = 25) on the right for the source test case (section 6.4.5).
Four different times are considered, namely t = 65, 80, 85, 90ms. For the first part
of the simulation, t < 60ms, see Figure 6.3 (test case of section 6.4.3).
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condition for the modal set was extracted by taking χ = 25.
The relative error in L2 norm was computed (see Figure 6.8). For t < 60ms the

curve is the same as for the homogeneous tissue test case presented in section 6.4.3.
Let us comment the behavior of the scheme for t > 60ms. The error increases when
the current is applied. After a transient phase the modal set adapts and the scheme
is able to reproduce the dynamics of the system. As for the previous test cases, the
error decreases as the number of modes is increased. The error is in general higher
with respect to what observed in the homogeneous test case, with the same number
of modes. This is another case for which the POD performances are poor. Indeed,
when the sources are not precomputed the POD is not able to reproduce the correct
results even with a high number of modes (see Figure 6.9). On the contrary, the
ALP method errors are comparable to those obtained in the homogeneous test case
(section 6.4.3).

In Figure 6.9, the FEM solution (left column) was compared to the solutions
obtained with ALP (center column) and POD (right column) when NM = 25. Four
different times are considered, namely t = 65, 80, 85, 90ms. Between t = 60ms

and t = 65ms the current source (dash-circle in the first row of the plots) has been
applied. Its effect is not represented in the POD modes space since the snapshots
were computed without it. Hence, at subsequent times, the polarization cannot
propagate and the POD model is not able to provide the solution of the system.
In spite of some errors in the position and the shape of the front, ALP is able to
account for the wave propagation induced by the source.

6.4.6 Pseudo-electrocardiograms

We are now interested in an application related to electrocardiograms (ECG)
computation. ECG represents an convenient and efficient medical test to control the
heart behavior, it consists in measuring the electrical potential onto 9 skin points.
From a mathematical point of view, the bidomain equations (5.1) are coupled to a
diffusion problem in the torso:

div(σT∇uT) = 0, in ΩT, (6.68)

where uT represents the torso electrical potential and σT the torso conductivity,
an heterogeneous parameter which takes into account for instance bones and lungs
conductivities. Equations (6.68) can be coupled to (5.1) by imposing the continuity
of the extracellular potential and current. In this study, we consider a weak coupling
between heart and torso potential, i.e. only the potential continuity is imposed.
Then the boundary conditions for (6.68) are

uT = ue, on Σ

σT∇uT · n = 0, on ∂Ωext
T

(6.69)

where Σ = ∂ΩH represents the external boundary of the heart domain and ∂Ωext
T

indicates the external boundary of the torso domain ΩT.
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Figure 6.10: FEM heart-torso equations solution at time t = 25ms.

Since we now consider the bidomain equations, we have to treat the extracellular
variable. In section 6.3.1 the ionic variable w was approximated in the same reduced
order space as the transmembrane potential. We do the same for the extracellular
potential ue and write

ûe =

NM∑

i=1

ξi(t)ϕi(x,t), (6.70)

where ûe is the low dimensional approximation of ue, ξi(t) is the representation of
ûe in the reduced order space Φ.

We denote by y = (uT(x
ECG
1 ), . . . , uT(x

ECG
NECG

)) the values of uT at NECG locations
on the boundary of the torso. The measurement y is the output of interest of this
problem. It is related to ue by the relation

y = SΠu (6.71)

where Π : RN 7→ R
NΣ denotes the boundary restriction operator, NΣ is the number

of vertices on heart/torso interface, S ∈ R
NECG×NΣ denotes the heart-torso transfer

matrix, and u ∈ R
N denotes the degrees of freedom of the extracellular potential ue

in the finite element space. If we consider the representation of u in the reduced-order
space, u = Φξ, then the ECG measurements can be written as

y = Xξ, (6.72)

where
X := SΠΦ ∈ R

NECG×NM (6.73)
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Figure 6.11: Comparison between FEM electrodes measures (blue line) and ALP
ones (red line) for χ = 50, NM = 60.

is a very small matrix. This linear operator X commutes with time, so we can apply
the same technique as in section 6.2.1 in order to compute its time derivative:

Ẋij =

NM∑

l=1

XilMlj . (6.74)

So, the ECG measurement y is computed at each time iteration using the low
dimensional vector ξ and the matrix X whose update is easily computed using (6.74),
without any reconstruction of the solution in the finite element space.

For the numerical simulations, we consider an ellipsoid, representing the heart,
embedded in a cylinder, represented the torso. The mesh of the ellipsoid has 22.140
vertices, while the external one has 338.920 vertices, of which 7.572 are on the
interface Σ between the two domains.

We first solve the bidomain equations (5.1) in the ellipsoid using FEM and a
second order Backward Difference method to integrate in time. The conductivity
tensors σi and σe are considered isotropic, their values are σi = 1, σe = 4. Then,
we solve the torso diffusion problem (6.68) with boundary conditions (6.69) where
the extracellular potential is taken from the bidomain solution in the ellipsoid. A
snapshot of the solution at time t = 20ms is shown in Figure 6.10. In particular we
are interested in the torso potential measured by 6 electrodes positioned in the black
points of Figure 6.10.

Concerning the ALP resolution, we compute the initial basis Φ using the operator
Lχ defined in (6.52) where u is the FEM solution at time t = 5ms and χ = 50. We
solve then equations (6.59) and we compute by equation (6.72) the 6 torso measures
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we are interested in. We remark that, as the only output we want to show are the 6
electrodes measures, no reconstruction in the FEM space is needed.

Figure 6.11 compares FEM measures with ALP results run for NM = 60. We
observe that ALP curves (red lines) are in good accordance with FEM ones (blue
lines), the signal is well reproduced on every leads.

6.5 Chapter conclusions

The ALP method can be seen as a formalism to propagate a basis in a way related
to the dynamics of the solution. In this chapter, the ALP reduced-order model was
applied to the simulation of high-dimensional parametric systems arising in cardiac
electrophysiology. The approach was assessed in a wide range of different situations,
including 2D and 3D complex configurations and data assimilation techniques. The
main advantage with respect to standard approaches consists in the fact that no
database of solutions has to be built to define the reduced-order model.

Several perspectives are in order. The first one consists of the choice in the basis
to propagate, that is, the choice of the operator Lχ. Different options could lead
to different results and performances in terms of model reduction. Moreover, the
analysis of the stability and accuracy of the method is still missing and is currently
under scrutiny.

Also, the method should be extended to non-polynomial problems. In the
Chapter 8 we will show some preliminary results on an “hybrid” method between
ALP and the Discrete Empirical Interpolation Method (DEIM) [CS10b] that allows
to treat non-polynomial terms and to decrease the computational costs of the ALP
method. Finally, the case of multiple basis will also be investigated from a theoretical
point of view in the Chapter 8.





Chapter 7

Inverse problems with ALP

reduced-order method

In this Chapter we illustrate some preliminary results of cardiac electrophysiology

inverse problems using the reduced-order method based on Approximated Lax Pairs (ALP)

presented in the previous chapter. The method is applied within a data assimilation

framework in order to estimate the solution (the state) of the system. In particular two

cases are investigated. First, the method is used to identify the source term location in the

Micro-Electrode Arrays (MEA) technology using some electrodes measurements1. Second,

the reconstruction of the epicardial potential using body surface potential measurements is

investigated on a simplified geometry. The work presented in this chapter is still on-going.

1This work was done in the framework of the ANR LabCom “CardioXComp”, https://team.
inria.fr/reo/cardioxcomp/

https://team.inria.fr/reo/cardioxcomp/
https://team.inria.fr/reo/cardioxcomp/
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7.1 Introduction

In this chapter we concentrate on some applications of the ALP method described
in the previous chapter to inverse problems in cardiac electrophysiology. The “classical’
inverse problem of electrocardiology aims at reconstruct the extracellular potential
on the epicardium of the heart using some measures on the skin of the torso. In
Section 1.5 we give more details about the mathematical formulation of this problem
and some standard approaches for its resolution.

We are interested in the reconstruction of the potential on a given domain using
some partial or external measures of the potential. In particular, we use a data
assimilation technique in order to estimate the solution (state) of the system. The
idea is to project the problem defined by the observer operator onto the reduced-order
space.

First, we give an overview on data assimilation methods and then apply the
technique, using a Luenberger type observer, in a 2D and a 3D cases. Then two
applications are detailed.

The first application uses the ALP method to identify the location of one or
more source terms using the Micro-Electrode Arrays (MEA) measures, which is a
technology used to study the behavior of in vitro or in vivo cardiac tissue cells. In
particular, we consider a 2D squared domain and we assume to know the extracellular
potential only on a small subdomain. This information is then used to reconstruct
the transmembrane and extracellular potentials on the whole domain.

Finally, we solve the classic electrocardiology inverse problem of reconstructing
the extra-cellular potential on the epicardium of the heart using the measures of
a synthetic electrodes vest. This study is conducted on a simplified geometry and
it represents a preliminary study that could lead to the resolution of the “classical”
inverse problem of electrophysiology on real geometries and data.

7.2 An overview on data assimilation

Historically used in weather forecasting and hydrology, data assimilation is the
process by which observations are introduced into the model. Usually, the model is
a PDEs system and the data arise from real measures, often containing a part of
incertitude due for instance to noise. Let us give a brief overview on data assimilation
and on the techniques used in this section.

Let us consider a PDEs system described by a dynamical, possibly non-linear,
operator A. We define x the solution of the system, also called the state of the
system. Then, for each time t > 0, x satisfies

ẋ(t) = A(x,θ,t) (7.1)

with an initial condition x(0), where θ indicates a set of parameters of the model. If
the initial condition x(0) and the parameters θ are known the problem is well-posed.
We suppose that the initial solution x(0) and the parameters set θ can be divided



166

into two parts: a well-known one (x◦, θ◦), and an uncertain one (ζx, ζθ)

x(0) = x◦ + ζx, θ = θ◦ + ζθ. (7.2)

Then, the problem can be written as





ẋ(t) = A(x,θ,t),

θ̇(t) = 0,

x(0) = x◦ + ζx,

θ(0) = θ◦ + ζθ.

(7.3)

In data assimilation technique, we assume that we have some observations of the
state, i.e. that we are able to measure the exact solution X using an, possibly time
dependent, observation operator denoted by H:

z(t) = H(X(t),t) + ε(t), (7.4)

where z is the observation and ε the error committed on the measures.

In general, we are interested in retrieving an estimator (x̂, θ̂) of the state and
of the parameters. In the applications shown in this work, we will use assimilation
data techniques only to reconstruct an estimation of the state x̂. The operator D
such that

D(z, x̂(t)) = 0 (7.5)

is called discrepancy, which in this work is a linear operator

D(z, x̂(t)) := z −H(x̂(t),t). (7.6)

Then, the system for the observation reads





˙̂x(t) = A(x̂,θ,t) +G(z −H(x̂(t),t)),

θ̇(t) = 0,

x̂(0) = x̂◦,

θ(0) = θ◦,

(7.7)

where G is the gain operator. In order to define the filter G two families of method
are in use. The first one is called optimal observer method since in can be shown
that it equivalent to an optimization problem in some cases. It leads to a linear or
non-linear operator, possibly time dependent, such that

lim
t→+∞

x̂(t) = x. (7.8)

The most known filters are the Kalman-Bucy filter [KB61], [Ben71] and its approxi-
mated versions such as the Extended Kalman filter [Sim06], the Unscented Kalman
filter [JU97] and the Ensemble Kalman filter [Eve09].

Alternatively, a non-optimal filter can be applied. This is the case for the so-called
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Luenberger filter introduced by Luenberger [Lue63], [Lue71]. A correction, which is
the simplest as possible, is introduced in order to minimize the error between the
state and the observer. This type of observer is usually applied only to the state,
which is the case we are interested in. Then, the observed system reads

{
˙̂x(t) = A(x̂,t) +G(z −H(x̂(t),t)),

x̂(0) = x̂◦.
(7.9)

If H and G are linear operators, the filter can be chosen such that G = aH∗, where
a is a strictly positive value and H∗ the adjoint operator of the observation operator.

More details about data assimilation can be found for instance in [Ghi71], [Tal97].

7.3 Application to Micro-Electrode Arrays measures

We consider the Micro-Electrode Arrays (MEA) technology. MEA is an arrange-
ment allowing extracellular potential recording and stimulation. In particular, we
deal with a 2D squared domain and we suppose to measure the extracellular potential
on a small subdomain. Then, the observation problem solved with the ALP method
aims at identify the location of the source term using these measures.

7.3.1 The Micro-Electrode Array (MEA) technology

MEAs are designed for use in in vitro or in vivo studies. Several MEA geometries
are provided for various applications, such as extracellular recording in vitro, for
example, central or peripheral neurons, cardiac myocytes, whole-heart preparations,
or retina. In cardiac electrophysiology many applications to MEAs exist, for instance
activation and excitation mapping, monitoring of QT-related prolongation and
arrhythmias or longterm characterizations of cell types [MEA].

The MEA device is inserted in a dish where cardiac cells spontaneously generate an
action potential. To be able to reproduce the experiments with numerical simulations,
it is important to identify the source of the signal recorded my the electrodes.

In our simulations, we consider an MEA with 6 wells, each one containing 9
electrodes, whose real and synthetic geometries are shown in Figure 7.1. The 9
electrodes of each well measure the (mean) extra-cellular potential on the electrode.
A well is attached to the ground on its one side (bottom side in Figure 7.1(a) right)
and on its two other sides (left and right sides in Figure 7.1(a) right), while it is
immersed in the conduction liquid on the fourth side (top side of Figure 7.1(a) right).
Thus, the boundary conditions should take into account the non-propagation of the
extracellular potential on the three fixed edges (homogeneous Dirichlet condition for
ue) while on the top edge Neumann boundary condition can be used.
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(a) Real geometry of a MEA 6 with wells on the left. On the right a single well with 9 electrodes.
Source [MEA].

(b) MEA mesh for a single well.

Figure 7.1: Geometry of a well of the MEA device (each well contains 9 electrodes).
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7.3.2 Formulation of the problem

We consider the bidomain equations [Tun78]

Am

(
Cm

∂vm
∂t

+ Iion(vm,w)
)
− div(σi∇vm)− div(σi∇ue) = AmIapp

−div((σi + σe)∇ue)− div(σi∇vm) = 0
∂w

∂t
− g(vm,w) = 0

(7.10)

coupled with the FitzHugh-Nagumo ionic model [Fit61, NAY62]

Iion(u,w) = su(u− a)(u− 1) + w

g(u,w) = ε(γu− w).
(7.11)

For simplicity, we make the assumption that the boundary conditions are of Neumann
type

σi∇ue · n+ σi∇vm · n = 0

σe∇ue · n = 0.
(7.12)

In the case of the more realistic boundary conditions described above two basis
should be calculated. We will see in Section 8.5 how to deal with them for the
ALP-DEIM method presented in the next chapter.

The aim of this work is to use the synthetic MEA measure obtained with a FEM
simulation as the observer in order to reconstruct the source term location. Let us
define the observation d = {d1, . . . , d9} ∈ R

9 as the extra-cellular potential mean
measured on each electrode. We consider the linear observation operator H such
that H(ue) = d, where ue is the extra-cellular potential on the whole domain. Then
the problem reads





AmCm∂tvm = f(vm,ue,w) + G(d−H(ue)),

∂tw = g(vm,w),

q(vm,ue) = 0,

(7.13)

where G is the filter. In this work we use a Luenberger type filter and take G = aH∗,
where a > 0. The idea is to apply the filter to the RO model to take advantage
of the capability of the ALP method to approximate the solution with only a few
degrees of freedom. Then, projecting system (7.13) on the RO space, we obtain





β̇ +Mβ = γH ,

µ̇+Mµ = η,

Qξ + Eβ = 0

(7.14)

where the only term which is modified compared to the ALP method is γH that
takes into account the observer

γH = γ(β, ξ, µ) + aHT (d−Hξ), (7.15)
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vm
0.0 1.00.5

Time = 1 ms

Time = 5 ms

Time = 15 ms

Time = 30 ms

Figure 7.2: Comparison between observation (FEM solution of system (6.32)) on
the left, filtering method with ALP approximation (7.14) (χ = 25, NM = 25) in the
middle, and with FEM method (7.13) on the right. First source.
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vm
0.0 1.00.5

Time = 165 ms

Time = 161 ms

Time = 90 ms

Time = 85 ms

Figure 7.3: Comparison between observation (FEM solution of system (6.32)) on
the left, filtering method with ALP approximation (7.14) (χ = 25, NM = 25) in the
middle, and with FEM method (7.13) on the right. Second and third sources.
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where H is the linear operator H projected onto the RO space

H : RNM → R
9, s.t. Hi(ξ) =

ˆ

Γi

Φξdx, i = 1, . . . , 9 (7.16)

where Γi, i = 1, . . . , 9, are the surfaces of the electrodes.

7.3.3 Numerical results

We apply this method to a square domain Ω = [0,1]2 representing one well of
the MEA technology. The electrodes are represented by the 9 circles in Figures 7.2
and 7.3. The mesh contains about 5k nodes, while we solve the ALP problem with
NM = 25 modes and with χ = 25. The time step is dt = 0.01ms and the filter
is applied at each time iteration. The initial basis for the ALP method is given
by the eigenfunctions of the Laplacian operator, i.e. we assume that we have no
information on the initial solution and we take vm = ue = 0 for all x ∈ Ω. The
observations d are given by a FEM simulation, represented on the left of Figure 7.2
and 7.3. First, a source term Iapp is placed around (x,y) = (0.60, 0.35). We observe
in Figure 7.2 center that after a few iterations the ALP filtering solution behaves as
if there was a source term in a point given by the interpolation of the two electrodes
that “received” the information. The more the signal propagates, the more precise is
the ALP solution that can reproduce the observation for all the depolarization and
repolarization fronts. On the opposite, we remark that the filter applied to the FEM
problem (Figure 7.2 right) is able to change the solution only locally around the
electrodes. After 85ms of simulation, we apply a second source term on the left of
the domain (Figure 7.3). Once again, we observe that, when the reference solution
reaches the electrodes, this information is immediately transmitted through the filter
operator. The ALP method uses the information given by the electrodes and the
global character of the basis lets the filter see an interpolation of the observation,
while the FEM can apply it only on the electrodes surface. Finally, at 160ms of
simulation, we apply two more stimuli simultaneously and observe the same behavior
of the ALP and the FE filtering method already observed for the first and second
source terms (resp. at 0ms and 80ms).

7.4 Application to epicardium potential reconstruction

The second application of ALP method with filtering is the “classical” inverse
problem of electrocardiology. We are interested in reconstructing the extra-cellular
potential on the epicardium of the heart using some skin measures. In this section
we consider a simplified problem on a synthetic geometry, this work constitutes a
preliminary step for the resolution of the problem in real settings.
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(c) Initial data, with ”infarct”

Time = 5 ms

(b) Back view(a) Front view

Figure 7.4: Cylinder geometry for the torso with synthetic electrodes (left) and
ellipsoid geometry for the heart with the initial condition and the “infarcted” zone.

7.4.1 Formulation of the problem

The inverse problem, introduced in Section 1.5, reads:

find g ∈ H1/2(Σ) s.t. S(g) = d, d ∈ L2(ΓECG), ΓECG ⊂ ∂Ωext
T , (7.17)

where S is a linear mapping: S : H1/2(Σ) → L2(ΓECG), S(g) = uT(g)|ΓECG
whose

discrete approximation S ∈ R
NECG×NΣ is described in Section 6.4.6, and uT is

solution of the thorax diffusion problem

div(σT∇uT) = 0, in ΩT

uT = ue, on Σ

σT∇uT · n = 0, on ∂Ωext
T

(7.18)

for ue = g.

We apply the same data assimilation technique as in the previous section but we
change the filter and the observer operators. In particular, we take advantage of the
discrete formulation of the inverse problem (7.17)

min
g∈RN

||SΠg − d||2
l2(RNECG )

(7.19)

to define the observer and the filter operators. We define the observation operator
H = SΠ and the filter G = aHT . Then, we consider the observation problem
projected on the ALP space (7.14) as in the last section, where the right-hand side
of the first equation γH is

γH = γ(β, ξ, µ) + aXT (d−Xξ) (7.20)

where d ∈ R
NECG corresponds to the measures of the torso potential on the skin
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vm
0.0 1.00.5

Time = 20 ms

Time = 25 ms

Time = 30 ms

Time = 40 ms

Figure 7.5: Comparison between observation (FEM solution of system (6.32)) on
the left, filtering method with ALP approximation (7.14) (χ = 50, NM = 60) in the
middle, and with ALP method (6.59) without observer on the right.
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electrodes, and X = SΠΦ, X ∈ R
NECG×NM is the (time evolving) transfer operator

in the RO space described in Section 6.4.6.

7.4.2 Numerical results

We apply this method to the synthetic geometries presented in Section 6.4.6, and
we take 162 electrodes on the cylinder surface (see Figure 7.4 left). The observations
are issued from a FEM simulation in the case of an heterogeneous parameter s
that causes an “infarction” in the area indicated in Figure 7.4 right. Both FEM
and ALP-filtering problems are solved with the so-called surface-based bidomain
equation [CCG12] [CGH+13] presented in Chapter 2 for the atrial surface. We
observe from Figure 7.5 that the filtered solution (center) well approximates the
observed solution (left), on the region of the infarction but also before (after) the
depolarization (depolarization) front passes through the infarcted zone, while the
non filtered ALP method (right) have also a different depolarization velocity.

7.5 Chapter conclusions

The ALP method has been used in a data assimilation technique, using a
Luengerger type observation operator, in order to estimate the state of the system in
two different configurations. First, dealing with the MEA technology, we considered
a 2D domain and we used some measures on a small subdomain in order to identify
the location of one or more source terms. Second, the method has been applied
for the resolution of the “classical” inverse problem of electrophysiology. We used
some observation of the potential on the external boundary of the torso in order
to reconstruct the transmembrane and he extracellular potential on the epicardial
surface of the heart. The results presented in this work represents an approximation
of the problem in a real configuration. Thus, this application is of particular interest
and represents a crucial step for future works. In the perspectives, we have to take
into account a reduced-order method that can manage some non-polynomial terms,
a different anisotropy for the intra- and the extra-cellular conductivity tensors, and
real geometries and data. In the next chapter we will present a new reduced-order
method that can deal with non-polynomial terms and we will briefly describe how to
treat different anisotropic tensors.





Chapter 8

Reduced Order Model with

Approximated Lax Pairs and Discrete

Empirical Interpolation Method

In this chapter an alternative formulation of the reduced-order method based on

Approximated Lax Pairs (ALP) introduced in Chapter 6 is proposed. This new formulation

of ALP is conjugated to the recently Discrete Empirical Interpolation Method (DEIM).

DEIM is a variant of the Empirical Interpolation Method (EIM) that reduces the complexity

of the evaluations of the nonlinear terms. DEIM combines projection with interpolation in

order to approximate nonlinear functions. The method which is used here combines the

ALP method with the idea of interpolating nonlinear terms. In particular, the functions are

interpolated using a collocation operator. The method is tested on a few 2D test cases for

cardiac electrophysiology equations including non-polynomial nonlinearities. A particular

attention is paid to the perspectives and to the application of the method to real geometries

and inverse problems.

The results presented in this chapter lead to the manuscript

Damiano Lombardi, Jean-Frédéric Gerbeau, Elisa Schenone, Reduced Order Model

in Cardiac Electrophysiology with Approximated Lax Pairs and Discrete

Empirical Interpolation Method, To be submitted.
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8.1 Introduction

As illustrated in previous chapters, the use of ROM cardiac electrophysiology
equations is very challenging, in particular due to the non-linearities and to the
dependence on many parameters. We have shown in the last chapters that the
application of a ROM based on Approximated Lax Pairs (ALP) gives good results
in the treatments of nonlinearities and changes in parameters. Although the ALP
method is very promising, it does not allow the treatment of non-polynomial terms
and its computational costs can be non-negligible if the size of the basis increases.

In this chapter we propose a new approach where the ALP method is combined
with some ideas arising from the Discrete Empirical Interpolation Method (DEIM)
proposed by Chaturantabut and Sorensen [CS10b] which is a discrete variant of
the Empirical Interpolation Method (EIM) introduce by Barrault, Maday, Nguyen
and Patera [BMNP04]. EIM is a reduced-basis discretization technique that can
be used for partial differential equations with non-affine parameter dependence,
which is based on an interpolation procedure that leads to an affine offline-online
decomposition. The DEIM approach combines projection with interpolation in order
to approximate nonlinear functions. In [CS10b] a POD-DEIM method is introduced,
which is closely related to Verhoeven work [Ver08]. Both methods propose to compute
nonlinear approximations by using some selected spatial points, the difference is the
way the basis matrices are obtained: from a least-square solution of the snapshots
in [Ver08], and from SVD truncation in the POD-DEIM approach [CS10b]. Many
works have risen from [CS10b], see for instance [CS12, WSH14, PBWB14].

The ALP-DEIM method used in this work combines the idea of a time evolving
basis, which does not rely on a database, see Chapter 6, and the treatment of
nonlinear terms using a selection of spatial points from the DEIM technique. In
particular, the definition of the basis functions and of their time evolution does
not change compared to the ALP method, but the functions and the operator used
to solve the reduced order problem are evaluated on a finite set of points which is
typically a subset of the finite elements nodes of small dimension. The ALP-DEIM
method allows therefore the treatment of nonlinearities of non-polynomial type and
reduces the computational costs compared to the ALP method since no tensors have
to be computed.

The structure of the Chapter is the following. First, we present a description of
the method, which is strongly related to the previously described ALP approach.
Then, in Section 8.3 the method is applied to the cardiac electrophysiology equations,
in particular the bidomain equations [Tun78] described in Section 1.4 are coupled
with the Mitchell and Schaeffer ionic model [MS03] which is non-polynomial, see
Section 1.4. Various 2D numerical examples are proposed in Section 8.4. Many
perspectives are in order. In particular, the method is applied under the assumption
that the intra- and extra-cellular conductivity tensors have the same anisotropy, see
Section 1.4. The steps necessary to apply it to more general problems are described
in Section 8.5.
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8.2 The ALP-DEIM method

The approach of the ALP-DEIM method is basically the same as the ALP method
presented in Chapter 6: a basis, which is defined using the modes of a linear (with
inverse compact) operator, evolves in time in a way depending on the problem. The
main difference is the fact that the basis and all the objects useful for the resolution
of the problem are discretized on a subset P of the nodes of the FE approximation.
This will allow us to treat the non-polynomial terms as detailed hereafter.

Let us consider a generic PDE of the form

∂tu = F (u, ∂(n)x u) (8.1)

where u(x,t), for all x ∈ Ω ⊆ R
d, t > 0, is the solution of the PDE, with specified

initial and boundary conditions, and F (u) = F (u, ∂
(n)
x u) is generically nonlinear and

non-polynomial.

The first step is then to define an initial basis. Here, as in the ALP method
previously presented, we consider the eigenfunctions of a Schrödinger operator
associated with the potential −χu

L(u)φ = −div(∇φ)− χuφ, (8.2)

where u is the solution of (8.1), and χ is a real positive scalar parameter that repre-
sents a characteristic space length associated with the eigenfunction, see Section 6.4.2.
Indeed, the initial basis is given by the first NP eigenfunctions of the eigenproblem

L(u)φ = λφ. (8.3)

Let us call V = [φ1, . . . , φNP
] the matrix of the modes discretized on the FE space

of dimension N , V ∈ R
N×NP , NP ≪ N .

8.2.1 Motivation and collocation operator

As in the ALP method, the solution u = u(x,t) is expanded on the eigenfunctions

u ≃
NP∑

j=1

βj(t)φj(x,t). (8.4)

This expression is injected into the PDE and a projection on the eigenfunctions is
performed

∂tβi +

NP∑

j=1

M̃ijβj = 〈F (
NP∑

j=1

βjφj), φi〉, (8.5)
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where M̃ is the discrete evolution operator introduced in the Chapter 6 for the ALP
method

M̃ij =





χ

λj − λi
〈F (

NP∑

k=1

βkφk)φi, φj〉, λi 6= λj

0, λi = λj

(8.6)

for all i,j = 1, . . . , NP. We denote by M̃ (instead of M) the discrete evolution
operator of the original ALP method because hereafter M will define the evolution
operator of the ALP-DEIM method.

The goal of the method is to be able to compute the right-hand side of the
equation by staying in the reduced order space. If F is non-polynomial, it cannot be
directly represented on the RO space since the integral and F do not commute. The
idea is then to find an operator P such that PF (u) = F (Pu) and this operator is,
for instance, the collocation operator P : RN → R

NP , since

F̂l := F (u(xl)) = F (ûl), l = 1, . . . , NP, (8.7)

where û = Pu. By using this property of the collocation operator, an expression for
the right-hand side of (8.1) for each time t > 0 is obtained:

F̂l(t) = F (

NP∑

j=1

βj(t)φj(xl,t)), l = 1, . . . , NP. (8.8)

As for the definition of the right-hand side F̂ , we need to introduce the collocation
matrix for the modes. Let us call W ∈ R

NP×NP the matrix of the basis functions in
the collocation points:

W = [w1, . . . , wNP
], wj = Pφj , j = 1, . . . , NP. (8.9)

Of course, the number NP of collocation points could be not small enough to be
interesting in the purpose of a model reduction method in order to have computation
cost gains. So, let us consider only a restricted number of modes NM ≤ NP. We
define the associated matrix Φ(0) ∈ R

NP×NM , Φ(0) = [ϕ1(t = 0), . . . , ϕNM
(t = 0)]

with ϕi(t = 0) = wi, for all i = 1, . . . , NM. Then, only the modes defined by the
matrix Φ(0) will evolve in time.

8.2.2 Time-dependent basis construction and evolution

Let us consider the continuous evolution equation obtained from the operator
definition (8.2)

(L − λi)∂tφi = λ̇iφi + χF (u)φi, i = 1, . . . , NM, (8.10)
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see Chapter 6 for more details. Its discretized version on NP degrees of freedom has
the following form:

L∂tΦ−G∂tΦΛ = GΦΛ̇ + χGF̂ ∗ Φ, (8.11)

where L is the discretization of the L operator on the space defined by Φ, Λ is the
diagonal matrix of the eigenvalues λ, G is the reduced mass matrix defined on the
collocation points P , and the ∗ operator is the Hadamard product defined by

F̂ ∗ Φ := diag(F̂ )Φ, [F̂ ∗ Φ]ij = F̂iΦij , i = 1, . . . , NP, j = 1, . . . , NM. (8.12)

The computation of the reduced mass matrix G is not trivial. In general, when a
restriction of the nodes is taken, it is equivalent to consider a Lagrange interpolant
on the NP collocation points. For the integration purpose, the expression of the
collocation basis is useless and it would require the construction of a coarse mesh
associated with the collocation points and of the associated FE basis and integration
methods. In a pure formal way, the Gram matrix G should be computed as

Gij = 〈vi, vj〉, i,j = 1, . . . , NP, (8.13)

where the vi, i = 1, . . . , NP, are the FE basis functions on the “coarse mesh” (that we
do not want to compute). Since, in most cases, only the Gram matrix G is needed,
an alternative technique is possible. Then, in order to compute G, we use that the
basis defined on the collocation points associated with the matrix W is orthonormal
with respect to the reduced mass matrix G

W TGW = I (8.14)

where I ∈ R
NP×NP is the identity matrix. The matrix W can be QR-decomposed

W = QR, where Q is an orthonormal matrix and R is a upper triangular matrix,
which is obtained without any extra costs when applying a Modified Gram-Schmidt
(MGS) orthonormalization as suggested below. Then, the expression of G can be
obtained by

G = QR−TR−1QT . (8.15)

Note that
LΦ = GΦΛ. (8.16)

The classical ALP method is thus retrieved by multiplying equation (8.11) by ΦT :

ΛΦTG∂tΦ− ΦTG∂tΦΛ = Λ̇ + χΘ, (8.17)

where the matrix Θ ∈ R
NM×NM reads

Θ = ΦTGF̂ ∗ Φ. (8.18)

Also, the discrete evolution operator M (which was previously denoted by M̃ and
defined by equation (8.6)) is defined as the projection onto the space defined by Φ
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of the time derivative of the modes Φ:

M = ΦTG∂tΦ. (8.19)

We inject this expression into equation (8.17). Then, equation (8.17) may be written
in the compact form

Λ̇ +MΛ− ΛM + χΘ = 0. (8.20)

In the same way as in the ALP method, this equation leads to the definition of
the discrete objects Λ̇ and M . The diagonal elements of equation (8.20) give the
following evolution equation for the eigenvalues:

λ̇i = −χΘii, i = 1, . . . , NM, (8.21)

and the extradiagonal elements to the discrete evolution operator M :

Mij =





χ

λj − λi
Θij , λi 6= λj

0, λi = λj
(8.22)

for all i = 1, . . . , NM. Finally, thanks to the matrix M , we define the time evolution
of the basis, exactly in the same way as in the ALP method:

∂tΦ = ΦM. (8.23)

8.2.3 ALP-DEIM implementation

To sum up, let us describe the general step to apply the ALP-DEIM method.
Here is the set of the equations that describes the dynamics in the reduced order
space: 




β̇ +Mβ = ΦTGF̂ ,

∂tΦ = ΦM,

λ̇i = −χΘii, i = 1 . . . NM

Mij =
χ

λj − λi
Θij , i,j = 1 . . . NM

û = Φβ

F̂ = F (û),

Θ = ΦTGF̂ ∗ Φ,

(8.24)

where the discretization β of the solution u in the reduced space Φ is of course
truncated to NM terms. Let us remark that, compared to system (6.18) for the ALP
method, no tensors have to be computed. Also, the computation of the right-hand
side term F̂ is only the evaluation of the continuous operator F in the collocation
points P and its computational cost is linear in the NP dimension. To conclude, the
computational cost of system (8.24) is of order NMN

2
P and the dependence on the FE

dimension N which was the disadvantage of the “classic” ALP method disappeared.
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8.2.4 Reconstruction in the physical space

The reconstruction in the physical space is simplified with respect to the original
version of ALP. This is possible because, in the derivation of the ALP-DEIM, in order
to construct the reduced mass and stiffness matrices, we make use of an intermediate
space whose basis is the initial basis of size NP. Whatever the evolution of the
NM modes is, it can be described exactly in this extended initial basis, that is in a
bijection with the collocation basis on the NP points.

At each time the matrix Φ ∈ R
NP×NM is available. The modes at time tn can be

expressed with respect to W ∈ R
NP×NP . Let ΠW ∈ R

NM×NP be the matrix of the
change of basis:

Π
(n)
W =W TGΦ(n). (8.25)

Since the basis W is simply the restriction of the initial basis V ∈ R
N×NP on

the collocation points, the solution at each time iteration n ≥ 1 can be computed by

u(n) ≃ VΠ
(n)
W β(n). (8.26)

This algorithm can be further simplified. Indeed, the expression of Π(n)
W is injected

into the expression of the approximated solution that reads

u(n) ≃ VW TGΦ(n)β(n), (8.27)

where Φ(n)β(n) can be substituted by û(n). Finally, let us define the extension
operator ΠV := VW TG which is a pseudo-inverse of the restriction operator and
that can be computed once for all at the beginning of the algorithm. This allows to
interpolate the ROM solution on the fine mesh

u(n) ≃ ΠV û
(n), (8.28)

whose cost is N ×NP.

8.2.5 Reconstruction in the high dimensional space

Since NP > NM the time derivatives of the modes can be computed accounting
for some components which are orthogonal to the space spanned by the modes at
current time. In particular, let us define R the matrix of the residual in the basis
evolution equation:

∂tΦ = ΦM +R, (8.29)

where R is such that ΦTGR = 0. We used in this section the same notation Φ

as in equation (8.23) for the definition of the basis evolution. The two definitions
coincide only if F ∗ Φ has a null projection in the space spanned by Ψ, as noticed
below, otherwise they differ. Except in this section, the basis evolution is governed
by (8.23).

The orthogonal modes are defined by exploiting the fact that the modes are
evolving in a space of dimension NP. This space is in a bijection with the space
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spanned by NP modes at the initial time. The orthogonal basis is defined as

Ψ = [wNM+1 · · ·wNP
]− ΦΦTG[wNM+1 · · ·wNP

], (8.30)

where wi is the i-th column of W . Only few elements of Ψ are retrieved, let us
call the dimension of Ψ N⊥ ≤ NP − NM. The partial derivatives of the modes is
approximated by

∂tΦ ≃ ΦM +ΨC, (8.31)

and this expression is injected into equation (8.11), leading to

GΦΛM + LΨC −GΦMΛ−GΨCΛ = GΦΛ̇ + χGF ∗ Φ. (8.32)

The projection of this equation onto Φ has already been computed and leads to (8.17),
since Ψ is by construction orthogonal to Φ, while the projection onto Ψ allows us to
determine the expression of the operator C:

ΨTLΨC −ΨTGΨCΛ = χΨTGF ∗ Φ. (8.33)

Thus, a matrix equation for C can be written for each mode separately. It can be
demonstrated that the system matrix ΨTLΨ − λiΨ

TGΨ, i = 1, . . . , NM, for each
mode is positive definite. If F ∗ Φ has a null projection in the space spanned by Ψ,
C vanishes identically. Otherwise, the derivatives of the modes have a non-vanishing
projection onto the orthogonal space if and only if the image of the operator F ∗ Φ
has.

8.3 ALP-DEIM in cardiac electrophysiology

We are now interested in applying the ALP-DEIM method to the electrophysiology
equations. In particular, we are now able to treat non-polynomial terms, so the
choice of the bidomain equations coupled with the Mitchell and Schaeffer ionic model
is in order. We concentrate here on the case of intra- and extra-cellular conductivity
tensors with the same anisotropy σe = ασi, for a fixed α ∈ R+. If this does not hold,
then the extra-cellular potential ue could not be approximated in the same space as
the transmembrane potential vm and two basis should be defined. This problem is
investigated in the perspectives of the present chapter.

Remark 8.1

Since σe = ασi the bidomain equations could be simplified into the monodomain

equations. We prefer to keep the bidomain formalism for the sake of consistency

with the reminder of this work.
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8.3.1 ALP-DEIM for the bidomain equations

Let us consider the bidomain equations [Tun78] introduced in Section 1.4 on a
bounded domain Ω ⊂ R

d, for any t > 0,




Am

(
Cm

∂vm
∂t

+ Iion(vm,w)
)
− div(σi∇vm)− div(σi∇ue) = AmIapp(x,t)

−div
(
(σi + σe)∇ue

)
− div

(
σi∇vm

)
= 0

∂w

∂t
− g(vm,w) = 0,

(8.34)
with the following boundary conditions on ∂Ω

{
σi∇vm · n+ σi∇ue · n = 0,

σe∇ue · n = 0.
(8.35)

The term Iion is defined by the Mitchell and Schaeffer ionic model [MS03], see
Section 1.4 or for instance Chapter 5,

Iion(vm,w) = w
v2m(1− vm)

τin
+

vm
τout

g(vm,w) =





w − 1

τopen
, vm < vgate

w

τclose
, vm > vgate,

(8.36)

where τin, τout, τopen, τclose, vgate are scalar parameters.

As we did for the “classical” ALP method, we write the coupled system in the
form

AmCm∂tvm = f(vm,ue,w),

∂tw = g(vm,w),

q(vm,ue) = 0,

(8.37)

where

f(vm,ue,w) = Amw
v2m(1− vm)

τin
+Am

vm
τout

+ div(σi∇vm) + div(σi∇ue) +AmIapp,

g(vm,w) =





w − 1

τopen
, vm < vgate

w

τclose
, vm > vgate,

q(vm, ue) = −(1 + α)div
(
σi∇ue

)
− div

(
σi∇vm

)
.

(8.38)

As usual, the first step is to define the linear operator L which is defined here in
the same way as in the ALP method:

L(u)φ = −div(σi∇φ)− χuφ, (8.39)
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where the solution u is the transmembrane potential vm. Then, the modes are the
first NP eigenfunctions of

L(u)φ = λφ. (8.40)

Also, we remind that we define V = [φ1, . . . , φNP
] ∈ R

N×NP the matrix of the modes
discretized in the full order space, W = [w1, . . . , wNP

] ∈ R
NP×NP the initial modes

in the collocation points, wi = Pφi for all i = 1, . . . , NP where P is the collocation
operator, and Φ = [ϕ1, . . . , ϕNP

] ∈ R
NM×NP is the only one that evolves in time,

ϕi = wi for all i = 1, . . . , NM at the initial time.

Let us then approximate the solution of equations (8.37) in the low dimen-
sional space defined by the NM modes of Φ. We approximate the transmembrane
potential vm and the extra-cellular potential ue in the collocation points by

v̂ = ΦTβ =
( NM∑

i=1

βi(t)ϕi(xj ,t)
)NP

j=1
, (8.41)

û = ΦT ξ =
( NM∑

i=1

ξi(t)ϕi(xj ,t)
)NP

j=1
, (8.42)

(8.43)

where v̂ = Pvm, û = Pue, while the ionic variable w is evaluated in the collocation
points, ŵ = Pw, without any approximation in the RO space.

Using these approximation of the solution on the basis Φ of RNP , we define F̂
the function f in the collocation points:

F̂ = Pf(vm,ue,w) = f(v̂, û, ŵ), (8.44)

where

F̂l = Amŵl
v̂2l (1− v̂l)

τin
+Am

v̂l
τout

+

NM∑

i=1

(
βi + ξi

)
div

(
σi∇ϕi(xl)

)
, (8.45)

for all l = 1, . . . , NP. Thanks to the definition of the L operator, F̂ can be written as

F̂l = Amŵl
v̂2l (1− v̂l)

τin
+Am

v̂l
τout

−
NM∑

i=1

(
βi + ξi

)(
χv̂l + λi

)
ϕi(xl). (8.46)

We remark that, contrary to the ALP method, the approximation of the solution
on the basis Φ (i.e. the decomposition ΦTβ, ΦT ξ) is not strictly necessary, but it is
used here for convenience only in the diffusion terms.

In an analogous way, we consider the right-hand side of the second equation
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of (8.37). Let us define Ĝ = Pg(vm,w) = g(v̂, ŵ), its elements are given by

Ĝl =





ŵl − 1

τopen
, v̂l < vgate

ŵl
τclose

, v̂l > vgate.

(8.47)

We remark that the second equation of (8.37) is solved only in the collocation points

∂tŵl = Ĝl, l = 1, . . . , NP. (8.48)

Finally, let us consider the third equation. Using the Galerkin approximations of
the solution, it reads

NM∑

i=1

(
βi + (1 + α)ξi

)(
χv̂l + λi

)
ϕi(xl) = 0, l = 1, . . . , NP. (8.49)

Let us project it on the mode ϕp, for all p = 1, . . . , NM,

NP∑

h,l=1

ϕp(xh)Ghl

( NM∑

i=1

(
βi + (1 + α)ξi

)(
χv̂l + λi

)
ϕi(xl)

)
= 0, l = 1, . . . , NP. (8.50)

This is a linear system of size NM ×NM for β, ξ which can be rearranged in

(1+α)

NM∑

i=1

( NP∑

h,l=1

(
χv̂l+ λi

)
ΦhpGhlΦli

)
ξi+

NM∑

i=1

( NP∑

h,l=1

((
χv̂l+ λi

)
ϕhpGhlϕli

)
βi = 0,

(8.51)
for all l = 1, . . . , NP. In a way analogous to the ALP method, we define the matrices
E,Q ∈ R

NM×NM

Qpi = (1 + α)

NP∑

h,l=1

(
χv̂l + λi

)
ΦhpGhlΦli (8.52)

and

Epi =

NP∑

h,l=1

(
χv̂l + λi

)
ΦhpGhlΦli (8.53)

for all i,p = 1, . . . , NM. Then the third equation can be approximated by the linear
system

Qξ + Eβ = 0, (8.54)

where the matrices Q and E need to be updated at each time-iteration using the
same technique as the ALP method:

∂tE = [M,E], ∂tQ = [M,Q], (8.55)

where [·, ·] is the commutator [A,B] = AB −BA.
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Finally, the resolution with the ALP-DEIM method of the bidomain equations
coupled with the Mitchell and Schaeffer ionic model, in the case of the same anisotropy
for the intra- and the extra-cellular conductivity tensors, can be schematized as





β̇ +Mβ = ΦTGF̂

Qξ + Eβ = 0

∂tΦ+ ΦM = 0

λ̇i = −χΘii, i = 1 . . . NM

Mij =
χ

λj − λi
Θij , i,j = 1 . . . NM

v̂ = Φβ

û = Φξ

F̂ = F (v̂, û, ŵ)

Ĝ = G(v̂, ŵ)

∂tŵl = Ĝ

Θ = ΦTGF̂ ∗ Φ.

(8.56)

8.3.2 Computation of the Electrocardiogram

A comment on the computation of Electrocardiogram is in order. With the
ALP-DEIM method, the operator is computed in a slightly different way compared
to the ALP method. In fact, we can take advantage of the reconstruction in physical
space operator in order to define the reduced transfer matrix, that in this case will
be constant.

Let us briefly recall that the Electrocardiogram consists in measuring the electrical
potential on some torso skin points. This is obtained by solving a Poisson problem
in the torso domain, where on the interface between the heart and the torso, the
torso potential is equal to the extracellular potential, and on the external boundary
a homogeneous Neumann is imposed. So, we define a discrete linear operator of
restriction on the epicardium

Π : RN → R
NΣ s.t. Πue = ue|Σ ∈ R

NΣ (8.57)

where NΣ is the number of vertices on the heart-torso interface, and a discrete linear
operator in the FE space, which associates to the epicardial extracellular potential
ue|Σ ∈ R

NΣ the ECG measures y ∈ R
NECG :

S : RNΣ → R
NECG , y = Sue|Σ = SΠue. (8.58)

In the same way as we did for the ALP method, we would be interested in
defining an operator X : RNM → R

NECG such that

y = Xξ, (8.59)

where ξ is the representation of the extracellular potential in the RO space Φ. Using
the definition of the change of basis operator ΠW : RNP → R

NM , Π(n)
W =W TGΦ(n),
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we can write
y = SΠVΠ

(n)
W ξ(n), (8.60)

where V ∈ R
N×NP is the matrix of the initial basis in the FE space. This leads to

the operator X = SΠVΠ
(n)
W , X ∈ R

NM×NECG , which is of very low dimension but
evolves in time, so that its update has to be taken into account.

A second strategy could be more interesting. Instead of using the representation of
the extracellular potential in the RO space, we can take advantage of its representation
on the collocation points û. Then, we look for an operator Ξ : RNP → R

NECG such
that

y = Ξû. (8.61)

To define this operator, we use the prolongation operator ΠV = VW TG,
ΠV ∈ R

N×NP , defined in Section 8.2.4. Substituting its expression in (8.58), we
obtain

Ξ = SΠΠV . (8.62)

The operator Ξ is constant in time, it can be calculated once for all at the beginning
during the basis computation phase and no update of it is necessary.

8.4 Numerical experiments

In this section we present some preliminary results obtained with the ALP-DEIM
method. We apply the method to the resolution of the bidomain equations coupled
with the Mitchell and Schaeffer ionic model (8.37), (8.38). First, we consider an
homogeneous cardiac tissue on a 2D domain. Then, some spatial and temporal
heterogeneities are introduced: the parameter that regulates the depolarization
plateau duration is changed as in the cardiac tissue; a source term not included in
the initial basis is introduced; the fibers anisotropy is taken into account.

The problems are solved on a 2D squared domain Ω = [0.1]2 discretized with a
P1 finite element mesh composed of 5,878 vertices. The collocation points are chosen
on a cartesian grid as shown in Figure 8.1 and the number of collocation points is
NP = 256 for all the results presented. For all the FE simulations a second order
Backward Difference method is used while for the ALP-DEIM resolution an Explicit
Euler method is applied, both with time step δt = 0.01ms. Numerical results with
ALP-DEIM are compared with the FE ones, and the relative error

error(tn) =
|vnm − Φ(n)βn|
max|vnm| (8.63)

is shown. Parameters are taken as in Table 8.1.

8.4.1 Homogeneous parameters 2D case

The first case does not present any sensitive difficulty, We consider the bidomain
equations with the Mitchell and Schaeffer model, without fiber tensors anisotropy
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Collocation points (Np = 256)Mesh (N = 5872)

Figure 8.1: 2D test case mesh (left) and interpolation points (right).

and with homogeneous parameters. The challenging point is the treatment of the
non-polynomial term in the Mitchell and Schaeffer ionic model.

The initial basis is computed using the FE solution at time t = 5ms, with χ = 25,
and the solution is run with NM = 25 basis modes. In Figure 8.2 the results with
the ALP-DEIM method (middle) are compared to the FE ones (left). We can see
that the ROM solution is very close to the FE element solution. This can also be
observed in the relative error plot (Figure 8.2 right) that is less than 10% for most
of the time except at about 25ms when the propagation front “exits” the domain,
but in all cases it does not exceed 30%.

8.4.2 Heterogeneous ionic parameters

We are now interested in introducing some heterogeneities in the ionic parameters.
First, we reproduce the cardiac tissue heterogeneity by considering three different
cell types as described in Section 1.4: endocardial, mid-myocardial and epicardial
cells. In particular, the parameter τclose of the ionic model varies in the three layers
illustrated in Figure 8.3 top-left, and takes values given in Table 8.2. Thanks to this
heterogeneity, the solution has a repolarization front in the opposite direction to the
depolarization one.

The ROM simulation is run with NM = 25 modes and χ = 25, and the initial

Am Cm σi τin τout τopen τclose vgate
2000.0 0.1 1.0 4.0 50.0 100.0 80.0 0.13

Table 8.1: Bidomain equations and Mitchell and Schaeffer ionic model parameters.



192

Time = 5 ms

vm error
0.0 1.00.50.0 1.00.5

Time = 15 ms

Time = 25 ms

Time = 125 ms

Figure 8.2: 2D test case with homogeneous parameters. FEM solution (left), ALP-
DEIM solution (middle) and relative error (right).
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basis is computed from the FE solution at time t = 5ms. We can see in Figure 8.3
that the ROM solution (middle) is very close to the FE one (left) both in the
depolarization phase (second row) and in the repolarization one (third row), and the
error takes locally values of at most 30% and does not exceed 5% elsewhere.

Second, an heterogeneity of “infarction” type is considered. As detailed in
Chapter 4, the parameter that has to be decreased in order to obtain a non-depolarized
tissue is the τclose. In particular, here we consider a space dependent parameter such
that

τclose(x,y) =

{
τclose(y), in Ωinf = {(x,y) ∈ Ω : x ≤ 0.5, 0.25 ≤ y ≤ 0.75}
τclose, elsewhere

(8.64)
where τclose(y) is a linear function in the vertical direction that takes value
τclose(y = 0.25) = τclose/5 and τclose(y = 0.75) = τclose.

The basis is build using the FE solution at time t = 5ms and χ = 25, and the
ROM simulation is run with NM = 25 modes. We can observe in Figure 8.4 a good
agreement between the FE solution (left) and the ALP-DEIM one (middle). The
relative error takes low values, less than 25% but it presents more oscillation on the
whole domain, probably this is due to the high challenging character of the problem
itself.

8.4.3 Source terms

The next example deals with a source term located in a different position compared
to the first one. In particular, the initial solution is given by the FE solution at time
t = 5ms with a source term in the bottom-left corner of the squared domain as shown
in Figure 8.2. After the end of the complete cardiac cycle and whole reporazitation
of the tissue, a second source term is applied in the top-left corner of the domain
as shown in Figure 8.5 (first row). The application of a source term is particularly
simple in the context of the ALP-DEIM method since it is sufficient to compute the
Iapp term in the collocation points P .

The results in Figure 8.5 show a good agreement between the FE solution and
the ROM one, which is run with χ = 25 and NM = 25 modes. The error presents
some oscillations at the moment of the source term application, probably due to the
change of direction of the first modes of the basis, but it is in general of very low
values, at most less than 10%.

τ endo
close τMcell

close τ epi
close

90.0 70.0 50.0

Table 8.2: Ionic parameters for heart model.
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Time = 5 ms

vm error
0.0 1.00.50.0 1.00.5

Time = 115 ms

Time = 25 ms

Endo

Mcells

Epi

Figure 8.3: 2D test case with heterogeneous parameter τclose. FEM solution (left),
ALP-DEIM solution (middle) and relative error (right).
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Time = 5 ms

vm error
0.0 1.00.50.0 1.00.5

Time = 50 ms

Time = 15 ms

τout =
1

5
τ refout

τout = τ refout

Figure 8.4: 2D test case with homogeneous parameter τout. FEM solution (left),
ALP-DEIM solution (middle) and relative error (right).
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vm error
0.0 1.00.50.0 1.00.5

Time = 235 ms

Time = 205 ms

Time = 220 ms

Time = 300 ms

Figure 8.5: 2D test case with source term. FEM solution (left), ALP-DEIM solution
(middle) and relative error (right).
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8.4.4 Anisotropic fiber tensors

The last numerical example concerns an anisotropic tissue: the intracellular
conductivity tensor σi reads

σi = σt
i I+ (σl

i − σt
i )~a⊗ ~a, (8.65)

where σt
i , σ

l
i are respectively the conductivity coefficients in the transversal and

longitudinal directions of the fibers, I is an identity matrix and ~a is a unit norm
vector in the fiber direction. In particular, the fibers are oriented in the diagonal
direction as illustrated in Figure 8.6 top-left, and the values of the coefficients are
σt

i = 1 and σl
i = 4s. More details about the fibers anisotropy tensors can be found

in Section 1.4.
In Figure 8.6 the results are shown. The ALP-DEIM simulation is run with

NM = 25 modes and χ = 25 and the initial basis is computed with the FE solution
at time t = 5ms, where the fiber direction is taken into account in the L operator.
We observe good results with the ROM (middle): the propagation is higher in the
fibers direction than in the transversal one, as for the FE solution (left). The relative
error takes its greatest values in the propagation front area, that is also due to the
different time scheme used to discretize the FE and the RO problems, but it is very
low (less than 20%).

8.5 Perspectives

A few perspectives are in order. Our aim is to apply the method to a model as
real as possible, and to use this method in order to solve inverse problems with real
a geometry as the one presented in Chapter 2. Let us better analyze two steps that
are crucial and particularly challenging from a computational viewpoint:

1. the definition of two basis, the first used for the discretization of the trans-
membrane potential and the second one for the extracellular potential;

2. the data assimilation applied to ALP method in the two-basis ALP-DEIM
context.

8.5.1 Two basis computation

As shown in the numerical examples with ALP and ALP-DEIM, in many cases
the transmembrane and the extracellular potentials cannot be approximated in the
same reduced space. This is the case in particular when some boundary conditions
are imposed, for instance in the Micro-Electrode Arrays (MEA) application (see
Section 7.3), or if the intra- and extra-cellular conductivity tensors have different
anisotropies, as in real cardiac tissues (see Section 1.4). In this section, we analyze
the case of different tensors anisotropies, in the case of different boundary conditions
the steps are analogous.
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Time = 5 ms

Time = 10 ms

Time = 12 ms

vm error
0.0 1.00.50.0 1.00.5

fib
er
s
di
re
ct
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n

Figure 8.6: 2D test case with fiber tensors. FEM solution (left), ALP-DEIM solution
(middle) and relative error (right).
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First, two linear operators for the definition of the basis have to be defined.
The choice of the operator Lvm for the definition of the basis used to discretize the
transmembrane potential is trivial and it does not differ from the L operator used
above, while the operator Lue for the definition of the basis used for the extracellular
potential is more tricky. In particular, one can hesitate between taking into account
only the extracellular conductivity tensor, which leads to

Lue(ue)φue = −div(σe∇φue)− χueφue , (8.66)

or taking into account both the intra- and extracellular conductivity tensors:

Lue(ue)φue = −div((σi + σe)∇φue)− χueφue . (8.67)

Second, in the discretization of the right-hand side of the first equation of (8.37)
and of the third equation of (8.37), a particular attention should be paid to the fact
that the variables vm, w and ue are defined on different reduced-order spaces. In
particular, the substitution that leads to equation (8.46) for F̂ is valid only for one
of the terms (the one with vm) while it is not possible for the ue diffusion term. As
a consequence, the computation of the matrix Θ will contains both of the basis. In
an analogous way, in the third equation, the substitution made thanks to the basis
definition would not be possible, and the projection into the subspace in which ue

is defined would lead to spurious multiplications between the matrices of the basis
coming from the first and the second L operators.

Also, the time derivative of the extracellular potential does not appear explicitly
in the system (8.37). Then, the computation of the evolution operator cannot be
made in a standard way. Probably, it would be sufficient to compute the time
derivative of the third equation of (8.37) in order to find a linear relation between
∂tue and ∂tvm which will depend on the intra- and extracellular conductivity tensors.
This is of course only a preliminary idea, further investigations will be done in the
future.

8.5.2 Inverse problems

Once obtained a good “forward” approximation of the bidomain equations in-
cluding anisotropies and boundary conditions heterogeneities, this modelling results
could be used to solve inverse problems as proposed in the previous chapter with the
ALP method. The main difference compared to the technique exposed in Chapter 7
is that the observation and filter operators are constant in time.

In Chapter 7 a data assimilation technique was applied in order to recover the
state of the system, i.e. the electrical potentials. First, when using the Micro-
Electrode Arrays (MEA) measures, the electrical potential was reconstructed on
the whole well in order to identify the source term location. Second, the electrodes
vest type measures on the external boundary of the torso were used to estimate the
potential on the epicardial of the heart for a simplified geometry. Let us consider the
second application, for the MEA case the steps will be analogous. The right-hand
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side of the first equation of (8.37) was modified by adding some control term. In
particular, the reduced order system read





β̇ +Mβ = γH ,

µ̇+Mµ = η,

Qξ + Eβ = 0

(8.68)

where the term which takes into account the observation is γH :

γH = γ(β, ξ, µ) + aXT (d−Xξ), (8.69)

where a > 0 is a real constant parameter, d represents the torso measures and X

is the reduced-order transfer matrix used to compute the torso measures from the
reduced order discretization of the extracellular potential.

As we observed in Section 8.3.2, the transfer matrix operator when using the
ALP-DEIM method is constant in time and reads

Ξ : RNP → R
NECG , Ξ = SΠΠV . (8.70)

Then, in the ALP-DEIM dynamics for the bidomain equations (8.56), the term which
will be modified in an observation purpose is F̂ . In particular, it will be substituted
by

F̂H = F̂ + aΞT (d− Ξû). (8.71)

The advantage of this choice of operator is that it is constant in time and does not
need any update.

8.6 Chapter conclusions

A new approach of the reduced-order ALP method has been proposed. This
technique uses the Discrete Empirical Interpolation Method (DEIM) idea of taking
only a few spatial nodes to approximate the solution. In the case of ALP method,
this allows to treat nonlinearities of non-polynomial types since the evaluation of
the nonlinear terms is nodal on a subset of nodes. Also, the ALP-DEIM approach
leads to an algorithm which is computationally less expensive than the ALP method,
whose complexity was of the order of (N3

M + N × N2
M). The fact that the time

evolving tensors present in the previous technique disappeared eliminates the N3
M

factor, while the fact that the basis is discretized only on a small number of points
leads to a computational cost proportional to NM ×N2

P.
The ALP-DEIM method was tested on some 2D cardiac electrophysiology test

cases, including non-polynomial terms, parameters heterogeneities and anisotropic
tissues. These preliminary results seem very promising for the method. In future
works the technique should be applied to 3D simulations, too. Then, as detailed,
in Section 8.5, several steps will lead to use this method to solve both forward and
inverse electrophysiology problems in realistic geometries and configurations.



Conlcusions

The first contribution of this work has been to give some accurate simulations
of the cardiac electrical potential. The coupling of the ventricles with the atria, as
seen in Chapter 2, allowed us to obtain full cycle electrocardiograms, including the
P wave. Moreover, several pathologies have been investigated, including pathologies
due to the coupling between atria and ventricles, such as the Wolff-Parkinson-White
syndrome.

Then, stability estimations for some of the FitzHugh-Nagumo ionic model have
been obtained in Chapter 3.

Several reduced-order methods have been applied to the cardiac electrophysiology
models. In Chapter 4, the Proper Orthogonal Decomposition (POD) has been
applied in the cases of parameters variations and for the simulation of a myocardial
infarction. Owing to the efficiency of the POD methods, a genetic algorithm has
been applied in order to estimate some parameters of the model or to identify the
location of an infarction. Good results have been obtained in both cases.

The POD has also been used to reproduce the ECG-based restitution curves in
Chapter 5. First, we proposed a new parametrization of the curve which is valid
in a more general setting compared to the case introduced by the authors of the
Mitchell and Schaeffer model. Then, this curve has been used to identify some of
the parameters of the model.

The POD method was efficient in the cases investigated in Chapters 4 and 5, but
it presented also some limitations. Then, some new techniques have been proposed in
Chapters 6, 7 and 8. In particular, satisfying results in the resolution of the bidomain
equations, coupled with the FitzHuh-Nagumo ionic model, have been obtained with
a method based on the Approximated Lax Pairs (ALP).This method has been used
also in a data assimilation technique in Chapter 7 in order to reconstruct the state
of the system and gave promising results.

Since, this method can be applied only in the case of problems with polynomial
nonlinearities, we proposed a new approach of the ALP method in Chapter 8. This
approach merges the ALP method with some ideas arising from the Discrete Empirical
Interpolation Method (DEIM). This new method has been applied to the bidomain
equations coupled with the Mitchell and Schaeffer ionic model. The preliminary
results look very promising and several perspectives are possible.

To conclude, we have proposed in this thesis new results for the forward problem
of electrocardiology and we have addressed the inverse problem with an original point
of view. Various reduced-order methods have been applied to the electrophysiology
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equations, in particular to address the problem of parameters identification or state
estimation. For each one of these methods, advantages and limitations have been
analyzed. A new reduced order method, called ALP-DEIM, has been proposed in
Chapter 8 and gave very promising results. Aming the perspectives described in
Chapter 8, we have planned to apply in the near future this method to the data
assimilation strategy described in Chapter 7. The objective of these future works
will be to consider realistic geometries and ionic models, as described in Chapter 2,
and real data.



Conclusions (Français)

La première étape de cette thèse a été de fournir des simulations précises du poten-
tiel électrique cardiaque. Grâce au couplage entre les modèles d’oreillettes et ceux de
ventricules, nous avons fourni au chapitre 2 des simulations d’électrocardiogrammes
complets, onde P incluse. De plus, plusieurs pathologies ont été considérées, entre
autres des pathologies spécifiques aux couplages entre les oreillettes et les ventricules
comme le syndrome de Wolff-Parkinson-White.

Ensuite, des estimations de stabilité sur certains paramètres du modèle ionique
de FitzHigh-Nagumo ont été proposées dans le chapitre 3.

Plusieurs méthodes d’ordre réduit ont été appliquées aux modèles
d’électrophysiologie cardiaque. Dans le chapitre 4, la Proper Orthogonal Decom-
position (POD) a été appliquée dans le cadre où les paramètres varient et pour la
simulation de l’infarctus du myocarde. Tirant parti de l’efficacité de cette méthode
dans les cas proposés, une méthode d’algorithme génétique a été appliqué pour
retrouver certains paramètres du modèle ou encore la zone où se trouve l’infarctus
avec des résultats très satisfaisants.

La POD a aussi été utilisée pour reproduire les courbes de restitution basées sur
l’électrocardiogramme au chapitre 5. Après avoir proposé une nouvelle paramétri-
sation de la courbe, valide dans une configuration plus générale que celle proposée
par les auteurs du modèle de Mitchell et Schaeffer, cette courbe a été utilisée pour
identifier certains paramètres du modèle.

Etant confronté aux limitations de la POD, nous avons appliqué de nouvelles
techniques dans les chapitres 6, 7 et 8. En particulier, la méthode ALP basée
sur des couples de Lax approchés semble être efficace pour la résolution des équa-
tions bidomaines couplées avec des modèles ioniques polynômiaux comme le mod-
èle de FitzHugh-Nagumo. Cette méthode a aussi été utilisée dans une stratégie
d’assimilation de données dans le chapitre 7 pour reconstruire l’état du système avec
des résultats prometteurs.

Être limité dans de cette méthode aux problèmes polynômiaux nous a conduits
à proposer dans le chapitre 8 une nouvelle version de ALP incluant les idées de
la méthode d’interpolation empirique discrète (Discrete Empirical Interpolation
Method, DEIM). Cette nouvelle méthode a été appliquée aux équations bidomaines
couplées avec le modèle de Mitchell et Schaeffer. Les résultats préliminaires semblent
très prometteurs et plusieurs perspectives sont possibles.

Pour conclure, nous avons proposé dans cette thèse des résultats nouveaux pour
le problème direct de l’électrocardiologie et nous avons abordé le problème inverse
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sous un angle original. De plus, plusieurs méthodes d’ordre réduit ont été appliquées
aux équations de l’électrophysiologie afin de résoudre des problèmes d’identification
de paramètres ou d’estimation d’état. Pour chacune de ces méthodes, les avantages
et les limites ont été résumés. La méthode ALP-DEIM, proposée dans le chapitre 8,
semble être particulièrement prométeuse. Parmis less perspectives, présentées en
détail dans le chapitre 8, nous envisageons d’appliquer prochainement cette méthode
aux techniques d’assimilation de données du chapitre 7 pour estimer le potentiel
électrique à l’épicarde, avec des géométries et des modèles ioniques réalistes, comme
dans le chapitre 2, et avec des données réelles.



Appendix A

FELiScE

We present here the FELiScE1 library that has been used for all the simulations

presented in the thesis. We summarize the structure and the author main contributions in

FELiScE. FELiScE stands for Finite Elements for LIfe SCiences and Engineering. It is a

finite elements library developed since 2010 by REO and MΞDISIM Inria project-teams. The

library aims at providing a unique environment which can compute numerical simulations

in all the cardiovascular fields the two teams are interested in, for instance fluid and solid

mechanics problems, electrophysiology equations and various coupling phenomena. We

briefly describe the main classes that manage the resolution of linear and eigenvalue problems

and give an idea of how the electrophysiology equations and the reduced-order models are

implemented.

1http://felisce.gforge.inria.fr/

http://felisce.gforge.inria.fr/
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A.1 FELiScE general principles

FELiScE is a parallel finite elements library written in C++ that manages
many biophysical partial differential equations systems. It is based on the PETSc2

software library, supported by MPI3, that allows to deal with scalable parallel data
structure and supply the associated routines. In particular, all the matrices and
vectors used in FELiScE are parallel PETSc objects, and the resolution of linear
systems is managed by the KSP component of PETSc which is a scalable linear
equations solver based on a Krylov subspace iterative method and a preconditioner,
that can be adapted to the problem by the users.

Also, the resolution of eigenvalue problems has been recently integrated to the
skills of FELiScE using the SLEPc4 software library, which is an extension of
the PETSc library that solves eigenvalue problems. In particular, the resolution is
managed by the ESP object of the SLEPc library which provides all the eigenvalues
and eigenvectors for standard and generalized eigenproblems using different resolution
routines.

FELiScE is based on a user-friendly interface that allows to solve linear and
eigenvalue problems without being concerned with mesh partitioning, degrees of
freedom definition, elementary integrals computation, matrices assembling, etc. We
briefly describe the structure of the code and the main classes which manage the
resolution of different biophysical problems hereafter.

A.2 Structure of the code

From a users viewpoint, there are three main classes which are used for the
resolutions of linear and eigenvalue problems: the Model class, the LinearProblem

class and the EigenProblem class. Each one of these classes is a pure virtual class,
from which many specific classes inherit. For instance, an object of a derived class
of Model is created in the main file in accordance with the problem of interest.
Then, the Model object calls one or more linear and/or eigenvalue problems that are
concerned with the system resolution.

Model

main

Eigen
Problem

Eigen
Problem

Eigen
Problem

Linear
Problem

Linear
Problem

Linear
Problem

- Navier Stokes
- Bidomain
- ALP
- · · ·

- POD
- ALP
- ALP-DEIM
- · · ·

- Navier Stokes
- Bidomain (monolitic)
- Bidomain 1st eq.
- Bidomain 2nd eq.
- · · ·

2Portable, Extensible Toolkit for Scientific Computation, http://www.mcs.anl.gov/petsc/
3Message Passing Interface, http://www.mcs.anl.gov/research/projects/mpi/
4Scalable Library for Eigenvalue Problems Computations, http://www.grycap.upv.es/slepc/

http://www.mcs.anl.gov/petsc/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.grycap.upv.es/slepc/
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A.2.1 The Model class

The Model class scope is to manage the problem. Its main routines, that are
shown below, manage the time iterations and updates.

Model

/*!

\file model.hpp

*/

#include "linearProblem.hpp"

#include "eigenProblem.hpp"

namespace felisce {

/*!

\class Model

*/

class Model {

protected:

//! Linear Problems.

std::vector<LinearProblem*> m_linearProblem;

//! Eigen Problems.

std::vector<EigenProblem*> m_eigenProblem;

...

public:

//! Constructor.

Model();

//! Destructor.

virtual ~Model();

//! Manage time iteration.

void updateTime();

//! Advance time step.

virtual void forward()=0;

//! Write solution for Ensight.

void writeSolution();

...

}

}

In particular, the forward() function contains all the steps that have to be run
at each iteration and it is a pure virtual function since the method depends on the
model itself. For instance, in the case of nonlinearities solved with a fixed-point
method, this implementation should be integrated in the forward() function.

Also, the Model class calls the linear and/or eigenvalue problems useful
for the resolution of the system. For instance, in the case of electrophysiol-
ogy equations, the BidomainModel that inherits from Model is created in the
main, while it is the BidomainModel itself that manages the choice of the
resolution: the LinearProblemBidomain can be called for a monolithic reso-
lution of the system, or the LinearProblemBidomainTransmPotential and the
LinearProblemBidomainExtracellPotential can be both called for a decoupled
resolution of the equations. In the second case, sub iterations between the two
LinearProblems of a fixed point method will eventually be managed by the
BidomainModel in its forward() function.
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A.2.2 The LinearProblem class

The LinearProblem class manages the resolution of linear systems using the
PETSc routines. Here is an outline of its main objects and functions.

Linear Problem

/*!

\file linearProblem.hpp

*/

#include <vector.h> // Petsc Vector (Vec)

namespace felisce {

/*!

\class LinearProblem

*/

class LinearProblem {

protected:

//! Solution of the problem.

Vec m_sol

//! Useful vectors such as RHS.

std::vector<Vec> m_vectors;

//! Matrices of the system.

std::vector<Mat> m_matrices;

//! KSP object from Petsc class (it solves linear systems).

KSP m_ksp;

//! PC object from Petsc class (it manages the preconditioner).

PC m_pc;

...

public:

//! Constructor.

LinearProblem();

//! Destructor.

virtual ~LinearProblem();

//! Assemble of matrices with a loop on domain element.

void assembleMatrixRHS(...);

//! Build Petsc Ksp object to solve the system.

virtual void buildSolver();

//! Solve a linear problem with Petsc Ksp class.

void solve();

...

}

}

The LinearProblem class owns the “solution” object m_sol, which is a vector
of the PETSc library. The solution is the result of a linear system solved by the
KSP routines of PETSc, where the matrix of the system is given by m_matrices[0]

and the right-hand side is given by m_vectors[0]. All the matrices and the vectors
are assembled using specific routines implemented in some FELiScE classes that
manage the finite elements and the integration and differentiation methods.
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A.2.3 The EigenProblem class

The EigenProblem class is the analogous of the LinearProblem for the resolution
of standard or generalized eigenvalue problems. The class uses the SLEPc library
in order to solve the problems. Here is an outline of its header file.

Eigen Problem

/*!

\file eigenProblem.hpp

*/

#include <vector.h> //Petsc Vector (Vec)

#include <slepceps.h>

#include <slepcsvd.h>

namespace felisce {

/*!

\class EigenProblem

*/

class EigenProblem {

protected:

//! Solution of the problem (eigenvectors).

Vec m_sol

//! Solution of the problem (eigenvalues).

double* m_eigenValue;

//! Matrices of the system.

std::vector<Mat> m_matrices;

//! EPS object from Slepc class (it solves Eigen Problems).

EPS m_eps;

//! SVD object from Slepc class (it solves SVD Problems).

SVD m_svd;

...

public:

//! Constructor.

EigenProblem();

//! Destructor.

virtual ~EigenProblem();

//! Assemble of matrices with a loop on domain element.

void assembleMatrix(...);

//! Build Slepc Eps or Svd object to solve the eigen problem.

virtual void buildSolver();

//! Solve an eigen problem with Slepc Eps or Svd class.

void solve();

...

}

}

Most of the functions are similar to the LinearProblem class, for instance all the
routines that assemble the matrices and manage the solution. Then, the main change
is the problem that has to be solved itself. The SLEPc object EPS manages the
resolution of eigenvalue problems with different adapted methods. The general routine
solve() of the class solves with EPS the standard eigenvalue problem Ax = λx,
where A is the PETSc matrix m_matrices[0], for the bigger eigenvalue λ that
is saved in m_eigenvalue[0] associated to the eigenvector x that is saved in the
PETSc vector m_sol. The routine solve() is adapted to the problem in each of
the derived classes. For instance, in the EigenProblemALP class the object m_basis,
which is a standard-library vector of PETSc Vec, is created and the EPS solves a
generalized eigenvalue problem Axi = λiBxi for the NM biggest eigenvalues, where
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A is m_matrices[0], B is m_matrices[1], λi is m_eigenvalue[i-1] and xi is the
PETSc vector m_basis[i-1].

A.3 Electrophysiology equations implementation

All the electrophysiology simulations presented in this work have been com-
puted with FELiScE. Let us briefly show how the system of equations is solved.
As previously explained, the Model class, which is in this case the derived class
BidomainModel, defines the problem that has to be solved and manages the time
iterations and eventually the nonlinearities, while the LinearProblem classes solve
the linear systems. In the case of the “classical” bidomain equations presented in this
work, two approaches are possible: a monolithic resolution of the two equations or a
decoupled vision of the system. All the simulations showed in this work were run
with the monolithic approach with a second order Backward Differentiation Formula
for the time discretization (the numerical scheme is detailed in Section 1.4.5).

- FitzHugh-Nagumo
- Mitchell and Schaeffer
- Minimal Ventricular Model
- Courtemanche-Ramirez-Nattel
- · · ·

Bidomain Model

Bidomain Problem

Bidomain 1st eq.

Bidomain 2nd eq.

Ionic Solver

decoupled

mo
no

lit
hic

In both monolithic and decoupled approaches the ionic current term is treated
apart by the IonicSolver class. This class is a pure virtual class that allows to man-
age many different ionic models. For instance, the classes FitzHughNagumoSolver,
SchaefferSolver, MVSolver and CourtemancheSolver inherit from IonicSolver

and return the Iion term (nodal computation) that is added to the right-hand side of
the bidomain (monolithic) problem or to the right-hand side of the first equation
problem (decoupled).

Also, the BidomainCurvModel and the LinearProblemBidomainCurv classes have
been implemented for the resolution of the surfaced-based bidomain equations used
on thin surfaces as for instance for the atria. Recently, a coupled volume-surface
problem has been added to the possible choices in order to solve the complete heart
(ventricles and atria) presented in Chapter 2. This case has been treated as an
exception of the BidomainModel–LinearProblemBidomain classes, and it is possible
to use different ionic solvers for the volume and the surface parts of the domain. The
main difficulty of this coupled implementation is the assembling of the matrix and
the distinction between the boundary of the domains (surfaces for the volume part
and edges for the surface one) and the proper domains.
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A.4 Reduced-Order Models implementation

In order to solve a problem with one of the reduced-order methods presented
in this work, two main steps are in order: the computation of the basis and the
resolution itself of the reduced-order model. Concerning the computation of the basis
we applied two techniques: the POD and the ALP methods. In order to compute the
POD basis, the function solve() of the derived class EigenProblemPOD uses the SVD

routine of the SLEPc library, while for the derived EigenProblemALP the EPS object
of the SLEPc library is used to compute the first NM larger eigenvalue and the asso-
ciated eigenvectors. In both cases the solutions are saved in the std::vector<Vec>

m_basis, then they can be exported in Paraview5 format, which is useful for their
visualization, or used to solve the reduced-order model.

Second, the reduced-order method is applied by computing a new basis or by
reading a previously computed basis from files. These operations are computed
by the Model and EigenProblem derived classes. For instance, for the ALP and
ALP-DEIM methods presented in Chapters 6 and 8, the ALPModel manages the
choice between the two methods: if the standard ALP method is applied, then the
EigenProblemALP is called; otherwise, the EigenProblemALPDEIM, which inherits
from EigenProblemALP, is used.

Following the same idea as for the LinearProblem classes, the Model only manages
the time iterations while the resolution of the systems is done in the “problem” classes.
Since all the reduced-order objects have a small size, most of them are treated as
double* or double**. Also, all the symmetries that can be present in the reduced-
order matrices and tensors are taken into account and only a small part of the
object is saved. Many of these objects are the representation of their analogous
in the reduced-order space that are computed with the EigenProblem function
projectOnBasis(...), and viceversa the function projectOnFem(...) computes
the opposite operation. The matrices useful for the computation of the basis or
the resolution of the reduced-order system are stocked in the EigenProblem object
m_matrices and computed with the same routines as described above.

Let us for instance show the outline of the function forward() of the
EigenProblemALP, with an Explicit Euler time integration method (which is the
method used to compute all the simulations presented in this work).

5http://www.paraview.org/

http://www.paraview.org/
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Forward of ALP Model

/*!

\forward function of ALPModel

*/

void ALPModel::forward() {

// Write the solution for Einsight.

writeSolution();

// Update in time.

updateTime();

// Switch between time integration methods.

switch (m_method) {

case 0: { // Explicit Euler

//! Update the basis.

m_eigenProblem[0]->updateBasis();

//! Update the coefficient \beta (solution in the RO space)

m_eigenProblem[0]->updateBeta();

//! Update the eigenvalues \lambda.

m_eigenProblem[0]->updateEigenvalue();

//! Update all the RO tensors (e.g. T).

m_eigenProblem[0]->updateTensors();

//! Compute the right-hand side in the RO space: \gamma=\gamma(\beta).

m_eigenProblem[0]->computeGamma();

//! Compute the discrete evolution operator M.

m_eigenProblem[0]->computeMatrixM();

break;

}

...

}

}

Each of the EigenProblem functions is then specified for the method ALP or
ALP-DEIM that is used. For instance, for the ALP method, the function for the
updates of the β coefficients (which are the representation of the solution in the
reduced-order space) and the function for the update of the third order tensor T
read:
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/*!

\updateBeta function of EigenProblemALP (Explicit Euler)

*/

void EigenProblemALP::updateBeta() {

// Time step.

double dt = FelisceParam::instance().timeStep;

// deltaBeta = \beta^{n+1} - \beta{n}.

double deltaBeta[m_dimRomBasis*m_numberOfVariables];

// Loop on the elements of \beta.

for (int i=0; i<m_dimRomBasis*m_numberOfVariables; i++) {

// beta^{n+1} = beta^n - dt * beta^n * M^n + dt * gamma^n.

deltaBeta[i] = m_gamma[i];

for (int j=0; j<m_dimRomBasis*m_numberOfVariables; j++) {

deltaBeta[i] -= m_beta[j] * m_matrixM[j][i];

}

}

for (int i=0; i<m_dimRomBasis*m_numberOfVariables; i++) {

m_beta[i] += dt * deltaBeta[i];

}

}

Update of Beta and Tensor T for ALP Eigen Problem

/*!

\updateTensor function of EigenProblemALP (Explicit Euler)

*/

void EigenProblemALP::updateTensor() {

// Time step.

double dt = FelisceParam::instance().timeStep;

// 1) Update of (3rd order) tensor T.

// deltaT = T^{n+1} - T{n}.

double deltaT[m_size3];

// Loop on the elements of T.

// Only a part of T is saved since it has 3 symmetries.

for (int i=0; i<m_dimRomBasis; i++) {

// T^{n+1} = T^n - dt * [T^n , M^n]^{(3)}.

for (int j=0; j<i+1; j++) {

for (int k=0; k<j+1; k++) {

deltaT[thirdGlobalId(i,j,k)] = 0.;

for (int l=0; l<m_dimromBasis; l++) {

// delta T_ijk = sum_l (M_il * T_ljk + M_jl * T_ilk + M_kl * T_ijl ).

deltaT[thirdGlobalId(i,j,k)]+= m_matrixM[i][l]*m_tensorT[thirdGlobalId(l,j,k)];

deltaT[thirdGlobalId(i,j,k)]+= m_matrixM[j][l]*m_tensorT[thirdGlobalId(i,l,k)];

deltaT[thirdGlobalId(i,j,k)]+= m_matrixM[k][l]*m_tensorT[thirdGlobalId(i,j,l)];

}

}

}

}

for (int i=0; i<m_size3; i++) {

m_tensorT[i] += dt * deltaT[i];

}

... // Update of the other matrices and tensors.

}

where m_dimRomBasis represents the number of modes NM, m_size3 is equal to
NM(NM+1)(NM+2)

6 and the EigenProblem function thirdGlobalId(i,j,k) returns
an index in the dimension m_size3 for the position (i,j,k) in the tensor.
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A.5 Author’s contributions

The author contributed as developer to the implementation of FELiScE. In
particular, the main contributions are included in the cardiac electrophysiology
models, in the eigenvalue problems resolution and in the reduced-order models
implementation. These implementations represents about 20000 lines of code and
are fully incorporated in FELiScE so that it can be used easily by other users.

Cardiac electrophysiology

The BidomainModel and LinearProblemBidomain classes, including the volume-
surface problem, has been implemented by the author in collaboration with Annabelle
Collin, PhD student in the MΞDISIM team of Inria-Saclay.

The classes LinearProblemBidomainTransmPotential and
LinearProblemBidomainExtracellPotential have been implemented for the
resolution of bidomain equations with a decoupled scheme. The IonicSolver class
has been added in collaboration with Cesare Corrado, former post-doc of REO
team. This class is a pure virtual class from which all the ionic models are derived,
for instance the SchaefferSolver (in collaboration with Annabelle Collin), the
RevisedSchaefferSolver which is not used in the work presented in the thesis, the
MVSolver (in collaboration with Fabien Raphael, engineer in the REO team, and
Muriel Boulakia).

Also, a derived Model and a derived LinearProblem classes have been imple-
mented for the resolution of the “torso” diffusion problem. These models include the
possibility of imposing the solution that arises from a precomputed simulation as a
Dirichlet or a Robin condition on the heart boundary, the extraction of some ECG
or electrodes vest type measures, and the computation of the so-called heart-torso
transfer matrix with the resolution of the adjoint problem.

Finally the class ECG which computes the ECG in run-time during the bidomain
equations resolution, using the heart-torso transfer matrix, is implemented.

Eigenvalue problems and reduced-order models

The EigenProblem class, inspired from the LinearProblem one, has been fully
implemented by the author. All the ALP classes (ALPModel, EigenProblemALP,

EigenProblemALPDEIM, EigenProblemALPCurv) have been mainly implemented by
the author, in collaboration with Damiano Lombardi, researcher in the REO team.
Also, the data assimilation technique on the ALP models used in Chapter 6 was
implemented in the EigenProblemALP and EigenProblemALPCurv classes.

Other contributions

The author contributed also to some general improvements. For instance, the
classes useful for the backup of the simulation have been implemented in collaboration
with Jean-Frédéric Gerbeau: the backup includes the solutions and all the objects
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useful for the complete restart of the simulation such as the previous time-step
approximations and interpolations of the solutions and other variables. Then, the
restart has been implemented: the users can restart a simulation from the state of a
previous one at a given time step using the information hold by the backup, which
is done with a users defined frequency.

Also, the Robin type boundary conditions have been implemented in collaboration
with Annabelle Collin.
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High performance computing for the

reduced basis method.

Application to natural convection

We present here the results obtained during the summer school Centre d’Été de Math-
ématiques et de Recherche Avancée en Calcul Scientifique, CEMRACS12, from July, 16th

to August, 24th 2012 at CIRM, Centre International de Rencontres Mathématiques, of

Luminy - Marseille. The main subject of CEMRACS12 has been Numerical Methods

and Algorithms for High Performance Computing and this work leads to the project

RB4FASTSIM: Bases réduites certifiées et non intrusives massivement parallèles pour la
simulation de modèle multi-physiques non-linéaires.

This project allowed me to learn and work on different aspects and techniques of

reduced basis methods. Working on this subject has been particularly important for

the implementation of the ALP method described in Chapter 6, for instance for the

manipulation of high order tensors. Furthermore, it has been interesting to face with

Feel++, a C++ parallel finite elements library quite different in its structure and

implementation from FELiScE, see Appendix A.

The results presented in this chapter lead to the manuscript

E. Schenone, S. Veys, C. Prud’Homme. High performance computing for the re-

duced basis method. Application to natural convection. ESAIM: PROCEEDINGS,

December 2013, Vol. 43, p. 255 – 273.
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HIGH PERFORMANCE COMPUTING FOR THE REDUCED BASIS METHOD.

APPLICATION TO NATURAL CONVECTION

Elisa Schenone1, 2, Stéphane Veys3 and Christophe Prud’homme4

Abstract. In this paper, we are interested in applying the reduced basis methodology (RBM) to
steady-state natural convection problems. The latter has applications in many engineering domains
and being able to apply the RBM would allow to gain huge computation savings when querying the
model for many parameter evaluations. In this work, we focus on the order reduction of the model —
in particular the handling of the non-linear terms, — as well as the design of the RBM computational
framework and the requirements on high performance computing to treat 3D models using Feel++, a
C++ open source library to solve partial differential equations. Numerical experiments are presented
on 2D and 3D models.

Introduction

Nowadays, in many application fields, engineering problems require accurate, reliable, and efficient evaluation
of quantities of interest. Often, these quantities of interest depend on the solution of a parametrized partial
differential equation where the — e.g. physical or geometrical — parameters are inputs of the model and
the evaluation of quantities of interest are outputs — e.g. average values. In a real-time or many-query
context, the reduced basis method (RBM) offers a rapid and reliable evaluation of the input-output relationship
(see [PRV+02,VPP03,VPRP03,PP04,QRM11,RHP07] for the methodology) for a large class of problems.

In this paper, we are interested in studying the RBM applied to steady-state natural convection problems
parametrized by the Grashof and Prandtl numbers, see also [VP05,Yan12]. Natural convection has applications
in many engineering domains and being able to apply the RBM would allow to gain huge computation savings
when querying the reduced model for many parameter evaluations. In this work, we focus on the order reduction
of the model — in particular the handling of the non-linear terms, — as well as the design of the RBM
computational framework and the requirements on high performance computing (HPC) to treat 3D models.
Even though the model considered remains simple with respect to industrial applications, we tackle some of
the main difficulties namely order reduction and computational costs. In this work, we underly the difficulties
linked to the resolution of non-linear problems in a reduced space. We detail a projection technique that can
be applied to any second order problem and that allows to solve it in the reduced space, without any projection
onto the FE space. To the authors knowledge, previous works on the RB applied to non-linear steady Navier-
Stokes equations concentrate on the choice of the basis and on error estimators, see [VP05,Yan12]. We propose

1 Laboratoire Jacques Louis Lions, UPMC, 4 Place Jussieu, 75005 Paris, France
2 Inria Paris-Rocquencourt, Domaine de Voluceau B.P. 105, 78153 Le Chesnay Cedex, France - elisa.schenone@inria.fr
3 Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble 1, BP53 38041 Grenoble Cedex 9, France - stephane.veys@imag.fr
4 Université de Strasbourg, IRMA UMR 7501, 7 rue René-Descartes, 67084 Strasbourg Cedex, France - prudhomme@unistra.fr

© EDP Sciences, SMAI 2013
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here a reduced order method that can be applied to any non-linear problem and that does not depend on the
choice of the basis.

In order to solve Finite Elements (FE) or Reduced Basis (RB) problems, we use an open-source library called
Feel++ for Finite Element Embedded Library and Language in C++ ( [PCD+12,Pru06]). Feel++ is a library
to solve problems arising from partial differential equations (PDEs) with standard or generalized, continuous
or discontinuous, Galerkin methods from 1D to 3D, for low to high order approximations (including geometry).
Among the many other Feel++ features, it provides a seamless programming environment with respect to
parallel computing using MPI, see Section 4.1. Feel++ enjoys an implementation of the RBM, see [DVTP13],
which can deal with a wide range of problems: elliptic or parabolic models, coercive or non-coercive models,
linear or non-linear models. It can handle coupled non-linear multiphysic problems such as the thermo-electric
problems in [VDPT12, VCD+12]. It is important that such an environment hides as many implementation
details as possible and let the user worry only about their model and the high level aspects of the FEM and
RBM.

The organisation of the paper is as follows: in section 1 we describe the 2D and 3D steady-state natural
convection models; in section 2, we present the finite element discretization and the solution strategy; in section
3, we apply the RBM and focus in particular on the non-linear terms handling; in section 4, we present the
computational framework for FEM and RBM as well as some implementation aspects; finally in section 5, we
display some numerical experiments in 2D and 3D.

1. Problem setting

We start with the description of a standard natural convection model. We consider a heated fluid in a
squared or cubical cavity, the fluid circulates towards the low temperature under the action of density and
gravity differences. We introduce the adimensionalized steady-state incompressible Navier-Stokes equations
coupled with the heat equation and we consider the problem in a two and a three dimensional tanks, see e.g.
Figure 1: find (u, p, T ) such that





u · ∇u+∇p− 1√
Gr

△u = Te2 , in Ω

∇ · u = 0 , in Ω

u · ∇T − 1√
GrPr

△T = 0 , in Ω

u = 0 , on ∂Ω

T = 0 , on Γ1

∂T

∂n
= 0 , on ∂Ω \ (Γ1 ∪ Γ3)

∂T

∂n
= 1 , on Γ3.

(1)

where Ω ⊂ R
d, d = 2, 3, u, p and T are respectively the adimensionalized velocity, pressure and temperature,

Gr and Pr are the Grashof and the Prandtl numbers, and e2 is the inward-pointing normal vector of a border
Γ2 ⊂ ∂Ω. The 2D domain consists in a rectangular tank of height 1 and length W , in the 3D case we consider
a rectangular cuboid of height 1, length W and depth 1. A heat flux is imposed on the “right” border Γ3

while the temperature is fixed on the “left” border Γ1 and the remaining walls are insulated. Similar boundary
conditions apply in 3D. No-slip boundary conditions are set for the fluid velocity in the tank.

The parameters are the Grashof and the Prandtl numbers and we consider the average temperature on Γ3

as the output. As the Grashof and/or Prandtl numbers increase the average temperature decreases, see e.g.
Figure 5(a) or Figure 6(a).
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Figure 1. Geometry of the 2D model. In 3D case, an extrusion of length 1 in z axis direction is considered.

2. Finite element formulation

In this section, we write the weak Galerkin formulations associated to (1) and we propose an iterative method
to solve this problem in case of FE space and a resolution with the RBM.

The weak formulation associated to problem (1) writes

a(u,u,v)− b(p,v) +
1√
Gr

c(u,v)− d(T,v) = 0 , ∀v ∈ V

b(q,u) = 0 , ∀q ∈ Q

e(T,u, ξ) +
1√
GrPr

g(T, ξ)− 1√
GrPr

h(ξ) = 0 , ∀ξ ∈ Ξ

(2)

where V ≡ [H1
0 (Ω)]

d, Q ≡ L2(Ω), Ξ ≡ {ξ ∈ H1(Ω) s.t. ξ|Γ1
= 0}, and we define the tri-linear forms a :

V × V × V → R and e : Ξ× V × Ξ → R as

a(u,w,v) =

∫

Ω

(w · ∇u) · v, ∀u,w,v ∈ V (3)

e(T,v, ξ) =

∫

Ω

(v · ∇T ) ξ, ∀v ∈ V, T, ξ ∈ Ξ (4)

the bi-linear forms b : Q× V → R, c : V × V → R, d : Ξ× V → R and g : Ξ× Ξ → R as

b(q,v) =

∫

Ω

q∇ · v, ∀v ∈ V, q ∈ Q (5)

c(w,v) =

∫

Ω

∇w : ∇v, ∀w,v ∈ V (6)

d(ξ,v) =

∫

Ω

ξ e2 · v, ∀v ∈ V, ξ ∈ Ξ (7)

g(T, ξ) =

∫

Ω

∇T · ∇ξ, ∀T, ξ ∈ Ξ (8)

and the linear operator h : Ξ → R as

h(ξ) =

∫

Γ3

ξ, ∀ξ ∈ Ξ. (9)
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We introduce now a FE discretization of (2). We define the discrete spaces Vh ⊂ V , Qh ⊂ Q, Ξh ⊂ Ξ and
the associated Galerkin projection of the solution (u, p, T ) of (2) by

Vh ≡ span{φ1, . . . ,φNu
} , u ≃

Nu∑

j=1

ujφj

Qh ≡ span{ψ1, . . . , ψNp
} , p ≃

Np∑

j=1

pjψj

Ξh ≡ span{ξ1, . . . , ξNT
} , T ≃

NT∑

j=1

Tjξj .

The discrete formulation of (2) now reads

Nu∑

i,j=1

uiuja(φi,φj ,φk1
) +

Nu∑

i=1

1√
Gr

uic(φi,φk1
)−

Np∑

i=1

pib(ψi,φk1
)−

NT∑

i=1

Tid(ξi,φk1
) = 0 , k1 = 1, . . . , Nu

Nu∑

i=1

uib(ψk2
,φi) = 0 , k2 = 1, . . . , Np (10)

NT∑

i=1

Nu∑

j=1

Tiuje(ξi,φj , ξk3
) +

1√
GrPr

NT∑

i=1

Tig(ξi, ξk3
)− 1√

GrPr
h(ξk3

) = 0 , k3 = 1, . . . , NT

Due to its strong non-linearities, when the Grashof or Prandtl numbers are high, a robust iterative method
is required to solve this problem. We apply here a Newton Method. For a given parameter µ = (µ1, µ2) =
(Gr−1/2, P r−1) and an initial guess (u0, p0, T 0), at each Newton sub-iteration n = 1, . . . , nmax we look for
(un+1, pn+1, Tn+1) ∈ R

Nu × R
Np × R

NT such that

J(un, pn, Tn;µ)
[
(un+1, pn+1, Tn+1)− (un, pn, Tn)

]
= R(un, pn, Tn;µ) (11)

where J = J(u, p, T ;µ) is the Jacobian matrix, R = R(u, p, T ;µ) is the residual vector.
In the case of problem (10) the terms of the Jacobian matrix can be easily calculated. For each row k1 =

1, . . . , Nu they write

Jk1i(u, p, T ;µ) =

Nu∑

j=1

uja(φi,φj ,φk1
) +

Nu∑

j=1

uja(φj ,φi,φk1
) + µ1c(φi,φk1

) , i = 1, . . . , Nu

Jk1Nu+i(u, p, T ;µ) = −b(ψi,φk1
) , i = 1, . . . , Np

Jk1Nu+Np+i(u, p, T ;µ) = −d(ξi,φk1
) , i = 1, . . . , NT

(12)

for all row k2 = Nu + k, k = 1, . . . , Np

Jk2i(u, p, T ;µ) = b(ψk,φi) , i = 1, . . . , Nu

Jk2Nu+i(u, p, T ;µ) = 0 , i = 1, . . . , Np

Jk2Nu+Np+i(u, p, T ;µ) = 0 , i = 1, . . . , NT

(13)
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and for all line k3 = Nu +Np + k, k = 1, . . . , NT

Jk3i(u, p, T ;µ) =

NT∑

j=1

Tje(ξj ,φi, ξk) , i = 1, . . . , Nu

Jk3Nu+i(u, p, T ;µ) = 0 , i = 1, . . . , Np

Jk3Nu+Np+i(u, p, T ;µ) =

Nu∑

j=1

uje(ξi,φj , ξk) + µ1µ2g(ξi, ξk) , i = 1, . . . , NT .

(14)

In the same way, each term of the residual R(u, p, T ;µ) ∈ R
Nu+Np+NT can be calculated by

Rk(u, p, T ;µ) = −a(u,u,φk) + b(p,φk)− µ1c(u,φk) + d(T,φk) , k = 1, . . . , Nu

RNu+k(u, p, T ;µ) = −b(ψk,u) , k = 1, . . . , Np

RNu+Np+k(u, p, T ;µ) = µ1µ2h(ξk)− e(T,u, ξk)− µ1µ2g(T, ξk) , k = 1, . . . , NT

Remark 2.1. For high Gr and Pr numbers the Newton method might be insufficient. We propose in that case
to use the continuation algorithm, Algorithm 1. Note however that we do not apply this continuation method in
results presented below.

Algorithm 1 Continuation strategy for high Gr and Pr numbers.

Fix parameters Gr and Pr
Fix minimal values of parameters Grmin = 1 and Prmin = 10−2

Fix tolerance tol and max number of iteration nmax for Newton
Calculate number of intermediary parameters:

N = max
{
1;max

{
⌈log(Gr/Grmin)⌉), ⌈(log(Pr/Prmin)⌉

}}

for i=1:N do

Logarithmic scale for intermediary parameters:
Gr(i) = exp{log(Grmin) + i(log(Gr/Grmin))/N)
Pr(i) = exp{log(Prmin) + i(log(Pr/Prmin))/N)

Fix Newton initial guess u0 = uold
while ||R|| ≥ tol or n ≤ nmax do

find un s.t. J(un−1)(un − un−1) = R(un−1)
end while

uold = un

end for

return Solution u = un

3. Reduced basis formulation

Let us now investigate a reduced basis formulation to solve the heat convection problem introduced above.
We first propose a general approach that can be applied to any quadratic problem affine in parameters. The
technique is based on the idea to store the more information as possible in the reduced space. So, tensors
are introduced and projected as well as matrices and vectors. After an overview on this method we deal with
application to the heat convection equations.
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3.1. Reduced Basis for a general quadratic problem

We now turn to the generalization of the RBM to a quadratic problem, in abstract form it reads

a(u, u, v;µ) + b(u, v;µ) = f(v;µ), ∀v ∈ V (15)

where the solution is u = u(µ) ∈ V , µ ∈ RQ indicates Q scalar parameters, V is an Hilbert space defined on a
domain Ω ⊂ R

d, with d = 1, 2, 3, a : V × V × V → R is a tri-linear form, b : V × V → R is a bi-linear form, and
f : V → R is a linear operator.

We first introduce the FE approximation of (15) that leads to the RB approximation. The RB formulation
of the general problem (15) applies then to (2).

Let us define a FE space VN ≡ span{v1, . . . , vN } ⊂ V , and the approximated solution of (15) as

u(µ) ≃
N∑

i=1

ui(µ)vi

then the discrete formulation of (15) writes

N∑

i,j=1

uiuja(vi, vj , vk;µ) +
N∑

i=1

uib(vi, vk;µ) = f(vk;µ), ∀k = 1, . . . ,N (16)

where the solution u = u(µ) = [u1 · · ·uN ]T ∈ R
N for each parameter µ ∈ R

Q.
In order to describe the RB approximation applied to problems such as (15), we need to define some discrete

objects. In particular, we introduce the tensor A = A(µ) ∈ R
N×N×N , the matrix B = B(µ) ∈ R

N×N , and the
vector f = f(µ) ∈ R

N defined by

(A)ijk = a(vi, vj , vk;µ), (B)ki = b(vi, vk;µ), (f)k = fk = f(vk;µ)

for i, j, k = 1, . . . ,N . Note that the tensor A can be considered as a vector of matrices, i.e. for each k = 1, . . . ,N ,
we define the matrix Ak = Ak(µ) ∈ R

N×N as (Ak)ij = (A)ijk, i, j = 1, . . . .N . Using this notation (16) now
reads

uTAku+ (Bu)k = fk, ∀k = 1, . . . ,N (17)

where (Bu)k and fk are respectively the k-th term of vectors Bu and f .
As described in Section 2 we can treat the non-linearity of the first term in (17) using a Newton Method.

For a given parameter µ ∈ R
Q, each iteration n = 1, 2, . . . of the Newton algorithm reads

Jrow(k)(u
n;µ)(un+1 − un) = Rk(u

n;µ), ∀k = 1, . . . ,N (18)

where Jrow(k)(u
n;µ) ∈ R

N and Rk(u
n;µ) are respectively the k-th row of the Jacobian matrix J = J(u;µ) ∈

R
N×N and the k-th term of the residual R = R(un;µ) ∈ R

N defined by

Rk(u
n;µ) = fk − (un)TAku

n − (Bun)k, k = 1, . . . ,N . (19)

For the sake of notation, the dependency of a, b, f , and all associated operators on the parameters µ is removed.
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Now, we just need to calculate the Jacobian matrix J = J(u;µ). We can write each of its elements as

Jki(u) =
∂a

∂ui
(u,u, vk) +

∂b

∂ui
(u, vk)−

∂f

∂ui
(vk) =

=
N∑

l=1

N∑

j=1

∂

∂ui

(
uluja(vl, vj , vk)

)
+

N∑

j=1

∂

∂ui

(
b(vj , vk)uj

)
=

=
N∑

l=1

N∑

j=1

∂

∂ui

(
ulAljkuj

)
+

N∑

j=1

∂

∂ui

(
Bkjuj

)
=

=
N∑

j=1

ujAjik +
N∑

j=1

Aijkuj +Bki. (20)

In general A is never assembled as it is of size N 3, where N is the dimension of the underlying discretization
space. If this is indeed the case for FE discretization, recall however that here we deal with reduced order
approximation which enables the computation of A explicitly. Let us then introduce a reduced space VN =
span{ϕ1, . . . , ϕN}, with N ≪ N and define the projection ũ = ũ(µ) ∈ R

Nof the solution u in VN as

ũ =
N∑

i=1

ũiϕi = ΦTu, (21)

where Φ = [ϕ1 . . . ϕN ] ∈ R
N×N , Φji = ϕ̂i,j = (ϕi, vj)VN

, the coefficients ũi are

ũi = (u, ϕi)VN
= (u,

N∑

j=1

ϕ̂i,jvj)VN
=

N∑

j=1

ujϕ̂i,j

and (·, ·)VN
is the scalar product associated to VN .

We observe that the Newton method defined in (18) is in fact generic with respect to the discrete spaces and
that we can replace VN by VN which corresponds to projections of the terms in (18) onto VN . We now prove
this statement.

Following the procedure of (21) we start by defining the projection of the source term f as f̃ = f̃(µ) ∈ R
N

f̃ = ΦT f , (22)

then the matrix B̃ = B̃(µ) ∈ R
N×N as well is the projection of B into the reduced space VN

B̃ = ΦTBΦ, (23)

and finally we denote the reduced size tensor Ã = Ã(µ) ∈ R
N×N×N . We now prove that it is in fact the

projection of the tensor A ∈ R
N×N×N in VN

Ãijk = a(ϕi, ϕj , ϕk) =
N∑

l,m,h=1

ϕ̂i,lϕ̂j,mϕ̂k,ha(vl, vm, vh) =

=

N∑

l,m,h=1

ϕ̂i,lϕ̂j,mϕ̂k,hAlmh =

N∑

h=1

ϕ̂k,h(Φ
TAhΦ)ij =

N∑

h=1

ϕ̂k,h(Ãh)ij (24)
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i, j, k = 1, . . . , N , where Ãk = ΦTAkΦ is the projection of Ak ∈ R
N×N in VN for all k = 1, . . . ,N . Let us define

the tensorial product ⋆ : RN × R
N → R as

aT ⋆ (bTAc) :=

N∑

h=1

ah(b
TAhc), ∀a,b, c ∈ R

N , ∀A ∈ R
N×N×N . (25)

Then

Ãijk =
N∑

h=1

ϕ̂k,h(ϕ
T
i Ahϕj) = ϕT

k ⋆ (ϕ
T
i Aϕj), i, j, k = 1, . . . , N. (26)

Using equations (23) and (26) we obtain the projection of the Jacobian J̃ ∈ R
N×N at each iteration n =

1, 2, . . ., and it reads

J̃ik(ũ
n;µ) = (Ãk|col(i))T ũn + (Ãk|row(i))ũ

n + B̃ik (27)

where Ãk|col(i) = [Ãjik]
N
j=1 ∈ R

N is the i-th column of the matrix Ãk for each k = 1, . . . , N and Ãk|row(i) =

[Ãijk]
N
j=1 ∈ R

N is the i-th row of the matrix Ãk for each k = 1, . . . , N . If we use the tensorial product defined
by (25) we simply write

Ãk|col(i) =
[
ϕT
k ⋆ (ϕ

T
1 Aϕi) · · · ϕT

k ⋆ (ϕ
T
NAϕi)

]

Ãk|row(i) =
[
ϕT
k ⋆ (ϕ

T
i Aϕ1) · · · ϕT

k ⋆ (ϕ
T
i AϕN )

]

i, k = 1, . . . , N . Similarly, each term of the reduced residual R̃ = R̃(ũ;µ) ∈ R
N reads

R̃k(ũ
n;µ) = f̃k − (ũn)T Ãkũ

n − (B̃ũn)k, k = 1, . . . , N. (28)

3.2. Application to heat convection problem

Let us now apply this reduction technique to the natural convection problem introduced in Section 2. The
FE formulation of each sub-iteration n = 1, . . . , nmax of the Newton Method applied to equations (2) writes

J(un, pn, Tn)
[
(un+1, pn+1, Tn+1)− (un, pn, Tn)

]
= R(un, pn, Tn) (29)

with Jacobian and residual terms defined as in Section 2. In order to apply the technique described in the pre-
vious paragraph, we introduce matrices and tensors associated to (10). We define the tensors A ∈ R

Nu×Nu×Nu

and E ∈ R
NT×Nu×NT as

A = [Aijk, i, j, k = 1, . . . , Nu], (Ak)ij = Aijk = a(φi,φj ,φk)

E = [Eijk, i, k = 1, . . . , NT , j = 1, . . . , Nu], (Ek)ij = Eijk = e(ξi,φj , ξk)

the matrices B ∈ R
Np×Nu , C ∈ R

Nu×Nu , D ∈ R
Nu×NT , G ∈ R

NT×NT as

B = [Bij , i = 1, . . . , Nu, j = 1, . . . , Np], Bij = b(ψj ,φi)

C = [Cij , i, j = 1, . . . , Nu], Cij = c(φj ,φi)

D = [Dij , i = 1, . . . , Nu, j = 1, . . . , NT ], Dij = d(ξj ,φi)

G = [Gij , i = 1, . . . , NT ], Gij = g(ξj , ξi)

and the vector H ∈ R
NT as

H = [Hi, i = 1, . . . , NT ], Hi = h(ξi).
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Then, using notation introduced in Section 3.1, the Jacobian matrix writes

J(u, p, T ;µ) =



JNl1(u) + µ1C −B −D

BT 0 0

JNl2(T ) 0 JNl3(u) + µ1µ2G


 (30)

where each element of the non-linear submatrices JNl1(u), JNl2(T ), JNl3(u) are

JNl1
ki (u) =

Nu∑

j=1

((Ak)ij + (Ak)ji)uj = ((Ak|col(i))T + (Ak|row(i)))u , k, i = 1, . . . , Nu

JNl2
ki (T ) =

NT∑

j=1

(Ek)ijTj = (Ek|row(i))T , k = 1, . . . , NT , i = 1, . . . , Nu (31)

JNl3
ki (u) =

Nu∑

j=1

(Ek)jiuj = (Ek|col(i))Tu , k, i = 1, . . . , NT

whereas each element of the residual vector of the Newton algorithm (29) writes

Rk(u, p, T ;µ) =− uTAku+Brow(k)p− µ1Crow(k)u+Drow(k)T , k = 1, . . . , Nu

Rk(u, p, T ;µ) =− (Bcol(k))
Tu , k = Nu + 1, . . . , Nu +Np (32)

Rk(u, p, T ;µ) =µ1µ2Hk − uTEkT − µ1µ2Grow(k)T

To apply efficiently the RB methodology, a key ingredient is the affine decomposition of the terms in the
Newton Method which is readily available for our problem. The Jacobian matrix writes as

J(u, p, T ;µ) =

QJ∑

q=1

θqJ(µ)J
q(u, p, T ) (33)

where for the considered example QJ = 4 and the coefficients θJ are

θ1J(µ) = µ1 =
1√
Gr

, θ2J(µ) = µ1µ2 =
1√
GrPr

, θ3J(µ) = θ4J(µ) = 1. (34)

Each sub-matrix can be described using the notation introduced above

J1(u, p, T ) =



C 0 0

0 0 0

0 0 0


 , J2(u, p, T ) =




0 0 0

0 0 0

0 0 G


 , (35)

J3(u, p, T ) =




0 −B −D
BT 0 0

0 0 0


 , J4(u, p, T ) =



JNl1(u) 0 0

0 0 0

JNl2(T ) 0 JNl3(u)


 .

As to the residual, it is readily decomposed as

R(u, p, T ;µ) =

QR∑

q=1

θqR(µ)R
q(u, p, T ) (36)
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with QR = 3 terms, we have

θ1R(µ) = µ1 =
1√
Gr

, θ2R(µ) = µ1µ2 =
1√
GrPr

, θ3R(µ) = 1 (37)

and

R1(u, p, T ) =




−Cu
0

0


 , R2(u, p, T ) =




0

0

H −GT


 , (38)

R3(u, p, T ) =




−(uTAku)
Nu

k=1 +Bp+DT

BTu

−((uTEkT )
T )NT

k=1


 .

The last step consists in projecting these equations in a reduced space. As shown for the general problem (15),
the reduced Newton method at each iteration n = 1, . . . , nmax writes

J̃(ũn, p̃n, T̃n)
[
(ũn+1, p̃n+1, T̃n+1)− (ũn, p̃n, T̃n)

]
= R̃(ũn, p̃n, T̃n) (39)

where the ∼ indicates the projection onto the reduced space VN . The computation of vectors and matrices is
done in a ”classical” way, the terms are calculated in the FE space VN and projected into the reduced one by
the matrix Φ defined by the basis functions. Each basis function is the solution of problem (10) for a fixed
parameter µ, possibly orthonormalized. For tensors A and E a different approach is needed because of their
high dimensions.

Let us consider a general tensor A ∈ RN 3

defined by a trilinear form a : V 3
N → R, Aijk = a(vi, vj , vk),

i, j, k = 1, . . . ,N as in problem (15). Its projection on a reduced space VN = span{ϕ1, . . . , ϕN}, as shown in

Section 3.1, is defined by Ã ∈ R
N3

, Ãijk = ϕT
k ⋆(ϕ

T
i Aϕj), i, j, k = 1, . . . , N . We observe that Ãijk = a(ϕi, ϕj , ϕk)

where ϕi, ϕj , ϕk ∈ VN .
Let us then define an hybrid tensor Λ ∈ R

N×N×N whose elements are

Λijk = (Λk)ij = a(vi, vj , ϕk), (40)

i, j = 1, . . . ,N , k = 1, . . . , N . We can then use this tensor to redefine the reduced tensor Ã

Ãijk = a(ϕi, ϕj , ϕk) =
N∑

l,m=1

ϕ̂i,lϕ̂j,ma(vl, vm, ϕk) =

=

N∑

l,m=1

ΦliΦmj(Λk)lm = (ΦTΛkΦ)ij . (41)

So, we proved that

Ãk = ΦTΛkΦ . (42)

That implies that we can calculate only N matrices Λk, k = 1, . . . , N , and project them into the reduced space

to obtain the reduced tensor Ã.

Remark 3.3. The pressure has been included in the RB space in our implementation: although it is a Lagrange
multiplier for the divergence free constraint in the original FE problem, it could be removed without leading to
any RB solution change as the solutions are already divergence free. We decided however to include the pressure
in the RB only for the sake of convenience during the implementation phase.
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4. Computational framework

In this section we give an overview of the computational framework and its implementation to solve the heat
convection problem introduced in Section 2. All the routines described are part of the FE or RB frameworks
of Feel++ library and available in Feel++ source code. We first introduce the main principles of Feel++,
then we illustrate the FE implementation of problem (1) and finally we introduce the associated RB framework.

4.1. Feel++ principles and design

Feel++ is a C++ library that provides a clear and easy to use interface to solve complex PDE systems.
It aims at bringing the scientific community a tool for the implementation of advanced numerical methods and
high performance computing.

Feel++ relies on a so-called Domain Specific Embedded Language (DSEL) designed to closely match the
Galerkin mathematical framework. In computer science DS(E)Ls are used to partition complexity. In Feel++
the DSEL splits low level mathematics and computer science on one side, and high level mathematics as well as
physical applications to the other side. This difference between disciplines is reflected on users and developers
tasks and allows easily improvements on both sides. Furthermore, it enables using Feel++ for teaching
purposes, solving complex problems with multiple physics and scales or rapid prototyping of new methods,
schemes or algorithms.

The DSEL on Feel++ provides access to powerful tools such as interpolation, with a simple and seamless
interface, and allows clear translation of a wide range of variational formulations into the variational embedded
language. Combined with this robust engine, it lies also arbitrary order finite elements, high order quadrature
formulas and robust nodal configuration sets. The tools at the user’s disposal grant the flexibility to imple-
ment numerical methods that cover a large combination of choices from meshes, function spaces or quadrature
points using the same integrated language and control at each stage of the solution process of the numerical
approximations.

In this paper, we use recent developments which allow to operate on large-scale parallel infrastructures. The
general strategy used is parallel data framework using MPI and thanks to DSEL the MPI communications
are seamless to the user: (i) we start with automatic mesh partitioning using Gmsh [GR09] (Chaco/Metis)
— adding information about ghost cells with communication between neighbor partition;— (ii) the Feel++
parallel data structures such as meshes, (elements of) function spaces — create a parallel degrees of freedom
table with local and global views; — (iii) and finally we use the library PETSc [BBB+12,BBE+12,BGCMS97]
which provides access to a Krylov subspace solvers(KSP) coupled with PETSc preconditioners such as Block-
Jacobi, ASM, GASM. A complete description of the Feel++ high performance framework is available in the
thesis [Cha13].

Remark 4.2. The last preconditioner is an additive variant of the Schwarz alternating method for the case
of many subregions, see [SBG04]. For each sub-preconditioners (in the subdomains), PETSc allows to choose
a wide range of sequential preconditioners such as LU, ILU, JACOBI, ML. Moreover, precondioner ASM or
GASM can be used with or without an algebraic overlap. Other parallel preconditioners are available in PETSc
but not used here. In particular we would like to mention the MUMPS direct parallel solver [ADL00]. We use
it both as solver and preconditioner for iterative solves. FieldSplit preconditioners are also of notice for the
applications we have: they allow to exploit the structure of block matrix.

4.3. Finite element model for the reduced basis framework

In this section we briefly introduce the organization of the RB framework of Feel++ (see Figure 2), and
then we see how the user deals with the FE model, needed to interface with the RB framework.

4.3.1. Reduced basis framework

The offline/online strategy developed in the RBM is implemented in the class CRBTrilinear.
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CRBAppUserModel CRBModelTrilinear

CRBTrilinear

ParameterSpace

boost::Serialization

Figure 2. Class diagram for the Feel++ RB framework. Arrows represent instantiations
of template classes.

As the offline step of the method can be very expensive, scalar products resulting from the projection of
matrices or vectors on the RB are saved in a database. To save objects in the database, we use the concept of
”serialization” introduced by the set of libraries for the C++ programming language Boost.

The class CRBApp is the driver for the RB framework. The class ParameterSpace manages the construction
of the parameter space. First, if no existing database is found the offline step of RBM is run in order to build
a basis, while if a database already exists the basis can be enriched or the algorithm passes to the online step.

To solve a linear or nonlinear problem with RB method in Feel++ the user has to define in his model the
variational formulation of the problem. At the state of the art, the variation form must be defined in accord
with the affine decomposition, future revisions of the code will introduce an automated affine decomposition.
Note that using Feel++ the user model can be as well a 1D, 2D or 3D model. It is important to keep
in mind that to interface with the RB framework the user has to provide only the FE model (i.e.parameter
space, geometry, variational formulation), it corresponds to UserModel in Figure 2 whose interface derives from
CRBModelTrilinear.

The Feel++ RB framework support parallel architectures using the MPI technology. As in the FE frame-
work an automatic mesh partitioning using Gmsh (Chaco/Metis) is computed, while every data associated to
the reduced basis (scalars, vectors and dense matrices, parameter space samplings,...) are duplicated on each
processor. However note that since the mesh is partitioned according the number of processors, finite element
approximations and thus the reduced basis functions are in fact spread on all processors. Currently the basis
functions are saved in the RB database with their associated partitioning. If they are required for visualization
purposes or reduced basis space enrichment, the same data partition as in the initial computations must be
used. Another particular attention must be paid to parameter space sampling generation: we must ensure
that all processors hold the same samplings. To this end, there are generated in a sequential way by only one
processor and then broadcasted to other processors.

4.3.2. Finite element model

Let us illustrate the implementation of the FE solution strategy for the problem (1) using Feel++, we give
the main ideas of the solver function, with the continuation algorithm described above, and the computation of
Newton method terms.

In Listing 1, we display a snippet of code showing the code describing for a given µ, the solution process
to retrieve (u(µ), p(µ), T (µ)): (i) compute the coefficients of the affine decomposition; (ii) assemble the
linear terms; (iii) solve the non linear problem where updateJacobian and updateResidual are computing
the jacobian and residual respectively during the Newton iterations. Note that updateJacobian need not be
called at every iterations. Moreover the code is seamless with respect to geometrical dimension (2D or 3D) and
parallel computing.

Listing 1. Implementation of algorithm 1
void solve( parameter_type const& mu, element_ptrtype& T )
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{

this ->computeThetaQ( mu ); // Update θ coefficients

this ->update( mu ); // Update affine decomposition of the linear terms

// nonlinear iterative solver , solve for U=(u, p, T )
backend()->nlSolve( _jacobian=updateJacobian ,

_residual=updateResidual ,

_solution=U );

}

As mentioned earlier, at each Newton iteration, the Jacobian matrix and the residual vector are updated. We
start with the linear terms which can be precomputed, see Section 3.2. We show, as an example, the Jacobian
sub-matrices assembly. The vector thetaAq[q] represents the coefficients θJ defined in (34), while the matrices
Aq[0], Aq[1], Aq[2] are respectively the matrices J1, J2 and J3 defined in (35). The assembly of those matrices
is displayed in Listing 2.

Listing 2. Jacobian Linear terms assembly
// Definition of mesh and FE space Xh = Vh ×Qh × Ξh

mesh_ptrtype mesh;

// N polynomial order

Vh = Pch <N+1, Vectorial >( mesh );

Qh = Pch <N>( mesh );

Xih = Pch <N+1>( mesh );

Xh = Vh * Qh * Xix;

// Definition of functions

element_type U( Xh , "u" );

element_type V( Xh , "v" );

// Velocity function and test function

element_0_type u = U. element <0 >(); element_0_type v = V. element <0 >();

// Pression function and test function

element_1_type p = U. element <1 >(); element_1_type q = V. element <1 >();

// Temperature function and test function

element_2_type t = U. element <2 >(); element_2_type s = V. element <2 >();

// 1) Fluid equations

// 1.1) Velocity diffusion: Aq[0] = C =
∫

Ω
∇u : ∇v

form2(_test=Xh ,_trial=Xh ,_matrix=Aq[0] ) =

integrate( _range=elements(mesh), _expr=trace(gradt(u)* trans(grad(v))) );

// 1.2) Heat diffusion: Aq[1] = G =
∫

Ω
∇t · ∇s

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[1] ) =

integrate( _range=elements( mesh ), _expr=gradt(t)* trans(grad(s)) );

// 1.3) Pressure -velocity terms: Aq[2] = -B =
∫

Ω
−p ∇ · v

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[2] ) =

integrate ( _range=elements( mesh ), _expr= - idt(p) * div(v) );

// Aq[2] += B^t =
∫

Ω
q ∇ · u

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[2] ) +=

integrate ( _range=elements( mesh ), _expr=divt(u) * id(q) );

// 2) Temperature equation

// 2.1) Buyoancy forces: Aq[2] += D =
∫

Ω
t e2 v

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[2] ) +=

integrate( elements( mesh ), -idt(t)*( trans(vec(cst(0.),cst (1.0)))* id(v) ) );

// B.C. ...

form2(Xh,Xh,M) builds a bilinear form Xh × Xh → R whose algebraic contribution are stored in the matrix
M. We remark that the finite element space Xh used to solve the problem is a composite space: Vh is a finite
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element space of degree 3 for vectorial functions (velocity), Qh is a scalar function space of degree 2 (pression)
and Xih a scalar space of degree 3 (temperature). Again this is seamless for the user with respect to parallel
computing and quite expressive with respect to the mathematical formulation.

Finally we add the contribution of the non-linear terms to the jacobian. The main operations required to
this update are showed in Listing 3. We remark that for a given µ the linear part of the jacobian stored in Jlin

does not need to be updated, its implementation is computed once for all using the code displayed in Listing 2.

Listing 3. Non-linear terms assembly in jacobian
void Convection :: updateJacobian( const vector_ptrtype& X, sparse_matrix_ptrtype& J)

{

// Definition of mesh and FE space Xh, and definition of functions

//are done in the same way as previously

Aq[3][0]-> zero (); // initialization

// 1) Fluid equations - fluid convection derivatives:

// Aq[3] = u^T*A + A*u =
∫

Ω
(u ∇ · vi vj + vi ∇ · u vj)

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( _range=elements(mesh), trans( id(v) )*( gradv(u) )*idt(u) );

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( _range=elements(mesh), trans( id(v) )*( gradt(u) )*idv(u) );

// 2) Temperature equation - heat convection:

// Aq[3] += u^T*E + E*T =
∫

Ω
(u · ∇(si)sj + ui · ∇(T )sj)

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( elements(mesh), grad(s)*( idv(t)*idt(u) ) );

form2( _test=Xh ,_trial=Xh ,_matrix=Aq[3] ) +=

integrate ( elements(mesh), grad(s)*( idt(t)*idv(u) ) );

// B.C. ...

// Jacobian = linear terms of Affine Decomposition + Nonlinear term Aq[3]

J->zero (); J->addMatrix (1.,Jlin); J->addMatrix (1.,Aq[3]);

}

5. Numerical Experiments

We present some numerical results: first we compare flow profiles obtained using FEM and RBM, and
associated errors, in both 2D and 3D cases. Then, computational times and performances varying model
parameters are shown in both FEM and CRB cases. Finally, we compare the average temperature obtained in
both cases.

Thanks to the Feel++ framework, the finite element and reduced basis models are available both in 2D
and 3D.

Regarding the 2D case the FEM simulations refer to 6 × 104 degrees of freedom while in the 3D tank we
have more than 2 × 104 dof. We consider polynomial basis functions of degree 3 for velocity and temperature
variables, and degree 2 for pressure variable. Continuation algorithm (see Algorithm 1) is not used for FEM
simulation and RBM as well, a simple Newton Method without parameters continuation is run. The RB used
for all results presented here contains 28 elements non orthonormalized. The basis functions are solutions of
the FE problem evaluated for Prandtl number fixed to 1 while Grashof number varies randomly from 1 to 106.
The parameter varies according to an uniform distribution law, better solutions could be obtained with some a
posterior error estimators. Each 2D simulation is run in parallel on 10 processors, whereas each 3D simulation
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is run on 24 processors. In the 2D case we use the solver GMRES and the Additive Schwarz Method (GASM)
as preconditioner, whereas the preconditioner LU is used in the 3D case.

5.1. Flow profiles

First we look at the solutions obtained with RBM and compare them with the FEM ones. We investigate
the relative error between the two resolutions for increased turbulent flow, i.e. high parameters.

Figure 3 shows 2D results for different Grashof values (1, 103, 105). On the left there are RBM solutions,
we show the velocity magnitude (top) and temperature (bottom) profiles. We observe faster flow for increased
Grashof values as expected. On the right, relative errors for velocity (top) and temperature (bottom) are shown.
As the flow is more turbulent for increasing parameters, the relative errors increase as well. Furthermore, errors
is at least 2× 10−3 for velocity magnitude and 10−2 for temperature profile, which are satisfactory values (we
do not consider values for Gr = 1 because of it corresponds to a parameter used to build the basis, the error is
as expected 10−16).

We analyze the error in 2D and 3D simulations, respectively Figures 5(c) and 6(c), increasing Grashof values.
We observe in both cases that the error increases for Grashof between 1 and 103 and it stabilizes for values
greater than 103. Also, we remark that the solution in a finite 3D tank for high Grashof value represents a flow
with a complex pattern (Figure 4).

5.2. Performances

We now compare the RBM computational gain with respect to FEM. Figures 5(b) and 6(b) show the com-
putational times for increased Grashof in both FEM and RBM cases, respectively in the 2D and 3D tanks. In
both cases, we show the log-log plot of the computational times (in seconds) vs Gr.

As expected the FEM solution costs is several order more expensive than the RBM one. In particular, we
have a factor 6 × 102 for small Grashof and we reach a factor 1.5 × 103 for high Grashof in 2D case, and a
factor from 103 to 104 occurs in 3D case. Furthermore, we observe that the computational time increases in
parameters in the case of FEM, while it is almost constant in RBM computations. In both 2D and 3D cases we
find few parameters that lead to a higher computational time in RB, this is due to increased number of online
Newton iterations, however it still yield good results when inspecting the average temperature, see Figure 5(a)
and Figure 6(a).

In Figures 5(b) and 6(b), the computational time comparison between FEM and RBM does not include the
offline step of the RBM. The offline step cost is not included in the computational time comparison. If we
include the offline cost in the comparison, the RB method becomes competitive for a number of queries slightly
greater than the dimension N of the RB space since the cost of the reduction computation are not marginal, in
particular it scales as N3 due to the non-linear terms.

We remark that we do not apply the continuation algorithm neither for FEM nor for RBM. However it may
become necessary for FEM resolution in case of non-convergence of the Newton solver, for higher parameter
values or more complex geometry. As initial guess of the Newton Algorithm used to solve the online RB
problems, the nearest known solution is used, whereas in FEM the initial guess is taken as the zero — although
we could also use the nearest basis function as initial guess.

5.3. Outputs

To conclude we look at the average temperature on boundary Γ3 = Ω̄ ∩ {x = 1} (see Figure 1 for the 2D
tank)

Tav =

∫

Γ3

Tdσ. (43)

This quantity decreases with increasing Grashof because of faster fluid flows that remove the heat for Γ3.
In Figures 5(a) and 6(a), respectively 2D and 3D cases, the logarithmic output curves show that the RBM
solutions follow the same behavior as in the FEM case. These results confirm the good approximation obtained
with RBM in both 2D and 3D simulations.
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(a) Gr=1.e+00

(b) Gr=1.e+03

(c) Gr=1.e+05

Figure 3. Comparisons of FEM and RBM solutions for Gr = (1, 103, 105) and Pr = 1. On
the left velocity flow magnitude (top) and temperature profile (bottom) for RBM solutions. On
the right velocity error (top) and temperature error (bottom).
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(a) mesh partitioning (24 processors)

(b) temperature isosurfaces (c) Stream lines

Figure 4. 3D computations for Gr = 1e7, P r = 0.1
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Figure 5. 2D computations for Gr ∈ [1; 1e6], Pr = 1.
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Figure 6. 3D computations for Gr ∈ [1; 1e6], Pr = 1.

6. Conclusions and perspectives

We have presented a mathematical and computational treatment of the RBM applied to steady-state natural
convection. This can be readily applied to other types of problems with quadratic non-linearities. The proposed
method gives results that are accurate and efficient. In particular, the efficiency of this technique is remarkable
in the case of flows with complex patterns both in 2D and 3D. From a framework point of view, the (offline)
database handling raises interesting challenges when dealing with large parallel data.

In terms of perspectives, a posteriori error estimation is a first step not only to assess the quality of the RB
approximation but also to guide the RB space construction using greedy strategies [VP05, Yan12, VPRP03].
More complex applications can be considered in particular including geometrical parameters. However it is
foreseen that we may require hp-RBM approximations, see e.g. [EHKP12]. Finally, we dealt with the steady-
state of the natural convection flow, the transient state is also of interest but requires much more involved
mathematical and computational framework, see e.g. [Yan12].
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