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Abstract

The most complex nuclei are situated between the magic and the mid-shell ones, in regions
known for sudden changes of the trends of nuclear observables. These are the so-called
shape-transition regions, where the nuclear paradigm changes from the vibrational liquid
drop to the static rotor. With few exceptions, nuclei in these regions are radioactive, with
half-lives dropping into the millisecond range.

Complementing the information obtained from the low-lying excitation spectrum, nu-
clear binding energies and mean-square charge radii are among the observables most
sensitive to these changes of nuclear structure. In the present work, a study of the shape-
transition phenomenon is performed by measurements of radioactive nuclides produced
by the ISOLDE facility at CERN. The masses of the neutron-rich rubidium isotopes
98−100Rb and of the neutron-deficient gold isotopes 180,185,188,190,191Au are determined us-
ing the Penning-trap mass spectrometer ISOLTRAP. The mass of 100Rb is determined
for the first time. Significant deviations from the literature values are found for the iso-
topes 188,190Au. A new experimental method is presented, using a recently developed
multi-reflection time-of-flight mass spectrometer as a beam-analysis tool for resonance-
ionization laser spectroscopy. The new method opens the path to measurements of atomic
hyperfine spectra with ISOLTRAP, from which charge radii and electromagnetic moments
of radioactive nuclides can be extracted.

The properties of the studied nuclides map the borders of two prominent regions of
quadrupole deformation, which constrain the fine balance between pairing and quadrupole
correlations in the nuclear ground states. This balance is studied by the Hartree-Fock-
Bogoliubov (HFB) approach. The sensitivity of the shape-transition phenomenon to
the strength of pairing correlations is demonstrated. In particular, the strong odd-even
staggering of charge radii in the mercury isotopic chain is shown to result in the HFB
approach from the fine interplay between pairing, quadrupole correlations and quasi-
particle blocking.
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Preamble

The development of mass spectrographs in the first half of the twentieth century lead
to a series of crucial breakthroughs in the understanding of matter at the subatomic
level. The discovery of isotopes and of the so-called “whole-number rule” [Ast19; Ast20b]
hinted at the existence of the discrete constituents of the atomic nucleus, the proton
(recognized as hydrogen nucleus) [Rut19] and neutron [Cha32]. The observation that the
mass of helium is less than the sum of four hydrogen masses [Ast20a] offered the key
to the energy source of the Sun and all stars, nuclear fusion, and revealed, already in
the early twenties, the immense reservoir of “subatomic energy” [Edd20]. Finally the
news that the mass of an atom is less than the total mass of its constituents (the so-
called “mass defect”, initially discovered as a deviation from the whole-number rule and
named “packing fraction” [Ast27]), offered the first test of the relativistic energy-mass
relationship (E = mc2) [Coc32].

Each of these discoveries was preceded by an improvement in the resolving power
and precision of the mass-measurement techniques that made it possible. Beyond their
immediate consequences for theory, they showed the decisive role of technical develop-
ments for advancing scientific knowledge and laid out the most important directions of
research in mass spectrometry, still valid today. It is with modern installations imple-
mented at radioactive-ion-beam facilities that mass spectrometry continues the tradition
of determining nuclear mass defects, started by F. W. Aston almost a century ago, but
applied now to exotic nuclides [Lun03]. Pivotal for the formulation of the first shell model
[May48; May49] nuclear binding energies still represent one of the most solid empirical
bases upon which models of nuclear structure can be formulated and constrained [Gor13]
and provide crucial information for the description of astrophysical processes responsible
for the synthesis of the elements (the rapid neutron-capture process being perhaps the
one of greatest interest [Gor01; Arn07]).

By using advances which allow unprecedented precision, mass spectrometers are also
used for a wide range of fundamental-physics studies [Bla10]. To give only a few examples,
candidates for the neutrinoless double-beta decay process are sought by the high-precision
determination of their corresponding Q values, which influence the exceptionally-long
decay half-lives [Fin12]; high-precision Q values of super-allowed beta emitters are among
the quantities required to determine the Vud element of the Cabibbo-Kobayashi-Maskawa
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4 Preamble

quark-mixing matrix and to test its unitarity, which is one of the main pillars of the
Standard Model [Har09]. The relativistic energy-mass relationship itself is being put
under closer scrutiny, as shown in a recent report [Rai05], where high-precision mass
spectrometry has an important contribution.

The object of this thesis is mass spectrometry of exotic nuclides for the determination
of nuclear binding energies. The exotic nuclides are produced by the ISOLDE radioactive
ion-beam facility [Kug00] at CERN. ISOLDE is the pioneering Isotope Separation On-Line
(ISOL) laboratory, using relativistic protons from CERN’s accelerator complex to produce
nuclear reactions on thick targets. This method yields exotic nuclides at low energy over
the whole range of the nuclear chart, from the lightest elements up to uranium. The masses
of these nuclides are determined using the Penning-trap mass spectrometer ISOLTRAP
[Muk08], which, as ISOLDE, was the first of its kind in the field of nuclear-structure
studies. Installed at ISOLDE in the mid eighties as a tandem of two Penning traps [Sch86],
the ISOLTRAP mass spectrometer has since gone through a series of improvements and
breakthroughs [Klu13], which have become the standard for similar experiments emerging
worldwide. Nowadays a mature experiment moving into its fourth decade of activity,
ISOLTRAP continues to perfect itself and push the boundaries of what is achieved and
what is achievable in the field of on-line mass spectrometry [Wol13b; Kre13].

The scientific context of this thesis work is that of a generally-recognized need for
change of scale in the approach to nuclear-physics research, both experimentally and
theoretically. Facilities everywhere have undertaken ambitious projects to build the ra-
dioactive ion-beam factories of tomorrow [Blu13]. FAIR at GSI, SPIRAL2 at GANIL,
SPES at LNL, HIE-ISOLDE at CERN, ARIEL at TRIUMF and FRIB at MSU are some
highlights showing the magnitude of the international effort and the willingness to trade
a lot of the possible research activity for one of design and manufacture. The long-term
gain might overcompensate the temporary set-back.

In line with these efforts, mass spectrometers are multiplying, to benefit from dif-
ferent ion-production techniques so as to increase the rate at which the masses of new
radioactive isotopes can be determined. They are also increasing their sensitivity, effi-
ciency and background-suppression capability, to allow studying beams of less yield and
higher contamination [Klu13]. The increasing problem of beam purity has propelled the
field of mass spectrometry from what had become a niche of nuclear-physics research
(determination of nuclear binding energies) to a main focus for future beam-delivery sys-
tems: the exceptional beam-preparation and purification capability, with record-breaking
resolving power, recommends mass spectrometers as essential, in one form or another,
for many of the existing experimental installations doing nuclear-physics research [Nie02;
Vou08; Blu13; Asc14]. Consequently, techniques mastered at ISOLTRAP and other sim-
ilar experiments around the world are now used in combination with completely different
setups, to extend their reach towards the proton and neutron drip lines. This synergy
between mass spectrometers and other types of experiments is one of the important ideas
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of nuclear-physics research today (see [Kow12; Mar13] for ISOLTRAP-related examples).

Nuclear theory is also in a continuous search for new approaches. After a few decades of
phenomenological modeling of nuclear structure, either through microscopic-macroscopic
formulas [Mye66; Str67; Mol95], or large-scale shell model [Cau05] and self-consistent
mean-field [Ben03] calculations with effective interactions fitted on nuclear data, the last
years have marked the beginning of a change of philosophy. While the main features
of the nuclear many-body-problem have already become textbook concepts [Rin00], an
accurate description of these phenomena with predictive power is still lacking and arguably
constitutes, more than physics beyond the Standard Model, our generation’s greatest
theoretical challenge. Firmly rooting this description in the degrees of freedom of the
Standard Model seems to be a challenge for the next generation.

Ab initio approaches, whose difficulties are sometimes quoted as proof of the ultimate
impossibility of computing nuclei with realistic interactions, are showing signs of reinvig-
oration [Som14] after the initial boost of results produced in the nineties [Pie01]. The
modeling of the nuclear interaction itself has discovered a new foundation through chiral
effective field theory, a systematic framework for its perturbative expansion and, on the
long-term, the most promising link to quantum chromodynamics [Epe09]. Exploiting also
renormalization-group methods, this approach cures the long-standing problem of having
to deal with numerically inadequate realistic interactions [Bog10]. Constrained entirely
on nucleon-nucleon scattering data and the properties of three-nucleon systems (helium-3,
tritium), it offers a whole new class of effective interactions for shell-model calculations,
which are both predictive and physically consistent. In particular, this framework ac-
counts in a systematic way for the contribution of three-nucleon forces, the role of which,
largely disregarded in the past, is again being closely scrutinized [Ots10; Hol12; Gal12;
Wie13].

Self-consistent mean-field theory with Skyrme interactions [Ben03], extensively used
up to now for calculations, has produced the first mass tables comparably accurate to
fits by macroscopic-microscopic formulas [Gor09], but quickly reached what seems to
be its accuracy limit at a few hundred keV. Treatment of nuclear collective motion be-
yond the mean field has definitely proven to be a very promising direction of research
[Ben06; Del10], but up to now there seems to be no obvious way to make this approach
spectroscopically accurate and extend it to odd nuclei. A different point of view draws
inspiration from the advances of atomic and condensed-matter physics and exploits the
formalism of density-functional theory [Hoh64; Koh65]. This works on the idea of devel-
oping a nuclear energy density functional for many-body calculations, which is a complete
change of perspective, avoiding the necessity of accurately modeling the nuclear many-
body Hamiltonian and still offering the possibility to constrain the model’s parameters
directly through nuclear observables [Dob11]. This approach allows a smooth continua-
tion of previous work, given that the binding energy in Skyrme-Hartree-Fock-Bogoliubov
theory is an energy density functional.
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With these emerging orientations both in experimental and theoretical physics, the ac-
tivity of the ISOLTRAP collaboration during the last few years has focused on two primary
goals: to extend and refine the available experimental data in “key” regions of the nuclear
chart, i.e. regions in which the ground-state observables show sudden deviations from the
extrapolated trends, hinting at emerging nuclear-structure phenomena; to develop new
techniques and refine the existing ones, enhancing ISOLTRAP’s purification capability
and opening the door for new studies, in which mass spectrometry assists other types of
measurements. The content of the thesis reflects these two research goals. Some of the
atomic masses measured in the last three years are presented, analyzed and discussed: the
masses of neutron-rich rubidium (98−100Rb) and neutron-deficient gold (180,185,188,190,191Au)
isotopes. A new type of measurement resulting from the installation of a multi-reflection
time-of-flight mass spectrometer at ISOLTRAP in 2010 is also discussed. With excellent
mass-resolving power and fast operation, the applications of the new device go beyond its
use as a beam purifier, allowing ion-beam analysis [Kre13], precision mass spectrometry
[Wie13] and ion detection for resonance-ionization laser spectroscopy [Wol13b; Mar13],
successfully complementing the other available techniques and even showing its capability
to surpass their performance. The application of the MR-TOF MS to the study of the
hyperfine structure of exotic nuclides will be the main point of discussion.

The structure of the thesis reflects the close interplay between the advances of exper-
imental and theoretical knowledge from the beginning of mass spectrometry as a field,
briefly summarized above. It also underlines the importance of recognizing the manifes-
tations of nuclear structure through different observables as non-redundant. Although
signatures in different quantities are to some extent correlated [Cak10], no single type
of measurement can fully reflect a certain nuclear-structure phenomenon and only the
sum of complementary data can constitute the basis for its unambiguous interpretation.
This idea translates to the experimental approach itself by the fact that the treatment
of the exotic nuclides by the different apparatus must be exploited to mutually enhance
their performance: a mass spectrometer can be used to purify the nuclide of interest from
contaminants, for studying its hyperfine structure through resonance-ionization laser spec-
troscopy [Mar13]; lasers can exploit the known hyperfine structure of the nuclide of interest
to resonantly ionize its different nuclear states and provide isomerically pure beams for
mass spectrometry and other techniques [Roo04].

The thesis is organized in four chapters. The first chapter offers an introduction of
nuclear observables, with the main focus on the nuclear binding energy. Loosely following
the developments which historically lead to the formulation of the first microscopic models,
a general expression of the nuclear binding energy is given as a starting point for the
discussion. This formula illustrates the main features of its experimental trend with
proton and neutron number. The expression is not model-independent, because it refers
to concepts (eg. single-particle or correlation energies) which only make sense in the
framework of a certain model. It is however generic and meant to justify the intuition
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behind every microscopic model:

• the spherical mean-field and the resulting single-particle basis as a first-order ap-
proximation to nuclear structure, only accurate for the so-called magic nuclei;
• the energy resulting from the interaction between these first-order degrees of free-

dom, leading to correlations, increasingly important when moving away from magic
numbers;
• the qualitative difference between even and odd nuclei, making their binding energies

fall on two different trends, separated by an energy gap - the odd-even staggering
phenomenon.

This intuition is justified by introducing the so-called “mass filters”, obtained by applying
finite-difference formulas to the nuclear binding energy. The way in which the different
components of the binding energy are reflected in the mass filters is then discussed based
on illustrative examples, pointing out the typical and atypical features of their trends.
Finally, the extended picture of complementary nuclear observables is illustrated for the
zirconium isotopes, part of the neutron-rich A ≈ 100 region of the nuclear chart which is
studied in this work through the masses of 98−100Rb.

The second chapter describes the Penning-trap technique [Bro86] of ion manipulation
and cyclotron-frequency measurement, as it is implemented and used by the ISOLTRAP
experiment. The time-of-flight ion-cyclotron-resonance [Gra80], used to measure an ion’s
cyclotron frequency and determine its mass in connection with a reference measurement, is
described and its statistical and systematic errors are outlined. The ion-beam preparation
and purification techniques used by ISOLTRAP are presented. Complementary applica-
tions of the MR-TOF MS as a beam-analysis tool are justified by illustrative examples.
The experiments on neutron-rich rubidium and neutron-deficient gold isotopes are de-
scribed in detail. Apart from the analysis of the measured data, the chapter presents the
search for new isomers by the Penning-trap technique and by hyperfine-structure studies
using MR-TOF-enhanced resonance-ionization laser spectroscopy.

The third and fourth chapters constitute a detailed analysis of the new mass data
in the framework of Hartree-Fock-Bogoliubov (HFB) theory [Rin00]. The third chapter
begins with a review of some of the concepts of the nuclear many-body problem and gives
an outline of the HFB framework. The main focus is the HFB description of particle-
hole (e.g. quadrupole) and particle-particle (pairing) correlations. Their competition
is responsible for the evolution of nuclear structure in open-shell nuclei. In particular,
shape transitions in the ground states of such nuclei are proposed as a sensitive probe
of the balance between the two types of correlations. Because the rubidium and gold
isotopes cross two of the most prominent shape-transition regions of the nuclear chart,
the measured nuclear data is analyzed with respect to this balance. To this end, HFB
calculations are performed using the HFODD code [Dob97; Sch12]. The SLy4 [Cha98] and
a delta volume pairing force [Ben03] are used for the particle-hole and particle-particle
parts of the interaction, respectively. The last part of the third chapter introduces the
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code and a series of test runs, aimed at establishing the method of computation.
The fourth chapter presents the results obtained for neutron-rich rubidium-zirconium

and neutron-deficient gold-thallium nuclei. The ground-state binding energies and charge
radii are computed and compared to experiment, highlighting the results which correspond
to different local mean-field mininima, oblate or prolate deformed in the quadrupole de-
gree of freedom. The strength of the pairing interaction is varied and the change of the
general agreement with experiment is discussed, with respect to the energy balance be-
tween the different mean-field minima. Particular attention is given to the way the borders
of shape-transition regions change with the strength of the pairing interaction. Finally,
the odd-even staggering of mercury isotopes is computed and compared to experiment.
The pairing-interaction strength offering the best description of mid-shell nuclei is con-
fronted with the value ensuring the most accurate description of the odd-even-staggering
of mercury isotopes. An explanation is given in this framework for the strong odd-even
staggering of charge radii along the mercury isotopic chain.



Chapter 1

Nuclear observables

1.1 Binding energy

According to the energy-mass equivalence theorem of special relativity, the mass defect
δm of an atomic nucleus with Z protons, N neutrons and mass M(Z,N) corresponds
exactly to the binding energy determined by the interaction of its constituents:

δm(Z,N) = Zmπ +Nmν −M(Z,N) = −E(Z,N)/c2, (1.1)

where mπ is the proton mass, mν is the neutron mass, E(Z,N) is the nuclear binding
energy (taken with negative sign 1), and c is the speed of light.

This means that the inertia of a system of composed particles is sensitive to the
internal forces acting between them, a result which contradicts the theorems of classical
mechanics and requires replacing the instantaneous action at a distance with a local
picture, in which interaction propagates at finite velocity. A direct test of the E = mc2

relation, proving it accurate to 0.00004 % in an experiment of radiative neutron-capture
(in which the measurements are performed on participants to the same reaction), was
reported in [Rai05]. This degree of accuracy, if translated to Eq. (1.1), would represent
a difference of maximum 1 keV between the two terms of the equality, for the heaviest
of known nuclei. This is below the typical precision of experimental atomic masses of
radioactive nuclides and much lower than the mean deviation of model predictions from
experiment.

The quantity E(Z,N) is what nuclear theory calculates and will be used throughout
this work for the physics discussion, instead of the mass defect or the mass excess. The
latter is defined as:

mexc(Z,N) = M(Z,N)− (Z +N)u, (1.2)

where u is the unified atomic mass unit, defined as 1/12 of the mass of the carbon isotope

1The quantity E(Z,N) will always be used with this sign convention.

9
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12C. The mass excess (rather than the binding energy) is how experimental data are
presented in the atomic mass evaluation (AME) [Wan12], because it allows giving the
full relevant mass information, in units of keV/c2, by using a few-digit number. For
consistency with the AME, the experimental information will also be presented using this
convention.

The simple existence of nuclear binding reveals the fact that the constituents of the
nucleus interact by a strong, at least overall attractive force, which overcomes the re-
pulsive Coulomb interaction between the protons. It however does not allow drawing
any conclusion about the dynamics of these constituents, the resulting structure or the
relevant degrees of freedom for describing it.

In quantum-mechanical terms, the binding energy E(Z,N) is the lowest eigenvalue
of the nuclear Hamiltonian. Since the nucleus is a many-body system, it reflects the
interaction of all Z protons and N neutrons, meaning that, even in the few cases in
which it is computable from realistic interactions, the elementary information contained
in E(Z,N) is very difficult to extract. Consequently, the binding energy of a single nucleus
can almost never be interpreted on its own and the usual approach is to study the trends
of binding energies along the different isotopic or isotonic chains.

It is the interpretation of these trends which historically lead to the formulation of
the first nuclear-structure model, the liquid-drop model [Gam30], and of the first nuclear-
mass formula, the semi-empirical mass formula [Wei35; Bet36]. The formula had a large
impact on the subsequent development of nuclear theory, because it soon became the
reference with respect to which nuclear-structure effects beyond the simple liquid-drop
picture could be revealed.

One such phenomenon, later included in the semi-empirical mass formula, was the
odd-even staggering of E(Z,N), referring to the fact that every even-Z/N nucleus is more
bound than the average of its odd-Z/N neighbors, respectively. Another phenomenon was
the enhanced binding of nuclei with N ≈ Z, known as the Wigner effect [Wig37]. Other
deviations of binding energies from the liquid-drop model, showing enhanced nuclear sta-
bility for some “magic” values of Z and N , were later crucial for the formulation of the
first microscopic nuclear model [May49; Hax49]). This added to other existing evidence,
including the number, (Z,N) distribution and abundance of stable nuclides, the asymme-
try of fission, the energies of alpha decays to the lead isotopes and the neutron absorption
and emission probabilities of certain nuclei [May48]. These observations could be at least
qualitatively understood if one regarded the nucleus as a system of independent particles
orbiting in the average potential created by all the other particles together. Such a poten-
tial generates a set of single-particle levels, called subshells, which are occupied according
to the Pauli principle. Depending on the shape of the average potential, subshells cluster
in groups separated by large energy gaps (of a few MeV), called shells. In this picture,
nuclei with enhanced stability (magic nuclei) correspond to those numbers of protons and
neutrons which lead to the complete filling of a shell, in perfect analogy to atomic physics.
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A strong nuclear spin-orbit interaction was postulated to explain the “standard” magic
numbers, which are now believed to be 2, 8, 20, 28, 50, 82, 126.

Similar deviations from the liquid-drop model midway between the generally accepted
nuclear shells were later linked to the phenomenon of “configuration mixing” [Hog53].
Contrary to the closure of nuclear shells, in this case the nucleus gains binding energy
by forming configurations in which its quantum mechanical state is a superposition of
many independent-particle states. For these nuclei the independent-particle approxima-
tion breaks down and nuclear structure is the result of the collective motion of many
nucleons. Contrary to the independent-particle picture, collective motion means that the
dynamics of protons and neutrons is correlated, which leads to the name “correlation
energy” for the extra binding gained by configuration mixing. The interplay between
independent-particle and collective motion in nuclei is at the heart of all modern micro-
scopic approaches [Ben03; Cau05].

1.2 Trends of binding energies

The most recent atomic-mass evaluation, AME2012 [Wan12] has reported a number of
2438 experimentally known masses, which by use of Eq. (1.1) yield as many nuclear bind-
ing energies. The basic observations following the first mass measurements, which lead
to the early nuclear-structure concepts mentioned in the previous section, are nowadays
confirmed by the available data to a remarkable extent throughout the entire explored
(Z,N) range of the nuclear chart. Deviations from the expected trends of binding energies
are sought through challenging experiments on unstable nuclides, having a great neutron
excess or deficit with respect to the stable isotopes. When such deviations are found, they
are used to confront state-of-the art theoretical approaches, in search for new intuitions
on nuclear structure.

The method of interpreting the mass data is however different. The binding energy
is a large quantity (up to ≈ 2 GeV) and its typical variation with every added proton or
neutron is of a few MeV, making it very difficult to study the evolution of the underlying
nuclear structure directly with E(Z,N). To illustrate this, Fig. 1.1 shows in the upper
panel the known binding energies of the calcium isotopes, using data from AME2012
[Wan12] and the masses of 51−54Ca from a recent publication of the ISOLTRAP experiment
[Wie13]. The slight changes of slope at the crossing of the magic numbers N = 20 and
N = 28, as well as the odd-even staggering effect, are barely visible. In order to bring
out these effects, finite-difference operators, involving two or more nuclei, are applied to
the binding energies to compute more sensitive quantities. Because these operators are
usually meant to isolate from the whole energy the part corresponding to a specific effect,
the resulting quantities are called mass filters.
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1.2.1 Decomposition and extension of the binding energy func-
tion

Before exemplifying some of the typical mass filters, one can introduce a generic formula
which explicitly separates the different contributions to the nuclear binding energy E:

E(Z,N) = E0(Z,N) + E1(Z,N) +
(−1)Z+1 + 1

2
δπ(Z,N)

+
(−1)N+1 + 1

2
δν(Z,N). (1.3)

The decomposition between E0 and E1 is a priori completely arbitrary and it re-
mains the role of theory to link the two terms through explicit formulas or numeric
representations to Z and N . The idea of expressing the binding energy as a sum or
hierarchy of different contributions has remained an appealing approach since the first
liquid-drop formulas [Wei35; Bet36]. The two terms E0 and E1 can for example represent
the liquid-drop (macroscopic) and shell-correction (microscopic) energies of the so-called
microscopic-macroscopic approaches, which were formulated in the sixties and seventies
[Mye66; Str67] and culminated with the very successful finite-range droplet model [Mol95].
They can be any partition of the different terms appearing in a pure macroscopic ap-
proach, such as the liquid droplet model [Mye74], E0 being for instance the spherical part
of the binding energy and E1 the energy gain obtained by allowing a deformed droplet
shape (deformation energy). Pure microscopic approaches can also produce expressions
of the binding energy which allow the decomposition of Eq. (1.3). In Hartree-Fock theory
[Ben03] the energy is a functional of density with additive character, either between the
parts corresponding to different terms of the interaction, or between the result obtained
at a certain level of approximation and the subsequent corrections (see Section 3.3.1 for a
more detailed discussion on the energy-density functional and Eq. (4.1) for a relation to
observables). The extended Thomas-Fermi plus Strutinsky integral approximation to the
Hartree-Fock method allows the division between the macroscopic and shell-correction
parts of the binding energy starting from an initial interaction [Abo95].

The third term of Eq. (1.3) is invariably referring in these approaches (with the ap-
propriate extensions) to the odd-even staggering of binding energies.

For the following discussion, instead of opting for a specific mass formula corresponding
to one of the different models mentioned above, the terms in Eq. (1.3) are defined in a
quite general way to illustrate the experimentally observed behavior of nuclear binding
energies. Based on this decomposition, one can then study how the different contributions
to E are reflected in the mass filters.

Thus, the E0 term is considered the part of the binding energy resulting from the
best approximation of the (Z,N) nucleus as a system of independent particles orbit-
ing in a spherical potential. This gives the zero-order description of the system, as the
one proposed in the works of [May49; Hax49]. The binding energy of the system in an
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independent-particle problem is simply:

E0(Z,N) =
Z∑
i=1

επ,i(Z,N) +
N∑
j=1

εν,j(Z,N), (1.4)

where επ,i and εν,j are the proton and neutron single-particle energies, respectively (neg-
ative quantities). The single-particle energies can vary with Z and N .

The term E1 contains every effect which cannot be simply averaged by an independent-
particle potential and thus is related to the inherent correlations between the particles
of the system, induced by their interactions (correlation energy). This term includes
the Wigner effect, a part which peaks for N ≈ Z. It also includes correlations which
are related to the quantum-mechanical mixing of the single-particle states of the valence
particles. The resulting correlation energy depends on the number of valence particles
and thus peaks midway between magic numbers, decreasing in strength towards them.

Finally, δπ and δν describe the odd-even staggering effect of nuclear binding energies as
a function of proton and neutron number, and will be called odd-even proton and neutron
gaps, respectively (positive quantities).

The observable binding energy E(Z,N) and the four terms of Eq. (1.3) are discrete
quantities, only defined for integer Z and N . For certain points of the following discussion
it will be useful to regard these terms as continuous, infinitely derivable functions, which
are equal to the observable values for integer arguments. With this extension one is able
to link the action of finite-difference operators, by which mass filters are computed, to
the derivatives of the binding-energy components with respect to proton and neutron
number. This is a way to test the sensitivity of certain mass filters to the analytical
structure of the binding energy, acting as a constraint for models in which the extension
to continuous (Z,N) arguments is possible. It is also a way to estimate which of the
energy components still effectively contribute to a certain mass filter (a term which is
known to be very smooth will be effectively canceled by a mass filter which only retains
the high-order derivatives). This is not uncommon practice and for models which give
analytical mass formulas it comes naturally, because one is only required to take Z and N
as continuous arguments. One such study is the one of Madland and Nix [Mad88], aimed
at modeling the pairing gap, for which different-order mass filters are proposed. A study
making use of this approach to discuss the pairing gap in mean-field theory was published
by Bender et al. [Ben00].

With this extension, one can expand each of the four terms of Eq. (1.3) in powers
of the neutron number N , around their values at (Z0, N0) (or similarly in powers of the
proton number Z):

T (Z,N) =
∞∑
n=0

1

n!

(
∂nT

∂Nn

)
Z,N=N0

(N −N0)n. (1.5)
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One will not use a special notation for the continuous and observable E0,1 and δπ,ν ,
but the context will clarify which one of the two is concerned.

1.2.2 Mass filters

A brief mathematical introduction of the finite-difference operators discussed below and
of their action on the different terms of a function’s Taylor expansion is provided in
the Appendix A. The results derived there for a general function F (X) will be directly
translated to the components of E(Z,N).

As mentioned before, the mass filters are obtained by applying a finite-difference op-
erator to the binding energy E, leading to a formula which involves two or more nuclei.
In the following, we will use different notations for the mass filters and the corresponding
finite-difference operators, because the latter can act on any component of E, while the
concept of mass filter refers to the special case in which they act on the whole binding
energy. The following discussion will be divided between estimators of the single-particle
energies and estimators of the odd-even staggering effect, including at the end a brief
illustration of some of the residual contributions which affect their trends.

Estimators of the single-particle energies

The simplest mass filter, obtained by acting on E with the D1 finite-difference operator 2

(see also Appendix A), is the one-nucleon (proton or neutron) separation energy (Sp and
Sn, respectively):

Sp(Z,N) = D1,ZE(Z,N) = E(Z − 1, N)− E(Z,N), (1.6)

Sn(Z,N) = D1,NE(Z,N) = E(Z,N − 1)− E(Z,N). (1.7)

Using Eq. (1.3), the expression of Sn becomes:

Sn(Z,N) =
Z∑
i=1

[D1,Nεπ,i(Z,N)] +
N−1∑
j=1

[D1,Nεν,j(Z,N)]− εν,N(Z,N)

+D1,NE1(Z,N) +
(−1)Z+1 + 1

2
D1,Nδπ(Z,N)

+
1

2
D1,Nδν(Z,N) +

(−1)N

2
[δν(Z,N − 1) + δν(Z,N)]. (1.8)

2Throughout this work the finite-difference operators will be labeled by using the calligraphic font D,
while ∆ will only be used for the physical quantities obtained by applying the operators to the binding
energy
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Most terms in Eq. (1.8) refer to the variation between N − 1 and N of the different
binding-energy components. The first two terms express the slight change with N of the
sum of proton and neutron single-particle energies up to Z and N−1, respectively (single-
particle rearrangement energy), which is expected to be small compared to the third term,
the energy of the last neutron single-particle state. The terms proportional to D1,Nδπ and
D1,Nδν are only a small fraction of Sn. The D1,NE1 term is in many cases a small quantity,
but in regions of sudden structural changes it can acquire a large value. While the small
terms of Eq. (1.7) are very important for understanding the full systematics of Sn with
Z and N , neglecting them in a first approximation brings out the main contributions to
the average trend of the Sn mass filter:

Sn(Z,N) ≈ −εν,N(Z,N) +D1,NE1(Z,N) + (−1)N δ̄ν(Z,N), (1.9)

where δ̄ν is the average odd-even neutron gap between N and N − 1.
The one-neutron separation energies of the calcium isotopes are shown in the second

panel of Fig. 1.1. One recognizes two main features: first of all, the staggering of Sn,
resulting from the δ̄ν term, which dominates the plot; second of all, the pronounced drop
of Sn at the crossing of the magic neutron numbers N0 = 20 and 28, which is related to
the energy of the last occupied neutron single-particle level εν,N . Indeed, because of the
energy degeneracy of single-particle levels, εν,N will have only a small variation with the
addition of neutrons, as long as they are filling the same level. When the level is full,
however, a new one, higher in energy, starts to be filled and the value of εν,N suddenly
changes with the addition of a single neutron, producing the drop in Sn. The amount of
this drop for a magic neutron number N0 (also called the one-neutron gap, ∆1n) is:

∆1n(Z,N0) = Sn(Z,N0)− Sn(Z,N0 + 1)

= D1,NSn(Z,N0 + 1) = (D1,N)2E(Z,N0 + 1), (1.10)

which, using Eq. (1.8), can be written as:

∆1n(Z,N0) =
Z∑
i=1

[(D1,N)2επ,i(Z,N0 + 1)] +

N0−1∑
j=1

[(D1,N)2εν,j(Z,N0 + 1)]

−D1,Nεν,N0(Z,N0 + 1) + δεν,N0(Z)

+ (D1,N)2E1(Z,N0 + 1) +
(−1)Z+1 + 1

2
(D1,N)2δπ(Z,N0 + 1)

+
1

2
(D1,N)2δν(Z,N0 + 1) + 2δ̄ν(Z,N0). (1.11)

where we have taken into account that N0 is an even number. The quantity δεν,N0 is the
energy gap above the shell which fills at N = N0 in the single-particle picture (the “real”
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Δ

Δ

Figure 1.1: Experimental binding energies and different mass filters for the calcium isotopes,
based on the data from the AME2012 [Wan12] (full symbols) and recent ISOLTRAP masses
of 51−54Ca [Wie13] (open symbols). The ISOLTRAP masses of 51,52Ca replace the values of
AME2012, which have as main contribution the Penning-trap measurements performed at TRI-
UMF with the TITAN experiment [Gal12]. For details, see text.

.

shell gap). One observes that Δ1n(Z,N0) contains several terms, including a staggering
with respect to proton number by (D1,N)

2δπ. As in the case of Sn, neglecting the terms
which contain the action of the D1,N filter on slow-varying quantities, the average one-
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neutron gap is given in the first approximation by:

∆1n(Z,N0) ≈ δεν,N0(Z) + (D1,N)2E1(Z,N0 + 1) + 2δ̄ν(Z,N0). (1.12)

Typically a few MeV large, δεν,N0 gives the leading contribution to ∆1n, which makes
this mass filter adequate for studying nuclear magicity and its link to the underlying
single-particle picture. There is however a significant contribution from the neutron odd-
even staggering δν , as well as from the correlation energy E1. Especially in mid-shell
regions or in the case of N ≈ Z nuclei, sudden local variations of E1 can occur. This
term contributes, for example, to ∆1n(20, 20) through the Wigner effect, which makes in
Fig. 1.1 that the drop of Sn observed after N0 = 20 is very pronounced.

Using now the Taylor decomposition of E1 around N0 given by Eq. (1.5) and the result
of Eq. (A.8), one can write Eq. (1.12) as:

∆1n(Z,N0) ≈ δεν,N0(Z) +

(
∂2E1

∂N2

)
N0

+
1

12

(
∂4E1

∂N4

)
N0

+ ...+ 2δ̄ν(Z,N0), (1.13)

which shows that the one-neutron gap is affected by the even-order derivatives of E1 with
respect to N , of which the dominating one is the second derivative. The Taylor expansion
can be identically applied to the other terms of Eq. (1.11).

A similar discussion can also be made for the one-proton separation energy and one-
proton gap. The resulting formulas are easy to obtain by interchanging arguments directly
in Eqs. (1.8) to (1.13).

The disadvantage of applying the D1 finite-difference operator is that the result mixes
the odd-even staggering with the single-particle picture. The contribution of the odd-even
staggering can be reduced by taking differences of binding energies of nuclei differing by
two protons or neutrons (D2 finite-difference operator, see also Appendix A), which gives
the two-proton or two-neutron separation energies (S2p and S2n, respectively):

S2p(Z,N) = D2,ZE(Z,N) = D1,Z [E(Z − 1, N) + E(Z,N)]

= E(Z − 2, N)− E(Z,N), (1.14)

S2n(Z,N) = D2,NE(Z,N) = D1,N [E(Z,N − 1) + E(Z,N)]

= E(Z,N − 2)− E(Z,N). (1.15)

Calculating the two-nucleon separation energy is thus equivalent to applying D1,N to
the sum of the binding energies of two adjacent nuclei, or to calculating the sum of their
single-nucleon separation energies.

Using again the decomposition of the binding energy given in Eq. (1.3), one arrives at
the expression:



18 Chapter 1. Nuclear observables

S2n(Z,N) =
Z∑
i=1

[D2,Nεπ,i(Z,N)] +
N−2∑
j=1

[D2,Nεν,j(Z,N)]

+D2,NE1(Z,N)− εν,N(Z,N)− εν,N−1(Z,N)

+
(−1)Z+1 + 1

2
D2,Nδπ(Z,N) +

(−1)N+1 + 1

2
D2,Nδν(Z,N). (1.16)

One notices that S2n has a similar expression to Sn, but this time the single-particle
energies of the last two neutrons εν,N , εν,N−1 appear explicitly. The odd-even staggering
with neutron number δν is acted on by the D2,N operator, meaning that only its variation
contributes to the two-neutron separation energy. Neglecting in the first approximation
the terms of Eq. (1.16) which contain the action of D2 on slow-varying quantities, the
first-order contributions to the average S2n trend are:

S2n(Z,N) ≈ −εν,N(Z,N)− εν,N−1(Z,N) +D2,NE1(Z,N), (1.17)

where again we have taken into account the possibility of sudden changes of the correlation
energy E1 from one neutron number to the next.

The two-neutron separation energies of the calcium isotopes are shown in the third
panel of Fig. 1.1. The contribution of the odd-even staggering is greatly suppressed.
What characterizes now the trend of S2n is the two-step drop after the crossing of the
neutron magic numbers N = 20 and 28. As discussed in the case of Sn, while neutrons are
added to the same single-particle level, εν,N and εν,N−1 have only a weak variation with
N and thus there is no significant change in the trend of two-neutron separation energies.
When a neutron shell is full and the first neutron is placed on a higher single-particle level
(e.g. at N = 21), the term εν,N suffers a sudden increase, while εν,N−1 remains almost
unchanged. This leads to the first step of the decrease of S2n. When one more neutron
is added on the higher-energy single-particle level (e.g. at N = 22), the term εν,N−1 also
increases suddenly, leading to the second step of the decrease of S2n.

The amount by which S2n drops between a magic number N0 and N0 + 2 is called the
two-neutron gap ∆2n and is defined as:

∆2n(Z,N0) = S2n(Z,N0)− S2n(Z,N0 + 2)

= D2,NS2n(Z,N0 + 2), (1.18)

which, using Eq. (1.16), is written as:

∆2n(Z,N0) =
Z∑
i=1

[(D2,N)2επ,i(Z,N0 + 2)] +

N0−2∑
j=1

[(D2,N)2εν,j(Z,N0 + 2)]

+ 2δεν,N0(Z)−D2,Nεν,N0−1(Z,N0 + 2)−D2,Nεν,N0(Z,N0 + 2)

+
(−1)Z+1 + 1

2
(D2,N)2δπ(Z,N0 + 2) + (D2,N)2E1(Z,N0 + 2). (1.19)
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The expression of the two-neutron gap does not contain anymore δν , but it still exhibits
a staggering with respect to proton number by the quantity (D2,N)2δπ. Except for the
correlation energy E1, all terms of Eq. (1.19) are expected to have a slow variation with
neutron number, meaning that the average trend of the two-neutron gap is in the first
approximation given by:

∆2n(Z,N0) ≈ 2δεν,N0(Z) + (D2,N)2E1(Z,N0 + 2). (1.20)

As in the case of ∆1n, the correlation energy E1 can have a significant contribution to
∆2n especially in mid-shell and Z ≈ N regions. In the case of N = 20, ∆2n and the related
drop of S2n contain a contribution from the Wigner effect through the term (D2,N)2E1.
If one uses again the Taylor expansion of E1 around N0 and the result of Eq. (A.12),
Eq. (1.18) can be written as:

∆2n(Z,N0) ≈ 2δεν,N0(Z) + 4

(
∂2E1

∂N2

)
N0

+
4

3

(
∂4E1

∂N4

)
N0

+ ..., (1.21)

which shows that, as ∆1n, the two-neutron gap is also affected by the correlation energy E1

through its even-order derivatives, of which the second derivative has the largest weight.
Expressions for the two-proton separation energy and two-proton gap can be directly

obtained by interchanging the arguments in Eqs. (1.16) to (1.21).
Equations (1.9), (1.12), (1.17) and (1.20) show that the mass filters discussed so far are

adequate for studying shell effects, due to their sensitivity to the gaps in the associated
single-particle spectrum. One example is the N0 = 32 effect in the two-neutron separation
energies of the calcium isotopes shown in the third panel of Fig. 1.1. The ISOLTRAP
measurements of the masses of 51−54Ca revealed a significant two-neutron gap at N0 = 32,
which was interpreted as the result of the closure of the N0 = 32 subshell, providing a
new important benchmark for theory [Wie13]. Still, they are not perfect estimators of the
single-particle energies and corresponding gaps, due to their sensitivity to the correlation
energy and to the odd-even staggering effect.

The two-nucleon separation energy can also be used to study the development of
nuclear collectivity because Eq. (1.17) is sensitive to the correlation energy E1. Between
magic numbers the variation of E0 is smooth, thus sudden changes in E1 become visible as
departures from the smooth S2n or S2p trend. A well-known example is that of the neutron
rich A ≈ 100 nuclei, for which the two-neutron separation energies [Wan12; Man13] are
plotted in Fig. 1.2.

Along the krypton isotopic chain (Z = 36), S2n varies smoothly, showing no significant
departure from the trend of the first isotopes with N > 52. This does not mean that the
term E1 does not vary much between N = 52 and N = 61, but only that the amount
by which it varies from one neutron number to the next stays approximately the same.
For the rubidium (Z = 37) isotopic chain, however, S2n shows a significant increase at
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N = 61, a similar phenomenon taking place in the isotopic chains between strontium
(Z = 38) and molybdenum (Z = 42), visible already at N = 60. This means that the
correlation energy E1 suddenly increases in absolute value between N = 59 and N = 61.
The term D2,NE1 of Eq. (1.17) is significantly higher at N = 60, 61 than at N = 59, 60,
respectively, which leads to an increase in S2n. We note that usually one observes only a
flattening of the S2n trend due to the correlation energy, very large changes of E1 from
one neutron to the next being required to obtain a locally positive S2n slope.
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Figure 1.2: Experimental two-neutron separation energies of neutron-rich A ≈ 100 nuclei from
the AME2012 [Wan12] (full symbols) and recent ISOLTRAP masses of 98−100Rb [Man13] (open
symbols). The ISOLTRAP masses of 98,99Rb replace the values from the AME2012, which have
as main contribution the 98Rb value from [Sim12] and 99Rb value from [Aud86].

Estimators of the odd-even staggering

The odd-even staggering of binding energies already appears in the expression of the one-
nucleon gap, as shown in Eq. (1.12), however, if N is not necessarily an even number, the
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expression of ∆1n is:

∆1n(Z,N) ≈ D1,N [−εν,N+1(Z,N + 1)]

+ (D1,N)2E1(Z,N + 1) + 2(−1)N δ̄ν(Z,N), (1.22)

which shows that ∆1n staggers by the quantity δ̄ν(Z,N). The lowest-order mass filter
which allows estimating the strength of the odd-even staggering follows from Eq. (1.22)
and is defined as:

∆3n(Z,N) =
(−1)N

2
D2

1,NE(Z,N + 1) =
(−1)N

2
∆1n(Z,N)

=
(−1)N

2
[E(Z,N − 1)− 2E(Z,N) + E(Z,N + 1)] , (1.23)

which, together with Eq. (1.22), is in the first approximation:

∆3n(Z,N) ≈ (−1)N

2
D1,N [−εν,N+1(Z,N + 1)] +

(−1)N

2
(D1,N)2E1(Z,N + 1)

+ δ̄ν(Z,N). (1.24)

One notes that the operator D1,N in the first term of the previous equation does not
only act on the (Z,N) argument, but also on the index of the single-particle energy,
marked by the square brackets. The name ∆3n is not consistent with the way the one-
nucleon and two-nucleon gaps were defined. For quantities which estimate the odd-even
staggering, the index gives the number of different nuclei involved in the formula (three,
in the case of ∆3n).

In Eq. (1.24) one observes that ∆3n is approximately equal to the odd-even staggering
δ̄ν(Z,N), but staggers symmetrical around the values of this quantity. Using the Taylor
expansion of E1(Z,N) given by Eq. (1.5) and the result of Eq. (A.8), Eq. (1.24) becomes:

∆3n(Z,N) ≈ (−1)N

2
D1,N [−εν,N+1(Z,N + 1)]

+
(−1)N

2

[(
∂2E1

∂N2

)
N

+
1

12

(
∂4E1

∂N4

)
N

+ ...

]
+ δ̄ν(Z,N), (1.25)

which shows that the even-order derivatives of E1(Z,N) contribute to ∆3n, the second
derivative having the largest weight. The ∆3n values of the calcium isotopes are shown
in the fourth panel of Fig. 1.1. One notices clearly the staggering of ∆3n, due the fact
that the first two terms of Eq. (1.24), originating from the single-particle and correlation
energy, are not completely suppressed by the action of the D1,N and (D1,N)2 operators,
respectively. At the crossing of the magic neutron numbers N = 20, 28 (and even N = 32),
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the first term of Eq. (1.24) becomes equal to the shell gap δεν,N0(Z) and locally increases
the staggering of ∆3n.

A better estimation of the odd-even staggering requires a higher-order mass filter., i.e.
applying the D1,N operator a greater number of times to the binding energy. The second-
order mass filter is ∆3n (see also Appendix A). Applying D1,N three times to E(Z,N)
leads to an asymmetric formula in N , involving four nuclei. A symmetric formula is the
one corresponding to the fourth power of D1,N :

∆5n(Z,N) =
(−1)N+1

8
D4

1,NE(Z,N + 2)

=
(−1)N+1

8
[E(Z,N − 2)− 4E(Z,N − 1) + 6E(Z,N)

− 4E(Z,N + 1) + E(Z,N + 2)], (1.26)

which, using Eq. (1.3) and neglecting the terms which contain the action of differential
operators on slow-varying quantities, becomes:

∆5n(Z,N) ≈ (−1)N+1

8
(D1,N)3 [−εν,N+2(Z,N + 2)]

+
(−1)N+1

8
(D1,N)4E1(Z,N + 2) + δ̄ν(Z,N). (1.27)

Using also the Taylor expansion of E1(Z,N) from Eq. (1.5) and the result of Eq. (A.10),
∆5n can be written as:

∆5n(Z,N) ≈ (−1)N+1

8
(D1,N)3 [−εν,N+2(Z,N + 2)]

+
(−1)N+1

8

[(
∂4E1

∂N4

)
N

+
1

6

(
∂6E1

∂N6

)
N

+ ...

]
+ δ̄ν(Z,N). (1.28)

One notes again that in the first term of Eqs. (1.27) and (1.28), the (D1,N)3 operator
acts not only on the (Z,N) argument, but also on the index of the single-particle energy.
The values of the ∆5n mass filter are shown in Fig. 1.1 for the calcium isotopic chain. The
finite-difference formulas (D1,N)3 and (D1,N)4 suppress much of the first and second terms
of Eq. (1.27), leaving, as Eq. (1.27) shows, only the high-order derivatives. Only sudden
changes of the two terms, as the ones which occur at the crossing of a magic neutron
number or with the sudden change of correlation energy, respectively, can produce visible
effects in ∆5n. The first case is observed in Fig. 1.1, where the values of ∆5n close to
N0 = 20 and N0 = 28 (N0 ± 2) no longer reflect solely the evolution of δν(Z,N). One
notes again that, in the case of N0 = 20, the second term of Eq. (1.27) also contributes
due to the Wigner effect, making that the N0 = 20 peak in ∆5n is more pronounced than
the N0 = 28 one.
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The suppression of the binding-energy derivatives up to the fourth order gives ∆5n its
smooth trend and recommends it for studying the average evolution of the odd-even
staggering of binding energies δν(Z,N). One notes however that the term δ̄ν(Z,N)
in Eq. (1.27) represents an average over more nuclides (five) than the similar term of
Eq. (1.24) (only three), meaning that ∆3n is more sensitive to local effects than ∆5n.

Residual effects

In the preceding discussion on mass filters we have presented a series of estimators appro-
priate to study the nuclear single-particle picture and the odd-even gap and illustrated
their sensitivity to other effects than the ones which they are designed to select, produc-
ing in some situations obvious signatures. In the following, we will illustrate how the
reduction of the experimental uncertainties of atomic masses allows revealing these ex-
tra contributions even for mass filters which suppress them to a great extent. It is thus
possible to observe the residual contribution of the odd-even staggering to S2n, S2p and
even ∆2n, as well as the sensitivity of the one-neutron and two-neutron gaps to the slight
augmentation of the correlation energy E1 only two nucleons away from magic numbers.

In Eq. (1.16), the staggering of S2n with proton and neutron numbers is expressed by
the last two terms, proportional to δ2,Nδπ and δ2,Nδν , respectively. This means that if the
odd-even gap varies strongly with proton or neutron number, the staggering of S2n with
respect to Z or N can become pronounced. To illustrate the possibility of S2n staggering
with respect to N , in Fig. 1.3 are represented the S2n and ∆3n values of bismuth (Z = 83)
and polonium (Z = 84) isotopes with N > 126. In the case of polonium, the odd-even
neutron gap, represented by ∆3n, only increases slightly with neutron number and S2n

has almost no visible staggering. In the case of bismuth, however, the slope of ∆3n is
significantly higher and the staggering of S2n is clearly visible.

A similar discussion can be made for the two-proton separation energies, which, taking
into account the decomposition of the binding energy of Eq. (1.3), can be written as:

S2p(Z,N) =
Z−2∑
i=1

[D2,Zεπ,i(Z,N)] +
N∑
j=1

[D2,Zεν,j(Z,N)]

+D2,ZE1(Z,N)− επ,Z(Z,N)− επ,Z−1(Z,N)

+
(−1)Z+1 + 1

2
D2,Zδπ(Z,N) +

(−1)N+1 + 1

2
D2,Zδν(Z,N). (1.29)

Equation (1.29) contains, similarly to Eq. (1.16), the two terms which express the
residual staggering of S2p with respect to proton and neutron number. The last term
of Eq. (1.29), proportional to D2,Zδν , shows that the staggering of S2p with respect to
N is enhanced if the odd-even neutron gap δν varies significantly between Z and Z − 2.
To illustrate this situation, Fig. 1.4 shows the S2p values of thallium (Z = 81) isotopes,
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Δ

Figure 1.3: Experimental two-neutron separation energies S2n and three-point estimator of the
odd-even neutron gap Δ3n for the bismuth (Z = 83) and polonium (Z = 84) isotopes, using
data from the AME2012 [Wan12]. One notices that the high slope of the odd-even neutron gap
with neutron number leads to a staggering of S2n.

as well as the Δ3n values of thallium and gold (Z = 79) isotopes, approximating the
odd-even neutron gap. One observes that, in the region in which Δ3n is almost the same
for thallium and gold, the trend of S2p with neutron number is relatively smooth. For
99 < N < 109, however, the odd-even neutron gap differs significantly between the two
chains and in the same region a strong staggering of S2p occurs.

As observed in Eqs. (1.11) and (1.19), residual staggering with respect to proton num-
ber is present also in the one-neutron and two-neutron gaps, although their average trends
are not affected by it. The two mass filters are plotted in Fig. 1.5 for the N = 50 isotones,
the two-neutron gap being represented as Δ2n/2, because, as shown in Eq. (1.19), it con-
tains twice the gap in the single-particle picture δεν,N0 . The staggering effect is clearly
visible in Fig. 1.5, being more pronounced for Δ1n. The one-neutron gap is also higher,
mainly because of the term 2δ̄ν appearing in Eqs. (1.11) and (1.12). Both Δ1n and Δ2n/2
are modified with respect to the gap in the single-particle picture by the even-order deriva-
tives of the correlation energy E1, although the fact is not obvious in Fig. 1.5. Perhaps
the most clear indication comes from the enhancement towards Z = 28 of the Δ1n and
Δ2n/2 values, looking at the even-Z isotones. The open-symbol data point is the Δ2n/2
value obtained using the new mass of 82Zn determined with ISOLTRAP. Considering the
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Δ

Figure 1.4: Experimental two-proton separation energies S2p of the thallium (Z = 81) isotopes
and three-point estimator of the odd-even neutron gap Δ3n for the thallium and gold (Z = 79)
isotopes, using data from the AME2012 [Wan12]. One notices that in the region in which Δ3n

varies significantly between the thallium and gold isotopic chains, S2p has a large staggering
with neutron number.

odd-even staggering of Δ2n, it is the first data point showing an enhancement of the two-
neutron gap towards Z = 28. The proton numbers Z = 28, 40 and 50 correspond to closed
proton configurations and the correlation energy E1 of the N0 ± 1 and N0 ± 2 isotones
is maximum midway between them. Through the terms (D1,N)

2E1 and (D2,N)
2E1 this

creates a decrease of the one-neutron and two-neutron gaps, respectively, with respect to
δεν,N0 . Towards the magic proton numbers, the reduction of the correlation energy (in
absolute value) in the neighboring isotonic chains determines an increase of the two mass
filters, which should not be interpreted as an enhancement of the δεν,N0 gap itself.

1.3 Complementary nuclear data

The interpretation of the trends of binding energies through the different mass filters
alone can be ambiguous, because different nuclear-structure effects can determine similar
features of these trends. For example, a drop in S2n can be due to the crossing of a magic
neutron number, or to a sudden decrease of the absolute value of the correlation energy



26 Chapter 1. Nuclear observables

Δ

Δ

Figure 1.5: ExperimentalN = 50 one-neutron and two-neutron gaps (Δ1n and Δ2n, respectively)
as a function of Z, using data from the AME2012 [Wan12] (full symbols)). The new two-neutron
gap value at Z = 30, resulting from the mass measurement of 82Zn with ISOLTRAP [Wol13a], is
marked by an open symbol. The odd-Z and even-Z values of the two mass filters are connected
by continuous lines for guiding the eye.

E1 because of a change of nuclear configuration. A gradual change of Δ2n can be due
to a change of the corresponding gap in the single-particle picture, or of the correlation
energy. It is also difficult to trace from simple binding-energy considerations what is
the microscopic cause of its features or what type of correlation is involved. Nowadays,
the complementary properties of the atomic nucleus, such as its average size, angular
momentum, electric and magnetic moments, excitation spectrum, as well as its excitation,
decay and reaction probabilities, make up a rich picture in which the correlation between
the trends of different observables is the key to understanding nuclear phenomena.

A remarkable example is that of the zirconium (Z = 40) isotopic chain which has
been studied extensively through different experimental techniques. In particular, the
neutron-rich isotopes of zirconium belong to the interesting neutron-rich A ≈ 100 region
of the nuclear chart, which we have already illustrated in Fig. 1.2. A part of the available
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nuclear data for this chain are shown in Fig. 1.6. In the first panel are represented the two-
neutron separation energies [Wan12], which at the crossing of the magic neutron number
N = 50 undergo the characteristic two-step drop discussed in the previous section. The
magicity of 90Zr is reflected also in the other data of Fig. 1.6. The charge radii of zirconium
isotopes, plotted in the second panel as mean-squared differences to 90Zr [Cam97; Cam02;
Tha03], show a local minimum at N = 50. The energy of the first 2+ excited state of
the even-even isotopes, represented in the third panel with red symbols [Ram01; Sum11],
shows a local maximum for the same neutron number. The electric-quadrupole (E2)
transition probability from the ground state to the first excited 2+ state, represented in
the fifth panel by the so-called B(E2 ↑) [Ram01], shows a local minimum. Finally, the
magnetic moments of the N = 49 and N = 51 zirconium isotopes, represented in the last
panel of Fig. 1.6 [Sto11], are close to the Schmidt lines, the idealized limits obtained in
the approximation that the odd nucleon (in our case neutron particle or hole) is orbiting
around a perfectly inert even-even core [Sch37]. All this experimental information offers a
much wider range of evidence upon which the “magicity” of a certain nucleus (essentially
an ambiguous concept) can be discussed. Thus, a magic nucleus is not only more bound
than the average of its even-even neighbors. It has also smaller average size and it is
more difficult to excite, meaning that it requires more excitation energy and yields a
lower transition probability for the same final state. For neighbors of magic nuclei it
is a good approximation to assume that the dynamics of the nucleons inside the magic
core can be neglected and that the properties of the ground state and low-lying excited
states are determined only by the valence nucleon, treated as an independent particle
or hole. This approximation was proven to hold remarkably well also for many valence
nucleons outside a magic core, if one correctly accounts for the correlations between them
through a residual interaction. It constitutes the conceptual basis of modern shell-model
calculations.

There is still more to observe in Fig. 1.6 than the shell effect at N = 50. After
a relatively straight evolution for the first few isotopes with N > 52, the two-neutron
separation energies undergo another drop between N = 56 and N = 59. The charge radii
show a slight change of trend at N = 56, but not as pronounced as the one observed
for N = 50. The energy of the first 2+ excited state has another local maximum at
N = 56 and is unusually high at N = 58, while the B(E2) value is correspondingly low
at N = 56. The magnetic moment of the N = 55 isotope is close to the upper Schmidt
limit, suggesting the validity of the independent-particle picture. The combined evidence
suggests thatN = 56 corresponds in the zirconium chain to a closed neutron configuration.
Indeed, from the early shell-model calculations N = 56 is already recognized as a closed
subshell, meaning that it corresponds to a fully occupied neutron single-particle level,
without being separated by a very large energy gap from the first empty state above (as
would be the case for magic nucleus). Furthermore, N = 58 corresponds to the closure of
another neutron subshell in the independent-particle picture, supported by the observed
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features of Fig. 1.6.
Nevertheless, only two neutrons more are enough to produce a dramatic change of nu-

clear structure, as signaled by the sudden increase of the two-neutron separation energy at
N = 60 and N = 61, briefly also discussed in the previous section. The charge radii jump
to a completely new trend at N = 60, suggesting that protons start occupying quantum
states of much larger radial extension and that the single-particle picture collapses into
one of strongly mixed configurations. In this new picture, the nucleus is easy to excite
with little expense of energy, which leads to the low energy of the first 2+ excited state
and large B(E2) value observed for N ≥ 60. The pattern of excited states also changes
significantly. The ratio between the energies of the first 4+ and the first 2+ excited states
(also called the R4/2 ratio) rises to values close to 3.33, the quantum-mechanical textbook
result for a perfectly rigid rotor [Bha92]. This brings into discussion the concept of nuclear
deformation, which is also a different way of interpreting the larger mean-squared charge
radii of isotopes with N ≥ 60. The magnetic moments of the first excited 2+ states in the
even-N zirconium isotopes are represented with red diamonds in the last panel of Fig. 1.6
[Bha92]. For N ≥ 58 they approach the Z/A value expected in the simple assumption
of a rigid rotation of the proton distribution, while they are closer to 0 between N = 50
and N = 56 (see for example [Stu12] for a more detailed analysis). The ground-state
magnetic moments of odd-N isotopes depart from the Schmidt limits already at N = 57.
The low-lying 0+ excited state in the even-even zirconium isotopes, represented in the
third panel of Fig. 1.6 [Bha92], is called an “intruder” state, because it corresponds to a
lowering of the effective gaps in the single-particle energy spectrum as a result of configu-
ration mixing [Hey11]. This state must then have a mixed configuration. At N = 60, the
intruder and the ground 0+ states are almost degenerate in energy, marking a possible
inversion point, which is supported by its sudden increase in excitation energy at N = 62.

Some model concepts, such as configuration mixing or deformation, single-particle or
collective, unavoidably emerge in the interpretation of these complementary observables,
which cannot be performed in a completely model-independent way. As in the discus-
sion above, these concepts were introduced initially to guide the intuition through the
increasing body of nuclear data, and later crystallized as defining concepts of the modern
theoretical approaches. A more detailed discussion of the neutron-rich A ≈ 100 nuclei,
including the predictions of nuclear-structure models, will be given in a following chapter.
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Figure 1.6: Complementary nuclear data for the zirconium isotopic chain. The two-neutron
separation energies S2n are shown in the first panel [Wan12]. The second panel shows the
mean-squared charge radii (as displacement from 90Zr) [Cam97; Cam02; Tha03]. The energies
of the first 2+ and 0+ excited states are shown in the third panel, using data from [Ram01;
Bha92]. Ratios of the first 4+ and 2+ excited states from [Bha92] are shown in the fourth
panel, while B(E2 ↑) values from [Ram01] are shown in the fitfh panel. The final panel shows
the ground-state magnetic moments for the odd-N zirconium isotopes from [Sto11] and the
magnetic moments of the first 2+ excited states for the even-even isotopes from [Bha92]. For
details, see text.





Chapter 2

Experimental method and data
analysis

2.1 Charged-particle traps

Generally speaking, charged-particle traps are devices which achieve the confinement of
charged subatomic, atomic or molecular particles in a finite volume of space, through a
combination of electric and magnetic fields (which can be static or dynamic) [Maj05]. Due
to their wide range of applications, charged-particle traps have become key components
of experimental-physics facilities today [Wer09].

As storage devices, they are indispensable beam-preparation tools, used for the accu-
mulation, bunching, cooling and charge-breeding of primary beams. With these refined
techniques, traps act as secondary sources of charged particles with significantly higher
density, enhanced phase-space properties, higher charge state, making them more appro-
priate for low-energy experiments and for post-acceleration [Bla06]. In-trap studies by
complementary techniques are also very popular, notable examples being the study of
confined, non-neutral plasmas [Maj05], antimatter for fundamental studies [Wid08] and
quantum entanglement [Wer09]. Because the motion of charged particles in traps depends
on their charge-over-mass ratio (q/m), traps are excellent mass spectrometers, which can
be used either to separate a beam in its different q/m constituents or to determine a cer-
tain particle’s q/m value. Apart from their standalone use for mass spectrometry, their
mass resolving power recommends ion traps as excellent beam purifiers [Bla06].

The Penning trap is the combination of a static, quadrupole electrical potential and
a static, homogeneous magnetic field. The exceptional advances of the Penning-trap
technique since its invention ([Deh68] and references therein) have lead to a series of
results of unprecedented precision in fundamental-physics research [Bla10] and turned it
into the method of choice for most charged-particle applications mentioned above [Bla06;
Wer09].

31
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The ISOLTRAP mass spectrometer [Muk08] installed at the ISOLDE facility [Kug00]
at CERN was the first experiment to use the advances of Penning traps for the deter-
mination of the masses of radioactive nuclides. Since its installation at CERN in the
mid eighties, it has contributed significantly to the development of ion purification and
measurement techniques and has determined the masses of more than 400 isotopes and
isomers [Klu13]. In the remainder of this section, the Penning-trap technique will be
presented, focusing on the aspects relevant for its use by the ISOLTRAP experiment.

2.2 Penning trap

2.2.1 Dynamics of a trapped ion

The Penning trap is realized in practice by a set of axially symmetric electrodes, creating
the quadrupole potential, placed in a superconducting magnet, producing a homogeneous
magnetic field in the region of the Penning-trap center. The symmetry axes of the electric
and magnetic field ideally coincide.

The idealized quadrupole electrical potential of a Penning trap is shown in Fig. 2.1(a),
where the values are represented by a temperature color map (red indicates higher, blue
indicates lower values). To create this potential, one uses a set of three (ideally infinite)
electrodes, with the same geometry as the field’s equipotential surfaces, which are hyper-
boloids of revolution. This defines the hyperbolic trap geometry, to which one will be
exclusively referring in the following discussion. The black lines represent the intersection
with the observation plane of the equipotential surfaces corresponding to the actual elec-
trodes. A three-dimensional image of the three surfaces is represented in Fig. 2.1(b). The
characteristic distances of the hyperbolic Penning-trap geometry are marked in Fig. 2.1(a)
and are in the case of ISOLTRAP z0 = 11.18 mm and ρ0 = 13 mm [Muk08]. The upper
and lower electrodes are called end caps, while the middle electrode is called ring.

A consequence of the Laplace equation is that it is not possible for the electrical poten-
tial to be confining in all directions [Bro86]. The gradient of the potential in Fig. 2.1(a)
shows that it confines positively-charged particles axially, but not radially. To compen-
sate for this shortcoming, the magnetic field is oriented axially, so that the Lorentz force
acting on the charged particle ensures the radial confinement (see Fig. 2.1(b)). The depth
of the electrostatic potential well of ISOLTRAP’s measurement Penning trap is ≈10 eV,
while the magnetic field is almost 6 T. For achieving this high value of the magnetic field,
a superconducting magnet is used. This means that the room-temperature vacuum tube
containing the Penning trap is surrounded by a liquid-helium cryostat, which preserves
the superconducting state of the magnet. Cryogenic traps and detection systems are also
used for high-precision experiments, such as the one reported in [Ulm13].

The detailed derivation of the equations of motion of a particle inside an ideal Penning
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Figure 2.1: Idealized representations of ISOLTRAP’s measurement Penning trap. The
quadrupole electrical potential along a certain observation plane is represented as a 2D tem-
perature map in panel (a). The intersection between the trap electrodes and the observation
plane is traced with black lines. A 3D representation of the equipotential surfaces corresponding
to the trap electrodes is presented in panel (b), where the orientation of the magnetic field is
also marked by a red arrow. The typical trajectory of a singly-charged ion of mass A ≈ 150
in the Penning trap is shown as a small circle around the trap center in panel (b). A detailed
view of this trajectory is presented in panels (c) and (d). In panel (c) the full 3D dynamics is
represented, showing the eigenmotions at the axial (ωz), magnetron (ω−) and modified cyclotron
(ω+) frequencies. A closer view of the latter two in the radial plane is presented in panel (d).
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trap is given in Appendix B. Here, only the main results will be summarized. 1 The axial
and the radial motions of the particle are decoupled. The axial motion is a harmonic
oscillation around the trap center at the axial frequency νz, which depends on the electrical
potential difference between the end caps and the ring, V0:

νz =
1

2π

√
qV0

md2
, (2.1)

where d2 = 1/2(z2
0 + r2

0/2) is the characteristic trap dimension. For ISOLTRAP, the axial
frequency is νz ≈ 35 kHz .

The radial motion is the sum of two rotations at different frequencies:

ν± =
1

2

(
νc ±

√
ν2
c − 2ν2

z

)
, (2.2)

where ν− is called the magnetron frequency and ν+ is called the modified cyclotron fre-
quency. The quantity νc = qB/(2πm) is the cyclotron frequency of the particle of charge
q and mass m in the magnetic field B. From Eq. (2.2) one can easily verify the following
two very important relations:

νc = ν+ + ν−, (2.3)

ν2
c = ν2

+ + ν2
− + ν2

z . (2.4)

In Eq. (2.2) one can factorize the cyclotron frequency and then write the two radial
frequencies as a function of the trap parameters:

ν± =
1

2
νc

(
1±

√
1− 2

ν2
z

ν2
c

)
,

=
qB

4πm

(
1±

√
1− 2

m

q

V0

d2B2

)
. (2.5)

The cyclotron frequency νc of a singly-charged particle of mass A ≈ 100 in the mea-
surement trap of ISOLTRAP is νc ≈ 900 kHz. Since this is much larger than the axial
frequency νz, one can approximate the square root in Eq. (2.5) by the first-order Taylor
expansion (

√
1± x ≈ 1± x

2
if x� 1):

ν+ ≈
qB

2πm

[
1− m

q

V0

2d2B2

]
,

ν− ≈
V0

4πd2B
. (2.6)

1The derivations of Appendix B use the angular frequencies ω, which naturally appear in the equations
of motion. Because the measurements always refer to the temporal frequencies ν = ω/(2π), the latter
will be mostly used throughout this chapter.
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Already from the first line of Eq. (2.5), one notices that the magnetron frequency ν− is
very small, while the modified cyclotron frequency is only slightly smaller than νc (which
explains the name). Equation (2.6) shows that in first order the magnetron frequency is
mass independent. For ISOLTRAP, the magnetron frequency has the value ν− ≈ 1 kHz.

Figure 2.1(c) shows the three eigenmotions of an ion of mass A ≈ 150 in ISOLTRAP’s
measurement Penning trap (idealized). The radii (amplitudes) of the motions are chosen
to be similar to actual experimental conditions (ρ− = 0.1 mm, ρ+ = 0.05 mm, Az =
0.15 mm). Figure 2.1(b) shows how the trajectory of Fig. 2.1(c) compares to the size of
the trap (small circle at the center) and Fig. 2.1(d) illustrates a segment of the projected
radial trajectory, which allows better observing the two eigenmotions.

Unlike the representations of Figs. 2.1(a) and 2.1(b), real Penning traps have finite-
sized electrodes. The end caps have apertures for the injection and ejection of the charged
particles and the ring is segmented, to allow driving the ion motion through the application
of external variable fields. This causes the field inside the trap to deviate from the pure
quadrupole distribution, through higher-order multipole components. To minimize these
deviations, correction electrodes are added to the trap design. The success of correcting
the field around the trap center with additional electrodes has made it possible to build
Penning traps also in cylindrical geometry (one example is the preparation Penning trap
installed at ISOLTRAP) [Muk08].

2.2.2 Driving the ion’s motion

One is interested to have an as low as possible amplitude of the axial motion, to minimize
the influence of the trap imperfections on the radial eigenfrequencies. The voltage of the
measurement trap’s ring electrode and the moment of the ions’ capture are optimized to
ensure minimal axial oscillation. The radial motions are controlled by applying sinusoidal
driving fields on the segments of the ring electrode. The frequencies of the pulses are tuned
to produce the resonant excitation of one of the ion’s radial eigenmotions, or the resonant
conversion of one motion into the other. For excitation, a dipole field is applied (opposite
phases on opposite segments, as shown in Fig. 2.2(a)) at one of the radial eigenfrequencies.
If the corresponding eigenmotion has no initial amplitude, its amplitude will increase
continuously for as long as the excitation is applied, as exemplified in Fig. 2.2(c). For
the resonant conversion between the two radial motions, one applies a quadrupole field
(opposite phases on segments in quadrature, as shown in Fig. 2.2(b)), tuned to the sum
of the two eigenfrequencies (which in the ideal Penning trap is the cyclotron frequency).
As a result, one obtains a periodic conversion between the two eigenmotions for as long
as the driving field is applied. In Fig. 2.2(d), the conversion between magnetron and
modified cyclotron motion is illustrated. Considering the typical frequencies of an ion’s
eigenmotions in ISOLTRAP’s Penning trap, the required driving fields are in the radio-
frequency domain and can be produced using standard signal generators. In [Bol90] a
detailed description of the different types of excitation is given.
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Figure 2.2: Excitation patterns of the radial eigenmotions of an ion in a Penning trap. The upper
panels show the idealized potential distribution for a dipole (a) and quadrupole (b) excitation
at zero phase. The lower panels show the resulting ion motion for the two most common
excitations applied at ISOLTRAP: (c) dipole excitation at the magnetron frequency and (d)
quadrupole excitation at the cyclotron frequency. For panel (d), the ion mass was increased (low
cyclotron frequency) as well as the excitation amplitude (fast conversion) in order to enhance
the visualization of the process.
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The response of the ion to an external resonant excitation depends on the initial radii
and phases of the ion’s eigenmotions, as well as the amplitude, phase and duration of the
excitation signal. If the eigenmotion has an initial radius, it will be enhanced or reduced
by a dipole excitation depending on the phase difference between the eigenmotion and the
driving field [Bla03]. The rate at which the radius evolves with time following a quadrupole
excitation is proportional to the amplitude of the excitation pulse Uex [Kon95]:

νconv =
q

m

Uex
2ρ0

α

ν+ − ν−
, (2.7)

where α is a geometric factor. The integral effect of the excitation on the radius of the
eigenmotion depends on the length of the excitation pulse. The latter also affects the
width of the excitation in frequency domain: the longer the driving pulse is in time,
the narrower it is in frequency [Bol90]. A narrower frequency response of the ion to the
driving field leads to a higher resolving power of the trap operation.

Controlling the radial motions of an ion in a Penning trap is thus a problem which
requires matching the phase of the excitation pulse to the desired effect on the ion’s
radius, choosing a length of the excitation pulse which ensured a sufficiently high resolving
power (narrow frequency response) and adapting the amplitude of the pulse to the desired
magnitude of the radius change in the given excitation time.

2.2.3 Detecting the ion’s motion

There are two main techniques of detecting a charged particle’s motion inside a Penning
trap and its response to external driving fields.

The first, which has been successfully applied for studying the properties of long-
lived particles and ions with very high accuracy, uses the charge induced by the moving
particle on the electrodes of the Penning trap. This induced charge follows the oscilla-
tion of the charged particle and thus its frequency spectrum contains the information on
the particle’s eigenfrequencies [Deh68]. Amplifying the signal which is picked up from
the trap’s electrodes and Fourier transforming it offers the possibility of determining a
particle’s eigenfrequencies in the Penning trap while the particle is still trapped (non-
destructive technique). This is called the Fourier-transform ion-cyclotron resonance (FT-
ICR) [Com74], which allows determining a charged particle’s free cyclotron frequency by
means of Eq. (2.4). With this technique it is possible to perform experiments on a single
particle, which can be kept trapped indefinitely [Bro86].

The second technique requires the charged particle to be ejected from the trap and
detected (destructive technique, meaning that the particle is no longer available for ex-
periments) [Gra80]. The radial motion of the particle bears a certain magnetic moment:

µ =
Er
B

=
ω2

+ρ
2
+ − ω2

−ρ
2
−

B
≈
ω2

+ρ
2
+

B
, (2.8)
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where Er is the radial kinetic energy and one has used the fact that ω+ � ω−.

Along the ions’ path from the center of the Penning trap towards the detector, the
magnetic fields undergoes a rapid decrease in magnitude (gradient), which causes a cou-
pling to the ejected ions’ magnetic moment and creates an accelerating force:

F = −µ(∇ ·B). (2.9)

This force in turn greatly affects the time of flight of the ions from the Penning trap
to the detector. Ions without radial motion at the moment of ejection have no magnetic
moment and are not accelerated, thus exhibiting the generic time of flight determined by
the distance between the trap center and the detector. Ions with radial motion are accel-
erated and reach the detector faster, exhibiting a lower time of flight (for a more detailed
analysis and related formulas discussed in the context of the ISOLTRAP experiment, see
for example [Bol90; Kon95]).

This destructive method of detection allows little information to be extracted from
the time of flight of a single ion. Instead, one can systematically study a certain property
of the ion’s motion (e.g. eigenfrequency), or its response to a certain parameter of the
driving field (e.g. amplitude), while all other conditions in the trap are kept the same. One
usually performs a scan of the frequency or amplitude of the driving field, or of the waiting
time before or after the excitation signal is applied [Muk08]. For each step of the scan, an
ion (or ion ensemble) is trapped, excited, ejected and detected and the corresponding time
of flight to the detector is recorded. The full scan thus requires a minimum number of
ions to be produced. By plotting the mean time of flight against the value of the scanned
quantity, one obtains a characteristic curve, which contains information about the ion
motion inside the trap. Because the electric and magnetic fields between the trap and the
detector are well known, the characteristic time-of-flight curves allow also reconstructing
part of the ion trajectory inside the Penning trap (such as the amplitudes of the radial
motions) [Kon95]. This time-of-flight measurement technique is used at ISOLTRAP. It
is preferred to the induced-charge detection method because the latter would require
different resonant detection circuits for nuclides in different mass ranges and cryogenic
traps and circuits for maximizing the signal-to-noise ratio. Moreover, for most cases
of interest the half-life of the studied ions allows only a limited time for analyzing the
signal induced on the trap electrodes. Nevertheless, this detection technique is being
developed also for experiments on radioactive nuclides [Red13]. The most important
application of the time-of-flight detection technique is the determination of the ion’s radial
eigenfrequencies (ν+ and ν−) and of its free cyclotron frequency (νc). For determining the
values of ν+ and ν− one applies a dipole driving field on the ring electrode and scans its
frequency. For ν+ excitation followed by ejection of the ions from the trap is enough.
As shown in Fig. 2.3(a) for this type of measurement, the ions’ time of flight exhibits
a clear variation with the frequency of the driving field. In the figure, all detection
events are plotted in a two-dimensional, color-coded histogram. The color code reflects
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Figure 2.3: Scans of the frequencies of the main excitations of the ion motion applied at
ISOLTRAP in the measurement trap: (a) - dipole excitation of 1 s length around the modified
cyclotron frequency; (b) - dipole excitation of 300 ms length around the magnetron frequency;
(c) - quadrupole excitation of 1.2 s length around the cyclotron frequency. Each panel is a
density plot showing the time of flight of the individual ion-detection events as a function of
frequency (darker color represents a higher number of detection events). The mean time of flight
of all events corresponding to a certain frequency is marked by black empty circles. For (c), the
fit by the theoretical line-shape which allows extracting the cyclotron frequency is also shown
by the red dotted line.
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the number of detection events in the corresponding frequency/time-of-flight bin. The
average time-of-flight corresponding to each frequency value is represented by the empty
circles. In Fig. 2.3(a), the minimum value of the mean time of flight corresponds to the
modified cyclotron frequency of the trapped ions (in this case 85Rb+). The local minima
(side-bands) situated symmetrically with respect to the absolute minimum (resonance
frequency) are due to the rectangular envelope of the excitation signal. The amplitude of
the frequency response is given by the Fourier transform of the time-domain amplitude
[Bol90]. Consequently, the radial energy of the ions, as a function of the excitation
frequency, is modulated by the sin2 x/x2 function. One observes that Fig. 2.3(a) exhibits
this modulation in reverse, because high radial frequency is converted in the magnetic-field
gradient into low time of flight.

In what concerns the determination of ν−, Eq. (2.8) shows that the radial energy
of the magnetron motion is too little to produce a significant resonance in time of flight.
Following the dipole excitation at a frequency around ν−, one must apply a quadrupole ex-
citation at the true cyclotron frequency νc to convert the magnetron motion into cyclotron
motion, before the ions are ejected from the trap. The response to the initial excitation
of the magnetron motion influences the magnitude of the magnetron radius ρ− at the
end of the excitation. This becomes the value of ρ+ following the quadrupole excitation,
which through Eq. (2.8) shows that the time-of-flight pattern recorded by the detector
reflects the response to the initial excitation of the magnetron motion. This is observed
in Fig. 2.3(b), where, as in Fig. 2.3(a), the frequency of the dipole excitation is scanned
for 85Rb+, but this time around the value of ν−. The figure is similarly constructed as
Fig. 2.3(a). A similar pattern is observed, with the global minimum (resonance) giving
the magnetron frequency.

The scheme for determining the free cyclotron frequency νc is only a slight modification
of the one used for the magnetron frequency ν−. In a first step, a dipole excitation at the
magnetron frequency is applied, preparing all ions to the same magnetron radius ρ−. In a
second step, the quadrupole excitation is applied and its frequency is scanned, for a fixed
excitation time. The resulting periodic conversion between magnetron and cyclotron
motions is resonant when the excitation is applied at the sum of the two frequencies.
The amplitude of the quadrupole excitation is matched so that in the resonance case
one produces a full conversion of magnetron to cyclotron motion. This means that only
on-resonance the final value of ρ+ is equal to ρ−, off-resonance ρ+ being smaller. By
consequence, the final radial energy and time of flight to the detector reflects the frequency
response to the quadrupole excitation. This is shown in Fig. 2.3(c), where one notices the
same structure with a central minimum and several side-bands, the former corresponding
to an excitation at ν+ + ν− and the latter being due to the rectangular envelope of the
excitation signal. By computing for each frequency point the mean time-of-flight of all
detected ions and fitting the resulting data with the theoretical shape of the resonance
curve [Kon95], one can determine the sum of the radial frequencies, which in the ideal
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Penning trap, as shown in Eq. (2.3), is the true cyclotron frequency of the trapped ions.
This technique is called the time-of-flight ion-cyclotron resonance (TOF-ICR) [Gra80].
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Figure 2.4: Optimization of the phase and amplitude of some of the excitations of the ions’
motion applied at ISOLTRAP in the measurement trap: (a) - scan of the waiting time between
the moment of the ions’ capture in the trap and the beginning of the magnetron excitation,
for fixed amplitudes and resonant excitations; (b) - scan of the amplitude of the quadrupole
excitation which converts the magnetron to cyclotron motion, for resonant excitation. Both
plots show the mean time of flight of the detected ions for each value of the scanned quantity.

Except for rare cases, due to imperfect injection the ions have an initial magnetron
radius ρ0

−. In order to ensure that the dipole excitation at the magnetron frequency
increases from the beginning towards the desired value, the phase difference between the
driving field and the ion’s magnetron motion must be set to π/2 [Bla03]. This is achieved
by scanning the waiting time in the Penning trap between the ions’ capture and the
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beginning of the dipole excitation. The result of such a scan, performed for 133Cs+ ions, is
shown in Fig. 2.4(a). A phase mismatch leads, for the same amplitude and length of the
excitation, to a lower final value of ρ−. This becomes the value of ρ+ after full conversion
to modified cyclotron motion, which together with Eq. (2.8) means that a phase mismatch
determines a lower radial energy and a larger time of flight. Scanning the waiting time
before the magnetron excitation is applied, one observes in Fig. 2.4(a) a modulation of
the mean time-of-flight by a periodic function, oscillating at the magnetron frequency.
The minima in time of flight correspond to waiting times for which the phase difference
between the driving field and the magnetron motion of the ions is π/2.

The length of the quadrupole excitation is determined by the required resolving power
and precision [Bol90]. The amplitude of the excitation is then optimized to produce
exactly one conversion between magnetron and cyclotron motion in this time. To little
or too high amplitude will lead to under or over-conversion, both cases meaning that the
cyclotron radius at the end of the excitation pulse is lower than the initial magnetron
radius. Consequently, the radial energy is lower and the time-of-flight to the detector
is larger. As shown in Fig. 2.4(b), scanning the amplitude of the quadrupole excitation
and monitoring the mean time of flight of the corresponding ions allows determining
the optimal amplitude, which corresponds to the minimum in time of flight situated at
lowest voltage. Increasing the amplitude beyond the first minimum eventually leads to
a full conversion back and forth between magnetron and cyclotron motions and a local
maximum in time of flight. This evolution is periodic, which means that further increasing
the amplitude leads to a repetition of the described pattern.

Figs. 2.4(a) and 2.4(b) show that not only the eigenfrequencies of the charged particle
inside the Penning trap, but also other features of its motion and excitation can be studied
using the time-of-flight detection method. In particular, a study of the axial frequency has
also been undertaken at ISOLTRAP [Boh09], in order to verify the invariance theorem
Eq. (2.4) [Bro86].

2.3 From cyclotron frequency to mass: procedure,

precision, systematic errors

The measurement of the cyclotron frequency of a certain ion species in a Penning trap
by the TOF-ICR technique allows the determination of its charge-over-mass ratio if one
knows the magnetic field at the center of the Penning trap. This can only be done in
practice (to enough accuracy) by using the cyclotron-frequency formula in reverse: if one
knows the charge-over-mass ratio of an ion species, by measuring its cyclotron frequency
one can determine the strength of the magnetic field it was trapped in. These are called
reference ions. Labeling the atomic mass of one such species by mref and considering that
only singly-charged ions are used (which is almost always the case at ISOLTRAP), the
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magnetic field is given by:

νc,ref =
eB

2π(mref −me)
⇒ eB = 2πνc,ref (mref −me), (2.10)

where me is the electron mass and the electron binding energy was neglected, being
much smaller than the achievable precision of the technique. Writing now the cyclotron
frequency for the unknown species of atomic mass mx, which is also singly charged:

νc,x =
eB

2π(mx −me)
=
νc,ref (mref −me)

mx −me

(2.11)

and introducing the frequency ratio rref,x:

rref,x =
νc,ref
νc,x

, (2.12)

one can write the mass of the unknown species as:

mx = rref,x(mref −me) +me. (2.13)

Equation (2.12) shows that the result of the Penning-trap measurement is not the
mass of the studied species (atom, molecule), but the cyclotron frequency ratio of its
singly-charged ions with respect to a certain reference ion species. The TOF-ICR tech-
nique is thus used to perform relative mass determinations. Referring now only to the
isotopes of the different elements, cyclotron-frequency ratios act as links (constraints) be-
tween the masses of different nuclides. In the general picture, this adds to links resulting
from other mass spectrometry techniques, which also require reference nuclides (Schot-
tky, rigidity, time-of-flight etc.), or from decay and reaction energies [Lun03]. Together,
all these links are combined to give a single mass value and a single uncertainty in the
atomic mass evaluation [Wan12]. Due to their very high precision, which will be discussed
below, cyclotron-frequency ratios from Penning-trap mass spectrometry, if available, usu-
ally carry the largest weight of all links attached to a certain nuclide and thus put the
strongest constraint on its mass.

From Eq. (2.13) one notices that the statistical uncertainty of the mass of the nuclide
of interest is determined by the uncertainty of the cyclotron-frequency measurements (for
the ion of interest and for the reference ion) and by the uncertainty with which the refer-
ence mass is known. The statistical uncertainty of a cyclotron-frequency measurement is
sensitive to three different aspects of the measurement [Bol01], all subject to limitations
when measuring radioactive ion species. The first factor is the amount of data acquired
(detection events for every frequency of the quadrupole excitation pulse). This is limited
for the studied radioactive ions by their production rate at ISOLDE, which is often as
low as one 1-10 on average per proton pulse on the target, and by the transport efficiency
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of the ISOLTRAP setup, which is usually around or lower than 1%. This means that for
the duration of an experiment at ISOLDE (typically limited to a few days of continuous
measurement), only a limited number of ion-detection events can be acquired. The second
factor is the quality of the experimental resonance data. For reasons related to beam pu-
rity, in-trap charge production due to radioactive decay (ionization of the rest gas by the
decay radiation), preparation of the ion ensembles, optimization of trap excitation pulses
and fluctuations of experimental parameters (voltages, amplitudes, digital signals) the ex-
perimental data can scatter more or less around the best-fit theoretical line-shape. This
experimental noise then translates into the uncertainty of the fitted cyclotron frequency.
This uncertainty factor is enhanced when measuring strongly contaminated radioactive
ions, because the contaminants have a different frequency response to the quadrupole
excitation pulse and thus perturb the average time-of-flight of the ions of interest. De-
pending on the amount of contamination and on whether it is resolved in the trap (the
cyclotron-frequency difference to the ion of interest is larger than the width of the reso-
nance curve), this factor can also lead to a systematic error, which will be discussed later
in this section. The third factor is related to the width of the time-of-flight resonance peak
around the cyclotron frequency of the measured ion species (giving the resolving power
of the excitation). For an excitation time around 1 s the full width at half maximum
(FWHM) of the resonance curve is approximately 1 Hz and, as discussed before, it scales
inversely proportional with the excitation time. A narrower resonance peak allows better
constraining the peak center and leads to a more precise determination of the cyclotron
frequency. This factor is limited when measuring short-lived isotopes (half-lives lower
than 1 s), because the count-rate losses by decay become significant, negatively influenc-
ing the amount of data which can be acquired. The effect of these factors at ISOLTRAP
was translated into the following empirical law for the statistical uncertainty δνc of a
cyclotron-frequency measurement [Bol01]:(

δνc
νc

)
stat

=
1

νc

c√
NTRF

, (2.14)

where c is a parameter around 0.9, which slightly depends on the quality of the experi-
mental data [Kel03], N is the number of events and TRF is the length of the quadrupole
excitation pulse.

Neither of these three factors is problematic for the measurement of the cyclotron
frequency of the reference ion species, because the reference ions used at ISOLTRAP
are radioactively stable, abundantly produced and can be easily purified by the available
techniques, which will be discussed in the following section. This means that the reference
TOF-ICR spectra are high-statistics, pure data sets taken at long excitation time. The
reference ions are also used to optimize the transport through the ISOLTRAP setup and
the preparation of the ion ensembles for the Penning-trap cycle, meaning that the ex-
perimental time-of-flight values follow closely the theoretical line shape of the resonance.
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By consequence, the reference cyclotron-frequency measurements give only a small con-
tribution to the uncertainty of the measured frequency ratio. Because the masses of the
reference ions are usually known with very high precision, the statistical uncertainty of
the final mass value is dominated by the uncertainty with which the cyclotron frequency
of the ion of interest is determined.

Equation (2.14) shows that the relative statistical uncertainty of the TOF-ICR tech-
nique, for the same number of detection events and same quadrupole excitation time,
varies significantly with the mass of the ion of interest. Relative statistical uncertainties
lower than 10−7 (< 10 keV for an A ≈ 100 nuclide) are routinely achieved, but they can
be reduced to as low as a few 10−8 if the production rate and half-life of the nuclide allows
[Muk08].

The systematic errors of TOF-ICR measurements have been extensively studied for
ISOLTRAP. For most cases they are lower than the statistical uncertainty and represent
the uncertainty limit for high-precision experiments (e.g. Q-values of interest for neutrino
physics and the study of the unitarity of the CKM matrix [Bla10]).

An important source of systematic error is the drift of the trap’s magnetic field between
the recording of the TOF-ICR for the ion of interest and for the reference ion. The first
component of this drift is linear over a measurement’s duration and is due to the decay
of the current flowing through the superconducting magnet. The second component of
the drift is a fluctuation due to changes of the ambient temperature and of the pressure
of the helium inside the cryostat housing the magnet [Kel03]. To correct for the linear
component of this drift, two reference TOF-ICR measurements are performed, one before
and one after the TOF-ICR of the ion of interest. Each reference cyclotron-frequency value
is assigned to the time midway between the beginning and the end of the corresponding
scan. The value used for computing the frequency ratio of Eq. (2.12) is then the linear
interpolation of the cyclotron frequencies determined from the two reference scans at the
moment midway between the beginning and the end of the scan corresponding to the ion
of interest.

Due to the nonlinear part of the magnetic-field drift between the reference TOF-ICR
measurements, this interpolation does not fully correct the systematic error. One way to
reduce the error is by implementing a temperature and pressure stabilization system. Such
a system is presently not used at ISOLTRAP, but its advantages have been demonstrated
[Mar08]. In absence of a stabilization system, studies have been performed to quantify
the systematic error due to magnetic-field fluctuations and its magnitude was determined
to be [Kel03]: (

δνc
νc

)
B

= 6.35× 10−11∆T/min. (2.15)

A second source of systematic error is the ion ensemble which is used to perform the
measurement. The theory of Penning-trap mass spectrometry presented in this chapter
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and Appendix B is valid for a single trapped charged particle. If more than one particle
is present at the same time in the Penning trap, their Coulomb interaction perturbs their
motion with respect to the single-particle case. If the ion ensemble is also contaminated,
meaning that ions of different masses are present at the same time in the trap, it was
shown that the resonance frequencies of all species shift with respect to their free cyclotron
frequency. As discussed in [Bol92], a starting point to minimize such effects is to reduce
the number of ions allowed in the Penning trap at the same time, so that no more than
3-4 events are detected on average after ejection. Additionally, if the amount of collected
data allows it, one also studies, for each data set, how the resonance frequency varies with
the average number of detection events (equivalently, of ions in the trap). To this end,
one divides the data set in equal subsets corresponding to different average numbers of
events. For each subset, one performs a separate fit of the resonance frequency. From the
trend of the fitted frequency with average event number, one performs an extrapolation
to zero detection events, which is then chosen as the final value of the cyclotron frequency
(with the corresponding statistical uncertainty) [Kel03].

A third source of systematic error are the imperfections of the trap electrostatic field,
which deviates from the pure quadrupole shape, as well as the misalignment of the trap’s
electric and magnetic fields [Bol90]. This leads to the so-called “mass-dependent shift,”
meaning that the cyclotron-frequency ratio deviates from the real value by an amount
proportional to the difference in mass between the reference ion and the ion of interest.
The magnitude of this error was studied at ISOLTRAP using carbon-cluster ions spanning
the entire range of the nuclear chart and was determined to be [Kel03]:(

δrref,x
rref,x

)
m

= 1.6× 10−10(m−mref )/u. (2.16)

The study of [Kel03] showed that, after correcting for the systematic errors resulting
from the magnetic-field fluctuations and from the trap-field imperfections, the scattering
of the frequency ratios around the expected values leads to a reduced χ2 still greater than
one. This is interpreted as a residual systematic uncertainty of the ISOLTRAP mass
spectrometer, which is estimated to:(

δrref,x
rref,x

)
res

= 8× 10−9. (2.17)

A frequency-ratio measurement typically consists of more than one TOF-ICR spectrum
of the ion of interest, with corresponding reference spectra. For each of them, the reference
cyclotron frequency is interpolated and used, together with the cyclotron frequency of
the ion of interest, to calculate the frequency ratio rref,x and its statistical uncertainty.
For each of the different rref,x values, the systematic uncertainty due to the magnetic-
field fluctuations is calculated, because it depends on the time difference between the
associated reference spectra. The uncertainty of each frequency-ratio value riref,x is then
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taken as:

δriref,x =
√(

δriref,x
)2

stat
+
(
δriref,x

)2

B
. (2.18)

The mean frequency ratio is calculated as:

r̄ref,x =

∑
i

[
riref,x/

(
δriref,x

)2
]

∑
i

[
1/
(
δriref,x

)2
] , (2.19)

while its uncertainty is given by:

δr̄ref,x =

√√√√√ 1∑
i

[
1/
(
δriref,x

)2
] . (2.20)

The value of r̄ref,x is then corrected by the mass-dependent systematic error and the
total uncertainty is calculated as [Kel03]:

(δr̄ref,x)
2
total =

√
(δr̄ref,x)

2 + δ (rref,x)
2
m + δ (rref,x)

2
res. (2.21)

2.4 Production and preparation of the ion ensemble

The nuclides studied with ISOLTRAP are produced by the ISOLDE radioactive ion-beam
facility at CERN [Kug00]. Exotic nuclides are produced by proton-induced reactions on
a thick target, the material of which depends on the nuclides of interest (ISOL technique
[Kos02]). The protons are currently supplied by CERN’s proton-synchrotron booster
(PSB) in pulses accelerated to 1.4 GeV kinetic energy, providing an average current of up
to 2 µA. For specific experiments, it is interesting to produce the reaction with neutrons,
case in which the proton beam is steered towards a tungsten neutron converter placed aside
from the target material. In this case, except for unwanted scattered protons, neutrons
are the projectiles producing the radioactive nuclides, which changes significantly the
production cross sections, in favor of experiments on neutron-rich nuclides (zinc isotopes
being a recent highlight [Kos05], [Wol13a]). Studies aimed at optimizing the neutron-
converter performance are ongoing [Lui12].

The reaction products are neutralized and their kinetic energy is absorbed in the ISOL
target. The target container is heated to high temperature (ca. 2000◦C), which leads to
the extraction of the nuclides, by the processes of thermal effusion and diffusion, through
a transfer line connected to the ISOLDE beam lines (and heated to similar temperatures
as the target). The neutral atoms are then ionized by one of three methods.
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One method is the surface ionization on the walls of a heated cavity connected to the
transfer line. The efficiency of this method depends on the work function of the cavity for
the nuclide of interest. Alkali metals have very low work functions and are thus excellent
candidates for surface ionization. This method is however poorly selective (for a given
material, the ionization efficiency can only be tuned by changing the temperature of the
cavity).

Another method is the resonance-ionization laser ion source (RILIS) [Fed12; Mar13].
Ionization is achieved by overlapping laser beams with the flux of neutral atoms emerging
from the target in the cavity of the surface ion source. The resonant character of the
ionization is due to the fact that it is achieved by a scheme involving typically two or
even three successive atomic transitions. As many laser beams are thus used sequentially
to produce the step-wise transition of an electron from its ground level to the continuum.
Since the transition energies are element specific, this ionization method is highly selective.

The third method uses a plasma to produce the ionization of the neutral atoms (see
[Pen10] for a recent ion-source design). This method is mostly applied to gases and to
species which are poorly surface ionized and have no efficient laser-ionization scheme. It
is known to produce high currents of different nuclides, but it is a non-selective method.

Of the three ionization techniques, the first two are used to produce exclusively singly-
charged ions. The plasma ion source can produce ions in higher charge states. When using
RILIS and plasma ionization, the atom extraction cavity still acts as a surface ionizer,
which means that all beams are usually contaminated by surface-ionized species. This
effect can be reduced by properly choosing the material of the cavity. An outstanding
development has been the use of cold quartz lines together with RILIS, to delay some
of the surface-ionized contaminants and produce higher-purity beams [Bou08]. Efforts
are ongoing for developing the so-called Laser Ion Source Trap (LIST), with the aim of
repelling surface-ionized contaminants before performing the laser ionization of the nu-
clides of interest in a quadrupole ion guide. Preliminary tests at ISOLDE show promising
results [Fin13].

Whatever the ionization method, the ion source is floated to a potential of 30 −
50 kV, which accelerates the beam to the corresponding kinetic energy. The singly-
charged ions are then transported through one of the two magnetic separators of ISOLDE:
the general purpose separator (GPS) or the high-resolution separator (HRS), by which
one can typically select from the whole range of reaction products one set of isobars.
The HRS can achieve a higher resolving power (R = m/∆m) on the order of several
thousands (depending strongly on beam preparation), which allows also partially reducing
the isobaric contamination of the ion of interest.

The ions are then distributed either to the low-energy or to the high-energy beam
line of ISOLDE. The low energy beam line is where ISOLTRAP is situated and uses the
beam at its original 30 − 50 keV kinetic energy. The high-energy beam line starts with
a post-acceleration stage. The beam is cooled and bunched in a buffer-gas filled Penning
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trap and bred to a higher charge state by an electron beam ion source (EBIS) [Wol03] and
then sent through a system of resonant cavities, which accelerates the beam to energies
up to 3 MeV per nucleon [Vou08]. The accelerated beam is then delivered to secondary
targets for reaction experiments.

As discussed so far, Penning traps are ideal tools for the determination of the masses of
charged particles, however they cannot be used with the ion beams produced at ISOLDE
without prior preparation. The ISOLDE beam is a quasi-continuous current of (mostly)
singly-charged ions accelerated to 30-50 keV kinetic energy and containing the ions of
interest and a significant amount of contamination (usually isobars of the ions of interest,
much more abundant in yield). The Penning-trap technique requires this beam to be
turned into small bunches of few ions (1-20) at a time, decelerated to effectively zero
axial energy and of reduced longitudinal and transverse emittance. Furthermore, the ion
bunches should contain ideally only the ion of interest, to avoid the perturbation of their
resonance frequency due to Coulomb interaction.

To achieve this, three additional traps constitute ISOLTRAP [Rai97; Her01; Wol12;
Wol13b], their role being the preparation of the ion beam for the requirements of the
TOF-ICR technique. The schematic of the ISOLTRAP experiment as it stands today is
presented in Fig. 2.5 [Kre13]. The ion beam produced at ISOLDE is normally blocked
by an electrostatic deflector, which acts as a beam gate. The experimental cycle at
ISOLTRAP starts with the opening of the ISOLDE beam gate (deflector voltage set to
zero, allowing the beam to pass). The ion beam enters a linear, radio frequency quadrupole
(“RFQ cooler and buncher” in Fig. 2.5) [Her01]. The RFQ is sitting on an HV platform
and is floated to a potential (in kV) slightly lower than the kinetic energy of the ions (in
keV). Approaching the RFQ, the ions are decelerated, but still have enough energy to
enter the trap. The RFQ is filled with helium buffer gas, which cools the axial and radial
emittance of the ions. The four rods making the quadrupole structure are segmented.
The different segments are floated to create an axial potential well towards the exit side
of the RFQ. In this potential well the ions are accumulated for as long as the beam gate
is opened and then kept for 10-20 ms more, to ensure that all ions entering the RFQ have
been properly cooled. The bunch of ions formed at the bottom of the axial potential well
is then ejected by creating a sharp ramp with the electrodes surrounding the potential
minimum.

Before being re-accelerated to their initial kinetic energy, the ions enter a drift tube,
which is floated to a potential ≈ 3 kV lower than the RFQ (“1st deceleration cavity” in
Fig. 2.5). At the center of the cavity, the ions thus have only ≈ 3 keV kinetic energy, mo-
ment in which the cavity voltage is switched to ground potential. Upon exiting the cavity,
the ions are no longer accelerated and are further transported at 3 keV kinetic energy.
This first step of the experiment thus ensures the bunching, cooling and deceleration of
the ISOLDE ion beam.

The 3-keV beam then enters the second trap, the multi-reflection time-of-flight mass
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Figure 2.5: Schematic of the ISOLTRAP setup [Kre13] showing the main stages of ion prepara-
tion. For details, see text.

separator (“MR-TOF MS” in Fig. 2.5) [Wol12; Wol13b]. The MR-TOF MS is an elec-
trostatic trap, in which the ion bunch undergoes multiple reflections between two sets of
mirror electrodes. Initially the ions have enough energy to enter the trap. A drift tube in
the center of the MR-TOF MS (“trapping cavity” in Fig. 2.5) is used to capture and to
eject the ions, by the same principle which is used with the first deceleration cavity. The
ions are decelerated while entering the cavity, which is then switched to ground potential
to remove ≈ 1 keV from the ions’ kinetic energy, enough for them to start reflecting on
the mirror electrodes.

The MR-TOF MS was initially installed in 2010 to act as a beam purifier [Wol12].
Ions of slightly different masses have different velocities inside the device, meaning that
after repeated oscillations between the mirror electrodes they start separating in time of
flight. With each oscillation, the separation increases, thus increasing the resolving power
of the device. As discussed in [Wol13b], there is a competition between the separation of
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the bunches of different ions and the time-of-flight spread of each bunch, both increasing
with the number of oscillations. Initially, there is a net gain in resolving power, which
reaches values higher than m/(2∆m) ≈ 105 for a trapping time of roughly 25 ms. In this
time, ions of mass A ≈ 100 undergo around 1000 oscillations inside the MR-TOF MS (the
relationship between number of oscillations and time of flight is mass dependent).

At the exit of the device one can insert a time-of-flight detector, multichannel plate
(MCP) or electron multiplier, or a Bradbury-Nielsen beam gate (“BN beam gate” in
Fig. 2.5). The detector is used to analyze the arrival times of the ions of different masses.
The BN beam gate is an assembly consisting of multiple parallel wires, equally spaced
at a distance of 0.5 mm [Wol12]. Applying opposite voltages on neighboring wires, the
gate deflects all ions passing through (closed state). Applying no voltage on the wires,
the gate leaves the ions’ paths unaffected (open state). By using a fast switch to change
the state of the gate from closed to open, one can create a narrow time-of-flight window
which only allows the transmission of the ions of interest to the rest of the ISOLTRAP
setup. With this technique, a suppression of contaminants of up to 104 was shown to be
possible [Wol13b]. Figure 2.6(a) shows the suppression of 133Cs+ on the MCP above the
preparation Penning trap (LT detector in Fig. 2.5), with trapping, as a function of the
time at which the BN beam gate is opened. For this scan, a 2.5µs opening of the beam
gate was chosen. Ions are thus transmitted if the gate opening is no earlier than 2.5µs
with respect to the arrival time of the ions at the gate. The ion count does not refer to
the number of ions in a single bunch. The scan is repeated several times with bunches
containing few ions. The suppression of the beam gate can vary with the number of ions
in the bunch, especially for large numbers, due to the phase-space distortion brought by
the ion-ion Coulomb interaction.

The purified bunch of ions undergoes a 90◦ bend and enters the vertical transport
section of ISOLTRAP, which contains two Penning traps. The first is the “preparation
Penning trap” [Rai97]. It is a cylindrical trap filled with helium buffer gas. Its end caps
are set at 100 V, so in order to capture the ions they have to be again decelerated in a
drift tube (“2nd deceleration cavity” in Fig. 2.5), by the same method used with the first
deceleration cavity. Their kinetic energy is this way reduced from ≈ 3 keV to less than
100 eV, which, together with the buffer gas in the preparation Penning trap, ensures that
the ions do not have enough energy to exit the trap. To allow the ions’ entrance into the
trap, the lower end cap is temporarily switched to low voltage.

Before the installation of the MR-TOF MS, the preparation Penning trap was the main
device used for the purification of the ion beam, by the mass-selective resonant buffer-gas
cooling technique [Sav91]. If the ions’ half-life is not a limitation, the trapped ion bunch
is initially allowed to cool its axial motion by buffer-gas collisions, for 100-150 ms. The
magnetron motion of all ions in the trap is then excited by a short dipole pulse (≈10 ms)
and their magnetron radius is increased to a value larger than the ejection aperture of
the Penning trap (which until 2012 had a diameter of 3 mm). A quadrupole excitation is
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then applied at the true cyclotron frequency of the ion of interest, performing a resonant
conversion of magnetron to cyclotron motion. The cyclotron motion is stable, meaning
that it is damped by buffer gas collisions, while the magnetron motion, being unstable,
is not damped [Bro86]. By consequence, the magnetron radius of the ion of interest is
reduced due to the quadrupole excitation pulse, while its cyclotron radius is reduced due
to buffer-gas collisions. Following a quadrupole conversion pulse of ≈ 100 ms length and
an additional waiting time of ≈ 50 ms, the resonantly-excited ions are centered in the trap,
while the contaminants are still orbiting on a large magnetron radius. At ejection, only
the former can pass through the ejection aperture, while the other ions are suppressed.

Figure 2.6(b) shows the effect of scanning the frequency of the quadrupole excitation
on the transmission of ions to the MCP situated above the preparation Penning trap
(LT detector in Fig. 2.5). Only one ion species is trapped (133Cs+), which is displaced
from the center of the trap and then re-centered resonantly by quadrupole excitation at
its true cyclotron frequency. Off-resonance, however, the re-centering doesn’t take place
and the transmission is zero. Scanning the frequency leads to the characteristic curve of
Fig. 2.6(b).

The resolving power of the technique can be as high as ≈ 105 for a preparation time on
the order a few hundred ms. This time requirement is more than one order of magnitude
higher than in the case of the MR-TOF MS, for a similar resolving power. For short-lived
isotopes (T1/2 < 100 ms) the resolving power of the trap must be sacrificed in order to
reduce the preparation time and minimize losses due to the decay of the ions of interest.
For these case, the MR-TOF MS is the method of choice for purification, while the
preparation trap is only used for cooling the ion beam. To achieve the ion-beam cooling
within the same preparation time, the pressure of the gas inside the trap is increased,
typically by an order of magnitude, which allows reducing the trapping time to a few tens
of ms.

The ion bunch ejected from the preparation Penning trap is transported to the pre-
cision Penning trap, where the TOF-ICR technique is used [Gra80], as described in the
previous section. The lower end cap of the precision trap is initially set to a low voltage
which allows the entrance of the ions into the trap. The end-cap is raised to its trapping
value when the ions are in the center of the trap. Moreover, the ring voltages of the
precision and preparation Penning traps are set to the same value. By these precautions,
one minimizes the axial amplitude of the ions’ motion in the precision trap and ensures
that the ions only explore the part of the trap in which the field imperfections are very
small. These imperfections can also be minimized by using a set of correction electrodes
for the electric field and a room-temperature correction (shim) coil for the magnetic field.
The correction procedure used for ISOLTRAP is described in [Bec09].

In case the ions of interest have close-lying contamination which cannot be resolved
by the MR-TOF MS or by the purification trap, a final method of purification is available
in the measurement Penning trap itself. To this end, after the dipole excitation of the
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Figure 2.6: Exemplary scans for the purification techniques used at ISOLTRAP. (a) shows the
ion transmission to the LT detector (with trapping) for different opening times of the BN beam
gate. The 2.5μs duration of the beam gate opening is reflected in the width of the transmission
window. (b) shows the ion transmission to the same MCP for different values of the frequency
of the quadrupole excitation in the preparation Penning trap (resonant buffer gas cooling). (c)
represents the ion transmission to the UT detector for different values of the frequency of the
dipole excitation (dipole cleaning). See Fig. 2.5 for detector position.
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magnetron motion, a dipole excitation of the cyclotron motion can be applied at the
modified cyclotron frequency of the contaminating ions. The amplitude of the driving
field is large, so that the cyclotron radius of the contaminating ions increases until the
ions are lost from the trap [Bec90]. A Gaussian-modulated amplitude is used for the
signal, so that the excitation sidebands (see Fig. 2.3(a)) do not excite any remaining ions
of interest. For an excitation time on the order of a few s, resolving powers as high as
106 can be achieved. A scan of the frequency of the dipole excitation for 133Cs+ ions
in the precision trap is shown in Fig. 2.6(c). The figure shows the transmission to the
MCP above the precision Penning trap (UT detector in Fig. 2.5). Off-resonance, the
ion transmission is not affected, but when excited resonantly at their modified cyclotron
frequency, the ions’ radius increases and they are no longer ejected from the trap. This
method is however not applicable when the ions of interest are short-lived, because it
requires long excitation times.

The high resolving power of ISOLTRAP’s Penning-trap purification techniques allows
even the separation of nuclear ground and isomeric states [Bol92]. To benefit from this
advantage, a decay-spectroscopy setup using a tape station as implantation site was in-
stalled above the precision Penning trap (“tape station” in Fig. 2.5). The setup was used
used to perform trap-assisted decay spectroscopy. A description of the setup and a report
of first results are given in [Kow12; Sta13].

The ion transport through the ISOLTRAP setup and the operation of the four traps
are optimized using reference ions, the same ones used for determining the masses of
radioactive nuclides from ISOLDE, as discussed in the previous section.

Two types of reference ions are currently available from sources that are part of the
ISOLTRAP setup [Kre13]: sodium, potassium, cesium and rubidium ions from a surface
ionization source (doped pellet heated to ≈ 1000 ◦C) and carbon-cluster ions (from C2 to
C>20) produced by a laser-ablation ion source (high-power laser directed at a glassy carbon
target). Both sources are represented in Fig. 2.5. The surface ion source has the advantage
of producing very stable and easily controllable, low ion currents (50 pA−1 nA), but the
disadvantage of only partially covering the mass range of radioactive nuclides produced at
ISOLDE (the heaviest alkali ion produced is 133Cs+). This has impact on the achievable
transmission efficiency through the setup with radioactive beam. The ion transport is
mass dependent due to the existing magnetic fields and, if the optimization is performed
with a reference ion very different in mass from the ion of interest, the transmission can
end up being significantly worse for the latter. To be more specific, the total efficiency
of ISOLTRAP (including detection efficiency) from in front of the ISOLTRAP RFQ to
the final detector above the precision Penning trap is typically around 1% if the ion of
interest is close in mass to one of the ions used for optimization, but can drop below 0.1%
when measuring heavy nuclides.

For heavy nuclides, the systematic mass-dependent error also becomes significant if
133Cs+ is used as reference. For example, in the case of the heavy francium isotope 233Fr
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measured in 2011 with ISOLTRAP, the ≈ 100 mass-units difference between the ion of
interest and the reference ion leads to a relative mass-dependent error of ≈ 2 × 10−8,
comparable to the achievable statistical uncertainties.

The laser ion source has the advantage of producing carbon clusters over the full mass
range of the studied radioactive nuclides, but the disadvantage of more significant count-
rate fluctuations, due to the strong dependence on the laser power and target condition.
Unlike the alkali ion source, which is placed before the RFQ, the laser ion source is placed
before the 90◦ bender. The carbon clusters are thus not passing through the RFQ and
MR-TOF MS and are only cooled an bunched in the preparation Penning trap. They
are primarily meant to be reference ions for high-precision measurements, for which the
mass-dependent uncertainty needs to be minimized. They can also be used to optimize
the ion transport between the two Penning traps, which is mass dependent due to the
two magnetic-field gradients. In the past, carbon clusters were used to perform system-
atic studies and determine the mass-dependent and residual uncertainties of ISOLTRAP
[Kel03]. This study needs to be repeated, due to the maintenance of the ISOLTRAP mag-
nets in 2013, which required removing the two Penning traps and much of the vertical
optics, discharging the magnets and temporarily moving them out of position. Following
their maintenance, they were re-charged and the magnetic-field homogeneity was cor-
rected with the so-called shim coils, followed by a re-alignment of the traps’ geometric
and magnetic-field axes. All these changes potentially modify the precision trap’s system-
atic errors.

2.5 Complementary applications of the MR-TOF MS

The detector placed behind the MR-TOF MS offers a much wider range of applications
than the synchronization of the BN-beam-gate opening with the arrival time of the ions
of interest. The MR-TOF separation and detection produces a time-of-flight spectrum,
which can be calibrated using ions of known mass and converted into a mass spectrum.
This information can then be used to identify the composition of the beam produced by
ISOLDE and to perform yield studies: the ratio of the number of counts in each time-
of-flight peak translates into the relative yield of the corresponding ion species [Wol13b;
Kre13].

The time-of-flight calibration of the MR-TOF MS is performed off-line with 85Rb and
133Cs ions. Due to temperature drifts, the time-of-flight values can change by a few µs in
the interval of a few days, meaning that the calibration must be repeated shortly before
the on-line time-of-flight spectrum is recorded. The drift however refers to the absolute
time of flight, the difference in time of flight between the different peaks being much more
stable.

An example time-of-flight spectrum obtained with the MR-TOF MS is presented in
Fig. 2.7(a). It shows the composition of an A = 152 ISOLDE beam produced through
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spallation from a tantalum target by 1.4 GeV protons. The dysprosium atoms are ionized
using ISOLDE’s resonance ionization laser ion source, while the other species are surface
ionized in the tantalum extraction cavity. The A = 152 isobars are selected from the
reaction products by the dipole magnet of the GPS.

Laser ionization allows identifying the dysprosium ions by a lasers on/off test (the
time-of-flight peak disappearing when the lasers are blocked is the dysprosium peak).
With this information one can use the dysprosium peak to correct the time-of-flight drift
and identify the other peaks by the relative displacement to it. This procedure is equiv-
alent to performing the calibration of the MR-TOF MS with an on-line reference. This
type of calibration is so precise that it can be used not only for identification, but even for
determining the mass of the other ion species in the time-of-flight spectrum, if the mass
of the on-line reference is well known. Mass determinations with ISOLTRAP’s MR-TOF
MS were already performed in 2012, showing that relative uncertainties lower than 10−6

are achievable for a few thousand detection events. The method was applied to determine
the masses of the neutron-rich calcium isotopes 52−54Ca [Wie13]. Due to the low yield
and short half-life of 53,54Ca, combined with the large contamination ratio (predominantly
due to 53,54Cr), the traditional Penning-trap technique could only be used up to 52Ca. For
this experiment, the MR-TOF MS not only appeared as an alternative mass-spectrometry
technique, but as a real option for pushing mass measurements further away from sta-
bility than currently possible. The masses of 53,54Ca allowed computing the two-neutron
separation energies between N = 32 and N = 34 along the calcium isotopic chain and
confirmed the prominent shell closure effect at N = 32 [Wie13].

Coming back to Fig. 2.7(a), using the 152Dy+ peak as reference, one can determine the
expected mean time-of-flight values for the possible isobaric contamination. Considering
the spallation cross section and the surface-ionization efficiency, the contamination of
the dysprosium beam is expected to consist of neutron-deficient rare-earth nuclides and
their molecules. Since many of these species are of valence III, they form diatomic oxide
molecules when in the ionic state (valence II). The time-of-flight values computed for
comparison thus refer to the neutron-deficient isobars of 152Dy either in the form of single
atoms or diatomic oxides. The green lines of Fig. 2.7(a) represent the cases for which a
match is found in the MR-TOF spectrum. The assignment is based entirely on the best
time-of-flight agreement. The much less abundant species, appearing only as traces in the
spectrum, are only tentatively assigned, because of their low yield.

Apart from mass determinations (and implicit identification), the MR-TOF MS can
also be used to perform nuclide-specific studies of the ISOLDE ion-beam production
parameters. Returning to Fig. 2.7(a). The effect of changing the proton current, target
and line temperature, ion source and separator parameters etc. can be studied for each
beam component individually. Some illustrative examples are presented in [Kre13].

A critical ISOLDE ion production parameter, the effect of which can be studied using
the MR-TOF MS, is the frequency of the lasers producing the resonant ionization of the
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Figure 2.7: Illustrative examples of applications of the MR-TOF MS as a beam analyzer from
spectra recorded on the downstream MCP detector. Panel (a) shows the resolved spectrum of
A = 152 isobars from ISOLDE. Dysprosium is laser ionized and is identified in the spectrum
by a lasers on/off test. The vertical dashed lines indicate the expected position, with respect to
the center of the dysprosium peak, of the mono-atomic and diatomic-oxide contaminants in the
beam (green indicates that the spectrum contains evidence for positive identification based on
the best time-of-flight agreement). Panel (b) shows the variation of the ionization efficiency of
152Dy with the frequency (expressed in cm−1) of the first excitation step of the RILIS scheme.
The figure is recorded by gating on the arrival window of the dysprosium ions. The red line
represents a Gaussian fit of the ionization efficiency.
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ion of interest. In the case of Fig. 2.7, by gating on the time-of-fight window in which the
dysprosium ions arrive at the detector behind the MR-TOF MS, one can analyze how the
ionization efficiency of 152Dy varies with the laser frequency, without being impeded by
the contaminating isobars. In the example, dysprosium is ionized by a three-step scheme.
Figure 2.7(b) shows the variation of the ionization efficiency when scanning the frequency
(expressed as wavenumber2) of the first excitation step. The red line shows a Gaussian
fit to the ionization-efficiency curve. The curve does not decrease to zero, because, in the
absence of laser ionization, some dysprosium atoms are still surface ionized. The scan
is a proof of principle, showing the Gaussian profile of the laser excitation line, Doppler
broadened due to the high temperature of the ionization cavity (ca. 2000◦C). 152Dy is an
even-even isotope, so it has no hyperfine structure (HFS). For sufficiently narrow laser
excitation line width, a similar scan would allow accessing the HFS of the atomic levels.

Through the HFS, one can access a whole new range of nuclear properties, comple-
mentary to the nuclear binding energy, such as the mean-squared charge radius, spin,
magnetic moment and spectroscopic quadrupole moment. The shift of the HFS center
of gravity along an isotopic chain (the isotope shift) is also a concern for the ioniza-
tion efficiency of exotic isotopes, for which the correct excitation frequencies are shifted
with respect to those of the stable isotopes. Additionally, if known, the HFS can be in
special cases exploited to produce the selective ionization of different long-lived nuclear
states (isomers). For example, if the hyperfine splitting of the nuclear ground state is
significantly different than the hyperfine splitting of an excited isomer, one can selectively
ionize either the ground state or the isomer depending on the chosen frequency of the
resonant ionization steps. Since isomers have in many cases a very low excitation energy,
making them unresolvable for any purification techniques (including ISOLTRAP’s), se-
lective ionization can be the only chance of producing isomerically pure beams for mass
spectrometry and other experiments.

Test HFS studies using the MR-TOF MS have indeed shown that it is not only an
alternative to other detection methods for resonance-ionization laser spectroscopy, but a
valid technique. Traditionally, the ISOLDE in-source spectroscopy studies (with RILIS)
use either a Faraday cup to detect the total beam current (for the abundant nuclides
close to stability), or the detection of the decay particles (alpha, beta, gamma), for the
short-lived nuclides [Mar13]. There is however a class of nuclides (especially the ones
intermediate between the two above mentioned extremes), for which the yield is too low
to allow Faraday-cup detection, while the contamination and decay mode, or detection
rate (half-life, branching ratio, detection efficiency) prevent the use of decay the radiation
to estimate the ionization efficiency. For this class of nuclides, the MR-TOF MS is the
most efficient method to use, providing contamination-free, laser spectroscopy studies with
direct ion detection. In this case, the surface-ionized contamination is not only resolved,
but it can also serve as a normalization tool for the hyperfine spectra, allowing correction

2to convert into units of frequency one needs to multiply by the velocity of light
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for any changes in beam production and transport parameters.
Further examples of the complementary applications of ISOLTRAP’s MR-TOF MS

are presented in [Wol13b; Kre13; Mar13].

2.6 Experimental results

During 2011 and 2012 some 15 experiments with radioactive ISOLDE beams have taken
place at ISOLTRAP. Some of the experiments were unsuccessful. Others failed to measure
the originally intended nuclides, but succeeded in measuring other nuclides or performing
complementary studies, including the demonstration of new methods. Approximately a
third of the experiments measured nuclear data which were part of the original wish list.
Most of the masses resulting from these experiments have been either published already
or are close to publication. A list of the resulting articles is presented in Appendix C. In
the following, the measurements which were analyzed as part of this thesis’ work will be
discussed.

2.6.1 Neutron-rich rubidium isotopes

The study of neutron-rich rubidium isotopes continued the ISOLTRAP measurements in
the neutron-rich A ≈ 100 region of the nuclear chart. As already discussed in the first
chapter for the zirconium isotopes, neutron-rich A ≈ 100 nuclides undergo an intrigu-
ing evolution from the magic neutron number N = 50 towards the neutron mid-shell at
N ≈ 66, passing from spherical to strongly-deformed shapes through a variety of interme-
diate configurations. Abundant with complementary experimental evidence, the region
has become effectively a textbook case for studying the evolution of nuclear structure re-
sulting from the competing tendencies making up the residual interaction between valence
particles. Previous Penning-trap measurements performed with ISOLTRAP have shown
however that, in what concerns the mass surface (e.g. two-neutron separation energies),
the apparent sub-shell effect at N = 56 and the sudden onset of deformation at N = 60
are no longer present in the krypton isotopic chain [Del06; Nai10]. Rubidium isotopes are
thus the low-Z border of the region in which all this variety of phenomena takes place
and it is interesting to study how their structure evolves further towards the neutron
mid-shell.

Neutron-rich rubidium isotopes 98−100Rb were measured by ISOLTRAP as part of
the last experiment of 2012. The rubidium isotopes were produced as fission products
of the collision between 1.4 GeV protons and a uranium carbide target. They were
extracted from the ca. 1800◦C ISOL target by thermal effusion, surface ionized in a
tantalum cavity of ca. 1800-2000◦C and accelerated to 50 keV kinetic energy. The beams
were then transported through the high-resolution separator of ISOLDE and delivered
to ISOLTRAP. Due to a favorable combination of production cross section and surface-
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ionization efficiency, the 98−100Rb+ beams contained much less contamination than ions
of interest (strontium isobars being a likely example).

Due to the short half-life of the studied rubidium isotopes, their yield decreased quickly
after each proton pulse. The opening of the ISOLDE beam gate was thus synchronized
to the proton impact on the target and the ions were each time accumulated in the
ISOLTRAP RFQ for a short period of time, ranging from 50 ms for 98Rb to 200 ms for
100Rb. Due to the high purity of the rubidium beams, the trapping time in the MR-TOF
MS was set to only 2.5 ms, yielding a low resolving power. Together with a 110 ms
preparation time in the first Penning trap, this was sufficient to eliminate any potential
contamination in the rubidium beam. The ion bunches were then transported to the
precision Penning trap, where their cyclotron frequency was measured by the TOF-ICR
technique. 85Rb+ ions were used as references for the measurement. The main parameters
of ion production, the trapping times in the MR-TOF MS and in the preparation Penning
trap, as well as the number of TOF-ICR measurements and corresponding excitation
times are summarized in Table 2.1. A superscript R indicates that the TOF-ICR used a
Ramsey-type quadrupole excitation of the ions in the precision Penning trap.

Apart from the traditional TOF-ICR technique with a rectangular envelope of the
quadrupole excitation signal, for the studied rubidium isotopes the Ramsey-type exci-
tation was also used [Geo07a; Geo07b]. This type of excitation contains two shorter
rectangular pulses, separated by a waiting time. The resonance pattern changes from
the one of Fig. 2.3(c), with a large minimum in the middle and small side bands, to a
pattern of narrow fringes, shown in Fig. 2.8. The figure is symmetric and not all fringes
are as deep as the central one, but because the scan range is centered on the latter it is a
priori ambiguous to tell which time-of-flight minimum corresponds to the true cyclotron
frequency. For the analysis of the Ramsey-type measurement, a regular TOF-ICR spec-
trum is still required beforehand in order to fix the center of the Ramsey resonance. Still,
because the information in the spectrum is much richer (there are several minima with
very sharp slopes) and because the fringes are narrower than the central minimum of the
standard resonance, for the same total measurement time, the Ramsey-type TOF-ICR
measurement allows better constraining the true cyclotron frequency of the ion of interest
by the fit. The result is a lower statistical uncertainty when the Ramsey-type excitation is
applied, for the same quadrupole excitation time (including waiting time) and number of
detection events. This recommends the Ramsey-type TOF-ICR as an excellent solution
for low-yield, short-lived nuclides, for which long excitation times cannot be used in the
measurement trap.

Table 2.2 presents the results of the analysis of the 98−100Rb+ data. For each iso-
tope, the half-life, the frequency ratio with respect to 85Rb+ and the mass excess of the
corresponding atomic species is presented, with the corresponding total uncertainties (sta-
tistical and systematic). If already present in the AME, the evaluated mass-excess value
is also shown. The main references contributing to the AME values are specified for each
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Table 2.1: Parameters describing the production, preparation and measurement of the rubidium
and gold nuclides discussed in this work. The total trapping times for the MR-TOF MS and
preparation trap are rounded and displayed in the corresponding columns. The last column
presents the number of TOF-ICR measurements and exact excitation time in the precision trap.
The superscript R indicates that a Ramsey-type resonance was recorded. For details, see text.

Production Preparation/Measurement
Date Target/line Source Energy Sep. Ion MR-TOF MS Prep. trap Prec. trap

Oct 2012 UCx/Ta Ta-surface 50 keV HRS

98Rb+ 2.4 ms 110 ms
2× 180 ms
2× 300 ms
2× 400 ms

99Rb+ 2.4 ms 110 ms
1× 100 ms
1× 200 ms
2× 100 msR

100Rb+ 2.4 ms 110 ms
1× 50 ms
1× 100 msR

May 2012 UCx/Ta RILIS 30 keV GPS
185Au+ 10× 32.7 ms 360 ms

1× 1.2 s
3× 3 s
1× 5 s

191Au+ 10× 33.2 ms 360 ms 4× 1.2 s

Oct 2012 UCx/Ta RILIS 50 keV HRS

180Au+ 32.2 ms 110 ms
1× 1.2 s
1× 1.8 s
1× 2.5 s

188Au+ 65.9 ms 110 ms
2× 1.2 s
1× 3 s

190Au+ 33.1 ms 110 ms 2× 1.2 s

isotope.

The mass of 98Rb was already studied with the TITAN Penning-trap mass spec-
trometer at TRIUMF [Sim12]. An isomeric state is present in 98Rb, evaluated in the
NUBASE2012 at 600(120) keV excitation energy and 96 ms half-life, which however was
not observed by TITAN. To investigate the presence of this isomeric state in the ISOLDE
beam, six standard TOF-ICR measurements of 98Rb+ were performed, of increasing ex-
citation time (from 180 to 400 ms). The measurement of longest excitation time and
statistics is presented in Fig. 2.9. The individual ion-detection events are represented
by the color map, together with the mean time of flight corresponding to each value of
the excitation frequency. The red dashed line marks the fit by the theoretical resonance
curve. The detection events at low time of flight (≈ 170µs) correspond to ionized rest
gas resulting from the beta decay of the rubidium ions inside the trap. The expected
position of the resonance peak of the 600-keV isomer is marked by the vertical dashed
line. One observes that the detection events around this excitation frequency do not form
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Figure 2.8: TOF-ICR resonance of 100Rb+ obtained with a Ramsey-type excitation pattern
[Geo07b]. For each frequency value, the experimental mean time-of-flight of the ions is rep-
resented in full circles. The fitted theoretical resonance curve is represented by the red line
[Kre07].
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Figure 2.9: TOF-ICR resonance of 98Rb+ for with a 400 ms quadrupole excitation time. The
experimental time-of-flight of each detection event is represented. The color map reflects the
number of counts in each time-of-flight bin. The mean time of flight is also shown for each
frequency value (open circles). The fitted theoretical resonance curve is represented by the red
dashed line. The vertical dashed line shows the expected position of the resonance minimum
corresponding to the isomer in 98Rb, according to its excitation energy from [Aud12].

the pattern corresponding to a resonance minimum. Because the isomer and the ground
state would be resolved in this frequency scan, the ions of the isomeric state would have to
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appear at a large time of flight above the central resonance minimum. However, nothing
of this kind is observed in Fig. 2.9. The conclusion is that, if present in the trapped beam,
the 98Rb isomer is much less abundant than the ground state.

The mass of 99Rb is already known in the atomic mass evaluation, constrained by a
beta-decay endpoint measurement [Iaf84] and by a mass measurement performed with a
double-focusing spectrometer at ISOLDE [Aud86]. The uncertainty of the mass value is
however quite high at 110 keV. In the ISOLTRAP experiment, two standard TOF-ICR
measurements were performed, one with 100 ms and one with 200 ms excitation time.
To improve the uncertainty, two measurements with Ramsey-type excitation were also
performed, with 100 ms total excitation time (including the waiting time).

The mass of 100Rb was determined for the first time by the ISOLTRAP experiment.
Due to the very low yield of the 100Rb+ beam (≈ 1000− 2000 ions per proton pulse) and
the rapid degradation of the uranium-carbide target condition during the experiment,
only two TOF-ICR measurements were performed. The first was a standard TOF-ICR
measurement with 50 ms quadrupole excitation time. The second was a Ramsey-type
TOF-ICR measurement with 100 ms quadrupole excitation time. The first measurement,
although much less precise, was necessary to determine the center fringe of the Ramsey-
type resonance. With a half-life evaluated to 48(3) ms in NUBASE2012 [Aud12], 100Rb
is one of the shortest-lived nuclides measured at ISOLTRAP by the TOF-ICR technique.

The results of the measurements are summarized in Table 2.2. The mass excess values
from the AME2012 are also specified, together with the references which give the major
contribution to the evaluated result. One notices that the ISOLTRAP value of the 98Rb
mass excess differs by more than two standard deviations from the TITAN value. The
determined mass excess of 99Rb agrees with the value of the atomic mass evaluation. The
determined mass excess of 100Rb differs significantly from the AME2012 extrapolated
value.

Table 2.2: Frequency ratios with respect to 85Rb and mass excess (ME) values of the rubidium
isotopes measured in this work [Man13]. The half-lives (T1/2) of the isotopes from NUBASE2012
[Aud12] and the mass excess values from AME2012 [Wan12] are also given ( # indicates extrap-
olated values). The last column specifies the references contributing to the AME2012.

Isotope T1/2 r = νc,ref/νc MEISOLTRAP MEAME2012 References

(ms) (keV) (keV)
98Rb 114(5) 1.153453259(51) -54309.4(4.0) -54318(3) [Sim12]
99Rb 54(4) 1.165270584(57) -51120.3(4.5) -51210(110) [Iaf84; Aud86]
100Rb 48(3) 1.17710920(25) -46247(20) -46550#(200#)

The two-neutron separation energies of the neutron-rich A ≈ 100 nuclei are represented
in Fig. 2.10. The values obtained using exclusively AME2012 masses [Wan12], or using at
least one of the rubidium masses from Table 2.2, are plotted with full and empty circles,
respectively. One observes that the slight correction of the 99Rb mass by the ISOLTRAP
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Figure 2.10: Two-neutron separation energies of rubidium isotopes. The full circles represent
S2n values computed using masses from AME2012 [Wan12]. The values obtained using at least
one of the new rubidium masses measured with ISOLTRAP [Man13] are shown as empty circles.

value doesn’t significantly change S2n at N = 62 and that the newly computed S2n at
N = 63 follows the trend of the previous two isotopes. The region of deformation persist
in the rubidium chain at least up to N = 63. An interpretation of the ground-state masses
and charge radii of the neutron-rich A ≈ 100 nuclei in the framework of self-consistent
mean-field theory will be given in Chapter 4.

2.6.2 Neutron-deficient gold isotopes

Neutron-deficient gold isotopes were studied with ISOLTRAP in 2012 during two different
experiments. For both experiments, the isotopes were produced as spallation products of
the reaction between 1.4-GeV protons and a uranium carbide target. They were ionized
in a tantalum cavity by resonance laser ionization (RILIS). The isotopes 191Au and 185Au
were produced in the first of the two experiments as a 30-keV beam and purified using
the general purpose separator of ISOLDE. The beams of 190Au, 188Au and 180Au were
produced in the second experiment as a 50-keV beam and were purified by ISOLDE’s
high resolution separator.

In both experiments, the ISOLDE separators eliminated all but the isobaric contam-
ination of the gold beam. The remaining contaminants were mostly the surface-ionized
thallium isotopes, which were however only significantly abundant, with respect to the
gold isotopes, on masses A > 185.

The experimental study had two primary goals. The first goal was to refine the mass
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Figure 2.11: Two-neutron separation energies and mean-squared charge radii of the gold isotopes.
The S2n values are computed using masses from AME2012 [Wan12]. The mean-squared charge
radii are plotted as differences to the N = 115 isotope. The evaluated values of [Fri04a] are
used. The experimental charge-radii uncertainties are smaller than the used symbols.

surface along the gold isotopic chain. As shown in Fig. 2.11, the mean-squared charge
radii of the gold isotopes exhibit a sudden jump between N = 108 and N = 107, hinting
at an onset of static deformation towards the neutron mid-shell [Wal87; Wal89; Sav90;
Bla97]. The two-neutron separation energies of the gold isotopes computed with AME2012
masses [Wan12], also shown in Fig. 2.11, exhibit an interesting behavior between N = 107
and N = 111, which seems to reflect a sudden change of nuclear state: a drop between
N = 108 and N = 109, followed by an enhancement at N = 111. However, it could also
be the result of an underestimation of the binding energy of the N = 109 gold isotope.
Due to its formula which combines the binding energies of nuclei with N0 and N0 − 2
neutrons, the S2n trend would mark this type of error at neutron number N0 by a sudden
drop between N0 − 1 and N0 and by a sudden increase between N0 + 1 and N0 + 2. A
re-measurement of the binding energy of the N = 109 gold isotope could in this context
completely smooth out the S2n trend in the region.

The second goal of the study was the search for isomeric states in the neutron-deficient
gold isotopic chain. In the 185,188,190Au isotopes, low-lying isomeric states are proposed in
the NUBASE [Aud12] and ENSDF [Bha92] evaluations, at unknown excitation energy.
The ordering with respect to the state of determined mass is also ambiguous for these
isomers. If present in the ISOLDE beam, the ISOLTRAP purification and measurement
techniques could provide a very clean way of determining these isomers’ mass and differ-
ence in energy with respect to the state already included in the atomic mass evaluation
[Wan12].

During both experiments, the gold isotopes were well separated in time of flight from
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their isobaric thallium contamination after 1000 revolutions in the MR-TOF MS. For
188Au, 2000 revolutions were used (see Table 2.1 for the corresponding trapping times).
Consequently, the Bradbury-Nielsen beam gate was used to suppress the thallium con-
tamination for all studied isotopes. The cycle of the preparation Penning trap was slightly
different between the two runs. The first experiment used a long, ≈ 360 ms cycle, provid-
ing a resolving power of a few 104. The second experiment was meant to study potentially
short-lived states (e.g. isomers in 188,190Au of half-life ≈ 100 ms), so the preparation-trap
cycle was reduced to one of ≈ 110 ms length. Nevertheless, the preparation Penning trap
still complemented the MR-TOF MS purification with a modest resolving power of ≈ 104.

For the long-lived isotopes 191,185Au, the so-called “stacking” technique was used.
Bunches of MR-TOF purified gold beams were repeatedly injected and accumulated in
the preparation Penning trap (for up to 10 times), before being sent to the precision
Penning trap for measurement. As discussed in [Ros14], this allowed reducing the effective
measurement time required for achieving the same number of detection events, because one
decoupled the fast purification part from the slow measurement part of the experimental
cycle (dominated by the long quadrupole excitation time in the precision trap). For
the isotopes in which short-lived isomeric states were sought, the stacking technique was
not used because it would have lead to the decay of the isomeric state in the preparation
Penning trap. The main parameters of ion production, the trapping times in the MR-TOF
MS and in the preparation Penning trap, as well as the number of TOF-ICR measurements
and corresponding excitation times are summarized in Table 2.1. A factor 10 in front of
the MR-TOF MS trapping time indicates that the stacking technique was used.

The search for isomers was performed by two different approaches. The first approach
aimed at studying the hyperfine structure of the gold isotopes of interest by in-source laser
spectroscopy, to exploit the potentially different hyperfine splitting of the isomeric state
and achieve its selective ionization. If such a scenario were true, the gain would be two-
fold: enhancing the isomer’s yield and purifying it from the ground state. In the absence
of any hyperfine-structure selectivity, the second approach was to transport the ions to the
measurement trap and perform high-resolution (long quadrupole-excitation time) TOF-
ICR measurements, for the cases where the isomer’s half-life (known or estimated form
systematics) allowed it.

For the first approach, the scans were performed in-source (with the RILIS lasers),
using the first excitation step of the ionization scheme (the 6s 2S1/2 → 6p 2P1/2, 267.7 nm
transition). The ion counts were recorded on the detector behind ISOLTRAP’s MR-TOF
MS. A complete MR-TOF separation of the background was achieved on all studied gold
isotopes, thus the HFS scans were free of contamination. The validity of this approach
was confirmed in the case of 191Au, for which the hyperfine structures of the known 3/2+

ground-state and 11/2− isomer were recorded. Because the two structures have very
different splitting, the two states could be separately ionized and individually measured
with ISOLTRAP’s Penning-trap system. The results are presented in [Kre13].
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Figure 2.12 shows a scan of the frequency of the first excitation step of the 185Au
ionization scheme. The scanned laser is frequency tripled, which makes the displayed
values three times smaller than the actual excitation frequency. Because the electron in
the S state has a large overlap with the nucleus, its hyperfine interaction and the resulting
splitting of the S-level is large. The overlap of the P electron with the nucleus is smaller,
leading to a lower splitting of the P atomic level. Considering the transitions between the
hyperfine states of the two atomic levels, one expects in the hyperfine spectrum two pairs
of closely-spaced resonances (each pair representing transitions from the same S state to
the two different P states), separated by a larger frequency interval. Due to the Doppler
and power broadening of the laser, the splitting of the P level is not resolved, thus only two
peaks appear in the hyperfine spectrum. The red line represents a fit by the theoretical
shape of the hyperfine spectrum, for a Gaussian broadening of the line-width. The nuclear
spin is assumed to be I = 5/2, which is the known spin of the 185Au ground state. The
intensities of the two peaks are left as free parameters, because of possible changes of the
laser ionization efficiency during the scan (for example, due to a drift of the laser-beam
position in the ionization cavity). The fit allows extracting the center (unperturbed)
frequency of the hyperfine structure (CG in Fig. 2.12), from which the isotope shift of the
transition (with respect to a reference gold isotope) can be extracted. The systematics
of isotope shifts along the gold isotopic chain can then be used to determine the charge
radii of the corresponding nuclides. The fit also allows extracting the hyperfine constant
A of the 6s2S1/2 atomic state, which gives access to the magnetic moment of the nucleus.
The obtained value of the A factor is in reasonable agreement with the value from the
literature [Wal87].

The scan of the hyperfine structure of 185Au extends significantly beyond the position
of the two main peaks. This is because the main aim of this scan was not to determine the
isotope shift of the 185Au ground state, but to search for additional hyperfine-structure
components, which might be related to the ionization of the 185Au isomer. The scan of
Fig. 2.12 shows that no such components were identified. Possible explanations are that
the isomer is not produced as abundantly, or that its hyperfine structure is not much
separated from that of the ground state. Similar scans were performed for 190,188,180Au,
without revealing any other additional hyperfine structure than the one known from liter-
ature. For the short-lived isomers in 190,188Au, the slow release from the target is another
factor which can contribute to their suppression. However, the performed scans serve as
proof of principle of the advantages of using the MR-TOF MS to purify the ion beam,
allowing a significant increase of the dynamic range of the scans.

All studied gold isotopes were transported to the measurement Penning trap for de-
termining their cyclotron-frequency ratio with respect to 133Cs+. For the ones where the
isomer was expected to be long lived (e.g. 185Au, possibly 180Au), TOF-ICR measure-
ments with longer quadrupole excitation time were also performed. None of them revealed
a clear signature for an isomeric state being present in the beam. In the case of 185Au,
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Figure 2.12: Resonance-ionization laser spectroscopy of the 6s 2S1/2 → 6p 2P1/2 transition in
185Au, performed using MR-TOF ion separation and time-of-flight-gated detection. The scan is
performed in-source, using the first excitation step of the RILIS ionization scheme. Due to the
broadening of the laser line-width, only the splitting of the S atomic level is resolved. The red
line represents a fit of the spectrum by the theoretical line-shape (for details, see text).

the excitation energy of the isomer is unknown and expected to be very low, which means
that, even for a long measurement time, it might still not be resolved from the known
state, especially if its yield is significantly lower.

The results of the frequency-ratio measurements for the studied gold isotopes are
presented in Table 2.3, together with the resulting mass-excess values. As for the rubidium
measurements, the NUBASE2012 half-life [Aud12] and the AME2012 evaluated mass
excess [Wan12] of each isotope is specified. The references providing the main links to
the masses of the studied isotopes in the AME are also given.

Four TOF-ICR measurements of the 191Au+ ground state were performed, at 1.2 s
quadrupole excitation time. The very low yield of the resonantly-ionized isomer in 191Au
did not allow a precise mass determination, but only an identification of the state based
on its excitation energy (see [Kre13]). A Penning-trap mass determination would not have
contributed significantly to the mass of the state, due to its very well known excitation
energy [Aud12]. The ground-state mass-excess value deduced from the frequency-ratio
measurement is in agreement with the AME2012, but reduces the uncertainty by almost
an order of magnitude.

Two TOF-ICR measurements of 190Au+ were performed, with a 1.2 s excitation time.
The determined mass excess shows a significant deviation from the AME2012 (≈ 50 keV,
representing three standard deviations of the literature value). A very large deviation of
≈ 90 keV (six standard deviations of the literature value) is also found for 188Au, based
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Table 2.3: Frequency ratios with respect to 133Cs and mass excess (ME) values of the gold
isotopes measured in this work. The frequency ratio and mass excess of 191Au was already
published in [Kre13]. The half-lives (T1/2) of the isotopes from NUBASE2012 [Aud12] and the
mass excess values from AME2012 [Wan12] are also given ( # indicates extrapolated values).
The last column specifies the references contributing to the AME2012 value.

Isotope T1/2 r = νc,ref/νc MEISOLTRAP MEAME2012 References

(keV) (keV)
180Au 8.1(3) s 1.354140704(40) -25627.3(5.0) -25594(20) [Kel86; Wau93; Lit05]
185Au 4.25(6) m 1.391711258(21) -31858.2(2.6) -31867(26) [Sii68; Han70; Dau86]

[Bin91; Lit05]
188Au 8.84 (6) m 1.414279643(22) -32371.3(2.7) -32277(15) [Dau84; Lit05]
190Au 42.8(1.0) m 1.429324264(28) -32833.5(3.5) -32883(16) [Joh73; Dio74; Lit05]
191Au 3.18(8) h 1.43684065(4) -33797.7(4.9) -33810(40) [Vie76; Lit05]

δ

δ

Figure 2.13: Two-neutron separation energies and mean-squared charge radii of the gold isotopes.
The full symbols represent S2n values computed using entirely masses from AME2012 [Wan12].
The open symbols represent S2n values for which at least one of the contributing masses is a
new value analyzed in this work. The mean-squared charge radii are plotted as differences to
the N = 115 isotope. The evaluated values of [Fri04a] are used. The experimental charge-radii
uncertainties are smaller than the used symbols.

on three TOF-ICR measurements, two at 1.2 s and one at 3 s excitation time. However,
no deviation was found for 185Au, following five TOF-ICR measurements, one at 1.2 s,
three at 3 s and one at 5 s excitation time. For 180Au three TOF-ICR measurements were
performed at increasing excitation time (1.2 s, 1.8 s and 2.5 s), leading to a significant
improvement of the uncertainty of the mass excess and a correction larger than one
standard deviation of the literature value.
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The two-neutron separation energies obtained using the mass-excess values of Table 2.3
are shown in Fig. 2.13. They are compared to the values calculated using exclusively
AME2012 data [Wan12] and to mean-squared charge radii from the Fricke evaluation
[Fri04a]. One observes that the ISOLTRAP measurements lead to a smoother S2n trend
between N = 108 and N = 111. Nevertheless, the S2n trend is still not perfectly smooth
in this region. The drop between N = 108 and N = 109 still occurs, as well as what looks
like a flattening of the S2n slope between N = 109 and N = 111. This phenomenon will
be studied in Chapter 4 in the framework of self-consistent mean-field theory.



Chapter 3

Nuclear-theory concepts

3.1 Nuclear forces

Compared to the structure of electrons in atoms, nuclei mark the next dimensional scale
in terms of extent, duration and energy quanta of specific processes. The binding energy
of electrons occupying the inner-most atomic levels reaches several tens of keV, which
also defines their most energetic radiative transitions, situated in the X-ray range. The
typical energy of nuclear radiative processes is three orders of magnitude higher, the
charged particles and electromagnetic quanta emitted by nuclei having energies of a few
MeV. Nuclei are thus systems in full quantum regime and their structure and dynamics is
expected to obey the same laws of quantum mechanics as electron systems, but in a new
energy domain. Nevertheless, a few fundamental differences have to be considered when
passing from electron to nucleon systems, making the description of the latter much more
complicated.

First of all, nuclei are composed of two types of particles, protons and neutrons.
Electrons are bound by a fixed external potential created by the protons, to which the
electron-electron interaction acts as a correction. Nuclei are only (self-)bound by the
overall result of the many nucleon-nucleon interaction processes. Furthermore, unlike
atomic processes, which are electromagnetic in nature, nuclear processes are governed by
the electromagnetic, weak and strong interactions, the latter giving the major contribu-
tion to nuclear structure. Unlike electrons in quantum electrodynamics (QED), nucleons
are not elementary particles. Their elementary degrees of freedom are the quarks and
gluons of quantum chromodynamics (QCD), but nucleons have no overall color charge
and these degrees of freedom are not directly involved in the elementary interaction pro-
cesses which make up the nucleon-nucleon (NN ) force. Instead, the strong part of the
NN interaction emerges as a residual effect of QCD, modeled in Yukawa theory by the
exchange of virtual mesons [Yuk35], the explanation of which is nowadays given in connec-
tion to the spontaneous breaking of chiral symmetry [Epe09]. Quantum chromodynamics
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is however non-perturbative at the energy scale of nuclear processes, which are thus very
difficult to model from first principles. The standard approach is to approximate the NN
interaction through a static potential, using nucleons as elementary degrees of freedom
and encoding the hidden QCD physics in effective couplings [Bog10]. The most realistic
models, pertaining to the so-called ab initio methods [Sto94; Wir95; Mac01] restrict the
possible couplings of the NN potential by imposing a very general set of symmetries of
the strong force. Its spatial dependence is modeled phenomenologically or, for the long-
and intermediate-range parts, by using Yukawa-type, meson-exchange potentials [Rin00;
Epe09; Bog10]. The free parameters are then constrained to describe the experimental
NN scattering data.

Even so, these realistic (or “bare”) NN potentials are very difficult to use in practical
calculations due to their strong repulsive (“hard-core”) and tensor components at short
distance. For nuclear-matter and nuclear-structure calculations, the Brückner G-matrix
method has been used for a long time to construct an in-medium effective interaction from
the bare one [Rin00]. More recently, renormalization-group techniques have been exploited
to build low-momentum interactions, significantly improving their appropriateness for
numerical calculations [Bog10]. In this context one discusses the emergence of many-
body terms (such as three-body and higher order) in the NN potential, the strength of
which strongly depends on the resolution associated to the momentum scale for which
the potential is defined. Three-body forces turn out to be essential for obtaining a proper
description of light nuclei even at the level of the “hard-core” potentials [Pie01], their role
being related to the inner structure of the interacting nucleons. With the advancements in
effective field theory (EFT), chiral-EFT has emerged as a promising approach to building
effective NN potentials consistent with the symmetries of QCD, in which the two-, three-
, ... n-body terms of the interaction emerge consistently within the same theoretical
framework [Epe09; Bog10].

3.2 Many-body calculations

In nuclear-structure calculations one needs to solve the Schrödinger equation

Ĥ|ψ〉 = E|ψ〉, (3.1)

for the many-body Hamiltonian Ĥ:

Ĥ =
A∑
i=1

t̂(i) +
A∑
i<j

v̂(i, j), (3.2)

which contains, apart from the kinetic-energy terms t̂(i) , the NN potential v̂(i, j), de-
pending on the spatial, spin and isospin coordinates of the particles i and j [Rin00]. For
simplicity, Eq. (3.2) only contains a two-body potential.
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At this point, one adds to the complications of fundamental nature mentioned in the
previous subsection the complexity of the nuclear many-body problem itself, which has
made it impossible so far to solve the Schrödinger equation for more than just the lightest
of atomic nuclei, and this already at great computational cost [Pie01]. The description of
nuclear structure is thus not only plagued by uncertainties in defining the effective nuclear
potential, but also by the many approximations one makes in order to achieve a numerical
result in reasonable computational time. In what nuclear binding energies are concerned,
changes are small and rather smooth with the change of proton and neutron number.
Considering also the great numerical simplification they bring, it is not surprising that
macroscopic models with shell corrections have been so popular approaches until very
recently (worth mentioning is the finite-range droplet model, one the most developed and
successful versions of these models [Mol95]). Nevertheless, to describe other quantities
than the nuclear binding energy, size and shape, and to be able to constrain the properties
of the NN potential on nuclear data, pure microscopic approaches are required.

The two main microscopic models which have been so far used to calculate the proper-
ties of a wide range of nuclei are the Hartree-Fock-Bogoliubov approach [Ben03] and the
nuclear shell model [Cau05]. The former will be introduced in more detail in the follow-
ing section, the latter will be briefly described here. Both models start from the idea of
extending the independent particle approximation, successfully applied in atomic physics,
to the nuclear case. This is equivalent to saying that the interaction of a certain nucleon
with all the other protons and neutrons can be approximated at least in first order by a
mean field, i.e. a single-particle potential. The first success of the independent-particle
model was the explanation of nuclear magic numbers as closed shells of single-particle
states, as already discussed in Chapter 1 [May49; Hax49]. The states were obtained with
a harmonic-oscillator potential including spin-orbit (l · s) and centrifugal l2 terms. This
approximation is enough to explain qualitatively some of the observed nuclear properties,
but the inherently missing correlations caused by the NN interaction are too important
for the “naive” independent-particle picture to be accurate even in the case of closed-shell
nuclei.

Shell model is the natural extension of the independent-particle approximation, taking
into account explicitly the NN interaction, but restricting itself to the nucleons outside
a certain core (the so-called valence nucleons), which is considered inert, i.e. in which
nucleons occupy the single-particle states with probability one, as independent particles
would. Typically, a doubly-magic nucleus (both proton and neutron shells are closed) is
chosen as a core. Shell model thus explicitly solves the Schrödinger equation for the part
of the Hamiltonian of Eq. (3.2) corresponding to the valence nucleons. The single-particle
states allow defining the inert core and the valence space (set of single-particle states
which can be occupied by the valence particles) and form the basis in which the nuclear
Hamiltonian is expressed prior to diagonalization.

The nuclear shell model has been extensively used to calculate the ground-state and
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excited-state properties of light up to medium-mass nuclei [Cau05]. Very popular are
the so-called large-scale shell-model calculations, which are performed in valence spaces
including at least all single-particle states of a certain major shell (sd [Bro06], pf [Pov01;
Hon04], sdpf [Now09], to give some well-known examples). The effective interactions are
usually constrained on the properties of nuclei belonging to the studied valence space.
Compared to experiment, the results show in many cases a remarkable agreement, espe-
cially close to the nuclei used for the adjustment of the interaction. Still, extrapolations
can differ significantly for the same valence space if different interactions are used (see
[Wie13; Ste13] for some recent examples related to the N = 34 shell closure). The quality
of the obtained results depends in many cases also on the number of single-particle states
included in the valence space, which can be increased only at large computational cost.
For calculating medium to heavy-mass nuclei, this computational cost is very difficult to
overcome, so far making large-scale calculations impossible in these regions of the nuclear
chart.

During the last years, some of the monopole anomalies observed in the shell-model
description, requiring ad hoc readjustments of the effective interaction, were linked to its
previously disregarded three-nucleon part (see, for example, discussion in [Cau05]). First
shell-model calculations with interactions derived in chiral-EFT, in which three-nucleon
contributions are consistently included, have recently become available and show promis-
ing results [Bog10]. The additional numerical complications of these new approaches have
nevertheless restricted their predictions so far to chains of proton-magic nuclei, such as
oxygen [Ots10] or calcium [Hol12; Gal12; Wie13].

3.3 The Hartree-Fock-Bogoliubov approach

3.3.1 Hartree-Fock field

Similarly to other techniques used in theoretical nuclear physics, the Hartree-Fock (HF)
method [Rin00; Ben03] was first formulated for electrons in the Coulomb potential of
the atomic nucleus. The HF approach aims at approximating the exact solution to the
Schrödinger equation with that resulting from an independent-particle description, but
variationally optimizes the nuclear mean field which yields the single-particle states. This
is possible due to the equivalence between the Schrödinger equation and the condition
that the expectation value of the energy is stationary with respect to small variations of
the nuclear wave function. Furthermore, considering the many-body Hamiltonian H of
Eq. (3.2) and its lowest eigenvalue E0, any trial wave function |ψ〉 yields a higher energy
than E0 (see, for example, [Rin00] for proof):

E0 ≤
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

. (3.3)
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The variational principle is thus the starting point of the HF method, with all its
extensions. In the following, only the main results of the formalism will be highlighted
without proof, in order to illustrate its mathematical structure and to define some of the
concepts used in actual calculations. Unless specified, these are general concepts of self-
consistent mean-field theory, which are thoroughly detailed and referenced in textbooks
such as the one by Ring and Schuck [Rin00].

A common way to formulate the methods of nuclear many-body theory is by passing
from the basis of position eigenvectors (coordinate representation) to the basis of eigen-
vectors of a single-particle operator, such as the Hamiltonian of the spherical harmonic
oscillator. From the single-particle eigenvectors one can build an occupation-number rep-
resentation and the associated Fock states, which form a basis for the whole space of
many-body wave functions. This description benefits from the mathematical tools and
theorems of the second-quantization formalism and is well suited for the HF method,
the quantum states of which are Fock states corresponding to a variationally optimized
single-particle basis. The description can also be rather straightforwardly translated into
a numerical algorithm.

Given a basis of single-particle states, the many-body Hamiltonian of Eq. (3.2) can be
written as [Rin00]:

Ĥ =
∑
i,j

tija
†
iaj +

1

4

∑
i,j,k,l

v̄ij,kla
†
ia
†
jalak, (3.4)

with

tij = 〈i|t̂|j〉, (3.5)

v̄ij,kl = 〈ij|v̂|kl〉 − 〈ij|v̂|lk〉, (3.6)

matrix elements of the kinetic-energy and two-body potential between states of the single-
particle basis.

In Eq. (3.4), a†i and ai represent the creation and annihilation operators for the state
i, obeying fermionic anti-commutation relations 1. In the HF approach one seeks the
function which minimizes the energy in the subset of antisymmetric wave-functions of
independent particles, which in coordinate representation is a Slater determinant |φ〉 of
single-particle states. Using the creation operators of a single-particle basis, the Slater
determinant |φ〉 of A particles corresponding to this basis can be expressed as:

|φ〉 =
A∏
i=1

a†i |−〉, (3.7)

where |−〉 is the particle vacuum state. Using Eq. (3.4), the expectation value of the

1The operator symbol ˆ will be omitted, for simplicity, for the creation and annihilation operators
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energy for the a priori unknown state |φ〉 is [Rin00]:

E[ρ] = 〈φ|Ĥ|φ〉 =
∑
i,j

tijρji +
1

2

∑
i,j,k,l

ρkiv̄ij,klρlj, (3.8)

where
ρij = 〈φ|a†jai|φ〉 (3.9)

is the one-body density matrix.
One notices that in the HF case the binding energy is a functional of the nuclear

density. This is the first step towards density functional theory (DFT) [Koh65], a widely-
used approach to the quantum many-body problem for electron systems. In DFT, the
starting point of a many-body calculation is the energy density functional (EDF) and not
the many-body Hamiltonian. The existence of the EDF has been proven for systems in
an external potential, as well as the fact that the density which minimizes the EDF is the
ground-state density [Hoh64], which contains the full quantum-mechanical information
about the many-body system. The extension of DFT to the nuclear many-body problem
is nowadays a subject of great interest for theoretical nuclear-structure research, however
it goes beyond the scope of the current work (see [Dob11] for a recent review from the
nuclear-physics perspective). The Hartree-Fock and Hartree-Fock Bogoliubov approaches
are the simplest example of DFT, in which the EDF is still derived starting from an initial
Hamiltonian.

The variational condition of energy minimization with respect to the unknown Slater
determinant |φ〉 is equivalent to the minimization with respect to ρ, with the additional
condition that ρ2 = ρ (true when |φ〉 is a Slater determinant):

δ

δφ
〈φ|Ĥ|φ〉 = 0 ≡

(
δ

δρ
E[ρ]

)
ρ2=ρ

= 0. (3.10)

From Eq. (3.10) one obtains the Hartree-Fock equations [Rin00]:∑
j

hijDjk = εkDik, (3.11)

where
hij = tij + Γij = tij +

∑
l,k

v̄ikjlρlk (3.12)

is the HF single-particle Hamiltonian and

b†j =
∑
i

Dija
†
j (3.13)

is the transformation from the initial single-particle basis to the eigenbasis of ĥ. Equa-
tions (3.11) and (3.12) show that the Hartree-Fock equations are an eigenvalue problem
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for the single-particle Hamiltonian ĥ, which contains the single-particle kinetic-energy t̂
and the Hartree-Fock field Γ̂. The latter term, however, depends on the density matrix,
as shown in Eq. (3.12), which in turn depends on the Slater determinant |φ〉, i.e. on the
solution of the HF equations. Plugging Eq. (3.13) into Eq. (3.9), one obtains an expression
for the density matrix of the solution |φ〉:

ρij =
A∑
k=1

DikD
∗
jk, (3.14)

which allows writing the HF equations as:

∑
j

(
tij +

∑
l,k

A∑
m=1

v̄ikjlDlmD
∗
km

)
Djk = εkDik. (3.15)

Equation (3.15) is a self-consistent equation for the transformation from the initial
to the HF basis, which is solved iteratively. According to the variational principle, the
Hartree-Fock field Γ̂ is the optimal approximation of the given interaction v̂i,j to an
independent-particle potential, i.e. the one which minimizes the energy. The price to
pay is that generally the mean field breaks the symmetries of the nuclear Hamiltonian
H in a way accounting for the correlations which cannot be included explicitly in an
independent-particle picture. In particular, breaking the translational symmetry accounts
for the clustering of the protons and neutrons to form a finite nucleus, while breaking the
rotational symmetry (deformation of the mean field) accounts for the long-range part of
the NN interaction, which is responsible for multipole correlations.

3.3.2 Pairing field

There is significant experimental evidence for the existence of pairing correlations in nuclei,
such as the difference in excitation spectrum between even-even and odd nuclei, the
odd-even staggering of binding energies and the moments of inertia of rotational bands.
The concept of pairing was introduced in condensed matter physics, where, under the
action of an attractive (effective) interaction, electrons can couple to form the so-called
Cooper pairs, responsible at low temperatures for the phenomenon of superconductivity,
as described by the Bardeen-Cooper-Schrieffer (BCS) theory [Bro13]. Pairing correlations
are however not described by the Hartree-Fock field Γ̂.

In nuclei, as shown by M.-G. Mayer [May50], the attractive, short-range part of the
residual interaction energetically favors the coupling of two nucleons in the same j shell
to a total angular momentum J = 0. The prerequisites for the formation of Cooper pairs
are thus met in the nuclear environment, meaning that the concepts of BCS theory can
be extended to the nuclear many-body problem in order to include pairing correlations.
In the following, we will be referring only to the pairing between nucleons of the same
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kind (pp and nn pairing, respectively). Proton-neutron (pn) pairing is thought to play an
important role in the case of Z ≈ N nuclei [Dea03], but its impact is reduced for systems
with large neutron-proton asymmetry, as the ones we will mostly be referring to in this
chapter.

In BCS theory, instead of the Slater determinant of Eq. (3.7), one approximates the
ground-state wave function of an even-even system with the following ansatz [Rin00]:

|BCS〉 =
∏
k>0

(uk + vka
†
ka
†
k̄
)|−〉, (3.16)

where k and k̄ represent paired single-particle states and uk, vk are occupation amplitudes
(|vk|2 is the probability that the pair (k, k̄) is occupied and |uk|2 + |vk|2 = 1). A common
way of choosing k̄, the conjugate of the state k, is as its time-reversed state.

The BCS ansatz explicitly makes pairs of single-particle states appear in the expression
of the many-body wave function, which is no longer a state of independent particles. The
BCS ground state is also not an eigenstate of the particle-number operator. In the BCS
method, the coefficients uk and vk are variationally optimized to minimize the binding
energy, starting from the many-body Hamiltonian of Eq. (3.4) and with an additional
constraint on the particle number. The latter constraint ensures that the nucleus has a
correct number of protons and neutrons on average. From the variational condition of
energy minimization one obtains the BCS equations, which are self-consistent equations
for the coefficients uk and vk. The BCS formalism and resulting equations can be found,
for example, in [Rin00].

What is important for the following discussion is that the BCS wave function of
Eq. (3.16) can be written as a product state:

|BCS〉 ∝
∏
k

αk|−〉, (3.17)

where αk are annihilation operators corresponding to a new set of states (called quasi-
particle states), which are given by the following BCS transformation:

α†k = uka
†
k − vkak̄,

α†
k̄

= uka
†
k̄

+ vkak. (3.18)

The quasi-particle creation and annihilation operators also obey the fermion anti-
commutation relations. The equivalence between Eq. (3.16) and Eq. (3.17) suggests that
it is possible to describe pairing correlations while still approximating the ground state of
a nucleus by a product state, provided that it is a product of (independent) quasi-particle
states of BCS type Eq. (3.18). This is the object of the Hartree-Fock-Bogoliubov approach.
The Bogoliubov quasi-particles are defined more generally than the BCS quasi-particles
of Eq. (3.18), by the so-called Bogoliubov transformation [Rin00]:

β†k =
∑
l

Ulka
†
l + Vlkal. (3.19)
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Although more general, the Bogoliubov transformation is shown by the Bloch-Messiah-
Zumino theorem [Blo62; Zum62] to be a BCS transformation of type Eq. (3.18), performed
in the basis in which the one-body density matrix is diagonal (called the canonical basis).
Starting from the definition of Eq. (3.19), the ground-state wave function is then sought
as the most general product state of independent Bogoliubov quasi-particles:

|φHFB〉 =
∏
k

βk|−〉. (3.20)

The HFB wave function of Eq. (3.20) is, as the BCS wave function, not an eigenstate
of the particle number operator. It has the properties of a vacuum for the quasi-particle
space (zero quasi-particle state) and thus will also be called in the following HFB vacuum.
With the variational condition of energy minimization with respect to φHFB (essentially
Ulk and Vlk) and the additional constraint on particle number, ensuring the correct particle
number on average, one obtains the HFB equations [Rin00]:(

ĥ− λ ∆̂

−∆̂∗ −ĥ∗ − λ

)(
Uk
Vk

)
=

(
Uk
Vk

)
Ek, (3.21)

where ĥ is the HF single-particle Hamiltonian of Eq. (3.12), containing the HF field Γ̂,
λ is the chemical potential, determined by the particle-number condition, and ∆̂ is the
pairing field:

∆ij =
1

2

∑
l,k

v̄ijlkκlk, (3.22)

with κlk the pairing tensor:

κlk = 〈φHFB|akal|φHFB〉. (3.23)

The dimensionality of the HFB equations is twice that of the HF equations. For every
eigenvector (Uk, Vk) of energy Ek there is also the eigenvector (V ∗k , U

∗
k ) of energy −Ek. The

HFB wave function of Eq. (3.20) is determined by choosing one vector for each (Ek,−Ek)
pair [Rin00]. The choice of occupied (quasi-hole) and free (quasi-particle) states is non-
trivial. One common choice is to occupy the negative energy states, however, as discussed
in [Ber09], this prescription does not guarantee the minimization of the energy, or the
convergence of the algorithm.

Furthermore, irrespective of the average number of particles, the HFB wave function
has a certain number parity, meaning that it is either a mixture of odd or even states
of the particle-number operator [Ban74]. The number parity depends on the coefficients
of the Bogoliubov transformation. In general, the ground state of an even-even nucleus
is described by an HFB vacuum in which the negative-energy quasi-particle states are
occupied, which corresponds to a proper Bogoliubov transformation (matrix of the trans-
formation in Eq. (3.19) has the determinant equal to 1). The ground state of an odd
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nucleus is described as a single quasi-particle state created on the even HFB vacuum
[Rin00; Dug01; Sch10], corresponding to the improper Bogoliubov transformation (ma-
trix of the transformation in Eq. (3.19) has the determinant equal to -1). This is achieved
in practice by replacing a quasi-particle state in the HFB wave function with the state
of opposite energy. A more detailed description of this procedure and its implications
can be found in [Ber09; Dob09b; Sch10]. Apart from the change of number parity of the
wave function, the matrix U of the Bogoliubov transformation becomes singular and the
occupation amplitude of one of the single-particle states becomes equal to one. This state
no longer contributes to the pairing field and in this sense it is “blocked” [Rin00].

The spectrum of quasi-particle energies is unbound from below and from above, which
means that the sums defining the density matrix and pairing tensor run over an infinite
number of terms. The HFB method thus requires a truncation of the quasi-particle space
(see [Dob01] for an applied discussion).

3.4 Competition between particle-particle and

particle-hole correlations in nuclei

The HFB equations of Eq. (3.21) are a generalization of the HF equations of Eq. (3.11),
following the extension of the variational space from the space of HF wave functions of
type Eq. (3.7) to the space of HFB wave functions of type Eq. (3.20). With this extension,
apart from the one-body density matrix ρij of Eq. (3.9), the information on the many-body
wave function is also contained in the pairing tensor κij of Eq. (3.23). The definitions of
the two quantities ρij and κij reflect the types of correlations which are accounted for by

the corresponding fields, the HF field Γ̂ and the pairing tensor ∆̂, respectively. For a Slater
determinant φ (pure HF case), the pairing tensor is null, because it reduces to the scalar
product of two orthogonal Slater determinants (of different particle number). The pairing
field of Eq. (3.22) is in this situation also null. The HF approximation thus accounts
only for the particle-hole correlations (a†jai) through the HF field Γ̂. The particle-particle

correlations (ajai) are included in the HFB framework through the pairing field ∆̂.

The two types of correlations can be traced back to the different components of the NN
interaction. In the shell-model framework, these components can be rigorously extracted
by the monopole-multipole decomposition of the nuclear Hamiltonian (see [Cau05] for
a summary). The long-range part of the multipole Hamiltonian is responsible for the
particle-hole correlations and can be in turn decomposed into quadrupole-quadrupole,
octupole-octupole and higher multipole terms, which define the quadrupole, octupole
and higher multipole correlations, respectively. The short-range, attractive part of the
interaction is responsible for the particle-particle correlations (pairing phenomena). Both
long-range and short-range parts of the interaction act between particles of the same kind
(pp, nn) or of different kinds (pn). Particle-hole correlations are primarily driven by the
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pn part of interaction, because as such they are not restricted by the Pauli principle. As
mentioned before, particle-particle correlations in very asymmetric nuclei (where the N/Z
ratio is significantly greater than 1) are predominantly driven by the pp and nn parts of
the interaction.

As discussed in [Cas05], with respect to an initial single-particle picture resulting from
a spherical mean field, the long-range part of the residual interaction favors the occupation
of orbits with a specific angular relationship which maximizes its attractive effect. As
such, it has a polarizing influence on the nuclear density and drives the deformation of
the nuclear mean field, each mode of the mean-field deformation being connected to the
corresponding multipole component of the residual interaction. Contrary to this tendency,
the short-range part of the interaction favors the coupling of nucleons to pairs of angular
momentum 0, the density of which has no angular dependence [Rin00]. Consequently, the
effect of pairing correlations is to drive the nucleus to a spherical shape. The strength
of both types of correlations is diminished close to magic numbers and becomes most
significant in mid-shell regions. What results is a competition between the two contrary
tendencies with the change in proton and neutron number. Close to magic numbers,
particle-particle correlations dominate and nuclei maintain their spherical shape, while in
the mid-shell regions of the larger valence spaces, particle-hole correlations dominate and
the nuclear mean field is deformed.

In the absence of pairing correlations, all open-shell nuclei would be deformed as a
manifestation of the Jahn-Teller effect [Jah37]. With pairing, however, nuclear structure
goes from magic to mid-shell nuclei through a variety of intermediate states. Although
simple descriptions as the so-called NpNn scheme allow qualitatively tracing the general
trends of nuclear properties [Cas87], a quantitative description requires accounting for the
particular microscopic conditions. One such example is that of the neutron-rich zirconium
(Z = 40) isotopes, the observables of which were already presented and discussed in
Chapter 1 (see Fig. 1.6). Analyzing the low-lying excitation spectrum of the zirconium
isotopes, it was argued that the spatial overlap of the proton and neutron orbits acts
as an important catalyst of the onset of deformation through the long-range part of the
proton-neutron interaction, after the filling of the N = 56 sub-shell [Fed79]. The flat
trend of the E(2+) energies for the even-even strontium (Z = 38) isotopes (not peaking
at N = 56, as in the zirconium chain), was later attributed to a gradual reduction of the
energy gap between the 2p1/2 and 2p3/2 proton single-particle levels with the addition of
neutrons [Fed84], thus pointing to a fine interplay in the region between the monopole
and the multipole parts of the residual interaction.

In many cases as the one mentioned above the competition between particle-particle
and particle-hole correlations translates into the energy balance between a normal, spher-
ical configuration and an intruder, deformed one [Hey11]. With the addition of nucleons
in a certain open shell, the energy balance between the two configurations changes and,
eventually, the intruder becomes the ground state, producing a sudden change of the
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intrinsic nuclear shape. This type of structural evolution allows interpreting shape tran-
sitions across the nuclear chart as finite-system precursors of quantum phase transitions
[Cej10].

The exact position of the transition points is determined by the fine balance between
the short-range, pairing interaction between like particles and the long-range, proton-
neutron interaction. Shape transition regions of the nuclear chart thus impose significant
constraints on the modeling of the particle-particle and particle-hole channels of the nu-
clear potential. A too strong or too weak pairing component of the interaction would lead
to the shape transition being predicted too close or too far with respect to the beginning
of the nuclear shell.

3.5 Theoretical analysis of the measured nuclear data

3.5.1 Aim

In mean-field theory, the competition between particle-particle and particle-hole correla-
tions translates into the fact that the variational problem, through the HFB equations,
is solved while optimizing simultaneously the shape of the nuclear mean-field and the
BCS-type occupation coefficients of the Bogoliubov transformation. The equilibrium con-
figuration (shape) is the optimal solution with respect to the constraints coming both
from the particle-particle and particle-hole channels of the nuclear interaction. Most
calculations in mean-field theory use effective interactions specially tailored for nuclear-
structure calculations, of which Skyrme-type and Gogny-type interactions are nowadays
most widely used [Rin00]. The parameters of these interactions are usually adjusted us-
ing the masses and radii of doubly-magic nuclei, as well as a certain choice of saturation
properties for symmetric nuclear matter, compatible with the properties of finite nuclei,
such as the matter and energy density, symmetry energy and compressibility [Ben03].
Doubly-magic nuclei are popular choices because the closure of both proton and neutron
shells eliminates the different types of correlations. The resulting interaction parameters
are then not biased due to the accuracy with which these correlations are modeled in
mean-field theory.

Some authors however perform a global fit of the interaction parameters on the entire
set of measured nuclear masses [Gor13]. While a non-selective fit to all known nuclear
binding energies gives less control on the way specific nuclear structure phenomena are
reflected in the parameters of the nuclear interaction, constraining the interaction only to
magic or doubly-magic nuclei disregards most of the available nuclear data. The binding
energies of most nuclides can be algebraically extrapolated following the trends of their
isotopes and isotones, with an accuracy better than 500 keV, which means that most nuclei
would in any case not add any significant constraint on the parameters of the nuclear
interaction. However, nuclei in shape transition regions are very interesting candidates,
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because their properties show discontinuities of similar strength as shell effects.

The common agreement on the mean-field description of mid-shell nuclei is that it
is incomplete. The restoration of the symmetries broken at the mean-field level and
the description of collective fluctuations (configuration mixing) are necessary steps for a
complete description of the binding energy [Ben03; Ben06]. Symmetry restoration is also
required for the description of excited states and transition probabilities [Del10; Rob11].
These extensions demand considerable numerical effort and are currently restricted to
even-even nuclei. Nevertheless, the mathematical steps now constituting the “beyond-
mean-field” approaches ameliorate the description of the total nuclear binding energy,
but for nuclei which are statically deformed they sometimes make little difference at the
level of the differential mass quantities, such as the two-neutron separation energy.

The situation is not the same for nuclei close to magic numbers, which are vibrational
and are not well approximated by a static spherical or deformed mean field. For these
nuclei, the contribution of shape fluctuations to all observables is significant. A relevant
example are the two-neutron shell gaps, which are computed using the binding energy of
nuclei which are either semi-magic or only two nucleons away from a magic chain. For
this quantity, only a full beyond-mean-field treatment can capture all the features of the
experimental trends, as shown in [Ben06; Ben08].

Many of the nuclei in shape-transition regions, such as the neutron-rich A ≈ 100
nuclei and the neutron-deficient gold nuclei, are very well deformed around mid-shell,
which allows obtaining a reasonable description of their differences of binding energies and
charge radii already at the deformed mean-field level. Given also the sharp signatures in
the trends of their ground-state properties at the shape-transition point, the comparative
study of these nuclei in the HFB approach imposes additional constraints on the modeling
of the particle-hole and particle-particle channels of the energy functional.

In particular, given the competition between the two types of correlations on defining
the evolution of nuclear configurations with proton and neutron number, the balance be-
tween the two distinctive parts of the energy functional is expected to influence decisively
the predicted boundaries of the different “islands of deformation” observed across the nu-
clear chart. For a certain interaction giving the particle-hole part of the energy functional,
the correct description of the boundaries of the shape-transition regions could narrow sig-
nificantly the window of values in which the pairing interaction, giving the particle-particle
part of the energy functional, can take its values. The same comment effectively holds
in the framework of the energy-density-functional theory, where the different parts of the
energy functional are not derived from an initial interaction.

In mean-field theory, the pairing interaction (or energy functional) is fitted to repro-
duce primarily the odd-even staggering of binding energies around certain magic nuclei
[Ben03]. This uses the interpretation of the odd-even staggering as the effect of the block-
ing of pairing correlations in odd-nucleon systems, which leads to less binding on average
than in the fully paired, even neighbors. In this view, the magnitude of the odd-even
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staggering scales with the strength of the pairing interaction and provides a reference for
constraining it. However, as pointed out in several articles [Rut99; Ben00; Dug01] the
odd-nucleon breaks time-reversal invariance and, due to its finite multipole moment, ex-
erts a polarization effect on the even-even core. These additional effects also contribute to
the predicted odd-even staggering of binding energies and, as such, make the connection
between the empirical estimators of the pairing gap and the pairing interaction not so
straightforward. Additional constraints on the pairing interaction, not sensitive to these
effects, are thus necessary.

The rubidium and gold isotopes which have been studied with the ISOLTRAP mass
spectrometer as part of this work belong to two of the most well pronounced shape-
transition regions of the nuclear chart, the former situated on its neutron-rich and the
latter on its neutron-deficient side. Due to their large valence spaces and many valence
nucleons, the structure of the studied isotopes is difficult to access through shell-model
calculations, thus leaving the self-consistent mean-field framework as the method of choice
for a fully-microscopic study. The following analysis will be limited to HFB calculations
with Skyrme forces, for which the particle-hole and the particle-particle parts of the energy
functional are modeled separately.

The aim of the study will be two-fold. In a first instance, the different equilibrium
configurations for the HFB quasi-particle vacua (Eq. (3.20)) characterizing the nuclei in
the two shape transition regions will be calculated. The mean-field description of the two-
neutron separation energies and charge radii for the two sets of nuclei will be compared to
the available experimental data and the particularities of their trends will be interpreted
through the energy balance between the determined configurations. This energy balance
will then be systematically studied, for a given Skyrme parametrization, with respect
to the strength of the pairing interaction, analyzing the way the latter influences the
description of the shape-transition phenomenon. Finally, the one-quasi-particle states
will be calculated for the odd-N isotopes of selected isotopic chains. This will allow
putting the pairing interaction to the severe test of consistently describing the odd-even
staggering of binding energies and the boundaries of the islands of nuclear deformation.

3.5.2 HFODD code

The calculations have been performed using the HFODD code [Dob09b; Sch12], which
solves the HFB equations in a deformed harmonic-oscillator (HO) basis. The code allows
calculations unrestricted by the time-reversal or spatial symmetries, as well as choosing
HO bases of almost arbitrarily complex deformation, to accommodate the description of
triaxial, reflection asymmetric or even more complex shapes. Extensive documentation of
the code is given in the User’s Guide [Dob09a]

The calculations have been performed using the SLy4 parametrization (of the Skyrme
family) for the particle-hole part of the energy functional [Cha98]. The choice of this
interaction is based on its extensive use for the description of the properties of nuclei across
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the entire nuclear chart, from global calculations including particle/angular-momentum
projection and configuration mixing for systematic studies of quadrupole correlations in
even-even nuclei [Ben06], to systematic studies of pairing interactions for the particle-
particle part of the energy functional [Dob01], to explorations of the limits of the nuclear
chart both in the super-heavy region [Cwi05] and towards the drip lines [Erl12]. All these
and other existing results constitute a solid reference basis for discussing the calculations
which will be presented in this work.

A usual choice for the pairing interaction, responsible for the particle-particle part of
the energy functional, is the density-dependent delta interaction (DDDI) [Dob01; Ben03]:

Vpair(r1, r2) = V0

{
1−

[
ρ(r1)

ρc

]β}
δ(r1 − r2), (3.24)

where ρ(r1) is the nuclear density. Equation (3.24) depends on three parameters. The
parameter V0 gives the overall strength of the pairing interaction, while the parameters ρc
and β define the way the pairing strength is distributed as a function of the nuclear density.
Given the difficulties of constraining all three parameters based on the available nuclear
data, a common choice for β is 1 [Ben03]. In this case, different types of pairing can be
obtained, depending on the value of ρc. For ρc = 0.16fm−3, the nuclear saturation density,
Eq. (3.24) will be peaked at the nuclear surface, making it a surface-type pairing. For ρc →
∞, the density dependence disappears and one obtains a volume-type pairing. Finally,
for any intermediate situation, the pairing is of mixed type. Following the systematic
study of [Dob01], the authors propose a mixed surface-volume pairing with a parameter
ρc = 0.32fm−3. For the following analysis, a volume-type pairing will be used, which
takes Eq. (3.24) to the simple form:

V vol
pair(r1, r2) = V0δ(r1 − r2). (3.25)

Equation (3.25) has the advantage of containing only one adjustable parameter which
defines the pairing strength. This allows analyzing the effect of the pairing interaction
on the chosen set of nuclear observables, while avoiding a multiparametric problem. Fur-
thermore, as shown in a recent paper for the tin isotopic chain [Hak12], the surface-type
pairing significantly overestimates the odd-even staggering of binding energies, but the
volume and mixed-type pairing give similar predictions.

The energy cut-off defining the pairing-active space is chosen to be 60 MeV. The cal-
culations perform the one-body center-of-mass correction before variation and the Lipkin-
Nogami corrections after variation (see [Sch12] and the references therein for more details).
The symmetries of the problem are chosen such that multipole deformations of even and
also odd order are possible (quadrupole, octupole, hexadecapole etc.), specifically the
simplex symmetry is enforced, while the signature and parity symmetries are relaxed.
Except for the cases chosen to study the odd-even staggering of binding energies, odd nu-
clei are computed only at the level of the HFB quasi-particle vacuum. This is also called
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the “false-vacuum approximation” [Dug01; Sch10], the wave-function of the odd nucleus
having even number parity, but an odd number of particles on average. One allows this
simplification because the observables of interest are the two-neutron separation energies
and the charge radii, the average trends of which are well described by the quasi-particle
vacuum solution. In particular, as was shown in Eq. (1.16), the two-neutron separation
energies filter out the odd-even staggering up to its first derivative with neutron number,
meaning that the error on S2n in the false-vacuum approximation rises to the value of this
derivative. In reality, even for the most pronounced cases, as the one shown in Fig. 1.3,
the residual staggering is small compared to the absolute value of S2n. Considering also
that the effect of varying the strength of the pairing interaction is much larger than these
small corrections and the significant gain in computation time, the false-vacuum approx-
imation is used to study the general S2n and charge-radii systematics. Still, there are
certain limitations to this approximation, which will be discussed in Chapter 4.

A complete description of odd nuclei requires a blocking prescription. In the case of
the self-consistent quasi-particle blocking described in Section 3.3.2, the wave function
of an odd nucleus is defined as a one-quasi-particle state created from the HFB vacuum
[Dug01; Sch10]. The procedure is described in more detail in [Dob09b] and uses the
“overlap approximation”. At each iteration, the quasi-particle to be created is chosen as
the state having the largest overlap with a certain single-particle state, which is specified
at the beginning of the calculation. Several different calculations of the same nucleus
are required, each using a different single-particle state for the overlap criterion. At the
end, the ground state of the odd nucleus is chosen as the solution of lowest energy. This
procedure will be applied in the following to calculate the odd-N mercury isotopes, thus
allowing to determine the finite-difference estimators of the “blocking gap” (also called
“pairing gap”) and compare them to experiment. These calculations allow the breaking
of time-reversal symmetry in the odd nuclei.

3.5.3 Tests of the method

The HFB algorithm converges to an equilibrium solution which is a local minimum in
energy with respect to small variations of the nuclear wave function (for example, along
a certain deformation mode, such as the quadrupole one) [Rin00]. In most cases several
such minima exist, usually differing by the value of their intrinsic quadrupole moment Q20.
It is often possible to calculate a spherical, an oblate (Q20 < 0) and a prolate (Q20 > 0)
equilibrium configuration, but it is not uncommon for more than one oblate or prolate
minimum to exist. In the most general case the number of local minima in energy can
be significant, even taking only the quadrupole degree of freedom into account. They can
all be mapped by performing constrained HFB calculations, i.e. adding an extra term to
the energy functional which depends on the geometric moment of the deformation mode
of interest and is minimum when the moment has the constrained value [Rin00]. In the
case of unconstrained calculations, the HFB algorithm converges to any of the possible
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local minima, depending strongly on the initial wave function which starts the iterations
and the shape of the HO basis.

The calculations performed in the present work were unconstrained, each run being
started with the eigenfunctions of a Nilsson potential matched to the chosen HO ba-
sis [Dob09a]. Two different numerical approaches were tested. For the first approach, a
spherical HO basis was used. In this case, the starting wave function was spherically sym-
metric and, due to self-consistency, the whole problem. The mean field and the resulting
wave function in every subsequent iteration was also spherically symmetric, leading, up
to numerical instabilities, to a spherical solution. To obtain convergence towards one of
the deformed configurations, the first ten iterations of each run were constrained to a
multipole moment compatible with the desired equilibrium configuration, leaving the rest
of the iterations unconstrained until convergence was reached. For the second approach,
the deformation of the HO basis was systematically changed in the deformation mode of
interest for the equilibrium configuration. Each nucleus was computed on a set of differ-
ent HO bases, with starting conditions matched to each basis through the corresponding
Nilsson potential. For each set, the solution lowest in energy was chosen.

For both methods, only the quadrupole degree of freedom was investigated, as it is
the main deformation mode of the nuclear mean-field. The oblate and prolate equilibrium
configurations were considered separately, in order to study their energy balance along
the different isotopic chains. For the first method, this means that only the quadrupole
moment Q20 was constrained to either a negative or positive value during the first ten
iterations, driving convergence in the spherical basis towards an oblate or prolate solution,
respectively. For the second method, only the quadrupole deformation parameter of the
HO basis was systematically varied between negative and positive values. Oblate/prolate-
deformed bases with corresponding starting conditions lead to oblate/prolate equilibrium
configurations.

The advantage of working in a HO spherical basis is that the trends of the computed
ground-state properties along an isotopic chain are not influenced by the sudden change
of optimal basis shape from one isotope to the next. This can in principle be the case
when a set of deformed HO bases is used. The variation of the energy of the same
configuration over the whole range of bases can be as high as a few hundred keV, which
requires a sufficiently fine sampling of the basis deformation, in order to find for each
isotope a basis close to the optimal and to reduce the isotope-to-isotope numerical noise.
The disadvantage of using a spherical HO basis is the high dependency of the successful
convergence to the deformed configurations on the conditions obtained at the end of the
constrained iterations. Typically, in the spherical basis several calculations still have to
be performed for each nucleus, varying the value of the quadrupole moment to which
the first iterations are constrained, in order to achieve proper convergence to the desired
configurations. In the case of solutions with low deformation or of higher energy than the
spherical one, convergence can even fail systematically for many different initial conditions.
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This problem is particularly inconvenient for the study of shape transition regions, because
at the transition point one always finds two or even more configurations lying very close in
energy and even deformation, making the exact location of the shape transition sometimes
difficult to establish.

Mainly due to the latter difficulty and due to the generally improved stability rate
of the algorithm when using deformed HO bases, the latter method was chosen for the
extended range of calculations. Nevertheless, in order to test the consistency of the
results obtained by the two methods and to eliminate potential spurious effects, both
methods were applied to the study of a representative subset of the neutron-rich A ≈ 100
and neutron-deficient gold-thallium nuclei. In the following, the results obtained for the
krypton and gold isotopes by the two methods will be presented for comparison. All
calculations in this chapter are obtained in a (spherical or deformed) HO basis containing
around 300 HO states. Because the code does not consider the degeneracy of shells
when counting the number of states in the basis, the actual number of states included is
slightly different for the spherical HO (≈ 290) and for the deformed HO (≈ 305). Still,
the difference is small enough that it does not significantly impact the predicted energy
balance between the deformed and the spherical solutions.

As a test of the numerical method, Fig. 3.1 shows the deformation energy (difference
in binding energy between the deformed and the spherical solution) of the equilibrium
configurations along the krypton and gold isotopic chains, obtained at the level of the
HFB quasi-particle vacuum (no blocking). Positive values mean that the deformed con-
figuration is more bound than the spherical one. The strength V0 of the pairing interaction
is set to a starting value of Vπ = Vν = −200 MeV fm3, the same for protons and neutrons.
One notices that the krypton and gold isotopes exhibit both types of equilibrium shapes
(oblate and prolate). If more than one equilibrium prolate/oblate configuration is found
for a certain nucleus, Fig. 3.1 shows the value of lowest energy.

Although the difference in energy between the same configuration computed in a spher-
ical and in a deformed basis can be as large as 1 MeV, this difference doesn’t vary much
from one isotope to the next. This means that for the same configuration S2n only differs
by a small amount between the different basis choices. However, both in the krypton and
in the gold isotopic chains one observes the competition in energy between the prolate
and oblate configurations, of which the one lowest in energy (in Fig. 3.1 the one highest
in deformation energy) gives the ground state in the mean-field approximation. Around
mid-shell (N > 60 for krypton and N < 105 for gold) the two configurations come very
close in energy. At this point, their energy balance becomes sensitive to the quality with
which each configuration is described in a spherical or in a deformed basis.

For the example of Fig. 3.1(a), the oblate and prolate configurations are almost degen-
erate for N < 56 and N > 60 in the spherical HO basis, but the oblate configuration is
systematically more bound than the prolate one if the deformed HO bases are used. Sim-
ilarly, in Fig. 3.1(b) the difference in energy between the prolate and the oblate solutions
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Figure 3.1: Calculated deformation energy of the prolate (diamonds) and oblate (squares) equi-
librium configurations of the HFB quasi-particle vacuum obtained using a spherical HO basis
(full black symbols) and a set of deformed HO bases (empty red symbols). The results are shown
for the krypton (a) and gold (b) isotopes.
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below N = 105 is significantly lower in the spherical basis.

The mean-square charge radii of the prolate configurations along the krypton isotopic
chain and of the oblate configurations along the gold isotopic chain are shown in Fig. 3.2
for different choices of HO basis, starting with a spherical basis and then going through
deformed bases of increased quadrupole deformation parameter β20. In the case of the de-
formed bases the solution of minimum energy is also highlighted. The radii are presented,
as will be the case throughout this work, as mean-squared displacements from the value of
a reference isotope (N = 50 for the A ≈ 100 nuclides and N = 115 for the gold-thallium
nuclides): 〈δr2〉N,ref = 〈r2

N〉 − 〈r2
ref〉. For both isotopic chains, the calculated charge

radii slightly increase with the deformation of the HO basis (in Fig. 3.2 the displacement
〈δr2〉N,ref is calculated with respect to the charge radius of the minimum-energy solution
obtained for the reference isotope). Because, as can be seen in Fig. 3.2, the increase
also affects the reference isotope, the change of basis shape would not significantly affect
〈δr2〉N,ref .

For the prolate solutions of the krypton isotopes, a second equilibrium configuration
(energy minimum), of higher deformation (and charge radius), emerges around N =
60. Depending on the deformation of the HO basis, the algorithm converges to one or
another configuration. Similarly, in a spherical basis the result depends strongly on the
starting conditions. For the example of Fig. 3.2, the calculation in a spherical basis
misses the solution of higher charge radius at N = 60, despite several trials with different
starting conditions. This can happen around shape-transition points, making calculations
in deformed HO bases a more accurate method of sampling the spectrum of deformed
configurations.

The results presented in Figs. 3.1 and 3.2 thus show that the present approach should
be quite reliable in tracing the trends of differential mass quantities and of relative mean-
square charge radii 〈δr2〉 for each equilibrium configuration, the results being quite robust
with respect to the deformation of the HO basis. A similar robustness of the differential
mass quantities with respect to the variation of the size of the HO basis was also reported
[Dob97]. However, the energy balance between the competing configurations is sensitive
to the choice of basis, making their exact ordering uncertain in the immediate vicinity
of shape-transition points. Considering only the comparison between the calculations in
a spherical and in a deformed basis, the basis-choice uncertainty can lead to the shape
transition being predicted one neutron number earlier or later, depending on the preferred
method. This uncertainty is, as will be shown, significantly lower than the effects of
the pairing interaction on the evolution of the different configurations with proton and
neutron number. The obtained precision is thus sufficient for the requirements of the
present study. For an exact adjustment of the pairing interaction, however, one must
systematically study the effect of the basis size and shape on the predicted values of
the reference observables. Otherwise, a large basis can be employed, which reduces the
sensitivity of the calculation to the basis shape [Dob97].
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Figure 3.2: Theoretical mean-square charge radii of the prolate configurations along the krypton
isotopic chain (a) and oblate configurations along the gold isotopic chain (b), plotted as displace-
ments to a reference isotope: 〈δr2〉N,ref = 〈r2N 〉 − 〈r2ref 〉 (Nref = 50 for krypton and Nref = 115
for gold). The results are shown for calculations in a spherical HO basis (blue thick line) and in
deformed bases of increase quadrupole deformation β20 (black full circles). The results obtained
in the deformed basis which yields the lowest binding energy are marked for each isotope by a
red empty circle.
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Although several basis shapes were systematically tested for each isotope in the two
studied regions of the nuclear chart, the optimal shape was, with few exceptions, the
same for a certain isotopic chain, pairing strength and nuclear configuration (e.g oblate,
low-deformation prolate, high-deformation prolate). This outcome significantly reduced
the numerical noise of the obtained results.



Chapter 4

Self-consistent mean-field
calculations

4.1 Neutron-rich A ≈ 100 nuclei

The HFB approach using the SLy4 functional [Cha98] and a volume contact pairing
interaction Eq. (3.25) was first applied to describe the ground-state masses and charge
radii of the neutron-rich A ≈ 100 nuclei in the isotopic chains between krypton and
zirconium. These nuclei have been studied extensively by different approaches, from shell
model [Fed79; Fed84; Hey87], to the interacting boson model (IBM) [Gar05] and the self-
consistent mean-field approximation [Rod10a; Rod10b]. The properties of the nuclei in
the region can also be extracted from global mean-field calculations, spanning the entire
nuclear chart (the Skyrme-HFB calculations of [Gor13] achieving the lowest root-mean-
square deviation to the measured masses), of which some include angular-momentum
projection and configuration mixing for the even-even nuclei ([Ben06] using an HFB-
SLy4 approach and [Del10] using the Gogny-D1S interaction). Global calculations for
even-even nuclei including the octupole degree of freedom have also been published, using
Gogny-type interactions [Rob11].

In agreement with the existing body of theoretical work, the calculations presented
here predict that the neutron-rich A ≈ 100 nuclei possess both oblate and prolate equi-
librium configurations of the nuclear mean-field, in competition with each other and the
spherical one. A single oblate configuration was found in each of the studied isotopic
chains, having a smooth variation with neutron number. Two distinct prolate configu-
rations were however identified, one of lower quadrupole deformation (and lower charge
radius) which is already present close to N = 50 and one of high quadrupole deformation
(and larger charge radius) which emerges around N = 60.

To illustrate how the strength of the pairing interaction influences the spectrum of
deformed configurations, Fig. 4.1 shows the deformation energy of the oblate and (most
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π ν

Figure 4.1: Deformation energy of the prolate and oblate equilibrium configurations (diamonds
and squares, respectively) of the krypton isotopes, obtained at the level of the HFB quasi-particle
vacuum, using different values of the pairing interaction. For each isotope, the minimum-energy
prolate and oblate configuration is represented.

bound) prolate configuration along the krypton isotopic chain, for values of the pairing-
interaction parameter, V0 in Eq. (3.25), ranging from −150 MeV fm3 to −200 MeV fm3.
Equal strengths are chosen for the proton and neutron pairing interaction to preserve
isospin symmetry, although it is not uncommon to use different strengths [Ben03]. Odd
nuclei are calculated only at the level of the HFB vacuum (no blocking).

One notices in Fig. 4.1 that increasing the strength of the pairing interaction reduces
the deformation energy of both the prolate and the oblate minima. The amount of this
increase is however different for the competing configurations. For V0 = -150 MeV fm3,
the prolate solution becomes significantly more bound than the oblate one for N > 62,
while for V0 = -200 MeV fm3 the oblate solution is more bound for every neutron number.

To understand how this evolution affects the ground-state observables, Fig. 4.2 shows
the experimental and theoretical S2n and 〈δr2〉 values of the neutron-rich A ≈ 100 nuclei in
the isotopic chains between krypton (Z = 36) and zirconium (Z = 40). When estimated
by the authors, the error bars in the 〈δr2〉 plot show the full systematic uncertainties
of the measurements. Apart from the krypton isotopes, all S2n and 〈δr2〉 values are
shifted upward (experimental and theoretical by the same value) for better separation.
The calculated S2n and 〈δr2〉 are plotted separately for the (HFB vacuum of the) oblate
and prolate configurations of the studied isotopes. In the case of two coexisting prolate
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minima, the one of lower energy is used. The trends of the results obtained in the spherical
approximation are also shown for reference. This allows observing explicitly the effect of
deformation on the studied observables. The ground state of each nucleus is assigned to
the equilibrium configuration of lowest energy and the resulting S2n and 〈δr2〉 values are
marked explicitly as the “global minimum”.

The mean-square charge radii allow tracing very clearly the evolution of the different
mean-field configurations and their energy balance. To also interpret the trends of the two-
neutron separation energies, one can use a similar approach to the analysis of Chapter 1.
In analogy to Eq. (1.3), the binding energy can be written as:

E(Z,N) = Esph(Z,N) +
(−1)N+1 + 1

2
δν +

(−1)Z+1 + 1

2
δπ − Edef (Z,N), (4.1)

where Esph is the energy of the (Z,N) nucleus obtained at the end of a HFB calculation
in the spherical approximation, δν (δπ) represents the binding energy “lost” by the odd-N
(odd-Z) nucleus with respect to the fully-paired HFB vacuum when blocking is imple-
mented (in the present case by creating a one-quasi-particle state) and Edef represents
the deformation energy (plotted in Fig. 4.1 for the krypton isotopes), i.e. the binding en-
ergy “gained” by a certain deformed configuration with respect to the spherical solution.
Because δν and δπ, as defined above, determine an odd-even staggering of the nuclear
binding energies, it is common to interpret the odd-even staggering phenomenon as the
result of the blocking of pairing correlations in odd-nucleon systems. Both δν , δπ and
Edef are positive quantities in Eq. (4.1). In calculations without quasi-particle blocking
(even-even systems or false-vacuum solutions of odd systems) such as the ones shown in
Fig. 4.2, the δν , δπ terms are not present and Eq. (4.1) reduces to:

E(Z,N) = Esph(Z,N)− Edef (Z,N). (4.2)

Calculating S2n from Eq. (4.2) leads to the expression:

S2n(Z,N) = ∆2,NE(Z,N) = S2n,sph(Z,N) + Edef (Z,N)− Edef (Z,N − 2), (4.3)

which is similar to Eq. (1.17), the difference being that the spherical solution includes the
effect of pairing correlations (it is not an independent-particle problem) and thus it is not
possible to express Esph(Z,N) by the sum of single-particle energies of Eq. (1.4). Equa-
tion (4.3) illustrates the effect of the onset of deformation on the two-neutron separation
energies: an increase of the deformation energy in the nuclear ground state leads to a
higher S2n than the spherical trend. The “spherical trend” is not an observable quantity,
but along an isotopic chain it can be inferred based on the S2n slope close to the beginning
of the shell. Approaching mid-shell, the gradual increase of Edef is observed as a flattening
of the S2n trend or, in extreme cases in which Edef (Z,N) has a sudden increase with the
addition of a single neutron, as an increase of S2n(Z,N) with respect to S2n(Z,N − 1).
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Figure 4.2: Experimental two-neutron separation energies and mean-square charged radii of
neutron-rich A ≈ 100 nuclei, compared to HFB-SLy4 calculations using three strengths of the
pairing interaction. The experimental S2n values use masses from the AME2012 [Wan12] and the
present work, published in [Man13]. The 〈δr2〉 values are taken from [Kei95; Thi81; Buc90; Lie91;
Che07; Cam97; Cam02; Tha03]. The theoretical values represent the HFB quasi-particle vacuum
(no blocking) of the spherical, lowest-energy oblate and lowest-energy prolate configurations
(dashed line, blue squares and green diamonds, respectively). The red empty circles represent
the values corresponding to the ground state, assigned to the configuration of lowest energy.
Except for the krypton chain, the S2n and 〈δr2〉 values are biased for better separation.
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Because the deformation energy can vary abruptly around the borders of shape-transition
regions (see the prolate solutions of Fig. 4.1 around N = 60), the systematics of S2n can
contain clear signatures indicating the occurrence of a shape transition.

With these observations, the two-neutron separation energies and mean-square charge
radii of Fig. 4.2 can be readily interpreted. Irrespective of the value of the pairing inter-
action, the prolate and oblate equilibrium configurations have two qualitatively distinct
evolutions with neutron number. The oblate configuration exhibits a smooth onset of de-
formation. Of the prolate configurations, the one of low deformation has a smooth onset,
most prominent in the krypton and rubidium isotopic chains, and the one of large defor-
mation has a sudden onset around N = 60 (when it also becomes the more bound). The
onset of oblate deformation gradually shifts towards N = 60 as one approaches the zirco-
nium chain, indicating the influence of the Z = 40 proton sub-shell. This sub-shell effect
seems to also influence the prolate configuration before N = 60, however the emergence
of the more deformed prolate minimum is less sensitive to its proximity.

The value of the pairing interaction does not qualitatively influence these general
observations, but, as can be seen in Fig. 4.2, it has a significant quantitative impact.
First of all, the spherical S2n trends are lower for weaker pairing interaction. This can be
understood by the fact that pairing correlations produce additional nuclear binding for the
neutrons. Second of all, the deformation energy of the prolate and oblate configurations is
larger for weaker pairing. This means that around the shape-transition point the overall
S2n evolution with the decrease of the pairing strength is the result of the competition
between two effects: a lowering due to a generally less attractive interaction and an
increase due to the enhancement of the deformation-energy slope with neutron number.

The effect of the pairing interaction on the relative mean-square charge radii is of a
general increase with the reduction of the pairing strength. This is most clearly observed
for the oblate configuration, as well as for the highly-deformed prolate configuration. The
reason is that a reduction of the pairing interaction allows the mean-field to attain an
equilibrium shape of larger deformation and hence larger root-mean-square radius. This
is already an illustration of the competition between particle-particle and particle-hole
correlations in the mean-field approach. The most obvious one visible in Fig. 4.2 is the
location of the transition between the two prolate configurations. One observes that for
a weaker pairing interaction (V0 = -150 MeV fm3) the transition takes place towards
N = 58, while for a stronger interaction (V0 = -200 MeV fm3) the border of the region of
large deformation moves towards N = 60.

The characteristics of each deformed configuration, but also the energy balance be-
tween them, are essential for defining the trends of the ground-state observables. Irre-
spective of the pairing strength, the calculations predict that before N = 60 the oblate
configuration is lower in energy than the spherical and prolate ones. After the transition
of the prolate solution to a more deformed shape, the latter eventually becomes more
bound, as was also shown in Fig. 4.1 for the krypton isotopes (with one exception). This
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transition between an oblate and a prolate ground-state shape determines similarly pro-
nounced signatures in 〈δr2〉, the only change with the pairing strength being the location
of the transition point along the isotopic chain. For S2n, however, due to the way it
influences the energy balance between the oblate and prolate configurations, the pairing
strength is reflected in how pronounced the S2n signature is at the transition point.

For a pairing strength V0 = -200 MeV fm3, the prolate configuration describes remark-
ably well the experimental S2n and 〈δr2〉, both in magnitude and location of the shape
transition. Considering however the ground-state in the mean-field approximation, one
notices (especially in the charge radii) that the oblate-to-prolate transition is located at
N = 61 or beyond and that, as a result, the S2n trend only slightly changes in slope. In
the krypton isotopic chain, the ground-state configuration remains oblate at every neu-
tron number (see also Fig. 4.1), although the prolate solution of higher deformation does
emerge at N = 60.

Lowering the strength of the pairing interaction to V0 = -175 MeV fm3, the transition of
the prolate configuration from low to high deformation shifts to lower neutron numbers by
roughly one unit, such that the description of the experimental observables by the prolate
configuration alone is less accurate. The description provided by the global minimum
of all configurations, which approximates the ground state, is however improved. The
oblate-to-prolate transition takes place around N = 60 and the experimental S2n and
〈δr2〉 values are rather accurately described around the transition point by the lowest-
energy configuration. In the krypton isotopic chain, the prolate configuration does become
the ground-state at N = 62, but the available experimental data, extending only up to
N = 61, do not exclude this possibility. The S2n trends decrease even more with respect
to the experimental values close to N = 50.

Further reducing the pairing strength to V0 = -150 MeV fm3 produces a general
worsening of the agreement with experiment, both for the individual configurations and
for the global minimum. The 〈δr2〉 values of the more deformed prolate configuration
are systematically larger and the S2n values close to N = 50 are significantly lower than
the experimental trends. The transition from low to high deformation in the prolate
minimum takes place roughly one neutron number earlier than for V0 = -175 MeV fm3.
The position of the oblate-to-prolate transition does not change significantly, but the
strong gain of oblate deformation energy already before N = 60 makes the onset of oblate
deformation, not the oblate-to-prolate transition, the main contribution to the S2n kink
close to N = 60.

The experimental S2n [Nai10] and 〈δr2〉 [Kei95] of the krypton isotopes do not exhibit
the sharp increase at N = 60 which is observed for the other isotopic chains represented
in Fig. 4.2. This lead to the interpretation of the krypton isotopic chain as the lower
boundary of the quantum phase transition taking place in the neutron-rich A ≈ 100 region
of the nuclear chart [Nai10]. This conclusion contradicted the low energy tentatively
proposed in [Mar09] for the first excited 2+ state in 96Kr (241 keV). The energy was
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later corrected to 554.1(5) keV by a Coulomb excitation experiment on 96Kr, performed
at ISOLDE [Alb12], suggesting, in agreement with the mass and charge-radii results, a
smooth onset of quadrupole deformation.

The calculations presented in Fig. 4.2 show that an explanation of the different be-
havior of the krypton isotopes can already be provided at the level of the mean-field
approximation. The predicted balance between the oblate and prolate configurations
changes significantly between the rubidium and krypton isotopic chains. For a stronger
pairing interaction (V0 = -200 MeV fm3), the oblate-to-prolate transition takes place in
the rubidium chain, but not in the krypton chain, as can be seen in Figs. 4.2(e) and 4.2(f).
For a weaker pairing interaction (V0 = -175,-150 MeV fm3), the transition between the
two configurations does take place in the krypton chain, but it is shifted to higher neutron
number than the extension of the available experimental data. A persistence of the oblate
configuration in the nuclear ground state or a later transition to the prolate configuration
are possible reasons for the different properties of the krypton isotopes.

A study of the same nuclides using the HFB-SLy4 approach, but a spherical HO basis,
was presented in [Man13], reaching similar conclusions. This reinforces the robustness of
the presented results with respect to the choice of HO basis.

To understand what would change going beyond the static mean-field approximation,
Fig. 4.3 shows theoretical two-neutron separation energies and mean-square charge radii of
neutron-rich A ≈ 100 nuclei obtained by two models from the literature which use beyond-
mean-field techniques: the generator-coordinate-method approach of [Ben06], using the
BCS approximation and the SLy4 interaction and the mapped-collective-Hamiltonian
approach of [Del10], based on the HFB approximation and the Gogny-D1S interaction.
As the calculations are only available for even-even nuclei, only the experimental data of
even-Z isotopic chain are presented for comparison. For each of the two approaches, the
results are presented for the static mean-field minimum (generically named “static”) and
for the beyond-mean-field result (named “dynamic”).

Concerning the two-neutron separation energies, Fig. 4.3(a) shows that for both models
the biggest difference brought on by the inclusion of dynamic correlations (at the beyond-
mean-field level) is close to N = 50. Only considering static deformation, the S2n values
fall significantly below the experimental ones at N = 52, which is also observed for the
calculations presented in Fig. 4.2. Dynamic correlations lead to an increase of S2n in
this region, bringing it much closer to the experimental values. In the region of rigid
deformation, however (N ≥ 60), not much changes once shape fluctuations are taken
into account. One notices also that the predicted S2n trend close to the shape-transition
point is very straight and that the experimental values of the well-deformed nuclei are
systematically underestimated.

Concerning the charge radii, one notices the generally smoother trend obtained going
beyond the mean-field level. It is important to note that (with few exceptions) all charge
radii are predicted to be larger in absolute value once dynamic correlations (shape fluc-
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tuations) are allowed. This is also true for the reference, N = 50 nuclei, which means
that a decrease of 〈δr2〉 is in most cases a reflection of the fact that the charge radius of
the reference isotope increased more significantly than the one of the isotope in question.
This is the case of the strontium isotopes with N ≥ 60, which shows that, especially when
the reference isotope is spherical, an overestimation of 〈δr2〉 at the static mean-field level
can also be related to an underestimation of the radius of the reference isotope, in the
absence of any dynamic contribution.

One observes however also the reverse effect for the zirconium isotopic chain. Espe-
cially in the D1S calculation, the charge radii show no signs of an onset of deformation
at the static mean-field level, which however is clearly visible once dynamic correlations
are taken into account. The zirconium nuclei are thus not predicted to have a strong
static deformation, but to be very “soft”, the dynamic contribution to the charge radius
increasing with the addition of neutrons.

A fact which cannot be observed in Fig. 4.3(b) is that the charge radii (not only 〈δr2〉)
of 96,98Kr are predicted by the D1S calculation to decrease once collective fluctuations
are allowed. This means that, for explaining the different behavior of krypton isotopes
around N ≈ 60, the answer might also reside in the effect of collective motion on the
nuclear shape.

Experimental information on the sign of the intrinsic quadrupole moment can be
obtained by laser spectroscopy, however this information is scarce for the neutron-rich
A ≈ 100 nuclides. The N = 51 isotones with Z = 36 − 40 are slightly oblate [Kei95;
Thi81; Buc90; Che07; Tha03]. The existence of slightly oblate shapes for N < 60 and
pronounced prolate shapes for N ≥ 60 in the yttrium isotopic chain is shown in [Che07],
however measurements for N < 60 mostly refer to low-lying isomeric states (exception
beingN = 51, 55). The rubidium isotopes withN = 52, 54, 56−59 are however determined
to be slightly prolate [Thi81], as well as the krypton isotopes with N = 53, 55 [Kei95].

In Fig. 4.2 one notices that the strength of the pairing interaction also affects the
predicted sharpness of the S2n drop at the crossing of N = 50. Since this is the two-
neutron shell gap ∆2n defined in Eq. (1.18), it is interesting to study how the pairing
strength affects the description of this very important quantity, which is regarded as
a reference observable for testing the predictions of effective nuclear interactions [Sor08].
The theoretical values of the N = 50 two-neutron shell gap obtained for different strengths
of the pairing interaction are presented in Fig. 4.4(a). The experimental values obtained
with masses from AME2012 [Wan12], completed by the recent ISOLTRAP measurement
of the mass of 82Zn [Wol13a], are presented for comparison. Figure 4.4(b) shows the
results of the self-consistent mean-field calculations of [Ben06; Ben08] at two levels of
approximation (similarly to Fig. 4.3): for the static mean-field minimum (full blue circles,
labeled “static”) and for the solution including dynamic correlations (empty blue circles,
labeled “dynamic”).

The trend of the two-neutron shell gap is the sum of a number of effects (see [Ben08]
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Figure 4.3: Experimental two-neutron separation energies and mean-square charge radii of even-
Z, neutron-rich A ≈ 100 nuclei, compared to self-consistent mean-field calculations from the
literature. The experimental S2n values use masses from the AME2012 [Wan12]. The 〈δr2〉
values are taken from [Kei95; Buc90; Lie91; Cam97; Cam02; Tha03]. The theoretical values are
obtained for even-even nuclei in the HFB-D1S (Gogny) [Del10] or BCS-SLy4 [Ben06] framework
(red diamonds and blue circles, respectively). In both cases, the figure shows the static mean-
field solutions (full symbols) and beyond-mean-field results, which include dynamic correlations
(empty symbols). Except for the krypton chain, the S2n and 〈δr2〉 values are biased for better
separation.
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Figure 4.4: Theoretical values of the N = 50 two-neutron shell gap compared to experimental
values obtained using masses from AME2012 [Wan12] and the recent ISOLTRAP measurement
of the mass of 82Zn [Wol13a]: (a) shows HFB-SLy4 results obtained in the present work using
the static mean-field approximation, for different strengths of the pairing interaction; (b) shows
literature BCS-SLy4 results [Ben06] obtained at the static mean-field level (full circles) and
including dynamic correlations through the generator coordinate method (empty circles).
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and Chapter 1). The zero-order contribution is the energy gap between the delimiting
single-particle levels (the “real” shell gap). However, because the definition of ∆2n involves
the properties of open-shell nuclei, in which pairing and quadrupole correlations are active,
higher-order contributions from the derivatives of the correlation energy distort the trend
of ∆2n with respect to the gap in the single-particle spectrum. For nuclides close to
magic numbers, quadrupole correlations have a static contribution, which is described by
the deformation of the nuclear mean-field, and a dynamic contribution, which is related
to zero-point collective motion and is described at the beyond-mean-field level [Ben08].
The quadrupole correlation energy of open N -shell nuclei is larger than for the magic-N
isotones. It is thus easy to show that the static and dynamic correlations have the effect
of lowering the value of the two-neutron shell gap. Since the calculations presented here
only account for static correlations through the deformation of the mean-field, the results
of Fig. 4.4(a) are only over-estimations of the theoretical ∆2n. This is clearly illustrated in
Fig. 4.4(b), where both the mean-field (static) and the “configuration-mixed” (dynamic)
solutions are shown, the latter being systematically lower. At the same time, as for the
HFB-SLy4 calculations of Fig. 4.4(a), the static solution of Fig. 4.4(b) only captures the
∆2n trend for Z < 40, the addition of dynamic correlations being necessary for describing
the entire evolution of ∆2n (especially for Z > 40).

One notices in Fig. 4.4(a) that the two-neutron shell gap obtained for a value of
the pairing interaction V0 = −200 MeV fm3 underestimates the experimental values.
Dynamic correlations would further reduce the ∆2n values of the open proton-shell nuclei.
On the other side, a pairing strength V0 = −150 MeV fm3 qualitatively reproduces the
variations of ∆2n, but overestimates their strength. The decrease of ∆2n around Z = 32
is exaggerated. Finally, a pairing strength V0 = −175 MeV fm3 reproduces the ∆2n trend
for 32 ≤ Z ≤ 40 and leaves room for a further decrease with the effect of configuration
mixing. Considering also this subsequent step, a value V0 close to 175 MeV fm3 seems
optimal for the description of ∆2n.

4.2 Neutron-deficient gold-thallium nuclei

Nuclear structure of the neutron-deficient isotopes with Z ≤ 82 rapidly evolves from
essentially spherical configurations in the ground states of the lead isotopes (Z = 82)
[Wit07], with coexisting deformed configurations in the excitation spectrum [And00], to
static deformation in the ground states of mid-shell gold nuclei (Z = 79), following a
shape transition form low to large deformation at N = 107. As in the case of the n-rich
A ≈ 100 isotopes, the known gold charge radii describe the ground-state picture most
clearly [Wal87; Wal89; Sav90; Bla97]. The thallium (Z = 81) and mercury (Z = 80)
isotopes exhibit intermediate properties. The known data in the thallium isotopic chain
show no signs of a shape transition, with the notable existence of a low-lying I = 9/2
isomer in the even-N thallium isotopes, interpreted as the excitation of a proton across
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the Z = 82 shell gap to the h9/2 orbital. The excitation energy of this isomer reaches a
minimum close to the neutron mid-shell [Aud12], meaning that thallium better matches
the shape-coexistence picture of the neighboring lead isotopes, with close to spherical
ground states and deformed configurations at higher energy (see [Bar13] for a recent
update on the measured charge radii). The mercury isotopes, however, exhibit a shape
transition at N = 105 [Bon72; Bon76], with a strong odd-even staggering of the charge
radii [Kuh77; Ulm86], suggesting the proximity in energy of nuclear configurations with
significantly different shapes. This behavior is a precursor of what is observed in the
gold chain and is supported by recent data from the spectroscopy of even-even mercury
isotopes [Bre14].

With this complex nuclear landscape at hand, one is interested in how the differen-
tial mass quantities reflect the rapidly changing nuclear structure with the removal of
protons from the Z = 82 core. As was observed for the neutron-rich A ≈ 100 nuclei,
the study of mean-field configurations and their energy balance can provide the explana-
tion for the observed systematics of ground-state properties in shape-transition regions.
Consequently, the HFB-SLy4 calculations with a contact pairing interaction of volume
type Eq. (3.25) were also applied to the study of the neutron-deficient gold, mercury and
thallium isotopes. Only the quadrupole degree of freedom was studied, as it gives the
leading-order contribution to the nuclear deformation of the studied nuclides. In a first
stage, the calculations were performed only for the HFB quasi-particle vacuum, without
any blocking prescription. Different values of the pairing interaction were analyzed. This
allowed extending the study of the competition between particle-particle and particle-hole
correlations to a second shape-transition region of the nuclear chart.

As in the case of the neutron-rich A ≈ 100 nuclei, the neutron-deficient gold-thallium
isotopes exhibit both oblate and prolate equilibrium configurations of the nuclear mean-
field. Figure 4.5 shows the deformation energy of these configurations along the gold
isotopic chain, for different values of the pairing strength. For nuclei exhibiting the
coexistence of several oblate or prolate minima, the one lowest in energy is represented
in Fig. 4.5 for each type of configuration. One notices, as for Fig. 4.1, the competition
in energy between the oblate and the prolate configurations. Following the isotopic chain
from N = 120 downward, the oblate configuration is initially more bound, but at N = 105
the ordering in energy between the two configurations changes. Again, lowering the
strength of the pairing interaction increases the deformation energy of both configurations,
but it affects them differently. The prolate configuration gains more deformation energy
than the oblate one, for the same change in pairing strength, which is most clearly observed
for N < 105.

The predicted evolution of the trends of nuclear observables in the ground states of
the studied isotopes is a direct reflection of this competition. The two-neutron separation
energies and mean-square charge radii of the gold, mercury and thallium isotopes are
compared in Fig. 4.6 to the available experimental data. The experimental two-neutron
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Figure 4.5: Deformation energy of the prolate and oblate equilibrium configurations (diamonds
and squares, respectively) of the gold isotopes, obtained at the level of the HFB quasi-particle
vacuum, using different values of the pairing interaction. For each isotope, the minimum-energy
prolate and oblate configuration is represented.

separation energies use masses from the AME2012 [Wan12] and the masses of gold iso-
topes which were analyzed as part of the present work. Some of the thallium masses used
for Fig. 4.6 are part of a recently-published set of ISOLTRAP measurements, already
included in AME2012 [Boh14], where the shape of thallium isotopes is discussed. The
experimental mean-square charge radii are the evaluated values from [Fri04a; Fri04b] and
[Bar13]. They are represented, as in the case of Fig. 4.2, by the displacement with respect
to a reference isotope. Except for the gold isotopes, both experimental and theoretical
values are shifted upward by the same amount for better separation. The experimental
uncertainties of the 〈δr2〉 values are smaller than the used symbols and are not shown.
Systematic uncertainties which result from the analysis of the isotope-shift data for deter-
mining the charge radii are not represented. They can affect the slope of the 〈δr2〉 trends
with neutron number.

The calculations are initially performed for the same three values of the pairing-
interaction strength used for the neutron-richA ≈ 100 nuclei, namely V0 = −150,−175, and
−200 MeV fm3. The same strength was employed both for the proton and for the neu-
tron pairing. The calculations are presented separately for the minimum-energy oblate
and prolate configuration. The global minimum of all configurations, to which the ground
state is assigned, is marked distinctively. For the theoretical mean-square charge radii, the
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reference value is the one corresponding to the global minimum of the N = 115 isotope.
Similarly to the A ≈ 100 nuclei, a few general observations can be made irrespective of
the value of the pairing interaction. The gold-thallium nuclides exhibit oblate and prolate
minima of the self-consistent mean field along the entire computed range, 95 < N < 120,
which are more bound and of larger charge radius than the corresponding spherical con-
figuration. The oblate configuration has a smooth evolution with neutron number, which
is reflected in the S2n and 〈δr2〉 trends. Decreasing the neutron number from N = 120,
the charge radii gradually depart from the spherical trend towards mid-shell (N = 104)
and re-approach it for N < 104. This smooth behavior can also be observed in the
deformation energy of the oblate solutions represented in Fig. 4.5.

The prolate configuration has a similarly smooth trend towards N = 120, determined
by an energy minimum situated at low quadrupole deformation. Removing neutrons along
the isotopic chain, a transition eventually occurs to a large-deformation prolate minimum,
which remains the dominant (prolate) configuration until, for a certain neutron number
N < 100, a transition back to the low-deformation minimum occurs. These transitions
are accompanied by large changes in the mean-square charge radius and in the trend
of the two-neutron separation energies for the prolate configuration. The cause of the
peculiar behavior of S2n is best explained by in the evolution of the deformation energy of
the prolate solution represented in Fig. 4.5. One notices that, with the emergence of the
prolate minimum at large deformation, the slope of the deformation energy with neutron
number changes significantly. Having in mind Eq. (4.3), this change of slope determines
the large kink in S2n close to the transition point between the two prolate minima.

The oblate minimum is invariably the one lowest in energy towards N = 120 for
any of the three studied isotopic chains, giving the ground-state configuration (“global
minimum” in Fig. 4.6). A few neutrons less than the emergence of the large-deformation
prolate solution, the latter becomes more bound than the oblate solution and the ground-
state changes from oblate to prolate. The ground-state charge radii suddenly increase by
the removal of a single neutron. Towards N = 95, a sudden reduction of the ground-state
charge radii is predicted once the prolate configuration changes back to low deformation.
With this change, the ground-state deformation is predicted in some cases to remain
prolate (e.g. all studied chains for V0 = −150 MeV fm3) and in others to return to oblate
(e.g. all studied chains for V0 = −200 MeV fm3).

Because the difference in energy between the oblate and prolate configurations varies
smoothly around the transition between them, the ground-state S2n values do not exhibit
very sharp signatures indicating the occurrence of the shape transition. Instead of the
sudden S2n kink observed for the prolate configuration, the ground state only shows a
flattening of the S2n trend around the transition point.

Beyond these general qualitative statements, the strength of the pairing interaction
has some obvious quantitative effects on the two-neutron separation energies and charge
radii. As for the neutron-rich A ≈ 100 nuclei, weaker pairing corresponds to generally
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Figure 4.6: Experimental two-neutron separation energies and mean-square charge radii of
neutron-deficient gold-thallium nuclei, compared to HFB-SLy4 calculations. The experimen-
tal S2n values use masses from the AME2012 [Wan12] and the present work. The 〈δr2〉 values
are taken from [Fri04a; Fri04b] and [Bar13]. The theoretical values represent the HFB quasi-
particle vacuum (no blocking) of the spherical, lowest-energy oblate and lowest-energy prolate
configurations (dashed line, blue squares and green diamonds, respectively). The red empty
circles represent the values corresponding to the ground-state, interpreted as the configuration
of lowest energy. Except for the gold chain, the S2n and 〈δr2〉 values are biased for better
separation.
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larger charge radii. The deformation energy gained by reducing the pairing strength
overcomes the overall reduction of the force’s attractiveness, meaning that weaker pairing
also corresponds to larger S2n values. A pairing strength V0 = −200 MeV fm3 leads to
systematically too low theoretical values of S2n, while a value of V0 = −150 MeV fm3

leads to excellent agreement with experiment towards the beginning and the end of the
neutron shell.

The pairing interaction influences the S2n trend for each equilibrium configuration.
Weaker pairing increases the strength of the S2n kink for the prolate configuration around
the borders of the region of high deformation and also enhances the flattening of S2n

for the oblate configuration around mid-shell. This in the end affects the S2n trend of
the global minimum and increases the region of S2n flattening for the oblate-to-prolate
transition in the ground state of the gold isotopes (see Fig. 4.6(a)).

A very important effect of the pairing interaction is still related to the extension
along the isotopic chain of the large-deformation prolate minimum and to the location
of the ground-state transition from oblate to prolate deformation. This effect is, as for
the neutron-rich A ≈ 100 nuclei, a direct illustration of the competition between particle-
particle and particle-hole correlations in nuclei. With the reduction of the pairing strength,
the number of isotopes in the region of large deformation increases for the prolate con-
figuration and for the global minimum. The effect is most pronounced on the low-N side
of the region of large deformation. Although an effect of the pairing strength is observed
on the high-N side too, the oblate-to-prolate transition (while removing neutrons along
the isotopic chain) is predicted to take place two or three neutron numbers later than
observed in experiment for the gold and mercury isotopes, even when using a pairing
strength V0 = −150 MeV fm3.

One notes that the return to a less deformed ground-state configuration for N < 100
produces a significant kink in S2n which is not observed in the available experimental
data. This can be interpreted either as a sign of the transition to low deformation taking
place for lower neutron number than the extension of the calculations or its steepness
being less pronounced than predicted. We note that a lower pairing interaction brings an
improvement from this point of view.

The oblate-to-prolate transition is predicted to also take place in the ground state of
the thallium isotopes, for any of the studied pairing-interaction strengths. One observes
in Fig. 4.6 that the comparison of theoretical and experimental S2n values cannot rule out
this transition taking place, due to the smoothness of the calculated S2n trend, while the
available thallium charge-radii data do not extend far enough for the comparison to be
possible. The known complementary experimental data suggest however that the ground
states of the thallium isotopes remain almost spherical across the neutron mid-shell. This
disagreeing with the picture of Fig. 4.6, one notes that the mean-field description of
isotopes so close to proton magicity (Z = 82) as the thallium isotopes might no longer
be accurate, because of missing shape fluctuations which can only be described beyond
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the static mean-field picture [Ben06]. A significant worsening of the agreement with
experiment is also observed for mercury and gold isotopes with N > 115, which can also
be attributed to the unsuitability of the static mean-field approximation for nuclei so
close to the neutron magic number N = 126. A similar phenomenon is observed close to
N = 50 for the neutron-rich A ≈ 100 nuclei.

As in the case of the neutron-rich A ≈ 100 nuclei, one is interested in the way the two-
neutron separation energies and mean-square charge radii are affected by the addition of
dynamic correlations, going beyond the mean-field approximation. Referring to the same
two theoretical approaches illustrated in Fig. 4.3 [Ben06; Del10], Fig. 4.7 presents the
S2n and 〈δr2〉 values obtained for the even-even mercury isotopes at the static mean-field
level (labeled “static”) and including dynamic correlations though configuration mixing
(labeled “dynamic”). Experimental values are shown for comparison. In what concerns
the two-neutron separation energies, as the HFB-SLy4 calculations presented in Fig. 4.6,
the literature results systematically underestimate the experimental values. Noteworthy
is that the mean-field results also predict a sharp kink in S2n close to N = 95 and a
flattening of the S2n slope around N = 105. However, the S2n signatures disappear
once dynamic correlations are taken into account, bringing the theoretical results in close
agreement to experiment.

The main features of the mean-square charge radii are not changed for the ground
states of low deformation, once dynamic correlations are taken into account. This is not
unexpected, since their experimental 〈δr2〉 trends are quite well described by the HFB-
SLy4 calculations in the mean-field approximation (unlike the low-deformation ground-
states of the neutron-rich A ≈ 100 nuclei). Still, the predicted borders of the region of
large deformation are slightly different at the beyond-mean-field level with respect to the
static picture. One notes that the mean-field results of both approaches presented in
Fig. 4.7 predict the ground-state shape transition at N ≈ 105 (decreasing the neutron
number) to be from oblate to large-prolate deformation. The average deformation of
the solution obtained after configuration mixing is predicted in [Ben06] to preserve this
sequence.

4.3 Odd-even staggering of mercury isotopes

In order to test the strength of the pairing interaction also against the description of
the odd-even staggering, the odd mercury isotopes were computed in the self-consistent
blocking approximation. For each odd isotope, eleven candidate single-particle states
were tested for choosing the optimal one-quasi-particle state (by the overlap method
[Dob09b; Sch10]). The stability of the obtained self-consistent solutions was worse than
for the fully-paired calculations, the algorithm suffering from the same type of stability
problems as the ones reported in [Sch10]. The mean stability of the results was better
than 100 keV, enough to clearly trace the variation of the calculated odd-even staggering
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Figure 4.7: Experimental two-neutron separation energies and mean-square charge radii of
neutron-deficient mercury isotopes, compared to self-consistent mean-field calculations from the
literature. The experimental S2n values use masses from the AME2012 [Wan12]. The 〈δr2〉 val-
ues are taken from [Fri04b]. The theoretical values are obtained in the HFB-D1S (Gogny) [Del10]
or BCS-SLy4 [Ben06] framework (red diamonds and blue circles, respectively). In both cases,
the figure shows the static mean-field solutions (full symbols) and also the beyond-mean-field
results, which include dynamic correlations (empty symbols).
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with the strength of the pairing interaction.

Figure 4.8 compares the calculated and experimental values of the five-point estimator
of the odd-even staggering (∆5n) along the mercury isotopic chain (also known as five-
point empirical pairing gap), defined in Eq. (1.26). The experimental values use masses
from AME2012 [Wan12]. The experimental values of ∆5n for the gold isotopes are also
shown. The values obtained using the masses of gold isotopes analyzed as part of the
present work are highlighted. They are systematically lower than the ∆5n values of the
mercury isotopes, because the gold isotopes have odd proton number (see also Eq. (4.1)).
Thus, the calculated ∆5n are not meant to be compared in absolute value to the exper-
imental values of the gold isotopes. However, the relative trend of ∆5n along the gold
isotopic chain can be used to interpret how nuclear deformation impacts the odd-even
staggering of binding energies.

The calculations are presented for two different choices of the pairing-interaction
strength, namely V0 = −200 and −225 MeV fm3. For each choice, ∆5n is calculated
separately for the minimum-energy prolate and oblate configuration, as well as for the
global minimum of the self-consistent mean field. For an easier comparison, Fig. 4.9
presents only the ∆5n values corresponding to the global energy minimum (ground state)
for the investigated strengths of the pairing interaction.

Figure 4.9 shows that the variation of the strength of the pairing interaction signifi-
cantly influences the predicted magnitude of the odd-even staggering (only global minima
shown). A value of the pairing strength V0 = −200 MeV fm3 leads to a underestimation
of the experimental “pairing gap”. A volume pairing strength V0 = −225 MeV fm3 comes
closer to the experimental ∆5n, although it slightly overestimates it. A value of the pairing
interaction between the two is necessary to reproduce on average the experimental data.

The calculated ∆5n values corresponding to the spherical configuration are presented
in Figs. 4.8(a) and 4.8(b). One notices that in the spherical approximation the odd-even
staggering is in general larger than the one obtained once deformation is taken into ac-
count. A correct prediction of the odd-even staggering of deformed nuclei thus requires
not only a correct description of pairing correlations, but also of the quadrupole collec-
tivity of the studied nuclei (as the dominant mode of nuclear collectivity). This becomes
increasingly difficult for nuclei which are not statically deformed, but have a pronounced
vibrational character, because the deformation of the nuclear mean field does not capture
the full magnitude of the ground-state correlations. This is why the pairing interaction is
typically constrained on the odd-even staggering of semi-magic nuclei [Ben03].

One notices for the different plots of Fig. 4.8 that the theoretical ∆5n values of the
oblate and prolate configuration can differ, for the same pairing strength, by as much
as a few hundred keV. This means that, especially in shape-transition regions where the
different mean-field minima come very close in energy, the final balance between the
competing equilibrium configurations can only be decided once the blocking phenomenon
is fully accounted for in the odd-Z and odd-N nuclei. When analyzing observables along
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Figure 4.8: Experimental values of the five-point empirical pairing gap Δ5n (for gold and
mercury isotopes) compared to the results of HFB-SLy4 calculations (for mercury isotopes).
The experimental Δ5n values use masses from the AME2012 [Wan12] and the present work.
The theoretical values are presented for two different strengths of the pairing interaction,
V0 = −200 and −225 MeV fm3. The results for the minimum-energy oblate and prolate con-
figurations are each presented (full blue squares and full green diamonds, respectively), as well
as the one corresponding to the global minimum, to which the nuclear ground state is assigned
(red open circles). The trend of Δ5n for a calculation in spherical symmetry is also presented
(dashed line).



4.3 Odd-even staggering of mercury isotopes 113

Δ
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Figure 4.9: Experimental values of the five-point empirical pairing gap Δ5n for mercury
isotopes compared to the results of HFB-SLy4 calculations. The experimental Δ5n values
use masses from the AME2012 [Wan12]. The theoretical values correspond to the global
mean-field minimum and are presented for two different strengths of the pairing interaction,
V0 = −200 and −225 MeV fm3.

isotopic chains of odd proton number, this requirement is valid for every isotope. The zero-
quasi-particle solutions in odd and odd-odd systems give a good first-order description of
the global trends of the nuclear observables, including their variation with the parameters
of the energy functional. To decide on fine local effects, a full description of odd nuclei is
however required.

Figures 4.10 and 4.11 show for comparison the results of calculations performed with
and without quasi-particle blocking for pairing strengths V0 = −200 MeV fm3 and V0 =
−225 MeV fm3, respectively. The zero-quasi-particle states (no blocking) are presented for
the mercury and gold isotopes (for V0 = −200 MeV fm3 they are the same as in Fig. 4.6).
The one-quasi-particle states (with blocking) are only computed for the (odd-N) mercury
isotopes. Irrespective of the treatment of odd nuclei, the general trends observed with
the increase of the pairing strength for the results of Fig. 4.6 are confirmed. For the same
nucleus and equilibrium configuration, the quadrupole deformation parameter is reduced
and so is its deformation energy, when passing from V0 = −200 to −225 MeV fm3.
The two-neutron separation energies are systematically lower than the ones obtained for
V0 = −200 MeV fm3. The extension of the region of large prolate deformation is further
reduced, as well as the part of it which belongs to the global energy minimum and to
hence the nuclear ground state.

One observes in Figs. 4.10(c) and 4.10(d) that the implementation of quasi-particle
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Figure 4.10: Experimental two-neutron separation energies and mean-square charge radii of
neutron-deficient gold and mercury isotopes, compared to HFB-SLy4 calculations using a pairing
interaction of strength V0 = −200 MeV fm3. The experimental S2n values use masses from the
AME2012 [Wan12] and this work. The 〈δr2〉 values are taken from [Fri04a; Fri04b]. The left
panels show theoretical results for the zero-quasi-particle states of gold and mercury isotopes
(without blocking). The right panels show results for the mercury isotopes, with the odd-N ones
computed as one-quasi-particle states (with blocking). The results for the spherical, minimum-
energy oblate and minimum-energy prolate configurations are shown separately (dashed line,
blue squares and green diamonds, respectively). The red empty circles represent the values
corresponding to the ground state, assigned to the configuration of lowest energy. The S2n and
〈δr2〉 of the mercury isotopes are biased for better separation.
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Figure 4.11: Experimental two-neutron separation energies and mean-squared charge radii of
neutron-deficient gold and mercury isotopes, compared to HFB-SLy4 calculations using a pairing
interaction of strength V0 = −225 MeV fm3. The experimental S2n values use masses from the
AME2012 [Wan12] and this work. The 〈δr2〉 values are taken from [Fri04a; Fri04b]. The left
panels show theoretical results for the zero-quasi-particle states of gold and mercury isotopes
(without blocking). The right panels show results for the mercury isotopes, with the odd-N ones
computed as one-quasi-particle states (with blocking). The results for the spherical, minimum-
energy oblate and minimum-energy prolate configurations are shown separately (dashed line,
blue squares and green diamonds, respectively). The red empty circles represent the values
corresponding to the ground state, assigned to the configuration of lowest energy. The S2n and
〈δr2〉 of the mercury isotopes are biased for better separation.
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blocking modifies both the extension of the minimum of large deformation among the
prolate configurations and the number of isotopes in which this minimum gives the nuclear
ground-state. As shown in Figs. 4.11(a) and 4.11(c), for V0 = −225 MeV fm3 and no
blocking, only two gold isotopes are still predicted to have the large prolate deformation,
while in the case of mercury the oblate configuration is predicted to persist as the ground
state throughout the entire range of calculated isotopes, at odds with the experimental
values. Once blocking is implemented, the energy balance between the large-deformation
prolate configuration and the oblate configuration changes in the odd-N systems for 98 ≤
N ≤ 104, due to the fact that, with respect to the fully-paired solution, the oblate
and the prolate configurations lose different amounts of binding energy by the blocking
of the odd neutron. This is reflected in Figs. 4.8(a) and 4.8(b) by the fact that the ∆5n

values differ significantly between the prolate and oblate configuration for this range. The
consequence of this phenomenon are the successive changes of the ground state between
oblate and prolate deformation predicted for V0 = −225 MeV fm3. The result, shown in
Fig. 4.11(d), is that the ground-state mean-square charge radii exhibit the pronounced
odd-even staggering which is observed in experiment.

4.4 Summary

The calculations presented in this chapter represent an exploration of the mean-field
landscape in two of the most pronounced shape-transition regions of the nuclear chart:
neutron-rich A ≈ 100 and neutron-deficient gold-thallium isotopes. Although still a large
simplification of the nuclear many-body problem, the (deformed) mean-field approxima-
tion gives the leading-order contribution to the description of nuclear structure in mid-shell
regions of the nuclear chart. In particular, it captures the competition between paring
and quadrupole correlations, which are the two main driving forces for the evolution of
nuclear structure in open-shell nuclei [Rin00; Cas05]. Thus, despite the limitations inher-
ent to the mean-field approximation and to the modeling of pairing correlations in HFB
theory, a few conclusions can be drawn from this analysis, which will be summarized in
the following. They also rely on the presented literature results [Ben06; Del10] which,
containing both the mean-field and the beyond-mean-field solutions for even-even nuclei,
allow discussing the expected effect of dynamic quadrupole correlations on the computed
observables.

The mean-field landscape in open-shell nuclei typically consists of more than one equi-
librium configuration, each having its smooth, steady evolution with proton and neutron
number. Considering that the ground state is given in the mean-field description by the
configuration of lowest energy, ground-state shape transitions correspond to changes of the
energy ordering between two coexisting configurations. Although sudden when regarding
only the ground-state properties, shape transitions are generally smooth phenomena with
respect to the full mean-field landscape, i.e. considering all existing equilibrium config-
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urations. Considering also the effect of collective motion, which is frozen at the static
mean-field level, shape transitions are related to changes in the mean-field configuration
which has the largest weight in the fully-correlated ground state.

Irrespective of the way it is modeled, the pairing functional (or interaction) influences
the deformation energy of the oblate and prolate configurations (energy balance with
respect to the spherical solution), but also the relative energy balance between them.
As such, it has a significant impact on shape-transition phenomena and the resulting
signatures (location along an isotopic chain and strength). The proper description of
shape transitions poses an important constraint on the particle-particle part of the energy
functional, for a certain choice of its particle-hole part. Together with the description of
empirical shell gaps, this acts as an additional constraint on the modeling of pairing
correlations, complementary to the odd-even staggering of binding energies.

Both for the neutron-rich A ≈ 100 and for the neutron-deficient gold-thallium isotopes,
the calculations attribute the shape-transitions observed in the charge radii at N ≈ 60 and
N ≈ 105 − 107, respectively, to a change of the nuclear ground-state between an oblate
and a large-deformation prolate minimum of the nuclear mean-field. This is in agreement
with results which include beyond-mean-field correlations for even-even nuclei [Ben06].
For the gold isotopes, the experimental S2n values around N = 107 agree qualitatively
with the type of S2n evolution predicted by the HFB calculations close to the oblate-
to-prolate transition in the nuclear ground state. However, one notices that there is a
significant displacement between the location of the flattening of S2n and the signature in
the charge radii. A similar signature is predicted for the mercury isotopes in the mean-
field calculations of the present work and in the cited literature results [Ben06; Del10], but
it is shown in Fig. 4.7 that this signature is washed out by beyond-mean-field correlations.
We note however that the calculations of [Ben06; Del10] predict the even-even mercury
isotopes in the shape-staggering region to have large deformation, contrary to experiment.

For the neutron-rich A ≈ 100 nuclei, the excellent agreement with experiment of
the prolate configuration taken individually (charge radii and two-neutron separation
energies) still allows the observed trends to be explained by a transition between a low-
deformation and a large-deformation prolate minimum. The calculations nevertheless
predict an oblate-to-prolate transition at N ≈ 60 for all investigated strengths of the
pairing interaction.

The different behavior of the experimental S2n and 〈δr2〉 values in the krypton isotopic
chain (with respect to the rubidium isotopic chain), including the new masses presented
in this work, can be explained either by a persistence of the oblate configuration in the
nuclear ground state or by a transition to large prolate deformation at a higher neutron
number than the extension of the available experimental data. The results of [Del10] hint
at a third possible explanation, related to the softness of the mean-field solution. Although
predicting at the mean-field level a transition to larger deformation already at N = 60,
the beyond-mean-field results of Fig. 4.3 show a reduction of the relative charge radii of
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96,98Kr. Further mass and charge-radius (or electric-moment) measurements along the
krypton isotopic chain should provide crucial additional information and clarify whether
the krypton isotopes represent the boundary of the quantum phase transition in the region.

It is very difficult, with the current modeling of the pairing functional in Skyrme-
HFB theory, to find a pairing strength which provides a reasonable description of both
shape-transition phenomena and the odd-even staggering of binding energies, for the two
investigated regions of the nuclear chart. Although their systematic study was limited
to the HFB quasi-particle vacuum, without any blocking prescription or configuration
mixing, the description of two-neutron separation energies and mean-square charge radii
of the mid-shell nuclei in the HFB-SLy4 approach seems to require a volume-pairing
strength closer to V0 = −175 MeV fm3.

Stronger pairing (V0 = −200 MeV fm3) leads to an underestimation of the strength of
the S2n signature in the nuclear ground states of the neutron-rich A ≈ 100 nuclei, deter-
mined by the N ≈ 60 shape transition. It also leads to systematically lower theoretical
S2n values with respect to experiment for the neutron-deficient gold-thallium nuclei. In
what concerns the N = 50 two-neutron shell gap, although it is not properly described
at the static mean-field level, stronger pairing gives a very low mean-field approximation
for its trend with proton number. One notes however the remarkable description of the
experimental S2n signature around N = 60 by the prolate configuration of the mean field,
taken individually. The agreement is best, in this sense, for V0 = −200 MeV fm3.

Based on results from the literature which include the effect of collective motion
through beyond-mean-field techniques [Ben06; Del10], the addition of dynamic correla-
tions produces a change which further disfavors a stronger pairing interaction. Especially
referring to the neutron-rich A ≈ 100 nuclei, configuration mixing would lead to an even
smoother S2n trend around the N = 60 shape transition and to an increase of the charge
radii of the reference N = 50 nuclei. This in turn would lead to lower 〈δr2〉 values for
N > 60 than in the static mean-field approximation, as shown in Fig. 4.3. Finally, the ef-
fect of dynamic correlations on theN = 50 two-neutron shell gap, illustrated in Fig. 4.4(b),
is of a systematic reduction at every proton number. For all these subsequent effects which
emerge at the beyond-mean-field level, a pairing strength V0 = −200 MeV fm3 or stronger
seems to provide unfavorable mean-field starting conditions.

Describing odd nuclei as one-quasi-particle states in the mean-field approximation, a
stronger volume-pairing interaction than V0 = −200 MeV fm3 is necessary, as shown in
Fig. 4.9, in order to obtain the proper magnitude of the odd-even staggering of binding
energies along the mercury isotopic chain (as a result of blocking). A value of the pairing
strength V0 = −175 MeV fm3 significantly underestimates the experimental ∆5n values.

The magnitude of the odd-even staggering of binding energies as a result of blocking
generally differs between the competing spherical and deformed configurations. The en-
ergy balance between the deformed configurations at the level of the HFB quasi-particle
vacuum can change when blocking is implemented and with it the configuration which
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gives the mean-field ground state. The odd-even staggering of charge radii in the mer-
cury isotopic chain is likely the reflection of this phenomenon: the competition between
two mean-field configurations, the ordering of which is different for the fully-paired HFB
states (even-N isotopes) than for the blocked one-quasi-particle states (odd-N isotopes).
Since the difference in empirical pairing gap between the competing configurations can be
as large as 0.5 MeV, the final ordering between them cannot be unambiguously discussed
before quasi-particle blocking is implemented. This is especially important if the binding
energies of the different configurations differ by less than this amount for their fully-paired
vacua. When studying the systematics with neutron number of odd-Z isotopic chains,
this problem must be considered for every isotope, unless the fully-paired minima are well
separated in energy.

The observed effect of configuration mixing (for even-even nuclei) and quasi-particle
blocking (for odd and odd-odd nuclei) in self-consistent mean-field theories imposes a
full beyond-mean-field treatment of these isotopes before their properties can be used
to unambiguously constrain the parameters of the effective nucleon-nucleon interaction
(or energy density functional). The quenching of correlations in doubly-magic nuclei
recommends their ground-state properties as a convenient way out for the particle-hole
part of the interaction, although it has been pointed out that, because the fitting is
performed in the mean-field approximation, the nuclei used for the fit are systematically
over-bound once configuration-mixing is implemented [Was12].

In what concerns the particle-particle part of the interaction, even if one uses only the
odd-even staggering of binding energies, its adjustment requires the computation of mid-
shell nuclei (at least in one nucleon species), for which dynamic quadrupole correlations
are non-negligible. This leads to complications, to which one adds the ambiguity result-
ing when polarization effects are not self-consistently taken into account [Rut99; Ben00;
Dug01]. In this context, the effect of the pairing-interaction strength on the description
of shape-transition phenomena, through the competition between particle-particle and
particle-hole correlations, can be a crucial additional constraint. This can also act as a
consistency check between the particle-particle and particle-hole channels of the energy
functional.





Chapter 5

Conclusions and outlook

In this work, the masses of neutron-rich rubidium (98−100Rb) and neutron-deficient gold
(180,185,188,190,191Au) isotopes produced by the ISOLDE facility [Kug00] at CERN were
studied with the Penning-trap mass spectrometer ISOLTRAP [Muk08]. Their masses
were determined by the time-of-flight ion-cyclotron-resonance technique in a Penning
trap [Gra80]. The multi-reflection time-of-flight mass spectrometer (MR-TOF MS) of
ISOLTRAP [Wol13b] was used as a beam-analysis tool for laser spectroscopy studies of
neutron-deficient gold isotopes, with the resonance-ionization laser ion source of ISOLDE
[Mar13]. Producing a complete separation of the isobaric contamination for all studied
gold isotopes, the MR-TOF MS is a promising tool for measuring the hyperfine structure
of radioactive nuclides, either for the determination of nuclear charge radii, spins and
electromagnetic moments, or as a means of providing isomerically pure beams by selective
ionization.

The trends of nuclear binding energies contain a series of features which can be ex-
tracted by use of finite-difference formulas (or mass filters). Once computed, these fil-
ters justify the intuition of describing nuclear structure starting from a mean-field (or
independent-particle) picture, from which one builds the interacting (correlated) nuclear
state by means of a residual interaction [Cau05] or in a variational way, as a mixture
of mean-field configurations which minimize the energy by (spontaneously) breaking the
symmetries of the nuclear Hamiltonian [Ben03]. Either way, the evolution of nuclear struc-
ture in open-shell nuclei is decisively influenced by the competition between short-range
(particle-particle) correlations, which drive the nucleus to spherical shape, and long-range
(particle-hole) correlations, which drive the spontaneous breaking of rotational symmetry
(intrinsic deformation). In mid-shell regions, nuclei are typically quadrupole deformed in
the intrinsic frame, while close to magic numbers the spherical stability of the nucleus
is preserved. The change between the two types of structure can be either smooth or
sudden, the latter case marking the shape-transition phenomenon.

The most intuitive picture of shape transitions is the one obtained in the framework of
mean-field theory [Rin00]. The competition between pairing and quadrupole correlations
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translates into the energy balance between different equilibrium configurations of the mean
field (local minima with respect to small variations of deformation), of which the one
lowest in energy is associated to the nuclear ground state. With the change of proton and
neutron number, the energy difference between these configurations changes, sometimes
leading to a change of the ground-state configuration. In turn this determines a change
of the trends of ground-state mass filters and mean-square charge radii.

The measured rubidium and gold isotopes cross two of the most prominent shape-
transition regions of the nuclear chart. As such, the properties of these nuclides are
sensitive to the balance between pairing and quadrupole correlations in the nuclear mean
field. A Skyrme-Hartree-Fock-Bogoliubov study of the binding energies and mean-square
charge radii of nuclei in the two concerned regions was thus performed [Rin00]. The
HFODD code [Dob97; Sch12] was used for calculations, with the SLy4 interaction for the
particle-hole part [Cha98] and a delta volume-pairing interaction for the particle-particle
part of the energy functional [Ben03]. Most calculations of odd nuclei were performed
only at the level of the HFB quasi-particle vacuum [Dug01], except for the odd-N mercury
isotopes, which were also computed with full quasi-particle blocking [Dob09b; Sch10],
allowing the determination of their odd-even staggering.

As a general result, the study revealed that the nuclear mean-field exhibits oblate as
well as prolate equilibrium configurations, lying close together in energy, for both the
rubidium and gold isotopes. This is in agreement with other results from the literature,
such as global HFB calculations using the Gogny interaction [Del10]. Close to stability,
the oblate configuration is favored in energy and determines a smooth variation of the
binding energies and mean-square charge radii. Towards mid-shell, the prolate config-
uration undergoes a transition from low to large deformation and, by the gradual gain
in binding energy, becomes the ground-state configuration. The position of this transi-
tion, as well as the way it is reflected in the ground-state observables, depends on the
strength of the pairing interaction. The pairing interaction also influences significantly
the predicted magnitude of the odd-even staggering of binding energies, as shown for the
mercury isotopes. This means that the odd-even staggering effect and the locations of
shape transitions can be used together to consistently constrain the pairing interaction,
which is usually fitted to reproduce only the first of the two observables. In particu-
lar, it is shown that, for a volume-type, delta pairing interaction, it is difficult to find
a strength which allows the simultaneous description of two-neutron separation energies
across the studied shape-transition points (requiring a value lower than 200 MeV fm3) and
the odd-even staggering of neutron-deficient mercury isotopes (requiring a value higher
than 200 MeV fm3).

The experimental two-neutron separation energies of the rubidium isotopes were ex-
tended to N = 63 and confirm the persistence of static deformation in the rubidium
isotopic chain up to this neutron number, further than can be concluded based on mea-
surements of mean-square charge-radii. The calculations are in agreement with this pic-
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ture, predicting a transition from oblate to prolate deformation around N = 60, which
persists in the ground state towards N = 66. The different behavior of S2n and mean-
squared charge radii in the krypton isotopic chain [Nai10] can be attributed either to a
persistence of oblate deformation in the nuclear ground-state, or to a transition to prolate
deformation at a larger neutron number than so-far reached by experiments.

The ISOLTRAP measurements of neutron-deficient gold isotopes refine the mass sur-
face before and after the shape transition which takes place at N = 107. The determined
masses of 188,190Au deviate significantly from the literature values. The new S2n values
have a smoother trend around the transition point, but a drop of S2n between N = 108
and 109 is still observed, as well as a flattening of the S2n slope between N = 109 and
111. The HFB calculations predict the shape transition to take place in the gold chain
between an oblate and a large-deformation prolate configuration, although at a systemati-
cally lower neutron number than experimentally observed. A flattening of the S2n slope is
shown to occur close to the transition point in the mean-field approximation. The return
to a configuration of lower deformation is predicted for N < 100, which should be clearly
observed in the charged radii of the more neutron-deficient gold isotopes. A signature
in S2n is predicted, but not observed in the experimental values, which can be due to
configuration mixing.

The calculations without quasi-particle blocking predict that the oblate-to-prolate
transition also takes place in the mercury isotopic chain, for a pairing-interaction strength
below −200 MeV fm3. The difference in binding between the oblate and prolate configu-
rations decreases however with the increase of the pairing strength and for −225 MeV fm3

the oblate configuration is predicted to remain the most bound along the entire mercury
isotopic chain. The oblate and prolate configurations lose different amounts of binding
by the blocking of an odd neutron. For a pairing-interaction strength of −225 MeV fm3,
this additional effect leads to the alternation of the ground-state configuration between
oblate and prolate when passing from even to odd isotopes, respectively. This alternation
explains the large odd-even staggering of charge radii for N < 106 in the mercury isotopic
chain.

The study of the two shape-transition regions performed in this work can continue by
extending the mass and isotope-shift measurements along the krypton and gold isotopic
chains. Further measurements of neutron-rich krypton isotopes would bring clarification
on whether they are the boundary of the shape transition in the neutron-rich A ≈ 100
nuclei [Nai10]. Measurements of more neutron-deficient gold isotopes would explore the
transition back to less deformed shapes in a region near the proton drip line. The study
of these exotic nuclides with lower yields and half-lives requires faster purification and
measurement techniques, and ISOLTRAP’s multi-reflection time-of-flight mass spectrom-
eter has proven to be a promising solution for both requirements [Wol12; Wol13b]. Mass
measurements with the MR-TOF MS [Wie13] and resonance-ionization laser spectroscopy
with MR-TOF separation and detection [Kre13; Mar13] are intriguing developments to
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pursue.
The study of nuclei in mean-field theory is also required to improve in order to give

a reliable description of nuclear-structure phenomena. As shown in the present work,
the energy balance between mean-field configurations depends on the interplay between
particle-particle, particle-hole correlations and blocking. Only the complete treatment
of these contributions allows unambiguous conclusions to be drawn about the mean-
field landscape. Additionally, a global, beyond-mean-field description of odd nuclei is
still lacking and is necessary in order provide the correct laboratory-frame description,
including the important effect of configuration mixing [Ben03]. Very recently, renewed
efforts in this direction have been published, but are still limited to only a few cases
[Bal14].
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Appendix A

Finite-difference operators

In this appendix we make a brief introduction of the most common finite difference oper-
ators used in analyzing the trends of nuclear binding energies. The discussion is however
general, referring to any continuous, infinitely derivable function F (X). After the results
of this subsection are computed, they can be easily transposed to the quantities that the
physics discussion requires. The function F (X) needs not have only one argument, how-
ever its expansion will only be performed with respect to one, the other hidden arguments
being considered fixed to some value.

The function F (X) can be expanded in powers of X around a certain value X0 as:

F (X) =
∞∑
n=0

1

n!

(
∂nF

∂Xn

)
X=X0

(X −X0)n. (A.1)

The elementary finite-difference operators are the simple two-point formulas of step
n, Dn. Applied to F (X), they give:

DnF (X) = F (X − n)− F (X). (A.2)

It is easy to prove the following relationship:

DnF (X) = D1

[
n−1∑
i=0

F (X − i)

]
. (A.3)

The higher-order finite-difference operators Dkn are obtained as powers of the elemen-
tary operators Dn:

DknF (X) = (Dn)kF (X). (A.4)

Equations (A.3) and (A.4) show that any type of differential operator with which we
are concerned can be constructed from the single-step two-point formula D1.
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The general result of applying the finite-difference operator Dkn to F (X) is:

DknF (X) =
k∑
i=0

(
k
i

)
(−1)iF [X − n(k − i)]. (A.5)

In order to obtain the simplest formulas for the actions of the different finite-difference
operators, we perform in Eq. (A.5) the Taylor expansion of F [X − n(k − i)] around
X − nk/2. For odd k, this means that the Taylor expansion is performed around a
half-integer number. The resulting formula for the action of the operator Dkn is:

DknF (X) =
k∑
i=0

(
k
i

)
(−1)i

∞∑
j=0

1
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∂Xj
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2
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2
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)
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2

k∑
i=0
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k
i

)
(−1)i

(
i− k

2

)j
, (A.6)

where we have already taken into account that the j = 0 term of the Taylor series,
F (X − nk/2), is always canceled by the finite-difference operator.

Now one can evaluate the sum over i and compute the result of the action of different
finite-difference operators on F (X). It is useful to specify some of the results which are
relevant for the physics discussion:

D1F (X0) = F (X0 − 1)− F (X0)

=
∞∑
j=1

1

j!
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∂jF
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)
X0− 1

2

[(
−1

2

)j
−
(

1

2

)j]

= −
(
∂F

∂X

)
X0− 1

2

− 1
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(
∂3F

∂X3

)
X0− 1

2

− ... (A.7)

D2
1F (X0) = F (X0 − 2)− 2F (X0 − 1) + F (X0)

=
∞∑
j=1

1

j!

(
∂jF

∂Xj

)
X0−1

[
(−1)j + 1

]
=

(
∂2F

∂X2

)
X0−1

+
1

12

(
∂4F

∂X4

)
X0−1

+ ... (A.8)

D3
1F (X0) = F (X0 − 3)− 3F (X0 − 2) + 3F (X0 − 1)− F (X0)

=
∞∑
j=1

1

j!

(
∂jF

∂Xj

)
X0− 3

2

[(
−3

2

)j
− 3

(
−1

2

)j
+ 3

(
1

2

)j
−
(

3

2

)j]

= −
(
∂3F

∂X3

)
X0− 3

2

− 1

8

(
∂3F

∂X3

)
X0− 3

2

− ... (A.9)



129

D4
1F (X0) = F (X0 − 4)− 4F (X0 − 3) + 6F (X0 − 2)− 4F (X0 − 1) + F (X0)

=
∞∑
j=1

1

j!

(
∂jF

∂Xj

)
X0−2

[
(−2)j − 4 (−1)j − 4 + (2)j

]
=

(
∂4F

∂X4

)
X0−2

+
1

6

(
∂6F

∂X6

)
X0−2

+ ... (A.10)

D2F (X0) = F (X0 − 2)− F (X0)

=
∞∑
j=1

2j

j!

(
∂jF

∂Xj

)
X0−1

[(
−1

2

)j
−
(

1

2

)j]

= −2

(
∂F

∂X

)
X0−1

− 1

3

(
∂3F

∂X3

)
X0−1

− ... (A.11)

D2
2F (X0) = F (X0 − 4)− 2F (X0 − 2) + F (X0)

=
∞∑
j=1

2j

j!

(
∂jF

∂Xj

)
X0−1

[
(−1)j + 1

]
= 4

(
∂2F

∂X2

)
X0−2

+
4

3

(
∂4F

∂X4

)
X0−2

+ ... (A.12)





Appendix B

Motion of a charged particle in a
Penning trap

In the following, the equations of motion of a charged particle in a Penning trap will
be solved explicitly. The confining forces acting on the particle of mass m and charge q
are generated by the superposition of a quadrupole electrostatic field and a homogeneous
magnetic field. The electrostatic field is defined in Cartesian coordinates {x̂, ŷ, ẑ} by the
potential:

V = V0

z2 − r2

2

2d2
, (B.1)

where r2 = x2 + y2 and d is the characteristic trap dimension:

d2 =
1

2
(z2

0 + r2
0/2), (B.2)

with z0 and r0 the minimum distances between the center of the trap and the endcap
and ring electrodes, respectively (see Fig. 2.1(a)). With this choice of distances, V0 is
the potential difference between the endcaps and the ring electrode. The electric force
resulting from the potential is given by:

Fe = −q∇V =
qV0

2d2
r− zqV0

d2
ẑ, (B.3)

where r is the radial position vector of coordinates (x, y).
The magnetic field acts on the particle through the Lorentz force. Taking the field

counter-parallel to the axis ẑ, B = −Bẑ, the magnetic force is given by:

Fm = qṙ×B = qBẑ × ṙ. (B.4)

The total force acting on the charged particle can be decomposed into an axial and a
radial component:

Fz = −zqV0

d2
ẑ, (B.5)
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and

Fr =
qV0

2d2
r + qBẑ × ṙ. (B.6)

The axial and radial dynamics are completely decoupled, leading to two independent
equations of motion:

z̈ +
zqV0

md2
ẑ = 0, (B.7)

and

r̈− qV0

2md2
r +

qB

m
ẑ × ṙ = 0. (B.8)

The first is the equation of a harmonic oscillator of (axial) frequency:

ωz =

√
qV0

md2
, (B.9)

meaning that the axial motion of the particle in the Penning trap is simply the harmonic
oscillation around the trap center at a characteristic frequency, depending on the particle’s
mass and on the trapping potential.

Before solving the radial equation of motion, it is worth recognizing that qB/m is the
particle’s cyclotron frequency ωc in the magnetic field. Although not physically relevant
for the radial motion, for compactness one can also substitute the axial frequency in
Eq. (B.8) to obtain:

r̈− ω2
z

2
r + ωcẑ × ṙ = 0. (B.10)

Equation (B.10) is in Cartesian coordinates a set of two coupled, linear, homogeneous
differential equations, of second order. To put the set of equations in canonical form, one
expands the cross product and writes the system of equations in matrix form:(

ẍ
ÿ

)
=
ω2
z

2

(
1 0
0 1

)(
x
y

)
+ ωc

(
0 −1
1 0

)(
ẋ
ẏ

)
r̈ = Ar +Bṙ. (B.11)

To reduce the order of the equations, one makes the substitution ṙ = v which allows
turning Eq. (B.11) into a system of four linear, homogeneous, differential equations of
first order:

ṙ = v

v̇ = Ar +Bv. (B.12)

Equation (B.12) can also be written in a compact matrix form as:(
ṙ
v̇

)
=

(
0 I
A B

)(
r
v

)
, (B.13)



133

where 0 and I are the null and identity matrices, respectively. Because the system of
Eq. (B.13) has dimension four, its general solution is of the form:

4∑
k=1

eλktuk, (B.14)

where λk are the eigenvalues of the 4× 4 matrix of Eq. (B.13) and uk are a corresponding
set of independent eigenvectors. Using generic notations for the components of u, the
eigenvalue problem is formulated as:(

0 I
A B

)(
p
q

)
= λ

(
p
q

)
, (B.15)

where p and q are each 2D vectors. From the first row of the matrix, one gets that q = λp.
Using this information, from the second row of the matrix one obtains the equation:

Ap + λBp = λ2p (B.16)

In Eq. (B.16), p is a r-like vector, of components labeled for simplicity by c and d.
Using the expressions of A and B from Eq. (B.12), Eq. (B.16) one obtains the system:(

ω2
z

2
− λ2

)
c− λωcd = 0(

ω2
z

2
− λ2

)
d+ λωcc = 0, (B.17)

which, through substitution, leads to a second-order equation for λ2:(
λ2
)2

+
(
ω2
c − ω2

z

)
λ2 +

ω4
z

4
= 0. (B.18)

The solutions for λ2 are:

λ2 =
1

2

(
−ω2

c + ω2
z ± ωc

√
ω2
c − 2ω2

z

)
, (B.19)

which are actually given by:
λ2 = −ω2

±, (B.20)

with

ω± =
1

2

(
ωc ±

√
ω2
c − 2ω2

z

)
. (B.21)

From Eq. (B.21) one can verify the following two relationships:

ωc = ω+ + ω−,

ω2
c = ω2

+ + ω2
− + ω2

z . (B.22)
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The four values of λ resulting from Eq. (B.20) are ±iω±. Substituting back in
Eq. (B.17), one can find for each value of λ the corresponding family of eigenvectors
u:

λ++ = iω+, p++ =

(
iω+ωc
ω2
z

2
+ ω2

+

)
=

(
i
1

)
,

λ+− = −iω+, p+− =

(
−iω+ωc
ω2
z

2
+ ω2

+

)
=

(
1
i

)
,

λ−+ = iω−, p−+ =

(
iω−ωc
ω2
z

2
+ ω2

−

)
=

(
i
1

)
,

λ−− = −iω−, p−− =

(
−iω−ωc
ω2
z

2
+ ω2

−

)
=

(
1
i

)
, (B.23)

where one has used:
ω2
z

2
+ ω2

± = ω±ωc (B.24)

easy to show from Eq. (B.22).
The general solution can be obtained using Eq. (B.14). Since one is not interested

by the velocity, Eq. (B.14) can be written only for the r part, using instead of u the p
vectors of Eq. (B.23). To also construct a real solution, one picks of the pairs of complex-
conjugate eigenvalues λ only one and uses of the corresponding eλtp product the real and
the imaginary parts as independent eigenvectors:

r = C1<(eλ++tp++) + C2=(eλ++tp++)

+ C3<(eλ−+tp−+) + C4=(eλ−+tp−+). (B.25)

Using the values obtained in Eq. (B.23), the general solution becomes:

r = C1

(
− sin(ω+t)
cos(ω+t)

)
+ C2

(
cos(ω+t)
sin(ω+t)

)
+ C3

(
− sin(ω−t)
cos(ω−t)

)
+ C4

(
cos(ω−t)
sin(ω−t)

)
. (B.26)

Instead of the C constants in Equation (B.26), one can rewrite the solution in terms of
two amplitudes and two phases. To this end, one performs the following transformations:

ρ+ =
√
C2

1 + C2
2 , sin(φ+) =

C1√
C2

1 + C2
2

, cos(φ+) =
C2√

C2
1 + C2

2

,

ρ− =
√
C2

3 + C2
4 , sin(φ−) =

C3√
C2

3 + C2
4

, cos(φ−) =
C4√

C2
3 + C2

4

. (B.27)
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With these transformations, Eq. (B.26) becomes:

r = ρ+

(
cos(ω+t+ φ+)
sin(ω+t+ φ+)

)
+ ρ−

(
cos(ω−t+ φ−)
sin(ω−t+ φ−),

)
(B.28)

which is the superposition of two circular motions, one at ω+, called the modified cyclotron
frequency, and one at ω−, called the magnetron frequency.
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C. Böhm et al., “Evolution of nuclear ground-state properties of neutron-deficient isotopes
around Z = 82 from precision mass measurements,” Phys. Rev. C 90, 044307 (2014).

S. Kreim et al., “Recent exploits of the ISOLTRAP mass spectrometer,” Nucl. Instrum.
Meth. B 317, 492–500 (2013).

S. Kreim et al., “Competition between pairing correlations and deformation from the
odd-even mass staggering of francium and radium isotopes,” Phys. Rev. C 90, 024301
(2014).

V. Manea et al., “Collective degrees of freedom of neutron-rich A ≈ 100 nuclei and the
first mass measurement of the short-lived nuclide 100Rb,” Phys. Rev. C 88, 054322
(2013).

B. Marsh et al., “New developments of the in-source spectroscopy method at RILIS/
ISOLDE,” Nucl. Instrum. Meth. B 317, 550–556 (2013).

J. Stanja et al., “Mass spectrometry and decay spectroscopy of isomers across the Z = 82
shell closure,” Phys. Rev. C 88, 054304 (2013).

F. Wienholtz et al., “Masses of exotic calcium isotopes pin down nuclear forces,” Nature
498, 346 (2013).

R. N. Wolf et al., “Plumbing Neutron Stars to New Depths with the Binding Energy of
the Exotic Nuclide 82Zn,” Phys. Rev. Lett. 110, 041101 (2013).

R. Wolf et al., “ISOLTRAP’s multi-reflection time-of-flight mass separator/ spectrome-
ter,” Int. J. Mass Spectrom. 349–350, 123–133 (2013).

137





Bibliography

[Abo95] Y. Aboussir, J. Pearson, A. Dutta, F. Tondeur, “Nuclear mass formula via an
approximation to the Hartree-Fock method,” At. Data Nucl. Data Tables 61,
127–176 (1995).

[Alb12] M. Albers et al., “Evidence for a Smooth Onset of Deformation in the Neutron-
Rich Kr Isotopes,” Phys. Rev. Lett. 108, 062701 (2012).

[And00] A. Andreyev et al., “A triplet of differently shaped spin-zero states in the
atomic nucleus 186Pb,” Nature 405, 430 (2000).

[Arn07] M. Arnould, S. Goriely, K. Takahashi, “The r-process of stellar nucleosynthe-
sis: Astrophysics and nuclear physics achievements and mysteries,” Phys. Rep.
450, 97 (2007).

[Asc14] Ascher, P. et al., “PIPERADE: A Penning-trap isobar separator for the DESIR
low-energy facility of SPIRAL2,” EPJ Web of Conferences 66, 11002 (2014).

[Ast19] F. W. Aston, “The Constitution of the Elements,” Nature 104, 393 (1919).

[Ast20a] F. W. Aston, “The Mass-Spectra of Chemical Elements,” Phil. Mag. 39, 611–
625 (1920).

[Ast20b] F. W. Aston, “XLIV. The constitution of atmospheric neon,” Phil. Mag. 39,
449–455 (1920).

[Ast27] F. W. Aston, “Atoms and their Packing Fractions,” Nature 120, 956–959
(1927).

[Aud12] G. Audi et al., “The Nubase2012 evaluation of nuclear properties,” Chinese
Phys. C 36, 1157 (2012).

[Aud86] G. Audi et al., “Mass-spectrometric measurements of exotic Rb, Cs and Fr
isotopes,” Nucl. Phys. A 449, 491–518 (1986).

[Bal14] B. Bally, B. Avez, M. Bender, P.-H. Heenen, “Beyond Mean-Field Calculations
for Odd-Mass Nuclei,” Phys. Rev. Lett. 113, 162501 (2014).

[Ban74] B. Banerjee, P. Ring, H. Mang, “On the character of the Hartree-Fock-Bo-
goliubov solutions in a rotating frame,” Nucl. Phys. A 221, 564–572 (1974).

139



140 Bibliography

[Bar13] A. E. Barzakh et al., “Changes in the mean-square charge radii and magnetic
moments of neutron-deficient Tl isotopes,” Phys. Rev. C 88, 024315 (2 Aug.
2013).

[Bec09] D. Beck et al., “Electric and magnetic field optimization procedure for Pen-
ning trap mass spectrometers,” Nucl. Instr. Meth. Phys. Res. A 598, 635–641
(2009).

[Bec90] S. Becker et al., “Mass measurements of very high accuracy by time-of-flight
ion cyclotron resonance of ions injected into a penning trap,” Int. J. Mass
Spectrom. 99, 53–77 (1990).

[Ben00] M. Bender, K. Rutz, P.-G. Reinhard, J. Maruhn, “Pairing gaps from nuclear
mean-field models,” Eur. Phys. J. A 8, 59–75 (2000).

[Ben03] M. Bender, P.-H. Heenen, P.-G. Reinhard, “Self-consistent mean-field models
for nuclear structure,” Rev. Mod. Phys. 75, 121–180 (2003).

[Ben06] M. Bender, G. F. Bertsch, P.-H. Heenen, “Global study of quadrupole corre-
lation effects,” Phys. Rev. C 73, 034322 (2006).

[Ben08] M. Bender, G. F. Bertsch, P.-H. Heenen, “Collectivity-induced quenching of
signatures for shell closures,” Phys. Rev. C 78, 054312 (2008).

[Ber09] G. Bertsch, J. Dobaczewski, W. Nazarewicz, J. Pei, “Hartree-Fock-Bogoliubov
theory of polarized Fermi systems,” Phys. Rev. A 79, 043602 (2009).

[Bet36] H. A. Bethe, R. F. Bacher, “Nuclear Physics A. Stationary States of Nuclei,”
Rev. Mod. Phys. 8, 82–229 (1936).

[Bha92] M. Bhat, in Nuclear Data for Science and Technology, ed. by S. Qaim, Data
extracted using the NNDC On-Line Data Service from the ENSDF database
(http://nndc.bnl.gov), file revised as of 28.07.2014. (Springer Berlin Heidel-
berg, 1992), pp. 817–821.

[Bin91] C. R. Bingham et al., “Identification of 185Pt α activity and study of 185Au α
decay,” Phys. Rev. C 44, 1208–1211 (1991).

[Bla03] K. Blaum et al., “Recent developments at ISOLTRAP: towards a relative mass
accuracy of exotic nuclei below 10−8,” J. Phys. B 36, 921 (2003).

[Bla06] K. Blaum, “High-accuracy mass spectrometry with stored ions,” Phys. Rep.
425, 1–78 (2006).

[Bla10] K. Blaum, Y. N. Novikov, G. Werth, “Penning traps as a versatile tool for
precise experiments in fundamental physics,” Contemp. Phys. 51, 149–175
(2010).

[Bla97] F. Blanc et al., “Nuclear Moments and Deformation Change in 184Aug,m from
Laser Spectroscopy,” Phys. Rev. Lett. 79, 2213–2216 (1997).



Bibliography 141

[Blo62] C. Bloch, A. Messiah, “The canonical form of an antisymmetric tensor and
its application to the theory of superconductivity,” Nucl. Phys. 39, 95–106
(1962).

[Blu13] Y. Blumenfeld, T. Nilsson, P. V. Duppen, “Facilities and methods for radioac-
tive ion beam production,” Phys. Scripta 2013, 014023 (2013).

[Bog10] S. Bogner, R. Furnstahl, A. Schwenk, “From low-momentum interactions to
nuclear structure,” Progr. Part. Nucl. Phys. 65, 94–147 (2010).
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[Mar09] N. Mãrginean et al., “Evolution of deformation in the neutron-rich krypton
isotopes: The 96Kr nucleus,” Phys. Rev. C 80, 021301 (2009).

[Mar13] B. Marsh et al., “New developments of the in-source spectroscopy method at
RILIS/ ISOLDE,” Nucl. Instrum. Meth. B 317, 550–556 (2013).

[May48] M. G. Mayer, “On Closed Shells in Nuclei,” Phys. Rev. 74, 235–239 (1948).

[May49] M. G. Mayer, “On Closed Shells in Nuclei. II,” Phys. Rev. 75, 1969–1970
(1949).

[May50] M. G. Mayer, “Nuclear Configurations in the Spin-Orbit Coupling Model. II.
Theoretical Considerations,” Phys. Rev. 78, 22–23 (1950).
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