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1.1 Context

During the day when you are reading this, more data will be produced than the amount of
information contained in all printed material in the world1. The Internet Data Center esti-
mated the growth of data to be of a factor of 300 between 2005 and 2020, expecting to raise
from 130 Exabytes to 20,000 Exabytes [64]. This Data Deluge revolutionizes both business,
which now capitalizes the value searched in large data collections, and the process of sci-
entific discovery, which moves towards a new paradigm: Data Science. Consequently, the
applications need to scale and distribute their processing in order to handle overwhelming
volumes, high acquisition velocities or great varieties of data. These challenges are associ-
ated to what is called “the Big Data phenomenon”.

One factor which accelerated the revolution of Big Data and which emerged alongside
with it, is cloud computing. The large, multi-site oriented infrastructure of clouds, which

1The amount of information contained in all printed material is estimated to be around 200 Petabytes [97],
while IBM estimated that in 2012, in each day 2.5 Exabytes (1 Exabyte = 1024 Petabytes) of new data was created,
and the amount continues to increase.
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enables collocating computation and data, and the on-demand scaling provides an interest-
ing option for supporting Big Data scenarios. Clouds bring to life the illusion of a (more-
or-less) infinitely scalable infrastructure managed through a fully outsourced service that
allows the users to avoid the overhead of buying and managing complex distributed hard-
ware. Thus, users focus directly on extracting value, renting and scaling their services for a
better resource utilization, according to the application’s processing needs and geographical-
distribution layout.

The typical cloud Big Data scenarios (e.g., MapReduce, workflows) require to partition
and distribute processing across as many resources as possible, and potentially across multi-
ple data centers. The need to distribute the processing geographically comes from multiple
reasons, ranging from the size of the data (exceeding the capacities of a single site), to the
distant locations of the data sources or to the nature of the analysis itself (crossing multiple
service instances). Therefore, the major feature of such data-intensive computation on clouds
is scalability, which translates to managing data in a highly distributed fashion. Whether the
processing is performed in-site or across multiple data centers, the input needs to be shared
across the parallel compute instances, which in turn need to share their (partial) results. To
a great extent, the most difficult and compelling challenge is to achieve high-performance
for managing the data at a large-scale, and thereby enable acceptable execution times for the
overall Big Data processing.

The cloud technologies, now in operation, are relatively new and have not reached yet
their full potential: many capabilities are still far from being exploited to a full degree. This
particularly impacts data management which is rather far from meeting the more and more
demanding performance requirements of the applications. High cost, low I/O throughput
and high latency are some of their major issues. Clouds primarily provide data storage ser-
vices, which are optimized for high availability and durability, while performance is not the
primary goal. Some data functionalities, such as data sharing or geographical replication are
supported only as a “side effect”, while many others are missing: geographically distributed
transfers, cost optimizations, differentiated quality of service, customizable trade-offs be-
tween cost and performance. All these suggest that data-intensive applications are often
costly (time- and money-wise) or hard to structure because of difficulties and inefficiencies
in data management in the cloud. In this landscape, providing diversified and efficient cloud
data management services are key milestones for Big Data applications.

1.2 Contributions

Analyzing how clouds can become “Big Data - friendly”, and what are the best options
to provide data-oriented cloud services to address applications needs are the key goals of
this thesis. Our objective is to provide data management solutions which enable high-
performance processing at large-scale across the geographically distributed cloud infras-
tructures.Our work was mainly carried out in the context of the Microsoft Research-Inria
Joint Center and involved collaborations with several Microsoft teams, within the frame-
work of 2 projects between the KerData team and Microsoft. First, the A-Brain project en-
ables scalable joint genetic and neuro-imagining analysis through large-scale computation
on clouds. Second, the Z-CloudFlow project aims at enabling the execution of scientific
workflows across multiple sites.
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Contributions roadmap. The contributions are focused on performance aspects of manag-
ing data within and across cloud data centers. We started by addressing the challenges of
executing scientific applications on clouds, with a particular focus on the MapReduce pro-
cessing model. Next, we tackled the scalability aspects of single-site processing by extend-
ing the MapReduce computation across multi-site. These approaches were then applied to
enable scientific discovery through large-scale computation, in the context of the A-Brain
bio-informatics application. Processing Big Data at such a large-scale revealed several is-
sues related to inter-site data management, that we addressed as follows. We proposed a
scheme for dedicating compute nodes to data-related services. Next, we designed a transfer
service architecture that enables configurable cost-performance optimizations for inter-site
transfers. This transfer scheme is then leveraged in the context of real-time streaming across
cloud data centers. Finally, we studied the viability of leveraging this data movement so-
lution as a cloud-provided service, following a Transfer-as-a-Service paradigm based on a
flexible pricing scheme. These contributions are summarized next.

Leveraging Locality for MapReduce and Workflow Processing on Clouds

As the cloud paradigm gets attractive for its “elasticity”, enabling the computation units
to access shared data concurrently and efficiently is critical. Using state-of-the-art cloud-
provided storage is not feasible. In fact in current cloud architectures, the computational
nodes are separated from the storage nodes and the communication between the two ex-
hibits a prohibitively high latency. To address these issues, we propose a concurrency-
optimized cloud data management solution, called TomusBlobs, at the platform level of the
cloud usage. TomusBlobs builds on distributed storage solutions, which are used to federate
the free local virtual disks of cloud nodes, to provide a globally-shared, data management
platform for application processing. As demonstrated by the results, this approach increases
the throughput more than twice over the cloud-provided storage by leveraging data locality.
The benefits of the TomusBlobs approach were validated in the context of MapReduce, by
building an Azure prototype, called TomusBlobs-MapReduce. It implements this compu-
tation paradigm and uses the proposed storage approach as a data management back-end.
This solution reduces the timespan of executing scientific applications by up to 50 %. We
further extended the TomusBlobs approach for general workflows, to leverage data locality
for direct file sharing between compute nodes. To this end, we designed a file management
system for federating the local disks of nodes for TomusBlobs. This approach exploits the
workflow data access patterns to self-adapt and to select the most adequate transfer pro-
tocol, which speeds up data management by a factor of 2 over current data management
options. This work involved the collaboration with Microsoft Research and a 3-month in-
ternship there. It led to 2 conference publications at CCGrid’12 and BigData’13.

Scaling MapReduce Processing across Geographically Distributed Sites

Another issue that we tackled is the scalability of computation on clouds. In practice, many
Big Data applications are more resource-demanding, or operate on larger (and/or geograph-
ically distributed) data sets than typical cloud applications, thus requiring multi-site process-
ing. Nevertheless, the existing computing models, such as MapReduce, are designed for
single-cluster or single-site processing. To address this limitation and enable global scaling,
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we proposed 2 extensions for the MapReduce paradigm. First, we proposed a two-tier hier-
archical MapReduce scheme: the bottom tier distributes TomusBlobs-MapReduce instances
across cloud data centers; the top tier computes the global final result of the processing.
With this approach, we enabled efficient processing at a global scale, by disseminating the
input and the computation tasks across all the available resources to aggregate compute
power from multiple cloud sites. Second, we addressed the limitation of state-of-the-art
MapReduce frameworks for reduce-intensive workloads regarding their lack of support for
full reduction of the results (e.g., in a MapReduce process each reducer provides an output
result). Therefore, we proposed Map-IterativeReduce as an extension of the MapReduce
model, which enables to schedule efficiently the reduce jobs in parallel, based on a reduction
tree, in order to compute a unique final result. Applying this technique in the context of
multi-site MapReduce, enables to minimize the size and the number of expensive inter-site
data exchanges, and thus to improve the overall data management. Using these extensions,
we were able to achieve high scalability for scientific applications in public clouds, lever-
aging the processing power of 1000 cores across 3 geographically distributed data centers.
Performance-wise, we were able to reduce the data management time by up to 60 % com-
pared with state-of-the-art solutions. This work led to a publication in the MapReduce’12
workshop, held in conjunction with HPDC’12, and a journal publication in CCPE’13.

Enabling Scientific Discovery through Large-Scale Experiments on Clouds:
The A-Brain Application Case Study

We applied the previous data management and processing approaches for enabling large-
scale scientific discovery on clouds. As a case study, we worked in collaboration with a
bio-informatics team from Inria Saclay, to run the A-Brain application, which aims to enable
scalable joint neuro-imaging and genetics analysis. This pioneer technique would enable a
better understanding of the variability between individuals and to explain brain diseases
with genetic origins. However, both neuro-imaging and genetic-domain observations in-
volve a huge amount of variables (i.e., in the order of millions). The high data and compu-
tation challenges prevented so far such complex analysis (conventional computation would
take years, while the data space reaches petabytes order). Using our approach we ran this
analysis on 1000 cores for 2 weeks across multiple Azure data centers, while consuming
more than 200,000 compute hours – one of the largest scientific experimental setup on Azure
up to date. Our tools enabled to provide the first statistical evidence of the heritability of
functional signals in a failed-stop task in basal ganglia. This experiment demonstrates the
potential and feasibility of our approach for supporting Big Data applications executions at
large-scale by harnessing the available computation power from multiple cloud data centers.
Additionally, this large, real-life experiment taught us important lessons, the most important
being that the cloud model in which all types of data management exclusively rely on cloud-
provided storage service becomes widely inefficient and obsolete. Therefore, it is critical to
enable specialized cloud solutions for high-performance, geographically distributed data
management. This project was presented through joint publications in Cloud Future work-
shop ’12, the ERCIM electronic journal ’13 and the Frontiers in Neuroinformatics journal
2014.
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Dedicating Cloud Compute Nodes for Advanced Data Stewarding Services

The “data deluge” calls for scalable and reliable storage for cloud applications and a diver-
sification of the associated data-related functionalities. Running large experiments reveals
the limitation of the cloud-provided storage in coping with all the applications needs: it
trades performance for durability and only provides basic put/get storage functions. How-
ever, executing Big Data applications requires more advanced functionalities such as logging
mechanisms, compression or transfer capabilities. As an alternative to cloud-provided stor-
age service, building such advanced functionalities in the application nodes, on top of a
local collocated storage, can become rather intrusive and impact on the application perfor-
mance. Therefore, we propose a different approach, called DataSteward, that combines the
advantages of traditional cloud-provided storage (isolation of the data management from
computation) with the ones of TomusBlobs (high-performance through the use of the local
free disks of nodes). To this purpose, we dedicate a subset of the compute nodes and build
on top of them a data management system. Thanks to the separation from the computa-
tion, this approach provides a higher degree of reliability while remaining non-intrusive.
At the same time, applications perform efficient I/O operations as data is kept in the prox-
imity of the compute nodes, by the use of a topology-aware clustering algorithm for the
selection of the storage nodes. To capitalize on this separation further, we introduce a set of
scientific data processing services on top of the storage layer that address the functionality
needs of Big Data applications. Similarly to the concept of file from a traditional system,
which is a generic object associated with a set of operations (e.g., move, view, edit, delete,
compress), DataSteward confers a “cloud file” with its own set of actions. The evaluation
results show that this approach improves by 3 to 4 times performance over cloud-provided
storage. It can bring significant improvements for the management of applications data due
to the topology-aware selection of storage nodes. The work was published in the TRUST-
COM/ISPA ’13 conference.

High-Performance Inter-Site Data Sharing via Environment-Aware Multi-Route
Transfers

One particular functionality that is missing in the current cloud data management ecosys-
tem is the support for efficient geographically distributed transfers for applications. This
is an important issue, as managing data across the geographically distributed data centers
involves high and variable latencies among sites, and a high monetary cost. To address this
problem, we introduce a cloud-based data transfer service which dynamically exploits the
network parallelism of clouds via multi-route transfers, while offering predictable cost and
time performance. The problem of low and unstable inter-connecting throughput between
data centers is addressed through enhanced data management capabilities which adapt in-
site replication for faster data dissemination according to cost-performance constraints. Our
system automatically builds and adapts performance models for the cloud infrastructure, in
order to schedule the data transfers efficiently and to utilize the underlying resources effec-
tively. The key idea is to predict I/O and transfer performance in order to judiciously decide
how to perform transfer optimizations automatically over federated data centers. In terms
of efficiency and usage, this approach provides the applications with the possibility to set a
trade-off between cost and execution time. The transfer strategy is then optimized according
to the trade-off. The results show that our approach is able to reduce the financial costs and
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transfer time by up to 3 times. The work was published in the CCGrid’14 conference.

Enabling High-Performance Event Streaming across Cloud Data Centers

An increasing number of Big Data applications operate on multiple data centers around the
globe and conform to a pattern in which data processing relies on streaming the data to a
compute platform where similar operations are repeatedly applied to independent chunks
of data. In fact, stream data processing is becoming one of the most significant class of ap-
plications in the world of Big Data, with vast amounts of stream data being generated and
collected at increasing rates from multiple sources. Therefore, enabling fast data transfers
across geographically distributed sites becomes particularly important also for applications
which manage continuous streams of events in real-time. In order to adequately address the
challenges of stream data processing across cloud sites, we performed an extensive perfor-
mance evaluation study, in the context of CERN LHC processing experimental data. Our
results indicate that current strategies for real-time communication in the cloud can signif-
icantly interfere with the computation and reduce the overall application performance. To
address this issue, we propose a set of strategies for efficient transfers of events between
cloud data centers and we introduce JetStream, which implements these strategies as a high-
performance batch-based streaming middleware. JetStream is able to self-adapt to streaming
conditions by modeling and monitoring a set of context parameters. The size of the batches
and the decision on when to stream the events are controlled based on this model that char-
acterizes the streaming latency in the context of clouds. To improve performance further, we
aggregate inter-site bandwidth as we extend our previous approach for multi-route transfers
across cloud nodes. The results show performance improvements of 250 times over individ-
ual event streaming and 25 % over static batch streaming, while multi-route streaming can
further triple the transfer rate. The work led to 2 conference publications in CCGrid’14 and
DEBS’14.

A Cost-Effective Model for Multi-Site Data Management

The global deployment of cloud data centers, brings forward new challenges related to the
efficient data management across sites. The previous contributions focused on user-based
solutions for tackling such challenges. Nevertheless, high throughput, low latencies, cost-
or energy-related trade-offs are serious concerns also for cloud providers when it comes
to handling data across data centers. Enriching the data-service ecosystem for delivering
high-performance data management while reducing the costs and data center energy con-
sumption is a key milestone for the business of cloud providers and for tomorrow’s cloud
data centers. To address these challenges, we propose a dedicated cloud data transfer ser-
vice that supports large-scale data dissemination across geographically distributed sites, ad-
vocating for a Transfer as a Service (TaaS) paradigm. We argue that the adoption of such
a TaaS approach brings several benefits for both users and cloud providers who propose
it. For users of multi-site or federated clouds, our proposal is able to decrease the vari-
ability of transfers and to increase the throughput significantly compared to baseline user
options, while benefiting from the well-known high availability of cloud-provided services.
For cloud providers, such a service can decrease the energy consumption within a data cen-
ter down to half compared to user-based transfer solutions. Finally, we propose a dynamic
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cost model scheme for the service usage, which enables cloud providers to regulate and en-
courage data exchanges via a data transfer market. The work was published in the SRDS’14
conference.

1.3 Publications

Book Chapter

• Radu Tudoran, Alexandru Costan and Gabriel Antoniu. Big Data Storage and Processing
on Azure Clouds: Experiments at Scale and Lessons Learned. In the book Cloud Computing
for Data-Intensive Applications, to be published by Springer, 2015. Editors Xiaolin Li and
Judy Qiu

Journal Articles

• Benoit Da Mota, Radu Tudoran, Alexandru Costan, Gaël Varoquaux, Goetz Brasche, Pa-
tricia Conrod, Herve Lemaitre, Tomas Paus, Marcella Rietschel, Vincent Frouin, Jean-
Baptiste Poline, Gabriel Antoniu, Bertrand Thirion and IMAGEN Consortium. Machine
learning patterns for neuroimaging-genetic studies in the cloud. In the journal of Frontiers in
Neuroinformatics, Vol 8(31), 2014.

• Alexandru Costan, Radu Tudoran, Gabriel Antoniu and Goetz Brasche. TomusBlobs: Scal-
able Data-intensive Processing on Azure Clouds. In the journal of Concurrency and Compu-
tation Practice and Experience 2013

• Gabriel Antoniu, Alexandru Costan, Benoit Da Mota, Bertrand Thirion, Radu Tudoran.
A-Brain: Using the Cloud to Understand the Impact of Genetic Variability on the Brain. ERCIM
News, April 2012 - Electronic Journal.

International Conferences

• Radu Tudoran, Alexandru Costan and Gabriel Antoniu. Transfer as a Service: Towards a
Cost-Effective Model for Multi-Site Cloud Data Management. In Proceedings of the 33rd IEEE
Symposium on Reliable Distributed Systems (SRDS ‘14), Nara, Japan, October 2014.

• Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan, Hakan Soncu, Luc Bougé,
and Gabriel Antoniu. JetStream: enabling high-performance event streaming across cloud data-
centers. In Proceedings of the 8th ACM International Conference on Distributed Event-
Based Systems (DEBS ’14), Mumbai, India, May 2014, pp. 23–34. Acceptance rate 9 %.

• Radu Tudoran, Alexandru Costan, Rui Wang, Luc Bougé, Gabriel Antoniu. Bridging Data
in the Clouds: An Environment-Aware System for Geographically Distributed Data Transfers. In
Proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid’2014), May 2014, Chicago, IL, US, pp. 92-101.Acceptance Rate 19 %.

• Radu Tudoran, Kate Keahey, Pierre Riteau, Sergey Panitkin and Gabriel Antoniu. Eval-
uating Streaming Strategies for Event Processing across Infrastructure Clouds. In Proceedings
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of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’2014), Chicago, IL, US, pp. 151-159, May 2014. Acceptance Rate 19 %.

• Radu Tudoran, Alexandru Costan, Ramin Rezai Rad, Goetz Brasche and Gabriel Antoniu.
Adaptive file management for scientific workflows on the Azure cloud. In Proceedings of the
IEEE International Conference on Big Data. Santa Clara, CA, US, October 2013, pp. 273-
281. Acceptance Rate 17 %.

• Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. DataSteward: Using Dedicated
Compute Nodes for Scalable Data Management on Public Clouds. In Proceedings of the 12th
IEEE International Conference on Trust, Security and Privacy in Computing and Commu-
nications (TRUSTCOM/ISPA ’13), Melbourne, Australia, June 2013, pp. 1057-1064.

• Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Hakan Soncu. TomusBlobs: To-
wards Communication-Efficient Storage for MapReduce Applications in Azure. In Proceedings
of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID ’12), Ottawa, Canada, May 2012, pp. 427-434. Acceptance rate 26 %.

Workshops and Demos at International Conferences

• Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan, Hakan Soncu, Luc Bougé,
and Gabriel Antoniu. DEMO: Achieving high throughput for large scale event streaming across
geographically distributed data-centers with JetStream. In Proceedings of the 8th ACM Inter-
national Conference on Distributed Event-Based Systems (DEBS ’14), Mumbai, India, May
2014.

• Radu Tudoran, Gabriel Antoniu, and Luc Bougé. SAGE: Geo-Distributed Streaming Data
Analysis in Clouds. In Proceedings of the IEEE 27th International Symposium on Parallel
and Distributed Processing Workshops and PhD Forum (IPDPSW ’13), Boston, MA, US,
May 2013.

• Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. MapIterativeReduce: a framework
for reduction-intensive data processing on Azure clouds. In Proceedings of the 3rd international
workshop on MapReduce and its Applications Date (MapReduce ’12), in conjunction with
HPDS 2012, Delft, The Nederland, June 2012.

• Radu Tudoran, Alexandru Costan, Benoit Da Mota, Gabriel Antoniu, Bertrand Thirion.
A-Brain: Using the Cloud to Understand the Impact of Genetic Variability on the Brain. Cloud
Futures Workshop, Berkeley, CA, US May 2012.

• Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Luc Bougé. A performance eval-
uation of Azure and Nimbus clouds for scientific applications. In Proceedings of the 2nd In-
ternational Workshop on Cloud Computing Platforms (CloudCP ’12), in conjunction with
EuroSys, Bern, Switzerland, April 2012.

1.4 Software

TomusBlobs is a PaaS data management middleware that enables to federate the virtual
disks of the cloud compute nodes into a uniform storage system. It provides several
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features such as self-configuration, compute environment customization and policy-
based role assignment. A version of the system is available as a storage backend to the
Microsoft GenericWorker workflow engine [66, 153].
Size and language(s): ∼2K lines of code, C++ and C#

TomusBlobs-MapReduce is a MapReduce engine for the Azure cloud, built on to top of
TomusBlobs. It is particularly optimized to support bio-informatics computation, in-
cluding features such as full result reduction and bindings with various tools, libraries
and scientific environments.
Size and language(s): ∼1K lines of code, C#, ASP.NET and Python

JetStream is a middleware solution for batch-based, high-performance streaming across
cloud data centers. JetStream implements a set of context-aware strategies for opti-
mizing batch-based streaming, being able to self-adapt to changing conditions. Addi-
tionally, the system provides multi-route streaming across cloud data centers for aggre-
gating bandwidth by leveraging the network parallelism. It enables easy deployment
across .Net frameworks and seamless binding with event processing engines such as
StreamInsight.
Size and language(s): ∼2K lines of code, C#

Cloud Benchmark Service is a cloud web service provided as a Software as a Service, that
enables to benchmark online the data stage-in performance of the cloud data centers.
Building on several web technologies it provides both an online web-browser interface
and a a console-based API.
Size and language(s): ∼2K lines of code, C++, C#, ASP.NET MVC, AJAX and JavaScript

1.5 Organization of the Manuscript

The rest of the manuscript is organized in 4 parts.

The first part discusses the general context of this thesis and presents the corresponding
state-of-the-art. First, we introduce in Chapters 2 and 3 two paradigm shifts: Big Data and
Cloud Computing and describe how these are changing the way in which data is managed.
Next, in Chapter 4 we present the main challenges that arise for supporting such Big Data
processing on cloud platforms. Finally, in Chapter 5, we give a global overview of the current
research efforts and approaches on this subject.

The second part includes the next 4 chapters (Chapters 6 to 9) and presents the first part of
our contributions. We mainly focus in this part on data management aspects of single site pro-
cessing, while in the next part we consider the general case of multi-site processing. The goal is
to understand what are the best options to support efficient scientific Big Data processing on
the cloud. To this end, we use a real-life application from bio-informatics, A-Brain, with high
computation and data requirements which are described in Chapter 6. Next, in Chapter 7
we introduce the TomusBlobs data management approach, which we designed for support-
ing efficient, single-site processing of such scientific applications. Moreover, we propose a
MapReduce solution on top of TomusBlobs, which we extend in Chapter 8 to a hierarchical
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multi-site MapReduce to provide global scalability. Based on these approaches, we enable
the execution of the A-Brain joint genetics and neuro-imaging data analysis through a large
scale, long-running experiment. The scientific results enabled by our solutions as well as
the lessons learned from this experiment are described in Chapter 9. The most important
lesson is that there is a critical need, in the context of Big Data, for tools that would provide
high-performance data management across data centers, which is the focus of the next part.

The third part includes Chapters 10 to 13, and presents several contributions, addressing
the issues identified in the first part for Big Data scientific applications, that improve the
performance of managing data across multiple cloud data centers. First, we introduce in
Chapter 10 a method for dedicating compute nodes to a data management system, on top
of which we propose a set of data services to enrich the support for Big Data applications
on clouds. In Chapter 11, we propose a service that optimizes cost and performance for
data exchanges across cloud sites, by aggregating inter-site bandwidth through multi-route
transfers over compute nodes and data centers. Next, we leverage this transfer scheme in
2 contexts. First, in Chapter 12 we address the lack of cloud services for fast real-time com-
munication and propose JetStream, a high-performance, batch-based streaming solution. Fi-
nally, in Chapter 13 we explore architectural options to migrate this transfer scheme into a
cloud-provided Transfer as a Service, with a flexible cost and a data transfer market.

Finally, Chapter 14 concludes this work and presents the contributions and the perspec-
tives brought by our solutions.
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Part I

Context: The Landscape of Big Data
Management on Clouds
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Chapter 2
Background: The Era of Big Data
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Much of today’s and tomorrow’s data, captured by the growing networks of sensors
or generated by large simulations and computational models, are likely to reside forever.
Substantial efforts are being made to make such collections of data, particularity the scientific
ones, publicly accessible for the purpose of continuous analysis. Gordon Bell synthesizes
this by stating that he believes «that we will soon see a time when data will live forever as archival
media — just like paper-based storage — and be publicly accessible in the “cloud” to humans and
machines» [89]. Acquiring, permanently storing, curating and processing the exponentially
growing volumes of data is refereed to as Big Data. Performing data-intensive computation
on Big Data sets to enable cutting edge discoveries is now considered as the basis for a new,
fourth paradigm for science.

2.1 The Data Deluge

Data Deluge is becoming a reality. Internet Data Center (IDC) estimated the growth of data
to be of a factor of 300 between 2005 and 2020, expecting to raise from 130 Exabytes to 20,000
Exabytes [64]. Keeping up with such a pace, by transferring, storing, organizing and process-
ing the data, stands as a difficult challenge, generically refereed to as Big Data. Even so, the
data deluge is transforming both the business and the scientific domains: business mines
data for patterns which can be capitalized, while science moves towards a new paradigm
where data-intensive computation drives discoveries. The data-oriented quest and the re-
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lated Big Data challenges raise the requirements in terms of scale and performance expected
from the next data management systems.

The Big Data concept refers to the exponential growth of the data volumes [25], the actual
processing of the large volumes of data [95] or more generically to all the computing phases
required to extract useful information [64, 184]. One can observe that several definitions co-
exist and are used and accepted depending on the community. However, in order to avoid
potential confusions and to characterize better the concept of Big Data, a set of attributes
were identified as defining characteristics. This set of attributes is referred to as the V’s of
Big Data, according to their common name initial. Considering that the Big Data ecosystem
is highly dynamic, the set is expanding to include new V’s (i.e., challenges) that are contin-
uously identified. Next, we present the original set of the 3 V’s as introduced in [115] and
2 additional ones which are widely accepted and used. Different aspects of these challenges
are presented also in [51, 184].

Volume

It represents perhaps the main feature that one associates with the concept of Big Data. This
association with the magnitude of the data set arises naturally as all domains tend currently
to collect and store massive amounts of data.This behavior is encouraged both by the low
costs to store data and because having models which result from large data set tends to pro-
vide more accurate results, from the data analytics point of view. In fact, the size dimension
of Big Data represents the primary challenge to the existing data management systems. Ac-
commodating the growing volumes calls for scalable storage solutions and distributed pro-
cessing engines. Furthermore, the size of the data can become big enough such that it has
to be stored across multiple data centers, which requires high-performance solutions capa-
ble to operate in a geographically distributed manner. An illustrative example is the CERN
LHC Atlas experiment [13], which generates 40 PB of data per year, which is disseminated
across the storage of tens of collaborative institutions across the globe. Analyzing this ge-
ographically distributed data set, even by means of incremental processing, overpasses the
capacity of local scientific infrastructure. This was the case for the Higgs boson discovery,
in which the computation was also extended to the Google cloud infrastructure [43]. Hence,
processing across geographically distributed data centers and inter-site data management
become a necessity in the Big Data era, due to the challenges raised by the data volumes.

Velocity

The high rates at which data are collected by organizations or flows into the processing en-
gines make data velocity to gain importance alongside with volume. The common terminol-
ogy used for fast-moving data is “streaming data”. Initially, the velocity-related challenges
were restricted to specific segments of industry, but it becomes a problem of a much broader
setting with the Internet of Things. Financial tickers, stock market analysis, monitoring sys-
tems of large web services, network of sensors for wide-areas or scientific observatories are
all concerned with the speed at which data is collected, streamed and processed in real-
time [68, 110]. In fact, it is expected that in the next years most part of Big Data will be
collected in real-time, which means that the speed to collect data over-passes the rate to
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artificially-produce them [172]. Real-time data processing (i.e., stream processing) is neces-
sary due to various reasons. For example, keeping the storage requirements practical can
require pre-processing to filter out the useless parts in scenarios with high data rates. Ad-
ditionally, many scenarios require the information to be extracted from data immediately or
within a maximal (short) delay. However, depending on the locations of the data sources
which produce the data, this task of real-time processing can be particularly challenging.
The data sources can be geographically distant from the stream processing engine, which
adds also the problem of latency to the challenges related to the streaming rate. An illus-
trative example of such a scenario is the Ocean Observatory Initiative [23, 137] in which the
collected events are streamed to Nimbus [12] clouds. Hence, supporting the paradigm shift
brought by Big Data calls for data management solutions which consider and address not
only the size aspects of data, but also the challenges raised by streaming, all the more in
geographically distributed setups.

Variety

Collecting data from a variety of sources leads to a high heterogeneity. In fact, dealing with
Big Data sets most often implies handling data without a predefined relational structure.
Therefore, curating the data before storing and processing them becomes a critical tasks and
a challenge on its own. However, pre-processing and determining a relational scheme be-
fore storing it is a complex task considering the large volumes. In the few cases when this
phase is possible, the scalability limits of traditional databases [89, 162] can still arise as a
prohibiting factor to address the variety aspect of Big Data via relational schemes. As a con-
sequence, the common approach is to handle data in an unstructured fashion, e.g., storing
data in large binary objects. On the one hand, such an approach provides scaling and per-
formance advantages. On the other hand it amplifies the variety problem of Big Data sets, as
most of the contextual and self-describing information is lost. As a result, the process of ex-
tracting (co)relations and ordering the data is coupled with the data mining itself, sometimes
becoming the computation itself. Finally, with the emergence of data-intensive science, as
discussed in the next section, multi-disciplinary collaborations grow in number and impor-
tance. A key direction enabled by such joint efforts is trying to correlate the heterogeneous
data sets of the distinct disciplines in order to discover new ways of explaining the life- or
universe-related observations. Examples of such efforts range from combining genetic sets
with medical imagery [146] to merging climate and astronomical models with cartographic
data [126, 179]. Such ambitious goals call for efficient, large-scale tools which can handle the
variety aspects of Big Data.

Veracity

The trustworthiness of data impacts theirs value. Therefore, one of the newly identified
challenge when dealing with Big Data is veracity, which generically synthesizes the correct-
ness, quality and accuracy of the data. The concerns related to the veracity apply both to
the input as well as to the result harvested when mining it. Veracity becomes an important
aspect due to the diversity of the sources and forms that Big Data takes, which provides less
control over its correctness. Malfunctioning sensors, typos in social media feeds, colloquial
discourses in news media, systematic errors and heterogeneity of measuring devices, all
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need to be accounted for during the analysis phase. Sometimes, the volume can compensate
for the lack of accuracy. But tackling veracity via volume needs to instrument the analytic
models properly, which is achieved most often at the expense of extra computation. There-
fore, providing tools which are able to scale the computation in order to ensure high and
customizable confidence levels for the analysis is critical for the development of Big Data
business and data-intensive sciences. Moreover, accommodating provenance information
and trust levels for the input and results in the management process [49, 60] are some of the
key points required to increase the quality and value of data.

Value

Collecting, storing and analyzing Big Data is useless unless it produces value. Therefore,
this aspect goes alongside and determines any previous or future challenge of Big Data. It
can be safely stated that “Value” is the ultimate goal of Big Data, being the driven factor of
this technological revolution. Dealing with Big Data is a complex task and it involves signif-
icant costs. Therefore, the benefits gained, whether financial or scientific, must compensate
the resources and efforts which are invested. This observation raises a very important aspect
to be considered when dealing with Big Data: the efficiency trade-off between cost and per-
formance. The new management solutions need to provide mechanisms for estimating both
the cost and performance of operations (e.g., for streaming, storing, processing, etc.). Based
on these estimations the users can then choose the cost they are willing to pay for a certain
performance level. In turn, the management systems need to optimize their resource usage
according to the specified criterion to meet the budget/performance constraints. Designing
such customizable trade-off mechanisms is needed because the density of the value in the
data sets is not uniform nor identical among different applications. This shows that the value
aspect of Big Data, needs to be considered not only from the point of view of the worthiness
(or profitability) of the analysis, but also as a designing principle of the management and
processing frameworks.

2.2 Data Science: The Emergence of a New Scientific Paradigm

As Data Deluge is becoming a reality, Data Science is emerging, as the new, fourth paradigm
of science [72, 89]. This paradigm shift happened naturally. Centuries ago, science was
mainly done through empirical observations. The next step was to synthesize those ob-
servations about the world in theoretical models. When those models became too complex
to be solved and interpreted analytically and when technology allowed it, science moved
towards a computation paradigm, using computers to analyze and simulate the theoretical
models. However, this computation-driven science led to a continuous growth of the sci-
entific data sets. This growth trend was also accelerated by the increase in efficiency and
diversity of the tools used to collect and deliver the data to the scientists. As a result the
scientists shifted their focus in the last years, searching for discoveries in their large scien-
tific data sets. The techniques and technologies which are developed to make this “search”
more efficient, “distinguish this data-intensive science from computational science as a new, fourth
paradigm for scientific exploration” [24].

In the last years, data-intensive science encouraged the development of several large sci-
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entific projects. Collecting, curating and computing data, the 3 phases which constitute the
data science, face complex challenges due to the massive quantities of data produced [72].
For example, the Pan-STARRS [142] project consists of an array of celestial telescopes which
monitor the Solar System to detect potentially hazardous objects or threats, such as aster-
oids. The project is designed to collect images of a resolution of 1.4 Gigapixels, producing
2.5 Petabytes of data per year. This type of projects, which are a direct consequence of, and il-
lustrate perfectly, the fourth paradigm of science, are referred to as virtual observatories [89,
90]. Other examples of virtual observatories are the Australian Square Kilometre Array of
radio telescopes project [156] or the Ocean Observatory Initiative [137]. Such observatories
can monitor wide and remote areas. Thus, the data collection is particularly challenging,
as it involves real-time geographical data streaming. The Large Hadron Collider [38] is a
physics project based on a collaborative multi-institutional effort. It produces and collects
about 40 Petabytes of data each year, aiming to explain the early stages of the universe.
Its most recent and notorious discovery was the detection of the Higgs Boson in the Atlas
experiment [13, 43]. The data produced is disseminated, stored and processed across more
than 80 computing centers worldwide, federating and linking 100,000 CPUs [37, 143]. Fi-
nally, genetic studies are another example of an area which benefited from the emergence of
data-intensive computing. Gene sequencing is the process of coding genome regions with
the purpose of analyzing and searching for clues about diseases. It used to be an expensive
and slow process. However, the US X prize allocated recently 10 million for genomics [180].
This enabled to increase the amount of sequenced genes from 25 thousands to 3 million. In
turn, this opened the door for a Big Data approach for genetics-based studies, which can
now search for the disease roots or for ways to explain the variability between individuals
by studying genomic correlations.

This data deluge is supported by the capacity of the networks to scale within and across
infrastructures. With such growing sizes of data collections beyond the Petascale limit, one
data center, let alone one cluster or multi-core machine, can no longer store nor process en-
tire data sets in reasonable time. Scale-out solutions are then the right approach: partitioning
data into small blocks and disseminating it over the network across the locally attached stor-
age of nodes, enables one to manage these large data volumes [158]. The drawback which
comes with this approach is that data gets heavily partitioned, which prevents further usage
of traditional database systems. Additionally, databases tend to reach also a volume limit in
the order of tens of terabytes [89, 142, 162]. The alternative solution, which gains in popular-
ity today, for addressing both the volume and the partitioning challenges, is to deploy and
scale a simple data-crawling, shared-nothing strategy over the partitions – the MapReduce
paradigm [46]. The solution is less powerful than the index mechanisms that databases of-
fer [144], but becomes a default Big Data tool due to its massive scalability capabilities. We
further discuss the MapReduce approach in Chapter 4.3.

In this data-intensive context, with the partition of the growing data sets, data delivery is
hitting a wall. In the last years, data and storage grew exponentially (increasing 1000 times)
while the access speed to data improved only 10 times [89]. Another critical issue is that cur-
rent data management tools cannot handle the Petabyte scale. Accessing via FTP a Petabyte
of data is clearly not feasible; the solution to accomplish such transfers requires at least a par-
allel access scheme [72]. Moreover, moving at least part of the computation to the data rather
than vice-versa can bring significant benefits. Many other such optimizations can and need
to be provided in order to support the Petabyte scale and beyond. The main problem is that
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scientists do not have currently off-the-shelf solutions to manage data in their Big Data ap-
plication scenarios [73, 89]. This lack of solutions and support for data management and the
inherited low I/O performance drastically limits scientific observation and discovery pro-
cess. In fact, the performance aspects of handling Big Data are the most critical challenges
that need to addressed, being one of the primary motivating factors of this thesis.

2.3 Discussion

Big Data is reshaping the way in which the scientific discovery is, and will be, done. Physics,
biology, climate, astrology and many other domains are now searching for scientific answers
in data collections. Nevertheless, this paradigm shift raises new challenges, more complex
than previously dealt with. Traditional compute and storage systems reach their limits, as
they cannot handle the volumes, velocities or varieties brought by Big Data. New ideas,
approaches and technologies are needed, alongside with powerful compute platforms.

One factor which encouraged the Big Data revolution and which emerged alongside with
it is cloud computing (discussed next, in Chapter 3). The large, multi-site oriented infras-
tructure of clouds, which enables collocating computation and data and on-demand scaling,
represents an interesting option for addressing the challenges brought by Big Data. How-
ever, its role for the data-intensive sciences is not fully established [89]. On the one hand,
migrating the scientific applications in the cloud is encouraged by the benefits they bring
for the web-base applications and businesses for which they were intended. On the other
hand, it is not clear how they can support various scientific scenarios with potentially con-
tradicting goals and requirements, such as low latency, resources scaling, high bandwidth,
data migration and partitioning, etc. Analyzing how clouds can emerge to become “Big
Data - friendly” for science, and what are the best options for them to provide data-oriented
services to address applications needs are the key goals of this thesis.
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Cloud computing emerged as a new paradigm for providing diversified resources, such
as computation power, storage capacity and network bandwidth. These resources are of-
fered to users as services, at different levels of granularity, by means of virtualization. Users
lease services on-demand and elastically scale them, on short notice, according to their needs,
on a pay-as-you-go basis. This paradigm revolutionized the way in which we approach re-
source provisioning, moving the ownership and management of resources from in-house
premises to the cloud provider. Cloud computing is proving fundamental to the construc-
tion of systems capable of rapid scaling and of delivering high reliability. This technological
evolution is particularly impacting in the Big Data era, where an increasing number of ap-
plications need to scale to meet their compute and storage challenges.

3.1 Overview

Cloud computing allows users to focus on extracting value, renting and scaling the services
for an optimal resource utilization [169]. In turn, cloud vendors manage the resources and
offer different levels of control over them. With respect to the providers and their acces-
sibility, clouds are public (i.e., offered by vendors openly) or private (i.e., with a restricted
access). A taxonomy based on usage levels can be determined, depending on what falls un-
der the responsibility of the provider to administrate, as shown in Figure 3.1. The resulting
categories are labeled “as a Service”, and provide the following functionality.
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Figure 3.1: The cloud usage models [171] Figure 3.2: The global presence of a cloud
data centers exemplified for the Microsoft
Azure cloud [16]

Infrastructure as a Service — IaaS. Provides resources with minimum administrative sup-
port by the cloud vendor, being in the most raw form (i.e., close to the bare hardware)
the virtualization techniques allow it. Cloud vendors split their large storage and com-
pute capacity, and build ad-hoc virtual environments as demanded by users [169]. The
typical way of exposing the compute resource to users is through virtual machines
(VM), in which the software stack that runs the user services is deployed. Any func-
tionality that needs to be built falls under the responsibility of the users for installing,
configuring and managing.The most illustrative example of a IaaS cloud is Amazon
Elastic Compute Cloud (EC2) [9]. Alternatively, several open source toolkits were de-
veloped which can virtualize (typically private) physical resources as a IaaS cloud, for
instance Nimbus [134], OpenNebula [138], Eucalyptus [54] and OpenStack[139].

Platform as a Service – PaaS. Offers an alternative to exploit the cloud resources, which are
presented as a uniform software platform rather than as a virtualized infrastructure.
Much of the responsibility for the deployment, configuration, management, fault tol-
erance and recovery mechanisms of the infrastructure is taken by the cloud provider.
Users focus on the application logic being transparently provided with the runtime
environment of their choice (e.g., .Net, Java SDK, databases, etc.) or even complete
programming models such as MapReduce [46], Dryad [100] or Azure Roles [125]. The
well-known examples of PaaS cloud offerings are the Google Apps Engine [71] and
Microsoft Azure [125].

Software as a Service — SaaS. Builds on the cloud resources to deliver a high-level service,
typically with a specific functionality. It stands as an alternative for cloud vendors
to leasing their infrastructures. They can host their own services and provide online,
most commonly through web-browser interfaces, various functionalities to users, such
as: office tools, content delivery network (CDN), collaborative tools, multimedia or
web-mail hosting. The main advantage of this model is that it frees users from any
kind of management, software installing, updates or patches, as they simply consume
the service. Some of the representative examples are the Google Docs and Microsoft
Office 365 office tools or the e-commerce services provided by saleforce.com.

Anything as a Service — XaaS - Due to the success of this taxonomy model, and the popu-
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larity gained by clouds, many other paradigms and functionalities tend to be labeled
and provided “as a Service”. Examples range from Database (or simply Data) as a
Service [93, 125], Network as a Service, Secure Logging as a Service [183], Business
Integration as a Service [178], Search as a Service [154], etc. This “etc.” is in fact what
defines this class, saying that anything/everything can ultimately be provided as a
service. Clearly, this leads to a thin border between categories (as it is the case for the
main ones), since much of these examples can be seen as SaaS, PaaS or even IaaS. In
fact, labeling something as a Service is merely a differentiation and an acknowledgment
of its high value, which is offered online to users rather than exploited in-house. Most
of the XaaS utilities serve as alternatives to users for building and running their own
applications. The fact that users and developers are able to extend the cloud comput-
ing paradigm, build, then offer such services, according to application needs, is one
of the key advantages that drive the paradigm shift introduced by cloud computing.
This is, as well, the model that we adopt for providing and delivering our contribu-
tions, such as Monitor as a Service, Streaming as a Service, or Transfer as a Service.
These approaches are discussed in the following chapters of this thesis.

The cloud infrastructure is composed of multiple, large data centers, which are
geographically-distributed around the globe. However, the interconnecting infrastructure
between the sites is not the property of the cloud provider as the bandwidth is leased from
the Internet Service Providers (i.e., Tier 1 ISP). Nevertheless, such a geographically dis-
tributed architecture enables cloud users to rent resources in the proximity of their users
or data sources. Figure 3.2 illustrates this multi-site concept with the Microsoft Azure cloud.
A cloud data center offers both computation power and storage capacity, which are virtual-
ized and offered as services to customers [34, 74]. Collocating data and computation within
the site is a pragmatic choice as it enables applications to reduce the otherwise high costs
of moving data across wide areas. In what follows, we present an overview of these two
aspects.

3.2 The Cloud Computing Paradigm

The Data Centers. The data center (or the site) is the largest building block of the cloud. It
contains a broad number of compute nodes, which provide the computation power, available
for renting. The typical pricing model is computed at an hourly rate, based on the computa-
tion power of the resources acquired by the user. The data center is organized in a hierarchy
of switches, which interconnect the compute nodes and the data center itself with the out-
side world, through the Tier 1 ISP. Multiple output endpoints (i.e., through Tier 2 Switches)
are used to connect the data center to the Internet [74]. For the sake of fault tolerance, the
overall infrastructure within a data center is partitioned with respect to the switches and
racks. These partitions are referred to as fault domains. The users services are distributed
across several such fault domains. Finally, the compute resources are managed by hypervi-
sors, which deploy, stop or update user services. They are also in charge of monitoring the
infrastructure.

The Compute Nodes. Clouds virtualize the compute nodes and lease their compute power
in different flavors, in the form of virtual machines (VMs). At PaaS level, all VM instances
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assume the same role, while at IaaS they have no role. Hence, in both cases, achieving
self-configuring for the services deployed across the VMs is critical. The physical nodes
are exploited in a multi-tenant manner, being shared by several VMs, generally belonging to
different users. Depending on the amount of physical resources they hold VMs range from
tiny instances which share the CPU, to larger ones which fully allocate anything between 1
and the maximal number of CPUs of a physical machine (i.e., 8, 16 or 32 depending on
the provider and resource type). The memory, local storage and the network quota tend
to increase proportionally for the larger VM types (e.g., an Extra Large VM has 8x more
resources than a Small one, while Large or Medium VMs have 4x, respectively 2x more).
Despite having CPUs mapped in a 1 to 1 relation with the virtual CPUs, the only option that
frees a users from multi-tenancy (i.e., physical machine shared by VMs of multiple users)
at compute node level is to use the largest VM types. As such VM types fully occupy the
physical nodes (e.g., Extra Large VMs for Azure cloud) no other users VMs will be run on
the physical machine. Nevertheless, even with the largest VM type, the rest of the resources
in the data center, such as network switches or links, are shared among all users.

The Deployment. The VMs that host a user application form a virtual space, also referred
to as deployment. The VMs are placed on different compute nodes in separate fault domains
in order to ensure fault tolerance and availability for the service. Typically a load balancer
distributes all external requests among the VMs. The topology of the VMs in the data center
is unknown to the user. Several other aspects are invisible (or transparent) to users due to
virtualization, e.g., the mapping of the IPs to physical node, the vicinity of VMs with each
other, the load introduced by the neighbor VMs, if any, on the physical node, etc. A deploy-
ment is limited to a single site, and depending on commercial constraints and priorities, it
can be limited in size. This implies to use several independent deployments if an applica-
tion needs to be executed across several sites, or across a very large number (e.g., thousands)
of CPUs. These are virtually isolated one from the other, e.g., the virtual private network
from one is not accessible by the other. Hence, aggregating their functionality requires an
actual service orchestration similar with creating a workflow from web-services. This raises
a difficult challenge for managing the data uniformly across these different virtual spaces,
potentially located in geographically distant sites.

Examples of major providers of cloud computing services are the following.

Amazon Elastic Cloud Computing (EC2) [9] are the computing services traditionally of-
fered at IaaS level, by Amazon. Being among the first vendors which rented their com-
pute capacity to users, it is often regarded as the reference cloud service, with many
of their APIs adopted as “de-facto” standards. The virtual machines, called instances,
provide users with complete control over the software stack. In the recent years, the
Amazon cloud services evolved and diversified their offering to include data-oriented
analytic platforms such as MapReduce.

Microsoft Azure [125] is a cloud platform that offers PaaS services, and more recently also
IaaS ones. At IaaS levels, the nodes are offered as Virtual Machines, while at PaaS level
these VMs take roles, i.e., Web Roles and Worker Roles. The VMs run either Windows
or Linux-based OS and can provide different run-time software stacks such as .Net or
Java. As Amazon, the cloud framework introduced recently a set of business-oriented
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Figure 3.3: An overview of the cloud data services

services, enabling users to run MapReduce jobs (further discussed in Chapter 4.3),
develop applications or orchestrate business or scientific processes.

Google App Engine [71] is the PaaS computing cloud from Google. It offers users the pos-
sibility to develop applications in several programming languages (e.g., Python, Java,
PHP, Go) and to integrate several other code extensions or technologies (e.g., Node.js,
C++). The infrastructure is optimized for high networking performance and fast pro-
visioning for applications scaling. Regarding the pricing model, Google App Engine
offers a fine grain model, charging VMs usage by the minute, after the first 10 minutes,
unlike Amazon and Azure clouds which charge by the hour.

3.3 The Cloud Storage Paradigm

Clouds offer also storage capacity for data management, alongside with compute power.
This is either virtualized, or delivered to customers via services, typically with put/get REST
APIs [9, 35]. The pricing model is based on the data size, time frame and number of oper-
ations to the data. The cloud data management ecosystem consists of several services as
depicted in Figure 3.3. These are geared for various types of data and maximize a different
(typically conflicting) set of constraints. Next, we present an overview of these services.

Ephemeral Storage. In addition to computing power, the VM instances also offer storage
capacity, in the form of virtual disks. This storage capacity can reach several TBs (e.g.,
2 TB for an Extra Large VM in Azure) depending on the instance type. However, the
data stored in the virtual disks are ephemeral, as they persist only for the lifetime of the
instance, being subject to losses caused by failures of the instance. The storage is free of
charge, in the sense that it comes with the cost of leasing an instance. Considering the
low latency between these virtual disks and the compute resources, thus leveraging
data locality, ephemeral storage is an interesting option for hosting and buffering data
for high-performance processing.

Unstructured Cloud Storage. This represents the standard cloud offering for sharing appli-
cation data, which is available both to cloud compute nodes and to on-premise ap-
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plications. These cloud storage services are distributed storage systems deployed on
storage nodes and running complex protocols for partitioning, replication and consis-
tency to ensure that data is always available and durable, even when machines, disks
and networks fail.A strong consistency protocol is used for the replicas within the site,
while concurrent updates are handled through the use of timestamps and by applying
a “first commit wins” strategy [35]. This makes the these cloud storage services good
candidates for persistently storing input/output data. Azure Blobs is the main stor-
age service of the Azure cloud [125], S3 is the equivalent service from Amazon cloud,
while Google offers Google Cloud Storage [71]. Users can create several storage ac-
counts for a cloud storage subscription, each bounded to a geographic location (i.e., a
data center), but with the possibility of data redundancy across sites, for disaster re-
covery. Data is stored as binary objects (BLOBs) and usually organized in a two-level
namespace structure (i.e., blobs and containers). These BLOBs tend to have an upper
size limit for the amount of data stored in the order of terabyte. Despite collocating
them within the site with the compute deployments, the high-latency REST interfaces
make them inadequate for supporting high-performance data management, which is
understandable as they are optimized for data availability and durability.

SQL Relational Databases. In the last decades, relational databases have became the pri-
mary option for storing application data, leveraging their support for indexed stor-
age and ACID guarantees (atomicity, consistency, isolation and durability). Therefore,
cloud vendors provide such services (i.e., Database as a Service), offering online re-
lational databases on top of their storage capacity. Nevertheless, even with the cloud-
deployed databases, the storage limitations of this technology persist. For example, the
Azure SQL database service offered by the Microsoft cloud offers a maximum storage
space of 150 GBs per user subscription.

NoSQL Storage for Structured Data. With the emergence of Big Data, the storage limits
that come with the ACID guarantees in relational databases, become a major bottle-
neck. To address this issue, the NoSQL systems weaken these properties and propose
instead to store and structure data in the form of type-value or key-value pairs. Exam-
ples of such systems are Cassandra [113], Google Bigtable [40] or Yahoo PNUTS [44].
Due to their efficiency and performance to store large data sets, such systems were
also ported on the clouds (e.g., Azure Tables [35] or Amazon Dynamo [47]). Unlike
databases, they do not necessarily enforce a fixed schema enabling a various number
of properties or types, within or across rows. As a result of porting such services on
the clouds, users have an alternative to the unstructured cloud storage, which enables
them to structurally store and partition (i.e., similarly with the indexes in relational
databases) terabytes of data (e.g., Azure Tables offer a up to 100 TB per account).

Cloud Queue Service. One of the data management services provided by clouds is ded-
icated for nodes synchronization.To this purpose, nodes can exchange small (e.g.,
64 KB), short-term (e.g., 1 week) messages via the cloud queue service. A typical us-
age scenario consists of compute nodes, acting as front-ends, enqueueing jobs for the
nodes acting as workers, as in a master - worker model. Cloud Queues are designed
as a communication mechanism capable to support a high number of concurrent oper-
ations from many clients and to allow thousands of message transactions per second.
Examples of such services are: the Azure Queue [125] or Amazon Simple Queue Ser-
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vice (SQS) [9]. An interesting fault tolerance property offered by Azure queue is that a
message which is dequeued, is not immediately deleted from the service, but hidden
for a certain period of time. The message is then either explicitly deleted, marking its
successful processing, or becomes visible again after the hidden period expires. In this
way, the service guarantees that each message is processed at least once. However,
the hiding period is limited to hours, which creates a management overhead for long
running tasks. It can be the case for scientific Big Data applications, for which users
need to provide additional mechanisms that support longer compute intervals.

Persistent attached storage. The virtual attached disks of a VM have an ephemeral lifetime,
while the persistent cloud storage is accessible via REST interfaces, which in turn might
require changes in application semantics. To address this issue, cloud vendors provide
a middle-ground solution, in the form of persistent attached storage, which enables
to mount BLOBs in a VM and expose them as a local disk. In this way, applications
manage files, while the lifetime of these files is independent of the instance that mounts
the BLOB. Although a BLOB can be mounted only to a single compute instance at a
given moment, it can be reused any number of times and by other instances. Examples
of persistent attached storage are Amazon Elastic Block Storage (EBS) [7] or Azure
drives [17].

Caching Service. Depending on their type, the compute instances in a deployment can offer
a significant memory capacity. One option to exploit this, is to build a caching service
across the memory of the compute nodes, in order to enable fast, in-memory storage.
Cloud providers offer such tools, for example Microsoft offers Azure Caching [15],
which can be deployed either on a set of dedicated compute nodes, or across all the
leased compute nodes within a deployment. For the latter case, each VM will have
a portion of its memory dedicated to this service. Performance is high due to data
locality and in-memory data access. However, cache misses can be quite frequent,
especially when the memory capacity is reached, and the data needs to be brought
from the cloud storage where it is checkpointed for persistence.

3.4 Discussion

The cloud computing model enabled a major paradigm shift for online applications. Clouds
bring to life the illusion of a (more-or-less) infinitely scalable infrastructure managed through
a fully outsourced service.Instead of having to buy and manage hardware, users rent re-
sources on-demand. However, cloud technologies have not yet reached their full potential.
With the emergence of Big Data applications, it is critical to leverage the cloud infrastruc-
tures to cope with the challenging scale (e.g., volume, velocity) of the Big Data vision. In
particular, the capabilities available now for data storage and processing are still rudimen-
tary and rather far from meeting the more and more demanding applications requirements.
Hence, porting data-intensive applications to the clouds is challenging and brings forward
many issues, which we discuss in the next chapter.
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This thesis focuses on the Big Data applications, particularly the scientific ones. Com-
monly, large scientific applications such as climate modeling, simulations of the evolution of
diseases and viruses, stream flows analysis, etc. were executed on specialized and powerful,
yet expensive, infrastructures — the supercomputers [29]. However, not all research groups
have access to build and manage such systems. This raises a barrier for the development
of science. Fortunately, the cloud computing paradigm democratizes science, by facilitating
the access to large-scale resources to any users/researchers without any prerequisites and
with a minimal financial effort. To this purpose, we are interested to investigate the main
requirements and challenges for enabling efficient processing of such Big Data applications
on clouds.

4.1 Overview of Big Data Applications

The existing cloud infrastructure and the related services can efficiently and effectively sup-
port small applications with moderate resource requirements. Examples range from national
traffic simulations (e.g., train scheduling [70]) to some bio-medical computations [76]. How-
ever, clouds reach their limitations when handling Big Data applications that require a large
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number of resources, rapid scaling or high-performance computing [67, 93, 149, 150]. For ex-
ample, a request for a large number of compute resources at once is not always successfully
fulfilled [102].Another issue is that applications can obtain a lower and variable CPU speed
than the one requested when choosing the VM type [174]. Nevertheless, the most pressing
issue, that we are focusing on within this thesis, is the data management for such Big Data
applications. In this context, achieving high-performance on the one hand and diversifying
the services on the other hand is critical, in order to address the complex challenges brought
by the data deluge [27, 64, 184].

A particular complex and difficult aspect of the data management for Big Data applica-
tions is handling data across wide areas and/or across the geographically distributed cloud
data centers. Nowadays, an increasing number of processing scenarios and applications re-
quire such computing, as discussed also in Chapter 2. The main reasons why applications
need to geographically distribute the computation on the cloud are the following.

• The size of the data can be so big that data has to be stored across multiple data centers.
We reiterate the example, described in Chapter 2, of the Atlas CERN experiment [13]
which generates 40 PB of data per year.

• The data sources can be physically distributed across wide geographical locations. This
is the case for the emerging scientific virtual observatories (e.g., ocean [179] or astro-
logical [137] observatories).

• The nature of the analysis, which requires aggregating streams of data from remote
application instances for an increasing number of services. Large-scale services like
search engines or online office tools operate on tens of data-centers around the globe.
Maintaining, monitoring, asserting the QoS of the system or global data mining queries
all require inter-site (stream) processing.

Our objective is to provide data management solutions which enable high-performance pro-
cessing at large-scale across the geographically-distributed cloud infrastructures. In this land-
scape, building functional and performance-efficient data management solutions, first re-
quires to identify the main requirements that scientific Big Data applications bring when
migrated to the clouds.

4.2 Challenges and Issues

Never before the distributed storage and data management systems had to cope at such ex-
tent with challenges such as the data volumes and processing throughput that are associated
to the emergence of Big Data. The cloud storage services, now in operation, are relatively
new and still evolving. So far, they have mainly focused on the needs of business appli-
cations, targeting to provide basic functionality in a reliable and secure way. Supporting
data-intensive applications in clouds, at large-scale, raises the need to address the following
challenges.

Transparency, Automation and Self-Configuration. Localizing, managing, moving and
processing large amounts of data is a complex task and cannot be explicitly handled



4.2 – Challenges and Issues 29

by users or applications. Therefore, the data management system must transparently
handle these aspects, leveraging a uniform view of the data space for applications, re-
gardless of the scale at which data is distributed (i.e., within the deployment, in-site
or across sites). Yet, configuring the parameters of the data management system, let
alone tuning them for optimal performance, is a difficult task as well [106]. Hence, so-
lutions need to be designed that are capable on the one hand to become aware of their
environments and self-configure themselves, and on the other hand to operate without
user supervision.

Scalability. Cloud computing is an interesting option for Big Data applications as long as
the services can scale with the computation needs. Regarding the storage infrastruc-
ture, it requires to be able to leverage a large number of resources efficiently (e.g., vir-
tual disks) and aggregate them elastically and continuously in order to accommodate
the growing volume or veracity of the Big Data sets. In the same time, the workload
needs to be distributed proportionally with the resources (i.e., load balance) in order
to avoid performance bottlenecks and idle resources [184]. This is equally valid both
for managing the data access requests and for scheduling the computation tasks. To
achieve scalability and load balancing in the system, it is important to understand
to which extent the traditional techniques, designed for smaller scales (e.g., in the
field of distributed shared-memory, cluster scheduling) can be leveraged, extended
and adapted to the context of the unprecedented scale brought to reality by cloud in-
frastructures.

Efficiently assembling the results of parallel executions. One the one hand, effectively
dealing with Big Data applications requires to partition the computation to achieve
a high degree of parallelism. On the other hand, once the sub-problems are solved,
the final results need to be assembled. The performance of this operation impacts the
overall execution of the application directly. The critical need for providing efficient
solutions is motivated by the fact that the complexity of the operation grows with
the parallelism degree. This is even more challenging as constantly pushing the scale
boundaries is one of the primary focus of today’s research.

Low-latency and high-throughput access to data under heavy concurrency. Big Data pro-
cessing naturally requires a high degree of parallelism for data analysis (i.e., many
compute nodes concurrently access, process and share subsets of the input data). This
leads to many application instances accessing the cloud storage system to read the
input data, to write the results, to report their state for monitoring and fault toler-
ance purposes and to write the log files of their computation. Such data accesses
strongly impact the overall execution time for many scientific applications. In such
scenarios it is important to enhance existing cloud storage systems with means to en-
able heavy concurrent access to shared data, while avoiding the usually high cost of
traditional synchronization mechanisms, in order to provide low-latency and achieve
high-throughput access to data.

Fine grain access. Even though many applications use unstructured BLOBs to store their
large inputs in a single block, the processing is generally performed in parallel on sub
sets of the data. This requires to access small parts of that input data, at a fine grain
level. However, large distributed storage systems tend to handle data in large blocks
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(e.g., 64 MB) [85, 131], which makes the access to lower granularities rather difficult
and inefficient. The goal is to improve the overall data access performance by avoid-
ing useless locking and by dynamically finding and adjusting the right granularity to
handle data.

Fault tolerance and data availability. Faults are unavoidable at large-scale in clouds, which
are mostly built out of commodity hardware. Therefore, both processing and data
management systems need to be designed to account for failures, as they are the norm
rather than the exception [85, 173]. Regarding the processing phase, the techniques
vary from speculative executions of tasks[82], to using redundancy mechanisms to en-
sure that the jobs are executed at least once, as with Azure Queues, or adopting check-
pointing techniques for cloud processing [133]. In terms of data storage, the usual ap-
proach to deal with this issue is data replication [35]. Understanding which options to
combine is fundamental to ensure successful execution of large, Big Data scenarios.

Stream processing. Stream processing refers to the management and analysis in real-time
of continuous sequences of relatively small data items [68], otherwise referred to as
events. Stream processing is becoming one of the most significant classes in the world
of Big Data, considering the vast amounts of data which is collected in real-time, at
increasing rates in various scenarios. Handling such data is a distinct challenge than
managing static or stored data due to the continuous nature of the stream and the typ-
ically small sizes of the events forming it. In fact, an extended survey over thousands
of commercial jobs and millions of machine hours of computation, presented in [87],
has revealed that the stream process performance is highly sensitive to the manage-
ment and transfer of events, and their latencies. Therefore, there is a growing need for
a high-performance system for event streaming on clouds [22, 39, 68].

Data sharing. For many application scenarios, particularly the data-intensive ones, data
sharing is the most difficult and compelling of all the enumerated challenges [24].
Whether the Big Data processing is performed in-site or across multiple data centers,
the application input needs to be shared across the compute instances, which in turn
need to share their (partial) results among each other, with other applications within a
workflow or make them available to users. A great deal of effort was invested to pro-
pose alternative solutions that would limit the sharing of data across nodes, by lever-
aging data locality and by moving the computation instead [82, 163]. However, despite
these efforts, it was shown that for many applications, the input data can account only
for 20 % of the total IO, the rest corresponding to data transmitted during the compu-
tation across the instances [87]. This emphasizes that the processing services, be they
distributed across multiple nodes, exchange large amounts of data. Additionally, the
performance of the computation is governed by the efficiency of the data management.
Therefore, providing high-performance data management services is a key milestone
for supporting Big Data processing on the clouds.

This list is clearly not exhaustive. Considering the dynamic ecosystem of Big Data appli-
cations, new issues are expected to appear both from business as well as from the data sci-
ence scenarios. Even so, addressing these issues by providing new data management solu-
tions is essential in order to cope with the Data Deluge and to prepare for the next challenges
of Big Data. These challenges that we identified serve as a roadmap for the approaches that
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are presented in this thesis. However, a solution to an issue is as good as its usability poten-
tial. Therefore, it is important to discuss also the processing paradigm(s) that can apply and
use the solutions to these issues. Hence, we discuss next the processing models that gather,
and, to some extent, shape many of the recent efforts made to address these challenges.

4.3 Big Data Processing Models: MapReduce and Beyond

With the emergence of Big Data, for many applications the computation scenario becomes
straightforward: apply a search strategy for a particular property (i.e., the Value) on the input
data set. However, as the data sets are typically large (we recall the Volume challenge of Big
Data discussed in Chapter 2), the computation needs to be partitioned and distributed across
as many resources as possible to obtain acceptable execution times. The classical processing
models have to evolve. On the one hand they should facilitate the execution of many parallel
tasks by elastically scaling the computation. On the other hand, they should enable the
execution of these tasks over a virtualized infrastructure of commodity hardware, such as
the cloud. Consequently, the processing models for Big Data can be conceptually abstracted
by the orchestrating scheme they propose for the parallel tasks.

MapReduce is a data processing paradigm, which became the “de-facto” model for exe-
cuting Big Data applications on large infrastructures. The MapReduce model, inspired from
functional languages, is shown in Figure 4.1 as it was initially proposed by Google [46]. It
consists of 2 functions: map and reduce, executed in 2 successive phases by worker processes.
The map function is applied, in parallel, on all the partitions of the input data. Example of
map functionality are: counting items occurrences, ranking records, searching for patterns
etc. The reduce function has the role of assembling the intermediate, partial results of the
mappers into the final output. The assignment of the intermediate results by the mappers to
the reducers is done based on a hashing function. Typical examples of reduce operations are:
sum, sort, filter, merge, etc. The large success and popularity gained by this model is due
to the fact that it effectively fulfills the 2 requirements previously mentioned for Big Data
processing: easy scalability and potential to be executed on virtualized commodity hard-
ware. Users only need to provide the 2 functions, which are then scaled with the number
of resources and applied on the partitioned input set. Additionally, since the computation
is performed on independent sub sets, the model has a natural tolerance to failures. In fact,
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it enables to simply re-execute a failed task on a different machine. In this way, the model
can accommodate potential failures of the commodity hardware, without any effort or in-
frastructure knowledge, thus allowing it to run on virtualized cloud environments.

MapReduce extensions were developed due to the success of the MapReduce model, and
with the goal of extending its scheme to accommodate new types of processing, while pre-
serving its initial properties. Among these, the most representative extensions are the iter-
ative MapReduce processing and the pipeline of MapReduce processes. Iterative MapReduce
applies the pair of map and reduce functions in several iterations on the data (i.e., the out-
put data from reducers is feed back to mappers). The termination condition is usually deter-
mined either by the number of rounds elapsed or by evaluating the differences between the
outputs from successive iterations and stopping when these become smaller than a thresh-
old. When data cannot be processed in successive iterations with the same functions, the
MapReduce pipelines become an interesting option. The idea is to orchestrate several inde-
pendent MapReduce processes, each with it’s own map and reduce operations, in a process-
ing flow [128]. Unlike for the iterative declination, creating pipelines requires a meticulous
instrumentation and more overhead, thus tempering the initial goals of MapReduce. Others
extensions, which do not change the data flow model, propose optimization by moving the
computation in-memory, processing data incrementally or in batches from a live data input
stream [84, 155].

Beyond MapReduce: Workflows are migrated to the clouds because, even with the exten-
sions to the initial MapReduce model, many scientific applications cannot fit this compu-
tation paradigm. Nevertheless, the tendency is to mix the expressivity provided by work-
flows with the simplicity of MapReduce. The goal is not only to allow users to create more
diversified dependencies between tasks, but also to simplify the description of the inter-
dependencies and the specifications of the data flow. At the same time, efficiently handling
generic (and complex) orchestrations of data flows on a virtualized environment raises an
important challenge for the data management systems. In fact this becomes the key point for
the overall efficiency of the system. Hence, providing efficient data services capable to in-
teract with the processing engines and to enable high-performance data exchanges between
the compute nodes is a key milestone for Big Data processing on clouds.

4.4 Discussion

Porting data intensive applications to the clouds brings forward many issues in exploiting
the benefits of current and upcoming cloud infrastructures. In this landscape, building a
functional infrastructure for the requirements of Big Data applications is critical and is still
a challenge. We investigated and identified several hot challenges related to Big Data man-
agement on clouds and discussed the main processing models that can leverage solutions
to these issues for applications. We use this analysis as a motivation and design guide-
line for the data management approaches that we propose in this thesis, in order to enable
high-performance processing at large-scale across the geographically-distributed cloud infras-
tructures. The next chapter introduces the current state-of-the-art solutions in their domains
and discusses their limitations in meeting these challenges.
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With the migration of Big Data applications towards large-scale infrastructures such as
the clouds, several solutions have emerged. In this chapter we discuss the main approaches
proposed, both from data management and processing points of view. The goal is to depict
their strengths and identify the issues that still remain open for Big Data management on
clouds, which is the primary focus of this thesis.

5.1 Data Storage

Being able to store efficiently the large volumes of data produced today is one of the primary
challenges raised by Big Data. To this end, several solutions were proposed for large-scale
infrastructures. Depending on the data format they employ (i.e., whether they use or not a
structure), the storage solutions can be divided into two categories, which we discuss next.

5.1.1 Unstructured Data: Object-Based Storage Systems

Storing data in large binary BLOBs is the main approach for dealing with Big Data. Cloud
providers offer such object storage solutions (e.g., Amazon S3 [9], Azure Blobs [125], Google
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Figure 5.1: HDFS Architecture [177] Figure 5.2: BlobSeer Architec-
ture [131]

Cloud Storage [71]) as the primary service for handling data, as discussed in Chapter 3. They
are optimized for high availability and data durability, under the assumption that data are
frequently read and only seldom updated. Therefore, achieving high throughput or enabling
optimizations for Big Data applications (e.g., by exposing the data layout) are auxiliary goals.
Moreover, there is a clear separation within the data center, between these systems and the
computation infrastructure.

5.1.2 Structured Data: Distributed File Systems

Having the goal to move the computation closer to the data, several distributed storage solu-
tions were developed. These share the common principle with the cloud storage, of storing
data distributed across the system entities, in large blocks. However, they mainly target the
computation infrastructure rather than a specialized data storage hardware [35].Such sys-
tems are usually deployed over the node file system. Nevertheless, they are not generally
available for default users on clouds. Next, we discuss three representatives solutions, as
follows.

HDFS (Hadoop Distributed File System) [85] was developed to serve as the storage back-
end for MapReduce compute platforms. It has a master–workers architecture, as de-
picted in Figure 5.1. The centralized control component, called NameNode, manages
all metadata within the system, and additionally splits and disseminates the data for
storage. The nodes holding the data are called DataNodes. Data are typically split and
stored in chunks (64 MB size is commonly used during the MapReduce process). Re-
garding fault tolerance, chunks are replicated across several DataNodes (by default, 3).
As optimizations, HDFS exposes the data layout, offers data buffering capabilities and
advanced provisioning, allowing the compute frameworks to schedule the computa-
tion accordingly. However, HDFS cannot sustain a high throughput for concurrent
reads [132]. Also, concurrent writes or appends are not possible.

BSFS/BlobSeer [132] is a concurrency-optimized distributed storage system for large bi-
nary objects, which can be used via a file system interface. It consists of a set of dis-
tributed entities that enables scalable aggregation of the storage space from the partici-
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pating nodes with minimal overhead. Data striping and replication is performed trans-
parently for applications, while a version-oriented metadata scheme enables lock-free
access to data, and thereby favors scalability under heavy concurrency. The architec-
ture of BlobSeer is shown in Figure 5.2. Data providers physically store the blocks cor-
responding to the data updates. New providers may dynamically join and leave the
system. The provider manager keeps information about the available storage space
and schedules the placement of newly generated blocks, according to a load balancing
strategy. Metadata providers store the information that allows to identify the blocks
that make up a version of the data. The version manager is in charge of assigning
version numbers in such a way that serialization and atomicity are guaranteed. The
system is capable of delivering high throughput performance, but requires meticulous
configuration, which is not always straightforward for applications designers.

GFarm [136] is a distributed file system, enabling data sharing for data-intensive comput-
ing. The system was initially designed for Grid infrastructures, and therefore stands
as a good example for the storage approaches that were refocused and migrated into
clouds. However, integrating it with a cloud middleware requires to run it on the host
OS and specifically modify and extend the cloud middleware. Therefore, such solu-
tions are feasible only in the context of private infrastructures, which are virtualized
with open-source cloud toolkits.

Such storage solutions have proven to be effective in some application scenarios. How-
ever, they are not always ready to be used out-of-the-box for scientific Big Data processing
on clouds, particularly in the case of public ones. Moreover, obtaining optimal performance
usually requires information about the environment, which by default is not explicitly ac-
cessible in the user virtualized space.

5.1.3 Structured Data: Key-Value Stores

The demand for storing large volumes of data in a structured fashion cannot be met by the
traditional relational databases, as mentioned in Chapter 3. Consequently, systems, gener-
ically called NoSQL, were proposed to enable storing large amount of data in the form of
key-value pairs, and therefore are called key-value stores. Some of these systems enable the
organization of the items in rows and columns, providing partial indexes with respect to this
scheme. Due to their efficiency in storing and managing massive data collections, obtained
from the lack of the full ACID (Atomicity, Consistency, Isolation, Durability) guarantees,
such solutions were built by companies, which own and manage large-web services.

Azure Tables [35] is the structured key-value storage offered by Microsoft as a cloud ser-
vice. A Table contains entities (similar to rows in classical relational databases), which
store multiple properties. Each entity can contain a different number of properties or
different types of properties. At least 3 properties are always present: RowKey (the
unique identifier), Timestamp (used as a versioning mechanism) and the PartitionKey
(used to physically group records together). The latter is used by the system to bal-
ance the load across multiple storage nodes and to optimize consecutive accesses for
performance.
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Cassandra [113] is a distributed storage for structure data, built by Facebook. The system
was designed for high scalability on commodity hardware withing or across data cen-
ters. It resembles a relational database in several aspects, storing data in tables with
row index capabilities, but with no further support for a full relational model. Multiple
replicas are created and distributed for fault tolerance across multiple physical nodes.
Based on them, the system implements customizable consistency levels (i.e., number
of replicas considered when performing an operation).

BigTable [40] is the distributed NoSQL storage introduced by Google, designed to scale to
Petabytes of data and thousands of machines. As for Cassandra, it does not support
a full relational model, offering instead dynamic control over layout and format of tu-
ples and advanced locality management. Similar with Azure Tables, data is organized
based on 3 properties: rows, columns and timestamps.

PNUTS [44] is the geographically distributed storage provided by Yahoo!. It provides a
simple and effective model, with data organized in hashed or ordered tables. Tables
contain records, augmented with attributes, as the basic unit for the data.The tables are
partitioned into smaller data structures which are stored across servers from different
regions. The concept of regions is similar with the abstraction of fault domain of the
Azure cloud, and refers to the partition of the overall infrastructure. However, the
resulting regions can also be geographically distributed.

Dynamo [47] is the highly available internal storage for the Amazon web services. The
system is highly optimized for writes and for low latencies. It is organized as a dis-
tributed hash table across a ring of virtual nodes, which have a many-to-one mapping
with the physical nodes. The data model relies on simple key-value pairs, which are
asynchronously replicated and eventually reconciled based on versions. The client
applications are offered a flexible control for the consistency levels of accessing the
replicas, and thereby on the cost effectiveness.

These NoSQL systems are designed for massive scalability and therefore are good can-
didates for managing the Volume challenge of Big Data. To a great extent, these are among
the most advanced state-of-the-art systems in terms of volumes stored, reaching the order of
Petabytes. Due to their high business value, most of them are closed, proprietary systems,
such as Dynamo or BigTable. Typically optimizing for a certain consistency level or availabil-
ity guarantee for the data, they do not always deliver the highest performance. Moreover,
properties such as data locality are not considered or not applicable, specially considering
that their initial goal is to scale over large (geographically) distributed infrastructures.

5.2 Data Processing

Data processing is another important aspect that needs to be considered in the context of Big
Data, as understanding its characteristics helps to design the proper solutions. However,
with the diversification of the compute scenarios, different processing approaches are, and
need to be, ported on the cloud or on large infrastructures, in order to meet the application
challenges. The most popular of them is the MapReduce processing. Alongside with sys-
tems that implement this paradigm, we discuss solutions for general-purpose or real-time
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processing, in order to extend the applicability areas of the data management solutions con-
sidered in this work.

5.2.1 MapReduce

We recall that the MapReduce processing paradigm, introduce by Google [46], is presented
in Chapter 4. In what follows, we present the state-of-the-art solutions, which adopt this
computing model.

From Hadoop to YARN and Spark. The most notorious and used implementation of the
Goggle MapReduce [46] is the Apache Hadoop [82]. This distributed framework runs on top
of HDFS storage, collocating computation and data. It proposes a master-worker architec-
ture for scaling the processing of data sets across clusters, while providing strong fault tol-
erance guarantees (speculative execution of tasks, heartbeats mechanisms, re-execution of
failed tasks, etc.). The two components of the system are the Job Tracker, which is in charge
of scheduling and managing the execution of the MapReduce tasks and the TaskTrackers,
which run on each compute node and are in charge of executing the computation tasks. To
increase efficiency, map and reduce tasks are scheduled according to the locality of data, with
the goal of reducing data movements across nodes and racks. As in the original model, the
map and reduce phases are separated, avoiding deadlocks though a synchronization barrier
between the two stages.

Because of its success, the framework was adopted and used in diverse scenarios beyond
its initial designed goals. For example, high-level frameworks such as Pig [145] or Hive [94],
or full workflow descriptive languages such as Kepler [175], orchestrate complex and het-
erogeneous MapReduce execution plans. This extensive use, as well as a vast number of
research studies, revealed several limitations of the architecture such as tight coupling of the
processing model with the infrastructure or scalability and performance bottlenecks due to
the centralized scheduling. To address these limitations, a new service-oriented architecture,
called YARN [170], was proposed, which is depicted in Figure 5.3. The initial multiple roles
of the JobTracker are split between multiple Resource Managers, which administrate entire
clusters, and the Application Master, which schedules and coordinates the execution of the
work per application. The compute infrastructure is divided into discrete quotas called con-
tainers, which are managed by entities called Node Managers. In this way, YARN provides
better resource utilization, higher fault tolerance and greater scalability.

An alternative MapReduce system implementation, which gain popularity recently, is
Spark [155]. It accelerates the computation building on the observation that clusters can sup-
port the computation in-memory. Therefore, it proposes a MapReduce architecture which
handles and processes data entirely in-memory, being thus limited within the available
memory of the cluster. Moreover, the framework proposes extensions also to the MapRe-
duce API enabling to launch computation as SQL queries [182].

MapReduce on clouds. Due to the impact of the MapReduce on Big Data processing and
the popularity of Hadoop, the model was also ported to the clouds. AzureMapReduce [77]
is one of the first attempts to address the need for a distributed programming framework
in Azure. It is a MapReduce runtime designed on top of the Microsoft Azure PaaS cloud
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Figure 5.3: Apache Hadoop NextGen
MapReduce (YARN) [82]

Figure 5.4: AzureMapReduce architec-
ture [77]

abstractions, which uses the cloud storage services for data and task management (e.g.,
Azure Queues for scheduling, Azure Tables for metadata administration). These choices
provide great fault tolerance, but reduce the performance of the service. Later than this
work, Microsoft proposed also an own MapReduce service based on Hadoop, called HDIn-
sight [86], following the model of Amazon which offers its Elastic MapReduce service [8].
Both these cloud-provided services externalize the processing from users. In this way, the
task of running single MapReduce computations is simplified, but the services limit poten-
tial optimizations based on the scenario semantics as well, as integrating the processing into
larger computation pipelines.

Extensions of MapReduce. The wide adoption of the model served as a motivation for
several efforts to propose extensions that would enable to process a larger class of applica-
tions. The main focus was on the iterative ones. As Hadoop does not support such iterative
processing by design, HaLoop [32] was built on top of it with this purpose. It exposes a new
programming model and relies on a loop-aware task scheduler and on loop-invariant data
caching. Besides HaLoop, other solutions accelerate iterative algorithms by maintaining it-
eration state in memory. Twister [53] employs a light weight MapReduce runtime system
and uses publish/subscribe messaging-based communication instead of a distributed file
system. Mappers and reducers are built as long-running processes with distributed memory
caches in order to avoid repeated data loading from disks. The solution was also ported
to Azure, by extending the aforementioned AzureMapReduce framework [78]. iMapRe-
duce [185] extracts common features of iterative algorithms and provides support for them.
In particular, it relies on persistent tasks and persistent socket connections between tasks,
it eliminates shuffling static data among tasks, and supports the asynchronous execution of
iterations when possible. All of these frameworks target applications with iterations across
MapReduce jobs and require additional components and programming efforts to aggregate
their output automatically. Moreover, the close loop architecture is in most cases sensitive
to failures. Additionally, potential in-node optimizations of the processing, such as caching
data between iterations, might not scale in commodity machine clusters, where each node
has limited memory and resources.
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5.2.2 Workflows

A large number of workflow engines were developed due to their impact and efficiency
in solving business processes. Enumerating all these solutions or discussing their general
features is beyond the purpose of this work. Our focus is to identify the main characteristics
that such engines share, when ported on the clouds, as traditionally, they run on private or
grid infrastructures. Therefore, we discuss three such engines which were either ported or
constructed to run on cloud infrastructures.

Pegasus [48] is a traditional (i.e., not designed for clouds) workflow engine, which facil-
itates the representation of data-compute flows in an abstract manner and executes
them on distributed computational resources. The framework optimizes the mapping
of the sub-tasks, in which the workflow is divided, with the resources, with the goal of
minimizing the data movements and improving the execution times. However, when
migrated to the cloud, its performance is highly sensitive to the data management solu-
tion used, which, to a large extent, determines the scheduling optimizations techniques
that can be applied [2]. Providing cloud services that can leverage infrastructure topol-
ogy and data locality information are key points that need to be addressed to increase
the feasibility and efficiency of running such workflow engines on clouds.

e-Science Central [91] was designed as a workflow platform accessible via web browsers,
following the “’as a Service” cloud model. It enables collaborative work, as well as
data and computation sharing. Workflow execution is performed as a sequence of
service invocations. The corresponding execution plan is determined and processed
as independent tasks across the distributed compute resources. The orchestration of
the execution is performed by a centralized coordinator which limits the scalability of
the computation and its performance. A second factor impacting the performance is
the use of the cloud-provided storage service, which recent efforts are trying to replace
with other solutions such as in-nodes HDFS [92].

Generic Worker [153] stands as an example of a workflow engine specifically designed
for running scientific applications on clouds. It was implemented as an open-source,
batch-based processing platform by Microsoft Research ATL Europe [66]. The system
can seamlessly be extended by the use of plugins and can be migrated to any cloud,
private or public. This flexibility was enabled in order for researchers to apply a hybrid
approach: use a local infrastructure when available, and scale-out to the cloud when
necessary. By default, Generic Worker relies on the cloud storage to perform all data
management operations such as tasks description or data uploading and sharing. On
the one hand, such a design choice supports the extensibility of the processing across
infrastructures, but on the other hand it provides low I/O performance for data trans-
fers between tasks, compute nodes and infrastructures. This indicates that such elastic
Big Data processing solutions, potentially operating across geographically distributed
infrastructures, require dedicated cloud services for wide-area data management and
transfers, considering that the cloud-provided storage service offers such functionality
only circumstantially.
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5.2.3 Complex Event Processing Platforms

The previous discussed processing methods are mainly designed for analyzing static col-
lections of data. However, real-time stream processing becomes an important aspect of Big
Data, with massive quantities of information being produced and requiring on-the-fly pro-
cessing (e.g., see the Velocity challenge, discussed in Chapter 2). Such analysis is handled
by specialized platforms, called complex event processing (CEP). Due to the complexity of
partitioning a query (i.e., the description of the computation task), most of such systems
were designed with centralized architectures and did not consider the cloud infrastructures.
Hence, a hot open-issue in the area today is how to port and scale these engines to large
cloud infrastructures.

Middleware solutions like System S from IBM [65] were proposed for single cluster
processing, with processing elements connected via typed streams. The ElasticStream sys-
tem [101] migrates this solution to Amazon EC2 taking into consideration cloud-specific
issues like SLA, VMs management and the economic aspects of performance. Similarly, Mi-
crosoft provides StreamInsight [127], which is available for installation into Azure cloud ma-
chines. Other works in the area of large-scale streaming, like Sphere [75], propose a GPU-like
processing on top of a high-performance infrastructure, which restricts the general applica-
bility to clouds. Systems like Aurora and Medusa [1] consider exploiting the geographically
distributed nature of the stream data sources. However, the systems have a series of lim-
itations despite their strong requirements from the underlying infrastructure (e.g., naming
schema, message routing): Aurora runs on a single node and Medusa has a single admin-
istrator entity. The main issue with this series of systems is that they were not designed
for cloud and/or large-scale processing, and consequently they cannot effectively leverage
the underlying platform for high-performance computing. Bellow are three other systems
which propose alternative directions.

D-Streams [182] provides tools for scalable stream processing across clusters, building on
the idea of handling data in small batches, which can be processed using MapReduce.
This idea also discussed in [122]. In this way, the scalability problems of stream pro-
cessing are addressed by relying on the elasticity of the MapReduce processing en-
gines. Data acquisition is event-driven: the system simply collects the events from the
source and batches them. Next, a MapReduce process is launched to execute the query
on the batched events. Although this approach solves the scalability issue, it provides
a high latency-to-answer, being more adequate for applications that tolerate to obtain
the answers with some delay, i.e., in near real-time.

Stormy [120] implements concepts from peer-to-peer stream processing in the context of
clouds. The system is an elastic distributed-processing service that enables running a
high number of queries on continuous streams of events. The queries are replicated
and applied on all the replicas of the events created across the peer nodes. Stormy
delegates the staging-in of the events to the data source which is expected to push the
events in the system. Moreover, it handles the stream as individual events both in
the acquisition and the replication phases, which may drastically reduce the overall
performance.

Storm [165] is an open-source real-time processing engine developed by Twitter for large-
scale processing. The system builds on several existing solutions to distribute the event
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processing while guaranteeing fault-tolerance. Resilience is accounted for in the design
alongside with efficiency, Storm operating in-memory with one of the “at least once”
or “at most once” processing semantic guarantees. Data is handled at the level of
tuples, over TCP, by 2 threads per worker: the sender and the receiver. Tuples are
managed in queues, being gathered (i.e., from the local tasks executed on the node
or from different nodes), independently inspected and finally delivered towards the
destination. In addition to handling the stream in memory, Storm uses the local disks
of nodes to store the processing topology (the computation and the description of the
data flow), states and the user code/query.

All these solutions focus on processing queries and scalability with no specific improve-
ments nor solutions for the event streaming itself. This raises a major difficulty for address-
ing the tough challenges related to the distributed nature of the analysis or of the stream
source locations.

5.3 Transfer

So far, we discussed the main processing approaches and their storage options. The primary
feature identified is scalability, which translates into managing data in a highly distributed
fashion. In this context, the transfer of data becomes particularly important whether data is
replicated to increase its resilience or shared between tasks or computing phases for process-
ing purposes.Hence, we discuss next the state-of-the-art solutions for such data movements.
We divide them according to the state of the data, which can be either static or in motion, as
part of a continuous flow (i.e., stream).

5.3.1 Static Data

The handiest option for sharing or transferring data, even across cloud data centers, is to
rely on the cloud storage services. This approach allows to transfer data between arbitrary
endpoints and it is adopted by several systems in order to manage data movements over
wide-area networks [111, 129]. However, this functionality arises only as a “side effect”, and
therefore achieving high transfer throughput or any other potential optimizations, such as
differentiated QoS or cost effectiveness, are not always viable. Trying to fill this utility gap,
several alternatives have emerged.

NetSticher [116] was designed for bulk transfers of data between data centers, with the
purpose of replicating for geo-redundancy. The authors exploit the day/night pattern
peaks of usage of a data-center in order to leverage the unutilized bandwidth periods.
Though NetSticher is useful for backup and checkpoint operations, required to admin-
istrate a data center, it does not work for real-time systems nor for online applications
which need to exchange data between their running instances.

GlobusOnline [58] provides file transfers over WAN, targeting primary data sharing
between different infrastructures (e.g., grids, institution infrastructures, community
clouds), mainly within scientific labs. The framework is designed as a SaaS with the
focal point on the users, which are offered intuitive web 2.0 interfaces with support for
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automatic fault recovery. GlobusOnline runs based on the GridFTP [3] tool (initially
developed for grids), performing file transfers only between such GridFTP instances.
During the transfers, it remains unaware of the environment and therefore its transfer
optimizations are mostly done statically. Several extensions brought to GridFTP al-
low users to enhance transfer performance by tuning some key parameters: threading
in [118] or overlays in [109]. Still, these extensions only focus on optimizing some spe-
cific constraints, which leaves the burden of applying the most appropriate settings to
scientists, which are typically unexperienced users.

StorkCloud [112] offers also a SaaS approach for data management over wide-area net-
works. It integrates multi-protocol transfers in order to optimize the end-to-end
throughput based on a set of parameters and policies. It adapts the parallel trans-
fers based on the cluster link capacity, disk rate and CPU capacity, using the algorithm
proposed in [181]. The communication between StorkCloud components is done using
textual data representation, which can artificially increase the traffic for large transfers
of unstructured data. The system is one of the most representative efforts for improv-
ing data management. It is designed for general purpose, targeting the communication
between any devices. Ergo, specific optimizations for the Big Data scenarios running
on clouds are not considered, such as the topology of the applications in the data cen-
ter(s) or of the inter-connecting links between compute nodes.

Multi-path TCP [148] is a standard designed to address the challenge of moving large vol-
umes of data by enabling parallel data transfers. The idea is to improve the commu-
nication by employing multiple independent routes to simultaneously transfer dis-
joint chunks of a file to its destination. The approach can incur additional costs such
as higher per-packet latency due to timeouts under heavy loads and larger receiving
buffers. Nevertheless, this remains an interesting solution for tackling Big Data pro-
cessing. However, it is designed to operate at the lower levels of the communica-
tion stack, thus ensuring congestion control, robustness, fairness and packet handling.
Consequently, the solution is not available for cloud users until it will be adopted by
cloud vendors and Tier 1 ISPs.

These efforts show that the need for efficient tools for managing data is well understood
in the community and stands as an important issue. Nevertheless, many aspects remain un-
addressed, particularly finding solutions that would provide high-performance for transfers
between the running instances of applications on the cloud.

5.3.2 Real-Time Data

Handling data in real-time, for large-scale Big Data processing, calls for different solutions
than the ones previously discussed for general data transfers. These need to be specifically
designed for continuous streams of events, together with the CEP engines and considering
the target computation environments. However, despite the growth in volumes and impor-
tance of stream data, and the efforts to migrate such processing to the clouds, most of the
existing stream processing engines only focus on event processing and provide little or no
support for efficient event transfers between even source and processing engine. In fact,
this functionality tends to be delegated to the event source [31, 182]. As a result, the typi-
cal way to transfer events is individually (i.e., event by event), as they are produced by the
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data source. This is highly inefficient, especially in geographically distributed scenarios,
due to the incurred latencies and overheads at various levels (e.g., application, technology
encoding tools, virtualization, network). Therefore, currently there is a lack of support and
focus for optimizing the event streaming and real-time transfers on clouds. This is explained
somehow by the fact that the topic of processing real-time data on clouds is new, and thus
not all aspects have been addressed yet.

In other areas, where real-time data management has been around for some time, things
are more advanced. For example, the systems providing peer-to-peer streaming can be divided
in two categories based on how peers, which forward the events, organize themselves in an
overlay network [159]: some use DHT overlays [79, 157] and others group the subscribers in
interest groups based on event semantics [160, 161]. While the performance of the former is
highly sensitive to the organization of the peers, the latter can improve the performance by
sharing common events within the interest group. Further optimizations can be achieved
by discovering the network topology which is then matched to the event traffic between the
subscribers [159]. This aims to improve the network usage by identifying whether indepen-
dent overlay paths correspond to common physical paths and by allowing deduplication of
events. However, in the context of clouds, it is not possible to consider information about
physical paths, as knowledge and interactions are limited to the virtual space. Moreover,
these techniques do not consider staging-in data from the source to the CEP engines, but
rather disseminating information among subscribers.

Similarly, in the area of video streaming there were significant efforts to improve the end-
to-end user experience by considering mostly video specific optimizations: packet-level cor-
rection codes, recovery packets, differentiated redundancy and correction codes based on the
frame type [96]. Additionally, such solutions integrate low-level infrastructure optimizations
based on network type, cluster knowledge or cross-layer architectures [114, 123]. Neverthe-
less, none of these techniques directly apply to the Big Data real-time processing on clouds,
as they strongly depend on the video format, and thus are not applicable for generic cloud
processing.

The straightforward conclusion is that there is a critical need for high-performance trans-
fer solutions for real-time data. This conclusion is also confirmed by other studies [22]. What
makes it critical is that the value of the real-time analysis itself (i.e., see the Veracity chal-
lenge of Big Data discussed in Chapter 2) is determined by the performance of transferring
the data to the processing engine. Sharaf et al [152] emphasize this point stating that data
freshness improves the Quality of Service of a stream management system.

5.4 Discussion

Supporting Big Data processing and Data Science strongly relies on the ability to store and
share massive amounts of data in an efficient way. Cloud infrastructures are a key element in
this process and must therefore address the challenges posed by applications whose require-
ments are becoming more and more demanding (e.g., in terms of performance and scalabil-
ity at global level), as discussed in the previous chapters. In this section we presented an
overview of the current status and solutions for data management on cloud infrastructures.
The survey has revealed that the processing frameworks strongly rely, in their pursuit for
scaling, on the data management backends. It also showed that in terms of storage, the cloud
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landscape offers several solutions to support data processing, mostly focusing on providing
guarantees such as persistence and fault tolerance. However, aspects like performance or
diversification of the data-oriented services tend to be overlooked. Regarding the support
for managing data movements for the applications running on the clouds, things are worse.
There is a clear need for developing solutions that would enable efficient data sharing across
compute instances, in order to sustain the scalability required to accommodate the Big Data
processing. In this thesis, we address these open challenges regarding data management, by
proposing a set of high-performance data services for storing, sharing and transferring data
on clouds, both for single and multiple site processing.
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This chapter develops the contributions published in the following paper:

• A-Brain: Using the Cloud to Understand the Impact of Genetic Variabil-
ity on the Brain. Radu Tudoran, Alexandru Costan, Benoit Da Mota,
Gabriel Antoniu and Bertrand Thirion. Microsoft Cloud Futures Work-
shop 2012, Berkeley, CA, US

6.1 Joining Genetic and Neuro-imaging Analysis

An increasing number of scientific Big Data applications are being ported to the cloud to
enable or accelerate the scientific discovery process. To better evaluate the needs and iden-
tify the requirements that such applications have from large-scale cloud infrastructures, we
selected a representative application from the bio-informatics domain, called A-Brain. Next,
we present this application and the challenges that it brings for clouds, which we address in
the following chapters.
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6.1.1 Initial Motivation

Joint genetic and neuroimaging data analysis on large cohorts of subjects is a new approach
used to assess and understand the variability that exists between individuals. This approach
has remained poorly understood and brings forward very significant challenges, as progress
in this field can open pioneering directions in biology and medicine. The goal is to enable
joint analysis between the domains, as well as understanding and explaining aspects from
one area based on the other, similar with what is possible today between the clinical be-
havior on the one hand and either genetics or neuroimaging on the other. However, both
neuroimaging- and genetic-domain observations involve a huge amount of variables (i.e.,
in the order of millions). Performing statistically rigorous analysis on such Big Data has
high scientific Value, but raises a computational challenge that cannot be addressed with
conventional computational techniques.

Several brain diseases have a genetic origin or their occurrence and severity is related
to genetic factors. Currently, large-scale studies assess the relationships between diseases
and genes, typically involving several hundreds patients per study. Thus, genetics plays
an important role in understanding and predicting responses to treatment for brain diseases
like autism, Huntington’s disease and many others. However, it remains poorly understood.
Brain images are now used to explain, model and quantify various characteristics of the
brain. Since they contain useful markers that relate genetics to clinical behavior and diseases,
they are used as an intermediate between the two.

Imaging genetic studies linking functional magnetic resolution imaging (fMRI) data and
Single Nucleotide Polyphormisms (SNPs) data are facing the challenges of multiple compar-
isons. In the genome dimension, genotyping DNA chips allows to record several hundred
thousands values per subject, while in the imaging dimension an fMRI volume may contain
from 100 thousands to 1 million voxels (volumetric picture elements), as shown in Figure 6.1.
Finding the brain and genome regions that may be involved in this correlation entails a huge
number of hypotheses. A correction of the statistical significance of pair-wise relationships
is often needed, but this may reduce the sensitivity of statistical procedures that aim at de-
tecting the associations. It is therefore desirable to set up techniques as sensitive as possible
to explore where in the brain and where in the genome a significant correlation can be de-
tected. More, the false positive detections need to be eliminated, which requires multiple
comparisons. Such gains in sensitivity can also be provided by considering several genetic
variables simultaneously.

6.1.2 A-Brain: Application Description

The A-Brain application addresses this computational problem by testing the potential links
between brain locations, i.e., MRI voxels, and genes, i.e., SNP. Dealing with such hetero-
geneous sets of data, is also known as the Variety challenge of Big Data applications. The
analysis relies on a set of sophisticated mining and learning techniques for inspect the tar-
geted data sets. Univariate studies find the SNPs and MRI voxels that are significantly cor-
related (e.g., the amount of functional activity in a brain region is related to the presence
of a minor allele on a gene). With regression studies, some sets of SNPs predict a neuro-
imaging/behavioral trait (e.g., a set of SNPs altogether predict a given brain characteristic),
while with multivariate studies, an ensemble of genetic traits predict a certain combination
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Figure 6.1: The A-Brain dimensional scale for the X (brain images) and Y (genetic data) data
sets. The white marks on the brain image illustrate potential associations with the genes.

of neuro-imaging traits.

Let (X, Y) be a joint neuro-imaging data set, as shown in Figure 6.1, i.e., a set X of brain
images, that represent the amount of functional activation in response to a certain task or an
anatomical feature, such as the density of gray matter, and a set Y of genetic variables (e.g.
Single Nucleotid Polymorphisms and/or Copy Number Variants of genetic loci), acquired
in the same population of subjects. X is assumed to include nv variables (e.g., one for each
location in the brain image domain), while Y comprises ng variables, for each of the ns sub-
jects. This gives two matrices of real values, with typical magnitudes of nv ∼ 106 , ng ∼ 106.
The data set may also comprise a set Z of behavioral and demographic observations, such
as psychological tests or age. These variables are not independent.

There are two approaches for evaluating the correlations between the gene and neuro-
imaging data. The first approach, the univariate analysis, is less computational demanding
than the second one which performs statistics based on machine learning. However, the
later is expected to be less sensitive to outliers and therefore more statistically robust. In
what follows we present these approaches and their appliances for this application.

• In the first phase of A-Brain, the univariate analysis [146] was used to detect the cor-
relations, that is, test the statistical significance of the correlation or the equivalent as-
sociation measure of all (x, y) pairs for (x, y) ∈ X×Y. After performing the necessary
computations, the correlations between the two sets are obtained, giving a matrix of
size nv × ng containing the p-values that represent the statistical significance of the as-
sociations. To ensure correctness, that is controlling for false detections, a permutation
procedure is used, in which the data of one block is reshuffled (∼104). The p-values
obtained in the initial regression analysis are compared afterwards to those obtained
from the shuffled sets.
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• The alternatively to the univariate analysis is to use a machine learning technique
in order to increase the precision of the computation and to reduce its sensitivity to
outliers, making thus the statistics more robust. Such a computation follows the same
principles as before but increases the amount of computation performed. An important
finding resulted based on our work and the A-Brain project [45], was to show that such
a machine learning approach can compensate, unlike the univariate analysis, for the
errors introduced in the acquisition process of human data set. Hence, increasing the
computation workload is equivalent with acquiring a data set 100 times larger and
thus 100 times more expensive (i.e., 1 billion euros would be needed for such a data
set).

6.1.3 Challenges

The available data set used for testing consists of 50,000 voxels and ∼0.5 million SNPs for
approximately 2000 human subjects. The anatomical brain images are T1-weighted with a
spatial resolution 1× 1× 1 mm. On the other hand the SNPs were obtained by genotyping,
genome-wide using Illumina Quad 610 and 660 chips. Solving this problem leads to the
following challenges.

Computation. In order to obtain the results with the expected high degree of confidence,
a number of 104 permutations are required, resulting in a total of 2.5× 1014 associa-
tions to be computed. Dealing with such complex aspects for the confidentiality of the
results constitutes the Veracity challenge of this Big Data application. The univariate
algorithm, developed by the partner bio-informatic team, performs 1.5× 106 associa-
tions per second. Hence, on a single-core machine the time estimation to run the algo-
rithm is ∼5.3 years. Moreover, the alternative algorithm for performing the statistical
robust analysis is almost 20 times more slower than the plain univariate method. Thus,
in terms of timespan for single core machine, this algorithm would require ∼86 years
to complete. Luckily, the analysis is embarrassingly parallel, opening the door for sub-
stantial improvements.

Data. Following the regression stage which compares the 50 thousand voxels and 0.5 million
SNPs for the 2000 subjects, all the intermediate correlation produced must be retained
for identifying the most significant p-values. Taking into account that we use matrices
of size nv × ng of doubles, the space of intermediate data can reach 1.77 PB. Moreover,
the nature of the analysis require the input data set, which is in the order of several of
GBs, to be replicated on each node that executes a task. Hence, the size of the input data
space is proportional to the degree of parallelism, rapidly reaching the order of TBs.
These data dimensions make the analysis challenging from the Volume perspective of
the Big Data applications.

Environment. The application requires a Python-based scientific environment to be set
up, together with scientific libraries such as NumPy, SciPy and H5Py or the Scikit-
Learn toolkit. A complex computing environment is also needed for configuring and
scheduling the computing jobs automatically, staging in the input data, transferring
the data between the nodes and retrieving the results.
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Figure 6.2: The A-Brain application as a MapReduce process

6.2 Towards a MapReduce Architectural Solution

The workload estimation for A-Brain clearly shows that the application needs to be run
in parallel on a large set of resources in order to achieve reasonable execution timespans.
Cloud computing platforms, such as Microsoft Azure, have the potential to offer the under-
lying infrastructure on which such a scientific application can be executed at a large-scale.
Nevertheless, such computations can potentially be carried out also on other platforms such
as supercomputers, grids or in-house clusters. However, our goal is to understand to what
extent the cloud computing model can be used to drive scientific discovery. Being able to
use the cloud for science will reduce the overall costs by moving from own managed infras-
tructures to a flexible pay-as-you-go model for the compute resources which can be scaled
on-demand, while the administration overhead of owning the infrastructure is outsourced
to the provider, as detailed in Chapter 3.

The MapReduce programming model has arisen as a very effective approach to perform
high-performance data-intensive processing over very large distributed systems such as the
clouds. This scalability property of MapReduce makes this compute paradigm an interesting
choice for executing the A-Brain workload on the cloud. However, alongside with scaling
the computation, an efficient storage solution also needs to be set up in order to enable the
execution framework to harness the power of the cloud fully, easily and effectively. This is a
particular challenge on which we focused next in Chapter 7.

Our first step was to parallelize the A-Brain application using the MapReduce paradigm
as shown in Figure 6.2. Each Mapper takes the same initial data set, i.e., the neuro-images
and the genes to compare against. It shuffles it to increase the statistical precision and per-
forms the regression to assert the magnitude of the correlation. In terms of computation, the
regression phase represents a series of matrix operations that generate a matrix of p-values.
These matrices represent the intermediate data of the MapReduce process. In the case of the
robust machine-learning analysis, the difference from the plain univariate method is that the
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Map phase yields the prediction score for an image phenotype and tests the permutation
under the null hypothesis to estimate the significance (i.e., p-value).

The Reduce phase collects the intermediate results, computes the statistic distribution
and corrects the p-values and filters them. In the later step of the computation, only the
correlations with a p-value higher than a specified threshold are considered relevant and
kept. The Reduce operation is commutative and associative. An important constraint of the
application is the requirement to reduce everything to a unique final result. This constitutes
an important challenge for the classical MapReduce model that outputs as many final results
as the number of reducers. We address these such challenges in Chapter 8.

Our initial empirical evaluations showed that one core in Azure is able to perform
∼ 1.47× 106 associations per second (the small speed reduction is due to the virtualization
of the cloud nodes). Our goal is to use the maximal number of cores that can be allocated for
a deployment (∼350), which would reduce the total computation time of A-Brain univari-
ate analysis from several years to a few days (i.e., ∼ associations

cores×algorithm_cloudspeed ). Regarding the
robust machine-learning analysis, the scale of the computation would entail an execution
timespan of months for a single run. This estimation shows that executing this statistical
robust A-Brain analysis at the scale of a single deployment will not be sufficient. Therefore,
we decided to extend the computation for this scenario across several deployments in order
to reach 1000 cores and reduce the time of the analysis down to about two weeks.

6.3 Discussion

The A-Brain analysis is representative of a large class of scientific applications that split
a large initial domain into subdomains, each managed by a dedicated process (e.g., bio-
informatics, image processing, weather simulations, etc.). The processes compute various
metrics for all the components of their subdomain. These intermediate values are then ex-
changed, partially or totally, among the processes to perform some associative reductions in
order to produce a single result (e.g., filtering, minimum/maximum, selection, etc.). There-
fore, the approaches that we device in the context of A-Brain, presented in Chapters 7 and 8,
have the potential to support other scientific applications migrated to the cloud. It also argu-
ments in favor of our choice of using this application for validating the proposed solutions.
Moreover, the A-Brain challenging demands for computation, data and scale, enable us to
thoroughly evaluate the cloud support for Big Data applications and to identify the primary
issues of executing scientific applications on clouds. Such an analysis, the bio-informatic
results of A-Brain and the lessons learned are presented in Chapter 9, which serves as a
requirements roadmap for the Part III of the thesis.
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This chapter develops the contributions published in the following papers:

• TomusBlobs: Towards Communication-Efficient Storage for MapReduce Ap-
plications in Azure. Radu Tudoran, Alexandru Costan, Gabriel Antoniu,
and Hakan Soncu. In Proceedings of the 2012 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID
2012), Ottawa, Canada, May 2012, pp. 427-434.

• Adaptive file management for scientific workflows on the Azure cloud. Radu
Tudoran, Alexandru Costan, Ramin Rezai Rad, Goetz Brasche, and
Gabriel Antoniu. In the proceeding of the IEEE 2013 BigData confer-
ence (BigData 2013), Santa Clara, US, October 2013, pp. 273-281.

• TomusBlobs: Scalable Data-intensive Processing on Azure Clouds Alexandru
Costan, Radu Tudoran, Gabriel Antoniu and Goetz Brasche. Journal of
Concurrency and Computation: Practice and Experience 2013.

One missing facility that limits a larger adoption of clouds for scientific computing is
data management, due to the lack of specific support for data-intensive scientific workflows.
Currently, workflow data handling in the clouds is achieved using either some application-
specific overlays that map the output of one task to the input of another in a pipeline fash-
ion, or, more recently, leveraging the MapReduce programming model (e.g., Amazon Elas-
tic MapReduce [8], Hadoop on Azure - HDInsight [86]). Such applications need a high-
performance storage system that enable VMs to access shared data concurrently. However,
today’s reference commercial clouds only provide object stores such as S3 or Azure Blobs
accessed through high-latency REST (HTTP) interfaces. Furthermore, situations may arise
where applications might need to change the way data is managed in order to adapt to the
actual access method (files vs. objects) [35].

The need for efficient storage for data-intensive workloads. A first approach for man-
aging data would consist in relying on such public cloud object stores in the way the ap-
plication would use a more traditional parallel file system. However, in today’s cloud ar-
chitectures, computational nodes are separate from the storage nodes and communication
between the two exhibits a high latency due to the aforementioned data access protocols.
Additionally, as these services primarily target storage, they only support data transfer as a
side-effect, which means that they do not enable transfers between arbitrary VMs without in-
termediary storing the data. Moreover, users need to pay for storing and moving data in/out
of these repositories in addition to the cost of leasing the VMs. Cloud providers recently in-
troduced the option of attaching the cloud storage as virtual volumes to the compute nodes:
Amazon EBS [7] or Azure Drives [17]. Besides being subject to the same high latencies as the
default storage access, this option also introduces scalability and sharing limitations as only
one VM can mount at a time such a volume.

An alternative to the cloud storage would be to deploy a parallel file system on the com-
pute nodes, in order to exploit data locality when storing and transferring workflow data.
Distributed storage solutions such as Gfarm [136] were deployed in a compute cloud —
Eucalyptus, but operate in the host OS of the physical node in order to store the data in
the local storage disks of the machine. This approach requires to specifically modify and
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extend the cloud middleware which works in open-source IaaS clouds running on private
infrastructures, but is not feasible in public commercial clouds. In fact, most file systems
need special configuration or handling to get them to work in a virtualized environment,
while others, as exemplified previously, cannot be executed at all, since they require kernel
modifications which are not allowed by most cloud providers [103, 104]. When working at
Platform-as-a-Service level (e.g., Microsoft Azure), users face additional challenges, making
it difficult to set up even existing general-purpose runtime within the VM instances: there is
no possibility to deploy a parallel filesystem like HDFS [85] or PVFS [81].

Cloud processing options. Besides efficient storage, data-intensive applications also need
appropriate distributed computing frameworks, as presented in Chapter 5, to harness the
power of clouds easily and effectively. However, options are rather limited on today’s com-
mercial clouds. On Microsoft’s Azure cloud, there is little support for parallel program-
ming frameworks: no MPI nor Dryad [100]. Yet, a MapReduce runtime, called AzureMapRe-
duce [77], was proposed, built on top of the Azure BLOBs for data storage and on the Azure
roles model of the VM instances (Web Role/Worker Role) for computations. However, the
architecture of this system involves costly accesses from VMs to BLOB storage, whose effi-
ciency is not satisfactory, as previously explained. Hadoop was ported to Azure as a service,
called HDInsight [86], only recently and at a later time than our approach. Users are in
charge of handling the data and setting their task to be run, but have no control on tuning
or modifying the service (i.e., it is used as a black box). On the other hand, the major part
of scientific applications do not fit the MapReduce model and require a more general data
orchestration. In this direction, several workflow management systems were proposed for
applications running on clouds. e-Science Central [91] and the Generic Worker [153], both
built on top of the cloud storage, enable scientists to harness vast amounts of compute power
by running the applications in batches.Other systems like Pegasus [2] rely on a peer-to-peer
file manager, when deployed on Amazon EC2, but use basic transfers between the VMs with
very low performance.

Our approach in a nutshell. To address these issues for managing data in the clouds, we
propose an architecture for concurrency-optimized, PaaS-level cloud storage leveraging virtual
disks, called TomusBlobs. For an application consisting of a large set of VMs, it federates
the local disks of those VMs into a globally-shared data store. Hence, applications directly
use the local disk of the VM instance to share input files and save the output files or in-
termediate data. As demonstrated by the results presented in this chapter, this approach
increases the throughput more than 2 times over remote cloud storage. Moreover, the ben-
efits of the TomusBlobs approach were validated in the context of MapReduce, by building
an Azure prototype which implements this computation paradigm and uses the proposed
storage approach as data management back-end. It reduces the timespan of executing a sci-
entific application by up to 50 %, as shown in Section 7.3. Furthermore, we extend this data
management solution also for general workflow to leverage data locality for direct file trans-
fers between the compute nodes. We rely on the observation that workflows generate a set
of common data access patterns that our solution exploits to self-adapt and to select the most
adequate transfer protocol, which speeds up transfers with a factor up to 2 over current data
management options, as discussed in Section 7.5.
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7.1 TomusBlobs: Federating Virtual Disks for a Communication
Efficient Storage

This section introduces the TomusBlobs approach for federating the virtual disks of VMs.
The system addresses the main requirements of data intensive applications, detailed in Sec-
tion 4.2, by providing low-latency data storage optimized for concurrency. We start from the
observation that the disks locally attached to the VMs, with storage capacities of hundreds
of GBs available at no extra cost, are not exploited to their full potential in many cloud de-
ployments. Therefore, we propose to aggregate parts of the storage space from the virtual
disks in a shared common pool that is managed in a distributed fashion. This pool is used to
store application-level data. In order to balance the load and thus to enable scalability, data
is stored in a striped fashion, i.e. split into small chunks that are evenly distributed among
the local disks of the storage. Each chunk is replicated on multiple local disks in order to
survive failures. With this approach, read and write access performance under concurrency
is greatly enhanced, as the global I/O workload is evenly distributed among the local disks.
Furthermore, this scheme reduces latencies by enabling data locality and has a potential for
high scalability, as a growing number of VMs automatically leads to a larger storage system.

TomusBlobs is designed accordingly to the following set of design principles. These
principles were selected such that they comply with the otherwise typically contradicting
constraints of cloud providers and scientific high-performance computing.

Data locality. Accessing data from remote locations increases the cost of processing data
(both financially and compute-time wise). Yet, in today’s cloud model, the compu-
tation regularly uses the cloud storage for I/O while the locally and freely available
virtual disks from each VM remain largely unused. This applies even for intermediate
results of large-scale scientific processing, like MapReduce or general workflows. This
reduces the overall execution performance. Thus, our goal is to leverage this free local
VM storage space by aggregating and managing it in a distributed fashion and making
it available to the applications. Additionally, the overall cost is reduce as we decrease
the usage of the otherwise payable cloud storage.

No modification of the cloud middleware. Our approach targets the commercial public
clouds. It is therefore mandatory that its building blocks do not require any special
or elevated privileges. As our data management approach is deployed inside the VMs,
the cloud middleware is not altered in anyway. This is a key difference from the pre-
vious attempts to harvest the storage physical disks of the compute nodes. These at-
tempts imposed modifications to the cloud infrastructure, so that they only worked
with open source cloud kits. Thus, our solution is suitable for both public and private
clouds. It addresses standard cloud users such as scientists which do not possess the
skills or permission to configure and manage the cloud middleware toolkit.

Loose coupling between storage and applications. The TomusBlobs cloud data manage-
ment is mainly targeted at (but not limited to) large-scale scientific applications exe-
cuted like the MapReduce computations. Therefore, we propose a modular, stub-based
architecture, which can easily be adapted to other processing paradigms, particularly
data-intensive workflows as illustrated in Section 7.4.
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Figure 7.1: The architecture of TomusBlobs (TB).

No centralized control. When scaling computation or storage to a large number of re-
sources, a centralized control of the data flow rapidly becomes a bottleneck. This is
a key aspect for cloud infrastructures which lease commodity hardware which is sub-
ject to failures and where the high-bandwidth is not typically the norm. Therefore, we
choose to address the coordination between the components in a distributed fashion,
without any centralized supervision.

Building on these design principles that exploit data locality, we designed TomusBlobs,
a system for concurrency-optimized PaaS-level cloud storage.The system relies on the local
disk of the VM instance directly in order to share input files and save the output files or
intermediate data. This approach requires no changes to the application nor to the cloud
middleware. Furthermore, it does not use any additional resources from the cloud, as the
virtual disks are implicitly available to the user for storage, without any additional costs.
We implemented this approach in the Microsoft Azure cloud platform. The architecture of
TomusBlobs consists of three loosely-coupled components presented in Figure 7.1.

The Initiator component is specific for each cloud platform. It has the role to deploy, setup
and launch in a transparent way the data management system. Moreover, it takes the
role of customizing the scientific environment that is usually required by the applica-
tions. It exposes a generic stub that can be easily implemented and customized for any
cloud API. It does so, as most storage solutions require some prior knowledge about
the underlying infrastructure when they are started, e.g., IPs of the VMs. By interacting
with the cloud middleware, it acquires all the necessary information enabling the sys-
tem to be self-configurable. The Initiator running within each cloud node is in charge
of assigning roles, differentiating between instances by hashing an ID from a set of
parameters (name, IP, etc.). Additionally, it is used to setup the system on the deploy-
ment, based on user policies, e.g., the number and storage entities to run on separate
nodes. Finally, the Initiator supports the system’s elasticity, being able to scale up and
down the computing platform at runtime by integrating the newly active nodes in the
system or by seamlessly discarding the deactivated ones.

The Local Storage Agent has the role of aggregating the virtual disks into a uniform shared
storage, which is exposed to applications. It is generic as it does not depend on any
specific storage solution. Any distributed file system capable to be deployed and exe-
cuted in a cloud environment (and not changing the cloud middleware) can be used as
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a storage backend. This implies contextualizing the Storage Agents with respect to the
architecture of the adopted solution to manage its “storage services”, i.e., the compos-
ing entities of the solution (disk and metadata managers, transfer modules etc.). For
the proof of concept we opted for two distinct approaches:

• Integrating an existing solution called BlobSeer [132], described in Chapter 5.
We use this for low level object-based storage, for computation scenarios such
as MapReduce.
• A new file management system that we designed for workflows, further de-

scribed in Section 7.4. Building a new solution was motivated by the fact that
there are no data management tools specialized for workflows on clouds.

The Client API represent the layer through which the storage is uniformly viewed and ac-
cessed by the applications. Data manipulation is supported transparently through a set
of primitives, allowing applications to access the BLOBs with full concurrency, even if
all access the same BLOB. The interface is similar to the ones of commercial public
clouds (Azure BLOBs, Amazon S3): one can get data from the system (READ), update
it by writing a specific range within the BLOB (WRITE) or add new data to existing
BLOBs (APPEND). The Client API is implemented such that it hides all calls and inter-
actions between the storage entities when performing the exposed operations.

The local storage of VMs on which we rely consists of virtual block-based storage devices
that provide access to the physical storage of the compute nodes, unlike the attached stor-
age volumes (e.g., Amazon EBS or Azure drives) which link the VM with the remote cloud
storage.The virtual disks appear as devices to the virtual machine and can be formatted and
accessed as if they were physical devices. However, they can hold data only for the lifetime
of the VM, and in this sense they are an ephemeral storage option. After the VM is termi-
nated, they are cleared. Hence, it is not possible to use them for long-term storage since this
would mean leasing the computation nodes for long periods. Instead, we have designed a
simple checkpoint mechanism that can backup data from the TomusBlobs to the persistent
Azure BLOBs as a background job, privileging the periods with little / no network trans-
fers and remaining non-intrusive (it adds a 4 % computational overhead when a transfer is
performed). The backups follow simple policies to maintain consistency by either making
independent snapshots of the system each time or by maintaining only one version.

7.2 TomusBlobs-MapReduce: Leveraging Virtual Disks for Effi-
cient MapReduce Processing

In order to demonstrate and validate the efficiency of the TomusBlobs storage solution in
the context of cloud data processing, we built a prototype MapReduce framework for the
Azure cloud, called TomusBlobs-MapReduce. The proposed framework relies on Tomus-
Blobs to store input, intermediate and final results, allying data locality with the elastic com-
putational power of the cloud. With the storage and computation in the same virtualized
space, data transfer, protection, confidentiality and security are enhanced, benefiting from
the usage of the local storage instead of the remote Azure Storage. From the job scheduling
perspective and for the coordination between the system entities, we opted for a light and
non-intrusive mechanism built on top of the cloud queues (i.e., Azure Queues).
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Figure 7.2: The TomusBlobs-MapReduce architecture.

Why a new MapReduce framework? The motivation for creating such an engine is two-
folded. On the one hand there is no MapReduce framework that enables to properly ex-
ploit data locality in the context of PaaS clouds: AzureMapReduce uses the remote azure
Blobs, while Hadoop on Azure was introduced at a later time as a black-box service. On the
other hand, unlike the MapReduce cloud-provided services such as HDInsight and Ama-
zon MapReduce, which require to outsource the computation and data to these services, our
framework can be deployed on users compute nodes, together with the corresponding data
and potentially other compute services. Moreover, by creating a user-customizable frame-
work, the MapReduce processing pipeline can be extended and tune for computation flows
beyond the default model. Obtaining this property for the system, which allowed us to ex-
periment with different declinations of the MapReduce paradigm, was another argument in
favor of building our own framework.

The architecture of the TomusBlobs–MapReduce solution that we proposed is depicted
on Figure 7.2. User clients are provided with a web or console-based front-end through
which their jobs are submitted. The scheduling of the MapReduce jobs on the compute
nodes is performed through small messages, which encode the actual task description and
the related metadata (e.g., input/output location, naming scheme, etc.). These messages
are disseminated towards the compute entities using 3 queues: the Map Scheduling Queue
is used to submit jobs towards Mappers, the Reduce Scheduling Queue is used to submit jobs
towards Reducers and the Synchronization Queue is used by the Mappers to notify the Reduc-
ers about map job completion. The advantage of this scheduling mechanism is that it has a
light footprint on the actual compute resources, making it non-intrusive and isolated from
potential failures that might appear in the compute process. The Mappers and the Reducers
are implemented as Azure Worker Roles that execute the user-provided functions.

The Client is a web-service front-end deployed on a the Azure Web Role, i.e., the PaaS
Azure compute option specialized for hosting web services. It offers users the tools to specify
and configure the MapReduce workflow and to submit it for execution. Based on these spec-
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ifications, the client component creates the appropriate message description for the Mappers
and Reducers. These are then scheduled and submitted via the corresponding queue. The
messages are small in size (in the order of several KBs). They contain the scheduling identi-
fier of the destination Mapper or Reducer, used to map the tasks to the resources and meta-
data information about the task itself, e.g., data location in the storage, naming scheme, job
and data ownership.

The Mappers, marked with “M” in Figure 7.2, are deployed in Azure Worker Roles, i.e.,
the default compute PaaS Azure option. Based on the specified policies which are managed
by the Initiator component of TomusBlobs, a pool of Mappers is created. They are regu-
larly polling the Map Scheduling Queue in order to retrieve messages with job description
submitted by the user through the client front-end. Similarly, the Reducers, denoted “R”
on Figure 7.2, are run on Azure Worker Roles, with a pool of such entities created at start
time. The reducers first poll the queue through which the client front-end submits the job
description. After a task is being assigned to them, the reducers start listening to the syn-
chronization queue. They wait for messages sent from the Mappers, notifying the end of a
map computation and the availability of intermediate data. When such notifications appear
the reducers dequeue the message and fetch the corresponding intermediate data from the
TomusBlobs storage.

The Azure Queues, described in Chapter 3, are used as a scheduling mechanism by
TomusBlobs-MapReduce. We rely on the visibility timeout of the queues to guarantee that
a submitted message will not be lost and will be eventually executed by a Mapper or a Re-
ducer. A message which is read from the queue is not deleted, but instead hidden until
an explicit delete is received. Our framework uses this mechanism to explicitly delete the
jobs marked as hidden only after a successful processing. If no such confirmation arrives,
the message will become visible again in the queue, after the visibility timeout. Duplica-
tion of job execution is possible. Nevertheless, by using a uniform naming schema for the
job outputs, only one instance of the result will be stored and considered further on in the
computation, preventing in this way inconsistent states of the output result. Therefore, the
scheduling process of our system is protected from unexpected node crashes as well as slow
nodes. Hence, the fault tolerance is addressed both at data level, using the replication sup-
port of TomusBlobs, and at processing level, by using the properties of Azure Queues.

By building on the TomusBlobs approach, we were able to provide several functionali-
ties needed by scientific applications which are now available using the MapReduce model.
While Hadoop does not support runtime elasticity (working with a fixed number of map-
pers and reducers), our solution seamlessly supports scaling up and down the number of the
processing entities, as follows. The MapReduce engine is deployed and configured using the
mechanism provided by TomusBlobs (i.e., the Initiator). Thus, when scaling the deployment,
the Initiator is also able to update the parameters of the MapReduce framework. The param-
eter value holding the number of reducers, used for hashing the map results, is dynamically
updated which enables elastic scaling. Moreover, the simple scheduling schema combined
with the flexibility of the system enables users to easily extend and tune the MapReduce pro-
cessing pipeline. One can easily add modules and alter the processing paradigm with new
processing stages and computation flows beyond the default model. Such an extension,
which addresses the specific constraint of bio-informatics applications for a unique result is
Map-IterativeReduce, detailed in Section 8.1.
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Figure 7.3: Storage write and read throughput with respect to data size for a client

7.3 Validation and Experimental Evaluation

Next, we evaluate the benefits of the TomusBlobs approach in synthetic settings and using
A-Brain application. The experiments were performed on the Azure cloud using 100 Small
(1 CPU cores, 1.75 GB memory, 225 GB local disk) Azure VM Worker Roles. For a better
accuracy, we repeated the measurements hundreds of times at various moments of the day
(morning, afternoon, night) and in two geographically distributed sites: North Europe and
North-Central US data centers. The evaluation focuses on comparing the throughput of
TomusBlobs against the default Azure BLOB storage and on the related costs. The BlobSeer
system was configured to use 2 nodes for the Version and Provider managers, 20 nodes for
the Metadata Providers and 78 nodes for the Data Providers.

7.3.1 Cloud Storage Evaluation: TomusBlobs vs. Cloud-Provided Storage Ser-
vice in Synthetic Settings

The first series of experiments evaluate the throughput performance of our proposal in con-
trolled synthetic settings. The goal of these experiments is to assess the benefits that can
be expected when using a low-latency cloud storage service such as TomusBlobs for data
intensive applications. For this, we have implemented a set of micro-benchmarks that write
and read data in Azure and measured the achieved throughput as more and more concur-
rent clients access the storage system. Writes and reads are done through the Client API
for TomusBlobs and through the RESTful HTTP-based interface for Azure BLOBs. We have
focused on the following access patterns exhibited by highly-parallel applications.

Scenario 1: single reader/writer, single data. We first measured the throughput achieved
when a single client performs a set of operations on a data set whose size is gradually in-
creased. This scenario is relevant for the applications where most of the time each process
manipulates its own data set independently of other processes (e.g., simulations, where the
domain is typically distributed among processes that analyze it and save from time to time
the local results). The throughput for read and write operations for TomusBlobs and Azure
BLOBs are shown in Figure 7.3. We report the average of the measurements of the two for
which we observed a standard deviation of ∼12 for reads and ∼2 for writes. The Azure
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Figure 7.4: Write/Read throughput per client under concurrent access

BLOB measurements are consistent with the ones reported by Hill et al. [93] and [30]. The
evaluation is done by transferring with a single operation the data from the application
memory to storage. Therefore, the size of the manipulated data is increased up to the limit
of the application memory available in a Small VM. TomusBlobs achieves a significantly
higher throughput than Azure BLOBs (approximately 2 times higher), as a result of using
the low-latency local disks. Also, the fact that they combine the workloads of many different
users together to reduce storage usage [35] (which is not the case of TomusBlobs) penalize
the performance of Azure BLOBs. Finally, another important factor that influences the ob-
served I/O throughput in Azure is the concept of "affinity groups". It allows an increased
proximity for the co-location of storage and hosted services within the same datacenter. De-
spite that this option can reduce latencies for the Azure storage, is can be observed that is
significant less efficient than TomusBlobs, by more than 2 times, validating our proposal of
collocating data in compute nodes.

Scenario 2: multiple readers/writers, single data. In the second series of experiments we
have gradually increased the number of clients that perform the same operation concurrently
and measure the aggregated throughput. For each given number of clients, varying from 1
to 65, we executed the experiment in two steps. First, all clients write concurrently 128 MB of
random data from memory to the storage and in a second step they read it back.This scenario
is relevant for applications where multiple clients concurrently read the input data or write
the temporary or final results or process data in multiple phases (e.g., MPI, iterative compu-
tation). Another example for this pattern is the “map” phase of a MapReduce application,
in which mappers read the input in order to parse the (key, value) pairs. The evaluation
of the aggregated throughput for concurrent read and write operations is presented in Fig-
ure 7.4. The results are average values with a standard deviation of ∼15 MB/s for the reads
and ∼ 5 MB/s for the writes. An upper limit for the performance can be observed for the
cumulative throughput for an increase number of clients, especially for the writes. For To-
musBlobs this is explained by the network saturation due to the total amount of data that is
sent at a time. For Azure BLOBs the limitations are: the latency between the computation
and storage nodes, the available bandwidth between them and the way the storage system
handles multiple requests in parallel. TomusBlobs outperforms the Azure Storage, having a
cumulative write throughput 4 times higher and a read throughput 3 times higher for more
than 30 concurrent clients, leveraging both the parallel data access scheme of the underlying
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Figure 7.5: a) Left: Application execution time and transfer time for intermediate data when
the size of data genetic and neuro-imaging data is varied and the number of Mappers is kept
constant. b) Right: Application execution time and transfer time for intermediate data with
AzureMapReduce and TomusBlobs-MapReduce when the number of map jobs and the size
of the data is increased

storage backend and the data locality.

7.3.2 Initial Experimentation with the A-Brain Application

In a second phase, our goal was to assess the impact of TomusBlobs in the context of MapRe-
duce using the A-Brain scientific application, discussed in Section 6. The comparison is
done between the TomusBlobs-MapReduce engine we have build and the AzureMapReduce
framework, which relies on Azure BLOBs for storage. A first series of experiments focuses
on the total execution time when the data size and the number of Mappers are progressively
increased, while in a second phase we measured the aggregated throughput under high
concurrency.

Completion time: increasing the data size. Figure 7.5 a) presents the completion time of
the MapReduce computation for the two frameworks.The number of Mappers (5) and Re-
ducers (1) was fixed while the size of the input set was increased from 30 MB up to 2 GB;
conceptually this means that more brain regions (voxels) and genes are analyzed.When us-
ing TomusBlobs-MapReduce, the workload is processed up to 40 % faster than when using
AzureMapReduce, which in turn is shown to have similar performances with Hadoop or
Amazon MapReduce [77]. To better evaluate the impact of the the increased throughput
brought by TomusBlobs, we measured and report in the same figure, also the time for trans-
ferring data between mappers and reducer (through the storage system). These results show
that write-intensive maps and read-intensive reducers can gained from a better support for
data management reducing the overall execution time.

Scalability: increasing the number of Mappers. Figure 7.5 b) presents the execution times-
pan of A-Brain when keeping the size of the input data constant - 1 GB (the overall amount
of data is approximately 40 GB) and increasing the number of Mappers. In practice, this
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Figure 7.6: Storage read/write throughput in the context of MapReduce application

means that more shuffles are performed (each Mapper performs a shuffle as detailed in Sec-
tion 6) in parallel, thus increasing the precision of the univariate analysis at the cost of extra
computation. Thus, unlike a typical MapReduce, by increasing the number of map jobs, we
do not just increase the degree of parallelism for analyzing a fix data set, but rather the work-
load increases proportionally.Each Mapper generates its own intermediate results, having a
constant size given the initial data. Increasing the number of Mappers is equivalent to gen-
erating more intermediate results that must be processed in the Reduce phase. Data proxim-
ity significantly reduces the completion time with TomusBlobs-MapReduce, especially for a
larger number of Mappers which can read and write in parallel from the virtual disks. It is
not the case for AzureMapReduce for which the latencies induced by the remote storage in-
crease completion time with up to 55 %. As before, by isolating the processing times for the
intermediate data (i.e., Map time in Figure 7.5), we notice TomusBlobs supports efficient data
handling under heavy concurrency and demonstrating it successfully brings data locality in
the context MapReduce on PaaS clouds.

Throughput: evaluating the I/O pressure. The previous experiments shown that the way
in which the intermediate data is handled is critical for the execution time of the A-Brain uni-
variate analysis. Therefore, we proceeded to a more in-depth analysis of this stage by testing
the read and write patterns of reducers and mappers (each of them processing 128 MB of
data) against different storage solutions: TomusBlobs, AzureBlobs and AzureBlobs with a
configuration for multi-threading handling of reads/writes, with the number of threads set
to 8 (the maximum value allowed by Azure). The results are presented in Figure 7.6 through
average values with a standard deviation for the reads of 4.53 for TomusBlobs and 1.39 for
both Azure BLOBs options, while writes had 4.4 for TomusBlobs, 2.34 and 0.48 for the two
write types to Azure BLOBs. The decreasing tendency of the throughput in all cases is ex-
plained by the network saturation. The evaluation shows that even when we use CPU cycles
for faster data transfers, the cost of accessing a remote public storage is higher than with our
approach.

7.3.3 A Cost Analysis for Executing Scientific Applications on the Cloud

We are interested to assess the cost of running scientific applications, such as A-Brain, in a
public cloud. To break down the cost, we start by dividing the overall workload into 2 parts:
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computation and transferring data. For expressing the corresponding costs analytically, we
assume that A is the overall computation workload to be done, fn is the fraction of the
data analyzed per second if we use N computing nodes and D is the total amount of data
manipulated. For the particular case of the univariate analysis of the neuro-imaging data,
A represents the number of associations (significant links) to be tested between genes and
brain locations, while fn represents the number of associations per second performed by the
N machines. Hence the two components of the cost are:

costcomputation =
A
fn
× N × cVM, where cVM - cost of a machine compute hour

costdata = D× (cs + ct), with cs - cost for storing and ct - cost for transfer

Computing the cost for storing the data is not straightforward since it is based on monthly
rate fees, but it is computed based on hourly averages of the amount of data stored in a day.
For applications where most of the data are transient (as for A-Brain), the data will be stored
only until it is processed and discarded afterwards. Therefore, we will compute the data cost
as the overall amount of data multiplied by the cost to store data per month normalized by
the workflow timespan:

costdata = D× costhour
Nr_of_hours

31× 24

Based on these formulas we computed the storage cost of running A-Brain on 200 cores de-
ployment.This amount of cores were required to execute the univariate analysis of A-Brain
in order to show the sensitivity of the technique to the data outliers [45]. The average com-
putation speed of the algorithm at this scale is 2.94× 108 associations per second while the
data space reaches ∼10 TB. We consider the price of one hour of computation of 0.08 euros
and a cost for storing 1 GB for 1 month of 0.11 euros [19]. We obtain:

costtotal =
2.5× 1014

2.94× 108 × 200× 0.08 + 10× 1024× 0.11×
2.5×1014

2.94×108

31× 24
= 4133 euros

This provides an estimate of the cost to process scientific data in commercial clouds using
the cloud compute and storage options. However, using the storage and data processing
platforms that we proposed, this cost can be significantly reduced. Considering the average
speedup of 25 % brought by TomusBlobs-MapReduce and storing data locally with Tomus-
Blobs instead of Azure BLOBs, the cost is decreased with more than 30 %, down to 2832
euros. These results show that the benefits of TomusBlobs are not limited just to accelerate
the process of scientific discovery but also to reduce the cost of it.

7.4 Extending TomusBlobs for Efficient Workflow File Manage-
ment

Many scientific computations cannot be reduced to the MapReduce paradigm. Therefore,
several workflow frameworks have been ported to the clouds to enable more general pro-
cessing. Unfortunately, they were not designed to leverage the cloud infrastructures for
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handling large data volumes. The major bottleneck, just like like for MapReduce process-
ing, is the lack of support for efficiently handling and transferring data between jobs. Thus,
supporting data-intensive workflows on clouds requires to adapt the workflows engines to
the virtualized cloud environment of commodity compute nodes and to optimize data trans-
fers and placement to provide a reasonable time to solution. Our approach is to apply the
principles of TomusBlobs in the context of cloud workflow processing: data locality, feder-
ating virtual disks, no modifications to the cloud middleware. For understanding which are
the best options for this, we refer to a study on 27 real-life workflow applications [66] from
several domains: bio-informatics, business logic, simulations, etc. This survey reveals that
workflows: 1) have common data patterns as shown also in [167]: broadcast, pipeline, gather,
reduce, scatter; 2) are composed of batch jobs, i.e., stand-alone executable algorithms, which
can be run with well-defined data passing schema; 3) use uniquely identifiable files as inputs
and outputs of the batch jobs; and 4) write usually only once the input and output files.

We argue that keeping the data produced by the batch jobs in the local disks of the VMs
is a good option considering that these files are usually temporary — they must exist only
to be passed from the job that produced them to the one it will further process them. Tak-
ing into account that the files are written once, using as the storage entity of TomusBlobs
a concurrency-write optimized backend such as Blobseer, which splits files and distributes
them across nodes, is not the best choice for this scenario. Ergo, building on the observations
of the aforementioned study, we designed a new approach for managing workflow data by
making the files from the virtual disk of each compute node available directly to all nodes
within the deployment. Caching the data where it is produced and transferring it directly
to where it is needed reduces the time for data manipulation and minimizes the workflow
makespan. This approach extends the initial set of design principles of TomusBlobs (Sec-
tion 7.1) with two new ones.

Storage hierarchy. A hierarchy for data handling should be constructed, comprising: in-
memory storage at the top, local disks, shared VM-based storage and finally the remote
cloud storage at the bottom. A decreasing level in the hierarchy reduces the perfor-
mance but tends to raise the capacity and costs. Indeed, as opposed to a classical com-
puter architecture, the costs tend to increase towards the base of the hierarchy as the
remote storage comes at an extra-cost while the local resources are available for free,
becoming available when one rents compute cycles. Files are moved up and down the
storage hierarchy via stage-in/out and migrate operations, respectively, based upon
data access patterns, resource availability and user requests.

Integrate multiple transfer methodologies. Adopting several ways to perform file trans-
fers such as peer-to-peer based, direct or parallel transfers between compute nodes,
and dynamically selecting between them at runtime should be available, in order to
increase the performance of handling data. More, the decision process of switching be-
tween the transfer options can be mapped to the workflow specific data access patterns
and context information. This opens the avenue for customization, with users being
able to easily add their own transfer modules, which can leverages the application
semantics.

The architecture which extends the Local Storage Agent of TomusBlobs for workflow file
management is depicted on Figure 7.7. The input and output files of the workflow batch
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Local Storage Agent

a) b)

Figure 7.7: The architecture of the TomusBlobs File Management System and the optional
replication module. Subfigure a) presents the operations for transferring files between VMs:
upload (1), download (2, 3, 4) and b) shows the system components within a virtual machine.

jobs are stored on the local disks of the VMs. File sharing between tasks is achieved by
advertising file locations and transferring the file directly towards the destination, while
dynamically switching between the transfer modules (Figure 7.7a). The data management
has three components, which are instantiated on each compute node (Figure 7.7 b).

The Metadata Registry holds the file locations, i.e., maps files to VMs. The metadata
is organized as an all-in-memory distributed hash-table that holds key-value pairs: file ids
(e.g., name, user, sharing group, etc.) and locations (the information required by the trans-
fer module to retrieve the file). In a general scenario, a concurrency handling mechanism
for writes/updates would be needed for the Metadata Registry, usually provided at the ex-
pense of performance. However, as previously stated, in the context of file management for
workflow execution, the files are produced and written by a single task and uniquely identi-
fied: there are no situations in which two tasks request the Metadata Registry to publish the
same new file. Therefore, there is no need for strong verification mechanisms to detect and
solve eventual duplication conflicts. Several implementation alternatives are available: in-
memory databases, Azure Tables, Azure Caching [15]. For our implementation, we chose
the latter as it easily allows to dedicate for caching a percentage of each VM’s memory.
Furthermore, our preliminary evaluations showed that the Azure Caching delivers better
performances than the Azure Tables (10 times faster for small items) and has a low CPU
consumption footprint (unlike a database).

The Transfer Manager component enables applications or workflow engines to share the
files via a simple API (e.g., uploads and downloads). The upload operation is equivalent to ad-
vertising a file which is done by creating a record in the Metadata Registry. Hence, the cost
of uploading is O(1), independent of the data size, consisting only of the time to write the
metadata. The download operation is done in two phases: the file information is retrieved
from the Metadata Registry and then data is fetched from the VM which holds it, reducing
the number of read and writes operations to one, as shown in Figure 7.7. Multiple options are
available for performing a transfer and, as stated in the design principles, our proposal is to
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integrate several of them. Thus, this component is designed in a modular fashion that makes
it easy to plug-in different transfer back-ends, i.e., libraries corresponding to a data transfer
technology. The solution most appropriate for a particular context is selected. This was im-
plemented using the Management Extensibility Framework [124], a utility which allows the
creation of lightweight extensible applications without prior configurations. Figure 7.7 b)
shows a snapshot of the transfer modules deployed in a VM. Essentially, the system is com-
posed of user-deployed and default-provided transfer modules and their service counter
parts, available on each compute instance. The client applications or workflow engines will
interact with the local Transfer Manager component to download and upload files.

The Replication Agent is an optional component designed to ensure fault tolerance and to
balance the transfer load of multiple accesses to a file through replication. As such, it man-
ages several replication strategies and policies within the file management system. A sec-
ondary role to the replication is to evaluate the potential transfer time reductions, brought
by increasing the number of replicas. These gains in time are correlated with a storage cost
schema that we propose. This method, described bellow, enables the system to determine
dynamically the appropriate number of replicas for each transfer context based on user poli-
cies. The replication strategies can be further extended with other strategies (e.g., [36, 164]),
in order to schedule the replica placement in agreement with the workflow engine. The
Replication Agent is implemented as a service that runs as a background process on each
compute VM. In order to decrease its intrusiveness, the data transfers are performed only
when the network bandwidth of the corresponding VM is not saturated by the Transfer
Manager. For the communication and coordination between agents, a message-passing pro-
tocol over the Azure Queue was built.

Selecting the transfer method. Users can deploy their own transfer modules by means
of a straightforward API, that only requires to add an evaluation function for scoring the
context. The score is computed by aggregating a set of weighted context parameters, e.g.,
number or size of files, replica count, resource load, data format, etc. The weights reflect
the relevance of the current transfer module for each specific parameter. For instance a fast
memory-to-memory data transfer protocol will favor transfers of many small files through
higher weights for these parameters. The module with the best score is selected for each
transfer, as shown in Algorithm 1, Lines 3–10. If no user modules are deployed or none fits
the context, a default module is chosen adaptively, Algorithm 1, Lines 12–28. The default
module selection strategy uses a set of parameters defined by users in an XML file such as
size limits of files to be fitted in memory, replicas count, etc. The weighting of each parameter
is rated by both clients, that is workflow engines, and the Replication Agent. The latter can in
fact modify the transfer context by increasing the number of replicas if the transfer speedup
obtained comes at a cost that fits the budget constraints. Currently, the selection is done
between three transfer protocols that we provide within our framework.

In-Memory. For small files or for situations in which the leased infrastructure has enough
memory capacity, keeping data in the memory across VMs becomes interesting. This
option provides one of the fastest methods to handle data, boosting the performance
especially for scatter and gather/reduce access patterns. The module is implemented
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Algorithm 1 Context-based transfer module selection

1: procedure ADAPTIVETRANSFERMODULESELECTION

2: TransferInfo = ClientAPI.getTransferDescription()
3: for all module in UserDeployedModules do
4: score = module.ContextEvaluation(TransferInfo)
5: best_score = max(best_score, score)
6: end for
7: . Assert if client-provided modules can be use for transfer otherwise use a default one
8: if best_score > user_defined_threshold then
9: TransferModule = BestModule;

10: end if
11:
12: . Weight active (Client) and passive (Replicator) transfer parameters based on budget
13: ReadAdaptiveParameters(UserDefinedParams_XML)
14: (SizeWClient, ReplicaWClient) = ClientAPI.getRecomandedScore()
15: (SizeWReplicator, ReplicaWReplicator) = Replicator.getRecomandedScore(CostRatioUser)
16: . Try to speedup future file transfers through replication within the budget constraints
17: Replicator.updateContextForSpeedup( TransferInfo, CostRatioUser)
18:
19: . Select the default transfer module that best fits the context and the client constraints
20: if SizeFile × (SizeWClient + SizeWReplicator) < MemoryThresholdUser then
21: TransferModule = InMemoryModule
22: else
23: if ReplicasFile × (ReplicaWClient + ReplicaWReplicator < ReplicaThresholdUser then
24: TransferModule = TorrentModule
25: else
26: TransferModule = DirectLinkModule
27: end if
28: end if
29: Client.notify(TransferModule, TransferInfo)
30: return TransferModule
31: end procedure

using Azure Caching by aggregating a percentage of VMs memory into a shared sys-
tem, independent from Metadata Registry.

FTP. For large files, that need to be transferred from one machine to another, direct TCP-
transfers are privileged. FTP seems a natural choice for interoperability reasons. The
data access patterns that benefit most from this approach are pipeline and gather/re-
duce. The module is built using the open-source library [61], which we tuned to har-
ness the cloud specificities. As a deployment is virtually isolated, authentication be-
tween the nodes is redundant, so it was removed. Also, the chunk size of data read/
written was increased to 1 MB for a higher throughput.

BitTorrent. For data patterns like broadcast or multicast, having additional replicas enables
to increase throughput and to balance the load while clients collaborate to retrieve the
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data. Thus, for scenarios involving replication (above a user-defined threshold) of large
datasets, we rely on BitTorrent. We use the MonoTorrent [28] library implementation
of the protocol. We further built on this approach to gain performance for time critical
transfers or highly accessed files by increasing the number of replicas at the expense
of occupying extra storage space. Implementation-wise, the default protocol packet
size of 16 KB was changed to 1 MB, which our experiments showed to increase the
throughput by 5 times. Trackers are deployed in each VM, at which the peers (i.e., the
Transfer Managers using the torrent module) register or query for seeder discovery.

The cost of data dissemination. As replication has a direct impact on the transfer perfor-
mance, we propose a cost model that gives hints on how to adapt the replicas count with
respect to transfer speedup. We start by associating a cost for storing data on a VM disk.
Although there is no additional cost for the local virtual disks, the storage capacity is fixed
with respect to the VM type. Thus, the cost can be define as the capacity of the VM disk over
the renting cost: costMB = Local_Disk_Capacity

VM_Pricing . Then, the cost of having NR replicas, each hav-
ing Size MB, is costReplicas = NR × Size× costMB. Next, we examine the time gain obtained
from each replica. Based on empirical observations, we assume a linear dependence for the
transfer time when the number of replicas varies between 1 and the number of nodes. On
the one hand the time to transfer the file to the VM is timetrans f er =

Size
Throughput for one replica.

On the other hand, when there is a replica on all nodes (NR = NNodes), than the transfer time
is 0, . This leads to the next function defining the gained time:

timegain =
Size

Throughput
∗ (1− NNodes − NR

NNodes − 1
),

varying from 0 for one replica up to timetrans f er, when data is already present and no
transfer is needed. Thus, we are able to associate a cost for speeding-up the data dissem-
ination by considering the ratio timegain

costReplicas
. Users can define a certain threshold cost, i.e.,

user_de f _cost_ratio_threshold, that they are willing to pay for speeding the transfer. This
cost constraint will be used by the Replication Agent to scale the replicas in the system and
choose one transfer module over another in order to decrease the transfer time within the
cost boundaries imposed by the extra storage space used, as shown in Algorithm 1.

Unlike for MapReduce processing, the cloud workflow ecosystem is richer. Thus we have
integrated this TomusBlobs approach for workflow file management into an existing engine,
the Microsoft Generic Worker workflow, by replacing its default data storage backend, which
relied on Azure Blobs. The Generic Worker engine was selected, as it facilitates the process
of porting existing science applications to clouds (in particular Azure) by deploying and
invoking them with minimal effort and predictable cost-effective performance. While the
system is optimized for Azure, it can be easily extended to other cloud technologies. The
Generic Worker supports this generalization through a set of pluggable components with
standardized interfaces that allow a simple migration to other clouds. One only needs to
replace the runtime component with one using the specific API of other platforms. This
architecture facilitated the integration as it allowed to simply plug our storage approach
once implementing the provided API.
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Figure 7.8: Workflow schema for the synthetic benchmark.

7.5 Validation and Experimental Evaluation for Workflows

In this section, we focus on evaluation the benefits brought by TomusBlobs in the context of
workflows. As before, the experiments were performed on the Azure cloud, using 100 cores,
with experiments repeated hundreds of times at various moments. The cores were dis-
tributed across 50 Medium (2 CPU cores, 3.5 GB memory, 490 GB local disk) VMs. The
focus of this evaluation lays on the impact of TomusBlobs on the workflow makespan and
I/O phase.

7.5.1 TomusBlobs in the Context of Synthetic Workflows

To analyze the adaptive behavior and the performance of TomusBlobs for workflows, we
start with a synthetic setting. To this end, we implemented a simple benchmarking work-
flow (Figure 7.8) that encapsulates two data access patterns (broadcast and pipeline within
a reduction tree). The workflow is composed of 38 identical jobs, with 20 of them on the
first tree layer. Each job takes 2 input files containing numbers, applies an operation and
stores the result in an output file, used by the tasks on the next layers. Additionally, 2 other
jobs (the left ones in Figure 7.8) are used for staging-in the initial input files. This workflow
is executed using the Generic Worker workflow engine using two data management back-
ends: the default one relying on Azure Blobs, and the TomusBlobs approach for workflows
discussed in Section 7.4.

Scenario 1: Small files, no replication. In the first scenario we evaluated the performance
that each of the default-provided transfer methods can bring when used for handling the
files of the workflow. This scenario is particularly useful to determine the threshold up to
which the in-memory transfer is efficient for cloud VMs. Figure 7.9 a) displays the average
time of the workflow jobs to read the 2 input and share the output file. Not surprisingly,
managing the files inside the deployment reduces the transfer times up to a factor of 4,
compared to the remote shared cloud storage (Azure Blobs). As expected, the in-memory
solution delivers the best results for small files. When file sizes are larger, transferring di-
rectly becomes more efficient, as the in-memory module has to handle more fragments -
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Figure 7.9: The I/O time per job, when 2 input files are downloaded and 1 is uploaded.Small
(a) Left) and large (b) Right) file sizes are considered.

the files are fragmented/defragmented into 4 MB chunks (the maximum size of an object in
Azure Caching).Another consequence of the fragmentation is a higher performance varia-
tion, which increases up to two times. Avoiding such variations is important for scientific
applications require predictable performance [149]. Based on these observations, a threshold
of 15 MB for the size of the files shared in-memory seems appropriate. Finally, the tor-
rent module pays the price of an extra operation for hashing the file and generating the
".torrent" metadata, used by peers for download, making this strategy inefficient for small
non-replicated files.

Scenario 2: Medium to large files, replication enabled. Next, we evaluate the impact of
our approach and its ability to adaptively switch between transfer methods in a more com-
plex scenario: sharing large files, replicated across the cloud infrastructure. The stage-in jobs
(the ones in the left of Figure 7.8) of our synthetic workflow generate 5 replicas for their
output data; in Azure Blobs the number of replicas is automatically set to 3 and the files
are transparently distributed within the storage service. We notice from Figure 7.9 that the
adaptive behavior of our solution which mixes the transfer strategies leads to a 2x speedup
compared to a static file handling (also leveraging deployment locality) and a 5x speedup
compared to Azure Blobs (remote storage). With multiple seeders (i.e., providers) for the
replicas, the torrent-based module is more efficient than direct transfers. Thus, in the broad-
cast phase of the workflow, torrents perform better, while in the reduction phase, direct link
will work better for the pipeline transfers. Finally, our adaptive solution exploits these pat-
terns and switches in real-time between these modules in order to provide the best option
each time according to the context.

7.5.2 Using TomusBlobs to Execute a Biological Workflow Application

The final set of experiments focuses on a real-life scientific workflow. We illustrate the bene-
fits of our approach for the BLAST application, a workflow for comparing primary biologi-
cal sequences to identify those that resemble. The workflow is composed of 3 types of batch
jobs. A splitter partitions the input file (up to 800 MB in our experiments) and distributes it
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Figure 7.10: a) Left: The BLAST workflow makespan: the compute time is the same (marked
by the horizontal line), the time difference between the approaches comes from the data
handling. b) Right: Average times for staging data in and out for a Blast job when the
number of jobs is increased.

to the set of distributed BLAST jobs. The core algorithm (the BLAST jobs) matches the input
file with reference values stored in 3 database files (the same for all the jobs). Finally, the
assembler job aggregates the result from the BLAST jobs into a final result.

Figure 7.10 a) presents the makespan of executing the BLAST analysis while Figure 7.10
b) reports, for the same experiment, the average file upload and download times per BLAST
job. As before, the experiments were carried out with the Generic Worker using Azure
BLOBs and our adaptive solution. Increasing the number of jobs results in smaller tem-
porary files produced by the BLAST task. However, the size of the input database files to be
broadcast to all jobs remains the same (∼ 1.6 GB). As the number of nodes available for the
experiment was fixed (50 Medium type VMs), the tasks are executed in waves when their
number exceeds the VMs. This explains the drop in the average transfer time when running
more than 50 BLAST jobs (Figure 7.10 b), as the few remaining jobs from the second wave
will have a faster execution time as they incur less concurrency. We notice that the computa-
tion time is significantly reduced by adapting the transfer method to the data access pattern.
We observe that the file handling times are reduced to half per workflow job when using the
TomusBlobs approach.

7.6 Discussion

Porting data-intensive scientific applications to the clouds raises many challenges in exploit-
ing the benefits of current and upcoming cloud infrastructures. Efficient storage and scalable
parallel programming paradigms are some critical examples. To address these challenges,
we introduced TomusBlobs, a cloud storage solution aggregating the virtual disks on the
compute nodes, validated as storage backend for a MapReduce framework, and its exten-
sion for workflow file management. We demonstrated the benefits of our approach through
experiments on hundreds of nodes using synthetic benchmarks as well as real-life appli-
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cations. The evaluation shows that it is clearly possible to sustain a high data throughput
in the Azure cloud thanks to our low-latency storage: TomusBlobs achieves an increase in
throughput under heavy concurrency of up to 5x for writes and up to 3x for reads, compared
to Azure BLOBs. In the context of workflow data management, our solution brings a trans-
fer speed-up of up to a factor of 5x compared to using the default cloud storage and a factor
of 2x over local default file management. When using TomusBlobs as a storage backend for
our MapReduce framework in A-Brain, we achieved speedup times of up to 2x compared
to Azure MapReduce. Finally, these benefits are complemented also by the significant cost
reduction of up to 30% that our approach provides.

Let us note that the approach can be further extended with a performance model which
considers the cloud’s variability and provides a self-adaptive and self-optimize behavior by
means of predictions. From the perspective of the A-Brain application, TomusBlobs helped
to show that the univariate analysis is not sufficient for finding correlations between genes
and brain images as it is to sensitive to the outliers from the data set. Hence, the robust
statistical machine learning technique needs to be employed. As this analysis will greatly
increases the computation workload, by up to 20 times, it is necessary to scale the processing
beyond the resources which we can acquire in a single data center deployment. We address
this in the next chapter by scaling the processing across multiple data centers.
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Commercial clouds traditionally support web and small database workloads. However,
with the emergence of data science, an increasing number of scientific analysis are being
migrated to clouds. In practice, many of these applications, such as the statistically robust
analysis required by the A-Brain application, are more resource-demanding than the typical
cloud applications. Executing such demanding workloads within a cloud site could induce
two undesirable situations: 1) other cloud users do not have enough resource to lease on-
demand in a particular data center; 2) the computation creates performance degradation
for other applications in the data center, e.g., by occupying the network bandwidth or by
creating access contention to the cloud storage service. One way to avoid these situations is
to divide the computation into smaller sub-workloads and to execute them within different
data centers. The site locations where to execute these resource-demanding applications can
be chosen in collaboration with the cloud provider.

As we move to the world of Big Data, single-site processing becomes insufficient in many
scenarios. After all, one of the the founding idea of grid computing was to provide uniform
data processing across multiple sites, based on the assumption that control over how re-
sources are used stays with the site, reflecting local software and policy choices. Leaving
control to individual sites was a pragmatic choice but also led to a point beyond which grid
computing found it hard to scale. In contrast, clouds, which are easier to use and man-
age than grids, let users control remote resources, opening the path for geographically dis-
tributed computing over domains from multiple sites. Several advantages arise from run-
ning computations on multi-site configurations: higher resilience to failures, distribution
across partitions (e.g., moving computation close to data or vice-versa), elastic scaling to
support usage bursts, load balancing and larger computation power harvest from the avail-
able resources in each site.

Lack of support for multi-site processing. As discussed in Section 7, clouds offer limited
support for processing and managing scientific data. The few processing tools which exist
today, typically MapReduce-like frameworks, are built for single-site or single-cluster pro-
cessing. In fact, the cloud model maps all users deployments to a single data center. There-
fore, any user-deployed platform is a single-site compute engine and is limited scale-wise to
the available resources within the data center. Some efforts have been made to address the
challenges of distributing the computation beyond a data center. In [98], the authors imple-
ment the Elastic MapReduce API using resources other than the Amazon EC2, such as the
ones from private clouds, obtaining a MapReduce framework for hybrid clouds. In [121],
the MapReduce model is extended hierarchically to gather resources from multiple clusters
while scheduling the jobs based on load-resource capacity or location of data. However,
there are no solutions focusing on distributing the processing across deployments running
over multi-site of a public cloud provider, let alone offering efficient data-management sup-
port in the context of MapReduce scenarios.

Full reduction across sites is complex. In addition to the lack of explicit support for multi-
site MapReduce, current processing engines do not support full reduction of the results (e.g.,
in the MapReduce model, the number of final results is given by the number of Reducers).
This is a major setback for computing a global result for reduce-intensive workloads. More-
over, in the case of multi-site setups, this lack of functionality can lead to many expensive
(time and money wise) inter-site data transfers of the reducers results in the process setup
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to assemble the global result. One way to obtain this global result is for programmers to
implement an additional “aggregator” that collects and combines the output data produced
by each reduce job. For workloads with a large number of reducers and large data volumes,
this approach can prove inefficient as it performs the computation sequentially on a single
entity.

Some recent efforts, detailed in Chapter 5, introduce support for iterative computation
into the MapReduce engine, allowing to apply the same operator successively on the data.
HaLoop [32] was built on top of Hadoop to support iterative computation, relying on a
loop-aware task scheduler and on loop-invariant data caching. Twister [53] and its Azure
declination, Twister4Azure [78], employs a light-weight MapReduce runtime system and
uses publish/subscribe messaging-based communication instead of a distributed file sys-
tem and data caching. iMapReduce [185] provides support for common features of iterative
algorithms, eliminating the shuffling phase and maintaining persistent tasks and persistent
socket connections between tasks. All of these frameworks target applications with itera-
tions across MapReduce workloads but they could hardly be used to efficiently tackle the
problem of globally reducing the final results to a unique one: multiple MapReduce iter-
ations with identity map phases would have to be created. This leads to an extra over-
head due to loop control mechanisms and to job scheduling across iterations. In contrast,
message-passing runtime systems such as MPI provide support for reduction through a rich
set of communication and synchronization constructs. However, they suffer from little fault
tolerance support, which impacts the applications’ perceived reliability on clouds, mainly
built on commodity hardware.

Our approach in a nutshell. To address these challenges of executing Big Data applica-
tions across multiple sites, we propose a two-tier hierarchical MapReduce scheme. The
bottom tier distributes TomusBlobs-MapReduce instances across cloud data centers. The
top tier computes the global final result. The input data and the processing jobs are split
among all the available resources, harvesting the available compute power from multiple
cloud sites, while the global result is aggregated using a Meta-Reducer. To minimize the
data exchanges between data centers and address reduce-intensive workloads, we propose
a Map-IterativeReduce technique that efficiently schedules the reduce process in parallel,
based on a reduction tree, to compute a unique result. Additionally, Map and Reduce jobs
can be interleaved as we eliminate the usual barrier between these two phases. Using these
approach for a multi-site MapReduce, we are able to achieve high scalability in the clouds
reaching 1000 cores across 4 deployments and 3 data centers. Performance-wise, we are able
to reduce the data management time by up to 60% compared with cloud-based solutions.

8.1 Map-IterativeReduce: Handling Reduce-Intensive Workloads

In this section we introduce Map-IterativeReduce, a technique for efficiently computing a
unique output from the results produced by MapReduce computations. Targeting mainly
the reduce-intensive workloads, our approach provides support for a set of model exten-
sions which favor parallel efficient scheduling of the Reduce operation jobs in order to com-
bine all results to a single one. At the same time, it preserves the cleanness of the MapReduce
programming paradigm, while facilitating its use by a large set of applications. Our solu-
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tion was validated on the Azure cloud and leverages TomusBlobs (presented in Section 7)
for low-latency and high-throughput under heavy concurrency data accesses. Using this ap-
proach, we are able to reduce within each site the results of the MapReduce computation and
thus, to minimize the number of transfers across sites when aggregating the global result in
the multi-site hierarchical MapReduce.

We introduce a set of core design principles in order to extend the MapReduce model to
support an iterative reduction scheme.

• In Map-IterativeReduce, no synchronization barriers are needed between the Map and
the Reduce phases, the reducers starting the computation as soon as some data is avail-
able. Thus, by not waiting anymore for the completion of the slowest or latest mappers
the total execution time is reduced.

• Our approach builds on the observation that a large class of scientific applications re-
quire in fact the same Reduce operator from the MapReduce process to be applied also
for combining the data to a single output. In order to exploit any inherent parallelism
in the reduction phase this operator has to be at least associative and/or commutative.
In fact, most reduce operators that are used in scientific computing for combining the
results (e.g., max, min, sum, select, filter etc.) are both associative and commutative.
Reduction may be also used with non-associative and non-commutative operations
but offers less potential parallelism.

• Considering that results are accumulated down the reduction tree, there is no need for
any (centralized) entity to control the iteration process, check the termination condition
or collect data from reducers, as in vanilla or iterative MapReduce implementations.

We present the data flow in a Map-IterativeReduce computation on Figure 8.1. The
model consists of a classical map phase followed by an iterative reduce phase. A reducer
applies the associative reduction operator to a subset of intermediate data produced by map-
pers or reducers from previous iterations. The result is fed back to other reducers as interme-
diate data. The processing starts as soon as data becomes available from some (but not nec-
essarily all) mappers or reducers. We recall that in the default MapReduce implementations,
such as the one offered by Hadoop, this is not the case as there is a synchronization barrier
between the map and reduce phases. However, we observed that this makes the perfor-
mance of typical single-step MapReduce to go down sharply, when the availability of these
intermediate results is subject to different latencies. Hence, we opted for eliminating the input
barrier of reducers, leveraging fully the commutativity assumption about the reduce opera-
tions. The successive iterations of the reduce phase continue thus asynchronously, until all
the input data is combined. At the end of each iteration, all reducers check whether their
output is the final result or just an intermediate one, using several parameters attached to
the reduce tasks. This avoids the single point of failure represented by a centralized control
entity. Such centralized components are typically used in the existing iterative MapReduce
frameworks for evaluating the termination or convergence condition and in turn to schedule
the jobs of the next iterations.

With this model, we formally define the reduction as a scheduling problem: we map re-
duction tasks to a pool of reducers using a reduction tree. Indeed, the iterative reduce phase
can be represented as a reduction tree, each iteration corresponding to a tree level. For a
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Figure 8.1: The Map-IterativeReduce conceptual
model
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Figure 8.2: An example of a reduc-
tion tree for 5 mappers and a re-
duction ratio of 3

better understanding, consider the simple example of an unfolding of the iterative process
into a reduction tree depicted on Figure 8.2. It presents a scenario in which each reducer pro-
cesses 3 sets of data at a time, initially issued from 5 mappers. In the first iteration, only one
reducer has data available; in the second one, the bottom reducer produces the final result
by combining the remaining intermediate data from the slowest mappers with the interme-
diate data produced by the first reducer. With the associative and commutative operators,
the computations corresponding to different iterations can interleave and exploit the inher-
ent parallelism of the Reduce tasks. In this case, the second reducer can start processing
data from the last two mappers in parallel with the other reducer. We introduce two param-
eters that control the scheduling of the iterative process and the unsupervised termination
condition, i.e., the termination condition is not supervised and checked by a centralized
component.

The Reduction Ratio defines the workload executed by a reducer, i.e., the number of inter-
mediate results to be reduced within the job. This parameter together with the number
of map tasks completely determine the number of reduce jobs that are needed in the it-
erative process and the depth of the unfolded reduction tree. In the previous example,
the Reduction Ratio was 3, and in conjunction with the number of Map jobs (5) deter-
mines the number of iterations (2) and the number of reducers that need to be used
(2). Unlike the collective operations which only use binary operators, as in MPI, we
are able to support n-reductions, which is more generic and can be adjust to particular
loads. Having this feature is important because most often, the optimal reduction ratio
is greater than two, as illustrated bellow.

The Reduce Factor defines the termination condition, checked locally by each reducer.
Since the goal was to process all data into a single result, the termination condition
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Figure 8.3: The architecture of the Map-IterativeReduce framework

is answering the question are all the results reduced?. The Reduce Factor (RF) is used for
measuring the progress towards this goal. The initial intermediate data, coming from
mappers, will have a Reduce Factor of 1, while the intermediate results produced by
reducers will have a Reduce Factor equal to the sum of the factors of all inputs. There-
fore, the termination condition becomes a comparison between the resulting factor
and the total number of jobs. In the previous example, the top reducer has a resulting
Reduce Factor of 3 while the last one will have a factor of 5, equal to the number of
mappers and therefore marking the termination condition.

We extended the TomusBlobs–MapReduce framework (Section 7) with this iterative re-
duce approach in order to validate its benefits for scientific applications on the one hand, and
to enable efficient multi-site MapReduce on the other hand. The architecture is presented in
Figure 8.3. It relies on the same loosely coupled components as before, only extending their
functionality. The Client has two roles. First, it is in charge of submitting the workload
(i.e., map and reduce jobs). Second, it determines the number of reduce jobs in the iterative
process which is computed based on the the number of mappers and the Reduction Ratio
selected by the user. The Mapper functionality remains the default one. The Reducer is the
component that implements the iterative reduction process in two steps. In a first phase, it
receives the workload description from the Client (including the Reduction Ratio). Then, it
starts to process the intermediate results updating the Reduce Factor of the resulting tasks. Af-
ter each iteration, the termination condition is checked. If the Reduce Factor of the computed
data equals the number of mappers in the workload, the iterative process ends. Otherwise,
the Reducer will behave like a Mapper and will prepare its result as an intermediate data for
the Reducers in the next iterations. Communication-wise, the same mechanisms are used
as before: Azure Queues are used as a scheduling mechanism for the jobs and TomusBlobs
is used as a storage backend for leveraging data locality and for enabling high throughput
under heavy concurrency.

One of the key reasons for the success of MapReduce frameworks is the runtime support
for fault tolerance. Extending TomusBlobs-MapReduce to support iterative reduction does
not weaken this property. Our approach for dependability is two-folded: on the one hand,
we rely on the implicit fault-tolerance support of the underlying platforms (Azure PaaS, To-
musBlobs); on the other hand, we implemented specific techniques for dealing with failures
in Map-IterativeReduce. For the availability of data, we rely on the replication mechanisms
of TomusBlobs. Regarding the jobs to be executed, we use the visibility timeout of the Azure
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Queues to guarantee that a submitted message describing the jobs will not be lost and will
be eventually executed by a worker, as in TomusBlobs-MapReduce. For the iterative reduce
phase, however, this mechanism is not sufficient. Since a Reducer has to process several
messages from different queues, a more complex technique for recovering the jobs in case
of failures is needed. Thus, we developed a watchdog mechanism distributed in each node
running a reducer. Its role is to monitor and to log the progress of the Reducers. For this,
it implements a light checkpointing scheme as it persistently saves the state of the Reduce
processing (i.e., it logs the intermediate inputs that were processed by the reducer). In case
of a failure of some reducer, the reduce job will reaper in the scheduling queue and will be
assigned to another reducer from the pool. Next, the watchdog monitor system of the re-
ducer now in charge of the job will check for existing log information corresponding to the
reduce job. If any, it checks whether the watchdog from the previous reducer is still active,
in order to avoid duplication due to slow executions. If it is not the case, the watchdog, will
rollback the descriptions of the intermediate data processed previously up to the point of
failure. This allows Map-IterativeReduce to restart a failed task from the previous iteration
instead of starting the reduction process from the beginning.

8.2 Geographically Distributed MapReduce

Handling Big Data scientific applications on the clouds requires many compute resources
which are not always available in a single data center. We address this challenge through
a divide-and-conquer strategy: the workload is split into smaller sub-problems which will
be executed in different deployments across multiple data centers. Therefore, we propose
a multi-site hierarchical MapReduce scheme. Several building blocks underpin the creation
of this solution that is able to harvest the available resources within each cloud site. This
data processing scheme in which data is partitioned, scattered and processed in parallel,
relies on a layered data access model built on top of different storage systems in order to
support both storage and transfers. At an abstract level, the system needs to provide an
end-user environment for the multi-site hierarchical MapReduce that provides a uniform
and transparent abstraction independent of any particular cloud deployment and that can
be instantiated dynamically. We examine in this section the mechanisms to accomplish this.

The goal of the multi-site hierarchical MapReduce is to setup a geographically dis-
tributed compute platform, large enough to support execution of Big Data applications, and
able to handle data across this virtual setup. The conceptual architecture is presented on Fig-
ure 8.4. Rather than simply selecting the site with the largest amount of available resources,
we select locations from a few different domains and build the environment on top of them.
The hierarchical MapReduce consists of two tiers.

• At the bottom level, distinct instances of TomusBlobs-MapReduce are deployed at each
site. The Map-IterativeReduce processing scheme is enabled within each such instance
in order to reduce locally the number of MapReduce outputs and in this way to mini-
mize the inter-site data exchanges.

• In the top tier, the aggregation of the global result is computed with the help of a new
entity that we introduce, called MetaReducer. Its role is to implement a final reduce step
to aggregate the results from all sites as soon as they become available.
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Figure 8.4: The scheme for a
MapReduce computation across
multiple sites
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Data manipulation is a key aspect to enable such a geographically distributed process-
ing across cloud data centers. We use several storage systems to optimize data manage-
ment within the same deployment or between deployments. Analyzing the data processing
phases, we have identified three main scenarios that need to be addressed with the proper
data management solution.

Input/Output Data is handled using the Cloud Storage service instance within each site. De-
spite being located in the same data center, the storage is remote with respect to the
computation and incurs high latencies and usage costs. In our system, it is mainly
used to transfer the initial data, typically coming from on-premises, to be processed
inside the deployment.

MapReduce Data (Intra-site) is handled via the TomusBlobs approach in order to enable fast
data access within the deployment. The choice for this storage solution for this data
processing phase is supported by its abilities to provide high-throughput under the
heavy concurrency introduced by mappers. Furthermore, it reduces the costs of han-
dling the data, while federating the local virtual disks.

Inter-Site Data Exchanges is performed using the Cloud Storage service instance that is lo-
cated on the site where the Meta-Reducer is deployed. Selecting this storage option
was straightforward: since the deployments are independent and virtually isolated,
they must communicate through a storage repository that is accessible from outside
the deployment. These transfers are quite expensive in terms of costs and latency.
Thus, the goal is to minimize them as much as possible, relying in this sense on the
Map-IterativeReduce technique that we devised.
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We implemented the multi-site hierarchical MapReduce approach on top of the Azure
clouds. The architecture is presented in Figure 8.5. We added support for communica-
tion between the TomusBlobs-MapReduce and the Meta-Reducer and designed a scheduling
mechanism for scattering (i.e., partitioning) the initial data across multiple sites. The Meta-
Reducer was implemented as an independent service built on top of a pool of reducers.
The number of communication queues used, in our case Azure queues, is proportional with
the number of deployments. Additionally, we used a strategy of hashing data inside the
same deployment, if the same data is replicated across multiple storage centers, in order to
minimize data transfers. We introduce a new entity, called Splitter, for partitioning the work-
load between the MapReduce processes. The Splitter has the role to segment data between
sites such that each deployment will work on a sub-problem. Additionally, the Splitter is
in charge of creating the corresponding job descriptions (i.e., Map and Reduce tasks) for
the MapReduce engines and sending them to be processed via the queueing communica-
tion mechanism of TomusBlobs-MapReduce. As a final optimization, data can be replicated
across sites or pre-partitioned within the data centers in order to reduce the cost of staging-in
the initial data to each site.

8.3 Validation and Experimental Evaluation

In this section, we assess the benefits that the proposed Map-IterativeReduce technique can
bring to scientific applications and for multi-site MapReduce processing. Moreover, we
test the performance gains and the computation scale that can be achieved when running
MapReduce processing across multiple cloud data centers. The final goal is to understand
what are the best options that have to be put in place for running a large-scale, long-running
scientific simulation, as the one needed for the A-Brain analysis. To this extent, the experi-
ments presented here scale up to 1000 cores, a premiere for scientific applications running on
Azure.

The experiments were performed in the Microsoft Azure cloud, with deployments across
West Europe, North Europe and North-Central US data centers. The number of nodes within
a single deployment varies between 200 cores, used in the analysis of the iterative reduce
technique, up to 330 cores when evaluating the multi-site MapReduce. In terms of number
of distributed deployments running hierarchical MapReduce we have scaled up to 4 deploy-
ments accumulating 1000 cores from 2 data centers. One of the objectives of this section is
to evaluate different options for running large-scale experiments. To this purpose, we have
analyzed the performances obtained when using different VM types, considering Small in-
stances (1 CPU core, 1.75 GB of memory and 225 GB of disk space) as well as Medium or
Large VMs which offer 2 times, respectively 4 times, more resources than the Small ones.
The BlobSeer backend of TomusBlobs was used with the following configuration: 2 nodes
for the version and provider managers, 20 nodes for the metadata servers and the rest of the
nodes were used as storage providers.

8.3.1 Selecting the VM Type: Impact of Multi-Tenancy on Performance

Cloud providers work on several mechanisms to virtually isolate deployments with the goal
of offering fairness to users despite the multi-tenant environment. In this context, we refer
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to fairness as providing the performance that users are paying for. The question of how
multi-tenancy affects performance remains an open issue, and this is what we explore in this
subsection.

As all other commercial clouds, Azure offers different types of VMs. The biggest one,
ExtraLarge also referred to as xLarge, fully occupies the physical machine. For the other VM
types, the physical machine is shared with other VMs. However, the virtual cores rented
are map to physical CPU, i.e., there is a one to one relationship between VMs virtual cores
and physical cores. Therefor, the non-xLarge VMs are collocated on the physical machine in
the limit of the available cores (usually 8). Even if there are no interferences at CPU level,
a degradation of performance can be expected when accessing the local (shared) storage,
memory or network. We propose the following evaluation methodology: we measure the
variability that application have for different VM types and compare it with the one obtained
with the xLarge VM. This is considered as a reference of the stable performance because
this type of instances is not subject to multi-tenancy on the physical node, everything being
isolated except the network.

In a first experiment we considered a declination of the A-Brain analysis, where a small
computation subset is executed locally i.e., data is read from the local disk, the computation
is performed as matrix operations and the result is stored back to the local disk. We repeated
this experiment several days for 1440 times on each xLarge and Small machines. The results
were grouped in pairs of 60 and the standard deviation of the time period was computed.
The goal of this analysis is to determine the fairness of sharing the physical nodes among
VMs belonging to different users.

Figure 8.6 depicts the analysis of the results by reporting the ratio of the two VM types
variability. A value of this ratio close to 1 (the reference line) in Figure 8.6 would indicate
that either the neighboring applications do not affect the performance, or that there are no
neighboring applications. Such a point can be seen for the 16th time interval. A high value
for the ratio would show that the performance of the instance is affected by external factors,
as is the case for the 5th and 21th interval. The reason for observing both small and big
values is that the samples were done in a time span of approximately 1 week, one minute
apart, a time span that proved to be sufficiently large to capture various situations. Thus, the
experiment demonstrates that indeed, the interferences impact on instances performances
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1Figure 8.9: The experimental setting for the
iterative reduce analysis

caused by the local disk I/O or memory accesses, is possible. Finally, the analysis reveals that
Small instances tend to have quite an unstable and unpredictable performance and therefore
are not the suitable for long-running scientific experiments on the cloud.

In the next experiment we extend the analysis by considering 3 different compute sce-
narios to be executed on different VM types. The first one performs computations and many
network transfers, the second one performs only in-memory operations while the third one
is the aforementioned local A-Brain declination. We have executed these applications on
Medium, Large and ExtraLarge VMs, since the previous experiment conclusively showed
the instability of the Small instances. Using the described methodology, we depict in Figure
8.7 the variability ratio for characterizing the performance fairness, i.e., we report the stan-
dard deviation of Medium and Large VMs against the one of xLarge VMs. The highest varia-
tion occurs when the (shared) network is accessed. This is expected and can be explained by
the fact that the network card becomes the bottleneck more often than the physical memory
or the local physical disk, and also because the connecting links between cloud nodes are
not virtualized nor allocated per user. On the other hand, the lowest standard deviation is
observed for the in-memory computation, which is an encouraging discovery for compute-
and memory-intensive scenarios migrated to the clouds. Regarding the variability of the
VM types, one can observe that Large VMs vary less then Medium ones and tend to offer
as stable performances as when the entire physical node is leased. This qualifies them as
a good option for executing scientific applications in the cloud with reasonably predictable
performance.

8.3.2 Performance Gains with Map-IterativeReduce

Impact of the reduction tree depth on performance. We start the evaluation of the Map-
IterativeReduce technique by analyzing the impact that the shape of the reduction tree has
on performance. Orchestrating the reduction tree is equivalent to determine the amount
of intermediate data (i.e., the Reduction Ratio) that a reducer should process, which in fact
depends on many factors. One influencing factor is the trade-off between the time spent by a
Reducer for processing data and the time needed to transfer it. Another factor is the number
of Map jobs as it determines the number of leaves in the reduction tree. However, even for an
equal number of such jobs, two different applications, with different computation patterns
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and data sizes, do not necessarily have the same optimal Reduction Ratio. Therefore, we
evaluate the timespan achieved by different configurations for reducing (with the minimum
operator) 7.5 GB of data issued from 30 mappers.

We report the results on Figure 8.8, by representing the execution time while varying the
Reduction Ratio. We notice that the time decreases with the increase of the ReductionRatio up
to a point where the workload scheduled for a reducer becomes much higher then the cost
of transferring data and the performance drops. An analytic determination of the optimal
ratio would require a performance model of the underlying infrastructure in terms of com-
putation power, available bandwidth and would be specific for each application. However,
the tree depth will always be determined by log function of the the number of leaves (i.e.,
NrO f Mappers). Based on our evaluation, we can empirically determine that, in general, a
reduction tree with a depth of∼ log10 NrO f Mappers gives the best results. In the case of the
experiment presented in Figure 8.8, the corresponding tree depth is 1.47. Moreover, using
the approximation for the tree depth we can estimate also the optimal Reduction Ratio, using
Equation 8.1, which applied to our experiment gives a Reduction Ratio of 10.11.

ReductionRatio ≈ depth
√

NrO f Mappers (8.1)

Impact of Map-IterativeReduce on the performance of MapReduce scenarios. Next, we
evaluate the performance gains brought by the proposed Map-IterativeReduce technique in
the context of a typical MapReduce scenario: “Most Frequent Words” — derived from the
widely used “Word Count” benchmark, in which the reduction was extended with a merge
sort that combines and orders the occurrences of words. Thus, the processing will output
as a final result only the n most frequent words. This scenario is encountered in many al-
gorithms, such as PageRank, or scientific applications that perform statistical analysis (e.g.,
bio-informatics, medical studies, etc.), when users are only interested in a subset of the ag-
gregated results, that meet some specific criteria. The experimental methodology consists
in scaling the amount of data to be processed as well as the number of jobs, keeping a con-
stant input data set (the text to be parsed) of 64 MB per map job. Therefore, as we increase
the input set from 3.2 GB to 32 GB, the number of Map jobs will be proportionally scaled
from 50 to 500. For this experimental setting we use a constant Reduction Ratio of 5 which
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produces the MapReduce configuration setting presented in Table 8.9. We chose to use a
constant workload per Reduce job in order to understand better the performance gains over
a classical MapReduce process in which the unique final result would be obtained using an
“Aggregator” entity.

Figure 8.10 shows the execution time of the “Most Frequent Words” benchmark. We
compared the performance of the Map-IterativeReduce approach with two standard MapRe-
duce engines, TomusBlobs-MapReduce and AzureMapReduce. To obtain the same compu-
tation load, each MapReduce engine was augmented with a final “Aggregator” entity that
reduces the final results to a unique one. We notice that for small workloads, the Map-
IterativeReduce technique and the classical MapReduce have similar performance. This is
due to two reasons. First, the depth of the unfolded reduction tree is small which is al-
most equivalent with a set of reducers followed by the “Aggregator”. Second, the latency
of the initial transfers between mappers and reducers is predominant in the total execu-
tion time making any other optimizations less noticeable. In contrast, when the workload
increases and the computation becomes more Reduce-intensive, the proposed approach out-
performs the others, decreasing the computation time up to 40% compared with the same
TomusBlobs-MapReduce framework (i.e., the same engine without the Map-IterativeReduce
technique) and 60% compared to AzureMapReduce.

We continued the evaluation by studying the performance impact that the iterative re-
duce technique can bring for scientific applications such as A-Brain. Similarly to our pre-
vious experiment, the number of map jobs was increased from 50 to 500, while keeping
the reduction ratio constant and the same configuration setup shown in Table 5.4. From the
point of view of the analysis, increasing the number of Map jobs does not increase the degree
of parallelism for the Map phase, but rather increases the workload as we process and test
more shuffles (i.e., we increase the statistical precision of the results as detailed in Section
6). This leads to generating more intermediate results that must be processed in the Reduce
phase, the overall amount of data being increased from 5 to 50 GB.

Figure 8.11 depicts the total execution time of A-Brain using the three solutions as before.
We notice that for AzureMapReduce the timespan grows linearly with the workload, while
the Map-IterativeReduce decreases the completion time by up to 75%. Part of this perfor-
mance difference appears also between AzureMapReduce and TomusBlobs-MapReduce and
is obtained due to the capabilities of the storage backends. The data proximity brought by
the TomusBlobs approach significantly reduces the completion time, especially for a larger
number of mappers/reducers, which can read and write in parallel from the virtual disks.
The rest of the performance gain which accounts for the gap between Map-IterativeReduce
and TomusBlobs-MapReduce, results due to the use of the iterative reduce method. This
proves that parallelizing the reduction phase in successive iterations makes a better use of
the existing resources and that it is able to reduce the computation time by up to 50%.

8.3.3 Hierarchical Multi-Site MapReduce

The compute variability of multi-site processing. We start by analyzing the performance
variations that can be expected in such a distributed setup. Figure 8.13 depicts the average
Map times and the corresponding standard deviation in a scenario where we progressively
increase the number of jobs and the A-Brain workload. For this experiment, the initial data
was split and scattered across the Azure sites where the computation was performed. Al-
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though we increase the number of parallel map jobs, the average job execution time remains
approximately the same. Each mapper processes a constant amount of 100 MB of data, as
in the remaining experiments presented in this section. The significance of this result is that
the job time is solely determined by the data set to be processed and remains constant per
input, regardless the number of jobs that are submitted to the system. In turn, this allows
us complete freedom in partitioning the workload and obtaining any degree of parallelism
in terms of compute jobs. Finally, it shows that TomusBlobs-MapReduce can scale and cope
with large workloads even when distributing the computation across several sites. We note
that the jobs executed in West Europe have slightly larger timespans than the others: this is
an expected behavior since, within this analysis, the significant correlation links that were
found were mostly located in the first partition of the data (assigned to this data center),
generating a higher workload per task.

Depicting the reduce phase. Next, we examine the performance of the reducers and their
stability. We use the same experimental setup as before and report in Figure 8.12 the execu-
tion times of the reduce jobs, divided into their components. In order to better understand



8.4 – Discussion 89

the behavior of the Map-IterativeReduce computation in such a geographically distributed
setting, we vary the number of intermediate results by changing the Reduction Ratio pa-
rameter (shown in the left and right subfigures of Figure 8.12). It can be noticed that the
computation structure in the reduce phase remains almost the same regardless the number
of intermediate results to be processed. The result emphasizes the strength of our iterative
reduce technique as well as it demonstrates the capabilities of our multi-site hierarchical
MapReduce to support even reduce-intensive workloads. In turn, having such a steady
behavior of the compute framework is important both for the application but also for the
storage access time. In addition to reliability, the performance is also predictable, a feature
often speculated in high-performance computing and Big Data analysis [50, 57].

The intermediate I/O phase. The final step in the evaluation consists in examining the
performances that the mappers and the reducers have for managing data. We show on
Figure 8.14 the average throughput that mappers and reducers achieve when accessing the
TomusBlobs storage within the deployment, i.e., data access within the site. The evaluation
considers an increasing workload generated by scaling the number of jobs proportionally. As
before, each job processes a constant amount of data. Having more jobs translates to larger
amounts of data to be processed, which in turn will produce more intermediate results.
In this experiment the data size is increased from 3 GB up to 15 GB. The results of this
experiment show that even in the context of multi-site hierarchical MapReduce, TomusBlobs
is able to provide a steady throughput. This is achieved due to its decentralized architecture,
large-scale capabilities and data-locality property it provides.

Scaling the compute workload. With all aspects of the processing performance being eval-
uated, we can now analyze the overall efficiency of the system and how efficiently the large
workloads are being accommodated across sites, on large number of resources (i.e., 1000
cores). We used the same evaluation strategy as before: we increased the workload by gen-
erating more processing tasks which in turn produce more intermediate data. This is pre-
sented on Figure 8.15 by the increasing number of Map and Reduce jobs displayed on the
abscissa. We notice a good behavior of TomusBlobs-based multi-site hierarchical MapRe-
duce at large-scale: A-Brain’s execution time increases only 3 times while the workload is
increased 5 times. This is an encouraging result which demonstrates that the system can
support Big Data scientific applications and that it can be used to run the statistically robust
A-Brain analysis for searching through all brain–gene correlations.

8.4 Discussion

Running Big Data applications on the clouds creates new challenges for scaling the com-
putation beyond the available resources of a data center. We have proposed a multi-site
hierarchical MapReduce engine based on TomusBlobs, which enables applications to be ef-
ficiently executed using resources from multiple cloud sites. Using this approach, we were
able to scale the computation in the Microsoft Azure cloud up to 1000 cores from 3 different
sites. However, supporting efficient geographically distributed computation in the clouds
requires careful considerations for data management. To this end, we have proposed an ex-
tension for the MapReduce paradigm which enables us to combine the output results to a
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Figure 8.15: A-Brain execution time on a multi site deployment of MapReduce engines

single one, while processing them in parallel. Using this Iterative-Reduce technique we are
able to minimize the number of transfers across sites and to decrease the computation time of
aggregating the final result by more than half. In a subsequent step, addressed in Part III of
the thesis, the hierarchical data access model can be improved in order not only to minimize
the number of inter-site data exchanges, but also to improve the transfer performance. From
the point of view of executing scientific applications, the system is ready to accommodate
long-running experiments now that we have demonstrated its good scaling properties and
its performance reliability. Therefore, in the next chapter we present and discuss the results
and the lessons we learned when executing the complete A-Brain analysis on thousand of
cores in a 2-week experiment.
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This chapter develops the contributions published in the following paper and
book chapter:

• Machine learning patterns for neuroimaging-genetic studies in the cloud
Benoit Da Mota, Radu Tudoran, Alexandru Costan et al. In Frontiers
in Neuroinformatics 2014

• Big Data Storage and Processing on Azure Clouds: Experiments at Scale and
Lessons Learned. Radu Tudoran, Alexandru Costan and Gabriel Anto-
niu.In the book Cloud Computing for Data-Intensive Applications, to be
published by Springer, 2015. Editors Xiaolin Li and Judy Qiu

As the Data Deluge is becoming a reality, the analysis of large data sets drives the scien-
tific discovery. This process, known as data science, depends on the efficiency on the under-
lying frameworks which perform the processing of data. To this end, we introduced several
data management techniques, described in Sections 7 and 8, to run such scientific applica-
tions at large-scale on clouds. In this section, we apply these techniques in the context of the
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A-Brain application, presented in Section 6. The collaborative goal with the bio-informatics
team is to crunch high-dimensional neuro-imaging and genetic data in order to find signif-
icant correlations between them. The motivation for this pioneer study is to enable joint
analysis between genes and neuro-images, with implications in understanding the variabil-
ity between individuals and brain pathologies risk factors. The analysis was performed on
1000 cores running for 2 weeks in 4 deployments across Azure data centers. As a result, it
was shown for the first time how the functional signal in subcortical brain regions can be
significantly fit with genome-wide genotypes. This study demonstrates the scalability and
reliability of our solutions for long-running scientific applications. In addition to the biolog-
ical result, performing such a Big Data analysis taught us important lessons about the issues
that need to be addressed next.

9.1 A Large-Scale Experiment for Fitting Genotypes with Subcor-
tical Brain Regions

In this section we present how the techniques introduced in Section 7 and 8 are used to ex-
ecute the A-Brain analysis, described in Section 6. We recall that this is a joint effort with
the Inria Saclay Parietal Team, in the context of the Microsoft Research - Inria Joint Center,
for enabling large-scale analysis on clouds for bio-informatics. The A-Brian study consid-
ers functional MRI (Magnetic Resolution Imaging) contrast, corresponding to events where
subjects make motor response errors. A number of 1459 subjects remained for the final anal-
ysis after discarding the ones with to many missing voxels (i.e., volumetric pixels elements
which here apply to the first input data set of brain images) or with bad task performance.
Regarding genetic variants, 477,215 SNPs (Single Nucleotide Polymorphism, which apply to
the second input data set of genetic material) were available. Age, sex, handedness and ac-
quisition center were included in the analysis as a third data set to account for. The analysis
considers the functional signal of 14 regions of interest (ROI), 7 in each hemisphere: thala-
mus, caudate, putamen, pallidum, hippocampus, amygdala and accumbens (see Figure 9.1).
The goal is to evaluate how the 50,000 most correlated genetic variants, once taken together,
are predictive for each ROI and to associate a statistical p-value measure with these predic-
tion scores. We expressed this computation as 28,000 map tasks. Each map job performs
5 permutations, out of the 10,000 permutations required for each of the 14 ROI. Choosing
to perform 5 permutations per map job was a pragmatic choice in order to keep the task
timespan in the order of tens of minutes while maintaining a reasonable number of tasks.
For example, executing 1 permutation per task, would reduce the timespan of a job to tens
of minutes but would generate 140,000 jobs, which would create additional challenges to
handling and monitoring their progress as discussed in Section 9.3.

This Big Data experiment was performed using the multi-site hierarchical MapReduce,
introduced in Section 8. The framework was deployed on two Microsoft Azure data centers,
the North-Central and West US. These sites were recommended by the Microsoft team for
their large capacity. In each site, Azure storage service instances (i.e., Blob and Queue) were
used for task communication and inter-site data exchanges. Considering the performance
evaluation presented in Section 8.3 and the resource constraints of the algorithm, we chose
to use the Large VM type, featuring 4 CPUs, 7 GB of memory and a local storage of 1 TB. Two
deployments were set up in each cloud site, running 250 VM totalizing 1000 CPUs. Three of
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Figure 9.1: The A-Brain analysis and its findings.

the deployments, each having 82 nodes, contained the TomusBlobs-MapReduce components
of the hierarchical MapReduce. The fourth deployment had the role of partitioning the input
data, action done by the Splitter, and aggregating the global result of the computation based
on the Map-IterativeReduce technique. This latter phase consisted of 563 reduce jobs, each
reducer processing 50 intermediate results (i.e., the Reduction Ratio parameter of the Map-
IterativeReduce process is 50).

The experiment duration was 14 days, while the processing time for each of the
28,000 map jobs was approximately 2 hours. As generally acknowledged, failures are ex-
pected in large infrastructures such as the clouds and applications need to cope with this,
especially for long running-time periods. During the experiment, the Azure services had an
exceptional outage during which it was temporarily inaccessible [18], due to a failure of a
secured certificate. In addition to this outage, only 3 regular VM failures (i.e., stop-restart)
were encountered during this long run. The fault tolerance mechanisms provided by our
solution managed to cope with these situations, enabling the analysis to be completed.The
effective cost of this analysis was approximately equal to 210,000 compute hours, which cost
almost 20,000$, accounting for the VM, storage and outbound traffic price.

Achievements. As a result of this joint collaboration and the effectiveness of our proposed
solution to successfully execute this Big Data experiment, we showed how the functional
signal in subcortical brain regions of interest can be significantly predicted with genome-
wide genotypes. The importance of this discovery is amplified by the fact that this was the
first statistical evidence of the heritability of functional signals in a failed-stop task in basal
ganglia. This work had a significant impact in the area, being published in Journal of Fron-
tiers in Neuroinformatics. Figure 9.1 presents the results of the corresponding correlation
values for the significant links founded. This experiment demonstrates the potential of our
approach for supporting Big Data applications executions at large-scale by harnessing the
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Figure 9.2: The execution of the compute tasks in 3 deployments. The pike variation corre-
sponds to the cloud services becoming temporarily unavailable. 28,000 tasks are executed as
map jobs equally partitioned between deployments

available computation power from multiple cloud data centers. Furthermore, it shows the
benefits that our solution can bring for data science by enabling the migration of scientific
applications to the cloud.

9.2 Focusing on Long-Running Scientific Experiments

We continue with an analysis of the performance aspects of this large-scale experiment. We
start by presenting the execution time of the 28,000 map jobs in Figure 9.2. These are par-
titioned according to their execution in one of the 3 deployments running the TomusBlobs-
MapReduce components of the hierarchical MapReduce framework. The first observation
is that task timespans are similar for all the deployments, regardless the location of the de-
ployments within the sites. This is achieved thanks to the initial partitioning done by the
Splitter component (see Figure 8.5 in Section 8) and the local buffering of the data done by
TomusBlobs, which spares mappers from remote data accesses.

Handling failures. The outage times that appear towards the end of the experiment are
caused by the temporary failure of the Azure cloud, which made all cloud services inac-
cessible and thus isolated the compute nodes [18]. TomusBlobs reacted by suspending the
mappers once the communication outside the VM was not possible. The mappers were kept
idle during the outage period until the cloud became available again and the computation
could be resumed. In addition to this exceptional failure, during the experiment, 3 map
jobs were lost due to fail-stop VM failures. These jobs were restored by the monitoring and
surveillance mechanism that we provided for the Splitter. The same mechanism was used
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Figure 9.3: Overview of the IterativeReduce phase with respect to the number of reducers
and the Reduction Ratio parameter of the Map-IterativeReduce technique. On the left chart,
the timespan of the overall reduction process with 250 nodes; on the right chart, the cumu-
lative transfer times.

also to renew the job descriptions, in order not to be discarded by the expiration mechanism
of the Azure Queues. Currently all messages in the cloud queue are discarded after 1 week.
By designing these mechanisms to ensure the completion of the analysis despite both regu-
lar failures and major outage, our solution demonstrated that it can provide high reliability
even for geographically distributed computation.

Focus on the reduction phase. Next, we present in Figure 9.3 an analysis of the reduction
phase considering the number of reduce jobs alongside with the corresponding reduction
ratio (i.e, the number of intermediate results processed per reduce jobs). The goal is to study
the relation between the compute phase of a reducer and its I/O phase (i.e., the acquisition of
the data to be reduced). The parallel reduction process proposed by the Map-IterativeReduce
technique brings significant improvements up to the point where the communication over-
head becomes significant. Additionally, having a small reduction ratio translates to a large
number of reducer jobs. This leads to jobs being executed in waves, which in turn increases
the timespan of the reduction process. Making such an analysis before the actual experiment,
allowed us to select the proper reduction ratio of 50, which helped decrease the overall exe-
cution time of the A-Brain analysis.

Focus on data management mechanisms. We continue the evaluation by studying the data
space of the experiment, shown in Figure 9.4. The goal is to quantify the gains brought by
our proposals in terms of transfer size reduction as well as to understand the strategies that
one needs to setup for sparing the I/O volumes of an experiment. We start from a naive
estimation of the overall amount of data which is obtained by multiplying the number of
jobs with the data volume employed per job, i.e., input data size, output, environment setup
and log file. Considering the large number of jobs of the A-Brain workload of 28,000, the
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Figure 9.4: Estimation of the data sizes within the large A-Brain experiment. Each label de-
picts the corresponding data size for a particular scenario: total data space for the theoretical
upper scalability bound; the amount of data spared from transferring due to buffering, com-
pression or ordering of jobs; the data space of the problem with respect to the number of
nodes used; the amount of transferred data.

data space reaches tens of terabytes, shown by the “Estimation of Data for all jobs” label in
Figure 9.4. However, this scenario corresponds to all the jobs being executed in parallel on
different nodes, which would require the maximum degree of redundancy for the data (e.g.,
the input data and the environment would have to be replicated on each node). Therefore,
this estimation provides an upper bound in terms of data volume movements with respect
to the maximum degree of parallelism. The cost of transferring such amounts of data would
be enormous, both time- and money-wise. This is an important observation which shows
that simply increasing as much as possible the parallelism degree of an application is not
necessarily the best strategy in the cloud as it might be in HPC. This study suggests that a
trade-off should be considered between the parallelism degree of the system and the data
space. Apart from properly adjusting the number of processing nodes (i.e., the scale of the
system), different techniques can be used to avoid furthermore data transfers between them.
Buffering data, both at the level of the compute node, to reduce all communication, and at
deployment level, to avoid costly inter-site communication, is a straightforward strategy to
be used.The corresponding gain, marked in Figure 9.4 by the “Untransferred data due to
Buffering” label, is substantial in terms of volumes of data spared to be exchanged.

Other techniques worth considering for such Big Data experiments range from data com-
pression, enabled in our data-management system, to application-specific solutions like re-
ordering the tasks. After applying all these techniques, the resulting data space for this
experiment, with respect to the actual number of nodes used, is shown by the “Data in
Compute Nodes” label in Figure 9.4. This analysis reveals two facts. On the one hand, a
preliminary analysis of the application space is crucial to understand the options which can
optimize the management of data. On the other hand, the data aspects (i.e., data space, re-
dundancy generated by scaling, efficiency buffering) of the computation need to be consider
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Figure 9.5: The A-Brain experiment progress. Left: The average map times per day and the
corresponding standard deviation. Right: The compilation time of reduce jobs.

when scaling the parallel execution of scientific applications.

Stability and load balancing. The final step of our evaluation, shown in Figure 9.5, con-
siders the timeline progress of the A-Brain analysis. In the left subfigure, we report the
average map times within each day of the experiment and the corresponding standard de-
viation. Together with these, we report the aggregated cloud compute hours consumed by
all the leased resources. These results show the stability and the predictability of the per-
formance delivered by the TomusBlobs-based hierarchical MapReduce framework. In fact,
the only noticeable shift in performance appears in the 12th day in which the cloud outage
happened, as previously mentioned.

In the right subfigure of Figure 9.5, we show the progress towards computing the final
unique result by the Reduce phase. It can be observed that as our approach eliminates the
synchronization barrier between mappers and reducers, used by state-of-the-art MapReduce
engines, the reduction process runs in parallel with the map computation. The irregular
number of reduce jobs finished per day is due to the amount of intermediate results, given
by the reduction ratio parameter of the Map-Iterative process, that a reducer must wait for,
both from mappers or from other reducers. Considering that reducers tend to progress at
the same pace (i.e., they have the same priority to acquire results), most of the jobs finish
towards the end of the experiment, when most of the map jobs have completed. By enabling
this behavior, we managed to balance the load across the compute nodes and to make the
reducer computation non-intrusive to the overall execution.

9.3 Addressing Data Management Issues across Data Centers:
Towards High-Performance Inter-Site Data Management

In the process of designing, implementing, supporting and validating our cloud storage
solutions through large-scale experiments, we had the opportunity to gain useful experience
and to learn several interesting lessons. This section presents these lessons. It also discusses
issues that need to be addressed to continue to improve the support of running Big Data
applications on the clouds. While some of these lessons specifically relate to the Azure cloud



98 Chapter 9 – Lessons Learned : Large-Scale Big Data Experiments on the Cloud

platform, others can be considered from a more general perspective being relevant for any
platform.

9.3.1 Azure-Specific Observations

Message visibility timeouts for Azure Queues. Azure Cloud Queue is offered by the ven-
dor as the reliable communication mechanism to assign work to compute nodes in all pro-
cessing scenarios. They differ from the traditional queue data structures as they lack the
ability to ensure FIFO ordering. However, they guarantee that a message is delivered at least
once. This implies potential duplication of messages, which is the result of the fault tolerance
mechanism. Messages read from the queues are not deleted, but instead hidden until either
they are explicitly deleted or until a certain timeout expires and they become visible again.
TomusBlobs-MapReduce complements this timeout mechanism, used to guarantee the exe-
cution of the message containing job description, with a uniform naming schema to verify
the potential duplications of results. However, messages are not held in the queue for unlim-
ited time, but are discarded after a while, called visibility timeout. Initially set for 2 hours,
the visibility timeout was increased to one week with the latest Azure API update. The rea-
son why the visibility timeout matters is that if a workload is large it might take longer time
to complete the processing (i.e., to execute all jobs of the workload). This is often the case
with Big Data applications. However, in such long-running scenarios, queue messages con-
taining job description are discarded by the cloud tool, which is supposed to guarantee the
communication, leading to incorrect results. We faced this issue during the long-running
A-Brain experiment. The solution we considered is to have an application-level tracking
mechanism for the submitted message jobs. In our case this role was implemented by the
Splitter component. The messages were monitored for their time to expiration and were
resubmitted to the queue to reset their expiration deadline.

Application deployment-times. The cloud framework is in charge of the process of allo-
cating the leased nodes and deploying the user application on them. While working with
the Microsoft Azure cloud we have observed that this process plays a crucial role in the
overall application performance. For each new or updated deployment on Azure, the fabric
controller prepares the role instances requested by the application. This process is time-
consuming and varies with the number of instances requested as well as with the deploy-
ment size (e.g., application executables, related libraries, data dependencies). The deploy-
ment times were reduced to a few minutes after the latest Azure update. However these
times can still be a major bottleneck especially in the context of real-time processing scenar-
ios (e.g., real-time resource provisioning). Other cloud platforms such as Amazon EC2 face
similar or worse problems regarding the time for large resource allocation [102]. To mini-
mize these deployment-times, one option is to build the environment setup at runtime from
generic stubs and to improve the performance of multicast transfers between the physical
nodes of the cloud infrastructure.

Handling VM failures. The general belief is that clouds are highly unreliable as they are
built on top of clusters of commodity services and disk drives. Because of this, it is believed
that they host an abundance of failure sources that include hardware, software, network
connectivity and power issues. To achieve high-performance in such conditions, we had to
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provision for failures at the application level in our initial estimations and designs. How-
ever, we discovered that only a very small fraction of the machines failed, even during the
course of long-running executions; we recall that during the 2 week, 1000 core experiment,
only 3 machines failed. Such an observation indicates that in fact clouds are more reliable
that the general belief. This high-availability delivered by the cloud is due to the complex,
multi-tiered distributed systems that transparently implement in Azure sophisticated VM
management, load balancing and recovery techniques. We note from our experience that
even though disk failures can result in data losses, we did not encountered any; making the
transitory node failures to account for most unavailability. Considering these observations, it
is a good strategy for Big Data processing frameworks to use and build on the fault-tolerant
mechanisms already offered by the cloud software stack. The TomusBlobs-based approach
does so by relying on Azure mechanisms to recover the compute nodes which is comple-
mented by the watch-dog mechanism for logging/roll-backing the computation progress.

9.3.2 Beyond Azure

Wave-like versus pipelined MapReduce processing. In general, parallel tasks tend to be
started at the same time on all available resources. Since usually the number of jobs is
higher than the number of resources, such a strategy makes tasks to be executed in suc-
cessive “waves”. One lesson we learned while processing workloads with our MapReduce
approach is that starting all the jobs (e.g., maps) at once is inefficient as it leads to massively-
concurrent accesses to data. For example, concurrently retrieving the initial data by all nodes
executing a task creates a high pressure on the cloud storage system. Additionally, the net-
work bandwidth is inefficiently used, being either saturated or idle. The alternative we
chose was to start the jobs in a pipeline manner, i.e., starting them sequentially as opposed
to starting them all at the same time. Map tasks are created along the pipeline, as soon
as their input data becomes available, in order to speed up the execution and to decrease
the concurrency of accessing storage. Moreover, this approach allows successive jobs in the
pipeline to overlap the execution of reduce tasks with that of map tasks. In this manner, by
dynamically creating and scheduling tasks, the framework is able to complete the execution
of the pipeline faster by better using the leased resources.

Data buffering and caching. Another lesson we learned from our analyses is that, during
long-running experiments, many data blocks are likely to be reused. It then becomes useful
to buffer them locally as much as possible in order to avoid further transfers. In fact, the
analysis of the experiment showed that this strategy can bring the highest gains in terms of
reducing the volumes of data transferred (in our case this was more than 70 %). Additionally,
it is possible to leverage the data access pattern of applications to cache and transfer the data
better, as shown with the adaptive mechanisms of TomusBlobs. The idea is to receive hints
on the potential reuse of a data block, before taking the decision of discarding it. Such hints
can be given by the components which deploy the workload into the system. In the case
of our hierarchical MapReduce engine, the Splitter component is responsible for providing
such hints.

Scheduling mechanisms for efficient data access. Due to a lack of studies regarding the
best strategies for accessing data from geographical-distant cloud data centers, these oper-
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ations tend to be done without any scheduling. However, in a cross data centers deploy-
ment, a high number of geographical distributed concurrent accesses are likely to lead to
operation failures (e.g., TCP connections to the data source get closed). To exemplify and
quantify this, we set 100 nodes to try to download the same data from a different geograph-
ical region, using the cloud storage API. Our initial empirical observations showed that up
to 70 % of the read attempts fail, with the connection to the cloud storage being lost before
the completion of the operation. A naive solution is to retry the operation in a loop until
it succeeds. Besides being inefficient and generating additional failures, this strategy might
actually lead to starvation for some of the nodes. Adding random sleeps between retries (as
in the network decongestion algorithms) works in some cases, rather for short operations,
but converges very slowly in general if there are many concurrent clients. We opted for a
token-based scheduling approach, by allowing a predefined maximum number of nodes to
access a shared resource concurrently. This solution provides several benefits. On the one
hand, it allows the number of concurrent access to be calibrated with respect to any stor-
age to eliminate failed operation. On the other hand, it can be combined with the pipeline
approach for starting jobs in order to maximize the usage of the resources.

Monitoring services to track the real-time status of the application. Scientists or system
administrators of long-running applications require tools to monitor the progress of compu-
tation and to assert the performances of the underlying infrastructure. These operations are
implemented using logging mechanisms (e.g., log files) in which the state of the application
and the resources is registered. Currently, these log data are handled using the default cloud
management tools (i.e., applications write the log data into cloud storage BLOBs). How-
ever, a practical lesson that we learned is the importance of a specialized monitoring system.
Moreover, a critical feature is to extend this system to estimate the I/O and storage perfor-
mance accurately and robustly in a dynamic environment. Such estimations are essential for
predicting the behavior of the underlying network and compute resources in order to opti-
mize the decisions related to storage and transfer over federated data centers. The challenge
comes from the fact that estimates must be updated to reflect changing workloads, varying
network-device conditions and multi-user configurations. To address this, a Monitor as a
Service for the cloud needs to be provided. Building on this, data management systems can
be designed for context-awareness which in turn maximizes performance, makes the system
autonomous and minimizes cost. This is a way to take users needs and policies into account.

Going beyond MapReduce: cloud-based scientific workflows. Although MapReduce is
the “de-facto” standard for cloud data processing, most scientific applications do not fit
this model and require a more general data orchestration, independent of any computa-
tion paradigm. Executing a scientific workflow in the cloud involves moving its tasks and
files to the compute nodes, an operation which has a high impact on performance and cost.
As pointed out in the previous sections, the state-of-art solutions currently perform these
operations using the cloud storage service. In addition to having low throughput and high
latencies, these solutions are unable to exploit the workflow semantics. Therefore, it becomes
a necessity to schedule the task and the data, within the compute VMs, according to the data
processing flow, by considering the data layout, the allocation of tasks to resources and the
data access patterns. So far, we have shown that it is possible to increase the performance of
managing workflow data, within a data center, by considering the access patterns (see Sec-
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tion 7). This approach can be leveraged on the one hand for workflows executed across sites,
and on the other hand to further interconnect the scheduling of tasks (handled by the work-
flow engine) with the data (handled by the data management system). In order to achieve
this, we propose a two-way communication between the workflow engine (also referred to
as workflow execution manager - WEM) and the data management system (DMS), as illus-
trated in Figure 12.8. This design, which interconnects the two components, enables them to
collaborate in order to optimize the computation. To this purpose, scheduling data and tasks
can be done by considering information about the other. Additionally, the critical decision
of migrating either data or task from one data center to another can be taken dynamically, at
runtime, according to the cloud environment.

Towards high-performance Geographically Distributed Data Management. The most im-
portant lesson we learned, is the lack of support of current cloud data management systems for han-
dling efficiently data across cloud sites. The critical issues we identified are the high latency,
low interconnecting bandwidth between sites, the large variability and high costs. For now,
direct transfers are not supported. The workaround, currently available only on top of the
cloud storage service, is inefficient and involves persistently storing data (the cloud storage
is optimized for persistent and long term storage). Thus, scientists, most commonly non-
cloud experts, face the challenge of designing their own data management tools for sup-
porting even basic data exchange operations across their application instances. This leads
to inefficient, non-scalable and sometimes faulty solutions (e.g., solution can easily neglect
important aspects regarding fault tolerance or consistency guarantees under concurrency).
Even for cloud experts, designing high-performance architectures for managing data across
sites is not trivial, since there is little knowledge about the effectiveness of data management
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options or strategies for such transfers. Overcoming these challenges is a key milestone for
addressing the future challenges brought by the Big Data era. We bring a contribution in
this direction by designing a Transfer as a Service, coupled with a dynamic cost model, which
enables applications to transfer data efficiently, while minimizing the costs. This solution
together with the underlying approaches are discussed in Part III of the thesis.

9.4 Discussion

Porting Big Data applications to the clouds brings forward many issues regarding how cloud
infrastructures can be used most efficiently for solving these problems. In this landscape,
building high-performance systems to address the requirements of these applications is crit-
ical and challenging. Efficient storage and scalable parallel programming paradigms are
some critical examples. TomusBlobs addresses these issues and as a result, the scientific dis-
covery can be accelerated using the cloud. We demonstrated the benefits of our approach
through a multi-sites experiment on a thousand cores across 3 Azure data centers, while con-
suming more than 200,000 compute hours - one of the largest scientific experimental setup
on Azure up to date. The experiment showed that our approach is fault tolerant and it is
able to provide reliable performance at large-scale while running the computation across
multiple sites. On the application side, the analysis enabled by our solution discovered how
the functional signal in subcortical brain regions can be significantly fit with genome-wide
genotypes.

Evaluating the cloud landscape using real Big Data application scenarios taught us im-
portant lessons. Cloud systems need to monitor and account for the cloud variability. This
context information needs to be leveraged in the decision mechanisms regarding the man-
agement and processing of data. Scheduling strategies are required both for task and for
data transfers. Finally, as the processing systems scale according to Big Data workloads, the
existing cloud model in which all types of data management exclusively rely on the cloud
storage becomes widely inefficient and obsolete. Therefore, it is critical to enable specialized
cloud solutions for high-performance geographically data management. Moreover, with the
growing proportions of the real-time data in the Big Data ecosystem, stream data manage-
ment for clouds needs to be considered as well. Currently there is no support for cloud
streaming let alone high-performance streaming across data centers. We address these is-
sues related to high-performance data management, both static and real-time, across cloud
data centers in Part III of this thesis.
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This chapter develops the contributions published in the following paper and
book chapter:

• DataSteward: Using Dedicated Nodes for Scalable Data Management on Pub-
lic Clouds Radu Tudoran, Alexandru Costan, Gabriel Antoniu. In Pro-
ceedings of the 2013 12th IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications (ISPA/TRUST-
COM 2013), Melbourne, Australia, July 2013, pp.1057-1064

• Big Data Storage and Processing on Azure Clouds: Experiments at Scale and
Lessons Learned. Radu Tudoran, Alexandru Costan and Gabriel Anto-
niu.In the book Cloud Computing for Data-Intensive Applications, to be
published by Springer, 2015. Editors Xiaolin Li and Judy Qiu

One of the critical needs for dealing with the “data deluge” is to obtain an efficient, scal-
able and reliable storage for cloud applications. In Part II of this thesis, we discussed and
illustrated the limitations of the cloud storage service in the context of Big Data process-
ing. Our observations emphasized that using the cloud storage is highly inefficient. We
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also showed that it cannot cope with all application needs, as it trades performance for data
durability. This represents a major limitation, as highlighted in Section 9, which prevents
global scaling of applications (i.e., processing data across cloud data centers). Additionally,
applications using the cloud storage remain unresponsive, in their data handling mecha-
nisms, to any changes in the VMs performance. Monitoring resources and handling data in
an environmentally-aware manner are key milestones towards high-performance and cost
efficient Big Data analysis.

Collocated Storage. The alternative to the cloud storage that we have introduced, Tomus-
Blobs, federates the local virtual disks of the compute nodes into a globally shared storage
while leveraging data-locality. Applications use a typical cloud API (i.e., data handling is
done via the same functions as accessing Azure Blobs or Amazon S3 cloud storage) to store,
checkpoint and access large intermediate data. However, executing Big Data applications re-
quires more advanced functionalities to be provided by the data management system such
as logging mechanisms, compression or transfer capabilities. Building such features on top
of the local collocated storage can become rather intrusive and impact on the application’s
perceived performance. Besides, this collocation strategy provides a higher throughput than
the cloud storage, but it is subject to application-level failures which can stop the host nodes.
An unhandled runtime-exception in the application, a memory overflow, a corrupt type as
well as many other errors will lead to a VM reboot. Such an event would translate into a
degradation of the storage performance. Moreover, there is a direct correlation between the
CPU usage and the data throughput [181], which can introduce performance bottlenecks
that slow down either the computation or storage access.

Our approach in a nutshell: Providing Advanced Data Stewarding on Dedicated Nodes.
To deal with these limitations we propose DataSteward, a data management system that pro-
vides a high degree of reliability while remaining non-intrusive through the use of dedicated
compute nodes. This separation allows applications to perform I/O operations efficiently as
data is preserved locally, in storage nodes selected within the application deployment. The
idea of using dedicated infrastructures for performance optimization is currently explored
in HPC environments. Dedicated nodes or I/O cores on each multicore node are leveraged
to efficiently perform asynchronous data processing, in order to avoid resource contention
and minimize I/O variability [50]. However, porting this idea to public clouds in an efficient
fashion is challenging, if we consider the multi-tenancy model of the cloud, the resulting
performance variability of resources and the use of unreliable commodity components. To
address this challenge, DataSteward selects a set of dedicated nodes to manage data by us-
ing a topology-aware clustering algorithm. To capitalize on this separation, we introduce a
set of scientific data processing services on top of the storage layer, that can overlap with the
executing applications. The insight of this approach is similar to the concept of a file, from
a traditional computer, which is a generic object associated with a set of operations (e.g.,
move, view, edit, delete, compress), therefore a “cloud file” requires its own set of actions.
To validate this approach, we perform extensive experimentation on hundreds of cores in
the Azure cloud, which show an improvement in the overall performance up to 45 %. Fi-
nally, by decoupling the storage from the applications, DataSteward increases security by
isolating data from potential malicious attacks on the web service.

One of the key aspects that determines the application performance is the selection method
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of the dedicated nodes. Others have also recognized the need to make optimal cloud applica-
tion deployments as a challenging research problem. Based on the cloud nodes’ QoS per-
formance, a number of selection and scheduling strategies have been proposed in the recent
literature. The major approaches can be divided into three categories. Random methods se-
lect nodes randomly and have been extensively employed in works like [11]. Ranking strate-
gies rate the cloud nodes based on their QoS and select the best ones [5, 33]. A relevant
example is NodeRank [42], which, inspired by Google’s PageRank, applies Markov random
walks to rate a network node based on its resource and the importance of its links with
other node. The importance refers here to the relative resource quality of a node. In general,
ranking methods only use QoS values and omit to consider the communication performance
between nodes, making them improper for data intensive workloads or for storage-related
scenarios. Clustering based methods like [55, 56], consider the communication between the
selected nodes. The basic idea of these strategies is to cluster the cloud nodes that have a
good communication performance together, to deploy an application.

Our approach in a nutshell: Selecting the Storage Nodes. We use a similar approach to
cluster all the nodes within a deployment and then choose “leaders” from each cluster (those
best connected with all nodes within the cluster), which will make up the global dedicated
storage nodes. In contrast to existing clustering solutions, we first discover the communi-
cation topology and the potential virtual network bottlenecks by pre-executing a series of
measurements. Next, we consider both the resource and the topology properties of a node
in a unified way, in order to select the most suited ones. This is a key difference from existing
works, which only take into consideration the CPU and/or the bandwidth of a node. Com-
pared to this state-of-the-art node selection algorithms, our approach brings up to a 20 %
higher throughput. Moreover, the solution is generic, being applicable in other cloud sce-
narios, allowing both users and cloud providers to obtain higher performance from cloud
services based on nodes selection.

10.1 A Storage Service on Dedicated Compute Nodes

The selection of the storage option, that supports the computation, is a key choice as it im-
pacts both the performance and the costs. The standard cloud offering for sharing appli-
cation data consists of storage services accessed by compute nodes via simple, data-centric
interfaces which only providing read/write functionality. The alternative option to the cloud
object storage is a distributed file-system deployed on the compute nodes, such as the To-
musBlobs approach, that we introduced in Section 7. Each one of these options are geared
for various types of data and maximize a different (typically conflicting) set of constraints.
For instance, storing data locally within the deployment increases the throughput but does
not isolate the storage from computation, making it subject to failures or performance degra-
dation. Using the cloud storage provides persistence at the price of high latencies and ad-
ditional costs. Moreover, these services, focus on data storage primarily and support other
functionalities, such as inter-site transfer or logging, essentially as “side effects” of their
storage capability. However, enabling the execution of Big Data applications on the cloud
requires advanced data centric services, as emphasized by our analysis in Section 9. To prop-
erly address these issues we introduce in this section DataSteward. This data management



108 Chapter 10 – DataSteward: Using Dedicated Nodes for Scalable Data Management

scheme extends the list of design principles introduced for TomusBlobs in Section 7 with
3 additional ones.

Dedicated compute nodes for storing data. This approach preserves the data proximity
within the deployment and increases the application reliability through isolation. The
goal is to have high data access performance, as provided by TomusBlobs through data
locality, while freeing application nodes from managing data, as when using the re-
mote cloud service. Moreover, keeping the management of data within the same com-
pute infrastructures (i.e., same racks, switches) optimizes the utilization of the cluster
bandwidth by minimizing the intermediate routing layers to the application nodes.
Finally, this principle makes our solution applicable to any cloud scenario, including
resource-sensitive applications for which sharing part of the compute resources (e.g.,
memory or CPU) would not be possible.

Topology awareness. Users applications operate in a virtualized space which hides the in-
frastructure details. However, the proposed data management solution needs some
mechanism to ensure that the dedicated storage servers are located as “close” as possi-
ble to the rest of the computing nodes. This “closeness”, defined in terms of bandwidth
and latency, determines the communication efficiency. As information about the topol-
ogy is not available, our solution estimates it, based on set of performance metrics, in
order to perform an environment-aware selection of nodes.

Overlapping computation with data processing. With this dedicated node approach, we
are able to propose a set of advanced data processing services (e.g., compression, en-
cryption, geographically distributed data management, etc.). These are hosted on the
dedicated nodes and address the needs of scientific Big Data applications. In a typical
cloud deployment, users are responsible for implementing such higher level function-
ality for handling data, which translates in stalling the computation for executing these
operations. Our approach offloads this overhead to the dedicated nodes and provides
a data processing toolkit as well as an easily extensible API.

DataSteward is designed as a multi-layered architecture, shown in Figure 10.1. It is com-
posed of 3 conceptual components:

The Cloud Tracker has the role to select the nodes to be dedicated for the data manage-
ment. The selection process is done once, in 4 steps, at the starting of the deployment. First,
a leader election algorithm is run, based on the VM IDs. Second, the trackers within each
VM collaboratively evaluate the network links between all VMs and reports the results back
to the leader. Third, the leader runs the clustering algorithm described in Section 10.2 to
select the most fitted, throughput-wise, nodes for storage. Finally, the selection of the nodes
is broadcast to all compute nodes within the deployment. The Cloud Trackers evaluate the
network capacities of the links, by measuring their throughput, using the iperf tool [99].
The communication between the trackers and the elected leader is done using a queueing
system. The same communication scheme is used by the leader to advertise the dedicated
nodes to all VMs.
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Figure 10.1: DataSteward architecture. Compute nodes are dedicated for data storage, on
top of which a set of data processing services are provided.

The Distributed Storage is the data management system deployed on the dedicated
nodes, that federates their local disks. Users can select the distributed storage system of
their choice, for instance any distributed file system that can be deployed in a virtualized
environment. This property together with providing data locality, represent common prin-
ciples shared with the Storage Entity of TomusBlobs, described in Section 7.1. However, the
Distributed Storage is now decoupled from the main computation, protecting the data from
potential application-level failures. Additionally, the local memory of the dedicated nodes
is aggregated into an in-memory storage, used for storing, caching and buffering data. The
Distributed Storage can dynamically scale up and down, dedicating new nodes when faced
with data usage bursts or releasing some of the existing ones. The implementation of the
prototype is done in C#, while the validation is done using the Azure cloud. Finally, for
evaluating the system and for a fair comparisons with the TomusBlobs approach, discussed
in Section 10.3, we use the BlobSeer backend for both approaches.

The Data Processing Services are a set of advanced data handling operations, provided by
DataSteward and targeting scientific applications. The goal is to capitalize the computation
power now available for data management, in order to provide high-level data functions.
Such functionality, exposed to applications and provided directly at the level of the storage
system, increases the performance of handling data and extends the basic cloud data API
which exists today. Examples of such advanced functions include: compression, geographi-
cal replication, anonymization, as well as other which are further discussed in Section 10.3.4.
The Data Processing Services are exposed to applications through an API, currently avail-
able in C#, independent of the distributed storage chosen by the user. The API extends the
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default cloud-based data interface, which only provides read and write operations. At the
same time, it keeps the handling of data transparent to applications. In this way, the system
remains generic and is able to accommodate future Big Data requirements. To this end, the
data processing services are loaded dynamically, from the default modules or from libraries
provided by the users. We present bellow three implementations of such services, while
others are described in the future chapters.

Geographical replication. Whether to achieve high fault tolerance, for interoperability with
other web-services or for disseminating and sharing the applications results, this is a
useful service in the context of federated clouds. As the involved data movements are
time and resource consuming, it is inefficient for applications to stall their executions in
order to perform such transfers. DataSteward provides an alternative, as the applica-
tions can simply check-out their results to the dedicated nodes, which acts as a broker.
This operation is fast, consisting in a low latency data transfer within the deployment.
Then, DataSteward performs the time consuming geographical replication, while the
application continues the main computation.

Data compression. Typically, the separation of scientific applications in multiple tasks leads
to multiple results. Before storing them persistently, one can decrease through com-
pression the incurred costs of persistent (long-term) storage. By grouping together
these results on the dedicated nodes, we are able to achieve higher compression rates,
than if the results were compressed independently on their source node. In fact, many
scientific applications have been shown to have high spatial or time correlation be-
tween the outputs of the computing sub-processes [69, 130]. To this end, DataSteward
exploits these data similarities and minimizes the compression overhead of multiple
files/objects, reaching compression rates that could not be achieved otherwise at the
process or node level.

Scientific data processing toolkit. Scientific applications typically require additional pro-
cessing of their input/output data, in order to make the results exploitable. For large
data sets, these manipulations are time and resource consuming. Moreover, an aspect
which typically tends to be neglected, but impacts the overall data handling time as
well, is the number of objects in the data set (e.g., I/O files, log files). Due to the
simplicity of the default cloud storage API, these objects need to be managed indepen-
dently as there are no operations which can be applied on multiple files. Additionally,
they need to be downloaded at the client side most of the times, even for simple oper-
ations such as searching or checking the file exists. By using the dedicated nodes, such
processing on multiple files can be provided directly at the data management layer
and can be overlapped with the main computation. Therefore, DataSteward provides
an integrated set of tools applicable on groups of files. These operations support file
set transformations such as filter, grep, select, search or property check.

10.2 Zoom on the Dedicated Node Selection

As the selection of the storage nodes can significantly impact application performance, we
believe that the topology and utilization of the cloud need to be carefully considered to come
up with an optimized allocation policy. Since cloud users do not have fine-grained visibility
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Algorithm 2 Initialization of the clustering algorithm.

1: Input:
2: Nodes = {node1..nodeN} . the set of compute nodes
3: ClientClusters[] = {List1..ListNrOfDataServers} . the set clients grouped in clusters
4: Output:
5: Servers = {server1..serverNrOfDataServers} . the set of data servers - the cluster centroids
6: clients_per_server = N/NrOfDataServers
7:
8: for i← 0, NrOfDataServers do
9: Servers← node ∈ Nodes (random selected)

10: end for

into or control over the underlying infrastructure or resources placement, they can only rely
on some application-level optimization. In our case, the storage nodes are selected based on
the topology that we, as cloud users, discover. The criteria that we want to maximize is the
aggregated throughput that the application nodes will get to the dedicated storage nodes.
To obtain an intuition of the cloud topology and the physical placement of the VMs, we pro-
pose to use a clustering algorithm. Our proposal relies on the fact that the cloud providers
distribute the compute nodes in different fault domains (i.e., behind multiple rack switches).
Hence, we aim to discover these clusters based on the proximity that exists between the
nodes within a fault domain. To this purpose, we fitted the clustering algorithm with ad-
equate hypotheses for centroid (i.e., the object used to represent a cluster) selection and
assignment of nodes to clusters, in order to maximize the data throughput for our usage
scenario. Finally, the selection of the dedicated nodes is done based on the discovered clus-
ters. With this approach, we increase reliability by distributing the storage nodes across all
the fault domains where the application runs. Furthermore, the compute nodes can perform
all data operations within the fault domain, minimizing the overall data exchanges across
switches and long-wires and thus avoiding throttling the network.

Clustering algorithms are widely used in various domains ranging from data mining to
machine learning or bio-informatics. Their strength lies in the adequate hypotheses used
for creating the clusters (i.e., the basis on which an element is assigned to a cluster) and for
representing them (i.e., the hypothesis for selecting the centroids that represent the clusters).
In our scenario, the clusters are formed from the compute nodes within the deployment,
depicting the topology of the nodes across fault domains. Each such cluster is represented by
the nodes selected to be dedicated for storage (i.e., the centroid). Our idea for the assignment
of a node to a cluster is to use the throughput of the compute node to the storage node that
represents the cluster. The working hypothesis is that nodes within the same fault domain
will have higher throughput one to another because the interconnecting link does not cross
any rack switches. Therefore, with this approach we are grouping the nodes and balancing
the load generated by the compute nodes. The criteria to assign a node to a cluster is given
in Equation 10.1.

cluster = arg max
i∈Servers

Max throughput[ i, j︸︷︷︸
|Client[i]|<clients_per_server

] (10.1)
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Algorithm 3 Clustering-based dedicated nodes selection

1: procedure DEDICATENODES(NrO f DataServers, N)
2: repeat
3: changed← f alse
4: . Phase 1: Assign nodes to cluster based on proximity within clients limit
5: for i← 0, N do
6: if i /∈ Servers then
7: max← 0
8: maxserver← 0
9: for j← 0, NrO f DataServers do

10: if throughput[Servers[j], i] > max && Client[j].Count <
clients_per_server then

11: max = throughput[Servers[j],i]
12: maxserver = j
13: end if
14: end for
15: Client[maxserver].Add(i)
16: end if
17: end for
18:
19: . Phase 2: Centroid Selection — reselect the data servers based the assignment of

nodes to clusters
20: for i← 0, NrOfDataServers do
21: maxserver← 0
22: max← 0
23: for all j ∈ Client[i] do
24: if j.std < ADMITTED_STD and j.thr > ADMITTED_THR then
25: server_thr← 0
26: for all k ∈ Client[i] do
27: server_thr + = throughput[j,k]
28: end for
29: if server_thr > max then
30: max← server_thr
31: maxserver← j
32: end if
33: end if
34: end for
35: if Servers[i] 6= maxserver then
36: Servers[i]←maxserver
37: changed← true
38: end if
39: end for
40: until changed == true
41: end procedure
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The next step of a clustering algorithm, after creating the clusters, is to update the cen-
troids. The hypothesis that we propose is to select as a centroid the node towards which all
other nodes in the cluster have the highest aggregated throughput. With this approach, we
maximize the overall throughput achieved by the application VMs within the cluster to the
storage node. Equation 10.2 shows the principle based on which the clustering algorithm
updates the centroids.

maxserver = arg max
j∈Client[i]

∑
k∈Client[i]

throughput[j, k] (10.2)

Next, we present the cluster-based algorithm for selecting the dedicated nodes, which
integrates the proposed hypotheses. In Algorithm 2 we introduce the data structures used
to represent the problem (i.e., the set of compute nodes, the set of dedicated nodes) and the
random initialization of the centroids. The advantage of starting with a random setup is
that no extra information is required. Algorithm 3 describes the 2 phases of the clustering
algorithm. The first phase corresponds to Equation 10.1. The compute nodes are assigned
to the clusters based on the throughput towards the dedicated node and by considering
an upper-bound for concurrency (i.e., the maximum number of clients allowed per server).
Having an upper limit for the load per storage node, permits to apply this algorithm even
for cloud platforms which do not guarantee a distribution of nodes across racks. Such sce-
narios, which would lead otherwise to unbalanced clusters, would be easily solved by our
solution by partitioning the nodes based on their proximity within the rack. The second
step, consists in updating the centroids. We select the nodes which provide the highest ag-
gregated throughput within each cluster, according to Equation 10.2. At the same time, we
filter the nodes with poor QoS (i.e., low throughput or high I/O variability). We introduce
this filtering such that the system delivers a sustainable performance in time, as required by
scientific computation.

10.3 Experimental Evaluation and Functionality-Perspectives

This section presents the performance evaluation of our approach. We perform the analysis
both in synthetic settings and in the context of scientific applications. The experiments are
carried out on the Azure cloud in the North Europe and West US data centers. The experi-
mental setup consists of 50 up to 100 Medium Size VMs, each having 2 virtual CPU which
are mapped to physical CPUs, 3.5 GB of memory and a local storage of 340 GB. The evalua-
tion focuses on 3 aspects. First, we demonstrate the efficiency of the node selection strategy.
Secondly, we compare the throughput performance delivered by DataSteward with the ones
of Azure Blob storage and the TomusBlob approach. For the fairness of the comparison, the
BlobSeer backend is used both for DataSteward and for TomusBlobs. Finally, we analyze the
gains, in terms of application time, that the data services enabled by DataSteward brings for
scientific computation.

10.3.1 Clustering Algorithm Evaluation

One of our key objectives was to design an efficient scheme for selecting the dedicated storage
nodes. In the next series of experiments, we compare our selection approach with the state of
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Figure 10.2: The cumulative throughput of
accessing the storage deployed on dedicated
nodes. The experiment varies the number of
data servers (i.e., the dedicated nodes) and
compute nodes (i.e., the application nodes
accessing data).

2 4 6 8 10 12 14 16 18 20 22 24

Time intervals (hours)

8000

9000

10000

11000

12000

13000

T
h
ro

u
g

h
p

u
t 

M
b

p
s

Cluster (Dedicated Data Servers -Our)
Cluster(MPIbased -Fan et al)
Random Selection

a) Performing the selection of the dedicated nodes at each hour
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Figure 10.3: The cumulative throughput
of the client within compute nodes when
accessing the storage nodes. The storage
nodes are reselected every hour (a - top) or
selected only once (b - bottom).

the art clustering algorithm introduced by Fan et al [56], which clusters nodes together based
on their QoS, and with a random selection that does not consider the underlying topology.
The goal is to validate that our node selection strategy can indeed capture and leverage the
infer communication topology within a deployment. The analysis is done using application
throughput as a metric. The experiment methodology consists in dividing the nodes within
the deployment in two groups: the compute nodes, where the application is executed, and
storage nodes, where DataSteward is deployed. All measurements evaluate the performance
achieved by the application compute nodes to access the storage nodes.

Impact of the compute/storage nodes ratio on applications I/O performance. The goal of
the first experiment is to analyze how the data access performance varies for different ratios
between compute and storage nodes. To this purpose, we fix the total number of nodes to 50.
Then, the number of dedicated nodes is decreased progressively which in turn increases the
number of compute nodes. The results of this experiment are shown in Figure 10.2, which
depicts the cumulative throughput within the system. The first observation is that our ap-
proach is better suited for this scenario, achieving higher performances. A second observa-
tion is that the average throughput per node decreases when less nodes are dedicated for the
storage. Nevertheless, the decrease throughput rate is inferior to the rate at which the clients
are increased, which translates to a higher cumulative throughput for more compute nodes.
This shows that our approach for dedicating storage nodes is able to cope with increasing
number of clients, showing up to 20 % higher cumulative throughput, compared to the other
selection strategies.

Focusing on when to select the storage nodes. Next, we assess how our decision of run-
ning the selection algorithm once, at the start of the deployment, impacts on the overall
system performance. Avoiding to reconfigure the system is important as any change of a
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data node would incur expensive data movements due to the large data volumes which
can be stored by a node at a given time. For this analysis, we also rely on the aggregated
throughput metric as before, but consider a 24-hour interval. We compare two time-wise
options of applying the clustering and selecting the nodes: 1) the node selection is repeated
every hour based on new network measurements and 2) the selection is done only once (i.e.,
our choice), at the beginning of the experiment. The results of this comparison are shown in
Figure 10.3, with the hourly reselection approach on the top and the single selection at the
bottom. One can observe that in both scenarios our clustering algorithm for node selection
delivers slightly similar performance. This comes as a result of disseminating the storage
nodes across the switches and racks, which makes our approach less sensitive to network
variations. This is complemented by filtering the problematic VMs, with a high variability
as shown in Algorithm 3, which further stabilizes the performance. This is a very important
observation as it validates our choice of performing the node selection only once. Finally,
in both scenarios our clustering algorithm outperforms the other strategies with more than
10%, capitalizing on its topology-awareness. These results show that our approach of select-
ing the nodes delivers superior and more stable performance than state of the art solutions.

10.3.2 Data Storage Evaluation

Our next series of experiments analyze the performance of the DataSteward storage layer.
First, we compare its performance with TomusBlobs. The goal is to evaluate the benefits
of dedicating compute nodes for storage against collocating storage with the computation.
To ensure a fair comparison each system is deployed on 50 compute nodes and both use
the BlobSeer backend (see Section 7.1). Secondly, the performance of DataSteward is also
compared against the one of the cloud storage, e.g., the local cloud storage service (Local
AzureBlobs) and a geographically remote storage instance from another data center (Geo
AzureBlobs). The goal of this second comparison is to demonstrate that, despite DataStew-
ard is not collocating data with computation, the delivered I/O throughput is superior to a
typical cloud remote storage.

Scenario 1: Multiple reads / writes. We consider 50 concurrent clients that read and write,
from memory, increasing amounts of data, ranging between 16 to 512 MB. When using To-
musBlobs, the clients are collocated on the compute nodes, with 1 client in each node. For
DataSteward the clients run on distinct machines, with one client in each machine as for
TomusBlobs. We report the cumulative throughput of the storage system for the read and
write operations in Figures 10.4 and 10.5, respectively.

Both approaches considerably outperform, between 3x and 4x, the cloud storage,
whether located on-site or on a geographically distant site. Clearly, keeping data within
the deployment has a major impact on the achieved throughput. If for TomusBlobs such
results were expected, being consistent with the ones in Section 7.3.1, for DataSteward they
confirm that our approach for dedicating nodes is superior, performance-wise, to a remote
cloud service. This comes as a result of minimizing the number of infrastructure hops (e.g.,
switches, racks, load balancers) between client application nodes and storage node due to
our topology-aware strategy for allocating resources. Hence, this strategy could be used also
by the cloud provider to distribute its cloud storage nodes among the compute nodes within
data centers.
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Figure 10.4: The cumulative read through-
put with 50 concurrent clients.
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Figure 10.5: The cumulative write through-
put with 50 concurrent clients.

Next, we zoom on the performance of DataSteward and TomusBlobs. One might ex-
pect that, due to data locality, the collocated storage option delivers better performance than
managing data in dedicated nodes. However, the measurements reported in Figures 10.4
and 10.5 show differently. On the one hand, for small volumes of data handled by clients,
the performance of the two approaches are similar. On the other hand, when the data sizes
are increased, DataSteward outperforms the collocated storage with more than 15 %. This
is due to 2 reasons. First, for both approaches, the underlying BlobSeer backend splits data
into chunks scattered across the federated virtual disks; so even with the collocated stor-
age not all data accessed by a client is always entirely present on the local VM. Moreover,
the throughput is determined both by the network bandwidth, which is the same in both
setups, and by the CPU’s capability to handle the incoming data. The later is better lever-
aged by DataSteward which separates computation from communication. Secondly, with
increasing sizes of data operated by a client, a poor management of the network links be-
tween the VMs leads to a faster saturation of the network. This can be observed for sizes
beyond 200 MB, for which TomusBlobs riches its upper bound of performance faster. It is
not the case for DataSteward which, thanks to its topology-aware distribution strategy of
data nodes, manages the network better, resulting in a higher upper bound for I/O through-
put. These observations demonstrate that our approach delivers high-performance being a
viable option for Big Data applications.

Scenario 2: Memory usage for a scientific application. Many scientific applications have
rigid resource constraints and their successful execution depends on meeting these criteria.
An important feature brought to cloud applications by our proposal is a better usage of their
VMs resources (CPU, memory and disks). The goal of this evaluation is to analyze to what
extent does sharing the VMs for managing data affects the computation. To perform this
analysis, we used a bio-informatics application which enables a configurable execution in
terms of memory usage. The computation performs the Kabsch algorithm [105], which com-
putes the optional rotation matrix that minimizes the root mean squared deviation between
two sets of data. This algorithm is used in many scientific computations from fields like
statistical analysis or cheminformatics for molecular structures comparison.

The experimental methodology consisted in running the application with increasing
amounts of memory used for the actual computation. The remaining memory is assigned to
the collocated storage, for which we used the TomusBlobs approach as before. The execu-
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Figure 10.6: The execution time of the
Kabsch-based application on a fixed set of
input data. The percentage of the VM mem-
ory used by the application is increased,
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Figure 10.7: At left, the total time spent
to compress and geographically replicate
100 MB of data from the Kabsch-based ap-
plication, when these operations are per-
formed on the application nodes and with
DataSteward. On right, we show the gains
in compression rate obtained when data is
aggregated first from multiple nodes, before
compressing it.

tion times of this scenario were compared with the case in which all the memory of the VMs
is used for computation and the storage is handled by DataSteward, located on dedicated
nodes. The results are shown in Figure 10.6. As for many similar applications, using more of
the VMs resources can reduce the computation timespan (see the different times when using
the collocated storage). Nevertheless, performing auxiliary tasks to support the main com-
putation, such as handling data, also requires a share of the compute infrastructure. Our
dedicated node approach solves these contradicting constraints. The application can har-
ness all its local computing resources while the data is available at a high access rate within
the deployment. Therefore, DataSteward reduces the execution timespan (computation and
data handling time) for such scenarios to half compared to a collocation strategy.

10.3.3 Data Processing Services for a Scientific Application

Finally, we evaluate the 3 data processing services provided by the DataSteward: data com-
pression, geographical replication and the toolkit for file group operations. For this analysis
we consider two sets of data. First we use the data computed by the Kabsch-based appli-
cation, having a size of approximately 100 MB, which is compressed and geographically
replicated from the European to the United States data center. The second data set is the
28,000 log files, each file having a size less than 10 KB, resulted from the A-Brain experiment
described in Chapter 9. The most common operation on these files, performed during the
long-running experiment, are used to assert the benefits brought by the toolkit for file group
operations of DataSteward.

We start the evaluation with the data compression and geographical replication services
offered by DataSteward. We compare them with the default option for obtaining these func-
tionality, in which each users implements the corresponding logic on the application nodes
(i.e., collocation), therefore adding an extra-overhead to the main computation. The exe-
cution times are depicted in Figure 10.7. The evaluation scenario considers the total times,
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Figure 10.8: The timespan of executing recurrent operations from scientific experiments on
28000 monitor files, when the operations are supported and executed by the storage service
or implemented at client side.

shown in left of Figure 10.7, to write the data to the storage system, compress it and transfer
it to the remote data centers. Additionally, we present in right side of Figure 10.7 the levels
of compression achieved when the operation is applied independently on each file, as in the
case where the functionality is provided on each node (i.e., collocated), or collectively on the
entire data set (i.e., dedicated). The price paid by DataSteward to execute these operations
non-intrusively is an extra transfer from the application nodes to the dedicates storage node.
Such a transfer is not required when each node handles its own data locally, therefore the
missing “read” label for the collocated option in Figure 10.7. Nevertheless, the overall execu-
tion time is reduced by 15 % with DataSteward. This is because it is more efficient to transfer
locally and then compress all the aggregated data at one place than to do it independently
on small chunks in the application nodes. Building on this grouping of data, DataSteward
is able also to obtain up to 20 % higher compression rates. This is a representative result
for other scientific applications, showing that our solution can exploit better the similarities
(e.g., spatial, temporal) between the partial results computed per partitioned domain.

Handling large number of files. Big Data experiments generate and handle a large num-
ber of files: input, output, intermediate, log or monitoring data. Dealing with many files,
either directly, by users, or autonomously, by the system, can be complex and takes time, es-
pecially if the necessary functionality is missing. To this purpose, we evaluate the efficiency
with which DataSteward is able to perform operations on large groups of files as opposed
to implementing these operations on top of the cloud storage. Figure 10.8 presents the ex-
ecution times for these two options, for several file operations commonly observed during
long-running experiments. As a data set, we use the 28000 monitoring files of the map tasks,
from the A-Brain experiment. It can be observed that not only the cloud storage does not
provide such functionality, but it also fails to support it efficiently for the applications com-
pute nodes which implement it. DataSteward solves this issue by providing, through an
extended API, file group operations at server side (i.e., in the compute nodes that hold the
data). As a result, the time to manage the files, regardless the performed operation, is re-
duced with one order of magnitude. Such functionality eases and shortens the job of the
scientists to prepare, deploy and manage their experimental environment in the clouds.
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10.3.4 Going Further

The motivation to use a dedicated infrastructure inside the deployment was to enable a set
of data services that deliver the power and versatility of the cloud to users’ applications. The
idea is to exploit the compute capabilities of the storage nodes to deploy data specific services
to extend the current basic support for managing data. Such services cannot be run other-
wise on the application nodes or, executing them in collocation would harness application
resources and impact on the overall performance. DataSteward provides three advanced
data services, which provide substantial benefits for scientific processing. In this section,
we briefly introduce several other services that can leverage for Big Data applications the
dedicated storage infrastructure.

Cache for the persistent storage. Its role would be to periodically backup into the cloud
persistent storage the data from the dedicated storage nodes. The approach extends
the hierarchical memory design principle introduced for TomusBlobs in Section 7.4
into an autonomous service, transparent to applications. As a result, the DataSteward
storage alongside with all the provided services would be complemented with per-
sistence capabilities, following closely the structure of the physical storage hierarchy:
machine memory, local and network disks, persistent storage. For critical systems, this
service can be coupled with the (already provided) geographically replication one. As
a result, data can be backed-up across geographical-distinct cloud storage instances,
guaranteeing data availability against disasters or data center outages. The client ap-
plications would access any storage only through the dedicated nodes. If the data is not
available within the deployment (e.g., in case of a crash that affects all replicas of a data
object), then the object is copied from the persistent storage, cached locally and made
available to applications. Furthermore, different caching policies can be provided to
accommodate specific needs and behavior of applications.

Cloud introspection as a service. The cloud model, as it is defined today, hides from users
applications all infrastructure aspects: load, topology, connection routes, performance
metrics, etc. On the one hand, this simplifies the task of building and deploying a
cloud application, but on the other hand it prevents applications to optimize the usage
of the leased resources. The proposed selection strategy demonstrates the benefits that
topology information can bring for applications. Therefore, building on the clustering
scheme presented in Section 10.2, one can design an introspection service that could re-
veal information about the cloud internals. Such a service would not contradict the
current cloud model nor it would complicate in any way the development and the
administration of applications, but would only provide extra knowledge for the inter-
ested parties. In a geographically distributed setting, this could result in applications
having an intuition of the number of data centers, their location (i.e., latency) or in-
terconnecting links. Within a data center, they can learn the type of topology used,
the available bandwidth within and across the deployment or the number of physical
machines and racks. The ability provided by our approach to collect large numbers of
latency, bandwidth and throughput estimates without actively transferring data, pro-
vides applications an inexpensive way to infer the cloud’s internal details. These hints
can be used for topology-aware scheduling or for optimizing large data transfers. We
further develop on this direction in the next chapters.
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Geographically distributed data management. Supporting the management of data across
geographically distributed sites is critical for Big Data applications as well as for fed-
erated clouds (“sky computing” [107]), as discussed in Section 9.3. DataSteward can
address this issue by hosting a data transfer system on the dedicated nodes, while
remaining non-intrusive to applications. This approach will mitigate the large-scale
end-to-end data movements from the application to the data management service. Ad-
ditionally, the compute capabilities, harness by DataSteward from the underlying com-
pute nodes, can overcome the existing low throughput over wide-area networks which
interconnects the cloud data centers. The service will act as an intelligent proxy for ap-
plications, by efficiently utilizing multicast schemes and effectively scheduling data
transfer tasks in order to minimize data movements across data centers. This idea is
developed and discussed in the next chapters, where we address the high-performance
aspects of inter-data center communication.

Clearly, this list is not exhaustive. Other similar services can be defined by users and
deployed on the dedicated nodes, following the extensibility principle presented in Sec-
tion 7.4. The goal is to provide a software stack on top of the storage nodes, following a
data processing-as-a-service paradigm. This “data steward” will be able, on the one hand,
to optimize the storage management and the end-to-end performance for a diverse set of
data-intensive applications, and on the other hand, to prepare raw data issued/needed by
experiments into a science-ready form used by scientists.

10.4 Discussion

Many scientific applications are required to manage data in the VMs, in order to achieve new
functionality or a higher throughput while reducing costs. However, doing so, raises issues
regarding intrusiveness and reliability. To address such issues, we propose DataSteward, a
data management system that provides a higher degree of reliability while remaining non-
intrusive through the use of dedicated nodes. DataSteward aggregates the storage space of
a set of dedicated nodes, selected based on a topology-aware clustering algorithm that we
designed. The computation capabilities are capitalized through a data management layer
which provides a set of scientific data processing services that can overlap with the running
applications. We demonstrated the benefits of this approach through extensive experiments
performed on the Azure cloud. Compared to state of the art node selection algorithms,
we show up to 20 % higher throughput. Compared to collocating data and computation
strategy, our dedicated node approach reduces the execution times of scientific applications
to half.

Encouraged by these results, next, we extend the service layer of DataSteward with ad-
ditional data services that can facilitate Big Data processing on the clouds. In particular,
we are interested to complement the user perspective with other topology-related informa-
tion for enabling environment-aware optimizations and scheduling. Moreover, we focus on
how we can capitalize on this compute capacity available to DataSteward, in order to offer
high-performance transfers across data centers at configurable costs. The goal is to extend
DataSteward as an enriched data management service for Big Data applications. These as-
pects are addressed in the next chapters of this thesis.
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This chapter develops the contributions published in the following paper:

• Bridging Data in the Clouds: An Environment-Aware System for Geograph-
ically Distributed Data Transfers. Radu Tudoran, Alexandru Costan,
Rui Wang, Luc Bougé, Gabriel Antoniu. In Proceedings of the 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID 2014), Chicago, IL, US, May 2014, pp. 92-101

Scientific applications are being ported on clouds to leverage the inherent elasticity and
scalability of these emerging infrastructures. From large-scale scientific experiments (e.g., for
climate modeling, genetics, high-energy physics) to global commercial online applications
(e.g., office tools, data warehouse backup mechanisms, search engines, recommendation sys-
tems), all share a common feature. They produce and handle large data sets, in a highly ge-
ographically distributed manner. To enable such Big Data processing, cloud providers have
set up multiple data centers at different geographical locations around the Globe. In such
a setting, sharing, disseminating and analyzing the data sets results in frequent large-scale
data movements across widely distributed sites. However, the existing cloud data man-
agement services lack mechanisms for dynamically coordinating transfers among different
data centers with reasonable QoS levels and suitable cost-performance trade-off. Being able
to effectively use the underlying compute, storage and network resources has thus become
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critical for wide-area data movements as well as for federated cloud settings; as shown also
by the A-Brain Big Data experiment, discussed in Chapter 9.

The handiest option to handle data distributed across multiple data centers is to rely
on the cloud storage service. This approach allows to transfer data between arbitrary end-
points by intermediately storing it. Several systems adopt this approach to manage data
movements over wide-are networks [112, 129]. Such services focus on data storage primar-
ily and support other functionality essentially as a “side effect”. Typically, they are not con-
cerned by achieving high throughput nor by potential optimizations or differentiated QoS,
e.g., cost/performance trade-off. A number of alternative solutions emerged in the context
of the GridFTP [3] transfer tool, initially developed for grids and then adapted to clouds.
Among these, the most representative is GlobusOnline [4], which provides file transfers
through intuitive Web 2.0 interfaces. However, Globus Online only performs transfers be-
tween GridFTP instances. It remains unaware of the environment and therefore its transfer
optimizations are mostly done statically. Moreover, the framework focuses on administrat-
ing and managing warehouse/grid files rather than interconnecting application instances
running across data centers. Alternative approaches (some being extensions appeared in the
context of aforementioned GridFTP) build on the network parallelism to increase the transfer
performance, using multi-hop path splitting [109, 118] or multiple paths [148] to replace di-
rect TCP connections. Others transfer mechanisms exploit the end-system parallelism through
parallel streams [80] or concurrent transfers [119].These solutions come at some costs: under
heavy load, per-packet latency may increase due to timeouts while extra memory is needed
for the receiving buffers. Additionally, these techniques cannot be ported to the clouds, since
they rely strongly on the underlying network topology, inaccessible at the user-level. More-
over, the parameters which these systems tune statically do not consider the important cloud
aspects such as costs, interconnecting routes between VMs or inter-site latencies.

Our approach in a nutshell. To address the problem of data dissemination across geo-
graphically distributed sites we introduce a cloud-based data transfer system which dy-
namically exploits the network parallelism of clouds via multi-route transfers, offering pre-
dictable cost and time performance. The problem of low and unstable interconnecting
throughput between data centers is addressed through enhanced data management ca-
pabilities which adopt in-site replication for faster data dissemination according to cost-
performance constraints. The nodes involved in the replication scheme are used as inter-
mediate hops to forward data towards destination. In this way, extra bandwidth capacity is
aggregated and the cumulative throughput of the system is increased. Moreover, our system
automatically builds performance models for the cloud infrastructure, in order to efficiently
schedule the data transfers across the intermediate nodes and effectively utilize these re-
sources. To this purpose, the system monitors the environment, and estimates dynamically
the performance models for cloud resources to reflect the changing workloads or varying
network-device conditions. The key idea is to predict I/O and transfer performance in order
to judiciously decide how to perform transfer optimizations over federated data centers. In
terms of efficiency and usage, the approach provides the applications with the possibility to
select a trade-off between cost and execution time. The transfer strategy is then optimized
according to the trade-off. The results show that the approach is able to reduce the financial
costs and transfer time by up to 3 times.
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11.1 An Environment-Aware Approach for Inter-Site Transfers

Application instances running across multiple data centers require efficient tools for com-
munication and data exchanges. In addition to providing such functionality, one needs to
consider integrating it into a uniform data management system alongside with the storage
and other data services. Otherwise, dealing with multiple data-specific APIs can make the
task of migrating and executing scientific applications on the clouds complex. Therefore, we
extend the DataSteward storage approach, discussed in Chapter 10, with a high-performance
transfer system. Moreover, the solution builds on the idea of an introspection service for the
cloud environment by monitoring, modeling and predicting resources performance. The
approach is designed for any application as it runs in user-space without requiring modi-
fications to the cloud middleware nor elevated privileges. In the process of designing the
solution, we extended the list of design principles introduced for TomusBlobs in Chapter 7.1
and DataSteward in Chapter 10.1 with 3 additional ones.

Environment awareness. Cloud infrastructures are built on commodity hardware and ex-
ploited using a multi-tenancy model. This leads to variations in the delivered per-
formance of the nodes and the communication links. Monitoring and detecting in
real-time such changes is a critical requirement for scientific applications which need
predictable performance. The monitoring information can then be fed into higher-level
management tools for advanced provisioning and transfer scheduling purposes over
wide-area networks. This helps removing the performance bottlenecks one by one
and increases the end-to-end data transfer throughput. Furthermore, this information
about the environment is also made available to applications as a stand-alone service,
i.e., introspection as a service.

Modeling cloud performance. The complexity of data center architectures, topologies and
network infrastructures make simplistic approaches for dealing with data transfers
less appealing. Simply exploiting system parallelism will most often incur high costs
without reliable guarantees about the delivered performance. Such techniques are at
odds with the typical user goal of reducing costs through efficient resource utilization.
Therefore, accurate performance models are needed, leveraging the online observa-
tions of the cloud behavior. Our goal is to monitor the virtualized infrastructure and
the underlying network and to predict performance metrics (e.g., transfer time or costs
estimations). The main idea is to build these performance models dynamically and use
them to optimize data-related scheduling tasks. As such, we argue for an approach
that on the one hand provides enough accuracy for automating self-optimization of
the data management; and on the other hand, remains simple and thus applicable in
any scenario.

Cost effectiveness. As one would expect, cost closely follows performance. Different trans-
fer plans for the same data may result in significantly different costs. Additionally,
simply scaling the resources allocated for a task might remain inefficient as long as
potential performance bottlenecks are not taken into account. In turn, this leads to
unjustifiable expenses and resource wasting. Hence, a question that can be raised is:
given the cloud interconnecting offering, how can an application use it in a way that meets
the right balance between cost and performance? Our approach addresses this challenge
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Figure 11.1: Architecture of the geographical distributed data management system.

by matching the resources costs with their delivered performance. As a result, ap-
plications are provided with the option of setting the desired trade-off between these
aspects, choosing how much they spend to reach a certain performance level.

Our system relies on three components, refereed to as agents. These agents provide the
following services: monitoring, data transfers and decision management. Agents are repli-
cated on the VMs in the data centers where the application instances are running. The global
architecture, denoted GEO-DMS, is depicted in Figure 11.1. The system is self-configurable,
i.e., the instance within each VM discovers its peers automatically using the user credentials
to query the cloud middleware about other deployments of the application from different
sites (we recall that a deployment, described in Section 3.2, is limited to a single site). The
resulting interconnected network is then used by each instance of the service to aggregate
bandwidth by routing data packets across multiple data centers.

Applications simply interact with the local data management service to perform wide-
area transfers using its extended API, complying with the principles of the DataSteward
approach. Moreover, for easily integrating the approach with the other data services de-
scribed in Chapter 10, the prototype was implemented in C# and validated on the Microsoft
Azure cloud. The backbone of the system is a layered class hierarchy with approximately
50 classes, structured in three main modules corresponding to the conceptual components.
This hierarchy is organized in a mostly single-rooted class library (i.e., the grouped classes
inherit from a common class) following the abstract factory design pattern. Next, we present
these 3 architectural entities and their functionality.

The Monitoring Agent (MA) has the role to monitor the cloud environment and report
the measurements to a decision manager or to applications (i.e., providing introspection as
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a service). Using the tracked data, a real-time online map of the cloud network and resource
status is constructed and continuously updated. The metrics considered are: available point
to point bandwidth, I/O throughput, CPU load and memory status. Additionally, cloud spe-
cific parameters, such as inter-site links and available routes across VMs are also accounted
for, unlike any of the related works [80, 109, 118, 148]. New metrics can be easily defined
and integrated using pluggable monitoring modules (see the extensibility principle of To-
musBlobs in Section 7.4). The Monitoring Agent has also the role to record the monitoring
history. Such a feature is important from two perspectives: on the one hand, the tracked logs
are used by the scientists to understand and profile their cloud application executions better,
and on the other hand, it provides the base functionality for a self-healing system.

The Monitoring Agent is designed as an ensemble of autonomous multi-threaded, self-
configured subsystems which are registered as dynamic services, and are able to collaborate
and cooperate in performing a wide range of information gathering tasks. In order to min-
imize intrusiveness on host systems, a dynamic pool of threads is created, and the threads
are reused when a task assigned to a thread is completed. We have also set a customizable
intrusiveness threshold, which limits the monitoring sampling frequency. This option is
used for example by the decision manager to suspend the throughput measurements during
transfers, as this information can be collected on the fly. The Monitoring Agent implements
the monitored metrics as follows: the available bandwidth between the nodes and between
the data centers is gathered using the iperf software [99]; the throughput performance and
availability of interconnecting VM routes are computed by timing random data transfers;
CPU and memory performance is evaluated based on a small benchmark, that we have im-
plemented based on the Kabsch algorithm presented in Section 10.3.2.

The Transfer Agent (TA) performs the data transfers and exposes a set of functions used
to exploit the network parallelism (e.g., direct_send, forward_sending, read, split, etc.)
These functions are primarily used by the Decision Manager internally, to coordinate data
movements across multiple routes over VMs and data centers. Data packets will be routed
from one transfer agent to another, being forwarded towards the destination. In this way, the
transfer agents exploit multiple paths aggregating the interconnecting bandwidth between
data centers. Additional transfer optimizations include: data fragmentation and recomposi-
tion using chunks of variable sizes, hashing, acknowledgment for avoiding data losses and
duplications of packages. One might remark that the at application level acknowledgment-
based mechanism is redundant, as similar functionality is provided by the underlying TCP
protocol. We argue that this can be used efficiently to handle and recover from possible
cloud nodes failures, when intermediate nodes are used for transfers. For example, a packet
which does not arrive at destination due to a failure of an intermediate node is resent by the
sender through a different path. This action is generated after the expiration of the timeout
period to receive the acknowledgment, or when an explicit request from receiver is received
that marks missing packets in the data sequence. The mechanism is also used to monitor the
ongoing transfers and to provide live information about the achieved throughput and the
progress to completion by providing feedback from receiver to sender about transfer stats.

The Transfer Agent implements the data movements using parallel TCP streams. The
parallelization of the transfer is done at the cloud node level: data is not entirely sent directly
to the destination node, but parts of it are sent to intermediate nodes, i.e., other transfer agents
from nodes located both in the same site and in other geographically distinct sites. This
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approach leverages the empirical observation that intra-site transfers are at least 10x faster
than the wide-area transfers and that the cloud architecture facilitate the routing of the pack-
ets through different switches, racks and network links. The intermediate nodes are then
forwarding the data towards the destination, exploiting the multiple parallel paths existing be-
tween data centers. Data is sent as chunks extended with metadata information. Metadata is
used for implementing the aforementioned mention optimizations: hashing, deduplication,
routing or requests for acknowledgment stats. Additionally, it is used for recomposing the
data at destination, as packets can arrive in any order depending on the distinct physical
paths taken. The data transfer functions are made available via the extended API service in-
troduced by DataSteward, using a set of simple commands similar to the FTP ones. Hence,
the Transfer Agents can be controlled and used both locally as well as from remote locations,
e.g., from other nodes, data centers, or from users on premise machines. The motivation of
making all this functionality openly available is to provide users and workflows with the
possibility to integrate data management into their own operations logic.

The Decision Manager (DM) coordinates the transfer from the source(s) to the destina-
tion(s), orchestrating the data flow, implemented by Transfer Agents, either through direct
paths between sites or using also intermediate data centers. The application specifies the
transfer parameters at the start of the transfer, providing the destination and either a pref-
erence trade-off between completion time and cost or absolute values for either of them.
Based on these parameters and on the cloud status, the decision manager selects the appro-
priate number of resources to perform the transfer, so that it meets the requested efficiency
constrains. By considering the global infrastructure (i.e., the data centers available for trans-
fers), the manager decides whether the transfer is done directly between the nodes from the
source and destination data centers, or using additional sites as intermediate hops. This se-
lection is updated at specific intervals based on the cloud estimated performance, in order to
reflect the inherent cloud resource variability. The decision manager considers the network
of Transfer Agents to be similar to a global peer-to-peer network, on top of which it sched-
ules and coordinates the multi-path transfers towards the destination. Although an instance
of the Decision Manager is deployed on each nodes, for availability, each transfer is handled
by a single entity, typically the one contacted by the application to initialize the transfer.

The Decision Manager schedules transfers using a set of modeling and prediction com-
ponents that it implements. Based on them, the efficiency of the transfer is predicted at
the beginning at the transfer, and then iteratively updated as the transfer progresses. The
decision manager selects the optimal paths to be used. Then, it selects which nodes and
resources to be provisioned, based on the time/cost prediction models, in order to comply
with the transfer constraints requested by the application. For instance, it computes whether
any economical benefit is brought by a set of resources or if the transfer cost is within the
limit. Additionally, it checks if by using an increased number of nodes for parallel streaming
of data, the completion time can be significantly reduced. The complete scheduling algo-
rithm and the prediction models are presented in the next section. Moreover, the Decision
Manager is also in charge of setting and adjusting the chunk sizes sent across each interme-
diate nodes, in agreement with the Transfer Agents, in order to maximize the resource usage
and preserve the non-intrusiveness level within the imposed user limit. Finally, it has the
role to supervise that the QoS performance obtained from the leased nodes meets the SLA
advertised by the cloud. To this end, it detects any drops in resource performance and ei-
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ther replaces them from specific tasks or/and interacts with the cloud middleware to change
them from the application deployment.

11.2 The Cost of Performance across Data Centers

Multiple factors like multi-tenancy, wide-area networks or commodity hardware contribute
to performance variation in a cloud environment [59]. Therefore, estimating the time or cost
to perform an operation is not straightforward. The solution we propose to deal with this
challenge is to monitor the environment and model its performance, which is then mapped
with the costs and completion times of data operations. There are two options for modeling
such complex infrastructures. Analytical models predict the performance of the underlying
resources using low-level details about their internals alongside with workload character-
izations. Although less expensive and faster than empirical models, they rely on simpli-
fied assumptions and require complex computation and sufficient details (e.g., applications,
workload, infrastructure etc.) for better modeling. Due to the limited knowledge available
in user space, such an approach is not adequate for clouds. Moreover, this option is not
generic enough as it depends on the workload. Sampling methods perform active measure-
ments of the targeted resources and do not require understanding the increasingly-complex,
and mostly hidden, cloud internals. Our technique falls in the empirical, sample-based cate-
gory. In this section we describe it, and then show how it is used for to predict the efficiency
of transfers and to schedule them based on cost/completion-time trade-off.

11.2.1 Cloud Data Transfer Model

Modeling the cloud performance in time, based on the monitored samples, implies some
form of time series analysis. The approach consists in taking a (sub)set of the collected sam-
ples points and defining a parametrized relation between samples (or between samples and
the samples to be integrated), which defines the model. This model is then used to per-
form predictions. Many works have been proposed in the area [26, 41, 166, 176], either fo-
cusing on optimizing the prediction accuracy for precise scenarios or proposing complex
computational methodologies (e.g., clustering, classification, regressions, kernel-based etc.)
to generally address the analysis. Applying such advanced time series techniques involves
significant computations, which contradicts with our goal of providing a non intrusive so-
lution. Additionally, it requires fine-grained refinements of the model’s parameters, which
is not easily done in the virtualized cloud environment nor always applicable without prior
analysis. We take a different approach and design a simple technique, with low resource
footprint, for integrating the newly collected monitored samples at runtime.

Our approach consists in making estimations about cloud performance, represented by
any of the tracked metrics implemented by the Monitor Agent, based on information (i.e.,
samples) collected through monitoring. The model focuses on the delivered performance
(i.e., what efficiency one should expect) and the instability of the environment (i.e., how
likely is it to change). The main goal is to make accurate estimations but remain generic,
such that the model is applicable regardless the monitored metric. Moreover, we account
also for the potential cloud instability. To address this, we propose to weight the trust given
to each sample dynamically, based on the environment behavior observed that far. The



128 Chapter 11 – Bridging Data in the Clouds

resulting inferred trust level for the sample is then used to update the knowledge about the
environment performance (i.e., to define the relation between samples).

The monitoring information used for performance estimation is collected in two phases:
an initial learning phase, at deployment start-up (in case of DataSteward-based deployments
this phase overlaps with the node selection process, described in Section 10.2); and a con-
tinuous monitoring phase during the lifetime of the deployment. The measurements are
done at user configurable time intervals, in order to keep the system non-intrusive to the
application. The model consists in defining the time series relation (for both cloud average
performance and variability) between accumulated samples and the new samples. This is
applied at each time moment i. We use a fixed number of previous samples, denoted h. Let
S be the value of the monitored sample to be integrated in the model at that moment.

The proposed time series relations are shown in Equation 11.1 for the cloud average per-
formance, denoted µ, and in Equation 11.2 for the corresponding variability, denoted σ. As it
can be observed, we use a moving average between the history samples and the new sample
(i.e., (h−1)×existing_knowledge+new_knowledge

h ). However, to account for the cloud variability, the
new sample is weighted (w) and integrated proportionally with the current average. Thus,
we compute the new_knowledge as the weighted mean between the sample and the previous
average (i.e., new_knowledge = (1− w) ∗ µi−1 + w ∗ S), thus obtaining Equation 11.1. For
computing the variability between samples, one could rely on the default formula for stan-

dard variability, i.e., σi =
√

1
h ∑h

j=1(xj − µi)2. However, this would require to memorize all h
previous samples. To save memory, we rewrite (i.e., raise to power and break the sum) the
standard variability equation, at moment i, based on its previous state, at moment i− 1. For
modeling these states iteratively at successive time moment, we introduce the γ parameter
in Equation 11.3, as an internal parameter, based on which we update the variability (σ).
The resulting formulas are shown in Equations 11.2 for variability and Equation 11.3 for the
internal parameter.

µi =
(h− 1) ∗ µi−1 + [(1− w) ∗ µi−1 + w ∗ S]

h
(11.1)

σi =
√

γi − µ2
i (11.2)

γi =
(h− 1)× γi−1 + w× γi−1 + (1− w)× S2

h
(11.3)

As aforementioned, our approach consists in weighting each sample individually and
integrating it proportionally. Properly and dynamically selecting the weight is important as
it enables both to filter out temporal performance glitches and to react to actual performance
changes. Therefore, to define such a weighting strategy we rely on the following principles.

• A high standard deviation will favor accepting any new samples (even the ones farther
from the known average), as it indicates an environment likely to change.

• A sample far from the average is a potential outlier and it is weighted less.

• Less frequent samples are weighted higher, as they are rare and thus more valuable
than frequent samples.



11.2 – The Cost of Performance across Data Centers 129

We synthesize these weighting strategy in Equation 11.4. We model the first 2 previous

principles using the Gaussian distribution (i.e., (e−
(µ−S)2

2σ2 ). The choice comes naturally as this
distribution enables to compute the weight according to the observed variability and the
distance of the sample from the known average. The third principle is modeled such that
the time frequency of the samples (t f ) within a time reference interval (T) gives the weight
(i.e., t f

T . However, in order to adjust this model to weight higher the less frequent samples
(e.g., having only 1 sample in the time reference T should be weighted more than having
T samples — the maximum), we subtract their ratio from 1. Finally, we average these two
components and obtain the normalized weight in Equation 11.4, with 0 meaning no trust
and 1 indicating full trust for the sample. For weight values of 1, Equation 11.1, becomes
the time series formula for moving average. This shows that our model regards all samples
equally only in stable environments with samples distributed uniformly.

w =
e−

(µ−S)2

2σ2 + (1− t f
T )

2
(11.4)

11.2.2 Efficiency in the Context of Data Management

Efficiency can have multiple meanings depending on the application context and the user
requirements. The declinations we focus on, which are among the most critical in the context
of clouds, are the transfer time and the monetary cost. Therefore, we extend and apply the
proposed performance model to characterize these aspects for data transfers across cloud
data centers.

The Transfer Time (Tt) is estimated considering the number of nodes (n) that are used to
stream data in parallel. These are the nodes holding Transfer Agents, which are used
by the Decision Manager to route data packets across multiple paths. The second pa-
rameter used in the estimation of the transfer time is the predicted transfer throughput
(thrmodel). This is obtained from the previously described performance model applied
to the monitor information collected about the cloud links. Let gain is the time reduc-
tion obtained due to the use of parallel transfers. This value is determined empirically
and has values less than 1, i.e., 1 represents a perfect speedup. The speedups obtained
with respect to the degree of parallelism (i.e., number of nodes used) are analyzed in
Section 11.3.3. Equation 11.5 gives the transfer time by adjusting the default method of
computing transfer time (i.e., Size

Throughput ) with the performance gained due to parallel

transfers (i.e., 1
1+(n−1)×gain ). The formula for the reduction coefficient is obtained as fol-

lows. For non parallel transfers (i.e., n = 1) there is no time reduction, this coefficient is
canceled, thus the n− 1 term. For actual parallel transfers, we associate the reduction
gain with the parallelism degree. Finally, we invert the coefficient function and make
it decrease from 1 to 0 in order to give the time reduction (e.g., if we would model the
throughput, this last stage would not be necessary as the throughput increases with
the parallel transfers).

Tt =
Size

thrmodel
× 1

1 + (n− 1)× gain
(11.5)
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The Cost of a transfer across data centers is split into 3 components. The first part corre-
sponds to the cost charged by the cloud provider for the amount (Size) of outbound
data (outboundCost), as usually inbound data is free. If these would change in the fu-
ture, our model can integrate the new reality by simply adding this cost component in
a similar manner. The other two cost components represent the cost derived from leas-
ing the VMs (with n being the number of VMs) which perform the transfer. These price
components are the costs associated with the used network bandwidth (VMCBand) and
the CPU cycles used (VMCCPU). However, these VMs are not always fully used for a
transfer. Therefore, we assign a percentage for the usage level of these resources. This
percentage is in fact the intrusiveness level (Intr), or the resource footprint, generated
by the transfer. The cost of these components is thus computed by multiplying usage
time (Tt) with the used resources and the cloud prices. The final cost is obtained by
adding these components, as shown in Equation 11.6, which is rewritten to factor out
common terms. For simplifying the model, we considered that each of the n nodes
sends the same amount of data, resulting in Size

n data sent per node.

Cost = outboundCost × Size + n× Intr× Tt×VMCCPU + n× Intr×
Size

n
Tt
×VMCBand

(11.6)

In addition to the estimations about the transfer time and cost, this model offers another
important befit.It captures the correlation between performance (time) and cost (money).
This enables our system to adjust the trade-off between them dynamically during transfers.
An example of such a trade-off is setting a maximum cost for a data transfer. Based on
this budget, our solution is able to infer the amount of resources to use.Moreover, as the
network or end-system performance can drop due to cloud resource performance variations,
the system rapidly detects the new context and adapts to it in order to meet the budget
constraints. Finally, our approach offers to applications an evaluation of the returned benefit
from the leased resources. In turn, applications can leverage this knowledge to select their
optimal expense.

11.2.3 Multiple Data Center Paths Transfer Strategy

Sending large amounts of data between two data centers can rapidly saturate the available
interconnecting bandwidth. Moreover, as our empirical observations show, the direct con-
nections between two data centers is not always the fastest one. This is due to the differ-
ent ISP infrastructures which interconnect the data centers, as these networks are not the
property of the cloud providers. Considering that applications run on multiple sites, an in-
teresting option is to use these sites as intermediate hops between source and destination.
Therefore the transfer approach that we propose relies on multiple hops and paths instead
of using just the direct link between the source and destination sites.

A similar idea for maximizing the throughput was explored in the context of grids. Sev-
eral solutions were proposed in conjunction with the GridFTP protocol [108, 109]. How-
ever, for these private grids infrastructures, information about the network bandwidth be-
tween nodes as well as the topology and the routing strategies are publicly available to any
users. Using this knowledge, transfer strategies can be designed to maximize certain heuris-
tics [109]; or the entire network of nodes across all sites can be viewed as a flow graph and
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the transfer scheduling can be solved using flow-based graph algorithms [108]. Neverthe-
less, in the case of public clouds, information about the network topology is not available to
users. Regarding flow-graph algorithms, the missing information about the topology, which
can partially be replaced by monitoring, would require a prohibitive intrusiveness level.
All interconnecting links between nodes would need to be constantly monitored. Worse,
the throughput of a link between data centers varies with the number of nodes used (see
Section 11.3.3). Therefore, the links have to be monitored also for their performance when
different number of parallel streams are used. Gathering such information to apply a flow-
graph solution to maximize throughput via parallel transfers is clearly not efficient.

Selecting the transfer paths. We take a different approach to solve the paths selection prob-
lem across cloud data centers. The key idea is to consider the cloud as a 2-layer graph. At
the top layer, a vertex represents a data center. Considering the small number of data cen-
ters in a public cloud (i.e., less than 20), it is very quick to perform any computations on
this graph, e.g., determine the shortest path or second shortest path. On the second layer,
each vertex corresponds to a VM of the system within a data center. The number of such
nodes depends on each application deployment and can be dynamically scaled, according
to the elasticity principle of the clouds. These nodes are used for fast local replication of
data with the purpose of transferring data in parallel streams, as detailed for the Transfer
Agents. As such nodes are allocated for the transfer, they aggregates bandwidth. The rela-
tion between layers is that the aggregated bandwidth at bottom layer is used in the top layer
for computing the inter-site paths, as follows. The best path, direct or across several sites, is
found and selected. Then, its throughput is increased by adding resource on it. However,
as the throughput gains brought by the new resources on a path decrease, we also consider
switching to different paths. As a result, our approach finds the best transfer topology using
multiple paths across nodes and data centers.

Algorithm 4 implements this approach. The first step is to select the shortest path (i.e.,
the one with the highest throughput) between the source and the destination data centers
(Line 5). Then, building on the elasticity principle of the cloud, we try to add nodes to this
path, within any of the data centers that belongs to this shortest path, in order to increase
its cumulative throughput (Lines 10–15). More nodes add more bandwidth, translating into
an increased throughput. However, as more nodes are successively added along the same
path, the additional throughput brought by them will become smaller with each new added
node (e.g., due to network interferences and bottlenecks). To address this issue, we consider
also the next best path (computed in the Algorithm 4 at Lines 7–8). Having these two paths,
we can compare at all times the gain of adding the node to the current shortest path versus
adding a new path (Line 12 in Algorithm 4). Hence, nodes will be added to the shortest
path until their gains become smaller than the gain brought by a new path. When this is
the case, this new path is added to the transfer network. The trade-off between the cost
and performance, discussed in Section 11.2.2, is controlled and set by the user through the
budget. This specifies how much the user is willing to pay in order to achieve higher per-
formance. Our solution increases the number of intermediate nodes in order to reduce the
transfer time as long as the budget allows it. More precisely, the system selects using the
cost/performance Model from Section 11.2.2 the largest number of nodes, which keeps the
cost defined in Equation 11.6 smaller than the budget (Line 2 in Algorithm 4).
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Algorithm 4 The multi-path selection across data centers

1: procedure MULTIDATACENTERHOPSEND
2: Nodes2Use = Model.GetNodes(budget)
3: while SendData < TotalData do
4: MonitorAgent.GetLinksEstimation();
5: Path = ShortestPath(in f rastructure)
6: while UsedNodes < Nodes2Use do
7: deployments.RemovePath(Path)
8: NextPath = ShortestPath(deployments)
9: UsedNodes+ = Path.NrO f Nodes()

. // Get the datacenter with minimal throughput
10: Node2Add = Path.GetMinThr()
11: while UsedNodes < Nodes2Use &
12: Node2Add.Thr >= NextPath.NormalizedThr do
13: Path.UpdateLink(Node2Add)
14: Node2Add = Path.GetMinThr()
15: end while
16: Trans f erSchema.AddPath(Path)
17: Path = NextPath
18: end while
19: end while
20: end procedure

11.3 Validation and Experimental Evaluation

This section presents the evaluation of the proposed GEO-DMS transfer service. As before,
the evaluation is done on the Microsoft Azure cloud using synthetic benchmarks and the A-
Brain application scenario. Considering that our approach is designed for high-performance,
multi-path transfers across sites, the experimental setup consists of all Azure data centers
from United States and Europe (North-Central, South, East, West US and North, West EU).
We used both the Small (1 CPU, 1.75 GB Memory) and Medium (2 CPU, 3.5 GB Memory)
VM instances with tens of such machines deployed in each data center, reaching a total of
120 nodes and 220 cores in the overall system. From the point of view of the network band-
width, the Medium instances have a higher expected share of the 1 Gbps Ethernet network
of the physical machine than the Small ones, offering twice as more of the physical node
resources.For the A-Brain-related experiments, we use the Extra-Large (8 CPU, 14 GB and
800 Mbps) VM instances, to comply with its resource requirements.

11.3.1 Evaluation of the Performance Model

To adapt to context changes, we propose a global monitoring tool for asserting various cloud
performance metrics. However, just collecting status information about the cloud environ-
ment is not enough. In order to capitalize this information, the samples need to be inte-
grated within a model in order to estimate and predict the cloud performance. We start
the experiments by evaluating the accuracy of our cloud performance model, discussed in
Section 11.2.1. The goal is to evaluate the accuracy obtained by dynamically weighting the
samples compared to default monitoring strategy or other simple time series analysis option,
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Figure 11.2: Left: Estimating the TCP throughput using multiple strategies for modeling the
performance (Monitor and Update, Linear Sampling Integration and Weighted Sampling
Integration — our approach). Right: we present the average aggregated error, per hour,
corresponding to the TCP throughput approximation shown on the left.

as explained next.

We show in Figure 11.2 the evaluation for estimating the inter-site throughput in a 24-
hour interval. Each sample shown in the figure represents the hourly averages computed
based on 60 values. As previously stated, the most fundamental aspect about modeling
the performance (i.e., time series analysis) is how to integrate (i.e., the relation) the new
samples collected by the monitoring tools. We compared our weighted integration strategy
(denoted WSI), with 2 other strategies. The first one (denoted Monitor) considers that the last
monitored value represents from that point on the estimation of the performance, i.e, the last
measurement is fully trusted and all knowledge about the environment is represented by it
until the next sample is collected.Because of its simplicity and low cost (i.e., only one value
needs to be retain per metric) it is currently the most used approach. The second strategy
considers a linear integration of the samples (LSI), computing the estimation of performance
as a linear average between the historical samples and the new sample. This option is the
standard moving average strategy from time series analysis. It treats all samples equally,
regardless the stability/instability of the environment or the frequency of the measurements.

On the left of Figure 11.2 we show how the actual throughput between North-Central
US and North EU data centers is approximated using the 3 strategies for sample integration.
On the right side, we report the difference (i.e., accuracy error) between the estimated values
and the real values within the hourly interval. The default Monitor approach yields the worst
results, being subject to all temporal performance variations. The linear integration strategy
is also influenced by potential performance outliers collected by the monitor tool, but to a
lesser extent. Our weighted approach has a smoother approximation of the actual through-
put and is not as sensitive to temporary variations as the first option (or the second one for
that matter). In fact, during periods with unstable performance (e.g., interval 1 to 5 or 18
to 24), dynamically weighting the samples based on the variability pays off. This approach
enables to be more reactive to the samples, and to changes in the monitored performance,
than using a fixed integration strategies where all samples are treated the same at any mo-
ment (LSI). When the performance variations are smaller, both the linear and the weighted
strategies give similar results. This is explained by the fact that in a stable environment the
weights our model assigns to the samples are close to 1 (see Equation 11.4). A weight value
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Figure 11.3: The impact of the intrusiveness on the transfer time of 1 GB of data between
North-Central US and North EU Azure data centers. The number of VMs used is varied
between 1 to 5, for each transfer measurement (i.e., for each segment) and represented as a
whisker plot box.

of 1 is equivalent with the linear integration model, as the new samples are simply averaged
with the history. This shows the strength and the reactiveness of our model which is able to
adapt to the environment dynamics. Finally, the relative errors (10-15 %) of the model can
be easily tolerated by the transfer service, when used for scheduling transfers, as they result
in slightly moving the throughput performance around the maximum value.

11.3.2 Data Transfer Service Evaluation

We continue the experiments with the evaluation of the transfer times of our solution. The
goal is to analyze the gains obtained by scheduling the transfers across multiple routes, in
a cloud environment-aware manner, i.e., based on the cloud performance model. To this
purpose, we first evaluate the impact of the intrusiveness level, captured in the model by
the Intr parameters, on the transfer. Next, we compare the transfer time of our approach
with state-of-the-art solutions for inter-site data transfers.

Evaluating the resource intrusiveness–transfer performance correlation. In general, the
performance of a data transfer tends to be associated and explained only from the perspec-
tive of the communication link capacity (i.e., bandwidth). However, the amount of CPU and
memory resources used by the nodes involved in the transfer, impact the performance as
well. Our system is able to capture this and to operate within a defined intrusiveness level.
Therefore, we analyze the impact of the resource utilization level on the wide-area transfers.
Hence, we measure the performance when the intrusiveness level admitted is varied equally
on all VMs involved in the transfer. The measurements consider the transfer time of 1 GB of
data between the North-Central US to the North EU data centers. The number of nodes that
are used for the multi-path transfer is varied from 1 to 5.
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Figure 11.4: The transfer times of our approach (labeled as “GEO-DMS”) compared to static
parallel transfers. The results show the average and the 95 % confidence intervals for the
transfer times for different data centers.

The results of these intrusiveness-performance measurements are shown on Figure 11.3.
The highest values within each segment correspond to the situation when only 1 node is
used for the transfer. The other information shown through the whisker boxes (e.g., min-
imum, and the lower, medium and upper quartiles) correspond to using multiple nodes.
The transfer time reduction obtained for each extra node depends both on the intrusiveness
level and on the cloud performance (analyzed in more details in the next experiments). The
results show that adding more of the VM resources does not reduce the transfer time with
the same percentage because: 1) the network bandwidth is bound, 2) replicating data within
the site from the source to the intermediate nodes incurs an overhead, and 3) the VM re-
sources performance vary. First, this observation shows that indeed, the amount of CPU or
memory used impacts the transfer performance. Secondly, it shows that the effectiveness
of resources to perform an operation is not constant. For example, having twice as much
CPU costs 2 times more, but does not reduces the execution time with the same proportion.
Hence, it is important to have a fine control of the amount of resources used, in order to
increase the effectiveness of resource usage, decrease cost and tune performance. This is a
strong argument which supports our choice for a data management system which allows
applications or users to select the degree of resources utilization for each operation.

Evaluating the cloud environment-aware, wide-area parallel transfers. Using parallel
streams to send data is a known technique to increase the transfer performance (e.g., in-
crease throughput, decrease transfer time). However, there are no guarantees that simply
sending data via several streams brings the maximum throughput out of the used nodes, let
alone in the context data exchanges between cloud data centers. In fact, the following ex-
periment, depicted on Figure 11.4, illustrates how the transfer efficiency of parallel transfers
is improved using knowledge about the environment. We consider sending increasing data
sizes from a source node to a destination between two closer (South and North US) and two
farther (North EU and North US) data centers. The parallel transfer scheme is deployed on
top of intermediate nodes located in the same data center as the source node. The experiment
compares the performance obtained by such a parallel transfer (i.e., data is simply split and
sent via the available streams across nodes) with our approach which integrates in the par-
allel transfer scheduling knowledge about the environment. The Decision Manager adapts
to drops in CPU or bandwidth performance by discriminating the problematic nodes (i.e.,
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Figure 11.5: Comparing the transfer time of our approach with other existing options, for
increasing volumes of data.

sending less data through those links) or by selecting some alternative nodes if available and
better. Both the default parallel transfer and our approach (denoted "GEO-DMS") use equal
amount of resources. The results on Figure 11.4 show that with the increase in size of data
and in geographical distance between data centers, our approach reduces more the transfer
times. Therefore, with longer transfers and potentially more cloud performance variability,
being environmentally-aware pays off. This is an important observation in the context of
Big Data applications, which are the ones typically deployed across sites and operating and
transferring massive amounts of data. Considering also the 95 % confidence intervals, also
shown in Figure 11.4, we can observe that our approach reduces the transfer time with more
than 20 % over simple parallel transfers strategies.

Comparing the performance with the existing solutions. As previously stated, cloud lack
support for inter-site application data transfers. However, several existing solutions can be
used or built as a placeholder. Next, we compared our data transfer service with such state-
of-the-art stubs: the Globus Online tool (which uses GridFTP as a server backend), Azure
Blobs (used as an intermediate storage for moving data) and direct transfers between end-
points, denoted EndPoint2EndPoint. The results of this evaluation are shown on Figure 11.5.
Azure Blobs is the slowest option as the transfer is composed of a writing phase, with data
being written by the source node to the storage, followed by a read phase, in which the
data is read by the destination. These steps incur significant latencies due to the storing op-
eration, the geographical distance (of the source or destination, depending on the location
of the cloud storage instance with respect to them) and the HTTP-based access interfaces.
Despite these performance issues, Azure Blobs-based transfers are currently the only cloud
offering for wide-area data movements. Globus Online is a good alternative but it lacks the
cloud-awareness. Moreover, it is more adequate for managing (e.g., list, create, view or ac-
cess based on permission the files) grid/warehouse data rather than supporting application
data exchanges. Finally, the EndPoint2EndPoint fails to aggregate extra bandwidth between
data centers as it implements the transfers over the basic, but widely used, TCP client-server
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Figure 11.6: The trade-off between transfer time and cost, when using multiple VMs. The
values are computed for to 1 GB transfers between North EU and North-Central US.

socket communication. Our solution, which leverages multi-route transfers for clouds, re-
duces the overall transfer time by a factor of 5 over the default cloud offering and by up
to 50 % over the other transfer options that can be adapted for the cloud. Budget-wise, these
approaches do not incur the same costs. Azure Blobs adds extra cost for using the persistent
storage. EndPoint2EndPoint corresponds to the use of 1 node and the cost/performance
trade-off is analyzed in the next section. For the comparison with Globus Online, the same
setup was used, meaning that higher performance corresponds to lower costs. These re-
sults show that our data transfer service is indeed able to provide cloud applications with
high-performance data transfers across multiple sites.

11.3.3 The Cost–Execution Time Efficiency of Data Transfers

The next set of experiments focus on the efficiency aspects of our approach. As users rent
and pay for the resources, we are interested that the transfer service obtains the maximum
benefit out of them. Therefore, we analyze the correlation between the delivered transfer
performance level and the incurred costs and show how this benefits applications.

Evaluating the transfer efficiency. On Figure 11.6, we propose an experiment to evaluate
the relation between the transfer performance and the monetary cost. We map the costs with
the performance gains (i.e., time reduction) obtained by the parallel transfer implemented
over intermediate nodes. These nodes have an associated cost, as users either lease and
dedicate them (e.g., DataSteward) or collocate them with the main computation, sharing the
nodes resources (e.g., TomusBlobs). As we scale the degree of parallelism, we observe a non-
linear reduction for the transfer time. Each new node added for the transfer brings a lower
performance gain. This decrease in performance per added node is due to the overhead
of replicating data, within the site, from the source node to the intermediate nodes. At the
same time, the cost of the nodes remains the same, regardless the efficiency of their usage.
Such situations make the task of computing the cost of performance for cloud infrastructures
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challenging.
The time reduction obtained by using more nodes prevents the transfer cost to grow sig-

nificantly, up to a certain point. This can be observed on Figure 11.6 when using 3 up to
5 VMs. This happens because the cost is charged based on the period the nodes are used for
the transfer (see Equation 11.6). Thus, despite paying for more resources, the transfer time
reduction balances the cost. When scaling beyond this point, the performance gains brought
by the new nodes, start to decrease. Hence, as the transfer time stabilizes (i.e., reaches the
lower bound) the cost increases with the number of nodes. Looking at the cost/time ratio,
an good point is found with 6 VMs for this case (a significant time reduction for a small
extra cost). However, depending on how urgent the transfer is, different transfer times can
be considered acceptable. In this logic, critical operations must be provided with the pos-
sibility to scale the transfers over multiple resources, and thus pay more, for reducing the
times and meeting the deadlines. Hence, having such a mapping between cost and transfer
performance, as shown in Figure 11.6 and modeled by Equation 11.5 and 11.6, enables our
system to meet the critical challenge of enabling applications to customize their cost/time
trade-off.

Evaluating the multiple-path transfer strategy across data centers. So far, the evaluation
focused on sending data from the nodes in the source data center to the destination data
center. Now, we consider the scenario in which the nodes from additional data centers are
used as intermediate hops to transfer data. For this experiment, we use all the 6 US and EU
Azure sites, our transfer service being deployed in all of them. Figure 11.7 presents the eval-
uation of our multi-path transfer approach across data centers, described in Algorithm 4.
We compare our solution with 3 other transfer strategies which schedule the transfer across
multiple nodes. The first option, denoted DirectLink, considers direct transfers between the
nodes of the source data center and the destination. All nodes available within the budget
constraints for the transfer are allocated in these two sites. As the direct link between source
and destination might not be in fact the best one from the point of view of throughput of
transfer time, the other strategies consider the best path (or “shortest path”) computed us-
ing Dijkstra’s algorithm. The best path can span over multiple data centers and thus the
nodes allocated for transfers are scheduled across all of them. The selection of the best path
for routing the transfer can be done: 1) once, at the beginning of the transfer (this option is
denoted ShortestPath static); or 2) each time the monitoring systems provides a fresh view
of the environment (denoted ShortestPath dynamic). In fact, the static strategy across the
shortest path shows the throughput which can be obtained when the transfer is not cou-
pled with the monitoring system. For all strategies, an equal number of nodes was used to
perform the transfer.

On left of Figure 11.7, we present the accumulated throughput achieved when 25 nodes
are used to perform data transfers between data centers. We notice that the performance
of the shortest path strategy and the one that we propose are similar for the first part of the
transfer. This happens because our scheduling algorithm extends the shortest path algorithm
with mechanisms for selecting alternatives paths when the gain brought by a node along the
initial path becomes smaller than switching to a new path. The improvement brought by
this increases with time, reaching 20 % for the 10-minute window considered. Alternatively,
selecting the route only once, and thus not being cloud environment-aware, decreases the
performance in time, becoming inefficient for large transfers. On the right of Figure 11.7,
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Figure 11.7: The throughput between NEU and NUS data centers for different transfer strate-
gies across parallel paths over multiple sites. We consider all the 6 Azure data centers from
US and EU. The throughput is evaluated: Left — with respect to timespan, while the overall
number of nodes across all data centers is fixed to 25 ; Right — with respect to number of
nodes, while the time frame in which data is sent is kept fixed to 10 minutes

Figure 11.8: Execution times of the A-Brain application across 3 data centers, using Azure
Blobs and the GEO-DMS transfer service. In each of the 3 experiments, the bars indicate the
total time of transferring the partial result files from each data center (NE, NUS and WUS)
towards the Meta-Reducer located in NUS. The time scale of the experiments differs.

we analyze the throughput levels obtained for increasing number of nodes. The goal is
to analyze how much data can be sent given a number of nodes and a time-frame (here
10 minutes). We observe that for a small number of nodes, the differences between the
strategies are very small. However, as more nodes are used for the transfer, distributed
across different geographical sites, our algorithm is capable to orchestrate their placement
better and achieve higher throughput. These results show that our approach is suitable
for Big Data applications, being able to efficiently use the cloud resources for massive data
movements.
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Evaluating the benefits in a real-life scenario. Finally, we present an evaluation of the
time reductions that can be obtained for wide-area transfers in the context of a real-life ap-
plication. We use the large A-Brain computation scenario across 3 data centers, described
in Section 8.3. We focus on the data movements required to compute the final global result.
The comparison considers the transfer times of 1000 files, representing partial data, sent from
each data center running the TomusBlobs MapReduce engine towards the Meta-Reducer. We
compare the usage of the proposed transfer service (GEO-DMS) with transferring data using
Azure Blobs, as it was initially the case for the multi-site hierarchical MapReduce (Chapter
8). The results are shown on Figure 11.8 for multiple file sizes, resulted from different input
data sets and configurations. For small data sets (108 MB from 3× 1000× 36KB files), the
overhead introduced by our solution due to the extra acknowledgments, makes the transfer
less efficient. However, as the data size grows (120 GB), the total transfer time is reduced by
a factor of 3.This shows that our solution is able to sustain high-performance data manage-
ment in the context of large-scale scenarios and Big Data applications.

11.4 Discussion

Many large-scale applications need tools to transfer data efficiently between their instances
across data centers. Moreover, managing and customizing the cost for achieving the desired
level of performance is critical. To this purpose, we introduce a cloud-based data man-
agement system for Big-Data applications running in large, federated and highly dynamic
environments. Our solution is able to use effectively the interconnecting networks between
the cloud data centers through an optimized protocol for scheduling the transfer resources,
while remaining non-intrusive and easy to deploy. At its core, it uses a sampling-based
model for cost-performance in a cloud setting to enable efficient transfer operations across
a group of geographically distributed data centers. As an example, by distributing data lo-
cally, it enables high wide-area data throughput when the network core is underutilized, at
minimal cost. Our experiments show that the system achieves high-performance in a vari-
ety of settings. It substantially improves throughput and reduces the execution time for real
applications by up to 3 times compared to state-of-the-art solutions.

Considering the high efficiency levels for managing the data across sites brought by
this solution, we further explore its applicability from two perspectives. First, we are in-
terested to apply the concept of multi-path transfers across cloud nodes for real-time data
(i.e., streaming data across cloud data centers). A significant part of tomorrow’s Big Data is
expected to be produced as streams of events [23, 43, 172]. Therefore, extending the trans-
fer service to support data streaming across cloud data centers is critical. We present this
extension in Chapter 12. Second, we investigate this concept of transfer service from the
perspective of the cloud providers. We believe that cloud providers could leverage this tool
as a Transfer as a Service, which would enable multiple QoS transfer levels, cost optimization
and significant energy savings. This approach and how it can be leveraged for Big Data
applications is detailed in Chapter 13.
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This chapter develops the contributions published in the following papers:

• Evaluating Streaming Strategies for Event Processing across Infrastructure
Clouds. Radu Tudoran, Kate Keahey, Pierre Riteau, Sergey Panitkin and
Gabriel Antoniu. In Proceedings of the 2014 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID
2014), Chicago, IL, US, May 2014, pp. 151-159

• JetStream: Enabling High-Performance Event Streaming Across Cloud Data-
centers. Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan,
Hakan Soncu, Luc Bougé, and Gabriel Antoniu.In Proceedings of the
8th ACM International Conference on Distributed Event-Based Sys-
tems (DEBS 2014), Mumbai, India, May 2014, pp 23–34

The performance trade-offs inherent in current virtualization technology mean that data-
intensive applications are often not the best fit for clouds and consequently cannot leverage
the advantages of cloud computing [67, 103, 150]. This technological shortcoming is particu-
larly impacting in the Big Data era. An increasing number of Big Data applications conform
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to a pattern in which data processing relies on streaming data to a compute platform, located
in a remote geographical location, where a set of similar operations is repeatedly applied.
The data stream is composed of independent, but similar, units of data, called events, typ-
ically aggregating some states at a particular moment (e.g., the sensor readings at a certain
moment). This compute paradigm is called stream processing.

The geographically distributed stream processing pattern is evident in scientific compu-
tation like virtual observatories such as the Ocean Observatory Initiative [137], with ocean
sensors data being transferred in real time to cloud nodes for processing. Other stream pro-
cessing scenarios appear when new acquired data is evaluated against the already known
features (e.g., FluMapper [141]) or when the experimental data is processed as a series of
time events [21, 102]. Geographical-distributed streaming is present also in commercial sce-
narios. Large-scale web services (e.g., Microsoft’s Bing, Office 365, Google Docs) operate on
tens of data centers around the globe. Typical operations such as continuously aggregating
monitoring data from all service instances, assess in real-time the QoS of the global service
or running global data mining queries, all require to gather in real-time information from
multiple sites, i.e., multi-site stream processing. Hence, enabling fast data transfers across
the geographically distributed sites becomes particularly important for such applications,
due to the real-time nature of their computation. Consequently, such scenarios require high-
performance real-time communication in order to adapt fast to any changes, scale rapidly to
fluctuating requests and compute the answer within a specified delay.

Strategies for evaluating the cloud support for streaming. In order to identify and under-
stand the challenges brought by stream processing across cloud sites, we start with a perfor-
mance evaluation study. To this purpose, we propose and analyze two strategies for imple-
menting inter-site cloud streaming, i.e., transferring data to a geographical-remote site for
processing. The first strategy seeks to overlap computation and communication by stream-
ing data directly to the nodes where the computation takes place, in such a way that the rate
of data streaming keeps pace with computation. The second strategy relies on first copying
data to the cloud destination site and then using it for computation. We evaluate these strate-
gies in the context of a CERN LHC application [13, 14]. Multiple studies explore various data
management strategies using existing storage options for clouds [52, 67, 93, 103, 150]. These
general studies focus on scientific applications that process large, unstructured sets of static
input data (i.e., data that is available in the cloud storage when the processing starts and
remains unchanged during the computation). To the best of our knowledge, however, no
previous study has considered the case of dynamic sets of independent pieces of input data,
e.g., data streamed from a large network of sensors to the cloud for processing. Our results
indicate that cloud streaming can significantly interfere with the computation and reduce
the overall application performance.

An extended survey over thousands of commercial jobs and millions of machine hours
of computation, presented in [87], has revealed that the execution of queries (i.e., the func-
tion applied on the live stream) is event-driven. Furthermore the analysis shows that the
input data accounts only for 20 % of the total I/O, the rest corresponding to the replication
of data between query services or to the intermediate data passed between them. This em-
phasizes that the event processing services, be they distributed, exchange large amounts of
data. Additionally, the analysis highlights the sensitivity of the performance of the stream
processing to the management and transfer of events. This idea is also discussed in [68], in
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which the authors stress the need for a high-performance transfer system for real-time data.
A similar conclusion is drawn in [22], where the issues which come from the communication
overhead and replication are examined in the context of state-based parallelization. Finally,
in [152], the authors emphasize the importance of data freshness, which improves the QoS of
a stream management system and implicitly the quality of the data (QoD). All these research
efforts, which complement our evaluation study, support and motivate the growing need for
a high-performance system for event streaming.

Our approach in a nutshell. To address these issues, we propose a set of strategies for
efficient transfers of events between cloud data centers and we introduce JetStream, which
implements these strategies as a high-performance, batch-based streaming middleware. Jet-
Stream is able to self-adapt to the streaming conditions by modeling and monitoring a set of
context parameters. The size of the batches and the decision on when to stream the events
are controlled dynamically, based on the proposed model that characterizes the streaming
latency in the context of clouds. To further improve the performance of the transfer stream-
ing rate, we apply the approach introduced in Chapter 11. JetStream enables multi-route
streaming across cloud nodes, aggregating inter inter-site bandwidth. The approach was
validated on the Microsoft Azure cloud using synthetic benchmarks and a real-life scenario
based on the MonALISA [117] monitoring system of the CERN LHC experiment [37]. The
results show performance improvements of 250 times over today’s stream approaches (i.e.,
individual event streaming) and 25 % over static batch streaming (i.e., using fixed batch
sizes), while multi-route streaming can further triple the transfer rate.

12.1 Evaluating Strategies for Cloud Stream Processing

We evaluate today’s cloud stream processing landscape with a data analysis code from an
Atlas experiment at the CERN Large Hadron Collider [13, 14]. The application performs data
analysis by searching in a channel where the Higgs decays into t anti-t quarks. The experi-
mental data is collected as successive time events, an event being to the aggregated readings
from the Atlas sensors at a given moment. The time series nature of the event data makes
the Atlas application a stream analysis, i.e., a function is iteratively applied on the incoming
event stream. Nevertheless, because the size of all the collected events is in the order of tens
of Petabytes, achieving efficient processing is of significant concern. We consider two sce-
narios for managing stream processing on cloud facilities. In each scenario, we work with a
data source and then deploy a set of compute instances (or compute VMs) on a remote cloud
data center. Each compute instance is running a number of application workers that process
the data. The architecture of these scenarios is presented in Figure 12.1. The goal is to assert
if current streaming technologies allow high-performance real-time processing across cloud
data centers.

Stream&Compute. In this scenario, data is directly streamed from the data source to the
compute instances where it is ingested and processed by the worker processes. The
events are processed in memory as they are streamed.

Copy&Compute. In this scenario, we allocate some persistent storage (i.e., EBS-like) and
an additional instance that attaches this storage, in order to make it accessible to all
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Figure 12.1: The two main cloud streaming scenarios: Stream&Compute (left) and
Copy&Compute (right).

compute instances (i.e., the persistent attached storage model is detailed in Chapter 3).
The streaming is split into two phases. First, we copy the data from the data source to
this persistent attached storage. Second, once all data is available on the cloud site, it
is locally streamed to the compute instances which begin the computation.

The advantages of Stream&Compute are the following. It provides better response time
on a case by case basis where not all of event data to be computed is available up front or
needs to be processed to yield a result. It has the potential to overlap computation and com-
munication, thus potentially shortening the time to process a set of events. It uses, if needed,
only the storage provided within the compute instances, thus making the computation po-
tentially cheaper. At the same time, we note that at large-scales, network saturation can slow
the data-streaming rate to the point where it no longer keeps pace with computation, poten-
tially necessitating redistribution across different clouds. The advantage of Copy&Compute
is that it relies on persistent storage, thus leading to easier repair in cases where an instance
is terminated unexpectedly: while any non terminated computations will have to be rerun,
the data will not have to be resent over wide-area network. Our working hypothesis is
that Stream&Compute outperforms the Copy&Compute strategy. Validating this hypothe-
sis would show that the currently-used cloud streaming engines (i.e., which stream events
to be processed as they are available, in a Stream&Compute fashion) can support multi-site
cloud stream processing.

The experiments were run on the Azure cloud for which we used the Azure drives [17]
storage volumes to provide the persistent storage in the Copy&Compute scenario. We used
Small VM Roles having 1 CPU, 1.75 GB memory, 200 GB local storage and running a Cen-
tOS 6.3 operating system. The Atlas application, we experimented with, processes small
data events of similar size. Small size differences appear because the events aggregate mea-
surements of different aspects of a phenomenon, which may or may not be detected at a
given point. The number of events processed is therefore a good measure of the progress of
the application. We used the following metrics for our experiments.
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Figure 12.2: Comparing the Copy&Compute and Stream&Compute scenarios in Azure, con-
sidering average compute (left) and data (right) rates per VM.

Compute Rate which is the amount of events that are processed in a time unit.

Data Rate which is the amount of data that is acquired in a time unit. We chose for this
evaluation data rate instead of event rate because of the variable sizes of the events.

Methodology. For the Stream&Compute case, we measured the compute rate by running
the program with a set number of events and measuring on each compute node how long it
took from start to finish of the computation. For the Copy&Compute case, the experiment
involved two phases: a remote site copy followed by the computation on local data. For
the first phase, we used the “time” command to measure how long a remote copy took
using “scp”. This was then added to the time taken by the application to complete the
processing over the set of events transferred. We measured the data rate by dividing the
amount of input data by the total time to complete its processing. For the Copy&Compute
case, this total time included both the remote data copy and running the application. For
each measurement presented in the charts, 100 independent experiments were performed.
The values shown represent the averages.

We first present the average per VM of the compute rates and data rates to the applica-
tion VMs. Figure 12.2 shows the results for the two scenarios for Azure. We crossed-checked
the results, and observed similar trends also on the FutureGrid platform [62], using Hotel (a
University of Chicago cloud configured with Nimbus version 2.10.1 [135]) and Sierra (a San
Diego Supercomputing Center cloud configured with OpenStack Grizzly [140]). In addition
to the data shown in the figures, we note that the results for the Copy&Compute operation
show a higher variability, having a coefficient of variation (i.e., standard deviation / mean)
of ∼20 %, than do the results for the Stream&Compute data, which has a coefficient of vari-
ation of ∼10 %. The remote copy phase is mainly responsible for this high variability; the
variability on local dissemination is very low.

Copy&Compute vs. Stream&Compute. We see that Copy&Compute strategy offers three
to four times better performance than does Stream&Compute. This is contrary to our ex-
pectation. The initial hypothesis was that Stream&Compute method is faster because of
overlapping computation and communication. Therefore, considering that current stream
processing systems rely on a Stream&Compute strategy, the results show that in fact they
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Figure 12.3: Assessing the data acquisition
throughput with respect to the CPU load for
three different instance types.
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cannot deliver high-performance for multi-site cloud scenarios. For example, in this experi-
ment, the overlapping of the computation with communication is available at the level of the
framework, with no particular optimizations set up on our side. Hence, similar results are
expected for any framework that provides such a behavior: simply acquiring the data (i.e.,
event by event or small sets of them) for the next step of the computation while the available
data for the current step is being processed. In addition, we see a drop in per VM average
data and compute rates for the Copy&Compute case on Azure once we reach 16 VMs. This
reflects the bandwidth limitation of the Azure node hosting the persistent storage, which
results in contention as more nodes want to access the data. This situation could potentially
be fixed by either assigning the attached storage to a larger instance or by striping the access
to the data over multiple nodes.

To understand why Copy&Compute outperforms Stream&Compute, we first compared
data throughput of a VM using its local ephemeral storage (as in the Stream&Compute sce-
nario) and a VM using the persistent storage (as in the Copy&Compute scenario). All cloud
storage options are detailed in Chapter 3. The comparison is done by copying large data
files (0.5 GB) using the Unix “scp” command. The results, labeled EphemeralCopy and
EBSCopy, respectively, are shown in Figure 12.3. We found that the throughput for small
instances (the ones used in the previous experiment) in both cases is almost the same, so that
the high throughput, obtained in Copy&Compute scenario, is not correlated with using the
attached storage. However, when we induced a 100 % CPU load using the Unix “stress” tool
with 8 threads spinning over sqrt function (“–cpu N”) and spinning over the pair (memal-
loc/free) (“–vm N”), we saw the throughput diminish significantly — to roughly one-fifth
of the initial throughput — but again roughly equally in the EBSCopy and EphemeralCopy
case. In other words, the drop in throughput is correlated to the CPU usage.

Impact of latency on performance. Second, we asked the question why streaming from a
remote node to application VMs (as in Stream&Compute) is more impacted by CPU activity
than streaming from a local node (as in Copy&Compute). To address this question, we
used the “netem” tool to increase latency between the node hosting the attached storage and
application nodes of the Copy&Compute scenario to be equivalent to the remote latency
used in the Steam&Compute scenario (i.e., 84 ms). The result shows that performance (i.e.,
both data and compute rate) drops to the level of the Stream&Compute scenario. This shows
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that the difference in latency is responsible for the difference in performance. This proves
that achieving high-performance for geographically distributed stream processing requires
to minimize the latency while accounting for the resource usage: CPU and bandwidth.

Moving to batch-based streaming. This observation that a non real-time strategy is more
efficient that a real-time one, shows that achieving real-time high-performance event stream-
ing requires in fact new cloud-based solutions. Most of the existing stream processing en-
gines, as the one used by CERN’s Atlas applications, only focus on event processing and
provide little or no support for efficient event transfers. Others even delegate the respon-
sibility of transferring the events to the event source. Today, the typical way to transfer
events is individually (i.e., event by event) or in small, fixed groups. This is highly inefficient,
especially across WAN, due to the incurred latencies and overheads at various levels (e.g.,
application, technology tools, virtualization, network). A better option is to transfer events
in batches. While this improves the transfer rate, it also introduces a new problem, related to
the selection of the proper batch size (i.e., how many events to batch?). Figure 12.4 presents the
impact of the batch size on the transfer rate, and transfer latency per event, respectively. We
notice that the key challenge here is the selection of an optimal batch size and the decision on
when to trigger the batch sending. This choice strongly relies on the streaming scenario, the
resource usage and on the context (i.e., the cloud environment). We tackle these problems by
proposing an environment-aware solution, which enables optimal-sized batch streaming of
events in the clouds. To achieve this, we model the latency of the event transfer with respect
to the environment, dynamically adapt the batch size to the context and enable multi-route
streaming across clouds nodes.

12.2 Modeling the Streaming of Data in the Context of Clouds

Dynamically adapting the transfer of events and minimizing the latency requires an appro-
priate model for streaming in the cloud. The goal is to correlate the stream decision with the
cloud context: variability of resources, fluctuating event generation rates, nodes and data
centers routes. Performance-wise, the goal is to sustain a high transfer rate of events while
delivering a small average latency per event. In this section, we introduce such a model and
present the decision mechanisms for selecting the number of events to batch. This mech-
anisms are then leveraged as we propose a stream middleware engine, called JetStream,
designed for high-performance streaming across data centers. To achieve this, JetStream
supplements the list of design principles introduced in Chapter 11 with 3 stream-specific
ones.

Decoupling the event transfer from processing. The event transfer module needs to be de-
signed as a stand-alone component, decoupled from the stream processing engine (also
referred to as CEP engine — see Chapter 5). We advocate this solution as it allows
seamless integration with any engine running in the cloud. At the same time, it pro-
vides sustainable performance independent on the usage setup or specific architec-
tures.

Generic solution. Building specific optimizations which target precise applications is effi-
cient, but limits the applicability of the solution. Instead, we propose a set of tech-
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Figure 12.5: Breaking down the latency to deliver an event from source to stream processing
engine across cloud nodes.

niques which can be applied in any cloud context, independent of the application se-
mantics. JetStream does not depend on the nature of the data, nor on the query types,
being thus applicable in any context.

Self-optimization. A user configuration of a system does not guarantee optimal perfor-
mance, especially in dynamic environments. Moreover, when it comes to large-scale
systems, the tasks of configuring and tuning services tends to become complex and te-
dious. The alternative is to design autonomic cloud middleware, able to self-optimize
their configurations. Coupled with an economic model of resources performance, these
middleware can then regulate the resource usage and enforce service-level agreements
(SLAs).

12.2.1 Zoom on the Event Delivery Latency

The model we propose expresses the latency of the events based on a set of cloud parameters
which can be monitored. Such a technique allows to correlate the batch size corresponding
to the minimal event latency both to stream context and to environment information. We
start by breaking down the latency between the source and the destination of an event in
four components, depicted on Figure 12.5: creating the batch, encoding it (e.g., serializing,
compression, etc.), transferring the batch and decoding it. The set of parameters able to
describe the context and define the latency is: the average acquisition rate (RateAcquisition)
or mean time between events (MTBE), the event size (EventSizeMB), the serialization/de-
serialization technology, the throughput (thr) and the number of events to put in the batch
(i.e., batch size - batchSize). The goal is to determine dynamically the size of the batch, based
on the latency model defined based on the other parameters.

The batching latency corresponds to the delay added when an event is waiting in the batch
for other events to arrive, before they are all sent together. The parameters which
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describe this latency are the average acquisition rate of the events and the number of
events in the batch. As the delay depends on the position of the event in the batch (i.e.,
position× 1

RateAcquisition
, we chose to express it as the average latency of an event. This

can be computed by averaging the sum of the delays of all events in the batch:

Latencybatching =
batchSize

2
× 1

RateAcquisition

Intuitively, this corresponds to the latency of the event in the middle of the sequence.

The transformation latency gathers the times to encode and to decode the batch. This ap-
plies to any serialization library/technology. The latency depends on the used format
(e.g., binary, JSON, etc.), the number of bytes to convert and the number of events in
the batch. To express this, we represent the transformation operation as an affine func-
tion (i.e. f (x) = ax + b) where a corresponds to the conversion rate (i.e., amount of
bytes converted per second - time for data encoding tDe), while the b constant gives
the time to write the metadata (time for header encoding tHe). The latency per event
can be expressed as:

Latencytransformation =
tHe + tDe× batchSizeMB

batchSize

which holds both for the encoding and decoding operations. The formula can be used
also to express the size of the data after the encoding operations. It only requires to
replace the time-related constants with data-related ones (i.e., size of the metadata after
encoding and the compression ratio). Moreover, it can be applied to other data pair
transformations: compression, deduplication, encryption, etc.

The transfer latency models the time required to transfer an event between cloud nodes
across data centers. To express it, we consider both the amount of data in the batch
as well as the overheads introduced by the transfer protocol (e.g., HTTP, TCP) — size
overhead for transport sOt and the encoding technique — size overhead for encoding
sOe. Due to the potentially small size of data transferred at a given time, the through-
put between geographically distant nodes cannot be expressed as a constant value. It
is rather a function of the total batch size (SizeTotal = batchSizeMB × batchSize), since the
impact of the high latency between data centers depends on the batch size. The cloud
inter-site throughput - thr(Size) is discussed in more detail in the following section.
The average latency for transferring an event can then be expressed as:

Latencytransfer =
sOt + sOe + batchSizeMB

thr(SizeTotal)

12.2.2 Multi-Route Streaming

Next, we focus on the streaming throughput. In order to address the issue of low inter-
data center throughput, we leveraged also for streaming, the multi-route transfer strategy
across intermediate nodes that we introduced in Chapter 11. For the readers’ convenience,
we repeat the scheme on Figure 12.6. The idea is to aggregate additional bandwidth by
sending batches of events from the sender nodes to intermediate nodes within the same
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Figure 12.6: The proposed schema
for multi-route streaming across
cloud nodes.
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deployment, which will then forward it towards the destination. To integrate this approach
within our model, we extend the set of parameters that are used to characterize the stream
context with the number of channels. This parameter gives the parallelism degree of the
multi-route schema deployed for streaming, i.e., the number of nodes used on the sender
site for streaming.

Multi-route throughput. Independent of the number of routes used for streaming, the
value of the throughput function needs to be known to model the latency. Furthermore,
considering the potentially small sizes of the data to be transferred, one needs to study the
function of the throughput with respect to the size not just to measure its peak stable value.
However, the performance study presented in Section 12.1 showed that increasing the us-
age level of the resources impacts the transfer rate. Therefore, in order to limit the number
of network samples that need to be performed by the monitoring service, we approximate
the throughput function. In Figure 12.7 a) we present measurements of the throughput for
a number of routes between North-Central US and North EU Azure data centers. In Fig-
ure 12.7 b) we normalize these values (i.e., % of the corresponding stable throughput) and
approximate them using a polynomial function. This was determined empirically that it
gives a good approximation, with an error introduced due to the cloud variability of less
than 15 % with respect to the approximation based on measuring the stable value. Using
this approximation, the entire function can be extrapolated by measuring only the asymp-
totic stable throughput. This will be used as the amplitude, which multiplied with the nor-
malized estimation, will give the throughput for any size.

Batch reordering. The downside of using multiple routes for sending batches is that the
ordering guarantees offered by the communication protocol for one route does not hold
anymore. This translates into batches arriving out of order due to changing conditions on
the physical communication routes (e.g., packet drops, congestion, etc.). Nevertheless, it
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is mandatory to maintain the integrity of the communication and avoid dropping data just
because another route was faster. Hence, batches need to be reordered at the destination
and the corresponding delay (i.e., latency for reordering) needs to be accounted for within the
model. The reordering is done by buffering the batches at the destination until their turn to
be delivered to the streaming engine arrives. We model the introduced latency by using the
Poisson distribution (Poisson(k, λ) = λk×e−λ

k! ) to estimate the probability of having k number
of batches arriving before the expected batch. As we take as reference the transfer of the
next expected batch, λ parameter becomes 1. This probability can then be correlated with a
penalty assigned to each unordered batch. We use as penalty the latency (i.e., Latency×batch)
incurred by having a number of batches (j) arriving out of order. This gives Poisson(j, 1)×
j× Latency×batch, over which we sum in order to account for all potential number of batches
arriving out of order. We denote L the maximum number of batches (e.g., 10) regarded as
potentially arriving before the reference one through a channel, giving the upper limit for
the summation.Finally, we sum these penalties over the number of channels, as each channel
can incur its own number of unordered batches, and normalizing based on the events, as our
model express everything as latency per event. The final equation that models the unordered
batches arriving through all channels is:

Latencyreordering =
∑channels

i=2 ∑L
j Poisson(j, 1)× j× Latency×batch

batchsize × L

12.3 JetStream: Enabling High-Performance Streaming between
Data Centers

The model for cloud streaming introduced in the previous section defines the average la-
tency of transferring an event to the destination with respect to a set of parameters which can
be asserted at runtime. This section details how this model is applied to select the optimal
number of routes and events to batch, as well as the architecture of the JetStream middleware
which implements this approach.

12.3.1 Adaptive Cloud Batching

In Algorithm 5, we present the decision mechanism for selecting the number of events to
batch and the parallelism degree (i.e., channels/routes) to use. The algorithm successively
estimates the average latency per event, using the formulas presented in Section 12.2, for a
range of batch sizes and channels, retaining the best one. As an implementation optimiza-
tion, instead of exhaustively searching in the whole space we apply a simulating annealing
technique, by probing the space with large steps and performing exhaustive searches only
around local optima. Depending on the magnitude of the optimal batch size, the maximal
end-to-end event latency introduced by batching can be unsatisfactory for a user, as it might
violate application constraints, even if the system operates at optimal transfer rates. Hence,
the users can set a maximum acceptable delay for an event, which will be converted in a
maximum size for the batch (Line 3). Imposing an upper bound for the batch size limits the
latency to form the batch (i.e., fewer events are needed) and thus the end-to-end delay.

The selection of the number of channels is done by estimating how many batches can be
formed while one is being transferred (Lines 6-8). Beyond this point, adding new channels
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Algorithm 5 The selection of the optimal batch size and the number of channels to be used

1: procedure BATCHANDCHANNELSSELECTION
2: getMonitoredContextParameters()
3: ESTIMATE MaxBatched from [MaxTimeConstraint]
4: while channels < MaxNodesConsidered do
5: while batchsize < MaxBatched do
6: ESTIMATE latencybatching from [RateAcquisition, batchsize]
7: ESTIMATE latencyencoding from [overheads, batchsizeMB]

. Estimate the transfer latency for 1 channel
8: ESTIMATE latencytransfer1 from [batchsizeMB, thrRef, 1channel]
9: COMPUTE RatioCPU from [latencyencoding, latencybatching, VM_Cores]

. Prevents idle channels
10: if RatioCPU ∗ latencybatching × channels < latencytransfer1 + latencyencoding then
11: ESTIMATE latencydecoding from [overheads, batchsizeMB]
12: ESTIMATE latencytransfer from [batchsizeMB, thrRef, channels]
13: ESTIMATE latencyreordering from [channels, latencytransfer]
14: latencyperEvent = ∑ latency∗
15: if latencyperEvent < bestLatency then
16: UPDATE [bestLatency, Obatch, Ochannels]
17: end if
18: end if
19: end while
20: end while
21: end procedure

leads to idle resources and therefore decreases the cost efficiency. The condition on Line 10
prevents the system from creating such idle channels. Finally, the CPU usage needs to be
accounted in the decision process, being an important factor which determines the transfer
rate, as revealed by our performance study. Sending frequent small batches will increase the
CPU consumption and artificially decrease the overall performance of the cloud node. This
is what was observed in Section 12.1 for the Stream&Compute scenario. We therefore assign
a penalty for the CPU usage, based on the ratio between the time to form a batch (a period
with a low CPU footprint) and the time used by the CPU to encode it (a CPU intensive
operation), according to the formula:

RatioCPU =
latencyencoding

(latencybatching + latencyencoding)×VM_Cores

When computing the ratio of intense CPU usage, we account also for the number of cores
available per VM. Having a higher number of cores prevents CPU interferences from over-
lapping computation and I/O and therefore does not require to prevent using small batches.
With this model, the batch decision mechanism is aware of the CPU usage and on the intru-
siveness of the transfer to the computation, and therefore adapts the batch size accordingly.
To sum up, JetStream collects a set of context parameters (Line 2) and uses them to estimate
the latency components according to the formulas presented in Section 12.2. Based on these
estimations, it selects the optimal batch size and the number of channels for streaming.
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Figure 12.8: The architecture and the usage setup of the adaptive batch streamer.

12.3.2 System Architecture Overview

We designed JetStream as a high-performance cloud streaming middleware. The system
is easily adoptable and ready to be used in any scenario, as it does not require changes
in application semantics nor modifications or elevated privileges to the cloud hypervisor or
processing engines. Its conceptual scheme is presented in Figure 12.8. The events are fed into
the system at the sender side, as soon as they are produced, and they are then delivered to the
stream processing engine at the destination. Hence, the adaptive-batch approach remains
transparent to the system and user. The implementation of this architecture is done in C#
using the .NET 4.5 framework. The distributed modules composing the system and their
functionality are described below.

The Buffer is used both as an event input and output endpoint for JetStream, having thus
such a component both in the sender and in receiver. The sender application or the
event source simply adds the events to be transferred, as they are produced, while
the receiver application (i.e., the stream processing engine) pops (synchronously) the
events or is notified (asynchronously) when they are available. The buffer is built on
2 queues, which are used in a producer-consumer fashion. By using a separate queue
for input operation to the buffer and another one for the output ones allows to reduce
the number of blocked read/write operations. In this way locking is required only to
swap the queues when the output (or consumer) one gets empty. The Buffer entity at
the sender side is also in charge of monitoring the input stream in order to assert and
report the acquisition rate of the events and their sizes in real time.

The Batch Oracle stays at the core of JetStream, as it enforces the environment-aware deci-
sion mechanism for adaptively selecting the batch size and the amount of channels to
use. It implements Algorithm 5 and collects the monitoring information from the Buffer
and the Transfer Module. It further controls the monitoring intrusiveness by adjusting
the frequency of the monitor samples according to the observed variability.
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The Transfer Module performs the multi-route streaming, using the approach presented in
Chapter 11. Batches are sent in a round-robin manner through the channels assigned
for the transfer. On the intermediate nodes, the role of this component is to forward the
batches towards the destination. Currently, the system offers several implementations
on top of TCP: synchronous and asynchronous, single- or multi-threaded. It is also
in charge of probing the network and measuring the throughput and its variability as
detailed in Chapter 11.

The Event Sender coordinates the event transfers by managing the interaction between
modules. It queries the Batch Oracle about when to start the transfer of the batch.
Next, it setups the batch by getting the events from the Buffer and adding the metadata
(e.g., batch ID, streams IDs and the acknowledgment-related mechanism proposed for
multi-route transfers, which is discussed in Chapter 11). The batch is then serialized
by the Serialization module and the data transferred across data centers by the Transfer
Module.

The Event Receiver is the counterpart of Event Sender module. The arriving batches are
de-serialized, buffered and reordered, and delivered to the application as a stream
of events, in a transparent fashion for the stream processing engine. The module is-
sues acknowledgments to the sender or makes requests for re-sending lost or delayed
batches. Alternatively, based on users’ policies, it can decide to drop late batches, sup-
porting the progress of the stream processing despite potential cloud-related failures.
Users configure when such actions are performed by means of waiting times, number
of batches, markers or current time increments (CTI).

Serialization/De-Serialization has the role of converting the batch to raw data, which are
afterwards sent over the network. We integrate in our prototype several libraries: Bi-
nary (native), JSON (scientific) or Avro (Microsoft HDInsight), but others modules can
be easily integrated. Moreover, this module can be extended to host additional func-
tionality: data compression, deduplication, etc.

12.4 Validation and Experimental Evaluation

The goal of the experimental evaluation presented in this section is to validate the JetStream
system in a real cloud setup and discuss the main aspects that impact its performance. The
experiments were run in the Microsoft’s Azure cloud in the North-Central US and the North
EU data centers, using Small Web Role VMs (1 CPU, 1.75 GB of memory, 225 GB local stor-
age). For multi-route streaming, up to 5 additional nodes were used within the sender de-
ployment. Each experiment sends between 100,000 and 3.5 million events, which, depending
on the size of the event to be used, translates into a total amount of data ranging from tens of
MBs to 3.5 GB. Each sample is computed as the average of at least ten independent runs of
the experiment performed at various moments of the day (morning, afternoon and night).

The performance metrics considered are the transfer rate and the average latency of an event.
The transfer rate is computed as the ratio between a number of events and the time it takes
to transfer them. More specifically, we measured, at the destination side, the time to transfer
a fixed set of events. For the average latency of an event, we measured the number of events
in the sender buffer, the transfer time, and reported the normalized average per event based
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on the latency formulas described in Section 12.2.1. The evaluation is performed using a
synthetic benchmark, that we created in order to have full control over the sizes and the
generation rate of the events. The generation rates are varied between hundred of events
per second to tens of thousands of events per second, as indicated by the scale of the transfer
rates. Additionally, we use the monitoring readings collected by the MonALISA monitoring
systems from the Alice LHC experiment to assert the gains brought by our approach in a
real geographically distributed setup.

12.4.1 Accuracy of the Cloud Streaming Latency Model

We depict on Figure 12.9 the total latency per event and its components, as defined in Sec-
tion 12.2, with respect to the number of batched events. Selecting the optimal size of the
batch comes down to finding the value corresponding to the minimal latency (e.g., ∼200 for
the illustrated scenario). The search for the batch size that minimizes the latency per event
is at the core of the JetStream algorithm presented in Section 12.3.1. However, the selection
is computed based on estimations about the environment (e.g., network throughput, CPU
usage), which may not be exact. Indeed, the cloud variability can lead to deviations around
the optimal value in the selection process of the amount of events to batch. However, consid-
ering that the performance of using batches with sizes around the optimal value is roughly
similar (as seen in Figure 12.9), JetStream delivers more than 95 % of the optimal perfor-
mance even in the case of large and unrealistic shifts from the optimum batch size (e.g., by
mis-selection of a batch size of 150 or 250 instead of 200 in Figure 12.9, the performance
will decrease with 3 %). The solution for further increasing the accuracy, when selecting
the batch size, is to monitor the cloud more frequently, which comes at the price of higher
intrusiveness and resource usage levels.

To validate the penalty model proposed for the latency of reordering batches when using
multiple routes, we compare the estimations computed by our approach with actual mea-
surements. The results are presented in Figure 12.10. The delay for unordered batches was
measured as the time between the moment when an out of order batch (not the one next in
sequence) arrives, and the moment when the actual expected one arrives. The experiment
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presents the average of this maximum unordered delay over tens of independent trials in
which a fixed amount of events (i.e., 1 million events of size 2.5 KB) is transferred. We notice
that the proposed model gives a good estimation of this delay, having an accuracy of 90–
95 %. Errors appear because the model for the reordering delay introduced by multi-route
streaming does not integrate the variability of the cloud. Yet, such errors can be tolerated as
they are not determinant when selecting the number of channels to use.

12.4.2 Individual vs. Batch-Based Event Transfers

The goal of this set of experiments is to analyze the performance of individual event stream-
ing compared to batch-based streaming between cloud data centers. For the later approach
we consider both static batch sizes as well as the adaptive batch selection of JetStream. In
the case of static sizes, the number of events to be batched is fixed a priori. A batch of size 1
represents event by event streaming. These setups are compared to JetStream, which im-
plements the proposed model for adapting the batch size to the context at runtime. To this
end, the evaluation is performed with different event sizes and generation rates. The exper-
iments were repeated for different number of routes for streaming: 1, 3 and 5. We measured
the transfer rates (top) and average latency per event (bottom).

The experiments presented on Figure 12.11 use an event of size 224 bytes and evaluate
the transfer strategies considering low (left) and high (right) event generation rates. The first
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Figure 12.13: The evolution of the transfer rate in time for variable event rates with JetStream
and static batches transfer strategies

observation is that batch-based transfers clearly outperform individual event transfers for
all the configurations considered. The results confirm the impact of the streaming overheads
on small chunk sizes and the resulting low throughput achieved for inter-site transfers.
Grouping the events increases the transfer rate tens to hundreds of times (up to 250 times
for JetStream) while decreasing the average latency per event. Two aspects determine the
performance: the size of the batch with respect to the stream context and the performance
variations of the cloud resources (e.g., nodes, network links). Static batches cannot provide
the solution, as certain batch sizes are good in one context and bad in others. For example
batches of size 10 deliver poor performance for 1 route and high event acquisition rate and
good performance for 5 routes and low acquisition rates. Selecting the correct size at runtime
brings an additional gain between 25 % and 50 % for the event transfer rate over static batch
configurations (for good batch sizes not for values far off the optimal). To confirm the re-
sults, we repeated the same set of experiments for larger event sizes. Figure 12.12 illustrates
the measurements obtained for event sizes of 800 bytes. The results support our conclusions,
showing that JetStream is able to increase the performance with up to 2 orders of magnitude
over current streaming strategies.

12.4.3 Adapting to Context Changes

The event acquisition process in streaming scenarios is not necessarily uniform. Fluctuations
in the event rates of an application running in the cloud can appear, due to the nature of
the data source, the virtualized infrastructure or the cloud performance variability [59]. To
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analyze the behavior of JetStream in such scenarios, we performed an experiment in which
the event generation rate randomly changes in time. For the sake of understanding, we
present in Figure 12.13 a snapshot of the evolution of the transfer rate in which we use
fine grain intervals (10 seconds) containing substantial rate changes. JetStream is able to
handle these fluctuations by appropriately adapting the batch size and number of routes.
In contrast, static batch transfers either are introducing huge latencies from waiting for too
many events, especially when the event acquisition rate is low (e.g., batches of size 1000
or 5000 at time moment 9) or are falling behind the acquisition rate which leads to increasing
amount of memory used to buffer the events not transferred yet (e.g., batch of size 100 at
moment 5). Reacting fast to such changes is crucial for delivering high-performance in the
context of clouds.

JetStream reduces the number of used resources by 30 % in such scenarios (e.g., the extra
nodes which enable multiple route streaming), as it takes into account the stream context
when scheduling the transfers. These resource savings are explained by the fact that low
event acquisition rates do not require multiple route streaming as higher ones do. Addition-
ally, as shown in [87], the fluctuations in application load have certain patterns across the
week days. Hence, in long running applications, our approach will make substantial sav-
ings by scaling up/down the number of additional nodes used for transfers to these daily or
hourly trends.

12.4.4 Benefits of Multi-Route Streaming

Figure 12.14 shows the gains obtained in transfer rate with respect to the number of routes
used for streaming, for JetStream and for a static batch of a relatively small size (i.e.,
100 events). When increasing the amount of data to be sent, multi-route streaming pays
off for both strategies. This validates our decision to apply the transfer scheme proposed in
Chapter 11 for bulk data transfers to streaming. By aggregating extra bandwidth from the
intermediate nodes, we are able to decrease the impact of the overhead on smaller batches:
batch metadata, communication and serialization headers. More precisely, a larger band-
width allows to send more data, and implicitly, the additional data carried with each batch
does not throttle the inter-site network anymore. This brings the transfer rate of smaller,
and consequently more frequent, batches closer to the maximum potential event through-
put. This can be observed for the static batch of size 100 on Figure 12.14, which delivers a
throughput close to JetStream for a high number of routes.

With higher throughput and a lower overhead impact, the optimal batch size can be
decreased. In fact this is leveraged by JetStream, which is able to decrease the end-to-end
latency by selecting lower batch sizes. Hence, we conclude that sustaining high transfer rates
under fixed time constraints is possible by imposing upper bounds for the batch sizes and
compensating with additional streaming routes. This enables JetStream to integrate users’
time constraints for maximal delay, which are integrated in the streaming decision shown in
Algorithm 5 by considering a limit on the batch size.

12.4.5 Experimenting in a Real-Life Scientific Scenario

In a second phase, our goal was to assess the impact of JetStream in a real-life application.
We opted for ALICE (A Large Ion Collider Experiment) [37], one of four LHC (Large Hadron
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Collider) experiments at CERN, as its scale, volume and geographical distribution of data
require appropriate tools for efficient processing. Indeed, the ALICE collaboration, consist-
ing of more than 1,000 members from 29 countries, 86 institutes and more than 80 computing
centers worldwide, is strongly dependent on a distributed computing environment to per-
form its physics program. The experiment collects data at a rate of up to four Petabytes per
year. Our focus, in these series of experiments, is on the monitoring information collected
in real-time about all ALICE resources. We used the MonALISA [117] service to instrument
and replay the huge amount of monitoring data issued from this experiment. More than
350 MonALISA services are running at sites around the world, collecting information about
ALICE computing facilities, local and wide area network traffic and the state and progress
of the many thousands of concurrently running jobs. This yields more than 1.1 million pa-
rameters published in MonALISA, each with an update frequency of one minute. Using
ALICE-specific filters, these raw parameters are aggregated to produce about 35,000 system-
overview parameters in real time. The MonALISA framework and its high-frequency up-
dates for large volumes of monitoring data matched closely with JetStream’s architecture
purposes, being the reason why we chose this as a real application scenario.

JetStream vs. bad user configuration. Based on the monitoring data collected by MonAL-
ISA as of December 2013, we have replayed a sequence of 1.1 million events considering their
creation times at the rate they were generated by Alice. The measurements were performed
using 2 intermediate nodes located at the sender side (i.e., resulting in 3 streaming routes).
Initially, the experimental setup considered 5 streaming routes. However, during the trans-
fer of the data using JetStream, we observed that at most 3 such routes were used, as the
system determined that the performance cannot be increased beyond this point. The same
number of nodes is recommended if we query offline the system based on the stream context
(i.e., event size and acquisition rate). The accuracy of this decision was in fact validated as
our adaptive approach was obtaining the same transfer performance using 3 nodes as the
static batch configurations which were using 5. Furthermore, the static configurations also
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obtained the same transfer performances when switched to 3 nodes, showing that indeed
this streaming context was not requiring more than 3 streaming routes. This observation
shows the importance of an environment-aware adaptive approach, not subject to arbitrary
human configuration choices.

Streaming monitoring data of CERN Alice experiment with JetStream. Figure 12.15 a)
shows the total latency of the events at the sender and the transfer rate, Figure 12.15 b),
when comparing JetStream with static configurations for various batch sizes. The transfer
performance of static batches, with more than 100 events, are similar with JetStream. Con-
sidering that the generation rate of the events varies from low to high, these sub-optimal
batch sizes will in fact lead to an accumulation of the events in the sender queue during the
peak rates. These buffered events will artificially increase the performance, at the expense of
extra memory, during the periods when the acquisition rate of events is low. All in all, this
behavior will produce a stable transfer performance over a wide range of static batch sizes,
as it can be observed in Figure 12.15 b). But on the other hand, it will increase the latency of
the events as depicted in Figure 12.15 a). As our approach selects the appropriate batch size
at each moment, it consequently reduces the amount of events waiting in the sender queue
and decreases the overall latency of the events. Compared to the static batch strategies, the
latency obtained with JetStream is reduced between 2.2 (100-event batches) down to 17 times
(10,000-event batches).

12.5 Discussion

In this chapter, we focused on the issues of geographically distributed stream processing.
The performance evaluation conducted, highlights the inefficiency of today’s streaming
strategies and the need for new tools able to control the resource usage. To this purpose,
we proposed JetStream which leverages a novel approach for high-performance streaming
across cloud data centers by adapting the batch size to the transfer context and to the cloud
environment. The batching decision is taken at runtime by modeling and minimizing the
average latency per event with respect to a set of parameters which characterize the context.
To tackle the issue of low bandwidth between data centers, we apply the multi-route transfer
approach introduced in Chapter 11 to enable multi-route streaming. JetStream was validated
using synthetic benchmarks, and by using the monitoring data collected with MonALISA
system based on the Alice experiment setup at CERN. The results showed that JetStream
increases the transfer rates up to 250 times compared to individual event transfers. The
adaptive selection of the batch size further increases performance with an additional 25 %
compared to static batch size configurations. Finally, multi-route streaming triples perfor-
mance and decreases the end-to-end latency while providing high transfer rates. These re-
sults show that our data management approaches can be successfully applied also in the
context of streaming, to enable high-performance, real-time communication across sites.
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This chapter develops the contributions published in the following paper:

• Transfer as a Service: Towards a Cost-Effective Model for Multi-Site Cloud
Data Management.Radu Tudoran, Alexandru Costan, Gabriel Antoniu.
In Proceedings of the 2014 33rd IEEE Symposium on Reliable Dis-
tributed Systems (SRDS 2014), Nara, Japan, October 2014

The global deployment of cloud data centers enables large web services to deliver fast
response to users worldwide. Examples of such applications range from office collabora-
tive tools (Microsoft Office 365, Google Drive), search engines (Bing, Google), global stock
market, financial analysis tools to entertainment services (e.g., events broadcasting, games,
news mining) and scientific applications [20, 43]. However, this unprecedented geographical
distribution of the computation brings new challenges related to the efficient data manage-
ment across sites required to maintain a global coherence between running instances for
mining queries, maintenance or monitoring operations. Studies show that the inter-site traf-
fic is expected to triple in the following years [112, 116]. Therefore, the issues related to high
throughput, low-latencies, cost- or energy-related trade-offs are serious concerns not only
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for cloud users, as discussed in the previous chapters, but also for cloud providers. Provid-
ing services to address these challenges by delivering high-performance data management
while reducing the corresponding costs and data center energy consumption is a key mile-
stone for the business of cloud providers and for tomorrow’s cloud data centers [27].

The need for a transfer service. As of today, the cloud data management offer is limited
to the cloud-provided storage (e.g., Azure Blobs, Amazon S3), provided with a rigid cost
scheme (i.e., a fixed price for everything). These storage services, accessed through basic
REST APIs, are highly optimized for availability, enforcing strong consistency and replica-
tion [35]. Clearly, they are not well suited for end-to-end transfers (see Chapter 11) nor for
data-related services (see Chapter 10), as this was not their intended goal. In case of inter-
site data movements, which is done by first storing and than reading data, the throughput
is drastically reduced by the high latency of the cloud storage and the low interconnecting
bandwidth between sites. Seldom, the cloud-provided storage is coupled with mechanisms
such as Amazon’s CloudFront [6], which uses a network of edge locations around the world
to copy (cache) static content close to users. The alternative to the cloud offer are the transfer
systems that users deploy on their own, i.e., user-managed solutions. Examples of such trans-
fer tools, detailed in Chapter 11, are Globus Online [4, 58], Frugal [147] or StorkCloud [112].
Although such tools are more efficient than transferring data via the cloud-provided storage,
they act as third-party middleware, requiring users to setup, configure and maintain com-
plex systems, with the overhead of dedicating some of the resources to data management.
Moreover, the setups of these systems tend to be done repetitively for each application sce-
nario, which leads to a reduced reliability and re-usability. Our goal is to understand to what
extent and under which incentives inter-site transfers can be externalized from users and be
provided as a dedicated service by the cloud vendors.

Our approach in a nutshell. In Chapter 11, we have proposed a user-based transfer ap-
proach that was monitoring the cloud environment for insights on the underlying infras-
tructure. Now, we are interested to investigate how such a tool can be “democratized” and
transparently offered by the cloud provider, using a Transfer as a Service (TaaS) paradigm.
This shift of perspective arises naturally: instead of letting users optimize their transfers by
making deductions about the underlying network topology and performance through in-
trusive monitoring, we delegate this task to the cloud provider. Indeed, the cloud owner
has extensive knowledge about the network resources, which can be leveraged within the
proposed system to optimize (e.g., by grouping) user transfers. Our working hypothesis is
that such a service will offer slightly lower performance than a highly-optimized dedicated
user-based setup (e.g., based on multi-routing through extensive use of network parallelism
as we proposed in Chapter 11), but substantial higher performance than today’s state-of-
the-art transfer solutions (e.g., using the cloud-provided storage service or GridFTP). Our
results confirm that the system is able to decrease the variability of transfers and increase
the throughput up to three times compared to the baseline user options. Moreover, this ap-
proach has the advantage of freeing users from setting own systems, while providing the
same availability guarantees as for any cloud managed service.

We argue that by adopting TaaS, cloud providers achieve a key milestone towards the
new-generation data centers, expected to provide mixed service models for accommodating
the business needs to exchange data [27]. Greenberg et al. [74] emphasize that network and
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Figure 13.1: An asymmetric Transfer as a
Service approach.
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Figure 13.2: A symmetric Transfer as a Ser-
vice approach.

system innovation are the key dimensions to reduce costs. Cloud providers rent the inter-
connecting bandwidth between data centers from Tier 1 Internet Service Providers and get
discounts based on the committed transfer levels [168]. This constrains cloud vendors to the
agreed data quotas as low usage or quota overpasses lead to financial losses. Therefore, cou-
pled with the flexible pricing scheme for the service usage that we propose, TaaS can regulate
the demand and facilitate the process of transferring data to a larger number of users. By
enabling fast transfers through simple interfaces, as advocated by TaaS, cloud providers can
therefore grow their outbound traffic and increase the associated revenues via a data trans-
fer market. Finally, our results show that such a service can decrease energy consumption
within a data center down to half compared to user-based transfers. Hence, our proposal
for a cloud-provided transfer service enriches the cloud market offer, while increasing the
profitability and efficiency of the data centers.

13.1 Transfer as a Service

The main issue with any user-managed system, let alone the ones performing data man-
agement in the cloud, is that they are not available out-of-the-box. For instance, prohibiting
factors for deploying the multi-route strategy approach introduced in Chapter 11 range from
the lack of user networking and cloud expertise to budget constraints. Additionally, applica-
tions might not tolerate even low intrusiveness levels for handling data in the intermediate
nodes. In turn, this would limit the deployment of this mechanism only to dedicated nodes
(i.e., the DataSteward approach discussed in Chapter 10). Moreover, nodes have to be provi-
sioned in advance as scaling up VMs for short time periods to handle the transfer is currently
strongly penalized by the VM startup times. From the cloud provider perspective, having
multiple users that deploy multi-route transfer systems can lead to an uncontrolled boost
of expensive Layer 1 ports towards the ISP [74]. Bandwidth saturation or congestion at the
outer data center switches are likely to appear. The bandwidth capacity towards the Tier 1
ISP backbones, with a ratio of 1:40 or 1:100 compared to the bandwidth between nodes and
Tier 2 switches, can rapidly be overwhelmed by the number of users VMs staging-out data.
Moreover, activating many rack switches for such communications increases the energy con-
sumption as demonstrated in Section 13.3.3. Our goal is to find the right trade-off between
the (typically contradicting) cloud providers economic constraints and users needs.

We argue that a cloud-managed transfer service could substitute the user-based mech-
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anisms without significant performance degradation. At the core of such a service lies a
set of dedicated nodes within each data center, used by the cloud provider to distribute the
transferred data and to forward them further towards the destination. As opposed to the
DataSteward approach, the dedicated nodes are owned and managed by the cloud provider,
hence, they no longer consume resources from user deployments. Building on elasticity,
the service can accommodate fluctuating user demands. Multiple parallel paths are then
used for data transfers, leveraging the fact that the cloud routes packages through different
switches, racks and network links. In this way, the cloud service can leverage the multi-
route transfer approach that we introduced in Chapter 11, and therefore it can aggregate
inter-site throughput for wide-area transfers. As a result, such a system decreases the costs
for users and provides better network bandwidth utilization for the cloud provider due to
the multi-tenancy usage.

The proposed architecture makes the service locally available to all applications within
each data center, as depicted in Figure 13.1. The usage scenario consists in: 1) applications
transferring data through the intra-site low-latency links to the service (empirically deter-
mined to be at least 10 times faster than the inter-site network); and 2) the service forward-
ing the data across multiple routes towards the destination. The transfer process becomes
transparent to users, as the configuration, operation and management are all handed to the
cloud provider (cloudified), making it resilient to administrative errors. The service is ac-
cessed through a simple API, that currently implements send and receive functions. Despite
the minimalistic API, the service solves the data management gap existing in today’s put/get
cloud-provided storage service which supports transfers only as a “side effect” of storing.
Users only need to provide a pointer to their data and the destination node in order to launch
a high-performance, resilient data movement. The API can be further enhanced to allow ex-
perienced users to configure several transfer parameters such as chunk size or number of
routes.

Asymmetric transfer service. When the TaaS approach is available at only one endpoint
of the transfer, it can be viewed as an asymmetric service as depicted in Figure 13.1. This is
often the case within federated clouds (i.e., hybrid environments which span across multiple
cloud infrastructures), where some providers may not propose TaaS. Users can still benefit
from the service when migrating their data to computation instances located in different in-
frastructures. Such an option is particularly interesting for scientific applications which rely
on hybrid clouds (e.g., scaling up the local infrastructure to public clouds). An illustrative
example is the computation that led to the discovery of the Higgs boson, which was per-
formed across the CERN and Google cloud infrastructures [43]. The main advantage with
this architecture is the minimal number of hops added between the source deployment and
the destination, which translates into smaller overheads and lower latencies. However, sit-
uations can arise when the network bandwidth between data centers might still not be used
at its maximum capacity. For instance, applications which exchange data in real-time can
have temporary lower rates of transferred packages. Taking also into account that the con-
nection to the user destination is direct, multiplexing data from several users is not possible.
In fact, as only one end of the transmission over the expensive inter-site link is controlled by
the cloud vendor, communication optimizations are not feasible. To enable them, the cloud
provider should manage both ends of the inter-site connection.
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Symmetric transfer service. We therefore advocate the use of the symmetric solution, in
which TaaS is available at both transfer ends. This approach makes better use of the inter-
site bandwidth, and is particularly suited for transfers between data centers of the same
cloud provider. With this architecture, the TaaS should be deployed on each data center.
When an inter-site transfer is performed, the service local to the sender forwards the data
to the destination service, which further delivers it to the destination node, as depicted in
Figure 13.2. The data transfer remains transparent to the users applications, which obtain
the same functionality and handle the transfers with the same API as for the asymmetric so-
lution. This approach enables many communication optimizations which only require some
simple pairwise encode/decode operations: multiplexing data from different users, com-
pression, deduplication, etc. Such optimizations, which were not possible with the asym-
metric solution, can decrease the outbound traffic, to the benefit of both users and cloud
providers. Moreover, the topology of the data center, known by the cloud provider, can be
leveraged with our node selection approach, presented in Chapter 10, in order to partition
the nodes of the service such that the load is balanced across the Tier 2 switches. Despite
the potential lower performance compared to the asymmetric solution, due to the additional
dissemination step at destination, this approach has the potential of bringing several opera-
tional benefits to the cloud provider, as discussed in the following sections.

13.2 Validation and Experimental Evaluation

In this section we analyze the performance of our proposal, focusing on realistic scenarios,
and compare it to user-based transfer options, presented in Chapter 11. The purpose of this
evaluation is to assert the performance trade-offs arising when the service would be offered
by the cloud vendor to multiple users. For ensuring comparison fairness in the number of
data centers and routes used, the intermediate nodes which support the user parallel streams
are deployed only at the sender side. The working hypothesis is that user-based transfers
are slightly more efficient but a cloud service can deliver comparable performance with less
administrative overhead, lower costs and more reliability guarantees. The experiments were
performed using Small and xLarge VMs on the Microsoft Azure cloud, using two data cen-
ters: North-Central US and North EU, with data being transferred from US towards EU.
Considering the time zone differences between the sites, the experiments are relevant both
for typical user transfers and for cloud maintenance operations (e.g., bulk backups, inter-
site replication). The latter operations enable the cloud providers to tune the TaaS approach
according to the hourly loads of data centers, as discussed in [116].

The measurements are performed by repeatedly transferring data chunks of 64 MB each
from the memory of the VMs. The intermediate nodes, which support the parallel streams,
handle the data entirely in memory, both for user and cloud transfer configurations. For all
experiments in which the number of resources is scaled, the amount of transferred data is
increased proportionally, such that a constant amount of data is handled per intermediate
node. The throughput is computed at the receiver side by measuring the time to transfer
a fixed amount of data. Each sample is the average of at least 100 independent measure-
ments. Finally, this evaluation is performed in the cloud user-space, which is not the one
a provider would actually use. In a real deployment, the machines used by the vendors to
host the service would most likely be powerful physical nodes with specific network prop-
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erties and higher performance than the xLarge, 1 GB Ethernet nodes used here. This is an
advantage, since the results of our proposal in a real environment are likely to be better than
the presented ones.

13.2.1 Evaluating the Inter-Site Transfer Options

Focus on transfer performance. We present in Figure 13.3 the comparison between the
average throughput of the cloud transfer service and the user-based, multi-route option.
The experimental setup consists of 5 nodes for each transfer service dedicated for data han-
dling. The asymmetric solution delivers slightly lower performance (∼16 %) than a user-
based, multi-route system. The first factor causing this performance degradation is the over-
head introduced by the load balancer that distributes all incoming requests of a service be-
tween its nodes (here the requests from the application to the TaaS nodes). The second factor
is the placement of the VMs in the data center. For user-based deployments, the sender node
and the intermediate nodes are closer rack-wise, some of them being even in the same fault
domain (i.e., belonging to the same rack switches). This translates into less congestion in the
switches during the first phase of the transfer when data is locally replicated to the inter-
mediate nodes. For the cloud-managed transfers, the user node that initializes the transfer
and the cloud dedicated transfer nodes belong to distinct deployments, meaning that they
are farther apart with no proximity guarantees. The symmetric solution is able to compensate
for this performance degradation with the extra nodes at the destination site. After all, this
option uses twice as many nodes as the asymmetric cloud service or user-based, multi-route
strategy. The overhead of the additional hop introduced with this symmetric architecture
is neutralized when additional resources are provisioned by the cloud provider. The ob-
servation opens the possibility for differentiated cloud-managed transfer services in which
different QoS guarantees are proposed and charged differently.

Focus on transfer stability. Next, we focus on the performance variability expected with
such multi-route transfers, which are displayed on Figure 13.4 through the coefficient of vari-
ation (i.e., standard deviation/average%). Contrary to our initial expectation, using multiple
paths decreases the otherwise large performance variability of inter-site transfers. This re-



13.2 – Validation and Experimental Evaluation 167

sult is explained by the fact that with multiple routes, performance drops on some links are
compensated by bursts on others. The overall cumulative throughput, perceived by an ap-
plication in this case, tends to be more stable. This observation is particularly important for
scientific applications which build on predictability and stability of performance. Further-
more, it shows that this TaaS approach can meet the reliable performance SLA that cloud
providers seek for their services.

13.2.2 Dealing with Concurrency

Impact of multi-tenancy on transfer performance. The experiment presented in Fig-
ure 13.5 depicts the throughput of an increasing number of applications using the transfer
service in a configuration with 5 intermediate nodes per service. The goal of this experi-
ment is to assess whether a sustainable QoS can be provided to user’s applications which
concurrently access the TaaS system. Not surprisingly, an increase in the number of par-
allel applications from 1 to 5 decreases the average transfer performance per application
with 25 %. This is caused by the congestion in the transfers to the cloud service nodes and
by the limit in the inter-site bandwidth that can be aggregated by these nodes. While this
might seem a bottleneck for providing TaaS at large-scale, it is worth zooming on the in-
sights of the experiment to learn how such a performance degradation can be alleviated. We
have scaled the number of clients up to the point where their number matches the number
of nodes used for the transfer service. Hypothetically, we can consider having 1 node from
the transfer service per client application. At this point the transfer performance delivered
by the service per application is reduced, but asymptotically bounded to the throughput loss
of 25 % compared to the situation where only one application was accessing the service and
all its 5 nodes where serving it. This shows that by maintaining a number of VMs propor-
tional to the number of applications accessing the service, TaaS can be a viable solution and
that it can in fact provide high-performance for many applications in parallel. Moreover, in
real-life usage, we can expect potential variability of applications request rates to average
out and thus to decrease the global pressure on the service.

We further notice that with increased concurrency, the performance of the symmetric
solution drops more than in the case of the asymmetric one. This demonstrates that the con-
gestion in handling data packets in the service nodes is the main cause of the performance
degradation, since its effects are doubled in the case of the symmetric approach. Finally, the
aggregated throughput achieved by the applications using the transfer service is equivalent
with each of them using 3 dedicated nodes to handle the transfer. This shows that the trans-
fer performances achieved with 15 user nodes can be matched by 5 or 10 nodes with the
asymmetric or the symmetric TaaS solutions. Hence, deploying such services would make
the inter-site transfers more energy-efficient and the data centers greener as it enables to re-
duce the number of resources required to perform data management operations. We further
develop this analysis in Section 13.3.3.

Impact of CPU load on transfer performance. The experiments considered so far that ap-
plications dedicate the intermediate nodes to manage data as for the DataSteward approach
(Chapter 10). However, not all applications afford to fully dedicate several nodes just for
performing transfers, in which case they are collocating data-related operations with the
computation as proposed by TomusBlobs in Chapter 7. It is interesting to analyze to what
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extent the computation load from the intermediate nodes can impact the performance of
user-based transfers. We present in Figure 13.6 the evolution of the throughput when the
computation done in the intermediate nodes has different CPU loads and execution prior-
ities. All 100 % CPU loads were induced using the standardized “HeavyLoad” tool [88],
while the 40 %-50 % load was generated using system background threads performing local
operations.

Two main observations can be made based on the results displayed on Figure 13.6. First,
the throughput is reduced between 20 % to 50 % when the intermediate nodes are perform-
ing other computation in parallel with the transfers. This illustrates that the I/O inter-site
throughput is highly sensitive to CPU usage level. This observation is consistent with our
previous findings related to the I/O behavior for streaming strategies, discussed in Chap-
ter 12. Additionally, it complements the I/O analysis discussed in [50] for storing data in
the context of HPC or in [63] for the TCP throughput with shared CPUs between several
VMs. Second, the performance obtained by users under CPU load is similar, or even worse,
to the one delivered by the transfer service under increased concurrency (see the previously
discussed results from Figure 13.5). This gives a strong argument for many applications run-
ning in the cloud to migrate towards a TaaS offered by the cloud provider. Doing so, these
applications are able to perform high-performance transfers while discharging their VMs
from auxiliary tasks other than the computation for which they were rented for.

13.2.3 Inter-Site Transfers for Big Data

In the next experiment, larger sets of data ranging from 30 GB to 120 GB are transferred
between sites, using the cloud- and the user-managed approaches. The goal of this exper-
iment is to understand the viability of the cloud services in the context of geographically
distributed Big Data applications. The results are displayed on Figures 13.7 and 13.8. The
key differences from the previous experiments are that longer transfer periods will experi-
ence more changes (i.e., both drops and peaks in the cloud performance) and that resources
are stressed harder (e.g., the buffers from switch and intermediate node, the memory and
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network cards of VMs). This experiment is relevant both to users and cloud providers since
it offers concrete cost incentives (e.g., money, time) for performing large data movements in
the cloud. To the best of our knowledge, there are no previous performance studies about
data management capabilities of cloud infrastructures across data centers.

Focus on transfer times. Figure 13.7 presents the transfer times in 4 scenarios. The baseline
option, which is given by simple user endpoint-to-endpoint transfer, provides very poor
performance due to the low bandwidth between the data centers. In fact, the resulting times
can be considered as upper bounds of user-based transfers, as we do not consider the usage
of the cloud storage, which gives even slower performances as shown in Chapters 10 and 11.
The user-based, multi-route approach is the fastest, and its performance can be considered
as the lower bound for the transfer times. In-between, the cloud transfer services are up
to 20 % slower than a user-based, multi-route approach but more than 2 times faster than
the user baseline option, which, as discussed in previous chapters, is the typical option used
today.

Focus on transfer costs. In Figure 13.8, we depict the corresponding costs of these transfer
scenarios. The costs is divided in two components: the compute cost, paid for leasing the
corresponding number of VMs for the transfer period and the outbound cost, which is charged
based on the amount of data exiting the data center. Despite taking the longest time, the
compute cost of the user-based endpoint-to-endpoint is the smallest among all options, as
it only uses 2 VMs (i.e., sender and destination). On the other hand, user-based multi-route
transfers are faster but at higher costs, which come with the usage of the extra VMs, as
explained in Section 11.3.3. The outbound cost only depends on the data volume and the cost
plan. As the inter-site infrastructure is not the property of the cloud provider, part of this cost
represent the ISP fees, while the difference is accounted by the cloud provider. The real cost
(i.e., the one charged by the ISP) is not publicly known and depends on business agreements
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between the companies. However, we can assume that this is lower than the minimum
price charged to the cloud customers, giving thus a range in which the outbound price can
potentially be adjusted. Combining the observations about the current pricing margins for
transferring data with the performance of the cloud transfer service, we argue that cloud
providers should propose TaaS as an efficient transfer mechanisms with flexible prices. In this
way, cloud vendors can use TaaS to regulate the outbound traffic of data centers, reducing
their operating costs, and minimizing the idle bandwidth. In the next section we introduce
such a pricing scheme, which enables a data transfer market for clouds.

13.3 Towards a “Data Transfer Market” for Greener Data Centers

In this section we discuss the advantages brought by the proposed cloud service for inter-
site data transfers. From the users perspective, TaaS can offer a transparent and easy-to-use
method to handle large amounts of data. We demonstrated that the service can sustain a
high throughput, close to the one achieved by users when renting at least 4–5 extra VMs
and dedicate them for handling data. Besides avoiding the burden of configuring and man-
aging extra nodes or complex transfer tools, the performance-cost ratio can be significantly
increased. From the cloud providers points of view, such a service would give an incentive
to increase customer demand and bring competitive economic and energy advantages. We
further elaborate in this direction by proposing a flexible pricing scheme, discussed in Sec-
tion 13.3.1. From the economical point of view, this enables cloud vendors to regulate the
demand in order to provide sustainable QoS and minimize the idle resource periods. Finally,
Section 13.3.3 presents the analysis of our approach from the energy consumption point of
view. We show that from this point of view, the cloud transfer service can significantly de-
crease the energy, making the data center more green.

13.3.1 A Flexible Price Scheme for a Transfer Market

In our quest for a viable pricing scheme, we start by defining the cost structure of the transfer
options: TaaS and user-based. The price is composed from the outbound traffic cost and the
computational costs. The outbound cost structure is identical for all transfer strategies while
the computational cost is specific to each option.

Outbound Cost:
Size× Costoutbound

where Size is the volume of transferred data and the Costoutbound is the price charged
by the cloud provider for the traffic exiting the data center.

Computational Cost:

User-managed Endpoint-to-Endpoint option:

timeE2E × 2× CostVM

where timeE2E is the time to transfer data between the sender and the destination
VMs, which give the 2 VMs accounted in the formula. To compute the total cost,
this is multiplied by the renting price of a VM: CostVM.
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User-managed Multi-Route option:

timeUMR × (2 + NextraVMs)× CostVM

where timeUMR is the time to transfer data from the sender to the destination using
NextraVMs extra VMs, resulting in 2+NextraVMs VMs in total . As before, the cost is
obtained by multiplying with the VM cost.

TaaS option:

timeCTS × 2× CostVM + timeCTS × servicecomputecost

where timeCTS is the transfer time and servicecomputecost is the price to be charged by
the cloud provider for using the transfer service. Hence, the TaaS cost is composed
from the price for leasing the sender and destination VMs, giving as before the
2 VMs accounted in the formula, plus the price for using the service for the period
of the transfer.

The computation cost paid by users ranges from the cheapest Endpoint-to-Endpoint
option to the high-performance, but more expensive, user-managed, multi-route transfers.
Considering also the observations made in Section 13.2.3, these costs can be used as lower
and upper margins for defining a flexible pricing schema, to be charged for the time the
cloud transfer service is used (i.e., servicecomputecost ). Moreover, by defining the cloud ser-
vice cost within these limits, this is correlated with its actual delivered performance, which
is between the user-based options. To represent the servicecomputecost as a function within
these bounds, we introduce the following gain parameters, that describe the performance
proportionality between transfer options: timeE2E = a × timeUMR = b × timeCTS and
timeCTS = c × timeUMR. Based on the empirical observations shown in Section 13.2, we
can instantiate the parameters with the following values: a = 3, b = 2.5 and c = 1.2. By
rewriting the initial cost equations and simplifying terms, we obtain in Equation 13.1 the
cost margins for the servicecomputecost .

2× CostVM × (b− 1) ≤ servicecomputecost ≤ CostVM ×
2 + N + 2× c

c
(13.1)

With Equation 13.1, we demonstrate that a flexible cost schema is indeed possible. Varying
the cost within these margins, a data transfer market for inter-site data movements can be
created, providing the cloud provider with the mechanisms to regulate the outbound traffic
and the transfers demand, as discussed next.

13.3.2 The Data Transfer Market

Offering diversified services to customers in order to increase usage and revenues are among
the primary goals of the cloud providers. We argue that these objectives can be fulfilled by
creating a data transfer market. This can be implemented based on the proposed cloud transfer
service offered at SaaS level with reliability, availability, scalability, on-demand provisioning
and pay-as-you-go pricing guarantees. In Equation 13.1, we defined the margins within
which the service cost can be varied. We illustrate on Figure 13.9 these flexible prices for
the two TaaS declinations (symmetric and asymmetric). The values are computed based
on the measurements for transferring the large data sets presented in Section 13.2.3. The
cost is normalized and expressed as the price to be charged for the service usage (i.e., the
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compute cost component) to transfer 1 GB of data. A conversion between the per hour VM
pricing model and per GB usage of the TaaS service is possible due to the stable performance
delivered by this approach. The main advantage of having the price expressed in terms
of data size is that users can easily reason in this way. Additionally, they can make better
estimates about the operation costs of their applications, as both business and scientific users
typically have a good idea about the data volumes processed.

Cost boundaries. The minimal and maximal values in Figure 13.9 correspond to the user-
managed solutions (i.e., endpoint-to-endpoint and multi-route). Between these margins, the
cloud vendor can model the TaaS price based on a range of discrete values, as illustrated in
in Figure 13.9. The two TaaS declinations have different pricing schemes due to their per-
formance difference, with the symmetric one having slightly lower performance and con-
sequently a lower price. As for the outbound cost, the assumption we made is that any
outbound cost scheme offered today brings profit to the cloud provider. Hence, we propose
to extend the flexible usage pricing to integrate also this cost component, as illustrated in
Figure 13.10. The main advantage is that the combined cost gives a wider margin in which
the TaaS price can be adjusted. Additionally, it allows cloud providers to propose a unique
cost scheme instead of charging users separately for the service usage and for the outbound
traffic. This is an important aspect as it facilitates the user task to understand and adopt the
service.

Regulating inter-site data traffic. A critical benefit of setting up a data transfer market for
the TaaS is that it enables cloud providers to regulate the data centers traffic. Reducing
idle bandwidth periods can simply be achieved by decreasing the price towards the lower
bound which in turn will encourage users to send data. Price drops would attract users
which otherwise would need to rent and dedicate 4–5 VMs to perform transfers with equiv-
alent performance. Building on this cost approach and complementing the work described
in [116], applications could buffer in the VM storage the less urgent data and send it in bulks
only during the discounted periods. In this way, the price can automatically regulate the
priority of transfers, preventing low priority data transfers to throttle urgent ones. On the
other hand, when many users send data simultaneously, independently or using TaaS, the
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overall performance decreases due to switch contentions and network bottlenecks. More-
over, the peak usage of outbound traffic from the cloud towards the ISPs grows, which leads
to lower profit margins and penalty fees for potentially exceeding the SLA quotas [83, 151,
168]. It is in the interest of the cloud providers to avoid such situations. With the proposed
flexible pricing scheme, they have the means to react to such situations by simply increasing
the service usage price. With the price approaching the ones of user multi-route option, the
demand can be temporarily decreased. At this point, it becomes more beneficial for users
to get their own VMs to handle data, as within the same budget, they can achieve higher
transfer performance through the user-based multi-route approach that we introduced in
Chapter 11.

Adjusting the price strategy on the fly, following the demand, produces a win-win situ-
ation for users and cloud providers. Clients have multiple services with different price op-
tions, allowing them to pay the desired cost that matches their targeted performance. Cloud
providers increase their revenues by outsourcing the inter-site transfers from clients and by
controlling the traffic. Finally, TaaS can act as a proxy between ISPs and users, protecting
the latter from price fluctuations introduced by the former; after all, cloud providers are less
sensitive to price changes than users are, as discussed in [168].

13.3.3 The Energy Efficiency of Data Transfers

The energy consumption of data centers is among the critical challenges of large-scale in-
frastructures such as the clouds. When breaking the operating costs of a cloud data center,
the authors of [74] find that “over half the power used by network equipment is consumed by the
top of rack switches”. Such a rack switch connects around 24 nodes and has an hourly en-
ergy consumption of about 60 W/h, while a server node consumes about 200 W/h [10]. Our
goal is to assess and compare the energy consumed in a data center where data transfers are
performed using user-based multi-route setups (EUMR in Equation 13.2) or using a cloud-
provided TaaS (ECTS in Equation 13.3). The comparison considers NApp applications, each
using NextraVMs extra nodes when deploying the user-based multi-route transfer approach.
For simplicity, we use the average transfer time (time) of applications.

EUMR = (
NApp × (2 + NextraVMs)

24
× 60

W
h

+ NApp × (2 + NextraVMs) × 200
W
h
)) × time (13.2)

ECTS = (
NApp × 2

24
× 60W/h + NApp × (2× 200W/h)+

NodesTaaS × 60W/h
24

+ NodesTaaS × 200W/h)× time× c (13.3)

Equation 13.2 defines the total energy consumed in the user-based scenario by the appli-
cation nodes and switches. The first part of the equation corresponds to the energy used by
the rack switches in which the applications nodes are deployed, while the second part gives
the power used by the nodes. In Equation 13.3, we present the energy consumed when the
applications use the TaaS to perform their transfers. The total energy in this case is the sum
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of: 1) the energy used at the application side (i.e., the sender, destination nodes and the rack
switches they activate); and 2) the energy consumed at the transfer service side, by the nodes
which operate it (i.e., NodesTaaS) and the switches connecting them.

User− basedenergy

TaaSenergy
=

NApp × (2 + NextraVMs)

(2× NApp + NodesTaaS)× c
(13.4)

Energy savings. The final step of this analysis is to compare the two scenarios. We do so by
computing the amount of extra energy used when each user is handling his data on its own
and not via the cloud service. We represent this by the ratio between the energy consumed in
the two scenarios, i.e., User−basedenergy

TaaSenergy
, which is defined in Equation 13.4. The formula defined

in Equation 13.4 is generic and can be applied by any cloud provider to estimate its energy
gains if adopting our TaaS approach. When we apply it to the configurations used in the
evaluation section (NextraVMs = 5, NApp = NodesTaaS and c = 1.2), we notice that twice more
energy is consumed if the transfers are done by users. This result shows that by adopting
our approach for a transfer service, the cloud providers can expect significant reduction of
the energy consumed in their data centers for handling data.

13.3.4 Reliability

A cloud managed transfer service has the advantage of being always available, in line with
the reliability guarantees of all cloud services. Requests for transfers are carried over net-
work paths that the cloud provider constantly monitors and optimizes for both availability
and performance. This allows to quickly satisfy peaks in demand with rapid deployments
and increased elasticity. Cloud providers ensure that a TaaS system incorporates service con-
tinuity and disaster recovery assurances. This is achieved by leveraging a highly available
load-balanced dedicated nodes-farm to minimize downtime and prevent data losses, even
in the event of a major unplanned service failure or disaster. Predictable performance can be
achieved through strict uptime and SLAs guarantees.

User managed solutions typically involve hard-to-maintain scripts and unreliable man-
ual tasks, that often lead to discontinuity of service and errors (e.g., incompatibility between
new versions of some building blocks of the transfer framework). These errors are likely
to cause VM failures and, currently, the period while a VM is stopped or is being rebooted
is charged to users. With a TaaS approach, both the underlying infrastructure failures and
the user errors are isolated from the transfer itself: they are transparent to users and are not
charged to them. This allows to automate file transfer processes and provides a predictable
operating cost per user over a long period.

13.4 Discussion

In this chapter we introduced a new paradigm, Transfer as a Service, for handling large-scale
data movements in federated cloud environments. The idea is to delegate the burden of data
transfers from users to the cloud providers, who are able to optimize them through their
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extensive knowledge on the underlying topologies and infrastructures. We propose a proto-
type that validates these principles through the use of a set of dedicated transfer VMs that
further aggregate the available bandwidth, leveraging our approach for multi-route trans-
fers across geographically distributed cloud sites. We show that TaaS is able to effectively
leverage this transfer approach in a multi-tenant context, sustaining high-performance trans-
fers up to 3 times faster than current state-of-the-art user tools. At the same time, it enables a
reduction to half of the energy fingerprint for the cloud providers, while it sets the grounds
for a data transfer market. As a result, cloud vendors can regulate the data movements, de-
creasing the periods with idle traffic while ensuring sustainable QoS transfer performance.
In the same time, such a cloud managed transfer service has the advantage of being always
available, in line with the reliability guarantees of all cloud services. With a TaaS approach,
users are relieved from the burden of configuring and managing own-deployed transfer
tools. Both the underlying infrastructure failures and the user errors are isolated from the
transfer itself and become transparent to users data movements. This allows to automate
file transfer processes and decrease the operating costs over the long period for Big Data
processing in the clouds.
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The challenges brought by the Big Data paradigm reveal several limitations of the current
cloud data management services. Performance trade-offs inherent in current virtualization
technologies, rigid cost schemes and lack of functionalities are some of the issues identi-
fied in this work. These prevent Big Data applications to fully benefit from the advantages
brought by cloud computing such as elasticity and scalability.

In this thesis we addressed these issues by proposing several solutions that enrich the
cloud data-management offer, and that enable high-performance processing at large-scale,
within and across cloud data centers. We demonstrated the advantages of our contributions
by applying them to state-of-the-art processing solutions, and consequently improving their
overall performance, for tackling real scientific applications. In this chapter, we present an
overview of the main achievements and discuss the perspectives that this research opens for
Big Data management on clouds.

14.1 Achievements

TomusBlobs: Federating Virtual Disks as a High-Performance Alternative to the
Cloud Storage

The cloud-provided storage service is the default solution today for managing data on the
clouds. However, when it comes to large-scale scientific processing such as MapReduce or
workflows, this storage service is unable to exploit the processing semantics or data access
patterns, and it is subject to low throughput and high latencies.



180 Chapter 14 – Conclusions

As an alternative, we proposed TomusBlobs, which provides a concurrency-optimized,
PaaS level cloud storage leveraging the free virtual disks of the compute nodes. For data-
intensive applications consisting of a large set of VMs, it provides a uniform storage plat-
form that supports processing optimizations and seamless scaling. Moreover, it reduces
the overall costs by replacing the payable cloud storage. This approach was validated for
both MapReduce and workflow processing. Regarding MapReduce applications, we built
on top of TomusBlobs an efficient framework, that leverages and optimizes the MapReduce
paradigm for scientific computation. Regarding workflow processing, we extended our
model to integrate application semantics and made it available within the Microsoft Generic
Worker engine. The evaluation showed that TomusBlobs provides substantial performance
improvements for managing data at large-scale compared to cloud-provided storage service
or default state-of-the-art solutions. Moreover, we showed that TomusBlobs can provide ad-
ditional features and optimizations in both contexts, such as elastic scaling and scheduling
the computation to the cloud nodes, based on data access patterns and I/O context.

Benefits Validated through Real-life Big Data Scenarios and Scientific Discovery

One of the main objectives of our work was to propose data management solutions that fa-
cilitate and enable scientific discovery using cloud platforms. To this purpose, we used sev-
eral real-life scenarios to validate and evaluate the benefits of our contributions: the CERN
LHC Atlas application and experimental data, the MonAlisa monitoring system of the CERN
LHC Alice experiment or the BLAST bio-informatic analysis. Additionally, we particularly
focused on the A-Brain application to validate the benefits brought for large-scale Big Data
analysis. The A-Brain pioneer analysis aims to joint neuro-imaging with genetic analysis in
order to explain and provide scientific evidence of significant links between brain regions
and genetic data.

To accommodate its large computation and data needs, we scaled the TomusBlobs solu-
tion to 1000 cores across 3 Azure data centers, which ran for 2 weeks and consumed more
than 200,000 compute hours. This served in a collaboration with a bio-informatics team,
where the consortium provided the first statistical evidence of functional signals in a failed-
stop task in basal ganglia and showed that subcortical brain regions can be significantly
predicted with genome-wide genotypes. This large-scale, long-running experiment demon-
strated that our approaches are fault tolerant, and able to provide reliable, high-performance
at large-scale for Big Data analysis. Finally, based on the overall validation with these real-
life scenarios, we demonstrated that our data management contributions can indeed sustain
and accelerate scientific discovery using the cloud.

High-Performance Inter-Site Transfers

An increasing number of Big Data applications are currently being ported on clouds to lever-
age the inherent elasticity and scalability of these multi-site infrastructures. In such a setting,
it is critical to provide tools to support efficient sharing and dissemination of data across
geographically-distributed sites. However, the existing cloud data management services
lack mechanisms for dynamically coordinating transfers among different data centers and
achieve reasonable QoS levels. Addressing this issue by providing high-performance, inter-
site data transfer was a primary goal of this thesis.
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To this end, we proposed several approaches, which cover the transfer from end to end.
First, we devised a solution that separates the applications logic from the data sharing, in-
creasing reliability and minimizing or controlling the intrusiveness of the transfer on the
compute resources. Next, we proposed a strategy to allocate the nodes to be dedicated for
managing the data in order to obtain performance levels similar to collocating the data lo-
cally within the compute nodes. Finally, we tackled the problem of the low inter-site band-
width by proposing a multi-route transfer scheme that exploits the cloud architecture and
the inherent network parallelism to aggregate extra bandwidth. These approaches signifi-
cantly increase the performance over state-of-the-art alternatives, providing fast data trans-
fers across sites and fulfilling the initial objective. Moreover, whether applied together or
independently, these solutions optimize the management of data and the communication
between application instances running across data centers, facilitating the migration to the
cloud of the geographically distributed applications.

Monitoring Services to Track the Cloud Performance Status

Cloud infrastructures are exploited based on a multi-tenancy model, which leads to vari-
ations in the delivered performance of the compute nodes and the communication links.
Monitoring and detecting such changes is particularly important for scientific applications
which need predictable performance. This is achieved by collecting monitoring informa-
tion about the cloud performance and by devising performance models to leverage these
online observations. However, collecting monitoring samples is at odds with increasing the
efficiency of applications, and consequently reducing the intrusiveness of the supporting
services.

To address these issues we provide a lightweight monitoring service and a dynamic,
generic sample-based model. The collected knowledge about the environment is made avail-
able to applications or is fed into higher-level management tools to leverage environment
awareness. Hence, by monitoring the performance we are able to provision resources in ad-
vance, to remove the performance bottlenecks one-by-one, or to increase the end-to-end data
transfer performance. This approach was leveraged in the context of multi-route, inter-site
transfers. Additionally, the monitoring information collected by the services, is used also to
calibrate the real-time streaming with respect to the cloud environment.

Improving Performance of Real-time Streaming through Environment-awareness

Rigid scheduling strategies are not the best fit for the dynamic environment of the cloud.The
class of real-time streaming applications are particularly sensitive to the reactivity of the
mechanisms of streaming the events to the environment, due to the potential small sizes of
the events and the deadline constraints of the computation.

Therefore, we proposed a streaming model that adapts the batch size and the resource
allocation, based on context parameters that are evaluated via monitoring. In this way, the
streaming decision is controlled at runtime by minimizing the average latency according to
the cloud streaming context. Based on this approach, we designed JetStream, which is able
to provide high-performance streaming across cloud data centers. JetStream increases the
transfer rates with orders of magnitude over individual or static event transfers strategies.
This shows that leveraging adaptivity can significantly improve the performance of data
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management in general, and provide efficient real-time communication across cloud sites in
particular.

Customizable Trade-off between Cost and Performance

Finding value in large data sets is the main objective of Big Data. However, the costs users are
willing to pay to retrieve this value and the performance levels they seek when performing
this task are specific to each scenario. Therefore, an important focus of this work was to
provide data management solutions which optimize for specific trade-offs between the cost
and performance.

To this purpose, we modeled the relation between cost and performance for data trans-
fers and designed a resource-provisioning strategy for customizable levels of performance
according to cost constraints. This was applied both in the context of static and real-time data
management. Furthermore, we investigated also the cost efficiency of the resources and pro-
vide automatic mechanisms for preventing resource wasting. The results showed that our
solution is able to detect and adjust poor user configurations, which would otherwise lead
to resource wasting, and that it can optimize data movements for optimal throughput, low
latencies or best/custom ratios between price and delivered performance. Providing such
customizable trade-off mechanisms for managing data is an important contribution for sup-
porting Big Data processing, considering that the density of the value in the data sets is not
uniform nor identical among different applications.

14.2 Perspectives

During this work, several choices were made regarding the directions and functionalities
to be created to improve the cloud support for Big Data applications. Encouraged by the
good results obtained, these contributions can now serve as a starting point for new research
directions, complementing our work and extending the cloud data management ecosystem.
The main perspectives opened by this thesis are presented next.

Data-Intensive Scientific Workflows on Geographically Distributed Cloud Sites

The global deployment of cloud data centers is enabling large-scale scientific workflows to
improve performance and deliver fast responses. This unprecedented geographical distri-
bution of computation is doubled by an increase in the scale of the data handled by such
applications. Sustaining such a computation requires, alongside with high-performance
geographically-distributed data management tools, processing engines which can provide
efficient computation. Nevertheless, scheduling workflow processing across cloud data cen-
ters is not trivial as it requires adapting to the cloud environment and to the data layout
to manage task placement. The main issues preventing this, but addressed in this thesis,
were the limited knowledge available in the virtualized cloud user space and the inefficient
data exchanges across sites. Therefore, the features brought by our approaches such as ex-
posing the data layout to the workflow engine, optimizing data management according to
the workflow access patterns, and enabling customizable cost/performance trade-offs, open
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the perspectives of building a multi-site efficient workflow engine for scientific Big Data pro-
cessing. This perspective is now the driving objective of the Z-CloudFlow project, sponsored
by Microsoft and Inria within the context of the Microsoft Research - Inria Joint Center.

Stream Processing on Clouds

Stream data processing is becoming one of the most significant subclass of applications in
the world of Big Data, with events being produced at growing rates by a variety of sources.
Therefore, moving stream processing on clouds and scaling query processing is an open
and hot issue nowadays. However, scaling the stream processing is a difficult and complex
task due to the real-time nature of the analysis and the inherent latency-related deadline
constraints. One of the most critical milestones concerning the stream latency is the man-
agement of the events, given that processing performance is in fact determined by the rate
the data is provided to the compute engine. Nevertheless, by proposing a high-performance
streaming middleware, we have made an important step towards the goal of enabling large-
scale stream processing on clouds. Due to its generic architecture, JetStream can be bound to
any event processing engine and applied to various scenarios. Withal, further improvements
can be designed for particular scenarios, by customizing the streaming based on the appli-
cation semantics or the query logic, to improve the performance of real-time applications on
clouds.

Diversification of the Cloud Data Management Ecosystem

One of the key points emphasized and addressed in our work is the need for a richer func-
tionality regarding data management on the clouds. Achieving this point is critical to im-
prove the efficiency of the next-generation data centers, which are expected to provide mixed
service models for accommodating the Big Data challenges. Therefore, we proposed several
approaches that can serve as the foundation for developing new data-related functionali-
ties. One interesting future direction is to extend the service processing layer, which we
have built to capitalize the resources dedicated for the data management with new func-
tionalities. A particularly promising aspect, considering the significant cost of inter-site data
exchanges, is to provide online data deduplication techniques to eliminate redundant data
transfers between data centers. The idea can be extended also to the context of streaming,
by investigating trade-off options between latency and real-time compression mechanisms.
Hence, building on the solutions proposed in this thesis, new services can be devised that
would further enrich the cloud data services and better sustain large scale applications.

Cloud-provided Transfer as a Service and a Data Transfer Market

An important contribution of our work was to propose a dedicated cloud data transfer ser-
vice that supports large-scale data dissemination across geographically distributed sites, ad-
vocating for a Transfer as a Service (TaaS) paradigm. We demonstrated significant benefits
related to cost, performance and energy, that the adoption of such a service would bring for
both users and cloud providers. Moreover, we devised a dynamic cost model scheme for the
service usage, which enables the cloud providers to regulate and encourage data exchanges
via a data transfer market. In particular, this opens the perspective of further studying new



184 Chapter 14 – Conclusions

cost models that allow users to bid on idle bandwidth and use it when their bid exceeds
the current price, which varies in real-time based on supply and demand. Nevertheless,
the main perspective opened by these contributions (Transfer as a Service and Data Transfer
Market) is to migrate them to the cloud vendors.Hence, providing further evaluation studies
covering diverse aspects, ranging from performance to marketing or network economics, is
an important and impacting direction towards this goal.
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Chapter 15
Resumé

Alors que vous lisez ces lignes, plus de données seront produites que la quantité
d’informations contenues dans tous les documents imprimés au monde. L’Internet Data
Center (IDC) estime que la croissance des données produites se trouvera multipliée par 300
entre 2005 et 2020, et s’attend à passer de 130 exaoctets actuellement à 20 000 exaoctets en
2020. Ce “Data Deluge” engendre une révolution à la fois de l’industrie, qui tire profit de la
valeur contenue dans les données; et de la recherche scientifique, qui a migré vers un nou-
veau paradigme dit de “Data Science”. En conséquence, les applications doivent pouvoir
passer à l’échelle et distribuer leurs tâches de calculs afin de gérer des volumes de données
de plus en plus importants, une vitesse d’acquisition accrue, et une plus grande diversité
dans ces données. Ces défis sont associés au phénomène du “Big Data”.

Un facteur accélérant cette révolution du Big Data et qui émerge avec elle est le
cloud computing. La nature multi-site des infrastructures de cloud, qui permettent la co-
localisation des calculs et des données, ainsi que le passage à l’échelle à la demande, four-
nissent une option intéressant pour s’attaquer à des scénarios Big Data. Les clouds apportent
en effet l’illusion d’une infrastructure sans limite de passage à l’échelle, gérée par un service
tiers qui évite aux utilisateurs d’acheter et maintenir du matériel distribué complexe. Ainsi
les utilisateurs peuvent-ils se concentrer directement sur l’extraction de valeurs de leurs don-
nées, louant et adaptant leurs services pour une meilleure utilisation des ressources en fonc-
tion des besoins de leur application et de leur distribution géographique.

Les cas typiques de Big Data sur le cloud (e.g., MapReduce, workflows) nécessitent de
diviser et distribuer les données sur le plus de ressources possible, et potentiellement sur de
multiples centres de données. Cette nécessité de distribuer géographiquement le traitement
provient de plusieurs raisons, allant de la taille des données (excédant la capacité d’un seul
site), à la localisation des sources des données (qui peuvent être elles-mêmes géographique-
ment distribuées), ou la nature des analyses elles-mêmes (couplage d’instances de plusieurs
services). En conséquence, il est impératif que ces traitements puissent passer à l’échelle, ce
qui se traduit en une gestion de données hautement distribuée. Que le traitement soit ef-
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fectué sur un site unique ou sur plusieurs centres de données, les données d’entrée doivent
être partagées par les instances de calculs parallèles, qui doivent également partager leurs
résultats (potentiellement partiels). Le défi des plus difficiles consiste à atteindre un gestion
de donnée hautement performante à large échelle, permettant ainsi des temps d’exécutions
acceptables pour le traitement général.

Les technologies de cloud computing actuellement en production sont relativement nou-
velles et n’ont pas atteint leur potentiel maximum: de nombreuses aptitudes sont encore
sous-exploitées. Cela a en particulier un impact sur la gestion de données, dont les perfor-
mances sont encore loin d’être satisfaisantes. Un coût élevé, un bas débit d’entrées/sorties
(I/O) et une importante latence, sont des problèmes majeurs. Les clouds fournissent prin-
cipalement des services de stockage de données optimisés pour une grande disponibilité
et durabilité, alors que les performances ne sont pas l’objectif premier. Certaines fonction-
nalités comme le partage de données ou la réplication géographique ne sont supportés que
comme “effets de bord”. D’autres fonctionnalités sont encore manquantes: transferts géo-
graphiquement distribués, optimisation des coûts, différentiation des qualités de services,
personnalisation des compromis entre le coût et les performances. Tout cela suggère que les
applications “data-intensives” sont souvent coûteuses (en temps comme en prix) ou diffi-
ciles à structurer à cause de la gestion inefficace des données sur le cloud. Dans ce contexte,
fournir des services de gestion de données diversifiés et efficaces sont des étapes importantes
pour les applications Big Data.

Contributions

Analyser comme les clouds peuvent devenir “Big Data - friendly”, et quelles sont les
meilleures options pour fournir des services de cloud orientés “données” afin de satisfaire
les besoins des applications, sont les objectifs clefs de cette thèse. Notre objectif est de fournir
des solutions de gestion de données permettant de hautes performances dans l’exploitation
des infrastructures à grande échelle et géographiquement distribuées. Notre travail s’est
déroulé principalement dans le contexte du Microsoft Research - Inria Joint Center et a
impliqué des collaborations avec plusieurs équipes de Microsoft. Premièrement, le projet
A-Brain permet, grâce au cloud, des analyses à grande échelle de données génétiques et
provenant de neuro-imagerie. En second lieu, le projet Z-CloudFlow a pour but de permet-
tre l’exécution de workflows scientifiques sur plusieurs sites.

Aperçu des contributions. Les contributions se focalisent sur les aspects de performances
de la gestion de données au sein des centres de données et entre ceux-ci. Nous avons com-
mencé par relever les défis liés à l’exécution des applications scientifiques sur le cloud, avec
plus particulièrement le paradigme MapReduce. Ensuite nous nous sommes attaqués aux
limitations du passage à l’échelle du traitement sur un seul site en étendant le paradigme
MapReduce sur plusieurs sites. Ces approches ont été appliquées dans le contexte de
l’application bio-informatique A-Brain afin de permettre certaines découvertes scientifiques.
Traiter de grandes masses de données à de telles échelles a révélé un certain nombre de prob-
lèmes liés à la gestion de données inter-sites, problèmes que nous avons abordés comme suit.
Nous avons proposé un schéma pour dédier des noeuds de calculs à des services de gestion
de données. Ensuite nous avons conçu l’architecture d’un service de transfert de données
permettant des optimisations de coûts et de performances configurables pour les transferts
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inter-sites. Ce schéma a ensuité été utilisé dans le contexte du streaming temps-réel entre
centres de données. Enfin, nous avons étudié la viabilité de l’utilisation d’une telle solution
comme un service fourni directement par le cloud, suivant un paradigme de Transfer-as-a-
Service basé sur un schéma de tarification flexible. Ces contributions sont résumées ci-après.

Exploitation de la localisation pour les programmes MapReduce et les workflows
sur le cloud

Alors que le paradigme du cloud computing devient attractif du fait de son élasticité, il
devient important de permettre aux unités de calculs d’accéder efficacement à ces données
partagées de manière concurrente. Utiliser les services de stockage fournis par le cloud n’est
pas envisageable. De fait, dans les infrastructures de cloud actuelles, les noeuds de calculs
sont séparés des noeuds de stockage et les communications entre ces deux types d’entités
sont sujettes à une importante latence. Afin de régler ce problème, nous proposons une so-
lution de gestion de donnée optimisée pour la concurrence, appelée TomusBlobs, au niveau
"plateforme" de l’utilisation du cloud. TomusBlobs se base sur des solutions de stockage
distribuées fédérant les disques virtuels locaux des noeuds du cloud afin de fournir une
plateforme de gestion de données globalement partagée à l’usage des applications. Comme
le montrent nos résultats, cette approche double le débit vers et en provenance du service de
stockage grâce à l’exploitation de la localisation des données. Les avantages de l’approche
TomusBlobs ont été validés dans le contexte MapReduce par l’implémentation d’un pro-
totype nommé TomusBlobs-MapReduce sur le cloud Azure de Microsoft. TomusBlobs-
MapReduce implémente ce paradigme de calcul et utilise l’approche de stockage proposée
comme back-end de gestion de données. Cette solution réduit le temps d’exécution des
applications scientifiques jusqu’à 50%. Nous avons ensuite étendu l’approche TomusBlobs
pour les workflows génériques afin d’exploiter la localisation des données pour le partage
de fichiers entre noeuds de calculs. A cette fin, nous avons conçu un système de fichier
fédérant les disques locaux des noeuds pour TomusBlobs. Cette approche exploite les sché-
mas d’accès du workflow afin de s’adapter automatiquement et de sélectionner le meilleur
protocole de transfert, ce qui accroit la vitesse de la gestion de données par un facteur 2 en
comparaison des options actuelles de gestion de données. Ce travail a s’est déroulé dans le
contexte d’une collaboration avec Microsoft Research et au cours d’un stage de 3 mois dans
leurs laboratoire. Il a mené à 2 publications dans les conférences CCGrid ‘12 et BigData ‘13.

Passage à l’échelle des traitements MapRaduce entre sites géographiquement dis-
tribués

Un autre problème que nous avons abordé est celui du passage à l’échelle du calcul sur
le cloud. En pratique, de nombreuses applications Big Data sont plus gourmandes en
ressources ou opèrent sur des jeux de données plus larges (et/ou géographiquement dis-
tribués) que les applications clouds typiques. Ces applications nécessitent donc une exé-
cution multi-sites. Cependant les modèles de calculs existants sont conçus pour un seul
cluster ou un seul site. Pour palier cette limitation et permettre le passage à l’échelle glob-
ale, nous avons proposé deux extensions pour le paradigme MapReduce. En premier lieu,
nous avons proposé une approche hiérarchique à deux étages du paradigme MapReduce: le
premier étage distribue des instances de TomusBlobs-MapReduce sur les divers centres de
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données du cloud; le deuxième étage calcule le résultat final global. Avec cette approche,
nous rendons possible les traitements à échelle globale en distribuant les données d’entrée
et les tâches de calculs sur les ressources disponibles pour regrouper les capacités de calculs
de plusieurs sites du cloud. En second lieu, nous avons abordé les limitations des frame-
works MapReduce actuels dans le contexte des applications “reduce-intensives”, notam-
ment leur manque de support pour une réduction globale des résultats (e.g., dans un pro-
cessus MapReduce, chaque "reducer" fournit une sortie). Ainsi nous avons proposé MapIt-
erativeReduce comme extension du modèle MapReduce, afin de permettre d’ordonnancer
efficacement les tâches de réduction en parallèle en se basant sur un arbre de réduction, per-
mettant ainsi le calcul d’un unique résultat final. L’application de cette technique dans le
contexte du MapReduce multi-sites permet d’optimiser la taille et le nombre des échanges
de données entre sites, et ainsi d’améliorer la gestion des données de manière générale. En
utilisant ces extensions, nous avons pu passer à l’échelle des applications scientifiques sur
des clouds publiques, exploitant les capacités de calculs de 1000 coeurs répartis sur 3 cen-
tres de données géographiquement distribués. En termes de performances, nous avons été
en mesure de réduire le temps de gestion de données de 60% en comparaison des solutions
classiques. Ce travail a mené à une publication au workshop MapReduce ‘12, tenu en marge
de la conférence HPDC ‘12, ainsi qu’une publication dans le journal CCPE ‘13.

Permettre les découvertes scientifiques au travers d’expériences à large échelle sur
le cloud: étude du cas de l’application A-Brain

Nous avons mis en pratique les approches de gestion et de traitement de données vues
précédemment afin de permettre des découvertes scientifiques grâce à des expériences à
grande échelle sur le cloud. Comme étude de cas, nous avons travaillé en collaboration avec
une équipe de bio-informatique d’Inria Saclay pour exécuter l’application A-Brain, qui a
pour but de permettre l’analyse conjointe de données génétiques et de données provenant de
neuro-imagerie. Cette technique pionnière doit permettre une meilleure compréhension de
la variabilité entre individus, et d’expliquer des maladies cérébrales d’origines génétiques.
Cependant, les observations neurologiques et génétiques impliquent un grand nombre de
variables (i.e., de l’ordre de quelques millions). L’importante quantité de données et les cal-
culs requis empêchaient jusqu’ici ce type d’analyse (les calculs sur une machine convention-
nelle prendraient des années alors que la taille des données atteint l’ordre du petaoctet). En
utilisant notre approche, nous avons exécuté cette analyse sur 1000 coeurs durant 2 semaines
en distribuant les calculs sur plusieurs centres de données du cloud Azure, consommant
ainsi plus de 200 000 heures de calculs, ce qui représente à l’heure actuelle l’une des expéri-
ences scientifiques les plus larges sur Azure. Nos outils ont permis de fournir la première
preuve statistique de connexion existant entre les régions du cerveau et les gènes. Cette ex-
périence à grande échelle nous a enseigné aussi des leçons importantes, la plus importante
étant que le modèle actuel de calcul dans le cloud, dans lequel tous les types de gestion de
données s’appuient exclusivement sur le service de stockage offert par le cloud, est large-
ment inefficace et obsolète. Ce projet a été publié dans un article du workshop Cloud Future
‘12, dans le journal électronique ERCIM ‘13 et dans Frontiers in Neuroinformatics en 2014.
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Dédier des noeuds de calcul pour les services de données avancés

Le déluge de données nécessite des systèmes de stockage fiables, passant à l’échelle, et adap-
tés à une diversification des fonctionnalités liées à la gestion de données. Exécuter des ex-
périences à large échelle expose certaines limitations des services de stockage offerts par le
cloud: ces services troquent la performance contre la durabilité et ne fournissent que des
fonctionnalités basiques de type “put/get”. Exécuter des applications Big Data demande
cependant des fonctionnalités plus avancées telles que des mécanismes de logging, de com-
pression ou de transfert. Comme alternative au services de stockage fournis par le cloud,
concevoir de telles fonctionnalités avancées dans les noeuds des applications, au dessus
d’un système de stockage local, peut devenir trop intrusif et présenter un impact sur les per-
formances des applications. C’est pourquoi nous avons proposé une approche différence,
appelée DataSteward, qui combine les avantages des stockages traditionnels fournis par le
cloud (gestion de données isolée des calculs) avec ceux de TomusBlobs (performances élevée
grâce à l’utilisation des disques locaux aux noeuds de calculs). Dans ce but, nous dédions
un sous-ensemble des noeuds de calculs et formons un système de gestion de données au
dessus de ceux-ci. La séparation de ce système de gestion de données des ressources util-
isées pour les calculs permet un haut degré de fiabilité tout en restant non-intrusif. Les
applications peuvent effectuer des opérations d’I/O efficaces, les données étant gardées à
proximité des noeuds de calculs grâce à l’utilisation, pour la sélection des noeuds de stock-
ages, d’un algorithme de clustering exploitant une connaissant de la topologie du réseau.
Pour capitaliser plus avant sur cette séparation, nous introduisons un ensemble de services
de traitement de données scientifiques au dessus de la couche de stockage, permettant de
fournir les fonctionnalités nécessaires aux applications Big Data. De manière similaire au
concept de "fichier" d’un système traditionnel, qui représente un objet générique associé à
un ensemble d’opérations (e.g., move, view, edit, delete, compress, etc.), DataSteward con-
fère à un "fichier cloud" son propre ensemble d’actions. Les résultats de notre évaluation
montrent que cette approche améliore de 3 à 4 fois la performance par rapport au stockage
fourni par le cloud. Elle peut apporter des améliorations significatives pour la gestion des
données des applications grâce à la sélection de noeuds de stockages basés sur les connais-
sances de la topologie. Ce travail a été publié à la conférence TRUST-COM/ISPA ‘13.

Partage de données inter-sites à hautes performances via transferts multi-routes

Une fonctionnalité particulière manquant dans l’écosystème actuel de gestion de données
sur le cloud est le support efficace des transferts géographiquement distribués. Il s’agit
pourtant d’un problème important. En effet gérer des données sur plusieurs centres de
données géographiquement distribués implique une importante latence entre les site, et
un coût monétaire élevé. Pour résoudre ce problème, nous avons introduit un service de
transferts de données basé sur le cloud afin d’exploiter de manière dynamique le paral-
lélisme réseau grâce à des transferts multi-routes. Ceci offre un coût et des performances
de transfert prévisible. Le problème des débits instables et faibles entre sites est résolu au
travers de capacités améliorées de gestion de données qui adaptent la réplication au sein
des centres de données afin de permettre une dissémination plus rapide des données en ac-
cord avec des contraintes de coûts et de performances. Notre système construit et adapte
automatiquement des modèles de l’infrastructure de cloud dans le but d’ordonnancer ef-
ficacement les transferts et d’utiliser les ressources sous-jacentes efficacement. L’idée clef
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consiste à prédire les I/O et les performances de transfert afin de décider judicieusement
de la manière d’effectuer les optimisations de transferts automatiquement entre les centres
de données fédérés. En termes d’efficacité et d’utilisation, cette approche fournit aux ap-
plications la possibilité de définir un compromis entre le coût et le temps d’exécution. La
stratégie de transfert est alors optimisée en fonction de ce compromis. Les résultats mon-
trent que cette approche est capable de réduire le coût monétaire et le temps de transfert par
un facteur 3. Ce travail a fait l’objet d’une publication à la conférence CCGrid ‘14.

Streaming hautes performances d’évènements entre centres de données de cloud

Un nombre croissant d’applications Big Data s’exécutent sur plusieurs centres de données
autour du globe et se conforment à un modèle dans lequel le traitement des données se base
sur le streaming vers une plateforme de calculs sur laquelle des opérations similaires sont
appliquées de manière répétées sur des morceaux indépendants. Le traitement de données
en streaming devient en fait la classe d’application la plus significative dans le monde du Big
Data. Un grand nombre de flux de données sont générés et collectés à une vitesse grandis-
sante depuis de nombreuses sources. En conséquence, permettre des transferts de données
rapides entre sites géographiquement distribués devient particulièrement important égale-
ment pour les applications qui gèrent des flux d’évènements en temps réel. Afin d’étudier
de manière adéquate le problème consistant à gérer des flux de données entre différents
sites de cloud, nous avons réalisé une évaluation de performance dans le contexte des traite-
ments de données effectuées par le LHC au CERN. Nos résultats indiquent que les stratégies
actuelles de communications en temps réel sur le cloud peuvent interférer de manière sig-
nificatives avec les calculs, et réduire les performances globales de l’application. Afin de
résoudre ce problème, nous avons proposé un ensemble de stratégies pour le transfert effi-
cace d’évènements entre différents centres de données, et introduit JetStream un middleware
hautes performances pour le streaming par paquets. JetStream est capable de s’adapter au-
tomatiquement aux conditions de streaming en modélisant et en observant l’ensemble des
paramètres du contexte. La taille des paquets et la décision du moment auquel envoyer
les évènements sont contrôlés grâce à ce modèle qui caractérise la latence des flux dans le
contexte des clouds. Afin d’améliorer encore les performances, nous agrégeons la bande
passante entre sites en étendant notre approche précédente pour les transferts multi-routes
entre les noeuds des clouds. Les résultats montrent une amélioration des performances d’un
facteur 250 par rapport à un streaming d’évènements individuels, et de 25% par rapport
à un streaming par paquets de taille statique. Le streaming multi-routes permet de multi-
plier encore par 3 cette vitesse de transfert. Ce travail a mené à deux publications dans les
conférences CCGrid ‘14 et DEBS ‘14.

Un modèle économiquement efficace pour la gestion des données entre plusieurs
sites

Le déploiement global de plusieurs centres de données apporte de nouveaux défis liés à la
gestion de données entre sites. Les contributions précédentes se sont concentrées sur des
solutions orientées utilisateurs pour relever ces défis. Toutefois, de hauts débits, de faibles
latences, et des compromis liés au coût ou à l’énergie représentent aussi d’importants prob-
lèmes pour les fournisseurs de clouds dès lors qu’ils disposent de plusieurs sites. Enrichir
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l’écosystème des services de données afin de fournir une gestion de données à hautes per-
formances tout en réduisant les coûts et la consommation d’énergie sont des étapes clefs
pour les affaires d’un fournisseur de cloud et pour les centres de données de demain. Afin
d’aborder ces défis, nous avons proposé un service dédié de transferts de données support-
ant la dissémination de données à large échelle entre sites géographiquement distribués, et
défendons la notion d’un paradigme de Transfer-as-a-Service (TaaS). Nous soutenons que
l’adoption d’une telle approche TaaS apporte un certain nombre d’avantages à la fois pour
les utilisateurs et pour le fournisseur qui le proposerait. Pour les utilisateurs d’un cloud
multi-site, notre proposition permet de réduire la variabilité des transferts et d’accroitre le
débit de manière significative en comparaison d’une solution purement implémentée par
l’utilisateur, tout en bénéficiant de la disponibilité bien connue des services offerts par le
fournisseur de cloud. Pour les fournisseurs, un tel service peut diviser par deux la consom-
mation d’énergie au sein d’un centre de données en comparaison d’une approche implé-
mentée par l’utilisateur. Enfin, nous avons proposé un modèle de coûts dynamique pour
l’usage d’un tel service, permettant ainsi au fournisseur de cloud de réguler et encourager
les échanges de données via un tel service. Ce travail a été publication à la conférence SRDS
‘14.
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Chapter 16
Abstract

The easily-accessible computation power offered by cloud infrastructures coupled with the
Data Deluge are expanding the scale and speed at which data analysis is performed. In
their quest for finding the Value in the 5 Vs of Big Data, applications process larger data
sets, within and across the globally distributed cloud data centers. Thus, to leverage the
full computation power of the clouds, global data processing across multiple sites has to be
fully supported. In this work we focus on the performance aspects of managing data, a key
milestone for enabling such large-scale processing. To this purpose we proposed Tomus-
Blobs, a concurrency-optimized PaaS-level cloud storage system which federates the virtual
disks, leveraging data locality for cloud MapReduce or workflow processing. Encourage
by the results, which showed a throughput increase of more than 2 times over the cloud
storage, we have built a MapReduce framework that uses TomusBlobs as a data manage-
ment back-end. To fully address the scaling needs of large Big Data analysis, we extended
this framework to a multi-site hierarchical MapReduce engine, which enables efficient pro-
cessing using resources from multiple cloud sites. The expensive inter-site data exchanges
are minimized using the Map-IterativeReduce technique that we devised for reducing the
number of output results of MapReduce processing to a single one. We illustrate the ben-
efits of our approach with a concrete Big Data application, called A-Brain, from the area of
joint genetic and neuroimaging data analysis. Our solutions permitted to run this analysis
at large-scale on 1000 cores running for 2 weeks in 4 deployments across Azure data centers,
one of the largest scientific experimental setup on Azure up to date. The analysis discovered
for the first time how the functional signal in subcortical brain regions can be significantly
fit with genome-wide genotypes. In addition to the biological result, we showed that our
approach is fault tolerant and is able to provide reliable performance at large-scale despite
distributing the computation across sites. Additionally, in the process of executing such Big
Data analysis, we had the opportunity to gain useful experience and to learn several interest-
ing lessons. The most important lesson was that enabling high-performance geographically
data management and transfers in such scenarios becomes critical. In fact, geographically
distributed processing becomes a reality both in the scientific world (e.g., genome mapping,



high-energy physics simulations, large observatories sensors network) and in the commer-
cial large IT web-services (e.g., search engines, office tools). To address these issues, we
focused on understanding the options and strategies that can be set in place for managing
application data, both statically and in real-time, across cloud data centers.First, we have
investigated an alternative to collocating the storage in the federated disks of the compute
nodes, in order to further increase the reliability while remaining non-intrusive. To this end,
we propose a schema for selecting nodes to be dedicated for data management, by deduct-
ing in user space the topology of the cloud nodes. Our approach shows that it is possible to
improves the overall performance of real-life scientific application with up to 45 %. Building
on this uniform data management systems we device an environmentally-aware data han-
dling approach for exploiting the network parallelism of clouds via multi-route transfers,
while offering predictable cost and time performances. In terms of efficiency, it provides
the applications with the possibility to set a trade-off between money and time and to opti-
mize the transfer strategy accordingly, being able to reduce the monetary costs and transfer
time by up to 3 times. Next, we have leveraged these strategies for the applications that
require streaming the data to cloud compute nodes. For this we have proposed JetStream,
a high-performance batch-based streaming middleware, that dynamically self-adapts to the
streaming conditions by modeling and monitoring a set of context parameters. The results
showed that by adaptively selecting the right configuration, JetStream is able to improve
the overall application streaming performance by as much as three times. Finally, consid-
ering all these approaches, we advocate for a Transfer as a Service (TaaS) paradigm that
supports large-scale data dissemination across geographically distributed sites. We comple-
ment this with a dynamic cost model schema, which enables the cloud providers to regulate
and encourage data exchanges via a data transfer market. Our work demonstrates that it is
possible to adaptively exploit in user space the cloud resources in order to shift the providers
advertised performances towards high-performance data management for the Big Data ap-
plications running across data centers.
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