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Abstract

This thesis deals with modelling, analysis and control of gene regulatory networks in the

bacterium E. coli, with tools of Control Theory. Different mathematical methodologies

(qualitative/quantitative, deterministic/stochastic) have been used to best describe the

different biological systems under investigation. Notably, in the first part of the the-

sis we mainly addressed the problem of controlling the growth rate of bacterial cells.

Growth control is essential in industrial biotechnology and fundamental research of this

kind could pave the way to novel types of antimicrobial strategies. To this aim we

developed new qualitative mathematical formalisms, derived from piecewise linear sys-

tems, to couple gene expression with growth rate. We applied these formalisms to small

E. coli synthetic gene circuit models (conceived with our collaborators from Ibis, Inria

Grenoble) implementing both open and closed loop configurations. By means of phase

plane analysis and bifurcation diagrams we showed that the proposed qualitative con-

trol strategies, which act on the gene expression machinery (GEM), can mathematically

control the cell growth rate. Moreover, in order to identify the key components of GEM

that mostly determine the bacterial growth rate, we also tested several growth rate mod-

els using Boolean computational tools. In the second part of the thesis, we developed a

coarse-grained, but quantitative, ODE model of E. coli GEM whose parameter values

have been identified from published experimental data at different steady state growth

rate values. This coarse-grained E. coli model may be used, in the future, as starting

point for the design of synthetic genetic manipulations, which implement desired con-

trols of the bacterial GEM. In the third part, we moved from population cell models

to single cell models. In particular we addressed the problem of stochastic state esti-

mation for gene regulatory networks at the level of single cells. We took the Chemical

Master Equation (CME) as a reference modelling approach, and investigated the use of

stochastic differential model approximations for the construction of practical real-time

filters. To this aim, we considered a Square-Root Unscented Kalman Filter built on a

Chemical Langevin Equation approximation of the CME. State estimation is interesting

per se for the reconstruction of gene network variables that cannot be measured directly;

in addition it can be used as an intermediate step for identification, and plays a central

role toward model-based control.



Résumé

Cette thèse porte sur la modélisation, l’analyse et le contrôle de réseaux de régulation

génétique dans la bactérie E. Coli, avec les outils de la Théorie du Contrôle. On utilise

plusieurs formalismes (qualitatif/quantitatif, déterministe/stochastique) pour décrire les

différents systèmes. Dans la première partie de la thèse, on considère le problème du

contrôle du taux de croissance pour les bactéries. Le taux de croissance est une car-

actéristique essentielle pour l’industrie des biotechnologies, et cette recherche peut ouvrir

la voie à de nouvelles stratégies antimicrobiennes. Nous avons développé de nouveaux

formalismes qualitatifs, basé sur les systèmes affines par morceaux différentiels, qui cou-

plent l’expression des gènes et la croissance. Nous appliquons ces formalismes à de

petits modèles de circuits génétiques synthétiques (conçus avec nos collaborateurs de

Ibis, Inria Grenoble), et étudions des boucles de contrôle ouvertes ou fermées. Par une

étude du portrait de phase et des bifurcations , nous montrons que la stratégie qual-

itative de contrôle proposée, qui agit sur la machinerie cellulaire globale, permet de

contrôler le taux de croissance. Pour trouver les composants les plus représentatifs de

cette machinerie cellulaire, nous testons plusieurs modèles de taux de croissance, avec

des outils de calcul booléens. Dans la seconde partie de la thèse, nous développons un

modèle simplifié de la machinerie cellulaire globale chez E. Coli, basé sur des équations

différentielles, et dont les paramètres sont identifiés à partir de données de la littérature

pour plusieurs taux de croissance. Ce modèle pourra être utilisé comme une base pour

tester des stratégies de contrôle de la machinerie cellulaire, par des techniques de biologie

synthétique. Dans la troisième partie, nous passons des modèles de population de cel-

lules à des modèles de cellule individuelle ; nous considérons le problème de l’estimation

stochastique de l’état dans des réseaux de gènes pour une seule cellule. L’équation

maitresse de la chimie est prise comme modèle de référence, et nous étudions l’utilisation

d’approximation par des modèles différentiels stochastiques pour la construction de fil-

tres efficaces en temps réel. Nous considérons pour cela une version non-linéaire du

filtre de Kalman basée sur une approximation de l’équation maitresse par l’équation de

Langevin chimique. L’estimation de l’état est intéressante en soi, car elle permet de

reconstituer des variables non mesurables dans des réseaux génétiques ; de plus, c’est

une étape nécessaire pour l’identification, et pour le contrôle basé sur un modèle.
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Chapter 1

Introduction

During the last century research in molecular and cell biology has deeply studied and

investigated how cellular components work and interact among each other. For examples,

biologist have examined the biochemistry of different molecules, the structure of DNA,

RNA and proteins, the principles governing DNA replication, as well as transcription

and translation.

At the beginning of the 21st century, however, the research in biology has moved towards

a more integrated understanding of molecular and cellular systems. In fact, we are

increasingly observing how the integration of different fields of biology, natural sciences

and engineering allows researchers to better understand how cells work, how cellular

process are regulated, and how cells respond to environmental stresses or even anticipate

those changes. This is in part due to the fact that new technologies provide faster,

cheaper, more accurate and comprehensive measurements of gene expression levels [26,

111]. The larger and always more complex amount of data, that has become available

in this way, is however not suited to be analysed manually. Hence, mathematical and

computational tools turn out to be indispensable to pre-process, analyse, and eventually

extract meaning and insights from such experimental data.

Concomitant with all these advances and the potential technological impact due to these

revolutionary biological developments, leading scientists in life science have recognized

that a new system-level approach is required. This approach has been termed systems

biology. Notably, “system biology“ can be defined as an holistic molecular analysis of

cellular networks, relying on the integration of different experiments, data processing,

and modelling [17, 109–111]. Eventually, the ambitious goal of systems biology is the

understanding of an entire biological system by modelling, predicting, and controlling

the behaviour of all its components.
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1.1 Motivations

A major topic of systems biology is the modelling and analysis of networks: gene net-

works, protein interaction networks, signalling networks, metabolic networks, etc [111].

In this regard, we developed the main content of this thesis, which focuses on modelling,

analysis and control of gene regulatory networks (GRN) using different tools from Con-

trol Theory.

Models of GRN provide significant insights into the underlying molecular mechanisms,

and could lead to important biotechnological applications. They allow researchers to

dissect the role of components of a given system, so as to give precise definitions of

the functions exerted by system components and their interactions. Moreover, they can

be easily used for system simulations to test different scenarios that are not accessible

by experiments. However, we have to take into account that biological systems have

particular constraints, which often give rise to new mathematical problems for which

classical methods are not applicable [158]. In fact, the type of data available for the

system is one of the first aspects to consider in modelling and analysing of GRN. Cur-

rently, there are many different biochemical experimental techniques, which range from

qualitative (e.g.. micro-array data) to quantitative (e.g reporter genes or fluorescence

proteins). Therefore, according to the type/quality of data, modellers have to choose

the more suitable mathematical formalisms to describe the given biological process: for

instance a choice between discrete/continuous, deterministic/stochastic (see Chapter 3).

Moreover, a second aspect which has to be considered is the purpose of the models,

that is the particular phenomenon or aspect of the biological system that is intended to

study. Hence, the mathematical part can be kept as simple as possible to facilitate the

implementation and the analysis, so as to have faster and more comprehensible results.

Or the system can be modelled in much more detail in order to have a very realistic

model, but then it can be very complicated to deal with. Of course, none of the consid-

erations mentioned above makes a model wrong or right, but they determine whether a

model is able to solve the problem for which it has been developed [111]. In addition,

model analysis is strongly related to the particular mathematical formalism employed to

formulate the model. This is because the mathematical framework will also determine

the types of methods that can be used to analyse the model.

Along with measurements (outputs), there are also external actions (inputs) that can be

applied to the system. As we have seen for outputs, also inputs (terminology taken from

Control Theory) strongly depend on and are limited by the experimental techniques

currently available. For instance, possible inputs that can be applied to a biological

system are chemicals gradients, mechanical and electrical stimulations, optical excita-

tions, and genetic type inputs (inducible engineered promoters) [117]. Input-output
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approaches play a fundamental role when the objective is that of controlling biological

systems. Intracellular functions can basically be controlled in two fashions: by open-loop

or closed-loop approaches. Open-loop methodology is employed by researchers by alter-

ing the functions of the cells, for instance through inducers, drugs, toxins, and observing

the corresponding outputs; there is no ”closing“ of the systems by feeding back the re-

sponse to determine a new input for further system alterations [76, 96, 160]. The main

goal of open-loop approaches in biology is that of testing intracellular functions with re-

spect to altered dynamics. Moreover, open-loop gene circuits have strongly contributed

to the emerging of the synthetic biology discipline. Synthetic biology aims at designing

and constructing gene networks from basic biochemical components [21, 107, 131]. The

most difficult and intriguing challenge in applying control theory to biology is not simply

to understand how a biological system controls itself, but also to figure out how to exert

dynamic control on a system. Implementing a closed-loop control in cells is a very chal-

lenging task because it requires real-time measurements, possibly without interfering

too much with the biological systems, and controllers that, using the readouts, modify

the biological system state accordingly [117]. Examples of recent closed-loop controls

applied to GRNs are [128, 169].

Along these lines, we applied modelling, analysis and control techniques to the gene

expression machinery (GEM) of the bacterium Escherichia coli (E. coli), with the aim

of dynamically linking gene expression and cell growth rate so as to develop possible

(theoretical) controllers for the bacterial growth [41]. E. coli is a model organism that

is easy to manipulate and, being one of the most widely used biological models, much

knowledge is available about its regulatory networks [118]. E. coli, in the presence of a

carbon source—glucose being the preferred sugar—grows in an exponential manner until

it exhausts the nutrient sources, and then enters a stationary phase with practically zero

growth. The wild-type bacteria grow at different rates in the presence of carbon sources

of different types: fastest growth on glucose and a large range of slower growth rates

on alternative carbon sources. While many experimental and theoretical studies have

addressed the regulation of the growth rate [24, 59, 74, 136], no attempts have been

made to modify these control mechanisms in a directed way.

From the biological point of view, the topics of the physiological regulation of cellular

growth and the functioning of the gene expression machinery have been extensively stud-

ied in the literature (e.g., [29]). However, the dynamic intertwining of the two, and the

redesign of the system to externally control the growth rate, do not seem to have been

much explored. Several modelling attempts opened the way for understanding the rela-

tion between the gene expression machinery and the control of cellular growth in a fixed

environment. Some models focus on specific components of the machinery, for instance,
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the growth-dependent changes of RNA polymerase partitioning [30, 113] or the relation-

ship between ribosomal RNA (rRNA) synthesis and the growth rate [59]. Recent models

have provided a more global view of this system, with for instance a metabolic network

reconstruction of the transcriptional and translational machinery [162] and a biophysi-

cal description of the gene expression machinery [159]. All these models show a relation

between steady state exponential growth on the one hand, and the free RNA polymerase

concentration and the synthesis rate of rRNAs on the other hand. However, they do

not consider the possibility of externally controlling some of the parameters affecting

growth. The present thesis intends to fill in this gap, by constructing minimal dynam-

ical models of the multiple connections between growth control and the functioning of

the gene expression machinery. We will not develop our models from scratch: we will

build upon the existing work mentioned above and also, take into account preliminary

(unpublished) results from partners (Ibis team, Inria Grenoble).

To recap, the main objectives of this thesis are those of developing new modelling for-

malisms as well as new control strategies for GRN, by applying or adapting classical

tools from Control Theory to Systems and Synthetic Biology.

1.2 Contributions

After two introductory chapters on fundamentals of molecular cell biology (Chapter 2)

and mathematical modelling formalisms of GRNs (Chapter 3), we mainly address—in

the first part of the thesis—the problem of theoretically controlling the cell growth rate.

Notably, we developed two novel qualitative formalisms to model and dynamically link

gene expression and bacterial growth rate. These qualitative formalisms are derived

from piecewise linear systems (PL, see Chapter 3 and references therein), from which

we kept the use of step functions to model the interactions between the elements of the

GRN, and added (and tested) two mathematical descriptions of growth rate to model

the dilution effect.

Notably, in Chapter 4 we develop and analyse an open-loop model of a minimal synthetic

gene circuit, that describes part of the gene expression machinery (GEM) in Escherichia

coli. Here we assume that the bacterial growth rate is proportional to the concentration

of a component of the GEM (CGEM) (e.g., RNAP, ribosome). This model is a piece-

wise non-linear system with two variables (the concentrations of CGEM and another

protein) and an input (an inducer) which controls the CGEM expression. We study

the qualitative dynamics of the model and the bifurcation diagram with respect to the

input. Moreover, an analytic expression of the growth rate during the exponential phase
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as function of the input is derived, and an identifiability analysis of its parameters is

pursued using artificial data.

In Chapter 5 we continue studying and developing the synthetic gene circuit model in-

troduced in Chapter 4, for which also a closed-loop configuration is developed. This

closed-loop model, achieved by appropriately rewiring and designing the gene interac-

tions, mathematically reproduces the inverse diauxie phenomenon in an appropriate

range of the input values. This means that the designed feedback law theoretically al-

lows modified E. coli to grow slower on glucose than on a less preferred carbon source

(e.g.. maltose), inversely to the normal (wild-type) bacterial behaviour.

In Chapter 6, we further improve the qualitative modelling formalism by introduc-

ing a new expression for the growth rate. That is, we now model the growth rate

as the weighted minimum of two limiting gene products responsible for bacterial growth

(RNAP and ribosome). The resulting system is a switched system with two piecewise

quadratic (PQ) modes. Moreover, we propose and analyse a bi-dimensional SPQ open-

loop model—describing the bacterial gene expression machinery—in which the growth

rate of cells can be controlled by an external input which tunes the synthesis of one of

the variables.

In Chapter 7 we use some recent Boolean tools to compute attractors of Boolean GRNs,

with the aim of testing several bacterial growth rate models depending on the GEM. No-

tably, some of the growth rate models tested here are Boolean versions of those growth

rate functions introduced in Chapters 4-5-6, whose plausibility have been confirmed.

The discrete Boolean framework permits easier testing of different combinations of bio-

chemical interactions, leading to hypotheses elimination and model discrimination, and

thus providing useful insights for the construction of a more detailed dynamical growth

model.

Then, we moved from qualitative to quantitative modelling of GRNs. In Chapter 8

we present an ODE model of E. coli gene expression machinery developed with our

collaborators in Grenoble (Inria Ibis team). Such ODE model has been calibrated using

parameter values from the literature, and estimating the remaining ones from published

experimental data. A reduced version of the model, obtained by assuming quasi-steady

state equilibrium of mRNA species, is also presented. In fact, a low-dimensional, but still

quantitative model, for which the parameters are known, can be used as starting point

to design and study—in silico—possible growth rate control strategies. In this regard,

the model can be easily extended considering the network motifs and dynamical growth

rate expressions of Chapters 4-5-6, which qualitatively describe possible synthetic gene

modifications, allowing the control the growth rate of the cells.
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Finally, in Chapter 9 we switched from population based models, which use deterministic

formalisms, to single cell models, where a stochastic approach may be required to better

describe the biochemical reactions when species concentrations become too low. Here

we address the state estimation problem for gene regulatory networks at the level of

single cells. In fact, state estimation is an important tool for many aspects: it allows

reconstruction of state variables that cannot be measured directly, it can be used as an

intermediate step for identification [33], and plays a central role toward model-based

control [169]. Notably, we consider models that include both intrinsic noise, in terms of

stochastic dynamics, and extrinsic noise, in terms of random parameter values. We take

the Chemical Master Equation (CME) with random parameters as a reference modelling

approach, and investigate the use of stochastic differential model approximations for

the construction of practical real-time filters. To this aim we consider a Square-Root

Unscented Kalman Filter built on a Chemical Langevin Equation approximation of the

CME. Then, using arabinose uptake regulation in Escherichia coli bacteria as a case

study, we show that performance is comparable to that of a (computationally heavier)

particle filter built directly on the CME, and that the use of information about parameter

uncertainty allows one to improve state estimation performance.

Conclusions to these research works as well as some perspectives can be found in Chap-

ter 10.



Chapter 2

Notes on Molecular Cell Biology

In this chapter we briefly introduce the most important concepts on molecular cell

biology that we used throughout the thesis. Notably, we have mainly focused on gene

expression, its regulation, and on some techniques used to measure gene products. For

more details on the molecular biology of the cell we remand to [12, 13].

2.1 The Cell

All living organisms are made of cells. Cells are small units (mostly 1−100 µm), enclosed

by a membrane and filled with a concentrated aqueous solution of chemicals. Each cell

posses the same genetic information of the parent organism and this information, stored

in DNA, is passed on to the daughter cells during cell division.

Organisms may consist of just one cell, and they are called unicellular, or they may

be multicellular. Multicellular organisms are typically organized into tissues, which are

groups of similar cells arranged so as to perform a specific function in addition to the

housekeeping processes common to all cells.

In this thesis we will not address cell differentiation, i.e. formation of cell types in a

multicellular organism, but we will only discuss the general (housekeeping) aspects of

cell components and functions.

2.1.1 Prokaryotes and Eukaryotes

Cells are divided into two categories depending on the way the genetic material (DNA)

is organized within them.

7
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The first category is composed of prokaryotes which—by definition—are organisms

whose cells do not have a nucleus nor other well-defined compartments (see Figure 2.1).

Most prokaryotes are single-celled organisms, although some join together to form chains,

clusters or other multicellular structures [12]. In prokaryote cells DNA is stored in the

cytoplasm in an area called nucleoid, but it is not enclosed within a separate nuclear

envelope.

Figure 2.1: Schematic of a prokaryote cell. In a prokaryotic cell, all their in-
tracellular components (proteins, DNA and metabolites) are located together in the
same volume enclosed by the cell membrane. Many prokaryotes (bacteria) are able to
move in a fluid-like environment using flagella, which are also used as sensors to detect

concentration gradients and other signals. (Picture taken from [1]).

Eukaryotes belong to the second category and they can be defined as organisms whose

cells have a nucleus. Eukaryotic cells, in general, are bigger and more elaborate than

prokaryotes. They range from unicellular yeast to plants and animals, which are very

complex multicellular organisms with billions of cells. Eukaryotes, in addition to a nu-

cleus, have other organelles, sub-cellular structures that carry out specialized functions

(see Figure 2.2). For examples, mitochondria are responsible for energy production

through metabolism, and containing a very small amount of DNA; chloroplasts (plants)

for photosynthesis; ribosomes serve as machinery for protein synthesis, and made up

themselves of proteins and RNAs; endoplasmatic reticulum; and so forth. The cytoskele-

ton, made up of micro-tubules and filaments, controls cell shape, drives and guides cell

movements and plays a role in intra-cell substance transport.

Since in this thesis I mainly focus on bacteria, in what follows I will introduce the

bacterium E. coli, which is considered by biologists as the model organism for prokaryotic

cells and we will mainly concentrate on prokaryotic cell functions.
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Figure 2.2: Eukaryotic (animal) cell. The nucleus is the most prominent organelle in
the cell and contains chromosomes (the storage sites of DNA). Mitochondria produce
chemical energy (ATP) for the cell. Centriolis are involved in nuclear division during
cell division. Ribosomes, the endoplasmatic reticulum and the Golgi apparatus work

together in the synthesis of proteins. (Picture taken from [2]).

2.1.2 E. coli as model organism

It is thought that all cells descended from a common ancestor [12]. Hence, the knowledge

gained from the study of one organism allows us to better understand others, even our-

selves. But some organisms are more convenient than others to study in the laboratory.

This is because some are easier to genetically manipulate and reproduce faster; others

are multicellular but transparent and so biologists can easily watch the development of

their tissues and organs.

Molecular biologists have focused on Escherichia coli (E. coli for short) as a model

organism for prokaryotic cells. E. coli is a small, rod-shaped bacterium that normally

lives in the gut of humans and other vertebrates, but it can be grown easily in a simple

nutrient broth in a culture bottle. E. coli is able to grow in variable chemical conditions

and it reproduces rapidly (approximately one generation in 20 minutes). The bacterium

E. coli was one of the first organisms to have its complete genome sequenced [25]. Its

genetic information is stored in a single, circular double-stranded molecule of DNA,

approximately 4.6 million nucleotide pairs long, and it makes 4300 different proteins.
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The molecular functioning of E. coli is better understood than any other organisms and

most of our knowledge of the fundamental mechanisms of life (how cells replicate their

DNA, how they decode these genetic instructions to make proteins, etc.) has come from

studies on it. In fact, although human cells are eukaryotic cells, subsequent research has

confirmed that basic molecular processes occur in the same way both in human and in

E. coli cells [12].

Figure 2.3: Escherichia coli: Scanning electron micrograph of Escherichia coli,
grown in culture and adhered to a cover slip. (Picture taken from [3]).

2.2 Gene expression: from DNA to Protein

The central dogma of molecular biology says: “DNA makes RNA, RNA makes protein,

and proteins make the cell” [50]. This key paradigm of molecular biology states that

the flow of information in gene expression is from genes encoded by DNA to mRNA by

transcription and from mRNA to protein by translation (see Figure 2.4). At any given

time, and in any given cell of an organism, thousands of genes and their products (RNA,

proteins) actively participate in an orchestrated fashion to generate the macromolecular

machinery for life.

GTGCATCTGACTCCTGAGGAGAAG
CACGTAGACTGAGGACTCCTCTTC

GUGCAUCUGACUCCUGAGGAGAAG

V H L T P E E K

DNA

(transcription)

RNA

(translation)

protein

Figure 2.4: Diagram of the central dogma, DNA to RNA to protein, illustrating the
genetic code. (Picture taken from [4]).
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2.2.1 Transcription: from gene to RNA

The genome, i.e. the genetic information of an individual, describes all the proteins

that are potentially present in every cell of a given organism. This information is en-

coded in the DNA molecule, which is a double-stranded helix made of alternating sugars

(deoxyribose) and phosphate groups (related to phosphoric acid), with the nucleobases

(guanine(G), adenine(A), thymine(T), and cytosine(C)) attached to the sugars (see Fig-

ure 2.5).

The sugar-phosphate backbones of the two DNA strands form a uniform helix, with

strands placed in opposite directions. The strands are held together by hydrogen bonds

between opposing bases according to the base pair rule: A is always paired with T and

G is always paired with C.

Within cells, DNA is organized into long structures called chromosomes. During cell

cycle these chromosomes are duplicated in the process of DNA replication, providing

each cell its own complete set of chromosomes.
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The first step in the synthesis of protein is transcription and it consists in copying

the nucleotide sequence of a gene into RNA (ribonucleic acid). Like DNA, RNA is a

polymer made of four different nucleotides . It differs from DNA in three respects:

1. whereas DNA is always a double-stranded helix, RNA is single stranded;

2. the nucleotides in RNA are ribonucleotides, i.e they contain the sugar ribose rather

than deoxyribose;

3. although, like DNA, RNA contains the bases adenine (A), guanine (G), and cyto-

sine (C), it contains uracil (U) instead of thymine (T) found in DNA.

All of the RNA in a cell is made by transcription. The enzyme that carries out tran-

scription is called RNA polymerase (RNAP). RNAP, to begin transcription, must be

able to recognize the start of a gene, called promoter, and bind steadily to the DNA

at this site. Then, RNAP moves stepwise along the DNA, unwinding the DNA double

helix to expose the bases on each DNA strand. As RNAP progresses, it adds nucleotides

one by one to the RNA chain using an exposed DNA strand as a template. Chain elon-

gation continues until RNAP meets a stop site in the DNA, the terminator, where the

enzyme halts and releases both the DNA template and newly made RNA chain. The

resulting RNA transcript is thus single-stranded and complementary to one of the two

DNA strands.

RNAP5'
3' 5'

3'

Template
Strand

Coding
Strand

5'

Figure 2.6: The process of transcription is carried out by RNA polymerase (RNAP),
which uses DNA (black) as a template and produces RNA (blue). (Picture taken

from [6]).

Several types of RNA are produced in cells. The majority of genes specify the amino

acid sequence of proteins, and the RNA molecules that are transcribed from these genes

are called messenger RNA (mRNA). Moreover, there are also non-messenger RNA:

ribosomal RNA (rRNA) that forms the core of ribosomes, on which the mRNA is trans-

lated into protein, and transfer RNA (tRNA) that selects and carries amino acids to the

ribosome for the protein synthesis.

2.2.2 Translation: from RNA to protein

The next step in gene expression is called translation, because it allows the conversion of

the information stored into mRNA to protein. Since there are only 4 different nucleotides
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in mRNA but 20 different amino acids in a protein, this translation can not be a direct

one-to-one correspondence between a nucleotide in RNA and an amino acid in a protein.

The rules by which the nucleotides of a gene, by means of mRNA, are translated into

the amino acid sequence of a protein are known as the genetic code. Notably, an

mRNA sequence is decoded in sets of three nucleotides, called codons, thus allowing

43 = 64 possible combination of three nucleotides, even though only 20 amino acids are

commonly found in proteins.

The translation of mRNA into protein is due to adaptor molecules that recognize and

bind—through base-pairing—to a codon at one site on their surface (called anticodon)

and to an amino acid at another site. These adaptors are small RNA molecules (about

80 nucleotides in length) known as transfer RNAs (tRNAs). Transfer RNAs are

captured and hold in position on the mRNA strand by a large molecular machine that

moves along the mRNA allowing accurate and rapid translation of the genetic code.

This complex molecular machine is the ribosome, which is made up of more than 50

different proteins (the ribosomal proteins) and several RNA molecules called ribosomal

RNAs (rRNAs).

Figure 2.7: The process of translation is carried out by ribosome, which uses mRNA
and tRNAs—charged with amino acids—to produce a protein. (Picture taken from [7])

2.3 Regulation of Gene expression

The regulation of gene expression is the process by which individual cell specifies which

of its many thousands of genes have to be expressed. This mechanism is paramount,

especially for multicellular organisms, as animals, which have to differentiate their cells in

order to produce, for instance, muscle, nerve, blood cells and, eventually, all the variety of

cell types seen in the adult [69]. Thus, cell differentiation arises because cells produce

and accumulate different RNA and protein molecules [12]. But, regulation of gene

expression is also widely adopted by prokaryotic/unicellular cells like bacteria. In fact,

bacterial cells can change the expression of their genes in response to external signals,
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for example, according to the food sources that are available in the environment [58,

133, 134].

Gene expression can be regulated at many steps in the pathway from DNA to RNA to

Protein. Moreover, the stability of the final gene product, whether it is RNA or protein,

also contributes to the expression level of the gene—an unstable (faster degradation)

product results in a lower expression level than a stable one which degraded more slowly.

2.3.1 Transcriptional control

Control of transcription is mostly exerted at the initiation step. In Subsection 2.2.1 we

saw that RNAP binds to the promoter of a gene to make an RNA copy of the gene. In

addition to the promoter, almost all genes have regulatory DNA sequences that are

used to activate (resp. inhibit) the gene transcription by facilitating (resp. preventing)

RNAP binding to the promoter. However, these regulatory DNA sequences—to have any

effect—have to be recognized by proteins called transcription factors, which bind to

DNA. Hence, each transcription factor is able to recognize a different DNA sequence and

so regulates only particular genes. Notably, a transcription factor is a repressor protein

if, in its active form, it blocks the binding of RNAP to the promoter, thus switching

genes off. But some transcription factors—called activators—do the opposite, that is

they switch on some genes by binding nearby the promoter and helping RNAP to initiate

transcription.

2.3.2 Post-transcriptional control

Post-transcriptional controls operate after RNAP has bound to the promoter of a gene

to synthesize RNA. One of the most common ways to regulate gene expression at post-

transcriptional level is to control translational initiation, so as to modulate protein

synthesis.

Bacterial mRNAs, for example, have a ribosome-binding site (RBS) where trans-

lation begins. These RBS have to be recognized by a ribosome, which binds to it and

starts peptide synthesis. Hence, by blocking or exposing the RBS, the bacterium can

either inhibit or facilitate the translation of an mRNA.
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2.4 Measurement Techniques

In this section we will briefly present some techniques used in molecular biology to mea-

sure gene expression. Gene expression measurement and analysis have become essential

tools for medical investigations and for characterizing complex biological circumstances.

Here, without going into details—which is behind the scope of this thesis—we will list

some techniques used to quantify mRNA and protein abundance.

2.4.1 mRNA quantification

Several techniques are available to quantify levels of mRNA in a cell, generally referred

to as DNA Microarray [18, 111]. DNA microarray is a tool that allows the RNA of

thousands of genes to be monitored at the same time, so as biologists can visualize which

genes are switched on (or off) as cells grow, divide, or respond to hormones, toxins, or

infections. The information contained in DNA microarrays say whether the expression

of each gene has increased or decreased relative to a reference condition. It is therefore

an essentially qualitative measurement.

Figure 2.8: Heat map generated from DNA microarray data reflecting gene expression
values in several conditions. (Picture taken form [8])
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2.4.2 Protein quantification

The most common method to detect the presence of a specific protein—or a small num-

ber of them—in a sample taken from an experiment is the Western blot technique. The

protein is extracted from the sample and together with a small number of antibodies—

which recognize only specific proteins—is transferred to a nitrocellulose membrane. Dif-

ferent methods, for instance radioactive labelling of stains, are then used in order to

produce bands, indicating the location of the protein. Finally, the intensity of the band

is proportional to the amount of protein [111].

Figure 2.9: Western blot using a anti-lipoic acid primary antibody and an IR-dye
labelled secondary antibody in Leishmania major extracts. (Picture taken from [9])

Moreover, reporter gene techniques can reveal when, where and how much a gene is

expressed. Notably, determining the pattern and timing of a gene’s expression can be

obtained by fusing the regulatory region of the gene of interest to a reporter gene, which

is easier to monitor. In this fashion, the amount, the timing, the cell specificity of

reporter protein synthesis will reflect the function of the original gene as well as the

behaviour of the regulatory sequences that belong to it. In most cases, the expression

of the reporter gene is monitored by tracking the fluorescence or the luminescence of its

protein product [57].

Nowadays, one of the most used reporter proteins is the green fluorescent protein

(GFP), which traditionally refers to the protein first isolated from the jellyfish Aequorea

victoria. Once GFP gene has been fused to the end of the gene that encodes a protein

of interest, GFP can be monitored simply by following its fluorescence by microscopy.

Fluorescent protein methods are more and more used in combination with flow cytom-

etry. Flow Cytometry devices are instruments that, at rates of up to thousands of cells

per second, can count individual cells, sort them into different groups, analyse cellular

characteristics such as cell size, shape, or quantity of measured fluorescence. In this

fashion, it is possible, for instance, to count how many cells in a population synthesize
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Figure 2.10: A diagram of a how a reporter gene is used to study a regulatory
sequence. (Picture taken from [10])

a particular protein under a specific set of conditions, and to study stochasticity of gene

expression by measuring fluorescence at the single cell level [169].

2.4.3 Measurement limitations

Even though all the measurement techniques just presented are of fundamental impor-

tance for deciphering and exploiting genetic information, all of them are intrinsically

noisy because of chemical interactions in blots, production errors in arrays, or other

sources of interference and artefacts. Moreover, microarray and Western blot measure-

ments are affected by low precision because very few bits of information can be extracted

from their data.

These limitations of imprecision and noise have to be taken into account in systems

biology modelling because it is not always possible to tightly fit model parameters to

such data. When this is the case—to overcome these difficulties—qualitative models

turn out to be more suitable.





Chapter 3

Modelling Genetic Regulatory

Network Systems

As we have seen in Chapter 2, the genome of an organism plays a fundamental role in the

control of almost all cellular processes. Hence, to elucidate the functioning of organisms

on the molecular level, we need to know which genes are switched on, which proteins are

synthesized, when and how transcription factors interact and bind to regulatory sites of

other genes.

DNA, RNA, proteins, and other small molecules are all interconnected through posi-

tive and negative feedback loops, forming the so called genetic regulatory networks

(GRN). Since an intuitive understanding of the dynamics of such GRN—which could

involve many components—is difficult to achieve, the help of mathematical and com-

puter tools for modelling and simulation of genetic regulatory networks is indispens-

able [54, 94, 157].

This chapter reviews some formalisms that have successfully been employed in math-

ematical biology to model genetic regulatory systems. Notably, it will deal with gene

expression modelling techniques without considering those cellular processes, such as ion

channels, membrane electrical behaviour, transporters and pumps, cell cycle, etc., that

might be modelled as well (see examples in [71]), but that are beyond the scope of this

thesis.

Specifically, this chapter focuses on those gene expression modelling formalisms that

will be used to develop the most important findings of this thesis, i.e. Boolean networks

(Chapter 7), ordinary differential equations (Chapter 8), qualitative differential equa-

tions (Piecewise Linear Equations) (Chapters 4-5- 6), and stochastic equations (Chemical

Master Equation and Chemical Langevin Equation) (Chapter 9).

19
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To illustrate the advantages and disadvantages of the various formalisms, we use the

mutually inhibiting two genes network—also called bistable switch—as a representative

example (see Figure 3.1).

gene 1

gene 2

Figure 3.1: Example of a gene regulatory network, representing the bistable-switch
gene circuit. It consists of four species: proteins p1, p2 and mRNAs m1, m2. Solid
red arrows denote transcription processes while dashed blue arrows denote translation
processes. Protein p1 acts as inhibitor for gene 2, reducing synthesis of mRNA m2

whereas p2 acts as inhibitor for gene 1, reducing synthesis of mRNA m1.

3.1 Boolean Models

Modelling GRNs with the Boolean framework has first been introduced by S. Kauffman

and R. Thomas [85, 104, 163, 164]. Since then, relevant theoretical and applied research

on the Boolean formalism has been pursued [141–143]. Moreover, the Boolean framework

has turned out to be a very useful tool when dealing with large gene regulatory networks

(10 or more variables) as it is successfully reported in [11, 34, 53, 72, 103, 119, 120].

As a matter of fact—at the highest level of abstraction—the state of a GRN component

(gene, mRNA, protein, etc) can be represented by a Boolean variable which can only

take two values: 0 or 1. In addition, these variables, or nodes, are interconnected by a

set of logical rules (AND, OR, NOT etc.), which orchestrate their dynamical behaviour

(see, for instance, [175] for a review on Boolean models in systems biology). Boolean

variables are particularly suitable for modelling gene expression when experimental data

are scarce and/or qualitative. In fact, in these cases, one can assume that a Boolean

variable is 0 (resp., 1) when the expression of a gene or protein is weak (resp., strong).

Boolean variables will be denoted by X = (X1, ..., Xn) with the state space Ω = {0, 1}n,

and also the time at which the system evolves is assumed to be discrete, 0 < t1 <

... < tmax, with tmax ≤ +∞. As previously said, the dynamics of a Boolean network is

dictated by a set of logical rules, {Fi(X) : Ω→ {0, 1}, i = 1, ..., n} which, given the state
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at tk, determine the state at tk+1: Xi(tk+1) = Fi(X(tk)) or, in a more compact way:

X+
i := Fi(X), i = 1, ..., n.

Finally, to dynamically simulate a Boolean network, one must specify the mode of updat-

ing the variables of the system, that is how values of the nodes progress in time. Several

updating algorithms have been developed, but the two most employed are briefly dis-

cussed next.

3.1.1 Synchronous and Asynchronous networks

One of the most common strategies to update the system and obtain its trajectories is

that of assuming that all variables are simultaneously updated. This means that, at each

instant tk+1 all variables are changed to their new values:

∀k > 0, ∀i = 1, ..., n Xi(tk+1) = Fi(Xi(tk)).

The corresponding networks are, hence, called synchronous Boolean networks.

However, since the timescales of different biological processes can vary widely (tran-

scription is generally faster than translation, and complex binding is even faster; see,

for instance, some timescales in [14]), the synchronous updating is not always the more

realistic choice in systems biology. To overcome this issue, a more general updating

algorithm assumes that, at each time instant, only one node is updated following its

logical rule, that is:

∀k > 0, ∃!j ∈ 1, ..., n Xj(tk+1) = Fj(Xi(tk)) and Xi(tk+1) = Xi(tk) i 6= j.

In this case, the corresponding networks are called asynchronous Boolean networks.

For both strategies, the trajectories of the Boolean network consist of a sequence of

transitions among the 2n states in Ω. Notably, a transition between two states V , W

∈ Ω occurs if V = X(tk) and W = X(tk+1), and in this case W is called the successor

of V . More generally, the set of all asynchronous successors of X is given by:

σ(X) = {X̄ ∈ Ω : ∃jX̄j = Fj(X) and X̄i = Xi i 6= j}.

All possible trajectories can also be represented by a directed graph with 2n vertexes

(the cardinality of Ω), with an edge connecting two vertexes whenever one state is the

successor of the other. It is worth noting that there is an essential difference between
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the directed graphs corresponding to synchronous or asynchronous networks. Any given

sate of a synchronous network can have at most only one successor, hence giving rise

to a deterministic updating, whereas the state of an asynchronous network can have up

to n successors, i.e. potentially leading to several different trajectories from any given

state.

3.1.2 Graph theoretical representation

Here, we focus only on asynchronous Boolean networks since, as we have said above, they

permit a more realistic interpretation of the different timescales present in biological

processes. The associated directed graph will be called the asynchronous transition

graph, and its properties can be studied using graph theory and its application [27,

176]. To this aim, a directed graph can be decomposed into strongly connected

components (SCCs), which are the maximal subsets of vertexes where every pair is

mutually reachable. Notably, two vertexes are said to be mutually reachable if there

are directed paths linking one vertex to the other. SCCs can be made up of a single

state, or several states, or even the whole state space for some special models. Hence,

SCCs can have outgoing paths directed towards (states contained in) other SCCs. An

SCC that contains no outgoing path is called a terminal SCC or attractor, since any

trajectory that reaches it cannot leave. To conclude, identifying and analysing the SCCs

of a Boolean network facilitates the identification of the attractors, which describe the

asymptotic behavior of the system.

3.1.3 Example: Boolean bistable switch

The Boolean model corresponding to the bistable switch circuit depicted in Figure 3.1

reads as:
m+

1 = NOT p2

p+
1 = m1

m+
2 = NOT p1

p+
2 = m2

(3.1)

To construct the asynchronous transition graph of model (3.1), one proceeds as follows:

1. for each state X = (m1, p1,m2, p2), compute the possible variable changes from

the synchronous Boolean table using (3.1);

2. then consider only one variable change at time, to obtain all the successors of X,

i.e. σ(X) = {Y1, . . . , Y`} and draw an edge from X to each Yi.
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For example:

X = (1, 0, 0, 1) ⇒ X+ = (0, 1, 1, 0)

so the possible successors Yi are:

Y1 = (0, 0, 0, 1), Y2 = (1, 1, 0, 1), Y3 = (1, 0, 1, 1), Y3 = (1, 0, 0, 0)

by allowing only one variable to change at each time. Hence, the corresponding asymp-

totic transition graph of model (3.1) is shown in Figure 3.2. In Figure 3.2 we can easily

recognize the two attractors corresponding to states (1, 1, 0, 0) and (0, 0, 1, 1), denoting

either gene and protein 1 are ON, or gene and protein 2 are ON, respectively.

0011

0100
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1101

0010

1001

0000

0110

1111 1010

1011

1100

1110

01011000

0111

Figure 3.2: Asymptotic transition graph of the bistable-switch. There are five SCCs
(states inside the red circles) and two attractors: (1, 1, 0, 0) and (0, 0, 1, 1), denoting

either gene and protein 1 are ON, or gene and protein 2 are ON, respectively.

3.2 Ordinary Differential Equation (ODE) Models

Very likely, the most used formalism for modelling gene regulatory networks is that

of ordinary differential equations (ODEs). These models can generally be studied and

analysed using tools developed for nonlinear systems, in order to investigate dynamics,

bifurcation behaviour, system stability [65, 108]. Example of biological models involving

the ODE formalism can be found in [65, 95, 105].
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More specifically, when ODEs are used to model gene expression, the cellular concen-

tration of proteins, mRNAs and other molecules are represented by non-negative con-

tinuous time variables. Notably, to model the typical transcription-translation process,

the ODEs formalism makes use of two equations for any given gene i: one (3.2) to

model the dynamics of the transcribed mRNA concentration and the other (3.3) for the

concentration of the corresponding translated protein. Hence, given a GRN of n genes,

and let mi, pi be the concentrations of mRNA and protein for the associated gene i,

respectively, we have [139]:

dmi

dt
= Fi(fRi (p1), fRi (p2), ..., fRi (pn))− γimi (3.2)

dpi
dt

= fPi (mi)− δipi (3.3)

for i = 1, ..., N . Both equations (3.2), (3.3) are made up of two terms: one positive

and one negative. In (3.2), the positive term Fi(fRi (p1), fRi (p2), ..., fRi (pn)) denotes

mRNA synthesis rate whereas the negative part γimi stands for mRNA degradation rate.

Similarly, in (3.3) fPi (mi) models the translation rate of mRNA mi into protein pi, and

δipi represents protein degradation rate. Notably, the generic function fRi (pj) : R → R
in (3.2)—usually nonlinear—describes how protein pj regulates the synthesis of mi.

If protein pj has no effect on mi, then fRi (pj) = 0. The function F (·) in (3.2) is a

combination of sums and/or products of functions fRi (pj), describing how transcription

factors pi regulate mRNA synthesis (ex. in an additive and/or multiplicative fashion).

Functions fRi (pj), depending on the specific transcription regulation, can follow the law

of mass action [95, 97], the Michaelis-Menten enzymatic kinetics [153], or—as some ex-

perimental evidences suggest—can be represented by monotonic sigmoidal-shaped func-

tions [179, 180] which increases when pj is an activator and decreases when pj is an

inhibitor. A function—satisfying this property—which is widely employed in systems

biology is the Hill function [14]. A Hill function can be increasing, and hence acting as

an activator, or decreasing, if is modelling an inhibition. The increasing Hill function,

h+(pj ; θj , nj) : R≥0 × R2
>0 → R≥0, is an increasing function in pj with two parameters,

θj and nj , which starts from zero and approaches unity:

h+(pj ; θj , nj) =
p
nj
j

p
nj
j + θ

nj
j

. (3.4)

The parameter θj indicates the threshold of protein concentration pj needed to produce

a relevant increase in mRNA synthesis (regulated by pj). The parameter nj is referred

to as Hill coefficient (or cooperative coefficient) and it controls the steepness of the Hill
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function (the larger nj , the more step-like is the Hill function). Moreover, in some cases

nj could also have a biological meaning, it denotes the number of protein molecules

required for binding to the DNA [177]. The decreasing Hill function h−(pj ; θj , nj) :

R≥0 × R2
>0 → R≥0, is a decreasing function given by:

h−(pj ; θj , nj) = 1− h+(pj ; θj , nj) =
θ
nj
j

p
nj
j + θ

nj
j

. (3.5)

Finally, the translation function fPi (mi) in 3.3 is often represented as a linear term

proportional to the mRNA concentration mi.

Because of the nonlinearity of the Hill functions, a GRN involving many genes can not

generally be solved analytically, and so model reduction/approximation techniques and

computer tools are necessary.

3.2.1 Quasi-steady-state assumption of mRNA concentration

Very often in the literature, when modelling gene expression, it is assumed that the

main gene expression regulation is at the transcriptional level. This hypothesis stems

from the fact that—in some GRN—the mRNA dynamics is much faster than protein

dynamics, i.e. mRNA concentration reaches its equilibrium faster than that of protein.

This is oftentimes due to the fact that γi � δi , that is mRNA degrades much faster

than protein (typical mRNA half-lives are 2− 6 minutes, while those of proteins are on

the order of hours [14]).

Mathematically, this assumption says that εi dmidt = 0, for a small positive constant

εi � 1, in 3.2 (see Tikhonov’s theorem for more mathematical details in [108]) and so:

mi =
1
γi
Fi(fRi (p1), fRi (p2), ..., fRi (pn)). (3.6)

Then, substituting (3.6) into (3.3) we obtain a reduced gene expression model involving

only the protein concentration for each gene:

dpi
dt

= fPi

(
1
γi
F (fRi (p1), fRi (p2), ..., fRi (pn))

)
− δipi . (3.7)

3.2.2 Example: ODE bistable switch

Now, we present the full ODE model corresponding to the bistable switch circuit depicted

in Figure 3.1. The concentration of mRNA produced by gene 1 (resp. gene 2 ) is denoted
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by m1 (resp. m2) and the corresponding protein concentration is denoted by p1 (resp.

p2). The inhibition of gene 1 (resp. gene 2 ) by protein p2 (resp. p1) is modelled by the

decreasing Hill function, h−(p2; θ2, n2) (resp. h−(p1; θ1, n1)). The translation of mRNAs

and the degradation of mRNAs and protein are all modelled by linear functions. Based

on the above, the ordinary differential equations describing the system’s dynamics read

as:
ṁ1 = v1h

−(p2; θ2, n2)− γ1m1

ṗ1 = k̄1m1 − δ1p1

ṁ2 = v2h
−(p1; θ1, n1)− γ2m2

ṗ2 = k̄2m2 − δ2p2

(3.8)

A reduced model can be obtained by assuming that the mRNA dynamics are extremely

fast when compared to the protein dynamics (realistic biological assumption) and hence

reach their equilibrium instantly. Assuming quasi-steady-state mRNA concentrations

(see Section 3.2.1) for the inhibition–inhibition network of Figure3.1, the dynamics can

be described by just two variables, i.e. p1 and p2. More precisely, if we assume that

ṁ1 ≈ 0 and ṁ2 ≈ 0 the mRNA ODEs in (3.8) yield:

m1 =
v1

γ1
h−(p2; θ2, n2)

m2 =
v2

γ2
h−(p1; θ1, n1)

(3.9)

and substituting (3.9) into ṗ1 and ṗ2 in (3.8) one gets:

ṗ1 = k1h
−(p2; θ2, n2)− δ1p1

ṗ2 = k2h
−(p1; θ1, n1)− δ2p2 (3.10)

where k1 =
v1

γ1
k̄1 and k2 =

v2

γ2
k̄2.

A dynamical analysis of this model is not the main scope of this thesis and details can be

found, for instance, in [22]. Here, we would just recall that the dynamics of system (3.10)

depends on the values of the parameters. Notably, system (3.10) can show two distinct

dynamical scenarios: the first, in which there are two stable and one unstable steady

states; the second, in which there is a unique stable steady state. The nullclines and

steady states of the two scenarios mentioned above are shown in Figure 3.3.
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x(t)

(a)

x(t)

(b)

Figure 3.3: Phase planes for the system (3.10) for two sets of parameter values: (a)
bistability, or (b) single steady. Stable steady states are marked by a black circle,
and the unstable steady state by an open rectangle In each region delimited by the
nullclines (ṗ1 = 0 in red, ṗ2 = 0 in blue), the sign of the vector field of each coordinate
is unchanged. One solution, i.e. x(t) = [p1(t), p2(t)], is shown in black. Picture taken

from [22] (Chapter 2) and labels modified to match our notations.

3.3 Piecewise Linear (PL) models

Piecewise linear (PL) models also consist on systems of differential equations, but differ-

ently from classical ODE models, their vector fields have (finitely many) points of dis-

continuity. This is because the PL system state space is divided into regions (domains)

in which the vector field may assume different expressions. However, these expressions

must be affine or linear in each variable.

PL systems are a class of qualitative models, which can be used to facilitate the analysis

of large classical ODE GRN models (see Section 3.2). In fact, intuitively, PL models

can be derived from ODE models (3.2)-(3.3) with Hill functions (3.4)-(3.4) by letting

the Hill coefficient tends to infinity. In this case the Hill functions h+, h− turn into step

functions s+, s−, respectively:

lim
n→∞

h+(x; θ, n) = s+(x; θ) =

1 if x > θ

0 if x < θ

lim
n→∞

h−(x; θ, n) = s−(x; θ) =

1 if x < θ

0 if x > θ

(3.11)

Note that the functions s+(x; θ) and s−(x; θ) remain undefined at x = θ, which are the

points (or hyper-surfaces) of discontinuity of the vector field. Moreover, PL systems are

generally used to model only protein dynamics, so—when this is the case—the quasi-

steady-state assumption of mRNA concentration, discussed in Section 3.2.1, is implicitly
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assumed.

Piecewise linear systems—with applications to genetic regulatory networks—have been

originally introduced by [85]. From a biological point of view, the use of step functions

has been motivated by the experimental observation that the activity of certain genes

changes in a drastic manner at a threshold concentration of a regulatory protein ([180]).

Hence, the PL model has the general form

ẋi = fi(x)− dixi, 1 ≤ i ≤ n, (3.12)

where x = (x1, ..., xn)T ∈ Rn
≥0 is a vector of protein concentrations. The non-negative

quantities fi(x) and dixi represent synthesis and degradation rates for each protein xi

respectively. The function fi : Rn
≥0 → R≥0 represents the expression rate of the gene i

depending on the whole state x. However, fi(x) can be detailed as:

fi(x) =
Li∑
l=1

kilbil(x)

where kil > 0 is a rate parameter and bil(x) is a combination of step functions s+, s−

defined in (3.11).

Moreover, the PL system (6.1) can be written in matrix form as

ẋ = f(x)− Γx, (3.13)

where f = (f1, ..., fn) and Γ = diag(d1, ..., dn).

The dynamical properties of the PL systems are briefly summarized next.

3.3.1 Dynamical study of PL systems

The dynamics of PL systems can be studied in the n-dimensional state-space Ω =

Ω1×Ω2× ...×Ωn, where each Ωi is defined by Ωi = {xi ∈ R≥0|0 ≤ xi ≤ maxi} for some

maximum concentration value maxi. A protein encoded by a gene will be involved in

different interactions at different concentration thresholds, so for each variable xi, we

assume there are pi ordered thresholds θ1
i , ..., θ

pi
i (we also define θ0

i = 0 and θ
pi+1

i =

maxi). The (n − 1)-dimensional hyper-planes defined by these thresholds partition Ω

into hyper-rectangular regions we call domains. Specifically, a domain D ⊂ Ω is defined
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to be a set D = D1 × ...×Dn, where Di is one of the following:

Di =
{
xi ∈ Ωi|0 ≤ xi < θ1

i

}
Di =

{
xi ∈ Ωi|θji < xi < θj+1

i

}
for j ∈ {1, ..., pi − 1}

Di = {xi ∈ Ωi|θpii < xi ≤ maxi}

Di =
{
xi ∈ Ωi|xi = θji

}
for j ∈ {1, ..., pi}.

Let D be the set of domains in Ω. A domain D ∈ D is called a regulatory domain if

none of the variables xi has a threshold value in D (it is a full open hyper-rectangle).

In contrast, a domain D ∈ D is called a switching domain of order k ≤ n if exactly

k variables have threshold values in D, and the corresponding variables xi are called

switching variables in D [127]. The two sets of domains are respectively denoted by Dr
and Ds.

3.3.2 Solutions and Stability in Regular Domains

For any regulatory domain D, the function f(x) is constant for all x ∈ D, and it follows

that the PL system (3.13) can be written as

ẋ = fD − Γx, (3.14)

where fD is constant in D. This implies that the equations are decoupled:

ẋi = fDi − dixi, i = 1, ..., n (3.15)

and the solution xDi (t) can be explicitly computed for all x ∈ D:

xDi (t) = (xi(0)− φDi )e−dit + φDi , where φDi =
fDi
di
. (3.16)

For each domain D, it is clear that solutions will evolve towards ΦD = (φD1 , ..., φ
D
n ),

called the focal point of D.

Since fDi is constant and the number of thresholds θji is finite (equal to pi, see above),

we can now be more precise and set maxi = max∀D∈Dr{φDi }. Then, the set Ω is an

invariant region for the system and one may consider that x(t) ∈ Ω ∀ t ≥ 0.

Each focal point φDi may lie inside or outside the domain D (to avoid very specific cases,

it is generally assumed that focal points do not lie on switching domain, i.e. on the

boundary of adjacent regular domains). Hence, if φDi ∈ D, then the domain is invariant,

and the focal point turns out to be a true fixed (stable) point (see [40] for more details).
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Whereas, if φDi /∈ D, then solutions eventually leave the domain to enter another one,

and the system switches to another vector field. More specifically, if the vector fields in

two adjacent regular domains do not have opposite orientations, the trajectories can pass

through the switching domain—which separates the two adjacent regular domains—and

the overall solution is given by concatenating the solutions in the two (regular) adjacent

domains. Otherwise, the vector field has to be defined as a differential inclusion along

the switching surface at the boundary of the two domains, and a solution can still be

constructed in the sense of Filippov ([73, 90], see also Section 3.3.3).

3.3.3 Solutions and Stability in Switching Domains

To provide the existence and the possibility for solutions to be continued on all domains,

we have to define the right-hand side of system (3.13) at the points of discontinuity of the

function f . To this end, we use a construction originally proposed by Filippov [73] and

then applied to PL systems ([90]). The method consists of extending the system (3.13)

as a differential inclusion,

ẋ ∈ H(x), (3.17)

where H is a set valued function (i.e. H(x) ⊆ Rn). If D ∈ Dr, then we define H simply

as

H(x) = {fD − Γx}, ∀x ∈ D. (3.18)

If D ∈ Ds, we define H as

H(x) = co({fD
′
− Γx | D′ ∈ R(D)}), ∀x ∈ D, (3.19)

where R(D) = {D′ ∈ Dr | D ⊆ ∂D
′} is the set of all regulatory domains with D in their

boundary, and co(X) is the closed convex hull of X. For switching domains, H(x) is

typically multi-valued so solutions of the differential inclusion are defined as follows.

Definition 3.1. A solution of (6.12) on [0, T ] in the sense of Filippov is an absolutely

continuous function (w.r.t. t) ξt(x0) such that ξ0(x0) = x0 and ξ̇t ∈ H(ξt), for almost

all t ∈ [0, T ].

Moreover, the equilibrium points in switching domain (also called singular or Filippow

equilibria) are defined in following way.

Definition 3.2. In a switching domain D ∈ Ds, we say that a point y ∈ Ω is an

equilibrium point for the differential inclusion if

0 ∈ H(y).
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Now, we shall explain how to construct the set H(x) at discontinuity points of f .

Let us consider the case where x belongs to a switching domain S separating two regular

domains D1 and D2. Hence,

H(x) = co({fD1 − Γx, fD2 − Γx})

represents the segment joining the endpoints of the vectors g1 = fD1 − Γx and g2 =

fD2 − Γx. Trajectories can cross S if the vector fields g1 and g2 point in a similar

direction (see Figure 3.4), slide along S if g1 and g2 point in opposite direction towards

S (see Figure 3.5) and be repelled from S if g1 and g2 point in opposite direction away

from S. The last two cases are known as stable and unstable sliding motion in the

literature ([73]).

For example, for a two dimensional system let us assume that a sliding motion (stable

or unstable) occurs on the switching domain S, which is in the hyper-plane Cji = {x ∈
Rn
≥0 : xi = θji }.

Then, for all x ∈ S the solution may satisfy:

ẋ = αfD1 + (1− α)fD2 − Γx, 0 ≤ α ≤ 1. (3.20)

During sliding motion the state trajectories evolve on the hyper-plane xi = θji , so the

parameter α is selected such that the velocity vector of the system (6.15) is always

tangent to Cji . This, mathematically means that α has to satisfy the following condition:

ẋi = 0, for x ∈ Cji , ⇐⇒ αfD1
i + (1− α)fD2

i − diθji = 0,

which, solved with respect to α, gives:

α =
fD2
i − diθji
fD2
i − fD1

i

.

It is useful to define a concept analogous to the focal points defined for regulatory

domains, to deal with switching domains.

Definition 3.3. We recall that supp(D) is the (n−k)-dimensional hyperplane support-

ing D. Let D be a switching domain of order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (3.21)

where H(x) is defined as in (6.14).
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Figure 3.4: Example of behaviour of a bidimensional PL system at a point x in a
switching domain S, when the differential equations are generalized into differential
inclusions by the method of Filippov. Here trajectories cross S instantaneously, and

solutions are normally continued.

Figure 3.5: Example of behaviour of a bidimensional PL system at a point x in a
switching domain S, when the differential equations are generalized into differential
inclusions by the method of Filippov. Here a solution can be constructed in such a way

that trajectories evolve on S (sliding motion).

Hence, Φ(D) for D ∈ Ds is the set containing all the equilibrium points of the differential

inclusion (6.12), which lie on supp(D). Thus, Φ(D) can be empty or a singleton, but

more generally is a closed convex bounded set and hence is referred to as a focal set. In

particular, this means that the sliding motion stops when it reaches Φ(D). If Φ(D) is

empty, then the trajectory leaves S and switches to another domain.

More details on dynamical analysis and applications of PL models can be found in [40,

56, 90, 144].

3.3.4 Example: PL bistable switch

To derive the PL system corresponding to the bistable switch example, one starts directly

from the reduced ODE model (3.10) by replacing the Hill functions with the respective
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step functions:

ṗ1 = k1s
−(p2; θ2)− δ1p1

ṗ2 = k2s
−(p1; θ1)− δ2p2 (3.22)

System (3.22) is defined inside the (invariant) set Ω = [0, k1/δ1] × [0, k2/δ2] which can

be divided into four regular domains, where the vector field is uniquely defined:

D1 = {x ∈ R2
≥0 : 0 ≤ p1 < θ1, 0 ≤ p2 < θ2}

D2 = {x ∈ R2
≥0 : 0 ≤ p1 < θ1, θ2 < p2 ≤ k2/δ2}

D3 = {x ∈ R2
≥0 : θ1 < p1 ≤ k1/δ1, 0 ≤ p2 < θ2}

D4 = {x ∈ R2
≥0 : θ1 < p1 ≤ k1/δ1, θ2 < p2 ≤ k2/δ2}.

In addition, there are also switching domains, where the system is defined only as a

differential inclusion, corresponding to the segments where each of the variables is at

a threshold (pi = θi and pj ∈ [0, kj/δj ]). In each of the four regular domains, the

differential system is linear, and simple to study. In D1, for instance, the system is

ṗ1 = k1 − δ1p1

ṗ2 = k2 − δ2p2,

and the solution converges exponentially (see (3.16)) towards a steady state (k1/δ1, k2/δ2).

If we suppose that θi < ki
γi

, then this steady state is outside D1, and the solution will

switch to another system when it crosses one of the thresholds.

For the bistable switch θi <
ki
γi

, i = 1, 2, there are two classical stable steady states, φ1

and φ2, and an unstable Filippov equilibrium point, φ3, analogous to a saddle point (see

Figure 3.3):

φ1 =
(
k1

δ1
, 0
)
, φ2 =

(
0,
k2

δ2

)
, φ3 = (θ1, θ2).

φ1 and φ2 belong to (the boundary of) their respective domains (D2 and D3), so that

any trajectory entering one of these domains remains there. In contrast, trajectories

starting in D1 or D4 will switch to another domain.

3.4 Stochastic Models

As seen so far, much of the mathematical modelling of GRNs represents gene expression

and regulation as deterministic processes. However, considerable experimental evidence
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Figure 3.6: Phase plane for the piecewise linear system (3.22). The threshold values
θ1, θ2 divide the plane into four rectangular regions, where the vector field is constant.
There are two stable steady states (φ1,φ2) and an unstable Filippov equilibrium (φ3).
One solution x(t) = [p1(t), p2(t)] is shown in black, which may be compared to that
shown in Figure 3.3 (a). Picture taken from [22] (Chapter 2) and labels modified to

match our notations.

suggests that gene expression, both in prokaryotes and eukaryotes, is an inherently

stochastic process ([68, 122, 137, 161]). This is particularly true when cellular bio-

chemical reactions (eg. binding/unbinding of TFs to promoters, translation, etc.) are

triggered by small number of molecules (typically when dealing with single cell gene

expression models), a condition which makes deterministic formalisms (representing av-

erage amount of cellular components in a population of cells) poorly accurate to describe

the true behaviour of the system [138, 147, 178].

The introduction of noise in gene regulation can be efficiently modelled using Chemical

Master Equations (CMEs) whose realizations can be exactly simulated by Gillespie’s

algorithm ([80–82]). Moreover, under certain conditions discussed later on, CMEs can

be approximated by stochastic differential equations (SDEs) of the Langevin type, named

Langevin Chemical Equations (CLEs) [79], which are easier to handle and much less time

consuming to simulate.
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3.4.1 The Chemical Master Equation (CME)

Let us consider a well-stirred system of molecules of N chemical species (mRNAs, pro-

teins, etc) {S1, ..., SN}, which interact through M chemical reactions (transcription,

translation, degradation, etc) {R1, ..., RM}. It is assumed that the system is well-stirred

and confined to a constant volume (cellular volume) Ω.

Let Xi(t) ∈ N denote the number of molecules of species Si in the system at time t. The

aim is to estimate the state vector X(t) = (X1(t), ..., XN (t)), given that the system was

in state X(t0) = Z0 at some initial time t0.

The system state X(t)—describing the molecular populations—will actually be a vector

of random variables. The changes in the species populations are of course a consequence

of the chemical reactions. Each reaction channel Rj is characterized mathematically by

two quantities:

1. state-change vector νj = (ν1j , ..., νNj), where νij is the change in the Si molec-

ular population caused by one Rj reaction, so if the system is in state Z and one

Rj reaction occurs, the system immediately jumps to state Z + νj ;

2. propensity function aj , defined so that aj(Z)dt = the probability, given X(t) =

Z, that one Rj reaction will occur somewhere inside Ω in the next infinitesimal

time interval [t, t+ dt). The probability that more than one reaction will occur in

[t, t+ dt) is assumed to be negligible.

Due to the probabilistic nature of the definition of aj , an exact prediction of X(t) is not

possible, but one might hope to infer the probability

P (Z, t|Z0, t0) = Pr{X(t) = Z, given X(t0) = Z0},

which is given by the Chemical Master Equation (CME) [82]

∂P (Z, t|Z0, t0)
∂t

=
M∑
j=1

[aj(Z − νj)P (Z − νj , t|Z0, t0)− aj(Z)P (Z, t|Z0, t0)] . (3.23)

In principle, CME (3.23) completely determines P (Z, t|z0, t0), but a close inspection

reveals that (3.23) is, possibly, an infinite dimensional system of coupled ODEs, each

one for every possible combination of reactant molecules. Hence, CME can be solved

analytically for only a few simple cases and other approaches are needed. One fruitful

approach is constructing numerical realizations of X(t), which is not the same as solving

the CME numerically (because that would give the probability mass function of X(t)),



Chapter 3. Modelling Genetic Regulatory Network Systems 36

and then histogramming or averaging the results of many realizations. Next, we present

the stochastic simulation algorithm (SSA), which is a Monte Carlo procedure for nu-

merically generating time trajectories of the molecular populations in exact accordance

with the CME.

3.4.1.1 Stochastic simulation algorithm (SSA)

The key to generate realizations of X(t) by means of the SSA is to define a new proba-

bility function p(τ, j|Z, t) such that:

p(τ, j|Z, t)dτ = the probability, given X(t) = Z, that the next reaction in the system

will occur in the infinitesimal time interval [t+ τ, t+ τ +dτ), and will be an Rj reaction.

Formally, p(τ, j|Z, t) is a joint probability density function of two random variables τ

and j, representing the time to the next reaction and the index of the next reaction,

respectively, given that the system at time t is in the state Z. Taking into account the

definition of aj and applying the laws of probability it can be proven that (see [82, 147]

for mathematical details):

p(τ, j|Z, t) = aj(Z) exp(−a0(Z)τ) (3.24)

where:

a0(Z) =
M∑
j′=1

aj′(Z) (3.25)

The stochastic simulation algorithm is mathematically based on (3.24). In fact, (3.24)

implies that τ is an exponential random variable with mean (and standard devia-

tion) 1/a0(Z), while j is a statistically independent random variable with probability

aj(Z)/a0(Z). There are several Monte Carlo algorithms to generate samples of τ and

j according the definition above [178]. Probably, the simplest approach is that which

relies on the standard inversion generating method of Monte Carlo theory [145]: draw

two random numbers r1 and r2 from the uniform distribution in the unit interval, and

select τ and j such that:

τ =
1

a0(Z)
ln
(

1
r1

)
(3.26a)

j = the smallest integer satisfying
j∑

j′=1

aj′(Z) > r2a0(Z) (3.26b)
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Now, we have the following stochastic simulation algorithm (SSA), also known as the

Gillespie algorithm, for generating an exact numerical realization of the stochastic pro-

cess X(t) satisfying CME (3.23)([84]):

1. Initialize the time t = t0 and the system state x = Z0.

2. With the system at state X(t) = Z, evaluate all aj(Z) and their sum a0(Z).

3. Generate values for τ and j using (3.26a) and (3.26b).

4. Update the time and the state value by replacing t← t+ τ and Z ← Z + νj .

5. Record (Z, t) as desired. Return to Step 1, or else end the simulation.

The problem with the SSA is that it might be very slow, and this slowness is due

to the factor 1/a0(Z) in (3.26a), which can be very small if the population of any

species is sufficiently large, and this is often the case in practice [147]. To overcome this

computational issue, more efficient variations of the SSA [35, 145], or even approximated

numerical methods, such as the Tau-leaping [83], have been implemented.

Another possible way to speed up the computation of realizations of X(t) is that of

directly approximating the CME by stochastic differential equations of the Langevin

type, and so obtaining the so called Chemical Langevin Equation (CLE) [79].

3.4.2 The chemical Langevin equation (CLE)

A detailed mathematical derivation of CLE is given in [79], here we just mention the

two conditions required to get a valid approximation of the CME by the CLE.

Suppose the system’s state X(t) of CME (3.23) at the current time t is Z. Suppose also

that, for any time τ > 0, Kj be the number of reactions that occur in the time interval

[t, t + τ ] (it is worth noting that here τ has not the same definition as given before

in (3.24), since now τ assumes the meaning of a preselected time which encompasses

more than one reaction event). Under the two conditions listed below:

Condition (i): Require τ to be small enough that the change in the state during

[t, t + τ ] will be so small that none of the propensity functions changes its value in a

noticeable fashion, that is:

aj(X(t̄)) ∼= aj(Z), ∀t̄ ∈ [t, t+ τ ], ∀j ∈ [1,M ]. (3.27)
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Condition (ii): Require τ to be large enough that the expected number of occur-

rences of each reaction Rj in [t, t+ τ ] be much larger than 1, that is:

aj(Z)τ � 1, ∀j ∈ [1,M ]. (3.28)

then, CME (3.23) can be approximated by stochastic differential equations of the Langevin

type [79]:
dxi(t)
dt

=
M∑
j=1

νj,iaj
(
x(t)

)
+ νj,i

√
aj
(
x(t)

)
Γj(t), (3.29)

with i = 1, . . . , N , where, for j = 1, . . . ,M , the Γj(t) are mutually uncorrelated white

noise processes. Here, in (3.29) x = [x1, ..., xN ] plays the role of a continuous approxi-

mation of the molecule count X in the CME.

Now, let us focus on the two conditions (i) and (ii). Condition (ii) runs counter to

condition (i), and there may be cases in which both conditions can not be satisfied

simultaneously. But there will be many practical circumstances in which both conditions

hold. In fact, this is the case when species have large molecular population numbers,

i.e. when Xi � 1 ∀i ∈ {1, N}.

In principle, the CLE can be simulated using any numerical methods developed for

stochastic differential equations (SDEs) (see [112] for more details on numerical simula-

tions of SDEs). However, particular attention has to be paid to ensure non-negativity of

the system’s state x, which is not generally guaranteed for SDE simulations, differently

from SSA for CME,. To this end, one approach consists in shutting down a reaction

channel when the amount of any its reactants (species involved in) reaches zero [51].

3.4.3 Example: CME and CLE bistable switch

The bistable switch model consists of N = 4 species (variable): m1 (mRNA of gene 1),

p1 (protein of gene 1), m2 (mRNA of gene 2), p2 (protein of gene 2), which interact

via through the M = 8 reactions reported in Table 3.1 with the corresponding propen-

sities a(x) =
[
a1(x), . . . , a8(x)

]
, where x =

[
m1, p1,m2, p2

]
, and stoichiometric vectors

[ν1, . . . , ν8]:

[ν1, . . . , ν8]4×8 =


1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

 (3.30)
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Synthesis Rate aj Degradation Rate aj
∅ a1→ m1 v1h

−(p2; θ2, n2) m1
a2→ ∅ γ1m1

m1
a3→ m1 + p1 k̄1m1 p1

a4→ ∅ δ1p1

∅ a5→ m2 v2h
−(p1; θ1, n1) m2

a6→ ∅ γ2m2

m2
a7→ m2 + p2 k̄2m2 p2

a8→ ∅ δ2p2

Table 3.1: Reactions of the stochastic model of the system of Figure 3.1 and corre-
sponding propensities. An arrow from (to) symbol ∅ means synthesis (degradation).

Parameters Values
v1 1 #min−1

γ1 0.4 min−1

k1 1min−1

δ1 0.012min−1

θ1 10#
n1 2
v2 1min−1

γ2 0.4 #min−1

k2 1min−1

δ2 0.012min−1

θ2 30 #
n2 3

Table 3.2: Parameter values for the CME and CLE (in molecule number units –
symbol # denotes number of molecules).

It is worth noting that, though propensities aj reported in Table 3.1 are expressed with

the same notations of deterministic synthesis and degradation rates of the ODE bistable

switch model (3.8), parameter values have now different physical units. This is because

CME and CLE variables denote number of molecules and not concentrations, as in the

ODE example.

The CME and CLE models follow from replacing the stoichiometries ν1, . . . , ν8 (3.30)

and the propensities of the model of Table 3.1 into (3.23) and (3.29). In particular, the

CLE can be written in the matrix form

ẋ = V a(x) + V diag
(√

a(x)
)

Γ (3.31)

where V = [ν1, ..., ν8]4×8, diag
(√

a(x)
)

is the diagonal matrix having the square root

of the entries of vector a(x) on the diagonal, Γ = [Γ1, ...,Γm]T .

In Figure 3.7 are shown 20 realizations of protein 1 (p1) and protein 2 (p2) of the CME

model using the Gillespie’s algorithm (SSA). CLE simulations look similar and are not

shown.
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Figure 3.7: Plot showing 20 realizations of the p1 and p2 variables of the CME
model of the bistable-switch system using the Gillespie’s algorithm (SSA). Simulations
are performed using parameter values from Table 9.3 and initial condition x(0) =
[m1(0), p1(0),m2(0), p2(0)] = [5, 10, 5, 30]. As we can notice, for this particular choice
of parameter values and initial condition, protein 1 (p1) reaches its ON state (higher
values) with higher frequency than protein 2 (p2), which reaches its OFF state (lower
values). However, due to the stochastic nature of the model, also the opposite behaviour

can happen: p1 is OFF and p2 is ON (see thicker blue and purple lines).

3.5 Final comments

The mathematical formalisms discussed in this chapter allow genetic regulatory networks

to be modelled in different ways, and each has some strengths and possible weakness.

3.5.1 Deterministic Vs stochastic models

Until recently, modelling and simulation studies of GRNs have mainly focused on deter-

ministic models, such as Boolean models and simplified differential equation models. In
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fact, when the biochemical reaction mechanisms underlying regulatory interactions are

not known or are incompletely known, qualitative formalisms, as Boolean and piecewise

linear methods, turn out to be the most appropriate to gain high-level informations on

the network dynamics and insights on the underlying biological system.

Whereas, when dealing with regulatory networks, that have been well-characterized by

experimental data (often of small size and modest complexity), quantitative ODE and

stochastic models can be successfully used to simulate, analyse and validate models of

biological regulatory systems.

Moreover, it is worth remembering that stochastic models, as CME and CLE, are prob-

ably the most appropriate formalisms to deal with gene expression in single cells, where

the molecules’ number is so small to make any deterministic approach inadequate and

not realistic.

3.5.2 Quantitative Vs qualitative models

Another point to take into account, besides a lack of relevant biological information to

build quantitative models, is that large ODE and stochastic models are also compu-

tationally very heavy to simulate, making them less attractive for real time simulation

purposes. Hence, also in this case, qualitative formalisms could be successfully used both

for speeding up simulations, as well as for helping modellers in identifying those subnets

and/or regulation loops which determine the main biological process of interest. In this

fashion, the entire system could be reduced to a smaller and, probably, lumped GRN

which could be more easily addressed with quantitative ODE or stochastic methods.

However, the emergence of new experimental techniques, along with the increasing de-

velopment of open biological databases of experimental data and the continuing increase

of computer power, allow modellers to develop more and more quantitative and complex

biological models.





Chapter 4

A Simple Model to Control

Growth Rate of Synthetic E. coli

during the Exponential Phase:

Model Analysis and Parameter

Estimation

In this chapter we discuss a work that has been presented at the Computational Methods

for Systems Biology Conference in 2012 [37] and was awarded with the Best Student

Paper prize.

Here, we develop and analyse a model of a minimal synthetic gene circuit, that describes

part of the gene expression machinery in Escherichia coli, and enables the control of the

growth rate of the cells during the exponential phase. This model is a piecewise non-

linear system with two variables (the concentrations of two gene products) and an input

(an inducer). We study the qualitative dynamics of the model and the bifurcation

diagram with respect to the input. Moreover, an analytic expression of the growth rate

during the exponential phase as function of the input is derived. A relevant problem is

that of identifiability of the parameters of this expression supposing noisy measurements

of exponential growth rate. We present such an identifiability study that we validate in

silico with synthetic measurements.

43
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4.1 Introduction

Synthetic biology has nearly emerged as a new engineering discipline. The goal of

synthetic biology [15, 107, 131] is to develop and apply engineering tools to control

cellular behaviour—constructing novel biological circuits in the cell—to perform new

and desired functions.

Most recent synthetic designs have focused on the cell transcription machinery, which

includes the genes to be expressed, their promoters, RNA polymerase and transcription

factors, all serving as potential engineering components. Indeed, synthetic bio-molecular

circuits are typically fabricated in Escherichia coli (E. coli), by cutting and pasting

together coding regions and promoters (natural and synthetic) according to designed

structures and specific purposes ([67, 76, 165]).

Along these lines, synthetic biology ultimately aims at developing synthetic bio-molecular

circuitry that may help in producing bio-pharmaceuticals, bio-films, bio-fuels, novel

cancer treatments and novel bio-materials (see [107] for a review on synthetic biology

applications).

In the present work we focus on the gene expression machinery of the bacterium Es-

cherichia coli, with the aim of controlling the growth rate of the cells. E. coli is a

model organism that is easy to manipulate and much knowledge is available about its

regulatory networks.

In the presence of a carbon source—such as glucose—E. coli grows in an exponential

manner until it exhausts the nutrient sources, and then enters a stationary phase with

practically zero growth [129]. The wild-type (namely the genetically unmodified) bac-

teria grow at different rates in the presence of carbon sources of different types [124].

Notably, glucose is the preferred substrate because it leads to a higher growth rate in

wild type. Our control objective is to force the bacterium to significantly modify its

response to glucose so as to tune the cells’ growth rates. To this end, we take into ac-

count the recent applications of synthetic biology which allow us to fabricate engineered

promoters which in turn can be externally controlled by inducers [102].

Notably, we will study an open loop configuration of a bi-dimensional model of a mutant

E. coli inspired by the experiments in [160]. The two basic variables of our model, which

describe the gene expression machinery that is responsible for bacterial growth are (see

Fig.4.1):
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1. the concentration of a Component of the Gene Expression Machinery (CGEM),

proteins responsible for global growth (ribosomes and RNA polymerase). Without

this CGEM, the bacteria cannot produce any proteins and thus cannot grow.

2. the concentration of CRP, a protein involved in the formation of the complex

cAMP-CRP whose level positively correlates with less preferred carbon sources

and slower growth [24].

We will assume that an engineered inducible-promoter is used to express the CGEM.

Moreover it is assumed that the mutant CGEM activates its own expression. The number

and location of equilibria can thus be controlled by means of an input control function of

the inducer and, in particular, there can be regions of bi-stability, as observed in [160].

The type of growth rate control we present—which directly acts upon the GEM—could

be useful in creating bacterial cells that divert resources used for growth towards the

production of a target compound. Thus, the analysis of the simple model presented here

is an attempt to help guide the construction of synthetic gene networks, which improves

product yield and productivity.

This paper is structured as follow: in Section 4.2 we describe the open-loop model,

providing some biological motivations for the terms forming the differential equations.

Next, in Section 5.5 we qualitatively analyse the open-loop model by means of phase-

plane and bifurcation diagram, showing how the steady states of the CGEM can be

controlled by the external input (inducer). In Section 4.4 we derive a mathematical

expression of the growth rate during the exponential phase as a function of the amount

of the inducer. Finally, in Section 4.5 we present an in silico practical identifiability

analysis of such expression.

4.2 The Open-loop Model

The principal modelling challenges come from incomplete knowledge of the networks, and

the dearth of quantitative data for identifying kinetic parameters required for detailed

mathematical models. Qualitative methods overcome both of these difficulties and are

thus well-suited to the modelling and simulation of genetic networks ([55, 144]).

In this work we used a novel piecewise non-linear formalism—derived from piecewise

linear (PL) systems (see [40, 43, 56, 90, 91] for more details)—to model gene expression

affected by dilution due to growth rate.

The open-loop model depicted in Fig. 4.1—similarly to PL models of regulatory genetic

networks—is built with discontinuous (step) functions. The use of step function has been
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Figure 4.1: Regulatory network of the open-loop model in the mutant E. coli. The
model consists of genes crp and synthetic-cgem (modified promoter of a component of
the gene expression machinery (CGEM) in E. coli). The synthetic-cgem promoter is
positively regulated by the inducer I—according to the input function ν1 = h(I)—and
CGEM. CGEM, being responsible for the bacterial gene expression, positively regulates
crp gene too. Moreover, crp transcription is induced by cAMP-CRP, a metabolite whose
formation relies on CRP protein abundance and low level of bacterial growth rate µ.

motivated by the experimental observation that the activity of certain genes changes in

a switch-like manner at a threshold concentration of a regulatory protein [180]. The non

linearity is concentrated in the removal term of differential equations, which takes into

account the protein degradation and the dilution due to growth.

The open-loop model, expressed by (4.1), describes the qualitative dynamics of a CGEM

responsible for bacterial growth and another protein that reflects growth, such as CRP.

The CGEM is assumed to be externally controlled by an inducer I (such as IPTG (Iso-

propil β-D-1-tiogalattopiranoside), Tc (tetracycline) etc). This model of ODE exhibits

bi-stability in CGEM expression for some parameter sets, as experimentally verified

in [160]. We shall take into account this bi-stability to control the model’s state to the

”low” or to the ”high” CGEM stable steady state. Let xc, xp ∈ R≥0 be the CRP and

CGEM concentrations respectively. Thus, the open-loop model graphically depicted in

Fig. 4.1, can be mathematically translated into:

ẋc (t) = k0
c s

+(xp, θ1
p) + k1

c s
+(xp, θ2

p) s
+(xc, θ1

c ) s
−(xp, θµ̄)

− (µ̄ xp(t) + γc) xc(t)

ẋp (t) = ν1 k
0
p s

+(xp, θ1
p) + ν1 k

1
p s

+(xp, θ2
p)

− (µ̄ xp(t) + γp) xp(t)

(4.1)

where:

� k0
i > 0 (i = c, p) is the basal synthesis rate constant;
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� k1
i > 0 (i = c, p) is the main synthesis rate constant;

� ν1 is a positive input accounting for the inducer I; it will be a function ν1(v), v

being the concentration of I;

� γi > 0 (i = c, p) is the degradation rate constant;

� θji > 0 (i = c, p; j = 1, 2) is the xi threshold concentration for activation/inhibi-

tion;

� θµ̄ > 0 is a growth threshold depending on which substrate is used;

� µ̄ > 0 is a growth constant depending on which substrate is used.

and s+, s− denote the step-like functions, defined as

s+(xi, θ
j
i ) =

1 if xi > θji

0 if xi < θji

; s−(xi, θ
j
i ) = 1− s+(xi, θ

j
i ) ,

which are used to model the switch-like promoters’ regulation carried out by the generic

protein xi. These s+, s− are not defined at the threshold values so, to define solutions

on the surfaces of discontinuity, i.e. xi = θji , we use the approach of Filippov [73], which

extends the vector field to a differential inclusion.

In what follows, we will explain the main assumptions adopted in building the system

equations (4.1), which were inspired by the models in [144, 160] and the literature on

E. coli.

4.2.1 Growth rate

In bacteria, growth rate is intimately intertwined with gene expression ([114, 151]) and

with the type of substrate [124]. Hence, to keep model complexity to a minimum, we

assume growth rate µ to be proportional—with a constant µ̄ depending on the quality of

medium—to the concentration of the CGEM which is responsible for bacterial growth:

µ(t) = µ̄ xp(t) . (4.2)

4.2.2 cAMP-CRP activation

The cAMP-CRP complex is formed from cAMP, a small metabolite, which binds the

protein CRP. The cAMP concentration is higher at low growth rate and rapidly decreases
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at high growth rate [24]. Thus, cAMP abundance in cells can be well captured by a

negative step function of µ, i.e. s−(µ, θµ). Moreover, being cAMP association with or

dissociation from CRP much faster than the synthesis and degradation of proteins [144],

we have assumed that as soon as CRP reaches a certain threshold, i.e. θc, CRP instantly

binds to cAMP in a switch-like fashion . For these reasons, the positive regulation carried

out by cAMP-CRP reads as:

b+cAMP−CRP = s+(xc, θc) s−(µ, θµ).

Focusing on the negative step function s−(µ, θµ) and taking into account the expression

of µ in (4.2), we can rewrite b+cAMP−CRP as:

b+cAMP−CRP (xc, xp) = s+(xc, θc) s−(xp, θµ̄) (4.3)

where θµ̄ is a threshold concentration of CGEM which depends on the type of carbon

source.

4.2.3 CRP synthesis

We have assumed that a lower value of xp, i.e. θ1
p, induces the basal synthesis (k0

c s
+(xp, θ1

p))

of xc while a higher value of xp, i.e. θ2
p, is needed to stimulate its main expression

(k1
cs

+(xp, θ2
p)). Moreover, the crp gene is regulated both positively and negatively by

cAMP-CRP. However, in order to simplify, we omit the negative control of crp, because

this mechanism only plays a role when the CRP concentration is low [144]1. Thus, only

one concentration threshold of CRP, i.e. θ1
c , is required in the model, to allow production

of the cAMP-CRP complex. In conclusion, taking into account the regulation function

of cAMP-CRP in (5.16), the CRP synthesis reads:

fc(x) = k0
c s

+(xp, θ1
p) + k1

c s
+(xp, θ2

p) b
+
cAMP−CRP (xc, xp), (4.4)

with

0 < θ1
c < maxc, (4.5)

where maxc is the maximum concentration value for CRP.
1We found that a model involving the negative control of crp by cAMP-CRP does not have any effect

on the conclusion of this study.
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4.2.4 CGEM synthesis

In this bi-dimensional model, since the CGEM is the main factor which determines

growth of the cell, it is also responsible for its own synthesis. We have thus assumed

that a low concentration (θ1
p) is sufficient to stimulate its basal production k0

p s
+(xp, θ1

p)

while its main production k1
p s

+(xp, θ2
p) is stimulated only above the θ2

p threshold. Thus,

we can order the thresholds for xp as:

0 < θ1
p < θ2

p < maxp, (4.6)

where maxp is the maximum concentration value.

Moreover, the inducer effect is modelled by input ν1. For a general formulation of the

activation of xp by an inducer I, we will later on assume that ν1 is a positive increasing

function of I. Consequently, xp synthesis reads:

fp(x) = ν1 k
0
p s

+(xp, θ1
p) + ν1 k

1
p s

+(xp, θ2
p). (4.7)

4.2.5 Proteins removal

The negative terms in ẋc and ẋp of (4.1) take into account the fact that cells remove

proteins by two processes: degradation and dilution due to cell growth [66]. Notably,

these terms can generally be expressed as (µ(t)+γi)xi (for i = c, p) where µ(t) = µ̄ xp(t),

which is the bacterial growth rate in (4.2), is responsible for the proteins’ dilution while

γi stands for protein’s degradation.

4.3 Qualitative Analysis of the Open-loop Model

In this section we will qualitatively study, by means of phase-planes and bifurcation

diagrams, model (4.1) in the case that cells are grown in glucose. This will elucidate

how qualitative dynamics—in terms of equilibria’ location and their stability—is inter-

twined with biological phenomena. Moreover, we shall show how—through the external

input ν1—the stability of equilibria in (4.1) can be controlled, pointing out a reciprocal

influence between growth rate and gene expression.

4.3.1 Open-loop model in glucose growth

If cells are grown in glucose, then parameters depending on the substrate become θµ̄ =

θGp and µ̄ = µG in model (4.1). Moreover, in the presence of glucose or other PTS
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sugars, adenylate cyclase2 activity decreases, leading to a drop in the cellular level of

cAMP [116, 134]. Thus, we have modelled this effect assuming:

0 < θ1
p < θGp < θ2

p < maxp. (4.8)

Therefore, during growth on glucose, the state space of model (4.1) can be partitioned

into eight regular domains, where the vector field is uniquely defined:

DG
1 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , 0 ≤ xp < θ1

p

}
DG

2 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, 0 ≤ xp < θ1

p

}
DG

3 =
{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , θ

1
p < xp < θGp

}
DG

4 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, θ1

p < xp < θGp
}

DG
5 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , θ

G
p < xp < θ2

p

}
DG

6 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, θGp < xp < θ2

p

}
DG

7 =
{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , θ

2
p < xp ≤ maxp

}
DG

8 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, θ2

p < xp ≤ maxp
}
.

In addition, there are also switching domains, where the model is defined only as a

differential inclusion [73], corresponding to the segments where each of the variables is

at a threshold (xi = θi and xj ∈ [0,maxj ]).

In general, for any regular domain D, the synthesis rates (4.4) and (4.7) are constant

for all x ∈ D, and it follows that model (4.1) can be written as
ẋc (t) = fDc − (µ̄ xp(t) + γc) xc(t)

ẋp (t) = fDp − (µ̄ xp(t) + γp) xp(t)
(4.9)

with fDc , f
D
p , µ̄, γc, γp positive real constants. For any initial condition x(t0) ∈ D the

unique solution of (4.9) can be found explicitly by solving first the xp-equation of (4.9),

which is an autonomous differential equation, and then solving the xc-equation, having

substituted xp(t) into it. Thus, it can be shown that xc(t) is given by:

xc(t) =
1
b(t)

(
b(t0)xc(t0) + fDc

∫ t

t0

b(s)ds
)

2Enzyme that catalyses the conversion of ATP to cAMP and pyrophosphate.
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where b(t) = exp
(∫ t

t0
(µ̄ xp(τ) + γp)dτ

)
. Moreover, defining Φ(D) = (x̄c, x̄p)T with

x̄c =
fDc

µ̄x̄p + γc
,

x̄p =
−γp +

√
γ2
p + 4µ̄fDp

2µ̄
,

(4.10)

(it is easy to check that x̄p—in (6.11)—is the only positive solution of ẋp = 0) it turns

out that either x(t)→ Φ(D) as t→∞ or x(t) reaches the boundary of D.

Definition 4.1. Given a regular domain D, the point Φ(D) = (x̄c, x̄p)T (defined

by (6.11)) is called the focal point for the flow in D.

We will group into regions Rj those domains DG
i where model (4.1)—in glucose growth—

has the same dynamics and thus the same focal points. Considering Definition 6.5, we

have the following focal points:

� ∀x ∈ R1 =
{
x ∈ R2

≥0 : x ∈ DG
1 ∪DG

2

}
xc → 0 ∧ xp → 0

Thus, ΦG
0 = (0, 0) is the focal point of region R1.

� ∀x ∈ R2 =
{
x ∈ R2

≥0 : x ∈ DG
3 ∪DG

4 ∪DG
5 ∪DG

6

}
xc →

k0
c

µG x̄1
p,G + γc

= x̄2
c,G

xp →
−γp +

√
γ2
p + 4 ν1 k0

p µG

2µG
= x̄1

p,G

Thus, ΦG
1 = (x̄2

c,G, x̄
1
p,G) is the focal point of region RG2 .

� ∀x ∈ R3 =
{
x ∈ R2

≥0 : x ∈ DG
7 ∪DG

8

}
xc →

k0
c

µG x̄2
p,G + γc

= x̄1
c,G

xp →
−γp +

√
γ2
p + 4 ν1(k0

p + k1
p)µG

2µG
= x̄2

p,G

Thus, ΦG
2 = (x̄1

c,G, x̄
2
p,G) is the focal point of region R3.

The focal points ΦG
i (i = 1, ..., 3) are equilibrium points of model (4.1) provided that

they belong to their respective regular domain, i.e. Φ(D) ∈ D. The local stability of

equilibrium points is given by the following theorem.
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0

Figure 4.2: Phase plane of model (4.1) during growth in glucose. Parameter values
used: θ1c = 0.6, θ1p = 0.8, θGp = 2, θ2p = 3.5, k0

c = 7, k1
c = 10, k0

p = 40, k1
p = 50, γc = 1,

γp = 1, µG = 2 end ν1 = .5. The black curve is the xc-nullcline: xp =
k0
c

xc µG
− γc
µG

.

Stable fixed points: ΦG0 , ΦG1 , ΦG2 .

Theorem 4.2. Let D be a regular domain and Φ(D) be the focal point of D. If Φ(D) ∈
D, then Φ(D) is a locally stable point of model (4.1).

Proof. Model (4.1) restricted to D is given by (4.9). In order to assess the stability of

Φ(D), we compute the Jacobian matrix of (4.9) calculated in Φ(D) = (x̄c, x̄p)T :

J(x̄c, x̄p) =

(
−(µ̄x̄p + γc) −µ̄x̄c

0 −(2µ̄x̄p + γp)

)
.

Since all the eigenvalues of J , which are the diagonal entries as J is diagonal, are negative,

Φ(D) turns out to be a locally stable point.

Hence, there can be at most three locally stable steady states during growth on glucose.

Fig. 4.2 depicts the phase-plane of model (4.1). It can be seen that ΦG
0 , ΦG

1 , ΦG
2 , (for

the parameter values used) are locally stable steady states since they are within their

respective regular domains (Theorem 6.3). Notably, it is easy to verify that ΦG
0 is

locally stable for any set of parameters. It represents absence of growth and can happen

when the initial condition xp(t0), is too low—specifically xp(t0) < θ1
p—to initiate gene

transcription or when the control input ν1 does not sufficiently induce CGEM expression,

that is when x̄1
p,G < θ1

p. We refer to ΦG
0 as the trivial fixed point. ΦG

1 represents CGEM
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Figure 4.3: Bifurcation diagram for model (4.1) during growth in glucose, showing
the non trivial locally stable steady states of xp as a function of the control input ν1.
Other parameter values used are the same as those in Fig. 4.2. See Proposition 4.3 for

more details.

basal level—leading to a low growth rate (see (4.2))— while CRP is at a high level,

which is in agreement with high crp gene expression (by cAMP-CRP) at lower growth

rate. Thus, because of the low growth rate achieved, we refer to ΦG
1 as the low fixed

point. Conversely, at ΦG
2 , CRP is at low level while CGEM , as well as µ, have reached

their highest stable values. Thus, ΦG
2 is named the high fixed point.

Since x̄1
p,G(ν1) and x̄2

p,G(ν1) are function of ν1, it turns out that the location of focal

points ΦG
1 and ΦG

2 , and thus the number of equilibria of model (4.1), depend on the

control input ν1. Hence, choosing appropriate values of ν1 it is possible to control

model (4.1) towards ΦG
1 or ΦG

2 . To illustrate this, we have depicted in Fig. 4.3 the

xp-bifurcation diagram when parameter ν1 varies from 0 to 1 while the other parameter

values are the same as those used in Fig. 4.2.

We notice that Fig. 4.3 is divided into four parts in which xp stability changes signif-

icantly. In part I, for those values of ν1 such that x̄1
p,G < θ1

p and x̄2
p,G < θ2

p, neither

ΦG
1 nor ΦG

2 are stable steady states. In this case, model (4.1) during growth on glucose

converges towards the only stable point ΦG
0 (not depicted in Fig. 4.3). So, in I, the

control input is too small to allow CGEM to reach a basal level, and prevents bacterial

growth.

In part II, when x̄1
p,G(ν1) > θ1

p and x̄2
p,G(ν1) < θ2

p hold, only ΦG
1 is a stable steady state

(besides the trivial one) according to Theorem 6.3. Hence, it turns out that choosing an

initial condition of CGEM xp(t0) > θ1
p and ν1 such that x̄1

p,G(ν1) > θ1
p and x̄2

p,G(ν1) < θ2
p,

we can control model (4.1) to the stable point ΦG
1 .
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In part III, characterized by θ1
p < x̄1

p,G(ν1) < θ2
p and x̄2

p,G(ν1) > θ2
p, both ΦG

1 and ΦG
2

are stable steady states: this is a region of bi-stability. Moreover, the phase plane

corresponding to this configuration is depicted in Fig. 4.2, where we can also observe

the presence of two separatrices xp = θ1
p and xp = θ2

p. Is is clear that, depending on

xp(t0), the model can converge to ΦG
1 (if θ1

p < xp(t0) < θ2
p) or to ΦG

2 (if xp(t0) > θ2
p).

In part IV, when x̄1
p,G(ν1) > θ2

p holds, only ΦG
2 is a stable steady state and thus, whenever

xp(t0) > θ1
p, model (4.1) converges to ΦG

2 .

The open-loop control in glucose growth can be summarized as follows.

Proposition 4.3. Consider model (4.1) with control input ν1 and initial condition xp(t0)

such that:

� if (x̄1
p,G(ν1) < θ1

p ∧ x̄2
p,G(ν1) < θ2

p) ∨ xp(t0) < θ1
p, then model (4.1) converges to

the trivial focal point ΦG
0 (region I in Fig. 4.3);

� if x̄1
p,G(ν1) > θ1

p ∧ x̄2
p,G(ν1) < θ2

p ∧ xp(t0) > θ1
p, then model (4.1) converges to

the low focal point ΦG
1 (region II in Fig. 4.3);

� if θ1
p < x̄1

p,G(ν1) < θ2
p ∧ x̄2

p,G(ν1) > θ2
p ∧ xp(t0) > θ1

p, then model (4.1) is bistable

(region III in Fig. 4.3) and notably:

– if θ1
p < xp(t0) < θ2

p, then model (4.1) converges to the low focal point ΦG
1 ;

– if xp(t0) > θ2
p, then model (4.1) converges to the high focal point ΦG

2

� if x̄1
p,G(ν1) > θ2

p ∧ xp(t0) > θ1
p, then model (4.1) converges to the high focal point

ΦG
2 (region IV in Fig. 4.3).

4.4 Growth rate expression for exponential phase

Here, to account for different dosage of inducer, we make an assumption to analytically

characterize the function ν1 = h(v). Notably, to describe the regulation of CGEM gene

expression by the inducer, we employ a function typically used in synthetic biology [102]:

ν1(v) = α+ (1− α)
vn

Kn
v + vn

(4.11)

where v denotes inducerconcentration and α accounts for the basal transcriptional activ-

ity. Controlled gene expression follows Hill-type dosage-response curve with promoter-

activator affinity Kv and cooperative (Hill) coefficient n. During exponential phase—the

period characterized by cell doubling— the bacterial culture shows a constant growth
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rate [129]. This means that, according to (4.2), a stable fixed point of the CGEM has

to be reached. Hence, our expression of growth rate during exponential phase reads:

µ = µGx̄p (4.12)

where x̄p is the CGEM concentration at steady state, which can be either x̄1
p,G or x̄2

p,G—

depending on the amount of inducerwhich determines the level of CGEM expression.

Thus, our expression of growth rate during exponential phase can assume the two values

below:

µ(v) =


µGx̄

1
p,G =

−γp +
√
γ2
p + 4 ν1 k0

p µG

2

µGx̄
2
p,G =

−γp +
√
γ2
p + 4 ν1 (k0

p + k1
p) µG

2
.

(4.13)

Specifically, we assumed there is a particular value of inducer, i.e. v∗, such that for an
appropriate choice of initial condition and for all v ≤ v∗ the CGEM steady state is x̄1

p,G

while for all v > v∗ the steady state is x̄2
p,G. Thus, considering that, and substituting

(4.11) into (7.9) we obtain the theoretical expression for growth rate during exponential
phase:

µ(v) =

8>>>>>>>><>>>>>>>>:

−γp
2

"
1−

s
1 +

4k0
pµGα

γ2
p

+
4k0
pµG(1− α)

γ2
p

vn

Kn
v + vn

#
if, v ≤ v∗

−γp
2

"
1−

s
1 +

4(k0
p + k1

p)µGα

γ2
p

+
4(k0

p + k1
p)µG(1− α)

γ2
p

vn

Kn
v + vn

#
if, v > v∗

(4.14)

It is worthy to notice that expression (4.14) directly relates the growth rate µ during

exponential phase to the amount of the inducer v. Hence, using (4.14) we can fine

tune—by means of appropriate level of the inducer—the growth rate of the cells during

the exponential phase.

4.5 In silico Identifiability Analysis of Growth Rate

Our collaborators (Jérôme Izard and Hans Geiselmann 3) are currently performing an

ongoing experiment on a synthetic E. coli – implementing the open-loop model de-

picted Fig. 4.1 – which relates the level of growth rate during the exponential phase to

the amount of the inducer. In the future, these dose-response curves will be useful to

calibrate and validate the growth rate expression (during exponential phase) (4.14).
3Laboratoire Adaptation et Pathogénie des Microorganismes, (CNRS UMR 5163), Université Joseph

Fourier, Bâtiment Jean Roget, Faculté de Médecine-Pharmacie, La Tronche, France
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Here, we used simulated data to fit the the growth rate model (4.14) and to study the

identifiability of the parameters.

4.5.1 Problem Statement

Given a parametric non-linear model, such as (4.14), the relationship between a response

variable (output) and one or more predictor variables (input) can be represented by the

expression:

y = η(v, p) + ε ,

where

� y is an n× 1 vector of observations of the response variable,

� v is an n×m matrix of predictors,

� p is a q × 1 vector of unknown parameters to be estimated,

� η is any function of v and p,

� ε is an n× 1 vector of independent, identically distributed random disturbances.

The nonlinear regression problem consists of finding a vector p̂ minimizing a scalar cost

function J(p), which is generally a measurement of the agreement of experimental data

with the outputs predicted by the model. The cost function that we have considered in

this work is a weighted least squares criterion:

J(p) =
n∑
i=1

(yi − η(vi, p))
2

y2
i

(4.15)

where yi denotes the i-th data-point of the observable y, measured at input-points vi,

and η(vi, p) the i-th observable as predicted by the parameters p. The parameters can

be estimated numerically by:

p̂ = arg min [J(p)] . (4.16)

Determining the parameter vector p̂ which minimizes J(p) is only a part of the parameter

estimation problem. In fact, when preparing to fit a mathematical model or expression to

a set of experimental data, the prior assessment of parameter identifiability is a crucial

aspect [170]. However, the structural identifiability analysis for non-linear models in

systems biology is still a challenging question [47]. Whether or not parameters can be

estimated uniquely depends on the model structure, the parametrization of the model

and the experiment used to get the data [140].
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Regarding this problem, we briefly recall two important definitions on identifiability [174]:

� the parameter pi, i = 1, ..., q is structurally globally identifiable if assuming

ideal conditions (error-free model structure and unlimited noise-free observations

(v, y)) and if for almost any p∗ ∈ P (admissible parametric space P),

y(p, v) = y(p∗, v),∀v ⇒ pi = p∗i .

� the parameter pi, i = 1, ..., q is structurally locally identifiable if assuming

ideal conditions (error-free model structure and unlimited noise-free observations

(v, y)) and if for almost any p∗ ∈ P (admissible parametric space P), there exists

a neighbourhood V (p∗) such that

p ∈ V (p∗) ∧ y(p, v) = y(p∗, v),∀v ⇒ pi = p∗i .

An important complement to the structural identifiability definitions is the notion of

practical identifiability. Practical identifiability is indeed related to the quality of

experimental data and their information content [61]. The question raised by this notion

is the following: in the presence of observation errors and/or few data are reliable

estimations of the parameters possible? Thus, once having determined the value of p̂

minimizing the cost function J(p), it is very important to find a realistic measure of how

p̂ is precise. To this end, the confidence intervals4 of the estimated parameters have to

be calculated.

It must be noted that, unlike for the linear case for which an exact theory exists, there is

no exact theory for the evaluation of confidence intervals for systems which are nonlinear

in the parameters. An approximate method based on a local linearisation of the output

function η(v, p) is generally used [75, 152], thus the confidence region is evaluated as

a function of the parameter covariance matrix. The applicability of such approximate

method requires that the response function η(v, p) must be continuous in its arguments

(v, p), the first partial derivatives ∂
∂pi
η(v, p) must be continuous in its arguments (v, p),

and the second partial derivatives ∂2

∂pi∂pj
η(v, p) must be continuous in its arguments

(v, p), but our model (4.14) does not satisfy these conditions because of the discontinuity

in v = v∗. Hence, in the remainder of the paper a computational method, based on in

silico generated data, is suggested to argue the practical identifiability of non-linear

discontinuous model such as (4.14).
4A confidence interval [σ−i , σ

+
i ] of a parameter estimate p̂i to a confidence level α signifies that the

true value p∗i is located within this interval with probability α.
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4.5.2 Generation of Simulated Data Sets

In order to assess the quality of parameter estimation and thus the practical identifia-

bility of parameters in (4.14), artificial data were generated by simulation of (4.14) from

a set of pre-defined parameters (to be considered as true values). The true parameter

values (Tab. 4.5.2) were chosen from physiological parameters of E.coli cells [31, 114]

and were based on similar studies of this type [160].

k0
p k1

p γp µG α Kv n v∗

[µM ·min−1] [µM ·min−1] [min−1] [(µM ·min)−1] [µM ] [µM ]

0.02 0.11 0.006 0.0014 0.1 30 2 50

Table 4.1: Nominal parameter values

Thus, the artificial growth rate values have been simulated considering a measurement

error proportional to the nominal value of growth rate:

y = µ(v) + σµ(v)N (0, 1) (4.17)

where N (0, 1) is a normally distributed random variable with zero mean and unit vari-

ance and σµ(v) is the standard deviation of the observation errors. Four different types

of data sets were considered to account for practical identifiability:

� data set I, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 10−2;

� data set II, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 10−2;

� data set III, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 5 · 10−2;

� data set IV, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 5 · 10−2;

Notably, data sets I, II, III and IV, have been generated with different number of points

(Nexp) and different intensities of noise (σ) to study the practical identifiability of the

parameters in four realistic experimental conditions. In particular, data sets I and III

have the same number of data points, i.e. Nexp = 62, but different noise, σ = 10−2 for

data set I and σ = 5 · 10−2 for data set III. Data set II and IV have less number of

points, i.e. Nexp = 32, while the level of noise considered is σ = 10−2 for data set II and

σ = 5 · 10−2 for data set VI.
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4.5.3 Model Parametrization and Global Optimization

First, to avoid evident structural identifiability problems we will group together those
parameters in (4.14) which appear as combinations of products and/or quotients between
parameters. Thus, after some algebraic manipulations expression (4.14) reads as:

µ(v) =
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(4.18)

Moreover, to avoid dependence on physical unit as well as to overcome possible scal-

ing problem and to reduce the number of parameters, we decided to calculate a non-

dimensional version of expression (4.18). Notably, the non-dimensional slope µN (v) is

obtained by dividing µ(v) in (4.18) for the minimal growth rate, which is achieved at the

minimum value of the inducer, i.e. at v = v0, which for our data sets I, II, III, IV con-

sists in v0 = 0. Thus, considering the necessary condition v0 < v∗, the non-dimensional

growth rate during the exponential phase reads:

µN (v) =
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(4.19)

Now, considering the following parametrization

p1 =
4k0

pµGα

γ2
p

; p2 =
(1− α)
α

; p3 = Kv; p4 = n; p5 =
4k1

pµGα

γ2
p

; p6 = v∗

the expression (4.19) can be rewritten as

µN (v, p) =

8>>>>>>>>>><>>>>>>>>>>:
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(4.20)
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where p = [p1, p2, p3, p4, p5, p6] and, considering the true parameters values in Tab 4.5.2

we obtain the true vector of parameters p∗:

p∗ = [0.3033, 9, 30, 2, 1.6683, 50] . (4.21)

Similarly, the data sets I to IV will also be normalized to their minimal value, i.e., each

output-point is divided by the minimal observation value, that is ymin = µ(v0), where

v0 = 0.

Our approach in identifying the unknown parameters of model (4.19) consists in solving

a non-linear least squares minimization problem, using a hybrid optimization approach

which makes use of the functions ga (Genetic Algorithm [87]) and GlobalSearch of the

MATLAB Global Optimization Toolbox . To start, we used the Genetic Algorithm (GA)

for 104 generations to get near an optimum point. The genetic algorithm does not use

derivatives to detect descent in its minimization steps. Hence, it is a good choice for non-

differentiable and/or discontinuous problems. Moreover, GA does not necessarily need

an user supplied initial guess, which in most case leads to local sub-optimal convergence

if the initial guess is far from the global optimum. The result obtained with the genetic

algorithm is then used as initial point of a hybrid function, to further improve the value

of the cost function J(p). We decided to use the GlobalSearch5 command as hybrid

function since it searches many basins of attraction near the starting point given by GA,

arriving faster at an even better solution.

4.5.4 In Silico Practical Identifiability Analysis

The practical identifiability of model (4.20) has been tested using data sets I, II, III and

IV, which have different values of errors’ measurement and different data points. Hence,

these artificial data are suitable to mimic realistic experimental set-ups.

For each data set mentioned above, parameters’ confidence intervals have been computed

following a Monte Carlo-like approach.

Notably, Nsimul = 200 runs of the previously described hybrid optimization were per-

formed. Where, at each of theNsimul runs, a new realization of the artificial measurements—

according to the inputs and noise statistic of each data set—is considered. These Nsimul

5 GlobalSearch first runs fmincon from the start point you give. If this run converges, GlobalSearch
records the start point and end point for an initial estimate on the radius of a basin of attraction. Then,
GlobalSearch solver starts a local solver (fmincon) from multiple starting points and store local and
global solutions found during the search process. Notably, the GlobalSearch solver first uses a scatter-
search algorithm to randomly generate multiple starting points, then filters non-promising start points
based upon objective and constraint function values and local minima already found, and finally runs a
constrained nonlinear optimization solver to search for a local minimum from the remaining start points.
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DATA SET I DATA SET II DATA SET III DATA SET IV
σ = 102 σ = 10−2 σ = 5 · 10−2 σ = 5 · 10−2

Nexp = 62 Nexp = 32 Nexp = 62 Nexp = 32

CI1 0.3328± 0.4939 0.3738± 0.5441 0.2631± 0.4220 0.32± 0.49

CI2 9.23± 3.45 9.36± 3.88 8.63± 3.06 9.21± 4.67

CI3 30.16± 3.55 30.00± 3.55 29.39± 5.15 30.33± 7.52

CI4 2.002± 0.079 2.011± 0.089 2.006± 0.232 2.01± 0.33

CI5 2.053± 4.192 2.39± 4.51 1.53± 3.59 1.93± 3.99

CI6 53.32± 4.48 55.98± 6.99 53.06± 3.58 56.70± 6.79

Table 4.2: Confidence intervals of estimated parameters p̂i when (4.20) is fitted to
(non-dimensionalized) data sets I, II,III,IV. The confidence intervals for parameters
become larger at increasing values of the measurement error and at decreasing numbers
of data points, indicating possible practical identifiability problems especially for p̂1

and p̂5.

optimization yields Nsimul estimated values for each parameter pi, i = 1, . . . , 5. Then,

for each i, an average value, m̂i, and a standard deviation, ŝi, were computed by fitting

a Gaussian distribution N (m̂i, ŝ
2
i ) to the histogram of the Nsimul values of pi. Thus, the

95% confidence interval (CIi) for the pi parameter is calculated as:

CIi = m̂i ± 1.96ŝi (4.22)

This leads to the confidence intervals listed in Table 4.2.

As we can see in Table 4.2, parameters pi for i ∈ {2, 3, 4, 6} do not show any practical

identifiability issues, as the true value is contained in the respective CI with sufficiently

precision. On the contrary, the CIs of parameters p̂1 and p̂5 tend to become very large

at increasing values of the measurement’s errors (σ) and at decreasing numbers of data

points, indicating that in real experimental conditions (that is, limited and noisy data),

the precise identification of these parameters might be impracticable. Moreover, we

found that the correlation coefficient (R) between the two vectors of estimated param-

eters parameters p̂1 and p̂5 is R = 0.99, for all data sets. Recall that the correlation

coefficient measures the interrelationship between p̂1 and p̂5 quantifying the compensa-

tion effects of changes in the parameter values on the model output. In fact, when two

parameters are highly correlated, a change in the model output caused by a change in

a model parameter can be balanced by a proper change in the other parameter value.

Thus, instead of considering the CIs of p̂1 and p̂5 separately—which are not significant—

we have computed the confidence interval of their ratio, i.e. p̂5/p̂1. These results are

presented in Table 4.3. As we can notice in Table 4.3, the CIs of p̂5/p̂1 are accurate,
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DATA SET I DATA SET II DATA SET III DATA SET IV
σ = 10−2 σ = 10−2 σ = 5 · 10−2 σ = 5 · 10−2

Nexp = 62 Nexp = 32 Nexp = 62 Nexp = 32

CIp̂5/p̂1 5.29± 2.39 5.54± 2.43 4.99± 1.15 5.2± 1.3

Table 4.3: Confidence intervals of the ratio p̂5/p̂1 when (4.20) is fitted to (non-
dimensionalized) data sets I, II,III,IV.
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Figure 4.4: Fitting the growth rate function (4.20) using one realization of the non-
dimensional data set II. The blue points are the normalized artificial data generated
according to specification of data set II. The red curve is the function (4.20) when p̂ is

used.

since they contain the true value of the ratio p∗5/p
∗
1 = 5.5, and more precise since their

relative width is smaller than the relative width of CI1 and CI5.

It must be noted that a further reduced model which takes into account the correlation

between p5 and p1 can not be achieved. This because expression (4.20) can be rewritten

in terms of the ratio and either p5 or p1. Fig 4.4 shows the fitting of model (4.20) to one

realization of data set IV.

4.6 Conclusions

In this paper, a minimal model consisting of two variables (the concentrations of two

gene products) and an input (an inducer) was analysed and used to describe one possible

mechanism to control the growth rate of E. coli cells during exponential phase. This
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model is based on the piecewise linear formalism but a new, non-linear, term was added

to account for the dilution effect during growth. The qualitative dynamics of the model

can thus be studied, and the bifurcation diagram with respect to the input is obtained.

Moreover, this mathematical formalism allows derivation of an analytic expression for

the growth rate as function of the input. This expression has two applications:

� it can be directly fitted to experimental data to estimate a set of parameters (this

is an advantage relative to the typical ”indirect” parameter estimation by fitting

to the numerical solutions of the differential equations);

� it provides an indication of how to control the growth rate to a desired value by

adding a given quantity of inducer.

Finally, practical identifiability analysis based on numerical simulations is presented,

which shows that some issues may arise with noisy measurements. In this case, our

analysis suggests that the original growth rates’ measurements should be adimensional-

ized and unknown parameters grouped into a new set of ”lumped” parameters in order to

obtain local identifiability. Notably, we found that only the ratio between the estimated

parameters p̂1 and p̂5 can be estimated with sufficient precision in the case when only

limited and noisy data are available. This study and the conclusions on identifiability

will be most useful to help dealing with and solving parameter estimation problems with

real data sets.
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Chapter 5

Controlling bacterial growth: in

silico feedback law design to

re-wire the genetic network

Here we present an unpublished work, in which we continue studying and developing

the synthetic gene circuit model introduced in Chapter 4, with the aim of proposing

some qualitative control strategies to tune and modify growth rate in Escherichia coli.

First, an open loop circuit is obtained by externally controlling the gene encoding for

RNA polymerase through an inducible promoter. Notably, varying the constant input

we can impose a low or a high stable value to the growth rate. Finally, by appropriately

rewiring and designing the gene interactions, we have formulated a feedback law, which

mathematically shows the inverse diauxie in an appropriate range of the input values.

5.1 Introduction

Growth control is essential in industrial biotechnology and fundamental research of this

kind could pave the way to novel types of antimicrobial strategies. Indeed, the basic

effect of an antibiotic is to slow (or arrest) growth.

Here, we first introduce a novel mathematical formalism to qualitative model gene ex-

pression and dilution due to growth rate (Section 5.2). Then, we focus on the gene

expression machinery of the bacterium Escherichia coli, with the aim of controlling

the growth rate of the cells (Section 5.3). To this end, we present and analyse a

bi-dimensional open-loop model in which the growth rate is controlled externally—

expressing RNA polymerase from a synthetic IPTG-inducible promoter (Section 5.4,

65



Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the
genetic network 66

5.5). Finally, by designing a feedback law, we obtain a closed-loop model which imple-

ments a possible rewiring of the genetic network and modifies the wild type response

of the bacteria to nutrients (Section 5.6). More specifically, the model is able to the-

oretically generate inverse diauxie, notably higher growth rate on an alternative sugar

than on the preferred glucose (Section 5.7). The new rewiring does allow both to control

growth rate in response to a sugar source and fine-tune it in response to an (external)

inducer.

5.2 Piecewise linear models with dilution

The regulation of gene expression plays a pivotal role in the functioning of cells. Mathe-

matical modelling and computational techniques are fundamental to the understanding

of these genetic regulatory networks ([14, 54]). The principal modelling challenges come

from incomplete knowledge of the networks, and the dearth of quantitative data for

identifying kinetic parameters required for detailed mathematical models. Qualitative

methods overcome both of these difficulties and are thus well-suited to the modelling

and simulation of genetic networks.

A class of widespread and well studied qualitative models are piecewise linear (PL)

systems, originally introduced by Glass and Kauffman [85]. PL models of regulatory

genetic networks are built with discontinuous (step) functions. The use of step function

has been motivated by the experimental observation that the activity of certain genes

changes in a switch-like manner at a threshold concentration of a regulatory protein [180].

The PL model has the general form

ẋi = fi(x)− dixi, 1 ≤ i ≤ n, (5.1)

where x = (x1, ..., xn)T is a non-negative vector of protein concentrations. The non-

negative quantities fi(x) and dixi represent synthesis and degradation rates for each

protein xi respectively. The function fi : Rn
≥0 → R≥0 represents the expression rate of

the gene i depending on the whole state x. However, fi(x) can be detailed as:

fi(x) =
Li∑
l=1

kilbil(x)

where kil > 0 is a rate parameter and bil(x) is a combination of step functions s+, s−:

s+(xi, θ
j
i ) =

1 if xi > θji

0 if xi < θji

; s−(xi, θ
j
i ) = 1− s+(xi, θ

j
i ).
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More details on PL models can be found in [40, 43, 56, 90, 91].

Since our purpose is dealing with gene expression during bacterial growth, we take into

account the fact that cells remove proteins by two processes: degradation and dilution

due to cell growth [66]. Thus, the PL formalism can be extended setting di = µ + γi

in (5.1), where µ is the bacterial growth rate responsible for the proteins’ dilution and γi
is a degradation constant. Moreover, in bacteria, growth rate is intimately intertwined

with gene expression ([114, 151]) and with the type of substrate [124]. Hence, keeping

complexity to a minimum, we assume growth rate µ to be proportional—with a constant

µ̄ depending on the quality of medium—to the concentration of one of n proteins, which

is supposed to be tightly related to µ. Assuming the growth proportional protein to be

xn, µ : R≥0 → R≥0 reads as:

µ(t) = µ̄ xn(t). (5.2)

Therefore, the PL system with dilution effect, henceforth referred to as piecewise wise

non-linear (PWNL) system, has the general form:

ẋi = fi(x)− (µ̄ xn + γi)xi, 1 ≤ i ≤ n (5.3)

or in vector notation

ẋ = f(x)− d(xn)x, (5.4)

where f = (f1, ..., fn) and d = diag(µ̄ xn + γ1, ..., µ̄ xn + γn), where diag is the diago-

nal matrix corresponding to the vector. The dynamics of the PWNL system (5.3) can

be studied in the n-dimensional state-space Ω = Ω1 × Ω2 × ... × Ωn, where each Ωi is

defined by Ωi = {xi ∈ R≥0|0 ≤ xi ≤ maxi} for some maximum concentration value

maxi. A protein encoded by a gene will be involved in different interactions at differ-

ent concentration thresholds, so for each variable xi, we assume there are pi ordered

thresholds θ1
i , ..., θ

pi
i (we also define θ0

i = 0 and θpi+1

i = maxi ). The (n− 1)-dimensional

hyper-planes defined by these thresholds partition Ω into hyper-rectangular regions we

call domains. Specifically, a domain D ⊂ Ω is defined to be a set D = D1 × ... × Dn,

where Di is one of the following:

Di =
{
xi ∈ Ωi|0 ≤ xi < θ1

i

}
Di =

{
xi ∈ Ωi|θji < xi < θj+1

i

}
for j ∈ {1, ..., pi − 1}

Di = {xi ∈ Ωi|θpii < xi ≤ maxi}

Di =
{
xi ∈ Ωi|xi = θji

}
for j ∈ {1, ..., pi}.

Let D be the set of domains in Ω . A domain D ∈ D is called a regulatory domain

if none of the variables xi has a threshold value in D (it is the full hyper-rectangle).
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In contrast, a domain D ∈ D is called a switching domain of order k ≤ n if exactly k

variables have threshold values in D [127]. The corresponding variables xi are called

switching variables in D. The two sets of domains are respectively denoted by Dr and

Ds.

5.2.1 Solutions in Regular Domains

For any regulatory domain D, the function f(x) is constant for all x ∈ D, and it follows

that the PWNL system (5.4) can be written as

ẋ = fD − d(xn)x, (5.5)

where fD is constant in D. For any x(t0) ∈ D the unique solution of (5.5) can be found

explicitly by solving first the n-component of (5.5)— ẋn = fDn −(µ̄ xn+γn)xn—which is

an autonomous differential equation, and then solving the i-components (i = 1, ..., n−1),

having substituted xn(t) into them. Thus, it can be shown that xi(t) (i = 1, ..., n− 1) is

given by:

xi(t) =
1
b(t)

(
b(t0)xi(t0) + fDi

∫ t

t0

b(s)ds
)

where b(t) = exp
(∫ t

t0
(µ̄ xn(τ) + γn)dτ

)
. Moreover, defining Φ(D) = (x̄1, ..., x̄n)T with

x̄i =
fDi

µ̄x̄n + γi
, i = 1, ..., n− 1

x̄n =
−γn +

√
γ2
n + 4µ̄fDn

2µ̄
,

(5.6)

(it is easy to check that x̄n—in (5.6)—is the only positive solution of ẋn = 0) it turns

out that either x(t)→ Φ(D) as t→∞ or x(t) reaches the boundary of D.

Definition 5.1. Given a regulatory domain D ∈ Dr, the point Φ(D) = (x̄1, ..., x̄n)T ∈ Ω

(defined by (5.6)) is called the focal point for the flow in D.

Different regulatory domains will usually have different focal points. In general, all

solutions in a regulatory domain D flow towards the focal point Φ(D) until they either

reach it or leave the domain D. What happens when a solution leaves a regulatory

domain D and enters a switching domain in the boundary of D? Since the step functions

are not defined when a variable xi takes some threshold value θqii , the vector field is

undefined on the switching domains. We need to precise our definition of solutions.
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5.2.2 Solutions in Switching Domains

To provide the existence and the possibility for solutions to be continued on all domains,

we have to define the right-hand side of system (5.4) at the points of discontinuity of

the function f . To this end, we use a construction originally proposed by Filippov [73]

and recently applied to PL systems ([56], [90]). The method consists of extending the

system (5.4) to a differential inclusion,

ẋ ∈ H(x), (5.7)

where H is a set valued function (i.e. H(x) ⊆ Rn). If D ∈ Dr, then we define H simply

as

H(x) = {fD − d(xn)x}, ∀x ∈ D. (5.8)

If D ∈ Ds, we define H as

H(x) = co({fD
′
− d(xn)x | D′ ∈ R(D)}), ∀x ∈ D, (5.9)

where R(D) = {D′ ∈ Dr | D ⊆ ∂D
′} is the set of all regulatory domains with D in their

boundary, and co(X) is the closed convex hull of X. For switching domains, H(x) is

typically multi-valued so solutions of the differential inclusion are defined as follows.

Definition 5.2. A solution of (5.7) on [0, T ] in the sense of Filippov is an absolutely

continuous function (w.r.t. t) ξt(x0) such that ξ0(x0) = x0 and ξ̇t ∈ H(ξt), for almost

all t ∈ [0, T ].

Now, we shall explain how to construct the set H(x) at discontinuity points of f .

Let us consider the case where x belongs to a switching domain S separating two n-

regular domains D1 and D2. Hence,

H(x) = co({fD1 − d(xn)x, fD2 − d(xn)x})

represents the segment joining the endpoints of the vectors g1 = fD1 − d(xn)x and

g2 = fD2 − d(xn)x. Trajectories can cross S if the vector fields g1 and g2 point in a

similar direction, slide along S if g1 and g2 point in opposite direction towards S and

be repelled from S if g1 and g2 point in opposite direction away from S. The last two

cases are known as stable and unstable sliding motion in the literature [40]. Moreover,

the velocity of the sliding motion (stable or unstable) on S is given by

ẋ = fS − d(xn)x. (5.10)
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Theorem 5.3. Assume that S is in the hyper-plane Cji = {x ∈ Rn
≥0 : xi = θji } and a

sliding motion (stable or unstable) occurs on S. The vector fS in (5.10) is given by

fS = αfD1 + (1− α)fD2 ,

α =


fD2
i − (γi + µ̄xn)θji

fD2
i − fD1

i

, if i ∈ {1, ..., n− 1}

fD2
i − (γi + µ̄θji )θ

j
i

fD2
i − fD1

i

, if i = n.

(5.11)

Proof. The segment joining the endpoints of the vectors fD1−d(xn)x and fD2−d(xn)x

is expressed by

αfD1 + (1− α)fD2 − d(xn)x, 0 ≤ α ≤ 1.

Since the state trajectories during sliding motion are on the hyper-plane xi = θji , the

parameter α in (5.11) is selected such that the state velocity vector of the system (5.10)

is in this hyper-plane. Thus, depending on whether the sliding mode occurs in xi = θji

(i ∈ {1, ..., n − 1}) or in xn = θjn, we have two values of α, which are found from the

conditions

αfD1
i + (1− α)fD2

i − (γi + µ̄xn)θji = 0, if i ∈ {1, ..., n− 1}

αfD1
i + (1− α)fD2

i − (γi + µ̄θji )θ
j
i = 0, if i = n.

We notice that in the case i = n the value of α is constant ∀x ∈ S and thus a sliding mode

occurs along the entire switching domain S. By contrast, in the case i ∈ {1, ..., n − 1}
the value of α depends on xn, that means that a sliding motion occurs on S as long

as the vector fields point in opposite direction towards (or away) S or, equivalently, as

long as 0 < α(xn) < 1 ∀xn ∈ S. Specifically, it could happen that solutions slide for a

while along S and then leave it as soon as the condition 0 < α(xn) < 1 does not hold

any more.

It is useful to define a concept analogous to the focal points defined for regulatory

domains, extended to deal with switching domains.

Definition 5.4. We recall that supp(D) is the (n−k)-dimensional hyperplane support-

ing D. Let D be a switching domain of order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (5.12)

where H(x) is defined as in (5.9).
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Hence, Φ(D) for D ∈ Ds is the set containing all the equilibrium points of the differential

inclusion (5.7), which lie on supp(D). Thus, Φ(D) can be a singleton, but more generally

is a closed convex bounded set and hence is referred to as a focal set.

To rule out some singular cases when proving results on stability, we make a technical

assumption on the focal sets for our system.

Assumption 1. ∀ D ∈ D, we assume that

Φ(D) ∩ supp(D′) = {}, ∀D′ ∈ R(D).

It essentially says that for every regular and switching domain D, the focal set Φ(D)

does not intersect the supporting hyperplane of any domain D′ in the boundary of D.

5.2.3 Equilibria and Stability in Regular Domains

The focal points are equilibrium points of the PWNL system (5.4) provided that they

belong to their respective regular domain, i.e. Φ(D) ∈ D. If this is the case, the focal

points are referred to as regular equilibria. The local stability of equilibrium points is

given by the following theorem.

Theorem 5.5. Let D ∈ Dr and Φ(D) be the focal point of D. If Φ(D) ∈ D, then Φ(D)

is a locally stable point of system (5.4).

Proof. System (5.4) restricted to D ∈ Dr is given by (5.5). In order to assess the stability

of Φ(D), we compute the Jacobian matrix of (5.5) calculated in Φ(D) = (x̄1, ..., x̄n)T :

J(x̄1, ..., x̄n) =

−(µ̄x̄n + γ1) 0 0 . . . 0 −µ̄x̄1

0 −(µ̄x̄n + γ2) 0 . . . 0 −µ̄x̄2

...
. . . . . . . . .

...
...

0 . . . 0 −(µ̄x̄n + γn−2) 0 −µ̄x̄n−2

0 . . . . . . 0 −(µ̄x̄n + γn−1) −µ̄x̄n−1

0 . . . . . . . . . 0 −(2µ̄x̄n + γn)


.

Since all the eigenvalues of J , which are the diagonal entries as J is diagonal, are negative,

Φ(D) turns out to be a locally stable point.
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5.2.4 Equilibria and Stability in Switching Domains

It is possible that solutions of (5.4) reach equilibria that lie in switching domains and

such equilibria are called singular equilibria. In general, a singular equilibrium x̄ of

system (5.4) is a point that satisfies the condition 0 ∈ H(x̄) and that belongs to some

threshold plane. Determining whether a singular equilibrium is stable or unstable re-

quires a detailed analysis that is beyond the scope of this paper. However, in the

following theorem we present a procedure to assess the stability of singular equilibria

that can occur on xn-hyperplane.

Theorem 5.6. Assume that a sliding motion occurs on a switching domain S, which

lies in the hyper-plane Cjn = {x ∈ Rn
≥0 : xn = θjn}, separating two regular domains D1

and D2. Let x̄ = (x̄1, ..., x̄n) be the singular equilibrium point of the sliding motion. If

x̄ ∈ S and if the sliding motion is stable (resp. unstable), then x̄ is locally stable (resp.

unstable).

Proof. Assuming the presence of a such stable sliding motion in S and x̄ ∈ S, this

implies that there exists a neighbourhood of x̄ where the n-component of trajectories

are approaching x̄n = θjn. Notably, the velocity of motion of the other i-components

(i = 1, ..., n− 1) is given by

ẋi = αfD1
i + (1− α)fD2

i − (µ̄θjn + γi)xi (5.13)

with α equal to the second value in (5.11). Hence, the stability of x̄ follows by the fact

that (5.13) is of the PL form. If the x̄ ∈ S, but the sliding motion is unstable, the

instability of x̄ follows from the instability of the sliding motion.

5.3 Introduction to the control problem

In this paper we focus on the gene expression machinery of the bacterium Escherichia

coli, with the aim of controlling the growth rate of the cells. E. coli is a model organ-

ism that is easy to manipulate and much knowledge is available about its regulatory

networks.

In the presence of a carbon source—such as the preferred glucose, or alternatively mal-

tose or other sugars—E. coli grows in an exponential manner until it exhausts the

nutrient sources, and then enters a stationary phase with practically zero growth [129].

The wild-type (namely the genetically unmodified) bacteria grow at different rates in

the presence of carbon sources of different types [124]. Notably, glucose is the preferred
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substrate because it leads to a higher growth rate in wild type. In the presence of two

carbon sources (one is glucose), two successive growth phases are observed: a faster

growth rate until glucose is exhausted and then a slower growth rate corresponding to

consumption of the alternative sugar. This phenomenon is called diauxie [133].

Our control objective is to force the bacterium to significantly modify its response to

glucose and an alternative carbon source. Using the PWNL formalism introduced in

Section 5.2 and taking into account the recent applications of synthetic biology, we

propose a bi-dimensional model of a mutant E. coli. The two basic variables, which

describe the gene expression machinery that is responsible for bacterial growth are (see

Figure5.1):

1. the concentration of RNA polymerase (RNAP), a special enzyme which enables

the transcription of any gene (in other words if there is no RNAP, the bacteria

can not produce proteins and thus can not grow);

2. the concentration of CRP, a protein involved in the formation of the complex

cAMP-CRP whose level positively correlates with less preferred carbon sources

and slower growth [24].

For this model we will study an open loop (see Figure5.1) configuration where the number

and location of equilibria can be controlled by means of an input control function, which

directly acts on the synthetic promoter of RNAP, tuning its gene expression. This choice

can be justified by the experiment in [160] where the synthetic promoter of RNAP is

controlled by IPTG as in Figure5.1.

Then, starting from the open-loop model, we extend it by adding a feedback control

of the system’s variables. The objective of the closed loop system is to explore, in

silico, the possibility of constructing a mutant E. coli by re-wiring the gene expression

machinery. In particular, the model suggests a re-wired network (see Figure5.6) that has

the property of making the bacteria grow faster on an alternative sugar than on glucose

(with appropriate set of parameters) leading de facto to inverse diauxie as desired.

5.4 Open-loop model

The open-loop model, expressed by (5.14), describes the qualitative dynamics of RNAP

and CRP concentrations when the rpoBC gene—encoding for RNAP—is controlled ex-

ternally by an IPTG-inducible promoter (ν1 = h(IPTG)). This RNAP control induces

bi-stability in RNAP expression for some parameter sets, as experimentally verified
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RNAP
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Synthesis of protein RNAP

from gene rpoBC
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a set of interactions 
Activation

Legend

Figure 5.1: Regulatory network of the open-loop model in the mutant E. coli. The
system consists of genes crp and synthetic-rpoBC. The synthetic-rpoBC promoter
is positively regulated by IPTG and RNA-Polymerase (RNAP), which initiates the
transcription of all genes (crp gene too). Moreover, crp transcription is induced by
cAMP-CRP, a metabolite whose formation relies on CRP protein abundance and low

level of bacterial growth rate µ.

in [160]. We shall take into account this bi-stability to control the system to the ”low”

or to the ”high” RNAP stable steady state. Let xc, xp ∈ R≥0 be the CRP and RNAP

concentrations respectively. Thus, the open-loop model graphically depicted in Fig-

ure 5.1, can be translated into a PWNL system as (5.3) considering n = 2, x1 = xc and

x2 = xp: 

ẋc (t) = k0
c s

+(xp, θ1
p) + k1

c s
+(xp, θ2

p) s
+(xc, θ1

c ) s
−(xp, θµ̄)

− (µ̄ xp(t) + γc) xc(t)

ẋp (t) = ν1 k
0
p s

+(xp, θ1
p) + ν1 k

1
p s

+(xp, θ2
p)

− (µ̄ xp(t) + γp) xp(t)

(5.14)

where:

� k0
i > 0 (i = c, p) are the basal synthesis rate constants;

� k1
i > 0 (i = c, p) are the main synthesis rate constants;

� ν1 is a positive input accounting for IPTG induction of the synthetic rpoBC pro-

moter;

� γi > 0 (i = c, p) is the degradation rate constant;

� θji > 0 (i = c, p; j = 1, 2) is the xi threshold concentration for activation/inhibi-

tion;
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� θµ̄ > 0 is a growth threshold depending on which substrate is used;

� µ̄ > 0 is a growth constant depending on which substrate is used.

In what follows, we will explain the main assumptions adopted in building the sys-

tem (5.14).

5.4.1 Growth rate

In bacteria, growth rate is highly correlated with RNAP [159], which plays a key role in

gene transcription [77], and with the type of substrate [124]. Hence, according to (7.9),

we modelled growth rate µ : R≥0 → R≥0 as:

µ(t) = µ̄ xp(t). (5.15)

5.4.2 cAMP-CRP activation

The cAMP-CRP activation box (Figure 5.1) summarizes the formation of the cAMP-

CRP complex from cAMP, a small metabolite, which binds the protein CRP. The cAMP

concentration is higher at low growth rate and rapidly decreases at high growth rate [24].

Thus, cAMP abundance in cells can be well captured by a negative step function of µ,

i.e. s−(µ, θµ). Moreover, since cAMP association with or dissociation from CRP is much

faster than the synthesis and degradation of proteins [144], we have assumed that as soon

as CRP reaches a certain threshold, i.e. θc, CRP instantly binds to cAMP in a switch-

like fashion . For these reasons, the positive regulation carried out by cAMP-CRP reads

as:

b+cAMP−CRP = s+(xc, θc) s−(µ, θµ).

Focusing on the decreasing step function s−(µ, θµ) and taking into account the expression

of µ in (5.15), we can rewrite b+cAMP−CRP as:

b+cAMP−CRP (xc, xp) = s+(xc, θc) s−(xp, θµ̄) (5.16)

where θµ̄ is a RNAP threshold concentration, which depends on the type of carbon

source.

5.4.3 CRP synthesis

With CRP synthesis we indicate the production of CRP, namely the positive term of ẋc
in (5.14). CRP—as every other protein—needs, to be expressed, that RNAP binds to
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the relative promoter in order to initiate transcription [77]. Thus, we have assumed that

a lower value of xp, i.e. θ1
p, induces the basal synthesis (k0

c s
+(xp, θ1

p)) of xc while a higher

value of xp, i.e. θ2
p, is needed to stimulate its main expression (k1

cs
+(xp, θ2

p)). Moreover,

the crp gene is regulated both positively and negatively by cAMP-CRP. However, in

order to simplify, we omit the negative control of crp, because this mechanism only

plays a role when the CRP concentration is low [144]1. Thus, only one concentration

threshold of CRP, i.e. θ1
c , is required in the model, to allow production of the cAMP-

CRP complex. In conclusion, taking into account the regulation function of cAMP-CRP

in (5.16), the CRP synthesis reads:

fc(x) = k0
c s

+(xp, θ1
p) + k1

c s
+(xp, θ2

p) b
+
cAMP−CRP (xc, xp),

with

0 < θ1
c < maxc, (5.17)

where maxc is the maximum concentration value for CRP.

5.4.4 RNAP synthesis

Similarly, RNAP synthesis denotes RNAP yield, expressed by the positive term of ẋp
in (5.14). We have assumed that a low concentration of RNAP (θ1

p) is sufficient to

stimulate its basal production k0
p s

+(xp, θ1
p) while only above the θ2

p threshold RNAP

is able to stimulate its main production k1
p s

+(xp, θ2
p). Thus, we can order RNAP’s

thresholds as:

0 < θ1
p < θ2

p < maxp, (5.18)

where maxp is the maximum concentration value for RNAP. Moreover, the synthetic

rpoBC promoter can be induced by IPTG whose effect is modelled by input v1. Since

we do not known whether the effect of IPTG is linear, we will later on assume, more

generally, that v1 is a positive increasing function of IPTG, to be denoted by v1 =

h(IPTG). Thus, RNAP synthesis reads:

fp(x) = ν1 k
0
p s

+(xp, θ1
p) + ν1 k

1
p s

+(xp, θ2
p).

5.4.5 CRP and RNAP removal

The negative terms of ẋc and ẋp in (5.14) take into account proteins’ dilution and

degradation as discussed in Section 5.2 and generally expressed in (5.3).
1We found that a model involving the negative control of crp by cAMP-CRP does not have any effect

on the conclusion of this study.
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5.5 Qualitative analysis of the open-loop system

In this section we will qualitatively study, by means of phase-plane analysis and bifur-

cation diagrams, system (5.14) in two cases: 1) cells grown in glucose and 2) cells grown

in a medium with a different sugar, which we will assume is maltose, for simplicity. This

will elucidate how different growth rates, induced by different substrates, influence gene

expression and vice versa. Moreover, we shall show how—through the external input

ν1—the stability of equilibria in (5.14) can be controlled.

5.5.1 Open-loop system in glucose growth

If cells are grown in glucose, then parameters depending on the substrate become θµ̄ = θGp

and µ̄ = µG in system (5.14). Moreover, in the presence of glucose or other PTS

sugars, adenylate cyclase2 activity decreases, leading to a drop in the cellular level of

cAMP [116] [134]. Thus, we have modelled this effect assuming:

0 < θ1
p < θGp < θ2

p < maxp. (5.19)

Therefore, during growth on glucose, the state space of system (5.14) can be partitioned

into eight regular domains, where the vector filed is uniquely defined:

DG
1 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , 0 ≤ xp < θ1

p

}
DG

2 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, 0 ≤ xp < θ1

p

}
DG

3 =
{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , θ

1
p < xp < θGp

}
DG

4 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, θ1

p < xp < θGp
}

DG
5 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , θ

G
p < xp < θ2

p

}
DG

6 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, θGp < xp < θ2

p

}
DG

7 =
{
x ∈ R2

≥0 : 0 ≤ xc < θ1
c , θ

2
p < xp ≤ maxp

}
DG

8 =
{
x ∈ R2

≥0 : θ1
c < xc ≤ maxc, θ2

p < xp ≤ maxp
}
.

The switching domains are not listed here, but they are as defined in Section 5.2. We

will group into regions RGj those domains where system (5.14)—in glucose growth— has

the same dynamics and thus the same focal points. Considering Definition 5.1, we have

the following focal points:
2Enzyme that catalyses the conversion of ATP to cAMP and pyrophosphate.
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� ∀x ∈ RG1 =
{
x ∈ R2

≥0 : x ∈ DG
1 ∪DG

2

}
xc → 0

xp → 0

Thus, ΦG
0 = (0, 0) is the focal point of region RG1 .

� ∀x ∈ RG2 =
{
x ∈ R2

≥0 : x ∈ DG
3 ∪DG

4 ∪DG
5 ∪DG

6

}
xc →

k0
c

µG x̄1
p,G + γc

= x̄2
c,G

xp →
−γp +

√
γ2
p + 4 v1 k0

p µG

2µG
= x̄1

p,G

Thus, ΦG
1 = (x̄2

c,G, x̄
1
p,G) is the focal point of region RG2 .

� ∀x ∈ RG3 =
{
x ∈ R2

≥0 : x ∈ DG
7 ∪DG

8

}
xc →

k0
c

µG x̄2
p,G + γc

= x̄1
c,G

xp →
−γp +

√
γ2
p + 4 v1(k0

p + k1
p)µG

2µG
= x̄2

p,G

Thus, ΦG
2 = (x̄1

c,G, x̄
2
p,G) is the focal point of region RG3 .

Hence, there can be at most three locally stable steady states during growth on glucose.

Figure 5.2 depicts the phase-plane of system (5.14). It can be seen that ΦG
0 , ΦG

1 , ΦG
2 , (for

the parameter values used) are locally stable steady states since they are within their

respective regular domains (Theorem 5.5). Notably, it is easy to verify that ΦG
0 is locally

stable for any set of parameters. It represents absence of growth and can happen when

RNAP initial condition, i.e. xp(t0), is too low—specifically xp(t0) < θ1
p—to initiate gene

transcription or when the control input ν1 does not sufficiently induce RNAP expression,

that is when x̄1
p,G < θ1

p. We refer to ΦG
0 as the trivial fixed point. ΦG

1 represents RNAP

basal level—leading to a low growth rate (see (5.15))— while CRP is at a high level,

which is in agreement with high crp gene expression (by cAMP-CRP) at lower growth

rate. Thus, because of the low growth rate achieved, we refer to ΦG
1 as the low fixed

point. Conversely, at ΦG
2 , CRP is at low level while RNAP, as well as µ, have reached

their highest stable values. Thus, ΦG
2 is named the high fixed point.

Since x̄1
p,G(ν1) and x̄2

p,G(ν1), it turns out that the location of focal points ΦG
1 and ΦG

2 ,

and thus the number of equilibria of system (5.14), depend on the control input ν1.
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0

Figure 5.2: Phase plane of system (5.14) during growth in glucose. Parameter values
used: θ1c = 0.6, θ1p = 0.8, θGp = 2, θ2p = 3.5, k0

c = 7, k1
c = 10, k0

p = 8, k1
p = 26, γc = 1,

γp = 1, µG = 2 e v1 = 1. The black curve is the xc-nullcline: xp =
k0
c

xc µG
− γc
µG

. Stable

fixed points: ΦG0 , ΦG1 , ΦG2 .
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Figure 5.3: Bifurcation diagram for system (5.14) during growth in glucose, showing
the non trivial locally stable steady states of xp as a function of the control input v1.
Other parameter values used are the same of those in Figure 5.2. See Proposition 5.7

for more details.
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Hence, choosing appropriate values of ν1 it is possible to control system (5.14) towards

ΦG
1 or ΦG

2 . To illustrate this, we have depicted in Figure 5.3 the xp-bifurcation diagram

when parameter v1 varies from 0 to 10 while the other parameter values are the same of

those used in Figure 5.2.

We notice that Figure 5.3 is divided into four parts in which xp stability changes signif-

icantly. In part I, for those values of ν1 such that x̄1
p,G < θ1

p and x̄2
p,G < θ2

p, neither ΦG
1

nor ΦG
2 are stable steady states. In this case, system (5.14) during growth on glucose

converges towards the only stable point ΦG
0 (not depicted in Figure 5.3). So, in I, the

control input is too small to allow RNAP to reach a basal level, and prevents bacterial

growth.

In part II, when x̄1
p,G(ν1) > θ1

p and x̄2
p,G(ν1) < θ2

p hold, only ΦG
1 is a stable steady state

(besides the trivial one) according to Theorem 5.5. Hence, it turns out that choosing an

initial condition of RNAP xp(t0) > θ1
p and ν1 such that x̄1

p,G(ν1) > θ1
p and x̄2

p,G(ν1) < θ2
p,

we can control system (5.14) to the stable point ΦG
1 .

In part III, characterized by θ1
p < x̄1

p,G(ν1) < θ2
p and x̄2

p,G(ν1) > θ2
p, both ΦG

1 and ΦG
2

are stable steady states: this is a region of bi-stability. Moreover, the phase plane

corresponding to this configuration is depicted in Figure 5.2, where we can also observe

the presence of two separatrices xp = θ1
p and xp = θ2

p. Is is clear that, depending on

xp(t0), the system can converge to ΦG
1 (if θ1

p < xp(t0) < θ2
p) or to ΦG

2 (if xp(t0) > θ2
p).

In part IV, when x̄1
p,G(ν1) > θ2

p holds, only ΦG
2 is a stable steady state and thus, whenever

xp(t0) > θ1
p, system (5.14) converges to ΦG

2 .

The open-loop control in glucose growth can be summarized as follows.

Proposition 5.7. Consider system (5.14) with control input ν1 and initial condition

xp(t0) such that:

� if (x̄1
p,G(ν1) < θ1

p ∧ x̄2
p,G(ν1) < θ2

p) ∨ xp(t0) < θ1
p, then system (5.14) converges

to the trivial focal point ΦG
0 (region I in Figure 5.3);

� if x̄1
p,G(ν1) > θ1

p ∧ x̄2
p,G(ν1) < θ2

p ∧ xp(t0) > θ1
p, then system (5.14) converges to

the low focal point ΦG
1 (region II in Figure 5.3);

� if θ1
p < x̄1

p,G(ν1) < θ2
p ∧ x̄2

p,G(ν1) > θ2
p ∧ xp(t0) > θ1

p, then system (5.14) is

bistable (region III in Figure 5.3) and notably:

– if θ1
p < xp(t0) < θ2

p, then system (5.14) converges to the low focal point ΦG
1 ;

– if xp(t0) > θ2
p, then system (5.14) converges to the high focal point ΦG

2



Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the
genetic network 81

� if x̄1
p,G(ν1) > θ2

p ∧ xp(t0) > θ1
p, then system (5.14) converges to the high focal

point ΦG
2 (region IV in Figure 5.3).

5.5.2 Open-loop system under an alternative carbon source

We consider now system (5.14) in the case that E. coli is grown in a medium with an

alternative non PTS sugar, such as maltose. It follows that θµ̄ = θMp and µ̄ = µM in

system (5.14). To take into account the fact that—in the absence of PTS sugar (as

glucose)—cAMP formation is not strongly inhibited [134], we have assumed:

0 < θ1
p < θ2

p < θMp < maxp (5.20)

(compare to (5.19)).

Figure 5.4 depicts the phase-plane of system (5.14) during maltose growth with the

location of regular domains DM
j . It turns out that there are new four (distinct focal

points) possible steady states. The focal points’ coordinates and their expressions are

presented below:

ΦM
0 = (0, 0) ΦM

1 = (x̄2
c,M , x̄

1
p,M )

ΦM
2 = (x̄1

c,M , x̄
2
p,M ) ΦM

3 = (x̄3
c,M , x̄

2
p,M )

where:

x̄1
c,M =

k0
c

µM x̄2
p,M + γc

, x̄1
p,M =

−γp +
√
γ2
p + 4 v1 k0

p µM

2µM
,

x̄2
c,M =

k0
c

µM x̄1
p,M + γc

, x̄2
p,M =

−γp +
√
γ2
p + 4 v1(k0

p + k1
p)µM

2µM
,

x̄3
c,M =

k0
c + k1

c

µM x̄2
p,M + γc

.

We have that ΦM
0 is the focal point of domains DM

1 and DM
2 ; ΦM

1 is the focal point of

domains DM
3 and DM

4 ; ΦM
2 is the focal point of domains DM

5 , DM
7 and DM

8 ; and finally,

ΦM
3 is the focal point of domain DM

6 . Notably, Figure 5.4 shows the case where ΦM
0 ,

ΦM
1 , ΦM

3 are stable steady states since they are within their respective regular domains

(Theorem 5.5) while ΦM
2 is not a stable point (but only a focal point) because it does

not belong to any of its generating domains.

The maltose and glucose induced bacterial growth differ in the existence of one more

focal point, i.e. ΦM
3 , in the maltose case. This arises from the fact that maltose has
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0

Figure 5.4: Phase plane of system (5.14) during growth in maltose. Parameter values
used: θ1c = 0.6, θ2c = 2.7, θ1p = 0.8, θ2p = 3.5, θMp = 10, k0

c = 5, k1
c = 10, k0

p = 8,
k1
p = 26, γc = 1, γp = 1, µM = 1 e v1 = 1. The black curves are the xc-nullclines:

xp =
k0
c

xc µG
− γc
µG

and xp =
k0
c + k1

c

xc µG
− γc
µG

. Stable fixed points: ΦM0 , ΦM1 , ΦM3 .
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Figure 5.5: Bifurcation diagram for system (5.14) during growth in maltose, showing
the non trivial locally stable steady states of xp as a function of the control input v1.
Other parameter values used are the same of those in Figure 5.4. See Proposition 5.8

for more details.

no direct effect on cAMP formation—in contrast to glucose which is observed to inhibit

it [134]. Moreover, when ΦM
3 is a stable point (if ΦM

3 ∈ DM
6 , Theorem 5.5) it ensures a

higher level of CRP expression, which reflects the higher level of cAMP-CRP as well.

Again in the maltose growth case, it is possible to control system (5.14)—by means of the

input ν1— to a ”low” or a ”high” stable point. Indeed, Figure 5.5 depicts how the sta-

bility of xp changes as a function of ν1. Notably—always without considering the trivial
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fixed point ΦM
0 —we observe that choosing ν1 such that x̄1

p,M (ν1) > θ1
p and x̄2

p,M (ν1) <

θ2
p, system (5.14) converges to the ”low” stable point ΦM

1 for any xp(t0) > θ1
p.

The convergence to the ”high” stable points, i.e. ΦM
2 or ΦM

3 , is guaranteed for those ν1

such that x̄1
p,M (ν1) > θ2

p. In fact, in this case system (5.14) with xp(t0) > θ1
p converges

to ΦM
3 , if θ2

p < x̄2
p,M (ν1) < θMp , or to ΦM

2 , if x̄2
p,M (ν1) > θMp , both of them having the

”high” level of RNAP, i.e. x̄2
p,M .

When θ1
p < x̄1

p,M (ν1) < θ2
p and x̄2

p,M (ν1) > θ2
p hold, we are in the bi-stability case de-

picted in Figure 5.4, where both x̄1
p,M and x̄2

p,M are stable steady states of xp differential

equation. The convergence to one or to the other stable steady state depends on the

initial condition with respect to the separatrices θ1
p and θ2

p. Notably, if θ1
p < xp(t0) < θ2

p,

xp(t) converges to x̄1
p,M while, if xp(t0) > θ2

p, xp(t) converges to x̄2
p,M .

The open-loop control in maltose growth is summarized below.

Proposition 5.8. Consider system (5.14) (during growth on maltose) with control input

ν1 and initial condition xp(t0) such that:

� if (x̄1
p,M (ν1) < θ1

p ∧ x̄2
p,M (ν1) < θ2

p) ∨ xp(t0) < θ1
p, then system (5.14) converges

to the trivial focal point ΦM
0 (region I in Figure 5.5);

� if x̄1
p,M (ν1) > θ1

p ∧ x̄2
p,M (ν1) < θ2

p ∧ xp(t0) > θ1
p, then system (5.14) converges to

the low focal point ΦM
1 (region II in Figure 5.5);

� if θ1
p < x̄1

p,M (ν1) < θ2
p ∧ x̄2

p,M (ν1) > θ2
p, then system (5.14) is non-trivially bistable

(region III in Figure 5.5), and notably:

– if θ1
p < xp(t0) < θ2

p, then system (5.14) converges to the low focal point ΦM
1 ;

– if xp(t0) > θ2
p, then system (5.14) converges to the high focal point ΦM

3 ;

� if x̄1
p,M (ν1) > θ2

p ∧ x̄2
p,M (ν1) < θMp ∧ xp(t0) > θ1

p, then system (5.14) converges

to the high focal point ΦM
3 (region IVa in Figure 5.5).

� if x̄1
p,M (ν1) > θ2

p ∧ x̄2
p,M (ν1) > θMp ∧ xp(t0) > θ1

p, then system (5.14) converges

to the high focal point ΦM
2 (region IVb in Figure 5.5).

To conclude, we remark that the most relevant difference in comparison with growth on

glucose, is the higher level of CRP, and thus the higher level of cAMP-CRP, which can

be achieved in bacteria grown in maltose. We shall see how this information shall be

useful in constructing a feedback control law later on.
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Figure 5.6: Closed loop-model of gene expression machinery in mutant E. coli. The
the term ν2 indicates the feedback control law implemented by re-wiring the open loop
model (Figure 5.1), that is putting RNAP transcription under positive regulation of

cAMP-CRP.

5.6 Closed-loop model

As motivated in Section 5.3, the aim of the closed loop model is to suggest a way

for building a synthetic strain of E. coli able to generate inverse diauxie. In the wild

type case, glucose is the ”preferred” substrate because it supports the highest growth

rate [133] while in a modified bacterium, using the closed-loop model, we aim at inverting

this mechanism to get higher growth on maltose than on glucose.

In [160], the RNAP promoter was modified in such a way that it can be controlled exter-

nally through IPTG. We will assume that further modifications can be introduced such

that RNAP will eventually be controlled by some other variable. A new control system

involving two inputs is thus considered: assuming a new synthetic rpoBC promoter is

used, in which both k0
p and k1

p are controlled by ν1 while only k1
p is controlled by ν2, we

end up with the following PWNL system:

ẋc (t) = k0
c s

+(xp, θ1
p) + k1

c s
+(xp, θ2

p) s
+(xc, θ1

c ) s
−(xp, θµ̄)

− (µ̄ xp(t) + γc) xc(t)

ẋp (t) = ν1 k
0
p s

+(xp, θ1
p) + ν1 ν2 k

1
p s

+(xp, θ2
p)

− (µ̄ xp(t) + γp) xp(t).

(5.21)

During exponential phase—the period characterized by cell doubling—the bacterial cul-

ture shows a constant growth rate [129]. This means that, according to (5.15), a stable
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fixed point of RNAP has to be reached. Thus, constructing a closed-loop control to gen-

erate inverse diauxie, mathematically means finding a function of the system’s variables

ν2 = g(xc, xp) that regulates the transcription of the gene rpoBC in such a way that:

µM x̄p,M > µG x̄p,G (5.22)

where x̄p,M and x̄p,G are two possible RNAP steady states in maltose and glucose media,

respectively.

In the following Theorem we state sufficient conditions and a feedback function for

model (5.21) to exhibit a higher growth rate on maltose then on glucose.

Theorem 5.9. Assume

g(xc, xp) = s+(xc, θ∗c ) s
−(xp, θµ̄), (5.23)

θ1
c < θ∗c <

k0
c + k1

c

µM θMp + γc
, (5.24)

µG
µM

< 1 +
k1
p

k0
p

, (5.25)

xp(t0) > θ1
p, (5.26)

then setting ν2 = g(xc, xp), there exists an interval I1 = (νmin1 , νmax1 ) such that the

inverse diauxie condition in (5.22) is satisfied by (5.21), for all ν1 ∈ I1.

Briefly, function (5.23) asserts that the regulation of RNAP transcription is carried out

by cAMP-CRP, which positively regulates rpoBC main synthesis rate. The mathemati-

cal formulation of such feedback control function arises from the modelling and analysis

of the open-loop system (Section 5.4, 5.5). Condition (5.24) gives a range for the cAMP-

CRP affinity, i.e. θ∗c , of the synthetic rpoBC promoter. Condition (5.25) indicates how

the basal (k0
p) and the main (k1

p) synthesis rates of RNAP have to be related with µG

and µM . Finally, condition (5.26) establishes which is the minimum RNAP initial value

that guarantees the inverse diauxie.

The proof of Theorem 5.9 will be given in the remainder of the article, by analysing

system (5.21) in glucose and maltose medium.

5.7 Qualitative analysis of the closed-loop system

Now, we will study—both in glucose and in maltose cultures—the closed-loop system

that results from (5.21) when input v2 is given by the feedback law (5.23). Moreover, we
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will assume that conditions (5.24), (5.25) hold in the following analysis. Thus, when we

refer to system (5.21), we implicitly assume that all the conditions stated in Theorem 5.9

hold, to ensure the inverse diauxie.

5.7.1 Closed-loop system in glucose growth

When E. coli is grown in glucose we have θµ̄ = θGp and µ̄ = µG in system (5.21). Since

glucose inhibits cAMP formation as previously motivated and expressed in (5.19), it

turns out that the product s+(xp, θ2
p)s
−(xp, θG), in the second equation in (5.21), is

always zero. Thus, system (5.21) during glucose growth can be simplified to:

ẋc (t) = k0
c s

+(xp, θ1
p)− (µG xp(t) + γc) xc(t)

0 < θ1
c < maxc

ẋp (t) = v1 k
0
p s

+(xp, θ1
p)− (µG xp(t) + γp) xp(t)

0 < θ1
p < θGp < θ2

p < maxp

(5.27)

System (5.27) clearly shows that the value of θ∗c does not play a role during growth on

glucose. The focal points of system (5.27) are:

ΨG
0 = (0, 0), ΨG

1 = (x̄1
c,G, x̄

1
p,G)

where:

x̄1
c,G =

k0
c

µG x̄1
p + γc

; x̄1
p,G =

−γp +
√
γ2
p + 4 v1 k0

p µG

2µG
.

Figure 5.7 depicts the phase-plane of system (5.27) in the case when both ΨG
0 and ΨG

1

are stable fixed points (Theorem 5.5). We notice that, the main difference with the

open-loop model is that system (5.27) no longer exhibits the high focal point (ΦG
2 ) with

x̄2
p,G as RNAP equilibrium (see Figure 5.2 for comparison). This is due to cAMP-CRP

which through the feedback law g(xc, xp), inhibits the rpoBC promoter and shuts off

RNAP main expression. Biologically, this means that the growth rate of E. coli—at

steady state—is limited by the low level of RNAP expression at x̄1
p,G.

For reasons of space we omit the xp bifurcation diagram as function of ν1 for sys-

tem (5.27), but the main results on equilibria stability are stated in Proposition 5.10.

Proposition 5.10. Consider system (5.27) with control input ν1 and initial condition

xp(t0) such that:

� if x̄1
p,G(ν1) < θ1

p ∨ xp(t0) < θ1
p, then system (5.27) converges to the trivial focal

point ΨG
0 ;
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0

Figure 5.7: Phase plane of system (5.27) during growth in glucose. Parameter values
used: θ1c = 0.6, θ1p = 0.8, θGp = 2, θ2p = 3.5, k0

c = 5, k1
c = 10, k0

p = 8, k1
p = 26, γc = 1,

γp = 1, µG = 1 and v1 = 1. The black curve is the xc-nullcline: xp =
k0
c

xc µG
− γc
µG

.

Stable fixed points: ΨG
0 , ΨG

1 .

� if x̄1
p,G(ν1) > θ1

p ∧ xp(t0) > θ1
p, then system (5.27) converges to the low focal point

ΨG
1 .

5.7.2 Closed-loop system in maltose growth

We consider now system (5.21) in the case when E. coli is grown in maltose, thus we

have θµ̄ = θMp , µ̄ = µM and (5.20) holds.

It follows that the focal points of system (5.21) during maltose growth are:

ΨM
0 = (0, 0) ΨM

1 = (x̄1
c,M , x̄

1
p,M )

ΨM
2 = (x̄2

c,M , x̄
2
p,M ) ΨM

3 = (x̄3
c,M , x̄

1
p,M )

where:

x̄1
c,M =

k0
c

µM x̄1
p,M + γc

, x̄1
p,M =

−γp +
√
γ2
p + 4 v1 k0

p µM

2µM
,

x̄2
c,M =

k0
c + k1

c

µM x̄2
p,M + γc

, x̄2
p,M =

−γp +
√
γ2
p + 4 v1(k0

p + k1
p)µM

2µM
,

x̄3
c,M =

k0
c + k1

c

µM x̄1
p,M + γc

.
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0

Figure 5.8: Phase plane of system (5.21) during growth in maltose. Parameter values
used: θ1

c = 0.6, θ∗c = 1.2, θ1
p = 0.8, θ2

p = 3.5, θM
p = 10, k0

c = 5, k1
c = 10, k0

p = 8,
k1

p = 26, γc = 1, γp = 1, µM = 1 and v1 = 1. The black curves are the xc-nullclines:

xp =
k0

c

xc µM
− γc

µM
and xp =

k0
c + k1

c

xc µM
− γc

µM
. Stable fixed points: ΨM

0 , ΨM
1 and ΨM

2 .
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Figure 5.9: Bifurcation diagram for system (5.21) during growth in maltose, showing
the non trivial locally stable steady states of xp as a function of the control input v1.
Other parameter values used are the same of those in Figure 5.8. See Proposition 5.11

for more details.

Figure 5.8 depicts the phase plane of system (5.21) when maltose is the substrate.

Unlike in the glucose case, the closed loop model for maltose preserves the high focal

point, allowing RNAP to be expressed at a high rate and hence to reach its maximal

equilibrium in x̄2
p,M . Figure 5.9 shows the xp stable steady states as a function of the

control input v1. The main differences with the xp-bifurcation diagram of the open-loop

model in Figure 5.5 are the regions V and VI, which are due to the feedback control

ν2 = g(xc, xp). Notably, region V of Figure 5.9 shows that, according to Theorem 5.6,
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a Filippov stable fixed point is generated on the switching domain xp = θMp when

θ2
p < x̄1

p,M < θMp and x̄2
p,M > θMp . Besides, because of the inhibition of RNAP by

cAMP-CRP (in VI) x̄1
p,M becomes again a stable steady state when x̄1

p,M (ν1) > θMp .

Finally, Proposition 5.11 summarizes the stable equilibria of system (5.21) with maltose

as medium.

Proposition 5.11. Consider system (5.21) during growth in maltose with control input

ν1 and initial condition xp(t0) such that:

� if (x̄1
p,M (ν1) < θ1

p ∧ x̄2
p,M (ν1) < θ2

p) ∨ xp(t0) < θ1
p, then system (5.21) converges

to the trivial focal point ΨM
0 (region I in Figure 5.9);

� if x̄1
p,M (ν1) > θ1

p ∧ x̄2
p,M (ν1) < θ2

p ∧ xp(t0) > θ1
p, then system (5.21) converges to

the low focal point ΨM
1 (region II in Figure 5.9);

� if θ1
p < x̄1

p,M (ν1) < θ2
p ∧ x̄2

p,M (ν1) > θ2
p, then system (5.21) is non-trivially bistable

(region III in Figure 5.9), and notably:

– if θ1
p < xp(t0) < θ2

p, then system (5.21) converges to the low focal point ΨM
1 ;

– if xp(t0) > θ2
p, then system (5.21) converges to the high focal point ΨM

2 ;

� if x̄1
p,M (ν1) > θ2

p ∧ x̄p,M (ν1)2 < θMp ∧ xp(t0) > θ1
p, then system (5.21) converges

to the high focal point ΨM
2 (region IV in Figure 5.9).

� if θ2
p < x̄1

p,M (ν1) < θMp ∧ x̄2
p,M (ν1) > θMp ∧ xp(t0) > θ1

p, then system (5.21)

converges to a Filippov focal point, which arises on the xp = θMp switching domain

(region V in Figure 5.9).

� if x̄1
p,M (ν1) > θMp ∧ xp(t0) > θ1

p, then system (5.21) converges to the focal point

ΨM
1 (region VI in Figure 5.9).

5.8 Inverse Diauxie

We conclude by showing how the feedback control law ν2 = g(xc, cp) and the sufficient

conditions in Theorem 5.9 lead to the inverse diauxie.

In a glucose medium, under conditions (5.23), (5.24), (5.25) and (5.26), only a low level

of stable RNAP can be reached, i.e. x̄1
p,G, while in a maltose medium, also a stable high

level of RNAP can be achieved, i.e. x̄2
p,M . These facts are fundamental for ensuring
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Figure 5.10: Bifurcation diagram of closed-loop bacterial growth rate, showing µ
stable steady states as a function of v1. System’s parameters are the same of those
in Figure 5.7 and Figure 5.8. (νmin1 , νmax1 ) is the range in which the closed loop sys-

tem (5.21) with (5.23) exhibits the inverse diauxie phenomenon.

the inverse diauxie phenomenon (5.22) and proving Theorem 5.9. In fact, considering

x̄p,G = x̄1
p,G (as in ΨG

1 ) and x̄p,M = x̄2
p,M (as in ΨM

2 ) in (5.22), we end up with

µM
−γp +

√
γ2
p + 4v1(k0

p + k1
p)µM

2µM
> µG

−γp +
√
γ2
p + 4v1k0

pµG

2µG

which is satisfied if and only if condition (5.25) holds. Moreover, condition (5.24) is

essential to guarantee that ΨM
2 stays within its domain DM

11 , and hence the stability of

x̄2
p,M (Theorem 5.5) for all ν1 such that θ2

p < x̄2
p,M < θMp . Finally, condition (5.26) is

needed to avoid the convergence of system (5.21) with the feedback law (5.23) to the triv-

ial steady state. Figure 5.10 graphically illustrates Theorem 5.5 and range (νmin1 , νmax1 )

in which the stable growth rate on maltose is higher than that one on glucose. Notably,

νmin1 is the minimum ν1 such that x̄1
p,M (ν1) > θ2

p while νmax1 is the maximum ν1 such

that x̄1
p,G(ν1) < θMp .

To conclude, Figure 5.11 depicts the growth rate (5.15) of the open-loop system (5.14)

and the closed-loop system (5.21) in the case when cells are grown in glucose and in

maltose. Notably, the growth curves in Figure 5.11 are calculated considering the same

parameter values of Figures 5.2, 5.4, 5.7, 5.8, the same initial condition and the same

control input ν1, which satisfies νmin1 < ν1 < νmax1 . Observing the final part of the

growth curves, which corresponds to stable steady states, we clearly notice the inverse

diauxie phenomenon (higher growth rate on maltose than that of glucose) achieved by

the closed-loop model and not by the open-loop model.
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Figure 5.11: Growth rate as function of time (5.15) for the open-loop system (5.14)
and the closed-loop system (5.21) when cells are grown in glucose and in maltose. ν1 = 4
satisfies νmin1 < ν1 < νmax1 as in Theorem 5.9, xp(t0) = 1 satisfies condition (5.26). The

other parameter values used are the same of those in Figures 5.2, 5.4, 5.7, 5.8.

5.9 Conclusions

A new qualitative formalism to model gene expression and growth rate in bacteria has

been proposed. Within this new modelling framework, named piecewise non linear

(PWNL) systems, we presented a bi-dimensional open loop model of E. coli gene ex-

pression in which the synthetic promoter encoding for RNAP is controlled externally by

an input (IPTG). Since E. coli growth rate is related to the type of carbon source as

well as the amount of RNAP, it was shown out that the bacterial exponential growth

rate can be controlled—by means of appropriate values of the input (IPTG)—towards

a low or a high level. Then, starting from the analysis of the open-loop system in the

cases that cells are grown in glucose and in maltose, we developed a closed-loop system,

obtained by rewiring the open-loop’s gene interactions, which is able to mathematically

show the inverse diauxie, namely reaching an higher growth rate on maltose then on

glucose.

Our results combine the control based approaches of engineering with biology, with

the aim of implementing new functions in the cells (synthetic biology), which may

have some practical and relevant importance in applications such as production of bio-

pharmaceuticals, novel bio-materials and developing new bio-technologies.

To conclude, the work presented here is an attempt to help guide the construction of

synthetic gene networks, by allowing biologists to select experimental conditions most

likely to yield successful results.





Chapter 6

Switched piecewise quadratic

models of biological networks:

application to control of bacterial

growth

The content of this chapter has been submitted to the AUTOMATICA journal and

it consists of an extended version of a previously paper presented at the Nolcos 2013

Conference [38].

Here, a novel qualitative formalism to model gene expression dynamics dependent on

dilution due to cell growth rate is proposed and explored for qualitatively controlling the

bacterial growth rate. Notably, we extend the piecewise linear (PL) systems by keeping

the use of step functions to model the interactions between the elements and adding a

growth rate expression to model the dilution effect. We model the growth rate as the

weighted minimum of two limiting gene products responsible for bacterial growth. The

resulting system is a switched system with two piecewise quadratic (PQ) modes. We

study the stability of such switched piecewise quadratic (SPQ) system starting from the

stability analysis of the (PQ) modes. Then, we propose and analyse a bidimensional

SPQ open-loop model—describing the bacterial gene expression machinery—in which

the growth rate of cells can be controlled by an external input which tunes the synthesis

of one of the variables. The stability of the SPQ open-loop model is thus studied by

means of bifurcation diagram with respect to the input and the phase plane of a relevant

scenario—showing bi-mode bistability—is presented.

93
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6.1 Introduction

The overall aim of synthetic biology is to develop and apply engineering tools to control

cellular behaviour— constructing novel biological circuits in the cell—to achieve desired

functions [131].

Most recent synthetic designs have focused on the cell transcription machinery, which

includes the genes to be expressed, their promoters, RNA polymerase, Ribosomes and

transcription factors, all serving as potential engineering components. Indeed, synthetic

bio-molecular circuits are typically constructed in Escherichia coli (E. coli), by “cutting

and pasting”together coding regions and promoters (natural and synthetic) according

to designed structures and specific purposes ([67],[76], [165]).

Along these lines, control-based approaches are entering more and more into the core

of synthetic biology ([16], [117], [126], [181]). Control theory is equally applicable,

but with some limitations due to biological constrains ([44], [158]), for instance, to

implement controllers of particular cellular processes that ultimately may result in great

advances which would not be possible when using other approaches. Indeed, control

theory approaches may help in producing bio-pharmaceuticals, bio-films, bio-fuels, novel

cancer treatments and novel bio-materials (see [107] for a review on synthetic biology

applications).

Here, we first introduce a novel mathematical formalism to qualitatively model gene

expression and dilution due to cell growth. In fact, one of the aims of systems and syn-

thetic biology is to link molecular-level mechanisms (e.g. gene expression) to cell-level

behaviour (e.g. growth rate) ([14, 110]). In the last years much work has focused on

the impact of molecular and gene networks on cellular physiology, but less is known

about how cellular physiology can influence the machinery of transcription and trans-

lation ([114]). To this aim, we present a bacterial growth rate model—where growth

is limited by different factors—which ultimately leads to a switched piecewise quadratic

(SPQ) formalism–derived from piecewise linear (PL) systems ([90]).

Then, we focus on the gene expression machinery of the bacterium Escherichia coli,

with the aim of designing laws to control the growth rate of the cells. Growth control is

essential in industrial biotechnology and fundamental research of this kind could pave the

way to novel types of antimicrobial strategies. Indeed, the basic effect of an antibiotic

is to slow (or arrest) growth. To this end, we present and analyse a bi-dimensional

open-loop model of bacterial gene expression in which the growth rate is controlled

externally by tuning the synthesis of a component of the gene expression machinery

(RNA Polymerase). This type of control can be easily implemented, for instance, by

means of inducers that activate synthetic inducible promoters [102].
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The paper is organized as follows. In Section 6.2 we briefly recall PL systems. In

Section 6.3 we define the cell growth rate model used in this paper. In Section 6.4 we

present the SPQ system, which extends the PL system by considering the dilution due

to cell growth. In Section 6.5 we state and prove some theorems on the stability of

PQ subsystems that will be useful in Section 6.6 to study the stability of the entire

SPQ system. Then, in Section 7.3 we present and analyse a bi-dimensional SPQ open-

loop control system of bacterial gene expression. Finally, in Section 6.8 we state our

conclusion and perspectives.

6.2 Piecewise Linear systems overview

The regulation of gene expression plays a pivotal role in the functioning of cells. Mathe-

matical modelling and computational techniques are fundamental to the understanding

of these genetic regulatory networks ([14, 54]). The principal modelling challenges come

from incomplete knowledge of the networks, and the dearth of quantitative data for

identifying kinetic parameters required for detailed mathematical models. Qualitative

methods overcome both of these difficulties and are thus well-suited to the modelling

and simulation of genetic networks ([144]).

A class of widespread and well studied qualitative models are piecewise linear (PL)

systems, originally introduced by [85]. PL models of regulatory genetic networks are

built with discontinuous (step) functions. The use of step function has been motivated

by the experimental observation that the activity of certain genes changes in a drastic

manner at a threshold concentration of a regulatory protein ([180]). The PL model has

the general form

ẋi = fi(x)− dixi, 1 ≤ i ≤ n, (6.1)

where x = (x1, ..., xn)T ∈ Rn
≥0 is a vector of protein concentrations. The non-negative

quantities fi(x) and dixi represent synthesis and degradation rates for each protein xi

respectively. The function fi : Rn
≥0 → R≥0 represents the expression rate of the gene i

depending on the whole state x. However, fi(x) can be detailed as:

fi(x) =
Li∑
l=1

kilbil(x)

where kil > 0 is a rate parameter and bil(x) is a combination of step functions s+, s−:

s+(xi, θ
j
i ) =

1 if xi > θji

0 if xi < θji

; s−(xi, θ
j
i ) = 1− s+(xi, θ

j
i ).
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More details on dynamical analysis and applications of PL models can be found in [40,

56, 90].

6.3 The growth rate model

In our model proteins’ concentration decreases by two processes: degradation and dilu-

tion due to cell growth ([66]). However, PL systems do not take into account protein

dilution, but they only consider protein degradation. To overcome this issue, the PL

formalism (6.1) can be extended setting:

di = µ(·) + γi (6.2)

where µ(·) is the bacterial growth rate accounting for proteins’ dilution and γi is a

degradation constant.

Several studies have reported that bacterial growth rate is intimately intertwined with

gene expression ([31, 114, 151, 159]) and with the type of substrate ([124, 129]).

Here, to keep the discussion as general as possible, we assume that growth rate is limited

by the amount of two generic cellular components which are necessary to sustain the gene

expression machinery of cell. Notably, let xa, xb ∈ R≥0 be the concentrations of cellular

components a and b, respectively we model the bacterial growth rate µ : R≥0 → R≥0 as:

µ(t) = min(µa xa(t), µb xb(t)) (6.3)

where µa and µb are proportion factors depending for instance on the carbon source

used. We note that expressions of the type (6.3) are widely used in ecology to model

the specific growth rate of species, determined by the resource that is most limiting

according to Liebig’s “law of the minimum” ([98]), and recently, a similar expression

to (6.3) has also been applied in a model of ribosomal regulation in E. coli ([155]).

6.4 The Switched Piecewise Quadratic (SPQ) system

Since our purpose is dealing with gene expression dependent on bacterial growth, we

substitute expression (6.2) with µ of the form (6.3) into the PL systems (6.1).

Without loss of generality, we choose for xa and xb the two last components of x. That

is, considering xa = xn−1 and xb = xn in (6.3), we obtain a new system, which takes
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into account the dilution effect, whose general form is:

ẋi = fi(x)− [min(µn−1 xn−1, µn xn) + γi]xi, 1 ≤ i ≤ n . (6.4)

We note that system (6.4), according to the evaluation of the function min in µ, can be

split into two subsystems (or modes):

I: if xn−1 <
µn
µn−1

xn

ẋi = fi(x)− [µn−1 xn−1 + γi]xi, 1 ≤ i ≤ n

II: if xn <
µn−1

µn
xn−1

ẋi = fi(x)− [µn xn + γi]xi, 1 ≤ i ≤ n

(6.5)

which share the same structure and properties. Thus, system (6.4) belongs to the class

of switched systems ([121]) in which the growth rate µ acts as a rule that orchestrates the

switching between the two subsystems in (6.5). Furthermore, noting that subsystems

in (6.5) are piecewise quadratic, we named system (6.4) switched piecewise quadratic

(SPQ).

Moreover, each piecewise quadratic (PQ) system (or mode) in (6.5) can be written in

matrix form as

ẋ = f(x)− d(xq)x, (6.6)

where f = (f1, ..., fn) and d(xq) = diag(µq xq + γ1, ..., µq xq + γn), where diag is the

diagonal matrix corresponding to the vector and q = n − 1 or q = n depending on

whether we refer to mode I or mode II in (6.5), respectively.

To study the dynamics of the SPQ system (6.4) we need first to characterize the dynamics

of its PQ modes (6.6), and then investigate the properties arising from the switching

condition. To this end, in the next section we present a dynamical study of the PQ

subsystem.

6.5 The PQ subsystem: dynamical study

For simplicity, we provide a dynamical study only for mode II in (6.5), that is when

xq = xn in (6.6), but equivalent results can be derived for mode I considering xq = xn−1.

The dynamics of the PQ subsystem can be studied in the n-dimensional state-space

Ω = Ω1 ×Ω2 × ...×Ωn, where each Ωi is defined by Ωi = {xi ∈ R≥0|0 ≤ xi ≤ maxi} for

some maximum concentration value maxi. A protein encoded by a gene will be involved

in different interactions at different concentration thresholds, so for each variable xi, we
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assume there are pi ordered thresholds θ1
i , ..., θ

pi
i (we also define θ0

i = 0 and θpi+1

i = maxi

). The (n − 1)-dimensional hyper-planes defined by these thresholds partition Ω into

hyper-rectangular regions we call domains. Specifically, a domain D ⊂ Ω is defined to

be a set D = D1 × ...×Dn, where Di is one of the following:

Di =
{
xi ∈ Ωi|θji < xi < θj+1

i

}
for j ∈ {0, ..., pi}

Di =
{
xi ∈ Ωi|xi = θji

}
for j ∈ {0, ..., pi}.

Let D be the set of domains in Ω. A domain D ∈ D is called a regulatory domain if none

of the variables xi has a threshold value in D (it is the full hyper-rectangle). In contrast,

a domain D ∈ D is called a threshold domain of order k ≤ n if exactly k variables

have threshold values in D (in [127] threshold domains are called switching domains,

but we avoid this definition to prevent misunderstandings with switched system). The

corresponding variables xi are called threshold variables in D. The two sets of domains

are respectively denoted by Dr andDt.

6.5.1 Solutions and Stability in Regular Domains

For any regulatory domain D, the function f(x) is constant for all x ∈ D, and it follows

that the PQ system (6.6) (for xq = xn) can be written as

ẋ = fD − d(xn)x, (6.7)

where fD is constant in D. We note that (6.7) is a hierarchical system, since the

differential equation governing xn(t) depends only on xn(t) while ẋi(t) depends only on

xi(t) and xn(t), but not on xj(t) for n > j > i. Thus, for any x(t0) ∈ D the unique

solution of (6.7) can be found explicitly by solving first the n-component of (6.7)—

ẋn = fDn − (µn xn + γn)xn—which is an autonomous differential equation, and then

solving the i-components (i = 1, ..., n− 1), having substituted xn(t) into them.

Lemma 6.1. Equation

ẋn = fDn − (µn xn + γn)xn (6.8)

admits only one positive equilibrium, which is globally asymptotically stable in R≥0.

Proof. Given the initial condition xn(t0), it is easy to check that the solution xn(t)

of (6.8) is given by:

xn(t) = x+
n +

(x+
n − x−n ) exp [−µn(x+

n − x−n )(t− t0)]
β − exp

[
−µn(x+

n − x−n )(t− t0)
] (6.9)
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where

x+
n =

−γn +
√
γ2
n + 4µnfDn

2µn

x−n =
−γn −

√
γ2
n + 4µnfDn

2µn

(6.10)

are, respectively, the unique roots of fDn − (µn xn + γn)xn = 0 and β = xn(t0)−x−n
xn(t0)−x+

n
.

Moreover, since all parameters in (6.8) are positive, it turns out that x+
n > 0 and

x−n < 0. Finally, from (6.9) follows that

lim
t→+∞

xn(t) = x+
n .

Hence, x+
n is the only globally asymptotically stable equilibrium of (6.8) in R≥0.

Given xn(t) from (6.9), xi(t) (i = 1, ..., n− 1) follows by:

xi(t) =
1
b(t)

(
b(t0)xi(t0) + fDi

∫ t

t0

b(s)ds
)

where b(t) = exp
(∫ t

t0
(µn xn(τ) + γn)dτ

)
.

Moreover, regarding the stability of system (6.7) we can state the following two theorems.

Theorem 6.2. Assuming that D = Rn
≥0, then point Φ(D) = (x̄1, ..., x̄n)T defined as

x̄i = η(x̄n, fDi , µn, γi) =
fDi

µnx̄n + γi
, i = 1, ..., n− 1

x̄n = ϕ(fDn , µn, γn) =
−γn +

√
γ2
n + 4µnfDn

2µn
,

(6.11)

is a globally asymptotically stable equilibrium of the system (6.7)

Proof. Since x̄n = x+
n (see (6.10)), from Lemma 6.1 it turns out that x̄n is a globally

asymptotically stable equilibrium of (6.8). Moreover, x̄i is a globally asymptotically

stable equilibrium for ẋi = fDn − (µnx̄n + γn)xi (which is of the form of PL systems).

Finally, for the state x of (6.7), there exists a positively invariant compact set D′ ⊂ D

containing Φ(D), such that D′ attracts all the solution of system (6.7) (see [56]). Hence,

the proof follows by Theorem 1 in [172].

What happens to the stability of system (6.7) if we relax the hypothesis D = Rn
≥0 and

consider D ∈ Dr?

Theorem 6.3. Let D ∈ Dr. If Φ(D) ∈ D, then Φ(D) is a locally asymptotically stable

point of system (6.7).
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Figure 6.1: Examples of vector-field in a 2D regular domain for the PL system (a)
and PQ system (b). In both cases, the focal point (red circle) is inside the domain.
The green lines represent the nullclines of the dynamical system. We note how the PL

and PQ systems differ in nullclines shape and vector field orientation.
(a): ẋ1 = k1 − γ1x1, ẋ2 = k2 − γ2x2;

(b): ẋ1 = k1 − (µ2x2 + γ1)x1, ẋ2 = k2 − (µ2 + γ2)x2.
Parameter values: k1 = 2, k2 = 3, γ1 = 1, γ2 = 1, µ2 = 0.5.

Proof. Any D ∈ Dr, is not in general a positively invariant compact set for x, so there

could exist solutions x of (6.7) which exit the domain D without converging towards

Φ(D). Hence, Φ(D) is only locally asymptotically stable with respect to D.

Remark 6.4. We note that Theorem 6.3 states a novel behaviour of the PQ systems

with respect to PL systems, that is the convergence towards the equilibrium point is not

assured from every point within the domain containing the equilibrium as, conversely,

it is for PL systems. In fact, if in Figure 6.1(b) there was a threshold domain x1 = θ

such that x̄1 < θ <
k1

µ2x2 + γ1
, then convergence towards the equilibrium point (x̄1, x̄2)

would not be assured from any (x1, x2) ∈ D, as—for instance—if we consider x̄1 < x1 <
k1

µ2x2 + γ1
and x2 < x̄2 (see vector filed orientation).

Definition 6.5. Given a regulatory domain D ∈ Dr, the point Φ(D) = (x̄1, ..., x̄n)T ∈ Ω

(defined by (6.11)) is called the focal point for the flow in D.
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The focal points are equilibrium points of the PQ system (6.6) provided that they belong

to their respective regular domain, i.e. Φ(D) ∈ D. If this is the case, the focal points

are referred to as regular equilibria.

Different regulatory domains will usually have different focal points. In general, all

solutions in a regulatory domain D flow towards the focal point Φ(D) until they either

reach it or leave the domain D. What happens when a solution leaves a regulatory

domain D and enters a threshold domain in the boundary of D? Since the step functions

are not defined when a variable xi takes some threshold value θpii , the vector field is

undefined on the threshold domains. We need to precise our definition of solutions.

6.5.2 Solutions and Stability in Threshold Domains

To provide the existence and the possibility for solutions to be continued on all domains,

we have to define the right-hand side of system (6.6) at the points of discontinuity of the

function f . To this end, we use a construction originally proposed by Filippov [73] and

then applied to PL systems ([90]). The method consists of extending the system (6.6)

to a differential inclusion,

ẋ ∈ H(x), (6.12)

where H is a set valued function (i.e. H(x) ⊆ Rn). If D ∈ Dr, then we define H simply

as

H(x) = {fD − d(xn)x}, ∀x ∈ D. (6.13)

If D ∈ Dt, we define H as

H(x) = co({fD
′
− d(xn)x | D′ ∈ R(D)}), ∀x ∈ D, (6.14)

where R(D) = {D′ ∈ Dr | D ⊆ ∂D
′} is the set of all regulatory domains with D in their

boundary, and co(X) is the closed convex hull of X. For threshold domains, H(x) is

typically multi-valued so solutions of the differential inclusion are defined as follows.

Definition 6.6. A solution of (6.12) on [0, T ] in the sense of Filippov is an absolutely

continuous function (w.r.t. t) ξt(x0) such that ξ0(x0) = x0 and ξ̇t ∈ H(ξt), for almost

all t ∈ [0, T ].

Now, we shall explain how to construct the set H(x) at discontinuity points of f .

Let us consider the case where x belongs to a threshold domain S separating two n-

regular domains D1 and D2. Hence,

H(x) = co({fD1 − d(xn)x, fD2 − d(xn)x})



Chapter 6. Switched piecewise quadratic models of biological networks 102

represents the segment joining the endpoints of the vectors g1 = fD1 − d(xn)x and

g2 = fD2 − d(xn)x. Trajectories can cross S if the vector fields g1 and g2 point in a

similar direction, slide along S if g1 and g2 point in opposite directions towards S and

be repelled from S if g1 and g2 point in opposite directions away from S. The last two

cases are known as stable and unstable sliding motion in the literature ([73]). Moreover,

the velocity of the sliding motion (stable or unstable) on S is given by

ẋ = fS − d(xn)x. (6.15)

Theorem 6.7. Assume that S is in the hyper-plane Cji = {x ∈ Rn
≥0 : xi = θji } and a

sliding motion (stable or unstable) occurs on S. The vector fS in (6.15) is given by

fS = αfD1 + (1− α)fD2 ,

α =


fD2
i − (γi + µnxn)θji

fD2
i − fD1

i

, if i ∈ {1, ..., n− 1}

fD2
i − (γi + µnθ

j
i )θ

j
i

fD2
i − fD1

i

, if i = n.

(6.16)

Proof. The segment joining the endpoints of the vectors fD1−d(xn)x and fD2−d(xn)x

is expressed by

αfD1 + (1− α)fD2 − d(xn)x, 0 ≤ α ≤ 1.

Since the state trajectories during sliding motion are on the hyper-plane xi = θji , the

parameter α in (6.16) is selected such that the state velocity vector of the system (6.15)

is in this hyper-plane. Thus, depending on whether the sliding motion occurs in xi = θji

(i ∈ {1, ..., n − 1}) or in xn = θjn, we have two values of α, which are found from the

conditions

αfD1
i + (1− α)fD2

i − (γi + µnxn)θji = 0, if i ∈ {1, ..., n− 1}

αfD1
i + (1− α)fD2

i − (γi + µnθ
j
i )θ

j
i = 0, if i = n.

Remark 6.8. In the case i = n the value of α is constant ∀x ∈ S and thus a sliding motion

occurs along the entire threshold domain S. By contrast, in the case i ∈ {1, ..., n−1} the

value of α depends on xn, this means that a sliding motion occurs on S as long as the

vector fields point in opposite direction towards (or away) S or, equivalently, as long as

0 < α(xn) < 1 ∀xn ∈ S. Specifically, it could happen—in contrast to PL systems—that

solutions slide for a while along S and then leave it as soon as the condition 0 < α(xn) < 1

does not hold any more.
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It is useful to define a concept analogous to the focal points defined for regulatory

domains, extended to deal with threshold domains.

Definition 6.9. We recall that supp(D) is the (n−k)-dimensional hyperplane support-

ing D. Let D be a threshold domain of order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (6.17)

where H(x) is defined as in (6.14).

Hence, Φ(D) for D ∈ Dt is the set containing all the equilibrium points of the differen-

tial inclusion (6.12), which lie on supp(D). Thus, Φ(D) can be a singleton, but more

generally is a closed convex bounded set and hence is referred to as a focal set.

From now on—to rule out some singular cases when proving results on stability—we

make the following technical assumption on the focal sets for our system:

Assumption 2. ∀ D ∈ D, we assume that

Φ(D) ∩ supp(D′) = {}, ∀D′ ∈ ∂(D).

It essentially says that for every regular and threshold domain D, the focal set Φ(D)

does not intersect the supporting hyperplane of any domain D′ in the boundary of D.

It is possible that solutions of (6.6) reach equilibria that lie in threshold domains and

such equilibria are called singular equilibria. In general, a singular equilibrium x̄ of

system (6.6) is a point that satisfies the condition 0 ∈ H(x̄) and that belongs to some

threshold plane. Determining in the most general case whether a singular equilibrium is

stable or unstable requires a detailed analysis that for the sake of space is not mentioned

in this paper. However, in the following theorem we present a procedure to assess the

stability of singular equilibria that can occur on xn-hyperplane.

Theorem 6.10. Assume that a sliding motion occurs on a threshold domain S, which

lies in the hyper-plane Cjn = {x ∈ Rn
≥0 : xn = θjn}, separating two n-domains D1

and D2. Let x̄ = (x̄1, ..., x̄n) be the singular equilibrium point of the sliding motion. If

x̄ ∈ S and if the sliding motion is stable (resp. unstable), then x̄ is locally stable (resp.

unstable).

Proof. Assuming the presence of a such stable sliding motion in S and x̄ ∈ S, this

implies that there exists a neighbourhood of x̄ where the n-component of trajectories

are approaching x̄n = θjn. Notably, the velocity of motion of the other i-components
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(i = 1, ..., n− 1) is given by

ẋi = αfD1
i + (1− α)fD2

i − (µnθjn + γi)xi (6.18)

with α equal to the second value in (6.16). Hence, the stability of x̄ follows by the fact

that (6.18) is of the PL form. If the x̄ ∈ S, but the sliding motion is unstable, the

instability of x̄ follows from the instability of the sliding motion.

After having studied the stability of PQ modes, we are able–in the next section—to

present the stability analysis of the entire SPQ system.

6.6 Stability Analysis of the SPQ system

Within the hybrid systems literature, much has been written on the stability of switch-

ing systems ([28]). Usually, Multiple Lyapunov Functions are used to prove Lyapunov

stability for switched systems ([28, 121]). However, many results using this approach are

not directly applicable to systems with sliding motions and/or cases when the domains

do not have a common focal point. Moreover, the structure of the SPQ system (6.4) is

particular and the problem we consider quite specific, which allows us to take a different

approach.

More specifically, we can define two regions χI and χII ⊂ Rn, in which system (6.4) is

active following the I-mode and the II-mode, respectively:

χI = {[x1, ..., xn]T ∈ Rn : µn−1xn−1 − µnxn < 0}

χII = {[x1, ..., xn]T ∈ Rn : µn−1xn−1 − µnxn > 0} .
(6.19)

In addition, a switching surface between the I and II modes, i.e. a boundary between

χI and χII , is given by:

SI,II = {[x1, ..., xn]T ∈ Rn : µn−1xn−1 − µnxn = 0} . (6.20)

We will now state two definitions and an hypothesis useful to enunciate a theorem for

the stability of system (6.4).

Definition 6.11. Let Ψm (m = I, II.) be the set containing all the locally stable points

of the m-mode.

Definition 6.12. Let Λm (m = I, II.) be the set containing all the unstable points of

the m-mode.
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We recall that the procedures to determine Ψm and Λm, that is the stable and unstable

points of the two modes, have been presented in Section 6.5.

Assumption 3. Assume that:

Ψm ∩ SI,II = {} (∀m = I, II), Λm ∩ SI,II = {} (∀m = I, II).

Assumption 3 states that equilibria of the I and II modes do not lay on switching surface

SI,II . This rules out some very special cases when proving results on stability of the

switched system (6.4).

Theorem 6.13. Assume that hypothesis 3 holds, then the set of locally stable points

of (6.4), i.e. Ψ, and set of unstable points of (6.4), i.e. Λ, are given by:

Ψ = (ΨI ∩ χI) ∪ (ΨII ∩ χII)

Λ = (ΛI ∩ χI) ∪ (ΛII ∩ χII) .
(6.21)

Proof. The proof follows by observing that a stable (resp. unstable) point of the m-

mode, is also a stable (resp. unstable) point of the switched system (6.4) only if it is

within the space region in which the m-mode is active, i.e. χm.

6.7 Open loop control of the RNAP-ribosomes system

From here on we focus on the gene expression machinery of the bacterium Escherichia

coli, with the aim of controlling the growth rate of the cells. The model and the control

we shall introduce have been developed in collaboration with our biologist research

partners (Ibis team Inria and UJF Grenoble).

In the presence of a carbon source E. coli grows in an exponential manner until it

exhausts the nutrient sources, and then enters a stationary phase with practically zero

growth [129]. Our control objective is to force the bacterium to significantly modify

its response to the carbon source so as to tune the growth rate during the exponential

phase. To this end, we take into account the recent applications of synthetic biology

which allow us to engineer promoters which in turn can be externally controlled by

inducers [102].

Notably, we will study an open loop configuration of a bi-dimensional SPQ model of

a mutant E. coli inspired by the experiments in [160]. The two basic variables of our

model, which describe the gene expression machinery that is responsible for bacterial

growth are (see Fig. 6.2):
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1. the concentration of RNA Polymerase (RNAP), protein that catalyses the tran-

scription of all genes. Without RNAP, the bacteria cannot produce any RNAs.

2. the concentration of Ribosomes (RIB), a complex molecular machine serving for

the production of all proteins (translation).

Moreover, we will assume that an engineered inducible-promoter is used to externally

control the expression of RNAP (similarly to [160]). We note that we could theoretically

have decided to control the synthesis of Ribosomes, but this seems to be much more

complicated to implement in practice since Ribosomes are more complex entities.

Finally, as in [38] we assume that growth rate is intimately related to the capacity of

cells to produce bulk proteins, which represent cell building and maintenance proteins

essential for bacterial growth. Bulk proteins, as any other protein, are produced in a two-

step process (gene expression) in which RNAP and ribosomes play a pivotal role ([77]).

The first step, i.e. transcription, is catalysed by RNAP which allows the synthesis of

mRNA from DNA. During the second step, i.e. translation, the mRNA is translated

into proteins by ribosomes. Taking this into account, the cell’s growth rate–considered

as a sort of production rate of bulk proteins–is thus limited by two potential limiting

factors: RNAP and ribosomes. Thus, let xp, xr ∈ R≥0 be the concentrations of RNAP

and ribosomes, respectively we modeled the bacterial growth rate µ : R≥0 → R≥0 as:

µ(t, u) = min(µp xp(t, u), µr xr(t)) (6.22)

where µp and µr are proportion factors depending on the carbon source used, whereas

u is the control input that allows us to modulate the expression of RNAP. It is evident

from (6.22) that controlling the expression of RNAP will eventually lead to a growth

rate tuning.

During exponential phase—the period characterized by cell doubling— the bacterial

culture shows a constant growth rate [129]. This means that, according to (6.22), stable

fixed points of RNAP and RIB have to be reached. Hence, our expression of growth rate

during exponential phase reads:

µ̄(u) = min(µp x̄p(u), µr x̄r) (6.23)

where x̄p and x̄r are concentrations of RNAP and RIB at steady state, respectively.

Hence, controlling bacterial growth rate will result in controlling the location of xp, xr
stable points by means of the control input u so as to have a desired constant µ̄ at

exponential phase.
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Figure 6.2: Regulatory network of the SPQ model (6.24). The system consists of
RNAP and ribosomes (RIB), encoded by their respective proxy genes rnap and rib (it
is worth saying that RNAP and RIB are made up of different subunits encoded by
different genes, but here, for the sake of simplicity, we consider that they are originated
by lumped (proxy) gene classes (rnap and rib)). Notably, the synthesis of RNAP is
positively regulated by RIB, RNAP and the control input u while the synthesis of RIB

is positively regulated by RNAP from the promoters P1 and P2.

6.7.1 SPQ model of the open-loop control system

In order to show how we can control the bacterial growth rate acting on the RNAP

expression, we propose a bidimensional SPQ open-loop model (depicted in Figure 6.2)

describing the concentrations’ dynamics of RNAP and ribosomes. Let xp, xr be the

concentration of RNAP and ribosomes respectively, the SPQ model is given by:

ẋr = k1
rs

+(xp, θ1
p) + k2

rs
+(xp, θ2

p)− (min(µpxp, µrxr) + γr)xr

ẋp = u
[
k0
ps

+(xp, θ1
p)s

+(xr, θ1
r) + k1

ps
+(xp, θ2

p)s
+(xr, θ2

r)
]

− (min(µpxp, µrxr) + γp)xp

(6.24)

We have considered that the synthesis of ribosomes is limited by the production rate

of stable-RNAs, which in turn are essentially regulated at the level of transcription by

RNAP ([89]). More specifically, stable-RNAs are produced from two promoters, P1 and

P2. We assumed that a lower concentration of RNAP, i.e. θ1
p, activates the house-keeping

promoter P2 while a higher RNAP concentration, i.e. θ2
p, is needed to stimulates the

promoter P1, whose activity increases with growth rate.

Regarding RNAP, we note that the control input u acts on the RNAP synthesis rate

modulating its level of expression. Notably, we assumed that u ∈ [0, 1] in order to

allow u to mimic the effect of typical regulation functions (e.g. Hill type functions)

employed in synthetic biology for modelling engineered promoters controlled by inducers.

Moreover, for the RNAP synthesis we have considered both transcription and translation

regulation. Hence, a lower concentration of RNAP (accounting for transcription), i.e.
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θ1
p, and a lower concentration of ribosomes (according for translation), i.e. θ1

r , are

required for the basal synthesis (u k0
p) of RNAP whereas, for the main synthesis of

RNAP (u[k0
p +k1

p]), higher concentrations of RNAP (θ2
p) and ribosomes (θ2

r) are needed.

From the considerations above, it follows that:

0 ≤ θ1
r ≤ θ2

r ≤ maxr; 0 ≤ θ1
p ≤ θ2

p ≤ maxp .

Therefore, the state space of each of two modes of system (6.24) can be partitioned into

nine regular domains, where the vector field is uniquely defined:

D1 =
{
x ∈ R2

≥0 : 0 ≤ xr < θ1
r , 0 ≤ xp < θ1

p

}
D2 =

{
x ∈ R2

≥0 : θ1
r < xr < θ2

r , 0 ≤ xp < θ1
p

}
D3 =

{
x ∈ R2

≥0 : θ2
r < xr ≤ maxr, 0 ≤ xp < θ1

p

}
D4 =

{
x ∈ R2

≥0 : 0 ≤ xr < θ1
r , θ

1
p < xp < θ2

p

}
D5 =

{
x ∈ R2

≥0 : θ1
r < xr < θ2

r , θ
1
p < xp < θ2

p

}
D6 =

{
x ∈ R2

≥0 : θ2
r < xr ≤ maxr, θ1

p < xp < θ2
p

}
D7 =

{
x ∈ R2

≥0 : 0 ≤ xr < θ1
r , θ

2
p < xp ≤ maxp

}
D8 =

{
x ∈ R2

≥0 : θ1
r < xr < θ2

r , θ
2
p < xp ≤ maxp

}
D9 =

{
x ∈ R2

≥0 : θ2
r < xr ≤ maxr, θ2

p < xp ≤ maxp
}
.

The threshold domains are not listed here, but they are as defined in Section 6.5.

Let mode-I be active when min(µpxp, µrxr) = µpxp and mode-II be active when min(µpxp, µrxr) =
µrxr in (6.24). Hence, according to (6.11) we can calculate the focal points of modes I
and II for each regular domains Dj (j = 1, ..., 9):

Dj I-mode II-mode

D1 x̄p = ϕ(0, µp, γp) x̄r = ϕ(0, µr, γr)

D2 x̄r = η(x̄p, 0, µp, γr) x̄p = η(x̄r, 0, µr, γp)

D3

D4 x̄p = ϕ(0, µp, γp) x̄r = ϕ(k1
r , µr, γr)

x̄r = η(x̄p, k1
r , µp, γp) x̄p = η(x̄r, 0, µr, γp)

D5 x̄p = ϕ(uk0
p, µp, γp) x̄r = ϕ(k1

r , µr, γr)

D6 x̄r = η(x̄p, k1
r , µp, γr) x̄p = η(x̄r, uk0

p, µr, γp)

D7 x̄p = ϕ(0, µp, γp) x̄r = ϕ(k1
r + k2

r , µr, γr)

x̄r = η(x̄p, k1
r + k2

r , µp, γr) x̄p = η(x̄r, 0, µr, γp)

D8 x̄p = ϕ(uk0
p, µp, γp) x̄r = ϕ(k1

r + k2
r , µr, γr)

x̄r = η(x̄p, k1
r + k2

r , µp, γr) x̄p = η(x̄r, uk0
p, µr, γp)

D9 x̄p = ϕ(u[k0
p + k1

p], µp, γp) x̄r = ϕ(k1
r + k2

r , µr, γr)

x̄r = η(x̄p, k1
r + k2

r , µp, γr) x̄p = η(x̄r, u[k0
p + k1

p], µr, γp)

(6.25)
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It turns out from (6.25) that focal points’ location of modes I and II of system (6.24)

depends on the control input u. Therefore, the number of equilibria of system (6.24)

depends on u too. This means that model (6.24) can be controlled towards different

equilibrium points by choosing appropriate values of u and this, eventually, will result

in controlling the bacterial growth rate during the exponential phase. In fact, expo-

nential growth rate is related to the equilibrium reached by the system (6.24) through

expression (6.23).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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a b c d e f

Figure 6.3: Growth rate bifurcation diagram as function of the control input u.
In circles are plotted growth rate values when mode-I is active while in diamonds
those when mode-II is active. Notably, green circles denote µ̄ = µpϕ(0, µp, γp), green
diamonds denote µ̄ = µrϕ(0, µr, γr), purple circles denote µ̄ = µpϕ(uk0

p, µp, γp), orange
circles denote µ̄ = µpϕ(u[k0

p + k1
p], µp, γp), purple diamonds denote µ̄ = µrϕ(k1

r , µr, γr),
orange diamonds denote µ̄ = µrϕ(k1

r + k2
r , µr, γr). Parameter values used: θ1r = 1.1,

θ1p = 1.1, θ2p = 2.1, θ2r = 2.1, k1
r = 8, k2

r = 5, k0
p = 10, k1

p = 10, γr = 1, γp = 1, µr = 0.8
end µp = 0.5.

To illustrate this, we have depicted in Fig. 6.3 the µ-bifurcation diagram when the control

input u varies from 0 to 1 while the other parameter values stay constant and set to

values reported in Fig. 6.3. Notably, to draw Fig. 6.3 we first calculated the equilibria

of the SPQ system (6.24) as function of u applying Theorem 6.13 and then computed

the growth rate expression at steady state using (6.22).

As shown in Fig. 6.3, for the parameter values used, we have six different scenarios

which correspond to different equilibria of system (6.24) and so to different growth

rates. Moreover, to point out which mode contributes to the system’s equilibria we have

plotted growth rate equilibria resulting from mode-I (µpx̄p) in circles and growth rate

equilibria resulting from mode-II (µrx̄r) in diamonds in Figure 6.3.

Proposition 6.14 (Trivial Equilibrium). Assume the control input u is such that

x̄p = ϕ(uk0
p, µp, γp) < θ1

p, then the only equilibrium of the system is the origin, which is

an equilibrium for both modes (scenario-a). Moreover, system (6.24) always converges
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to the origin—independently from u—when the initial condition xp(t0) satisfies xp(t0) <

θ1
p(all scenarios in Figure 6.3).

From a biological point of view, Proposition 6.14 says that the origin is an equilibrium of

system (6.24) either when u does not sufficiently induce RNAP expression (scenario-a)

or when RNAP initial condition is is too low to initiate gene transcription (all scenarios

in Figure 6.3). The origin represents absence of growth and we refer to it as the trivial

equilibrium, for this reason we will not mention it any more in the discussion which

follows.

Proposition 6.15 (Monostability). Assume u is such that the only equilibrium of the

system is given by the focal point of D5, D6 of mode-I (see (6.25)), then system (6.24) is

monostable and the growth rate reads as µ̄ = µpϕ(uk0
p, µp, γp) (scenario-b). Moreover,

assume u is such that the only equilibrium of the system is given by the focal point of

D9 of mode-II (see (6.25)), then system (6.24) is still monostable and the growth rate

reads as µ̄ = µrϕ(k1
r + k2

r , µr, γr) (scenario-f ).

When u is such that system (6.24) has two (non trivial) equilibria which belong to the

same mode we say that system (6.24) is mono-mode bistable. Notably, we can have that

the two equilibria belong to mode-I (scenario-c) or to mode-II (scenario-e).

Proposition 6.16 (Mono-mode Bistability). Assume u is such that system (6.24) has

two equilibria in the same mode, then we can have:

� scenario-c: equilibria belong to mode-I and they are the focal point of D5, D6

(for the lower one) and the focal point of D9 (for the higher one). Hence, the two

growth rate expressions are: µ̄ = µpϕ(uk0
p, µp, γp) and µ̄ = µpϕ(u[k0

p + k1
p], µp, γp).

� scenario-e: equilibria belong to mode-II and they are given by the focal point of

D5, D6 (for the lower one) and by the focal point of D9 (for the higher one).

Thus, now the two growth rate expressions are: µ̄ = µrϕ(k1
r , µr, γr) and µ̄ =

µrϕ(k1
r + k2

r , µr, γr).

When u is such that system (6.24) has two (non trivial) equilibria shared by the two

modes, we say that system (6.24) is bi-mode bistable. This is the case of scenario-d in

Figure 6.3.

Proposition 6.17 (Bi-mode Bistability). Assume that the equilibria are given by the

focal point of D5, D6 of mode-I and by the focal point of D9 of mode-II (see (6.25)), then

the two growth rate expressions are µ̄ = µpϕ(uk0
p, µp, γp) and µ̄ = µrϕ(k1

r + k2
r , µr, γr).
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We think that scenario-d is the most intriguing case, because it shows how both modes

can contribute to system stability. For this reason, the phase plane of system (6.24)

representing scenario-d (bi-mode bistability) is shown in Figure 6.4.

0
0

mode-Imode-II

Figure 6.4: Phase planes of the SPQ system (6.24) of scenario-d depicted in Fig-
ure 6.3 (bi-mode bistable). For each regular domain are drawn the focal points of
I-mode (circles) and II-mode (diamonds). The color of the focal points is the same
of the arrows of the domain whence they are originated. The red line represents the
switching surface. The equilibria of the two modes are drawn in larger size. No-
tably, the stable points of the SPQ system are (0, 0), (η(x̄p, k1

r , µp, γr), ϕ(uk0
p, µp, γp)),

(ϕ(k1
r + k2

r , µr, γr), η(x̄r, u[k0
p + k1

p], µr, γp)).

6.8 Conclusion

In this paper we proposed a new mathematical formalism to model bacterial gene expres-

sion dependent on dilution due to growth rate. This novel modelling approach can be

considered as an extension of piecewise linear (PL) systems, which have been modified

by introduction of an expression for the growth rate to model the dilution effect. The

derived system is a switched system whose two modes are piecewise quadratic (PQ),

hence we named this new formalism as switched piecewise quadratic (SPQ). We have

first focused on the characterization of equilibria of the PQ subsystems, both for equilib-

ria within regular domains and equilibria that lie on surfaces of discontinuity (threshold

domains) due to the use of step functions (as in PL models). Then, we took into ac-

count the switching behaviour of the SPQ system to formulate a criterium assessing the

stability of its equilibria.
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Finally, a minimal SPQ model consisting of two variables (RNA Polymerase and Ri-

bosomes) and an input was analysed and used to describe one possible mechanism to

control the growth rate of E. coli cells during exponential phase. The qualitative dy-

namics of the model can thus be studied, and the growth rate bifurcation diagram with

respect to the input is obtained. Notably, the growth rate bifurcation diagram has

shown out that the bacterial exponential growth rate can be controlled—by means of

appropriate values of the input—towards different levels which correspond to different

equilibria of the SPQ system. Notably, we point out the interesting bi-mode bistability

scenario where both PQ modes contributes to the equilibria of the SPQ system.

Our results combine the control based approaches of engineering with biology, with

the aim of implementing new functions in the cells (synthetic biology), which may

have some practical and relevant importance in applications such as production of bio-

pharmaceuticals, novel bio-materials and developing new bio-technologies.

One possible extension for the SPQ systems—to get even more realistic growth rate

values in some biological conditions—would be that of considering a cut-off value of the

growth rate, that is a maximal (µmax) growth rate. In this case, expression (6.3) would

be modified in:

µ(t) = min(µa xa(t), µb xb(t), µmax) (6.26)

With a growth rate model as (6.26), the SPQ system will have a third mode, which will

be active when µ(t) = µmax. Moreover, it is easy to check that this third mode is a PL

system and so no other specific studies are required to handle this extension.

To conclude, we believe that the SPQ formalism is a promising approach for qualitative

modelling gene expression dynamics dependent on dilution and a valid starting point to

help guide the construction of synthetic gene networks, by allowing biologists to select

experimental conditions most likely to yield successful results.



Chapter 7

Attractor computation using

interconnected Boolean networks:

testing growth models in E. Coli

This chapter is taken from a recent accepted paper that Madalena Chaves and I wrote

for the Theoretical Computer Science journal [42].

A recently developed method has shown that the attractors, or asymptotic behaviour,

of an asynchronous Boolean network can be computed at a much lower cost if the

network is written as an interconnection of two smaller modules. We have applied this

methodology to study the interconnection of two Boolean models to explore bacterial

growth and its interactions with the cellular gene expression machinery, with a focus on

growth dynamics as a function of ribosomes, RNA polymerase and other “bulk” proteins

inside the cell. Notably, some of the growth rate models tested here are Boolean versions

of those growth rate functions introduced in Chapters 4-5-6. The discrete framework

permits easier testing of different combinations of biochemical interactions, leading to

hypotheses elimination and model discrimination, and thus providing useful insights for

the construction of a more detailed dynamical growth model. In this work, I did not

participate in the development of the Boolean methods, whereas my contribution was

in the design of the different tested Boolean models and in the interpretation of results.

7.1 Introduction

Large networks with complex interactions are hard to analyse in detail, but logical

and discrete models can facilitate this task. Based essentially on the structure and

113
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topology of the network interactions, logical models provide qualitative information on

the dynamical properties of system [85, 163], which can be used for model discrimination

and guidance in model improvement. There are many recent examples of applications

of discrete models including Drosophila embryo pattern formation [11, 148], yeast cell

cycle [154], T-cell response [146], or an apoptosis network [34].

Boolean networks are a class of logical models whose variables are described in terms of

only two levels (1 or 0; presence or absence; “on” or “off”), which have been useful for

biochemical systems [175]. The dynamics of a Boolean model is determined by specifying

an updating mode, most commonly synchronous (all nodes updated simultaneously) or

asynchronous (only one node updated at any given instant). Since the state space

is finite, the dynamics can be represented in terms of a transition graph, which can be

studied using some classical algorithms from graph theory [49]. Other, more specific tools

are available for an exact and rigorous analysis of the transition graph [123], computation

of attractors (or asymptotic behaviour) [45], and other properties [164]. In addition,

a wide range of computer tools are available for simulation and analysis of discrete

models [88], model reduction [132], or model checking [70].

It is clear that discrete models are not appropriate to finely describe the behaviour of

a system, since they cannot represent continuous effects (such as indicating whether an

oscillation is sustained or damped), but they are useful to verify whether a given network

of interactions is feasible and compatible with known properties of the system. This is

a first step towards the construction of a more detailed and informed model.

As an application, we will analyse a network of interactions involved in determining

bacterial growth of Escherichia Coli, which varies non-linearly with different factors,

such as availability of nutrients or the concentration of the necessary enzymes and pro-

teins needed for cell division [24, 155]. Mathematical models have been developed to

describe and reproduce several regulatory modules and their response to nutrient avail-

ability [92, 144]. One of the least understood aspects in these studies remains the actual

modelling of bacterial growth: while it is clear that growth depends on the general

availability of “bulk” proteins, ribosomes, and RNA polymerase, it is difficult to find

a reasonable mathematical model that reproduces all these effects [86]. In many cases,

growth is considered to be a given constant and the model is designed to reproduce a

single phase of bacterial growth.

Here, we propose to test and study a dynamical function for bacterial growth in terms

of the major components involved in bacterial cell division, that is, gene transcription

(RNA polymerase) and translation (ribosomes). To test the feasibility of mathematical

growth functions, we will focus on a qualitative model of the network involved in the
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carbon starvation response [144] and its interconnection with a basic model describing

the dynamics of ribosomes and RNA polymerase (see Section 7.3).

We will use two methods for analysis of qualitative systems (see Section 7.2): first, a

method that transforms piecewise affine (PWA) systems into discrete and then Boolean

models [46, 99]; and, second, a recently developed method to compute the attractors of

an interconnection of two Boolean modules [45, 166]. Our analysis generates a general

view of the dynamical properties of a model which is a first step towards verifying the

feasibility of the model’s structure –by comparing to experimental observations– and

facilitates hypotheses testing. The results indicate that at least two (positive) qualitative

levels for growth rate (such as “high” and “intermediate” rates) are needed in order to

reproduce both the stationary and exponential growth phases (see Section 7.4).

7.2 Methodology

In this section, we briefly recall two mathematical methods which are very useful for

analysis of qualitative systems and, in particular, interconnections of Boolean models.

7.2.1 From discrete to Boolean models

Although Boolean variables can only take the values 0 or 1, it is nevertheless possible to

construct Boolean models that describe variables with a discrete number of values [46,

171]. Consider a discrete model Σdisc = (Ωd, Fd), with variables V = (V1, . . . , Vn)′, state

space Ωd = Πn
i=1{0, 1, 2, . . . , di}, where di ∈ N is the number of levels of variable Vi

(i = 1, . . . , n), and a state transition table Fd : Ωd → Ωd. The state of the system at the

next instant k+ 1 is given as a function of the state of the system at the current instant

k, according to the rules Fd, using the notation:

V + = F̃d(V ).

Throughout this paper, the function F̃d is obtained from Fd by assuming an asynchronous

dynamic updating rule, that is, exactly one variable is updated at any given time:

V + ∈ {W ∈ Ωd : ∃k s.t. Wk = (Fd)k(V ) 6= Vk and Wj = Vj , ∀j 6= k }. (7.1)

Furthermore, for a more realistic model, we consider that each variable Vi can only

switch from its current level to an immediately adjacent level [164], that is:

V +
i ∈ {Vi − 1, Vi, Vi + 1}, ∀i. (7.2)
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The idea is to create an extended Boolean model Σbool = (Ωb, Fb) where each discrete

variable Vi is represented by di Boolean variables, for instance, {Xi,1, . . . , Xi,di}, so that

the state space of the model is Ωb = {0, 1}d1+···+dn . There are several possible ways

to convert the discrete into the Boolean variables, but here we chose to use the same

criterion as in [46] which stipulates that

Vi = k ⇔ (Xi,1 = · · · = Xi,k = 1, Xi,k+1 = · · · = Xi,di = 0), (7.3)

meaning that a variable i is at a state k if and only if all the first k Boolean variables

are ON. In particular, note that this criterion implies the partition of the state space of

the extended Boolean model into permissible and forbidden regions:

Ωp = {X ∈ Ωb : k < l ⇔ Xi,k ≥ Xi,l}, Ωf = {0, 1}d1+···+dn \ Ωp.

Thus, to generate the Boolean transition table Fb we need to guarantee that no transi-

tions from a permissible to a forbidden state take place. The method described in [46]

deals with this problem in a natural way, and guarantees that no transitions from per-

missible to forbidden states take place.

7.2.2 Dynamics of Boolean models

This section contains a brief summary of some useful objects that characterize the dy-

namics of a Boolean model. There are several possible ways of defining the dynamical

updating rules [175] of a Boolean network Σ = (Ω, Fb), but here we will assume asyn-

chronous updates, so the definitions and rules (7.1) stated for discrete systems also apply,

with di = 1 for all i. Note that (7.2) is immediately satisfied for Boolean models.

The asynchronous transition graph, G = (Ω, E), of system Σ is a directed graph whose

vertices (or nodes) are the elements of Ω, and the edges are given by E. There are thus

2n nodes in G. Given any two elements a, ã ∈ Ω the edge “a→ ã” is in E iff:

ã ∈ {w ∈ Ω : ∃k s.t. wk = (Fb)k(a) 6= ak and wj = aj , ∀j 6= k }.

A path a1  a2 in G is a sequence of edges linking a1 to a2.

A strongly connected component (SCC) of G is a maximal subset C ⊂ Ω, that contains

a path joining any pair of its elements. In general, a SCC may have both incoming and

outgoing edges. An SCC with no outgoing edges is called terminal.

An attractor A of G is a terminal strongly connected component, that is, once a trajec-

tory enters A it cannot leave again. Therefore, the attractors can be said to characterize
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the asymptotic behaviour of the network. An asynchronous transition graph always has

at least one, but can have multiple, attractors. An attractor can be formed of a single

state (we will call it a singleton) or of a subset of Ω.

7.2.3 Interconnection of Boolean models

To study the interconnection of the two systems, we will use a method based on con-

trol theory concepts recently developed by one of the authors [45, 166]. This method

analyses the asymptotic behaviour of the interconnection of two systems directly from

the behaviour of the two subsystems, without having to construct or analyse the full

interconnected system. The advantage is a much reduced computational cost, while still

obtaining exact results: indeed, for large (e.g., n ≥ 15) Boolean models, the computation

of the asynchronous transition graph and its attractors is infeasible, as it involves the

analysis of a 2n × 2n matrix. The idea is to first study each individual system for each

set of inputs, obtain the corresponding attractors, and then construct a new object, the

asymptotic graph. This new graph is much smaller than the state transition graph of the

full model, but it contains all the information on its asymptotic dynamics, namely all

the attractors of the full model correspond to attractors in the asymptotic graph. Some

notation is next introduced.

Consider two asynchronous Boolean models, ΣA and ΣB, with a set of inputs (Ui) and

a set of outputs (Hi):

ΣA = (ΩA, UA, HA, FA) : ΩA = {0, 1}nA , UA = {0, 1}pA , HA = {0, 1}qA ,

ΣB = (ΩB, UB, HB, FB) : ΩB = {0, 1}nB , UB = {0, 1}pB , HB = {0, 1}qB .

The following notation will be used: states will be denoted a ∈ ΣA and b ∈ ΣB, inputs

u ∈ UA and v ∈ UB, and the output corresponding to state a will be denoted hA(a) ∈ HA

(resp., hB(b) ∈ HB for state b). The synchronous rules are written:

a+ = FA(a;u), and b+ = FB(b; v).

For each fixed u ∈ UA, there is a set of attractors of system ΣA, which will be denoted

Aiu, i ∈ N. Similarly for system ΣB, Bj
v, j ∈ N.

The interconnection of these two systems is formed by letting the input of each system

be the output of the other

v = hA(a) ∈ UB u = hB(b) ∈ UA,
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where it is assumed without loss of generality that qA = pB and qB = pA. The new

system will be denoted:

Σ = (Ω, Fbool) : Ω = {0, 1}nA+nB , Fbool : Ω→ Ω

with the Boolean rules Fbool given by the appropriate combination of FA, FB:

Fbool(a, b) = (FA(a;hB(b)), FB(b;hA(a))).

Note that FA, FB, and Fbool contain the synchronous table of state transitions. Here,

we will consider that the dynamics is asynchronous, so that only one variable is updated

at a given time. The asynchronous transition graphs of the two modules (one for each

fixed input) and that of the full interconnected system will be called, respectively, GA,u,

GB,v, and G.

Transition graphs and semi-attractors The first step of the method is to compute

all the transition graphs GA,u and GB,v, compute their attractors, and then divide each

of these into subsets corresponding to a fixed output. These will be called semi-attractors

of the individual system and are defined as follows:

Aiuα = the i-th semi-attractor of system ΣA, corresponding to input u, with output α

Bj
vβ = the j-th semi-attractor of system ΣB, corresponding to input v, with output β.

Note that the standard attractor is the union of all corresponding “semi-attractors”:

Aiu = ∪all αA
i
uα.

The asymptotic graph The second step of the method is to construct the asymptotic

graph Gas whose nodes are the cross-products of semi-attractors:

Aiuα ×B
j
vβ.

There is an edge between two of the nodes

Aiuα ×B
j
vβ → Aiuα ×B

j̃

αβ̃

if there is a path in the graph GB,α that leads from some state in Bj
vβ to some state in

B j̃

αβ̃
. Similarly for an edge Aiuα×B

j
vβ → Aĩβα̃×B

j
vβ. In order to satisfy an asynchronous

updating scheme, only one set of variables is allowed to change for each edge. The

computational cost can be further reduced by observing that all nodes with u 6= β and
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v 6= α are transient (shown in [166]); hence, to compute the attractors of the asymptotic

graph we only need to include the edges between nodes satisfying either u = β or v = α.

7.2.4 Attractors of an interconnection

The third step of the method is to compute all the attractors of Gas which contain,

in fact, a representative of each of the attractors of G. This is theoretically proven

in [45, 166]:

Theorem 7.1. [45] If Q is an attractor of G, then there exists at least one corresponding

attractor in Gas, Qas = Qas(Q). Moreover, if Q1 6= Q2 are two distinct attractors of G,

then Qas(Q1) 6= Qas(Q2).

In other words, we recover all the attractors of the interconnection, without explicitly

constructing the interconnected system. In broad terms, Theorem 7.1 says that any

attractor of G generates an attractor in Gas, but the converse is not necessarily true and

Gas may have more attractors than G.

To better illustrate Theorem 7.1, and show its advantages as well as limitations, a

purely theoretical example is next given. For convenience, in the following examples,

the attractors are labelled using the decimal representation for the Boolean inputs and

outputs, that is:

000⇔ u = 1, 001⇔ u = 2, . . . , 111⇔ u = 8, etc.

Example I. Consider the following bi-dimensional systems A and B, with nA = nB = 2

and pA = pB = 1:

a+
1 = u and (a1 and not a2),

a+
2 = [u and (not a1 or a2)] or [not u and a1],

hA(a) = a2,

(7.4)

b+1 = [v and not b2)] or [not v and (b1 xor b2)],

b+2 = [v and b1 and b2] or [not v and (b1 or b2)],

hB(b) = b2,

whose asynchronous transition graphs GA,u and GB,v are shown in Fig. 7.1, for conve-

nience. Note that the attractors in all graphs are singletons except for B2
2,2 = {01, 11}.

However, since the two states have the same output (hB(01) = hB(11) = 1), in this

example the semi-attractors are in fact the actual attractors.
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Figure 7.1: Example I: the asynchronous transition graphs that define the dynamics
of the two systems (7.4).

The corresponding asymptotic graph is shown in Fig. 7.2. To illustrate the computation

of an edge, consider the product Aiuα×B
j
vβ = A1

21×B1
11: since α = 1 = v, the system A

does not induce any change in the variables b; in contrast, the fact that β = 1 will induce

a trajectory between a state in A1
21 and an attractor in the graph GA,2 (corresponds to

Boolean input u=1). In the graph GA,2, the state 00 is in the basin of attraction of

{01} = A1
12. Therefore, there is an edge A1

21 × B1
11 → A1

12 × B1
11. All other edges are

similarly computed.

Note that the full interconnected system has four variables and hence its dynamics is

given by an asynchronous transition graph G with 24 = 16 states. To compute the

attractors of G we needed to compute a transition graph with only 2 × 3 = 6 states

(2 attractors from system A and 3 from system B). Furthermore, as remarked above,

the size of Gas can be further reduced by excluding the cross-product states known to

be transient. In this example only A1
21 × B1

21 satisfies the condition u 6= β and v 6= α,

and can be excluded. For higher order systems, such a size reduction can represent very

significant savings in computational cost.

The Gas of Example I has two attractors: Q1 = {A1
12×B1

21} and Q2 = {A1
12×B1

11, A
1
12×

B2
22, A

1
21 ×B1

11, A
1
21 ×B2

22}. For this 4-dimensional example, it is easy to check that Q1

is a true attractor of the full interconnected system (see also Prop. 7.2), while Q2 is a

“spurious” attractor, that is, not a real attractor of G. To see this, it suffices to note that

there is a pathway that leads from a state within Q2 to Q1, and which is not “covered”

by Gas:

Q2 3 A1
21 ×B2

22 3 (00, 01) G
B,1

−→ (00, 00) G
A,1

−→ (01, 00) ∈ Q1

This Example shows that even very simple (and deterministic) individual asynchronous

dynamics can lead to asymptotic graphs that exhibit spurious attractors. However,
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Figure 7.2: Example I: the asymptotic graph of the interconnection of the two sys-
tems (7.4). The cross-products inside shaded squares belong to an attractor. The
cross-product inside a white circle represents a transient state that can be excluded

from the computation.

note that this example was specifically contrived to illustrate the generation of spurious

attractors; its Boolean rules are not necessarily biologically plausible.

In view of Example I, it would be useful to complement Theorem 7.1 by conditions

permitting to decide whether an attractor of Gas is also an attractor of G. An exact

result was also proved in [166] –i.e., recovering exactly all the attractors in G from

the cross-products of semi-attractors, with no spurious generation,– by computing the

cross graph which is similar to Gas but involves cross-products of all (semi-)SCCs (as

opposed to considering only semi-attractors). However, depending on the number of

SCCs, the cross graph can often be more costly to compute than the full graph G, hence

the usefulness of establishing sufficient conditions for deciding whether an attractor of

Gas is a “true” attractor.

Some preliminary results were presented in Proposition 1 of [166], which are improved

below in Prop. 7.2. To state this, we need to introduce projection functions, for V =

Aiuα ×B
j
vβ, and R = {V1, . . . , Vr}:

π(V ) = {(a, b) ∈ Ω : a ∈ Aiuα, b ∈ B
j
vβ},

π(R) = ∪V ∈R π(V ),

πA(R) = {a ∈ ΩA : ∃b such that (a, b) ∈ π(R)}.

The A-output of R is the set:

A-output = {hA(a) : a ∈ πA(R)} ⊂ HA

Similar definitions apply for the projection πB(R) and the B-output of R.
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Recall that we are assuming qA = pB and qB = pA, hence HA ≡ UB and HB ≡ UA

and the A-output (resp., B-output) of R is also contained in UB (resp., UA). The new

result of Prop. 7.2 is in parts (ii), (iii), which previously stated “for all u ∈ UA” or

“for all v ∈ UB”. The new conditions are much less restrictive, although the proof

is similar. If Proposition 7.2 is not applicable, then one may still verify a posteriori

whether R represents an attractor of G by simulating all trajectories starting from all

states in π(R) and checking whether any of them leaves R (however, this “direct force”

procedure may also involve some computational costs).

Proposition 7.2. Let R be a terminal SCC of Gas. If either one of the following

conditions is satisfied:

i) R is a singleton (i.e., contains a single product V );

ii) the A-output of R is a singleton and the set πA(R) is an attractor of GA,u for all

u in the B-output of R;

iii) the B-output of R is a singleton and the set πB(R)} is an attractor of GB,v for all

v in the A-output of R;

then Ras = π(R) is an attractor of G.

Proof: We will use the notation (a, b)  G (a′, b′) to denote a path connecting the two

elements in the transition graph G and (a, b)→G (a, b′) to denote a one-step transition.

Part (i) is unchanged from [166]. Parts (ii) and (iii) are very similar, so we will only

prove part (iii). If the B-output of R is a singleton, say {α}, then any V ∈ R must be

of the form

Ajα(·) ×B
(·)
vα, for some v in the A-output of R.

In particular, (see definition of semi-SCC) all Ajα(·) belong to the same attractor Ajα of

GA,α.

Suppose now that the set πB(R) is an attractor for all v in the A-output of R. Then,

to show that π(R) is an attractor of Gas, it suffices to show that: (1) π(R) is a strongly

connected set, and (2) π(R) contains all its successors. If (1) and (2) hold, then π(R) is

indeed a terminal SCC.

To show (1), let (a, b) and (a′, b′) be any two elements of π(R). Then

(a, b) G (a, b′), since πB(R) is an attractor of GB,hA(a)(v = hA(a) ∈ A-output)

(a, b′) G (a′, b′), since a, a′ belong to the same attractor Ajα of GA,α.
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To show (2), observe that there are two forms of successors: either (a, b) →G (a′, b)

or (a, b) →G (a, b′). We want to prove that both (a′, b) and (a, b′) are in π(R). In

the first case, since a, a′ belong to the same attractor Ajα, it is immediate to see that

(a′, b) ∈ π(R). In the second case, since b′ ∈ πB(R) and πB(R) is an attractor of

GB,hA(a), by definition of πB(R) there some exists a′ such that (a′, b′) ∈ π(R). Recall

that the B-output is a singleton so hB(b′) = α. This implies

(a, b′) G (a′, b′) G (a, b′), since a, a′ belong to the same attractor Ajα of GA,α.

Therefore, (a, b′) ∈ π(R) as wanted.

Remark. The generalization of points (ii) and (iii) of Proposition 7.2 to multiple A-

outputs and B-outputs is not clear, due to Example I where the spurious attractor Q2

satisfies A-output=B-output={1,2}. Other examples exist where an attractor of Gas of

the same form as Q2 is indeed and attractor of G (see Example 2 in [45]).

If Proposition 7.2 cannot be applied, there may be other methods to decide whether

an attractor of Gas is a true attractor, such as identifying invariant sets of the system

that contain the given attractor: examples of this are given below in Propositions 7.4

and 7.5.

Example II. To illustrate the relevance of Prop. 7.2, another theoretical example is

now given. The two systems A and B are more conveniently represented by their asyn-

chronous transitions graphs, one for each fixed input (Fig. 7.3). The dimensions are

na = 2, nB = 3, pA = 1, pB = 2 and their outputs are as follows:

hA(a) = (a1, a2)′, hB(b) = b1.

Note that attractor A1
2 splits into two semi-attractors, A1

21 and A2
23, and the attractor

B1
2 splits into B1

21 and B2
22. The full interconnected system has five variables and hence

its dynamics is given by an asynchronous transition graph G with 25 = 32 states. To

compute the attractors of G we needed to compute a transition graph with 4×7−8 = 20

states: 4 semi-attractors from system A and 7 from system B, and 8 transient cross-

products (see also Fig. 7.4).

The Gas of Example II (Fig. 7.4) has two attractors: Q1 = {A1
11 × B1

11} and Q2 =

{A1
21 ×B1

32, A
1
21 ×B2

12, A
2
23 ×B1

12, A
2
23 ×B1

32}. It is easy to check that Q1 = {00000} is

an attractor of G, by Prop. 7.2(i). Likewise

Q2 = {10111, 10101, 10100, 00111, 00101, 00100}
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Figure 7.3: Example II: the asynchronous transition graphs of systems A and B, for
each fixed input.

is also an attractor of G, by Prop. 7.2(iii): the B-output is a singleton since {hB(b) : b ∈
πB(Q2)} = {1}; the A-output of Q2 is {hA(a) : a ∈ πA(Q2)} = {10, 00}; and, finally,

the set πB(Q2) = {111, 101, 100} is indeed an attractor of both GB,v=10 and GB,v=00.

7.3 Application: a model for E. Coli growth mechanism

The bacteria Escherichia Coli are unicellular micro-organisms (present in the human

gut, for instance) which grow and divide in the presence of a carbon source, such as

glucose or other sugars. In typical experiments, in a carbon rich medium, the bacteria

are observed to grow at a constant growth rate, which is referred to as the exponential

phase [124]. In the absence of carbon, the bacteria enter a stationary phase, with no

cellular growth or division. E. Coli use a network of genes and proteins to detect the

presence or absence of carbon sources and respond accordingly, by adjusting their gene

expression levels.
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Figure 7.4: Example II: the asymptotic graph of the interconnection of systems A and
B defined in Fig. 7.3. States inside light shaded squares belong to some attractor; there
are two attractors in this graph. States inside white circles represent known transient
state, which can be discarded from the computation. States inside light shaded circles

represent all other states.

The major players in this nutritional response network are well characterized (see, for

instance, [24, 92, 144] and references therein) but, in contrast, it has been difficult to

find an appropriate dynamical expression for modelling the growth rate of E. Coli [124].

In other words, if one wishes to add a model variable to describe growth rate, what

should its mathematical rule be? To overcome this problem, models often focus on

either the exponential or the stationary phases, thereby considering growth rate to be

either constant or zero, respectively [86]. However, such models are not able to describe

the transition from one phase to the other, thus failing to provide intuition on a crucial

cellular mechanism.

Growth should depend on the capacity of the bacteria to produce all the “bulk” proteins

necessary to its development and cellular division. In its turn, the synthesis of “bulk”

proteins depends on the transcription and translation steps, which are limited, respec-

tively, by the concentrations of RNA polymerase and ribosomes. Some models have thus

tried to include these effects to obtain a more accurate expression for growth rate. For

instance, one may have a dependence on one step:

Growth rate ∼ RNA polymerase (7.5)

as tested previously in [37], or in two (or more) steps, each of them separately limiting

growth rate, hence the use of the minimum function:

Growth rate ∼ min{ ribosomal proteins, bulk proteins } (7.6)
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Figure 7.5: The interconnection of the fis global regulatory module (left rectangle)
and a basic cellular growth model (right rectangle). Each module has three inputs and
outputs: u = (u1, u2, u3), v = (v1, v2, v3). The dashed lines represent the interconnec-
tion: i.e., the output of one system becomes the input of the other. Bacterial growth
rate is internally computed as a function of the external nutrient sources (Glu), ribo-
somes (here represented by rrni), RNA polymerase (poli) or “bulk” proteins (which will
be basically represented by crp). Growth rate is first translated into two qualitative
levels, W1 and W2, which signal downstream. The region under hatching represents the
new variables and interactions added to the original model in [144]. Several different

forms for fg will be tested (see text).

as considered in [155], or

Growth rate ∼ min{ ribosomal proteins, RNA polymerase } (7.7)

as we considered in [38]. In this Section, our goal is to test these expressions, by intercon-

necting a well known nutritional response module with a basic transcription/translation

model, using the Boolean interconnection method described in Section 7.2.3.

7.3.1 E. Coli nutritional stress response module

The nutritional stress response network developed in [144] involves three groups of vari-

ables, each representing a different regulatory effect: DNA super-coiling (determined

by the enzymes GyrAB and TopA), carbon response (involving the proteins Crp, Cya),

and a global regulator (protein Fis) that sends the carbon availability signal down to

the stable RNAs (rrn). The latter are limiting factors in ribosome production, and are

thus a measure of the growth of the bacteria.
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A very brief description of the main biological steps in response to nutritional stress is

as follows (see [144] and references therein): in answer to carbon depletion, the bacteria

increase their cyclic AMP concentration (cAMP); this small molecule will bind to Crp

(cAMP receptor protein) to form a complex that controls the expression of different

genes, some involved in the synthesis of enzymes that allow the bacteria to make use

of other carbon sources, others involved in morphological changes and motility. The

complex cAMP-Crp also activates the enzyme Cya (adenylate cyclase), which contributes

to produce cAMP from ATP, and represses the global regulator Fis, a protein which is

available at high concentration during the exponential phase, and is responsible for the

control of many other genes. The protein Fis also represses the complex cAMP-Crp and,

among others, it controls two enzymes involved in DNA topology regulation: Gyrase AB

(GyrAB) which induces negative super-coils in the DNA and Topoisomerase A which

restores super-coiling to “normal” levels. Finally, Fis also stimulates the transcription of

stable RNAs, a necessary condition for the production of ribosomes and hence necessary

for bacterial growth.

The model developed in [144] includes a constant external input named “Signal” that

represents nutritional stress, that is, the presence (“Signal”= 0) or absence (“Signal”= 1)

of carbon sources, while the variable rrn is simply an output, as it does not influence the

other variables. Growth rate was summarized into the effect of the complex cAMP-Crp

on the other variables, namely Fis, Crp, abd Cya. Depending on the value of “Signal”,

the network reproduced two steady states corresponding to the stationary or exponential

phases of E. coli, characterized in Table 7.1. The two states predicted by this model

are consistent with experimental observations: in the exponential phase, Fis is present

at high levels, as well as stable RNAs, and the cAMP receptor protein is not strongly

present. The opposite happens in the stationary phase.

In our model, the interactions are reorganized in order to include the explicit effect of

growth rate. It is known that the complex cAMP-Crp is growth dependent [23], so

we replaced this complex by an equivalent expression that depends on Crp, Cya, and

growth, now represented by the arrows u1, qr and qy in Fig. 7.5. The components inside

the hatched region in Fig. 7.5 were not present in model [144], and the rrn variable

did not influence the system. The objective in this paper is thus to refine the effect of

growth in the system, as described below in Section 7.3.2.

The model [144] consists of a piecewise affine system on six variables, it was further

studied in [48, 91, 167] and has been written as an extended Boolean model in [46],

using the procedure briefly described in Section 7.2. The first Boolean module is formed

by the 8 variables corresponding to genes fis, gyr, and top, since fis is described by 4
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Boolean variables and gyr, top by 2 each (see Fig. 7.5). The rules for this module are

given in the Appendix.

Since each variable may have several discrete values, the Boolean models will use vari,

i ∈ {1, 2, . . . , d} to denote the corresponding d Boolean variables (see Section 7.2.1)

(similarly for the other variables). The discrete variable can be recovered simply by

adding the Boolean variables:

var =
d∑
i=1

vari. (7.8)

Table 7.1: The two E. coli modes reproduced by the model [144]. If a variable has
more than one value, this means that the asymptotic solution is oscillatory among those

values.

“Signal” fis gyr top crp cya rrn Phase
0 1,2,3,4 1,2 0 1 2 0,1 Exponential
1 0 2 0 2 2 0 Stationary

7.3.2 The cellular growth module

To test the dependence of growth rate on some of the major model components, we

will study a “closed-loop system”: that is, use the state of the system to construct a

mathematical expression for bacterial growth rate and then feed it back to the system,

by letting proteins Cya and Crp depend on it. Thus, cellular growth rate (represented by

µ) now appears explicitly in the model, as an internal variable that depends dynamically

on the state of the system at each instant (see Fig. 7.5). In agreement with the variables

of the system, growth rate will have two positive discrete levels (translated to W1 and

W2, see equation (7.9) below). This also implies that the effect of growth on fis, crp

and cya has to be updated relative to the original model [144]. In Fig. 7.5, there are

thus three links (respectively, u1, qr and qy) which are not fixed for now, but for which

several possible combinations will be tested, with a view to better understand growth

signalling (see Section 7.4). The motivation for building this closed-loop system is to test

the dynamical dependence of bacterial growth rate on the system’s variables, a question

which is still not well understood. Thus, for this example, an expression for growth rate

will be considered valid if the refined system in Fig. 7.5 is able to reproduce the same

results as the (more schematic) model [144].

As indicated in Fig. 7.5, the second Boolean module will describe the expression of the

genes encoding for crp, cya, rrn, and will further include pol, to represent the expression
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of RNA polymerase, the enzyme responsible for gene transcription (2 Boolean variables

each). The presence of carbon sources will be represented by the external input Glu.

Previously [37], we have studied a mathematical expression for bacterial growth rate that

is dependent only on RNA polymerase, for a simple 2-dimensional model. However,

experimental data [155] suggests that ribosomes play a major role, hence we wish to

improve our results by analysing models that consider different combinations of limiting

factors, and checking their compatibility with known results.

The growth variable, µ, and its downstream signals will be given by:

µ = Glu and fg(rrn1, rrn2, pol1, pol2, crp1, crp2); (7.9)

W = 2− µ;

W1 = sign(W );

W2 = max(0,W − 1);

where sign(W ) = 1 if W > 0 and sign(W ) = 0 if W = 0 (by construction, sign(W ) is

never negative). The variables W1 and W2 correspond, respectively, to:

W1 = 1⇔ µ ≤ 1, W2 = 1⇔ µ = 0.

and satisfy W1 ≥ W2. Following (7.5)-(7.7) and (7.8), different expressions for the

function fg will be tested, namely:

f rg = rrn1 + rrn2,

fpg = pol1 + pol2,

f bg = crp1 + crp2, (7.10)

f rpg = min(rrn1 + rrn2, pol1 + pol2)

f rbg = min(rrn1 + rrn2, crp1 + crp2),

where the protein Crp is used as a surrogate for the level of expression of “bulk” proteins.

In addition, to describe how the growth rate affects the genetic machinery, two functions

need to be chosen: these correspond to the arrows labelled qy and qr (see below), which

will also be a function of W1 and W2. Several possible combinations will be tested and

the final results compared to the original model.
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7.3.3 System interconnection

The full discrete system will thus have 7 variables,

V = (fis, gyr, top, crp, cya, rrn, pol)′,

with discrete levels d1 = 4, dj = 2 for j = 2, . . . , 7 and state space:

Ωd = {0, 1, . . . , 4} × {0, 1, 2} × . . .× {0, 1, 2}.

The extended Boolean model will have 16 variables. As described in Section 7.2.3,

the interconnection of two input/output asynchronous Boolean networks such as sys-

tems (7.13) and (7.14), is obtained by setting u = hB(b) and v = hA(a). Most of the

input/output functions are already fixed by model [144]. There is a new interaction be-

tween the two modules, due to the effect of the growth rate in fis, which is represented

by u1 in Fig. 7.5:

u1 ∈ {W1,W2},
u2 = crp1 or crp2,

u3 = cya1 or cya2,

v1 = fis1,

v2 = fis2 or fis4,

v3 = fis3.

The goal in this paper is the discrimination between different variants of the model in

Fig. 7.5, in order to choose the mechanism that better represents bacterial response.

The variants cover:

� models for growth rate: f rg , f bg , f rbg , and f rpg ;

� interactions between growth signals and the genetic machinery response: qr, qy,

and u1.

As remarked above (Section 7.3.1), the interactions qr, qy, and u1 in some sense replace

the effect of the complex cAMP-Crp on the system, by including an explicit dependence

on growth rate. To evaluate the new rules we will consider that there are two signalling

stages, corresponding to the response of Cya/cAMP (the initial steps in the case of

nutritional stress) and of Fis (global regulator). The response of crp will be timed with

one or the other:

qr = u1 or qr = qy.



Chapter 7. Attractor computation using interconnected Boolean networks 131

The following distinct combinations for qy, qr and u1 will be tested:

(I) qy = W1, qr = W1, u1 = W1

(II) qy = W1, qr = W1, u1 = W2

(III) qy = W2, qr = W2, u1 = W1 (7.11)

(IV ) qy = W1, qr = W2, u1 = W2

(V ) qy = W2, qr = W2, u1 = W2

(V I) qy = W2, qr = W1, u1 = W1

7.4 Results

As discussed above (cf. Section 7.3), the goal is to recover the behaviour of the sys-

tem as described in Ropers et al [144] (Table 7.1) but now with growth rate “actually

computed” by the bacteria, for the system in closed loop form which uses the state of

the system. Various combinations of interactions and growth rate functions were tested,

with the results summarized in Table 7.2 and discussed below. As an indication of the

Table 7.2: The attractors for each combination of growth rate function and in-
teractions u1, qr, qy. Attractors σi satisfy rrn = pol = 0, while attractors αj ,
j ∈ {2, 4, 24, 48, 52, 72}, satisfy rrn ≥ 1 and pol ≥ 1 (full characterizations are given in
Sections 7.4.2 and 7.4.3). The indexes i, j denote the number of distinct states con-
tained in the attractor. All the attractors of Gas are also attractors of G: either they
satisfy Prop. 7.2 and/or other methods, as indicated. The highlighted row (∗ ∗ ∗) rep-
resents the model variants which better reproduce Table 7.1 results (see Section 7.4.4).

Growth rate function Interactions (7.11) Attractors, Gas (Glu=1) Attractors, Gas (Glu=0)
Stationary Exponential Stationary

fr
g ,fp

g ,frp
g ,frb

g

I σ4 [Prop. 7.2(i)] α4 [Prop. 7.2(i)] σ4 [Prop. 7.3]
II σ4 [Prop. 7.2(i)] α72 [Prop. 7.4] σ4 [Prop. 7.3]

III,VI σ4 [Prop. 7.2(i)] α2 [Prop. 7.2(i)] σ4 [Prop. 7.3]
∗ ∗ ∗ IV,V σ4 [Prop. 7.2(i)] α24 [Prop. 7.2(iii)] σ4 [Prop. 7.3]

fb
g

I,III,VI σ52 [Prop. 7.5(i)] α52 [Prop. 7.5(ii)] σ4 [Prop. 7.3]
II σ48 [Prop. 7.5(i)] α48 [Prop. 7.5(ii)] σ4 [Prop. 7.3]

IV,V σ24 [Prop. 7.2(iii)] α24 [Prop. 7.2(iii)] σ4 [Prop. 7.3]

computational costs, application of the method presented in Section 7.2.3 to compute

the attractors for model f rpg , case IV, gave the following results:

� there are eight constant-input asynchronous transition graphs for each system

(GA,u, or GB,v);

� on these graphs there are a total of 22 semi-attractors for system ΣA and 20 for

ΣB;

� the total number of vertices in the asymptotic graph is thus 20× 22 = 440;
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� as remarked in Section 7.2.3 (and [166]), the number of vertices in Gas can be

further reduced by eliminating those which are known to have no incoming arrow.

This leads to only 90 vertices;

� the computational cost of finding the attractors of the interconnected system Σ

has therefore been reduced from analysis of a size 216 = 65536 to a size 90 matrix;

� one should nevertheless consider the cost of computing this size 90 matrix, which

involves reachability calculations in the 2 × 8 individual asynchronous transition

graphs (the full process was very fast here, taking between 30-60 seconds for each

model variant).

7.4.1 General properties

Some immediate observations from the results are:

� a common point to all model variants is that, in the presence of nutrient (Glu=1),

Gas always has two attractors which are both attractors of G, by application of

Prop. 7.2(i) or (iii), or other methods (see Prop. 7.4, 7.5).

� for all model variants, the first attractor (σi, i ∈ {4, 24, 48, 52}) has rrn = pol = 0

and the second attractor (αj , j ∈ {2, 4, 24, 48, 52, 72}) rrn = pol = 1. The first

may be said to represent stationary phase, while the second stands for exponential

phase.

� also for all model variants, in the absence of nutrient (Glu=0), there is only one

attractor, σ4; this can be verified directly (see Prop. 7.3 below). The stationary

phase attractor σ4 has four states and is characterized by:

σ4 : fis = 0, gyr ∈ {1, 2}, top = 0, crp = 2, cya ∈ {1, 2}, rrn = 0, pol = 0.(7.12)

coinciding with the stationary attractor of model [144] (see Table 7.1) with the

exception of gyr and cya which oscillate between 1 and 2 (instead of being fixed

at 2).

� all models involving the ribosomes or RNA polymerase as a growth rate limiting

factor exhibit the same stationary phase and a similar exponential phase attractors,

depending only on the choice of feedback interactions.

As an example, for model variant f rpg , case IV, the basins of attraction for σ4 and α24

are disconnected. The stationary phase attractor is formed of a single vertex, while the
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Figure 7.6: The exponential growth phase attractor (model frpg , case IV). Since the
Bjα4 components are all equal, this attractor can be reduced to (either) one of the

horizontal rows, with three components only (see text for more details).

exponential phase attractor is composed of 9 vertices, as shown in Fig. 7.6. However,

all system B semi-attractors coincide (Prop. 7.2(iii) is satisfied):

B12
54 = B17

74 = B19
84 = {10111010},

while the A system semi-attractors are characterized by the levels of fis, with either

fis = 1,fis = 2 or fis ≥ 3:

A10
45 = {10000000, 10000010, 10001000, 10001010, 10001100, 10001110},

A11
47 = {11000000, 11000010, 11001100, 11001010, 10001100, 11001110},

A12
48 = {11100000, 11100010, 11101100, 11101010, 11101100, 11101110,

11110000, 11110010, 11111100, 11111010, 11111100, 11111110} .

In practice, the attractor in Fig. 7.6 can be reduced to (either) one of the horizontal

rows, with three components only. All concentrations are fixed, except for fis, gyr, and

top which are allowed to oscillate in any given increasing or decreasing order, provided

that fis ≥ 1 and top ≤ 1.

In the case where no carbon sources are present, it can be shown that all model vari-

ants become the same, and hence exhibit the same stationary phase attractor. This is

essentially due to the direct effect of growth rate on the synthesis of RNA polymerase.
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Proposition 7.3. Assume that Glu=0. Then, the asymptotic graph for all model vari-

ants exhibits only one attractor, σ4.

Proof : In the case Glu=0, we immediately have the steady state values for rrn and pol:

µ = 0 ⇒ pol1 = pol2 = 0 ⇒ rrn1 = rrn2 = 0

For the interactions W , qy, qr, and u1 it also follows that:

W1 = W2 = 1 ⇒ qy = qr = u1 = 1.

Together with the rules in Appendix, this leads to:

cya1 = crp1 = 1 ⇒ u2 = u3 = 1 ⇒ fisi = hfi

which simplifies to

fis+
1 = fis2, fis+

2 = fis3, fis+
3 = fis4, fis+

4 = fis3 and not fis4.

Thus, at steady state, the values for fis satisfy fisi = 0, for all i, which in turn imply

that all the outputs of system A are zero: vi = 0 for all i. The remaining concentrations

can now be easily established from the Boolean rules, so it follows that there is only one

attractor and that it is σ4 (7.12).

7.4.2 Growth Rate limited by ribosomes or RNA polymerase

For the model variants using f rg , fpg ,f rpg , or f rbg , the stationary phase attractor σ4 is

always the same (as described in Section 7.4.1). The exponential phase attractor, αj ,

j ∈ {2, 4, 24, 72}, depends on the wiring and has j states characterized by :

α2 : fis = 0, gyr ∈ {1, 2}, top = 0, crp = 2, cya = 2, rrn = pol = 1,

α4 : fis = 0, gyr ∈ {1, 2}, top = 0, crp = 2, cya ∈ {1, 2}, rrn = pol = 1,

α24 : fis ∈ {1, 2, 3, 4} gyr ∈ {1, 2}, top = 0, crp = 1, cya = 2, rrn = pol = 1,

α72 : fis ∈ {1, 2, 3, 4}, gyr ∈ {0, 1, 2}, top = 0, crp ∈ {1, 2}, cya ∈ {1, 2}, rrn = pol = 1.

Note that cases IV and V (α24) are similar to the exponential phase attractor of [144]

(see Table 7.1) (the only difference is rrn now fixed at 1, which seems reasonable for
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the exponential phase). Cases I,III,VI (α2,α4) fail to reproduce the levels of fis during

exponential phase (here they are fixed at zero). Case II (α72) also exhibits oscilations

in crp and cya, which are not observed in Table 7.1. This attractor does not fit into

Proposition 7.2, but an alternative way to show that it is not a spurious attractor, is

to note that the set of states with ribosomes, RNA polymerase and Fis all at discrete

level 1 is invariant, so trajectories cannot leave this set; therefore, an attractor with such

properties must exist, with the only possible candidate being α72.

Proposition 7.4. Assume that fg ∈ {f rg , f
p
g , f

rp
g , f rbg }. The set Q = {x ∈ Ωd : rrn =

1, pol = 1, fis ≥ 1} is invariant.

Proof : From the Boolean rules (see Appendix), it suffices to note that:

rrn = pol = 1 ⇒ µ = 1 ⇒ W1 = 1, W2 = 0 ⇒ qy = qr = 1, u1 = 0

and also

rrn = pol = 1, µ ≥ 1 ⇒ rrn = pol = 1.

And then:

u1 = 0 ⇒ fis1 = h01 ≡ 1 ⇒ fis ≥ 1.

Therefore, the set Q is invariant.

7.4.3 Growth Rate limited by bulk proteins

For the model variants using f bg , the exponential phase attractors are characterized as

follows:

α24 : fis ∈ {1, 2, 3, 4} gyr ∈ {0, 1, 2}, top = {0, 1}, crp = 1, cya = 2, rrn = pol = 1,

α48 : fis ∈ {1, 2, 3, 4} gyr ∈ {0, 1, 2}, top = {0, 1}, crp ∈ {1, 2}, cya = 2, rrn = pol = 1,

α52 : fis ∈ {0, 1, 2, 3, 4}, gyr ∈ {0, 1, 2}, top = {0, 1}, crp ∈ {1, 2}, cya = 2, rrn = pol = 1.

The stationary phase attractors are similar in all variables except that rrn = pol = 0.

Comparison with Table 7.1 shows many differences with respect to model [144]. These

attractors are also true attractors of G, as shown by application of the following result.

Proposition 7.5. Define the sets P0 and P1:

P0 = {x ∈ Ωd : rrn = 0, pol = 0}, P1 = {x : rrn = 1, pol = 1}.
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Then:

(i) The set P0 is invariant independently of the function fg;

(ii) The set P1 is invariant if fg = f bg .

Proof : Invariance of P0 follows directly from the Boolean rules for rrni and poli. For

P1, it suffices to note that the Boolean rules imply (see Appendix): cya ≥ 1 and crp ≥ 1

which imply µ ≥ 1. Then, rrn = pol = 1 and µ ≥ 1 imply rrn = pol = 1.

7.4.4 Model discrimination

Based on the observations above and comparison of Tables 7.1 and 7.2, it seems clear that

the growth rate function should depend on the ribosomes and/or RNA polymerase. With

this model, at steady state there is no difference between a dependence on ribosomes or

RNA polymerase, although the transient dynamics do depend differently on these two

species (simulations in Section 7.4.5). (This may be due to a very simplified model for

the transcription/translation steps which is, however, not our aim to study here.) The

model variants corresponding to I,III,VI do not satisfy the properties of the exponential

phase attractor and can thus be eliminated. The interconnection of type II has most

of the correct properties, but it allows the concentration of crp and cya to oscillate,

in contrast to the original model. The cases that better fit the original model are

IV and V, whose asymptotic behaviour is indistinguishable. This is consistent with

the observations (summarized in Ropers et al. [144]) that: immediately upon carbon

starvation, or absence of carbon source, transcription of the gene cya is activated, which

leads to production of the protein Cya. Phosphorylation of Cya leads to synthesis of

cyclic AMP, which in turn will bind to Crp and produce a complex [cAMP-Crp]. This

complex will then control a variety of genes which are directly involved in the adaptive

response of E. coli to a deprivation of carbon. Among others, it activates crp, and

inactivates cya and the global regulator fis.

Furthermore, to establish the transition to exponential phase, and guarantee the presence

of global regulator fis, the wiring interactions should be as in cases II, IV, and V, which

all satisfy u1 = W2: in other words, since W2 = 1 corresponds to µ = 0, fis is inhibited

only at low growth rate, as also observed in [144]. The levels of crp and cya are in

agreement with those of Table 7.1 if crp is activated at high growth rate level and the

inhibition effect on cya is not later than the activation of crp, i.e., qr = W2, qy ≥ qr

(recall that W1 ≥W2).

In conclusion, to develop a more detailed continuous model, bacterial growth rate should

depend on the ribosomes. For simplicity, one may even consider the ribosomes to be the
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only variable influencing growth rate (besides the external input), because no differences

were observed between models with f rg , f rpg , or f rbg .

7.4.5 Dynamical behaviour

By virtue of Theorem 7.1 and Propositions 7.2 to 7.5, we know that any trajectory of the

interconnected model will eventually reach either the exponential or stationary phase

attractors, depending on the initial condition and path in the graph G. To illustrate

possible dynamical behaviours, we can generate trajectories in G, by randomly choosing

the variable to be updated at the next instant, according to the rules. Note that this

simulation does not need the graph G to be constructed; but, on the other hand, such

simulations cannot characterize the full behaviour of the network. Hence the usefulness

of the asymptotic graph Gas, which can now be completed with some statistical results

on initial conditions and attractors reached.

For the statistical analysis we choose interconnection model IV, and growth rate models

f rpg , f rg , and fpg . It must be noted that the asymptotic graph “looses” some trajectories

of the full interconnected system as, to construct Gas, the system is assumed to evolve

in one of the constant-input/constant-output graphs {a} × GB,α or GA,β × {b} until

reaching an attractor. In simulations, however, the system is allowed to switch before

reaching an attractor, meaning that the basins of attraction are not really disconnected

as might be suggested by the asymptotic graph.

Monte Carlo simulations of the full model (104 randomly generated trajectories) assume

that all transitions in G are equally probable and show that the two attractors are

reached with similar frequencies: for f rpg , a fraction of 0.59 (0.57 for f rg , or 0.58 for fpg )

trajectories converge to the exponential phase attractor.

Note that the invariance results in Propositions 7.4 and 7.5 already provide an idea of

the basins of attractions, since they imply notably that initial conditions of the form

rrn = pol = 0 (resp., rrn = pol = 1) lead immediately to the stationary (resp., expo-

nential) phase attractor. To obtain more information on the distribution of the basins

of attraction, we have further analysed the probability that the system converges to

either attractor given an initial condition with variable vari = ` (where vari runs over

the sixteen Boolean variables of the system and ` ∈ {0, 1}). We found that the con-

vergence to either attractor depends essentially on the initial concentrations of RNA

polymerase and ribosomes, while all other concentrations play minor roles (in agree-

ment with Propositions 7.4 and 7.5). An interesting observation is that, for all variables

except the polymerase, and for any initial condition, the probability of converging to

exponential phase is higher than to stationary phase. It is also evident that the absence
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of polymerase immediately prevents convergence to exponential phase. In addition, we

observe that all trajectories converging to exponential phase need to start with an in-

termediate (or higher) level of RNA polymerase (pol ≥ 1). Table 7.3 summarizes the

statistics obtained from the Monte Carlo simulations. Our studies lead to the conclusion

Table 7.3: Initial conditions and attractor reached, for some model variants, with
interconnection of type IV.

Initial conditions Attractor reached
f rpg , f rg , fpg

pol = 0 stationary
pol ≥ 1 and rrn = 0 either
pol ≥ 1 and rrn ≥ 1 exponential

that RNA polymerase and ribosomes are both crucial for bacterial growth, but exert

their roles at different times: initially, the presence of RNA polymerase is necessary to

grow and reach the exponential phase (otherwise, if RNA polymerase is absent at time

zero, the bacteria enter the stationary phase even in the presence of carbon sources),

while ribosomes can be absent; at later times, the presence of ribosomes is essential to

guarantee the entry into exponential phase.

7.5 Conclusions

Several dynamic model variants for bacterial growth rate that consider limitation by

availability of the proteins needed for cell division (RNA polymerase for transcription,

ribosomes for translation, or other “bulk” proteins) were tested and compared to a well

established model. The main goal was to analyse (qualitative) feasibility of the wiring

network, as well as the logical coherence of each model variant. This was accomplished

by using a Boolean version of the model for nutritional stress response in [144], coupled

with a basic cellular growth module.

We can conclude that Boolean models provide a useful framework for analysis of a

system’s dynamical behaviour, convenient for hypotheses testing and model discrimina-

tion. This framework presents several advantages from a computational point of view,

as many tools and algorithms are available for the study and rigorous analysis of the

networks. In particular, using the interconnection of two Boolean modules, it is possible

to compute the attractors of a large network at a much lower cost than with classical

graph theoretical tools. However, the drawbacks of this methodology include problems

related to identifying the two (or more) Boolean modules as well as the corresponding

inputs and outputs, which are not always obvious (see also [166]). As the number of
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modules and inputs increases, also the computational cost will increase and a balance

must be found. This is a topic that should be further developed in future work.

A number of interesting points arise from our qualitative analysis. First, it was clear that

limitation of growth rate by the ribosomes is needed in order to correctly reproduce the

asymptotic modes, as well as transient dynamics, of the original model [144]. Second,

in the presence of nutrient, our closed-loop model –where bacteria internally compute

their growth rate, rather than responding to an already fixed signal– has the capacity for

bistability (i.e., two asymptotic modes, representing exponential and stationary phases).

Thus the closed-loop model also recovers the correct response to initial conditions: if

both ribosomes and RNA polymerase concentration is very low, then the bacteria cannot

grow even in the presence of nutrient. In the absence of nutrient, only the stationary

phase attractor remains, as should be expected. Finally, by comparison to [144], we

were able to discard most of the model variants and retain several properties necessary

to reproduce the original model’s attractors.

Since our main goal was essentially theoretical, we have not fully explored the directions

for model improvement suggested by our analysis. For instance, a more detailed module

for transcription/translation including other components besides ribosomes and RNA

polymerase, or the modelling of the “bulk” proteins in a more precise way. To conclude,

although discrete models are, of course, not appropriate for a detailed description of

a system or to answer more specific questions, this analysis constitutes a very useful

preliminary study of growth rate models. It provides many indications and clues for

future work on constructing a more detailed, continuous model of the system.
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Appendix

Boolean rules of the two E. coli modules

The Boolean model for the Fis module is defined by a set of rules which use some

auxiliary expressions of the form h− given below:

fis+
1 = (not u1 and h01) or (u1 and h11);

fis+
2 = (not u1 and h02) or (u1 and h12);

fis+
3 = (not u1 and h03) or (u1 and h13);

fis+
4 = (not u1 and h04) or (u1 and h14); (7.13)

gyr+
1 = (not fis3 and not fis4) or (gyr2 and hf3);

gyr+
2 = not fis3 and not fis4 and gyr1 and (not gyr2 or top1 or top2);

top+
1 = (not fis3 and not fis4 and top2) or

(hf3 and ((not gyr2 and top2) or (gyr2 and (not top1 or top2))));

top+
2 = 0.

with the auxiliary expressions:

hf2 = fis1 and fis2;

hf3 = fis1 and fis2 and fis3;

hf4 = fis1 and fis2 and fis3 and fis4;

hf4n = fis1 and fis2 and fis3 and not fis4;

h01 = 1;

h02 = (fis1 and gyr1 and not top2) or hf3;

h03 = (hf2 and gyr1 and not top2) or hf4;

h04 = hf4n and gyr1 and not top2;

h11 = ((u2 or u3) and hf2) or ((not u2 or not u3) and h01);

h12 = ((u2 or u3) and hf3) or ((not u2 or not u3) and h02);

h13 = ((u2 or u3) and hf4) or ((not u2 or not u3) and h03);

h14 = (not u2 or not u3) and h04;
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The rules for the cellular growth module can be written as follows:

crp+
1 = 1;

crp+
2 = (not qr and crp1 and not v1) or (qr and crp1 and not (v2 or v3));

cya+
1 = 1;

cya+
2 = (not qy and cya1) or (qy and (hy1 or hy2)); (7.14)

rrn+
1 = pol1 or rrn2;

rrn+
2 = pol2 and rrn1 and v3;

pol+1 = (sign(µ) and rrn1 and pol1) or pol2;

pol+2 = sign(µ) and rrn2 and pol2;

where the auxiliary expressions are

hy1 = cya1 and (not crp1 or not crp2);

hy2 = cya1 and not cya2 and crp1 and crp2;





Chapter 8

A coarse-grained dynamical

model of E. coli gene expression

machinery at varying growth

rates

This chapter is written in the form of a technical report (deliverable) for the ANR

GeMCo project [41].

The mathematical model of E. coli gene expression machinery presented here can be

seen as a reduced version of a higher dimensional and more detailed kinetic model (un-

published work) developed by our collaborators in Grenoble (D. Ropers and E. Grac,

Inria Ibis team). The aim of developing a reduced model was mainly that of facilitat-

ing the identification of the system’s parameters. In fact, a low-dimensional, but still

quantitative model, for which the parameters are known, is a crucial starting point to

design and study—in silico—possible growth rate control strategies. Along these lines,

this reduced, but quantitative model, could be easily extended considering the network

motifs and dynamical growth rate expressions of Chapters 4-5-6, which describe, quali-

tatively, possible synthetic gene modifications to control the growth rate of the cells. In

this way, one could use qualitative and quantitative modelling formalisms together, in

an iterative process, in order to develop more accurate reduced models and test novel

control laws.

143
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8.1 Introduction

In bacteria the rate of cell proliferation (growth rate) and the gene expression machin-

ery (GEM) are tightly coupled. In fact, bacterial gene expression not only depends

on specific regulation of particular molecules, but also on cell growth rate because im-

portant components of GEM (ribosomes, RNA Polymerase, etc) are all growth-rate

dependent [114]. Moreover, early works on bacterial physiology [31, 124, 151, 173] have

shown that many parameters of the cells, such as their macro-molecular composition

and cell size, depend only on the growth rate and not on the nutrient used to achieve

that growth rate.

In this study we focus on the GEM of E. coli with the intent of developing a minimal,

but quantitative, dynamical model of the bacterial transcription-translation apparatus

dependent on growth rate. We sought to formulate a model of E. coli that could predict

macro-molecular cell composition (concentrations of RNAP, ribosomes, proteins etc)

from growth rate, DNA related parameters (concentrations of genes of interest) and

known key physical process in the cell, while keeping the complexity of the model to a

minimum.

Similarly to [159], we lumped the E. coli genome into a small set of gene classes (rnn,

rpoBC, protein-encoding (bulk) genes) accounting for all transcription and translation

within the cell for a given growth rate. Then, according to the formalism in [115] we

developed an ODE model whose variables account for the macromolecule content of

the cell (ribosomes, RNAP, proteins, mRNAs etc). This coarse-grained model of E.coli

GEM has then been calibrated to data from [31] showing that the model is able to

reproduce the macromolecular composition of the cell at several growth rate values.

This type of model is interesting per se because it may help elucidate how the E. coli

GEM works on a global scale, pointing out the most important and fundamental reg-

ulations at the gene expression level. Moreover, this GEM model could also be used

as host-cell model where more complex/specific gene networks are embedded into it.

This, for example, would allow one to study host-synthetic circuit interactions and help

biologists in engineering biological circuits that require the knowledge of host factors

that compete or interface with designed function [36].

8.2 E. coli GEM network: biological description

In Figure 8.1 is depicted the coarse-grained model of E. coli GEM. This picture describes

the expression of the three gene classes rnn, rpoBC and bulk representing, respectively,
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Figure 8.1: The coarse-grained model of E. coli GEM.

the rRNA operon determining the ribosome synthesis [31], the operon encoding for

β − β′ subunits [130] which are the limiting factors in RNAP assembling and the proxy

gene class which is a consolidation of all identified gene-encoding protein. Moreover,

Figure 8.1 shows the various feedback regulations between the components of the GEM.

Notably, transcription of all gene classes is catalysed by RNAP while translation of

β − β′ mRNA (mβ − β′) and bulk mRNA (mRNA) is operated by ribosomes [77]. In

addition to these mechanistic regulations, we considered also the known effect that the

physiological state of the cell—represented by the growth rate µ—has on the regulation

of stable-RNA (sRNA) and mRNA [31, 89]. That is, at increasing growth rate values

more stable-RNAs are produced whereas mRNA synthesis is reduced. In what follows

we will discuss the expression of the three gene classes in more detail.

8.2.1 Ribosomes synthesis and function

Ribosomes are composed of stable-RNAs (sRNA) and proteins (r-protein). Since the

synthesis of r-proteins is regulated so as to match that of sRNA [59], it turns out that

ribosome regulation centers on the transcriptional control of rnn genes. Hence, we will

not take into account r-proteins synthesis and their assembling with sRNA to produce

ribosomes, but we will consider that ribosome synthesis is essentially limited by the rate

of sRNA synthesis. This assumption is graphically represented by the dashed arrow in

Figure 8.1.

The rnn genes, from which sRNA is produced, are organized in 7 operons (rnnA, rnnB,

rnnC, rnnD, rnnE, rnnG, rnnH ) and are under the control of two promoters: the

Pr1 constitutive promoter which is essentially regulated by free RNAP and the Pr2

growth rate dependent promoter whose activation strongly correlates with increasing
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growth rate values [89]. In rapidly growing cells, sRNA is strongly synthesized and

commandeers the majority of RNAP in the cell, whereas sRNA synthesis is suppressed at

lower growth (e.g. nutrient starvation, amino acids depletion) [100]. At molecular level,

Pr2 promoter is inhibited by ppGpp, an alarmone molecule, which rapidly accumulates

at lower growth rates following the stringent response caused by amino acid and/or

nutrient starvation [59]. Since ppGpp and growth rate regulations of Pr2 are strongly

interconnected and superposed [100], for the sake of simplicity we will only take into

account the growth rate positive effect on sRNA synthesis.

Ribosome role in the GEM is that of synthesizing proteins (translation) linking amino

acids together in the order specified by messenger-RNA molecules. The red arrows in

Figure 8.1, starting from ribosomes and ending in the mRNA species (mβ−β′, mRNA),

are indicating the positive regulation effect carried out by ribosomes in the translation

process.

8.2.2 RNAP synthesis and function

In E. coli cells the transcription is catalysed by RNA Polymerase (RNAP) core enzyme

(green arrows in Figure 8.1), which is made up of five subunits (α2ββ
′σ). The amount of

ββ′ turns out to be the limiting factor in RNAP synthesis [31]. Hence—in our model—

we will omit the other subunits and focus only on ββ′ formation, assuming that ββ′

subunits’ amount equals RNAP core enzyme amount.

The ββ′ subunits are the product of rpoBC genes expression. The rpoBC genes are

regulated both at transcriptional and translational level [64], but some of these feedback

mechanisms are still unclear. In our model, we will only consider the positive transcrip-

tional regulation of RNAP and the positive translational regulation of ribosomes which

are known and well understood regulations.

RNAP initiates transcription at specific DNA sequences known as promoters. It then

moves along DNA producing an RNA chain (mRNA sRNA), which is complementary

to the template DNA strand. The process of adding nucleotides to the RNA strand is

known as elongation. Finally, RNAP will preferentially release its RNA transcript at

specific DNA sequences encoded at the end of genes, which are known as terminators.

8.2.3 Proteins synthesis and function

In our model, the bulk gene class represents a consolidation of all 4288 identified gene-

encoded protein [25] in E. coli. Hence, mRNA and protein in Figure 8.1 represent proxy

products of all messenger-RNAs and proteins expressed in E. coli. In bacteria, mRNA
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synthesis is regulated at transcription level by RNAP and by growth rate dependent

mechanisms (probably due to ppGpp) [32] that—at higher growth rates—reduces mRNA

synthesis to divert resources towards sRNA synthesis. This is because—to achieve higher

growth rate values—cells need more ribosomes to be engaged in translating proteins and

so resources are diverted from producing mRNA towards stable-RNA molecules, which

substantially determine ribosome amount.

8.3 Mathematical background

To model the dynamics of gene products depicted in Figure 8.1 we used a mathematical

formalism developed by A. Kremling in [115]. This formalism uses ordinary differential

equations coupled with algebraic mass conservation equations (to derive free RNAP

and ribosomes) to model—in a quite detailed fashion—the dynamics of those molecular

mechanisms involved in the transcription and translation of a single gene. Here, we

basically report, as an example, the derivation of transcription and translation model

equations of a generic gene. These equations will be then used to model the entire GEM

depicted in Figure 8.1.

8.3.1 Transcription

Let consider a single gene g of length L, being L the number of nucleotides of gene g.

Free RNAP, denoted by FP , binds in a reversible way to the free promoter D of gene g

and forms the complex PD:

FP +D
k2
�
k1

PD (8.1)

After binding, RNAP clears the promoter and is ready to start moving (and reading

nucleotides) along the gene g:

PD
kg→ Y +D (8.2)

where Y denotes RNAP just after having cleared the promoter, but still bound to the

DNA. Then, RNAP moves along the gene g, reads its information and enlarges the chain

of the nascent mRNA Yi with nucleotides Nu. Eventually, when RNAP has finished to
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elongate the RNA chain (RNA), it unbinds to the DNA and returns to its free state:

Y +Nu
cg→ Y1

Y1 +Nu
cg→ Y2

...

YL−1 +Nu
cg→ FP +RNA

(8.3)

Then, the completed RNA molecule is subject to degradation γg and dilution due to cell

growth rate µ:

RNA
γg+µ→ ∅ (8.4)

In this model, reactions (8.3) are supposed not dependent on nucleotides, since they are

assumed to be in excess. Let Pf , df , Pd, w,wi, x be the molar concentration of species

FP , D, PD, Y , Yi and RNA, respectively. Hence, assuming classical mass-action

kinetics, one can derive the following ODEs from reactions above (8.1)-(8.2)-(8.3)-(8.4)

as in [19, 20]:
Ṗd = k1Pfdf − k2Pd − kgPd

ḋf = −k1Pfdf + k2Pd + kgPd

Ṗf = −k1Pfdf + k2Pd + cgwL−1

ẇ = kgPd − cgw

ẇ1 = cgw − cgw1

...

ẇL−1 = cgwL−2 − cgwL−1

ẋ = cgwL−1 − (γg + µ)x

(8.5)

Along with system (8.5), there are also two mass conservation equations regarding the

total concentration of promoter, i.e. d, and the total concentration of RNAP, i.e. P :

d = df + Pd (8.6a)

P = Pf + Pd + w + w1 + . . .+ wL−1. (8.6b)
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Hence, solving the promoter conservation equation (8.6a) with respect to the free pro-

moter concentration df , system (8.5) can be reduced in:

Ṗd = k1Pf (d− Pd)− k2Pd − kgPd

Ṗf = −k1Pf (d− Pd) + k2Pd + cgwL−1

ẇ = kgPd − cgw

ẇ1 = cgw − cgw1

...

ẇL−1 = cgwL−2 − cgwL−1

ẋ = cgwL−1 − (γg + µ)x

(8.7)

Then, assuming that all RNAP complexes Pd, w, w1,...,wL−1 are at steady state (the

mostly accepted biological hypothesis beyond this assumption is that biochemical reac-

tions involved in complexes’ formation are generally much faster than the entire tran-

scription process), one gets:

Pd =
Pf

Pf + θP
d (8.8)

wL−1 = wL−2 = . . . = w1 = w =
kg
cg
Pd =

kg
cg

Pf
Pf + θP

d (8.9)

where θP =
k2 + kg
k1

. Moreover, substituting (8.8) and (8.9) into (8.6b), the total RNAP

conservation equation can be rewritten as:

P = Pf +
(

Pf
Pf + θP

)
d

(
1 + L

kg
cg

)
(8.10)

Finally, the ODE modelling the dynamics of the transcription of gene g, which leads to

the formation of the completed RNA—expressed in molar concentration by x, reads as:

ẋ = kg
Pf

Pf + θP
d− (γg + µ)x. (8.11)

Biologically speaking, equation (8.10) makes sense only if the biological system under

investigation was made up of only gene g (RNAP would either be free or bound to

gene g), but in reality organisms consist of thousands of genes. Hence, considering an

organism with a total number of n genes, a more realistic conservation equation for

RNAP would be:

P = Pf +
n∑
l=1

(
Pf

Pf + θlP

)
dl

(
1 + Ll

kl
cl

)
(8.12)
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As explained in [115], this model does not consider stearic effects of RNAP, that is

RNAP when bound to the DNA occupies only one nucleotide.

8.3.2 Translation

Modelling the translation process is a little bit more elaborated than transcription, since

one has to take into account both nascent mRNAs, i.e. uncompleted mRNAs that stem

from RNAPs which are still in the process of transcribing, and completed mRNA.

8.3.2.1 Translation of nascent mRNA

Every complex Yi (the moving RNAP on gene g) represents a starting point for trans-

lation, since from each Yi can originate a new, but uncompleted, mRNA where free

ribosomes can bind and start translation. Hence, free ribosome FR binds to the free

ribosome binding site Y i of Yi in a reversible fashion forming the complex RY i:

FR+ Y i

k4
�
k3

RY i (8.13)

After binding, ribosome clears the ribosome binding site and is ready to start moving

(and reading nucleotides) along the nascent mRNA:

RY i
kG→ Zi + Y i (8.14)

where Zi denotes ribosome just after the clearance, bound to the nascent mRNA and

waiting for reading nucleotides.

Then, the moving ribosome Zji reads the information stored in the nascent mRNA and

enlarges the chain of the corresponding protein with amino acids AA. Here we do not

model amino acid formation, which are considered not limiting, nor the charging and

uncharging of AA on transfer-RNA, which are considered not limiting as well. The

protein chain is considered to grow at the maximal length s amino acids. This maximal

length of s is related to the length i—in nucleotides—of the nascent mRNA Yi by the

relation s = i/3, since every triplet of nucleotides (codon) determines one amino acid.
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Zi +AA
cG→ Z1

i

Z1
i +AA

cG→ Z2
i

...

Zs−1
i +AA

cG→ Zsi

Zsi +AA
cG→ . . .

(8.15)

Degradation of nascent mRNA is not considered.

Let Rf , wfi , wi, zi, z
j
i be the molar concentration of species FR, Y i, RY i, Zi, Z

j
i ,

respectively. Hence, assuming classical mass-action kinetics, one can derive the following

ODEs from reactions above (8.13)-(8.14)-(8.15):

ẇi = k3Rfw
f
i − k4wi − kGwi

ẇ
f
i = −k3Rfw

f
i + k4wi + kGwi

Ṙf = −k3Rfw
f
i + k4wi

żi = kGwi − cGzi

ż1
i = cGzi − cGz1

i

...

żs−1
i = cGz

s−2
i − cGzs−1

i

żsi = cGz
s−1
i − cGzsi

(8.16)

Since for every nascent mRNA Yi the following conservation equation is valid:

wi = wfi + wi (8.17)

considering wfi = wi − wi, we can reduce system (8.24) to:

ẇi = k3Rf (wi − wi)− k4wi − kGwi

Ṙf = −k3Rf (wi − wi) + k4wi

żi = kGwi − cGzi

ż1
i = cGzi − cGz1

i

...

żs−1
i = cGz

s−2
i − cGzs−1

i

żsi = cGz
s−1
i − cGzsi

(8.18)
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Now, considering steady state assumption for all ribosome complexes RY i, Zi and Zji

one gets:

wi =
Rf

Rf + θR
wi (8.19)

zsi = zs−1
i = . . . = z1

i = zi =
kG
cG
wi =

kG
cG

Rf
Rf + θR

wi (8.20)

where θR =
k4 + kG
k3

.

8.3.2.2 Translation of completed mRNA

Now we focus on the translation of completed mRNAs. Let RNA be the completed

mRNA, free from RNAP and the gene whereby it has been generated.

The process of ribosome binding to the completed mRNA is similar to that for the

nascent mRNA presented above. Hence, free ribosome FR binds to the free ribosome

binding site RNAf of mRNA in a reversible way forming the complex RRNA:

FR+RNAf
k4
�
k3

RRNA (8.21)

After binding, ribosome clears the ribosome binding site and is ready to start moving

(and reading nucleotides) along the mRNA:

RRNA
kG→ Z +RNAf (8.22)

where Z denotes ribosome just after the clearance, bound to the completed mRNA and

waiting for reading nucleotides.

Then, the moving ribosome Zj reads all the information stored into the completed

mRNA, and elongates the corresponding protein G with amino acids AA (encoded by

nucleotides in mRNA) until G has reached its length M = L/3. As before, we do not

model neither amino acid formation nor the charging and uncharging of AA on transfer-

RNA. Moreover, protein G is subject to degradation γG and dilution due to cell growth
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rate µ.
Z +AA

cG→ Z1

Z1 +AA
cG→ Z2

...

ZM−1 +AA
cG→ G+Rf

G
γG+µ→ ∅

(8.23)

Let Rf , wf , w, z, zj ,X be the molar concentration of species FR, RNA, RRNA, Z,

Zj , G, respectively. Hence, assuming classical mass-action kinetics, one can derive the

following ODEs from reactions above (8.21)-(8.22)-(8.23):

ẇ = k3Rfw
f − k4w − kGw

ẇ
f = −k3Rfw

f + k4w + kGw

Ṙf = −k3Rfw
f + k4w

ż = kGw − cGz

ż1 = cGz − cGz1

...

żM−1 = cGz
M−2 − cGzM−1

Ẋ = cGz
M−1 − (γG + µ)X

(8.24)

Since for the completed mRNA RNA the following conservation equation is valid:

x = wf + w (8.25)

we can reduce system (8.24), considering wf = x− w, to:

ẇ = k3Rf (x− w)− k4w − kGw

Ṙf = −k3Rf (x− w) + k4w

ż = kGw − cGz

ż1 = cGz − cGz1

...

żM−1 = cGz
M−2 − cGwM−1

Ẋ = cGz
M−1 − (γG + µ)X

(8.26)
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Now, considering steady state assumption for all ribosome complexes RRNA, Z and Zj

one gets:

w =
Rf

Rf + θR
x (8.27)

zM−1 = zM−2 = . . . = z1 = z =
kG
cG
w =

kG
cG

Rf
Rf + θR

x (8.28)

where θR =
k4 + kG
k3

.

Finally, the ODE for the protein G reads as:

Ẋ = kG
Rf

Rf + θR
x− (γG + µ)X (8.29)

8.3.2.3 Comments on ribosome engaged in translation

To calculate the total concentration of ribosomes engaged in the translation process, one

has to consider two terms: one for those translating nascent mRNAs and the other one

for those translating the completed mRNA.

Let us first consider the total concentration of ribosomes that are involved in translating

one nascent mRNA which stems from the moving RNAP Yi. Since from each moving

RNAP complex Yi only one nascent mRNA originates from it, from now on Yi will

also indicate the corresponding nascent mRNA which is being transcribed from the

moving RNAP (Yi). For every Yi the ribosomes that are bound to it are RRNAi, Zi,

Z1
i , Z2

i ,...,Zsi , denoting the ribosome bound to the ribosome binding site, the ribosome

after the clearance, and all moving ribosomes. Hence, let Rni be the concentration of

ribosomes engaged in the translation of the nascent mRNA Yi, we have:

Rni = wi + zi +
s=iM/L∑
j=1

zji (8.30)

and knowing that all the nascent mRNA on gene g are Yi for i = 1, 2, . . . , L− 1, it turns

out that the total concentration of ribosomes engaged in translating all nascent mRNA,

i.e. Rn, is given by:

Rn =
L−1∑
i=1

wi + zi +
iM/L∑
j=1

zji

 . (8.31)
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Substituting expressions (8.19)-(8.20) into (8.31), one gets:

Rn =
L−1∑
i=1

 Rf
Rf + θR

wi +
kG
cG

Rf
Rf + θR

wi +
iM/L∑
j=1

kG
cG

Rf
Rf + θR

wi


=

Rf
Rf + θR

L−1∑
i=1

(
1 +

kG
cG

+ i
M

L

kG
cG

)
wi

(8.32)

then, since wi =
kg
cg

Pf
Pf + θP

d as stated in (8.9), we have:

Rn =
Rf

Rf + θR

kg
cg

Pf
Pf + θP

d
L−1∑
i=1

(
1 +

kG
cG

+ i
M

L

kG
cG

)

=
Rf

Rf + θR

kg
cg

Pf
Pf + θP

d

[
(L− 1) +

kG
cG

(L− 1) +
M

L

kG
cG

L−1∑
i=1

i

]

=
Rf

Rf + θR

kg
cg

Pf
Pf + θP

d

[
(L− 1) +

kG
cG

(L− 1) +
M(L− 1)

2
kG
cG

]
=

Rf
Rf + θR

kg
cg

Pf
Pf + θP

d(L− 1)
[
1 +

kG
cG

(
1 +

M

2

)]
(8.33)

Now we will focus on the ribosomes engaged in translating the completed mRNA. Simi-

larly as above, for the completed mRNA the ribosomes that are bound to it are RRNA,

Z, Z1, Z2,...,ZM−1, denoting the ribosome bound to the ribosome binding site, the ribo-

some after the clearance, and all moving ribosomes. Hence, let Rc be the concentration

of ribosomes engaged in the translation of the completed mRNA, we have:

Rc = w + z +
M−1∑
j=1

zj (8.34)

Substituting expressions (8.27)-(8.28) into (8.34), one gets:

Rc =

 Rf
Rf + θR

x+
kG
cG

Rf
Rf + θR

x+
M−1∑
j=1

kG
cG

Rf
Rf + θR

x


=

Rf
Rf + θR

x

(
1 +

kG
cG
M

) (8.35)
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Finally, the total concentration of ribosomes engaged in the translation process for the

single gene g, denoted by Rg, are:

Rg = Rn +Rc

=
Rf

Rf + θR

kg
cg

Pf
Pf + θP

d(L− 1)
[
1 +

kG
cG

(
1 +

M

2

)]
+

Rf
Rf + θR

x

(
1 +

kG
cG
M

)
=

Rf
Rf + θR

{
(L− 1)

kg
cg

Pf
Pf + θP

d

[
1 +

kG
cG

(
1 +

M

2

)]
+
(

1 +
kG
cG
M

)
x

}
(8.36)

8.3.3 Final conclusions

Here we summarize the most important modelling equations of the transcription-translation

model just presented above:

ẋ = kg
Pf

Pf + θP
d− (γg + µ)x (8.37a)

Ẋ = kG
Rf

Rf + θR
x− (γG + µ)X (8.37b)

P g =
(

Pf
Pf + θP

)
d

(
1 + L

kg
cg

)
(8.37c)

Rg =
Rf

Rf + θR

{
(L− 1)

kg
cg

Pf
Pf + θP

d

[
1 +

kG
cG

(
1 +

M

2

)]
+
(

1 +
kG
cG
M

)
x

}
(8.37d)

Notably, (8.37a) represents the dynamics of mRNA concentration x, produced during

the transcription of gene g; (8.37b) models the dynamics of protein concentration X,

produced during the translation of the mRNA of gene g; (8.37c) denotes the concen-

tration of RNAP engaged in the transcription of gene g; (8.37d) counts for the total

concentration of ribosomes engaged in the translation of both nascent and completed

mRNA of gene g.

It is worth saying that equations (8.37) describe the transcription-translation case of

a constitutive gene g, i.e. a gene which is not specifically regulated, neither at the

transcriptional level by transcription factors and/or external inducers, nor at the trans-

lational level. One possible way to extend model (8.37), to account for these specific

regulations of the gene expression, would be that of considering two generic functions

F1(·) and F2(·) describing all the specific regulations at the transcriptional and at the

translational level, respectively. Moreover, also the growth rate µ might be modeled as a

function µ(·) of the system variables. With all these considerations above, model (8.37)
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can be generalized as follows:

ẋ = kg
Pf

Pf + θP
F1(·)d− (γg + µ(·))x (8.38a)

Ẋ = kG
Rf

Rf + θR
F2(·)x− (γG + µ(·))X (8.38b)

P g =
(

Pf
Pf + θP

)
F1(·)d

(
1 + L

kg
cg

)
(8.38c)

Rg =
Rf

Rf + θR
F2(·)

{
(L− 1)

kg
cg

Pf
Pf + θP

F1(·)d
[
1 +

kG
cG

(
1 +

M

2

)]
+
(

1 +
kG
cG
M

)
x

}
(8.38d)

To conclude, we note that all parameters used in model (8.38) have a biological meaning

and each can be expressed with physical units as reported in Table 8.1.

Descriptions Parameters Physical Units
Gene length L nucleotides
Promoter concentration d Molar concentration
Max transcription initiation rate kg 1/time
Michaelis threshold transcription θP Molar concentration
RNA elongation rate cg nucleotides/time
RNA degradation rate γg 1/time
Protein length M amino acids
Max translation initiation rate kG 1/time
Michaelis threshold translation θR Molar concentration
Protein degradation rate γG 1/time
Protein elongation rate cG amino acids/time

Table 8.1: Model Parameters.

8.4 E. coli GEM dynamical model

Here, using the mathematical formalism presented in Section 8.3 and summarized in (8.38),

we aim at representing the transcription and translation machinery in E. coli depicted

in Figure 8.1. Notably, we will apply model (8.38) to each of the gene classes, i.e. rnn,

rpoBC, bulk, to derive a dynamical model whose system’s variables are R, p, P , b, B,

denoting molar concentration of ribosomes, RNAP mRNA, RNAP protein, total mRNA,

total protein, respectively.
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8.4.1 rnn gene expression model

As stated in Section 8.2.1, rnn genes encode for the stable-RNAs (sRNA), which are

the limiting factors in ribosome formation, hence here we assume that sRNA basically

determine the amount of ribosomes. This means that only the transcription model equa-

tion (8.38a) will be used to model the dynamics of ribosome concentration. Moreover,

equation (8.38a) has to be slightly be modified to account for the fact that rnn genes

have two promoters: Pr1, which is a growth rate dependent promoter (presumably reg-

ulated by ppGpp) and Pr2, which is a constitutive one. Therefore, the dynamics of

ribosomes concentration R reads as:

Ṙ = kr

(
Pf

Pf + θr1P
· h+(µ, θrµ, nr) +

Pf
Pf + θr2P

)
dr − (µ+ γr)R (8.39)

where h+(µ, θrµ, nr) denotes an increasing Hill function of the growth rate µ, modelling

the specific growth rate dependent regulation of promoter Pr1. Whereas the second

Michaelis-Menten term of free RNAP (Pf ) denotes the constitutive regulation of pro-

moter Pr2. The concentration of RNAP engaged in translating the rnn genes P r can

be easily derived from (8.38c):

P r =
(

Pf
Pf + θr1P

· h+(µ, θrµ, nr) +
Pf

Pf + θr2P

)
dr

(
1 + Lr

kr
cr

)
(8.40)

Explanations of parameters in (8.39) and in (8.40) are given in Table 8.2.

Descriptions Parameters Physical Units
rnn gene length Lr nucleotides
rnn gene concentration dr Molar concentration
rnn Max transcription initiation rate kr 1/time
Michaelis threshold for RNAP regulation of Pr1 θr1P Molar concentration
Hill threshold for µ regulation of Pr1 θrµ 1/time
Hill coefficient for µ regulation of Pr1 nr dimensionless
Michaelis threshold for RNAP regulation of Pr2 θr2P Molar concentration
sRNA elongation rate cr nucleotides/time
Ribosome degradation rate γR 1/time

Table 8.2: rnn gene expression model model parameters.

8.4.2 rpoBC gene expression model

As reported in Section 8.2.2, rpoBC genes encode for the β − β′ subunits, which are

the limiting factors for RNAP formation. Hence, here we assume that concentrations
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of β − β′ mRNA, i.e. p, and β − β′ protein, i.e. P , equal those of RNAP mRNA and

RNAP protein, respectively. Even though rpoBC gene expression seems to be specifically

regulated both at transcriptional and translational level (but mechanisms have still to be

well elucidated), here—for the sake of simplicity—we assume that rpoBC genes have no

specific regulations, that is F1(·) = F2(·) = 1 in (8.38). Hence, rpoBC gene expression

model reads as:

ṗ = kp

(
Pf

Pf + θpP

)
dp − (µ+ γp)p (8.41a)

Ṗ = kP

(
Rf

Rf + θPR

)
p− (µ+ γP )P (8.41b)

P p =
(

Pf
Pf + θpP

)
dp

(
1 + Lp

kp
cp

)
(8.41c)

Rp =
Rf

Rf + θPR

{
(Lp − 1)

kp
cp

(
Pf

Pf + θpP

)
dp

[
1 +

kP
cP

(
1 +

MP

2

)]
+
(

1 +MP
kP
cP

)
p

}
(8.41d)

where P p and Rp denote RNAP engaged in the transcription of rpoBC genes and

ribosomes engaged in translation of β − β′ mRNA, respectively.

Explanations of parameters in (8.41) are given in Table 8.3.

Descriptions Parameters Physical Units
rpoBC gene length Lp nucleotides
rpoBC promoter concentration dp Molar concentration
rpoBC Max transcription initiation rate kp 1/time
rpoBC Michaelis threshold transcription θpP Molar concentration
rpoBC mRNA elongation rate cp nucleotides/time
rpoBC mRNA degradation rate γp 1/time
rpoBC protein length MP amino acids
rpoBC max translation initiation rate kP 1/time
rpoBC Michaelis threshold translation θPR Molar concentration
rpoBC protein degradation rate γP 1/time
rpoBC protein elongation rate cP amino acids/time

Table 8.3: rpoBC gene expression model model parameters.

8.4.3 bulk gene expression model

As reported in Section 8.2.3, bulk genes are a proxy gene class representing the consol-

idation of all identified gene-encoding protein in E. coli, i.e. 4288 genes [25]. Hence,

the transcription of bulk genes will model the total mRNA production in E. coli. The

synthesis of mRNA concentration, i.e. b, is determined by free RNAP availability, but
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also by the global and specific growth-rate regulation that at higher growth rate diverts

part of the resources (free RNAP etc.) from mRNA transcription towards stable-RNA

transcription to sustain the translation apparatus (as discussed in Section 8.2.3).

Finally, total protein concentration B is simply determined by the translation of the

proxy total mRNA b, without any specific translational regulation.

Hence, rpoBC gene expression model reads as:

ḃ = kb

(
Pf

Pf + θbP

)
h−(µ; θbµ, nb)db − (µ+ γb)b (8.42a)

Ḃ = kB

(
Rf

Rf + θBR

)
b− (µ+ γB)B (8.42b)

P b =
(

Pf

Pf + θbP

)
h−(µ; θbµ, nb)db

(
1 + Lb

kb
cb

)
(8.42c)

Rb =
Rf

Rf + θBR

{
(Lb − 1)

kb
cb

(
Pf

Pf + θbP

)
h−(µ; θbµ, nb)db

[
1 +

kB
cB

(
1 +

MB

2

)]
+
(

1 +MB
kB
cB

)
b

}
(8.42d)

where h−(µ; θbµ, nb) is a decreasing Hill function of the growth rate µ, modelling the

negative (specific) regulation effect that µ exerts on the mRNA transcription at higher

growth rates. Whereas, P b and Rb denote RNAP engaged in the transcription of bulk

genes and ribosomes engaged in translation of mRNA, respectively.

Explanations of parameters in (8.42) are given in Table 8.4.

Descriptions Parameters Physical Units
bulk gene length Lb nucleotides
bulk promoter concentration db Molar concentration
mRNA max transcription initiation rate kb 1/time
bulk Michaelis threshold transcription θbP Molar concentration
Hill threshold for µ regulation of bulk θbµ 1/time
Hill coefficient for µ regulation of bulk nb dimensionless
bulk mRNA elongation rate cb nucleotides/time
bulk mRNA degradation rate γb 1/time
bulk protein length MB amino acids
bulk max translation initiation rate kB 1/time
rpoBC Michaelis threshold translation θBR Molar concentration
bulk protein degradation rate γB 1/time
bulk protein elongation rate cB amino acids/time

Table 8.4: bulk gene expression model parameters.
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8.4.4 Complete dynamical model of E. coli GEM

Here, we will group together all the gene expression dynamical models of each gene

class to have a comprehensive dynamical model, which describes the concentrations of

the GEM products depicted in Figure 8.1. Notably, considering the ODE equations

in (8.39), (8.41), (8.42), we have

Ṙ = kr

(
Pf

Pf + θr1P
· h+(µ, θrµ, nr) +

Pf
Pf + θr2P

)
dr − (µ+ γr)R

ṗ = kp

(
Pf

Pf + θpP

)
dp − (µ+ γp)p

Ṗ = kP

(
Rf

Rf + θPR

)
p− (µ+ γP )P

ḃ = kb

(
Pf

Pf + θbP

)
h−(µ; θbµ, nb)db − (µ+ γb)b

Ḃ = kB

(
Rf

Rf + θBR

)
b− (µ+ γB)B

(8.43)

where Pf and Rf , denoting free RNAP and free ribosomes respectively, have to fulfil

the following conservation equations:

P = Pf + P r + P p + P b + Pns

R = Rf +Rp +Rb
(8.44)

where P r, P p, Rp, P b, Rb, have been defined in (8.40), (8.41), (8.42); whereas Pns =(
Pf

Pf+θnsP

)
dns models RNAP concentration that binds to non-specific binding sites present

on the DNA [113], reducing in this way the available RNAP for the transcription process.
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Hence, replacing expressions (8.40), (8.41), (8.42), into (8.44), we have:

P = Pf +
(

Pf
Pf + θr1P

· h+(µ, θrµ, nr) +
Pf

Pf + θr2P

)
dr

(
1 + Lr

kr
cr

)
+
(

Pf
Pf + θpP

)
dp

(
1 + Lp

kp
cp

)
+
(

Pf

Pf + θbP

)
h−(µ; θbµ, nb)db

(
1 + Lb

kb
cb

)
+
(

Pf
Pf + θnsP

)
dns

R = Rf

+
Rf

Rf + θPR

{
(Lp − 1)

kp
cp

(
Pf

Pf + θpP

)
dp

[
1 +

kP
cP

(
1 +

MP

2

)]
+
(

1 +MP
kP
cP

)
p

}
+

Rf

Rf + θBR

{
(Lb − 1)

kb
cb

(
Pf

Pf + θbP

)
h−(µ; θbµ, nb)db

[
1 +

kB
cB

(
1 +

MB

2

)]
+
(

1 +MB
kB
cB

)
b

}
(8.45)

8.5 Model calibration

In this section we will discuss how the parameter values of model (8.43) with (8.45)

have been identified. Notably, some parameters have been fixed to values given in the

literature (Section 8.5.2), some others have been calculated using biological experimental

formulas (Section 8.5.3), and the remaining ones have been identified using steady state

experimental data from the literature (Section 8.5.4).

8.5.1 Experimental data

The experimental data we used to calibrate the GEM model (8.43) with (8.45) were taken

from [31], where macromolecular composition of exponentially growing E. coli B/r were

measured at 37 �for five growth rate values. Here we recall that when bacteria are in

the exponential phase, growth rate µ is constant, and macromolecular composition of

the cells is supposed to be at steady state.

For the sake of clarity, in Table 8.5 are reported the experimental data as they appear

in [31].

We note that data in Table 8.5 are not expressed in consistent physical units for direct

calibration of model (8.43) with (8.45), since they have first to be converted in molar

concentration [M]. To do that, we need to know the cell volume (Vc) at each µ reported
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Growth rate µ [1/h]
Parameters Symbol Units 0.42 0.69 1.04 1.39 1.73
RNAP molecules/cell NP #/cell 1500 2800 5000 8000 11400
ribosomes/cell NR #/cell 6800 13500 26300 45100 72000
protein/cell NB 108aa/cell 5.6 8.7 13 18.9 25
mRNA synth. rate/cell rm 105Nu/min/cell 4.3 9.2 13.7 18.7 23.4
sRNA synth. rate/cell rs 105Nu/min/cell 3 9.9 29 66.4 132.5

Table 8.5: Data taken from [31]. We note that in [31] growth rate µ in expressed
in [doublings/h] while here it has been converted in [1/h] considering the conversion
[1/h] = ln(2) · [doublings/h]. Symbols #, aa, Nu denote number of molecules, amino

acid, nucleotide, respectively.

in Table 8.5, the protein length (LB) in amino-acids (aa), the mRNA length (Lb) in

nucleotides (Nu) and stable-RNA length (Lr) in nucleotides (Nu).

To calculate the cell volume, which is a growth-rate-dependent parameter, we interpo-

lated a quadratic function to E. coli cell volume data from [168], measured at five other

different growth rate values, so as to derive E. coli cell volumes at growth rates of inter-

est indicated in Table 8.5. A quadratic interpolation has been adopted since it was the

one giving smaller errors. The interpolation of cell volume data from [168] is depicted

in Figure 8.2, whereas interpolated cell volume values—at growth rate of interest—are

reported in Table 8.6.
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Figure 8.2: Cell volume plotted against the growth rate. Red circles represent data
from [168]; blue curve is the quadratic interpolated function: Vc = 0.0002 µ2+0.8482 µ+

0.1129; blue squares are Vv at µ of interest in Table 8.5.

Regarding stable-RNA length, mRNA length and protein length we assumed Lr =

6623 Nu, Lb = 1000 Nu and LB = 333 aa as reported in [159]. In particular it is
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worth noting that Lb = 1000 Nu and LB = 333 aa represent average E. coli mRNA and

protein length respectively.

Hence we can now convert data in Table 8.5 in [µM ] units using the following expressions:

[NP ] =
NP

Vc · 10−15[L/µm3] ·Na
· 106

[NR] =
NR

Vc · 10−15[L/µm3] ·Na
· 106

[NB] =
NB

Vc · 10−15[L/µm3] · LB ·Na
· 106

[rm] =
rm

Vc · 10−15[L/µm3] · Lb ·Na
· 60 [min/h] · 106

[rs] =
rs

Vc · 10−15[L/µm3] · Lr ·Na
· 60 [min/h] · 106

(8.46)

where Na = 6.022 · 1023 [molecules/mol] is the Avogadro constant.

In Table 8.6 are reported the conversion of data in Table 8.5 using formulas (8.46).

Growth rate µ [1/h]
Parameters Symbol Units 0.42 0.69 1.04 1.39 1.73
Cell Volume Vc µm3 0.47 0.70 0.99 1.29 1.58
RNAP concentration [NP ] µM 5.35 6.63 8.34 10.31 11.96
ribosomes concentration [NR] µM 24.25 31.98 43.89 58.10 75.52
protein concentration [NB] µM 5996.5 6189.6 6515.3 7311.1 7874.1
mRNA synthesis rate [rm] µM/h 92.00 130.77 137.18 144.53 147.25
stable RNA synthesis rate [rs] µM/h 9.69 21.25 43.85 77.49 125.90

Table 8.6: Data in Table 8.5 after conversion in µM using formulas (8.46).

Data in Table 8.6 will then be used (Section 8.5.4) to estimate unknown parameters

of model 8.43-8.45, but let us first see how most of the model parameters have either

been fixed to literature values, or calculated using genetic informations and experimental

biological formulas.

8.5.2 Parameters taken from literature

In the last decades much research has focused on the mutual influence between bacterial

gene expression and global regulation of cell growth rate [31, 113, 124, 151, 159]. These

research works allowed us to derive some of the parameter values used for the GEM

model (8.43)-(8.45).
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Notably, some of the model parameter values taken from the literature are growth-rate-

independent, i.e. their values do not change when µ changes, while others are growth-

rate-dependent, i.e. they assume different values for each of the µ values reported in

Table 8.6.

Hence, in Table 8.7 are reported growth-rate-independent parameter values taken from

literature with their references, whereas in Table 8.8 are presented the growth-rate-

dependent parameter values at µ of interest with references whereby they have been

deduced.

Parameters Units Values Notes
kr 1/h 6600 from [159]
kb 1/h 600 from [113]
kp 1/h 600 assumed to be equal to kb
kB 1/h 4800 from [159]
kP 1/h 4800 assumed to be equal to kB
cr Nu/h 306000 from [31]
Lr Nu 6623 from [159]
Lb Nu 1000 from [159]
Lp Nu 8253 from EcoCyc [106]
LB aa 333 from [159]
LP aa 2749 from EcoCyc [106]

Table 8.7: Growth-rate-independent parameter values based on literature.

Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

cb Nu/h 140400 162000 180000 187200 198000 from [31]
cp Nu/h 140400 162000 180000 187200 198000 cp = cb (assumed)
cB aa/h 43200 57600 64800 72000 75600 from [31]
cP aa/h 43200 57600 64800 72000 75600 cP = cB (assumed)

Table 8.8: Growth-rate-dependent parameter values taken from literature.

8.5.3 Calculated growth-rate-dependent parameters

Other growth-rate-dependent parameters are the promoter concentrations denoted by

dr, dp, db, dns in (8.43)-(8.45). To calculate these quantities we have first to introduce

the concepts of average DNA per cell and individual gene copy number per cell.
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Average DNA per cell: In an exponential culture, the average number of DNA

per cell or the genome equivalent per cell is given by the Helmstetter and Cooper equa-

tion [31]:

Gc =
τ

C · ln(2)
×
(

2
C+D
τ − 2

D
τ

)
(8.47)

where C, D denote the time required to replicate chromosome (in [min]) and the interval

time (in [min]) between chromosomal replication and cell division, respectively. Both

C, D are measured growth-dependent parameters [31] whose values for µ of interest are

reported in Table 8.9. Whereas τ denote time required for cell division (in [min]) and it

is related to growth rate µ (in [1/h]) by the following formula:

τ =
ln(2)
µ
· 60 [min/h]. (8.48)

Growth rate µ [1/h]
Descriptions Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes
Division time τ min 100 60 40 30 24 from [31]
Replication period C min 67 50 45 43 42 from [31]

Period from termination D min 30 27 25 24 23 from [31]
of replication to cell division

Table 8.9: Growth-rate-dependent cell cycle parameter values taken from [31].

Individual gene copy number per cell: In an exponential culture the number of

copies of a gene x is calculated by the following equation [31]:

Nx = 2[C(1−m′)+D]/τ (8.49)

where m′ is the map location of gene x relative to location or replication origin:

m′ =


(m+ 16)/50 if 0 ≤ m < 36

(84–m)/50 if 36 ≤ m < 84

(m–84)/50 if 84 ≤ m < 100

(8.50)

while m denotes the absolute map location of gen x.

Having presented the concepts of average DNA per cell and individual gene copy number

per cell with their respective formulas, we can now calculate the promoter concentrations

of each gene class, i.e. dr, dp, db, and the concentration of not specific binding sites dns.
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8.5.3.1 Promoter concentration of rnn operon

The rnn operon is made up of seven genes and their m and m′ values taken from [31]

are reported in Table 8.10 .

rnn operon
Gene x m m′

rnnA 87 0.06
rnnB 89.5 0.11
rnnC 85 0.02
rnnD 72 0.24
rnnE 90.5 0.13
rnnG 57 0.54
rnnH 5 0.42

Table 8.10: Absolute map location (m) and relative map location(m′) of the seven
rnn genes. Values taken from [31].

Using formula (8.49) with values in Tables 8.9-8.10 we can calculate the gene copy

number per cell of operon rnn (Nrnn) at growth rates of interest. Eventually, the

promoter concentration dr (in [µM ]) of operon rnn is given by:

dr =
Nrnn

Vc · 10−15[L/µm3] ·Na
· 106 (8.51)

Nrnn and dr values at growth rates of interest are reported in Table 8.11.

Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Nrnn genes/cell 12.44 15.11 20.07 26.94 35.96 calculated
dr µM 0.0444 0.0358 0.0335 0.0347 0.0377 calculated

Table 8.11: Growth-rate-dependent rnn copy number and concentration.

8.5.3.2 Promoter concentration of rpoBC genes

In Table 8.12 are reported the m and m′ values of rpoBC genes. The rpoBC m value

has been taken from [130].

Using formula (8.49) with values in Tables 8.9-8.12 we can calculate the gene copy

number per cell of rpoBC (NrpoBC) at growth rates of interest. Eventually the promoter

concentration dp (in [µM ]) of rpoBC is given by:

dp =
NrpoBC

Vc · 10−15[L/µm3] ·Na
· 106 (8.52)
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rpoBC genes
Gene x m m′

rpoBC 90 0.12

Table 8.12: Absolute map location (m) and relative map location(m′) of the rpoBC
genes. Values taken from [130].

NrpoBC and dp values at growth rates of interest are reported in Table 8.13.

Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes
NrpoBC genes/cell 1.85 2.27 3.06 4.17 5.65 calculated
dp µM 0.0066 0.0054 0.0051 0.0054 0.0059 calculated

Table 8.13: Growth-rate-dependent rpoBC copy number and concentration.

8.5.3.3 Promoter concentration of bulk genes

The bulk gene class is a consolidation of the 4288 identified protein encoding-genes in

E. coli [25]. Here, we assume that these 4288 genes are uniformly distributed across the

chromosome. This implies that:

m′i = i/4288, for i = 0, 1, 2, ..., 4287

and the gene copy number per cell is given by:

Nb =
4287∑
i=0

2[C(1−m′i)+D]/τ = 2(C+D)/τ 1− 2−C/τ

1− 2−C/(4288·τ)
(8.53)

Using formula (8.53) with values in Tables 8.9 we can calculate the gene copy number per

cell of bulk genes (Nb) at growth rates of interest. Eventually, the promoter concentration

dp (in [µM ]) of bulk genes is given by:

db =
Nb

Vc · 10−15[L/µm3] ·Na
· 106 (8.54)

where Nb and db values at growth rates of interest are reported in Table 8.14.

8.5.3.4 Promoter concentration of non-specific binding sites

RNAP could also bind to non-specific binding sites on the DNA, because the number of

sites for non-specific binding greatly exceeds the number of promoters [113]. In theory,
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Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Nb genes/cell 6719.36 7928.62 10016.49 12781.57 16237.20 calculated
db µM 23.96 18.78 16.72 16.46 17.03 calculated

Table 8.14: Growth-rate-dependent values of bulk copy number and concentration.

each nucleotide of the DNA may be a (non-specific) binding site of RNAP, and when

RNAP is bound to these non-specific binding sites not only transcription does not start,

but also the pool of free RNAP is reduced.

The number of non-specific binding sites per cell Nns is given by [113]:

Nns = g Gc

where g = 4.6 · 106 is the genome size ([113]) and Gc is genome equivalent per cell

expressed in 8.47. Finally the non-specific promoter concentration dns (in [µM ]) is

given by:

dns =
Nns

Vc · 10−15[L/µm3] ·Na
· 106. (8.55)

In Table 8.15 are reported the calculated values of Gc, Nns and dns at growth rates of

interest.

Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Gc DNA/cell 1.6 1.8 2.3 3.0 3.8 calculated
Nns 106 bs/cell 7.3 8.28 10.58 13.8 17.48 calculated
dns µM 26244.18 19616.19 17657.09 17776.45 18333.50 calculated

Table 8.15: Growth-rate-dependent values of non-specific promoter concentration.

Finally, to recap, all calculated growth rate parameter values are reported in Table 8.16.

Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

dr µM 0.0444 0.0358 0.0335 0.0347 0.0377 calculated
dp µM 0.0066 0.0054 0.0051 0.0054 0.0059 calculated
db µM 23.96 18.78 16.72 16.46 17.03 calculated
dns µM 26244.18 19616.19 17657.09 17776.45 18333.50 calculated

Table 8.16: Calculated growth-rate-dependent parameter values of promoter concen-
trations.
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8.5.4 Estimated parameters

This section deals with estimating the remaining model parameters from experimental

data reported in Table 8.6. Notably, the remaining parameters to be estimated are

grouped in vector φ, which reads as:

φ = [θr1P , θ
r
µ, nr, θ

r2
P , γr, θ

p
P , γp, θ

P
R , γP , θ

b
P , θ

b
µ, nb, θ

B
R , γB, θ

ns
P ] (8.56)

where parameters in (8.56) are assumed to be growth rate independent.

In general, the problem of estimating the unknown parameters of a model can be formu-

lated as a minimization problem, where the theoretical model predictions are compared

to the experimental data, and the parameter values are adjusted in order to minimize

the distance between the two. Hence, with this in mind and since experimental data

are steady state measurements (at five given growth rate values) of ribosome, RNAP,

protein concentrations and mRNA and sRNA synthesis rates (see Table 8.6), we have

to derive the same theoretical quantities from model (8.43)-(8.45). This means that

we need to calculate steady state variables of model (8.43)-(8.45), and the theoretical

mRNA synthesis rate rm and sRNA synthesis rate rs. However, let us first introduce

the vector of steady state growth rate µ = [µ1, ..., µ5], where µi (i = 1, ..., 5) is the

i− th growth rate value at which measurements in Table 8.6 are taken. Hence, for each
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i = 1, ..., 5, the steady state model predictions read as:

Ri =
kr

µ+ γr

(
P if

P if + θr1P
· h+(µ, θrµ, nr) +

P if
P if + θr2P

)
dir

pi =
kp

µ+ γp

(
P if

P if + θpP

)
dip

P i =
kP

µ+ γP

(
Rif

Rif + θPR

)
pi

bi =
kb

µ+ γb

(
P if

P if + θbP

)
h−(µ; θbµ, nb)d

i
b

Bi =
kB

µ+ γB

(
Rif

Rif + θBR

)
bi

P i = P if +

(
P if

P if + θr1P
· h+(µ, θrµ, nr) +

P if
P if + θr2P

)
dir

(
1 + Lr

kr
cr

)

+

(
P if

P if + θpP

)
dip

(
1 + Lp

kp
cip

)

+

(
P if

P if + θbP

)
h−(µ; θbµ, nb)d

i
b

(
1 + Lb

kb
cib

)

+

(
P if

P if + θnsP

)
dins

Ri = Rif

+
Rif

Rif + θPR

{
(Lp − 1)

kp
cip

(
P if

P if + θpP

)
dip

[
1 +

kP
ciP

(
1 +

MP

2

)]
+
(

1 +MP
kP
ciP

)
pi

}

+
Rif

Rif + θBR

{
(Lb − 1)

kb
cib

(
P if

P if + θbP

)
h−(µ; θbµ, nb)d

i
b

[
1 +

kB
ciB

(
1 +

MB

2

)]
+
(

1 +MB
kB
ciB

)
bi

}

ris = kr

(
P if

P if + θr1P
· h+(µ, θrµ, nr) +

P if
P if + θr2P

)
dir

rim = kb

(
P if

P if + θbP

)
h−(µ; θbµ, nb)d

i
b

(8.57)

We note that index i indicates that model predictions (8.57) are calculated considering

growth rate dependent parameters at their i − th growth rate values (see Tables 8.8

and 8.16).
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Now, to quantify the distance between the model predictions in (8.57) and experimental

data in Table 8.6, calculate the cost function J(φ):

J(φ) =
n∑
i

(
Ri(φ)− [NR]i

0.1 · [NR]i

)2

+
n∑
i

(
P i(φ)− [NP ]i

0.1 · [NP ]i

)2

+
n∑
i

(
Bi(φ)− [NB]i

0.1 · [NB]i

)2

+
n∑
i

(
r̄is(φ)− [rs]i

0.1 · [rs]i

)2

+
n∑
i

(
r̄im(φ)− [rm]i

0.1 · [rm]i

)2

(8.58)

where n = 5 is the number of experimental data points, one for each growth rate values

in Table 8.6.

To find the parameters in φ that minimize J(φ) we used an optimization approach

written in MATLAB® which first uses the GlobalSearch function and then, to refine

the estimation, the pattern search function.

Hence, the estimated parameter values are reported in Table 8.17.

Parameters Units Values
θr1P µM 16.3938
θrµ 1/h 1.2106
nr − 7.4251
θr2P µM 45.3137
γr 1/h 0.0344
θpP µM 5.9876
γp 1/h 12.6818
θPR µM 124.3815
γP 1/h 0.2179
θbP µM 107.1302
θbµ 1/h 0.2291
nb − 0.7424
γb 1/h 20.7052
θBR µM 29.8494
γB 1/h 0.0330
θnsP µM 7739.7769

Table 8.17: Estimated parameter values.

In Figure 8.3 are shown the fitting results of steady state model (8.43) and conservation

equations (8.45) using parameter values in Table 8.18. As we can notice, all model

predictions are within the 95% confidence intervals of measurements. Measurement

95% confidence intervals are calculated considering 10% measurement errors as stated

in [31].

To recap, in Table 8.18 are reported all parameter values of model (8.43) and conserva-

tion equations (8.45).
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Figure 8.3: Model fitting. Red circles denote experimental data [31] after molar
conversion (see Table 8.6); blue open circles are model predictions with parameter values
from Table 8.18. Measurement 95% confidence intervals are calculated considering 10%

measurement errors as stated in [31].

R Growth rate µ [1/h]

Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Lr Nu 6623 6623 6623 6623 6623 from [159]

cr Nu/h 306000 306000 306000 306000 306000 from [31]

dr µM 0.0082 0.0083 0.0094 0.0113 0.0142 calculated

kr 1/h 6600 6600 6600 6600 6600 from [159]

θr1P µM 16.3938 16.3938 16.3938 16.3938 16.3938 estimated

θrµ 1/h 1.2106 1.2106 1.2106 1.2106 1.2106 estimated

nr − 7.4251 7.4251 7.4251 7.4251 7.4251 estimated

θr2P µM 45.3137 45.3137 45.3137 45.3137 45.3137 estimated

γr 1/h 0.0344 0.0344 0.0344 0.0344 0.0344 estimated

p Growth rate µ [1/h]

Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Lp Nu 8253 8253 8253 8253 8253 from Eco-

Cyc [106]

cp Nu/h 140400 162000 180000 187200 198000 cp = cb

(assumed)

dp µM 0.0066 0.0054 0.0051 0.0054 0.0059 calculated

kp 1/h 600 600 600 600 600 kp = kb

(assumed)

θpP µM 5.9876 5.9876 5.9876 5.9876 5.9876 estimated

γp 1/h 12.6818 12.6818 12.6818 12.6818 12.6818 estimated

P Growth rate µ [1/h]
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Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

LP aa 2749 2749 2749 2749 2749 from Eco-

Cyc [106]

cP aa/h 43200 57600 64800 72000 75600 cP = cB

(assumed)

kP 1/h 4800 4800 4800 4800 4800 kP = kB

(assumed)

θPR µM 124.3815 124.3815 124.3815 124.3815 124.3815 estimated

γP 1/h 0.2179 0.2179 0.2179 0.2179 0.2179 estimated

θnsP µM 7739.7769 7739.7769 7739.7769 7739.7769 7739.7769 estimated

dns µM 26244.18 19616.19 17657.09 17776.45 18333.50 calculated

b Growth rate µ [1/h]

Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Lb Nu 1000 1000 1000 1000 1000 from [159]

cb Nu/h 140400 162000 180000 187200 198000 from [31]

db µM 23.96 18.78 16.72 16.46 17.03 calculated

kb 1/h 600 600 600 600 600 from [113]

θbP µM 107.1302 107.1302 107.1302 107.1302 107.1302 estimated

θbµ 1/h 0.2291 0.2291 0.2291 0.2291 0.2291 estimated

nb − 0.7424 0.7424 0.7424 0.7424 0.7424 estimated

γb 1/h 20.7052 20.7052 20.7052 20.7052 20.7052 estimated

B Growth rate µ [1/h]

Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

LB aa 333 333 333 333 333 from [159]

cB aa/h 43200 57600 64800 72000 75600 from [31]

kB 1/h 4800 4800 4800 4800 4800 from [159]

θBR µM 29.8494 29.8494 29.8494 29.8494 29.8494 estimated

γB 1/h 0.0330 0.0330 0.0330 0.0330 0.0330 estimated

Table 8.18: All parameter values of model (8.43) and conservation equations (8.45).

8.6 Free RNAP and Free ribosomes

We can use model (8.43) at steady state with (8.45) and the parameter values in Ta-

ble 8.18 as a tool to calculate free concentrations of RNAP and ribosomes which are

difficult to measure in practice.
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In Table 8.19 are reported the free concentrations of RNAP and ribosomes at growth

rate of interest.

Growth rate µ [1/h]
Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes

Pf µM 1.7362 4.3230 6.3803 6.8421 9.9190 prediction
Rf µM 4.0206 5.5573 9.3218 16.5172 23.4799 prediction

Table 8.19: Growth-rate-dependent Free RNAP and ribosomes predictions using
model (8.43) with (8.45) at steady state and the parameter values from Table 8.18.

8.7 Model reduction

Model (8.43) can be reduced by considering a quasi-steady-state approximation for the

mRNA variables p and b. In fact, since gp � gP and gb � gB we can assume that ṗ ≈ 0

and ḃ ≈ 0. Hence, the reduced model reads as:

Ṙ = kr

(
Pf

Pf + θr1P
· h+(µ, θrµ, nr) +

Pf
Pf + θr2P

)
dr − (µ+ γr)R

p =
kp

µ+ γp

(
Pf

Pf + θpP

)
dp

Ṗ = kP

(
Rf

Rf + θPR

)
p− (µ+ γP )P

b =
kb

µ+ γb

(
Pf

Pf + θbP

)
h−(µ; θbµ, nb)db

Ḃ = kB

(
Rf

Rf + θBR

)
b− (µ+ γB)B

(8.59)

where Pf and Rf , denoting free RNAP and free ribosomes respectively, have still to

fulfil the conservation equations in (8.45).

8.8 Conclusions

In this Chapter, we presented a core dynamical model of the gene expression machinery

of the bacterium E. coli. In particular, the entire E.coli genome has been divided into

three main gene classes: rnn genes, rpoBC genes and the proxy bulk genes. As a matter

of fact, rnn genes account for ribosome synthesis, rpoBC genes for that of RNAP, and

bulk genes determine the production of all cellular proteins. Hence, with these three

gene classes, we were able to model the entire transcription-translation apparatus in

E. coli. Notably, using the formalism presented in [115], we modelled the transcription
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regulation due to free RNAP and the translation regulation exerted by free ribosomes,

but we also took into account the specific growth rate dependent regulation which affects

the sRNA and mRNA synthesis. Notably, we extended the model framework of [115]

by introducing two Hill functions, which account for the transcriptional growth rate

regulation. More precisely, this growth regulation determines how resources are allocated

during the transcription process. This mechanism, which is probably due to the ppGpp

molecule, works in the following fashion: at higher growth rate values transcription of

rnn genes is favoured with respect to that of bulk genes, leading to an overproduction

of sRNA with respect to mRNA synthesis. This because, at higher growth rates, more

ribosomes (sRNA are the limiting factor of ribosome assembling) are needed to speed

up the translation of proteins.

Then, the GEM dynamical model, which consists of five variables and two algebraic

equations, has been calibrated using some parameter values taken from literature, others

calculated using genetic information about gene classes and biological formulas, and

finally, the remaining ones, identified using experimental data of E. coli macromolecular

composition at different steady state growth rate values from [31]. We showed that the

calibrated GEM model (all parameter values are reported in Table 8.18) was able to

consistently reproduce all the experimental data (see fitting results in Figure 8.3).

However, to give more consistency to the estimated parameters (reported in Table 8.17),

an identifiability analysis should be conducted, as well as a validation of the model

predictions on an alternative data set should be pursued. But these studies were beyond

the scope of this work and they can be addressed in the future.

Moreover, the developed GEM model can also be used as a “tool“ to calculate steady

states of free RNAP and ribosomes, which are quantities difficult to measure in practice

(Section 8.6). A reduced version of original model (8.43) has also been presented, in

which mRNAs species have been assumed to be at their quasi steady state equilibrium

(Section 8.7).

It is worth saying that, even though model (8.43) is a dynamical model, it is only valid

when growth rate µ is constant, that is during the exponential phase of the bacterial

growth. In other growth phases, a dynamical expression of µ has to be developed (see

Chapters 4-6-7 for possible dynamical µ models), and probably also a recalibration of

the model is required, possibly using dynamical experimental data.

To conclude, this model of the GEM of E. coli describes central regulatory mechanisms

and allowed us to elucidate how the E. coli transcription-translation apparatus works

on a global scale, pointing out that the transcriptional growth rate regulation plays a

fundamental role in the overall regulation of the gene expression machinery. Moreover,
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this GEM model could also be used as host-cell model where more complex/specific gene

networks are embedded into it, or as a starting point for the design of synthetic genetic

manipulations, which implement desired controls of the bacterial GEM.





Chapter 9

State estimation for gene

networks with intrinsic and

extrinsic noise:

A case study on E.coli arabinose

uptake dynamics

The work presented in this chapter is the result of a collaboration I had with Eugenio

Cinquemani (Inria Ibis team, Grenoble). A reduced version of this chapter has been

presented at the European Control Conference (ECC) in 2013 [39].

We address state estimation for gene regulatory networks at the level of single cells. We

consider models that include both intrinsic noise, in terms of stochastic dynamics, and

extrinsic noise, in terms of random parameter values. We take the Chemical Master

Equation (CME) with random parameters as a reference modelling approach, and in-

vestigate the use of stochastic differential model approximations for the construction of

practical real-time filters. To this aim we consider a Square-Root Unscented Kalman

Filter (SRUKF) built on a Chemical Langevin Equation (CLE) approximation of the

CME. Using arabinose uptake regulation in Escherichia coli bacteria as a case study,

we show that performance is comparable to that of a (computationally heavier) parti-

cle filter built directly on the CME, and that the use of information about parameter

uncertainty allows one to improve state estimation performance.

179
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9.1 Introduction

A key player of single-cell gene network dynamics is noise [161]. A distinction is usually

made between intrinsic noise, i.e. the uncertainty inherent in biochemical events (bind-

ing/unbinding of transcription factors, synthesis of mRNA or protein molecules, etc.),

and extrinsic noise, such as the variability of individual features over an isogenic pop-

ulation (abundance of aspecific transcription/translation factors, local environmental

conditions, etc.) [138].

Gene expression monitoring techniques with single-cell resolution opened the way to the

identification of stochastic gene network models. The CME [147], describing the kinetics

of the network species in terms of probabilistic reaction events, is a standard tool for the

description of intrinsic noise. To account for extrinsic noise, similar to Mixed-Effects

(ME) modelling [52], one approach is to describe the parameters of the network dy-

namics as random variables taking different values in different individuals (see e.g. [93]).

Stochastic gene network models are nowadays fundamental tools for understanding the

behaviour of cells in face of environmental and evolutionary challenges [137]. Most re-

cently, they have also been considered for the real-time computer-based control of gene

expression in single cells [128, 169].

This paper investigates state estimation from cell-level measurements for networks with

intrinsic and extrinsic noise. State estimation is interesting per se for the reconstruction

of network states that cannot be measured directly. In addition, it can be used as an

intermediate step for identification, and plays a central role toward model-based control.

We start from the CME as the reference (“true”) model of a cell network. Inspired by

the ME approach [52, 93], we include extrinsic noise in terms of variability of the model

parameters. Since CME appears to be impractical for real-time filtering, we propose

to use an asymptotic approximation, the Chemical Langevin Equation (CLE) [79], to

implement filtering. First, we compare simulations of the CME and CLE models. Then,

we use the latter to construct a Square-Root Unscented Kalman Filter (SRUKF) [101,

150, 156]. Using data generated from the true (CME) system, we compare performance

of SRUKF with that of a (computationally heavier) particle filter built directly on the

CME [63].

We develop our work on the case study of the network regulating the uptake of sugar

arabinose in bacteria Escherichia coli. While relatively simple, this well characterized

system (see [125] and references therein) is representative of the nature and complexity of

the genetic feedback mechanisms regulating bacterial response to environmental stress.

Different from e.g. [93, 182], where the observations consist of time series of the empirical

distribution of gene expression obtained via flow cytometry, we consider the case where
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the expression in every cell of a small population is observed over time, as it can be

obtained e.g. by fluorescence microscopy (see e.g. [169]).

Bayesian inference, such as parameter and state estimation, for biological networks has

been considered before, see e.g. [78, 178]. Here, we focus on state estimation under

parameter uncertainty. First, we show that, despite the known limitations for small

molecule numbers, the CLE is a viable CME approximation for the construction of

computationally affordable filters coping with intrinsic noise (stochastic dynamics) and

extrinsic noise (random parameters). Second, we show that the use of ME-type models,

accounting for parameter variability, may improve state estimation performance.

9.2 Stochastic modelling of genetic networks

Consider a biochemical reaction network involving n species and m possible reactions

among them. For gene regulatory networks, the species are typically proteins, mRNAs,

transcription factors, etc., while reactions are e.g. binding/unbinding events, formation

of complexes, degradation, and, at a higher level of abstraction, gene expression.

Assume that the reaction volume is uniform. For cells or cell nuclei, this assumption

is still accepted in many contexts, as long as spatial resolution is not central. Let

X = (X1, . . . , Xn) ∈ Nn, where Xi denotes the number of elements of species i, with

i = 1, . . . , n. Let νj ∈ Zn be the stoichiometry of reaction j, with j = 1, . . . ,m. That is,

element i of νj , denoted νj,i is the number of elements of species i produced or consumed

in reaction j. Assume that reactions occur stochastically with propensities aj ∈ R≥0

generally depending on X.Then X is the random state vector of a Markovian jump

process. For times t ≥ 0, say, the probability p(Z, t) = Prob(X(t) = Z), Z ∈ Nn, obeys

the CME [147]

dp(Z, t)
dt

=
m∑
j=1

aj(Z − νj)p(Z − νj , t)− aj(Z)p(Z, t). (9.1)

whose solution is fully determined given the distribution of X(0). The CME is a linear

but infinite-dimensional differential equation. For all but the simplest systems, the

exact solution cannot be computed in practice. Simulated sample trajectories can be

obtained by the Gillespie and related algorithms [147]. Under appropriate conditions

on the process X, typically satisfied for large numbers Xi, the jump process X is well

approximated by a continuous process with state x ∈ Rn
≥0 that satisfies the so-called
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Langevin equation [79], i.e. the system of stochastic differential equations

dxi(t)
dt

=
m∑
j=1

νj,iaj
(
x(t)

)
+ νj,i

√
aj
(
x(t)

)
Γj(t), (9.2)

with i = 1, . . . , n, where, for j = 1, . . . ,m, the Γj(t) are mutually uncorrelated white

noise processes. Here x plays the role of a continuous approximation of the molecule

countX. Eq. (9.2) equally describes the evolution of molar concentrations x = X/(ΩNA)[M],

where Ω is the reaction volume, NA is Avogadro’s number and [M] denotes molar

(moles/liter) units, provided appropriate rescaling of the reaction propensities and their

parameters. From now on we assume x = X/(ΩNA) and omit symbol [M] where no

confusion may arise.

Inter-individual variability Similar to ME-modelling in pharmacokinetics [52], vari-

ability of reaction dynamics among different cells (extrinsic noise) can be described in

terms of inter-individual variability of the parameters of a common kinetic model [93].

Using a Bayesian approach, one assumes that individual parameters are concentrated

around a known population average (so-called fixed-effects) but deviate from it by a

quantity modelled as a random variable with a given prior. This prior, characteristic

of the population, is inferred from a set of representative individuals. Then, deviations

of new individuals from the population average are treated as random outcomes from

the same prior. In our context, let aθj denote that reaction propensity aj depends on

a parameter vector θ. Let X` (resp. x`) and θ` be the state (resp. the state of the

Langevin approximation) and the parameters of the `th cell in a population of N cells.

Then X` (resp. x`) evolves according to the dynamics determined by aθ`j . To model in-

dividual variations from population average, we assume that θ`, . . . , θN are independent

identically distributed (i.i.d.) outcomes of the random variable θ defined by

θ = θ̄ + δ, (9.3)

where θ̄ is fixed and δ is a random variable with known distribution Fδ. Provided suitable

definition of Fδ, this model includes the case where some entries of θ are fixed.

Observation model We consider the case where noisy measurements from individual

cells are collected over time. Let T = tk : k = 0, 1, 2, . . ., with tk < tk+1 for all k,

be a set of measurement times. After standard preprocessing (such as e.g. background

removal in fluorescent gene reporter systems) let y`(t) be the measurement at time t ∈ T
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Figure 9.1: Arabinose uptake regulatory network in (modified) E.coli cells (inspired
from [125]). In absence of glucose, global transcriptional regulators enable the ex-
pression of arabinose import enzymes, here lumped into a “virtual” enzyme Upt, and
metabolization enzyme AraBAD, under the control of promoter PBAD. In the modi-
fied strains we refer to, gene araBAD is deleted from the DNA and replaced by the
PBAD-controlled GFP (Green Fluorescent Protein) gene on plasmids. When arabinose
is present, it forms complexes with AraC molecules, which promote transcription of
the above genes, thus increasing the amount of arabinose transporters and fluorescent
molecules. More transporters imply faster arabinose uptake and hence higher trans-
porter synthesis rate, in a positive feedback loop. Parts in grey will not be modelled

explicitly.

for cell �, with � = 1, . . . , N . We assume that

y�(t) = CX�(t) + e�(t), t ∈ T , (9.4)

where the output matrix C, typically selecting one of the system states, is known, and

the e�(t) are i.i.d. noise samples of appropriate dimension from a Gaussian distribution

N (0, R), with R > 0 known. More specific measurement models depend on the details

of the experimental setup and are not pursued in this paper. Under the Langevin

approximation, we will replace X� by the process x� from (9.2) and rescale quantities

accordingly.

9.3 Case study: E.coli arabinose uptake dynamics

We are interested in the network that regulates the uptake of arabinose in Escherichia

coli, a well characterized bacterium. Upon exhaustion of primary environmental car-

bon sources (glucose), E.coli activates adaptation mechanisms triggering the uptake of

less favourable carbon sources such as arabinose (see [125], and references therein). A

simplified representation of the system is in Figure9.1.
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Synthesis Rate aj Degradation Rate aj

∅ a1→ ara v1x3 ara
a2→ ∅ γ1x1

∅ a3→ mUpt (basal) v0
2 mUpt

a5→ ∅ γ2x2

∅ a4→ mUpt (regulated) v2
x3

1

K3
u + x3

1

mUpt
a6→ mUpt+Upt v3x2 Upt

a7→ ∅ γ3x3

∅ a8→ mGFP (basal) v0
4 mGFP

a10→ ∅ γ4x4

∅ a9→ mGFP (regulated) v4
x3

1

K3
u + x3

1

mGFP
a11→ mGFP+GFP v5x4 GFP

a12→ ∅ γ5x5

Figure 9.2: Reactions of the stochastic model of the system of Figure9.1 and corre-
sponding propensities. An arrow from (to) symbol ∅ means synthesis (degradation,

including dilution effects due to cell growth).

We consider a model inspired by [125]. The model consists of the n = 5 species ara

(arabinose), mUpt (Upt messenger RNA), Upt (Upt protein), mGFP (GFP messen-

ger RNA), GFP (GFP protein), interacting via the m = 12 “lumped” reactions re-

ported in Figure9.2 with the corresponding propensities a(x) =
[
a1(x), . . . , a12(x)

]
,

where x =
[
x1, x2, x3, x4, x5

]
denotes amounts of ara, mUpt Upt, mGFP and GFP,

in the same order. Nominal parameter values θ̄, mostly derived from [125], are listed in

Figure9.3. In this model, the rate of transcription of the Upt and GFP genes (resp. a4

and a9) is described as a switch-like (Hill) function of the internal arabinose abundance,

with a threshold parameter that depends on the concentration of unmodelled regulators

(notably AraC, see Figure 9.1 and [125]). The observed variable is a fluorescence level

proportional to the amount of GFP, i.e. C = [0 0 0 0 K], for simplicity we take K = 1.

The CME and CLE models follow from replacing the stoichiometries ν1, . . . , ν12 and the

propensities of the model of Figure 9.2 into (9.1) and (9.2). In particular, the CLE can

be written in the matrix form

ẋ = V a(x) +H V diag
(√

a(x)
)

Γ (9.5)

where V = [ν1, ..., ν12]5×12, diag
(√

a(x)
)

is the diagonal matrix having the square root

of the entries of vector a(x) on the diagonal, Γ = [Γ1, ...,Γm]T and H = 1/
√
NAΩ.

To get an insight into the accuracy of the CLE approximation of the CME, we analyse

numerical simulations of the two processes. To simulate the CLE (9.5) we used a modified

version of the Euler-Maruyama method [112] (with sampling time of 0.1[min]) which

shuts down a reaction channel when the amount of any its reactants reaches zero, for

preserving non-negativity of the system state [51]. To simulate the CME (9.1) we used

a customized version of software StochKit [149]. Simulations are started from the state

X− = (0, 0, 43, 0, 155) which is (up to integer round-off) the expected state of equilibrium

before the arabinose uptake mechanism kicks in. In practice, this value is computed
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θ̄ Values (CME) Values (CLE)

v1 120min−1 120min−1

v0
2 0.05 #min−1 3.9643 · 10−11Mmin−1

v2 4.95 #min−1 3.9643 · 10−9Mmin−1

Ku 58541.79 # 4.6416 · 10−5M

v3 4.16min−1 4.16min−1

v0
4 0.05 #min−1 3.9643 · 10−11Mmin−1

v4 4.95 #min−1 3.9643 · 10−9Mmin−1

v5 5min−1 5min−1

Figure 9.3: Nominal parameter values for the CME (in molecule number units –
symbol # denotes number of molecules) and the CLE (in concentration units – nor-
malization factor 1/NAΩ ' 7.9 · 10−10M/#). Degradation rates, equal for CME and

CLE models, are (γ1, γ2, γ3, γ4, γ5) = (0.0139, 0.347, 0.0139, 0.116, 0.0139)min−1.

by approximately solving the equation 0 = V a(x−) subject to x−1
1 = 0, with x− =

X−/(ΩNA), with respect to X− ∈ Nn. The simulated states X(t) and x(t) are recorded

at times T = {tk = k ·T : k = 0, . . . , 20}, with T = 5[min]. Results from 100 simulated

trajectories are reported in Figure 9.4(a). Distributions look similar, but the Langevin

approximation appears to be slightly biased. At every time k, the hypothesis of equal

distributions was tested by applying a standard two-sample Kolmogorov-Smirnov test

first on the simulated states, then on the same data but with their means equalized.

Results in Figure 9.4(b) show that, while the hypothesis is often rejected before bias

correction, this is no longer the case after mean equalization, except for small molecule

numbers (see e.g. mUpt and mGFP around time 10) where the CLE is known to perform

worse [79]. We will discuss the implications of this for filtering in the next section.

9.4 Gene network state estimation

Consider a cell population model specified as in Section 9.2. Given an initial distribution

p(·, 0) at initial time t0 = 0, the dynamics of X` in every individual ` = 1, . . . , N are

described by the propensities aθ`j of the reactions νj , with j = 1, . . . ,m, and the indi-

vidual parameters θ` follow (9.3) with assigned distribution Fδ. Let measurements (9.4)

be available for all individuals. We consider the following real-time state estimation

problem in all individuals.

Problem 1. Let Y `(t) = {y`(tk) : tk ≤ t}. For t ≥ 0, compute

E[X1(t), . . . XN (t)|Y 1(t), . . . ,Y N (t)].

Expectation is taken with respect to the process laws and the random deviations of the

individual parameters from population average. Since these quantities are assumed to be
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Figure 9.4: (a) Comparison of 100 simulations of the CME model (red, stars) and
the CLE approximation (blue, circles) at times T . At each time point, samples from
the two simulations are plotted next to each other (slightly off the corresponding time
point) for visual comparison. Lines indicate simulation mean for CME (red dashed)
and CLE (blue solid). (b) Results of the Kolmogorov-Smirnov test for the CME and
CLE simulations in Figure 9.4(a) (blue), and for the same data after equalization of
the means (red). The test is applied, separately for every state entry, to the simulated
states at times T . A value of 0 (resp. 1) means that the hypothesis of equivalence of

the distributions has been accepted (resp. rejected) with 95% confidence level.

statistically independent across individuals, the problem splits into N estimation prob-

lems, one per individual. Focusing on the problem of filtering, the problem reformulates

as follows.

Problem 2. For every ` = 1, . . . , N , and k ∈ N, compute X̂`[k|k] = E[X`(tk)|Y `(tk)].

Being the problem identical for every individual, from now on we drop superscript “`”

from the notation and look at the generic individual (process) X with parameters θ

obeying (9.3).

Given the known difficulty of solving the CME, the problem of computing X̂`[k|k] ap-

pears quite challenging and is further complicated by the randomness of parameters θ.

Possible but computationally demanding approaches include Markov Chain Monte Carlo

(MCMC) sampling [78] and particle filtering [63, 178]. We consider that computation-

ally more effective solutions may be obtained based on the CLE approximation (9.2).
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We saw in Section 9.3 that, at least in our case study, the CLE provides a viable approx-

imation of the CME, with the exception of a small bias. For state estimation purposes,

the closed-loop correction of the estimates as new measurements become available is

expected to compensate for this. Since, conditionally on θ, process x in (9.2) is an ap-

proximation of process X, it is natural to see the augmented process ξ = (x, θ) as an

approximation of (X, θ), and to approximate the solution of Problem 2 by computing

x̂[k|k] = E[x(tk)|Y (tk)] in place of X̂[k|k] = E[X(tk)|Y (tk)]. Following a well-known

approach (see e.g. [60]), the dynamics of ξ can be written by treating θ as an invariant

state θ(t) with random initial condition. Combining θ̇(t) = 0 with Eq. (9.5) leads to the

augmented Langevin system

ξ̇(t) =

[
V a(ξ(t))

0

]
+

 HV diag
(√

a(ξ(t))
)

Γ

0

 (9.6)

with a priori distribution of θ(t) at time t0 given by (9.3). Based on this, we address

the following problem, slightly more general than the computation of E[x(tk)|Y (tk)].

Problem 3. Compute ξ̂[k|k] = E[ξ(tk)|Y (tk)], ∀k ∈ N.

In the next section we will provide one solution based on a version of the so-called

Unscented Kalman Filter (UKF) [101]. The goodness of the resulting estimates x̂[k|k]

relative to a direct solution of Problem 2 will be assessed in simulation by comparison

with a particle Filter (PF), the Bootstrap filter, built on model (9.1). This PF is

implemented in accordance with [63, §1.3.3] , i.e. sampling the particle dynamics by

Gillespie simulation of (9.1), via customized StochKit [149] software and Matlab.

9.4.1 The Square-Root Unscented Kalman Filter

To solve Problem 3, we present a continuous-discrete SRUKF. A square-root version of

UKF has been chosen to improve numerical stability and also to speed up filtering via

the direct use of the matrix roots from UKF. The filter is built for system (9.6) with

measurements (9.4) rewritten as y(tk) = C̄ξ(tk) + e(tk), with C̄ = [C 0], where the 0s

account for the extension of the state.

The SRUKF utilizes a deterministic sampling approach for the approximate computation

of ξ̂[k|k]. Let L be the dimension of ξ. So-called sigma vectors Xi, with i = 0, . . . , 2L,

are chosen after each measurement update based on a square-root decomposition of the

estimation covariance P and mean µ = ξ̂[k|k], and used in a two steps (prediction and

correction) algorithm to compute weighted mean and covariance approximating the true

conditional distribution of ξ at each tk. Let A(t) = chol(P (t)), that is A is computed
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as the lower triangular Cholesky factor of the covariance P . Following [150], one defines

X0 = µ, Xi = µ + (
√
cA)i for i = 1, ..., L and Xi = µ − (

√
cA)i for i = L + 1, ..., 2L,

and corresponding weights W
(µ)
0 = λ/c, W (µ)

i = W
(c)
i = λ/(2c), for i = 1, ..., 2L,

and W
(c)
0 = W

(µ)
0 + (1 − α2 + β). The parameters c = α2(L + κ) and λ = c − L

are scaling parameters with positive constants α, β and κ used to tune the SRUKF

(in our applications we set α = 0.17, κ = 200, β = 2). Define X = [X0, . . . ,X2L],

wm =
[
W

(µ)
0 ... W

(µ)
2L

]T
, W = H diag

(
W

(c)
0 ... W

(c)
2L

)
HT , with H = (I − [wm ... wm]),

[
V a(X1) · · · V a(X2L)

0 · · · 0

]
︸ ︷︷ ︸

,F (X )

,

 HV diag
(√

a(Xi)
)

0


︸ ︷︷ ︸

,G(Xi)

.

Prediction From time tk−1 to tk, the SRUKF prediction equations [150, 156] can

be written in terms of sigma vectors as B(t) =
√
c
[
0 A(t)Φ(M(t)) −A(t)Φ(M(t))

]
,

M(t) = A−1(t)[X (t)WF T (X (t))+F T (X (t))WX (t)+
∑2L

i=0W
(µ)
i G(Xi(t))GT (Xi(t))]A−T (t),

dXi(t)/dt = F (X (t))wm +Bi(t), i = 0, ..., 2L,

where Φ(· ) is a function defined as: Φij (M) = Mij ∀i > j, Φij (M) = 1/2Mij ∀i = j,

Φij (M) = 0 otherwise. In practice, the above equations are integrated numerically as

follows. Choosing a discretization interval of δt (we set δt = 0.005[min]) and dividing

the interval between measurements into J = (tk − tk−1)/δt subintervals, one computes

Xi(t + δt) = Xi(t) + [F (X (t))wm +Bi(t)] δt, i = 0, ..., 2L iteratively from tk−1 to

tk. At each iterate, one extracts A(t) from the current X (t) and updates F (X (t)) and

B(t) accordingly. This eventually yields new X (tk) and A(tk), from which the a priori

moments are given by ξ̂[k|k − 1] = X (tk)wm, P [k|k − 1] = A(tk)AT (tk).

Measurement update For a new measurement y(tk), ξ̂[k|k] and P [k|k] are computed

from the above ξ̂[k|k − 1] and P [k|k − 1] by a standard Kalman update step according

to our linear measurement model.

SRUKF Initialization We set ξ̂[0|− 1] = E[ξ(t0)] and P [0|− 1] = V ar[ξ(t0)], where

the statistics of ξ at t0 are determined by the priors on x(t0) and θ.
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9.5 State estimation: Simulation results for the E.coli ara-

binose uptake system

9.5.1 Comparison of SRUKF and PF

To evaluate the CLE approximation of the CME for filtering performance, we compare

the (CLE-based) SRUKF with a (CME-based) PF using P = 1000 particles. This

comparison is carried out with model parameters fixed to the nominal values of Table 9.3.

Data are generated by simulating the “true” CME model. We consider two scenarios.

Scenario 1 We consider simulations always starting from state X− of Section 9.3), and

initialize the filters atX− and x−, assuming this state is known. This choice is relevant to

experiments where the beginning of arabinose uptake occurs at a known time, e.g. at the

delivery of arabinose in a glucose-poor medium. We simulated 100 trajectories X(t) and

produced corresponding fluorescence measurements y(t) at times T by corrupting the

simulated values of X5 with zero-mean Gaussian noise with standard deviation σ fixed

to 4 · 10−7[M], which is approximately 10% of the mean observed value of X5/(NAΩ).

On each trajectory, we ran SRUKF and PF from the true initial state and null variance.

Scenario 2 We assume that the system has started the arabinose uptake mechanism

earlier than expected. This is relevant to experiments where the start of arabinose uptake

is somewhat undetermined, e.g. for bacteria placed in an arabinose-rich medium where

the switch to arabinose depends on depletion of environmental glucose. To simulate

this we considered the same 100 simulations of the previous dataset, discarding the first

two measurement times (thus taking t = 10[min] as the initial time) and extending the

simulations to include two additional measurements. For each trajectory, we ran both

SRUKF and PF initialized as in the first scenario, in the (wrong) belief that the system

is observed starting from an equilibrium state.

Let x̂[k|k] and X̂[k|k] be the estimates of the SKRUF and of the PF, respectively. Denote

with µ[k] the a priori mean of the process X (computed from 10000 separate Gillespie

simulation runs). Note that µ[k] can be thought of as the a priori state estimator. To

compare performance, from the 100 simulations we compute empirically the estimation

error time series (in the concentrations domain)

ē[k|k] = E
[
|X[k]/(NAΩ)− x̂[k|k] |

]
(SRUKF),

ēPF [k|k] = E
[
|X[k]− X̂[k|k] |

]
/(NAΩ) (PF),

ēµ[k] = E
[
| [X[k]− µ[k] |

]
/(NAΩ) (a priori).
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For reference, we also compute x̄[k] = E[X(k)]/(NAΩ), the empirical mean of the 100

simulated trajectories on which filtering is performed.

In Scenario 1 filters performed nearly identically: For all k and all state entries i =

1, . . . , 5, | ēi[k|k] − ēPF,i[k|k] | /x̄i[k] ≤ 10−2. However, both filters improved upon µ[k]

only in the 5th (observed) state component (on average over time ēµ,5/x̄5 = 0.083

whereas ē5/x̄5 ' ēPF,5/x̄5 ' 0.054). The SRUKF appears to compensate for the bias

of the CLE approximation (Section 9.3), while neither SRUKF nor PF decreased the

uncertainty on the unobserved states. In Scenario 2, Figure 9.5 shows plots of the rel-

ative estimation errors ē[k|k]/x̄[k], ēPF [k|k]/x̄[k] and ēµ[k]/x̄[k] over time. Both filters
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Figure 9.5: Comparison of estimation errors ē[k|k]/x̄[k] (red, solid), ēPF [k|k]/x̄[k]
(blue, dash-dotted) and ēµ[k]/x̄[k] (green, dotted).

improve significantly upon µ[k] in state entries 1, 3 and 5, and, to a lesser extent, in

entries 2 and 4, showing that measurements are successfully exploited to compensate
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for the wrong belief on the initial state. Again, SRUKF and PF behave very similarly.

We interpret these results as follows. While a more advanced PF (e.g a larger num-

ber of particles P ) could be considered, at least for our case study, the modelling error

introduced by approximating the CME with the CLE has no practical effect on estima-

tion performance. In addition, in our implementation, the SRUKF is much faster than

PF (filtering one trajectory takes more than 15min for PF and less than 2min for the

SRUKF on a 64bits 3.20GHz 6-core 6Gb-RAM Linux workstation). Although the PF

computational burden may be reduced e.g. by the use of tau-leaping [147], these results

make CLE-based SRUKF an appealing alternative for real-time applications.

9.5.2 Performance of the SRUKF in presence of extrinsic noise

We now evaluate performance of the SRUKF when some parameters are random. We

again consider two scenarios.

Scenario 1 All parameters are known and fixed to the nominal values except for

Ku. This is the threshold of the sigmoidal function that determines the switch-like

behaviour of the system via regulation of mUpt synthesis, and may represent e.g.

individual-dependent concentrations of unmodelled regulators (such as AraC, see Fig-

ure 9.1 and [125]).

Scenario 2 We fix all parameters to nominal values except v4, the maximal regu-

lated synthesis rate of mGFP. Variability of v4 may represent e.g. different number of

promoters for GFP (unequal number of plasmids carrying the reporter) in different cells.

In both cases, we consider 100 values of the variable parameter sampled from a Gaussian

distribution with mean equal to the nominal value and standard deviation equal to 20%

of the mean (for consistency, we ensure that all samples are positive). For each of the 100

parameter values, we simulate the system once starting fromX− (which, by its definition,

does not depend on Ku and v4) and record state and noisy measurements at times T ,

with noise distributed as in the previous section. SRUKF is run on each simulated

trajectory initialized with the true statistics of the parameters and null-variance initial

state estimate X−/(NAΩ). To assess the performance gain in using the information

on parameter variability, we also run a SRUKF using the wrong belief that parameters

are all fixed to nominal values, and refer to it as nominal SRUKF (nSRUKF). Let Ξ[k]

denote either (X[k],Ku) or (X[k], v4), depending on the scenario. Let ξ̂[k|k] and x̂[k|k]

denote the estimates from SRUKF and nSRUKF, in the same order. Let µ[k] denote

the a priori mean of process Ξ[k] with nominal parameters (a priori estimator, with
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last entry now fixed to the nominal parameter value). From the 100 filtering results we

compute the (empirical) statistics

ē[k|k] = E
[
|Ξ[k]/(NAΩ)− ξ̂[k|k] |

]
(SRUKF),

ēn[k|k] = E
[
|X[k]/(NAΩ)− x̂[k|k] |

]
(nSRUKF),

ēµ[k] = E
[
| [Ξ[k]− µ[k] |

]
/(NAΩ) (a priori).

Figure 9.6 reports plots of the estimation errors ē[k|k] and ēn[k|k] relative to ēµ[k]. In

both scenarios, both SRUKF and nSRUKF improve upon the prior knowledge on X[k]

in at least some components. In Scenario 1, uncertainty about Ku is reduced around

times 20− 30min, where the threshold is crossed by the increasing concentrations of in-

tracellular arabinose, more markedly for SRUKF. This leads to a transient improvement

of the estimation of arabinose concentration. For the remaining times, where the specific

value of Ku is inessential (saturation of the nonlinearity), the contribution of filtering

is not apparent. In Scenario 2, SRUKF clearly outperforms nSRUKF in the estimation

of mGFP and GFP concentrations, i.e. the states more directly related to v4. Overall,

results show that exploiting the prior on extrinsic noise (parameter variability) not only

enables estimation of the individual parameter value, but also improves estimation of

unobserved states. This supports the use of ME-type models for state estimation and

control applications.

9.6 Conclusions

We investigated filtering of single-cell biochemical regulatory networks with intrinsic and

extrinsic noise. Simulation results on a relevant case study show that approximation of

the reference CME model via CLE is an appealing approach to construct practical real-

time state estimators. Moreover, the use of prior information on parameter uncertainty

led to improved estimation results, showing the potential of extrinsic noise modelling for

state estimation and control applications. Directions of investigation include extensive

performance comparisons and applications to real data.
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ē6[k|k]/ēµ,6[k] (unknown parameter, last row). The smaller the value, the more accurate
the state estimate. Reference value 1 (no improvement relative to prior knowledge) is
indicated by a horizontal line (red). Left: Variability on Ku; Right: Variability on v4.





Chapter 10

Conclusions and Perspectives

The research work presented in this thesis aimed at applying both classical and less

classical methods and tools from Systems and Control Theory to Systems and Synthetic

Biology. In particular, we focused on different mathematical formalisms, i.e. qualita-

tive/quantitative as well as deterministic/stochastic, for modelling gene regulatory net-

works in different experimental and/or biological contexts. Then, to gather predictive

information and insights from these models, as well as to study their dynamical prop-

erties, we analysed them using bifurcation diagrams, phase planes and computational

Boolean tools. Moreover, we addressed the problems of designing qualitative control

strategies to tune bacterial growth rate, identifying model parameters and filtering of

single-cell biochemical regulatory networks with intrinsic and extrinsic noise.

10.1 Qualitative models

In the first part of this thesis we mainly focused on qualitative models. In fact, quali-

tative formalisms turn out to be very useful when little is known about the underlying

molecular processes, model parameter values or when the aim is that of speeding up

the computation. Notably, we addressed the problem of developing new qualitative

formalisms to model gene expression dependent on dilution due to growth rate.

The two novel modelling approaches presented in this thesis can be considered as an

extension of piecewise linear (PL) systems. In fact, we kept the use of step functions to

model the interactions between the elements from PL systems and we added a growth

rate expression to model the dilution effect. Notably, in Chapters 4-5 we considered the

growth rate to be proportional to the concentration of a component of the gene expression

machinery (as RNAP or ribosome), and this choice leaded to a piecewise quadratic (PQ)

195
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system. Whereas, in Chapter 6, we model the growth rate as the weighted minimum

of two limiting gene products (RNAP and Ribosome) responsible for transcription and

translation, and so for bacterial growth too. In this case, the modelling formalism turn

out to be a switched piecewise quadratic (SPQ) system. The dynamics of such systems

were studied using Filippov’s theory and criteria assessing the equilibria stability have

been formulated.

Moreover, always in the vein of qualitative models, in Chapter 7 we studied several

configurations of a model made up of two interconnected Boolean modules. Notably, one

module describes a Boolean version of the model for nutritional stress response in [144],

and the other one a basic cellular growth module. The aim was that of testing several

dynamic model variants for bacterial growth rate that consider limitation by availability

of the proteins needed for cell division (RNA polymerase for transcription, ribosomes for

translation, or other “bulk” proteins), and analysing (qualitative) feasibility of the wiring

network, as well as the logical coherence of each model variant. The main advantage

in using the Boolean framework, and in particular the use of interconnection of two

Boolean modules, was that of computing the attractors of a large network at a much

lower cost than with classical graph theoretical tools. From a biological point of view, our

qualitative analysis showed that a limitation of growth rate by the ribosomes is needed

in order to correctly reproduce the asymptotic modes, as well as transient dynamics, of

the original model [144].

10.2 Qualitative control strategies

With the advent of synthetic biology a number of new problems, that can be stud-

ied with mathematical models, have arisen. Such problems are related to the coupling

of individual components, their regulation and control to produce a desired dynamical

outcome. In this thesis, we addressed the problem of mathematically controlling the

bacterial growth rate, acting on the GEM by appropriately introducing synthetic in-

ducible promoters and rewiring gene network interactions. To this aim, using the PQ

and SPQ formalisms, we presented in Chapters 4-5-6 some qualitative control strategies

implementing open and closed loop configurations. Notably, the open-loop configura-

tions (Chapters 4-5-6) have been obtained by putting the expression of component of

the GEM (e.g. RNAP, Ribosome), which determines the bacterial growth, under the

external control of an inducible promoter. Whereas, in Chapter 5, starting from the

analysis of the open-loop system in the cases that cells are grown in glucose and in

maltose, we developed a closed-loop system, obtained by rewiring the open-loop’s gene

interactions, which is able to mathematically show the inverse diauxie, namely reaching
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an higher growth rate on maltose then on glucose. We studied these models by means

of bifurcation diagrams and phase planes analysis and we showed that a mathematical

control of the bacterial growth rate can be achieved. These qualitative control strate-

gies represent an attempt to help guide biologists in the construction of synthetic gene

networks, which in turn should force bacteria to modify their growth rate in a desired

fashion.

10.3 Quantitative models

This thesis also dealt with the construction of more quantitative (detailed) models of

GRN. In Chapter 8, we used the mathematical formalism developed in [115] to model

in more detail the transcription and translation machinery of the bacterium E. coli. No-

tably, the model consists of 5 non-linear differential equations coupled with 2 algebraic

equations. This algebraic-differential equation system model the dynamics of the tran-

scriptional and translational products of three gene classes, i.e. rnn genes, rpoBC genes

and the proxy bulk genes, which represent the entire E. coli genome. Where rnn genes

account for ribosome synthesis, rpoBC genes for that of RNAP, and bulk genes deter-

mine the production of all cellular proteins. In addition, by means of two Hill functions,

we also took into account the growth rate dependent regulations which affect the sRNA

and mRNA synthesis. More precisely, this growth regulation determines how resources

are allocated during the transcription process. Quantitative models, once their param-

eter values have been identified, can be a useful tool to perform a large numbers of in

silico experiments at little cost. In fact, in silico experiments can explore experimental

conditions too costly or too long/complicated to carry out in the lab. Moreover, they

can help scientists develop insights into the roles of different regulatory interactions, as

well as discover inconsistencies in modelling assumptions when a GRN model is not able

to reproduce certain experimental data.

10.4 Parameter estimation

In this thesis we also addressed the important problem of estimating the parameter

values of a biological model. More precisely, in Chapter 4 we pursued a practical iden-

tifiability analysis, based on numerical simulations, of the derived expression for the

growth rate as function of the input. In this study we showed that some issues may

arise with noisy measurements. In fact, in this particular case, our analysis suggested

that the original growth rates’ measurements should be adimensionalized and unknown

parameters grouped into a new set of ”lumped” parameters in order to obtain local
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identifiability. Moreover, we found that only the ratio between two estimated parame-

ters can be recovered with sufficient precision in the case when only limited and noisy

data are available. This identifiability analysis is a preliminary study which will be most

useful to help dealing with and solving parameter estimation problems with real data

sets.

Furthermore, in Chapter 8 we presented an algebraic-differential equation model of the

gene expression machinery of E. coli, whose parameter values have been identified. No-

tably, this GEM dynamical model, which consists of five variables and two algebraic

equations, has been calibrated using a sort of data integration. In fact, some parameter

values were taken from literature, others specifically calculated using genetic information

about gene classes and biological formulas, and finally, the remaining ones, identified

using experimental data of E. coli macromolecular composition at different steady state

growth rate values from [31]. We showed that the calibrated GEM model was able to

consistently reproduce all the experimental data, since all model predictions were within

the measurement confidence intervals (see fitting results in Figure 8.3).

10.5 Stochastic models and state estimation

The use of differential equations, or more generally deterministic models, for describing

molecular processes makes certain assumptions that are not always valid. One of the

assumption is that variables can assume continuous values, but this is only a simplifi-

cation because molecules are discrete entities. Of course, while molecule numbers are

sufficiently large their dynamics can be modeled by ODEs, but when they are few, the

discreteness should be taken into account. Another important fact is that small molecule

numbers give rise to random fluctuations that can not be captured by ODEs. Hence,

when dealing with population based models (as for example the model in Chapter 8) dif-

ferential equations can be successfully employed, but when one addresses the problem of

modelling GRN at the single cell level, stochastic formalisms might be more appropriate

to model random molecular reaction events, due to the small molecular counts present

in the single cell volume. To this aim, the Chemical Master Equation (CME) [147],

describing chemical kinetics in terms of probabilistic reaction events among the network

species, turns out to be a standard tool for the accurate description of this type of ran-

domness, also called intrinsic noise. However, the stochasticity in reaction events may

not be the only source of noise, other noise may be due to the variability of individual

features over an isogenic population (abundance of aspecific transcription/translation

factors, local environmental conditions, etc.) [138], usually referred as extrinsic noise.
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In Chapter 9, we used CME and its stochastic differential equation approximation,

i.e. Chemical Langevin Equation (CLE), to model intrinsic noise in the GRN context.

Whereas, to account for extrinsic noise, similar to Mixed-Effects (ME) modelling [52], we

described the parameters of the network dynamics as random variables taking different

values in different individuals (see e.g. [93]). Moreover, we investigated the problem

of filtering biochemical regulatory network system with intrinsic and extrinsic noise,

given single-cell fluorescent data. To this aim we consider two filters: a particle filter

(PF) built on a CME and a Square-Root Unscented Kalman Filter (SRUKF) built on

a CLE. Simulation results on a relevant case study of the arabinose uptake dynamics in

E.coli showed that approximation of the reference CME model via CLE is an appealing

approach to construct practical real-time state estimators. Moreover, the use of prior

information on parameter uncertainty led to improved estimation results, showing the

potential of extrinsic noise modelling for state estimation and control applications.

10.6 Perspectives

Some prospective applications as well as research directions are discussed below.

10.6.1 Qualitative control: application to real data

Our collaborators (Jérôme Izard and Hans Geiselmann 1) are performing an ongoing

experiment on a synthetic E. coli, implementing the open-loop model presented in Chap-

ters 4-5. Notably, their experiments relate the level of growth rate during the exponential

phase of the synthetic bacteria to the amount of the inducer. Their preliminary (un-

published) results are very promising and, in the future, these dose-response curves can

be used to calibrate and validate the growth rate expression presented in Chapters 4.

Moreover, a growth rate model—as a function of control input—could be also derived

for the SPQ system (Chapter 6) where a weighted minimum model is used, and hence

fitting this expression to experimental data too. Then, an evaluation of the predictive

power of the two growth rate models could help in discriminating the best growth model.

Therefore, a real implementation of the gene network rewiring suggested by the closed-

loop model in Chapter 5, and collection of experimental data would, of course, help in

confirming the theoretical results on the inverse diauxie and/or suggesting new directions

of investigations both at biological and mathematical levels.
1Laboratoire Adaptation et Pathogénie des Microorganismes, (CNRS UMR 5163), Université Joseph

Fourier, La Tronche, France
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10.6.2 Identifiability, sensitivity analysis and validation of GEM model

The quantitative gene expression machinery model of E. coli presented in Chapter 8

can be further investigated and analysed. For example, to give more consistency to

the estimated parameters, an identifiability analysis should be conducted [174], as well

as confidence intervals of the estimated parameters should be computed. Moreover, a

sensitivity analysis of the model parameters could also indicate which regulatory mecha-

nisms are fundamental or not to correctly reproduce experimental data, and hence help

modellers in finding new directions to simplify/reduce the model. Finally, validation

of the model predictions on an alternative data set would give more consistency to the

model and to the estimated parameter values.

Another point that would be worth exploring is that of comparing/testing the qualita-

tive behaviour of the reduced models of Chapters 4-5-6 with that of the more quanti-

tative model in Chapter 8. This, would either confirm the main modelling assumptions

used in both formalisms, or suggest possible improvements for the qualitative models

(Chapters 4-5-6) as well as viable strategies to reduce/simplify the quantitative model

(Chapter 8).

10.6.3 Combining qualitative and quantitative formalisms for control

purposes

Another possible direction of investigation could be that of combining, in a unique model,

the qualitative and quantitative formalisms. In fact, one could first develop control laws

using qualitative models, which turn out to be easier to construct, and then adapt these

control strategies to larger quantitative models. For example, a first attempt could be

that of plugging the qualitative control laws developed for the open and closed-loop

models in Chapters 4-5-6 into the quantitative GEM model of Chapter 8, and hence

studying the effects of these interactions.

In a more general context, this GEM model could also be used as host-cell model where

more complex/specific gene networks are embedded into it, or as a starting point for

the design of synthetic genetic manipulations, which implement desired controls of the

bacterial GEM.

10.6.4 Further investigation of dynamical growth rate models

In the first part of this thesis we have focused on modelling bacterial growth rate as

a function of components of GEM. However, we only presented qualitative expressions
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of such model. Hence, further investigations—starting from the insights given by the

Boolean model of Chapter 7—on how to model the bacterial growth rate in more details,

i.e. more quantitatively, could be conducted. To this aim, the quantitative GEM model

of Chapter 8 will help for searching more precise and dynamical growth rate formulas.

Eventually, once a satisfactory dynamical growth rate expression will be available, the

quantitative model of Chapter 8 may evolve towards an even more refined E. coli GEM

model, which will be valid in each phase of the bacterial growth, and not only in the

exponential phase when the growth rate is simply constant.

10.6.5 Filtering applications of GRN models

A natural follow-up of the filtering method proposed in Chapter 9 would be that of

application on real single-cell fluorescent data. Moreover, this filtering approach could

also be employed as part of a tool for parametric identification of GRN with intrinsic

and extrinsic noise or, more in general, for the identification of non-linear mixed-effects

models with stochastic differential equations [62, 135]. Another possible application

would be that of using this filtering technique for the control of single-cell biochemical

network dynamics via model-based control strategies [169], which ultimately may also

be useful for bacterial growth control.
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