N

N

Gestion du Big Data hautes performances dans les
centres de données cloud
Radu Tudoran

» To cite this version:

Radu Tudoran. Gestion du Big Data hautes performances dans les centres de données cloud.
Performance et fiabilité [cs.PF|. Ecole normale supérieure de Rennes, 2014. Frangais. NNT:
2014ENSR0004 . tel-01093767v2

HAL Id: tel-01093767
https://theses.hal.science/tel-01093767v2
Submitted on 26 Apr 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01093767v2
https://hal.archives-ouvertes.fr

-
ueh
N

THESE / ENS RENNES

sous le sceau de I'Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE RENNES
Mention : Informatique

Ecole doctorale MATISSE

High-Performance Big Data
Management Across Cloud
Data Centers

présentée par

Radu Marius Tudoran
Préparée a I'unité mixte de recherche 6074
Institut de recherche en informatique

et systémes aléatoires

Thése soutenue le 10 décembre 2014
devant le jury composé de :

Frédéric Desprez/ rapporteur
Directeur de recherche, Inria Rhdne-Alpes, France

Michael Schéttner/ rapporteur et examinateur
Professor, Institute of Informatics, Duesseldorf University, Germany

Pierre Sens / examinateur
Professeur, Université Paris 6, France

Olivier Nano / examinateur
Principal Development Manager at Microsoft Research, ATLE, Germany

Patrick Valduriez / examinateur
Directeur de recherche, Inria Sophia Antipolis-Méditerranée, France

Gabriel Antoniu / directeur de thése
Directeur de recherche, Inria Rennes - Bretagne Atlantique, France

Luc Bougé / directeur de thése
Professeur, ENS Rennes, France

Du bist aufgehoben fiir einen grofien Montag! Wohl gesprochen, aber der Sonntag endet nie
You are destined for a great Monday! Well said, but the Sunday never ends
Reisetagebiicher, 1921, Franz Kafka

Acknowledgements

This PhD work was made possible thanks to the patience, guidance and helpful ad-
vices of my excellent supervisors Gabriel and Luc, and my close collaborator and colleague
Alexandru. I am most grateful for your support and for offering me this great and enriching
experience. Thank you for everything!

I would like to thank also my beloved family: Anca, Radu and Ileana, for their continu-
ous encouragement, support and help in every step that I make. You provide me the strength
that I need to go forward.

I would also like to thank the members of the jury: Olivier Nano, Patrick Valduriez and
Pierre Sens and my evaluators Michael Schottner and Frédéric Desprez for taking the time
to evaluate my work and give me valuable feedback.

Kind regards go to my internship supervisors and collaborators: Gotz Brasche, Olivier
Nano, Ivo Santos, Hakan Soncu, Ramin Rezai Rad and Kate Keahey. I am grateful for giving
me the chance to work with you and for all your mentoring advices. You have all helped me
to improve my work and myself.

Many thanks go to the different contributors and collaborators. To Benoit Da Mota,
Bertrand Thirion, Gotz Brasche, Hakan Soncu and Pierre-Louis Xech for the great collab-
oration that we had in the A-Brain project. To Patrick Valduriez, Esther Pacitti, Ji Liu, Luis
Pineda Morales and Olivier Nano for the short time that I had the chance to work with you
in the Z-CloudFlow project. I would also like to thank Dennis Gannon, Tony Hey and Kenji
Takeda for their valuable support and help in these projects and for all our interactions. I
would also like to thank Kate Keahey, Pierre Riteau and Sergey Panitkin for our work within
the framework of the Data@Exascale joint team.

Thanks go also to all the current and former members of the KerData team: Shadi,
Houssem, Matthieu, Or¢un, Tien Dat, Alvaro, Lokman, Pierre, Diana, Alexandra, Andreea,
Stefan, Elena, Viet-Trung, Bogdan, Ciprian, Florin and Catalin. I happily recall our quality
time together.

I would also like to thank a number of friends that were particularly supportive along
this path. All my gratitude to Octavian, to whom I owe my first steps in research. Many
thanks to Costin with whom I closely shared many enlightening experiences during these
years. Many thanks also to my old and close friends Sebi, Marius, Nicu and Florin with
whom I made together many of the steps that have taken me here.

Finally, I would like to thank all the other people that had a direct or indirect contribution
to this work and were not mentioned above. Your help and support is appreciated.

Contents

(I Introduction|
1.1 Contextl.
1.2 ntributions
1.3 Publications|
.......................................
(1.5 Organization of the Manuscript|

[Part | — Context: The Landscape of Big Data Management on Clouds|

2 Background: The Era of Big Data

|2.1 TEe Data Deluge|

2.2 Data Science: The Emergence of a New Scientific Paradigm|.
B3 DISCUSSION] . . « .« v o e e e e e,

[3 Background: Cloud Computing]

8.2 The Cloud Computing Paradigm|
B.3 The Cloud Storage Paradigm|

|4_Objective: Processing Big Data on Clouds|

[5 State-of-the-Art: Big Data Management Systems for Clouds|

.1 DataStoragel o oo
b.1.1 Unstructured Data: Object-Based Storage Systems|
b.1.2 Structured Data: Distributed File Systems].
b.1.3 Structured Data: Key-ValueStores|

p2 DataProcessing|o oo
F21 MapReduce|
522 Workflows|

4.1 Overview of Big Data Applications|
4.2 Challengesand Issues|
4.3 Big Data Processing Models: MapReduce and Beyond|.
M4 Discussionl i

O 0 NI N =

ii Contents

p.2.3 Complex Event Processing Platforms| 40

0.3 Transfer|. 41
b.31 StaticDatal oo 41
£.32 Real-TimeDatal 42

4 Di ION| . v v o e e e e 43

[Part I — High-Performance Big Data Management on a Single Data Center] 45

6 MapReduce for Bio-Informatics: The A-Brain Case Study Application| 47
[6.1 TJoining Genetic and Neuro-imaging Analysig 47
6.1.1 Initial Motivationl L 48

6.1.2 A-Brain: Application Description|. 48

6.1.3 Challenges|. 50

6.2 Towards a MapReduce Architectural Solution|. 51
6.3 Discussionl 52

[7 TomusBlobs: Leveraging Locality for MapReduce Applications on Azure Cloud| 53
[7.1 TomusBlobs: Federating Virtual Disks for a Communication Efficient Storage| 56

[72 Leveraging Virtual Disks for Efficient MapReduce Processing] 58
[7.37 Validation and Experimental Evaluation| 61
[7.3.1 Cloud Storage Evaluation: TomusBlobs vs. Cloud-Provided Storage |

| Service in Synthetic Settings|. o o 0L 61
[73.2 Initial Experimentation with the A-Brain Application| 63

[73.3 A Cost Analysis for Executing Scientific Applications on the Cloud] . . 64

[74 Extending TomusBlobs for Efficient Workflow File Management] 65
[75 Validation and Experimental Evaluation for Workflows| 71

[751 TomusBlobs in the Context of Synthetic Workflows| 71
[7.5.2 Using TomusBlobs to Execute a Biological Workflow Application| . . . 72

[8 Going Further: Scaling MapReduce across Multiple Data Centers| 75
.1 Map-IterativeReduce: Handling Reduce-Intensive Workloads| 77
|8.2 GeograEhicallz Distributed MaEReduce 81

[8.3 Validation and Experimental Evaluation| 83
B.3.1 Selecting the VM Type: Impact of Multi-Tenancy on Performance] . . . 83

[.3.2 Performance Gains with Map-TterativeReduce] 85

[8.3.3 Hierarchical Multi-Site MapReduce| 87

[9 Lessons Learned : Large-Scale Big Data Experiments on the Cloud| 91
0.1 A TLarge-Scale Experiment for Fitting Genotypes with Subcortical Brain Regions| 92

E.Z Focusing on Long—Running Scientific EXEerimentS 94

0.3 Addressing Data Management Issues across Data Centers| 97

0.3.1 Azure-Specific Observations| 98
032 Beyond Azure|. 99

Contents iii

|Part /Il — High-Performance Big Data Management across Data Centers| 103

[10 DataSteward: Using Dedicated Nodes for Scalable Data Management| 105
10.1 A Storage Service on Dedicated Compute Nodes| 107
10.2 Zoom on the Dedicated Node Selection| 110
[10.3 Experimental Evaluation and Functionality-Perspectives| 113

[10.3.1 Clustering Algorithm Evaluation|. 113
[10.3.2 Data Storage Evaluation| 115
[10.3.3 Data Processing Services for a Scientific Application]. 117
[[03.4 GoingFurther]. 119
04 Discussion] « v v v v o e 120

(11 Bridging Data in the Clouds| 121

[11.1 An Environment-Aware Approach for Inter-Site Transfers) 123
forma : ata 127

127

11.2.2 Efficiency in the Context of Data Management| 129
11.2.3 Multiple Data Center Paths Transfer Strategy|. 130

[11.3 Validation and Experimental Evaluation| 132
1 luation of the Performance Modell 132
11.3.2 Data Transfer Service Evaluation| 134
[11.3.3 The Cost-Execution Time Efficiency of Data Transfers|. 137

[11.4 DIScussion! o v i e e e e e 140
(12 Real-Time Data Management across Data Centers| 141

|12.1 Evaluating Strategies for Cloud Stream Processing 143

[12.2 Modeling the Streaming of Data in the Context of Clouds| 147

[122.1 Zoom on the Event Delivery Latency| 148
[[2.2.2 Multi-Route Streaming|. 149

[12.3 JetStream: Enabling High-Performance Streaming between Data Centers| . . . 151
[23.1 Adaptive Cloud Batching| 151
[12.32 System Architecture Overview| 153

[12.4 Validation and Experimental Evaluation| 154
[12.41 Accuracy of the Cloud Streaming Latency Model 155

ivi -Based Event Transters| 156

|12.4.3 AdaEting to Context Change§| 157
|12.4.4 Benefits of Multi-Route Streamingl 158

[12.45 Experimenting in a Real-Life Scientific Scenario| 158

(12.5 Discussion| e 160

[13 Transfer as a Service: Towards Cost Effective Multi-Site Data Management 161
M31 TransferasaServicel 163
[13.2 Validation and Experimental Evaluation|., 165

[[3.2.1 Evaluating the Inter-Site Transfer Options|. 166
|13.2.2 Dealing with Efoncurren_czl 167

[13.2.3 Inter-Site Transfers for BigData. 168
[[3.3 Towards a “Data Transfer Market” for Greener Data Centers]. 170

iv Contents
(13.3.1 A Flexible Price Scheme for a Transfer Marketl 170

13.3.2 The Data Transfer Market| 171

[13.3.3 The Energy Efficiency of Data Transfers| 173

[33.4 Reliability] 174
....................................... 174

[Part IV — Conclusions and Perspectives| 177
(14 Conclusions| 179
041 Achievements| 179
(14.2 Perspectives| 182
[Part V' — Appendix| 201
5 Resum¢] 203
6 Abstract 211

Chapter

Introduction

Contents

O© RO N =

1.1 Context

During the day when you are reading this, more data will be produced than the amount of
information contained in all printed material in the worldﬂ The Internet Data Center esti-
mated the growth of data to be of a factor of 300 between 2005 and 2020, expecting to raise
from 130 Exabytes to 20,000 Exabytes [64]. This Data Deluge revolutionizes both business,
which now capitalizes the value searched in large data collections, and the process of sci-
entific discovery, which moves towards a new paradigm: Data Science. Consequently, the
applications need to scale and distribute their processing in order to handle overwhelming
volumes, high acquisition velocities or great varieties of data. These challenges are associ-
ated to what is called “the Big Data phenomenon”.

One factor which accelerated the revolution of Big Data and which emerged alongside
with it, is cloud computing. The large, multi-site oriented infrastructure of clouds, which

IThe amount of information contained in all printed material is estimated to be around 200 Petabytes [97],
while IBM estimated that in 2012, in each day 2.5 Exabytes (1 Exabyte = 1024 Petabytes) of new data was created,
and the amount continues to increase.

Chapter 1 - Introduction

enables collocating computation and data, and the on-demand scaling provides an interest-
ing option for supporting Big Data scenarios. Clouds bring to life the illusion of a (more-
or-less) infinitely scalable infrastructure managed through a fully outsourced service that
allows the users to avoid the overhead of buying and managing complex distributed hard-
ware. Thus, users focus directly on extracting value, renting and scaling their services for a
better resource utilization, according to the application’s processing needs and geographical-
distribution layout.

The typical cloud Big Data scenarios (e.g., MapReduce, workflows) require to partition
and distribute processing across as many resources as possible, and potentially across multi-
ple data centers. The need to distribute the processing geographically comes from multiple
reasons, ranging from the size of the data (exceeding the capacities of a single site), to the
distant locations of the data sources or to the nature of the analysis itself (crossing multiple
service instances). Therefore, the major feature of such data-intensive computation on clouds
is scalability, which translates to managing data in a highly distributed fashion. Whether the
processing is performed in-site or across multiple data centers, the input needs to be shared
across the parallel compute instances, which in turn need to share their (partial) results. To
a great extent, the most difficult and compelling challenge is to achieve high-performance
for managing the data at a large-scale, and thereby enable acceptable execution times for the
overall Big Data processing.

The cloud technologies, now in operation, are relatively new and have not reached yet
their full potential: many capabilities are still far from being exploited to a full degree. This
particularly impacts data management which is rather far from meeting the more and more
demanding performance requirements of the applications. High cost, low I/O throughput
and high latency are some of their major issues. Clouds primarily provide data storage ser-
vices, which are optimized for high availability and durability, while performance is not the
primary goal. Some data functionalities, such as data sharing or geographical replication are
supported only as a “side effect”, while many others are missing: geographically distributed
transfers, cost optimizations, differentiated quality of service, customizable trade-offs be-
tween cost and performance. All these suggest that data-intensive applications are often
costly (time- and money-wise) or hard to structure because of difficulties and inefficiencies
in data management in the cloud. In this landscape, providing diversified and efficient cloud
data management services are key milestones for Big Data applications.

1.2 Contributions

Analyzing how clouds can become “Big Data - friendly”, and what are the best options
to provide data-oriented cloud services to address applications needs are the key goals of
this thesis. Our objective is to provide data management solutions which enable high-
performance processing at large-scale across the geographically distributed cloud infras-
tructures.Our work was mainly carried out in the context of the Microsoft Research-Inria
Joint Center and involved collaborations with several Microsoft teams, within the frame-
work of 2 projects between the KerData team and Microsoft. First, the A-Brain project en-
ables scalable joint genetic and neuro-imagining analysis through large-scale computation
on clouds. Second, the Z-CloudFlow project aims at enabling the execution of scientific
workflows across multiple sites.

1.2 — Contributions

Contributions roadmap. The contributions are focused on performance aspects of manag-
ing data within and across cloud data centers. We started by addressing the challenges of
executing scientific applications on clouds, with a particular focus on the MapReduce pro-
cessing model. Next, we tackled the scalability aspects of single-site processing by extend-
ing the MapReduce computation across multi-site. These approaches were then applied to
enable scientific discovery through large-scale computation, in the context of the A-Brain
bio-informatics application. Processing Big Data at such a large-scale revealed several is-
sues related to inter-site data management, that we addressed as follows. We proposed a
scheme for dedicating compute nodes to data-related services. Next, we designed a transfer
service architecture that enables configurable cost-performance optimizations for inter-site
transfers. This transfer scheme is then leveraged in the context of real-time streaming across
cloud data centers. Finally, we studied the viability of leveraging this data movement so-
lution as a cloud-provided service, following a Transfer-as-a-Service paradigm based on a
flexible pricing scheme. These contributions are summarized next.

Leveraging Locality for MapReduce and Workflow Processing on Clouds

As the cloud paradigm gets attractive for its “elasticity”, enabling the computation units
to access shared data concurrently and efficiently is critical. Using state-of-the-art cloud-
provided storage is not feasible. In fact in current cloud architectures, the computational
nodes are separated from the storage nodes and the communication between the two ex-
hibits a prohibitively high latency. To address these issues, we propose a concurrency-
optimized cloud data management solution, called TomusBlobs, at the platform level of the
cloud usage. TomusBlobs builds on distributed storage solutions, which are used to federate
the free local virtual disks of cloud nodes, to provide a globally-shared, data management
platform for application processing. As demonstrated by the results, this approach increases
the throughput more than twice over the cloud-provided storage by leveraging data locality.
The benefits of the TomusBlobs approach were validated in the context of MapReduce, by
building an Azure prototype, called TomusBlobs-MapReduce. It implements this compu-
tation paradigm and uses the proposed storage approach as a data management back-end.
This solution reduces the timespan of executing scientific applications by up to 50 %. We
further extended the TomusBlobs approach for general workflows, to leverage data locality
for direct file sharing between compute nodes. To this end, we designed a file management
system for federating the local disks of nodes for TomusBlobs. This approach exploits the
workflow data access patterns to self-adapt and to select the most adequate transfer pro-
tocol, which speeds up data management by a factor of 2 over current data management
options. This work involved the collaboration with Microsoft Research and a 3-month in-
ternship there. It led to 2 conference publications at CCGrid"12 and BigData’13.

Scaling MapReduce Processing across Geographically Distributed Sites

Another issue that we tackled is the scalability of computation on clouds. In practice, many
Big Data applications are more resource-demanding, or operate on larger (and/or geograph-
ically distributed) data sets than typical cloud applications, thus requiring multi-site process-
ing. Nevertheless, the existing computing models, such as MapReduce, are designed for
single-cluster or single-site processing. To address this limitation and enable global scaling,

Chapter 1 - Introduction

we proposed 2 extensions for the MapReduce paradigm. First, we proposed a two-tier hier-
archical MapReduce scheme: the bottom tier distributes TomusBlobs-MapReduce instances
across cloud data centers; the top tier computes the global final result of the processing.
With this approach, we enabled efficient processing at a global scale, by disseminating the
input and the computation tasks across all the available resources to aggregate compute
power from multiple cloud sites. Second, we addressed the limitation of state-of-the-art
MapReduce frameworks for reduce-intensive workloads regarding their lack of support for
full reduction of the results (e.g., in a MapReduce process each reducer provides an output
result). Therefore, we proposed Map-IterativeReduce as an extension of the MapReduce
model, which enables to schedule efficiently the reduce jobs in parallel, based on a reduction
tree, in order to compute a unique final result. Applying this technique in the context of
multi-site MapReduce, enables to minimize the size and the number of expensive inter-site
data exchanges, and thus to improve the overall data management. Using these extensions,
we were able to achieve high scalability for scientific applications in public clouds, lever-
aging the processing power of 1000 cores across 3 geographically distributed data centers.
Performance-wise, we were able to reduce the data management time by up to 60 % com-
pared with state-of-the-art solutions. This work led to a publication in the MapReduce’12
workshop, held in conjunction with HPDC’12, and a journal publication in CCPE’13.

Enabling Scientific Discovery through Large-Scale Experiments on Clouds:
The A-Brain Application Case Study

We applied the previous data management and processing approaches for enabling large-
scale scientific discovery on clouds. As a case study, we worked in collaboration with a
bio-informatics team from Inria Saclay, to run the A-Brain application, which aims to enable
scalable joint neuro-imaging and genetics analysis. This pioneer technique would enable a
better understanding of the variability between individuals and to explain brain diseases
with genetic origins. However, both neuro-imaging and genetic-domain observations in-
volve a huge amount of variables (i.e., in the order of millions). The high data and compu-
tation challenges prevented so far such complex analysis (conventional computation would
take years, while the data space reaches petabytes order). Using our approach we ran this
analysis on 1000 cores for 2 weeks across multiple Azure data centers, while consuming
more than 200,000 compute hours — one of the largest scientific experimental setup on Azure
up to date. Our tools enabled to provide the first statistical evidence of the heritability of
functional signals in a failed-stop task in basal ganglia. This experiment demonstrates the
potential and feasibility of our approach for supporting Big Data applications executions at
large-scale by harnessing the available computation power from multiple cloud data centers.
Additionally, this large, real-life experiment taught us important lessons, the most important
being that the cloud model in which all types of data management exclusively rely on cloud-
provided storage service becomes widely inefficient and obsolete. Therefore, it is critical to
enable specialized cloud solutions for high-performance, geographically distributed data
management. This project was presented through joint publications in Cloud Future work-
shop "12, the ERCIM electronic journal "13 and the Frontiers in Neuroinformatics journal
2014.

1.2 — Contributions

Dedicating Cloud Compute Nodes for Advanced Data Stewarding Services

The “data deluge” calls for scalable and reliable storage for cloud applications and a diver-
sification of the associated data-related functionalities. Running large experiments reveals
the limitation of the cloud-provided storage in coping with all the applications needs: it
trades performance for durability and only provides basic put/get storage functions. How-
ever, executing Big Data applications requires more advanced functionalities such as logging
mechanisms, compression or transfer capabilities. As an alternative to cloud-provided stor-
age service, building such advanced functionalities in the application nodes, on top of a
local collocated storage, can become rather intrusive and impact on the application perfor-
mance. Therefore, we propose a different approach, called DataSteward, that combines the
advantages of traditional cloud-provided storage (isolation of the data management from
computation) with the ones of TomusBlobs (high-performance through the use of the local
free disks of nodes). To this purpose, we dedicate a subset of the compute nodes and build
on top of them a data management system. Thanks to the separation from the computa-
tion, this approach provides a higher degree of reliability while remaining non-intrusive.
At the same time, applications perform efficient I/O operations as data is kept in the prox-
imity of the compute nodes, by the use of a topology-aware clustering algorithm for the
selection of the storage nodes. To capitalize on this separation further, we introduce a set of
scientific data processing services on top of the storage layer that address the functionality
needs of Big Data applications. Similarly to the concept of file from a traditional system,
which is a generic object associated with a set of operations (e.g., move, view, edit, delete,
compress), DataSteward confers a “cloud file” with its own set of actions. The evaluation
results show that this approach improves by 3 to 4 times performance over cloud-provided
storage. It can bring significant improvements for the management of applications data due
to the topology-aware selection of storage nodes. The work was published in the TRUST-
COM/ISPA 13 conference.

High-Performance Inter-Site Data Sharing via Environment-Aware Multi-Route
Transfers

One particular functionality that is missing in the current cloud data management ecosys-
tem is the support for efficient geographically distributed transfers for applications. This
is an important issue, as managing data across the geographically distributed data centers
involves high and variable latencies among sites, and a high monetary cost. To address this
problem, we introduce a cloud-based data transfer service which dynamically exploits the
network parallelism of clouds via multi-route transfers, while offering predictable cost and
time performance. The problem of low and unstable inter-connecting throughput between
data centers is addressed through enhanced data management capabilities which adapt in-
site replication for faster data dissemination according to cost-performance constraints. Our
system automatically builds and adapts performance models for the cloud infrastructure, in
order to schedule the data transfers efficiently and to utilize the underlying resources effec-
tively. The key idea is to predict I/O and transfer performance in order to judiciously decide
how to perform transfer optimizations automatically over federated data centers. In terms
of efficiency and usage, this approach provides the applications with the possibility to set a
trade-off between cost and execution time. The transfer strategy is then optimized according
to the trade-off. The results show that our approach is able to reduce the financial costs and

Chapter 1 - Introduction

transfer time by up to 3 times. The work was published in the CCGrid’14 conference.

Enabling High-Performance Event Streaming across Cloud Data Centers

An increasing number of Big Data applications operate on multiple data centers around the
globe and conform to a pattern in which data processing relies on streaming the data to a
compute platform where similar operations are repeatedly applied to independent chunks
of data. In fact, stream data processing is becoming one of the most significant class of ap-
plications in the world of Big Data, with vast amounts of stream data being generated and
collected at increasing rates from multiple sources. Therefore, enabling fast data transfers
across geographically distributed sites becomes particularly important also for applications
which manage continuous streams of events in real-time. In order to adequately address the
challenges of stream data processing across cloud sites, we performed an extensive perfor-
mance evaluation study, in the context of CERN LHC processing experimental data. Our
results indicate that current strategies for real-time communication in the cloud can signif-
icantly interfere with the computation and reduce the overall application performance. To
address this issue, we propose a set of strategies for efficient transfers of events between
cloud data centers and we introduce JetStream, which implements these strategies as a high-
performance batch-based streaming middleware. JetStream is able to self-adapt to streaming
conditions by modeling and monitoring a set of context parameters. The size of the batches
and the decision on when to stream the events are controlled based on this model that char-
acterizes the streaming latency in the context of clouds. To improve performance further, we
aggregate inter-site bandwidth as we extend our previous approach for multi-route transfers
across cloud nodes. The results show performance improvements of 250 times over individ-
ual event streaming and 25 % over static batch streaming, while multi-route streaming can
further triple the transfer rate. The work led to 2 conference publications in CCGrid'14 and
DEBS'14.

A Cost-Effective Model for Multi-Site Data Management

The global deployment of cloud data centers, brings forward new challenges related to the
efficient data management across sites. The previous contributions focused on user-based
solutions for tackling such challenges. Nevertheless, high throughput, low latencies, cost-
or energy-related trade-offs are serious concerns also for cloud providers when it comes
to handling data across data centers. Enriching the data-service ecosystem for delivering
high-performance data management while reducing the costs and data center energy con-
sumption is a key milestone for the business of cloud providers and for tomorrow’s cloud
data centers. To address these challenges, we propose a dedicated cloud data transfer ser-
vice that supports large-scale data dissemination across geographically distributed sites, ad-
vocating for a Transfer as a Service (TaaS) paradigm. We argue that the adoption of such
a TaaS approach brings several benefits for both users and cloud providers who propose
it. For users of multi-site or federated clouds, our proposal is able to decrease the vari-
ability of transfers and to increase the throughput significantly compared to baseline user
options, while benefiting from the well-known high availability of cloud-provided services.
For cloud providers, such a service can decrease the energy consumption within a data cen-
ter down to half compared to user-based transfer solutions. Finally, we propose a dynamic

1.3 — Publications

cost model scheme for the service usage, which enables cloud providers to regulate and en-
courage data exchanges via a data transfer market. The work was published in the SRDS’14
conference.

1.3 Publications

Book Chapter

¢ Radu Tudoran, Alexandru Costan and Gabriel Antoniu. Big Data Storage and Processing
on Azure Clouds: Experiments at Scale and Lessons Learned. In the book Cloud Computing
for Data-Intensive Applications, to be published by Springer, 2015. Editors Xiaolin Li and

Judy Qiu

Journal Articles

e Benoit Da Mota, Radu Tudoran, Alexandru Costan, Gaél Varoquaux, Goetz Brasche, Pa-
tricia Conrod, Herve Lemaitre, Tomas Paus, Marcella Rietschel, Vincent Frouin, Jean-
Baptiste Poline, Gabriel Antoniu, Bertrand Thirion and IMAGEN Consortium. Machine
learning patterns for neuroimaging-genetic studies in the cloud. In the journal of Frontiers in
Neuroinformatics, Vol 8(31), 2014.

e Alexandru Costan, Radu Tudoran, Gabriel Antoniu and Goetz Brasche. TomusBlobs: Scal-
able Data-intensive Processing on Azure Clouds. In the journal of Concurrency and Compu-
tation Practice and Experience 2013

e Gabriel Antoniu, Alexandru Costan, Benoit Da Mota, Bertrand Thirion, Radu Tudoran.
A-Brain: Using the Cloud to Understand the Impact of Genetic Variability on the Brain. ERCIM
News, April 2012 - Electronic Journal.

International Conferences

e Radu Tudoran, Alexandru Costan and Gabriel Antoniu. Transfer as a Service: Towards a
Cost-Effective Model for Multi-Site Cloud Data Management. In Proceedings of the 33rd IEEE
Symposium on Reliable Distributed Systems (SRDS “14), Nara, Japan, October 2014.

¢ Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan, Hakan Soncu, Luc Bougé,
and Gabriel Antoniu. JetStream: enabling high-performance event streaming across cloud data-
centers. In Proceedings of the 8th ACM International Conference on Distributed Event-
Based Systems (DEBS "14), Mumbai, India, May 2014, pp. 23-34. Acceptance rate 9 %.

e Radu Tudoran, Alexandru Costan, Rui Wang, Luc Bougé, Gabriel Antoniu. Bridging Data
in the Clouds: An Environment-Aware System for Geographically Distributed Data Transfers. In
Proceedings of the 14th IEEE/ ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid2014), May 2014, Chicago, IL, US, pp. 92-101. Acceptance Rate 19 %.

¢ Radu Tudoran, Kate Keahey, Pierre Riteau, Sergey Panitkin and Gabriel Antoniu. Eval-
uating Streaming Strategies for Event Processing across Infrastructure Clouds. In Proceedings

Chapter 1 - Introduction

of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid'2014), Chicago, IL, US, pp. 151-159, May 2014. Acceptance Rate 19 %.

Radu Tudoran, Alexandru Costan, Ramin Rezai Rad, Goetz Brasche and Gabriel Antoniu.
Adaptive file management for scientific workflows on the Azure cloud. In Proceedings of the
IEEE International Conference on Big Data. Santa Clara, CA, US, October 2013, pp. 273-
281. Acceptance Rate 17 %.

Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. DataSteward: Using Dedicated
Compute Nodes for Scalable Data Management on Public Clouds. In Proceedings of the 12th
IEEE International Conference on Trust, Security and Privacy in Computing and Commu-
nications (TRUSTCOM/ISPA "13), Melbourne, Australia, June 2013, pp. 1057-1064.

Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Hakan Soncu. TomusBlobs: To-
wards Communication-Efficient Storage for MapReduce Applications in Azure. In Proceedings
of the 12th IEEE/ ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID "12), Ottawa, Canada, May 2012, pp. 427-434. Acceptance rate 26 %.

Workshops and Demos at International Conferences

Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan, Hakan Soncu, Luc Bougé,
and Gabriel Antoniu. DEMO: Achieving high throughput for large scale event streaming across
geographically distributed data-centers with JetStream. In Proceedings of the 8th ACM Inter-
national Conference on Distributed Event-Based Systems (DEBS "14), Mumbai, India, May
2014.

Radu Tudoran, Gabriel Antoniu, and Luc Bougé. SAGE: Geo-Distributed Streaming Data
Analysis in Clouds. In Proceedings of the IEEE 27th International Symposium on Parallel
and Distributed Processing Workshops and PhD Forum (IPDPSW ’13), Boston, MA, US,
May 2013.

Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. MaplterativeReduce: a framework
for reduction-intensive data processing on Azure clouds. In Proceedings of the 3rd international
workshop on MapReduce and its Applications Date (MapReduce "12), in conjunction with
HPDS 2012, Delft, The Nederland, June 2012.

Radu Tudoran, Alexandru Costan, Benoit Da Mota, Gabriel Antoniu, Bertrand Thirion.
A-Brain: Using the Cloud to Understand the Impact of Genetic Variability on the Brain. Cloud
Futures Workshop, Berkeley, CA, US May 2012.

Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Luc Bougé. A performance eval-
uation of Azure and Nimbus clouds for scientific applications. In Proceedings of the 2nd In-
ternational Workshop on Cloud Computing Platforms (CloudCP "12), in conjunction with
EuroSys, Bern, Switzerland, April 2012.

1.4 Software

TomusBlobs is a PaaS data management middleware that enables to federate the virtual

disks of the cloud compute nodes into a uniform storage system. It provides several

1.5 — Organization of the Manuscript

features such as self-configuration, compute environment customization and policy-
based role assignment. A version of the system is available as a storage backend to the
Microsoft GenericWorker workflow engine [66, 153].
Size and language(s): ~2K lines of code, C++ and C#

TomusBlobs-MapReduce is a MapReduce engine for the Azure cloud, built on to top of
TomusBlobs. It is particularly optimized to support bio-informatics computation, in-
cluding features such as full result reduction and bindings with various tools, libraries
and scientific environments.

Size and language(s): ~1K lines of code, C#, ASPNET and Python

JetStream is a middleware solution for batch-based, high-performance streaming across
cloud data centers. JetStream implements a set of context-aware strategies for opti-
mizing batch-based streaming, being able to self-adapt to changing conditions. Addi-
tionally, the system provides multi-route streaming across cloud data centers for aggre-
gating bandwidth by leveraging the network parallelism. It enables easy deployment
across .Net frameworks and seamless binding with event processing engines such as
StreamlInsight.

Size and language(s): ~2K lines of code, C#

Cloud Benchmark Service is a cloud web service provided as a Software as a Service, that
enables to benchmark online the data stage-in performance of the cloud data centers.
Building on several web technologies it provides both an online web-browser interface
and a a console-based API.

Size and language(s): ~2K lines of code, C++, C#, ASPNET MVC, AJAX and JavaScript

1.5 Organization of the Manuscript

The rest of the manuscript is organized in 4 parts.

The first part discusses the general context of this thesis and presents the corresponding
state-of-the-art. First, we introduce in Chapters [2|and |3 two paradigm shifts: Big Data and
Cloud Computing and describe how these are changing the way in which data is managed.
Next, in Chapter 4| we present the main challenges that arise for supporting such Big Data
processing on cloud platforms. Finally, in Chapter[5| we give a global overview of the current
research efforts and approaches on this subject.

The second part includes the next 4 chapters (Chapters[f|to[d) and presents the first part of
our contributions. We mainly focus in this part on data management aspects of single site pro-
cessing, while in the next part we consider the general case of multi-site processing. The goal is
to understand what are the best options to support efficient scientific Big Data processing on
the cloud. To this end, we use a real-life application from bio-informatics, A-Brain, with high
computation and data requirements which are described in Chapter [} Next, in Chapter
we introduce the TomusBlobs data management approach, which we designed for support-
ing efficient, single-site processing of such scientific applications. Moreover, we propose a
MapReduce solution on top of TomusBlobs, which we extend in Chapter 8/ to a hierarchical

10 Chapter 1 - Introduction

multi-site MapReduce to provide global scalability. Based on these approaches, we enable
the execution of the A-Brain joint genetics and neuro-imaging data analysis through a large
scale, long-running experiment. The scientific results enabled by our solutions as well as
the lessons learned from this experiment are described in Chapter 9] The most important
lesson is that there is a critical need, in the context of Big Data, for tools that would provide
high-performance data management across data centers, which is the focus of the next part.

The third part includes Chapters|10|to (13, and presents several contributions, addressing
the issues identified in the first part for Big Data scientific applications, that improve the
performance of managing data across multiple cloud data centers. First, we introduce in
Chapter [10]a method for dedicating compute nodes to a data management system, on top
of which we propose a set of data services to enrich the support for Big Data applications
on clouds. In Chapter we propose a service that optimizes cost and performance for
data exchanges across cloud sites, by aggregating inter-site bandwidth through multi-route
transfers over compute nodes and data centers. Next, we leverage this transfer scheme in
2 contexts. First, in Chapter [I2] we address the lack of cloud services for fast real-time com-
munication and propose JetStream, a high-performance, batch-based streaming solution. Fi-
nally, in Chapter 13| we explore architectural options to migrate this transfer scheme into a
cloud-provided Transfer as a Service, with a flexible cost and a data transfer market.

Finally, Chapter (14| concludes this work and presents the contributions and the perspec-
tives brought by our solutions.

Part |

Context: The Landscape of Big Data
Management on Clouds

Chapter

Background: The Era of Big Data

Contents
21 TheDataDeluge| 13
[2.2° Data Science: The Emergence of a New Scientific Paradigm|. 16

Di 0 4 18

Much of today’s and tomorrow’s data, captured by the growing networks of sensors
or generated by large simulations and computational models, are likely to reside forever.
Substantial efforts are being made to make such collections of data, particularity the scientific
ones, publicly accessible for the purpose of continuous analysis. Gordon Bell synthesizes
this by stating that he believes «that we will soon see a time when data will live forever as archival
media — just like paper-based storage — and be publicly accessible in the “cloud” to humans and
machines» [89]]. Acquiring, permanently storing, curating and processing the exponentially
growing volumes of data is refereed to as Big Data. Performing data-intensive computation
on Big Data sets to enable cutting edge discoveries is now considered as the basis for a new,
fourth paradigm for science.

2.1 The Data Deluge

Data Deluge is becoming a reality. Internet Data Center (IDC) estimated the growth of data
to be of a factor of 300 between 2005 and 2020, expecting to raise from 130 Exabytes to 20,000
Exabytes [64]. Keeping up with such a pace, by transferring, storing, organizing and process-
ing the data, stands as a difficult challenge, generically refereed to as Big Data. Even so, the
data deluge is transforming both the business and the scientific domains: business mines
data for patterns which can be capitalized, while science moves towards a new paradigm
where data-intensive computation drives discoveries. The data-oriented quest and the re-

14 Chapter 2 - Background: The Era of Big Data

lated Big Data challenges raise the requirements in terms of scale and performance expected
from the next data management systems.

The Big Data concept refers to the exponential growth of the data volumes [25]], the actual
processing of the large volumes of data [95]] or more generically to all the computing phases
required to extract useful information [64, 184]. One can observe that several definitions co-
exist and are used and accepted depending on the community. However, in order to avoid
potential confusions and to characterize better the concept of Big Data, a set of attributes
were identified as defining characteristics. This set of attributes is referred to as the V’s of
Big Data, according to their common name initial. Considering that the Big Data ecosystem
is highly dynamic, the set is expanding to include new V’s (i.e., challenges) that are contin-
uously identified. Next, we present the original set of the 3 V’s as introduced in [115] and
2 additional ones which are widely accepted and used. Different aspects of these challenges
are presented also in [51)184].

Volume

It represents perhaps the main feature that one associates with the concept of Big Data. This
association with the magnitude of the data set arises naturally as all domains tend currently
to collect and store massive amounts of data.This behavior is encouraged both by the low
costs to store data and because having models which result from large data set tends to pro-
vide more accurate results, from the data analytics point of view. In fact, the size dimension
of Big Data represents the primary challenge to the existing data management systems. Ac-
commodating the growing volumes calls for scalable storage solutions and distributed pro-
cessing engines. Furthermore, the size of the data can become big enough such that it has
to be stored across multiple data centers, which requires high-performance solutions capa-
ble to operate in a geographically distributed manner. An illustrative example is the CERN
LHC Atlas experiment [13]], which generates 40 PB of data per year, which is disseminated
across the storage of tens of collaborative institutions across the globe. Analyzing this ge-
ographically distributed data set, even by means of incremental processing, overpasses the
capacity of local scientific infrastructure. This was the case for the Higgs boson discovery,
in which the computation was also extended to the Google cloud infrastructure [43]. Hence,
processing across geographically distributed data centers and inter-site data management
become a necessity in the Big Data era, due to the challenges raised by the data volumes.

Velocity

The high rates at which data are collected by organizations or flows into the processing en-
gines make data velocity to gain importance alongside with volume. The common terminol-
ogy used for fast-moving data is “streaming data”. Initially, the velocity-related challenges
were restricted to specific segments of industry, but it becomes a problem of a much broader
setting with the Internet of Things. Financial tickers, stock market analysis, monitoring sys-
tems of large web services, network of sensors for wide-areas or scientific observatories are
all concerned with the speed at which data is collected, streamed and processed in real-
time [68] 110]. In fact, it is expected that in the next years most part of Big Data will be
collected in real-time, which means that the speed to collect data over-passes the rate to

2.1 -The Data Deluge 15

artificially-produce them [172]. Real-time data processing (i.e., stream processing) is neces-
sary due to various reasons. For example, keeping the storage requirements practical can
require pre-processing to filter out the useless parts in scenarios with high data rates. Ad-
ditionally, many scenarios require the information to be extracted from data immediately or
within a maximal (short) delay. However, depending on the locations of the data sources
which produce the data, this task of real-time processing can be particularly challenging.
The data sources can be geographically distant from the stream processing engine, which
adds also the problem of latency to the challenges related to the streaming rate. An illus-
trative example of such a scenario is the Ocean Observatory Initiative [23| 137] in which the
collected events are streamed to Nimbus [12] clouds. Hence, supporting the paradigm shift
brought by Big Data calls for data management solutions which consider and address not
only the size aspects of data, but also the challenges raised by streaming, all the more in
geographically distributed setups.

Variety

Collecting data from a variety of sources leads to a high heterogeneity. In fact, dealing with
Big Data sets most often implies handling data without a predefined relational structure.
Therefore, curating the data before storing and processing them becomes a critical tasks and
a challenge on its own. However, pre-processing and determining a relational scheme be-
fore storing it is a complex task considering the large volumes. In the few cases when this
phase is possible, the scalability limits of traditional databases [89, 162] can still arise as a
prohibiting factor to address the variety aspect of Big Data via relational schemes. As a con-
sequence, the common approach is to handle data in an unstructured fashion, e.g., storing
data in large binary objects. On the one hand, such an approach provides scaling and per-
formance advantages. On the other hand it amplifies the variety problem of Big Data sets, as
most of the contextual and self-describing information is lost. As a result, the process of ex-
tracting (co)relations and ordering the data is coupled with the data mining itself, sometimes
becoming the computation itself. Finally, with the emergence of data-intensive science, as
discussed in the next section, multi-disciplinary collaborations grow in number and impor-
tance. A key direction enabled by such joint efforts is trying to correlate the heterogeneous
data sets of the distinct disciplines in order to discover new ways of explaining the life- or
universe-related observations. Examples of such efforts range from combining genetic sets
with medical imagery [146] to merging climate and astronomical models with cartographic
data [126} [179]]. Such ambitious goals call for efficient, large-scale tools which can handle the
variety aspects of Big Data.

Veracity

The trustworthiness of data impacts theirs value. Therefore, one of the newly identified
challenge when dealing with Big Data is veracity, which generically synthesizes the correct-
ness, quality and accuracy of the data. The concerns related to the veracity apply both to
the input as well as to the result harvested when mining it. Veracity becomes an important
aspect due to the diversity of the sources and forms that Big Data takes, which provides less
control over its correctness. Malfunctioning sensors, typos in social media feeds, colloquial
discourses in news media, systematic errors and heterogeneity of measuring devices, all

16 Chapter 2 - Background: The Era of Big Data

need to be accounted for during the analysis phase. Sometimes, the volume can compensate
for the lack of accuracy. But tackling veracity via volume needs to instrument the analytic
models properly, which is achieved most often at the expense of extra computation. There-
fore, providing tools which are able to scale the computation in order to ensure high and
customizable confidence levels for the analysis is critical for the development of Big Data
business and data-intensive sciences. Moreover, accommodating provenance information
and trust levels for the input and results in the management process [49| 60] are some of the
key points required to increase the quality and value of data.

Value

Collecting, storing and analyzing Big Data is useless unless it produces value. Therefore,
this aspect goes alongside and determines any previous or future challenge of Big Data. It
can be safely stated that “Value” is the ultimate goal of Big Data, being the driven factor of
this technological revolution. Dealing with Big Data is a complex task and it involves signif-
icant costs. Therefore, the benefits gained, whether financial or scientific, must compensate
the resources and efforts which are invested. This observation raises a very important aspect
to be considered when dealing with Big Data: the efficiency trade-off between cost and per-
formance. The new management solutions need to provide mechanisms for estimating both
the cost and performance of operations (e.g., for streaming, storing, processing, etc.). Based
on these estimations the users can then choose the cost they are willing to pay for a certain
performance level. In turn, the management systems need to optimize their resource usage
according to the specified criterion to meet the budget/performance constraints. Designing
such customizable trade-off mechanisms is needed because the density of the value in the
data sets is not uniform nor identical among different applications. This shows that the value
aspect of Big Data, needs to be considered not only from the point of view of the worthiness
(or profitability) of the analysis, but also as a designing principle of the management and
processing frameworks.

2.2 Data Science: The Emergence of a New Scientific Paradigm

As Data Deluge is becoming a reality, Data Science is emerging, as the new, fourth paradigm
of science [72}, 89]. This paradigm shift happened naturally. Centuries ago, science was
mainly done through empirical observations. The next step was to synthesize those ob-
servations about the world in theoretical models. When those models became too complex
to be solved and interpreted analytically and when technology allowed it, science moved
towards a computation paradigm, using computers to analyze and simulate the theoretical
models. However, this computation-driven science led to a continuous growth of the sci-
entific data sets. This growth trend was also accelerated by the increase in efficiency and
diversity of the tools used to collect and deliver the data to the scientists. As a result the
scientists shifted their focus in the last years, searching for discoveries in their large scien-
tific data sets. The techniques and technologies which are developed to make this “search”
more efficient, “distinguish this data-intensive science from computational science as a new, fourth
paradigm for scientific exploration” [24].

In the last years, data-intensive science encouraged the development of several large sci-

2.2 - Data Science: The Emergence of a New Scientific Paradigm 17

entific projects. Collecting, curating and computing data, the 3 phases which constitute the
data science, face complex challenges due to the massive quantities of data produced [72].
For example, the Pan-STARRS [142] project consists of an array of celestial telescopes which
monitor the Solar System to detect potentially hazardous objects or threats, such as aster-
oids. The project is designed to collect images of a resolution of 1.4 Gigapixels, producing
2.5 Petabytes of data per year. This type of projects, which are a direct consequence of, and il-
lustrate perfectly, the fourth paradigm of science, are referred to as virtual observatories [89,
90]. Other examples of virtual observatories are the Australian Square Kilometre Array of
radio telescopes project [156] or the Ocean Observatory Initiative [137]. Such observatories
can monitor wide and remote areas. Thus, the data collection is particularly challenging,
as it involves real-time geographical data streaming. The Large Hadron Collider [38] is a
physics project based on a collaborative multi-institutional effort. It produces and collects
about 40 Petabytes of data each year, aiming to explain the early stages of the universe.
Its most recent and notorious discovery was the detection of the Higgs Boson in the Atlas
experiment [13} 43]. The data produced is disseminated, stored and processed across more
than 80 computing centers worldwide, federating and linking 100,000 CPUs [37, 143]. Fi-
nally, genetic studies are another example of an area which benefited from the emergence of
data-intensive computing. Gene sequencing is the process of coding genome regions with
the purpose of analyzing and searching for clues about diseases. It used to be an expensive
and slow process. However, the US X prize allocated recently 10 million for genomics [180].
This enabled to increase the amount of sequenced genes from 25 thousands to 3 million. In
turn, this opened the door for a Big Data approach for genetics-based studies, which can
now search for the disease roots or for ways to explain the variability between individuals
by studying genomic correlations.

This data deluge is supported by the capacity of the networks to scale within and across
infrastructures. With such growing sizes of data collections beyond the Petascale limit, one
data center, let alone one cluster or multi-core machine, can no longer store nor process en-
tire data sets in reasonable time. Scale-out solutions are then the right approach: partitioning
data into small blocks and disseminating it over the network across the locally attached stor-
age of nodes, enables one to manage these large data volumes [158]. The drawback which
comes with this approach is that data gets heavily partitioned, which prevents further usage
of traditional database systems. Additionally, databases tend to reach also a volume limit in
the order of tens of terabytes [89, 142, 162]. The alternative solution, which gains in popular-
ity today, for addressing both the volume and the partitioning challenges, is to deploy and
scale a simple data-crawling, shared-nothing strategy over the partitions — the MapReduce
paradigm [46]. The solution is less powerful than the index mechanisms that databases of-
fer [144], but becomes a default Big Data tool due to its massive scalability capabilities. We
further discuss the MapReduce approach in Chapter [4.3]

In this data-intensive context, with the partition of the growing data sets, data delivery is
hitting a wall. In the last years, data and storage grew exponentially (increasing 1000 times)
while the access speed to data improved only 10 times [89]. Another critical issue is that cur-
rent data management tools cannot handle the Petabyte scale. Accessing via FTP a Petabyte
of data is clearly not feasible; the solution to accomplish such transfers requires at least a par-
allel access scheme [72]]. Moreover, moving at least part of the computation to the data rather
than vice-versa can bring significant benefits. Many other such optimizations can and need
to be provided in order to support the Petabyte scale and beyond. The main problem is that

18 Chapter 2 - Background: The Era of Big Data

scientists do not have currently off-the-shelf solutions to manage data in their Big Data ap-
plication scenarios [73, 89]. This lack of solutions and support for data management and the
inherited low I/O performance drastically limits scientific observation and discovery pro-
cess. In fact, the performance aspects of handling Big Data are the most critical challenges
that need to addressed, being one of the primary motivating factors of this thesis.

2.3 Discussion

Big Data is reshaping the way in which the scientific discovery is, and will be, done. Physics,
biology, climate, astrology and many other domains are now searching for scientific answers
in data collections. Nevertheless, this paradigm shift raises new challenges, more complex
than previously dealt with. Traditional compute and storage systems reach their limits, as
they cannot handle the volumes, velocities or varieties brought by Big Data. New ideas,
approaches and technologies are needed, alongside with powerful compute platforms.

One factor which encouraged the Big Data revolution and which emerged alongside with
it is cloud computing (discussed next, in Chapter). The large, multi-site oriented infras-
tructure of clouds, which enables collocating computation and data and on-demand scaling,
represents an interesting option for addressing the challenges brought by Big Data. How-
ever, its role for the data-intensive sciences is not fully established [89]. On the one hand,
migrating the scientific applications in the cloud is encouraged by the benefits they bring
for the web-base applications and businesses for which they were intended. On the other
hand, it is not clear how they can support various scientific scenarios with potentially con-
tradicting goals and requirements, such as low latency, resources scaling, high bandwidth,
data migration and partitioning, etc. Analyzing how clouds can emerge to become “Big
Data - friendly” for science, and what are the best options for them to provide data-oriented
services to address applications needs are the key goals of this thesis.

Chapter

Background: Cloud Computing

Contents
BI _OVervieWwlot i ittt e 19
3.2 The Cloud Computing Paradigm| 21
3.3 The Cloud Storage Paradigm]| 23
B4 _Discussionl. i e 25

Cloud computing emerged as a new paradigm for providing diversified resources, such
as computation power, storage capacity and network bandwidth. These resources are of-
fered to users as services, at different levels of granularity, by means of virtualization. Users
lease services on-demand and elastically scale them, on short notice, according to their needs,
on a pay-as-you-go basis. This paradigm revolutionized the way in which we approach re-
source provisioning, moving the ownership and management of resources from in-house
premises to the cloud provider. Cloud computing is proving fundamental to the construc-
tion of systems capable of rapid scaling and of delivering high reliability. This technological
evolution is particularly impacting in the Big Data era, where an increasing number of ap-
plications need to scale to meet their compute and storage challenges.

3.1 Overview

Cloud computing allows users to focus on extracting value, renting and scaling the services
for an optimal resource utilization [169]. In turn, cloud vendors manage the resources and
offer different levels of control over them. With respect to the providers and their acces-
sibility, clouds are public (i.e., offered by vendors openly) or private (i.e., with a restricted
access). A taxonomy based on usage levels can be determined, depending on what falls un-
der the responsibility of the provider to administrate, as shown in Figure The resulting
categories are labeled “as a Service”, and provide the following functionality.

20 Chapter 3— Background: Cloud Computing

Packaged Infrastructure Platform Software
Software (as a Service) (as a Service) (as a Service)

Applications Applications. Applications Applications

Data Data Data Data

You manage

You manage

Runtime Runtime Runtime Runtime

il

Middleware Middleware Middl e

/s 0O/s o/s

@
=}
@
=
<
=
3

=

Virtualization Virtualization Virtualization Virtualization

TOPUSA Aq pabeuep

Servers Servers Servers Servers (]

Storage Storage Storage Storage

TOpUSA Ad pabeuspy

Networking Networking Networking Networking

Figure 3.1: The cloud usage models [171] Figure 3.2: The global presence of a cloud
data centers exemplified for the Microsoft
Azure cloud [16]

Infrastructure as a Service — IaaS. Provides resources with minimum administrative sup-
port by the cloud vendor, being in the most raw form (i.e., close to the bare hardware)
the virtualization techniques allow it. Cloud vendors split their large storage and com-
pute capacity, and build ad-hoc virtual environments as demanded by users [169]. The
typical way of exposing the compute resource to users is through virtual machines
(VM), in which the software stack that runs the user services is deployed. Any func-
tionality that needs to be built falls under the responsibility of the users for installing,
configuring and managing.The most illustrative example of a IaaS cloud is Amazon
Elastic Compute Cloud (EC2) [9]. Alternatively, several open source toolkits were de-
veloped which can virtualize (typically private) physical resources as a IaaS cloud, for
instance Nimbus [134]], OpenNebula [138]], Eucalyptus [54] and OpenStack[139].

Platform as a Service — PaaS. Offers an alternative to exploit the cloud resources, which are
presented as a uniform software platform rather than as a virtualized infrastructure.
Much of the responsibility for the deployment, configuration, management, fault tol-
erance and recovery mechanisms of the infrastructure is taken by the cloud provider.
Users focus on the application logic being transparently provided with the runtime
environment of their choice (e.g., .Net, Java SDK, databases, etc.) or even complete
programming models such as MapReduce [46], Dryad [100] or Azure Roles [125]. The
well-known examples of PaaS cloud offerings are the Google Apps Engine [71] and
Microsoft Azure [125].

Software as a Service — SaaS. Builds on the cloud resources to deliver a high-level service,
typically with a specific functionality. It stands as an alternative for cloud vendors
to leasing their infrastructures. They can host their own services and provide online,
most commonly through web-browser interfaces, various functionalities to users, such
as: office tools, content delivery network (CDN), collaborative tools, multimedia or
web-mail hosting. The main advantage of this model is that it frees users from any
kind of management, software installing, updates or patches, as they simply consume
the service. Some of the representative examples are the Google Docs and Microsoft
Oftice 365 office tools or the e-commerce services provided by saleforce.com.

Anything as a Service — XaaS - Due to the success of this taxonomy model, and the popu-

3.2 - The Cloud Computing Paradigm 21

larity gained by clouds, many other paradigms and functionalities tend to be labeled
and provided “as a Service”. Examples range from Database (or simply Data) as a
Service [93| 125], Network as a Service, Secure Logging as a Service [183], Business
Integration as a Service [178], Search as a Service [154], etc. This “etc.” is in fact what
defines this class, saying that anything/everything can ultimately be provided as a
service. Clearly, this leads to a thin border between categories (as it is the case for the
main ones), since much of these examples can be seen as SaaS, PaaS or even laaS. In
fact, labeling something as a Service is merely a differentiation and an acknowledgment
of its high value, which is offered online to users rather than exploited in-house. Most
of the Xaa$S utilities serve as alternatives to users for building and running their own
applications. The fact that users and developers are able to extend the cloud comput-
ing paradigm, build, then offer such services, according to application needs, is one
of the key advantages that drive the paradigm shift introduced by cloud computing.
This is, as well, the model that we adopt for providing and delivering our contribu-
tions, such as Monitor as a Service, Streaming as a Service, or Transfer as a Service.
These approaches are discussed in the following chapters of this thesis.

The cloud infrastructure is composed of multiple, large data centers, which are
geographically-distributed around the globe. However, the interconnecting infrastructure
between the sites is not the property of the cloud provider as the bandwidth is leased from
the Internet Service Providers (i.e., Tier 1 ISP). Nevertheless, such a geographically dis-
tributed architecture enables cloud users to rent resources in the proximity of their users
or data sources. Figure 3.2illustrates this multi-site concept with the Microsoft Azure cloud.
A cloud data center offers both computation power and storage capacity, which are virtual-
ized and offered as services to customers [34,|74]. Collocating data and computation within
the site is a pragmatic choice as it enables applications to reduce the otherwise high costs
of moving data across wide areas. In what follows, we present an overview of these two
aspects.

3.2 The Cloud Computing Paradigm

The Data Centers. The data center (or the site) is the largest building block of the cloud. It
contains a broad number of compute nodes, which provide the computation power, available
for renting. The typical pricing model is computed at an hourly rate, based on the computa-
tion power of the resources acquired by the user. The data center is organized in a hierarchy
of switches, which interconnect the compute nodes and the data center itself with the out-
side world, through the Tier 1 ISP. Multiple output endpoints (i.e., through Tier 2 Switches)
are used to connect the data center to the Internet [74]. For the sake of fault tolerance, the
overall infrastructure within a data center is partitioned with respect to the switches and
racks. These partitions are referred to as fault domains. The users services are distributed
across several such fault domains. Finally, the compute resources are managed by hypervi-
sors, which deploy, stop or update user services. They are also in charge of monitoring the
infrastructure.

The Compute Nodes. Clouds virtualize the compute nodes and lease their compute power
in different flavors, in the form of virtual machines (VMs). At PaaS level, all VM instances

22 Chapter 3— Background: Cloud Computing

assume the same role, while at IaaS they have no role. Hence, in both cases, achieving
self-configuring for the services deployed across the VMs is critical. The physical nodes
are exploited in a multi-tenant manner, being shared by several VMs, generally belonging to
different users. Depending on the amount of physical resources they hold VMs range from
tiny instances which share the CPU, to larger ones which fully allocate anything between 1
and the maximal number of CPUs of a physical machine (i.e., 8, 16 or 32 depending on
the provider and resource type). The memory, local storage and the network quota tend
to increase proportionally for the larger VM types (e.g., an Extra Large VM has 8x more
resources than a Small one, while Large or Medium VMs have 4x, respectively 2x more).
Despite having CPUs mapped in a 1 to 1 relation with the virtual CPUs, the only option that
frees a users from multi-tenancy (i.e., physical machine shared by VMs of multiple users)
at compute node level is to use the largest VM types. As such VM types fully occupy the
physical nodes (e.g., Extra Large VMs for Azure cloud) no other users VMs will be run on
the physical machine. Nevertheless, even with the largest VM type, the rest of the resources
in the data center, such as network switches or links, are shared among all users.

The Deployment. The VMs that host a user application form a virtual space, also referred
to as deployment. The VMs are placed on different compute nodes in separate fault domains
in order to ensure fault tolerance and availability for the service. Typically a load balancer
distributes all external requests among the VMs. The topology of the VMs in the data center
is unknown to the user. Several other aspects are invisible (or transparent) to users due to
virtualization, e.g., the mapping of the IPs to physical node, the vicinity of VMs with each
other, the load introduced by the neighbor VMs, if any, on the physical node, etc. A deploy-
ment is limited to a single site, and depending on commercial constraints and priorities, it
can be limited in size. This implies to use several independent deployments if an applica-
tion needs to be executed across several sites, or across a very large number (e.g., thousands)
of CPUs. These are virtually isolated one from the other, e.g., the virtual private network
from one is not accessible by the other. Hence, aggregating their functionality requires an
actual service orchestration similar with creating a workflow from web-services. This raises
a difficult challenge for managing the data uniformly across these different virtual spaces,
potentially located in geographically distant sites.

Examples of major providers of cloud computing services are the following.

Amazon Elastic Cloud Computing (EC2) [9] are the computing services traditionally of-
fered at IaaS level, by Amazon. Being among the first vendors which rented their com-
pute capacity to users, it is often regarded as the reference cloud service, with many
of their APIs adopted as “de-facto” standards. The virtual machines, called instances,
provide users with complete control over the software stack. In the recent years, the
Amazon cloud services evolved and diversified their offering to include data-oriented
analytic platforms such as MapReduce.

Microsoft Azure [125] is a cloud platform that offers PaaS services, and more recently also
TaaS ones. At IaaS levels, the nodes are offered as Virtual Machines, while at PaaS level
these VMs take roles, i.e., Web Roles and Worker Roles. The VMs run either Windows
or Linux-based OS and can provide different run-time software stacks such as .Net or
Java. As Amazon, the cloud framework introduced recently a set of business-oriented

3.3 — The Cloud Storage Paradigm 23

caga o

Cloud Queues Service

NoSQL Storage

SQL Relational

Caching DataBase
Service

= :
ST)

~— dersistent Ephemeral
Unstructured httached Storage
Cloud Storage

Storage Virtual Machine

Memory

Figure 3.3: An overview of the cloud data services

services, enabling users to run MapReduce jobs (further discussed in Chapter [4.3),
develop applications or orchestrate business or scientific processes.

Google App Engine [71] is the PaaS computing cloud from Google. It offers users the pos-

sibility to develop applications in several programming languages (e.g., Python, Java,
PHP, Go) and to integrate several other code extensions or technologies (e.g., Node.js,
C++). The infrastructure is optimized for high networking performance and fast pro-
visioning for applications scaling. Regarding the pricing model, Google App Engine
offers a fine grain model, charging VMs usage by the minute, after the first 10 minutes,
unlike Amazon and Azure clouds which charge by the hour.

3.3 The Cloud Storage Paradigm

Clouds offer also storage capacity for data management, alongside with compute power.
This is either virtualized, or delivered to customers via services, typically with put/get REST
APIs [9, 35]. The pricing model is based on the data size, time frame and number of oper-
ations to the data. The cloud data management ecosystem consists of several services as
depicted in Figure These are geared for various types of data and maximize a different

(typically conflicting) set of constraints. Next, we present an overview of these services.

Ephemeral Storage. In addition to computing power, the VM instances also offer storage

capacity, in the form of virtual disks. This storage capacity can reach several TBs (e.g.,
2 TB for an Extra Large VM in Azure) depending on the instance type. However, the
data stored in the virtual disks are ephemeral, as they persist only for the lifetime of the
instance, being subject to losses caused by failures of the instance. The storage is free of
charge, in the sense that it comes with the cost of leasing an instance. Considering the
low latency between these virtual disks and the compute resources, thus leveraging
data locality, ephemeral storage is an interesting option for hosting and buffering data
for high-performance processing.

Unstructured Cloud Storage. This represents the standard cloud offering for sharing appli-

cation data, which is available both to cloud compute nodes and to on-premise ap-

24

Chapter 3— Background: Cloud Computing

plications. These cloud storage services are distributed storage systems deployed on
storage nodes and running complex protocols for partitioning, replication and consis-
tency to ensure that data is always available and durable, even when machines, disks
and networks fail. A strong consistency protocol is used for the replicas within the site,
while concurrent updates are handled through the use of timestamps and by applying
a “first commit wins” strategy [35]. This makes the these cloud storage services good
candidates for persistently storing input/output data. Azure Blobs is the main stor-
age service of the Azure cloud [125], S3 is the equivalent service from Amazon cloud,
while Google offers Google Cloud Storage [71]. Users can create several storage ac-
counts for a cloud storage subscription, each bounded to a geographic location (i.e., a
data center), but with the possibility of data redundancy across sites, for disaster re-
covery. Data is stored as binary objects (BLOBs) and usually organized in a two-level
namespace structure (i.e., blobs and containers). These BLOBs tend to have an upper
size limit for the amount of data stored in the order of terabyte. Despite collocating
them within the site with the compute deployments, the high-latency REST interfaces
make them inadequate for supporting high-performance data management, which is
understandable as they are optimized for data availability and durability.

SQL Relational Databases. In the last decades, relational databases have became the pri-

mary option for storing application data, leveraging their support for indexed stor-
age and ACID guarantees (atomicity, consistency, isolation and durability). Therefore,
cloud vendors provide such services (i.e., Database as a Service), offering online re-
lational databases on top of their storage capacity. Nevertheless, even with the cloud-
deployed databases, the storage limitations of this technology persist. For example, the
Azure SQL database service offered by the Microsoft cloud offers a maximum storage
space of 150 GBs per user subscription.

NoSQL Storage for Structured Data. With the emergence of Big Data, the storage limits

that come with the ACID guarantees in relational databases, become a major bottle-
neck. To address this issue, the NoSQL systems weaken these properties and propose
instead to store and structure data in the form of type-value or key-value pairs. Exam-
ples of such systems are Cassandra [113], Google Bigtable [40] or Yahoo PNUTS [44].
Due to their efficiency and performance to store large data sets, such systems were
also ported on the clouds (e.g., Azure Tables [35] or Amazon Dynamo [47]). Unlike
databases, they do not necessarily enforce a fixed schema enabling a various number
of properties or types, within or across rows. As a result of porting such services on
the clouds, users have an alternative to the unstructured cloud storage, which enables
them to structurally store and partition (i.e., similarly with the indexes in relational
databases) terabytes of data (e.g., Azure Tables offer a up to 100 TB per account).

Cloud Queue Service. One of the data management services provided by clouds is ded-

icated for nodes synchronization.To this purpose, nodes can exchange small (e.g.,
64 KB), short-term (e.g., 1 week) messages via the cloud queue service. A typical us-
age scenario consists of compute nodes, acting as front-ends, enqueueing jobs for the
nodes acting as workers, as in a master - worker model. Cloud Queues are designed
as a communication mechanism capable to support a high number of concurrent oper-
ations from many clients and to allow thousands of message transactions per second.
Examples of such services are: the Azure Queue [125] or Amazon Simple Queue Ser-

3.4 — Discussion 25

vice (SQS) [9]. An interesting fault tolerance property offered by Azure queue is that a
message which is dequeued, is not immediately deleted from the service, but hidden
for a certain period of time. The message is then either explicitly deleted, marking its
successful processing, or becomes visible again after the hidden period expires. In this
way, the service guarantees that each message is processed at least once. However,
the hiding period is limited to hours, which creates a management overhead for long
running tasks. It can be the case for scientific Big Data applications, for which users
need to provide additional mechanisms that support longer compute intervals.

Persistent attached storage. The virtual attached disks of a VM have an ephemeral lifetime,
while the persistent cloud storage is accessible via REST interfaces, which in turn might
require changes in application semantics. To address this issue, cloud vendors provide
a middle-ground solution, in the form of persistent attached storage, which enables
to mount BLOBs in a VM and expose them as a local disk. In this way, applications
manage files, while the lifetime of these files is independent of the instance that mounts
the BLOB. Although a BLOB can be mounted only to a single compute instance at a
given moment, it can be reused any number of times and by other instances. Examples
of persistent attached storage are Amazon Elastic Block Storage (EBS) [7] or Azure
drives [17].

Caching Service. Depending on their type, the compute instances in a deployment can offer
a significant memory capacity. One option to exploit this, is to build a caching service
across the memory of the compute nodes, in order to enable fast, in-memory storage.
Cloud providers offer such tools, for example Microsoft offers Azure Caching [15],
which can be deployed either on a set of dedicated compute nodes, or across all the
leased compute nodes within a deployment. For the latter case, each VM will have
a portion of its memory dedicated to this service. Performance is high due to data
locality and in-memory data access. However, cache misses can be quite frequent,
especially when the memory capacity is reached, and the data needs to be brought
from the cloud storage where it is checkpointed for persistence.

3.4 Discussion

The cloud computing model enabled a major paradigm shift for online applications. Clouds
bring to life the illusion of a (more-or-less) infinitely scalable infrastructure managed through
a fully outsourced service.Instead of having to buy and manage hardware, users rent re-
sources on-demand. However, cloud technologies have not yet reached their full potential.
With the emergence of Big Data applications, it is critical to leverage the cloud infrastruc-
tures to cope with the challenging scale (e.g., volume, velocity) of the Big Data vision. In
particular, the capabilities available now for data storage and processing are still rudimen-
tary and rather far from meeting the more and more demanding applications requirements.
Hence, porting data-intensive applications to the clouds is challenging and brings forward
many issues, which we discuss in the next chapter.

Chapter

Objective: Processing Big Data on
Clouds

Contents
@1 Overview of Big Data Applications| 27
.2 ChallengesandIssues| 28
.3 Big Data Processing Models: MapReduce and Beyond|. 31
4.4 DiIScUSSION| . « .« v v v e e e e e e e e e e e e e e e e 32

This thesis focuses on the Big Data applications, particularly the scientific ones. Com-
monly, large scientific applications such as climate modeling, simulations of the evolution of
diseases and viruses, stream flows analysis, etc. were executed on specialized and powerful,
yet expensive, infrastructures — the supercomputers [29]. However, not all research groups
have access to build and manage such systems. This raises a barrier for the development
of science. Fortunately, the cloud computing paradigm democratizes science, by facilitating
the access to large-scale resources to any users/researchers without any prerequisites and
with a minimal financial effort. To this purpose, we are interested to investigate the main
requirements and challenges for enabling efficient processing of such Big Data applications
on clouds.

4.1 Overview of Big Data Applications

The existing cloud infrastructure and the related services can efficiently and effectively sup-
port small applications with moderate resource requirements. Examples range from national
traffic simulations (e.g., train scheduling [70]) to some bio-medical computations [76]. How-
ever, clouds reach their limitations when handling Big Data applications that require a large

28 Chapter 4— Objective: Processing Big Data on Clouds

number of resources, rapid scaling or high-performance computing [67, 93, (149, 150]. For ex-
ample, a request for a large number of compute resources at once is not always successfully
fulfilled [102]]. Another issue is that applications can obtain a lower and variable CPU speed
than the one requested when choosing the VM type [174]. Nevertheless, the most pressing
issue, that we are focusing on within this thesis, is the data management for such Big Data
applications. In this context, achieving high-performance on the one hand and diversifying
the services on the other hand is critical, in order to address the complex challenges brought
by the data deluge [27) 64, 184].

A particular complex and difficult aspect of the data management for Big Data applica-
tions is handling data across wide areas and/or across the geographically distributed cloud
data centers. Nowadays, an increasing number of processing scenarios and applications re-
quire such computing, as discussed also in Chapter [2 The main reasons why applications
need to geographically distribute the computation on the cloud are the following.

o The size of the data can be so big that data has to be stored across multiple data centers.
We reiterate the example, described in Chapter 2, of the Atlas CERN experiment [13]]
which generates 40 PB of data per year.

o The data sources can be physically distributed across wide geographical locations. This
is the case for the emerging scientific virtual observatories (e.g., ocean [179] or astro-
logical [137] observatories).

o The nature of the analysis, which requires aggregating streams of data from remote
application instances for an increasing number of services. Large-scale services like
search engines or online office tools operate on tens of data-centers around the globe.
Maintaining, monitoring, asserting the QoS of the system or global data mining queries
all require inter-site (stream) processing.

Our objective is to provide data management solutions which enable high-performance pro-
cessing at large-scale across the geographically-distributed cloud infrastructures. In this land-
scape, building functional and performance-efficient data management solutions, first re-
quires to identify the main requirements that scientific Big Data applications bring when
migrated to the clouds.

4.2 Challenges and Issues

Never before the distributed storage and data management systems had to cope at such ex-
tent with challenges such as the data volumes and processing throughput that are associated
to the emergence of Big Data. The cloud storage services, now in operation, are relatively
new and still evolving. So far, they have mainly focused on the needs of business appli-
cations, targeting to provide basic functionality in a reliable and secure way. Supporting
data-intensive applications in clouds, at large-scale, raises the need to address the following
challenges.

Transparency, Automation and Self-Configuration. Localizing, managing, moving and
processing large amounts of data is a complex task and cannot be explicitly handled

4.2 — Challenges and Issues 29

by users or applications. Therefore, the data management system must transparently
handle these aspects, leveraging a uniform view of the data space for applications, re-
gardless of the scale at which data is distributed (i.e., within the deployment, in-site
or across sites). Yet, configuring the parameters of the data management system, let
alone tuning them for optimal performance, is a difficult task as well [106]. Hence, so-
lutions need to be designed that are capable on the one hand to become aware of their
environments and self-configure themselves, and on the other hand to operate without
user supervision.

Scalability. Cloud computing is an interesting option for Big Data applications as long as
the services can scale with the computation needs. Regarding the storage infrastruc-
ture, it requires to be able to leverage a large number of resources efficiently (e.g., vir-
tual disks) and aggregate them elastically and continuously in order to accommodate
the growing volume or veracity of the Big Data sets. In the same time, the workload
needs to be distributed proportionally with the resources (i.e., load balance) in order
to avoid performance bottlenecks and idle resources [184]. This is equally valid both
for managing the data access requests and for scheduling the computation tasks. To
achieve scalability and load balancing in the system, it is important to understand
to which extent the traditional techniques, designed for smaller scales (e.g., in the
field of distributed shared-memory, cluster scheduling) can be leveraged, extended
and adapted to the context of the unprecedented scale brought to reality by cloud in-
frastructures.

Efficiently assembling the results of parallel executions. One the one hand, effectively
dealing with Big Data applications requires to partition the computation to achieve
a high degree of parallelism. On the other hand, once the sub-problems are solved,
the final results need to be assembled. The performance of this operation impacts the
overall execution of the application directly. The critical need for providing efficient
solutions is motivated by the fact that the complexity of the operation grows with
the parallelism degree. This is even more challenging as constantly pushing the scale
boundaries is one of the primary focus of today’s research.

Low-latency and high-throughput access to data under heavy concurrency. Big Data pro-
cessing naturally requires a high degree of parallelism for data analysis (i.e., many
compute nodes concurrently access, process and share subsets of the input data). This
leads to many application instances accessing the cloud storage system to read the
input data, to write the results, to report their state for monitoring and fault toler-
ance purposes and to write the log files of their computation. Such data accesses
strongly impact the overall execution time for many scientific applications. In such
scenarios it is important to enhance existing cloud storage systems with means to en-
able heavy concurrent access to shared data, while avoiding the usually high cost of
traditional synchronization mechanisms, in order to provide low-latency and achieve
high-throughput access to data.

Fine grain access. Even though many applications use unstructured BLOBs to store their
large inputs in a single block, the processing is generally performed in parallel on sub
sets of the data. This requires to access small parts of that input data, at a fine grain
level. However, large distributed storage systems tend to handle data in large blocks

30

Chapter 4— Objective: Processing Big Data on Clouds

(e.g., 64 MB) [85, 131], which makes the access to lower granularities rather difficult
and inefficient. The goal is to improve the overall data access performance by avoid-
ing useless locking and by dynamically finding and adjusting the right granularity to
handle data.

Fault tolerance and data availability. Faults are unavoidable at large-scale in clouds, which

are mostly built out of commodity hardware. Therefore, both processing and data
management systems need to be designed to account for failures, as they are the norm
rather than the exception [85, |173]]. Regarding the processing phase, the techniques
vary from speculative executions of tasks[82], to using redundancy mechanisms to en-
sure that the jobs are executed at least once, as with Azure Queues, or adopting check-
pointing techniques for cloud processing [133]. In terms of data storage, the usual ap-
proach to deal with this issue is data replication [35]. Understanding which options to
combine is fundamental to ensure successful execution of large, Big Data scenarios.

Stream processing. Stream processing refers to the management and analysis in real-time

of continuous sequences of relatively small data items [68], otherwise referred to as
events. Stream processing is becoming one of the most significant classes in the world
of Big Data, considering the vast amounts of data which is collected in real-time, at
increasing rates in various scenarios. Handling such data is a distinct challenge than
managing static or stored data due to the continuous nature of the stream and the typ-
ically small sizes of the events forming it. In fact, an extended survey over thousands
of commercial jobs and millions of machine hours of computation, presented in [87],
has revealed that the stream process performance is highly sensitive to the manage-
ment and transfer of events, and their latencies. Therefore, there is a growing need for
a high-performance system for event streaming on clouds [22, 39, 68].

Data sharing. For many application scenarios, particularly the data-intensive ones, data

sharing is the most difficult and compelling of all the enumerated challenges [24].
Whether the Big Data processing is performed in-site or across multiple data centers,
the application input needs to be shared across the compute instances, which in turn
need to share their (partial) results among each other, with other applications within a
workflow or make them available to users. A great deal of effort was invested to pro-
pose alternative solutions that would limit the sharing of data across nodes, by lever-
aging data locality and by moving the computation instead [82,|163]. However, despite
these efforts, it was shown that for many applications, the input data can account only
for 20 % of the total IO, the rest corresponding to data transmitted during the compu-
tation across the instances [87]. This emphasizes that the processing services, be they
distributed across multiple nodes, exchange large amounts of data. Additionally, the
performance of the computation is governed by the efficiency of the data management.
Therefore, providing high-performance data management services is a key milestone
for supporting Big Data processing on the clouds.

This list is clearly not exhaustive. Considering the dynamic ecosystem of Big Data appli-

cations, new issues are expected to appear both from business as well as from the data sci-
ence scenarios. Even so, addressing these issues by providing new data management solu-
tions is essential in order to cope with the Data Deluge and to prepare for the next challenges
of Big Data. These challenges that we identified serve as a roadmap for the approaches that

4.3 - Big Data Processing Models: MapReduce and Beyond 31

Intermediate

Input
P Data

Data Set @
Partition 1

—)-Result 1
Partition 2

Result 2

Figure 4.1: The classical MapReduce scheme, as introduced in [46]

are presented in this thesis. However, a solution to an issue is as good as its usability poten-
tial. Therefore, it is important to discuss also the processing paradigm(s) that can apply and
use the solutions to these issues. Hence, we discuss next the processing models that gather,
and, to some extent, shape many of the recent efforts made to address these challenges.

4.3 Big Data Processing Models: MapReduce and Beyond

With the emergence of Big Data, for many applications the computation scenario becomes
straightforward: apply a search strategy for a particular property (i.e., the Value) on the input
data set. However, as the data sets are typically large (we recall the Volume challenge of Big
Data discussed in Chapter2), the computation needs to be partitioned and distributed across
as many resources as possible to obtain acceptable execution times. The classical processing
models have to evolve. On the one hand they should facilitate the execution of many parallel
tasks by elastically scaling the computation. On the other hand, they should enable the
execution of these tasks over a virtualized infrastructure of commodity hardware, such as
the cloud. Consequently, the processing models for Big Data can be conceptually abstracted
by the orchestrating scheme they propose for the parallel tasks.

MapReduce is a data processing paradigm, which became the “de-facto” model for exe-
cuting Big Data applications on large infrastructures. The MapReduce model, inspired from
functional languages, is shown in Figure |4.1] as it was initially proposed by Google [46]. It
consists of 2 functions: map and reduce, executed in 2 successive phases by worker processes.
The map function is applied, in parallel, on all the partitions of the input data. Example of
map functionality are: counting items occurrences, ranking records, searching for patterns
etc. The reduce function has the role of assembling the intermediate, partial results of the
mappers into the final output. The assignment of the intermediate results by the mappers to
the reducers is done based on a hashing function. Typical examples of reduce operations are:
sum, sort, filter, merge, etc. The large success and popularity gained by this model is due
to the fact that it effectively fulfills the 2 requirements previously mentioned for Big Data
processing: easy scalability and potential to be executed on virtualized commodity hard-
ware. Users only need to provide the 2 functions, which are then scaled with the number
of resources and applied on the partitioned input set. Additionally, since the computation
is performed on independent sub sets, the model has a natural tolerance to failures. In fact,

32 Chapter 4— Objective: Processing Big Data on Clouds

it enables to simply re-execute a failed task on a different machine. In this way, the model
can accommodate potential failures of the commodity hardware, without any effort or in-
frastructure knowledge, thus allowing it to run on virtualized cloud environments.

MapReduce extensions were developed due to the success of the MapReduce model, and
with the goal of extending its scheme to accommodate new types of processing, while pre-
serving its initial properties. Among these, the most representative extensions are the iter-
ative MapReduce processing and the pipeline of MapReduce processes. Iterative MapReduce
applies the pair of map and reduce functions in several iterations on the data (i.e., the out-
put data from reducers is feed back to mappers). The termination condition is usually deter-
mined either by the number of rounds elapsed or by evaluating the differences between the
outputs from successive iterations and stopping when these become smaller than a thresh-
old. When data cannot be processed in successive iterations with the same functions, the
MapReduce pipelines become an interesting option. The idea is to orchestrate several inde-
pendent MapReduce processes, each with it’s own map and reduce operations, in a process-
ing flow [128]. Unlike for the iterative declination, creating pipelines requires a meticulous
instrumentation and more overhead, thus tempering the initial goals of MapReduce. Others
extensions, which do not change the data flow model, propose optimization by moving the
computation in-memory, processing data incrementally or in batches from a live data input
stream [84, [155].

Beyond MapReduce: Workflows are migrated to the clouds because, even with the exten-
sions to the initial MapReduce model, many scientific applications cannot fit this compu-
tation paradigm. Nevertheless, the tendency is to mix the expressivity provided by work-
flows with the simplicity of MapReduce. The goal is not only to allow users to create more
diversified dependencies between tasks, but also to simplify the description of the inter-
dependencies and the specifications of the data flow. At the same time, efficiently handling
generic (and complex) orchestrations of data flows on a virtualized environment raises an
important challenge for the data management systems. In fact this becomes the key point for
the overall efficiency of the system. Hence, providing efficient data services capable to in-
teract with the processing engines and to enable high-performance data exchanges between
the compute nodes is a key milestone for Big Data processing on clouds.

4.4 Discussion

Porting data intensive applications to the clouds brings forward many issues in exploiting
the benefits of current and upcoming cloud infrastructures. In this landscape, building a
functional infrastructure for the requirements of Big Data applications is critical and is still
a challenge. We investigated and identified several hot challenges related to Big Data man-
agement on clouds and discussed the main processing models that can leverage solutions
to these issues for applications. We use this analysis as a motivation and design guide-
line for the data management approaches that we propose in this thesis, in order to enable
high-performance processing at large-scale across the geographically-distributed cloud infras-
tructures. The next chapter introduces the current state-of-the-art solutions in their domains
and discusses their limitations in meeting these challenges.

Chapter

State-of-the-Art: Big Data
Management Systems for Clouds

Contents
1 DataStorage|. e e 33
[5.2 DataProcessing|. e e 36
B3 Transferdt 41
4 Di 10 4 43

With the migration of Big Data applications towards large-scale infrastructures such as
the clouds, several solutions have emerged. In this chapter we discuss the main approaches
proposed, both from data management and processing points of view. The goal is to depict
their strengths and identify the issues that still remain open for Big Data management on
clouds, which is the primary focus of this thesis.

5.1 Data Storage

Being able to store efficiently the large volumes of data produced today is one of the primary
challenges raised by Big Data. To this end, several solutions were proposed for large-scale
infrastructures. Depending on the data format they employ (i.e., whether they use or not a
structure), the storage solutions can be divided into two categories, which we discuss next.

5.1.1 Unstructured Data: Object-Based Storage Systems

Storing data in large binary BLOBs is the main approach for dealing with Big Data. Cloud
providers offer such object storage solutions (e.g., Amazon S3 [9]], Azure Blobs [125], Google

34 Chapter 5 — State-of-the-Art: Big Data Management Systems for Clouds

| Metadata

| Providers
1
A

HDFS

i FSData namenode
i InputStream -
dient VM :

client node

Distributed 1
& FileSystem
dient

i

deread | S read

/
!
H
! Provider
! manager,
i
i
I
1
H

datanode

Figure 5.1: HDFS Architecture [177] Figure 5.2: BlobSeer Architec-

ture ||

Cloud Storage [71]) as the primary service for handling data, as discussed in Chapter 3| They
are optimized for high availability and data durability, under the assumption that data are
frequently read and only seldom updated. Therefore, achieving high throughput or enabling
optimizations for Big Data applications (e.g., by exposing the data layout) are auxiliary goals.
Moreover, there is a clear separation within the data center, between these systems and the
computation infrastructure.

5.1.2 Structured Data: Distributed File Systems

Having the goal to move the computation closer to the data, several distributed storage solu-
tions were developed. These share the common principle with the cloud storage, of storing
data distributed across the system entities, in large blocks. However, they mainly target the
computation infrastructure rather than a specialized data storage hardware [35].Such sys-
tems are usually deployed over the node file system. Nevertheless, they are not generally
available for default users on clouds. Next, we discuss three representatives solutions, as
follows.

HDEFS (Hadoop Distributed File System) was developed to serve as the storage back-
end for MapReduce compute platforms. It has a master-workers architecture, as de-
picted in Figure The centralized control component, called NameNode, manages
all metadata within the system, and additionally splits and disseminates the data for
storage. The nodes holding the data are called DataNodes. Data are typically split and
stored in chunks (64 MB size is commonly used during the MapReduce process). Re-
garding fault tolerance, chunks are replicated across several DataNodes (by default, 3).
As optimizations, HDFS exposes the data layout, offers data buffering capabilities and
advanced provisioning, allowing the compute frameworks to schedule the computa-
tion accordingly. However, HDFS cannot sustain a high throughput for concurrent
reads [[132]. Also, concurrent writes or appends are not possible.

BSFS/BlobSeer [132] is a concurrency-optimized distributed storage system for large bi-
nary objects, which can be used via a file system interface. It consists of a set of dis-
tributed entities that enables scalable aggregation of the storage space from the partici-

5.1 — Data Storage 35

pating nodes with minimal overhead. Data striping and replication is performed trans-
parently for applications, while a version-oriented metadata scheme enables lock-free
access to data, and thereby favors scalability under heavy concurrency. The architec-
ture of BlobSeer is shown in Figure Data providers physically store the blocks cor-
responding to the data updates. New providers may dynamically join and leave the
system. The provider manager keeps information about the available storage space
and schedules the placement of newly generated blocks, according to a load balancing
strategy. Metadata providers store the information that allows to identify the blocks
that make up a version of the data. The version manager is in charge of assigning
version numbers in such a way that serialization and atomicity are guaranteed. The
system is capable of delivering high throughput performance, but requires meticulous
configuration, which is not always straightforward for applications designers.

GFarm [136] is a distributed file system, enabling data sharing for data-intensive comput-
ing. The system was initially designed for Grid infrastructures, and therefore stands
as a good example for the storage approaches that were refocused and migrated into
clouds. However, integrating it with a cloud middleware requires to run it on the host
OS and specifically modify and extend the cloud middleware. Therefore, such solu-
tions are feasible only in the context of private infrastructures, which are virtualized
with open-source cloud toolkits.

Such storage solutions have proven to be effective in some application scenarios. How-
ever, they are not always ready to be used out-of-the-box for scientific Big Data processing
on clouds, particularly in the case of public ones. Moreover, obtaining optimal performance
usually requires information about the environment, which by default is not explicitly ac-
cessible in the user virtualized space.

5.1.3 Structured Data: Key-Value Stores

The demand for storing large volumes of data in a structured fashion cannot be met by the
traditional relational databases, as mentioned in Chapter 3] Consequently, systems, gener-
ically called NoSQL, were proposed to enable storing large amount of data in the form of
key-value pairs, and therefore are called key-value stores. Some of these systems enable the
organization of the items in rows and columns, providing partial indexes with respect to this
scheme. Due to their efficiency in storing and managing massive data collections, obtained
from the lack of the full ACID (Atomicity, Consistency, Isolation, Durability) guarantees,
such solutions were built by companies, which own and manage large-web services.

Azure Tables [35] is the structured key-value storage offered by Microsoft as a cloud ser-
vice. A Table contains entities (similar to rows in classical relational databases), which
store multiple properties. Each entity can contain a different number of properties or
different types of properties. At least 3 properties are always present: RowKey (the
unique identifier), Timestamp (used as a versioning mechanism) and the PartitionKey
(used to physically group records together). The latter is used by the system to bal-
ance the load across multiple storage nodes and to optimize consecutive accesses for
performance.

36 Chapter 5 — State-of-the-Art: Big Data Management Systems for Clouds

Cassandra [113] is a distributed storage for structure data, built by Facebook. The system
was designed for high scalability on commodity hardware withing or across data cen-
ters. It resembles a relational database in several aspects, storing data in tables with
row index capabilities, but with no further support for a full relational model. Multiple
replicas are created and distributed for fault tolerance across multiple physical nodes.
Based on them, the system implements customizable consistency levels (i.e., number
of replicas considered when performing an operation).

BigTable [40] is the distributed NoSQL storage introduced by Google, designed to scale to
Petabytes of data and thousands of machines. As for Cassandra, it does not support
a full relational model, offering instead dynamic control over layout and format of tu-
ples and advanced locality management. Similar with Azure Tables, data is organized
based on 3 properties: rows, columns and timestamps.

PNUTS [44] is the geographically distributed storage provided by Yahoo!. It provides a
simple and effective model, with data organized in hashed or ordered tables. Tables
contain records, augmented with attributes, as the basic unit for the data.The tables are
partitioned into smaller data structures which are stored across servers from different
regions. The concept of regions is similar with the abstraction of fault domain of the
Azure cloud, and refers to the partition of the overall infrastructure. However, the
resulting regions can also be geographically distributed.

Dynamo [47] is the highly available internal storage for the Amazon web services. The
system is highly optimized for writes and for low latencies. It is organized as a dis-
tributed hash table across a ring of virtual nodes, which have a many-to-one mapping
with the physical nodes. The data model relies on simple key-value pairs, which are
asynchronously replicated and eventually reconciled based on versions. The client
applications are offered a flexible control for the consistency levels of accessing the
replicas, and thereby on the cost effectiveness.

These NoSQL systems are designed for massive scalability and therefore are good can-
didates for managing the Volume challenge of Big Data. To a great extent, these are among
the most advanced state-of-the-art systems in terms of volumes stored, reaching the order of
Petabytes. Due to their high business value, most of them are closed, proprietary systems,
such as Dynamo or BigTable. Typically optimizing for a certain consistency level or availabil-
ity guarantee for the data, they do not always deliver the highest performance. Moreover,
properties such as data locality are not considered or not applicable, specially considering
that their initial goal is to scale over large (geographically) distributed infrastructures.

5.2 Data Processing

Data processing is another important aspect that needs to be considered in the context of Big
Data, as understanding its characteristics helps to design the proper solutions. However,
with the diversification of the compute scenarios, different processing approaches are, and
need to be, ported on the cloud or on large infrastructures, in order to meet the application
challenges. The most popular of them is the MapReduce processing. Alongside with sys-
tems that implement this paradigm, we discuss solutions for general-purpose or real-time

5.2 — Data Processing 37

processing, in order to extend the applicability areas of the data management solutions con-
sidered in this work.

5.2.1 MapReduce

We recall that the MapReduce processing paradigm, introduce by Google [46]], is presented
in Chapter 4, In what follows, we present the state-of-the-art solutions, which adopt this
computing model.

From Hadoop to YARN and Spark. The most notorious and used implementation of the
Goggle MapReduce [46] is the Apache Hadoop [82]. This distributed framework runs on top
of HDFS storage, collocating computation and data. It proposes a master-worker architec-
ture for scaling the processing of data sets across clusters, while providing strong fault tol-
erance guarantees (speculative execution of tasks, heartbeats mechanisms, re-execution of
failed tasks, etc.). The two components of the system are the Job Tracker, which is in charge
of scheduling and managing the execution of the MapReduce tasks and the TaskTrackers,
which run on each compute node and are in charge of executing the computation tasks. To
increase efficiency, map and reduce tasks are scheduled according to the locality of data, with
the goal of reducing data movements across nodes and racks. As in the original model, the
map and reduce phases are separated, avoiding deadlocks though a synchronization barrier
between the two stages.

Because of its success, the framework was adopted and used in diverse scenarios beyond
its initial designed goals. For example, high-level frameworks such as Pig [145] or Hive [94],
or full workflow descriptive languages such as Kepler [175], orchestrate complex and het-
erogeneous MapReduce execution plans. This extensive use, as well as a vast number of
research studies, revealed several limitations of the architecture such as tight coupling of the
processing model with the infrastructure or scalability and performance bottlenecks due to
the centralized scheduling. To address these limitations, a new service-oriented architecture,
called YARN [170], was proposed, which is depicted in Figure The initial multiple roles
of the JobTracker are split between multiple Resource Managers, which administrate entire
clusters, and the Application Master, which schedules and coordinates the execution of the
work per application. The compute infrastructure is divided into discrete quotas called con-
tainers, which are managed by entities called Node Managers. In this way, YARN provides
better resource utilization, higher fault tolerance and greater scalability.

An alternative MapReduce system implementation, which gain popularity recently, is
Spark [155]. It accelerates the computation building on the observation that clusters can sup-
port the computation in-memory. Therefore, it proposes a MapReduce architecture which
handles and processes data entirely in-memory, being thus limited within the available
memory of the cluster. Moreover, the framework proposes extensions also to the MapRe-
duce API enabling to launch computation as SQL queries [182].

MapReduce on clouds. Due to the impact of the MapReduce on Big Data processing and
the popularity of Hadoop, the model was also ported to the clouds. AzureMapReduce [77]
is one of the first attempts to address the need for a distributed programming framework
in Azure. It is a MapReduce runtime designed on top of the Microsoft Azure PaaS cloud

38 Chapter 5 — State-of-the-Art: Big Data Management Systems for Clouds

Message Queue = 4
) e) i1 N
< r A ; [
S e

«
,

1" 4
Map Map Map Vap
Worker 1 Worker2 Warker 3 Warker 4

) educe
\\ pocinaly Worker y
%, Reduce Task Scheduling - O cea D

N
4 Message Queue e

-7 ‘\
P Y '
I DI R R, y 4

Messages

MapReduce Status ————
Job Submission -~~~
Node Status ~ —-—-—»
Resource Request s

Task Place
Holder

Figure 5.3: Apache Hadoop NextGen Figure 54: AzureMapReduce architec-
MapReduce (YARN) [82] ture [77]]

abstractions, which uses the cloud storage services for data and task management (e.g.,
Azure Queues for scheduling, Azure Tables for metadata administration). These choices
provide great fault tolerance, but reduce the performance of the service. Later than this
work, Microsoft proposed also an own MapReduce service based on Hadoop, called HDIn-
sight [86], following the model of Amazon which offers its Elastic MapReduce service [8].
Both these cloud-provided services externalize the processing from users. In this way, the
task of running single MapReduce computations is simplified, but the services limit poten-
tial optimizations based on the scenario semantics as well, as integrating the processing into
larger computation pipelines.

Extensions of MapReduce. The wide adoption of the model served as a motivation for
several efforts to propose extensions that would enable to process a larger class of applica-
tions. The main focus was on the iterative ones. As Hadoop does not support such iterative
processing by design, HaLoop [32] was built on top of it with this purpose. It exposes a new
programming model and relies on a loop-aware task scheduler and on loop-invariant data
caching. Besides HaLoop, other solutions accelerate iterative algorithms by maintaining it-
eration state in memory. Twister [53] employs a light weight MapReduce runtime system
and uses publish/subscribe messaging-based communication instead of a distributed file
system. Mappers and reducers are built as long-running processes with distributed memory
caches in order to avoid repeated data loading from disks. The solution was also ported
to Azure, by extending the aforementioned AzureMapReduce framework [78]]. iMapRe-
duce [185] extracts common features of iterative algorithms and provides support for them.
In particular, it relies on persistent tasks and persistent socket connections between tasks,
it eliminates shuffling static data among tasks, and supports the asynchronous execution of
iterations when possible. All of these frameworks target applications with iterations across
MapReduce jobs and require additional components and programming efforts to aggregate
their output automatically. Moreover, the close loop architecture is in most cases sensitive
to failures. Additionally, potential in-node optimizations of the processing, such as caching
data between iterations, might not scale in commodity machine clusters, where each node
has limited memory and resources.

5.2 — Data Processing 39

5.2.2 Workflows

A large number of workflow engines were developed due to their impact and efficiency
in solving business processes. Enumerating all these solutions or discussing their general
features is beyond the purpose of this work. Our focus is to identify the main characteristics
that such engines share, when ported on the clouds, as traditionally, they run on private or
grid infrastructures. Therefore, we discuss three such engines which were either ported or
constructed to run on cloud infrastructures.

Pegasus [48] is a traditional (i.e., not designed for clouds) workflow engine, which facil-
itates the representation of data-compute flows in an abstract manner and executes
them on distributed computational resources. The framework optimizes the mapping
of the sub-tasks, in which the workflow is divided, with the resources, with the goal of
minimizing the data movements and improving the execution times. However, when
migrated to the cloud, its performance is highly sensitive to the data management solu-
tion used, which, to a large extent, determines the scheduling optimizations techniques
that can be applied [2]. Providing cloud services that can leverage infrastructure topol-
ogy and data locality information are key points that need to be addressed to increase
the feasibility and efficiency of running such workflow engines on clouds.

e-Science Central [91] was designed as a workflow platform accessible via web browsers,
following the “’as a Service” cloud model. It enables collaborative work, as well as
data and computation sharing. Workflow execution is performed as a sequence of
service invocations. The corresponding execution plan is determined and processed
as independent tasks across the distributed compute resources. The orchestration of
the execution is performed by a centralized coordinator which limits the scalability of
the computation and its performance. A second factor impacting the performance is
the use of the cloud-provided storage service, which recent efforts are trying to replace
with other solutions such as in-nodes HDFS [92].

Generic Worker [153] stands as an example of a workflow engine specifically designed
for running scientific applications on clouds. It was implemented as an open-source,
batch-based processing platform by Microsoft Research ATL Europe [66]. The system
can seamlessly be extended by the use of plugins and can be migrated to any cloud,
private or public. This flexibility was enabled in order for researchers to apply a hybrid
approach: use a local infrastructure when available, and scale-out to the cloud when
necessary. By default, Generic Worker relies on the cloud storage to perform all data
management operations such as tasks description or data uploading and sharing. On
the one hand, such a design choice supports the extensibility of the processing across
infrastructures, but on the other hand it provides low I/O performance for data trans-
fers between tasks, compute nodes and infrastructures. This indicates that such elastic
Big Data processing solutions, potentially operating across geographically distributed
infrastructures, require dedicated cloud services for wide-area data management and
transfers, considering that the cloud-provided storage service offers such functionality
only circumstantially.

40 Chapter 5 — State-of-the-Art: Big Data Management Systems for Clouds

5.2.3 Complex Event Processing Platforms

The previous discussed processing methods are mainly designed for analyzing static col-
lections of data. However, real-time stream processing becomes an important aspect of Big
Data, with massive quantities of information being produced and requiring on-the-fly pro-
cessing (e.g., see the Velocity challenge, discussed in Chapter [2). Such analysis is handled
by specialized platforms, called complex event processing (CEP). Due to the complexity of
partitioning a query (i.e., the description of the computation task), most of such systems
were designed with centralized architectures and did not consider the cloud infrastructures.
Hence, a hot open-issue in the area today is how to port and scale these engines to large
cloud infrastructures.

Middleware solutions like System S from IBM [65] were proposed for single cluster
processing, with processing elements connected via typed streams. The ElasticStream sys-
tem [101] migrates this solution to Amazon EC2 taking into consideration cloud-specific
issues like SLA, VMs management and the economic aspects of performance. Similarly, Mi-
crosoft provides StreamInsight [127], which is available for installation into Azure cloud ma-
chines. Other works in the area of large-scale streaming, like Sphere [75], propose a GPU-like
processing on top of a high-performance infrastructure, which restricts the general applica-
bility to clouds. Systems like Aurora and Medusa [1] consider exploiting the geographically
distributed nature of the stream data sources. However, the systems have a series of lim-
itations despite their strong requirements from the underlying infrastructure (e.g., naming
schema, message routing): Aurora runs on a single node and Medusa has a single admin-
istrator entity. The main issue with this series of systems is that they were not designed
for cloud and/or large-scale processing, and consequently they cannot effectively leverage
the underlying platform for high-performance computing. Bellow are three other systems
which propose alternative directions.

D-Streams [182] provides tools for scalable stream processing across clusters, building on
the idea of handling data in small batches, which can be processed using MapReduce.
This idea also discussed in [122]. In this way, the scalability problems of stream pro-
cessing are addressed by relying on the elasticity of the MapReduce processing en-
gines. Data acquisition is event-driven: the system simply collects the events from the
source and batches them. Next, a MapReduce process is launched to execute the query
on the batched events. Although this approach solves the scalability issue, it provides
a high latency-to-answer, being more adequate for applications that tolerate to obtain
the answers with some delay, i.e., in near real-time.

Stormy [120] implements concepts from peer-to-peer stream processing in the context of
clouds. The system is an elastic distributed-processing service that enables running a
high number of queries on continuous streams of events. The queries are replicated
and applied on all the replicas of the events created across the peer nodes. Stormy
delegates the staging-in of the events to the data source which is expected to push the
events in the system. Moreover, it handles the stream as individual events both in
the acquisition and the replication phases, which may drastically reduce the overall
performance.

Storm [165] is an open-source real-time processing engine developed by Twitter for large-
scale processing. The system builds on several existing solutions to distribute the event

5.3 — Transfer 41

processing while guaranteeing fault-tolerance. Resilience is accounted for in the design
alongside with efficiency, Storm operating in-memory with one of the “at least once”
or “at most once” processing semantic guarantees. Data is handled at the level of
tuples, over TCP, by 2 threads per worker: the sender and the receiver. Tuples are
managed in queues, being gathered (i.e., from the local tasks executed on the node
or from different nodes), independently inspected and finally delivered towards the
destination. In addition to handling the stream in memory, Storm uses the local disks
of nodes to store the processing topology (the computation and the description of the
data flow), states and the user code/query.

All these solutions focus on processing queries and scalability with no specific improve-
ments nor solutions for the event streaming itself. This raises a major difficulty for address-
ing the tough challenges related to the distributed nature of the analysis or of the stream
source locations.

5.3 Transfer

So far, we discussed the main processing approaches and their storage options. The primary
feature identified is scalability, which translates into managing data in a highly distributed
fashion. In this context, the transfer of data becomes particularly important whether data is
replicated to increase its resilience or shared between tasks or computing phases for process-
ing purposes.Hence, we discuss next the state-of-the-art solutions for such data movements.
We divide them according to the state of the data, which can be either static or in motion, as
part of a continuous flow (i.e., stream).

5.3.1 Static Data

The handiest option for sharing or transferring data, even across cloud data centers, is to
rely on the cloud storage services. This approach allows to transfer data between arbitrary
endpoints and it is adopted by several systems in order to manage data movements over
wide-area networks [111,129]]. However, this functionality arises only as a “side effect”, and
therefore achieving high transfer throughput or any other potential optimizations, such as
differentiated QoS or cost effectiveness, are not always viable. Trying to fill this utility gap,
several alternatives have emerged.

NetSticher [116] was designed for bulk transfers of data between data centers, with the
purpose of replicating for geo-redundancy. The authors exploit the day/night pattern
peaks of usage of a data-center in order to leverage the unutilized bandwidth periods.
Though NetSticher is useful for backup and checkpoint operations, required to admin-
istrate a data center, it does not work for real-time systems nor for online applications
which need to exchange data between their running instances.

GlobusOnline [58] provides file transfers over WAN, targeting primary data sharing
between different infrastructures (e.g., grids, institution infrastructures, community
clouds), mainly within scientific labs. The framework is designed as a SaaS with the
focal point on the users, which are offered intuitive web 2.0 interfaces with support for

42 Chapter 5 — State-of-the-Art: Big Data Management Systems for Clouds

automatic fault recovery. GlobusOnline runs based on the GridFIP [3] tool (initially
developed for grids), performing file transfers only between such GridFTP instances.
During the transfers, it remains unaware of the environment and therefore its transfer
optimizations are mostly done statically. Several extensions brought to GridFTP al-
low users to enhance transfer performance by tuning some key parameters: threading
in [118] or overlays in [109]. Still, these extensions only focus on optimizing some spe-
cific constraints, which leaves the burden of applying the most appropriate settings to
scientists, which are typically unexperienced users.

StorkCloud [112] offers also a SaaS approach for data management over wide-area net-
works. It integrates multi-protocol transfers in order to optimize the end-to-end
throughput based on a set of parameters and policies. It adapts the parallel trans-
fers based on the cluster link capacity, disk rate and CPU capacity, using the algorithm
proposed in [181]. The communication between StorkCloud components is done using
textual data representation, which can artificially increase the traffic for large transfers
of unstructured data. The system is one of the most representative efforts for improv-
ing data management. It is designed for general purpose, targeting the communication
between any devices. Ergo, specific optimizations for the Big Data scenarios running
on clouds are not considered, such as the topology of the applications in the data cen-
ter(s) or of the inter-connecting links between compute nodes.

Multi-path TCP [148] is a standard designed to address the challenge of moving large vol-
umes of data by enabling parallel data transfers. The idea is to improve the commu-
nication by employing multiple independent routes to simultaneously transfer dis-
joint chunks of a file to its destination. The approach can incur additional costs such
as higher per-packet latency due to timeouts under heavy loads and larger receiving
buffers. Nevertheless, this remains an interesting solution for tackling Big Data pro-
cessing. However, it is designed to operate at the lower levels of the communica-
tion stack, thus ensuring congestion control, robustness, fairness and packet handling.
Consequently, the solution is not available for cloud users until it will be adopted by
cloud vendors and Tier 1 ISPs.

These efforts show that the need for efficient tools for managing data is well understood
in the community and stands as an important issue. Nevertheless, many aspects remain un-
addressed, particularly finding solutions that would provide high-performance for transfers
between the running instances of applications on the cloud.

5.3.2 Real-Time Data

Handling data in real-time, for large-scale Big Data processing, calls for different solutions
than the ones previously discussed for general data transfers. These need to be specifically
designed for continuous streams of events, together with the CEP engines and considering
the target computation environments. However, despite the growth in volumes and impor-
tance of stream data, and the efforts to migrate such processing to the clouds, most of the
existing stream processing engines only focus on event processing and provide little or no
support for efficient event transfers between even source and processing engine. In fact,
this functionality tends to be delegated to the event source [31, 182]. As a result, the typi-
cal way to transfer events is individually (i.e., event by event), as they are produced by the

5.4 — Discussion 43

data source. This is highly inefficient, especially in geographically distributed scenarios,
due to the incurred latencies and overheads at various levels (e.g., application, technology
encoding tools, virtualization, network). Therefore, currently there is a lack of support and
focus for optimizing the event streaming and real-time transfers on clouds. This is explained
somehow by the fact that the topic of processing real-time data on clouds is new, and thus
not all aspects have been addressed yet.

In other areas, where real-time data management has been around for some time, things
are more advanced. For example, the systems providing peer-to-peer streaming can be divided
in two categories based on how peers, which forward the events, organize themselves in an
overlay network [159]]: some use DHT overlays [79,157] and others group the subscribers in
interest groups based on event semantics [160, [161]. While the performance of the former is
highly sensitive to the organization of the peers, the latter can improve the performance by
sharing common events within the interest group. Further optimizations can be achieved
by discovering the network topology which is then matched to the event traffic between the
subscribers [159]. This aims to improve the network usage by identifying whether indepen-
dent overlay paths correspond to common physical paths and by allowing deduplication of
events. However, in the context of clouds, it is not possible to consider information about
physical paths, as knowledge and interactions are limited to the virtual space. Moreover,
these techniques do not consider staging-in data from the source to the CEP engines, but
rather disseminating information among subscribers.

Similarly, in the area of video streaming there were significant efforts to improve the end-
to-end user experience by considering mostly video specific optimizations: packet-level cor-
rection codes, recovery packets, differentiated redundancy and correction codes based on the
frame type [96]. Additionally, such solutions integrate low-level infrastructure optimizations
based on network type, cluster knowledge or cross-layer architectures [114, 123]. Neverthe-
less, none of these techniques directly apply to the Big Data real-time processing on clouds,
as they strongly depend on the video format, and thus are not applicable for generic cloud
processing.

The straightforward conclusion is that there is a critical need for high-performance trans-
fer solutions for real-time data. This conclusion is also confirmed by other studies [22]. What
makes it critical is that the value of the real-time analysis itself (i.e., see the Veracity chal-
lenge of Big Data discussed in Chapter [2) is determined by the performance of transferring
the data to the processing engine. Sharaf et al [152] emphasize this point stating that data
freshness improves the Quality of Service of a stream management system.

5.4 Discussion

Supporting Big Data processing and Data Science strongly relies on the ability to store and
share massive amounts of data in an efficient way. Cloud infrastructures are a key element in
this process and must therefore address the challenges posed by applications whose require-
ments are becoming more and more demanding (e.g., in terms of performance and scalabil-
ity at global level), as discussed in the previous chapters. In this section we presented an
overview of the current status and solutions for data management on cloud infrastructures.
The survey has revealed that the processing frameworks strongly rely, in their pursuit for
scaling, on the data management backends. It also showed that in terms of storage, the cloud

44 Chapter 5 — State-of-the-Art: Big Data Management Systems for Clouds

landscape offers several solutions to support data processing, mostly focusing on providing
guarantees such as persistence and fault tolerance. However, aspects like performance or
diversification of the data-oriented services tend to be overlooked. Regarding the support
for managing data movements for the applications running on the clouds, things are worse.
There is a clear need for developing solutions that would enable efficient data sharing across
compute instances, in order to sustain the scalability required to accommodate the Big Data
processing. In this thesis, we address these open challenges regarding data management, by
proposing a set of high-performance data services for storing, sharing and transferring data
on clouds, both for single and multiple site processing.

Part [/

High-Performance Big Data
Management on a Single Data Center

Chapter

MapReduce for Bio-Informatics: The
A-Brain Case Study Application

Contents
[6.1 Joining Genetic and Neuro-imaging Analysis| 47
[6.2 Towards a MapReduce Architectural Solution|. 51

D1 10N . ¢ v et e 52

This chapter develops the contributions published in the following paper:

o A-Brain: Using the Cloud to Understand the Impact of Genetic Variabil-
ity on the Brain. Radu Tudoran, Alexandru Costan, Benoit Da Mota,
Gabriel Antoniu and Bertrand Thirion. Microsoft Cloud Futures Work-
shop 2012, Berkeley, CA, US

6.1 Joining Genetic and Neuro-imaging Analysis

An increasing number of scientific Big Data applications are being ported to the cloud to
enable or accelerate the scientific discovery process. To better evaluate the needs and iden-
tify the requirements that such applications have from large-scale cloud infrastructures, we
selected a representative application from the bio-informatics domain, called A-Brain. Next,
we present this application and the challenges that it brings for clouds, which we address in
the following chapters.

48 Chapter 6 —- MapReduce for Bio-Informatics: The A-Brain Case Study Application

6.1.1 Initial Motivation

Joint genetic and neuroimaging data analysis on large cohorts of subjects is a new approach
used to assess and understand the variability that exists between individuals. This approach
has remained poorly understood and brings forward very significant challenges, as progress
in this field can open pioneering directions in biology and medicine. The goal is to enable
joint analysis between the domains, as well as understanding and explaining aspects from
one area based on the other, similar with what is possible today between the clinical be-
havior on the one hand and either genetics or neuroimaging on the other. However, both
neuroimaging- and genetic-domain observations involve a huge amount of variables (i.e.,
in the order of millions). Performing statistically rigorous analysis on such Big Data has
high scientific Value, but raises a computational challenge that cannot be addressed with
conventional computational techniques.

Several brain diseases have a genetic origin or their occurrence and severity is related
to genetic factors. Currently, large-scale studies assess the relationships between diseases
and genes, typically involving several hundreds patients per study. Thus, genetics plays
an important role in understanding and predicting responses to treatment for brain diseases
like autism, Huntington’s disease and many others. However, it remains poorly understood.
Brain images are now used to explain, model and quantify various characteristics of the
brain. Since they contain useful markers that relate genetics to clinical behavior and diseases,
they are used as an intermediate between the two.

Imaging genetic studies linking functional magnetic resolution imaging (fMRI) data and
Single Nucleotide Polyphormisms (SNPs) data are facing the challenges of multiple compar-
isons. In the genome dimension, genotyping DNA chips allows to record several hundred
thousands values per subject, while in the imaging dimension an fMRI volume may contain
from 100 thousands to 1 million voxels (volumetric picture elements), as shown in Figure[6.1]
Finding the brain and genome regions that may be involved in this correlation entails a huge
number of hypotheses. A correction of the statistical significance of pair-wise relationships
is often needed, but this may reduce the sensitivity of statistical procedures that aim at de-
tecting the associations. It is therefore desirable to set up techniques as sensitive as possible
to explore where in the brain and where in the genome a significant correlation can be de-
tected. More, the false positive detections need to be eliminated, which requires multiple
comparisons. Such gains in sensitivity can also be provided by considering several genetic
variables simultaneously.

6.1.2 A-Brain: Application Description

The A-Brain application addresses this computational problem by testing the potential links
between brain locations, i.e., MRI voxels, and genes, i.e., SNP. Dealing with such hetero-
geneous sets of data, is also known as the Variety challenge of Big Data applications. The
analysis relies on a set of sophisticated mining and learning techniques for inspect the tar-
geted data sets. Univariate studies find the SNPs and MRI voxels that are significantly cor-
related (e.g., the amount of functional activity in a brain region is related to the presence
of a minor allele on a gene). With regression studies, some sets of SNPs predict a neuro-
imaging/behavioral trait (e.g., a set of SNPs altogether predict a given brain characteristic),
while with multivariate studies, an ensemble of genetic traits predict a certain combination

6.1 - Joining Genetic and Neuro-imaging Analysis 49

X Brain images Genetic data

Y

g [N TR
1 (| W] ‘

Subjects~2000 | K.

Find
Correlations

SNPs~106

Figure 6.1: The A-Brain dimensional scale for the X (brain images) and Y (genetic data) data
sets. The white marks on the brain image illustrate potential associations with the genes.

of neuro-imaging traits.

Let (X, Y) be a joint neuro-imaging data set, as shown in Figure i.e., a set X of brain
images, that represent the amount of functional activation in response to a certain task or an
anatomical feature, such as the density of gray matter, and a set Y of genetic variables (e.g.
Single Nucleotid Polymorphisms and/or Copy Number Variants of genetic loci), acquired
in the same population of subjects. X is assumed to include 1, variables (e.g., one for each
location in the brain image domain), while Y comprises 7, variables, for each of the 75 sub-
jects. This gives two matrices of real values, with typical magnitudes of n, ~ 10°, ngy ~ 10.
The data set may also comprise a set Z of behavioral and demographic observations, such
as psychological tests or age. These variables are not independent.

There are two approaches for evaluating the correlations between the gene and neuro-
imaging data. The first approach, the univariate analysis, is less computational demanding
than the second one which performs statistics based on machine learning. However, the
later is expected to be less sensitive to outliers and therefore more statistically robust. In
what follows we present these approaches and their appliances for this application.

¢ In the first phase of A-Brain, the univariate analysis [146] was used to detect the cor-
relations, that is, test the statistical significance of the correlation or the equivalent as-
sociation measure of all (x, y) pairs for (x,y) € X x Y. After performing the necessary
computations, the correlations between the two sets are obtained, giving a matrix of
size n, x ng containing the p-values that represent the statistical significance of the as-
sociations. To ensure correctness, that is controlling for false detections, a permutation
procedure is used, in which the data of one block is reshuffled (~10%). The p-values
obtained in the initial regression analysis are compared afterwards to those obtained
from the shuffled sets.

50

Chapter 6 —- MapReduce for Bio-Informatics: The A-Brain Case Study Application

6.1.3

The alternatively to the univariate analysis is to use a machine learning technique
in order to increase the precision of the computation and to reduce its sensitivity to
outliers, making thus the statistics more robust. Such a computation follows the same
principles as before but increases the amount of computation performed. An important
finding resulted based on our work and the A-Brain project [45], was to show that such
a machine learning approach can compensate, unlike the univariate analysis, for the
errors introduced in the acquisition process of human data set. Hence, increasing the
computation workload is equivalent with acquiring a data set 100 times larger and
thus 100 times more expensive (i.e., 1 billion euros would be needed for such a data
set).

Challenges

The available data set used for testing consists of 50,000 voxels and ~0.5 million SNPs for
approximately 2000 human subjects. The anatomical brain images are T1-weighted with a
spatial resolution 1 X 1 x 1 mm. On the other hand the SNPs were obtained by genotyping,
genome-wide using Illumina Quad 610 and 660 chips. Solving this problem leads to the
following challenges.

Computation. In order to obtain the results with the expected high degree of confidence,

Data.

a number of 10* permutations are required, resulting in a total of 2.5 x 10'* associa-
tions to be computed. Dealing with such complex aspects for the confidentiality of the
results constitutes the Veracity challenge of this Big Data application. The univariate
algorithm, developed by the partner bio-informatic team, performs 1.5 x 10° associa-
tions per second. Hence, on a single-core machine the time estimation to run the algo-
rithm is ~5.3 years. Moreover, the alternative algorithm for performing the statistical
robust analysis is almost 20 times more slower than the plain univariate method. Thus,
in terms of timespan for single core machine, this algorithm would require ~86 years
to complete. Luckily, the analysis is embarrassingly parallel, opening the door for sub-
stantial improvements.

Following the regression stage which compares the 50 thousand voxels and 0.5 million
SNPs for the 2000 subjects, all the intermediate correlation produced must be retained
for identifying the most significant p-values. Taking into account that we use matrices
of size n, x ng of doubles, the space of intermediate data can reach 1.77 PB. Moreover,
the nature of the analysis require the input data set, which is in the order of several of
GBs, to be replicated on each node that executes a task. Hence, the size of the input data
space is proportional to the degree of parallelism, rapidly reaching the order of TBs.
These data dimensions make the analysis challenging from the Volume perspective of
the Big Data applications.

Environment. The application requires a Python-based scientific environment to be set

up, together with scientific libraries such as NumPy, SciPy and H5Py or the Scikit-
Learn toolkit. A complex computing environment is also needed for configuring and
scheduling the computing jobs automatically, staging in the input data, transferring
the data between the nodes and retrieving the results.

6.2 — Towards a MapReduce Architectural Solution 51

cluster-level analysis

read results

reduce (sum, min, ...

Figure 6.2: The A-Brain application as a MapReduce process

6.2 Towards a MapReduce Architectural Solution

The workload estimation for A-Brain clearly shows that the application needs to be run
in parallel on a large set of resources in order to achieve reasonable execution timespans.
Cloud computing platforms, such as Microsoft Azure, have the potential to offer the under-
lying infrastructure on which such a scientific application can be executed at a large-scale.
Nevertheless, such computations can potentially be carried out also on other platforms such
as supercomputers, grids or in-house clusters. However, our goal is to understand to what
extent the cloud computing model can be used to drive scientific discovery. Being able to
use the cloud for science will reduce the overall costs by moving from own managed infras-
tructures to a flexible pay-as-you-go model for the compute resources which can be scaled
on-demand, while the administration overhead of owning the infrastructure is outsourced
to the provider, as detailed in Chapter@

The MapReduce programming model has arisen as a very effective approach to perform
high-performance data-intensive processing over very large distributed systems such as the
clouds. This scalability property of MapReduce makes this compute paradigm an interesting
choice for executing the A-Brain workload on the cloud. However, alongside with scaling
the computation, an efficient storage solution also needs to be set up in order to enable the
execution framework to harness the power of the cloud fully, easily and effectively. This is a
particular challenge on which we focused next in Chapter 7]

Our first step was to parallelize the A-Brain application using the MapReduce paradigm
as shown in Figure Each Mapper takes the same initial data set, i.e., the neuro-images
and the genes to compare against. It shuffles it to increase the statistical precision and per-
forms the regression to assert the magnitude of the correlation. In terms of computation, the
regression phase represents a series of matrix operations that generate a matrix of p-values.
These matrices represent the intermediate data of the MapReduce process. In the case of the
robust machine-learning analysis, the difference from the plain univariate method is that the

52 Chapter 6 —- MapReduce for Bio-Informatics: The A-Brain Case Study Application

Map phase yields the prediction score for an image phenotype and tests the permutation
under the null hypothesis to estimate the significance (i.e., p-value).

The Reduce phase collects the intermediate results, computes the statistic distribution
and corrects the p-values and filters them. In the later step of the computation, only the
correlations with a p-value higher than a specified threshold are considered relevant and
kept. The Reduce operation is commutative and associative. An important constraint of the
application is the requirement to reduce everything to a unique final result. This constitutes
an important challenge for the classical MapReduce model that outputs as many final results
as the number of reducers. We address these such challenges in Chapter

Our initial empirical evaluations showed that one core in Azure is able to perform
~ 1.47 x 10° associations per second (the small speed reduction is due to the virtualization
of the cloud nodes). Our goal is to use the maximal number of cores that can be allocated for
a deployment (~350), which would reduce the total computation time of A-Brain univari-
ate analysis from several years to a few days (i.e., ~ ——— al“;;fﬁf;;fgiu 7speeq) Regarding the
robust machine-learning analysis, the scale of the computation would entail an execution
timespan of months for a single run. This estimation shows that executing this statistical
robust A-Brain analysis at the scale of a single deployment will not be sufficient. Therefore,
we decided to extend the computation for this scenario across several deployments in order
to reach 1000 cores and reduce the time of the analysis down to about two weeks.

6.3 Discussion

The A-Brain analysis is representative of a large class of scientific applications that split
a large initial domain into subdomains, each managed by a dedicated process (e.g., bio-
informatics, image processing, weather simulations, etc.). The processes compute various
metrics for all the components of their subdomain. These intermediate values are then ex-
changed, partially or totally, among the processes to perform some associative reductions in
order to produce a single result (e.g., filtering, minimum/maximum, selection, etc.). There-
fore, the approaches that we device in the context of A-Brain, presented in Chapters[7]and |8}
have the potential to support other scientific applications migrated to the cloud. It also argu-
ments in favor of our choice of using this application for validating the proposed solutions.
Moreover, the A-Brain challenging demands for computation, data and scale, enable us to
thoroughly evaluate the cloud support for Big Data applications and to identify the primary
issues of executing scientific applications on clouds. Such an analysis, the bio-informatic
results of A-Brain and the lessons learned are presented in Chapter 0] which serves as a
requirements roadmap for the Part [[1I| of the thesis.

Chapter

TomusBlobs: Leveraging Locality for
MapReduce Applications on Azure

Cloud

Contents
[7.1 TomusBlobs: Federating Virtual Disks for a Communication Efficient |
| Storage| e e e 56
[7.2 Leveraging Virtual Disks for Efficient MapReduce Processing| 58
[7.3 Validation and Experimental Evaluation| 61
[7.4 Extending TomusBlobs for Efficient Workflow File Management|. 65
[7.5 Validation and Experimental Evaluation for Workflows| 71

54 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

This chapter develops the contributions published in the following papers:

o TomusBlobs: Towards Communication-Efficient Storage for MapReduce Ap-
plications in Azure. Radu Tudoran, Alexandru Costan, Gabriel Antoniu,
and Hakan Soncu. In Proceedings of the 2012 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID
2012), Ottawa, Canada, May 2012, pp. 427-434.

o Adaptive file management for scientific workflows on the Azure cloud. Radu
Tudoran, Alexandru Costan, Ramin Rezai Rad, Goetz Brasche, and
Gabriel Antoniu. In the proceeding of the IEEE 2013 BigData confer-
ence (BigData 2013), Santa Clara, US, October 2013, pp. 273-281.

e TomusBlobs: Scalable Data-intensive Processing on Azure Clouds Alexandru
Costan, Radu Tudoran, Gabriel Antoniu and Goetz Brasche. Journal of
Concurrency and Computation: Practice and Experience 2013.

One missing facility that limits a larger adoption of clouds for scientific computing is
data management, due to the lack of specific support for data-intensive scientific workflows.
Currently, workflow data handling in the clouds is achieved using either some application-
specific overlays that map the output of one task to the input of another in a pipeline fash-
ion, or, more recently, leveraging the MapReduce programming model (e.g., Amazon Elas-
tic MapReduce [8], Hadoop on Azure - HDInsight [86]). Such applications need a high-
performance storage system that enable VMs to access shared data concurrently. However,
today’s reference commercial clouds only provide object stores such as S3 or Azure Blobs
accessed through high-latency REST (HTTP) interfaces. Furthermore, situations may arise
where applications might need to change the way data is managed in order to adapt to the
actual access method (files vs. objects) [35].

The need for efficient storage for data-intensive workloads. A first approach for man-
aging data would consist in relying on such public cloud object stores in the way the ap-
plication would use a more traditional parallel file system. However, in today’s cloud ar-
chitectures, computational nodes are separate from the storage nodes and communication
between the two exhibits a high latency due to the aforementioned data access protocols.
Additionally, as these services primarily target storage, they only support data transfer as a
side-effect, which means that they do not enable transfers between arbitrary VMs without in-
termediary storing the data. Moreover, users need to pay for storing and moving data in/out
of these repositories in addition to the cost of leasing the VMs. Cloud providers recently in-
troduced the option of attaching the cloud storage as virtual volumes to the compute nodes:
Amazon EBS [7] or Azure Drives [17]. Besides being subject to the same high latencies as the
default storage access, this option also introduces scalability and sharing limitations as only
one VM can mount at a time such a volume.

An alternative to the cloud storage would be to deploy a parallel file system on the com-
pute nodes, in order to exploit data locality when storing and transferring workflow data.
Distributed storage solutions such as Gfarm [136] were deployed in a compute cloud —
Eucalyptus, but operate in the host OS of the physical node in order to store the data in
the local storage disks of the machine. This approach requires to specifically modify and

55

extend the cloud middleware which works in open-source laaS clouds running on private
infrastructures, but is not feasible in public commercial clouds. In fact, most file systems
need special configuration or handling to get them to work in a virtualized environment,
while others, as exemplified previously, cannot be executed at all, since they require kernel
modifications which are not allowed by most cloud providers [103,|104]. When working at
Platform-as-a-Service level (e.g., Microsoft Azure), users face additional challenges, making
it difficult to set up even existing general-purpose runtime within the VM instances: there is
no possibility to deploy a parallel filesystem like HDFS [85] or PVFES [81]].

Cloud processing options. Besides efficient storage, data-intensive applications also need
appropriate distributed computing frameworks, as presented in Chapter [5, to harness the
power of clouds easily and effectively. However, options are rather limited on today’s com-
mercial clouds. On Microsoft’s Azure cloud, there is little support for parallel program-
ming frameworks: no MPI nor Dryad [100]. Yet, a MapReduce runtime, called AzureMapRe-
duce [77], was proposed, built on top of the Azure BLOBs for data storage and on the Azure
roles model of the VM instances (Web Role/Worker Role) for computations. However, the
architecture of this system involves costly accesses from VMs to BLOB storage, whose effi-
ciency is not satisfactory, as previously explained. Hadoop was ported to Azure as a service,
called HDInsight [86], only recently and at a later time than our approach. Users are in
charge of handling the data and setting their task to be run, but have no control on tuning
or modifying the service (i.e., it is used as a black box). On the other hand, the major part
of scientific applications do not fit the MapReduce model and require a more general data
orchestration. In this direction, several workflow management systems were proposed for
applications running on clouds. e-Science Central [91] and the Generic Worker [153], both
built on top of the cloud storage, enable scientists to harness vast amounts of compute power
by running the applications in batches.Other systems like Pegasus [2]] rely on a peer-to-peer
file manager, when deployed on Amazon EC2, but use basic transfers between the VMs with
very low performance.

Our approach in a nutshell. To address these issues for managing data in the clouds, we
propose an architecture for concurrency-optimized, PaaS-level cloud storage leveraging virtual
disks, called TomusBlobs. For an application consisting of a large set of VMs, it federates
the local disks of those VMs into a globally-shared data store. Hence, applications directly
use the local disk of the VM instance to share input files and save the output files or in-
termediate data. As demonstrated by the results presented in this chapter, this approach
increases the throughput more than 2 times over remote cloud storage. Moreover, the ben-
efits of the TomusBlobs approach were validated in the context of MapReduce, by building
an Azure prototype which implements this computation paradigm and uses the proposed
storage approach as data management back-end. It reduces the timespan of executing a sci-
entific application by up to 50 %, as shown in Section Furthermore, we extend this data
management solution also for general workflow to leverage data locality for direct file trans-
fers between the compute nodes. We rely on the observation that workflows generate a set
of common data access patterns that our solution exploits to self-adapt and to select the most
adequate transfer protocol, which speeds up transfers with a factor up to 2 over current data
management options, as discussed in Section 7.5

56 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

7.1 TomusBlobs: Federating Virtual Disks for a Communication
Efficient Storage

This section introduces the TomusBlobs approach for federating the virtual disks of VMs.
The system addresses the main requirements of data intensive applications, detailed in Sec-
tion4.2| by providing low-latency data storage optimized for concurrency. We start from the
observation that the disks locally attached to the VMs, with storage capacities of hundreds
of GBs available at no extra cost, are not exploited to their full potential in many cloud de-
ployments. Therefore, we propose to aggregate parts of the storage space from the virtual
disks in a shared common pool that is managed in a distributed fashion. This pool is used to
store application-level data. In order to balance the load and thus to enable scalability, data
is stored in a striped fashion, i.e. split into small chunks that are evenly distributed among
the local disks of the storage. Each chunk is replicated on multiple local disks in order to
survive failures. With this approach, read and write access performance under concurrency
is greatly enhanced, as the global I/O workload is evenly distributed among the local disks.
Furthermore, this scheme reduces latencies by enabling data locality and has a potential for
high scalability, as a growing number of VMs automatically leads to a larger storage system.

TomusBlobs is designed accordingly to the following set of design principles. These
principles were selected such that they comply with the otherwise typically contradicting
constraints of cloud providers and scientific high-performance computing.

Data locality. Accessing data from remote locations increases the cost of processing data
(both financially and compute-time wise). Yet, in today’s cloud model, the compu-
tation regularly uses the cloud storage for I/O while the locally and freely available
virtual disks from each VM remain largely unused. This applies even for intermediate
results of large-scale scientific processing, like MapReduce or general workflows. This
reduces the overall execution performance. Thus, our goal is to leverage this free local
VM storage space by aggregating and managing it in a distributed fashion and making
it available to the applications. Additionally, the overall cost is reduce as we decrease
the usage of the otherwise payable cloud storage.

No modification of the cloud middleware. Our approach targets the commercial public
clouds. It is therefore mandatory that its building blocks do not require any special
or elevated privileges. As our data management approach is deployed inside the VMs,
the cloud middleware is not altered in anyway. This is a key difference from the pre-
vious attempts to harvest the storage physical disks of the compute nodes. These at-
tempts imposed modifications to the cloud infrastructure, so that they only worked
with open source cloud kits. Thus, our solution is suitable for both public and private
clouds. It addresses standard cloud users such as scientists which do not possess the
skills or permission to configure and manage the cloud middleware toolkit.

Loose coupling between storage and applications. The TomusBlobs cloud data manage-
ment is mainly targeted at (but not limited to) large-scale scientific applications exe-
cuted like the MapReduce computations. Therefore, we propose a modular, stub-based
architecture, which can easily be adapted to other processing paradigms, particularly
data-intensive workflows as illustrated in Section[7.4]

7.1 - TomusBlobs: Federating Virtual Disks for a Communication Efficient Storage 57

Computation nodes

D App. { b App. !

TB API TB API

: Customizable E
Ve ¥
Appplication Local Storage
Agent

-
TomusBlobs | — -~

_______ >\ Disk 8

Figure 7.1: The architecture of TomusBlobs (TB).

App.4 LApp.4 |

TB API TB API I

b

TomusBlobs
Client API

T T TN

No centralized control. When scaling computation or storage to a large number of re-
sources, a centralized control of the data flow rapidly becomes a bottleneck. This is
a key aspect for cloud infrastructures which lease commodity hardware which is sub-
ject to failures and where the high-bandwidth is not typically the norm. Therefore, we
choose to address the coordination between the components in a distributed fashion,
without any centralized supervision.

Building on these design principles that exploit data locality, we designed TomusBlobs,
a system for concurrency-optimized PaaS-level cloud storage.The system relies on the local
disk of the VM instance directly in order to share input files and save the output files or
intermediate data. This approach requires no changes to the application nor to the cloud
middleware. Furthermore, it does not use any additional resources from the cloud, as the
virtual disks are implicitly available to the user for storage, without any additional costs.
We implemented this approach in the Microsoft Azure cloud platform. The architecture of
TomusBlobs consists of three loosely-coupled components presented in Figure

The Initiator component is specific for each cloud platform. It has the role to deploy, setup
and launch in a transparent way the data management system. Moreover, it takes the
role of customizing the scientific environment that is usually required by the applica-
tions. It exposes a generic stub that can be easily implemented and customized for any
cloud APL It does so, as most storage solutions require some prior knowledge about
the underlying infrastructure when they are started, e.g., IPs of the VMs. By interacting
with the cloud middleware, it acquires all the necessary information enabling the sys-
tem to be self-configurable. The Initiator running within each cloud node is in charge
of assigning roles, differentiating between instances by hashing an ID from a set of
parameters (name, IP, etc.). Additionally, it is used to setup the system on the deploy-
ment, based on user policies, e.g., the number and storage entities to run on separate
nodes. Finally, the Initiator supports the system’s elasticity, being able to scale up and
down the computing platform at runtime by integrating the newly active nodes in the
system or by seamlessly discarding the deactivated ones.

The Local Storage Agent has the role of aggregating the virtual disks into a uniform shared
storage, which is exposed to applications. It is generic as it does not depend on any
specific storage solution. Any distributed file system capable to be deployed and exe-
cuted in a cloud environment (and not changing the cloud middleware) can be used as

58 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

a storage backend. This implies contextualizing the Storage Agents with respect to the
architecture of the adopted solution to manage its “storage services”, i.e., the compos-
ing entities of the solution (disk and metadata managers, transfer modules etc.). For
the proof of concept we opted for two distinct approaches:

e Integrating an existing solution called BlobSeer [132], described in Chapter
We use this for low level object-based storage, for computation scenarios such
as MapReduce.

e A new file management system that we designed for workflows, further de-
scribed in Section Building a new solution was motivated by the fact that
there are no data management tools specialized for workflows on clouds.

The Client API represent the layer through which the storage is uniformly viewed and ac-
cessed by the applications. Data manipulation is supported transparently through a set
of primitives, allowing applications to access the BLOBs with full concurrency, even if
all access the same BLOB. The interface is similar to the ones of commercial public
clouds (Azure BLOBs, Amazon S3): one can get data from the system (READ), update
it by writing a specific range within the BLOB (WRITE) or add new data to existing
BLOBs (APPEND). The Client API is implemented such that it hides all calls and inter-
actions between the storage entities when performing the exposed operations.

The local storage of VMs on which we rely consists of virtual block-based storage devices
that provide access to the physical storage of the compute nodes, unlike the attached stor-
age volumes (e.g., Amazon EBS or Azure drives) which link the VM with the remote cloud
storage.The virtual disks appear as devices to the virtual machine and can be formatted and
accessed as if they were physical devices. However, they can hold data only for the lifetime
of the VM, and in this sense they are an ephemeral storage option. After the VM is termi-
nated, they are cleared. Hence, it is not possible to use them for long-term storage since this
would mean leasing the computation nodes for long periods. Instead, we have designed a
simple checkpoint mechanism that can backup data from the TomusBlobs to the persistent
Azure BLOBs as a background job, privileging the periods with little / no network trans-
fers and remaining non-intrusive (it adds a 4 % computational overhead when a transfer is
performed). The backups follow simple policies to maintain consistency by either making
independent snapshots of the system each time or by maintaining only one version.

7.2 TomusBlobs-MapReduce: Leveraging Virtual Disks for Effi-
cient MapReduce Processing

In order to demonstrate and validate the efficiency of the TomusBlobs storage solution in
the context of cloud data processing, we built a prototype MapReduce framework for the
Azure cloud, called TomusBlobs-MapReduce. The proposed framework relies on Tomus-
Blobs to store input, intermediate and final results, allying data locality with the elastic com-
putational power of the cloud. With the storage and computation in the same virtualized
space, data transfer, protection, confidentiality and security are enhanced, benefiting from
the usage of the local storage instead of the remote Azure Storage. From the job scheduling
perspective and for the coordination between the system entities, we opted for a light and
non-intrusive mechanism built on top of the cloud queues (i.e., Azure Queues).

7.2 - Leveraging Virtual Disks for Efficient MapReduce Processing 59

TomusBlobs

Map Scheduling Queue

090 - o0 ----

. Syncromzatlon
' Client | ieic " NN TomusBlobs

Reduce Scheduling Queue i

0 - O I @ @

! !
L 1
M

— Enqueue message
— — —> Dequeue message A 4

_____ = Upload data TomusBlobs

..... > Download data

Figure 7.2: The TomusBlobs-MapReduce architecture.

Why a new MapReduce framework? The motivation for creating such an engine is two-
folded. On the one hand there is no MapReduce framework that enables to properly ex-
ploit data locality in the context of PaaS clouds: AzureMapReduce uses the remote azure
Blobs, while Hadoop on Azure was introduced at a later time as a black-box service. On the
other hand, unlike the MapReduce cloud-provided services such as HDInsight and Ama-
zon MapReduce, which require to outsource the computation and data to these services, our
framework can be deployed on users compute nodes, together with the corresponding data
and potentially other compute services. Moreover, by creating a user-customizable frame-
work, the MapReduce processing pipeline can be extended and tune for computation flows
beyond the default model. Obtaining this property for the system, which allowed us to ex-
periment with different declinations of the MapReduce paradigm, was another argument in
favor of building our own framework.

The architecture of the TomusBlobs—MapReduce solution that we proposed is depicted
on Figure User clients are provided with a web or console-based front-end through
which their jobs are submitted. The scheduling of the MapReduce jobs on the compute
nodes is performed through small messages, which encode the actual task description and
the related metadata (e.g., input/output location, naming scheme, etc.). These messages
are disseminated towards the compute entities using 3 queues: the Map Scheduling Queue
is used to submit jobs towards Mappers, the Reduce Scheduling Queue is used to submit jobs
towards Reducers and the Synchronization Queue is used by the Mappers to notify the Reduc-
ers about map job completion. The advantage of this scheduling mechanism is that it has a
light footprint on the actual compute resources, making it non-intrusive and isolated from
potential failures that might appear in the compute process. The Mappers and the Reducers
are implemented as Azure Worker Roles that execute the user-provided functions.

The Client is a web-service front-end deployed on a the Azure Web Role, i.e., the PaaS
Azure compute option specialized for hosting web services. It offers users the tools to specify
and configure the MapReduce workflow and to submit it for execution. Based on these spec-

60 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

ifications, the client component creates the appropriate message description for the Mappers
and Reducers. These are then scheduled and submitted via the corresponding queue. The
messages are small in size (in the order of several KBs). They contain the scheduling identi-
fier of the destination Mapper or Reducer, used to map the tasks to the resources and meta-
data information about the task itself, e.g., data location in the storage, naming scheme, job
and data ownership.

The Mappers, marked with “M” in Figure are deployed in Azure Worker Roles, i.e.,
the default compute PaaS Azure option. Based on the specified policies which are managed
by the Initiator component of TomusBlobs, a pool of Mappers is created. They are regu-
larly polling the Map Scheduling Queue in order to retrieve messages with job description
submitted by the user through the client front-end. Similarly, the Reducers, denoted “R”
on Figure are run on Azure Worker Roles, with a pool of such entities created at start
time. The reducers first poll the queue through which the client front-end submits the job
description. After a task is being assigned to them, the reducers start listening to the syn-
chronization queue. They wait for messages sent from the Mappers, notifying the end of a
map computation and the availability of intermediate data. When such notifications appear
the reducers dequeue the message and fetch the corresponding intermediate data from the
TomusBlobs storage.

The Azure Queues, described in Chapter (3, are used as a scheduling mechanism by
TomusBlobs-MapReduce. We rely on the visibility timeout of the queues to guarantee that
a submitted message will not be lost and will be eventually executed by a Mapper or a Re-
ducer. A message which is read from the queue is not deleted, but instead hidden until
an explicit delete is received. Our framework uses this mechanism to explicitly delete the
jobs marked as hidden only after a successful processing. If no such confirmation arrives,
the message will become visible again in the queue, after the visibility timeout. Duplica-
tion of job execution is possible. Nevertheless, by using a uniform naming schema for the
job outputs, only one instance of the result will be stored and considered further on in the
computation, preventing in this way inconsistent states of the output result. Therefore, the
scheduling process of our system is protected from unexpected node crashes as well as slow
nodes. Hence, the fault tolerance is addressed both at data level, using the replication sup-
port of TomusBlobs, and at processing level, by using the properties of Azure Queues.

By building on the TomusBlobs approach, we were able to provide several functionali-
ties needed by scientific applications which are now available using the MapReduce model.
While Hadoop does not support runtime elasticity (working with a fixed number of map-
pers and reducers), our solution seamlessly supports scaling up and down the number of the
processing entities, as follows. The MapReduce engine is deployed and configured using the
mechanism provided by TomusBlobs (i.e., the Initiator). Thus, when scaling the deployment,
the Initiator is also able to update the parameters of the MapReduce framework. The param-
eter value holding the number of reducers, used for hashing the map results, is dynamically
updated which enables elastic scaling. Moreover, the simple scheduling schema combined
with the flexibility of the system enables users to easily extend and tune the MapReduce pro-
cessing pipeline. One can easily add modules and alter the processing paradigm with new
processing stages and computation flows beyond the default model. Such an extension,
which addresses the specific constraint of bio-informatics applications for a unique result is
Map-IterativeReduce, detailed in Section [8.1}

7.3 — Validation and Experimental Evaluation 61

Write Throughput per Client Read Throughput per Client

—@— TomusBlobs —Jl— AzureBlobs —A— AzureBlobs affinity | ‘ —@— TomusBlobs —ll— AzureBlobs —— AzureBlobs affinity ‘
30 70 4

=7 7 M
50 o

20
40

304 _— A777777 —
> a1 5 = N

0 T T T T T 1 0 T T T T
64 128 256 400 512 64 128 256 400 512

Data Size (MB) Data Size (MB)

Throughput (MB/s)
G
!
Throughput (MB/s)

Figure 7.3: Storage write and read throughput with respect to data size for a client

7.3 Validation and Experimental Evaluation

Next, we evaluate the benefits of the TomusBlobs approach in synthetic settings and using
A-Brain application. The experiments were performed on the Azure cloud using 100 Small
(1 CPU cores, 1.75 GB memory, 225 GB local disk) Azure VM Worker Roles. For a better
accuracy, we repeated the measurements hundreds of times at various moments of the day
(morning, afternoon, night) and in two geographically distributed sites: North Europe and
North-Central US data centers. The evaluation focuses on comparing the throughput of
TomusBlobs against the default Azure BLOB storage and on the related costs. The BlobSeer
system was configured to use 2 nodes for the Version and Provider managers, 20 nodes for
the Metadata Providers and 78 nodes for the Data Providers.

7.3.1 Cloud Storage Evaluation: TomusBlobs vs. Cloud-Provided Storage Ser-
vice in Synthetic Settings

The first series of experiments evaluate the throughput performance of our proposal in con-
trolled synthetic settings. The goal of these experiments is to assess the benefits that can
be expected when using a low-latency cloud storage service such as TomusBlobs for data
intensive applications. For this, we have implemented a set of micro-benchmarks that write
and read data in Azure and measured the achieved throughput as more and more concur-
rent clients access the storage system. Writes and reads are done through the Client API
for TomusBlobs and through the RESTful HTTP-based interface for Azure BLOBs. We have
focused on the following access patterns exhibited by highly-parallel applications.

Scenario 1: single reader/writer, single data. We first measured the throughput achieved
when a single client performs a set of operations on a data set whose size is gradually in-
creased. This scenario is relevant for the applications where most of the time each process
manipulates its own data set independently of other processes (e.g., simulations, where the
domain is typically distributed among processes that analyze it and save from time to time
the local results). The throughput for read and write operations for TomusBlobs and Azure
BLOBs are shown in Figure We report the average of the measurements of the two for
which we observed a standard deviation of ~12 for reads and ~2 for writes. The Azure

62 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

Cumulative Write Throughput Cumulative Read Throughput

—@— TomusBlobs —Jll— AzureBlobs —@— TomusBlobs —Jll— AzureBlobs
2500 4

500
400 2000 -

300 1500

MB/sec
MB/sec

200 1000

100 —a 500

T T T T T T T T
1 2 4 8 16 24 32 48 64 1 2 4 8 16 24 32 48 64

Number of concurrent clients accessing the storage Number of concurrent clients accessing the storage

Figure 7.4: Write/Read throughput per client under concurrent access

BLOB measurements are consistent with the ones reported by Hill et al. [93] and [30]. The
evaluation is done by transferring with a single operation the data from the application
memory to storage. Therefore, the size of the manipulated data is increased up to the limit
of the application memory available in a Small VM. TomusBlobs achieves a significantly
higher throughput than Azure BLOBs (approximately 2 times higher), as a result of using
the low-latency local disks. Also, the fact that they combine the workloads of many different
users together to reduce storage usage [35] (which is not the case of TomusBlobs) penalize
the performance of Azure BLOBs. Finally, another important factor that influences the ob-
served I/0O throughput in Azure is the concept of "affinity groups". It allows an increased
proximity for the co-location of storage and hosted services within the same datacenter. De-
spite that this option can reduce latencies for the Azure storage, is can be observed that is
significant less efficient than TomusBlobs, by more than 2 times, validating our proposal of
collocating data in compute nodes.

Scenario 2: multiple readers/writers, single data. In the second series of experiments we
have gradually increased the number of clients that perform the same operation concurrently
and measure the aggregated throughput. For each given number of clients, varying from 1
to 65, we executed the experiment in two steps. First, all clients write concurrently 128 MB of
random data from memory to the storage and in a second step they read it back.This scenario
is relevant for applications where multiple clients concurrently read the input data or write
the temporary or final results or process data in multiple phases (e.g., MP], iterative compu-
tation). Another example for this pattern is the “map” phase of a MapReduce application,
in which mappers read the input in order to parse the (key, value) pairs. The evaluation
of the aggregated throughput for concurrent read and write operations is presented in Fig-
ure The results are average values with a standard deviation of ~15 MB/s for the reads
and ~ 5 MB/s for the writes. An upper limit for the performance can be observed for the
cumulative throughput for an increase number of clients, especially for the writes. For To-
musBlobs this is explained by the network saturation due to the total amount of data that is
sent at a time. For Azure BLOBs the limitations are: the latency between the computation
and storage nodes, the available bandwidth between them and the way the storage system
handles multiple requests in parallel. TomusBlobs outperforms the Azure Storage, having a
cumulative write throughput 4 times higher and a read throughput 3 times higher for more
than 30 concurrent clients, leveraging both the parallel data access scheme of the underlying

7.3 — Validation and Experimental Evaluation 63

Varying the mappers & input set size
rying i P Varying the input data set size

—&@— AzureMapReduce TimeSpan —ll— AzureMapReduce Map Time

—&— TomusBlobs-MR TimeSpan TomusBlobs-MR Map Time —4@— AzureMapReduce TimeSpan —ll-— AzureMapReduce Map Time
—— TomusBlobs-MR TimeSpan TomusBlobs-MR Map Time
2000 4
400
1500
— 300
b} o
2 3
o 1000 ~ 200
£]
E £
[=
500 100
0 T T 1 0 - - T T T T
5 10 15 20 25 30 35 40 500 1000 1500 2000 2500 3000
Number of Mappers The amount of SNPs and voxels considered in the input set

Figure 7.5: a) Left: Application execution time and transfer time for intermediate data when
the size of data genetic and neuro-imaging data is varied and the number of Mappers is kept
constant. b) Right: Application execution time and transfer time for intermediate data with
AzureMapReduce and TomusBlobs-MapReduce when the number of map jobs and the size
of the data is increased

storage backend and the data locality.

7.3.2 Initial Experimentation with the A-Brain Application

In a second phase, our goal was to assess the impact of TomusBlobs in the context of MapRe-
duce using the A-Brain scientific application, discussed in Section [} The comparison is
done between the TomusBlobs-MapReduce engine we have build and the AzureMapReduce
framework, which relies on Azure BLOBs for storage. A first series of experiments focuses
on the total execution time when the data size and the number of Mappers are progressively
increased, while in a second phase we measured the aggregated throughput under high
concurrency.

Completion time: increasing the data size. Figure[/.5|a) presents the completion time of
the MapReduce computation for the two frameworks.The number of Mappers (5) and Re-
ducers (1) was fixed while the size of the input set was increased from 30 MB up to 2 GB;
conceptually this means that more brain regions (voxels) and genes are analyzed.When us-
ing TomusBlobs-MapReduce, the workload is processed up to 40 % faster than when using
AzureMapReduce, which in turn is shown to have similar performances with Hadoop or
Amazon MapReduce [77]]. To better evaluate the impact of the the increased throughput
brought by TomusBlobs, we measured and report in the same figure, also the time for trans-
ferring data between mappers and reducer (through the storage system). These results show
that write-intensive maps and read-intensive reducers can gained from a better support for
data management reducing the overall execution time.

Scalability: increasing the number of Mappers. Figure[7.5b) presents the execution times-
pan of A-Brain when keeping the size of the input data constant - 1 GB (the overall amount
of data is approximately 40 GB) and increasing the number of Mappers. In practice, this

64 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

Write Throughput
Read Throughput
—@— TomusBlobs —ll— AzureBlobs regular

——— AzureBlobs tuned —«@— TomusBlobs —l— AzureBlobs regular
—— AzureBlobs tuned

. m

15 B - i"”/‘?’:“’ - ,

Throughput (MB/s)
Throughput (MB/s)

2 R a ® m g

0 T T T T T T T 1 T T T T T T T T
5 10 15 25 35 40 50 5 10 15 25 35 40 50

Number of concurrent writers Number of concurrent readers

Figure 7.6: Storage read/write throughput in the context of MapReduce application

means that more shuffles are performed (each Mapper performs a shuffle as detailed in Sec-
tion[6) in parallel, thus increasing the precision of the univariate analysis at the cost of extra
computation. Thus, unlike a typical MapReduce, by increasing the number of map jobs, we
do not just increase the degree of parallelism for analyzing a fix data set, but rather the work-
load increases proportionally.Each Mapper generates its own intermediate results, having a
constant size given the initial data. Increasing the number of Mappers is equivalent to gen-
erating more intermediate results that must be processed in the Reduce phase. Data proxim-
ity significantly reduces the completion time with TomusBlobs-MapReduce, especially for a
larger number of Mappers which can read and write in parallel from the virtual disks. It is
not the case for AzureMapReduce for which the latencies induced by the remote storage in-
crease completion time with up to 55 %. As before, by isolating the processing times for the
intermediate data (i.e., Map time in Figure[7.5), we notice TomusBlobs supports efficient data
handling under heavy concurrency and demonstrating it successfully brings data locality in
the context MapReduce on PaaS clouds.

Throughput: evaluating the I/O pressure. The previous experiments shown that the way
in which the intermediate data is handled is critical for the execution time of the A-Brain uni-
variate analysis. Therefore, we proceeded to a more in-depth analysis of this stage by testing
the read and write patterns of reducers and mappers (each of them processing 128 MB of
data) against different storage solutions: TomusBlobs, AzureBlobs and AzureBlobs with a
configuration for multi-threading handling of reads/writes, with the number of threads set
to 8 (the maximum value allowed by Azure). The results are presented in Figure|7.6/through
average values with a standard deviation for the reads of 4.53 for TomusBlobs and 1.39 for
both Azure BLOBs options, while writes had 4.4 for TomusBlobs, 2.34 and 0.48 for the two
write types to Azure BLOBs. The decreasing tendency of the throughput in all cases is ex-
plained by the network saturation. The evaluation shows that even when we use CPU cycles
for faster data transfers, the cost of accessing a remote public storage is higher than with our
approach.

7.3.3 A Cost Analysis for Executing Scientific Applications on the Cloud

We are interested to assess the cost of running scientific applications, such as A-Brain, in a
public cloud. To break down the cost, we start by dividing the overall workload into 2 parts:

7.4 — Extending TomusBlobs for Efficient Workflow File Management 65

computation and transferring data. For expressing the corresponding costs analytically, we
assume that A is the overall computation workload to be done, f, is the fraction of the
data analyzed per second if we use N computing nodes and D is the total amount of data
manipulated. For the particular case of the univariate analysis of the neuro-imaging data,
A represents the number of associations (significant links) to be tested between genes and
brain locations, while f,, represents the number of associations per second performed by the
N machines. Hence the two components of the cost are:

oSt computation = f— X N x cyp, where cyy - cost of a machine compute hour
n

costgara = D X (cs + ¢¢), with ¢, - cost for storing and c; - cost for transfer

Computing the cost for storing the data is not straightforward since it is based on monthly
rate fees, but it is computed based on hourly averages of the amount of data stored in a day.
For applications where most of the data are transient (as for A-Brain), the data will be stored
only until it is processed and discarded afterwards. Therefore, we will compute the data cost
as the overall amount of data multiplied by the cost to store data per month normalized by
the workflow timespan:

Nr_of hours

coSt gt = D X coStyoyr 31 % 04

Based on these formulas we computed the storage cost of running A-Brain on 200 cores de-
ployment.This amount of cores were required to execute the univariate analysis of A-Brain
in order to show the sensitivity of the technique to the data outliers [45]. The average com-
putation speed of the algorithm at this scale is 2.94 x 10% associations per second while the
data space reaches ~10 TB. We consider the price of one hour of computation of 0.08 euros
and a cost for storing 1 GB for 1 month of 0.11 euros [19]. We obtain:

2.5 x 101 250
COSttOtal = m x 200 x 0.08 + 10 x 1024 x 0.11 x m = 4133 euros

This provides an estimate of the cost to process scientific data in commercial clouds using
the cloud compute and storage options. However, using the storage and data processing
platforms that we proposed, this cost can be significantly reduced. Considering the average
speedup of 25 % brought by TomusBlobs-MapReduce and storing data locally with Tomus-
Blobs instead of Azure BLOBs, the cost is decreased with more than 30 %, down to 2832
euros. These results show that the benefits of TomusBlobs are not limited just to accelerate
the process of scientific discovery but also to reduce the cost of it.

7.4 Extending TomusBlobs for Efficient Workflow File Manage-
ment

Many scientific computations cannot be reduced to the MapReduce paradigm. Therefore,
several workflow frameworks have been ported to the clouds to enable more general pro-
cessing. Unfortunately, they were not designed to leverage the cloud infrastructures for

66 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

handling large data volumes. The major bottleneck, just like like for MapReduce process-
ing, is the lack of support for efficiently handling and transferring data between jobs. Thus,
supporting data-intensive workflows on clouds requires to adapt the workflows engines to
the virtualized cloud environment of commodity compute nodes and to optimize data trans-
fers and placement to provide a reasonable time to solution. Our approach is to apply the
principles of TomusBlobs in the context of cloud workflow processing: data locality, feder-
ating virtual disks, no modifications to the cloud middleware. For understanding which are
the best options for this, we refer to a study on 27 real-life workflow applications [66] from
several domains: bio-informatics, business logic, simulations, etc. This survey reveals that
workflows: 1) have common data patterns as shown also in [167]: broadcast, pipeline, gather,
reduce, scatter; 2) are composed of batch jobs, i.e., stand-alone executable algorithms, which
can be run with well-defined data passing schema; 3) use uniquely identifiable files as inputs
and outputs of the batch jobs; and 4) write usually only once the input and output files.

We argue that keeping the data produced by the batch jobs in the local disks of the VMs
is a good option considering that these files are usually temporary — they must exist only
to be passed from the job that produced them to the one it will further process them. Tak-
ing into account that the files are written once, using as the storage entity of TomusBlobs
a concurrency-write optimized backend such as Blobseer, which splits files and distributes
them across nodes, is not the best choice for this scenario. Ergo, building on the observations
of the aforementioned study, we designed a new approach for managing workflow data by
making the files from the virtual disk of each compute node available directly to all nodes
within the deployment. Caching the data where it is produced and transferring it directly
to where it is needed reduces the time for data manipulation and minimizes the workflow
makespan. This approach extends the initial set of design principles of TomusBlobs (Sec-
tion [7.I) with two new ones.

Storage hierarchy. A hierarchy for data handling should be constructed, comprising: in-
memory storage at the top, local disks, shared VM-based storage and finally the remote
cloud storage at the bottom. A decreasing level in the hierarchy reduces the perfor-
mance but tends to raise the capacity and costs. Indeed, as opposed to a classical com-
puter architecture, the costs tend to increase towards the base of the hierarchy as the
remote storage comes at an extra-cost while the local resources are available for free,
becoming available when one rents compute cycles. Files are moved up and down the
storage hierarchy via stage-in/out and migrate operations, respectively, based upon
data access patterns, resource availability and user requests.

Integrate multiple transfer methodologies. Adopting several ways to perform file trans-
fers such as peer-to-peer based, direct or parallel transfers between compute nodes,
and dynamically selecting between them at runtime should be available, in order to
increase the performance of handling data. More, the decision process of switching be-
tween the transfer options can be mapped to the workflow specific data access patterns
and context information. This opens the avenue for customization, with users being
able to easily add their own transfer modules, which can leverages the application
semantics.

The architecture which extends the Local Storage Agent of TomusBlobs for workflow file
management is depicted on Figure The input and output files of the workflow batch

7.4 — Extending TomusBlobs for Efficient Workflow File Management 67

"Ry Metadata Registry oo sgig g oee ey Local Storage Agent

s Fer i\ | File ID | Location 1 Reol : [

+ [Replication 1 ' eplication| | !

i | Agent O T G b 9, Agent || H Metadata

! 4 F2 |VMI,VM2 | Qe : : Memory Data Storage Registry

: | F3 VM2] H i i ¥

: 4 : ¢ (Replication L '

[Transfer | Transfer |: | N - AT Y T)]

! ' (3) requestFile(F1) '] B efault : v User 04

: Manager | : Manager | : ; ! Adaptive : iDefined: !

; : E : 5 i Module Module ;

file transfer] [= raramerers | 5|5 Context |

e ez on)y
a) b)

Figure 7.7: The architecture of the TomusBlobs File Management System and the optional
replication module. Subfigure a) presents the operations for transferring files between VMs:
upload (1), download (2, 3, 4) and b) shows the system components within a virtual machine.

jobs are stored on the local disks of the VMs. File sharing between tasks is achieved by
advertising file locations and transferring the file directly towards the destination, while
dynamically switching between the transfer modules (Figure[7.7p). The data management
has three components, which are instantiated on each compute node (Figure[7.7]b).

The Metadata Registry holds the file locations, i.e., maps files to VMs. The metadata
is organized as an all-in-memory distributed hash-table that holds key-value pairs: file ids
(e.g., name, user, sharing group, etc.) and locations (the information required by the trans-
fer module to retrieve the file). In a general scenario, a concurrency handling mechanism
for writes/updates would be needed for the Metadata Registry, usually provided at the ex-
pense of performance. However, as previously stated, in the context of file management for
workflow execution, the files are produced and written by a single task and uniquely identi-
fied: there are no situations in which two tasks request the Metadata Registry to publish the
same new file. Therefore, there is no need for strong verification mechanisms to detect and
solve eventual duplication conflicts. Several implementation alternatives are available: in-
memory databases, Azure Tables, Azure Caching [15]. For our implementation, we chose
the latter as it easily allows to dedicate for caching a percentage of each VM’s memory.
Furthermore, our preliminary evaluations showed that the Azure Caching delivers better
performances than the Azure Tables (10 times faster for small items) and has a low CPU
consumption footprint (unlike a database).

The Transfer Manager component enables applications or workflow engines to share the
files via a simple API (e.g., uploads and downloads). The upload operation is equivalent to ad-
vertising a file which is done by creating a record in the Metadata Registry. Hence, the cost
of uploading is O(1), independent of the data size, consisting only of the time to write the
metadata. The download operation is done in two phases: the file information is retrieved
from the Metadata Registry and then data is fetched from the VM which holds it, reducing
the number of read and writes operations to one, as shown in Figure[7.7} Multiple options are
available for performing a transfer and, as stated in the design principles, our proposal is to

68 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

integrate several of them. Thus, this component is designed in a modular fashion that makes
it easy to plug-in different transfer back-ends, i.e., libraries corresponding to a data transfer
technology. The solution most appropriate for a particular context is selected. This was im-
plemented using the Management Extensibility Framework [124], a utility which allows the
creation of lightweight extensible applications without prior configurations. Figure [7.7|b)
shows a snapshot of the transfer modules deployed in a VM. Essentially, the system is com-
posed of user-deployed and default-provided transfer modules and their service counter
parts, available on each compute instance. The client applications or workflow engines will
interact with the local Transfer Manager component to download and upload files.

The Replication Agent is an optional component designed to ensure fault tolerance and to
balance the transfer load of multiple accesses to a file through replication. As such, it man-
ages several replication strategies and policies within the file management system. A sec-
ondary role to the replication is to evaluate the potential transfer time reductions, brought
by increasing the number of replicas. These gains in time are correlated with a storage cost
schema that we propose. This method, described bellow, enables the system to determine
dynamically the appropriate number of replicas for each transfer context based on user poli-
cies. The replication strategies can be further extended with other strategies (e.g., [36, 164]),
in order to schedule the replica placement in agreement with the workflow engine. The
Replication Agent is implemented as a service that runs as a background process on each
compute VM. In order to decrease its intrusiveness, the data transfers are performed only
when the network bandwidth of the corresponding VM is not saturated by the Transfer
Manager. For the communication and coordination between agents, a message-passing pro-
tocol over the Azure Queue was built.

Selecting the transfer method. Users can deploy their own transfer modules by means
of a straightforward API, that only requires to add an evaluation function for scoring the
context. The score is computed by aggregating a set of weighted context parameters, e.g.,
number or size of files, replica count, resource load, data format, etc. The weights reflect
the relevance of the current transfer module for each specific parameter. For instance a fast
memory-to-memory data transfer protocol will favor transfers of many small files through
higher weights for these parameters. The module with the best score is selected for each
transfer, as shown in Algorithm (1} Lines 3-10. If no user modules are deployed or none fits
the context, a default module is chosen adaptively, Algorithm [1} Lines 12-28. The default
module selection strategy uses a set of parameters defined by users in an XML file such as
size limits of files to be fitted in memory, replicas count, etc. The weighting of each parameter
is rated by both clients, that is workflow engines, and the Replication Agent. The latter can in
fact modify the transfer context by increasing the number of replicas if the transfer speedup
obtained comes at a cost that fits the budget constraints. Currently, the selection is done
between three transfer protocols that we provide within our framework.

In-Memory. For small files or for situations in which the leased infrastructure has enough
memory capacity, keeping data in the memory across VMs becomes interesting. This
option provides one of the fastest methods to handle data, boosting the performance
especially for scatter and gather/reduce access patterns. The module is implemented

7.4 — Extending TomusBlobs for Efficient Workflow File Management 69

Algorithm 1 Context-based transfer module selection

1:
2
3
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

procedure ADAPTIVETRANSFERMODULESELECTION

TransferInfo = ClientAPI getTransferDescription()
for all module in UserDeployedModules do

score = module.ContextEvaluation(TransferInfo)

best_score = max(best_score, score)
end for

> Assert if client-provided modules can be use for transfer otherwise use a default one

if best_score > user_defined_threshold then

TransferModule = BestModule;
end if

> Weight active (Client) and passive (Replicator) transfer parameters based on budget
ReadAdaptiveParameters(UserDefined Params_XML)
(SizeWiient, ReplicaW ;,,;) = ClientAPI.getRecomandedScore()
(SizeWRephcator, ReplicaWRephcator) = Replicator.getRecomandedScore(CostRatioyser)
> Try to speedup future file transfers through replication within the budget constraints
Replicator.updateContextForSpeedup(TransferInfo, CostRatioysger)

> Select the default transfer module that best fits the context and the client constraints
if Sizegjle X (SizeWclient + SizeWReplicator) < MemoryThresholdy,,, then
TransferModule = InMemoryModule
else
if Replicasp, x (ReplicaW,,., + ReplicaW
TransferModule = TorrentModule
else
TransferModule = DirectLinkModule
end if
end if
Client.notify(TransferModule, TransferInfo)
return TransferModule

User

< ReplicaThresholdy;,, then

Replicator

31: end procedure

using Azure Caching by aggregating a percentage of VMs memory into a shared sys-
tem, independent from Metadata Registry.

FTP. For large files, that need to be transferred from one machine to another, direct TCP-

transfers are privileged. FTP seems a natural choice for interoperability reasons. The
data access patterns that benefit most from this approach are pipeline and gather/re-
duce. The module is built using the open-source library [61], which we tuned to har-
ness the cloud specificities. As a deployment is virtually isolated, authentication be-
tween the nodes is redundant, so it was removed. Also, the chunk size of data read/
written was increased to 1 MB for a higher throughput.

BitTorrent. For data patterns like broadcast or multicast, having additional replicas enables

to increase throughput and to balance the load while clients collaborate to retrieve the

70 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

data. Thus, for scenarios involving replication (above a user-defined threshold) of large
datasets, we rely on BitTorrent. We use the MonoTorrent [28] library implementation
of the protocol. We further built on this approach to gain performance for time critical
transfers or highly accessed files by increasing the number of replicas at the expense
of occupying extra storage space. Implementation-wise, the default protocol packet
size of 16 KB was changed to 1 MB, which our experiments showed to increase the
throughput by 5 times. Trackers are deployed in each VM, at which the peers (i.e., the
Transfer Managers using the torrent module) register or query for seeder discovery.

The cost of data dissemination. As replication has a direct impact on the transfer perfor-
mance, we propose a cost model that gives hints on how to adapt the replicas count with
respect to transfer speedup. We start by associating a cost for storing data on a VM disk.
Although there is no additional cost for the local virtual disks, the storage capacity is fixed

with respect to the VM type. Thus, the cost can be define as the capacity of the VM disk over
Local_Disk_Capacity
VM_Pricing
ing Size MB, is costrepiicas = Nr X Size X costpp. Next, we examine the time gain obtained
from each replica. Based on empirical observations, we assume a linear dependence for the
transfer time when the number of replicas varies between 1 and the number of nodes. On

the one hand the time to transfer the file to the VM is timesnsfer = %@%Put for one replica.

On the other hand, when there is a replica on all nodes (Ng = Npypges), than the transfer time
is 0, . This leads to the next function defining the gained time:

the renting cost: costyp = . Then, the cost of having N replicas, each hav-

. Size N —N

timegin = —————— * (1 — —Nodes = Ry
Throughput Nnjodes — 1

varying from 0 for one replica up to timeyansfer, when data is already present and no

transfer is needed. Thus, we are able to associate a cost for speeding-up the data dissem-
timegain

ination by considering the ratio Users can define a certain threshold cost, i.e.,

COStReplicas *

user_def_cost_ratio_threshold, that they are willing to pay for speeding the transfer. This
cost constraint will be used by the Replication Agent to scale the replicas in the system and
choose one transfer module over another in order to decrease the transfer time within the
cost boundaries imposed by the extra storage space used, as shown in Algorithm I}

Unlike for MapReduce processing, the cloud workflow ecosystem is richer. Thus we have
integrated this TomusBlobs approach for workflow file management into an existing engine,
the Microsoft Generic Worker workflow, by replacing its default data storage backend, which
relied on Azure Blobs. The Generic Worker engine was selected, as it facilitates the process
of porting existing science applications to clouds (in particular Azure) by deploying and
invoking them with minimal effort and predictable cost-effective performance. While the
system is optimized for Azure, it can be easily extended to other cloud technologies. The
Generic Worker supports this generalization through a set of pluggable components with
standardized interfaces that allow a simple migration to other clouds. One only needs to
replace the runtime component with one using the specific API of other platforms. This
architecture facilitated the integration as it allowed to simply plug our storage approach
once implementing the provided APL

7.5 — Validation and Experimental Evaluation for Workflows 71

| Y
Broadcast A reduction tree

Figure 7.8: Workflow schema for the synthetic benchmark.

7.5 Validation and Experimental Evaluation for Workflows

In this section, we focus on evaluation the benefits brought by TomusBlobs in the context of
workflows. As before, the experiments were performed on the Azure cloud, using 100 cores,
with experiments repeated hundreds of times at various moments. The cores were dis-
tributed across 50 Medium (2 CPU cores, 3.5 GB memory, 490 GB local disk) VMs. The
focus of this evaluation lays on the impact of TomusBlobs on the workflow makespan and
I/0 phase.

7.5.1 TomusBlobs in the Context of Synthetic Workflows

To analyze the adaptive behavior and the performance of TomusBlobs for workflows, we
start with a synthetic setting. To this end, we implemented a simple benchmarking work-
flow (Figure that encapsulates two data access patterns (broadcast and pipeline within
a reduction tree). The workflow is composed of 38 identical jobs, with 20 of them on the
first tree layer. Each job takes 2 input files containing numbers, applies an operation and
stores the result in an output file, used by the tasks on the next layers. Additionally, 2 other
jobs (the left ones in Figure are used for staging-in the initial input files. This workflow
is executed using the Generic Worker workflow engine using two data management back-
ends: the default one relying on Azure Blobs, and the TomusBlobs approach for workflows
discussed in Section[7.4]

Scenario 1: Small files, no replication. In the first scenario we evaluated the performance
that each of the default-provided transfer methods can bring when used for handling the
files of the workflow. This scenario is particularly useful to determine the threshold up to
which the in-memory transfer is efficient for cloud VMs. Figure[7.9|a) displays the average
time of the workflow jobs to read the 2 input and share the output file. Not surprisingly,
managing the files inside the deployment reduces the transfer times up to a factor of 4,
compared to the remote shared cloud storage (Azure Blobs). As expected, the in-memory
solution delivers the best results for small files. When file sizes are larger, transferring di-
rectly becomes more efficient, as the in-memory module has to handle more fragments -

72 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

—4&@— DirectLink —#&— Torrent —— In-Memory ‘ —4&@— DirectLink Transfers —Jll— Torrent Transfers

AzureBlobs —4—— TomusBlobs AzureBlobs
18 80
16 70 4

14 60

12 4
50
40 |

30

Time (sec)
©
Il

Time (sec)

20

10

0 T T T T 0 T
15 20 25 30 40 50 100 150 200 250

Size (MB) Size (MB)

Figure 7.9: The I/O time per job, when 2 input files are downloaded and 1 is uploaded.Small
(a) Left) and large (b) Right) file sizes are considered.

the files are fragmented /defragmented into 4 MB chunks (the maximum size of an object in
Azure Caching).Another consequence of the fragmentation is a higher performance varia-
tion, which increases up to two times. Avoiding such variations is important for scientific
applications require predictable performance [149]. Based on these observations, a threshold
of 15 MB for the size of the files shared in-memory seems appropriate. Finally, the tor-
rent module pays the price of an extra operation for hashing the file and generating the
".torrent" metadata, used by peers for download, making this strategy inefficient for small
non-replicated files.

Scenario 2: Medium to large files, replication enabled. Next, we evaluate the impact of
our approach and its ability to adaptively switch between transfer methods in a more com-
plex scenario: sharing large files, replicated across the cloud infrastructure. The stage-in jobs
(the ones in the left of Figure of our synthetic workflow generate 5 replicas for their
output data; in Azure Blobs the number of replicas is automatically set to 3 and the files
are transparently distributed within the storage service. We notice from Figure [7.9| that the
adaptive behavior of our solution which mixes the transfer strategies leads to a 2x speedup
compared to a static file handling (also leveraging deployment locality) and a 5x speedup
compared to Azure Blobs (remote storage). With multiple seeders (i.e., providers) for the
replicas, the torrent-based module is more efficient than direct transfers. Thus, in the broad-
cast phase of the workflow, torrents perform better, while in the reduction phase, direct link
will work better for the pipeline transfers. Finally, our adaptive solution exploits these pat-
terns and switches in real-time between these modules in order to provide the best option
each time according to the context.

7.5.2 Using TomusBlobs to Execute a Biological Workflow Application

The final set of experiments focuses on a real-life scientific workflow. We illustrate the bene-
fits of our approach for the BLAST application, a workflow for comparing primary biologi-
cal sequences to identify those that resemble. The workflow is composed of 3 types of batch
jobs. A splitter partitions the input file (up to 800 MB in our experiments) and distributes it

7.6 — Discussion 73

g GenericWorker - AzureBlobs —4@— TomusBlobs Download —Jll— AzureBlobs Download

! g::’]e;lljct\évgrnﬁzr - TomusBlobs —#A—— TomusBlobs Upload AzureBlobs Upload

1:30:00 1409

120
100
1:00:00 80 +

60 o

Time (sec)

40 +

0:30:00

5 10 15 25 35 40 50 60

25 BLAST jobs 50 BLAST jobs 100 BLAST jobs Number of BLAST Jobs

0:00:00

Figure 7.10: a) Left: The BLAST workflow makespan: the compute time is the same (marked
by the horizontal line), the time difference between the approaches comes from the data
handling. b) Right: Average times for staging data in and out for a Blast job when the
number of jobs is increased.

to the set of distributed BLAST jobs. The core algorithm (the BLAST jobs) matches the input
file with reference values stored in 3 database files (the same for all the jobs). Finally, the
assembler job aggregates the result from the BLAST jobs into a final result.

Figure a) presents the makespan of executing the BLAST analysis while Figure
b) reports, for the same experiment, the average file upload and download times per BLAST
job. As before, the experiments were carried out with the Generic Worker using Azure
BLOBs and our adaptive solution. Increasing the number of jobs results in smaller tem-
porary files produced by the BLAST task. However, the size of the input database files to be
broadcast to all jobs remains the same (~ 1.6 GB). As the number of nodes available for the
experiment was fixed (50 Medium type VMs), the tasks are executed in waves when their
number exceeds the VMs. This explains the drop in the average transfer time when running
more than 50 BLAST jobs (Figure b), as the few remaining jobs from the second wave
will have a faster execution time as they incur less concurrency. We notice that the computa-
tion time is significantly reduced by adapting the transfer method to the data access pattern.
We observe that the file handling times are reduced to half per workflow job when using the
TomusBlobs approach.

7.6 Discussion

Porting data-intensive scientific applications to the clouds raises many challenges in exploit-
ing the benefits of current and upcoming cloud infrastructures. Efficient storage and scalable
parallel programming paradigms are some critical examples. To address these challenges,
we introduced TomusBlobs, a cloud storage solution aggregating the virtual disks on the
compute nodes, validated as storage backend for a MapReduce framework, and its exten-
sion for workflow file management. We demonstrated the benefits of our approach through
experiments on hundreds of nodes using synthetic benchmarks as well as real-life appli-

74 Chapter 7 — TomusBlobs: MapReduce Applications on Azure Cloud

cations. The evaluation shows that it is clearly possible to sustain a high data throughput
in the Azure cloud thanks to our low-latency storage: TomusBlobs achieves an increase in
throughput under heavy concurrency of up to 5x for writes and up to 3x for reads, compared
to Azure BLOBs. In the context of workflow data management, our solution brings a trans-
fer speed-up of up to a factor of 5x compared to using the default cloud storage and a factor
of 2x over local default file management. When using TomusBlobs as a storage backend for
our MapReduce framework in A-Brain, we achieved speedup times of up to 2x compared
to Azure MapReduce. Finally, these benefits are complemented also by the significant cost
reduction of up to 30% that our approach provides.

Let us note that the approach can be further extended with a performance model which
considers the cloud’s variability and provides a self-adaptive and self-optimize behavior by
means of predictions. From the perspective of the A-Brain application, TomusBlobs helped
to show that the univariate analysis is not sufficient for finding correlations between genes
and brain images as it is to sensitive to the outliers from the data set. Hence, the robust
statistical machine learning technique needs to be employed. As this analysis will greatly
increases the computation workload, by up to 20 times, it is necessary to scale the processing
beyond the resources which we can acquire in a single data center deployment. We address
this in the next chapter by scaling the processing across multiple data centers.

Chapter

Going Further: Scaling MapReduce
across Multiple Data Centers

Contents
[8.1 Map-IterativeReduce: Handling Reduce-Intensive Workloads| 77
[8.2 Geographically Distributed MapReduce| 81
[8.3 Validation and Experimental Evaluation| 83
84 Discussion]. i i i e e e e e 89

This chapter develops the contributions published in the following papers:

o MaplterativeReduce: a framework for reduction-intensive data processing on
azure clouds. Radu Tudoran, Alexandru Costan, and Gabriel Antoniu.
In Proceedings of third international workshop on MapReduce and its
Applications (MapReduce 2012) held in conjunction with HPDC 2012,
Delft, The Netherlands, June 2012, pp. 9 - 16

o A performance evaluation of Azure and Nimbus clouds for scientific appli-
cations. Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Luc
Bougé. In Proceedings of the 2nd International Workshop on Cloud
Computing Platforms (CloudCP 2012), held in conjunction with Eu-
roSys 2012, Bern, Switzerland, April 2012, pp. 1-6

e TomusBlobs: Scalable Data-intensive Processing on Azure Clouds Alexandru
Costan, Radu Tudoran, Gabriel Antoniu and Goetz Brasche. Journal of
Concurrency and Computation: Practice and Experience 2013

76 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

Commerecial clouds traditionally support web and small database workloads. However,
with the emergence of data science, an increasing number of scientific analysis are being
migrated to clouds. In practice, many of these applications, such as the statistically robust
analysis required by the A-Brain application, are more resource-demanding than the typical
cloud applications. Executing such demanding workloads within a cloud site could induce
two undesirable situations: 1) other cloud users do not have enough resource to lease on-
demand in a particular data center; 2) the computation creates performance degradation
for other applications in the data center, e.g., by occupying the network bandwidth or by
creating access contention to the cloud storage service. One way to avoid these situations is
to divide the computation into smaller sub-workloads and to execute them within different
data centers. The site locations where to execute these resource-demanding applications can
be chosen in collaboration with the cloud provider.

As we move to the world of Big Data, single-site processing becomes insufficient in many
scenarios. After all, one of the the founding idea of grid computing was to provide uniform
data processing across multiple sites, based on the assumption that control over how re-
sources are used stays with the site, reflecting local software and policy choices. Leaving
control to individual sites was a pragmatic choice but also led to a point beyond which grid
computing found it hard to scale. In contrast, clouds, which are easier to use and man-
age than grids, let users control remote resources, opening the path for geographically dis-
tributed computing over domains from multiple sites. Several advantages arise from run-
ning computations on multi-site configurations: higher resilience to failures, distribution
across partitions (e.g., moving computation close to data or vice-versa), elastic scaling to
support usage bursts, load balancing and larger computation power harvest from the avail-
able resources in each site.

Lack of support for multi-site processing. As discussed in Section[7] clouds offer limited
support for processing and managing scientific data. The few processing tools which exist
today, typically MapReduce-like frameworks, are built for single-site or single-cluster pro-
cessing. In fact, the cloud model maps all users deployments to a single data center. There-
fore, any user-deployed platform is a single-site compute engine and is limited scale-wise to
the available resources within the data center. Some efforts have been made to address the
challenges of distributing the computation beyond a data center. In [98], the authors imple-
ment the Elastic MapReduce API using resources other than the Amazon EC2, such as the
ones from private clouds, obtaining a MapReduce framework for hybrid clouds. In [121],
the MapReduce model is extended hierarchically to gather resources from multiple clusters
while scheduling the jobs based on load-resource capacity or location of data. However,
there are no solutions focusing on distributing the processing across deployments running
over multi-site of a public cloud provider, let alone offering efficient data-management sup-
port in the context of MapReduce scenarios.

Full reduction across sites is complex. In addition to the lack of explicit support for multi-
site MapReduce, current processing engines do not support full reduction of the results (e.g.,
in the MapReduce model, the number of final results is given by the number of Reducers).
This is a major setback for computing a global result for reduce-intensive workloads. More-
over, in the case of multi-site setups, this lack of functionality can lead to many expensive
(time and money wise) inter-site data transfers of the reducers results in the process setup

8.1 —- Map-IterativeReduce: Handling Reduce-Intensive Workloads 77

to assemble the global result. One way to obtain this global result is for programmers to
implement an additional “aggregator” that collects and combines the output data produced
by each reduce job. For workloads with a large number of reducers and large data volumes,
this approach can prove inefficient as it performs the computation sequentially on a single
entity.

Some recent efforts, detailed in Chapter |5 introduce support for iterative computation
into the MapReduce engine, allowing to apply the same operator successively on the data.
HaLoop [32] was built on top of Hadoop to support iterative computation, relying on a
loop-aware task scheduler and on loop-invariant data caching. Twister [53] and its Azure
declination, Twister4Azure [78], employs a light-weight MapReduce runtime system and
uses publish/subscribe messaging-based communication instead of a distributed file sys-
tem and data caching. iMapReduce [185] provides support for common features of iterative
algorithms, eliminating the shuffling phase and maintaining persistent tasks and persistent
socket connections between tasks. All of these frameworks target applications with itera-
tions across MapReduce workloads but they could hardly be used to efficiently tackle the
problem of globally reducing the final results to a unique one: multiple MapReduce iter-
ations with identity map phases would have to be created. This leads to an extra over-
head due to loop control mechanisms and to job scheduling across iterations. In contrast,
message-passing runtime systems such as MPI provide support for reduction through a rich
set of communication and synchronization constructs. However, they suffer from little fault
tolerance support, which impacts the applications” perceived reliability on clouds, mainly
built on commodity hardware.

Our approach in a nutshell. To address these challenges of executing Big Data applica-
tions across multiple sites, we propose a two-tier hierarchical MapReduce scheme. The
bottom tier distributes TomusBlobs-MapReduce instances across cloud data centers. The
top tier computes the global final result. The input data and the processing jobs are split
among all the available resources, harvesting the available compute power from multiple
cloud sites, while the global result is aggregated using a Meta-Reducer. To minimize the
data exchanges between data centers and address reduce-intensive workloads, we propose
a Map-IterativeReduce technique that efficiently schedules the reduce process in parallel,
based on a reduction tree, to compute a unique result. Additionally, Map and Reduce jobs
can be interleaved as we eliminate the usual barrier between these two phases. Using these
approach for a multi-site MapReduce, we are able to achieve high scalability in the clouds
reaching 1000 cores across 4 deployments and 3 data centers. Performance-wise, we are able
to reduce the data management time by up to 60% compared with cloud-based solutions.

8.1 Map-IterativeReduce: Handling Reduce-Intensive Workloads

In this section we introduce Map-IterativeReduce, a technique for efficiently computing a
unique output from the results produced by MapReduce computations. Targeting mainly
the reduce-intensive workloads, our approach provides support for a set of model exten-
sions which favor parallel efficient scheduling of the Reduce operation jobs in order to com-
bine all results to a single one. At the same time, it preserves the cleanness of the MapReduce
programming paradigm, while facilitating its use by a large set of applications. Our solu-

78 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

tion was validated on the Azure cloud and leverages TomusBlobs (presented in Section [7))
for low-latency and high-throughput under heavy concurrency data accesses. Using this ap-
proach, we are able to reduce within each site the results of the MapReduce computation and
thus, to minimize the number of transfers across sites when aggregating the global result in
the multi-site hierarchical MapReduce.

We introduce a set of core design principles in order to extend the MapReduce model to
support an iterative reduction scheme.

e In Map-IterativeReduce, no synchronization barriers are needed between the Map and
the Reduce phases, the reducers starting the computation as soon as some data is avail-
able. Thus, by not waiting anymore for the completion of the slowest or latest mappers
the total execution time is reduced.

e Our approach builds on the observation that a large class of scientific applications re-
quire in fact the same Reduce operator from the MapReduce process to be applied also
for combining the data to a single output. In order to exploit any inherent parallelism
in the reduction phase this operator has to be at least associative and/or commutative.
In fact, most reduce operators that are used in scientific computing for combining the
results (e.g., max, min, sum, select, filter etc.) are both associative and commutative.
Reduction may be also used with non-associative and non-commutative operations
but offers less potential parallelism.

¢ Considering that results are accumulated down the reduction tree, there is no need for
any (centralized) entity to control the iteration process, check the termination condition
or collect data from reducers, as in vanilla or iterative MapReduce implementations.

We present the data flow in a Map-IterativeReduce computation on Figure The
model consists of a classical map phase followed by an iterative reduce phase. A reducer
applies the associative reduction operator to a subset of intermediate data produced by map-
pers or reducers from previous iterations. The result is fed back to other reducers as interme-
diate data. The processing starts as soon as data becomes available from some (but not nec-
essarily all) mappers or reducers. We recall that in the default MapReduce implementations,
such as the one offered by Hadoop, this is not the case as there is a synchronization barrier
between the map and reduce phases. However, we observed that this makes the perfor-
mance of typical single-step MapReduce to go down sharply, when the availability of these
intermediate results is subject to different latencies. Hence, we opted for eliminating the input
barrier of reducers, leveraging fully the commutativity assumption about the reduce opera-
tions. The successive iterations of the reduce phase continue thus asynchronously, until all
the input data is combined. At the end of each iteration, all reducers check whether their
output is the final result or just an intermediate one, using several parameters attached to
the reduce tasks. This avoids the single point of failure represented by a centralized control
entity. Such centralized components are typically used in the existing iterative MapReduce
frameworks for evaluating the termination or convergence condition and in turn to schedule
the jobs of the next iterations.

With this model, we formally define the reduction as a scheduling problem: we map re-
duction tasks to a pool of reducers using a reduction tree. Indeed, the iterative reduce phase
can be represented as a reduction tree, each iteration corresponding to a tree level. For a

8.1 —- Map-IterativeReduce: Handling Reduce-Intensive Workloads 79

Map Phase
Reduce 1

Phase

<
7 > YES
o ¢ last
C -0 iteration b

®
® | Y
o) &

Final Result

Job itart

Figure 8.1: The Map-IterativeReduce conceptual Figure 8.2: An example of a reduc-
model tion tree for 5 mappers and a re-
duction ratio of 3

better understanding, consider the simple example of an unfolding of the iterative process
into a reduction tree depicted on Figure[8.2] It presents a scenario in which each reducer pro-
cesses 3 sets of data at a time, initially issued from 5 mappers. In the first iteration, only one
reducer has data available; in the second one, the bottom reducer produces the final result
by combining the remaining intermediate data from the slowest mappers with the interme-
diate data produced by the first reducer. With the associative and commutative operators,
the computations corresponding to different iterations can interleave and exploit the inher-
ent parallelism of the Reduce tasks. In this case, the second reducer can start processing
data from the last two mappers in parallel with the other reducer. We introduce two param-
eters that control the scheduling of the iterative process and the unsupervised termination
condition, i.e., the termination condition is not supervised and checked by a centralized
component.

The Reduction Ratio defines the workload executed by a reducer, i.e., the number of inter-
mediate results to be reduced within the job. This parameter together with the number
of map tasks completely determine the number of reduce jobs that are needed in the it-
erative process and the depth of the unfolded reduction tree. In the previous example,
the Reduction Ratio was 3, and in conjunction with the number of Map jobs (5) deter-
mines the number of iterations (2) and the number of reducers that need to be used
(2). Unlike the collective operations which only use binary operators, as in MPI, we
are able to support n-reductions, which is more generic and can be adjust to particular
loads. Having this feature is important because most often, the optimal reduction ratio
is greater than two, as illustrated bellow.

The Reduce Factor defines the termination condition, checked locally by each reducer.
Since the goal was to process all data into a single result, the termination condition

80 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

TomusBlobs
Map Scheduling Queue /93“" :
——— OO o0 - -
Syncronization .
Queue Q

i
Reduce Scheduling Queue
[e] - ®
— Enqueue message Reducers Pool
I '

- - =-> D, 1
Ue?ue:z nlxe%age ! H Intermediate
______ oad data
p i ! Results

TomusBlobs

Figure 8.3: The architecture of the Map-IterativeReduce framework

..... > Download data
B New components

is answering the question are all the results reduced?. The Reduce Factor (RF) is used for
measuring the progress towards this goal. The initial intermediate data, coming from
mappers, will have a Reduce Factor of 1, while the intermediate results produced by
reducers will have a Reduce Factor equal to the sum of the factors of all inputs. There-
fore, the termination condition becomes a comparison between the resulting factor
and the total number of jobs. In the previous example, the top reducer has a resulting
Reduce Factor of 3 while the last one will have a factor of 5, equal to the number of
mappers and therefore marking the termination condition.

We extended the TomusBlobs-MapReduce framework (Section [7) with this iterative re-
duce approach in order to validate its benefits for scientific applications on the one hand, and
to enable efficient multi-site MapReduce on the other hand. The architecture is presented in
Figure It relies on the same loosely coupled components as before, only extending their
functionality. The Client has two roles. First, it is in charge of submitting the workload
(i.e., map and reduce jobs). Second, it determines the number of reduce jobs in the iterative
process which is computed based on the the number of mappers and the Reduction Ratio
selected by the user. The Mapper functionality remains the default one. The Reducer is the
component that implements the iterative reduction process in two steps. In a first phase, it
receives the workload description from the Client (including the Reduction Ratio). Then, it
starts to process the intermediate results updating the Reduce Factor of the resulting tasks. Af-
ter each iteration, the termination condition is checked. If the Reduce Factor of the computed
data equals the number of mappers in the workload, the iterative process ends. Otherwise,
the Reducer will behave like a Mapper and will prepare its result as an intermediate data for
the Reducers in the next iterations. Communication-wise, the same mechanisms are used
as before: Azure Queues are used as a scheduling mechanism for the jobs and TomusBlobs
is used as a storage backend for leveraging data locality and for enabling high throughput
under heavy concurrency.

One of the key reasons for the success of MapReduce frameworks is the runtime support
for fault tolerance. Extending TomusBlobs-MapReduce to support iterative reduction does
not weaken this property. Our approach for dependability is two-folded: on the one hand,
we rely on the implicit fault-tolerance support of the underlying platforms (Azure PaaS, To-
musBlobs); on the other hand, we implemented specific techniques for dealing with failures
in Map-IterativeReduce. For the availability of data, we rely on the replication mechanisms
of TomusBlobs. Regarding the jobs to be executed, we use the visibility timeout of the Azure

8.2 — Geographically Distributed MapReduce 81

Queues to guarantee that a submitted message describing the jobs will not be lost and will
be eventually executed by a worker, as in TomusBlobs-MapReduce. For the iterative reduce
phase, however, this mechanism is not sufficient. Since a Reducer has to process several
messages from different queues, a more complex technique for recovering the jobs in case
of failures is needed. Thus, we developed a watchdog mechanism distributed in each node
running a reducer. Its role is to monitor and to log the progress of the Reducers. For this,
it implements a light checkpointing scheme as it persistently saves the state of the Reduce
processing (i.e., it logs the intermediate inputs that were processed by the reducer). In case
of a failure of some reducer, the reduce job will reaper in the scheduling queue and will be
assigned to another reducer from the pool. Next, the watchdog monitor system of the re-
ducer now in charge of the job will check for existing log information corresponding to the
reduce job. If any, it checks whether the watchdog from the previous reducer is still active,
in order to avoid duplication due to slow executions. If it is not the case, the watchdog, will
rollback the descriptions of the intermediate data processed previously up to the point of
failure. This allows Map-IterativeReduce to restart a failed task from the previous iteration
instead of starting the reduction process from the beginning.

8.2 Geographically Distributed MapReduce

Handling Big Data scientific applications on the clouds requires many compute resources
which are not always available in a single data center. We address this challenge through
a divide-and-conquer strategy: the workload is split into smaller sub-problems which will
be executed in different deployments across multiple data centers. Therefore, we propose
a multi-site hierarchical MapReduce scheme. Several building blocks underpin the creation
of this solution that is able to harvest the available resources within each cloud site. This
data processing scheme in which data is partitioned, scattered and processed in parallel,
relies on a layered data access model built on top of different storage systems in order to
support both storage and transfers. At an abstract level, the system needs to provide an
end-user environment for the multi-site hierarchical MapReduce that provides a uniform
and transparent abstraction independent of any particular cloud deployment and that can
be instantiated dynamically. We examine in this section the mechanisms to accomplish this.

The goal of the multi-site hierarchical MapReduce is to setup a geographically dis-
tributed compute platform, large enough to support execution of Big Data applications, and
able to handle data across this virtual setup. The conceptual architecture is presented on Fig-
ure Rather than simply selecting the site with the largest amount of available resources,
we select locations from a few different domains and build the environment on top of them.
The hierarchical MapReduce consists of two tiers.

o At the bottom level, distinct instances of TomusBlobs-MapReduce are deployed at each
site. The Map-IterativeReduce processing scheme is enabled within each such instance
in order to reduce locally the number of MapReduce outputs and in this way to mini-
mize the inter-site data exchanges.

e In the top tier, the aggregation of the global result is computed with the help of a new
entity that we introduce, called MetaReducer. Its role is to implement a final reduce step
to aggregate the results from all sites as soon as they become available.

82 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

g | /2 |\ —===X Cloud Depl
& @ \®) 1 \ e O
~— | & S v/ /] Reducer 0 Splitter

P oD | G| o
L educer
Cloud l / [’7? s _// | Mapper : r
Storage 7 [\\ // 0 Reducer I, ==
~——— ,
. Mapper Y
¥ o< | Cromusmions) s/ (pees)
7 Meta > / (b) e \\ ~ > : —=| \ TomusBlobs}
. Red y .
et) (S 3) | site 3 g Clogd Deploment) : Npp—
AN \ Compute Engine Az
% o) | Gz :
4 educer,
/ '5)4—//@);/ l |
(R & L Clomuon)) =
\
~——_ 1 \i // g‘ Cloud Deployment Browser
-/ MapReduce A\

N~ Compute Engine

Figure 8.4: The scheme for a Figure 8.5: The architecture for the multi-site MapRe-
MapReduce computation across duce
multiple sites

Data manipulation is a key aspect to enable such a geographically distributed process-
ing across cloud data centers. We use several storage systems to optimize data manage-
ment within the same deployment or between deployments. Analyzing the data processing
phases, we have identified three main scenarios that need to be addressed with the proper
data management solution.

Input/Output Data is handled using the Cloud Storage service instance within each site. De-
spite being located in the same data center, the storage is remote with respect to the
computation and incurs high latencies and usage costs. In our system, it is mainly
used to transfer the initial data, typically coming from on-premises, to be processed
inside the deployment.

MapReduce Data (Intra-site) is handled via the TomusBlobs approach in order to enable fast
data access within the deployment. The choice for this storage solution for this data
processing phase is supported by its abilities to provide high-throughput under the
heavy concurrency introduced by mappers. Furthermore, it reduces the costs of han-
dling the data, while federating the local virtual disks.

Inter-Site Data Exchanges is performed using the Cloud Storage service instance that is lo-
cated on the site where the Meta-Reducer is deployed. Selecting this storage option
was straightforward: since the deployments are independent and virtually isolated,
they must communicate through a storage repository that is accessible from outside
the deployment. These transfers are quite expensive in terms of costs and latency.
Thus, the goal is to minimize them as much as possible, relying in this sense on the
Map-IterativeReduce technique that we devised.

8.3 — Validation and Experimental Evaluation 83

We implemented the multi-site hierarchical MapReduce approach on top of the Azure
clouds. The architecture is presented in Figure We added support for communica-
tion between the TomusBlobs-MapReduce and the Meta-Reducer and designed a scheduling
mechanism for scattering (i.e., partitioning) the initial data across multiple sites. The Meta-
Reducer was implemented as an independent service built on top of a pool of reducers.
The number of communication queues used, in our case Azure queues, is proportional with
the number of deployments. Additionally, we used a strategy of hashing data inside the
same deployment, if the same data is replicated across multiple storage centers, in order to
minimize data transfers. We introduce a new entity, called Splitter, for partitioning the work-
load between the MapReduce processes. The Splitter has the role to segment data between
sites such that each deployment will work on a sub-problem. Additionally, the Splitter is
in charge of creating the corresponding job descriptions (i.e., Map and Reduce tasks) for
the MapReduce engines and sending them to be processed via the queueing communica-
tion mechanism of TomusBlobs-MapReduce. As a final optimization, data can be replicated
across sites or pre-partitioned within the data centers in order to reduce the cost of staging-in
the initial data to each site.

8.3 Validation and Experimental Evaluation

In this section, we assess the benefits that the proposed Map-IterativeReduce technique can
bring to scientific applications and for multi-site MapReduce processing. Moreover, we
test the performance gains and the computation scale that can be achieved when running
MapReduce processing across multiple cloud data centers. The final goal is to understand
what are the best options that have to be put in place for running a large-scale, long-running
scientific simulation, as the one needed for the A-Brain analysis. To this extent, the experi-
ments presented here scale up to 1000 cores, a premiere for scientific applications running on
Azure.

The experiments were performed in the Microsoft Azure cloud, with deployments across
West Europe, North Europe and North-Central US data centers. The number of nodes within
a single deployment varies between 200 cores, used in the analysis of the iterative reduce
technique, up to 330 cores when evaluating the multi-site MapReduce. In terms of number
of distributed deployments running hierarchical MapReduce we have scaled up to 4 deploy-
ments accumulating 1000 cores from 2 data centers. One of the objectives of this section is
to evaluate different options for running large-scale experiments. To this purpose, we have
analyzed the performances obtained when using different VM types, considering Small in-
stances (1 CPU core, 1.75 GB of memory and 225 GB of disk space) as well as Medium or
Large VMs which offer 2 times, respectively 4 times, more resources than the Small ones.
The BlobSeer backend of TomusBlobs was used with the following configuration: 2 nodes
for the version and provider managers, 20 nodes for the metadata servers and the rest of the
nodes were used as storage providers.

8.3.1 Selecting the VM Type: Impact of Multi-Tenancy on Performance

Cloud providers work on several mechanisms to virtually isolate deployments with the goal
of offering fairness to users despite the multi-tenant environment. In this context, we refer

84 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

| [l std Small VM / std of xLarge e Reference (no variation) | Computation Type

74 (] Network&Computation [} Memory
O Local A-Brain e reference

6 3.5

5 3

Ratio

- °
2+ - _ e m & 15
Nl plAp el] 1]
NI IR
2I 4' 6I BI 10I 12I ll‘lI lGI IBI 20I 22I 24I o

Time intervals std Medium VM/ std xLarge VM ! std Large VM/ std xLarge VM
Figure 8.6: The variation of standard de- Figure 8.7: The impact of multi-tenancy
viation in the context of multi-tenancy on different applications: Network &

Computation Intensive; Memory Inten-
sive Computation; Local A-Brain.

to fairness as providing the performance that users are paying for. The question of how
multi-tenancy affects performance remains an open issue, and this is what we explore in this
subsection.

As all other commercial clouds, Azure offers different types of VMs. The biggest one,
ExtraLarge also referred to as xLarge, fully occupies the physical machine. For the other VM
types, the physical machine is shared with other VMs. However, the virtual cores rented
are map to physical CPU, i.e., there is a one to one relationship between VMs virtual cores
and physical cores. Therefor, the non-xLarge VMs are collocated on the physical machine in
the limit of the available cores (usually 8). Even if there are no interferences at CPU level,
a degradation of performance can be expected when accessing the local (shared) storage,
memory or network. We propose the following evaluation methodology: we measure the
variability that application have for different VM types and compare it with the one obtained
with the xLarge VM. This is considered as a reference of the stable performance because
this type of instances is not subject to multi-tenancy on the physical node, everything being
isolated except the network.

In a first experiment we considered a declination of the A-Brain analysis, where a small
computation subset is executed locally i.e., data is read from the local disk, the computation
is performed as matrix operations and the result is stored back to the local disk. We repeated
this experiment several days for 1440 times on each xLarge and Small machines. The results
were grouped in pairs of 60 and the standard deviation of the time period was computed.
The goal of this analysis is to determine the fairness of sharing the physical nodes among
VMs belonging to different users.

Figure 8.6/ depicts the analysis of the results by reporting the ratio of the two VM types
variability. A value of this ratio close to 1 (the reference line) in Figure [8.6| would indicate
that either the neighboring applications do not affect the performance, or that there are no
neighboring applications. Such a point can be seen for the 16th time interval. A high value
for the ratio would show that the performance of the instance is affected by external factors,
as is the case for the 5th and 21th interval. The reason for observing both small and big
values is that the samples were done in a time span of approximately 1 week, one minute
apart, a time span that proved to be sufficiently large to capture various situations. Thus, the
experiment demonstrates that indeed, the interferences impact on instances performances

8.3 — Validation and Experimental Evaluation 85

@ Total processing time

800 -|
700
—~ 600
;ﬁ{ 500 Mappers Ratio i{apReduce with Map Iterative
° ggregator Reduce
g 400 Reducers | Total Reducers | Total
F 3001 Jobs Jobs
200 50 5 10 61 13 63
100 5 20 121 25 125
1001 200 5 40 241 50 250
0 - - - - - - - 300 5 60 361 74 374
3 4 > ° 7 ° oo 30 200 5 80 181 100 500
Reduction Ratio 500 5 100 601 125 625

Figure 8.8: The impact of varying the Figure 8.9: The experimental setting for the
ReductionRatio on the application execution iterative reduce analysis
time

caused by the local disk I/O or memory accesses, is possible. Finally, the analysis reveals that
Small instances tend to have quite an unstable and unpredictable performance and therefore
are not the suitable for long-running scientific experiments on the cloud.

In the next experiment we extend the analysis by considering 3 different compute sce-
narios to be executed on different VM types. The first one performs computations and many
network transfers, the second one performs only in-memory operations while the third one
is the aforementioned local A-Brain declination. We have executed these applications on
Medium, Large and ExtralLarge VMs, since the previous experiment conclusively showed
the instability of the Small instances. Using the described methodology, we depict in Figure
the variability ratio for characterizing the performance fairness, i.e., we report the stan-
dard deviation of Medium and Large VMs against the one of xLarge VMs. The highest varia-
tion occurs when the (shared) network is accessed. This is expected and can be explained by
the fact that the network card becomes the bottleneck more often than the physical memory
or the local physical disk, and also because the connecting links between cloud nodes are
not virtualized nor allocated per user. On the other hand, the lowest standard deviation is
observed for the in-memory computation, which is an encouraging discovery for compute-
and memory-intensive scenarios migrated to the clouds. Regarding the variability of the
VM types, one can observe that Large VMs vary less then Medium ones and tend to offer
as stable performances as when the entire physical node is leased. This qualifies them as
a good option for executing scientific applications in the cloud with reasonably predictable
performance.

8.3.2 Performance Gains with Map-IterativeReduce

Impact of the reduction tree depth on performance. We start the evaluation of the Map-
IterativeReduce technique by analyzing the impact that the shape of the reduction tree has
on performance. Orchestrating the reduction tree is equivalent to determine the amount
of intermediate data (i.e., the Reduction Ratio) that a reducer should process, which in fact
depends on many factors. One influencing factor is the trade-off between the time spent by a
Reducer for processing data and the time needed to transfer it. Another factor is the number
of Map jobs as it determines the number of leaves in the reduction tree. However, even for an
equal number of such jobs, two different applications, with different computation patterns

86 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

—@— TomusBlobs-MapReduce with Aggregator —@— TomusBlobs-MapReduce with Aggregator
—ll— Map-IterativeReduce —ll— Map-IterativeReduce
AzureMapReduce with Agregator AzureMapReduce with Agregator

800 3500
700 + 3000
2500
2000

1500 +

Time (sec)
Time (sec)

1000 +

500 +

0
T T T T T 1 T T T T T T
50 100 200 300 400 500 50 100 200 300 400 500

Number of map jobs Number of map jobs

Figure 8.10: The execution times for Most Figure 8.11: The execution times for A-Brain
Frequent Words when scaling up the work- ~ when scaling up the workload.
load.

and data sizes, do not necessarily have the same optimal Reduction Ratio. Therefore, we
evaluate the timespan achieved by different configurations for reducing (with the minimum
operator) 7.5 GB of data issued from 30 mappers.

We report the results on Figure 8.8, by representing the execution time while varying the
Reduction Ratio. We notice that the time decreases with the increase of the ReductionRatio up
to a point where the workload scheduled for a reducer becomes much higher then the cost
of transferring data and the performance drops. An analytic determination of the optimal
ratio would require a performance model of the underlying infrastructure in terms of com-
putation power, available bandwidth and would be specific for each application. However,
the tree depth will always be determined by log function of the the number of leaves (i.e.,
NrOfMappers). Based on our evaluation, we can empirically determine that, in general, a
reduction tree with a depth of ~ log,, NrO f Mappers gives the best results. In the case of the
experiment presented in Figure the corresponding tree depth is 1.47. Moreover, using
the approximation for the tree depth we can estimate also the optimal Reduction Ratio, using
Equation[8.1} which applied to our experiment gives a Reduction Ratio of 10.11.

ReductionRatio ~= “"Y/NrOfMappers (8.1)

Impact of Map-IterativeReduce on the performance of MapReduce scenarios. Next, we
evaluate the performance gains brought by the proposed Map-IterativeReduce technique in
the context of a typical MapReduce scenario: “Most Frequent Words” — derived from the
widely used “Word Count” benchmark, in which the reduction was extended with a merge
sort that combines and orders the occurrences of words. Thus, the processing will output
as a final result only the n most frequent words. This scenario is encountered in many al-
gorithms, such as PageRank, or scientific applications that perform statistical analysis (e.g.,
bio-informatics, medical studies, etc.), when users are only interested in a subset of the ag-
gregated results, that meet some specific criteria. The experimental methodology consists
in scaling the amount of data to be processed as well as the number of jobs, keeping a con-
stant input data set (the text to be parsed) of 64 MB per map job. Therefore, as we increase
the input set from 3.2 GB to 32 GB, the number of Map jobs will be proportionally scaled
from 50 to 500. For this experimental setting we use a constant Reduction Ratio of 5 which

8.3 — Validation and Experimental Evaluation 87

produces the MapReduce configuration setting presented in Table We chose to use a
constant workload per Reduce job in order to understand better the performance gains over
a classical MapReduce process in which the unique final result would be obtained using an
“Aggregator” entity.

Figure shows the execution time of the “Most Frequent Words” benchmark. We
compared the performance of the Map-IterativeReduce approach with two standard MapRe-
duce engines, TomusBlobs-MapReduce and AzureMapReduce. To obtain the same compu-
tation load, each MapReduce engine was augmented with a final “Aggregator” entity that
reduces the final results to a unique one. We notice that for small workloads, the Map-
IterativeReduce technique and the classical MapReduce have similar performance. This is
due to two reasons. First, the depth of the unfolded reduction tree is small which is al-
most equivalent with a set of reducers followed by the “Aggregator”. Second, the latency
of the initial transfers between mappers and reducers is predominant in the total execu-
tion time making any other optimizations less noticeable. In contrast, when the workload
increases and the computation becomes more Reduce-intensive, the proposed approach out-
performs the others, decreasing the computation time up to 40% compared with the same
TomusBlobs-MapReduce framework (i.e., the same engine without the Map-IterativeReduce
technique) and 60% compared to AzureMapReduce.

We continued the evaluation by studying the performance impact that the iterative re-
duce technique can bring for scientific applications such as A-Brain. Similarly to our pre-
vious experiment, the number of map jobs was increased from 50 to 500, while keeping
the reduction ratio constant and the same configuration setup shown in Table From the
point of view of the analysis, increasing the number of Map jobs does not increase the degree
of parallelism for the Map phase, but rather increases the workload as we process and test
more shuffles (i.e., we increase the statistical precision of the results as detailed in Section
[6). This leads to generating more intermediate results that must be processed in the Reduce
phase, the overall amount of data being increased from 5 to 50 GB.

Figure[8.11]depicts the total execution time of A-Brain using the three solutions as before.
We notice that for AzureMapReduce the timespan grows linearly with the workload, while
the Map-IterativeReduce decreases the completion time by up to 75%. Part of this perfor-
mance difference appears also between AzureMapReduce and TomusBlobs-MapReduce and
is obtained due to the capabilities of the storage backends. The data proximity brought by
the TomusBlobs approach significantly reduces the completion time, especially for a larger
number of mappers/reducers, which can read and write in parallel from the virtual disks.
The rest of the performance gain which accounts for the gap between Map-IterativeReduce
and TomusBlobs-MapReduce, results due to the use of the iterative reduce method. This
proves that parallelizing the reduction phase in successive iterations makes a better use of
the existing resources and that it is able to reduce the computation time by up to 50%.

8.3.3 Hierarchical Multi-Site MapReduce

The compute variability of multi-site processing. We start by analyzing the performance
variations that can be expected in such a distributed setup. Figure depicts the average
Map times and the corresponding standard deviation in a scenario where we progressively
increase the number of jobs and the A-Brain workload. For this experiment, the initial data
was split and scattered across the Azure sites where the computation was performed. Al-

88 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

||:| Computation [l Upload @ Download | ‘D Computation [l Upload [Download ‘
50 50

T
404 i 40 |

30 30 4
20 E 204
10 - | . 10 |
o 0

T T
West Europe North Europe North US West Europe North Europe North US

HH

Time (sec)
Time (sec)

Figure 8.12: Structure of the reducers processing phases (left - reduction ratio 5 ; right -
reduction ratio 3)

[@ West Europe [l North Europe [] North US —l— Map throughput ¥ 3 Reduce throughput
254 17 4

201

15

Time (sec)

104

5\16 6125 7\36 849
Maps 128 Maps 200 Maps 392 Maps 488 Number of reduce/map jobs

Figure 8.13: Variation of the average Map Figure 8.14: The throughput towards the

time on different sites intra-site storage backend for mappers and
reducers. The scale shows the number of re-
ducers and the number of mappers (i.e., re-
ducers/mappers)

though we increase the number of parallel map jobs, the average job execution time remains
approximately the same. Each mapper processes a constant amount of 100 MB of data, as
in the remaining experiments presented in this section. The significance of this result is that
the job time is solely determined by the data set to be processed and remains constant per
input, regardless the number of jobs that are submitted to the system. In turn, this allows
us complete freedom in partitioning the workload and obtaining any degree of parallelism
in terms of compute jobs. Finally, it shows that TomusBlobs-MapReduce can scale and cope
with large workloads even when distributing the computation across several sites. We note
that the jobs executed in West Europe have slightly larger timespans than the others: this is
an expected behavior since, within this analysis, the significant correlation links that were
found were mostly located in the first partition of the data (assigned to this data center),
generating a higher workload per task.

Depicting the reduce phase. Next, we examine the performance of the reducers and their
stability. We use the same experimental setup as before and report in Figure the execu-
tion times of the reduce jobs, divided into their components. In order to better understand

8.4 — Discussion 89

the behavior of the Map-IterativeReduce computation in such a geographically distributed
setting, we vary the number of intermediate results by changing the Reduction Ratio pa-
rameter (shown in the left and right subfigures of Figure [8.12). It can be noticed that the
computation structure in the reduce phase remains almost the same regardless the number
of intermediate results to be processed. The result emphasizes the strength of our iterative
reduce technique as well as it demonstrates the capabilities of our multi-site hierarchical
MapReduce to support even reduce-intensive workloads. In turn, having such a steady
behavior of the compute framework is important both for the application but also for the
storage access time. In addition to reliability, the performance is also predictable, a feature
often speculated in high-performance computing and Big Data analysis [50, 57].

The intermediate I/O phase. The final step in the evaluation consists in examining the
performances that the mappers and the reducers have for managing data. We show on
Figure the average throughput that mappers and reducers achieve when accessing the
TomusBlobs storage within the deployment, i.e., data access within the site. The evaluation
considers an increasing workload generated by scaling the number of jobs proportionally. As
before, each job processes a constant amount of data. Having more jobs translates to larger
amounts of data to be processed, which in turn will produce more intermediate results.
In this experiment the data size is increased from 3 GB up to 15 GB. The results of this
experiment show that even in the context of multi-site hierarchical MapReduce, TomusBlobs
is able to provide a steady throughput. This is achieved due to its decentralized architecture,
large-scale capabilities and data-locality property it provides.

Scaling the compute workload. With all aspects of the processing performance being eval-
uated, we can now analyze the overall efficiency of the system and how efficiently the large
workloads are being accommodated across sites, on large number of resources (i.e., 1000
cores). We used the same evaluation strategy as before: we increased the workload by gen-
erating more processing tasks which in turn produce more intermediate data. This is pre-
sented on Figure by the increasing number of Map and Reduce jobs displayed on the
abscissa. We notice a good behavior of TomusBlobs-based multi-site hierarchical MapRe-
duce at large-scale: A-Brain’s execution time increases only 3 times while the workload is
increased 5 times. This is an encouraging result which demonstrates that the system can
support Big Data scientific applications and that it can be used to run the statistically robust
A-Brain analysis for searching through all brain—gene correlations.

8.4 Discussion

Running Big Data applications on the clouds creates new challenges for scaling the com-
putation beyond the available resources of a data center. We have proposed a multi-site
hierarchical MapReduce engine based on TomusBlobs, which enables applications to be ef-
ficiently executed using resources from multiple cloud sites. Using this approach, we were
able to scale the computation in the Microsoft Azure cloud up to 1000 cores from 3 different
sites. However, supporting efficient geographically distributed computation in the clouds
requires careful considerations for data management. To this end, we have proposed an ex-
tension for the MapReduce paradigm which enables us to combine the output results to a

90 Chapter 8 — Going Further: Scaling MapReduce across Multiple Data Centers

350 4

300

250 +

200

150

Time (sec)

100

50

T T
13\216 16\384 19\600 22\864 25\1176
Number of reduce/map jobs

Figure 8.15: A-Brain execution time on a multi site deployment of MapReduce engines

single one, while processing them in parallel. Using this Iterative-Reduce technique we are
able to minimize the number of transfers across sites and to decrease the computation time of
aggregating the final result by more than half. In a subsequent step, addressed in Part |11 of
the thesis, the hierarchical data access model can be improved in order not only to minimize
the number of inter-site data exchanges, but also to improve the transfer performance. From
the point of view of executing scientific applications, the system is ready to accommodate
long-running experiments now that we have demonstrated its good scaling properties and
its performance reliability. Therefore, in the next chapter we present and discuss the results
and the lessons we learned when executing the complete A-Brain analysis on thousand of
cores in a 2-week experiment.

Chapter

Lessons Learned : Large-Scale Big
Data Experiments on the Cloud

Contents
[9.1 A Large-Scale Experiment for Fitting Genotypes with Subcortical Brain |
| Regions| e e 92
[9.2 Focusing on Long-Running Scientific Experiments| 94
[9.3 Addressing Data Management Issues across Data Centers| 97
0.4 DiScussionl. v vttt e e e e 102

This chapter develops the contributions published in the following paper and
book chapter:

o Machine learning patterns for neuroimaging-genetic studies in the cloud
Benoit Da Mota, Radu Tudoran, Alexandru Costan et al. In Frontiers
in Neuroinformatics 2014

e Big Data Storage and Processing on Azure Clouds: Experiments at Scale and
Lessons Learned. Radu Tudoran, Alexandru Costan and Gabriel Anto-
niu.In the book Cloud Computing for Data-Intensive Applications, to be
published by Springer, 2015. Editors Xiaolin Li and Judy Qiu

As the Data Deluge is becoming a reality, the analysis of large data sets drives the scien-
tific discovery. This process, known as data science, depends on the efficiency on the under-
lying frameworks which perform the processing of data. To this end, we introduced several
data management techniques, described in Sections[7]and [8} to run such scientific applica-
tions at large-scale on clouds. In this section, we apply these techniques in the context of the

92 Chapter 9— Lessons Learned : Large-Scale Big Data Experiments on the Cloud

A-Brain application, presented in Section @ The collaborative goal with the bio-informatics
team is to crunch high-dimensional neuro-imaging and genetic data in order to find signif-
icant correlations between them. The motivation for this pioneer study is to enable joint
analysis between genes and neuro-images, with implications in understanding the variabil-
ity between individuals and brain pathologies risk factors. The analysis was performed on
1000 cores running for 2 weeks in 4 deployments across Azure data centers. As a result, it
was shown for the first time how the functional signal in subcortical brain regions can be
significantly fit with genome-wide genotypes. This study demonstrates the scalability and
reliability of our solutions for long-running scientific applications. In addition to the biolog-
ical result, performing such a Big Data analysis taught us important lessons about the issues
that need to be addressed next.

9.1 A Large-Scale Experiment for Fitting Genotypes with Subcor-
tical Brain Regions

In this section we present how the techniques introduced in Section [7]and [§ are used to ex-
ecute the A-Brain analysis, described in Section [fl We recall that this is a joint effort with
the Inria Saclay Parietal Team, in the context of the Microsoft Research - Inria Joint Center,
for enabling large-scale analysis on clouds for bio-informatics. The A-Brian study consid-
ers functional MRI (Magnetic Resolution Imaging) contrast, corresponding to events where
subjects make motor response errors. A number of 1459 subjects remained for the final anal-
ysis after discarding the ones with to many missing voxels (i.e., volumetric pixels elements
which here apply to the first input data set of brain images) or with bad task performance.
Regarding genetic variants, 477,215 SNPs (Single Nucleotide Polymorphism, which apply to
the second input data set of genetic material) were available. Age, sex, handedness and ac-
quisition center were included in the analysis as a third data set to account for. The analysis
considers the functional signal of 14 regions of interest (ROI), 7 in each hemisphere: thala-
mus, caudate, putamen, pallidum, hippocampus, amygdala and accumbens (see Figure[9.).
The goal is to evaluate how the 50,000 most correlated genetic variants, once taken together,
are predictive for each ROI and to associate a statistical p-value measure with these predic-
tion scores. We expressed this computation as 28,000 map tasks. Each map job performs
5 permutations, out of the 10,000 permutations required for each of the 14 ROl Choosing
to perform 5 permutations per map job was a pragmatic choice in order to keep the task
timespan in the order of tens of minutes while maintaining a reasonable number of tasks.
For example, executing 1 permutation per task, would reduce the timespan of a job to tens
of minutes but would generate 140,000 jobs, which would create additional challenges to
handling and monitoring their progress as discussed in Section[9.3]

This Big Data experiment was performed using the multi-site hierarchical MapReduce,
introduced in Section The framework was deployed on two Microsoft Azure data centers,
the North-Central and West US. These sites were recommended by the Microsoft team for
their large capacity. In each site, Azure storage service instances (i.e., Blob and Queue) were
used for task communication and inter-site data exchanges. Considering the performance
evaluation presented in Section and the resource constraints of the algorithm, we chose
to use the Large VM type, featuring 4 CPUs, 7 GB of memory and a local storage of 1 TB. Two
deployments were set up in each cloud site, running 250 VM totalizing 1000 CPUs. Three of

9.1 - A Large-Scale Experiment for Fitting Genotypes with Subcortical Brain Regions 93

ROl name CV-R? fwe corr. _@0'10: BB One parcel
p-value £20.06/ |mmm Max over all parcels
Thalamus left 0.026 11071 &),
. —4 LUz
right 0.038 1.10 S R N =N o
Caudate left 0.003 2.10°* CV-R’ (under null hypothesis)
right —0012 3.10°*
Putamen left 0.019 1.107*
right 0.006 2.10~*
. B Thalamus
Pallidum left 0.018 1.107* EEm Caudate
right —0.010 3107 EEE Putamen
Hippocampus left 0.010 2.10~* £ Pallidum
right 0.020 1.10°% £ Hippocampus
B Amygdala
Amygdala left 0.016 1.107* 3 Accumbens
right 0.015 1107
Accumbens left 0.022 1.10%
right —0.002 21071
Results of the real data analysis procedure. (Left) chance level, obtained through a permutation procedure. The
predictive accuracy of the model measured by cross-validation, in the distribution of the max owver all ROls is used to obtain the
14 regions of interest, and associated statistical significance obtained family-wise error corrected significance of the test. (Bottom right}
n the permutation test. (Up right) distribution of the CV-R? at outline of the chosen ROIs.

Figure 9.1: The A-Brain analysis and its findings.

the deployments, each having 82 nodes, contained the TomusBlobs-MapReduce components
of the hierarchical MapReduce. The fourth deployment had the role of partitioning the input
data, action done by the Splitter, and aggregating the global result of the computation based
on the Map-IterativeReduce technique. This latter phase consisted of 563 reduce jobs, each
reducer processing 50 intermediate results (i.e., the Reduction Ratio parameter of the Map-
IterativeReduce process is 50).

The experiment duration was 14 days, while the processing time for each of the
28,000 map jobs was approximately 2 hours. As generally acknowledged, failures are ex-
pected in large infrastructures such as the clouds and applications need to cope with this,
especially for long running-time periods. During the experiment, the Azure services had an
exceptional outage during which it was temporarily inaccessible [18]], due to a failure of a
secured certificate. In addition to this outage, only 3 regular VM failures (i.e., stop-restart)
were encountered during this long run. The fault tolerance mechanisms provided by our
solution managed to cope with these situations, enabling the analysis to be completed.The
effective cost of this analysis was approximately equal to 210,000 compute hours, which cost
almost 20,000%, accounting for the VM, storage and outbound traffic price.

Achievements. As a result of this joint collaboration and the effectiveness of our proposed
solution to successfully execute this Big Data experiment, we showed how the functional
signal in subcortical brain regions of interest can be significantly predicted with genome-
wide genotypes. The importance of this discovery is amplified by the fact that this was the
first statistical evidence of the heritability of functional signals in a failed-stop task in basal
ganglia. This work had a significant impact in the area, being published in Journal of Fron-
tiers in Neuroinformatics. Figure 9.1 presents the results of the corresponding correlation
values for the significant links founded. This experiment demonstrates the potential of our
approach for supporting Big Data applications executions at large-scale by harnessing the

94 Chapter 9— Lessons Learned : Large-Scale Big Data Experiments on the Cloud

600 4 Deployment 1
— 500
=
= 400 +
‘&; 300
200
-g A ad e Bl bl [N TN | Lad bl ol (EETTY
= 100
0 T T T T T T T T T T T T T T T T T T T
467 1401 2335 3269 4203 5137 6071 7005 7939 8873
600 1 Deployment 2
—~ 500
C
é 400
~ 300
(0]
g 200
l— 1004 (T & ilalatl B0l ('} TII 44 200
0 T T T T T T T T T T T T T T T T T T T
467 1401 2335 3269 4203 5137 6071 7005 7939 8873
= 6007 Deployment 3
£ 400
g 200
= 0 T T T T T T T T T T T T T T T T T T
467 1401 2335 3269 4203 5137 6071 7005 7939 8873
Mapper ID

Figure 9.2: The execution of the compute tasks in 3 deployments. The pike variation corre-
sponds to the cloud services becoming temporarily unavailable. 28,000 tasks are executed as
map jobs equally partitioned between deployments

available computation power from multiple cloud data centers. Furthermore, it shows the
benefits that our solution can bring for data science by enabling the migration of scientific
applications to the cloud.

9.2 Focusing on Long-Running Scientific Experiments

We continue with an analysis of the performance aspects of this large-scale experiment. We
start by presenting the execution time of the 28,000 map jobs in Figure These are par-
titioned according to their execution in one of the 3 deployments running the TomusBlobs-
MapReduce components of the hierarchical MapReduce framework. The first observation
is that task timespans are similar for all the deployments, regardless the location of the de-
ployments within the sites. This is achieved thanks to the initial partitioning done by the
Splitter component (see Figure [8.5/in Section |8) and the local buffering of the data done by
TomusBlobs, which spares mappers from remote data accesses.

Handling failures. The outage times that appear towards the end of the experiment are
caused by the temporary failure of the Azure cloud, which made all cloud services inac-
cessible and thus isolated the compute nodes [18]. TomusBlobs reacted by suspending the
mappers once the communication outside the VM was not possible. The mappers were kept
idle during the outage period until the cloud became available again and the computation
could be resumed. In addition to this exceptional failure, during the experiment, 3 map
jobs were lost due to fail-stop VM failures. These jobs were restored by the monitoring and
surveillance mechanism that we provided for the Splitter. The same mechanism was used

9.2 - Focusing on Long-Running Scientific Experiments 95

Timespan Cumulative Transfer Time
1400 - 66000 —
1300
1200 1 64000 |
1100
1000
= = 62000
o 900 v
S 8004 s
Q 9
g 7004 g 60000 1
o 600 o
£ i £
F 500 = 58000 -
400
300 |
200 4 56000
100
0 T T T T T T 54000 T T T T T T
o v > C) <) N o u) C) <) N
) V o A S A N v o A S)
S ~) Q o G > N o Q & G &
Qo N & oS N N Qo O S N N
R AR G O
ReductionRatio/NumberOfReducers ReductionRatio/NumberOfReducers

Figure 9.3: Overview of the IterativeReduce phase with respect to the number of reducers
and the Reduction Ratio parameter of the Map-IterativeReduce technique. On the left chart,
the timespan of the overall reduction process with 250 nodes; on the right chart, the cumu-
lative transfer times.

also to renew the job descriptions, in order not to be discarded by the expiration mechanism
of the Azure Queues. Currently all messages in the cloud queue are discarded after 1 week.
By designing these mechanisms to ensure the completion of the analysis despite both regu-
lar failures and major outage, our solution demonstrated that it can provide high reliability
even for geographically distributed computation.

Focus on the reduction phase. Next, we present in Figure 9.3|an analysis of the reduction
phase considering the number of reduce jobs alongside with the corresponding reduction
ratio (i.e, the number of intermediate results processed per reduce jobs). The goal is to study
the relation between the compute phase of a reducer and its I/O phase (i.e., the acquisition of
the data to be reduced). The parallel reduction process proposed by the Map-IterativeReduce
technique brings significant improvements up to the point where the communication over-
head becomes significant. Additionally, having a small reduction ratio translates to a large
number of reducer jobs. This leads to jobs being executed in waves, which in turn increases
the timespan of the reduction process. Making such an analysis before the actual experiment,
allowed us to select the proper reduction ratio of 50, which helped decrease the overall exe-
cution time of the A-Brain analysis.

Focus on data management mechanisms. We continue the evaluation by studying the data
space of the experiment, shown in Figure The goal is to quantify the gains brought by
our proposals in terms of transfer size reduction as well as to understand the strategies that
one needs to setup for sparing the I/O volumes of an experiment. We start from a naive
estimation of the overall amount of data which is obtained by multiplying the number of
jobs with the data volume employed per job, i.e., input data size, output, environment setup
and log file. Considering the large number of jobs of the A-Brain workload of 28,000, the

96 Chapter 9— Lessons Learned : Large-Scale Big Data Experiments on the Cloud

\\\0‘)e
&°
@
&
o &
& K B
<& o
a@@ &0 H
@6 &
& N
< ey
(\&(b e'@ D
o> eﬁ\&
XS
R &
(\?fb &
(\4\2 o
@ & &
N 2 V\ob
@66 ®
0‘9@ (P‘QQ
& .
& ’&@\Q 0@'@
Q >
< T T T T T
&° 0 5 10 15 20 25
< . . .
<% Data Size Estimation Size (TB)

Figure 9.4: Estimation of the data sizes within the large A-Brain experiment. Each label de-
picts the corresponding data size for a particular scenario: total data space for the theoretical
upper scalability bound; the amount of data spared from transferring due to buffering, com-
pression or ordering of jobs; the data space of the problem with respect to the number of
nodes used; the amount of transferred data.

data space reaches tens of terabytes, shown by the “Estimation of Data for all jobs” label in
Figure However, this scenario corresponds to all the jobs being executed in parallel on
different nodes, which would require the maximum degree of redundancy for the data (e.g.,
the input data and the environment would have to be replicated on each node). Therefore,
this estimation provides an upper bound in terms of data volume movements with respect
to the maximum degree of parallelism. The cost of transferring such amounts of data would
be enormous, both time- and money-wise. This is an important observation which shows
that simply increasing as much as possible the parallelism degree of an application is not
necessarily the best strategy in the cloud as it might be in HPC. This study suggests that a
trade-off should be considered between the parallelism degree of the system and the data
space. Apart from properly adjusting the number of processing nodes (i.e., the scale of the
system), different techniques can be used to avoid furthermore data transfers between them.
Buffering data, both at the level of the compute node, to reduce all communication, and at
deployment level, to avoid costly inter-site communication, is a straightforward strategy to
be used.The corresponding gain, marked in Figure 9.4 by the “Untransferred data due to
Buffering” label, is substantial in terms of volumes of data spared to be exchanged.

Other techniques worth considering for such Big Data experiments range from data com-
pression, enabled in our data-management system, to application-specific solutions like re-
ordering the tasks. After applying all these techniques, the resulting data space for this
experiment, with respect to the actual number of nodes used, is shown by the “Data in
Compute Nodes” label in Figure This analysis reveals two facts. On the one hand, a
preliminary analysis of the application space is crucial to understand the options which can
optimize the management of data. On the other hand, the data aspects (i.e., data space, re-
dundancy generated by scaling, efficiency buffering) of the computation need to be consider

9.3 — Addressing Data Management Issues across Data Centers 97

@ Al B DataCenterl O Number of finish reduce jobs per day

[0 DataCenter2 [0 DataCenter3 e==fl== Total number of finish reduce jobs
@i Total Compute Hours (1000 x minutes)

300 - 600 —

250 500 —

200 4 400 —

300 +

150
100 {8 T 7 200 -
ol |
50 -| i (| B 100 |
0 . . T T T |: |: T 1 0
QO N

% 1 > &) © 1 ? 9 N 2 %] & 3 1 > [) © 1 ?) N v %] &
ot Todd gt Toad oY Tgad oY oad g 0,&;\’ o an\’ 0,&;\’ O,Aqx ot ot ol gt ot o gad oY oo 0,&;\’ 0@;\ 0,&;\ O”\!x 0"’\0

Time (minutes)

Figure 9.5: The A-Brain experiment progress. Left: The average map times per day and the
corresponding standard deviation. Right: The compilation time of reduce jobs.

when scaling the parallel execution of scientific applications.

Stability and load balancing. The final step of our evaluation, shown in Figure con-
siders the timeline progress of the A-Brain analysis. In the left subfigure, we report the
average map times within each day of the experiment and the corresponding standard de-
viation. Together with these, we report the aggregated cloud compute hours consumed by
all the leased resources. These results show the stability and the predictability of the per-
formance delivered by the TomusBlobs-based hierarchical MapReduce framework. In fact,
the only noticeable shift in performance appears in the 12th day in which the cloud outage
happened, as previously mentioned.

In the right subfigure of Figure we show the progress towards computing the final
unique result by the Reduce phase. It can be observed that as our approach eliminates the
synchronization barrier between mappers and reducers, used by state-of-the-art MapReduce
engines, the reduction process runs in parallel with the map computation. The irregular
number of reduce jobs finished per day is due to the amount of intermediate results, given
by the reduction ratio parameter of the Map-Iterative process, that a reducer must wait for,
both from mappers or from other reducers. Considering that reducers tend to progress at
the same pace (i.e., they have the same priority to acquire results), most of the jobs finish
towards the end of the experiment, when most of the map jobs have completed. By enabling
this behavior, we managed to balance the load across the compute nodes and to make the
reducer computation non-intrusive to the overall execution.

9.3 Addressing Data Management Issues across Data Centers:
Towards High-Performance Inter-Site Data Management

In the process of designing, implementing, supporting and validating our cloud storage
solutions through large-scale experiments, we had the opportunity to gain useful experience
and to learn several interesting lessons. This section presents these lessons. It also discusses
issues that need to be addressed to continue to improve the support of running Big Data
applications on the clouds. While some of these lessons specifically relate to the Azure cloud

98 Chapter 9— Lessons Learned : Large-Scale Big Data Experiments on the Cloud

platform, others can be considered from a more general perspective being relevant for any
platform.

9.3.1 Azure-Specific Observations

Message visibility timeouts for Azure Queues. Azure Cloud Queue is offered by the ven-
dor as the reliable communication mechanism to assign work to compute nodes in all pro-
cessing scenarios. They differ from the traditional queue data structures as they lack the
ability to ensure FIFO ordering. However, they guarantee that a message is delivered at least
once. This implies potential duplication of messages, which is the result of the fault tolerance
mechanism. Messages read from the queues are not deleted, but instead hidden until either
they are explicitly deleted or until a certain timeout expires and they become visible again.
TomusBlobs-MapReduce complements this timeout mechanism, used to guarantee the exe-
cution of the message containing job description, with a uniform naming schema to verify
the potential duplications of results. However, messages are not held in the queue for unlim-
ited time, but are discarded after a while, called visibility timeout. Initially set for 2 hours,
the visibility timeout was increased to one week with the latest Azure API update. The rea-
son why the visibility timeout matters is that if a workload is large it might take longer time
to complete the processing (i.e., to execute all jobs of the workload). This is often the case
with Big Data applications. However, in such long-running scenarios, queue messages con-
taining job description are discarded by the cloud tool, which is supposed to guarantee the
communication, leading to incorrect results. We faced this issue during the long-running
A-Brain experiment. The solution we considered is to have an application-level tracking
mechanism for the submitted message jobs. In our case this role was implemented by the
Splitter component. The messages were monitored for their time to expiration and were
resubmitted to the queue to reset their expiration deadline.

Application deployment-times. The cloud framework is in charge of the process of allo-
cating the leased nodes and deploying the user application on them. While working with
the Microsoft Azure cloud we have observed that this process plays a crucial role in the
overall application performance. For each new or updated deployment on Azure, the fabric
controller prepares the role instances requested by the application. This process is time-
consuming and varies with the number of instances requested as well as with the deploy-
ment size (e.g., application executables, related libraries, data dependencies). The deploy-
ment times were reduced to a few minutes after the latest Azure update. However these
times can still be a major bottleneck especially in the context of real-time processing scenar-
ios (e.g., real-time resource provisioning). Other cloud platforms such as Amazon EC2 face
similar or worse problems regarding the time for large resource allocation [102]. To mini-
mize these deployment-times, one option is to build the environment setup at runtime from
generic stubs and to improve the performance of multicast transfers between the physical
nodes of the cloud infrastructure.

Handling VM failures. The general belief is that clouds are highly unreliable as they are
built on top of clusters of commodity services and disk drives. Because of this, it is believed
that they host an abundance of failure sources that include hardware, software, network
connectivity and power issues. To achieve high-performance in such conditions, we had to

9.3 — Addressing Data Management Issues across Data Centers 99

provision for failures at the application level in our initial estimations and designs. How-
ever, we discovered that only a very small fraction of the machines failed, even during the
course of long-running executions; we recall that during the 2 week, 1000 core experiment,
only 3 machines failed. Such an observation indicates that in fact clouds are more reliable
that the general belief. This high-availability delivered by the cloud is due to the complex,
multi-tiered distributed systems that transparently implement in Azure sophisticated VM
management, load balancing and recovery techniques. We note from our experience that
even though disk failures can result in data losses, we did not encountered any; making the
transitory node failures to account for most unavailability. Considering these observations, it
is a good strategy for Big Data processing frameworks to use and build on the fault-tolerant
mechanisms already offered by the cloud software stack. The TomusBlobs-based approach
does so by relying on Azure mechanisms to recover the compute nodes which is comple-
mented by the watch-dog mechanism for logging/roll-backing the computation progress.

9.3.2 Beyond Azure

Wave-like versus pipelined MapReduce processing. In general, parallel tasks tend to be
started at the same time on all available resources. Since usually the number of jobs is
higher than the number of resources, such a strategy makes tasks to be executed in suc-
cessive “waves”. One lesson we learned while processing workloads with our MapReduce
approach is that starting all the jobs (e.g., maps) at once is inefficient as it leads to massively-
concurrent accesses to data. For example, concurrently retrieving the initial data by all nodes
executing a task creates a high pressure on the cloud storage system. Additionally, the net-
work bandwidth is inefficiently used, being either saturated or idle. The alternative we
chose was to start the jobs in a pipeline manner, i.e., starting them sequentially as opposed
to starting them all at the same time. Map tasks are created along the pipeline, as soon
as their input data becomes available, in order to speed up the execution and to decrease
the concurrency of accessing storage. Moreover, this approach allows successive jobs in the
pipeline to overlap the execution of reduce tasks with that of map tasks. In this manner, by
dynamically creating and scheduling tasks, the framework is able to complete the execution
of the pipeline faster by better using the leased resources.

Data buffering and caching. Another lesson we learned from our analyses is that, during
long-running experiments, many data blocks are likely to be reused. It then becomes useful
to buffer them locally as much as possible in order to avoid further transfers. In fact, the
analysis of the experiment showed that this strategy can bring the highest gains in terms of
reducing the volumes of data transferred (in our case this was more than 70 %). Additionally,
it is possible to leverage the data access pattern of applications to cache and transfer the data
better, as shown with the adaptive mechanisms of TomusBlobs. The idea is to receive hints
on the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>