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Chapter 1

Introduction

This chapter introduces the general context of domain decomposition methods.
The main contributions and the outline of this thesis are presented respectively in
section 1.3 and in section 1.4. The publications are available in section 1.5. We briefly
present in section 1.6 the finite element library FEEL++ used for implementation of
numerical methods and preconditioners studied in this work. The notion of scalability
is introduced in section 1.7.

Ce chapitre introduit le contexte général des méthodes de décomposition de do-
maine. Les principales contributions et le plan de cette thése sont présentés respective-
ment dans la section 1.3 et dans la section 1.4. Les publications sont disponibles dans
la section 1.5. Nous présentons briévement la librairie élément fini FEEL++ utilisée
pour la mise en oeuvre des méthodes numériques et préconditionneurs étudiés dans
ce travail. La notion de scalabilité est introduite dans la section 1.7.
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Chapter 1. Introduction

1.1 English version

In scientific computing, tremendous progress in the design and availability of parallel com-
puters over the last decades have allowed large scale simulations for complex scientific and
engineering applications. The investigation of efficient and robust numerical methods adapted
to modern computer architectures is a major challenge.

For solving very large sparse linear system, direct methods [ ; ] or iterative
methods [ ] can be used. Direct methods are robust and accurate for general nonsingular
problems, but they scale poorly with the problem size in terms of time and memory complex-
ity, especially for problems resulting from the discretization of Partial Differential Equations
(PDEs) in three-dimensional space. In contrast, iterative methods require less storage and
fewer operations than direct methods, but their performance depends strongly on the spectral
properties of the linear system. The preconditioning techniques can improve the efficiency
and the robustness of these methods.

The term preconditioning refers to transformation of the original linear system into an-
other linear system with the same solution, but with more favorable properties for iterative
solver. A preconditioner is a matrix that affects such a transformation. In general, the pre-
conditioning aims to improve the spectral properties of the matrix associated with the linear
system.

Domain decomposition methods are one of most common paradigms to compute the so-
lution of large scale problems arising from the discretization of Partial Differential Equations
(PDEs) in many applications, for example multiscale simulations on massively parallel com-
puter architectures. They combine the strength of both direct and iterative methods, known
as hybrid methods, for constructing scalable and robust preconditioners. The central idea of
these methods consists in reducing the large problem into a collection of smaller problems,
each of which is easier to solve computationally than the original problem, and most or all
of which can be solved independently and concurrently. Domain decomposition methods can
be categorized mainly into two classes, namely overlapping methods and nonoverlapping or
iterative substructuring methods.

In this thesis we investigate a numerical and computational framework for domain de-
composition methods (overlapping and nonoverlapping). In the class of overlapping domain
decomposition methods, we are interested in Schwarz methods [ ] introduced by H. A.
Schwarz [ ] in the original form, known as alternating Schwarz method, to establish the
existence of a solution to the Poisson problem with prescribed boundary conditions in a com-
plex domain. In the class of nonoverlapping domain decomposition methods, we focus mainly
on the mortar finite element method, a nonconforming approach of domain decomposition
methods introduced in [ ]. The main feature of this method is that the continuity
condition at the interfaces between subdomains is ensured in the weak form, i.e. the jump

Domain Decomposition 2 A. Samaké



Chapter 1. Introduction

of the finite element solution on the interfaces should be L2-orthogonal to a chosen finite
element space on the interfaces. Thus, it allows to combine different discretizations and/or
methods in different subdomains, which considerably increases the flexibility of this method.
We deal with two mortar finite element formulations: the first one is the original formulation
[ ] in which the weak matching condition is directly taken into account in the approx-
imation space. This formulation, known as the mortar method with constrained space, leads
to a symmetric, positive and definite system allowing the use of efficient preconditioners. In
the second formulation, introduced in [ ], the weak matching condition is achieved by
introducing a Lagrange multiplier. The Lagrange multiplier space should be chosen such that
the Ladyzhenskaya-Babuska-Brezzi inf-sup condition is satisfied. The algebraic linear system
arising from this formulation is of saddle-point type, symmetric and indefinite. For such for-
mulation problems, iterative methods are known to be less efficient than for symmetric posi-
tive definite systems, see [ ]. The efficiency of the iterative method to solve the algebraic
system with a large scaled matrix depends heavily on the preconditioner used.

This thesis considers the substructuring approach, proposed in [ ] in the framework
of conforming domain decomposition and extended to nonconforming domain decomposition
and a general class of finite elements of any order in [ ; ; ]. This approach

consists in considering a suitable splitting of the nonconforming discretization space in terms
of “interior”, “edge” and “vertex” degrees of freedom and then using the related block-Jacobi
type preconditioners. In the same class of domain decomposition methods, we briefly discuss
three-field method introducing in [ ] and its numerical implementation.

1.2 Version francaise

En calcul scientifique, d’énormes progres dans la conception et la disponibilité d’ordina-
teurs paralléles au cours des derniéres décennies ont permis la réalisation de grandes simu-
lations pour des applications scientifiques et d’ingénierie complexes. L’investigation de mé-
thodes numériques efficaces, robustes et adaptées aux architectures modernes d’ordinateurs
est un défi majeur.

Pour résoudre un trés grand systéeme linéaire creux, les méthodes directes [ ; ]
ou les méthodes itératives [ ] peuvent étre utilisées. Les méthodes directes sont robustes et
précises en général pour des problémes non singuliers, mais elles passent mal a I’échelle avec la
taille du probléme en termes de complexité en temps et en espace mémoire, en particulier pour
des problémes provenant de la discrétisation d’Equations aux Dérivées Partielles (EDPs) en
trois dimensions d’espace. En revanche, les méthodes itératives nécessitent moins de stockage
en mémoire et moins d’opérations que les méthodes directes, mais leur performance dépend
fortement des propriétés spectrales du systéme linéaire. Les techniques de préconditionnement
peuvent améliorer 'efficacité et la robustesse de ces méthodes.

Le terme préconditionnement se référe a la transformation du systéme linéaire original

Domain Decomposition 3 A. Samaké



Chapter 1. Introduction

en un autre systéme linéaire ayant la méme solution, mais avec des propriétés plus favorables
pour le solveur itératif. Un préconditionneur est une matrice qui applique une telle transforma-
tion. En général, le préconditionnement vise a améliorer les propriétés spectrales de la matrice
associées au systeme linéaire.

Les méthodes de décomposition de domaine sont un des paradigmes les plus courants pour
calculer la solution de tres grands problemes provenant d’applications différentes, par exemple
les simulations multi-échelles sur des architectures massivement paralleles. L’idée centrale de
ces méthodes consiste a réduire le grand probleme en une collection de petits problémes dont
chacun est plus facile a résoudre que le probléme original. Les méthodes de décomposition de
domaine peuvent étre catégorisées principalement en deux classes, a savoir les méthodes de
décomposition de domaine avec recouvrement et celles sans recouvrement, aussi appelées les
méthodes de sous-structuration.

Dans cette these nous étudions un framework numérique et de calcul pour les méthodes
de décomposition de domaine (avec et sans recouvrement). Dans la classe des méthodes de de-
composition de domaine avec recouvrement, nous nous intéressons aux méthodes de Schwarz
[ ] introduite par H. A. Schwarz [ ] dans la forme originale connue sous le nom de
I'algorithme de Schwarz alterné, afin d’étudier I'existence d’une solution au probleme de Pois-
son homogene avec des conditions aux limites imposées dans un domaine de calcul complexe.
Dans la classe des méthodes de décomposition de domaine sans recouvrement, nous nous fo-
calisons principalement sur la méthode mortar (aussi appelée la méthode des éléments finis
joints), une méthode de décomposition de domaine non conforme introduite dans [ ].
La principale attractivité de cette méthode est que la condition de continuité aux interfaces
entre sous-domaines est traitée sous forme faible, c’est a dire le saut de la solution élément
fini aux interfaces doit étre L?-orthogonal a un espace élément fini défini sur les interfaces.
Cela permet de combiner des discrétisations différentes et/ou des méthodes d’approximation
différentes dans des sous-domaines différents, ce qui accroit considérablement la flexibilité de
cette méthode. Nous traitons deux formulations mortar : la premiere est la formulation mor-
tar originale [ ] dans laquelle la condition de continuité faible est directement prise en
compte dans 'espace d’approximation. Cette formulation connue sous le nom de la formula-
tion mortar avec espace contraint conduit a un systéme linéaire symétrique, défini et positif
permettant I'utilisation des préconditionneurs efficaces. Dans la seconde formulation mortar
introduite dans [ ], la condition de continuité faible est réalisée en introduisant un mul-
tiplicateur de Lagrange. L’espace de multiplicateur de Lagrange doit étre bien choisi de telle
sorte que la propriété inf-sup de Ladyzhenskaya-Babuska-Brezzi soit satisfaite. Le systeme
algébrique linéaire provenant de cette discrétisation est de type point-selle, symétrique et in-
défini. Pour de tels probléemes, les méthodes itératives sont connues pour étre moins efficaces
que pour les systémes symétriques, définis et positifs, voir [ ]. L’efficacité de la méthode
iterative pour résoudre un systéme algébrique linéaire de grande taille depend fortement du
préconditionneur utilisé.
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Cette these considére 'approche par sous-structuration proposée dans [ ] dans le
framework sur les méthodes de décomposition de domaine conformes et étendue a celles
non conformes et a une classe générale d’éléments finis d’ordre arbitraire dans [ ; ;

]. Cette approche consiste a considérer une décomposition appropriée de ’espace de
discrétisation non conforme en termes de degrés de liberté “interieurs”, ceux sur les “arétes”
et ceux sur les “sommets” et a utiliser des préconditionneurs de type bloc-Jacobi associés.
Dans cette méme classe de méthodes de décomposition de domaine sans recouvrement, nous
discutons briévement de la méthode three-field introduite par F. Brezzi in [ ] et de son
implémentation numérique.

1.3 Contributions

This thesis aims at the development and the analysis of a generic computational framework for
domain decomposition methods and preconditioners in FEEL++ programming environment.
The domain decomposition methods surveyed in this work include the mortar finite element
method, Schwarz methods and three-field method. This thesis contributes to the field of high-
performance computing by implementing these methods and preconditioners on massively
parallel computer architectures.

1.4 OQOutline

The body of this dissertation is organized into three parts plus the appendices collecting the
essential results used in this thesis. The part I (Chapters 2 to 5) investigates a wide range of
domain decomposition methods with a special emphasis placed on mortar element method.
The part II (Chapters 6 to 7) develops a generic and flexible implementation framework for
various numerical methods described in part I. The part III (Chapters 8 to 9) summarizes the
numerical experiments supporting the theoretical results and the scalability property of the
parallel numerical algorithms discussed in this work.

Part1

Chapter 2 reviews domain decomposition methods including overlapping methods and sub-
structuring methods. In section 2.1, we recall the Schwarz additive and multiplicative al-
gorithms with different artificial boundary conditions namely Dirichlet-Dirichlet, Dirichlet-
Neumann, Neumann-Neumann and Robin-Robin. We introduce in section 2.2 the general
concept of mortar element method, specially the hybrid formulation using Lagrange multipli-
ers and the formulation with constrained space. In section 2.3, we handle the basic formulation
of the three-field method. Finally, we remind The FETI method in section 2.4.

Chapter 3 is devoted to the mortar element method with constrained space for two-dimensional
problems. We first introduce the model problem and the basic notations in section 3.1. We
define the functional settings in section 3.2. The discretization aspects including the technical
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tools required for the construction and the analysis of the substructuring preconditioners for
this method are presented in section 3.3. We remind the discrete formulation and the mor-
tar correction operator respectively in section 3.5 and in section 3.6. Finally, we analyze the
convergence properties supporting the theoretical estimates in section 3.7.

Chapter 4 deals with the substructuring preconditioners for mortar element method in
two-dimensional space. We consider the substructuring approach in section 4.1. We investi-
gate in section 4.2 the vertex block of the preconditioner and emphasize its fundamental role
for the good scaling properties of the preconditioners. The algebraic forms for the realization
of the preconditioners and discrete Steklov-Poincaré operator are available in section 4.3.

Chapter 5 studies the mortar element method with Lagrange multipliers. We introduce
the hybrid formulation for mortar element method in section 5.1. A special computational
framework for this method is discussed in section 5.2. Finally, we analyze the convergence
properties in accordance with the theoretical results.

Part 11

Chapter 6 covers the implementation aspects of the substructuring preconditioners described
in Chapter 4. In section 6.1, we define some basic ingredients required for FEEL++ imple-
mentation. The section 6.2 emphasizes the crucial role of the linear interpolation operator for
domain decomposition framework in FEEL++. We discuss the geometric and algebraic frame-
work for the realization of the preconditioners in section 6.3. The code design illustrating the
robustness and the flexibility of our parallel codes is summarized in section 6.6.

Chapter 7 develops an implementation framework for Schwarz methods, three-field method
and mortar element method with Lagrange multipliers. In section 7.1, we discuss two com-
munication approaches for Schwarz methods in FEEL++, namely explicit and seamless com-
munications. The section 7.2 briefly presents the assembly of jump matrices in the classical
three-field formulation. The section 7.3 handles a special parallel implementation of mortar
element method with Lagrange multipliers in 2D and 3D based on the duplication of data
at the interfaces between subdomains, in order to reduce the interprocess communications.
The FEEL++ codes showing the flexibility of the library and in particular its ability to handle
domain decomposition methods are reported.

Part III

Chapter 8 summarizes the numerical results for substructuring preconditioners for ~-p mortar
element method, introduced and analyzed in Chapter 4. We define the problem settings and
the computational platforms for all numerical simulations achieved. In section 8.1, we con-
sider the conforming domain decompositions using linear elements and high-order elements.
We solve the Schur complement system, the algebraic representation of the Steklov-Poincaré
operator defined in Chapter 3, preconditioned by the substructuring preconditioners proposed
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in Chapter 4. The numerical results for the examination and validation of the mathematical
properties of substructuring preconditioners are reported. In section 8.2, we run the same
set of experiments carried out in section 8.1, but by considering nonconforming domain de-
compositions. The section 8.3 is dedicated to the large scale simulations with Discontinuous
Galerkin coarse preconditionner. The section 8.4 analyzes the performance and scalability of
the parallel implementation on large scale computer architectures.

Chapter 9 analyzes a framework for basic numerical results for Schwarz methods, three-
field method, and mortar element method with Lagrange multipliers. Some numerical ex-
periments for Schwarz methods using explicit and seamless communication approach are pre-
sented in section 9.1. A few tests for three-field method in two and three dimensional space are
given in section 9.2. The section 9.3 is centered on the scalability and performance analysis
of a parallel implementation of mortar element method with Lagrange multipliers in three-
dimensional space.
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“Implementation of Schwarz methods using Feel++”. In : 21st International Con-
ference on Domain Decomposition Methods. Published. 2012.
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1.6 FEEL++ Library

The numerical implementation of various domain decomposition methods and preconditioners
presented in this thesis has been done using FEEL++ library. We present in this section a short
extract from [ ] dedicated to FEEL++.

FEEL++, Finite Element Embedded Language in C++ | ; ; ] is a C++ library
for partial differential equation resolution using generalized Galerkin methods such as the
finite element method, the h-p finite element method and the spectral element method. It
aims at bringing the scientific community a tool for the implementation of advanced numerical
methods and high-performance computing.

Two main aspects in the design of the library are to (i) have the syntax, semantics of the
library very close to mathematics, and (ii) have a small manageable library that makes use
wherever possible of established libraries (for linear system solves, for instance). While the
first point at creating a high-level language powerful enough to describe solution strategies in
a simple way, the second aspect with the maintenance of the code delegating some procedures
to frequently maintained third party libraries.

FEEL++ relies on a so-called domain specific embedded language (DSEL) designed to closely
match the Galerkin mathematical framework. In computer science, DS(E)Ls are used to parti-
tion complexity and in our case the DSEL splits low level mathematics and computer science
on one side leaving the FEEL++ developer to enhance them and high-level mathematics as well
as physical applications to the other side which are left to the FEEL++ user. This enables us-
ing FEEL++ for teaching purposes, solving complex problems with multiple physics and scales
or rapid prototyping of new methods, schemes or algorithms. The goal is always to hide
(ideally all) technical details behind software layers, providing only the relevant components
required by the user or programmer and enforce the mathematical language computation-
nally between the users be they physicists, mathematicians, computer scientists, engineers or
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students. The DSEL approach has advantages over generating a specific external language :
(i) interpreter/compiler construction complexities can be ignored, (ii) libraries can concur-
rently be used which is often not the case of specific languages which would have to also
develop their own libraries and library system, (iii) DSELs inherit the capabilities of the host
language (e.g. C**).

The DSEL on FEEL++ provides access to powerful tools, yet simple and seamless interface,
such as interpolation and the clear translation of a wide range of variational formulations into
the variational embedded language. Combined with this robust engine, lie also state of the
art arbitrary order finite elements including handling high-order geometrical approximations,
high-order quadrature formulas and robust nodal configuration sets. The tools at the user’s
disposal grant the flexibility to implement numerical methods that cover alarge combination of
choices from meshes, function spaces or quadrature points using the same integrated language
and control at each stage of the solution process the numerical approximations.

FEEL++ uses advanced C+ (e.g. template meta-programming) and in particular the latest
standard C++ 11 that provides very useful additions such as type inference auto and decltype
keywords. FEEL++ also uses the essential Boost C++ libraries [ ]. The data structures of
FEEL++ can be customized with respect to MPI communicators. The linear algebra is handled
by PETSc library [ ].

1.7 Scalability Analysis

In the context of High-Performance Computing (HPC), the scalability expresses the gain of
solving large problems on parallel computers. The performance of a parallel computer depends
on a wide number of factors [ ] affecting the scalability of a parallel algorithm.

From [ ], some basic metrics affecting the scalability of a parallel computer for a
parallel algorithm are given by :

« Machine size — the number of processing units employed in a parallel computer. The
computational power is a function of machine size.

« Clock rate — the clock rate refers to the frequency of a CPU.

« Problem size — the amount of computational workload used for solving a given problem.
The problem size is directly proportional to the sequential execution time.

« CPU time — the CPU time (in seconds) elapsed in the execution of a given program on
a parallel computer with n processing units. It is the parallel execution time.

+ I/O demand — the input/output demands when running the program.

+ Memory capacity — the amount of main memory (in bytes) used in the execution of a
program. The memory demand is affected by the problem size, the algorithms and the
data structures used.
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« Communication overhead — the amount of time elapsed in interprocess communica-
tions, synchronization and remote memory access.

« Computer cost — the total cost of hardware and software resources required to carry out
the execution of a program.

The Scalability analysis expresses the ability of a given parallel algorithm to best exploit a
parallel computer architecture. The notion of scalability is related to the notions of speedup
and efficiency. We introduce below the notion of strong scalability (speedup) and the weak
scalability (efficiency).

1.7.1 Speedup

The measure of speedup was used to determine the quality of parallel algorithm running on a
parallel computational platform. The speedup is defined as the time to run a problem of size
n on one processor, divided by the time it takes to run the same problem using p processors.
Generally speaking, let 7 be the sequential execution time on one processor and 7, be the
parallel execution time on p processors. The speedup is written

Sp == Tl/Tp.

Note that in speedup analysis, the problem size remains fixed but the number of processing
units are increased.

1.7.2 Efficiency
The efficiency is defined by

Ep = p/p-

The best possible efficiency is £, = 1. It is reached when the speedup is linear, i.e. S, = p.
Note that in efficiency analysis, the problem size assigned to each core remains constant and
additional processing units are used for solving a larger problem.
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Chapter 2

Review of Domain Decomposition
Methods

A Generic numerical framework for domain decomposition methods is studied.
Schwarz methods, mortar finite element method, three-field method and feti method
are recalled respectively in section 2.1, section 2.2, section 2.3 and section 2.4. We
provide a convergence analysis for Schwarz, three-field and mortar element methods
with respect to mesh size and polynomial order using FEEL++.

Un framework générique pour les méthodes de décomposition de domaine est
étudié. Les méthodes de Schwarz, la méthode des éléments finis mortar, la méthode
three-field et la méthode feti sont rappelées respectivement dans la section 2.1, sec-
tion 2.2, section 2.3 et dans la section 2.4. Nous présentons une analyse de convergence
pour les méthodes de Schwarz, la méthode three-field et la méthode des éléments finis
mortar en fonction de la taille caractéristique du maillage et de I’ordre polynomial
en utilisant FEEL++.
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2.1 Schwarz Methods

The original form of Schwarz iterative procedure, known as the alternating Schwarz method
was introduced by H. A. Schwarz [ ] to establish the existence of a solution to the elliptic
boundary value problem (2.1) on the union of two subdomains €2 = €2y U (), as in FIGURE 2.1.

—Au=f in Q, u=g on 0. (2.1)

FIGURE 2.1 : Overlapping partition for alternating Schwarz method

This method begins by selecting an initial guess u3, and then define iteratively for n > 0,
two sequences u} ™ and u ™! solutions of

—Autt = f in (4 —Auptt = f in {2y
u?“ =g on 0% NN and USH =g on 9, NI (2.2)
u?ﬂ =uy, ondN Qy ug+1 = u?—H on 00 N

We present a generic computational framework for the extension of the algorithm (2.2) for
more general cases including overlapping and nonoverlapping Schwarz methods (conforming
and nonconforming grids). The framework main objectives consist in (i) reproducing and
comparing easily several of methods of the literature (ii) developing a teaching and research
programming environment (iii) providing the methods at the functional level or at the alge-
braic level.

2.1.1 Schwarz Methods at the Continuous Level

Let 2 be a domain of R?, d = 1,2, 3, and 952 its boundary. We look for u the solution of the
problem :

Lu=f in Q, u=g¢g on 09 (2.3)
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where L is a linear partial differential operator, and f and g are given functions. Let §2;(i =
1,...,N, NeN, N > 2) the subdomain partitions of 2 such that Q) = Ufilﬁi and I';; =
08 N € the interface between neighboring subdomains (2; and Q;. Let Vg, be the set of
neighboring subdomains of 2;. In the case of nonoverlapping subdomains, I';; = I'j;, We
are interested in the overlapping and nonoverlapping Schwarz methods [ ; ] as
solver with the general nonmatching grids and arbitrary number of subdomains. The generic
Schwarz additive algorithm is given by (2.4) where u? is knownon I';;, j € Vo,, k > 1 the
Schwarz iteration index and C; is a partial differential operator.

Luf = fin Q;, wf=gon 00\ Lij, Couf = Ciu;?_lon Ly (2.4)

The algorithm (2.4) extends easily to the multiplicative version of Schwarz methods and
to different types of artificial boundary conditions such as Dirichlet-Dirichlet (DD), Dirichlet-
Neumann (DN), Neumann-Neumann (NN) and Robin-Robin (RR) [ ; ] according
to the choice of the operator C; that is assumed linear in our case. The above algorithm can
also adapt to relaxation techniques [ ] necessary for the convergence of some types of
interface conditions such as DN and NN without overlap.

2.1.2 One-level Schwarz Methods

In general, Schwarz methods are used as a preconditioner for a Krylov subspace method. We
consider the following algebraic linear system arising from the discretization of (2.3)

Au=f (2.5)

A fixed point method for (2.5) is given by : for a given u°, we look for

u" Tt ="+ M — Au™). (2.6)
We group the unknowns into subsets, u; = Rju, j = 1,...,J, where R; are rectangular
matrices such that each entry u; of the vector u is contained in at least one u;, see [ ].

For each subdomain, the local matrix is defined by A; = RjAR;F.

The classical multiplicative Schwarz method (MSM) is a preconditioner for (2.6) where M
is defined as

My, = {I -1 (1 - RJTAJ.‘leAﬂ (2.7)
j=1

The classical additive Schwarz method (ASM) is a preconditioner for (2.6) where M is
defined as
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J
Mydy =Y RIAT'R;. (2.8)
j=1
From [ ], the additive Schwarz iteration (2.6), (2.8) does not correspond to the classical

iteration per subdomain and does not converge in general.

The restricted additive Schwarz method (RAS) introduced in [ ], allowing to correct
this problem, is a preconditioner for (2.6) defined by

J
Myis =Y RIAT'R;, (2.9)

j=1
where EJT is the prolongation operator corresponding to a nonoverlapping decomposition.

2.1.3 Two-level Schwarz Methods

In the literature [ ; ], it is well-known that the one-level methods do not scale
with the number of subdomain. Achieving a good scalability property requires a coarse space
correction [ ].

We consider a coarse mesh 7 on the domain €2 and a finite element space of continuous,
piecewise linear functions on 7. Let R, be the matrix representation of linear interpolation
from the coarse grid to fine grid. The coarse matrix A¢ is derived from the global matrix A
by the relation Ac = RI ARy. A two-level restricted additive Schwarz (RAS2) is a two step
preconditioner for (2.6). The iterations are given by

J
W2 = gy Z ﬁjTAj—le(f — Au"), (2.10)
j=1
u™tt = w2 4 REAG R (f — Aumt?). (2.11)
The development of the scalable Schwarz methods is an active field, for example [ ]

proposes a strategy that scales over up to several thousands subdomains for scalar diffusion
problems and linear elasticity. For in-depth investigations on overlapping Schwarz methods,
we refer the reader to [ ; ; ; ; ; ].

2.1.4 Convergence Analysis

We summarize in FIGURE 2.2 the convergence analysis for a one-level additive Schwarz method
(see section 7.1 for more details) by choosing the analytic solution g = sin(7wz) cos(my). We
plot the relative L? error ||u—uy|| 12 as a function of the characteristic mesh size h for different
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polynomial orders from P, to Ps. The artificial boundary condition is Dirichlet-Dirichlet and
the number of subdomains is equal to 128.

1072 / 1

—o—P; slope = 2.05

-u- P, slope = 3.07

1071 —e—P5 slope = 4.27

——P, slope = 5.43

10~14 i ‘ ——P5 slope = 6.07
1072 107!

h

FIGURE 2.2 : Convergence analysis for additive Schwarz Method in 2D

The FIGURE 2.2 shows that our framework verifies the best convergence properties in ac-
cordance with the finite element theoretical results. The implementation and the numerical
experiments of the Schwarz methods described in this section are available respectively in
section 7.1 and section 9.1.
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2.2 Mortar Element Method

Introduced in the early nineties by Bernardi, Maday and Patera [ ] as a tool to couple
spectral and finite element method for the solution of second-order elliptic Partial Differen-
tial Equations (PDEs), the mortar method has been quickly extended to treat many different
application fields [ : ; ; ; : ]. It appears to be well suited
for parallel implementation and to the coupling of many different approximation spaces. The
method has gained a wide popularity, since it offers the possibility to use different, non match-
ing, possibly heterogeneous discretizations in different regions of the domain of definition of
the problem at hand.

The mortar approximations involve the weak continuity constraints on the space. Two
different approaches can be used to ensure these weak constraints. The original mortar for-
mulation [ ] can be seen as a nonconforming finite element approximation since the
weak continuity constraints are directly taken into account in the approximation space. This
approach leads to a symmetric positive definite problem. Another mortar formulation intro-
duced in [ ] achieves the weak continuity constraints as Lagrange multipliers, leading to
a saddle point problem, which is symmetric and indefinite. In either case, efficient iterative
methods are essential for the overall performance of the method.

However, in order to make such technique more competitive for real life applications, one
has to deal with the problem of the efficient solution of the associated linear system of equa-
tions. The design of efficient preconditioners for such linear system is then a fundamental task.
Different approaches were considered in the literature : iterative substructuring [ 1,
additive Schwarz with overlap [ ], FETI-DP [ ; ; ] and BDDC | ].

A thorough investigation of the mortar element method is available in the remainder of
this thesis. We will focus mainly on the formulation with constrained space, see chapter 3.
We propose the substructuring preconditioners for the h-p version of such a formulation in
chapter 4.
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2.3 Three-field Method

The three-field method was inspired by the so-called hybrid finite element formulation for
elasticity, see for example [ ], and has been introduced in the domain decomposition
context by F. Brezzi and L.D. Marini [ ].

The three-field formulation is a nonconforming domain decomposition method for the res-
olution of second-order elliptic boundary value problems. In this formulation, an independent
variable is introduced to represent the trace of the global finite element solution on the skele-
ton of the domain decomposition. The Lagrange multipliers are used to enforce the weak
continuity constraints on the skeleton. In the remainder of this section, we refer to [ ].

2.3.1 Three-field Formulation

Let @ ¢ R?, d = 2,3, be a convex polygonal domain. We will consider the following
problem : given f € L?(f2), find u satisfying

d
— Z 9 (aij(x)%> + ap(x)u = f in Q, u=0 on Of. (2.12)
=1 8Xj 8x,~

We assume that for almost all x € € we have 0 < q¢(x) < R and that the matrix a(x) =
(a;j(X))i j=1,..d> is symmetric positive definite, with smallest eigenvalue > a > 0 and largest
eigenvalue < o/, v, o independent of x.

In order to discretize the problem, we consider a decomposition of {2 as the union of L
subdomains €2,

L
a-Jo (213)

/=1

We set I'y = 0€), X = Upl'y being the skeleton of the decomposition. The functional
setting for the three-field domain decomposition method is given by the following spaces :

L

V=[]V, with V'=H'(Q) (2.14)
=1
L

A=TJA,  with A= H2(09) (2.15)
=1

® = ¢ € L*(X) : there exists u € Hy (), uly = go} (2.16)

These functional spaces are respectively equipped with the norms [ ]
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1/2

1/2
[ully, = <lewllil(gz)> ;M = (lekellilxz(m» , o (217)
¢ ‘

and

1/2
. 2
lolle = inf lull g, = <Z”§OZ”H1/2(8QZ)> (2.18)
¢

ueH} (D)
u=¢ 0N X

Let a' : H'(Q) x H' () — R denote the bilinear form corresponding to the linear
operator considered

d
a‘(u,v) = /Q ( Z aij(x)%% + ao(x)uv> dx. (2.19)
0 ? J

ij=1

Under the assumptions made on the matrix a(x) = (a;;(x)); =1, 4 and on ao, the bilin-
ear forms a’ are uniformly H'({),)-continuous and semidefinite. More precisely, there exists
positive constants R; and R, independent of ¢ and H, such that for all u,v € H'(€)

R1|w|?{1(95) < GZ(U,U% \aé(uﬂjﬂ < R, HUHHl(Qe) HUHHl(QZ)

The three-field formulation of (2.12) reads :

Problem 2.3.1. find (u, A, ) € V x A x ® such that

;

a‘(ut,v") —/ u' X ds :/ fotdx Yol e HY(Q)
8Qg Ql
/ utpt ds —/ plo ds =0 Vot € H7Y2(0Qy) (2.20)
0y [097)
> / Nap ds =0 Vi ed
LT o
From [ ], the problem (2.20) admits a unique solution (u, A, ¢) € V x A x ® where
u is the solution of (2.12) and such that
¢
M= 8_u on [y, Y =wuonx, (2.21)
ovt

where 1! denotes the outer conormal derivative to the subdomain €.
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The problem 2.3.1 can be discretized by a Galerkin method. Let 7. be a regular triangula-
tion of 2y with mesh size h!, and let 7} be the decomposition of ', with mesh size h% induced
by 7. and T, the decomposition of ¥ with mesh size h. Let V/ C V*and Aj C A’ two finite

element subspaces verifying

Vi C {v € C%Qy) s vlr € P(T), VT € 7;5} (2.22)
Ay € {ie 12 s ulr € Py(D), VI € TR, (2.23)
o), = {w e ) : |y € Py(J), wen}, (2.24)

where P,(T), P,(I) and P,(.J) are the spaces of polynomials of order at most p on, re-
spectively T, I and J. We denote the functions of the nodal bases of the discrete spaces V/,
Afl and ®;, by ug;, Ar; and p; respectively so that

Vhe = span{um, 1=1,..., N}‘} (2.25)
Afl = span{)\g,i, 1=1,... ,NZ)‘} (2.26)
q)h:span{<pi, 1= 1,...,N‘p} (2.27)
Finally we set
L L
vi=[Tv. a=]]An (2.28)
=1 =1

We consider the following problem

Problem 2.3.2. find (up, , A\, on) € Vi X Ay x ), such that

.
a‘(ul, vh) —/ up e ds = fup dx Yol € VY
Ty Qp
/ uh i ds —/ (s pon ds =0 Vs € AY (2.29)
r, I
/ Moy, ds =0 Vb, €D
\ ¢ T

The existence, uniqueness and stability of the solution of (2.29) rely on the validity of suit-
able inf-sup conditions [ ]. The discrete bilinear operators associated to the subdomain
(2, are represented on the previous nodal basis equations (2.25) to (2.27) by
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Ay = (aé ), al . = ae(uzﬁj,um)

&:M% b@:/zwww
Ty

Co= (Cf,j)v Cf,j = / PN ds
Ty

and the discrete bilinear operators globally defined on (2 are given by

Al 0 Bl 0
A= - . B= , . and C:kh@WWQ,
O AL O BL
(2.30)

In view of this notation, the linear system arising from (2.29) reads as follows
A BT 0 uy, £,
B 0 CT||M|l=1]0 (2.31)
0O C 0 ®, 0

where u;, \;, and p, are the vectors of the coefficients of uy, A;, and ¢}, in the bases chosen
for V},, Aj, and @), respectively.

2.3.2 Convergence Analysis

We present in FIGURE 2.3 the convergence analysis of the three-field method described above
by choosing the analytic solution ¢ = sin(7x) cos(my) in two-dimensional space. We plot
the relative L? error ||u — uy| 2 as a function of the characteristic mesh size & for different
polynomial orders from P; to P;.

1072 8
élO‘4 - 2
E
| 1076 7
=
_1078 | ——IP; slope = 2.04
-a- P, slope = 2.9
0 —e—P3 slope = 4.08
10 7 —— PP, slope = 4.84
1072 107!

h

FIGURE 2.3 : Convergence analysis for three-field Method in 2D
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The FIGURE 2.3 shows that our framework confirms the best convergence properties ex-
pected by the theoretical results. The implementation and the numerical experiments of the
three-field formulation described in this section are available respectively in section 7.2 and

in section 9.2.
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2.4 Feti Method

The Finite Element Tearing and Interconnecting (FETI) method, introduced by Francois-Xavier
Roux in [ ], is a nonoverlapping domain decomposition method using Lagrange multipli-
ers to ensure the continuity of the finite element solution across the subdomain interfaces.
Originally, this method was used to solve second order, self-adjoint elliptic equations and it
was later been extended to many other problems, e.g., time-dependent problems [ ]. In
the remainder of this section, we refer to [ , Chapter 5.].

2.4.1 Feti Algorithm

We consider the Poisson equation with dirichlet and Neumann boundary conditions

—Au=f in Q
uw=0 on O0fp

ou
% =0 on 8QN

(2.32)

The finite element mesh is partitioned along mesh lines into L nonoverlapping subdomains
Q; CQ, i=1,..., L. Since the finite element mesh is conforming, the boundary nodes of the
subdomains match across the interface. A subdomain €2, is said to be floating if 9;N9Qp =0,
and nonfloating otherwise. Because of the Neumann boundary conditions, the local problems
are indefinite in floating subdomains.

For each €2, let K; and fl be the local stiffness matrix and right hand side, respectively. As
in other substructuring methods, the first step of the FETI method consists in eliminating the
interior subdomain variables. If K; is written using blocks obtained by ordering the interior
nodes first, and the boundary nodes last, then

Kiri Kigs
Ki:< T IB’) (2.33)

where Ky ; is the transpose matrix of K;p ;. Similarly,

- [
g H

The Schur complement matrix S and the corresponding right hand side f; are given by
SO = Kppi— KBI,iK[_[%Z‘KIB,ia fi= fB,i — KBI,in_Il,iJEI,i

Let S = diagl_,S™ be a block-diagonal matrix, and let f be the vector [fi,..., fr]. We
denote by u; the vector of nodal values on J{2; and by u the vector [u; , ..., ur].
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If Q; is floating subdomain, then S is a singular matrix and its kernel is generated by a
vector Z; which is equal to 1 at the nodes of 0f2; and vanishes at all the other interface nodes.
Let Z consisting of all the column vectors Z;. Then

KerS = RangeZ. (2.34)

Let B be the matrix of constraints which measures the jump of a given vector u across
the interface; B will also be referred to as the Lagrange multiplier matrix. Each row of the
matrix B is associated to two matching nodes across the interface, and has values 1 and —1,
respectively at the two nodes, and zero entries everywhere else. A finite element function
with corresponding vector values u is continuous if and only if Bu = 0.

For a method without redundant constraints and multipliers, the number of pointwise
continuity conditions required at crosspoints, i.e., the points that belong to the closure of
more than two subdomains, and therefore the number of corresponding rows in the matrix B,
is one less than the number of the subdomains meeting at the crosspoint. There exist several
different ways of choosing which conditions to enforce at a crosspoint, all of them resulting
in algorithms with similar properties. An alternative suggested in [ ] is to connect all
the degrees of freedom at the crosspoints by Lagrange multipliers and use a special scaling,
resulting in a method with redundant multipliers.

Let W; be the space of the degrees of freedom associated with 9€2;\0€2p, and let W be the
direct sum of all spaces W;. If U = RangeDB is the space of the Lagrange multipliers, then

S:W —W, B:W —U.

By introducing Lagrange multipliers A for the constraint Bu = 0, we obtain a saddle point
Schur formulation of (2.32),

Su+ BXA=f

2.35
Bu =0, (2.35)

where B* denote the transpose of B.

2.4.2 Algebraic Formulation

In the FETI method, the primal variable v is eliminated from (2.32) and the resulting equation
for the dual variable A is solved by a projected conjugate gradient method. We note that S
is singular if there exists at least one floating subdomains among the subdomains €2;, i =
1,...,N. Let ST : W — W be the pseudoinverse of S, such that STb € RangeS, for any
bl KerS. A solution for the first equation in (2.32) exists if and only if

f—B'X\ 1L KerS. (2.36)

If (2.36) is satisfied, then
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u=S"(f— B\ + Z,, (2.37)

where 7, is an element of KerS = RangeZ ; see (2.34) to be determined. Let G = BZ.
Substituting (2.37) into the second equation in (2.35), it follows that

BSTB'A = BS'f + G, (2.38)

An important role in the FETI algorithm is played by V' C U defined by V = KerG'. In
other words,

V = KerG" 1. RangeG = BRangeZ = BKerS. (2.39)

Let P = I — G(G'G)'G" be the projection onto V. Since P(G,,) = 0, if P is applied to
(2.38), then

PBS'B'\ = PBS'f. (2.40)
From [ ], G'G is nonsingular, by using the fact that
KerB N RangeZ = KerB N KerS = ().

We now return to the necessary condition (2.36). From (2.34), we obtain that (2.36) is
equivalent to f — B'A | RangeZ, which leads to

Z'(f = B'X) =0,
and therefore to
G'\N=7'f. (2.41)

Let F = BSTB!,d = BS'f, and e = Z'f. We concluded that we have to solve the dual
problem (2.40) for A, subject to the constraint (2.41) ; with the new notations,

PF)\ = Pd; (2.42)
G'\N =e (2.43)

After that an approximate solution for A is found, the primal variable u can be obtained as
follows : Solving for « in (2.38),

a=(G'G)'G'(F)—d).
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Then u can be obtained from (2.37) after solving a Neumann or a mixed boundary problem
on each floating and nonfloating subdomain, respectively, corresponding to a vector multipli-
cation by ST.

The main part of the FETI algorithm consists of solving (2.42) for the dual variable A\, which
is done by a projected conjugate gradient(PCG) method. Since A\ must also satisfy the con-
straint (2.43), let

X =G(G'G) e (2.44)

be the initial approximation. Then G'\g = e and A — \g € KerG' = V. If all the
increments \;, — \,_1, i.e. the search directions, are in V, then (2.43) will be satisfied.
One possible preconditioner for (2.42) is of the form PM, where

M = BSB'. (2.45)

When a vector multiplication by M is performed, NV independent Dirichlet problems have
to be solved at each iteration step. Therefore, M is known as the Dirichlet preconditioner. We
note that the Schur complement matrix S is never computed explicitly, since only the action
of S on a vector is needed.

From | ], the condition number of this FETI method has a condition number which
grows polylogarithmically with the number of nodes in each subdomain,

k(PMPF) < c<1 + 1og(%))3,

where C' is a positive constant independent of h, H. If there are no crosspoints in the
partition of €2, then the bound improves to (1 + log(H / h))Q.

We reminded the classical FETI method in this section. In the remainder of this thesis, this
method will not be subject of an advanced survey. See [ ] for more details on FETI method
and its implementation in FEEL++.

2.5 Conclusion

We conducted in this chapter a generic review of domain decomposition methods. We review
various domain decomposition methods including overlapping domain decomposition meth-
ods (Schwarz methods) and substructuring domain decomposition methods (mortar element
method, three-field method and FETI method). The theoretical investigation presented in this
chapter, except for FETI method, will be followed by implementation aspects and numerical
simulations in the next chapters.
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Chapter 3

Mortar Element Method with
Constrained Space in 2D

This chapter investigates the mortar finite element method with constrained space
[ |. The basic notations, functional settings and the description of the mortar
method are given. Some technical tools required in the construction and analysis of

the substructuring preconditioners |[. | are recalled.

Ce chapitre étudie la méthode des éléments finis mortar avec espace contraint
[ |. Les notations de base, les paramétres fonctionnels et la description de la
méthode mortar sont donnés. Quelques outils techniques nécessaires dans la construc-

tion et ’analyse des préconditionneurs par sous-structuration [.
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Chapter 3. Mortar Element Method with Constrained Space in 2D

3.1 Model Problem

We focus, for simplicity, on the following simple model problem, even if the results of this
work can be easily extended to a more general situation. Let {2 € R? be a polygonal domain
and a given f € L*(Q); then we find u satisfying

N du
_ Z 8_x] (aij(x)a—X) = f in Q, u=0 on ON. (3.1)

3,j=1

We assume that for almost all x € €2 the matrix a(x) = (a;;(x)); j=1,2 is symmetric positive
definite, with smallest eigenvalue \,,;, and largest eigenvalue A, satisfying

Amin = > 0, Amaz < @', «a,’ independent of x.

In order to discretize the above problem we start by considering a decomposition of (2 as
the union of L subdomains €,

0= U Q. (3.2)

which, for simplicity, we assume to be quadrangles.

In the following we will employ the notation A < B (resp. A 2 B) to say that the quantity
A is bounded from above (resp. from below) by ¢B, with a constant ¢ independent of ¢, of the
H/’s, the diameter of the subdomain ), as well as of any mesh size parameter and of the
polynomial degree p,. The expression A ~ B will stand for A < B < A.

We assume that each subdomain (2, satisfies the following assumption : there exists ori-
entation preserving bilinear mappings By : [0, 1]> — €2, such that there exist a constant H,
with

H7(B)l £1, Hil J(BY) S 1

where J denotes the Jacobian matrix and where H, is the diameter of the subdomain 2.

We set
Ly, = 09, N Oy, S =uly, (3.3)

and we denote by ’yéi) (1 =1,...,4) the i-th side of the /-th domain :

4
an = U ’Yéz) .
i=1
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For each subdomain €2, let zf,7 = 1, ..., 4 be the vertices of the subdomain, which we assume

to be ordered consecutively, so that each segment 'yéi) = [2f, z{ ] (for notational simplicity

we also introduce the notation x5 = 7).

Here we deal with the case of a geometrically conforming decomposition : each edge ’yéi)

coincides with I'y,, for some n.

3.2 Functional Spaces

Let us at first introduce the necessary functional setting. For O any domain in R%, d = 1,2
we introduce the following unscaled norms and seminorms (with 0 < s < 1) :

e N T L R B e
0~ | . ) 1,0 . ) 50 Y dr2s
0 Q y\

We then introduce the following suitably scaled norms and seminorms : for two-dimensional
entities

lalree = H;? / uf? de + / Ve, fuPp, = / Vulde, (3.4
Q Q Q

and for one dimensional entities

o In(z) —n(y)l?
eoay = H2 1/ / Do dedy, s e (0,1) (3.5)
o0, J o9, |$ y|

%’5(392) + Hf_l /an In|* ds, s€(0,1). (3.6)
¢

||77|§15(8QZ) = |n

Remark that the above norms are defined in such a way that they are scaling invariant,
that is they are preserved when (), is rescaled to the reference domain |0, 1[%.

In the following for %@ edge of (), we will also make explicit use of the spaces (%Si)) and
HY?(+(), which are defined as the subspaces of those functions 1) of H*(7}") (resp. H*/2(7\")
) such that the function 7 defined as ) = 7 on %@ and ) = 0 on 092 \ Véi) belongs to H*(0N2)
(resp. to H'/?(0N2)). The spaces H ('yéi) ) and H%Q(’yéi)) are endowed with the norms

N

H(v{") 7]

il H3(+) ||77||H1/2 ¥y = ||77||H1/2 MO

Let the spaces X and 7" be defined as
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X =][]f{u e H Q)| e =00n02n09},  T=]]H"02), (3.7)
4 l

where Hi/z(Qg) is defined by
HY2(0Q,) = HY?2(0Q,)  if0Q,NaQ =10

and

HY2(09,) = {n € HY*(99), nlaq,non = 0} ~ Hyy (99 \ 89)

otherwise.

3.3 Discretizations

We consider for each ¢ a family K of compatible quasi-uniform shape regular decompositions
of )Y, each made of open elements K (triangular or quadrilateral) depending on a parameter
he> 0. We let Vi C H'(€) be a finite element space defined on the decomposition K*
and satisfying an homogeneous boundary condition on 92 N 9€2,. We assume that for some
integers py , p;, with 1 < p, < p}, we have

Vi ={v e Q) st.v|g € P, (K), K €K'} nHj(Q),
where P, (K') stands for the space of polynomials of degree at most p,. We set

T = Viloa, (3.8)

and, for each edge ’yéi) of the subdomain €2,, we define

Ty = {77 : 1 is the trace on %@ of some u, € Vf; } (3.9)
T ={neT,: n= i s
v:={n €Ty : n=0at the vertices of 7," }. (3.10)
Finally, we set
L L
X,=[[vi cx, T=]]Ti cT (3.11)
=1 =1
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On X and T we introduce the following broken norm and semi-norm :

1 1
2 2
Julx = (zuunam) | ulx = (zw,m) | 6.12)
¢ /
1/2

1/2
Inllr = (Z ||7712H%/2,as2g> Inlr = (Z !mlf/z,am> - (3.13)
¢ ¢

The spaces considered satisfy classical direct and inverse inequalities, see e.g. [ ;
; ]. In view of the scaling (3.4), the direct inequalities take the following form :
for0<s<l,s<r<p+1

: s—r hg o T

inf |0 —mnlgsn) SO0\ ) lEr G Y0 € H (m) (3.14)
€Ty, H,

: s—r hg o T

inf |1 — 1w () S P2 (g) iy V0 € H (ym) NV Hy () (3.15)
nhETLi 14

while the inverse inequalities take the form for all 7 € T} ; and for all s, such that 0 <
s<r<l1

r—s hé . 2(r—s hé -
il S92 () Ml ol 927 () ol
(3.16)
and for all € Tgi and forall s,7 # 1/2suchthat 0 < s <r <1
h s—=r h s—r
2(r—s) 4 2r—s 4
Wllgomy < pi* (ﬁ) lason:  Mlason < pe— (ﬁ) LI
(3.17)

once again with constants independent of 7, s. For s = 1/2 or r = 1/2 (3.17) holds with H{
(resp. H{) replaced by Hééz.

In the following it will be convenient to introduce the following notation :
H = Hy, h = hg-, P = pe-
with

H 2
(" = arg max épg’ and p = max py.
4 hye 0
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3.4 Classical Bounds

With the chosen scaling, saveral classical bounds hold with constants independent of H,. In
particular we have :

Trace bound

For all u € H'(€),) we have, see [ ]

lullmrzon, S lulla@y, — Tulmee,) S Tulaie). (3.18)

Injection of H* in L™ for s > 1/2

For alln € H*(v), s > 1/2, 7 being either 'yéi) or 0€y,

Ho(y)- (3.19)

1
e —— /]
v2s—1

Poincaré type inequalities

foralln e Hg(fyéi)) it holds that

< :
and for all  with / n = 0, v being either %@ or 0€)y, it holds that
gl
Iz () S [0las()- (3.21)

Injection of H* in Hj for s < 1/2

We recall that for s < 1/2 the spaces H* (’yéi)) and H} (”yéi)) coincide as sets and have equivalent
norms. However, the constants in the norm equivalence goes to infinity as s tends to 1/2. For
all p € H 8(%”) the following bound can be shown, see [ ] : for 8 € R arbitrary it holds
that

1 1
< s '
|()0 H(S)(,Yél)) ~ 1/2 — s ||90 ﬂHHl/Q(,hgz)) + —\/m|ﬁ| (322)
If ¢ is linear, the bound (3.22) can be improved to
1 1
[% + ——14]). (3.23)

ey S —m==—==(lle = Bll 12,
6e) ™ 12— s e 1/2 =5
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Technical tools

We now revise some technical tools that will be required in the construction and analysis of
our preconditioner. We observe the following result, that corresponds to the hp-version of
[ , Lemma 3.1] and of [ , Lemma 3.4], see e.g. [ ] for the proof.

Lemma 3.4.1. The following bounds hold :

e forall¢ € T} and v being either ’yéi) or 08y, it holds

Hypj
68 5 (1410 (2 ) ) el 629
e forall¢ € T} such that £(P) = 0 for some P € v, 7y being either Véi) or 0SYy, it holds
Hypj
683 5 (14108 (522) ) e (.29

e forall& € T}, letting x¢ and %, denote the two extrema of the segment Wéi), we have

() — £(at)? < (1 T log (H“’@)) €20 (5.26)

« forall§ € T}, it holds

Hyp
61, (14108 h)) €110 327)

e forall i € HY?(0SY), (1, linear on each edge of Qy, we have

4

el S D Colahy) = Cola)®. (3.28)
i=1

The following result is a generalization to the h-p version of Lemmas 3.2, 3.4 and 3.5 of

[ .

Lemma 3.4.2. Let¢ € T} such that&(zf) = 0,4 =1,...,4, and let (1, € H'?(08Y), ;, linear
on each edge of ). Then it holds

2

Hyp; ?
Znsn?m oy % (14108 (57) ) 1€ + Gl 29

The following lemma holds.
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Lemma 3.4.3. Let 0 : Rl x Rl — R be defined as

oo, B) = D (ar—)(Be— Bu). (3.30)

f,n:lrgn|>0

Formn € T let 7 be defined by

N = (M)e=1,..L, 0= \395\1/ n* (3.31)
Q
Then, if n € T verifies
/ =0, Vm=(({i)e€l, (3.32)
'Ym
we have p
_ p
on.0) % (1 10g (21 )) 659

See section E in Appendices for the proof of Lemma 3.4.3.

3.5 Mortar Problem

Let ay : X x X—R be a composite bilinear form defined as follows :

Juy 0
ax(u,v) = Z/ Z aij(x)g—fa—;{ dx. (3.34)
¢ L

Qe 45

The bilinear form ax is clearly not coercive on X. In order to obtain a well posed problem,
we will consider proper subspaces of X, consisting of functions satisfying a suitable weak
continuity constraint.

According to the mortar method, for defining such weak continuity constraint, we start by
choosing for each segment I'y » = 7,@ = é,z ,), one side (for example /) to be the master side,
while the other side to be the ‘multiplier side” (in the usual terminology these are called “non
mortars” or “slave sides”). More precisely, we choose anindexset I C {1,..., L} x{1,...,4}

such that,

s=U " _ oo =0 (3.35)
(el (1, 1) # (€a,12)

Furthermore we will denote by I* C {1,..., L} x{1,...,4} the index-set corresponding

to “trace sides” (“mortars” or “master sides” in the usual terminology), which is defined in such

awaythat * NI =0and S = U(e,i)el*%gi)-
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Foreachm = (£,i) € I,letag = 2f < a; < ... < ay-1 < ay = ¢, denotes the one
dimensional mesh induced on 7, by the two dimensional mesh ;. Let e; = (a;_1 , a;) and let
the finite dimensional multiplier space M;" on 7,,, be defined as

My = {v € C%(ym), v

e; S sz(ei),i 7é 17M, U|81 S Ppe_l(el), U|6M S sz_l(eM)}. (336)

Remark that dim(M]") = dim(T),).
We set :

M, ={ne HY2(S), Yme I 1|, € M}~ H M,,. (3.37)

meL

The constrained approximation and trace spaces X}, and 7T}, are then defined as follows :

X, = {Uh € Xh, / [Uh]>\ ds = 0, VA€ Mh} (3.38)
s
Th = {?7 € Th,/ nAds =0, VA € Mh}. (3.39)
s
where, on fyéi) =~ (¢,i) € I, we set [] =1y — 1.

We can now introduce the following discrete problem :

Problem 3.5.1. Find u;, € &}, such that for all v, € &),

ax (up,vp) = /Q fop dx. (3.40)

It is known that Problem 3.5.1 admits a unique solution u;, which satisfies the following
error estimate, see [ ].

Theorem 3.5.1. Assume that the exact solution u € H'(Q) of the problem 3.5.1 is such that
up, € H™(Qy), 7, > 1. Then, for any € > 0 there exists C'(¢) > 0 such that the solution uy, of
(3.1) satisfies

L 1
e
hy

Ju =il <€) - Czpe (Nl + 1oz

/=1

where 1y = min(1;, p; + 1).
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3.6 Mortar Correction Operator

For all m = (£,i) € I (7" slave side), we let 7, : L2(7)—T% be the bounded projector
defined as

/ (n—mmmA =0, VA€ M,,. (3.41)
’YTTL

The projection 7, is well defined and satisfies (see [ ; 1)

Theorem 3.6.1. Form = (¢ ,i) € I it holds :

1
17l L2y S PEI0220r) Y10 € L¥(m) (3.42)
|7Tm77|H1("/m) S.J p‘g |TI|H1('Y77L) vn S H& (fym) (3'43)

Remark 3.6.2. The problem of whether (3.42) and (3.43) are optimal was studied in [ ],
where, through an eigenvalue analysis the dependence on p to the power 1/2 and 1 of the
norm of the projector appearing in (3.42) and (3.43) were confirmed. This dependence does
not seem to affect the asymptotic rate of the error, which, as observed in [ ] seems to be
only slightly suboptimal (loss of a factor C'(¢)p® for ¢ arbitrarily small). In [ ] this good
behavior of the error was proven, for sufficiently smooth solutions, thanks to an interpolation
argument.

By space interpolation and using the Poincaré inequality we immediately get the following
corollary

Corollary 3.6.3. Foralls,0 < s < 1,s # 1/2, foralln € H(Vm) we have

(1+s)/2

[T 1) S P2 0] () (3.44)
uniformly in s. For alln € H&f(vm) we have
3/4
|7Tm77|H362(’Ym) /S Dby |77’H(%2("/m) . (345)
We now define a global linear operator
L L
m [ L2(090)— [ ] L*(0%2)
=1 =1

7777777777

defined on multiplier sides as 7, applied to the jump of 1, while it is set identically zero on
trace sides and on the external boundary 0f) : on 7, = véi) =D () eI (n,j) el
slave side)

1y = T[]0 ) Ml =0,
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and for all ¢/
1, = 0 on 0§, N OS2.

The following bound holds

Lemma 3.6.4. For alln = (ng)e=1,. € T and for all @ = (a)p=1,., 1., 0y constant in €y, it

holds
Hp*\\’ Hp?
(1 = ma) (o)t 5 57 (1+10g (55l all+ 722 (1-+ 10g (51 )) ot
(3.46)
where we recall that the bilinear form o is defined in (3.30).
If; in addition, each 1 is linear on each fyéi), then the bound can be improved to
2 ~3/2 Hp®
((Id = m) ()7 S 977 (1 +1og | == )] (In = allr +o(a,a)). (3.47)

Corollary 3.6.5. Letn € T and let 7 = (7¢)¢=1..... 1, be defined by (3.31). Then

-----

. Hp2 2 . Hp2 o
ol < 5% (1 tog (75 ) ol + 7 (1-+10g (5 )) ot

See section E in Appendices for the proof of Lemma 3.6.4.

3.7 Convergence Analysis

We analyze the convergence properties of the mortar finite element method described in this
chapter in accordance with the theoretical error estimations for finite element method [ ;

]. We report in FIGURE 3.1 and FIGURE 3.2 the L*-norm error ||u — uy]| ;> and H'-norm
error ||u — up|| ;: as a function of the characteristic mesh size h in logarithmic axis for differ-
ent Lagrange polynomial orders p = 1,2,3,4,5. We conduct this convergence analysis by
considering conforming domain decompositions (see FIGURE 3.1) and nonconforming domain
decompositions (see FIGURE 3.2). The number of subdomains is equal to 64 fixed. The chosen
analytical solution is sin(157x) sin(107y).
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FIGURE 3.1 : Convergence analysis with conforming domain decompositions forp =1,2,3,4,5
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FIGURE 3.2 : Convergence analysis with nonconforming domain decompositions forp =1,2,3,4,5
The plots in FIGURE 3.1 and in FIGURE 3.2 show that the convergence properties (L? and

H?') of our mortar finite element framework are consistent with the finite element theoretical
error estimations for both conforming and nonconforming domain decompositions. These
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convergence results clearly indicate that this framework properly supports the linear finite
elements and the high-order finite elements.

3.8 Conclusion

In this chapter, we studied the ~-p mortar element method with constrained space, previously
introduced briefly in chapter 2. We reminded the mortar formulation including the functional
settings, the discretization aspects and the mortar correction operator. As we recalled in chap-
ter 2, the efficient preconditioners are essential for solving the linear system arising from this
discretization. For this purpose, we revised in this chapter some technical tools that will be re-
quired in the construction and analysis of our proposed substructuring preconditioners which
will be presented in chapter 4.

The theoretical results discussed in this chapter will be followed by the numerical imple-
mentation in chapter 6 and the numerical simulations supporting the mathematical properties
in chapter 8. The scalability analysis including the speedup and the efficiency of the parallel
algorithms will be also available in the same chapter.
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Chapter 4

Substructuring Preconditioners for
Mortar Element Method in 2D

The construction of the substructuring preconditioners for h-p mortar finite ele-
ment method is analyzed. The substructuring approach, whose the main idea was
proposed in [BP04] for the case of linear finite elements, is considered in section 4.1.
Particular emphasis is placed on the vertex block of the preconditioners in section 4.2.
The algebraic forms for the realization of the preconditioners and discrete Steklov-
Poincaré operator are given in section 4.3.

La construction des préconditionneurs par sous-structuration pour la méthode des
éléments finis h-p mortar est analysée. L approche de sous-structuration, dont l’idée
a été proposée dans [BP04] pour le cas des éléments finis linéaires est considérée dans
la section 4.1. Une attention particuliére est placée sur le bloc vertex des précondi-
tionneurs dans la section 4.2. Les formes algébriques pour la réalisation des précon-
ditionneurs et de l'opérateur Steklov-Poincaré discret sont données dans la section
4.3.
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Chapter 4. Substructuring Preconditioners for Mortar Element Method in 2D

In this chapter, we deal with the construction of preconditioners for the h-p mortar finite
element method. We start by considering the approach proposed in the framework of con-
forming domain decomposition by J.H. Bramble, J.E. Pasciak and A.H. Schatz [ ], which
has already been extended to the h version of the Mortar method by Achdou, Maday, Widlund
[ ]. In doing this we will extend to the h-p version some tools that are common to the
analysis of a wide range of substructuring preconditioner. This approach consists in consider-
ing a suitable splitting of the nonconforming discretization space in terms of “interior”, “edge”
and “vertex” degrees of freedom and then using the related block-Jacobi type preconditioners.
While the “interior” and the “edge” blocks can be treated essentially as in the conforming case,
the treatment of the vertex block deserves some additional considerations.

In fact, a problem that, in our opinion, has not until now been tackled in a satifactory way
for the mortar method, is the design of the coarse vertex block of the preconditioner, which is
responsible for the good scaling properties of the preconditioners considered. Indeed, when
building preconditioners for the Mortar method we have to deal with the fact that the coarse
space depends on the fine discretization, via the the action of the “mortar projection opera-
tor”. Moreover, the design of such block is further complicated by the the presence of multiple
degrees of freedom at each cross point (we recall, in fact, that in the definition of the mortar
method, continuity at cross points is not required). The solution considered in [ ]isto
use as a coarse preconditioner the vertex block of the Schur complement. This is clearly not
efficient, since it implies actually assembling at least a block of the Schur complement (which
is a task that we would like to avoid) and, for a high number of subdomains, it is definitely
not practically feasible. Here we propose two different coarse preconditioners. The first one
is the vertex block of the Schur complement for a fixed auxiliary order one mesh with a small
number of degrees of freedom per subdomain. This idea was presented in [ ] for the case
of linear finite elements. We combine it, here, with a suitable balancing between vertex and
edge component, yielding a better estimate for the condition number of the preconditioned
matrix. This alternative makes it possible to avoid the need of recomputing the coarse block
of the preconditioner when refining the mesh. It still demands assembling a Schur comple-
ment matrix (though starting from a coarse mesh) and it is therefore quite expensive, at least
when considering a large number of subdomains. In order to be able to tackle this kind of
configuration, and obtain a feasible, scalable method even in a massively parallel environment
we propose here, as a further alternative, to build the coarse preconditioner by giving up weak
continuity and use, as a coarse preconditioner, a (non consistent) Discontinuous Galerkin type
interior penalty method defined on the coarse mesh whose elements are the (quadrangular)
subdomains. This approach turns out to be quite efficient even for a very a large number of
subdomains, as we show in the numerical tests section.

By applying the theoretical approach first presented in [ ], that allows to provide a
much more general analysis than [ ; ], we are able to prove, for both choices
of the coarse preconditioner, a condition number bound for the preconditioned matrix of the
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form

Cond(P~1S) < p*%(1 + log (sz/h)2 :

where H, h and p are the subdomain mesh-size, the fine mesh-size and the polynomial order
respectively, see Corollary 4.2.2 and Theorem 4.2.5. The numerical experiments seem, however,
to indicate that this bound might not be optimal. The condition number appears to behave
in a polylogarithmic way, and there is no numerical evidence of the presence of the factor
p*/2. The same kind of behavior, loss of a power of p in the theoretical estimate that does
not appear in the numerical tests, was observed also for the first error estimates for the h-p
mortar method. Such estimate was then improved by applying an interpolation argument
[ ] that, unfortunately, cannot be applied for the type of bound that we are considering.
The factor p*/? in the theoretical estimate derives from the boundedness estimates for the
mortar projector, which were shown to be sharp in [ ]. We observe that the norm of such
projection operator also comes into play in the analysis of other preconditioners (like, for
instance, the FETI method) so that a generalization of the related theoretical estimates to the
h-p version would also suffer of the loss of a factor p3/2.

4.1 Substructuring Approach

The main idea of substructuring preconditioners consists in distinguishing three types of de-
grees of freedom : interior degrees of freedom (corresponding to basis functions vanishing on
the skeleton and supported on one sub-domain), edge degrees of freedom, and vertex degrees
of freedom. Then, we can split the functions u € A}, as the sum of three suitably defined
components : u = u® + u® + «" and, when expressed in a basis related to such a splitting,
substructuring preconditioners can be written in a block diagonal form.

Consequently, given any discrete function w = (wy)¢—1,.. 1 € X}, we can splititin a unique
way as the sum of an interior function w® € X} and a discrete lifting, performed subdomain-

(rather than Ry, (n(w))):
w=w"+ Ry(w), w’ e XY,
with Ry (w) = (R}, (wy))e=1....1, R} (w,) being the unique element in V} satisfying
R (wy) = wyon Ty, ai(R) (we),vr) =0, Yo, € Vi N HL(Q).
Thus the spaces X}, of unconstrained functions and &), of constrained functions can be

split as direct sums of an interior and of a (respectively unconstrained or constrained) trace
component :

X, = X)) @ R (Th), X, = X0 ® Ru(Th). (4.1)
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We can easily verify that ax : X;, x X, — R satisfies
ax(w,v) = ax(w’,v") + ax(Bp(w), Ru(v)) = ax(w’, %) + s(n(w), n(v)), (4.2)

where the discrete Steklov-Poincaré operator s : T}, x Tj, — R is defined by

s(&m) =Y a(Ry(€)), Ry (n)). (4.3)

¢

Finally, it is well known that

IRl () =~ Inlly2.00,, Ryl oy = [nly2.00,- (4.4)
see [ ; ], whence
| Ba(m)llx = |Inllr, |Rn(n)|x = [n|r. (4.5)

The following result for the Steklov—Poincaré operator follows easily from the definition of
s( -, +), the continuity and coercivity of ax (-, -) and (4.5).

Corollary 4.1.1. Forall € T, it holds

s(€,€) = €7 (4.6)

The problem of preconditioning the matrix A associated to the discretization of ax, re-
duces to finding good preconditioners for the matrices Ay and S corresponding respectively
to the bilinear forms ax restricted to X} and s. Here we concentrate only on the discrete
Steklov-Poincaré operator s assuming to have good preconditioners for the stiffness matrix
Ap.

We start by observing that the space of constrained skeleton functions 7, can be further
split as the sum of vertex and edge functions. More specifically, if we denote by £ the space

£ ={(M)e=1..., ne € C°(O) is linear on each edge of 2}, (4.7)

then we can define the space of constrained vertex functions as
T = (Id — m,)L. (4.8)

We observe that £ C T}, which yields 7, C Tj,.
We then introduce the space of constrained edge functions T, C 7j, defined by

771E = {77 = (776)4:1 ..... L <€ 77u nﬁ(xf) - Oa 1= 1a s 74} (49)

and we can easily verify that
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T=T, ®TE. (4.10)

Moreover it is quite simple to check that a function in 7,” is uniquely defined by its value
on trace edges, the value on multiplier edges being forced by the constraint.

It will be useful in the following to introduce the linear interpolation operator A : T}, — £
defined as

Ap= (Aot .p,  A(af)=nla}),i=1,... 4.

For ) € T, we observe that (1 — m,)An € 7, and n — (1 — m,)An € T;F. The following
Lemma holds [ ].

Lemma 4.1.2. Foralln = ()¢ € Ty, it holds

Hp? Hp?
ol < (Ltog (S ) 1ot 5 (1og (U ) Il

The preconditioner that we consider is built by introducing bilinear forms :

bE L TE < TE R, BT x T - R.

Let us start by introducing the bilinear form relative to the edges : for any trace side ’yg),

m = (i) € I*,let by, : Tp; x T);—R be a symmetric bilinear form satisfying for alln € T},
SORIINTE:

Then, the edge block diagonal global bilinear form b” : T,¥ x T, —R here considered is
defined by

¥ (n,€) = Z be,i (e, &) (4.13)

(Lp)erl*

Applying Lemma 3.4.2 we easily get
Hp\\’
b (n",n") < (1 +log (Tp)) s(1,1m). (4.14)

Moreover, using the fact that n” verifies the weak continuity constraint and thar 1 vanishes
at the cross points we immediately get that for m = (¢,i) € I and k = (n, k) € I*, we have

07 lLo = mm (7],

E < p3/2,,E ]
L PYEINCISS U PRI
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which allows us to write

"7 S Z nZ’|? HY2 (0 T Z R HY2(y (4.15)
m=({,i)el* m=({,i)el
SE D Il z>)<ﬁ3/2bE(nE,nE)- (4.16)
m=({,i)el*

The construction of the vertex block of the preconditioner in the mortar method framework
is not standard, since we need to take into account the weak continuity constraint. In the P1
framework Achdou [ ], Maday and Widlund propose to use

by (n",¢") = s(n",C"). (417)
This choice immediately yields the bound
stn,n) S by (n"n") + 5265 (", ).

Let us bound b} (" ,n") in terms of s(n,n). Let ] = (7)1
Using Lemma 3.6.4 (and in particular (3.47)) we can write

1, be defined as in (3.31).

.....

A Hp? _ -
B0 ) 5 10wl < 57 (1-+10g (S0 )) (186 = )+ o(0.7).

(where we used that A7 = 7). We now use a Poincaré inequality, Lemma 4.1.2 and Lemma

3.4.3, and obtain
ViV, V ~3/2 Hp? ’ 2
bo (0" m7) S 77 (1 +log { == ) [nlz-

Then we have

. . Hp*\\’
by (', n") + p*2E (", n") < pP2 (1 + log (T)) s(n,m).

This bound would suggest to choose, as a preconditioner for the matrix S, the matrix Py
corresponding to the bilinear form

so(n,¢) = by (0", ¢Y) + p*/2bP (0", ¢P).

With this choice we would have the bound

Hp?\\”
Cond(Py'S) < p*/? (1 + log (Tp)) . (4.18)
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4.2 Vertex Block of the Preconditioner

Building the vertex block of the preconditioner according to (4.17) for fine meshes turns out
to be quite expensive, since it implies assembling at least a portion of the Schur complement
matrix S. In the the present section we propose two more efficient alternatives.

4.2.1 A Coarse Vertex Block Preconditioner

The first option that we considered is to build the vertex block of the preconditioner using
a fixed auxiliary coarse mesh, independent of the space discretisation and of the polynomial
degree. This idea was presented in [ ] for the case of P1 finite elements. We combine it
here with a suitable balancing between vertex and edge component, yielding a better estimate
for the condition number of the preconditioned matrix.

Let n. be a fixed small integer. We build coarse auxiliary quasi-uniform triangular meshes

H,
K% with mesh size 6 = §, = — > hy. We do not assume that K& and K} are nested. We

Ne -
define the coarse auxiliary P1 discretization spaces Vi C H*(Q,) N C°(€) by

Vi = {v c C°(Q) st.v|x € PI(K), K € 7256} N Hy ().

For each m = ({,i) € I we also consider the corresponding auxiliary multiplier space
M C L*(+y), defined analogously to (3.36).

The spaces X, Ms, X5, and Tf, Ts, Ts are built starting from the Vf’s and the Mj"’s in
the same way as the spaces X}, M}, A}, and Tf, Th, Tr, by using definitions similar to (3.8),
(3.9) (3.10) (3.37), (3.38).

Analogously to 7, we can define the operator 7 : Hle L?*(0Q,)—Ts. Using Lemma
3.6.4 we obtain for all ) € T'and o = (ay)=1.. 1 € T, with oy constant,

|(1d = ms)nl7 < (1 +log(n,))” [l — all7 + (1 +log(n.)) o ), (4.19)

and forn € £
(Id — ms)nl7 < (1 +log(n)) (ln — allF + (e, ). (4.20)

Moreover, Lemma 4.1.2 yields that for all n € T}

|An|7 < (1 +1log(n.)) [n]7- (4.21)

Analogously to R{ we can define a local coarse lifting operator R%. By standard arguments
it verifies, for all n € T},
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| Rsnllx = lInllz |Rsnlx = |n|r- (4.22)

We define the vertex block of the preconditioner b] : 7,V x T,V — R as

LTRSEDY [ VR - mAn) VR - mA). @2s)
Qy
The second preconditioner we propose is then :

81:77L ><771—>R7

s1(n,€) =b"(n", &%) + (1 + log (HTPQ» by (n",€Y). (4.24)

Remark that (1 — m5)A7,) = T,/. In view of this identity it is not difficult to realize
that computing the vertex block of this preconditioner only implies assembling the Schur
complement matrix for an auxiliary mortar problem corresponding to the coarse dicretization.
This is then independent of the mesh size h.

The following theorem holds :

Theorem 4.2.1. For alln € T, we have :

7 s(n,m) S si(nm) S (1 + log (H,fz)):(n,n)- (4.25)

See section E in Appendices for the proof of Theorem 4.2.1.

Let S and P; be the matrices obtained by discretizing respectively s and s; then, by using
the lower and upper bounds for the eigenvalues of P; 'S given by Theorem 4.2.1, we obtain :

Corollary 4.2.2. The condition number of the preconditioned matrix Py 'S satisfies :

2
Cond(P;'S) < p*/? (1—|—10g (H}f 2)) . (4.26)

4.2.2 A Discontinuous Galerkin Vertex Block Preconditioner

As a further alternative, we propose to construct the vertex block of the preconditioner, by
completely giving up weak continuity and by replacing it with a Discontinuous Galerkin in-
terior penalty method as coarse problem.
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More precisely, letting H, : H'/2(0Q,) — H'(£),) denotes the harmonic lifting, we set

bl (). CV) = al(MeA " HACY), (4.27)
¢
Y ") =3 bl / [AnP. (4.28)
mel Tm

Then, as vertex block of the preconditioner, we consider :
by (n,m) = B (n/,n )+ bry(m) ) (4.29)
with 3, > 0 constant.

The global preconditioner is then assembled as follow :

2
salrn) = VPG ) + (1 dog (S )) ) (430

We have the following theorem.

Theorem 4.2.3. For alln € T, we have :

) Hp? 2
7 Ps(n,n) < sa(nym) S (1 + log (T)) s(n,m). (4.31)

See section E in Appendices for the proof of Theorem 4.2.3.

Remark 4.2.4. We observe that if the (2,’s are rectangles, for € £ we have that H,7; is the
()1 function (polynomial of degree < 1 in each of the two unknowns) coinciding with 7, at
the four vertices of (2;. The local matrix corresponding to the block b} can then be replaced
by the elementary Q1 stifness matrix for the problem considered.

Let S and P; be the matrices obtained by discretizing respectively s and s then, by using
the lower and upper bounds for the eigenvalues of P, 'S given by Theorem 4.2.3, we obtain :

Corollary 4.2.5. The condition number of the preconditioned matrix P, 'S satisfies :

Hp?\\”
Cond(P;'S) < p*/? (1 + log (Tp)) . (4.32)
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4.3 Algebraic Forms

We start by deriving the matrix form of the discrete Steklov-Poincaré operator s defined in
(4.3). Let us assume that the nodes are numbered as interior degrees of freedom first (grouped
subdomain-wise), then degrees of freedom associated to nodes that lives on master edges, the
degrees of freedom corresponding to the crosspoints of the subdomains and finally the degrees
of freedom corresponding to slave edges.

We let n1, ng, ny and ns be the number of interior, master edge, crosspoints and slave edge
degrees of freedom, respectively, and set n the number of degree of freedom, i.e. n = ng + ny.

With this notation, the vector of unknown wu, the matrix A and the vector F associated

respectively to the discretization of ax and of / f dx can be written as :
Q

A= (B A . u= ("), F= £ (4.33)
Agr Agg g fB

where u; represents the unknown component associated to interior nodes and ug the un-
known component associated to boundary nodes. The local Schur complement system is
written

EuB — gB7 Z — _ABIAI_IlAIB + ABB and gB — fB - ABIA:E[lfI (434)

4.3.1 Constraint Matrix

From the mortar condition, it follows that the interior nodes of the slave edges are not associ-
ated with genuine degrees of freedom in the finite element space. Indeed, the value of those
coeflicients corresponding to basis functions “living” on slave edges is uniquely determined by
the remaining coefficients through the jump condition, and can be eliminated from the global
vector ug = (uy, uy, uS)T of the local Schur complement system (4.34). The mortar condition
is given by

Csus = CMuM — Cvuv. (435)

The constrained coefficients us are uniquely determined through the condition (4.35), i.e.
Ug — C;ICMHM - C;ICVuV — QMuM + Qvuv (436)

where Qy = Cg 1Cy and Q, = —Cy 1C,. The entries of the mass matrices Cs , Cy and C,,
are given by
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Cij 1= /% [05]Ai ds

with \; € M), and ¢; corresponding to the different nodal basis functions associated with
the slave side, the master side and with the cross-points. More specifically, we have

Cs : C;j:/ (@] \i ds ,j=1,2,...,ng
TYm

Cy : C?’j:/ (@] \i ds 1=1,2,...,ns 7=1,2,... ny
TYm

Cy: c;’,j:/ [pilhids  i=1,2,...,ns j=1,2,...,ny.
Ym

We note that Cs is a square matrix whereas Cy and Cy are rectangular matrices. The Fi1G-
URE 4.1 shows the profile of the test basis functions \; (see FIGURE 4.1.1.) and the trial basis
functions ¢; in P2 finite element approximation (see FIGURE 4.1.2.).

1 2 N 5 N_"1 NN N

4.1.1. Test basis functions in P 4.1.2. Trial basis functions in Ps

FIGURE 4.1 : Second-order basis functions for mortar finite element method

Remark 4.3.1. The test basis functions in FIGURE 4.1.1. contain the mortar modifications,
i.e. the basis functions are Pj polynomials on all the interior elements, whereas they are
Py, polynomials on the extremal elements. The trial basis functions in FIGURE 4.1.2. are the
standard Lagrange polynomials.

From (4.36), the solution vector ug of (4.34) can be written

uy I, O
u = uy =10 I, (uv> =Q (uv) (4.37)
Uy Uy
QM“M + Qvuv Qv QM

From (4.37), the system (4.34) becomes

Domain Decomposition 52 A. Samaké



Chapter 4. Substructuring Preconditioners for Mortar Element Method in 2D

Su=g with S=Q"%Q, u:(m),am g=Q"g; (4.38)
Uy

The Schur complement S represents the matrix form of the Steklov-Poincaré operator
s(-, +) defined in (4.3).

In order to implement the preconditioner introduced in this chapter, we need to represent
algebraically the splitting of the trace space given by (4.10). As defined in (4.7), we consider
the space £ of functions that are linear on each subdomain edge, and introduce the matrix
representation of the injection of £ into 7.

Let= = {xi, 1=1,...ny,ny+1...ny+ nE} be the set of edge and vertex nodes. For any
vertex node x;, j = 1,...ny, let ¢;(-) be the piecewise polynomial that is linear on each
subdomain edge and that satisfies ¢;(x) = 0, %, j,k = 1,...ny. Let Ry € R"*™ be the matrix
realizing the linear interpolation of vertex values and let R € R"*" be the matrix defined as

()

Let now S be the matrix obtained after applying the change of basis corresponding to
switching from the standard nodal basis to the basis related to the splitting (4.10), that is

~ Sw S
S=RTSR= " " (4.40)
SEV SEE

From now on, we focus on finding efficient preconditioners for the transformed Schur
complement system

Su=g, =R 'u and g=R'g (4.41)

The preconditioner for S will be of block-Jacobi type : one block for the master edges and
another one for the vertices.

For the edge block of the preconditioner, we deal with the matrix counterpart of (4.13). In
the literature, it is possible to find different ways to build bilinear forms b¥( -, -) that satisfy
(4.13)-(4.12). The choice followed here for defining b”( -, -) is the one proposed in [ ]
and it is based on an equivalence result for the Héf norm, see [ ] and [ ] for a
detailed description of its construction.

For nf € TZOZ we denote by F its vector representation. Then, it can be verified that, for
each ’yéi) C 0€)y, we have (see [ ] pag. 1110 and [ 1)
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(10 1) o = " Ren®
where K; = Mé/ 2(ME_ Y 2REME_ Y 2)1/ 2Mé/ ? and M; and R; are the mass and stiffness matrices
associated to the discretization of the operator —d?/ds* (in Te?@') with homogeneous Dirichlet

boundary conditions at the extrema a and b of véi). Thus, the edge block of the preconditioner
can be written as :

K, 0 0 0
0 Kg, 0 0
0 0 . 0
0 0 0 K

with one block for each mortar edge where M is the number of mortar edges.

Remark 4.3.2. K can be approximated as the square root of hR¢. The computation of the
square root of a matrix can be quite expensive. Therefore, we use the Lanczos Algorithm for

SVD (Singular Value Decomposition) to compute the matrix square root Ré/ 2,

The preconditioner P that we propose is obtained as the matrix counterpart of (4.30) and

of (4.24) defined by
Py
P = 4.43
) (19

where Py and P; are the vertex and egde blocks of the preconditioner respectively.

4.3.2 Preconditioner P,

Concerning the vertex block of our preconditioner, following subsection 4.2.1, we introduce a
coarse auxiliary mesh in each subdomain made up of 3 x 3 elements and we fix the polynomial
order p = 1.

Let now consider the associated Schur complement system and let S¢ be the matrix ob-
tained after applying the change of basis, that is

~ Se, S¢
S — ( gZ“ §ZE ) (4.44)
EV EE

The preconditioner Py, described in section 4.2.1, can then be written as :
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PC
p— (%0 (4.45)
0 P
Hp*\\ =,
where P| = <1 + log (Tp)) Siy-

4.3.3 Preconditioner P,

Let P, and P be the matrix counterparts respectively of (4.27) and of (4.28) in section 4.2.2 and
H 2
let PY° = <1 + log (_p)) (fP; + vPy)). Then the new preconditioner we propose writes :

I
PDG
p,— B 0 ) (4.46)
0 P,

4.4 Conclusion

In this chapter, we analyzed the substructuring preconditioners for /-p mortar finite element
method described in chapter 3. We introduced the general concept of the substructuring ap-
proach of domain decomposition methods. We focused on the preconditioning of the discrete
Steklov-Poincaré operator defined on the skeleton. We proposed two vertex block precon-
ditioners, responsible for the good scaling properties of the preconditioners considered. The
main contribution of this chapter was the construction of a coarse preconditioner based on
the Discontinuous Galerkin type interior penalty method defined on the coarse mesh. We
proved that the condition number of the preconditioned Schur complement system behaves
in a polylogarithmic way. A parallel implementation framework for the preconditioners will
be developed in chapter 6. The numerical results to be presented in the chapter 8 will conform
the optimality and the efficiency of the preconditioners for very large number of subdomains.
The strong and weak scalability analyzed in the same chapter will indicate the performance
of our parallel algorithms on large scale computer architectures.
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Chapter 5

Mortar Element Method with Lagrange
Multipliers

We discuss the domain decomposition method based on an approximation by the
mortar finite element method with Lagrange multipliers proposed in [ . The
hybrid formulation is reminded in section 5.1. A computational framework already
proposed in [. | is emphasized in section 5.2. The convergence analysis is
presented in section 5.3.

Nous discutons la méthode de décomposition de domaine basée sur une approx-
imation par la méthode des éléments finis mortar avec multiplicateurs de Lagrange
proposée dans [. |. La formulation hybride est rappelée dans la section 5.1. Un
framework de calcul déja proposé dans |[. | est souligné dans la section 5.2.
L’analyse de convergence est présentée dans la section 5.3.
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5.1 Hybrid Formulation for Mortar Element Method

Let 2 be a bounded domain of R? ,d = 2,3. We consider the following Dirichlet boundary
value problem : find u satisfying

—Au=f in §Q, u=g¢g on 0f), (5.1)

where f € L?*(Q) and g € H'/?(09) are given functions. We consider a decomposition of
() as the union of L subdomains €},

L
Q=] (5.2)
/=1

We assume that the domain decomposition (5.2) is geometrically conforming which means
that if Ty, := Q, N Q,, (¢ # n) #0, then 'y, must either be a common vertex of €, and €2,,,
or a common edge, or a common face if d = 3. Note that 'y, = I',;;. The usual variational
formulation of (5.1) reads

Problem 5.1.1. Findu € H, () such that

/ Vu-Voudr = / fudx Vv € Hy (). (5.3)
Q Q

We define two product spaces :

L L

v=T[#'©), A=T] [] <H1/2(rfn))'. (5.4)

The space A will be a trial space for the weak continuity conditions on the interfaces.
We introduce the bilinear formsa : V XV — R, b: V x A — R and the linear functional
f:V—R:

L

a(u,v) = Za,g(u,v), ap(u,v) = V- Vg de, (5.5)
=1 e
L L

b()\,’l}) = Z Z b@n(Aav)a bén(Aav): <>\€n7U€>‘ana (56)
o

flo) = Z/ﬂ fue da, (5.7)
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/
where Ay, = —A\u (-, - )|r,, stands for the duality product between <H 1/ 2(an)> and

H'2(T'y,). The mortar formulation with Lagrange multipliers reads as

Problem 5.1.2. Find (u,\) € V x A such thatV(v,pu) € V x A

a(u,v) +b(A\,v) = f(v), (5.8)
b(p,u) = 0. (5.9)

If u and )\ denote the vectors of the components of u and A the discrete system associated
to the problem 5.1.2 is equivalent to the following saddle-point system :

-0

with
A BT Ay 0 BT
A= , A= : : B =1 :
B 0
0 Ap BT
Ay, £=1,...L, corresponds to the stiffness matrix in the subdomain €2, and B, denotes

the matrix associated to the discrete form of the mortar weak continuity constraint in the
subdomain €2,.

5.2 Computational Framework

We want to solve the saddle-point algebraic linear system (5.10) using an iterative Krylov sub-
space method in parallel. Finding a good preconditioner for such problems is a delicate issue
as the matrix A is indefinite and any preconditioning matrix P acting on the jump matrices
By,, would involve communications.

A survey on block diagonal and block triangular preconditioners for this type of saddle-
point system (5.10) can be found in [ ; ]. The matrix A arising in saddle-point
problems is known to be spectrally equivalent to the block diagonal matrix :

A 0
P = (o _S> (5.11)

where S is the Schur complement —BA~' BT, see [ ]. While not being an ap-
proximate inverse of A, the matrix P is an ideal preconditioner. Indeed it can be shown that
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P(X) = X(X—1)(X?-X—1) is an annihilating polynomial of the matrix 7= P~ A. There-
fore, assuming 7 non singular, the matrix 7 has only three eigenvalues {1, (14++/5)/2}. Thus
an iterative solver using the Krylov subspaces constructed with 7 would converge within three
iterations. In practice, computing the inverse of the exact preconditioner P is too expensive.
Instead, one would rather look for an inexact inverse P~'. When applying the preconditioner,
the inexact inverse P~ would be determined following an iterative procedure for solving the
linear system Px = y. It requires a class of iterative methods qualified as flexible inner-outer
preconditioned solvers [ ] or inexact inner-outer preconditioned solvers [ ].

The outer iterations for solving the main problem involve inner iterations for computing
an inexact and non-constant preconditioner. Finding the relevant convergence parameters to
this inner iterative procedure is a critical issue. On one hand, 7/5_1 has to be computed in few
iterations : the total number of iterations including the inner iterations should be less than
without preconditioner. On the other hand for ensuring the stability of the outer iterations, it
would be preferable to solve the inner iterations with as much accuracy as possible in order
to keep an almost constant preconditioner. We refer the reader to [ ] and references
therein for theoretical results and experimental assessment with respect to the influence of
the perturbation to the preconditioner. In this context, the choice a good preconditioner for
solving the inner iterations can have a significant impact on the convergence of the outer
iterations.

The outer iterations will be carried out with a Flexible Preconditioned Biconjugate Gradient
Stabilized Method (FBICGSTAB) [ ] and the Flexible Preconditioned Generalized Minimal
Residual Method with restart m (FGMRES(m)) [ ].

Algorithm 5.1. FBICGSTAB : Solve Ax = b

ro=b— Axg # initialize the residual ry
i"o =TIy
Po =10
Vo =TI
po=a=wy=1
for j =0,1,..., maxiter do
pi+1 = (Fo, ;)
B = (pj+1/p;) x (a/ wj)
Pj+1=1; + B(p; —w;v;)
solve Pp = p;1 # apply the preconditioner P
vit1 = Ap
a=pji1/(Fo,Vj+1)
§=Tr; —QVji]

R AN SR A T

= e e e
B W N R O

solve Ps = s

t=As

Wi+1 = (t,S)/(t,t)
Xjy1 =X + op +ws
18:  rjp1 =8 —wj 1t

19: end for

_ e e
~N N G

Domain Decomposition 59 A. Samaké



Chapter 5. Mortar Element Method with Lagrange Multipliers

Algorithm 5.2. FGMRES(m) : Solve Ax = b

1: for k=1,2,..., maxiter do

2 ro=b— Axg
3 B =roll2
4 vi=ry/p
5. p=pfe;
6
7
8
9

forj=0,1,...,m do

solve Pz; = v;

# initialize the residual rg

# apply the preconditioner P

w=Az;

: fori=1,2,....7 do
10: hi; = (w,v;)
11: w=w—h;;v;
12: end for
13: hjv1; = [[wll2
14: Vit1 =w/hjt1;
15: fori=1,2,...,57—1 do
16: hij = cihij + sihit1j
17: hiyi; = —sihij + cihiyj
18: end for
19: =/ B3+
20: cj=hji/vi s;=hj;/7
21: hjj=v; hjt1,;,=0
22: Dj =CjPjs  Dj+1 = —S;Dj
23: if |pj41] < e then
24: exit loop
25: end if
26:  end for

27: 2™ — (21 2]
28: H™ +— (hi,j)

1<i<j+1;1<5<m

29: y=Argmin [p-H"q|2

30 x=x0+ 2"y
31:  if |[pj11| < e then

32: exit loop
33:  else

34: Xg =X
35:  end if

36: end for

Regarding the preconditioning we will focus on two approximations of P :
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A0 A 0
P, = d Pg = ~ 5.12
! (o 1) we (0 —S) (512

In the first preconditioner the exact inverse of P; is computed at each iteration using the
(I)LU factorization of the block diagonal matrix A. This preconditioner only acts on the
diagonal blocks A,. As a result, solving the linear system P;x = y does not involve any com-
munication between the subdomains. However, since P; does not act on the jump matrices
By, it is very likely to become less effective as the number of subdomains increases. In the
second preconditioner the exact inverse of the block diagonal matrix A is also computed so
that the exact Schur complement S = —BA~!B” is readily available. Instead of taking S
we choose an approximation S such that x = S ~ly is an approximate solution to the linear
system Sx = y following an iterative procedure. This inner procedure is also carried out with
a BICGSTAB algorithm preconditioned with the diagonal of S’ (Jacobi preconditioner M ;) or
with Mg' = BABT.

Remark 5.2.1. The Krylov methods FBIcGSTAB and FGMREs(m) presented respectively in Al-
gorithm 5.1. and Algorithm 5.2. are both adapted to our saddle-point problem, but the only
major difference between these methods is that FBICGSTAB presents sometimes breakdowns
unlike FGMRES(m).

5.3 Convergence Analysis

We summarize in TABLE 1 and TABLE 2 the behavior of L, and H' errors of the numerical
solution relative to the analytical solution g = sin(7z) cos(my) cos(mz) in 3D, see (5.1). The
tests are performed in the case of nonconforming decompositions where the characteristic
mesh size in subdomain € is hg, = h+ d,, ¢ = 1,...,L, with 9, = 0.001 the small
perturbation. All the tests are achieved with 2, 4, 8 and 16 number of subdomains. We denote
by u the exact solution of our problem and ) the discrete solution obtained by using the
characteristic mesh size equal to h and the piecewise polynomials of degree less than or equal
to N. We denote || - ||o the L?-norm and || - ||; the H'-norm.

TABLE 1: L2-convergence analysis for hybrid mortar finite element formulation

h lu—wullo llu—willo  |lu—ujllo

2-1071 2.80-1072 2.67-1073 2.16-1074
1-1071 6.69-1073 2.83-1074 9.58-107
5-1072 1.66-1073 3.24-107° 5.29-1077
2.5-1072 4.00-1074 3.91-107° 3.10-1078
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TABLE 2 : H'-convergence analysis for hybrid mortar finite element formulation

h lJu — g2 |u — uj]lx |u — ujlx
2.1071 7.92-1071 1.09-101 1.10-102
1-1071 3.72-1071 2.44-1072 1.08-1073
5-1072 1.83-1071 5.88-1073 1.25-10~*

2.5-1072 8.93-102 1.43-1073 1.49-107°

—
(o=}
|
1
I

oL ]
02| 10 1.05
L ]
1073 ¢ E 10 E
& L

=104L 1 =102t . —

s \3 : 317
207F — - ER (Ul S — .
107} 4 _— 1
E " —e—IP; Mortar FEM 1074 __—* —e—P; Mortar FEM
1077 —a— P, Mortar FEM - —u— P, Mortar FEM
10-8 i T ‘ ‘ —e—P; Mortar FEM 107° £ T ‘ ‘ —e—P; Mortar FEM

10—1.6 10—1.4 10—1.2 10—1 10—().8 10—1.6 10—1.4 10—1.2 10—1 10—0.8
h h
5.1.1. L? convergence analysis 5.1.2. H' convergence analysis

F1GURE 5.1 : Convergence analysis for polynomial ordersp =1,2,3

The convergence results reported in TABLE 1, TABLE 2 and the plots in FIGURE 5.1 show that
the mortar formulation presented in this chapter satisfies the convergence properties certified
by the finite element theoretical estimations.

5.4 Conclusion

We discussed in this chapter the mortar finite element method with Lagrange multipliers. We
recalled the hybrid formulation leading to a saddle-point type linear system, symmetric and
infinite. We handled a computational framework, already proposed in [ ] for efficient
solving of such a linear system. The parallel implementation and the numerical experiments
including strong and weak scalability analysis for the mortar formulation studied in this chap-
ter will be presented respectively in section 7.3 and in chapter 9.3.
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Chapter 6

Substructuring Preconditioners in 2D

This chapter deals with the implementation of the substructuring preconditioners
for h-p mortar element finite method described in chapter 4. The external libraries
needed for the implementation are presented in section 6.1. The interpolation operator
framework for domain decomposition methods is briefly introduced in section 6.2. The
parallel implementation and the code design are presented respectively in section 6.3
and in section 6.6.

Ce chapitre traite la mise en oeuvre des préconditionneurs par sous-structuration
pour la méthode des éléments finis h-p mortar décrits dans le chapitre 4. Les librairies
externes nécessaires pour la mise en oeuvre sont présentées dans la section 6.1. Un
framework d’opérateurs d’interpolation pour les méthodes de décomposition de do-
maine est briévement introduit dans la section 6.2. La mise en oeuvre en paralléle et
la conception du code de calcul sont présentées respectivement dans la section 6.3 et
dans la section 6.6.
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6.1 Essential Ingredients

The implementation of numerical methods described in this thesis has been performed using
FEEL++ library, introduced in section 1.6, and the Message Passing Interface (MPI) library
[ ]. For the parallel computing, the interprocess communications are handled implicitly
and/or explicitly using BoosT.MPI and BOOST.SERIALIZATION [ ].

We use PETSc library [ ] for sparse linear algebra, such as matrices, vectors, numer-
ical solvers, and related algorithms. The E1GEN library [ ] involves in dense linear algebra,
such as the computation of matrix square root, the condition number estimates from conjugate
gradient coeflicients.

FEEL++ uses GMSH [ ] to generate meshes in one, two and three dimensional spaces.

6.1.1 MPI

MPI is a standardized message-passing system for distributed-memory in parallel comput-
ing. The MPI standards provide portable, efficient, and flexible library routines for writing
message-passing programs in the Fortran, C, and C++ programming languages.

We deal with two different approaches for MPI communications for domain decomposition
framework in FEEL++, namely explicit communications and seamless communications. In the
first approach, the interprocess communications are handled explicitly and independently of
FEEL++, whereas in the second one, they are managed directly by FEEL++. In this second
approach, the parallelism is fully transparent.

6.1.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation is a large suite of data structures
and routines providing parallel, efficient application programs for the solution of problems
in scientific computation, especially the solution of Partial Differential Equations (PDEs). All
of its features are directly usable with the programming language C. The PETSc package is
designed around two main concepts, namely data encapsulation and software layering.

In the explicit communication approach introduced in section 6.1.1, we use PETSc sequen-
tially even though the code is parallel. It requires explicitly sending and receiving complex
data structures such as trace mesh data structures, elements of function space (traces), PETSc
vectors.

6.1.3 GmMmsH

GMsH [ ] is a three-dimensional finite element mesh generator with a build-in Computer-
aided design (CAD) engine and post-processor. It aims to provide a fast, light and user-friendly
meshing tool with parametric input and advanced visualization capabilities. There exists four
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main modules in GMsH : geometry, mesh, solver and post-processing. All instructions are
prescribed either interactively using the graphical user interface (GUI) or in text files.

6.2 Linear Interpolation Operator

In the context of domain decomposition methods, the interpolation operator is a crucial tool.
It allows the transfer of information between adjacent meshes (with overlapping or not, con-
forming or not) at subdomain interfaces.

We are interested in the algebraic representation of the linear interpolation operator, more
precisely the associated matrix. Let X} and Y}, be two function spaces defined respectively on
meshes 7;! and 7;2. The interpolation operator Zy, .y, from X}, to Y}, is defined as

jzyh_+y% : )(h — Y%
U+——v = 2:yh4$yﬁ(u).

Ix, v, (u) € Yy is called the interpolant of u € X),. Let A be the algebraic representation
matrix of Zx, .y, . The application of Zx, _,y, to an element u € X, is equivalent to the simple
matrix-vector multiplication Au. In addition, A is a sparse matrix and its coefficients are
independent of u. This feature is particularly interesting since it enables to apply the matrix
A as many times as necessary without having to rebuild it.

The interpolation operator is based on two fundamental tools namely localization tool
using a kd-tree data structure for fast localization and the inverse geometrical transformation,
see [ ; ].

In FEEL++, the operator interpolation is defined as

Listing 6.1 : Definition of linear interpolation operator in FEEL++

// define two function spaces Xh and Yh

auto Xh = Pch<2>(meshl);

auto Yh = Pch<3>(mesh2);

// define linear interpolation operator from Xh to Yh

auto opI = opInterpolation( domainSpace=Xh, imageSpace=Yh);

In Listing 6.1, the matrix A is computed and stored in opl. The interpolant v € Y}, of u € X,
is computed as follows

Listing 6.2 : Application of linear interpolation operator

// project the function cos(mx)sin(my) on Xh

auto u = vf::project( space=Xh, expr=cos(pi*Px())*sin(pi*Py()));
// define an element v of Yh

auto v = Yh->element();

// compute the interpolant v of u

opI->apply(u,v);
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Remark 6.2.1. Other options of linear interpolation operator are available, for example the
possibility to interpolate on a subspace, the boundary or a portion of the boundary of the
image space.

In the remainder of this part dedicated to the implementation aspects of various numerical
methods presented in previous chapters, the linear interpolation operator will play an essential
role.

6.3 Parallel Implementation

The parallel implementation is performed using FEEL++ library and the Message Passing In-
terface (MPI) library. We use the explicit communication approach introduced above for the
interprocess communications. The explicit sending and receiving of complex data structures
such as mesh data structures and elements of function space (traces) are handled by using
Boost.MPI and Boost.Serialization.

Boost.MPI

Boost.MPI is a C++ layer on top of MPI allowing for simpler mpi usage in particular most
standard C++ containers can be sent or received without having to do anything.

Listing 6.3 : Send and receive data structures

mpi::communicator world;
std::vector<double> x(100);

// do something with x

// send x from 0 to 1 with tag == 1

if ( world.rank() == 0 ) world.send( 1, 1, x );
if ( world.rank() == 1 ) world.recv( O, 1, x );

) .

Boost.Serialization

Boost.Serialization provides a simple interface to serialize data structures, used typically to
archive data structures (persistence) but also by Boost.MPI to send and receive complex data
structures.

Listing 6.4 : Example using Boost.Serialization

class A { public:

std::vector<double> x,y,z;

template<class Archive>

void save( Archive & ar, const unsigned int /*version*/ ) const {
ar & x; ar & y; ar & z; }

template<class Archive>

void load( Archive & ar, const unsigned int /*version*/ ) {

ar & x; ar & y; ar & z; }

BOOST SERIALIZATION SPLIT MEMBER() };
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MPI Communicators

We define three different types of MPI communicators : (i) a global communicator for inter-
process communications between subdomains (e.g. FIGURE 6.1.1.) (ii) the local communicator
(sub-communicator) that activates only the subdomain within (e.g. FIGURE 6.1.2.) (iii) the sub-
group communicator for interprocess communications between selected subgroups responsi-
ble for the parallel solution of the coarse preconditioner defined in (4.29), see FIGURE 6.4.

4 )

MPI Comunicator
2 4
>< MPI Comunicators
1 3
6.1.1. Global MPI communicator 6.1.2. Local MPI communicators

F1GURE 6.1 : MPI Communicators

One interesting aspect of the parallel implementation of the h-p mortar finite element
method is the absence of communication at cross-points (in 2D and 3D) and cross-edges (in
3D), which reduces significantly the interprocess communications between subdomains, and
therefore the computational cost.

6.3.1 Geometric Framework

6.3.1.1 Polygonal Domain

We describe in this section the domain decomposition and the mesh generation for the mor-
tar finite element discretization. First, we consider a geometrical discretization QZ‘ of €,
Q?e C Q. Let 7;2 be a finite collection of nonempty, disjoint open simplices or hypercubes

forming a partition of Q?e such that h, = max {hf }, with hl¢ denoting the diameter of the
KeT,

element K € T}. Note that in the case of nonconforming domain decomposition, hy # hj,
for ¢ # k. The mesh 7;5[ is generated independently and sequentially in each subdomain 2y,
which means that it does not require communication. FEEL++ mesh data structure is defined
through the type of geometrical entities (simplex or hypercube) and the geometrical trans-
formation associated. The mesh entities (elements, faces, edges, nodes) are indexed either by
their ids, corresponding to the process id to which they belong, their markers or their location.
FEEL++ uses Boost.Multi-index to retrieve pairs of iterators over the containers of the entities
depending on the usage context and the pairs of iterators are then turned into a range to be
manipulated by the tools for submesh generation, the interpolation, the integration and the
projection. The mesh data structure allows us to determine the neighboring subdomains as
well as edge (in 2D and 3D) and face (in 3D) shared by neighboring subdomains.
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Listing 6.5 : Local mesh generation

auto mesh = createGMSHMesh( mesh=new mesh type(CommSelf),
_prefix="fine",
_update=MESH CHECK|MESH UPDATE FACES|MESH UPDATE EDGES,
_desc=domain( name="localmesh",
_addmidpoint=false,
_usenames=false,
_shape="Hypercube",
_dim=Dim,
_h=(isMaster)?hsizel:hsize2,
_convex=convex,
_Xmin=xmin,
_ Xmax=xmax,
_ymin=ymin,
_ymax=ymax,
_zmin=zmin,
_Zmax=zmax,
_substructuring=true
),
_structured=(grid=="fine")?structured:2,
_partitions=CommSelf.localSize(),
_worldcomm=CommSelf );

In Listing 6.5, the communicator CommSelf is purely local, see FIGURE 6.1.2.. Two different
mesh characteristic sizes hsizel and hsize2 are used according respectively to master and
slave subdomains in order to process nonconforming meshes. The parameter convex repre-
sents the type of elements which can be simplex or hypercube.

Remark 6.3.1. The number of mesh files to generate is equal to the number of subdomains.
Writing these files on the disk is very expensive for large number of subdomains and heavily
penalizes the Input/Output (IO) filesystem on computational platforms. Thanks to the recent
advances in FEEL++, a new feature that consists in generating mesh files directly in memory
without writing to disk is available. This feature is of an utmost importance for the achieving
of very large simulations on parallel computing platforms.

6.3.1.2 Complex Domain

We discuss the extension of the polygonal domain decomposition presented in section 6.3.1.1
to the general computational domain. Let 2 C R? be a bounded domain. First, we generate the
coarse mesh 7 as in FIGURE 6.2 with hypercube elements (for the regularity at subdomain
interfaces). Each element of the coarse mesh is considered as a subdomain of the domain
decomposition. In our strategy of parallelization, only one subdomain is assigned to each
processing unit. The coarse mesh 7 is loaded by all the processing units and each subdomain
extracts its corresponding element K using the keyword createSubmesh (elementId), where
elementId means the id of the element in the coarse mesh 7. The generation of the fine
mesh 7, is made locally in subdomain K using the GmsH interface of FEEL++. For the parallel
resolution of the Discontinuous Galerkin coarse problem, the coarse mesh 7 is partitioned
by using the graph partitioner Metis or Chaco.
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FIGURE 6.2 : Coarse mesh partition

6.3.1.3 Trace Meshes

In the mortar finite formulation method, the assembly of transfer matrices Cy and Cs presented
in section 4.3.1 requires the exchange of trace mesh data structures between neighboring sub-
domains. We extract the trace meshes locally in each subdomain by using the FEEL++ submesh
generation tool, the so-called createSubmesh [ ]. The global MPI communicator is used
for the swap of extracted trace meshes between master and slave subdomains.

Algorithm 6.3. Local extraction of trace meshes

Require: mesh # input local mesh
1: for f € interfaces do
2:  tracemesh([f] «— createSubmesh(mesh,f) # extraction of trace mesh

3: end for

Listing 6.6 : Communications for exchange of trace meshes

std::vector<mpi::request> reqs;
for (std::string const& face : interface flags )
{

const int pid = procid;

const int npid = neighborProc(face);

comm.isend(pid,pid,*(trace send[facel));

auto reql
comm.irecv(npid,npid,*(trace recv[facel));

auto req2 =
reqs.push back(reql);
reqs.push back(req2);
}

mpi::wait all(reqs.begin(),reqs.end());
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6.3.2 Algebraic Framework

The Algebraic representations are handled using a so-called backend which is a wrapper class
that encapsulates several algorithms as well as data structures like vectors and matrices. It
provides all the algebraic data structure behind function spaces, operators and forms. In the
case of linear functionals, the representation is a vector and, in the case of linear operators and
bilinear forms, the representation is a matrix. The backend abstraction allows to write code
that is independent of the libraries used in the assembly process or to solve the linear systems
involved, thus hiding all the details of that algebraic part under the hood of the backend.

In this work, we use two backends that provide an interface to PETSc for sparse matrices
and EIGEN for dense matrices which will be used in particular for storing the edge block pre-
conditioners and the tridiagonal matrix associated with the Lanczos algorithm to estimate the
condition number using the conjugate gradient coefficients.

Our purpose is to solve the reduced Schur complement system (4.41) preconditioned by the
substructuring preconditioners presented in chapter 4. Traditionally, the Schur complement
matrix is almost never assembled explicitly, since its expression depends on the local inverse
matrices, see (4.34). We use the common technique that consists in computing the action of the
Schur complement matrix S on a vector, only needed for the use of Krylov subspace method
[ ] for solving the linear system (4.41). This technique is generally known as “shell” or
“matrix-free” operations.

6.3.2.1 Index Sets for Substructuring

The principle of the substructuring approach is to consider a nonoverlapping splitting of the
nonconforming discretization space in terms of interior, edge and vertex degrees of freedom.
At the algebraic level, this consists in considering a nonoverlapping partition of the unknowns
of local algebraic linear system into subsets corresponding to interior, edge and vertex un-
knowns. In our implementation strategy, we first consider the nonoverlapping splitting of
the unknown u of the local Schur complement system (4.33) into u; and ug respectively the
unknown components associated to interior nodes and the boundary nodes. Let IS; and IS
be the index sets representing the location of interior nodes u; and boundary nodes u; in the
global solution vector u. FEEL++ provides a feature, the so-called markerToDof allowing to ex-
tract the degrees of freedom from geometric entity (vertex, edge, surface) markers. From the
keyword “substructuring” of FEEL++, we can mark the entities during the mesh generation.
This information is stored in FEEL++ mesh data structures and it is available after creating the
function spaces.

The index sets IS; and ISy are essential for the extraction of submatrices Ajr, A, Agr and
Agg needed for the local Schur complement system, see (4.33) and (4.34). These submatrices
are extracted by using the FEEL++ function, the so-called createSubmatrix, a interface for
the MatCreateSubMatrix function of PETSc. The input parameters required for this function
include the index sets for rows and columns corresponding to the submatrices in the initial

Domain Decomposition 72 A. Samaké



Chapter 6. Substructuring Preconditioners in 2D

matrix. The Listing 6.7 illustrates the examples of submatrice extraction in FEEL++.

Listing 6.7 : Extraction of submatrices

// define local function space

auto Xh = Pch<2>(mesh);

// define index sets

auto IS; Xh->dof () ->markerToDof("Interior");

auto ISp Xh->dof () ->markerToDof ("Boundary");

// create submatrices Aj;, Az and Agg from the global matrix A
auto A;; = createSubmatrix(A,IS;,ISt);

auto A;g = createSubmatrix(A,IS;,ISg);

// create the transpose matrix Ag; of A without assembly
auto Agr = transpose(Arg,MATRIX TRANSPOSE UNASSEMBLED) ;
auto Ags createSubmatrix(A,ISg,ISg);

Remark 6.3.2. In Listing 6.7, we do not require the assembled transpose matrix

Ag; of Agg

but rather the ability to do the multiplication of Ag; on a vector. This feature allows to gain a

lot in terms of storage and operations.

The next step is the definition of the index sets IS, and IS¢ representing the location of
vertex nodes uy and edge nodes u; in the solution vector ug of the Schur complement system
(4.34). This decomposition is needed for the application of mortar constraint, see (4.37) and

(4.38).

6.3.2.2 Application of the Schur Complement Matrix

The operation v = St can be performed in the following steps :

Dw=Ru 2)x=Qw 3)y=3x 4)z=Q'y 5 v=RTz

Algorithm 6.4. Application of the Schur complement S

Require: u,v # input and output vectors
1: w< Ru # no communication
20 X Qw # require communications from master to slave
3y XX # no communication
4: Z < QTy # require communications from slave to master
5: v+ Rlz # no communication
6: return v # return output vector

The vectors x and z in the Algorithm 6.4. are given by

Wy T
_l’_
X = Wy and z=["" n gVTyS 5 (6.1)
Quwy + Quwy YM vy
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where Quwy = Cg LCywy and QVTYS =Cy 10\,T Ys.

Cuwy

Ciys C!
Ys

FIGURE 6.3 : MPI communications for transfer matrix-vector multiplication

The terms in color in (6.1) are those requiring interprocess communications between neigh-
boring subdomains, see FIGURE 6.3.

6.3.2.3 Application of the Constraint Matrix ()

The application of the constraint matrix () implies the operations Quwy = Cs 'Cywy and
Qlys = C:1Clys, see (6.1). The interpolation from local function space to trace function
spaces is needed in these operations since Cy and ys do not live on the same mesh. Let Zg, 7«
be the interpolation operator from the Schur function space S}, to trace function space 7}, and
let Zpx_, g, be the adjoint operator of Zg, _,;x, K = {M , S}, depending on whether the side
is master or slave.

Algorithm 6.5. Compute of Cg LCuwy

Require: wy, Cs, Cy # input vector and matrices
1. x* <_Ish—>T,{<(WM) apply interpolation operator
2: y « Cyxt
3: Solve Csz =y
4: Vg <— ITh—>S,5(<Z)
5: return vy

apply Cy

use direct solver

apply inverse interpolation operator
return output vector

H OB K K R

Listing 6.8 : Interpolation operators

// operator interpolation Zg, ,rx, K ={M,S}

opI = opInterpolation( 7domainSpéce=Sh,
__imageSpace=Th,
_range=elements(Th->mesh()),
_backend=M backend) ;
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// operator interpolation transpose Ipx_,g,, K ={M,S}
opI->matPtr()->transpose(opIMATTRANS, MATRIX_TRANSPOSE_UNASSEMBLED);

Remark 6.3.3. As in remark 6.3.2, the transpose opIMATTRANS of the matrix associated to the
linear interpolation operator opI in Listing 6.8 is not assembled explicitly but only its action
on a vector is required.

6.3.2.4 Application of the Change of Basis Matrix R

The application of the change of basis matrix defined in (4.39) is done locally for each subdo-
main as

u 0 u
R '] = +R, | (6.2)
ue e e

The matrix-vector multiplication in (6.2) does not require communication and involves
mainly the action of the matrix Ry on a given vector. Given as the matrix Ry is the algebraic
representation of the piecewise polynomial linear interpolation operator from a coarse mesh
(with two simplex elements) to the local mesh, its construction is done by using FEEL++ linear
interpolation framework discussed in section 6.2.

Listing 6.9 : Construction of the matrix Ry

// Schur function space
auto Sh = Pch<2>(tracemesh);
// function space defined on the coarse mesh with two simplex elements
auto Ch = Pch<l>(coarsemesh);
// operator interpolation Zg, g,
opI = opInterpolation( _domainSpace=Ch,
__imageSpace=Sh,
_range=elements(Sh->mesh()),
_backend=M backend) ;

// matrix Ry associated to opI
auto Rv = opI->matPtr();

6.3.2.5 Application of the Preconditioner P

The substructuring preconditioner P is applied locally for each subdomain, see Algorithm 6.6..
The matrix-vector multiplication Pgu; is a purely local operation performed homogeneously
for each subdomain. This operations do not require communication (see Algorithm 6.7.) since
the block preconditioners IA(E]., j=1,...,M are thoroughly independent, see (4.42).
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Algorithm 6.6. Application of the preconditioner P

Require: u,v # input and output vectors
1: vy < Pyuy # require communications between neighboring subdomains
2: Ve + Prug # no communication
3: return v # return output vector

Algorithm 6.7. Application of the edge block preconditioner P

Require: ug,ve # input and output vectors
1: fori = 1A,...,Mdo
22 vy < Kgug, # local matrix-vector product on the i*" master edge
3: end for
4: return vg # return output vector

6.3.2.6 Vertex Block Preconditioner

We develop two different implementations of the vertex block preconditioner Py°. In the first
one, we solve the coarse problem sequentially on a master process using the Discontinuous
Galerkin (DG) formulation in FEEL++ (see Listing 6.12). Each subdomain retrieves its contri-
bution on its processor rank through the MPI communications for the local application of the
coarse component of the substructuring preconditioner. In the second approach, we solve the
coarse problem in parallel on a group of master processes (see FIGURE 6.4.1.). The commu-
nications are handled explicitly inside subgroups (see FIGURE 6.4.2.) and implicitly between
master processes (see FIGURE 6.4.1.).

Let nmp be the number of selected processors for solving the coarse problem in parallel.
First, we load the coarse mesh sequentially one processor, for example the process rank 0 and
we partition it into nmp partitions by using the mesh partitioner Metis or Chaco from GmsH.
We select for example the first element id in each partition as master processes. On the master
process ranks, we define a master MPI communicator from the global MPI communicator by
using Boost.MPI group, a interface allowing the creation of communicators for subgroups of
processors, as shown Listing 6.10. Let masterRanks be the iterator range of master ranks and
let worldcomm the global MPI communicator, see FIGURE 6.1.1..

Listing 6.10 : Construction of master communicator

// define a group including only master processes

auto masterGroup = worldcomm().group().include(masterRanks.begin(),masterRanks.end());
// define a master communicator

auto masterComm = mpi::communicator(worldcomm,masterGroup);
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Analogously, we define a subcommunicator that activates only the processes within each
partition, see Listing 6.11. Let subRanks be the iterator range of process ranks activated in the
partition.

Listing 6.11 : Construction of subgroup communicators

// define a group including only subgroup processes

auto subGroup = worldcomm().group().include(subRanks.begin(),subRanks.end());
// define a subgroup communicator

auto subComm = mpi::communicator(worldcomm, subGroup);

We design the Discontinuous Galerkin formulation assigned to the master processes and
fully supported by FEEL++.

Listing 6.12 : Discontinuous Galerkin formulation in FEEL++

// define coarse mesh in parallel on master processes

auto mesh = loadMesh( mesh=new Mesh<Hypercube<2> >,
_partitions=masterComm.globalSize(),
_worldcomm=masterComm );

// define DG function space of piecewise linear polynomials
auto Vh = Pdh<l>( mesh, true );

auto u = Vh->element();

auto v = Vh->element();

// assemble DG problem
auto dgform = form2( _trial=Vh, test=Vh,

_pattern=size type(Pattern::EXTENDED) );
dgform = integrate( range=elements(mesh),

_expr=£*gradt(u)*trans(grad(v)) ); /// BVu - Vo
Q

dgform += integrate( internalfaces( mesh ),
+ y*( trans( jumpt( idt( u ) ) )*jump( id( v ) ) )/hFace() ); // ~v[u].[v]/h

The application of the coarse DG preconditioner defined in Listing 6.12 is performed in
three steps and requires collective communications (gather and scatter) in each subgroup,
see FIGURE 6.4.2.. These communications enable the vertex data from the fine grid to the
coarse grid and vice versa thanks to the simple pattern of the table of degrees of freedom of
Discontinuous Galerkin problems.

The first step consists in sending the solution vector of each subgroup process to the sub-
group master process by using Boost.MPI gather, see Listing 6.13.

Listing 6.13 : Communications from subgroup processes to subgroup master process

// subgroup master processs
int subMasterRank = subGroup.masterRank();
// sending the solution vectors to subgroup master processs
if (subGroup.rank()==subMasterRank)
{
mpi::gather(subGroup, inputvec, 4, gathervec, subMasterRank);

}
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else

{

mpi::gather(subGroup, inputvec, 4, subMasterRank);

}

The second step is dedicated to the resolution of the coarse DG problem in parallel using

a direct solver, for example mumps, see Listing 6.14.

Listing 6.14 : Solve DG problem in parallel

// solve DG problem using direct solver mumps
dgform.solve( solution=scattervec,
_rhs=gathervec,
_pcfactormatsolverpackage="'"mumps'"' );

The last step consists in sending the DG problem solution vector from subgroup master
process to each subgroup process by using Boost.MPI scatter, see 6.15.

Listing 6.15 : Communications from subgroup master process to subgroup processes

// receive subgroup process contributions from subgroup master process
if (subGroup.rank()==subMasterRank)

{
mpi::scatter(subGroup, scattervec, outvec, 4, subMasterRank);
}
else
{
mpi::scatter(subGroup, outputvec, 4, subMasterRank);
}
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6.4.1. Master communications 6.4.2. Communications inside subgroups

FIGURE 6.4 : MPI communications for vertex block preconditioner P5°

Remark 6.3.4. The parallel implementation of the vertex block preconditioner Py°® will im-
prove the load balancing and therefore the performance of our preconditioner on very large
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scale architectures since the coarse problem size is four times the number of subdomains (num-
ber of cores) in two-dimensional space.

6.3.2.7 Condition Number Estimate

We solve the transformed Schur complement system (4.41) by using the Preconditioned Con-
jugate Gradient (PCG) method [ ]. The condition number of the (preconditioned) Schur
complement matrix is estimated from the (preconditioned) conjugate gradient coefficients by
using the relationship between Lanczos technique and the PCG method, see [ ] for more
details.

Algorithm 6.8. PCG algorithm for Schur complement system (4.41)

1: Compute ry :gf§x0 # initialize the residual rg

2: fori=1,2,... maxiter do

3: solve Pz, | =r;_; # apply the preconditioner P
4 pi—1 = (ri—1,2i1)
5 if i = 1 then
6: P1 =12
7 else
Pi—1
8 Bic1 ==
Pi—2
9 pPi =2zi—1+ Bi1pi1
10:  end if
11: qi = Spi—1
12 o = Lt
(Pirqi)

130 X = X1 + Py

14 1y =11 + 049

15 check convergence ; continue if necessary
16: end for

The central idea of the conjugate gradient method is to construct the minimum error so-
lution in S-norm over the Krylov space K; = span{ro,gro, . ,§ri_1}, see Algorithm 6.8. A
rich literature devoted to the iterative Krylov subspace method is available in [ ].

The Lanczos algorithm [ ] applied to the matrix S constructs a tridiagonal matrix 7'
whose smallest and largest eigenvalues converge to the smallest and largest eigenvalues of
S respectively denoted by A, (§) and 4z (§) Let 7), be the tridiagonal matrix associated
with the m-th step of the Lanczos algorithm [ , p- 214-215, Algorithm 6.15]. T}, is defined
by T, = tridiag[n;", 6;", n;'},]. The coefficients ;" and 0;" are functions of conjugate gradient
coefficients o; and 3; defined in Algorithm 6.8.. The tridiagonal matrix entries 7" and 9;" are
defined by
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1
— fori =0
o, = Bi1 and §™. — 0%
il = T i+1 = 1 ‘
it —%—ﬁZ L fori>0
Q1

This technique to obtain condition number estimate is valid for the preconditioned con-
jugate gradient method (see Algorithm 6.8.), i.e., if we apply the Lanczos algorithm to the
preconditioned matrix P-!S, the extremal eigenvalues of the tridiagonal matrix 7}, converge
to the extremal eigenvalues of P~!S. An estimation of the condition number R(P_lg) of the
preconditioned Schur complement matrix is defined by

« Amaw(PT'S
K(P7'S) = Amas(P”8)
Amin(P~1S)

where A (P18) and Aq. (P~1S) are estimated respectively by smallest and largest eigen-
values of the Lanczos tridiagonal matrix 7,,.

In our implementation, the symmetric m-dimensional Lanczos tridiagonal matrix 7}, is
stored in dense format. We compute its smallest and largest eigenvalues by using the EIGEN
[ ] library.

6.4 Notes on Implementation in 3D

The extension of the substructuring preconditioners for two-dimensional mortar finite ele-
ment method presented in this thesis to three-dimensional problems is an ongoing work. The
principal ingredients which are under development include the construction of the mortar
projector and the coarse grid operator on the wirebasket (the union of the edges and vertices).
The construction of the mortar projection operator is almost done for first-order approxima-
tion (p = 1) and its extension to any polynomial order is a highly technical task which is in
progress. Other points required for the realization of the preconditioners in three-dimensional
space are available : the (i) construction of the Schur complement system and (ii) the efficient
computation of matrix square root, essential for the face block preconditioning.

6.5 Complexity Analysis

6.5.1 Data Structure

For our parallel implementation, we chose the non-clusterization strategy, i.e. one subdomain
per processing unit. The data related to each subdomain, e.g. local mesh, local function space,
local stiffness matrix, local linear interpolation operator are stored in the local memory. The
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assembly of the transfer matrix Cy requires the exchange of trace meshes between neighboring
subdomains. The exchange of trace solutions is needed for the application of the constraint
matrix @ and its transpose Q7. These shared data are copied between processing units and
therefore increase the memory complexity.

6.5.2 Communication

One of interesting points of the mortar finite element method is that continuity at the cross-
points (in 2D and 3D) and the cross-edges (in 3D) is not required. In the implementation view
point, this means that there is no communication between neighboring subdomains through
the cross-points, which significantly reduces the time complexity. Solving and the applica-
tion of the coarse grid preconditioner have a significant effect on the communication cost. In
this framework, the size of the coarse problem is four times the number of processing units
(number of subdomains), that can be solved in sequential or in parallel depending on the con-
figurations, specially the number of processing units employed for solving the overall problem.
The main rule we have adopted is that the communications should not be too many compared
with the workload in order to not adversely affect the computational cost. Indeed, we have
the ability to intuitively choose the suitable number of processing units for solving the coarse

grid problem.

6.5.3 Load Balancing

The load balancing has a great influence on the performance of a parallel algorithm. The
mortar finite element method naturally involves imbalance since the master and the slave
subdomains are not handled in the same way, e.g. the assembly of transfer matrix Cy. The
solution of the coarse grid problem adds another source of imbalance since it is performed
on a selection of processing units among all resources dedicated to the overall problem. An
equilibrated mortar approach introduced in [ ] and based on Schwarz type methods with
Robin interface conditions can improve the load balancing.

6.5.4 Synchronization

The synchronization manages the sequence of work and the tasks execution for parallel algo-
rithms. It is an important factor that can affect the performance of a parallel application. The
process synchronization point is a point where all processing units must arrive before starting
at the same time a given task. In our framework, this feature is used mostly in the compute of
inner products in the Krylov subspace iterations.

6.5.5 Scalability

The concept of scalability was introduced in section 1.7.
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Substructuring Preconditioners in 2D

6.6 Code Design

For the numerical implementation of the methodology described in chapter 3 and in chapter 4,
we developed the code in C++11. Without going into detailed descriptions, we will just give a
brief overview to the four main classes defined in the implementation code : class Subdomain,
class LocalProblemBase, class LocalProblem and class Mortar.

6.6.1 Class Subdomain

It is a virtual class, from which the class LocalProblemBase is derived. This class handles
the domain decomposition (one subdomain per processor core) and provides all the ids of
the neighboring subdomains from the different edges. It also provides the following main

methods :
e Xmin:
e Xmax :
e ymin :
e ymax :
e zZmin:

* Zmax :

returns the minimum length of the subdomain in X-direction
returns the maximum length of the subdomain in X-direction
returns the minimum length of the subdomain in Y-direction
returns the maximum length of the subdomain in Y-direction
returns the minimum length of the subdomain in Z-direction

returns the maximum length of the subdomain in Z-direction

« isInterior : return true or false depending on whether the current subdomain is an
interior subdomain or not

« isOnBoundary : return true or false depending on whether the current subdomain is on
boundary or not

+ isMaster : return true or false depending on whether the current subdomain is a master
subdomain or not

« isSlave : return true or false depending on whether the current subdomain is a slave
subdomain or not

Listing 6.16 : Class Subdomain

template<int Dim>
class Subdomain

{
public:
/*
@param pid process id for the current subdomain
@param nx number of subdomain in X-direction
@param ny number of subdomain in Y-direction
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*/

@param nz number of subdomain in Z-direction
@param vm variables map for options

// constructor
Subdomain( int pid, int nx, int ny, int nz, po::variables map const& vm );

// virtual destructor
virtual ~Subdomain(){}

6.6.2 Class LocalProblemBase

This class is derived from class Subdomain and allows the shell construction of the con-
strained Schur complement system (4.38), the transformed Schur complement system (4.41)
and the change of basis operators (4.39). It provides the following main methods :

createMesh : create the local meshes(fine and coarse). The exchange of trace meshes
between neighboring subdomain is also performed in this function

createFunctionSpaces : create the local function spaces(fine, coarse, traces and mortar)

interpolation : create interpolation operators (i) from domain space to trace space
(ii) from domain space to corse space

createIndices : create indices corresponding to the decomposition u = u° + u® + V.
This indices are used for the extraction of submatrices needed for the construction Schur
complement system and substructuring preconditioners

assembleProblem : assemble local stiffness matrix A, local right hand side vector F' and
the transfer matrices Cy, Cs and C,

schurComplement : create shell operator for the Schur complement system (4.34)
switchingMatrix : apply the switching matrix (), see (4.38)

switchingMatrixTrans : apply the switching matrix transpose Q7 see (4.38)
multVector : create shell operator for the constraint Schur complement system (4.38)

rightHandSide : create shell operator for the right hand side corresponding to the con-
straint Schur complement system (4.38)

referenceVertexPrecondApply : apply the reference coarse preconditioner (4.17)
changeBasis : apply the change of basis operator R, see (4.39)

changeBasisTrans : apply the change of basis operator transpose (4.40).
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Listing 6.17 : Class LocalProblemBase

template<int Dim,int Order>
class LocalProblemBase: public Subdomain<Dim>

{
public:
/*

@param pid process id for the current subdomain
@param nx number of subdomain in X-direction
@param ny number of subdomain in Y-direction
@param nz number of subdomain in Z-direction
@param vm variables map for options
@param worldcomm mpi communicator
@param grid fine/coarse grid

)

// constructor
LocalProblemBase( int pid, int nx, int ny, int nz, po::variables map const& vm,
WorldComm const& worldcomm, std::string grid=''fine'' )

Subdomain<Dim>( pid, nx, ny, nz, vm )

{}
b3

6.6.3 Class LocalProblem

This class is derived from class LocalProblemBase and allows the shell construction of the
substructuring preconditioners Py, P; and P; described in chapter 4, the parallel/sequential
assembly of the Discontinuous Galerkin coarse preconditioners presented in section 4.2.2. The
solvers (CG, BICGSTAB, MINRES) used for solving the (preconditioned) Schur complement system
are implemented in this class. the class LocalProblemBase provides the methods for the post
processing operations which are (i) the resolution of the local linear system with the Schur
complement solution as boundary conditions (ii) the compute of the numerical errors (L? and
H") (iii) the exporting of the numerical results.. The main methods are

« schurMatrixPrecond : apply the substructuring preconditioner

« vertexPrecondApply : apply the coarse preconditioner

« vertexDGPrecondApply : apply the DG coarse preconditioner in sequential

« vertexParallelDGPrecondApply : apply the DG coarse preconditioner in parallel
« solve : solve the (preconditioned) Schur complement system

« 12Error : compute the numerical L? error

« hlError : compute the numerical H' error

+ exportResults : export the numerical results
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Listing 6.18 : Class LocalProblem

template<int Dim,int Order>
class LocalProblem: public LocalProblemBase<Dim,Order>

{
public:
/*
@param pid process id for the current subdomain
@param nx number of subdomain in X-direction
@param ny number of subdomain in Y-direction
@param nz number of subdomain in Z-direction
@param vm variables map for options
@param worldcomm mpi communicator
@param cs coarse Schur complement for preconditioner
W

// constructor
LocalProblem( int i, int nx, int ny, int nz, po::variables map const& vm,
WorldComm const& worldcomm, coarseproblem ptrtype cs )

LocalProblemBase<Dim,Order>( i, nx, ny, nz, vm, worldcomm )

{}

6.6.4 Class Mortar

This class is derived from class LocalProblem and the class Simget of FEEL++. It mainly
provides methods for automatic convergence analysis (in h, in H and in p) and automatic
scalability analysis (strong and weak). The main methods are

+ convergenceStudy : exports data files for automatic convergence analysis
+ strongScalingStudy : exports data files for automatic strong scalability analysis

» weakScalingStudy : exports data files for automatic weak scalability analysis

Listing 6.19 : Class Mortar

template<int Dim,int Order>
class Mortar: public std::map<int, boost::shared ptr<LocalProblem<Dim,Order> > >,
public Simget

{
public:

// constructor
Mortar()

éimget()
{1

T
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Listing 6.20 : Main funtion

int main(int argc, char** argv )
{

// use Feel namespace

using namespace Feel;

// Initialize Feel++ Environment
Environment env( argc=argc,
_argv=argv,
_desc=makeOptions(),
_about=about( name="''mortar'"',
_author="'"'Abdoulaye Samake'',
_email="'"abdoulaye.samake@imag.fr'"') );

// create an application
Application app;

// instanciate Mortar in 2D
app.add( new Mortar<2,FEELPP_ORDER>() );

// run the application
app.run();

6.7 Conclusion

In this chapter, we introduced the numerical implementation of the substructuring precondi-
tioners for mortar element method in two dimensional space, previously described in chapter
4. We first recalled the essential ingredients including MPI, PETSc and GMmsH. We placed a
special emphasis on linear interpolation operator which is a crucial tool for domain decompo-
sition methods in FEEL++. We presented two different MPI communication approaches namely
explicit and seamless approach. For the first approach, we introduced Boost.MPI and Boost.Se-
rialization that provide a simple interface for MPI usage. We discussed a generic geometric
and algebraic framework for mortar discretization and the construction and analysis of the
substructuring preconditioners. This implementation will be followed by the numerical ex-
periments supporting the theoretical properties of the preconditioners and the performance
of our parallel algorithms in chapter 6.
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Chapter 7

Generic Implementation Framework

This chapter discusses the implementation aspects for schwarz methods in sec-
tion 7.1, three-field method in section 7.2 and mortar element method with lagrange
multipliers in section 7.3.

Ce chapitre aborde les aspects de mise en oeuvre des méthodes de schwarz dans la
section 7.1, de la méthode three-field dans la section 7.2 et de la méthode des éléments
finis mortar avec multiplicateurs de lagrange dans la section 7.3.
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7.1 Schwarz Methods

In this section, we discuss two different approaches for Schwarz methods in FEEL++ using
explicit communications (see section 7.1.1) and seamless communications (see section 7.1.2).
In the first approach, we deal with different types of Schwarz methods(Additive, Multiplicative,
with(out) Relaxation) with different artificial boundary conditions (DD, DN, NN, RR) while
having the ability to process (non-)conforming meshes as well as being able to control the size
of the overlap between neighboring subdomains. In the second approach, we use the parallel
data structures of FEEL++ and the algebraic domain decomposition framework provided by
PETSc.

7.1.1 Explicit Communication Approach

Schwarz methods are used as solvers and the communications are handled explicitly. We use
PETSc sequentially even though the code is parallel using MPI communicators. It requires
explicitly sending and receiving complex data structures such as mesh data structures and
elements of functions space (traces). A sequential interpolation operator is also used to make
the transfer between the grids (overlapping or not, conforming or not). In this case each
subdomain creates locally its mesh and its function space, the matrices and vectors associated
to the discretization process are completely local.

The variational formulation of the problem (2.4) in the simplest form (L := —A) in the
subdomain €; at iteration number £ using Nitsche’s method [ ] for applying weakly the
Dirichlet-Dirichlet artificial boundary conditions (C; = C; = Id, j € Vq,) is given by : find
uf € HY(Q;) such that a(uf ,v) = I(v) Vv € HY(;) where

8n on ' h*

Y v Y .
/ fo+ /aQ ATy a % + Ev)g + Z ./l‘ij < on o 7? >“-§ 1 (7:2)

Vg)

k
a(uf,v) / Vuk . Vv+/ auiv @u’?%—zukv (7.1)
o9

with v a penalization parameter and h the maximum mesh size.

Other variants of artificial boundary conditions such as Dirichlet-Neumann (C; = Id, C; =
d/on, j € Vg,), Neumann-Neumann (C; = C; = 0/0n, j € Vg,) and Robin-Robin
(C; =C; = (0/0n)+1d, j € Vq,) are also treated. In the above variational formulation, only
the terms colored in red in (7.2) requires communications between neighboring subdomains
for each Schwarz iteration and interpolation between the grids. Note that the assembly of the
other terms of the variational formulation is done once and is purely local.

The listing 7.1 illustrates some aspects of Schwarz algorithm using the FEEL++ language.

Listing 7.1 : FEEL++ snippet code for parallel Schwarz algorithm

// Create local mesh and function space on subdomain number i
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auto mesh = createGMSHMesh( mesh=mesh type, ...);
auto Xh = space type::New(mesh);
std::vector<mpi::request> reqs; // vector of Boost.MPI requests
for(int j=0, j< Nneighbors, ++j){
// Extract trace mesh on interface number j
trace mesh send[j]=mesh->trace(markedfaces(mesh,j));
// Exchange trace mesh with neighbor subdomain number j
auto reql=comm.isend( j,i,trace mesh send[j] );
auto req2=comm.irecv( j,j,trace mesh recv[j] );
reqgs.push back(reql); reqgs.push back(req2);
} mpi::wait all(reqs.begin(), reqs.end());// wait all requests
for(int j=0, j< Nneighbors, ++j){
// Create trace function space for interface number j
TXh[j] = trace space type::New(trace mesh recv[j]);
// Create interpolation operator from Xh to TXh[j]
opI[jl=operatorInterpolation(Xh,TXh[j]); }
while(!convergence) { // Schwarz iterations
reqs.clear();
for(int j=0, j< Nneighbors, ++j){
// Non conforming interpolation for interface number j
opI[j]->apply(solution,trace solution send[j]);
// Exchange trace solution with neighbor subdomain number j
auto reql=comm.isend( j,i,trace solution send[j] );
auto reg2=comm.irecv( j,j,trace solution recv[j] );
reqs.push back(reql); reqgs.push back(reg2);
} mpi::wait all(reqs.begin(), reqs.end());// wait all requests
// Update right hand side for each schwarz iteration
for(int j=0, j< Nneighbors, ++j){
forml( test=Xh, vector=F ) +=
integrate(elements(trace mesh send[j]),
-grad(v)*N()*idv(trace solution recv[j])
+penaldir*idv(trace solution recv[j])*id(v)/hFace()); }
solve(); }

7.1.2 Seamless Communication Approach

Here we consider the domain decomposition methods with seamless communications in FEEL++.
We provide a parallel data framework : we start with automatic mesh partitioning using GMsH
(Chaco/Metis) — adding information about ghosts cells with communication between neighbor
partitition ; — then FEEL++ data structures are parallel such as meshes, (elements of) function
spaces — create a parallel degrees of freedom table with local and global views ; — and finally
we use the PETSc Krylov subspace solvers (KSP) coupled with PETSc preconditioners such as
Block-Jacobi, ASM, GASM. The last preconditioner is an additive variant of the Schwarz al-
ternating method for the case of many subregion, see [ ]. For each sub-preconditioners
(in the subdomains), PETSc allows to choose in the wide range of sequential preconditioners
such, ilu, jacobi, ml.

To illustrate this, we perform a strong scalability test with a Laplace problem in 3D using
P3 Lagrange elements (about 8 Millions degrees of freedom). The listing 7.2 corresponds to
the code that allowed us to realize this test.

Domain Decomposition 89 A. Samaké



Chapter 7. Generic Implementation Framework

Listing 7.2 : Laplacian Solver in parallel

/* Create parallel function space and some associated elements */
auto Xh = space type::New( mesh=mesh );
/* Create the parallel matrix and vector of linear system */
auto A = backend()->newMatrix( test=Xh, trial=Xh);
auto F = backend()->newVector(Xh);
/* Parallel assembly of the right hand side */
forml( test=Xh, vector=F )=
integrate( _range=elements( mesh ), expr=f*id( v ) )
/* Parallel assembly of the global matrix */
form2( test=Xh, trial=Xh, matrix=A ) =
integrate( range=elements( mesh ),
_expr=gradt(u)*trans(grad(v)) );
/* Apply Dirichlet boundary conditions strongly */
form2( _test=Xh, _trial=Xh, _matrix=A ) +=
on( _range=boundaryfaces(mesh),
_element=u, rhs=F, expr=g );
/* solve system using PETSc parallel solvers/preconditioners */
backend()->solve( matrix=A, solution=u, rhs=F );

7.2 Three-field Method

In Listing 7.3, we display the terms corresponding to the jump matrices B ,C , By and (5 in
(2.31).

Listing 7.3 : Assembly of the jump terms in global matrix

// Product function spaces Xhy X Aip X Ap X Aoy, X Xhy for Q1 xT'y X T' x 'y X )y

typedef meshes<mshl t,trl t,tr t,tr2 t,msh2 t> mesh type;

typedef bases<PSetl,PSetl,PSet3,PSet2,PSet2> basis t;

typedef FunctionSpace< mesh type, basis t > space type;

auto mesh = fusion::make vector(mshl,t mshl,t msh,t msh2,msh2);

auto Xh = space type::New( mesh );

auto u = Xh->element();

auto ul = u.element<0>()

auto mul = u.element<l>(

auto mu = u.element<2>()
(
)

)3
)3

’

auto mu2 = u.element<3>
auto u2 = u.element<4>(

// Initialize the bilinear form associated to the global matrix A
auto A = backend->newMatrix( _trial=Xh, test=Xh );
form2( trial=Xh, test=Xh, matrix=A);

// Assembly the stiffness terms in ()4
form2( trial=Xh, test=Xh, matrix=A ) +=
integrate( elements(Xh->template mesh<0>()), gradt(ul)*trans(grad(ul)) );

// Assembly the stiffness terms in (o
form2( _trial=Xh, _test=Xh, _matrix=A ) +=
integrate( elements(Xh->template mesh<4>()), gradt(u2)*trans(grad(u2)) );

// Add the jump terms in the global matrix A
form2( _trial=Xh, test=Xh, matrix=A) +=
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integrate( elements(Xh->template mesh<2>()), idt(ul)*id(mul)+id(ul)*idt(mul)
+idt(mu)*id(mul)+idt(mul)*id(mu)
-idt(u2)*id(mu2)-id(u2)*idt(mu2)
-idt(mu)*id(mu2)-idt(mu2)*id(mu));

7.3 Mortar Element Method with Lagrange Multipliers

The parallel implementation is designed using the Message Passing Interface (MPI) and FEEL++
libraries. The objective of the parallel implementation is to minimize the amount of commu-
nications with respect to the parallel operations involved in the linear solver, namely matrix-
vector products and dot products. One of interests of this mortar parallel implementation is
that there’s no communication at cross-points (in 2D and 3D) and cross-edges (in 3D), which
reduces considerably communications between subdomains.

Assuming a constant number of internal dofs in each subdomain, it is rather straightfor-
ward to bind a subdomain to each process. Each process would own its subdomain mesh 7;,,
functional space X},, stiffness matrix A, and unknown wu,. Regarding the mortars, the choice
is less obvious. In order to decrease the amount of communications in the matrix-vector prod-
ucts, we have used technique developed in [ ] which consists in duplicating the data at
the interfaces between subdomains. If I'y, is such an interface, then the Lagrange multiplier
vector )\, and its associated trace mesh 7y, ,, and trace space My, ,, are stored in both the
processors dealing €2, and €2,,. Although the data storage is increased a little bit, the commu-
nications will be reduced significantly.

7.1.1. One subdomain per cluster 7.1.2. Subdomains 3 and 4 on the same
cluster

F1GURE 7.1 : Domain decompositions
As an example, consider the splitting of the unit square into four little squares, as in F1G-

URE 7.1, where the dash rectangles denote clusters and the bold segments correspond to the
mortar interfaces. Note, that when neighboring subdomains belong to different clusters, there
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are two copies of the mortar interface variables stored in different clusters. Consider the in-
terfaces as shown in the picture. The matrix A has the following form :

Ay BL By o0 0
Ay BL o BL o
A 0 Bl o BL
Ay | 0 o BL Bk
A _ 4 47 48 (73)

Bis Bys 0 0

Big 0 DBs 0
0 Byy 0 DBsg
0 0 DBy DBys

Let us consider the matrix-vector multiplication procedure with the matrix A and the
vector (u, ), where u and A have the following component-wise representation, accord-
ing to the decomposition and the enumeration in FIGURE 7.1.1.: u = (u] ,u3 ,us ,ul ) and
A= (AL A AT, The resulting vector (v, 1) = A-(, \) can be computed as

e Ayl + BEAW 4 BTAL

o$? Asul? + BEAD 4 BT AP

ol Asul¥ + BEAY) 4 BTAP

o | A + BEAY + BEALY -

| = Brot™ + By .

,uél’g’) Blﬁugl) + B36u:(33)

i Byyuy? + Buu”

i Bssuy” + Busul”

where the upper indices denote the cluster (the processor), in which this variable is stored.

Two upper indices mean that this variable is stored in both processors. Note that )\Z@) = )\Z(n)
and so far we need communications only when computing ;. For example

B3¢
<« u

3
s

— >
D —

FIGURE 7.2 : Communications for jump matrix-vector multiplication
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pe = + ps, ps) = Biguy and 1 = Bigus.
2,7 M(72) B;
B; 5 By 7 Ayuy

@ I Y A

2,5\B3 4 A Buys BI /Y
1 2 3 4
i i
By #/Biy AV 5.5/BIaNY
Big ) |R B3
He
Ayuq Big 3T>,6 3| U

(3)
1 3
(1) He )\(

FIGURE 7.3 : Communications for parallel matrix-vector multiplication

We see that [Lél) and ,uég) are computed in parallel, and then should be interchanged and
summed, see the representations in FIGURE 7.3 and more explicitly in FIGURE 7.2.
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Algorithm 7.9. Parallel matrix-vector multiplication : ¥ = AX

Require: X Y # input and output vectors
u = subvect(X,mapDom) # subdomain component of X
v = subvect(Y ,mapDom) # subdomain component of Y
for f € interfaces do
Ay = subvect(X ,mapLag)# multiplier component of X
ty = subvect(Y ,mapLag) # multiplier component of Y

end for
v+ Au #v=Au
for f € interfaces do
v BiAy # v=0v+ B
fp <= ByAy # jip = pp+ By
end for

for f € interfaces do
mpi_isend(neighbor(f),..;)# send iy to neighbor f
mpi_irecv(neighbor(f),its,)# receve py from neighbor f
end for
mpi_waitall
for f € interfaces do

Jof < ki # oy =y T
end for
return Y # return output vector

The Algorithm 7.9. represents the general case of the parallel matrix-vector multiplication
for the saddle-point matrix .A for the arbitrary number of subdomains.

7.4 Conclusion

In this chapter, we first discussed a FEEL++ implementation framework for Schwarz methods
including seamless and explicit MPI communication approach. We handled different vari-
ants of Schwarz methods namely additive and multiplicative algorithms and different artifi-
cial boundary conditions such as Dirichlet-Dirichlet, Dirichlet-Neumann, Neumann-Neumann
and Robin-Robin. Then, we briefly interested in the assembly of jump matrices in the three-
field formulation. Finally, we considered a special parallel implementation of mortar finite
element method with Lagrange multipliers in 2D and 3D based on the duplication of data at
the interfaces between subdomains in order to reduce the communications. We presented
some Listings illustrating the flexibility of FEEL++ for domain decomposition methods.
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Chapter 8

Substructuring Preconditioners in 2D

This chapter summarizes the numerical results for substructuring preconditioners
for h-p mortar element method introduced in chapter 4. The numerical experiments
for conforming and nonconforming domain decompositions are presented respectively
in section 8.1 and 8.2. Some results obtained with large number of processor cores are
given in section 8.3. The scalability analysis including strong and weak scalability is
available in section 8.4.

Ce chapitre résume les résultats numériques pour les préconditionneurs par sous-
structuration pour la méthode des éléments finis h-p mortar introduits dans le chapitre
4. Les expérimentations numériques pour les méthodes de décomposition de domaine
conforme et non conforme sont présentées respectivement dans la section 8.1 et 8.2.
Quelques résultats obtenus avec un trés grand nombre de processeurs sont donnés
dans la section 8.3. L’analyse de scalabilité comprenant la scalabilité forte et faible
est disponible dans la section 8.4.
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Chapter 8. Substructuring Preconditioners in 2D

In this chapter, we analyze the properties of the preconditioners previously proposed in
chapter 4 and investigated numerically in chapter 6. We perform a p-, H- and h-convergence
study and the scalability analysis of our parallel algorithms. We consider the model problem

—Au=f inQ=]0,17 u=0 ondf2 (8.1)

Unless otherwise stated, for all the following simulations we set f = 1. We consider
the geometrically conforming domain decomposition and we split the domain 2 in N = 4¢
subdomains, ¢ > 1, with simplex or hypercube elements.

The simulations were partly performed at MesoCentre@Strasbourg on hpc-login. MesoCen-
tre is a supercomputer with 288 compute nodes interconnected by an infiniband QDR network.
The system is Scientific Linux based on Intel Xeon Ivy Bridge processors with 16 cores and
64 GB of RAM running at 2 .6 Ghz. MesoCentre has a theoretical peak performance of 70
TFLOP/s. The simulations on a large number of cores, more than or equal to 1024, were done
on Curie at the TGCC, a TIER-0 system which is part of PRACE. Curie has 5040 B510 bullx
nodes and for each node a 2 Eight-Core Intel processors Sandy Bridge cadenced at 2.7 GHz
with 64 GB.

We present the numerical results including the theoretical properties and the performance
of the parallel implementation of substructuring preconditioners for h-p mortar element method
proposed in chapter 4. the numerical tests relate the following three preconditioners Py, P,
and P, for the transformed Schur complement system (4.41). All the tests presented relate to
B = 1/10 and v = 2. The relative tolerance of the Preconditioned Conjugate Gradient(PCG)
solver is set to 107°.

We report the condition number estimate of the preconditioned Schur complement matrix
m(ﬁ_l/S\) where P is one of the preconditioners Py, P; or Py, the number of iterations and the
following two ratios :

Kk(P1S)

(o)

where H is the coarse mesh-size, i the fine mesh-size and p the polynomial order.

and Ry,

8.1 Conforming Domain Decompositions

We split the domain 2 in N = 4° subdomains, ¢/ = 2,3,4, with n x n mesh in each sub-
domain. These results were obtained on a sequence of triangular grids like the ones shown
in FIGURE 8.1. The example in FIGURE 8.1 relate to the first three levels of refinements for
unstructured triangular grids on a subdomain partition made of four squares.
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8.1.1. Level 1 8.1.2. Level 2 8.1.3. Level 3

FI1GURE 8.1 : Conforming domain decompositions with unstructured meshes

8.1.1 Linear Elements

In the first set of experiments, we consider the piecewise linear elements (p = 1), and we report
the condition number estimate of the (preconditioned) Schur complement matrix K(P_l/S\), the
number of iterations required by the PCG solver and the ratio R, when varying the number
of subdomains N and the number of elements n of the fine mesh.

8.1.1.1 Unpreconditioned Schur Complement

We report in TABLE 3 and TABLE 4 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate £(S).

TaBLE 3 : Unpreconditioned Schur complement - number of iterations for p

N\n > 10 20 40 80 160 320

16 44 59 84 105 155 240 354
64 59 7 109 150 213 298 468
256 81 99 127 178 250 327 484

TABLE 4 : Unpreconditioned Schur complement - & §) forp=1

N\n ) 10 20 40 80 160 320

16 | 6.63e+1 1.28e+2 3e+2 7.3e+2 1.78¢+3 4.3e+3 1.02¢e+4
64 | 1.76e+2 2.14e+2 3.56e+2 8.29¢+2 2.02¢+3 4.37e+3 1.15e+4
256 | 6.49¢+2 7.22¢e+2 8.02¢+2 9.94e+2 2.09¢+3 4.99¢+3 1.19¢+4
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In TABLE 3 and TABLE 4, we observe that the number of iterations and the condition number
estimate increase significantly with the number of subdomains (number of processor cores) N
and with n = H /h. These results support the requirement to use an efficient preconditioner
for solving such a linear system, as explained in previous chapters.

8.1.1.2 Preconditioned Schur Complement

We report in TABLE 5 the ratio R, and the number of iterations required for solving the trans-
formed Schur complement system (4.41) preconditioned by Py, P; and Ps.

TABLE 5 : Ratio Ry and number of iterations (between parenthesis) for p = 1

N\n| 5 10 20 40 80 160 320
16 |3.33(25) 2.50(27) 2.04(29) 1.72(30) 1.52(31) 1.37(31) 1.27(30)
P, 64 |3.23(25) 2.44(27) 1.97(28) 1.67(29) 1.48(29) 1.34(30) 1.24(31)
256 | 3.05(22) 2.34(24) 1.91(25) 1.62(26) 1.45(27) 1.26(27) 1.15(28)
16 |3.25(26) 242(27) 2.02(28) 1.81(31) 1.70(33) 1.63(34) 1.59 (36)
P, 64 |3.16(24) 2.39(27) 2.01(29) 1.77(31) 1.67(33) 1.59(35) 1.56 (36)
256 | 2.99 (21) 2.23(23) 1.89(25) 1.71(28) 1.62(30) 1.57(33) 1.54(35)
16 |3.59(23) 2.57(24) 2.16(26) 1.86(28) 1.65(31) 1.51(33) 1.41(35)
P, 64 |3.57(22) 2.56(23) 2.19(26) 1.94(29) 1.74(31) 1.60(33) 1.50 (35)
256 | 3.53(20) 2.55(21) 2.22(23) 1.96(26) 1.76(28) 1.63(30) 1.52(33)

As the theoretical estimates (4.18), (4.26) and (4.32), the TABLE 5 shows that forn = H/h
fixed, the ratio R, remains constant. The same behavior is observed for the number of itera-
tions.

8.1.2 Second-order Elements

We consider the second-order elements (p = 2), and we report the condition number estimate
of the (preconditioned) Schur complement matrix E(P_l/s\), the number of iterations required
by the PCG solver and the ratio R, when varying the number of subdomains /N and the number
of elements n of the fine mesh.

8.1.2.1 Unpreconditioned Schur Complement

We report in TABLE 6 and TABLE 7 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate £(S).
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TABLE 6 : Unpreconditioned Schur complement - number of iterations for p = 2

N\n | 5 10 20 40 80 160

16 66 90 114 164 256 373
64 87 123 167 229 330 507
256 110 138 196 272 356 233

~.

TABLE 7 : Unpreconditioned Schur complement - «(S) for p = 2

N\n| 5 10 20 40 80 160

16 | 1.75e+2 3.96e+2 9.42e+2 2.25e+3 5.34e+3 1.25e+4
64 | 2.87e+2 4.73e+2 1.07e+3 2.55e+3 5.43e+3 1.42e+4
256 | 9.36e+2 1.0le+3 1.26e+3 2.65e+3 6.23¢+3 1.46e+4

In TABLE 6 and TABLE 7, we observe that the number of iterations and the condition number
estimate increase significantly with the number of subdomains N and with n = H/h. The
TABLE 7 shows that /{(g) is growing faster than in the case of linear elements presented in
section 8.1.1.1. These results support the requirement to use an efficient preconditioner for
solving such a linear system.

8.1.2.2 Preconditioned Schur Complement

We report in TABLE 8 the ratio 75 and the number of iterations required for solving the trans-
formed Schur complement system (4.41) preconditioned by Py, P; and P».

TaBLE 8 : Ratio Ry and number of iterations (between parenthesis) for p = 2

N\n | 5 10 20 40 80 160

16 | 1.51(26) 1.32(27) 1.20(29) 1.12(30) 1.06(30)  1.02 (30)
P, 64 | 1.50(25) 1.30(27) 1.18(27) 1.09(29) 1.07(31) 0.99 (32)
256 | 1.43(22) 1.26(24) 1.15(26) 1.06(28) 1.03(30) 0.98 (31

(27) (30) (

(27) (29) (

(24) (28) (31)

16 | 1.56(27) 13327 12228 1.17(30) 1.14(31) 1.13(32)

P, 64 | 155(25 1.33(27) 1.20(28) 1.13(30) 1.11(32) 1.10(33)
256 | 1.48(22) 1.28(24) 1.16(25) 1.11(29) 1.09(31) 1.08(30)
(26) (31) (33)

(25) (31) (39)

(23) (28) (33)

16 | 1.47(23) 1.33(26) 1.23(29) 1.18(31) 1.14(32) 1.12(33
P, 64 | 1.54(22) 1.42(25) 1.32(28) 1.25(31) 1.21(33) 1.17(35
256 | 1.57(21) 1.44(23) 1.34(26) 1.27(28) 1.23(32) 1.19(33
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In accordance with the theoretical estimates (4.18), (4.26) and (4.32), the TABLE 8 shows
that for n = H /h fixed, the ratio R, remains constant. We observe the same behavior for the
number of iterations.

8.1.3 Third-order Elements

The third-order elements (p = 3) is considered in this experiments, and we report the condition
number estimate of the (preconditioned) Schur complement matrix R(qu), the number of it-
erations required by the PCG solver and the ratio ?» when varying the number of subdomains
N and the number of elements n of the fine mesh.

8.1.3.1 Unpreconditioned Schur Complement

We report in TABLE 9 and TABLE 10 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate ~(S).

TABLE 9 : Unpreconditioned Schur complement - number of iterations for p = 3

N\n | 5 10 20 40 80 160

16 88 117 150 239 344 446
64 114 160 218 323 468 679
256 137 179 256 323 495 703

-~

TABLE 10 : Unpreconditioned Schur complement - x(S) for p = 3

N |5 10 20 40 80 160

16 3.59¢e+2 8.21e+2 1.92e+3 4.48e+3 1.04e+4 241e+4
64 4.55¢e+2 9.41e+2 2.18e+3 5.08¢e+3 1.18e+4 2.73e+4
256 1.17e+3 1.32¢e+3 2.29¢+3 5.24e+3 1.22e+4 2.77e+4

In TABLE 9 and TABLE 10, we observe that the number of iterations and the condition
number estimate increase significantly with the number of subdomains N and withn = H /h.
The TABLE 9 shows that x(S) is growing faster than in the case of linear and second-order
elements presented respectively in section 8.1.1.1 and in section 8.1.2.1. These results support
the requirement to use an efficient preconditioner for solving such a linear system.

8.1.3.2 Preconditioned Schur Complement

We report in TABLE 11 the ratio R, and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and Ps.
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TABLE 11 : Ratio Ro and number of iterations (between parenthesis) for p = 3

N\n | 5 10 20 40 80 160
16 | 1.19(27) 1.09(28) 1.03(29) 1.00(31) 0.97(31) 0.94 (32)
P, 64 | 117(26) 1.07(27) 1.01(29) 0.96(31) 097(32) 0.91(33)
256 | 1.13(23) 1.04(25) 0.99(28) 0.96(30) 0.97(32) 0.91(32)
16 | 121(26) 1.10(27) 1.07(29) 1.04(32) 1.03(32) 1.02(33)
P, 64 | 1.2027) 1.10(28) 1.04(30) 1.01(32) 1.00(34) 0.99 (34)
256 | 1.16(23) 1.06(25) 1.01(27) 0.99(30) 0.99(32) 0.98 (32)
16 | 1.19(26) 1.13(28) 1.10(30) 1.07(33) 1.06(33) 1.05(35)
P, 64 | 1.27(25) 120(28) 1.16(31) 1.13(33) 1.11(35) 1.09 (40)
256 | 1.30(23) 1.22(25) 1.18(28) 1.14(31) 1.12(34) 1.10(36)

As the theoretical estimates (4.18), (4.26) and (4.32) and similarly to the results obtained
with the linear elements (p = 1) and the second-order elements (p = 2) presented respectively
in8.1.1.2 and 8.1.2.2, the TABLE 11 shows that for n = H /h fixed, the ratio R remains constant.
We observe the same behavior for the number of iterations.

8.1.4 Fourth-order Elements

The simulations are performed using the fourth-order elements (p = 4), and we report the
condition number estimate of the (preconditioned) Schur complement matrix H(P_l/s\), the
number of iterations required by the PCG solver and the ratio R, when varying the number
of subdomains /N and the number of elements 7 of the fine mesh.

8.1.4.1 Unpreconditioned Schur Complement

We report in TABLE 12 and TABLE 13 respectively the number of iterations required for solv-
ing the transformed Schur complement system (4.41) and the condition number estimate Ii(/s\)
These results support the use of preconditioners for an efficient solution of the Schur comple-
ment system.

TABLE 12 : Unpreconditioned Schur complement - number of iterations for p = 4

N\n | 5 10 20 40 80
16 | 109 135 198 308 444
64 | 147 196 284 400 613
256 | 173 233 316 432 631
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-~

TABLE 13 : Unpreconditioned Schur complement - (S) for p = 4

N\n| 5 10 20 40 80

16 | 6.47e+2 1.47e+3 3.38¢e+3 7.79¢e+3 1.78e+4
64 | 7.64e+2 1.67e+3 3.83¢+3 7.91le+3 2.0le+4
256 | 1.51e+3 1.91e+3 3.97¢e+3 9.07¢+3 2.07e+4

8.1.4.2 Preconditioned Schur Complement

We report in TABLE 14 the ratio 7y and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and P5.

TABLE 14 : Ratio R, and number of iterations (between parenthesis) for p = 4

N\n | 5 10 20 40 80
16 | 1.06(27) 1.00(28) 0.96(29) 0.94(32) 0.93(32)
P, 64 | 1.04(27) 0.98(28) 0.94(30) 0.91(32) 0.91(33)
256 | 1.02(25) 0.96(26) 0.93(29) 0.91(31) 0.93(32)
16 | 1.07@27) 1.01(29) 0.98(30) 0.97(32) 0.96 (33)
P, 64 | 1.06(27) 0.99(29) 0.95(31) 0.94(33) 0.92(34)
256 | 1.03(24) 0.97(26) 0.94(28) 0.92(31) 0.93(33)
16 | 1.09(28) 1.07(30) 1.05(31) 1.04(35 1.03(38)
P, 64 | 115(28) 1.12(30) 1.10(32) 1.08(35 1.07 (40)
256 | 1.18(25) 1.13(27) 1.11(29) 1.09(33) 1.08 (36)

Similarly to the results obtained with the linear elements (p = 1), the second-order ele-
ments (p = 2) and the third-order elements (p = 3) presented respectively in 8.1.1.2, 8.1.2.2
and 8.1.3.2, the TABLE 14 shows that for n = H /h fixed, the ratio R, remains constant. The
same behavior is valid for the number of iterations.

8.1.5 Fifth-order Elements

We consider the fifth-order elements (p = 5), and we report the condition number estimate of
the (preconditioned) Schur complement matrix K(P’lg), the number of iterations required by
the PCG solver and the ratio Ry when varying the number of subdomains /N and the number
of elements n of the fine mesh.
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8.1.5.1 Unpreconditioned Schur Complement

We report in TABLE 15 and TABLE 16 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate /<;(/S\)
These results motivate the need to use the preconditioning techniques for an efficient solution
of such a linear system.

TABLE 15 : Unpreconditioned Schur complement - number of iterations for p = 5

N\n | 5 10 20 40 80

16 137 166 245 393 933
64 180 247 353 925 765
256 201 287 382 539 787

TABLE 16 : Unpreconditioned Schur complement - n(g) forp=>5

N\n| 5 10 20 40 80

16 1.13e+3 2.54e+3 5.73e+3 1.29¢e+4 2.9e+4
64 1.3e4+3 2.87e+3 6.47e+3 1.44e+4 3.28¢+4
256 | 2.03e+3 3.07¢e+3 6.66e+3 1.5e+4 3.35¢+4

8.1.5.2 Preconditioned Schur Complement

We report in TABLE 17 the ratio R, and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and Ps.

TaBLE 17 : Ratio Ry and number of iterations (between parenthesis) for p = 5

N\n | 5 10 20 40 80
16 | 0.99(27) 0.95(29) 0.92(30) 0.91(33) 0.91(33)
P, 64 | 097(28) 0.93(30) 0.90(31) 0.88(33) 0.89 (34)
256 | 0.95(25) 0.92(27) 0.89(29) 0.87(31) 0.90 (33)
16 | 0.99(28) 0.96(29) 0.94(30) 0.94(33) 0.93(34)
P, 64 | 098(28) 0.94(31) 092(32) 0.91(34) 0.90 (34)
256 | 0.95(25) 0.92(27) 0.90(29) 0.90(32) 0.90 (33)
16 | 1.06(30) 1.04(31) 1.03(32) 1.02(38) 1.02(39)
P, 64 | 1.11(29) 1.09(31) 1.08(34) 1.07(40) 1.07 (42)
256 | 1.13(26) 1.10(29) 1.08(33) 1.07(35) 1.06 (40)
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As the theoretical estimates (4.18), (4.26) and (4.32), the TABLE 17 clearly indicates that
for n = H /h fixed, the ratio R, remains constant. The same properties are observed for the
number of iterations.

8.1.6 Dependence on Number of Subdomains

To analyze the dependence of the substructuring preconditioners in coarse mesh-size H, we
plot in figures FIGURE 8.2 to FIGURE 8.6 the number of iterations required for solving the linear
system (4.41) preconditioned by P € {P, P, , P,}, the condition number x(P~'S) and the ratio
R, as a function of number of subdomains (number of processor cores) N for H/h = 80. The
simulations are performed with linear elements (p = 1) and high-order elements (2 < p < 5).

In accordance with the theoretical estimates (4.18), (4.26) and (4.32), for each polynomial
orderp=1,2,3,4,5, alogarithmic growth is clearly observed for all the preconditioners P,
P; and P,. These results remain valid for other values of H /h as reported in tables TABLE 5,
TABLE 8, TABLE 11, TABLE 14 and TABLE 17.
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8.1.7 Dependence on Polynomial Order

To study the dependence on p, we report the condition number estimate of the preconditioned
system as a function of p with H /h constant. Let the function A be defined as

Ap) = p*/? (1 + log (HTPQDQ

In F1GURE 8.7, FIGURE 8.8 and FIGURE 8.9, we plot the condition number of the transformed
Schur system preconditioned by Py, P; and Ps.
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FIGURE 8.7 : x(P~!8) as a function of p with #of subdomains=16 and H /h = 80
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FIGURE 8.8 : x(P~!8) as a function of p with #of subdomains=64 and H /h = 80
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FIGURE 8.9 : x(P~!8) as a function of p with #of subdomains=256 and H /h = 80

The FIGURE 8.7, FIGURE 8.8 and FIGURE 8.9 show that, for increasing values of p, our pre-
conditioners behaves similarly to the linear case p = 1. To highlight the dependence on p
of our preconditioners, we report in TABLE 18 the ratio Ry for H/h = 80 fixed and increas-
ing values of the polynomial order p. We clearly do not see the factor $3/? which appears in
the theoretical estimates (4.18), (4.26) and (4.32) (which, we recall, stems the mortar projector
operator) since for fixed H, the ratio Ry does not depend on this factor as shown TABLE 18.
Indeed, the numerical results seem to show an even better behavior than the polylogarithmic
dependence on Hp?/h.

TABLE 18 : Ratio Ry and number of iterations (between parenthesis) for H /h = 80

N\p | 1 2 3 4 5

16 1.52 (31) 1.06 (30) 0.97 (31 0.93 (32 0.91 (33
Py 64 1.48 (29) 1.07 (31) 0.97 (32 0.91 (33 0.89 (34
256 1.45 (27) 1.03 (30) 0.97 (32 0.93 (32 0.90 (33

( ( (31) ) )

( ( (32) ) )

( ( (32) ) )

16 1.70(33)  1.14(31)  1.03(32)  0.96(33)  0.93(34)

P, 64 1.67(33)  1.11(32)  1.00(34)  0.92(34)  0.90(34)
( ( (32) ) )

( ( (33) ) )

( ( (35) ) )

( ( (34) ) )

256 1.62 (30) 1.09 0.93 (33 0.90 (33

16 1.65 (31) 1.14 (32) 1.06 (33 1.03 (38 1.02 (39
P, 64 1.74 (31) 1.21 (33) 1.11 (35 1.07 (40 1.07 (42
256 1.76 (28) 1.23 (32) 1.12 (34 1.08 (36 1.06 (40
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TABLE 19 : £(S) and number of iterations (between parenthesis) for H/h = 80

N\p‘ 1

2

3

4

5

16 | 1.78e+3 (155) 5.34e+3 (256) 1.0de+4 (344) 1.78e+4 (444) 2.9e+4 (533)
64 |2.02e+3 (213) 5.43e+3 (330) 1.18¢-+4 (468) 2.0le+4 (613) 3.28¢+4 (765)
256 | 2.09¢+3 (250) 6.23¢+3 (356) 1.22¢+4 (495) 2.07e+4 (631) 3.35¢+4 (787)

8.1.8 Conclusion

The numerical results presented in this section dedicated to the confirming domain decompo-
sitions support the mathematical properties including the p-, H- and h-convergence of sub-
structuring preconditioners for ~A-p mortar finite element method. These results hold for linear

elements (p = 1) and high order elements (2 < p < 5).

8.2 Nonconforming Domain Decompositions

The tests performed until now deal with decomposition with matching grid (though the solu-
tion is non conforming, due to the lack of continuity at the cross points). We now turn to the
numerical results for nonconforming decompositions. As in section 8.1, we split the domain {2
in N = 4%,/ = 2,3, 4 but now we take quasiuniform meshes with two different mesh sizes :
htne = 1/(2n) and heoarse = 1/n. We deliberately choose embedded grids (see FIGURE 8.10) in
order to ensure exact numerical integration for the constraints. On the interface, the master
subdomains are chosen to be the ones corresponding to the coarser mesh.

8.10.1. Level 1

8.10.2. Level 2
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VAVAN

F1GURE 8.10 : Nonconforming domain decompositions with unstructured meshes

8.2.1 Linear Elements

We start as in section 8.1 with the linear finite elements (p = 1). We report the condition
number estimate of the (preconditioned) Schur complement matrix #(P~'S), the number of
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iterations required by the PCG solver and the ratio ; when varying the number of subdo-
mains /N and the number of elements n of the fine mesh.

8.2.1.1 Unpreconditioned Schur Complement

We report in TABLE 20 and TABLE 21 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate £(S).

TABLE 20 : Unpreconditioned Schur complement - number of iterations for p = 1

N\n ‘ bt 10 20 40 80 160 320

16 29 33 47 64 86 116 163
64 43 53 73 104 143 187 290
256 67 79 97 123 171 229 306

o~

TABLE 21 : Unpreconditioned Schur complement - x(S) for p = 1

N\n ‘ ) 10 20 40 80 160 320

16 | 4.57e+1 6.43e+1 1.21e+2 2.87e+2 7.24e+2 1.82e+3 4.51e+3
64 | 1.41e+2 1.7le+2 2.16e+2 3.53e+2 8.28¢+2 2.07e+3 4.75e+3
256 | 5.28¢+2 6.23e+2 7.23e+2 8.35e+2 1.04de+3 2.16e+3 5.27e+3

As for the conforming domain decompositions with linear elements presented in section
8.1, we observe that the number of iterations and the condition number estimate increase
significantly with the number of subdomains (number of processing units) N and with n =
H /h. These results support the requirement to use an efficient preconditioner for solving such
a linear system, as explained in previous chapters.

8.2.1.2 Preconditioned Schur Complement

We report in TABLE 22 the ratio R, and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and Ps.
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TABLE 22 : Ratio R, and number of iterations (between parenthesis) for p = 1

N\n| 5 10 20 40 80 160 320
16 | 1.10(16) 0.80(17) 0.77 (19) 0.75(20) 0.74 (20) 0.73(22) 0.72 (23)
P, 64 |1.11(15) 0.82(17) 0.78(18) 0.76(20) 0.74(21) 0.72(23) 0.70 (24)
256 | 1.05(14) 0.80 (15) 0.76 (16) 0.73(17) 0.71(17) 0.70 (19) 0.69 (20)
16 | 0.95(15) 0.83(18) 0.81(20) 0.80(22) 0.82(22) 0.84(24) 0.88 (24)
P, 64 | 1.00(15) 0.83(17) 0.81(20) 0.80(22) 0.82(25) 0.85(27) 0.87(29)
256 | 0.97(13) 0.80(15) 0.77(17) 0.77(20) 0.77(21) 0.80 (22) 0.83(23)
16 | 1.46 (15) 0.87(16) 0.73(17) 0.73(20) 0.74 (22) 0.75(23) 0.76 (28)
P, 64 | 1.47(16) 0.88(16) 0.74(17) 0.75(20) 0.76(22) 0.79 (25) 0.80 (29)
256 | 1.43(15) 0.87(14) 0.71(16) 0.76 (19) 0.77(21) 0.79 (23) 0.80 (25)

As the theoretical estimates (4.18), (4.26) and (4.32), the TABLE 22 shows that for n =
H /h fixed, the ratio R, remains constant. The same behavior is observed for the number of
iterations.

8.2.2 Second-order Elements

We consider the second-order elements (p = 2), and we report the condition number estimate
of the (preconditioned) Schur complement matrix /{(Pflg), the number of iterations required
by the PCG solver and the ratio R, when varying the number of subdomains /N and the number
of elements n of the fine mesh.

8.2.2.1 Unpreconditioned Schur Complement

We report in TABLE 23 and TABLE 24 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate £(S).

TaBLE 23 : Unpreconditioned Schur complement - number of iterations for p = 2

N\ | 5 10 20 40 80 160
16 36 49 69 96 132 181
64 63 82 114 159 210 317
256 89 104 137 188 257 335
Domain Decomposition 113 A. Samaké



Chapter 8. Substructuring Preconditioners in 2D

A~

TABLE 24 : Unpreconditioned Schur complement - x(S) for p = 2

N\n| 5 10 20 40 80 160

16 | 9.07e+1 1.56e+2 3.62¢e+2 8.89%¢+2 2.19e+3 5.33e+3
64 2.1e+2  2.6e+2 4.38¢+2 1.02¢+3 2.49¢+3 5.57e+3
256 | 7.43e+2 8.43e+2 9.57e+2 1.22e+3 2.59¢+3 6.23e+3

In TABLE 23 and TABLE 24, we observe that the number of iterations and the condition
number estimate increase significantly with the number of subdomains N and withn = H /h.
The TABLE 7 shows that /i(/S\) is growing faster than in the case of linear elements presented
in section 8.2.1.1. These results support the requirement to use an efficient preconditioner for
solving such a linear system.

8.2.2.2 Preconditioned Schur Complement

We report in TABLE 25 the ratio R» and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by P, P; and Ps.

TABLE 25 : Ratio Ro and number of iterations (between parenthesis) for p = 2

N\n | 5 10 20 40 80 160

16 0.70 (18) 0.65(19) 0.65(20) 0.65(21) 0.65(22) 0.65 (23
Py 64 0.72(18) 0.66 (19) 0.65(20) 0.65(22) 0.64(24) 0.64 (26
256 | 0.70 (15) 0.63 0.63 (17)  0.62 0.63 (20)  0.63 (21

(19) (21) (23)

(19) (22) (26)

(16) (18) (21)

16 | 0.70(19) 0.65(21) 0.65(22) 0.65(22) 0.65(24) 0.66 (25)

P, 64 | 0.71(18) 0.66(21) 0.65(22) 0.65(24) 0.65(26) 0.65 (28)
(18) (20) (22)

(19) (23) (29)

(19) (25) (30)

(18) (22) (29)

256 | 0.69 (16) 0.63 0.63(19) 0.63 0.63 (21) 0.63 (22

16 | 0.64(17) 0.62(19) 0.65(21) 0.67(23) 0.70(27)  0.73 (29
P, 64 | 0.68(17) 0.65(19) 0.68(22) 0.70(25) 0.73(28)  0.76 (30
256 | 0.67(16) 0.65(18) 0.68(20) 0.70(22) 0.72(25) 0.74 (29

In accordance with the theoretical estimates (4.18), (4.26) and (4.32), the TABLE 25 shows
that for n = H /h fixed, the ratio R, remains constant. We observe the same behavior for the
number of iterations.

8.2.3 Third-order Elements

The third-order elements (p = 3) is considered in this experiments, and we report the condition
number estimate of the (preconditioned) Schur complement matrix x(P~!S), the number of it-
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erations required by the PCG solver and the ratio R when varying the number of subdomains
N and the number of elements n of the fine mesh.

8.2.3.1 Unpreconditioned Schur Complement

We report in TABLE 9 and TABLE 10 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate £(S).

TABLE 26 : Unpreconditioned Schur complement - number of iterations for p = 3

N\n | 5 10 20 40 80 160

16 o1 63 87 118 168 236
64 86 107 144 203 291 415
256 113 130 172 236 316 455

-~

TABLE 27 : Unpreconditioned Schur complement - %(S) for p = 3

N\ | 5 10 20 40 80 160

16 1.7e+2 3.03e+2 7.2e+2 1.74e+3 4.21e+3 le+4
64 2.87e+2 3.91e+2 8.29¢+2 1.98e+3 4.76e+3 1.13e+4
256 9.32e+2 1.01le+3 1.19¢+3 2.09¢e+3 4.91e+3 1.17e+4

In TAaBLE 9 and TABLE 10, we observe that the number of iterations and the condition
number estimate increase significantly with the number of subdomains N and withn = H /h.
The TABLE 9 shows that K,(/S\) is growing faster than in the case of linear and second-order
elements presented respectively in section 8.1.1.1 and in section 8.1.2.1. These results support

the requirement to use an efficient preconditioner for solving such a linear system.

8.2.3.2 Preconditioned Schur Complement

We report in TABLE 28 the ratio R, and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and Ps.
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TABLE 28 : Ratio Ro and number of iterations (between parenthesis) for p = 3

N\n | 5 10 20 40 80 160
16 | 0.76(22) 0.62(19) 0.62(20) 0.62(22) 0.63(23) 0.63 (24)
P, 64 | 0.77(21) 0.62(20) 0.62(23) 0.62(25) 0.62(27) 0.62(29)
256 | 0.74(19) 0.59(18) 0.59 (18) 0.60(20) 0.60(21) 0.61 (22)
16 | 076(22) 0.62(21) 0.62(22) 0.62(24) 0.63(24) 0.63 (24)
P, 64 | 0.77(23) 0.63(22) 0.62(23) 0.62(25 0.63(27) 0.62(28)
256 | 0.74(19) 0.59(18) 0.59 (19) 0.60(20) 0.60(21) 0.61 (22)
16 | 0.71(22) 0.62(19) 0.64(24) 0.68(27) 0.71(28) 0.73 (29)
P, 64 | 0.73(21) 0.64(22) 0.68(25) 0.72(28) 0.75(30) 0.77 (32)
256 | 0.74(19) 0.65(19) 0.68(23) 0.70(26) 0.74(30)  0.76 (30)

As the theoretical estimates (4.18), (4.26) and (4.32) and similarly to the results obtained
with the linear elements (p = 1) and the second-order elements (p = 2) presented respectively
in 8.2.1.2 and 8.2.2.2, the TABLE 28 shows that for n = H /h fixed, the ratio R remains constant.
We observe the same behavior for the number of iterations.

8.2.4 Fourth-order Elements

The simulations are performed using the fourth-order elements (p = 4), and we report the
condition number estimate of the (preconditioned) Schur complement matrix H(P_l/s\), the
number of iterations required by the PCG solver and the ratio R, when varying the number
of subdomains /N and the number of elements 7 of the fine mesh.

8.2.4.1 Unpreconditioned Schur Complement

We report in TABLE 29 and TABLE 30 respectively the number of iterations required for solv-
ing the transformed Schur complement system (4.41) and the condition number estimate Ii(/s\)
These results support the use of preconditioners for an efficient solution of the Schur comple-
ment system.

TABLE 29 : Unpreconditioned Schur complement - number of iterations for p = 4

N\n | 5 10 20 40 80
16 69 78 108 149 215
64 | 104 131 181 241 356
256 | 127 154 208 287 389
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TaBLE 30 : Unpreconditioned Schur complement - #(S) for p = 4

N\n| 5 10 20 40 80

16 | 2.74e+2 5.12e+2 1.21e+3 2.87e+3 6.82e+3
64 | 3.82e+2 6.le+2 1.37e+3 3.25e+3 T7.14e+3
256 | 1.09e+3 1.21e+3 1.59e+3 3.38¢+3 7.94e+3

8.2.4.2 Preconditioned Schur Complement

We report in TABLE 31 the ratio [?; and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and P5.

TaBLE 31 : Ratio R, and number of iterations (between parenthesis) for p = 4

N\n | 5 10 20 40 80
16 | 0.64(19) 0.60(20) 0.61(22) 0.61(23) 0.62(24)
P, 64 | 0.65(21) 0.61(22) 0.62(25) 0.61(26) 0.61(29)
256 | 0.63(19) 0.59(20) 0.58(20) 0.59(21)  0.60 (24)
16 | 0.64(21) 0.60(22) 0.61(23) 0.62(24) 0.62(24)
P, 64 | 0.65(22) 0.61(23) 0.61(25) 0.61(27) 0.62(29)
256 | 0.62(18) 0.58(19) 0.58(20) 0.59(22) 0.60 (22)
16 | 0.66(21) 0.64(23) 0.68(25) 0.70(28) 0.73 (28)
P, 64 | 0.68(22) 0.67(24) 0.71(26) 0.74(29) 0.76 (31)
256 | 0.69(21) 0.67(22) 0.69(25) 0.72(28) 0.76 (31)

Similarly to the results obtained with the linear elements (p = 1), the second-order ele-
ments (p = 2) and the third-order elements (p = 3) presented respectively in 8.2.1.2, 8.2.2.2
and 8.2.3.2, the TaBLE 31 shows that for n = H /h fixed, the ratio R, remains constant. The
same behavior is valid for the number of iterations.

8.2.5 Fifth-order Elements

We consider the fifth-order elements (p = 5), and we report the condition number estimate of
the (preconditioned) Schur complement matrix K(P’lg), the number of iterations required by
the PCG solver and the ratio Ry when varying the number of subdomains /N and the number
of elements n of the fine mesh.
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8.2.5.1 Unpreconditioned Schur Complement

We report in TABLE 32 and TABLE 33 respectively the number of iterations required for solving
the transformed Schur complement system (4.41) and the condition number estimate /<;(/S\)
These results motivate the need to use the preconditioning techniques for an efficient solution
of such a linear system.

TABLE 32 : Unpreconditioned Schur complement - number of iterations for p = 5

N\n | 5 10 20 40 80

16 79 95 135 190 268
64 124 156 215 305 445
256 151 177 245 337 475

TaBLE 33 : Unpreconditioned Schur complement - n(g) forp=>5

N\n| 5 10 20 40 80

16 | 4.39¢+2 8.1le+2 1.87¢e+3 4.35¢+3 1.0le+4
64 5.5e+2  9.38e+2 2.12e¢+3 4.92¢e+3 1.12e+4
256 | 1.33e+3 1.48e+3 2.28e+3 5.08¢+3 1.17e+4

8.2.5.2 Preconditioned Schur Complement

We report in TABLE 34 the ratio R, and the number of iterations required for solving the
transformed Schur complement system (4.41) preconditioned by Py, P; and Ps.

TABLE 34 : Ratio Ry and number of iterations (between parenthesis) for p = 5

N\n | 5 10 20 40 80
16 | 0.63(19) 0.60(20) 0.60(22) 0.61(23) 0.61 (24)
P, 64 | 0.64(21) 0.60(22) 0.61(25) 0.61(26) 0.61 (29)
256 | 0.62(19) 0.59(20) 0.58(20) 0.59 (21)  0.60 (24)
16 | 0.63(22) 0.60(23) 0.60(23) 0.61(25) 0.62(26)
P, 64 | 0.64(23) 0.61(24) 061(26) 0.61(28) 0.61(29)
256 | 0.61(19) 0.57(20) 0.58(21) 0.59(22) 0.59 (23)
16 | 0.67(23) 0.66(24) 0.69(26) 0.71(29)  0.74 (28)
P, 64 | 071(24) 0.70(25) 0.73(28) 0.75(30) 0.77 (32)
256 | 0.71(22) 0.68(24) 0.72(26) 0.75(29) 0.78 (31)

Domain Decomposition 118 A. Samaké



Chapter 8. Substructuring Preconditioners in 2D

As the theoretical estimates (4.18), (4.26) and (4.32), the TABLE 34 shows that forn = H/h
fixed, the ratio % remains constant. The same properties are observed for the number of
iterations.

8.2.6 Dependence on Number of Subdomains

To analyze the dependence of the substructuring preconditioners in coarse mesh-size H, we
plot in figures FIGURE 8.11 to FIGURE 8.15 the number of iterations required for solving the
linear system (4.41) preconditioned by P € {P, P, ,P,}, the condition number «(P~'8) and
the ratio R, as a function of number of subdomains (number of processor cores) N for H /h =
80. The simulations are performed with linear elements (p = 1) and high-order elements
(2<p<i)
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FIGURE 8.11 : Behavior in number of subdomains for p = 1 and H/h = 80
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FIGURE 8.12 : Behavior in number of subdomains for p = 2 and H/h = 80
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FIGURE 8.13 : Behavior in number of subdomains for p = 3 and H/h = 80
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FIGURE 8.15 : Behavior in number of subdomains for p = 5 and H/h = 80

In accordance with the theoretical estimates (4.18), (4.26) and (4.32), for each polynomial

orderp =1,2,3,4,5, alogarithmic growth is clearly observed for all the preconditioners Py,
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P; and P,. These results remain valid for other values of H /h as reported in tables TABLE 22,
TaBLE 25, TABLE 28, TABLE 31 and TABLE 34.

8.2.7 Dependence on Polynomial Order

As in section 8.1.7 devoted to the conforming domain decompositions, we study the depen-
dence on p by reporting the condition number estimate of the preconditioned system as a func-

Hp*\\?
tion of p with H /h constant. Let the function ) be defined as \(p) = p*/? (1 + log (Tp) > :

In FIGURE 8.16, FIGURE 8.17 and FIGURE 8.18 below, we plot the condition number of the Schur
system preconditioned by Py, P; and Ps.
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8.16.1. Preconditioner P 8.16.2. Preconditioner Py 8.16.3. Preconditioner Py

FIGURE 8.16 : x(P~'8) as a function of p with #of subdomains=16 and H /h = 80
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FIGURE 8.17 : x(P~'8) as a function of p with #of subdomains=64 and H /h = 80
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600

400

200

8.18.1. Preconditioner P

The FIGURE 8.16, FIGURE 8.17 and FIGURE 8.18 show that, for increasing values of p, our
preconditioners behaves similarly to the linear case p = 1. To highlight the dependence on p
of our preconditioners, we report in TABLE 35 the ratio R, for H/h = 80 fixed and increasing
values of the polynomial order p. We clearly do not see the factor p
the theoretical estimates (4.18), (4.26) and (4.32) (which, we recall, stems the mortar projector
operator) since for fixed H, the ratio Ry does not depend on this factor as shown TABLE 35.
Indeed, the numerical results seem to show an even better behavior than the polylogarithmic
dependence on Hp?/h.
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FIGURE 8.18 : k(

8.18.2. Preconditioner Py

8.18.3. Preconditioner Py

~3/2

P—'S) as a function of p with #of subdomains=256 and H /h = 80

which appears in

TABLE 35 : Ratio Ry and number of iterations (between parenthesis) for H /h = 80

N\p | 2 4 5
16 0.65 (22) 0.62 (24) 0.61 (25)
Py 64 0.64 (24) 0.61 (29) 0.61 (30)
256 0.63 (20) 0.60 (24) 0.60 (25)
16 0.65 (24) 0.62 (24) 0.62 (26)
P, 64 0.65 (26) 0.62 (29) 0.61 (29)
256 0.63 (21) 0.60 (22) 0.59 (23)
16 0.70 (27) 0.73 (28) 0.74 (28)
P, 64 0.73 (28) 0.76 (31) 0.77 (32)
256 0.72 (25) 0.76 (31) 0.78 (31)
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-~

TABLE 36 : £(S) and number of iterations (between parenthesis) for H/h = 80

N\p | 1 2 3 4 5

16 | 7.24e+2(86) 2.19e+3 (132) 4.21e+3 (168) 6.82e+3 (215) 1.0le+4 (268)
64 | 8.28¢+2(143) 2.49¢+3 (210) 4.76e+3 (201) 7.14e+3 (356) 1.12e+4 (445)
256 | 1.0de+3 (171) 2.59e+3 (257) 4.91e+3 (316) 7.94e+3 (389) 1.17e+4 (475)

8.2.8 Conclusion

As the results related to the conforming domain decompositions discussed in section 8.1, the
numerical results presented in this section dedicated to the nonconforming domain decom-
positions support the mathematical properties including the p-, H- and h-convergence of the
substructuring preconditioners for h-p mortar element method. These results hold for both
linear elements (p = 1) and high order elements (2 < p < 5).

8.3 Large Scale Simulations

We present the numerical results for large number of subdomains obtained with the Discontin-
uous Galerkin coarse preconditionner P for conforming domain decompositions. We report
the condition number estimate (P lg), the number of iterations required by PCG solver and
the ratio R, as a function of p for H/h = 80 fixed and for increasing number of subdomains
N. We plot the number of degrees of freedom as a function of p for H/h = 80 with 4096,
16384, 22500 and 40000 subdomains.

TABLE 37 : Ratio Ry and number of iterations (between parenthesis) for H/h = 80

Np |1 2 3 4 5

) 1.14(32)  1.06(33) 1.03(38)  1.02(39)

) 1.21(33)  1.11(35)  1.07(40)  1.07 (42)

256 1.76 (28)  1.23(32)  1.12(34)  1.08(36)  1.06 (40)
1,024 | 1.78(27)  1.23(29) 1.12(31)  1.08(32)  1.06(34)
4,096 | 1.79(25) 1.23(28)  1.12(29)  1.08(31)  1.06 (31)
) ( ( (

) ( ( (

) ( (

16 1.65 (31
64 1.74 (31

16,384 | 1.52(20)  0.88(22)  0.91(26)  0.94(27)  0.96 (28)
22,500 | 1.52(19)  0.88(20)  0.69
40,000 | 1.52(17)  0.88(20)  0.69(22)  0.68(23) -

The TABLE 37 shows that the behavior observed in the analysis of the dependence on p of
our preconditionner P in section 8.1 for the medium number of subdomains (from 16 to 256)
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holds for very large number of subdomains, i.e. the numerical results seem to show an even
better behavior than the polylogarithmic dependence on Hp?/h.

In TABLE 37, for fixed H /h and p, the ratio R» seems to be slightly decreasing rather than
constant. We believe that there are different causes for this behavior. First of all the problem
chosen has a quite regular solution which, for a large number of subdomains, is already well
approximated at the coarse level. Moreover, as the coarse mesh becomes finer and finer and
the polynomial degree increases, round-off errors might become more significant and they
might pollute the numerical results. This issue will be investigated in a forthcoming paper

[ Ik

103:_ T T T _:-.-)\p)

102 :_ /' A _: + K

F1GURE 8.19 : Condition number of the preconditioned system as a function of p with 16, 64, 256, 1024, 4096,
16384, 22500, 40000 subdomains and H /h = 80
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8.4 Scalability Analysis

In this section, we analyze the performance and the scalability of our parallel algorithms for
solving the Schur complement system (4.41) preconditioned by the substructuring precondi-
tioner P, introduced in chapter 4. For this end, we perform the strong and weak scalability ex-
periments, already introduced in section 1.7. The simulations were achieved on Curie, a Tier-0
computational platform for PRACE, previously described at the beginning of this chapter. The
tests are carried out with first-order and high-order mortar finite element approximations.

8.4.1 Strong Scalability

To measure the speedup of the preconditionner P,, we perform the strong scalability anal-
ysis for p = 1,2,3,4. We consider the conforming domain decompositions with simplex
elements, as in FIGURE 8.1. We compute the time required for solving the Schur complement
system (4.41) preconditioned by P, when increasing the number of processor cores, while
maintaining the overall problem size constant. We perform the experiments by using 256,
1024, 2048, 4096 and 16384 processor cores, depending to the polynomial order used.

For the first-order mortar approximation (p = 1), see FIGURE 8.20.1., the total number of
unknowns is approximately equal to 30 millions and we use respectively 256, 1024, 2048 and
4096 processor cores for solving the system. Until 2048 cores, we obtain a nice speedup relative
to 256 cores. We observe a deterioration of the speedup from 4096 cores, more precisely, the
speedup relative to 256 cores is 13.45 while the linear speedup is 16. This deterioration is
mainly caused by the low workload in the subdomains while the interprocess communications
significantly increase.

For the second-order mortar approximation (p = 2), see FIGURE 8.20.2., the total num-
ber of unknowns is about 122 millions and the simulations are performed using respectively
1024, 2048 and 4096 processor cores. A good speedup is obtained, as shown the plots in FiG-
URE 8.20.2.. More specifically, using 4096 cores, the speedup relative to 1024 cores is 4.31 while
the linear speedup is 4. This over-linearity of our speedup is due to the use of direct solver for
the solution of local problems although the workload becomes small in subdomains.

For the third-order mortar approximation (p = 3), see FIGURE 8.20.3., the total number of
unknowns is roughly equal to 273 millions and the experiments are achieved using respectively
1024, 2048, 4096, 8192 processor cores. Using 8192 cores, the speedup relative to 1024 cores is
7.44, which is near to the linear speedup equal to 8.

For the fourth-order mortar approximation (p = 4), see FIGURE 8.20.4., the total number of
degree of freedom varies between 485 and 486 millions and the simulations are realized using
respectively 2048, 4096 and 16384 processor cores. Using 16384 cores, the speedup relative to
2048 cores is 6.20 whereas the linear speedup is 8. The principal reason of this deterioration of
the speedup is a significant increase by about 5 millions of the number of unknowns between
2048 and 16384 cores.

Domain Decomposition 125 A. Samaké



Chapter 8. Substructuring Preconditioners in 2D

I I T T I I I I T T T
0 -#- P1 Mortar FEM ] -#- P2 Mortar FEM
£ =i d 1 8 4f i 2
g inear speedup S =&~ Linear speedup
2 N
X 3
2 10} 41 & 3f .
Z 2
= 3
o =~
= =L | ° 2 |
9
g Ed
£ £
- Eo1f |
O L 1 1 1 1 1 1 1 1 1 1 1 1
Q Q Q Q Q O ¢ a0 0 Q0 0 QO
A a0\ A I 507 A% B o 507,
#of cores #of cores
8.20.1. First-order approximation 8.20.2. Second-order approximation
$ 8 || === P3 Mortar FEM . $ 8[| === P4 Mortar FEM .
§ =&~ Linear speedup § -8~ Linear speedup
<t =]
2 of | £ ]
S 8
s >
g 4r 1 & 4¢f 1
< <
E E
Y 2
g 2} 1 £ a2l ]
E £
= B
QO N\ Q N\ O a0 oD oD o a0 0 (0
g0 O ® 9 OV OV O 0 9% %0 0%, &Y
#of cores #of cores
8.20.3. Third-order approximation 8.20.4. Fourth-order approximation

F1GURE 8.20 : Strong scalability analysis forp =1,2,3,4

8.4.2 Weak Scalability

To evaluate the efficiency of the preconditionner P, using the Discontinuous Galerkin inte-
rior penalty method as coarse problem, we perform the weak scalability analysis with the
same problem settings as for the results reported in TABLE 37 and in FIGURE 8.19. We con-
sider the first-order and high-order mortar finite element approximations and the conforming
domain decompositions with simplex elements, as in FIGURE 8.1. We are interested in the com-
putational time required for solving the Schur complement system (4.41) preconditioned by
P, when increasing the number of processor cores, while maintaining the local problem size
constant. The experiments are achieved by using 1024, 4096, 16384, 22500 and 40000 processor
cores.

For the fourth-order mortar approximation (p = 4), the number of degrees of freedom per
subdomain is approximately equal to 120000. Using 1024 cores, the total number of unknowns
is approximately equal to 122 millions and the system is solved in 121.98s. Employing 40000
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cores, we reach about 5 billions of unknowns and the system is solved in 132.88s, i.e. with an
efficiency relative to 1024 cores equal to 92%, as shown FIGURE 8.21.4..

For the third-order mortar approximation (p = 3), the number of degrees of freedom per
subdomain is about 67000. Using 1024 cores, the total number of unknowns is approximately
equal to 68 millions and the system is solved in 64.30s. Employing 40000 cores, the number
of unknowns of the overall problem is roughly equal to 3 billions and the system is solved in
68.80s, i.e. with an efficiency relative to 1024 cores equal to 93.46%, as shown FIGURE 8.21.3..

For the second-order mortar approximation (p = 2), the number of degrees of freedom per
subdomain is approximately equal to 30000. Using 1024 cores, the total number of unknowns
is about 30 millions and the system is solved in 26.41s. Employing 40000 cores, the number
of unknowns of the global problem is roughly equal to 1.2 billions and the system is solved in
29.02s, i.e. with an efficiency relative to 1024 cores equal to 91%, as shown FIGURE 8.21.2..

For the first-order mortar approximation (p = 1), the number of degrees of freedom per
subdomain is roughly equal to 7400. Using 1024 cores, the total number of unknowns is about
7.5 millions and the system is solved in 6.38s. Employing 40000 cores, the number of unknowns
of the global problem is approximately equal to 300 millions and the system is solved in 7.11s,
i.e. with an efficiency relative to 1024 cores equal to 89.73%, as shown FIGURE 8.21.1..

To highlight the efficiency of our parallel algorithms, we summarize in TABLE 38 the effi-
ciency relative to 1024 processor cores for increasing values of polynomial orderp = 1,2, 3 4.

TABLE 38 : Efficiency relative to 1024 processor cores

Nyp |1 2 3 4

1,024 100% 100% 100% 100%
4,096 92.73% 95.83% 99.18% 99.35%
16,384 91.67% 94.46% 97.48% 97.54%
22,500 90.37% 91.39% 94.7% 95.39%
40,000 89.73% 91.01% 93.46% 91.8%
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FIGURE 8.21 : Weak scalability analysis forp =1,2,3,4

The efficiency analysis shows that the preconditionner P; scales well on large scale com-
puter architectures.

The resolution of the coarse problem at each PCG iteration has a significant effect on the
computational cost. The number of degrees of freedom of the coarse problem is four times the
number of subdomains and it is solved in parallel on three number of processor cores in this
weak scalability study. When we further increase the number of cores, for example reaching
hundreds of thousands of processors, the resolution of the coarse grid problem in parallel on
more cores will be essential, since it will become particularly consequent in term of size.

The coarse grid problem being responsible of the scalability for large number of sub-
domains, the construction, analysis and the implementation of the Discontinuous Galerkin
coarse problem was decisive for the performance of our parallel algorithms.
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subdomains and H /h = 80

8.5 Scalability Analysis on Medium Scale Architectures

In this section, we analyze the performance and the scalability on medium scale architectures
(from 16 to 256 processor cores) of our parallel algorithms for solving the Schur complement
system (4.41) preconditioned by the substructuring preconditioner P,. We consider the same
problem settings as for the scalability analysis on large scale architectures presented in section
8.4 and the experiments are carried out with first-order and high-order mortar finite element
approximations. The simulations were achieved at MesoCentre@Strasbourg on hpc-login, a
supercomputer previously described at the beginning of this chapter.

8.5.1 Strong Scalability

We compute the time required for solving the Schur complement system (4.41) preconditioned
by Py when increasing the number of processor cores, while maintaining the overall problem
size constant. We perform the experiments by using 16, 64 and 256 processor cores for in-
creasing values of polynomial order p = 1,2,3,4,5. We obtain a nice speedup relative to
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16 cores for all mortar finite element approximations considered, as shown FIGURE 8.23. The
over-linearity observed in the speedup analysis is due to the use of direct solver for the solution
of local problems although the subdomains become smaller.
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F1GURE 8.23 : Strong scalability analysis
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8.5.2 Weak Scalability

We compute the time required for solving the Schur complement system (4.41) preconditioned
by P; when increasing the number of processor cores, while maintaining the local problem size
constant. We perform the experiments by using 16, 64 and 256 processor cores for increasing

values of polynomial order p =1,2,3,4,5.
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The efficiency analysis shows that the preconditionner P, scales well on medium scale com-
puter architectures for all mortar finite element approximations considered, p =1,2,3,4,5
as shown FIGURE 8.24.

8.6 Conclusion

In this chapter, we presented the numerical experiments for substructuring preconditioners
for h-p mortar element method in different configurations, including conforming and non-
conforming domain decompositions, linear and high-order finite elements. The mathematical
properties of three different substructuring preconditioners proposed in this work were ana-
lyzed by performing a p-, H- and h-convergence study. The number of iterations required for
the Preconditioned Conjugate Gradient (PCG) method for solving the preconditioned Schur
complement system, the condition number estimate and the ratio between the condition num-
ber estimate and its bound for the preconditioned matrix were reported for each preconditioner
considered. As the theoretical results, a logarithmic growth was observed for all precondi-
tioners surveyed with conforming and nonconforming domain decompositions and the linear
finite elements. Indeed, in the case of high-order elements, the numerical results indicated an
even better behavior than the polylogarithmic dependence on Hp?/h and the main reasons
for this behavior were discussed. To evaluate the performance of our parallel algorithms, the
strong and weak scalability were analyzed with the Discontinuous Galerkin coarse grid pre-
conditioner. The best scalability (strong and weak) properties were obtained on medium scale
computational platforms (from 16 to 256 processor cores on hpc-login) and on large scale com-
puter architectures (from 1024 to 40.000 processor cores on Curie). These scalability results
hold for linear finite elements (p = 1) and for high-order finite elements (2 < p < 5).
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Chapter 9

Collecting Framework for Numerical
Results

This chapter presents the some numerical results for Schwarz and three-field meth-
ods described previously in this thesis and summarizes some results for mortar ele-
ment formulation using Lagrange multipliers. The numerical experiments for Schwarz
methods in parallel and for three-field method are given respectively in 9.1 and in sec-
tion 9.2. The numerical results for mortar element method with Lagrange multipliers
including the strong and weak scalability analysis are summarized in section 9.3.

Ce chapitre présente quelques résultats numeériques des méthodes de Schwarz et
de three-field décrites précédemment dans cette thése et résume quelques résultats
pour la méthode des éléments finis mortar utilisant les multiplicateurs de Lagrange.
Les expériences numériques pour les méthodes de Schwarz en paralléle et celles pour
la méthode three-field sont données respectivement dans la section 9.1 et dans la sec-
tion 9.2. Les résultats numériques pour la méthode mortar avec multiplicateurs de
Lagrange comprenant ’analyse de scalabilité forte et faible sont résumés dans la sec-

tion 9.3.
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Chapter 9. Collecting Framework for Numerical Results

9.1 Numerical Results for Schwarz Methods

To illustrate our implementation of Schwarz methods, we consider the problem (2.3) over
a partition over the domain 2 = [0, 1]? into 128 overlapping subdomains (16 subdomains
in x-axis direction and 8 subdomains in y-axis direction) with non-matching meshes. The
Dirichlet boundary condition is given by and u = g(z,y) = 0 on 052 and the chosen source
term is written f(x,y) = exp(—10zy) cos(3F) sin(zy).

solution

salutior 00145

i3 5 io,oouo
2
985 ’ED 000800
I leb 0.000400
Io Eo.oo
-2e-8 -2.16e-08
9.1.1. First Schwarz iteration 9.1.2. Solution at convergence

FIGURE 9.1 : Numerical solutions obtained by parallel additive Schwarz algorithm in 2D on 128 processor
cores(1 subdomain/processor core)

The numerical solutions in FIGURE 9.1 are obtained using PP, Lagrange elements. The tol-
erance of the numerical solver is fixed to 1e — 07. The characteristic mesh size is 0 .01 in
each subdomain and the size of the overlap is 0 .02. The grids may be nonconforming. The
number of Schwarz iterations to convergence is 130 and the relative L? error |Ju — up|| 2 is
1.164901e — 06.

The speedup displayed in TABLE 39 corresponds to the assembly plus the solve times. We
can see that the scaling is good except for the last configuration where the local problems are

too small.

TABLE 39 : Strong scalability analysis for Schwarz methods

Number of Cores Absolute Times Speedup

1,024 41.2 1
2,048 18.2 2.26
4,096 10 4.12
8,192 7 5.88
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9.2 Numerical Results for Three-field Method
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9.2.2. Numerical solution in 2D

9.2.1. Exact solution in 2D

9.2.4. Numerical solution in 3D

9.2.3. Exact solution in 3D

Numerical solutions for three-field method in 2D and 3D

FIGURE 9.2

Numerical results for three-field method in 2D and 3D

TABLE 40

1.15-107% 1.61-107® 4.87-107'2 1.98-10°%

6.24-10711

2D 6.22-1071!

2.21-107° 1.39-107° 2.45-107% 2.61-107°

2.24-1077

3D 2.65-1077
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9.3 Numerical Results for Mortar Element Method with
Lagrange Multipliers

We present in this section the numerical results for parallel implementation of mortar element
method using Lagrange multipliers described in chapter 5 and investigated in implementation
view point in section 7.3. We consider the problem (5.1) in 3D with the chosen analytical
solution g = sin(mz) cos(wy) cos(nz) and f = —Ag = 37?g the corresponding source term.
The problem is solved in the parallelepiped 2 = [0, L,] x [0, L,] x [0, L,], L,,L,,L,> 0.
The following numerical results are obtained using P, finite element approximations. The
tolerance of the Krylov solver is e = 107",

The simulations have been performed at Leibniz Supercomputing Centre (LRZ) on Super-
MUC. SuperMUC is the Tier-0 supercomputer with 155.656 processor cores in 9400 compute
nodes which provides resource to PRACE via the German Gauss Centre. The system is an IBM
System x iDataPlex based on Intel Sandy Bride EP processors. SuperMUC has a peak perfor-
mance of 3.2 PFLOP/s consisting of 18 islands, each combining 512 compute nodes with 16
physical cores and 32 GB per node. The nodes are connected by a non-blocking fat tree, based
on Infiniband FDR10.

9.3.1 Strong Scalability Analysis

We analyze the strong scalability results corresponding to the partition of the global domain 2
into L, x L, x L, subdomains (1 subdomain per core) with the fixed lengths L, = L, = L, = 1.
We plot in FIGURE 9.3.1. the absolute solve time and the total time as a function of number of
processor cores in logarithmic axis. In FIGURE 9.3.2., we present the speedup and ideal speedup
as a function of number of cores. The total number of degrees of freedom is approximately
equal to 500000 and all the measured timings are expressed in seconds.

=o— Solver - SS#Cores
=o— Total § 15 | =o= S#Cores I
—~ 10%} E 5 ideal speedup
<z [ ] <
: — | 2 10
P £
E <
S g
a 1L 4
= 10} { 2 °f /, 1
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= 7
| | 0 L 1 1 1 1 1 1 1
1005 10! 1015 0 10 20 30 40 50 60 70
#of cores #of cores
9.3.1. Absolute time versus #of cores 9.3.2. Speedup versus #of cores

F1GURE 9.3 : Strong scalability analysis
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We obtain a nice speedup related to the total computational time and to the solver time, as
shown FIGURE 9.3.2..

9.3.2 Weak Scalability Analysis

We present the weak scalability results corresponding to the partition of the global domain 2
into L, x L, x L, subdomains (1 subdomain per processor) with L, x L, x L, = #of cores.
We plot in FIGURE 9.4.1. the absolute solve time and total time as a function of the number of
cores in logarithmic axis. In FIGURE 9.4.2., we present the efficiency relative to four cores as a
function of the number of cores. We denote by £, the efficiency relative to four cores for the
total time on p cores and by E'S, the efficiency relative to four cores for the solver time on p
cores. The total number of degrees of freedom is approximately equal to 30000 per subdomain
and all the measured timings are expressed in seconds.
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FIGURE 9.4 : Weak scalability analysis

The strong and weak scalability analysis presented in FIGURE 9.3 and FIGURE 9.4 clearly
show that our parallel computational framework for solving the algebraic linear system of
saddle-point type arising from the discretization of mortar finite element method with La-
grange multipliers in 2D and 3D perform well on the small size computer architectures.

9.4 Conclusion

We summarized in this chapter the numerical simulations for Schwarz methods, three-field
method and mortar element method with Lagrange multipliers. These results confirm the
theoretical properties of these methods described in the part I and investigated in the imple-
mentation view point in part II. Regarding the mortar finite element method with Lagrange
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multipliers, the scalability analysis (strong and weak scalability) supports the best performance
property of our parallel algorithms.
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The significant advances in terms of large numerical simulations for complex scientific and
engineering problems have always been related to major levels reached by the technologies
of high-performance computing. The numerical methods able to best exploit these modern
computational platforms are challenging and booming research topics in the field of scien-
tific computing, specifically domain decomposition methods. In this thesis, we investigated
a numerical and computational framework for diverse domain decomposition methods and
preconditioners.

In the Part I devoted to the numerical methods, we first reviewed the overlapping Schwarz
methods and the iterative substructuring methods such as the mortar finite element method,
the three-field method and the FETI method. The classical formulations for these methods
were recalled and we reported the convergence analysis supporting the theoretical estimates.
The main subject discussed in this work was the mortar finite element method, for which we
introduced two different formulations. The first one was the original mortar finite element for-
mulation, in which the mortar weak matching condition is directly taken into account in the
approximation space. One of our principal motivations for this formulation is that it lead to
a sparse, positive and definite linear system allowing the use of efficient preconditioners. The
substructuring preconditioners for this mortar formulation in the A-p finite element frame-
work have been handled. A particular emphasis was placed on the construction and the anal-
ysis of the coarse grid preconditioner and its fundamental role for the good scaling properties.
We analyzed two variants of coarse preconditioner, whose the first one is an improved version
of a coarse preconditioner already existing in the literature. The second is our main proposed
version based on a Discontinuous Galerkin interior penalty method as coarse problem. The
second mortar formulation studied in work was the approach using Lagrange multiplier for
ensure the mortar weak continuity constraints. The algebraic linear system of saddle-point
type arising from such a formulation was revised. For solving this indefinite saddle-point
linear system, the block diagonal preconditioners involving the local preconditioners for sub-
domains and the algebraic Schur complement on the Lagrange multiplier were analyzed.

In the Part II dedicated to the implementation of various numerical methods and precon-
ditioners described in Part I, we developed an implementation framework for the substruc-
turing preconditioners and the Schur complement system, the algebraic representation of the
Steklov-Poincaré operator in two dimensional space. We defined some basic ingredients re-
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quired for FEEL++ implementation and emphasized the crucial role of the linear interpolation
operator for domain decomposition framework in FEEL++. The geometric and algebraic as-
pects for the realization of the preconditioners were studied and the code design illustrating
the genericity and the flexibility of our parallel algorithms was summarized. In the same part,
the implementation of Schwarz methods, three-field method and mortar element method with
Lagrange multipliers was surveyed. The Schwarz and three-field methods were considered in
the purpose to establish a teaching and research programming environment in FEEL++ for a
wide range of these methods.

In the Part III centered on the numerical experiments, the numerical results for various
numerical methods and preconditioners investigated in Part I and in Part II are summarized.
First, the problem settings and the computational platforms for all numerical simulations for
substructuring preconditioners achieved were defined. We presented the results related to
the substructuring preconditioners in different configurations, including conforming and non-
conforming domain decompositions, linear and high-order finite elements. The mathematical
properties of three different substructuring preconditioners proposed in this work were ana-
lyzed by performing a p-, H- and h-convergence study. The number of iterations required for
the Preconditioned Conjugate Gradient (PCG) method for solving the preconditioned Schur
complement system, the condition number estimates and the ratio between the condition
number estimates and its bound for the preconditioned matrix were reported for each pre-
conditioner considered. As the theoretical results, a logarithmic growth was observed for all
preconditioners surveyed with conforming and nonconforming domain decompositions and
the linear finite elements. Indeed, in the case of high-order elements, the numerical results
indicated an even better behavior than the polylogarithmic dependence on Hp?/h and the
main reasons for this behavior were discussed. To evaluate the performance of our parallel
algorithms, the strong and weak scalability were analyzed with the Discontinuous Galerkin
coarse grid preconditioner. The best scalability (strong and weak) properties were obtained
on medium scale computational platforms (from 16 to 256 processor cores) and on large scale
computer architectures (from 1024 to 40.000 processor cores). These scalability results hold
for linear finite elements (p = 1) and high-order finite elements (p = 2,3,4,5). In the same
part, some basic numerical results for Schwarz methods including seamless and explicit com-
munication approach, and for three-field method were presented. Regarding the mortar fi-
nite element method with Lagrange multipliers, the three-dimensional simulations performed
on SuperMUC, a Tier-0 supercomputer for PRACE located at Leibniz Supercomputing Cen-
tre (LRZ) were exposed. These simulations include the strong and weak scalability analysis
showing the best performance properties of our parallel algorithms.

Ongoing work and Perspectives

The goal we have set ourselves is to extend the framework for substructuring preconditioners
for h-p mortar finite element method presented in this work to harder problems and com-
plex computational domains. The long-term objective would be to extend the current parallel
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implementation framework for this mortar method and preconditioners to hybrid computer
architectures GPU/GPGPU in FEEL++ programming environment.

Extension to Complex Domains

The numerical simulations presented in the Chapter 8 dedicated to the substructuring precon-
ditioners are obtained with conforming and nonconforming domain decompositions of polyg-
onal computational domains in two-dimensional space. The work is underway to extend our
implementation to complex domains, for which the necessary ingredients are already avail-
able in FEEL++. The main idea is to generate the coarse mesh with hypercube elements from
an arbitrary computational domain, with a particular attention for the regularity along the
element interfaces. The implementation details of this extension have already been discussed
in section 6.3 of this dissertation.

Implementation in 3D

In the literature dedicated to the preconditioning techniques, particular difficulties are related
to the three-dimensional problems. We are currently working to extend our implementation
to three-dimensional preconditioner framework for mortar finite element method. This work
requires some developments in FEEL++, especially in the table of degrees of freedom for tak-
ing into account the mortar conditions for the processing of the cross-points and cross-edges
across the subdomain interfaces.

Extension to Multiscale Problems

Multiscale problems are prevalent in industrial applications. A simple model of such problems
is the diffusion equation with highly heterogeneous coefficients, which is used for example for
predicting the presence of oil and gas in a porous medium. The extension of our preconditioner
framework to these problems is an interesting perspective of this work.
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This appendices collect the essential results used in this thesis. In section A, the
Sobolev spaces are recalled. The finite element approximations are reviewed in section
B. A theoretical framework for the solution of algebraic linear systems is given in sec-
tion C. Fast algorithms for the computing of matrix square root proposed in [ ]
are available in section D. A special emphasis is placed on the proofs of theorems
and lemmas proposed in this thesis, specifically for the mortar element method with
constrained space and the substructuring preconditioners in section E. Some tools in
FEEL++ for domain decomposition methods, especially for the substructuring precon-
ditioners are presented in section H. The Aitken acceleration procedure of Schwarz
methods is reminded in section I. Some numerical results for substructuring precon-
ditioners are available in section 7.

Ces appendices collectionnent les résultats essentiels utilisés dans cette thése. Dans
la section A, les espaces de Sobolev sont rappelés. Les approximations par éléments
finis sont révisées dans la section B. Un framework théorique pour la résolution des
systemes linéaires algébriques est donné dans la section C. Les algorithmes rapides de
calcul de la racine carrée de matrice proposés dans [ | sont disponibles dans la
section D. Un accent particulier est mis sur les preuves des théorémes et des lemmes
proposés dans cette thése, spécifiquement pour la méthode des éléments finis mortar
avec espace contraint et les préconditionneurs par sous-structuration dans la section
E. Quelques outils dans FEEL++ pour les méthodes de décomposition de domaine, par-
ticulierement pour les préconditionneurs par sous-structuration sont présentés dans
la section H. La procédure d’accélération Aitken des méthodes de Schwarz est rap-
pelée dans la section I. Quelques résultats numériques pour les préconditionneurs par
sous-structuration sont disponibles dans la section j.
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A Sobolev Spaces

Sobolev spaces are essential tools in solving elliptic partial differential equations. Using the
variational formulation of the PDE, the existence of a generalized solution in the appropriate
Sobolev space can be established by using variational methods, in particular the Lax-Milgram
lemma. Regularity results are also expressed by bounding the Sobolev norm of the solution
of the PDE in terms of the Sobolev norm of the boundary data and the right hand side. For a
description of the general spaces and their properties, see [ ; ].

Let Q) C R% d = {1,2,3}, be abounded domain with smooth boundary. The space L?({2)
is defined as the space of square integrable functions,

[2(Q) = {u ull oy = /Q (juP dx>1/2 < oo}.

Let k be a positive integer. The Sobolev space H*((2) is the Hilbert space of functions with
weak derivatives of all orders less than and equal to & in the space L?(2). In particular, the
inner product on H'(9) is

(1, ) g1(0) :/ uv dx—i—/ Vu- Vo dz.
Q Q
The H'-seminorm and norm of u € H'({) are respectively,
o = [ V0P de and ol = o + el

Of particular interest for domain decomposition methods is the scaled norm obtained by
dilation of a domain of unit diameter,

1
2 2
ull ) = [ulm@ + Tiam [l 720 » (A1)

where diam((2) is the diameter of ().

The Sobolev spaces can also be defined as the closure of C'*°(£2) in the corresponding norm,
e.g., H'(Q) is the closure of C'*(£2) with respect to || - | pr1.q)- Let C5°(€2) € C°(€2) be the set
of smooth functions with compact support. The subspace Hj(§2) C H'(f) is the closure of
C°°(€2) with respect to || - || ;1 (. and consists of all the functions from H 1(Q) which vanish
on 91 in the L? sense.

Trace Theorems

The trace theorems are results concerning the restriction of elements of Sobolev spaces on a
domain to the boundary of the domain. Their duals are the extension theorems. The following
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trace theorem will be useful later on; see [ ] for the general theory.

Theorem A.1. If Q) is a Lipschitz domain andu € H*Q), 1/2 < s < 1, then
YoU = Uy € H871/2<8Q).

Moreover, the restriction operator from H*(S)) to H*~'/2(0Q) is onto and continuous,

[voull gre-1/290) < C (8, ) lull ge o

The next theorem is a variant of Theorem A.1 for functions in H'(f2). We consider the
norms given by (A.1), such that the dependence of the constants on the domain €2 can be
specified.

Theorem A.2. If 2 is a Lipschitz domain, then

|U‘§11/2(39) < Clulm(g)

and

2 : 1 2
[ullz200) < C<dmm(9)|u|ip(g) + diam(Q)? [ullz20) |-

Poincaré and Friedrichs Inequalities

The Poincaré and Friedrichs inequalities provide simple equivalent norms for spaces like H
and H!, and are used to derive convergence and condition number estimates for finite element
methods. They can be proven using the Rellich compactness theorem and the completeness of
Sobolev spaces, see [ ]. We are interested in formulations of the inequalities specifying
the dependence of the constants on the domain €. Let Q) ¢ RY, d = {2,3} be a reference
Lipschitz domain of unit diameter and let {2 be a domain of diameter diam({2) obtained by a
uniform dilation of €.

Theorem A.3 (Poincaré Inequality). There exists a constant C that depends only on Q) such that

1 2
2 , 21,12 1
[ullz2(q) < C’(dzam(Q) [ulfr ) + Ediam (@) ‘ /Quda: >, Yu e H ()

Theorem A.4 (Friedrichs Inequality). Let ¢> 0 and let A C 02 such that cju(02) < u(A),
where p is the Lebesgue measure. Then,

1 2
) . 2 12
[ullz2() < C(dzam(Q) [l o) + W(Q)“‘ /Auda) )

where C is a constant that does not depend onu , ), A, orc.
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B Finite Element Approximations

Triangulations

Let Q C R, d = 2,3, be a bounded polygonal or polyhedral domain with Lipschitz con-
tinuous boundary. A triangulation (or, equivalently mesh) is a nonoverlapping partitions of
(2 into elements. We consider meshes consisting of triangles or affinely mapped rectangles
in two dimensions, and of tetrahedra or affinely mapped parallelepipeds in three dimensions.
More precisely, let the reference triangle (tetrahedron) have vertices (0,0), (0,1), (1,1) or
((0,0,0), (0,0,1), (0,1,0), (1,0,0), respectively). The reference square and cube are
(—1,1)%. Troughout of this monograph, a reference element K is one of the four regions
defined above and elements are always open sets. An affine mapping from K onto an element

K is defined by
FKIK—>K, FK(l’):BKI+bK,

with By a linear mapping and by a constant vector. We define a family of triangulations

Tn, h>0:
Definition B.1. Let i > 0. A family of triangulations of (2 is a partition of €2

such that, U K=0, KNK =0 ifK+#K'; K isareference element and F is an
KeTy
affine mapping ; h = max hx, hg = diam(K). his called the diameter of of 7. The family
€/n

Ty, is called geometrically conforming(briefly, conforming), if the intersection between the
closure of two differents elements is either empty, a vertex, an edge, or a face that is common
to both elements.

We consider particular triangulations.

Definition B.2. A family of triangulations 7, is called shape-regular if there exists a constant
independent of h, such that hy < Cpg, K € T, where py is the radius of the largest circle
or sphere containing K. The ratio hy /py is called the aspect ratio of K.

Definition B.3. A family of triangulations 7}, is called quasi-uniform if it is shape-regular and
if there exists a constant independent of h, such that hy > Ch, K €T,

Finite Element Spaces

Given an open set D € R?, d = 1,2,3, we now define some polynomial spaces. Let
Pi(D), k > 0, be the set of polynomials of total degree at most k defined on D, and let
P(D)4 for d = 2,3, be the set of vector of R%, the components of which belong to P (D). In
addition, let Qy (D) be the set of polynomials of degree at most k in each variable. Let T}, be a
conforming triangulation. We have the following result, cf,, e.g., [ , Pr. 3.2.1].

Domain Decomposition 145 A. Samaké



Appendices

Lemma B.4. A functionu : Q) — R belongs to H'(Q) if and only if the restriction of u to every
K € Ty, belongs to H'(K), and for each common face(or edge in two dimensions) f = K| N K,
we have v, = uj,, on f.

Finite element spaces of continuous, piecewise polynomial functions are therefore con-
tained in H'(Q2). For k > 1, we define (see [ , Sect. 3.2])

VE= Q) = {u e COQ), u €PUK), K€ Th} V= Vi(Q) = VE@NH (@),

if 7;, consists of triangles or tetrahedra, and

VP =) = {u e Q) u € QUEK), KET ), Vi = V(@) = VAQNH(©),

if T, is made of affinely mapped rectangles or parallelepipeds.

For a fixed polynomial degree k, the set of Lagrangian basis functions ¢/ associated to a
set of nodes {P;} of the triangulation can be introduced. The degree of freedom are then the
values of a function at these nodes. We have

u(@) =Y u(P)e}(x), uweVh

i

and the basis functions are uniquely defined by ¢;(P;) = J;;.

There is of course a one-to-one correspondence between functions in V" and vectors of
degrees of freedom. Troughout this monograph, we use the same notation of finite element
functions u and vectors of degrees of freedom, and for finite element spaces and spaces of
vectors of degrees of freedom. The support of the nodal basis function ¢? is contained in
the union of the elements that share the node P;. A scaling argument allows us to prove the
following property ; see [ , Prop. 3.4.1].

Lemma B.5. Let ¢! be a basis function associated to a node of K € T;,. Then there exists
constants independent of hi, and h, such that

anhfe < |02y < Calic
2h§? <P} i iy < Coh?
CQhCII{_l < |¢?|?{1/2(K) < CSh;l{_Q
where C is independent of the aspect ratio of K.

A nodal interpolation operator /* = I can be defined for functions that are continuous

in Q by

I"u=> u(P)¢!, ueCQ)

i

Error estimates can be found ; see [ , Sect. 3.4.1].
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Lemma B.6. Given a mesh Ty, foru € H*(Q2) and K € Ty, %l <s<k+10<m <s, there
exists a constant, depending on m , s and the aspect ratio of K, such that,

[ — Ifulmae < O™

If Ty, is conforming and shape-regular, we have

We also need some finite element spaces that consist of discontinuous functions and are
conforming in L*(Q2). For k > 0, see [ , Sect. 3.2],

Q" = Q) = {u € LX(Q) uj,, € Py(K), K € n},
Qp = Qro(Q) = Q) N L§(%),

if 75, is made of triangles or tetrahedra, and an analogous definition holds if 7, is made of
rectangles or parallelepipeds.
Positive Definite Problems

Let Q C R?, d = 2,3, be a Lipschitz region of unit diameter. We consider a general second
order elliptic scalar partial differential equation involving the operator : find u € H}(Q) such
that

SN’ du
_ Z a—x] (a”(x)ﬁ_x,) = f in Q, u=0 on 09. (B.1)

ij=1
The weak form of (B.1) is given by : find u € H}(Q) such that

a(u,v) = (f,v), v € Hy() (B.2)

d
ou 0
where a(u,v) = ”zzl /Q ai’j(x)ﬁ_xiaai dx and (f,v)= /Q fod.
We consider the finite element spaces V¥ = V}*(Q) and V" = V}!!(Q), defined in section
. Given the variational formulation (B.2), we consider a conforming approximation in the
subspace Voh :findu € Voh, such that,

a(up,vn) = (f,vn), vn € V4" (B.3)

The weel-posedness of (B.3) is ensured by the Lax-Milgram Lemma, see [ ].
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Theorem B.7. Let T}, be a conforming triangulation of ) and k > 1. Then, The problem (B.3) is
weel-posed : there exists a unique solution such that

lunll o) < Crllflla-1) s Mlunlla < Collflli-1(q)
where || || is the norm associated to the bilinear forma( -, -). The finite element solution satisfies
a(u —up,vp) =0, v, € Voh (B.4)
If the mesh T}, is shape-regular, we have

\u — uh|H1(Q) S Chsillu

n
H3(Q); §<S§k’—|—1
and if; in addition (2 is convex

Ju— Uh||L2(Q) < Ch’lu

C Solution of Algebraic Linear Systems
We consider the solution of linear systems
Au=1> (C.1)

with u, b € R™, and A an n x n, real, invertible matrix. We use the notation (u ,v) = u'v,
for u, v € R™.

Eigenvalues and Condition Number

We recall that, given matrix A € R™ x R", its eigenvalues A € C and eigenvectors u € C"\{0}
are solution of

Au = \u.

The set of eigenvalues of A, also called spectrum, is denoted by o(A). The spectrum radius
p(A) is defined as

p(4) = max {|\]}.

Given a matrix norm || - ||, we define the condition number of an invertible matrix A by

K(A) == [|A]l]][A7]| -

In the same way, given a second matrix M, we can consider the generalized eigenproblem
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Au = \Mu.

A matrix A is said positive definite if all its eigenvalues have positive real part or, equiva-
lently, if u’ Au has positive real part for u € C\{0}. We note that in this case

A+ A
2

u'Au = u >0, ueR"{0}. (C.2)

If in addition A is symmetric, then its eigenvalues are real and strictly positive. Troughout
this section, we make use of the following property.

Lemma C.1. Let A and M be two symmetric, positive definite matrices of order n. For an
arbitrary matrix B € R"*", let

| Bull
|B| 4 := sup 4
u€R” HuHA

Y

with ||u|| := u' Au, and similarly for || B|| . Then,

1. The following eigenvalue problems have the same n eigenvalues

Au = AMu, (C.3)
M Au = \u, (C.49)
(M~ YV2PAM Y)Yy = A, (C.5)
(AYV2M~TAY?)y = . (C.6)
(C.7)
They are all real and strictly positive.
The smallest and largest eigenvalues of the problems above satisfy
o utAu ut Au
)‘min - ulelg" m; /\max - uS:]}gz utMu' (C8)
We have
1M AY| = [[M ALy = Amax = p(M 71 A4),
1A )] = [ A) ]y = 1/ Amin,
and thus

RA(M71A> = KJQ(Mil/QAM*l/Z) - )\ma:p/)\min
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We have
(u'Au > cu' Mu, u € R") — A\pin > c.
Analogously,
(u'Au < Cu'Mu, u € R") — Mpaw < C,
and thus

KA(M_lA) S C/C

We use the notation
KM A=k, M YA =ryM1'A.

We note that since M ~'A is not symmetric, its norm ||M ' AJ|, is not in general equal
to the largest eigenvalue. However, M ' A is symmetric with respect to the scalar product
induced by A and M.

The Lemma C.1 allows to prove the following corollary. It basically ensures that a good
preconditioner of a good preconditioner remains a good preconditioner.

Corollary C.2. Let A, B, and C be three positive definite symmetric matrices. Then,

K(C1A) < K(C'B)k(B~1C)

D Algorithms for Matrix Square Root

The edge block of substructuring preconditioners described in chapter 6 involves the square
root of matrices, see (4.42). As explained above, we use the Preconditioned Conjugate Gra-
dient(PCG) method for solving the Schur complement system (4.41). Then, each iteration of
PCG requires the solution of the system

1/2

Kz =g,  Ke=M/?(M;"ReM; %) "ML, (D.1)

We can work with the lumped mass matrix Mg ;, instead of Mg, hence in (D.1) we can
substitute Mg = (m;;) with Mg ;, defined as

M = diag(mﬁ), mﬁ = Z mij. (D.2)
ij

Therefore we may compute K = Mé/ L2 REM;/ L2 and then K, = K'/2.
Remark D.1. When high order fem are used, the process of mass-lumping (D.2) may produce
singular matrices. More specifically, the process of the mass-lumping can be applied to the
two-dimensional case(i.e. when the interface is a face) when linear elements are used. For

Domain Decomposition 150 A. Samaké



Appendices

quadratic finite elements, the above procedure would generate a singular mass matrix Mg ..
An alternative diagonalization strategy consists in using the matrix

my;
> Myj

In the one-dimensional case(i.e. the interface is an edge), for linear and quadratic finite el-
ements, matrices M and M, ;, coincide, while they differ for cubic elements. Note that M is
non-singular also for Lagrangian finite elements of high order, while it can turn out to be sin-
gular when using non-lagrangian finite elements, for instance when using hierarchical basis,
see [ ] for more details.

In the case of use of lagrangian basis functions, we consider the standard lumped mass
matrix Me,;, defined in (D.2). Then we compute K'/2 once, before the application of PCG, by
using standard technique such as sqrt in E1GeN [ ] library. Otherwise we may apply the
technique proposed in [ ] and compute, for each PCG iteration, the action K~'/2 that is

z= I~(*1/2g. (D.4)

The technique proposed in [ ] is based on conbining contour integrals evaluated by
periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. This proce-
dure is particularly effective when the matrix K is such that the systems of equations (z[ — R) =b
b can be solved efficiently by sparse direct methods. An example is the matrix associated to
the finite element discretization of the Laplacian in 2D or 3D, that is our case.

The procedure is iterative and requires an approximation of the minimum and maximum
eigenvalues of K and the solution of N systems of equations with matrix (z[ — ﬁ) N has to
be chosen depending on the accuracy wanted.

E Proofs of Theorems and Lemmas

Proof of Lemma 3.4.3. For each edge 'y, we introduce the constant

ﬁﬁ,n = Ne =
|F£n | Ton |an | Lo
(the last identity is a consequence of (3.32)). For véi)

ﬁz@ = T¢.n. We have

o(i,n) = Z 7 = Ten — (N — Ten)| <Z Z 170 = Tie.n |

= I'y,, we also introduce the notation

4,n:|Tpn|>0 £ n:|Tgn|>0
—ZZIW ) 4+ n(at) — n(ath)?
€&y
< ZZ () =l + > nzh) — 7,
0 €&y L €&y
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where, for each /, we let & = {i : Véi) is an interior edge} .
We have
|7e — (@) < ln — ﬁtfH%w(m)-

We observe that / ne — ¢ = 0, which, since n,—1j, € C°(9€),), implies that 1, —17, vanishes
o9
at some point of an.Z We can then apply bound (3.25), which yields

_ Hp?
= P 5 (1-+10g (55 ) 1,

The term | (zf) — _z@ |? is bound analogously. The thesis is obtained since the cardinality of

the set & is bounded. O

Proof of Lemma 3.6.4. We have

2 2
m@hs Y Imallye &
m=(£i)el
< Z ngapfhﬁehm([n])|12L13/2‘5(vm)
m=(i)el
S ﬁS/Q Z h2_25H£2€p?6| [T}] |§{é/2*5(7m)'
m=({3)el

We now observe that, for m = (¢,i) € I, 'yéi) = I'y,, we have (see (3.22))

1 1
e,y S 0= )iy, + Zlae = anl. €2)

Then we obtain

B <2 (LS i ol + to(aa)
h 17 T Np h2€ 82 77 « Hl/Q(’Ym) 60- a, v
m=({3)el

Observing that, for 7,, = I';, it holds that
17 = 3120, < e = allZregs,,y + 100 = anllinee,,y

by choosing € = 1/log(Hp?/h), we get

. Hp2 2 . Hp2
< 5% (1-+10g (0 )) = all + 5% (14 1og (5 ) ot
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The bound (3.46) follows easily by observing that

|(Id = ()7 < Inl7 + [l = [n — ol + 7|z < In = oll7 + 7 ()7

The bound (3.47) is obtained by observing that, if each 7, is linear on each 'yéi), thanks to
(3.23), the bound (E.2) can be improved to

0y S 20 = 2 + e = ),
O
Proof of Theorem 4.2.1. By using (4.15) we get
s(mn) S "1z + "7 S P07 0") + InV 17 (E.3)

VIZ, let ny = (1 — 75)An. We have ¥ = (1 — m,)Any. We introduce
N = (Me)e=1... € T with 7, constant on 02, defined as

i = |3Qe|_1/ "
[2:97)

Using Lemma 3.4.3 and (4.21), as well as (3.21), we have (A7 = 7))

V|23 = |(Id — m)AnY |5 < p*2 (1 + log

R Hp?
SJ p3/2 (1 + log (T)) bY(nV7 ,r]V)J

where the last bound holds since n. is a constant independent of / , p and H. Then we have

. Hp?
s(n,n) S P F+In" 3 < 627 (0P nP)+p? (1 + log (T)) oY (0¥, ") = p*?s1(n,m),

that is the first part of the theorem.
Hp*\\*,
s(n,1) S (1 +log (T)) $(n,m).
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Let us now bound s1(n,7) in terms of s(n,n). We have, for 7 defined by (3.31),

b (n",n") S 1(1d — ) Anlz < (1 +log(ne)) (A — D)7 + o (77, 7))
Hp2 ) Hp2
< (14 togtn.) (1-+tog (1)) it 5 (1-+10g (5 ) st
where we used (4.20) and (3.21).

Thanks to (4.14) and the definition of (4.24) we get that

si(n,m) = (", n") + (1 + log (HTPQ» by (n",n") S (1 + log (HTPZ)Y s(n,7m)

that concludes the proof of the Theorem 4.2.1. [

Proof of Theorem 4.2.3. Thanks to Lemma 4.1.2 we have
H p2
o) (1+10g (S )

Let us then bound bﬁ (nY" ,n"). For each slave side ~,, with ~,, = [y, we introduce the

constant 1 1
Nm = _/ 77;/ = _/ 777‘1/
|'7m| Y |’Vm| Ym
@ _ )

(the last identity is a consequence of the weak continuity constraint). For ,, = 7/ =Y,

we also introduce the notation ﬁéi) = 777(3 ) = N

Letting a,,, and b,,, denote the two extrema of v,,, we can write

NOESEDY |7m|‘1/ An)l? = Y (1[An] (@) * + [[An] (b))

I
mel Tm mel
Observing that for (¢,4), (n, j) such that v, = 'yéi) =~ and for x € 7, we have that

[An)(@) = [me(@) =na(@)]* = Ine(2) =7 = (@) =2D)* S |ne(@) =" P+ [ma () =72,

we immediately obtain that
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Now, reasoning as in the proof of Lemma 3.4.3 we obtain

o Hp?
tet) = 0 5 (14 10g (5 )) s

Putting all together we obtain

by ("', n") S (1 + log (HTPQ)) s(n,m). (E.4)

Combining (E.4), (4.14) with (4.30), we obtain
. Hp*\\*
$(nm) S (1 + log (T)) s(n.m).

Let us now bound s(7,n). We let 7 € L?*(X) denote the (single valued) function assuming
the value 7, on v,, for m € I. We have

s(m,n) S V15 + ™13

Let us now consider s(n" ,n"). We have
s, n") =017 = 11— m)Anlz = [An|7 + [mAnlz.

We bound the two terms on the right hand side separately. We have (see [ 1)

Anl7 S D IHeM i, S 00" n"Y).
l

As far as the second term is concerned, we can write

TS S IrmlAn) e, E€3)

m=({,i)ET

5 Z Hé?spélehe—%|7rm([A77])|12qé/27s(,ym)
m=({,i)ET

~3/2 —2e 172e, 3¢ 2
S0 WEEEE Al

m=({,1)el

. H28p381
S Ml )

m)

m=({,i)el

) Hp3/2
5p3/2(1+10g( — 1)) > Al

m=(3)el
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Now we have (recall that || - || 2(r,) is the scaled L? norm)

A2,y = NARIZ2(s, + AT 2,
S IR Zao,) + 1D G2,y S Dol A2,

where the last inverse type inequality is obtained by a scaling argument and using the linearity
of An on ~,,.

Combining the bounds on the two contributions we obtain

V VY < 53/2 Hp\\ v v v
stn”,n") P77 (L+log | == )) b2 (0 07).

which finally yields
s(n,n) < 5**s2(n,m).
O
F A Two Domain Overlapping Schwarz Method
We consider the following laplacian boundary value problem
—Au=f in
(F.1)
u=g¢g on Of)

where QO C R?,d = 2,3 and ¢ is the dirichlet boundary value.

Schwarz Algorithms

The Schwarz overlapping multiplicative algorithm with dirichlet interface conditions for this
problem on two subdomains €; and €2, at n” iteration is given by

—Aut = f in O —Auy = f in
uy =g on 9N and Uy =g on 905" (F.2)
u! =ul' on T} uy = uy on Iy

Variational Formulations

/ Vui-V’u—/ fv Yo, i=1,2.
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FEEL++ Implementation

Listing F.1 : Example with 2 subdomains

template<Expr>

void

localProblem(element type& u, Expr expr)
{

// Assembly of the right hand side / fu
Q

auto F = backend->newVector(Xh);

forml( test=Xh, vector=F, init=true ) =
integrate( elements(mesh), f*id(v) );

F->close();

// Assembly of the left hand side Vu - Vv

auto A = backend->newMatrix( Xh, Xh ?;
form2( _test=Xh, trial=Xh, matrix=A, init=true ) =
integrate( elements(mesh), gradt(u)*trans(grad(v)) );
A->close();
// Apply the dirichlet boundary conditions
form2( Xh, Xh, A ) +=
on( markedfaces(mesh, "Dirichlet") ,u,F,qg);
// Apply the dirichlet interface conditions
form2( Xh, Xh, A ) +=
on( markedfaces(mesh, "Interface") ,u,F,expr);

// solve the linear system Au=F
backend->solve( matrix=A, solution=u, rhs=F );

}

unsigned int cpt = 0;
double tolerance = le — 8;
double maxIterations = 20;
double 12erroru; = 1.;
double 12errorus = 1;

// Iteration loop

while( (l2erroru; +12errorus) > tolerance && cpt <= maxIterations)
{
// call the localProblem on the first subdomain 2y
localProblem(uy, idv(ug));
// call the localProblem on the first subdomain €5
localProblem(us, idv(uy));
// compute L2 errors on each subdomain
L2erroru; = 12Error(uy);
L2errorus = 12Error(usg);
// increment the cunter
++cpt;
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Numerical Results in 2D

The numerical results presented in the following table correspond to the partition of the global
domain (2 in two subdomains €2; and €2, (see FIGURE F.1) and the following configuration :

1. g(x,y) = sin(mx) cos(my) : the exact solution

2. f(x,y) =272g: the right hand side of the equation

3. Py approximation : the lagrange polynomial order

4. hsize = 0 .02 : the mesh size

5. tol = 1e — 9 : the tolerance

F.1.1. Two overlapping subdomains
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FiGuURE F.1 : Geometry in 2D
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F.1.2. Two overlapping meshes

TaBLE F.1: L? errors in € and Qs

A

Av
J
4

Nomber of iterations | [|u; — uey||1,

[uz — ex ||,

11 2.52e-8

2.16e-8
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Numerical Solutions in 2D

=\ A\ = 2\ N N\
(@) (( @) /ﬁ\\\\\\ ( \)\J {@) (@A)
W }&//’ \\\: 2) =7 =

F.2.1. First iteration F.2.2. 10t" iteration

FiGuRre F.2 : Isovalues of solution in 2D

G Eigenmodes of Dirichlet to Neumann Operator

Problem Description and Variational Formulation

We consider at the continuous level the Dirichlet-to-Neumann (DtN) map on €2, denoted by
DtNg,.

Letu:I'—— R,

ov
DtNg(u) = k—
n ir

where v satisfies

{ L(v) = (n—div(sV))v =0 dans G.1)

V= sur I’

where () is a bounded domain of R? (d=2 or 3), and I it border, & is a positive diffusion
function which can be discontinuous, and 7 > 0. The eigenmodes of the Dirichlet-to-Neumann
operator are solutions of the following eigenvalues problem

DtNg(u) = Aku (G.2)

To obtain the discrete form of the DtN map, we consider the variational form of (G.1). let’s
define the bilinear forma : H'(Q) x H'(Q) —— R,

a(w,v) = / nwv + kVw - V.
Q
With a finite element basis { ¢y }, the coefficient matrix of a Neumann boundary value problem

in Q is

Ay = / NoRds + KV By - V.
Q
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A variational formulation of the flux reads

ov
Kortr= [ ot KV VoL Vo
r on Q

So the variational formulation of the eigenvalue problem (G.2) reads

/ o + kVo -V, = )\/ kv YV Ok. (G.3)
Q T
Let B be the weighted mass matrix
(B)u = / KO Py
r
The compact form of (G.3) is
Av = \Bv (G.9)
FEEL++ Implementation
Listing G.1 : Eigenvalue solver
// Assembly of the right hand side B = KOW
r
auto B = backend->newMatrix( test=Xh, trial=Xh ) ;
form2( test=Xh, trial=Xh, matrix=B, init=true );
for( int const& marker : flags )
{
form2( test=Xh, trail=Xh, matrix=B ) +=
integrate( markedfaces(mesh,marker), s*idt(u)*id(v) );
}
B->close();
// Assembly of the left hand side A:/ nw + kVu - Vuw
auto A = backend->newMatrix( Xh, Xh ) ;
form2( test=Xh, trial=Xh, matrix=A, init=true ) =
integrate( elements(mesh), k*gradt(u)*trans(grad(v))
+ v¥idt(u)*id(v) );
A->close();
// eigenvalue solver options
int nev = doption("solvereigen-nev");
int ncv = doption("solvereigen-ncv)";
// definition of the eigenmodes
SolverEigen<double>::eigenmodes type modes;
// solve the eigenvalue problem Av = ABv
modes=
eigs( matrixA=A,
_matrixB=B,
_nev=nev,
_ncv=ncv,
_transform=SINVERT,
_spectrum=SMALLEST MAGNITUDE,
_verbose = true );
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Numerical Solutions

G.1.1. First mode G.1.2. Second mode G.1.3. Third mode

FIGURE G.1 : Three eigenmodes

The numerical solutions in FIGURE G.1 correspond to the following configuration :
1. P, approximation : the lagrange polynomial order
2. hsize = 0 .02 : the mesh size

3. u=r=1.

H Tools in FEEL++ : trace and lift

Trace of trace and lift of lift operations are needed in the construction of a substructuring pre-
conditioner e.g. for the mortar method presented above in this thesis, which we are currently
developping in 2D and 3D. Let 2 be a domain of R?, & C 912 an open and nonempty subset
and I' := O%. We also recall that the trace space of V := H'(Q) on X is denoted by H'/?(X)
and the trace space of W := H'/2(X) on T is indicated by A := H é/ ?(T") that is the trace space
of trace space of V on I'. It is necessary in this part to be able to manipulate the objects of
real dimension equal to d and topological dimension ranging from 1 to d back and forth. Let
u € V, first we compute v = wu,, € W the trace of u and then w = v, € A the trace of v
that is also the trace of trace of u. Reciprocally let w € A. The extension of w by its mean

1
c:= m/ w in W is given by v € W such that v = wonI'and v = cin ¥. Now we
r
compute the harmonic extension of v in V' that is given by v € V such that —Au = 0 in 2

and u = v on X.

Listing H.1 : Trace of trace and lift and lift implementation

auto Xh = space type::New(mesh);

// trace function space associated to trace(mesh)

auto TXh = trace space type::New(mesh->trace(markedfaces(mesh,marker)));
// trace function space associated to trace(trace(mesh))

auto TTXh = trace trace space type::New(TXh->mesh()->trace(

Domain Decomposition 161 A. Samaké



Appendices

boundaryfaces(TXh->mesh())));
// Let g be an function given on 3D mesh
auto g = sin(pi*(2*Px()+Py()+1./4))*cos(pi*(Py()-1./4));
/* trace and trace of trace of g */
// trace of g on the 2D trace mesh
auto trace g = vf::project( TXh, elements(TXh->mesh()), g );
// trace of g on the 1D trace trace mesh
auto trace trace g = vf::project( TTXh, elements(TTXh->mesh()), g);
/* lift and lift of lift of trace trace g */
// extension of trace trace g by zero on 2D trace mesh
auto zero extension = vf::project( TXh,boundaryfaces(TXh->mesh()),
idv(trace trace g));
// extension of trace trace g by the mean of trace trace g on trace mesh
auto const extension = vf::project( TXh, boundaryfaces(TTXh->mesh()),
idv(trace trace g)-mean );
const extension += vf::project( TXh, elements(TXh->mesh()), cst(mean) );
// harmonic extension of const extension on 3D mesh
auto op lift = operatorLift(Xh);
auto glift = op lift->lift( range=markedfaces(mesh,marker),
_expr=idv(const _extension));

H.1.1. Volume and the function ¢ H.1.2. Trace mesh and trace of g

ttrace_g <

Eo <
Sos

-1

i

LD

- _—

H.1.3. Wirebasket and trace of trace H.1.4. Warp with respect the func-
of g tion

FiGure H.1 : Volume and wirebasket

Domain Decomposition 162 A. Samaké



Appendices

I Aitken Acceleration

Let Q be a domain of R?, d = 1,2, 3, and 91 its boundary. We look for u the solution of the
problem :

{Lu: f in Q (L1)

u=g on Of)

where L is a partial differential operator, and the functions f and g are given. For the sake
of exposition we refer to the case of a domain (2 partitioned into two subdomains €2, and €2,
such that Q = Q; U Q,. We denote T'; := 995 N Qs and Ty := 90 N Q4 in the case of two
overlapping subdomains, and [' := 92y NJS2,, in the case of two nonoverlapping subdomains.
The norm of H'(®) will be denoted by || - ||1.4, while || - |0, Will indicate the norm of L*(®)
for all nonempty subset ® C ).

First we are interested in the overlapping and nonoverlapping Schwarz methods [ ].
The overlapping multiplicative Schwarz algorithm with Dirichlet interface conditions at (k +
1)t iteration, k& > 0, is given by (1.2) where uJ is known on I';. The additive version of

this algorithm is obtained by changing the interface condition uf™ = u%*! on the second
subdomain €5 to u5™ = u¥ in the second system of (I.2).
Lubt = f in Lufkt™ = f in
ubt =g on 0\ I ubt™ =g on 0\ (I.2)
ub Tt = b on I ubtt =t on Ty

The nonoverlapping Schwarz algorithm with Dirichlet and Neumann interface conditions
at (k + 1)™ iteration, k > 0, are given by

Lut™ = f in () Lu%’“ =/ in
+1 _
W — g on O \T v =9 on O\ qq
+1 +1
quH = )\k on I 81,62 = aul on [
on on
where \FH1 .= ngrgl + (1 — 6)\*, 0 being a positive acceleration parameter which can

be computed for example by an Aitken procedure, see listing 1.2, and \° is given on I". The
additive Schwarz method requires generally more iterations than the multiplicative method
and is naturally parallelizable. The generalization of these algorithms to many subdomains is
immediate.

Listing I.1 : Fixed point algorithm using Aitken acceleration for (I.2) and (I.3)

enum DDMethod { DD = 0,/*Dirichlet-Dirichlet*/
DN = 1 /*Dirichlet-Neumann*/ };
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auto accel = aitken( space=Xh2 );
accel.initialize( residual=residual, currentElt=1lambda);
double maxIteration = 20;
while( 'accel.isFinished() &&
accel.nIterations() < maxIteration)
{
// call the localProblem on the first subdomain £2;
localProblem(ul, idv(u2), DDMethod::DD);
lambda = u2;
// call the localProblem on the first subdomain {2y
if( ddmethod = DDMethod::DD )
localProblem(u2, idv(ul), DDMethod::DD);
else
localProblem(u2, gradv(ul)*N(), DDMethod::DN);
residual = u2-lambda;
u2 = accel.apply( residual=residual, currentElt=u2);
++accel;

The numerical solutions in FIGURE I.1 correspond to the partition of () into two subdo-
mains {2y and {2, and the following configuration : (i) g(x,y) = sin(7x) cos(my) is the exact
solution (ii) f(x,y) = 27?g is the right hand side of the equation (iii) we use P, Lagrange
approximation (iv) we use the maximal number of iteration equal to 10.

Table TABLE 1.1 summarizes The L? and H! errors for both problems studied.

TABLE 1.1 : Numerical results for Schwarz methods

[us — gHO,Ql [ug — g”o,ﬂz Juy — g”l,Ql |us — gl Q
With overlap 2.52e-8 2.16e-8 4.07e-6 3.89e-6

Without overlap 1.37e-9 2.04e-8 1.32e-6 6.71e-6
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((@ﬂ‘ @A
= /fff: !
L1.1. Geometry [.1.2. Numerical solution
e =\
Qs
a
Nl
L.1.3. Geometry 1.1.4. Numerical solution

F1GureE I.1 : Overlapping and nonoverlapping Schwartz methods in 2D

Listing 1.2 : Local problems for (3.40) and (6.1)

template<Expr> void localProblem(element type& u, Expr expr, DDMethod ddmethod)

{

}

auto Xh=u.functionSpace();

auto mesh=Xh->mesh();

auto v=Xh->element();

auto F = M backend->newVector(Xh);

auto A = M backend->newMatrix( Xh, Xh );

// Assembly of the right hand side / fv
Q

forml( test=Xh, vector=F ) = integrate( elements(mesh), f*id(v) );

// Assembly of the left hand side Vu - Vo
Q
form2( test=Xh, trial=Xh, matrix=A ) =

integrate( elements(mesh), gradt(u)*trans(grad(v)) );

// Add Neumann contribution
if ( ddmethod == DDMethod: :DN )
forml( test=Xh, vector=F ) += integrate( markedfaces(mesh,"Interface"),
_expr=expr*id(v));
else if( ddmethod == DDMethod::DD )
form2( Xh, Xh, A ) += on( markedfaces(mesh,"Interface") , u,F,expr);

// Apply the Dirichlet boundary conditions
form2( Xh, Xh, A ) += on( markedfaces(mesh, "Dirichlet"), u,F,qg);

// Apply the Dirichlet interface conditions
// solve the linear system Au=F
M backend->solve( matrix=A, solution=u, rhs=F );
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J Some Results for Substructuring Preconditioners

We present some numerical results related to the set of experiments presented in section 8.1
and in section 8.2 respectively for conforming and nonconforming domain decompositions.
We report the number of iterations required for solving the linear system (4.41) preconditioned
by P € {P,,P; ,P,}, the condition number x(P~S) when varying the number of subdomains
N and the number of elements n of the fine mesh.

Conforming Domain Decompositions

TABLE J.1: Condition number and number of iterations (between parenthesis) for p = 1

N\n ‘ ) 10 20 40 80 160 320

16 |22.72 32.62 (29 30) 44.13(31) 50.82(31) 58.29
Py 64 |22.05 31.59 (28 29) 43.15(29) 49.68 (30) 56.82 (31)
256 | 20.82 30.56 (25 26) 42.00 (27) 46.51 (27) 52.84

16 |22.16 32.34 (28 31) 49.32(33) 60.27 (34) 73.22 (36)

256 | 20.38 30.26 (25 28) 47.16(30) 58.27 (33) 70.75 (35)

16 |24.48 34.61 (26 28) 47.91(31) 55.91(33) 64.99 (35)
P, 64 |24.37 35.06 (26 29) 50.63 (31) 59.37(33) 68.91 (35)

( (27) ) ( (
( (27) ) ( (
( (24) ) ( (
( (27) ) ( (
P, 64 |21.52(24) 26.12(27) 32.10(29) 39.03 (31) 48.37(33) 58.92(35) 71.48 (36)
( (23) ) ( (
( (24) ) ( (
( (23) ) ( 1) (
256 | 24.04 ( (21) 35.48 (23) (26) 51.24 (28) 60.31(30) 69.78 (33)

TaBLE J.2 : Condition number and number of iterations (between parenthesis) for p = 2

N\n | 5 10 20 40 80 160
16 | 24.18(26) 29.10 (27) 34.95(29) 41.52(30) 48.58 (30) 57.13(30)
P, 64 | 23.95(25) 28.74(27) 34.19(27) 40.37(29) 49.04(31) 55.64 (32)
256 | 22.90(22) 27.71(24) 33.37(26) 39.41(28) 47.59 (30)  54.66 (31)
16 | 24.92(27) 29.45(27) 35.58(28) 43.29(30) 52.50 (31)  63.23 (32)
P, 64 | 2476(25) 29.26(27) 34.99(28) 42.01(30) 50.92(32) 61.35 (33)
256 | 23.65(22) 28.25(24) 33.65(25) 41.12(29) 49.94 (31)  60.18 (30)
16 | 23.59(23) 29.29(26) 35.80 (29) 43.68(31) 52.58(32)  62.46 (33)
P, 64 | 24.71(22) 31.25(25) 38.34(28) 46.46 (31) 55.71(33) 65.58 (35)
256 | 25.10(21) 31.69(23) 39.00 (26) 47.21(28) 56.37(32) 66.33 (33)
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TABLE J.3 : Condition number and number of iterations (between parenthesis) for p = 3

N\n ‘

5

10

20

40

80

16
Py 64
256

27.60 (27)
27.18 (26)
26.31 (23)

33.11 (28)
32.65 (27)
31.57 (25)

39.63 (29
38.98 (29
38.34 (28

A47.46 (31
45.87 (31
45.75 (30

55.74 (31
56.22 (32
56.28 (32

16
P, 64
256

27.97 (26)
27.87 (27)
26.90 (23)

33.51 (27)
33.33 (28)
32.26 (25)

41.04 (29

38.99 (27

49.63 (32

47.23 (30

59.32 (32

57.07 (32

16
Py 64
256

27.51 (26)
29.52 (25)
30.12 (23)

34.34 (28)
36.55 (28)
37.05 (25)

42.25 (30
44.69 (31

)
)
)
)
40.04 (30)
)
)
)
45.26 (28)

51.15 (33
53.85 (33

)
)
)
)
47.92 (32)
)
)
)
54.35 (31)

61.11 (33
63.94 (35

)
)
)
)
57.51 (34)
)
)
)
64.59 (34)

TABLE J.4 : Condition number and number of iterations (between parenthesis) for p = 4

N\n | 5

10

20

40

80

16
Py 64
256

30.73 (27
30.38 (27
29.76 (25

37.00 (28)
36.27 (28)
35.53 (26)

44.17
43.25
42.88 (29)

29)
30)

52.57 (32
51.19 (32
50.86 (31

62.26 (32)
60.68 (33)
62.10 (32)

16
P, 64
256

31.08 (27

29.94 (24

37.33 (29)
36.66 (29)
35.84 (26)

44.96 (30)

54.05 (32

51.74 (31

63.98 (33)
61.57 (34)
62.20 (33)

16
P, 64
256

31.85 (28
33.58 (28
34.24 (25

)
)
)
)
30.73 (27)
)
)
)
)

39.55 (30)
41.39 (30)
42.04 (27)

(
(
(
(
43.94 (31)
(
(
(
(

20)

58.03 (35
60.61 (35

)
)
)
)
52.60 (33)
)
)
)
61.19 (33)

68.73 (38)
71.62 (40)
72.09 (36)
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TABLE J.5 : Condition number and number of iterations (between parenthesis) for p = 5

N\n | 5 10 80
16 33.73 (27) 40.82 (29) 67.60 (33)
P 64 33.14 (28) 39.69 (30) 65.99 (34)
256 32.56 (25) 39.23 (27) 66.91 (33)
16 33.79 (28) 41.09 (29) 69.18 (34)
P, 64 33.44 (28) 40.10 (31) 66.87 (34)
256 32.45 (25) 39.23 (27) 66.87 (33)
16 36.12 (30) 44.40 (31) 76.00 (39)
P, 64 38.04 (29) 46.68 (31) 79.26 (42)
256 38.51 (26) 47.15 (29) 78.95 (40)
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TABLE J.6 : Condition number and number of iterations (between parenthesis) for p = 1

N\n| 5 10 20 40 80 160 320
16 7.52(16) 8.75(17) 12.38(19) 16.56 (20) 21.47 (20) 27.00 (22) 33.09 (23)
Py, 064 7.58 (15) 8.99 (17) 12.48 (18) 16.81(20) 21.54 (21) 26.76 (23) 32.32(24)
256 | 7.20(14) 8.78(15) 12.25(16) 16.12(17) 20.60 (17) 25.88 (19) 31.81 (20)
16 6.52 (15) 9.05(18) 12.95(20) 17.64 (22) 23.82(22) 31.33(24) 40.46 (24)
P, 64 | 6.83(15) 9.11(17) 13.03(20) 17.68 (22) 23.91 (25) 31.40 (27) 40.28 (29)
256 | 6.62 (13) 8.80(15) 12.30(17) 16.95(20) 22.44 (21) 29.62 (22) 38.41 (23)
16 9.96 (15) 9.50(16) 11.78 (17) 16.05(20) 21.51 (22) 27.76 (23) 35.04 (28)
P, 64 |10.06(16) 9.66 (16) 11.91(17) 16.68 (20) 22.21(22) 29.29 (25) 36.82 (29)
256 | 9.74 (15) 9.51(14) 11.38(16) 16.85(19) 22.53(21) 29.37(23) 36.78 (25)

TABLE J.7 : Condition number and number of iterations (between parenthesis) for p = 2

N\n | 5 10 20 40 80 160
16 11.24 (18) 14.32(19) 18.91 (20) 24.10(21) 30.16 (22) 36.55 (23)
Py 64 11.64 (18)  14.59 (19) 19.04 (20) 24.27(22) 29.76 (24)  35.94 (26)
256 11.21 (15) 14.00 (16) 1825 (17) 23.22(18) 28.95(20) 35.25 (21)
16 11.24 (19) 1443 (21) 19.03 (22) 24.29(22) 30.20(24) 37.14 (25)
P, 64 11.40 (18)  14.58 (21)  19.00 (22) 24.28 (24) 30.11(26)  36.72 (28)
256 11.14 (16)  14.06 (18)  18.27(19) 23.26 (20)  29.02 (21)  35.60 (22)
16 10.36 (17)  13.72(19) 18.95(21) 24.89(23) 32.14(27) 40.84 (29)
P, 64 10.94 (17)  14.41(19) 1993 (22) 26.17(25) 33.79(28) 42.86 (30)
256 10.81 (16) 14.48 (18) 19.89(20) 26.19(22) 33.32(25) 41.44 (29)
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TABLE J.8 : Condition number and number of iterations (between parenthesis) for p = 3

N | 5 10 20 40 80 160
16 17.77(22)  18.82(19) 23.91(20) 29.76 (22) 36.45(23) 43.59 (24)
P, 64 | 17.91(21) 18.94(20) 24.14(23) 29.81(25) 35.88(27) 42.71(29)
256 17.11(19)  18.02 (18)  22.94 (18)  28.66 (20)  35.00 (21)  42.49 (22)
16 17.78 (22) 18.84 (21) 23.99(22) 29.82(24) 36.55(24) 43.60 (24)
P, 64 17.92 (23) 19.11 (22) 24.16 (23) 29.86 (25) 36.25(27) 42.85(28)
256 17.14 (19) 1798 (18)  22.96 (19) 28.64 (20) 34.99 (21)  41.99 (22)
16 16.43 (22) 18.89(19) 24.92(24) 32.62(27) 41.19(28) 50.58 (29)
P, 64 17.07 (21)  19.65 (22) 26.34 (25) 34.48 (28) 43.32(30) 53.06 (32)
956 | 17.18(19) 19.79(19) 26.15(23) 33.36 (26)  42.76 (30)  52.65 (30)
TaBLE J.9 : Condition number and number of iterations (between parenthesis) for p = 4
N\n | 5 10 20 40 80
16 18.60 (19) 22.43 (20) 28.17 (22) 34.49 (23) 41.57 (24)
Py 64 18.97 (21) 22.64 (22) 28.45 (25) 34.19 (26) 41.03 (29)
256 18.52 (19) 22.13 (20) 27.01 (20) 33.17 (21) 41.01 (24)
16 18.64 (21) 22.49 (22) 28.20 (23) 34.53 (24) 41.58 (24)
P, 64 18.94 (22)  22.68(23)  28.34(25)  34.42(27)  41.24(29)
956 | 17.97(18)  21.54(19)  27.00(20)  33.20(22)  39.97 (22)
16 19.24 (21) 23.62 (23) 31.16 (25) 39.39 (28) 48.68 (28)
P, 64 10.89 (22)  24.95(24)  32.86(26)  41.56(29)  51.05(31)
256 20.24 (21) 24.81 (22) 32.00 (25) 40.31 (28) 51.05 (31)
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TaBLE J.10 : Condition number and number of iterations (between parenthesis) for p = 5

N\n ‘

80

16
Py 64
256

25.64 (20)
25.93 (22)
25.14 (20)

45.86 (24)
45.55 (29)
44.91 (24)

16
P, 64
256

25.69 (23)
25.95 (24)
24.58 (20)

45.90 (26)
45.17 (29)
44.16 (23)

16
P, 64
256

28.35 (24)
29.90 (25)
29.12 (24)

54.91 (28)
57.55 (32)
57.73 (31)
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Abdoulaye Samaké

Large Scale Nonconforming Domain
Decomposition Methods

Abstract

This thesis investigates domain decomposition methods, commonly classified as either overlapping
Schwarz methods or iterative substructuring methods relying on nonoverlapping subdomains. We
mainly focus on the mortar finite element method, a nonconforming approach of substructuring
method involving weak continuity constraints on the approximation space. We introduce a finite
element framework for the design and the analysis of the substructuring preconditioners for an
efficient solution of the linear system arising from such a discretization method. Particular consid-
eration is given to the construction of the coarse grid preconditioner, specifically the main variant
proposed in this work, using a Discontinuous Galerkin interior penalty method as coarse prob-
lem. Other domain decomposition methods, such as Schwarz methods and the so-called three-field
method are surveyed with the purpose of establishing a generic teaching and research program-
ming environment for a wide range of these methods. We develop an advanced computational
framework dedicated to the parallel implementation of numerical methods and preconditioners
introduced in this thesis. The efficiency and the scalability of the preconditioners, and the perfor-
mance of parallel algorithms are illustrated by numerical experiments performed on large scale
parallel architectures.

Keywords : domain decomposition, mortar finite element method, substructuring preconditioner, high-
performance computing,.

Résume

Cette these étudie les méthodes de décomposition de domaine généralement classées soit comme
des méthodes de Schwarz avec recouvrement ou des méthodes par sous-structuration s’appuyant
sur des sous-domaines sans recouvrement. Nous nous focalisons principalement sur la méthode
des éléments finis joints, aussi appelée la méthode mortar, une approche non conforme des mé-
thodes par sous-structuration impliquant des contraintes de continuité faible sur I'espace d’ap-
proximation. Nous introduisons un framework élément fini pour la conception et ’analyse des
préconditionneurs par sous-structuration pour une résolution efficace du systéme linéaire prove-
nant d’une telle méthode de discrétisation. Une attention particuliere est accordée a la construction
du préconditionneur grille grossiére, notamment la principale variante proposée dans ce travail
utilisant la méthode de Galerkin Discontinue avec pénalisation intérieure comme probléme gros-
sier. D’autres méthodes de décomposition de domaine, telles que les méthodes de Schwarz et la
méthode dite three-field sont étudiées dans I'objectif d’établir un environnement de programma-
tion générique d’enseignement et de recherche pour une large gamme de ces méthodes. Nous
développons un framework de calcul avancé et dédié a la mise en oeuvre paralleéle des méthodes
numériques et des préconditionneurs introduits dans cette thése. L'efficacité et la scalabilité des
préconditionneurs, ainsi que la performance des algorithmes paralléles sont illustrées par des ex-
périences numériques effectuées sur des architectures paralleles a trés grande échelle.

Mots-clefs : décomposition de domaine, méthode des éléments finis joints, préconditionneur par sous-
structuration, calcul haute performance.
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